Application Program

1440/1460 Administrative Terminal System
(1440-CX-07X and 1460-CX-08X)

Programmer's Manual

This system consists of control and functional
programs that permit many different text-
processing activities to be carried on
simultaneously through different terminals.
This reference manual contains a general
description of the programs. It also contains
information required by a programmer who wishes
to add peripheral programs or new functions

to the system.

H20-0228-0

PREFACE

The material in this manual relates to Version 2 of the IBM 1440/1460
Administrative Terminal System program. It obsoletes and replaces
the Preliminary Edition issued with Version 1 of the program.

This publication was prepared for production using the IBM 1440/1460
Administrative Terminal System. Page impressions for photo-offset
printing were obtained from a typewriter terminal and reduced 15
percent.

Copies of this and other IBM publications can be obtained through IBM
Branch Offices. Address comments concerning the contents of this
publication to IBM, Technical Publications Department, 112 East Post
Road, White Plains, New York 10601.

CONTENTS

INTRODUCTION 0 00 000 E0 I B N0 IO ISDOTEEENLIENOORNOGLNLNSEOEOISLONSDS
GENERAL DESCRIPTION 9 0 6600000000000 8000080800000 0080080600000000

PROGRAMMING TECHNIQUES € 0 00 066600008 3008600000000 00000080800d00
Dynamic Storage Allocation seseseccssonrccsesssssssrsccssscnes
Dynamic Core AlloCAatiON seeessessssscscnsssscccsssscsossssas
Dynamic Disk Allocation .scsecssscssssssssssessaesscsscnes
Dynamic Allocation in ATS .ceesvvossssscosssssscsssnssesas
Multiprogramming R N A N S SN S I N S A N WA S SN S S S AT BTN Y Y
List Processing ® 0000800000600 06000060006068000006000000080600000000

TI"HE SYSTEM B0 6 0 0 0600860 0SS GNP OE OO ESNEN NNl
The Multiplexor I E IO EE0E0000600000600600000000080000800000
Status CharactersS .esseeseccccssesscsssssssssosssssscssssos
Running AGOAYESS cessessssstsescssssosssotocssssssssssssses
INtEXrUPL sessestceovsscccsccsscsccssscssssssnsssssssssscoss
Early Warning 200 6060000000008 0600608000000006000000000000000
The SCAN eesscsvccsoacessssssssscsssssoncsssssssssasscssoscs
The TerminalsS cesecccesesssssesstssssossssscsssssssssceosssscns
Transmnission COJE ceesecscssccsosscsssssssessssnsnssssnsscs
Line CONtrOl ceccecssososssotscssssssstnnssessoassncscoassss
Output Timing ConsiderationsS seesssessscscnsscscssscscsncsss

The Disk Files 0000000000800 0060006000000000000000000000000b00

STORAGE ALLOCATION G 0 00 060 00O TN GO0 OOOHOEIUDOLILBLBOOOESDSPEDNLOEOEDN
Disk Storage AllocatiOn sseecscscoscssscnssncssscssssssscsssnosnse
Core Storage Allocation ceeceseescosscsssscososssssosssaconnscs

SYSTEM TABLES .ceevcvescoscssscsocsctcsesscssasosssssesascsossnsanse
System Status Table ceesevesoescsscocssssscassssscosscssesssosons
Program Status Table esceccesvescstsccssssssssoscsssssosscsssss
Character Status Table esescecsssscscocssosnsscsssssssssscssssns
AYM TaADle ceevcoctstcsorssstecsosssctsssasossstssssssssssosssssas
Terminal Status Table seeecescsscvesssstosnssosssssossccosssss
Inactive StatUS ceseececssescscccnssscssssssosscssscscnssss
ACtive StALUS seeeesecscecesscosossssssosssssssccossssssssse
Multiplexor Status Table cessssecceccssscsscsssossssssssnnnss
LisSt ENtXieS eoecccccnvectocscesssiossssssscsssonosnscssarsnssns
Availability ENtYY seecsccceestsesccssssescsosossassscsssas
NIB ENtIrY soeeveecscsceescsscsssncsscscsssssssssssssssanscsssscs
ARM ENtYy eoesececcesscessssesncsssosssssssccssnsisssssessea

WPA Entry G DS @0 60608 0000506006600 0000 9000600608800 0008060600000¢000

TEXT STREAM PROCESSING cseecoseccsossscesvsccsscssscsssosssssse
Working Storage 60 6000000000000 030008000060000000000000800800000
COre BlOCKS ceseccososccscsossccscsossssssssssnsscssssnsssscsss
Block in Free StOrage sscescoscssecsssesssssssstesssscssscce
Block in Receive StaBtUS .cseevssscssscssossssscscsnssscssse
Block in Transmit StAtUS ceevesccoccccassesosssscscsscsnssosse
ATS Text-Handling CoNvVeNntionsS cesesscvsessscsessssssscosssscne
Receive StaAtUS ceeectcsctvescscocosssssssssnsssssssscsonsas
Transmit StAtUS eceesescessoccessocssssssossssssssssoscssasssse
First BlOoCK AY2a eseseesoeresccesesssosatssssssnssssascascsossss
Permanent StOYAge ecsesssssccoscsscsssscssscscscsnssssosnsssosns
Permanent Storage INA@X coeoevcsssscsccsccossnsccssasssssssss
Half=TracksS evesecesesscscorcsscsosrtcscsassssonstosssscssssso
Half-Track Allocation and Deletion eeececsscssoscssocscscan
Permanent Storage TAPE eeesessesccaccssssssosscssccsscsscsssone

woooo~Sunuu N -

SYSTEM PROGRAMS 9 0 0 0 0 6 00000 000G O8O S OO EEN OIS SN EELNLOEe
Items in Lower Core StOrage tesevssessosesoencsssssssssnssasnse
System MEeSSAUES seesessssssstsscnesssssossessssctossssssssass
The SChedUler cicecsssssesessssvsossssssssssssossossssossosasssss
Input/Output Control (IOCNX) 60 00 00000 BENENICEIGOLOEGOIOOOIEOGOEDEOS
Chain (CHAIX) 6000 0060000060606 06000060020066068600306060000c000000080808
Next Disk Block (NDBKX) PO 0000 EEII0CII0EIO0INIOIOEIGOGIELIEIOIGIEIGDN
Purge Disk Block (PDBKX) 00 0P 0000608000060 000N0000C0NGLOIGOIITIILDS
Next Core Block (NCBKX) 0006000000000 IIEIEIENINENIOIOBIILOEBOIOGEOETDRIOSTDS
Head Of Free Storage (HDFSX) B E 0 G006 6D 000020 0000000000080 0 0
Foot of Free Storage (FTFSX) 000 0008000608000 0060000000bsG060
Set New JOb (SNJBX) S8 0 0000060600000 000006060606600060006006006060060000
Same Unit (SMUNX) €00 LB 00PN 0C0000080000000000000000000
New Unit (NWUNX) €0 600 6000600 0606000600600¢06060 8060600600000 0000000000
Retrieve (RTRVX) 06000 00006000806 006000066000608C000C000COCC0OCT0LTS

MISCELLANEOUS PROGRAMMING NOTES cssescsessccnccesscsscccssscss
Source Program Preparations 6000600000000 60000000600000s000600
Programming Language 0000600000000 008000000080000000css0es
Source Program DECKS cvessssessstssscassssscsssonasoasssss
JOD CarXd eseeecscsscsccoesscososscsosssossssonasscsssssosssocas
Literal Origin (LTORG) Statements .ciess6ccsocssv00sstscces
Origin (ORG) StatementsS ccescescecssctsssccosscsssossscssssca
COMPOOL (Communication POOLl) sevoceosssosscsacsscosvsocnsas
Disk Load Program (DSKLD) 400000608600 0000E6RA0EOEIGRIIOBOIOIODOILES
Writing Peripheral Programs sseeessececevesscecsosssscsscssscns
Writing Application Programs esececesecsesssscsccsocosessssascs
Coding PractiCesS seeseevecsccececsscscsssccoscscsssosssasscae
Locating the Attention LiNE .esecssccocoscsssssessscscsnne
Interpreting the Attention LiNE seeececcccceoscsacscssccsse
Numeric Character TransSlatiOn eseesscccccsscssvsscssscsscsose
Shift CharactersS .ccescscccscscnecscccsssosssoscascossssssasscs
Overlays €6 000060060 060606000000000006006008c6006060c0 00000000000 0000
SpeCial MESSAQES ssseessetsctsssssscnsossscoessstnsasssossoss
Output TexXt Streams ceececescscecccssscoscsscsssasososssssosnse
Priority Interrupt €00V 0NN A0E080000cs00000000000000s0

SYSTEM OUTPUT FORMATS scesvcovcaccoscsoccocesasssossssssasoscse
Permanent Storage TAPE evevecsossosssscastosscsssssssssnsssses
Card Image TAPE covssevsvcassstssoccscsesssessscssssosssssasss
Print with Line Numbers TAPE cevesscesvsstsacssssssssssnsnsss
Upper- and Lowercase Chain Print Tape sesesseesssccessscocsca
Storage RepOYXt TAPE cesesesessscscsessssossscssesssossssonnsas

APPENDIX A: Sample coding for a SKANB subroutine .seseessesss
APPENDIX B: Sample coding for a RTBLK subroutine ..cesescesce
APPENDIX C: Sample coding for a SSPRT subroutine ssesecescece
APPENDIX D: Sample coding for a routine to read overlays «ss.
APPENDIX E: Sample table for communication between overlays ,
APPENDIX F: Sample coding for a subroutine to chain

Working Storage to another DBloCk ceeesscsssscose

INTRODUCTION

It is intended that this manual serve as a reference manual for
programmers concerned with the Administrative Terminal System (ATS).
The manual includes a description of the system, beginning with a
general discussion of techniques involved and developing into a
detailed treatment of the programs and indicators. Material is
presented to permit each reader to investigate the subject as his own
interests and requirements demand.

It is assumed that the reader of this manual is familiar with the
following IBM publications:

IBM 1440/1460 Administrative Terminal System, Terminal Operator's
Manua H20-0185)

IBM 1440/1460 Administrative Terminal System, Console Operator's
Manua H20-0227)

It is also assumed that the reader is familiar with the IBM Systems
Reference Library publications describing the various components of

IBM 1440 and 1460 Data Processing Systems that may be used in connection
with the IBM 1440/1460 Administrative Terminal System, The reader
should, in addition, be generally familiar with the IBM Systems
Reference Library publications describing the IBM 1401/1440/1460
Autocoder (On Disk) programming system,

GENERAL DESCRIPTION

The IBM 1440/1460 ATS program is concerned with allowing up to 40
remote terminals simultaneous access to a data processing system, A
wide variety of program-controlled operations are available to each
terminal, operating independently.

Keystrokes entered at the terminals are collected by the system as
strings of characters called text streams, These text streams are
accumulated in core storage in l00=-character, dynamically allocated
data areas called core blocks. Twenty-five characters of the data
area are necessary for control, 75 for text. When 75 characters have
accumulated in a core block, the text is written to IBM 1311 Disk
Storage using a chaining technique., Thus, the text stream input from
each terminal is in the form of a chain of blocks, each link containing
up to 75 characters of text. This chain is called Working Storage.
Working Storage for each terminal is both on the disk and in core
storage.

Hardware and formatting requirements make the Working Storage (input)
text stream unsuitable for transmission back to the terminal. Whenever
a printout is requested from the terminal, a co of the original

text stream is program-generated. This special output text stream

is the logical reverse order from the input text stream, Text streams
are illustrated in Figure 1.

Blocks ;)n Disk Blocks
[I In Core
Beginning End
Input
S:f:om of T of I
Document Document
Terminal
Output E:fd | Beglr;nlng
Stream Document Document

Figure 1. Input and output text streams

The input text stream is kept intact until deliberately destroyed as
a result of a program request from the terminal operator. In contrast,
the output text stream is destroyed as it is used.

Documents in Working Storage may be copied into another area of the
disk called Permanent Storage. The terminal operator assigns the
document a number. This number refers to a specific location in an
index, which, in turn, contains the disk address of the beginning of
the document. Permanent Storage is chained in a manner analogous to
Working Storage, in blocks of 900 characters.

When accumulating text from the terminals, the system does not
ordinarily examine the text stream for content. Thus, to distinguish
a program request from ordinary text, the terminal is provided with

a special key called the Attention key. The Attention key, like all
other keys on the keyboard, generates a unique character that becomes
part of the accumulated text stream, The terminals and the IBM 1448
Transmission Control Unit (multiplexor), as modified, recognize this
character and cause a computer interrupt after it is received. Any
line containing an Attention character is a request for a program
function. The characters keyed following the Attention character
indicate which function is requested. The line cannot be interpreted
until it is completely entered. Thus, no action is taken by the
system until the Carrier Return character is received, signifying the
end of the line, At this time, the line is interpreted, and the
request is processed. During this period, the terminal keyboard is
locked, and the operator is denied access to the system, In all
cases, except where the request is supposed to remain for implicit
formatting, the program request line (Attention action) is deleted
from the text stream.

ATS is not a single program but a system of three types of programs:
the control program, application programs, and peripheral programs.,
The control program, or Scheduler, schedules the workload for the
application programs, performs all disk input and output, and keeps
the text flowing between the multiplexor and the processor. The
application programs perform the functions specifically requested by
the terminal operators. For example, the Format and Print program
generates the output stream when a terminal requests a printout.,
Peripheral programs perform unrslated background functions such as
tape to printer.

With one exception, all application programs are resident on the disk,
The exception is the End of Unit program (EUNIT), which is described
later in this manual. When an Attention action is taken by one of

the terminals, the Scheduler reads the appropriate application program
from the disk into a special overlay area. When the program is
finished with its work, it indicates that fact to the Scheduler, and
the next requested program is read into the same area.

Every application program is assigned a unique three-character entry
in the Program Status Table (PST). This table contains the location
of every application program, whether disk- or core~-resident, (Disk
addresses are in a compressed form.) The programs are numbered by
their relative positions in the PST. This number, called the PST
number, identifies the program.and determines its relative priority.
Thus, when two programs are waiting for the overlay area, the program
with the lower PST number (higher in the PST) is overlaid and executed
first,

The character immediately following the Attention character in an
attention action determines the application program that will process
the request. Program identification is accomplished bv reference to
the Character Status Table (CST). This table is composed of 64
entries, one for every possible BCD character. An entry consists of
the PST number of the program that processes the request. When an
Attention action is taken by one of the terminals, the character
following the Attention character is located, and the entry in the
CST corresponding to the character is examined. The entry in the CST
will contain the PST number of the requested program., The PST is
then examined to locate the program, and the request is processed.
For example, if a terminal requested the next number, the characters:

ATTN n CR
would appear in the text stream., The character following the Attention
character is "n"; thus, the entry corresponding to "n" would be

referenced in the CST. The entry would contain the PST number of the
Miscellaneous Attention Actions program (MISAC). The request would

-3-

then be sorted into the line or queue of programs waiting for the
overlay area according to the PST number. When the queue was processed
to the point of the entry, the position indicated by the PST number
would be examined in the PST, and the physical location of the program
determined. The program would then be read from the disk and executed.

The CST and PST entries are the communication links to the application
programs, When a new application program is added, appropriate entries
in these two tables are the only system modifications that are required.

PROGRAMMING TECHNIQUES

This section contains a general description of some of the programming
techniques used in ATS, It must be thoroughly understood before the
detailed operation of the system is studied. The ways that these
techniques are used in various parts of the ATS program will be covered
in the detailed descriptions of these parts in later sections of this
manual.

DYNAMIC STORAGE ALLOCATION

Dynamic Core Allocation

Information is usually stored by means of several contiguous words

or blocks having addresses and block lengths that are known to the
programmer. Access to a block is then controlled by the known address
modified by an index register. An example is shown in Figure 2,

Location
1440
1420
1400
1380
1360
1340
1320
1300

-¢ 20 Positions '

Figure 2. Fixed core blocks

In a fixed table, block entries are numbered from zero to N-1, where
N is the total number of blocks. To reference any block, the block
number times the length of the block is loaded into an index register.,
Reference is then made by addressing the desired field in block zero
plus the contents of the index. Thus, in the above example, to
reference the sixth character in the fifth block, 4 (the block number)
times 20 (the length of the field) is loaded into an index register.
The number 1305 (the character position in block zero) added to the
index will yield character position 1385, or the sixth character in
the fifth block.

This organization lends itself well to tables of fixed length that
change infrequently. However, when dealing with data of unknown
length that must be constantly manipulated, a more flexible technique
is desired. Dynamic storage allocation is such a technique.

If a portion of each register or block is allocated to control
information, namely, the address of the block following, the scheme
would appear as shown in Figure 3.

Location Pointer Location Pointer

- w]
400 800 [900
500 900 [1000
600 | 700 1000 [Blank]

Figure 3, Core blocks chained together with pointers

The address in the block is called a pointer because it "points" to
the next register, A pointer that is blank denotes the end of the
table. This technique is also called chaining.

It is immediately apparent that these registers may be randomly located
tliroughout memory, Thus, contiguous registers are not necessary,

Also, sorting becomes merely the manipulation of addresses, rather

than the movement of entire blocks,

In most systems using dynamic storage, the concept of "free storage"
is used., Free storage is a chain of available blocks which are unused
at the moment and which may be requested., The technique is developed
so that when a program needs an additional block, it "takes" one from
free storage, adds it to its chain of blocks, and reunites the free
storage chain around the missing element, Actually, "taking" a block
from free storage entails only the changing of the pointers. The
pointer in the last block of the chain associated with the program

is changed to point to the block to be extracted from free storage,
while the chaining of the free storage blocks is altered to exclude
the "missing" block. An example is shown in Figure 4,

Before "Taking" Block At 1000

Program's Chain Free Storage Chain
Location Pointer Location Pointer
300 400 700 800

400 [500] 800 [900]
s00 [e00] 900 [1000]
600 [Blank] 1000 [Blank]

After Program "Takes" Block At 1000

Program’s Chain Free Storage Chain
Location Pointer Location Pointer
300 400 700 800

400 | 500 800 [900]
s00 [600 | 900 [Blank |

1000 [Blank]

Figure 4. -Core blocks in two chains

Conversely, when a program has finished with a block, it is "purged"
or "returned" to free storage. Again, the purging of a block entails
merely the rechaining of addresses.

Although the examples given above are contiguous, the random nature
of this method should be obvious. Also, the program may chain in a
block at any point in its Working Storage, not necessarily at the
end.

Knowing the address of the first block of a chain enables the program,
by following the chaining addresses, to find any particular element
in the chain. This search may be facilitated if, in addition to a
chaining address pointing to the next block, another address is used
to point to the preceding block. Such a scheme is illustrated in
Figure 5.

Backward Forward
Location Pointer Pointer

Headof 400 [blank [500]
so0 [400 [00]
60 | _s00 | 700 |
700 [_e00 | 800 |
I;sztl:f 800 700 | Blank |

Figure 5. Core blocks with two-way chaining

In this scheme, the first address points "backward" in the chain,
while the second address points "forward". With this additional
address, it is possible, given any block in the chain, to search in
either direction. Note that when the end of the chain is reached
going either forward or backward, the chaining address is blank.

Using this method of two-way chaining, it is desirable to know the

locations of both the beginning and the end of the chain, which are
called the head and the foot of the chain, respectively, Pointers

to these locations are stored in fields with fixed locations termed
the "head pointer" and the "foot pointex".

Dynamic Disk Allocation

Although the technique described above refers to allocation in core
storage, an analogous procedure makes very effective use of random
(disk) storage. When dynamically allocated disk storage is used, the
chaining addresses become sector addresses. Here again, two-way
chaining is desirable to increase the efficiency of a search,

Dynamically allocated disk storage is clearly a superior technique

when random-length records must be processed. The storage space used
by the chaining addresses is trivial when compared to the large

-7=

portions of the disk that are unused in a contiguous technique. Also,
because each cylinder is fully utilized before going to the next and
because no reshuffling of records is necessary, the number of disk
accesses is greatly reduced, especially the disk "seek". Thus, system
efficiency is maximized,

With record elements that exceed one sector in length, the dynamic
technique can be implemented by chaining groups of sectors., Thus,
with long elements, the use of chained groups of sectors (where the
groups of sectors are contiguous) results in optimum use of the disk.

A concept analogous to "free storage" is used with dynamic disk
allocation. Instead of a chain of available blocks (sectors), a pool
of available sector addresses is kept. These addresses are allocated
from one end of the disk (highest addresses, for example) and as more
sectors are required, they are added to the pool, moving sequentially
across the disk. For example, the pool might begin by including all
of the addresses in the highest cylinder of the disk. As these
addresses are used up, the addresses in the next cylinder down would
be requisitioned.

When a program has finished with a sector, that sector is "purged"

or made available for reuse. Again, because a pool of disk addresses,
not a chain of free storage, is used, a disk sector is purged by
returning the address to the pool. No additional access to the disk
is required.

Dynamic Allocation in ATS

Several variations of the above-described allocation techniques are
used in the ATS. The one-way chaining technique is used to link the
elements in the list area, which is described in the section "List
Processing". Two-way chaining is used in several variations in the
l00-character core blocks used to receive text before writing it to
the disk (described in the section "Core Blocks"). In both the list
area and the core blocks, the concept of free storage is used.

Disk storage is allocated by chained sectors for the text as it is
received and manipulated by the program. A pool of sector addresses
is kept as explained above.

In addition to the chained sector storage, called Working Storage,
text to be stored permanently is written in chained groups of ten
sectors, A similar, but slightly modified, technique of the address
pool is used here.

MULTIPROGRAMMING

Multiprogramming is the apparent simultaneous operation of two or

more programs. Multiprogramming is not to be confused with
multiprocessing, which is the execution of two or more programs that
are independently and simultaneously executing instructions. An
example of multiprocessing is the simultaneous operation of the Central
Processing Unit (CPU) and a data channel in the IBM System/360,
Multiprogramming is the aggarent simultaneous operation of two or

more programs in a single .

When time is not a prime factor, a program can afford to wait for
input/output operations to be completed. However, in a real-time
situation in which the program must be able to react to external
conditions within a specified amount of time, processing time must
be conserved.

The "seek" instruction in direct access storage is a very time-
consuming input/output operation. This is so because it involves the
mechanical motion of the access arm, Because seek instruction may
be given, and processing may occur at the same time that the arm is
in motion, it does not seriously delay the program. Moreover, an
inquiry may be made to see if the arm has reached its destination.

If it has not, more processing may be done.

Multiprogramming is a technique used to take advantage of the processing
time while the arm is seeking. In its implementation, two or more
programs are in core at the same time, each with its separate function
to perform., When traffic with the disk is required by one of the
programs, it branches to an executive routine conveying the address

of the sector(s) that it needs. The executive routine proceeds to

give the disk seek and then branches to another program in core. The
second program works until it has completed its task or until such

time as it needs access to the disk file, If disk access is required,
the second progr~m branches to the executive routine with an appropriate
calling sequence giving the address of the sector(s) required, This
second request is placed in a queue behind the first request.

The logic in the Scheduler is that waiting input/output operations
that have been completed are processed before any new programs are
allowed to operate. Thus, in the above example, after the second
program requested a disk access, the Scheduler would first check to
see if the input/output of the first program was completed. If so,
it would branch to the first program. If not, it could branch to a
third program, The actual disk read or write operation is performed
whenever control is given to the Scheduler by an interrupt (see the
section "The Multiplexor").

In a multiprogrammed system, from the individual program viewpoint,
input/output is instantaneous. It requests I/0 and, by the time it
executes the next instruction, the operation is completed. Thus,
several programs are all operating, from their individual viewpoints,
at the same time.

LIST PROCESSING

In a multiprogrammed system with a conceivably long queue of waiting
input/output requests, some manageable technique must be devised to
keep track of the I/O demands., Moreover, if the system is running

in real time, it must react to external conditions arising on a random
basis =-=- conceivably, several arising simultaneously. Thus, demands
on the system must also be arranged in a queue.

One solution to these problems is the concept of a list, A list is
a group of registers, containing control information, placed in a
- string or qgueue so that they may be processed sequentially.

The control information in a list queuing input/output requests, for
example, might include the type of operation (that is, read or write),
the area in which the operation is to be made, and the address to
branch to when the operation is complete. Such a list is shown in
Figure 6 .

Input/

Output Branch

Entry Operation Area Address
1 1 10200 6056
2 1 12500 14561
3 / 10600 4480
4 / 10500 4480
5 1 10400 15975

Figure 6. Example of an input/output request list

The first item of each entry is the operation ("1" a read, "/" a
write); the second item is the address of the input/output area; and
the third item is the address to which to branch when the operation
is completed., This kind of list is used for the Work in Progress and
Disk Arm queues in the ATS program,

A different set of controls would be needed in a list used to handle
system demands, Such a list is shown in Figure 7.

Terminal Program

Entry Number Number
1 39 03
2 08 12
3 12 06
4 00 06
5 16 09

Figure 7, Example of a system demand list

The first item in each entry is the terminal number, and the second
item is an encoded number (PST number) referencing the program that
is to do the work.

The queuing of a list is handled in two ways. Either it is "first

in, first out" (FIFO), or it is "last in, first out" (LIFO). Assuming
that the list entries were processed by always taking the top entry,

a FIFO system would place the latest entry at the bottom of the list,
while a LIFO system would place the latest entry at the top., In
addition to a basic queuing technique, it is sometimes desirable to
have some kind of priority implementation. This can be accomplished
in a FIFO list by sorting the entries so that priority requests are
always pushed to the top., This kind of list is used for the New Job
queue in the ATS program.

With the list concept, an adequate queuing technique is obtained,
This technique can be made much more powerful, however, if it.is

-10-

implemented with the dynamic storage concept., Thus, the list entries
can be located at random, connected only by chaining addresses,
Figure 8 contains an example of a dynamic list,

Entry Chaining Entry Chaining

Location I | I Address Location I l — Address
300 1] 360 | 6056 330 330 (0] 16 1250 320
310 2| 450 7921 | Blank 340 |1] 217 375 310
320 1| 620 365 350 350 |2] 876 195 340

Figure 8, Example of a dynamic list

The last item in each entry is a chaining address (pointer). This
particular list begins in location 300 and ends in location 310,
Note that the blank chaining address denotes the end of the list.

The immediate advantage of a dynamic list is that the addition of new
entries and the task of priority sorting become simply the manipulation
of chaining addresses, eliminating the necessity of complete record
moves., Also, the program required to manipulate a dynamic list is
extremely short,

In a real-time system, there are a number of operations that must be
queued., For example, there might be five disk drives attached to the
system, If so, it is apparent that I/O requests can be more efficiently
handled if they are queued up for the respective arms where access

is required, In this case, five gueues, or one for each arm, would
be desirable, In addition, a separate queue of completed I/O requests
would be needed, As explained previously, a queue is necessary to
process outside demands on the system, The handling of seven separate
lists is considerably alleviated if the free storage concept is
considered, If a chain of Available list entries is used, there is

no reason why all seven lists cannot be in the same "list area". To
implement this condition, eight "pointer registers" must be allocated
in fixed positions, Each of these pointers points to the top entry

in its own dynamic list chain, The Available Pointer, for example,
points to the tcp entry in the free storage list., Each of the five
Arm Pointers points to the top entries in its respective list, The
Work in Progress Pointer points to the top entry in the completed I/O
list and the New Job Pointer points to the top entry in the list of
new demands on the system,

In the implementation described above, as in most dynamic storage
allocation schemes, a pointer that is blank denotes the end of a
chain, When a new list entry is needed, say for the New Job list,
it is unchained from the Available list and rechained in its proper
priority order in the New Job list. Thus, the addition and priority
sort of a list entry can be done in one operation. When the entry
has served its purpose, it is purged, or returned, to the Available
1isto

An example of a dynamic list area at any one instant is shown in
Figure 9.

-11~

Pointers

Available New Job Work In Arm 1 Arm 2 Arm 3
Pointer Pointer Progress Pointer Pointer Pointer
Pointer
340 300 390 310 320 Blank
Arm 4 Arm 5
Pointer Pointer
Blank Blank
Chaining LIST AREA Chaining Chaining
Location Entry Address Location Entry Address Location Entry Address
300 330 350 380 400 410
310 Blank 360 420 410 350
320 430 370 440 420 Blank
330 360 380 Blank 430 Blank
340 400 390 370 440 Blank

Figure 9. Example of a dynamic list area

Note the blank Arm Pointers, indicating no entries in their lists,
Note also that the last entry in each chain has a blank pointer.
This is a somewhat simplified example of the List Area in the ATS
program,

Although this technique may appear complicated from a programming
standpoint, it is simple to implement, Consider the problem of
chaining a list element from the Available list to the bottom of the
New Job list. Only a two= or three-instruction loop is required to
step to the bottom of the New Job list., The address in the Available
Pointer is then moved into the pointer of the last New Job entry.

The pointer (address) in, the new New Job entry is copied into the
Available Pointer and is then cleared.

=12~

THE SYSTEM

This section discusses some programming aspects of the systems that
use the ATS program. Except where the operation of specially modified
equipment is described, the IBM Systems Reference Library publications
describing the equipment should also be consulted.

THE MULTIPLEXOR

In 1440/1460 ATS, a modified IBM 1448 Transmission Control Unit
(multiplexor) is used to buffer text being sent to and received from
the terminals. This unit is modified in the sense that many of its
functions have been disabled. Communication between the processor
and the 1448 is controlled by a table consisting of one ten-character
entry for every line attached to the 1448, In the ATS program, this
table is called the Multiplexor Status Table (MST). Use of the
multiplexor is point-to-point. This means that only one terminal is
attached to each line, and the polling function is not used. Because
of this, the 1448-1440/1460 communication consists of only a status
character (STAC) and a running address (RUNA). The status character
occupies the first position of the MST entry and is followed by the
three-character running address., The remaining six characters are
used for program control and are not referenced by the 1448, They
are described in the section "Multiplexor Status Table". An MST entry
is organized as shown in Figure 10.

I 1 i L

STAC RUNA CONTROL

L] L L]

o
-t
-

-
-
-

Figure 10. Format of a Multiplexor Status Table (MST) entry

Status Characters

The following status characters may occur in the ATS Multiplexor
Status Table:

Receive~Idle (A-bit and l-bit). This status is set by the program
after an End-of-Block (EOB) character is received from the terminal.
It resets the 1448 so that it will receive characters. It also causes
the 1448 to send the Keyboard Unlock character to the terminal.

Receive (A-bit only). This status is set by the 1448 when any character
is received from a terminal.

-13=-

Receive End of Block (A-bit and wordmark). A special End-of-Block

(EOB) character is transmitted to the 1448 by the terminal immediately
following the Attention or Carrier Return characters. The EOB character
never reaches core, however, Instead, the wordmark bit is set in the
status character for that line by the 1448.

Receive End of Storage (A-bit and 8-bit). This status is set by the
1448 whenever it attempts to store characters over a groupmark/wordmark,

Receive Check (A=-bit and 2-bit). If an invalid character is received,
or if the two-character buffer storage overflows, this status is set
by the 1448.

Transmit (B-bit only). This status is set by the program to transmit
text to the terminals,

Transmit End of Block (B=-bit and wordmark). This status is set b

the 1448 when it recognizes a record mark in an output area, indicating
the end of the storage area. A wordmark is set in the status character
for the appropriate line.

EOB condition to hold the terminal in a stable waliting condition while

it is processing for that line,

Control (4-bit only). This status can be set by the program after an

The status character appears as follows:

Bit Status-Function

B Transmit
Receive

A
8 End of Storage
4

Control
2 Check
1 Idle

WM End of Block

Whenever an EOB bit is turned on for any line, the EOB indicator is
also set., Thus, the program can inquire with a branch on indicator
instruction if there is an EOB for any line. If not, an unnecessary
search through the Multiplexor Status Table for wordmarks can be
avoided,

The processor is allowed to change a status character only afier an
EOB character is received. Any attempt to change a status character
from Receive or Transmit to any other value before an EOB character
is received will halt the system, The processor is permitted to set
the status character to Control after an EOB is detected. It is then
permissible for the processor to later change Control to either
Receive-Idle or Transmit,

Running Address

The processor sets the running address to the core address where the
1448 is to deposit characters received or get characters for
transmission., Once it is set, the 1448 will increment the running

-14-

address each time it deposits or transmits a character. Between
scans, the running address will always point to one character beyond
where the last operation occurred, Although the running address will
not step past a groupmark/wordmark when receiving text, a character
will never be stored in place of a groupmark/wordmark. Whenever a
character might be stored in place of a groupmark/wordmark in the
Receive status, the End-of-Storage bit is set in the status character
and all subsequent characters received are lost. This loss can be
prevented if the Early Warning feature (see below) is used.
Encountering a groupmark (with or without wordmark) in the Transmit
status will cause the system to Check Reset.,

The running address, unlike the status character, may be reset at any
time by the Scheduler or by an application program, A word of caution
is necessary here, The 1448 Transmission Control Unit will not step
the running address across a 4000-character boundary. Since such a
boundary occurs in the half-track area (the 8K boundary; see the
section "Core Allocation"), this fact should be well noted,

Interrqgg

The 1448 will set a request interrupt condition in the processor
whenever it receives the EOB character from any terminal. An interrupt
is also requested when the 1448 buffers are full in Receive status,

or empty in Transmit status, An interrupt cannot occur when a program
is executing’ instructions that are less than five characters in length,
The rationale for this is that the program might be chaining, and an
interrupt would surely bring disaster. When an instruction greater
than four characters is read into the A* and B* registers, the
instruction counter is immediately changed, effecting a branch to
position 181 (182 in some systems).

The processing of an interrupt is done by the Scheduler, Other
programmers need not be concerned about the interrupt as their program
will be completely unaware of it. Control is returned to the
interrupted instruction with index registers, overflow indicator, and
high-low-equal indicators restored,

It is possible to disable and enable the interrupts. All of the
system subroutines (available for use by any program) disable the
interrupts to prevent entries from more than one program at the same
time., Interrupts are enabled when control is returned to the program
calling them, When changing the status character for a terminal, it
is imperative that application programs set the running address before
the status character is changed,

Early Warning

~

One of the most important features of the 1448 Transmission Control
Unit is the Early Warning Indicator. If a character being received
from the terminal is stored in place of a groupmark (without a
wordmark), the Early Warning Indicator goes on, In the ATS program,
characters are received and transmitted from l0O-character, dynamically
allocated core blocks, When receiving from the terminal, the block

is allowed to fill up, and then it is written to the 1311 Disk Storage,
The Early Warning Indicator eliminates the wait that a terminal would
experience when a new block is assigned. When the Early Warning
Indicator goes on after a 1448 scan, the Scheduler locates the terminal
requiring service, starts the characters flowing into a new block and

-15-

IBM 1440/1460 Administrative Terminal System
Terminal Code Translation

Terminal To Processor Pr ocessor To Terminal

Keyed Received Transmi tted Printed

TERMINAL SHIFT
CHARACTERS
(Where Different)

Downshift Upshlft

TS %0 R @

LY = 1 OVONOCUAWN—
o +|

FUNCTIONAL
CODES

Name Graphic Bits

Upshift GR (001110)
Downshift LS (111110)
Tab *L (111101)
Return *R - (101101)
Attention WS (011101)
Backspace ., (101110)
Space : (000000)
Dummy ((011100)

-

Program-Generated
Codes

* Record Mark RM (011010)
** Groupmark GM (111111)

1 AN@ +~
~VEXHALW I TIrORDMCZVOP>—R ~<» <X~ O @™ HQONOBR®OENGWN —

o e N E < 0 O Z E R T gy D (2 0 o0 8 €00
T WIIZIMOROTNAr @R 7O OV <XST+ONPACKXY DV NV ADWN —

* A RM in the input stream
indicates a stop code; in the
output stream it stops
transmission to the 1448,

** A GM in the input stream
indicates the end of valid
text in that block.,

Note: In ATS text stream there

T is a wordmark over the
initial downshift of each
unit and over every
Carrier Return entered in
the automatic mode .,

Figure 11. Translation table for ATS terminal transmissions

-16-

qgueues the old block in the appropriate Arm list, to be written to
disk storage.

The cha

The 1448 scan instruction is given by the Scheduler. When this
instruction is executed, the 1448 empties its buffers if receiving
text, fetches two characters if transmitting, sets the status character
for each terminal, and turns the EOB and Early Warning Indicators on

if appropriate, The Scheduler must then react to any EOB or Early
Warning Indicator set by the 1448,

THE TERMINALS

Transmission Code

Terminals for the 1440/1460 ATS have a typewriter mechanism similar

to that of the IBM SELECTRIC typewriter., The 6=-bit codes generated
by depressing the various letfer and function keys (Shifts, Tabs,
Backspaces, and Carrier Returns) on the terminal keyboard do not
correspond to the 6~bit BCD codes normally used in IBM 1440/1460 Data
Processing Systems. This means that ATS programs that are concerned
with the content of the text stream generated by the terminal must
identify these codes. Also, when data is transmitted to standard
input/output units, it must be translated to standard BCD codes to
get satisfactory results., However, all text stream data is stored
within ATS in the terminal code. A two-way translation table is given
in Figure 1l1l.

Line Control

Line control codes used to convey control information between the
multiplexor and the terminals are generated and removed automatically
by the system, When the Attention or Carrier Return keys are depressed
the appropriate character codes are transmitted, followed by line

codes in character time. The terminal keyboard is locked. The
terminal keyboard will remain locked until the multiplexor is set to
Receive~Idle status for the terminal. This causes a Restore character
to be transmitted to the terminal (by the 1448), which unlocks the
terminal keyboard.

Output Timigg‘Considerations

Since the fixed time-out feature of the 1448 is not used in ATS, there
is no interlock when functional control characters are transmitted

to the terminals. Because of this, text sent immediately behind a
Tab, Index,.or Carrier Return character will print while the SELECTRIC
print element is in motion. To avoid this problem, a series of dummy
characters (Upshifts or Downshifts, as appropriate) are put dinto the
output stream following Tab, Carrier Return, or Index characters.

-17-

The number of these dummy characters is calculated so that the print
element comes to rest just before the next printing character is
transmitted. The Attention character (word separator) will index the
platen if transmitted to the terminal. An Index character (Attention
character) requires one dummy character. The formula for computing
the number of dummy characters required for Tabs and Carrier Returns
is the number of character positions to travel divided by ten, plus
two, thus:

Number of Dummy Characters = Number of Character Positions + 2

THE DISK FILES

Disk operations in ATS are performed by the Scheduler and an I/0
control program (IOCNX) with the help of a subroutine (SEEKS). These
operations are made by requesting the system to perform them and are
never attempted by application programs directly.,

To obtain disk input/output, an application program must first set

up the disk control field. This is a ten-character field immediately
preceding the area where the operation takes place. The first character
of the field is an asterisk (a right parenthesis or lozenge for 1301
addresses), as the alternate code feature is not used in the system.
The next six positions are occupied by the sector address. This
address is the actual address of the sector to be read or written,
The next three positions are the sector count or the number of
contiguous sectors that are to be read or written, beginning with the
sector in the sector address portion of the field, A disk control
field is shown in Figure 12,

Alternate Sector Sector Area to be Read
Code Address Count or Written
*or X 002999 001

Figure 12, Example of a disk control field

An IBM 1316 Disk Pack used on the IBM 1311 Disk Storage Drive has ten
recording surfaces., Each recording surface is composed of 100
concentric rings or tracks. These tracks are divided into 20
addressable sectors of 90 characters each (all disk operations in the
system are in the Load Mode). There are ten access heads, vertically
aligned, that move in unison on an arm, These heads read or write
information on the tracks, Since the concentric tracks are also
aligned vertically, when the arm is in position on any track, all of
the tracks in vertical alignment (a "cylinder") are available., The
1311 can theoretically handle up to 200 contiguous sectors in a
cylinder with one disk operation., Although the 1311 will switch
automatically from track to track within a cylinder, it is important
to note that automatic switching from cylinder to cylinder is
impossible, Attempting this will cause a disk error condition,

-]18~

Starting from the bottom of the outermost cylinder, the sectors are
addressed beginning with 0 and ending with 199 at the top of the
cylinder, The second cylinder is addressed from 200 to 399, and so
on, Thus, the low address in each cylinder is addressed as an even
multiple of 200,

The addresses in a multiple drive system continue in sequence from
drive to drive, Thus, the highest sector address on drive 0 is 19999,
and drive 1 commences with address 20000, The programmer need only
be concerned with the address, however, as the hardware knows which
drive to reference by any sector address.

A groupmark/wordmark in the area receiving or writing the information
ends the operation, This groupmark/wordmark should coincide exactly
with the end of the area as established by the sector count. In ATS,
this is taken care of automatically by the Scheduler. However,
application programs should never have groupmark/wordmarks within the
area where the operation is to take place or else an error condition
known as "wrong length record" will occur.

In ATS, all possible disk errors are checked. These errors are:
wrong length record, address compare, access inoperable, and parity,
If any error should arise, seven additional attempts are made to
perform the operation., If it is still unsuccessful, the Scheduler
sets an indicator that an application program can test when control
is returned to it.

«19=-

CYLINDER

0 100 199
0 [T FBK AREA I FRPRT]
200 230 320 399
1 |_ATTEN [MIsacC COINS]
400 480 500 ‘ 560 599
2 [BUKOP | GETDC | FILEP | STORE
1
600 799
3 | PERMANENT STORAGE BIT MAP]
800 840 870 900 920 940 960 999
4 | SECRD | SPRNT | REDTP [WRTTP] SKNTP | DELET | rpORT
1000 1090 1120 1140 1160 1175 1199
5 KLCUT CRDSL PERPT | ARCRT
1200 1399
6 | Available |
1400 1500 1550 1580 1599
7 | _available | ATspp | ATSTR [ssbD |
1600 1670 1685 1700 1799
8 | CORED | DSKDM I DSKMN | SCHED |
1800 1899
9 CORED=-ATSDD WORK AREA]
2000 2199
10 PERMANENT STORAGE INDEX |
2200 2399
11 | PERMANENT STORAGE INDEX }
2400 2500 2599
12 | PERMANENT STORAGE INDEX | 5-DIGIT INDEX EXTENSION]
2600
13 (1311 Permanent Storage may begin at 2500) J
- 6800 6999
34 [END OF 5-DIGIT INDEX EXTENSION]
Variable
Variable| 1311 PERMANENT STORAGE : WORKING STORAGE |
variable| HIGHEST WORKING STORAGE CYLINDER i
up to 499

Figure 13, Disk storage allocation

-20-

STORAGE ALLOCATION

DISK STORAGE ALLOCATION

In ATS, all disk operations are performed in the sector format and
the Load Mode (with wordmarks). A disk pack has 20 sectors per track
and 10 tracks per cylinder, or 200 sectors per cylinder. Since there
are 100 cylinders per pack, there are 20,000 sectors per pack to be
allocated. The minimum configuration for ATS is one disk drive (two
are recommended) , yielding a minimum capacity of 20,000 sectors. The
first 20 cylinders or 4,000 sectors are allocated to programs and
control information. All other sectors are used for storing text,
Figure 13 contains a layout of disk storage.

Significant disk areas ares

1, First Block Area (sectors 0 through 39). The first 40 sectors
are allocated to control information, one sector for each terminal,
These sectors hold the tab stop settings; control information for
corrections and insertionsj control information for text formatting,
and the pointer to the first block (disk) in a terminal chain. This
pointer is termed the ANXB (Address of the Next Block), and it occupies
the last five positions of each block. Here again, a pointer that
is blank indicates that there are no sectors chained for a terminal.

2, Additional Terminal Area (sectors 40 through 79).

3., Peripheral Device Control (sectors 80 through 99).

4, Application Programs (sectors 100 through 599 and 800 through
1119) . This area contains e main system application programs. An
application program consists of a basic routine plus overlays if
needed., The basic routine is 20 sectors long, while an overlay is
10 sectors. As many overlays as are necessary may be appended to an
application program.

5. Bit Map (sectors 600 through 799). The bit map is a map of
all of the half-tracks allocated for permanent storage and indicates
which half-tracks are available,

6. Scheduler, System Subroutines, EUNIT and HSKPG (sectors
1700 through L799). _¥EI§-1 -sector section 1s read 1Nto core in one
operation by the bootstrap routine to initialize or restart the system,
Sectors 1794 through 1799 of this section contain the ATS COMPOOL

(see the section "COMPOOL").

7. Permanent Storage Index (sectors 2000 through 2500 if four-
digit document numbers are used, or 2000 through 6999 if the five-
digit document number option is used). The Permanent Storage Index
holds the pointers for each dynamically allocated chain of Permanent
Storage. Each entry in the index is associated with a number assigned
to a document by a terminal, These numbers are between 1 and 9999,
for the four-digit option or between 1 and 99999 for the five-digit
option. The sector corresponding to document zero is used to contain
the pointer for the next half-track available (NHTA),

8. Peripheral Overlay Library and User-Written Application
Programs (sectors 1120 t roug). Parts of this area may be used
y peripheral programs that may be supplied with future versions of
the system. Modification of the locations of programs stored in this

area is discussed in the section "Writing Peripheral Programs".

-21=

Location

0 Card Unit and Printer Buffers
333
Scheduler
System Subroutines
System Messages
EUNIT
5900
Overlay Area
(Application Programs)
7700
Half-Track Area
8600
System Tables
9600
List Area
10000
Dynamically
Allocated
100-Character Core Blocks
Variable
Peripheral
Overlay Area
16000

Figure 14, Core storage allocation

-22=

9. Permanent Storage (both upper and lower bounds are determined
by the user). If an Iﬁﬁ 1301 Disk Storage is installed, all Permanent
Storage is on the 1301. Permanent Storage consists of dynamically
chained groups of ten contiguous sectors (half-tracks). Messages
transmitted between terminals are handled similar to Permanent Storage
and also occupy this area.

10. Working Storage (from address determined by user downward) .
Working Storage consists of single sectors dynamically allocated as
explained in the section "Dynamic Disk Location",

CORE STORAGE ALLOCATION

The core storage requirements for 1440/1460 ATS are 16,000 positions.
A clearxer understanding of the organization of the system can be
gained by understanding the physical allocation of core storage, which
is shown in Figure 14.

Core storage may be divided into eight areas:

l, Card Buffers, 0 through 332. This area is used for peripheral
and main system card operations.,

2, Main System Programs ggg EUNIT, 333 through 5899, The
Scheduler 1s the major program in the system, Its function is to
control the flow of text to and from the terminals, give the reads
or writes queued up for the disk file, and schedule work among the
various functional (application) programs.

In addition to the Scheduler, the input/output control program (IOCNX)
is also in this area., IOCNX is responsible for queuing input/output
requests., Also in this area are the system subroutines that may be
used by application programs. Among the more important subroutines
are the following:

Set New Job (SNJBX) is responsible for the queue of new jobs for
application programs.

New Core Block (NCBKX), Head of Free Storage (HDFSX), and Foot
of Free Storage (FTFSX) are responsible for the maintenance of
the free storage chain of 1l00-character core blocks.

Next Disk Block (NDBKX) and Purge Disk Block (PDBKX) are
responsible for the pool of availablle disk sector addresses
used for Working Storage.

Also in this area, in addition to the main system programs, is a small
application program called End of Unit (EUNIT), which deletes
nonprinting characters preceding the Carrier Return Character at the
end of a unit, EUNIT is the only application program that is resident
in core while the system is operating.

3., Overlay Area (application programs), 5900 through 7699. All
of the appIication programs, with the exception of EUNIT described
above, are resident on the disk file, These programs process specific
requests from the terminals, When a request is made, SNJBX places a
program request in the New Job gueue, and when convenient for the
system, the appropriate program is read into the Overlay Area and
given control, The application programs in the system are:

Attention (ATTEN) handles the erasing and deleting functions in
the system. ATTEN also serves as a preprocessor to other

-23-

application programs and processes system errors or transmission
errors.

Bulk Move and Erase (BUKOP) processes the moving and deletion
of text in Working Storage.

Corrections and Insertions (COINS) processes the calling out of
lines and units for correction, and the insertion of lines or
units into previously keyed text.

Card to SELECTRIC (CRDSL) creates documents in ATS format from
card or unblocked tape input.

Delete (DELET) updates the bit map to indicate available half-
tracks released by deleted documents,

Files Preprocessor (FILEP) does the initial processing of requests
pertaining to Permanent Storage: Store, Get, Delete, Transmit,
Message, and Permanent Storage Tape.

Format and Print (FRPRT) generates a formatted text stream for
transmission to the terminals,

Get Document (GETDC) retrieves documents from Permanent Storage.

Housekeeping (HSKPG) is the exception that does not respond to
requests from the terminals. It prepares core storage and
initializes the cycling of the system when the system is loaded.
It also restarts the system in a system failure situation.
Unlike all other overlay programs, HSKPG is not initialized
through the New Job queue, Instead, a bootstrap routine is used
that brings both the main system routines and HSKPG into core
from the disk file and gives control to HSKPG.

Calculate (KLCUT) is an algebraic interpreter that provides
arithmetic functions and formula solutions.

Miscellaneous Attention Actions (MISAC) is responsible for setting
the terminals to active status, mode setting (that is, Automatic
or Uncontrolled Modes), returning the terminal to inactive status,
and processing the "next number" request and format control
requests (that is, ATTN ! and + actions), In addition, MISAC

is a preprocessor for FRPRT.

Permanent Storage Print (PERPT) prints a listing of the contents
of Permanent Storage on the online printer.

Read Tape (REDTP) reads documents from the Permanent Storage
Tape into Permanent Storage on disk.

SELECTRIC to Card (SECRD) translates text entered in card format
from terminal code to BCD and produces punched cards, magnetic
tape, or online printer output.

Scan Tape (SKNTP) searches the Permanent Storage Tape for a
document if a read is requested, or to the end of the file if a
write is requested.

Special Print (SPRNT) prints formatted output on the uppercase
and lowercase chain printer, if present, or writes it on tape
in print image format.

Store (STORE) stores documents in Permanent Storage,

-24=

Storage Report (RPORT) prints a listing of the contents of
Permanent Storage on a terminal.

Write Tape (WRTPP) writes documents from Permanent Storage on
disk to the Permanent Storage Tape.

In addition to these application programs, special purpose application
programs may be added to the system,

4, Half-Track Area, 7700 through 8599, This area is named for
the ten-sector elements or half-tracks that Permanent Storage programs
manipulate in this area. In addition to this use of the area, most
application programs use it to hold their own respective overlays.
Some programs have as many as six overlays. Core restrictions force
this second-level overlay technique,

5. System Tables, 8600 through 9599, This area contains fixed
tables and indicators and is divided into six sections. They are:

a., System Status Table., This is a general area that contains
fixed registers and indicators. "Miscellaneous" would be an
appropriate synonym for the table. Among the more important
items in this area are the pointers to the queues in the list
area, and the free storage chain of core blocks. It is described
in more detail in the section "System Status Table".

b, Program Status Table (PST). This is a table of the
location of every application program. It is described in more
detail in the section "Program Status Table".

c. Character Status Table (CST). This table is used in
conjunction with the Program Status Table to identify the program
needed from characters keyed from the terminals., It is described
in more detail in the section "Character Status Table",

d. Arm Table (ARM). This table contains five entries, one
for each possible disk drive connected to the system. The ARM
entries contain the status of the drive and the pointer to the
top I/0 request for that arm in the list area. It is described
in more detail in the section "Arm Table".

e. Terminal Status Table (TST). This table contains one
entry for each possible terminal in the system. Each entry
consists of a four-character "Input Buffer" that is used to
receive characters when the terminal is in the inactive status.
The mode request that initializes the terminal is sensed in this
buffer. When the terminal is active, the input buffer is used
to keep the line count, It is described in more detail in the
section "Terminal Status Table".

£f. Multiplexor Status Table (MST). This table is required
for communication with the 1448 Transmission Control Unit. There
is an entry in the table for each line attached to the system.
Each entry contains the status for that line (Receive, Transmit,
or Control) and the address where characters are to be transmitted
or received. In addition, there are a number of control indicators
used for various purposes. It is described in more detail in
the section "Multiplexor Status Table".

6. List Area, 9600 through 9999, This area contains the dynamic
list entries that make up the New Job, Work in Progress, Arm, and
Available queues., Application programs process their text by reading
it into the core blocks and manipulating it there. The number of
blocks needed is determined by the number of terminals,

=25

7 Block Area, 10000 through XXXXX (15899 maximum), This area
is composed of the T00-character, dynamically allocated core blocks
used to buffer text between the terminals and the disk files,
Application programs process their text by reading it into the core
blocks and manipulating it there., The number of blocks needed is
determined by the number of terminals.

8. Peripheral Overlay Area. When all possible core blocks are
not required for terminals, the highest positions in core may be used
as an overlay area for programs doing peripheral operations., These
peripheral operations can include card to tape, tape to printer, or
even small unit record type programs that involve some computing
between card reading and printing. Card punching introduces system
delays and is not recommended while terminals are in operation,

-26-

SYSTEM TABLES

This section describes, in detail, the contents of tables in the
Compool or common parameter area in the ATS program. The Autocoder
labels of the fields described are given in capital letters.

SYSTEM STATUS TABLE

The System Status Table is not really a table in the strict sense of
the word, but a collection of indicators and registers grouped together
for convenience, They are:

LPSA (five positions). Lowest Permanent Storage Address is the disk
address specified by the user of the lower boundary of Permanent
Storage (low-order zero is understood).

NHTP (five positions). Next Half-Track Possibly is the disk address
(low-order zero understood) of the next half-track to be tested
for availability in the bit map. It is used to eliminate redundant
searches when storing a document.

HPSA (five positions). Highest Permanent Storage Address is the disk
address specified by the user of the upper boundary of Permanent
Storage (low-order zero understood).

NWSA (five positions). Next Working Storage Sector Address is the
disk address (high-order zero understood) of the next sector to
be used for Working Storage. At the start of a run it is set
equal HWSA., It is documented by NDBKX to increase the pool of
Working Storage Addresses.

LWSA (five positions). Lowest Working Storage Sector Allowed is the
user-specified lower bound of Working Storage (high~order zero
understood) .

HWSA (five positions). Highest Working Storage Sector Allowed is the
user-specified upper bound of Working Storage (high~order zero
understood) .

NTRN (five positions, equated to HWSA). Next Tape Record contains
the tape document number of the next document to be written to
the archive tape.

OTRM (ten positions, wordmark bit). Output Terminal is a table of
peripheral output devices attached to a system,

TAPE (ten positions, equated to OTRM, character bits only). TAPE is
a table of mounted archive tape reels. Each character position
represents tape drive numbers zero to nine. When an archive
tape is mounted, the alphabetic reel designator (in SELECTRIC
code) is placed in the character position corresponding to the
drive number,

TT00 (one position, character bits only). This character, 1301

indicator, contains the number of 1301 modulés available, If
no 1301 is attached the position is blank.

-27-

FDDN (one position, wordmark bit, equated to TT00)., Five-digit
Document Numbers indicate whether the five-digit option is
allowed., (Wordmark indicates five-digit numbers.,)

WRUT (one position). Write Unit contains the number of the tape drive
on which the archive tapes are written.

MACH (one position). MACH describes the computer on which the system
is operating., A 6 indicates the 1460, a 4 the 1440. A wordmark
indicates the translate instruction is installed on the machine;
no wordmark indicates the translate instruction is not installed.
The system will adjust its instructions automatically to conform
to the appropriate system configuration.

ATLI (two positions). Number of Attached Lines contains the number
of lines attached to the 1448 for purposes of setting the
groupmark/wordmark in the Multiplexor Status Table.

NAVB (two positions). Number of Available Blocks is the count of
core blocks in free storage at any one time,

ADPR (three positions). This field contains the address of the first
character of the peripheral program. It is set by MISAC when a
new peripheral program is called in by terminal 0,

DATE (six positions). This field is set by the HSKPG program with the
date entered by the computer operator at the 1447 Console. It
is used by STORE to date documents when they are entered into
Permanent Storage.

SCLK (two positions). Simulated Clock is used by the Scheduler to
keep track of the amount of time available for disk operations.
It igs set to 99 (100 milliseconds) each time the Scheduler is
entered, and is decremented an appropriate amount for every
function that is performed. It is checked just before disk
operations are attempted. Forty milliseconds are allowed for
each disk operation, making two operations possible if no other
work was done.

MODE (one position). A wordmark on the MODE switch indicates that
the Scheduler is operating; no wordmark indicates that an
application program is operating, This indicator is used by
some of the system subroutines and IOCNX to perform certain
operations that are done only for the Scheduler., In addition,
some of the subroutines will trick other subroutines into thinking
they are working for Scheduler to get additional operations
performed, The 1~ and 2-bits of MODE are used as request bits
for servicing the peripheral program: a l-bit means branch to
the address in ADPR after every 1448 scan; a 2~bit means branch
whenever 100ms of available computer time exists.

OVBZ (one position). A wordmark in the Overlay Busy indicator is set
by the Scheduler whenever a program is in, or is in the process
of being read into, the overlay area, With the switch on, the
Scheduler will not attempt to read in another program until the
current one is finished with its work. The Scheduler turns the
switch off when an application program returns control, indicating
that its work is done.

-28=-

PROV (three positions). Program in Overlay is set to the Program
Status Table Location (PST number) for the program currently
operating in the overlay area (see the section "Program Status
Table"). The rationale for this indicator is that two requests
might appear in the NJB list for the same program, making a
second reading of the program unnecessary. The Scheduler checks
the PROV indicator for every NJB entry that it processes,

HDCC (five positions). Head of Clear Chain is the disk address (high-
order zero understood) of the top sector of a chain of sectors
to be purged. It is set to blanks if no sectors are to be purged.

HDPT (three positions). The Head Pointer points to the top entry of
the free storage chain of core blocks.

FTPT (three positions). The Foot Pointer points to the foot of the
free storage chain of core blocks.

NDPT (three positions). The Next Disk Pointer points to the top
currently available entry in the pool of sector addresses used
for Working Storage on disk.

NBDA (one position). Number of Blocks of Disk Addresses is the number
of core blocks being used to hold the pool of Working Storage
disk addresses,

NJPT (three positions). The New Job Pointer points to the top entry
in the New Job list.

WPPT (three positions). The Work in Progress Pointer points to the
top entry of completed disk input/output list,

AVPT (three positions). The Available Pointer points to the top
available (free storage) entry in the list area.

The above indicators should not ordinarily be read or changed by an
application program. Control should be given instead to the particular
subroutine that is responsible for the indicator, such as SNJBX for

the New Job gqueue.

PROGRAM STATUS TABLE

The Program Status Table (PST) is a contiguous list of every application
program that can be operated through the New Job gueue., The elements
of this table are three characters long. If the program is resident

in core, such as EUNIT, the three characters contain the core address
of the first instruction. However, as is usually the case, if the
program is resident on the disk pack, the three characters reference
the disk address with one low-~order and two high-order zeros understood,
Since the overlay area holds 20 sectors, the sector count is understood
to be 20 regardless of program length., If a program exceeds 20

sectors, it must read in its own 1l0-sector overlays into the half-
track area.,

Two indicators are used in the PST. A wordmark in the high=-order
position indicates that the entry is a core address and the program

is resident in core, No wordmark indicates a disk address. This
indicator is called Program Location. Another indicator is Program
Busy (BUSY)., Obviously, it is possible for two requests for the same
program to be in the New Job gueue at the same time. In such a
situation, unless precautions were taken, a program could be processing
two requests at once. To prevent this from occurring, the BUSY-bit

-29-

(wordmark in the tens position of the entry) is turned on whenever a
program is operating. Other requests for the program wait in the
queue until it is available.

In the Autocoder language, an example of an entry for a core program
would appear as follows:

PEUNIT EQU O
DCW +EUNIT

The label for the entry is prefaced by a P (meaning PST position for
EUNIT) to avoid presenting label ambiguity to the assembler. Equating
PEUNIT to zero is in reality equating the label to the high-order
position of the DCW statement following (assuming the table began at
zero) . Since each entry is three characters long, it will have its
high-order position in increments of three from the beginning of the
table. Thus PEUNIT is the first entry in the table, as the first
entry is equated to zero., +EUNIT means the high-order address of the
field with that label, in this case an instruction, The DCW statement
contains the core address in this case.

A disk program entry would appear like this:

PATTEN EQU 3
DC @020@

Note: In this example, the entry is a DC statement that is assembled
as a three-character field without a wordmark. The @ signs preceding
and following the 020 indicate a literal. Attention is the second
entry in the table and is, therefore, equated to three, 1In this case,
the DC statement implies a disk address,

The order of the entries specifies program priority. Thus, PATTEN
equated to three has a higher priority than PMISAC, which is equated
to six,

The number that the PST label is equated to is used in conjunction
with the Character Status Table (see below) to identify a program
with keyed terminal characters., Note the ease with which a program
can be added to the system. An entry is made in the PST; another is
made in the Character Status Table; the program is read onto the disk;
and a new function is added to the system.

CHARACTER STATUS TABLE

The Character Status Table (CST) consists of 64 contiguous entries

of two characters each. These entries are arranged in order, according
to the 64-bit combinations in the BCD character, beginning with a

blank and continuing until all bits are on. For example, entry 1
corresponds to a blank character; entry 2 corresponds to a l-bit;

entry 3 to a 2-bit; etc.

The two-character entries contain the PST location for the program
that corresponds to its appropriate terminal code character. If no
program corresponds, the characters are blank. The beginning of the
CST in Autocoder language appears as follows:

DC @ @
DC @o09e
DC @o09e

=-30=-

One of the responsibilities of the Attention program (ATTEN) is to
interpret Attention actions., This interpretation is accomplished
first by identifying the bit code in the character following an
Attention character and then by finding the CST entry that corresponds
to that character. If the entry is blank, the Attention action is
illegal. Otherwise, a New Job entry is set for the program designated
by the CST entry.

To enter a new program into the system, the PST location must be

inserted into the CST entry corresponding to the character that will
be used to request the function.

ARM TABLE

The ARM Table consists of five entries of 20 characters each, one for
each possible arm (Disk Drive Access Arm) in the system. An ARM entry
is shown in Figure 15.

Character 0-2 3 4 5-7 8-9 10-18 19

NEPT | NUMT | ARMS | ARMP | ARMF | SVAC | Spare

Figure 15. ARM Table entry

The fields in an entry are:

NEPT (three characters, positions 0 through 2). The Next Entry Pointer
points to the top entry for the arm corresponding to this table
entry (see "List Entries" below).

NUMT (one character, position 3). It is possible, because of a failure
of a disk drive or a program specifying an incorrect sector
address, for a disk error condition to arise. Should this occur,
the Scheduler will reseek and retry the operation seven times,

The count of tries is kept in the Number of Tries position of
the appropriate ARM entry.

ARMS {one character, position 4). The ARM Status character indicates
whether the arm is seeking (wordmark) and the type of operation
that is waiting. A 1 indicates a read waiting; a 2 indicates a
write waiting; and a blank indicates nothing is waiting,

ARMP (three characters, positions 5 through 7). Since the direct
seek feature is used, it is important to know the Arm Position
in order to make the necessary computation. The ARMP register
holds the hundreds, thousands, and ten thousands position of the
current sector address, rounded down to an even cylinder number,

-31~

ARMF (two characters, positions 8 and 9). Arm Failures are used to
keep a record of the number of I/O requests that required at
least one reseek. This indicator is a diagnostic indicator.

It makes it possible to request maintenance before a drive fails
altogether.

SVAC (nine characters, positions 10 through 18). This portion of the
ARM entry is called Saved Address and Count. A disk control
field is kept in SVAC so that it may be restored immediately
after a disk operation.

SPARE (one character, position 19). This character is reserved for
possible expansion of the system,

All 1311 input/output requests are placed in the arm gueue determined
by the ten-thousands digit of the disk control field; 0 and 1 to arm
queue 0, 2 and 3 to arm queue 1, 4 and 5 to arm queue 2, 6 and 7 to
arm queue 3, and 8 and 9 to arm queue 4. This scheme is also employed
for 1301 input/output requests except that all those which would go

to arm gueues 0 and 1 are placed in arm gueues 3 and 4 respectively.
Since most systems utilizing 1301 Disk Storage have two 1311 Disk
Storage Drives this scheme places all 1311 input/output requests in
arm queues 0 and 1 and all 1301 input/output requests in arm queues

2, 3 and 4.

TERMINAL STATUS TABLE

The Terminal Status Table (TST) consists of one to 40 entries of five
characters each, one for every attached terminal in the system. The
last character in every entry is a groupmark/wordmark.,

Inactive Status

As far as the 1448 and the processor are concerned, a terminal is

never offline. The so-called inactive status is an invention that

is completely contained in the program. Because of this, the running
address for every inactive line must be set. When a terminal is
inactive, its running address is set to the first character of its
respective TST entry. In this situation, the TST entry is termed the
Input Buffer (INBF). As characters are entered into the system, the
INBF fills up until the running address is pointing to the
groupmark/wordmark. All subsequent characters entered are lost.

When the Carrier Return is transmitted from the terminal, the Scheduler
resets the running address to the first INBF character again., However,
a terminal may request to go online and, because of this, the Scheduler
will check the INBF for the exact sequence ATTN a CR or ATTN u CR,

If the sequence is sensed, all succeeding text will be entered into

a core block, and the terminal will be considered to be active. If
not, the running address is reset to the first INBF character for

that terminal.

Active Status

A terminal is placed in active status when the initial ATTN a or ATTN
u action is taken when in the offline status. When a terminal is
active, its TST entry is used to count the number of lines or units

-3

entered. The ATTN a or u CR is considered the first line, and all
subsequent lines or units cause the number in the TST entry (now
called LINE) to be incremented., This number is used with the line
count stored in each block to locate specific lines for correction
or insertion,

MULTIPLEXOR STATUS TABLE

The Multiplexor Status Table (MST) is the communication between the
1448 and the processor. In addition, a number of indicators that are
very important to the program occupy this area. The table itself
consists of one to 40 entries of ten characters each, or one entry
for each line attached to the 1448, A groupmark/wordmark is placed
immediately after the entry corresponding to the last attached line.
An MST entry is shown in Figure 16.

Character 0 1 2 3 4 5 6 7 8 9
Bit
B AUTO| STOP |MSGW

TACT { ATFL | BALL

A

8 | STAC RUNA SVRA
4 COIN | PACT | Spare
2

1

Figure 16, Multiplexor Status Table (MST) entry

The fields in an entry are:

STAC (one character, position 0). This character indicates the status
for the line (see the section "The Multiplexor" for the possible
status characters).

RUNA (three characters, positions 1 to 3). RUNA points to where the
1448 may deposit or pick up characters.,

SVRA (three characters, positions 4 to 6). SVRA is the mnemonic for
Saved Running Address, These positions are used for temporary
storage of a running address that will replace the current one.
An example would be to save the running address to a core block
while the current running address points to a system message in
the message area.

AUTO (B=bit, position 7). If the AUTO-bit is one, the terminal is
in the Automatic Mode. Off indicates the Uncontrolled Mode,

TACT (A-bit, position 7). This bit indicates whether or not a terminal

is in active status. If the TACT-bit is on, the terminal is
active.

-33=

COIN (numeric, position 7). This indicator gets its name from the
COINS (Corrections and Insertions) program, which sets the field
to 1 if a correction is in progress, or to a 2 if an insertion
is in progress, The FILEP program will set it to 4 if a document
ident is being entered, or to 8 if a document is in the process
of being deleted from Permanent Storage. The BUKOP program will
set COIN to 3 if a bulk move has been requested, or to 9 in the
case of a bulk erase, The value of this indicator is immediately
apparent in view of the fact that an application program cannot
remain in the overlay area while it is waiting for operator
response, as this would cut off all functions to all other
terminals,

STOP (B-bit, position 8). This bit is set by certain programs when
they have finished generating output. The Scheduler, upon sensing
the STOP-bit, will reactivate the program in PACT after the
Attention character is received.

PACT (numeric, position 8). PACT is the mnemonic for Program Activation
Required. PACT is used in conjuncion with STOP to reactivate
certain programs.

ATFL (A-bit, position 8). The Attention Flag is set by the Scheduler
whenever the Attention key is depressed, and indicates that an
Attention action is being entered and must be interpreted and
processed when the Carrier Return is received.

MSGW (B-bit, position 9). This bit, Message Waiting, is set by the
STORE program to indicate that a message has been queued up for
that terminal. Application programs, sensing this bit, insert
the characters (MSG) in certain system messages transmitted to
the terminal.

BALL (A-bit, position 9). This bit indicates the type of SELECTRIC
printing element on the terminal. If the bit is on, a manifold
or similar printing element is indicated, and the numeric one
is used in all system-generated messages sent to the terminal,
If the bit is off, the lowercase L is used for the numeral one.

SPARE (numeric, position 9). These bits are reserved for possible
expansion of the system.

LIST ENTRIES

Availability Entry

The list area is organized in the manner described at the end of the
section "List Processing". An entry in the free storage chain of
list entries contains two fields:

Not Referenced (seven characters, positions 0 through 6), This
area contains whatever was entered into it previously. The
entries are never cleared,

Pointer (three characters, positions 7 through 9). This pointer
points to the next entry in the queue. A blank pointer indicates
the end of the list.

-34-

NJB _Entry

A program request entered in the queue contains four fields:
Not Referenced (two characters, positions 0 and 1).

Terminal Number (two characters, positions 2 and 3). This is
the 1448 1ine number of the terminal requesting service.,

PST Numbex (three characters, positions 4 through 6). This
number 1s relative to location of the program entry in the PST.

gg}nter (three characters, positions 7 through 9). The pointer
points to the next entry in the queue; a blank pointer denotes
the end of the list. List entries are one-way chained, FIFO,
and priority sorted,

ARM Enth

An entry gqueued up for a particular disk arm appears as shown in
Figure 17,

Character IOOP
Bit 0 1-3 4 - 6 7 -9
B Priority
A Operation
8 .
| O AR BRAD Pointer
4 Sector
2 Count
1

Figure 17. ARM and WPA list entry

The entry contains 4 fields:

IOOP (one character, position 0). The Input/Output Operation character
contains certain coded information. The B=-bit indicates priority;
ON is high priority, OFF is low priority., The A-bit indicates
the type of operation; ON is a write, OFF is a read. The numeric
portion of the IOOP character indicates the sector count; a
number from one to nine is a sector count from one to nine; a
zero is a sector count of ten; and a blank indicates that the
count is already set in the disk control field.

~35=

IOAR (three characters, positions 1 through 3). The Input/Output
Area is the address of the high-order positions of the disk
control field (the asterisk or lozenge).

BRAD (three characters, positions 4 through 6). This field is the
Branch Address where control is to be returned when the
input/output operation is complete.

Pointer (three characters, positions 7 through 9). The pointer points
to the next entry in the queue, with a blank pointer indicating
the end of the chain. ARM entries are FIFO and priority sorted.

WPA Entry

The entries in the queue of completed I/0 (Work in Progress) are
simply ARM entries rechained in the WPA queue, In other words, ARM
and WPA entries have exactly the same information., They are simply
queued behind different pointers. WPA entries are FIFO.

-36=

TEXT STREAM PROCESSING

This section describes the internal handling and processing of text

by the ATS. The format in which text is processed by ATS is called

the ATS text stream. This section must be understood by anyone wishing
to write a program that will process the ATS text stream.

WORKING STORAGE

In the offline condition, all the characters keyed by a terminal are
deposited in the four-character buffer (INBF) in the Terminal Status
Table for that line. If a request to go online (ATTN a CR, or ATTN

u CR) is sensed in the buffer, a core block is obtained from the free
storage list, and the running address in the Multiplexor Status Table
is set so additional key strokes are captured in the core block.

When 74 or 75 characters have been accumulated, an entry for the block
is placed in the appropriate ARM queue to be written to the disk, and
another block is obtained from free storage for the next 75 characters.
Every block written to the disk has the disk address of the block

that will follow and the block that preceded it. These pointers are
called the Next Block Address (NXBA) and the Last Block Address (LSBA),

respectively. A diagram of a Working Storage text stream may be found
in Figure 18.

ON DISK
At address: . At address: At address:
59999 59765 59846
First Text Second Text Third Text
Block Block Block
LSBA NXBA LSBA NXBA LSBA NXBA
Blank 59765 59999 59846 59765 59968
IN CORE

(Will be written to address 59968)

Disk Control Field

Beginning of 4
text in block

Fourth Text

Block
LSBA NXBA
59846 59968

Figure 18, Working Storage text stream

-37-

Unlike most of the dynamic allocation schemes in ATS, the end of the
stream in Working Storage is not indicated by a blank pointer, but

by the pointer pointing to itself. In Figure 18, the last block (in
core) has in the forward pointer (NXBA) the address of where the block
is to be written and thus points to the block, itself, on disk. The
backward pointer (LSBA) is blank in the first block. The disk control
field for the block in core storage is not set until it is placed in
the ARM queue. At that time, the address in the NXBA is loaded into
the disk control field for the block, and a new address, obtained

from the available pool, is loaded into the NXBA. This address will
become the address of the following Working Storage block., When a
second core block is obtained and the address of the old block being
written is loaded into the LSBA, the new address is loaded into the
NXBA. The new block is then ready to receive text,

If the terminal made a program request, the Attention and Control
characters would appear in the Working Storage block in core storage
as they are received by the system. There is no guarantee, however,
that the entire Attention line is in a single block. The program
processing the request would always find the end of the line in the
core storage block only by finding the Carrier Return character. The
core address of the Carrier Return can be located by the running
address for the terminal in the Multiplexor Status Table. Generally,
the application program will scan to the beginning of the Attention
line and then interpret the line.

As mentioned previously, output streams are program-generated in
Working Storage blocks. Once generated, the first block of the stream
is read into core storage, and transmission to the terminal is started
beginning with the first text character in the block. Transmit blocks
are chained in the same manner as input blocks with an LSBA and NXBA,
Thus, when the block in core is almost exhausted, the address of the
following block is obtained from the NXBA and is placed in a core
block, and a read reguest is placed in the appropriate ARM queue.
Normally, the next block will be in core by the time the current
transmit block is exhausted. If not, transmission will wait until

the block is in core, At this time, the running address is changed

to begin transmission from the new block, the old core block is
returned to the free storage chain and its disk address to the available
pool.

The first block is important to both the transmit and the input text
streams, It is always the sector with the same address as the terminal,
For example, the first block for terminal 25 is sector 25. This

sector contains static control information such as the address of the
first text block, tab settings, lines per page, etc. When a terminal

is receiving a program-generated text stream, the first block contains
the disk address of the last block in the text stream that was
previously being transmitted from the terminal., This parameter is
necessary to restore the terminal to the Receive Mode from the Transmit
Mode at the end of text - stream transmission to the terminal.

CORE BLOCKS

The dynamically allocated, l00-character core blocks begin at core
address 10000 and continue to the peripheral overlay area, if it is
used, or to 15899, The first position of a core block is always at

an even hundreds position. For example, a core block might have
addresses of 10200 through 10299, Core blocks are essentially buffers
that hold text between the terminals and the disk file. Text being
received from a terminal accumulates in a core block before being

-38-

written to the disk pack. Text being transmitted is read or generated
in these blocks.

In addition, application programs work with raw text and generate
output streams in these blocks.

Block in Free Storage

All core blocks are initially located in a free storage chain. Free
storage is two-way chained, with the HDPT (Head Pointer) and the FTPT
(Foot Pointer) pointing to the ends of the chain (see Figure 19).

A block in free storage contains two control fields:

BKCB (three characters, positions 1 through 3). The Backward Core
Block is the backward chaining address in the block and points
toward the top of the chain. The first block in the chain
contains a blank BKCB.

FWCB (three characters, positions 4 through 6). The Forward Core

Block points toward the bottom of the chain. The last block in
the chain contains a blank FWCB.

Block in Receive Status

A core block in Receive status is accumulating text from a terminal,
The first ten characters comprise the disk control field; the last
ten characters are the disk chaining addresses; and five characters
are used for control, leaving 75 characters per block for text (see
Figure 20).

Since a block is written in the Load Mode, the 90 characters following
the disk control field are written out. A block in Receive status
has several important locations and fields:

Asterisk (one character, position 0). The first character of the
disk control field contains an asterisk, since the alternate
code is not used.

SADD (six characters, positions 1 through 6). The Sector Address
portion of the disk control field contains the full six-character
address of the sector to which the block is to be written.

SCNT (three characters, positions 7 through 9). The Sector Count is
always 001 for a core block.

FTXC (one character, position 10). The First Text Character label
identifies the address where the text begins in the block.

LTXC (one character, position 84). The Last Text Character label
identifies the location of the last valid text character.

Groupmarks (two characters, positions 83 and 84). The groupmarks at
LTXC=1 and LTXC turn on the Early Warning Indicator when-characters
from the terminal are stored over them,

Groupmaxk/Wordmark (one character, position 85). The groupmark/wordmark
will stop the reception of text and turn on the End-of-Storage
bit in the status character if the multiplexor attempts to store
a character over it.

=30

Position

20

30

40

50

60

70

80

90

Units: O

1

*

BKCB

e
—

-

1

Figure 19, Core block in free storage

Positlon

Tens
0

10

20

30

40

50

70

80

90

Units: O 1

-

*

+

-~

FTXC

Text

LTXC $

CRAD
¥

LSBA

N XBA

L

Figure 20. Core block in receive status

+

-4

-

Groupmark (one character, position 86). This position can be used

CRAD

LSBA

NXBA

as an indicator, but it is currently a spare.

(one character and zone-bits of the next two, positions 87 through
89). CRAD contains the Core Address of the core block that
preceded the current one. Since the core blocks originate at

even hundreds, only the first character and the two following
zone-bits are needed. The address references the asterigk
(position 0) character. This address is used to locate characters
in a previous block., Although the previous block has been written
to the pack and has been returned to the free storage chain,

there is a possibility that the block has not been reassigned.

The Scheduler increases the odds by always releasing a block to
the foot of free storage. (Blocks are always assigned from the
head,) If the block is still there, a time-consuming disk read
can be avoided., This is a tally of the number of lines or units
that begin in the block, and it is used with LINE in the TST to
locate specific lines for correction or insertion.

(five characters, positions 90 through 94). The Last Block
Address is the backward disk pointer, pointing to the preceding
block. The first block on the disk chain has a blank LSBA.,

(This should not be confused with the "First Block Area" discussed
below.)

(five characters, positions 95 through 99). The Next Block
Address points forward to the succeeding disk block., While in
core, NXBA is the address of where the core block is to be written
when filled, Just before writing, it is changed to point forward
(in anticipation) to the next disk block in the chain., The last
block of an input chain has an NXBA equal to its sector address.

Block in Transmit Status

A block in Transmit status (see Figure 21) has several important
fields and locations:

SADD

SCNT

FTXC

TREW

LTXC

(six characters, positions 1 through 6). This is the sector
address, and it is set by the Scheduler prior to reading a block
from the pack,

(three characters, positions 7 through 9), SCNT is the sector
count portion of the disk control field and is always 001,

(one character, position 10). FTXC is the label for the First
Text Character.

is composed of a record mark followed by a 1, When the 1448

senses the record mark in its buffers, it sets the EOB (WM) bit
for the appropriate line and requests an interrupt. The Scheduler,
upon sensing that a 1 follows the record mark, will immediately
queue up the next block to be read from the pack, setting the

SVRA in the MST to the core block address for the new block,
Application programmers need not be concerned with setting TREW,
The Scheduler will set it automatically.

(one character, position 84). The Last Text Character label

identifies the location of the last position that may contain a
character for transmission,

-41~-

Record Mark/Groupmark (two characters, positions 85 and 86). The

TWCS

LSBA

NXBA

10

20

30

40

50

70

80

90

record mark, when sensed in the 1448, will cause the EOB (WM)
bit to be set in the status character for that line and request
an interrupt. The Scheduler, finding that a groupmark follows
the record mark, will set the running address to the next block
of output (read in when TREW was encountered).

(two characters, positions 87 and 88). Two Character Storage

is where the two characters replaced by TREW are stored until
Transmit Early Warning is sensed by the Scheduler. At that time,
the two saved characters are moved back into their proper
positions,

(five characters, positions 90 through 94)., The Last Block
Address is the backward pointer for the dynamically allocated
output chain.

(five characters, positions 95 through 99). The Next Block
Address is the forward pointer for the dynamically allocated
output chain, The last block of an output stream must have a
blank NXBA,

0 1 2 3 4 5 6 7 8 9
L L i 1 L L 1
L) L) L} L] L) I ¥
* SADD SCNT
FTXC
Text
L JRIEW] Toxt
ex
/
Text Lixc| F | F TWCS Blank
+
LSBA N XB A
| 1

e
L

+

Figure 21, Core block in transmit status

-42-

ATS TEXT-HANDLING CONVENTIONS

Receive Status

The conventions followed in receiving and storing text are that the
text in a block always begins with FTXC and ends with the first
groupmark. The latter convention is important to note because it is
quite common for text in a block not to extend all the way to LTXC,

If corrections or insertions are made, blocks must be split apart,
leaving some partially filled. An application program scanning text
should finish the scan of a block with the first groupmark encountered.

Some Attention actions are imbedded within the text stream and serve

to control the Format and Print program (FRPRT) when it is generating
output. These actions are: ATTN a, ATTN u, ATTN +, ATTN h, ATTN f.

The Attention character will precede the action indicator and should

be checked for by an application program.

In order to start each line with a known condition, a Downshift always
is inserted after a Carrier Return. At the beginning of a line or
unit, this Downshift character is wordmarked., 1In the Automatic Mode,
all Carrier Returns are also wordmarked, As an example, a line in

the Uncontrolled Mode might appear as follows:

Wordmarks: - -
Characters: <> R Q$ OR @ZU @OJUK]

Translation: Carrier Return, wordmarked Downshift, Upshift,
"N", Downshift, "ow is the time.", Carrier Return. (Characters
underlined in the example are shown in quotation marks in
the translation.)

An example in the Automatic Mode would be:

Wordmarks: === - -
Characters:]]<>93C IQT VQSM@] < RSOSAG VQSM@ NOSAK]]

Translation: Wordmarked Carrier Returns (2), wordmarked Downshift,
Upshift, "I", Downshift "f you don't" Wordmarked Carrier
Return, Downshift, "swing, don't ring", Wordmarked Carrier
Returns (2). (Characters underlined in the example are shown
in quotation marks in the translation.)

Note that in this example the imbedded Carrier Returns are wordmarked.

Transmit Status

Since a record mark sets the EOB (WM) bit, it is used for Transmit
Early Warning, to end a block, and to end system messages. The
character immediately following the record mark tells the Scheduler
what needs to be done next.

A 1 following the record mark denotes Transmit Early Warning. The
Scheduler will gqueue the next block of output for a read from the
pack and restore the two saved characters,

A 2 following the record mark indicates the end of a system message,
and the Scheduler moves the saved running address to the running
address and sets the status to Receive-~Idle.

-4 3=

A 3 following the record mark indicates that if the terminal is in
the Automatic Mode, an index will be transmitted,

A 4 indicates that the COINS program has just finished transmitting

a correctable line to a terminal. This causes the Scheduler to change
the block from Transmit status to Receive status and the status
character to Receive-Idle,

A 5 following the record mark indicates a stop code. The Scheduler
will set the running address to FTXC of the current block, change the
core block in Transmit status to Receive status, and set the status
character to Receive-Idle,

A 6 indicates the end of all generated output. MISAC is called to
set the running address to the end of the input chain, to clear
indicators, and to set the status to Receive-~Idle.

A groupmark following a record mark indicates the end of output in a
block, and the address of the next block is moved into the running
address from the saved running address. In summary:

Record Mark Code Description

t 1 Transmit early warning

t 2 End of system message

t 3 Index to follow system message if automatic mode
4 End of correctable line

¥ 5 Stop code

t 6 End of all generated output

E . End of text in block

Application programs using customized messages should assemble the
message in a core block and set the running address to the first
character of the message. The saved running address should also point
to that character, so that the characters keyed by the operator when
the status is returned to Receive=-Idle will be stored over the message.
In no case should customized messages be transmitted from the overlay
or half-track areas, as they will be destroyed by other application
programs and their overlays.

All application programs generating output, including system messages,
should insert "dummy" timing characters into the text stream following
all Tab, Index, and Carrier Return codes, The rules for doing this
are specified in the section "The Terminals".

FIRST BLOCK AREA

Because many indicators must be saved by application programs, a
section of disk storage is allocated as the so=called "first block
area" where application programs can store indicators. These blocks
are one sector in length, the address being the 1448 line number for
each respective terminal. Thus, the first block for terminal 0 is
located in sector 0; that for terminal 39 is in sector 39.

- -

Five fields in the first block are important to most application
programs: ,

TABS (20 characters, positions 0 through 19). The first 20 characters
of the first block contain the Tab Setting for the terminal.
These characters may be thought of, and are used as, a 6 x 20
binary matrix. Each bit is in one-to-one correspondence to the
first 120 positions on the typewriter carriage. A bit in any
position indicates that a tab stop is set in the corresponding
position on the typewriter.

The matrix is actually divided in half, the first 10 character
positions corresponding to the first 60 tab settings, and the
latter the next 60 settings. Beginning with the l-bit in character
position 0, successive tab settings are indicated across the 1=
row to position 9, then jump back to the 2-bit in position 0,

The 2-row continues the same as the l-row, and successive tab
settings continue from the 2-row in character position 9 to the
4-bit in character position 0. This procedure continues until

the B-bit is reached in character position 9. From there,
successive tab settings are found beginning with the 1l=bit in
character position 10 and continuing across the l-row to character
position 19 and so on. These settings can be diagrammed as

follows:

Bit Characters 0=9 Characters 10-19
B 50==m=m—===59 ll10~=~wem=e==119
A 40=e=m—m===q9 l100~=wmem===109
8 30-==m=w===39 I)~=mmmmeem 99
4 20memmm——e=29 80-=mmwmena 89
2 l0emr=—eee==19 70— mcna=— 79
1 fmemmmm——— 9 60==mmmmm=w §9

The setting of the tab stops in TABS is accomplished by MISAC
when it interprets the appropriate attention action,

LLDA (five characters, positions 69 through 73). Any program generating
multiple block output sets the Last Line Disk Address to the
disk address (with high-order zero understood) of the end of the
input chain. After such a program writes out the last input
block, it sets LLDA to the value of that block's SADD. After
the output has been transmitted, the MISAC program will be read
in, MISAC will perform housekeeping on the indicators, read in
the block referenced by LLDA, set the running address so that
the Attention action that initiated the output generating program
will be stored over by the next characters entered by the operator,
and set the status to Receive-Idle. Thus, everything is set so
that keystrokes may again be received from the terminal.

LLRF (four characters, positions 74 through 77). The Last Line
Referenced is the line number last requested by the terminal and
is set by the COINS program,

LLRL (seven characters, positions 78 through 84). The Last Line
Referenced Location is the disk and character' address of the
start of the last line that the COINS program located for
corrections or insertions,

LLRL consists of a disk address (five characters) with one high-
order zero understood, and the relative character address within
the block. Because core blocks originate at even hundreds, the
character addresses will always be the same from block to block.
(Character addresses are the two low-order positions of a core
block address.) Thus, with the disk address, a block may be

5=

read into core in any core block and the precise line that was
last referenced may be located. LLRL could be diagrammed as
follows:

27 29753
The number 29753 in the above example implies the disk control field:
*029753001
This is the sector address of the last referenced block.
The number 27 in the example is the numeric portion of the two
low-order characters of a core address, It can be used with the

high~order character and two low=order zones of the core block
address into which the disk block is read. For example:

Zone: B B
Numeric: 2bb + b27 = K2P
Translation: 102bb + 27 = 10227

This shows how the address 10227, or position 27 in the block
that begins at address 10200, could be constructed.

ANXB (five characters, positions 85 through 89). The Address of the
Next Block field is the disk address (with high~order zero
understood) of the first block of the terminal's chain. This
address is initially set by MISAC when the terminal first requests
the A or U Mode.

The importance of the tab rack setting is immediately apparent. For
example, a program that is formatting text for output must know how
many characters a tab will cross to avoid exceeding a specified line
width, Dummy characters following the tab are computed according to
the number of character positions the print element must move, In
addition, some applications attach special meaning to tab stops. An
example of the latter case would be entering text in the form of card
images where the tab key is analogous to the skip key on a keypunch,

LLRF, LLRL, and ANXB are specially useful to a program that must
search through a terminal's text stream for a particular line or unit.
Since the end of the stream has a known location (the running address),
there are three known points in the chain: the beginning (ANXB), the
last line referenced (LLRF, LLRL), and the end (running address).

Thus, a search can begin at whichever point is closest to the desired
line by following the chaining addresses forward or backwaxd,

All of the indicators in the first block have special meaning to the
standard system application programs. Although these indicators may
be used by any application program, they should not be altered by
these programs, except if the greatest care is that no undesired side-
effects will occur,

WARNING: If an application program alters the text stream in such a
way as to make LLRL invalid, LLRF and LLRL must be set to all blanks.

PERMANENT STORAGE

Permanent Storage is composed of dynamically allocated blocks of 900
characters (ten sectors) each., These blocks are termed half-tracks
since each occupies one-half of an IBM 1316 Disk Pack track. The
beginning of every chain is to be found in the Permanent Storage

-46=

index, located on 131l disk storage, drive zero. This index consists
of Head Pointers to the first half-track of each document,

Entries in the index are not allocated sequentially as documents are
stored., Instead, each entry corresponds to a unique document number.
This number is converted into the disk address and character address
of the index entry for that document, For example, document 25 is
converted into sector address 02000, character address 20 (within the
sector), This specific location on the disk will be examined each
time reference to document 25 is made.

Normally, 1311 disk addresses must be expressed in a nminimum of five
digits, However, the disk addresses of half-tracks will always contain
a low-order zero., ATS takes advantage of this fact and stores the
addresses of half-tracks as four-digit numbers, with a low-order zero
understood. The entries in the index are therefore four characters
each.

If 1301 Disk Storage is used, all Permanent Storage resides on the
1301. The Permanent Storage index accommodates four-digit addresses
with a low-order zero understood. In order to obtain the high-order
digit required for the 1301 the zone bits over the two high-order
positions are encoded. In this case the index entry has the following
format:

B=bit B B
A=-bit A A
Numeric N N N N

The numerics plus an understood low-order zerxo comprise the five low-
order digits, The high=order digit is encoded as follows:

High-Order
B =8 B =2
A =4 A =1
The highest possible address would appear as follows:
B-bit B
A-bit A
Numeric 9 9 9 9 = 999990

The encoding of the high-order digit always appears in a 1301 system,
If the address contains a leading zero then the B~bits in the two
high-order characters are on, indicating an 8+2 or zero (Modulo 10).
Encoding never appears in a 1311 system,

The first sector of the first half-track of every document contains
control information pertaining to the document. For example, it
contains the identification and lockword for the document.

No document (or message) stored in Permanent Storage may be longer

than 99 half-~tracks. This is the equivalent of about 90,000 characters
of text. This arbitrary restriction has been added to ATS to help
prevent the occurrence of excessively long documents, It should also
be noted that Working Storage cannot contain a document with more

than 9,999 units.

-47-

Permanent Storage Index

The Index Block Address (INBA) for any document is always the base
address of the index plus the increment appropriate to the document
number, This increment is found as follows:

1., Multiply the document number by 4.

2, Take the document number and change its low-order digit to
Zero,

3. Add the numbers found in steps 1 and 2 together,
For example, to f£ind the increment for document 25:

1, 4*25=100

2, 25 is changed to 20

3. INBA increment=100+20=120,

The INBA is always a seven=digit number. The first five digits contain
the sector address of the entry. The last two digits contain the
relative character address within the sector. The INBA for any

document is always the base address of the index plus an increment

as described above. The base address is sector address 02000, character
address 00. This address would appear in seven-digit form as follows:

0200000

The INBA is obtained for any document by adding the appropriate
increment. For example, for document 25, the increment is 120. Thus,
the INBA for document 25 is:

0200000
+ 120

or sector address 2001, character address 20,

An index entry is composed of a four-digit disk address, with a low-
order zero understood, of the first half~track of the document. The
INBA for that document will point to the high-order position of the
index entry.

For example, document 25 will be considered again. In sector 02001,
positions 20 to 23, the number 5176 might be found. This would mean
that the first sector of the first half-track of document 25 is sector
51760,

An index entry that contains a document pointer will always have a
wordmark at the high-order or INBA position. An unused entry will
always be blank and may or may not have a wordmark in the high~order
position. .

CAUTION: The first character in any sector is always position 0.
Character positions are numbered from 0 to 89,

The number conversion technique used by ATS leaves blanks in character
positions 40 to 49. By convention, these entries are used to hold
messages for the terminals and output devices. Character positions

40 to 43 of the first 100 sectors are thus reserved for terminals 0
through 99, Terminals 40 to 95 are unassigned. Terminals 96 to 99
have the following meaning:

-48~-

Terminal Device
i R s S

96 Upper- and lowercase chain
97 80-80 tape output

98 Printout with line numbers
99 Punched card output

The INBA for any message queue may be found by adding the terminal
number to the disk address portion and forcing the character address
to 40, For example, consider terminal 98:

0200000 Base disk address
+ 98 Terminal number
[Sector in index

Therefore INBA = 0209840, The end of the message chain for a terminal
may be found by the pointer in positions 44 to 47. This will be the
disk address of the last half-track of the last message.

Index entries corresponding to even hundreds document numbers are not
currently used in the system, since such a request is similar to a
request for a storage report of the documents in that 100-number band.

Half-Tracks

Half-tracks in Permanent Storage are one-way chained. The last four
characters of each half-track contain the address, with a low-order
zero understood, of the next half-track in the chain. Instead of a
backward chaining address, each half-track contains the INBA belonging
to the document. Every half-track of a document should contain the
same INBA, Any document deviating from this convention has been
mischained and is detected by an offline diagnostic program,

It is possible that more than one message is queued for a terminal
or output device. However, all of the messages must be in a single
chain behind the appropriate pointer in the index. In order to
distinguish where one message ends and the next begins, a single
character in position 888 of the half-track (position 78 of the last
sector) is reserved for a Text Continuation Indicator (TXCI)., If
TXCI contains a groupmark, the next half-track in the chain is part
of the message. If it is blank, the next half-track is the start of
the next message. Because it is desirable to use the same code for
both messages and documents, the TXCI convention is used in all half-
tracks whether messages or documents. Also, in both cases, a blank
forward pointer indicates the end of the chain.

Text in Permanent Storage is in the same format as it was in Working
Storage. Each unit begins with a wordmarked Downshift, and Carrier
Return characters in the Automatic Mode are wordmarked.

The first sector of a document or message contains control information
pertaining to the document. This is as follows:

Posi- Field or
tions Label Meaning
0-49 IDENT Contains the identification keyed by the

operator if it is a document, or the tab
rack setting from the first block (FBK) if
a message. :

-49-

50-53 Not Used Blanks

54 REEL Contains the reel identified (single alphabetic
character) if the document was retrieved
from the Permanent Storage Tape. Otherwise,
it is blank.

55-59 Tape No, Contains the tape document number if the
document was retrieved from the Permanent
Storage Tape. Otherwise it is blank.

60-61 DcoT Number of the terminal that created the
document.,

62-63 Not Used Blanks

64-69 DCDC Date document was created in the form MMDDYY,

70-71 DCQH The number of half-tracks used to store this
document. This number can range from 1 to
99,

72-73 Not Used Blanks

74 DCMD Mode of last unit of document, B=bit =
Automatic Mode., No B=bit = Uncontrolled
Mode,

75 Not Used Blank

76-79 DCUN Number of units in the document.

80-84 DCLW Lockword (if any). Since the space (blank)

is a valid character in a lockword, this
field is set to delta characters (card code:
11-7-8) if no lockword exists, as the delta
cannot be keyed from the terminal.

85~89 Not Used Blanks

The last sector of every half-track contains chaining information as
follows:

Posi=- Field or
tions Label Meaning

0=77 Text

78 TXCI Contains a groupmark if the next half-track
is part of the same document., Otherwise it
is blank,

79-85 INBA Contains the disk and character addresses

of the entry for the document in the index.,

86-89 NXHT Contains the disk address, with a low=-order
zero understood, of the next half-track in
the chain. In 1301 disk storage the NXHT
will use the zone bits on the hundreds and
thousands position, A NXHT of blank signifies
the end of the chain.

-50=

The control fields, (except TXCI) in all half-tracks have a wordmark
in the high-order position.

Half-Track Allocation and Deletion

ATS uses a "circulating file" concept., The heart of this approach
is the bit map, which is a map of every half-track available for
Permanent Storage, one bit per half-track. If a half-track is in
use, the bit corresponding to it will be on. Conversely, if a half-
track is available, the bit will be off. The storing of a document
involves the search of the bit map for available half-tracks. This
search is serial, beginning with the last bit checked. Eventually,
the end of the map is searched, at which time the search continues
at the beginning. The circulation through the bit map is what gives
the circulating file its name. The deletion of a document involves
turning off the bits, corresponding to the constituent half-tracks.

Each 1301 module requires 40 sectors of disk storage for the bit map.
This will accommodate a five-module 1301 system on one cylinder (1311
storage)., In a 1311 system only the first 20 sectors are used. The
remainder of the cylinder may be used at the user's discretion., Six
bits of every character position in the bit map correspond to six
half-tracks. The first character corresponds to the first six half-
tracks, The second corresponds to the next six half-tracks, and so
on, The allocation within a character is as follows:

Half-track
Half-track
Not Used

Half-track
Half-track
Half-track
Half-track

SHNOSOD T
NS

=
oMW

The 8~bit is not used to avoid the generation of a groupmark/wordmark.

PERMANENT STORAGE TAPE

Many installations find it desirable to keep seldom referenced documents
on Permanent Storage tape and thus free the disk space for more active
documents, Documents on tape are numbered by the Reel Identification
character plus their relative position on the tape. Unlike those in

the Permanent Storage on disk, these documents are numbered by the
system, not by the operator.

The Permanent Storage tape consists of 900-character (half-track
image) records in the Load Mode (even parity) followed by a single
tapemark. There is no header label,

The body of the tape is composed of Permanent Storage half-tracks in
SELECTRIC code copied from the disk (with the exception of the chaining
addresses, which are blank), and all Attention characters (0-5-8) are
changed to segment marks (0-7-8).

The previous section mentioned that the first half-track of every
document contains control information pertaining to that document.
When a document is first stored in disk Permanent Storage, the reel
and tape number fields are blank. At the time the document is written
to tape, the appropriate reel and document numbers are loaded into

-5]-

their respective fields (reel character in position 55 and document
number in positions 56-59)., The tape is then written., These fields
have no meaning for a document stored only on the disk; hence they
are usually blank on the disk., They appear in disk Permanent Storage
only when a document has been retrieved from tape.,

The tapemark signifies the end of the tape. There are no tapemarks
between documents, When the system scans the tape, the beginning of

a document is sensed by testing for a wordmark and no zone bits in
position 60 of each record., Position 60 is the high-order digit of

a field containing the two-character number of the terminal that

stored the document, This field is in the first half-track of every
document on the tape. It is possible, however, to encounter a wordmark
in position 60 in a record that is not the first record of the document.
The text stream contains wordmarked Downshifts at the beginning of
every unit and, if the text is in the Automatic Mode, wordmarks on

the Carrier Returns as well. It will be noted, however, that the
terminal number will never contain a zone bit, but both Downshifts

(BA 842) and Carrier Returns (B 841l) will contain a zone bit. Thus,

if a wordmark is encountered at position 60, and if the character
contains no zone bits, the record is the beginning of a document.

If the character contains zone bits, it is not the beginning of a
document,

-52-

SYSTEM PROGRAMS

ITEMS IN LOWER CORE STORAGE

The branch addresses of the various system subroutines begin at
position 336 and continue to position 597. They are located here so
that the address will not change on each reassembly of the Scheduler.
In this area, 160 positions (401 through 480 and 501 through 580) are
reserved to accept binary images from cards during peripheral card-
to-tape operations,

The standard ATS system messages are stored commencing at position
609 and continuing through position 999, These are also located here
to avoid their changing with each reassembly of the system.

Position 181 (or 182 in some systems) is the interrupt entry to the
Scheduler. The main body of the Scheduler begins at position 1000.
It is followed by IOCNX and the other system subroutines extending
to position 5890,

SYSTEM MESSAGES

All 21 standaxd ATS system messages are resident in core with a fixed

location for each.

Any program may use these messages and, in fact,

all terminals may receive the same message at the same time. However,
no program may alter these messages in any manner., Custom~made
messages are transmitted from a core block., Following the ATS text~
handling conventions, all system messages end with a record mark 2

or record mark 3 sequence.

System
System
System
System
System
System
System
Systenm
System
System
System

System

Message
Message
Message
Message
Message
Message
Message
Message
Message
Message
Message

Message

A

B

H & o 41 = U 0

B R 4

The 21 messages are:
Underscore - backspace sequence
END YOUR UNIT
ILLEGAL ACTION
UNACCEPTABLE NUMBER
IDENT PLEASE:
AUTOMATIC MODE
UNCONTROLLED MODE
HEADING MODE
FOOTING MODE

***LLINE CANCELED
SIGNAL WHEN READY

"A" MODE REQUIRED

=53~

System Message M - "U" MODE REQUIRED
System Message N - CLEARED

System Message P = NONE

System Message Q - TRANSMITTED
System Message R = END OF STORAGE

w
1

System Message Single index used with automatic mode

System Message T - GO ON=-LINE
System Message U = XX USERS

System Message V = READY TAPE

THE SCHEDULER

The Scheduler is a special purpose monitor designed especially for
ATS. It handles the servicing of the 1448 multiplexor, 1311l and 1301
disk input/output, and work scheduling among the various application
programs on a multiprogrammed basis.

There are four entry points to the Scheduler. One of these is termed
SCHAX (Scheduler entry A). It is the point at which a 1448 interrupt
gives control to the Scheduler., The Scheduler saves the status (that
is, return address, index registers, high-low-equal compare latches,
and the overflow indicator) and goes to SCHBX (Scheduler entry B).

SCHBX is the point where the multiplexor scan is executed., After the
scan, the Scheduler processes any Early Warning or EOB conditions

that have occurred. If the l-bit of MODE is on after these tasks,

the Scheduler will branch to the address contained in ADPR, Following
the peripheral program operation, disk input/output is accomplished

by examining the respective ARM queues, top entries first. The
Scheduler will attempt as many disk operations as possible (a maximum
of two), depending on the time available, The priority of operations
is: (1) Write Check, (2) Write, and (3) Read. However, if there is
time for both a Read and a Write operation, and one of each is waiting,
the Read will be performed first. This is because once a Write
operation has been performed, no further disk operation may be attempted
until the corresponding Write Check is done upon the next Scheduler
entry.

The SCLK (Simulated Clock in the System Status Table) is used by the
Scheduler to schedule time for each operation, At the SCHBX entry
to the Scheduler, the clock is set to 99 (100 milliseconds) and is
subsequently decremented the maximum amount of time that may be used
on any one operation. If Early Warning must be processed, SCLK is
decremented by 28 milliseconds, Fifteen milliseconds are allocated
for EOB processing, Usually, 15 milliseconds suffice for a peripheral
operation. It takes a maximum of 40 milliseconds to perform a Read
or Write operation on the disk files. If SCLK is greater than 80
when the disk code is entered, two operations will be performed. If
it is less than 80, only one will be performed. In any case, one
disk operation can be performed with each pass through the Scheduler.
Since there is a maximum of 120 milliseconds between scans of the
multiplexor, an application program is guaranteed at least 20
milliseconds of processing time between interrupts.

-54-

After completing disk input/output, the Scheduler will restore the
saved program status, if it was entered at SCHAX, Otherwise, it will
go to the FINIX (Program Finished entry).,

Since the system operates in real time, it must have a basic program
cycle or loop in which to operate when it is not giving control to
application programs. SCHBX is the "top" of the main Scheduler loop;
FINIX is the "bottom".

FINIX is the third entry into the Scheduler. Not only does the SCHBX
entry fall through to here, as explained above, but all application
programs branch to FINIX after they have finished their processing.
The exit parameter for an application program following a branch to
FINIX is a DCW statement containing the address constant of the start
of the routine. Thus, the exit of COINS to the Scheduler looks like
this: :

B FINIX
DCW +COINS

where the label COINS appears on the first instruction of the program.

The FINIX portion of the Scheduler is responsible for the scheduling

of work among the various application programs. Its rule is that

Work in Progress (WPA entries) must be serviced before any New Jobs
(NJB entries) are attempted. Thus, the WPA queue is examined first,
and control is given to the program corresponding to the top entry.

If the WPA pointer is blank (no entries), the New Job queue is examined.
Beginning with the top entry in the gueue, the Scheduler checks to

see if the program is busy (has lost control because it has requested
disk I/0 but still has processing to do). If the program is not busy,
the entry is checked to see if the overlay area is required, and if

so, if the overlay area is in use., If an entry cannot be serviced
immediately, it is left in the queue, and the next entry is checked.
When an entry is found that can be processed and that needs the overlay
area, the Program in Overlay (PROV) indicator is checked to see if

the program is already in it. (The program would be there if it were
the last program in use in the overlay area.) If it is, the program

is given immediate control; if not, a high-priority read request is
given for the program. In either case, the BUSY (Program Busy), OVBZ
(Overlay Busy), and PROV indicators are all set. If the program is
resident in core, like EUNIT, only the BUSY indicator is set.

The fourth entry to the Scheduler is SCHCX. It must be used by
application programs whenever they must have 100 milliseconds of
unencumbered computer time, This is required for reading cards or
writing long tape records, All that is required is to branch to SCHCX
before giving the input/output instruction. The Scheduler will return
when 100 milliseconds of time are available. No registers are
preserved.,)

If there are no entries in either the WPA or NJB queues, or if no NJB
entry can be serviced, SCLK is checked. If it is not 99, control
passes to SCHBX. If it is 99, control passes to the next instruction
in an application program if it previously entered the Scheduler at
SCHCX. If that test fails, control passes to the address in ADPR if
the 2-bit of MODE is on. The return branch from the peripheral area
encounters a branch to SCHBX, which repeats the cycle.

«55=

INPUT/OUTPUT CONTROL (IOCNX)

IOCNX is the program entered by any program, including the Scheduler,
when disk input/output is required. It is the responsibility of IOCNX
to place disk I/O requests in the proper ARM queue. Following the
queuing of the request, IOCNX branches to the SEEKS subroutine. SEEKS
will compute and give the direct seek if the arm is not busy. Control
is then returned to IOCNX. When it finishes processing the request,
IOCNX will return immediately to the next instruction if it was entered
from the Scheduler., It will branch to FINIX if it was entered from

an application program.

To request input/output from or to the disk, a program must have a
branch to IOCNX followed by a calling sequence. The calling sequence,
which makes up part of the information in the ARM entry, is as follows:

B IOCNX
ONE DCW #1 CONDITION COMMUNICATION
TWO DCW #1 I0o0P
THREE DCW #3 IOAR

ONE is the condition communication field. When control is
returned to the program, this indicator will be blank if
input/output was successful. It contains a one if a disk error
condition was encountered,

TWO is the IOOP, Its configuration is precisely the same as the
IOOP field in the ARM and WPA entries., The B~bit indicates
priority: ON is high priority, OFF is low priority. The A-bit
signifies the type of operation: ON is a write, OFF is a read.
The numeric portion signifies the sector count: blank means

that the count is already set in the disk control field; a number
from one to nine indicates a sector count from one to nine; and

a zero indicates a count of ten.

THREE is the high-order address of the disk control field where
the operation will take place. Since an asterisk or a lozenge
is always the first character of the disk control field, the
IOAR field will always contain the address of this character,

Something must now be said about wordmarks in the disk control field.
The SEEKS subroutine clears the wordmark in the high-order position

of the sector count and forces a wordmark into one position less than
the high-order position of the sector address, A wordmark in the
first or second position of the disk control field will be ignored.
However, since the disk control field is saved and restored, any other
wordmarks will cause unpredictable and erroneous results,

The ATS program will halt if an input/output operation is not
successful, Since the 1311 and the 1031 disk files are very reliable,
any error condition is almost .always a programming error., Most
programs are unable to continue processing anyway if they cannot
complete a disk operation successfully.

It is important to note that no indicators or index registers are
saved by IOCNX. If it is important for an application program to
have the system status saved, provision must be made for doing this
in the application program itself.

-56=

CHAIN (CHAIX)

The CHAIX subroutine is used principally by the Scheduler, but can
also be used by application programs. Its purpose is to queue up a
full block that is in the Receive Status for a write to the disk pack
and to assign a new block for the terminal, The running address is

set to FTXC in the new block. Return is immediate, and index registers
1 and 3 are preserved.

The entry sequence is a branch to CHAIX, with index register 1 equal
to ten times the terminal number (this is used to reference the
appropriate entry in the MST), and index register 2 equal to any
address within the full block. When control is returned, index
register 2 and the terminal's running address will have the address
of FPTXC in the new block.

It should be emphasized that this subroutine is to be used for blocks
in the Receive status only. The new block is completely set up for
the program including LSBA, NXBA, and groupmarks.

NEXT DISK BLOCK (NDBKX)

The NDBKX subroutine is responsible for the maintenance of the pool
of available sector addresses. It will assign new sectors from the
highest sector address in the system downward as they are needed.

All programs have free access to NDBKX. The entry sequence is a
branch to NDBKX, with index register 3 equal to the low-order position
where the disk address is to go. For example, if the block being
worked with is addressed by index register 2 and a new sector address
is to be loaded into the NXBA of that block, the sequence would appear
as follows:

SBR X3 ,NXBA+X2
B NDBKX

Return is immediate, and all index registers are preserved, However,
it is possible that there are no available sector addresses (if all

of disk storage is completely used up). If NDBKX provides a sector,
return will be four position beyond the branch to NDBKX. If NDBKX

is not successful, return will be to the instruction immediately
following the branch to NDBKX, It is an ATS practice that no halts
are permitted due to absence of disk blocks, If this condition should
occur, the application program should cease processing and type the
END OF STORAGE message.,

PURGE DISK BLOCK (PDBKX)

PDBKX is the subroutine that is responsible for purging of disk
addresses that are no longer in use, PDBKX fills core blocks (to a
maximum of three) with the sector addresses as they are purged., When
three core blocks have been filled, one is written to disk storage.
These addresses of purged sectors are all allocated by NDBKX before
fresh addresses are generated.

-57=

The entry sequence is a branch to PDBKX, with index register 3 pointing
to the low-order core address of a five-character sector address to

be purged. For example, if index register 2 contains the address of
the core block whose SADD field is the sector address to be purged,

the sequence would appear as follows:

SBR X3,SADD+X2
B PDBKX

Return is immediate, and all index registers are preserved.
NEXT CORE BLOCK (NCBKX)

The NCBKX subroutine supplies the requesting program with the location
of the block at the head of free storage. The block is also cleared
at this time. Return is immediate, with index register 3 equal to

the address of the asterisk in the new block., Index registers 1 and

2 are preserved. A program need only branch to NCBKX; no entry
parameters are required, If an error condition arose because there
were no available blocks, NCBKX would halt the system.

HEAD OF FREE STORAGE (HDFSX)

Core blocks containing text that clearly will not be needed again are
always released to the top of the free storage chain. The HDFSX
subroutine is responsible for this release.

To release a block to the head of free storage, a branch to HDFSX is
executed, with index register 3 containing the address of any position
within the block to be purged. Return is immediate, with index
register 3 containing the address of the first (asterisk) position
within the purged block. Index registers 1 and 2 are preserved,

FOOT OF FREE STORAGE (FTFSX)

If it is possible that text in a block might be referenced again, it
is good practice to release the block to the foot of the free storage
chain, Since NCBKX always assigns blocks from the head of free
storage, releasing to the foot of the chain increases the likelihood
that if the text is needed again it will still be available in the
free storage chain.

FTFSX is the subroutine that is responsible for releasing blocks to
the foot of the free storage chain, The entry sequence is a branch

to FTFSX, with index register 3 containing the address of any position
within the block to be released. Return is immediate, with index
register 3 set to the first (asterisk) position of the released block.
Index registers 1 and 2 are preserved.,

-58=

SET NEW JOB (SNJBX)

The SNJBX subroutine enters program requests into the New Job gqueue

in the list area., It also sorts the new entry according to priority
based on the relative PST location of the requested program. In the
case where two or more requests are for the same program, the requests
are handled first in, first out (FIFO).

To set a New Job entry, a branch to SNJBX is executed with index
register 1 set equal to ten times the terminal number, and index
registex 2 containing the PST number of the desired program. Return
is immediate, with index register 1 preserved. Index registers 2 and
3 are not preserved.

SAME UNIT (SMUNX)

SMUNX is the subroutine responsible for placing the Downshift in text
being received in the Automatic Mode, following a Carrier Return in
the middle of a unit. It is an ATS text-~handling convention that
Carrier Returns imbedded in a unit are always followed by a Downshift
so that. each line entered begins in a known condition. SMUNX performs
this function, If the Downshift will exceed LTXC in the core block,
SMUNX will set up the next block via CHAIX. Before returning to the
calling program, SMUNX sets the line status to Receive-Idle.

The entry sequence is a branch to SMUNX, with index register 1 set
equal to ten times the terminal number, and the running address equal
to that of the last entered character, plus 1., Return is immediate,
with index register 1 preserved. Index registers 2 and 3 are not
preserved.,

NEW UNIT (NWUNX)

The NWUNX subroutine sets the wordmarked Downshift character required
in the first position of any new line (in the Uncontrolled Mode) or
unit (in the Automatic Mode)., If the wordmarked Downshift will exceed
LTXC in the block, a new block is set up via CHAIX. Before returning
to the calling program NWUNX sets the line status to Receive-Idle,

The entry sequence is a branch to NWUNX, with index register 1 set
equal to ten times the terminal number, and the running address equal
to that of the last entered character, plus l. Return is immediate,
with index register 1 preserved., Index registers 2 and 3 are not
preserved,

RETRIEVE (RTRVX)

If text in a block that has bsen released is discovered to be needed
by a program, a disk operation can be avoided if the text is still

-59-

intact in the block in free storage. The RTRVX subroutine attempts

to retrieve the immediately preceding block from free storage. This

is accomplished by finding the previous block via the CRAD register

in the current block (see the section "Core Blocks")., The check made
to see if the previous block still contains the desired text is whether
its NXBA equals the current block's SADD, If so, the block is unchained
from free storage, SADD and SCNT are set and core block position 96

is set to blank. If the block's NXBA is not equal, the current block's
SADD core block position 96 is set to 1 and a new core block will be
set up, including its SADD, so that the desired block may be read

from the disk pack.

The entry sequence is a branch to RTRVX, with index register 3
containing any address in the current block, If RTRVX is successful,
core position 96 will be set to blank and index register 2 will contain
the address of the LTXC position in the retrieved block. If it is

not successful, core position 96 is set to 1, and index register 2

will be set to the address of the first (asterisk) position in a new
block ready to receive the block to be read from disk storage: In
either case, return is immediate, and index register 1 is preserved.

-60-

MISCELLANEOUS PROGRAMMING NOTES

SOURCE PROGRAM PREPARATIONS

Programming Language

All ATS programs are written in the language of, and must be assembled
by, the IBM 1401/1440/1460 Autocoder (on disk), program number 1401-
AU-008.,

Source Program Decks

A modular approach has been used throughout ATS. All application
programs are assembled and handled as individual entities, A diagram
of a source program deck appears in Figure 22, Comments on various
parts of the deck appear below.

(END Card
(ORG
(LTORG
(Program
{ JOB Card

L |||
(Compool i I

JOB Card

Figure 22. Source program decks ready to assemble

-61-

Job Card

The last five characters in the Job card will be punched into every
card of the object deck. To aid in the separation of the decks, it
is advisable to begin each overlay with a Job card with the five=-

character mnemonic of the overlay punched in the last five columns.

Literal Origin (LTORG) Statements

An application program with multiple overlays must keep the literals
used in a segment, within that section of code. Ordinarily, literals
are assigned addresses at the end of the program, In the case of a
program with two overlays, for example, the literals would normally
be placed after the code in the second overlay. Literals used in the
main program would then be accessible only when the last overlay was
in core. Literals used in the first overlay would never be in core.
To solve this problem, a LTORG statement must be inserted between
each program segment, main program or overlay. This forces the
literals used in a segment to be located at the end of the segment.

Origin (ORG)Statements

Each application program segment must begin with an ORG statement to
locate the segment appropriately in core, The main program segment
will be located in the Overlay Area and the overlay segments
(customarily) in the Half-Track Area. In the latter case, multiple
overlays can begin at the same location with no confusion to the
assembler. In addition, the disk control field used to write the
segment to the disk must be located immediately preceding the first
instruction of the section. The ATS DSKLD (Disk Load) program (see
below) uses this field to write the segment to disk storage. The
first card of every segment (besides the Job card and comment cards)
must be an origin statement. The second card must be the disk control
field, For example, for a main program segment, the initial cards
would be as follows:

JOB PROGMB (Application Program Name)

*Any number of comment cards

ORG OVAREA-10 MAIN SEG IN OVLAY AREA
DCW @*001200020@ DISK CTL FIELD
PROGMB PR10O 1st Instruction

-62-

The sector count for the main program segment is always 20 sectors.
The sector address 1is the location of the program decided upon by
exanmining the Disk Map (see "Disk Storage Allocation"). 1In the above
example it 1s sector 1200. Program overlays are read by the main
program segment and thus are under control of the application program.
They may be located anywhere within the Overlay or Half-Track Areas,
may be of any length (the sector count may vary) within those areas
and may be located anywhere on the disk. The most convenient method
of defining overlays is to locate them at the beginning of the Half-
Track Area and make them ten sectors long, If the overlays are located
sequentially on the disk immediately following the main segment, then
the incremental disk addressing scheme mentioned in the section
"Program Overlays" may be used. If the customary approach is followed,
the beginning of an overlay would be as follows:

LTORG *Previous Segment

EX DSKLD Previous Segment
ORG HFTRAR-10

DCW @*0012200108@ DISK CTL FIELD
JOB Program Name--Overlay Number

*Any number of comment cards

PV10 Overlay Program

The disk address is the ten sectors immediately following the main
program. The use of the Execute (EX) statement will be explained in
the section "Disk Load Program", below.

COMPOOL (Communication Pool)

To avoid label ambiguities, a special deck has been set up. This
deck contains the addresses of all the system tables, indicators,
system messages, and system subroutines. It is assembled with every
program in the system, The COMPOOL deck is always placed before the
program to be assembled.

DISK LOAD PROGRAM (DSKLD)

DSKLD is an ATS utility program provided with the system, Its function
is to write ATS and user-written application programs to the disk,

An Execute statement is the last card of every program segment except
the last segment., This macro executes the disk-write portion of the
DSKLD program. The End card executes the disk-write portion of DSKLD
on the last program segment. The label on the Execute and End
statements is DSKLD, which is identified in the COMPOOL. As mentioned
in the section "Origin Statements", the disk control field used by
DSKLD is assembled with the program. The DSKLD program origins at
core location 15600, If a program to be written to the disk is not
going to be assembled with the COMPOOL the DSKLD label must be
identified in the program. This might be accomplished by an Equate
statement:

DSKLD EQU 15600

- 3=

Peripheral programs are not assembled with the COMPOOL,

The DSKLD program requires the disk control that is to be used to

write the program to origin at core location 100 or above., Also,

since DSKLD sets a groupmark wordmark at the end of the program segment
the area written must not overlap core location 15600,

To load an assembled, condensed program deck, the Autocoder Bootstrap
cards and the COMPOOL cards, if present, must be removed from the
front of the deck. The DSKLD program is then placed in front of the
deck and the program is ready to load. The COMPOOL cards are easily
identifiable by slash characters (0-1 punch) in columns 76 to 80

(see Figure 23 for a diagram of a condensed program deck ready to
load).

(Overlay A

yd
(Program
/

r/ Compool
/

Loader

Figure 23. Preparation of condensed (object) program deck for loading

-64-

WRITING PERIPHERAL PROGRAMS

Peripheral programs are called from the disk into core storage by a
specific request from the console operator through terminal 0,
Communication to peripheral programs is through sense switches, as
they have no communication with any terminal.

A peripheral program operates as part of the Scheduler. Thus, it may
get control whenever the Scheduler is entered because of a 1448
interrupt or application program disk activity.

The ATS program is very time-sensitive., If the multiplexor needs
service within 50 milliseconds and a peripheral program reads a card
(requiring 75 milliseconds), characters in the 1448 buffer will be
lost. Also, if the peripheral program uses all the time between
multiplexor scans, there will be no time available for the application
programs, and terminal requests will be processed too slowly.

Two types of entries are provided for peripheral programs, depending
on the time requirements of the program. One entry will give control
to the peripheral program at every multiplexor scan. This entry is
used by programs that require 50 milliseconds or less., An example

of this type of peripheral program would be a tape-to-printer program
that reads tape records (preferably blocked) and writes single lines
to the printer. This timing is why the Print Storage feature is
required for all online printer operations, The second peripheral
program entry gives control to the program whenever 100 milliseconds
are available, A program reading cards for a card-to-tape operation
is an example of a peripheral program requiring the second type of
entry.

A peripheral program is given control as soon as it is read from the
disk. The console operator, however, will usually call the program
into core before setting the sense switch communications. Thus, the
program may find the sense switches set, in the process of being set,
or not set at all. The peripheral program should check the sense
switches on every entry, and, if they are incorrect or inconsistent,
it should immediately return control to the Scheduler. Sense switches
may ke used to indicate to the program if output devices are ready.
One sense switch may be used as an actuator, such that the program
will take no action until it is set ON,

For example, in a tape-to-printer operation, the operator will call
the program into core, ready the required devices, and then set the
sense switches, Sense switches are also used to express variable
conditions. For example, a switch may be set to indicate whether a
tape is in even or odd parity. The sense switches available to
peripheral programs are D, E, F, and G, Switches A, B, and C are
reserved for the main system. ATS is operated with the I/O Check
Stop Switch OFF. Card reader and printer errors will not cause the
processor to halt, but will set an error latch that may be tested by
various branch-on-indicator instructions. The program should make
every possible test to be certain that a peripheral device is ready
before using it. It is quite possible for a peripheral program to
be entered often enough to exceed printer speed. Thus, the Printer
Busy indicator should always be checked. If an error or busy condition
is detected, return to the Scheduler should be immediate.

The return from a peripheral program to the Scheduler is to the
instruction following the branch to the peripheral program. -‘Because
this address may change with different assemblies of the system, the
peripheral program must save the return address with a Store B Register
instruction. This seguence might appear as follows:

-65=

CARTA SBR CA50+3 SAVE RETURN ADDRESS

CA50 B 0 RETURN TO SCHEDULER

Disk Dump (DSKDM) is a peripheral program provided as a standard
feature with every ATS (see IBM 1440/1460 Administrative Terminal
System, Console Operator's Manual 1Héﬁ-5§27), for a program description
and operating instructions). In addition to the dump function, DSKDM
contains a table with the identification and parameters for every
peripheral program in the system. The MISAC program reads this table
into the peripheral overlay area whenever the console operator regquests
a peripheral program, The table is checked to see if the program
exists, where it is located on the disk, and what its communication
parameters are. The peripheral program is then read into the proper
area of core and communication with the Scheduler set. The peripheral
program then gets control on the next multiplexor scan. Entries’'in

the peripheral table should be made in the DSKDM symbolic program,

and that program should then be reassembled. The point for including
these entries is marked clearly in the program listing.

A peripheral program table entry in DSKDM consists of five fields for
every program. The first is the five-letter name of the program in
SELECTRIC code. This entry is checked by MISAC to identify the program
by comparing it with the console operator's requests, The second field
is the disk address of the program., This is a four-position literal,
with a high-order zero understood. The third field is the number of
sectors required by the program. This is a two~position literal.

The fourth field is the core address of the beginning of the program.
This address constant determines both where the program will be read
into core and where the Scheduler will branch. The program must begin
with the first instruction at this address. The final field is the
type of Scheduler entry required by the peripheral program, This is

a one-position literal., It is set to 1 if entry is desired on every
scan, or 2 if entry is to be made only when 100 nmilliseconds are
available, or 3 if entry is to be made in both instances. The source
program for an entry in the table for a program called Model Peripheral
Program (MDLPP) might appear as follows:

DCW @JUuYDD@ Name of program in SELECTRIC code

DCW @2035@ Disk address of program, high-order zero understood
DCW @1l5@ Number of sectors used by the program

DCW +PERIPH Core address of beginning of program

DCw @2¢@ Scheduler entry type -- to be entered when 100

ms are available

DCW @} @ A record mark follows the last entry signifying
the end of the table

The fifth parameter is set in the MODE indicator in the System Status
Table and is checked by the Scheduler before control is given to the
peripheral program. Peripheral programs are loaded to the disk using
the DSKLD program like application programs.

It should be noted that any peripheral program will degrade system
response. Whether or not this degradation is tolerable can be learned

-66-

only by experience. Tape blocking is usually a critical factor in
this regard, If possible, tape-to-printer operations should always
use blocked tape. Blocked tape will eliminate time~consuming tape
operations on every entry of the program.

WRITING APPLICATION PROGRAMS

Coding Practices

The first instruction of an application program is always labeled

with the five~-character mnemonic of the name of the routine. This
instruction will always be an unconditional branch to the start of
the program. Following this branch, three DCW statements appear.

For example, the ATTEN program begins:

ATTEN B AT11
DCW @oo0@

AT10 DCW #2
DCW #3

The first DCW is used to designate the modification level of the
program. The second will receive the number of the terminal requesting
service. The third is used by the Scheduler for temporary storage

and should never be used by the program.

The terminal number (which will be located at AT10 in the above
example) is multiplied by ten and is then used to reference the proper
entry in the MST. (There are ten characters per entry in the table.)

This terminal number is usually used in index register 1, The
instructions to load the index register are:

MLC @0@,Xl
MLC AT10

Reference to the running address, for example, is then:
MLC RUNA+X1,TEMP

It will be found that coding can be reduced by letting index register
1l equal ten times the terminal number and index register 3 equal the
address of the first position of the core block being worked with,
Since this is the scheme used by the system subroutines, following
the same convention will save the code necessary to set subroutine
parameters. Input/output with the disk file must be accomplished
through IOCNX, It is well to remember that index registers are not
saved by IOCNX., They must be saved before giving control to that
subroutine if they are important to a program, The overlays of a
program must be read in by the program itself, as the Scheduler will
read only 20 sectors into the overlay area.

Locating the Attention Line

When an application program is read into core and executed, the only
parameter conveyed from the Scheduler is the terminal number, This
number will be located in the seventh and eighth positions of the
program as described above, The program must determine what is
requested by scanning the Attention line., The Attention line is found

-67—

by referencing the running address for the terminal in the MST (see
the section "Multiplexor Status Table"). The rurning address is
always one greater than the address of the Carrier Return in the
Attention line.

If the line is to be interpreted, the beginning of the line must be
found. Every unit in the text stream, including an Attention line,
will begin with a wordmarked Downshift, If the Attention line happens
to be in a single block, the wordmarked Downshift can be located by
the following technique:

MLC @o0@,x1 SET 10 TIMES THE

MLC TERM TERMINAL NUMBER IN X1

MLC RUNA+X1 ,X2 GET CR ADDRESS PLUS 1 IN X2
C 0+X2 SCAN TO WORD MARK

SBR X2 SAVE WM ADDRS-1

Often, however, the line will begin in the previous block. This might
appear as shown in Figure 24,

BLOCK 1 BLOCK 2
ON DISK IN CORE SADD
r_Not Set
*0
FTXC » FTXC /JCﬁ@ﬁ Running
L———Address
| Groupmark/
Wordmark at
Text LTXC + 1
CRAD is the
Address of
wi M ¢ Previous Block
sss §%| [05] $3k¢| [00] in Free
59945 | 59970 59999 | 59970 Storage

Figure 24. An Attention line split between two blocks

The translation of the Attention line in Figure 24 is: Wordmarked
Downshift, Attention, Downshift, X,M,I,T, Carrier Return. The running
address is always the address of the Carrier Return plus one. Although
an Attention line can span more than two blocks, two is usually the
maximum number.

In this case, the block containing the beginning of the line must be
retrieved from free storage or read from the disk using RTRVX. It

is desirable to have the entire line in core. (An application program
may use up to three core blocks.) Thus, special core chaining addresses
between the blocks must be set, SKANB in conjunction with RTBLK are
standard subroutines that may be used for most of the operations
outlined above.

-6 8-

Sample coding for these routines is shown in Appendices A and B.
Anyone wanting to include this coding in his own ATS application
program should compare these samples with the source program listings
of the MISAC program from the version of the system he is using. It
is recommended that this code be copied from the program listings.

SKANB will bring the entire Attention line into core whether it is
split between blocks or not. Upon setting a program switch, SKANB
will purge the dangling block(s) and disk address(es). RTBLK will
read the previous block from the disk if SKANB is unable to retrieve
it from free storage., SKANB should be entered near the beginning of
the application program to bring the Attention line into core. This
entry is a branch to SKANB with index register 1 set to ten times the
terminal number, Control will return to the next sequential instruction
with index register 2 containing the address of the wordmarked
Downshift, minus 1. The blocks will be chained both ways with the
CRAD of the last block pointing to the previous block and the SCNT
(sector count) in the previous block pointing forward to the last
block, After this is done, the blocks shown in Figure 24 would appear
as shown in Figure 25,

BLOCK 1 BLOCK 2
IN CORE IN CORE

SCNT Contains Core

! Address of Last Block
¥ 059999 | %0
FTXC FTXC *
/10@;

Index 2 CRAD
Points to Points
Word- to
marked) LwL _ _ le-Previous
Downshift sss¥t | [05 $35¢| [00] Block
-1 59945 | 59970 59999 | 59970

Figure 25, Core blocks with an Attention line ready to process

After the program has finished processing the request, the running
address must be set to where the next character from the terminal is
to be stored. This will usually be the address of a wordmarked
Downshift in the Attention line, plus 1. In the example in Figure

24, the next character from the terminal will be stored over the
Attention character. In this case, the block containing the end of

the Attention action must be returned to free storage, the disk address
(NXBA) returned to the available pool, and the previous block set to
the end of text stream status. After this is done, the block shown

in Figure 25 would appear as shown in Figure 26,

-69~

BLOCK 1 BLOCK 2

IN CORE TO FREE STORAGE
* 059999001 * 0
FTXC FIXC | /JO@g
New Text .
Running
Address
Groupmark,/ '
Wordmark TwL J
t LTXC +1 - - -
e sss | [s [
59945 | 59999 59999 | 59970

Text Stream Ended
With NXBA Equal SADD Disk Address to
Available Pool

Figure 26, Core blocks after processing an Attention line

The SKANB subroutine may be used to accomplish this by setting wordmarks
on the program switches at SK16+4 and SK17+4, These switches are of
the form:

SK16 BIN SK17,({ BRANCH TO PURGE CORE BLOCKS

This instruction normally appears only in Field Engineering diagnostic
programs. It is a branch on parity error if the Check Stop Switch

is OFF. Since ATS always runs with the Check Stop Switch ON, the
instruction is normally a NOP., If a wordmark is set on the D character,
the instruction becomes an unconditional branch. To purge the dangling
block, this entry sequence should be used:

MLC @0@,X1 SET TEN TIMES

MLC TERM TERMINAL NUMBER TO X1
SW SK16+4,S5K17+4 SET SWITCHES FOR PURGE
B SKANB PURGE DANGLING BLOCKS

Return is to the next sequential instruction with the dangling block
and disk address purged., The NXBA of the previous block points to
itself, thus ending the text stream. Index register 2 contains the
address of the wordmarked Downshift, minus 1. The wordmark on the
groupmark at LTXC+l is not set, however, and must be set by the main
program.

WARNING: The line must have been brought into core previously by a
branch to SKANB without these switches set before attempting to
purge dangling blocks by a second entry to SKANB with the switches
set.

In some applications, it is desirable to keep the Attention line in
the text stream. In these cases, the previous core blocks must be
returned to the free storage chain. The contents of the blocks are
also safely on the disk. The next characters keyed by the terminal

-70-

will entexr the block following the last line. The application program
is responsible for setting the status for the new line. Thus, a
wordmarked Downshift is inserted following the Carrier Return character,
The LCIB field in the last block and the Line field in the TST must

be incremented by one., If the text is in the Automatic Mode, the
Carrier Return on the Attention line must be wordmarked. Examples

of this type of Attention line are the requests for the Automatic and
Uncontrolled Modes. This type of Attention line may also be split
between two blocks. This might appear as shown in Figure 27,

BLOCK 1 BLOCK 2
ON DISK IN CORE
at 59999 =5 SADD
" ™ Not Set
FTXC FIXC| PR T
Running
Text Address
TwL -
sss#t| [os] 35| [00]
59945 | 59970 59999 | 59970
Figure 27. A request for Automatic Mode split between two blocks
BLOCK 1IN CORE BLOCK 2
TO FREE STORAGE IN CORE
= = SADD
0 _O Not Set
pP* L
RST
Running
Address
TwL _
5SS $#| [05] $3$4| [O7)
59945 | 59970 59999 | 59970

Figure 28. Core blocks after processing a retained Attention line

-71-

In the example in Figure 27, the entire Attention Line may be brought
into core using SKANB and then interpreted. If the program decides

to keep the line in the text stream, Block 1 in core (containing the
Attention character) is returned to free storage. A new line status
is set following the Carrier Return. After this operation, the blocks
will appear as shown in Figure 28, where the illustrated attention
action is a request for Automatic Mode.

The return of the core block to free storage is accomplished by a
branch to SKANB with the single switch set at S5K16+4. The following
entry sequence 1is used:

MLC @0@,X1 SET 10 TIMES THE

MLC TERM TERMINAL NUMBER IN X1

SW SKl6+4 SET TO PURGE CORE BLOCKS
B SKANB BRANCH TO PURGE

Return is to the next sequential instruction with index register 2
containing the address in the purged block of the wordmarked Downshift,
minus 1. The address of the Carrier Return must be obtained from the
running address. The new unit status may be set by the NWUNX
subroutine. Entry is by a branch to NWUNX with index register 1l set
to ten times the terminal number,

Interpreting the Attention Line

Text streams are always scanned one character at a time. The technique
for doing this is to prepare indicators and then set them when
appropriate characters are encountered., At some logical point, such

as when a Carrier Return is encountered, these indicators are examined
to determine the content of the line.

An index register (normally index register 2) is used to step through
the block. By convention, the block ends with the first groupmark
encountered. The groupmark is usually the first character checked
after incrementing the index register. In the case of the Attention
line when the SKANB subroutine is used, the SSPRT subroutine can be
used to step the index pointer to the next block., (Sample coding for
this routine is shown in Appendix C.)

Numeric Character Translation

Attention lines containing numeric information, such as line or
document numbers, must be converted from SELECTRIC code to BCD before
any arithmetic operations may be performed with them. Entry to the
routine is with the unknown character in a wordmarked temporary
register.

A typical open subroutine is used for this purpose in ATS application
programs, This routine serves the double function of identifying
digits and translating them. The code for such a routine is given
below,

-72-

*LLITERALS REQUIRED FOR OPERATION *

TEMP DCW =1 HOLDS UNKNOWN CHARACTER
BFER LEQU *+1 HOLDS TRANSLATED CHARACTERS
DCW =5
TRAN DCW -MP20+7 TRANSLATE AD CON
TRTB DCW @Y¥9=75648321¢ TRANSLATE LITERAL
RAWD DCW =3 DATA AREA FOR TRANSLATION
* BEGIN TRANSLATE ROUTINE *
MP19 SBR X3,BFER SET POINTER TO BFER START
MLC TEMP,MP20+7 MOVE CHAR TO BCE D CHAR
MP20 BCE MP30,TRTB,* BRANCH IF A 1
BCE BRANCH IF A 2
BCE BRANCH IF A 3
BCE BRANCH IF A 4
BCE BRANCH IF A 5
BCE BRANCH IF A 6
BCE BRANCH IF A 7
BCE BRANCH IF A 8
BCE BRANCH IF A 9
BCE BRANCH IF A O
BCE BRANCH IF AN L
* (FELL THROUGH, NOT A DIGIT) *
MP30 SBR RAWD SAVE BCE ADDR+1
MP31 MA TRAN,RAWD SUBTRACT BASIC ADDRESS
MP32 MN RAWD,0+X3 GET TRANSLATION TO BFER
MP33 SBR X3,1+X3 INCREMENT POINTER
B MP10O BRANCH TO MAIN LINE

The Store B Register instruction will store the three=position number
or address in the B Address Register into the three-position field
addressed by the A field of the instruction. The machine reads the
entire instruction before executing it. Thus, in the case of the SBR
at MPl9 in the coding above, the B Address Register will be set by
the B field of the instruction itself. After execution of this
instruction, index register 3 will contain the machine address of
BFER, the high=-order address of a five-character field. The machine
performs indexing before execution. This is used to advantage in the
SBR instruction at MP33 in the coding above., In this case, the
contents of index register 3, incremented by 1, will be stored back
into index register 3, When the processor executes a branch
instruction, the address of the next sequential instruction is forced
into the B Address Register. A four=-character SBR instruction, such
as the one at MP30 in the coding above, will save this address in the
location indicated by the A field of the instruction.

The TRTB (Translate Table) literal contains all the numeric codes
generated by the terminals in ascending order from right to left.
The TRAN address constant is assembled as the 16,000's complement of
the address of the D character at MP20, RAWD is the work area where
the translation is performed.

The Branch Character Equal instructions, beginning with MP20, step
through the Translate Table. Full chained BCE instructions leave the
A Address Register unaltered but decrement the B Address Register.,
Thus, the branch address remains MP30, but the TRIB literal is stepped
through., The D character is unaffected by this operation. If any

BCE causes a branch, the address of the next sequential instruction

-73~

will be saved by the SBR instruction at MP30. When the address of
the D character (MP20+7) is subtracted from the saved branch address,
the relative location of the character in the table will be obtained,
Since the table is in sequence according to numeric value, this number
will also be the BCD translation of the corresponding code. The
lowercase L is often used for the number 1. The relative position

of the L terminal code Y is eleven, which has a low-~order 1; thus, a
move numeric of the low-order position of the translation is required
(MP32) . When the Carrier Return is sensed at the end of the line,
index register 3 will point one position beyond the last translated
digit in BFER. The number in BFER will be left-justified., To right=-
justify a number for arithmetic operations, the following instruction
can be used:

MLC 15999+X3,ADDR

ADDR is the data field where arithmetic operations will occur.

shift Characters

Shift characters are redundant in ATS. This means that any number

of Upshifts and Downshifts in any order may occur on a line. Many
application programs are not concerned with the shift status and
simply step by shift characters, If shift status is important, an
indicator is set to indicate the shift., For example, a wordmark may
be set for an Upshift character and cleared when a Downshift character
is encountered.

Overlaxs

Often an application program is too large to f£it into the overlay
area and must be overlaid itself., The overlaying of code generally,
but not necessarily, occurs in the half-track area. The half-track
area accommodates ten sectors. Thus, overlays are broken up into
900-character segments., A program with its first overlay in core
might appear as shown in Figure 29.

Location

5890 *001000020

5900
Main
Program
7690 | *001020010
7700
Overlay 1
8600

Figure 29. An application program with an overlay

-74-

The disk address of the overlay will always be the address of the

main program plus an increment. The disk control field that was used
to read the main program in will be in correct form immediately
preceding the overlay area at core position 5890. Since an application
program is 20 sectors long by definition, the first overlay will be
located 20 sectors beyond the disk address of the main program. As
overlays are ten sectors long, the second overlay will be ten sectors
beyond the first overlay. Thus, if the main program is located at
sector address 1000, the first overlay will be at sector address 1020,
the second overlay at address 1030, and so on, It is a good programming
practice to construct disk control fields rather than to use absolute
addresses, This technique makes it possible to relocate a program

on the disk without being forced to alter the code. Sample coding

for a subroutine to read overlays is found in Appendix D.

Communication between overlays may be accomplished by branching to a

communication table. A sample of such a communication table is found
in Appendix E,

Special Messages

Special messages generated by application programs are always
transmitted from a core block. Usually these messages will be less
than 75 characters long and will fit into a single block. There is
no guarantee that there will be room for the message in the last text
block, If there is not room in this block, the last block should be
written to the disk and a new block attached to the end of the chain
as explained below. The amount of room remaining in the block can

be found by examining the two low~order numeric positions of the
address of the wordmarked Downshift of the last line. If the SKANB
subroutine is used to purge dangling blocks, the numeric address of
the wordmarked Downshift, minus 1, will be found in SK22. The message
should begin immediately following the wordmarked Downshift of the
last line and end with a record mark followed by a 2 or a 3. The
running address and the saved running address for the terminal are
set to the address of the beginning of the message, and the line
status in the MST is set to Transmit, At this point, the application
program has finished its processing and branches to FINIY, followed
by the appropriate exit address constant, The message will be
transmitted to the point of the record mark. The Scheduler, sensing
the 2 or 3 following the record mark, will move the saved running
address to the running address and set the status character to Receive-
Idle. The next character keyed from the terminal will be stored over
the message.

In the case where there is no room in the last block for the message,
there are two methods for adding a new block. One method is to move
a groupmark (ending the block) on top of the wordmarked Downshift of
the last line, and to clear the wordmark. This will end that block.
Since one less line will now occupy the block, the LCIB must be
decremented by one. This may be accomplished by a modify address
instruction:

MA @I9I@,LCIB+X2

~75=

BLOCK IN CORE AT TIME OF PROGRAM ENTRY

——— SADD Not Set

* 0
FTXC
Text Running
T.WL/* Y Address
SSS R _
#| [05]
59987 59765
BLOCKS AFTER PROGRAM COMPLETE--METHQOD 1
On Disk In Core
at 59765 —
% 0
FIXC [+
Running and Message § 3
Saved 5
Text .
Running
£ wWL/* Addresses
SS R
LCIB =
] [0} e Equal 1 | [0
59987 [59999 Decremented 59785 59099
BLOCKS AFTER PROGRAM COMPLETE--METHOD 2
On Disk In Core
at 59765 ¥ 0
FTXC [Message 33
Text Running j
Address —
T and Saved
¢ M Running
Address
Equal -
HHIHE [0 FTXC 11}t] [00
59987 59999 59765 59999

Figure 30. Methods for adding a block for message transmission

-76-

A new core block is obtained from free storage with NCBKX. THE NXBA
of the last block is loaded into the SADD of the last block and the
LSBA of the new block. A new disk address must be obtained via NDBKX
to go into the NXBA of both blocks. The old block is now ready to

be written to the disk. A wordmarked Downshift is loaded into FTXC
of the new block and the LCIB set to 1, The Early Warning groupmarks
must be set, including a groupmark/wordmark at LTXC+l., Sample coding
for a subroutine (from the BLKOP program) that chains Working Storage
to another block may be found in Appendix F.

The second technique is to leave the wordmarked Downshift in the last
block, In this case, LCIB is not altered, and the LCIB in the new
block is not set to 1l. However, from LTXC+1l back to the character
following the wordmarked Downshift, the first block must be set to a
contiguous series of groupmarks. These two techniques are illustrated
in Figure 30, ' :

Output Text Streams

Output streams and messages exceeding one block constitute a program=
generated text stream, The procedure for generating an output text
stream is to write out the last text block, saving the five-character
disk address in the LLDA field in the First Block (FBK). The text
stream is then generated. The LCIB and CRAD indicators are not
important. Wordmarks may appear anywhere in the text and will not
affect transmission. The text in each block, except for the last
block, must begin at FTXC and end with a record mark followed by a
groupmark. The last block begins at FTXC and ends with a record mark
followed by a 6. - After the stream has been generated, the first
Transmit block is read into core, the running address set to FTXC,
and the status set to Transmit. There must be no other blocks
pertaining to the terminal in core except the beginning Transmit
block. The application program now exits., The Scheduler keeps ‘the
text flowing to the terminal until the record mark followed by a 6

is encountered. At this time, the MISAC program is called into core,
MISAC obtains the address of the last text block from the LLDA field
in the First Block (FBK) and sets the line status for the terminal

to Receive-Idle.

Priority Interrupt

Programs with low priority and requiring long periods of processing
must be able to relinguish the overlay area to programs of higher
priority. The procedure for doing this begins by saving important
pointers and indicators. This may be done in a core block; in the
first block (FBK); in the TSLS, TSNS, or LLDA fields; or in a Working
Storage block on the disk, If fields in the first block are used,
they must be blanked before the final exit from the application
program, Wordmarks may not be left in unexpected locations. At the
time of program exit, only one block pertaining to the terminal may
be in core,

The program relinqguishing the overlay area sets a New Job entry for
itself via SNJBX. The entry parameters are index register 1 set to
ten times the terminal number, and index register 2 set to the PST
number of the program. The NJB entry will be sorted into its priority
level in the NJB queue. It is possible that there are already several
requests in the NJB queue for the interrupting program., In this case,
the entry will be sorted to the top of all entries for the program.

-77=-

In cases where it is desirable to circulate through all pending
requests for one program, the PROV indicator in the System Status
Table should be blanked before branching to SNJBX. The New Job entry
will then be sorted to the bottom of the requests for the program.
This latter technique will process short requests faster than longer
requests.,

The NJB queue is checked by moving the NJB pointer to an index register
and checking the top program in the queue.

CAUTION: The pointer must be checked to see if it is blank., The
coding to accomplish this might be:

BCE EX25,NJPT, BRANCH IF BLANK POINTER

MCW NJPT, X3 GET NJB LOCATION

C 6+X3,PSTN DOES PROGRAM HAVE HIGHER PRIORITY
*

BL EX25 NO, CONTINUE

Interrupt Routine

PSTN DCW +PPROGM PST NUMBER OF PROGRAM

The interrupting program must be able to distinguish between a new

task and a partially completed task. To accomplish this, an indicator
is set in core. Usually, the PACT indicator (numeric) in the MST is
set to 9. ~When the program is entered, it checks this character.

If it is a 9, the program locates the status of a task in progress

that it saved and continues processing. The PACT entry must be cleared
before the final exit of the program. When the status character is

set to Control, the MST entry is not altered by the multiplexor or

any other program.

SYSTEM OUTPUT FORMATS

Some users of 1440/1460 ATS may wish to use the various possible
system outputs as input to further computer processing. This section
lists briefly the formats of all magnetic tape records that can be
produced by ATS and that may be of interest for further processing.

Permanent Storage Tape

The Permanent Storage Tape consists of Permanent Storage half-track
records read from the disk and written to tape in the Load mode with
even parity. These records are 900 characters in length with a
tapemark following the last record. The 900 characters on tape are
identical to the 900 characters on disk with one exception: the
Attention character (word separator) cannot be saved on tape in the
Load mode and in order to preserve this character, it is translated
to a segment mark., When ATS reads the tape, all segment marks are
converted back to Attention characters,

For a detailed description of the record format, see the "Permanent
Storage Tape" section of this manual. The text contained in these
records is in Terminal Code with all of the ATS text stream conventions
observed.

-78=

Card Image Tape

This tape is produced when a document is transmitted to terminal 97,
It consists of 80-character records written in the Move mode with
even parity. Tapemarks are not generated automatically but must be
entered by the originating terminal, This is accomplished by typing
a tapemark using the ATS multipunch feature (7 BKSP 8) in column 1
of the appropriate card.

The card images are an exact duplicate of the originating terminal's
input as it appears printed on the terminal, one line per card.
Beginning at the left=-hand margin, every character position on the
terminal represents a card column in the final output., Tab stops are
set in character positions representing the beginning of data fields,
These tab stop settings are associated with a special Heading mode
request. (See the section "Keypunching" in IBM 1440/1460 ATS, Terminal
Operator's Manual (H20-0185) for further information.,)

Print with Line Numbers Tape

This tape is produced when a document is transmitted to terminal 98
and Sense Switch B is ON (up). It consists of 1l33-character print
line image records, with a blank carriage control code in the first
position, written in Move mode with even parity. A carriage control
code of "1" is used in the first record of each document. A tapemark
is written after each document, and two tapemarks after all documents
have been written on tape.

The printout is similar to the ATTN pn0 printout at the terminal with
the following exceptions: All alphabetic characters are uppercase;
special characters, such as colons and brackets, do not print; the
line or unit number is located at the left-hand margin; all line or
unit numbers are printed.

Upper- and Lowercase Chain Print Tape

This tape is produced when a document is transmitted to terminal 96
and Sense Switch B is ON (up). The tape is written in the Load mode
in even parity with a tapemark following the last record. The records
may be either 133 or 15 characters long. In either case the first
character of the record is a carriage control character:

Control Character Meanin
blank Single-space after printing

Immediate one~-space skip
Immediate two-space skip
Immediate three=-space skip
Page eject

Print and suppress space
Eject page after printing

P E =R GQ

The 133-character records contain formatted print images with a
carriage control character, The l5-character records contain only
the carriage control character. The last record, and only the last
record, of each document will always contain the carriage control
character A,

-79=

This printout is formatted according to the last printout requested
by the originating terminal, Page width and depth are also the same
as the settings for the originating terminal, The Courier typehead
is assumed, which means that brackets (not + and 1) are considered
the standard characters. (For information on the way of entering
characters that do not appear on the Courier 72 typehead, see the
section "Upper- and Lowercase Chain Output" in IBM 1440/1460 ATS,
Terminal Operator's Manual (H20-0185).)

Underscored and other overstruck character positions will be written
as multiple records, all except the last of which will have a control
character of "+",

Almost all 7-bit (including wordmark) character combinations are
different characters on this tape. A complete listing of the characters
available follows.

1440/1460 ATS SUPPORT OF 120~-CHARACTER
COURIER PRINT CHAIN (Part 823380)

Chain Chain BCD Load Mode Terminal Courier 72
Position Character Graphic Code Card Code Representation
1 Numeral One 1 1 1 1 BKSP °
2 Numeral Two 2 2 2 2
3 Numeral Three 3 21 3 3
4 Numeral Four 4 4 4 4
5 Numeral Five 5 4 1 5 5
6 Numeral Six 6 42 6 6
7 Numeral Seven 7 421 7 7
8 Numeral Eight 8 8 8 8
9 Numeral Nine 9 8 1 9 9
10 Numeral Zero O 8 2 0 0
11 Equal = 8 21 3-8 =
12 Apostrophe ! 84 4-8 '
13 Greater Than > 84 1 1-4-8) BKSP °
14 Less Than < 842 2=4-8 (BKsp °
15 Plus + BA 12 +
16 Slash / A 1 0-1 /
17 Lowercase s s A 2 0=2 s
18 Lowercase t t A 21 0-3 t
19 Lowercase u u A 4 0-4 u
20 Lowercase v v A 41 0=5 v
21 Lowercase w w A 42 0=6 W
22 Lowercase X X A 421 0=7 X
23 Lowercase y Y A8 0-8 y
24 Lowercase 2z z A8 1 0-9 z
25 Up arrow T A8 2 0=-2=8 @ BKSP *
26 Comma ’ A8 21 0-~-3~8 ’
27 Left Paren, (A84 0=4-~-8 (
28 Minus
(or Hyphen) - B 11 -
29 Vertical Line | A842 0-6-8 / BKSpP °
30 Lower Left L
Corner A8421 0=7-8 [BKSp *
31 Lowercase j 3 B 1 11-1 j
32 Lowercase k k B 2 11-2 k
33 Lowercase 1 1 B 21 11l=3 1
34 Lowercase m m B 4 11-4 m
35 Lowercase n n B 41 11-5 n
36 Lowercase O o) B 42 11-6 o)
37 Lowercase p p B 421 11-7 P

Chain Chain BCD Load Mode Terminal Courier 72
Position Character Graphic Code Card Code Representation

38 Lowercase ¢ q B 8 11-8 q
39 lowercase r r B8 1 11-9 r
40 Exclamation

Point ! B 8 2 11-0 !
41 Dollar Sign $ B 8 21 11-3-8 $
42 Asterisk * B 84 11-4-8 *
43 Lower Right

Corner o B 841 11-5-8] BKSp *
44 Upper Left

Corner r B 842 11-6~8 [BKsSp ,
45 Upper Right

Corner T B 8421 11-7-8] BKSP ,
46 Lowercase a a BA 1 12-1 a
47 Lowercase b b BA 2 12-2 b
48 Lowercase c c BA 21 12-3 c
49 Lowercase d d BA 4 12-4 d
50 Lowercase e e BA 41 12-5 e
51 Lowercase f £ BA 42 12-6 £
52 Lowercase g g BA 421 12-7 g
53 Lowercase h h BAS 12-8 h
54 lowercase i i BA8 1 12-9 i
55 Horizontal

Line - BA8 2 12-0 - BKSP ° (or ° BKSP-)
56 Period . BA8 21 12-3~-8 .
57 Right

Parenthesis) BA84 12~4-8)
58 Crossed Lines - BA84 1 12-5-8 + BKSP °
59 Right Bracket] BA842 12-6-8]
60 Left Bracket [8421 7-8 [
61 Superscript 1

One w 1 0=5=8/1 1 BKSP *
62 Superscript 2

Two \ 2 0-5-8/2 2 BKSP *
63 Superscript 3

Three w 21 0=5-8/3 3 BKSP *
64 Superscript 4

Four w 4 0=5-8/4 4 BKSPp *
65 Superscript 5

Five \ 41 0=5-8/5 5 BKSP *
66 Superscript 6

Six W 42 0~5-8/6 6 BKSP *
67 Superscript 7

Seven \Y 421 0=5=8/7 7 BKSP *
68 Superscript 8

Eight w 8 0-5-8/8 8 BKSP *
69 Superscript 9

Nine w 8 1 0=-5-8/9 9 BKSP *
70 Superscript 0

Zexo w 8 2 0=5-8/0 ° or 0 BKSp *
71 Number Sign # w 8 21 0=5-8/3=8 #
72 Quotation

Mark " w 84 0=-5~8/4-8 "
73 Greater Than >

or Equal w 84 1 0~-5-8/5-8) BKSP =
74 Less Than <

or Egual w 842 0=-5-8/6=-8 (BKSP =
75 Ampersand & wWBA 0-5-8/12 &
76 Backward Slash\ w A 1 0=5-8/0~1 / BKSP =
77 Uppercase S] wA 2 0-5-8/0=2 S
78 Uppercase T T w A 21 0=-5-8/0-3 T
79 Uppercase U U w A4 0~-5-8/0~4 U
80 Uppercase V v wA4l 0=5-8/0~5 v

-81l=-

Chain Chain BCD Load Mode Terminal Courier 72
Position Character Graphic Code Card Code Representation
81 Uppercase W W w A 42 0-5-8/0-6 1}
82 Uppercase X X wA 421 0~5-8/0~7 X
83 Uppercase Y Y w A8 0=-5=8/0-8 Y
84 Uppercase Z Z wA8 1 0=5=-8/0-9 Z
85 Left Arrow « w A8 2 0=5-8/0~2-8 @ BKSP -
86 Semicolon ; w A8 21 0~5-8/0-3-8 ;
87 Percent Sign % w A84 0=5~8/0=4~8 %
88 High Hyphen =~ wB 0-5-8/11 - BKSP * or *BKSP -
89 At Sign @ w AB42 0«5-8/0-6-8 @
90 Logical And A w A8421 0=5=8/0=-7-8 & BKsSp ,
91 Uppercase J J wB 1 0~5=-8/11-1 J
92 Uppercase K K wB 2 0-5-8/11-2 K
93 Uppercase L L wB 21 0-5-8/11=-3 L
924 Uppercase M M wB 4 0-5~8/11-4 M
95 Uppercase N N wB 41 0~5-8/11=5 N
96 Uppercase O 0 wB 42 0~5-8/11=-6 o
97 Uppercase P P wB 421 0~5-8/11=7 P
98 Uppercase Q Q wB 8 0=5-8/11-8 Q
99 Uppercase R R wB&8 1 0-5-8/11-9 R
100 Question Mark ? wB 8 2 0-5=8/11-0 ?
101 Underscore wB 8 21 0=-5-8/11-3-8
102 Subscript one I’ wB 84 0-5-8/11-4-8 T BKSP ,
103 Subscript Two 3 wB 84 1 0-5-8/11-5-8 2 BKSP ,
104 Subscript Three wB 842 0-5-8/11-6-8 3 BKsP ,
105 Subscript n wB 8421 0-5-8/11~7-8 n BKSP ,
106 Uppercase A A wWBA 1 0=5=-8/12=1 A
107 Uppercase BB B wBA 2 0-5-8/12=2 B
108 Uppercase C C wBA 21 0-5=8/12-3 c
109 Uppercase D D wBA 4 0-5=-8/12~4 D
110 Uppercase E E WwBA 4 1 0-5=-8/12-5 E
111 Uppercase F F wBA 42 0~5-8/12-6 F
112 Uppercase G G wBA 421 0-5-8/12=7 G
113 Uppercase H H wBAS8 0-5-8/12-8 H
114 Uppexcase I I wBA8 1 0=-5-8/12=9 I
115 Plus or Minus % wBA8 2 0=5=8/12=0 + BKSP =
116 Colon : wBA8 21 0-5-8/12-3-8 :
117 Bullet * wBA84 0-5-8/12-4-8 . BKSP °
118 Not Equal X wBAags4 1 0=-5-8/12-5-8 / BKSP =
119 Right Brace 2 wBA842 0=5-8/12=6~8] BKSP =
120 Left Brace < w 8421 0=5-8/7-8 [BKSP =~

Storage Report Tape

When a Storage Report is requested on tape, it will be written as
133-character print line image records in the Move mode with even

parity.

The first character will be a control code.

This code is

the same as the forms control character that would appear for the
equivalent function in the D-modifier of the control carriage

instruction.

For example, the D-modifier for an immediate skip to

Channel 1 is the digit 1 and it is this number that would appear in

the first position of the record.

The normal carriage action is an

immediate skip of one line after printing, which is noted by the "/"
(slash) character that normally appears in the first position of the

record.

The print tape is written with the same carriage control

functions as would be used if the report appeared on the high=-speed

printer .

-32=

APPENDIX A:

SAMPLE CODING FOR A SKANB SUBROUTINE

0299
0300
0301
0302
0303
0304
0305
0306
0307
0308
0309
0310
0311
0312
0313
0314
0315
0316
0317
0318
0319
0320

0321
0322
0323
0324
0325
0326
0327
0328
0329
0330
0331
0332
0333
0334
0335
0336
Q337

0338
0339
0340
0341
0342
0343
0344
0345
0346
0347
0348
0349
0350

4 24 21 31 3 208 238 KR B4 SE BRI S EIK S S KK ISR S8 SIS SIS 3K KB SIE 3¢ 31E 38 SIS i DK DK S i 24E 3R) 3K 3 3K KK I S 3K SR 3R 3¢ 3 3 Ol S S MRk Sk Sk

3
3k
st
b3
xR
st
-~
S
"~
3

IS

3

SKANB WILL SEARCH BACK FOR A WM=-ED CHAR
TO BLOCK AS REQUIRED)
AL-S RUNNING ADDRESS.
PROCESSED,
DANGLING CORE BLKS)
DANGLING DISK BLKS AS WELL AS CORE BLKS}).
TO TEN TIMES THE TERMINAL
THAN THE WM=FD CHAR.

NUMBER «
X1 WILL BE PRESERVED.

ENTER WITH X1 EQ
EXIT WITH X2 EQ ONE LESS

(STEPPING FROM BLOCK>*
BEGINNING AT ONE LESS THAN THE TERMIN=x
AFTER THE SKANNED-OUT LINE HAS BEEN
THE PROGRAM MAY SET-WM ON SK16+4 (TO PURGE ANY

OR SK1lé+4 AND SK17+4 (7O PURGE ANY

e
R

s

3463 31 3lE K 3k e 36 2l 34 3k S 3l vl 3 Al 3o Sk Sk 3K 3l e i ok 2l 3l 3l B e 3 Al 2k e Bl 3k 3k 3i% Sk Ml 3R 3% e ol 310K 38 3R Dl 3 ik 3 sk 2l vle K 3 Sl ol sk i e ik sl SR B

SKANB

SK11

SK13

SK14
SK15

SK16

SK17

SK19

SK21
SK22

SBR
MCW
SBR
C
SBR
BCE
MN
MN
C
BL
CW

-

SBR
MN
MN
BIN
MCW
B
BCE
B
MZ
MZ
MCW
B
BIN
BCE
MCW

MCW
MCW

SBR

DCW
DCW

SK13+3
RUNA+ X149 X2
X2915999+X2
0+X2

X2
SK1l4,X2-1,9
X29SK22

SK21,4SK22
SK15
SK16+44SK17+4

KGO

X291+ X2
a00a 4 X2

SK17,4(

X244 X3
RTRVX
SK11496,
RTBLK
X24CRAD+X3

SK11

SK19,(
SK134CRAD=2+X2,
CRAD+X24 X3
HDFSX

X2y LTXC+X3
SK11

X3y NXBA+X2
PDBKX
CRAD+X2 4 X2

SADD+ X2y NXBA+X2
HDFSX

X249 LTXC+X2

SK11

+FTXC-1

=2

SAVE RETURN ADDRESS

GET TERMINALS RUNNING ADDRESS
STEP IT TO LAST RECEIVED CHAR
SKAN BACK FOR A WM

SAVE 1 LESS THAN WM—-ED CHAR
BRANCH IF OVERSHOT BLOCK

GET CHARACTER ADDR

IS IT LOWER THAN FTXC-1

YES. SKAN OVERSHOT VALID TEXT.
CLEAR SWITCHES

ENABLE INTERRUPTS AND RETURN

STEP TO ORIGINAL BLOCK
CLEAR X2 CHAR ADDR

BRANCH TO PURGE CORE BLOCKS
MOVE BLK ADDR TO X3

BRANCH FOR PREVIOUS BLK
BRANCH IF BLOCK IN CORE
BRANCH TO READ FROM DISK
HSKP FORMER CRAD POINTER

BRANCH TO CONTINUE SKAN.

BRANCH TO PURGE DISK BLOCKS TOO
IF NO CRAD,y, DO NOT STEP FURTHER
GET ADDR OF NXT CORE BLK BACK
BRANCH TO PURGE IT

DISABLE INTERRUPTS

TO LTXC IN PURGED BLOCK
TO SKAN IT

SET X3 TO A(NXBA/THIS BLK)
BRANCH TO PURGE DISK ADDR

GET ADDR OF NEXT BLK BACK

SET X2
BRANCH

MOVE SADD OF THAT BLK TO NXBA
PURGE CORE BLK

SET X2 TO LTXC IN NEW BLK
BRANCH TO SKAN IT

USED TO DETECT BLK OVERSHOOT
TEMP STORAGE FOR CHAR ADDR

-B3-

MISAC
MISAC
MISAC
MISAC
MISAC
MISAC
MISAC
MISAC
MISAC
MISAC
MISAC
MISAC
MISAC
MISAC
MISAC
MISAC
MISAC
MISAC
MISAC
MISAC
MISAC
MISAC

MISAC
MISAC
MISAC
MISAC
MISAC
MISAC
MISAC
MISAC
MISAC
MISAC
MISAC
MISAC
MISAC
MISAC
MISAC
MISAC
MISAC

MISAC
MISAC
MISAC
MISAC
MISAC
MISAC
MISAC
MISAC
MISAC
MISAC
MISAC
MISAC
MISAC

APPENDIX B:

SAMPLE CODING FFOR A RTBLK SUBROUTINE

0397
0398
0399
0400
0401
0402
0403
0404
0405
0406
0407
0408
0409
0410
0411
0412
0413
0414
0415
0416
0417
0418
0419

**********************m*******$****#*******************************
RTBLK IS ENTERED BY STEPB OR SKANB WHEN RTRVX SETS UP X2 TO
BLKe ENTER AFTER RTRVX TURNS ON UNEQUAL LATCH. EXIT
K IN COREy LTXC IN X2, SCNT EQ TO X3 BLK. X1 WILL
ERVEDe X3 WILL BE SET TO XXX00.

3
*

¥

BXd

READ A
WITH BL
BE PRES

)O3R 30 SOl s S sk ek i sk

RTBLK

RT48

RT49

RT51

RT52
RT53

SBR
MCW
MCW
MZ
MZ
MCW
B
DCw
DCW
DCW
MCW
SBR
SBR
SBR
SBR
BCE
H

s
*
53
o

e

b3

s sk le i e 3 6 30 S R o e ik e A i e s s e ok ot o e ol s el s e e ol s e st ol e ol sk el

RT53+3
X14RT5246
X2yRT49
X33RT51+6

TOCNX

=1

ala

=3

RT 494 X2
SCNT+X2,0
X3

X249 LTXC+X2
X1,0
0yRT48,

SAVE RETURN ADDRESS

SAVE X1

X2 7O IOAR

X3 BLK ADDR TO -SBR—- INST.

BRANCH TO READ BLK
CONDITION COMMUNICATION
READ, 1 BLK, LOW PRIORITY
ADDRESS OF BLK (IO0AR)

MOVE BLK ADDR TO X2

SET SCNT TO NEXT BLK FWD IN CORE
RESTORE X3

SET X2 TO LTXC IN BLK
RESTORE X1

RETURN TO PROGRAM IF 1/0 OK
HALT. CATASTROPHIC ERROR.

-84-

MISAC
MISAC
MISAC
MISAC
MISAC
MISAC
MISAC
MISAC
MISAC
MISAC
MISAC
MISAC
MISAC
MISAC
MISAC
MISAC
MISAC
MISAC
MISAC
MISAC
MISAC
MISAC
MISAC

APPENDIX C: SAMPLE CODING FOR A SSPRT SUBROUTINE

0361
0362
0363
0364
0365
0366
0367
0368
0369
0370
0371

3l 3¢ 3k 31 3l k2l 21 e 3¢ 31 A 3 e e 3 3 A A 3l 3¢ K A B A A A A e 38 3 K K 3 S 3K Al ¢ I AE BIE 3E 2l 3K SIK SR SIR 3k SIE Bk Bk Sl 3K 3l 3k slk Sk s ik ok i ole ol Sl vk sk sk
* SSPRT STEPS THE X2 POINTER FWDe. ENTER WITH X2 EQ TO A BLK
* ADDRs EXIT WITH X2 EQ TO FTXC IN THE NEXT BLK FORWARD. %
*® X1 AND X3 ARE PRESERVED. %

348 318 31 24 3 o ole g o st 3k e e Ak Sk 38 3k 3 i 36 sl ol 3k 3k ¢ 2 ke 3l 3¢ 2l ik 3K 3 3k 3K A ¢ e il S BiE 318 36 2l DK 3¢ 31K 3l 3iE 3¢ 3 3K 24 0K)¢S s e i ek ok ok

SSPRT SBR SS13+3 SAVE RETURN ADDRESS

MN 200a, X2 CLEAR CHAR ADDR IN X2

MN

MCW SCNT+X249X2 MOVE NEXT BLK FWD ADDR TO X2

SBR X29FTXC+X2 SET X2 TO FTXC IN NEW BLK
5513 B 0 RETURN TO MAIN PROGRAM

-85

MISAC
MISAC
MISAC
MISAC
MISAC
MISAC
MISAC
MISAC
MISAC
MISAC
MISAC

APPENDIX D: SAMPLE CODING FOR A ROUTINE TO READ OVERLAYS

0354
0355
0356
0357
0358
0359
0360
0361
0362
0363
0364
0365
0366
0367
0368
0369
0370
0371
0372
0373
0374
0375
0376
0377
0378
0379
0380
0381
0382
0383
0384
0385
0386
0387
0388
0389
0390
0391
0392
0393
0394
0395
0396
0397
0398
0399
0400
0401
0402
0403
0404

ke sl e sl i sl sl e e sie sle alg Sl 318 ¢ 3l 31 Bie 31k 3l e S 3l S 3K 3l 3 31 3K 205t 3 3iE 3l 3 3ie e 3is e 2 3ie k2l ol Sie o sl e i 3% 2k Sie ol 3fk Al sl il ikl sk ik ks

* RFOVY WILL READ THE FIRST OVERLAY. ALL INDEXES ARE g
% PRESERVED *
i 3k 2 sl e 3l 3Rl ok sl 2k alk 3R S s ol ok e ale ik 3l 3l ok aje skl S 3k S 0K vk 3¢ Ble S SIS 2E 3k I BIC HE 2C SIESI KSR SIROIE 318 3 3K 320K SIE 21K 3¢ 34K K e Sk 2E 3k S 3K DR
RFOVY SBR RD20+3 SAVE RETURN ADDRESS)

MCW @2adyRF11 MOVE 1ST OVLY INCREMENT TO CHECK
RFO8 MCW OVAREA-5,4RF10 MOVE IN BASIC DSK ADDRS FOR CHECK

A RF11,RF10 INCREMENT BASIC ADDRS FOR OVRLY

c HFTRAR=-5,RF10 IS OVRLY ALREADY IN

BE RD20 YES, ABORT READ

MCW RF10,HFTRAR-5 NGOy SET DISK ADDRESS FOR OVRLY

MCW al!a,REL7 SET I100P FOR READ, HI PRIORITY

SBR RE18,HFTRAR-10 SET 10AR

B RE12 BRANCH FOR I/0
RF10 DCW =3 CHECK REGISTER FOR OVRLY ADDRS
RF11 DCW =1 INCREMENTAL REGISTER FOR OVRLY
2% 348 312 3K < 388 3¢ 3 3l 333l 31 3ik 1k 3OO 2 3RO i 908 3¢ ok 3¢ R e e 3k Il i 3k e 3k e 36 31k 3¢ 0l ek ik 3k 316 Al sk 3¢ ol ol Ak e e i e je e i 3e 3k AR sk sl e e sk s
* RSOVY WILL READ THE SECOND OVERLAY. ALL INDEXES ARE *
* PRESERVED *
356 3% 3 3¢ 3¢ 2% e < sl 3 3¢ ke ol vl ik vie e 3¢ ol sl 3k e e 3k Ak A IO Bie ik el 2l Ok 38 3 e 3¢ e A e sl s vl Sk Al e e Sk K 31k 36 3 3¢ 3¢Sl D BjE el e S ik S e
RSOVY SBR RD20+3 SAVE RETURN ADDRESS

MCW @3a@,RF1l MOVE IN 2ND OVRLY INCREMENT

B RFO8 BRANCH FOR 1/0
e e 3 e ok 3 3t e e e ol e ok e 3 3 i i ol sl ik ok ok 3 s 3l e e e ik ok e e o 3 3 346 3l 3l ik 3k ok 3 3 sl e e i e A 3 3 s e eI k3 e sl e e sle ek
* RTHVY WILL READ THE THIRD OVERLY. ALL INDEXES ARE *
s« PRESERVED *
343K 92 3K 3K 9k 3 K 3k 3ok e i %0l 3ok 3 3k Al)¢ 3¢ Sl DjE 4 ¢ 316 218 DK o] 3K Ak 3k K 3K 98 3R 3l 3l 3iC K Al 3 3 3l 38 K 3K 24e K Y8 DK 3IE SR 3 B 3¢ e e Sl R SR R Kk
RTHVY SBR RD20+3 SAVE RETURN ADDRESS
RFO1 MCW d4ad4RF11 MOVE IN 3RD OVRLY INCREMENT

B RFO8 BRANCH FOR 10
i e e o 3 33 3 s sle e ik e e 3kl s o 2l e sl sie el ool o 3 36 3646 e i i kR 3R 3 3 i e 3k 3l 3l ok e sk g okl ok ik o 3 333l S e o 3 sl sl sl el ok oK
* RFTOVY WILL READ THE FOURTH OVERLAY. ALL INDEXES ARE *
¢ PRESERVED. *
346 30 3% 3 30 Rl 34236 AR 3k 3k 0 346l Al 246 310k 36 36 ik 31K 46 1K e 3 246 1% 2 386 356 9 3k 3 3i6 ik 3 3¢ k3 3l 3 3¢ 2k i 30l 3Kkl 43Ik 3 3l e e ol Sk sl R ek
RETVY SBR RD20+3 SAVE RETURN ADDRESS

MCW a@b5a4RF11 MOVE IN 4TH OVRLY INCREMENT

B RFO8 BRANCH FOR 1/0
3% 206 3K 38 34 ok 206 oJ¢ D2 34k 318 K 246 3% 8 5K e 4K 346 3¢ K 2 32 KK 3K 34 3¢ A el 24K e A%)¢ 38 DK HC I 3% 24¢ A8 AR 383 i e 3t 3¢ 58 3K 3lE 3k 3K 3¢ A 3e 3iE K A A 3l i K K e K
* RFFVY WILL READ THE FIFTH OVERLAY., ALL INDEXES ARE x*
* PRESERVED
S e e 3k 30 e i i st i ok 33 ol 3k ok o i e i e sl e 33l o o 3 ok o 3 4 e e 16 i s e sl e e ok sl ok o ok a8 e A ik 3Kl sl 3 a3 6 46 ke e e e sl e ok
RFFVY SBR RD20+3 SAVE RETURN ADDRESS

MCW @6ad4RF11 MOVE IN 5TH OVRLY INCREMENT

B RFO8 BRANCH FOR 1I/0
e 3k ok o 3 5 36 i ok sk ok 2K e 3 3 e i e i 46 K 36 ol o o 38 46 36 e 16 ok a6 3k R K 356 e ok 3k 3 3 3 3 34 3l 36 ok 3 o ol S 3 A A e e e S el K koK oK
* RSXVY WILL READ THE SIXTH OVERLAY. ALL INDEXES ARE *
3 PRESERVED. i«
3¢ 3 36 e 3 3 34 3 e 96 3¢ 30 6 R K 43 5636 3503 6 ok R 3 36 30 30 30 33 o0 6 36 3 38 33 e 36 34 3k o e 3 i 3 e 46 36N 6 K R 35 35 36 30 36 il kol S e e
RSXVY SBR RD20+3 SAVE RETURN ADDRESS
RF02 MCW @7ad4RF11 SET 6TH OVLY INCREMENT

B RFO8 BRANCH TO READ IN OVERLAY

-86-

KLCUT
KLCUT
KLCUT
KLCUT
KLCUT
KLCUT
KLCUT
KLCUT
KLCUT
KLCUT
KLCUT
KLCUT
KLCUT
KLCUT
KLCUT
KLCUT
KLCUT
KLCUT
KLCUT
KLCUT
KLCUT
KLCUT
KLCUT
KLCUT
KLCUT
KLCUT
KLCUT
KLCUT
KLCUT
KLCUT
KLCUT
KLCUT
KLCUT
KLCUT
KLCUT
KLCUT
KLCUT
KLCUT
KLCUT
KLCUT
KLCUT
KLCUT
KLCUT
KLCUT
KLCUT
KLCUT
KLCUT
KLCUT
KLCUT
KLCUT
KLCUT

APPENDIX E:

SAMPLE TABLE FOR COMMUNICATION BETWEEN OVERLAYS

Q127 ook 300R e 3¢ 3R 9% %8 3¢ Sl 3 3R 3 3 3k 36 e 3 31 208 36 312 36 008 30 e 36 36 Sl 348 I3 358 3K A4 ol iR 3j¢ 00 346 30K 3k S 3 21 vk 3je g e sl i 3je ol ik sk SR o Sk ek e
0128 * THE BRANCH TABLE PROVIDES THE COMMUNICATION BETWEEN *
0129 =* OVERLAYS. *
0130 demesieaoks e 31 3 3 3¢ 316 Dl o 3k 3k ol 31 316 3ie Dk 31¢ 346 31k e e ik 31 3K e Sk S 3¢ 346 K e 3l ik % ik ol 2k 1 ok ol 38 3je Ble e 2Ol e 24e Sie A< Ak Sl A e S AR A IR ¢
0131 INTRP B RSOVY READ SECOND OVERLAY P
0132 B IN12 BRANCH TO INTERPRET G
0133 FORMT MCW a@3ad. INMD SET FORMAT ERROUR FLAG

0134 B FNISH BRANCH TO STOP PROCESSING

0135 OVERF MCW a@4ady INMD SET OVERFLOW FLAG

0136 B FNISH - BRANCH TO STOP PROCESSING

0137 WBALL MCW a@5a, INMD SET WRONG BALL FLAG

0138 B FNISH BRANCH TO STOP PROCESSING

0139 ENDOS MCW a@éay INMD SET END OF STORAGE FLAG

0140 B FNISH BRANCH TO CONCLUDE PROCESSING
0141 ILEXP MCW a@7ay INMD SET INVALID EXPONENT FLAG

0142 B FNISH BRANCH TO CONCLUDE PROCESSING
0143 ZEDILV MCW @824y INMD SET ZERO DIVISOR FLAG

0l44 FNISH B RFTVY READ FOURTH OVERLAY

0145 B FI10 BRANCH TO CONCLUDE JO0OB

0146 STORE B RTHVY READ THIRD OVERLAY

0147 B s018 BRANCH TO STORE

0148 SO1z2 B RSOVY READ SECOND QOVERLAY

0149 S0O14 B 0 RETURN

0150 GETVB SBR $014+3 SAVE RETURN ADDRESS

0151 B RTHVY READ THIRD OVERLAY

0152 B GE1O BRANCH TO GET NUMBER

0153 SCANM SBR SO14+3 SAVE RETURN ADDRESS

0154 B RTHVY READ THIRD OVERLAY

0155 B S016 BRANCH TO STORE TEMP TOTAL

0156. RDOTC B RFFVY READ FIFTH OVERLAY

0157 b ROLl4 CONTINUE ITERATING

0158 PAUSE SBR PAOL1+3 SAVE RETURN ADDRESS

0159 BCE PAOL1,NJPT, BRANCH IF NO NEW JOBS

0160 MCW NJPT9X1 MOVE LIST POINTER TO INDEX

0161 C 6+X1y TERM+3 DOES NJB HAVE HI PRIORITY

0162 BH PAO3 YESs BRANCH

0l63 C 6+X1,PAO5 IS EUNIT WAITING

0lée4 BE PAO3 YESy INTERRUPT PROCESSING

0165 PAOL B 0 NO, RETURN

0166 PAO3 B RSXVY READ SIXTH OVERLAY

0167 . B PAO9 PERFORM INTERRUPT PROCESSING

0168 PAOS DCW +PEUNIT PST NUMBER OF EUNIT

-87-

KLCUT
KLCUT
KLCUT
KLCUT
KLCUT
KLCUT
KLCUT
KLCUT
KLCUT
KLCUT
KLCUT
KLCUT
KLCUT
KLCUT
KLCUT
KLCUT
KLCUT
KLCUT
KLCUT
KLCUT
KLCUT
KLCUT
KLCUT
KLCUT
KLCUT
KLCUT
KLCUT
KLCUT
KLCUT
KLCUT
KLCUT
KLCUT
KLCUT
KLCUT
KLCUT
KLCUT
KLCUT
KLCUT
KLCUT
KLCUT
KLCUT
KLCUT

H20-0228-0

SAMPLE CODING FOR A SUBROUTINE TO CHAIN
WORKING STORAGE TO ANOTHER BLOCK

APPENDIX F:

0563 sekaicoksieoeikokoie el i el o ol i ae e e i e e 3¢ e 3jeie ol e 3l 3¢ 2l sie dje e e sk 3je ol e ol ik 3 i 3k 32 e sl ol e i 3 e ol sl sk sl sl sk Aok BLKOP
0564 CHAIN CHAINS WORKING STORAGE TO ANOTHER BLOCK * BLKOP
Q565 Aciokogesiel ol e ol i ie o ook e olesi sie il oje sl ok ik o o ol 3¢ i sl sje i i ol sie oje sl ole sie ol sle djg 3¢ e vl sjeofe ol sje aje s e ole ol ke sk die e BLKOP
0566 CHAIN SBR CH20+3 SAVE RETURN ADDRESS BLKOP
0567 SBR BL504y2+X2 SET SVRA FOR END OF STORAGE BLKOP
0568 SBR BL49,SYSMSR ASSUME END OF STORAGE MESSAGE BLKOP
0569 B CNXTO CLEAR X2 NUMERICS) BLKOP
0570 SW LTXC+1+X2 ASSUME END OF STORAGE BLKOP
0571 SBR X3 ,NXBA+X2 SET NDBKX PARAMETER BLKOP
0572 B NDBK X BRANCH FOR A DISK BLOCK BLKOP
0573 B BL245 NONE, TYPE END OF STORAGE BLKOP
0574 CW LTXC+1+X2 CLEAR GMWM BLKOP
0575 ' MCW BL50,X3 GET WMDWNSHFT ADDRS IN INDEX BLKOP
0576 MCW GMWM,15999+X3 END CURRENT BLOCK WITH A GM BLKOP
0577 CW 15999+X3 NO GMWMS ALLOWED BLKOP
0578 MA adl9Iad,LCIB+X2 DECREMENT LINE COUNT BY 1 BLKOP
0579 B WRBLK WRITE OUT OLD BLOCK BLKOP
0580 B NCBK X GET A NEW CORE BLOCK BLKOP
0581 LCA NXBA+X24NXBA+X3 GIVE BLOCK NEW ADDRESS BLKOP
0582 LCA SADD+X2 SET BKWD CHAINING BLKOP
0583 LCA X2 AND CRAD BLKOP
0584 MCW GMWM+1 AND EW GMS BLKOP
0585 MCW GMWM+1 BLKOP
0586 MCW X3,BL50 SAVE X3 POINTER BLKOP
0587 MCW X24X3 GIVE OLD BLOCK TO X3 BLKOP
0588 B FTFSX AND PURGE IT BLKOP
0589 MCW BL50, X2 GIVE BLOCK ADDRESS TGO X2 BLKOP
0590 LCA NXBA+X2,SADD+X2 SET SADD IN NEW BLOCK BLKOP
0591 MN d01a4sLCIB+X2 SET LINE COUNT TO 1 IN BLK BLKOP
0592 MN BLKOP
0593 LCA adLayFTXC+X2 START BLK WITH A WMDWNSHFT BLKOP
S

0594 CH20 B 0 RETURN BLKOP
TSIV

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, New York 10601

0-8220-02H "V 'S'fl Ut pajuid

	001
	002
	003
	004
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78
	79
	80
	81
	82
	83
	84
	85
	86
	87
	88

