IBM Technical Newsletter File Number ~ 1410/7010-36

: Re: Form No. C28-0319
/ | This Newsletter No. N28-1077
Date August 5, 1963

- Previous Newsletter Nos. None

IBM 1410/7010 SYSTEM MONITOR

This newsletter contains replacement pages reflecting an expansion of the specifications
described in the publication, IBM 1410/7010 Operating System; System Monitor: Pre-
liminary Specifications, Form C28-0319.

Changes in text are indicated by a vertical bar to the left of the text, Changes in figures

are indicated by a (@) to the left of the figure number, A vertical bar to the left of
headings on pages 7, 13 and 30 indicates a deletion.

International Business Machines Corp., Programming Systems Publications, P. O. Box 390, Poughkeepsie, N. Y.

PRINTED IN U.5.A. : N28-1077 (C28-0319) Page 1 of 1

Introduction

Purpose of this Publication

This publication describes the use of the 1410/7010
Operating System under control of the System Moni-
tor. Included in this material is information concern-
ing the functions and components of the System
Monitor, its relationship to the Operating System, and
considerations for writing programs to run under con-
trol of the System Monitor.

Purpose of the System Monitor

The System Monitor performs the control functions
for the 1410/7010 Operating System. Some of the
major functions performed for programs within the
Operating System are as follows:

Assignment of input/output units.

Program loading, including relocation of programs,
and linkage between programs and subroutines
that were independently written and compiled.

Programmed transition from rurn-to-run and job-
to-job.

Advantages of the System Monitor

Efficient Machine Operation: The primary goal of
the Operating System is the efficient use of machine

time. The System Monitor works toward this goal by

facilitating quick and automatic transition from run-
to-run and job-to-job, and by minimizing and simpli-
fying operator intervention.

Definition of Programming and Operating Stand-
ards: An additional advantage provided by use of the
System Monitor is the establishment of standards for
programming and for machine-room operations. These
standards result in better communication between the
individual programmers within an installation and be-
tween programmers and machine-room personnel.
Consequently, time-savings can be realized in the plan-
ning and integration of programs, and also in the
operation of those programs. Furthermore, this estab-
lishment of standards facilitates the exchange of pro-
gramming with any other installation that uses the
1410/7010 Operating System.

The System Monitor

Segmentation of Programs: Because of the System
Monitor’s ability to relocate and link programs in
storage, programs can be written and tested in logical
segments. When it is time to integrate the various seg-
ments into a complete program, the System Monitor
will efficiently assign storage locations for each of the
segments and link the segments together. This facility
also enables an installation to create a collection of
subroutines that can be incorporated into any number
of main programs.

Capabilities for TELE - PROCESSING® Systems:
The System Monitor can provide, at the option of each
installation, control facilities for M TELE-PROCESS-
ING® Systems. Detailed information concerning this
type of application is contained in the publication,
The TELE-PROCESSING Supervisor, Form C28-0321.

Prerequisite and Related Literature

The publication, 1410/7010 Operating System: Basic
Concepts, Form (C28-0318, is prerequisite literature
for this publication. The reader is assumed to be fami-
liar with both the terminology and concepts defined
by that.publication.

Related literature includes the following publica-
tions, which are recommended to the reader who
wishes detailed information concerning all the ele-
ments and functions of the 1410/7010 Operating Sys-
tem:

System Generation, Form (C28-0320

The Basic Input/Output Control System, Form C28-
0322

The TELE-PROCESSING Supervisor, Form C28-
0321

Utility Programs, Form C28-0325

The Generalized Tape Sorting Program, Form C28-
0324

Random-Processing Scheduler, Form C28-0323
Autocoder, Form C28-0326

FORTRAN, Form C28-0328

COBOL, Form C28-0327

The System Monitor 5

Form C28-0319
Page Revised August 5, 1963
by TNL N28-1077

Basic Principles of the System Monitor

Logical Structure of the System Monitor

The System Monitor consists of three major elements.
The first of these elements comprises the control rou-
tines that remain in core storage at all times. This
element is called the Resident Monitor. The second
element consists of routines that perform functions
related to the transition from run-to-run and job-to-
job. This element, which is called the Transitional
Monitor, is brought into storage when such transi-
tional functions are required. The analysis of control
cards for the System Monitor is one of the major
functions performed by the Transitional Monitor, The
third element, which is called the Linkage Loader,
performs the functions required to prepare relocatable
programs for execution.

Functions of the Resident Monitor

The following information outlines the major func-
tions performed by routines within the Resident Moni-
tor. More detailed information concerning the use of
these functions can be found in later sections of this
publication.

INPUT/OUTPUT CONTROL SYSTEM

The Input/Output Control System (10cs) is created
during System Generation to meet the requirements of
each installation using the Operating System. This
10Gs, which is termed the Resident IOCS, is an integral
part of the Resident Monitor. It contains the basic
routines, such as those required for error checking
and channel scheduling, that perform functions com-
mon to all input/output operations. (For detailed
information concerning the Resident 1o0cs, see the pub-

lication, Basic Input/Output Control System, Form
C28-0322.)

UNIT-RECORD ROUTINES

The Resident Monitor contains three routines to
handle input/output operations for unit-record equip-
ment. One of these routines is for card input, another
for card output, and the third is for printer output.
At the installation’s option, each of these unit-record
functions can be performed with magnetic tape. For
card output and printer output functions, the installa-

6

tion specifies at System Generation time whether that
function is to be performed with magnetic tape, unit-
record equipment or not at all.

ASSIGNMENT ROUTINE

Facilities for performing functions related to the
assignment of input/output units for program use are
included in the Resident Monitor and in the Transi-
tional Monitor. The Resident Monitor contains tables
of information concerning the installation’s input/
output equipment, and facilities for providing this
information as it is required during the execution of
programs. The Transitional Monitor performs the
analysis of control-card information related to input/
output assignment, and coordinates this information
with the functions of the Resident Monitor’s Assign-
ment Routine.

END-OF-PROGRAM ROUTINE

The End-of-Program (eor) Routine analyzes each
end-of-program situation to determine the function to
be performed next. If it is a Normal EOP (successful
completion of the program being executed), the
Transitional Monitor is brought into storage to ana-
lyze the control cards that define the next run.

If the end-of-program situation is caused by pro-
gram failure (this situation is called Unusual EOP),
the eop Routine can preserve the status of core stor-
age by writing onto tape an image of the contents of
storage. The Transitional Monitor is then brought
into core storage to analyze control cards from the
Standard Input Unit.

LOAD ROUTINE

The Load Routine brings into storage those programs
that are ready for immediate execution. Such pro-
grams, which are said to be in absolute format, include
programs that have been prepared for execution by
the Linkage Loader and programs that are on the Sys-
tem Operating File. (The Linkage Loader, for ex-
ample, is in absolute format and resides on the Sys-
tem Operating File. It is one of the programs that
is loaded directly into core storage by the Load Rou-
tine.)

The Load Routine also performs the searching func-
tions that are required during the execution of a job.
For example, this routine locates the next phase of a
multiphase program and brings that phase into stor-
age. Note that the next program phase need not be
the next in numerical sequence. Each program phase,
at its completion, specifies to the Load Routine which
phase is to be located. For example, Phase 1 of a pro-
gram could issue a request for either Phase 2 or any
other phase, basing its choice on the result of the
processing in Phase 1.

COMMUNICATION REGION

The Communication Region is a collection of data
areas that contain various types of control informa-
tion. Sorne of these areas contain information used for
communication between various 18M programs within
the Operating System; others contain information of
value to the user’s programs operating under control
of the System Monitor,

For example, one area of the Communication Region
is used to store the current date, This area can be
addressed by any program. The Resident 1ocs uses
this area to determine the date for writing and check-
ing tape labels. The user’s programs can address this
area for such purposes as creating a header record for
printer output.

All' modifications to the information in the Com-
munication Region are performed through the Resi-
dent Monitor.

WAIT-LOOP ROUTINE

The Wait-Loop Routine provides a means for pro-
grams to suspend processing until the machine oper-
ator performs a specified function, such as changing
the type of forms being used for the printer. A pro-
gram can write a message on the console typewriter,
branch to the Wait-Loop Routine, and resume proc-
essing after the operator signals the Resident Moni-
tor that the function specified by the message has been
completed.

| CONSOLE INQUIRY ROUTINE

Facilities for responding to Console Inquiries are in-
cluded in both the Resident Monitor and the Transi-
tional Monitor. The Resident Monitor accepts Con-
sole Inquiries that can be serviced during a run, such
as the signal from the operator to exit from the Wait-
Loop Routine. The Transitional Monitor accepts Con-
sole Inquiries related to functions performed between
runs, such as a signal to begin reading from the Alter-
nate Input Unit.

The Console Inquiry Routines (in both the Resi-
dent and Transitional Monitors) serve as a means of

Form C28-0319
Page Revised August 5, 1963
by TNL N28-1077

communicating control information to the System
Monitor.

Functions of the Transitional Monitor

The following information outlines functions per-
formed by routines within the Transitional Monitor.
The preceding information concerning functions of
the Resident Monitor also includes information re-
lated to functions for which both the Resident and
Transitional Monitors provide facilities.

CONTROL-CARD INTERPRETATION ROUTINE

When the Transitional Monitor is brought into stor-
age, one of its major functions is the interpretation
of control cards directed to the System Monitor to
define the next run (or job). (These cards include an
identification field containing the characters mMon$$
and are termed Monitor control cards.) For this func-
tion, the Transitional Monitor contains a Control-
Card Interpretation Routine. This routine analyzes the
Monitor control cards and, in accordance with their
specifications, gives control to whichever elements of
the System Monitor are required to prepare and exe-
cute the next run.

JOB ROUTINE

The Job Routine performs functions related to the
initialization of the Resident Monitor for the next
job. This includes resetting various program switches,
clearing certain areas in the Communication Region,
and insuring that all 1ocs functions for the previous
job are completed.

Functions of the Linkage Loader

The Linkage Loader converts relocatable program ele-
ments into absolute format and in the process resolves
all symbolic linkages and references into machine-
language instructions and addresses.

For each program requiring these functions, the

‘Linkage' Loader produces a file, in absolute format,

consisting of all the program elements that are to be
executed as one logical program unit. (The final pro-
gram unit is considered to be executable, since it is
ready to be loaded directly into core storage and given
processing control. Also note that a single executable
program can be divided into phases which are loaded
and executed one after another.) The file produced
by the Linkage Loader is called the Job File. This
file is brought into core storage by the Load Routinc
contained in the Resident Monitor.

The basic program unit with which the Linkage
Loader performs its functions is termed a subprogram.

Basic Principles of the System Monitor 7

A subprogram normally consists of the relocatable
output from one compilation by a language processor.
The Linkage Loader can construct a program in abso-
lute format from one or more subprograms. Selection
of the subprograms that are to be converted into a
single executable program is determined by control
cards from the Standard Input Unit, or by control
information imbedded in the subprograms being
processed.

Execution of the Linkage Loader is requested by a
Monitor control card from the Standard Input Unit.
This permits the use of the Linkage Loader as an inde-
pendent program, in the same manner as a compiler
or sorting program, and offers the user considerable
flexibility in the use of the Linkage Loader to meet
the requirements of various jobs. (For example, the
Linkage Loader can be directed to create a Job File
that is, in effect, a library of programs in absolute
format. These programs can then be executed in the
same job, and the file can also be saved for execution
of the programs in later jobs.)

The Linkage Loader also has the ability to include
the Snapshot Program into the program that is being
converted to absolute format. This optional feature is
requested by a control card from the Standard Input
Unit, or by a control statement imbedded in a sub-
program.

An additional feature of the Linkage Loader is the
ability to incorporate patches into a previously com-
piled subprogram,

Input/Output Files for the System Monitor

To perform the control functions for programs within
the Operating System, the System Monitor requires a
group of input/output files. These files, which are
described below, can be assigned to various configu-
rations of input/output units.

System Operating File

The System Operating File contains the programs
within the Operating System that are in absolute
format. This necessarily includes the System Monitor,
and can include the language processors (with associ-
ated data files), the Utility Programs, and the Sort
Definition Program. (The first element of the System
Operating File is a routine, called the Bootstrap, that
initially loads the Resident Monitor into core stor-
age.) The System Operating File is created at the time
of System Generation, and is constructed according
to the program requirements of each installation.
When this file is created, the user may add other pro-
grams, such as sorting programs produced by the Sort

8

Definition Program. The System Operating File can
also include programs in relocatable format. Such pro-
grams are contained within a contiguous section of
the System Operating File and constitute the System
Library (which is discussed below). The System Oper-
ating File may be on either tape or disk.

System Library File

The System Library File contains relocatable pro-
grams. This file is one of the input sources for the
Linkage Loader. The Library may be on either tape
or disk. (If the Library is on tape, it can be on the
same tape as the System Operating File or it can be
on a separate reel.) An installation can have any num-
ber of Libraries, but only one is designated as the
System Library File for a particular run of the Link-
age Loader.

Standard Input Unit

The Standard Input Unit contains the file of control
information for the System Monitor. Source pro-
grams for the language processors, relocatable pro-
grams to be processed by the Linkage Loader, and
input data for the user’s programs may also be placed
in the Standard Input Unit. At the option of each
installation, an Alternate Input Unit may also be desig-
nated. Control information can be submitted to the
System Monitor through either unit. This configura-
tion permits a high-priority job in the Alternate Input
Unit to-break into the previously established sequence
of jobs in the Standard Input Unit. The Standard
Input Unit can be a card reader or a magnetic tape
unit. The Alternate Input Unit can also be either a
card reader or a magnetic tape unit.

Standard Print Unit

The Standard Print Unit is used for all printer out-
put from M programs within the Operating System.
It is also available for use by the installation’s pro-
grams. This unit can be either the 1BM 1403 Printer
or a magnetic tape unit. If it is a tape unit, it can be
the same unit as the Standard Punch Unit, which is
described below.

Standard Punch Unit

The Standard Punch Unit is used for all punched-
card output from 1BM programs within the Operating
System. It is also available for use by the installation’s
programs. This unit may be either the 1BMm 1402 Card
Read Punch or a magnetic tape unit. If it is a tape
unit, it can be the same unit as the Standard Print
Unit.

Autocoder includes language statements that directly
relate to the use of Communication Symbols.

LINKAGE SYMBOLS

Linkage Symbols are established by two types of
cards: the Title card of a subprogram and Definition
cards that are included in a subprogram. (Autocoder
includes the pEFIN statement for the creation of Defi-
nition cards.)

Each time the Linkage Loader encounters one of
these cards, it places into a table the characters that
have been declared as a Linkage Symbol and the
address assigned by the compiler to the Linkage Sym-
bol. (The address is placed into the table after it has
been relocated.) For example, a Title card declares
the name of the subprogram as a Linkage Symbol,
and the origin point of the subprogram (after reloca-
tion) becomes the address assigned to that Linkage
Symbol. This procedure enables a subsequent subpro-
gram to refer to a previously-processed subprogram
by means of the Linkage Symbol established for the
name of the previous subprogram.

A Linkage Symbol can appear in a subprogram in
either of two formats:

1. A symbol consisting of one to ten alphameric
characters, such as the name of a subprogram. (The
first character must be alphabetic.)

2. A five-character symbol consisting of four alpha-
meric characters followed by a slash (aBcp/). The
first character must be alphabetic.

References to Linkage Symbols of the format de-
scribed in item 1 above, are made by DCWS and
DCWF cards. (coBoL and FORTRAN automatically gen-
erate these cards in accordance with the requirements
of their source programs. Autocoder includes lan-
guage statements for the generation of these cards.)
When the Linkage Loader encounters a pcws card,
it supplies the subprogram with a branch instruction
containing the address assigned to the Linkage Sym-
bol specified by that pcws card. The pcwr card causes
the Linkage Loader to supply the subprogram with a
five-character constant of the address assigned to the
Linkage Symbol.

References to Linkage Symbols of the format
aBcp/ can be made either by pcws and pcwr cards,
or by use of the symbol in the A-field or B-field of
an instruction. For example, in the Autocoder lan-
guage, the programmer can use the DEFIN statement
to declare work/ as a Linkage Symbol that represents

Form C28-0319
Page Revised August 5, 1963
by TNL N28-1077

the address of a work area. The programmer can then
use WORK/ as an operand of an instruction that refers
to that work area, such as S 4+ 10, work/. Such an
instruction can be included in any other subprogram
that is to be processed by the Linkage Loader during
the same run as the subprogram that declared the
Linkage Symbol.

For each Linkage Symbol of the format aBcp/, the
Linkage Loader supplies the subprogram with the
address equated to that symbol in the Linkage
Loader’s symbol table.

| SYSTEM SYMBOLS

All System Symbols have the format, /aBc/. These
symbols can be used in the same manner as Linkage
Symbols of the format, aBcp/. (The following section
of this publication, “Programming Considerations for
use of the System Monitor,” contains information
concerning System Symbols that can be used for direct
reference to elements within the Resident Monitor,
such as the Communication Region.)

LISTING OF COMMUNICATION SYMBOLS

The Linkage Loader produces a listing of all Com-
munication Symbols used during the processing of
subprograms. Each of the symbols is listed with the
core-storage address that it represents. Thus; the list-
ing provides a means for determining the location of
program elements after they have been relocated.

Common Data Areas

In addition to the use of Linkage Symbols, separately
compiled subprograms can communicate with each
other by the establishment of a common data area.
As mentioned earlier, the Linkage Loader applies a
special downward relocation to addresses that refer
to such a data area. The term downward relocation
derives from the fact that common data areas are
compiled from a particular location downward to a
lower location, while other parts of a subprogram
(such as its instructions) are compiled from a partic-
ular location up to a higher location.

Multiphase Programs

The Linkage Loader has the ability to accept control
information specifying the division of a single exe-
cutable program into various phases. (Each phase
must consist of at least one subprogram.) This infor-
mation is submitted through the Standard Input Unit

Use of the Linkage Loader 13

Form C28-0319
Page Revised August 5, 1963
by TNL N28-1077

with the other control cards for the Linkage Loader.
The control cards used for construction of multiphase
programs are included in the following topic.

Control Cards for the Linkage Loader

The information in this topic includes the functions
and formats of the various control cards that can be
submitted to the Linkage Loader through the Standard
Input Unit.

The general format of control cards for the Linkage
Loader is the same as the format used for Autocoder
source statements:

Columns 16-20 (the Operation field) contain the
name of the card, identifying its function.

Columns 21-72 (the Operand field) are used to
specify information related to the function indicated
in columns 16-20.

Note that control cards for the Linkage Loader are
not Monitor control cards; that is, they do not con-
tain the identification Mmon$$. Rather than directing
the general flow of processing during a batch, Linkage
Loader control cards direct the processing to be per-
formed during one run of the Linkage Loader (in
much the same manner as control cards direct the
processing for one run of a sorting program).

The following list contains the names of the vari-
ous control cards for the Linkage Loader; the cards
are described below in the order of this list. The TiTLE
and pEFIN cards are described in the publication,
“IBM 1410/7010 Operating System, Autocoder: Pre-
liminary Specifications,” Form C28-0326, Those cards
preceded by an asterisk (*) can be contained within
a subprogram (in addition to being submitted through
the Standard Input Unit),

® CALL
CALLN
CALLP
PHASE
* BASE1
* PRTCT
* BASE2
SNAP
INPUT
* TITLE
* DEFIN

The CALL Card

The operand of the carL card is the name of the
subprogram to be processed by the Linkage Loader.
This card is used for a subprogram located on either
the System Library File or the Go File. A subprogram

14

located in the Standard Input Unit does not require
a carLL card; its Title card serves the function of the
cailL card. When the Linkage Loader encounters a
caLL card, it adds the specified name to a list. At the
time the Linkage Loader is ready to begin processing
the subprograms on this list, it searches the Go File
and then the System Library File to find them.

It is important to note that this searching is per-
formed by reading the names of the programs on
the Go File and the System Library File and com-
paring them to the names on the list of requested
subprograms. This technique minimizes the time re-
quired for searching.

Because the Linkage Loader employs this technique
in order to minimize search time, the final sequence
of subprograms in core storage is not necessarily the
same sequence as the carLL cards that specified the
requests for those subprograms. (The caLin card,
which is described later, can be used to control the
relative positioning of subprograms in core storage.)

For example, assume that the following subpro-
grams are arranged sequentially on the System Li-
brary File: spl, sp2, sp3, sp4, and sp5. Assume also that
caLL cards were read from the Standard Input Unit
in the following order: cALL sp3, caLL spl, caLL sp4.
The Linkage Loader begins its search of the System
Library File and locates the Title card for spl. It
checks this name against the names on the list and
finds that there is a request for spl; therefore, it
processes spl, and places it on the Job File. The Link-
age Loader then searches forward in the System Li-
brary File and locates the Title card for sp2. It checks
the list, finds no request for sp2, and continues in the
search. The Title card for sp3 is located in the Library
and checked agaist the list. The Linkage Loader finds
that there is a request for sp3 and, therefore, processes
it and places it on the Job File behind spl. This pro-
cedure continues until all the subprograms on the list
have been located, processed, and placed on the Job
File.

In the example above, the final sequence of the sub-
programs would be srl, sp3, sp4 — the order in which
they were located on the Library. (The relative loca-
tion of subprograms in storage is referred to as the
memory map. This term will be used to present ex-
amples that illustrate control of the positioning of a
subprogram.) The relocation factor for the three sub-
programs was adjusted as follows: spl was given an
origin point of Base Zero and all upward relocation
for spl was performed with a relocation factor equal
to Base Zero; sp3 was given an origin point of Base
Zero plus the size of spl and all upward relocation
for sp3 was performed with a relocation factor equal
to Base Zero plus the size of spl; sp4 was given an
origin point of Base Zero plus the combined size of

spl and se3 and all upward relocation for sr4 was
performed with a relocation factor equal to Base Zero
plus the combined size of spl and sp3.

IMBEDDED CALLS

In addition to requests for subprograms specified by
caLL cards, the Linkage Loader interprets ncws and
pcwF cards as requests for subprograms. (Since these
cards are contained within subprograms, this type of
request is termed an imbedded call.)

The imbedded call implied by a pcws or pCcwr
card is related to the establishment (by a Title card)
of the name of a subprogram as a Linkage Symbol.
When the Linkage Loader encounters an imbedded
call, it checks its symbol table to determine whether
the name of the called subprogram has been estab-
lished yet as a Linkage Symbol. If it has (meaning
that the subprogram has already been processed, since
its Title card established the symbol), the Linkage
Loader replaces the imbedded call with either a
branch to the address assigned to the Linkage Symbol,
or with a five-character constant containing that ad-
dress (depending on whether the imbedded call is a
DCWS Or DCWF).

If the called subprogram has not yet been proc-
essed, the Linkage Loader places the name of the sub-
program on its list of requests (the same list used for
requests specified by caLL cards). When the Linkage
Loader later locates and processes the subprograms
on this list, it generates cards that supply the pre-
vious imbedded calls with the branch addresses and
constants that are determined by the processing of the
Title cards of the subprograms.

Note 1: The Linkage Symbol established by the
Title card of a subprogram represents the origin
point of that subprogram. Autocoder, in addition,
provides the pEFIN statement for establishing Linkage
Symbols to represent any point in a subprogram.
These Linkage Symbols can also appear in pcwr and
pcws cards, and are treated by the Linkage Loader
in the same manner as pcwr and pcws cards that
contain thé name of a subprogram. It is important to
note, however, that a subprogram is located and proc-
essed only if it has been called by the name contained
in its Title card. Therefore, if subprogram jorL con-
tains an entry point represented by the Linkage Sym-
bol 7aNE/, the card pcws JANE/ cannot be completely
processed unless a call is made for joEL, either by a
caLL card or an imbedded call.

Note 2: Linkage Symbols established within a parti-
cular phase of a multi-phase program can be referred
to by subprograms within the same phase and suc-
ceeding phases, but they cannot be referred to by pre-
ceding phases. For example, Phase 1 cannot contain a
pcws card containing the Linkage Symbol mmma/ if

Form C28-0319
Page Revised August 5, 1963
by TNL N28-1077

that symbol is not established (by a Title card or
Definition card) until Phase 2.

The following rules apply to the calling of pro-
grams:

1. Rules of precedence for memory maps:

a. The first subprograms in core storage will be
those read from the Standard Input Unit (in
the order read).

b. The second group of subprograms in core
storage will normally be those read from the
Go File (in the order read).

c. The third group of subprograms in core stor-
age will normally be those read from the Sys-
tem Library File (in the order read).

d. If the subprograms in steps b and/or ¢ contain
imbedded calls, then steps b and ¢ will be re-
peated, in that order, until all calls are satisfied.

9. Imbedded cells are considered to be for subpro-
grams in the System Library File.

If the subprogram requested by an imbedded call is
on the Go File, it must be requested by a caLL card.

Note: The cain card may be omitted if the re-
quested subprogram follows the requesting subpro-
gram on the Go File.

3. Squrograms placed in the Standard Input Unit
do not require a carL card; their Title card serves
this function.

EXAMPLES

To illustrate the use of the various control cards for
the Linkage Loader, examples are presented after the
descriptions of the functions of those cards. For the
convenience of the reader, a standard format is em-
ployed for these examples.

Each example begins with a description of the type
of operation to be performed by the Linkage Loader
(such as construction of a multiphase program), and
includes a description of the situation in which this
operation is to be performed (location of the subpro-
grams, whether or not they contain imbedded calls,
etc.).

Following the definition of the situation is a sequen-
tial list of the control cards that are to be placed in
the Standard Input Unit in order to meet the require-
ments of the situation, (The Monitor control card
that initiates execution of the Linkage Loader is
assumed to immediately precede the control cards for
the Linkage Loader.) The Linkage Loader determines
that it has come to the end of its control cards when
it finds that the next card in the Standard Input Unit
is not in a format that the Linkage Loader recognizes.

Use of the Linkage Loader 15

(The next card must be a Monitor control card. The
Appendix of this publication contains a sample con-
trol-card deck, illustrating the relative positions of
Linkage Loader control cards and Monitor control
cards.) Following the list of control cards in each
example is a description of the Linkage Loader’s pro-
cedures as it reads the cards.

The last item in the examples is a diagram of the
memory map that results from the Linkage Loader’s
processing. The following format is used for these
diagrams:

The area from point “X” to point “Y” represents
the area of core storage used for the subprograms
that were just processed. When the name of only one
subprogram appears in an area (such as spl in area
“A”), the diagram indicates that this subprogram will
be definitely positioned in this area, relative to any
other subprograms in core storage. (The diagram
above indicates that spl will definitely be the lowest
subprogram in core storage, and sp2 will be the high-
est subprogram.) The dotted line through area “B”
indicates that this area of storage will not be loaded
for this particular phase. (This type of area is used
in examples of multiphase programs.)

The following terminology is employed in the
examples:

1. stw: The Standard Input Unit.

2. Library: The System Library File.

3. Request list: The list on which the Linkage

Loader places the name of a subprogram when it is
called.

4. Flag: The indicator that the Linkage Loader sets
for a name on the request list after the subprogram
of that name has been processed.

5. Title Card for spx: A term used in the list of
control cards at the stu. The term indicates that sub-
program spx is placed in the stu at this point, relative
to any other cards for the Linkage Loader.

EXAMPLE 1

This example illustrates the procedure for directing
the Linkage Loader to process a subprogram from
the Library. The subprogram (spl) constitutes a self-
contained, single-phase program that contains no im-
bedded calls for other subprograms.

Only one control card is necessary: carL spl. The
Linkage Loader will locate spl on the Library, process
it, and place it on the Job File.

16

EXAMPLE 2

This example illustrates the procedure for directing
the Linkage Loader to construct a single-phase pro-
gram from three subprograms: spl, sp2, and sp3. (One
of the three must be a primary subprogram, the other
two can be secondary.) In this example, spl is on the
Library, sp2 is in the siu, and sp3 is on the Go File.
None of the subprograms contain imbedded calls.
The sequence of cards in the s1u is as follows:

CALL spl

Title Card for sp2

CALL sp3 '

The Linkage Loader proceeds as follows:

1. carr spl: The name spl is placed on the re-
quest list.

2. Title card for sp2 (followed by other cards of
sp2): sp2 is processed and the name sr2 is added to
the request list, with a flag indicating that sp2 has
been processed.

3. carr sp3: The name sp3 is added to the request
list. The Linkage Loader resumes reading from the
stu and finds no further control cards. It begins
searching the Go File, locates sp3, and processes it.
Next, the Library is searched. spl is located and
processed.

The memory map is as follows:

SP2 l SP3 , SP1 ‘

EXAMPLE 3

This example illustrates the construction of a single-
phase program from three subprograms, one of which
is processed because of an imbedded call. spl is on
the Library and contains an imbedded call for sp3;
sp2 is on the Go File.

The sequence of cards in the stu is as follows:

CALL spl
CALL sp2

The Linkage Loader proceeds as follows:

1. carr, spl: The name spl is placed on the re-
quest list.

2. cair. sP2: The name sp2 is placed on the re-
quest list. The Linkage Loader resumes reading from
the srv and finds no further control cards. It begins
searching the Go File, locates sp2, and processes it.
Next, the Library is searched. spl is located and
processed. During the processing of spl, the Linkage
Loader finds the imbedded call for sp3. At that time,
the name sp3 is placed on the request list. When the
processing of spl is completed, the Linkage Loader
checks the request list, finds the unsatisfied request,
and resumes the search of the Library. sp3 is located
and processed.

The memory map is as follows:

l sP2 1 SP1 ‘ SP3 '

The CALLN Card

The function of the caLLn card is essentially the same
as the caLL card, except that the caLiN card directs
the Linkage Loader to immediately locate and process
the specified subprogram (cariN means Call Now).
This card can be used to control the memory map.

The relative position of the subprogram specified
by a cALLN card is established in accordance with the
following Linkage Loader procedure:

1. All subprograms specified by previous carL cards
are located and processed.

2. Any imbedded calls resulting from the processing
of those subprograms are also processed (except im-
bedded calls for the subprogram named in the caLLN
card).

3. The subprogram specified by the caLiN card is
processed after the subprograms specified in 1 and
2, above.

4. Any imbedded calls resulting from the processing
of the subprogram specified by the caLLN card are
added to the list of requested subprograms (if the
imbedded calls have not been satisfied by the proc-
essing already performed).

The following rules apply to the use of caLLN card:

1. Rules of precedence for memory maps:

a. All subprograms called prior to the subpro-
gram named by the caLLN card will be the first
subprograms in core storage. (The relative
order of those subprograms is determined in
accordance with the rules of precedence for
the caLL card.)

b. The subprogram named by the carin card will
be placed in core storage following the sub-
programs specified in la, above.

2. If a subprogram located in the Standard Input
Unit is to be processed in accordance with the caLL~
procedure, it must be immediately preceded by a
caLLN card containing the name of that subprogram.

EXAMPLE 1

This example illustrates the construction of a single-
phase program from three subprograms, one of which
must be positioned between the other two. All three
subprograms are on the Library, and none of them
contain imbedded calls. The sequence of subprograms
on the Library is spl-sp2-sp3; sp3 must be positioned
after spl and before sp2.

The sequence of cards in the sw is as follows:

CALL spl
CALLN sp3
CALL sp2

The Linkage Loader proceeds as follows:

1. caL spl: The name spl is placed on the re-
quest list.

2. caLLN sp3: The name sp3 is saved in an area
(the cALLN area) used for names of subprograms that
appear as the operand of caLLn cards (it is not yet
placed on the request list.) The Linkage Loader be-
gins searching for previously-called subprograms. It
locates spl on the Library and processes it. The Link-
age Loader then determines that the request list has
been satisfied (spl was the only name on the list).
The name sp3 is moved to the request list. sp3 is then
located and processed.

3. caLL sp2: The name sp2 is placed on the re-
quest list. The Linkage Loader resumes reading from
the stv and finds no further control cards. sp2 is then
located and processed.

The memory map is as follows:

SP1 l sP3 l sP2 |

EXAMPLE 2

This example illustrates the construction of a single-
phase program from three subprograms, one of which
must be positioned between the other two; another
contains an imbedded call for the subprogram that
must be placed in the middle position.

The three subprograms are on the Library in the
orfder, spl-sp2-sp3. sp3 must be positioned after spl
and before sp2; spl contains an imbedded call for sp3.

The sequence of cards in the sv is as follows:

CALL spl
CALLN sp3
CALL sp2

The Linkage Loader proceeds as follows:

1. caLL spl: The name spl is placed on the re-
quest list.
2. cautN sp3: The name sp3 is saved in the caLLN

area. The Linkage Loader begins searching for pre-
viously-called subprograms. It locates spl on the Li-
brary and processes it. During the processing of spl,
the Linkage Loader finds the imbedded call for sp3.
It places the name sp3 on the request list. When spl
is completely processed, the Linkage Loader checks
the request list, finds the name sp3, but also deter-
mines that sp3 is in the cavLN area. Therefore, the
name sp3 is flagged on the request list, and the Link-
age Loader makes a note to supply the imbedded call
in spl with the address of sp3, after se3 has been

Use of the Linkage Loader 17

Form C28-0319
Pagé Revised August 5, 1963
by TNL N28-1077

processed. The Linkage Loader then determines that
there are no more names on the request list, moves
sp3 to the request list, locates sp3, and processes it.

3. carL sp2: The name sp2 is plated on the re-
quest list. The Linkage Loader resumes reading from
the stu and finds no further control cards. sp2 is then
located and processed. The Linkage Loader deter-
mines that an imbedded call has not yet been sup-
plied with an address (spl’s imbedded call for sp3),
checks the symbol table for the address value of sp3
(established by the Title card of sp3), and generates
a patch that will place this address value into spl at
the time the subprograms are loaded into core storage
by the Load Routine of the Resident Monitor.

The memory map is as follows:

l SP1 | SP3 ' SpP2 ‘

Note: The above memory map is identical to the
one in the preceding example. The purpose of this
example is to illustrate the procedure used for an im-
bedded call of a subprogram that is also called by a
cALLN card.

The CALLP Card

The carrp card (Call and Patch) functions in the
same manner as the caLLN card, except that the caLrLe
card directs the Linkage Loader to incorporate
patches into the specified subprogram. The patches
must immediately follow the carre card in the Stand-
ard Input Unit.

THE PHASE Card

PHASE cards are used create a multiphase program
and to assign a name to that program. Each time the
Linkage Loader encounters a PHASE card it performs
the following functions:

1. All previous calls (both from control cards and
imbedded calls) are processed. The resulting phase
is terminated with a record that indicates the entry
point of that phase. (This information is used by the
Load Routine of the Resident Monitor to initiate ex-
ecution of the phase after it has been loaded into core
storage.)

2. The Linkage Loader creates a header record
for the phase, consisting of the name and the number
of the phase.

The first pHASE card for a multiphase program speci-
fies the name of that program. Succeeding pHASE cards
for the same program have blank operand fields. For
the first paASE card, the Linkage Loader generates a

18

junction with the Basel card, examples illustrating the
header record containing the name specified in the
operand and a phase number of 001. For succeeding
pHASE cards of the same multiphase program, the
Linkage Loader generates a header record containing
the name specified by the first paASE card, and a phase
number determined by incrementing a counter each
time a PHASE card with a blank operand is encount-
ered. Therefore, a puaseE card with a blank operand
indicates the beginning of the program’s next phase,
and the header record for this phase contains the
next sequential number.

The user may select phase numbers other than the
ones assigned by the Linkage Loader. The selected
phase numbers must be placed in columns 6, 7, and 8
of the second and successive praSE cards. The follow-
ing rules must be observed when selecting phase
numbers.

1. The first phase of a program must be designated

001.

2. Subsequent phase numbers must be in ascending

order (not necessarily sequential).

3. The phase number 999 must not be used.

Note: When the user selects a phase number other
than the assigned number, the selected phase number
must always be used in calling that phase.

The following rules apply to the use of the pPHASE
card:

1. A puase card must immediately precede each
group of Call cards (carr, carrN, caLre) that specify
the subprograms to be included in that phase.

2. If the first paAsE card is omitted, the name of the
first subprogram that is called is used by the Linkage
Loader as the name of the entire multiphase program.
The header record of each phase will have this name.
(This is the procedure used to generate a header
record for a single-phase program, which does not
require a PHASE card.)

3. A paasE card with a program name in the
operand field causes the Linkage Loader to reset
the relocation factor to Base Zero and to erase from
the symbol table any Linkage Symbols left from the
processing of previous subprograms. (This erasure of
symbols can be controlled by use of the prrcr card,
which is described later.)

4. A puasg card with a blank operand field does not
reset the relocation factor, nor does it cause the
erasure of any symbols from the symbol table.

5. Columns 60-70 of the prASE card must be left
blank. (These columns are used by the Linkage
Loader.)

EXAMPLE.

Since the pHASE card is most commonly used in con-
junction with the Basel card, examples illustrating the
use of the pHASE card are presented immediately fol-

lowing the description of the BasEl card.

The BASE1 Card

The Basel card is used to control the relocation fac-
tor. This control of the relocation factor enables the
programmer to direct the Linkage Loader to relocate
a phase in such a manner that it will overlay the pre-
ceding phase at a predetermined point.

Three types of operands can be used in a Basgl card:

1. Linkage Symbol: If a Linkage Symbol appears
in the operand of a Basel card, the Linkage Loader
sets the relocation factor to the address.equated with
that symbol in the Linkage Loader’s symbol table.
For this reason, the Linkage Symbol must be defined
by the processing of a subprogram previous to the
one which includes the Basel card. In almost all cases,
the Linkage Symbol is one that is declared by the
Title card of a previous subprogram. This enables one
phase of a program to be relocated with the same
origin point used for a subprogram in a previous
phase even though, at the time the Basel card is placed
in the Standard Input Unit, the actual origin point
of the previous subprogram was not yet determined.
When the phase that included the Basel card is loaded
into core storage, it will overlay the previous phase
beginning at the origin point of the subprogram
named in the operand of the BasEl card.

Note: Since the Autocoder language offers facilities
for defining Linkage Symbols other than the origin
point of a subprogram, it is possible for users of Auto-
coder to construct phases that overlay preceding phases
at locations other than the beginning of a subprogram.

2. Actual Address: If the operand of a Basgl card
contains an actual address, the Linkage Loader sets
the relocation factor to that address. Particular care
must be exercised in the use of this type of operand,
since it is not always possible to predict the final loca-
tion of program elements that preceded a Basel card
containing an actual address.

8. *+4X00: If the operand of a Basrl card contains
*+X00 (asterisk-plus sign-X-zero-zero), the Linkage
Loader sets the current relocation factor to the next
highest address that is a multiple of 100. (If the re-
location factor is already at a multiple of 100, no ad-
justment is performed.) This type of operand is not
necessarily related to a multiphase program. It is pro-
vided to control the relocation of subprograms that
depend on certain areas being located at an even-
hundred address. (For example, use of the Clear Stor-
age instruction can result in this requirement.)
Each time the Linkage Loader encounters a Basel
card, it performs the following functions:

1. It sets the relocation factor to the address value
specified by the operand of the Basgl card.

Form C28-0319
Page Revised August 5, 1963
by TNL N28-1077

2. Tt erases from the symbol table all symbols that
are equated to addresses higher than the address value
specified by the operand of the Basel card. (This
erasure occurs only for Basel cards with a symbol or
actual address in the operand. The *+XO00 operand
does not cause symbols to be erased.) The erasure
of symbols can be controlled by the prrcr card, which
is described below.

The following rules apply to the use of the Basel card:

1. A Basel card, when placed in the Standard Input
Unit (rather than imbedded within a subprogram),

| should immediately follow a pHASE card. A Basel card

at any point other than immediately behind a rHAsE
card will affect all subprograms that have not been
processed, even if the calls for those subprograms
preceded the Basel card.

9. A Basgl card, when imbedded within a subpro-
gram, must immediately follow the TITLE card. How-
ever, BasEl cards with the *+X00 operand can be
placed anywhere within a subprogram.

3. The address value of a Linkage Symbol used as
the operand of a Basel card must have been defined
during the processing of a previous subprogram.

EXAMPLE 1

This example illustrates the construction of a two-
phase program from two subprograms. spl consti-
tutes the first phase of the multiphase program, and
sp2 constitutes the second phase, which is to com-
pletely overlay the first. Both subprograms are on the
Library. Neither of the subprograms contains im-

bedded calls.

The sequence of cards in the siu is as follows:
PHASE SAM

CALL srl
PHASE

BASEL spl
CALL sp2

The Linkage Loader proceeds as follows:

1. puASE saM: A header record is created. It con-
tains the name samM and the phase number 001.

2. carL. spl: The name spl is placed on the re-
quest list.

3. puase (blank operand): All previous calls are
processed. (In this example, spl is the only previous
call.) A termination record is generated for the first
phase; a header record is generated for the second
phase. It contains the name saM and the phase num-
ber 002.

4. Basel spl: The relocation factor is set to the
address value established by the Title card of spl.
(All Linkage Symbols with a higher address-value
are erased from the symbol table.)

Use of the Linkage Loader 19

5. caLL sp2: The name sp2 is placed on the re-
quest list. The Linkage Loader resumes reading from
the stv and finds no further control cards. sp2 is lo-
cated and processed.

The memory map is as follows:

Phase 1 SP1
Phase 2 SP2
EXAMPLE 2

This example illustrates the construction of a two-
phase program from five subprograms. spl and sp2
constitute the first phase, and se3, sp4, and sp5 con-
stitute the second phase, which is to overlay only sp2
of the first phase (leaving spl in storage). All the sub-
programs are on the Library. None of them contain
imbedded calls.
The sequence of cards in the stu is as follows:

PHASE °~ MATILDA
CALL sprl
CALLN sp2
PHASE

BASEL sp2
CALL sp3

CALL sp4

CALL sp5

The Linkage Loader proceeds as follows:

1. pHASE MATILDA: A header record is created. It
contains the name MatiLpA and the phase number
001.

2. carL spl: The name spl is placed on the re-
quest list.

3. cair. sp2: In accordance with the procedure
for carLiN cards, spl is located and processed, then
sp2.

4. puase (blank operand): A termination record is
generated for the first phase. It contains the entry
point specified by the Termination card of whichever
subprogram was the primary one. A header record
is generated for the second phase. It contains the
name MATILDA and the phase number 002.

5. Basel sp2: The relocation factor is set to the
address value established by the Title card of sp2.
(All Linkage Symbols with a higher address-value are
erased from the symbol table.)

6. carr sp3: The name sp3 is placed on the re-
quest list.

7. caLr. sp4: The name sp4 is placed on the re-
quest list.

8. carL sp5: The name sp5 is placed on the re-
quest list. The Linkage Loader resumes reading from

20

the s1v and finds no further control cards. sp3, sp4, and
sP5 are located on the Library and processed.

The memory map is as follows:

Phase 1 l SP1 l SP2 ’ — l

Phase 2 | SP1 l SP3 SP4 | sp5
EXAMPLE 3

This example illustrates the construction of two sepa-
rate multiphase programs during a single run of the
Linkage Loader. All subprograms are on the Library,
and none of them contain imbedded calls.

The sequence of cards in the stu is as follows:

PHASE OLSEN ‘PHASE JOHNSON
CALL sprl CALL sp3
PHASE PHASE

BASEL spl BASE] sp3

CALL SP2 CALL sp4

The Linkage Loader proceeds as follows:

1. pHASE oOLSEN through caLn sp2: The Linkage
Loader begins construction of a two-phase program
in the manner illustrated by the preceding examples.

2. pHASE JOHNSON: The request list is checked for
outstanding calls. The Linkage Loader finds the name
sp2 on that list (from the caLL card for sp2), locates
and processes sp2, and generates a termination record
for the preceding phase. The relocation factor is then
reset to Base Zero, and Linkage Symbols are erased
from the symbol table. A header record is generated
for the next phase. It contains the name jornson and
the phase number 001.

3. carr. sp3 through carL sp4: The Linkage
Loader constructs the second multiphase program.

The memory maps are as follows:

Program OLSEN
Phase 1 L SP1 I
Phase 2 L SP2 |

Program JOHNSON

Phase 1 L SP3

Phase 2 I SP4 l

Norte: The two programs are not necessarily related '

in any way. This example is designed to illustrate a
means of directing the Linkage Loader to produce a
Job File that is, in effect, a library of programs in
absolute format.

The PRTCT Card

The prrCT card is used to set a limit for erasure of
Linkage Symbols from the symbol table. The Linkage
Loader will retain in its symbol table all Linkage
Symbols equal to or higher than the address value
specified by the operand of the prrcr card. (The oper-
and of a pRTCT card can be either a Linkage Symbol

or an actual address.) This protection will be retained -

until it is changed by either another prrcr card or by
the initialization that is performed each time the Link-
age Loader is brought into storage for execution.

The following rules apply to the use of the prrCT
card:

1. The prrct card must precede any control card
that would cause erasure of symbols higher than the
address value specified by the operand of the prrCT
card.

2. The address value of a Linkage Symbol used as
the operand of a prrcT card must have been defined
during the processing of a previous subprogram.

EXAMPLE

This example illustrates the construction of a two-
phase program in which one subprogram must be
placed in upper storage and be used by other subpro-
grams in both phases. All of the subprograms are on
the Library, and none of them contain imbedded calls.

The sequence of cards in the stv is as follows:

PHASE OTHELLO
CALL spl
CALLN sP2
BASEL 30000
CALL sp3
PHASE

PRICT 30000
BASEL sP2

CALL sr4

The Linkage Loader proceeds as follows:

1. PHASE OTHELLO
sp2 are processed as explained in previous examples.

2. Basel 30000: The relocation factor is set to
30000. (Note that all previous calls have been satis-
fied because of the caLLn card. Note also that if sp2
had contained an imbedded call for a subprogram that
had not yet been processed, then the new relocation
factor would be applied to that subprogram.)

through caLiy sp2: spl and

3. carr. sp3: The name sp3 is placed on the re-
quest list.

4. puast (blank operand): sp3 is located and proc-
essed. A termination record is generated for the first
phase. A header record is generated for the second
phase. It contains the name otHELLO and the phase
number 002.

5. prrct 30000: The Linkage Loader notes that
Linkage Symbols equated to an address value of
30000 and higher are not to be erased from the symbol
table. (The operand of the prrcT card could also be

sP3.)

6. Basel sp2: The relocation factor is reset to the
address value established by the Title card of sp2.
Linkage Symbols equated to an address value higher
than sp2 and lower than 30000 are erased from the
symbol table.

7. carr sp4: The name sp4 is placed on the re-
quest list. The Linkage Loader resumes reading from
the sru and finds no further control cards. sr4 is
located and processed. '

The memory map is as follows:

30000
SP1 I SpP2 I -—- SP3

30000
SP1 ISP4 I — SP3

The BASE2 Card

The Base2 card is used for subprograms that refer
to a common data area. The operand of the Base2
card, which can be either a Linkage Symbol or an
actual address, sets the upper limit of the common
data area.

Each time the Linkage Loader encounters a BASE2
card, it sets the special relocation factor that it uses
for downward relocation. This factor is then used for
the adjustment of addresses that refer to the common
data area.

The following rules apply to the use of the BasE2
card:

1. The Base2 card must be positioned in the Stand-
ard Input Unit so that it is read before the processing
of any subprograms affected by it.

9. More than one BasE2 card can be used, but rule
1 also applies to those cards.

3. If a Linkage Symbol is used for the operand of a
Base2 card, the address value of that symbol must

Phase 1

Phase 2

Use of the Linkage Loader 21

Form C28-0319
Page Revised August 5, 1963
by TNL N28-1077

have been defined during the processing of a previous
subprogram.

EXAMPLE

This example illustrates the construction of a single-
phase program from three subprograms, each of which
uses a common data area. All three subprograms are
on the Library, and none of them contain imbedded
calls.

The sequence of cards in the stv is as follows:

BASE2 38000
CALL spl
CALL sp2
CALL sp3

The Linkage Loader proceeds as follows:

1. Base2 38000: The factor for downward reloca-
tion is set to 38000.

2. caiL spl through caLn sp3: These three sub-
programs are located and processed. During the proc-
essing, all references to the common data area are
adjusted in accordance with the factor set by the
BASEZ card.

The memory map is as follows:

38000 |

S

Common
Data
- Area

SP2 J SP3

SP1

Top of Core

The SNAP Card

The snap card directs the Linkage Loader to include
the Snapshot Program into a specified subprogram.
(The Snapshot Program is one of the Utility Pro-
grams provided in the Operating System. See the
publication, Utility Programs, Form C28-0325, for a
description of the functions of the Snapshot Program.)

The operands used for this card are as follows:
56 57
| NAMEXXXXXYYYYYZZZZZYYYYYZZZZZ %
Where:
NAME is the name of the subprogram,
xxxxx is the address of the instruction that is the point
where the Snapshot is to be taken,
yyyyy is the address of the lower limit of the area for
which the Snapshot is to be taken, and
zzzzz is the address of the upper limit of the area for
which the Snapshot is to be taken.

22

ss Columns 56 and 57 must contain the length of the
instruction at xxxxx. A leading zero must be used
in the case of an instruction length of seven. The
instruction at xxxxx cannot be an 10Ccs macro-
instruction. '

The addresses used as operands are the relative
addresses assigned by the compiler. These addresses
can be obtained from a listing of the program. The
Linkage Loader will perform the normal relocation on
the addresses specified in the operand field of the
SNAP card.

Columns 6-10 of the snap card can be used to estab-
lish an identification for the Snapshot specified by the
card. Any characters in those columns will be printed
on the Snapshot listing.

The instruction at the point where the snapshot is
to be taken must be at least seven characters in length
and cannot be a chained instruction.

The following rules apply to the use of the snap
card:

1. A snap card must be positioned in the Standard

| Input Unit so that it is read after the processing of

the subprogram that it affects.

2. A snap card can contain either one or two sets
of upper and lower limits for Snapshot areas (as indi-
cated by the above format of the operands).

The INPUT Card

The wrpur card can be used to direct the Linkage
Loader to read its control cards from a source other
than the Standard Input Unit. The operand of the
INPUT card is the name of the Symbolic Unit that con-
tains the control cards. (Information concerning sym-
bolic assignment of input/output units is presented
under “Operation of the System Monitor.”)

The following rules apply to the use of the mvpuT
card:

1. The name of the Symbolic Unit must be one that
is currently assigned to an actual 1/0 unit (Physical
Unit).

2. End-of-file at the specified unit causes the Link-
age Loader to resume reading from the Standard In-
put Unit.

3. The wput card can contain the operand, sru. In
this case, the Linkage Loader resumes reading from
the Standard Input Unit. (Such a card would, of
course, be used in the alternate unit, after an INPUT
card in the Standard Input Unit had directed the
Linkage Loader to begin reading from that alternate
unit. (Alternate unit should not be confused with the
Alternate Input Unit.)

4. Npur cards can be placed at any point in the
control card deck for the Linkage Loader.

Form C28-0319
Page Revised August 5, 1963
by TNL N28-1077

Programming Considerations for Use of the System Monitor

This section contains information related to the writ-
ing of programs that are to be run under control of
the System Monitor. Such programs are termed de-
pendent programs. Furthermore, the term batch pro-
gram is used to refer to a program that is included
in the series of jobs from the Standard (or Alternate)
Input Unit (as opposed to programs included in a
TELE-PROCESSING System).

Use of Linkage Sequences

Many of the facilities of the System Monitor can be
utilized by dependent programs by means of program
elements known as linkage sequences. Basically, a
linkage sequence is a branch instruction followed by
one or more fields of control information. The branch
instruction gives control to a routine that performs a
desired function in accordance with the information
in the control fields. The concept and use of linkage
sequences is illustrated in the following section, “Use
of the Communication Region.” (In this publication,
the construction of linkage sequences is shown in
Autocoder language statements.)

Use of the Communication Region

Contents of the Communication Region

The table below lists the areas of the Communication
Region that can be addressed by dependent programs.
In addition to the System Symbol that represents the
low-order position of the area, the table states the
length of each area and whether the contents of the
area can be modified by a dependent program. Each
area of the Communication Region contains a word
mark only in its high-order position.

It is important to note that addressing an area of the
Communication Region does not imply modifying the
contents of that area. For addressing an area, the de-
pendent program contains an instruction that refers
to the area only in order to determine its current

contents. For modifying an area, the dependent pro-
gram contains a linkage sequence that specifies new
information to be placed into the area by a routine in
the Resident Monitor. (The linkage sequence for
modifying an area is described below, following the

table.)

SYSTEM
SYMBOL

MODI-

CONTENTS OF AREA LENGTH FIABLE

/AMS/ Actual machine size (highest 5 No
addressable location). This
arca is set at System Gener-

ation.

The high-order address of the 5 No
input area filled by the Read

Routine of the Resident Moni-

tor. (This routine, described

in a later section, is the unit-

record routine that reads from

the Standard Input Unit.)

/CRD/

/DAT/ Date (first two positions for the 5 No
year, followed by three posi-
tions for the day). This area
is set during the initialization
of the Resident Monitor (see

Appendix).

/IP1/ Inter-program information. 5 Yes
(This area can be used to

store control information be-

tween runs within a job. For

example, a program can set

switches in this area that can

be tested by the next program

executed.) This area is set to

blanks between each job.

/LIN/ Number of lines per page for 2 Yes
printer output. (This area is
set by any program that wishes
to establish a constant that can
be used to compare to a pro-
gram counter for writing

printer output.)

/ORG/ Origin point for batch pro- 5 No
grams. (This area, which is set
at System Generation, is used
by the Linkage Loader to
determine the value of Base

Zero.)

Phase number of program 3 No
phase currently being exe-

cuted. (This area is set to 001

between each run.)

| /PHN/

Programming Considerations for Use of the System Monitor 23

SYSTEM
SYMBOL

MODI-

CONTENTS OF AREA LENGTH FIABLE

/PNM/ Name of program currently 10 Yes
being executed. (The name is

left-justified in the area.)

/S1Z/ Highest location loaded for the 5 Yes
current batch program (includ-
ing any previous phases of the
current batch program). This
area is set by the Load Rou-
tine of the Resident Monitor.

NotEe: The TELE-PROCESSING
Supervisor checks this area to
determine the amount of core
storage currently available for
programs required to process
input from a TELE-PROCESSING
device. Therefore, if a batch
program uses locations above
those that were loaded, that
program should modify this
area of the Communication
Region to reflect the highest
location used.

Lowest location of the area re- 5 No
served for programs under con-

trol of the TELE-PROCESSING

Supervisor. (TELE-PROCESSING

Systems are described in the

publication, The TELE-PROC-

ESSING Supervisor, Form C-

28-0321.)

/TPB/

AMS AMS

ORG =P o e ot e o e e e

TPB o — — — — — ———
Resident Monitor (in-
cluding the Tele-
Processing Supervisor)

Resident Monitor

Figure 2. Relationship of the AMS, ORG, and TPB Fields

Figure 2 illustrates the relationship of the core-stor-
age locations represented by the ams, orc, and TPB
fields of the Communication Region. The diagram
at the left side of Figure 2 illustrates these locations
for core storage that does not include an area reserved
for programs under control of the TELE-PROCESSING
Supervisor. The other diagram in Figure 2 illustrates
these locations for core storage that does include such
a reserved area.

Modification of the Communication Region

To modify an area of the Communication Region, the
dependent program must contain a linkage sequence
constructed as follows:

24

BXPA /MCR/

DCW /xxx/

bew Yyyyy

DCW ZZ7ZzZ

(Next sequential instruction in dependent pro-
gram)

In this linkage sequence, /xxx/ represents the Sys-
tem Symbol of the area that is to be modified, yyyyy
is the low-order address of the new information to be
placed in that area, and zzzzz is the address to which
control is to be returned in the event the linkage se-
quence attempted to modify an area of the Communi-
cation Region that cannot be modified. The routine
that modifies the Communication Region checks each
modification request to determine whether the System
Symbol /xxx/ refers to a modifiable area. If it does not,
control is returned to the dependent program at loca-
tion zzzzz; if it does refer to a modifiable area, the
modification is performed and control is returned to
the next sequential instruction following the linkage
sequence that issued the modification request.

Use of the Unit-Record Routines

The three unit-record routines in the Resident Moni-
tor can be used by dependent programs. One of these
routines reads input from the Standard Input Unit
(or Alternate Input Unit), another writes output on
the Standard Print Unit, and the third writes output
on the Standard Punch Unit. (Each of these units can
be either a unit-record device or a tape unit, as speci-
fied at System Generation.)

The dependent program addresses these routines
by means of a linkage sequence. The branch instruc-
tion of the linkage sequence uses a System Symbol to
refer to the entry point of each of the routines.

All three routines perform their functions with un-
blocked records in the Mmove mode. If tape is used for
any of the routines, the unit-record functions are per-
formed in opD parity.

Read Routine

The Read Routine reads 80-character records from the
Standard Input Unit. (This unit could be the Alter-
nate Input Unit if the Resident Monitor has been
instructed to change from one unit to the other.)
The high-order address of the input area used by
the Read Routine is located in the Communication
Region. (The input area is in the Resident Monitor.)
The System Symbol /crp/ is used to refer to the area
of the Communication Region used for this purpose.
(Word marks must not be set in the input area.)
The Read Routine checks each input record to deter-
mine whether it is a Monitor control card. If it is, the

This section contains information concerning the
machine-room operation of the System Monitor. It is
primarily directed to machine-room personnel, but
much of the material, such as the description of con-
trol cards required to define a program job, will also
be of interest to programmers.

Initialization of the System Monitor

The first element on the System Operating File is a
routine that brings the Resident Monitor and Transi-
tional Monitor into core storage and performs the
necessary initialization functions. This routine (which
is called the Bootstrap) can also be used if re-initial-
ization of the System Monitor becomes necessary be-
cause of‘an emergency situation. (For example, a
dependent program might fail in such a way that por-
tions of the Resident Monitor are destroyed.) Re-ini-
tialization procedures include facilities for reposi-
tioning the Standard Input Unit (if tape) to the next
job specified by the operator.

During 1initialization (or re-initialization) proce-
dures, the installation supplies the Resident Monitor
with “daily information”, which includes the current
date and assignments of input/output units for certain
files used by the System Monitor. (The Appendix
contains a sample control-card deck, which includes
cards used for daily information.)

Procedures for using the Bootstrap depend upon
the type of device used for the System Operating File
(tape or disk) and the type of device used for the
Standard Input Unit (tape or card reader). The fol-
lowing information outlines the procedures for the
various possible configurations.

SOF Is Tape; SIU Is Card Reader

Both initialization and re-initialization are effected by
loading the Bootstrap into storage from the sor. The
Bootstrap reads the daily information from the siv.

SOF Is Tape; SIU Is Tape

Both initialization and re-initialization are effected by
loading the Bootstrap into storage from the soF.

Operation of the System Monitor

During initialization, the Bootstrap reads the daily
information from the sw. During re-initialization,
the daily information can be entered through the con-
sole, or it can be read by the Bootstrap from the stu
(which must have been rewound to load point).

SOF Is Disk; SIU Is Tape or Card Reader

For installations that use disk storage for the soF,
the Bootstrap is divided into two sections: a Prelimi-
nary Bootstrap and a Main Bootstrap. The Prelimi-
nary Bootstrap, which must be read from the siu,
provides the means for loading the Main Bootstrap
from the disk sor.

For initialization, the Preliminary Bootstrap is en-
tered through the siv and loads the Main Bootstrap
from the sor. The Main Bootstrap reads the daily
information from the sw. It places the daily infor-
mation into the proper areas of the System Monitor
and also stores that information into the disk soF.
(This is done to simplify subsequent re-initialization,
if required.)

For re-initialization, the operator can manually
branch to the Preliminary Bootstrap (which remains
in the Resident Monitor from the initialization pro-
cedure). If this area of the Resident Monitor has been
destroyed, the operator can either enter the Prelimi-
nary Bootstrap from the console, or load it from the
stu. The Preliminary Bootstrap loads the Main Boot-
strap from the disk sor, and the Main Bootstrap loads
and initializes the System Monitor. Daily information
is already contained in the System Monitor being
loaded from the soF, since it was placed there at the
time of initialization.

Control Cards for the System Monitor

This topic describes the control cards that can be
placed in the Standard (or Alternate) Input Unit to
direct the operation of the System Monitor. At the
time of System Generation, the installation can
specify that the System Monitor is to record each of
the Monitor control cards on the console typewriter
and/or the Standard Print Unit,

Operation of the System Monitor 29

Form C28-0319
Page Revised August 5, 1963
by TNL N28-1077

Format

The format of control cards for the System Monitor
is based on the format used for Autocoder source
statements:

Columns 6-10 (first portion of the Label field)
contain the characters mon3$$ to identify the card as
one directed to the System Monitor.

Columns 16-20 (the Operation field) are used to
identify the function of the card. (The mnemonics
used for this area of the card are presented in the fol-
lowing list of Monitor control cards.)

Columns 21-72 (the Operand field) are used to
specify additional information related to the function
specified in columns 16-20. The standard Autocoder
rules for operands apply to information in this por-
tion of a Monitor control card: operands must be
separated by a comma; operands cannot contain
blanks; an intentionally omitted operand must be
indicated by placing its trailing comma adjacent to
the preceding comma (except in cases where the
omitted operand is the last operand).

Names and Functions of Monitor Control Cards

The following list contains the control cards that are
directed to the System Monitor. Control cards that
supply information related to the processing of a
particular program within the Operating System,
such as the Storage Print Program, are presented in
the publication that describes that program. Control
cards for the Linkage Loader are described in an
earlier section of this publication,

In the descriptions below, each type of Monitor
control card is identified by the mnemonic immedi-
ately following the numeral. The mnemonic is to be
punched in columns 16-20. If it contains less than five
characters, it must begin in column 16; unused col-
umns in this field are left blank. Following the
mnemonic for each card are the operands that are
used for that card.

JOB NAME

This card is used to indicate the beginning of each
job. The operand is the name assigned to that job by
the user. Each time a joB card is encountered, the
Resident Monitor spaces the Standard Print Unit to
the next page and prints the contents of the yoB card
as the first line on that page. (If the Standard Print
Unit is tape, the proper carriage control character is
placed into the output record.) The Resident Monitor
prints either an “S” or an “A” on the line with the
JoB card to indicate whether it was read from the

30

Standard or the Alternate Input Unit. In addition,
the Resident Monitor places a two-character sequence
number on the line with the yoB card. This sequence
number indicates the number of joB cards that have
been read since the beginning of the batch. (See the
description of the END card for details concerning the
JoB card sequence number.)

The contents of the yoB card (and the additional
information supplied by the Resident Monitor) are
always written on the console typewriter and the
Standard Print Unit, regardless of whether other
Monitor control cards are also printed and/or typed.
An additional feature that can be specified at the time
of System Generation is the recording of joB cards
on the Standard Punch Unit.

| MODE GO,TEST

The MopE card is used to supply information related
to the type of job to be performed. If the operand
Go is specified, the output from following compila-
tions will be written on the Go File for subsequent
execution. The operand TEsT is used to specify that
the following dependent program is being tested.
These operands set indicators within the Resident
Monitor. The indicators are reset by the next joB
card.

EXEQ PROGRAMID,MJB.INPUTDATA

The ExEQ card is used to request the execution of the
program named in the first operand. (The name of
the program is placed into the pnM field of the Com-
munication Region.) The second operand specifies the
file containing that program. This operand can be
either sor for the System Operating File, or myB for
the Job File. (The absence of a second operand indi-
cates that the program is on the sor; therefore, it is
not necessary to punch the characters sor. The omis-
sion of soF must be indicated by a comma if succeed-
ing operands are used.)

The third operand, which is optional, specifies the
location of the input data for the requested program.
This operand causes the Read Routine of the Resi-
dent Monitor to read from the unit represented by
the operand. In effect, the Read Routine treats the
specified unit as an Alternate Input Unit. Therefore,
this operand can be used only if the facility for read-
ing an Alternate Input Unit was incorporated into
the Resident Monitor at the time of System Gener-
ation. Furthermore, this operand cannot be used in
an EXEQ card that is placed in the Alternate Input

an alternate cannot be shared by another Symbolic
Unit as a base unit. (For example, these two assign-
ments cannot exist simultaneously: Mgrl, A1, A2 and
MR2, A2.)

However, some jobs may require that a Physical
Unit, assigned to a Symbolic Unit as an alternate, be
assigned as the base unit of another Symbolic Unit
later in the job (or vice versa). For instance, assume
that the first run in a job is the execution of a program
that requires that Symbolic Unit Mgl be assigned to
the Physical Units A1, A2, and A3 (Mrl, Al, A2, A3).
The next run in the job is a compilation, and A2 must
be used as a Work Unit for the compiler. (The pro-
gram executed in the first run of the job did not leave
any valuable information on A2.) Since A2 was as-
signed as an alternate Reserve Unit for the first run, it
cannot be assigned as a base Work Unit for the com-
piler, unless the initial assignment is cancelled. (Al-
though Reserve Units can be reassigned between runs
within a job, their assignments are cancelled by the
System Monitor only. at the end of the entire job.)
The following information describes the method for
cancelling assignments in order to meet the require-
ments of jobs such as the one just described.

CANCELLATION OF ASSIGNMENT

Assignments for Symbolic Units can be cancelled by
means of an AscN card containing only the first oper-
and. For example, the ascn card in Figure 5 cancels
the assignranent for the Reserve Unit discussed in the
example above. This permits the Physical Unit that
was previously assigned to that Reserve Unit to be
used for the Work Unit required for the compiler.

Line Lakel

P T
0,1,

0.2 Ly |I .

Figure 5. Cancellation of Assignment

The asen card in Figure 5 and the asoN card used
to assign A2 to the compiler’s Work Unit should both
be placed immediately before the Exeq card that re-
quests execution of the compiler. (The card used to
cancel the assignment to MRl must precede the card
used to make the assignment to the Work Unit.)

PLACEMENT OF THE ASGN CARD

The asoN cards, like all other Monitor contro! cards,
are submitted to the System Monitor through the
Standard (or Alternate) Input Unit. The relative
position of an aseN card within the control-card deck
is determined by the category of Symbolic Unit for
which the asceN card is being used. As described earlier

Form C28-0319
Page Revised August 5, 1963
by TNL N28-1077

in this topic, Symbolic Units are divided into five
categories with respect to the time they can be as-
signed. (Refer to the information under the heading,
“Assignment Times for Symbolic Units.”) asen cards
for Symbolic Units that are assigned during initializa-
tion or re-initialization procedures are included as
part of the daily information in the Standard Input
Unit. aseN cards for Symbolic Units that are assigned
only for the duration of a job must follow the related
Job Card and precede the ExEQ card for the program
that requires the assignments. asgN cards for Sym-
bolic Units that are used by the TELE-PROCESSING Sys-
tem must .precede the control card that opens the
TELE-PROCESSING System.

Use of the ASGN Card for System Units

The Physical Units assigned for the use of certain
System Units cannot be assigned to any other Sym-
bolic Units during the time they are assigned to those
System Units. Those System Units are as follow:

System Operating File (Msor/)

Standard Input Unit (Msiu/)

Standard Print Unit (Mspr/)

Standard Punch Unit (mMspu/)

System Library File (/LiB/)

Core Image File (/mpMm/)

In addition, Physical Units that are assigned to Sym-
bolic Units used by the TELE-PROCESSING System cannot
be assigned to any other Symbolic Units during the
time the TELE-PROCESSING System is ready to receive
input from TELE-PROCESSING devices.

It is important to note that the Physical Units as-
signed to the System Operating File and the Standard
Input Unit can be released for use by other Symbolic
Units only through the procedure of System Genera-
tion. The Physical Units assigned to the Standard
Print Unit, the Standard Punch Unit, and the Core
Image File can be released for use by other Symbolic
Units only through the procedure of initialization or
re-initialization of the System Monitor. The Physical
‘Unit assigned to the System Library File (if this file
is not a part of the System Operating File) can be
released for use by other Symbolic Units either
through initialization and re-initialization procedures,
or through the cancellation of the Library’s assign-
ment by means of an aseN card containing LIB as the
only operand.

Assignment of fhe Go File

For compile-and-go operations using AUTOCODER, COBOL
or FORTRAN, the Go File must be assigned to a Physical
{Unit other than those used for the compiler’s work

files.

Operation of the System Monitor 35

Form C28-0319
Page Revised August 5, 1963
by TNL N28-1077

Console Inquiries

Console Inquiries are used to communicate control
information to various portions of the System Monitor.
The messages that can be entered through the console
are divided into three groups, as follows:

A. Messages that can be accepted by the Resident
Monitor during the execution of a dependent program.

B. Messages than can be accepted by the Transi-
tional Monitor when it is in storage to perform transi-
tion from one program to the next.

C. Messages that are communicated to the Transi-
tional Monitor in reply to a request from the Transi-
tional Monitor for specific control information.

The various messages are communicated to the Sys-
tem Monitor in the following manner:

1. Depress the Console Inquiry key.

2. Type in the message .

3. Depress the Inquiry Release key.

Group A Messages

The following messages can be accepted during the
execution of a dependent program. Unless otherwise
stated, the entire message consists of the three char-
acters that are listed.

$10 This message causes immediate entry to the
Unusual End-of-Program portion of the Resident Mon-
itor’s End-of-Program Routine. (See previous sections
of this publication for information concerning this
routine.) This message can be used only for batch
programs (not programs operating under control of
the TELE-PROCESSING Supervisor), and can be entered
at any time.

Note: The operator can also give control to the
Unusual End-of-Program procedures by pressing the
Computer Reset key and then the Start key. It is im-
portant to note, however, that this procedure resets
certain machine indicators. Therefore, the records
written on the Core Image File will not reflect the
status of core storage at the exact time the dependent
program failed.

$20 This message causes the Resident Monitor
to set a program switch for the Transitional Monitor,
indicating that the Transitional Monitor is to notify
the operator when it is ready to accept Console In-
quiries. (Messages accepted by the Transitional Moni-
tor are described below, under the heading “Group B
Messages.”) This message can be entered at any time.

$3n This message allows the user to exercise a
program option as the program is being executed, but
it should be limited to situations that cannot be han-
dled by control cards. Thus, the $3n message closely
approximates external toggle switches.

Upon receiving this message, the Resident Monitor

moves the single character “n” to the one-character

36

field /mcr/. The user’s program must interrogate the
character at /mcr/ and take the desired action. The
character may be any valid Bcp character.

The message may be used to enter more informa-
tion than the single character. However, after recog-
nizing a particular character at /mci1/, the users
program must determine that the input area still
contains the message by checking for “$3n” in the
input area. (The high-order position of the input area
is designated /r1Q/.) The check is necessary because
no protection is given to the data in the input area.
It is advisable to move the data before another con-
sole message overlays it.

The Resident Monitor restores /mci/ to a blank
only at End of Program and at Unusual End of Pro-
gram. The user may request the setting of /Mmc1/ to a
blank by the following sequence:

BXPA /MCR/

DCW /Mct/

DCW xxxxx (address of a blank)
DCW ERR

This sequence is covered in a previous topic, “Modi-
fication of the Communication Region.”
For example, the sequence:

BXPA /MCR/

DCW /mc1/

DCW xxxxx (address of a blank)
DCW ERR

IOCTL TYPE, MESSAGE

BCE *.11, /mci/,b

could be used when the “messace” will direct that an
external decision be made. The branch character
equal instruction will loop to itself until the character
has been entered by the $3n message.

$50 This message causes the Resident Monitor
to exit from its Wait-Loop Routine and return control
to the dependent program. (Information concerning
the Wait-Loop Routine is presented in the section
“Programming Considerations for Use of the System
Monitor.”) This message can be entered at any time
the dependent program indicates that it is using the
Wait-Loop Routine.

$70 This message signals the Resident Monitor
to initiate Immediate Restart procedures. (For in-
formation concerning checkpoint-and-restart proce-
dures, see a later topic of this section, “Restarting from
a Checkpoint.”)

$90b This message is used to communicate in-
formation to the TELE-PROCESSING System. Messages
for the TELE-PROCESSING System can be up to twenty
characters in total length and can be entered at any
time. (See the publication, Tele-Processing Super-
visor, for detailed information concerning these Con-
sole Inquiries.)

Group B Messages

The following messages. can be accepted during the
time the Transitional Monitor is in core storage. The
Transitional Monitor notifies the operator when group
B messages can be accepted by means of a console
message. This message is written if the operator pre-
viously requested it by entering the $20 message (de-
scribed above). The Transitional Monitor also notifies
the operator it is ready to accept group B messages
each time an ENp card is read from the Standard Input
Unit. After the Transitional Monitor notifies the oper-
ator, it enters a wait-loop. Unless otherwise stated,
each of the following messages consists entirely of the
three characters that are listed.

$B1 This message causes the Read Routine of
the Resident Monitor to be altered to read from the
Alternate Input Unit. This message can only be given
if the $20 message has been previously entered. It
cannot be given if the Transitional Monitor is in a
wait-loop caused by an Enp card from the Standard
Input Unit. (See the $8x message, which is described
below, for procedures concerning the Exp card from
the Standard Input Unit.)

$B2 This message causes the Transitional Moni-
tor to close, rewind, and unload the tape file desig-
nated as the Standard Print Unit. The operator then
mounts another tape on that unit.

$B3 This message causes the Transitional Moni-
tor to close, rewind, and unload the tape file desig-
nated as the Standard Punch Unit. The operator then
mounts another tape on that unit. (This message is
used only if the Standard Punch Unit is not assigned
to the same tape as the Standard Print Unit. If the
two units are assigned to the same tape, then the $B2
message is used to perform the closing functions.)

$B4 This message causes the Transitional Moni-
tor to close, rewind, and unload the tape file desig-
nated as the Core Image File (the file that contains
records of core storage used for restarting from check-
points or for obtaining Storage Prints). The operator
then mounts another tape on the unit used for this
file. (This message is applicable only if the Core Image
File, which is optional, had been specified for the
installation at the time of System Generation.)

$B5xx This five-character message indicates to
the Transitional Monitor that the Assignment Symbol
specified by xx is currently unavailable for use. (The
two-character symbol represented by xx in this de-
scription is one of the symbols assigned by the instal-
lation to input/output units.)

$B6xx This five-character message indicates to
the Transitional Monitor that the Assignment Symbol
specified by xx is now available for use. The Transi-

Form C28-0319
Page Revised August 5, 1963
by TNL N28-1077

tional Monitor remove the unavailable indication that
it had set in response to a $B5xx message for this unit
(see above).

$BX This message indicates that the operator
has no further group B messages at this time, and
causes the Transitional Monitor to exit from the wait-
loop that it had entered to enable the operator to make
Console Inquiries. (After performing the functions
indicated by each of the other group B messages, the
Transitional Monitor returns to the wait-loop for
further messages. Therefore, the $8x must be given to
enable the Transitional Monitor to resume its proc-
essing.)

After the $Bx message is entered, the Transitional
Monitor completes functions related to previous
group B messages. For example, if the $B2 message
had been given to close the Standard Print Unit, the
Transitional Monitor opens the new one after the

$Bx message is given. The complete procedure for

such a function is as follows:

1. The Transitional Monitor notifies the operator it
is ready to accept group B messages and then enters
a wait-loop.

2. The operator enters the $B2 megssage.

3. The Transitional Monitor performs the closing
functions for the Standard Print Unit and returns to
the wait-loop.

4. The operator mounts another tape for the Stand-
ard Print Unit and enters the $8x message.

5. The Transitional Monitor opens the file for the
new tape and resumes other processing related to
preparation for the next program (such as processmg
the joB card for that program).

As indicated in the description of the $B1 message
(described above), the Transitional Monitor enters a
wait-loop each time it encounters an END card in the
Standard Input Unit. When this wait-loop is termi-
nated by the $Bx message, the Read Routine of the
Resident Monitor is still set to read from the Standard
Input Unit. In order to change this routine to read
from the Alternate Input Unit, the operator must have
previously entered the $20 message.

Group C Messages

The following message is given in reply to a message
from the Transitional Monitor. The message from the
Transitional Monitor notifies the operator that an
AsGN card has been read for an Assignment Symbol
that is currently unavailable (as indicated by a pre-
vious $B5xx message).

$Clss This message specifies that the Assign-
ment Symbol represented by ss is to be substituted for
the one contained in the ason card. The substitute
unit must be one that is currently available. (The

Operation of the System Monitor 37

Form C28-0319
Page Revised August 5, 1963
by TNL N28-1077

$B6xx message cannot be used at this time to indicate
that the unit specified on the ascn card is now avail-
able; it must have been given previous to the time the
ASGN card is read.)

Restarting from a Checkpoint

The System Monitor provides facilities to restart pro-
grams that have been interrupted because of certain
error conditions recognized by the operator or because
a program of higher priority required the machine.
(Also, the processing of some programs requires such
a great amount of time that the processing is per-
formed in installments. Such programs can utilize the
restart facilities of the System Monitor if checkpoints
are taken by that program.)

Immediate and Delayed Restarts

The Resident 10cs provides a routine for writing
checkpoint records on the Core Image File. (See the

| publication, Basic IOCS, Form C28-0318, for detailed
information concerning the creation of checkpoint
records.) These records consist of the information in
core storage at the time the checkpoint is taken. From
these records the System Monitor can restart a pro-
gram in one of two ways:

Immediate Restart: An Immediate Restart can be
effected by entering the $70 message from the console.
This message causes the Resident Monitor to bring the
Transitional Monitor into storage. The Transitional
Monitor then locates the most recent checkpoint on
the Core Image File and initiates a restart of the de-
pendent program from that checkpoint. The major
functions performed for the Immediate Restart are
as follows:

1. Reloading the dependent program into core
storage.

2. Restoring areas of the Resident Monitor related
to the status of the dependent program at the time the
checkpoint was taken,

38

3. Repositioning some tape files that were open at
the time the checkpoint was taken.

4, Resuming execution of the dependent program
at the point at which the checkpoint was taken.

Delayed Restart: A Delayed Restart is effected by
initialization of the System Monitor. At the time of an
initialization for the purpose of a Delayed Restart,
the operator supplies control information specifying
the particular checkpoint from which the dependent
program is to be restarted. (Note the difference from
the Immediate Restart, which uses only the most re-
cent checkpoint.)

The functions performed for the dependent pro-
gram during a Delayed Restart are essentially the
same as those performed during an Immediate Re-
start. Care must be exercised, however, that the con-

. figuration of input/output units and files that existed

at the time the checkpoint was taken is duplicated for
the restart procedures.

Restart Considerations

The following considerations apply to dependent pro-
grams using the checkpoint-and-restart facilities of the
System Monitor:

1. No re-positioning can be performed for unit-
record equipment. (Therefore, the Standard Input
Unit must be tape.)

2. Programs that perform updating functions on
records in disk storage cannot be effectively restarted,
since there is no means available to the restart pro-
cedure to restore disk records that have been
changed.

3. Tape files that are closed at the time of a check-
point cannot be repositioned during a restart from
that checkpoint. (This presents no problem if the tape
file had been rewound at the time it was closed.)

4. Programs operating under control of the TELE-
PROCESSING Supervisor cannot use the checkpoint-and-
restart facilities.

Form (C28-0319
Page Revised August 5, 1963
by TNL N28-1077

Initial- | First Fourth
Units || ization | Job Second Job Third Job Job
Al SOF SOF SOF SOF SOF
1. MWT cancelled
MW MW 2. MR4 (base unit)
3. MR4 cancelled
A2 MW and and 4. MRB MWI1
MR1 MJB ’
1. MW2 cancelled
2. MR4 (alternate
Mw2 Mw2 unit)
A3 MW2 and and 3. MR4 cancelled | MW2
MR3 MR8 4. MRC
Bl MDM | MDM MDM MDM MDM
1. MW3
Mw3 [2. MW3 cancelled MR5
B2 || MW3 | and [3- MR9 (base unit) | (bgge ynit) MW3
MR2
1. MW4 and MGO
2, MW4 and MGO
MW4 cancelled MR5
B3 MW4 | and 3. MR9 (alternate (alternate unit) MW4
MGO unit)
source program
un- tape for Autocoder MJB unas=
B4 [lassigned | MJB and signed
MRA
Cl SIU SIU SIU Siu SIU
C2 SPU SPU SPU SPU SPU
C3 SPR SPR SPR SPR SPR

Figure 8. Sample Assignments of Input/Output Units

Appendix 41

Index

Page No.

ADSOIULE ZETO .ooeeeeececeeeeeecreee e e e .. 11
Alternate Input Unit 8,31,36
ASGN card 31, 34, 35
Assignment of input/output unitscceccmecenencnnne. 6, 27, 32
Assignment times for input/output unitscecceeeeeeeenen 33
Assignment Symbols 32
Base and alternate units - 34
L3I /1S o S 11, 24
BASEL CAId .ooiiiieeiecece e ce e ce e et enes 18
;73 52\ o S 21
BOOUSIIAD oeoceieeereeeeceee e aren s ee e e e ee s e mn e eemeaan 29
caLL card ... 14
CALLN cardococooeormeieereecenene . 17
LoV 3 35 T 71 ' E S U 18
Cancellation of input/output assignmentccccccceeeuenee 35
Checkpoint-and-restart 36, 37
Common datd AreaScec.ccecceceeeecreeerrercrenesmssersesnsseeneaesneas 13
Communication Region 7,28

Table Of Areascccoceeceeeeeeeeeeeeeceee e ceere e eenescesaraseneas 23

Modification . 24
Communication Symbols, definitioncccooceeeeeieieeeecs 12
coMT (comments) card 31
Console Inquiries 7,36
Control cards

Linkage LOAdErccccceeevceeereemrreseresreeesaesensaseseamesesneseanes 14

Monitoroooooeeeeeeeeeeee. 29

Sample deck 40
Core Image File 9, 27, 37
Dependent programs

Definition 23

General Tules ... 27
pcwr and pcws cards 13,15
END card 81
End-of-Program

Procedures 26, 27, 36

ROULINE oottt mme e ae e nmmmnaaes 6, 26
EXEQ CATA ooeoieooccceeieeeacereeseessmssseesessermssasaceesseseanensesssnsnnssssnenes 30
GO File e de e 9,35
Imbedded calls for subprograms ... 15
Index registers, use Of .oocoriieeoreeeeecc e e 27
Initial entry point of subprograms . . 12
Initialization procedures . 29
INPUT CAYA oo cee e e meeneeee e sae e s s emneacee sannes 22
Input/Qutput Control System 6,27
joB card - .. 30
Job File 9
Linkage Loader functions (general)oocoeicoecromencecennen. 7
Linkage Loader input sources 11, 22
Linkage sequences, definitioncceceeoeeecrecmrecceneccerannens 23
Linkage Symbols

Formats . . 13

Listing ... 13

Reference to 13
Load Routine . 6, 26
MODE card 30
Multiphase programs 14

Loading . 26
Origin point of subprogramsc..cccceceeerorrecceccnecen 11, 14,15
Patching .o 18

=

42

Phases, program

Definitionccceeveeeeeeeeneee. 12
Loading 26
PHASE Card .oocoeeeeeceveeeeeceeenenes 18
Physical Unitsccceeereeeeeeeeeeeeeeceeeeee v .. 32
PRTCT card 20
Primary and secondary subprograms 12
Print Routine . . 25
Punch Routine 25
Read Routine . 24
Re-initialization
(See Initialization Procedures)
Relocation (general) 10
Relocation factor, definition 12
Reserve Units . 33
Resident 10CS
(See Input/Output Control System)
Resident Monitor functions (general) 6
Sample control cards 39
Sharing input/output units 34
SNAP €ard ..ooeccoeereeeereneee 22
Snapshot Program 22
Standard Input Unit 8, 28
Standard Print Unit 8, 25, 36
Standard Punch Unit ... 8, 25, 36
Subprograms, definition 10
Symbolic Unitscceeceeneenees 32
System Library File 8
System Operating File . 8
System Symbols
Definition 13
Established in Resident Monitor
(other than 10cs symbols)
JAMS/ et te e e e ne e e eanae e manea e aneee e nsaann 23, 24
JCBRD/ e 28, 24
/DAT/ . 23
4 0 = U 26, 27
/P1/ . 23
JLIN/ e ae e aneean 23
/Lop/ .. 26
/MCR/ ... 24
/ORG/ ... 23,24
/rcu/ .. 25
/PuN/ ... 23, 26
/PNM/ 24, 26
/PRT/ 25
Y4:5:) 7 RS 25
/s12/ ... 2428
JTPB/ .. g .. 24
JUEP/27
/wat/ . 26
SYStEM UNILS ..oo..ooeeeeeaeeeee e ececeee e e e eesnsesn e smeenn e nean 33, 35
TELE-PROCESSING devices 32
TELE-PROCESSING System Units 33, 35
Termination card 10, 12
Testing programs 26, 27, 30
Transitional Monitor functions (general) ... 7
Unit-Record ROUHNES -.oeoeeeeeeeieeeeceeeceeceeeecnecmecrre e ceeceeene 6, 24
Wait-Loop Routine 7,25, 86
Work Units .. 338

	00
	05
	06
	07
	08
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	29
	30
	35
	36
	37
	38
	41
	42

