Systems Reference Library |

IBM 1410 FORTRAN

This publication contains the specifications for the
FORTRAN programming system for the IBM 1410,
The FORTRAN language enables the user to express
problems in a symbolic source language similar to
the language of mathematics.

Included in this publication are descriptions of the
various types of arithmetic, control, input/output ,
subprogram, and specification statements that are
translated by the 1410 FORTRAN Processor into
machine language instructions.

© 1962 by International Business Machines Corporation

File No. 1410-25
Form J24-1468-1

MINOR REVISION (May, 1963)

This publication, J24-1468-1, supersedesthe bulletin, FORTRAN
for the IBM 1410: Preliminary Specifications, Form J24-1468-0.
It includes the information contained in Technical Newsletters
N28-1051, N28-1062, and N28-1064,

Copies of this and other IBM publications can be obtained through IBM Branch Offices.
Address comments concerning the content of this publication to:
IBM Corporation, Programming Systems Publications, Dept. D91, PO Box 390, Poughkeepsie, N.Y,

INTRODUCTION « + « o o « o
Machine Requirements o s s
Punching a Source Program . . .
IBM 1410 FORTRAN Statements .

ARITHMETIC OPERATIONS . . &
Arithmetic Precision o o e
Constants « o o o o o o
Variables + o « o o o o
Subscripted Variables o+ « . o
Expressions P
Hierarchy of Operations . o

IBM 1410 FORTRAN STATEMENTS .
Arithmetic Statements « . o+ o o
Subprogram Statements « . o o
Functions . . « o « « + o
Library Functions + o « o o
Arithmetic Statement Functions
Subprograms . . . o ¢ &
FUNCTION Subprograms. . o
SUBROUTINE Subprograms .
CALL Statement . « + .+ o
RETURN Statement o« o« o o
Control Statements .+ o o « o o
Unconditional GO TO . . .
Computed GO TO o o e e
Assigned GOTO . « .+ .+ .
ASSIGN Statement . o . .
IF Statement . . .+ . . .
SENSE LIGHT Statement . o
IF (SENSE LIGHT) Statement .

IF (SENSE SWITCH) Statement

[- W0, BV, |

© 000NN

10
10
10
10
10
12
12
13
14
14
15
15
15
15
15
15
15
16
16

IF ACCUMULATOR OVERFLOW Statement
IF QUOTIENT OVERFLOW Statement

IF DIVIDE CHECK Statement .
DO Statement « « .+ . . .
CONTINUE Statement . . .
PAUSE Statement [
STOP Statement . o+ o« « o
END Statement e e s o
Input/Qutput Statements o . . .
List of Quantities « o« o o o
Matrices e s e o 5 s ®
FORMAT Statement « o e
FORMAT Specifications s o
READ Statement . . o . o
READ INPUT TAPE Statement
PUNCH Statement s o e e
PRINT Statement e o o o
WRITE OUTPUT TAPE Statement
READ TAPE Statement . . .
WRITE TAPE Statement « o
TYPE Statement . « o« o«
END FILE Statement « . o
REWIND Statement o . «
BACKSPACE Statement .« .
1301 Disk Storage Statement . .
RECORD Statements « o e
FETCH Statement e e e e
Status of (I) « o e o s @
FIND Statement =
Specification Statements . . .
DIMENSION Statement . . &
EQUIVALENCE Statement . .
COMMON Statement « o
DEFINE FILE Statement . e

CONTENTS

« o . o 16
e e« o o 16
e+ o+ o 16
T
¢ e . . 18
e o . o 18

e e o o 18
S
e o . . 18

.« e . o 19
.
e e oo o 19
o e o . 21
e e o o. 22
e e e o 22
o e e e 22
e o . . 22
e e e o 22
o+ e o 22

e« o o 23
e s . o 23
« o . o 23

e . . . 23
T X
T X
e e . . 24
e .. 24
e . . 24
e e .. 24
e . . . 24
. . . . 25
. . . . 25

This publication contains the specifications for the
FORTRAN programming system for the IBM 1410.
FORTRAN is a programming system designed pri-
marily for scientific applications. The system
consists of the FORTRAN language, which is sim-
iliar to standard mathematic notation, and the
FORTRAN processor, which converts FORTRAN
language statements into machine language.
FORTRAN statements are writtenon the FORTRAN
Coding Form (shown in Figure 1) and then punched
into cards. These cards constitute the "source
program, ' and serve as input to the FORTRAN
processor. Theprocessor compiles an '"object pro-
gram' from the FORTRAN statements in the source

program.
Two versions of the FORTRAN processor are

available. One version, the FORTRAN (20K)
processor, requires a minimum of 20, 000 positions
of core storage for compilation. The other version,
the FORTRAN (40K) processor, requires a minimum.
of 40, 000 positions of core storage, but provides

INTRODUCTION

faster compilation and more complete diagnostic
checking than the 20K version. Intermediate output
from the FORTRAN (20K) processor is an Autocoder
language program, which is converted into a mach-
ine-language object program by the Autocoder proc-
essor. The FORTRAN (40K) processor compiles
directly into machine language, and does not require
the Autocoder processor. The language specifi-
cations in this bulletin apply to both versions of the
FORTRAN processor.

Machine Requirements

In addition to the core-storage sizes specified above
for each version of the FORTRAN processor, exe-
cution of either version of the processor requires

the following input/output units:
1 IBM 1402 Card Read Punch, Model 2

1 IBM 1403 Printer, Model 2
4 magnetic tape units

IBM

FORTRAN CODING FORM

Form X28-7327
Printed in U.S.A,

Program
Coded By Date -
Checked By Identification Page of
| IR B |
—— € FOR COMMENT 73
¥ STATEMENT[
NUMBER S FORTRAN STATEMENT
) slel7 0 5 20 25 30 35 45 50 55 60 65 70 72
| 1 1 1 I 1 I 1 | 1 L I
! L 1) L 1] L I L 1]
1 1 H 1 1 1 L i 1 1 1 1 4
I 1 1 1 1 1 1] 1 1 1 1
1 i 1 1 1 1 L | L L 1 R
1 1 1 i 1 1 | 1 1 i 1 1
1 1 1 1 i L 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 i 1 1 4
1 1 1 1 i 1 1 1 1 1] A

Figure 1. FORTRAN Coding Form

Introduction 5

Punching a Source Program

Each statement of a FORTRAN source program is
punched into a separate FORTRAN statement card
(Figure 2) using character set H. Character set
H consists of the regular 0-9 and A-Z punching,
plus these special characters.

00000 to 99999 can be used as a statement number.
Because the order of the statements is governed
solely by the order of cards in the source deck,
statement numbers need not be in numerical sequence.
Columns 1-5 are punched with the assigned statement
number. If no statement number is needed, these
columns can be left blank.

Column 6 of the initial card of a statement must

Card Printed be left blank or be punched with a zero. Continuation
Code Symbol Meaning cards (other than comment cards) are punched 1
- through 9 as required.

blank blank The statements are punched in columns 7-72. A
11 - minus statement may consist of not more than 660 charac-
12 + plus ters (that is, 10 cards). The FORTRAN processor

0-1 / divide ignores blank characters (see "FORMAT" for ex-
11-4-8 * multiply ception); thus, they can be used freely to improve the
12-4-8) right parenthesis readability of the source program listing.

0-4-8 (left parenthesis Columns 73-80 are not processed by the compiler

0-3-8 , comma and can be punched with any desired identifying in-
11-3-8 $ dollar sign formation.
12-3-8 decimal point

3-8 = equal sign IBM 1410 FORTRAN Statements

4-8 ! apostrophe (prime)

If a statement is too long for one card, it can be
continued on as many as nine continuation cards.

There are five classes of statements thatcan be used
in a 1410 FORTRAN source program.
1. Arithmetic statements specify a numerical

The character C is punched in column 1 to identify computation. ' ‘
a comment card. Such cards appear when the source 2. Subprogram statements define and specify sub-
program deck is listed, but do not become a part of programs.

the object program.

When coding a source program, it is sometimes

necessary to refer one statement to another,
cross referencing is facilitated by assigning unique
Any unsigned number from

statement numbers.

This

3. Control statements govern the flow of the pro-
gram.
4. Input/output statements.

5. Specification statements required for object
program storage allocation.

FoR
C‘_cmmsnv

IDENTIFICATION

[STATEMEN
NUMBER

T

234

1?11
2222

333
4444
51555
4553
11

22

0

H

—= @ | CONTIRUATION

33
4(4
55
6/6
17

FORTRAN STATEMENT
%00000000000000000@0000000000W000000000000000000000000000000000000
T8 910M12131415181718192021222324252527282930 313233343538 3738304041 424344 45464748 4950515253 54555557 58 50 60616283 6465666768697071 72
IRRR AR
22122
33
4444444444444 44444444444444444444444444404444444444444444444444444
5555955555555 55555555555559559555555555555555555555555555555555555
660666666666660666666666666
1711711711711 11717177171171717171171171717171771711717111171717171711771717171111111111717171117111

88888808086666868888086886883888880860888888880868686888888880686888888888

999999999699999959999995999999555099999999999994999
ABRNBANN R 30 30 40 4142 43 44 45 45 47 48 40 50 51 52 53 54 55 58 57 50 50 60 61 62

3 URBA 4 4 §1 §7 53 50 60 61 62 63 64 65 €5 67 88 69 70 71 712

00000000
13747576 77 18 19 80
(RRRRRREI
222222212
33333333
44444444
555555539
66666666
111111117
88888888

999998499

173 74 75 76 77 78 78 8D

Figure 2,

FORTRAN Statement Card

Arithmetic statements define numerical calculations
that the object program is to perform. An arith-
metic statement in FORTRAN resembles a conven-
tional arithmetic equation. The statement consists
of a variable, followed by an equal sign, followed
by an expression.

An arithmetic expression is a sequence of con-
stants, variables, and functions, arranged according
to a set of rules.

Arithmetic Precision

In most types of scientific computation, the precision
of the quantities used is important. In the 1410
FORTRAN system, any desired degree of precision
(f) can be assigned to floating-point values by means
of a control card. Where no specification is made,
floating-point precision is eight decimal digits. The
maximum number of significant digits (k) for fixed-
point values can also be specified by a control card.
If no specification is made, k is five decimal digits.

NOTE. The specification for (f) cannot exceed 45;
(k) cannot exceed 99.

Constant;g

Numbers are written in one of two forms, fixed
point or floating point, indicating the mode of arith-
metic to be used. Numbers expressed as integers
are fixed point. Numbers with decimal points are
floating point.

The general form and examples of fixed-point con-
stants are shown in Figure 3.

GENERAL FORM EXAMPLES
1 to k dipits. A preceding + or — sign is 3
optional. The magnitude or absolute valve of | +1
the constant must be less than 10* or be zero. — 28987

When a fixed point constant is used for the
valve of a subscript, only five digits will be
used. A fixed point constant that appears in
an expression is limited to 45 digits.

Figure 3. Fixed-Point Constants

The general form and examples of floating-point
constants are shown in Figure 4.

Within storage, a floating-point constant consists
of f + 2 digits. For example, if f is defined as 18,
a number in the source program having 18 or more

ARITHMETIC OPERATIONS

GENERAL FORM EXAMPLES
Any number of digits with a decimal point. 17.
A preceding + or — sign is optional. 5.0
E followed by an integer (signed or unsigned) —.0003
designates multiplication by a power of 10. 5.0E3
Floating-point constants may contain any num- i.e., 5.0 X 10°
ber of digits but only f significant digits are 5.0E + 3
retained. i.e., 5.0 X 10*
The magnitude of a floating-point constant may 5.0E — 3
lie between the limits 107® and (1 — 107) ie., 50 X 107
X 10%, or may be zero.

Figure 4, Floating-Point Constants

significant digits results in a 20-digit floating-point
number, 18 for the mantissa and 2 for the charac-
teristic.

Variables

Variable quantities are represented in FORTRAN
statements by symbolic names. The quantities that
the names of the variables assume are either fixed
point or floating point. All variables whose first
letter is I, J, K, L, M, or N are fixed-point mode.

The general form and examples of fixed-point vari-
ables are shown in Figure 5. A fixed-point variable
can assume any integral value provided the magni-
tude is less than 10K. When the value assumed by a
fixed-point variable has less than k digits, high-
order zeros will be added. When the value exceeds
k digits, it is treated modulo 10K.

GENERAL FORM EXAMPLES
1 to 6 alphabetic or numerical characters (not I
special characters) of which the first is |, J, K, M2
L, M or N. JOBNO

Figure 5. Fixed-Point Variables

The general form and examples of floating-point
variables are shown in Figure 6. A floating-point
variable can assume any value expressible as a nor-
malized floating -point number. That is, the mag-
nitude can lie between the limits 10-190 and
a- 10f) x1099, A precision of f digits will be
carried in the mantissa.

To avoid the possibility that a variable name may
be considered by the compiler to be a function name,

Arithmetic Operations 7

Figure 6. Floating-Point Variables

two rules should be observed with respect to naming
fixed- or floating-point variables:

1. A variable should not be given a name that is
identical to the name of a function without its term-
inal F. Thus, if a function is named TIMEF, no
variable should be named TIME (see "FUNCTIONS").

2. Subscripted variables should not be given
names ending with F, unless their names are less
than four characters in length.

Subscripted Variables

A variable can represent any element of a one-,
two-, or three-dimensional array by appending to
it one, two, or three subscripts. Subscripts must
be fixed-point expressions in one of the general
forms shown in Figure 7. A variable in a subscript
cannot itself have a subscript.

GENERAL FORM EXAMPLES

Let v represent any fixed-point variable and]
C or (C’) an unsigned fixed-point constant with 3
five or fewer digits. MU + 2
Then a subscript is an expression in one of MU — 2
the forms: 5*)

v 5*) + 2

c 5*) — 2
v+corv—c

c*v
c*y + ¢’ orctv — ¢
(The symbol * denotes multiplication.)

Figure 7. Subscripts

The general form and examples of subscripted
variables are shown in Figure 8.

Any subscripted variable must have the size of its
array specified in a DIMENSION statement preced-
ing the first appearance of the variable in the source
program (see '""DIMENSION"). A subscripted vari-
able may not appear without a subscript. That is,

A is not equivalent to A (1).

The value of a subscript must be greater than zero
but not greater than the corresponding array dimen-
sion.

GENERAL FORM EXAMPLES GENERAL FORM EXAMPLES
1 to 6 alphabetic or numerical characters (not A A fixed- or floating-point variable, fol- A
special characters), of which the first is alpha- B7 lowed by parentheses enclosing 1, 2 K(3)
betic but not I, J, K, L, M, or N. DELTA or 3 subscripts which are separated by ALPHA (1, 1+ 2)
BETA(5%J-2,K-2,L)

commas.

Figure 8. Subscripted Variables

One-dimensional arrays are stored sequentially.
Two-dimensional arrays are stored sequentially by
columns. Three-dimensional arrays are stored
sequentially first by columns and then by planes.
All arrays are stored in reverse order; that is, in
order of decreasing storage locations.

Expressions

An expression is a meaningful sequence of constants,
variables (subscripted or non-subscripted), and
functions separated by algebraic operation symbols.
In addition to normal algebraic rules, the following
must be observed when writing FORTRAN expres-
sions:

1. The mode of arithmetic in an expression can
be either floating-point or fixed-point, but with cer-
tain exceptions the modes must not be mixed in the
same expression.

a. A floating-point quantity can appear in a
fixed-point expression as an argument of a
function; for example XFIXF (C).

b. A fixed-point quantity can appear in a float-
ing-point expression as a function argument,
such as FLOATF (I); as a subscript, such
as A(J,K);or as an exponent, such as A**N.

2. The five basic algebraic operations are speci-
fied by the symbols +, -, *, /, and **, which denote
addition, subtraction, multiplication, division, and
exponentiation, respectively. Two operation sym-
bols cannot appear in sequence unless they are sep-
arated by parentheses. Thus, A* -B, and + -A are
not valid expressions; A* (-B) and + (-A) are valid
expressions.

Hierarchy of Operations

The use of parentheses in an algebraic expression
clearly establishes the intended sequence of oper-
ations. The hierarchy of operations in an expres-
sion not specified by the use of parentheses is in the
usual order:

Function computation and Substitution

Exponentiation

Multiplication and Division

Addition and Subtraction

For example, the expression
A + B/C + D**E*F - G
is taken to mean
A + (B/C) + ((D**E) *T) - G
Parentheses that have been omitted from a se-
quence of consecutive multiplications and divisions
(or consecutive additions and subtractions) are un-
derstood to be grouped from the left. Thus, if ¢
represents either * or / (or either + or -), then
A4 B Ceé¢ D PE
will be taken by FORTRAN to mean
((((A ¢ B)y ¢ Cy¢ D) ¢ E)

The expression ABC yhich is sometimes con-

sidered meaningful, cannot be written as A**B**C,

It should be written as (A**B) **C or A** (B**(C),
whichever is intended.

Arithmetic Operations

9

IBM 1410 FORTRAN STATEMENTS

ARITHMETIC STATEMENTS

The arithmetic statement (Figure 9) defines a nu-
merical calculation. A FORTRAN arithmetic state-
ment closely resembles a conventional arithmetic
equation. However, in a FORTRAN arithmetic
statement the = sign means is to be replaced by, not
is equivalent to. Thus, the arithmetic statement

Y = N - LIMIT (J -2)
means that the value of N - LIMIT (J -2) is to re-
place the value of Y. The result is stored in fixed-
point or in floating-point mode according to the mode
of the variable to the left of the = sign (in this case,
floating point).

GENERAL FORM EXAMPLES

“a =b" where a is a variable (sub-
scripted or not subscripted) and b is
an expression.

Q1=K
A(l) = B(1) + SINF (C (1))

Figure 9. Arithmetic Statements

If the variable on the left is fixed-point and the
expression on the right is floating-point, the result
will first be computed in floating-point and then
truncated to an integer. Thus, if the result is +3.872
the fixed-point number stored will be +3 (not +4).

If the variable on the left is floating-point and the
expression on the right fixed-point, the latter will
be computed in fixed-point and then converted to
floating-point.

Arithmetic statements can produce a number of
useful effects. Here are some examples:

A=B Store the value of B in A.

I=B Truncate B to an integer, convert

to fixed point, and store in I.

A=1 Convert I to floating point, and
store in A.

I=1+1 Add 1 to I and store in I. This
example illustrates the fact that
an arithmetic statement is not an
equation, but is a command to re-
place a value.

A=3.0*B Replace A by 3B.

However, be careful to avoid invalid statements

such as:

A=3*B Not accepted. The expression is
mixed (contains both fixed-point
and floating-point quantities).

A=1*B Not accepted. The expression is
mixed.

J =I*B Not accepted. The expression is
mixed.

10

SUBPROGRAM STATEMENTS
Functions

Two types of functions can beused in 1410 FORTRAN.

1. Predefined library functions (subroutines)
provided by IBM, or coded in machine language by
the user and added to the library.

2. Functions that are defined by the user with a
FORTRAN arithmetic statement function.

In a FORTRAN source program, both types offunc-
tions are called by the appearance in an arithmetic
expression of a function name and its arguments
(enclosed in parentheses). For example, the arith-
metic statement:

Y = A - SINF (B) + FIRSTF (C)
calls a library subroutine to evaluate the trigono-
metric sine of B, and an arithmetic statement
function, which is defined previously in the program,
to evaluate FIRSTF (C).

Library Functions

Figure 10 shows the library functions for which sub-
routines are provided by IBM. In some cases, two
or more variations of the same function appear to
provide for combinations of fixed- and floating-point
mode for both the function and its arguments.

Evaluation of a library function produces, from
one or more arguments, a single value that is made
available to the expression inwhich it appears. Pro-
vision will be made for the user to incorporate other
machine-language subroutines required for evalu-
ating functions.

Figure 11 shows the general form and examples of
naming both library functions and arithmetic state-
ment functions.

Arithmetic Statement Functions

An arithmetic statement function is defined by the
user with a single FORTRAN arithmetic statement
written according to rules similar to those applying
to any arithmetic statement (see "EXPRESSIONS"
and "ARITHMETIC STATEMENTS'"). When called
in the source program, it produces a single value
from one or more arguments. Figure 12 shows the
general form and examples of this type of function.

All arithmetic statement function definitions must
precede the first executable statement of the source
program. Library functions can be used in these
definitions, as can other arithmetic statement func-
tions, provided they are defined in a previous state-
ment.

MODE OF
U
NAME DESCRIPTION NUMBER OF
ARGUMENTS ARGUMENT(S) FUNCTION
SINF Trigonometric sine of argument 1 Floating Floating
COSF Trigonometric cosine of argument 1 Floating Floating
LOGF Natural logarithm of argument 1 Floating Floating
EXPF Argument power of ¢ 1 Floating Floating
SQRTF Square root of argument 1 Floating Floating
ATANF Arc tangent of argument 1 Floating Floating
ABSF 1 Floating Floating
XABSF Absolute value of argument 1 Fixed Fixed
INTF Truncation (sign of argument times 1 Floating Floating
XINTF largest integer = argument) 1 Floating Fixed
MODF 2 Floating Floating
A
XMCDF rgument 1 modulus argument 2 2 Fixed Fixed
MAXOF =2 Fixed Floating
MAXI1F Maxd l - : =2 Floating Floating
XMAXOF aximum value of 2 or more arguments = Fixed Fixed
XMAX1TF =2 Floating Fixed
MINOF = Fixed Floating
MINTF Mini | f2 ot = Floating Floating
XMINOF inimum value of 2 or more arguments =, Fixed Fixed
XMINITF =2 Floating Fixed
FLOATF Convert fixed-point argument to floating point 1 Fixed Floating
XFIXF Convert floating-point argument to fixed point 1 Floating Fixed
SIGMNF Absolute value of argument 1 times sign of 2 Floating Floating
XSIGNF argument 2 2 Fixed Fixed
DIMF Argument 1 minus the lesser of argument 1 2 Floating Floating
XDIMF and argument 2. 2 Fixed Fixed

Figure 10, Library Functions

IBM 1410 FORTRAN Statements

11

GENERAL FORM EXAMPLES
The name of the function consists of 4 to 7
alphabetic or numerical characters (not special SINF(A)
characters). The last character must be F and XFIXF(B)
the first must be alphabetic. The first character MODE(A, B)

must be X if and only if the valve of the
function is to be fixed point. The name of
the function is followed by parentheses enclos-
ing the arguments, separated by commas.

FIRSTF(C, D)
XTHIRDF(J, K)

Figure 11, Library and Arithmetic Statement Function Names

GENERAL FORM EXAMPLES

FIRSTF(X) = A*X + B
SECONDF (X, B) = A*X +B
THIRDF(D) = FIRSTF(E)/D
FOURTHF (F, G) = SECONDF
(F, THIRDF (G))
FIFTHF(l, A) = 3.0*A**|
SIXTHF(J) = J + K
XSIXTHF(J) = J +K

“a = b", where a is a function
name followed by parentheses
enclosing its arguments (which
must be distinct non-subscripted
variables) separated by com-
mas, and b is an expression
which does not involve sub-
scripted variables. Any func-
tions appearing in b must be
available to the program or
already defined by preceding
arithmetic statements.

Figure 12, Arithmetic Statement Functions

Variables that appear in both sides of an arithme-
tic statement function definition are arguments of
the function. These are dummy variables for which
values of actual arguments are substituted when the
function is called. Dummy variables can be assigned
any acceptable variable names, including those used
elsewhere in the program; but the names assigned
must correspond in number, order, and mode to the
actual variable names in a calling statement.

Variables that appear in the right side only of a
function definition are parameters for which unique
names must be assigned in accordance with the rules
for naming variables. Thus, for example, the func-
tion:

FIRSTF (X) = A*X + B
can be called as FIRSTF (Y), at which time the
function FIRSTF is evaluated by substituting the
current value of the argument Y for the dummy var-
iable X. At the same time, current values of the
parameters A and B are used.

Actual arguments used in a calling statement can
be subscripted or non-subscripted variables, and
can also be FORTRAN expressions. Thus, in the
previous example, FIRSTF (Z + Y (I)) is evaluated
by computing the current value of Z + Y (I) and sub-
stituting this value for X in the function definition.

12

Subprograms

Two types of subprograms can be used in 1410
FORTRAN.

1. FUNCTION subprograms that are defined by
the user with a series of FORTRAN statements and
are called by the appearance in an arithmetic ex-
pression of a function name and its arguments.

2. SUBROUTINE subprograms that are also de-
fined by the user with a series of FORTRAN state-
ments, but are called by a CALL statement.

There is a further major distinction between the
two types of subprograms. A FUNCTION subpro-
gram returns a single value to the calling program
by means of a FORTRAN arithmetic statement in
which the left-hand side is the function name. A
SUBROUTINE subprogram can returnmultiple values
to the calling program by utilizing one argument of
the subprogram for each value desired, each argu-
ment appearing in the left-hand side of an arithme-
tic statement.

FUNCTION Subprograms

A FUNCTION subprogram is defined by the identify-
ing statement

FUNCTION NAME (Arguments)
followed by a series of FORTRAN statements that
compute the value of NAME. Figure 13 shows the
general form and examples of the naming of
FUNCTION subprograms.

GENERAL FORM EXAMPLES

“FUNCTION NAME (a1, az, . . ., an)” FUNCTION ARCSIN
where NAME is the symbolic name of (RADIAN)

a single-valued function, and the argu- FUNCTION ROOT
ments a1, @z, . . . dn, of which there (B, A, C)

FUNCTION INTRST
(RATE, YEARS)

must be at least one, are non-sub-
scripted variable nomes, the name of
a SUBROUTINE subprogram, the name
of a FUNCTION subprogram, or the
name of a FORTRAN function.

The NAME consists of 1 to 6 alpha-
merical characters (not special char-
acters), the first of which must be
alphabetic. The first character must be
I, J, K, L, M, or N if and only if the
value of the function is to be fixed
point. The final character must not be
F if there are more than three charac-
ters in the NAME.

Figure 13, FUNCTION Subprogram Names

“An example of the general form of a FUNCTION
subprogram is:
FUNCTION ACME (A, B, C)

ACME = arithmetic expression
RETURN

END
Other statements (represented by dots) are sequences
of FORTRAN statements required to compute the
value of ACME. The RETURN statement terminates
the subprogram and returns control to the calling
program (see "RETURN'"). The END statement
signifies the end of the subprogram during compiling
(see END).

A FTUNCTION subprogram is called by the appear-
ance of the FUNCTION NAME and its arguments in
the calling program. For example, the arithmetic
statement

Q=ACME (A, B, C)+C - D
calls the subprogram ACME in the process of com-
puting Q.

Additional rules for the use of FUNCTION subpro-
grams are:

1. Each variable name used as an argument of a
FUNCTION subprogram must appear in at least one
executable statement of the subprogram.

2. The NAME of the function must appear at least
once in the FUNCTION subprogram as the variable
on the left-hand side of an arithmetic statement, or
in an input-statement list.

3. A FUNCTION subprogram must notbe inserted
between two statements of another program.

4. The arguments in a FUNCTION subprogram
are dummy variables for which actual arguments
are substituted when the subprogram is called.

5. Dummy arguments must correspond in number,
order, and mode to the actual arguments inthe call-
ing statement.

6. If a dummy argument is an array name, the
corresponding actual argument must be an array
name. Each array name must appear in a DIMEN-
SION statement of the program or subprogram in
which it appears and the dimensions must be the
same (see "DIMENSION"),

7. Dummy arguments must not appear in EQUIV~
ALENCE or COMMON statements of a FUNCTION
subprogram. When a COMMON statement is used
to implicitly transmit arguments from a calling pro-
gram to a FUNCTION subprogram, at least one ar-
gument must be transmitted explicitly. That is, at

least one of the arguments must appear in paren-
theses following the subprogram NAME (see
"COMMON").

SUBROUTINE Subprograms

A SUBROUTINE subprogram is defined by the iden-
tifying statement

SUBROUTINE NAME (Arguments)
followed by a series of FORTRAN statements that
compute one or more values, each expressed as an
argument of the subprogram. Figure 14 shows the
general form and examples of the naming of SUB-
ROUTINE subprograms.

GENERAL FORM EXAMPLES

“SUBROUTINE NAME (a1, az, . .
., an)’ where NAME is the sym-
bolic name of a subprogram, and

SUBROUTINE MATMPY
(A, N, M, B, L, C)
SUBROUTINE QDRTIC
each argument, if any, is a non- (B, A, C, ROOT1, ROOT 2)
subscripted variable name, the
name of another SUBROUTINE
subprogram, the name of a FUNC-
TION subprogram, or the name

of a FORTRAN function.

The NAME of the subprogram
may consist of 1 to 6 alphamer-
ical characters (not special char-
acters). The first character must
be alphabetic. The final character
must not be F if there are more
than three characters in the
NAME.

Figure 14, SUBROUTINE Subprogram Names

An example of the general form of a SUBROUTINE
subprogram is:
SUBROUTINE STRESS (V,W,X,Y, Z)

V = arithmetic expression
W = arithmetic expression
RETURN

END
Other statements (represented by dots) are sequences

of FORTRAN statements required to compute the
values of arguments V and W based on current

IBM 1410 FORTRAN Statements 13

values of the remaining arguments X, Y, andZ. The
RETURN and END statements serve the same pur-
pose as in FUNCTION subprograms.

A SUBROUTINE subprogram is called by a CALL
statement in the calling program. For example,
the statement

CALL STRESS (V,W,X,Y, Z)
calls the subprogram described in the previous ex-
ample (see ""CALL").

Additional rules for the use of SUBROUTINE sub-
programs are:

1. Each variable name used as an argument of a
SUBROUTINE subprogram must appear in at least
one executable statement of the subprogram.

2. A SUBROUTINE subprogram must not be in-
serted between two statements of another program.

3. Each of the arguments for which a value is
computed must appear at least once in the
SUBROUTINE subprogram as the variable on the
left-hand side of an arithmetic statement, or in an
input-statement list.

4. The arguments in a SUBROUTINE subprogram
are dummy variables that are replaced by actual
arguments in the CALL statement of the calling pro-
gram.

5. Dummy arguments must correspond in order,
number, and mode to the actual arguments in the
CALL statement.

6. If a dummy argument is an array name, the
corresponding actual argument must be an array
name. Each array name must appear in a
DIMENSION statement of the program or subprogram
in which it appears, and the dimensions must be the
same (see "DIMENSION").

7. Dummy arguments must not appear in
EQUIVALENCE or COMMON statements of SUB-
ROUTINE subprograms. However, a COMMON
statement can be used to implicitly transmit argu-
ments from a calling program to a SUBROUTINE
subprogram, instead of these arguments appearing
in parentheses following the subprogram name (see
"COMMON").

A dummy argument in a SUBROUTINE subprogram
can be replaced by an actual argument that is the
name of another subprogram. For example, assum-
ing that SECANT is a subprogram with a single
floating-point argument and is supplied by the user,
the SUBROUTINE subprogram

SUBROUTINE TRIG (DUMMY, Y)

B = DUMMY (Y)

can be called by the CALL statement
CALL TRIG (SECANT, A)

14

This causes DUMMY (Y) to be replaced by
SECANT (A).

When FUNCTION and SUBROUTINE subprogram
names appear as arguments of a CALL statement,
the subprogram names must appear in F cards. The
F cards must be placed before the first CALL state-
ment using the argument. An F must be punched in
column 1, and the subprogram names, separated by
commas, are punched in columns 2 -72. For ex-
ample, assuming TANG and SECANT are user-sup-
plied subprograms, an F card punched F TANG,
SECANT permits either the tangent or secant to be
computed within SUBROUTINE TRIG, depending on
which is specified in the CALL statement.

CALL Statement

The CALL statement (Figure 15) takes the form
CALL NAME (Arguments)
and is required to call a SUBROUTINE subprogram.

GENERAL FORM EXAMPLES

CALL MATMPY
(X, 5,10, Y,7,2)
CALL QDRTIC
(P*9.732, Q/4.536,
R - 8§**2.0, X1, X2

“CALL NAME (a1, a2, . . . , an)”
where NAME is the name of a SUB-
ROUTINE subprogram, and a1, az . .
., an are actual arguments of the

subprogram.

Figure 15. CALL Statement

The arguments in a CALL statement must corre-
spond in number, order, and mode to the arguments
in the called SUBROUTINE subprogram. These
arguments can take any of the forms:

1. Fixed-point constant

2. Floating-point constant

3. Fixed-point variable (subscripted or non-
subscripted)

4. Floating-point variable (subscripted or non-
subscripted)

5. Arithmetic expression

6. The name of a FUNCTION subprogram or a
another SUBROUTINE subprogram, but not the
name of the called subprogram

RETURN Statement

The RETURN statement (Figure 16) terminates both
FUNCTION subprograms and SUBROUTINE subpro-
grams, and returns control to the calling program.

A RETURN statement must be the last executed
statement of a subprogram but need not be the last
statement of the program. Any number of RETURN
statements can be used.

GENERAL FORM EXAMPLES

GENERAL FORM EXAMPLES

“RETURN" RETURN

Figure 16. RETURN Statement

CONTROL STATEMENTS

The third class of 1410 FORTRAN statements en-
ables the programmer to control the sequence of
the program.

Unconditional GO TO

The unconditional GO TO statement (Figure 17)
transfers control of the program to the specified
statement

GENERAL FORM EXAMPLES

“GO TO n* where n is a statement number. GO TO 3

Figure 17, Unconditional GO TO Statement
Computed GO TO

The computed GO TO statement (Figure 18) trans-—
fers control to statement number ny, ng, ng,...Nny,
depending on whether the value of i at the time of
execution is 1,2,3,...,m, respectively. Thus in
the example, if I is 3 at the time of execution, a
transfer to the statement whose number is third in
the list, statement 50, will occur, This statement
is used to obtain a computed many-way branch.

GENERAL FORM EXAMPLES

“GO TO (ny, N2+« +, Npy), i where my, GO TO (30, 42, 50, 9) ,1
L7 VRN , Ny are statement numbers
and i is a non-subscripted fixed-point
variable. The limits of the valve of i

ae 1=i=m.

Figure 18, Computed GO TO Statement

Assigned GO TO

The assigned GO TO statement (Figure 19) trans-
fers control to statement number n, where n can
have any of the values ny,0,,.. .0y, and is assigned
its current value by a prior ASSIGNED statement.

“GO TO n, (ny, ng, . . ., nm)” where GO TO K, (17, 12, 19)
n is a non-subscripted fixed point vari-
able appearing in a previously exe-
cuted ASSIGN statement, and ni, ng,

., hm are statement numbers.

Figure 19, Assigned GO TO Statement

ASSIGN Statement

The ASSIGN statement (Figure 20) assigns the value
i to n in a subsequent GO TO statement, where i
can have any of the values ny,n9,...,0pm specified
in the GO TO statement.

GENERAL FORM EXAMPLES

“ASSIGN i TO n’” where i is a state- ASSIGN 12 TO K
ment number and n is a non-subcripted
fixed point variable which appears in

an assigned GO TO statement.

Figure 20, ASSIGN Statement
IF Statement

The ITF statement (Figure 21) conditionally transfers
control to another statement of the program. Con-
trol is transferred to the statement number ng, ny,
or ng, depending on whether the value of a less
than, equal to, or greater than zero. Thus, in the
example, if (A(J,K) - B) is zero at the time of ex-
ecution, transfer to statement number 4 occurs.

GENERAL FORM EXAMPLES

IF (A(J,X) —B) 10, 4, 30

“IF (a) ny, ng, N3’ where a is an ex-

pression and ny, nz, n3 are statement
numbers.

Figure 21, IF Statement

SENSE LIGHT Statement

The term sense light refers to symbolic binary
switches in the 1410 system. Figure 22 shows the
general form and an example of the SENSE LIGHT
statement. If i is 0, all sense lights are turned
OFF; otherwise Sense Light i is turned ON.

IBM 1410 FORTRAN Statements 15

GENERAL FORM EXAMPLES

"SENSE LIGHT i where iis 0, 1, 2, 3, or 4. [* SENSE LIGHT 3

Figure 22, SENSE LIGHT Statement

IF (SENSE LIGHT) Statement

Figure 23 shows the general form and an example of
the IF (SENSE LIGHT) statement. Control is trans-
ferred to statement number ny if Sense Light i is
ON, or statement number ny if Sense Light i is OFF.
If Sense Light i is ON, if is turned OFF.

GENERAL FORM EXAMPLES

“IF (SENSE LIGHT i) n;, ny’ where
ny and ny are statement numbers
and iis 1, 2, 3, or 4.

IF (SENSE LIGHT 3) 30, 40

Figure 23, IF (SENSE LIGHT) Statement

1IF (SENSE SWITCH). Statement

Figure 24 shows the general form and an example
of the IF (SENSE SWITCH) statement. Control is
transferred to statement n, if Sense Switch i is ON,
or statement number n_ if Sense Switch i is OFF.
In the 1410 system, sense switches are symbolic,
and their settings are specified by a control card.

GENERAL FORM EXAMPLES

“IF (SENSE SWITCH i) ny, ny’’ where
ni and n: are statement numbers and
iis 1,2, 3,4,5, or 6.

IF (SENSE SWITCH 3)
30, 108

Figure 24, IF (SENSE SWITCH) Statement

IF ACCUMULATOR OVERFLOW Statement

The IF ACCUMULATOR OVERFLOW statement
(Figure 25) transfers control to statement number
ny if an overflow condition is present, otherwise to
statement number n,. The pseudo indicator can he
turned ON only by floating-point operations, and is
turned OFF by the test statement.

16

GENERAL FORM EXAMPLES

“IF ACCUMULATOR OVERFLOW ni,
ny' where ni and n: are statement

numbers,

IF ACCUMULATOR
OVERFLOW 30, 49

Figure 25. IF ACCUMULATOR OVERFLOW Statement

IF QUOTIENT OVERFLOW Statement

The IF QUOTIENT OVERFLOW statement (Figure
26) transfers control to statement number n, if an
overflow condition is present; otherwise to state-
ment number n,. The pseudo indicator canbe turned
ON only by floating-point operations, and is turned
OFF by the test statement.

GENERAL FORM EXAMPLES

“IF QUOTIENT OVERFLOW ni, ng’
where ni and n: are statement num-
bers.

IF QUOTIENT OVER-
FLOW 30, 49

Figure 26, IF QUOTIENT OVERFLOW Statement

IF DIVIDE CHECK Statement

The IF DIVIDE CHECK statement (Figure 27) trans-
fers control to statement number n_ if an overflow
condition is present, otherwise to statement number
ny. The pseudo indicator can be turned ON only by
floating-point operations, and is turned OFF by the
test statement.

GENERAL FORM EXAMPLES

“IF DIVIDE CHECK ni, n' where n1
and n; are statement numbers.

IF DIVIDE CHECK
84, 40

Figure 27, IF DIVIDE CHECK Statement

DO Statement

The DO statement (Figure 28) is a command to exe-
cute repeatedly the statements that follow, up to
and including statement number n. The first time

the statements are executed with i = ml. For each

GENERAL FORM EXAMPLES
DO n i==my, my” or “DO n i=my, my DO 301=1, 10
m3”’ where n is a statement number, i is a DO30I=1, M3

non-subscripted fixed - point variable, and
my;, my, m3 are each either an unsigned
fixed-point constant or non-subscripted fixed-
point variable. If m3 is not stated, it is taken
to be 1.

Figure 28. DO Statement

succeeding execution, i is increased by mg. After
they have been executed with i equal to the highest
value that does not exceed my, control passes to
the statement following the last statement in the
range of the DO.

The range of a DO is that set of statements that
will be executed repeatedly; that is, it is the se-
quence of consecutive statements immediately fol-
lowing the DO, up to and including the statement
numbered n.

The index of a DO is the fixed-point variable i,
which is controlled by the DO in such a way that its
value begins at m,, and is increased each time by
m,, until it is about to exceed my. Throughout the
range of a DO, i is available as data for any com-
putations, either as an ordinary fixed-point vari-
able or as the variable of a subscript. After the
last execution of the range, the DO is said to be
satisfied.

As an example of the use of a DO statement, sup-
pose that control has reached statement 10 of the
program:

10DO11I=1, 10
11 A() = I* N(I)
12

The range of the DO is statement 11, and the in-
dex is I. The DO sets I to 1, and control passes
into the range. The value of Ny is converted to
floating point, and stored in location Aj. Because
statement 11 is the last statement in the range of
the DO and the DO is unsatisfied, I is increased to
2, and control returns to the beginning of the range,
statement 11. The value of 2N2 is then computed
and stored in location Ay, The process continues
until statement 11 has been executed with I = 10.
Because the DO is now satisfied, control passes to
statement 12.

Among the statements in the range of a DO can be
other DO statements. If the range of a DO includes
another DO, then all of the statements of the included
DO must also be in the range of the inclusive DO.

A set of DO statements satisfying this rule is called
a nest of DO statements (Figure 29).

DO

-

> 2
-t 5

=5

Figure 29, Nest of DO Statements

No transfer is permitted into the range of any DO
from outside its range. For example, in Figure 29,
1, 2, and 3 are permitted transfers, but 4,5, and 6
are not,

When control leaves the range of a DO in the ordi-
nary way (that is, when the DO becomes satisfied
and control passes on to the next statement after the
range) the exit is said to be a normal exit. After
a normal exit from a DO occurs, the value of the
index controlled by that DO is not definéd, and the
index cannot be used again until it is redefined.

However, if exit occurs by a transfer out of the
range, the current value of the indexremains avail-
able for any subsequent use. If exit occurs by a
transfer out of the ranges of several DO statements,
the current values of all the indexes controlled by
those DO statements are preserved for any subse-

quent use.
Restrictions on statements in the range of a DO

are:

1. Any statement that redefines the value of the
index (i) or of any of the indexing parameters (m's)
is not permitted.

2. The first statement in the range of a DO must
be an executable FORTRAN statement.

3. The last statement in the range of a DO cannot
be a branch instruction (see ""CONTINUE").

IBM 1410 FORTRAN Statements 17

CONTINUE Statement

CONTINUE (Figure 30) is a dummy statement that
causes no additional instructions in the object pro-
gram. It is most frequently used as the last state-
ment in the range of a DO to provide a branch ad-
dress for IF and GO TO statements that are 1ntended
to begin another repetition of the DO range.

An example of a program that requires a
CONTINUE is:

10 DO 12I=1, 100
IF (ARG - VALUE (I)) 12, 20,12
12 CONTINUE

This program will scan the 100-entry VALUE
table until it finds an entry that equals the value of
the variable ARG, whereupon it exits to statement
20 with the value of I available for subsequent use.
If no entry in the table equals the value of ARG, a
normal exit to the statement following the
CONTINUE occurs.

GENERAL FORM EXAMPLES

"CONTINUE” CONTINUE

Figure 30, CONTINUE Statement

PAUSE Statement

During the execution of the object program, the
PAUSE statement (Figure 31) causes the machine to
halt and print on the 1415 I/O printer the number n.
If n is not specified, it is understood to be zero.
Pressing the start key causes the object program to
resume execution at the next instruction.

GENERAL FORM EXAMPLES

““PAUSE’ or ""PAUSE n’* where n is an un- PAUSE
signed fixed-point constant less than 105, PAUSE 77777

Figure 31, PAUSE Statement

STOP Statement

The STOP statement (Figure 32) causes a halt in
such a way that pressing the start key has no effect.
Therefore, in contrast to PAUSE, this statement is
used where a terminal, rather than a temporary,
stop is desired. When the program halts, the

18

number n is printed on the 1415 I/O printer. If n is

not specified, it is understood to be zero.

GENERAL FORM EXAMPLES

“STOP" or "'STOPn’’ where n is an unsigned STOP
fixed- point constant less than 105 STOP 33333

Figure 32, STOP Statement

END Statement

The END statement (Figure 33) is the last statement
of a program or subprogram. Although the general
form of this statement, as specified for other
FORTRAN systems, is permissible when used in a
1410 source program, only the word END has any
significance.

GENERAL FORM EXAMPLES

“END*’ END

Figure 33. END Statement

INPUT/OUTPUT STATEMENTS

The fourth class of 1410 FORTRAN statements speci-
fies the transmission of information, during exe-
cution of the object program, between storage and
input/output units:

1. READ, READ INPUT TAPE, PUNCH, PRINT,
WRITE OUTPUT TAPE, TYPE RECORD and FETCH
cause transmission of a specified list of data be-
tween storage and an external input/output medium
such as cards, printed sheet, or magnetic tape.

2. FORMAT is non-executable. It specifies the
arrangement of the information in the external input/
output medium with respect to the input/output
statements of group 1, and converts the information
being transmitted to or from an internal notation,
if necessary.

3. READ TAPE and WRITE TAPE causethe trans-
mission of information that is already in internal
machine notation, and thus need not be converted
under control of a FORMAT statement.

4, END FILE, REWIND, And BACKSPACE con-
trol magnetic tape units.

5. TFIND controls 1301 Disk Storage Units.

Lists of Quantities

The input/output statements that call for the trans-
mission of information must include a list of the
quantities to be transmitted. The order must be the

same ag the order in which the words of information
exist (for input), or will exist (for output) in the
input/output medium.

For example, if the list:
A,B@3),(C0),DE,K),I=1,10), (E({,J)
[=1,10,2),F(J,3),J = 1,K).

is used with an output statement, the information
will be written on the output medium in the order:
A, B(3), C(1), D(1,K), C(2), D(2, K),

...,C(10), D(10,K),
E(1,1),E@3,1),...,E(9,1),F(1,3),
E(,2),E(3,2),...,E(9,2),F(2,3),
E@1,K),E(3,K),...,E(9,K),F(K,3)

If the list is used with an input statement, the in-
formation is read into storage from the input med-
ium. The order of the list can be considered equiva-
lent to the "program'':

1 A
2 B(3)
3 DO5I=1,10
4 CQ)
5 D(,K)
6 DO9J =1,K
7 DO8I=1,10,2
8 E(L,J)
9 F(,3)

Note that the parentheses in the original list de-
fine the ranges of the implied DO loops.

For a list of the form K,A(K) or K, (A(I),I=1,K)
where an index or indexing parameter itself appears
earlier in the list of an input statement, the index-
ing will be carried out with the newly read-in value.
Where a single subscripted variable appears in a
list preceded by the subscript itself, the entire sub-
scripted variable must be enclosedwithin parentheses,
if the indexing is to be carried out with the newly
read-in subscript value.

Matrices

IBM 1410 FORTRAN treats variables according to
conventional matrix practice. Thus, the input/output
statement

READ 1, (A(I,J),I=1,2),J=1,3)
causes the reading of six (2 X 3) items of information.
The items will be read into storage in the same order
as they are found on the input medium: A; 1 Ag 1
A1.2 A2 A1,382,3:

Note that the numeral 1, following READ, in this
case specifies FORMAT statement number 1 (see
"FORMAT").

Wher input/output of an entire matrix is desired,
an abbreviated notation can be used for the list of the
input/output statement. Only the format statement
number and the name of the array are required.

Thus, the statement,

READ 1, A
is sufficient to read in all of the elements of the
array A, according to format statement number 1.
In 1410 FORTRAN, the elements, read in by this
notation, are stored in reverse order; that is, in
order of decreasing storage. Note that the dimen~
sions of an array mustbe specified (see "DIMENSION").

FORMAT Statement

The READ, READ INPUT TAPE, PUNCH, PRINT,
WRITE OUTPUT-TAPE, and TYPE require, in ad-
dition to the list of quantities to be transmitted, the
number of a FORMAT statement (Figure 34). The
FORMAT statement describes the information format
to be used and also specifies the type of conversion
to be performed between internal machine notation
and external notation. FORMAT statements are not
executed. They supply information to the object
program. Therefore, they can be placed anywhere
in the source program, except as the first statement
in the range of a DO.

GENERAL FORM EXAMPLES

FORMAT (Specification)” where Speci-
fication is as described under FORMAT
Specification.

FORMAT
(12/(E 12. 4, F10.4)

Figure 34. FORMAT Statement

FORMAT Specifications

It is convenient to consider a FORMAT specification
as applying to a printed line. However, the specifi-
cation is valid for any case simply by generalizing
the concept of printed line to that of unit record in
the dnput/output medium. A unit record can be:

1. A printed line with a maximum of 100 or 132
characters, depending upon the model 1403 used

2. A punched card with a maximum of 80 charac-
ters

3. A BCD tape record with a maximum of 100 or
132 characters, depending upon the model 1403 used

The terms internal and external notation are used
often. Internal numerical data appears in two forms:

Integer(e. g. ,514)
Floating point (e.g., 31415§6f)

External numerical data, to be read at object
time, or constants in the source program can appear
in three forms:

E(e.g.,31.4159E-1)
F(e.g.,3.14159)
Ie.g.,3)

IBM 1410 FORTRAN Statements 19

The type of conversion required (external to in-
ternal notation or internal to external notation) de-
pends upon the type of external notation used. For
example, the floating-point constant 31.4159E-1 is
expressed in external notation. E-type conversmn 1%
required to convert to the internal notation 31415901

The FORMAT specification describes the line to
be printed by giving the specification for each field
in the line (from left to right, beginning with the
first print position). Specifications for numerical
data requiring conversion include:

1. The type of conversion (E,F, or I) to be used

2, The width (w) of the field

3. For E- and F-type conversion, the number of
places (d) to be printed after the decimal point.

Specifications for alphameric data or blank posi-
tions not requiring conversion include:

1. An alphabetic character designating the way
the data is to be handled

2. The width(w) of the field

3. The alphameric text, when required

I'ield specifications are given in the forms:

Iw,Ew.d, Fw.d, wH, Aw, and wX
with the specifications for successive fields sep-
arated by commas.

Numerical Fields. An example of the printing of
internally stored numerical data requiring conver-
sion under the control (J:f a I‘ORMAT statement is:
Stored data 00027 9320963102 7634352602
Irield specifications 12' 12.4, F10.4
Printed line 27b -0. 9321Eb0 bbb-0.0076

In the example, the field widths are made greater
than necessary to provide spacing blanks (repre-
sented by b) between adjacent fields. The blank
space following the E is automatically supplied, ex-
cept in the case of a negative exponent, when a
minus sign will appear. Within each field, the
printed output always appears in the right-most
positions. Excess low-order decimal positions, as
determined by d in the FORMAT specifications, are
truncated for E~ and F-type conversion of output
data.

If n successive fields within one record are to be
printed in the same fashion, the value of n should
precede E, F, or I, as required. Thus, the state-
ment FORMAT (12, 3E12.4) is equivalent to FORMAT
(12,E12.4,E12.4,E12.4).

A limited parenthetical expression is acceptable
in order to enable repetition of data fields according
to certain format specifications within a longer
FORMAT specification. Thus, FORMAT (2(F10.6,
E10. 2), 14) is equivalent to FORMAT (F10.6, E10.2,
F10.6, E10.2,14).

Scale Factors. A scale factor can be applied to data
that is to be printedas a result of F-type conversion.

20

The scale factor is the power-of-10 by which data
is multiplied prior to conversion. The designation
nP, preceding an F-type field specification,
indicates a scale factor n. For example, the speci-
fication 2PF10.4 results in multiplication of the
data by 100 (102) prior to conversion. Thus in the
earlier example, the internal data 7634352602 prints
as: bbb-0.7634. Scale factor (for F-type conver-
sion only) can be either a positive or negative num-
ber.

Scale factor can also be used with E-type conver-
sion. However, only positive scale factors are al-
lowed, and the magnitude of the converted data re-
mains constant because the shifting of the decimal
point to the right is offset by reduction of the E-ex-
ponent. Thus in the earlier example, the field
§pecific§.ti9n 2PE12,4 causes the internal data
9320963102 to print as: -93. 2096Eb00.

Scale factors have no effect on I-type conversion.

A scale factor of zero is assumed if no other
factor is given. A scale factor assigned to an E- or
F-~type conversion applies to all subsequent E- and
F-type conversions in the same FORMAT statement,
until nullified by a different scale factor. Thus for
example, the specifications 2PF10.4, E12.4,4PF10.4,
E12.4, has the same effect as the specification
2PF10.4,2PE12.4,4PF10.4,4PE12.4.

Alphameric Fields. Alphameric text can be in-
cluded in a FORMAT statement by the field specifi-
cation wH. The width (w) of the field is followed by
the letter H and the desired text. Thus, the state-
ment:

FORMAT(11H X SQUARED = ,F5.2,

13H AND X CUBED =, I17.2)

might result in the printed line:
X SQUARED = 12.96 AND X CUBED = -46. 66

Any valid alphameric character, including blank,
can be printed. This is the only instance in which
FORTRAN does not ignore blanks. It is possible to
print alphameric information only (headings, page
numbers, and other identifying information) by
giving no list with the output statement.

If a FORMAT statement is used with an input
statement, the alphameric text listed in the FORMAT
statement will be replaced by whatever text is read
in from the corresponding field in the input medium.
When that same FORMAT statement is used for out-
put, whatever information is then in the FORMAT
statement will appear in the output data. Thus,
text can be originated in the source program, or as
input to the object program.

Alphameric text, designated by an input or output
statement, can be read into storage or printed from
storage by use of the field specification Aw. The
letter A is followed by the width (w) of the field. The
desired text is specified by the appropriate variable

name in the list of the input or output statement.
Thus for example, the statements:

1 FORMAT (¥8.3,A10, F10.3)

READ 1, X, Y, Z

cause specific values of variables X and Z to be
read into storage with F-type conversion. A ten-
character alphameric field (punched in the input
card between the two variable fields) is read into
the storage location designated by the variable
name Y.

Characters in an input field can be skipped, or
blank characters can be provided in an output field
by use of the field specification wX. The width (w)
of the field is followed by the letter X, Thus, the
statement:

FORMAT (F8.3, 10X, F10.3)
used with an input statement, causes ten characters
to be skipped between two fields for which F-type
conversion is specified. When used with an output
statement, ten blanks are inserted between the
other two fields. The maximum value of w that can
be used with any input/output statement is 132,

Multiple-Line Formats. To deal with a block of
more than one line of print, a FORMAT specifica-
tion can have several different one-line formats,
separated by a slash (/) to indicate the beginning of
a new line. Thus, FORMAT (3F9. 2, 21710.4/8E14. 5)
specifies a multi-line block of print in which lines
1, 3, 5,...have format (3F9.2,2F10.4); and lines
2, 4, 6,...have format 8E14.5.

If a multiple-line format is desired such that the
first two lines will be printed according to a special
format and all remaining lines according to another
format, the last line specification should be en-
closed in a second pair of parentheses, for example:

FORMAT (12,3E12.4/2F10.3,3F9.4/ (10F12.4))
If data items remain to be transmitted after the for-
mat specification has been completely used, the
format repeats from the preceding left parenthesis.

As these examples show, both the slash and the
closing parenthesis of the FORMAT statement indi-
cate a termination of a record. Blank lines can be
introduced into a multi-line FORMAT statement by
use of consecutive slashes.

Control of I/O Operations. The FORMAT statement
indicates the maximum size of each record to be
transmitted. Except when a FORMAT statement
consists entirely of alphameric fields, the FORMAT
statement is used with the list for some particular
input/output statement. Control in the object pro-
gram transfers repetitively between the list, which
specifies whether data remains to be transmitted,
and the FORMAT statement, which gives the specifi-
cations for transmission of that data.

During input/output of data, the object program
scans the FORMAT statement to which the input/out-
put statement refers. When a specification for a
numerical field is found and list items remain to be
transmitted, input/output takes place according to
the specification of the FORMAT statement. If no
items remain, transmission ceases.

Input Data. Input data that is to be read by means of
a READ or READ INPUT TAPE when the object pro-
gram is executed must be in essentially the same
format as given in the previous examples. Thus, a
card that is punched:

27b-0.9321Eb02bbb-0. 0076
can be read according to

FORMAT (12,E12.4,F10.4)

Within each field of the input medium, all infor-
mation must appear at the extreme right. Plus signs
can be omitted or indicated by a blank or +. Minus
signs are punched with an 11-punch. Blanks in nu-
merical fields are regarded as zeros. Numbers for
E- and F-type conversion can contain any number of
digits, but only the f high-order digits will be re-
tained (no rounding will be performed). Numbers
for I-type conversions will be treated modulo 10K.

For economy in punching:

1. Numbers of E-type conversion need not have
four columns devoted to the exponent field. The
start of the exponent field can be marked by an E,
or if that is omitted, by a + or - (not a blank). Thus,
E2, E02, + 2, + 02, E02, and E + 02 are all accept-
able exponent fields.

2. Numbers for E- or F-type conversion need not
have their decimal point punched. If it isnot punched,
the FORMAT specification will supply it. For ex-
ample, the number -09321 + 2 with the specification
E12.4 will be treated as -0.9321 + 2. If the decimal
point is punched in the card, its position overrides
the position indicated in the FORMAT specification.

READ Statement

The READ statement (Figure 35) causes data to be
read from one or more cards as specified by its
list and the FORMAT statement to which it refers.

GENERAL FORM EXAMPLES

‘READ n, List”” where n is the statement
number of a FORMAT statement, and List
is as previously described.

READ 1, ((ARRAY (I, J),
1=1,3), =1, 5)

Figure 35, READ Statement

IBM 1410 FbRTRAN Statements 21

The list specifies storage locations for numerical
input data. The FORMAT statement:

1. Specifies the arrangement of data on the cards.

2. Specifies the type of conversion and scale
factor required for each numerical data field.

3. Provides space for alphameric text to be read
from cards.

4. Specifies card columns that are to be ignored.

5. Should specify a maximum of 80 card columns
for each input record (card). ’

READ INPUT TAPE Statement

The READ INPUT TAPE statement (Figure 36)
causes the object program to read information in
external notation from symbolic tape unit i. Con-
secutive records are read in, as specified by the
FORMAT statement, until the complete list has been
satisfied. For all tape statements in 1410
FORTRAN, the value of i (constant or variable) must
represent an actual magnetic tape unit.

GENERAL FORM EXAMPLES

“READ INPUT TAPE i, n, List” where i is READ INPUT TAPE

an unsigned fixed-point constant or a fixed- 5,30, K, A (J)
point variable, n is the statement number of READ INPUT TAPE
a FORMAT statement, and List is as previ- N, 30, K, A (J)

ously described.

Figure 36. READ INPUT TAPE Statement
PUNCH Statement

The PUNCH statement (Figure 37) causes the object
program to punch cards in accordance with the
FORMAT statement, until the complete list has been
satisfied.

GENERAL FORM EXAMPLES

“PUNCH n, List” where n is the statement
number of a FORMAT statement, and List
is as previously described.

PUNCH 30, (A (J),
J=1, 10)

GENERAL FORM EXAMPLES

“PRINT n, List” where n is the statement
number of a FORMAT statement and List is
as previously described.

PRINT 2, (A (),
J=1,10)

Figure 38, PRINT Statement

WRITE OUTPUT TAPE Statement

The WRITE OUTPUT TAPE statement (Figure 39)
causes the object program to write information in
external notation on symbolic tape unit i. Succes-
sive tape records are written in accordance with the
FORMAT statement, until the complete list has been
satisfied. Note that an end-of-file is not written
after the last record.

GENERAL FORM EXAMPLES

““WRITE QUTPUT TAPE i, n, List"” where
i is an unsigned fixed-point constant or a
fixed-point variable, n is the statement
number of a FORMAT statement, and
List is as previously described.

WRITE OUTPUT TAPE 4,
30, (A (),)=1,10)
WRITE OUTPUT TAPE L,
30, (A (J),J=1,10)

Figure 39, WRITE OQUTPUT TAPE Statement

READ TAPE Statement

The READ TAPE statement (Figure 40) causes the
object program to read information expressed in
internal notation from symbolic tape unit i. Tapes
containing information expressed in internal nota-
tion and read by a 1410-compiled FORTRAN program
must have been written by a WRITE TAPE statement.

GENERAL FORM EXAMPLES

“READ TAPE i, List” where i is an unsigned READ TAPE 2, (A (J),

fixed-point constant or a fixed-point vari- J=1,10)
able, and List is as previously described. READ TAPE K, (A (J),
J=1,10)

Figure 37. PUNCH Statement

PRINT Statement

The PRINT statement (Figure 38) causes the object
program to print one or more lines in accordance
with the FORMAT statement, until the complete list
has been satisfied.

22

Figure 40. READ TAPE Statement

WRITE TAPE Statement

The WRITE TAPE statement (Figure 41) causes the
object program to write information in internal
notation on symbolic tape unit i.

630607MHP

~ GENERAL FORM ¢ EXAMPLES

"WRITE TAPE i, List’”” where i is an unsigned
fixed- point constant or a fixed-point vari-
able, and List is as previously described.

WRITE TAPE 4,
(A (),)=1,10
WRITE TAPE K,
(A (3),J=1,10)

Figure 41. WRITE TAPE Statement

TYPE Statement

The TYPE statement (Figure 42) causes the object
program to print data on the 1415 1/0O printer in
accordance with the FORMAT statement, until the
complete list has been satisfied.

v

GENERAL FORM EXAMPLES ‘

TYPE 56, (A(J),
J=1,10)

“TYPE n, List”” where n is the statement
number of a FORMAT statement and
/ List is as. previously described.

Figure 42, TYPE Statement
END FILE Statement
The END FILE statement (Figure 43) causes the

object program to write an end-of-file mark on
symbolic tape unit i.

GENERAL FORM EXAMPLES
"END FILE i" where i is an unsigned fixed- END FILE 6
point constant, or a fixed-point variable, END FILE K

Figure 43, END FILE Statement

REWIND Statement

The REWIND statement (Figure 44) causes the object
program to rewind symbolic tape unit i.

GENERAL FORM EXAMPLES
“REWIND i where i is an unsigned fixed REWIND 3
point constant, or a fixed point variable. REWIND K

Figure 44. REWIND Statement
BACKSPACE Statement

The BACKSPACE statement (Figure 45) causes the
object program to backspace symbolic tape unit i.

Formated tapes are backspaced one physical record.
Non-formated tapes are backspaced one logical
record.

GENERAL FORM EXAMPLES

BACKSPACE 5
BACKSPACE K

"BACKSPACE i’ where i is an unsigned fixed-
point constant, or a fixed-point variable.

Figure 45, BACKSPACE Statement

1301 Disk Storage Statements

1301 Disk Storage input/output will be performed in
the interpretive mode; that is, by branching to sub-
routines. Control cards are used to supply these
intérpretive routines with descriptive information
about 1301 Disk Storage. The interpretive routines
will operate under the following assumptions:

(1) One or more full cylinders are available.

(2) The cylinders are consecutive.

(3) The cylinders for any one program are avail-
able on any four or less modules.

There are three 1410 FORTRAN statements that
call for IBM 1301 operations. They are:

(1) RECORD (I) List

(2) FETCH () List

(3) FIND (e)

A description of each of these follows:

RECORD Statement
The RECORD statement (Figure 46) specifies the

writing of information into 1301 Disk Storage. This
statement is written as follows:

GENERAL FORM

“"RECORD (I) List"' where (1) is a non-
subscripted fixed-point variable defining

EXAMPLE
RECORD (J) A, B, C, D

the record area and List is an input/out-
put list.

Figure 46. RECORD Statement

The RECORD statement causes the program to start
writing at the record area indicated by the current
value of (I) and to proceed until the list is completed.
If the list is too long for a single record area but
within the defined file area (see DEFINE FILE
statement), writing will continue into consecutive
higher-numbered record areas until the list is com-
pleted.

At the completion of the write operation, the value
of (I) will be the number of the next record area.
For example, if the last character was placed into

IBM 1410 FORTRAN Statements 23

record area 23, the value of (I) will be 24 after the
operation is completed, whether record area 23 was
filled or not.

FETCH Statement
The FETCH statement (Figure 47) causes information

to be read from 1301 Disk Storage and is written as
follows:

GENERAL FORM EXAMPLE

“FETCH (1) List’" where (I) and List are as
defined for the RECORD statement.

FETCH (J) A, B,C, D

Figure 47. FETCH Statement

The FETCH statement causes the program to start
reading at the record area indicated by the current
value of (I) and to proceed until the list is completed.
If the information contained in a record area is not
sufficient to exhaust the list, reading continues at
the next consecutive higher-numbered record area
until the list is completed. At the completion of
the read operation the value of () will be the num-
ber of the next record area.

Status of (I)

The value of (I) refers to a record area, and must be
set prior to the execution of the operation. The
value of (I) may be altered during the execution of

a FETCH operation if I appears in the list; however,
the new value of (I) does not alter the sequence of
records from which input values are taken:

For example:

I=5
FETCH (1) I, C (I)

The fifth logical record will be read. At the con-
clusion of the input list transmission, I will be set
to 6 regardless of the value given to I by its appear-
ance in the list. If the first value in the fifth logical
record were 19, the second value would be read
into C (19), since C (I) would be C (19).

As a second example suppose that each record
area contains 110 values.

DIMENSION A (109), B (100)
1=7
FETCH (I) A, I, B ()

The seventh logical record will be read. The first
109 values in the seventh record will be transmitted
to the array A. If the last value in the seventh rec-
ord were 17, the first value in the eighth record
would be transmitted to B (17). At the conclusion
of the FETCH operation, I will have the value 9.
Note that alternating the value of I in the input list

24

does not alter the normal sequencing from record 7

to record 8, and that at the conclusion of the entire

list transmission the value of I is updated to indicate
the next logical record.

JFIND Statement
The FIND statement (Figure 48) can be used to spec-

ify positioning of the access arm for reading and
writing:

GENERAL FORM EXAMPLE

FIND (e)
where ‘'(e)” is a fixed-point arithmetic expres-

FIND (K*L)

sion. The value of this expression must be a
record number specified within the DEFINE
FILE statement argument.

Figure 48. FIND Statement

This statement is not required, but its inclusion
will decrease the execution time of a program. Both
the RECORD and FETCH statements produce the
coding required to position the access arm for writ-
ing and reading. However, if a FIND precedes
either of these statements, access time will be re-
duced because the access arm will already be in
position to write or read when the RECORD or
FETCH statement is encountered. The access arm
will be positioned to read or write the logical rec-
ord defined by " (e)".

SPECIFICATION STATEMENTS

The fifth class of 1410 FORTRAN statement consists
of the three specification statements: DIMENSION,
EQUIVALENCE, COMMON, and DEFINE FILE.
These are non-executable statements that control
and minimize storage allocation.

DIME NSION Statement
The DIMENSION statement (Figure 49) provides the

information necessary to allocate array storage in
the object program.

GENERAL FORM EXAMPLES

“DIMENSION v, v, v, . . ."” where each
v is the name of an array, subscripted
with 1, 2 or 3 unsigned fixed-point con-
stants. Any number of v's may be
given.

DIMENSION A (10),
B (5, 15),
CVAL (3, 4, 5)

Figure 49, DIMENSION Statement

Each variable that appears insubscripted form in a
programor subprogram must appear in a DIMENSION
statement of the same program or subprogram.

The DIMENSION statement must precede the first
appearance of that variable. The DIMENSION state-
ment lists the maximum dimensions of arrays. In
the object program, references to these arrays can
never exceed the specified dimensions.

For example, in Figure 49, B is atwo-dimensional
array for which the subscripts never exceed 5 and 15.
The DIMENSION statement, therefore, causes
75 (5 X 15) storage words to be set aside for the
array B.

A single DIMENSION statement can specify the
dimensions of any number of arrays. A program or
subprogram must not contain a DIMENSION state-
ment that includes the name of the program or sub-
program.

EQUIVALENCE Statement

The EQUIVALENCE statement (Figure 50) controls
the sharing of storage by two or more variables.
Usually, such variables are subscripted and repre-
sent elements of arrays. An EQUIVALENCE state-
ment can be placed anywhere in the source program,
except as the first statement of the range of a DO.
Eachpair of parentheses of the statementlist encloses
the names of two or more array elements that are
to be stored in the same location during execution of
the object program. Any number of equivalences
(pairs of parentheses) can be given, but fixed-point
and floating-point variables must not be equated.

(GENERAL FORM EXAMPLES

“EQUIYALENCE (a, b, ¢, . . .), (d, e,
f,...),""where a, b, c,d, e f ...
are variables optionally followed by a
single unsigned fixed-point constant in
parentheses,

EQUIVALENCE (A, B (1),
C(5)), (D(17), E(@))

Figure 50. EQUIVALENCE Statement

In an EQUIVALENCE statement, C (5) is the fifth
sequentially stored element of the array named C.
If a parenthetical number is not specified, it is as-
sumed to be 1. Thus, the sample statement in
Figure 50 indicates that the A, B, and C darrays are
to be assigned storage locations so that the elements
A, B (1) and C (5) will occupy the same storage lo-
cation. Also elements D(17) and E(3) are to share
the same location. Note that an EQUIVALENCE
statement for elements of two or more arrays com-
pletely defines the relative locations of all elements
of these arrays. ’

Quantities or arrays that are not mentioned in an
EQUIVALENCE statement will be assigned unique
locations.

COMMON Statement

The COMMON statement (Figure 51) enables data
storage areas to be sharedby more than one program,
similar to the way the EQUIVALENCE statement
provides storage sharing by a single program.

A variable (or array) that appears in both a main
program and a subprogram, but has been assigned
different names in the two programs, can be made to
share the same storage location by a COMMON state-
ment, For example, if the main program contains
the statement

COMMON A
and a subprogram contains the statement
COMMON X
variables A and X will share a common storage lo-
cation.

Within a specific program or subprogram, vari-
ables and arrays are assigned storage locations in
the sequence that their names appear in a COMMON
statement. Subsequent sequential storage assign-
ments, within the same program or subprogram,
are made by using additional COMMON statements
or by modifying an earlier COMMON statement.
Thus, if the main program contains the statement:

COMMON A, B, C
and a subprogram contains the statement:

COMMON X, Y, Z
variables A, B, and C are assigned sequential stor-
age locations, as are variables X, Y, and Z. Fur-
thermore, A and X will occupy the same storage lo-
cation, as will B and Y, and C and Z.

GENERAL FORM EXAMPLES

“COMMON A, B, . . .” where A, B,
. are the names of variables and

COMMON X, ANGLE,
MATA, MATB
non-subscripted arrays.

Figure 51, COMMON Statement

A dummy variable can be used in a COMMON
statement to force correspondence of two variables
that otherwise would occupy different storage loca-
tions. Thus, in the previous example C and Y can
be equated by writing the subprogram statement

COMMONQ, R, Y
in which Q and R are dummy variables that will not
be used in the program. The same result can be
achieved by rewriting the main program COMMON
statement, except that COMMON statements

IBM 1410 FORTRAN Statements 23

appearing in additional subprograms might be
affected undesirably.

The sequential assignment of storage locations is
controlled first by the sequence of COMMON state-
ments within the main program and then by the se-
quence of variable names within each COMMON
statement. If an EQUIVALENCE statement is used,
it assumes priority. That is, storage locations are
assigned first to meet the requirements of the
EQUIVALENCE statement, and then to meet the re-
quirements of the COMMON statement. Thus for
example, the statements

COMMON A, B, C, D
EQUIVALENCE (C,E), (B, F)
cause this sequential assignment of storage locations
to the variables:
location 1 C and E
" 2 Band F
1t 3 A
" 4 D

Arguments may be transmitted implicitly from a
calling program to a called subprogram (see ''Sub-
programs') by using a COMMON statement in each
of the two programs to equate corresponding argu-
ments. However, at least one explicit argument is
required for FUNCTION subprograms.

DEFINE FILE Statement
The DEFINE FILE statement (Figure 52) is used to

define the maximum-size 1301 disk record area ad-
dressed by the object program. The entries in this

26

statement must be compatible with the format de-

fined by the format track. The statement specifies:

n1, where ny, is the exact number of values con-
tained in each fully utilized addressable record.
This number is the number of elements in an in-
put/output list that refers to one entire recordarea.

n,, where ny is the maximum number of record
areas that will be used in the program. All disk
record areas must be of the same length. They
are defined on theformat track thatis specified by
the individual computer installation. The disk rec-
ord areas must be large enough to accommodate
ny variables, integer or floating point--whichever
is specified as the longer field size. For 1410
FORTRAN, the maximum size of a disk record
area is 2800 characters--one full track.

The DEFINE FILE statement is written as follows:

GENERAL FORM EXAMPLE

DEFINE FILE (ni, nz) where "m" and

[T

n:'' are fixed-point constants repre-

DEFINE FILE (280, 150)

senting the maximum number of values
per disk record area and the maximum
number of such record areas, respec-

tively.

Figure 52, DEFINE FILE Statement

The DEFINE FILE statement must appear only in
the main program and only once in this program.

'4-1468-1

TSIV

®
International Business Machines Corporation
Data Processing Division

112 East Post Road, White Plains, New York

{spa3areg

S

oyt

1-89%1-82(

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	xBack

