
Systems Reference Library

IBM 1620 BOTRAN Interpretive Programming System

This reference manual explains the GOTRAK system, a subset
of 1620 FORTRAK language. The text progresses step by step
from basic fundamentals to complete sample problems that
facilitate the writing of GOTRAN programs. Some familiarity
with the 1620 computer, mathematics, and data processing
is assumed.

© 1961 by International Business Machines Corporation

File 1'\0. 1620-25
Form C26-5594-1

This manual is simply a reprint of the GOTRAN S Reference Manual,
same title and same form number. Information from Technical

Newsletter N26-0004 (dated 12-28-61) is included.

Copies of this and other IBM publications can be obtained through IBM Branch Offices.

Comments concerning the contents of this publication may be addressed to:

IBM, Product Publications Department, San Jose, California.

ii

Page

IBM 1620 GOTRAN............................... 5

Communication with Computers.. 6
Machine Language 6
Symbolic Programming Systems 7
FORTRAN 7
IBM GOTRAN .. 7

The IBM 1620 Data Processing System 9

The GOTRAN Language.......................... 10
Mode of Arithmetic 10
Constants, Variables, and Subscripts 10

Arithmetic Statements 11
Fixed-Point Arithmetic Statements 11
Floating-Point Arithmetic Statements 12

Control Statements 14
Unconditional GO TO Statement 14
IF Statement
DO Statement
DO's within DO's
CONTINUE Statement . ~
PAUSE Statement
STOP Statement
END Statement

14
14
15
17
17
17
17

Contents

Page

Input/Output Statements " 18

READ Statement 18
PUNCH Statement " 19
PRINT Statement 19
PLOT Statement 20

Specification Statement " 22
DIMENSION Statement ,.................... 22

Summary of GOTRAN Statements 23

An Example Problem " 24

GOT RAN Operating Procedures " .. '" 26

Phase I: Loading the GOTRAN
Compiler/Interpreter Program 26

Phase II: Loading and Compiling
the Source Program ; 27

Phase III: Program Execution 28
Restart Procedures 29
Core Storage Arrangement 29

Test Problems " 30

IBM 1620D ata Processing System

Electronic computers are already being widely used in
the fields of science and engineering and their use is
growing rapidly. Because the application of these ma­
chines to problems requiring precise and accurate
calculations in large volume relieves the engineer of a
tremendous burden of paper work, the digital computer
has become firmly established as one of his important
tools.

There exist, however, many problems for whose
solution the computer is not being utilized. In these
instances, it is usually because the problem is not con­
sidered sufficiently complex or voluminous to warrant
the application of a computer, or because the engineer
is not thoroughly familiar with computing techniques
and is reluctant to program his problem for the machine.
In short, the engineer finds communication with the
computer a barrier.

IBM has developed a programming system for the IBM

IBM 1620 GOTRAN

1620 Data Processing System, that enables the engineer
to surmount the communication barrier between man
and computer with a minimum of effort. This system,
which is known as the 1620 GOTRAN, uses a language
that is a subset of the 1620 FORTRAN language. It exe­
cutes programs directly, that is, without the need to
convert GOTRAN statements into machine language in­
structions first. For this reason, the user is relieved of
any consideration of the actual characteristics of the
computer and thus is permitted to concentrate on the
problem itself.

This manual gives the specifications of the GOTRAN

system, to allow those who have had little computer
background to learn the language and to use the system
profitably. A section containing a general description of
programming and a brief description of the 1620 is
included.

IBM 1620 GOTRAN 5

Communication with Computers

Computers, despite their well-deserved reputation for
speed and power of calculation, cannot think nor solve
any and all problems by themselves. To solve a partic­
ular problem, the computer must be supplied with a
step-by-step plan of operation. This plan is called a
program.

Machine Language
All computers can perform to some degree such opera­
tions as add, multiply, compare, etc. Many of the
operations it performs are quite elementary; however,
it is the combination of a large number of elementary
operations arranged in logical sequence that makes it
possible for the computer to carry out meaningful proc­
essing tasks. This sequence of operations constitutes the
program.

Each operation defines a precise function that the
machine is to perform; therefore, the procedure must
be detailed to a degree not required by manual
methods. For example, in assigning a problem to some­
one, one might instruct him to "solve this equation."
To accomplish this with a computer, it is necessary to
define each single step that it must perform to solve
the equation and then write the program accordingly.

After the computer is loaded with the necessary pro-

/
LINE LABEL OPERATION OPERANDS & REMARKS (

3 5 6 II 12 15 16 20 25 30 35

o I 0 DO RG 10000.

.0,2 0 START. .T,FM .. + 3 o. ,T,A,B,L £- 8

10,3,0 A,M, ~H I 8 B I.

o 4 0 CMPA~E eM - 23 I 0 LLL ... L . ..L

lO.5 0 TF WRITE-#-6 CMPARE+h
o 6 0 AM WRITE+(P I

o 7 0 RCTY .I
lOB ,0 WRITe WN,T,Y J
109,0 eM CMPA~E""(p END \

I 0 0 8N E S T A ~T + I 2"' . ,\
I I 0 U I I

I ,2.0 r,A. g,L E DS 8 soo . I ,\
I 3 0 END OS 8 799 I

I 4 0 DE.ND START I

I 5 0 I . ':\
- ~

gram, it can be directed to execute the instructions
composing the program. Normally, the program is exe­
cuted in a sequential manner. The computer starts with
the first instruction and progresses serially through the
program, analyzing and executing each instruction. The
sequence of operations can be altered if desired, by
the use of instructions that direct the computer to an
instruction located at other than the next sequential
position. The last instruction of a program may be used
to return control to the first instruction, and to begin the
sequence anew for a new set of data.

In addition to writing the program precisely, another
requirement is that it be written in code. Whereas in­
structions to a human might be given in ordinary
language, as:

Multiply A by B
Divide the product by C
Compare the result with D
Etc.,

the computer must be addressed in a much more
concise numerical language. The instruction "Multiply
A by B" must be presented to the computer in a form
such as 23 08125 16501 called machine language in
which the number represents the information needed
to perform the operation. Expressing problems in terms
of the code of the computer (machine language) can be
a deterrent to the user.

10000
10000 16 10030 00492
10012 11 10030 00008
10024 14 00000 00023
10036 26 10078 10030
10048 11 10078 00001
10060 34 00000 00102
10072 38 00000 00100
10084 14 10030 00799
10096 47 10012 01200
10108 48 00000 00000
00500 00008
00799 00008
10000

Figure 1. Symbolic Program and Resulting Machine Language Program

6

Symbolic Programming Systems
To allow programmers to express their problems in a
language more easily comprehensible than machine
language, a considerable effort has been made to
develop Symbolic Programming Systems. These pro­
gramming systems employ symbols, mnemonic
operation codes, and English words or abbreviations in
developing the program. Associated with the program­
ming system is a machine language program, called a
processor. The processor accepts the program written
in symbolic language which is termed the source
program, and converts it to a machine language, or
object, program that can be loaded into the machine
and executed to accomplish the aSSigned task. Figure 1
illustrates a short program written in 1620 symbolic
language and the resulting machine language program.

FORTRAN
Al though symbolic programming systems greatly
simplify programming, they are essentially machine­
oriented; that is, they require the programmer to think
in terms of the command structure of the particular
machine. With the advent of compilers such as FORTRAN,

a highly significant step was taken in the development
of programming systems. FORTRAN made it possible, for
the first time, for coding systems to be designed in
terms of the language of the problem to be coded,
instead of in terms of a specific data processing system.
The FORTRAN language is now used to formulate mathe­
matical problems for several data processing systems
including the 1620. Source programs written in FORTRAN

Problem

Gotran
Statements

Input Iv\edia

(Cards I~I
or

language (a language that resembles the ordinary
language of mathematics) must be converted into a
machine language program before they become useful.
The program that accomplishes this translation is called
a FORTRAN compiler.

The programming systems described in the preceding
paragraphs enable a programmer to write a program
in a language more familiar to him than machine
language. They are converted into machine language
by a processor program, and the output of the processor
program, which is the object program, is loaded back
into the machine to perform useful work. The machine
language program can be loaded into the machine at
the discretion of the user, and can be re-executed at any
future time simply by reloading it. This technique is
particularly effective for large programs that must be
used time and time again with varying data and for
which it is most economical to process the source pro­
gram just once.

IBM GOTRAN
Many problems require only one run or possibly a few
runs on the computer, after which they are supple­
mented by a different problem that requires not only
new data but a new program. Here, it is desirable to
find a means to solve these, singly or in batches, without
the need to create a different object program each time
(perhaps to gather dust after its first use). This would
enable the powers of the computer to be effectively
harnessed to a host of new problems still being attacked
by slower, less efficient methods.

1620

1------------,
I I
I .! 11 1

~ ~ I

I
1

1

I
I

8 j :
I
I
1

I

Answers

~ 1--4-
1

-----~
......----1---'--

.1 Pseudo-

Tape

or

~- --
\~

r

Console Typewriter

Figure 2. Structure of the GOTRAN System

I Instructions 1--____ --'

I
I
I 1
I ____________ J

Tape

Typed
Output

Communication with Computers 7

The IBM 1620 GOTRAN System has been developed to
fill this need. It compiles the problem-oriented source
statements into pseudo-instructions within the machine;
the computer then interprets and executes them without
recourse to the conventional machine language output
program. Such a system is called an interpretive system
and the pseudo-instructions (which the programmer
never sees) are referred to as interpretive language.

Figure 2 illustrates the basic structure of the GOTRAN

System.
One great advantage of the GOTRAN System is that

the compiler, once loaded, remains in the machine; it is
effectively a part of the computer until removed. There­
fore any number of different problems may be presented
to the computer, singly or in batches, with solutions
forthcoming at once. The time-consuming tedium of

8

loading the system, creating the object deck or tape,
loading the object program, etc., for each job, is elim­
inated. All that the user need be concerned with is the
GOTRAN language because conversion to the interpretive
language and subsequent execution of the instructions
is entirely automatic. There is, naturally, a price exacted
for this: that price is a somewhat reduced speed of
operation as well as sacrifice of the portion of core
storage that must be occupied by the compiler. The
user must decide, on the basis of the individual job,
whether GOTRAN is the system which is best for him.

The 1620 GOTRAN System language falls within the
framework of the IBM 1620 FORTRAN System. (t

~GOTRAN derives its name from this relationship as well as from
the fact that the source program is executed in a load-and-go
fashion. .

Any data processing system may be subdivided func­
tionally into five parts (Figure 3).

Control

Figure 3. Functional Parts of a Computer

The Input Sec~on

The input section accepts external information and con­
verts it into a form in which it can be manipulated and
stored internally. In the 1620, input information may be
inserted by means of punched cards, punched paper
tape, or the console typewriter. Figure 4 shows an
input/ output component of the 1620, the IBM 1622 Card
Read Punch.

Figure 4. IBM 1622 Card Read Puneh

The IBM 1620 Data Processing System

Storage Section

The storage section of a computer contains both the
coded instructions that specify the actions to be per­
formed (the program) and the data that is to be
manipulated (added, multiplied, compared, etc.) by
the instructions.

The 1620 utilizes magnetic core storage; its capacity
ranges from 20,000 to 60,000 digits .

Logical-Arithmetic Section

The logical-arithmetic section is the place where data
manipulation is actually performed. The control section
decodes and interprets the instructions in storage and
monitors the progression of the program through its
planned sequence.

Output Section

The output section translates the internal information
to some convenient external form. In the 1620, this ex­
ternal form may be punched cards, punched paper tape,
or a printout at the console typewriter (Figure 5) .

Although the speeds of the input/ output devices are
very rapid when compared to manual methods, they
are still generally quite slow in comparison with the
internal speeds of data -handling.

Figure 5. IBM 1620 Console Typewriter

The IBM 1620 Data Processing System 9

The GOT RAN Language

The GOTRAN language consists of 13 different kinds of
statements which may be grouped into four classifica­
tions: arithmetic statements, control statements, input/
output statements, and a specification statement.

Before explaining the GOTRAN language, there are
some other considerations bearing on the statements
that need to be explored. These are: (1) Mode of
arithmetic and (2) Kinds of numbers, i.e., constants,
variables, and subscripted variables.

Mode of Arithmetic
Generally speaking, arithmetic in computers is done
in either a fixed-point or floating-point mode. These two
terms indicate the form in which the numbers are ex­
pressed. Numbers expressed as integers are considered
fixed point. Thus, the integers 3, 52, and 724 are fixed­
point numbers.

Floating-point arithmetic is a technique used to
eliminate the complex programming required for cor­
rect placement of a decimal point in arithmetic
operations. This complex programming results from the
fact that computers do not generally recognize the
decimal point present in any quantity during calcula­
tions, and therefore cannot recognize the magnitude of
the result. Floating point is a method in which in­
formation regarding the magnitude of all numbers
accompanies the quantities in the calculation. This is
accomplished by expressing all numbers as decimal
fractions times a power of ten. For example:

10

427.93456 is expressed as .42793456 x 103

.0009762 is expressed as .9762 x 10-3 •

Internally these numbers are carried as 5342793456 and
4797620000 where the first two digits are the character­
istic (i.e., the power of ten with 50 added to avoid a
negative characteristic) and the remaining eight digits
are the mantissa. In floating point the decimal is always
moved to the left of the first nonzero digit, with proper
adjustment to the exponent. This is called normalizing
the number.

In GOTRAN either fixed-point or floating-point num­
bers can be used, subject to the rules described under
ARITHMETIC StATEMENTS.

Constants, Variables and Subscripts

Within the framework of fixed-point and floating-point
arithmetic, the system must provide for expressing con­
stants and variables.

Whereas in ordinary computations these quantities
are expressed routinely and with considerable freedom,
very definite rules must be observed in GOTRAN state­
ments, as the computer is incapable of exercising
judgment in interpreting the wishes of the programmer.
Also, a floating-point variable may be subscripted so
that it becomes one element of a one-dimensional array.

The GOTRAN programmer will encounter these four
kinds of numbers in writing arithmetic statements.

1. Fixed-Point Constants
2. Fixed-Point Variables
3. Floating-Point Constants
4. Floating-Point Variables (these may be sub­

scripted)

Since the arithmetic statements define the numerical
calculations that a program is to execute, they will, no
doubt, constitute the heart of most GOTRAN programs.
An arithmetic statement resembles, but is not, in fact,
a simple statement of equality. It consists of a variable
to be computed, followed by an equal sign, followed
by an expression.

The mode of arithmetic used in an arithmetic state­
ment can be either fixed point or floating point, but
cannot be mixed. The mode is determined by the con­
ventions used to write the statement.

By its nature, fixed-point notation is somewhat re­
stricted. Thus it is expected that most statements will
be in floating-point form. The following descriptions
are divided into sections on fixed-point and floating- .
point statements.

Fixed-Point Constants

Fixed-point constants may consist of one to three deci­
mal digits. A preceding plus or minus sign is optional

Examples: + 7
29

-438

Fixed-Point Variables

Fixed-point variables must be represented by one of the
alphabetic characters I, J, K, L, M, or N.

Examples: I
M
K

Fixed-Point Arithmetic Statements
The expression to the right of the equal sign in a fixed­
point arithmetic statement may contain a constant and a
variable and one operation symbol. The operation
symbols in fixed-point statements are restricted to +
and -. Fixed-point multiplication and division are not
allowed. Thus, a fixed-point statement must be in one
of the following forms:

v=c
v=v+c
v=v-c

where v represents a variable and c a constant.

Examples: J =765
M=J+42
L=N-372

Arith metic Statements

The results of a fixed-point arithmetic operation are
restricted to a maximum of three digits. If a result
greater than three digits is generated, only the three
low-order (rightmost) digits are carried as the result.

The equal sign in any arithmetic statement means
is to be replaced by rather than is equal to. A statement
such as N = N -40 is therefore valid. The quantities
represented by a fixed-point variable must, of course,
be fixed point. Fixed-point variables may not be sub­
scripted.

Floating-Point Constants

Floating-point constants may consist of any number of
decimal digits (up to 20) with a decimal point at the
beginning, at the end, or between two digits. A preced­
ing plus or minus sign is optional.

Examples: 562.
-0.0583

3.1415926

An alternative way of expressing floating-point con­
stants is to affix a one-digit or two-digit decimal ex­
ponent preceded by an E (for exponent). The E must
immediately follow the last digit of the number.

Examples: 14.2E3=14.2 x 103 or 14200.
5243.7E-5=5243.7 x 10-5 or .052437
3.0E11 =3.0 x 1011 or 300000000000.

In GOTRAN, floating-point constants are expressed in
"external" form by the user (i.e., in either of the two
forms shown as examples), and are converted auto­
matically to the form in which they are carried
internally (see MODE OF ARITHMETIC). Internally, float­
ing-point constants become ten-digit quantities in the
form:

c m
X'X' I xxx~xxxx'\

where c is the characteristic, m the mantissa, and the
original number is m x 10c- 50

•

The magnitude of the number thus expressed must
be zero or must lie between 10-50 and 1049

•

Floa~ing-point numbers that contain more than eight
digits (up to 20 digits) have their magnitude properly
maintained by correct adjustment to the characteristic.
Only the eight high-order (leftmost) significant digits,
however, are carried as the mantissa.

Floating-Point Variables

Floating-point variables are expressed as one to four

Arithmetic Statements 11

alphabetic or numerical characters (no special charac­
ters). The first of these characters must be alphabetic,
but may not be I, J, K, L, M, or N, since these are
reserved for fixed-point variables.

Examples: B
HIT2
PRES

SUBSCRIPTED FLOATING-POINT VARIABLES

A floating-paint variable may be subscripted by ap­
pending to it one fixed-point variable enclosed in
parentheses. The floating-point variable can thus be
made to represent any member of a one-dimensional
array. The subscripts are fixed-point variables with
values that determine which member of the array is
meant.

Examples: C (I)
TEMP (N)

The use of a fixed-point subscript with a floating-point
variable does not violate the rule of mixing modes in an
arithmetic statement.

Functions

A GOTRAN floating-point statement may contain anyone
of six functions and its argument. The functions are:

LOG (X) meaning LOGe of X
EXP (X) meaning eX
SQR (X) meaning VX
SIN (X) meaning SINE of X
COS (X) meaning COSINE of X
ATN (X) meaning ARC TANGENT of X

The name of the function to be evaluated must be
written with the three characters shown, followed by the
argument in parentheses. The argument must be a
floating-point variable; it mayor may not be sub­
sCripted.

Examples: SIN (B)
LOG (Q (N))
SQR (RAD)

Floating-Point Arithmetic Statements
Floating-point constants, variables, and functions have
been defined, but before examining some floating-point
arithmetic statements, it is necessary to state a few
general rules: ,

12

The variable to the left of the equal sign must be a
floating-point variable (subscripted or not sub­
scripted) .

The expression to the right of the equal sign may
contain floating-point constants, floating-point varia­
bles (subscripted or not), and functions.

The expression to the right of the equal sign must
contain no more than one operation symbol. This
symbol may be:

+ for addition
- for subtraction
:!~ for multiplication
j for division

:!~ :!~ for involution (raising to a power)

Examples: 1. TORQ = - 7.5
2. SUM=AREA+3.14E-2.
3. RAD=W:!¢T
4. PER=1.0jF
5. ANG2= Y :!~ :!~ 3.
6. A=B
7. C=ATN (Y)
8. A (I) =B (}) +C (K)

Example No.2 follows the rule of only one operation
symbol per statement although it appears to have two
signs; the minus sign merely denotes a negative ex­
ponent. Statements such as C = - D + E and A = - Bare
invalid. The latter statement must be written A=O.O-B
to be acceptable in the GOTRAN language. The former,
C= -D+E, must be broken into two statements, each
containing one operation symbol, thus:

C=O.O-D
C=C+E

for solution to be effected by GOTRAN.

As stated previously, in GOTRAN language, the equal
sign means "is to be replaced by" and not "is equal to."
Therefore, the result of the first statement is that C is
replaced by (-D). The result of the second statement
is that C (which is now (- D)) is replaced by C + E,
which is -D+E. The solution is complete.

Coding a Typical Formula

As a further illustration of the manner in which arith­
metic formulas containing more than one operation
symbol must be broken down into several statements,
consider the formula:

at2

s=vt+ 2

CODING STATEMENTS

Figure 6 shows the program coded on the standard IBM

FORTRAN Coding Sheet, Form X28-7327 -2. This form is
also used in 1620 GOTRAN. Each GOTRAN statement is
entered on a separate line of the coding sheet. A state­
ment cannot exceed 72 characters in length, including
blanks and the end-of-line character used to terminate
it. Any number of blanks may be included in the state­
ment, with one minor exception which is noted under
COMMENTS.

~
C FOR COMMENT

STATEMENT 1i
NUMBER <3

1 5 67

7,. jf 2 • 0)

Figure 6.
ae

Breakdown of the Equation s = vt + -
2

COMMENTS

An entry beginning with a C followed by two blanks is
considered to be a comment. It is not processed. If the
first character of a statement to be processed is C, only
one blank may follow it. Comments may be used at any
point in a program; they are typed out at the console
during compilation.

The third and fourth statements of Figure 6 again
illustrate the fact that an equal sign in an arithmetic
statement means is to he replaced hy rather than is
equal to. This concept may be better understood if we
consider for a moment the internal functioning of the
machine.

The basic IBM 1620 has 20,000 positions of core stor­
age, each of which is capable of holding a single digit
of information. Each core storage position has a unique
5-digit address; addresses run sequentially from 00000
to 19999. Thus, each single digit of information is ad­
dressable. When several digits are to be treated as a
single quantity (e.g., a 10-digit floating-point number),
it too is addressable by a unique address that references
the low-order position of the field. The high-order posi­
tion is identified by a flag hit. Therefore, the machine
language instruction 22 15000 19000 is a command to
subtract (22 is the machine operation code for subtract)
the quantity stored at address 19000 from the quantity
stored at address 15000. The result of the operation is

stored at address 15000; the quantity at 19000 remains
unaltered.

In GOTRAN, the letters or names used for variables are
merely convenient methods of noting machine ad­
dresses. The GOTRAN instruction A=B-C can be trans­
lated literally as "subtract the quantity stored at C from
that stored at B and place the result in location A." In
this operation, the previous quantity stored at A is
replaced by the quantity B-C; quantities Band C re­
main the same.

In Figure 6, then, the second statement sets up a
temporary storage location (TEM2) in which the value
of t2 is stored. The next statement multiplies this quan­
tity by a, and stores the value of at2 back in the same
storage location. The fourth statement divides the result
of the previous statement by 2, and the value of at2 is
now replaced by at2/2.

Another important point is illustrated in Figure 6.
The divisor in the fourth statement and the exponent in
the alternate second statement are constants. Normally
they would be written as integers. In this example,
however, the statements are written in floating-point
form and therefore the integer (2), which is considered
a fixed-paint notation in GOTRAN, must abide by floating­
point conventions and contain a decimal point.

Arithmetic Statements 13

Control Statements

The second class of GOTRAN statements comprises seven
control statements. These are so named because they
permit the programmer to control the How of his pro­
gram. Their format and use are explained in this section.

Unconditional GO TO Statement

GENERAL FORM: GO TO n

Ordinarily, the computer executes instructions sequen­
tially; if it is desired to vary this pattern, the GO TO state­
ment is used. It causes the program to branch to some
statement (n), other than the next sequential statement,
where n represents the statement number. Any un­
signed integer from 1 to 999 may be used. Statement
numbers are used merely for cross-referencing within
a program; they need not be assigned in numerical
sequence, nor do all statements require statement
numbers.

The GO TO is unconditional in that execution of this
instruction always causes a branch to statement nand
the program proceeds from that point.

A blank must separate the words GO and TO.

If Statement
GENERAL FORM: IF (a) nt, n2, n3 where a is a floating­
point variable (subscripted or not) and nl, n2, n3 are
statement numbers. A blank must follow the word IF.

The IF statement says: if (a) < 0, go to nl
(a) = 0, go to n2
(a) > 0, go to n3

~
C FOR COMMENT

STATEMENT i
NUMBER .3

1 5 67

Figure 7. A Conditional Branch

14

Thus, the IF statement provides a means of conditionally
branching on the basis of the value of the floating-point
variable (a). For example, the statement

IF (A (I)) 5,10,12
causes the subscripted variable A (I) to be tested. If it
is negative, the program branches to statement 5; if it is
zero, to statement 10; if it is positive, to statement 12.

Branching out of the main line sequence of a program
when a number is negative can be done by using an IF

statement as shown in Figure 7. Statement 15 could be
the first of a series of instructions treating the negative
number is a special way. At the end of this sequence,
it might be desired to branch back to the main line
sequence of the program. Thus, the last instruction of
the sequence beginning with statement 15 might be the
statement GO TO 6. These techniques of branching con­
ditionally and unconditionally are shown to illustrate
examples of the use of the IF and GO TO statements.
Other uses will suggest themselves in the course of
using GOTRAN.

DO Statement
range index limit increment
~ ~ r-"--. ~

GENERAL FORM: DO n 1, = rnb rn2 , rn3

where n is a statement number,
i is a fixed-point variable and
rnl, rn2 , rn3 are unsigned, fixed-point constants.

rn3 may be omitted, in which case it is understood to
be 1.
rnl, rn2 , rn3, must not exceed 3, 3, and 2 digits, respec­
tively. A blank must follow the word DO.

The DO statement is perhaps the most powerful of all
in the GOTRAN language. It is a command to execute
repeatedly a group of succeeding statements (a loop).
n specifies the range of the DO (or DO loop). The range
is the sequence of consecutive statements immediately
following the DO statement, up to and including the
statement numbered n.

The index of the DO is the fixed-paint variable i which
is set at the value m 1 for the first execution of the loop
and is increased each time by the increment (m3) until
it is about to exceed the limit (m2) •

As previously stated, if the increment (m3) is not
specified in a DO statement, it is assumed to be 1.
Thus, the first time the range is executed, i = ml, then
i=m1 + 1, and so on until i=m2 •

Throughout the range, i is available for computation,
either as an ordinary fixed-point variable or as a sub­
script (see also INDEX VALUES).

The DO statement says: Execute the following state­
ments down through n. Start with i=m1 • Each time
statement n is executed, increase the value of i by m:3
and begin again with the first statement following the
DO. Continue in this way so long as i does not exceed m 2 •

When a further increase in i will cause it to exceed
m 2, proceed to the next statement following statement n.
Figure 8 illustrates three typical DO statements.

~lIT
DO 30 I = 1, 5, 1

DO 6 I = 2, 10, 2

DO 12 1= 1, 20

Figure 8. Typical DO Statements

~
c FOR COMMENT

STATEMENT i
NUMBER .3

1 5 67

Figure 9. DO Loop for an Array

The Index as a Subscript

For an example of the use of the index of a DO statement
as a subscript, consider the statements shown in
Figure 9.

In this program it is desired to calculate A = B + C for
twenty values of Band C. Mathematically, this is ex­
pressed: Ai = Bi + C i, i = 1, 2, ... 20. Assume the twenty
values of Band C (arrays Band C, respectively) are al­
ready in storage and control has reached statement 10.
The range of the DO is statement 11, and the index is 1.
The DO sets I equal to 1 and control passes into the
range. B (1) + C (1) is computed and stored in A (1).
Now because statement 11 is the last statement in the
rang~ of the DO and the DO is unsatisfied, I is increased to
2 and control returns to the beginning of the range,
statement 11. B (2) + C (2) is computed and stored in
A(2). This continues until statement 11 has been exe­
cuted with 1=20, thus completing the formation of
array A. Since the DO is satisfied, the program proceeds
to statement 12.

The following rules must be observed with regard to
DO loops:

Rule 1. No two DO statements in the same program may
have the same value of n.

Rule 2. The program must not branch to the last state­
ment (n) of a DO loop.

Rules 1 and 2 may be summarized as follows: Once
a statement number appears in a DO, another DO, IF,

or GO TO must not refer to this same statement.

Rule 3. The last statement in the range of a DO must not
be a branch, either conditional or unconditional. In
other words, it must not be an IF or GO TO statement.

DO's Within DO's
One or more DO statements may be included within the
range of another DO statement, provided a fourth rule is
observed.

Control Statements 15

DO 1st Level DO
DO 2nd Level [DO 3rd Level

I DO

[DO 3rd Level

I

DO 2nd Level

DO 3rd Level

DO 4th Level

I

CORRECT INCORRECT

Figure 10. Nested DO Loops

Rule 4. If the range of a DO statement includes another
DO statement, all statements in the range of the in­
cluded statement must also be within the range of
the encompassing statement. Figure 10 illustrates this
rule.

A set of DO'S satisfying this rule is called a nest of DO'S.

As can be seen from Figure 10, more than one level
of DO loops is possible. In GOTRAN, as many as six levels
of DO loops in one nest are permitted. Any number of
loops may exist within each level. All DO loops, whether
nested or single, must obey rules 1, 2, and 3. Rule 4
applies only to nested DO'S.

Index Values

A significant aspect of DO loops is the use and preserva­
tion of index values. As previously indicated, the index
is a fixed-point variable and hence must be represented
by one of the six characters reserved for this purpose:
I, J, K, L, M, or N. In a nest of DO'S, each DO loop level
begins before the loop of the previous level has been
completed. Therefore, the index of the inner DO loop
must not be the same as the succeeding higher levels
of loops. For this reason the levels of DO loops in anyone
nest is restricted to six. Within each level, however, a
particular index may be used as often as desired. For
example, assume the first-level DO in Figure 10 has an
index of J; no other DO within this nest can use J as an
index. This leaves the variables I, K, L, M, N for indexes

16

DO

[

of the second level. Assume both DO'S in this level use
the index M. This is permissible because the index value
of the first loop is completely used before the second
loop is begun. Anyone or all of the letters I, K, L, N can
be used for the third level.

Program control may leave the DO loop in one of
two ways: either as a result of the DO becoming satisfied,
or as a transfer out of the DO range by an IF or GO TO

statement (see Figure 11). With the DO becoming satis­
fied and control passing to the next statement after the
range, the exit is said to be a normal exit. After a normal
exit from a DO occurs, the value of the index controlled
by that DO is the value of m2 or the highest value in the
sequence that does not exceed m 2 • In this case and in
the case in which the exit occurs by a transfer out of
the DO range, the current value of the index remains
available for any subsequent use. If the exit occurs by a
transfer that is in the range of several DO'S, the current
value of all the indexes controlled by these DO'S are
preserved for any subsequent use.

In IBM 1620 GOTRAN it is possible to transfer into the
range of any DO statement from outside its range by
using either IF or GO TO statements. The value of the in­
dex is, however, not reset by such a transfer. The current
value is therefore used, or the value of the index may
be defined prior to the branch.

Statements within the range of a DO can be used to
redefine the value of the index. Naturally, changing the

~C FOR COMMENT

Sr,.~~~T ~
FORTRAN{ 1 5 67

Do I 2, I = I 1,00 ~ ,
Ocl.T, = ANGI - AN,G2(I)

IF ,(,DEL T,) /I 2,0 I I ,
/.1 CONT,INU,E

12 CON,T,INUE

13 X)(X X X,X. ,(,1/ 0 AWGL£ FOUND R.OUT.INE.)
)

, J
,20 IV,Y,y,V,Y,Y, ,CA,N,S L £ F 0 (j tV./) Ro U T,I N E,) "

~

, ,

, , ,

,

- --
Figure 11. Table Search

index during the execution of the DO loop can lead to
unexpected results unless due caution is exercised.

CONTINUE Statement
This is a nonexecutable dummy statement. It consists
merely of the word CONTINUE and is analogous to the in­
struction NO OP which is found in nearly all computer
command structures.

CONTINUE is frequently used in the range of a DO to
fill the requirement that the last statement in the DO

loop cannot be a branch statement. As an example of a
program that requires CONTINUE statements, consider
the table search program shown in Figure II.

This program examines the 100-entry angle table
until it finds an entry that equals ANGl, whereupon
it will exit to statement 20, with the successful value of
I available for fixed-point use: if no entry in the array
equals ANGl, a normal exit to statement 13 ultimately
occurs. The same program without the two CONTINUES

would not work because
A) the IF statement (a conditional branch) must not

refer the program to the last statement of the DO

loop, and
B) the last statement in the range of a DO is a branch.
Another use of the CONTINUE statement is in a nest of

DO loops. A rule of DO nesting is that no two DO state­
ments can end in the same statement number. Figure 12
illustrates the manner in which CONTINUES are used to
achieve the effect of having a common statement ter-

minating several DO loops, without violating the rule of
two DO'S ending with the same statement.

PAUSE Statement
This statement consists of the word PAUSE. The program
will halt upon execution of the PAUSE statement. Press­
ing the Start key causes the program to resume opera­
tion with the next GOTRAN statement. Inserting PAUSE

statements into the program gives the programmer the
opportunity to check its performance at critical points.

STOP Statement
This statement consists of the word STOP. Execution of
the statement causes the program to halt. Prior to halt­
ing, the machine will print out: STOP END OF PROGRAM.

Depressing the Start key conditions the machine to ac­
cept another GOTRAN program. Stop statements may be
inserted in the program to indicate various conditions
beyond which the programmer does not want the pro­
gram to progress.

END Statement
This statement consists of the word END. It must appear
as the last statement of the GOTRAN program. The END

statement informs the GOTRAN compiler that there are
no more source statements to be compiled. As a result
of the END statement, the phrase END OF PROGRAM is com­
piled and the program halts. Pressing the Start key now
causes the program to be executed. END OF PROGRAM will
print when execution is completed.

C FOR COMMENT

~EMENT ~ NUMBER Fe
1 567

I , DO 7 ,1,=,1 1.0, , , , , ,\ -,
) , DO 6 J=/,/.O ,

i~ 00 ,5 ,K=,/ .. ,/.O, , , , , , , I ,
I

I , , , , , , I , , , •
A,(I,) • ,B (,J.) C'(K,)

}
..t5 PRINT . \ ,

.1 , " CONTINUE I , , , I ,
I ,7 CONT./ NU€' . , ,

~ I , , , • , I

,

I I , , I , , , , , I , , , "

I , ,

. -
Figure 12. Use of CONTINUES with DO Loops

Control Statements 17

In put/Output Statements

In order to execute the GOTRAN program, the machine
must be provided with values corresponding to the
variables used in the statements. This input data may be
brought into core storage via punched cards, paper tape,
or the console typewriter. Answers to problems and
other intelligence from the computer must be furnished
to the user. This output data may take the form of
punched cards, punched paper tape or a printout from
the console typewriter.

There are four GOTRAN statements concerned with the
transmission of data between core storage and the var­
ious input/output devices of the 1620, i.e., the 1620
Paper Tape Reader, the 1622 Card Read Punch, the
1624 Tape Punch, and the Console Typewriter. Three
of these statements are the conventional Read, Punch,
and Print commands. The fourth is a powerful new
statement for plotting curves.

READ Statement
A READ statement causes the program to read data into
core storage from punched cards (a 1620 equipped
with a 1622 Card Read Punch) or from punched paper
tape (a 1620 equipped with a 1621 Paper Tape
Reader). The same statement used in conjunction with
a console switch causes either system to accept data
entered manually at the console typewriter. It must be
borne in mind that the program is calling into the com­
puter variable data, not GOTRAN statements, and that
this is occurring during the execution phase. The man­
ner in which GOTRAN statements (including the READ

statement itself) are loaded into the machine is de­
scribed under GOTRAN OPERATING PROCEDURES.

GENERAL FORM: READ, List of Variables~
where the list consists of from 1 to 5 fixed-point or float­
ing-point variables (they may be intermingled), sep­
arated by commas.

The READ statement causes input data records (each
value is one record) to be brought into core storage
until the complete list has been read in. When each
variable in the list (up to five) has received a value, the
list is said to be satisfied.

~READ, PUNCH, or PRINT statements may also contain a number n
following the verb, i.e., READ n, list. It represents format and is
ignored in GOTRAN, but is mentioned here so that it will be
understood.

18

Examples: READ, A, B, L, M, TEMP
READ, D, J, X (K)
(Note that the last item in the list
is not followed by a comma.)

The records (card, tape, or console typewriter) are
brought ~nto the machine, converted to internal nota­
tion if floating pOint, and stored in the locations specified
in the list of the READ statement.

Card Input

Each card is one record; each card may therefore con­
tain the value assigned to one variable. To satisfy a list
of 5 variables requires 5 cards.

The value to be aSSigned to a variable is punched in
the card in any columns from 1 through 72. Each float­
ing-point number can contain up to 20 digits, of which
the eight high-order significant digits will be used. The
internal characteristic will be adjusted to reflect the
magnitude of the number.

For example, the number
00161473902.75

is brought into the machine as
161473902.75

and converted to
5916147390

If the number is beyond the range of values that can
be expressed with 20 digits, it is necessary to express
it in exponential form (see FLOATING-POINT CONSTANTS).

Neither an end-of-line character nor a record mark is
required on the card. The order of the input data records
(cards) must be the same as the order of the list associ­
ated with the READ statement that brings the data in.
For example, the list of the statement

READ, A, B, L, M, TEMP

calls for two floating-point numbers, two fixed-point
numbers, and one floating-point number, in that order
(see Figure 13).

Paper Tape Input

The same rules that apply to card input apply generally
to paper tape input. Each input value must appear as
a separate record. With paper tape, however, an end­
of-line (EOL) character must immediately follow the
last digit. Each record is limited to 72 characters in­
cluding blanks and the EOL character. As with card in­
put, each floating-point number can contain up to 20

r
TEMP

(Floating Point)

r
/

r
r L

{Fixed Point}

B
{Floating Point}.

M
{Fixed Point}

A
{Floating Point}

Input Data Cards Corresponding
to the Statement

READ, A, B, L, M, TEMP
Figure 13. Input Data Records

digits, of which only the eight high-order sienificant
digits will be used. When expressed in exponential
form, the E must follow immediately after the last digit
of the number. The plus or minus sign may separate the
exponent from the E.

Console Typewriter Input

If Program Switch 1 is set to OFF during execution, and
a READ statement is executed, the program selects the
console typewriter as an input device and halts. It is
up to the operator to enter the input data manually, in
the same order and in the same mode as called for in
the list of the READ statement responsible for the halt.
An EOL character must be typed at the end of each input
value in the list.

PUNCH Statement

GENERAL FORM: PUNCH, List of Variables
where the list consists of from 1 to 5 fixed-point or float­
ing-point variables separated by commas. The PUNCH

statement causes the program to punch data into cards
or paper tape until the complete list has been satisfied.

Examples: PUNCH, A, C, P (J) /
PUNCH, B, D, L, M, X

A maximum of five variables can be punched out by any
one PUNCH statement.

Each variable is punched as a separate record; that is,
one variable is punched per card if the 1622 Card
Read Punch is used. If the output is produced on the
1624 Tape Punch, the last character of each variable
punched is followed by an EOL.

PRINT Statement
GENERAL FORM: PRINT, List of Variables

where the list consists of from 1 to 5 fixed-point or
floating-point variables separated by commas. The
PRINT statement causes the GOTRAN program to type
output data on the console typewriter.

Examples: PRINT, A, C, P (J)
PRINT, B, D, L, M, X

One line of data is typed for each PRINT statement. A
maximum of five variables is typed per line.

The typewriter carriage returns before the value of
the first variable listed in the PRINT statement is typed.
Tabulation occurs between the typing of each variable.
The tab stops must be set by the operator. Typing con­
tinues until all variables specified in the list have been
printed.

Output Data Format

The numbers punched or printed are in the same mode
and same order as the names of the corresponding vari­
abIes that represent them in the source program state­
ment. Fixed-point numbers are in the same form as in­
put fixed-point ,constants (see FIXED-POINT CONSTANTS);

the value is signed only when it is negative. Floating­
point numbers are in one of the following two forms:

l. Eight digits with a decimal point at the beginning,
end, or between two digits, preceded by a - sign,
when applicable.

For example:
3.0000000

-17.437986
.79340000
O.O~

~ Any number that contains all zeros in the mantissa appears as
0.0 during output.

Input/Output Statements 19

~
C FOR COMMENT

STATEMENT i
NUMBER 8

1 5 67

Figure 14. Output DO Loop

2. Eight digits with a decimal point between the first
two, followed by a decimal exponent consisting of
a signed (if negative) two-digit fixed-point num­
ber preceded by an E. The number is preceded by
a - sign if it is negative.

Examples: 4.1000000E09
1.7986437E-12

-1.6147390E03

The selection of either one of the preceding forms for
floating-point numbers being printed or punched is un­
der the control of the GOTRAN system. Whenever pos­
sible, output values are in the form first shown. If the
output quanity is beyond the range of values covered by
this form, the number is printed or punched in the ex­
ponential form. Hence, the output values always con­
tain all the significant digits computed.

Use of Input/Output DO Loops

No indexing, (e.g., READ, A (1) 1=1, 5) is allowed with­
in a list. Thus, every item in a list corresponds to one
and only one quantity read into or out of the machine
when the associated READ, PUNCH, or PRINT statement is
executed. Arrays with members that are so numerous
that itemizing them requires a large number of input
(or output) statements may be handled by using one
input/output statement and including it in the range
of an indexed DO statement. For example, suppose quan­
tities B, A, and C are to be printed, in that order, and
A represents a one-dimensional array of 100 elements.
The statement PRINT, B, (A(1) 1= 1,100), C is not valid
because no indexing is allowed within a list. Specifying
each element of the 100-element array requires twenty
PRINT statements, thus rendering this method cumber­
some and impractical. The solution employed is shown
in Figure 14. Note that the statement to print the array is
included within the range of a DO statement.

PLOT Statement
With this statement it is now possible to plot curves on
the console typewriter of the 1620.

GENERAL FORM: PLOT (V, c)
where v is a floating-point variable and c is the charac­
ter to be used in the plot.

The PLOT statement spaces the carriage laterally the
number of spaces that is equal to the integral part of the
variable v and prints the character specified as c. This
character may be any 1620 character, except the record
mark.

~
C FOIt COMMENT

STATEMENT i
NUMBER .3

1 5 67
FORTRAN STATEMENT

c

Figure 15. A Progralh ~" Plot SIN (X)

20

Examples: PLOT (X, ~:~)

PLOT (BETA,-)
Only a PRINT statement returns the carriage, thus

functions of more than one variable may be plotted by
suitable programming and scaling.

If the standard margin and tab settings(/< are used, the
variable v should be scaled between 0 and 66.

Since only one point is plotted for each PLOT state­
ment, the statement should be made part of a DO loop
to plot the entire curve. Such a DO loop is illustrated in
Figure 15. This program plots the function sin (x) for
31 values of x ranging from 0 to ."..

C TO PLOT THE FUNCTION SIN(X) BETWEEN X=O AND X .. PI
TP = O. 10471975
X., 0.0
DO 3 1= 1, 31
F = SIN (X)
Y = 50. * F
PRINT, X

NOTE: Final Value of X is Slightly PLOT t'(, +)
Less Than Correc t Val ue of 17' to 7 3 X = X + TP Decimal Places (3.1415926) because

END Point Values Chosen are Truncated to
8 Places.

0.0 +
.10471975 +
.20943950 +
.31415925 +
.41887900 +
.52359875 +
.62831850 +
.73303825 +
.83775800 +
.94247775
1.0471975
1.1519172
1.2566370
1.3613567
1.4660765
1.5707962
1.6755160
1.7802357
1.8849555
1.9896752
2.0943950
2.1991147
2.3038345 +
2.4085542 +
2.5132740 +
2.6179937 +
2.7227135 +
2.8274332 +
2.9321530 +
3.0368727 +
3.1415925 +

END OF PROGRAM

Figure 16. Machine Plot of SIN (X)

The value chosen for TP is approximately 1l' /30, se­
lected so that 30 points on the curve (31 including zero)
are plotted.

The statement y = 50 ::~ F is needed to scale the func­
tion to a realistic value for representation as spaces of
the typewriter carriage. The actual curve produced at
the console typewriter, along with the corresponding
values of x, is shown in Figure 16.

NOTE: The PLOT statement is not compatible with IBM

1620 FORTRAN.

4See MARGIN AND TAB SETTINGS.

+
+

+
+
+
+
+

+
+

+
+

+
+

Input/Output Statements 21

Specification Statement

The final class of statements in the GOTRAN language
is the specification statement of which there is but one:
DIMENSION. This is a nonexecutable statement that sup­
plies the GOTRAN compiler with necessary information
regarding arrays.

DIMENSION Statement
GENERAL FORM: DIMENSION V1 (n1), V 2 (n2)

where each v is a subscripted floating-point variable
and each n represents a fixed-point constant (the sub­
script). A blank must separate DIMENSION from the first
variable.

The DIMENSION statement provides the information
necessary to allocate storage for arrays. Each floating­
point variable that appears in subscripted form in a
program must appear in a DIMENSION statement of that
program; the DIMENSION statement must precede the
first appearance of that variable. It lists the maximum

22

number of elements in the arrays; references to these
arrays must never exceed the specified dimension.

In the following example, E is specified as a IO-ele­
ment array, V as a 75-element array, and R as a I5-ele­
ment array. Only one-dimensional arrays may be speci­
fied.

DIMENSION E (10), V (75), R (15)
A single DIMENSION statement may specify the di­

mension of any number of arrays as long as the entire
statement does not exceed 72 characters.

A DIMENSION statement cannot be used in conjunc­
tion with an input/output statement in an attempt to
transmit an entire array. For example,

DIMENSION X (60)
READ, X

cannot be written with the expectation that the 60 ele­
ments of array X will be read in. To accomplish this,
the READ statement within the range of an indexed
DO must be used, in a manner similar to the use of the
PRINT statement in Figure 14.

The following summary, Table 1, presents the thirteen
GOTRAN statements in condensed form. Note that all of
the arith;metic statements, both ordinary and function,
are counted as one statement in the total.

Table l. SUMMARY OF GOTRAN STATEMENTS

Class General Form Remarks

Arithmetic
Ordinary A=B+C Addition

A=B-C Subtraction
A=B ~:~ C Multiplication
A=B/C Division
A=B ~:~ ~:~ C Involution

Function A=LOG (X) Loge (X)
A=EXP (X) eX
A=SQR (X) V'X
A=SIN (X) Sine (X)
A=COS (X) Cosine (X)
A=ATN (X) Arc Tangent (X)

Control GOTOn Blank must follow "GO"
IF (A) nl, n2, n3 Blank must follow "IF"
DO n i = ml, m2, m3 m3 = 1 if Omitted
CONTINUE
PAUSE
STOP
END Must be last statement

Input/Output READ, A, B, C, D, E
PUNCH, A, B, C, D, E
PRINT, A, B, C, D, E
PLOT (v, c) c Any character but t

S pecifica tion DIMENSION Specifies size of arrays

Summary of GOTRAN Statements

Summary of GOTRAN Statements 23

An Example' Problem

This section presents a problem illustrating some of
the thirteen different GOTRAN statements that have been
explained and examines, in detail, a program using
many of them.

Problem: Compute the square root of each of the
numbers from 1 to 15.

The solution is based upon successive iterations of
the formula

RT

B
II

2

where RT=the square root to be found

STATEMENT

B = the number whose square root is to be found
(the argument)

R=the successive approximations of RT.

One solution to the problem is presented, along with
a comment elaborating on the purpose of each state­
ment used. Figure 17 shows this program.

STATEMENT

B =0.0
PURPOSE

The argument (B) is initially set
to zero.
It is a floating-point number.
All variables that appear on the
right side of the equal sign must be
previously defined, i.e., they must
have appeared on the left side of an
equation or they must have been
part of an input list. This statement
defines the variable B.

~C FOR COMMeNT

~ NUMBER FORTRAN STATEMENT
1 5 67 72

C A P R,D,G R A,M. Too C,OMPUr,E T.H E S,Q,(J,A R,€. R.OOT O,F. THE N {/ MII3.E I?,s F.ROM I ,'TO 15 1

I 8=0.01 I I I I • I I I , I , I 1 I 1

Do S. I= I I So. / , I I 1 I , 1 , I , 1 I I. I I , 1 I I I I ,

I R= I • 0 I I I . ,

18,= 8+ I • 0 1 1 , , I I I · I I

I RT,= B,/,R I 1 , • I I I I I 1 I , I I I , I

~I , I? T,=I/?'Td,R. I I 1 , • I , I I , , I 1

R T. = R T /,2 • 0 , I I I I I , , II I ·
2 R""RT, I , , I I , I I • I I I I I • I

I I R T,"" B'/,i I I I , , , . I I I , I , I I I 1 I

RT=R7".+R, , · I ,

I , R,T,:= RT'/,Z • 0, I I I I I · · ,
I IT,F,s 7i = R. - RoT. I I , I I I , I I I , . , I , I I I I I ·

iT,f:,S To= T,€'S.T.- .• 00.0 0000 I I . I I. I

I IF ,(, T E $ T,) I ,4,. 4, ~ 2 I I I I I • I I I I I I I I

" "
I 14 CO,N Td N,U, £, 1 I .L...l I I I I I I I I I I I I I • I I I I II I ,

5 P,R,/,NT.. 6 R.r. I I I I I I

E,N /) I 1 I I I I I ,

I I I I I I I I 1 I I I I I I I I I I I I I I • I I I I I I I I I I I I • I I I I I I I I I

I I I I , I I I I I I I I I I I I

I I I I I I
• I

Figure 17. A Program to Compute a Series of Square Roots

24

STATEMENT

DO 5 I = 1, 15, 1

R= 1.0

B = B + 1.0

RT=B/R

RT=RT+R

RT = RT/2.0

2 R=RT

RT=B/R }
RT=RT+R
RT=RT/2.0

TEST = R- RT

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015

END OF PROGRAM

PURPOSE

A DO loop is set up to accomplish 15
passes through the succeeding state­
ments, down through statement No.
5. The final 1 in the statement can
be omitted.

R is set to 1.0 as an initial approxi­
mation.

The value of B is increased by 1.
This new value of B then replaces
the old, in accordance with the spe­
cial meaning of the equal sign in
GOTRAN.

The first actual operation of the
formula. B is divided by R and the
result replaces RT.

R is added to RT and the result
replaces RT. RT now consists of
B/R + R.

This statement completes one itera­
tion of the formula. RT now has
been evaluated once.

The value of R is replaced by the
computed value of RT. The next
iteration uses this new value of R.
This statement is given a number
because it is referred to in a subse­
quent statement. Certain other
statements have been assigned num­
bers for the same reason.

Another iteration using the previ­
ously computed value of RT for the
new value of R.

The value of RT as found in the
latest iteration is subtracted from
the previous value (R) and the
result replaces TEST. The statement
is used to seek convergence - the

1.0000000
1.4142135
1.7320508
2.0000000
2.2360679
2.4494897
2.6457513
2.8284271
3.0000000
3. 1622776
3.3166247
3.4641016
3.6055512
3.7416573
3.8729833

Figure 18. Printout of Square Root Problem

STATEMENT PURPOSE

point at which two successive itera­
tions are nearly equal.

TEST =-= TEST -.00000001 The value of TEST is adjusted down­
ward by .00000001. If the disparity
between the last two iterations is
no greater than this amount, the
root has been found to the desired

IF (TEST) 4, 4, 2
accuracy.

If TEST is zero or negative, no more
iterations using the current argu-
ment are necessary. Proceed with
the program. If TEST is positive, one
or more additional iterations are re­
quired. Go back to Statement 2.

4 CONTINUE This dummy statement is inserted
to fulfill the requirement that a
branch (conditional or. uncondi­
tional) must not send the program
to the last statement of a DO loop.
Thus the preceding IF statement
references the CONTINUE statement.

5 PRINT, B, RT The final statement of the DO loop.
B is printed along with its square
root, RT. The program returns to
the first statement following the DO

statement, increments I and pro­
ceeds to compute the square root
of B + 1.0. The process of comput­
ing, testing, and printing continues
through the time that I (and B)
equal 15, after which the program
proceeds to END.

END The last statement required for any
GOTRAN program. It Signals the
compiler that there are no further
statements to be compiled.

The answers, typed out as a result of Statement 5, are
shown in Figure 18.

An Example Problem 25

GOTRAN Operating Procedures

The operating procedures for the IBM 1620 GOTRAN sys­
tem can be divided into three phases (Figure 19) :

1. Loading the GOTRAN compiler/interpreter pro­
gram.

2. Loading and compiling the source program.
3. Executing the interpretive program.

Phase I: Loading the GOTRAN
Compiler/Interpreter Program
Loading the GOTRAN system into the 1620 varies slightly
depending upon whether the input is via the 1621 Paper
Tape Reader or the 1622 Card Read Punch.

Paper Tape Input

To initiate the loading of the GOTRAN system tape, a

Read instruction must be manually entered from the
console. The procedure is as follows:

1. Depress the Reset key
2. Depress the Insert key
3. Type the Instruction: 360000000300
4. Depress the Release key
5. Depress the Start key

After the GOTRAN compiler/interpreter program has
been loaded into storage, the 1620 will halt and await
entry of the source statements.

Punched Card Input

Console Program Switch #1 must be S€t before the sys­
tem deck is loaded. If the switch is OFF, all subroutines
are loaded. If the switch is ON, SIN, COS and ATN
are omitted.

1620

Phase I
Loading the System

Phase II
Loading and Compiling
the Source Program

I
I
I
I
I
I
I
I
I ___ J

Compiler Interpreter

I

; __ L-i ! 'I i
l

I ~ I
...-S-ym-b o-I..., P","do - >-' I I

Table Inst'uct;on, i i
I J I L _______ I

I
I

1---_ - -- - -- - --- - ---.J

Phase III
Executing the Interpretive

Program with Called Data

Figure 19. The Three Phases of GOTRAN

26

Sub -

routines

/

I-----I--{:J

Phase I

Phase II

Phase III

Therefore if the trigonometric functions are not needed,
they may be left out and the storage saved may be
utilized for a larger program.

The procedure for loading the system deck is:

1. Set console switch # 1
2. Depress the Reset key
3. Place system deck in Read hopper
4. Depress the Load key

The system deck will now feed through the 1622,
causing the compiler/interpreter program to be loaded
into 1620 core storage. When loading of the program
has been completed, the machine will come to a halt.

Phase II: Loading and Compiling the
Source Program

Switch Settings

During the halt that follows the loading of the
compiler/interpreter program, the console program
switches must be set for the loading and compilation
of the source program. The settings of the switches dur­
ing this operation designate the following:

SWITCH ON

1 Source program is being en­
tered on paper tape (tape
system) or punched cards
(card system).

2 Source statements are
punched on paper tape (tape
system) or into cards (card
system) as they are entered.

3 Source statements are printed
at console (either system) .

4 This switch is used only
when an error is made while
entering source statements at
the console typewriter. It is
normally OFF. When a typing
error is made, it i'!; turned ON,

the Release and Start keys
are depressed, and it is
turned OFF. The operator
may now retype the state­
ment that was in error.

OFF

Source program is being
entered via console type­
writer (either system).

Source statements are
not punched (either
system).

Source statements are
not printed (either
system).

All Console Check switches are set to PROGRAM.

After the program switches are set according to the
method of entering the source program, the appropriate
action is taken to initiate loading.

Source Program Entered on Paper Tape

1. Load the tape containing source statements onto
the 1621 Paper Tape Reader.

2. Depress Start key on the console.

The source statements will now be loaded into core
storage and compiled. After compilation the program
will halt to permit the operator to prepare the machine
for the next phase of GO'TRAN.

Source Program Entered on Punched Cards

1. Place deck containing source statements into 1622
Read hopper.

2. Depress Start key on 1622.

3. Depress Start key on console.
The source statements load and the program halts,

as before.

Source Program Entered by Console Typewriter

Since Program Switch 1 is off, the typewriter will be
selected as the input device by the program.

1. Depress Start key on console

2. Type first source statement

3. Depress Release key
4. Depress Start key

5. Type next source statement, etc.

When the last source statement has been entered, and
the Release key depressed, the program halts as before.
The switches may now be set for the execution phase.

Error Messages

The following error messages may be typed out during
the compilation phase of GOTRAN:

Message Meaning

Error Cl Symbol table has been exceeded
Error C2 Unacceptable function name
Error C3 Improper operation symbol in arith­

metic statements
Error Al MAR check or any other indicator

turned on

After such an error message appears, the program
halts, preventing the statement that caused the message
from being compiled. The operator may then enter a
corrected version of the statement on the console type­
writer. The procedure is as follows:

1. If Console Switch 1 is ON, set it OFF.

2. Depress the Start key on the console. The pro­
gram will select the console and· await the entry
of the typed statement.

3. Enter the corrected statement.

4. Depress the Release and Start keys (if switch 1
was ON originally to accept input from cards or
paper tape, it must be restored to this position
after entry of the corrected statement).

GOTRAN Operating Procedures 27

Phase ",: Program Execution

Switch Settings

During the halt following the compilation phase of the
GOTRAN program, the console switches must be set for
the execution phase. During this phase the console pro­
gram switches are interpreted as follows:

SWITCH ON

1 Input data to be entered on
paper tape (tape system) or
punched cards (card sys­
tem).

2 Result of each arithmetic
statement is printed (this is
known as the trace mode).

3 Not used except in restart
procedures.

4 This switch is used during
the execution phase for a typ­
ing error on input data. It is
used similarly during the
compilation phase for a typ­
ing error on a source state­
ment (see LOADING AND

COMPILING THE SOURCE PRO­

GRAM). Normally, switch 4
is OFF. When a typing error
is made, it is turned ON, the
Release and Start keys are
depressed, and it is turned
OFF. The operator may now
retype the data that was in
error.

OFF

Input data to be entered
via console typewriter.

Not used.

All Console Check switches are set to PROGRAM.

Table 2. ERROR MESSAGES

Message Operation

Error El Floating Point, Add or Subtract
Error E2 Floating Point, Add or Subtract
Error E3 Floating Point, Multiply
Error E4 Floating Point, Multiply
Error E5 Floating Point, Divide
Error E6 Floating Point, Divide
Error E7 Floating Point, Divide

Error Fl SIN (X) or COS (X)

Error F2 LOG (X)
Error F3 LOG (X)
Error F4 EXP (X)
Error F5 EXP (X)

Error F6 A ~:~ ~:~ B
Error Al Any Operation

28

Margin and Tab Settings

During the execution phase, the left margin on the con­
sole typewriter should be set at 10 and the right margin
at 95. Tab settings should be at 28, 46, 63, 80, and 94.

Tape Data Input

1. Load data tape on 1621
2. Depress Start key on console
The compiled GOTRAN program will now be executed,

utilizing the data furnished and calling it in as needed
under program control.

Card Data Input

1. Place data cards in Read hopper of 1622
2. Depress Start key on 1622 to run in cards
3. Depress Start key on console
The compiled GOTRAN program will now be executed,

reading data cards under program control.

Typewriter Data Input

1. Depress Start key
Program execution proceeds until such time as
the program calls for data input. The console type­
writer is selected and the program awaits the
manual entry of data.

2. Type in data
3. Depress Release key
4. Depress Start key

Meaning Result in Storage

Overflow All nines
Underflow All zeros
Overflow All nines
Underflow All zeros
Overflow All nines
Underflow All zeros
Attempt to divide All nines
by zeros
Loss of all sig- All nines
nificance in
function
X=O All zeros
X<O Log IXI
Overflow All nines
Underflow All zeros

A<O IAI B
MBR-E, MBR-O, RD Random
CHK, or WR CHK indi-
cators turned on.

Error Messages

Coded error messages of various meanings may be
typed out during program execution. They are explain­
ed in Table 2.

Restart Procedures
During either the compilation or execution phases it is
possible for the machine to halt on an error condition or
to go into an uncontrolled loop. The operator then has a
choice between two options: He may

1. Reinitialize the GOTRAN compiler to begin proc­
essing anew the program in storage, or

2. Reinitialize the GOTRAN compiler to accept a new
source program.

Console Program Switch # 3 is interrogated for this pur­
pose by the following procedure:

1. Depress Stop key (if machine is in a loop)
2. Depress Reset key
3. Depress Insert key
4. Depress Release key
5. Depress Start key

If Switch #3 is ON, the compiler will initialize itself
and come to the halt which precedes the entering of a
GOTRAN source program. A new source program may
now be entered.
If Switch # 3 is OFF, the compiler will begin again the
execution of the compiled program currently in core
storage.

Obviously, if the error occurs in the loading and com­
pilation phase, the operator should turn switch # 3 on
and reload the source program, as there is no point in
executing an incorrect program.

If the error occurs in the execution phase, he may
wish to repeat the program at least once, with different
data, before entering a new source program.

Core Storage Arrangement
The GOTRAN system utilizes the 1620 core storage as
shown in Figure 20.

The compiled program can make use of any storage
not used by the symbol table. Thus, any storage econ­
omies effected in this area permit larger programs to
be written.

The user can determine whether the program exceeds
the capacity of the machine by the following:

If 14 (Ns)+10(Ny +Nc):::;4953
where Ns=number of statements used,

Ny=number of symbols used~\
Nc=number of constants used,

then the program is within the capacity of a 1620 whose
core storage is 20,000 characters. The figures used are
averages. However, they do prOVide the basis for a
reasonable estimate of the size of program that can be
handled.

I)Ny must not exceed 500 (tape system) or 490 (card system).

00000 to 09165 09166 to 14469 14470 14760 to 19999

to Symbol Table

Compiler/Interpreter Subroutines 14759 and

Compiled Data Storage
Program

490 Symbols
(Card System)

500 Symbols
(Tape System)

Figure 20. GOT RAN Core Storage Layout

GOTRAN Operating Procedures 29

Test Problems

A group of seven test problems is presented in this
section. They illustrate the use of GOTRAN programs to
perform various operations as described throughout this
manual. The actual printed output of the console type­
writer is shown in each case. The list of statements as
typed during compilation is followed by the answers
typed out during the execution phase.

Note that problems 1 and 2 are executed in the trace
mode (Switch # 2 on), causing the result of each state­
ment to be printed (fixed-point statements of the form
1= n are not traced).

To improve his understanding of GOTRAN, the reader
should establish to his own satisfaction the purpose
of each statement used in the following programs (see
AN EXAMPLE PROBLEM).

30

C TEST PROBLEM 1
C SWITCH TWO MUST BE ON DURING EXECUTION

12 1=1
13 J-2
14 J - J + 1
15 J - J - 1
16 I" 1+1
17 I = I - 1
18 K=J +2
19 L = I - 5
20 PRINT, I, J, K, L
21 END

003
002
002
001
004

-004
001 002
END OF PROGRAM

C TEST PROBLEM 2

004

C SWITCH TWO MUST BE ON DURING EXECUTION

-004

DIMENSION ROT (4), RRT (4), RC (4), B (4), A (4), RY (4)
CONTINUE -
K=l
ROT (K) - 6.0
RRT (K) = 5.0
K=2
ROT (K) = 7.0
RRT (K) - 5.0
K= 3
ROT (K) = 5.0
RRT (K) - 3.0
K=4
ROT (K) = 4.0
RRT (K) = 2.0
PSEC = 0.0

2 DO 3 J = 1,4
3 RC 0.0

END

6.0000000
5.0000000
7.000QOOO
5.0000000
5.0000000
3.0000000
4.0000000
2.0000000
0.0
0.0
0.0
0.0
0.0

END OF PROGRAM

C TEST PROBLEM 3

DIMENSIQ\I A (25), B (25), C (25), D (25)
I = 1
A(I) = Q.Q
PRINT, I, A(I)
DO 15 I = 2,25
J = 1-1
A(I) = A(J) + 1.Q

15 PRINT, I, A(I)
DO 2 J = 1,25
B(J) = LOGV\(J))

2 PRINT, J, A(J), B(J)
5 CONTINUE

DO 3 K = 1,25
D(K) = A(K) ** 2.Q
C(K) = SQRV\(K))

3 PRINT, K, A(K), D(K), C(K)
END

QQl
QQ2
QQ3
QQ4
QQ5
QQ6
QQ7
008
QQ9
Q1Q
Qll
Q12
Q13
Q14
Q15
Q16
Q17
Q18
Q19
Q2Q
Q21
Q22
Q23
Q24
Q25

ERROR F2
QQl
QQ2
QQ3
Q04
QQ5
QQ6
Q07
008
QQ9
Q1Q
Qll
Q12
Q13
Q14
Q15
Q16
Q17
Q18
Q19
Q2Q
Q21
Q22
Q23
Q24
Q25

Q.Q
1.ooQooQQ
2.QQQQQQQ
3.ooQooQQ
4. QooOQQO
5.ooQQQQQ
6.ooQOQOQ
7.QQQOQQQ
8.QQQQQoo
9.QQQQQQQ
lQ.QQQQQQ
11.QQQQQQ
12.QQOQQQ
13.QQOQQQ
14. QOQQQQ
15. QOOQQO
16. QOOQQQ
17. QOQQQQ
18.QQOQQO
19.QQQQQO
2Q.QQQQQQ
21.Q00QOO
22. QOQQQO
23. QOQQOQ
24. QOQQOQ

Q.Q
1.QQOQQOQ
2.QQOOQQQ
3.oo0QQQQ
4.QQOOOQO
5.QQOOOQQ
6.QQOQQQQ
7.oo00QQO
8.oo0ooQO
9.QQOQOQQ
10.QOQQQQ
11.QOQQQQ
12. QOQQOQ
13. QOQQQQ
14. QOQOQQ
15. QOQQQQ
16. QOOOQQ
17. QOQQQQ
18. QOQooQ
19. QOQQQQ
2Q.QOQQOQ
21.QOQQQQ
22. QOQQOQ
23. QOQQOQ
24. QOQQQQ

Q.Q
Q~Q

.69314718
1.Q986122
1.3862943
1.6Q94379
1.7917594
1.9459101
2.Q794415
2. 1972245
2.302585€l
2.3978952
2.4849066
2.5649493
2. 639Q573
2.7Q8Q5Q2
2.7725887
2.8332133
2.89€l3717
2.9444389
2.9957322
3.Q445224
3.Q910424
3. 1354942
3.1780538

TEST PROBLEM 3 (CONT)

QOl Q.O
O€l2 1.QQOOQQQ
QQ3 2.QQQQQQO
€lO4 3.QQQQQQQ
OQ5 4. QOQQQOO
QQ6 5.QQQQQOO
QQ7 6.QQQQooQ
QQ8 7.QQQQQQQ
OQ9 8.0QQQQQQ
Q1Q 9. QOQQOQQ
Qll lQ.OOOOQO
012 11.QQQQQQ
Q13 12.QQOQQQ
Q14 13.QQQQQQ
Q15 14.QQQooQ
Q16 15.QQQQQQ
Q17 16.QQOooQ
018 17.QQQooQ
Q19 18. QooQQQ
Q2Q 19.QQQQQO
Q21 2Q.QOQQOQ
Q22 21.QQOQQQ
Q23 22.QQQooQ
Q24 23.QQQooQ
Q25 24.QQQQQO
END OF PROGRAM

C TEST PROBLEM 4
A =.5
B =.5
DO 4 I = 1, 5
DO 5 J = 1, 5
AXB = A ** B
PRINT, I, J, A, B, AXB

5 A =A + .5
A =.5

4 B = B + .5
END

QQl QQl .5OOQOOOQ
001 002 1.0000000
001 Q03 1.5OO000Q
QQl Q04 2.ooQooOQ
QQl QQ5 2.50QooOQ
QQ2 QQl .5QOOoooo
OQ2 QQ2 1.oo0QOOQ
002 QQ3 1.500000Q
Q02 Q04 2.ooQQooQ
002 €lQ5 2.50QQOOQ
003 OQl .5OOQooQQ
QQ3 QQ2 1.oo0QQ€lQ
003 Q03 1.5QQOooQ
QQ3 004 2.QQQooOQ
QQ3 005 2.50Qoo€lQ
Q04 €l€ll .5€lOOOOOO
004 €l€l2 1.OO0€l€l€lO
€l€l4 €l€l3 1.500€lO€l€l
Q04 €lO4 2.oo000Q€l
004 €l€l5 2.500oo€l€l
€l€l5 €l€ll .5€lO€loo€lQ
005 €lQ2 1.oo0oo€l€l
005 €l03 1.5000000
Q€l5 €lO4 2.ooooQ€l€l
€lQ5 005 2.50000€l€l

END OF PROGRAM

O.Q Q.Q
1.QQQQQQQ 1.QQQQOQO
4.QQQQQQQ 1. 4142135
8.9999983 1.732Q507
15.999997 1.9999999
24.999998 2. 236Q679
35.999994 2.4494896
48.999994 2.6457511
63.999993 2.8284271
8Q.999987 2.9999999
99.999978 3. 1622774
12Q.99997 3.3166246
143.99998 3.4641Q15
168.99997 3.6Q55513
195.99998 3.7416574
224.99999 3.8729832
255.99998 4. QOQQQQO
288.99996 4.1231057
323.99996 4. 24264Q7
360.99993 4.3588989
399.99993 4.4721357
44Q.99996 4.5825755
483.99994 4.6904155
528.99997 4.7958314
575.99995 4.8989793

.5QQQQQQQ .70710681

.5OO0QQQO 1.0000000

.5OO000QO 1.2247448

.5QQQooQQ 1.4142135

.5OOQQQQQ 1.5811388
1.QQQQOOQ .5QQoo002
1.QQOooOQ 1.QQQOooQ
1.ooQOQoo 1.4999999
1.ooQOQOO 1.9999999
1.oo00QOQ 2.4999999
1.500QQQO .35355339
1.5QQOQQO 1.ooQOooQ
1.5QooQoo 1.8371172
1.5OOQQOQ 2.8284271
1.5€lQooQQ 3.9528470
2.ooQooQ€l • 25€l€lO€l€ll
2.oo0oo0€l 1.€looo€l€l€l
2.OO€lO€l€l€l 2.2499999
2.oo€lQ€l€l€l 4. €lOOO€l€l€l
2.€l€lOOOOO 6. 25€l€l€l€ll
2.5Qooooo .17677670
2.5QO€l€lQQ 1.€loo€lQQQ
2.5€lOOO€lO 2.7556760
2.5€l€looo€l 5.6568545
2.5€loo€l€l€l 9.8821182

Test Problems 31

C

5

TEST PROBLEM 5
X = -20.0
DO 5 1= 1, 41
XP = X * X
XP = 400.0 - XP
Y = XP /10.0
PRI NT , X
PLOT (Y, *)
X=X+l.O
END

-20.000000
-19.000000
-18.000000
-17.000000
-16.000000
-15.000000
-14.000000
-13.000000
-12.000000
-11.000000
-10.000000
-9.0000000
-8.0000000
-7.0000000
-6.0000000
-5.0000000
-4.0000000
-3.0000000
-2.0000000
-1.0000000
0.0
1.0000000
2.0000000
3.0000000
4.0000000
5.0000000
6.0000000
7.0000000
8.0000000
9.0000000
10.000000
11.000000
12.000000
13.000000
14.000000
15.000000
16.000000
17.000000
18.000000
19.000000
20.000000

END OF PROGRAM

C TEST PROBLEM 6

C TEST OF SUBROUTINES -- SIN, COS, ATN
TEST = 0.0
DO 3 J = 0, 12
A = SIN(TEST)
B = COS (TEST)
C = A TN (TEST)
PRINT, J, TEST, A, S, C

3 TEST = TEST + .10
END

000
001
002
003
004
005
006
007
008
009
010
011
012

END OF PROGRAM

32

0.0
.10000000
.20000000
.30000000
.40000000
.50000000
.60000000
.70000000
.80000000
.90000000
1.0000000
1.1000000
1.2000000

0.0
9.9833414E-2
.19866932
.29552020
.38941834
.47942554
.56464247
.64421769
.71735608
.78332690
.84147098
.89120736
.93203909

1.0000000
.99500416
.98006658
.95533649
.92106100
.87758256
.82533561
.76484218
.69670671
.62160997
.54030231
.45359612
.36235776

C

1
2
3

25

001
002
003
004
005
006
007
008
009
010
001
002
003
004
005
006
007
008
009
010

TEST PRO BLE M 7
DO 3 J = 1, 10
READ, I, A
PRINT, I, A
PUNCH, I, A
PAUSE
DO 25 K = 1, 10
READ, I, A
PRINT, I, A
END

1.0000000
2.0000000
3.0000000
4.0000000
5.0000000
6.0000000
7.0000000
8.0000000
9.0000000
10.000000
1.0000000
2.0000000
3.0000000
4.0000000
5.0000000
6.0000000
7.0000000
8.0000000
9.0000000
10.000000

END OF PROGRAM

0.0
9.9668652E-2
.19739555
.29145680
.38050637
.46364761
.54041950
.61072595
.67474093
.73281509
.78539816
.83298127
.87605805

Page

Branch, IF Statement 14

Coding , , '" .. 12
Coding Sheet 12
Compiler .. 7
Computers, Communication with 6
Constants .. 11

Fixed-Point 11
Floating-Point 11

Constants•...................... 10
CONTINUE Statement 17

Data Input .. 28
DIMENSION Statement ~............. 22
DO Statement .. 14

Index Values 16
Nested .. 15
Rules ... 15

END Statement 17
Error Messages

Phase II ... 27
Phase III .. 29

Example Problem 24

Fixed-Point .. 10
Statement 11

Floating-Point 10
Statement .. 12

FORTRAN .. 7
Functions 12

GO TO Statement 14
GOTRAN ... 7

Advantages 7
Introduction 5
Language .. 10

IF Statement ., .. 14
Indexing .. 16
Input

Card , 18
Console Typewriter 19
Paper Tape 18

Input/Output Statements 18

Language
FORTRAN 7
GOTRAN 10
Interpretive
Machine .. .
Symbolic

Loading, Compiler
Paper Tape , ,
Punched Cards

Loading, Source Program
Console Typewriter
Paper Tape .. ,
Punched Cards

8
6
7

26
26
26
27
27
27
27

Machine Language 6
Mantissa. .. 11
Margin Settings 28

Index

Page

Mode of Arithmetic 10

Normalizing. .. 10

Object Program 7
Operating Procedures 26
Output Data Format 19

PAUSE Statement 17
PLOT Statement 20
PRINT Statement 19
Processor .. 7
Program Execution .. 28
Programming Systems

FORTRAN
GOTRAN

7
7

Interpretive 8
Symbolic .. 7

PUNCH Statement 19

READ Statement 18
Restart Procedures 29

Software. 5
Source Program 7

Loading '" , 27
Specification Statement 22
Statements

Arithmetic 11
Control .. 14
CONTINUE 17
DIMENSION 22
DO .. 14
END ... 17
Fixed-Point 11
Floating-Point ,......... 12
GO TO .. 14
IF ... 14
Input/Output 18
PAUSE ... 17
PLOT .. 19
PRINT ... 19
PUNCH .. 19
READ .. 18
Specification•......... 22
STOP .. 17

STOP Statement .. 17
Storage Arrangement 29
Subscripts 10, 12

Tab Settings 28
Test Problems 30

Variables
Fixed-Point 11
Floating-Point 11
Subscripted 12

1620 Data Processing System
Input Section 9
Logical-Arithmetic Section 9
Output Section 9
Storage Section .. , .. 9

33

(26-5594-1

International Business Machines Corporation
Data Processing Division

112 East Post Road, White Plains, New York J3

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34

