System/File No. 1620/1710-21
Form C26-5600-1

Systems Reference Library

IBM 1620/1710 Symbolic Programming System

This manual describes details of the 1620/1710 sps
Two-Pass Processor, namely, statement writing, opera-
tions and associated mnemonic operation codes, pre-
editing the source program, adding user’s subroutines
and macro-instructions, organization and operations of
the processor, formats of both uncondensed and con-
densed card output decks, operating procedures, and
special procedures. (condensed object deck alteration,
modifying the processor for additional storage, con-
denser program). A 7090 processor for assembling
1620/1710 programs is also described.

© 1962 by International Business Machines Corporation

This manual is written for the following 1M Program-
ming Systems:
1620-SP-020 1620/1710 SPS for card system
1620-SP-021 1620/1710 SPS for paper tape system
1710-SP-001 7090 Processor for Assembling
1620/1710 SPS Programs

This publication, a major revision of Form C26-5600-0,
makes the prior edition obsolete. In addition to incorporat-
ing information released in Technical Newsletters N26-
0007 and N26-0009, a significant change has been made
to the section “Listing the Uncondensed Object Deck” by
adding an 18M 407-E8 control panel wiring diagram.

PosT-PUBLICATION CHANGE Pace HisTory

Technical Newsletter N26-0026 has been incorporated in
this publication as directed by a new revision system.
Some of the principal aspects of this new revision system
are:

1. Changed or new text is identified by a vertical line in
the margin on revision pages.

2. New or changed illustrations are identified by a large
dot preceding the titles of figures or tables.

3. Each revision page number is dated for convenience
of filing.

4. Added pages, figures, or tables are numbered n.l,
n.2, n.3, etc.

The following pages were affected by the newsletter:

OLD PAGE NEW PAGE

1 (cover) 1 (revised 4/1/63)

2 (this page) 2 (revised 4/1/63)

3 {contents page) 3 (revised 4/1/63)

5 5 (revised 4/1/63)
17 17 (revised 4/1/63)
53 53 (revised 4/1/63)
86 86 (revised 4/1/63)
88 88 (revised 4/1/63)
98 98 (revised 4/1/63)
101 101 (revised 4/1/63)
104 104 (revised 4/1/63)
112 112 (revised 4/1/63)
113 113 (revised 4/1/63)
114 114 (revised 4/1/63)
115 115 (revised 4/1/63)
116 116 (revised 4/1/63)
117 117 (revised 4/1/63)

Copies of this and other IBM publications can be obtained through IBM Branch Offices. Address comments

concerning the content of this publication to: IBM, Product Publications Department, San Jose,

California

Contents

Page
PrEFCICE oo oot e 4
IBM 1620/1710 Symbolic Programming System 5
TOtTOAUCION .« o o v v ettt e e e et i e 5
Symbolic Programmingco.iieiiiaeeaes 6
Coding Sheetovvvvreeiii 6
Statement Writingt 10
SLALEIMENLS « v o v v e e v e ee e ettt iee et 10
Use of Special Characters in Statement Writing 10
OPErandsvoneinnee et 12
Types of Addresses Used as Operandsc..coovniiiiinins 13
Address Adjustment of Operandsot 15
Programming the 1620/1710 Using SPS 17
Declarative Operationsoooiueeinnannieenennns 17
Imperative Operationsoooeiiiiiiiin. 25
Control Operationsc..ooieiiireiiiiranneree e 36
1710 Imperative Operations oo 43
1620/1710 Subroutinescoovnaeiniieeiaiiiiiian, 45 -
Linkage and Macro-instructions oo 47
Sequence Numbering of Subroutines 50
Floating Point Arithmeticcovvieiinniiinnn 51
Subroutine Error Messagesot 54
1620/1710 Subroutines/Macro-instructions 56
Adding Subroutines. i 69
Inserting the Library Change Cardot 69
Writing the Subroutine oo 70
Incorporating New Subroutines in the Subroutine Deck 73
Adding a Subroutine to Tape SPS 76
1620/1710 Two-Pass Processor Program 79
Organizationiitoiiiniii 79
Paper Tape Processor Program.cooovnnn. 81
Card ProCESSOT . oottt ittt et e e s 82
Program Switches il 89
Error Messagesooiiceinen it 89
Error Correctionvuinvreeneneneneeioinrenannanns 90
Operating Procedurescooeviriiiiiiiiiiiinon. 92
Pre-editing the Source Program oo 94

Special Procedures for the 1620/1710 Two-Pass Processor... 95
Condensed Object Deck Alterations 95

Modifying the Two-Pass Processor for Additional Storage 96
Condenser Programccoiiiiiiiiiiiiiin 97
7090 Processor for Assembling 1620/1710 Programs.......... 102

Appendix: Sample Program Prepared by
1620/1710 Processoro.oueunuaeniiaunineiinnnns 104

Preface

The Symbolic Programming System is designed to simplify the preparation of pro-
grams for the 18m 1620 Data Processing System and the mm 1710 Control System.
The development of larger and more versatile data processing systems like the
1620 and 1710 has resulted in a greater number of, and more complex, machine
language instructions. The difficulties of coding in machine language — a tedious
and time-consuming task — have been recognized and one of the efforts at sim-
plification is the system known as Symbolic Programming.

The Symbolic Programming System permits the programmer to code in a sym-
bolic language that is more meaningful and easy to handle than numerical machine
language. sps automatically assigns and keeps a record of storage locations, and
checks for coding errors. By relieving the programmer of these burdensome tasks,
sps significantly reduces the amount of programming time and effort required.

This manual is intended to serve as a reference text for the 1620/1710 Symbolic
Programming System. It assumes the programmer is familiar with the methods of
data handling and the functions of instructions in the 1620 Data Processing System.
For those without such knowledge, information on 1620 and 1710 instructions may
be found in the 1M Reference Manual, 1620 Data Processing System (Form A 26-
4500) and the 18BM Reference Manual, 1710 Control System (Form A26-5601).

Source program

Advantages of SPS

Linkage instructions

Object program

SPS processors

Function of processor programs

IBM 1620/1710 Symbolic Programming System

Introduction

The 1620/1710 Symbolic Programming System may be divided into the symbolic
language used in writing a program, the library containing the subroutines and
linkage instructions (macro-instructions) that may be incorporated into the pro-
gram, and the processor program that is used to assemble the user’s program.

Symbolic Language

Symbolic language is the notation used by the programmer to write (code) the
program. The program written in sps language is called a “source program.” This
language provides the programmer with mnemonic operation codes, special char-
acters, and other necessary symbols. The use of symbolic names (labels) makes a
program independent of actual machine locations. Programs and routines written
in sps language can be relocated and combined as desired. Routines within a pro-
gram can be written independently with no loss of efficiency in the final program.
Symbolic instructions may be added or deleted without reassigning storage ad-
dresses.

Macro-instructions

The macro-instructions that are written in a source program are commands to the
processor to generate the necessary linkage instructions. Linkage instructions pro-
vide the path to a subroutine and a return path to the user’s program. These sub-
routines may be any of seventeen 1BM Library subroutines like floating divide,
square root, and arctangent; or special subroutines prepared by the user. The
ability to process macro-instructions simplifies programming and further reduces
the time required to write a program.

The source program is punched into an input tape; or into cards if the system
is equipped with the 1BM 1622 Card Read Punch unit. The source program, after
it is punched, together with the Library subroutines that are required, is assembled
into a finished machine language program known as the “object program.” The pro-
gram is self-loading (contains its own loader program) and can be run at any time.

Assembly is accomplished by the sps processor which is available in two forms:
(1) the 1620/1710 two-pass paper tape processor program, and (2) the 1620/1710
two-pass card processor program. Assembly may also be accomplished by using
the 7090 processor for assembling 1620/1710 programs. Preparation of the source
program is the same for all the processors. The differences between the latter
processor and the 1620/1710 processors are described in appropriate sections of
this manual.

The ses processor programs and the Library subroutines described in this
manual are available through your M sales representative. For distribution, the
card and tape versions of the 1620/1710 sps are numbered 1620-SP-020 and 1620-
SP-021, respectively.

The function of the processor programs is to translate the symbolic language
of the programming system into the language of the 1620. The translation is one
for one — the processor produces one machine language instruction for each ma-
chine instruction, except macro-instructions, written in symbolic form.

IBM 162071710 Symbolic Programming System 5

Definition

Operation codes

Define areas and constants

Instructions to the machine

Control the processor

Source language format

Field

Symbolic Programming

Symbolic programming may be defined as a method wherein names, characteristics
of instructions, or closely related symbols are used in writing a program. The core
of the symbolic language is the operation code. sps permits the programmer to
write (code) in a more simple, familiar language and does not require as detailed
machine knowledge because, in coding the program, the programmer uses opera-
tion codes that are in easily remembered mnemonic form rather than in the nu-
merical language of the machine. Operation codes are of three types: Declarative,
Imperative, and Control.

Declarative Operation Codes

Declarative operation codes are used for assignment of core storage for input areas,
output areas, and working areas. The assigned areas are utilized by the object pro-
gram and may contain the data to be processed and/or the constants (numerical or
alphameric characters) required in the object program when the data is processed.
Declarative statements never generate instructions in the object program, but may
generate constants that are assembled as part of the object program.

Imperative Operation Codes

Imperative operation codes specify the operations or instructions that the object
program is to perform. In this group are included all arithmetic, branching, and
input/output statements. Most statements on the coding sheet prepared by the
programmer are of this type. These statements are translated one for one and are
assembled as the machine language instructions of the object program.

Control Operation Codes

Control operation codes are commands to the processor that provide the program-
mer with control over portions of the assembly process. Instructions of this type
do not normally generate instructions in the object program.

The actual and mnemonic operation codes within these categories are pre-
sented under PROGRAMMING THE 1620/1710 USING SPS.

The statements or instructions in the source program must be entered by the
programmer, in logical sequence, on the coding sheet.

Coding Sheet

The programmer enters all information relevant to the coding of the source pro-
gram and subsequent assembly of the object program on coding sheet, Form X26-
5627 (Figure 1). Figure 2 shows a sample input card, Form J59692. The format of
the input card or paper tape record follows the headings on the coding sheet. In
paper tape, the first punching position of a record is said to be column 1. The card
columns assigned to a single heading are referred to as a field. Following is an
explanation of the headings in the order of their appearance on the sheet.

Heading Line

Space is provided at the top of each page for the name of the Program, Routine,
and Programmer, and for the Date. This information does not constitute part of the
source program language and is not punched.

Page Number (Columns 1-2)

A 2-digit page number is entered to maintain the order of the program sheets. This
normally numerical entry becomes the first two digits of each statement that is
punched from the sheet.

woyshg SunwwniGorg onoquhis 01L1/0291 WAL

L

IBM 1620/1710 Symbolic Programming System

®
Coding Sheet
Program: Date: Page No. L. of
12

Routine: Programmer:

Line Label Operation Operands & Remarks

3 516 11112 15116 20 25 30 35 40 45 50 55 60 65 70
gll lo 11 1 1 1 L 1 1 1 1 1 1 'l 1 - i] 1 1 1 AL A 1 1 1 1 1 1 1 1 1 A L 1 1 1 1 1 i 1 i i 1 s 1 A A 1 1 1 1 i 1 1 1 1 A4 1 1 1 1
0!2!0 1 1 1 1 1 L 1 1 1 L P 1 AL 1 1 1 L 1 1 | 1 11 N L L1 1 1 i 11 1 1 1 1) 1 11 1 1 1 1 L 1 1 i 1 1 1 1 11 Il i 1 1 1 1 1
0,30} : 4 1 1 ¢ P11 S TR U T NN TS N U0 AN U SN0 VO NN AN U TOF YN0 YN SN WA WA U NS SN VUNNY NN S SN NS UAS TN NS U NN SN NN TN SN WS S S T T NS SO T TN WO N G N O
044,00 3 ¢ 1 ¢+ ¢ T IR S A S ST S NN UNV T TN NS (NS Y S SA N U S SN S U VAN U S SN 100 NN NN N WO NN AT SN T S U TS W T S SN U T Y N S N WY S
olslo 1 1 1 11 1 1 1 1 i1 11 1 1 il j 1 1 L I 1 1 1 i 1 1 R | 1 1 1 J | i L1 1] 1 1 1 1 1 1 1 1 1 1 11 i 1 1 1 1 1 i
0[610 i1 1 1 1 11 1 i 1 L1 1 1 i | 1 1 L1 1 I & 1 § Y S | 1 i 1 11 1 1 1 1 1 11 L 1 1 1 i 1l 1 i1 1 1 4.1 1 L1 4] 1 1 1
0‘710 1 1 1 1 1 1 - 1 L | 11 1 | 1 1 1 11 1 1 1 1 1 i . & 1 i 1 11 1 1 11 1 1 I 1 1 i 1 1 I 1 1 111 ' 1 J 1 1 i 1 L1 1
olal0 1 1 1 1] 1 1 i 1 1 1 1 1 i S i i 1 L1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 L 1 1 1 1 i J] 1 1 i J. 'S 1 i i i1 1 1 1 1
019 0 1 4 1 1 L 1 1 1 1 j I N | i 1 1 1 1 L.l L i1 1 11 1. 1 1 1 1 1 1 1 1 1 1 1 1 i 1 1 b 1 i 1 1 1 1 1 i . 1_1 1 i i 1 1 | 1
10,08 4 3 1 1 [PO N N YO A U A N YT U0 U U WOA TN A TN WS AN TN U UUNNN T NN NN VU Y ST SO YUY TS VAU S T T S WA U N A OO0 W A N W W O W S S '
llllo 1 1 1 4 1 1 1 i 1 1 1 1 ' 1 F— 1 ' 1 i i i) | i 1 i U - 1 1 1] 1 1 i i 1 1 1 1 1 L i '\ 1 i 1 1 1 1 1 1 1 1 1 1 | S | 1 1 1
‘lzlo 1 1 1 i i 1 1 1 1 1 1 1 i 1 i 1 1 1 1 1 i i i 1 1 I 1 i A L 1 - 1 1 1 i 1 1 1 1 1 I 3 1 1. 1 1 1 1 1 i 1 1 1 1 1 1 1 1 'S 1 1
IlaAo 1 1 1 1 i 1 1 1 1 1 1 i | 1 i 1 1 1 1 1 1 1 'l 1 1 1 1 A 4 i 1 1 A d 1 1 1 i 1 i i i 1 1 1 I 1 1 1 1 L 1 1 1 ' 1 - 1 1 1 1
ll‘lo 1 1 1 1 4 1.1 1 i | 11 1 1 j O | | 11 1 11 11 1 A 11 1 1 i 1 1 1 1 11 1 1 1 1 1 1 1 1 1 U . | 11 | Ll 1 11
“slo 1 i 1 11 1 1 1 1 1 1 I | 1 11 1 1 J S | i J | 1 1 1 1 1 1 Al P 1 1 1 1 L1 1 _— 1 1 1 1 1 i | i 1 1 1 1 N 11 1 1 1 1 1
156,00 4 4 4 1 Lt PR U T U O N0 U U Y NN WA N WA TS SN NN UYWAY SN SN YA WA WA AN SR S SO SN U WY SN AN N SN S S WY SN UL WU SN U T G SO W WA Y S W B
1,7,00 4 1 2 11 L1 [TN T N U T NN Y Y VNN Uh VO T U T ST SN TS VRIS TN U N A TN NN NN NN WO NN N0% SN NN ST U WS TN NN NN SN WA U NN N U N T N WS UG W B
1,800 4 4 4 1 L4t O R T T N N S A T S U N OO YA NS WA VN T WO NN USR0S NN OIS0 WY SN VO NN TN (N S WA S SN WA WU U UOU SN (S N T N N D N U SN S U S B
1,9,08 4 4 1 11 L1 T U TR N N T N VNN N N0 Y TN U S TS VU WY WA DU NN VA SN WA AN N U (NN NN VAN T NS W N U I S NS TS SO S W S S G W WD WO WS A
2,0,0}0 1 3 14 1 L1 SO T S N T T N NN E U WO N WY N0 N W U TS N GHS U S TS TN U U 0N RS W G GG N TS N N NN NN YU U SHN [N S WA W Y S5 WD S WO W'

i1 T I P11 IO N U U N S B S SN S SN U N Y NEAE U TN VA WA NN NS WA NN SEA SN N VN SN UOU SO T TN NS TN A T NN TN U U SO VO U N 0 SN W S W B

11 TR | SO | TR N U T U0 N U NV S N T N S Y NS TV TN UG VO T SN SN SR WA WS N N VUG U N N WA N TS N W NN Y WSO (N U T N N N IS S O v

1 O | 111 PRSI TR AN A5 AN NN NS NN NN T U T NN SO SN U A AN S0 N TN TN TN TN VOUNY NN TN Y T (N U N VO O T T W N W W S W W v B X

11 R N 14l U N N U U 0 N U N0 U N U0 S U5 U TR S AN N T N YOS NN T TN WO WA TV M S S T S VA VA A0S S WA N U W W T U Y WO A

11 [R B [IR R U U N N N 0 N0 N6 Y U N N0 U TG T N T G WA G N U WO S0 TN WA A S NN N S NN 1O Y U W S W VN Y W B A 0 W A

11 111 11 111 PR T TN U S T ST N N U S WY WANN SN S N UG WS NN U TN SN VAN TS SN TN T YA TS SN SN YU WA (SN SN NS NN U S A VA U W W WS W W

Figure 1. 1620/1710 sps Coding Sheet

Sequencing source statements

Length

Best labels meaningful

Four-position field

Mnemonic or actual,

left-justified

AGE| LINE [LABEL | OPER._| OPERANDS AND REMARKS |

PAGE [UNE | LABEL OPER. | OPERANDS AND REMARKS

0000000{0000{0000000000000000000000000006000000009006000000000000000020 00,
SIETANONRNUBHIBNDANDUZBRDANNNLRINSBTBNDOQOUGSH IO 5255055557 W N0 20 ST NN N 12 7H |
IR RN R AR R R R R R R R R R R R A R R R R R R R R R R R R R AR AR R R R R R R AR R R AR R B
221222222ZZ22222222222221222ZZ222222222212222212222122112222222ﬁ12122222222
33(333333333)333 IBM 1620 SYMBOLIC PROGRAMMING SYSTEM CARD Imnmm
A4 AT I Tt s Tt asda a0 440
555555/5555/555555555555555555555555555556555555555555555555565555555555§

§66E666EE606F66666666666666866]

OPER. | OPERANDS AND REMARKS

$999599996/9999999999999999999998999999999989838 9999909999999999999949,
HBRTNBOLQOY s

TN UBET ANAARNANBATABNN NN HNAARNQROUBRINION 2N

Lw
fw

o J59692

Figure 2. sps Source Program Card

Line Number (Columns 3-5)

A 3-digit line number is entered on the sheet to maintain the sequence of the state-
ments coded. The first 20 lines on each sheet are prenumbered 010, 020, 030, etc.,
through 200. At the bottom of the sheet, six nonnumbered lines are provided for
inserts or for continuing the line numbering. The inserted statement should be
numbered so that it falls sequentially between the statements immediately preced-
ing and following it. The arrangement of the prenumbered lines, 010, 020, etc., per-
mits up to nine statements to be inserted between any two statements. After the
cards for each of the lines are punched, they should be placed in correct numerical
order.

Label (Columns 6-11)

The label field represents the machine location of either data or instructions. The
field may be left blank or may be filled with a symbolic address. Only the data or
instructions that are referred to elsewhere in the program need have a label.

A label may consist of up to six alphameric characters beginning at the left-
most position in the label field. At least one of the characters must be alphabetic
or one of four permissible special characters, namely, the equal sign (=), shilling
symbol (/), at sign (@), and period (.).

The best labels to select are those that are mnemonically descriptive of the
area or instruction to which they are assigned. Labels that have an obvious mean-
ing not only provide easily remembered references for the original programmer
but also assist others who may assume responsibility for the program.

Operation (Columns 12-15)

The four-position operation field contains the actual two-digit numerical operation
code or the mnemonic representation of the operation code to be performed. If the
first character is numerical, no check of the operation code occurs and the numeri-
cal parts of the two-digit internal representation of the first two characters is taken
as the operation code; that is, if the programmer writes 4BNF, the resulting opera-
tion code is 42. In either case, the first character of the operation code must start
in the leftmost position, column 12, of the operation field. Listings of permissible
mnemonic codes and actual operation codes are shown under PROGRAMMING THE
1620/1710 usinG sps. :

If declarative

If imperative

If control

Operands and Remarks (Columns 16-75)

The operands and remarks field is used to specify the information that is to be
operated upon and may contain, if desired, any additional remarks concerning the
statement.

For declarative operation statements, the first operand usually defines the
length, the remaining operands, if present, specify constants, an address, and re-
marks.

For imperative operation statements, the operands and remarks field contains,
at most, four items: three of these are pperands and the fourth, remarks. The first
two operands may be the symbolic or actual addresses of data or instructions, the
P and Q portions of the instruction. The third operand, which should be numerical,
is called the flag indicator operand and is used to set flags in the assembled instruc-
tion. The final item consists of the remarks associated with each statement. Impera-
tive statements need not contain all four items. Any one or more, than one may be
omitted. The two special characters which may not be used in an operand are the
close and open parentheses,) (.

A control operation statement normally consists of only one operand.

IBM 162071710 Symbolic Programming System 9

Statement Writing

Rules

Types

Elements
Length

Use
Item
Items in imperative statement

Comma in place of
omitted item

Commas. before remarks

No commas if last item(s)
omitted

10

Certain rules must be observed in writing or coding the statements that make up
the source program. This section contains rules that apply to the statements and
their elements, rules governing the length and types of statements, use of special
characters, the flag indicator operand and immediate (Q) operand, types of ad-
dresses used as operands, and address adjustment by arithmetic, a method that
relieves the programmer of considerable effort and reduces the number of symbols
required for a source program.

Statements

Symbolic statements are classed according to the operation code they contain, and
thus are designated Declarative, Imperative, or Control statements. In addition to
the page and line number, a statement may contain a label, operation code, oper-
ands, and remarks. No statement in the source program may exceed 75 characters
in length. Since page number, line number, label, and operation require 15 posi-
tions, the operands and remarks field may not exceed 60 characters. In the case of
the paper tape sps, the end-of-line character is considered to be part of the oper-
ands and remarks field.

Use of Special Characters in Statement Writing

The comma, asterisk, end-of-line character, blank, at (@) sign, and dollar sign are
special characters which possess distinct meanings in the writing of source pro-
grams. Their use as well as that of the special characters used as operators for
address adjustment are explained in detail in this section.

Comma

The comma is normally used to separate items in a statement. The term item refers
here to parts of the operands and remarks field, such as the P and Q operands, the
flag indicator operand, remarks, length, constants, etc. An imperative statement
may consist of four items: the P and Q operands, the flag indicator operand, and
remarks, but need not contain all four items. Any one or more than one may be
omitted.

If one item is omitted and more items follow, the comma that normally follows
the omitted item must be present. For example, if the flag indicator operand is
omitted but remarks are present in the instruction, the format of the field will be:

Line Lobel Operati Operands & Remarks
3 s|e nhiz 1816 2 ¥:] X 35 4 45 0 5 50 4] » 2
g0) ...'1‘.1"..l LTA X, s SMIT LUE, OF ,INC NTE) , e,

M

All imperative statements that contain remarks must include three commas
in the operands field, even when the operands are omitted. During assembly, the
omitted P or Q operands will be replaced by zeros in the P or Q portion of the
assembled instruction.

Commas indicating omission need not be present in statements in which the
last item(s) is omitted. For example, in the statement in which both the flag indi-
cator operand and remarks are omitted, no commas need be used following the
second operand.

Indicates comments

As first character or term(s)
of an operand

In address adjustment
for multiplication

For paper tape

Not for cards

12-5-8 code

Ignored except in DAC
statements

Line Labet Operati Operands & Remarks
3 516 nh? 15118 20 5 30 35 40 &] $5] [70 78]
TE ‘D.E‘LT.AXLL@

0,100 4 1 4

Examples

Line Labei [Operatior Operands & Remarks

3 516 1112 15016 2 25 30 35 4 45 50 55 40 3 bl 78,
ool oo |, HALT JINSTRUCTIONE .\ . 00000 et
ool o 116352.,17.865. . ADD FACTOR B ,TO FACTOR A® .\ . v ivaiiia,

Statement 010 which is a halt operation requires three commas (,,,) in front
of the remarks, to take the place of the P, Q, and flag indicator operands. In state-
ment 020, the first two commas set off the P and Q operands, whereas the third
comma takes the place of the omitted flag indicator operand. The number of com-
mas required for declarative statements may be one or two as explained under
DECLARATIVE OPERATIONS.

Asterisk
The asterisk has three uses: in writing comments (only), as an operand or term
of an operand, and in address adjustment.

Lines of descriptive information may be inserted in the program by placing
an asterisk (*) in column 6 of the label field. Comments then may be written in
columns 7 through 75. Comments inserted in this way will appear in the symbolic
output, but will not affect in any way the operation of the program. A comment
statement does not produce an entry in the object program.

Line Label Operoti Operands & Remarks
3508 N2 15016 2 i1 30 3 4o 4 £l 5 Q@ (1] n)
9,10 *RE, WRIT,T, H O AS] IBE T

.................... M S YOI N NN ST S U U U S0 W S S 00 T T S0 S S0 U WA W TV S S W
il

Coal*, MATN PROGRAM FOLLOWS STARIE.

PRI PR S U TN T WV UN SN T T S ST T GO T T U U T S S S W B W B S

Statements 010 and 020 are remarks that do not generate instructions.

The asterisk is used as the first character or term of an operand in an impera-
tive statement and is interpreted by the program as the address of the high-order
(leftmost) position of the address of the instruction. It may be used as any term
of the operand to indicate the high-order (leftmost) position of the address of
the instruction.

When the asterisk is used in address adjustment as an operator, it indicates to
the processor that a multiplication must be performed in order to adjust the address.

End-of-Line Character

An end-of-line character @ is required on source statements that are to be proc-
essed on paper tape. Use of this character allows statements to be located on the
tape immediately adjacent to each other, with no intervening blank characters.
The statements are in “free” form; that is, they are not assigned a fixed number of
positions.

Source statements that are to be processed in punched card form do not require
an end-of-line character; the remainder of the line is left blank and this is recog-
nized by the processor as the end of the statement.

When the end-of-line character is punched in a card for off-line conversion to
paper tape, it is represented by a 12, 5, 8 punch combination.

Blank Character
A blank character in operands of the source statement is ignored by the processor
except in DAC statements (alphameric constants), in which blanks are considered

Statement Writing 11

No blanks in flag indicator
operand

As a constant

Signal to processor

Must be sequential

Omitted flag indicator operand

12

valid characters. In effect, the statement is condensed before it is processed.

Because blanks are ignored by the processor, the programmer, to achieve
clarity on his coding sheets and output listing, may write his statements in modified
“fixed” form.

Line Labe! i Operands & Remarks

10 112 15016 20 3) 35 4 45 50 55 © & n be]
010f8W2, , JB, ODDUNE . . e e
ozl o A JAREA oy 00y, TEMP-4 L, N SN FO+FNE , ., .
ouof* INITITALNZATION, FOR FSUBODDE \ v v vttt oy ittt e ittt taieis
ool oy o TR XSUBNG o0 DELTAXE L e e i
LIN) JTEM MULTI 0, 000 o800y o, P ¥ |
60080 40 5 3 TS I STV S T S S S ST I N S SO ST I A U SR A N
0, 2,0f 440y T.F . C‘_M..H..-‘....H-ﬁ..z@_u.”... P A S WA O I AT I AT O A AT S A A
Y% TR TEMPS,, 00y oo o DBLTAXE 00
o"loll“lAl‘TlElM—P‘iu—LI—‘—I—LLLI—LdLLLL_Mé@_A_LJi‘“"J|“|‘A||||“|.|J||.Jl||
ool oy B ASINE-3XAUE L e e
1,1,0]ODDVN, |A , . [ACCUM. e TEMPA® ., NP
ool iy A IXSUBNG Ly TEMP3® i,
vaol C . (XSUBN, e UNINESE) e
weol oy IBNH ASINE=SSIUE) o ooy e e i e
1,5,0|MULT, ACC!LI_&E) P N AT W A S S I PN
14840 88(E) \ o\ o, N A S S A A W

In this example, columns 16, 36, and 57 are arbitrary choices for the locations of the
operands. The comma following or replacing the P operand may be in any column
from 16 through 35; the comma following or replacing the Q operand must be in
column 56, the position preceding the flag indicator operand.

Blanks are not permitted within a flag indicator operand. For paper tape in-
put, this operand must begin immediately following the second comma and must
be immediately followed by a comma or end-of-line character. For card input, the
flag indicator operand can be followed by a comma, record mark, or blanks in the
remainder of the card. A blank or blanks in the address operand of a declarative
statement, when set off by commas, is interpreted by the processor as a zero address.

“At” Sign
When the “at” sign (@) is used as part of a constant being defined by a pc, psc, or
DAC statement, a record mark (=) is created by the processor and inserted into the

constant in place of the @. Specific rules for use of the @ are covered under pe-
CLARATIVE OPERATIONS.

Dollar Sign

The dollar sign ($) is used in an operand to instruct the processor that the symbolic
address in an operand has a specific heading character. The $ is written between
the heading character and the symbol. For example, in an operand the heading
character “5” and the symbol “sum” appear as 5$sum. For additional information
on the use of the $, refer to HEAD - HEADING in the Control Operations section.

Operands

Flag Indicator Operand

The flag indicator operand specifies the positions that are to be flagged in the as-
sembled instruction. These positions are numbered from left to right, 0 through 11,
and must be listed sequentially. For example, if positions 2, 7, and 10 are to be
flagged, the flag indicator operand should be coded 2710, not 2107. All positions
may be flagged, if desired. The operand then will be coded 01234567891011 and
must be written in that order.

Normally no flags are set when the flag indicator operand is omitted. How-
ever, if the flag indicator operand is omitted from all immediate instructions, ex-

In indirect addressing

With immediate instructions

Q: automatically flagged

Exception: TDM

Length

cept TpM, a flag is automatically set in position Q.. If the operand is present, only
the positions indicated are flagged.

The flag indicator operand can be used to insert a flag over the units position
of the P and Q addresses, if the source program is written for a 1620 or 1710 that has
Indirect Addressing (special feature).

Immediate (Q Operand)

With immediate-type instructions such as Add Immediate (aM), Subtract Immedi-
ate (sMm),and with actual operation codes that begin with the digit 1, the Q oper-
and represents the actual data to be used by the instruction. It may be absolute or
symbolic as previously defined. High-order zeros of absolute data may be elimi-
nated,

During assembly, the processor automatically places a flag over position Q-
of an immediate instruction unless a flag indicator operand indicates otherwise. For
example, the statement :

3 5i6 iz 15116 0 el 30 3 4« 45
0,10 PP T.OT, 1.0,0.2,3

Line Labe! IOperati Operands & Remarks
0 35 & (] 0 73]

causes the numbers 10023 to be subtracted from the field called ToTaL because the
flag that terminates the field to be subtracted is automatically placed over position
Q-. However, the statement

3__sle 12 15{16 2 23 0 3 40 4

Line Lobe! atiol Operands & Remarks
) 55) & n 73

U] TOTAL, 10023, LOE) , 0o vw v v v e e

will cause only the number 93 to be subtracted from the field called ToTAL because
the flag indicator operand directs that the field-terminating flag be placed over po-
sition Q,, rather than Q. There is one exception to this rule: a transmit digit imme-
diate instruction (TpM, code 15) does not require a flag; therefore, none is auto-
matically set by the processor.

Types of Addresses Used as Operands

Operands assembled by the processor may be of three types: actual, symbolic, and
asterisk. The individual applications for a particular type of address are described
in the section PROGRAMMING THE 1620/1710 USING SPS.

Actual Address

An actual address consists of five digits 00000-19999 for a standard capacity ma-
chine and is, as the name implies, the actual core storage address of a piece of data
or an instruction. High-order zeros of an actual address may be eliminated. For ex-
ample, the statement

Line Lobel IOperati Operands & Remarks
3_sls nhz sl 2 5] 3) s 50 55) I3 » b3

PRIV B s 13.6‘8.4...1.2.2.5@

.................

causes the data in storage location 12251 to be added to the data in storage location
03684.

Statement Writing 13

Must be defined elsewhere

Length

As prefix to imperative operand

As prefix to declarative or
control operands

14

Symbolic Address

A symbolic address is the name assigned by the programmer to the location of an
instruction or a piece of data. A symbolic address is valid only if it is defined (given
an actual numerical value) by a declarative statement somewhere in the source pro-
gram or if it is used as the label of an instruction. Symbolic addresses may contain
from one to six characters (letters, digits, or special characters) with the following
restrictions:

a. At least one character must be nonnumerical.

b. The only permissible special characters are: equal sign (=), shilling sym-

bol (/), at sign (@), and period (.).

It should be noted that blanks have no meaning within a symbol because they
are eliminated during assembly.

The example shown below contains both an actual address and a symbolic ad-
dress.

Line Label peration) Operands & Remarks

3 sle Wz she 2 2 30 » o 4 0 55 @ 3 » 75)

) A OTAL,L225ME) 0 0 o0 vy v iy ey e NI
[OTAL. 12251

In this example, the data in the field whose actual address is 12251 is added to a
field whose address is the symbolic name TOTAL.

Asterisk Address

When the asterisk is used as the first character of an operand in an imperative oper-
ation, it is interpreted by the processor as meaning the address of the high-order
(leftmost) position of the instruction itself. For example, the statement

Line Label [Operation} Operands & Remarks
3 iz she % 2 30 » © 5 % 55 @ & n 73]
ol vy JBNF ISTART.MB, SR R e

1

indicates to the processor that the Q portion of the instruction should contain the
address of the instruction itself. This instruction is assembled as 44 01234 01876
where START equals 1234 and the address assigned to the instruction is 1876. Thus,
when executed in the object program, this instruction examines its own leftmost
position (1876) for a flag and either branches to the instruction at location 01234
or continues, on the basis of the examination, to the next instruction located at
01888.

When an asterisk (*) address is used with either declarative or control oper-
ations, it refers to the rightmost position of storage last assigned by the location
assignment counter of the processor — not to the leftmost character of the instruc-
tion. For example, the statements

Line Label JOperatién Operands & Remarks :|

3 516 112 15]16 20 25 30 35 40 45 50 55 0 45 0 be)
ol L, T.;F.m_l.gggﬁ..wo.o.g@ . . A

) DC 1.@.) ., ., L e e e, i R

produce the instruction

16120457000

Used with all types

Math operators

Size of operand

Multiplication performed first

Size of results

Addresses limited to storage
capacity

Caution

Since record marks can be defined only in declarative operations, an imperative
statement should be followed by a pc statement when a record mark is required
in the instruction. The rightmost position of the instruction is the rightmost position
of storage last assigned; therefore it is also the position where the == (constant)
is stored.

Address Adjustment of Operands

Address adjustment is used to tell the processor to arithmetically adjust the ad-
dresses in operands. It is permitted with all types of addresses: actual, symbolic,
and asterisk, and is used to refer to a location that is a given number of positions
away from a specific address. Use of this feature of the language reduces the num-
ber of symbols necessary for a source program. '

By writing a + (plus sign) for addition, — (minus sign) for subtraction, and
* (asterisk) for multiplication, immediately after the first or subsequent term of
an operand (an asterisk as a term of an operand does not represent multiplication
but means the address of the instruction, as previously explained), the programmer
indicates to the processor that the address is to be adjusted. . x

Arithmetically adjusted operands may take the form of a A =B = C = D,
where the terms A, B, C, and D may be numerical quantities. The number of terms
in the operand is limited only by the size of the operand and remarks field. Thus
the operand A + B * C — D may be further adjusted by writing after the last
term another term, E, e.g, A+ B*C —D + E.

In arithmetically adjusted operands, the operation or operations of multi-
plication are always performed first, followed by the addition and subtraction
required to calculate the adjusted address. Intermediate results that are greater
than 10 digits, or a final result (adjusted address) that is over 5 digits, cannot be
calculated by the processor.

For the 1620 with standard storage capacity (20,000 storage positions), ad-
dresses that exceed 19999 are considered errors; however, they will not be de-
tected as such. Therefore it is possible with a standard capacity machine to assemble
an object program for a machine with 40,000 or 60,000 positions of storage. For
machines that have 40,000 or 60,000 positions, the processor can be modified to
use the additional storage to enlarge the size of the symbol table, as explained
later. In that case, addresses that do not exceed 39999 or 59999, depending upon
the storage capacity, are considered valid addresses.

In using address adjustment, the programmer should be careful that insertions
or deletions do not affect the adjusted address. For example, if a P operand in a
branch (B) instruction refers to an address as * +48 (i.e., branch to the instruc-
tion that follows the next three sequentially higher instructions), the programmer
must ensure that no new instructions are introduced within the three instructions
to make the * 48 incorrect. In this example the asterisk (*) is the leftmost
position of the instruction itself.

Examples

Line Label peralion| Adjusted Arithmetic

3 5]6 1z 15[16 20 25 30 Address 55 80 65 70 75)
00} oyl JALPHA-40, , . 01040 == 1000 ~ 40 e e
02,0 44y . JALPHA-30, . 00970 = 1000 - 30 L L L

030l vy JALPHA+2*L ., | 01008 == 1000 + (2x 4) N ST A Y SR S
040 v oy iy JALPHA®S . 03000 = 1000x3 L G L -
ool vl JJALPHAXL, o, . 04000 = 1000x4 L i

0ol il 1500-20%3 -1, 00549 === 500~ (20x3)-11 e

ool i e, J100%5520 %311, 00549 = (100x5)+(20x3)-11 1.
LI U OIS L B0 Loia 02012 = 2000+ 12 . RS R
09.0) vy b FEBR2L " 12000 = (2000 x 3) x 2 [P S AP AT S S I GV I QIR SR

Statement Writing 15

To conserve storage

Indirect Addressing

16

The operands shown will produce the adjusted addresses, as indicated, provided
the location 1000 has been assigned to the symbolic address aLpHa, the location
4 has been assigned the symbolic address L, and the instruction location (*) is
equivalent to 2000.

In some instructions such as the branch instruction, the Q address is not used,
although a zero (00000) address is generated. Thus the instruction uses 12 storage
positions. By using an * address in the following statements

Line Lobel i Operands & Remarks
3 sle nlz__sh 2 5 30 3 o 5 5 $5) & n 7

0.0.0) 4y B...1‘3.6.6.§®‘.”........‘...LAL.L...
ool DORG®: -3 e e e
0,3,0|NEXT, ITFM [120458,700008 , .\ 0000 n i e

the instructions are condensed, to eliminate four positions of the unused (zero)
Q address, and are stored as

49136680161204570000
whereas the statements
Line Labet ration} Operands & Remarks
3 Sl¢ N2 15418 2 25 3 3 4 45 0 55 & 4 b] x5
0,1,00 4 4 4 o B .. 1.3@6.5@ S SR S
o.zoN.E.X.T..T‘FML1204§,,7000.@”.. M S A PRI AR S A SO

are stored as
491366800000161204570000

because the unused Q address is not eliminated. In the first example, only four
positions of storage are saved; however, a considerable amount of storage can be
saved in a program that contains many instructions where the Q or both the Q and
P portions of instructions are unused. Because the * in the DORG statement (see
CONTROL OPERATIONS) refers to the rightmost position of storage last assigned (Q.,
of the B instruction), * —3 is the address where the next instruction starts.

By placing a minus sign in front of the first term of an operand, a flag (minus
sign) can be inserted over the units position of the adjusted address. This feature
of address adjustment can be used for inserting flags required for Indirect Ad-
dressing (special feature). However, an operand written as —0 (minus zero) does
not insert the flag in the units position over the zero. When the minus sign is
written in front of the first term in order to set a flag over the units position, other
signs following the first term should be reversed so that the correct address is
obtained.

Assign storage areas

Not executed in object program

Placement in source program

Declarative codes

Assigns numerical values
to labels

First operand defines length

Programming the 1620/1710 Using SPS

This section describes in detail the various steps to be followed in writing a program
for the 1620 or 1710 using sps. The material has been divided into three categories:
Declarative Operations, Imperative Operations, and Control Operations. The im-
perative operations that apply to the 1710 only are described under 1710 IMPERA-
TIVE OPERATIONS.

Declarative Operations

In programming the 1620, all records and any other data that is to be processed
by the program must be assigned storage areas. Normally, all records and data to
be processed consist of fields of known length and arrangement. Unless otherwise
specified, areas are automatically assigned core storage locations in the order in
which they appear in the source statements.

To assign addresses for instructions, constants, etc., the processor uses an
address assignment counter. This counter is adjusted for each assignment made by
the processor. If an address is assigned by the programmer, the counter is not
adjusted.

The declarative statements provide the object program with the input/output
areas, work areas, and constants it requires to accomplish its assigned task. These
statements do not produce instructions that are executed in the object program.
The entries, ps, pss, pAs, and DsB assign storage. The entrief, DC, DSC, DAC, DSA, and
pxB usually assign storage, and also produce, in the object program, both the
machine address of the area assigned and the constants that are to be stored in
this area. Constants are then loaded with the object program.

Declarative statements may be entered at any point in the source program.
However, these statements are normally placed by themselves, preferably at the
beginning or end of the program — not within the instruction area. If not placed
at the beginning or end, the programmer is required to branch around an area
assigned to data so the program will not attempt to execute what is in a data area
as an instruction.

The declarative mnemonic operation codes and their description are as follows:

Code Description
DS Define Symbol (Numerical)
DSS Define Special Symbol (Numerical)
DAS Define Alphameric Symbol
DC Define Constant (Numerical)
DSC Define Special Constant (Numerical)
DAC Define Alphameric Constant
DSA Define Symbolic Address
DSB Define Symbolic Block
DNB Define Numerical Blank

DS — Define Symbol (Numerical)
A ps statement may be used to define symbols used in the source program (ie., to
assign storage addresses or values to symbolic addresses or labels) and to assign
storage for input, output, or working areas. A ps statement does not cause any data
to be loaded with the object program.

The length of the field is defined by the first operand. This operand may be
an absolute value or a symbolic name. If a symbolic name is used, the symbol must
previously have been defined as an absolute value, that is, it must have appeared

Programming the 1620/1710 Using SPS 17

Second operand specifies
storage address

Defines symbol without
reserving storage

Defines field length only

For defining input/output
storage, numerical

18

in the label field in a statement of the source program preceding the one in which
it is used. Address adjustment may be used with this operand.

The address in core storage of the field being defined may be assigned by the
programmer or the programmer may let the processor assign the address. If the
processor assigns the address, the statement is terminated after the first operand.
If the programmer assigns the address, a second operand, which may be symbolic,
asterisk, or actual, is used to establish the address of the field. Since data fields are
addressed at their rightmost (low-order) digit the processor assigns this position
as the address of the field. Address adjustment may be used with the second oper-
and. If the second operand is symbolic, it also must previously have been defined.
Addresses assigned by the programmer do not disrupt the sequence of addresses
assigned by the processor.

A Ds statement may also be used to define a symbol, without assigning any
storage, i.e., to define it as an absolute value. In this case, the first operand is
omitted (or written as 0) and the second operand represents the value (may not
exceed five digits in length). The second operand may be an actual value or a
previously defined symbol. To define storage which will not be referred to sym-
bolically, the label of the ps statement may be omitted.

The following statements define the field length only. When remarks are
added to the statement, the field length must be followed by two commas.

Line Label i Operands & Remarks

3 sls vz she 2 5 » 3 % 4 50 55 '] & n j
2, 9DELTAXIDS, , (1B, . N S A N N N I
B S e S Y S S S S B A S A R A S T P SN
0,2,0 E.L.TAQDS T, WO, CO S, R, U1 D,_W, E, S, I LU

In the next example, the programmer assigns the address of the field and ex-
cludes the field length (the first operand) from the statement because it is without
significance, replacing it with a comma. The following statements cause the proces-
sor to associate the address 12930 with the label sum:

Line Label [Operati Operonds & Remarks

3_sls nhiz _ ishe 2 % . s) s 5 55 & 3 n j

g,lglsllM DS, L2880 ey
..... S S e L

0,2,0f8 ADSIA-lllzxglaloxnmwwwﬂm_.ntllIIIAIAAlllllel:l

Again, in this example, two commas are required when remarks form part of the
statement.

The following statement which is similar to the one previously given is assigned
a value that is other than an address.

Line Lobel i Operands & Remarks
3 s uha sl 2 3 % 3%) I 5 58) I 7 L)
QEL 'D.S. . '-.1.7.. ELELD LENGT.H .USED, BY SUBSEQUENT, ,STAT.E, T

This statement defines the symbol rL as being equivalent to the value 17, Subse-
quent uses of this symbol are permitted because the symbol has been defined.
It should be noted that an area defined by the processor for a ps statement is
always addressed at the rightmost position. However, to use this area for input/
output, the leftmost digit must be addressed. This is done by using a pss statement
in place of a ps statement or by address adjustment with a bs statement, which

Defines input/output storage areda

Length automatically doubled

Address always odd-numbered

For defining input/output
storage, alphameric

Three operands

Three commas

subtracts a number that is one less than the length of the area from the address
of the area. In a previous example, where DELTAX was defined as having a field
length of 7, the operand of another instruction that read numerical data into the
pELTAX field was written as DELTAX—B6.

DSS — Define Special Symbol (Numerical)

The pss statement is similar to the ps statement with one exception: when the sec-
ond operand is omitted, the processor assigns the leftmost position as the address
of the field. If a second operand is assigned by the programmer, this address is
assumed to be equivalent to the leftmost position of the field. A pss statement is
normally used to define a storage area for input/output. The data in such an area
may be moved during execution of the object program by a transmit record instruc-
tion which requires that an address assigned to an area must be that of the leftmost
position.

DAS — Define Alphameric Symbol
The pas statement is similar to the ps statement with two exceptions:

1. The length specified by the first operand is automatically doubled by the
processor to allow for alphameric data. Each alphameric character requires
two storage positions.

9. The address of the field, if generated by the processor, is the leftmost posi-
tion of the field plus one. The position is always odd-numbered, as it must
be with any alphameric field.

The following éxample illustrates a pAs statement.

Line Labet i Operands & Remarks

3 516 112 1511 2 g :] 0 35 40 4] 5 o [} »n 75}
W 1offITLE DAS [30@ ., . . 00 vvui e i i i

N N R S U e e P SN
o0,7,0[T,1LTLE {DAS, |30, EQUIRE T, i Liaa iy RS eET

This statement defines an area for input/output that can contain 30 alphameric
characters. The processor assigns 60 positions in core storage to accommodate
alphameric coding. The output listing indicates this by typing 30 when this state-
ment is assembled and listed. The omission of the second operand causes the
processor to assign an address. During internal transmission of a field which utilizes
an input/output area that is defined with a pas, the area must be addressed at its
rightmost position. In the example, the address may be achieved through address
adjustment, i.e., TITLE+2*30—2.

DC — Define Constant (Numerical)

The pC statement may be used to enter numerical constants into the object pro-
gram, and, for ease of reference, to assign names to the constants. The label field
contains the name by which the constant is known. pc statements consist of three
operands. The first operand indicates the length of the constant field; the second,
the actual constant; the third, the storage address of the constant. The third oper-
and is not used when the programmer prefers to let the processor assign the storage
address. The assigned address is the rightmost storage position of the constant.
The leftmost storage position is the position over which the processor places a flag.

Whenever remarks form part of a pc statement, three commas must be included
in the statement. The first and third operands may be symbolic or actual. They are
subject to address adjustment. A symbolic address must previously have been de-
fined to be valid.

Programming the 1620/1710 Using SPS 19

Length

Constant

Sign
Flag

Record mark

20

If the first operand (length of constant) is smaller than the constant, an invalid
condition results. If it is larger than the constant, zeros are inserted to the left of
the constant so that the number of zeros plus the number of positions in the con-
stant equals the length of the field (first operand).

A constant that is a positive number will be stored in the form of an unsigned
integer; a negative number, in the form of a signed integer. A negative number has
the minus sign written in front of the constant as part of the second operand. Dur-
ing assembly, a negative number produces a flag (minus sign) over the units posi-
tion of the constant.

If the constant 0100000 and —0004337769 are required, they may be defined
as follows:

Line Label Operatio Operands & Remarks
3_sls] » 2 £ © s 50 &5 ') ']] j
LoCONSTADC, 47.,.0000008 . . 0 00 e
AT I P e e
9.2.0/CONSTADC, . 17.,.1,0,0,0,0,0,.,,] NCLUDE, .3, ,GOMMAS, FOR REMARKS® o .\ 000y, s
T IllJllllllllll‘Alll‘llllJllllklAAlll|lL4JnlAnAhl|llllA llllllll
2.3,0/CONST2IDC, , 11,00,-433 77880 o1 00 vu vy e e
0.4.0/CONST2IDC, , [10,,,-4337.769,, . INCLUDE 3, COMMAS FO T

In both cases, constant 1 or constant 2, the length of field is greater than the con-
stant, and the address of these constants is assigned by the processor. These con-
stants will appear in the object program as

0100000
0004337769

A record mark may be used in a constant but must be in the units position and
must be written as the character @. The following example contains statements that:

1. Store a record mark by itself as a constant.

2. Store a constant 6 and record mark.

3. Store a minus 0773 and record mark.,

Line Labei i Operands & Remarks

5{é 12 15416 2 2% k] 3 40 45 50 $5 [} r} N]

) .c..1.mwuw., e ey

N N o e

1.0{CONSTXIDC | |2, 6@, , STORE e
TEET I TR T

nmm“wcqiu:ll&&m&mmumw@u

These constants appear in the object program as:
=+
6+
0773 ==

A constant 7 with a flag (7) is generated by either of the following statements:

Line Lobel retion| Operands & Remarks
3 516 12 15]16 20 25 30 35 40 45 50 55 & 65 pi!] 75
L.0/CONST2IDC, |, [1,,-7,,, STORE A 7, WITH A_FLAGE) .

.0/CONSTADC, , 1,7, STORE, A TWITH A FLAGE |\ .\ \ iy v b

One-digit constant always A flag is always placed over a one-digit constant, regardless of the sign (positive

flagged or negative). Therefore the programmer must use two positions to define a posi-
tive one-digit constant.
Maximum length constant Constants may not exceed 50 characters. The following statement generates

a constant containing 50 zeros.

Line Lobel i Operands & Remarks
sle iz 1she 2 3 s 0 % o 8 »

0 35 &
— 2ERD. . PC_ |50, 0. STORE_FIFTY ZEROSE ., .,,
T 1 1]

To store a zero with a flag at location 401, the following statement can be used:

Une | Lobel : Operands & Remarks
3 Slé i 1} 15]1¢ X -1 X 3 L] 4 E] E] () [»)
) IR DC. . |1.-0..40.0., STORE, A, ZERQ WITH A, FLAGE . oo

Because a label is not included in this statement, the actual address (401) must
be used by any other instruction when referring to this constant.

DSC — Define Special Constant (Numerical)

The psc statement is similar to the pc statement with two exceptions:

1. When the third operand is omitted, the address assigned by the processor
to the field is that of the leftmost position of the field. If the third operand
is present, the address of the constant is assumed to be the leftmost position
of the field, and the constant will be stored with its leftmost digit at this
address when the object program is loaded.

9. A flag is not placed in the leftmost position of the field.

DAC — Define Alphameric Constant

To define a constant consisting of alphameric data, the operation code pac is used.
The pac statement is similar to the pc statement with three exceptions:

1. The first operand (length) is automatically doubled by the processor to
allow two storage positions for each alphameric character.

2. The storage address of the constant is the address of the leftmost position
plus one. This address must be an odd-numbered address to comply with
the requirements for alphameric data storage. An odd-numbered address
will automatically be assigned, if it is assigned by the processor. If it is speci-
fied by the programmer (as in line 020 of the following example), the
processor assigns the specified address and provides that the constant is
stored beginning one position to the left of the specified address. In the
latter case, the processor makes no test of whether or not the address is
odd-numbered or whether the address (or the position to the left) has
been previously assigned.

3. High-order zeros are not automatically inserted in the constant by the
processor, as is the case with a pc statement when the field length exceeds
the number of characters. The number of characters including blank char-
acters should not be greater or less than the specified length (first operand).
When the rightmost position or positions of the constant are blank char-
acters, they should be followed by a comma or end-of-line character. For
card input, the rightmost position must be followed by a comma or a record
mark.

Programming the 1620/1710 Using SPS 21

Address adjustment

Maximum, ten addresses

Restrictions

22

NotE: Only pac and pNB instructions may be used to insert blank characters
into storage.

Line Label IOperation| Operands & Remarks

3 sle npz sls 2 2) 3 © © 50 s & 8 70 2
0, ,0|NOTE} IDAC, [1,7 ,DECK 3478 PUNCHED, ,END, OF, JOB MESSAGEE ...,

" 1 T RN R N

Ly

ezl v, DAC 125, ., L v 0 901, STORE, ALPHA BLANKS, 9,00,- 94 9(F)

TEPERINTS SNINIY SUUPENE L L T S R S S A A O A A A S T N A S S A AR A A ST
e 20 RMARK IDAC [1,,@, ,ALPHA, RECQRD MARK FOR OUTPUT AREA® « oy vt i L

T IR ST AP A “ Ly A A L
0 ¢ 0OCONST, Ci 13.0:,.FOR DELTAX=0:.100.0, AREA=:0.. .0,0.00.0€ MLAW@_.__

In the example shown:

1. Statement 010 uses 34 storage positions to store the 17-position constant
(deck 3478 punched).

2. Statement 020 places 25 alphameric blanks into storage locations 900
through 949. Also, a flag is set in location 900.

3. Statement 030 records an alphameric record mark in storage.

4. Statement 040 places a 30-position constant, including a record mark, in
storage. The second comma in this statement is part of the constant and
the fifth comma is part of the remarks.

A 50-character alphameric constant (maximum allowable) occupies 100 posi-
tions of storage. A flag is set over the leftmost position of the field. Addressing this
constant for internal field transmission requires the address outpur +50 * 2—2,
where ouTpUT is the symbol (label) which represents the leftmost address plus one.

DSA — Define Symbolic Address

The psa statement may be used to store a series of up to ten addresses as constants,
as part of the object program. These addresses can be used for instruction modifi-
cation or for setting up a table of addresses through which the programmer may
index to modify a routine.

Each entry (symbolic or actual) in the operands field, with the exception of
the last entry, is followed by a comma. The equivalent machine address of each
entry is stored as a 5-digit constant. The constants are stored adjacent to each other
with a flag over the high-order position of each. The label field of this statement
must contain the symbolic name by which the table of constants may be referred to.
An address at which this table is stored in core storage may not be assigned by the
programmer nor may any remarks be included in the psa statement. The address
assigned by the processor is the address at which the rightmost digit of the first
constant will be located.

Note: If the last operand is followed by a comma, an additional zero address
(00000) is assembled in the table.

In the example that follows, symbols ALPHA, ORIGIN, and oUTPUT are equivalent
to address 1000, 600, and 15000, respectively.

Line Labet Operands & Remarks
H npi2 15]1¢ 2 » k] 3 £ 45 50 5 o £ n bt}
9,10 TABLE f SA.l PHA,.ORIGIN, 12,34, .QU’LRU’E-ﬁm i A S S S S S

For storing numerical array

Actual or symbolic

Maximum, fifty blanks

No flag in leftmost position

Programmer provides flag or
record mark

The constants are stored as
01000006000123414950
(01200)

(01204)

If the leftmost digit of these four constants is located at 01200, then the address
equivalent to TABLE will be 01204, the location of the rightmost digit of ALPHA.

DSB — Define Symbolic Block

A psB statement is used to define an area of storage for storing a numerical array.
A psB statement does not cause any data to be loaded with the object program. The
label of this statement is converted to the address at which the first element of the
array is stored (i.e., the rightmost position of the first element). The first operand
indicates the size of each element; the second, the number of elements.

Either or both operands may be symbolic or actual. If symbolic, the symbol
must have been previously defined. A third operand is required if the programmer
wishes to assign the address. For example, to store an array of 75 elements, each
element containing 15 digits, the statement used would be:

Line Lobel i Operands & Remarks
3 S5lé nz 15116 2 2 x 35 & 45 b 5] [n be]
0.L.0{ARRAY, IDSB, I1.5...7.5...1,5,1.4@ R

In this example, the array begins at location 01500 (leftmost position of the first
15-digit element). ARRAY is equivalent to 01514 (address of the first element).

DNB — Define Numerical Blank

A pne statement is used to define a field of numerical blanks. (The 8-4 card code
denotes a numerical blank.) Up to fifty blanks may be specified in each pnB state-
ment. In addition to a label, two operands can be assigned by the programmer.
The first of these specifies the number of blank characters desired (field length)
and the second, the rightmost address of the field where the blanks are stored in
the object program.

If the second operand is omitted and the statement is labeled, the address
assigned to the label by the processor is the rightmost storage position of the blank
field. The blank field does not contain a flag in its leftmost position.

If the programmer wishes to move a blank field in core storage, he must either
define a single-digit constant with flag bit in the position in front of the leftmost
position of the blank field or a record mark in the position following the rightmost
position of the blank field.

If six numerical blanks are required, they may be defined as follows:

Line Label i Operands & Remarks
sie uliz ashe 2 3 % 3 © s %) © I3 »)
0,1,0|{BLANKS (11> EN—— P O A U S G S U S S A e i
1

The processor assigns the storage address of the six blank positions to the label
BLANKS. In the example that follows, the programmer assigns the storage address
as 01625.

Programming the 1620/1710 Using SPS 23

Two commas required

Location assignment counter

Line

1l b7 H LT3 2

Operands & Remarks

In a DNB statement, two commas are required whenever remarks are included
in the statement; the first after the length operand and the second after, or in place

of, the address operand.

Summary of Declarative Operations

As stated earlier, areas being defined by the processor are assigned core storage
locations in the order in which they are processed. To do this, the processor pro-
gram uses a location assignment counter to keep track of the address of the last
assigned storage location. Table 1 shows the amount added to the location assign-
ment counter for each instruction and summarizes the coding and operation of

Table 1. Summary of Declarative Operations

NortEe: Except for the constants in DC, DSC, and DAC, all operands may be

1. actual.

2. symbolic. Symbols must be previously defined except in DSA.

All operands may use address adjustment. Remarks may follow the other operands except in DSA statements.

DECLARATIVE AMOUNT ADDED TO VALUE STORED IN DATA FIELDS WHICH
STATEMENT FORMAT LOCATION ASSIGNMENT SYMBOL TABLE AS ARE LOADED AS A
(0) 4 COUNTER IF ADDRESS EQUIVALENT TO PART OF THE OBJECT
LABEL | CODE [OPERANDS (A) IS BLANK “SYMBOL” PROGRAM
SYM DS LA (®) |L (ength A address. If A is blank, the field | None
If L is blank, 0 address from the location assign-
. is added. ment counter is stored.
SYM DSS |L, A @ L (length) A address. If A is blank, the numeri- | None
If L is blank, 0 cal record address from the location
is added. assignment counter is stored.
SYM DAS |L, A @ 2 x L is added. If A address must be odd. If A is blank, | None
L is blank, 0 is the alpha record address from the
added. location assignment counter is stored.
SYM DC L,C A @ L is added. A address. If A is blank, the field [C, the (numerical)
address from the location assign- | constant
ment counter is stored.
SYM DSC |(L,C, A @ L is added. A address. If A is blank, the numeri- | C, the (numerical)
cal record address from the location | constant
assignment counter is stored.
SYM DAC | L,C A @ 2 x L is added. A address must be odd. If A is blank, | C, the (alphameric)
the alpha record address from the | constant
location assignment counter is stored.
SYM DSA |D,E,F,G, | 5x (number of Field address of the first address on | A list of the actual ad-
HILJK, addresses) is list. dresses that correspond
LM @ added. to D, E, F, etc.
SYM DSB |L,N,A @ Length of each element x| A address.If A is blank, field address | None
number of elements is added. | of the first element is stored.
SYM DNB [L, A @ L is added. A address. If A is blank, the field [Number of blank char-
address from the location assign- | acters that equal L.
ment counter is stored.

24

Alpha record address
Field address
Numerical record address

Summary of statement writing
rules

each declarative operation. “Alpha Record Address” in the table refers to the left-
most position plus one of an alphameric field, whereas “Field Address” refers to the
rightmost position of a field. The term “Numerical Record Address” refers to the
leftmost position of a field.

Imperative Operations

This section describes the operations (instructions) written in symbolic language
that are translated by the processor into 1620 machine language. The function of
each machine language operation code is discussed in the 1620 Reference Manual
(Form A26-4500) and the 1710 Reference Manual (Form A26-5601).

Imperative operations may be divided into five classes:

1. Arithmetic

9. Internal data transmission

3. Branch

4. Input/Output

5. Miscellaneous

In this section are presented thirty-two standard 1620 instructions and fifteen
special feature instructions that compose the imperative operations. For each class,
a listing of the instructions shows the actual operation code, the mnemonic repre-
sentation for sps, the P and Q address requirements and function, and the addresses
that can be modified using Indirect Addressing (special feature), The flag indi-
cator operand can be used to insert a flag over the units position of an address
(P or Q) when this special feature is used.

As stated earlier concerning coding sheet fields:

1. Any instruction in the source program may be labeled.

2. Mnemonic or actual operation codes must be recorded for each statement.

3. For each instruction, up to four items can be entered in the operand and

remarks field: P operand, Q operand, flag indicator operand, and remarks.
4. Commas must separate these items or be used in place of omitted items.
5. Statements written for the card processor do not require an end-of-line
character
6. Operands may be symbolic or actual, and are subject to address adjustment.

Programming the 162071710 Using SPS 25

Listed in Table 2

Arithmetic Instructions

Table 2 lists arithmetic instructions, eight of which are special feature instructions.
Each instruction shown must have both a P and a Q address. Note that immediate-
type arithmetic instructions have only a Q part and are not subject to Indirect
Addressing (special feature).

Table 2. Arithmetic Instructions

Notk: Indirect Addressing (special feature) is allowable with all P address operands listed below. An X to the right of the Q operand
indicates that this feature may be used with it.

OPERATION .OPERATION CODE OPERANDS
MNEMONIC | ACTUAL P ADDRESS Q ADDRESS

Add A 21 Storage address of units position of Storage address of units position of
augend addend

Add Im- AM 11 Same as code 21 Qu of instruction is units position of

mediate addend

Subtract S 22 Storage address of units position of | Storage address of units position of
minuend subtrahend

Subtract SM 12 Same as code 22 Qnu of instruction is units position of

Immediate subtrahend

Multiply M 23 Storage address of units position of | Storage address of units position of
multiplicand multiplier

Multiply MM 13 Same as code 23 Qu of instruction is units position of

Immediate multiplier

Load Dividend LD 28 Storage address in product area to | Storage address of units position of

(special which units position of field (divi- | dividend

feature) | dend) is to be transmitted

Load Dividend LDM 18 Same as code 28 Q. of instruction is units position of

Immediate dividend

(special

feature)

Divide (special| D 29 Storage address at which first sub- | Storage address of units position of

feature) traction of the divisor occurs divisor

Divide DM 19 Same as code 29 Qu of instruction is units position of

Immediate divisor

(special

feature)

Floating FADD 01 Storage address of units position of | Storage address of units position of

Add (special exponent of augend exponent of addend

feature)

Floating FSUB 02 Storage address of units position of | Storage address of units position of

Subtract exponent of minuend exponent of subtrahend

(special

feature)

Floating FMUL 03 Storage address of units position of | Storage address of units position of

Multiply exponent of multiplicand exponent of multiplier

(special

feature)

Floating FDIV 09 Storage address of units position of | Storage address of units position of

Divide exponent of dividend exponent of divisor.

(special

feature)

26

Examples

tine | tobel i Operands & Remarks J
HI 11112 15116 2 k] 3 L) 45 50 55] [)} 78]

n.u.....A.‘CGSTLAROl}& e

m.on.“.A..CD,ST.!AR(\R,,ADD.,LB UNT, TO, COS cC TI0

9, L + 2 P S S N S AR S i S A A I S A A S A O A S

N T TS I AT A A AT D S U0 AU N U A SV A A NI ST S WS S VI U BOT I S B S BRI SIS R A e

0,400 oy - E bt

o0l 0y, JLD Y 7Dnﬂn@ e
R e

9,600 . 1D O S A A S A S U S A SR S U SV A S S A Ui WA A AU S O WA A SR

These statements cause the following operations to be performed:
Line 010 — Add labor amount to cost amount.
020 — Same as line 010 except three commas
are required for remarks.
030 — Subtract a constant 02 from the field
located at sTORE PLUS 4.
040 — Add a constant 05 to the field at storage
location 00088.
050 — Move ppwnp (dividend) to the product
area (storage location 00097).
060 — Divide the dividend by successive subtractions
of the pvr (divisor), starting in storage location 00086.

Internal Data Transmission Instructions

Listed in Table 3 Internal data transmission instructions require both P and Q addresses. The five
internal data transmission instructions that are not standard on the 1620 are: Trans-
fer Numerical Strip (T~s), Transfer Numerical Fill (t~r), Floating Shift Right
(rsr), Floating Shift Left (¥sL), and Transmit Floating Fields (TrL). Table 3

lists the Internal Data Transmission instructions.

Examples

Line Label Operonds & Remarks
3 sie nbz _ ishe 2 3 “ L] » 5 @ &

) . FJELDDIGL_L T T

U N I
T O [EET N VU U NN 0 NN VN SN NN T U5 A S0 DU U (N G N U SN N U D S U U T T S VS TS W T W W oI R R A I R e e

o0l o, TR

N BT VT U U U S A W0 N U0 00 SN S T UV U S U VA WA U S S W T S S A U W 0 S WA O W W A A Y WA B B S W YA BT

P EPEUEE EFETUTIE B S U N U Y ST U S S WU S S U S0 S W S S S0 T ST S G I WA S S S0 0 S S P W W W W W A 0 S W RS

*-11,,41,10,,CH PREV,IOUS, OP ,CO T

PP IS S U U S U U U S0 U VA S S SV I ST A0 S SO0 N SR S0 S S S0 W S S WA S S 0 S S B B RS RTS S I SRR RIS S A

e} oo [TNG A A W T WA
vool oy, |TNF 2.CONVERT FI.E LD D. TO ALPH.A

These statements cause the following instructions to be executed:
Line 010 — A numerical digit at the location called prcrr is
moved to the location called FIELD.
020 — A digit 3 is moved to the location called FreLD.

Programming the 1620/1710 Using SPS 27

Note: Indirect Addressing (special feature) is allowable with all P address o

Table 3.

030 — Rate 1 is moved to the field called sTore.

040 — A constant 3525 is moved to the location called sTORE.

050 — A constant 41 is moved to O, and O, positions
of the preceding instruction in the object program.

060 — Field A is moved to field B and converted from
alphameric coding (2 digits per character) to
numerical coding (1 digit per character).

070 — Field D is moved to field C and converted from
numerical coding to alphameric coding.

Internal Data Transmission Instructions

operand indicates that this feature may be used with it.

perands listed below. An X to the right of the Q address

OPERATION OPERATION CODES OPERANDS

MNEMONIC | ACTUAL P ADDRESS Q ADDRESS
Transmit TD 25 Storage address to which single digit |Storage address of single digit to be
Digit is transmitted transmitted
Transmit TDM 15 Same as code 25 Qu of instruction is the single digit to
Digit be transmitted
Immediate
Transmit TF 26 Storage address to which units posi- |Storage address of units position of
Field tion of field is transmitted field to be transmitted
Transmit TFM 16 Same as code 26 Qn of instruction is the units position
Field of the field to be transmitted
Immediate
Transmit TR 31 Storage address to which high-order |Storage address of high-order position
Record position of record is transmitted of the record to be transmitted
Transfer TNS 72 Storage address of rightmost position |Storage address of the units position
Numerical of alphameric field to be transmitted |of the numerical field
Strip (special
feature)
Transfer TNF 73 Storage address of rightmost position |Storage address of the units position
Numerical of alphameric field of the numerical field to be transmit-
Fill (special ted
feature)
Floating Shift FSR 08 Storage address to which units (right- |Storage address (rightmost) digit of
Right (special most) digit of mantissa is transmitted |mantissa to be transmitted
feature)
Floating FSL 05 Storage address to which high-order |Storage address of low-order digit of
Shift Left digit of the mantissa is transmitted mantissa to be transmitted
(special
feature)
Transmit TFL 06 Storage address to which units posi- | Storage address of units position of
Floating tion of exponent is transmitted exponent of field to be transmitted
(special
feature)

Branch Instructions

Listed in Table 4 Table 4 lists the branch instructions. Note that both the B1 (Branch Indicator) and
BNI (Branch No Indicator) instructions require one of the fourteen switch or indi-

cator codes listed in Table 5 as a Q address. The code indicates the switch or indi-

28

cator to be interrogated for status. To relieve the programmer of having to code a
Q address, thirteen unique mnemonics that represent ten of the possible fifteen
codes are included in sps language for both B1- and BNI-type instructions. For a
unique mnemonic, the processor generates the actual machine language code 46
(Branch Indicator) or 47 (Branch No Indicator) and the Q address that represents
the switch or indicator.

Table 4. Logic (Branch and Compare) Instructions.

Note: Indirect Addressing (special feature) is allowable with all P address operands listed below except Branch Back. An X to the
right of the Q address operand indicates that this feature may be used with it.

OPERATION OPERATION CODES OPERANDS
MNEMONIC | ACTUAL P ADDRESS Q ADDRESS
Compare C 24 Storage address of units position of the | Storage address of units position of the ~ X
field to which another field is com- | field to be compared with the field at
pared the P address
Compare CM 14 Same as code 24 Qu of instruction is units position of
Immediate the field to be compared with the field
at the P address
Branch B 49 Storage address of the leftmost digit | Not used
of the next instruction to be executed
Branch No BNF 44 Storage address of the leftmost digit | Storage address to be interrogated for X
Flag of next instruction to be executed if | presence of a flag bit
branch occurs
Branch No BNR 45 Same as code 44 Storage address to be interrogated for X
Record Mark presence of a record mark character
Branch on BD 43 Same as code 44 Storage address to be interrogated for X
Digit a digit other than zero
Branch BI 46 Storage address of leftmost position of | Qs and Q, of instruction specify the
Indicator next instruction to be executed if indi- | program switch or indicator to be in-
cator tested is on terrogated (see Table 5)
Unique Branch
Indicator
mnemonics:
Branch High BH None Same as code 46 None required
Branch BP None Same as code 46 None required
Positive
Branch Equal BE None Same as code 46 None required
Branch Zero BZ None Same as code 46 None required
Branch Over- BV None Same as code 46 None required
flow
- Branch Any BA None Same as code 46 None required
Data Check
Branch Not BNL None Same as code 46 None required
Low
Branch Not BNN None Same as code 46 None required
Negative _
Branch Con- BC1 None Same as code 46 None required
sole Switch 1
on
Branch Con- BC2 None Same as code 46 None required
sole Switch 2
on
Programming the 1620/1710 Using SPS 29

Table4. Logic (Branch and Compare) Instructions (Contd.)

OPERATION

OPERATION CODES

OPERANDS

MNEMONIC

ACTUAL

P ADDRESS

Q ADDRESS

Branch Con-
sole Switch 3
on

Branch Con-
sole Switch 4
on

Branch Last
Card (special
feature)

ent Check
(special
feature)

Branch Expon-|

BC3

BC4

BLC

BXV

None

None

None

None

Same as code 46

Same as code 46

Same as code 46

Same as code 46

None required

None required

None required

None required

Branch No
Indicator

Unique Branch
No Indicator
mnemonics:

Branch Not
High
Branch Not

Positive

Branch Not
Equal

Branch Not
Zero

Branch No
Overflow

Branch Not
Any Data
Check

Branch Low

Branch
Negative

Branch Con-
sole Switch 1
off

Branch Con-
sole Switch 2
off

Branch Con-
sole Switch 3
off

Branch Con-
sole Switch 4
off

Branch Not
Last Card
(special
feature)

BNI

BNH

BNP

BNE

BNZ

BNV

BNA

BL

BN

BNC1

BNC2

BNC3

BNC4

BNLC

47

None

None

None

None

None

None

None

None

None

None

None

None

None

Storage address of leftmost position of
next instruction to be executed if indi-
cator tested is off

Same as code 47

Same as code 47

Same as code 47

Same as code 47

Same as code 47

Same as code 47

Same as code 47

Same as code 47

Same as code 47

Same as code 47

Same as code 47

Same as code 47

Same as code 47

Qs and Q. of instruction specify pro-
gram switch or indicator to be inter-
rogated (see Table 5)

None required
None required
None required
None required
None required
None required
None required
None required

None required

None required

None required

None required

None required

30

Table4. Logic (Branch and Compare) Instructions (Contd.)

OPERATION OPERATION CODES OPERANDS
MNEMONIC | ACTUAL P ADDRESS Q ADDRESS
Branch Not BNXV None Same as code 47 None required
Exponent
Check (spe-
cial feature)
Branch and BT 27 P address minus one is the storage ad- | Storage address of units position of X
Transmit dress to which the units position of the | the field to be transmitted
Q field is transmitted. P address is left-
most digit of the next instruction to be
executed
Branch and BTM 17 Same as code 27 Qu of instruction is units position of
Transmit field to be transmitted
Immediate
Branch Back BB 42 Not used Not used
Branch and BTFL 07 P address minus one is the storage ad- | Storage address of units position of X
Transmit dress to which the units position of the | exponent of field to be transmitted
Floating exponent portion of the Q field is trans-
mitted. P is the storage address of the
leftmost digit of the next instruction to
be executed

Table 5. Switch and Indicator Codes Used as Actual Q
Addresses in BI and BNT Instructions.

Note: The additional codes for the 1710 only are shown in Table 10.

Q ADDRESS SWITCH OR INDICATOR
Q Qs Q | Qu Qx
X 0 1 Y Z Program Switch 1
X 0 2 Y y/ Program Switch 2
X 0 3 Y Z Program Switch 3
X 0 4 Y y/ Program Switch 4
X 0 6 Y Z Read Check Indicator®
X 0 7 Y Z Write Check Indicator®
X 0 9 Y Z Last Card Indicator (special feature)
X 1 1 Y z High/Positive Indicator
X 1 2 Y Z Equal/Zero Indicator
X 1 3 Y =7 High/Positive or Equal/Zero Indicator
X 1 4 Y z Overflow Check Indicator
X 1 5 Y Z Exponent Check Indicator
X 1 6 Y Y/ MBR-Even Check Indicator®
X 1 7 Y Z MBR-Odd Check Indicator®
X 1 9 Y z Any Data Check

N = ¢

indicates any digit value or blank is permissible.

indicates any digit value is permissible.

indicates any digit value or blank is permissible for 1620 but digits zero and one must be

excluded for 1710.

indicates the Any Data Check indicator (19) also is on when this indicator is on.

Programming the 1620/1710 Using SPS

31

Listed in Table 8

32

Examples

Line Label i Operands & Remarks
sle nfrn__ shs] % » 3) s 0 55 ' & n 2}

ol e, C..|B.A,, COMPARE FIELD A WITH FIELD B® s

..... e b AL W A T W T T T T Y S 00 S S S S A S S S S W A S R AT S S S G A B YRR A I A S A A

e ot R SN T W S I G ST T VO U S U0 S O S S T T S S GO0 S0 T W S Y SRS ST S S R R SR S AU B T P A A A AT

PP BCL ISTART:.SAME. AS, LINE, 030@®, . \,,,, NS
N T N e,
,sﬁ..x.nncfwwmﬂwmwwm
S N S T e
loso) BB.@L“.......H.“ N s

These statements cause the following operations to be performed in the object
program, as follows:
Line 010 — Compare field A with field B.
020 — Branch to an instruction labeled sTART.
030 — If program switch 1 is on, branch to the
instruction labeled starT.
040 — Same as line 030 with the exception that the
unique mnemonic operation code used
does not require a Q address.
050 — If program switch 1 is not on, branch to the
third instruction following the one labeled starr.
060 — Branch unconditionally to an instruction whose
address is saved in IR-2 or PR-1.

Input and Output Instructions

The Q operand of input and output instructions is used to specify the input/output
device. Table 6 shows the five different input/output device codes that can be
used as the Q address. For programming ease, sps language includes unique
mnemonic operation codes that can be used without a Q operand.

Table6. Inputand Output Device Codes Used as Actual Q Addresses
with RN, WN, DN, RA, and WA Instructions.

Q ADDRESS DEVICE
e | o | @ | o | q
X 0 1 Y Y Typewriter
X 0 2 Y Y Paper Tape Punch
X 0 3 Y Y Paper Tape Reader
X 0 4 Y Y Card Punch
X 0 5 Y Y Card Reader

X indicates any digit value or blank is permissible.
Y indicates any digit value is permissible.

Table 7 provides the Q address for a K instruction (control operation), This
address, in addition to specifying the output device (typewriter), specifies type-
writer action: space, return carriage, or tabulate.

Table7. Typewriter Control Codes Used as Actual Q
Address for a K instruction.

Q ADDRESS ACTION INITIATED
Q’I QR Qs Qm Qn
X 0 1 Y 1 Space
X 0 1 Y 2 Return Carriage
X 0 1 Y 8 Tabulate

X indicates any digit value or blank is permissible.
Y indicates any digit value is permissible.

Table 8 lists the five actual and mnemonic input and output operation codes
and the thirty associated unique mnemonics. When a unique mnemonic is used, the
processor generates the Q address of the assembled instruction.

Examples

Line Label i Operonds & Remarks

3_sle mﬁn -] » 3 @ 8 2 £ ® s » L]
i A JOUTRUT, 1008 . .00 oy e e s
ol N e e
i1 T . 1l lllll‘lkllllll‘lllkllllkllIllllIIIIIIIIIIII‘llllllllll‘l
03,00 ¢ 33 21101, SAME, AS, LINE 0.4.0@ N S A S R R A S S A O S A S S ST S S
o e e
o.:.n...,.' PRSI N NN U SN U WY SN VA U A U0 SO SN WS OV WA S T S S T A N il i A L

These statements cause the following operations to be performed in the object
program, as follows:

Line 010 — Type out alphameric data from a storage
location called outpuT.
020 — Same as line 010; however, a unique mnemonic
is used.
030 — Single space on the typewriter.
040 — Same as line 030; however, a unique mnemonic is used.

Programming the 1620/1 710 Using SPS 33

NotE: Indirect Addressing (special feature) is allowable with all P address o

Table 8.

Input and Output Instructions

operands shown may be used with Indirect Addressing.

perands, where a P operand is required. None of the Q

OPERATION

OPERATION CODE

OPERANDS

MNEMONIC

ACTUAL

P ADDRESS

Q ADDRESS

Read Numeri-
cally

Unique Read
Numerically
mnemonics:

Read Numer-
ically Type-

writer

Read Numeri-
cally Paper
Tape

Read Numeri-
cally Card
(special
feature)

RN

RNTY

RNPT

RNCD

36

None

None

None

Storage address at which leftmost-
(first) numerical character is stored

Same as code 36

Same as code 36

Same as code 36

Qs and Q. instructions specify input
device (see Table 6)

None required

None required

None required

Write Numeri-
cally

Unique Write
Numerically
mnemonics:

Write Numeri-
cally Type-

writer

Write Numeri-
cally Paper
Tape

Write Numeri-
cally Card
(special
feature)

WN

WNTY

WNPT

WNCD

38

None

None

None

Storage address from which leftmost
(first) numerical character is written

Same as code 38

Same as code 38

Same as code 38

Qs and Q, of instruction specify output
device (see Table 6)

None required

None required

None required

Dump Numeri-
cally

Unique Dump
Numerically
mnemonics:

Dump
Numerically
Typewriter

Dump
Numerically
Paper-Tape

Dump
Numerically
Card (special
feature)

DN

DNTY

DNPT

DNCD

35

None

None

None

Same as code 38

Same as code 38

Same as code 38

Same as code 38

Same as code 38

None required

None required

None required

34

Table8. Inputand Output Instructions (Contd.)

OPERATION

OPERATION CODES

OPERANDS

MNEMONIC

ACTUAL

P ADDRESS

Q ADDRESS

Read Alpha-
merically

Unique Read
| Alphamerically
mnemonics:

Read Alpha-
merically
Typewriter

Read Alpha-
merically
Paper Tape

Read Alpha-
merically Card
(special
feature)

RA

RATY

RAPT

RACD

37

None

None

None

Storage addresses at which numerical
digit of leftmost (first) character is
stored. (Zone digit of first character
is at P minus one)

Same as code 37

Same as code 37

Same as code 37

Q. and Q of instruction specify input
device (see Table 6)

None required

None required

None required

Write Alpha-
merically

Unique Write
Alphamerically
mnemonics:

Write Alpha-
merically
Typewriter

Write Alpha-
merically
Paper Tape

Write Alpha-
merically
Card (spe-

cial feature)

WA

WATY

WAPT

WACD

39

None

None

None

Storage address of numerical digit of
leftmost (first) character to be writ-
ten. (Zone digit of first character is at
P minus one)

Same as code 39

Same as code 39

Same as code 39

Q. and Q, of instructions specify out-
put device (see Table 8)

None required

None required

None required

Control

Unique Control
mnemonics:

Tabulate
Typewriter

Return
Carriage
Typewriter

Space
Typewriter

TBTY

RCTY

SPTY

34

None

None

None

Not used

Not used

Not used

Not used

Q. and Q. specify Input/Output de-
vice. Qu specifies control functions
(see Table 7)

None required

None required

None required

Programming the 1620/1710 Using SPS 35

Listed in Table 9

NortE: Indirect Addressing (special feature) is allowable with all P or

Miscellaneous Instructions

Five instructions are included in this group;

Flag (mr)

one of these is a special feature, Move
- Table 9 lists the uses of P and Q addresses in miscellaneous instructions.

Table 9. Miscellaneous Instructions

Q address operands that are marked with an X.

Orders to the processor

36

OPERATION OPERATION CODE OPERANDS
‘ MNEMONIC | ACTUAL P ADDRESS Q ADDRESS
Set Flag SF 32 Storage address at which flag X Not used
bit is placed
Clear Flag CF 33 Storage address from which X Not used
flag bit is cleared
Move Flag MF 71 Storage address to which flag X Storage address of flag bit to be moved X
(special bit is moved
feature)
Halt H 48 Not used Not used
No Operation NOP 41 Not used Not used
Examples
Line Labet Operands & Remarks
a__5|¢ nli2 1516 2 3 K] 3 L] 4 50 55 "] (] n Le)
vol CF..OUTPUT-8@®, . ., , e, .
N T YT 1694, MOYE, TEE._FLAG. FROM. LOCATION 1694, 10, LOCAT l
DR N O 7R T N T TS SO o
e

These statements cause four different operations to be performed in the object
program, as follows:
Line 010 — Clear a flag at the storage location, ouTPUT minus 5.
020 — Move a flag from storage location 1694 to storage location 352.
030 — Cause the program to halt.
040 — Perform no operation but
instruction.

proceed to the next sequential

Control Operations
The sps language includes the following six control operations:

DORG Define Origin

DEND Define End

SEND Special End

HEAD Heading

TCD Transfer Control and Load
TRA Transfer to Return Address

These operation codes are orders to the processor that give the programmer con-
trol over portions of the assembly process. Specifically, porc gives the programmer

None labeled

Overrides automatic storage
assignment

Resets location assignment
counter

Overlapping in storage
Pre-empted storage area

Examples

Last statement

control over the placement of his program in storage. pEnp, TcD, and TRA order
the processor to produce unconditional branches to locations specified by the pro-
grammer. HEAD assigns unique characters to labels or symbols used within a source
program.

With the exception of the TRA and pORG, none of the above operations may be
labeled.

DORG — Define ORiGin

The poRG statement instructs the processor to override its automatic assignment
of storage and to begin the assignment of succeeding entries at the particular
location specified by the programmer. In this way the programmer is able to control
assignment of storage to instructions, constants, and data. If a define origin state-
ment is not the first entry in a source program, the processor begins the assignment
of storage at location 402. '

A define origin statement is coded as follows:

Line Label IOperati Operands & Remarks
I 1 nh2 1518 2 2 3 3 40 5 L] 55 @ (] n 1)
) DORQTE2®, L. Wit e i

This statement directs the processor to reset its location assignment counter to the
particular address specified in the operand (actual or symbolic), and this causes
the assignment of succeeding entries to begin at this address. When an actual
address is entered by the programmer, care must be taken to avoid inadvertent
overlapping with areas assigned by the processor.

If the operand is left blank, assignment of storage starts with 00000 address.
Since the arithmetic tables are stored in locations 00100 through 00401, constants
and instructions cannot occupy these storage locations.

If a symbolic address is entered, it must appear as a label earlier in the pro-
gram sequence. An * address refers to the current contents of the location assign-
ment counter. A define origin statement can take any of the following individual
forms:

Line Lobel [Operati Operands & Remarks
3 sls iha 1she b} 5 1 3 “ *) 55 © o 7 73]
R DORAXYZ®), .. .\ .. i, i

..... P [VA S S VO T S VA VO S ST SO G S T UV T G0 U OO S S S S U S S S S Y S

2.2.0J0RI GINDORCIXY.Z+S0® o o v v e

0,30 0RIGT MWMMMWQ@ L e

If xyz (label) is previously defined as 1002, the first entry directs the processor to
begin the assignment of succeeding entries at location 1002. The second entry
directs the processor to begin the assignment of succeeding entries at the location
that has been assigned to the symbol xvz plus 50. The symbol oricIN can be used
at any point in the program to refer to that address. The third entry directs the
processor to begin the assignment of succeeding entries at the address specified
by the current contents of the location assignment counter plus 50. A comma must
follow the operand when remarks are included in a DORG statement.

DEND — Define END

The pEND statement is the last statement entered in the source program,; it instructs
the processor that all statements of the source program have been processed. A DEND

Programming the 1620/1710 Using SPS 37

Halts after loading

Halts tape processor

No operands

Example

Useful with long source program

38

statement may also be used to cause execution of the object program to begin
immediately after it has been loaded. To do this, the DEND statement requires the
presence of an operand representing the starting address of the program. The
operand may be actual or symbolic. The 1620 will halt at the completion of loading
of the object program, and execution then will begin at the address corresponding
to the starting address,upon depression of the start key. If the operand specifying
the starting address is omitted, the program will halt and the operator will have
to start the program manually.
The following statements illustrate both types of entries.

Line Label i Operands & Remarks

...................................

The program is halted after loading by either statement. In the second case, execu-
tion begins at the address corresponding to START, upon depression of the start
key.

When a pEND statement includes comments but no operand, the operand must
be replaced by a comma.

SEND — Special END

A sEND statement is provided to halt the tape processor on both passes of the source
program. If a seND statement is encountered by the card processor, the card proces-
sor will not be halted. This statement does not produce any output in the object
program.

The sEND statement is used:

1. To halt the processor after one tape of a source program is processed and
to allow the remainder of the source program from another tape to be
threaded and then processed.

2. To halt the processor so that program switch settings may be changed and
processing resumed.,

The senD statement takes the following form and requires no operands.

When this statement in the source program is encountered by the processor, the
program halts and the message “LOAD NEXT TAPE” is typed. The operator
threads the next tape or changes switch settings or both, and then depresses the
start key.

If the first part of the source program is entered from the typewriter, program
switch 1 will be off and the statements will be entered one at a time. When the
SEND statement is entered, the processor halts. The operator may then turn on
program switch 1, thread the source program tape, and continue processing the
source program. SEND is especially useful where a long source program is punched
in tape and certain addresses associated with labels being defined by that tape
must be changed. For example, the following statements, part of source program A,
may require that addresses 01000 and 02000 be changed to 01250 and 02500,
respectively.

SEND vs. DEND

For combining independently
written programs

Avoids duplicate symbols

Adds unique character to label

Generates no instructions or data

Line Label i

3 516 1412 15116 2 25
ONTRLDS, , ,.0.1.0.0.08 N

pIGITDS, , 1,,02000

Operands & Remorks

.....................

To change these addresses, the operator will enter the following statements at
the typewriter '

Line Labet i Operands & Remarks
3 sl¢ ubz _ she 2 2) £ ') 5 ') 5 ® @ » 73]
LioCONTRIUDS, L 032508,y 0 uiuiiiey e

] DS ,0250.0@ T S R WA S AP S i A A S A A AT
AR R A S A S S S A S S U S S A S U A A AU A W T S A S IS S S AU B S e

and follow them by source program A. The first time labels conTRL and ~pIGIT
are encountered by the processor, they are assigned addresses; the second time
they are encountered, no addresses are assigned but an error message is typed.
In this case, the operator can ignore the error message.

In some cases, the programmer may choose to end a source program with a
SEND statement rather than a DEND statement. This situation allows the programmer
to enter additional statements, either additional declarative statements or correc-
tions to imperative statements. However the last additional statement entered must
be a DEND statement.

HEAD — HEADing

It is frequently convenient, and sometimes necessary, to write a source program
piecemeal, and to assemble these pieces into the total program. Parts of the pro-
gram may be written by different programmers, or by the same programmer at
different times with considerable time lapses between.

Suppose, in such a situation, that a program block, say B;, has been written;
that another program block, B., is in the course of being written; and that B, and
B. eventually are to be joined to compose a single program. Certain symbols may
already have been used in writing block B,, and certain symbols, varying from the
symbols used in B,, may be used in writing block B,. To avoid duplication of sym-
bols in each block, the programmer writing block B, must be concerned with the
symbols used in B;.

Symbols used in block B, can duplicate those in B,, provided they are less than
six characters in length and have been prefaced by a HEaD statement. The pro-
grammer can completely ignore the symbols in B, by prefacing B, with the follow-
ing control statements:

Line Lobel ali Operands & Remarks
Slé nph2 1516 2 25 3 3 9 45 50 55 © 48 n 73]

D008 4 au

where the single character X may be any one of the characters A to Z, 0 to 9, or
blank.

The control instruction, HEAD X, generates no instructions or data in the object
program. When the processor encounters a HEAD statement, it treats the symbols
in the label or operands fields of the following statements, provided the symbols
are less than six characters in length, as though they were headed by the character
X. The processor continues to do this until it encounters another head.

Thus the symbols used in block B, which contain less than six characters cannot
possibly conflict with the symbols used in block B,. Six-character symbols are not

Programming the 1620/1710 Using SPS 39

All six character symbols
unheaded

Headed by X

Headed by blank

Not required for all programs

Nesting

Cross-referencing headed blocks

$ signals head character

40

affected, that is, a six-character label, comMoN, following the control instruction
HEAD 9 is not treated as 9commonN, for it would be a seven-character symbol, and
only a maximum of six characters can be handled by the symbol table.

A symbol is said to be “unheaded” if, and only if, its representation uses ex-
actly six characters. The symbol commonN, for example, is unheaded. The symbol
ALPHA whose length is less than six characters is considered to be headed, whether
under a HEAD control instruction or not., If aLPHA is under control of HEAD x, then
ALPHA is said to be “headed by X.” If ALpHA is not under control of any HEAD in-
struction, then aLPHA is said to be “headed by blank.”

A symbol, aLpPHa, headed by the character X, is not identical with the symbol
xALPHA. The heading character is essentially on a different level from the char-
acters which make up the symbol. However, aLpaa headed by a blank should be
regarded as identical to the symbol aLprA used without a heading statement.

If a pEAD statement with a nonblank character does not occur in the entire
source program, all considerations of heading can be ignored. This is the reason
for not introducing the concept of headed symbols earlier.

A HEAD statement with a blank character must be used if the programmer de-
sires to modify the heading process in the example. Note that the statement HEAD
and the statement HEAD 0 are quite different. For example, if blocks B, and B, are
to be joined in one program, and B, must be nested somewhere in the middle of B,,
as follows:

Operation Operands
' first part of block B,

e ——|

HEAD X
' block B,
HE.:AD
. second part of block B,

e — | —’

the entire program might have been prefaced by a HEAD statement with a blank
character operand. As implied previously, however, such a HEAD instruction is
superfluous, since the symbols in the first part of block B, are automatically headed
by blank, being under the control of no HEAD instruction at all.

Often it is inconvenient to refer to a symbol that is defined in another headed
region because of the requirement that the symbol be six characters in length. To
facilitate cross referencing between headed blocks, the following convention can
be used:

Suppose that a symbol, say sum, under ueaD 1, has been defined by some in-
struction. Suppose further that this symbol is to be referred to in an instruction
under the control of the instruction HEaDp 2. Then the desired reference can be
made by writing 1$sum as it appears in the following instruction

Line Labei IOperati Operands & Remarks
3__5l¢ 12 15]16 20 2% 30 3 0 45 £ 5 40 8 » 73
voloowy AL JTOTAL, ISSUMB , 0y vy e |

In general, if the two-characters “C$”, where C is any allowable heading
character, is placed in front of the headed reference symbol sum, then the result
is sum headed by C. To specify sum headed by blank, one simply writes $sum,
with no character preceding the $ character.

Illegal uses

Unconditional branch

Executes portions of
the object program

Return to loading by TRA

No operands

If the processor finds an operand containing a six-character symbol plus a
head character, such as 9common, the processor will produce an error message
indicating that the symbolic address contains more than six characters (see ERROR
MESSAGES, ER 5).

If a label is used in a HEAD statement, it is ignored.

TCD — Transfer Control and loaD

The Tcp statement may be used to cause the processor to produce an unconditional
branch instruction. When this instruction is encountered during the loading of
the object (machine language) program, it causes the processor to halt the normal
loading process and to branch to the location (ApDR) specified in the operand.

Line Lobet i Operands & Remarks
3__5l¢ 112 154 2 -] 2 35 © L] E] 5 0 [} n

ol oo JTOD ABDRD

ADDR may be actual or symbolic.

This statement allows programs which are too large to fit into core storage
to be loaded and executed piecemeal, by terminating each piece with a TRA state-
ment. In effect, a Tcp instruction can be used in conjunction with a DORG statement
ta execute portions of the program that have already been loaded into storage and
to overlap these with other instructions.

Whenever the processor encounters a TCD statement it causes the arithmetic
tables, an unconditional branch instruction, and the loader program, to be punched
into the object program tape or cards in that order. Therefore, when the object
program is being loaded, the arithmetic tables will be loaded into storage before
the branch occurs. Because the arithmetic tables are loaded into a portion of stor-
age previously occupied by the loader program, the loader program will be de-
stroyed. However, it will be restored (again loaded into storage) when a TRa state-
ment is encountered in the object program. That statement will be at the end of
the portion of the object program that has been executed.

During assembly, the Tcp instruction does not affect the location assignment
counter or alter the symbol table. '

TRA — Transfer to Return Address

Thé Tra statement causes the normal loading sequence of an object program to be
resumed once it has been broken by a Tcp statement. When a TRa statement is
encountered by the processor, a read-a-record (card or tape) instruction and an
unconditional branch instruction to the loader program are produced in the object
program. This processor control operation increments the location assignment
counter by 24. The last statement of that part of a source program that is executed,
when loading is interrupted by a Tcp statement, must be a TRa statement. When
the TRa instruction equivalences are encountered in the object program, the pro-
gram loader is reloaded and the normal loading process continues. The TrA state-
ment, which takes the following form, uses no operands.

Line Label i Operands & Remarks
3 sls ubz __she 2 2 2 k] © 4 0 5 ° 8 » L
o] o0 ,T.R.A. R ST RS U A S iy

Programming the 162071710 Using SPS 41

Example

42

The following example illustrates the use of the Tcp and TRA mnemonics.

Line Lobel C Operands & Remarks
3 sl 1 15h 2 3 2 3) 4 P 5 © s n
o :
1ofSTART |(first el e L o A S T P S N T it
D) . o .
0 I L T R T E N I S i S S S I
L L *
L%] SIS IR BNl S S S S T ——— T WU B I W B A S I W SN G B W AN AU A AT ST A AT A ST A A A AT
. .
UL SN ENWE N EsEL T S R N T T W
. . *
0,500 4 4 ;4 I AT s P T SR B T S U T S U R R I B S AT A SRS R Y T B O S 2 n
os630f + 0 ITRA S I A A S A A S A A A A A S A S S ST AT A A Ll 8y
o.200 iy ITCD T A S N S N I S N
0.0}) ¢ 14 VO B S TV I N S R A RS ST S N U S A ST AN A B AT A
200 v 00y, J(Re t), T B S A W N T
.
20,08 4y g gy I A SR ST A SN U S S A S N S R id " PR L1 L4y I AR
L]
i) TS R A A S S PN A WA r " . N A A WA A ST U
.
20 vyl i PSRNt r Lt n P Lia VIO S R W PR EarY

The Tcp statement causes a branch to the location assigned to the symbol srarr,

followed by the execution of instructions from sTART through the TRA statement.

The TRA statement causes a branch to the load program, which resumes loading

of the remainder of the object program beginning with the location labeled sTagT.
The use of a macro-instruction preceding a Tcp statement is not allowed.

Codes listed in Tables 10 and 11

1710 Imperative Operations

This section describes the imperative operation codes and “switch or indicator
codes” that are used with the 1710 only. Six new operation codes are presented;
two of these are classed as branch operations and four as analog-to-digital con-
verter operations. A listing of these operation codes, both mnemonic and actual,

is shown in Table 10. Statements using these codes are written in the same manner

as 1620/1710 imperative statements. In Table 10, it may be noted that the sao and
SLRN operations require a Q; modifier. The list of unique mnemonics in Table 11
may be used in place of sao and SLEN operations requiring a modifier. Modifiers
for unique mnemonics are supplied by the processor.

Table 10. Additional Imperative Operation Codes for the 1710.

TYPE OPERATION CODE OPERATION
MNEMONIC ACTUAL
°SAO 84 Select Address and Operate

Analog-to-Digital *SLRN 86 Select Read Numerically
Converter

UMK 46 Unmask Interrupts (code zero in Qu)

MK 46 Mask Interrupts (code one in Qu:)

BO 47 Branch out of noninterruptible mode, load IR3 with P address (code
Branch zero in Qu)

BOLD 47 Branch out of noninterruptible mode, load IR1 with P address (code

one in Qu)

®Requires coding of modifier in Q.

or unique mnemonic may be used which automatically generates modifier (see Table 11).

Table 11. Unique Mnemonics To Replace 1710 SAO and SLRN Mnemonics Requiring Modifiers in Q;.

MNEMONICS MODIFIER OPERATION
EQUIVALENT UNIQUE Q-

SA 1 Select Address

SAO SACO 2 Select Address and Contact Operate
SAOS 3 Select Address and Provide Output Signal
SLTA 1 Select TAS
SLAR 2 Select ADC Register

SLRN SLTC 4 Select Real-Tiine Clock
SLAD 6 Select ADC and Increment (1711, Model 1, only)
SLCB 7 Select Contact Block
SLME 8 Select Manual Entry Switches

1710 Imperative Operations

43

Switch or indicator codes,
Table 12

44

Both the Br or BN1 operations require as a Q address one of the 14 switch or
indicator codes (for 1620/1710) from Table 5 or one of the 35 switch or indicator
codes (for 1710 only) from Table 12. These codes indicate the switch or indicator
to be interrogated for status by the B1 or BNI operations.

Table 12. Additional Switch and Indicator Codes Used as Actual Q Addresses
in 1710 BI and BNI Instructions.

Q ADDRESS
Q- Q[O | Qu Qu SWITCH OR INDICATOR

Branch Out of Interrupt

MAR Check*

Operator Entry

Terminal Address-Selector (TAS) Check*
Functional Register Check*

Analog Output (AO) Check®

Mask Indicator

Customer Engineer (CE) Interrupt
Analog Output (AO) Setup

Terminal Address Selector (TAS) Busy
Multiplexer Complete
Process Interrupt 1
Process Interrupt 2
Process Interrupt 3
Process Interrupt 4
Process Branch Indicator
Process Branch Indicator
Process Branch Indicator
Process Branch Indicator
Process Branch Indicator
Process Branch Indicator
Process Branch Indicator
Process Branch Indicator
Process Branch Indicator
Process Branch Indicator 10
Process Branch Indicator 11
Process Branch Indicator 12
Process Branch Indicator 13
Process Branch Indicator 14
Process Branch Indicator 15
Process Branch Indicator 16
Process Branch Indicator 17
Process Branch Indicator 18
Process Branch Indicator 19
Process Branch Indicator 20

See note below
See note below

See note below
©0 00 05 00 0 00 B0 00 00 00 =T ~1 =1 ~1 =1 ~1 ~1 ~1 ~I ~1 UL UL s i 1O 1O DO N0 1O 1O 1O = © o
COIPURAWNRHOOOTDUA WNHD—DDO DD M1 W — 0000 o
© 00 =10 UL L3 DO

*The Any Data Check indicator (19) also is on when this indicator is on.

Note: Position Q. may contain any digit value or blank, Q. may contain any digit value, and
Qs any digit value with the exception of zero or one.

Program or Routine

Common to many programs

Subroutine

17 Library subroutines

Variable length
Fixed length

1620/1710 Subroutines.

A program or routine is a set of coded instructions that are arranged in a logical
sequence; it is used to direct the 1620, or any 1BM data processing system, to per-
form a desired operation or series of operations. Generally, programs contain one
or more short sequences of instructions that are parts or subsets of the entire pro-
gram and that are used to solve a particular part of a problem. These parts of the
program or routine are called subroutines.

Usually, a subroutine performs a specific function, is common to a number of
programs, and may be executed several times during the course of the program
of which it is a part (main program). For example: a subroutine that extracts the
square root of a number may be required several times during the execution of
a pipe stress analysis program. The same subroutine may be used to extract a square
root in a bridge and truss design program.

An efficient programming procedure is obviously one in which all necessary
subroutines are coded only once, are retained on file, and are incorporated into a
program whenever the operation performed by the subroutine is required. 1M
Applied Programming has developed for the 1620/1710 Symbolic Programming
System a group of subroutines that are more frequently required because of their
general applicability. Seventeen subroutines are available; they fall into three gen-
eral categories: arithmetic, data transmission, and functional.

Arithmetic subroutines
Floating Point Add
Floating Point Subtract
Floating Point Multiply
Floating Point Divide
Fixed Point Divide

Data transmission subroutines
Floating Shift Right
Floating Shift Left
Transmit Floating
Branch and Transmit Floating

Functional subroutines (those that evaluate)
Floating Point Square Root
Floating Point Sine
Floating Point Cosine
Floating Point Arctangent
Floating Point Exponential (natural)
Floating Point Exponential (base 10, common)
Floating Point Logarithm (natural)
Floating Point Logarithm (base 10, common)

The methods used by the functional floating point subroutines to evaluate
the functions of arguments are shown in Table 13.

The combined subroutines are written in machine language and are provided
in card or paper tape form for floating point numbers with either a fixed length or
variable length mantissa. The term “variable length” or “fixed length,” as applied to
subroutines in this manual, refers to the number of digits (L) in the mantissa, not
to the length of the subroutine itself.

1620/1710 Subroutines 45

Table 13. Subroutine Method for Evaluating Arguments.

METHOD

SUBROUTINE FIXED LENGTH VARIABLE LENGTH
Square Root Odd integer Odd integer
Sine and Cosine Based on Hastings’ approximation® Series approximation
Arctangent Truncated series Series approximation for arctangent
Exponential (natural Hastings” approximation for 108 Series approximation of 108

and base 10) 108 is converted to eB and convert to eB
Logarithm (natural Truncated series for 1In B Series approximation of 1n B

and base 10) 1n B is converted to log:, B and convert to log B

® Hastings, Cecil, Jr., Approximations for Digital Computers,
Princeton University Press, Princeton, New Jersey,

The Rand Corporation, 1955.

Five sets of subroutines

PICK common to all subroutines

Function of processor

Adding subroutines

46

The five types of subroutine card decks or paper tapes are:

1. Fixed length subroutines for machines not equipped with the automatic
divide feature.

2. Fixed length subroutines for machines equipped with the automatic divide
feature.

3. Variable length subroutines for machines not equipped with the automatic
divide feature.

4. Variable length subroutines for machines equipped with the automatic
divide feature.

5. Variable length subroutines for machines equipped with automatic floating
point feature (for which the automatic divide feature is a prerequisite).

Although type 2 and type 4 subroutines are designed to work with the auto-
matic divide feature, the “fixed point divide” subroutine is included as part of the
subroutine package. Type-5 variable length subroutines that are designed to work
with the automatic floating point feature include a complete set of subroutines as
part of the package.

A picx subroutine is included in the object program with any of the 17 subrou-
tines previously mentioned. This subroutine performs the function of getting the
data specified for a subroutine and storing the result produced by that subroutine.

The processor selects the subroutines used by the source program that are to
be included in the object deck or tape. When the object deck or tape is loaded, the
subroutines are loaded to the first even-numbered address following the object
program. Although this address is assigned by the processor, care must be exercised
by the programmer to provide a storage area, between the position assigned by
the processor and position 19999 (standard-capacity machine), that is large enough
to accommodate the subroutines called for. To find the amount of storage required
for the subroutines, the programmer may total the storage requirements of -the
subroutines used.

The fixed point divide subroutine (prv) is used by some floating point func-
tional subroutines. For this reason it will automatically be incorporated into a pro-
gram which uses these subroutines when the machine used to run the program is
not equipped with automatic divide (special feature).

In addition to the Library subroutines, the user may include up to twelve sub-
routines of his own. The method used to incorporate these routines into a program
is explained under ADDING SUBROUTINES.

Programmer writes macros

Processor generates linkage

Arithmetic subroutine macros

Data transmission macros

Functional subroutine macros

Linkage and Macro-instructions

All linkages for the 1620 subroutines are generated automatically through the use
of certain macro-instructions. The programmer places the macro-instruction that
is related to a particular subroutine in the source program at the point at which
the subroutine is desired. This causes the sps processor, during assembly, to gen-
erate linkage to the desired subroutine. In addition, the processor arranges for
the subroutine to be added to the object program.

The data and addresses required by the subroutine and supplied in the macro-
instruction are incorporated into the linkage instructions where they are made avail-
able for use. In this way the subroutine obtains the information it requires to per-
form its given task and also to compute a return address to the main program.
Control is returned to the main program at the completion of the subroutine by
transferring to the return address. The macro-instruction statement related to each
subroutine is as follows:

Arithmetic Subroutines Macro-instruction

Line Label i Operonds & Remarks

3 514 11112 1511, 2 -] 45 0 55 0 &S k] 4
N A, B, , (FloatingAdd) .0 e
PR B 8. A BE. .. (FloatingSubtract) o o u i R I
el 0o |FM (Floating Multply) . 4 vy oy v s i oyt 0y i bttt
000l vy, JFD 1010 o (FloatingDivide) | |, , |\ el e s
050l 0\, DIV, |A, B AL, BIH (Divide) S N i

Data Transmission Subroutines Macro-instruction

Line
3_5

0.1.0

FSRS

151

0,2.0

FSLS

A, BE) . (Floating Shift Right)
A. BE) | (Floating Shift Left)

FLS

A, (Transmit Floating)

0,4,0

(Branch and Transmit Floating) , , , , . , , , (4,

Operands & Remarks

P PTG B

N R S R N SN S S I N0 Y A B S O

Functional Subroutines Macro-instruction

Line Label ot Operands & Remarks

3 51¢ n 18] 2 L 5 £ 55] ® n_ bet
wrel .. |FSQR|A. BB . (Floating Square Root) e P
0.2.0) 44y FSI (Floating Sine) N N A W \ LAl
930 ., |FCO (Floating Cosine) T D R U AW W W A
o0 4,000 B (Floating Ar I AT AT I AT AT A W O AP AT A A ST o N

os0|l ., |FEX [A)] (Floating Exp fal Natural) . 5 , o 000 00 oa iy Y O T T
60 2y IFREXTA (Floating E tial, Base 10) o4 ¢ o 4oy 0 uuoua o aan o4 iaa ettt
ozol vy F.LN A.%(Flo&ﬂngm;uuhm.)hml) P T L Laasaa

o0 00 IFLOGIA,L (Floating Logarithm,Base 10) | , , , , .y o, g0y Aouaaa i N "

In the arithmetic statements, the B operands represent the addresses of quan-
tities to be added, subtracted, etc., to quantities at addresses specified by the A
operands. For the fixed point divide routine, two additional operands, Al and
Bl, are required. These operands, as well as the A and B operands, are explained
in greater detail under each macro-instruction as it is described. In the data trans-
mission statements, the B operand generally represents the address of the field to
be transmitted, whereas the A operand represents the address to which the field is
to be transmitted. The function of the A and B operands differs slightly for func-
tional subroutine macro-instructions. In this case, the B operand represents the

1620/1710 Subroutines 47

Use of indirect
addressing with
macros

Two linkage instructions for
each macro

Rules for coding macros

Linkage

Secondary linkage

48

address of the argument to be evaluated and the A operand represents the address
where the result is placed in storage.

Indirect addressing (special feature) can be used with the operands of all
macro-instructions on machines with or without the automatic floating point fea-
ture. To indicate an indirect address, an operand should be preceded by a minus
sign. An indirect address in the form Xxxxx is generated by the processor. A flag
is automatically placed in the leftmost and rightmost positions of the address. A
flag in any other position of an indirect address is not permitted. If indirect
addressing is attempted on a machine that does not have the indirect addressing
feature, the flagged operand is not interpreted as an indirect address.

For each macro-instruction statement in a source program, two machine lan-
guage linkage instructions, and a 5-digit address for each operand, are generated by
the processor in the object program. These linkage instructions replace the macro-
instruction, which never appears in the object program. A label written with a
macro-instruction references the leftmost position of the first linkage instruction
generated. If the programmer wishes to use this label in address adjustment, he
must remember that the instruction located following a macro-instruction is not
LABEL + 12.

When using a macro-instruction, the programmer must code the exact num-
ber of operands required for that macro-instruction. Every macro-instruction must
have at least two operands. Remarks and flag operands are not permitted in macro-
instructions. Omitted operands require the insertion of commas as in imperative
statements.

All operands in macro-instructions may be symbolic or actual; all are subject
to address adjustment. If an * is used as an operand, its address is that of the left-
most postion of the first linkage instruction.

The linkage instructions generated for a macro-instruction by the processor
are equivalent to the following series of symbolic instructions:

Line Labet i Operands & Remarks J

3 Sle njn 15]16 2 3 30 35] 45 50 S5 ® ("3 » 7]
] B TFM |PICK+11, *+23@ , . ., . . L e b s

0,200 4,y SUBRE) . o vy " . P . "
of ., ., |DORG]*- T T T T T

JEN] B LTV N T

where pick is the address of the first instruction in the pick subroutine that is shared
by all subroutines; susr is the secondary linkage for the desired subroutine (that
subroutine specified by the macro-instruction); and A, B, C, D.. . . are the series of
5-digit addresses or constants that are equivalent to the operands specified by the
macro-instruction. This linkage allows the macro-instruction to contain any number
of operands, an ability that is significant for “adding subroutines.”

During execution of the object program, the secondary linkage instructions
set up the address of the first instruction in the desired subroutine as a part of one
of the instructions in the pick subroutine. Secondary linkage instructions are gen-
erated by the processor for each subroutine used by the source program. They are
equivalent to the following symbolic instructions:

For arithmetic subroutines (not including piv)

SUBR TFM PICK + 402, ADDR @
B PICK @

For data transmission subroutines (not including Fsgs, FsLs)

SUBR TFM PICK + 402, ADDR
B PICK + 104 @

Subroutines contained in deck
or tape

Paired subroutines

Conserve storage

Divide subroutine used by
certain subroutines

For functional subroutines

B PICK + 104

SUBR TFM PICK + 402, @DDR @
For piv (arithmetic), Fsrs, and FsLs (data transmission) subroutines

SUBR TF ADDR +11, PICK + 11 @
B ADDR @

pIcK is the address of the first instruction of the pick subroutine, and ADDR is
the actual address where the first instruction of the desired subroutine is located.
In the secondary linkage, pick + 402 is the address equivalent for the variable
length subroutines only. That address should be replaced by pick + 414 for fixed
length subroutines. For variable length subroutines using the floating point feature,
the secondary linkage instructions generated are equivalent to the following sym-
bolic instructions:

For arithmetic subroutines

SUBR TF ADDR + 11, PICK + 11 @
B ADDR @

For data transmission subroutines (not including Fsrs, FsLS)

SUBR TF PICK + 174, ADDR @
B PICK + 24 @

For functional subroutines

SUBR TF PICK + 174, ADDR @
B PICK + 24 @

The subroutine card deck or paper tape will contain the subroutines in the
order shown. All except the first three are floating point subroutines.

1. Subroutine Processor 8. Cosine — Sine

2. Pick 9. Arctangent

3. Divide (fixed point) 10. Exponential (natural and base 10)
4, Subtract — Add 11. Logarithm (natural and base 10)
5. Multiply 12. Shift Right

6. Divide 13. Shift Left

7. Square Root 14. Transmit Floating

15. Branch and Transmit Floating

Many subroutines have been paired (i.e., add and subtract, sine and cosine,
natural and base 10 exponential, natural and base 10 logarithm), into single sub-
routines to conserve storage by sharing those program steps common to both. The
individual subroutines within each pair are distinguished from each other solely
by the point at which they are entered. The correct entry point is obtained through
use of the macro-instruction pertaining to the particular subroutine desired.

Because the arctangent subroutine and both logarithm subroutines (natural
and base 10) require the fixed point divide routine, the macro-instructions FATN,
FLN, and FLOG cause the fixed point divide subroutine to be added to the object

‘program output. (provided the machine is not equipped with automatic divide).

For the fixed length mantissa subroutines, any of the previously listed subroutines
3-8, 10, 12-15, may be called for and added to the object output without calling
any other subroutine; ie., floating add-subtract may be called without calling
floating multiply. For the variable length mantissa subroutines, any of the four
arithmetic macro-instructions (FA, Fs, FM, Fp) will cause all three arithmetic sub-
routines (4. floating add-subtract, 5. floating multiply, and 6. floating divide) to be
called for and added to the object program output. However, the other subroutines
may be called for independently of each other.

162071710 Subroutines 49

Subroutine processor

Not part of object program

Subroutine sequence maintained
by number in columns 77-80

In the object program output, each subroutine except the pick subroutine is
preceded by its secondary linkage. However, when the object program is loaded,
the secondary linkages for all of the subroutines are stored in storage positions that
immediately follow the object program, starting with the first even-numbered ad-
dress. prck and other subroutines are loaded into sequentially higher addresses (in
the order previously listed).

The subroutine processor is loaded into an area of storage which is occupied
by the sps processor, thereby destroying a portion of the sps processor. To restore
the sps processor to its original status, the part destroyed must be reloaded after
selection of the subroutines is completed. Restoration of the sps processor is accom-
plished automatically with the data which follows the last subroutine (15. Branch
and Transmit Floating) of the subroutine deck or tape. This data includes the
loader, arithmetic tables, and that part of the sps processor previously destroyed.
The “subroutine processor” is never a part of the object program output or final
object program.

Sequence Numbering of Subroutines

The subroutine deck contains a sequence number in columns 77-80. This number
allows the programmer to restore the correct sequence should a deck be dropped
or a card inadvertently misplaced. To operate correctly, subroutines should be in

Table 14. Codes Used in Column 77 of Subroutine Deck To Identify and Sequence Subroutines.

SUBROUTINE NUMBER CODE IN COLUMN 77
FIXED LENGTH VARIABLE LENGTH
Subroutine
Processor None blank blank
PICK 00 0 0
D1V 01 1 1
FS 02
2
FA 03
2
FM 04 4
FD 05 5
FSQR 06 6 6
FCOS 07
7 7
FSIN 08
FATN 09 9 9
FEXT 10 - -
, 0 0
FEX 11
FLOG 12 - -
2 2
FLN 13
FSRS 14 4 4
FSLS 15 5 5
TFLS 16 [6
BTFS 17 7 7

50

Fixed length and variable length
subroutine codes, Table 14

To locate decimal point

To handle large numbers

Eliminates scaling

Standard representation for
all quantities

Scientific notation

sequence. Subroutines not wanted by a user can be removed from the subroutine
deck. The macro-instruction associated with that subroutine may not be used,
if the subroutine has been removed.

Fach card in the subroutine deck contains a code in column 77. These codes
for both fixed length and variable length subroutines are shown in Table 14, In
addition, each subroutine is numbered 000, 001, etc., in columns 78-80. A flag in
column 78 indicates variable length subroutines, whereas omission of this flag
indicates fixed length subroutines. A flag in column 79 indicates that the subroutine
is designed to work with automatic divide; no flag in this column indicates that it
is designed to work without the automatic divide feature. A flag in column 80 indi-
cates it is designed to work with the automatic floating point feature.

Floating Point Arithmetic

Scientific and engineering computations frequently involve lengthy and complex
calculations necessitating the manipulation of numbers that may vary widely in
magnitude. To obtain a meaningful answer, problems of this type usually require
retention of as many significant digits as possible during calculation, and correct
positioning of the decimal point at all times. When the computer is used for such
problems, several factors must be considered, of which the most important is the
location of the decimal point.

In general, a computer does not recognize the presence of a decimal point in
any quantity during calculation. A product of 41454 results whether the factors
are 9.37 x 44.2; 93.7 x .442; or 937 x 4.42; etc. The programmer must be cognizant
of the location of the decimal point during and after the calculation and arrange
the program accordingly. In adding, the decimal points of all numbers must be
lined up to obtain the correct sum. The programmer facilitates this arrangement
by shifting the quantities as they are added. In the manipulation of numbers that
vary greatly in magnitude, it is conceivable that the resulting quantity could exceed
allowable working limits.

Processing numbers expressed in ordinary form, e.g., 427.93456, 0.0009762,
5382, —623.147, 3.1415927, etc., can be accomplished on a computer only with
extensive analysis to determine the size and range of intermediate and final results.
The percentage of time required for this analysis and subsequent number scaling
is frequently much larger than the percentage of time required to perform the
actual calculation. Moreover, number scaling requires complete and accurate
information regarding the bounds on the magpitude of all numbers that come into
the computation (input, intermediate, output). Since prediction of the size of all
numbers in a given calculation is not always possible, analysis and number scaling
are sometimes impractical.

To alleviate this programming problem, a system must be employed which
provides information regarding the magnitude of all numbers in the calculation
along with the quantities in the calculation. Thus, if all numbers are represented
in some standard, predetermined format that instructs the computer in an orderly
and simple fashion as to the location of the decimal point, and if this representation
is acceptable to the routine that performs the calculation, then quantities that range
from minute fractions having many decimal places to large whole numbers having
many integer places can be handled. The arithmetic system most commonly used,
in which all numbers are expressed in a format that has these characteristics, is
called “foating point arithmetic.”

The notation used in floating point arithmetic is basically an adaptation of
the scientific notation that is widely used today. In scientific work very large or

1620/1710 Subroutines 51

Mantissa
Exponent

Format

Limits

Range of exponent

Sign control

Normalized
Unnormalized

Data must be normalized

52

very small numbers are expressed as a number, between one and ten, times a power
of ten. Thus,

427.93456 is written as 4.2793456 x 102,
and 0.0009762 is written as 9.762 x 10+

In the 1620 floating point arithmetic system, the range of the fractional part of the
number is modified to extend between .10000000 and .99999999, that is, the decimal
point of all numbers is placed to the left of the high-order (leftmost) nonzero
digit. Hence, all quantities may be thought of as a decimal fraction times a power
of ten. For example,

427.93456 becomes .42793456 x 10°

and 0.0009762 becomes .97620000 x 10~
where the fraction is called the mantissa, and the power of ten, indicating the
number of places the decimal point was shifted, is called the exponent. The use of
floating point numbers during processing, besides offering advantages inherent in
scientific notation, eliminates the need for analyzing operations in order to deter-
mine the positioning of the decimal point in intermediate and final results, since
the decimal point is always immediately to the left of the high-order, nonzero
digit in the mantissa.

In 1620/1710 floating point operations, a ﬂoating point number is a field con-
sisting of a variable length or fixed length mantissa and a 2-digit exponent. The
exponent is in the two low-order positions of the field, and the mantissa is in the
remaining high-order positions, as shown:

For the subroutines, the variable length mantissa may have a minimum of two
digits and a maximum of 45 digits. Two operand fields that are added together
must have mantissas of the same length. A flag over the high-order digit marks
the extremity of the field. A fixed length mantissa must have eight digits.

The exponent is established on the premise that the mantissa is less than 1.0
and equal to or greater than 0.1. It always consists of two digits ranging between
—99 and +99. A flag over the high-order (ten) digit defines the exponent.

The high-order digit of the mantissa and the high-order digit of the exponent
must contain flag bits to operate properly with floating point subroutines.

The mantissa and the exponent, if negative, must have an algebraic sign,
represented by a flag, over the units position of the respective fields; if they are
positive, they are not flagged. A floating point number with a negative mantissa
and a negative exponent is represented as follows:

Sign control of the results of all computations is maintained according to the
standard rules of arithmetic operations.

In all floating point numbers the decimal point is assumed to be at the left
of the high-order digit, which must be a nonzero digit. Such a number is referred
to as normalized. When a number has one or more high-order zeros, it is considered
to be unnormalized. An unnormalized number resulting from a floating point sub-
routine computation is normalized automatically, but unnormalized terms are not
recognized as such when entered as data. Therefore, it is necessary for all data to
be entered in normalized form. Although unnormalized numbers will be processed,
correct results cannot be assured. For example, the number 0682349405 should be
entered as 6823494004, assuming the fixed point number is 6823.494, and an 8-digit
mantissa is required.

Conversion

N digit

Effects of normalizing

Truncation error

Maximum truncation error

Overflow
Underflow

The following examples demonstrate the conversion of numbers in ordinary
form to 1620 floating point notation for an 8-digit mantissa.

NUMBER NORMALIZED 1620 FLOATING POINT
123.45678 12345678 X 10° 1234567803
00765438 76543800 X 10 7654380002
—.12348693 —.12348693 X 10° 1234869300
— 00000070 —.70000000 X 10~ 7000000006
.00000000 .00000000 X 10-*° 0000000099

NotE: A zero mantissa is associated with a 99 exponent.

The result of a floating point operation is normalized automatically. For ex-
ample, the result .00123456 when normalized becomes 123456NN02, where N is
an inserted digit and 02 is the exponent. The value of the N digit (0 through 9)
is determined by the programmer, who in most cases will choose to use zero. The
storage location of the N digit is the first odd-numbered location following the
last secondary linkage of the assembled program. The programmer must always
store the N digit. He may do this by using the following statements, where the con-
stant (N digit) is zero.

a5

02,00 o4 4

In normalizing, certain low-order digits in a mantissa may lose significance.
To recognize these digits, the floating point arithmetic can be performed twice,
using a different N digit for each run, e.g. zero for the first run and nine for the
second run. The significance of these digits can be readily distinguished by com-
paring the two results. For example, if the programmer compares the following:

Mantissa Exponent
Result, 1st run 12345000 04
Result, 2nd run 12345099 04

he will see that the two low-order positions of the mantissa have lost significance
because they are significantly different.

When intermediate floating point results enter into additional floating point
calculations, inserted digits may become a part of the result of the additional
calculation.

In the case of lengthy computations using floating point results, precision
gradually decreases because of truncation. The magnitude of the truncation error
depends on the individual computation process and cannot be predicted without
a knowledge of the process in question. However, the truncation error in such cases
is usually no greater than the degree of error present in a rounded amount. Results
in floating point subroutines are not rounded. The maximum truncation error for
a fixed length mantissa will not exceed 10-® or for a variable length mantissa, 10°%,
except under certain conditions described in the explanation of floating point func-
tional subroutines.

Exponent Overflow and Underflow

In the 1620/1710 floating point subroutines, numbers with' a magnitude equal to
or greater than 10° create a condition called exponent overflow; those with a mag-
nitude of less than 10-%° create a condition called exponent underflow. If either of

162071710 Subroutines 53

Options

Determined by position 401

Affects six subroutines

When subroutine halts

Format of error messages

54

these conditions is generated as a result of an arithmetic operation, the programmer
has two options.

Overflow
L. To halt the program or
2. To cause 9...... 999 to be placed in the result field and to continue exe-
cuting the subroutine.
Underflow
1. To halt the program or
2. To cause 0. 099 to be placed in the result field and to continue exe-

cuting the subroutine.

The options function independently of each other. Therefore it is possible to
halt on an overflow and place zeros in the result field on an underflow, or to halt
on an underflow and place nines in the result field on an overflow.

The detection of an overflow or underflow condition causes the subroutine
being executed to examine core storage position 00401 to determine the course of
action. Options available to the programmer must be represented in position 401
by one of the following characters:

UNDERFLOW
Halt Store Zeros in
Result Field

o) .

v Halt 0 0

E

R

E Store All -

\?v Nines in Result 1 1
Field

To store the code determining the option in 401, an unlabeled Define Con-
stant (pc) statement may be used, as shown in the following example:

Line Label i Operands & Remarks
3 5]s 1z REIAT] 2 % £ 3 “ 45 50 £]] n 75|
] I DC, . IZ...-ﬂ.. 401,HALT, ON, OVERFLOW OR QEQERFLOW@_._‘ i

Positive codes (0 or 1) need not be preceded by a plus sign.

Overflow and/or underflow conditions can only arise in six of the floating
point subroutines presented in this manual, namely, the four arithmetic subroutines
and the two exponential functional subroutines.

If the subroutine halts on an overflow or underflow condition, the operator
can continue processing by depressing the start key on the console. In the case of
an overflow, execution of the subroutine begins after9 999 is placed in the
result field; in the case of an underflow, after 0. 099 is placed in the result field.

Subroutine Error Messages

In 1620 subroutines the presence of special conditions causes an error message. This
message is typed out in the following form:

XXXXX00XX
R S

where R is a return address to the main program
and S is a code that identifies the special condition.

Error codes

With the exception of exponent overflow or underflow, where the course of
action depends upon the digit at location 401, a subroutine always halts immedi-
ately after typing the error message. The error message code indicates the reason
for the halt. The operator may insert a branch instruction at storage location 00000.
The branch instruction will contain the return address to the main program. In
cases such as floating square root, execution of the subroutine may be made to con-
tinue, after a halt, by depressing the start key.

Listed in Table 15 Table 15 lists the error codes for special conditions and the appropriate action

to be taken.

Table 15. Error Codes

ERROR OPERATOR’S ACTION WHEN
CODE DESCRIPTION OF ERROR SUBROUTINE HALTS
01 FA or FS, Exponent Overflow May continue execution of subroutine by
depressing start key
02 FA or FS, Exponent Underflow Same as code 01
03 FM, Exponent Overflow Same as code 01
04 FM, Exponent Underflow Same as code 01
05 FD, Exponent Overflow Same as code 01
06 FD, Exponent Underflow Same as code 01
07 FD, Attempt to divide using a number with a zero mantissa | May not continue execution of subroutine
divisor but may branch back to main program using
return address
08 FSQR, Attempt to find the square root of a negative number Pressing the start key causes the subroutine
to extract the square root of the absolute
value of the argument
09 FSIN_or FCOS, Input argument has an exponent value greater Same as code 07
than 08 (fixed length mantissa) or L (variable-length mantissa)
10 FSIN or FCOS, For a fixed-length mantissa, the input argument Same as code 01
has an exponent (X) such that 03 < X < 08. For a variable-
length mantissa, the input argument has an exponent (X) such
that 03 < X < L where L = length of a mantissa.
11 FEX or FEXT, Exponent Overflow Same as code 01
12 FEX or FEXT, Exponent Underflow Same as code 01
13 FLN or FLOG, Input argument has a zero mantissa Same as code 07
14 FLN or FLOG, Input argument is negative Pressing the start key causes the subroutine
to continue execution, using the absolute
value of the argument

1620/1710 Subroutines 55

1620/1710 Subroutines/Macro-instructions

Storage requirements

Listed in Table 16

In this section are described the various subroutines, their associated macro-instruc-
tions, core storage requirements, and average execution time. By totaling the stor-
age required for each subroutine in a specific program, the programmer can ascer-
tain whether there is sufficient storage between the last position of storage that is
used by the object program and position 19999 (standard-capacity machine) to
store the subroutines. As stated earlier, the four subroutines that use fixed point
divide (either automatic divide or the divide subroutine) are: floating divide, -
floating arctangent, floating exponential, and floating logarithm. Fixed length man-
tissa subroutines that use automatic divide in the computation require less storage
than fixed length mantissa subroutines that use the fixed point divide subroutine.
Table 16 shows the storage requirement for each fixed length and variable length
subroutine.

Table 16. Summary of Storage Requirements of Subroutines.

NUMBER OF STORAGE POSITIONS REQUIRED

FIXED LENGTH VARIABLE LENGTH
SUBROUTINE WITH WITHOUT WITH WITHOUT WITH
AUTOMATIC AUTOMATIC AUTOMATIC AUTOMATIC AUTOMATIC
DIVIDE DIVIDE DIVIDE DIVIDE FLOATING POINT

PICK 872 872 1136 1136 896
DI1v 187 1047 199 1035 199
FA

543 543
FS

1163 1207 603

FM 239 239
FD 335 523
FSQR 579 579 659 659 659
FCOS

843 843 1054 1098 1054
FSIN
FATN 989 1077 1379 1487 1379
FEXT

740 784 1118 1258 1118
FEX
FLOG

842 886 1145 1209 1145
FLN
FSRS 279 279 279 279 96
FSLS 372 372 372 372 96
TFLS 31 31 31 31 31
BTFS 79 79 79 79 43

56

Highy/Positive During the execution of arithmetic subroutines, the overflow, high/positive,

Equal/Zero and equal/zero indicators are used. The overflow indicator is always reset at the

indicators beginning of each arithmetic subroutine. If it is desired to determine its status
prior to the execution of an arithmetic subroutine, the indicator must be tested
and its condition stored before the linkage instructions are executed. The
high/positive and equal/zero indicators are set according to the mantissa of the
result. Whenever a zero mantissa results (0...... 099), the equal/zero indicator
is turned on.

At the conclusion of a functional subroutine, the status of the high/positive,
equal/zero, and overflow indicators does not necessarily reflect the result of the
operation, because the indicators are disturbed during the execution of a functional
subroutine. Therefore, their status at the conclusion of a functional subroutine
should not be assumed to be the same as it was prior to the execution of the
subroutine.

Pick

Pick This subroutine is common to all fixed length and variable length mantissa sub-

routines. The pick subroutine, during execution of the object program,

Functions 1. Sets up A and B operands (more, if designated) to be operated upon, calcu-
Jates the return address to the mainline program, and branches to the
subroutine,

9. Stores the calculated result in the proper storage area and branches back
to the mainline program.

3. Initiates typing of error messages and branches to the subroutine if the
error condition allows processing of the subroutine to be resumed.

4. Provides constants and working storage for the other subroutines.

Execution time The average execution time for the pick subroutine can be determined by the

formula:

~ Average time (in us) = 100L + 8320

where L equals the length of the mantissa and the numbers are expressed in
microseconds. Therefore, an 8-digit mantissa (same as fixed length mantissa)

requires 9120 ps.
100 x 8 = 800
8320
9120 (ps)

or approximately nine milliseconds (ms). If indirect addressing is used, the average
time is increased according to the number of levels of indirect addressing used.

NortE: For the variable length subroutines used with the automatic floating point
feature,

Average time (in us) = 100L + 4500

Floating Add
Macro-instruction

Line Label ol Operands & Remarks
3 sle ubz_she ® 3 % 3) 48 50 5 @ I »n 7
IYOR] I 'FAH,AL,E@. . e S I e i

1620/1710 Subroutines/Maco-instructions 57

FA macro

FS macro

FM macro

58

The A and B addresses refer to the units position of the exponent of the fields:

MMMMMMMMEE
address of field

where Es represent digits of the exponent and Ms represent digits of the mantissa.

Operation

Field B is added to field A. The floating point sum replaces field A; field B remains
unchanged.

Average Execution Time
Fixed length
Average time = 9 ms
Variable length
Average time (in ps) = 5L2 + 482L + 6854
where L = length of mantissa

Floating Subtract
Macro-instruction

Line Lobel peration| Operands 8 Remarks
3__5ls nje 15116 20 2 3 ¥ 4 4 50 35 8 [} 2 78)

) BN BS AR e

The A and B addresses refer to the units position of the- exponent of the fields.

Operation

Field B is subtracted from field A. The floating point difference replaces field A;
field B remains unchanged.

Average Execution Time
Fixed length
Average time = 10.5 ms
Variable length
Average time (in ps) = 5L2 + 4821 4 7474

Floating Multiply
Macro-instruction

Line Labet KOperation) Operands & Remarks
3__s]s nliz__ ishe 2 2 k1) 3 @ 4 50 55 & g % 7
wol oy, F.M'B®.“. A S S PN N

The A and B addresses refer to the units position of the exponents of the fields.

Operation

Field A is multiplied by field B. The floating point product replaces field A; field
B remains unchanged.

Average Execution Time
Fixed length
Average time = 18 ms
Variable length
Average time (in us) = 168L* + 240L + 7400

FD macro

DIV macro

Four operands required

Product area 00080-
00099 cleared automatically

Floating Divide
Macro-instruction

Line Label [Operation| Operands & Remorks
3 sl np2 1516 k] 2 30 3 40 L 0, 5 0 & o 75;
ool oo D AR L L i

Operation
Field A is divided by field B. The floating point quotient replaces field A; field B
remains unchanged.

Average Execution Time
Fixed length
With automatic divide
Average time = 55 ms
Without automatic divide
Average time = 70 ms
Variable length
With automatic divide
Average time (in ps) = 520L* 4 1500L + 7890
Without automatic divide
Average time (in us) = 1.9[520L* + 1500L + 78901

Fixed Point Divide
Macro-instruction

Line Label ati Operands & Remarks
3518 up2 1518 0 k3] 35 @ 45 £ 5] & n 73]

N 1y, ’A...B.,A.l.,.BJ@ . i

In addition to the A and B operands, representing the addresses of the dividend
and divisor, the divide macro-instruction requires two additional operands; one
specifies the number of zeros to be inserted to the right of the dividend (Al oper-
and) and the other, the shift factor needed by the subroutine (Bl operand).
Specifically,

A operand is core storage address of dividend.

B operand is core storage address of divisor.

Al operand is 00099 minus the number of zeros desired to the right of the
units position of the dividend.

Bl operand is 00100 minus the length of the quotient. The quotient must be
at least two digits in length.

Note: The quotient address after the division is executed will be equal to 00099
minus the length of the divisor.

Prior to the divide operation, the divide subroutine always resets to zeros
(clears) the positions 00080 through 00099, the product area where the 20-digit
quotient and remainder are developed. For the variable length mantissa subrou-
tines, where L (length of mantissa) is greater than 10, the number of positions
which are reset to zeros is equal to 99 —2L. When the quotient plus the remainder
exceeds the number of positions cleared to zeros, positions lower than the last posi-

1620/1710 Subroutines/Macro-instructions 59

Additional positions cleared
by programming

Macro may be used with
any subroutine package

Positioning of dividend

High-order digit flagged

Positioning of divisor
for subtraction

Quotient and remainder
in product area

Sign of result shown
by indicators

60

tion cleared must be reset to zeros by programming. One additional position should
also be cleared to allow for a possible overdraw. For example, if 25 positions are
required for the quotient and remainder in a fixed length mantissa subroutine,
00074-00079 will have to be reset to zeros before the divide macro-instruction
is given.

The fixed point divide macro-instruction may be used with any of the sub-
routine packages. Whenever it is used, the fixed point divide subroutine will be
incorporated into the user’s program. For the subroutine packages that are designed
to work with automatic divide, the fixed point divide subroutine uses automatic
divide in performing its operation. For the subroutine packages that are designed
to work without the automatic divide feature, the fixed point divide subroutine
performs its operation as instructed by the routine without the aid of the automatic
divide feature. Coding of the macro-instruction is the same for all of the subrou-
tine packages.

Operation

The product area (00080-00099) is automatically reset to zeros. The dividend (A
address) is transmitted to the product area (Al address), beginning at the low-
order dividend digit and terminating at the flag bit marking the high-order posi-
tion of the dividend field. The Al address is 00099 minus the number of zero
positions desired to the right of the dividend.

The algebraic sign of the dividend is automatically placed in location 00099,
regardless of where the rightmost dividend digit is placed by the Al address. A flag
bit automatically marks the high-order digit of the dividend.

The divisor (B address) is successively subtracted from the dividend. The Bl
address of the divide macro-instruction positions the divisor for the first subtraction
from the high-order position(s) of the dividend, as in manual division. The Bl
address is determined by subtracting the number of digits in the quotient from 100.
For the subroutines using program divide, the value of BI must be between 0 and
99. For subroutines using automatic divide, the value of Bl is not restricted.

The quotient and remainder replace the dividend in the product area. The
address of the quotient is 00099 minus the length of the divisor. The algebraic
sign of the quotient (determined by the signs of the dividend and divisor) is auto-
matically placed in the low-order position of the quotient. The address of the re-
mainder is 00099 and a flag bit is automatically placed in that position. The re-
mainder has the sign of the dividend and the same number of digits as the divisor.

The high/positive indicator is on if the quotient is positive and not zero; the
equal/zero indicator is on if the quotient is zero. Neither indicator is on if the
quotient is negative.

The quotient must be at least two digits in length. One position is required
for the sign and one for the field mark (flag bit).

Examples

1. The macro-instruction
DIV A, B, 99, 96 _ _ _
will perform the division for 0273 m and store the result 0014 in stor-
age location 00092 through 00095.
2. The macro-instruction
DIV A, B, 96, 93 _ _
will perform the division for 0273)3972.000 and store the result 0014.549
in storage locations 00089 through 00095.

Norte: In both examples (1 and 2), A represents the address of the dividend 3972
and B represents the address of the divisor 0273.

Incorrect Positioning of Divisor

The following error conditions are caused by an incorrect Bl address.

Overflow An incorrectly positioned divisor can cause more than nine successful sub-
tractions and an incorrect quotient. The divide operation is terminated, the Over-
flow indicator and Overflow Arithmetic Check light are turned on, but processing
will not stop unless the Overflow Check switch is set to sTop.

Loss of one or more The high-order digit of the dividend is assumed by the 1620 to be one position

high-order digits of the dividend o the left of the high-order digit of the divisor. The high-order digits of the divi-
dend are lost if the divisor is positioned too far to the right. Processing continues
with no indication of an incorrect quotient.

Incorrect termination If the B address is less than 10000, i.e., between 00100 and 09999, the divide

(for subroutines which use the operation will terminate when a subtraction occurs at 0XX99. This, in effect,

automatic divide feature) restricts the size of the dividend to 10,020 digits if only 20,000 positions of core
storage are installed.

Average Execution Time
Fixed length and variable length with automatic divide
Average time (in ms) = 980 + .040 LpvD +
(.520 Lovr + .740) (100 — B1)
where LDvD is length of the dividend field,
LpvR is length of the divisor field, and
B1 is value specified in macro-instruction.

Note: Multiply 3.2 times the result to find the average execution time for the
fixed length and variable length subroutines without automatic divide.

Floating Shift Right
Macro-instruction

Line Lobet rati Operands & Remarks
3 sls nbiz she 2 5 1) 3 a0 5 0 55 “ 8 n 75|
[TR lF.S,R. . R T S R S S S S S S S A U A R S L aaaaa

FSRS macro The effect of this macro-instruction is to shrink the mantissa by shifting it to the
right and truncating the low-order digits. The A address is normally the units
position of the mantissa.

MMMMMMMMEE

units position
of mantissa

The B address specifies the digit of the mantissa which will become the low-order
digit of the mantissa.

1620/1710 Subroutines/Macro-instructions 61

Floating shift
right (contd.)

FSLS macro

62

Operation

The field at the B address (the portion of the mantissa to be retained) is shifted
right to the location specified by the A address. The exponent is not moved or
altered. For example, the macro-instruction

FSRS 00097,00093
causes the mantissa
30590011325701

Storage Storage
Address Address
00093 00097

to be shifted, producing the following result
00003059001101

Storage Storage
Address Address
00093 00097

Vacated high-order positions are set to zeros. An existing flag at the A address is
retained for algebraic sign; the field flag bit is transmitted with the high-order digit
of the B field.

Average Execution Time

Fixed length and variable length
Average time (in us) = 4960 + 960L — 880 (A—B)

Floating Shift Left
Macro-instruction

Line Label eratio Operands & Remarks

k] 516 1412 1518 20 2% 30 35 40 45 50 55 0 & n 78

gool v fFSLSIALBE L e e

The effect of this macro-instruction is to expand the mantissa by shifting it to the
left and filling the vacated positions with zeros. It is important to note that the B
address is the low-order position of the field moved, and the A address is the
high-order position of the resulting field.

Floating shift left (contd.)

TFLS macro

Operation

The field at the B address, which is the low-order digit of the mantissa, is shifted
left so that the high-order digit is moved to the location specified by the A address.
The exponent is not moved or altered. For example, the macro-instruction:

FSLS 00090, 00097
causes the mantissa
0011325701
Storfage gtorage

Address Address
00090 00097

to be shifted, producing the following result

1132570001

t f

Storage Storage
Address Address
00090 00097

An existing flag bit at the Q address is retained for algebraic sign; the field flag bit
is transmitted with the high-order digit of the Q field.
Average Execution Time

Fixed length and variable length
Average time (in ps) = 6460 + 1520 (B — A) — 360L

Transmit Floating
Macro-instruction

Line Labe! [Operation| Operands & Remarks
3 sls iz ishe 0 2 3 3 o s 50 55 0 6 b0 ”
ool .. TFLSALBE, . | . . i e A]

The B address refers to the low-order digit of the floating point field exponent,
whereas the A address refers to the low-order position to which the field is trans-
mitted.

Operation

The field at the B address is transmitted to the location specified by the A address.
The B field remains unchanged in storage. Flag bits in the three low-order positions
of the B field are also transmitted; starting with the fourth low-order position
only one additional flag bit is transmitted, and it stops transmission. For the variable
length subroutine, L must be <49, where L equals the number of mantissa digits
in the field to be transmitted. For the fixed length subroutine, L must be < 19.

Average Execution Time

Fixed length and variable length
Average time (in ps) = 400 + 40L

1620/1710 Subroutines/Macro-instructions 63

BTFS macro

FSQR macro

64

Branch and Transmit Floating
Macro-instruction

Line
3 s

Operands & Remarks
® 3 ') 4 5 ') '3 n

0,1,0

The B address is normally the low-order position of the floating point field ex-
ponent, whereas the A address is the leftmost position of the next instruction to
be executed.

Operation

The address of the next instruction is saved at a storage location equivalent to
BTFS + 78 and the field at the B address is transmitted to the A address minus one.
The normal exit of a routine which is entered by a Br¥s is a branch back (88) in-
struction. The instruction at the A address is the next one executed. The B field
remains unchanged in core storage. Any flag bits in the three low-order positions
of the B field are transmitted; starting with the fourth low-order position only one
additional flag bit is transmitted, and it stops transmission.

Average Execution Time

Fixed length and variable length
Average time (in ps) = 2280 + 40L

Floating Square Root
Macro-instruction

Line Lobel i Operands & Remarks
sfs vliz___ 1she 0 23 2 3 ') 8 '] [® 4 n bl
) FSQRIACBE) , , .\ o 00 iy i Al o e ee o oy
T 1

The A and B addresses refer to the units position of the exponents of the fields.

Operation

The square root of argument B is extracted and the result, in floating point form,
is stored at A. The argument, which must be in floating point form, is unchanged
by the operation.

The floating point square root subroutine accepts all numbers within the
floating point range that are greater than or equal to zero. If the argument is less
than zero, the subroutine executes a programmed halt. The operator has two
options:

1. Using the information found in the halt instruction, he may branch back

to the main routine, or

2. Continue the execution of the subroutine and compute the square root of B .

Average Execution Time
Fixed length
Average time = 120 ms
Variable length
Average time (in us) = 620L? 4 9776L + 5328

FSIN macro

FCOS macro

Floating Sine
Macro-instruction

Line Label Operatic Operands & Remarks
3_5]e npiz 15316 2 25 0 35 40 45 50 85 (] %5 n bel
Fs.mlA.,t@.“. e e

00,08 0 0 40y

The A and B addresses refer to the units position of the exponents of the fields.

Operation

The sine of argument B is computed and the result, in floating point form, is stored
at A. The argument must be in radians and in floating point form. The computation
does not disturb the original value of the argument.

The floating point sine subroutine accepts all numbers of floating range up
to and including exponent 08 (fixed length mantissa) or L (variable length man-
tissa). The operator may branch back to the mainline program as explained under
SUBROUTINE ERROR MESSAGES. N

For arguments with exponents less than 03, the magnitude of the maximum
truncation error in the mantissa of the result does not exceed 10-*. Accuracy in the
mantissa of the result decreases as the size of the argument (exponent of 03 or
greater) increases. The operator has the option of branching back to the main
program or proceeding with the computation. Any result so computed will contain
an error that varies directly with the magnitude of the exponent.

Average Execution Time (arguments less than 2r)

Fixed length

Average time = 150 ms
Variable length

With automatic divide

Average time (in ps) = 168L? + 379212 + 13340L + 4708
Without automatic divide
Average time (in ps) = 1.9 [168L° + 3792L* + 13340L + 4708]

Norte: For all subroutines of this type, arguments greater than 2= are reduced by
subtractions of 2« until within range. Therefore, the time required to per-
form these subtractions should be added to the average time required for
an argument less than 2=

Floating Cosine
Macro-instruction

Line label [Operati Operands & Remarks
3 S8 nfz_ ashs 2 % 3) @ 5 50 55 ') & n
ol v . IFCOSIABE) , L e e c .

The A and B addresses refer to the units position of the exponents of the fields.

Operation
The cosine of argument B is computed and the result, in floating point form, is
stored at A. The argument must be in radians and in floating point form. The com-
utation does not disturb the original value of the argument.
The allowable range of the argument, maximum accuracy, etc., for the cosine
subroutine are the same as those previously described for the sine subroutine.

1620/1710 Subroutines/Macro-instructions 65

Floating cosine (contd.)

FATN macro

FEX macro

66

Average Execution Time

Fixed length

Average time = 155 ms
Variable length

With automatic divide

Average time (in us) = 168L* + 379212 + 13420L + 5228
Without automatic divide
Average time (in us) = 1.9 [168L? + 379212 + 13420L + 5228]

Floating Arctangent
Macro-instruction

Line Label JOperatior Operands & Remarks
sl ia ishe 2 2 3 3 4 5 50 55 P 65 70 73|
000l ., JFAT P S S S s U

The A and B addresses refer to the units position of the exponents of the fields.

Operation

The floating point value of the arctangent of B is computed and the result stored
at A. The argument must be in floating point form; the result in radians will be
in floating point form.

The arctangent subroutine accepts any number within the floating point range.

During the evaluation of the arctangent of B, use will be made of the divide
subroutine.

The maximum truncation error in the mantissa of_the resul_t is =10, except
for results having an exponent less than or equal to 02 (E < 02). The maximum
error for these results is =1 in the (L + 1)th decimal place. L = 08 for the fixed
length mantissa.

Average Execution Time

Fixed length

Average time = 260 ms
Variable length

With automatic divide

Average time (in us) = 168L? + 299612 + 7792L + 7260
Without automatic divide
Average time (in us) = 1.9 [168L* + 2996L* + 7792L + 72607

Floating Exponential (Natural)
Macro-instruction

Line Lobe! [Operation} Operands & Remorks
1 sls uliz ishes) 2 '] 3 ® s) 55 @ 8 7 73|
] S FEXABO . . A

Operation
The A and B addresses refer to the units position of the exponents of the fields.
The value of e®, where B is in floating point form, is computed and the result, also
in floating point form, is stored at A.
An input value that exceeds _

227.955924206n. n (227955924206n. n03)
causes an exponent overflow and one which is less than

Floating exponential
(natural, contd.)

FEXT macro

—997.955924206n n (227955924206n n03)
causes an exponent underflow. An exponent overflow or underflow causes the sub-
routine to examine core storage position 401 to determine the course of action.

For negative arguments, the subroutine uses the absolute value of the argu-
ment to evaluate the function, and then finds the reciprocal value.

For positive and negative arguments, the maximum truncation error in the
mantissa of the result is =10,

Average Execution Time

Fixed length
Average time = 160 ms

Note: Add 70 to the average time if B is negative .

Variable length
With automatic divide
Average time (in ps) = 168L3 4 35824L* + 15890L + 26418
Without automatic divide
Average time (in ps) = L.9{168L* + 35824L* + 15890L + 26418]

Note: For a negative argument,add the result of 520L* + 1880L + 1480 to the
average time.

Floating Exponential (Base 10)
Macro-instruction

Line Label Operatio Operands & Remarks
3 s}s ufiz ishe 2 2 » 3) 45 E] E & s n 75|
olo“..‘F‘E.X.IA.mﬁ. s N S S I S S S A S U S S S S St

The A and B addresses refer to the units position of the exponents of the fields.

Operation

The value of 108, where B is in floating point form, is computed and the result,
also in floating point form, is stored at A. _ _

An input value which exceeds 98.9n...... n(989n...... n02) causes an ex-
ponent overflow and one which is less than —98.9n...... n (98m...... n02)
causes an exponent underflow. An exponent overflow or underflow causes the sub-
routine to examine core storage position 401 to determine the next course of action.

This subroutine handles negative arguments in the manner they are handled
by the natural exponential subroutine. Maximum accuracy is the same.

Average Execution Time

Fixed length
Average time = 145 ms

Note: Add 70msto the average time if B is negative.

Variable length
With automatic divide
Average time (in ps) = 168L° + 3656L2 4+ 154141 + 24538
Without automatic divide
Average time (in ps) = 1.9 [168L° + 365612 + 154141 + 24538

Norte: For a negative argument, add the result of 52012 + 1889L + 1480 to the
average time.

1620/1710 Subroutines/Macro-instructions 67

FLN macro

FLOG macro

68

Floating Logarithm (Natural)
Macro-instruction

Line Label ion| Operands & Remarks
5]é nliz 15le 2 2 30 3 40 45 0 55] (] 70 75
nlo..‘.".LN‘lA.,«;B@. e NP b

The A and B addresses refer to the units position of the exponents of the fields.

Operation
The floating point value of the In B is computed and stored at A. Input arguments
must be in floating point form.

This subroutine accepts all arguments greater than zero within the floating
point range. An input argument equal to or less than zero results in a programmed

halt. A branch back to the main program can be effected as described under
SUBROUTINE ERROR MESSAGES.

Average Execution Time
Fixed length
Average time = 290 ms
Variable length
With automatic divide
Average time (in us) = 168Ls + 3440L2 + 10530L + 12180
Without automatic divide

Average time (in ps) = 1.9 [168L¢ + 3440L? + 10530L + 12180]

Floating Logarithm (Base 10)
Macro-instruction

Line Lobei Operatior Operands & Remarks
3]s nhe _ she 0 23 30 3 ° 5) 35 ') I n 73]
) S F.IO.IA..E@;. o e e,

..............

The A and B addresses refer to the units position of the exponents of the fields.
Operation

The floating point value of the log,,B is computed and stored at A. Input arguments
must be in floating point form.,

This subroutine accepts all arguments greater than zero within the floating
point range. An input argument equal to or less than zero results in a programmed
halt. A branch back to the main program can be effected as described under
SUBROUTINE ERROR MESSAGES,

Average Execution Time

Fixed length

Average time = 305 ms
Variable length

With automatic divide

Average time (in ps) = 168L* +3608L2 + 11610L + 15108
Without automatic divide
Average time (in us) = 1.9 [168L? + 3608L* + 11610L + 15108]

Maximum, twelve subroutines

Procedure

Library change card

Unique mnemonic operation
code

Format of library change card

Adding Subroutines

The user may add from one to twelve subroutines to the floating point subroutine
package for card or tape. Each new subroutine may use whatever number of oper-
ands is specified by the programmer. The minimum number of operands allowed
is two; however, both the A and B operands may be the same.
To add a subroutine, it is necessary to:
1. Insert library change card in operation code table of the sps processor deck.
9. Write the subroutine in sps language with origin at 5000 (DoRc 5000), keep-
ing in mind certain factors regarding PICK, mantissa length (L), and modi-
fications with regard to the subroutine itself.
3. Assemble and condense the subroutine.
4. Discard the first two loader cards and the last seven table cards of the con-
densed object deck.
5. Prepare a header and a trailer card for the new subroutine deck, placing
the header card in front of the new deck and the trailer card behind it.
6. Insert the new subroutine in the existing subroutine deck.
The procedure here described is for adding card subroutines; however, the
final part of this section describes the additional steps required to convert the
added subroutines to paper tape.

Inserting the Library Change Card
For each macro-instruction added, a library change card must be prepared for
insertion in the processor deck. These cards must be inserted immediately in front
of the last nine cards of the processor deck.

The programmer must assign a unique mnemonic operation code to each
new macro-instruction. The code may consist of from one to four alphameric
characters. Any of the following four codes, for example, would be acceptable.

X

MT
MTX
MTRX

The mnemonic operation codes are punched into the library change cards,
using core storage alphameric character coding (2 positions for each character).
MTRX is punched as 54635967. Note that a flag must be punched over the leading
digit.

The format of the library change card is as follows:

Columns 1-8 mnemonic operation code in alphameric character coding (left-

justified in the field).
9-10 sequence number of subroutine, starting with 18.
11 7.

12 record mark (0, 2, 8 punches).

13-62 blanks.

63-64 Ol.

65-69 address of leftmost location where data from columns 1-11 is to
be stored. Note that column 65 must contain a flag.

Adding Subroutines 69

Format of library change
card (contd.)

Linkage

Secondary linkage

Sequence of events
initiated by macro

Provision necessary
for more than two operands

70

Columns 70-74 address plus 1 of rightmost location where data from columns

(contd.) 1-11 is to be stored. Note that column 70 must contain a flag.
75 blank.
76 ~ (flag only).

The address in card columns 65-69 for subroutine 18 (next number after 17
Library subroutines) is 17374 and is increased by eleven for each subsequent
subroutine. The address for tape sps is 16156. The address in card column 70-74 is
17385, the same address as is used in 65-69, with an additional constant eleven
added to compensate for the rightmost address. This address is 16167 for tape sps.

Writing the Subroutine

When writing the subroutine, the programmer should be aware of the linkages that
are generated by macros. Suppose the Floating Subtract macro-instruction

FS A,B

is used. The following linkage will be generated in the mainline program:

TFM PICK + 11, * + 23
B SUBR

DORG *—4

DSA A, B

The branch is to the secondary linkage for the specific subroutine used (in this
case, Floating Subtract). The secondary linkage is generated by the subroutine
processor at the time the subroutines are being relocated and punched into the
object deck. Examples of secondary linkage are:

1. SUBR TFM - PICK + 402, ADDR
B PICK

2. SUBR TFM PICK + 402, ADDR
B PICK + 104

where Appr is the address of the first instruction of the subroutine in question.

This linkage moves the starting address of the subroutine (Floating Subtract)
into Pick to allow a later branch to the subroutine. Next, the secondary linkage
branches to pick. Pick moves the data contained in the A operand into Alpha and
the B operand data into Beta. It also computes the return address to the mainline
program and branches to the subroutine. After the subroutine is executed, the pro-
gram branches back to the pick subroutine,

The block diagram on the opposite page shows the sequence of events that
occurs when the macro-instruction equivalence is encountered during execution
of the object program.

Note: When the A operand in the diagram is used in the computation, the sec-
ondary linkage branches to pick, and when the A operand is not used in
the computation (as in the functional subroutines), the secondary linkage
branches to pick + 104, and the B operand alone is placed in Beta.

Note also that if the macro-instruction contains more than two operands,
arrangements must be made in the programmer’s subroutine to store the B operand
in a location other than Beta, because when the program re-enters the pick sub-
routine to pick up the C operand, pick will automatically store it in Beta. The C
operand should be stored in the same manner if the program is to return to pick
up a fourth operand, because pick will place the D operand in Beta.

PICK address equivalents

MAINLINE PROGRAM

instructions

L * * 9 e 0

macro e.g, FS A,B
or FSINA,B

linkage.

LINKAGE
1. Move address of A
operand to PICK + 11,
2. Branch to secondary

instructions (continued)

e o o

1
SUBR SECONDARY
(Label) LINKAGE
1. Move address of subroutine
itself (ADDR) into PICK,
2. Branch to PICK or
PICK +104

NO perand usedin

computatiol

PICK PICK
(Label) SUBROUTINE
#- 1. Place A operand in Alpha

|2, Place B Operand in Beta.

\

SUBROUTINE
ITSELF
1. Use Beta (and Alpha)
to compute result.
2. Branch to PICK (again).

1

PICK PICK

(Label) SUBROUTINE

1. Move result from Alpha
into A operand address of

main line program,
2. Branch to mainline program

Listed below are certain pick address equivalents for fixed length and variable
length subroutine decks, as well as for the subroutine deck which uses automatic
floating point. The subroutine writer should be familiar with them to make use of
picK when writing his subroutine.

ADDRESS EQUIVALENTS

FIXED VARIABLE AUTOMATIC DESCRIPTION
LENGTH LENGTH FLOATING
POINT

PICK PICK PICK Entry for subroutines that use A operand data
in the computation.

PICK + 104 | PICK + 104 | PICK + 24 Entry for subroutines that do not use A operand
data in the computation.

IPICK + 140 | PICK + 140 | PICK + 60 Re-entry to pick up additional operand (other
than the A and B operands).

PICK + 414 | PICK + 402 | PICK + 174 | Address of subroutine (P address of instruction
that branches to the subroutine).

PICK + 416 | PICK + 404 | PICK + 176 | Re-entry from subroutines to store result of com-
putation.

PICK + 482 | PICK + 434 | PICK + 194 | Return address of mainline program (P address
of instruction that branches to mainline pro-
gram).

PICK + 711 | PICK + 657 | PICK + 417 | Alpha (A operand data itself).

PICK + 743 | PICK + 802 | PICK + 562 | Beta (B operand data itself).

Adding Subroutines 71

Working areas and
constants shared

Results stored in Alpha

Programmer sets flags

Programmer utilizes the
pick subroutine

Functions of PICK

72

There are various working areas for constants in the pick subroutine that may
be used (shared) by the added subroutines. The programmer may refer to the
subroutine program listing (provided with library package) to make effective
use of the pick subroutine.

The return address to the mainline program (pick + 482 for fixed length
subroutines or pick + 434 for variable length subroutines) calculated by the picx
subroutine is only correct if all operands associated with the subroutine have been
processed.

The computed result is always assumed to be stored in Alpha (pick + 711 for
fixed length subroutines or pick + 657 for variable length subroutines). In addition,
the result at Alpha is stored by the pick subroutine at the address specified by the
A operand, prior to return to the mainline program.

When writing the subroutine:

1. A flag must be set over position O, and/or O, of instructions where the P

and/or Q operands are relative to the origin 05000, e.g., an instruction
located at 05300, such as

TF * 423, * 1

in machine language should be 260532305299, and the instruction should be
written TF * 4 23, * — 1, 01. If the P operand alone were relative, then
only O, would be flagged, as

AM * +18,5,07

2. Since PICK is a sub-subroutine common to all subroutines in the subroutine
package, except piv, Fsrs and FsLs, it is to the advantage of the subroutine
writer to make use of it. The listing of the appropriate pick subroutine
(furnished with the library package) should be studied. Briefly, pick per-
forms the following operations. It

- Moves the A operand into Alpha (exponent and mantissa).

. Moves the B operand into Beta (exponent and mantissa).

Calculates the return address to the mainline program.

. Stores the computed result (which is in Alpha) back into the address

of the A operand.
e. Contains constants and storage areas that are common to other sub-
routines in the package.

The programmer will use instructions which make reference to the prck sub-
routine (to both prck instructions and constants) in his subroutine. The subroutine
relocator program must adjust these addresses to make them correspond to the
actual addresses of pick in the object program. This adjustment is made by using a
pseudo constant (pc statement). The constant does not become part of the object
program; its only function is to indicate to the subroutine relocator program that
the instructions which follow are to be modified.

One statement can modify up to 25 instructions. Each instruction, whether or
not it is to be modified, requires two digits in the pseudo constant, one for the P
operand and one for the Q operand. The statement itself consists of three operands:
the first specifies the length of the constant which may not be greater than 50 nor
less than 2; the second, the actual constant; the third, the storage address of the con-
stant. This address must be specified as an absolute value in the following form:
00320 for a 20-digit constant, 00342 for a 42-digit constant, etc. The P and Q oper-
and modifier constants follow.

o o

Operand modifiers

Example of modification

Insert subroutine

Header and trailer cards

Header card format

P AND Q OPERAND MODIFICATION
MODIFIERS

0 No modification

Add L

Subtract L

Add 2L

Subtract 2L

Modify with respect to PICK, no L modification
Modify with respect to PICK, add L

Modify with respect to PICK, subtract L
Modify with respect to PICK, add 2L

Modify with respect to PICK, subtract 2L

© w1 Uk W

The following example shows how a variable length mantissa subroutine may
be modified, by use of modifier constants, to use three operands in its computation.
Secondary linkage 1 is used in this example.

The A operand data is stored in Alpha (pick + 657), and the B operand data
is in Beta (p1ck + 802). Therefore:

DC 6, 275050, 306

SUBR TR GAMMA-1, 801, 0 Transmit Beta into Gamma
TFM 402, *+20, 17 Set up return address to added subroutine
B 140 Go to PICK subroutine to obtain next operand

Note: Intervening DORG statements and constants between instructions are never modified in
this manner.

Data from the last operand processed will be Beta (pick + 802). The maxi-
mum number of operands allowed in secondary linkage 1 is two; however, the A
and B operands may be the same.

Incorporating New Subroutines in the Subroutine Deck

After a subroutine is written, it is assembled and condensed; the first two and last
seven cards are removed from the object deck and discarded. These cards are re-
placed by a subroutine header card and subroutine trailer card. The header card
precedes the subroutine and is punched according to the following format.

Preparation of Header and Trailer Cards
Columns 1-4 Length of subroutine — 4 digits in the form xxxx
5-13 Subroutine numbers (each in two digits %x) followed by a record
mark; a subroutine may have up to four entrances represented by
four different macro-instructions.

Adding Subroutines 73

Header card
format (contd.)

Trailer card format

Inserting new subroutine
in subroutine deck

Alternative to PICK

74

Columns 14-23 Number of storage positions (three digits Xxx), between the sec-
(contd.) ond (third and fourth) entrance(s) and the regular entrance of
the subroutine. These 3-digit fields must be terminated by a
record mark (for example, 120186=-). If the subroutine has only

one entrance, a record mark should be punched in column 14.

24 0 (zero) for subroutine deck without automatic divide; 1 for sub-
routine deck with automatic divide; == for variable length sub-
routine decks with divide or with automatic floating point; 0 for
variable length subroutines without automatic divide.

25-43 The secondary linkage in machine language. The linkage con-
tains two instructions, the second of which is always a branch
(operation code 49). The operation code in the first instruction
and the three addresses can be specified by the programmer. The
breakdown of these columns is as follows:

25-26 Two-digit numerical operation code for the first instruc-
tion. Modification to the P and Q addresses is indicated by
a flag or no flag on the first and second digit, respectively.
A flag implies that the address is relative to the subroutine
itself while no flag means it is relative to the pick sub-
routine,

27-31 P address of the first instruction, expressed as an incre-
ment to pick or the subroutine. For example, pick + 23
will be 00023 and sugr 1 + 59 will be 00059.

32-36 Q address of the first instruction, expressed as an incre-
ment to pick or the subroutine. For example, pick + 23
will be 00023 and susr 1 + 59 will be 00059,

37-38 Operation code 49; a flag or no flag on digit 4 indicates
modification to the P address with respect to the sub-
routine or PICK.

39-43 P address expressed as an increment to pick or the sub-
routine,

44-75 Blanks.

76 0 (zero).

77-80 Sequence number (see SEQUENCE NUMBERING OF SUBROUTINES).

The subroutine is followed by a trailer card punched with a 1 in column 76 (blanks
in other columns).

The new subroutine, together with its header and trailer cards, is inserted into
the subroutine deck in front of the last card, which is identified by a record mark
(=F) in column 76.

The sps processor restoration deck which restores that part of the sps main
processor destroyed by the subroutine processor program is behind the card with
the record mark (==) in column 76.

Bypassing PICK

The subroutine writer may, if he desires, bypass pick completely. He accomplishes
this by setting up the secondary linkage on his header card (columns 25-43).
Since the first linkage puts the address of the A operand in pick + 11, the sec-
ondary linkage can move it from there to any place in the subroutine itself (and
branch to the subroutine). This is what is done in the pv, FsLS, and Fsgs sub-
routines, where the secondary linkage is of the form

TF ADDR + 11, PICK + 11, 0
B ADDR,, 0

Header card

Subroutine

Trailer card

Sample Problem lllustrating Header Card, Subroutine, and Trailer Card

In this example the subroutine is to be inserted in the variable length subroutine
deck without automatic divide. The Floating Branch and Transmit subroutine
(BTFs) is used as the new subroutine, thus it is assumed that the subroutine deck
contains no BTFS subroutine. These examples are intended to show the header
card coding, the modifier constants, the O, O, flag indicators associated with
the new subroutine, and the trailer card coding. For each field of the header and
trailer cards, the data contained in the field as well as a description of the data is

given.
Columns 1-4 :
5-13:
14-23:
24:
25-43:

44-75;
G:

77-80:

DORG
DC

BTFS1 TF

TF

SM

TF

TF

BT

B
DEND

Column 76

0079
17 =
=+

0
16 00402

Blanks
9
7000

5000

Program requires 79 storage positions.
Subroutine identifying number.
Subroutine has only one entry point.
Variable length subroutine without automatic divide.
00000 49 00104 These instructions correspond
to the secondary linkage:

TFM PICK + 402, ADDR

B PICK + 104
The P operands of the TFM and B will be modified by
adding the address of pick when it is found. The Q oper-
and of the TFM will be modified by adding the starting
address of the BTFs subroutine to it.

The flagged 7 is the identifying number of the subroutine.
The 000 is the card sequence number.

Standard porc statement for all subroutines.

14, 05000005050500, 314 This statement provides the modifier digits

for the seven instructions which follow.

* 4+ 66, STORE + 6,0 A flag over O, indicates to the subroutine

processor that the P operand must be modified
with respect to the relocated addresses of the
BTFs subroutine. With respect to Pick, the Q
operand is modified by the second digit of the

pseudo constant.

* 4 30, * 4+ 54, 01 The P and Q operands need only be modified

with respect to the BTFs subroutine. There-
fore, the only modification required is flag-
ging O, and O..

x + 18, 3, 010 * 4 18 is modified with respect to its own

, BETA-2

subroutine. The Q operand needs no modifi-
cation since 03 is wanted. The flag on Qu is
needed in the computation.

With respect to PICK, the Q operand is modi-
fied by the eighth digit of the pseudo con-

stant.

* 1+ 30, STORE + 30,0 O, flagged to modify * + 30 with respect to

, BETA

BTFs subroutine. Q operand was previously
modified. With respect to PICK, the Q operand
is modified by the tenth digit of the pseudo

constant.

With respect to PICK, the Q operand is modi-
fied by the twelfth digit of the pseudo con-
stant.

No modification.

No modification.

Adding Subroutines 75

Procedure (summary)

Incorporating new subroutine
in existing subroutine tape

Messages

76

Adding a Subroutine to Tape SPS

The steps required by the user to add a subroutine to the subroutine tape and
include his macro-instruction mnemonic in the operation code table of the proces-
sor are:

1. Write the subroutine in sps language with origin at 5000 (porc 5000).
Certain factors regarding prck, mantissa length (L), and modification of
the subroutine must be observed when writing the subroutine.

2. Assemble the subroutine.

3. Prepare the subroutine header data so that it may be entered at the key-

board when called for by the tape modifier program.

. Load the tape modifier program.

- Process the subroutine tape and subroutine to be added, making the changes
directed by the typed messages. In this operation the modifier program
assists the programmer in combining his subroutine with the existing sub-
routine to produce a new subroutine tape.

6. Using the modifier program, process the processor program and make the
changes required to include the new macro-instruction (mnemonic) in the
operation code table. This procedure is also directed by typewriter mes-
sages.

T

Preparing a New Subroutine Tape
The following procedure must be followed by the programmer in order to prepare
the new subroutine tape.
Load the tape modifier program
1. Thread the modifier program.

2. Key in 36 00000 00300 at the typewriter.
3. Depress the release and start keys.

When the machine halts, the operator then:
1. Threads the existing subroutine tape.
2. Depresses the start key.
A message
SET PROGRAM SWITCHES AND DEPRESS START
will be typed. Program switch 3 should be turned on and all other program switches
off. The start key should then be depressed.

Note: If the operator fails to set the switch prior to depressing the start key, the
message

PROGRAM SWITCHES HAVE NOT BEEN SET

will be typed out. The operator may again proceed by setting the switch
and depressing the start key.
After the subroutines have been copied onto the new tape, the message

MARK LAST RECORD READ, REMOVE MAIN SUBR TAPE,
NOW THREAD TAPE OF SUBR BEING ADDED

appears at the typewriter. The operation specified by the message should be
executed and the start key depressed.

The message
ENTER HEADER DATA

is then typed out. If an error occurs while typing the header data, it can be cor-
rected by manually branching to the previous Read Typewriter instruction. The
address of this instruction may be determined by

Messages

Incorporating OP codes
in processor tape

Messages

1. Depressing the Release and Single Cycle keys, and
2. Subtracting 12 from the address which is displayed in the MR register.

A card image of the header card data must be entered at the typewriter, with
zeros substituted for blank columns. This header data is prepared in the same man-
ner as it was for the card system (see HEADER CARD FORMAT). The release and start
keys are depressed to resume processing and to complete copying of the new sub-
routine. The message

RETHREAD MAIN SUBROUTINE

is typed. The operator must be careful when rethreading the tape (previously
marked) to back up the tape by one record and resume reading with the last record
read, prior to removing the main subroutine tape in order to add the new sub-
routine tape. The start key is depressed. The machine stops with the reader no
feed light turned on after the new subroutine tape is completed.

If another tape is to be modified, the operator may ready the program by
1. Turning program switch 4 on,

2. Depressing the reset and start keys, and

3. Turning program switch 4 off.

Adding Macro-Instruction to Processor Tape
The following procedure describes how the tape modifier program is used to
update the processor operation code table to produce a new processor tape.

If the modifier program is not in storage, it must be loaded.

To load the tape modifier program:

1. Thread the modifier program.

2. Key in 36 00000 00300 at the typewriter.
3. Depress the release and start keys.

The operator then:

1. Threads the sps tape processor,
2. Turns program switch 2 on, and
3. Depresses the start key.

‘The message

ENTER ADDITIONS TO OP CODE TABLE ONE AT A TIME. THE
LAST ENTRY SHOULD BE FOLLOWED BY A RECORD MARK.

will be typed. After each OP code entry of the new macro-instruction is entered at
the typewriter, the release and start keys should be depressed. The data entered
should consist of the following:

1. Mnemonic operation code in alphameric character coding (left justified in
the field).

2. Sequence number of subroutine, starting with 18.

3.7

The record mark which identifies the final mnemonic to be entered signals the
modifier program to copy the processor program and insert the new mnemonic(s)
in the op code table. When this operation is completed, the program halts.

No more than a total of twelve operation codes can be added to the op code
table. If the operator tries to enter oP codes in excess of 12, the following message
will be typed:

THE SPACE RESERVED FOR ADDITION OF OP CODES HAS BEEN
FILLED. THE FOLLOWING HAS NOT BEEN INSERTED XXX XXX

Adding Subroutines 77

Switches for
modifier program

78

where XXX represents an op code that cannot be added to the table. The tape
modifier will only add those op codes up to twelve.

Summary of Program Switches for the Tape Modifier Program
Turn on:
Switch 1 to modify the two-pass processor for additional storage (see that
section).
Switch 2 to add op codes to the processor op code table.
Switch 3 to add subroutines to the subroutine tape.
Switch 4 to correct a typing error which is made while entering the memory

size or an op code. Depress release and start keys, turn switch off
and re-enter data.

Norte: Itis possible to run with both switches 1 and 2 on. This operation allows the

programmer to modify the processor for additional storage and at the same
time to add op codes.

Functions of pass 1

Functions of pass 2

Operation code table

Increasing size of symbol table

Variable length

Format

1620/1710 Two-Pass Processor Program

Organization

The sps processor, which is available in card or paper tape form, is a two-pass pro-
gram. The source program, written in the language described, furnishes the input
for both passes. The functions of pass 1 and pass 2 are listed below:

Pass 1

1. Checks for valid mnemonic operation codes, Invalid operations are con-
sidered Nops and are processed as such if program switch 2 is off.

2. Processes symbolic labels and prepares a table of the symbolic labels and
their assigned addresses for use in the second pass.

3. Assigns storage positions to instructions, work areas, and constants.

4. Performs checking necessary to produce error messages.

Pass 2

1. Processes operation codes. Converts mnemonic program operation codes to
their corresponding 1620 machine language codes.

2. Processes operands according to the type of operation code. Looks up as-
signed addresses and symbolic operands in the symbolic table prepared
during pass 1. Performs address adjustment, if necessary, to complete the
operands. Sets flags in the assembled instruction, as specified by the flag
indicator operand.

3. Types error messages for those statements that cannot be assembled prop-
erly.

4. Prepares the assembled output and lists the symbol table, if desired.

Storage Layout

The storage layout of the sps processor is shown in Figure 3. The operation code
table contains all valid mnemonic operation codes and their equivalent machine
language codes. Any alterations to the processor will change the addresses shown
in this figure.

If additional storage (18m 1623 Storage Unit) is available, it may be used to
increase the size of the symbol table (shown in Figure 3) to accommodate a greater
number of symbols. If the size of the symbol table is to be increased, the sps
processor program must be modified by the user. Modification techniques are ex-
plained under SPECIAL PROCEDURES FOR THE TWO-PASS PROCESSOR.

Symbol Table

A variable length label entry is used to store as many labels as possible in the area
reserved for the symbol table. Each label when stored takes the following form:

gﬁgi «—— Variable Length Label —— Associated
acter Address
H | P P L.
N[| l | A | A | A ’ A l A | Storage Positions

IR
where N = number of characters in label plus head character (2-6)
H = head character (two-position alphameric coding)
L....L, = five characters of label (two-position alphameric coding)
AAAAA = assigned address (five numerical positions)

Norte: The rightmost position of L, contains a flag for any true 6-character label.

1620/1710 Two-Pass Processor Program 79

Storage for minimum and
maximum size labels

Treatment of head character

Capacity of label table

80

Storage
Addresses
Card Tape
00000 | 00000
00401 | 00401
00402 | 00402
Input/Output Areas,
Work Storage,
Constants
01779 | 01755
01780 | 01756
Processor
Program
15403 | 14395
Input/Qutput Areas, Work Storage, 15404 | 14396
Constants 15844 | 14626
15845 | 14627
Operation Code Table
(Mnemonics)
17516 | 16342
17517 | 16343
Symbol Table
19980 | 19911

Figure 3. Storage Layout of 1620/1710 sps Processor

A label entry will always contain N, H, and A data and at least one L character.
Therefore the minimum size label (one character) will require 10 storage positions.
Each additional L character will use two additional storage positions up to eight
positions. The maximum size label (5 or 6 characters) will require 18 storage
positions.

A six-character label is stored without a head character and the leftmost character
of that label occupies the head character (H) storage position. For the six-character
label, a flag is placed in the rightmost position of L, so that the processor may dis-
tinguish between a 5-character label with a head character and a true 6-character
label without the head character. When a label which is not preceded by a HEAD
statement is placed in storage, the head character (H) will be assigned as blank by
the processor.

Because the maximum number of labels allowed cannot be specified due to

Formula for determining
capacity

Paper tape or typewriter input

Order of items on output tape

variable length symbols, the following formula may be applied to find the allowable
number of symbols (within + 1 or — 1) for any given source program.

e=>5
K= Z L. (8 + %) | + 18L,
e=1

where K = 19980 (standard capacity) minus address of symbol table (17517 card,
16343 tape)

e = number of characters in label

L. = number of labels of length“e”

L., = number of six-character labels

Notk: K should be increased by 20,000 or 40,000 when the processor is modified
to accommodate 40,000 or 60,000 positions of storage, respectively.

Paper Tape Processor Program

The paper tape processor program accepts input for the first pass in either paper
tape form or directly from the typewriter, depending upon the setting of the pro-
gram switch. If the typewriter is used to enter the source statements, the processor
produces a source program tape to be used as input for the second pass.

When subroutines are used in the source program, the subroutine program
paper tape must follow the source program as input for the second pass.

Output from the second pass may include an object program tape and/or a
typewriter listing. Error messages indicating errors in the source program are typed
out during pass 1 or pass 2. The programmer has the option of correcting these
errors either as indicated or after assembly is finished.

Format of Output Tape

The output tape produced by pass 2 contains the assembled machine language
instructions, constants, and other data that are part of the object program. Loading
instructions appear at the beginning of the object tape followed by the object
program, selected subroutines, and multiplication and addition tables (condensed
form) in that order. A complete self-contained program tape is produced, ready
to be entered in the 1620 or 1710.

1620/1710 Two-Pass Processor Program 81

Card or typewriter input

82

TAPE SPS Coding Sheets

PASS I (Source

Statements)

S Ta

Source
INPUT Program

Processor
Program)
(Must Load First)

1620

Error P
rogram
OUTPUT Messages Sw 1
(Typewriter)
ff

Program
Subroutine
Source ¢ o Programs
s s

INPUT

1620

Object
Program

Program
Listing
and Error
Messages

OUTPUT

Card Processor

Input may be from cards or the typewriter. If the typewriter is used, a source pro-
gram card deck is punched as output for pass 1. This card deck becomes the input
for pass 2. Error messages are typed out for both passes. Affected statements may
be corrected when the message is noted or at the completion of pass 2 after all
messages have been recorded.

The input for pass 2 is the source program deck followed by the subroutines,
provided they are used. The typewriter output from this pass may consist of the
object program with error messages, or error messages only, as determined by the
program switch setting (see Table 17).

Table 17. Operation of Program Switches for the Paper Tape Processor and
the Card Processor for Passes I and 2.

SWITCH

PASS 1

PASS 2

ON

OFF

ON

OFF

For the paper tape processor, when
input is from the paper tape reader.

For the card processor, when input
is from the card reader.

The machine stops after an error
message has been typed, so that a
corrected statement can be entered
at the typewriter.

depress release and start keys,

When input is from the
typewriter.

Processing continues
after an error is typed,
but the error is adjusted
by the processor as indi-
cated under ERROR
CORRECTION.

For the card processor,
switch must be off.

entire statement at the
typewriter.

Tum on to correct a typing errorp-then off, and re-enter the
made while entering a statement, andl

Should be off when SPS'

processor is assembling
data.

When on, the entire in-
put statement together
with the assembled ma-
chine language instruc-
tion is typed out.

Same as pass 1.

For the card processor,
when the object program
is to be in condensed
form. (This switch should
be on when pre-editing
the source program.)

When on, no object pro-
gram is punched except
loader and arithmetic
tables. (This switch
should be on when pre-
editing the source pro-

When off, no typeout of
listing.

Same as pass 1.

For the card processor,
when the object program
is to be in uncondensed
form.

When off, the object pro-
gram is punched.

gram.)

Condensed or uncondensed

output (2nd pass)

Both contain loader and
arithmetic tables

An object program card deck is produced in condensed form or uncondensed
form, depending upon the setting of the program switches (see Table 17). The
condensed card contains up to five machine language instructions, thus requiring
fewer cards than the uncondensed version, which has multiple cards for each
statement. Immediately after an uncondensed object deck is obtained from pass 2,
the programmer may get a condensed deck by processing the source cards a third
time (pass 3) as described under OPERATING PROCEDURES. If the programmer
chooses to bypass the extra pass (pass 3), he may at some later time geta condensed
deck from an uncondensed deck as described under CONDENSER PROGRAM.

Both the condensed and uncondensed card decks are complete with loader
and arithmetic tables. The uncondensed deck contains both symbolic and absolute
information, but only absolute data is loaded.

Format of Output Deck
The object program is preceded by two loader cards and followed by seven cards
that perform the following:

1. Interrupt the loading sequence of the object program.

2. Load the arithmetic table.

3. Branch to the start of the object program or to halt.

Uncondensed Object Program Deck

To facilitate control panel wiring of a 407 for an off-line listing of the uncondensed
deck, the individual card format of each statement is given. The number of cards
per statement may range from one to several, depending on the type of operation
(imperative, declarative, control, macro-instruction, comments) or type of indi-
vidual statement. For the SEND or HEAD statements, no output cards are produced.

1620/1710 Two-Pass Processor Program 83

CARD SPS Coding Sheets

PASS ' (Source

Statements)

Program
Sw 1

INPUT Source Program l
(Must —.i
Load
First)
1620
OUTPUT
Error S
Pro. ource
Messages Swgrcl:m @ wess Program
(Typewriter)
INPUT Sueoutine
Source
Program
1620
J L
QUTPUT
Program
Sw 3
Obiject

Program
and Error
Messages

Uncondensed
Object Program

Condensed
Object Program

Imperative Operation Card Format

Card 1. Same as source statement card with the exception of a 0 in column 76 and
card number in columns 77-80.
Card 2. Columns 1-5 page and line number.
6-10 high-order leftmost address where assembled instruc-
tion is to be stored.
11-22 assembled instruction.

23 =+
63-64 11.

DORG, DEND

TRA

TCD

DS, DSS

Card 2. Columns 65-69 leftmost address where assembled instruction is to be
(contd.) stored.
70-74 rightmost address plus one, where assembled instruc-
tion is to be stored.
76 9.
77-80 card number.

Control Operation Card Format

DORG, DEND

Card 1. Same as source statement card with the exception of a 0 in column 76 and
card number in columns 77-80.
Card 2. Columns 1-5 page and line number.
6-10 address specified.
76 9.
77-80 card number.

Card 1. Same as source statement card with the exception of a 0 in column 76 and
card number in columns 77-80.
Card 2. Columns 1-5 page and line number.
6-10 leftmost address where instruction is to be stored.
11-22 assembled instruction (first instruction).
93 =
63-64 11.
65-69 leftmost address where instruction is to be stored.
70-74 rightmost address plus one, where instruction is to be
stored.
76 9.
77-80 card number.
Card 3. Same as card 2 (11-22 is second instruction).

TCD

Card 1. Same as source statement card with the exception of a 0 in column 76 and
card number in columns 77-80.
Card 2. Columns 1-5 page and line number.
6-10 address specified.
76 9.
77-80 card number.
Cards 3-9. Arithmetic tables.
Cards 10-11. Loader program.

Declarative Operation Card Formats

DS, DSS
Card 1. Same as source statement card with the exception of a 0 in column 76 and
card number in columns 77-80.
Card 2. Columns 1-5 page and line number.
6-10 rightmost address of field.
13-17 field length.
76 9.
77-80 card number.

Norte: For the pss operation, columns 6-10 of card 2 contains the leftmost address
of the field.

1620/1710 Two-Pass Processor Program 85

DAS

DSB

DSA

DC, DSC

86

DAS

Card 1. Same as source statement card with the exception of a 0 in column 76 and
card number in columns 77-80.

Card 2. Columns 1-5
6-10

13-17

76

77-80

DSB

page and line number.
leftmost address plus one, of field.
field length (number of alphameric characters).

card number.

Card 1. Same as source statement card with the exception of a 0 in column 76 and
card number in columns 77-80.

Card 2. Columns 1-5
6-10

13-17

76

77-80

DSA

page and line number.

rightmost address of first element of array.
element length.

9.

card number.

Card 1. Same as source statement card with the exception of a 0 in column 76 and
card number in columns 77-80.
Card 2. Norte: A card of this type is punched for each operand.

Columns 1-5

6-10

13-17

18-22

23

63-64

65-69

70-74

76

77-80

DC, DSC

page and line number.

rightmost address where field is to be stored.

field length (constant 00005).

the 5-digit field (address itself) being stored.

*

18.

leftmost address where field is to be stored.

rightmost address plus one, where field is to be stored.
9.

card number.

Card 1. Same as source statement card with the exception of a 0 in column 76 and
card number in columns 77-80.

Card 2. Columns 1-5
6-10

13-17

76

77-80

Card 3. Columns 1-5
6-n

63-64
65-69
70-74

76
77-80

page and line number.

rightmost address where constant is to be stored.

field length of the constant.

9.

card number.

page and line number.

the constant itself starts in column 6 and is terminated
by a record mark (==) in the first column following the
constant.

06.

leftmost address where constant is to be stored.
rightmost address plus one, where constant is to be
stored.

0.

card number.

Nore: For the psc statement, columns 6-10 of card 2 contain the leftmost address
where the constant is to be stored.

DNB

DAC

DNB

Card 1. Same as source statement card with the exception of a 0 in column 76 and
card number in columns 77-80.

Card 2. Columns 1-5
6-10

13-17

76

77-80

Card 3. Columns 1-5
7-n

63-64
65-69
70-74

76
77-80

DAC

page and line number.

rightmost address where constant (blank) is to be
stored.

field length.

9.

card number,

page and line number.

the numerical blanks (coded 4, 8) start in column 7
and are terminated by a record mark (==) in the first
column following the constant.

07.

leftmost address where constant (blanks) is to be stored.
rightmost address plus one, where constant is to be
stored.

0

card number.

Card 1. Same as source statement card with the exception of a 0 in column 76 and
card number in columns 77-80.

Card 2. Columns 1-5
6-10

13-17

76

77-80

page and line number.

leftmost address plus one, where constant is to be stored.
field length (number of alphameric characters).

9.

card number.

Card 3. NoTe: A constant that contains over 25 characters causes two cards to be
punched in this format. Up to 25 characters may be punched on
each card.

Columns 1-5
6-n

63-64
65-69
70-74

76
77-80

page and line number.

the constant itself starts in column 6 and is terminated
by a record mark (=) in the first column following the
_c_onstant.

06.

leftmost address where constant is to be stored.
rightmost address plus one, where constant is to be
stored.

0.

card number.

Macro-instruction Operation Card Format

Card 1. Same as source statement card with the exception of a 0 in column 76 and
card number in columns 77-80.

Card 2. Columns 1-5
6-10

page and line number.

leftmost address where first linkage instruction is to be
stored.

assembled instruction.

F

11.

leftmost address where instruction is to be stored.

1620/1710 Two-Pass Processor Program 87

88

Card 2. Columns 70-74 rightmost address plus one, where instruction is to be,
(Contd.) stored.
76 9.
77-80 card number.
Card 3. Same as card 2 (second linkage instruction).
Card 4. NotE: A card of this type is punched for each operand.
Columns 1-5 page and line number.
6-10 leftmost address where field is to be stored.
13-17 field length (constant 00005).
18-22 the address itself (5-position field) to be stored.
23 ==
63-64 18.
65-69 leftmost address where field is to be stored.
70-74 rightmost address plus one, where field is to be stored.
76 9.
77-80 card number.

Comments Card Format

Card 1. Same as source statement with the exception of a 0 in column 76 and card
number in columns 77-80.
Card 2. A digit9in column 76 and card number in columns 77-80.

Listing the Uncondensed Object Deck

Figures 4A and 4B show control panel wiring diagrams designed for listing an
uncondensed object program on the 1M 407 and on the 18M 407-ES,

Condensed Object Deck
Condensed cards are punched as described under the particular card type.

Card Containing Instructions

Columns 1-12
13-24
25-36
37-48
49-60 five instructions.
61 == (record mark).
62 0.
63-64 Ol.
65-69 leftmost address where instructions are to be loaded.
70-74 rightmost address plus one, where instructions are to
be loaded.
76 (flag only).
77-80 card number.

Card Containing Constants

Columns 1-61 constants may be from 1 to 60 characters followed im-
mediately by a record mark (==).
62 1.
63-64 01.
65-69 leftmost address where constants are to be loaded.
70-74 rightmost address plus one, where constants are to be
loaded.
76 (flag only).
77-80 card number.

SRR

—N N
L) L
\3)\ 7;%
SN
map Py el DY [R
S aet Ipnes JOE : B T R A IR AT Y,
R e e ol AN .0/
]_W IR W A el AP P N i ri A A A b 1
TN IO 15! L7 AR R Ry AR e
T T I AT AR DL Ty TN ENG I T, Y (AT
iy TITINLTT DRI T T LT TTT] e b L o A e :
rﬂ\(iu1'111111'1’1rn[uul"uuil\{uili_l,ﬂ:E'oi-ozoe,:‘:::::iﬂm,i—g%ﬁ“iiiiEiiiiiii%
T N T i s e v fem non m o w e wumowu AN u s wy Jonos IR W N DS I N A N N N W R)
1R 1~11111~1111|11u11l111‘-1‘111:-1111/1--11:zz;_1;;_;;}{;@(;::::y;"::,,,:.:,::::::::::
D1 170 0 T 1Tl i »11}111.41:111;;‘;;111- A e
TR EEE e vcss LT RV SRR iepslitet W rexv tyses s Y TYeYaRTy
SRR S NERE. ANV ax VB N DA NREal A R L -::\%—‘%—Iiiﬁfjfjﬁﬁ*”1“””%
i FEah e j‘\?“_,_ =L E i T OFF - i sequence numberon 21|
T I T T P T T TN DT P LTI T SO TP ool vt
R TR S SRR SRR B place of page and lie -

LRI LTI TTITT T Combeoon 19 e Derudto 1 15111 Ik sy bt vt of i,

T34 TITTT I LTTTTT T Gagram. If he machine is not T R e SUOFF - Single race

R e ok R B I R e R
AT A LRI R TR /A TR THIRLRIETETE
SUIEIE R LR LR R R R RYATRTRIRLRTETRLRERLE
IR N R Y

Figure 4A. 407 Control Panel Wiring Diagram for Listing Uncondensed Output

Switch settings, Table 17

Program Switches

Before processing the source statements, it is necessary to set the program switches
to control processor functions, such as form of input used, action to be taken when
an error is detected, and form of output generated. See Table 17 for an explanation
of the operation of the program switches.

Error Messages

The error message codes that may be typed out on the typewriter during pass 1
and/or pass 2 of an assembly are listed in numerical sequence.

ERROR
MESSAGE
CODE
ER1
ER2

ER3
ER4

DESCRIPTION OF ERROR

A record mark is in the label or operation code field.

For address adjustment, a product greater than ten digits has resulted from a multi-
plication.

An invalid operation code has been used.

A dollar sign, which is being used as a HEAD indicator, is incorrectly positioned in an
operand.

1620/1710 Two-Pass Processor Program 89

Error Messages

(contd.)

Format of messages

Alternative procedures for few
or many errors

Errors detected both passes

Processor stops
after an error

90

ER5 a. The symbolic address contains more than six characters.
b. The actual address contains more than five digits.
c. An undefined symbolic address or an invalid special character such as close or
open parentheses) (is used in the operand.

ER6 A psa statement has more than ten operands.
ER7 A DsB statement has the second operand missing.
ER8 a. A DC, DSC, DAC, or DNB has a specified length greater than 50.

b. Apc, psc, or pAC statement has no constant specified.

¢. A pc or psc has a specified length which is less than the number of digits in the
constant itself.

d. A pac statement as a specified length not equal to the number of characters in
the constant itself.

ER9 The symbol table is full.

ER10 A duplicate label is defined (defined more than once).

ERI11 An assembled address is greater than five digits.

ERI12 An invalid special character is used as a head character in a HEAD statement.
ERI13 A HEAD statement operand contains more than one character.

ER14 A label contains all numerical characters or an invalid special character. The eight

invalid special characters are:

blank) +$°-,(

Error messages take the following general form,

LABEL adjustment error
count code
XXXXXX + XXXX ERn

where LABEL refers to the last defined label and the “adjustment count” refers to
the number of statements between that label and the statement in error. If the first
statement of a source program contains the label start, and the second statement
has an error “ER1,” the following message will be typed:

START + 0001 ERI

If the second statement has the label xvz, the message still would appear as
START + 0001, not as xyz + 0000.

The messages will appear in the form just shown during pass 1 or pass 2, if pro-
gram switch 1 is off. If program switch 1 is on during the second pass, only the
error code “ERn” will be typed opposite the statement in error, at the right-hand
side of the page.

Error Correction

As stated earlier, each erroneous statement can be corrected individually after the
error message is typed and the machine is stopped, or all statements containing
errors can be corrected after the object program is assembled. If there are few
errors, the first procedure may be advisable; where there are many errors, it is ad-
visable to correct the source deck at the end of the run and reassemble the program.

Some errors in source statements entered from cards or tape on pass 1 are de-
tected during that pass and, because the same input is used for both passes, will be
detected again during pass 2. Therefore, they are corrected twice. Most errors in
source statements entered from the typewriter on pass 1 are corrected during that
pass. They do not have to be corrected during pass 2, since the output of pass 1
becomes the input to pass 2 and contains the corrected statement.

Program Switch 2 On
With program switch 2 on, the processor stops after typing the error message and

r'd 0| oo omg o—0 < &AIJV el end K
“ {otolololomgo) o .VTI»H o 8 o | oo | o

3 2ol oo oio| i [m.m. — o o

2 20303 05 0% 095 0f 0—0 o3o0Zo—o w0 v | ot [020

A\o I [I D Y I ofol|o— 02 lozouo — o o

|7 [0t B 4 e DS : s ol ol DO

TW” Faga o] of o o] — s £8 J P P

! jo2olofolo-g]of oo I | ot [0 %o

w“mo [e wz [y PR P

W\o, _nooelﬂol 80 g e | omin [020
; of lozoio|o|adlo e e — o

M\o fotolololodlo e |t |0 30
i SRR ==
m“ ot 2020z o alTu o | s 03
o /4 S0 AU DNy ¢/ DRI D D DD sy oo Y | SR FROVN — |0
w\uo, Lot NeNX|° 1, ° o o - o |t | 03

v Zo %oy o\ 000 — [l o

; 5o oy e PO PO -

H458 v os Adao —| | o

D i b M ol oo]oulsllo o oo oloveloofe o o o ofe]ofd Zazove ol |00

foiog ospTopT e A -

Eozol I ‘=P o oe | ontn | 02

e o] [PR PN

- o “o ey | e | O 2

s = e | e [o

N EN e | oun | omiee

T .80 4202 G [

ol oo . | S | e

Gl 3 — | o | —

o S —— | oy | euie

2 ou l]-l

ofe Ll Enadionad

o | o | —

et nad haad

DS —

— | s | o

— | ot | e

— |

| e | —

D | ot | e

T
> o
o s o

TR i ey

o |w
o o luc
o

s 3
SENEPLAVED 3)
e

B —

RPN
—

1

aaaaaa

o H o o
o © © o o 0o 0 0 ¢ o 9 O .
o s s o
“ 6 o » o 6 5 0 0 0 o o [
Punen
o 6 0 o 6 © o o o 0 3 o T -
5 o o6 o 0o c @ 3 o o o o 0 2 o
5 e
o S s ¢ o 1 %o o712
>
06 0000 3000 B3 T 3 3

To]e oZoie

alels o

91

1620/1710 Two-Pass Processor Program

iagram for Listing Uncondensed Output

D

Figure 4B. 407-E8 Control Panel Wiring

Processor continues
after an error

the carriage returns. The operator enters the corrected statement and depresses
the release and start keys.

Program Switch 2 Off

With program switch 2 off, the processor does not stop for an error; errors are
corrected after assembly. However, errors affect the assembly process as indicated
in the following list.

ERROR

CODE ASSEMBLY PROCESS

ERI, ER3 A Nop instruction, 410000000000, is assembled. The label is treated as
a blank.

ER2, ER4, ER5, ER11 The operand is assembled as 00000 (zero) address.

ER6 The first ten operands are assembled; those over ten are ignored.

ER7 The statement is assembled in the same manner as a ps statement with a
length of 50.

ER8 If the operation code is:
DC — it is assembled in the same manner as a ps statement with a length
of 50.
psc — it is assembled in the same manner as a pss statement with a length
of 50.
pac — it is assembled in the same manner as a pas statement with a length
of 50.

DNB — it is assembled as a DNB with a length of 50.

ER9, ER10, ER14 The label is treated as blank.

ERI12 The head character is replaced by a blank character.

ER13 The first non blank character specified in the operand is used as the head
character.

Operating Procedures
Typewriter
With program switch 1 on, the typewriter types each statement, starting at the left
margin. After the last character is typed, the typewriter carriage returns and
then tabulates to the place where typing of the storage address and assembled in-
struction should begin. Statements are typed in the format in which they are en-
tered; however, a space is inserted before and after the operation field.

To set up the typewriter, the operator must:

1. Set margins to the extreme right and left positions.

2. Set a tab stop in a position that is located a few spaces to the left of the

longest statement,

Switches

Both the parity switch and 1/0 switch should be placed in sTop position; the over-
flow switch in PRoGRAM position. Program switches for controlling the processor
should be set as outlined in Table 17.

Norte: The 1711 ADC unit should be turned off during assembly on a 1710 system.

Loading the Processor

PAPER TAPE PROCESSOR

1. Thread the processor tape.

2. Depress the reset and insert keys.

3. Enter 360000000300 from the typewriter.
4. Depress the release and start keys.

Pass 1

Pass 2

CARD PROCESSOR

1. Depress the reset key (console).

2. Place the processor deck in the read hopper.

3. Depress the load key (reader).

4. If the processor is not followed by two blank cards, the reader start key
must be depressed to complete the loading.
Norte: After the processor is loaded, 48 will appear in the operation register.

Processing the Source Program

Pass 1

After the processor is loaded, the program halts. Processing begins with the reading
of the first statement of the source program.

Paper Tape Input.

1. Thread the input tape (source program).
2. Depress the startkey.

Typewriter Input.

1. Type statement and end with a record mark (==).
2. Depress the release and start keys.
3. Repeat steps 1 and 2 until all statements are entered.

Card Input.

1. Place source program card deck in read hopper.

2. Depress reader start key.

3. Depress start key (console).

The message “END OF pass 1” is typed out at the completion of pass 1 before
the machine halts.

PASS 2

The source program in card or paper tape form that is used as the input to pass 1
is also the input to pass 2. Source statements entered at the typewriter during
pass 1 are the output of pass 1 and the input to pass 2.

Paper Tape Input.

1. Thread the input tape (source program).

2. Set program switches for pass 2 (see Table 17).
3. Depress the start key.

Card Input.

1. Place the input cards (source program) in the read hopper.

2. Set program switches for pass 2 (see Table 17).

3. Depress the reader start key and punch start key.

4. Depress the start key.

After pass 2 is completed, the message “LOAD SUBROUTINES is typed out if
subroutines are required by the source programs. If the subroutines are not re-
quired, the message “END OF pass 2” is typed and the symbol table is printed.

Nore: If the operator wishes to branch to the entry point of either pass 1 or pass 2,
he must refer to the program listing (included in the program package) to find the
absolute addresses. The symbolic name for the entry point of pass 1 is INITL for
pass 2 it is INITI 4 12.

Loading the Subroutine.
To load paper tape subroutines:
1. Thread the subroutines.
2. Depress the start key.

1620/1710 Two-Pass Processor Program 93

Enter mantissa length

Typeout of symbol table

Format of typeout

Asterisk indicates six-character
label

Assembling further
source programs

Condensed deck after pass 2

No listing made or object
program punched during pre-edit

Switch settings

94

To load card subroutines:

1. Place the subroutine card deck in the read hopper.
2. Depress the reader start key.

3. Depress the start key.

An error that occurs while the subroutines are being loaded cannot be cor-
rected by manual intervention because any information inserted in locations 00000-
00099 will cause erroneous address modification.

If the subroutine being loaded is a variable length subroutine, the message
“ENTER MANTISSA LENGTH is typed and the machine halts. The operator enters the
2-digit mantissa length from the typewriter. This 2-digit number may range from
02 to 45. A mantissa length of 08 does not have to be entered. The release and
start keys are depressed to resume processing of the subroutines. It is the pro-
grammer’s responsibility to enter the number (length of mantissa) correctly. Pro-
gram switch 4 may be used to correct an entry made in error (see PROGRAM
SWITCHES).

Only those subroutines used by the source program are punched out as part
of the object program. After the subroutines are processed, the message “END OF
Pass 2” is typed out followed by the symbol table. The operator may suppress the
symbol table typeout by turning program switch 4 on while the message “END OF
pass 2” is being typed. If switch 4 is turned on while the symbol table is being
typed, the typeout is terminated and the program halts.

When the symbol table is typed, the labels and their associated addresses
are typed, five to a line. The format of each label is as follows:

associated
address label
.. ——————es—
XXXXX *FXXXXXX

where the leftmost position of the label contains the head character (assigned
either by the processor or the programmer). Any true six-character label is indi-
cated by an asterisk in the position next to the label. In this case, all six characters
of the label are true label characters without a head character.

If at the end of passes 1 and 2, it is desired to assemble other source programs,
this can be done without reloading the processor.

After pass 2 is completed by the card processor, the programmer may obtain
a condensed object program deck by:

1. Turning console program switch 3 on.

2. Placing the source cards in the read hopper.

3. Depressing the reader start key and punch start key.

4. Depressing the start key.

Pre-editing the Source Program

In some instances where a large source program is to be assembled, the programmer
may choose to perform a pre-edit prior to assembling the object program. For a
pre-edit, normally only error messages are typed for passes 1 and 2 and no listing
is typed or object program is punched. However, the two loader cards and arith-
metic tables are punched but they can be discarded. For this reason pre-edit data
may be obtained in less time than is required for normal assembly. The error listings
from the pre-edit enable the programmer to correct the source progam prior to
assembling the object program. .

The operating procedure is the same for passes 1 and 2 as that described
earlier for normal assembly of an object program except that program switches 3
and 4 (see Table 17) must be on during the second pass.

Patching

Format of
patch card

Special Procedures for the 1620/1710 Two-Pass Processor

This section describes three special procedures or routines that may be used with
the two-pass processor. These routines are not a part of the processor itself but are
additional aids for the sps user. The first routine provides a method of making
changes to a condensed object deck without need to reassemble the source pro-
gram. The second routine modifies a tape or card processor to allow it to use addi-
tional storage and the third routine describes the condenser program that is used
to condense an uncondensed object deck.

Condensed Object Deck Alterations

While testing an object program, it is often necessary to change or patch some of
the original instructions. To do this, the sps source deck and the condensed deck
must be updated each time an instruction is changed. If the sps output is an un-
condensed deck that is later condensed, it is necessary to update three card decks
(the source, uncondensed, and condensed decks). The procedure described here
provides an orderly, rapid, and accurate means of correcting the source program.

SPS Actual

Instruction in Actual Machine

Machine Language orp Machine | | ocation| Patch
Page | Line | Label| Code Operands Location | +12 Number

Column 1-12 14-15|16-18]19-24|25-28 29-61 65-69 | 70-74 |~78-80

One Instruction Per Card

Patch Cards Are To Be Placed In Front Of The Last Seven Cards Of The Condensed Deck.

Figure 5. Patch Card Coding Sheet

Patch Card and Coding Sheet

When an instruction requires correction, the corrected machine language instruc-
tion as well as the sps coding should be recorded on a patch coding sheet. The
coding sheet shown in Figure 5 or a similar coding sheet can be used for this pur-
pose. Each entry on the coding sheet is punched into a prepunched patch card.
The prepunched data is arranged on the patch card as follows:
Columns 13 == (0, 2, 8 punches)
62-65 001"

70

75 blank

76 0

79

Special Procedures for the 1620/1710 Two-Pass Processor 95

Inserted in object deck

Reproduce patch cards to
correct the source program

96

Use of the Patch Cards

Patch cards are placed in front of the last seven cards of the condensed object
deck but no cards are removed or changed. The condensed object deck is loaded
in the same manner as it was before the patch cards were added.

Corrections to the Source Program

After the object program is tested, the source program deck can be corrected by
selecting patch cards with a code 9 in column 77 from the object deck. Card col-
umns 14 through 61 in the selected cards should be reproduced into columns 1
through 48 of blank cards. The reproduced cards should then be inserted in page
and line number sequence into the source program deck, and the cards that are
being replaced should be discarded.

Patch cards may then be returned to the condensed object deck or the source
deck may be reassembled to produce a new object deck.

Modifying the Two-Pass Processor for Additional Storage

An sps paper tape processor or card processor can be modified to permit a larger
symbol table when the system includes the 1M 1623 Core Storage unit.

For the tape processor, a Modifier Program that duplicates the processor tape
and allows the user to make the necessary changes is available. For the card
processor, the program can be modified by changing a single card of the processor
deck.

After the processor has been modified to use a certain amount of storage, it
should not be run on a machine that contains less storage; however, it may be run
on a machine with greater storage capacity.

Modify the Tape Processor

LOADING THE MODIFIER PROGRAM

1. Thread the Modifier Program.

2. Depress the reset and insert keys.

3. Enter 360000000300 on the typewriter.
4. Depress the release and start keys.

CHANGING THE PROCESSOR TAPE

1. Thread the processor tape.

2. Turn program switch 1 on.

3. Depress the start key.

4. The message “ENTER MEMORY s1ZE” is typed out and the machine halts.

5. Enter the storage capacity in thousands from the typewriter; that is, “40”
for 40,000 or “60” for 60,000.

. Depress the release and start keys.

. The program halts after the last record is copied.

~N

Nore: If an additional tape is to be copied, repeat steps 1 through 6.

Modifying the Card Processor

1. Manually select the ninth card from the end of the processor deck. This
card contains 0200005= in card columns 1-7.

2. Prepare a new card, changing columns 1-7 so as to contain 040000== for
40,000 storage positions or 060000= for 60,000 storage positions.

3. Replace the old card in the processor deck with the new card.

Several decks may be condensed
in succession

Card format

Condenser Program

An uncondensed object program deck may be condensed by using a separate,
special condenser program. A condensed deck stores programs in fewer cards than
an uncondensed deck, thus shortening the time required to load an object program
into storage. The condenser program occupies core storage locations 15000 through
17225.

Operating Procedure

The condenser program deck is placed in the card hopper, followed by the un-
condensed object deck. The program is loaded by depressing the reset and load
keys. When loading is completed, the machine halts; depressing the start key (con-
sole) causes the condenser program to begin execution. After the input is processed
and a condensed output deck is produced, the machine again halts. Each additional
input deck can be condensed by depressing the start key (console), thus causing
the program to resume processing. g

Condensed Output Deck

The first two cards of the condensed output deck are loader cards and the last
seven are arithmetic table and control cards. In between these are the condensed
cards containing instructions or constants. The card format of the condensed object
program deck is described in the 1620/1710 Two-Pass Processor section.

Special Procedures for the 1620/1710 Two-Pass Processor 97

7090 Processor for Assembling 1620/1710 Programs

Compatible with 1620/1710

Exceptions

Magnetic tape input

Identification card

Control card

102 (Pages 98-101 deleted)

The 7090 processor has been designed to operate on a 709 or 7090 with a minimum
of 32,000 storage positions, two channels, and ten tapes. The processor runs under
control of the 18 sos Monitor.

With few exceptions, the 7090 processor is completely compatible with the

1620/1710 processor.

1. Flagged Digits. Peripheral equipment cannot print flags in the program
listing because of inherent machine limitations. Flagged digits appear as
letters. Special attention should be paid to the letter “O” which is equivalent
to a flagged 6, but could easily be mistaken for a zero.

The following shows the value of the flagged digits and their equivalent

symbols as they appear on an output listing:

Flagged Digit Equivalent Symbol
0 (zero) — (minus sign)

WO -0 Utk W =~
HO WO ZZ - R—

2. Diagnostics. The 7090 and 1620,/1710 processors have different diagnostic
procedures. Diagnostic messages are not listed here because of their num-
ber. Each message indicates the type of error and the manner in which it is
handled by the processor.

Input data cards are of the standard sps format, as illustrated in Figure 2.
Input to the 7090 processor is from tape only, prepared in an off-line card-to-tape
operation (1BM 714 or M 1401). Each program to be assembled must be preceded
by two cards. The first is an identification card containing the following informa-
tion:

Columns 1 7, 9 combination punch
2-72 identification data

This data will be printed out as a header on each page of the printed output listing

and may contain such information as the program name, programmer, date, etc.

The identification card will also be punched out as part of the assembled output.
The second card, a control card, contains:

Columns 1 7, 9 combination punch
11-12 mantissa length (02 to 45 digits) for variable length sub-
routines only

Pass 1

Pass 2

Magnetic tape output converted
to cards off-line

1000 statements per minute

Columns 14 subroutine type, 1 = fixed length subroutine without divide
(contd.) feature
2 = fixed length subroutine with divide
feature
3 = variable length subroutine without di-
vide or ﬂoating point features
4 = variable length with divide feature
and without floating point feature
5 = variable length subroutine with di-
vide feature and floating point feature
15 format, blank = input/output in tape format
non-blank = input/output in 1622 card format
16 core size, 1 = 20,000 positions
2 — 40,000 positions
3 = 60,000 positions

Each program must be followed by one blank card, and the last program
must be followed by two or more blank cards. The final card of the deck, which is
the control card for the 18 sos monitor, must be a PAUSE or stop card.

The assembly requires two passes. The first pass generates the symbol table
and the equivalent storage addresses. The symbol table accommodates a maximum
of 3,000 symbols. All labels are checked for legality and unique definition. Declara-
tive statements are checked to see that their length has been correctly specified.
The original statement and computed data are written out on an intermediate tape.

The second pass uses the information compiled by the first pass to complete
the assembly. A listing of the original input data and the assembled instructions
is written on tape to be listed off-line. All error messages detected during the first
and second passes are printed out and precede the statement that is in error. These
messages can be readily identified by five asterisks to the left of the statement.

All undefined and doubly-defined symbols are printed out following the
program listing. The symbol table is also listed.

The assembled program is written on another tape for punching off-line. In
the case of a tape machine, these cards, with the exception of the identification
card, can be used on the 18M 063 or 18BM 870 to produce the desired program tape.
If the card machine is specified, the output cards can be entered directly into the
1710.

The 7090 processor will assemble approximately 1,000 sps statements per
minute.

7090 Processor for Assembling 162071710 Programs 103

104

Appendix: Sample Program Prepared by 1620/1710 Processor

This sample program® is written to demonstrate certain principles of statement
writing and to show the assembly of instructions. It represents a numerical inte-
gration program that calculates

1
f V/3x? arcsine x dx
0

The area under the curve \/3x? arcsine x is desired in the interval 0 <x<1

1
AREA = f V/ 3x? arcsine x dx
0

The arcsine is computed using Hastings’ approximation:?
arcsine x :% — V1Ix + 8 (x)
0<x <1
Approximation:

S(x)=a, +a,X+2,%x2+2,X% +a,x* +2,x°

a, = 1.5707, 95207 a; = —.0449, 58884
a; = —.2145, 12362 a, = .0193, 49939
a, = .0878, 76311 a; = —.0043, 37769

To facilitate programming on the 1620, the integral is computed by Simpson’s rule:

1 AX
[F(x)dx= = [Fo+Fat4(Fi4Ft ... +Foy) +2(F+F, 4+ .. +F,.)]

where F(x) = /3x% « [%— VIx+S (x)]

nis an even integer

Ax =L

n
Fi = F(Xi), i:0,1,2,...,n
Xi =i AX

The source program coding sheets and the printed 407 output listing for this sample
program are shown in Figures 7 and 8, which appear on subsequent pages.

1Contributed by Dr. John H. Duffin, Engineering Department, San Jose State College, 1961.
*Hastings, Cecil, Jr. The Rand Corporation. Approximations for Digital Computers. Princeton
University Press, Princeton, New Jersey, 1955, p. 161.

IBM 1620/1710 Symbolic Programming System
: Coding Sheet

Program: _Numerical Integration (Sample Program) Date: Page No. 01,48
12
Rovutine: Prog
Line Labet Operatio Operands & Remarks
3 5lé nh2 15114 20 25 30 35 40 45 50 55 £0 65 70
0.1.0]% THIS| PROIGRAM ,COMPUTES THE AREA UNDER THE CURVE SQRT (3 ,X**2) * ARCSI NE,
0.2.0l*. WHERE, X |[L1ES BETWEEN 0 ,AND 1., THE AREA 1S COMPUTED BY, SIMP.SONS U
0.3.0|* FOR |NUMERICAL INTEGRATION. THE AREA 18 EVALUATED USING, THREE®) , , ..,
*

s.001* DIFAERENT, VALUES, FOR DELTAX., THEY, ARE ,0,,100,, 0,050, AND 0,025, (8

osol . IDORGHZIE Lo
0.6,0|START, [TF, DELTAX, X,7,, TRANSMIT VALUE OF, INCREMENT® , ., v\ 0000 iias s
o0l o FF AREAZ OB L v e

ool oy, JOF XSUBNGUNLTE o ooy v i e e e i
0,90l v, ,JID
1000 ,,,,, TD N U S T S S S S U WU S S TS S W S S
Y] I OFFE o et
neol o0 TR SUBN-9, CONST~9,,,..,TRANSMIT, ASUB,5. TO .A‘S.U.BD@L........A....4.‘.
ol o TF PSIX ASUBNE L o e e e e

140]ASINE, PSTI X, XSUBNBY 0 0000 e e i e
ool o, IBNF O |*+ 2 %00 098 ¢ 0o e e i e e e

eI I 190F) e e

T,F_, [PSIX, 93@ , .,

P S U U T U S S S S S S S S S S S S S S0 N WY S S St

PR U W SN0 SN WY N YA RS SOV A VN U S0 S S Y WA S W SN T WY WO S S WY W W S W W %

1,8,00 & 4 4

-
-

190 4y JTR , IASUBN-9 ASUBN# 3B \ v vy v v i i s
2,00AU.P.S.IX.,.A.SU.B.N@.J.....‘.1..”......\....A....u..‘.............
2,10, .., BNR [ASINE, ASUBN#I®) , , , .\ 0000wy v i v vau s ity

2,20, , , IBNCICONTA® v o0 v e ety

Ealollll TlDllPlQLYA"’I‘i’xBI-AP(sIIxL_A@lIlIIAIIIIAIllllhlilIllllllllllllljllllllll
.‘..AT.nlP.o.LY.+.s.2‘..P.s.Ix‘-.g%.........“L..l....L...H..,............L...

2,50, ., ., |TD , [POLY.+54, PSIX 7§

260 ,,, ., . ID IPOLY+56, PSIX =68, .\ \ vy oo e e

IBM 1620/1710 Symbolic Programming System
Coding Sheet

Program: _Numerical Integration (Sample Program) Date: Page No. 10,2) of 8
12
Routine: Prog
Line Label IOperatio Operands & Remoarks
3_.sle 1l 15]1s 20 2 30 3) I 50 5 &, & 70 75

0.1.0....‘TDUP.O.LY.‘f.S.a..AP<SJ.X.',5%..,...‘......‘.‘....JU.....A.. N
020 ,.,,,./tD ,lPOLY+60, PSIX~-4{E) ., , , ., 4 0oy e e
03,00 4\, TD, p.QLmns‘z..pxs.xx-AagA......H..A.L..H...J......»...........U
040l), TD , |POLY 464, PSIX-~2

ool 1y, bTD POLY 660 PSIX-AE e e
00| o |TD POLYH68, PSIXE v 0 0 i s e e
ool oo D POLYHL2 XSUBN-6@ o 0o
080l ID |POLY+16, XSUBN-5() , , vy e e
990l .., , . ITD |[POLY+18, XSUBN=-4{E) ., , 0 v vvv e e i e v
10,0 TD, , [POLY+20, XSUBN-3® , , ., 000t
10,00 g ey T S S O S U S N VAU ST S ST VT U U S S T T TN VO U T T S S S U U S ST SN TN T T S TN WO S S S U TN SO0 T S0 N WA SN SO0 VA A W 'Y
vl AT PO LY e e
1,3.0|CONTA ITF, [RADCNDLUNIT® , o 4 oo oo o ot o i ey
V) P Y su R
i sol,,. ., TR IRADCND. ZNINES - 33, @ (000 v u oy v v ey
V608 4 4oy o B 1 T T S T A A T P S S S S S U S S S S S ST U S S S S S S U U S S S S S S S S S e
ool oo oD JARG+42 . RADCND-6® L\ 0L e e e s
ool vy, JED JARG+ 46, RADCND-S® o 0 00 v st e e
190 oy g T ARG+ 48, RADCND-4 P NS R S U U N ST U A SN ST ST U S0 VO T ST N S S SN A U0 Y ST TN S S U WA 00 S A O S0 U AV
200,y [TD ARG*’.&O.HRALWND,'QE
241L0.A...T.D,.ARG+.52..RANND.—.2%....A,.....A...“..............A..........
220 ,,,,, /D , JARGH54, RADCND-1

30, ., D JARG#56. RADCND®E , , 00 e

ol , v IRCTYIE b ey n e e e c e G L bt

|
-
.

U S S S T U S U S U0 T WO VA T S S WO T WA S U 0 S U S WA A S T WY 0 N T 0 YU U0 S A Y B W

2,5,0 PR S O STE F S U S S T S AN ST U T U SO S S ST S S A S U 0 10 T S AT ST S0 U S0 YA S S S S0 S S SOV Y S St

2,60/CONTB ITF , ININE, TWOS® .\ \ 0\ 00wy v a i v ey e i v i s

Figure 7. Sample Program Coding Sheets, Part 1

Appendix: Sample Program Prepared by 1620/1710 Processor 105

1620/1710 Symbolic Programming System
Coding Sheet

Program: _Numerical Integration (Sample Program) Date: Page No. |TO.%; of 8
Routine: Prog
Line Label Operands & Remarks
3 5t6 1112 15H6 20 25 30 35 40 45 50 55 (13 70 75
o0l ..., |FF |ODDINT ,ONEONE® ;, . . . ,, .~
0 .,...B...*3,2,*,I®A.,..,,,.‘ T e L b Lt
WROOT, , JA , |ODDINT -8, TWO® . v v\ o 00 v v e L b ey
o0l vy i)S) JRADCND#Z L, ODDINTE 0 o6 0y i 4
o500 ., . |BNN |ROO e e
ool v u A, |RADCNDHT,ODPDINTE e
o700l v, [TR [RADCND -7, RADCND-6@® ., .\ .,y e,
ool vy ISF L JRADOND-T® 4 e e
o.v.o.‘.“ELJ.QDDI.N.T.-.SHNIN‘E@..“..
vo0f vy TF L ININECNINE=I® 000 0 e e e e
ol oy IBNF JROOTH YL IWO+IB v v v
120l TR U SQRTVNINESE o o e e e e e
el o, SFLURADCNDHA®) L .
vl oy 080 SQRTBADCND A6 | e
Lol oy) IBNCIHCONTC® ooy vt e - PPN
el v ITD L [GENRT 24, SQRT =5 1 0 00 v v v e -
vzl o0y T [GENRT A28, SQRT =4® 0 00 0 0 00 e L L
veof vy T IGENRT+ 30, SQBT=3® o 0 00 000 e A N A A A
vl vy JTD L JGENRT 32, SRRT 208 0 0 0y 00 ia . Lo
zo.o...,.jD..GENR.T.+.3.4..SQR(I‘.-.1 T B TSR SR SR A S A RO Gy U Y L TR N A SR ST S R
2200, ., TD |GENRT+36, SQRTE + o0 v 00 e . b e
2200 40 BOTRME) © vt i
230} (4 M}I@Allll‘ll‘lllll [N S B TR B ST S L AN I AR SN O S S S
240/CONTC, M , S@RT, PSIXE 0y 0y iy iy
2500, 0, SF B85 E) it L
2600, ,,, fF [TEMPYI, 9048, ., ., . T e
IBM 1620/1710 Symbolic Programming System

) Coding Sheet
Program: _Numerical Integration (Sample Program) Date: Page No. \OTA‘}TJ of 8
Routine: Prog
Line Label Opemliin‘l> Operands & Remarks
3 516 1112 15116 20 25 30 35 40 45 50 55 &5 70 75
ol . |BNCUSWI® e
o2l v, |TD , [FUNCT+10, TEMPL~9® . v\ vy i e v e o,
ol i, |TD | |RUNCT+14, TEMPL-8® \ \ o0 i i i
0,40l v, |TD \ [RUNCT+ 1.6, TEMPL=T®E 1 0t vi it i e L
os0f oy |TD , |FUNCT+1,8, TEMPLI-86(® . .,
sl o\, |TD, [RUNCT+20 , TEMPL=5® , 0 iy iyt it
ool vy, |TD , |RUNCT+22 TEMPL-4® . .\ 000 s
g0l w00 JTD o |RUNCT+24, TEMPL-3® 0 000y e
99l vy, |TD |FUNCT+26 TEMP1=20® . , , ., 0 o0, s
10l ,,, ,|TD |FUNCT+28,TEMP1I-1(@® i
Lol .y |TD L [EUNCGT+30 , TEMPI®E) ,
vzl 0 JRETIE N
ol L IWATYIRUNGT® oy v e e s e
140 B L ISWAB L et
vsol vy ML IXSUBNG XSUBN® 0y e L e
|¢o....1S‘F,.8.Z®‘.J........,..‘.. A S T o L I S A A
vool v, |TROGITEMP2, 960 o o i e
ool 0 MM ITEMP2, 30 L0 L T A S
19,0..IHISF..9x0@..‘....“.‘.“... i SR AR A 1 TR S S S S e
zc‘o.,H.T.F“R.A.DGN.DHQ,Q@\......A... NI S SN U SR N IR AT S AT AT S S S RS
2100, TR L IPSTIX CONST# 508 0 00 o0y e i
2200, ... s IPSTXGTEMPAE o s
2300 4y JTDOM [SWI L, O® o 0 e e L Ll
240, B JROGT =34 MUB s R
250/sw2, , 1B, [0DBVNE e

cow o JA L JAREAGTEMP L= FORENB 0 o i

Figure 7. Sample Program Coding Sheets, Part 2

106

IBM

Numerical Integration (Sample Program)

1620/1710 Symbolic Programming
Coding Sheet

System

Program: Date: Page No. L?_;%J of
Routine: Prog!
Line Lobet Operands & Remarks
3 H 11112 15116 20 25 30 35 40 45 50 60 45 70 75)
o, 0f*, INITIALIZATION FOR FSUBODDE) , .\ vt Loy
o2l o0 |TF |XSUBN, DELTAXE) , 00w vy i
030l v oy JTFM IMULT+11, 4,008 000 i
os0] vy JITF | [AGCU
060 v 0y o |TF | |TEMP3,, DELTA PSR S S U U S S A S WS A W NS ST S S S A A SR
07,0y 4, 4 oA L T 3 EMP3 N ST A U SR S S S S S A ST S i N SO O A S SR S S
ool B ASINE-3XIE e e e
0,90 |ODDVIN A.GGM.ME.L% A T
o 0b oy o A JXSUBN, TEMPS I TS S ST T S TN U S T S S S S S R A N W P SO RS S U A S S Y S W'
el e IXSUBNY NINESE o000 v e i vy o e
a0l oy, IBNH (ASINE-3*UB . . i e
el v IS §,§®‘..H,.......A.......,,..\..H... PR U S S AT ST
vsol oA JAREAGOS® 0 i i S SN
veolSW3, L B RS LE) o e e b
Lol aNITii ALI|ZATION FOR FSUBEVENE) ., 0o oo i0vys
ve0) Loy IDFM MULT 413,200 0 0000 v i P S S S
veob g IO JAGG NS R S S S U T S U i N S U S S T HE ST B PO S T VA T S W WO S Y W0 W S
sool . ITF IXSUBN, TEMPSM® .\ 0 0000 i
210, lTOM {sSW3+1,0® 0 e e
2200, , . B , IASINE-3*I@® . . i
2:3,0] 4 4 E T I A S U R R A U S S SR S AT AT NSNS SIS B S AN U S S
250] , T I -
260l T 1, T Y - S S
IBM 1620/1710 Symbolic Programming System

Coding Sheet
Program: Numerical Integration (Sample Program) Date: Page Nb,\ToleT, of _8
Routine: Prog:
Line Label Operati Operands & Remarks
3 5]é 1112 15116 20 25 30 35 40 45 50 &0 45 70 75,
ool .. lTD . lOUTPUT+26, DELTAX-5@\ 0w vay e
o200l .., ., . ITD |OUTPUT+28, DELTAX-48), . ., s ay N S A SR
ool ..., ltD |OUTRUT+30, DELTAX-3® , v
040! L, .. |TD JOUTRYT+46,83® ., . v 0 v via i,
050l ., .. [TD |OUTPYT+50,84® ., . .\ W00
060l 11 . lTD IOUTPUT+52.85® ¢« v v v e
o700 v, TD , [OUTPYT+54,86 O S S S S SR A A
08,0l 10 . /TD JOUTPUT+56,8I8) . vy v v i
o.'.oH..AT.D.‘0UT.P.UT.+.5.&.8§%..“......‘....‘...‘... s
o0} oy, JRCTY U S U S ST N S S S S U U TS Y S S S A S S0 U S S S S S AT S S S U S
1300 0y N S N T A SO SN ST SR U0 ST S0 WA N S WA S S WA WO S S SO S W PR S R R T U SR Y L
ol oo A STARTH LA, Tu L0® o L o o et i s vy i s e
vsel ., e START 11, X+ 210 o000 v v i e as e
Lol oo BNE [STARTE 00 i
1,800 00 oo N O S AN S S S A AR S N S i SN S ST S E A S S S IS U e L
\eol*, AREA DERINITILONSE , 000 v v in v i
L soPELTAXDS 17® i i
oo, DG L (7,,0000008) 4 0wy e i T
1,900 44y sy C..7.é.O.Q.QQﬁ%...,...,...,......,,‘...,J.. [T S AR U N S SR S
200 , 4, IDC 17,,250,00 O AT U Y A VA S S0 U S0 U VS S S T A S e
RlOAREA . IDS, . O O S S S A S S S S S T e
b2olz . D L. O0® 0y w e
230IXSUBN, DS, , |7 [N S S U0 ST W MU ST U WSS S0 WA T U ST T S WY SN T A U0 ST SO S S N | AT AT IS USROS
a4oluNIT DG [7.,,2,000000@ L0 cr e P
50|ASUBN, IDSB. {10, 6@ v s
6ol ., . . b8 JW® e e

Figure 7. Sample Program Coding Sheets, Part 3

Appendix: Sample Program Prepared by 162071710 Processor

107

IBM

Program: _Numerical Integration (Sample Program)

1620/1710 Symbolic Programming System

Coding Sheet

Date: Page No. \TO._Z_I of

Routine: Prog
Line Label Operands & Remarks J
3 56 2 15416 30 35 40 45 50 55 45 70 75
L 0|CONST D‘C“1‘0,,‘,4.33776.9®”“HH”‘HH.. L

v DC L 11100,193499839®) L L w e
,;,a.‘,..D,C,‘10.,.344958884@,..,‘,,H,,,J,,.,.,,,,..,‘, et
0.4.0.A...D.C.‘10.,,87.&7.6311@ e e
050l IPC, | L,,,214512,362® e
.,...‘,n,c,,11,,,15.707952,0,7@@ e T
oroLDSlZ@
o.s.oP.S.IX..D.S,.10@.....(.,‘1 iy e
0,900 vy v, DS, | R R S S A R S G R S SR T SR SR
l.o.oRAn(‘NDDS,.’? i
|.1,o..,,,D,S.,1‘3,®‘..,..,x,‘,,‘,,..,H,.,l,,l,,,,..,,,. A
1L2,0|ZNINESIDC, |, |1.5, 9999999
Lo TWA L DS 6B e e e e
Vo NINE DS 6@ e e ey e i i
umrmg.‘n,c,‘12.,200000090000@ e
u.annmN.TDs..1.4®4...‘..,.,.“.,..,....l.“.,......,.. el
17,0 |ONEON, 1,4,,,1,0,0,0,0,0,0,0,0,0,0 iy
|1,8,0] L Isll6@!1!\1|||A.||||A|IIAIILII|||lI|ALlIIIIl TR S S U N S U S U A S S
15 oNINES, IDC, , 16,,999998M® , e e N
2,0 0|TVE . DS, {10 IO SIS G AT SR AV ES AR i AT T A S ST AN O ST T S A [T ST SR S A
BAOITEMP2 DS, |10ME) : v v\ 4ty h e s
22PIACCUM DS, \ 1L 1E) \ |\ 0y o
230TEMP3 DS, [T v Lt g
THREESDC 17.3333333@ 1 v 1 0 v 000 0 i i i i
E5plPOLY, Ac. 3,6, FOR, X#0,.000,, ,PLO,I..Y.NIOMAIAL#0,.,00,0‘000000
60/ARG, , , [DAC |30 ,SQUARE ROOT, ARGUMENT#0.. ,o,op,o,op,@@‘, . i

1620/1710 Symbolic Programming System

Coding Sheet

Program: _Numerical Integration (Sample Program) Date: Page No. L0 Bl of 8
Routine: Programmer:
Line Label [Operation)| Operands & Remarks
3 516 nji2 15116 20 25 30 35 40 45 50 55 85 70 75
Lo|GENRT, [DAC, |20,SQUARE. .R‘O.OT#O.-.O.OO.O.O.@@...A.LL“... R P I
0,2,0/FUNCT, [DAC, {1,7,, F(X) #,0,.,00,00,000008® , . ., ., ., ., . . . e
2.2.0|OUTPUTDAC, [3,1,, FOR, DELTAX#0,,0.0.0,, AREAFO..0,0,0.0 08 . .. | i
og40f \ , ,, IDENDSTAR, T S S S T SO R R N SO L S S G SR A SR S A A SR AR S S S S
LPEIY IRV R BT A A A AR S T S A S S L
6401 4 44y g JE T GO 1 Y W R S S N T T T T S S S ST S ST GO S S ST S S AN ST W 1 I S S B WA W SRR Y SR Y "
0,7,00 v 4 v 4 PN AR B 1 Y U S T W T Y S Y Y S G B S N S G N S S ST S R S R T P T S T W S G S T R n
048,00 4 4 14 4 11 O N I VU T S W ST 1O ST TN N0 S R U S S ST S T N S ST SR I WY S Y R | PR TON SRV N N SR W S
L S T A N S N S S
L] L N WU WY A AR S G SR U S S S S SR SR R R S S S S PR SR TS N T AU ST S A T T s
12,200 4 4o Lo P R SN S S P S S G S R S S P PN Y N S S S N ST ST n
1,300 o, 4y PR N S U A S S S S S R S S R S N S P a0 L PR SR T ST I S
1,408 4 4 4 4 L1 TS R WY Y Y S ST U IO U Y Y U 000 W UG T Y G S WY W S ST S Y S W S U A N S SN R U ¥ IS T ST U T T S S ST A R L
105,00 4 4 4 4y PR T e S VS (S Y T T W T U S S W WU S S WA A A S SN SR S ST S N R A SR S G A Y P B S S U S n
1,600 4 3 4 L1 * D Y S Y I T WS Y T A T T S WV UY N0 VY S S W S S S S R VA S RS T R A Y NS USSR S L
IEAT] R TS R N S S S W Y 0 Y U WY T S TN S S S N S0 N0 VU S ST S M S N AT N S N ST SR S TR S U ST N S S S W I
8.0 4y gy 14 T B T S U G VT T S A SN S S S Y S Y S ST S U S S S SN S SRR ST S W G S A FEN NS T N T S W S B Gt L
PLa90) ¢ 40 1y L1 TN U Y G W S RO T Y S A0 W O T WA ST N U W00 S S SO S NS A SOV UNY SN OO0 S O T R A S T S S A "
2,000 4 4 4 4y T O S SN TR W T 1O T T S SO S A Y S S T S AN B S U A A SN AT U SIS SN N SN EAT AT Y N U S BT ST Y IR TS W O S ES T B L
I I T N S
L L1 4o 1 1 llllllIAIJIIIL‘AIAIIA]AIJ!IIIIIIIIIIIILJ S O W T TN TN T T WY U S N A 1
11 P ' I IAAIIJIAIIILIIIIIIIIAIIAllllllitllllllll § U R W T 1
§ S Y) AAIllllAljllLJllllJlAlllllIIIILJAIIIAILL Y W T T S [VN T N T S 't
1 Lo L Y S0 S S N TS T T TN TN T Y T GO S N S S S S S SO S Y T A R R AT S N A R R RS T T U SV S N S N i

Figure 7.

108

Sample

Program Coding Sheets,

Part 4

c1732

01732 26
01744 26
01756 26
01768 15
01780 15
01792 15
01804 31
01816 26
01828 23
01840 32
01852 44
01864 32
01876 26
01888 31
01900 21
01912 45
01924 47
01936 25
01948 25
01960 25
01972 25
01984 25
01996 25
02008 25
02020 25
02032 25
02044 25
02056 25
02068 25
02080 25
02092 25
02104 34
02116 39
02128 26
02140 22
02152 31
02164 47
02176 25
02188 25
02200 25
02212 25
02224 25
02236 25
02248 25
02260 34
02272 39
02284 26
02296 26
02308 49
02320 21
02332 ka2
02344 46
02356 21
02368 31
02380 32
02392 22
02404 26
02416 44
02428 26
02440 32
02452 22
02464 47
02476 25
02488 25
02500 25
02512 25
02524 25
02536 25
02548 34
02560 39

Figure 8.

03394
03423
0344}
03089
02897
02765
03449
03580
03580
ooo84
o1876
00093
03580
03449
0358V
o18z8
02128
03775
03779
03781
03783
03785
03787
03789
03791
03793
03795
03739
03743
03745
03747
[e]e]e1010)
03727
03588
03588
03588
02284
03841
03845
03847
03849
03851
03853
03855
00000
03799
03628
03654
02332
03646
03595
02320
03595
03581
03581
03646
03628
02332
03674
03589
03674
02572
03883
03887
03889
03891
03893
03895
00000
03859

-3401
03431
03448
00001
[S1e]IVIOR1
00001
03510
03458
03441
0L00oV
00099
00000
00093
03459
03458
03459
00100
03571
03572
03573
03574
03575
03576
03577
03578
03579
03580
03435
03436
03437
03438
o102
00100
03448
03441
03603
00100
03582
03583
03584
03585
03586
03587
03588
00102
00100
03640
03668
00Voo
03622
03654
01300
03654
03582
00000
03628
03627
03623
03680
00000
03594
00100
03669
03670
03671
03672
03673
03674
00102
00100

THIS
wWHER
FOR

DIFF

* % %k Xk

START

ASINE

CONTA

CONTB

ROOT

PRO
E X
NUME
EREN
DORG
TF

BNF

RCTY
WATY

GRAM COMPUTES THE AREA UNDER THE CURVE SGRT%3X##20%ARCSINEX
LIES BETWEEN O AND le THE AREA IS COMPUTED BY SIMPSONS RULE
RICAL INTEGRATIONe THE AREA 1S EVALUATED USING THREE :
T VALUES FOR DELTAXe THEY ARE Oe100s 04050¢ AND 04025.
1732

DELTAXsX+7+ TRANSMIT VALUE OF INCREMENT

AREA+Z-3

XSUBNsUNIT

SW3G1+1e+SET SW3 OFF

SW2G1+144SET SW2 OFF

SW1&14149SET SW1 OFF

ASUBN-9¢CONST-9+ » TRANSMIT ASUBS TO ASUBO

PSIX+ASUBN

PS1X+XSUBN

84

*G 2L 199

93

PSIX:193

ASUBN=9 4 ASUBNG 1

PSIXeASUBN

ASINE+ASUBNG 1

CONTA

POLY&484PSIX~9

POLY&524PS1X-8

POLY&ES544PSIX=7

POLY&E564PSIX-6

POLY&E584PSIX=5

POLYG604PS1X-4

POLYE624PSIX-3

POLYE64+PSIX=2

POLYG66.PSIX~1

POLYE684PSIX

POLYE 12+ XSUBN=-6

POLY& 16+ XSUBN=-5

POLY& 184 XSUBN-4

POLY&20 + XSUBN=-3

POLY

RADCND+UNIT
RADCND ¢« XSUBNs s RADICAND # 1-X
RADCND + ZNINES~-13+
CONTB

ARG&42 +RADCND-6
ARGG46 sRADCND-5
ARGL48 +RADCND-4
ARG&S0 +RADCND-3
ARGES2 «RADCND-2
ARGES4 +RADCND-1
ARG&S6 +RADCND

ARG

NINE+ TWO9
ODDINT s ONEONE
*O 2L
ODDINT-84TWO
RADCNDG7+ODDINT
ROOT
RADCND&7+ODDINT
RADCND=7 +RADCND-6
RADCND-7

ODD INT=-8+NINE
NINE«NINE=1
ROOTG 1 #1_+ TWOG 1
SQRTNINES
RADCND& t
SQRTsRADCNDG 6
CONTC
GENRT&244SQRT=S
GENRTE&28+ SQRT-4
GENRT&30,SQRT~3
GENRTG324SQRT=-2
GENRTE& 34,4 SQRT-1
GENRT&36+SQRT

GENRT
PAGE 1

Sample Program Output Listing, Part 1

Appendix: Sample Program Prepared by 1620/1 710 Processor

0002
0004
0006
ooo8
0010
o012
00i4
0016
o018
0020
0022
o024
o026
ooz28
0030
0032
0034
0036
0038
0040
0042
0044
0046
0048
0050
0052
0054
0056
o058
0060
0062
0064
0066
0068
0070
0072
0074
0076
o078
0080
oos2
o084
0086
ooss
0090
0092
0094
0096
0098
0100
o102
0104
0106
o108
o110
o1tz
o114
o116
o118
0120
o122
o124
o126
o128
0130
0132
0134
0136
0138
0140
0la2
Ol4a4
0146
ol48
0150

109

02572 23
02584 32
02596 26
02608 47
02620 25
02632 25
02644 25
02656 25
02668 25
02680 25
02692 25
02704 25
02716 25
02728 25
02740 34
02752 39
02764 49
02776 23
02788 32
02800 26
02812 13
02824 32
02836 26
02848 26
02860 22
02872 15
02884 49
02896 49
02908 21

02920 26
02932 16
02944 15
02956 26
02968 26
02980 21
02992 49
03004 21
03016 21
03028 24
03040 47
03052 13
03064 32
03076 21
03088 49

03100 16
03112 26
03124 26
03136 15
03148 49
03160 23
03172 32
03184 26
03196 23
03208 25
03220 25
03232 25
03244 25
03256 25
03268 25
03280 25
03292 25
03304 25
03316 34
03328 39
03340 11
03352 14
03364 47
03376 48

03394
03401
03408
03415
03423

Figure 8.

110

03674
00085
03690
02764
03909
03913
03915
03917
03919
03921
03923
03925
03927
03929
00000
03899
02896
03441
00087
03700
03700
00090
03588
03580
03580
02765
02152
03004
03423

03441
03063
02897
03711
03718
03718
01792
03711
03441
03441
01792
03711
00088
03423
03160

03063
03711
03441
03089
01792
03423
00088
03690
03690
03959
03961
03963
03979
03383
03985
03987
03989
03991
00000
03933
01743
01743
01732
00000

00007
00007
00007
00007
00008

03580
00000
00094
u0100
03681
03682
03683
03684
03685
03686
03687
03688
03689
03690
00102
00100
00000
0344
00000
0oV96
000-3
00000
00096
03569
03690
00009
00000
00000
03686

03394
000-4
00009
03434
03394
03718
00000
03690
03718
03680
01100
~0000
00000
00095
00000

000-2
03434
03718
000Q9
00000
03394
00000
00097
03725
03389
03390
03391
00083
00084
00085
00086
00087
ooo88
00102
00100
000-7
-3422
01200
C0000

CONTC

Swl

sw2

* INIT

ODDVN

MULT

Sw3
* INIT

* AREA
DELTAX
X

AREA

raLt

SQRTPSIX

85

TEMP1.+94

Swl1
FUNCT& 100 TEMP 1 -9
FUNCT& 144 TEMP L -8
FUNCTG 160 TEMP1-7
FUNCT& 18+ TEMP 1 -6
FUNCT&E20+ TEMP1~-5
FUNCTG224TEMP 1 -4
FUNCTG244TEMP1=-3
FUNCT G264+ TEMP -2
FUNCT&28+ TEMPL =1
FUNCTE30.TEMP]

FUNCT
sw2

XSUBN« XSUBN

87

TEMP2,96

TEMP2+3410

90

RADCND+96
PSIXsCONSTESO
PSIXsTEMP]

SW161+9

ROOT-14%_

ODDVN
AREA+ TEMP 1 =44+ «FOGFN
ZATION FOR FSUBODD

XSUBNDELTAX

MULTE11444010
SW26149

ACCUMZ
TEMP3.DELTAX
TEMP34+TEMP3
ASINE-3%L
ACCUM.TEMP]

XSUBNs TEMP3
XSUBNNINES
ASINE-3%L

ACCUM

88

AREA+95

RGEHL

ZATION FOR FSUBEVEN
MULTE1142010
ACCUM.Z

XSUBN+ TEMP3
SW36149

ASINE-3#L
AREAWDELTAX

88

TEMP1 .97
TEMP1 + THREES
OUTPUTE26+DELTAX -5
QUTRPUTEL28+DELTAX -4
QUTPUTG30+DELTAX-3
QUTPUTG46483
QUTPUTELES50.84
OUTPUTES2485
OUTPUTES4+86
OUTPUTES64+87
QUTRPUTES58488

QUTRUT
STARTE1147410
START&E119X621
START

INITIONS
2
7+100000
7+50000
74+ 25000
8

Sample Program Output Listing, Part 2

PAGE

2

0152
0154
0156
0158
0160
0162
0164
0166
0168
0170
0172
o174
0176
0178
0180
0182
0184
0186
oi1se
0190
0192
0194
0196
0198
0200
0202
0204
0206
0208
0210
o212
0214
0216
0218
0220
0222
0224
0226
0228
0230
0232
0234
0236
0238
0240
o242
0244
0246
0248
0250
0252
0254
0256
0258
0260
0262
0264
0266
0268
0270
0272
0274
0276
0278
0280
0282
0284
0286
0288
0290
0292
0294
0296
0299
0302
0305

03434
03441
03448
03458
03509
03519
03529
03539
03549
03559
93570
00012
03580
03581
03588
03601
03616
03622
03628
03640
03654
03668
03674
03680
03690
03700
03711
03718
03725
03727
03799
03859
03899
03933
01732

Figure 8.

00011
00007

00007
00010
00001

‘00010

00010
co010
00010
ooo1t0
00011

00010
00001
00007
00013
00015
00006
00006
00012
00014
00014
00006
00006
00010
00010
00011
00007
00007
00036
00030
00020
00017
00031

00006

XSUBN
UNIT
ASUBN

CONST

L
PSIX

RADCND

ZNINES
TWO
NINE
TWO9
ODDINT
ONEONE
SART
NINES
TEMP 1
TEMP2
ACCUM
TEMP3
THREES
POLY
ARG
GENRT
FUNCT
oUTPUT

DC 11+0

DS 7

DC 7+1000000
DSB 1046

Ds 1

DC 10+-4337769

DC 10419349939

DC 10+-44958884
DC 1087876311

DC 10+-214512362
DC 11+1570795207%@

Ds W12

Ds 10

DS 1

0s 7

Ds 13

ocC 15499999996

DS 6

Ds 6

DC 12+200000090000
Ds 14

DC 14+1000000000000Q1
DS 6

DC 64999999

Ds 10

Ds 10

DS 11

Ds 7

DC 743333333
DAC 36+FOR X#0e¢000+ POLYNOMIAL#0¢000000000@
DAC 30+¢SQUARE ROOT ARGUMENT#0e¢000000@
DAC 20+SQUARE ROOT#0.00000@
DAC 17+FXX0#04000000000@
DAC 31+FOR DELTAX#0000+ AREA#0.00000@
DEND START
PAGE 3

Sample Program Output Listing, Part 3

Appendix: Sample Program Prepared by 1620/1710 Processor

0307
0310
0312
0315
0317
0319
0322
0325
0328
0331

0334
0337
0339
0341

0343
0345
0347
0350
0352
0354
0357
0359
0362
0364
0367
0369
0371

0373
0375
0378
0382
0386
0389
0392
0396

111

Index

Page
Actual e e
address ... e 13
operand (Q) in Immediate instruction 13
Add (A)instructionoiiiiiii 26
Add Immediate (AI) instructiono..... 26
Adding macro-instructions to processor 69, 77
Adding subroutines 46, 69
addresses required for, i 71
Address
actual, ... 13
equivalents for PICK,ccooiviinereenn.. 71
lengthof, i 13
symbolic, i 13
types of, used as operands 13
Address adjustment0 0., 15
Addresses required for adding subroutines 71
Alpha 70-73
Analog Output Checkcodeoou.... 44
Analog Output Setup codeo.veveiineiinin.... 44
Analog-to-Digital Converter (1710)
imperative codesfor, o i 43
Any Data Checkcodeooooiuin.... 44
Argument evaluation (subroutines) 46
Arithmetic instructions
summary (Table 2) 26
Arithmetic subroutines 45
Arithmetic subroutine macro-instructions 47
Arithmetictables 41, 83
multiplication and addition 81
Assembling programs i i, 5
1620/1710 Two-Pass Processoro..... 79, 93
7090 Processoroueuumuneineann . 102
Asterisk
first character or term(s) of operand 11
in address adjustment, 11,15
to indicate comments i, 11
to indicate 6-character label in listing 94
At (@) sign (special character) 8,12
Beta .. e e e 70,73
Blank character e 11
headed by, ..o 40
in DAC statementsccovuveriueernennnnnn. 11
in declarative statements 0 ihninna... 12
in flag indicator operand 12
Branch and Transmit (BT) instruction 31
Branch and Transmit Floating
instruction (BTFL) ...ttt tninineeennnenns, 31
subroutine (BTFS)covviiiiininnnnnnnnnn. 45, 64
Branch and Transmit Immediate (BTM) instruction 31
Branch Any Data Check (BA) instruction 29
Branch Back (BB) instructionc.o.ouv.... 31
Branch Console Switch instructions
(BC1,BC2,BC3,BC4)oovviinennnnnnnnn.. 29,30
Branch Equal (BE) instruction0ouu.... 29
Branch Exponent Check (BXV) instruction 30
Branch High (BH) instructioncovvnuen... 29

112

Page

Branch Indicator (BI) instruction 29
indicator codes summary (Table 5) 31
switch codes summary (Table 5) 31
Branch Instructionsoviiiiennnennnnnnnnns. 29
Branch Last Card (BLC) instruction 30
Branch Low (BL) instructionov0vveuun.... 30
Branch Negative (BN) instruction 30
Branch No Flag (BNF') instruction 29
Branch No Indicator (BNI) instruction 30
indicator codes summary (Table5) 31
switch codes summary (Table5) 31
Branch No Overflow (BNV) instruction 30
Branch No Record Mark (BNR) instruction 29
Branch Not Any Data Check (BNA) instruction 30
Branch Not Equal (BNE) instruction 30
Branch Not Exponent Check (BNXV) instruction 31
Branch Not High (BNH) instruction 30
Branch Not Last Card (BNLC) instruction 30
Branch Not Low (BNL) instruction 29
Branch Not Negative (BNN) instruction 29
Branch Not Positive (BNP) instruction 30
Branch Not Zero (BNZ) instruction 30
Branch on Digit (BD) instruction 29
Branch Out of Interrupt codeoouvnn.n.... 4

Branch Out of Noninterruptible Mode (BO) instruction 43
Branch Out of Noninterruptible Mode (BOLD) instruction . 43

Branch Overflow (BV) instruction 29
Branch Positive (BP) instructionouu..... 29
Branch Zero (BZ) instruction 29

Card processor (1620/1710 Two-Pass)

card input operating procedures 82, 93

modifying for additional storage00, 15, 96

program switches, 83, 89, 92

typewriter input o i, 82
Characters

See Special characters
Clear Flag (CF) instruction 36
Code

in storage position (401) 54

overflow,t e 54

underflow, i 54
Coding sheet

Patch card, 95

SPS, 6-7
Commasoviii 10-11
Comments

card format (output)o, 88

with asterisk i . 11

See also Remarks
Compare (C) instructionc.ccoveeeeeeeennnnn.. 29
Compare Immediate (CM) instruction 29
Condensed deck, alterations 94
Condensed output (card)

format 88

Pass 2 ... e 83-84
Condenser programoiiiniiiiiaiii.... 97

CONSEANES + o v e v v e e aareeeinaara e 72
P - S R RECERRREEE 12
card format (Output)eoneiiiiiiiiiie et 88
Define Constant (DC) instructioncooeenn. 19
Define Special Constant (DSC) instruction 21

Control card for 7090 vv et 102

Control (K) instructionc.evvvvnreeeeniiinnaennneen 35

Control operationc.ooeiuenerenrineaiinn. 36, 42
card format (OUtput)oveniiiiiiiiiia 85
COQES © ittt i i 6, 36

Customer Engineer (CE) Interrupt code 44

Data transmission subroutinesc.o.oiiiiainnn 45

Data transmission subroutine macro-instructions 47

Declarative operations
card format (output)o 85
OGBS & e ettt e e e e e 6, 17
FUDNCHOMS + v v v v v eveeaeescaeeunneesnnansnssenens 17
summary (Table 1)cooviiiiiiiiiiiaen e, 24

Define Alphameric Constant (DAC) statement 21
At SIgN ... 12
blank characterooovveveeroneeroronnnanneeennns 11
card format (output)couiiiiiiiiiiiie 87

Define Alphameric Symbol (DAS) statement 19
card format (output) ..ot 86

Define Constant (DC) statementot 19
AESIEN oo v vttt 12
card format (output) ... 86

Define Constant (Numerical) DSC statement 21
At SIEN ..v i i 12
card format (output)l 86

Define End (DEND) statementcoooeene 36, 37
card format (output)oiiaii e 85

Define Numerical Blank (DNB) statement 23
card format (output) i 87

Define Origin (DORG) statement 36, 37
card format (output) ...t 85

Define Special Constant (Numerical) DSC statement 21
card format (output)c.ciiiiiiiiiiiii i 86

Define Special Symbol (Numerical) DSS statement 19
card format (output) il 85

Define Symbol (Numerical) DS statement 17
card format (output)l 85

Define Symbolic Address (DSA) statement 22

card format (output) ..o 86

Define Symbolic Block (DSB) statement 23
card format (output)viieiiiiiiiiiien 86

Diagnostic procedure for 7090ot 102

Distribution order numberscoiiiiiiiaiinnn 5

Divide (D) instructionooveviiiiiiiiiiiain. 26

Divide Immediate (DM) instructionooonn 26

Divide suUDIOUtNevvvvtvrerrrerrernernaanneenns 49
bypassing PICK in,ooovviiniiiiiiieiceenne. 74

Divisor, incorrect positioning Grerereeanenoon 61

Dollar sign (special character) 10, 12, 40

Dump Numerically Card (DNCD) instruction 34

Dump Numerically (DN) instruction 34

Dump Numerically Paper Tape (DNPT) instruction 34

Dump Numerically Typewriter (DNTY) instruction 34

Duplicate Symbols (labels)ovveveiiniinn. 39, 90

Page
End-of-line character
PAPET tAPE « v et vttt 11
punch code ..ot 11
Equal sign (special character)ooonenn 8
Error correction
SOUTCE PIOZIAIM . ..vvevveenneeinsennnss Ceereeaeaes 90
tyPIng €ITOISvivvnuniueiiene e neneaeeenns 78, 83
Error message codes
SUDTOULING, . ..ot vvevnninrrernannoanssesonsnnnnns 54-55
1620/1710 Two Pass Processor,ccocuueeannns . 89
Error message format
Subroutine,eviiiii i e 54
1620/1710 Two-Pass Processor,ooovnnnn 89
Evaluation of arguments (subroutines) 46
Execution times (subroutines)
See particular subroutine listing
Exponent overflow ..o 53, 55
Exponent underflow oo 53, 55
EXPONENtS .. .ovvvnrvrnenonrnonsnaeacoraentaasannns 52
Field ..ottt e i 6,8,9
Fixed length, definedot 45
Fixed length mantissa subroutines 45
Fixed Point Divide (FD) subroutine 45
Flag indicator operandoeiiioiiiiiiinn 12
COMUIIA .+ o v eeeee e e as e aeanaaasesaesaaes 10
fomitted . oo vttt i e 12
in immediate inStructionscovueereer i 13
in indirect addressing oo i 13
order of coding 12
Flagged digitsoooniniiriiiiiieniinaenes 102
Flags, Set .. .ovvvvneneneieiniirnnrne e 9,12, 52
Floating Add
instruction (FADD)coiiiiiiiiinnneeiinnn. 26
subroutine (FA)ouieiiiiiiiiinnnaaiannns 45, 57, 58
Floating Arctangent (FATN) subroutine 45, 46
Floating Cosine (FCOS) subroutine 45, 46
Floating Divide
instruction (FDIV) ... oottt iiiiiiieennees 26
subroutine (FD) .. .vvveriirieniveennentvenaeannnns 45
Floating Exponential (Base 10) FEXT subroutine 45, 46
Floating Exponential (Natural) FEX subroutine 45, 46
Floating Logarithm (Base 10) FLOG subroutine 45, 46
Floating Logarithm (Natural) FLN subroutine 45, 46
Floating Multiply
instruction (FMUL)viiiiin et 26
subroutine (FM) ... c.cuiiiiierrnnennerennennenns 58
Floating point arithmetic
conversion of ordinary numbers to,ol 53
FOTIMNAL .+ o oo eettineetansaasoenassanenoeenanasns 52
| T ¢ T R 52
N GHGIE e eeeeee e 53
normalizedt it 52
Sign COMtIOL ...\ vivvveiini e 52
HrUNCAtiON EITOT v vt v vv v en e e vnonnannnneaeenson 53, 65-67
T Ly L 52
Floating Shift Left
instruction (FSL) .vuvunrnronnnennniinaneeees 28
subroutine (FSLS)civiiirireiiiiiiani s 45
bypassing PICK in,covveunvnnnnnennnnicn. 74

Floating Shift Right

instruction (FSR) 28
subroutine (FSRS) 45
bypassing PICK in, 74
Floating Sine (FSIN) subroutine 45, 46
Floating Square Root (F SQR) subroutine 45, 46
Floating Subtract
Instruction (FSUB) 26
subroutine (FS) 45
Functional Register Check Indicator code 44
Functional subroutine macro-instructions 47
Functional subroutines 45
Gamma o 73
Halt for overflow and underflow 54
Halt (H) instruction 36
Head character
addedtolabel 39
treatment of, in storage 80
signaledby 8 40
Header card
format oo 73
sample, in sample problem 75
Heading
for combining programs 39
inmesting 40
line ... 6
Identification card for 7090 102
Immediate-type instructions 13
Imperative operations 25
Arithmetic 26-27
Branch 28-32
card format (output) 84
codes, 1620/1710 6, 26-36
codes, 1710, summary (Table 10) 43
Input/Output 34-35
device codes (Table) 32
typewriter control codes (Table 7) 33
Internal data transmission 27-28
Miscellaneous, 36
Indicator codes (1710 BI and BNI, Table 12) 44
Indirect Addressing 16
for instructions 26, 28, 29, 34
for macro-instructions 48
Input device codes and summary (Table6) 32
Input instructions and summary (Table 8) 32, 34
Instructions card format 88

Instructions, Loading
See Loader program
Internal Data Transmission instructions and

summary (Table 3) 27,28
Items, defined 10

in imperative statement 10
Label

characters permitted in, 8

five characters or less, headed 39

five characters or less, treatment in symbol table 80

six characters preceded by asterisk in listing 9

114

Page
six characters, treatment in symbol table 40
SIZE L 8, 80
table, See Symbol table
varable length 79
Language
machine 6
symbolic 5
Library
change card o 69
packages i 5
subroutines 5,45
Line number 8
Linkage
Brst, o 48
instructions 5,47
secondary ... 48
for bypassing PICK 74
subroutine 70,73
Load Dividend Immediate (LDM) instruction 26
Load Dividend (LD) instruction 26
Loader program 41, 81, 83
Loading
condenser program 97
subroutines
card L. 93
tape ... 93
tapemodifier 0L 76, 96
1620/1710 Two-Pass Processor
card L. 93
tape ... 92
Location assignment counter 17, 24, 37, 41
Logic instructions 29
Macro-instructions (See also Subroutines) 5, 47
Arithmetic o 47
Branch and Transmit Floating (BTFS) 64
card format (output) 87
Data transmission 47
Floating Add (FA) 57-58
Floating Arctangent (FATN) 66
Floating Cosine (FCOS)ccovuiunonn . 65
Floating Divide (FD)couivurinenn... 59
Floating Exponential (Base 10) FEXT 67
Floating Exponential (Natural) FEX 66
Floating Logarithm (Base 10) FLOG 68
Floating Logarithm (Natural) FLN 68
Floating Multiply (FM) 58
Floating Shift Left (FSLS) 62
Floating Shift Right (FSRS) 61
Floating Sine (FSIN)00ooueoiii . 65
Floating Square Root (FSQR) ..., 64
Floating Subtract (FS) 58
Functionalcoo oo, 47
indirect addressing in, 48
operation of, e 70
rules for coding, 48
Transmit Floating (TFLS) 63
Magnetic tape, See Tape
Mantissa
defined 52
entering, léngth 94
MAR Check Indicator codeoouvnn. ... 44
Mask Indicatorcodeco.iuuii . 44

Mask Interrupts (MK) instructionvvenen 43
Messages
during adding of macro to tapeoieenenn 77
during preparation of new tapeooiaiiiiinn 76
L35 1) S R 54,90
Miscellaneous instructionsc.ccoveieraanioe, 36
MIEMONICS « « v e vvveeverneraneruenensss 6, 8, 26, 28-31, 34-36
unique imperative ... 29-31, 34-35
unique (adding subroutines)ooeeenn 69
Modification of variable length subroutine 73
Modifier CONSEANES .« vt v vve e ie i cnin e 72-73
Move Flag (MF) instructioncoveveniinnenes 36
Multiplexer Complete, codeoovueiieniaeenes 44
Multiply Immediate (MM) instruction 26
Multiply (M) instructioncooeeeeeeiiaeenes 26
N digit, defined ..ol 53
Nesting of TOUtINESoovniuarrenereenmeaneens 40
No Operation (NOP) instructionooovennes 36
Normalized, definedcooovvniiiiiiiii . 52
effects OF . oot e 53

Object deck

condensedt 88
uncondensediieee e 88, 97
Object PrOgramooeoceneeeornaeenae e 5,17
Operandeiueei i 12
address adjustment of, ... 15
asterisk, use Of i 11
at (@) sign, use of ... 12
blank N, . .vvoriie e 11
CcOmMmMA, USE Of « .o oo vvvtvemaanieanii e 12
dollar sign, use ofo 12
end-of-line character, use of 11
flag indicatoro.iiiiii 12
Tar 111 T = AP S 43
special characters in,o .. 10
types of addresses used @s, ...l 13
See also P and Q operands .
Operating proceduresocoieeiiaiiieen 92
Operation code
coding sheet field 6
Control . ittt e e 6, 36
Declarative - ..o v vve ettt 6,16
IMPErative .o oveennninrer e 6, 25
Operator Entry Indicator codeoovivinenns 44
Operators (mathematical)cooiviiirinenns 15
OFGIN ««eveeeneneneneeeeeieneeae e 36, 37, 69, 76
Output deck
condensed . ..ottt e 83
FOIMAL & oot oo e ee i e ineesaseneenannaeassnaenns 83
uncondensed s 83
Output device codes summary (Table 6) 32
Output instructions summary (Table 8) 34
Output listing e e, 109
Overflow, exponentoooiiiiiiiiiinnn 53, 55
Pooperandeeeeniiiiiiiiia 10-15
modifier constants 72
See also Operands
Paper tape, See Tape
Pass 1 operationoiiiiiiiiiiii 93

Page
Pass 2 operationo.uiieaiiiieiitaae 93
Parenthesis
close, (special character)cocoiininn 9
open, (special character)c..cciiiiiiiiaiinnnn 9
Patch card
coding sheet 95
FOITNAL © v vt et et ettt e 95
USE « v vevesessnsenneenasensoanennsesnesoneeannans 96
Period (special character)c.oeeiiiniiiniaaaeanis 8
Pick subroutinegccoveeeeeocnonenennacnns 486, 49, 57
address equivalents for, oo 71
bypassing of, 74
FUNCHOMS v ot vt vt iee i eneeonssonannanaseenoarens 72
Process Branch Indicators 1-20, codes 44
Process Interrupts 1-4, codescoiiieii oot 44
Processing SOUICe Programocesoeesecone e 93
Processor
distribution order numbers ian 5
FUNCHOM + et oo eeee e tienaeaneensaneneeanenanns 5,46
modification for additional storage 15, 96
programs
1620/1710 Two-Pass Card 5,79, 82, 84
1620/1710 Two-Pass Paper Tape 5,79, 81, 82
TOO0 TAPE .« vvoveaneanen e 5,102
ProdUuct Qr€a oo vvrveeeeenerneruonnanasenoansens 59
Program definedol 45

Program switches
1620/1710 Two-Pass Processor, card or tape .. .83, 89, 90-94

Tape modifier programoo.ocaeinnn 76-78, 96
Programming the 1620/1710c.oonvinnninnn 17
Programs

sze Sample assembled programs

Qoperandiiiiiii 10-15
in Immediate instructions 0o 13
See also Operands

Read Alphamerically Card (RACD) instruction 85

Read Alphamerically Paper Tape (RAPT) instruction 35

Read Alphamerically (RA) instruction 35

Read Alphamerically Typewriter (RATY) instruction 35

Read Numerically Paper Tape (RNPT) instruction 34

Read Numerically (RN) instructionc.....n 34

Read Numerically Typewriter (RNTY) instruction 34

Record markvvienreninnnenenenaesnnennns 12, 20, 21

Remarks . vvvvetvieteieeaae i eaneaesanasnns 9,10

Return Carriage Typewriter (RCTY) instruction 35

Routine, definedt 45

Rules for statement writingcoo it 10, 25

Sample assembled programs 109

Scientific NOtAtIONvvvrv e i 51

Select ADC and Increment (SLAD) instruction 45

Select ADC Register (SLAR) instruction 43

Select Address and Contact Operate (SACO) instruction . . 43

Select Address and Operate (SAO) instruction 43

Select Address and Provide Output Signal
(SAOS) InStIUCtON o vvvvvvuenreeevnnerenaeenennn 43

Select Address (SA) instructioncocoiiiaiaann 43

Select Contact Block (SLCB) instruction 43

Select Manual Entry Switches (SLME) instruction 43

Index Hs

Select Read Numerically (SLRN) instruction 43
Select Real-Time Clock (SLTC) instruction 43
Select TAS (SLTA) instruction 43
Sequencing
statements e 8
subroutines i 50
Set Flag (SF) instructioncoouo..... 36
Shilling (/) mark (special character) 8
Sign control in floating point arithmetic 52
Source language format 6
Source program
assembling o 79, 94
card L. 8
defined 5
patching (altering) of, 96
preediting,, 94
PrOCESSING, . ..\ttt it ettt it 93
statements, sequencing of 8
Space Typewriter (SPTY) instruction 35
Special characters
for statement writing 10-12
invalid in operands 109
permitted in labels 8
Special End (SEND) statement 36, 38
Statement Writing 10
summary of rules L 25
Statements
elementsin, 10
T 10
sequencing of, L. 8
special characters used in, 10
typesof,, 10
Storage
additional, 96
address specified by DS statement 18
conserved by address adjustment 16
for labels, minimum and maximum size 80
for macro-instructions 56
modification of Two-Pass Processor for additional, 96
subroutines i 56
See also Working Area
Storage layout of 1620/1710 Two-Pass Processor 79
Subroutine
card decks
order ... 49
bypes .. e 46
defined 45
EITOr MESSAZES . oottt et et it iete e enee e ennns 54
paper tape
order ... 49
byPes 46
PrOCESSOT ..\ ettt ittt it it et i 50
Sets ... 46
storage requirements (Table 16) 56
tape, See Tape
Subroutineso 56
Adding, 46, 69
Adding, tocard o 69
Adding, to tape i e 76
Addresses required for adding, 71
Arithmetic, 45
codes for sequencing, 50
Data transmission,c...00iiinii.. 55
determining available storage for, 56

116

Page
Equal/zero indicator 57, 60
Functional 45
Header cardc.coiuiiiiiiniiniannnn, 73
High/positive indicator 57, 60
incorporating, in subroutine deck 74
Library, ... 45
overflow indicator 57
pairing, ... 49
sequence numbering of,, 50
trailer card 73
writing, 70
See also Macro-instructions
See also Sample assembled programs
Subtract Immediate (SM) instruction 26
Subtract (S) instruction 0oui . 26
Switch codes for 1710 BI and BNI instructions
summary (Table 12) 44
Switches, See Program switches
Symbol Table, 1620/1710 Two-Pass Processor
determining capacity of, 80
format of typeout,, 94
variable length label entry e 79
Symbolic
address ... 14
language il 5
operand (Q) in Immediate instructions 13
programming, defined 6
Symbolic Programming System, advantages 4,5
Tabulate Typewriter (TBTY) instruction 35
Tape- Processor, 1620/1710 Two-Pass 5
adding macro-instructions t0, 77
Input ... 81,92
loading paper tape, 91
modifying, for additional storage 15, 96
operating procedures, 93
order of items on output, 81
Pass 1 ... 79
Pass 2 ... 79
preparing new subroutine, 76
program switches00, 83, 92
storage 79
Tape (magnetic), 7090 Processor
Imput ... 102
Pass 1 operations 103
Pass 2 operations, 103
speed .. 103
symbol table 103
Terminal Address Selector (TAS) Busy Indicator code 44
Terminal Address Selector (TAS) Check Indicator code 44
Terms (inoperands)c.ccooueennninnnn. ... 15
Trailer card 73
format ... 74
in sample problem, 75
Transfer Control and Load (TCD) instruction 36, 41
card format i 85
Transfer to Return Address (TRA) instruction 36, 41
card format 85
Transmit Digit Immediate (TDM) instruction 28
omitted flag indicator operand in, 12
Transmit Digit (TD) instruction 28
Transmit Field Immediate (TFM) instruction. 28
Transmit Field (TF) instruction 28

Transmit Floating

instruction (TFL) ..ovviviiiiininar e 28
subroutine (TFLS)cvviiiiiinenniinenn, 45, 63
Transfer Numerical Fill (TNF) instruction 28
Transfer Numerical Strip (TNS) instruction 28
Transmit Record (TR) instruction0v.. 28
Truncation EITOT ...t v vivneenennernrarnaeneassannn 53
in FATN INACTO .+ v vt vver v ietenrannarnoaesasasnns 66
N FEX MACIO + oo oot vttt iteiemetiinananeaeesenns 66
INFEXT MACKO « vttt iieeeeraeeeennsnaaaeaenenns 67
i FSIN IMACIO v et e teneeeeeetennaennnanansaneans 65
Two-Pass Processor, 1620/1710oviinenne. 79
storage Jayoutooiiiiiieiii i 79
Typewriter
control codes summary (Table 7): e 33
EMPUE . oot 81, 93
operating procedureooicaiiiiin 92
Uncondensed output (card)
FOTMAL « o et ettt et e s 83-88
listing on 407tintii s 90
Pass 2 AP 83-88
Underflow, exponentccoooveimniiieennens 53, 55
Unmask Interrupts (UMK) instruction 43
Unnormalized
defined ..o it 52

Page

effects OF oo oot s 52
Variable length, defined oo 45
Variable length label entryt 79
Variable length mantissa subroutines 45
Wiring diagram for 407, uncondensed deck 89
Working areas shared by PICK and other subroutines 72
Write Alphamerically Card (WACD)) instruction 35
Write Alphamerically Paper Tape (WAPT) instruction .".. 35
Write Alphamerically Typewriter (WATY) instruction 35
Write Alphamerically (WA) instruction 35
Write Numerically Card (WNCD) instruction 34
Write Numerically Paper Tape (WNPT) instruction 34
Write Numerically Typewriter (WNTY) instruction 34
Write Numerically (WN) instruction 34
X, headed byooiiiniiiiiiiii 40
1620/1710 Two-Pass Processoroooeoionn. 79
programming the,o 17
SUDTOUINES, .. oo vveee it iiinnare e 45
TOO0 PrOCESSOT v iveeeeeaseanennasanesnrsanns 102
Index 117

C26-5600-1

IBIVI

®
International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, New York

VSN Ul pajulid OLZL/0Z91 WEI

1-0095-92D

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118

