
Systems Reference Library

r

IBM 1620 Special Features

This manual describes the special features that are
available for the 1620 Data Processing System.

© 1962 by International Business Machines Corporation

File No. 1620/1710-13

Form A26-S708-0

The format of the 1620 Reference Manual has been changed

to conform to that of the Systems Reference Library. The origi­
nal publication, A26-4S00-2 and applicable newsletters have not
been obsoleted.

This publication contains only the special features described

in A26-4S00-2. Minor changes have been made.

The Central Processing Unit is described in A26-S706.

Input/Output Units are described in A26-S707.

Copies of this and other ruM publications can be obtained through ruM Branch Offices. Address comments

concerning the content of this publication to: ruM, Product Publications Department, San Jose, California

1623 Core Storage Unit. • 5

Automatic Division ••
Load Dividend • •
Load Dividend Immediate

Divide •••••••••
Divide Immediate
Decimal Point Location

IncolTect Divisor Positioning
Summary of Automatic Division Rules

Automatic Floating-Point Operations •

Floating Add • • • • •

Floating Subtract

Floating Multiply

6

6

7
7
7
7

10

11

• 12
• • 13

• 14
•• 14

Floating Divide
Floating Shift Right
Floating Shift Left •

Transmit Floating •
Branch and Transmit Floating
Mantissa and Exponent Analysis

Indirect Addressing

Additional Instructions

Move Flag ••••
Transfer Numerical Strip ••
Transfer Numerical Fill

Index

CONTENTS

15
15
15

16
16
17

19

22
22
23
24

25

. 9 System reM 1620 Data ProceSSlD

The 1623 Core Storage Unit (Figure 1) provides the
additional program and data storage needed for ap­
plications that require more than 20,000 storage
positions.

Description

Two different 20, OOO-position modules of core stor­
age are available . These expand the storage capac­
ity of the 1620 from 20,000 pOSitions to 40,000 posi­
tions with the Modell or 60, 000 positions with the
Model 2.

The programming and operating characteristics
of the 1620 are not changed by additional core stor­
age . Addressing is from 00000 to 39999 with the

Figure 1. mM 1623 Core Storage Unit

1623 CORE STORAGE UNIT

addition of the Modell, and from 00000 to 59999
with the addition of the Model 2. The resulting
storage is cyclincal in that 00000 follows the largest
allowable address when incrementing. Conversely,
the largest allowable address is the next lower
address below 00000 . No storage reservations for
table arithmetic are required in additional core
storage.

1623 Core Storage Cabinet

The 1623 cabinet is approximately the same in size
as the 1620 console without the table top. There
are no additional console controls . A power cord
and signal cables 20 feet in length are provided for
connecting the additional core storage cabinet to the
1620 .

Checking

An invalid address is detected in MAR , and the MAR
Check indicator is turned on when the digits listed
below are in the high-order position (P2 or Q) of
either the P or Q address: 7

Core Storage
One module (00000-39999)
Both Modules (00000-599~9)

Error Digits in P2 or Q
7

4, 5, 6, 7, 8 , 9
6, 7, 8, 9

Thus , a 40 , 000 poSition storage unit cannot
have a valid address greater than 39999 ; and a high­
order digit greater than 3 (for example, 4 for ad­
dress 40000) is invalid. Similarly, an address of
60 , 000 or greater is invalid for a 60 , 000 -position
unit,. for which the largest allowable address is
59999 .

1623 Core Storage Unit 5

AUTOMATIC DIVISION

Automatic division simplifies programming and in­
creases the processing speed of division problems
by two to four times that of programmed routines.
Only one command need be given. Four commands
are provided, however, to facilitate positioning of
the dividend and divisor in core storage. There are
no practical limitations placed upon the size of the
dividend, divisor, or quotient.

A quotient and remainder of 20 digits are devel­
oped in the product area (00080-00099). When the
quotient plus the remainder exceeds 20 digits, core
storage positions lower than 00080 (00079,00078,
etc.) must be reset to zeros by programming. One
additional position should also be cleared to allow
for a possible overdraw. For example, if 25 posi­
tions are required for the quotient and remainder,
00074-00079 would have to be reset to zeros before
the divide command was given.

The four instructions provided with the divide
feature are:

Load Dividend (LD-28)
Load Dividend Immediate (LDM-18)
Divide (D-29)
Divide Immediate (DM-19)

The formula for computing the total execution
time follows the description of each instruction.

LOAD DIVIDEND (LD-28)

Description. The dividend must be stored in the
product area before a Divide command is given.

Data at Core

Instruction Storage Address Description
00650

(1) 28 00096 00650 21365 Load Dividend

(2) 28 00099 00650 01234 Load Dividend

(3) 18 00098 00650 56789 Load Dividend Immediate

Figure 2. Load Dividend Instructions

6

a ~

co co
a a
a a
a a

0 0

0 0

0 0

The Load Dividend instruction may be used to sat­
isfy this requirement.

The product area (00080-00099) is automatically
reset to zeros. The dividend (Q address) is trans­
mitted to the product area (P address), beginning
at the low-order dividend digit and terminating at
the flag bit marking the high-order position of the
dividend field. The P address is 00099 minus the
number of zero pOSitions deSired to the right of the
dividend.

The algebraic sign of the dividend is auto mati -
cally placed in location 00099, regardless of where
the low-order dividend digit is placed by the P ad­
dress. A flag bit automatically marks the high­
order digit of the dividend.

Example: Two Load Dividend instructions and one
Load Dividend Immediate instruction are shown in
Figure 2.

N
co a a
a

0

0

0

1. The Load Dividend instruction,

28 00096 00650,

causes the low-order position of the divi­
dend to be placed at 00'096. The sign
(minus) is stored at 00099.

2. The Load Dividend instruction,

· ...

· ...

· ...

· ...

28 00099 00650,

causes the low-order position of the divi­
dend to be placed at 00099. The sign
(plus) is stored at 00099.

N M ~
l() -0 r-..... co 0-

0- 0- 0- 0- 0- 0- 0-a a a a a a a a a a a a a a a a a a a 0 a a 0 a

2 1 3 6 5 0 0 0

0 0 0 0 1 2 3 4

0 0 0 0 6 5 0 0

3. The Load Dividend Immediate instruction,

18 00098 00650,

causes the low-order position of the divi­
dend (the Q part of the instruction) to be
placed in the field beginning at 00098. The
sign (plus) is stored at 00099.

Execution Time. T = 400 + 40Dn, where Dn equals
the number of digits in the dividend.

LOAD DIVIDEND IMMEDIATE (LDM-18)

Description. The description for Load Dividend
applies except that the data in the Q part of the
instruction is transmitted to the P address.

Execution Time. Same as a Load Dividend (LD-28).

DIVIDE (D-29)

Description. The divisor (Q address) is successive­
ly subtracted from the dividend. The P address of
the Divide instruction positions the divisor for the
first subtraction from the high-order positions of
the dividend, as in manual division. The P address
is determined by subtracting the number of digits
in the quotient from 100.

Examples: Problem 1: 4906 +23 = 0213 and a
remainder of 07. Figure 3 shows the manner in
which the 1620 solves this problem.

Problem 2: -212 (212) -T 24 = -8.83 (00883) and
a remainder of 08. Figure 4 shows show the 1620
solves this problem.

As illustrated in these examples, each sub­
traction without overdraw causes the quotient digit
to be increased by 1. Quotient digits are developed
in the units position of the Multiplier/Quotient
register. An overdraw initiates a correction cycle
(the divisor is added once), and the next subtraction
occurs one place to the right.

The first (high-order) quotient digit is stored
at the address equal to the P address of the Divide
instruction minus the length of the divisor. A flag
bit is generated and stored with the first quotient
digit. Subsequent quotient digits are stored to the
right of the last-stored quotient digit. Division is
terminated, after the last quotient digit is developed
by subtractions, with the units position of the divisor
at 00099.

The quotient and remainder replace the dividend
in the product area. The address of the quotient is
00099 minus the length of the divisor. The algebraiC
sign of the quotient (determined by the signs of the
dividend and divisor) is automatically placed in the
low-order position of the quotient. The address of
the remainder is 00099. A flag bit is automatically
placed in the high-order position. The remainder
has the sign of the dividend and the same number of
digits as the divisor.

The High/Positive indicator is on if the quotient
is positive and not zero; the Equal/Zero indicator
is on if the quotient is zero. Neither indicator is on
if the quotient is negative.

The quotient must be at least two digits in length;
one position is required for the sign and one for the
field mark (flag bit).

Execution Time. T = 160 + 520DvQt + 740Qt. Dv
and Qt equal the number of digits in the divisor and
quotient, respectively. The formula assumes an
average quotient digit of 4. 5. If a Load Dividend or
Load Dividend Immediate instruction is used, the
divide operation execution time may be considered
as the total time for both the Load Dividend and
Divide instructions.

DIVIDE IMMEDIATE (DM-19)

Description. The description of Divide (D-29) ap­
plies except that the data in the Q part of the instruc­
tion is used as the divisor.

Execution Time. Same as Divide (D-29).

DECIMAL POINT LOCATION

The computer is unaware of decimal points, except
for Automatic Floating-Point Operations (Special
Feature) 0 Decimal point location for any given
divide calculation is easily determined by simply
subtracting the number of decimal digits in the divi­
sor from the number of decimal digits in the dividend.
The result is the number of decimal digits in the
quotient. For example, if the divisor and dividend
values in problem 2, Figure 4 are 2.4 and 21. 200,
respectively, the quotient value is 008. 83 (3 - 1 = 2).
Note that the original dividend, 21. 4 became 21. 400
as a result of its placement by the Load Dividend
instruction. Thus, the number of dividend decimal
digits must include the zeros to the right of the
loaded dividend.

Automatic Division 7

Data at
Core Storage

Instruction Addresses

00500 00600
2800099 00500 4906 23

2900096 00600

I

Figure 3. Divide, Problem 1

8

Description

Load dividend

Subtract divisor

Overdraw

Add divisor back to correct overdraw.

Store first (high-order) digit of quotient (0)
and flag bit

Subtract divisor one place to the right

No overdraw

Subtract divisor

No overdraw

Subtract divisor

Overdraw

Add divisor back to correct overdraw

Store second digit of quotient (2)

Subtract divisor one place to the right

No overdraw

Subtract divisor

Overdraw

Add back divisor to correct overdraw

Store third digit of quotient (1)

Subtract divisor one p lace to the ri ght

No overdraw

Subtract divisor

Na overdraw

Subtract divisor

No overdraw

Subtract divisor

Overdraw

Add back divisor to correct overdraw

Store fourth digit of quotient (3)
Opera-and flag bit, if negative:..

tlon stops with quotient (0213) and
remainder (07) in product area.

N M
0- 0-
0 0
0 0
0 0

0 0

0 0

0 0

0 0

0 0

"'<t ll") -0 ~ ex> 0-
0- 0- 0- 0- 0- 0-
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0 0 4 9 0 6

- 2 3

II + 2 3

0 0 4

~
0 0 4 9 0 6
I-

- 2 3

T - 2 3

If - 2 3

~ + 2 3

0 0 3

-~
0 2 0 3 0 6

- 2 3

±L - 2 3

1l + 2 3

0 0 7

0 2
,..,
1 0 7 6

- 2 3

±L1 - 2 3

To
- 2 3

±L - 2 3

9 8 4

+ 2 3
1-~ ;--

0 0 7

0
.....,-

2 1 3 0 7
~

Instruction

LD 28 00097 00500

D 29 00095 00650

Description

Data

Reset 00080 - 00099 to zeros. Transmit dividend
to 00097. Dividend sign to 00099,

Subtract divisor from dividend starting at 00095.

Overdraw

Correction

Store first quotient digit (0) and flag bit

S'ubtract one place to the right

Overdraw

Correction

Store 2nd q!Jotient digit (0)

Subtract one place to the right

Successful subtraction

7 more successful subtractions (7 x 24 = 168)

Overdraw

Correction

Store quotient digit (8)

8 successful subtractions (8 x 24 = 192)

(Overdraw and correction not shown)

Store quotient digit (8)

3 successful subtractions (3 x 24 = 72)

Overdraw

Correction

Store quotient digit (3)

Store flag over high-order position of remainder. Sign of quotient over units position (00099 - length
of divisor).

Figure 4. Divide, Problem 2

o
0-

00650 00500 8
0

24 212

0

0

0

0

0

0

0

~ (Y) 10>0 000-o-o-o-go-o-o- go-
§8§88§8 88

0 0 0 0 "2 1 2 0 6

- 2 4
---T8
+ 2 4

0 0 2

~
0 0 0 0 0 2 1 2 0

~

- 2 4

9 9 7

+ 2 4

0 2 1

_
(5 0 0 0 0 2 1 2 0

~

- 2 4

T 8

-1 6 8

Xh - 2 4

9 9 6

+ 2 4

0 2 0

0
L-

0 0 0 0 8 2 0 0
~

- 1 9 2

0 0 8

0
.....

(5 0 0 0 8 8 0 8
~

- 7 2

I
-
8

4

'f
I-

4

+ 2 4
I-~ I-

0 0 8

0 0 0 0 8
~

8 3 0 8
0 0 0 0 8 8 3 0 8

Automatic Division 9

INCORRECT DIVISOR POSITIONING

The following error conditions are caused by an
incorrect P address in the Divide instruction:

Overflow. As illustrated in Figure 5, an incorrectly
positioned divisor can cause more than nine success­
fu1 subtractions and an incorrect quotient. The
divide operation is terminated, the Arithmetic Check
indicator and light are turned on, but processing
does not stop unless the Overflow Check switch is
set to STOP. Note the absence of a field-length flag
in position 00095 when division is terminated. The
flag is not placed automatically because the first
quotient digit, which normally causes the flag bit to
be generated and stored, is not achieved.

Instruction Description 00650

2 1

D 29 00097 00650 Successful subtraction No.1

" " No.2

" " No. 3

" " No.4

" " No.5

" " No. 6

" " No.7

" " No.8

" " No.9

" " No. 10

Figure 5. Divide Overflow

10

If, after a division overflow, the field remain­
ing in the product area is to be used for further
operations, the program must provide for a flag to
be set in the desired position.

Loss of One or More High-Order Digits of the Divi­
dend. The high-order digit of the dividend is
assumed by the 1620 to be one position to the left of
the high-order digit of the divisor. Figure 6 shows
how the high-order digits of the dividend are lost if
the divisor is positioned too far to the right. Proc­
essing continues with no indication of an incorrect
quotient.

Incorrect Termination. If the P address is less
than 10000, 10 e., between 00100 and 09999, the
divide operation will terminate when a subtraction

o ~ NM ""<:/"10 -or-... co 0..
0.. 0.. 0..0.. 0..0.. 0..0.. 0.. 0..
00 00 00 00 00
00 00 00 00 00
00 00 00 00 00

0 0 0 0 0 2 1 2 0 0

- 2 1

1 9 1

- 2 1

1 7 0

- 2 1

1 4 9

- 2 1

1 2 8

- 2 1

1 0 7

- 2 1

0 8 6

- 2 1

0 6 5

- 2 1

0 4 4

- 2 1

0 2 3

- 2 1

0 0 0 0 0 0 0 2 0 0

Instruction Description 00650

29 00098 00650 Divide (Incorrect P Address) 19

Figure 6. Division Error, Incorrect Programming

occurs at OXX99. This, in effect, restricts the
size of the dividend to 10,020 digits, if only 20,000
positions of core storage are installed.

SUMMARY OF AUTOMATIC DIVISION RULES

1. Load Dividend (LD-28 or LDM-18)
a. P address = 00099 minus the number

of zeros desired to the right of the
units position of the dividend.

b. Q address = core storage address of
the dividend.

2. Divide (D-29 or DM-19)
a. P address = 00100 minus the length of

l{) -0 "- 00 0-.
0-. 0-. 0-. 0-. 0-.
0 0 8 §§ 0 0
0 0 0

2 0 2 3 0

-1 9

0 0 4

- 1 9

9 8 5

+ 1 9

0 0 4

-~
2 1 0 4 0

"'-"

- 1 9

0 2 1

-1 9

0 0 2

- 1 9

9 8 3

.... 1 9

0 0 2

"2
- -
1 2 0 2

!--I

the quotiento The quotient length is
100 minus the P addresso

b. Q address = core storage address of
the divisor.

3. Quotient address = 00099 minus the length
of the divisor.

4. Quotient length = 100 minus P address
5. Remainder address = 00099 0

60 Sign of quotient: determined by the alge­
braic signs of the dividend and divisor.

7. Sign of remainder: same as that of the
dividendo

8. Decimal point location: the number of
dividend decimal digits minus the number
of divisor decimal digits equals the number
of quotient decimal digits.

Automatic Division 11

AUTOMATIC FLOATING-POINT OPERATIONS

This special feature provides the 1620 with the
ability to do floating-point arithmetic, using
floating-point instructions instead of program sub­
routines.

The use of automatic floating-point operations
can result in a 50 to 100 per cent increase in the
computing power of the 1620 CPU, depending on the
amount of floating-point computations required.
Also, up to 15 per cent of the basic 1620 core-storage
capacity can be saved through the elimination of
subroutines and call sequence instructions associ­
ated with Floating Add, Floating Subtract, Floating
Multiply, and Floating Divide.

The Automatic Division special feature is a
prerequisite to the installation of Automatic Floating­
Point Operations.

Floating-Point Arithmetic

Scientific and engineering computations frequently
involve lengthy and complex calculations in which it
is necessary to manipulate numbers that may vary
widely in magnitude. To obtain a meaningful
answer, problems of this type usually require that
as many significant digits as possible be retained
during calculation and that the decimal point always
be properly located. When applying such problems
to a computer; several factors must be taken into
consideration, the most important of which is deci­
mal point location.

Generally speaking, a computer does not
recognize the decimal point present in any quantity
used during the calculation. Thus, a product of
414154 will result regardless of whether the factors
are 9.37 x 44.2, 93.7 x .442, or 937 x 4.42, etco
It is the programmer's responsibility to be cognizant
of the decimal point location during and after the cal­
culation and to arrange the program accordingly.
In a floating add operation, for example, the deci­
mal point of all numbers must be lined up to obtain
the correct sum. To facilitate this arrangement,
the progra mmer must shift the quantities as they
are added. In the manipulation of numbers that
vary greatly in magnitude, the resulting quantity
could conceivably exceed allowable working limits.

The proceSSing of numbers expressed in ordi­
nary form, e.g., 427.93456, 0.0009762, 5382,
-623.147, 3.1415927, etc., can be accomplished on
a computer only by extensive analysis to determine

12

the size and range of intermediate and final results.
This analysiS and subsequent number scaling fre­
quently takes longer than does the actual calculation.
Furthermore, number scaling requires complete
and accurate information as to the boundaries of all
numbers that come into the computation (input,
intermediate, output). Since it is not always pos­
sible to predict the size of all numbers in a given
calculation, analysis and number scaling are some­
times impractical.

To alleviate this programming problem, a
system must be employed in which information
regarding the magnitude of all numbers accompanies
the quantities in the calculation. Thus, if all num­
bers are represented in some standard, predeter­
mined format which instructs the computer in an
orderly and simple fashion as to the location of the
decimal point, and if this representation is accept­
able to the routine doing the calculation, then
quantities which range from minute fractions having
many decimal places to large whole numbers having
many integer places can be handled. The arithmetic
system most commonly used, in which all numbers
are expressed in a format having the above feature,
is called ''floating-point arithmetic."

The notation used in floating-point arithmetic
is basically an aiaptation of the scientific notation
widely used today. In scientific work, very large
or very small numbers are expressed as a number,
between one and ten, times a power of ten. Thus
427.93456 is written as 40 2793456 x 102 and
0.0009762 as 9.762 x 10-4• In the 1620 floating­
point arithmetic system, the range of numbers is
modified to extend between • land .99999999, that
is, the decimal point of all numbers is placed to
the left of the high -order (leftmost) nonzero digito
Hence, all quantities may be thought of as a decimal
fraction times a power of ten (e. g., 427.93456 as
.42793456 x 103 and 0.0009762 as .97620000 x 10-3)
where the fraction is called the mantissa, and the
power of ten, used to indicate the number of places
the decimal point was shifted, the exponent. In
addition to the advantages inherent in scientific
notation, the use of floating-point numbers during
processing eliminates the necessity of analyzing
the operations to determine the positioning of the
decimal point in intermediate and final results,
since the decimal point is always immediately to
the left of the high-order nonzero digit in the man­
tissa.

1620 Automatic Floating-Point Operations

In 1620 Automatic Floating-Point Operations, a
floating-point number is a field consisting of a
variable length mantissa and a 2-digit exponent.
The exponent is in the two low-order positions of
the field, and the mantissa is in the remaining high­
order positions, as shown:

M MEE

The mantissa must have a minimum of two
digits and can have a maximum of 100 digits. How­
ever, when two fields are operands (quantities being
added, subtracted, multipled, divided), they must
have mantissas of the same length. The extremity
of the field is marked by a flag over the high-order
digit.

The exponent is established on the premise
that the mantissa is less than 1 0 0 and equal to or
greater than O. 1. The exponent is always two digits
and has a range of -99 to +99. The length of the
exponent field is defined by a flag over the high -order
(tens) digit

The mantissa and the exponent each have an
algebraic sign represented by the presence (negative)
or absence (positive) of a flag over the units position.
A floating-point number with a negative mantissa
and a negative exponent is represented as follows:

M •..• MEE

Sign control of the results of all computations is
maintained according to the standard rules of arith­
metic operations.

Eight floating-point instructions are provided:
four are for arithmetic computations -- Floating Add,
Floating Subtract, Floating Multiply, and Floating
Divide; three are used to control field size and
location -- Floating Shift Right, Floating Shift Left,
and Transmit Floating. The eighth instruction
provides for Branch and Transmit in floating-point
operations. All instructions are in the 1620 format
of a 2-digit Op code, 5-digit P address, and 5-digit
Q address.

As an aid to the programmer or operator in
checking program logic and computation results,
the operation of the computer in aligning decimal
points, normalizing results, etc., is described
with each instruction. These operations are auto­
matic and need not be programmed. Of particular
note is Floating Divide, which requires only one
instruction; the dividend is positioned, division is
accomplished, and the quotient is transmitted to the
P field without further command.

In descriptions of instructions and operations,
the following symbols are used for clarity and brev­
ity:

Mp = mantissa of the field at the P address (P)
Mq = mantissa of the field at the Q address (Q)
Ep = exponent of the field at the P address
Eq = exponent of the field at the Q address
L number of digits in the mantissa
d = Ep - Eq

In all floating-point numbers, the decimal
point is assumed to be at the left of the high-order
digit, which must not be zero. Such a number is
referred to as "normalized." When a number has
one or more high-order zeros, it is considered to
be ''unnormalized.'' An unnormalized number result­
ing from a floating-point computation is normalized
automatically, but unnormalized terms are not
recognized as such when entered as data. They will
be processed, but correct results cannot be assured.
Therefore, it is necessary that all data be entered
in normalized form. For example, the number
0682349405 should be entered as 6823494004, assum­
ing the fixed-point number is 6823.494, and an
8-digit mantissa is required.

With the exception of Floating Shift Right and
Floating Shift Left, the P address and Q address of
floating point fields are the addresses of the low­
order positions of the exponents.

FLOATING ADD (F ADD-01)

Description. Mq is added to Mp and the result re­
places Mp. Mq and Eq are not altered in core
storage. Dependent on L and the value of d, the
appropriate field is shifted to align decimal points
before addition is performed. If d = 0, no shift is
made (Figure 7).

If d is greater than zero and less than L, in
effect, Mq is shifted d positions to the right before
being added to Mp. The number of low-order digits
of Mq equal to d are truncated as the shift is made
(Figure 8). If d is less than zero, and the absolute

Core Storage Locations Core Storage Locations
01590--- 01599 Instruction

01590-__ 01599

Before After

tv'fJ I Ep I Wq I Eq OP I P 1 Q tv'fJ j Ep 1 Wq J Eq

1 2 310 417 8 910 4 o 110 1 5 9 410 1 5 9 9 9 1 210 417 8 910 4

Figure 7. Addition Without Mp or Mq Shift

Automatic Floating-Point Operations 13

Core Storage Locations Core Storage Locations
01590 __ 01599

Instruction 01590-01599

Before After

Iv'p I Ep I Mq I Eq OP I P I Q Iv'p I Ep I Mq I Eq

12 SIO 217 8 910 1 o 110 1 5 9 410 1 5 9 9 2 0 110 217 8 910 1

Figure 8. Mq Shifted Right to Align Decimal Points

value of d, is less than L, Mp is shifted I d I posi­
tions to the right before Mq is added to Mp. The
number of low-order digits of Mp equal to I d I are
truncated as the shift is made. Eq replaces Ep
(Figure 9). If d is plus and equal to or larger than
L, Mp is above the range of Mq and no addition is
performed (Figure 10). If d is less than zero and
I d I is equal to or greater than L, Mq is above the
range of Mp, and no addition is performed. Mq
replaces Mp, and Eq replaces Ep (Figure 11).

Core Storage Locations Core Storage Locations
01590_ 01599 Instruction 01590---01599

Before After

Iv'p I Ep I Mq I Eq OP I P I Q Iv'p I Ep I Mq I Eq

1 2 SIO 117 8 910 2 o 110 1 5 9 410 1 5 9 9 8 0 110 217 8 910 2

Figure 9. Mp Shifted Right to Align Decimal Points

Core Storage Locations Core Storage Locations
01590_ 01599 Instruction 01590_01599

Before After
Iv'p I Ep I Mq I Eq OP I P 1 Q Iv'p I Ep I Mq I Eq

i 2 310 517 8 91 Q 2 o 11 0 1 5 9 410 1· 5 9 9 12 310 5178 910 2

Figure 10. Mp Above Range of Mq

Core Storage Locations Core Storage Locations
01590_01599 Instruction 01590 ___ 01599

Before After

Np I Ep I Mq I Eq OP I P 1 Q Np I Ep I Mq I Eq

i 2 310 117 8 910 3 o 110 1 5 9 410 1 5 9 9 "7 8 910 317 8 910 3

Figure 11. Mq Above Range of Mp

After addition has been completed, the number
of Mp digits is checked to determine if it exceeds L.
If so, this is an overflow condition; the low-order
digit of Mp is truncated, and the mantissa is
shifted one position to the right. A one is entered
in the high-order position of the mantissa, and a
one is added to Ep (Figure 12). When an overflow

14

Core Storage Locations Core Storage Locations
01590- 01599 Instruction 01590---01599

Before After

Np I Ep I Mq I Eq OP I P I Q Iv'p I Ep I Mq I Eq

9 8.710 4J4 5 610 4 o 110 1 5 9 410 1 5 9 9 i 4 4 P> 514 5 610 4

Figure 12. Mantissa Overflow, Number Normalized

does not exist, Mp is scanned for zeros beginning
with the high-order position. High-order zeros are
counted (z), and Mp is shifted z positions to the left;
vacated positions are set to zeros. Flag bits in Mp
are not altered or moved. Eq - z replaces Ep (Fig­
ure 13).

Core Storage Locations Core Storage Locations
01590-01599 Instruction 01590---01599

Before After

Iv'p I Ep I Mq I Eq OP I P I Q Iv'p I Ep I Mq I Eq

1 2 310 111 1 910 1 o 110 1 5 9 410 1 5 9 9 4 0 0 I <> 111 1 91 0 1

Figure 13. High-Order Zeros, Number Normalized

Execution Time. T (average) = 400 + 100 L. If the
result is recomplemented, add 80L.

FLOATING SUBTRACT (FSUB-02)

Description. The floating subtract operation is the
same as the floating add operation except that Sign
control procedures for Mq are reversed.

Execution Time. Same as Floating Add (F ADD-Ol).

FLOATING MULTIPLY (FMDL-03)

Description. Mp is multiplied by Mq, and the result
replaces Mp. Ep is added to Eq, and the sum replaces
Ep. Mp and Ep are normalized, as required, after
multiplication. Mq and Eq are not altered in core
storage. The product is formed in the product area,
beginning at 00099 and extending through lower­
numbered core storage positions to 00100 - 2L.
The product area, 00080-00099, is cleared auto­
matically prior to multiplication. If L is greater
than 10, the program must provide for clearing
positions 00100 - 2L through 00079. After multi­
plication, the digit at position 00100 - 2L is tested
for zero. If the digit is other than a zero, the field
at 00099 - L replaces Mp (Figure 14). If the digit

Core Storage Loco; ions Core Storage Locations
01590_ 01599 Instruction 01590---01599

Before After

~ I Ep I Mq I Eq op I p I Q ~'I Ep I Mq I Eq

7 8 910 3\4 5 6\ 0 1 o 3\0 1 5 9 410 1 5 9 9 3 5 9\0 2\4 5 6\0 1

Figure 14. Product Equal to 2L

tested is a zero, the field at 00100 - L replaces Mp
and Ep + Eq - 1 replaces Ep (Figure 15).

Execution Time. T (average) = 1120 + 80L + 168L2.

Core Storage Locations Core Storage Locations
01590_01599 Instruction 01590-01599

Before After

~ I Ep I Mq I Eq op I p I Q ~ I Ep I Mq I Eq

1 2 3\0 214 5 610 4 o 3\0 1 5 9 410 1 5 9 9 5 6 0\0 5\4 56\0 4

Figure 15. Product Less then 2L

FLOATING DIVIDE (FDIV-09)

Description. Mp is divided by Mq, and the quotient
replaces Mp. Eq is deducted from Ep, and the re­
sult replaces Ep. Mp and Ep are normalized, as
required, after division, Mq and Eq are not altered
in core storage. The quotient and remainder are
developed in the product area, beginning at 00099 and
extending through lower-numbered core storage posi­
tions to 00100 - 2L. The product area, 00080-00099,
is cleared automatically prior to division. If L is
greater than 10, the program must provide for
clearing positions 00100 - 2L through 00079. Prior
to division, the absolute values of Mp and Mq are
compared. If Mp is equal to or greater than Mq,
Mp is transmitted to 00100 - L, and division is per­
formed, starting at 00100 - L, according to the pro­
cedure for automatic division. The quotient at 00099
- L replaces Mp, and Ep - Eq + 1 replaces Ep
(Figure 16). If Mp is less than Mq, Mp is trans­
mitted to 00099 - L; division starts in 00100 -L, and
proceeds according to the procedure for automatic
division. The quotient at 00099 - L replaces Mp,
and Ep - Eq replaces Ep (Figure 17).

Core Storage Locations Core Storage Locations
01590_ 01599 Instruction 01590_01599

Before After

~ I Ep I Mq I Eq opT p 1 Q """IEpl Mq I Eq

7891'041123101 o 910 1 5 9 4\0 1 5 9 9 "6 4 110 411 2 310 1

Figure 16. Divisor Equal to or Less than Dividend

Core Storage Locations Core Storage Lacat ions
01590_ 01599 Instruction 01590_01599

Before After

"""
I Ep I Mq \ Eq op \ p I Q """ .\ Ep \ Mq T Eq

1 2 31"0 1\7 8 9\0 4 o 9\0 1 5 9 4\0 1 5 9 9 i 5 5\0 3\7 8 9\0 4

Figure 17. Divisor Greater than Dividend

Division by zero causes the Arithmetic Check
indicator (14) to be turned on. Mp is not altered,
but Ep is replaced by Ep - Eq.

Execution Time. T == 880 + 940L + 520L2. The
formula is based on an average quotient digit of
4.5.

FLOATING SmFT RIGHT (FSR-08)

Description. The field at the Q address (the portion
of the mantissa to be retained) is shifted right to the
location specified by the P address. The exponent is
not moved or altered. The effect of this instruction
is to shrink the mantissa by shifting it to the right
and truncating the low-order digits. The P address
is normally the units position of the mantissa; the
digit at the Q address becomes the new low-order
digit of the mantissa. Vacated high-order positions
are set to zeros. An existing flag bit at the P address
is retained for algebraic sign; the field flag bit is
transmitted with the high-order digit of the Q field
and terminates the operation (Figure 18).

Execution Time. T = 200 +40L.

Core Storage Locations Core Storage Locations
01590_01599 Instruction 01590--01599

Before After

tv'f> I Ep I Mq \ Eq op I p I Q tv'f> T Ep T Mq 1 Eq

0, 1 210 217 8 910 5 o 810 1 5 9 710 1 5 9 6 o 1 2\0 210 7 8fO 5

Figure 18. Floating Shift Right

FLOATING SHIFT LEFT (FSL-05)

DeSCription. The field at the Q address, which is
the low-order position of the mantissa, is shifted
left so that the high-order digit is moved to the loca­
tion specified by the P address. The exponent is not
moved or altered. The effect of this instruction is to
expand the mantissa by shifting it to the left and filling
the vacated positions with zeros. It is important to
note that the Q address is the low-order position of
the field moved, and the P address is the high-order

Automatic Floating-Point Operations 15

position of the resulting field. An existing flag bit
at the Q address is retained for algebraic sign; the
field flag bit is transmitted with the high-order
digit of the Q field (Figure 19).

Core Storage Locations
01590- 01599 Instruction

Core Storage Locations
01590_01599

Before After

t.'p I Ep I Mq I Eq OP I P I Q t.'p I Ep I Mq I Eq

12 310 210 7 alo 5 0 510 159 510 159 7 1 2 3\0 21' 80TO 5

Figure 19.. Floating Shift Left

If the mantissa is expanded to a length greater
than 2L, any extraneous flag bits in core storage
positions between the old high-order position and the
new low-order pOSition of the mantissa must be
cleared before the FSL instruction is given. There­
fore, if Q - P is equal to or greater than 2L, loca­
tions P + L through Q - L must be free of flags.

Contrary to other instructions in the floating­
point series, FSL is executed in the transmit record
manner of transmitting individual digits in the high­
order to low-order sequence. After the units digit
has been transmitted, the positions of the expanded
mantissa are set to zero, in ascending core storage
location sequence. After each position is set to zero,
the succeeding position is checked for a flag bit. If
the fraction is positive, the flag bit is assumed to be
the high -order pOSition of the exponent and the oper­
ation stops without altering the flag bit pOSition. If
the fraction is negative, the flag bit is assumed to be
the units position of the fraction, and a negative zero
is inserted in the units position before the operation
stops. Thus, a flag bit detected prior to the previous
high-order position of the mantissa stops the opera­
tion and results in an incorrect mantissa.

For example, if P = 01590, Q = 01601, and
L = 4, core storage locations 01590 through 01603,
with an extraneous flag bit in 01596, appear as
follows:

xxxxxxXxMMMMEE

After transfer of the mantissa, but before the zero­
fill operation, the core storage locations appear as
follows (note that the flag bit in 01598 has been
cleared):

MMMMXXXxMMMMEE

16

Upon completion of the operation, the mantissa is
incorrect, as follows:

MMMMOOXxMMMMEE

If 01596 had not contained a flag bit, the mantissa
would have been expanded correctly, as follows:

MMMMOOOOOOOOEE

Execution Time. T = 200 + 40L + 40L'. (L' =
length mantissa is increased by shift 0)

TRANSMIT FLOATING (TFL-06)

DeSCription. The field at the Q address is trans­
mitted to the location designated by the P address.
Mq and Eq are not altered in core storage 0 The Q
address is normally the low-order position of the
exponent, and the operation is the same as the reg­
ular Transmit Field instruction (TF-26), except
that flag bits in the three low-order pOSitions are
ignored as indications to terminate the transmittal.
Beginning with the fourth low-order digit, a flag bit
terminates the operation. All flag bits in the field
are transmitted (Figure 20).

Execution Time. T = 240 + 40L.

Core Storage Locations
01590- 01599 Instruction

Core Storage Locations
01590 ___ 01599

Before After

t.'p I Ep T Mq I Eq OP I p T Q t.'p T Ep T Mq I Eq

1 2 3 1'0 217 8 91 0 5 0 61 0 1 5 9 4\ 0 1 5 9 9 -., 8 91"0 5\' 8 910 5

Figure 20. Transmit Floating

BRANCH AND TRANSMIT FLOATING (BTFL-07)

Description. The address of the next instruction is
saved in ffi-2, and the field at the Q address is trans­
mitted to the P address minus one. The instruction
at the P address is the next one executed. Mq and Eq
are not altered in core storage. The Q address is
normally the low-order position of the exponent. The
operation is the same as the regular Branch and Trans­
mit instruction (BT-27), except that in the transmit
function the three low-order pOSition flags are ignored

as indications to terminate the transmittal. Beginning
with the fourth low-order position, a flag bit termin­
ates the operation. All flag bits are transmitted.

Execution Time: T = 280 + 40L.

MANTISSA AND EXPONENT ANALYSIS

Zero Mantissa

When a floating-point computation results in a zero
mantissa, a special floating-point zero is created in
the form 00 099, which is the smallest positive
quantity that can be represented (Figure 21) . A zero

COrti Storage loco' ions Core Storage locat ions
01590--01599 Inst ruct ion

01590 __ 01599

Befor. Aft.r

~ IEp lMqIEq OP I p I a ~IEpIMqI Eq

;; 8 910 517 8 910 5 o 210 1 5 9 410 1 5 9 9 o 0 019 ii 17 8 910 5

Figure 21. Zero Mantissa

.- (' ... 1(
c..WIf(H(!t

<N' • • • • • . • ... _~CM<

I OC,H1C p, (". ON
'K • • • • • ~ _.0"'" Wl CHit AA,rH CMII • • , ,

• n"" ON

Off

Figure 22. Indicators and Switches on 1620 Console

mantissa causes the Equal/Zero indicator (12) to be
turned on. Zeros entered as data should be in
floating-point zero form. Zero quantities in other
forms, e . g., 00 • . . • 000 will be processed, but re­
sults cannot be assured.

Indicators

The four indicators associated with automatic floating­
point operations are represented by lights on the 1620
console. The light for each indicator is turned on
when the corresponding indicator is turned on. The
High/Positive and Equal/Zero lights are located in
the Control Gates section of the console, and the
Arithmetic Check and Exponent Check lights and
Overflow switch are in the Indicator Displays and
Switches section (Figure 22) .

High/Positive (11). The High/Positive indicator and
light are turned on when the mantissa resulting from
a floating-point computation is greater than zero.

Equal/Zero (12). The Equal/Zero indicator and light
are turned on to indicate a zero mantissa resulting
from a floating-point computation.

Automatic Floating -Point Operations 17

Arithmetic Check (14). During floating-point oper­
ations, the Arithmetic Check indicator is turned on
when division is attempted by zero. Division by an
unnormalized number may result in an incorrect quo­
tient through incorrect positioning of the divisor 0

Exponent Check (15). The Exponent Check indicator
is turned on by exponent overflow or underflow.

Exponent. OVerflow

When an exponent greater than +99 is generated, the
mantissa is set to nines. The sign is determined by
the computed result that caused the overflow. The
exponent is set to +99. This is the largest floating­
point number (99 •••• 999) that can be represented. If
the generated mantissa is positive, the Hlp indicator
(11) is also turned on.

Exponent Underflow

When an exponent less than -99 is generated, the man­
tissa is set to plus zeros, and the exponent is set to
-99. This is the smallest floating-point number

18

(00 •••• 099) that can be represented. The E/z indi­
cator is also turned on.

An exponent underflow is not indicated when one
or both operands are zero. -

When the Exponent Check indicator (15) is turned
on, program operation is controlled by the console
Overflow Check switch, which is also connected to the
Arithmetic Check indicator (14). The Exponent
Check indicator (15) is turned off by programmed
interrogation or by depression of the 1620 Reset key.

MARS Display Selector (1620 Console)

Operand Register 4. OR-4 is used to store and con­
trol the address of Eq.

Operand Register 5. OR-5 is used to store and con­
trol the addres s of Ep.

Counter Register 1. CR-l is used to store the alge­
braic difference between Ep and Eq for determina­
tion of decimal alignment. It is also used to count
high-order zeros when normalizing -- the contents
of CR-l are subtracted from Ep.

Indirect Addressing saves program steps and com­
puter time by providing a direct method of address
modificationo Its primary use is in programs where
multiple instructions have the same address, and
this address is to be modified by the program.
Indirect Addressing may also be used for linking
subroutines 0

Description

Normally, the P or Q address of an instruction is the
location of the data used during execution of the in­
struction. An indirect address, however, is the ad­
dress of a second address instead of the address of
data. This "second address" is the core storage ad­
dress of the data to be used, that is, if the second
address is not another indirect address. In effect,
the address at the indirect address location is a sub­
stitute for the address of the instruction.

The data field specified by the indirect address
is always five digits in length. The upper digit of

INDmECT ADDRESSING

the address does not require a flag bit to define the
field. Moreover, its length is always five digits,
even though flag bits exist within the field.

The P or Q address of an instruction is indirect
when a flag bit is over the units position. Figure 23
shows that (1) the instruction (21 00500 00650) has an
indirect P address of 00500, (2) the data at 00500 is
00780, which is used as the P address during execu­
tion of the instruction, and (3) the instruction
(21 00500 00650) is not altered in core storage; only
the instruction register of the 1620 is changedo

The data at the location specified by the indirect
address is also an indirect address if a flag bit exists
in the units position. This chaining effect continues
until a flag bit does not exist in the units position of
the address. The address is then treated as a direct
address.

Any P or Q address of an instruction that speci­
fies the location of data can be an indirect address 0

Table 1 shows the instructions that can be used in
indirect addressing. When the P address of an im­
mediate instruction is an indirect address, the Q

CORE STORAGE

.(1) Instruction with Indirect P Address

(2) The data (00780) at the indirect
address is substituted as the new P
address in the instruction.

(3) The resultant instruction is executed
normally with the New P Address.

Figure 23. Indirect Addressing Data Flow

OP

Indirect Addressing 19

Table 1. Allowable Indirect Addressing

Instructions

Arithmetic
Add
Add (1)
Subtract
Subtract (1)
Multiply
Multiply (I)
load Dividend*
load Dividend (1)*
Divide*
Divide (1)*
Floating Add*
Floating Subtract*
Floating Multiply*
Floating Divide*

Compare
Compare
Compare (I)

Branch
Branch
Branch No Flag
Branch No Record Mark
Branch No Group Mark *
Branch on Digit
Branch Indicator
Branch No Indicator
Branch and Transmit
Branch and Transmit (I)
Branch Back
Branch and Transmit

Floating*

* Special Feature
(I) Immediate

Mnemonic

A
AM
S
SM
M
MM
lD
lDM
D
DM
FADD
FSUB
FMUl
FDIV

C
CM

B
BNF
BNR
BNG
BD
BI
BNI
BT
BTM
BB
BTFL

Code P&Q P

21 X
11 X
22 X
12 X
23 X
13 X
28 X
18 X
29 X
19 X
01 X
02 X
03 X
09 X

24 X
14 X

49 X
44 X
45 X
55 X
43 X
46 X
47 X
27 X
17 X
42
07 X

data cannot be more than six digits in length because
the flag bit over the units position of the P address
also defines the end of the immediate data.

Execution Time. Each address interpreted as an in­
direct address requires four additional 20-micro­
second memory cycles. For example, an instruction
with two indirect addresses requires an additional
160 microseconds.

Examples

The add instruction, 21 00500 00650, is shown in
Figure 24 with both direct and indirect Q addresses.
Line 1 shows direct addressing; the Q data is obtained

20

Instructions Mnemonic Code P&Q P

I nternal Data
T ransmi ssion

Transmit Digit TD 25 X
Transmit Digit (I) TDM 15 X
Transmit Field TF 26 X
Transmit Field (I) TFM 16 X
Transmit Record TR 31 X
Transfer Numerical Strip* TNS 72 X
Transfer Numerical Fill* TNF 73 X
Floating Shift Right* FSR 08 X
Floating Shift left* FSl 05 X
Transmit Floating* TFl 06 X

Input/Output
Read Numerically RN 36 X
Write Numerically WN 38 X
Dump Numerically DN 35 X
Read Alphamerically RA 37 X
Write Alphamerically WA 39 X
Seek* K 34

Program
Control

Control K 34
Set Flag SF 32 X
Clear Flag CF 33 X
Move Flag* MF 71 X
I-:Ialt H 48
No Operation NOP 41

from the Q address. Line 2 shows the Q address as
indirect; the Q data is obtained from the address
speCified by the indirect address. Line 3 shows that
the address specified by the indirect address is also
indirect; the Q data is obtained from the address
specified by the second indirect address.

The data flow diagram for an Add Immediate In­
struction, 11 00500 00650, is shown in Figure 25.
The Q data 000650, is added to the data at the ad­
dress specified by the indirect P address. The
result, 1155078, replaces the original P data,
1154428, at 09400.

A data flow diagram for a Branch instruction is
shown in Figure 26. The first five digits at that in­
direct- address are the address to which the computer
branches for its next instruction.

Instructions
Data at Storage Locations

00650 1 5225 12500

CD21 00500 00650 1 5225

@21 00500 00650 1 5225 12500

@21 00500 00650 15225 1 2500 12345

Figure 24. Examples of Indirect Addressing

OP
Code

Err;
p T Q~ 500: 00650

~
l I . I

I I 1# &
(::5

1094001

Resultant Modified Actual Q Actual Q

Instruction Address Data
Used Used

00650 15225

2 1 00500 15225 1 5225 12500

-
(a}21 00500 15225

(b}21 00500 12500 1 2500 12345

CORE STORAGE

~/

Ar!
III 54428

L-..---J

00065
1 15442
1 15507

0

(6 Digits t-Aaximum)
L

Add t-
~ Table

8
8

Figure 25. Indirect Addressing, Add Immediate Instruction

1 49 1005001000001

~

The OP code for the
new instruction is
contained in core
storage locations
16000 and 16001.

Figure 26. Indirect Addressing, Branch Instruction

CORE STORAGE

~--------~vr-------------~

To I nstruct ion
Registers

Indirect Addressing 21

ADDITIONAL. INSTRUCTIONS

MOVE FLAG (MF-71)

Description. This instruction moves a sign or a field
definition flag from the core storage location specified
by the Q address to the location specified by the P ad­
dress. For example, the MF instruction moves the
sign from the units position of a product to the new
units position of the half-adjusted result, or moves a
field definition flag to lengthen or shorten a field.

If the location specified by the Q address is
without a flag, the flag at the P address is cleared.
If it has a flag, that flag position is cleared and a
flag is placed at the P addresso Thus, after the
instruction is executed, the location specified by the
P address reflects the original absence or presence
of a flag at the Q address, and the flag pOSition at
the Q address is clear.

Figure 27 illustrates the movement of a positive
sign which, in effect, removes a flag; Figure 28,
the movement of a negative sign; Figure 29, the
lengthening of a field. All three illustrate the sim­
plified programming required.

Programming is also simplified in the case where
only one position of the product is dropped after half­
adjustment and the product is either negative or posi­
tive. Without a Move Flag instruction, it is necessary
to test for the presence of the negative flag and re­
move it before proper half-adjustment can take place.
The simplified programming for such a situation,
using the Move Flag instruction, is shown in Figure
30. The first Move Flag instruction saves the sign

Instruction:

P Field

:~:~e before t I 2 3 4 ~

Core Storage Addresses:

Storage after
WPve:

Flag over the "3" is cleared because
there is no flag over the "6".

Figure 27. Move Flag, Positive Sign

22

~4 5 6 7~

I nstruct ion:

Product before
Half-Adjust:

Product after
Half-Adjust:

Core Storage Addresses:

o

6

349 7

o 5

3547

o 0
o 0
o 0
9 9

Product after
MF Instruction:

~
6 3~~

Desired Result:
'---y---J

6 I 3 5

Flag is moved within scme field. Note that no flag
remains over the "7" after execution of the MF instruction.

Figure 28. Move Flag, Negative Sign

by placing it over its own 0 0 , or high -order pOSition.
The second Move Flag instruction returns the sign to
the new units pOSition of the half-adjusted result. The
flag bit can be stored in any position in which it can­
not be mistaken for a field definition flag, a sign flag,
or an indirect-address flag.

Execution Time. T = 240.

Instruction:

Four Digit Field ~ 8 546 2 3~ before Move:
I I I
2 2 2

Core Storage Addresses: 9 9 9
6 6 6

~
9

Six Digit Field
2 3~ after Move

'8 5 4' 6

Flag is moved within same field. Note that no flag
remains over the "4" after execution of MF instruction.

Figure 29. Move Flag, Lengthen Field

Multiply

I LOCATION I OPERATION
P Q

MNEM. NUM.

0 1 2 3 4 5 6 7 8 9 10 11

10240 aiM 12.3 /34 / I /4269 Product

~O 000349 61
0
0
0
9

__ - - - - - Flag Bit __ _

..... 9
......

Move Flag (Save) ",,"-
~ ______ ~ ______ ~~L ____ ~ ______ ~

.......
....... LOCATION

......
......

'"
~O 00(534 9~

Add Immediate (Half-Adjust)

I LOCATION
OPERArlON

p
MNEM. NUM.

0 1 2 3 4 5 6

AM / 00099

Q

7 8 9 10 11

00005

.........
........

"-

" "

o
o
o
9
9

102424 I' " , ", 16 3 5 0 ,

Flag is successively
moved to "7" (and
cleared from "6");
then from "7" to
"0" after half­
adjustment is
completed

Move Flag (Restore)

LOCATION
OPERATION

P Q
MNEM. NUM.

".4; 0 1 2 3 4 5 6 7 8 9 10 11

02436 MF 17 I 00098 024 / 2
~-

Figure 30. Move Flag to Half-Adjust One Position

TRANSFER NUMERICAL STRIP (TNS-72)

Description. This instruction converts numerical
data in the two-digit alphameric mode into single­
digit numerical data, with sign. The units numerical
position of the alphameric field is specified by the P
address of the instruction which must always be an
odd-numbered core storage location. The units posi­
tion of the numerical field is specified by the Q ad­
dress. Transmission of the numerical digits from
the odd-numbered positions proceeds from the posi­
tion addressed, through successively lower-numbered
core storage locations, until a flag bit is sensed in
other than the units position of the numerical field.
The flag bit must be placed in the numerical field prior
to the TNS instruction to define the high-order position.
It remains unchanged by the instruction. For example,
the numerical digits 4, 3, 2, and I in Figure 31 are
stripped from their alphameric codes 54, 73, 72 and
71, respectively. The flag bit previously stored at
17461 terminates the operation.

The zone digits in the even-numbered core
storage locations of the alphameric (P) field are
ignored except for a five, two, or one.in the units

,
\.

\.
\.

\.
\.

\.
\.

" ,

o
o
o
9
8

163~

zone position. A five, two, or one in the units zone
position is converted by TNS to a flag bit over the
units digit of the numberical (Q) field. Any number
other than a five, two, or one results in no flag
over the units digit. A five in a units zone position
of an alphameric ally coded number field indicates
a negative number read from an input card or

Instruction:

P Field Q Field
Storage before ~ 7

7 2 7 3 5 Transfer:)
~--------------~

Core Storage Addresses:

Storage after
Transfer:

Figure 31. Transfer Numerical Strip

Additional Instructions 23

paper tape. A two in a units zone position occurs
when an X alone, representing a negative zero, is
read from an input card or paper tape. A one occurs
when a negative zero (X, 0, C) is read from paper
tape.

The digit in each odd-numbered core storage
position of the alphameric field is transmitted with­
out change to the corresponding position of the num­
erical field, concluding with the digit transmitted
to the high-order position of the numerical field con­
taining the flag that defines the field. Except for the
field flag, all previous contents of the numerical field
are erased by the new contents. The erasure in­
cludes any sign flag contained in the units position to
designate a previous negative value. The alphameric
field remains unchanged.

Flag bits in the even-numbered zone positions of
the alphameric field are ignored. However, flag bits
present in the odd-numbered core storage locations
of the alphameric field are transmitted to the corre­
sponding positions of the numerical field.

Because such flag bits, when transmitted, may
affect the length or sign of the numerical field, all
flag bit positions of the alphameric field should be
cleared by instructions at the beginning of the pro­
gram. Such extraneous flag bits are the result of a
previous use of the core storage locations and the
fact that the Read Alphamerically instruction ignores
the flag bits in the read-in field. If flags are devel­
oped in the alphameric field during the program,
care should be taken before the TNS instruction that
the flags do not disturb the numerical field.

Execution Time. T = 160 + 40Dp o

TRANSFER NUMERICAL FILL (TNF-73)

Description. The TNF instruction moves and expands
si~gle-digit numerical data with sign, into two-digit
alphameriC data. The units numerical pOSition of the
alphameric field is specified by the P address of the

24

instruction and must always be an odd-numbered core
storage locationo The units position of the numerical
field is speCified by the Q address.

Transmission proceeds from the location ad­
dressed, through successively lower-numbered core
storage locations, until a flag bit is sensed in other
than the units position of the numerical (Q) field. The
digits in the numerical field, including the digit in the
high-order (flagged) position, are transmitted without
change to the corresponding odd-numbered pOSitions
of the alphameriC field. All of the previous contents
of the alphameric field, including flag bits, are
erased by the new contents. The numerical field re­
mains unchangedo

In Figure 32, the numerical digits 7,8,9" and 1
fill in the alphameric field locations 16251, 16253,
16255, and 16257, respectively. The field flag bit
that terminates the transfer remains in the Q field
and is neither transmitted nor converted.

A sign flag in the addressed units position of the
numerical field is converted to a five in the even­
numbered units zone position of the alphameric (p)
field. Absence of a flag in the units position of the
numerical field results in a seven being placed in the
even-numbered units zone pOSition. All other even­
numbered zone pOSitions of the alphameric field are
automatically filled with sevens o

Instruction:

P Field
Storage before ~7 1 727 3 7 Transfer:

Core Storage Addresses:

Storage after ~7 7 7 8 795 Transfer:

Figure 32. Transfer Numerical Fill

~q
I
6
2
5
7

11

Q Field

17 8 9 T}
I
7
3
9
4

Additional Instructions • • • •
Allowable Indirect Addressing, Table 1
Arithmetic Check Indicator. •
Automatic Division
Automatic Division Rules, Summary •
Automatic Floating-Point Operations

22
20

• 10, 18
6

11
12

Branch and Transmit Floating ••••••••••••••••• 16

Core Storage Unit.
Counter Register 1

Decimal Point Location

Divide •••••••
Divide Immediate

Equal/Zero Indicator
Exponent ••••••
Exponent Check Indicator. •
Exponent Overflow •
Exponent Underflow •

Floating Add • • • •
ll'loating Divide •••
Floating - Point Arithmetic.
Floating Shift Left •••••
Floating-Point Operations •
Floating Shift Right •
Floating Subtract • • • • • •

5
18

7
7

7

••• 7, 17
12
18
18

• 18

13
15

• 12
• 15

13
15
14

High/Positive Indicator • • •

Incorrect Divisor Positioning
Indirect Addressing

Load Dividend
Load Dividend Immediate •
Locating the Decimal Point

Mantissa •••••••••••••
Mantissa and Exponent Analysis •
Move Flag ••••••••••
Multiplier /Quotient Register

Operand Registers • • •
Overflow Check Switch
Overflow, Exponent

Summary of Automatic Division Rules

Table 1. Allowable Indirect Addressing
Transfer Numerical Fill •
Transfer Numerical Strip
Transmit Floating ••

INDEX

7, 17

10
19

6

7
7

12
17
22

7

18
10
18

11

20
24
23

16

Underflow, Exponent •• 18

Zero Mantissa • • • • •
1623 Core Storage Unit

17
S

2S

A26-S70S-0

InID~
®

International Business Machines Corporation

Data Processing Division

112 East Post Road, White Plains, New York

> ('\)
0'1
I
01

~
00

b

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26

