A

Systems Reference Library

IBM 1410 Input / Output Control System

Programming Systems Analysis Guide

This manual provides detailed information concerning
the internal logic of the 187 1410 Input/Output Control
System. The manual is addressed to technical personnel
responsible for analyzing or modifying the program.
The charts and detailed descriptions herein are based
on Version 3, Level 0 of 170 926.

File Number 1410-30
Form C28-0541-1



Preface

The reader of this manual should have a basic knowl-
edge of the 1BM 1410 Autocoder language. Familiarity
with the information contained in the following
manuals is necessary to understand the material con-
tained in this manual:

IBM 1410 Input/Outpui Control System for Card

and Tape Systems, Form C28-0334
IBM 1410 Autocoder, Form C28-0309
IBM 1410 Principles of Operation, Form A22-0526

Minor Revision (January 1964)

This edition is a minor revision of the preceding edition, Form

(C28-0541, but does not render that publication obsolete.
Revisions to the text are indicated by a vertical line to the

left of the change; revised illustrations are denoted by the

symbol (*) to the left of the Figure caption.

Copies of this and other 1BM publications can be obtained through 18M Branch Offices.
Address comments concerning the contents of this publication to:
IBM Corporation, Programming Systems Publications, Dept. D91, PO Box 390 Poughkeepsie, N. Y., 12602

© 1963 by International Business Machines Corporation



Contents

P
Chart
Page Chart  Page
Introduction. .. ... 7
Tape File and Channel Schedulers, Interrupt. . . ...... .. ... .. . .. 7
File Scheduling .............. ... . ... ... . ... ... ... ... .. ... 7 A 10
Channel Scheduling .. ... ... . ... .. .. .. .. ... . ... ... 8
Overall Descriptions. .. ............... . ... ... ... .. ... . .. 11
Scheduler Operations, Interrupt. .. ............ ... ... ... ... .. 11 AA 14
Channel Scheduling ........... ... ... .. ... ... ... .. ... . .. 11
File Scheduler Operations. .................... ... .. ... .. .. 12
OPEN, CLOSE, FEORL, RDLIN, and Endof Reel .. .. ... . .... . . 15
? Introduction ......... ... .. ... . . . . 15
Processing ...... ... ... .. 15 AB 18
General Error Operations. . ... .............. ... ... ... ... .. .. ... 19 AC 22
Tape and Unit Record Error Routine Tables. . ... ... ... ... . 19
Detailed Description of Operations. .............. ... . ... 23
Scheduling ......... ... . ... 23
Channel Schedulers, Including Interrupt. . ... ... .. ... .. ... ... 23 BA 30
One-Area Input File Scheduler. . .......... ... . .. . .. .. . . . . 24 BB 31
One-Area Output File Scheduler. .. ........ ... . ... ... . . . . 25 BB 31
Two-Area Intput File Scheduler. ... ........ ... .. . ... . 25 BC 32
Two-Area Output File Scheduler. . . ... ... . ... ... ... . . 27 BD 33
Tape File Initialization Sequence. .. ... ... ... ... . . ... . . . 28 BE 34
Padding Routines ................ ... ... ... .. . ... . .. .. . . 29 BF 35
Record Processing and Little Macros. .. .......... .. . . .. . .. ... 36
PUT, GET, and RELSE Macros. ............... ... ... . 36 CA 41
S Unit Record GET, PUT, and Close Operations. . .. ........... . 37 CB 42
Little Macros ............ .. ... .. .. .. .. . ... .. .. ... .. 38 CC 43
Open, Close, and End-of-Reel Procedures. .. ... .. ... ...... .. . 44
Priority Assignment Routine............... . ... .. .. . ... .. . . 44
Description of Priority Assignment. ....... . ... .. .. . ... . .. . 45 DA 57
Open Procedures ........ .......... ... ... ... . .. ... . 46 DB 58
Standard Header Label Procedures.............. .. . ... .. .. . 47 DC 59
End-of-Reel Procedures ............... ... .. ... ... ... . 50 DD 60
Close Procedures .................. ... .. ... ... ... .. . 51 DE 61
Linkage Routines ......... .......... ... .. ... .. ... . . ... 52 DF 62
General I/0 Routines, RDLIN. ... ... ... ... . ... .. 54 DG 63
Message and Wait Loop Routine. . . ............ . .. . . . . .. . .. 54 DH 64
Error Routines .. ......... ... ... . ... . .. . . ... . .. .. . . 65
Tape Error Routine—Part 1............... ... ... ... . ... 65 EA 73
Tape Error Routine—Part 2. ... ........ ... .. ... ... . .. . 66 EB 74
- Tape Error Routine —Part 3. ......... ... . ... . .. .. ... 68 EC 75
Unit Record Error Routine. . .. ........ .. ... ... ... . ... . 70 ED 76
Program Condition Analysis Aids ........... ... .. ... . . 77
Storage Map and Loading Sequence........ ... ... ... ... ... . .. 77
e File Reference Table. ... .......... ... ... .. ... . . .. . . ... . 78
Appendix A — Glossary. .............. ... ... ... ... .. 80
Appendix B — List of Abbreviations .. .................. .. .. 81
Appendix C — Cross Reference Indexes .. ................ ... 82
Appendix D — Sample Autochart Symbols.................. 85
| Appendix E — DIOCS-Generated Label Definitions. ... ... .. .. 86
| Appendix F — File-Dependent Label Definitions . . ........... M
S






Chart A.

Chart AA.
Chart AB.
Figure 1.

Chart AC.
Chart BA.
Chart BB.
Chart BC.
Chart BD.
Chart BE.
Chart BF.
Chart CA.
Chart CB.
Chart CC.
Figure 2.

Figure 3.

Figure 4.

Chart DA.
Chart DB.
Chart DC.

Chart DD.
Chart DE.

Chart DF

Chart DG.
Chart DH.

Figure 5.
Chart EA.
Chart EB.
Chart EC.
Chart ED.
Figure 6.
Figure 7.

List of lllustrations

CaseStudies 1, 2, and 3. . ... ... 10
Channel and File Schedulers — Overall. . .. ... ... ... ... .. ... ... .. .. 14
Open, Close, EOR —Overall .. ....... .. . ... ... ... ... ....... 18
Tape and Unit Record Error Routine Tables. ............................ 21
Tape Error Routine —Overall .. .. ......... .. ... ... ................. 22
Channel Schedulers, Including Interrupt. . ... ........... .. ... ... ........ 30
One-Area File Schedulers — Input and Output. . ......... ... ............ 31
Two-Area Input File Scheduler. .. ....... ... ... .. ... ... ... . ... ..... 32
Two-Area Output File Scheduler. . ... ... ... ... ... .. ... ... ........ 33
Tape File Initialization Routines. . .. .. ................................. 34
Padding Routines .. .......... ... it 35
PUT, GET, and RELSE Macros. . .. ...« vt vt 41
UR GET/PUT Macros and Schedulers. . ........ ... ... ............. 42
Little Macros . . .. ..o 43
Pending Switch Network. ... . ... ... . ... . . ... .. 44
Table of Pending Switch Addresses. . ... ... ... ... ... .cccoiiiiniona... 44
Header and Trailer Formats in Storage. . . ..................... ... P 48
Priority Assignment .. ......... ... ... ... 57
Open Procedures . .. ... 58
Header Label Procedures . . ... ... ... .. .0 i 59
End-of-Reel Procedures .. ........... ... . . . ... ... 60
Close Procedures . . ....... ... 61
Linkage Routines ................... e 62
General I/0 Routines. . ... ... i 63
Message, Reply, Save, and Restore. . . ....... ... ... ... ... .. .. ... ...... 64
Table of File Reference Addresses. . ........... ... ... ................. 65
Tape Error Routine—Page 1 of 3...... .. ... ... ... ... ... ... ...... 73
Tape Error Routine —Page 20f 3.. ... ... ... ... ... ... . ... ... .. ... 74
Tape Error Routine —Page 3of 3......... . ... ... .. . ... ... . ... ..... 75
Unit Record Error Routine. . .......... .. ... ... ... ... .. 76
Storage Map .. ... . ... 77
File Reference Table . ..... ... .. .. .. . .. . . . . . . i, 79






s

The Input/Output Control System for the M 1410
Data Processing System is comprised of program rou-
tines written by the 18BM Programming Systems to pro-
vide users with efficient, pretested routines for reading
and writing card and tape records.

Programming of input and output routines that
handle records efficiently is difficult. The routines used
in 10cs have been found through experience to be effi-
cient. By using this system in all programs, standard
input and output routines are provided. Such routines
simplify and standardize console operations.

10cs provides the following features while satisfying
the requirements for reduced programming, eflicient
routines, standardization, and elimination of input/out-
put programming errors:

| 1. Reading and writing of data records simultane-

ously with processing.

2. Macro-instructions that handle records sequen-
tially, even though they are in blocked form on an input
tape, or are to be written in blocked form on an output
tape.

3. Checks for proper mounting of input tapes and
aids in the checking of each tape used. By the use of
label records, each reel of tape may be identified and
checked before being used in the program.

4. Routines for processing unit records. Unit records
may be read, punched, or printed on-line using macros.

5. Error routines for tape and unit records, that
correct errors whenever possible.

The functions provided by 1ocs are incorporated
into the user’s program during assembly by M 1410
Autocoder. Flexibility is given the user by allowing
him to specify in free form a variety of program
parameters with a minimum number of cards. Only
the necessary coding is generated to reduce storage
requirements.

Whenever programming or machine errors occur
during an input or output operation, they are often
difficult to diagnose because of the complexity of these
operations. If 10cs is being used as a standard input/

output routine, a thorough understanding of how it

operates becomes desirable in order to be able to diag-
nose quickly any difficulties in machine operation that
might occur in this area.

The manual describes general as well as detailed
flow charts to aid in understanding the operation of
1ocs. However, no attempt is made to describe 1o0cs
checkpoint and restart, real time, or disk applications.

IBM 1410 Input/Output Control System

Two conventions are used throughout this manual in
reference to 1ocs labels. The dollar sign < is used in
lieu of 10cs, as the first four label characters e.g., SENTRY
instead of 10csENTRY. The hyphen (-) is used in labels
that have variable prefixes. One hyphen is used in lieu
of the channel number (e.g., scs-s¥s), and two hyphens
in lieu of a file prefix (e.g., s--FULL).

Tape File and Channel Schedulers, Interrupt

Scheduling is that part of 1ocs that controls the man-
ner in which 10 needs for files are serviced. For tape
files, the scheduling is performed by file schedulers in
correlation with one or more channel schedulers.

File Scheduling

The specification of a tape file in the prF, at compilation
time, causes the generation of one file scheduler. The
latter serves as a common subroutine for all Ger or PuT
macros referring to the file. The file scheduler is
entered from a GET to make the next block of logical
records available to a GET macro when the current area
is empty, i.e., all logical records in the current block
have been processed. For a puT macro, the file sched-
uler makes the next block area available for processing
when the current area is full, i.e., has been filled with
logical records. The 1/0 instructions to read a block of
records into storage or write a block out are initiated
in the file scheduler.

The file scheduler coding generated varies according
to the application specified by the prF for the file. The
file type (e.g., output tape), the data characteristics
(e.g., variable-length, blocked records), and the op-
tional features (e.g., the specification of two buffer
areas in conjunction with the overlap and priority
special features) all influence the coding generated.

BUFFERED FILE SCHEDULER, TWO AREAS

Use of two areas for a file allows a look-ahead approach
that enables the overlapping of processing and 1/0.
Case Studies 1, 2, and 3, on Chart A, illustrate how
this is done. In Chart A, the number associated with a
block is a step number. In the case study descriptions,
the execution of a step is indicated by (n), where n
stands for the step number; reference to another step
by step n.

Introduction 7




Case Study 1: One file only on channel 1 (file A). An

/0 operation has been started in area 2 and process-
ing is starting in area 1 (1).
While area 1 is being processed, the area 2 10 opera-
tion terminates (2), and an interrupt to check it
occurs (3). Since no new 1/0 operation can be started
(4), control returns to complete the processing in
area 1 (6). Then, the file scheduler is entered. A test
indicates area 2 is available (7), the need for an 1o
in area 1 is flagged (12). The channel is free (13) and,
since an 1/0 operation is to be started (14), it is
started for area 1 (15). Processing is then resumed
with area 2 (16). Note that 1/0 and processing were
not overlapped during step 6.

PENDING SWITCH

Every two-area file scheduler has a pending switch.

The pending switch is set on to indicate that a tape

operation is to be initiated in an area and it stays on

until the needed 1/0 operation is started, completed,
and checked. In case study 1, the pending switch is set
on at step 1, turned off at step 3, and turned back on

at step 12.

Case Study 2: Same as case study 1, except there is an-

other file on the channel (file B). The pending switch
for file B is on.
At step 3, the channel is clear so the pending
switches are “interrogated” (4). Since the switch for
file B is on, a tape operation for file B is started (5).
Assuming the channel is still busy at step 13, steps
14 and 15 are omitted. Note how processing and 1/0
are overlapped throughout the sequence traced.

FORCING SITUATION

A forcing situation for a two-area file occurs when
entry is made to the file scheduler and another area is
not available. Two possibilities, with resultant conse-
quences, can exist:
1. The channel is busy with another file’s 1o
operation:
a. The channel is cleared.
b. An 1o operation for the forced file is started.
c. The channel is cleared.
2. The channel is busy with this file’s 170 operation:
a. The channel is cleared.

Note that for a one-area file, every entry to the file

scheduler is a forcing situation,

Case Study 3: Same as case study 2, except that the 170
operation for file A has not terminated by the time
step 7 is entered. Steps 2 through 5 consequently do
not exist.

Since the test of the pending switch at step 7 deter-

mines that file A does not have an available area, it is a

8

force situation. A force loop is now entered to wait till
the 1/0 operation terminates (8).

The 10 is then checked (9), completing the clear
channel operation. The pending switch is tested again
(10), and is now found to be off. Therefore, the force
situation comes to an end. The channel is not busy at
step 13, so step 14 is entered, but the 1/0 started at step
15 may be either for file A or B (since both pending
switches are on). Note that the pending switch tested
in step 10 would be on if the operation cleared on the
channel was for another file; an 1/0 operation for the
forced file would be started at step 11, and the force
loop would be re-entered.

PENDING NETWORK AND PRIORITY

The pending switches for all two-area files on a chan-
nel are linked together. This aggregate is called the
pending switch network for the channel. The linkage
from one pending switch to another is via their off-
status branch addresses. For the pending switch below:

Label Operation Operand Explanation
NOP WM over BXPA = pending on
BXPA xxxxX  No wM over BxpA = pending off

xxXXxX represents the address of the Nop in another
pending switch. The next sequential instruction follow-
ing the pending switch is the 1/0 instruction for the file.

The pending switches in the network are linked in
high-to-low (0-9) relative priority for the respective
files on the channel. When the network is entered at
the top, control passes down the network via the off-
branches until a pending switch is found in on status.
Control then drops through the switch to the tape
operation. The pending network is ordered by the
priority assignment routine during an oPEN operation
for all two-area files named in the open (or for files
already oPEN), unless PRIORITY ASSEMBLE was specified,
in which case the assignment was done at compilation
time.

In the case studies, the pending switch network is
entered in step 4 and in step 14. Note that the o
started in step 15 of case 3 depends on the priority
assigned files A and B.

Channel Scheduling

The channel scheduler is generated by the specifica-
tion of procs cHANNEL. The file scheduler uses the
channel scheduler as a subroutine for two main opera-
tions. The entries and operations are:

1. Clear channel operation: This is done in a forcing
situation; e.g., case study 3, steps 8 and 9. The channel
must be forced clear of any unchecked 1/0 operation
before another 1/0 operation can be started for the

forced file.




2. Start channel operation: This is done just before
the file scheduler returns control to the macro; ie.,
case studies, steps 13, 14, and 15. If the channel is not
busy (step 13), the pending network is entered (step
14). If there is an 10 operation to be started, it is
started for the highest priority pending switch found
on (step 15).

These operations are also executed, when necessary,
during end of reel and macro processing of OPEN,
CLOSE, etc.

INTERRUPT

Interrupt coding also links into the channel scheduler.
After the operation is checked and the pending switch
turned off, the channel is started again by going to the
pending network (see case studies, steps 3, 4, and 5).

TWO-CHANNEL OPERATIONS

When there are two channel schedulers, the channel 1
scheduler exits into the channel 2 scheduler for non-
forcing operations.

Introduction 9



AL%xR
* *

® CASE *
* STUDY #
® *
A2 XX 2]
.
.
.
.
.
x 01 02
EHEREDT] RN EREREDZABRERER IR
* *INTERRUPT* -
* *  INTERRUPT  #
PROCESSING  #— — — — X% CODING *eerovresX
* * *

*
*
s
*
*

* »* *
REEEEREAEERRRRAR RERRERERR RSN E RN

EIRERX)

06
BERRRCIEENERENRTR
* *

*  PROCESSING *
* CONTINUES *Xe seove sessnssse
* *
* =
EREFREREERXAKERENN
+ AREA COMPLETELY
+ PROCESSED
.
.
. sesevan
.
x x o8
D1 * » 07 ERRERD2HEN LR KXW
* * * FORCE LOOP- #*
* OTHER *  NO * WAIT FOR *
* Hosesaoee X OPERATION *easvasesX

AREA
* AVAILABLE * * TO TERMINATE #
* * »

»
* * L e I T T TR

*

«YES

Xe oo

12
REERRE]HERRR RN RS
* FLAG THAT AN #
® 1/0 1S TO BE *
*STARTED FOR THE#X
*FILE {INTO AREA¥®
*JUST PRCCESSED)#*
AERRERRARERRERRNN

.

.
.
x
Fl1 * % 13
* *
NO_ ®  CHANNEL %
csast FREE *
. » -
- » *
* =
*
. «YES
. .
. .
. .
. o
. x
. Gl * = 14
. * IS *
. * THERE AN *
.« ® 1/0 TO BE
. * STARTED «* .
- - * -
. LI .
. * .
. +YES .
. . .
. . .
.
X 15
HERUBH ]| R RREXEERRN
* *
* START *
* AN I/0 *
* *
* *
EZZEX IS EZSRS SRS S 3

.

. .

.

essecscesesKeXasenorosoae
X 16

a2 2 NEE AL XES S LSS

- *

* *

*  PROCESSING  *

* *

* *

HERERREERRERERERRR

.

.
.
X
*
»* *
* END *
* CASE *
* STUDY *
* *

EEEEN

Chart A. Case Studies 1, 2, and 3

10

03
EEREEBIRAR RS RS
* *
* *
* CHECK *
* THE 1/0 *

* *
BRERRERRNRRRARE N

sense

coan

sesens

09
ERERERDIHREFEEER RN
* *

* CHECK »
* THE 1/0 *
* *

* *
P T Y Y

*
B4
*
* THERE

sessrseeX®

-

AN

*

1,0 TO BE

* STARTED
» :

-

sesesasene

cee

ssscesenene

D4

*
WAS

Xeesoene e

*

zZ
[+

sae

»

THE

*

05

04 ARAFAQSHEERARERES
* »

*  YES * START *
*essoneoe X AN 1/0 *

* - *
* »
EEEARETERSEEREROE

.
.
.
.
.

ERY R

seseacccssscns

. 11
10 FEEKRDSEEXRERRERER
* »

* NO * /0

» START I *
seeessesX¥®* 1/0 FOR THIS *eaesseseX®FOR FORCED FILE¥®
« 7 FILE » * »

*

*

seases e

-

YES

* »
ERAERRRERT SRR RN

©n



The overall processing in 10¢s is covered by Charts aa
and aB and by Figure 1. Chart a4 is an overall chart for
file and channel scheduling; Chart AB covers OPEN,
CLOSE, FEORL, RDLIN, and end of reel. These two charts
are described by functional operation rather than block
by block. Figure 1 is an overall table that summarizes
tape and unit record error procedures. The description
of Figure 1 discusses these procedures more fully.

Some of the descriptions refer to the file reference
address. This address is the starting location of the file
reference table for the file. The reader may find it help-
ful to refer to this table, included as Figure 7, and
described in the Programming Condition Analysis Aids
section of the manual.

In the operational descriptions of Charts aa and as,
the convention (xxnn) indicates the block whose proc-
essing is being described. The convention block xxnn,
or (at block xxnn) is used to refer to another block.
The reader is again reminded that in a label, the con-
vention of two hyphens (--) designates the file prefix
(e.g., s--FULL) either generated by 10cs or specified
by the user. One hyphen (-) designates the channel
prefix (e.g., scs-sFs ). The dollar sign (s substitutes for
the first 4 characters in the label, viz., 1ocs.

Scheduler Operations, Interrupt

Chart aa is an overall flow chart for file and channel
scheduling. The channel scheduler, shown on columns
1-3 on Chart aa, is described for three operations: Start
Channel Operation, Interrupt Operation, and Force
Channel Clear Operation. The file scheduler, shown on
columns 4-5 on Chart aa, is described for three opera-
tions: Two-Area Operation, Non-Force; Two-Area
Operation, Force; and One-Area Operation.

Scheduling is covered on a detailed level in Charts
BA, BB, BC, BD, BE, and BF.

Channel Scheduling

START CHANNEL OPERATION

This operation occurs to restart the channels, and is
executed whenever appropriate in various 10Gs rou-
tines. If a channel is already in operation, control does
not wait for the operation to terminate. A BOL on each
channel acts as a gate to further action. The following
table shows the possibilities:

Overall Descriptions

Channel 1 Channel 2 Action
Busy Busy _
Busy Free Start channel 2 if possible after check-
ing the previous 1/0 operation, if any.
Free Busy Start channel 1 if possible after check-
ing the previous 1/0 operation, if any.
Free Free Start both channels if possible after

checking previous 1/0 operations, if any,

The operation starts by an SBR (aa01 to set the exit
linkage at siNTEXT, block aA23. A test of the disable
switch follows to determine if a start channel operation
can be made aa02). If the disable switch is on, control
returns immediately to the original routine. Otherwise,
the channel 1 scheduler is entered at scsient, block
AA04, by means of a Bxra,

If channel 1 is in operation (aA04), the BoL1 branches
to the channel 2 scheduler, scs2ent, block aa1s.
Otherwise, a BoPR1 tests if there is an unchecked
/0 operation on the channel (aa03). If there is, the Bopr
branches to the file scheduler coding block to make
the check, block Aa06. On return from checking, or if no
check is made, control drops through the force switch
which is off caaom.

The inquiry IPRD or unit record (BUPRD request
latches are serviced (not shown) if applicable and then
the pending switch network is entered caa1v. If no
pending switch is on, an 10 operation cannot be
started, and control branches from the lowest-priority
pending switch on channel 1 directly to the channel 2
scheduler at scs2eNT, block aa13. If an 1/0 is started, it
is for the file of highest priority whose pending switch
is on. Return to the channel 1 scheduler in this case is
made at CSIRET (AA12) to set the address of the status
check, coding block aaoé (in the file scheduler for
which the /0 operation was started ), into the branch
address of the BopR1 at block aaes. If the 1/0 instruction
was NorP’ed when executed, control remains in the file
scheduler to execute the status check immediately.
After a successful re-execution, the return to the chan-
nel scheduler is made to block aao9.

The channel 2 scheduler is then entered at scs2ENT
aA13), If channel 2 is in operation, the BoL2 branches
to block aa22. If channel 2 is not busy, the operation of
blocks aa14 to Aa15 and aa18 through aas21 is identical
to the channel 1 operation already described. Control
then proceeds, via block aa22, which has no effect, to
SINTEXT (AA23). An unconditional branch is made as set
by block as01 and the priority alert mode is re-entered.

Overall Descriptions 11




INTERRUPT OPERATION

The operation is similar to a start channel except that
both channels cannot be busy because an 1/0 operation
terminating on one of the channels caused the interrupt.

The operation is begun at core storage location
00101. sintexT, block AA23, is set with the contents of
the B-register less 6, and the 1411 status is saved if
required (aa03). The channel 1 scheduler is then en-
tered at sCSIENT (AA0D).

After channel scheduling operations are finished, the
1411 machine status is restored if it was saved <aa22.
Control then re-enters the priority alert mode (aa23)
and branches as set by block aA03 to the instruction at
which the interrupt occurred.

FORCE CHANNEL CLEAR OPERATION

This operation can be executed for either channel. It
forces an 1/0 operation in progress to terminate before
it is checked. It does not restart the channel or affect
the other channel. A channel is forced clear before
issuing an 170 command in a l-area file scheduler, in
all unit record schedulers, and in a 2-area file sched-
uler when a forcing situation exists.

The operation for channel 1 starts by an sBr (a0
to set the exit linkage in the channel 1 force exit, scs1sFx
block aa10. The force switch at block Aa09 is set on
(AA08). A sequence, BOL1 to $CS1PR, BOPR1 to SCSIPR, is
entered (aa09). If channel 1 is free and clear, control
drops through the sequence, the force switch is reset
off caa1», and control returns to the proper routine as
set by block aaor.

If channel 1 is free but not clear, control drops
through the BoL1 to the Bopr1 which branches to scs1pr,
block aA05. At scs1PR another BoPr1 branches to the file
scheduler coding block to check the operation aa06>.
After checking, the force switch is on, so control returns
to the BOL, BOPR sequence (aA09) which is now dropped
through since the channel is free and clear.

If channel 1 is busy, the BoL1 branches to scsipr,
block as0s. There control drops through the Bopr1 to
block Aa09, unless the overlap request latch for chan-
nel 1 was just set. At Aa09, control returns to the BoL1,
since the force switch is on. The loop is repeated until
the overlap request latch is set. The channel is then
free but not clear, and further processing is as pre-
viously described.

Processing for a force channel 2 clear operation,
blocks aa16 through aa19 and aa14 to aais, follows
logic identical to that for channel 1.

In a bootstrap force operation, entry is made at block
AA08, to utilize the already-established force exit link-
age at block aa1o, after the bootstrap operation is
forced clear. '

12

File Scheduler Operations

Entry to the file scheduler is made from a macro when-
ever all logical records have been processed in an area.
The main function of the file scheduler is to make an-
other area available and prepare it for the macro.

TWO-AREA OPERATION, NON-FORCE

The file scheduler exit, block aas3s, is set for return to
the macro. Housekeeping is performed if needed (aa3n),
e.g., an input file has 1 added to its block count. The
pending switch is tested to see if the other area is avail-
able a3, If it is (pending switch off), control
branches to s--Pa. At s--pa, housekeeping is performed
to enable the macro to process the new area and the
pending switch is set on to signify the need for an 10
operation in the just-processed area (aa33). Further
housekeeping is performed if necessary, such as reset-
ting the area limits for blocked records aa34). s--TRIG is
normally (aa35) a branch to sentry, block aa01, to start
the 1/0 operation for this or a higher-priority file (aA36).
On return from starting an 1/0 operation, further house-
keeping is done such as adding 1 to the block count for
an output file (aa37. Control then exits the file sched-
uler to the macro that caused entry aass>.

Note that s--TRIG is also used as a pivot for excep-
tional conditions. In these cases, s--TRIG is set by some
other 10cs routine. These conditions include wLr proc-
essing for input files (if specified), priming for input
files, and linkage to the end-of-reel routine for all files.
In WLR processing, s--TRIG is reset to normal. If the
user decides to accept the record, control returns to
s--TRIG. If the record is rejected, another tape record
is read to replace it by returning to block aA32 to start
a force operation. In a prime operation, s--TRIG is reset
to normal and control returns to aa32 to begin a
force operation. The setting of s--Tric to branch to
WLR or end-of-reel processing was done in the 1ocs
error routine; the setting of s--TRIG to branch to prime
was done during open procedures either from an oPEN
macro or end-of-reel processing.

TWO-AREA OPERATION, FORCE

If the test at block aa32 indicates that the other area is
not available (pending switch on), a force situation
exists. A BxpA to the appropriate channel scheduler
force entry, block Aa0v or Aa1s6, is made to force the
channel clear (aa39). After the channel is clear, sINTEXT,
block aa23, is set to go to the bootstrap force entry in
the channel scheduler at block AA08 or AAi17, in case a
bootstrap force is needed (aa40. The pending switch is
tested again to see if the area has been made available
aaa1). There are two possibilities:




N

1. Pending switch off: The 10 operation cleared on
the channel was for this file. The force situation no
longer exists, and control branches to s--pa, block aass.

2. Pending switch on: The o operation cleared on
the channel was for another file, and so the bootstrap
force is necessary.

Control drops through the pending switch which is a
NOP (AA42) to execute the 1/0 instruction (aa43). If the
1/0 operation was started, the BoL- branches to s-RET in
the channel scheduler to set the status test linkage
(aa44), Channel scheduler operations eventually exit at
sinTEXT (block aa23) which has been set (by block
AA40) to re-enter the channel force routine at the boot-
strap entry of Aa08 or Aa17. The channel is forced clear
of the /0 operation just started, control returning to
block aa40 via the already established force exit link-
age (AA45). When the pending switch is tested, it is now
off aa41), the force situation no longer exists, and con-
trol branches to s--paA, block aa33.

If the 1/0 at block AA43 was not started, control drops
through the BoL- to make the status check and turn the

pending switch off in-line (Aa47 through aa49). The
channel scheduler is then entered with control going
via its exit, sINTEXT, block aa23, to the bootstrap force
entry as described before.

ONE-AREA OPERATION

The file scheduler exit, block aass, is set for return to
the macro and any necessary housekeeping is performed
aa31), The channel is forced clear (as39 and the 10
operation is executed (AA43). An SER or SFR follows the
latter when variable-length records with an wiLr check
are specified. The status test is performed caa4n. This
forces the operation to terminate. If the tape error rou-
tine is entered, corrective procedures are performed
with or without manual intervention (aa4s). After any
necessary area-control housekeeping is performed
(AA34), $-- TRIG branches to SENTRY to restart the channel
(AA36, AA3T). On return, further housekeeping is per-
formed, such as checking Form 4 records (aa37. Return
to the macro is made AA38).

Qverall Descriptions 13




LEX12] REEER REREE
AA *AA *AA % *AA ®

. are * A2s *® Aaw
] . x " %
. - .
«FRCV LCC B «FRCM GET OR
« INTERRUPTEC . .PUT MACRC
. . $--FULL .

00101 X 03 TENTRY X c1 $--EMTY 3 $-~PA 33
RRBRRAL HEAR AR AR RERRFAERREERARE AR HERKEAL ERRRERER RN EREERACSEER AN LR X KX
#SET_SINTEXT FOR® * * * SET RETURN IN * # GIVE PROPER %
*  RETURN ANC * * SET SIKTEXT * 1-AREAS $-—EXIT, * * AREA TO MACRO %
*  SAVE 1411 * * FOR RETURN % «* HOUSEKEEP AS # soX®  AND TURN "
®  STATUS IF * * . *  NECESSARY * APENDING SWITCH &
- NECESSARY - * * HENEE - * 1] - * ON *
ARFRAABARARERAERAR ARRERRRERRERRER RN *APR ¥ - EEXAERE TR EE LN TER - IAZ2A SRR NS R SRS

. . * BI% . «2-AREA . .
. - * - - - -
- - * - - -
. . - . . .
. . . . . .
$CS1ENT aXe X $CS1SFS x 07 X
e *, 04 €2 * . ce ERFREAQIAFERNRAR AR -
o® . «®ARE THE¥. * * . <AVAIL * *
NC o% 1s . YES % CHANNELS #. * SET FCRCE * . +(OFF) * PERFORN *
sese®e CMANNEL 1  o¥Xeossoasa®a AVAILABLE o% #  EXIT BRANCK ¥ . *  NECESSARY *Xa
. #®. FREE o *. FOR USE * ¥ADDRESS (AALQ) * . * HOUSEKEEPING *
- g - * ¥ * * - 1 3 L]
- e o ¥ *a o ARRERRERERERAERT RN - EFAERERAERTRAERTN
. * YES * NO BOOTSTRAP o . .
. . . ERER xran . . «AREA NOT .
. P * * * . CAVAIL
. . e X¥ - X C3 ®.Xe . «(ON) . .
- . * - * * - sssensesessXe . .
- - ERE R . - - -
+«$CS1PR Xa c6 X o8 x 39 . $--TRIG oXe
- [} ", oS BRABRCO2RFBXRARERD ERRRECTERRRERRE RN REERBCHQREREERRREY - L 35
- .® . *FILE SCHED AARSH * » *SCHEC B3/F3E o *,
. «® PRICRITY #, YES it Dbttt * SET * 1-AREAR-X—K—-K_R-N_R_%_% YES LP
o oX%®. REGUEST ON +%.. 2 oXECHK I/0 STATUS,¥ *  CHANNEL 1 .. «* FORCE CFANNEL * . eee®. WLR OR EOF %
%, CHAN 1 o® @ OQUSEKEEPs TURNS * FORCING L * CLEAR * . *. .
. . * PNCG Sw OFF % » =, * L . *. o
. o* ERUBERARRABENRERE ERERERRKERRRERNRN EEKRRRRRRENENARRNR . X , %
¥ NC . . +BOOQTSTRAP «2-AREA . HEREEE * NG
. . . RETURN ##%% . . * .
. . . . . = . . * .
. X . . * C4 *oXa . xo® .
aXoseseasacsescascsssssassscensccasscscesacacecoanoas . * . . . » .
. x . ewn . . o
Xe 1c A . 40 . X 36
[+}} g [+3+] RERRECO2RFARRERAXT - EAXERRCLERARTERARR - ERRRBDSHAREE X E R AR
o oC o% FCRCE #. * SET CHANNEL 1 # . . *SET $INTEXT TO ® . ®SENTRY ARAZK
« o of SW(IF ONes *, ON * NON-FORCING % . . *  BRANCF TO ® b
o es®e LOOF TILL o®esevesosX®ANC EXIT AS SET®aeoess . - #ECOTSTRAP FORCE® . #STARY CHANNELS *
« ON ®. I/C % CHECKEL * Y AAQ7 . . . * ENTRY x . * IF POSSIBLL %
. ¥.CHKEC) o ¥ » » . . * ., . x
- Ry o RARXEZRERRARAREREE X - . EEAABEREBERERER RS - BREAREERRRRFER R
. ® OFF ErEan . . . . .
- * * - . -
3 * *® - - -
. . * - . - . .
. ecessseccssscasccennsesncans . . . . .
. . . . . . .
- x 11 . . X . x 37
. FAREREARRANERR AR . - £4 *, at . RERRRCSERRB R ERR
. #FILE SCHED AAF4* UNIT WAS BLSY . . o* . . * *
. NCNE PENDING ¥-%—¥-#—%-%—_%—¥-% OR NOT READY . . %  TEST % . * PERFORM x
. . cemesn eo® START CHAN 1 * . L PENDINC eteee * HOUSEKEEPING %
. . VIA AA # -0 OPERATICON * . *. SWITCH % OFF * AS NECESSARY *
. * IF PCSSIBLE ¥ . * *
- . ERAEFARRRARRERRENR - ERRBERET RN NN
- . +1/C STARTED . .
. . LTS «{VIA AR44 — YES) x # . . -
. - - L - * - - -
- . * FZ ®uX. . . . .
eecssssscccXe » LI . . . .
. ERER - . - . -
$CS2ENT oXe $CS1RET X 12 $CS2SFS x 16 . X $--EXIT x 38
F1l » 12 REBARFO2RFRE R X RGN EREREFTHERE RN ZRRE e TC KFGHST Fa 42 RERREFSEERERE XL
o #SET ERANCH ADDR¥* * * . PRI PNDGe* *
NC % 1S *. ® OF SCSIPR AT # *  SET FCRCE * . SWITCH.*% PENDING ALL OFF % RETURN AS
®e CPARNEL 2 +%Xsssaesss® AAODS 1O GO TO * * EXIT BRARCH * saX%a SWITCH DS T *  SET BY AASL *
. *,  FREE -t ®STATLS TEST AT * *ADDRESS (AAL19) * - . NETWCRK o% . * *
. .. o* * AAAT * * L . . . . » *
- e o RARTRERERRARFERAS AEFREAARBERERRAR NN - . * . ¥ X FREERR RN LR
. * YES BCOTSTRAP o . mAEE * wErE .
. . LEEL) . .o . <PENDING * Fi ® p
. . * L .« *F4® «ON OR * .
. . " * G3 *aXe . * . * K2 X
- . * * - - ARAE . AEEE ERERE
- - R - - - * *
«$CS2FR Xe 15 x 17 . X a3 LR
- 61 L 14 REEBRCO2RRERARERAR RERARGARER B RZARER - RARBCHLEERRAERE L 2
. - L *FILE SCHED AARS® * . . " .
. «® PRICRITY #*, YES i * SET . * EXECUTE *1-AREA
. « REGUEST € eMecesneseX®CHK 1/0 STATLS.® ® CHANNEL 2 * c.saeeX® PRCPER [/0  %eeae
®. CHAN 2 % #+CUSEKEEP, TURN® * FCRCING * * COMMANC .
*g ¥ * PNDGC Sw QFF * * * * *XER
Ry o EREARERXFXEERRRNEXN ARBFRERARERERERER ERARXXEARET NS - *#FROM
*+ NC . . «2-AREA . * HS *CHAN
. . . . . * ®SCHED
. . . . . rEn
. X X - . .
eXeossosactesesssesvesansrsarsaransasconccstoceasstan . eeessnsssnsceXe
. . . X -
15 . X . oXe
REERBF2RERRRRRERR - ra * g 448 - rS *, a7

1 *e 1B
o¥% FCRCE #.

.

*#SET CHAN 2 NON-# EEER «®  FAS
. - o% SW(IF ON» *, CN *  FORCING AND % . * F2 % YES ¥ 17C NO
o ase¥, LOOF TILL e¥ooseeesaXHEXIT AS SET BY ¥sneecceesn . % CR %Xs0aet, STARTEC s*enee
« ON #. E/C IS % CFECKEC *  BLOCK AA1lG6 * X - * K3 * ®.PROPERLY o
. #4CHKE) o # * * bbbl . LAA A % (BOL) ¥
- ', % SEEAERERRBE RN NN * * . . W%
. ® OFF * * - *
- » L . +YES
. . + (BOOTSTRAP)
. .
- . .
- . .
. . . 20 X 45
. . AREERJORREAERER NN ERRER JAEA AR ANRRS
. - #FILE SCHED AAFaw *$CS-RET F2/K3%
- . HoH-R-R-H-N-H-%-% [,/0 STARTEOD LR e e PN el o Y
. saenssessescsncseX¥ START CHAN 2 ®,ocsev000assovenae ® CONTINUE CHAN *
. ® 1-Q0 OPERATION * (VIA AA44 -~ YES). * SCHEDULER -
. * 1F POSSIBLE % - * CPERAT ICNS -
- EERRARAREAR RN EAAABARRREEARRE NS
. «NCNE . oVIA
. «PENDING - e SINTEXT
. «{(VIA AAGZ) . .
- . .
@esesecssrsverssrenssoscsscnnsssesssoXe - .
. . .
$CS2RET X 6

SINTEXT 23 X 2
AEKLRERERAS EREERKOHRERENRAY
» *

*

# BEPA - *

L] AS SET
*

RESYCRE

%¥Xoosoosnsat 1411 STATUS
* IF NECESSARY
*

LR E TR

- - »
ARRRRRAEAEN EARREERAEREARERASE

14

Xsasesase¥® AALG TC GC TC %

® Chart AA. Channel and File Schedulers — Overall

X 4
BAENBKARSARR N AN
*CHAN SCHC C3/G3#
L2 Y Py 2T e
* FORCE CHANNEL #
ESTATUS TEST AT *» * SCHECULER *
# QOPERATIONS -
HEBRRRAREARBARERR

21
EERRAKTARRR RN AN
#SET BRANCH AUDR#
% OF $CS2PR AT *

- AAa7 =
AEESERRERERB AL RN
-

X
ruNe

xue

VK

o'

*. CHECK I
«2-AREA *, «¥* 1-AREA
. o%

»

«ERRQOR

X 48
REEAE JSEERRN SRR T
*$ERROR FAALY

[ DRy s S P

*  CORRECTY (/0 Fooe

* OPERATION IF

* POSSIBLE *

BRERBARERBRRARE R
«2~AREA

Xeooe

49
EREREKSHERES NS NRE
»

* TURN
« X#PENDING SWITCH
* OFF

EEE Y

»
EERAEEBEURRE RN
+SCS~SCN
+AT D1 CR HI1

x
EnE

Y223

R R T T T T

R R T A A S A AP S SN

*1-AR

o



OPEN, CLOSE, FEORL, RDLIN, and End of Reel

Introduction

The routines generated to process oPEN and CLOSE
macros depend on the specifications in the procs card
packet. The inclusion of TAPE as an IODEVICE generates
the bulk of the coding. ¥EoRL, rRpLIN, and end-of-reel
are exclusively for tape.

The procs routines generated form one logical unit
which is shown as Chart aB. Much of the coding is
shared: because of the similarity of the functions per-
formed. For example, the part of the end-of-reel proc-
essing that is concerned with opening a new reel of
tape is essentially the same as the open procedures
performed for an oPEN macro. Detailed charts for all
the operations are included as Charts pa, pB, DC, DD,
pE, DF, and pG. Subroutine blocks have been used in
Chart aB to show its relation to the detailed charts.

MACRO FORMAT

The out-of-line block of coding executed for a macro
is a subroutine to the macro. The macro itself is in-line
with respect to the user’s coding. It consists of linkage
to the p1ocs routines and a calling sequence listing the
files to be processed by their file reference addresses
(file names). Each address is preceded by a check
character which is a code to designate the type of macro.
The last file named in the calling sequence is always
followed by a termination character of | and a termina-
tion address. The files named in an OPEN or CLOSE macro
may be unit record or tape. The execution of the cod-
ing for a particular macro will be called an operation.
An OPEN macro is given as an example. The source
statement, “OPEN FILEA, FILEB, FILEC,” would be com-
piled into the one-for-one statements:

Label Operation Operand Explanation

B $CLOP Linkage to DIOCS routines.

C FILEA } C is the check character for an
OPEN operation. FILEA, etc.,

C FILEB are the file reference addresses

C FILEC or file names.

B $ENTRY Terminal character and address.

The oPEN operation starts by a branch to scLop. After
all files are opened in calling sequence order, control
returns to the branch to sENTRY instruction.

END OF REEL

The out-of-line block of coding executed for end-of-
reel is a subroutine to the file scheduler. The exit link-
age from the file scheduler is set up by the tape error
routine after sensing a tape mark (input) or reflec-
tive spot (output).

Descriptions of Processing

PRELIMINARY PROCESSING, BLOCK ABO1

A description of the initialization which precedes file-
by-file processing follows:

1. The first file to be processed is identified. This is
done by setting up a pointer to the beginning of the
macro calling sequence.

2. The program leaves the priority alert mode of
operation.

3. The channels are cleared of all unchecked two-
area tape operations that have been previously initiated.

4. 100s is set so that if an 170 macro is executed in a
user routine, its execution cannot lead to the resumption
of normal channel operations (via seNTRY). The interro-
gation of pending switches (two-area tape files) and of
priority request latches (inquiry, real-time, etc.) are
bypassed. See discussion of disable switch in Start
Channel Operation, Chart aa. :

5. The contents of index register 15 are saved so
that 10cs can use this index register for file processing.

INITIAL FILE-BY-FILE PROCESSING, BLOCKS AB02-AB03

File-by-file processing begins (or continues) by mov-
ing the first (or next) segment of the macro sequence
to a work area (aB02). A segment consists of the check
character addressed by the pointer (see step 1 under
“Preliminary Processing”), file reference address, and
the check character for the next file. The file reference
address is moved into index register 15 for processing
the current file; the pointer is then incremented by 6
to prepare for the next file. A test is then made to deter-
mine if it is a RDLIN macro. If it is, control branches to
block aB24.

Otherwise, a table look-up is executed by file type
in a table of routine linkages (aBo3. For each file type,
there is a sequence of two addresses; one for opEN, the
other for cLOSE (or FEORL ) operations. The bit structure
of the check character in the calling sequence work
area is examined to determine which address to use.

PRIORITY ASSIGNMENT, BLOCKS AB04-ABO7

The priority assignment routine, if generated, is exe-
cuted only during an opEN operation. The considera-
tions for all piocs configurations are as follows:

A. Non-Overlay: The routine remains in storage at
all times, unless overlayed by the user in conjunction
with the use of the origin option. The routine is en-
tered and executed at block aBo7 only for a two-area
file (file type = 2), as provided by the tape sequence
in the routine linkage table. (For a one-area file [file
type = 1], the tape sequence causes control to go
directly to open procedures, block aBos.) The pending
switch address and prF-specified priority for the file
are entered into a table which contains such addresses

OPEN, CLOSE, FEORL, RDLIN, and End of Reel 15




and priorities for all files previously opened. The table
is sorted by relative priority on each channel. The
pending switch for the file is then inserted into the
pending-switch network on the respective channel. A
previously opened file is eliminated from the table
before assignment begins. Control then branches to
tape open procedures, block aBos.

B. Overlay (before the Second I0CS load): A dummy

sequence in the routine linkage table forces control to
pass through the priority assignment routine for every
file type. A test is made to determine if it is a two-area
tape file caBos). If it is, the file is processed in the man-
ner described earlier (see entry A). A test is then made
in the calling sequence work area to determine whether
there is another file to process aBos. If there is, con-
trol returns to block aBo2. Otherwise (the J terminal
character was encountered) the macro pointer is reset
to point to the first file in the calling sequence. The
dummy sequence in the routine linkage table is re-
placed by the tape sequence described under entry C.
Control then branches to the load program at core
location 00281. The second 10cs load is brought in to
overlay the priority assignment routine aBoé). The
load execute is to sexiT, block aBo2, to resume normal
file-by-file processing.

C. Overlay (after the Second IOCS load): The priority
assignment routine has been overlayed. Every tape file
named in the OPEN is processed according to the new
tape sequence in the routine linkage table. Control pro-
ceeds to block aBos to start open procedures.

D. Assemble: Priority assignment was accomplished
at compile time. The tape sequence for an OPEN is
identical to that described under entry C.

TAPE OPEN PROCEDURES, BLOCKS AB08-AB12

Open procedures begin aBos) by moving the file refer-
ence address for the file into a table which is arranged
by file identification. The table is used by the error
routine. Housekeeping for proper operation of the file
scheduler is then executed.

The rewind procedure for the file is executed aBo9
preparatory to header label procedures. If it is a stand-
ard label file, the header label is processed according
to the pTF options specified by the user aBim. These
procedures, for input and output files, are:

Input File: The label is read into the 10cs label area.
The label is checked completely, partially, or not at all,
depending on the CHECKLABEL entry of the prF.

Output File: When a retention check is to be made,
the label is read into the 10cs label area and checked
before 10cs starts building the new label in the label
area. After the fields specified by the prr have been
moved in, the user may modify the label information,
or add to it, by using exit 4. If the user wants to check
the label and build the new label himself, he can bypass

16

both 10cs coding blocks by using exit 3; however, he
must read the label himself. Finally, the tape is re-
wound and the contents of the 1ocs label area are
written on the tape.

Input file processing continues (aB11) from AB09 or
AB10 to exit 7 procedures. Exit 7 may be used to check
a non-standard header label or a label in addition to a
standard label; however, the user must read the label
himself. After exit 7 procedures, 1ocs bypasses a tape
mark, if required (T™ specified on the CHECKLABEL
entry in the prF).

Output file processing continues (aB12) from ABo9 or
AB10 to exit 5 procedures. Exit 5 may be used for check-
ing and creating a non-standard header label or creat-
ing a label in addition to a standard label; however,
the user must write the label himself. After exit 5 pro-
cedures, 10Cs writes a tape mark, if required (T™ speci-
fied on the CHECKLABEL entry in the pTF ).

After handling exits 5 or 7, control branches to the
final tape procedures at block aB13 for all files.

FINAL TAPE PROCEDURES, BLOCK AB13

If required, a checkpoint identifier record, followed
by the checkpoint record, is written on the procs-
designated tape. If the file has a pending switch (two-
area only), it is turned off. Control then passes to the
routine that tests if there is another file to process,
block aBi14.

COMMON TEST AND EXIT PROCEDURES, BLOCKS AB14-AB17

A test is made in the calling sequence work area to
determine whether there is another file to process
aB14), If there is, control branches to block asoz. Other-
wise (the ] terminal character is sensed), file-by-file
processing ends and the following final housekeeping
is performed (aB15):

1. The address of the J character in the macro call-
ing sequence (not the one in the work area) is set up
as exit linkage.

2. The user’s contents of index register 15 are re-
stored.

3. 10Gs is reset to permit the resumption of channel
scheduler operations (via sENTRY ).

In a macro operation, the return is to the instruction,
branch to sENTRY, to restart the channels aB16), and
re-enter the priority alert mode.

In an end-of-reel operation, the place of return is to
the file scheduler via one of two exceptional condition
vectors aB17). The particular vector used depends on
whether it is an input or output file; the branch address
of the vector depends on whether it is a one-area or
two-area file (see Figure 7 or Chart or for details).
The file scheduler restarts the channels (preceded by
a priming operation for an input file).




BEGIN CLOSE PROCEDURES, BLOCK AB18

Processing begins by determining if the current file
named in the cLOSE or FEORL macro is a fixed, blocked,
output file. If it is, and if there is a partially filled block
waiting to be written, the block is padded with blanks
or the prr-specified padding character, and written on
the output tape. If it is a cLOSE operation, the internal
reel sequence counter is set to 0. Then both cLose and
FEORL procedures join end-of-reel processing at block
. AB22 (input) or block aB21 (output).

END-OF-REEL PROCEDURES, BLOCKS AB19-AB22

End-of-reel processing is entered from the file sched-
uler via the pivot linkage set up by the error routine
when the previous tape operation for the file was
checked and an EoF condition was sensed.

To facilitate processing, a single-file macro operation
is simulated aB19. The calling sequence work area is
set up with a check character of *, followed by the file
reference address for the file, and the terminal char-
acter J. The file reference address is set into index reg-
ister 15 after the user’s contents are saved, the priority
alert mode is exited, the channels are cleared, and 10cs
is set to prevent normal resumption of channel opera-
tions. The macro pointer is set to address one of two
exceptional condition vectors for exit linkage, depend-
ing on whether the file is input or output.

For an input file, trailer processing is begun (aB20.
For a standard label file, after the label is read into the
10cs label area, the required internal counts are com-
pared to the corresponding trailer counts. A discrep-
ancy is noted by an appropriate message. After any
exit 6 processing that the user may have included for
trailer labels, the identifier field in the 10cs label area
is tested for 1EOF. If so, control branches to the user’s
prF-specified end-of-file address. For a non-standard
label file, if there is a label, the user must employ
exit 6 to process it and establish whether it is the last
reel. The user must read the label himself. If the user
establishes that it is the last reel, he must inform 10cs
by moving 1EOF into the 10cs label area in order to get
to his end-of-file address. If exit 6 is not used, control
branches, without a test for end of file, to the user’s
end-of-file address.

For an output file, the coding block for trailer pro-
cedures, AB21, is shared by FEORL and cLosE. A test is
made to determine if there is a block waiting to be
written (two-area file only). If so, the block, followed
by a tape mark, is written. For a standard label file,
processing continues by preparing the trailer label with
the required count fields in the 10cs label area. Addi-
tional information may be entered by use of exit 1.
After the label is written, exit 2 is provided for con-
structing an additional label; the user must write this
label himself. For a non-standard label file, only exit 2
is provided for constructing the trailer(s). A tape mark
is written on the tape if necessary.

Output processing joins input processing at block
aB22. The tape is closed by executing the rewind option,
and the reel sequence number is updated.

For a cLose operation, control branches to block
AB13 to complete processing for the current file.

For an end-of-reel or FEORL operation, the new reel
for the file is set up. If an alternate tape drive is speci-
fied, 1ocs swaps base and alternate tapes automatically.
Otherwise, 10cs enters a waiting loop after typing an
identifying message so that the operator may mount
the new reel on the same drive. Control then joins open
procedures at block aB0s to open the new reel.

UNIT RECORD PROCESSING, BLOCK AB23

Little or no housekeeping is performed for a unit record
file named in an OPEN or CLOSE macro. For an OPEN
macro (assuming all of 1ocs has been loaded), the
block count is reset to 0. For a punch file named in a
CLOSE, a blank card is punched to move the last card
punched into the stacker. For a printer or reader file
on a CLOSE, no processing is done,

Control then proceeds to the coding block that tests
if there is another file to process, block aBi4.

RDLIN PROCESSING, BLOCK AB24

The roLIN card is read into storage and the label in-
formation is moved into the appropriate internal fields
for the file. Control then proceeds to the coding block
that tests if there is another moLIN card to process,
block aBi14.

OPEN, CLOSE, FEORL, RDLIN, and End of Reel 17




AB

sesee cssnen

24 X c2
KrwRAE AREEREARER AXRNFEORRNRERRENN
#$ROLIN CCCaw *LEXET OFEZ®
oW R B G- KK K%  RDLIN F RN Fo RN ¥k

*IF 2-AREA TAPE *
* ASSICN FILE *
*RELATIVE PRIOR *
FEAAFREARARNA BN NN

ses e s e s s e v s e st e

R R N N O N N B R R N R R R N I I A A S AT A

.
.

. X cs
. EEREREORBAANRLESE
. {NCT ®S$PAEXIT DACa*
. PRI D .
. ee® TEST FCR Je *
- * IF Js SET TQ0 =
. ®*  BECIN OVER -
. EREARARAAAAARNE NS
. . J
. .
. .
. . .
. Yy .
. oN X ce
. .C AARARCOAREARRRRAN
. -7 *1.CAD PROCRAM *
. o+ P S .
. «E % LQADC SECOND #
. R L ICCS LCAD *
. . * *
. oF RAREREREENERRER AR
. o1 -

- . oL -

. . «E -

. . . .

. . essssessnsacXe

. . .

. . .

. . .

. . .

- . .

. . .

. . .

. .

. . .

. . .

. . -

- . -

. . ceseananae o

. .

. .

. .

- x

. cseee cvae

RETURN TO CGET
OR PUT MACRO

»
*
*

® Chart AB. Open, Close, Eor — Overall

18

FROM OPEN,CLCSE
FEORL.OR RDLIN

FRCM FILE SCHED
VIA UTILITY PIVOT
(EOR)

VPACRC
LEEEZ S R RN
*ap * ®ap ¥
* B3x * Baw
* % L
® *
. .
X

o1 X 19
FRERARIAAAN RN E NN FURAREAFR AR RN NS
*$CLCP DFB1* ®$ECRU DCAL®
L S Ll ] EoN-k-NoN-E-R-¥_% [NPUT

ese¥® MOVE RCLIN X eea®¥SET FRA IN X1 ¥x s e RACCESS 1ST FRA.* *SIMUL CALL SEQs®cecsveosossssscans
- ®CARD INFC INTO ¥ ®ACCESS NEXT FRA%® #CLEAR CHANNELS % #SET FRA IN X115 % .
- #INTERNAL FIELCSH *(CR TERM CFAR) * *KILL EXT [ATERRE ®CLEAR CFANNELS # -
o ENFEEEXARANNANERE HEEERARARRAER R R EARRRRERAANRARBRS ERRARRAAEATREARR R .
- . .
. . -
. . .
- . .
. . .
- 23 X 3 18 X 21 X 20
o HERARCLENUREREENN AARRRCORRERRRNRER ERRAACTERRRBRSR R RARERCLEERAREARNN FERBACSEAENRARARE
- #UNIT REC OFEN— * UR CPEN,#* * CLOCSEs *$TPCLOS CEA2% ®SCLSA+T? DEA3® *SIPEOR DOAS»
.« ® ZERC COUNTS % PU CLSE *-F—%—%_R-#-%-%.% FEQORL N Ko R KRNk CUTPUT BB BNt [P N L T e e
. *PUNCH CLCSE- ¥Xesosaosos* FIND SECLENCE *osaceneweX¥® IF OLTPUT, ¥eeevwouwsa X®WR LAST ELK IF * seseess*CHECK TRAILER. *
. - PUNCE BLANK ¥ * FOR FILE IN # ®#PAD THE BLCCK ¥ #NEC,BUILLD TRLR*® - *DO EXIT & + EOF*®
. - CARC * % { INKAGCE TABLE * * IF NECESSARY * %4+ CO EXITS 1.2 # . *PROCEDURE S, ETCH
o RENSEAEAERANENREES AAERAREAREREERE N AXEARURERANAR RN ERBARRANB AR BT ERRN . HERRRRRRREREARRRE
- . - . . - - - . = EOF
- - - «C - . - . . .
- - - g . - . . . .
. . . +E . . « INFLT . - X
- . - N . - eesesenssvesesssssncsssssXeXssevosscnse #xxu® TO USER
- . . - - * * EOF ADDR
. . - ol - «CPEN (ASSEMBLE OR AFT CVERLAY) X 22 * *
. . . £ - Sessesassssssersesnesensnsnvena RAREACLAERBRERNRS * .
- . - +E . - rEENTH DEG2*% »
. . OTHER UR . oF « CPEN (NON-OVERLAY) - R-R-RoR-R-K-R-W-®  CLCSE
escvseresesXeXassane seconsa . cene esasne . #®CLCSE OLC REEL ¥ esese csceae
- «C . - *IF ECR QR FECRL#
v . . * GET NEW REEL *
oE . . FERERAERETRARERN
R . - .
oL . . +FECRL
oA . . +EOR
.Y - - -
o} - - .
. . . -
X ca X 07 . X 08
RAARREDRERAXARN RS HERRUCIAEARRUANER - EERRAEANRRERR LR NN
*$PAFSK DAB4® *$PAHSK DAB3¥ - *ESENT A DeA1*
L N L T e pe Y L R e kT S g x LR IRE M e e

* ASSIGN FILE TFeoeoonaoX® INIVIALIZE *
* RELATIVE FRI * *FILE SCHEDULER *
* ON CHANNEL * el b

ARBNRERRRER AR R EARRERRAARERR AR

Xe s aean

09
AEETREARRIRAENERE
®EENT AD DEAZW
NCN-STANDARD H-2—-R-R-N-R-k_%—-% NON-STANDARD
sssssesscsrsssesces®CPEN 1ST OR NEWFesenooevsssconssce
REEL *

. A .

o1 * * .0
N AEREABRRRERRN RS U
D . ¥
U «STANC a4
T «LABEL U
. . ¥
- . .

. ° .

10 X 12

x 1 X
HERRRCIHAAN RN S FARARCARRBREA RS ARRERGEAFRERERERX
#EENTD cecCax #SENTC DCAY* *SENTF oBC2*
Rk Hm BBk ko kot [NPUT  Hofo oW R Bk QUTPUT R b S Bk
ee®CHK LBL&IF OUT-%.. [+] 5 *

*  DC EXIT 7 ®Xaaes X* DO EXIT
*PRCCEDULRE, ETC * ¥PUT EUILC HDR. *® *PROCEDUREs ETC *
" * * DC EXITS 3,4 * . *
EERRENREAREAERRENS EEEEZEZS RS EZRZE S SRR ERERERESERE AR

. .

. .

. .

. 13 .

- ERFERPLAARARRRERRS

. *EENTY DEKA* .

- [ PArou e Yy e N X

cecesseseencsessaX¥® TAKE CHKPT,IF #Xeaeoacscsescaccscsccsscssass

® REQ.SET PENC %
* CFF IF 2-AREA *
AEAERERAEANRRRE AR

.

.

-

avecae sseneseXe

x 14
AARREJGAREARBANES
*SEXITRU DFB 3

ACCESS ANOTHER FILE (NCT J) BBt
+%* (CHECK FOR J #
* (TERMINATION ¥
# CHARACTER) *
FEREBAAEBAARBRRNS

.o

J

Xo oo

1?7 15 16
ERARAKIARARARAR AR ERRARKLERAR RN NN ERERRKSHRESERRRRN
* *

#FILE SCHED * » #MACRO
PP pi-aus Dy e ECR #-%—M—#-K-¥_#—%—% MACRO LIRS DiE Y W
weaessss BINPT-PRENE AREA®Xecessses® RESTGRE XIS #oseasesaX® START *
X *OUTPUT-START * #ALLOW EXTERNAL * *  CRANNELS *
LT TS * CHARNKELS * * INTERRUPTS * * =
* ERRERERARERRER NS FERUEERARRRR AR RN ARAARBAABRAAR R KRS
* .
L RET TO « MACRO+I
* -
X
AR E
* *
* ®
LI
*

.
.
.
.
.

s taesar e



General Error Operations

Two distinct error routines may be generated: one for
tape if TAPE is included as an 10pEVICE; the other for
unit record if PUNCH, READER, or PRINTER is included.
The conditions and corrective procedures for tape and
unit record are summarized in the tables in Figure 1.
A description of the tables follows. An overall chart
for the tape error routine, Chart ac, follows Figure 1.
This chart is not described. The tape error routine is
shown in detail on Charts Ea, B, and Ec. The unit
record error routine is shown on Chart Ep.

Description of Tape and Unit Record Error
Routine Tables

TAPE ERROR CONDITIONS

The tape error routine is entered for two reasons: first,
because of an unsuccessful 10 operation and second,
because of an exceptional condition (wrong length
record, first character of a record is a tape mark on
read, or sensing of the reflective strip on the tape on
write ).

L. If the entry is due to an unsuccessful tape opera-
tion, the routine:

a. Determines the nature of the failure.

b. If possible, corrects the operation and returns
control to the instruction immediately follow-
ing the BA or BEX instruction which originally
sent control to the error routine. (Note that
the BA or BEX instruction just described will be
referred to as the channel Ba or BEX instruction
in the following descriptions and charts.)

c. If unable to correct the operation, types out
an error message and enters a wait loop for
operator action. An exception, explained later,
to this last statement exists if autodump has
been specified by a pi0cs READERROR entry with
an operand of only TAPE,cu and the error is a
data check on a normal read operation.

2. If the entry is due to an exceptional condition,
the routine provides knkage between the file, for
which it was entered, and the programmer’s
wrong-length-record routine or the 1ocs end-of-
reel routine.

The tape error routine is covered in more detail in
the following description and in the left side of Figure
1. In the description, it is assumed that whenever zn vo
operation is corrected through re-execution, control
returns to the instruction immediately following the
channel BA or BEX instruction. It is also assumed that
the action taken for a described condition applies to
situations where only that condition exists.

BUSY: The routine loops until the device is not busy,
executes the 1/0 instruction and returns control to the
instruction immediately following the Channel Ba or
BEX instruction.

NOT READY: The routine types a Not Ready message,
loops until the device is made ready, executes the 1o
instruction, and returns control to the instruction im-
mediately following the Channel Ba or BEX instruction.
DATA CHECK (Write): The routine attempts to
correct the condition by performing the following
sequence:

1. Backspace, rewrite, and check (once).

2. Backspace, skip, rewrite, and check (eighteen
times ).

3. Types a data check on write message (20114 pCKO
and enters a wait loop for operator action. (The
only possible option on a output tape error is to
attempt the write operation again. This option is
assumed by the error routine if the operator
presses the iNQUIRY REQUEST key and then the
INQUIRY RELEASE key.)

4. Backspace, skip, rewrite, and check (20 times).
After twenty attempts, the message and wait loop
routine at step 3 is re-entered.

ZERO LENGTH RECORD (Write): The routine
types a message 20117zZRL) indicating that the first
character in the tape record core storage area was a
group mark/word mark. A wait loop for operator action
is entered. The only possible option is to proceed as if
the operation were a success. This is accomplished if
the operator presses the INQUIRY REQUEsT key, enters
the code word PrRoc, and presses the INQUIRY RELEASE
key. Control returns to the instruction immediately fol-
lowing the Channel BA or BEX instruction.

DATA CHECK (Read): The routine attempts to cor-
rect the condition by executing the following sequence:

1. Backspace, re-read, and check (19 times ).

2. If autodump has been specified by a procs READ-
ERROR entry of only TapE, cu and the record in
error is not a label, control goes to step 5.

3. The routine types a message indicating a data
check on a read operation. The message is
40119LRE if the error was on a label record, or
X0113DCK, if the error was on a data record (x in-
dicates the number of options minus one). A wait
loop for operator action is entered. The options
available depend, in part, on the DIOCS READERROR
entry.

A. If there is no entry, the options available are
PROC, RETRY, and SKIP.

B. If the entry is scan, the options available are
PROC, RETRY, SKIP, and *SCAN.

C. If the entry is TAPE, cu, no options are avail-

able.

General Error Operations 19



D. If the entry is ScAN, TAPE, cu, the options
available are PROC, RETRY, SKIP, *sCAN, and
DUMP.

The operator selects an option by pressing the

INQUIRY REQUEST key, entering the code word and

pressing the INQUIRY RELEASE key. The actions

initiated by the various options are:

A. If proc is entered, the routine ignores the error
and returns control to the instruction immedi-
ately following the Channel Ba or BEX instruc-
tion. Processing continues as if the operation
had been a success.

B. If rETRY is entered, control goes to step 4
where an attempt is made to re-read the rec-
ord successfully.

C. If sxip is entered, the routine ignores the error
record, reads the next record on the tape, and
returns control to the instruction immediately
following the Channel Ba or BEX instruction.

D. If *scan, is entered, the location(s) of the
asterisk(s) in the error record are typed on the
console printer, and the message and wait
loop routine at step 3 is re-entered.

E. If pump is entered, the record in error is writ-
ten on the procs-specified dump tape and
control re-enters the message and wait loop
routine at step 3.

4. Backspace, re-read, and check (20 times). Con-
trol returns to the message and wait loop routine
at step 3. ,

5, The record in error is written on the procs-speci-
fied dump tape. The routine reads the next record
on tape and returns control to the instruction
immediately following the Channel BA or BEX in-
struction.

NOISE LENGTH RECORD (Read): The routine
reads the next record on tape and checks it. If it too is
a noise record, another read operation is performed.
This sequence is repeated until ten consecutive noise
records are read. At that time the message, 20118NLR, is

20

typed and a wait loop for operator action is entered.
The only possible option is to retry the read operation.
This is assumed if the operator presses the INQUIRY
REQUEST key and then the INQUIRY RELEASE key. Ten
more attempts are made to read the record success-
fully. If the condition is not corrected, control re-enters
the message and wait loop routine.

WRONG LENGTH RECORD (Read): The routine
attempts to correct the condition by executing the
following sequence:

1. Backspace, re-read, and check (10 times).

2. If unsuccessful in correcting the condition, the
routine sets up linkage in the file scheduler, from
which it was entered, to get to the programmer’s
wrong-length-record coding. Control returns to
the instruction immediately following the Chan-
nel Ba or BEX instruction for a two-area file or to
the instruction at the file reference address (ad-
dress of file name label) minus 7 for a one-area
file.

I1/0 CONDITION (Tape Mark on Read or Reflective
Strip on Write): The routine sets up linkage between
the file scheduler, from which it was entered, and the
1ocs end-of-reel routine. Control returns to the instruc-
tion immediately following the Channel BA or BEX in-
struction for a two-area file or to the instruction at file
reference address minus 7 for a one-area file.

UNIT RECORD ERROR ROUTINE

Because of the nature of unit record devices, the
error routine is unable, in most instances, to take any
corrective action. Therefore, the main function of the
routine is to notify the operator of the type of error
and to enter a wait loop for manual intervention.

The reasons for entry to the routine and the actions
taken by it are shown in the unit record error routine
table on Figure 1.

For a more detailed treatment, refer to Chart Ep
and its description.




TAPE

ssessses

2040000000000 800000000s et stsuettteetceocsteetaniscicsressccsnnstscnsostccney

UNIT RECORD

sesseese

. . . . . . - - .
+ REASON FOR oNO OF GO oo REASON FOR » eNO OFe GDe
« ENTRY TO + ACTION TAKEN BY THE TAPE ERROR «TIMES.TO <« ENTRY TO e ACTION TAKEN BY THE UNIT RECORD +TIMESTO o
+ ROUTINE . ROUTINE . . es REASON FOR o . . .
. . . . . .
- -
. .
- - . . . . -
« NOT READY . . e As TYPE NOT READY MESSAGE - - = = = = » « B o
. . . . . . -
. . - « B RE—EXECUTE 1/0 INSTRUCTION . - .
. . . . AND CHECK — = = = = =« = = = - = — = . « B o
. . . . . . . .
D T L R R R A L AR g . . ssesescuns
. . . . . - . .
« BUSY « Ae RE-EXECUTE 1/0 INSTRUCTION . . BUSY e Ae RE-EXECUTE 1/0 o A .
. . AND CHECK = — = = = = = = = = = — -— - . A . . .
. . . . ssesessssecsossesccccccsns sean -
eeesctssssstsssenssanssecsensnsetterrninIty
. . . DATA CHECK « Ae TYPE DATA CHECK ON READ MESSAGE - —. « B o
» DATA CHECK BACKSPACE,s WRITE, AND CHECK - - = —o . ON READ - - - .
« ON WRITE . . « Be ENTER WAIT LOOP FOR OPERATOR . . -
- BACKSPACE, SKIP, WRITE, AND CHECK =+ 18 .+ C . ACTIONs THE ONLY OPTION IS TO . . -
- . . . . TRY AGAIN — — = = = « = = = = = - —~ . « C o
. « Ceo TYPE DATA CHECK ON WRITE MESSAGE ~- o s« D . - . .
. . . o Co RE-EXECUTE I/0 INSTRUCTION . . .
. » Do ENTER WAIT LOOP FOR OPERATOR . . AND CHECK — = = = = = = = = = = — = . « A .
. . ACTION. THE ONLY OPTION IS YO . . . .
. . RETRYs = = = = = = = = = = = = = = .o . e 309008 NEEeLE0Rta0ssNTREORIRRIROEIIOOISTTIOIOIRITRRTLTTS
- . . . .
- « Eo RETRY OPTIONS BALKSPACE. SKIP, DATA CHECK o A. RE-EXECUTE l/O INSTRUCTION - . .
. . WRITEs AND CHECK = = = = = = = = — ON WRITE . AND CHECK = = — = = = = = = = = — = - e B o
- . . . - . .
D L IR R L R S L e Be TYPE DATA CHECK ON WRITE MESSAGE - . « C o
- . . .e - . - .
« 2ERO LENGTH « Ae TYPE ZERO LENGTH RECORD MESSAGE . .o e Ce ENTER WAIT LOOP FOR OPERATOR - - .
« RECORD ON . . .o . ACTIONe. THE ONLY OPTION IS TO . . .
o WRITE « Be ENTER WAIT LOOP FOR OPERATOR . e . TRY AGAIN — = — = — =~ = = = = = — .= . « D o
. . ACTION. THE ONLY OPTION IS5 TO . .s - . .
. . PROCEEDs = = — = = = — = = = = = = . e e« De RE-EXECUTE 170 INSTRUCTION - .
. . .o . AND CHECK — — =~ — = = = = = - = = 2 .
. PROC OPTION. CONTROL IS RETURNED - .e . .
. TO THE INSTRUCTION SEQUENTIALLY . 0008000080000 0000000000000asestsennsstsornsrsssccsvosscnss
- FOLLOWING THE CHANNEL BA OR BEX — —e .o . . . .
. . ee WRONG LENGTHs Ae. CONTROL RETURNS TQ THE INSTRUCTION o - .
esesssscacces etessrces «s RECORD IN . SEQUENTIALLY FOLLOWING THE CHANNEL o . .
- . - +s LOAD MODE . 8A OR BEX INSTRUCTION . . .
» DATA CHECK e Ae BACKSPACE, READs AND CHECK - - = = + 19 . . - .
« ON READ . 4988000089000 00000000000000ssssscssanttctsoavisecssreooronasn
« (LABEL READ » Be TYPE DATA CHECK ON READ MESSAGE -— . - . .
s« OR NO AUTO . . WRONG LENGTH. As TYPE WRONG LENGYH RECORD MESSAGE - B o
« DUMP SPEC) « C. ENTER WAIT LOOP FOR OPERATOR . - RECORD 1IN . . . -
- . ACTIONe. THE CODE WORD FOR THE . . MOVE MODE ENTER WAIT LOOP FOR OPERATOR . - .
. . DESIRED OPTION IS ENTEREDe — =~ — — & ] ACTIONe. THE ONLY OPTION IS TO . - .
. . . . . TRY AGAIN ~ = = = = = = = = - = = e C o
. « De OPTIONS . . . . - .
- - . . « Co RE-EXECUTE 170 INSTRUCTION . . .
- . PROC- CONTROL RETURNS TO THE . - . AND CHEC - .
. . INSTRUCTION SEQUENTIALLY . . -
. . FOLLOWING THE CHANNEL BA OR BEX - . essessescos
- . . . .e .
. - RETRY— BACKSPACE, READ, AND CHECK =+ 20 ee NO TRANSFER « Ae TYPE PROGRAMMING ERROR MESSAGE - -
. . . - s» CARD READER . .
. . SK1P~ READ NEXT RECORD AND CHECK - o . A s o Be ENTER WAIT LOOP FOR OPERATOR . - -
- . . - e . ACTIONe YTHE ONLY OPTION IS TO . . -
. . *SCAN~ TYPE OUT LOCATION/S OF . . . . TRY AGAIN = — = = = = = = = = = — = - « C o
. - ASTERISK/S IN ERROR RECORD — = — =~ o * B oo . . . -
- . - . .. e Co RE- EXECU?E I/0 INSTRUCTION - - -
. . DUMP~ WRITE ERROQ RECORD ON DIOCS » - . AND CHECK = = = = = = = = = = = - — - « A .
. . SPECIFIED DUMP TAPE — = = = — — = —» « B . . - .
. . . esesesesessasssoccssasssssattsscRacceseaitBIS
P TRy R R K R - . . .
. . . 1/0 COND TYPE LAST LINE PRINTED OR LAST . . .
+ DATA CHECK < A. BACKSPACE, READ, AND CHECK = = = — o 19 « B s PRINT OR CARD PUNCHED IN ERROR MESSAGE = — -—» ¢« B .
« ON READ . . . s PUNCH - . .
« {AUTO DUMP , B, WRITE ERROR RECORD ON DI1OCS . . .. ENTER WAIT LOOP FOR OPERATOR - . .
» SPEC AND - SPECIFIED DUMP TAPE — = = = — = = = . e C ee - ACT[ON. THE ONLY OPTION IS TO . . .
« NOT LABEL . . - e . TRY AGAIN = = = = = = — @« = = = - « C o
« READ) e Co TYPE AUTO DUMP MESSAGE —~ - — — =~ - . « D o . . .
- . . . .o o Co RE-EXECUTE 1/0 INSTRUCTION . .
o De READ NEXT RECORD AND CHECK = = — = o « A e - AND CHECK = = = = = = = = = — = = A .
. - - o . .
esescses R T R R R R R R R R R R R A R A R A AR A A ..
. . .. . .
e NOISE LENGTHe Ae READ AND CHECK = — — — = = = = = = « 9 o B seo END OF FILE « As TYPE NOT READY MESSAGE . « B o
« RECORD-READ o . . e+ CARD READER o . . .
. e Be TYPE NOISE LENGTH RECORD MESSAGE - . e C o+ NOT CHECKED o+ B« RE-EXZCUTE 1/0 INSTQUCY[ON (MAKES - - .
. . - - e+ BY PROGRAM o READER NOT READY) AND To 8 . . -
. « Co ENTER WAIT LOOP. THE ONLY OPTION . - .o . NOT READY SEQUENCE - . .
. . IS TO RETRY THE OPERATION - — - — = - e D e . . - .
. - . 49600800000 R000s800000000s48ctisersaevetscsccssneccesssrnaccnncss
. e De READ AND CHECK . . . - .
. . END OF FILE « Ae CONTROL RETURNS TO THE INSTRUCTION .« - -
sesmseevesessesssessestessnnessecstosnsrae ase CARD READER o SEQUENTIALLY FOLLOWING THE CHANNEL . . E
. . . . CHECKED BY BA OR BEX INSTRUCTION . . -
« WRONG LENGTHe As BACKSPACE, READs AND CHECK = ~ = = » » B se PROGRAM - . . .
- RECQRD . . . . .
- 8e SET WRONG LENGTH RECORD LINKAGE — <. « C o cose .
. . . .
. Ce EXIT TO FILE REFERENCE ADDRESS-7 . - .
. FOR A 1—-AREA FILE. EXIT TO THE - . »
INSTRUCTION SEQUENTIALLY FOLLOWING « . .
THE ONE WHICH CAUSED ENTRY FOR A . - .
2-AREA FILEs . . .
. . .
ssscnss esessecscarsssesesenesesaserasenes
. . . . .
o 170 COND « Aes SET LXNKAGE TO I10CS END~OF-REEL . - .
o {(TAPE MARK . ROUTINE = = = = = = = = = = = = = = . e B o
e ON READ OR - . .
e REFLECYIVE .« 8. EXlT TO FILE REFERENCE ADDRESS— . . .
« STRIP ON . OR A 1—-AREA FILE. EXIT TO . . .
« WRITE . INSTRUCTION SEQUENTIALLY FOLLOVING . - .
. . THE ONE WHICH CAUSED ENTRY FOR A . .
- . 2-AREA FILE. .
. .
eseseseseBssetssassssascesctaseseessRRRTEILE seee

1F UPON CHECKING,

IT IS DETERMINED THAT THE OPERATION WAS A

SUCCESSs CONTROL IS RETURNED TO THE INSTRUCTIDN SEGUENTIALLY

FOLLOWING THE CHANNEL BA O
THE SEQUENCES

R BEX INSTRUCTION
OF PROCEDURES SHOWN IN THE TABLES ARE THOSE TAKEN

FOR SITUATIONS WHERE THE CONDITION WHICH CAUSED ENTRY TO THE

ROUTINE CANNOT BE CORRECTED

Figure 1. Tape and Unit Record Error Routine Tables

General Error Operations

21



AC LRERN

#AC ®
4 A2#
* »
*
.
. secesssccaccansncsssnnsassene
. - +BRANCH
09 SERROR X o1 X $JUG 03 *
BRERRALHEREERSHRE EERURA2RRRRAERERR A3 * » 02 lllAAli}iilli B AS » 08
#SCSISFS BAG3 * = * * * * *
Mt B B W N N * INITIALIZE » * *  YES * RE~EXECUTE " * CHAN *
#CLEAR CHAN ONE %eeeosseeX® ERROR ®oaee BuUSY ®ecsaneneX® THE FeeosanaeXt BA OR BEX »*
# OF UNCHECKED #RETURN * ROUTY INE & * H/o INSTRUCT I ON#* *INSTRUCTION®
*#1/0 OPERATEIONS #TO CHECK #* * * * * »
ABERBRARSI AR RN R RCHAN 2 I*lll!.llii&*'lll * * i‘*{l*l.'i"i * »
% ERROR * x *
. +NO . 321 «NO BRANCH
. . .« ® * .
. sXe® AG # .
. essessanne . ® - .
- . ERAN .
SLMWTGR . 08 » SERNR . 11 X
EX XTSRRI NS YT B2 * # 07 B3 » 10 EREREDLAEER RN RS BS
#SAVE LINKAGE TO#* 4 - * * * * TYPE OUT * -
*CHAN 2 FILE AND#® NO = *  YES * Y %* A NOT READY # *
#BETWEEN CHAN | ¥Xeseeseosoo® CHAN 1 FREE ®evesoeesX® NOT READY *eorsnees XEMESSAGE IF THIS® * BRANCH
§SCHED AND FORCD#* - - - * IS THE FIRST # *
CHAN 1 FILE # * * . * * PASS * *
lllll’.lii}*llll* * * * » FEARERREREABRRRRR *
* * -
+«NO AR R «NO
. * * * .
. * Co #,,, * C5 #.X
. - * . L * -
. RERR - RN .
* * X $ERDLY X 13 $SERLV X 06
Ccl - * 15 * 14 C3 #* = 12 RERERCARRERERRERRN liii{cs!l‘!“'fl{{
* - * * * *  SET LINKAGE * * EXI *
NO * NO ®END OF FILE#® VES * BETWEEN FILE * LOCAT[ON SET *
ss s #"READ OPERATION #Xesses CHECK *X o * Lo} csssea X SCNEDULER AND ‘...-....X* BY BLOCK ACO1 #
. * * *END OF REEL' EOF TESTED* WLR OR * X * ORrR BY *
. * * * . * BY CHAN BA#%* ROUYINES . * BLOCK AC13 *
* * * » * * OR BEX *l!l‘l'lll'.ililf - ERERERRTER R ERR
weae L3 » * . .
* * «YES *EnE +YES . -
* H3 % - * * . ssesea . .
- * « WRONG * D2 *,Xa £ NO ED X
nbafull eLENGTH * * - 8Y CHAN BA OR BEX ERENE
SERHLY sRECORD R . * -
TYPE 2RL X $ERDC X - *
ON WRITE Oi * » 16 D2 * 17 * i
MESSAGE # * *
#RE-EXECUTED#* NO * YES EXIT TO FILE REFERENCt

* 10 TIMES ¥essssseeX® TAPE HARK OR
- * - WLR

NOT
* .
* » * *
L) -
+YES «NO
. .
X .
EX 1%} .
- = .
* C4 * X
- * E2 *
13333 %  TEN #
SERDLY *CONSECUTIVE
UNCORRECTABLE * NOISE LENGTH
WRONG LENGTH REC * RECORDS
*
» *
*
«NO
.
X
XT3
» *
* AG ®
* *
L2
$JUG

®RessscnesesvsecseanressnnescsssacscansesesX?® TYPE MSG AND #X

.

.
.
.
.
.
«NONE
*
41 o=
- £ 3
PROC  # *
see® WHICH OPTION
- » »*
* * * *
* * * *
«RETRY «SKIP
. .
X X
REE SHER
* * * *
* 02 * * Aq »
* * * *
R 2z 2] RERR
$ERDC $JUG

Chart AC. Tape Error Routine — Overall
22

18

*

Fesessscesrtosnercccvsccccssssscne

ADDRESS~7 FOR WR
LENGTH RECORD OR EOF/EOR
ON 1-AREA FILE.

.
. OTHERWISE EXIT TO THE
. INSTRUCTION SEQUENTIALLY
. FOLLOWING THE ONE WHICH
. CAUSED ENTRY TO THE
. ROUTINE
.
-
$ERH i9 SERH+7 X 2
REERNEZREARREN R RS * % 20 ERRESHER RN SRS
*SHALT DHAL* * L *BACKSPACE AND®
YES Ho Ul B N N * EXECUTED #* NO * EXECUTE SKIP =

* seeX¥ TYPE MSG AND ¥4suaanae

* TYPE NOISEX*ENTER WAIT LOOP#®

30
HRERFKIERERBRRERS
* TYPE OUT THE #
®#_OCATION OF THE#*
* ASTERISKS *
* IN THE *
* ERROR RECORD *
FRERERERRERLRRRER

.

< sercTL
X

(2233

*ossesceeX¥® INSTRUCTION %

X% 20 TIMES
* ®(ONLY EFFECTIVE®

RECORD MSG*  FOR REPLY  ® * 3 # ON WRITE) &
BERERFRUARSRARERE * * HEREREERERERN
X * .
. *uxs  YES .
. * . .
* F4 ¥.Xe X
. - - HEEN
. £ . - »
. SERCTL X * A4
- * » 22 * *
- " XER
. NO $IUG
.. .!READ OPERATION #Keesseosessoesoaes
YPE .
ERROR MSG * - .
»* » -
.
.vEs .
. -
. .
. .
. .
SERQLB X .
23 .
* » -
YES  LABEL READ & .
cestececvesans OPERATION  * .
. TYPe TERROR * * .
. ON LABEL * - .
. READ MSG L) .
- * -
L322 S «NO .
* L . .
* H3 #.X. . .
* * . . .
AR » - .
SERHLY X 25 X .
RRREEHIFFRERRE R RS HG * = 24
*SHALT DHA1#* * * .
LES X T B DY e e 3 * -
AUTO DuUMP & .
*ENTER WAIT LOOP*TYP » .
FOR REPLY ~ *ERROR MSG L3 * .
!lﬂll’l‘ll‘“lll‘. » » .
- * .
. «YES .
. .
. . -
. .
. +NO
X x 27 *
J3 * = 26 LR NISEIZTZIRE Y Js - 28
* *WRITE AUTO OR# ] *
OTHER +* *  DuMP * OPTION DUMP #
*Xe ses® WHICH OPTION *eeeesosaX¥LABEL AND ERROR%eseeveseX®  AUTO DUMP &
* » % RECORD ON THE # *
* * * DUMP TAPE # * *
* * RERERRERRNERS L "
*
«*SCAN «YES
. .
. .
. .
. .
SERSCN X X

29
EEEREKSHFRREFSERR
*SNOTE DHAZ*
W e e = e B B
*TYPE AUTO DUMP »
*MESSAGE ON THE #
*CONSOLE PRINTER#®
EFERERRBRRRRRRRR RN

.
*  SJUG
X

RN
A4

P22y

R Y]
LR




The 10Cs operations, treated on an over-all basis by
Chart aa, Chart aB, and Figure 1, are covered on a
lower level and supplemented by the following block-
by-block descriptions and detailed charts. Scheduling is
covered by Charts Ba, BB, BC, BD, BE, and BF; record
processing by Charts ca, cB, and CE; OPEN, CLOSE, FEORL,
roLIN, and end of reel by Charts pa, pB, DC, DD, DE, DF,
pG, and pH; and the error routines by Charts Ea, EB, EC,
and Ep. In these charts, much of file processing depends
on the file reference table. The reader may find it
helpful to refer to this table, included as Figure 7 and
described in the Program Condition Analysis Aids
section of the manual.

The reader is again reminded that in a label, the
convention of two hyphens (--) designates the file
prefix (e.g., s--FUuLL) either generated by 10cs or speci-
fied by the user. One hyphen (-) designates the chan-
nel prefix (e.g., scs-s¥s). The dollar sign  substitutes
for the first four characters in the label, viz., 1ocs.

Scheduling

Channel Schedulers, Including interrupt

Block BAO1, 00101: A machine interrupt, which
occurs in priority alert mode when an 1o operation has
been completed and an interruptable instruction is en-
countered, causes an automatic branch to core loca-
tion 00101 and an exit from priority alert mode. At
location 00101, the B-address register is stored, saving
the seventh character of the interrupted instruction,
and control branches to saTTN.

Block BA02, $ATTN: The address at which the in-
terrupt occurred is decremented by six. This adjusted
address, which points to the operation code of the
interrupted instruction, is stored in SINTEXT, block
BAa20. Control branches to scsiENT, block BA0S.

Block BA03, $ENTRY: The normal entrance to the
channel scheduler from end of macro operations is
made at seENTRY. The return linkage is set in $INTEXT,
block Ba20.

Block BA04: If sexntrY has been disabled, the chan-
nels are not available, and control returns directly to
the 10 request without altering the mode of operation,
i.e., without going through sintEXT, which causes entry
to priority alert mode. Disabling of channel operations
is caused by clearing a word mark at sENTRY+8.

Detailed Description of Operations

Block BAO5, $CS1ENT: The Bovri determines if chan-
nel 1 is busy. If it is, control passes to scs2enT, block
Ba18. For interrupt operation, a busy condition means
it cannot have been a channel 1 operation which
caused the interrupt. For normal operation (start
channels), a busy condition means channel 1 is already
in operation.

Block BA06, $CSIPR: Channel 1 is not busy. A
soPR1 is executed. If a branch is taken, control goes
to the file scheduler coding (represented by block
Ba10) that makes the status check for the file. The
linkage to the proper scheduler was set into the BoPR1
branch address by scstrer, block BA17 immediately
after the tape operation was started.

Block BA07, $CSISCN: This block represents the
force switch. If the switch is on, it is a forcing opera-
tion, and control goes to scsisF, block BA13.

Block BAOS: It is not a forcing operation. The nec-
essary branch or priority request instructions are exe-
cuted to determine if there are any other interrupts
on this channel, e.g., console, real time. If there is
any priority request, it is served by the appropriate
routine.

Block BA09, $CS1S3: This block represents the exit
from the channel scheduler to the highest priority
pending switch on the channel. The pending switch
network is represented by block Baz2.

Block BAI10: The status of the o operation is
checked. For a two-area file, the pending switch for
the file is turned off. Control passes to scsiscN, block
BAOT.

Block BAll, $CSISFS: The entrance to the force
routine, scs-s¥s, sets the return address by storing the
contents of the B-address register in scs-sFx, block
BA16, the force exit.

Block BAI2: The force switch, scsiscx (block Bao?)
is set on, i.e., set to branch to scsisF, block Ba13.

Block BA13, $CSISF: A BoL1 instruction is executed
to determine if the channel is in use. If it is, the channel
scheduler enters (or continues) a forcing loop by
branching to scsiPRr, block BAo6.

Block BA14: The channel is not busy. A BOPR1 is exe-
cuted. If the branch is taken, control transfers, via
block BA06, to the 1/0 condition check at block BA10
within the file scheduler. If there is no branch, indicat-
ing that the channel entered is already clear, control
passes to block Ba1s.

Scheduling 23




Block BA15: The channel is reset to non-forcing by
setting the force switch, at scsiscN, block Bao?, off.

Block BAI6, $CSISFX: The channel scheduler re-
turns to the file scheduler whose address was set by
$Cs1SFs, block Ba11.

Block BAI7, $CSIRET: At scsigrer, the branch ad-
dress of scsipr, block Baoé, is set to the file scheduler
vodling which will make the 1o status check for the
file for which a tape operation has just been started.

Block BAIS8, $CS2ENT: The Bor2 determines if
channel 2 is busy. If it is, control branches to siNTEXT,
block Ba20. If the channel is not busy, control passes
to block Ba21. For interrupt operation, a busy condi-
tion means it cannot have a been a channel 2 operation
which caused the interrupt. For normal operation
(start channels), a busy condition means channel 2
is already in operation.

Block BAI9, $3CS2RET: At scserer, the branch ad-
dress of scs2pR is set to the file scheduler coding which
will make the 1/0 status check for the file for which a
tape operation has just been started.

Block BA20, $INTEXT: At siNTEXT is the BEPA in-
struction which causes entry into the priority alert
mode. The three possible types of exits from this block
are:

1. The interrupt exit (set at blocks Baot and Bao2)
returns the program to the point at which the
interrupt occurred.

2. The normal exit (set at block BA03) is a return
to the file scheduler as set by sEnTRY.

3. The bootstrap force exit (set by block Bcos or
BDO7) returns control to the file scheduler via the
force routine which is entered at block Ba12 and
exited at block Bais,

Block BA21: With the exception of the entrance
and exit, the logic of the coding is the same for channel
2 as for channel 1. In most instances, the coding itself,
except for the beginning of the tags (scs2 as against
scs1 for channel 1), is also the same.

Block BA22: The pending switch network is entered
at the highest-priority pending switch on the channel.
If no pending switch is on, control passes down the
network along the pending switch off-branches and
exits to scs2ENT for channel 1 or to siNTEXT for channel
2. If a pending switch is on, control takes the on-branch
of that switch (shown as block Bco7 or Bp09) to start
an 1/0 operation,

One-Area Input File Scheduler

Block BBO1, $--EMTY: Entry from a GET macro is
made at s-emty. The return to the macro is set in
$--ex1T, block BB10. Control passes to the channel
scheduler (represented by block BB03) by a BxpA in-
struction to cause exit from the priority alert mode.

24

Block BB03: The appropriate channel is cleared.

Block BB04: $--I0A: The read instruction is ex-
ecuted.

Block BB0S5: The 1/0 status check for the channel is
executed. The test is a Ba if a wrong-length record
check is being performed. It is a BEx if wrong-length
records are not being checked for and/or if the prr
specified variable-length records. If all indicators are
off, i.e., the read was valid, control passes to block
BBO6; if any indicator is on, control passes to the error
routine represented by block BB11.

Block BB06: This coding is included only if blocked
records w.o specified in the prr. The area or record
limits are reset. If wrong-length records and/or check-
point records are specified for variable-length blocked
records, a check is made for these records.

Block BB07, $--TRIG: The Bxpa instruction at
$--TRIG is a branch to sENTRY, the entrance to the chan-
nel scheduler at block 8a03. The pending 1/0 operation
of highest priority on each channel is executed after
checking the last one on the channel, if any. Priority
slert mode is re-entered.

Block BBU>: .. R'nck count is incremented by +1.

Block BB09, $--EXIT: Control returns to the main
line program address set up at s--emty, block BBOL.

Block BB11: The tape error routine, entered at block
EA01, attempts to correct any error resulting from the
tape read operation. If possible, corrective action is
taken and control returns to block Beos. If an end-of-
reel condition is encountered, control branches to the
end-of-reel routine at block ppo1; if a wrong length
record is found, control branches to block BB12.

Block BBI2: If checkpoint records are specified, a
test is made to determine if a checkpoint record has
been read. Otherwise, coutrol goes immediately to the
wrong-length record routine supplied by the user. If it
is determined that this is a checkpoint record, control
passes to block BB13.

Block BB13: The checkpoint record is bypassed by
executing another read instruction. Control returns to
block BBo4 to read the next record.

Block BBI4: The user’s wrong length record routine
determines whether to accept or reject a wrong length
record. If the record is accepted, control returns to
block BB06 to process the record. If the record is re-
jected, control returns to block BBo4 to get the next
record.

Block BB15: (Only for Form 4 records.) The block
character count is compared to the number of charac-
ters read to determine if a wrong-length record has
been read. If the record read is not as specified, control
passes to the Form 4 wir sequence at block Bsis.

Block BBI16, $--WLR: This is the Form 4 WLR se-
quence. The record in question is backspaced to enable




a re-read. If a successful read is not completed after
nine tries, control branches to the user’s wrong-length
record routine,

One-Area Output File Scheduler

Block BB21, $--FULL: Entry from a PuT macro is
made at s--FurLL. The return to the macro is set in
$--EXIT.

Block BB22: The block count is incremented by +1.
If the file scheduler is for variable-length, blocked rec-
ords, a group mark/word mark is set one location be-
yond the last data character position, and the block
character count is placed in the first four positions of
the record. Control passes to the channel scheduler
(represented by block BB24) by a BxPA instruction to
cause exit from the priority alert mode.

Block BB24: The appropriate channel is cleared.

Block BB25, $--IOA: The write instruction is ex-
ecuted.

Block BB26: For a write operation, the 170 channel
status check is always a Ba. If a branch occurs, control
transfers to block BB31.

Block BB27: The file scheduler controls are reini-
tialized with the area limits for a fixed-length record
or with the record-size limits for a variable-length
record.

Block BB28, $--TRIG: The BxpaA instruction at
$--TRIG is usually a branch to sENTRY, the entrance to
the channel scheduler (represented by block BB29 on
this chart). However, it can also be used as a pivot by
those 10cs routines concerned with the file schedulers,
e.g., end-of-reel and error routines.

Block BB29: The channel scheduler is entered at
block Bao3, seNTRY. The pending 1/0 operation of highest
priority is executed after checking the last one on the
channel, if any. Priority alert mode is re-entered.

Block BB30, $--EXIT: Control returns to the main-
line program location set by s--ruLL, block BB21, or to
the close routine as set by s--pabs, block BFo1 or BF11.

Block BB31: The tape error routine, entered at block
EAO1, attempts to correct any error resulting from the
tape write operation. If possible, corrective action is
taken and control returns to block Be27. If there is an
end-of-reel condition, control passes to the routine be-
ginning at block ppo1.

Two-Area Input File Scheduler

Block BCO01, $--EMTY: Entry from a GET macro is
made at s--EmtyY. The return to the macro is set in
$--gx1T, block BC24.

Block BCO02, $--WTG: The pending switch, block
Bco7, for the file is tested. If variable-length, blocked
records were specified in the prr and wrong-length

records are being checked, the wrong-length record
count is set to zero prior to testing the pending switch.
If the pending switch is off, the other record area is
available for processing and a branch is taken to s--pa,
block Bci2. If the pending switch is on, the other area
is not available and a forced read operation for this
file must be initiated to make the area available. A
BXPA, to leave the priority alert mode, is taken to the
channel scheduler force routine (represented by block
BCO4).

Block BC04: The channel is set to forcing and is
cleared.

Block BC05: The branch address of sintext, block
BA20, is set with the bootstrap force entry address; it is
set to go to block Ba12. This is to insure the completion
of the 170 operation to be started.

Block BC06: A second test of the pending switch is
made. For the first time through, the switch is off if the
10 operation cleared at block Bcos happened to be for
this file. Otherwise, it is on and the forcing operation
is continued. For the second time through (bootstrap
return) after the forcing operation is completed, it is
always off.

Block BC07, $-0000N: When the pending switch is
Nop, it is on. When the pending switch is BrancH, it
is off. The entrance to the pending switch is either
from the file scheduler itself, or from the greater
priority pending switch «v—1) immediately prior to this
one. If there is no pending switch of greater priority
on this channel, the entrance is from the channel sched-
uler. If the pending switch is on, control falls through
to the read operation of the file scheduler. If the pend-
ing switch is off, it is a branch to the next-lower priority
pending switch «v+1) or if there are no lower priority
pending switches on the channel, the branch is either
to sCS2ENT or to sINTEXT, for channel 1 and channel 2,
respectively.

Block BCOS: A test is made to determine which area
is to be used.

Blocks BC09, $--I0A, and BCI0, $--I0B: These
two blocks represent the actual read operations for
this file. Block Bco9 reads into area A; block Bcio reads
into area B.

Block BC11: A test is made to determine if the read
operation has been successfully started. If the opera-
tion has been started, control branches to scs-ReT in the
channel scheduler where the return address to the
v0 status check is set in scs-pR, block BA06. If the read
operation has not been started, the /o status check
is made immediately at block Bc2e. ,

Block BC12, $--PA: A test to determine which area
was used last is made by testing for a word mark on
the read operation. If a word mark is present, area B
is indicated, and control passes to s--sa, block Bc15.

Scheduling 25



Block BC13: Area A was read into last; therefore
the switches are changed so that area B will be read
into next.

Block BCI4: The file scheduler controls are reini-
tialized with the area or record limits depending upon
the use of fixed- or variable-length records, respec-
tively. The address of the first record character is
placed into s--save. The ending address, s--ENDD, is
set with the address of the last character in the input
record. Control passes to block Bc17.

Block BC15: The read operation is changed to read
into area A next.

Block BC16: This is identical with block Bci4, ex-
cept that the source of information is the B area limits
rather than the A area limits.

Block BCI17: The pending switch is set on to indi-
cate that one of the areas has been used and to request
the refilling of that area.

Block BC18: This block is included only when the
SOURCE DTF specifies one of the following conditions:
(1) fixed-length, blocked records using index registers
and checkpoints, or (2) variable-length, blocked rec-
ords and checkpoints. If included, this block tests for a
checkpoint record. If such a record is found, control
passes to s--ByP, block Bc19; otherwise, it goes to block
BC20.

Block BC19, $--BYP: The checkpoint record sensed
at block Bc18 is bypassed.

Block BC20, $--TRIG: The BxpA instruction at
$--TRIG is usually a branch to senTRY, the entrance to
the channel scheduler (represented by block Bc21 on
this chart). It may also be set, for certain exceptional
conditions, as a branch to the routines concerned with
processing those conditions. The exceptionals con-
ditions and the associated processing are:

End-of-Reel: After the sensing of a tape mark, s--Tric
is set by the error routine to branch to end-of-reel
procedures at seoru, block ppo1.

Prime Operation: The execution of open procedures
“(in an OPEH operation, or while opening a new reel
in a FEORL or end-of-reel operation) causes s--TRIG
to be set to branch to the linkage, block Bc2s, to the
prime routine.

WLR Operation for Fixed-Length Records: After ten
additional unsuccessful attempts to read the record
in question, the error routine sets s--TrIG to branch
to the linkage, block Bc25, to the user’s wLr routine,

Block BC21I: This block is included only for variable-
length, blocked records. If a wrong-length record check
is specified, the check is made at this point. A branch
to the Form 4 wLr sequence, block Bc3s, is made if a
wrong-length record is found.

26

Block BC22: If the channel is free, an 1/0 operation
is started either because of the pending request for
this file or for higher-priority file. The priority alert
mode is re-entered.

Block BC23: The block count is incremented by +1.

Block BC24, $--EXIT: The return is to the ger
macro as set by block Bcoz.

Block BC25: The purpose of the coding in this block
is to reset s--TRIG to the normal exit, ie., a BxPA to
sENTRY. The two possible exits from this block are (1)
to the wrong-length record routine, block Bc27, or (2)
to the 10cs prime routine, block Bc2s.

Block BC26: To ensure correct usage as a two-area
file, a priming of this file is forced. Control passes to
block Bco2.

Block BC27: A test is made to determine if a check-
point header record was read. If so, the checkpoint
record itself is read. Control then returns to s--wrg,
block Bcoz, to read a data record into the file.

Block BC28: The user’s wrong-length record routine
determines if the record should be accepted or rejected.
If the record is rejected, control returns to s--wrg,
block Bcoz. If the record is accepted, control returns to
$--TRIG, block BC20.

Block BC29: The vo channel status check for this
file is a BA instruction if wrong-length records are being
checked or a BEX instruction if there is no wrong-length
record check. If it is a BEX instruction, the 10 interlock
has not yet been turned off, unless a branch is taken on
the particular indicator. Control passes to block Bc3o
if an error is sensed; otherwise, it goes to block Bc31.

Block BC30: The tape error routine is entered at
block Ea¢1. An attempt is made to correct any error
or $--TRIG is set to indicate and end-of-file or wrong-
length record condition.

Block BC31: A branch any to self plus one to prevent
the machine 10 interlock is executed if wrong-length
records were not checked for.

Block BC32: If there are variable-length, blocked
records and wrong-length records are to be checked
for, the E or F register is stored to enable the wrong-
length check.

Block BC33: The pending switch is turned off.

Block BC34: The channel scheduler is entered at
BAO7. Any pending 1/0 on this channel is started or the
channel is cleared and control returns to the file sched-
uler. There are two possible returns. One is a return to
the main program through sintexT, block BA20, if this
file scheduler was entered from an interrupt. The other
returns is to the file scheduler at block Bcos via sINTEXT
and the bootstrap force routine.




Block BC35, $--WLR: This is the Form 4 WLR se-
quence. The record in question is backspaced to enable
a re-read. If a successful read is not completed after
nine tries, control branches to the user’s wrong-length
record routine, block Bc2s.

Two-Area Output File Scheduler

Block BDO1, $--FULL: Entry from a PUT macro is
made at s--FuLL when the current record area has been
filled with logical records. The return to the macro is
set in s--ExrT, block BD19.

Block BD02: The block count, accumulated in
$--TBC, is increased by 1.

Block BDO03: This block is pertinent only for a
variable-length, blocked record file. A group mark/
word mark is placed at one location beyond that of the
last character of the blocked record. The block charac-
ter count is placed in the first four positions of the
record to enable the correct handling of this record.

Block BD04, $--WTG: The pending switch, block
BD09, is tested. If the pending switch is off, the other
record area is available for processing (filling) and a
branch is taken to s--pa, block Bpio. If the pending
switch is on, the other area is not available. A forced
write operation for this file must be initiated to make
the area available. A Bxpa, to leave the priority alert
mode, is taken to the channel force routine (repre-
sented by block Bpos).

Block BD06: The channel is set to forcing and is
cleared.

Block BD07: The branch address of sinteEXT, block

BA20, is set with the bootstrap force entry address, i.e.,

set to go to block Ba12. This is to insure the completion
of the /0 operation to be started.

Block BD08: A second test of the pending switch is
made. For the first time through, it is off if the 1o
operation cleared at block Bpos happened to be for this
file. Otherwise, it is on and the forcing operation is
continued. For the second time through (bootstrap
return) after the forcing operation is completed, it is
always off.

Block BD09, $-0000N: When the pending switch is
at Nop, it is considered to be on. When the pending
switch is a branch instruction, it is considered off. The
entrance to the pending switch is either from the file
scheduler itself, or from the greater priority pending
switch (v-1) immediately prior to this one. If there is
no pending switch of greater priority on this channel,
the entrance is from the channel scheduler. If the pend-
ing switch is on, control falls through to the write op-
eration of the file scheduler. If the pending switch is
off, it is a branch to the next-lower priority pending
switch «v+1 or if there are no lower priority pending

switches on the channel, the branch is either to scs2enT
or to sINTEXT, for channel 1 and channel 2 respectively.

Block BD10, $--PA: The area last used is determined
by testing for a word mark. If area B was last used, con-
trol passes to s--sa, block Bp13; otherwise, it goes to
block Bp11.

Block BD11: Area A was written from last; therefore,
the switches are changed so that area B will be written
from next:

Block BDI12: The file scheduler controls are reinitial-
ized with the area or record limits depending upon
the use of fixed- or variable-length records. The address
of the first record character is placed into s--savE.
The ending address, s--ENDD, is set with the address
of the last character in the record. Control passes to
block Bpis.

Blocks BD13, $--SA, and BDI14: These blocks are
essentially the same as blocks Bp11 and Bp12 except that
the change is from utilization of area B to area A and
the limits set are those for area B.

Block BD15: The pending switch is set on so as to
indicate that one of the areas has been used and to
request the writing of it.

Block BDI16, $--TRIG: The Bxpa instruction at
$--TRIG is usually a branch to seNTRY, block Bp17. It
may also be set, for certain exceptional conditions, as
a branch to those routines concerned with processing
those conditions. The exceptional conditions and the
associated processing are discussed below:

End of Reel: After a reflective spot is sensed, s--TRIG
is set by the error routine as a branch to seoru, block
DDOL.

CLOSE and FEORL Operations: s--TRIG is set by
block pE11 in the close procedures to return to those
procedures after writing the final block of records
(if any).

Block BD17: If the channel is free, an 170 operation
is started either because of the pending request for
this file or for a higher-priority file. The priority alert
mode is re-entered.

Block BD1I8: This block is applicable only for vari-
able-length, blocked records. The block character
count is set to zero. ‘

Block BDI19, $--EXIT: Control returns to the pur
macro as set by block Bpo1.

Block BD21: The area from which data are to be
written is determined. For area A, control passes to
block Bp22; for area B, it goes to block Bp23.

Block BD22, $--10A, and Block BD23, $--10B:
These two blocks represent the actual write operations
for the file. Block Bp22 writes from area A; block Bp23
writes from area B.

Scheduling 27




Block BD24: A test is made to determine if the write
operation has been successfully started. If the opera-
tion has been started, control branches to scs-ReT in
the channel scheduler where the return address to
the 1/0 status check is set in scs-pr, block Baoé. If the
read operation has not been started, the /0 status check
is made immediately, block Bpes.

Block BD25: For a write operation, the 1/0 channel
status check is always a Ba. If a branch occurs, control
transfers to block Bp26. If no branch occurs, control
passes to block Bp27.

Block BD26: This block represents the error routine.
If the error is correctable, it is rectified and control is
returned to block Bb27. An attempt is made to correct
any error or $--TRIG is set to indicate an end-of-file or
wrong-length record condition.

Block BD27: The pending switch is set off.

Block BD28: This block represents the channel
scheduler, entered at BA07. Any pending 170 on this
channel is started or the channel is cleared and control
returns to the file scheduler. There are two possible
exits. One is a return to the main program via siNTEXT,
block Bago, if this file scheduler was entered from an
interrupt. If this file scheduler was in a forcing posi-
tion, the other return is to the file scheduler at block
BDO7 via sINTEXT and the bootstrap force routine.

Tape File Initialization Sequence

The tape file initialization routines are described in
a logical rather than a coding fashion and are based
on a pseudo decision table containing in its condition
stub entries from the p1F for the file. The number of
areas used, the record format, and, for input files,
whether wrong-length records are checked, define the
coding blocks required for initialization. All possible
coding blocks are shown in an in-line, logical sequence,
but all blocks will not be included for any given file.

Blocks BE0s through BE09 and blocks BE17 through
BE19 will not be generated for a file unless the procs
contains a CHANCHANGE entry; this condition overrides
any specifications for block inclusion which are derived
from the decision table.

INPUT FILE SCHEDULER INITIALIZATION SEQUENCE

Block BEOI, $--INIT, and Block BE02: The opera-
tion code and the X-control field (from s--acrt+s, the
base tape identification for the file) are moved into
$--10a+6 (and s--10B+6), the area A (area B) read
instruction(s) for the file.

Block BE03: (Included only for blocked records.)
$--SAVE is loaded with the address of the last location
of area A.

28

Block BE04: (Included only for a one-area, variable-
length, blocked file.) s--ENDD is set to zero. This field
will contain the block character count for each tape
record.

Block BEO0S5: (Included only for two-area files.)
$--TRIG, block Bc20, is set to enter the priming routine,
i.e., to branch to s--priMm.

Block BE06: The branch address of s--s¥x, the file
scheduler linkage to the channel scheduler force rou-
tine, is reset to refer to the proper channel.

Block BE07: (Included only for two-area files) The
1/0 status check, block Bc29, is reset. It may now require
a different channel operation code. The file scheduler
return to the channel scheduler (scs-rer, block BA17
or BA19), is reset to the proper channel.

Block BE0S: (Included only for one-area, blocked
files): The 1o status check is reset as it may now re-
quire a different channel operation code.

Block BE0O9 (Included only when the Form 4 wrr
routine is used): The d-modifier of the store E- (F-)
address register instruction is reset so as to store the
proper register.

Block BE10: Control returns to the common initial-
ization sequence beginning at sentaB, block pB11.

OUTPUT FILE INITIALIZATION SEQUENCE

Block BE11, $--INIT, and Block BE12: The operation
code and the X-control field (from s--acr+6, the base
tape identification for the file) are moved into s--104+6
(and s--10B+6), the area A (area B) write instruc-
tion(s) for the file.

Block BEI13: s--savE is loaded with the address of
the first character of area A.

Block BE14: (Included only for a variable, blocked
file.) s--save is loaded with the address of the block
character count. The record length is set to plus zero.

Block BE15: (Included only for blocked, fixed-length
records. ) s--ENDD is loaded with the address of the last
character of area A.

Block BEI16: (Included only for two-area files.)
s--TRIG, block BD16, is set to branch to senTRY, block
BAO03.

Block BE17: The branch address of s--srx, the file
scheduler linkage to the channel scheduler force rou-
tine, is reset to refer to the proper channel.

Block BE18: (Included only for two-area files.) The
1/0 status check, block 825, is reset. It may now require
a different channel operation code. The file scheduler
return to the channel scheduler (scs-rer at block Ba17
or BA19) is also reset to the proper channel.

Block BE19: (Included only for one-area, blocked
files.) The /0 status check is reset in a fashion similar
to that of block BEo7.




Block BEZ20: Control returns to the common initial-
ization sequence beginning at sentas, block pBi1.

Padding Routines

PADDING ROUTINE FOR A FILE USING AN INDEX REGISTER

Block BF01, $--PADS: Entry is from the RELSE
macro or from the close procedures; s--xit (the exit
from the associated file scheduler) is set to return to
the proper routine.

Block BF02: A test is made to determine whether the
output block requires padding. If no padding is re-
quired (i.e., the area index register points to the end
of the area), control returns to the proper routine via
the s--ExiT address set upon entering. If the file needs
padding, control passes to s--pLB2, block BFo3.

Block BF03, $--PLB2: If the index register is point-
ing at a record mark (end of record), control branches
to block Bros.

Block BF04: The area end address is compared to
the address in the index register to determine if ad-
ditional padding is required. If no more padding is
needed, the record is ready to be written, and control
branches to block sro7. If more padding is needed, con-
trol passes to block Bros.

Block BF05: The padding character is moved to the
address specified by the index register.

Block BF06, $--PTRC or $--PLBI: The index regis-
ter is increased by 1. Control branches to block BFos.

Block BF07: This block represents the file scheduler
entered at s--rurL+7, blocks BB22 or BpO2. After the
padded block is written, control returns to the proper
routine as set by block Bro1.

PADDING ROUTINE FOR A FILE NOT USING AN INDEX REGISTER

Block BFI11, $--PADS: Entry is from the RELSE
macro or from the close procedures; s--exir (the exit
from the associated file scheduler) is loaded with the
return address.

Block BFI12: This is a test to determine if the output
block needs padding. This is accomplished by compar-
ing the address of the last character put into the output
area to the address which defines the end of the area.
If no padding is needed, control returns to the proper
routine via s--exit. If padding is required, control
passes to block Bri3.

Block BF13: A word mark is moved to the high-order
position of s--psve. This sets up an area where the con-
tents of x15 can be saved.

Block BF14: The contents of x15 are stored in
s--psVE. Index register 15 is then loaded with the con-
tents of s--SAVE.

Block BF15, $--PLB2: If x15 is pointing at a record
mark (end of record), control branches to block Bris.

Block BF16: The contents of x15 are compared to
the final address of the area to determine if the file is

~ ready to be written. If it is, control branches to block

BF19.

Block BF17: The padding character is moved to the
address specified by index register 15.

Block BF18, $--PTRC or $--PLBI1: The contents of
x15 are increased by 1. Control returns to block sr1s.

Block BF19: The contents of s--psvE are restored to
X15.

Block BF20: This block represents the file scheduler
entered at s--ruLL+7, block BB22 or Bp02. After the
padded block is written, control returns to the proper
routine as set by block sr11.

Scheduling 29




BA

XY
*BA *
% Bie

Xe oo

$CSIREY 17
LTI TSRS S R 2 A2
* *

* SET RETURN TO #
*  BAl OR BEX1 *
- IN $CS1PR *
*
*

THE HARDWARE x *BRANCH ADDRESS #
* (NO BEPA) EREEE * * # OF SINTEXT *
RARERERARLREER RN - * * * REUREBERAZERRR RS
. - - »
RERE - * * +NO -
* » . L - -
* Cl %4Xo . .
» * . seeom .
EEER - .
$CS2ENT X $CS1ENT X
Cl1 * = 18 Ca % = 05
* » *
YES # YES *
senel BoOoL 2 #Xeeosveesresesansesssracnnsscsssssteenanssassossessncscnansanah 8.0 L 1 -
- *
- * * » *
. - » - »
- * *
. «NO «NO
. . .
. .
. N .
- . .
. X 21 $CSIPR X
- WHEERRD | HRER R RN * » 06 AREREDSERABEREXREN
. * SAME CODING * ® * *FaSe BCAS/BDODS*
- %AS FOR CHAN te * »* [ L R iyt )
. #* REPLACE $CS1 * 8 0P R ceX# PERFORM 1/0
- * IN TAG WITH * * * *STATUS CHK AND *
* $CS2 * . * * * HOUSEKEEPING
- ERRTFERARAERERE R RS - * * HRRENRERERBEREREE
- CHANNEL . 2 SCHED - * -
. CONTINUES WITH - EERR +«NO
. $CS2PR . * .
. {BLOCK 06) . 2BA %o X. .
. . * E4n . .
. o YES XY . .
- * $CS1SF $CS1SCN X .
E2 * 14 Eq4 ® » 7 -
»* » * - - -
. * * NO YES .
. * e CP R *¥Xosooconoet® B OL 1 ¥Xeowsorso¥ FORCING %*¥Xevesonsnssesenvos
. *
- ERAER = * * * - *
- *#BA * * * * * * *
- * Fiw »* - *
. * » «NC «NO
* .
- . .
. . . .
. . .
cSCSZRE X 19 X 15 X 08
'IillFl'iiilll'll FRERRFORRRERRREER HRBRRELERERRRRRRE
. * * * * »
. . SET RETURN TO * # SET CHANNEL # * SERVICE ANY #
# BA2 OR BEX2 # *  NON-FORCING * ENTRANCE TO THE #OTHER INTERRUPT#
* IN $CS2PR * * b FORCE ROUTINE *ON THIS CHANNEL#®
* * » » wrxe * »
. EEEEERRERENREEER EREFRBEFRERRER LR *BA i REFEFRERBARAERRRAS
. . . * G3# -
- . . . - .
- . - * -
. . . . .
. . . . .
. . . . . .
. - $CS1SFX X i6 $CSI1SFS X 11 . $CS1sS3 X 09
- - ERRRUGO2ERARRER AR ERRERGIEARERERRRR - RRRREGHLERRAERLEER
. . * * * * . * BRANCH TO *
. . * RETURN * #* SBR IN BRANCH * . %  THE HIGHEST *
essessssnssXe * TO THE FILE # *  ADDRESS OF * - *PRIORITY PENDNGH#
. - SCHEDULER e Ld SCS1SFX * . * SWITCH ON *
. * * » * - ® THIS CHANNEL *
. RERBRBERERERER RS HEARFEFFRERLERRRN - BRERRERARERRRR TR
. . . . .
HRER - . A E 2] - - -
* * - - * * - - -
#BA  HoX, e X ¥ * . . .
* H1% - * * . . .
Ll 2] - R - - -
SINTEXT X 20 CONTINUE FORCE OPERATION X 12 . X 22
.’iilHll*‘Ill'll* HERRRHIEREF RS RE - RRREEHG R AR RN ANR
INTRPT * * *#PNDG SW NETWORK#* 9'*' IF THERE
» 'FORCING {BOOTSTRAP) *  SET CHANNEL * H R F RN N IS NO 1/0
ok 8 EPA e .. X% FORCING %eaue eee¥® CHECK FOR ANY '..-.X* c1 ' PENDING ON
. * *® * . *  PENDING k/70 # *  CHANNEL 1
. *#ON THIS CHANNEL * *’*'

o« * *
X HERREXRARRERERLEN

bbbt b «NORMAL
- » .
* - .
LK}
L AERER
* *
RETURN TO # *
* *
THE POINT *
AT WHICH RETURN TO
INTERRUPT FILE SCHED
OCCURED AS SET BY
IQCSENTRY

Chart BA. Channel Schedulers, Including Interrupt

30

RETURN TO THE
POINT OF ENTRY
W/0UT MODFYING .

cesenh

AR ERE
*BA *
* A3®

-

FROM « F
SENTRY X 03
HABREATRHEERERBRRN
M *
* SBR IN BRARCH *
* ADDRESS OF  #
* SINTEXT *

»

*
EEERBAREAERRRERNR
.

EXo 0 40

83 * 04
* *
YES *
DISABLED *
*

I1LE
« SCHEDULER
.

* *
ERREAERRREEERE NN

*

BRANCH

00

ERRAR
*“BA #
* A4E
* *

*
FROM o

INTERRUPT

101 X 01
ERERRALERERERETRR N
* »

* SBR -
* *
# ENTER 10CS *
* *
ERERRBEAREERE RN

«BXP

.
.
.
.
.

SATTN

X

AREEN

*
s
»
=

THIS CHANNEL

02
AREAXBLEFUREF SRR
* DECREMENT *
* AND STORE *
* RETURN IN THE #

LI ST TFR AT VAR ey
.
-

X
Ty
* *
* H1 ®
* *
R

IF THERE 1S NO
1/0 PENDING
ON CHANNEL 2




06
ERRRRG I HERE AR RN
#FOR BLKD REC — *
®RESET AREA/REC ¥

s e X¥ LIMITS. *Xe
*VAR REC — WLR, #
- CHKPT NOW *
FEERERRREEREERRRE

.

14
RERRRGIRARERSRNERS RREERGLRRERRERERN
= -

® REINITIALIZE #

R R D e e
USERS WLR *sese
ROUTINE

EREAESRERRARERRRRE
X

#FILE SCHEDULER #
® CONTROLS WITH %
* AREA/RECORD =
-
*

N E A RE A FI1LE S CHEDUL ERS
I NPUT OuUTPUT
. REREN
*pE * *B8 #*
* Biw + Baw
* % - &
* *
. .
FROMS«.GET FROM..PUT
. .
S$—EMTY X 01 FULL X 21
ERARERBIRBBERRAERSL AERBRELAFRARIRERN
- » * *
*  SEY RETURN * * SET RETURN -
% ADDRESS AT * *  ADDRESS AT -*
* $—EXIT * * $——-EX *
» * * *
SERARRERRBARERRER HRBERREREREESEREE
«BXPA .
. ERRE -
. - * .
. *8B  #.Xe
. * Can .
. REEE -
X 03 X 22
AARREC AR RRRRRER BEERBCHLESERRR A
#CHAN SCHED BAG3* #ADD 1 TO BLKCNT#*
L B B e BS B Bt 2 * »
* CLEAR CHANNEL # * IF VAR-BLKD *
* AND RETURN TO % * SET GM AND *
#F[LE  SCHEDULER * #PLACE CHAR CNT *
EREFRERBBEETRERER EEERRRERBRERBEREE
- «BXPA
anen .
* »*
BB %.Xe
* D1# eXeosasasasesnaasessecssssscnsconcssscnosnss . .
e L3s . -
$--10A X 04 . X 2
ER1FR 1222222 ‘. RERREDORRRBRFX SR
* * . #CHAN SCHED BAG3#®
- * . L R o DY SR
* EXECUTE READ ¥Xoo .s . #CLEAR CHAN AND *
- * X . #RETURN TO FILE #
* * . . . * SCHEDULER *
RAAERREFRBREREN . - ‘. RERBREERFERBEEREE
. . . . .
. - . . .
. . . . .
. . . . .
. . . . .
. . N .
X . 13 s S$—=10A X 25
€1 * » 05 HRRUREDRRRRABRRED . HERCARRNBEREN
»* * * * . - »* * .
* 1/0 * * BYPASS THE * . . * -
eses s MCONDITION CHECK® %  CHECKPOINT * . . * EXECUTE WRITE #* TO $EORU
. * BA/BEX * * RECORD - . . * *
. * - . - * * *
- * * ERRRERAREEERRERER - - HEBEAERERBRRSE " »
. * X N o . #DD #
. +ON . . . * ALw
. . . - . ERERN
- . . - - . X
. . . . . . .
» . +YES . . . -
. X 11 * . - x . 31
- FRHERRF ] BEERRRRRER F2 * 12 - . Fqa # = 26 EERBEFSAREAARRRES
- *$ERROR EAAL® * IS * . . * - #$SERROR EAAL®
@CORRE—#odmtiafi ke bR WLR *  THIS A - . * * Lo ot ot S ST T TS e
«Xewe® ATTEMPT TO %sone X# CHECKPQINT * * BRANCH ANY X* ATTEMPT TO bl
. #*  CORRECT ANY » * RECORD * . . * #*  CORRECT ANY ¥
- - ERROR * * . . * * * ERRO *
. ARRBEEBRRRE RN SR » » . . * - ABARRRERRERRANNES
- +EOR * . . - «CORR
. .  EENR «NO - . bdubaied «OFF .
- . * . - . * * . .
. X*DD *#TO SEORU . . . *BB  #,X. .
- * Al . . - * Go4# eXsosessssssssnnsncsvsances
- HREE . 1222 ) -
. X 27
.
.
.
-

csceses¥

ACCEPT#* *REJT
» -

.
.
.
.
.
.
.

* LIMITS
ARRARAEEERFRRE RS
.

. .
. sse .
. - . .
. . . .
. . . .
$-~TRIG X o7 15 $~=WwLR +10TH 16 « $-~TRIG X
RERBEH]EFERNREERS EERERH2HEERRREERE EEFRPHINBE SRR TN - Ha & » 28
#CHAN SCHED BAA3% *FORM 4 RCD ONLY# #FORM 4 WLR SEQ ® .

» *
*USUAL EXIT * SET
* YO CHAN SCHED #*.
* OR AS SET #
* »

g R NN N R— R
*EXECUTE ANY 1/0%
* REENTER ALERT #

k=R R—N—N—R_K—RYES R o ol =t T ST 1
*onenense Xt MAKE NINE *o
*  ATTEMPTS TO #

esesse

EXIT AS SET BY

® MODE » * RECORD - *READ THE RECORD® ss£¥# JOCS SUBRTNS
RREFARERRRREERRER A2 222222222222 2223 EREBERRERESE R RS * * » *
. +NO - . .
. . SUSUAL LR
. . . =
. .
cessee .
.
x o8 X 29
BERRE JIEBRERFRERR EFREAR JAREZRNRBRRS
* #CHAN SCHED BAA3®
- ADD +% TO * EES X 22 22 £ 22 2 2t
* * $EXECUTE ANY 1/0%
# BLOCK COUNT # * REENTER ALERT #
- * . MODE
RERERRAAEREEERERR BRBRRERERRRERRERE
. .
. .
. .
. .
. o
. .
$-—EX1T X 09 $——EXIT X 30
SERBUK | HEREERRRES EEREAKARBEEERRRRS
* - -
# RETURN AS SET * #  RETURN AS  #
- * # SET BY [0CS *
* BY I0CS MACRO # * MACRO =
* * » L3
FERERBR SRR AR R R KRR REERERARNREERERES
. .
. .
. .
X X
ARERE AERRE
* * * »
* * - *
* » * =
* -

Chart BB. One-Area File Schedulers — Input and Output
Scheduling 31




T %O AR

$--ENTY ot t--PA
Iilll‘|lll!|!i!l‘ 12
- o
* Ser metuRx STTRNE
® ADDRESS AT .-...X*-AREA YVAS usents
. $——EXIT ., *, ST o+
* " - i. o ¥
SRBERARNSEASBERTER - ", ¥
. A
E2 A2 . -
* - .
* Bl %.Xe .
- * - -
EERE .
$-~-wTG X

Xe 13
%, 02 an;nnezni-«a-n-a-
", [}
% IS5 T4 ®*e N ' SEY Y0 LSE -
#PENDING SWITCH #,..X *  AREA-B NEXT #
. CN ¥ - *
* *
EASARBNRRERERNERE
.

Xe oo

re

ERRRRCORRARAARRAN
* INITIALIZE

#FILE SCHEDULER
* CONTRCLS wiT+
*  AREA/RECORD

EEEE 29

* IMEITS
u-»co«anu-;*»;;-n

[23
EESARCLARIERSUN NS
RCHAN SCHED EBAG3%
L e e Y ]
*  SET CHANNEL #*
*TO0 FORCING AND #
# CLEAR CFANNEL #
BARRERANERRRRRNNS

$+-BYP 18
SRRBRACO2RRRFBIRRNRE
*

*
* EBYPASS THE
*  CHECKPGINT
* RECORD
* L]
»

EEABARERRRRERA RN

. .
(122] - . (21T
[ [ 2 .- * *
® E1 W.Xe ceX® E2 ¥
- . . * "
aenw . YY)

21
FARRRE2RSRATARARR
FORM % FOR VAR-BLKD #

X 0S
ARERREIRUERABUBAN
%  SET ERANCH *
- ADDRESS CF “
#SEINTEX

T HE cae*[F WLR CFK SPEC
'EOCTSTRAF FORCE'

. *PERFORM CHK AND®

€600 0000008000000 0NN LNt P oLt seRsNBLIP O BRI RSEIOLESETS

* ENTRY (EA12) # « * ERANCH »
ARARRERRRASBUNRRY X SABEREERANRAREEEN
- [XE2) .
. ® * -
. % HS * .
. -t * .
- . HEER .
. . .
oXe - X 22
F1 %, 0€ . ARBEAFLRAANAE RIS
ot L - ESENTRY BAAZs
o®* IS TFE #. NO o N N L L iy
#PENDING SWITCKr ®ease * START 1,/Q IF =
L CN ot ®FCSSe RE-ENTER #
L o * ALERT MCOE -
", % LRI TY TR T2 72 20

* YES .

. .

- .

. .

. .

. .
$~CG00O0N oXe 23
6 %, 07 ll!llczl'!iillll&
ot . -
%, BRANCF M TO .
* ELOCK counr +
13 *
. -
RARREAEARERRARIRD

.

.

.

.

$--EXIT X

24
ABBRRPOREURAT RS

» *
e .» . *  RETURN AS  *
seso®e WHICK AREA % *  SET BY 10CS #
. ., o* - MACRO *
- g ¥ * *
. B, o8 RAERBARBERRABRRER
. A .
- . .
. . .
. . X
. . [T2Y}
- . * *
$--1CA x 09 LI
- ARBJIRRARAARE . %
- - = »
. -
® RTC AREA-A %ase AS SET BY
. - . . 10CS MACRO
. . . .
. seRsR SRR IR .
. .
. .
. -
. .
.
$--108 10 -
BREKLARBRARAR . 11
. * * . *,
. » * X o .
seeX® RTC AREA-E fosnsascaXt, B O 1 *
» - - ¥
- * g -k
BAERSANABERESR ", R
* NO
-
X
xnn
- -
* AE #
* -
N

® Chart BC. Two-Area Input File Scheduler
32

*Xessossast
»

4 WLR* RECORDS ONLY., *
=X

E A I NP LULT FlLLE

$--SA 15
FEERRATERR SRR R

[
* SET TG USE

-
e *
...-....Xi AREA-A NEXT ¥
3
*
»

!IQlliilGllllll!

Xe s nen

16
ERERIEIASERRNNRES
®  [NITIALIZE =
* FILE SCHEC =
* CCNTRCLS WITH =
® AREA/RECCRC *
. IMITS *
FREERREFERARE SRR
-

PIEERE)

1
lllllc3l*lilill!

7
*
*
' SET THE *
oo-o--..X'PEND[NG SWITCH *
*

[

I

!llill!ii!llll‘l

18
BERRRDIRAER AR AN RS
*FOR VAR-BLKC CR#*
* FXD-BLKD-XREG #*
RECCRDS - »
% PERFORNM CHKFT #*
*CHECK IF NEECED#*
AERBAREREARRNRA NN

SCFrECULER

30
EREABALERANBRNND .
*$ERRCR EAAL»

o .
YES «% WLR - BA *,

*®* CORRECT ERRCR ‘X---..-..‘.NO WLR — BEX %

*CR SET $--TRIG
#CR TYPE MNESSAGE#
HERBARERB RN AR

unn

(XT3 .
* *
* E3 *.Xa
L} .,
xxaw .

$-=TRIG x 20
ARRAARETRRRRRNANRR
* NCRMAL BRANCH ¥

NCRMAL * TC $ENTRY ®EOR *

# 10CS RCUTINES ¥
[ »

RARRERBRBABRARE RN
«SET
.
.

X S
l*llIFJlillllllll
*

ssee® OR AS SET BY ®eeescoes
X

X 31
lilllBSi‘iGl!l!ll

.
. BA *+1 *
£ IF NO WLR CHK *
= »
* »
FRERRBERBRHAL R RSN

Xe oo

32
ARRBBCORRRERNERRE
* VAR~-BLK REC *
% STORE £€ OR F_ *
% REG TO ENABLE *
*  wLR CHK [F *
* *
* *

SPEC
HEARRRERRRER NN

* o

TR

BRAREDSHEERRERRE
*

* SET THE
*PENDING SWITCH
» OFF

=
ERERRNEEERRRENRR

Xewooeo

EEERRESHENRRRRRES
SCHAN SCHED BAE4*
AHEORCES—#-Fol BBt

' €l 'X--..’START PNDG 1/0 ®

OR CLEAR CHAN *

HERER .'Il lAND RET TO FeSeX
*CD * ARRRRAERBERERNRRES
* AL VIA SINTEXT <INTRPT
* -
- -
TO $ECRU X
ERRN
» Ll
26 . »
ARARENBFLBRERRTEE RN ® »
l -

' RESETY ’PRIVE

I
' TC NCRVM EXIY ‘

ll!l.llllll!!illl
«WLR

.
.
x 27
ERRRNGIRAEHERAE NS
* »

YES®IFf CHECKPOIRT- ¥
+®BYPASS A RECCRN#
* *

L] *
AEERRIREERE RN

«NC

eXese

b 28
AREERAHIHAERER AR RN
» -

*
% USERS WLR RTN ¥
- -

AEBURBBRARSRRAERD
«REJTY

sseess e sar et

ceoneXe

anan
»* *

YES
sesssves SCSIRET (EAEL)
X R

<
*E¥RESCS2RET (BAFL)
*BA *
* *

» »
*

-
=
-........x-xocs PRIME RTN #
»
*
-

Il!llllllll!llll
.
.

X
(31T}

(Y2}

AEnw anw

SRR E BB N-F-RACPT # *
ForaeX* E3 ¥
* *

Eena AREE

® PS5 R0 X#
- *

TO MAIN PROG
VIA SINTEXT

.
$--WLR #10TH 35
EREERESHRRAN RN R

#FORM 4 WLR SEQ *

® EEE B 2 Y S PR X B 3
MAKE NINE ¢
* ATTEMPTS TO *
#*READ THE RECORD#*
ERREFHERRERARERBRN

o1-9

X
ARE
%* p1 *
*




12332}
*BD *
* oALW
* 2

FROM PUT

Mo oo ¥

$——FULL o1
tulti‘x*ﬁl;-c.*in
. SET RETURN X
* ADDRESS AT  *
* $——EXIT *
* *
* *

FAEAERRRERURRERS

R

X o2
lllilal*l*l!l’kii

*
‘ ADD +1 1O *
*  BLOCK COUNT ¥
* *
* *
HREERTRARRRRERR R

.
.
-
.
.
.
.
.
.
.
.

Xeeaase

03
BUERRC | RAERERRRER
* FOR VAR-BLKO
* RECORDS — SET

*
- .
* GM _AND PLACE » .
* CHARACTER * -
* COUNT - .
L Ty e Y Y .
2323 . .
*

*BD ¥,Xe
* D1 . L
REE - .
$-—WYG X .
DL * = 04 .
* .
IS THE * NO -
FPENDING SWITCH ¥.000Xe

* ON *

06
ERERUF | REARAERNAR
#CHAN SCHED BAG3#
[ I YR SR
- SEY CHAN *
* TO FORCING *
* TO CLEAR CHAN %
ERRRRERE R RRR RN

.
.
.
.
.
.
.
.
-

.
E2 123 .
» *
* Gl %oXe
* L 2
LITT} .

.
.
.
.
.
.

X o7
BEEARGIARRTRRARES

*$INTEXY TO THE #
*#BOOTSTRAP FORCEW
* ENTRY {BABS) =
ARRBBARRRERES R R

AXe s s 00

Hi * o8
- -

.
.
.
-
.
.
.

* 1S THE *
*PENDING SWITCH
* oN *

* *
-YES
.
.
.
.
$-0000N bd
* 09
- »*
bl N TH *  BRANCH
* o XEPENDING SWITCH #%..04
. ® IN BANK # .
. .
- * *
* * *RERR
* » «NOP N O®
N - * 1%
* 10 X LR
BRERE L2222 *
* *
* AS #
* -
nERS

Chart BD. Two-Area Outp

T %O AREA OUTPUT F1LE s C
$-—PA * $--SA 13
A2 * 10 FERERATRER BN AR R SR
- - * »
*WHICH AREA * B * SET YO USE *
e X¥ WAS USED ®eesesessX® AREA-A NEXT %
» LAST » * *
* * * *
* » AAR2 22222222222

* .

A .

. .

. .

. .

. o

X 11 X 14
'illiﬁziiiillll!* HEEFFBIXHRERRRERRL

* # INITIALIZE *
‘ SET TO USE * *FILE SCHEDULER #*
*  AREA-8 NEXT * * CONTROLS WITH =
* * * AREA/RECORD #
bd * * LIMITS *
RERREEFRERLERERRR REXRERXERERERERRE

. .

. .

. -

. .

. .

. .

X 12 X 15
EERERCORRERRRARRE Qlll&csiill'li'i*
% INITIALIZE * *
*FILE SCHEDULER #* d
* CONTROLS WITH 'oo..--..X*PEND[NG SWITCH *
*  AREA-RECORD ' *
* LIMITS ' *
*“Gﬁll."*i}liil FRERRBEERERERERERE

Y23 -
- * .
28D *eXe
* D3* .
ERER .
1 $-~TRIG X 16
EEEERDDHEEREEA ST X EEEREDIFRHEERERES
’CHAN SCHED BAA3# * NORMAL BRANCH #*
R e o W e e TO SENTRY *EOR
* SYART I/O IF  #Xx, ee¥* OR AS SET BY #

*POSSs RE—-ENTER #

* ALERT MODE *

REREERERRRERRN AR
.

Xe oo

18
ERARNC2HURERRERRR
®  INITIALIZE *
*FILE SCHEDULER %
#*  DEBLOCKING *

CONTROLS *
*
»

*
*
LR R 2222222222223
.
.
.
.
.
.

—~EXIT X 19
REREEFO2EAANRRER*N
* *
» RETURN »
®  AS SET BY  *
*  I0CS MACRO  #
* *
ERBAERERAREREEREEN

.
.
.
x
..
- *
* *
* =
*
As SET BY

10CS MACRO

ut File Scheduler

* 10CS CONTROL #

* ROUT INES *

EERBARERERRRRRAER
+SET

FEORL /CLOSE
ROUTINES
TO BLOCK DE13

HEDULER

secevsssscssnssanet

.
.
.
X

3-—10A

*
*  WTO AREA-A
*

- »
EREREREENE AR

.

$CSIRET
Q
$CS2RET

26
ARRERDGERERRREERS
EAAL S
LRt Y I B B T S
* CORRECT ERROR *Xoeaso

*

*SERROR

#OR SET $--TRIG

.
. *O0R TYPE MESSAGE®*
X AEREAEEARERDEREEN
wRREE .
DD # -
* ALE .
L -
*
TO $EORU

VIA SINTEXT

22
ERRBARRER RN R
*

(BAB1)
(BAF 1) #Ruxs
XBA *

-
-

* -
WHICH AREA »
* »

* L3
* *

B

Xesooem

$~-108 23
REABSHEFNERRR
. -

» *
*  WTO AREA-B *
* -

* *
AEEEARRRERREN

YES

- -

27
HRBSRESKRRARRENRN
» *

» SET
*PENDING SWITCH *
* OFF =
- *
REEEBERRREERAERRS
.

Xe oo

28
ARRERFESHRRERRB RS
#CHAN SCHED BAE4*

RFORCECE— W m bR e Rt
'Xo.o.lSYAHf PNDG 1/0 #*

* OR CLEAR CHAN *

*RETURN TO FaSe *

RERRARERRBRRERRRY
« INTRPT

TO MAIN PROG
VIA SINTEXY

Scheduling

33

BD




v
m

INPUT FILE SCHEDULEHR

e . - .
- . . .

e NO OF « BLKNG s+ RECRD o WLR - CODING BLOCKS

. . . . .

o AREAS . USED « FORM « CHKD . GENERATED

- . . . .

- coe
. seses
- . .

- NC « NO s 01406408410

- . .

- scosesn - ssse ceres
. . . - .

. 1 . NO - N/7A . YES « 01:06+08,09,10

- . . . .

I R R R R L R PR R R R N
. . . . .

. 1 « YES .+ FXD « NO s 01403,06,08,10

. . . - .

..

.
.

: .
1+ YES . FXD . YES 01,03,06.08.09,10
: : :
cebecsctesesensoanestsastatasteistsentarsactsantanaronacononan
. . .
1 L YEs . vaR I NO 01.03,04,06.08,10
: . :

sess ssee sesesssse

YES

VAR
ssscces

2

NO

esscsessccanassestsesstesssnssresescacnnsosnase

N/A NO 01+02405,064074+10

sessssscssssnns R R R Ry

NO

cssesscscscrons

-
.
.
.
.
YES e 01,03,04,06508509410
.
.
.
.

.
.
.
.
.
.
.
.

N/7A YES 01+402505+06407:09+10

YES N/A

NG 01+02403+404405,06507510

R R

sesssecesscscse

.
2 ¢ YES

cescsce

YES

P R R P P T T T T P Y

01402403404205+06407209,10

.
.
-
.
.
-
-
.
.
-
-
.
.
-
.
.
.
-
.
.
.
.
-
.
.

N/A

.
-
-
.
.
-
.
.
.

R R R R R N I I I I T R R

.
.
.
-
.
.
.
.

csee

eastenen

.
.

OUTPUT FILE SCHEDULER

4940000080000 00040000000s000cracstsacctcrsssssoossssenncsensensse
. .
NOes OF o+ BLKING « RECORD CODING BLOCKS

. .
AREAS USED FORMAT GENERATED

s
sase

. .
1 . NO . N/ A 1117219420
. .
sseeves esenssssssecsscsccsansssncsnas
.
1 - YES FX0 11+13517+19.20
- .

sseascscea

YES

“ne

1151445174+19,20
“scscssseccssncccssesssssnnae

11412+13416417,18,20

.
esecseressescsnsenenn
.

.

N/A

cee

FXD 11512¢13215+16517518,20

esesscsctecsstssessscrerorsasseccanssscens

VAR 11+12414,16417,18,20

Cees st es s et ser N st a R0

.
-
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

Chart BE. Tape File Initialization Routines

34

INPUT

$——INIT

ARRER
*BE *
% AGHE
* *

xe oo u

o1
X2 FYE XS 22 X2 23
®L_OAD THE INSTe #
* FOR AREA-A  *
*WITH THE CU AND®
* CORRECT MODE *
* FOR READING *
ERBAREEREEREERERS

02
ERERECLERREREN RS

#LOAD THE INST. *

* CORRECT MODE
* FOR READING *
X Y P e L]

Xeonoase

03
REREXRCLERRERBERESN
* LOAD $--SAVE *
* WITH THE *
*ADDRESS OF THE *
*LAST CHARACTER #
* OF AREA-A *
AERRAEEERRRRRER RS

Xoeeseve

04
REEERDLERERRRERES
* *

* SET 3--ENDD *
* To ZERO »
* *
* *
E2 322 X2 SRS 2222223
.

Xe s oo

05
EENERCARNURBRARES
* *

* SET $--TRIG #
* TO BRANCH TO *
* $==PRIM *
* *

*

06
AERRUFGARRBAREERR
* *

* SET FORCE *

*ENTRY TO CLEAR #

* THE CHANNEL #

* *

RERRBAREREERERRER
-

Xese e

07
ARRERGLERERERRRRR
* SET 170 *
#CONDITION CHECK®
* *

* SET RETURN TO *

* CHAN SCHD *

HARERBREEREERL AR
.

X 08
EARERHGHERARE R RS
» *
* SET 1/0 *
#CONDITION CHECK#*
» *

* *
ARSARAERRRERRREE N

Xesesas

09
RERER JAREERRENERE
* *

) *
#SET WLR BRANCH *
* *

* »
ARERBAAEERRENERRER
.

Xeo o

10
EERERKAERE R RER
* -

*  BRANCH TO ®
= SENTASB *
» *
» .
ERERERERERRRRERES
.

.
«TQO SENTAB
x

R

*DB *

* A2%®
* *
*

OUTPUT

$-=INIT

AERES
*BE *
¥ AS%

»
Xe oo &
E

11
FRBARASHERRRRERNN
*LOAD THE INST,. #
# FOR AREA-A *
*WITH THE CU AND¥
* CORRECT MODE *
*  FOR WRITING *

12
HERERDSEARBHERKES
iLOAD YHt INST. '
* OR AREA-B

*WITH YHE cu AND*
* CORRECT MODE
*. FOR WRITING ¥
RHAAARRRRARSERRE R

Xe oo

13
ERRRACSHERFAERERS
* LOAD $--SAVE *
» WITH THE *
#ADDRESS OF THE *
*FIRST CHARACYER'

OF AREA—A *
ll&lllli}ii{lllli

.
.

14
ARERRDSHEXERERRREN
* LOAD $-—-SAVE *

15
REERAESHERERRERR L
* LOAD $-—ENDD %
* WITH THE *
®ADDRESS OF THE *
#L_AST CHARACTER #*
* OF AREA-A *
ERRERBAERRERRAENE

.

Xe oo

16
BEERRFSRARNRRERES
* *

* SET $--TRIG *
* TO BRANCH TO *
* SENTRY *
* *
REREXRELREREERRER

Xeoeue

17
RERREGSAERIRRRERR
L

*
# SET THE FORCE +#
*#ENTRY TO BRANCH*
* TO CLEAR CHAN *
* =

EEERRRRARERRRRRES
.

e e oo

18
i;;nnusunun¢|*&~n
’CONDIT!ON CHECK'

* SET RETURN TO *

# CHAN SCHED *

[ ey T
.

Xe s e

19
AERREJSRERRARRRER
- *
* SET 1/0 *
*CONDITION CHECK®
* *

» *
ERRAERERERBEBRAERE
.

X 20
ERRAEKSERREE RS
*

BRANCH TO
SENTAB

LEE X EY

#
*
*
*

AEARERARARRREERRN

.

LTO SENTAB
X

nRRE

*DB *

* A2%
* ®
*




*
*
*

EXIT ¥

07
EERRRE LR ERRERRERE
#*FsSs 8BC4/BDBL*
e o ot
*  WRITE FILE *

%

*
EXIT VIA $—EXIT

P AD

FILE USING AN
INDEX REGISTER

EENER
*BF *
x B2#

Xe o»

$-—PADS o1
EREERBOREERES S RN
*

*
* LOAD $——EXIT *
* WITH RETURN *
* ADDRESS *
* *
A2 222 2SN Y
.
.
.
.
X
c2 « *» 02
* *
NO *  DOES *
ssssseas®THIS FILE NEED #
X * PADDING #
RER »
* * *
*
* *
* .
1A $=-EXIT .
. .
. .
$--pLB2 X .
02 * » 03 .
.
* ..
.e
.o
* * ae
* .e
«NO .o
. ..
. .o
.
. .o
X .
E2 * % 04 ..
1S # .o
YES # THIS FILE * ..
Xeossesea® READY TO BE * ..
* WRITTEN * ..
..
- * .
*
«NO ..
. ..
. ..
. .o
. ..
X 05 s
EREREFOABRRERERRR .o
» * .

* MOVE PADDING *
%* CHARACTER TO * ..
* 0 + XREG ..
* * es
FHERARREREERRRREER Y
. ..
. .e
. .
.
eXoes
$—-PTRC .
$—-PLB1 x 06 .
ERBERG2ARRAARAERR -
* * -
*  INCREASE * .
*  XREG BY +1  %4usas
*
» *
HEREEARREERREN RN

Chart BF. Padding Routines

DING

ssssvesos ¥TH
X

ROUTINES

AERER

-
»*
*

-
EXIT VIA $--EXIT

$-~-PFOR 19
ERERRGIREFREREE RN
* »

* *

* RESTORE X15 #X

* *

» *

EERRERRRERRERER .
.

X 20
ERERRHIERRERERRER
*F eSS BBC4/BDB1*
e It St M)
* WRITE FILE *
* AND RETURN T0O *
* CLOSE PROCD #
R T TT ITT R R

*
EXIT VIA $--EXIT

*
»
*

FILE NOT USING
INDEX REGISTER

HEEER

$--PADS 1
EREARDAERRIRUESR
*

1
*
»*
* LOAD $——EXIT *
* WITH RETURN #
* ADDRESS *
* -
EERERERAREERERE TN
.

X s a0

Ca * 12
L3 -

NO * DOES *
IS FILE NEED *
* PADDING #
*

* *

13
HERRADGRRERE RN ERE
* -

* MOVE A WM

* TO HIGH ORDER
*POS OF $--PSVE
*

LR RS

»
ARAREAREREERARR RS
.

e s s e

14
RERRRCQHSERRRNTRE
*  SAVE X15 IN
* $-~PSVE
* 1 0AD X15 WITH
* CONTENTS OF
* $~~SAVE
HREEREREERRR L RS

.
.
eXeessesssnces

I EE TR

$--PLB2

X .

Fa
*

* 15

* 1S X118 * YES

POINTING AT A #.4..

*RECORD-MARK* .
* *

seses s et

* - .

z
©

G4 * 16

-
NEXe oo s o N

-

.

.

-

] * .

YES * THIS FILE # .
sees* READY TO BE * -
* WRITTEN # .

* Es .

* * -

.

.

.

*
=NO

.
St esssassseesnnsan

Xe e

17
HEERRHERAREER R T RS
*

*
* MOVE PADDING #
* CHARACTER TO #
* 0 + Xi5 *
*
*

*
ERAERRERAREREN AR

.o
. .o
. e
sXesesesssenns
$-=PTRC . .
$--PLB1 X - 18 .
EREREJLARRERRRNRE -
* * .
INCREASE * .
X185 BY +1 *esnee

»

*
*
*
*
»

*
EREBERTRERARR R NN

Scheduling

BF

35




Record Processing and Little Macros

The record processing macros for tape files with speci-
fied pTF’s are GET, PuT, and RELSE shown on Chart ca.
The ceT macro, sometimes referred to as a deblocking
routine, makes the next logical record in a block avail-
able for processing; a put adds the next logical record
to a block. The many formats for cer and puT are
covered. The record processing macros for unit record
files with specified prF’s are shown on Chart cs. The
little macros RTAPE, WTAPE, CONSL, RTLBL, WTLBL, STACK,
SKIP, IOBSP, IORWD, TORWU, IOWTM, I0sYS, and PSTAC are
shown on Chart cc.

PUT, GET, and RELSE Macros

The purt, GET, and RELSE macros are charted logically,
independent of generated coding. In other words, the
blocks do not represent actual coding but represent the
logic behind the coding. The description indicates
some of the possibilities that can be coded. The put
and GET macros, in particular, vary from file to file, de-
pendent upon the source pTF specifications and format
of the put or cer being used. For example, if a work
area were PUT to a file, the coding is different than if a
file were simply pur or if a different file were pur to
that file. The coding also differs if the file is blocked
or unblocked, variable or fixed, and uses one or two
areas. Similarly, for the GeET macro the coding is dif-
ferent depending upon format and the usage of index
words, blocked records, or variable records. The ReLSE
macro usually causes only a few instructions to be
generated. Essentially, it is the replacement of the cur-
rent logical record address with the ending (input) or
the writing of the record ( output).

PUT MACRO

Block CAOI: This is a logical in-line connection to
the user’s coding.

Block CA02: The initialization for a move may be
the moving of the address from s--save to an index
register, or to the actual move instruction. It is not
generated if the move does not need initialization, e.g.,
if both files use index words and file 1 is being puT to
file 2.

Block CA03: The actual movement of the record
may not be a physical movement of the data but a
movement of addresses for the next logical record.

Block CA04: In the updating for the next puT macro,
the addresses that will be used for the file being put
are increased to reflect the correct location. In other
words, s--SAVE is increased by the length of the record.

Block CA05: 1f hash totals have been specified, the
contents of the field designed for hash total is added
to s--THT.

36

Block CA06: If record counts have been specified,
a +1 is added to s--TRC.

Block CAOQ7: s--savE is tested to determine if the
current 1/0 area is available. If it is, control returns to
the user’s program. Otherwise, the area is full and the
file scheduler is entered at s--ruLL (represented by
block caos).

Block CA08: (Two-area.) After the other area is made
available to the macro (by a forced write operation if
necessary ), the file is set pending to record the need to
write the full area. (One-area.) The area is written to
make it available again.

Block CA09: This represents the logical in-line con-
nection with the user’s coding.

GET MACRO

Block CA1l: This represents the logical in-line con-
nection with the user’s coding,

Block CAI2: A test is made to determine if the cur-
rent /0 area is available. If it is, control branches to
block cai4. Otherwise, the area is empty, and the file
scheduler is entered at s--EMTY (represented by block
CA13).

Block CA13: (Two-area.) After the other area is made
available to the macro (by a forced read operation if
necessary), the file is set pending to record the need to
read into the empty area. (One-area.) The area is read
into to make it available again.

Block CAl4: The initialization for a move may be
the moving of the address from s--save to an index
register, or to the actual move instruction.

Block CA15: The actual movement of the record
may not be a physical movement of the data but a
movement of addresses for the next logical record.

Block CA18: In the updating for the next GeT macro,
the addresses that will be used for the file are increased
to reflect the correct location. In other words, s--SAVE
is increased by the length of the record.

Block CA#7: Hash totals, if they have been specified,
are accumulated in s--THT.

Block CA18: If record counts are specified, a +1 is

jadded to s--TrC.

Block CA19: This is the in-line connection with the
user’s coding,

RELSE MACRO, INPUT

Block CA21: This represents the in-line connection
with the user’s program.

Block CA22: The address of the logical record being
operated upon is replaced by the address of the last
character in the area.

Block CA23: This is the logical connection to the
user’s program.




RELSE MACRO, OUTPUT

Block CA24: This represents the in-line connection
with the user’s program.

Block CA25: Control transfers to the padding rou-
tine for this file. If the block requires padding, it is
padded before being written.

Block CAZ26: This represents the in-line connection
with the user’s program.

Unit Record GET, PUT, and Close Operations

The function of unit record file schedulers, when used
with GET/PUT macros, is to execute and check the 10
operation requested by the macro, keep an accumula-
tive count of the number of records, and, if applicable,
provide linkage to the user’s end of file routine.

An additional function of the punch file scheduler,
when entered during a close macro, is to punch a blank
card so that all the punched data cards are in the
stacker when the punch file is closed.

A detailed treatment of the file schedulers and the
GET/PUT macros follows.

GET CARD MACRO AND SCHEDULER

Block CBOI: If the GET macro specifies an end-of-
file address for the card reader file, the specified
EOFADDR address is placed in the I-address of the file
scheduler’s end-of-file test instruction (block cBo7).
Note that this replaces the p1r EOFADDR if one had been
specified. (Refer to the description of block cBo.)

Block CB02, $--EMTY: This is the labeled entry to
the file scheduler. The contents of the B-address regis-
ter are stored in the scheduler’s exit, s--xit (block
CB12).

Block CBO03, $--SFX: A branch and exit priority alert
mode to scs-sFs, the force entry to the channel sched-
uler, is executed. The channel for which the GeT macro
was issued is forced clear of all unchecked 170 opera-
tions. This is done to prevent an 10 interlock when the
card read instruction is executed at s--10a (block cBo4).

Block CB04, $--I0OA: The card read instruction is
executed. If the program uses overlap, the instruction
is executed in overlap mode. This is done to preserve
overlap mode of operation if an overlapped operation
is in progress on the other channel. If the instruction
were not given in overlap mode, it would not be exe-
cuted until the 170 operation on the other channel is
completed.

Block CBO05: A test is made to determine if any 10
channel status indicators are on. If they are all off,
control goes to block csor. If any are on, control passes
to the unit record error routine (represented by block
CBO06 ).

Block CBO6: The reason for entry to the error routine
is determined and appropriate action is taken. Oper-

ator action may be required. Control returns to block
CBO7.

Blocks CB07, CB08, and CB09: A test is made to
determine if the condition o channel status indicator
is on, If it is, it indicates an end-of-file condition on the
card reader and control is sent to one of three places.

1. EoFapDR specified in the last GET READ, EOFADDR
macro used for this file.

2. eorabDR specified in the prr for this file if condi-
tion 1 does not apply.

3. s--104 in the file scheduler if neither conditions 1
nor 2 apply. The card read instruction is re-
executed (block cBo4). In this case, it is NoPed
and the not ready indicator is turned on. The
error routine is entered (block cBos) and a not
ready message is typed out indicating that the
reader is out of cards. The program enters a wait
loop for operator action. If more cards are placed
in the reader, the program continues.

Block CBI10, $--TRIG: A branch and exit priority
alert mode to sENTRY is executed. There is no signifi-
cance in the fact that the instruction is a Bxpa. It is
used as an unconditional branch. 1/0 operations are
started on the channels, if possible, and priority alert
mode is entered.

Block CBI11: The card count, s--TBC, is incremented
by +1.

Block CB12, $--EXIT: Control exits from the file
scheduler to the location set by block cso2.

Blocks CBI13 and CBI14: If the macro is of the for-
mat, GET READ TO WORK, the contents of the pr¥ speci-
fied 170 area for this file are moved to the work area
specified by the macro. Control returns to the user’s
program.

UNIT RECORD PUT MACRO AND SCHEDULERS

Block CB21: Before entering the file scheduler on a
PUT WORKAREA t0 FILE macro, the contents of the macro
specified workarea are moved to the prr-specified vo
area of the printer or punch file. If the macro is of the
PUT FILEA to FILEB format, the current logical record of
FILEA is moved to the prr-specified 1/0 area of the
printer or punch file.

Block CB22, $--FULL: The contents of the B-address
register are stored in the I-address of a branch at s--xit
(block cB29). This initializes the file scheduler’s exit.

Block CB23: The record count, s--TBC, is incre-
mented by +1.

Block CB24, $--SFX: A branch and exit priority alert
mode to scs-sFs, the force entry to the channel sched-
uler, is executed. The channel for which the put macro
was issued is forced clear of all unchecked 10 opera-
tions. This is done to prevent an 10 interlock when
the 10 instruction is executed at s-10a (block cB25).

Record Processing and Little Macros 37




Block CB25, $--I0A: A punch a card or write a line
instruction, depending on the file type, is executed.
The data punched or printed is contained in the file’s
prr-specified 170 area. If the program uses overlap, the
instruction is executed in overlap mode.

Block CB26: A test is made to determine if any 1/0
channel status indicators are on. If they are all off, con-
trol goes to s--TrIG (block cB28). If any indicators are
on, control passes to the unit record error routine (rep-
resented by block cB27).

Block CB27: The reason for entry to the error rou-
tine is determined and appropriate action is taken.
Operator action may be required. Control passes to
block cB2s.

Block CB28, $--TRIG: A branch and exit priority
alert mode to sENTRY is executed. There is no signifi-
cance in the fact that the instruction is a Bxpa. It is
used as an unconditional branch. 170 operations are
started on the channels if possible and priority alert
mode is entered.

Block CB29, $--EXIT: Control exits from the file
scheduler to the location set by block cs2e.

CLOSE PUNCH SEQUENCE

Block CB31, $--ACT +11: This block is entered from
the close sequence for a punch file. The high-order
address of the punch file’s 170 area is placed in the
A-address register by executing a dummy BCE instruc-
tion. The contents of the A-address register are stored
in the B-address of a move instruction executed in
block cB3z.

Block CB32: A blank character is moved to the
address initialized by block cB31. The B-address of the
move just executed is initialized to address the next
character of the 1/0 area by storing the contents of the
B-address register, after the move is executed, in the
B-address of the move.

Block CB33: A test is made to determine if the ad-
dress specified by the B-address of the move instruc-
tion executed in block cB32 contains group mark/word
mark. If it does not, it indicates the end of the 1/0 area
has not been reached and control goes to block css2 to
blank another location. When the end of the area is
reached, control passes to block c34.

Block CB34: A blank card is punched.

Block CB35: A test is made to determine if any vo
channel status indicators are on. If they are all off,
control goes to sexitru ( Chart or, block 11) to con-
tinue the close sequence. If any indicator is on, con-
trol passes to the unit record error routine (repre-
sented by block cB36).

Block CB36: The reason for entry to the error routine
is determined and appropriate action is taken. Oper-
ator action may be required. Control then passes to

38

seXITRU (Chart pr, block 11) to continue the close
sequence.

Little Macros

10cs must provide 1o control other than that afforded
by the oPEN, CLOSE, GET, and puT macros. This addi-
tional control is available through the use of the 1ocs
little macros.

These macros enable the programmer to position
tape on a unit, to select the pocket into which cards
are stacked on card read or punch operations, to posi-
tion paper on the printer through carriage control, to
use the console printer, to read or write records on
any tape unit, and to read and write tape labels.

Some restrictions in the use of the little macros
follow:

The stack little macro may only be used to select
cards into specified pockets when the file for which it
is issued has a DTF CARDPOC 9 entry.

The rTarE, wraPE, and 108sp little macros do not
adjust block counts if used for prr-specified files.

No little macros pertaining to tape may be used be-
fore the first oPEN macro if there is no p1ocs PRIORITY
entry. The reason they may not be used is that the
tape error routine is not yet in core storage. The error
routine overlays the priority assignment routine during
the first oPEN.

A detailed description of how these little macros are
executed is presented in the text for Chart cc, which
follows.

RTAPE (READ TAPE) AND WTAPE (WRITE TAPE)

Block CCO1: If the program uses the overlap special
feature, a BxPA to scs-s¥s is executed. The channel for
which the macro was issued is cleared of unchecked
1/0 operations. This block does not exist for the non-
overlap situation.

Block CCO02: If parameter 4 (fourth operand of the
macro) is specified, a word mark is set in the core
storage location labeled by parameter 4. This is a
switch used by 1ocs to indicate to the programmer the
availability of the input record ®rape) or the output
area (wTAPE). The branch instruction at sINTEXT is set
to return control to the user’s program. Parameter 4 is
specified only for overlapped operations.

Block CC03: The format of the 1/0 instruction is
determined by parameters 1, 2, and 3. Parameter 1
specifies the manner (e.g., write tape with word
marks) in which the operation is executed, parameter
2 specifies the channel and unit, and parameter 3 speci-
fies the label of the core storage area used. These
parameters must be specified for the macro. The 1o
instruction is executed. If the operation is read tape
and the program does not use overlap, the contents




of the B-address register are stored in an area labeled
sERNOIS at the completion of the read. This initializes
the tape error routine’s noise length record coding.

Block CC04: If parameter 4 is specified in the macro,
it indicates that the operation is to be overlapped and
a branch on overlap instruction is executed. If the oper-
tion started successfully, control goes to scs-rer ( block
ccos ). If not, control goes to block ccos to determine
the reason for failure. This block does not exist if
parameter 4 is not specified.

Block CCO05: The branch at scs-pr, in the appropri-
ate channel scheduler, is set to go to block ccos. If
applicable, channel 2 operation is started and control
returns to the user’s program in priority alert mode via
sINTEXT (set by block cco2). Upon completion of the
tape operation, control returns to block ccos via scs-pr.

Block CCO06: The tape operation is checked by a
BEX instruction. The d-modifier of the instruction is 7
if parameter 5 is specified. Otherwise, it is a tape mark.
Parameter 5 indicates that the user wishes control to
go to his end-of-file/reel routine if the 1o condition
channel status indicator is on as a result of the tape
operation. Note that wrong length records are not
checked. However, 10cs provides the user with infor-
mation from which he can compute record length if
parameter 6 is specified.

Block CCO07: The tape error routine corrects the
operation if possible and passes control block ccos.
Operator action may be required.

Block CCO08: If parameter 6 is specified, it indicates
the user wishes 1ocs to store the contents of the E-
(channel 1) or F-(channel 2) address register in an
area labeled by parameter 6. An SER or sFR instruction
is executed to accomplish the store operation. This
block only applies to RTAPE macros.

Block CCO09: If parameter 5 is specified, the user
wishes control to go to his end-of-file/reel coding on
end-of-file or end-of-reel conditions. A BEF instruction,
to the user’s routine, is executed.

Block CC10: A branch any to itself+1 is executed
to satisfy the /0 channel status test requirements, Con-
trol goes to one of three places:

1. Parameter 4 is specified  block cc11
2. Not overlap block cc13
3. Overlap, not parameter 4  block cci4

Block CC11: The word mark in the core location
specified by parameter 4 is cleared, indicating to the
user the availability of the input record ®raPE) Or
output area (WTAPE) for processing.

Block CCI12: After channel servicing is completed,
control returns to the place of interrupt via $INTEXT.
Note that if control dropped through the BoL instruc-
tion at block cco4, no interrupt has occurred and

$INTEXT is still set to go to the user’s program. Control
leaves this block in priority alert mode.

Block CC13: If parameter 6 is specified, the contents
of servors (set by block ccos) are moved to the area
labeled by parameter 6. The user may use this for
wrong-length-record checking.

Block CC14: vo operations are started on the chan-
nels, if possible, and priority alert mode is restored
by the execution of the BEPA instruction at SINTEXT.
The branch at siNtexT, set by block ccoz, returns con-
trol to the user’s program.

CONSL (CONSOLE OPERATION)

Block CC21: If a channel 1 scheduler exists, the
channel must be cleared of 170 operations before the
console printer is used. A BxPA to scsis¥s is executed
and channel 1 is cleared of all unchecked operations.

Block CC22: The 10 operation specified by param-
eters 1 and 2 of the macro is executed. Parameter 1
indicates the manner (e.g., read with word marks)
in which the console operation is to be performed and
parameter 2 is the label of the area in core storage to
be used.

Block CC23: A test is made to determine if any o
channel status indicators are on. If all indicators are
off, control goes to block cces. If any indicators are on,
control passes to the console printer error routine (rep-
resented by block cc24).

Block CC24: The console printer error routine de-
termines if the busy, data check, 170 condition, or the
no-transfer indicators are on. If any are on, the opera-
tion must be retried and control returns to block cczz.

Block CC25: If the program uses the overlap feature,
control goes to SsENTRY. /0 operations are started on
the channels, if possible, and control returns to the
user in priority alert mode via the BEPA instruction
at sINTExT. This block is bypassed if the assembly is
non-overlap.

OTHER LITTLE MACROS

Other little macros are:

RTLBL (Read Tape Label)

STACK (Select Stacker and Feed )
IOBSP (170 Backspace)

IORWU (170 Rewind and Unload )
WTLBL ( Write Tape Label)

SKIP (Skip Carriage)

IORWD (170 Rewind)

IOWTM (170 Write Tape Mark)

Block CC31: If the program uses the overlap feature,
a BXPA to scs-sFs is executed to clear the appropriate
channel of unchecked 1/0 operations.

Block CC32: The vo instruction, specified by the
macro parameters, is executed. If the instruction is a

Record Processing and Little Macros 39




RTLBL in a non-overlap program, the contents of the
B-address register are stored in sernois at the comple-
tion of the read operation. This initializes the tape
error routine’s noise record coding.

Block CC33: A BEx instruction is executed to check
the 10 operation. The d-modifier of the instruction is
7 for label operations. It is a group mark for all others.
Wrong-length records and end-of-file/reel conditions
are not checked on label operations. If none of the
indicators tested are on, control goes to block ccss. If
any indicator tested is on, control passes to the ap-
propriate error routine (represented by block ccs4).

Block CC34: The appropriate error routine (tape or
unit record) corrects the operation if possible and
passes control to block cc3s. Operator action may be
required.

Block CC35: This block represents a Nop in the
coding of a RTLBL macro. It is used by the tape error
routine to determine if the operation which caused
entry to it was a label read.

Block CC36: If the macro was a label operation, a
branch any to the next sequential instruction is exe-
cuted to satisfy the 170 channel status test requirements.

Block CC37: If the program uses the overlap feature,
control goes to sENTRY to start channel operations, if
possible. Control returns to the user’s program in
priority alert mode via a BEPA at $INTEXT.

40

I0SYS FORCE (CLEAR CHANNELS)

Block CC41: A BxpA to scsis¥s is executed if the
operand is FORCE, or FORCE with 1 specified as the sec-
ond or third parameter. Channel 1 is cleared of
unchecked 10 operations. This block does not exist
if there is no channel-1 scheduler. :

Block CC42: A BxPA to scs2sFs is executed if the
operand is FORCE, or FORCE with 2 specified as the
second or third parameter. Channel 2 is cleared of
unchecked 1o operations. This block does not exist if
there is no channel-2 scheduler. Control returns to the
user’s program.

IOSYS RESUME (START CHANNELS)

Block CC51: If the program uses the overlap feature,
a BXPA to SsENTRY is executed. Channel operations are
started, if possible. Control returns to the user’s pro-
gram in priority alert mode via the BEPA instruction
at SINTEXT.

PSTAC (SELECT PUNCH STACKER)

Block CC61: The 1o instruction in the file scheduler
specified by parameter 2 is set to stack cards in the
pocket specified by parameter 1. This is accomplished
by an instruction which moves parameter 1 to s--104+3,
where -- is parameter 2.




Alwsws 01
* *
* USERS #
*PROGRAM®
- *

L] *
FERRN

Xesooo

02
BERRBBLAAREERR RS
»

*  INITIALIZE

* FOR

- MOVE

*

ARERRERERRERNERS
-

*
»
*
*
*
*

.
.
.

X 03
ERERRCLERRARR NN
» *
* MOVE *
- THE *
- RECORD »
- *
LI e e IRy TS 2

.

Xesoee

04
SREERD I AEERE AT
- *

* UPDATE *
*  FOR NEXT *
* PuT *
* *
ARRARERERRREER RS
.

.
.

X 0S
BEEERE LR RR BRI RRRE
* *

*  ACCUMULATE *
- *
- JOTALS *
» -
RRFRABAURANARARRES

Xe e o

06
FRERAC P RREREERERS
* *
*  ACCUMULATE *
* RECCRD *
* COUNT *
» *
RERARABRRRR RN S

.

wXe o 4o

G1 * 07
- *

L3
* TEST FULL
-

- *
* »

»
«NOT FULL
.
eXooo
.

X
Hi%%% Q09
* 2
* USERS #
*PROGRAM*
* *

* *
RN

o8
RRERRGORERRARRRRN
*FeSe BDAL/BBB4*
e S B e B e o W

* WRITE *
* TAPE »
* REC

QRD
TRAETRERREERRERAR
.

csenne

Chart CA. PuT, GET, and RELSE Macros

LELL A 11
» -

* USERS #
*PROGRAM®
- L4
»* *
ERRR
.
.
.
.
.
.
X 13
B3 & » 12 HRREXRDLERRESE NN RN
* * *F BCA1/8BB1#*
* * EMPTY B A
* TEST EMPTY FooosseseeX¥® READ *
* * * TAPE -
» * * RECORD *
* - RERREBRERAERRE AR

=

+NOT EMPTY
.

. .
eXsss0eesvosssvsscssascsenn
.

X 14
AEERFCINARRBRERLS
» *
* INITIALIZE %
* FOR *
* MOVE *
» *
(23222222222 22222 3
.

Xe s oo

15
ERRREDIEANERRRRRS
* *
* MOVE
* THE
» RECORD
*
-

*wx

EEBERBUBREFRERRY
.

Hes s oo

16
FREBSEIARERE RN AN
* *
» UPDATE *
* FOR NEXT *
* GET *
* *
AERRBERR AR RERR N
.

Xees s oo

17
REERAFTHRRERERRRS

*
*  ACCUMULATE  *
* HASH *
* TOTALS »
* *
* *

HERBRAEARERER RN
-

Xe s e

18
HERRAGIERERERERER
* -
*  ACCUMULATE  #
» RECORD ®
- COUNT *
- *
R 222 2222322222222

.

He s oo

H3#®un 19
* *

* USERS *
*PROGRAMY
- *

* *
ERERN

REL SE
INPUT
ASH#E 21

»* *

* USERS #
*PROGRAM*
» *

* -
HEERN

X 22
HEEEROSREAEEREREN
hd REPLACE

*
* CURRENT *
# ADDRESS WITH #
* ENDING *
L]
#*

* ADORESS
ERARRERER TSR N
.

Xe o

Cones 23
» *

* USERS #*
*PROGRAM®
* -

- L]
LI

OUTPUT
DS##e 24
» *

* USERS #
*PROGRAM ¥
* *

L3 *
BEREE
.

e oo

25
ERRERESEXRREN SRS S
*3--PADS BFB2/B4*
Em el B o W W K B
# IF NECESSARY &
* PAD REMAINING -»
* RECORDS N
ERAERBERERRB RSN S
.

Xeesae

FSeex 26
* »
* USERS #
#PROGRAME
* -

* »
rEBER

Record Processing and Little Macros

CA

41



CB GET READ TO WORK

$m

o

$—m

$o

Chart CB. ur GET/PUT Macros and Schedulers

42

GET READ OR

GET READ., EOFADDR
. R R X
CB * *Cp *
* Bl * B2
* * * *
* *
. .
. .
. .
EMTY x 02 x o1
EEERRD I REERRRNRER ERREKBIAREEEREERR
* SBR IN THE  * %  MOVE MACRO

®* [-ADDRESS OF %

*
*
*
*
*
*

* {BLOCK CB12) * *  BLOCK CBO7
(222222222 2222 2] (XS E RS XSS LSS
.
.
.
.
SFX X 03

HREERCIREERARRREE
£3CS-SPS BAG3/D1%

- — e A
. CLEAR CRARNEL *
* OF UNCHECKED #
*[/0 OPERATIONS *
RAURERERERERERARENR

.

Xees o

10A [}
HAED I RARRRNEN
*

*
EXECUTE *

*
b CARD READ *Xee sess
* INSTRUCTION &
L] *
EEERRRRRBRRER
.
.
.
X 06
El % « 05 RERERCORRRRERARN S
- * *SURERR EDAL%
YES L e e S P S O P

¥oessoessX® UNIT RECORD *

-
*  BRANCH ANY
* * ERRCR ROUTINE #
* *

* *
» * ERREREERRRERR R RN

* .

«NO .

. .

.
eXesmesancesssnccssascsccss

.
*

x
F1 # * o7 F2 * o8
* * * *
*EQFADDR IN *

L * YES
# END—OF—FILE *eesesessX® MACRO EITHER
» * * PRIOR QR #

* * *  NOW ®
* * * *
* *
«NO s YES
. .
. X
. ERERE
. * *
TRIG X 10 * *
RRREEGIHRRRNRR NN * ®
*SENTRY BAA3#% *
[ N R et T e )
L SERVICE *

MACRO SPECIFIED
*#CHANNELS, ENTER® EO0FADDR
®*PRIORITY ALERT *
AERREERERRERERER %

Xe o oo

11
RERERH | RAERRIRERR
. *

* ADD +1 TO THE *

' CARD COUNT AT #

$--TBC *

*

niuiiu;il}iiil!i&
.

Xeoeon e

EXIT 12
FEERRJIREREENE SRR
*®

#  EXIT TO THE
* LOCATION SET
i BY BLOCK CBO2
niuliuiniluil«.lh

.

2 XT]

14

EREREKIRAREARERRER

* MOVE CONTENTS *

YES *OF READER FILE ¥
s« X*¥1/0 AREA TO THE®
*MACRO SPECIFIED*

Axe s s e

Kt * 13
* *

»

. GET *
READ TC WGRK %
- MACRO *

* * WORKAREA
* L] lilii!!lililllﬁil
RETU .
USERS PROGRAM .

seese EERRY Y

PUT PRINT OR
PUT PUNCH

PUT WORK OR FILE-A
TO PRINT OR PUNCH

EEERN ERRER
*CE * *CcB *
* B3s * Baw
* » L 2

* *

. .

. .

.

x 21 $—-FUuLL 22
ERRERDTEEEE TSRS EEERRDLERER L RS RN
% MOVE CONTENTS # * SBR HE  *
* OF WORK OR _ * + [-ADDRESS OF *
*FILE-A 1/0 AREA¥.eeaseessX¥THE BRANCH INST®

1
* {(BLOCK €B29) *
EERAERRERRERRERES

.

ARREERER RS ERRERRTN

Xe oo

23
llit«ca*iiiiniini
* ADD +1 TO THE ‘
* CARD OR LINE *
*COUNT AT $—-TBC#*
* -

RERERERSEERERE R RS

IR

$-—SFX 24
RREREDLAERRRRRER S
#*$CS~SFS BAG3/D1%*
At Dt B B Bt T Bt I
* CLEAR CHANNEL *
* OF UNCHECKED #
®1/0 OPERATIONS #

sssscenes

.
. L O e e
. .
. .
. .
. .
. .
. $--10A X 2s
. EERELERNRENER
. n
. EXECUTE *
. ‘PRINT OR PUNCH *
. *1/0 INSTRUCTION®
. * *
. EARERERRRRERN
. .
.
. .
. .
. .
«NO .
* X
F3 * 09 Fa = » 26
* * * *
* NO ® *
* #* BRANCH ANY *
TRY # . * -
* . * »
» * . * -
* .
+YES . +YES
. . .
X . .
REERE .
* * . -
* * . X 27
* » . 22T Y FYLTRTTEY F3)
» . *S$URERR EDAL®
. R e R ot
DTF SPECIFIED . %  UNIY RECORD #
EQOFADDR - * ERROR ROUTINE &
. »* -

AEARERRBEARERTRRE
.

. .
. .
B .
essssncesesXe
$--TRIG X 28
WRERRHARABRERERAS
*SENTRY BAA3®
L R e B L B B 3
* SERVICE *
*#CHANNEL S» ENTER#
*PRIORITY ALERY %
ERRBANERRERREARRR
.

TR

EXIT 29
RARER JLERARERERT S
* *
* EXIT TO *
* LOCATION SET #
* BY BLOCK CB22 #
- -

»

EEEREERREREN RN

RETURN TO
USERS PROGRAM

SEGMENT OF CLOSE
PUNCH SEQUENCE
ENTERED FROM CHART DF

EERER
*CB #
* BS*
* #
*
.

.
$-—ACT+11 X 31
ERERFBSEURFRBERR

* GET STARTING *

* ADDRESS OF  #

* PUNCH FILE =

*  1/0 AREA *

*

*

»
ERARRERERRRRRRNR
.

Xe oo o

2

}Iliicslilliil.i*

# MOVE A BLANK #

*Y0 THE I/0 AREA¥*
eeeX*AND INITTALIZE #
. * TO BLANK THE #
. #* NEXT LOCATION ¥
. RREERRARREE XA S

KXo s v 00

" 33
»

.
.
.
.
.
.
.

NO # -
««#END OF 1/0 AREA®
* .

34
AERESRRERESRE
*

.
*EXECUTE A CARD #
*  PUNCH INST *
#{PUNCH A BLANK #*
* ARD) *
EEEERAERNE RSN

HXe o0 e

F§
» *

seee¥

= -
BRANCH ANY *
* -

css s e

36
ARASRGSEERERARRRS
®*SURERR EDA1*
L e e S T T Y 3
®  UNIT RECORD #
* ERROR ROUTINE #*
» *

FEERRERRERER R RRN

.
.
.
.
.
-
.
.

.
sesXe

X
EREEW
*DF #
* B3#

® .

*

$SEXITRY




RTAPE.WTAPE

Aleas
* *

* USERS #
*PROGRAMS
- *

* *
AR
«BXPA

x 01
EREERBLERR AR RN
#$CS—-SFS BAG3/D1*
LT S B et D A
* FORCE CHANNEL '
* CLEAR OF
» UNCHECKED 1/0 *
AREREAREERRRLER AR

NOTE~~~— P = PARAMETER

CONSL.

531**

* USERS -
*PROGRAM®
- *

* *
EEERE
+BXPA

Xe oo

21
HEERRCIHERRLEERER
*$CS1SFS BAG3#*
L e e
*FORCE CHANNEL 1%
* CLEAR OF »
* UNCHECKED 1/0 #
LI R T e T

RTLBL+WTLBL
108SP, 10WTHM
10RWD, IORWU
STACK,.SKIP
AdnEn

* *
* USERS #
*PROGRAM*
* *

* »
L1222
+BXPA

Moo oo

31
ARERACHERRRRERRRR
lSCS—SFS BAGB/D!’
W R —
* FORCE CHANNEL ‘
* CLEAR OF *
* UNCHECKED I/0 #
RREEAEARBRERRRERER

. . .
. .
. .
. . .
. . .
. - .
X oz X 22 X 32
AERREC ] FRRRRRRERN ARBCIRARRARR S ERBCHERERRERS
®IF P4 1S SPECs ¥ * * * EXECUTE *
* SET WM IN P4 # * EXECUTE I/0 = * THE 1/0 ENST &

®AND SET BINTEXT* .
%70 GO TO USERS *

X* (RCP OR wCP) *
* AS SPEC BY Pt #

*(IF _NON—OVERLAPS

QUTI
AARRESERERRRRRRRE

*PROGRAM AT CCG3* - * AND P2 * * IN SERNOIS) #
AREFREARERERSE SRS . ERERRAARERRER AEERSRBEARRAR
. . . .
. . . .
. . . .
. . . .
. . . .
- «RETRY - .
X [} - X X
HERD LSRR RN ERARAD2ERERLEEREN D3 ® # 23 D4 * = 33
* EXECUTE 1/0 * *$CPERR DHG2 % * * READ*
#AS SPEC BY Pl, * Wk k- k—%-R BRANCH * * *L_ABEL « EXEZCH®
*P2, AND P3., IF = *CONSOLE PRINTER¥Xsseoesoes® BRANCH ANY - #BEX WITH D-MOD ¥%....
#*NON—QOVRLP RTAPE# * ERROR ROUTINE * * * # =7. IF NOT#* .
* SBR-SERNCIS # * ol * * * BA * .
ERAERREEREARY HERARERRESNRE R TR * » * * .
. - * * .
- «PROCEED +NO BRANCH « BRANCH .
. . . .
. . . . -
. seevsrsescsccsssssccssssseXe - .
. . . .
x 05 X 25 X 34 .
E1 * % o4 FEESREDHRREBERRRE EREBECTRRENRARREE EEERACLERTRRRRANN .
% IF P4 % *$CS—~RET BABL/F1¥ *SENTRY BAA3# EAAL1/EDAL* .
% IS SPEC, #* BRANCH R R R W AR -2V A LS e S 2 O T el P R T e .
*  EXECUTE BOL *e .o oX* SET BRANCH AT %,.. *STARYT CHANNELS #* *  APPROPRIATE # .
#INSTRUCTION® *#$CS-PR TO GO TO* * AND RE-ENTER * * ERROR * .
* * # BLOCK CCO06 * * ALERT MODE - * ROUTINE * .
.
.
.
.
.

* * EEEX 22222222223 AR RSS2 2222} 3
« oVIA .
ot . «SINTEXT .
L . .
#CC  ¥oXe . .
*Fre . . . oXe
R - . -
07 X X 35
F1 * % 06 HASBAFO2RREENRERRE . F3Ra® FURERAFGERRERRRRRE
*EXECUTE* *$ERROR EAAL® . * * #THIS BLOCK IS A®
* BEX INSTe * BRANCH  #——f—d_#—w—k_X_% . * USERS # ®NOP IF THIS IS #
#IF PS D—MOD=7, ¥cessesoeX* TAPE ERROR  * . *PROGRAMS * A LABEL READ *
* OTHERWISE * * ROUTINE * . * » *OPERATION (USEO*
« ZTm - * . * ® *BY ERROR RTNE) #
* * HUERRERERBERTERRR . LE X2 L2 fs 2232222222222 )
* . . .
. . . .
. . . .
. . . .
eXeotsoscssrescsasnconcssnes . .
. . .
X o8 14 . X
RREBAGIEFREREXRARN FERERG2RAAEREBRERAR - H3ERn G4 * = 36
* IF P& IS SPEC * *SENTRY BAAZ* . * ® * *
*SER (CHAN—1)} OR% KRk R-X—N-R-E_EVIA X * USERS * * *
=2 SFR (CHAN-2) * %#START CHANNELS *ees ee e X*PROGRAM®X e v ae *  BRANCH ANY
. IN_AREA * * AND RE-ENTER *$INTEX * * . * - P
*INDICATED BY P6* * ALERT MODE  * * . . * .
HRERBERA AR ARRERR AR LE S S EHERRR - * * .
. X x . - .
. . . +NO .
. . . . . .
. . . . . .
. -NO P& . eXesosoo
. .
X . 10 . 13 . x 37
H] * = 09 ERZV-EZ 2 S 2 X 23 ERRERHIERERERR RN - RN E N HLE AR RN RAR
* IF PS * * *  NON * IF P6 IS SPEC * . *SENTRY BAA3¥
* IS SPEC_ * * BRANCH ANY * OVERLAP * MOVE CONTENTS # . ARtk
% EXECUTE BEF  *eveeeeesX*TO SELF PLUS 1 ¥eeceesssX* OF SERNOIS TO # . ®START CHANNELS *
* INST TO * * * *  THE FIELD * . # AND RE-ENTER %
Ps * * *INDICATED BY P6% . * ALERT MODE
* * (82222222223 A2 XS S22 222 ) - Ii'i‘i}llillli.l’l’
* .
«BRANCH P4 .strExv
. . .
X . .
ERRER . .
- * . -
L X 11 12 X
P RERER YRR REERAR RN BEEER JIERRERRARER JGERE
* * * #$CS~SCN BAE4/D1# * *
* CLEAR WORD  * L i A * YSERS *
TC EOF ADDRESS +  MARK AT P& X#* CONTINUE CHAN %oese *PROGRAM®
SPECIFIED BY P5 * * *  SCHEDULER  *DROPPED * *
* * * OPERATIONS  #THRU 80L * »
ERERERRAERERRAERR REREREERXRERERERRAT CCO4 ARREE

o VIA SINTEXT.
« BOL EXECUTED
X AT BLOCK CCO4

EEERE

* *

* »

* »

*

TO PLACE OF INTERRUPT

Chart CC. Little Macros

Record Processing and Little Macros

I0SYS~FORCE

AGEE®
* *

* USERS #
*PROGRAM*
* »

* *
RRER
«BAXPA

e s o

41
EREEABSERBRRRRERE
*$CS1SFS BAG3*
O ot I B B T
#FORCE CHANNEL l'
* CLEAR OF
* UNCHECKED 1/0 *
ERAERERERLERRRERS

«BXPA

.
.
.

842
REERECSERBRREXR BT
*#$CS2SFS BAD1®
LDy N P D e e
*FORCE CHANNEL 2‘
* CLEAR OF
* UNCHECKED 1/0 *
ERRARBARERERRR NS

-

Xeovoe

DS*%x
* -

* USERS *
#PROGRAM*
* *

* *
AR

I0SYS-RESUME
ES#x%
* -

* USERS #
%#PROGRAM®
* *

51
ERRRAFSHERBRRBRRR
®EENTRY BAA3*
L R
#START CHANNELS *
* AND RE~-ENTER #
# ALERT MODE *
ARREEABRAERRERRAR

«VIA
«SINTEXT

.

ssa-w

* USERS *
*PROGRAMS
- *

*
Erans

PSTAC
HS&il
* USER
iPROGRAM*

a n
REERE

sease

X 61

RERER JSEXRRREER BN
*SET FILE SCHED #
*1/0 INSTR SPEC #
*BY P2 TO STACK *
*IN POCKET SPEC *
» -
*

a8y P1
AREHEERRABEARNRSE
.

.

.

X

KSEER
* »

* USERS *
*PROGRAM®
* -

- *
ERERE

CcC

43




Open, Close, and End-of-Reel Procedures

Priority Assignment Routine

File priority allows the user to determine the order in
which non-forcing 1/0 requests for two-area tape files
on a channel are serviced. Such requests are interro-
gated in the pending switch network. This network
is an aggregate of the linkages of the respective file
scheduler pending switches in their relative priority
order (high to low), and the linkage from the channel
scheduler to the highest-priority pending switch, and
the exit linkage from the lowest-priority pending switch
(Figure 2).

H P P X P Pg L
Off Off Off Off Off
On On On On On
Start Start Start Start Start
1/0 1/0 /O /0 1/0

H is the instruction labeled $CS-S3 in the associated channel scheduler.
Py is the instruction representing a pending switch of priority n.
L is $CS2ENT for channel 1, $INTEXT for channel 2.

Figure 2. Pending Switch Network

A non-forcing 1/0 request for a file is recorded dur-
ing scheduling operations by the file scheduler when
an area is empty (input) or full (output); however,
only the request of highest priority on the channel is
honored at a time through the channel scheduler entry
to the pending network.

Pending Network Portion of Table

TH—>L bb
bbbbb

PRIORITY ASSIGNMENT—DEFINITION AND USAGE

Assignment of file priorities is the process of ordering
the pending switch network to the priority order de-
sired. The 1410 1ocs allows the user to set the priority
order at source or object time according to the piocs
PRIORITY option chosen:

DIOCS PRIORITY
Option Results

A priority assignment routine is generated
and remains in storage at all times. Pri-
orities are assigned during oPEN and re-
OPEN operations for all two-area files
named in the oPEN macro and for those
not named but active.

NONOVERLAY

ASSEMBLE A priority assignment routine is not gen-
erated. The assignment of file priority
is made at compilation time; the priority
order is determined by the sequence of
source pTF cards. The priority order may

not be modified at object time.

A shorter priority assignment routine is
generated, which is overlayed immedi-
ately following its execution. File prior-
ities are assigned only during the first
OPEN operation and may not be modified
later. A two-area file opened subse-
quently is treated as a one-area file.

Omission of
DIOCS PRICRITY

PRIORITY ASSIGNMENT—METHODOLOGY

The priority assignment routine builds a table of pend-
ing switch addresses, each address being a pcw defin-
ing the low-order location of a pending switch instruc-
tion. A two-character pcw, representing the priority
and channel-overlap identification for the file, precedes

Explanation

As Compiled g

H—>L
Py—>1
Step A — <

StepB — <

L

Step C —< H—>P, —>

$PARG

$PARG

$PARG

bb

DCW $CS253+5
DC @b
DCW $CS1S3+5
DCW bb

bb

bbbbb

bb

DCW $CS253+5
DC @b
DCW $CS153+5
DCW @7

bb

DCW $CS283+5
DC @b
DCW $CS153+5
DC @7
DCW  xxxxx
DCW @7

Figure 3. Table of Pending Switch Addresses

44

Chan 2 dummy arg

Chan 2 sched entry to pend net
Table arg for H

H (low=-order)

Search arg position

Function from look-up (SBR X15)
Search arg for P7

Table moved 7 positions down

H re~inserted from saved loc
Table arg for P

P_, (low~order)

Search arg for Py




each address. Each pair in the table act as function and
table argument for table look-up operations; the start-
ing location in the table is low priority for channel 1.
The assigning of file priorities is done on a file-by-
file basis and the assignment of each file is complete:
1. The file is inserted into its relative channel-prior-
ity order in the table.
2. The file is inserted into its relative priority order
in the pending switch network for the channel.
This methodology is illustrated in Figure 3 for the
case of the first two-area file at the time of the first
OPEN operation. PRIORITY overlay and a file priority of
7 on channel 1 are assumed.

Description of Priority Assignment

Block DAO1, $PAHSK: (Overlay) Because the link-
age table routine causes control for all files named in
the oPEN macro instruction to go to the priority assign-
ment routine (due to the 9 in the all-inclusive sequence
at spox in the linkage table described in Chart pF,
block 08), a file type test is made to determine if the
file is two-area tape. If it is not a two-area tape file,
control branches to spaexit, block pa2s. For two-area
tape files, control passes to block paos.

(Non-overlay) Because the linkage table routine
directs only two-area tape files to go to the priority
assignment routine, block pao1 does not exist.

Block DA02, $PAHSK: The file is two-area tape. The
operand of the spENswE indexed label entry --wte)
is moved to the B-address of the souT instruction, block
pa16, and a +44 is added to it. The resulting address,
$--WTG+44, points to the low-order location of the file’s
pending switch instruction,

Block DA03: The priority code (indexed label,
spTFACT-1) and the channel identification (indexed
label, spTFacT+4) for the file are moved to sparc.
$PARG is a two-position pcw used as search argument
for the look-up operation in the table of pending switch
addresses.

1. Non-overlay: Control then proceeds to the block
sequence PA04 through pai12 for processing in case
the file is being re-opened.

2. Overlay: Control proceeds directly to block pa1s;
blocks pao4 through pai2 do not exist. File prior-
ities are sorted only during the first oPEN opera-
tion, since the priority assignment routine is over-
laid immediately following its execution for all
the files named in the first orEn.

PROCEDURE IN CASE OF RE-OPEN (NON-OVERLAY ONLY)

Block DA04: A spr into index register 15 is executed
to point to the first pending switch address in the table
(first table function).

Blocks DAO5, $COMP, DAO06, and DAO7: A loop
is performed to determine if the file’s pending switch
address (contained in the B-address of sour) is in the
table. A test for blank table argument o-6+x15 at
block paos precedes the accessing of the next function
(sBR into x15) at block paos and the comparison of the
previous function 7+x15 to the file’s pending switch
address performed at block pao7. A blank table argu-
ment means the file is not represented in the table and
control branches to sexp, block pais.

Blocks DAOS through DAI2: The pending switch is
eliminated from the file scheduler pending network
on the channel and from the table. (It will later be
reinserted according to its new priority.)

At blocks paos and pao09, the contents of the function
which represent the next-higher priority pending ad-
dress «0+x15 and the contents of the previous function
which represent the file’s pending address 7+x15> are
moved to the A- and B-addresses, respectively, of sLiNk.
At sLiNk, block pato, the file’s pending instruction is
moved to overlay the higher-priority pending instruc-
tion, thus eliminating the file from the network.

At blocks pa11 and pa12, a loop is performed, suc-
cessively overlaying each table function (starting with
file’s 7+x15) with the next-higher priority function
0+Xx15>. After each move, the next function is accessed
(sar into x15) and the table argument ©+x15) is tested
for non-blank. When a blank table argument is reached,
control proceeds to seND at block pais.

COMMON PROCEDURE TO INSERT FILE INTO PENDING
NETWORK AND TABLE

Blocks DA13, 8END, and DAI4: A look-up low or
equal with sPaRG as search argument is performed in
the table of pending switch addresses. The look-up is
followed by an sBr into x15 instruction. Note that the
function addressed by index register 15 has a 2nd-
higher than file priority on the respective channel.

Block DAI15: The A-address of sour is initialized
with the next-higher priority pending switch address
(7+X15),

Block DA16, 3OUT: The file is partially inserted into
the pending network by overlaying the branch address
of the pending switch to be inserted with the address
of the higher-priority pending switch. ( this corresponds
to Figure 3, step A.)

Blocks DAI17 through DA20: The file is now inserted
into the table in its relative channel-priority position.
(This corresponds to Figure 3, step B.)

At block pa17, a MrcwG moves the entire table down
7 positions, starting at lower storage, up to the next-
higher priority pending address (where a high-order
group mark has been placed). At blocks pais through
pA20, chained MLC commands overlay the next-higher

Open, Close, and End-of-Reel Procedures 45




priority pending address (7+x15)> by the file’s pending
address (from the B-address of sout), move spaRrG to
the vacated table argument 2+x15, and overlay the
vacated 2nd-higher priority address 0+x15 by the
1st-higher priority pending address (from the A-address
of sout).

Blocks DA21, DA22, and DA23: The insertion of the
file into the pending network, started at block pais,
is now completed by overlaying the branch address
of the 1st-higher priority pending instruction to point
to the new file’s pending switch. (This corresponds to
Figure 3, step C.)

At blocks pa21 and pa2e, the B-address of sin, block
DA23, is initialized with the Ist-higher priority pending
address 0+x15 and +6 is subtracted from the file’s
pending address at the B-address of sout (to adjust
the address to high-order).

At 51N, 5 chained M1Lcs commands move the adjusted
B-address of sout to the branch address of the Ist
higher priority pending switch instruction.

Block DA24: If the non-overlay option is in effect,
blocks pa2s through pa2s do not exist. After the file
reference address for the file is restored to index reg-
ister 15, control branches to senta (block pBO1) to
start open procedures for the file.

Blocks DA25 and DA26: If the overlay option is in
effect, block pa24+ does not exist. After +6 is added to
the file counter, scounT, a test is made here to deter-
mine whether the next check character in the calling
sequence work area (at sDTFBX+1) is the terminal
check character, J. If not, there is another file to process
and control branches to sexit, block pFo3.

Blocks DA27 and DA28: All files have been handled
by the priority assignment routine. The contents of
scounT (which contains the count for all files handled,
(i.e., 6 times n, where n is the number of files) are
subtracted from the A-address of sexit (the file-access-
ing instruction, block pro3) so that sExiT is reinitialized
to point to the beginning of the macro calling se-
quence. The following specific tape sequence is then
moved in over the all-inclusive sequence at spox in
the routine linkage table. The all-inclusive sequence is
described at block pros.

Tape Sequence

DCW $TPCLOS

DC @ J@

DC $ENTA
$POX DC 2

Control now branches unconditionally to the load
program at location 00281 to bring in the remaining
10Cs routines to overlay the priority assignment routine.
The load execute is to sexrt, block pFo3 in the linkage
table routine, where the files are now processed ac-
cording to file type.

46

Description of Open Procedures

Blocks DB0O1, $ENTA, and DB02: The base channel
and unit identification for the file (indexed labels,
sap—6 and sAD-8, respectively) are moved to sarGc. A
look-up (LLE) is then executed in the table of file refer-
ence addresses with sARcG as the search argument. The
format of the table is shown in Figure 5.

Block DBO03: The contents of index register 15, the
file reference address for the file, are moved to the table
function.

Block DB04: The various internal count fields (e.g.,
record count, if specified) are blanked out.

Block DB05: The address of the file scheduler initial-
ization coding block for the file, (indexed label,
sDTF1), is moved to sFiNIT, block pB09. For applications
not specifying CHANNEL CHANGE, blocks pBos through
peos do not exist and control passes to block pmoo.
Blocks pBo6 through pBos are executed for CHANNEL
CHANGE applications.

Block DB06: Two dummy clear word mark instruc-
tions are executed to initialize the A- and B-address
registers. The A-address register is set to point to

| sccraB+27 in the channel change table. The B-ad-
dress register is set to point to indexed label saB-7.
The contents of the A-register are placed in index
register 15.

Block DBO7: A branch if bit equal instruction (with
an A d-modifier) is used to test sap-7 for.a channel 2
file indicator. (An @ indicates channel 1, an * channel
2.) If the file is a channel 2 file (the B bit in the A char-
acter matched the B bit in the *), control branches
directly to the common exit, block pBo9. For a channel
1 file, control passes to block pBos.

Block DBOS: It is a channel 1 operation. A dummy
clear word mark instruction is executed to initialize
the A-address register to point to sccraB+1 in the
channel change table. The contents of the A-register
are placed in index register 15.

Block DB09, $FINIT: At sFintT, control exits to the
file scheduler initialization coding block as set by block
pBo5. Block pB10 represents this initialization block.

Block DBI10: The file scheduler is initialized accord-
ing to the file characteristics (e.g., file type, number of
areas, and wiLr procedure). A table of initialization
function performed versus the file characteristics is
presented in Chart Be. Control passes to sENTaB, block
DB11.

Block DB11, $ENTAB: sENTAB is the place of return
after file scheduler initialization or after a standard
header label error when a retry is desired. Index reg-
ister 15 is reinitialized with the file reference address
from spTFBX in the calling sequence work area. When
DIOCS CHANNEL CHANGE is in effect, this block does not




exist and sENTAB becomes the label of the next block
(DB12).

Blocks DBI2 and DBI3: The rewind indicator for
the file (indexed label, sprFL5) is tested. If no rewind
is specified (code=0), control branches to block psi4.
Otherwise, control passes to the utility subroutine at
SRWDRU to rewind the tape. Control returns from the
subroutine to block pB14,

Block DB14: The label type indicator (indexed label,
sDTFLB) is tested. If it is a standard label file (code
=0), control branches to sentc on Chart pc, block o1.
The return after standard header-label procedures is
to sExTD, block pB1s, for input, or senTF, block pB27, for
output.

Block DBI15: The file type code (indexed label,
sDTFL1) is tested. A 1 indicates an input file; control
passes to sENTD, block pB16. A 0 indicates an output
file; control passes to senTF, block pB27.

Block DBI6: It is an input file (code=1). The user’s
Exit 7 address (indexed label, sE7) is moved to the
exit routine (at sswBxa) in case the file uses Exit 7.

Block DB17: The Exit 7 indicator for the file (in-
dexed label, sp7) is tested. If Exit 7 is not used, control
branches to block ps21.

Block DB18: The exit routine at sswBx executes an
sBR which sets the return address, block pB21, into the
re-entry routine (at ssTLEXT). Index register 15 is re-
stored for the user, and control branches (as set by
block pB16) to the Exit 7 address.

Block DB19: Exit 7 can be used for checking of input
header labels in lieu of, or in addition to, standard
label processing. To process an additional label, the
user must give a RTLBL macro instruction. For non-
standard labels, the user must give a RTLBL macro in-
struction for each label before processing.

Block DB20: The re-entry routine is executed at
SREENT to save index register 15 for the user, to restore
it for 10cs (from spTFBX ), and to branch to block pB21
(set by block pB18).

Blocks DB21 and DB22: An indicator (indexed label,
$DTFL4) is tested to determine if the file has a tape mark
after the header. If so (code=1), the subroutine at
sREADRD, block pB22, is executed to bypass the tape
mark. If there is no tape mark, (code=0), control
passes to block ps2s.

Blocks DB23, $ENTI, and DB24: sENTI is a common
gathering point for an input or output file in opEN,
FEORL, and end-of-reel operations. If p1ocs CHECKPOINT
is in effect, the scuxpr subroutine, block pB24, is exe-
cuted to take a checkpoint on the specified checkpoint
tape.

Blocks DB25, $ENT], and DB26: sEnTy is a common
coding block executed for an input or output file in
OPEN, CLOSE, FEORL, and end-of-reel operations. The

file type indicator (indexed label, spTFact) is tested
for number of areas. If it is two-area (code=2), the
pending switch for the file is set off at block ps26. If
the file is not a two-area file, control passes to sExITRU,
on chart pF at block 11. sexrTRu is the termination rou-
tine which tests if there is another file to process.

Block DB27, $ENTF: It is an output file (code=0).
The user’s Exit 5 address (indexed label, se5) is moved
to the exit routine (at sswsxa) in case the file uses
Exit 5.

Block DB28: The Exit 5 indicator for the file (in-
dexed label, sps) is tested. If Exit 5 is not used, control
branches to block ps3z2.

Block DB29: The exit routine at sswBx executes an
sBR which sets the return address, block pB32, into the
re-entry routine at ssTLEXT. Index register 15 is restored
for the user, and control branches (as set by block
pB27) to the Exit 5 address.

Block DB30: Exit 5 can be used for the writing of
output header label(s) in lieu of, or in addition to,
standard label processing. For standard labels, the user
can build the label in the 10cs label area and give a
WTLBL macro instruction, to write his additional label.
For non-standard labels, the user must give a RTLBL
macro instruction if he wishes to check the output
label and, after checking, execute an 10RWD macro to
rewind the tape before building his label.

Block DB3I: The re-entry routine at SREENT saves
index register 15 for the user, restores it for 10cs (from
spTFBX ), and branches to block pB32 (set by block
DB29).

Blocks DB32 and DB33: An indicator (indexed

label, spTFL4) is tested to determine if a tape mark is

to be written following the header label(s). If so
(code = 1), the utility subroutine at swrMru, block
DB33, is executed to do so. Otherwise, or after the tape
mark is written, control branches to sextr, block pB23.

Description of Standard Header Label Procedures

Block DCO1, $ENTC: The file type indicator (in-
dexed label, sp1FL1) is tested. If it is an output file
(code = 0), control proceeds to block pcze. If it is an
input file (code = 1), control goes to block pcoz.

Block DC02, $ENTCR: The header label is read into
the 10cs label area. For an output file, this block is en-
tered only when the test at block pce7 indicates the
label is to be checked (DTF CHECKLABEL IDENT Or ALL).

Block DCO03: The label check indicator for the file
(indexed label, spTFL3) is tested. If no check is to be
made (code = 1), control leaves label procedures to
continue input processing on Chart ps at block 16. For
an output file, control cannot exit (see block pce7).

Block DC04: The label identifier is compared to
1HDRb. Unless they match, the label is non-standard or

Open, Close, and End-of-Reel Procedures 47




there is no label. A branch unequal is made to snHL,
block pces, to process the error.

Block DCO5: The file type indicator for the file (in-
dexed label, sprFL1) is tested. If it is output (code = 0),
control branches to sopup, block pci4.

Block DCO06: 1t is an input file. The header label
fields (included by the procs and specified by the prr
for the file) are compared to their file reference coun-
terparts. Assuming DIOCS LABELDEF CHECK:

1. If the user specified ENT in the DTF CHECKLABEL

card, only the file name is checked.

2. If the user omits the prF card, sertaLNUM, the file

serial is not checked.

Blocks DCO7 and DCO08: The fields compared do not
match. An identifying message, 30122briLbxxxn, where
xxxn represents the base tape identification, is set up
in the console message area, and the sNOTE subroutine
(represented by block pcos) is executed to type the
message.

Blocks DC09 and DC10: The label fields in positions
11-35 of the 10cs label area (see Figure 4) are set up
in the console message area, and the sNxoTE subroutine
(represented by block pcio) is executed to type the
message.

Block DCI11: The internal fields corresponding to
the fields in the message typed at block pcio are set
up in the console message area.

Label Operation Operand

Block DC12, $NIH: The suavr subroutine is exe-
cuted to type either the message set up by block pci1
or by block pces3, and to enter a waiting loop for op-
erator reply.

Block DC13: The first character in srepLY, the input
area for the operator’s reply, is tested. If it is an A
(indicating the accepT option was chosen), the input
header error is ignored and control branches to sENTD,
block pB16, to continue input processing, Otherwise,
the operator has replaced the incorrect input tape reel
with the proper one and control branches to $ENTAB,
block pB11, to prepare to process the new label.

Block DCI14, $OPHD: It is an output file. The re-
tention cycle is added to the creation date in the 10cs
label area.

Blocks DC15 and DCI16: If the sum exceeds 366,
635 is added to the sum in order to obtain the actual
retention date.

Block DC17: If today’s date (in core locations 00115-
00119) is beyond the retention date, the tape can be
used and control branches to sopupas, block pces, to
assemble the output header,

Block DC18, $DATER, and Block DC19: Today’s
date lies within the retention date. An identifying mes-
sage, 40131bbatbxxxnbyyddd, where xxxn is the base
tape identification and yyddd is the computed reten-
tion date, is prepared in the console message area.

Explanation

THDRb

Tape serial
File serial

Header <

blOCSLBA DCW

Reel sequence
File name
Creation date
Retention cycle

—\
@XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX@

Spare information

\
DC @XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX@ G

Trailer identifier
1EORb or 1ECFb
Block count

Record count

Trai]erﬁ

L

Hash total overlaid by
rec count {6 pos)

Effective hash total (10)

[ Spare information

bIOCSLBA DCW

—\/ "
@XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX@

Spare information

® Figure 4. Header and Trailer Formats in Storage

48

L DC R e elel




Block DC20, $NOH: The sHaLT subroutine is exe-
cuted to type either the message set up by blocks pcis
and pc19 or by block pces, and to enter a waiting loop
for operator reply.

Blocks DC21 and DC22: The first character in sREPLY
is tested.

1. If an A (indicating the operator chose the accept
option), the output header error is ignored and
control branches to sopupas, block pcss, to as-
semble the new output header.

2. If numerical, sREPLY contains the correct day’s
date inserted by the operator. The correct date
is moved into core locations 00115-00119 and
control branches to sexTaB, block pBi1, to prepare
to reprocess the output header label.

3. If neither, the operator has replaced the incorrect
output tape reel with the proper one and control
branches to sentas, block pBi1, to prepare to re-
process the new label.

Block DC23, $NHL: It is not a standard header label.
An identifying message, 30133bNabxxxn, where xxxn
is the base tape identification, is prepared in the console
message area.

Block DC24: The file type indicator (indexed label,
sDTFL1) is tested. If it is an input file (code=1), con-
trol branches to snid, block pci2.

Block DC25: It is an output file (code=0). The
first part of the message is altered to so indicate. The
message is now, 40130bNoHbxxxn. Control passes to
block pceo to type the message.

Block DC26: The test at block pco1 indicates it is an
output file. The Exit 3 indicator (indexed label, sp3)
is tested. If this file uses exit 3 (code=1), control goes
to block pc41; 10cs checking of the header label is
bypassed.

Block DC27: The label check indicator for the file
(indexed label, spTFL3) is tested. If the output label
is to be checked (code=0), control goes to sENTCR,
block pcoz. Otherwise (code=1), control proceeds to
block pczs,

ASSEMBLE STANDARD OUTPUT HEADER LABEL

Block DC28, $OPHDAB: soPHDAB is reached directly
from block pces, if no output label checking is to be
done for the file, or via connector A4 (from block pc17
or pce1), after the output label has been checked. The
indicator (indexed label, sp9) is tested to see if the file
serial is fo be made equal to the tape serial of the first
reel of the file. If not (code=0), control branches to
block pc3i.

Block DC29: The check character in the calling
sequence work area spTFBX-3 is tested for an * to
distinguish between an oren and end-of-reel operation.
If it is end-of-reel (*), control branches to block pcsi.

Block DC30: 1t is the first reel of the file (oPEN oper-
ation). The tape serial in the 10cs label area is moved
into the file serial field for the file (indexed label, surs).

Block DC31: Today’s date in core locations 00115-
00119 is moved to the creation date field for the file
(indexed label, sucp ).

Block DC32: The last 40 positions of the 10cs label
area are blanked out.

Block DC33: After the various header fields for the
file are chain-moved into the 10cs label area with word
marks (see Figure 4, positions 11-40), the identifier
1HDRb is moved to positions 1-5.

Block DC34: The user’s Exit 4 address (indexed label,
se+) is moved to the exit routine (at sswsxa), in case
the file uses Exit 4. ,

Block DC35: The Exit 4 indicator (indexed label,
sn+) is tested. If this file does not use Exit 4 (code= 0),
control branches to block pcso,

Block DC36: The exit routine at sswBx executes an
sBr which sets the return address, block pc3o, into the
re-entry routine (at ssTLEXT). Index register 15 is re-
stored for the user, and control branches (as set by
block pcs+) to the Exit 4 address.

Block DC37: Exit 4 can be used for altering the first
40 header positions in the label area and/or entering
additional information into the last 40 positions.

Block DC38: The re-entry routine (at sREENT) saves
index register 15 for the user, resets it for 1ocs (from
spTFBX ), and branches to block pc3s (as set by block
DC36 ).

Block DC39, $ENTE: The utility subroutine is exe-
cuted at sSRWDRU to rewind the output tape.

Block DC40: The subroutine at swRITRU is executed
to write the assembled header label on the tape. Con-
trol then exits to continue processing the output file
at sENTF, block pB27.

Block DC41: The user’s Exit 3 address (indexed
label, sE3) is moved to the exit routine (at sswpxa).

Block DC42: The exit routine at sswBx executes an
sBR which sets the return address, block pc39, into the
re-entry routine (at sstLEXT). Index register 15 is re-
stored for the user, and control branches (as set by
block pci1) to the Exit 3 address.

Block DC43: Exit 3 can be used for assembling a
label in the 10cs label area. This label is in lieu of 1ocs
label-building (blocks pces through pess). If there is a
label on the tape and the user wishes to check it, he
must issue a RTLBL before he can check it and assemble
the new label.

Block DC44: The re-entry routine (at SREENT) is exe-
cuted to save index register 15 for the user, reset it for

10cs (from spr¥ex) and branch to block pc3s (as set
by block pciz).

Open, Close, and End-of-Reel Procedures 49




Description of End-of-Reel Procedures

Block DD01, $EORU: End-of-reel processing shares
many of the routines and coding blocks used for opEN
and cLosE macro processing. These macros furnish
the information needed for processing by means of
the calling sequence. An end-of-reel operation is proc-
essed as a one-ile calling sequence operation. The
reader should refer to the description of the linkage
routine at blocks pro1 through pri4. An ser into the
A-address of sexiT, block pro3, furnishes the termina-
tion routine (which will be entered on completion of
the end-of-reel operation) with the address of the
necessary termination character (see block pri1). This
address, which is the file reference address, also serves
to furnish the termination routine with the linkage
pivot back to the file scheduler (see blocks pri3 and
DF14). An SBR into $DTFBX is executed to set the calling
sequence work area with the file reference address,
with which index register 15 will be initialized (see
block ppo2). An * is moved into the calling sequence
work area at spTFBX-5 to serve as the defining check
character for an end-of-reel operation.

Block DD02: The clear channels routine is executed.
Both the channels are cleared of unchecked 1o opera-
tions, and 10Cs is set to ignore start channel operations.
After the contents of index register 15 are saved for
the user, it is set with the file reference address (from
$DTFBX ).

Block DDO03: The file type indicator (indexed label,
$DTFL1), is tested to distinguish between an input and
an output operation. If the latter (code = 0), control
branches to soPEOR, block pp2s.

INPUT TRAILER PROCEDURES

Block DD04: The A-address of sexit, which was set
at block ppo1 to point to the file reference address, is
incremented by 7 to serve as the input file’s termina-
tion character address and linkage pivot return to the
file scheduler.

Block DDO05: The label code for the file (indexed
label, sprFLB) is tested. For standard labels, control
goes to block ppos; for non-standard, it goes to block
DD23.

Block DD06, $IPEOR: It is a standard label file
(code = 0). The subroutine, sREADRU, is executed to
read the trailer label into the 10cs label area.

Block DDO7: An identifying message, 10134bTIEbxXXXN,
where xxxn is the base tape identification, is prepared
in the console message area, in case of a trailer label
count discrepancy.

Block DD08: Word marks are set into the 10cs label
area according to the length of the fields to be
compared.

50

Blocks DD09 and DD10: The count fields (if any)
specified by procs counts (HasH and/or RECORD) and
the block count are, in turn, compared to the corre-
sponding trailer label fields.

Blocks DD11: The sxotE subroutine is executed to
type the identifying message set up by block ppo7.

Blocks DDI12 and DDI3: The counts in the 10cs
label area are moved into the console message area,
and the sNOTE subroutine is executed to type them.

Blocks DD14 and DDI5: The internal counts for the
file are moved into the console message area with the
left-most six positions of the hash total field, if speci-
fied, truncated (see Figure 4). The sNOTE subroutine
is executed to type the message.

Block DDI16, $BCRT: The user’s Exit 6 address (in-
dexed label, se6) is moved to the exit routine (at
$SWBXA ), in case the file uses Exit 6.

Block DD17: The Exit 6 check indicator (indexed
label, sp6) is tested. If this file does not use Exit 6
(code = 0), control branches to block ppe1.

Block DD18: The exit routine at sswBxX executes an
sBR which sets the return address, block pp21, into the
re-entry routine (at ssTLEXT). Index register 15 is re-
stored for the user, and control branches (as set by
block ppi6) to the Exit 6 address.

Block DD19: Exit 6 can be used for various purposes
depending on the characteristics of the input file. For
a standard label file, it can be used to read and process
additional trailer labels. For a non-standard label file,
it can be used to read and process the trailer label(s).
In the latter case, the user must test for end of file.
If it is, the user can get to his end-of-file address by
moving an F to sLBA +3 in the 10cs label area to overlay
the R (see block pp24). Note that if the user branches
directly to his end-of-file address, start channel opera-
tions will be ignored until another end-of-reel or macro
has been processed; also, there is a possibility that the
file may start an 1/0 operation.

Block DD20: The re-entry routine (at sREENT) saves
index register 15 for the user, resets it for rocs (from
spTFBX ), and branches to block pp21 (as set by block
DD18).

Block DD21: The fourth position in the label identi-
fier field in the 10cs label area s1BA+3) is compared to
an R. If it is an R, a branch-equal is made to sENTH,
block pE28, to continue input end-of-reel processing.

Block DD22, $ENTG: This block is reached either
from block pp21 when it is end of file (F) or from block
pp23 for a non-standard label file that does not use
Exit 6. The user’s end-of-file address (indexed label,
spTFA ) is moved to the A-address of sExiT, to substitute
this address as the terminal address for use of the termi-
nation routine. Control then goes to the termination
routine via sENTy. Note that since the linkage to the file




scheduler at sexrr is destroyed, the user cannot return
to 10cs. The user must use Exit 6 when processing a
multi-reel, non-standard file.

Blocks DD23 and DD24: It is a non-standard label
file (see block ppos). The Exit 6 indicator for the file
(indexed label, sps) is tested. If Exit 6 is not used, the
file is treated as if it is at end of file and control branches
to sEntc, block pp22. Otherwise, the 10cs label area is
made to appear as end of reel by placing 1£orb into its
identifier field for the proper operation of blocks pp16
through pp21.

Block DD25, 3OPEOR: 1t is an output end of reel.
The Exit 8 check code for the file (indexed label, sps)
is tested. If Exit 8 is not used, control branches to
$SOPEORA, block DE05.

Block DD26: The operand of the sar instruction at
block pp2s is set with the contents of sTricEN (indexed
label-file reference address + 18) in case a two-area
file is being used.

Block DD27: The file type code (indexed label,
$DTFACT) is tested for number of areas. Control passes
to block pp3o for a one-area file.

Block DD28: 1t is a two-area file. The contents of the
A-register, which is the I-address of the instruction at
block pp27, are stored into the branch address of s--Tric
(see block pp26). Control branches to s--wrg in the file
scheduler (represented by block pp29).

Block DD29: At s--wrg, the pending switch for the
file is tested. If it is on, the last block is written on tape
by a force operation. If it is off, or after the force, con-
trol returns to block pp3o from s--Tric (as set by block
DD28 ).

Block DD30: The user’s Exit 8 address (indexed
label, ses) is moved to the exit routine (at sswsxa).

Block DD3I: The exit routine at sswBx executes an
sBr which sets the return address sorEora, block pEos,
into the re-entry routine (at sstLext). Index register
15 is restored for the user, and control branches (as set
by block pp30) to the Exit 8 address.

Block DD32: Exit 8 requires special programming
to tailor its use for normal user requirements. It is rec-
ommended that the user make use of Exits 1 and 2 in
lieu of Exit 8 for these purposes.

Block DD33: The re-entry routine (at sREENT) saves
index register 15 for the user, resets it for 1ocs (from
sDTFBX ), and branches to soPEORA, block pE05 (as set
by block ppa1).

Description of Close Procedures

Block DEO1, $TPCLOS: The contents of sprra (in-
dexed label) are moved to the I-address of the instruc-
tion at block pEo2 to handle the case of a blocked out-
put file.

Block DE02: The file type code (indexed label,
spTFL1) is tested. If it is an output file (code = 0), con-
trol branches to the address as set by block pEo1. This
address is to s--PADs in the file scheduler (represented
by block pEo3) for a blocked file, or to scLsasa, block
DEO4 (since padding does not apply) for an unblocked
file. If it is an input file (code = 1), control goes to
block pEos.

Block DE03: The block is padded and the file is put
on pending, if necessary.

Block DE04, $CLSABA: The check character in the
calling sequence work area spTFBx-5) is checked for
an * to distinguish between a FEORL and a cLOSE opera-
tion. If the character is an *, the operation is FEORL and
control passes to block pEos; otherwise, control goes to
block pEos.

Block DEO5, $OPEORA: 1t is an FEORL operation,
or an output end-of-reel operation (from block pp2s).
The label identifier 1E0rb is moved to the 10cs label
area identifier field. Control passes to block pEos.

Blocks DE06 and DEOT7: It is a cLOSE operation. The
label identifier 1E0Fb is moved to the 10cs label area
identifier field. The reel sequence field for the file (in-
dexed label, surs—1) is zeroed.

Block DE08, $CLSA: The file type code (indexed
label, spTFL1) is tested to distinguish between an input
and an output operation. If it is an input file (code = 1),
control goes to block pEzs.

OUTPUT TRAILER PROCEDURES

Block DE09: The operand of the sar instruction at
sPRIME3, block DE11, is set with the contents of sTRIGEN
(indexed label-file reference address +18) in case it
is a two-area file.

Block DEI10: The file type code (indexed label,
sDTFACT) is tested for number of areas. For a one-area
file, control passes to sprRiMER, block pE13; for a two-
area file, to spriMES, block pE11. '

Block DE11, $PRIMES3: It is a two-area file. The
contents of the A-register, the address sPRiMER (from
the I-address of the instruction at block pE10), are
stored into the branch address of s--tric (see block
pE09). Control branches to s--wrc in the file scheduler
(represented by block pE12).

Block DE12: At s-wrc the pending switch for the
file is tested. If it is on, the last block is written on tape
by a force operation. If it is off, or after the force, con-
trol returns to sPRIMER, block pE13, from s--TriG (as set
by block pE11).

Block DEI13, $PRIMER: A tape mark is written on
the output tape by the utility subroutine at swrMru.

Block DEI4: The label indicator for the file (in-
dexed label, spTFLB) is tested. If it is a standard label
file (code = 0), control proceeds to the block sequence

Open, Close, and End-of-Reel Procedures 51



beginning at scLss, block pe1s. Otherwise (code = 1),
control goes to ssusxa, block pE2s.

Block DEI5, $CLSB: After the last 50 positions of
the 10cs label area are blanked, the various internal
counts are moved into the first 30 positions as shown
in Figure 4. The trailer identifier was moved at block
DEO5 Or DE06.

Block DEI16: The user’s Exit 1 address (indexed
label, se1) is moved to the exit routine (at sswexa), in
case this file uses Exit 1.

Block DEI17: The Exit 1 check indicator is tested.
If Exit 1 is not used (code = 0), control branches to
block pE21.

Block DEI18: The exit routine at sswBX executes an
sBR which sets the return address, block pEe21, into the
re-entry routine (at sstLExT). Index register 15 is re-
stored for the user, and control branches (as set by
block pE16 ) to the Exit 1 address.

Block DEI9: Exit 1 is used for entering additional
information into the standard output trailer label.

Block DE20: The re-entry routine is executed (at
SREENT ), to save index register 15 for the user, to reset
it for 10cs (from spTFBX ), and to branch to block pE21
(as set by block pE1s).

Block DE21: The trailer label is written on the out-
put tape by the subroutine at sWRITRU.

Block DE22, $SUSXA: The Exit 2 check indicator
(indexed label, sp2) is tested. If Exit 2 is not used
(code = 0), control branches to block pEzs.

Block DE23: The user’s Exit 2 address in the prr
(indexed label, se2) is moved to the exit routine (at
$SWBXA ).

Block DE24: The exit routine at sswBX executes an
sBr which sets the return address, block pE27, into the
re-entry routine (at sstLExT). Index register 15 is re-
stored for the user, and control branches (as set by
block pE23) to the Exit 2 address.

Block DE25: Exit 2 is used for writing non-standard
labels in addition to, or in lieu of, standard labels.

Block DE26: The re-entry routine (at sREENT) saves
index register 15 for the user, resets it for 1ocs (from
spTFBX ), and branches to block pE27 (as set by block
DE24).

Block DE27: A tape mark is written after the label
by the utility subroutine at swTMRU.

POST TRAILER PROCEDURES

Block DE28, $ENTH, and Blocks DEZ29, DES30,
DE31, and DE32: The rewind indicator for the file (in-
dexed label, spTFL5) is tested for rewind (code = 1)
and rewind unload (code = 2). If either is called for,
the appropriate utility subroutine at SRWDRU Or SRWURU
is executed. The reel sequence number (indexed label,
sHRs—1) is then updated by 1.

52

Block DE33: The check character in the calling
sequence work area spTFBX-%> is checked for an * to
test the kind of operation. If it is an * (EOR or FEORL),
control goes to block pE34 to prepare for a new tape
reel. Otherwise, it is a cLOSE operation and control
branches to senTj, block ps2s.

Block DE34: An identifying message, 20120beEoRbxxxn,
where xxxn is the base tape identification, is set up in
the console message area.

Blocks DE35 and DE36: The alternate reel indicator
for the file (indexed label, pTFL2) is tested. If the code
is 1, source pTF ALTDRIVE was specified and control
branches to block pes?. Otherwise, the sHaLT subrou-
tine is executed to type the message and a waiting loop
is entered to permit the operator to mount the new
reel. Control then branches to seExta, block pBO1, to
open the new reel.

Block DE37: The base and alternate tape identifica-
tions for the file (indexed labels, sap and sap-5, re-
spectively) are swapped.

Blocks DE38 and DE39: After the first position in
the console message is decremented by 1, the sNOTE
subroutine is executed to type 10120bEORbxxxn where
xxxn represents the former base tape identification.
Control then branches to sEnTA, block pBo1, to open the
new reel.

Linkage Routines

COMMON ENTRY FROM OPEN, CLOSE, FEORL,
AND RDLIN MACROS

Block DF01, $CLOP: An ssr into the A-address of
sExIT, block DF03, is executed. This sets sExit to point
to the first check character in the macro calling
sequence.

Block DF02: The clear channels subroutine is exe-
cuted to clear both channels of unchecked 1/0 opera-
tions, and 10Cs is set to ignore start channel operations.
The contents of index register 15 are saved for the user.

CALLING SEQUENCE AND LINKAGE TABLE ROUTINE

Block DF03, $EXIT: The next (or first) segment of
the macro calling sequence, consisting of the check
character, file reference address, and next check char-
acter, is moved to the calling sequence work area. The
work area format is:

Label  Operation Operand Explanation
@x@ Check character for file
$DTFBX DCW @nmmnn@ File reference address
@x@ Check character for next file

or terminal character

N



Each macro has its unique check character as follows:

Macro Check Character Presence of 2-bit
OPEN C yes
CLOSE 7 or ) (lozenge or right paren) no
FEORL * (asterisk) no
+
RDLIN ? or O (question mark or plus zero) not used

The terminal check character is always a J.

Blocks DF04 and DF05: The calling sequence
pointer (A-address of sExiT) is set to point to the next
file’s check character (or terminal character) in the
macro calling sequence.

Block DF06: Index register 15 is initialized with the
file reference address for the file (from spTFBX in the
calling sequence work area).

Block DF07: The check character for the file (from
spTFBX-5 in the calling sequence work area) is com-

pared to 6 (plus zero). If it is a 5, control branches to
process the RDLIN operation at srRoLIN, block pG31.
Block DF08: A look-up high or equal with the file
type as the search argument (indexed label, spTFacT)
is made in the routine linkage table. Each table argu-
ment (file type) is preceded by the opEN and cLOSE
linkages. For example, the one-area tape linkages are:

Operation Operand Explanation
DCW $TPCLOS Close linkage
DC @bJ@ Needed for the move
DC SENTA Open linkage
DC 1 File type (table arg)

When prioriTY overlay is specified, the beginning
of the table is compiled with an all-inclusive sequence
shown below. The 9 in the pc at spox causes open link-
age to the priority assignment routine regardless of
file type.

Label Operation Operand
DCW $EXITRU
DC @b]@
DC $PAHSK
$POX DC 9

After all two-area files have been processed in the pri-
ority assignment routine (the others are passed by),
the all-inclusive sequence is overlayed with a tape
sequence before the second 10cs load (see Chart pa,
block pa2s).

Block DF09: After an ser into the A-address of a
MLCA, the latter moves the oPEN and crLosk linkages
into a double branch, which is shown as the exits from
block pr1o0.

Block DF10: The check character for the file (from
spTFBX-5 in the calling sequence work area) is tested
for the presence of a 2-bit to determine which branch
to take. The presence of a 2-bit causes control to go to
the oPEN branch; its absence, to the cLose branch. (See

table at block pros.) Chart pr shows a summary of link-
ages for each branch, oPEN, or cLOSE, by file type. The
file types are in the left-most column of the tables.

TERMINATION ROUTINE

Block DF11, $EXITRU: The next check character
in the calling sequence work area is compared to the
termination character J. If it is not J, there is another
file to process and control branches to sexrt, block pros.

Block DF12: The sENTRY routine is reset to permit
the resumption of channel operations.

Block DF13: The address of the termination charac-
ter in the calling sequence pointer at sexiT is moved to
the exit routine at sswexa, block pF33.

Block DF14: The exit routine is executed (blocks
pr31 through prF33) to restore index register 15 for the
user, and control branches (as set by block pr13) to
the termination instruction. The table below block pr14
shows the effective branch location taken (the operand
of the branch instruction) for an end-of-reel operation.

CLEAR CHANNEL ROUTINE

Block DF21, $STLE or $5CS: An ser into the re-
entry routine (at ssTLEXT) is executed to establish the
return linkage.

Blocks DF22 and DF23: Channels 1 and 2 are cleared
of unchecked 10 operations, to prevent any interrupts
during label processing, etc., in the p1ocs routines.

Block DF24: The sENTRY routine is set to prevent the
resumption of normal channel operations.

Block DF25: The re-entry subroutine is executed to
save the contents of index register 15 for the user.
Control then branches to the location as set by block
DF21.

EXIT ROUTINE

Block DF31, $SWBX: An sBR into the re-entry rou-
tine at ssTLEXT, block DF43, is executed in case 1ocs will
be re-entered from user coding at one of the 8 stand-
ard exits.

Block DF32: Index register 15 is restored for the
user with its previous contents saved in sx15HD.

Block DF33, $SWBXA: Control branches to the
address as set by the procs routine exited from, or to
the termination instruction as set by block pF13.

RE-ENTRY ROUTINE

Block DF41, $REENT: The contents of index regis-
ter 15 are saved for the user in the hold area, sx15HD.

Block DF42: Index register 15 is initialized with the
contents of spTFBX, in case this is a re-entry from user
coding during procs routine processing.

Block DF43, $STLEXT: Return is made to the main
10Cs routine as set by the ser at block pr31 or block
DF21.

Open, Close, and End-of-Reel Procedures 53




Description of General 1/0 Routines, RDLIN

READ OR WRITE LABEL ROUTINE

Block DGO1, $SREADRU: An sBr is executed into
the routine’s exit, block peio.

Block DG02: All 80 positions of the 1ocs label area
are blanked.

Block DGO3: The 1/0 command at sLeop, block pcos,
is set to a read by moving an R into its d-modifier.

Block DG04, $LBIN, and Block DGO05: The X-con-
trol of the base tape identification (indexed label,
$aD—6) is moved to the X-control of the o command
at sL.BoP, and the R or X channel status operation code
(indexed label, sap-5) is moved into the operation
codes of the BEx and BaA instructions that follow the 10
command.

Block DG06, $LBOP: The 170 command is executed
to read the label into the 10cs label area or write the
label from the 1ocs label area (see Figure 4).

Block DGO7: A Bex is executed for the channel to
SERROR, block pGos. A branch is taken only for busy,
not ready, or data check indications. The BEx forces
an interlock on further processing until the operation
" has been completed.

Block DGO08: The error routine is executed, correct-
ing the error if possible.

Block DG09: A Ba to the next sequential instruction
is executed to prevent interlock on the next 1/0 com-
mand given.

Block DGI0: Control exits to the location as set by
block pco1 or peit.

Block DGI11, $WRITRU: An sBr is executed into the
routine’s exit, block pg1o.

Block DG12: The /0 command at sLsop, block pcos,
is set to a write by moving a W into its d-modifier. Con-
trol then branches to block pco4.

1/0 UTILITY ROUTINE: REWIND, REWIND UNLOAD,
AND WRITE TAPE MARK

Blocks DG21, DG22, and DG23: sRWDRU, SRWURU,
and swTMRU represent the entry points to the utility
routine for rewind, rewind unload, and write tape
mark operations, respectively. In each case, an seBr is
executed to set the common exit, block pcso. The sBr
is followed by a 1-character pcw, which contains the
d-modifier that applies for the operation (R, U, or M).

Block DG24: The address of the pcw is moved to the
A-address of the move instruction at block pezs.

Block DG25: The R or X channel status operation
code for the file (indexed label, sap-5) is moved to
the operation code for the Ba instruction at block pces.

Block DG26: The character in the pcw is moved to
the d-modifier of the 1o utility instruction at block
pG27. The X-control of the base tape identification

54

(indexed label, sap-6) is chain-moved to the X-control
of the 1/0 utility instruction.
Block DG27: The 1o utility command is executed.
Block DG28: A Ba on the channel to sERROR is exe-
cuted. The Ba forces an interlock on further processing
until the operation has been completed for a write tape
mark operation only.
1. For a rewind or a rewind unload operation, a
branch can only occur for busy or not ready.
2. For a write tape mark operation, a branch can
only occur for busy, not ready, or data check.
3. The Ba also serves to satisfy the interlock require-
ment for the next 1/0 command.
Block DG29: The error routine is executed, cor-
recting the error if possible.
Block DG30: Control returns to the user’s program
at the address set by block pc21, pe22, or pG23.

PROCESS RDLIN

Block DG31: The roLiN card is read into the 10cs
label area.

Block DG32: When the operation has been com-
pleted, a Ba1 is executed to sSERROR.

Block DG33: An error has occurred. A halt is pro-
vided to reload the card, before a re-execution of the
1/0 command in the error routine.

Block DG34: Card columns 16-20 of the card in the
1ocs label area are compared to the identifier,
@BDLIN@. A branch unequal is made to block pess.

Block DG35: A roLiN card was recognized. A series
of chained moves are executed to move card columns
21-50 to the several internal fields that relate to label
processing in the file table. Control then branches to
the termination routine at sexrtru, block pFi11.

Block DG36: It is not a RoLIN card. An identifying
message, 20136bRLND, is prepared in the console mes-
sage area.

Block DG37: The sHALT subroutine is executed. The
message is typed, followed by a waiting loop to allow
the operator to insert the proper roLIN card. Control
then branches to block nes1 to read it.

Description of Message and Wait Loop Routine

The function of this routine is to type a message
and to enter a wait loop for an operator reply. After the
reply is entered, control is returned to the instruction
immediately following the one which originally caused
entry to the message and wait loop routine.

Block DHO1, $SHALT: The contents of the B-address
register are stored in the I-address of the branch in-
struction at sHALTX ( block pmo8 ). This sets the routine’s
exit.




Block DHO02: The contents of an area labeled serFLD
are typed on the console printer. sErFLD is the area
used by 10Cs to assemble its messages.

Block DHO03: A message, “20183c1,” is moved to
serFLD. This message is typed if the information en-
tered through the console printer by the operator is
invalid, or if the operator cancels during inquiry.

Block DH04: A read console printer instruction is
executed. If the INQuIRY REQUEST key has not yet been
pressed by the operator, the no transfer indicator is
turned on and control goes to block pros. If, however,
it has been pressed, an I is typed to indicate an inquiry
operation and the keyboard is unlocked to allow entry
of data by the operator. If, during inquiry, the operator
presses the INQUIRY CANCEL key, the condition 1/0
channel status indicator is turned on and control goes
to block pros. After entering data, the operator presses
the INQUIRY RELEASE key.

Block DHO5: A test is made to determine if the no
transfer indicator is on. If it is, it indicates the operator
has not yet pressed the INQUIRY REQUEST key and con-
trol returns to block pHo4 to retry the read console
printer instruction.

Block DHO6: A test is made to determine if the vo
condition or data check 1o channel status indicators
are on. If either is on, it indicates that a validity error
was detected on the entry of data or the INQUIRY
canNceL key was operated during inquiry; control
passes to block pHo2 to type the console entry error
message.

Block DHO7: The 10 channel status test is satisfied
by executing a branch any to the next sequential in-
struction.

Block DHO0S, $HALTX: Control branches to the loca-
tion set by block pro1.

WRITE CONSOLE PRINTER ROUTINE

The function of this routine is to type the contents of
sERFLD on the console printer and to return control to
the instruction immediately following the one which
caused entry to the write console printer routine.

Block DH11, $NOTE: The contents of the B-address
register are stored in the I-address of the branch in-
struction at block pr15. This sets the routine’s exit.

Block DH12: The contents of sERFLD are typed on
the console printer. ,

Block DH13: A test is made to determine if any 1o
channel status indicators are on. If they are all off,
control goes to block pHis to exit from the routine. If
any indicators are on, control enters the console printer
error routine (represented by block pH14).

Block DHI14: The console printer error routine deter-
mines if the operation must be retried because of a

busy or data check condition. If either condition is
present, control returns to block pHi2 to retry typing
of the message.

Block DHI15: Control branches to the location set by
block pri11.

CONSOLE PRINTER ERROR ROUTINE

If this routine is entered because of a data check, 170
condition, no transfer, or busy condition, it sends con-
trol back to the unsuccessful console printer instruc-
tion. If entered for some other channel status indicator,
it returns control to the instruction immediately follow-
ing the one which caused entry to it. Wrong length
records are not checked.

Block DH21, $CPERR: The contents of the B-
address register are stored in the I-address of the
branch at scpEx. This sets the normal (no error)
return,

Block DH22: A test is made to determine if the data
check, 170 condition, no transfer, or busy indicators are
on. If any are on, the operation must be re-executed;
control goes to block puz3. If none are on, the operation
is considered a success, and control goes to block pH24.

Block DH23: A + 17 is subtracted from the I-address
of the branch at scpex. This sets the routine’s exit to
return to the unsuccessful console printer instruction.

Block DH24, $CPEX: Control branches to the loca-
tion set by block pu21 or by block prz2s.

SAVE ROUTINE

The save routine translates the settings of the zero
balance and compare indicators into a code which is
saved in core storage. If the program uses any special
interrupts, e.g., URREQUEST Or INQUIRY, the save routine
will appear in the interrupt coding. Otherwise, it ap-
pears in the tape error routine. The code generated
by the save routine is used by the restore coding, de-
scribed later, to restore the indicator settings before
control is given back to the user. ‘

The results of the save routine for various combina-
tions of the zero balance and compare indicators are
shown in the following table. (Note: Units position
is labeled sps.)

Zero Balance No Zero Balance

vvv vV
Low 102 102
vvv Vv
Equal 101 101
Vv vV
High 100 100

Block DH31, $PSV: The contents of the B-address
register are stored in the I-address of the branch at
spsx. This sets the routine’s exit.

Open, Close, and End-of-Reel Procedures 55




Block DH32: The code, located at sps, sps—1, and
$Ps—2, is set to 101 with word marks over all three char-
acters.

Block DH33: A test is made to determine if the zero
balance indicator is on. If it is, control goes to block
DH35.

Block DH34: The word mark at sps-1 is cleared.

Block DH35: A test is made to determine if the equal
compare indicator is on. If it is, control goes to block
DH39.

Block DH36: A test is made to determine if the low
compare indicator is on. If it is, control goes to block
DH38.

Block DH37: The units position of the code «ps) is
made equal to zero by subtracting it from itself.

Block DH38: The units position of the code sps) is
added to itself. '

56

Block DH39, $PSX: Control branches to the location
set by block pusi.

RESTORE ROUTINE

The restore coding appears in line in various places
in 10Cs. It-is not a subroutine. The function of the re-
store coding is to recreate the 1411 machine status, as
it existed before the save routine was executed, using
the code generated by the save routine.

Block DH41: The units position of the code sps) is
compared to a 1. This instruction restores the high,
low, or equal compare indicator. _

Block DH42: The zero balance status is restored by
executing a zero and add instruction. The field added
is the tens position of the code sps-1),




04
.I!'iﬂ]*l!lli‘i*i
»

* SBR X1S
* {TO POINT TO
® FIRST PENCING *

03
AEREEBIAFERRLRE XS
* MOVE FILE *
*PRIORITY + CHAN®

*#SEARCH ARGUMENT“

#ADDR IN TAEBLE) # OVERLAY #*

SREEREHENAR AT
.

SCOMP

BXE o e

c1 * 05
* *

» »
= X% END CF TARLE
* *

* *
* *

"
+NO

e s

06
Ilﬁllnlill&iilliﬁ
*

. SBR X15 *
* {TO NEXT PNDG *
#ADDR IN TABLE) *
* *
*

FREERRBERARRRE RS

El

Daxe s

* o7
»
NO * PENDIN

ese® ADDR 1IN TABLE *
* THIS FILE *
. *

Pevesesesrssseressrre ot

- *

-
«YES
.

.

X 08
‘l‘l!F]llQlllii'l
VE NEXT *
'HKGHER PRIORIYY*
®= PNDG ADDR IN
*TABLE TO A—ADDR*
* OF SLINK *
AERREFEUABRRERR RS

Xesooee

09
BREREG ] HANERRERRE
#MOVE FILE PNDG *
#* ADDR IN TABLE #
- T0 B~ADDR *
- OF SLINK *
* *

RARRERAFERRASBNE S
.

Xo s s e

SLINK 10
ERBBRHRRERRERRES
# QVERLAY 1ST #
#HIGHER PRIORITY®
#PNDG INSTR WITH®
#THIS FILE PNDG *
b 1

NS
AREAEERERREREEANS
.

tces e

SMOVE X 11
RRRBE JIRREREREEER
* OVERLAY EACH *
#PNDG ADDR WITH *
se o X*HIGHER PRIQRITY®

. #ADDR ONE BY ONE#*
- #SAR X156 TO NXT #
. FESRARERRBRERSBER
. .
. -
. .
. .
. .
. X
. K1 # » 12
. * L3
. » »
. END OF TABLE
* *
- *
» *
»

LETRRY

®asees

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
-
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
-
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
-
.
.
-
.
.

$E

$0U

!l*l&ll&l.‘i}l!ll

.
«OVERLAY

Xeon

ND 13
ERRRRCO2HARRRRERNE
* LOOK UP LOw #
* OR EQUAL IN *

X% PENDING SORT »
#*TABLE ON SPARG #
* 13
EXEERRRERRER TR RN

.

xe s oo

14
HERRRD2RBRARERRES
* SBR X15 *
* {(TO POINT TQO *
*  2ND HIGHER *
* PRIORITY PNDG #
#ADDR IN TABLE) ¥
ERERBRRAEEERRE RS

Xe s a0

15
ARARAEDHNRURNBESS
* SET A-ADDRESS #
* OF $OUT WITH %
#1ST HIGHER PNDGH#
% ADDR IN TABLE *

#*

*
ERBRRRRTRRERS SRR ®

PIEEEEE

T 16
ERRREF2REFHRARENN
* OVERLAY FILE #*
* PENDING INSTR #
#WITH 1ST HIGHER#*
#* PRIORITY PEND *

* INSTR *
HAEEBRAEERRARERREN
.

Xeeon e

i
ERBERGOARRERAR AR
* MOVE TABLE
* DOWN 7 POS IN
#STORAGE TO SET
*TUP NEXT ENTRY
*

IR RN

Y Yy e Y Y

Xe oo v

18
FERERHIRRERRERRES
#MOVE FILE PNDG #
*ADDR TO OVERLAY®
*#1ST HIGHER PNDGH#*
' ADDR IN TABLE *

&i}'i*llilll*!lll
.

X 19
FRRARYORAARRARERS
#* MOVE $PARG 70O #
®#QVERLAY VACATED#*
*TADLE ARGUMENT #
* *

* *
ERREREAARRRRBERER
.

.
20

ARRRAKEERARBRRRE

*MOVE 1ST HIGHER®

#+ PNDG ADDR TO #

*OVERLAY VACATED’.-.-.

' FUNCTION

l«-niilniubin!p:&

Chart DA. Priority Assignment

*X-..-.-.-’IDENT TO SPARG #Xssoeeesees ¥ LOW—ORDER AODR
NON— *

.
.
.
.
.
.
.
.
.
.
.

cssse s

seses e

.
.
.
.
.
.
.
-
.
.
.
.
.
.
.
.
.
.
.
.
-
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

FROM L INKAGE
TABLE ROUTINE~
2-AR TAP
EEEER
#DA *
* B3*
* %
»
.
NON<OVERLAY
$PAHSK

X 02
ARRERPIRENRRRERRES
* SET D-ADDRESS *
* OF $OUT WEiTH *

OF FILE PNDG
* INSTRUCTION #
AERERRAREERRERR N

21
ERERRCIRRERERRERS
*

*

%#MOVE 1ST HIGHER#
«X*PNDG ADORESS TO¥*

i B8~ADDR OF $IN ‘

{ill{ll!l&“li'l.
.

Xe e s s

22
ERREADIEFRRRUEREE
* ADJUST B-ADDR *
* OF sOUT YO PT *
# TO HIGH-ORDER *
* ADDR OF FILE *
* PNDG INSTR  #
REBERAAERARREERRS

.

Xesooe

$IN 23
ERRRREIRRERERRERSE
¥MOVE H-0 LOC OF#
*FILE PNDG INSTR#
* (IN SOUT) TO *.
*BRANCH ADDR OF *0
*HGHR PNDG INSTR#
REREEARERRREEERR

.
+NON-QOVERLAY

Xe o e

24
ERERRETHARERERR RN

» »
* RESTORE DTF #
* ADDRESS TO *
* X15 *
» *
ERRRERERERERRRTRS

.
.
.

X
AEEEE
*DB *
* ALR

LR

*

TO $ENTA

.
-
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
-
-
.
.
.
.
.
.
.
A

FROM LINKAGE
TABLE ROUTINE-
ALL FILES

ERER
2DA #
* 84
"
.

.
«OVERLAY
SPAHSK X
4 % & 01
.

YES % IS FILE #
2-AREA TAPEZ *

- -

SPAEXIT 25
*Qilichhllllillll
-

ADD +6 TO *
..Xl FILE COUNTER #
*
-
*

fiifillinliﬁléii

wXS o s e

D4 * 26
» »
* 1S THERE #
* ANOTHER FILE
* *

27

RRRBRELAFEERRN R

* SUBTRACT *

* COUNTER FROM #

» A-ADDRESS *
A OF SEXIT *
* »
ERSEAARRRAEERRRRD

.

Xe s e

28
l!ll!F"ll&&Ql{I.
*
' YAPE SEQU&NCE *
* INTO LINKAGE %
* TABLE *

* »
AREERRERNFEERERRER

TO LOAD PROGRAM

Open, Close, and End-of-Reel Procedures

YES

%e0vsnses
x

#ERER
DF *
* B2%
* *
L

TO SEXIT

DA

57




DB (3312 EERNE
*Dp = *DB *
* ALl® * AW
* % L
* *
. <LABEL
. «RETRY
.
SENTA X 01 $SENTAB

ERBRBAREERERRRES
- »

*  SET UP SARG #
* WITH FILE *
#IDENY FOR FILE *
= *

*

eeeX

RERBRRRBEBRERRNY
.

Xe s oo

02
AU I ABLRERRRRS
*

*
% LOOK UP FILE #
®*IDENT IN TABLE #*
*OF DTF ADDRESS #
- -
FEREEERAERREBR AR N
.

Xeo o e

03 $EN
NERRRCIHERRERARRS
[3 -

MOVE X1S
TO FUNCTION

I EE 21

*
*
-
»*

RERBEERRRRREAR RN

-
.
.
.
-
X 04
ARBEAD | N BERRRRRES
* -

* BLANK DTF
% COUNT FIELDS
*

.
.
.
.
.
.
.
.
-
.
-
.
.
.
-
.
.
.
.
.
.
-
.
.
.
.
-
.

.
.
.
.

»
*
*

» *

ERRARRRERSEARRRR

.

[+
NO THSREEI#RRRRERNRE
CHAN® MOVE ADDRESS
CHNG®* OF FILE SCHED
o#® INIT CODING

LEE R ETY

- .
» INTQ SFINIT . .
* {BLOCK DB09) LY
ERRBARERERARER NS PO
«CHAN . e

«CHANGE . .

. o

.

X 06
ARAEREF RTRERBRAE S
- *
* DUMMY

Cw *
* INSTR TO SET
#X15s SAR IN X1i5%
- »

RARRBRBRRER RN

. .
. .
..
..
o .
o o
..

AXe e v oo

Gi » 07
* »

-
-
.
-
-
.
.
.
.
-
.
-
.
.
.
.
.
.
.
.
.
.
.
-
.
-
.
x

* o .
CHANNEL 2 L4 . .
* ..
* ..
. * * ..
. * ..
. «NO o o
. .
.
.
X

08
ERBERHIRERRERERNN
» -

.
.
.
-
.
.
.

* DUMMY Cw *
* INSTR TO SET #
®#X15, SAR IN X1S#
* »

ARGAERAREERZRNAR S
.

X

.
.
.
-
.
.
.

EEEE
sessens

SFINIT 09
SRRAEJIRNERRRNERR
»

.
.
.
.
-
-
.
-

-
. * EXIT AS SET *
seaX® BY BLOCK DBOS #
- *

»

»

*
SRRBERRRERERBERN
.

Xe s e

[
!‘j.lx]illi!.l!:i
#3——INIT BEA4/ASH
e e o R B — R N—
*  INITIALIZE o
*FILE SCHEDULER :
»

SRRERRBARRRARRRD Y

.
.
.
.
.

Chart DB. Open Procedures

58

X 11
ARNERAZHERERER AR
* *

* REINITIALIZE #
* INDEX WORD 15 *
*  FROM $DTFBX #
*
*

*
ERRBRRSERRRRR DN

REY FROM LABEL
PROCESSING (QUTPUT)

nnnE

*DB *

. Co#
*
*

TF x 27
EEERRCIRRRERG DR
% MOVE USERS »
*EXIT S ADDRESS ¥

* TO $SWBX EXIT #Xeeseoas
* (BLOCK DB29) * OUTPUT
* »

FAREERAARERERBRNR

*ESWBX OFBS*

#SBR IN RE-ENTRY#*

* EXIT. RESET #

* X15 FOR USER #

EERABERREREEAR RN
.

Xe e rese

30
RERREE 2B SRR RERR
* *

f RS S SR O O 2 2 )

* USERS EXIT 5 #

* ROUTINE *

» -

ERRERARAAERERRRRN
.

Xe s oo

31
EERRAGORRRARRREES
*SREENT DFGS#*

*RESTORE X1S5 FOR#%
*10CS. RETURN ASH
* SET BY DB29 ¥
FERRAERERARRTRRNN

EXe o e o

H2 * 32
- »

NO

- ™ -
* AFTER HEADER %
» *
- *
* -*
»
YES

.
.
.
.
.

x 33
EREREJORRANREREAR
*SWTMRU DGBS#*
Eaat et BL S B B
* WRITE
* TAPE MARK *

* *
ERRRRERRBRBARERER

Xessevensrsconse

*

A3
*
REW1!

»
asese s XXOPTION FOR
*

-
»

*

ND

*

*NO

.
.

.

=0

Xe

X
83 * *
*

* STANDARD

13

12 ARRRRAGARRERRA RSN
*ERWORU DGB3*

L S Tk = ST S )

*
FILE®eeesscseX® REWIND TAPE #
*  RWD=1 - *

*

Rwu=2 - *
ERBRRERREERRAE RS

RwWD .

#* LABEL FILE
*

*
*

»
.
-
.
X

C3 =

-
»
»

»

NO

*

*

*

*

»
FILE TYPE
*

*

* TAKE
HoseseveveornccnsssscrtosoncnsnacaneX® CHECKPOINT
* AT EOR

.
.
tesecracsnecsncnns

14
* YES REY FROM LABEL
LYY PROCESSING { INPUT)
12212
0B *
% Ca®
x *
* *
TO SENTC .
.
.
SENTD X 16
15 EERERCHERERRER RS

® MOVE USERS *

*EXIT 7 ADDRESS #

¥eessseeeX¥ TO $SWBX EXIT *

* INPUT=1 * (BLOCK DB18) *
- .

-

RERRFENERRRRD R RN
.

.
.
.
X
D4 * % 17
» [
NO » *
ook EXIT 7 *
* USED *
L *
L *
*
«YES

-
.
.
.
.
.
.
.
-
.
.
.
.
.
.
.
.
.
-
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
-
.
.
-
.
.
.
.
-
.
.
.

X 18
REXRAEAREERARRERS
*ESWEX DFBS*
L Rkt 2t S SR
*3BR IN RE-ENTRY#
* EXIT, RESET #
* X15 FOR USER #
EEARBXERARERRRENS

.

XKe s oo

19
RRRBRFESEEREEEERER
* *
e e T TS
* USERS EXIT 7 #
* ROUTINE Ld
*

*
ERARARBRERARERRNR

.

X 20
SERREGARBERERERAN
#SREENT DEGS

2 R N O 1

®RESTORE X15 FOR#

*10CS. RETURN AS#

* 'SET BY DB18 #

FERAERAEARRRRERRRR
.

22
* 21 REERRHSEHRRR AR
* *$READRU DGB1*

Ha
*

E ¥Xees o

* T * YES Lt it IE T B A
X% AFTER HEADER #.censseeXt READ *
* * - TAPE MARK *

» . - *

* % AEERERRERRRRERRRR

.
.
SENTI X 24
Ja * % 23 ERRERGOSERRRERRRER
* * *SCHKPT *
* s LS R I S I T ey

ResssseoeX¥® *

TAKE
#*  CHECKPOINT *
* *

* - ERERERRBARETRERRR
* .
«NO .
. .
. .
ARAEE eXesnsoossssssscnassessoscns
*D8 * .

* K&* SENTY
* *

X 26
Ka & % 25 ERAERKSEERRRNRRRN
* *

* *
. » * NO * SET FILE's  »
1-AREA L PENDING *
* SWITCH OFF  *
» » - *
* * % L 22X 222 Y2222 )
« YES .
«TO SEXITRU .
eXeoeoasanee
L2 2 2 2]
EDF *
* B3%
® %




$ENTC
o1
‘.
FILE TYFE
“e. o’
. ok
.
« INFUT

.
eXe nsesn

SENTCR

X c2
AARFRELERARAEXEAR
*$REACRU [21d:3 84
P T e I I AN )
» *
# READ LABEL A
» *

FARRERBRANA LA RN
.

cuTPLT

seeee

‘o--.-o--)('.

EXIT 3 LSEC

e

.
.

sasscscssssescacescssccsncne

.
X. ..
c2 . CE
«% LCO *,
NC - & L * SPECIFIED #.
wea®s LABEL CHECK % FIELLS
. *e . . ¥ MATCH
. *, " . % JLABEL o %
X e o ¥ x LN
[E323] * YES LEEE )] X
*CE ¥ . *CE ¥ .
* Can . ® Cax .
L . . % .
. . ®
TC SENTO . YO SENTC
oXe
ch !. L] ce
ot
.nluENTlFIERSi YES .
FIMATCH (1HCR) o¥eeseeeeaX®s FILE TYPE o%
., o* .
.
*
.
. .
. .
ENHL X $CFEC X

23
FARRERRCLAANAARERR AN
‘NOVE 1- C ICENT *

"'30[33 th M YC*
#ENCTE NSC AREA ¥
[} 1

ARBARERAANAANER RS

REABSEOHRERARERER
#SET WORD MARKE ¥
*IN LABEL AREA, *
* ACD RETENTICON %
* CYCLE TO *
* CREATION CATE ®
EARERREARAEEE RN
-

. .
. .
. .
. .
oXo Xe
F1 *, 24 F2 % 1%
* * g » * g,
. RC o SuN .
o ceasts G 3€€ o*
. . . . .
N . *. ot
x - L, W%
[YYT L] . * YES
. - +CUTPUT . .
* y3 . . .
» * . . .
“#REN - - -
. . .
X 25 . X 16
II‘.’GX"I!!!IQI. - RARARCORAFARRR U RN
MCV * * ADC €25 *
. ©30130 NC v = « % ACC €35 To_  *
# TC SNCTE NMSC * « ®RETENTION CATE #
* AREA . . * IN LABEL AREA *
- * - * *
ERARBEBLERRFARE R - FAARAREARRAEARERS
. - .
. . .
o . .
.
.
.
ENCH X 20 X
IR EISEITER S 22 r2 ®, 17
SEHALT CHAL® * .
PRy v N B T Y Y «®  SHOULD *,
*  CCNSCLE MSGC_ ®Xeeese %o TAPE. BE o*
#0CP TC PERMIT # . #.RETAINED o%
®CPERATCR REFLY # . .. .
RARARRBAR A RN AR %, o
. * YES
LSTART . .
N . o
. . .
. . .
Xe «STATER X
J1 *q 21 - RERER JOERRA XA RN NS
¥ * % MCVE COMPUTED *
A o #RETENT{ON DATE *
see*s 1ST REPLY . * AND I~0 [DENT #
. #.CFARACTER.® .. ® IC ENOTE MSG %
. *o N .. . AREA *
x ®, o o o RAXFXBRREREEEENRR
RS * P -
. » «NUNERTC .. .
* Ag ® . .. .
- * . . o -
LZEX S - . o -
. .. .
X 22 . x 19
RARBEC AR ERABRNRES - o EEERBLOARARERNERE
# MCVE REFLY TO # « . * *
* TCDAY'S DATE * PO GVE »
*#(STOR CELL 119)* e eeee*vaC121 DAY ' TO#
. » . #$NCTE MSC AREA *
* = - »* -
FERARNAARNBEARRER - HAREEREAERRERERERE
. -
< {RETRY) .
TC $ENTAB eXoeosoosases
ERARNR
“pR *
% A2
L

® Chart DC. Header Label Procedures

cae e x

e oo acuee

07
ERERADIERREARAR S X

*NCVE I- C 1CENT *
*

®#030122 F!L M TC'
'!NCTE NSG AREA ¥

I‘lllliillilll&ll

.

-

.

x og
ERRRREIRERRNNERRS
*SNCTE CHA2#®

P e e L e e e
* TYPE MESSACE *
'ON THE CCNSCLE *

PRINTER *
li;n:;nliini«ul-u

e o e

09
EERRRCIANRRBERERE
- MCVE *
*  LABEL AREA .
* FIELDS TC *

‘Itii‘ DC

* A4 =
* [}

Ennn

.

.

$CFFCAE oXe oo
4 *e 28 AS LY 29
o ¥ * o o .
«*FILE SERIAL¥. YES -k CHECK *. YES
oaX®g TC EGUAL - eeses X%, CHARACTER shoosn
#TAFE SERIALS® * . =% ¥ -
., o® * ¥ .
Ko oF . oF .

* NC * NO .

. . .

. - .

. . .

esssensecsscsns - .

. . .
. X 30 -
- ARRARBERARER R RRE .
. * * .
- * MAKE INTERNAL # .
. * FILE SERTAL = ® .
. - TAPE SERIAL » -
. * - .
- ARAERRENRESERER RN -
. . .
. . .
seesas .o . .

. - .

- . . .

. . . .

X 41 . X 31 -
HEEARCHARBURSRRRER - ERRRECSHERRERARRR -
® MOVE USERS * . » MOVE * .
®EXIT 3 ACCRESS ® - * TODAY*S DATE # .
* TQ $SWEX EXIT # cae X® TO INTERNAL ¥*Xa.se
* {ELCCK CCa2) * ® CREATION DATE #

* - » DATE *
ARAR G BRNT AR RN AARREENAEBERRRERN

. .

. .

. .

. .

. .

. .

X 42 32
FARFECHENBRRBRRNE FARFUDSARSARRBERE
*ESWEX DFBS*® * BLANK OUT *
PRSI aay e B By s - FIRST &40 »

* SET [WiS FOR % * POSITIONS IN ¥
®USER, SBR INTO * ®  LABEL AREA *
* RE-ENTRY EXIT & * *
EERERARAMUBHARERN ARRARRRANBRARREDE

Xeoens

43 33
FRRAREQARNNRRERT R REERAESHRAREERERE
. - d MOVE *
A—F— g R BB h-A-¥ ®INTERNAL FI1ELDS*
IN RE-ENTRY#* #INTO I0CS LABEL®
* EXIT, RESET # * AREA *
* X15 FOR USER #

* *
ERARNENEEERRNRERE RERERRBREERANRE NS

- -
. .
. .
. .
X

44 34
ARARBFAFERETRERRS BEERRFSHERRAXRESR
DFGS* %  MOVE USER'S *
i o S L P *EXIT &4 ADDRESS *
#RESTCRE X15 FOR® * TO SSWBX EXIT *
& (BLOCK DC36) *

*

*

*$NOTE WMSEG AREA ¥ #10CS. RETURN AS#
* » * SET BY DC42 * . EXIT
EAREARRRER L RERE RN RERAEREHRFERERAERRS AAFAEREFRARREERER
. . .
. . .
. . .
. . .
. . .
X 10 $ENTE b3 39 X
EARSUGIHERERFREER AEARRCLERARASEREES GS * o 3s
*SNCGTE DHAZ2® *$RWORU 0GB3I* e %o
RS TR BN X SN B B B IR PR EE TS BN 23 Bt Bl 4 -k *g
% WRITE CCNSCLE * - #Xeesansse¥e EXIT 4 USED %
* MESSAGE * %  REWIND TAPE # X L ¥
- * - - * g «*
ERARBEEAFERRARE RN IZ3ZEZ22E2 22220223 *y ¥
. . - * YES
. - . .
. . . .
. . . .
- . . -
. . . .
X 11 a0 . x 36
I“llh]lll&l!ll‘i REBABFLAEARRRRERES REARRPSEAFRERERRS
*EWRITRU DGB2#* *$SWBX DFBS# |
NO ![NTERNAL F[ELDS! [ T P 2 T 2 B Tl - LS B PN F ST s Bt et
senn ® TO SNOTE N5G * * = . #SBR IN RE-ENTRY#
. * A * * WRITE LAEEL » . * EXIT. RESET #
- - * ® * - * X15 FOR USLR #
X BHBRAEREAERA BT RN AERRREREBERAERERR - FERRAAERRERAELR RN
ERER - - - .
* * - - -
* AG * . . .
* * . X - -
EhEr - ERERE - .
. OB * . .
SNIH X 12 ® C2w . X 37
ERERE JIARRTARERRN L . RERER JSAARFXERERN
REHALT CHAl*® "" e . A *
LR PR P B P B B ol * TC SENTF - (RS PR T2 T8 SR R Tt s
*TYPEWRITER ﬂSG..Xo---' J3 . * USER'S *
*L QCP TC PERMIT * * . #*EXIT 4 ROUTINE ¥
#OPERATCR REFLY ¥ LA Al - - *
FRFRERAERRFERRE AN - FEE RN NN R
. -
. .
. .
- -
. .
. . X 38
K3 13 - ERRBRESABRAR BTN
¥ - . #SREENT DFGS*
* #*, A{ACCEPT) - ET BN B B B Bt B et
*, 1ST REPLY e¥osencans - RESTORE X15 FOR#
.CHARACTEF. 10CS. RETURN AS¥
*o nEERE SET BY DC36  *
*. _; *DB *TC $ENTD ERFTRRRRAREERRENR
% C4%
«CTFER L
TO $SENTAB o (RETRY) *
X
REEE
*CE *
% A2W
LI 4
*

Open, Close, and End-of-Reel Procedures 59




DD &%

. AlW
. @

*
.FROM FILE SCHED

SEORU

SOP!

01

.‘llIAlllllllilll
IC

’tExlT. GDTFBX. *
SET NTO

’SDTFBX CHK CHARI

Qv.ilil!lilllol"
.

Xewaes

02
SRRERB RN RAARE

-
#CLEAR CHANNELS #
*SAVE + SET X15 #
(3

»
AEEREABARERERN RN

-
.
.
.
.
.
X 04
Cl1 = = 03 RERBRCO2RRERERBRER
- - * ADD +7 TO .

*

- »
* FILE TYPE
# *

» *
- . EERARBSBERRNERBE

* (BLOCK DFBZ) »
* *

EOR

xXe o

o1
* NO

*eosssace
X

*
. EX1T 8
» USED -
» -

AREEN

- * *DE #
* * D1
«YES . =

-
TO SOPEQRA

Xe o0

26
BRRRRE | SRREHARNES
#SET OPERAND OF #
* BLOCK DD28 TO =
#FRA+18 (IN CASE#*
*FILE IS 2-AREA)*
- *

[Z 22T XTI YT T YN

.
.
.
.
.
.
x 28
Fl & & 27 ARREIFOAFARBNESES
- - - -
[ *
* 1 AREA *
- BLOCK DD30  #
» » - -
* * RHAERBBERBRABEREER
.
«YES .
. .
. .
. .
. -
X

29
RERRRGORBBERRRREN
*$——¥TG 8DD1#

22

X 30
SERBEGIEEANUENRER
*  MOVE USERS *
#EXIT 8 ADDRESS #
* TO $SWBX EXIT 'X...oo-..' WRITE BLOCK #
* {8LOCK DD31) -
-

.!'II'I‘!QCI!IIQO
.

ERRAERRARERSERESRS

Xeosawe

31
RRRBEH I RARRRE BN
*#$SWBX OFB35#
[ ¥

32
SHRRB YL RERERRRARR
- L

e e e W e B e W
* USERS EXIT 8 *
- ROUTINE *
»

-
ERBRASABABEBERREN
.

Xews oo

33
R dbbl ST I T2
*SREENT DFGS*
BN — R e ¥
#RESTORE X15 FOR®

LL T T P Y S P ey Y

+Y0 CLOSE PROCEDURES
<AT SGPEORA

x
i)
#DE #
* D1#

.

Chart DD. End-of-Reel Procedures

60

Heouee

seX

SIPEOR 06
RERERASHERBRS R RS
lsREADRU DGB1*

*

<
m
w

I S

c3 * 05
*

»
* STANDARD #
®# LABEL FILE *
» -

*

* READ LABEL *

ARBEBERAERRNRRNER
B

.
.
.
.
.

X

o7
ARUBRGSHEEERERRES

*MOVE I/0 IDENT #
* AND b

#910134 TIE * TO®
#SNOTE MSG AREA #
* *

ERRRARBEERRRAERRR
.

Xe s oo

o8
FABERCSAURRARRER S
*#SEY WORD MARKS #
® IN LABEL AREA ¥
*  TO COMPARE *

* FIELDS *
* * * -
* » FRRRAEREERAR SRR
* 3
+NO .
. .
. .
. .
. .
x 24 X
DJ * » 23 RESERDLARBEEREREN DS # # 09
* » * *
* Exn' * * * #HASH TOTAL * NO
* USED sessX® MOVE *LEOR * #= TRAILER HASH %ee..
# TO LABEL AREA # TOTAL  * .
* * - -
- * LE2 2222222222328 3 - * -
* . 3 -
«NO . «YES .
. . . .
. . . .
. . . .
. . . -
o $BCRT X 16 X .
. FRBURCLRRARRE RS RN ES * # 10 .
. * MOVE USERS  # * RCO .
. *EXIT 6 ADDRESS * YES * 4+ BLOCK # .
. ¥ TO $SWBX EXIT #Xeesosseee® COUNTS = TRLR ®
. # (8LOCK DD18) X * COUNTS  # -
. . #COUNTS # .
- !!i'l‘!ll.‘l'lll’ - * .
- . * .
. . «NO .
. . . .
. . . . .
. . . - .
. . . .
. X . x .
- F4a = » 17 - RERBEFSEARRFRRRES -
. * L3 . #SNOTE OHA2® .
- N »* * - EL B EX B BN B P I ) -
. PYs EXIT 6 . . * uRnE CONSOLE *Xees
. . *  USED * . . ESSAGE
. - 3 .
. - » * . ll'lil".llli'."*
. . . .
. . «YES . .
. . . . .
. . . . .
. . . . .
. . . . .
. o X . x 12
- . ARRRRGLELAREREEEE - HERRRGERERERRERES
. . *$SWBX DFBS#* * MOVE *
- - Lt Bt 2% B B 2 T 2 ) -
. . #SBR IN RE-ENTRY* “COUNI’S ro SNOTE'
. « % EXIT, RESET
. . # X15 FOR USER .
- - AEFEEBRBRARRRRRRER flll’}l"'iil‘ﬁ‘l{
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . X 19 x 13
- . lii..H"'ll..!'l' RREREHSRERTRRRR RSN
. . *$NOTE DHA2#
- - '—’—&—.—‘—I—I—'—G Let B 2% B B P B P )
. . # USERS EXIT 6 * WRITE CONSOLE *
. . * ROUTINE » * MESSAGE *
- - * * *
. - ERERSRFRARBERRERS SEBRBRBEERARNEEER
. . . .
. . .
. .
o .
. . . .
. . . »
. X 20 . x 1a
- - RERERJARERBEERR R - REEER JSEEREERERRE
. +  ISREENT DFGS* . - MOVE *
. o R Rkehap—R—Roke® #  INTERNAL
. «  ®RESTORE X15 FOR® . #COUNTS TO sNOTE"
. . #10CS. RETURN AS* * MsG AR
. o % 'SET BY DD18 *
. . HEERARARRREERER AR - Il‘.li"l'!f‘l.li
. . . . .
. . . . .
. . . . .
. . . . .
. esssscsssseXe . .
. . . .
SENTG X 22 x . X 15
BREEEKTHRN NN K4 % » 21 - REBRRKSHERERS RN ER
# MOVE USERS  #* - . . #SNOTE DHA2®
* EQF ADDRESS * F * * - LaE At B2 B TN 2 T 3 1
» T0 *Xeoo R OR F LI «* WRITE CONSOLE *
#  A~ADDRESS # * * MESSAGE *
*  OF SEXIT . » * L3 »
ARRRABERERRARERRS * - ERBBRBARAN AR EAREN
*
Ivia sen R «TO CLOSE PROCEDURES
.To sExn’Ru «AT SENTH
X
*‘..Q RRRER
DB * *DE *
* Kaw LR
* #* LN
* *




$TP

llllla[llllll!lsa
¥4--PADS EFE2/B4%
[ B2 o R o B e e ]
b PAC IF

- NECESSARY
»

TPLT
*  BLCCKEC
ARERBBRIANBRARRNS
.

+CLOSEFECRL
NP

cLos x

3
FAAERRRAERCBERRNNE
-

.
.
.
aXe

B2 *. €2
-

FILE

TYPE

*o -
B, o
®*INPUT CR
«CLTPLT
«UNBLOCKEC

YES
esesss
«(FECR
FRON EQR Hhuse .
CUTFUT *CE * .
Ets -
8 .
= .
B .
. -
. .
SOFECRA X ¢S .
ARARRQYARRRARUNLY -
- * -
# MCVE *1EOR * # .
* TC 10CS LABEL ¥Xases
- ARE A b
» *
RERRBABRERBARAR AN
-
.
.
.
.
.
-
-
.
-
.
.
.
sCL

. o
®. TYPE . OLTPUT
.. .
*, oF
*
FRCM_EOR wanw « INPUT
ENPUT LI
#CE  #.X.
* 2% .
EREE .

29 SENTH X
HEBARGLEREERTRRESE c2 g 28 .
*$RWORY cepas ot ., .
LR TR P P T PN B P ¥ REWIND », X
» REWIND EXeeosoaeots
. *  RuD=1 %4 OPTICN %

*

- *
AERARANBSRERERRAR
.

.
essssvessssenncnan

RARENLN
*SRWURU
L R At ]
*  REWINC ANC X e
»* UNLC2D -

L] *
REERANC SN RBAEHN
.

.

-

.

esessecessensasans

® Chart DE. Close Procedures

x#

-
*, Ca
LD
CHECK ',

» CHARACTER o
L)%, = -*

-, o
L -

*NQ
« {CLOSE)

Xo e

€6
EARRRD2ARRERBNERR
-

MOVE *lEQOF* #
TO IOCS LABEL #
AREA »
LABEL AREA -
RERRAERIRARAERRS

RS

Xe oo e

c?
HANBAEZEANRRNNREN
*

* ZERO REEL
* SEQUENCE

* NUMBER
*
*

LR XS

ERERRRRERERE SRR

Xeovosn

SA .
F2 ®, (8

-* L
o* FILE e

. .
E U 3
»
«CTFER

.
seassssXe

sesseseXe
.

x 22
ll!l!lei&!!iilil
-

* AOD +1 TO *
* EEL *
* SEOLENCE -
* *
* *

ARARRAREARERERR

CHECK
CrHARACTER
= %

*. o

e o
*
+NC(CLCEE)
«TC SENTJ
X

rnnnn

*CB *

K4
L
*

UT CR OLTFLT

SCLSA+7 09

eseX* TO FRA+1B

.
-

-
-
-

.
.
-
-
.
.
.

-
.
.
-
.

ses s

.
.
.
.
.
.
.
.
.
.
-
.
.
.
.
.
.
.
.
-
.
.
.

e*#Xeosesnnet
.

-o-X'

Fosoessoessosssssstoscerscvsosae

ERREEATEREAANAR AN
* SEY I-ADDR CF *
®SPRIME3(BLK t1)¢®

* CASE FILE IS
- 2-AREA *
RANTRANBERAAAEDER

secescscccscscsenct,

L N I I I N R I I R O IR N Y A N S AP P

l!illczllillliiez
*SWTMRU DGBS*
LR S T et 22 T et
WRITE TAPE
MARK

-
li!naiilu!liliiui

34
RREERHIRERARERREN
* MOVE I-C *
* IDENT AND ECR #
NMESSAGE TC *

CON *
*
L]

.
“ MESSAGE AREA .
RERRARBRBRBORERN .
. .
. .
. .
. .
. .
.
35 .
-
*a YES o
ALTERNATE .
.
o -t
L R
* NC
.
.
.
X

36
BERRRKIAEARNRNRRE
HSHALT CHAL1®
L R Y o B I 1
#LOCP TC PERMIT *
* CPERATCR TC #
#MOUNT NEwW REEL %
FREAERAERRREERENS

«START

"
(IN ‘-.-oao.-X‘-
* *

SPR

Sy

NC

X

1-AREA

IMER X 13
AEERACARRINENRERD
*SWTMRU
LS L B 28 2
% WRITE TAPE
. MARK

- .
AARERTAUISARARERRR
.

.
.
.

Elosanssss?
» *

SPRIME3
SRBRRASEABEE NN
*

-

IEEE T T

SET $——TRIG

TO BRANCH
* TO SPRIMER
»

EHEBERERRARER SRR

XKoo ss e

12
AERAEBSRERRRRRERS
*$—-wTG BDD1#
Lot BTN S8 B R 1
WRITE BLOCK #

*
o
m
r4
o
-
z
o

-

SXA ¥
Ca *e 22
¥ L
% EXIT 2 L
4, USEC

. .
, .

* YES

Xesans

23
RRRRRCANBARNARARD Y
* MOVE USERS .
#EXIT 2 ACODRESS *
* TO $SwBX EXIT #
* (BLCCK CE24) +#

-
»

L]
SEERBABARNBRBINS

X 24
SRsRREAREARBRIREN

2$SwBX DFBsS#*
L et

#SBR IN RE-ENTRY#®

AARBABEERARNERREE
-

Xe s e

2%
FREBRFQARANRRRRNY
- -
LR BE ¥ R DY BN e )
* USERS EXIT 2 =
- ROUT INE -

-

ERAERARERERAR RN

‘X...--...'RESTCRE X15 FOR#

KOCS. RETURN ASH*
BY DE24 #
C!lillili!!.i‘!li

37
-nulopgnuni|||¢|-

l SWAP BASE AND ’

% ALTERNATE L/0 @

- IDENTS -

- -

REPARRRRRRERNRREN
.

Xssoe

38
HERES YA NBAERB RN
.

»

# . SUETRACT 1 *

#*  FRCM SNOTE i

* MSG AREA »

* MESSAGE AREA #

RARABRABRAEERIONS
.

Xe s s

nuiunxq:ni.cicnag
*SNOTE DHA2%
[ R e B DY B
® WRITE CCNSOLE #
: MESSAGE :

EARARARABER AR RRAN

“ssecsscscsessancsssssersnaXeAT

nRAR

“cp *

* AL®
.
»

Open, Close, and End-of-Reel Procedures

X
.
-
.
.
.
-
-
.
.
.
.
.
.
.
.
.
-
.
.
.
.
-
.
-
-
.
-
.
.
.
.
.
-
.
-
.
.
-
-
.
.
.
.
.
.
.
.
-
-
-

.
-
.
.
.
.
.

*Xe
s *e 14

D LI
NO o% STANDARD #,
. .
%o LABEL %

-
e o
YES

EEEEE]

sCLS8 X 15
REREEDSHARARHARRY
* BLANK LAST SO *
® POSITIONS OF #
*{0CS LABEL AREA¥
#* AND MOVE IN *
*INTERNAL COUNTS#*
LI TR T TRy Y 2 )
-

MHe s o e

16
SRRRRESRERBSRRREN
MOVE USERS

-
»
* TO $SwWBX EXIT #
* (BLOCK DE18) *
- L]

*

ERERERERERBRR RN

X, 18
ARRRUBCSHEREEFERARS
#3SWBX DFBS®
LEE T S B 2 B B 3
#SBR IN RE-ENTRY®
+ EXIT. RESET =
® X15 FOR USER
‘."I‘Gl"'i"li'

Xeeonas

19
ERERAHSHEER AR ERR .
L] »

Lt P B 2L By Y
‘ USERS EXIT 1 *
ROUTINE *

-
1-;;;»:-:-&;:0-:;

Xs o000

20

SERUS JSHRAUBENBERS
"REENT DFGS#*
B B T 1 T e
'RESYORE X15 FOR®
#I0CSe RETURN AS#
* SET7 BY DE18 #
RRRRRRRNRRBERRRE RN

.

xe s o0

21
RERSUKSHIEE NI RN

*$WRITRU DGB2#
[t nd B S B 3

RRRRBBEERRRNAREREE

210 OPEN PROCEDURES
SENTA

" X
* WRITE LABEL
- *

s s e s

.
.
.
.
.
.
-
.
.
‘.
.
-
.
.
.
.
.
.
.
.
.
.
-
.

DE

61




DF FCOIHON ENTRY

$C

SUROPEN

LOP a1
ERRANBLRNNEBEE RN
- »

CALL ING SE-

RCM OPEN.CLOSE QUENCE AND
FEORL AN TABLE L INKAGE
ROLIN ﬁACROS ROUTINE
[T Yy
®OF # *OF *
* El1W * B2+
. LR
» -
. -
- -
. .
x SEXIT X €3

bt SBR INTC * # SEQ CHK CHAR, ¥
# A-ADDRESS OF # sesX® FRA, CHECK X
el SEXIT * . *CHAR TO CALLING*
* - * EA *
ARRARISARERRARNRE . ARAEAABARNS BB RRRS
. - .
. -

. .

. .

. - .

. . .

X o2 . X ca
SREARCLABRBNRARESY - RERRRCQARANEERAEAN
*$STLE CFBas . * SET A-ACODRESS #
T e S Lt . * QF SEXIT TO #
®CLEAR CHANNELS ®.scaee *POINT TO LOC OF*

#SAVE + SET X1S %
- »

SERSBTRIRERIRARAS

(1222 L2228 3

*CG *

. g1 % * Das

» » * »
212 )

-
- YO SROLIN

®in

€ x
ABRRRGLURRARRRY

ZERO BLOCK
CCUNT

LA RS

1
-
-
-
»
-
[
L]

BEBRBRBRRBREAERN

RURERR2ERNRERES R
# MCVE CALLING #

* NEXT CALLING %

* ADDRESS *

RERRRRRNBREERERNNY
-

Xeoo s

€S
ERARRRCOQARERARARAR
* ADJUST A—-ADOR *
# OF SEXIT TO »
#POINT TO LOC -
*CALL ING ADDRES"
- CHK CEAR »
EAEREERARANRRER RS
.

Xe o s

c&
ll.!iElelllllllI
u

' MOVE FRA
lADDRES< T0 X1§ i
*

-
-!'lli.i'lﬂ&!intu
-

CNECK CHAR
., =+C o
[ ot
LIS

NC

Xesese®

c8
RAERRC2ARRKARBS RN
*LOOK UP LINKAGE®
# TABLE ON_I-C *#
- CEVICE *
®  (ACTIVITY) %
* *

AERRARARABASERARGY
.

Me o s

c9
AARARH2UBRRRERREN
# SET FUNCTION *®
* AND ASSOCIATE *
® FUNCTION INTO *
# DOUBLE BRANCH *
* »
*

ARERRABRAAABAANS
-

Xo oo

X
J2  %. 1cC
» g,
*.
~1~ crECK CHAR.
.. .I.
-

sessenely

#4,)40R C *. CHAR-J «®

TERMINATICN
ROUTINE TC
CHECK FCR
TERM CHAR, ETC
r'TI1t

2OF ®
* Bas

LT I ]

- LR
* B3 ®,Xa
- .,
T2y .
$SEXITRU aXe
B3 *o t1

ot L
* ®.
NEXT CHECK %
]

:. o
YES

Xe oo &

12
FERRRCTRARRANARNRE
* SET TC ALLCw

%  OPERATIONS *
- »

SERAERBERSRAARRNS
-

Xesaae

13
ERRERDICRRAARR SR
#MOVE A-ADDRESS #
® CF SEXIY TC =
#* EXIT RCUTINE #
» »
* (BLOCK DF33) #
ARERBRERERBIRAAS
.

Xe oo

Ii'llE]Il'l“'l:g
*$SUBX CFES*
MACROF—#—S_#_f-N-S—ton
sso®EXIT AS SET BY ¥

- ®* BLOCK DF1S b

*

.
X HERERABARARNBERED
[EEY Y

* * «ECR
L] - .
LR .
» .
RET TQ .
MACRC -
-
‘l.ll.*‘l!i!.llllll.llI‘I
thUT
‘ ...-'
* R » lCA-I' EED[ *
* 2-AR o, $——-WTIG . ECE1 *

Beoeescesesenvacconsonoe?
* CUTPUT . *
#oesseeccsccsnasns
® 1-AR o $--BA+7 . BPC4 *
* 2-AR + $~-TRIG o BCD3 #
ARERERRARARARER XA RSN

csvsassat

$STI

ROUTINE TO
CLEAR CHANNELS

LE.sSC 21
!Iﬂledlll!a!la*'
-

* SER INTO *

*ENTER 10CS Exlfi
* (BLCCK CFa3)

*

ll.liiliil!!.l!ll
-
.
-
.

X 22
ARRRRCANESRRRARRS
*$CS15FS BAG3#*
L e e e I e
. CLEAR »
* CFHANNEL 1 *
- *
RERERERAEBRRRRRER

.

Xeoso e

23
ARREBCARERRARRRAE
‘!CSZSFS BAD1®
- _a- —E kR E—w
' LE AR *
b CFANNEL 2 .
L] -

ERERRANRERERERRNE
.

-
-
.
-

X

24
WARRREARRRANEANAS

-

#DISAELE NORMAL

#* ENTRY TC CHAN

®  CPERAT IONS

L]

ARRBARRARERERERRN
.

L EEE S

Xesaoes

2%
ERERBFLREBRARARRS

-
#SAVE USER'S X15%
*#ANC EXIT AS SETH*
% BY ELOCK DF21 »
AABABARBARARSARNN

.

.

.

X
(12}

EE Y]
ER X

AR AR AR AR B RN E AR R AR BN E R BN AR AR AR AR RN AN

»ASSEMBLE
NON OVERLAY
NON CVERLAY
EADER

*4 »PUNCH

+»CVERLAY~BEF 2ND LCAD.
«OVERLAY-AFT 2ND LCAD.

IR

X
AARRBER SR ER AR ERE AR

#1-AR+STPCLOS «DEA2®
22-ARLSTPCLOS «CEA2W
#3 RLLSEXITRU +CFE3#
#4 PLL.SDTFACT+11 +CBASW

%5 PRSEXITRU +CFEB3%
LR TR T TR I R 222 T e

® Chart DF. Linkage Routines

62

$PAHSK o DABIH

SENTA o DEAL®
SENTA o DEALN
SENTA o DBAL¥
$SPAKSK DABA®
SUROPENe DFG1W¥
SUROFEN. DFG1#%

OF

S »PRINTER $SUROFEN. G1*
ERRRABRRS R RABA AP RRA AR ARAAARERZ R AR R ARRE

SREENT

RQUTINE To
EXIT I0CS

ruEn

*DF

* BSX
LIRS
.

-

$SWBX

X 31
I!it’ss‘i'l&kllll

’ SBR INTO ‘
*ENTER 10CS EXIT#*
' {BLOCK DFa3) *
iiilll!!ili!!ll!*

Xe s o

32
Ili{lcslli!ll‘l!*

'RESTORE X1 70 i

#USER*S PREVIOLS*

' CONTEN

il}*lililliill!li
.

IR

SSWBXA X 33

AREERDSRERER AR
%EXIT TO ADDRESS*
®#AS SET BY 10CS #
#ROUTINE EXITED *
*  FROM OR BY *
# BLOCK DOF13 *
AEREREERRSBRR R RN

ROUTINE YO .
REENTER 10CS
rryy s

2DF *
* G5*
LS

Xe o v

41
ARERRCGEF BB ER XA RS
» *
= ®
#SAVE USER*S X1S%
* *

= *
BREEREREARERLEREN
.

Xe v

42
ARBURHSEERR RS
. *
*RESTORE X155 7O *
* JOCS PREVIOUS %
* CONTENTS *
»* »

*

ERRERAERRRRE LR
.

SSTLEXY

43
RERER JSEZEREREERE
* *
®* EXIT AS SET %
28Y BLOCK DF31. ¥

oR DF21 *

a *
FRERERAARRRR RS AN




READ LABFEL

(T2
220G *
* B1%

s x

$READRU X 0
RERFUD] RS RAERRLE
»

* SBR INTO
*  READ/WRITE
* EXIT
»
»

CER L E X T

EEARARRARR TR

Xewen

02
RERRBCIERSARRRREN
L]

M
®  BLANK OUT  ®
*  [0CS LABEL
* *
- L3
IXEEEIEEEEZSZS S22 S

Xe o s

03
ERRRAD]AARABRRENN
-

M
®  SET sLBCP  *
» TO REAC *
- *
* *
REXRAXATRRERRAERE

Xewae

TLEIN o4
ERBARC ] ARAXREARER
* *

*#MOVE X-CCNTRCL *

%FRCM [~0 ICENT ¥*Xsowws
» *

YO SLEOF

* *
ERERRCAAR NN ER SN

Xesaes

05
EARNEEIARALARERRS
EMVE CHAN STATUSH®*
#FROM [-0 ICENT #
*{R OR X)TO BA +¥%
EREX INSTRUCTION®
*BLOCKS DGO7,08 *
Vel REERRARERRE RO R

Xe s ane

fLLEOP 06
AERERGILERERRRARRS
13 *

* 1-0 REAC *
- OR WRITE -
» [3
* *
* *

ERRAAREARRARARS

EXe e e w e

* 07
[ *

* *

*

.

- .
.

.

X 09

EEJNRERERR
* .

- EA #*41 *
»

"
EEXRRRANAER

Xo o0 e

10
RARNRC ) AARRRNA TR
. »
*  EXIT AS SE€T *
» BY ELCCK *
* DGOl CR DC1t *
= .

.

EERRRXAEANEKNRR RN

VN

WRITE LABEL

*RERW
G *
* B2
.

Xe oo n

TWRITRU 1
REAREQOEEEFEREEE
»

i
»
»
% S8R INTO *
* READ/WRITE  *
* EXIT *
» *
EEEESE S SRS D)

Kesose

i2
REERRCOENRRNARR NN
#

*
SET SLBOP *
TC WRITE *
-
-
*

*
*
*
»
*

AARNREREXENE RN
.

sasee

.

TR

ceveee

29
HERRRCOFAEAANEENE
®SERROR EAALS
PRSIE NY T Jrai
% CORRECT ERROR *Xeee
*[F CORRECTABLE : BRA
-

AEEFRERANRARE RN RS
.
.

eessssenccenssenas

<8
RAREREORRREERANRE
*#S$ERROR EAAL*
RN N R DT T

¥eoosenseeX® CORRECT ERRCR ¥

BRANCH #IF CORRECTABLE *
» *

FURXRERANERRE RN

Xoeossosocessssscoscscssescnss

® Chart DG. General 1/0 Routines

$RWORU

REWIND

Ko s e %

X 21
AEERBEEIARRERARARES
- SBR _INTC *
* UTILITY EXIT
* CALLING SEG- ¥
* DCw *R* *
* *
RERBAERABRREAERRL NN

.
.

eXsosesve

SRWDRUA x

SRWDB

EARNRCTAHEEXERRERE
* STYCRE CALLING ¥
*ADORESS IN SET =
*  D-MOD INSTR *
* (ALOCK NG26) *
* L3

*

RERERABEARRRA LN

Xe oo e s

2%
EERRADIRNNEANER RN
* MOVE CHAN L
®STATUS FAQM [-0O%
®IDENT(R 0OR X)TCH¥*
*¥BA INSTRUCTICN #
% (BLOCK DG26) *
RERERREEERRIARNER

.

Xe oo e

26
AEREFCIARRERERF NN
*SET CONTENT OF #
*  CALLING DCw #
*# INTO D-MOD OF #*
* SRWDB *
* *
AR RARRSREREEE

Xeoeoe

27
EEABEFIERERERTANR
- *

* -0 UTILITY .
* COMMAND i
* *
* *
® [y

ERARRENEARARBEER

evssseeX

*
.
.
.

X 30
EREFRHIEARERRAE RN
* »
® EXIT AS SET *
*BY 8LOCK DG21, *
* NG29 OR DG30 ¥
* *

*

FEFRRREEAERER AN

esecssen

REWIND UNLOAD

rAnRE
*DG #
* Bax
= »

Xe s

SRWURU 22
REREABAERNRRENERE

®  SBR_INTO *

® UTILITY EXIT &

* CALLING SEQ- *

* ccw tve *

*

1 3

*
EERRBERGRERAE R

PROCESS ROLIN

EewE

®DG *

* Dax

2T T R AN

' [

* D& *.X.

* .,
xne .
SROLIN X

ERRRACARANRERNR

-

PEETTE T2

*
* READ CARD
* INTO 10CS
*  LABEL AREA
(3
*

ERBRBRERRERNNER

aXe o0

£4
- *

L3 *
*  BRANCH ANY *e
* *

= -
» *

-

-

.

.

.

X <

Fa » = 34
*
-

-

-

.

x 37

EXRERGLRUEBRRRRRR
®#MQOVE INFO FROM #
% RCLIN CARD TO *
* APPROPRIATE *
*INTERNAL F1ELDS*
*

*
HERERERRAENAR AR
.

X
RRREE
#DF »
* g3

LS

*

TC SEXITRU

Open, Close, and End-of-Reel Procedures

csceessssccacs

WRITE TAPE MARK

LA RZ 2
*DG *
* BS¥*
. »
B
SWTMRU 23
RREBEBSERRRTXERRE
*  SBR_INTO

*
® UTILITY EXIT %
* CALLING SEQ *
» oCw *M* »
- *
* -

BERERRSEEEDRNDE

lnlllgslliinllizz
*$ERROR EAAL*
L L bl O ST S B
«X* CORRECT ERROR #*
:!F CORRECTABLE :

AREARARREERERTR RN
.
.

Xeosvoeovveosovonossossesvens

35
ERRRRESERFRRRRRAN
[ "

* LJ

OVE »
BounceceeX®¥'2013 RLN * TOW

®SNOTE MSG ARCA #
* *

AREERREFEREERRBES
.

Xe s s

36
FEXRARCGSEERRRER RN
FSHALT DHAL®
EEE B T P EE Pt B
#HALT TO PERMIT #
& OPERATOR TO +
* RELOAD CARD #
FEERERRE RS RE SRR

DG

63




DH

SHA

X

cessereassrenn

SHAL

ERER
DH *
* Alw

X oo

LT o1
FRRRBALRRERARREER
® SBR IN I-ADDR ¥
*OF BRANCH INST *
#AT SHALTX. THIS®
* SEYS THE EXIT
®* AT BLOCK DHO8 #
REEABRAEERAREER RSN

.

.

eXeossasasane

X 02
RRARRD ISR RRE RN
*SNOTE DHA2*
L et B S el g Sk o
% TYPE CONTENTS #
# OF $ERFLD ON #
*CONSOLE PRINTER®
LI T T I s Y

Xs o000

03
REEARCIRBRERTRASN
% MOVE CONSOLE #
#  ENTRY ERROR #
- MESSAGE *
& 120183 CI* *
* TO SERFLD *
ARAABERBEREREE NN

.

.
-
.

X 04
ARAD ] RARRERRN
- READ
* CONSOQLE *
- PRINTER *
INTO
- SREPLY *
BRARERRRRAER R

E1l
. 1 *
* THE *
#* NO TRANSFER ®
% INDICATOR #
* ON »*

* 05

ExXe v e e

- *
*
NO

EXoe s 00

Fi * 06
] »
% 170 COND %

R
*DATA CHECK #
» *

»

* -

»
*NO
.

-

wxe

G1 * 07
* *

»
BRANCH ANY
»
» *
» »

*
=NO
.
.

eXaessssssoe

™ x o8
BRRSRH] SRR AR R R
* EXIT TO -
* LOCATION *
* SET 8Y -
*  BLOCK DHO1 -
- »
- *

BEREERRARBAER NN

.
-
.
.
.
.
.

s e s e et ss e st e e s sette st st b es

ERRRE

*OH *

* A2¥%
. »
»

-
.
.

SNOTE

X 1
RAERRAZRARRRBRAER
# SBR IN I-ADDR
*OF BRANCH INST #
*AT BLOCK DH1S. *
* THIS SETS THE #
*®* ROUTINES EXIT *
AREARRAREREERNRRN
.

.

.
secssnseXe
.
X 12
ARRB2EREERAR N
* TYPE THE *
% CONTENTS OF +
* SERFLD ON *
*  THE CONSOLE *
* PRINTER
REREREBERRREN
-

.

.

.

.

X

c2 # % 13
* *
- » NO
®*  BRANCH ANY  #.44e
* .
* » -
* * .

«YES

.

. .

. .

. .

x 14 .
RARRBRD2ARH AR AR NES -
*$CPERR DHG2# .
I-'—i—}—l—i—l—l—‘v -

+%XCONSOLE PRINTER®

* ERROR .

* ROUT INE * .

ARERREFRRERARREREE -
+«NO ERROR .«

. .

. .

. .

. .

.

X 15
RERFREDRHERRREB RS .
» EXIT TO .,
*  LOCATION . .
» SET BY *Xoeo
* BLOCK *

» OH11 *
HERRTFREERAREREERR

.

.

.

X

AREES
L 3 »
= »*
*
»
LE X2 L2
“DH &
* G2¥
* ¥

*

.

.

$CPERR X 21
RAEBBAGO2RRARAHAR RS
* *
* SBR_IN *
» SCPEX+S *
*  (SETS EXIT) =
* *
L2222 22222222222 )

.

.

.

.

X

H2 *® % 22
#+ DATA #
* CHECK, NO * YES
*#TRANSFER, BUSY %.
* OR 1r/0 =
* COND
* *

*

«NO

.

.

.

.

$CPEX X

24
EERRRORERERBERRE
* EXIT *
*  TO LOCATION #

%  BLOCK DH23 *

Chart DH. Message, Reply, Save, and Restore

64

#Xesoscesvncscsces
*

eeX* (SETS EXIT TO

23
RREURHIAR AR BN RN
* SUB +17 FROM
* SCPEX+S

* RETURN 7O 1/0

* INSTRUCTION)

EERREENAAEN RN N
.

*
-
*
-
*
*

.
.
.
.
.
.
.

seas®

tr st e s s s etes s et ses e

sersesseer s et et

$PS

YES

3PSX

EEEE
*DH *
* A4
% *

*
«SAVE
.
.

v X 3
EEZ LV YSES ISR 2
* SBR_IN I—ADDR
* OF THE BRANCH
*INSTRUCTION AT
* SPSX
* (8LOCK DH39)
FEEREERRERERREER
.

KK K

Xeo oo e

32
EEEERDLAERARNER NN
* SET vy *
* CODE i0ol1 *
* $ *
* P *
* S *
RERERRRERRERRERRR

AXe o000

Ca
*

* ZERO *
BALANCE *
»

* *
* *

xo o

34
HREARDL WA RN RN
* SET v v ¥
* CODE 101 *
* $ *
» P o®
* S %
HEARERRERTREEEERE
N
.
.
ceereseXe
.
X

Ea * % 35

*

®  EQUAL
*  INDICATOR
*
»* *

* *

37
AEERNGLEERREERERE
*

»
*  ZERO UNITS *
* POSITION . OF #
* CODE *
* -
HEREREREERERRERRE

.

.

.
cscesseXe

.

X 38
REFERHLBRRER R ERR
* *
* DOUBLE *
. UNITS -
* POSITION OF *
* CoDE *
AR RN R N
.

X 39
ARRERJLERRARREBRR
* EXIT TO *
* LOCATION SET #
* BY BLOCK DH31 #
* »
-
*

*
ERERRBRRAREER LS

ON

LI

P A I P R B e L R R R R T

Euxun

#DH #

* ASH*
(i

*
+RESTORE

41
REENRASKERXRKRNAS
* COMPARE *
* $PS YO $101 *
* (RESTORE Hl, ¥
*  LOW, EQUAL) ¥

»
*

*
FRURARAREARRRRAR
.

IR

42
RABERDSEAAREERERE
* ZEROQ  AND *
* ADD $PS-1 TO *
* 1 *

1
* (RESTORE ZERO *
* BALANCE) *
R e T R R T

p4:] NZB
vvv v v
L 102 102
vvv v v
101 101
VvV v v
H 100 100

V OVER CHARACTER
INDICATES WORD MARK




Error Routines
LOOKUP OF FILE REFERENCE ADDRESS

The table of file reference addresses is used by the
tape error routine to look up (low or equal) the start-
ing address of a file reference table knowing only the
file identification (channel and unit).

The table is in order by unit number (9 to 0) and
holds ten or twenty entries, depending on whether
there are one or two channels operative. Each entry is
a seven-position pcw. The first five positions (function)
hold a file reference address or, for an inactive file,
blanks. The sixth and seventh position (table argu-
ment) identify channel and unit respectively. The for-
mat of the table of file reference addresses is shown for
two-channel operation in Figure 5.

Label Operation Operand Notes
DCW bbbbb0 & Channel 2, unit 0
bCw bbbbb(Ps Channel 1, unit 0
DCW bbbbb9 1 Channel 2, unit 9
DCW bbbbb9% Channel 1, unit 9
$CU EQU *-1

Figure 5. Table of File Reference Addresses

The address of the table argument at the start of
a table look-up operation is location scu. The table is
searched until a match is made on file identification.
The function of the matching entry contains the start-
ing address of the file reference table for the file corre-
sponding to the search argument. Note that the percent
sign (% ) and lozenge (1) for channel-mode is used
regardless of whether the assembly is overlap or non-
overlap; their collating sequence is lower than an at-
sign (@) or asterisk (*), respectively. ‘

Tape Error Rovtine — Part 1

Block EAO1, $ERROR: The contents of the B-reg-
ister are stored in the I-address of the branch instruc-
tion at sERex (normal exit at EB29). The contents of the
B-register are decremented by 1 to get the address of
the low-order character of the Channel BA or BEX in-
struction, and are then stored in the A-address of a
move instruction labeled sErENT, block EA02.

Block EA02, $ERENT: A move instruction, initial-
ized by block Eao1, is executed. Its execution places
the Channel BA or BEX instruction in an area labeled
sERBA (block EA23). After the move is executed, the
content of the A-register, which is now the address of
the low-order character of the instruction preceding

the Channel BA or BEX instruction, is stored in the A-
address of a move instruction at serpu, block EAo04.
This initializes a loop which gets the 1/0 instruction to
sUG (label of the re-execute area). The loop is nec-
essary because of the instruction format of two-area file
schedulers.

Block EA03: A word mark is cleared at sjuc. This
initializes the instruction length test.

Block EA04, $ERPU: A move instruction is executed.
If entered from block EA03, the instruction preceding
the Channel BA or BEX instruction is moved to sjuc
(re-execute area ). If entered from block Ea0s, it moves
the instruction preceding the last one it moved to sjuc
(re-execute area). A sAR instruction is executed to re-
initialize the move at serpU for another pass, if required.

Block EA05: A test is made to determine if the last
instruction moved to sjuc is ten characters in length,
If it is, control goes to sEr10 (block EA10).

Block EA06: A test is made to determine if the in-
struction at sjuc is a 5-character instruction. If it is not
five characters. in length, control goes to block. Ea04
to move another instruction to sjuc.

Block EA07: A move instruction is executed to left
justify the 5-character 10 instruction in the re-execute
area. The label sjuc) now refers to the operation code
of the 1/0 instruction. A NoP word mark is moved to the
location immediately following the instruction to allow
its. proper execution. » ‘

Block EA08: The console message field sERFLD) is
set to 15 characters in length.

Block EA09: The 5-character vo instruction is moved
to the console message field sErFLD). Control goes to
block Ea1s2.

Block EA10, 3ERIO: The console message field
(SERFLD) is set to 21 characters in length.

Block EA1l: The 10-character 1/0 instruction . -is
moved to the console message field.

Block EA12: If the interrupt routine stores the 1411
status indicators because of URREQUEST, INQUIRY, 1414
on Channel 1 or 2, or Disk on Channel 1 or 2, control
goes to block Ea14.

Block EA13: The 1411 status (compare and zero
balance indicators) is saved by a subroutine labeled
$PSV. ;

Block EA14: The channel and unit of the tape file
being checked are moved to sarc.

Block EAIS5: A table look-up instruction is executed.
The search argument is sarG (channel and unit) and
the table is labeled scu. The table and its description
are shown in Figure 5. The function found is the file
reference address (address of file name label). The
contents of the B-register (low-order address of the
function) are stored in the A-address of the move in-
struction executed in block Ea1s.

Error Routines 65




Block EA16: The retry sercm and noise record
(SERCT-2) counts are zeroed.

Block EAI7: The I-address of the branch instruction
at sEREX is moved to the B-address of a BCE instruction
at serQLB (block Ec45). This initializes a test which
determines if this entry to the error routine was from a
label record read operation.

Block EAI8: A word mark is set at serNr+13 (block
EB11), a 1-time switch used to prevent multiple print-
outs of the not ready message. A word mark is cleared
at sERsk, a 1-time switch which is used to disable the
skip and blank instruction at block Ec15 on the first
pass. The execution of the cw instruction also initial-
izes a sAR instruction. The contents of the A-register
are stored in the I-address of the branch at sErBa. This
initializes the branch at serBa (block Ea23) to allow
entry to block Ea19.

Block EAI9: The move instruction, initialized by
block Ea1s, is executed. It moves the file reference
address to the A-address of a move instruction at sERFA
(block EB31). This move initializes the exceptional con-
dition (wLr or EoF condition) segment of the error
routine. This segment is labeled seroLy (block EB30).

Block EA20: The subroutine sERCHOP initializes the
BCB at block EA21 in order to check the proper channel
for the file under test.

Block EA2I: A test is made to determine if the busy
10 channel status indicator is on. If the channel is not
busy, control goes to block EA26.

Block EA22, $JUG: An attempt is made to re-execute
the 1/0 instruction.

Block EA23, $ERBA: A test, initialized by blocks
EA02 and EA18, is made. This causes processing to stop
until the 1/0 operation is terminated. The test instruc-
tion has the same operation-code and d-modifier as the
Channel Ba or BEX instruction. If any of the indicators
tested are on, control returns to block EA19.

Block EA24: The BA instruction at block Ea2s is
initialized, to check the proper channel for the file
under test.

Block EA25: A Ba instruction to the next sequential
instruction is executed to satisfy the 170 channel status
test before another 1/0 operation, Control goes to sERLV
(block EB26).

Block EA26: A test is made to determine on which
channel the 1/0 operation was executed. If it occurred
on Channel 1, control goes to block eso1. If it occurred
on Channel 2, Channel 1 must be checked and cleared
before proceeding so that the error routine may use the
console printer.

Block EA27: The address of the instruction following
the Channel 2 Ba or BEX instruction is stored in the I-
address of a branch at swrcx (block EA35) to initialize
the return to finish checking the Channel 2 operation.

66

Block EA28: A test is made on Channel 1 to deter-
mine if an overlapped operation is in progress or has
been completed and not checked. If neither condition
exists, Channel 1 is clear and control proceeds to block
EB01 where further checking of the 1/0 operation is
performed.

Block EA29, SLMWTGR: The I-address of a branch
instruction at swrcx is decremented by 7. This sets
swrex (block EA3s) to return to the Channel 2 Ba or
BEX instruction.

Block EA30: The I-address of the branch at scsisFx
is saved. This is necessary as this linkage to the Chan-
nel 1 file scheduler may be destroyed if the error routine
forces the Channel 1 vo operation.

Block EA31: If the interrupt routine stores the 1411
status indicators because of URREQUEST, INQUIRY, 1414
on Channel 1 or 2, or pisk on Channel 1 or 2, control
goes to block EA33.

Block EA32: The zero balance and compare indi-
cators are restored.

Block EA33: Channel one is cleared of all unchecked
1/0 operations now in progress or already completed by
giving control to scsisFs.

Block EA34: The linkage saved in block Ea30 is re-
stored.

Block EA35, $SWTGX: Control returns to the error
routine (sERROR, block £a01) via the Channel 2 BA or
BEX instruction. A brief summary of what has occurred
follows:

The error routine was entered for a Channel 2 file.
Once in the routine, it was determined that Channel
1 must be cleared and checked. Linkage to the Chan-
nel 2 file was saved and the Channel 1 operations were
cleared and checked. The error routine was re-entered
for the Channel 2 file.

Block EA36, SERCHOP: The address of the opera-
tion code of the BEXx instruction being initialized is
placed in the B-address of a move instruction at EA37.
The address is also stored in the I-address of the exit
branch instruction at block EA3s.

Block EA37: The move instruction, initialized by
block Ea36, is executed. It moves the operation code
of the Channel BA or BEX instruction to the operation
code of the BEX instruction being set to test the proper
channel.

Block EA38: A branch is executed to the location set
by block £ass.

Tape Error Routine — Part 2

Block EBOI: The BNR instruction at block EBo2 is
initialized to test the proper channel for the file being
checked.




Block EB02: A test is made to determine if the not
ready 170 channel status indicator is on. If the unit is
not ready, control goes to sernr (block B10).

Block EB02.1: With a non-overlapped assembly,
block £B03 does not exist. Instead, for an input file, the
contents of the B-register, after the read operation, are
stored in sErRNOIs to initialize the noise length record
test. This is accomplished in the file scheduler before
checking the 1o operation.

Block EBO3: A test is made to determine on which
channel the 1o instruction was executed. If it was
Channel 1, the contents of the E-register are stored
in serNois. If Channel 2, the contents of the F-register
are stored in serNois. This initializes the noise length
record test starting at block Eco4.

Block EB04: The BEF instruction at block EBo5 is ini-
tialized to test the proper channel for the file being
checked.

Block EBO5: A test is made to determine if the 1o
condition channel status indicator is on. If it is, a
branch to serer (block EB14) is executed.

Block EB06: The BER instruction at block EBo7 is
initialized to check the proper channel for the file
being tested.

Block EBO7: A test is made to determine if the data
check 1/0 channel status indicator is on. If it is, a
branch to serbc (block Eco1), is executed.

Block EBO0S: A test is made to determine if the 10
operation was a read instruction. If it was, a branch to
block EB16 is executed.

Block EB09: The zero length record message,
“20117 ZLR,” is moved to the console message field, seRFLD.
This message indicates that the first character in the
core storage area used for a write operation was a
group mark/word mark. This condition sets the wLR
indicator which caused the entry to the error routine.
A branch to seraLT (block EB18) is executed.

Block EBI0, $ERNR: (Entry from block Esoz.) The
not-ready message, “10100 NR,” is moved to the console
message field $ERFLD).

Block EBI11: Tf a word mark exists at sERNR+13, a
branch is executed to block es12. If not, control goes to
block EB13. The word mark over the branch operation
acts as a 1-time switch and prevents multiple print-outs
of the not ready message.

Block EBI2: The contents of serFLD (not-ready mes-
sage) are typed on the console printer.

Block EBI13: The word mark at serNR+13 is cleared
to prevent typing multiple not ready messages. A
branch to sjuc (block EA22) is executed.

Block EB14, $EREF: The address of seoru (address
of end of reel routine) is stored in serap. The contents
of sEraD may be used by the error routine to initialize
linkage for exceptional conditions (WLR or EOF).

Block EBI15: A test is made to determine if the Eor
condition was tested by the Channel Ba or BEX instruc-
tion. If it was, the error routine must set up linkage
for the Eor exceptional condition and control goes to
sERDLY ( block EB30). If EOF was not tested, it indicates
the main program treats this condition and control goes
to sErRLV ( block EB26).

Block EBI6: A test is made to determine if the read
operation, which is generating wLr checks, has been
retried ten times. If it has not, control goes to sErpcC
for another attempt at correcting it. If it has been
retried ten times, it is considered by 10cs to be un-
correctable and control goes to block EB17 to initialize
the exceptional condition linkage for the wLr condition.

Block EBI17: The file reference address (address of
the file name label) is moved to serap. A +33 is sub-
tracted from the contents of sERAD to set up linkage
to the user’s wrong-length-record routine. Control goes
to seroLY (block EB30).

Block EB1S, $ERHLT: The contents of seRFLD ( con-
sole message) are typed out on the console printer.
The message can indicate a label read error, zero length
record, or data check on read. A wait loop is entered,
allowing the operator to select an option and enter it
through the console printer. After the option is entered,
control passes to block EB20.

Block EB20: The first character of the option entry
(content of the high-order location of smepLY) is
moved to the d-modifier position of a BCE instruction.
This initializes the option test instruction.

Block EB21: The option test instruction is a BCE
which compares the contents of a location in the
seROPTN field to the d-modifier set by block Es2o.

The contents of the seropTN field (six characters)
are modified by the p1ocs read error entry in the fol-
lowing manner:

DIOCS READERROR Entry $sEROPTN Field

No entry — no * scan or dump routines generated @bbSRPb@

SCAN — no dump routine generated @Db*SRPb@
TAPE, CU —no * scan routine generated @DbSRPD@
SCAN, TAPE, CU — both generated @D*SRPb@

The character at sERoPTN-1 is compared to P. If this
d-modifier is a P, 1ocs ignores the error and control
goes to sERLV ( block EB26) to exit the error routine.

Block EB22: If the d-modifier is an R, 1ocs will
again attempt to execute the 1/0 operation and control
goes to serpc (block Eco1).

Block EB23: If the d-modifier is an S, 1ocs will ignore
the 1/0 operation in error and will read in the next
record or block of records. Control goes to syuc (block
EA22). :

Block EB24: If the d-modifier is an asterisk and scan
has been specified in the procs READERROR entry, 10Cs

Error Routines 67




will type out the location(s) of the asterisk(s) in the
record. Control goes to serscN (block Ecs1).

Block EB25: If the d-modifier is a D and a dump
tape has been specified in the procs READERROR entry,
‘1ocs will write the record in error on the specified
dump tape. Control then goes to serpmp-19 (block
ec23 ). If none of the option branches are taken, control
goes to seraLT (block EB18) to notify the operator
that another option must be selected.

Blocks EB26, $ERLV and EB27: If the error routine
saves the 1411 status indicators they are restored be-
fore exiting from the routine. A branch to serex (block
EB29) is executed.

Block EB29, $EREX: The I-address of the branch
at sEREX is normally that address which had been set
at block eao1serrOR. If, however, an exceptional con-
dition (WLR or EOF) exists for a one-area tape file, the
I-address is the file reference address (address of
file name) minus seven. The branch is executed.

Block EB30, $ERDLY: The I-address of the branch
at sEREX is moved to the I-address of the branch instruc-
tion at sEReX + 7. The A-address of a move instruction
labeled sErFA is incremented by 18.

Block EB31, $SERFA: A move instruction, initialized
by blocks EA19 and EB30, moves the contents of the file
reference address + 18 (address of serex + 5 for a one-
area file or the address of s--TriG+5 for a two-area file)
to the C-address of a sBR instruction executed in block
EB33.

Block EB32: The contents of seraD (address of sEoRU
for EoF condition or the file reference address —33
for wir condition) are moved to the I-address of a
branch located at file reference address —7.

Block EB33: The file reference address —7 is stored
in the address set by block EB31.

Block EB34: The address of the nop, preceding a
one-area tape file 170 instruction, is moved to the I-
address of a branch instruction located at sEREX + 14.

Block EB35: A test is made to determine if the 170
instruction was a read operation. If it was, control goes
to serLv (block EB26).

Block EB36: The 1/0 channel status test instruction,
executed at block EB37, is initialized to check channel.

Block EB37: This block is entered if the vo instruc-
tion was a write operation and the Eor o condition
exists. A test is made to determine if the data check
ro channel status indicator is on. If it is, the record
just written on tape is in error and control goes to
serpC (block EC01) to attempt to correct it. If it is not,
control goes to the error routine exit coding at sErLv

(block EB26).

Tape Error Routine — Part 3
Block EC01, $ERDC: A test is made to determine if
the vo instruction is a write tape mark operation. If

68

it is, the noise record sequence starting at block Eco2
is bypassed and control goes to seru+7 (block Ecos)
to initialize for a re-execute attempt or to type a con-
sole message and enter a wait loop for operator action.

Block EC02: The 5-character starting address of the
Vo area, specified by the 1o instruction, is placed in
SERFLD + 14 through serFLD+18. This operation initializes
the asterisk scan routine.

" Block EC03: The starting address of the 10 area is
placed in the B-address of a write instruction at sErRpA
(block Ec27). This initializes the dump routine to
write the record, or block of records, in error, on the
specified dump tape (specified by procs READERROR
ENTRY ).

Block EC04: The starting address of the vo area is
placed in sersL. This initializes the noise length record
test.

Block ECO05: The contents of sernois (contents of
E- or F-register as set by block EB03) are subtracted
from the contents of serBL (the starting address of the
v0 area ). The contents of serBL, after the subtract in-
struction is executed, is a negative number equal to
the number of characters read into core plus one.

Block EC06: This block exists only for a non-over-
lapped 10Ccs assembly. The noise record test is by-
passed on a non-overlapped write tape operation as
SERNOIS is not initialized for a noise record test.

Block EC07: The contents of sergL are compared to
—13. If the number of characters read is 13 or more,
the high compare indicator is set. A branch high is
executed; if the branch is taken, 1ocs does not con-
sider the record a noise record and control goes to
serH+7 (block Eco8). If the number of characters read
is 12 or less, 10cs considers the record a noise record
and control passes to block Ecos.

Block EC08, $SERH+7: The contents of $sERBL are
incremented by 1, making it equal to the number of
characters read into core. The record length (contents
of serBL) is included in the typing of read data check
messages. The retry counter $seErcm is incremented by
1 to accumulate the number of executions of the 10
instruction.

Block EC09: A test is made to determine if the retry
counter is equal to 20. If it is, it indicates that the 10
operation was executed 20 times in an attempt to cor-
rect the error but the failure still exists, and control
goes to sercTL ( block Ec38).

Block EC10: The X-control field of the 1/0 instruc-
tion is moved to the X-control field of the skip and
blank instruction at sersk (block £c15). The X-control
field of the 1o instruction is moved to the X-control
field of the backspace instruction (block eci1). This
initializes the instructions for execution on the proper
channel and unit,




Block EC11: The backspace instruction (initialized
by block Ec10) is executed.

Block EC12: The branch any instruction, executed
in block Ec13, is initialized to check the proper channel.

Block EC13: A branch any instruction is executed.
It is primarily to satisfy the 1/0 channel status test re-
quirements since, at this point in the error routine, no
1/0 channel status indicators should be on. If the branch
is taken, an attempt is made to re-execute the back-
space and control passes to block Eci1.

Block EC14: If a word mark does not exist at sERsk
(block Eci15), the skip and blank instruction is bypassed
and control goes to block Ecis.

Block EC15, $ERSK: A skip and blank instruction,
initialized by block Ec1o, is executed.

Block EC16, SERCHOP: The branch any instruction
at block Ec17 is initialized to check the proper channel.

Block EC17: A branch any instruction is executed.
If the branch is taken, control returns to sersk (block
EC15 ) to re-execute the skip instruction. The instruction
satisfies the 1/0 channel status test.

Block ECI8: A word mark is set at sersk (block
Ec15). This sets the one-time switch (block Eci4) off
to allow the execution of the skip instruction on addi-
tional re-execute passes. Control goes to sjuc (block
EA22).

Block EC19: The noise record count, sSERCT-2, is in-
cremented by 1 to accumulate the number of consecu-
tive noise records.

Block EC20: A test is made to determine if ten con-
secutive noise length records have been read. If not,
control goes to sjuc (block EA22) to re-execute the 170
instruction.

Block EC21: The noise record counter, SERCT-2, is
set to zero.

Block EC22: A noise length record message is moved
to the console message area, serRrFLD. Control goes to
serH (block Ec41).

Block 23, SERDMP—19: This block is entered from
block EB2s (pump option). The data check message,
“60113 DCK,” is moved to the console message field,
serrFLD. The message indicates that the record in error
was read 20 times without success. A waiting loop was
entered after typing a read data check message, and
the operator specified the dump option. Control goes to
block Ec2s.

Block EC24, SERDMP: This block is entered only if
the operand of the procs READERROR entry is TAPE,CU.
The contents of the console message field, serFLD, are
changed from “60113 pck” to “10113 pck.” The new
message indicates the writing of the error record on
the dump tape is the result of the procs specifications
and not because of operator action.

Block EC25: A write tape instruction is executed on
the channel and unit specified by the p1ocs READERROR
entry. The data written are the contents of the console
message field, sERFLD.

Block EC26: A branch any is executed to the next
sequential instruction. This satisfies the 1/0 channel
status test requirements.

Block EC27, $SERDA: A write tape instruction is exe-
cuted on the channel and unit specified by the procs
READERROR entry. The record in error is written on
the dump tape.

Block EC28: A branch any is executed to the next
sequential instruction. This satisfies the o channel
status test requirements.

Block EC29: A test is made to determine if the
character at seropTN is a blank. If it is, it indi-
cates that the dump routine was entered via the
option test sequence; 10cs will retype the initial error
message and allow the operator to select another
option. Control, in this case, goes to serctL (block
Ecs3s). If it is not a blank, it indicates that 1ocs has
automatically written the record in error on the procs
specified dump tape and control passes to block Ecso
to type out an auto-dump data check message.

Block EC30: The contents of the console message
field (auto-dump message) are typed out. Control goes
to sjuc (block EA22) to read the next record.

Block EC31, $ERSCN: This sequence of coding does
not exist if the procs READERROR entry does not specify
scaN, It is entered from the option test sequence
(block EB24) if the operator selects the *scan option.

Word marks are set in sErFLD to facilitate the move
instructions used in the routine.

Block EC32: A move instruction is executed which
places the starting address of the 1o area (contents
of serFLD+14 through serFLD+18) in the B-address of
a BCE instruction at block £c33. The starting address of
the 1/0 area was placed in sERFLD+14 through SERFLD +18
by a move instruction at block Eco2.

Block EC33: A test is made to determine if the loca-
tion specified by the B-address of the BCE instruction
(character under test) contains an asterisk. If it does,
control goes to block ec34. If it does not, control goes
to block Ecss. ,

Block EC34, $ERPA: The console message field is
set to five characters in length. The location of the
asterisk is moved to the console message.

Block EC35: The location of the asterisk is typed
by the console printer.

Block EC36: The B-address of the BCE instruction
is incremented by +1. This initializes the BCE to test
the next location. The record length field <sERFLD+25)
is decremented by one. The record length was placed

Error Routines 69



in sERFLD+21 through sErFLD+25 by a move instruction
at block ec43.

Block EC37: A test is made to determine if the sub-
tract instruction executed in block Ecse turned on the
zero balance indicator. If it did, it indicates that all
characters were tested and control passes to sERCTL
(block Ec38). If the zero balance indicator is not on,
control returns to block Ecas to test another character.

Block EC38, $ERCTL: The retry counter (SERCT)
is set to zero.

Block EC39: A test is made to determine if the vo
operation was a read instruction. If it was, control goes
to block c43.

Block EC40: “20114 pck” is moved to the console
message field, serFLp. This message indicates a data
check on a write tape or write tape mark operation.
10Cs first backspaced the tape and attempted to rewrite
it but the error persisted. A backspace-skip-rewrite
sequence was executed 18 times but the record could
not be written successfully.

Block EC41, $ERH: A branch is executed to sHALT.
The message in the console message field, serFLD, is
typed and a wait loop is entered to allow operator
action. The only option available is to retry the opera-
tion. When the operator selects the option, control goes
to serH+7 (block ECo8).

Block EC43: The contents of sersL (record length)
are moved to the console message seErFLD+25). This is
initialization for the asterisk scan routine. The record
length is included in the typing of the read data check
message,

Block EC44: “40119 LRE” is moved to the console mes-

sage, sERFLD. This message indicates that the error -

occurred while reading a label.

Block EC45, SERQLB: A test is made to determine
if the /0 operation in error was a label read. If it was,
control goes to serHLT (block EB18) to type the label
read message.

Block EC46: “60113 pck” is moved to the console mes-
sage field, serFLD. The message indicates a tape read
error. 10cs has attempted to read the record success-
fully 20 times but the error persists.

Block EC47: A test is made to determine if 10Cs is to
automatically write the error record on the p1ocs-speci-
fied dump tape. If it is, control goes to serbmp. Other-
wise, control goes to seruLT (block EB18) where the
contents of the console message field, serFLD, are typed
and a wait loop is entered, allowing operator inter-
vention.

Unit Record Error Routine

Block EDO1, $URERR: The contents of the B-regis-
ter are stored in the I-address of a branch instruction at

70

sUREXIT (block Ep34). This initializes the routine’s exit.
The contents of the B-register are stored in the B-ad-
dress of a compare instruction at surQe (block Ep27).
This initializes a test made in the reader EOF sequence
of the error routine.

Block ED02: The contents of the B-register are decre-
mented by +7 to obtain the op-code address of the
Channel Ba or BEX instruction (the instruction which
branched to the error routine). This address is stored
in the A-address of a move instruction at surpxup

(block Epos ).

Block ED03, $URENT: A message switch is set on
by setting a word mark at surNr+13 (op-code address
of a branch to sNoTE at block Ep29). The switch is used
to prevent multiple print-outs of the not ready message.

Block ED04: An area is set up for the re-execution of
the vo instruction. The instruction may be of a 2- or
10-character format.

NOP ($URBAN -11)
10-character I/0O instruction
Nxxxxxxxxxx

$URBAN -1

2-character I70 instruction

Block ED05, $URPKUP: The move instruction, ini-
tialized in block Epo2, is executed. It moves the opera-
tion code of the Channel Ba or BEX instruction to the
operation code location of the BaA instruction at suRBAN
(block Ep33) to check the proper channel. The 1/0 in-
struction is moved right-to-left to the re-execute area
at surBaN-11 ( block Ep32).

Block ED06, $URANY: The BcB instruction at block
EDO? is initialized to check the proper channel.

Block EDO7: A test is made to determine if the unit
was busy at the time the /0 instruction was attempted.
If it was, control goes to surBan-11 (block ED32) to
re-execute the 1/0 instruction.

Block ED08: The BEX instruction at block Ep09 is
initialized to check the proper channel.

Block EDO09: A test is made to determine if any 170
channel status indicator (excluding wir) is on. If an
indicator is on, the load mode test at block Ep10 is by-
passed and control goes to block Ep11 via a BXPA in-
struction.

Block EDIO: A test is made to determine if the 1o
instruction is a 10-character instruction executed in
load mode. If it is, control goes to surexir (block Ep34)
to exit from the routine since wrong length records
occurring in load mode have little significance.

Block EDI1: Channel 1 is cleared of the 1/0 opera-
tion and control passes to block Ep12.




Block EDI2: A wrong length record message, “20114
wLR,” and the 10 instruction are moved to the console
message field, serFLD.

Blocks ED13, EDI14: A test is made to determine if
the 1/0 instruction is 10 characters in length. If it is not,
it must be a 2-character instruction and the message in
the console message field, serFLp is shifted 8 places to
the left so that the message is left justified in sErFLD.

Block EDI15: The BwL instruction at block Ep16 is
initialized to check the proper channel.

Block EDI16: A test is made to determine if the
wrong length record 170 channel status indicator is on.
If it is, control goes to surTy (block ED35) where a
wrong length record message is typed out and a wait
loop is entered to enable operator action.

Block EDI7: A data check message, “20116 DCK,” is
moved to the console message field, sErFLD.

Block ED18: The BER instruction at block Ep19 is ini-
tialized to check the proper channel.

Block EDI9: A test is made to determine if the data
check 170 channel status indicator is on. If it is, control
goes to surnck ( block Ep37).

Block ED20: A message, “20143 sTK,” indicating a pro-
gramming error, is moved to the console message field,
SERFLD.

Block ED21: The BNT instruction at block Ep22 is
initialized to check the proper channel.

Block ED22: A test is made to determine if the no
transfer 1/0 channel status indicator is on. If it is, it
indicates a programming error in the object program,
and control goes to sURTY to type the program error
message and enter a wait loop for operator action.

Block ED23: The BNR instruction at Ep24 is initialized
to check the proper channel.

Block ED24: A test is made to determine if the not-
ready 1/0 channel status indicator is on. If it is, the unit
is not ready and control goes to surnr (block Ep28).
If it is ready, the /o channel status indicator which
caused this entry to the error routine is the o condi-
tion indicator since at this point all others are off.

Block ED25: A message, “20115 LLC,” indicating that
the last line printed or the last card punched contained
an error, is moved to the console message field, sERFLD.

Block ED26: A test is made to determine if the 170
instruction is a 10-character print or punch instruction.
If it is, control goes to surty (block Ep3s) to type the
message assembled in block Ep2s and enter a wait loop
for operator action.

Block ED27, $URQE: A test is made to determine if
the Channel BaA or BEX instruction is followed sequen-
tially by a BEX instruction on the same channel. If it is,
10Gs assumes that the user checks for EoF on the reader
and control goes to surexit (block ED34) to exit the
routine.

Block ED28, $URNR: This block is entered if the
unit is not ready or if the reader is at Eor and the user
does not test it. A not-ready message is moved to the
console message field, SERFLD.

Block ED29, SURNR+13: If a word mark is in loca-
tion sURNR+13, it indicates that this is the first attempt
to type-out the not ready message and control passes
to block Epso. If the word mark does not exist, it indi-
cates that the message has been typed once for this
condition and the write console printer routine is by-
passed to prevent multiple type-outs of the not ready
message. Control goes to block Eps1.

Block ED30: The not ready message, “10100 NR,” is
typed by the console printer.

Block ED31: The word mark at sUrRNR+13 is cleared
and control goes to sURBAN-11 to re-attempt the execu-
tion of the ro instruction. A loop in the error routine
exists until the device is made ready, at which time the
1/0 instruction is executed.

Block ED32, $URBAN —11: An attempt is made to
execute the 1/0 instruction.

Block ED33, $URBAN: A test is made to determine
if any o channel status indicators are on. If none are
on, the operation has been performed successfully and
control passes to surexrr ( block Ep34) to exit from the
routine. If any are on, control returns to surany ( block
ED06 ) to determine which 1/0 condition exists and take
appropriate action.

Block ED34, $UREXIT: A branch is executed to the
location set by block Epo1.

Block ED35, 3URTY: The message switch is set on
(sw at sURNR+13) so that a not ready message may be
printed, if that condition exists, after the operator re-
turns control to the error routine.

Block ED36: The contents of the console message
field, serFLD, are typed out. A wait loop is entered until
the operator requests the option of a re-execution of the
ro instruction. He does this by first pressing the INQUIRY
REQUEST key and then the iNQuIRY RELEASE key. No
code word is necessary. Control goes to $URBAN-11
(block Ep3z).

Block ED37, $URDCK: This block is entered after
it is determined that the data check vo channel status
indicator is on. If the data check occurred on a card
read operation, control returns to surty (block Ep3s)
to type a data check message and enter a wait loop for
operator action.

Blocks ED38 and ED39: A +1 is added to a counter
and a test is made to determine if the count is odd
or even. If odd, it indicates that an attempt has not
been made to correct the data check and control goes
to surBaN-11 ( block ED32) to re-execute the instruction.
If even, it indicates the operation has been tried twice
and is still in error and control goes to surTy (block

Error Routines 71




ED35) to type a data check message and enter a wait
loop for operator action.

Block ED40, $URCHOP: The contents of the B-
register are stored in the B-address of the move instruc-
tion executed in block Ep42.

Block ED41: The contents of the B-register are stored
in the exit.

72

Block ED42: The operation code of the test instruc-
tion at surBAN (block Ep33) is moved to the operation
code position of the instruction indicated by the B-
register.

Block ED43: An exit is made to the location set by
block Ep4o.




EENR
*EA *

* AL*
LY

SERROR x o1
RERRBA ]S RRERNRBES
*SBR IN SEREX+S #*
* {BLOCK EB29) #
* DECREMENT THE *
*#8—ADDR REG BY 1#
*#SHBR IN SERENT+5#%
EEARERSRBERAEREER

.

Xeea e

SERENT 02
CIIIT - TETINT Y TR I
*MOVE CHANNEL BA#*
®*OR BEX INST 70O #
* SERBA (EA23), *
#SAR IN SERPU+S #*
* {BLOCK EA04) *
RAERREEAS AR NN N

-

Xesaws

03
REARBCIRFRERFRERE
® CLEAR WM IN #
#*#$JUG (A SET UP #
*FOR INSYRUCTION'
* LENGTH TEST)

-

incui!inliiﬁellii
.
.

eXesssssevnsssscsancsscnnes

.
SERPU X o4
EEARRDLARFRARE SRS

#GET NEXT INST)
HRARRERERRERERRNR
.

El
* -
S INSTRUCTION®

g 05

Bexe e o e

HLENGTH *
* »

*
«YES
.
-

.
SER1O x 10
ARRREF | HERRNRR RN
* SET CONSQOLE %
* MESSAGE AREA #
* TO TWENTY—ONE #
* CHARACTERS IN #
*LENGTH (SERFLD)¥*
2T TIE 2 I T e

11
REBRBGL SRR SRR ENR
# MOVE TEN CHAR =
#1/0 INSTRUCTION®
*TO CONSOLE MSG *
*F1ELD ($ERFLD) *
» *

REEREBEERERRRRNES
-
.
.

NO

LT R RY

e s e

«NO
»
D2 * 06
L]

.
*INSTRUCTION®
«X* AT $JUG FIVE *
* CHARS IN %
®LENGTH *
* *

»
«YES

.

Xo oo

o7
ERREAEDRRARRRBERN
* SHIFY INST IN *
#*RE-EXECUTE AREA¥*
% ($JUG) FIVE #
* CHARACTERS TO *
* THE LEFT *
ERERERREERRRRENNR

.

Xe 5000

08
ERERBFORRAARRERE N
* SET CONSOLE #
* MESSAGE AREA #
* TO FIFTEEN #
% CHARACTERS IN *
*LENGTH ($SERFLD}*
ARFRAFREEERREERRR

.

Xesoae

09
BERRRGORRBERRABIND
*#MOVE FIVE CHAR #
#1770 INSTRUCTION®
#TQ CONSOLE MSG *
*F1ELD (S$ERFLD) *
* *

ARAREERRERARRRNNS
.
.
.
.

eXeveossossvesovsssssessvons

X

H1 % & 12

* DOES #
* INTERRUPT #*

* ROUTINE SAVE
* THE 1411 #

®STATUS *

* *

*
+YES
.

NO

13
EENBRHO BRI RONER
*$PSV DHAS®
L 2 B 2 St St Y B

%oeseeces X SAVE ZERO BAL *
*

AND COMPARE *#
* INDICATORS  #
EE222 222222222222 )
.
.
.
.

sessvenressassssencsnscsceXe

Chart EA. Tape Error Routine — Page 1 of 3

X 1
EEBERJORABRRBREEN
*

4
*
»
# MOVE FILE®S &
#CHANNEL + UNIT #
* TO $ARG *
» *
EERBHEREERRRERERR
.

xXe oo

15
HRBRBKHERRERRERN
* SEARCH TABLE *
*{SCU) FOR S$ARG *

*TO0 GCT FILE REF‘.-..-.
OF

* ADDR (ADOR
*F ILENAME LABEL)‘
ARAREARERER RGN N

6
l!lllAsll“l’ll:i
*ZERQ NOISE RCD #
#COUNT (SERCT-2)#

...X*AND ZERQ RETRY #
* COUNT (S$ERCT) '

* COUNTS
lllllllhll&"ii!l
.

Xessoas

17
AERRREDTERRAARER NS
*MOVE 1 ADDR OF #
#BRANCH AT SEREX#*
*T0 B _ADD OF BCE#

18
ARERSCINRRRERREREN
#SET 1ST TIME Sw#
*ON(EB11 + ECl4)%
* SET BRANCH AT *
*$ERBA TO GO TO +
* BLOCK EA19 *
HRRBEETERURB R RN

.

Xs s e

19
ARERRDIABRRERRERE
* MOVE FILE REF »
*ADDR TO A ADDR #
* OF MOVE AT *

27
REBERHINARRERNR RS
#*MOVE I ADDR OF #
®*BRANCH AT sEREXO
* TO 1 ADOR OF
*BRANCH AT szGx&
*(SAVE CH2 RTIRN)#®
FERERFRARERERERNR

P A R R S S T I I I R R R R R R R I N S R R R N S A R R I I A A I A A R Y

.
. .

- .

- .

. X

. J3 % » 28
. * 8011 =
. * 0

et
.

LMWTGR 29

REERRKIERRERDRRER
. *  SUBTRACT +7 #
. #FROM SWTGX+5 TO#

#CHAN BA OR BEX
#* INSTRUCTION #
e L)

Xe

.
.
.
.
.
.
-
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

#GET ADDRESS OF %#.csaa
*

es o X $CSISFX *

.
# SERFA (SET UP * .
*FOR WLR OR EQR) % .
RERARBRERERRRAR AR .
. .
. .
. .
.
.
o «YES
X 20 SERBA *
ERFREBETHRER RN RS E4 - 23
2SERCHOP EAAS® * *
E— R R B NN — MW # CHANNEL * NO
#SET BCB AT EA21% 8A OR BEX
# TO CHECK THE # RINSTRUCTION®
*PROPER CHANNEL * * *
R 222 XIS 22222 ) * O »
. x
. .
. .
. .
. .
o .
X $IUG . 22
F3 & = 21 FRAFARAZRRRES
» * * »
* YES * RE-EXECUTE  #
. BUSY %eesesesaX®I/0 INSTRUCTION®
* * *
» * * *
- - FRERARFRRERR N
X
.No .
.
. .
. »
- * &
X *EA *
G3 *» = 26 * Far
* * 2RESE
. = CHl
* WHICH CHANNEL *
* * X
» * ERERR
I » *EB #
* Al®
«CH2 x %
. -
. 0T READY
. cK
. .
4

. 30
FRABRHASARRRRERER
*SAVE 1 ADDR OF #
- BRANCH AT *

*(LINKAGE TO CH1#®
* FORCED FILE) #*
ERERERRBE RSN AN

33
ERBRE JARREERRE RN
*$CS1SFS BAG3*
L D et bl tat o o )
*CLEAR CHANNEL 1%Xae
*  FOR CONSOLE #
* PRINTER USE #
ERRERRRZRASRIRARNE

.

.

.

-

.

.
X 34
.GQQIKQOlQQ*ii{Qi
ESTOl b
LXNKAGE *

SAVED

IN
BLOCK EA30 .

*
-
-
-
»
FERRARRARERBRNANS

eXssesssss s
.

tEARE

SERCHOP X 36
ERRRRASEERNNRRBESR
* SBR IN B ADDR #
*OF MOVE INST AT#
* BLOCK EA37 *
* SBR IN EXIT #
* {BLOCK EA3B) ¥
FAEARERRAERER SR RES
.

Xeseoe

37
ANEERDSERERARRANN
*MOVE OP.CODE OF#
# CHANNEL BA OR #
#BEX INST TO LOC*
* SEY BY »
* BLOCK EA36 *
ARBERRERERRS TR NN

Ko oo o

38
ARERRCSHERRRANRER
* EXIT TO
* LOCATION
* SEY BY
*  BLOCK EA36
*
=

*
-
-
*
-

RERRRBRERB AR NR

24
RURRAESARREEREREE
*$ERCHOP EAASH
e el b ety

’-.--..--XlSET BA AT EA25 &
T0

CHECK *

* PROPER CHAN #

SRBRERREERRTREARD
.

AXe a0 e

FS
* *

»
# BRANCH ANY
-

eREE
*EB #
* A4%

$ERLV

“esevsccsssssccstsssssnsana

.
x
HS * 31

* DOES #
YES % INTERRUPT #

esseese® ROUTINE SAVE #

*1411 STATUSH
* *

- L3

»
+NO

XKe oo

32
Ii.ilJSll{ﬁllll'i
DHAS*

}-:-n-.-‘-n ket
««¥* RESTORE ZERQ #
#* DBALANCE AND »
*COMPARE STATUS +
AEREERRBEERE RIS

SWTGX 35
SRRBRKSHER AR SRS
* RE~ENTER THE #
#TAPE ERROR RTNE®

*..--....X'VIA THE CHANNEL®
*

TWO 8A OR BEX *®
* INSTRUCTION &
HRRERBRESERERENNE

.
+ SERROR

Error Routines

73




EREER
EE; *EB #

- ALW

- »
»
- NOT RDY
. CHECK
-
X

01
ERRREA LR RN LR
*#SERCHOP EAASH
T M B e e W e W
#SET 8NR AT EBO2#
’TO CHECK PROPER*

CHANNEL
ll"!l.’l*{!llli!
.

*

*Xe oo b

[o}-3
*
READY

¥so0e

*
*

NO

AXe o0 X

[e$} *

*

0241
YES

* *ene

* »
NON~QVERLAP
* *

-

*

* -

»
«NO

.
.
.
.
.
-

e e

03
BREERD I RERARERRNE
#SER IN SERNOIS
#* IF CHANNEL 1
»*

®SFR IN SERNOIS
* IF CHANNEL 2
WERRRERERREL TR RN
.
.
.
. .
eXeveosnesone
.

.
.
.
.
-

*
*
*
*
*
*

.

X 04
RAREHE | BB HRRERS
#SERCHOP EAASH®
W R e N R—
#SET BEF AT EBOS*
.TO CHECK PROPER#*

CHANNEL *
!lll}iilllil!l.&l
.

AXe s s e

F1 0s

® YES

»
*  BRANCH Fowes
»

*

Xe oo

06
REAERGIRREEATRRS N
*#SERCHOP EAASH
EEL A B B B 2t 2t B 3
*#SET BER AT EBO7#*
#TO CHECK PROPER%
* CHANNE -
BEERRRARBREERRLSE N

HAXe s s e

H1 07

* CHECK

*

*enee

.
DATA
.

*

NO

EXe s 000

- -

Xe o

09
FEREBKLBRRFERERRE
MOVE
—-20117 2LR-
TO CONSOLE

LEE R X

*
*
*
*
*

BERBRRRBRER RSB RN

SERHLT

Chart EB. Tape Err

74

SERNR 10
EERERADARREENR RN

* MOVE .
% '=10100 NR-  *
oX*®  TO CONSOLE  ®*
. MESSAGE .
e« *  (SERFLD) *
- RERBERABEERRRERER
. .
. .
. .
. .
. .
. .
JSERNR+13 X
. B2 * * 11
. * *
. * NO
es % FIRST TIME  #*s4es
- .
* * -
- * -
«YES
. .
. .
. .
. .
X 12 .
HRERRCOHEREREE RN .
*SNOTE DHA2% .
LR B 2 B 2 S 2 T 1 -
* TYPEQUT . .
*  NOT READY * .
* MESSAGE *
RABAERRZRERRBRERE »
. .
. .
. .
.

X 13
RRERRD2ERRARELE RS
* *

* SET

#NOT FIRST TIME

* AT BLOCK E£B11

*

ARABERRERERARERN
.

*
*
*
*
.

X
EEnun
REA #
% Faw
* *
-
$JUG
$EREF 14
REERRFORRBBERERRR
* STORE *
* ADDRESS OF *
s e X¥ SEQRU 1IN *
* ERAD -
* *
REEREESERLBARERER
.
.
.
.
.
X
G2 * # 15
® WA *
NO #BEF TESTED *
. BY CHANNEL *
. * BA OR *
. * BEX *
X * *
L2 X ] -
* - +YES
* A4 ¥ .
» » X
R e
SERLV L3 *
* A5 *
* -
[ a2
SERDLY
eese
L2 2223
*EC *
* AL
* ¥
*
SERDC
*
J2 * 16
»*
* RETRY * NO
eeesX® CIR = 10 Reeaee
»
* *
L *
«YES
.
.
.
X

7
EERRAKDERRERNEREE

* COMPUTE FILE #
lREF ADDRESS—33 #
IN -
i SERAD -
* -
AERREERRLEESRERNS
.
.
. SERDLY
[ TT3
» *
* AS *
L3 L
L2y

or Routine — Page 2 of 3

ERERR
EB *
* A3n
® ®
*
.
.

SERHLT X 18
ERRBREATHEERRERRE SRR
*SHALT DHA1%
LEL SR EE B S B X 2 3

sesX® MESSAGE AND *
. * WAIT LOOR %
. ROUTINE
. ll'.*‘ill"iilill
. .
. .
. .
. .
. .
.
. .
. .
. .
. .
. .
N .
. .
. .

.
. .
. .
. .
. .
. X 20
. HERERCIHFERERARES
. * MOVE CONTENTS #*
. * OF HIGH ORDER #
. * LOC OF SREPLY ¥
. *TO OPTION TEST *
. * INSTRUCTION #*
. HARFERRARRRARRENE
N .
. .
. .
.
. o
. X
. D3 * = 21
. * *

. * *

. # CHARACTER IS *

. * P

- - *

. * *

.

. .No

. .

. N

. .

. .

. X

- E3 ® » 22
- * *

. * »
. * CHARACTER IS
. * R *
- * *

. * *

- *

. +NO

. .

. .

.

. .

. X

- F3 & = 23
. * »

. * *
. * CHARACTER IS
. * s

. * *

. L *

- *

. +NO

N .

. .

. .

. .

. x

- G3 * = 24

. * *

- » *

. * CHARACTER IS #

. * *

- - *

. * *

. *
- «NO

. .

. .
. .

. .

. X

. H3 # = 25

. - *
o NO @ *
eses® CHARACTER IS *
* D *
* *
* *
*
eee
X
RARR
*EC #
* ALR
L
*
SERDC

EREE

®EQ #

* A4w
* *
*

.
eescescscseXoXsosrssoavovene

« SERLV X
* *
DOE

26
*

-t Z

27
.iiilsAli'.lllll{
DHAS#*
}-{ LRSS B B P 2 3
* RESTORE ZERO #
- BALANCE AND *
*¥COMPARE STATUS #
HERERBREFRERERRAN
.
.
.
.
eXKoseeseovoe

$EREX X 29
RERRRCAREBERRERAR
* EXIT TO FRA-7 #
*1F WLR, EOF, OR#%
#EQR AND 1-AREA #
#FILEe OTHERWISE®
*AS SET BY EAOL »
ERRRERAEE SRR RRN

.

.

X
R

L]

L R I T T
LER

X
RREER
#EC *
* Al1*

*
$ERDC

EExER
®EA #
% Fos

* *

®
$JUG

YES

ceees

s

EREER
HEC #
% AS#*
* *

-
$ERSCN

YES

.o

X
REEE
®EC *
* Agq¥

. =

*
SERDMP-19

.
«$ERDLY

.
-
.

.
.
.
.
.
.
.
-
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
-
.
.
.
.

R

R

30
ERRERASHERER CRXN®
*¥MOVE SEREX+S5 TO¥
®*SEREX+12 ADD 1u¥
*TO0 -A- ADDRESS *
* OF MOVE AT *
* SERFA *
AR RRSZARNN T

Xeow e

$SERFA
EEREAOSEREXBEERER

* MOVE CONTENTS #

* OF FRA+18 7O *
ADDRESS OF #
AN SBR AT *
B33 *
EEREARREERNRRRNNS

e s oo

32
HRARRCSHEA KX RERRE
* MOVE CONTENTS ¥
* QF SERAD TO *
'UT[L!TY BRANCH %
*
-
*®

FEREERNNERER NN

33
ERERRDSAERERAARD S
*#SBR IN ADDRESS #
* INDICATED BY *
#* CONTENTS OF x
* LE REF *
* ADDRESS+18 *

RERAEEEERRRESRRRR

Xe o e

34
EERERCSHERAREERE S
* MOVE LOCATION
® OF 170 INST
MINUS I TO

ADDRESS OF
S$EREX+14

*
*
*
*
-

AERERERAARERERRRRR

XS o0 000
w
L

-

»

READ OP

*
*

*
+NO

Xo oo

36
EAREEGEXRRANRRRER
*SERCHOP EAAS S
LS Bt Tt Bt P et B Bt
%#SET BER AT EB37%
‘TO CHECK PRDPER&
CHANNEL
Iillﬂililfﬂilliﬂi
.

X
*

HS
*

NO

sea®

*
DATA -
-

»
-

rennn
*EC *®
* AL#

SERDC




SER!

NO

ARREE
HEA *
& Fa%

*
$JUG

REEEE
*EC *
* AL

0C

*
HXE 0.k
*

Al * 01
*

*
* WRITE *

- TAPE MARK
* OPERATION #

- *

* *

*
«NO

Xe oo

02
RERBRD]RERRARERNE
* PUT STARTING
® [HI-ORD) ADDR
*OF 1/0 AREA IN
#SERFLD+14 THRU
b $ERFLD+18
SRARRAEERRERERR RS

*
*
*
*
"
*

IR

03
ERRERCIERERERR NS
* PUT STARTING *
#* (HI-ORD)} ADDR %
#OF /0 AREA [N *
# DUMP ROUTINE #
#WRITE TAPE INST#*
ERERBERERRRER RN
.

Xe oo 00

04
ERERRD ] ERERERR NN
* PUT STARTING *
* {HI-ORD) ADOR *
60F 1/0 AREA IN ¥

RBL *
»
Ol.lll{llil*il*&&

.
.
.

05
ERRRRE ] B AR R AL
* SUBT SERANGCIS #
* TFROM SERSBL, *
* ANSWER EQUALS *
# MINUS THE QTY *
#—(REC LENGTH+1)#
EEEEREARRERI AN

G1
%* REC ¥
* IS LESS #

- THAN 13 CHARS

* LENG *
«YES
.
.
.
.
X 19

FEERRH ] BREREEXREN

# INCREMENY THE *
* NOISE RECORD #
* COUNY AT *
*  SERCT-2 B8Y *
» PLUS ONE
l..d*.ll‘i*il‘i‘&
.
.
-
x
J1 o % 20
* *
* TEN *
® CONSECUTIVE #
* NOISE -
#RECQROSH*
* *
-
+YES
.
.
-
-
X

21
HRFRRCRERARRERRS
R *

bl NOQISE *
* RECORD
* COUNT
® AT SERCT-2 *
EEREREEEERRAERERR

*aee

R N T I N I A A e %

cr s st s s ettt

ceessene

EEEEEER]

.
.
.
.
.

.
.
.
.
.
.
.

snat

$ERSK

SERH 7 X 8

0
ERRRERADHRE R TR NS
* INCREMENT RETRY#®
*COUNTER BY ONE,*

'..-.....X‘INCREMENT SERBL*

BY ONE TO GET »

’ —(REC LENGTH) %

EEZIITTE T Y X Y
*NO

EXe o 00

B2
*

*
* RETRY *

AR

$ERDMP

LS
RERRRATERELRLENRE
*CHANGE CONSOLE #
®  MESSAGE IN d
* SERFLD FRCOM *
*#960113 OCK* TO *
# Y10113 DCK* #
X I R e R T

.
.

$SERDMP-19

Enenn

23
HARERALERERRRRNENR
*MOVE '60113 DCK*#*
#T0 CONSOLE MSG '
* FIELD AT
* SERFLD G

* *
AREERRAREREENETER
.

.

-

.

sXeososs0sssssssscssssscnse

X 25
FERBIARXRRRES
*WRITE CONSOLE™®
* MESSAGE ON *
*DIOCS SPECIFIED®

* COUNTER = 20 .
* » . * DUMP TAPE *
* * - * *
* * X EEAARRRRRERER

* P Y] .

«NO * -

. * £E4 .

. *

. ERE .

. SERCTL .

X 10 X
EERERCORRARARERER C3 * = 26
®MOVE X CTL FLD * * *

#OF THE /0 INST® * »

* TO X CTL FLDS * eess® BRANCH ANY *
*OF lNSTRUCTlONS‘ . * *
*AT CC11l + ECIS . * *
lil&}{'}!ll’lilii . * »

. . *

. - «NO

. . .

. . .

- sessvennsseXs

. .

X 11 SERDA. X 27

EREDOEERRRERR ERRDIHERRERER
* *WRITE RECORD #
* * *IN ERROR ON THE®#
* BACKSPACE *Xeoe *#DI10CS SPECIFIED#*
* * - * DUMP TAPE *
* * . * *
ERERAA RN RN N (2 R Y]

. . .

. . .

. . .

.

. . .

. . .

X 12 . X
ERERRCDEANARRL RN . E3 * » 28
*$ERCHOP EAASH . »

K e W e e N N — B . E *
#SET BA AT EC13 * e sese¥® BRANCH ANY *
*TO0 CHECK PROPER# PO *

* CHANNEL * “ * *

P N I T .. » *

. . e .

. * . +NO

. . . -

. o« » .

. s ssvssessseeXe

. . .

X . X

F2 + = 13 F3 # # 29
» * . » *
* * YES. *
% BRANCH ANY faave * AUTO DuUMP
* »*
* * * -
* » * *
*

oNO «YES

. .

. .

. .

. .

x X 30

G2 * % 14 ERERRGIHRRREEREEE

» * *ENOTE DHA2#*

» » N W B R W W W B
FIRST TIME * ® WRITE CONSOLE *
* * * PRINTER *
* » » »

- * ARERERERRER BTSSR

.

«OFF .

. .

. X

. —RRRR

- *EA *

x 15 * Fas

ERRHOHERER RS * #
» -

* SKIP + BLANK * s$JuUG
* OPERATION #Xoesoovsecsccscccs
»* * .
»* » .
Ly T Y2 .

. .

. .

. .

. .

. .

. <YES

X 16 *

EAERR JORRAERRRERN J3 * 17
*$ERCHOP EAASH * *
ot T S * *
X*SET BA AT EC17 #, eeX* BRANCH ANY *
£T0 CHECK PROPER#* * *
* CHANNEL * * *
L e I e T * *
*
+NO
.
.
.
22 X

ARERRKEEARARRE NS
*MOVE® 20118 NLR*#*
* TO CONSOLE *

#eeaseeseX* MESSAGE FIELD #*
* * *

{SERFLD)

* *
ARARAREERARBERERAY

.
«SERH

Chart EC. Tape Error Routine — Page 3 of 3

18
ARREBKIFSRRRNESHUE
=

*
*SET FIRST TIME #
#SWITCH AT ECla *
* TO OFF STATUS ¥
-
»

-
AERERERRTRERRBRR
.
«$JUG
.

X
32 22]
XEA *
% Fa®

* *

.

¥esone

.
.
.
-
.
.
.
.
.
.
.
.
.
.
.

$SERPA 34

RERARCLERRERREERE
*SEY CONSOLE MSG#
#*FLD (SERFLD) TO*
*FIVE CHAR.
#ADDR OF AST TO

#CONSOLE MSG FLD*
REEEERRERAEREREER

Ko s oo

35
ERFERDAFARFRAERER

$ERSCN

YES
MOVE‘X-.-....-’

FRERE

ERERRASKIRRRERRNN
* SET UP FIELDS *
* IN SERFLD FOR *
% CHAR ADDR AND #
* AREA LENGTH ®
* *
HEREERRERRER BN
.

xXeeo s

HRREEESERE SN TN RE
* MOVE STARTING *
# (HI-ORD) ADDR *
*OF [/0 AREA TO *
*
*
*

L YY)

cs * 33
- *

* ASTERISK #

IN CHARACTER

# ADDRESS ¥
* *

*
«NO

Xe oo

36
AERERDSEENERRERER

*SNOTE DHA2% # INCREMENT THE *
ARt *CHARACTER ADDR *
* WRITE CONSOLE *.oo--ooox‘ BY ONE, L
* PRINTER *DECREMENT AREA #*
* #* LENGTH B8Y ONE ¥
L2222 22 2] E%E

-ERE -

* * .

* E4 #, .

* L .

EXT 2] . .

ERCTL X 38 X
EEXARCARXERRERNRS £S5 & * 37
» * » *

* ZERO . YES ¥ ALL *
¢ o X®RETRY COUNT AT #Xoeseosee® CHARACTERS
» SERCT - # CHECKED # «
* * » *
FEERERREEERERRRENR »* *
- *
.
.
.
.
X 43
Fa * # 39 HERERFSERRERINERE
* *

YES OF SERBL
*READ OPERATION ’n-co-oo-X*(RECDRD LENGTH) *

40
EREERRGAERERRRERER
*MOVE*20114 DCK*'#
* TO CONSOLE *
* MESSAGE FIELD %
* AT SERFLD *

*

=
EHRAR RN RN

.

21T .

L3 L I

* HE #.X.

» .,

NN .
$ERH

X 41
HERRRHOBRARRR R IR

*SHALT DHAL*
e ey e et S By e

* MESSAGE AND *

*

* ROUTINE *

HERRRSARERSREHNNN
.

.
X
AmEy
L4 *
®* A2 #
* *
RN
SERH+7

"EB #
SERHLT® A3¥
* *

$ER

YES

P
.

.
.
.
.
-
-
.

.
XNO
see
-

.

X
HRARR

' MOVE CONTENTS #*
F *

#T0 CONSOLE MSG %
® AT SERFLD+25 #
RERRERREREERERRE

.

Xe s e

a4
FERRRGEFEFRE RN REE
*#MOVE®40119 'LRE**
*  TO CONSOLE *
* MESSAGE FIELD ¥
* AT SERFLD *

*

.
AEERERRNEEERARRREE
.

e oo

aLs
- = a5

* ENTRY #
*BECAUSE OF *

* LABEL READ *
ERROR  #
»
» *
-
«NO
.
.
x 46

FEERE JSERERFRARER
*MOVE*60113 DCK*#
* TO CONSOLE *
* MESSAGE FIELD *
* AT SERFLD *

*

*
ARERRABARARRBSRER

AXe s o s

KS * A7
= -
* *
* AUTO DUMP *
* .

* -
» »
-

«YES

« SERDMP

ERE

*ARR

Error Routines

LR

#*Xeow

RN RN

ceevsE s en e

75

EC



ED EEEEN
#ED #
® AL®
LK
»
-
.
.
SURERR X 01

RERERAIRARR AR SEER
#SBR IN SUREXIT »
*  (SETS EXIT) =
#SBR IN SURQE+10%
'(INIT!ALIZE EOF'
bt SEQUENCE )

llllllllli.ll'!ﬂ'

.

.
.
.

X 02
FRRBRB I RAERBRRER N

# STORE OP=-CODE #

SURENT

SURPKUP

x 03
RERERC I RERRARRRE S
» *

* SET »
#MESSAGE SWITCH
- N

*

0 L]

# (BLOCK ED29) #*

LIRS T T
.

Xe oo

04
HRAREDIHABRERNBER
#SET UP AREA FOR#*
.RE-EXECUTtON OF #

DIFFERENT *
' LENGTH 1/0 *
* INSTRUCTIONS #
(A2 TR T e T 22 g

.

Xesoo

0S5
REARRE IR EARRR AR
#SET BA (URBAN)
#T0 CHECK PROPER#%
®CHANs MOVE 1/0 *
®INST TO EXECUTE®
# AREA (ED32) *
ARREBRERERERRR RN
-

SURANY x 06

Sesetssesrerssereverans

<YES

cebet

SURBAN

BEGNEF | RRARRESERE

#SURCHOP
e e B B

aX®SEY BCB AT EDO7*

'TO CHECK PROPER'

CHANNEL
i!olutlnun:unigan

-
.
.
.
.
.
X
GL * o7
# BRANCH *
- CHANNEL
- BUSY *
. -
*
ﬂ"l .YES

. H1 '-X.
a

SURBAN—I!

X 32
HERHIREREEEAE
-
* RE-EXECUTE *
®* 170 OPERATION =
. »

* *
ERRRRERRRBRNR
.

EXe s o0 0

* 33
-

-
BRANCH ANY *
-

- »
* ']

»*
aeun «NO
» »
' K1 .oX.

*

SUREXIT

"nn -
X 34
.‘IllK]!llllllll!
i EXIT YO '
lLOCATXON SET BY®
8Lo =12 '
IﬂC!llQi.!llithl
-
«EXIT
.
X
EERN
= -
- -
. »

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

€00 0460008000001 9000300080008s0 LIt ELIEEOIELIBEOEIIONORGEGES

eXssseocsessne

sene®

L R I I R R R R R N R A S I A S A S R )

-
-
.
.
.
.
.
.
-
.
.
.
.
.

e X

YES

[+4:]
FREERREAZERERNRERSY
'sURCHOP EDAS#*
W e B W e S W B B
*SEY BEX AT EDOOW

To CHECK PROPERI
CHANNEL
Iill}{lll!!{lbl'.

TR

EZ

» BRANCH ON b
* ANY INDICATOR #
* BU HLR -

* 09

* *

c2 & %

*#10 CHARW®
* 1/0 INST #
EXECUTED IN *
#* LOAD MODE #

- *

10

YES

SURDCK

YES

HER

LYY

18
HERRBAIHERRERARRES
lsURCHOP

l'SET BER AT ED1Ig#
*T0 CHECK PROPER'
» CHANNEL

l’l'l!l‘illli'*!l

Xe s 000

83 * 19
- -
»

»
* DATA CHECK »
* *

EXe .

* 37
-

*
..--'CARD READ INST *

NO

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

. * * .

* * . * » -

* . * .

+NO . «NO -

. . . .

. . . .

eXevoosessonse » . -

. . . .

X 11 . X 38 .

HEEREDORARERREREN . ERRREDIEASENRRRER .
#$CS51SFS BAG3 % - * * .
L it l Tt 2L R 3 . L ADD ONE * .
*CLEAR CHAN 1 OF#% . - TO COUNT - .
# UNCHECKED 1/0 #* . - * .
* OPERATIONS * . * - .
ERAERSXARERAARERE - HEERFRRERERRNEERE .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

X 12 . X -

ARBRRE2FARRHE NI . E3 % » 39 .
* MOVE 1/0 INSY # . * * .
*AND *20144 WLR*® « NO # * -
# TO CONSOLE - e Xeo¥ COUNT 0DD * -
* MESSAGE FIELD . . * * .
* (SERFLD . * * .
IIC’.{R'.‘I‘III" . * » .

. . *YES .

. . . hE. .

. . . ® * .

. . ceX¥ H1 * .

- . - * -

. - *ER .

X . 20 . 23

F2 = = 13 - HEREREFIXEEHARARRER . EEEREFQERERERERER
* * . * * - *$URCHOP EDAS#
* TEN * YES ®MOVE®20143 STK*# . R R RNk —N
* CHARACTER I/0 #.ca0 o *#T0 CONSOLE MSG #Xa.ee ...X‘SET BNR AT ED24¥%
*INSTRUCT TON#® . *FIELD (SERFLD)} # 'YO CHECK PROPER'

* * - . * * CHANNEL
* - o = WRERERBERETRERRRE llill'*iliﬁ'il‘i‘

P . .

«NO .. B .

. .« . .

. .« . . .

. .. .

. .. . .

X 4 . . X 21 X
RERBRG2HREARARRER . » HRAEREGIRAFERRREES G4 % » 24
*#SHIFT CONTENTS # - . *SURCHOP EDAS* * *

#0F CONSOLE MSG * bbb tichtatu e atted » *
*FIELD (SERFLD) # #SET BNT AT ED22% * NOT READY
*8 POSITIONS TO # *YO CHECK PROPER® . *

* THE LEFTY * CHANNEL - . * *
ARERXARABERTRRARE - - ‘!"lll.ll.'ﬁ"" - * *

. .. . .

. . . . . *NO

. .o . . .

. P . . .

eXososososcsnee o . . .

. . . .

X 15 . X . X 25
RERERHORESERRR SRR . H3 % » 22 - BREREHLEERFREAERR
*SURCHOP EDAS* . * - . * -

bttt el . * NO *  NO . #MOVE'20115 LLCY'*
®SEY BWL AT EDi6# . * TRANSFER *es0ase *#70 CONSOLE MSG *
*TO CHECK PROPER% . * INDICATOR # *FIELD {SERFLD) #
* CHANNEL * . *  ON * * *
RERERERZRERLHARRY . * * (2222 222222222223
. . .
. -
.
.

. .

. .

X SURTY X as

J2 = » 16 l'.i'Js’iilllGll' 26
* *
* NRONG * YES ' SET YE * *
* LENGTH ¥eessseo s XEMESSAGE SWITCH ix........n -
* RECORD * OPERATION #
- * ' BLOCK ED29 ' * -
k4 * tAZ2 R 2222222222} - »

* N *

+NO . +NO

. . .

. . .

. . .

. . -

X 17 X 36 $SURQE X

K2x% K4 » ¥ 27
- »* 'SHALT DHA 1 * » 1s
#MOVE *20116DCK*#* R RN Wbt % CHAN BA #

#T0 CONSOLE MSG *
*FIELD (SERFLD) *
*

-

SRRV EASRRRBRINN
-
.
.

X
LX)
= -
% A3 *
* -
L2223

Chart ED. Unit Record Error Routine

76

* WRITE CONSOLE *

# PRINTER AND #

*ENTER WAIT LOOP#®

LI LY TRY T T ey R
.

.
o SURBAN-
X

(212}
* -
* HL *
- -

2223

11

* INST *
. »

«YES
¢ SUREXIT
LY Tis
* *
" KL *
* *
axnn

L A N N I N I N R N Y

SURCHOP

40
iliauASili(Qillll

 SOR IN B ADDR ¥

% OF MOVE INST #

* EXECUTED IN *

* BLOCK £D42  +

EEBARHRERRRRERRR S
.

Xe o e

4y
llll‘aslll{ll.ll}
* SBR IN TH *
*1 ADDRESS OF A ®
%  BRANCH INST #
*  EXECUTED IN *
* BLOCK ED43 *
ERRREERERENENRREE
.

Xo e o0

42
ARREXCSHERERER B
*MOVE OP-CODE OF%
#BA AT SURBAN TOW
*0P-CODE OF THE *
% BRANCH BEING #
* INITIALIZED #
EEEREERRRRANREN N

Xe s oo e

43
RRERRDSHERRERERE R
» *
* EXIT TO *
#LOCATION SET BV'
*  BLOCK ED
*

l&llllli.{l'lllil

SURNR

«eX®*TQ CONSOLE

SURNR+13
HS

28
EEEERGSRRERRERRER
* *
#MOVE* 10100 NR* *

MSG #

*FIELD (SERFLD) #*
* *
*

EAREERRERRRRRRRS

wXe s o0 e

* 29
* *
OFF

OMESSAGE SW!TCH *aoes

* *
» .

.ON
.
-
.
X

|¢§ni,5;|&§.;..22
'GNOYE HA2®
Aa At 2 D2 B Bt 2 B 3
* WRITE CONSOLE *
* PRINTER *
*

-
AEEARBSERERRRRGRN
.
.
.
.
aXssssovscns
.

3 31
ERBESCSHERERRR RN
* -

SET *
#MESSAGE SWITCH *
* OFF b

* BLOCK ED29 *
HEBRRBRERLEEE AR RN

.
« SURBAN-11
X

(23]
* -
* Hl %
- *

(112}

te s es s e st erssset e



Storage Map and Loading Sequence

The over-all storage requirements of 10cs may vary
considerably from job-to-job, depending on the 10
specifications. These specifications determine the start
of 10Cs, the presence or absence of certain routines, the
size of coding blocks within the routines, etc. Figure 6
shows the order of the 10cs routines by storage group
in low-to-high storage sequence for a typical appli-

4
cation.
-~ STORAGE MAP
T T T T T P
® » .
* 56 * ROUTINE *  LABEL * COMMENTS *
. * * * .
R R R R KRR R R RR KRR AN RN R AR RE KRR RN R RN R KRR NRRRS
B
* *
* 1 * PIVCT FOR RESTART * ———— ‘ LOCATIONS 00000 - 00024 '
* M *
NN KRR KRR RN AR AR K ERE AR RN R
M M .
7 2 % INDEX WORDS g e * LOCATIONS 00025 — 00099 *
* » M
.q.-».--.u-i.a......‘....-.‘*.;‘:.‘-,.««".-;.......;...*.*,...-;u...*
3 # INTERRUPT PIVOT K ————o ¥ LOCATIONS 00101 ~ 00115 *
“'!&QI!D‘C{DIICIi(l!Onllni!i'lll&ﬂl#&Qﬂi&nlkl!&li!ilill!lillli'!!il&’
* * *
* 4 # STANDARD AUTCCODER * —e—— " LOCATIONS 00116 - 00349 *
» * *
.na*nu--»«‘......;.‘....‘..-...;n.‘-u-»u»..‘..-;..i*..;..,u.';-.'.;u«‘
* 5 % PROCEDURE FOR * - ' LOCATIONS 00350 - 00499 &
- ' AUTOMATIC TESTING * l
A~ *
.....“.....-...*...;..;qu*..-‘...‘*.;»-;.-.--..‘...........;...-..‘ga
* * * »
* & * WHEN T0CS 1S ORIGINED *  ——=-— * LOCATIONS FROM 500 TO ‘
» * ABOVE LOCATION 500, % * ORIGIN *
* * THE LOCATIONS FROM * * *
® ® 500 TO THE ORIGIN ® * *
* * ARE AVAILABLE FOR * * *
* * THE MAIN PROGRAM - Q *
M M *
.-.‘.‘....*..»u.u-.;-.........:...».---;.;-;.;;.‘...‘*-...........».an
M .
% 7 # CHANNEL SCHEDULERS * IOCSCS—ENT *® EACH USES APPROXIMATELY *
* * * 90 LOCATIONS *
M M H
............‘..‘-..--»».‘..;.i......-';n-*u“.*.uun.....*.*.*-‘;-.-.--.
*
» & ' CONSOL!: INTERRUPT ’ 10CSCIPR ’ USES APPQQX]MATELY *
* * SEQUEN: M 1 110 LoCATION *
* * *
........-a‘.*.¢..-.'u.».‘.*....;*..-"..‘n«a-.......;-...-;.-,....-.;.
* M M
*« 9 - OPEN/CLOSE SUBROUTINE % TOCSCLOP % USES APPROXIMATELY *
* * 300 LOCATIONS *
» M M
R R A W KRR KA R KRR X KA AR KN R KR XA RN ERRNRERERRRE
. ® * * *
¥ 10 * MESSAGE AND WAIT LOOP * JTOCSHALT * USES APPROXIMATELY *
. TIN * 125 LOCATIONS *
* * *
.............---u;..;..-....-ua.;....‘.;...---.--.-u».».....'.»*...;‘.
% 11 * CCNSOLE PRINTER ERRQR % TOCSCPERR * USES APPROXIMATELY 30
« H ROUTINE ® LOCATIONS -
.......-.*...-;......*;f.«--n¢.;..‘..';.‘;..‘.-.---a....;..-..*;'g;--u
.
. * 12 ® UNIT RECORD ERROR ’ 10CSURERR ' USES APPROXIMATELY ‘
430 LOCATIONS MAXIMUM *
.
.«-.-a-.n‘...»-.**....-.a....-;.......*.,.“‘.....;.‘...;-n;..».....‘»
. * *
% 13 % PRIORITY ASSIGNMENT " 10CSPAHSK * USES APPROXIMATELY *
* * ROUTINE * * 420 LOCATIONS. IT IS *
* " * * OVERLAYED RAY A PORTION »
* * * * OF THE TAPE ERRCOR -
£ - * * # ROUTINE IF NON-OVERLAY *
* . * ® HAS NOT BCEN SPECIFIED %
. » ® *
P T I T T T T T
. M * * *
# 14 % RESIDENTY PORTION OF * ————— * OQCCUPIES APPROXIMATELY *
- * THE TAPE ERROR * * 600 LOCATIONS *
M M ROUTINE » ¢ M
» * *
.-.-:..-n.......«..-...«»;.-n--'....'....n-...‘--*-*.....‘..---...--..
» *
* 15 ' TAPE OPEN. CLCSE AND ' ————— * QCCUPY APPROXIMATELY *
* * END—OF—REEL ROUTINES ¥ * 500 LOCATIONS *
* » . * *
P T T T T
* . » * *
* 16 * LABEL ROUTINES ekt * QCCUPY APPROXIMATELY -
* * * *# 900 LOCATIONS *
[ L N T T T T T T TR TR
. * * » *
# 17 % §ST FILE SCHEDULER # 10CS-ENT  * TAPE FILES USEC UP TO *
. » * * 300 LOCATIONS *
. * * % UNIT RECORD FILES USE ®
. * * * UP TO 150 LOCATIONS *
. * ® M
....;.‘..;;au-a;...‘..‘.-..-a.;;..--;-.n.f...-..-.;---«....*......;.;.
* *
% 1 * IST FILE TABLE * ¥ TAPE FILES USE UP TO ®
. M * % 100 LOCATIONS *
. * * M *
[ Y T LTI L T P TP P P T T I
N SUCCEEDING FILE SCHEDULERS AND TABLES

ﬁﬂunql!lllCﬁitulluﬁiiunib!li‘i*lli;il&.'ii!!idil‘I&lunnlihl&&!’llilll‘

*

* 19 u MATN PROGRAM » . :
*

» * L3 *
P L L T T T T T e T T ]

Figure 6. Storage Map

Program Condition Analysis Aids

If the piocs PRIORITY entry of NONOVERLAY has not
been specified, the 10cs routines are loaded in two dis-
tinct loads. The storage load sequence is shown in
Figure 6.

When the non-overlay option is specified in the p10Gs,
the 10cs priority assignment routine is needed in stor-
age during running program time. In this instance, all
of 10cs is loaded along with the main program.

STQRAGE LOAD
SECGULNCE

1ST LOAD
ERRERASEHRTRRRERRS
*L_OAD PROFRAM )
=

* LOAD TO USERS L
ol END CARD *
*

*
Y T e

Xe oo

ERKEXRDSERRAARNARS
*MA!N PROGRAM ‘
..............
“CXECUTL PROGRAM'

TO FIRST .
' OPEN MACRO
lillll'!lilh!lb.l

Xeoowe

ﬁ{q&;cscﬁnnna*u..
s

* ASSIGN
*PRIORITIES FOR %
® 2-AREA FILES
KREAAERAEARRARAES

Xeosse

2ND LOAD
ERNSADSAARREREERY
ﬁLoAD PROGRAM *

»

!LOAD REMAINDER *
# OF TAPE ERROR *
* ROUT INE *
ERERREEERBAE RN

Xesoas

EREENESKANXAERNN
*10CS

o n-uar-e-:---;
#*  OPEN FILES

* NAMED [N OPEN .
- *

MACRO
EREARAAEERER R RS

Xe oo o

HRARAESEERREERREN
lMAlM PVOGRAN *
* *

' CONT[NUE *
* EXECUYION OF *
* MAIN PROGRAM %
ERAERREA AR AR

Program Condition Analysis Aids 77




Description of File Reference Table

Figure 7 illustrates the contents of a maximum file ref-
erence table. References 1 through 3 in the table are
exceptional condition vectors; references 4 through 37
are known collectively as the file table. The structure
of the table depends on the p1ocs entries ( e.g., the procs
COUNTS entry governs the presence of references 24 and
25). When an entry is missing, the table is compressed.
The number of file reference entries generated for each
tape file is fixed according to the cumulative number
of different entries for all files. The file type (or area
indicator for tape), reference 5, is always generated;
it is the only reference in the table which is fixed and
not compressed; its location is always file reference
address + 20; reference 5 is the only reference gener-
ated for unit record files.

The file reference tables correspond to an indexed
label table. The indexed label table is a pa relative to
zero and is referenced by index register 15. 10cs can
process the file reference entries for any given file by
loading index register 15 with the appropriate file refer-
ence address and then executing instructions that refer
to the indexed labels. In Figure 7, each reference
number is followed by the indexed label, if any. The
actual prefixed label, if any, follows the indexed label.

The file reference table provides the information for
interrogation by the various 1ocs routines to control
what procedures are performed. In general, a file refer-
ence may be modified by the user during program
execution. Note, however, that the 10cs will refer to a
file reference (counts excepted) only during the proc-
essing of OPEN, CLOSE, FEORL, and RDLIN macros and at
end-of-reel. In some instances, to make a change effec-

78

tive, the file must be reopened. Some general comments
follow to indicate which references may be changed.
References 1-3: The exceptional condition vectors
may not be changed due to the structure of the file
scheduler.
Reference 4: Priority may be changed only if the
DIOCS PRIORITY is NONOVERLAY.

Reference 5: File type (or number of areas for tape)
may not be changed due to the structure of the file
scheduler.

Reference 6: May not be changed.

Reference 7: May be changed. In most cases, the file
should be reopened.

Reference 8: May be changed.

Reference 9: 1ocs linkage. May not be changed.

Reference 10: Input — May be changed. Output —
May be changed to scLsaB to prevent padding for a
fixed, blocked file. The user must move a group mark/
word mark to terminate a short block himself.

References 11-16: These label fields can be changed
by programming and/or roLIN cards.

Reference 17: May be changed to effect or skip label
processing for a given reel.

Reference 18: May not be changed.

Reference 19: May be changed only in conjunction
with references 7 and 8. The file may have to be re-
opened.

References 20-22: May be changed.

References 23-25: May be changed; however, it may
cause a count discrepancy.

References 26-37: The exit indicators and/or exit
addresses may be changed.




seRNEE sanan (X1} LT I R T ey

& REF. INDEXEC. ACTUAL . - e FILE = KIND CF «NC o '
* NO « LABEL LABEL . COCE. OPERAND + TYPE « INDICATOR +FCS « DESCRIPTICN OF INCICATOR AND COCES IF ANY
.DI'I..’.!I'!I!lillﬂll‘llflllllll!.’llillRllIllliI!iIlilllilllll*ll!llllillil*lilllI!Illl.!llllilil!i'liklllillilRl‘!l&&il!ll*li&}
- . - . . . . .
' 1 . . « E « SEREX+7 e 1-AREA + VECTOR - 7 o LINKAGE PIVCY TO SCHECULER FOR INPUT EOR *
. . . o $=—TRIG o+ 2~-AREA « VECTOR . - *
e $90900060800000s000000000 000000 cs s asnsaTTe se0sesrsscrsccaccone R e R R R R
hd . . . . . ¥
. 2 SEREX+14 1~AREA VECTOR -7 o LINKAGE PIVQOT TO SCHECULER FOR OUTPUY EOR *
bt $-—WTG 2-AREA VECTOR . *
b . . e - *
Ld - . . . . . . . *
* 3 o+ STRIGEN. » CCW o SEREX4S e 1-AREA o VECTOR « 5 o LINKAGE CCNSTANT USED BY ERRCR ROUTINE FOR WLR AND EOQ'
e . . . o $——TRIG+S+s 2-AREA « VECTOR . .
B eeere00sssssnencssnssnetsanesntosvsnessencosons e .ooo...-.-..----....-.-.-..-coo--o-.--oo---....-........-...--.-.......-....-‘
. . . . . . . *
. . * N . « PRIORITY e« 1 & N= 0-9 IN HIGF TO LOW PRIORITY ORDER *
- *sesses - DR R R R R R R R M
. . - - *
SDTFACT. $--ACT . - NUMBER OF AREAS « 1 1= 1-AREA FILE. 2= 2-AREA FILE *
- - . « UR « FILE TYP - « 3= READER FIL 4= PUNCH FILE PRINTER FILE b
s0c0secescsosscocccescnns . esceessescsene .. aces csssrnaee *
. . . - - . - *
. e CCan o v ¥ - . e« 2 0= CPEN, ELANK= CLOSEC {(TAPE FILE ONLY) *
®s0cascsccsncccsccscscccscsvrnns eessesrencecsanss PR R R R R R R R R R
* . . - - . . . . *
7 o s 3-~BASE + DCW o *XXXNX® . o BASE TAPE =5 . PCDE,PAFIYY-CFANQ‘NU UNIT FOR CURRENT BASE-EsGe M'U2X #
e .o . e .e . .o .. essencosue crccent®
* . - - . *
* 8 . SAD . e CCW o+ *XXXNX® . « ALT TAPE « 5 o MCDELPARITY.CFAN, ANC UNIT FOR CURRENT ALT -E«Gas M'UIX *
:o-o.ccooo-a-.-..-o--..-----------oo----- R L R R R A R L T R TR R P sesssecs®
- . . - . - - *
#* 9 o SOTFLI o o CCW o o FILE INIT ADDR .« 5 + FOR INIT CF FILE SCFrEC DURING OPENs FEORLs AND EOR *
#oss0esssas000sscnsccnccscssncea esceses PR R B R R R R R TR
- . . . - - - . *
# 10 o SOTFA , $--ECF o CCw o INPLT o LSER EOF ADDR S o ACCESSEC WHEN REQUIREC BY THE EOR ROUTINE »
» . . - OLTPUT « PAD ROQUTINE ADDR. « TC PAD PARTIAL 8LOCK IF FIXEDs BLOCKED FILE ON CLOSE *
- . oLTPUTY NC PADDING ADCR o DUMMY TC PRVENT PADCING WHEN NQOT FIXED, BLOCKED *
. eee - .e . coe .. .o s .o ssea .e .o .e .o *
. - . - . . . . . ®
* 11 « $C9 o $--FSCK «+ CCwW o+ *N* o INPLUY o FILE SERIAL IND . 1 e 0= CHECK. 1= NO CEECK *
* . . . . » OLUTPUT . . e 1= SET IT EQUAL TO TAPE SERIAL FOR 1ST REELe 0= DONT *
B 080800000002 00000010000rtsseacsnccassantsscscscsssccesnsnnsoscnssone @eee0204000000000000anscsvaasssncsnssascsansescnncnsaat
4 - . - . . . . . ’ *
* 12 o SKFS o $--HFS o CCW « °NNNNN-* . INPLT o FILE SERIAL NUMB. 6 o NNNNN= CTF SPECIFIEC SERIAL NUMBER, OR BLANKS *
- - . . . e OLTPUT . . « NNNNN= CTF SPECIFIECs OR TAPE SERIAL., OR BLANKS *
. ssvesvecce .. - .o e .e sese s .o e *
bl - . . . ®
#* 13 + SHRS . e« EC o *NNN * . o REEL SEQ NUMBER « 4 .« NNN= 001 CR DTF REEL SEQs FOR 1ST REEL. UPDATED AT LOR®
Haaseecssacsccnssssvsensccssscsccesscsnne P R T R R R T Ty R Y LT P
- - . - - . . . *
® 14 o SHAN . - BC o *Xa « FILE NAME « 10 « HEADER NAME *
:----o-oo-.oc.cno.-.-..-.o..-o.- essesscssesssccsasse 900000 E 0800000000000 000ss000ssssscsseensncscnnsaact
. . . . . . . . *
* 1S « SHCD . e« 0C o *YYDCD® - » CREATION DATE e 5 « YY= YEARs OCD= DAYe DTIF SPEC,OR FOR OUTPUT DATE IN 119%
e ese .o CRERY as cese - sscee .o s secsns®

*

ot -
® 16 + SHRC

%esescaccccnas
-

. -
- -
. .
- - - -
® 17 o SCTFLE « $~--TFLE o« CCW o °'N°*
- .
. .
. .
.

-
. ©C

RETENTION CYCLE 5 o« NNN = NUMEER CF DAYS. DTF SPECIFIED *

B R R T R R R R
(3

seescssvesssscves

.
-
.
-

-

-

.

. .

LABEL TYPE - 1 e 0= STANDARD, NONEs 2= NON-STANDARD *
:ooo--.o....-. Seeseesescssesacsstssecccssscnsane seseevsesssessscsessrsssessssssecane ssessssccsccrserccscssvsssnsssansosasant
- - - - . *
* 18 o SCTFL! $--TFL1 . CCw NG e FILE TYPE « 1 o 0= QUTPUT, 1= INPUT *
. .e - e . .. .. . oo cen .o sees ae sesssccaacassors™
* - . . *
* 19 + SCTFL2 . 3--TFL2 ALT ORIVE IND 0= NC ALTERNATE, }= ALTERNAYE IS SPECIFIED *
%soecssccvssssevana .o ona e cesseseves .. secsersence . *
- - - - . . . *
% 20 o SOTFLY o $—-TFL2 « CCw o °N* . « LABEL CHECK IND « 0= CHK COMPLETELY.1 NO C#Ks 2= CKEK FILE NAME ONLY *
:n.................¢-..-.....--.-o-.o-----....... cseessscsesssses R R Ry R R N
- . - . . . . . *
® 21 o SCTFLA o $--TFL4 o CCW o N . » TM AFTER POR INDs 1 « 0= NO, 1=YES *
» asee .. sasee €90 888000000 000000000000t00000sseresssssioncaccsenscancscttancctsovennanassnst
* . . . - .
. $=--TFLS REWIND INC NC REWINC. REWIND, 2= REWIND UNLOAD ¥
= . .o - . sese - e .e .o .o cee *
d - - . - . - *
$--TEC o CCw o *NNNNN® o » BLOCK COUNT - o RUNNING BLOGCK CCUNT FOR CURRENT REEL bl
LR R N R TR L] essecesessssvncae D R R S L R R R R L LR PR PP
- - . - . x
CCw « - + RECORD CCUNT « 10 « RUNNING RECCRC COUNT FOR CURRENT REEL *
sesecnas 0898000000000 0r 0T e riore e titentattatisecssotonasesasatscancccsnnccancansh
. . . -
CCw . HASH TOTAL s 16 o RUNNING HASK TOTAL FOR CURRENT REEL *
.. .. .o . .o ces cesscas®
- - - . . "
o K* « INPLT o EXIT 6 IND « 1 « 0% NOT USED. *
. *N? s OUTPUT o EXIT 1 IND . *
4c4ssevsassesscsnas sesescconscccsnas R R R R R R O P R

. - - .
. X xX* « INFLY + EXIT 6 ADCRESS « 5 o USED TO OVERRIDE CR IN LIEU OF STAND [DENTIFIER *
- xe s OUTPUT o EXIT 1 ADDRESS . s USED TO MCOIFY STANCARD TRAILER *
.. .o e .o vve . $ees0csts00000sesestsonteecttsersetstestenesarscrensaanal

- -
$--D7 CCh o« °*N°* INPLTY EXIT 7 IND - = NCT USEC, *
$--02 CCW .« °N* « OLUTPUT o EXIT 2 IND - = NOT USED, *
4eessessessccnsesscvrsssssnssnsane ecesscsssssscnsese sessscssecsce R R R
. - . . . *
oCw . « INPLY o EXIT 7 ACDRESS « 5 o+ USED YO CHECK NON-STAND HEADER OR ADDITIONAL MEADER »*
CCw o « OUTPUT « EXIT 2 ADDRESS . » USED TO BUILD NON~STAND TRAILER OR ADD TRLR AFT STAND *
eeccsssssesssnace svsesscs P N L T Y R T R A N RPN
- - - - - -
$--03 CCw . OUTFLT EXIT 3 INC e« 1 + 0= NCT USED, 1= USEC *
LYY T Y . .e ess eon - ese veoe sssessa0en - *
. . - . - . »
o DCw o e OLTPUT « EXIT 3 ADDRESS « S e USED TO CHECK STANDARC HEADER AND/OR BUILD HEADER *
esencsvss vesessn 8 EE0800rEsetasesaessrseniotneseceteretscetesnssssossrrresrnssescncscnccsnses
- . - - - . . - *
* 32 . sCa o $--D4 e CC¥ o OLTPLT « EXIT 64 IND « 1 o 0= NCT USED. 1= USEC *
#eesecsesnsnssnstssccccsassscsasn cscesae teessvsscccnnscanses @sesseesssresrsasasssenacssesctnncssrsssocastsrosnonast
- - . . . *
SEA . : CCw - « OLYPUTY o EXIT 4 ADDRESS « S « USED TC MCDIFY STANCARD HEADER *
- - sesesn sessesrase ese - ses ensseassas®
- *
e« OUTFUT o EXIT § IND 1 NCT USED *
esscscsvecccscsse cesssessecscse .. coe cee essessce *
*

. . . .
*XeoeX"' e OLTPUT . EXIT S ADDRESS - 5 + USED T0 CFECK AND/OR EUILC NON-STAND AND/GR ADD HEADER*

P R A L L L R R R R e N

sessccesnnscsscencrne

B oeosseesssarscensvssnsscsssetcsnssscnensascsacan
.

: : :
T $--D8 . CCw . °N® T OUTPUT . EXIT & IND S 1 1 0= NCT USEB. 1= USEC »

seveen

see .

e OLUTPLT -« EXIT 8 ADDRESS

sesesescessesesncssscsssesssssnssocec’
&

- .
' 37 o SEB cCw X X « S
IIllillllllllll!lllll‘l‘l.lIllll‘lli!llllliil.Ill!l{llllliiilill'Ii!!lllI!lQlllll!'!lllllIii!i!l!I!Ill.ili&!llliiilliil‘illdlillll

® Figure 7. File Reference Table

Program Condition Analysis Aids 79




Appendix A — Glossary

AssicN: To modify and complete table entries and instructions
that will be used by the running program.

Brock: One or more data records grouped to form one con-
tinuous record which will be written or read from tape, from
or to storage.

Brockine Facror: The number of data records making up a
tape record.

CHECKPOINT: A reference point at which error-free operation
of the program has been verified and where the program may
return for restart in the event of subsequent failure.

CueckpoINT FILE: A tape record or records that contain the
contents of storage and machine conditions necessary to restart
a program at a checkpoint.

CueckpoINT TAPE: The tape on which checkpoint records are
written.

Crosk: To terminate a file. For output files — write a tape mark
and, if specified, an end-of-reel trailer and another tape mark.
For both input and output files — rewind the tape and take a
checkpoint, if specified.

ControL: The apparatus used to direct, guide, or restrain a
mechanism or machine in operation. In computers, control is
maintained through the sequence of instructions in a program.
Control is often used in referring to the next instruction to be
executed, by such phrases as, control goes to, or, control
branches to.

Darta Recorp: A number of words of information grouped in
a known manner which will be used as data for a given opera-
tion.

EOF(EnDp oF FiiE): The logical end of an organized collection
of information directed toward some purpose. For multiple-reel
files, it is recognized at the end of the last reel.

EOR (Enp oF ReeL): The end of all records on a single tape.
The trailer on labeled input tapes contains information defin-
ing end of reel. Eor on unlabeled input tapes must be recognized
by a user’s routine. The user is able to identify an end of reel
by recognizing the last record of a reel. Eor for output files
is normally indicated by recognition of the end-of-tape reflector.

Fixep LENcTH DaTA REcorDps: Data records within a tape file,
all of which contain the same number of characters.

Force ConprTioN: An indication that there is no record in the
read-in area available for processing or that the write-out area
is unavailable to receive information. When this condition
exists, 10cs will take steps to fill the read-in area with informa-

tion or to execute a write from the write-out area, thus freeing
it for processing.

Hasu Count (Hasu TortaL): The cumulative total of the sets
of characters in a hash field for all records, (in a file, in a reel,
or that are processed in a particular way). The total is made
for auditing or control purposes.

Hasu Fierp: The position in a record from which hash counts
or hash totals are derived.

80

InrriaLizaTioN: The resetting of counters, switches, and ad-
dresses at specified times in a program.

IOCS (Inpur/OutPur CONTROL SYSTEM): A program devel-
oped to handle all necessary unit record or tape input and out-
put procedures to relieve programmers of duplicating their
efforts for most programs they write.

LaBeL: A record or records, written on tape, containing identi-
fying information concerning the file on the tape. For specifica-
tions, see 10cs bulletin.

LINKAGE: A series of instructions which enable a transfer to and
return from one program routine to another.

Macro: An open-ended sequence of machine instructions pro-
duced by a processor on recognition of a source-language state-
ment. These instructions can perform a function defined by
the parameters given in the source statement. They may con-
sist, in part, of a linkage to a closed subroutine.

Muvrri-FiLE ReeL: A tape reel which contains more than one
tape file.

Noise Recorp: A redundant non-data pulse which is piéked
up by the read head.

PARAMETER: A quantity left unspecified at some stage of an
operation and to which the user may assign arbitrary values.
Also, a field in the operand of a macro statement. It may be
given different names or values which allow the macro gen-
erator to generate machine instructions that have the correct
address, index words, etc., for a large variety of programming
situations.

PriMmE: To fill input areas.
Recorp CouNT: A count of the number of records in a file,
in a reel, or that are processed in a particular way.

ReTENTION CYCLE: The number of calendar days following the
creation date that a file is to be saved if standard headers are
used.

ReqQuesT: The 1/0 operations which the main program seeks
to perform in rocs.

SuBrOUTINE: A small routine that can be included as part of
several larger routines. Two major types exist;

1. Open — This routine is inserted directly, wherever needed,
in such a way that control enters and exits in a sequential
manner.

2. Closed — A routine which occurs only once, non-sequen-
tially, in a program. It may have several entry and exit
points. It is entered and left via linkage.

Tare Recorp: The information contained between two suc-
cessive inter-record gaps.

VariaBLE LENGTH DaTA RECORDS: Data records within a tape
file, at least two of which do not contain the same number of
characters.

VariaBLE LEnNcTH TaPE REcorps: Data tape records in a file
that contain variable length data records, or data tape records
in a tape file at least two of which have different blocking
factors.

D



ACPT
ADDR

ACCEPT
ADDRESS

AFTER

AREA

ASTERISK
AUTOMATIC
BALANCE
BACKSPACE
BLOCK COUNT
BLOCKED
CHANNEL
CHARACTER
CHECK
CHECKPOINT
CLOSE

COUNT
CONDITION
CORRECTED
COUNTER
CONTROL
CHANNEL AND UNIT
CLEAR WORD MARK INSTRUCTION
d-MODIFIER
END-OF-REEL
EXTERIOR

FILE SCHEDULER
FIELD

FORCING
FORCED

FILE REFERENCE ADDRESS
GREATER PRIORITY
FIXED

GROUP MARK
HIGHER ORDER
HEADER
HIGHEST

HIGH

HIGH ORDER
INPUT/OUTPUT
IDENTIFICATION
INDICATOR
INFORMATION
INITIALIZATION
INPUT
INSTRUCTION
INTERRUPT

LOW ORDER
LABEL

LENGTH

LOoC
MSG
MVE
NEC

NOP
NORM

OP-CODE
OVRLP

PA
PNCH
PNDG
POS
PREV
PRI
PRIM
PROCD
PROG

PTR
QTY
RCD
RCP
RD
REF
REG
RE]JT

LOCATION
MESSAGE
MOVE
NECESSARY
NUMBER

NO OPERATION
NORMAL
OPERATION
OPERATION CODE
OVERLAP
PARAMETER
PRIORITY ALERT
PUNCH
PENDING
POSITION
PREVIOUS
PRIORITY
PRIME
PROCEDURE
PROGRAM
POINT
PRINTER
QUANTITY
RECORD

READ CONSOLE PRINTER INSTRUCTION

READER, READ
REFERENCE

REGISTER

REJECT

REQUIRED

RETURN

ROUTINE

REWIND

REWIND AND UNLOAD
SCHEDULER
SCHEDULER

SKIP

SPECIFIED

STORAGE

SUBSTRACT

SWITCH

TAPE MARK

UNIT RECORD

USUAL

VARIABLE

WRONG LENGTH RECORD
WORD MARK

WRITE

X-CONTROL

INDEX REGISTER

Appendix B — List of Abbreviations

Appendix B — List of Abbreviations

81




Appendix C — Cross Reference Indexes

Three cross references are included to provide quick
access to specific points on the flow chart.

Part 1I: The connector cross reference lists the off-
page entry connector under ENTRY CONN, the off-page
exit connectors associated with that entry connector
under EXIT cONN, and the associated block number
under BLock NUMBER. For example, bBA2 under ENTRY
ConN is an off-page entry connector on Chart pB; DCK1
and pck3 under EXIT CONN are the chart locations which
have off-page exit connectors to pBa2; and pcee and
pc13 under BLOCK NUMBER are the respective block
numbers,

Part 2: The subroutine cross reference lists the sub-
routine name under sUBROUTINE; the entry connector
to the subroutine, if any, under ENTRY conN; and each

ENTRY  EXIT  BLOCK ENTRY  EXIT  BLOCK
CONN CCNN  NUMBER CONN CCNN  NUMBER
DBA1L DAF3 DA24 OFB2 DAD4 DAZ6
DEK4 DE39
DFB3 ceGs cB36
DBA2 BEK4 BE1O DBK4 D825
BEKS BE20 DG4 DG37
DCK1 ocaz
DCK3 oC13 DGD4 DFF2 DFO7
pBC2 DCH4 DC4s EAF4 EBD2 €B13
EBF3 EB23
DBCa DccCy DCO3 ECG3 EC30
ocez DCo6 ECJ1 EC20
DCK3 DC13 ECK3 ECc18
DBK4 DOK3 pp22 EBAL EAG3 EA26
DEK2 DE33
EBA3 ECKS EC47
DCAL DEE3 DB14
€BA4 EAFS EA25
ODAl BBF 1 B811
BBFS BB31 ECA1 EBE3 EB22
BCE3 8C20 EBH1 €807
80D3 8016 EBHS €837
EBJ2 €816
DED1 oco1 0025
DOK1 0D33 £CA4 EBH3 €825
DEG2 boK4 ooz ECAS EBG3 £B24

SUBROUTINE ENTRY BLOCK 8LOCK

NAME CONN LOC NUMBER
ABC2 ABO3
ABK4 ABI1S
B8BG2 8814
BCH3 BC28
DBF2 D830
DBF4 0819
DCE4 DCa3
DCJS DC37
DDH4 DD19
DDU1L Db32
DEF4 DE25
DEHS DE19

82

block which represents the subroutine under BLOCK
LOCATION and BLOCK NUMBER. For example, sWIMRU
under suBROUTINE and pcB5 under ENTRY CONN indi-
cates that peBs is the off-page entry connector to the
detail chart of the swrMru subroutine; pBj2 and pEB4
under BLOCK LOCATION, and DB33 and DE2? under BLOCK
NUMBER are the chart locations and block numbers,
respectively where the subroutine is represented.

Part 3: The label cross reference lists the symbolic
or actual label under rLaBEL, the chart location(s)
where the label occur(s) under BLock r.ocATION, and
the block number(s) under BLock NumMmBER. For exam-
ple, siNTEXT under LABEL is shown at chart locations
AAK1l and BaH1 under BLock LocATION and at block
numbers AA23 and BA20 under BLOCK NUMBER.

SUBROUTINE ENTRY BLOCK BLOCK

NAME CCONN Lec NUMBER
CHAS EAJS £EA32
EBB4 EB27
EAAL/EDAL CCEs4 CC3s
s-—INIT BEA4/AS DBK1 D810
$-—PADS BFB2/84 CAES CA25
DEBL DEO3
$——WTG 8LD1 DDG2 bD29
DEBS DE12
SCHKPT DBJS 0B24
sCLOP OFB1 ABB3 ABO1L
SCLSA+7 DEA3 ADBC4 AB21
$CPERR DHG2 cco2 cCz24
DHD2 DH14
$CS-REY F2/K3 AAJG AA4S
$CS—RET BAB1/F1 CCE2 cCcos
$CS—SCN BAE4/D1 cCJ3 cc12
$CS—SFS BAG3/D1 cBct cBO3
cBDa cB24
ceBl CCo1l
ccBa CcC31
$CS1SFS BAG3 ACAL ACO9
ccBe3 ccay
ceCBsS CCal
DFCa DF22
EAJS EA33
EDD2 EDI11
$CS2SFS BAD1 cCes ccaz
BADL DFD4 DF23
$ENTA DpAl ABE4 ABOS8
SENTAB DoA2 ABF &4 ABO9
SENTC DCAl ABG4 ABLO
SENTD DecCa ABG3 AB11




SUBRCUTINC
NAVME

SENTF

$ENTH

SENTY

SENTRY

SEORU

SERCHOP

»

$ERROR

$EXIT

$EXITRU

SHALT

$IPEOR

$NOTE

SPAEXIT

$PAHSK

$PSV

$ROLIN

$READRU

SREENTY

ENTRY
CCNN

bec2

pDLeG2

DEK4G

AAA2
PAAZ

oDaAl

EAAS

EAAL

DFB2

OFB3

CHA1L

oras

DHA2

DAC4

oae3
DAD4

CHA4

DGD4

CGB1l

DF GS

ABH4

AADS
BCE2
€BG1
CBHa
CCE3
CCFS
CCG2
CCHa4

ACB4

EAE3
EAES
ECAtL
EBE1L
£861
EBGS
£CE2
ecJ2

AAJS
BBF1
BBFS
BCA4
8004
CCF2
DGES
DGG2
DGH2

ApB2

ABJ4

ACE3
ACH3
DCH1Y
DCJ3
DEK3
DGGS
EBA3
ECH4
EDK3

ABCS

ACKS
DCE3
DCG3
DDF5S
bOD+S
DDKS
DEK4
DHB1
EBC2
ECD4
ECG3
EDJS

ABF2

AEE3
ABE2

EAH2

AEDBL

08HS
oCB1
OCAS

0BG2
DBG4
DCF4
DCKS
CDJ4
DDK1
DEG4
DEJS
DFF4

BLOCK
NUMBER

ABtL2

AB22

AB13

AA36
BC21
<810
CE28
€C2s5
CcCs1l
CcC1sa
€C37

AB19

EA20
EA24
EBO1!
EEO04
EBO6
£B36
EC12
EC16

AAGE
8e1ll1
BE31
8C30
8D26
cCco7
DG33
DG29
DGOs

ABO2

ABl4

AC19
AC2S
bC20
DC12
DE36
0G36
Epl8
eEC41
ED36

AB20

AC29
pcos
DC1o
[olog B
bD13
bD1s
LE39
DHO2
EB12
EC35
£C30
EDC30

ABOS

ABO7
ABO4

EAL13

AB24

pB22
DCO2
DDO6

oB31
DB20
DCaa
0C38
bo20
CD33
DE26
DE20
DOF25

SUBROUTINC ENTRY

NAME CCNN
SRWORU 0GB3
SRWURU 0GB4
$STLE DfFB4
$SWBX CFras
$TPCLOS DLA2
$URCHOP EDAS
SURERR EDAL
SWRITRU DGB2
SWIMRU D6BS
CHAN SCHED BAA3

FORM

FORM

10Cs

LOAD

MACRO

BABS
BAE3
BAG4
BBC4/BLB1
BCA1/BEBL
BCAS/BDDS
BLAL/BBE4
SCHED
AAF 4
AAHS

4 RCD ONLY

4 WLR SEQ

PROGRAW

MAIN PROGRAM

PNDG

SCHED

SCHED

SW NETWORK

B3/F3

C3/G3

BLOCK
LocC

DBASG
CCGa
DEG1

DEH1

oDB1
DFC1

DBEZ2
DBE4
DCDa
DCHS
DDGa
DDH1
DEE4
DEGS
DFE3

ABC3

EDAZ2
EDA3
EDF1
EDF4
EDG3
EDH2

CBE2
BG4
C06S

DCH4
DEKS

oBJ2
oEBS
DEG3

B8H1
BBJ4
B8DD2
BCES
8DFS
B8BC1
B8BD4
BCD1
BDF1

BFE1
BFH3

CAB4
BADS
CAG2
ABK3
AAE2
AAJ2Z
AAC2Z2
AAG2
8BH2

BBH3
BCHS

RRCS
RRES

ABG2
RRAS
RRDS5
ABKS

RRBS
RRFS

BAH4

AAC4

AAK4

BLOCK
NUMBER

DB13
DC39
DE29

OE 31

DDO02
DF o2

bB29
oB18
DCa2
DC36
bD1is
0D 31
DE24
DElr8
DFta

AB18

EDO8
ED18
EDO6
ED23
ED21
ED1S

cBo6
€B27
cB36

0C40
DEZ21

oB33
DE13
DE27

BBO7
8829
BD1L7
BC34
8028
BBO3
BB24
8Co4
BDO6

8FO07
BF 20

CAl13
BA1O
CAOQ8
AB17
AALL
AA20
AAQGE
AA1S
BB1S

8B16
BC3S

AB06

AB16

BA22

AA39

AA4E

Appendix C — Cross Reference Indexes

83




BLOCK
LABEL
$——ACT+11
$--BYP
$~—EMTY
$——EXIT
$~~FULL
$—-INIT
$~~10A
$--108
$--PA
$--PADS
$--PFOR
$--PLB1
$~-PLB2
$-~SA
$-—SFX
$-~TRIG
$——WLR
S——WTG
$~~0000N
SATTN
$BCRT
$CLOP
$CLSA
SCLSA+7
SCLSABA
$CLSB

BLOCK
LocC

CBBS

BCD2

AAASL
BGB1
BCA1L
ceBl

AAFS
BBK1
BEK4
BCH2
BLF2
CEJ1
ceJe

sEBSs
B0A1
cBB4S

BEA4
BEAS

8801
BBES4
BCJ1
BLBa4
ceD1
CBE4

BCK1
BoBS

AAAS
BCA2
BDA2

Brez
BFB84

BFG3

DFB1

DEF2

DEA3

DEC2

DEDS

BLOCK
NUMBER

€831

BC19

AA31L
0801
BCO1
cBo2

AA38
8B0O9
BB30
BC24
BD19
cB12
CB29

BB21
BDO1
cB22

BEO1
BEL1

2804
BB25
BCO9
BD22
CBO4
B82S

BC10
BD23

AA33
BCl2
apio

BFO1
BF11

BF19

BF 06
DF18

BFO3
BF1S

BC1s
BC13

€803
cg2a

AA3S
BBO7
8828
8C20
8016
cB10
cp2s

BE16
8C35

BCO2
ERO4

ECO7
BDO9

BAO2

DD16

DF 01

DEO8

DEO9

DEO4

DE1S

BLOCK
LABEL

$COMP

$CPERR

$CPEX

$CS1ENT

$CS1PR

$CSIRET

$CS1SCN

$CS1SF

$CS1SFS

$CS1SFX

$CS183

$CS2ENT

$CS2PR

$CS2RET

$CS2SFS

$DATER

SEND

SENTA

SENTAB

$ENTC

$ENTCR

$ENTD

$SENTE

SENTF

SENTG

SENTH

SENTI

$ENTY

SENTRY

$EORU

$SERBA

SERCHOP

$ERCTL

$ERDA

$ERDC

SEROLY

SERDMP

BLOCK
L0C

OAC)
DHG2
DHJ2

AAB1L
BAC4

AACt
BAD4

AAF2
BAB1

BAES
BAE3

AAB3
BAG3

BAG2
BAGa

AAF 1
BAC1

AAG1

AAK3
BAF1

AAF3
DCJ2
DAaC2
dBaAl
DBA2
ccCal
DCB1l
cBCa
0CG4a
ogc2
DCK3
DEG2
DBJS
DBK4

AAA2
BAA3

DC AL

ACAS
EAE4

EAAS

ACF4
ECE4

ECD3

ACD2
ECAL

ACCa
EBAS

ECA3

BLOCK
NUMBER

DAOS

CH21

DH24

AAO4
BAOS

AAOS
BAOG6

AA12
GA17

BAO7

BA13

AAOQ7
BA1l1

CAl16

BAO9

AAl13
BALlB

AA1ls4

AA21
BA1S

AAl1E

bci18

DA13

oBO1

bB1ll

DCol

bDCoz2

‘DB16

DC39

oB27

bDbh22

DE28

D823

bo2s

AAQ1
BAO3

DDO1

ACO4
EA23

EA36

AC22
EC38

EC27

AC17
ECO1

AC13
EB30

EC24

BLOCK
LABEL

SERDMP-19

SEREF

SERENT

SEREX

SERFA

$ERH

SERH+7

SERHLT

$SERLV

SERNR

$ERNR+13

SERPA

$ERPU

$ERQLB

$ERRGR

$ERSCN

$ERSK

$ER1O

SEXIT

$EXITRU

$SFINITY

$HALT

SHALTX

$IN

SINTEXT

$IPECR

$JUG

SLBIN

$LBOP

SLINK

SLMWTGR

SMOVE

SNHL

SNIH

SNOH

SNOTE

SOPEOR

BLOCK
Loc

ECA4

EBF2

EABL

EBC4

EBBS

ACE3
ECH4

ACES4
ECA2

ACH3
EBA3

ACCS
EBA4

ACB4
EBA2

EBB2

ECCa

EAD1

ACG4
ECHS

ACA2
EAAL

ACK3
ECAS

ECH2

TEAFL

oFEB2
CFB3
DBJ1
DHAL
DRH1
DAE3

AAK1
BAH1

DOAS

ACA4
EAF4

DGEL
DGG1
DAH1

ACB1
EAK3

DAJ1
DCE1
DCJé
OCH1
CHA2

[o]3]e] ]

BLOCK
NUMBER

EC23

EB1l14

EAO2

EB29

EB31

AC19
£C41

AC20
£C08

AC2S5
EB18

ACO6
EB26

AC11
Es10

EB1lt

EC34

EAQ4

AC23
EC45

ACO1L
EAO1

AC30
EC31

EC15

EAl1C

DF 03

DF11

[=lafels]

DHO1

OHO8

DA23

AA23
BA20

0006

ACO3
EA22

DGO4

DGO6

DA1O

ACO8
EA29

DAll

DC23

bC12

pca2o

DH11

DD2S

BLOCK
LABEL

$SOPEORA
$OPHD
$OPHDAB
s$OouUT
SPAEXIT

$PAHSK

SPRIMER
$PRIMES
$PSV
$PSX
SRDLIN
SREADRU
SREENT
SRWDB
SRWDRU
SRWORUA
SRWURU
$STLE,$5CS
$STLEXT
$SUSXA
$SWBX
SSWBXA
$TPCLOS
SURANY
SURBAN
SURBAN-11
SURCHOP
$URDCK
SURENT
SURENR
SUREXT
SURNR
SURNR+13
SUROPEN
$URPKUP
SURQE
SURTY
SWRITRU
SWTGX
SWTMRU
00101
1ST LOAD

2ND LOAD

BLOCK
LocC

DED1

DCE2

DCA4

DAF2

DAC4

DAB3
CAB4

LEBY

DEAS

DHA4

OHJ4

OGD4

DGF3

DGB3

DGC3

oGB4

DFB4

DF U5

DEC4

DFBS

DFDS

DEA2

EDF1

EDJ1

COH1

EDAS

ECC3

ECC1

EDAL

ECK1

EDGS

EDHS

DFG1

ECE1

£DK4

ECJ3

oGB2

EAKS

oGBS

BAA4

RKAS

RRDS

BLOCK
NUMBER

DEOS
DC14
DCz8
DAl6
DA2S

DAO2
DAC1

DE13
DE11
DH31
DH39
DG31
0GO1
DF41
D627
062t
0G24
DG22
DF21
DF43
nE22
DF 31 T
OF 33
DEO1
EDO6
£033
ED32
ED4O
€037
EDO3
EDO1
ED34
€D28
ED29
DF51
EDOS
€027
ED35
0611
EA3S
0623

BAO1

84




Appendix D — Sample Autochart Symbols

R RN E RN E BN RN R RN RN R R RN R R RN R RN AR R R R R RN BTN RN R AR AR B AR IR RN N R RN R AR AR B RN RN R RN E RN ERRNA RN SRR R R SRR AR RA RO RRRARRE N
- *

et i e e R R R R R R R S R R R R R R R AR R R R LR AL AL LA AL AL At b el d il

FUNCTIONAL SYMBOLS

AEARNE ERRERERE RN
- *

» *
» *
* *
* *
- »

EREEARANRBLERE S

RERRDLRRRERRE R
*
» *

* -
EEEBRRERRERRR R

HACERRARRR
* *

* -
FRRREERL O

SRAE L RARRRARR

- *
AREERRBBE R

BRERAGLERRRAR AR
» *

e L e e
) *
* *

* *
HERRRERAEREEFER NN

Hixss
»* *

.- wx
*xx

EXTE TS

*
g T T T T A AR S R A TSR a s Al ARt d AR A A bR bbb bbbl

PROCESSING
8LOCK

DECISION
BLOCK

HALT

BLOCK

MODIFICATION
BLOCK

INPUT 7/ QUTPUT
BLOCK

SUBROUTINE
BLOCK

LOGICAL
CONNECTOR

T T T I e e R R R R R R R AR R AL Rt S it

FLOW AND CONNECTOR SYMBOLS

(REPRESENTATIVE SAMPLES SHOWN.)

X AT END OF LINE SHOWS DIRECTION OF FLOW
POINT AT CND OF OFF-PAGE ENTRY
CONNECTOR ALSO SHOWS FLOW DIRECTION

*
*
*

rHEE

"

ca *
M

2223

.
-
.

X
RERFRCLAEREAEERRN
* »

ON-PAGE * *
ENTRY .o X *
CONNEC TORS . % .,
. % * .
- ABEEERARRARRERREER -
L2 2] -
» * .
* Ca .
* » -
EER -
* .
o4 .
* .
ON-PAGE * .
EXIT oot L
CONNECTORS . - .
. * -
X LI .
R *
* * .
* ca . .
» * X .
LT X2 EYT Y} -
- » .
* Ca o .
* * -
*nxn “Xnvoo
.
LINES .. ieee
ARBER .
*F4 .
* * -
" * -
* .
cee BEHRER
*F4 *
X » *
RHEREEFLAARRRERERR * =
* » *
OFF-~PAGE * . .
ENTRY .o X% *Xesosaos
CONNECTORS . * »
. s
- FRERRERERERERREEE
*
* * .
*Fa * .
* * -
(X222 .
.
X
Ga *
-
OFF-PAGE *
EXIT .
CONNECTORS . *
- » rRNBE
X * * *zE #
cERRE - * Alw
#78 * B LR
* A2S . -
o X
* ENEXR
ZC »
+ A3®
* »
» EXIT
A
B
c

Appendix D — Sample Autochart Symbols

CONNCCTORS

BOTH EXIT TO

BLOCK C4
ON THIS
CHART

LINE JUNCTION
CROSSING LINE

AN OFF-PAGE ENTRY CONNECTOR
MAY ALSQ BE REFERRED TO

- BY AN ON~PAGE CONNECTOR

ON THIS CHART

GOCS 1O
CHART BLOCK
F4:] A2
zc A3
zB Al

*
*
*
*
*
*
*
*
*
*
*
»*
*
*
»
»
*
*
*
*
*
-
*
*
=
*
*
*
*
»
*
-
*
*
-
*
*
*

*
»*
*
*
-
»
*
*
*
»
»
=
=
"
-
*
*
*
-
»
*
*
"
*
*
=
*
-
*
*
»
*
*
-
*
*
-
=
*
*
*
*
*
*
*
*
*
»
*
*
*
*
*
13
.
-
*
*
»
*
=

»
*
*
*
»
L3
*
*
»
*
*
+
*
*
»
*
*
*
*
*
*
*
*
*
*
»*
*
*
»
*

85




Appendix E— DIOCS-Generated Label Definitions -

This section lists the labels in 10cs that are generated  tion of the routine or data area the label addresses.
because of procs entries. With each label is an explana-

10CSAD = ALTERNATE DRIVE.,
RELATIVE POSITION OF THE FILE SCHEDULERS ALTERNATE
DRIVE INFORMATION.
1 0CS ARG =~ ARGUMENT,
WHEN THE 1/0 COMMAND IN ERROR IS PROCURED, THE ERROR
ROUTINE USES THE CHANNEL SYMBOL AND UNIT NUMBER TO LOOK
UP AGAINST THE CHANNEL UNIT TABLE YO OBTAIN THE
FILE. SCHEDULER ADDRESS.
10CSATTN — ATTENTION.
SEQUENCE OF INSTRUCTIONS FOR STORING THE PROGRAM
STATUS LATCHES PRIOR TO ENTRY INTO IOCS. *
I 0CSBCRT ~ BRANCH CHECK — REWIND TAPE.
MOVE EX1IT 6 AODRESS TO THE SWITCH BOXs TURN OFF THE
PENDING SWITCH FOR THE FILE, BRANCH TO EXIT 6 ROUTINE,IF
SPECIFIED, AND CONTINUE TO THE RWD/RWU SEQUENCE. IF AT
END OF REEL.
10CSBLANK ~ BLANKS.
BLANKS USED TO CLEAR THE LABEL AREA BEFORE CONSTRUC-
TION OF HEADER LABELS.
TOCSCCTAB - CHANNEL CHANGE TABLE AB.
TABLE CONTAINING CONSTANTS NECESSARY TO CHANGE A FILE
SCHEDULER TO 'THE ALTERNATE CHANNEL ACCORDING TO THE CON—
TENYS OF THE FILE SCHEDULER CHANNEL INDICATOR DURING THE
OPEN.
IQCSCHKPT — CHECKPOINT.
CHECKPOINT SEQUENCE ~ ENTERED VIA THE CHKPT MACRO IN-
STRUCTION OR DURING THE END-~OF-REEL SEQUENCE AT IOCSENTI.
WILL WRITE THE CHECKPOINT IDENTIFICATION HEADER AND THE
CHECKPOINT RECORD.
10CSCIA — CONSOLE INQUIRY AREA.
AREA USED TO STORE INDEX REGISTERS AND PROGRAM STATUS
LATCHES DURING AN INQUIRY REQUEST INVERRUPT,
I10CSCIE — CONSOLE INQUIRY ENTRY.
ERANCH TO THE USER*S INQUIRY ROUTINE. THE USER'S ROUTINE
MUST HAVE A SBR INSTRUCTION AS ITS FIRST COMMAND TO ROUTE
THE RETURN FOR RESTORATION OF THE PROGRAM STATUS LATCHES
AND INDEX REGISTERS.
10CSCIPR — CONSOLE INQUIRY PRIORITY ROUTINE.
ROUTINE STORING PROGRAM LATCHES AND INDEX REGISTERS
THAT MAY BE USED IN THE USER'S EINQUIRY ROUTINE,.
TOCSCKBSP — CHECKPOINT BACK SPACEa

BACKSPACE INSTRUCTIONS FOR ERRORS WHEN WRITING CHECK-
POINT RECORDS ONLY. IF DURING THE PROCESS OF WRITING A
CHECKPOINTs A REFLECTIVE SPOY IS ENCOUNTERED, 10CS
WILL BACKSPACE OVER 80TH CHECKPOINT AND HEADER RECORD AND
FORCE END OF REEL. IOCS WILL THEN OPEN THE NEXT FILE
AND PROCEED TO WRITE THE HEADER AND CHECKPOINT RECORD.

TOCSCKEXIT ~ CHECKPOINT EXIT.
EXIT FROM THE CHECKPOINT ROUTINE TO THE USER'S PROGRAM,

IOCSCKHLDA — CHRECKPOINT HOLD AREA.
FOLD AREA, DURING CHECKPOINT WRITINGs FOR MEMORY LOCA-~
TIONS 00001 THRU 00024, THESE LOCATIONS WILL BE STORED
HERE PRIOR TO WRITING OF THE CHECKPOINT RECORD.

IOCSCKMSG -~ CHECKPOINT MESSAGE.
CONSOLE INDICATION AFTER THE CHECKPOINT RESTART HAS
BEEN SUCCESSFULLY COMPLETED. ‘20186 RST*.

TOCSCKREC ~— CHECKPOINT RECORD.
INFORMATION THAT WILL BE WRITTEN AS THE HMEADER OF EACH
CHECKPOINT WRITTEN. THIS INFORMATION IS USED BY THE RE—
STARY PROGRAM TO FIND THE LOCATIONS OF INFORMATION NECES—
SARY TO RESTORE THE PROGRAM TO A PRIOR STATUS.

TOCSCKRCC — CHECKPOINT COMPLETE — COUNT.
CONSOLE INDICATION THAT A CHECKPOINT HAS BEEN WRITTEN.
LAST THREE POSITIONS OF THE MESSAGE CONTAIN THE SEQUEN~
TIAL NUMBER IDENTIFYING THIS CHECKPOINT. 10185 CPT XXX'.
10CcscLopP ~ CLOSE OPEN.
BEGINNING OF THE ROUTINE FOR OPEN, CLOSE, FEORL, AND
ROLIN MACRO INSTRUCTIONS.
TO0CSCLOSD - CLOSE DUMP.

DUMP TAPE CLOSE SEQUENCE ~ ENTERED VIA THE CLOSD MA-
CRO.

IOCSCLOSDD ~ CLOSE DUMP DUMMY.
THE CONTROL UNIT INSTRUCTION THAT IS MODIFIED BY THE
QPERAND OF THE CLOSC MACRO.

10CSCLOSDX — CLOSE DUMP EXIT.
DUMP TAPE CLOSE EXIY TO RETURN TO THE USER'S PROGRAM,.

TI0CSCLSA ~ CLOSE A.
MODIFY AN OUTPUT FILE SCHEDULER. IF A 2-AREA FILE, FOR
RETURN TO 10CS AT END OF REEL.

10CSCLSAB ~— CLOSE AB.
TESTS FOR A FEORL. IF NOT, WILL PROCEED TO CLEAR THE
REEL SEQUENCE NUMBER.

10CSCLS8 - CLOSE Ba i~
ASSEMBLE AND WRITE TRAILER LABEL - EXIT 1 SEQUENCE
CONSTRUCTS THE TRAILER LABELS IN THE LABEL AREA. SETS
UP FOR THE POSSIBILITY OF AN EXIT I ROUTINE AND WRITES N
THE TRAILER LABEL.

I0CSCOMP — COMPARE.

SEQUENCE USEDC TO DETERMINE IFf THE FILE CURRENTLY BEING
OPENED IS ALREADY IN YHE SORT TABLE.

86




R

TN

1 O0CSCPERR

10CSCPEX

LOCSCSNENT

TOCSCSXAL

TOCSCSXENT

10CSCSXEL

TOCSCSXPR

1 0CSCSXRET

1'0CSCSXSCN

10CSCSXSF

1 0CSCSXSFS

I OCSCSXSFX

10CSCSXS3

I0CSCSXUPR

10CSCy

10CSPATER

T10CSDTFA

I0CSOTFACT

10CSDYFBX

I0CSOTFI

IOCSDTFLE

10CSODTFLL

10CSCTFL2

IOCSDTFL3

TI0CSOTFL4

1 0CSDTFLS

CCNSOLE PRINTER ERROR ROUTINE.
TESTS ALL LATCHES EXCEPT WRONG-LENGTH RECORD AND NOT
READY

CONSOLE PRINTER ERROR EXIT.
EXIT FROM THE CONSOLE ERROR ROUTINE.

CHANNEL SCHEDULER N ENTRY.

ENTRY USED DURING 1405/1301 10CS OPERATIONS. NOT NEC—
ESSARY FOR CARD/TAPE OPERATIONS ALTHOUGH SEQUENCE IS GEN-
ERATED.

CHANNEL SCHEDULER X AREA -
AREA USED TO STORE INDEX REGISTERS AND PROGRAM STATUS
LATCHES DURING A UNIT RECORD PRIORITY INTERRUPT,.

CHANNEL SCHEDULER X ENTRY.

ENTRY POINT INTO THE CHANNEL SCHEDULER ROUTINE. WwiLi
TEST FOR OVERLAP IN PROCESS ON THIS CHANNEL AND BYPASS
ANY TESTING OF THE LATCHES ON THIS CHANNEL IF IN OVERLAP.

CHANNEL SCHEDULER ENTRY 1.

BRANCH TO USER®S UNIT RECORD PRIORITY ROUTINE. USER'S
ROUTINE MUST INCORPQORATE A SBR INSTRUCTUON AS THE FIRST
COMMAND TO ROUTE THE RETURN TO [10CS FOR RESTORATION
OF PROGRAM STATUS LATCHES AND INDEX REGISTERS.

CHANNEL SCHEDULER X PRIORITY REQUEST.

A TEST OF THE CHANNEL PRIORITY REQUEST LATCH FOR THE
CAUSE OF INTERRUPT., THE I-FIELD OF THIS INSTRUCTION WILL
CONTAIN THE ADDRESS OF THE INTERRUPTING FILE SCHEDULERS
IOCSXXBA - STATUS INDICATOR TEST.

CHANNEL SCHEDULER X RETURNa

POINT OF RETURN FOR AtL FILE SCHEDULERS ON THE CHANNEL
AFTER AN 1[/0 OPERATION HAS BEEN STARTED. THE STORE B REG-
ISTER COMMAND WILL TRIGGER IOCSCXPR TO BRANCH TO A STATUS
TEST ON THE NEXT INTERRUPT.

CHANNEL SCHEDULER X SCHEDULER CLEAR NOP.

FILE SCHEDULER ENTRY POINT AFTER ERROR CHECK FOR I/0
COMMAND JUST COMPLETED. PENDING I1/0 OPERATIONS MAY BE
STARTED. THIS IS ALSO USED TO START THE FORCING OF THE
CHANNEL WHEN IT IS NECESSARY TO COMPLETE ONE T/0 COMMAND
BEFORE STARTING A SECOND. THE FIRST GET AFTER AN OPEN
MACRO WwILL CAUSE THIS CONDITION.

CHANNEL SCHEDULER X SCHEDULER FORCE.

STARTING OF THE CHANNEL CLEARING BY FORCING THE PROC-
€SS TO THE ERROR ROUTINE IF OVERLAP IS IN PROCESS ON
THIS CHANNEL «

CHANNEL SCHEDULER X SCHEDULER FORCE STATUS.

WHEN A FILE SCHEDULER IS CONFRONTED WITH THE CONDITION
THAT ANOTHER 1/0 OPERATION HAS TO BE STARTED FOR THE SAME
FILE BEFORE THE PREVIOUS OPERATION 1S STARTED OR COM-
PLETEDs THE FILE SCHEDULER WwILL BRANCH HERE TO FORCE THE
CHANNEL TO CLEAR.

CHANNEL SCHEDULER X SCHEDULER FORCE EXIT.
BRANCH BACK TO THE FILE SCHEDULER THAT FORCED THE
CLEARING OF THIS CHANNEL e

CHANNEL SCHEDULER X SCHEDULER 3.

A BRANCH EXIT PRIORITY ALERT TO THE HIGH PRIORITY FILE
SCHEDULERS PENDING SWITCHe WILL STARYT THE TEST OF ALL
FILE SCHEDULERS ON THE CHANNEL FOR PENDING OPERATIONS.

CHANNEL SCHEDULER X UNIT PRIORITY ROUTINE.

ROUT EINE FOR STORING PROGRAM LATCHES AND INDEX REGIS-
TERS THAT MAY BE USED DURING THE USER®S UNIT RECORD IN-
TERRUPT ROUTINE.

CEANNEL UNIT.

A 140-POSITION TABLE CONSISTING OF SEVEN-POSITION DCW'S
CONTAINING A DTF ADDRESSe CHANNEL, AND UNIT OF EVERY TAPE
FILE OPENED BY THE PROGRAM. USED BY THE ERROR ROUTINE TO
DETERMINE WHICH FILE SCHEDULER INITIATED THE ERROR.

DATE ERROR.
RETENT ION PERIOD ERROR SEQUENCE. SET UP THE DATE ERROR
MESSAGE.

OTF ADDRESS.
THE RELATIVE LOCATION OF THE FILE SCHEDULER END-QF-
FILE ADDRESS.

DTF ACTIVITY.
RELATIVE LOCATION OF THE FILE SCHEDULER ACTIVITY
DIGIT

OTF BOX

WILL CONTAIN THE DTF AODRESSES USED AS PARAMETERS FOR
THE OPEN, CLOSE. FEORL, AND RDLIN MACROS. A ONE-POSITION
CHARACTER BEFORE AND AFTER THE DTF BOX WILL CONTAIN THE
MACRC IDENTIFIER EXPLAINED UNDER I0CSEXITa

DTF INITIALTZER.
RELATIVE LOCATION OF AN AREA WITHIN THE FILE SCHEDULER
CONTAINING ITS INITIALIZATION ADDRESS.

OTF LABEL.
RELATIVE LOCATION OF THE LABEL TYPE CHECK CHARACTER.

DTF LABEL 1l
RELATIVE LOCATION OF THE FILE I1/0 TYPE CHARACTER.

DTF LABEL 2.
RELATIVE LOCATION OF THE ALTERNATE DRIVE CHECK CHARAC-
TER

DTF LABEL 3.
RELATIVE LOCATION OF THE LABEL CHECK CHARACTER.

DTF LABEL 4.
RELATIVE LOCATION OF THE HEADER T/M CHECK CHARACTER.

DTF LABEL Se
RELATIVE LOCATION OF THE REWIND OPTION CHECK CHARACTER

Appendix E — DIOCS-Generated Label Definitions

87




16CsD1
10CsSD2
10Csc3
10CsDs
10CSDS
10CsDé
10Csp7
FOCSD8

10CSDY

1 CCSEND

T QCSENTA

T OCSENT AR

ICCSENTC

1 0CSENTCR

TCCSENTD

I OCSENTE

T GCSENTF

L OCSENTG

T OCSENTH

IOCSENTI
10CSENTY

TOCSENTRY

1 CCSEORU

I OCSERAD

[ OCSERBA

1 0CSERDL

88

'

DIGIT 1.
RELATIVE LOCATION OF THE EXIT 1 CHECK CHARACTER.

DIGIT 2.
RELATIVE LOCATION OF THE EXIT 2 CHECK CHARACTER.

DIGIT 3.
RELATIVE LOCATION OF THE EXIT 3 CHECK CHARACTER.

DIGIT 4.
RELATIVE LOCATION OF THE EXIT 4 CHECK CHARACTER.

DIGIT S.
RELATIVE LOCATION OF THE EXIT 5 CHECK CHARACTER.

DIGIT 6.
RELATIVE LOCATION OF THE EXIT 6 CHECK CHARACTER.

DIGIT 7.
RELATIVE LOCATION OF THE EXIT 7 CHECKX CHARACTER.

CIGIT 8.
RELATIVE LOCATION OF THE EXIT 8 CHECK CHARACTER.

DIGIT 9.
RELATIVE LOCATION OF THE FILE SERIAL CHECK CHARACTER
WITHIN THE FILE SCHEDULER.

ND.
LOOKS UP AGAINST THE SORT TABLE FOR THE PROPER POSI-
TION TO INSERT TRE FILE BEING OPENED.

ENTRY A.

COMMON FILE SCHEDULER INITIA
THE DTF ADDRESS TO THE TAPE ASS
DTF ADDRESS TO FIND THE FILE IN
PROCEEDS TO EXECUTE THE INITIAL

LIZATION SEQUENCE. MOVES
IGNMENT TABLE. USES THE
ITIALIZAYION ADDRESSs THEN
TZATION.
ENTRY AB.

COMMON RE-ENTRY POINT FROM ALL TAPE FILE INITIALIZA-
TION ROUTINES. TESTS FOR REWIND PRIOR TO OPEN AND STARTS
THE STANDARD LABEL TESTS.

ENTRY C.

INPUT/OUTPUT COMMON TESTS.

EXIT THREE SEQUENCE —~ OUTPUT.

TESTS FOR A USER EXIT 3 ROUTINE. MOVES THE EXIT 3 AD-—
ORESS TO THE SWITCH 80X AND READS THE OUTPUT MEADER. THEN
IT wiLL EXECUTE THE USER EXIT 3 ROUTINE. IF THERE IS NO
EXIT 3 ADDRESS AND THERE 1S NO LABEL CHECKING, 10CS
WILL BYPASS LABEL READING ON AN OUTPUT FILE.

ENTRY CR.

CALLS FOR READING OF ALL INPUT LABELS AND ALL QUTPUT
LABELS NOT CONTROLLED BY AN EXIT 3 ROUTINE OR NO CHECK.
IF INPUT LABEL IS NOT TO BE CHECKED, CONTROL 1S RETURNED
TC I0CSENYD, IF THE LABEL IS TO BE CHECKED OR WRITTEN, A
COMPARE IS MADE FOR A Y1HDR ' AND AN ERROR OCCURS IF NOT
TRUE. IF AN INPUT LABEL IS TO BE CHECKED, PROCESSING
CONTINUES TO CHECK CREATION DATEs FILE SEQUENCE, I[DENT.s
AND SERTAL NUMBER, IF NECESSARY. ETC. IF THE INPUT HEADER
IS INVALIDs AN ERROR MESSAGE IS CONSTRUCTED AND TYPED.

ENTRY D.

EXIT 7 SEQUENCE - INPUT. MOVES EXIT 7 ADDRESS TO THE
SWITCH 80X AND TESTS IF THERE IS AN EXIT 7 ROUTINE. EXAM-
INES THE OTF TABLE FOR A TAPE MARK AFTER THE HEADER.

ENTRY E.
ROUTINE FOR REWINDING THE FILE PRIOR TO AND WRITING
OF THE CONSTRUCTED LABEL.

ENTRY Fo

EXIT 5 SEQUENCEs MOVES EXIT S ADDRESS TO THE SWITCH
BOX AND CHECKS FOR A USER*®*S EXIT S ROUTINE. CHECKS THE DTF
TABLE FOR.THE POSSIEILITY OF A WRITE TAPE MARK AFTER THE
OUTPUT +EADER,

ENTRY. G
END-OF=-FILE EXIT SEQUENCE. MOVE THE FILE SCHEDULERS
END~-OF-FILE ADDRESS TO IODCSEXIT.

ENTRY H.

TEST THE REWIND OPTION AND UPDATE REEL SEQUENCE NUM-
BER BY ONE. IF A FEQORLs BRANCH TO THE REEL CHANGE SEQUENCE
AND SET UP CONSOLE MESSAGE CONCERNING A REEL CHANGE.

ENTRY 1.
TESTS FOR A FEORL AND BRANCHES TO WRITE A CHECKPOINT
RECORD.

ENTRY Jo
SETS THE FILE SCrEDULER BEING OPENED INTO A NOT-PENDING
STATUS [F THE FILE +AS TWO [/0 AREAS.

ENTRY.

SEQUENCE USED, AFTER ALL MACRO EXECUTIONS, TO TEST
I0CS FOR PENDING QPERATIONS PRIOR TO RETURNING TO THE
USER'S PROGRAM.

END-OF-REEL ROUTINE.

INITIALIZATION FOR END OF REEL. SETS FOR FEORL, CLEARS
THE CHANNELS AND TESTS FOR AN OUTPUT FILE. FOR AN
INPUT FILE, EXIT & ADDRESS IS TESTED.

ERROR ADDRESS.

ADDRESS OF THE OTF IN ERROR DURING WRONG-LENGTH RECORD
CHECKs WILL BE DECREMENTED BY 33 FOR POSITIONING OF THE
DTF ROUTINE TO OBTAIN THE WRONG-LENGTH RECORD ADDRESS, If
ANY o

ERROR BRANCH ANY.
WORK AREA FOR THE STATUS TEST OF THE I/0 COMMAND INI—
TIATING THE ERROR SEQUENCE.

ERRCOR BAD LOCATION.
MULTI-PURPOSE AREA,
le WILL CONTAIN THE CONTENTS STORED BY THE SER OR
SFR _FOR NOISE RECCRD CHECK.
2e DURING A DATA CHECK ERBL wILL CONTAIN THE RELA-
TIVE POSITION OF THE CHARACTER IN ERROR WITHIN THE 1/0
AREA.




1 OCSERCHOP

10CSERCT

I0CSERCTL

10CSERDA

1 QCSERDC

1 0CSERDLY

10CSERDMP

TOCSEREF

T OCSEREX

IOCSERFA

T0CSERFH

10CSERFLD

1 0CSERH

10CSERHLT

1 OCSERLY

10CSERNOIS

1 OCSERNR

1QCSEROPTN

10CSERPA

10CSERPU

1 0CSERQLB

10CSERROR

1 OCSERSCN

10CSERSK

10CSERIO

IOCSEXIT

1O0CSEXITRU

4

i

ERROR CHANNEL - OPERATION.
SEQUENCE FOR MODIFICATION OF OPERATION CODES ON STATUS
TESTS USED BY THE ERROR ROUTINE ACCORDING TO THE CHANNEL.

ERROR COUNT

CONSISTS OF TWO 2-PQOSITION DCW®S USED AS ERROR COUNTS.
THE FIRST. OR UNLABELEDs. DCW IS5 FOR CONTROLLING THE NUM-
BER OF RETRIES ON A NOISE RECORD READ - 10 ATTEMPTS, THE
SECOND, OR LABELEC CCw CONTROLS THE NUMBER OF RETRIES
INITIATED BY A CATA CHECK BEFORE AN ERASE FORWARD IS GIV-
EN = 20 ATTEMPTS,.

ERROR CONTROL .
TESTING THE TYPES OF DATA CHECKS.
le LABEL READ ERROR. '40119 LRE*.
2. READ DATA CHECK. *60113 DCK'e
3. WRITE DATA CHECK. *20114 DCK®.

ERROR DUMP AREA.
WRITING ERROR {/0 AREA ON THE DUMP TAPE.

ERROR DATA CHECK.
SEQUENCE FOR TESTING IF THE ERROR IS A NOISE RECORD OR
A DATA CHECK. *20118 NLR'.

ERROR DELAY.

MOVES NORMAL ERROR EXIT TO MAKE THE EXIT AVAILABLE
FOR WRONG-LENGTF RECORD ERROR ROUTINES. SPECIFIED BY THE
USERe

ERROR DUMP.
DUMP TAPE ~ WRITING OF IOCSERFLD TO IDENTIFY THE FOL-—
LCWING ERROR RECORD.

ERQOR END FILE.
ET UP OF THE ERROR EXlT TO BRANCH TO THE ENO-OF-REEL
RCUTXNE AT AN ENC OF FILE

ERROR EXITe

EXIT FROM THE ERROR ROUTINE TO THE FILE SCHEDULER FOR
THE WRONG-LENGT+ RECORD ROUTINE OR THE COMPLETION OF THE
1/0 ROUTINE.

ERROR FUTURE ADCRES
DIFIES AND lNlTIALIZES THE FILE SCHEDULER WHEN THE
ERROR fS A WRONG-LENGTH RECORD ERROR.

ERRQR FUTURE HOLC.

MOVES THE DTF ADCRESS OF THE FILE IN ERROR FOR THE
MCDIFICATION AND USE OF THE FILE SCHEDULER WHEN THE ERROR
1S A WRONG—LENGTH RECORD. '20117 ZLR'.

ERROR FIELD.

A 29-POSITION DCW FOLLOWED 8Y A GROUP MARK
WORD MARK FOR HOLDING CONSTRUCTED ERROR MESSAGES FOR
I0CS INITIALLY *20183 CI *+Ge

ERROR HALT .
SEQUENCE TO TYPE ERROR MESSAGE., UPDATE AND TEST ERROR
COUNTSs AND SET UP OF AN ERASE FORWARD.

ERROR HALT 2.
ROUTINE FOR TESTING OF THE CONSOLE REPLY RECEIVED FRCOM
THE CONSOLE OPERATOR FOR THE OPTION DESIRED.

ERROR LEAVE.

EXIT FROM THE ERROR ROUTINE TQ THE FILE SCHEDULER FOR
THE WRONG-LENGT+ RECORD ROUTINE OR THE COMPLETION OF THE
170 ROUTINE.

ERROR NOISEs

THE WORK AREA USED TO STORE THE E OR F REGISTER ACCORD-
ING TO THE CHANNEL CETECTING THE ERRORe USED TO CHECK
FOR NOISE RECORDS ONLY IF A VALID WRONG-LENGTH RECORD.

ERROR NOT READY .
NOT READY MESSAGE ROUTINE AND LOOP. *10100 NR ‘.

ERROR OPTION.
A DCW CONTAINING THE FIRSYT CHARACTER OF THE VARIOUS
REPLIES THAT MAY BE REQUESTED BY THE ERROR ROUTINE.

ERROR PRINT ADORESS.

MODIFYING OF THE IQCSERFLD WHEN AN ASTERISK IS DETECTED
DURING THE SCANe MOVES THE MEMORY ADDRESS OF THE AS-—
TERISK FOR TYPING WITH THE ERROR MESSAGE.

ERROR PICK UP
SEQUENCE FOR FINDING THE 1/0 COMMAND CAUSING THE ERROR.

ERROR QUESTION LAST BRANCH ANY.
TEST TO CHECK {F THE ERROR WAS GENERATED DURING THE
LABEL READ/WRITE ROUTINE.

ERROR.
TAPE ERROR ROUTINE SEQUENCE.

ERRGOR SCAN.
SEQUENCE FOR SCANNING THE ERROR 1/0 AREA FOR DETECTION
OF THE ASTERISKS REPLACING THE INVALID CHARACTERS.

ERROR SKIP.
ERASE FORWARD.

ERRCR 10
MOVES THE [/C COMMAND IF THE COMMAND IS TEN POSI-
TIONS IN LENGTH TO I0CSJUG.

EXITa
MOVES THE DTF ADDRESS OF THE TAPE FILE BEING OPERATED

UPON TQO THE DTF BOX ALONG WITH THE 0P. CODE IDENTIFIER
THAYT DEFINES THE MACRO TYPE.

C CEFINES QPENS

4+ DEFINES RDLIN.

% DEFINES FEORL.

} DEFINES CLOSE.

J DEFINES THE END OF MACRO.

EXIT ROUTINE.

ROUTINE TESTS FOR THE COMPLETION OF THE OPEN, CLOSE,
FEORLs AND RDLIN MACROS. IF NOT, CAUSES A BRANCH TO
BRING IN THE NEXT PARAMETER — OTF ADDRESS.

Appendix E — DIOCS-Generated Label Definitions 89




TOCSE}

1 0CSE2
10CSE3
10CSE4

I 0CSES
10CSE6
10CSE7
10CSES
10CSGM

T CCSHALT
TCCSHALTX
T OCSHAN

10CsHCD

10CSHDBL
1QCSHFS

TOCSHITBL

1 OCSKHRS

1CCSIN

IOCSINTEXT

10CSIPECR

I0CSJUG

10CSLBA
1 0CSLAAREA
10CSLBIN

10CsSLAcP

IC0CSLINK

TO0CSLMWTGR

10CSMNC

1 OCSMOVE

T1QCSNEPO

90

i

EXIT 1.
RELATIVE LOCATION OF TRE EXIT ADDRESS .«
EXIT

RELATIVE LOCATION OF THE EXIYT 2 ADDRESS.

EXIT 3.
RELATIVE LLQCATION OF THE EXIT 3 ADODRESS.

EXIT 4.
RELATIVE LOCATION OF THE EXIT 4 ADDRESS.

EXIT 5.
RELATIVE LOCATION OF THE EXIT 5 ADDRESS.

EXIT 6.
RELATIVE LOCATION OF THE EXIT 6 ADDRESS.

EXIT 7
RELATIVE LOCATION OF THE EXIT 7 ADDRESS.

EXEIT 8.
RELATIVE LOCATION OF THE EXIT 8 AODRESS.

GROUP MARK.

BLANK FOLLOWEC BY A GROUP MARK WORD MARK USED BY
lOCS IN THE CONSTRUCTION OF ITS VARIOUS MESSAGES AND
AREA

HALT
CONSOLE REPLY WAITING LOOP. WAITING FOR THE OPERATOR TO
REPLY TQ AN T0CS ERROR MESSAGE.

HALT EXITe

BRANCH BACK TO [0CS ROUTINE WHICH DETERMINED THE
ERROR. USUALLY THE ROUTINE RETURNED TO WILL TEST THE OP-
ERATOR REPLY FOR THE ACTION TO BE TAKEN.

HEADER ALPHABETIC NAME.
RELATIVE LOCATION OF THE HEADER IDENTIFICATION.

HEADER CREATION CATE.
RELATIVE LOCATION OF THE HEADER CREATION DATE.

HEADER BLANKS.
BLANKS USED TO CLEAR THE LABEL AREA BEFORE CONSTRUC-
TION OF HEADER LABELS.

HEADER FILE SERIAL.
RELATIVE LOCATION OF THE HEADER FILE SERIAL NUMBER
WITHIN THE FILE SCHEDULER.

HIGH TABLE.

HIGH-ORDER POSITION OF THE PENDING-SWITCH SORT TABLE.
140 POSITIONS CONSISTING OF 7-CHARACTER SEGMENTS CONTAIN-
ING THE UNITS POSITION OF THE FILE PENOING SWITCH, CHAN-—
NEL SYMBEOLs AND PRICGRITY NUMBER.

HEADER REEL SEQUENCE.
RELATIVE LOCATION OF THE HEADER REEL SEQUENCE.

Ne

UPDATES THE FIGHER PRIORITY PENDING SWITCH OPERAND TO
THE ADDRESS OF THE CURRENT OPENING FILE'S PENDING SWITCH.
RESETS INDEX REGISTER 15 TO THE OTF ADDRESS CONTAINED IN
THE OTF BOX.

INTERRUPT EXITa
HE BRANCH ENTER PRIORITY ALERT TO THE USER'S PROGRAM
AFTER AN 10CS RELEASE.

INPUT END OF REEL.

STANCARD INPUT TRAILER LABEL SEQUENCE. READS THE TRAILER
LABEL AND CHECKS HASH TOTALS. RECORD AND 8LOCK COUNT.
AN UNEQUAL COMPARISON CAUSES AN ERROR MESSAGE.

ERROR JUG.
WORK AREA FOR 1/0 COMMAND INITIATING THE ERROR SEQUENCE.

LABEL AREA.
EIGHTY~-POSITION AREA FOR BUILDING OR READING STANDARD
LABELS.

LABEL AREA.
EIGHTY-POSITION AREA FOR BUILDING OR READING STANDARD
LABELS.

LABEL INPUT.
MOVING INFORMATION FROM THE DTF YO THE LABEL (/0 COM-
MANC. CHANNEL+ UNIT., AND CHANNEL STATUS OPERATION CODE.

LABEL OUTPUT.

REAO/WRITE COMMAND TO OR FROM THE LABEL AREA. STATUS
TEST FOR A NOT READY, CHANNEL BUSY, OR DATA CHECK
BRANCHES BACK TO THE CONTROLLING ROUTINE.

LINKAGE «

MOCIFIES OPERANDS OF PENDING SWITCHES 1F CURRENT FILE
HAS BEEN OPENED PREVIOUSLY. CAUSES AN OPENING OR MISSING
LINK IN THE PENDING SWITCH CHAIN.

LAST MINUTE WAITING ROUTINE «

ENTERED WHEN AN ERROR ENCOUNTERED ON CHANNEL 2 wiltL
CAUSE A MESSAGE TO EE FYPED ON THE CONSOLE PRINTER WHILE
CHANNEL 1 IS STILL IN OVERLAP PROCESS.

MOVE D CONTROL .

INITIALIZATION FOR AN ALTERNATE DREIVE. SET UP FILE
SCHEDULER WITE THE ALTERNATE DRIVE BECOMING THE PRIMARY
DRIVE AND VICE VERSA.

MOVE S

MODIFIES THL PENCING SwWITCH SORT TABLE TO CORRESPOND
TQ THE CHANCE MADE IN THE PENDING SwITCH CHAIN, OPENING
THE SORT TABLE FOR A NEW INSERTION.

OPEN — (SPELLED BACKWARDS).

UNITS POSITION OF THE TABLE CONTAINING THE ADDRESS OF
VARIQUS OPEN AND CLOSE ROUTINES RELATING TO THE FILE AC-
TIVITY CODF.




I OCSNHL

TO0CSNIH

1 0CSNOH

I O0CSKNOTE

1CCSCPEOR

1 CCSCPEORA

1 0CSCPHD

1 CCSOPHDAB

10CscuT

TOCSPAEXIT

T OCSPAHSK

I OCSPARG

T OCSPENSWE

1 CCSPRIMER

1CCSFRIME3

IO0CSPS

10CSPASR

10CSRC

TOCSRDLIN

1 OCSREADRU

1 0CSRENTRY

L1 CCSREPLY

I0CSRSCLCT

1 0CSRWOB

TOCSRWDRU

{OCSRWDRUA

TOCSRWDXT

TOCSRWURU

NO HEADER LABEL .

MOVES UNIT INFORMATION ON AN ERROR CAUSED BY AN INVALID
HEADER WHEN TFE FILE SPECIFIES STANDARD HEADERS.
SETS UP BOTH THE NO INPUT AND NO OUTRPUT HEADER ERROR
MESSAGES. '40130 NO+', AND *30133 NIH®.

NG I[NPUT HEADER.

SEQUENCE FOR WRITING THE INPUT INFORMATION IFf IN ERROR
ON THE CONSOLE TYPEWRITER. THE ROUTINE ALSO TESTS THE
OPERATOR REPLY.

NC CUTPUT HEADE
TYPES THE OUTPUT HEADER ERROR MESSAGES. TESTS OPERATOR
REPLY.

NCTE.
ROUTINE FOR TYPING [0CS INDICATIONS AND £ERROR MES-—
SAGES.

CUTPUT END OF REEL.
EXIT 8 SEQUENCE. SET UP EXIT 8 ADDRESS IN THE SwITCH
BOX IF DESIRED.

QUTPUT END OF REEL AREA.
OUTPUT END-OF-REEL 3EQUENCE. SET UP *1EOR * IN THE
LABEL AREA.

QUTPUT HEADERS

RETENTION PERIOD TESTS. CHECKS IF AN OQUTPUT FILE IS
AVAILABLE FOR WRITINGs OTHERWISE IT WILL CAUSE A DATE
ERROR.

OUTPUT HEADER AB.

MOVE NEEDED INFORMATION FROM OLD OUTPUT HEADER TO THE
FILE DTF AREA. MOVE THE CURRENT DATE FROM 00115 THRU
00119 YO THE DTF AREA. ASSEMBLE A NEW OLTPUT HEADER AND
TEST FOR THE POSSIBILETY OF AN EXIT 4 ROUTINE.

OUT »

CPEN THE PENDING SWITCH SORT TABLE TO INSERT THE PEND-
ING SWITCH ADNRESS OF THE CURRENT OPENING FILE IN CHANNEL
PRIORITY SEQUENCE.

PRICRITY ASSIGNMENT EXIT.
BRANCHES TO IOCSENTA TO CONTINUE OPENING OF THE FILE.

PRIORITY ASSIGNMENT HOUSEKEEPING.
BEGINNING OF THE PENDING SWITCH SORT ROUTINE. SETS UP
SEQUENCE FOR ACTUAL SWITCH SORTING.

PRIQRITY ARGUMENT.

TWO-POSITION AREA USED FOR CONSTRUCTION OF THE CHANNEL
PRIORITY ARGUMENT WHKEN LOOKING UP AGAINST THE PENDING
SWITCH SORT TABLE.

PENDING SWITCH ENTRY.

RELATIVE LOCATION OF AN AREA CONTAINING THE ADDRESS OF
THE PENDING SwITCH INSTRUCTION TEST FOR EACH FILE SCHED-
ULER

PRIMERS
WRITE A TAPE MARK AFTER THE LAST BLOCK.

PRIME 3.
WRITE THE LASY OUTPUT BLOCK.

PROGRAM STATUS.
FOUR MEMORY LOCATIONS USEN FOR STORING THE PROGRAM
STATUS LATCHES AFTER AN INTERRUPT. f101°%+G.

PROGRAM STATUS RESTCRE.

SEQUENCE FOR RESTORATION OF THE PROGRAM STATUS LATCHES
PRIOR TO TURNING ON PRIORITY ANO RETURNING TO THE USER®S
PROGRAM .

HEADER RETENTION CYCLE.
RELATIVE LOCATION OF THE RETENTION CYCLE.

READ LAREL 1IN,
READING OF T+E RCLIN CARDS AND MOVING OF THE INFORMA-
TION TO THE DTF AREA OF THE APPROPRIATE FILES.

READ ROUTINES

LABEL READ/WRITE ROUTINE.,

STORES THE B REGISTER FOR THE RETURN, CLEARS THE LABEL
AREA. AND SETS THE D-MODIFIER FOR A LABEL READ.

RE ENTRY.

RE-ENTRY POINT INTO IOCS AFTER HLADER AND TRAILER
EXITSe AND CLEARING OF CHANNELS DUE TO AN OPEN, CLOSE.s
FEORLs OR RDLIN MACRO. STORES USER*S INDEX REGISTER 15 (N
A HCLD AREA AND RESETS X15 TO THE CONTENTS OF DTF BOX BE-
FORE GOING INTO I0CS.

REPLY .
FIVE-POSITION AREA FOR THE OPERATOR REPLIES DURING AN
ERROR ROUTINE.

RESTART CHECKPOINT LOAD ON TAPE.
POINT OF ENTRY FROM THE CHECKPOINT RESFTART PROGRAM TO
THE PROGRAM BEING RESTARTED.

REWIND BRANCH.
CONTROL UNIT COMMAND. RELATING ChANNEL STATUS TESTS.

REWIND ROUTINE.

MISCELLANEOUS CONTROL UNIT OPERATIONS. STORING OF THE
RETURN ADDORESS: AND ?ASS CONTROL TO THE REWIND ROU-
TINE AREA WHERE TFE O-MODIFIER FOLLOWS THE BRANCH.

QEW!ND ROUTINE AREA.
PI{CK UP OF THE D-MODIFIER AND THE CHANNEL UNIT INFOR-
MATION TO BE USED IN THE CONTROL UNIT OPERATION.

REWIND EXIT.
EXIT FOR RETURN TO THE MAIN I10CS ROUTINE.

REWIND UNLOAD ROUTINES.

STORING OF THE RETURN POINT AND BRANCHING TO THE RE-
WIND ROUTINE AREA. ERANCH IS FOLLOWED BY THE D-MODIFIER
FOR A CONTROL UNIT OPERATION RELATING TO REWIND/UNLOAD

Appendix E — DIOCS-Generated Label Definitions

91




10CSSTLE
IOCSSTLEXT

1 0CSsSwex

I0CSSWEXA

10CSTBC
1oCsTBL

1C0CSTFINIT

LIOCSTHT

10CSTPCLCS
10CSTREL
10CSTRC
TOCSTRIGEN

1 OCSURANY

I CCSURBAN
1 0CSURDCK
TOCSURERR

1CCSUREXIT

1 OCSURNR
I OCCSURQPEN

1 0OCSURPKUP

1 BCSURGE

1 O0CSURTY

{OCSUSXA

ICCSWRITRU

IOCSWTGX

1 OCSWTMRU

1 0CSX15HD

10Cs101

1ccs20

92

STALL ENTRY.
LINKAGE TO CLEAR CHANNELS OF ALL CURRENT AND PENDING
OPERATIONS PRICR TO AN OPEN, CLOSE, FEORL, OR RDLIN.

STALL EXIT.
RETURN TO I0CS AFTER CLEARING THE CHANNELS AND EX-
ECUTING EXIT ROUTINES.

SWITCH ROXa

THIS ROUTINE RESTORES INDEX REGISTER 15 TO THE USER'S
CONTENTS AFTER AN OPEN, CLOSE, FEORLs OR RDLIN. USED BY
ICCS TO BRANCK YO THE USER ROUTINES IF USING EXNADDR
DIOCS ENTRIES.

SWITCH EOX AREA
ERANCH INSTRUCTION WHOSE OPERAND IS LOADED WITH AN EXIT
ACDRESS.

TAPE BLOCK COUNT.
RELATIVE LOCATION OF THE BLOCK COUNT

TABLE.
UNITS POSITION OF THE PENDING SWITCH SORT TABLE.

TAPE FILE INITIALIZE.
SKELETON BRANCK INSTRUCTION MODIFIED WITH THE ADDRESS
OF THE FILE INITIALIZATION ROUTINE.

YADE HASH TOTA
ELATIVE LOCATION OF THE HASH TYOTAL.

TAPE CLOSE.
APE CLOSE SEQUENCE. WILL BRANCH OUT FOR PADDING POS—
S!B[L[TIES IF THE FILE BEING CLOSED IS AN OUTPUT FILE.

TRA(LER BLANKS .
KS TO CLEAR THE FIRST TEN POSITIONS OF THE LABEL
AREA BEFORE CONSTRUCTING A TRAILER LABEL.

TAPE RECORD COUNT.
RELATIVE LOCATION OF THE RECORD COUNT.

TRIGGER END.

RELATIVE LOCATION OF A DCw CONTAINING THE ADDRESS OF
THE FILE SCHEDULER BRANCH TO I0CS AFTER SIGNALING
THE NECESSITY OF AN [/0 OPERATION FOR THE FILE.

UNlT RECORD ANY.

EQUENCE FOR TESTING THE STATUS LATCHES AND CONSTRUCT-
lNG ASSOCIATED CONSOLE MESSAGES TO BE TYPED OUT ON UNIT
RECORD ERRORSe 20116 DCK®,*20143 STK®, AND 20115 LLC'.

UNIT RECORD BRANCH ANY.
BRANCH ANY AFTER THE ERROR ROUTINE RETRIES A UNIT RE-
CORD OPERATION BEFORE RETURNING TO THE MAIN PROGRAM.

UNIT RECORD DATA CHECK.

RETRY ROUTINE FOR DATA CHECKS. WILL ATTEMPT TWICE ON
PRINTER OR PUNCF ERRORS BEFORE TYPING THE ERROR MESSAGE.
WILL NOT RETRY A READER FILE.

UNIT RECORD ERROR ROUTINE,.
UNIT RECORD ERROR SEQUENCE,

UNIT RECORD EXITa
ERANCH FOR RETURN TO THE UNIT RECORD FILE SCHEDULER.

'UNIT RECORD NOT READY,
SET

UP A CONSOLE TYPEWRITER MESSAGE FOR A NOT READY
INDICATION ON UNIT RECORD FILESe. *10100

UNIT RECORD OPEN.
CLEARS THE BLOCK COUNT ON ALL UNIT RECORD FILES DUR-
ING THE OPENING.

UNIT RECORD PICK UP.

INSTRUCTIONS MOVING THE UNIT RECORD COMMAND AND ITS
CORRESPONDING STATUS TEST FROM THE UNIT RECORD FILE SCHED-
ULER TO THE ERROR ROUTINE FOR RETRY.

UN[T RECORD QUESTION ENTRY.

OF A UNIT RECORD FILE SCHEDULLER FOR A BEX FORM OF
XNSTRUCT!ON AS NEXT INSTRUCTION AFTER THE BRANCH TO THE
ERROR ROUTINE. COULD BE CONSIDERED AS LOOKING FOR A READER
FILE SCHEOULER.

UNIT RECORD TYPE,
SEQUENCE THROUGH WwHICH ALL UNIT RECORD ERRQORS. EXCEPT
NOY READY, PASS TO +ALT FOR OPERATOR INTERVENTION.

USER SET EXIT A.
EXIT 2 SEQUENCE - MODIFY THE SWITCH BOX TO THE EXIT 2
ACDRESS IF NECESSARY, OTHERWISE WRITE A TAPE MARK.

WRITE ROUTINE.
STORING OF THE RETURN ADDRESS AND SETTING OF A
D—~MODIFIER IN THE LABEL 1/0 COMMAND.

WAITING EXIT.
EXIT, AFTER FORCING CHANNEL t TO BE CLEARED, TO PRO-
CEED WITH THE TYPING OF A CHANNEL 2 CRROR MESSAGE.

WRITE TAPE MARK ROUTINE,

STORING OF THE RETURN POINT AND BRANCHING TO THE RE-
WIND ROUTINE AREA. BRANCH IS FOLLOWED BY A WTM D-MODIFIER
FCR THE CONTROL UNIT OPERATIONS

INDEX 15 HOLOD.
WILL CONTAEN THE USER'S CONTENTS OF INDEX REGISTER 15
DURING PROCESSING IN [0CS.

101,

TWO DCW*S — 10 AND 1. USED IN A COMPARE INSTRUCTION
AGAINST IOCSPS FQR RESTORATION OF THE PROGRAM STATUS
LATCHES PRIOR TO THE RETURN TO THE INTERRUPTED USER PRO-
GRAM,

Oe
END~CF-REEL MESSAGE. '20120 EOR'.




10Cs31

10Cs32

10Cs533

10CS34

10Cs36

10CS44

00000

101

1e
CREATION RETENTION PERIOD ERROR MESSAGE. *40131 DAT',

2.
INPUT HEADER CHECK ERROR MESSAGE. °*30132 FIL®.

33,
NO INPUT HEADER MESSAGEs “30133 NiH's

4
INPUT TRAILER ERROR MESSAGE. °10134 TIE',

36.
RDL {N ERROR MESSAGE. *20136 RiLN'.

4
920144 WLR * - UNIT RECORD WRONG LENGTH RECORD MESSAGE.

ACTUAL 00000,

ACTUAL LOCATION 00000 — RELATIVE POSITIONING OF A DE-
FINE AREA USED IN CCNJUNCTION WITH THE DTF ADDRESS TO
FIND THE NECESSARY ITEMS WITHIN ALL FILE SCHEDULERS.

ACTUAL 00100,

LOCATION OF A GROUP MARK WORD MARK USED WHEN STORING
THE CONTENTS OF INDEX REGISTERS 13 THRU 15 INTO A SAVE
AREA DURING AN INTERRUPT CAUSED BY AN INQUIRY OR OUT-
QUERY .

ACTUAL 0010t.

LOCATION OF THE INTERRUPT SEQUENCE. WHEN USING THE
PRICRITY FEATUREs THE SYSTEM AUTOMATICALLY BRANCHES TO
THIS LOCATION WHEN THE PRIORITY ALERT LIGHT IS ON AND A
PRIORITY REQUEST INDICAYOR LATCH IS TURNED ONe THIS LO-
CATION WILL CONTAIN A STORE B REGISTER INSTRUCTION.

ACTUAL 00108,
LOCATION OF A 8RANCH EXIT PRIORITY ALERT. ANOTHER IN-
TERRUPT CAN NOT BE SERVICED DURING I0CS.

ACTUAL 0011S5.

A DEFINE AREA USED AS A SPACER BETWEEN THE FIXED IN~
TERRUPY AND THE BEGINNING OF I0OCS MINIMUM AREA DEFINED
WILL BE ENOUGH TO SKIP OVER THE PROGRAM LOAD ROUTINE.

Appendix E —DIOCS-Generated Label Definitions

93




Appendix F— File-Dependent Label Definitions

This section lists the labels that are generated, primarily
because of ¥ entries. These labels are for instructions
and data areas in the file schedulers or file tables. With

IOCSEQOO0OX — FILE PENDING SWITCH - CEANNEL
TAPE FILES - SYMBOLIC lDENTlFlERS FOR FILE

SWITCHES ON CHANNEL ONE.

PENDING

IOCSFOO00X — FILE PENDING SWITCH — CHANNEL
TAPE FILES - SYMBOLIC lDENTlFlER< FOR FILE

SWITCHES ON CHANNEL TWO.

PENDING

ICCSXXACT —~ ACTIVITY.
ALL FILES - THE NUMERIC IDENTIFIER DESCRIBING THE KIND
OF FILE.
1o 1 DEFINES A ONE-AREA TAPE FILE.
2s 2 DEFINES A TWO-AREA TAPE FILEs
3s 3 DEFINES A CARD READER FILE.
4« 4 DEFINES A CARC PUNCH FILE.
5. 5 DEFINES A PRINTER FILE.
PRIOR TC THE I0CSXXACT [S A ONE-POSITION DCw CONTAIN-
ING T+E€ CHANNEL PRIORITY DIGIT FOR TWO-AREA TAPE FILES.
T0CSXXBA — BRANCKF ANY.

TAPE FILES - THE LOCATION OF THE CHANNEL SYATUS TEST
FOR THE FILE SCHECULER.
TOCSXXBASE - BASE.
ALL TAPE FILES - A FIVE-POSITION DCwW CONTAINING MODE.,
X—-CONTROL FIELDs, AND STATUS TEST CHANNEL OPERATION CODE.
FOLLOWING THIS MAY BE ANOTHER FIVE-POSITION DCW CONTAIN-
ING THE SAME FOR AN ALTERNATE DRIVE, [F APPLICABLE.
TIOCSXXBLKL — BLOCK LENGTHs
VARTABLE BLOCKED INPUT TAPE FILE — WILL CONTAIN THE
CONTENTS OF THE € OR F REGISTER AFTER A READ OPERATION
FOR USE DURING THE WRONG LENGTH RECGORD TEST.

F0CSXxD1 EXIT DIGIT 1.
ALL OUTPUT TAPE FILES - USER EXIT 1 CHECK CHARACTER.
0 CEFINES NO EXIT 1 ADDRESS.
1 DEFINES AN EXIiT 1 ADDRESS.
FOLLOWING THE CHECK CHARACTER WILL BE THE USER'S EXIT
ADCRESS I1F APPLICABLE. OTHERWISEs A FIVE-POSITION
BLANK DCW.

[O0CSXXND2

EXIT DIGIT 2.
ALL CQUTPUT TAPE FILES - USER LEXIT 2 CHECK CHARACTER,
0 DEFINES NC £XIT 2 ADDRESS.
1 DEFINES AN CXIT 2 ADDRESSe
FOLLOWING THE CFECK CHARACTER WILL BE THE USER®S EXIT
ADDRESS IF APPLICABLE. OTHERWISE. A FIVE-POSITION
BLANK DCW.

EXIT DIGIT 3.
ALL OUTPUT TAPE FILES — USER EXIT 3 CHECK CHARACTER.
0 DEFINES NO EXIT 3 ADDRESS.
1 DEFINES AN EXIT 3 ADDRESSe
FOLLOWING THE CHECK CHARACTER WILL B8€ THE USER'S EXIT
ADDRESS [F APPLICASLE. OTHERWISE. A FIVE-POSITION
BLANK DCwW.

10CSXX03 -

1CCSXXDa - EXIT DIGIT 4.
ALL QUTPUT TAPE FILES - USER EXIT 4 CHECK CHARACTER.
0 DEFINES NO EXIT 4 ADDRESS.
1 DEFINES AN EXIT 4 ADDRESS.
FOLLOWING THE CFECK CHARACTER WILL BE THE USER'S EXIT
ADDRESS IF APPLICAALE. OTHERWISE, A FIVE-POSITION
BLANK DCwWe
10CSXXD5 - EXET DIGIT S«
ALL OUTPUY TAPE FILES — USER EXIT 5 CHECK CHARACTER.
0 DEFINES NO EXIT 5 ADDRESS.
1 DEFINES AN EXIT 5 ADDRESS.
FOLLOWING TrHE CFECK CHARACTER WILi BE THE USER®*S EXIT
AODRESS IF APPLICABLE. OTHERWISE, A FIVE-POSITION
BLANK DCW.
i0CSXX06 - EXIT DIGIT 6.
E F LES ~ USER EXIT 6 CHECK CHARACTER.
X1T 6 ADDRESS.
1 DEFINES AN FXIT 6 ADDRESS.
FOLLOWING T+E CHECK CHARACTER WILL BE THE USER'S EXIT
ADDRESS IF APPLICABLE. OTHERWISE. A FIVE-POSITION
BLANK DCWa
I0CSXXD7 - EXIT OIGIT 7.
ALL INPUT TAPE
0 CEFINES NO
t DEFINES AN
FOLLOWING THE
ADDRESS IF APPLICABLE.
BLANK DCWa

FILES - USER EXIT 7 CHECK CHARACTER.
EXIT 7 ADDRESS.

EXIT 7 ADDRESS.

CHECK CHARACTER WILL BE THE USER'S EXIT
OTHERWISEs A FIVE-POSITION

10CSXXD8 ~ EXIT DIGIT 8.
ALL OUTPUT TAPE FILES — USER EXIT 8 CHECK CHARACTER.
0 DEFINES NO EXIT 8 ADDRESS.
1 DEFINES AN EXIT 8 ADDRESSs
FOLLOWING THE CHECK CHARACTER WILL BE THE USER*S EXIT
ADDRESS IF APPLICABLE. OTHERWISE., A FIVE-POSITION
BLANK OCw.
TOCSXXEMTY - EMPTY.
CARD READER AND INPUT TAPE FILES — THE ENTRY POINT TO
THE FILE SCHEDULER FROM A GET MACRO-INSTRUCTION WHEN A
READ OPERATION 1S TC BE PERFORMED.

T10CSXXENDA -
IXED BLOCKEL FILES - ADDRESS OF THE LAST RECORD MARK
OF 1/0 AREA A. THIS IS INSERTED INTO IOCSXXENDD WHEN IN—
FORMATION IN THE AREA 1S READY TO BE PROCESSED.
T OCSXXENDB -~ END 8.
FIXED BLOCKEL FILES — ADDRESS OF THE LAST RECORD MARK
1/0 AREA 8. THIS IS INSERTED INTO ITOCSXXENOD WHEN IN-
IN THE AREA IS READY TO BE PROCESSED.

oF
FORMATION

94

the label is an explanation of the routine or data area
the label addresses.

)
!




7

TOQCSXXENDD

TOCSXXENDI

1 OCSXXEOF

[OCSXXEXIT

I CCSXXFSCK

T OCSXXFULL

I OCSXXHFS

ICCSXXINIT

T0CSXX10A

I CCSXXIQAR

10Csxxioe

1 0CSXXPA

TICCSXXPADS

1CCSXXPFCR

10CSXXPLA1

10CSXXPLB2

TOCSXXPRIM

T CCSXXPSVE

1 OCSXXPTRC

1 OCSXXRCLN

1 OCSXXRLAC

I10CSXXSA

TO0CSXXSAVE

END DIGIT.

BLOCKED TAPE FILES — LOCATION OF THE CURRENT INFOR-
MATICN AREA RECORD MARK. USED 8Y THE GET TO COMPARE
AGAINST IOCSXXSAVE FOR INITIATING A BRANCH TO THE FILE
SCHEDULER ON FIXED BLOCKED FILES AND VARIABLE BLOCKED IN-
PUT FILES. ON VARIABLE BLOCKED OQUTPUT FILES, THIS FIELD
IS COMPARED AGAINST IOCSXXRLAC BEFORE INIYIATING THE
BRANCH.

END INITIALIZER.

LOCKED TAPE FILES - ZERO ADDED TO IOCSXXSAVE DURING
[N[TIALIZATION TO FORCE A BRANCH TO THE FILE SCHEDULER
ON THE FIRST GET TO AN INPUT FILE. ALTHOUGH DEFINED FOR
QUTPUT FILESs IT IS NOT USED.

END OF FILE.
CARD READER AND ALL INPUT TAPE FILES - WILL CONTAIN
THE USER*S END-OF-F ILE ROUTINE ADDRESS.

EXITa
ALL FILES EXCEPT PASSIVE TAPE FILES - BRANCH BACK TOQ
THE USER®S ROUTINE.

FILE SERIAL CHECK.

ALL TAPE FILES ~ THE CHECK CHARACTER FOR FILE SERIAL.
FOR INPUT FILES, WILL CHECK THE FILE SERIAL NUMBER
AGAINST [OCSXXHFSe OUTPUT FILESs I0CS WILL READ LABELS
AND RETAIN THE FILE SERIAL DURING THE CONSTRUCTION OF A
NEW LABEL AND INSERT THE ORIGINAL FILE SERIAL NUMBER INTO
THE NEW LABEL PRIOR TO WRITING IT.

0 BEFINES CHECKING OF THE FILE SERIAL NUMBER.
1 DEFINES NO CFECKING OF THE FILE SERIAL NUMBER.

FULL.

PRINTERs PUNCHs AND OUTPUT TAPE FILES - THE ENTRY
PCINT INTQO THE FILE SCHEDULER FROM A PUT INSTRUCTION WHEN
A WRITE OPERATION IS TO BE PERFORMED.

HOLD FlLE SERIAL »

TAPE FILES - THE HOLD AREA FOR THE FILE SERIAL
NUMBER WILL CONTAIN THE SERIAL NUMBER TO CHECK AGAINST
LABELS ON INPUT FILES. ON OUTPUT FILESs THE FILE SERIAL
NUMBER IS MOVED HERE AND IS USED IN THE CONSTRUCTION OF
THE NEW HEADER LABEL. FOLLOWING THIS HOLD AREA WILL BE
THE REMAINING INFORMATION NECESSARY TO CONSTRUCT OR CHECK
THE HEADER LABEL FOR THE FILE.

INITIALIZATIONS.

TAPE FILES — SEQUENCE TO INITIALIZE FILE I/0 COMMANDS
AND FORCE A DOUBLE READ ON TWO-AREA FILES DURING THE
FIRST GET COMMAND TC THAT FJILEs INDEX REGISTERS ARE INI-
TIALIZED ON OUTPUT FILES,

170 A

ALL FILES EXCEPT PASSIVE TAPE FILES — THE 1/0:COMMAND
THAT WILL CAUSE READING TO OR WRITING FROM [/0 AREA A. IN
UNIT RECORD FILE SCHEDULERS, [T WILL BE THE (/0 COMMAND
FOR THAT SCHEDULER

I/70 AREA.
UNIT RECORD FILES — AN EQUATE TO THE AREA SPECIFIED
BY THE IQAREA DTF ENTRY.

170 B.
TAPE FILES - THE [/0 COMMAND THAT WILL CAUSE READING
TO OR WRITING FROM [/0 AREA B.

PRIMARY AREA.
TAPE FILES ~ TESTS FOR THE LAST [/0 AREA USED AND SETS
UP NEXT I/0 COMMAND TO USE I/0 AREA A.

PADCING SEQUENCE.

BLOCKED QUTPUT FILES — FIXEDs WRITING OF THE LAST OUT-—
PUT BLOCK. TESTS FOR THE NECESSITY OF PADDING, SAVES AND
SETS THE CONTENTS OF INDEX REGISTER 15 WITH THE ADDRESS
OF THE FIRST LOCATION TO START PADDINGs VARIABLE, WRITING
OF THE LAST BLOCK ONLY.

PADDING FORCE.
FIXED BLOCKEC OUTRPUT FILES -~ RESTORE INDEX REGISTER 15
AND BRANCH TO ‘WRITE THE PADDING RECORD.

PADDING LAST BLOCK 1.

FIXEC BLOCKEC QUTPUT FILES - UPDATE INDEX REGISTER 1§
TO PASS THE PADCING OF A RECORD MARK POSITION AND BRANCH
BACK TO THE PADLCING ROUTINE.

PADCING LAST BLOCK 2.

FIXEC BLOCKER OUYPUT FILES - TEST FOR RECORD MARKS
WITHIN THE AREA TO BE PADDED. TESTS FOR END OF PADDING
ROUTINE.

PRIMARY o
INPUT TAPE FILES - SETS UP TO FORCE TwO CONSECUTIVE
READS ON THE FIRST GET INSTRUCTION TO THE FILE.

PADCING SAVE.

FIXED BLOCKED QUTPUT FILES - A FIVE-POSITION DCW FOR
STORING THE CONTENTS OF INDEX REGISTER 15 DURING THE PAD-
DING OF THE LASYT BLOCK.

PADCING — TAPE RECORD COUNT.
FIXED BLOCKED OUTPUT FILES ~ ACCUMULATE HASH TOTALS.

RECORD LENGTH.
FIXED BLOCKED FILES -~ CONTAINS THE RECORD LENGTH FOR THIS
FILE.

RECORD LENGTH AT CURRENTa

VARTABLE DLOCKED OUTPUT TYAPE FILE - WILL CONTAIN THE
ADDRESS OF THE LAST LOCATION USED FOR STORING DATA. IT IS
USED TO DETERMINE WHEN THE 1/0 AREA HAS BEEN FILLED.

SECCONDARY AREA.
TAPE FILES — SETS UP NEXT 170 COMMAND TO USE 1/0 AREA B.

SAVE.

TWO—AREA TAPE FILES- WwILL CONTAIN THE LOCATION OF THE
AREA OR SEGMENT OF THE AREA THAT HOLDS CURRENT INFORMA-
TIONs THE GET AND PUT MACROS UPDATE THIS AREA UNTIL THE
COMPLETE AREA HAS BEEN USED. AT THIS TIME, A GET OR PUT
MACRO wiltl CAUSE THE NEXT AREA TO BECOME AVAILABLE
AND CONCITION TFE FILE SCHEDULER TO INITIATE ANGTHER I/0
CPERATION.

Appendix F — File-Dependent Label Definitions 95




1 0CSXXSFS

1 0CSXXSFX

TOCSXXSVRL

10CSXXTBC

I0CSXXTFLB

10CSXXTFL1
I0CSXXTFL2

TOCSXXTFL3

TOCSXXTFL4

TOCSXXTFLS

FOCSXXTHT
I OCSXXTRC

T OCSXXTRIG

10CSXXVBCA

10CSXXvBCB

10CSXXVBSA

10CSXXVBSE

10CSXXWLR
EOCSXXWLRC
1 0CS XXWLRX

1 0CSXXWLX

TOCSXXWORK

1OCSXXWTG

96

SCHEDULER FORCE SEQUENCE.
ES THE CHANNEL TO CLEARs AND BACKSPACES THE TAPE
FOR A RETRY

SCHEDULER FORCE EXIT.

FILES EXCEPT PASSIVE TAPE FILES - BRANCHING TC THE
CHANNEL SCHEDULER WHEN FORCING THE PREVIOUS OPERATION TO
BE STARTED OR COMPLETED. WILL FORCE THE CHANNEL TO BE
CLEARED.

SINGLE VARIABLE RECORD LENGTH.

VARIABLE BILOCKED QUTPUT TAPE FILES -~ DURING A PUT OP-
ERATION, THIS WILL BE LOADED WITH THE CURRENT RECORD
LENGTHe THIS IS ADDED TO IOCSXXRLAC TO CHECK IF THE 0OUT~—
PUT AREA HAS BEEN FILLED.

TAPE BLOCK COUNT.
ALL FILES - OTF WORK AREA FOR BLOCK COUNT.

TAPE FILE LABEL,
ALL TAPE FILES ~ THE CHECK CHARACTER DEFINING TYPE OF
TAPE LABELS.
0 DEFINES STANDARD LABELSe
1 OEFINES AN UNLABELLED FILE.
2 DEFINES NON STANDARD LABELS.

TAPE FILE LABEL 1.
ALL TAPE FILES - FILE TYPE CHECK CHARACTER.
0 DEFINES QUTPUT OR PASSIVE TAPE FILES.
1 DEFINES INPUT FILES.

TAPE FILE LABEL 2.
LL TAPE FILES - ALTERNATE DRIVE CHECK CHARACTER.
0 DEFINES NO ALTVTERNATE DR .
1 DEFINES AN ALTERNATE DRIVE.

TAPE FlLE LABEL 3.
TAPE FILES —~ CHECK LABEL CHECK CHARACTER.
0 DEFINES A CHECK OF THE COMPLETE LABEL.
1 DEFINES NO LABEL CHECKING.
2 DEFINES IDENTITY CHECKING ONLY.

TAPE FILE LABEL 4.
ALL TAPE FILES — TAPE MARK AFTER HEADER CHECK CHARAC-
TER.
0 CEFINES NO TAPE MARK,.
1 DEFINES A TAPE MARK.

TAPE FlLE LABEL S.
TAPE FILES — REWIND OPTION CHECK CHARACTER.
0 DEFINES NO REWIND.
1 DEFINES REWIND ONLY.
2 DEFINES REWIND UNLOAD.

TAPE HASH TOTAL .
ALL TAPE FILES - THE DTF WORK AREA FOR ACCUMULATING
HASH TOTALS FOR THE FILEs

TAPE RECORD COUNT.
TAPE FILES -~ DTF wORK AREA FOR RECORD COUNT, REC-
QRD COUNT IS UNOBTAINABLE FOR UNBLOCKED FILESe

TRIGGER.

ALL FILES EXCEPT PASSIVE TAPE FILES — BRANCH BACK TO
10CSENTRY AFTER THE SETTING OF THE PENDING SWITCH. INI-
TIALLY SET TO FORCE TWO READS FOR AN INPUT FILE ON THE
FIRST GET OPERATION. ON VARIABLE BLOCKED INPUT FILES, IT
CHECKS THE LAST [/0 OPERATION FOR A WRONG-LENGTH RECORD.
UNIT RECORD FILES BRANCKH TO IOCSENTRYe

VARIABLE BLOCK COUNT A,

FIXED BLOCKED OUTPUT AND VARIABLE BLOCKED FILES - FOR
A FIXED B8LOCKED OUTPUT FILE, THIS CONTAINS THE ADDRESS OF
THE GROUP MARK WORD MARK /LOCATION FOR 1/0 AREA Ae. WILL BE
USED DURING THE PADDING ROUTINE. FOR VARIABLE BLOCKED
FILESs WILL CONTAIN THE UNITS POSITION OF THE BLOCK CHAR-—
ACTER COUNT FOR I/0 AREA A.

VARIABLE BLOCK COUNT B.

FIXED BLOCKED OUTPUT AND VARIABLE BLOCKED TAPE FILES -
WILL CONTAIN THE LOCATION OF THE GROUP MARK WORD MARK
POSITION OF I/0 AREA B. WILL BE USED DURING THE PADDING
ROQUTINE FOR A FIXED BLOCKED OUTPUT FILE. WILL CONTAIN THE
ADDRESS OF THE BLOCK CHARACTER COUNT UNITS POSITION FOR
VARIABLE BLOCKED FILES.

VARIABLE BLOCK SINGLE A

VARIABLE BLOCKED TAPE FILES - AN ADCON OF THE UNITS
POSITION OF 1/0 AREA A« MOVED INTQ TOCSXXENDD TO CONTROL
THE AMOUNT OF THE §/0 AREA REMAINING TO BE USED BY A GET
0R PUT INSTRUCTION-

VARIABLE BLOCK SINGLE Be

VARIASBLE BLOCKED TAPE FILES — AN ADCON OF THE UNITS
S0SITION OF I/0 AREA Be MOVED TO TOCSXXENDD TO CONTROL
THE AMOUNT OF THE [/0 AREA REMAINING TO BE USED BY A GET
OR PUT INSTRUCTION.

WRONG—LENGTH RECORD.

VARIABLE BLOCKED INPUT FILES — WRONG-LENGTH RECORD
SEQUENCE. UPDATES THE WRONG-LENGTH RECORD COUNT AND TESTS
FOR TEN RETRIES. IF SO, WILL BRANCH TO IO0CSXXWLXe

WRONG-L.ENGTH RECORD COUNT,

VARIABLE BLOCKED INPUT TAPE FILES - A COUNT OF THE
NUMBER OF TIMES THE WRONG-LENGTH RECORD ROUTINE wAS
ENTERED.

WRONG LENGTH RECORD EXiTe

VARIABLE BLOCKED INPUT ~ IF THE BLOCK CHARACTER COUNT
DOES NOT AGREE WITH THE NUMBER OF CHARACTERS READ, THIS
WILL BRANCH TO THE WRONG-LENGTH RECORD ROUTINE.

WRONG LENGTH E£XITa
VARIABLE BLOCKED INPUT FILES — BRANCH TO THE USER'S
WRONG-LENGTH RECORD ROUTINE ADDRESS.

WORK
AL FILES EXCEPT PASSIVE TAPE FILES - THE ADDRESS OF
THE WORK AREA ASSIGNED TO THIS FILE.

VAIYING.
PE FILES — TESTS THE PENDING SWITCH FOR PENDING OP-
ERATKONS- IF NOT. CONTINUE TO READ OR WRITE OPERATION.




~

CUT ALONG LINE

FOL.D

FOLD

EVALUATION SHEET
IBM 1410 INPUT/OUTPUT CONTROL SYSTEM

PROGRAMMING SYSTEMS ANALYSIS GUIDE, FORM (28-0541-1

FROM

NAME

OFFICE NO,

CHECK ONE OF THE COMMENTS AND EXPLAIN IN THE SPACE PROVIDED

D SUGGESTED ADDITION (PAGE y TIMING CHART; DRAWING, PROCEDURE, ETC,)
E] SUGGESTED DELETION (PAGE )

O error (Pace )

EXPLANATION

NO POSTAGE NECESSARY IF MAILED IN U.S.A.

FOLD ON TWO LINES, STAPLE, AND MAIL

FOLD

FOLD




STAPLE

STAPLE

FIRST CLASS
PERMIT NO, 8l

POUGHKEEPSIE, N, Y,

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN U, S, A,

POSTAGE WILL BE PAID BY

I1BM CORPORATION
P.0O. BOX 390
POUGHKEEPSIE, N.Y. 12602

ATTN: PROGRAMMING SYSTEMS, DEPARTMENT D2l

STAPLE

R
R
]
T
R
]
L |
R
R
L]
L
N
L}
]
PR
FOLD
STAPLE

CUT ALONG LINE

2/64:5M-VO-100




e




C28-0541-1

TSI

®
International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y. 10601

v'§'N U pajuid

1-1¥S0-822

R,



