
1410 DATA PROCESSING SYSTEM BULLETIN

AUTOCODER: PRELIMINARY SPECIFICATIONS

This bulletin is a minor revision of the previous edition, Form J24-1433-1.
It incorporates the amendments published in Technical Newsletters
Nos. N28-0015 and N28-0017. No other changes have been made.

Autocoder is an advanced symbolic programming sys­
tem for the IBM 1410 Data Processing System. It sup­
plements and extends, but does not replace, the basic
Autocoder for the IBM 1410.

A more powerful language, the IBM 1410 Autocoder
includes the ability to process macro-instructions, and
reduces card handling by using magnetic tape for
program manipulation during assembly. The Auto­
coder processor can assemble programs designed to
operate on all IBM 1410 systems. The macro-instruc:­
tions described in theIBM 1410 Input/Output Control
System: Preliminary Specifications, Form J29-1432, can
also be used when coding in Autocoder language.

With Autocoder the user can provide library rou­
tines for operations that are common to many source
programs. These routines are extracted from the li­
brary and tailored automatically by the processor to
satisfy particular requirements outlined in the source
program by the programmer.

© 1961 by International Business Machines Corporation

Machine Requirements
The Autocoder processor can assemble programs for
all IBM 1410 systems. However, the machine used to
assemble a program written in Autocoder language
must have at least:

20,000 positions of core storage
Four IBM 729 II, 729 IV, or 7330 Magnetic Tape

Units
IBM 1403 Printer, Model 2, or listing on tape
IBM 1402 Card Read-Punch or tape input/self­

loading tape output
For a completely tape-oriented system, two addi­

tional tape units are necessary.
This bulletin contains preliminary language speci­

fications for the IBM 1410 Autocoder. The system tape
containing the processor itself, a listing of the proces­
sor program, and operating instructions for program
assembly, will soon be made available from the IBM
Program Applications Library. .

· Programming with Autocoder

The IBM 1410 Autocoder is divided into two major
categories: the symbolic language used by the pro­
grammer, and the processor program that translates
this symbolic language into actual machine language
and assembles the' object program automatically.

Before the programmer begins to code his program
in symbolic langu~ge, he draws a block diagram of the
procedure the program must take to accomplish a de­
sired end result. From this block diagram he must de­
termine what constants and work areas are needed
and define them. Constants are fixed data, such as a
standard FICA limit of $4800 for tax calculation; and
work areas are places within core storage where data
can be manipulated, such as an input and output area,
accumulator fields, etc. Then he writes the instructions
for the program, adding new constants and work areas
as the need arises. The IBM 1410 Autocoder permits
the programmer to control the processor program by
using special commands.

These programming procedures can be divided into
four major categories:

1. Declarative operations
2. Imperative operations
3. Macro operations
4. Control operations
The particular information needed by the processor

to perform these operations is written by the pro­
grammer on a special coding sheet.

I

Coding Sheet
The 1401/1410 Autocoder coding sheet (Figure 1) is
free-form (the operand portion of each line is not sub­
divided into fields), thus allowing the programmer
greater coding flexibility.

All Autocoder entries are entered on the Autocoder
coding sheet. Column numbers on the coding sheet
indicate the punching format for all input cards in
the source deck. Each line of the coding sheet is
punched into a separate card. If the source program is
entered by magnetic tape, the contents of the cards
prepared from the coding sheet must be written in
one-card-per-tape-record format. The function of each
portion of the coding sheet is explained in the follow­
ing paragraphs.

Page Number (Columns 1 and 2)

This two-character entry provides sequencing for cod­
ing sheets. Any alphamerical characters may be used.
Follow standard collating sequence for the IBM 1410
when sequencing pages.

2

Line Number (Columns 3·5)

A three-character line number sequences entries on
each coding sheet. The first 25-lines are prenumbered
01-25. The third position can be left blank (blank is
the lowest character in the collating sequence). The
five unnumbered lines at the bottom of each sheet can
be used to continue line numbering or to make inser­
tions between entries elsewhere on the sheet. Use the
units position of the line number to indicate the se­
quence of inserts. Any alphamerical character may be
used, but standard collating sequence should be used.
For example, if an insert is to be made between lines
02 and 03, it could be numbered 021. Line numbers
do not necessarily have to be consecutive, but the deck
should be in collating sequence for sorting purposes.

The programmer should note that insertions can
affect address adjustment. An insertion might make it
necessary to change the adjustment factor in the oper­
and of one or more entries. See Address Adjustment.

Label (Columns 6·15)

Labeling is a method of providing meaningful alpha­
merical symbols for storage locations, constants, and
instructions used in a program. All labels are assigned
actual core-storage addresses during the assembly of
an object program. When an entry is assigned a label,
the programmer can refer to that entry symbolically
by putting the label in the operand portion of a sub­
sequent source program statement. Thus, the program­
mer need not concern himself with actual addresses
of data and instructions, but must remember only the
symbol which represents that address. Labels should
be assigned only if subsequent reference to the items
they represent is needed, because unnecessary labels
delay the assembly process.

Autocoder labels can be symbolic or actual. A sym­
bolic label can have as many as ten alphamerical
characters, but the first character must be alphabetic.
Special characters are not permitted in the label field.

Symbolic labels are written left-justified in the label
field except as described in DC or DCW.

Actual labels are always written left-justified in the
label field. This actual address refers to the high-order
position of the instruction, constant, or defined field.
Actual labels have no effect on the address assign- .
ment counters.

Operation (Columns 16.20)

The operation field contains the mnemonic (easily
remembered) operation code for an actual machine­
language operation code. Figure 2 shows a complete
list of valid mnemonic operation codes and their
machine-language equivalents.

IBJ.1
Program ____________ _

Programmed by----_____ _

Date ___ _

Line Label !operation
3 56 1516 2021 25

0 I -r
o 2 :
o 3 :

o 4 :
o 5 :
o £. :
07 :

I o 8 I

I
09 I "

I 0 :
I

I I I

I 2 :
I 3 :
I 4 :

I
I 5 I

I 6 :
I

I 7 I

I
I 8 • I

I 9 :
2 0 :

I
2 I I I

2 2 :
2 3

I

2 4 :
I

2 5
I

:
I
I

I
I

I

1401/1410 AUTOCODER CODING SHEET

OPERAND
30 35 40 45 50

I

I

L 1

I I I

~~ I I I I I

I

~_--'-- . .l.--L-L I I I I

I

55 60

.

I I I I I I

FORM X24·1350·1

PRINTED IN U.S.A.

Identification L..' ~-'---'--'-_
76 80

Page No. LL.J of __
I 2

65 70

.. ~

I I lu-1~J

I--L.--'----.L.~~

Several machine-language operation codes require
operation modifiers (d-characters). With a few excep­
tions, these d-characters are incorporated into Auto­
coder mnemonics and do not have to be coded on the
coding sheet. Thus, a single machine-language opera­
tion code may have two or l ... lOre mnemonic equiv'\;
lents. For example, the machine-language Op code V
(TEST FOR WORK-j\,lARK OR ZONE AND
BRANCH) has three mnemonic equivalents: BW

(BRANCH IF WORD-MARK), BZN (BRANCH IF ZONE), and
BWZ (BRANCH IF WORD-MARK AND/OR ZONE).

Operand (Columns 21-72)

The operand field in an imperative instruction contains
the actual or symbolic addresses of the data, literals,
or address constants, to be acted upon by the com­
mand in the operation field. Address adjustment and
indexing can be used in conjunction with these.

The Autocoder coding sheet has a free-form operand
field. The A-operand, the B-operand, and the d­
character must be separated by commas. If address
adjustment or indexing or both are to be performed,

these notations must immediately follow the address
being modified. Figures 3 and 4 show typical Auto­
coder entries.

Comments

A comment can be included anywhere in the operand
field of an Autocoder statement, if at least two spaces
separate it from the last character of the operand.

Entire lines of information can be included any­
where in the program by using a comments card. In
such a card, containing comments only, the program­
mer must put an asterisk in column 6. Columns 7-72
can then be used for the comment itself. Comments
inserted in this way appear in the symbolic listing but
produce no entry in the object program.

Identification (Columns 76-80)

This entry identifies a program or program section.
This identification number. is printed on the output
listing but does not appear in the object deck except
as described in JOB. The areas labeled Program~ Pro­
grammed By, and Date are for the conveniences of
the user, but they are never punched.

DECLARATIVE OPERA liONS

MNEMONIC
OP CODE DESCRIPTION

DA Define Area

DCW Define Constant with Word mark

DC Define Constant (no word mark)

OS Define Symbol

EQU Equate

IMPERATIVE OPERA liONS

MNEMONIC MACHINE LANGUAGE

TYPE OP CODE DESCRIPTION OP CODE d-CHAR.

Arithmetic A Add A

5 Subtract S

ZA Zero and Add ?

ZS Zero and Subtract !

M Multiply @

0 Divide %

Figure 2. mM 1410 Mnemonic Operation Codes

4

TYPE

Data

Control

MNEMONIC

OP CODE

MRNR

MRZR

MLNA

MLZA

MLCA

MLWA

MLNWA

MLZWA

MLCWA

MLNB

MLZB

MLCB

MLWB

MLNWB

MLZWB

MLCWB

MRCR

MRWR

MRNWR

MRZWR

MRCWR

MRNG

MRZG

MRCG

IMPERATIVE OPERATIONS

DESCRIPTION

Move left to Right Numerical data; stop at Record

mark in A-field

Move left to Right Zone data; stop at Record mark

in A-field

Move right to Left Numerical data; stop at word

mark in A-field

Move right to Left Zone data; stop at word mark

in A-field

Move right to Left whole Characters; stop at word

mark in A-field

Move right to Left Word marks; stop at word

mark in A-field

Move right to Left Numerical data and Word marks;

stop at word mark in A-field

Move right to Left Zone data and Word marks;

stop at word mark in A-field

Move right to Left whole Characters and Word

marks; stop at word mark in A-field

Move right to Left Numerical data; stop at word

mark in B-field

Move right to Left Zone data; stop at word mark

in B-field

Move right to Left whole Characters; stop at word

mark in B-field

Move right to Left Word marks; stop at word mark

in B-field

Move right to Left Numerical data and Word marks;

stop at word mark in B-field

Move right to Left Zone data and Word marks;

stop at word mark in B-field

Move right to Left whole Characters and Word

marks; stop at word mark in B-field

Move left to Right whole Characters; stop at Record

mark in A-field

Move left to Right Word marks; stop at Record

mark in A-field

Move left to Right Numerical data and Word marks;

stop at Record mark in A-field

Move left to Right Zone data and Word marks;

stop at Record mark in A-field

Move left to Right whole Characters and Word

marks; stop at Record mark in A-field

Move left to Right Numerical data; stop' at Group

mark, word mark in A-field

Move left to Right Zone data; stop at Group mark,

word mark in A-field

Move left to Right whole Characters; stop at Group

mark, word mark in A-field

Figure 2. IBM 1410 Mnemonic Operation Codes (Continued)

MACHINE LANGUAGE

OP CODE d-CHAR.

D Z

D

D /

D S

D T

D U

D v

D W

D x

D

D K

D

D M

D N

D o

D P

D , (comma)

D %

D

D I (apostrophe)

D

D R

D

D $

5

TYPE

MNEMONIC

OP CODE

MRWG

MRNWG

MRZWG

MRCWG

MRNM

MRZM

MRCM

MRWM

MRNWM

MRZWM

MRCWM

MRN

MRZ

MRC

MRW

MRNW

MRZW

MRCW

MLN

MLZ

MLC

MLW

MLNW

MLZW

MLCW

IMPERATIVE OPERATIONS

DESCRIPTION

Move left to Right Word marks; stop at Group

mark, word mark in A-field

Move left to Right Numerical data and Word marks;

step at Group mark, word mark in A-field

Move left to Right Zone data and Word marks; stop

at Group mark, word mark in A-field

Move left to Right whole Characters and Word

marks; stop at Group mark, word mark in A-field

Move left to Right Numerical data; stop at record

Mark or group mark, word mark in A-field

Move left to Right Zone data; stop at record Mark

or group mark, word mark in A-field

Move left to Right whole Characters; stop at record

Mark or group mark, word mark in A-field

Move left to Right Word marks; stop at record Mark

or group mark, word mark in A-field

Move left to Right Numerical data and Word marks;

stop at record Mark or group mark, word mark in

A-field

Move left to Right Zone data and Word marks; stop

at record Mark or group mark, word mark in A-field

Move left to Right whole Characters and Word

marks; stop at record Mark or group mark, word

mark in A-field

Move left to Right Numerical data; stop at word

mark in either field

Move left to Right Zone data; stop at word mark

in either field

Move left to Right whole Characters; stop at word

mark in either field

Move left to Right Word marks; stop at word mark

in either field

Move left to Right Numerical data and Word marks;

stop at word mark in either field

Move left to Right Zone data and Word marks;

stop at word mark in either field

Move left to Right whole Characters and Word

marks; stop at word mark in either field

Move right to Left Numerical data; stop at word

mark in either field

Move right to Left Zone data; stop at word mark

in either field

Move right to Left whole Characters; stop at word

mark in either field

Move right to Left Word marks; stop at word mark

in either field

Move right to Left Numerical data and Word marks;

stop at word mark in either field

Move right to Left Zone data and Word marks; stop

at word mark in either field

Move right to Left whole Characters and Word

marks; stop at word mark in either field

Figure 2. IBM 1410 Mnemonic Operation Codes (Continued)

6

MACHINE LANGUAGE

OP CODE d-CHAR.

D *

D

D

D

D

D ?

D

D o

D

D <

D

D 9

D o

D #

D @

D

D >

D

D A

D B

D C

D D

D E

D F

D G

IMPERATIVE OPERATIONS

MNEMONIC MACHINE LANGUAGE

TYPE OP CODE DESCRIPTION OP CODE d-CHAR.

MLNS Move right to Left a Single position of Numerical D

data

MLZS Move right to Left a Single position of Zone data D 2

MLCS Move right to Left a Single whole Character D 3

MLWS Move right to Left a Single Word .mark D 4

MLNWS Move right to Left a Single position of Numerical D 5

data and Word mark

MLZWS Move right to Left a Single position of Zone data D 6

and Word mark

MLCWS Move right to Left a Single whole Character and D 7

Word mark

SCNRR Scan Right for Record mark in A-field D Y

SCNRG Scan Right for Group mark, word mark in A-field D Q

SCNRM Scan Right for record Mark or group mark, word D H

mark in A-field

SCNR Scan Right for word mark in either field D 8

SCNLA Scan Left for word mark in A-field D if:

SCNLB Scan Left for word mark in B-field D

SCNL Scan Left for word mark in either field D &

SCNLS Scan Left a Single position 0 (blank)

MCS Move Characters and Suppress zeros Z

MCE Move Characters and Edit E

C Compare C

LL Lookup Low T

LE Lookup Equal T 2

LLE Lookup Low or Equal T 3

LH Lookup High T 4

LLH Lookup Low or High T 5

LEH Lookup Equal or High T 6

Logical BW Branch if Word mark V

Operations BZN Branch if Zone V 2

BWZ Branch if Word mark or Zone V 3

BCE Branch if Character Equal B char.

BBE Branch if Bit Equal W char.

B Branch unconditional J (blank)

BC9 Branch Carriage channel 9 J 9

BCV Branch Carriage overflow @

BU Branch Unequal J /
BE Branch Equal J S

BL Branch Low J T

BH Branch High U

BPCB Branch Printer Carriage Busy J R

BZ Branch Zero result J V

BAV Branch Arithmetic overflow J Z

Figure 2. IBM 1410 Mnemonic Operation Codes (Continued)'

7

MNEMONIC IMPERATIVE OPERATIONS MACHINE LANGUAGE

TYPE OP CODE DESCRIPTION OP CODE d-CHAR.

BDV Branch Divide overflow J W

BNQ Branch inquiry J Q

tBEXl Branch on External indicator - channel R d

'tBEX2 Branch on External indicator - channel 2 X d

BAl Branch Any external indicator - channell R =$=
BA2 Branch Any external indicator - channel 2 X =$=
BNRl Branch I/O Not Ready - channell R

BNR2 Branch I/O Not Ready - channel 2 X

BCBl Branch I/O to Channel Busy - channell R 2

BCB2 Branch I/O to Channel Busy - channel 2 X 2

BEFl Branch I/O to End-of-File - channell R 8

BEF2 Branch I/O to End-of-File - channel 2 X 8

BNTl Branch No Transfer - channell R ¢

BNT2 Branch No Transfer - channel 2 X ¢

BWLl Branch Wrong Length record - channel 1 R

BWL2 Branch Wrong Length record - channel 2 X

BERl Branch Error - channel 1 R 4

BER2 Branch Error -channel 2 X 4

BOLl Branch Overlap in process - channell

BOL2 Branch Overlap in process - channel 2 2

BRCl Branch Read back Check - channell R @

BRC2 Branch Read back Check - channel 2 X @

Tape BSP Backspace Tape U B
Utility

Operations
SKP Skip and blank tape U E

WTM Write Tape Mark U M

RWD Rewind tape U R

RWU Rewind Unload U U

TCU Control Unit U d

Priority BXPA Branch to Exit Priority Alert Y X

Operations BEPA Branch to Enter Priority Alert Y E

BSPRl Branch if Seek Priority Request - channel y S

BSPR2 Branch if Seek Priority Request - channel 2 y T

BOPRl Branch if Overlap Priority Request - channel y

BOPR2 Branch if Overlap Priority Request - channel 2 y 2

BIPR Branch if Inquiry Priority Request Y Q

BUPR Branch if Unit Record Priority Request Y U

Miscel- SAR Store A-address Register G A

laneous SBR Store B-address Register G B

SER Store E-address Register G E

SFR Store F-address Register G F

SW Set Word mark

CW Clear Word mark 0

CS Clear Storage, Clear Storage and branch /
H Halt, Halt and branch

NOP No Operation N

Figure 2. IBM 1410 Mnemonic Operation Codes (Continued)

8

TYPE

TYPE

I/O

Commands

MNEMONIC

OP CODE

NOPWM

-r CC

MNEMONIC

OP CODE

R

P

W

RCP

WCP

WM

RD

RDT

WD

WDC

WDT

RT

WT

RTB

WTB

IMPERATIVE OPERATIONS

DESCRIPTION

No Operation Word Mark

Control Carriage

DESCRIPTION

Read card

Punch card

(n-character must appear in operand field of Auto­

coder instruction)

Write a line

Read Console Printer

Write Console Printer

Write word Marks

Read Disk single record

Read Disk full Track

Write Disk single record

Write Disk Check

Write Disk full Track

Read Tape

Write Tape

Read Tape Binary

Write Tape Binary

NOTE: The preceding mnemonic Op Codes, except WM, may be followed

by the letter W to indicate transfer of word marks and/or followed by

the letter 0, including WM, to indicate overlapping.

T tAu
T LU

RTG

RTBG

WTE

WTBE

SD

Move Unit Actual X-ADDR. and d-CHAR. must
be coded in Autocoder instruction.

Load Unit

Read Tape; stop only at interrecord Gap

Read Tape Binary; stop only at interrecord Gap

Write Tape; stop at End of core

Write Tape Binary; stop at End of core

Seek Disk

NOTE: Only the SD Mnemonic Op Code may be followed by the letter 0
to indicate overlapping. RTG, RTBG, WTE, WTBE can be followed by
the letter W.

T SSF Select Stacker and Feed card

(d-character must appear in operand field of Auto­

coder instruction)

MACHINE LANGUAGE

OP CODE

N

F

d-CHAR

d
(Forms contror

character)

MACHINE LANGUAGE

X-ADDR

%In

%4n
(n denotes

selected

pocket)

%20

%TO

%TO

%21

%F1

%F2

%F1

%F3

%F2

%Un

%Un

%Bn

%Bn

xxx

xxx

O/OUn

%Bn

%Un

%Bn

O/OFO

K (Op CODE)

d-CHAR.

R

W

W

R

W

W

R

R

W

W

W

R

W

R

W

d

d

$

$

X

X

R

b, 1,2

(denotes

selected

pocket)

MNEMONIC
OP CODE DESCRIPTION

CONTROL OPERATIONS
MNEMONIC

OP CODE DESCRIPTION

CTL

ORG

LTORG

EX

END

PST

JOB

Control

Origin

Literal Origin

Execute

End

Print Symbol Table

Job Description

td-character must appear in operand field of Autocoder instruction

Figure 2. IBM 1410 Mnemonic Operation Codes (Continued)

SFX

RUN

RESEQ

LOAD

EJECT

INSER

DELET

Suffix

Run

Re-sequence

Load

Eject

Insert

Delete

9

Address Types
Six kinds of address types are valid in the operand
field of an Autocoder statement: blank, actual, sym­
bolic, asterisk, literals, and address constants.

Blank

A blank operand field is valid:
1. In an instruction that does not require an operand.
2. In instructions where valid A- and/or B-addresses

are supplied by the chaining method. For example,
MLCA A,B
l\1LCA

NOTE: If an instruction is to have addresses stored
by other instructions, the operand or operands affected
must not be left blank. For example, BOis recom­
mended if the address of the branch instruction is to
be supplied during the running of the object program.

Actual

The actual core-storage address of a data field is valid
in the operand field. High-order zeros in actual ad­
dresses can be omitted as shown in Figure 3. Thus,
an actual address can consist of from one to five digits.

Figure 3 shows an imperative instruction that causes
the contents of core-storage location 3101 to be added
algebraically to the contents of location 140. This en­
try will be assembled as a machine-language instruc­
tion: X 03101 00140. Note that high-order zeros can
be eliminated when coding actual addresses for Auto­
coder.

Label OPi

~I,

Figure 3. Autocoder Instruction with Actual Addresses

Symbolic

A symbolic address can consist of as few as one or
as many as ten alphamerical characters. Special char­
acters are not permitted. Blank~ may not be written
within a symbolic address. Figure 4 shows how sym­
bolic addresses are used.

Figure 4 shows an indexed imperative instruction
that causes the contents of the location labeled TOTAL
to be placed in an area labeled ACCUM as modified by
the contents of index location 2. An indexed address
may be followed by a plus sign (+), an X to indicate
indexing, and a number from 1 to 15 to specify which
index location is to be used. TOTAL is the label for

Label opt

Figure 4. Autocoder Instruction with Symbolic Addresses

10

locations 3 1 Oland ACCUM is the label for location
1 4 O. The asse\pbled machine-language instruction
for this entry is: D 03101 001MO C. The M in the tens
position of the B-address is a 4-punch with an 11-.
overpunch. The II-overpunch is the B-bit tag for in­
dex location 2.

Asterisk (*)

If an '0 appears as an operand in the source program,
the processor will replace it in the object program with
the actual core-storage address of the last character
of the instruction in which it appears. For example,
the instruction shown in Figure 5 is assigned core
storage locations 00340-00351. The actual address of
WKAREA is 00598. The assembled instruction is D 00351
00598 C. When the instruction is executed in the ob-
. v
Ject program, D 00351 00598 C will be placed in
WKAREA.

Asterisk operands can have address adjustment and
indexing.

Label OPERAND
49 45 ~9

, :

Figure 5. Asterisk Operand in Autocoder Instruction

Literals
The IBM 1410 Autocoder permits the user to put in the
operand field of a source program statement the actual
data to be operated on by an instruction. This data is
called a literal. The processor allocates storage for
literals and inserts their addresses in the operand or
operands of the instructions in which they appear. The
processor produces a DCW card that puts a word mark
in the high-order position of a literal when it is stored
at program load time. Literals are permitted only in
the operand field of an Autocoder statement and can
be numerical or alphamerical. A literal can be up to 52
characters in length, including the sign; i. e., it must be
contained in one line of the coding sheet, and it must
not extend beyond column 72. Literal addresses may
make use of address-adjustment and/or indexing.

Types of Literals

NUMERICAL LITERALS
Numerical literals are written according to the follow­
ing specifications:
1. A plus or minus sign must precede a numerical lit­

eral. The processor puts the sign over the units

position of the number when it is assigned a storage
location. NOTE: To store an unsigned number, use
an alphamerical literal.

2. When a numerical literal does not exceed nine digits
plus sign (blanks are not allowed), it is assigned a
storage location only once per program or program
section, no matter how many times it appears in the
source program or program section. NOTE: A pro­
gram section is defined as the source program entries
that precede a Literal Origin, End or Execute State-

. ment. In some programs several program sections
are needed because the entire object program ex­
ceeds the total available storage capacity of the
object machine. In these cases individual program
sections are loaded into storage from cards, tapes,
or random access storage and are executed as they
are needed. Program sections are sometimes called
overlays.
Figure 6 shows how a numerical literal can be used

in an imperative instruction. Assume the literal (+ 10)
is assigned a storage location of 00584 and 00585 and
INDEX is assigned 00682. The symbolic instruction will
cause the processor to produce a machine-language
instruction (A 00585 00682) that causes + 10 to be
added to the contents of INDEX.

Label

Figure 6. Numerical Literal

ALPHAMERICAL LITERALS
Alphamerical literals are written according to the fol­
lowing specifications:

l. An alphamerical literal must be preceded and fol­
lowed by the @. symbol. The literal itself can con­
tain blanks, alphabetic, numerical,. and special
characters (including the @ symbol). However, a
comment on the same line as an alphamericalliteral
must not contain the @ symbol.

Upon encountering an alphamerical literal, the
processor proceeds to column 72 of the card and
searches right to left for the terminal @ symbol. If
it encounters any @ symbol, it will assume this is
the legitimate terminal.

2. An alphamerical literal of from one to nine charac­
ters with preceding and following @ symbols is
assigned a storage location only once per program
or program section no matter how many times it
is used in the source program.

3. Longer alphamerical literals are assigned a storage
location each time they are encountered in the
source program. To save storage space in cases

where multiple use of long literals is necessary, use
a DCW statement.
Figure 7 shows how an alphamerical literal can be

used in an imperative instruction. Assume that the
literal JANUARY 28, 1961, is assigned a storage location
of 00906, and DATE is assigned 00230. The machine­
language instruction CD 00906 00230 C) causes the
literal JANUARY 28, 1961 to be moved to DATE.

Figure 7. Alphamerical Literal

AREA -DEFINING LITERAL

The 1410 Autocoder allows the user to define an area
to be reserved by placing an area-defining literal in
the operand field of a symbolic program entry as
follows:

l. An area of any size may be defined in any instruc­
tion which has as an operand the symbol which
references it; for example, WKAREA#2.

2. A # symbol (8-3 punch) must precede the number
that specifies how many core-storage locations are
needed for the work area. Note that the # symbol
is represented in the Fortran character set as an =
symbol.

3. A word mark is placed over the high-order position
of the area.

4. If the user refers to a portion of the same defined
area, such as WKAREA#6, he will be given a mul­
tiple definition Hag in his output listing.

5. Address adjustment and indexing are permitted
when using area-defining literals.

Figure 8 shows an imperative instruction with an
area-defining literal. This entry causes the processor
to allocate six storage locations for WKAREA. Six blanks
will be loaded in storage at object program load time
by a DCW card automatically produced by the proces­
sor. Assuming that AMOUNT is in storage location 00796
and WKAREA is in 00596, the assembled machine­
la~uage instruction that moves AMOUNT to WKAREA
is D 00796 00596 C.

Label

Figure 8. Area-Defining Literal

11

ADDRESS CONSTANT LITERALS

The actual 5-character machine address which is as­
signed to a label by the processor can be defined as an
address constant. Autocoder permits address constants
to be coded symbolically in the instructions that re­
quire them:
1. The symbol for an address constant can contain as

many as ten characters.
2. A plus sign must precede the symbol. The address

constant is the actual address which was assigned
to the label by the processor.

3. The label being defined must appear elsewhere in
the symbolic program.

4. The address constant is assigned a core-storage ado:
dress, as are all constants, and a DCW card is created
automatically by the processor. The address con­
stant literal is unsigned in core storage.

NOTE: If address adjustment and indexing occur,
they modify the address of the literal, not the literal
itself.

Figure 9 shows how an address constant literal can
be used. Assume that CASH is used as a label elsewhere
in the program and has been assigned a machine ad­
dress of 00600. The address constant (00600) has been
assigned storage location 00797. The first character in
the second instruction is in core storage at address
00401. Thus, the address of INST + 5 is 00406.

II ISIS I 2 5 9 5 9 ~ L~I t" .. ~ OPERAND

Ns~ : i : : :£2: 1:~~~~~~+:: : :: : : : ;: : : : :: : : : :
Figure 9. Address Constant

The assembled machine-language instruction for the
v

first symbolic instruction in Figure 9 is D 00797
00406 C.

WORK is in storage location 00729. The assembled ma­
chine-language iI~struction for the second symbolic pro­
gram entry is D 00000 00729· C. When the first
instruction is executed in the object program, the con­
stant 00600 is moved to 00406 and the second instruc-v
tion becomes D 00600 00729 C. When the ·second
instruction is executed, the contents of CASH are moved
to WORK.

Thus, the programmer can write an instruction that
will move a machine address into the operand of an­
other instruction at program execution time, even
though he does not know what that address is.

Address Adjustment
Address adjustment is valid in the operand field on all
symbolic addresses, including the asterisk. It enables
the programmer to refer to an entry in his source pro­
gram that is a specified number of locations away from

12

Label
49

Figure 10. Address Adjustment

Label ~perati~ 151 I 39

ZA Jt-il; 7.t1r:AL
49

OPERAND

:~ , ~9

Figure 11. Address Adjustment with an Asterisk Operand

a symbolic address. Its usage reduces the number of
symbolic labels required. Address adjustment is indi­
cated by writing after the symbolic address a plus or
minus sign followed by one to five digits (Figure 10).

When the label MANNO is assigned location 05000
and TOTAL is assigned the location 00075, the assem­
bled instruction is X 05012 00075.

If the instruction in Figure 11 is assjgned the ad­
dress 05000, the assembled instruction. is ? 04998 00075,
because 0 refers to the rightmost position of the in­
struction (05010). When using address adjustment, the
programmer should remember that insertions or de­
letions in the source program can affect adjustment
addresses.

Index Registers

Indexing is accomplished by tagging an address in the
operand field with an indicator telling the processor
which i,ndex register is to be used. The mM 1410 sys­
tem has 15 index registers that can be referred to in
Autocoder language by placing an X before their num­
ber. Thus, XI0 denotes index register 10. The X en­
ables the processor to distinguish between address
adjustment and indexing.

An index register can also be referred to symboli­
cally. XO through X15 are not acceptable as symbolic
names. The index label must be preceded by a plus. It
follows the operand address and the address adjust­
ment, if any. Figure 12 shows an example of indexing.

The contents of the location with the address,
MANNO plus the contents of index register 2, is alge­
braically added to the contents of location 00400. For
example, if the label MANNO is assigned location
05000 and index register 2 contains 500, then the pre­
ceding instruction causes the contents of location
05500 to be added to the contents of location 00400.

Label ~perati~ 49
OPERAND

:~ ~9 , :

Figure 12. Indexing

Indexing is not acceptable in DS, ORC, or LTORC declara­
tive operations nor control operations.

An index register can be specified in the operand
field for other than indexing purposes. For example,
a numerical value can be added to the contents of an
index register. In this case, the index register may be
referred' to by its actual label (Xl, X2, etc.) or its
symbolic label (see EQU).

Index Register Reservation
The processor assigns index registers referred to in the
symbolic program.

Those index registers that are coded in actual no­
tation (Xl, X2, etc.) and those equated to a symbolic
address by an EQU statement are assigned first. Then
the remaining index registers are assigned to symbols
the programmer has used to represent index registers.
For example, the programmer may use the symbolic
instruction shown in Figure 13.

In this case, CONST is the symbolic label for an index
register. Its contents will modify the address assigned
to the label (WHTAX). The instruction in Figure 13 may
be followed by the instruction shown in Figure 14.
This instruction puts the numerical value 25 in the
index register which the processor assigns to CONST.

Autocoder Coding Examples

Figure 15 shows an imperative instruction with 'ild­
dress adjustment and indexing on a symbolic address.
The processor will subtract 12 from the address as­
signed the label TOTAL. The effective address of the
A-operand is the sum of TOTAL -12 plus the sontents
of index location 1. The assembled instruction D 030Y9
00140 C will cause the contents of the effective address
of TOTAL -12 +X1 to be placed in the location la­
beled ACCUM (assuming again that TOTAL is the label

Label

~
perati4 OPERAND

1516 ~ ~ 30 3~ 40 :~ ~o

Figure 13. Symbolic Label for an Index Register

Label OPERAND
40

:~ ! ~o

Figure 14. Using the Symbolic Label

Label

Figure 15. Autocoder Instruction with Address Adjustment
and Indexing

for location 3 1 Oland ACCUM is the label for location
1 4 0). The Y in the tens position of the A-address is
an 8-punch with a zero overpunch. The zero over­
punch is a tag for index location 1.

NOTE: Address adjustment and indexing are per­
mitted in the same operand. Multiple address adjust­
ment causes the algebraic sum of the factors to be
used. With multiple indexing, only the rightmost in­
dex notation is effective. For example:

A TOTAL +3 +X1 -12 +X2, ACCUM -5 +X2 +35
will be interpreted as:

A TOTAL -9 +X2, ACCUM +30 +X2
which is equivalent to:

A TOTAL +X2 -9, ACCUM +X2 +30
Figure 16 is an imperative instruction with two sym­

bolic operands and a d-character. Although many of
the augmented operation codes available for use with
Autocoder eliminate the need to write the d-character
in a symbolic instruction, sometimes the d-character
must be specified by the programmer. If an instruction
requires such a specified d-character, it is written fol­
lowing the A- and B-operands and is separated from
the remainder of the instruction by a comma. The

v
assembled machine-language instruction is: B 00392
00498 2. It branches to ENTRY A (00392) if the location
labeled SWITCH contains a 2.

Label OPI

:~

Figure 16. Autocoder Instruction with ad-Character

Declarative Operations
A program for the 1410 usually requires the use of
work areas and constants. A work area is a portion of
storage into which data is transferred for processing.
It can be used for the accumulation of totals or for
the assembling of data to be printed out or punched
into cards. A constant is a fixed quantity or item of
information that is required again and again or that
must remain the same throughout the course of the
program. For example, a date can be considered a
constant.

The use of Autocoder enables the programmer to
refer to work areas and constants by their descriptive
names without regard to their actual location in core
storage. For example, assume that the programmer
wants to reserve twenty consecutive core locations for
accumulating a final sales total. A declarative opera­
tion enables the programmer to reserve such an area
and to refer to it by a symbolic label without concern­
ing himself with the actual address of the field.

13

Declarative operations are definitions rather than
instructions. As such they are acted upon during as­
sembly but are not executed during the running of
the object program. For this reason the programmer
should keep declaratives separate from imperatives
(machine instructions) when writing the symbolic pro-

, gram. If they are placed in the body of the program,
care must be taken to branch around them so they will
not be treated as instructions.

The mM 1410 Autocoder provides five different
declarative operations for reserving work areas and
storing constants:

OPCODE

DCW
DC
DS
DA
EQU

PURPOSE

Define Constant with Word Mark
Define Constant (no word mark)
Define Symbol
Define Area
Equate

DCW - Define Constant with Word Mark

General Description: A DCW statement is used to enter
a numerical, alphamerical, or address constant with
a word mark into a core-storage area. Symbolic la­
bels address the low-order position of the constant.
Word marks are set in the high-order positions of all
constants. If a symbolic label is indented one posi­
tion, the address of the high-order position of the
constant will be assigned to the symbol. Actual la­
bels always refer to the high-order position of the
defined constant.

The programmer:
1. Writes the operation code (DCW) in the operation

field.
2. May write an actual or symbolic label in the label

field. The programmer may refer to the constant
later by writing this label in the operand portion
of subsequent instructions.

3. Writes the constant in the operand field beginning
in column 21.

NUMERICAL CONSTANTS

1. A numerical constant can be preceded by a plus or
minus sign. A plus sign causes AB-bits to be placed
over the units position of the constant; a minus
sign causes a B-bit to be put there. If a numerical
constant is unsigned in the DCW statement, it will be
stored as an unsigned field.

2. The first blank column appearing in the operand
field terminates a numerical constant.

40

Figure 17. Numerical Constant Defined in a Dew Statement

14

3. The maximum size of a numerical constant is 51
digits and a sign, or 52 digits with no sign.

Example: Figure 17 shows the number + 10 defined
as a numerical constant. The address of the constant
will be inserted in the object instruction wherever
TEN appears in the operand field of another symbolic
instruction.

ALPHAMERICAL CONSTANTS

1. An alphamerical constant must be preceded and
followed by the @ symbol. Blanks and the @ sym­
bol can appear within an alphamerical constant,
but the @ symbol cannot appear in a comment on
the same line as an alphamerical constant.

2. The alphamerical constant itself can be as large
as 50 characters.

3. If no terminal @ is present, a 51-character constant
will be produced.

Example: Figure 18 shows the alphamerical constant,
JANUARY 28, 1961, defined in a DCW statement. The
address of the constant will be inserted in the ob­
ject program instruction wherever DATE appears in
the operand field of another symbolic program en­
try.

NOTE: A comma G following the trailing @ symbol
of an alphamerical constant causes the processor to
put a group-mark word-mark in storage following the
last character of the constant. The associated label, if
any, will refer to the last character of the constant,
not the group-mark word-mark.

h Lobel

~Tf. : iperoti~
1516 021 ~ 3:' 3: ~

Figure 18. Alphamerical Constant Defined in a Dew Statement

BLANK CONSTANTS

A # symbol precedes a number indicating how many
blank storage positions are to be defined. This permits
the programmer to reserve a field of blanks with a
word mark in the high-order position of the fi'eld.
Maximum size of this field is limited only by the
available storage capacity.

Example: Figure 19 shows an II-character blank field
defined by a DCW statement. The address of this
blank field will be inserted in an object program in­
struction whenever the symbol BLANK appears as the
operand of another symbolic program entry.

~ Line J Label'

o I. bik.d tiK,
~perati~

15~ J ~5
OPi

:~ CW 11..

Figure 19. Blank Constant Defined by a Dew Statement

ADDRESS CONSTANTS

An address constant can be preceded by a plus or a
minus sign, or it can be left unsigned. The constant is
the actual machine-language address of the field
whose associated label is included in the operand.
The units position of the constant will have the sign
which the user placed before the operand.

NOTE: Address constants may be address adjusted
and indexed.

Example: Figure 20 shows an address constant (the
address of MANNO) defined by a DCW statement. The
address of the address constant MANNO will be in­
serted in an object program instruction whenever
SERIAL appears as the operand of another symbolic
program entry.

~L1ne~ Label

0, I j;,ER {A.L

Figure 20. Address Constant Defined by a Dew Statement

DC - Define Constant (No Word Mark)

OPI

General Description: This statement has the same
characteristics as the DCW statement. The only dif­
ference is that the processor does not cause a word
mark to be set at the high-order position of the con­
stant when the constant is produced in the object
deck.

DS - Define Symbol

General Description: A DS statement reserves and
labels an area. of core storage. It differs from a DCW

or DC statement in that no information (constant) is
loaded into this area at program load time.

The programmer:

1. Writes the operation code (DS) in the operation field.
2. May write a symbolic address in the label field.
3. Writes a number in the operand field to indicate

how many storage positions are to be reserved.

The processor:

1. Assigns an actual address to the low-order position
of the reserved area.

2. Inserts this address in the instruction wherever the
symbol in the label field appears in the operand
field of another symbolic program entry.

Example: Figure 21 shows how a 10-position core­
storage area can be reserved. The programmer can

e Label ~perati9
15_ _II ~'

OPI

:~

Figure 21. DS Statement

refer to the label by putting ACCUM in the operand
field of another symbolic program entry.

DA - Define Area

General Description: DA statements reserve and define
portions of core storage, such as input or output or
work areas. They can also define more than one
area, if all these areas are identical in format. A DA

statement differs from a DCW statement in that a
DA statement can, in addition to defining the large
area, also define several fields within it. The DA

statement furnishes the processor with the lengths,
names, and relative positions of fields within the
defined area.

HEADER LINE

The programmer constructs a header line for the DA

entry as follows:
1. Writes the operation code (DA) in the operation

field.
2. May write an actual or symbolic address in the

label field. This address represents the high-order
position of the entire area defined by the DA state­
ment.

3. Indicates in the operand field the required size of
the area in the form B X L. B is the number of
identical areas to be defined and L is the length
of each area. For example, if four identical areas,
each 100 characters long, are to be defined, the
first entry in the operand field is 4 X 100 as shown
in Figure 22. If only one area is to be defined, the
first entry is 1 X 100.

opt

01 L.4PE.4B ~!!.
49

Figure 22. Four Areas Defined

Indexing: To index a DA statement place a comma
and the number of the index location (Xl, X2, X3,
etc.) after the B X L indication. All labels in the en­
tries following the header line will be indexed by the
specified index register when they appear in instruc­
tions, unless the instruction referring to the field is
itself indexed. For example, if IN AREA is defined by
the statement shown in Figure 23, ACCUM is indexed
by index location l. If the entry shown in Figure 24
appears as an instruction elsewhere in the program,
ACCUM (for this instruction only) will be indexed by

15

OPI

Figure 23. Indexing a DA Statement

the contents of index location 2. Because the instruc­
tion in Figure 24 has indexing, this indexing overrides
the indexing prescribed by the DA statement.

NOTE: The programmer can negate the eHect of
indexing on a field or subfield by putting an XO in
the operand field of each instruction in which indexing
is not wanted. Symbolic names for index registers may
be specified in the heading line of a DA statement only
if previously defined by an EQU statement.

Record Marks: Record marks can be inserted to
separate records in the defined area. The processor
will cause a =1= to be placed in storage immediately
following each identically defined area if a comma =1=
follows the B X L entry in the operand field. B X L
does not include an allowance for the record mark.
For example, 2 X 100 will cause 200 positions to be
reserved for the defined area, but 2 X 100, =1= will
cause 202 positions to be reserved.

Group Mark with Word Mark: The user can cause
the processor to put a group mark with' a word mark
one position to the right of the entire defined area
by writing a G, preceded by a comma in the operand
field.

Relative to Zero Addressing: By writing a comma
zero after the B X L entry, the user can cause the
processor to assign addresses to the labels of fields and
sub-fields as though the high-order position of the de­
fined area was core-storage location zero. The label of
the DA statement is assigned the address of the high­
order position of the area actually reserved by the
processor.

NOTES
1. A user of 1410 IOCS must define areas to be used

for blocked records using indexing, with relative to
zero addressing.

2. The programmer may write the =1=, index code, G
and 0 entries in any order in the operand field of
the DA header statement provided that they follow
the B X L entry.

OTHER DA ENTRIES

The programmer constructs the balance of the DA

statement which defines fields and subfields for each
area as follows:

1. Leaves the operation field blank.

Label ~perati9
15L A~ B Q ::~ fA c,c~Ji -t X fe3!

Figure 24. Overriding Indexing in a DA Statement

16

40
OPI

45

2. Writes a symbolic label in the label field if one is
desired.

3. Specifies the relative location of defined fields with­
in the area by putting two numbers in the operand
field. The first location of the defined area is con­
sidered location 1. The high-order and low-order
positions of the field are written beginning in col­
umn 21. These two numbers must be separated by
a comma.

4. A subfield is a field within a defined field and is
defined by putting the number representing the
low-order position in the operand field.

NOTES: The processor causes word marks to be set
in the high-order position of each defined field, but
does not so identify subfields. If a word mark is desired
in a one-position field, the relative position number
must be written twice with the two numbers separated
by a comma.

Fields defined in a DA statement can be listed in any
order, and all positions within the defined area do not
have to be included in the defined fields.

The processor:
1. Allocates an area in core storage equal to B X L plus

positions for record marks and a group mark if they
are specified in the heading line of the DA entry
and -assigns actual addresses to the defined fields
and subfields.

2. Inserts the assigned address of the high-order posi­
tion of the entire defined area wherever the con­
tents of the heading line label field appear as the
operand of another symbolic program entry.

3. Inserts the assigned addresses of the low-order po­
sitions of defined fields and subfields in the place' of
symbols corresponding to the labels of the field­
defining entries.

Result: At object program load time:
1. Word marks are set for field definition as noted

previously.
2. A group mark and record marks are loaded as speci­

fied in the heading line.
Example: In this example, data is to be read from

magnetic tape into an area of storage where it is to
be processed. It is a payroll operation, and each rec­
ord refers to a different employee. The records are
written on tape in blocks of three. Each record is
eighty characters long and has the following format:

Positions 4-8 Man Number
Positions 11-26 Employee Name
Positions 32-37 Date
Positions 45-64 Gross Wages
Positions 66-71 Withholding Tax
Positions 74-79 FICA Deduction

Remaining positions contain data not used in this
operation. Positions 34 and 35, which indicate the

month within the date, will be defined as a subfield.
A group mark with a word mark is to be placed in
storage immediately following the third area.

The DA statement in Figure 25 defines three adjacent
identical areas into which each block of three records
will be read. It also defines the fields and subfields
that are to receive the data listed. The notation 3 X 80
in the header line indicates that three consecutive
areas of eighty locations each are to be reserved. The
entire 240-location area can be referred to by its high­
order label, RDAREA. The G in the header line will
cause a group mark with a word mark to be placed
in the 241st position. The reference to index location 2
in the header line indicates that the labels NAME,
MANNO, DATE, GROSS, FICA and MONTH, when referred
to in symbolic instructions, will be indexed by index
location 2.

The IOCS will give an instruction to read data from
tape into a storage area labeled RDAREA. This causes
a block of three data records to be placed in the 240
reserved core locations. As a result, the significant data
is read into the appropriately labeled fields. This data
can now be referred to via the labels DATE, MANNO,
FICA, etc., and the user need not concern himself with
actual machine addresses. In this example, the IOCS
begins by setting index location 2 to the address of
the input area. The user then processes the significant
data in the first record. The subsequent GET macro
will increment index location 2 by eighty, and the
user can branch back to the first instruction of the
particular routine. Because all labels defined by this
DA statement are incremented by the contents of in­
dex location 2, the program will now be processing
the second record read into storage. \Vhen this routine
is performed three times, the user has processed three
input records and is ready to read three more records
into storage. This lias all been performed without any
reference to actual machine addresses.

NOTES:
1. An area can be reserved for a record with variable

fields by defining all possible fields as subfields. In
this case, no word marks will be set in an individual
area, but the programmer can control data transfer
by setting word marks in the receiving fields.

Figure 25. DA Statement

2. If the length of the whole record can also vary, the
programmer should reserve an area equal to the
largest possible record size.

EQU - Equate

General Description: An EQU statement assigns a sym­
bolic label to an actual or symbolic address. Thus,
the user can assign different labels to the same
storage location in different parts of his source pro­
gram.

The programmer:
1. Writes the operatiQn code (EQU) in the operation

field.

2. May write a symbolic address for the new label in
the label field.

3. Writes an actual or symbolic address in the operand
field. This address can have indexing and address
adjustment.

The processor:
1. Assigns to the label of the equate statement the

same actual address that is assigned to the symbol
in the operand field (With appropriate alteration if
indexing and address adjustment are indicated).

2. Inserts this actual address wherever the label ap­
pears as the operand of another symbolic program
entry.

Result: The programmer can now refer to a storage
location by using either name.

Examples: Figure 26 shows the label INDIV equated to
MANNO which has been assigned storage location
01976. Whenever either MANNO or INDIV appear in a
symbolic program, 01976 will be used as the actual
address.
Figure 27 shows an equate statement with address

adjustment. If FICA is assigned location 00890, WHTAX
will be equated to FICA-I0 (00880). WHTAX now refers
to a field whose units position is 00880.

Figure 28 shows a label assigned to an actual ad­
dress. Assume that an input card contains NETPAY in
card columns 76-80. When this card is read into stor­
age, the area locations 01076-01080 contain net pay

Figure 26. EQU Statement

~Line I Label

o I 5~,!U ~')(, ~perati~
151 ~~!!, ~o

Figure 27. Address Adjustment in an EQU Statement

OPI

:~

OPI
45

17

(if the read area is 01001-01080). This field can be re­
ferred to as NETP A Y if the EQU statement in Figure 28
is written in the source program.

Figure 29 shows how an equate statement can be
indexed. With indexing, the label is indexed by the
index location specified in the EQU statement, when­
ever it appears as an operand in a symbolic program
entry, unless the operand in which it appears is itself
indexed. In Figure 29, the address assigned the sym­
bolic label CUSTNO is equated to the actual address
of JOB + the contents of index location 3. However, if
CUSTNO + X2 or CUSTNO + Xl appear as the operand
of another symbolic program entry, the actual address
of JOB will be added to the contents of index location 2
or l. Thus, the indexing in an instruction takes prece­
dence, and index register 3 is ignored.

Figure 30 shows the symbol FIELDA equated to an
asterisk address. The asterisk refers to the current
position of the processor assignment counter. (This
will be the first position of the instruction or data to
be next assigned.) Assume that this address is 00698.
FIELDA is now equal to 00698.

Figure 31 shows how a label can be assigned to an
index location. The operand contains a number from
1 to 15, followed by a comma, followed by the letter
X to indicate the specific index register. INDEX 1 is now
equal to 00029. Figure 31 also shows an alternative
method for equating a label to an index register.

Figure 32 shows how a tape unit can be assigned a
label. In this case, the programmer wishes to refer to
tape 4 on channell as INPUT.

A tape unit may also be equated to a symbolic
name by using the actual X-control field (for example
% U 4) as the operand, as shown in Figure 33.

~ Label
40

OPERAND

45. , ~o 30

Figure 28. Assigning a Label to an Actual Address

~ Line I Label

o I'~~'U.S TN.Q
40

Figure 29. Indexing an EQU Statement

~Line~ Label 49

Figure 30. Equating with an # Operand

Figure 31. Assigning a Label to an Index Location

18

I Label ~peratl~ 151 I 2 51! 40

Figure 32. Assigning a Label to a Tape Unit

Figure 33. Actual X-Control Field

Imperative Operations
General Description: Autocoder imperative opera­

tions are direct commands to the object computer
to act upon data, constants, auxiliary devices, or
other instructions. These are the symbolic state­
ments for the instructions to be executed in the'
object program. Most of the statements written in
a source program will be imperative instructions.
Although the Autocoder processor can assemble in­
structions with all the imperative operation code
mnemonics which are shown in Figure 2, the pro­
grammer must remember the particular special fea­
tures and devices that will be included in the object
machine that will be used to execute the program he
is writing.

The programmer:
1. Writes the mnemonic operation code for the in­

struction in the operation field.
2. If the instruction is an entry point for a branch in­

struction elsewhere in the program or if the pro­
grammer wishes to make other reference to it, it
should have a label. This label will be assigned an
actual address equal to the address of the operation
code of the assembled machine-language instruc­
tion. Thus, the programmer can use this label as
the symbolic I-address of a branch instruction else­
where in the program (see Example, Figure 41).

3. Writes the symbolic address of the data, devices, or
constants in the operand field. The first symbol will
be used as the A- or I-address of the imperative
instruction. If the instruction also requires a B­
address, a comma is written following the first sym­
bol and its address adjustment and/or indexing
codes (if any), then the symbol for the B-address is
written. If the instruction requires that ad-character
be specified, a comma and the actual d-character
follow the symbolic entries for the B-address or an
I -address if the B-address is not needed.

NOTES

Unique Mnemonics. Several mnemonic operation
codes have been developed to relieve the programmer

of coding the d-character in the operand field of sym­
bolic imperative instructions. However, some opera­
tion codes have so many valid d-characters that it
is impractical to provide a separate mnemonic for
each. In these cases, the programmer supplies the d­
character as previously described. In the listing of
mnemonic operation codes for imperative instructions
(Figure 2) all mnemonics which require that the d­
character be included in the operand field are indi­
cated by a t.

Coding

Figure 34 shows a brief routine illustrating a section of
Autocoder coding. Note that remarks can appear any­
where in the operand field, provided at least two blank
spaces separate the remarks from the operand of the
instruction.

Several imperative operations are governed by spe­
cial rules, and care must be taken when coding with
these instructions. The special cases are described in
the following paragraphs.

Data-Move Instructions

The data-move command is controlled in machine
v

language by the Op code D. The actual conditions of
the various types of data move instructions are regu­
lated by the d-character. To make the Autocoder lan­
guage more meaningful, each of these move and scan
instructions has a different mnemonic op code. Each
of these mnemonics specifies the type of operation,
the direction of the move or scan, the nature of the
data to be moved, and what terminates the operation.
The following rules apply in constructing the mne­
monics for data-move commands:

Itt ove Mnemonics
1. The first character of the mnemonic is M.
2. The second character specifies the direction of data

movement.
L - Right-to-Ieft movement.
R - Left-to-right movement.

Label 1~~perati~121 6 25 ~O

1,U)C (DJ~
n5 I IH!. '<I. ~1.@

S.T,A.R,T I :;',\J. 1181
I

~. '1. 10,1
I RAI E,RRO.R.
I B.Z,JI, P.R. I NT.,l.B.o ,B
1 p ~"lQj

I B,A1. E.~/(.o.R.
I 'A. STAR T.

PKIN.T, I ro.'-I. 11,21
I

IJ 1 a1
I lila FRR.o.R.

~ STA.R.T.
I

CN.o ~,TA.R.T.

Figure 34. Autocoder Coding

OPERAND
55 40 45 50

3. The third section of the mnemonic specifies the por-
tion of data moved.

N - Move numerical portion of data.
Z - Move zone portion of data.
C - Move whole characters.
W - Move word marks.
NW - Move numerical portion and word marks.
ZW - Move zone portion and word marks.
CW - Move whole characters and word marks.

4. The final character of the mnemonic specifies what
terminates the move.
a. To terminate right-to-Ieft move:

A - Word mark in A-field.
B - Word mark in B-field.
(Blank)- Word mark in either field.
S - Move single location only.

b. To terminate left-to-right move:
R - Record mark in A-field.
G - Group mark with a word mark in A-field.
M - Record mark or group mark with a
word mark in A-field.
(Blank) - Word mark in either field.

Scan Mnemonics
1. The first three characters are always SCN.

2. The fourth character specifies the direction of scan.
L - Right-to-Ieft scan.
R - Left-to-right scan.

3. The fifth character specifies what terminates the
scan.
a. To terminate right-to-Ieft scan:

A - Word mark in A-field.
B - Word mark in B-field.
(Blank) - Word mark in either field.
S - Scan left single position.

b. To terminate left-to-right scan:
R - Record mark in A-field.
G - Group mark with a word mark in A-field.
M - Record mark or group mark with a
word mark in A-field.
(Blank) - Word mark in A- or B-field.

For example, when whole characters and word
marks are to be moved from right to left, terminating
the move on a word mark in the A-field, the Autocoder
mnemonic op code is MLCWA.

A complete list of these data. move mnemonics is
included in the List of 1410 Autocoder Mnemonic
Operation Codes (see Figure 2).

I'
OPERAND

:~ : Label

. :
Figure 35. Write Tape

19

SSF - Select Stacker and Feed

This instruction causes the last card transferred to
storage to be selected into the stacker specified in the
operand field of the instruction., A blank operand
causes the card to be selected into the zero read
pocket. A 1 in the operand field causes the card to be
selected into stacker 1. A 2 in the operand field causes
the card to be selected' into stacker 8/2.

Magnetic Tape Commands

Mnemonics referring to magnetic tape do not require
d-characters. However, it is necessary to specify, in
the operand, the number of the tape unit and chan­
nel needed for the operation. This can be done in one
of three ways.

The programmer can:
l. Assign a label to the channel and tape unit as de­

scribed in EQU and use it as the A-operand of a
tape instruction, or

2. Write the number of the channel and tape unit in
columns 21 and 22 of the tape instruction. The as­
sembled instruction for the symbolic entry shown
in Figure 35 will cause a record to be written on
tape unit 4 using the data beginning in a storage
area labeled OUTPUT, or

3. Write the X-control field as the A-operand of the
tape instruction.

Disk Commands

All input-output commands involving disk units must
specify the channel (1 or 2) as the first entry of the
operand field. If an address is used in the operand, it
follows the channel designation and is separated from
it by a comma as shown in Figure 36.

BZN - Branch on Zone

The operand of this command takes the form I ADDR,

Ch where:
Ch = Zone configuration to be tested for (A, B,

AB, blank, -, +, or ¢)
ADDR = Address of character whose zone is to be

tested.
I = Address to branch to
ADDR or both addresses can be omitted if this opera-

tion is chained. Acceptable forms of this operation are:

label

BZN I, ADDR, Ch
BZN I
BZN

Figure 36. Disk Storage Instruction

20

OPERAND
40

:~ , ~o

BWZ - Branch if Word Mark, Zone, or Both

This operation is the same as BZN except that a branch
also takes place if a word mark is present.

BCE - Branch if Character Equal

The operand of this command takes the form I, ADDR,

Ch where:
Ch = Character to be matched
ADDR = Address of character to be compared
I = Addtess to be branched to
Permissible forms of these operations are:

BeE I, ADDR, Ch
BeE I
BeE

BBE - Branch if Bit Equal

The operand of this command will take the form I,
ADDR, Ch where:

Ch = Character containing bit(s) to be tested for
ADDR = Address of character to be tested
I = Address to be branched to
Permissible forms of this operation are:

BBE I, ADDR, Ch
BBE 1
BBE

CC - Control Carriage

The forms control character must be written in the
operand field of this instruction. Standard forms con­
trol characters are to be used.

P - Punch

The pocket into which the punched card will be se­
lected must be specified as the first entry of the oper­
and field of this instruction. The address from which
data will be punched is specified following the stacker
specifications and is separated from it by a comma. A
O-punch selects punched cards into stacker pocket 0;
a 4-punch selects punched cards into stacker pocket 4;
an 8-punch selects cards into stacker pocket 8/2.

R-Read

A read command must have as the first entry in its
operand either the number of the stacker into which
the card is to be selected after reading, or an indica­
tion that a select stacker command will follow the read
command. A O-punch selects cards into stacker pocket
0; a I-punch, into stacker pocket 1; and a 2-punch,
into stacker pocket 8/2. A 9-punch indicates that a
select stacker command will follow. The address (sym­
bolic or actual) of the storage area into which the
data from the card is to be read must be the second
entry in the operand of a read command.

Input-Output Commands

All I/O mnemonic op codes pertaining to unit record
equipment (card punch, card reader, IBM 1403 Printer,
console I/O Printer) can be followed by the letter
W to indicate transfer of word marks. An 0, if pres­
ent, indicates overlapping. If both Wand 0 are re­
quired, the W must precede the 0 in the instruction.

The instructions thus affected are R, P, W, RCP, WCP,
and WM.

All I/O mnemonic op codes pertaining to magnetic
tape-and-disk storage except SD, RTG, RTBG, WTE, and
WTBE may end in the letter W to indicate that word
marks will be transferred. Also, all the I/O mnemonics
except RTG, RTGB, WTE, and WTBE can be followed by
the letter 0 to indicate overlapping.

Priority Processing
IBM 1410 Data Processing Systems equipped with the
priority-processing feature can process I/O no-op
commands. To code these in Autocoder language,
write an N as the first character of the I/O mnemonic.
For example, the instruction shown in Figure 37 will

v
be assembled as M %Ul 00100 Q.

The instruction shown in Figure 38 will be assem­
bled as M %Ul 00100 V.

The I/O no-op instruction will set the appropriate
I/O external indicators, but no data movement takes
place.

NOTE: Like any other I/O instruction, the I/O no-op
instruction always sets the I/O interlock latch ON. This
latch must be set OFF before another I/O instruction
can be executed on the same channel.

The I/O interlock latch can be set OFF by one of the
following classes of instructions:
l. Branch Any External Indicator-Channel (1 or 2)

(i. e., BAI or BA2)
or

2. Branch on External Indicator-Channel (1 or 2)
(i. e., BEXI d or BEX2 d, where d =t- :f),
provided the branch is executed. (If the branch is not
executed, the I/O interlock latch is not turned OFF.)

NOPWM - No Operation Word Mark

The 1410 Autocoder permits the programmer to set
programmed no-op switches easily. If the statement
shown in Figure 39 is written in the source program,
the processor ~ll insert in the object program the
operation code N (no-op) with a word mark, followed
by the branch instruction (B XXXXX) without a word
mark in the operation code position. Subsequent in­
structions in the object program can then be used to
set and clear the word mark in the operation code
position of the branch instruction as needed. If there

Label OPERAND

, : :~ , :
Figure 37. 110 No-Op Input Command

Label OPERAND

~!1 :~ ~o

Figure 38. 110 No-Op Output Command

Figure 39. No-Op Word Mark

is no word mark, the branch instruction will be ig­
nored, and if the word mark is present, the branch
instruction will be executed. The assembled instruc­
tions produced by the entries shown in Figure 39 are
v
N B 00500 (assuming start is in location 500).

BEX 1 or BEX2 - Branch on External Indicator

These mnemonics are used for the machine-language
op codes Rand X. BEXI is equal to R; BEX2 is equal
to X. One of the two, depending on channel, is used
when testing for a combination of external indicator
conditions for which there is no mnemonic. The sym­
bolic operand must take the form ADDR, d where:

ADDR = Address to be branched to, if any of the
external indicators specified in the d­
character have been set as a result of
executing an I/O command.

d = the actual character formed by the com­
bination of d-character-control bits of the
individual external condition tests.

. For example, a branch to a location labeled EXIT is
desired if the channel-busy indicator, the not-ready
indicator, or the wrong length record indicator has
been set following an I/O command. The appropriate
Autocoder instruction has BEXI as the operation code,
EXIT as the ADDR and L as the d-character. The d­
character L results from a combination of the 2-bit,
I-bit, and B-bit required to interrogate the three indi­
cators just mentioned.

The processor assembles the object instruction as fol­
lows:
l. Substitutes the actual machine-language operation

code for the mnemonic written in the operation
field.

2. Substitutes the actual addresses of symbols used
in the operand field to specify the X-control field
A or I, and B-addresses of the instructions. If ad­
dress adjustment or indexing is indicated, the sub-

21

stituted address will reflect these notations (tag bits
will be inserted for indexing and addresses will be
altered by adding or subtracting the adjustment
factor if address adjustment is specified). The d­
character will be supplied automatically for unique
mnemonics, or will be taken from the operand field
if the programmer has supplied it.

3. Assigns the actual machine-language instruction an
area in storage. The address of this area is the po­
sition which the operation code occupies in object

label

~I,

Figure 40. Branch-if-Character-Equal

machine core storage. This address is assigned to
the label if one appears in the label field.

Result: This instruction will be placed in the object
program deck. A word mark will be set in the opera­
tion code position by the loading routine at program
load time.

Examples: Figure 40 shows an imperative instruction
with 1- and B-operands and a mnemonic which re­
quires that the programmer include the d-character.
A branch to a location labeled READ will occur if
the location labeled TEST has a 5 in it. Assuming that
the address of READ is 00596 and TEST is in 00782,

v
the assembled instruction is B 00596 00782 5.
Figure 41 shows an imperative instruction with a

unique mnemonic. A branch to a location labeled
OVFLO will occur if an arithmetic overflow has oc­
curred. Assuming that the address of OVFLO is 00896
the assembled machine-language instruction is J
00896 Z.

line label Is~perati: I 211 30 3A .0
OPI

11- Hi 45

o I]i.A.V. O,I1.P.L.O,

0.2

0;'

04 .
Os O.V.F,L.tJ, z.A. F./ .E.L.7J.A .•. F.l.~L ."1> A

Figure 41. Branch-if-Arithmetic-OverHow

Processor Control Operations
Autocoder has several control operations that enable
the user to exercise some control over the assembly
process:

22

OP CODE

JOB'
EJECT
RESEQ
LOAD
RUN
CTL
ORG

LTORG

JOB -Job

EX
XFR
SFX
PST
END

PURPOSE

Job Card
Eject
Resequence
Load
Run
Control Card
Origin
Literal Origin
Execute
Transfer
Suffix
Print Symbol Table
End

General Description: This card in the user's source
program deck prints a heading line on each page of
the output listing from the assembly process and
identifies the object deck or tape.

The programmer:
1. Writes the mnemonic operation code (JOB) in. the

operation field.
2, Writes in the operand field the indicative informa­

tion to be printed in the heading line. This infor­
mation may be any combination of valid 1410
characters and appears in columns 21-72.

3. Writes in the identification field (Columns 76 to
80), the information to be contained in the object
deck or tape.

The processor:
1. Prints the information, the identification from col­

umns 76-80, and a page number from the JOB card
on each page of the output listing. If there is no JOB

card, the processor will generate one. In this case,
nothing will be printed in the heading line except
the page number.

2. Punches the identification number (columns 76-80)
in all condensed cards produced for the object pro­
gram. If another JOB or RESEQ card (or cards) ap­
pear elsewhere in the source program, the new
identification number will be punched in subse­
quent condensed cards.

Result: The programmer can identify a job or parts
of a job in the output listing.

EJECT - Eiect
An EJECT control card may be placed in the symbolic
source program by the user to cause the carriage to
restore at any point in the output listing.

The programmer may now have separate routines
or sequences in the output listing.

RESEQ - Resequence

The RESEQ control card resets the card sequence count
to 001 in the object program deck and the identifica­
tion number from columns 76 to 80 will replace the
former identification number.

This will allow the user to separate his object deck
into logical groups or blocks.

lOAD - load

The LOAD control card is used to signal the processor
that a load program should precede the object deck.

RUN - Run

This is the first card in the user's source program deck.
I t tells the processor which type of run is desired.
There are two types: original and systems.

ORIGINAL

By placing the label ORIGINAL in the label field of a
run control card, the user signifies that he desires a
compilation of a given deck by the processor. The
user's source program deck is placed immediately be­
hind this card.

SYSTEMS

By placing the label SYSTEMS in the label field of a
run control card, the user signifies that he desires an
updating run. This updating run pertains only to the
library entries or routines on the systems tape.

CTl - Control

General Description: The control statement is nor­
mally the second entry (card) in the source program
deck.

The programmer:
l. Writes the operation code (CTL) in the operation

field.
2. Writes codes in the operand field as follows:

Column 21: Indicates the storage size of the ma­
chine to be used to process the Autocoder entries.

Storage Size Code
20,000 2
40,000 3
20,000 any other code

Column 22: Indicates the storage size of the machine
which will be used to process the object programo
These codes are the same as those used to indicate
the size of the processing machine with the addition
of code 1 to specify a 10,000-character storage size.

The processor interprets the codes and processes the

source program accordingly.
NOTE: If the CTL card is missing, the processor as­

sumes that both the processing machine and the object
machine have 20,000 positions of core storage.

ORG - Origin

General Description: An origin statement can be used
by the programmer to specify a storage address at
which the processor should begin assigning loca­
tions to instructions, constants and work areas in
the symbolic program.

The programmer:
1. Writes the mnemonic operation code (ORG) in the

operation field.
2. Writes the symbolic, actual, blank, or asterisk ad­

dress in the operand field. Addresses can have ad­
dress adjustment, but indexing is not permitted in
ORG statements.

3. If a symbolic label appears in the operand field of
an ORG statement, it must appear in the label field
in an entry preceding the ORG statement in the pro­
gram sequence.

40 If the programmer writes an ORG statement and its
operand is followed by,S, the high-address counter
will not be affected. For example, ORG 1000,S is an
ORG statement that will not affect the high-address
counter.

The processor:
l. Assigns addresses to subsequent instructions, con­

stants and work areas starting with the address
specified in the operand field of the ORG statement.

2. If there is no ORG statement preceding the first
symbolic program entry, the processor automati­
cally begins assigning storage locations at 00500.
NOTE: In the absence of the IOCS entries, normal
origin will be 00500.

3. An ORG statement inserted at any point within the
symbolic program causes the processor to assign
subsequent addresses beginning at the address
specified in the operand field of the new ORG state­
ment (exception: see Figure 47).

4. The processor maintains a high assignment counter
which contains the highest assigned location at any
given point of an assembly run.

Result: The programmer chooses the area of storage
where the object program, defined constants, etc.,
will be located.

Examples: Figure 42 shows an ORG statement with an
actual address. The first symbolic program entry
following this ORG statement will be assigned with
storage location 00600 as a reference point (if the

23

first entry is an instruction, the op code position
(I -address) of that instruction will be 00600; if the
first entry is a 5 character DeW, it will be assigned
address 00604, etc.).
The ORC statement in Figure 43 shows how the pro­

grammer can direct the processor to save the address
of th~ last storage location allocated. The label ADDR is
the symbolic address of the next available location be..;
fore re-origin occurs. The processor will continue to
assign addresses beginning at the actual address of
START.

The programmer can insert another ORC statement
later in the source program to direct the processor to

Label
~o

Figure 42. ORG Statement with an Actual Address

01 IAJ),'"llB
~o

Figure 43. Saving the Address of Last Storage Allocated

begin assigning storage at ADDR. This statement is
shown in Figure 44.

Figure 44 shows an ORC statement that directs the
processor to start assigning addresses with the actual
address assigned to ADDR (see Programmer #3).

Figure 45 shows an ORC statement that directs the
processor to bypass 200 positions of core storage when
assigning addresses. This statement is the type that is
included within the source program (see Processor
#3).

When the processor encounters the statement shown
in Figure 46, it will assign subsequent addresses begin­
ning with the next available storage location whose
address is a multiple of 100. For example, if the last
constant was assigned location 00725, the next instruc­
tion would have an address of 00800.

Figure 47 shows an ORC statement with a blank
operand. The processor will assign addresses to sub­
sequent entries beginning at the location designated
by the high assignment counter plus one.

Label

Figure 44. ORG Statement with a Symbolic Address

lab'"

Figure 45. ORG Statement with an Asterisk Operand and
Address Adjustment

24

OPI

OPI
15

Label

Figure 46. ORG Statement Advancing Address Assignment to
Next Available Multiple of 100

Label

Figure 47. ORG Statement with a Blank Operand

LTORG - Literal Origin

General Description: LTORC statements are coded in
the same way as ORC statements. Their function is to
direct the processor to assign storage locations to
previously encountered literals and closed library
routines, beginning with the address written in the
operand field of the LTORC statement. LTORC state­
ments can appear anywhere in the source program.

If no LTORC statement appears in the source pro­
gram, the processor begins assigning addresses to
literals and closed library routines when it encoun­
ters an EX or END statement.

Example: Figure 48 shows how the programmer can
direct the processor to begin assigning the storage
locations to literals and closed library routines.
The programmer has instructed the processor to begin

storage allocation at 00600. All instructions, constants,
and work areas (ending with BSUBRT 01) will be as­
signed storage. However, the literal (+10) in the state­
ment ZA + 10, WKAREA, and the library routine
(SUBRT 01) extracted by the CALL macro (see Call)
will not be assigned storage until the LTORC statement
is encountered. The first instruction in the library rou-

Figure 48. Using a LTORG Statement

tine (SUBRT 01) will be assigned address 01500 (be­
cause CALC has been equated to 01500). After all
instructions in SUBRT 01 have been assigned storage
locations, the literal + 10 will be assigned an address.

The processor will begin assigning the rest of the in­
structions, constants, and work areas with the storage
location immediately to the right of the area occupied
~y the instruction B SUBRT 01. Thus, if B SUBRT 01
(J 01500) is assigned locations 00691-00697, FIELDA will
be assigned storage locations 00698-00703.

EX - Execute

General Description: During the loading of the as­
sembled machine-language program, the program­
mer may want to discontinue the loading process
temporarily in order to execute portions of the pro­
gram just loaded. This is especially true when the
program has more than one section or overlay. The
EX statement is used for this purpose.

The programmer:
1. Writes the mnemonic operation code EX in the op­

erand field.
2. Writes an actual or symbolic address in the operand

field. This address must be the same symbol that
appears in the label field of the first instruction to
be executed.

The processor:
1. Incorporates closed library routines, literals, and

address constants.
2. Assembles a branch instruction (an unconditional

branch to the first instruction to be executed), the
I-address of which is the address assigned to the
instruction referenced by the symbol in the operand
field. This instruction does not become part of the
assembled machine-language program, but it causes
the processor-produced loading routine to halt the
loading process at the appropriate time and execute
the branch instruction. NOTE: To continue the load­
ing process after the desired portion of the program
has been executed, the programmer must provide
re-entry to the load routine.

Result: The programmer can use several program sec­
tions if his total program exceeds the limits of avail­
able storage capacity. For example, if input to the
program is on magnetic tape and the program is
also on tape, one tape unit can be assigned to the
program and another can be assigned to the input
data.

Example: Figure 49 shows how an EX statement can
be coded. When this statement is encountered in the
loading data, the loading process halts and a branch
to the instruction whose label is ENTRYA occurs.

Label OPERAND

~o :~ ":
Figure 49. EX Statement

XFR - Transfer

General Description: This entry has the same func­
tion as an EX statement except that literals, closed
library routines, and address constants are not in­
corporated. An XFR statement transfers to and exe­
cutes instructions which have been previously
loaded.

Example: Figure 50 shows an XFR entry.

I'
Label ~perati~ OPERAND

. : ! fIfAJr.f(A ~o ~!! :0, :5, :
Figure 50, XFR Statement

SFX - Suffix

General Description: This statement directs the proc­
essor to put a suffix code in the tenth position of all
labels in a source program section which have less
than ten characters until another SFX statement is
encountered. In this way, the programmer can use
the same label in different sections of the complete
program.

The programmer:

l. Writes the mnemonic operation code (SFX) in the
operation field.

2. "Trites the character (which can be any valid 1410
character) to be used for the suffix code in the
operand field.

The processor:

l. Inserts the suffix code in the tenth position of all
labels in the subsequent entries which have less
than ten characters.

2. Changes the suffix code when a new SFX card is
encountered.

Cross referencing with suffixing: If the programmer
wishes to cross reference to a previously used label
which is in a section with a different suffix, he may
do so by writing the suffix of the different section
followed by a dollar sign before the label in the
operand.

If JOE appeared as a label in a program section
with a suffix A and the given statement is in a sec­
tion with a suffix B, he may refer to JOE by cross

25

referencing as indicated in Figure 51.
If the programmer desires to suppress suffixing,

he may do so by preceding the entry in the operand
by a dollar sign (Figure 52).

The programmer can instruct the processor to
discontinue suffixing by using an SFX card with a
blank operand.

Figure 51. Cross Referencing Suffixing

• 151 I Ii 0 Ii I lMI r'~ O~MNO

Figure 52. Suppress Suffixing

PST - Print Symbol Table

General Description: This entry causes the processor
to print out the symbol table ahead of the printed
listing of the program.

The programmer writes the mnemonic operation code
(PST) in the operation field.

The processor lists the symbol table. All labels used
in the source program are printed with their as­
signed core-storage addresses. NOTE: This card can
appear anywhere in the source program deck pre­
ceding the END card.

END-End

General Description: This is always the last card in
the source deck. It signals the processor that all
of the source program entries have been read, and
provides the processor with the information neces­
sary to create an execute card. This execute card
causes a transfer to the first instruction to be exe­
cuted after the program has been loaded into the
machine at 'program load time. Thus, program exe­
cution begins automatically.

The programmer:
1. vVrites the mnemonic operation code (END) in the

operation field.
2. Writes in the operand field, the symbolic or actual

address of the first instruction to be executed after
the program has been loaded.

The processor creates an unconditional branch in­
struction which is used as part of the loading data.

26

Other processor functions are the same as for an
EX statement.

Example: Figure 53 shows an END card.

OPERAND
49

:~ ~9
Figure 53. END Card

The Macro System

Many of the routines that must be incorporated in
programs written for the IBM 1410 are general in na­
ture and can be used repeatedly with little or no
alteration. The IBM 1410 Autocoder makes it possible
for the user to write a single symbolic instruction (a
macro-instruction) that causes a series of machine lan­
guage instructions to be inserted automatically in the
object program. Thus, the ability of Autocoder to proc­
ess macro-instructions relieves the programmer of
much repetitive coding. With a macro-instruction, the
programmer can extract, from a library of routines,
a sequence of instructions tailored by the processor to
fit his particular program.

Definitions of Terms

Several programming terms are used to describe the
requirements and operational characteristics of the
macro system. These terms are explained here as they
are applied in the following discussions.

Object Routine. The specific machine-language in­
structions needed to perform the functions specified
by the macro-instruction. If the object routine is in­
serted directly in a larger routine, for example, the
main routine, without a linkage or calling sequence;
it is called an open routine or in-line routine. If the
routine is not inserted as a block of instructions
within a larger routine, but is entered by basic
linkage from the main routine, it is called a closed
routine, or out-of-line routine.

Model Statement. A general outline of a symbolic pro­
gram entry. Model statements are used only in flex­
ible library routines.

Library Routine. The complete set of instructions or
model statements from which the object routine is
developed. If the library routine cannot be altered,
it is infleXible. It is flexible if the library routine is
deSigned so that symbolic program entries can be
deleted from certain object routines (at the discre­
tion of the programmer) or if parameters can be
inserted.

Library. The complete set of library routines stored on
magnetic tape with an identifying label for each
routine that can be extracted by a macro-instruction.
Several macro-instructions and library routines are
provided by IBM. Others are designed by the user to
suit particular processing requirements.

Librarian. The phase of the processor that creates the
library tape from card input. After the original
writing of the library tape, this phase is used to

insert additional library routines and their identify­
ing labels as well as to update routines. This phase
is omitted during program assembly.

Parameters. The symbolic addresses of data fields,
control names, or information to be inserted in the
symbolic program entries outlined by the model
statements. By placing parameters in the operand
field of a macro-instruction, the programmer can
specify symbolically the data to be operated on.
The actual addresses of the data (or other infor­
mation) are inserted in the object routine by the
processor during assembly. Also, literals and actual
addresses can be used.

Pseudo-macro. A macro-instruction that is used in­
ternally by the processor to control the production
of a series of machine-language instructions. The
difference between a pseudo-macro and a macro is
that the pseudo-macro is not written in the source
program. Instead, it appears only in a flexible li­
brary routine which can be extracted by a macro­
instruction.

Macro Operations
To illustrate tht; basic operation of the macro system,
a hypothetical macro called CHECK with a simple flex­
ible library routine is used. The routine is designed to
compare an input field to another field, test the com­
pare indicator for a high, low, or equal condition or
any combination of the three. For example, in some
programs it will be necessary to test only for an equal
condition; in others, high or equal, etc.

Figure 54 is the library coding form which is used
with the 1410-Macro-System.

Figure 55 shows the library entry, a macro-instruction
specifying that all instructions in the library routine
appear in the object program, and the symbolic pro­
gram entries created during the macro phase of Auto­
coder. The symbolic program entries are inserted in
the source program following the macro-instruction.
During assembly of the object program, the symbolic
program entries will be translated to actual machine­
language instructions with the actual addresses of
the parameters inserted in the label, operation, and
operand fields.

The Library Entry

The library entry for the CHECK macro was created by
writing an INSER statement and four model statements
as shown in Figure 55.

27

FORM X24·6568·0
Printed in U.S.A.

IBM INTERNATIONAL BUSINESS MACHINES CORPORATION

IBM 1410 DATA PROCESSING SYSTEM
LIBRARY CODING FORM

DATE PROGRAM PROGRAMMED BY

Page
and L Label Operation Operand and Comments Identification
Line

123456 7 8 91011 12131415161718192021 12223242526 27282930313233343536373839404 1424344454647484950515253545556575859606162636465 666768697071727374 757677787980

I
I

. ~ ..

Figure 54. IBM 1410 Library Coding Form

Library Entry

Page
and L Label Operation Operand and Comments Identification
line

1234.5 6 7 8 910111213141516171819202 122324252 272829303132333 .. 35363738394041 .. 2 .. 3 5 .. 6 .. 748"'95051 525354555657585960616263646566676869707172737 757677787980

~1 00 C J/~ J11 oz ('II lEe
v~ "0 'BH " CfI Ed'<

"-1 ~\D ~E ~" CH £c
W bo BI., iJto CU . cik

Macro Instruction

Assembled Symbolic Program Entry

C PAR1,PAR2

BH PAR3

BE PAR4

BL PARS

Figure 55. Macro Operations

28

INSER - Insert

General Description: An INSER statement identifies a
library routine. This identification precedes the li­
brary routine in the library tape.

The programmer:
1. Writes the operation code INSER in the operation

field of the Autocoder coding sheet.
2. Writes the five-character label for the library rou­

tine in the label field. The label will be the same
as the name that appears in the operation field of
the associated macro-instruction except when either
the CALL or INCLD macro is used.

3. Writes an M in column 21 of the operand field to
indicate a flexible library routine, or an S in col­
umn 21 to ,indicate a CALL or INCLD type library
routine.

The processor puts the indicative information ahead of
the model statements in the library tape during the
librarian phase of Autocoder.

Result: During assembly, the header label is matched
with the macro name in the operation field of the
macro-instruction. The model statements following
the header label in the library tape are used to as­
semble the symbolic program entries as specified by
the macro-instruction.

Model Statements

General Description: Model statements establish the
conditions for inserting parameters in the object
routine and define the basic structure of the sym­
bolic program entries.

The programmer:
1. Designs a general routine to perform many specific

functions (depending upon the parameters supplied)
when it is executed. in the object program.

2. Writes the model statement as follows:
a. If the entry is complete, it is written exactly the

same as though it were an entry in a source pro­
gram. This entry will be included in all object
routines unless a bypass condition exists (see
BOOL).

Example. Figure 56.
b. If the entry is incomplete, the programmer

writes a special three-character code to indicate
that a certain parameter from the macro-instruc­
tion operand field must be inserted (substituted)

Label Operation Operand and Comments

6 7 8 9101112131415161718192021 2232"252 2728293031323334353637383940.414243"""'546474849505152535455565758

. / Ll>~~nm::rDm:
Figure 56. Model Statement for a Complete Instruction

Label Operation Operand and Comments

. 11TTll 11 0 / °EITIITlIIlmOTIIIIITlill
Figure 57. Model Statement for an Incomplete Instruction

with Required Parameters

in its place. This code is a 0 followed by a num­
ber from 01 to 99, the position of the parameter
in the macro-instruction. This entry will be in­
serted in all object routines.

Example: Insert parameters 01 and 02 specified by
the CHECK macro-instruction shown in Figure 57.

c. If the entry is incomplete the programmer writes
a 0 followed by a number from 01-99 with AB­
bits over the units position (parameter 01 is
DO A, parameter 02 is oOB, etc.) to indicate that
the entry is to be included in the object routine
only if the parameter is specified by the macro­
instruction.

Example: Insert parameter 03 in the following in­
struction if it is specified by the macro-instruction.
If parameter 03 does not appear in the macro­
instruction, the instruction shown in Figure 58 will
be deleted from the object routine.

NOTE: Substitution codes can also be used to sub­
stitute a parameter in any part of a model statement.
For example, it is possible to substitute an operation
code, any part of a literal, a label, etc.

Labeling. If the model statement represents an in­
struction entry point for a branch instruction else­
where in the program, it should have a label.

The macro-instruction label is inserted in the
label field of the first model statement included in
the assembled object routine as shown in Figure 59.
If additional external labels are required and speci­
fied as parameters in the macro-instruction they can
be inserted in the label field of the symbolic pro­
gram entry by using 0 01-99 code.

Example: Insert parameter 02 in the label field of the
assembled symbolic program entry as shown in Fig­
ure 60.

SymboliC Addressing within the Library Routine. To
allow symbolic reference to other instructions in a
flexible library routine a 0 followed by a number
from 01 to 99 with a B-bit over the units position
(0 OJ = symbolic address 1, 0 OK = symbolic ad­
dress 2, etc.) can be used. The processor generates

Label Operation Operand and Comments

Figure 58. Model Statement for an Incomplete Instruction
with Conditional Parameters

29

Macro Instruction

30

Model Statement

Label Operation Operand and Comments

Assembled Symbolic Program Entry

TEST B START1

Figure 59. Labeling

the symbolic address if the code, for example, 0 0 J
is used as a label for one entry and as an operand
of at least one other entry in the same library rou­
tine.

Internal labels within flexible routines are gen­
erated in the form 0 nnmmm, where nn is the code
(OJ-9R), and mmm is the number of the macro with­
in the source program. This is done to avoid dupli­
cate address assignments for labels.

Example: Use the generated symbolic address of
o OJ as an operand for entry 3 and as the label
for entry 6. UPDAT is the 23rd macro encountered in
the source program (Figure 61).

Address Adjustment and Indexing. The parameters
in a macro-instruction and the operands in partially
complete instructions in a library routine can have
address adjustment and indexing.

If address adjustment is used in both the para­
meter and the instruction, the assembled instruction
will be adjusted to the algebraic sum of the two.
For example, if the address adjustment of one is
+ 7 and the other is - 4, the assembled instruction
will have address adjustmt:nt equal to + 3.

Operands may be indexed in the library. routine.
If a parameter supplied by the macro-instruction is

Macro Instruction

I label

TESrz I
~pMati~

Model Statement

Label Operation Operand and Comments

Assembled Symbolic Program Entry

START2 SBR ENTRyA

Figure 60. Additional External Labels

30

Macro Instruction

OPERAND

Model Statement

Label Operation Operand and Comments

6 7 8 91011 121314'5161718192021 22324252 272829303132333"'3536373839 .. 0 .. 142 .. 3"' 5 .. 6 .. 7 .. 8 .. 9505152535455565758

)lor Z A Jl O~ l1 0 2

Assembled Symbolic Program Entry

•
•
B DO J023

•
•

00J023 ZA COST ,AMOUNT

Figure 61. Internal Labels

index~d, it will be cancelled by the indexing in the
library routine.

Literals. Operands of instructions in flexible routines
may use literals as required. However, these literals
may not contain the @ symbol within an alpha­
merical literal.

NOTES:

1. A model statement in the library routine for a macro­
instruction may not be another macro-instruction,
except the CALL or INCLD macro (see Call).

2. Literal Origin, Ex and End statements cannot be
used in library routines.

The processor enters model statements in the library
tape immediately following the header statement
during the librarian phase of autocoder.

Result: Any library routine can be extracted by writ­
ing the associated macro-instruction in the source
program.
Figure 62 is a summary of the codes that can be

used in the model statements of flexible library rou­
tines.

CODE POSITION FUNCTION

001-099 Statement Substitute parameter

(parameter must be present)

OOA-09%. Statement Substitute parameter

(if parameter is missing,

delete statement)

00J-09R Label Field and Assign internal label

Operand Field

Figure 62. Model Statement Codes

Macro-Instructions

General Description: A macro-instruction is the entry
in the source program that causes a series of instruc­
tions to be inserted in a program.

The programmer:
l. Writes the name of the library routine in the opera­

tion field. This name must be the same five charac­
ters that appear in the label field of the INSER

statement of the library entry.
2. Writes in the label field the label that is to be

inserted in the label field of the first assembled
model statement.

3. Writes in the operand field the parameters that are
to be used by the model statements that are re­
quired for the particular object routine desired as
follows:
a. Parameters must be written in the sequence in

which they are to be used by the codes in the
model statements. For example, if cost is param­
eter 1, it must be written first so that it will be
substituted wherever a 0(11, or oOA appears as
a label, operation code, or operand of a model
statement.

b. As many parameters may be used as can be con­
tained in the operand fields of five or fewer cod­
ing sheet lines. If more than one line is needed
for a macro-instruction, the label and operation
fields of the additional lines must be left blank.
Parameters must be separated by a comma. They
cannot contain blanks or commas unless they
appear between @ symbols. The @ symbol it­
self cannot appear between @ symbols. If pa­
rameters for a single macro-instruction require
more than one coding sheet line, the last param­
eter in each line must be followed immediately
by a comma. The last parameter in a macro­
instruction need not be followed by a comma.

Lobel

c. Parameters that are not required for the par­
ticular object routine desired can be omitted
from the operand field of the macro-instruction.
However, if a parameter is omitted, the comma
that would have followed the parameter must
be included, unless the omitted parameter is
behind the last parameter which is included in
the macro-instruction. These commas are neces­
sary to count operands up to the last included
operand. All operands between the last included
operand and operand 99 are assumed by the
processor to be absent.

Figures 63, 64, 65, and 66 show how parameters can
be omitted. The hypothetical macro-instruction called
EXACT is used. EXACT can have as many as nine pa­
rameters.
The processor:
l. Extracts the library routine and selects the model

statements required for the object routine as speci­
fied by the parameters in the macro-instructions
and by the substitution and condition codes in the
model statements.

Result: The resulting program entries are merged
with the source program entries behind the macro­
instruction.

Lobel OPERAND

, 'J

~~ ~o 40

Figure 66. Parameters 01, 03, 04, 05, 06, 07, 08, and 09-99
Missing

Pseudo-Macro-/nstructions
These statements never appear in a user's source pro­
gram or in the output listing of an assembled 1410
Autocoder program. However, they are used in library
routines to signal the processor that certain conditions

'II 70

Figure 63. Parameters for EXACT Included; Parameters 10-99 Missing

I'
Lobel ~perati~ OPERAND

'!EXA(j:\Dt:nD'2:~LDa5:,H.D~JF'lQ:, , ~ ~!!, :0. 55 :0
Figure 64. Parameters 04, 08, and 10-99 Missing

I'
Lobel *perati~ OPERAND

~!!. :0. ~5 ~o '!£)!' A.c.T~ f L 0.
2

; » F 1. D~;) , ,)~: 1. 0., ,4: t \. D ,t, , ~ , , , ,

Figure 65. Parameters 01, 04, 05, 06, 08, and 10-99 Missing

31

exist that can aHect the assembly of an object routine.
For example, the presence of a pseudo-macro-instruc­
tion in a library routine can cause a group of model
statements to be deleted. Thus, pseudo-macros pro­
vide the writer of library routines with a coding flexi-

, bility which exceeds the limitations of the substitution
and condition codes described previously.

Pseudo-macro-instructions may be written anywhere
in a library routine. The five pseudo-macros incorpo­
rated in the 1410 Autocoder processor are MATH, BaaL,
CaMP, NOTE, and MEND.

Permanent and Temporary Switches

The MATH, BaaL, and COMP pseudo-macros use inter­
nal indicators (switches) to signal the processor of
existing status conditions.

There are 75 permanent and 99 temporary switches
available for recording status conditions. Each switch
occupies one core-storage position during the macro
phase of Autocoder. If a storage position contains the
character A (BA I-bits), the switch is on; if it contains
a ? (CBA 82-bits), the switch is off. At the beginning
of assembly all switches are off.

PERMANENT SWITCHES

Permanent switches retain status conditions during the
entire macro phase unless changed by a pseudo-macro.
They are addressed by using a # symbol followed by
the two-digit number of the switch to be set or tested.
For example, # 01 addresses permanent switch 01;
02 addresses switch 02; and # 75 addresses
switch 75.

TEMPORARY SWITCHES

When the processor encounters a macro-instruction,
the temporary switches are set to the condition (pres­
ence or absence) of the parameters in the operand of
the macro field. If the parameter ,is present, the cor­
responding switch is set ON. If the parameter is miss­
ing, the switch is set OFF. For example, if parameter
01 is present, temporary switch 01 is turned on. If
parameter 02 is missing from the macro-instruction,
temporary switch 02 is off. Temporary switches retain
status throughout the processing of a macro-instruction
unless changed by a pseudo-macro. After the macro­
instruction has been completely processed, all tempo­
rary switches are set OFF. Temporary switches are
addressed by using a 0 symbol followed by the two­
digit number of the switch to be set or tested. For
example, 001 addresses temporary switch 01; 002
addresses switch 02; and 0 99 addresses switch 99.

For example, if a macro with a maximum of nine
parameters is encountered, the processor sets the first
nine temporary switches to indicate the presence or
absence of these nine parameters. Temporary switches
10-99, which are off, can be used by the pseudo-macros

32

to communicate conditions to the processor while it is
working on this particular macro-instruction. This use
of temporary switches is recommended because it re­
serves the permanent switches for communicating in­
formation from one macro to another.

MATH - For Solving Algebraic Expressions

General Description: A MATH pseudo-macro contains
as operands: sum boxes, arithmetic expressions, and
sign switches.

SUM BOXES

A sum box is a group of five core-storage positions
used to store the result of an arithmetic expression.
The 1410 Autocoder makes available 20 such sum
boxes. A sum box is addressed by using a # symbol
followed by the two-digit number (ending in zero or
five) of the sum box to be referenced. For example,
the address of the first sum box is # 05; the address
of the second sum box is # 10; and the address of
the twentieth sum box is # 00.

At the beg!lming of the macro phase, a sum box
contains 00000. Any number may be placed in a sum
box or added to its contents. The units position of
the sum box always contains the sign of the result.
Sum boxes retain information placed in them through­
out the macro phase and their contents may be used
and/or changed from one macro-instruction to an­
other.

Sum boxes can be used by model statements as well
as by a psuedo macro. For example, in ligure 67,
assume that sum box =It 05 contains 12345 and sum
box # 10 contains 00015.

NOTE: ZA FLDI + 0001N, FLD2 is processed as
ZA FLDI-15, FLD2

Macro Instruction

Label

Model Statement

Label Operation Operand and Comments

6, 7 8 9101112131415161718192021 22324252 272829303132333435363738390404'4243.u454647.t8495051,52.53·s.t.5.5565758

Assembled Symbolic Program Entry

ORG 1234E
ZA FlDl+0001N,FLD2

Figure 67. Sum Boxes

ARITHMETIC EXPRESSIONS

Arithmetic expressions within the math pseudo-macro
use add (+), subtract (-), multiply (0), and di­
vide (/). An @ symbol represents both the left and
right parentheses if they are required for the expres­
sion. For example,
(001 + 12 -5) 20 is written: @ 001 + 12 - 5 @ 020.

Arithmetic operations expressed in the operand field
of the pseudo-macro are executed by the MATH

pseudo-macro from left to right. The quotient resulting
from the divide operation is not half-adjusted, and the
remainder is lost. At the end of a multiplication opera­
tion the five low-order positions of the product are
used for the result (the high-order digits are lost). An
overflow is ignored.

The result of the arithmetic expression is produced
and inserted with its sign in the designated sum box.

SIGN SWITCHES

Permanent and temporary switches may be used to
store the sign of the result of an arithmetic expression.
The first switch specified in the operand field of the
pseudo-macro represents a positive result; the second
represents a zero result, and the third represents a
negative result. Consequently, one switch is on and
the other two are off if the result is either positive
or negative. A zero result causes both the zero and
positive switches to be set ON. It is not necessary to
to specify all three switches. However, if a switch code
is omitted from the operand field, the comma that
would have followed the switch code must be present
(this is the same rule that applies to missing param­
eters in a macro-instruction).

The programmer:
1. Writes the name of the pseudo-macro (MATH) in

the operation field.
2. Writes in the operand field:

a. the code for the sum box in which the result of
the arithmetic expression is to be stored.

label Operation

b. the arithmetic expression.
c. the code for the switch in which the sign(s) of

the result are to be stored.
NOTE: A comma must follow the sum box code, the

arithmetic expression, and the individual sign-switch
codes. Figure 68 shows the format for a MATH pseudo­
macro.

The processor:
1. Produces the result of the arithmetic expression.
2. Stores the result in the sum box.
3. Sets the sign switches.

Example: The math pseudo-macro shown in Figure
69 multiplies parameter 07 by 401 and adds 12 to
the result. The answer is stored in SUMBOX 6 (#30).
1£ the result is positive, permanent switch 04 is set
ON; if the result is zero, switches 04 and 06 are set
ON; if the result is negative, temporary switch 09
is set ON.

BOOl - For Solving logical Expressions

General Description (the BOOL pseudo-macro can be
used):

1. To set a permanent or temporary switch as the re­
sult of a logical expression.

2. To cause the processor to skip over certain model
statements if the logical expression is false. 1£ the
statement is true, the processor goes to the next
sequential model statement.

The programmer:
1. Writes the name of the pseudo-macro (BOOL) in the

operation field.
2. May write a label, the logical expression (state­

ment), and a switch code in the operand field in
the· format shown in Figure 70.

LABELING

A special one-character label permits skipping forward
in the library routine as the object routine is being

Operand and Comments

6 7 8 9 101112131415161718192021 223242526272829303132333435363738394041424344454647 48 49 50515253545556575859606162636465 66676869707172 73 74

Figure 68. Format for the MATH Pseudo-Macro

label Operation Operand and Comments

6 7 8 9 101112131415161718192021 223242526272829303132333435363738394041424344454647 48 49505152535455565758596061626364656667686970717273 74

Figure 69. MATH Pseudo-Macro

33

label Operation Operand and Comments

Figure 70. Format for the BOOL Pseudo-Macro

assembled by the processor. This one-character label
is written in the first position of the operand field of
the BOOL pseudo-macro and also in the label position
(column 6 of the library coding form) of the first model
statement (or command) to be examined after the skip
has been initiated. Skipping occurs only if the logical
statement is false. The label may be omitted if a skip
is not desired, but the comma that would have fol­
lowed the label must be written in the BOOL state­
ment to indicate that the label is missing. The label
can be any alphabetic or numerical character. Special
characters are not permitted.

LOGICAL EXPRESSION

The BOOL pseudo-macro can have any combination
of three logical operations: ° (and), + (or) , and
- (not). The operators are defined in Figure 71. The
combination of these operators and the switches to be
tested make up the logical expression (see example,
Figure 72).

The @ symbol is used to represent both the left
and right parentheses.

SWITCHES

Either a permanent or temporary switch may be used
to store the result of the logical expression. If the ex­
pression is true, the specified switch will be set ON.

If the expression is false, the specified switch is set
OFF. If no switch setting is desired, a comma must be
used to indicate that the switch is missing.
The processor:
1. Examines the status switches to determine whether

all conditions specified in the logical expression are

1 -;; 1'= l'

1 *O=O~
0*1 =0'

0*0=0

+
1 + 1 = 1~
1+0=1
0+1=1

0+0 = 0-

Figure 71. Table of Operators

Page
and l label Operation
Line

-1 =0
-0=1

Operand and CO"

1 2 3.4 :Ii 6 7 8 9101112131 ... 15161718192021 22324252 272829303132333 ... 35363738394041 ... 2 ... 3 546 ... 7 .. 8 .. 950515253

j:Io ~ ~ ok Ii, ,La115
~ 0/2 1.4 F/~ tl~ ,I; / I.H IE

ol~ ~ 1.1 Oil

/.l ok.(. '" ~~ iE~:l IAI" iEl~lt

Figure 72. Using the BOOL Pseudo-Macro

34

satisfied. If they are, the expression is true. If the
logical condition is not met, the expression is false.

2. Sets the specified status switch to ON or OFF to re­
Bect the true or false condition.

3. If a false condition exists and a label appears in the
BOOL operand, the processor skips forward to the
command or model statement containing a corre­
sponding label in its label position.

To determine if a logical expression is true or
false:
a. call all ON conditions true and all OFF conditions

false.
b. let 1 = true and 0 = false.
c. calculate the logical value of the expression.
If the logical value of the expression is zero, the

expression is false. If the logical value is one, the
expression is true. For example, if switches 01, 02,
03 and 04 are on, the expression

@oOI°o02@+@o03°o04@
is true because:

(ON ° ON) + (ON ° ON) -
(1°1)+(1°1)

1 + 1 - 1

Examples: Figure 72 shows how the BOOL pseudo­
macro can be used. The BOOL entry states:

1. If temporary switches 01 and 02 are on, the state­
ment is true. Therefore, set temporary switch 15 ON.

2. However, if either temporary switch 01 or 02 is
off, the statement is false. Therefore, set temporary
switch 15 OFF and skip to statement 004.
The example shown in Figure 73 states:

1. If (both temporary switches 01 and 02) or (both

label Operation

Figure 73. BOOL Pseudo-Macro

01

ON
1 *

02

ON
1

SWITCHES

+ 03 * 04

OFF OFF
+ o * 0

OFF OFF ON ON

Operand and Comment~

LOGICAl

VALUE

~O * 0 + 1 * 1
g~O~N-------O-N-------O-N--------O-N--------~w

01 * 1 + 1 * 1 = 1 ~
Z ~
o ON ON ON OFF
u 1 * 1 + 1 * 0

OFF
o

ON ON ON

ON
1

* 1 + 1

ON OFF
* 1 + 0

Figure 74. True Conditions

1

ON
1

temporary switches 03 and 04) are ON, the statement
is true. Therefore, set temporary switch 15 ON.

2. However, if (either temporary switch 01 or 02) and
(either temporary switch 03 and 04) is OFF, the
statement is false. Therefore, set temporary switch
15 OFF and skip to the model statement whose label
is L.
Figure 74 is a table showing all conditions that will

cause the BOOL statement shown in Figure 73 to be
true.

Figure 75 is a table showing all conditions that will
cause the BOOL statement shown in Figure 73 to be
false.

V)

z
o
j::
o z
o
u

01

OFF

0

ON

1

OFF

0

OFF

0

OFF

0

OFF

0

ON

1

OFF

0

ON

1

* 02

OFF

* 0

OFF

* 0

ON

* 1

OFF

* 0

OFF

* 0

ON

* 1

OFF

* 0

ON

* 1

OFF

* 0

SWITCHES

+ 03

OFF

+ 0

OFF

+ 0

OFF

+ 0

ON

+ 1

OFF

+ 0

OFF

+ 0

ON

+ 1

ON

+ 1

OFF

+ 0

Figure 75. False Conditions

*

*

*

*

*

*

*

*

*

*

COMP - To Compare Two Fields

04

OFF

0

OFF

0

OFF

0

OFF

0

ON

1

ON

1

OFF

0

OFF

0

ON

1

=

=

=

=

=

=

=

=

=

LOGICAL

VALUE

0

0

0

0

0

0

0

0

0

w
V)
< u..

General Description: The COMP pseudo-macro com­
pares an A-field to a B-field and sets permanent or
temporary switches to indicate the result of the
comparison.

The programmer:
1. Writes the name of the pseudo-macro (COMP) in

the operation field.
2. Writes the operand field in the format shown in

Figure 76. The first and second entries are the A­
and B-fields. The A- and B-fields may be any of the

Label Operation Operand and Comments

6 7 8 9 101112131415161718192021 22324252 272129303132333"'3536373839-'0414243"""'46"74'4'505152535455.565758

Figure 76. Format for COMP Pseudo-Macro

parameters 01-99, sum boxes #05-#00, or literals.
NOTE: For the COMP pseudo-macro, alphamerical
literals are not enclosed by @ symbols. They can­
not be switches. Entries 3, 4, and 5 are the high,
equal, and low switches.

NOTE: The codes for the two fields to be compared
must be present in all COMP pseudo-macro-instruc­
tions. Codes for the switches may be omitted if they
are not needed to store the result of the compare
operation. However, if a switch is omitted, the comma
that would have followed it must be included in the
operand field.

The processor:
1. Compares the A-field to the B-field.
2. Sets the status switches to the result of the compare:

a. The first switch is set ON, if the value of the
B-field is greater than that of the A-field.

b. The second switch is set ON, if the B-field is
equal to the A-field.

c. The third switch is set ON, if the value of the
B-field is less than that of the A-field.

Examples: Figure 77 shows a COMP pseudo-macro
which states:

1. Compare parameter 02 of the macro statement to
WORKAREA.

2. If parameter 02 is WORKAREA, turn on temporary
switch 25.

3. If parameter 02 is lower than WORKAREA, turn on
temporary switch 26.
Figure 78 shows a COMP pseudo-macro which states:

1. Compare the contents of sum box 05 to param-
eter 03 of the macro statement.

2. If the result is HIGH, set temporary switch 24.
3. If the result is EQUAL, set temporary switch 25.
4. If the result is LOW, set temporary switch 26.

NOTE: Standard 1410 collating sequence determines
HIGH, EQUAL, or LOW conditions. Comparisons are
controlled by the B-field in the 1410. Thus, the state­
ment shown in Figure 79 will cause temporary switch
25 to be set ON if the low-order position of parameter
02 is an @ symbol (if parameter 02 is an alphamerical
literal).

Label Operation Operand and Comments

Figure 77. COMP Pseudo-Macro

Figure 78. Comparing a Parameter to the Contents of a
Sum Box

35

Label Operation Operand and Comments

Figure 79. Checking for an Alphamerical Literal

NOTE - To Produce a Message

General Description: The NOTE. pseudo-macro writes
messages concerning conditions that can arise dur­
ing the processing of a macro-instruction.

The programmer:
1. Writes the name of the pseudo-macro (NOTE) in the

operation field.
2. Writes the message in the operand field. The page

and line number of the macro statement that is be­
ing processed will precede the printed message.

The processor prints the message and its accompany­
ing identification numbers on the console printer.

Example: Figure 80 shows how the NOTE pseudo­
macro . can be used in combination with the BaaL

pseudo-macro. The BaaL pseudo-macro tests to in­
sure that parameters 01 and 02 are present in the
macro-instruction. If either parameter is missing,
the processor skips to the NOTE pseudo-macro and
prints:

1. The page and line number of the macro-instruction.
2. PARAMETER ABSENT FROM MACRO.

MEND - End of Routine

General Description: This pseudo-macro signals the
end of generation for a macro-instruction. It may ap­
pear anywhere in a library routine.

The programmer:
1. Writes the name of the pseudo-macro (MEND) in

the operation field.
2. Leaves the operand field blank.

The processor stops processing the macro-instruction
when it encounters a MEND statement.

NOTE: A BaaL pseudo-macro can be used to skip
over a MEND pseudo-macro which appears within the
library routine if conditions indicate that more model
statements must be processed.

Example: Figure 81 shows a MEND pseudo-macro.

L Label Operation Operand and Comments

6789101112131415161718192021 22324252 .3~~~~~~~UDU»~~~~«~~Q~~~~~n~"~~"

~Ido KI, lJlo 11~ 11110 ~7

· · ·
oJiIA! 11t~ ~l4 Mllj} EIIE AI.!i's j.ejA-17 I,.IA ol~ lilt, e 1110

Figure 80. NOTE Pseudo-Macro

36

Pseudo-Macro Coding Example

Example: Figure 82 shows the library entry for a
hypothetical macro called PRLIT. This library routine
uses all of the five pseudo-macros. It illustrates the
effect of the pseudo-macros on the processing of a
macro-instruction. The meaning of each line in the
library routine is:

Entry 1. If ~arameter 01 is present, set. temporary
switch 50 ON' and go to entry 3. If parameter 1 is
missing, go to entry 2.

Entry 2. Print the note: OPERAND 01 ABSENT.

Entry 3. If permanent switch ten is off, go to entry 5.
If permanent switch 10 is on, take entry 4.

Entry 4. ORG at the contents of sum box #05.

Entry 5. Put the contents of sum box #05 plus 100
in sum box #05.

Entry 6. Store the contents of the B-address register
in an address equal to the address assigned to the
internal label (0 OK) + 5.

Entry 7. Move five zeros to the field whose symbolic
address is parameter 03 of the macro-instruction.

Entry 8. Add the literal + 3 to the field specified by
the parameter 03.

Entry 9. Branch to parameter 04.

Entry 10. If parameter 02 is a literal, the EQUAL switch
(051) is set ON.

Entry 11. If the EQUAL switch (temporary switch 51)
is off, skip to entry 15. If the EQUAL switch is on,
go to entry 12.

Entry 12. Move parameter 02 to parameter 01.

Entry 13. Subtract parameter 02 from parameter 06.
(If parameter 06 is missing, this statement will be
bypassed.)

_ Entry 14. Move parameter 03 to parameter 05.

Entry 15. On the typewriter print the field whose ad­
dress is specified by parameter 05.

Entry 16. Branch to 0 if any of the I/O Channel status
indicators is on.

Label Operation Operand and Comments

6 1 .9101112131 .. 1516171,,92021 22324252 272829303132333435363731394041.243"4'46474'4'50515253545.55657.58

- lUUllUII

Figure 81. MEND Pseudo-Macro

Page
and L Label Operation .. Operand and Comments
Line

1 2 3 4 5 6 7 8 9 10 11 12 13 141516 17 18 192021 2223 24 25 26 2728293031 323334353637383940414243444546474849 SO 51 5253545556575859606162636465 666768697071 72 73 74

O~ Icot Bq O~ J4)-110 1, ~50 _ ,-.- ---

01 O~~ NO IE. OP Elf? ~N 1) pp lAB fsE NT

~~ 00 34 Eo at., ~, #1-0

011 00'-/ ORG ff;05

O~ ~~ 5A MA TH WO 5, 1#0 5-t l.p ~ , , ,
01. pol: SBR)10 'kt5

011. p01 Ml. ell ~o 00 00 @,)fo3

0 ,1 008 A ~3 ,~ 03
0:1. 001 13 ~ o,~
pilO 10 eo I1P ~o ~:J ~-' ,):t 51,
pi 0111 '80 ~~ ~-' /:15 ~,

~:t otl~ f1L C~I ~o ~, ilto1.
~:1 0~3 S)(~ t.., ~ DIF

~1. 01.1'1 MI...C llo 3, lID5

oj 01- 518 wCP Hos
01 ollie:.):tDK a A~ 0

~.1 011 ~o o~ (71, -p 5~,
Pl. 018 1M/.. eA @It O~ ~, IJrOi
~(:t. 01. qlc 1t AID L_
Figure 82. PRLIT Library Routine

Entry 17. If temporary switch 51 is on, skip to entry
19. If temporary switch 51 is off, go to entry 18.

Entry 18. Insert parameter 02 as a literal, and move it
to the field represented by parameter Ol.

Entry 19. End-of-library routine.

Assume that:
l. the macro shown in Figure 83 is encountered in

the source program.
2. Permanent switch 10 is ON. +
3. Sum box #05 contains 12345.

Macro Instruction

label

Assembled Symbolic Program Entry

DOK023

ORG 12345

S B ROO KO 2 3 + 5
MLCA@OOOOO@, FIELDl

A +3,FIELDl

B EXITl
MLCA @42AB@, AREAA

M L C F I EL 0 1 , WO R K ARE A

WCP WORKAREA

B A 1 0

Figure 83. . Using the PRLIT Routine

Call Routines

The 1410 Autocoder processor permits the user to add
inflexible routines to the library tape. These are com­
monly used sequences of instructions that can be ex­
tracted for an object program by the CALL macro. They
differ from the routines processed by other macro­
instructions in several ways:

l. All instructions must be complete; no parameters
can be inserted.

2. All instructions in the routine are incorporated.

65

37

3. A CALL routine is not inserted at the point where the
CALL macro was encountered in the source program.
Instead, it is inserted only once as a closed rou­
tine elsewhere in the object program or program
section. Linkage to the routine is provided auto­
matically by the processor whenever its particular
CALL macro is encountered in the source program.
(The processor does not produce automatic linkage
to the routines incorporated by other macro-instruc­
tions because these routines are inserted as open
routines where the associated macro-instructions
were encountered in the source program.)

4. Data needed by a CALL routine must be in the loca­
tions indicated by the symbols in the operand fields
of its instructions.

Requirements: CALL routines have several specific re­
quirements that must be considered when the rou­
tine is created:

1. Every entry point in a CALL routine must have a
label. These labels (and all other symbols used in a
CALL routine) must be at least five characters in
length, and each of these labels must have the same
first five characters.

CALL routines are stored as controlled by literal
origin at the time and place where an END or EXE­

CUTE processor control statement is encountered.
Duplicate symbols can occur if a CALL routine is
used in more than one program overlay (if the
same CALL routine is named in CALL macros that are
separated by a literal origin or execute statement).
To eliminate this possibility the Autocoder proces­
sor provides a suffix (see SFX) operation. The pro­
grammer should use a suffix statement containing a
new character in each program section.

2. The first instruction at each entry point in a CALL

routine must store the contents of the B-address
register SBR in an index location or in the last in­
struction executed in the CALL routine. This pro­
vides for re-entry at the proper place in the main
routine after the CALL routine is executed.

3. All macro-instruction operation codes except CALL

and INCLD are invalid in CALL routines. All other
symbolic entries acceptable to Autocoder, except
Literal Origin, Execute, and End, can be used. A
CALL macro can be used:
a. to allow one CALL routine to be used at some

point in another CALL routine, or
b. as a model statement in the library routine for

a regular macro-instruction.

Call Macro

General Description: The CALL macro provides access
to inflexible routines written by the user and stored
in the library tape. It establishes linkage to a closed

38

routine and stores that routine elsewhere in the
program. The CALL macro i$ part of the Autocoder

I
processor.

The programmer:
1. WrItes the name of the macro (CALL) in the opera­

tion field.
2. Writes in the operand field the label of the library

statement which is the desired entry point in the
library routine. The five characters of this label
must be the same as the five characters in the label
field of the INSER statement that was used to enter
the routine in the library tape (see INSER).
a. If the CALL routine is constructed so that all the

data it requires must be taken from specifically­
labeled areas of storage, the remainder of the
operand field must be left blank. For example, a
CALL routine whose entry point is SQART01 re­
quires that the number whose square root is to
be computed must be placed in a location la­
beled SQART02. The CALL macro is written as
shown in Figure 84.

b. If the CALL routine is constructed so that the
data it requires can be located in arbitrarily la­
beled areas of core storage, the symbols for these
areas must be included immediately following
the label in the operand field. These symbols
must be entered in the order in which they are
required by the CALL routine. This makes it pos­
sible to design CALL routines in which the re­
quired data can be placed in locations labeled
in any way the programmer desires. This frees
the source program writer from the restriction
that he insert data in locations labeled accord­
ing to the requirements of the CALL routine. CALL

routines to be used in this manner must be coded
to utilize the address constants that will be cre­
ated from the symbols in the operand field.

Example: Call a routine whose entry point is SUBRT01
(Figure 85). The addresses of DATA 1, DATA 2, and
DATA 3 are needed by the CALL routine.

The processor:
l. Establishes linkage from the main routine to the

CALL routine by assembling a symbolic program en­
try for an unconditional branch instruction. The

Call Macro

label OPERAND

~!! ::
Assembled Symbolic Program Entry

Figure 84.

B SQARTOl

CALL Statement Specifying That Data Is in Spe­
cifically Labeled Areas of Storage

Call Macro

III " label

Assembled Symbolic Program Entry

B SUBRTOl

DCW DATAl

DATA2

DATA3

Figure 85. CALL Statement for a Routine with Arbitrary
Data-Storage Assignments

operand for this branch instruction is the entry
point given in the operand field of the CALL macro
as shown in Figures 84 and 85. The branch instruc­
tion follows the CALL macro.

2. Creates address constants for other symbols appear­
ing in the operand field of the CALL macro, and
inserts them following the unconditional branch
instruction as shown in Figure 85. NOTE: These
address constants are defined in the order in which
the associated symbols appear in the CALL operand.

Result: A given CALL routine is inserted once per
program or program section in a location deter­
mined by a processor control 'statement. Branch
instructions are inserted as many times as an asso­
ciated CALL macro is encountered in the source pro­
gram. Thus, the CALL routine can be entered from
several points in the main routine.

Example: Assume that a library routine to compute
the value of X + Z is associated with a regular
macro-instruction called TAKSQ. There is also a
CALL routine in the library tape named SQARTOI
which calculates the square root of a number in a
work area (SQART02) and places the answer in
another work area (SQART03). The programmer
can design a library entry for the TAKSQ macro
that will provide linkage to the CALL routine as
shown in Figure 86.

When the object routine is executed, X + Z will
be stored in SQART02. Then the program will branch
to the CALL routine where the square root of X + Z
will be calculated and the result stored in SQART03.
The last instruction in the SQARTOI routine will cause
an unconditional branch to the last instruction in the
T AKSQ routine which puts the answer in an area
labeled RESULT. NOTE: This illustration shows the com­
bination of a regular macro and the CALL macro. The
same result could be achieved by writing entries in
the source program as shown in Figure 87.

Library Entry

label Operation Operand and Comments

5 6789101112131415161718192021 2232.012.52 27282930313233343.53637383940 .. '42 .. 3 5 .. 647 .. a .. 950515253 S"SSS6S7S8

zl1 lIo Xl:5!'t "'tJ~
~ . ill 0 ~ ~ Srl~HI? O-+~++_H-+++t-t+
ell!.-"- IjJICO'i

Macro Instruction

label OPERAND

Assembled Symbolic Program Entry

T AKSQX, Z, RESULT

Z A X, SQART02

A Z, SQART02

CALL SQARTOl

B SQARTOl

ZA SQART03,RESULT

Figure 86. CALL Statement within a Library Routine for a
Macro-Instruction

Incld Macro

General Description: This macro is used to extract an
inflexible library routine from the library tape. How­
ever, the INCLD macro does not insert a branch in­
struction following the INCLD statement in the source
program as does the CALL statement. The program­
mer establishes his own linkage to the closed rou­
tine. INCLD statements are constructed in the same
manner as CALL statements.

Example: Figure 88 shows an INCLD statement that
causes a library routine named SUBRTOI to be in­
corporated in the object program.
The processor does not produce a branch instruc­

tion. The programmer must insert a branch at the
place in the main routine at which the exit to the
closed routine is needed. Several INCLD statements can
be written in a group in a source program to cause
the associated library routines to be stored at LTORG,

Source Program Entries

Assembled Symbolic Program Entry

ZA X, SQART02

A Z, SQART02

B SQAR TOl

ZA SQART03,RESULT

Figure 87. Alternative Source Program Entries

39

label ~perati~ ~I I 5 9

iNC L Su.Mrol..! ~
49

OPERAND

:~ ! ~9

Figure 88. INCLD Statement

END, or EX time by the processor. Thus, one exit from
the main routine can be used to cause several library
routines to be executed at object time.

NOTE: CALL and INCLD statements may appear in
either flexible or inflexible library routines. Also, an
inflexible library routine may, in turn, have CALL or
INCLD statements.

If CALL or INCLD are written within a library routine,
only a single operand is. permitted in the CALL or INC~D
statement. This single operand is the name or entry
point of the closed library routine. (See Call Macro.)

Macro Processing

Figures 89, 90, and 91 show the effect of the three dif­
ferent uses of library routines:
1. As extracted by a regular macro-instruction.
2. As extracted by the CALL macro.
3. As extracted by the INCLD macro.

The symbolic programs that result from the proc­
essor actions described in Figures 89, 90, and 91 are
later processed as though the user had himself, in­
serted all the entries in the source program. Symbolic
entries are translated to machine-language instruc­
tions, constants cards are, produced, etc.

DELET - Delete

General Description: This entry deletes a library rou­
tine or parts of a library routine from the library
tape.

The programmer:
1. V\Trites the mnemonic operation code (DELET) in the

operation field.
2. Writes the name of the library routine in the label

field.
3. Writes in the operand field the line number(s) of

the model statement(s) to be deleted. If a whole
routine is to be deleted, the operand field contains
only an M or S. If more than one model statement
of a continuous sequence are to be deleted, the first
and last numbers must be written separated by
commas.

The processor deletes the model statement or state­
ments specified in the operand field.

Result: The new library tape contains the modified
library routine.

Examples: Figure 92 is a DELET statement that will

40

SOURCE PROGRAM

I
nJ
'I

y

M

B

0

L

C

P

R

0

G

R

A

M

E

N

T

R

I

E

,/

I
I
I
I
I
I
I
I
I
1

PROCESSOR OPERATIONS

I Extract I
library routine

Substitute
parameters in
model statements wherever
substitution codes appear

Delete model
statements if bypassing conditions
are satisfied

I Insert assembled symbolic program entries I
as an open routine in the symbolic program

When a regular macro Instruction is encountered in the source program,
the processor extracts the specified library routine, tailors it, and inserts
it in-line in the users source program.

Figure 89. Macro Processing

cause the whole CHECK library routine to be removed
from the library.
Figure 93 is a DELET statement that will cause the

first model statement to be deleted from the CHECK

library routine.
Figure 94 is a DELET statement that will cause model

statements 2, 3, 4, and 5 to be deleted.

INSER - Insert

General Description: This entry can be used to insert
whole library routines or part of a library routine
in the library tape.

The programmer:
1. Writes the mnemonic operation code (INSER) in the

operation field.

SOURCE PROGRAM PROCESSOR OPERATIONS

{-

Figure 90. CALL Processing

Create a branch instruction
and insert it in the source program

When the processor encounters a CALL macro, it creates an uncondi­
tional branch instruction to link the main program to the library routine.
The branch instruction is placed in the symbolic program immediately
following the CALL macro statement. Later, when the processor en­
counters a LTORG, END or EX statement in the source program, it
extracts all library routines specified by CALL macros and stores them
as closed routines.

Extract library
routine at LTORG,
END or EX time

Closed Library Routine

{-

SOURCE PROGRAM PROCESSOR OPERATIONS

{-

Figure 91. INCLD Processing

Branch Extract library
routine at LTORG, END or EX time

INCLD Macro

Closed Library Routine

{

When the processor encounters an INCLD macro, it incorporates the
specified library routines when an LT ORG, END, or EX statement is
encountered in the user's source program. Note that the branch instruc­
tion that links the main routine to the closed library routine is provided
by the programmer.

41

2. Writes the name of the library routine in the LABEL

field.
3. Writes the line number of the model statement after

which the insertion is to be made. If two operands
separated by a comma are written the implied de­
letion will take place.

The processor deletes model statements, if necessary,
and inserts the model statement(s) in the library
routine.

Result: The new library tape contains the modified
library routine.

~ label

~'I.£CK :
50 40

Figure 92. Deleting an Entire Library Routine

~ label
~H.£t!J(, :

40

Figure 93. Deleting a Single Model Statement

I label

fHFllK:
tperati~

~o 35 40

Figure 94. Deleting Multiple Model Statements

~ label
~!! ~o

Figure 95. Inserting an Entire Library Routine

Autocoder Statement

~ label

liEGe:

Model Statement

OPERAND
45 ~o

OPERAND

:: ~o

OPERAND

:5 ~o

OPERAND

:~ ~o

Label Operation Operand and Comments

Figure 96. Inserting a Single Model Statement

42

Examples: Figure 95 is an INSER statement that will
cause a library routine named CHECK to be inserted
in the library tape.
Figure 96 is an INSER statement that will cause new

model statement 1 to be inserted in the COMPR library
routine.

Figure 97 is an INSER statement that will cause the
first model statement that is presently in the library
routine to be deleted and the model statement shown
to be inserted in its place.

Figure 98 is an INSER statement that causes model
statements 1 and 2 to be deleted and the model state­
ments shown to be inserted in their places.

Autocoder Statement

I label

qlt€.Ok: :
40

OPERAND

:: :0

Model Statement

Label Operation Operand and Comments

Figure 97. Substituting One Model Statement for Another

Model Statement

Label Operation Operand and Comments

Autocoder Statement

b. label 40

Figure 98. Substituting Multiple Model Statements

Actual Address .. 10
Address Adjustment 12
Address Constant Literals .. 12
Address Constants - 15
Address Types .. 10
Alphamerical Constants .. 14
Alphamerical Literals .. 11
Asterisk Address .. 10

BBE - Branch if Bit Equal............ 20
BCE - Branch if Character Equal.................................... 20
BEX 1 Qr BEX 2 - Branch on External Indicator............ 21
Blank Address .. 10
Blank Constants .. 14
BOOL - For Solving Logical Expressions 33
BWZ - Branch if Word Mark, Zone or Both 20
BZN - Branch on Zone 20

Call Macro .. 38
Call Routines .. 37
CC - Control Carriage 20
Coding (Imperative Operations) .. 19
Coding Sheet .. 2
Comments .. 4
COMP - To Compare Two Fields 35
CTL - Control........ 23

DA - Define Area .. 15
DA - Header Line 15
DA - Other Entries .. 16
Data Move Instructions .. 19
DC - Define Constant (No Word Mark) 15
DCW - Define Constant with Word Mark 14
Declarative Operations 13
DELET - Delete .. 41
Disk Commands 20
DS - Define Symbol................ 15

EJECT - Eject .. 22
END-End .. 26
EQU - Equate .. 17
EX - Execute 24

Identification .. 4
Imperative Operations 18
Incld Macro .. 39
Index Register Reservation 13
Index Registers .. 12

Index

Input - Output Commands 21
INSER - Insert ... 29, 42

JOB-Job .. 22

Label .. 2
Library Entry................ 27
Line Number .. 2
Literals .. 10
LOAD - Load .. 22
LTORC - Literal Origin .. 24

Machine Requirements 1
Macro-Instructions .. 31
Macro Operations .. 27
Macro Processing .. 40
Macro System - Definition of Terms 27
Magnetic Tape Commands .. 20
MATH - For Solving Algebraic Expressions 32
MEND - End of Routine .. 36
Model Statements 29

NOPWM - No Operation Word Mark 21
NOTE - To Produce a Message .. 36
Numerical Constants .. 14
Numerical Literals .. 11

Operand .. 4
Operation .. 2
ORC - Origin .. 23

Page Number .. 2
Permanent and Temporary Switches 32
Priority Processing 21
Processor Control Operations 22
Programming with Autocoder 2
Pseudo Macro-Instructions 31
PST - Print Symbol Table .. 25
P-Punch .. 20

R-Read .. 20
RESEQ - Resequence .. 22
RUN -Run .. 22

SFX - Suffix
SSF - Select Stacker and Feed
Symbolic Address
The Macro System .. .
Types of Literals

XFR - Transfer

25
20
10
27
10

25

43

J24-1433-2

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, New York Printed in U.S.A. J24-1433-2

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44

