IBM Systems Reference Library

1620 FORTRAN (with FORMAT)

FORTRAN is an automatic coding system that allows the
engineer and scientist to utilize a computer for problem solv-
ing, with only a little knowledge of the computer and a short
period of training. The manual is divided into six sections,
each developed for a specific need of a FORTRAN user.

Partl, Introduction to IBM FORTRAN

Part 2, Writing the 1620 FORTRAN Program

Part 3, Operating Principles

Part4, Analysis of the FORTRAN :Program

Part5, The rortrAN Pre-Compiler Program

Part 6, Summary of 1620 Operating Principles

© 1962 by International Business Machines Corporation

File Number 1620-25
Form €26-5619-1

This manual is written for the following m Applied Pro-
grams:)

1620-FO-003 FORTRAN with FORMAT for paper tape
1620-FO-004 FORTRAN with FORMAT for cards
1620-FO-005 rORTRAN Pre-Compiler for paper tape
1620-FO-006 rorTRAN Pre-Compiler for cards

This manual contains minor changes to the previous edi-
tion, C26-5619-0, and incorporates changes released in
Technical Newsletters N26-0010 and N26-0020. While
the format has been changed to conform to that of the
Systems Reference Library, the original publication and
applicable newsletters are not obsoleted.

Copies of this and other IBM publications can be obtained through IBM Branch
Offices. Address comments concerning the contents of this publication to
IBM, Product Publications Department, San Jose, California

Contents

Part 1 — Introduction to IBM FORTRANc.iiiiiiiiiiiiinennnn, 5
Part 2 — Writing the 1620 FORTRAN Programccoviiviinnn. 11
The FORTRAN Coding FOITNuuvviunnereineueiiineeinaneessennnns 11
Constants and Variables i i ittt 14
Arithmetic Statements iiiiiiiiiiriiieiiniiiiiaaa 18
Control Statementsuuieeintiinneniiienreeissrneonnsiinnnnans 22
Input/Output Statementsottt 32
Specification Statements i il 34
A FORTRAN Problem eiiineean 44
Part 3 — Operating Principles 51
Producing the Object Program, 51
Execution of the Object Programcoiiiiiiiiii .. 55
Part 4 — Analysis of the FORTRAN Programt 57
Part 5 — The FORTRAN Pre-Compiler Program 71
Operation of the Pre-Compiler Programooviiiiiinn.., 71
Processing with the Pre-Compiler Programcooiiiiinn... 76
Appendix A—Summary' of the 1620 FORTRAN Statements 79
Appendix B — Summary of 1620 Operating Principles 82

Preface

Each of the six sections of this manual is developed for a specific neced of a
FORTRAN user, This preface was designed to enable you to quickly locate and ex-
tract the segments of 1620 FORTRAN that are most important to you.

Part 1. INTRODUCTION TO IBM FORTRAN is intended for readers who have
neither a previous knowledge of other FORTRAN systems nor a background in data
processing. This part tells what ForRTRAN is, and what the 1620 Data Processing
System is.

Part 2. WRITING THE 1620 FORTRAN PROGRAM is developed primarily for the
“nonprofessional programmer,” a person not engaged in programming as a full
time occupation. This part of the manual tells how to write a FORTRAN program.
If your responsibilities are concerned with only writing FORTRAN programs, and
not processing them on the computer, you need not read the other parts of the
manual. Appendix A contains a summary of 1620 FORTRAN statements.

Part 3. OPERATING PRINCIPLES provides the information necessary to imple-
ment the FORTRAN system on the 1620 computer. If you are a machine operator,
or a programmer processing a program, this part of the manual will show you
how to place the program into the machine, provide the proper setting of the
switches, explain the use of the keys on the 1620, explain the type of program-
ming errors that the FORTRAN program will detect, and show you how to enter
input data.

Part 4. ANALYSIS OF THE FORTRAN PROGRAM is intended for the experienced
programmer. This part of the manual describes certain features of the program,
shows where data is located during processing, shows how the program may be
amended, and provides the general format for card and paper tape input data.

Part 5. The FORTRAN PRE-COMPILER program is described in this part. The
Pre-Compiler is a special program provided by 1M to enable the FORTRAN pro-
grammer to “pre-test’ FORTRAN programs, This program detects and permits cor-
rections of the more common programming errors. Read Parts 1 and 2 before
reading this part of the manual,

Part 6. Appendix B is a summary of the operating principles described in
the M Reference Manual, 1620 Data Processing System (Form A26-4500).
This part of the manual is intended for the reader that processes FORTRAN pro-
grams and has no prior 1620 operating experience. This part is included in the
manual in order to provide the FORTRAN user with one manual that contains all
information necessary for the utilization of 1620 FORTRAN.

Part 1—Introduction to IBM FORTRAN

Digital Computers

FORTRAN (Formula TRanslation) is an automatic coding system that allows the
engineer and scientist to utilize a computer for problem solving with only a
slight knowledge of the computer and a short period of training.

FORTRAN is written in a language that is a compromise between the language
of the computer and the language of the engineer and scientist. To satisfy the
computer, symbols are used that the computer can understand and this requires
that the rules for their use be closely followed. To satisfy the engineer and
scientist, as many of the detailed computer control operations as possible are
eliminated from the job of writing programs, and a problem statement format
close to that of the mathematical equation is used.

FORTRAN programs are written on paper coding forms, punched into mwm
cards or 1M paper tape, and then processed on an 1M Data Processing System.
This manual is written for the 1M 1620 Data Processing System, a low-cost, solid
state digital computer.

A digital computer is composed of the following elements:

1. Input Unit. Digital computers accept numbers, letters, and symbols. In-
formation can be fed into the system by using punched cards, punched
paper tape, or by inserting information manually through a typewriter
keyboard.

2. Central Processing Unit. The sequence of steps to be performed must be
translated into detailed instructions which the computer can understand.
A series of instructions is called a program. When it is retained in a stor-
age device, it is called a stored program. These coded instructions in
storage are available as needed to direct and complete an entire sequence
of operations, Special instructions may permit logical-arithmetic decisions
to be made based on intermediate results; these decisions allow the com-
puter to select the proper course among several alternatives for solving
a problem. A logical-arithmetic unit can add, subtract, multiply, divide,
and compare numbers in a manner similar to a desk calculator, but at
lightning speed. Complex calculations are usually combinations of these
basic operations. The logical-arithmetic unit can make logical decisions,
It can distinguish positive, negative, and zero values and transfer this in-
formation to other units of the computer.

3. Storage Unit. Data can be internally stored until needed. This informa-
tion is stored in a manner quite similar to the way music or speech is
stored on a tape for playback on a tape recorder, although the notation
used is quite different. Stored information can be referred to once or
many times, and can be replaced whenever desired. The information
stored by the computer can be original data, intermediate results, refer-
ence tables, or instructions. Each storage location is identified by an indi-
vidual location number which is called an address. By means of these
numerical addresses, a computer can locate data and instructions as
needed during the course of a problem.

4. Output Unit. While doing its work, the computer can produce answers
in several forms. Results may be punched into cards, paper tape, or
printed in report form.

Introduction to IBM FORTRAN 5

The Stored Program

The organization of these elements to form a computer may be illustrated
as follows:

| CENTRAL PROCESSING
UNIT !

STORAGE

The elements of a computer function in a manner which may be compared
to the steps required for solving a problem by paper and pencil methods. Input
corresponds to the information given in the problem. The rules of arithmetic
control the handling of the problem. The logical-arithmetic functions are the
same as the functions of manual calculations. Storage may be compared to the
work papers on which intermediate answers are noted. The answers are the
output.

“Program” is just another way of saying “series of instructions and fixed data.”
A program must define in complete detail, for every conceivable combination of
circumstances, just what the computer is to do with the data which will subse-
quently be fed into it.

An instruction may tell the computer what operation to perform and where
to locate the data on which the operation is to be performed; another will tell
what to do with the result. These computer instructions are stored in the se-
quence necessary to accomplish a given task, and form the stored program.

The various operations covered in these instructions are usually stated in a
numerical or alphabetic code. Thus, the operations in a simple problem might
be designated as follows:

Operation Code Operation
21 aEFH

22 subtract
26 store the result

These operation codes might be used in a stored program in the following man-
ner:

Operation Storage

__Code Location
Instruction #36 21 00879 00679
Instruction #37 21 00879 00659
Instruction #38 22 00879 00639
Instruction #39 26 01479 00879

Instruction #36 — tells the computer to add the number stored at location
00679 to the number stored in 00879.

Instruction #37 —add the number stored at location 00659 to the result in
00879.

The FORTRAN System

The Processor

The Source Program

The Object Program

Instruction #38 —subtract the number stored at location 00639 from the
result in 00879.

Instruction #39—store the result of the two additions and the one sub-
traction at location 01479.

The same program, coded in FORTRAN, might be:
D=A+X-Y

The complete solution of a problem, depending upon the type of problem
to be solved, may require hundreds or even thousands of instructions. The com-
puter can refer to them one after another, or it can be instructed to repeat,
modify, or skip over certain instructions, depending on intermediate results or
circumstances. However, such circumstances must be anticipated and appropriate
instructions included in the program.

The ability to repeat operations combined with the ability to modify and
skip over instructions permits a significant reduction in the number of instruc-
tions required to perform any given job.

The decision-making ability of the computer enables it to handle exceptions
to standard procedures. Since a system will “remember” instructions for dealing
with the exceptions, it can be made to handle automatically any situation that
develops.

Up to this point, the computer has been treated as though it were a sepa-
rate piece of equipment to be used by itself. However, in actual practice, the
computer is used in conjunction with other equipment and with programming
systems that are designed to aid the programmer in the preparation and opera-
tion of his programs. These total facilities for receiving information and produc-
ing desired results are called a data processing system. One part of such a system
may be FORTRAN which is a programming system that enables a programmer to
write a program with less effort than would otherwise be required. For the
purpose of explanation, ForTRAN will be described in two parts: the FORTRAN
System and the ForTRAN Language.

The ForTrRAN System consists of the following parts.

The processor is a program developed by M. Its purpose is to tell the computer
how to translate the rFortrRAN language, written by the programmer, into the
machine language used by the computer.

The source program defines the ultimate operations the computer is to perform
and is written by the programmer in the FORTRAN language.

The source program, then, is input to the computer along with the FORTRAN
processor. The computer follows instructions from the processor to convert the
source program into a machine language which can then be run on the com-
puter. This machine language program is called the object program. When the
object program and the data to be processed is run on the computer to cause the
desired computations, it is said to be executed. That is, execution is the actual
operation of the computer while it is under the direction of the object program.

It is important in learning FORTRAN to remember the difference between the
processor and the source program. The operation of converting the source pro-
gram to an object program is referred to throughout this manual as compilation,

Introduction to IBM FORTRAN 7

and events that occur at this time are referred to as occurring at compile time.
The term object time refers to events that occur while the object program is
being executed.

The diagram which follows illustrates this sequence of events.

PS°”'°*’ > COMPUTER |- Cards
rogram
Compile FORTRAN
Time Processor
Y
LObiect
i E_r_c_)_glr_d_rr_u___ «veveesin Machine Language
1
]
]
Input »| COMPUTER m Results
Data
Object
Time
The FORTRAN Language The FortRAN language is composed of the individual commands or statements
of a program consisting of operation symbols (4 or —), and expressions
(A+B-C).

Statements are the sentences of the ForRTRAN language. They may:

1. Define the arithmetic steps which are to be accomplished by the com-
puter.

2. Provide information for control of the computer during the execution of
the program.

3. Describe input and output operations which are necessary to bring in
data and punch or write the results.

4. Specify certain additional facts such as the size of the input data that is
read by the program.

The 1620 Data Processing The 1M 1620 Data Processing System is an electronic computer system designed

System for scientific and technological applications. The use of solid-state circuit com-
ponents and the availability of from 20,000 to 60,000 positions of core storage
provide the 1620 system with the capacity, reliability, and speed to solve prob-
lems that in the past have required the use of larger data processing systems.

The IBM Card

Four units are available with the rem 1620 Data Processing System. The 1M
1620 Central Processing Unit contains the computer, 20,000 positions of core
storage, a console panel, and an input/output typewriter. Paper tape operations
are permitted by the mm 1621 Paper Tape Reader unit, which also includes the
paper tape controls and the mm 1624 Tape Punch. The M 1622 Card Read
Punch is available for card operations. The 18m 1623 Storage Unit expands the
20,000 core storage positions in the Central Processing Unit to 40,000 or 60,000
positions.

The console of the 1620 contains control keys, switches, an indicator panel,
and a typewriter. The control keys and switches are used for manual or auto-
matic operation of the system. The console panel provides visual indication of
the status of various registers and indicators. The typewriter provides direct
entry of data and instructions into core storage; it also provides a permanent log
of the operator’s intervention during the execution of a program.

Information is entered into the system by input devices; namely, the M
1621 Paper Tape Reader, the M 1622 Card Read Punch, and the typewriter.
The 1622 reads 80-column cards at a maximum rate of 250 cards per minute.
The 1621 reads an 8-track paper tape at the rate of 150 characters per second.
The operator’s typing speed determines the rate at which information enters
through the typewriter.

The M 1622 Card Read Punch, the 1624 Tape Punch, and the typewriter
are output devices which record the processed data. The typewriter prints at a
maximum rate of 10 characters per second; the card punch and tape punch
operate at the rate of 125 cards per minute, 15 characters per second, respectively.

The M card is divided into 80 vertical areas called “columns” or “card columns.”
They are numbered from 1 on the left to 80 on the right side of the card. Each
column is then divided horizontally into twelve punching positions. The punch-
ing positions are designated from the top to the bottom of the card by 12, 11
(or X), 0, 1,2 3, 4,56, 7,8, and 9. The punching positions for digits 0 to 9
correspond to the numbers printed on the card. Each column of the card is able
to accommodate a digit, a letter, or a special character. Thus the card may con-
tain up to 80 individual pieces of information. Digits are recorded by holes
punched in the digit punching area of the card from 0 to 9.

ABCDEFE6H I JKLMNOPQRSTUVWXYZ 1234567890
I EEEEENEN]

 EEEEEEE N
nouoounoonnuunoooonnnoucnonooonnnonaolololololnlvlolunouuuuuouoounuanoualoounnun
1234587808 wlllzuuvsmnnum!nnuz‘mﬂnn:uuazanusunnnuumuuuuuuuwuuswusulsuuulnuuaunuumnnmn!vinllun
N IRRR R R R RN RN R) AR R R AR RN RN RN RR R RN RANRARE IR R R AR RRR R RN
222B2222222222222222202222222222222228222222222222222222022222222222222222222272
33333!3333333333a333333lassa:33:3333333|333333aaaassss:asslsz3333333333333133333
4&4444‘l44444444444444;44l44444:444444444l4444444444444a4444l44n4¢4444444440‘444
555555s55l55ssssss555555555!5sssss5555ssss5l55555ssssssssssssslsssssssssssssssss
sassssssaeslssssasnssssassssnlsssasssssssssaslssssssasssassssaaslsaessssssssssss
7171177717117I71117771711771117l777111717117111l777171711771117171I1177171r17777
aaaesuﬂaaauaaaalasaanssanaaaasnsalsassnaaaasusesalnnasaasussaaanaanaluuaesaansaa
999999999sssesssslssssa9uea9999999sls99599959999999Isssssassssssssassslsssssssss

[IEEREN RN smuulm:suuuuzonuz,mmczmzs:oalsn::ussunumou4:4:uwuuuummuaaunuuunnuuuuovun MAPEBUBBRIN W

o 5081

As illustrated in the drawing, a combination of a zone punch and a digit
punch is used to accommodate any of the 26 letters in one column.

Introduction to IBM FORTRAN 9

Paper Tape

10

A card is divided into segments called “fields.” A field is a column or
columns reserved for the punching of data of a specific nature. The field may
consist of from one to 80 columns depending upon the length of the particular
type of information.

Punched paper tape serves much the same purpose as punched cards. Developed
for transmitting telegraph messages over wires between two computers, paper
tape is now used for communication with other computers as well as for basic
input to computers.

Eight-track paper tape has eight parallel tracks along which data can be
recorded. One column of eight punching positions across the width of the tape
is used to code numerical, alphabetic, and special characters.

The four lower tracks of the tape (excluding the feed holes) are called 1,
9, 4, and 8 and are used to record numerical characters. The numerical char-
acters 0 through 9 are represented by a punch or punches in these four positions.
The sum of the position values indicates the numerical value of the character:
a hole in channel 1 represents a one; a combination of 1 and a 2 punch repre-
sents a three; and so on,

The X and O tracks are used in combination with the numerical channels
to record alphabetic and special characters.

oW

w

R8

TRACKS ,—+~—ABCDEFGH! JKL MNOPQRSTUVWXYZ1234567890
= 1
X— @60 066
c— @0 L @000 ®
CHECK— @O ® @00 o .l
. L 1] ® L
FEED— oo tio|oleieloiv|ooiojoja|o|0|e|oje olelejolo|niois|o|a|oioioiole
) oe @000 !® 96
2—— @O0 ®®) ol ® @)
11— @@ ®| 6|0 :[© ® .

A parity check is made to ensure that each letter or' number is punched
correctly. This consists of automatically punching each column of the tape with
an odd number of holes. The check channel is reserved for punching when the
number, letter, or special character has an even number of holes. As the tape is
read or punched, each column is checked to make certain that it is punched with
an odd number of holes. For example, the basic 6-hole tape code for the letter
A is coded for an odd number of holes, X-O-1, so the check hole is not punched.
However, the letter C is coded X-O-1-2, which is an even number of holes, and
the check code is punched to make an odd number.

Part 2— Writing the 1620 FORTRAN Program

This part of the manual explains how each FORTRAN statement is prepared and
how they can be combined to solve problems in engineering and science. The
terms Processor, Source Program, Object Program, and Compile Time are used
throughout this part of the manual. If you are not certain of the meaning of each
of these terms, you should review INTRODUCTION TO FORTRAN in Part 1.

In the previous section of the manual we learned that a FORTRAN program

solves a problem by carrying out the instructions given by a series of statements.
These statements can be arranged into four groups:

Input/output statements that read data into the program or print and punch
the results of the program.

Control statements that may determine the sequence in which the state-
ments will be followed or provide the program with the ability to deal with
predefined exceptions to the procedure.

Specification statements that tell the FORTRAN program the amount and kind
of input and output data it will process.

Arithmetic statements that specify the mathematical calculations to be
performed.

The FORTRAN Coding Form This coding form is used throughout the manual to illustrate examples of FORTRAN
statements and it will be used when you write a FORTRAN program. For these
two reasons, we will examine the coding form first.

IBM N Form X18-7327-3
g FORTRAN CODING FORM Priniad In U 3.4
Program __
Coded By Date ___ . ———
Checked By \dentification Page ___ _._of
| PR ER—
(-~ C_FOR COMMENT ”
vommerle FORTRAN STATEMENT
! stel7 10 i3 20 23 30 38 40 43 ~50 35 “, ‘.03 70 72
1 L 1 1 1 1 L A 1 L L. 1 1
L L 1 1 1 1 1 Il L 1 i L P ——
1 Nl L i 1 1 i L 1 1) 1 1
1 ! 1 1 1 1 i A L L 1 i 1
1 1 1 I i 1 1 1 1 1 1 i ‘ 1
L L 1 1 L 1. 1 1 1 1 1 L 1
1 1 1 1 1 1 1 L 1 1 1 i 1
1 1 1 1 1L i 1 1 i 1 L 1 1
1 1 3 s i L i L 1 1 1 I' ye
L 1 1. I 1 i 1 . 1 i L 1 1
bk Ak 1 1 1 L 1 1 i 1 i 1 1 1 1
L 1 i i i 1 L 1 1 1 1 1 4
1 1 i 1 1 1 1 1 3 1 1 i 1
1 1 H L 1 1 L 1 1 i L i 1
1 1 1. L L L 1 1 1 L 1 L 1
L 1 :{ i3 1 1 1 i 1 1 L - L L
1 1 I '| L Losia 1 1 3 - i. L L
1 L 1 L 1 L L 1 1 1 4 i 1
. 1 1 L L | L ! 1 1 .} L i
— . L 1 1 i 1 L L. i 1 L 1 P . 1
1 1 1 1 1 1 i A | 1 I L I

Writing the 1620 FORTRAN Program 11

The FORTRAN Card

Floating Point Arithmetic

12

The coding form is used to record each statement of the program. The form
contains 72 vertical columns. Columns 1 through 5 are used to write statement
numbers. Statement numbers may be required by the program or may be used
merely as a means of identifying statements. (The specific requirements of state-
ment numbers are discussed later.)

Column 6 of the form is not used and must be blank. Columns 7 through
72 are used to write the statements, Each number, letter, and special character
used in the program is written in a separate column of the form. Each statement
must start and finish on one line. Statements cannot be continued from one line
to another.

Each line of the coding form is punched into a separate card. The standard
FORTRAN card is shown below.

C ~tolitur|E

STATEMENT §
wuuecn |3

lzaas

1:11‘11

FORTRAN STATEMENT IDENTIFICATION

0000000000000000000000000000000000060606000000000000000000000000000f00000000

I RN IS UR RN TR AB RN ARNNLBHBERNBRVURNHUBANGHRIRNUS R NI COUBRIRID I N USRI AR

RERRRRRRRRRRRRERER RS RN AR R AR R AR AR AR R AR RN R R R AR R R R R AR R AR R R R R R R R AR RRRRE
1!2222212222222222222212222212222222222212221212212222221222222222222222222222112
3‘33333333!33333333333331333333'.l33333333333333333333333333333333133!333133!333333
lll44(441“‘l444444444H4444444444644444444444444“444444“44446444444444!(44“44
5l55565/55555555555555555555565555556555556555655565555555555555555555555655585/5555585355
5:6856065668555EG85666666863666BB55BG56668556EBHGSBGES568GSHEGSSGGSG!OGGBGBGH85
AR R R R R R R R AR R R A R AR R R AR A R R R R R A R AR R R R R R R R R R R R R R R R R R AR RN R NI A RRERR]
l:lI!B!Hl!ll50!0Hl!aHHOHlﬁﬁll!!l”!I!a!lll!il!!l“lllll”H!BOI!!!IIII!IBI“

915999]8(999909999995999950960095989999999999999999999999999959989999956989891899088888
23 48l 0 BRI UB R TR RN ANTANN N RDUDT RN AN ZAEBRTNARINEHBRTH AR CRHBRTBRINI I USRI RS
oussBIST

Column 1 of the card is used to record the information contained in column
1 of the coding form. Column 2 in the card contains the information in column 2
of the form, etc. The information in all 72 columns of the coding form are
punched into the card. Columns 73 through 80 are used for identification. The
identification field is usually divided into two parts. The first part may contain
a specific job number assigned to the problem by the programmer; the second
part is used to assign a sequence number to each card in the program. The
identification number “180024” in a card could mean it is the 24th card in the
deck for job no. 18. This field, used at the option of the programmer, is of great
value if cards from one program are mixed with other cards or are accidentally
upset and their sequence lost.

Scientific and engineering computations frequently involve lengthy and complex
calculations in which it is necessary to manipulate numbers that may vary widely
in magnitude. To obtain a meaningful answer, problems of this type usually
require that as many significant digits as possible be retained during calculation,
and that the decimal point always be properly located. When applying such
problems to a computer, several factors must be taken into consideration, the
most important of which is the decimal point location.

Generally speaking, a computer does not recognize the decimal point present
in any quantity used during the calculation. Thus a product of 414154 will result

Fixed Point

regardless of whether the factors are 9.37 x 44.2, 93.7 x .442, or 937 x 442, etc.
It would normally be the programmer’s responsibility to be cognizant of the deci-
mal point location during and after the calculation and to arrange the program
accordingly.

The processing of numbers expressed in ordinary form (e.g., 427.93456,
0.0009762, 5382, —623.147, 3.1415927, etc.) can be accomplished on a computer
only with extensive analysis to determine the size and range of intermediate and
final results. This analysis and subsequent number scaling frequently requires
a larger percentage of the total time needed to solve the problem than is required
by the actual calculation. Furthermore, number scaling requires complete and
accurate information regarding the bounds on the magnitude of all numbers that
come into the computation (input, intermediate, output). Since it is not always
possible to predict the size of all numbers in a given calculation, analysis and
number scaling is sometimes impractical.

To alleviate this programming problem, a system is used in FORTRAN in which
information regarding the magnitude of all numbers accompanies the quantities
in the calculation. All numbers are represented in a standard, predetermined for-
mat which instructs the computer in an orderly and simple fashion as to the
location of the decimal point. With this method, quantities which range from
minute fractions having many decimal places to large numbers having many in-
teger places may all be handled. This system is called “floating point arithmetic.”

The notation used in floating point arithmetic is an adaptation of the scien-
tific notation. That is, the decimal point of all numbers is placed to the left of the
high-order (leftmost) nonzero digit. (This is often referred to as “normalizing” the
number.,) Hence, all quantities may be thought of as a decimal fraction times a
power of ten.

492793456 as .42793456 x 10°
and 0.0009762 as 97620000 x 10-3

where the fraction is called the mantissa, and the power of ten, indicating the
number of places the decimal point was shifted, is called the exponent.

In floating point calculations, each quantity operated upon is expressed as
a 10-digit number consisting of an 8-digit mantissa, and a 2-digit exponent. The
magnitude of the number thus expressed must be zero or must lie between 107
and 100%°°,

The mantissa consists of the leftmost eight digits of the floating point num-
ber. The decimal point is always assumed to lie immediately to the left of the high-
order mantissa digit. The range of the mantissa is between .10000000 and
.99999999.

The exponent represents the power of ten used to specify the location of the
decimal point in the original number. The sign and magnitude of the exponent is
determined by the number of places the decimal point is shifted in order to place
it to the left of the high-order nonzero digit. The direction of shift determines the
sign of the exponent; positive for left, negative for right.

The following examples demonstrate the conversion of numbers in ordinary
form to a floating point notation.

Number Floating Point Form
123.45678 12345678 x 10°
00765438 76543800 ¢ 10-2
—.12348693 —.12348693 x 10°
—.00000070 —.70000000 x 10-¢

Quantities used in a FORTRAN program may also be expressed in fixed point form.
A fixed point number is an ordinary whole number, without a decimal point, con-
sisting of the digits 0 through 9.

Writing the 1620 FORTRAN Program 13

Constants and Variables

Constants

Fixed Point Constanis

Floating Point Constants

Variables

14

Mathematical problems usually contain some data that does not change throughout
the entire problem, and other data that may change many times during calculation.
These two kinds of data are referred to as “constants” and “variables,” respectively.
Both constants and variables can be used in rorrraN if they are written so that
the processor can distinguish one from the other.

A constant is any number which is used in computations without change from one
execution of the program to the next. It appears in its actual numerical form in the
source statement. In the statement

I=6*K

6 is a constant because it appears in its actual numerical form. (The asterisk indi-
cates the arithmetic operation of multiplication.)
You can write constants in floating point or fixed point form.

Definition: A fixed point constant is written without a decimal point,
using the digits 0, 1, . . . 9. A preceding plus sign or minus
sign is optional. The length of the constant cannot exceed
4 digits.

Example: 0
+3
—2496
48

Definition: Any number written with a decimal point, using the digits
0,1,... 9. A preceding plus or minus sign is optional. An

unsigned constant is assumed to be positive.

The constant may contain an exponent, The exponent, pre-
ceded by the letter E, may have a preceding plus or minus
sign.

All floating point constants are converted to an 8-digit man-
tissa with a 2-digit exponent.

Constants in input data may contain up to 20 digits, but
only the first eight significant digits will be carried in the
mantissa during calculation.

Example: 42,
1.13

.0046

5000.

6.0E3 (6.0 X 10® or 6000)
6.0E +3 (6.0 x 10° or 6000)
4264.44

—.00004

When a quantity in a FORTRAN problem is not constant, that is, when its value varies
for different executions of the program, or varies at different stages within the pro-
gram, it is known as a variable quantity. Variable quantities are given names so

Fixed Point Variable

Floating Point Variable

Considerations in Naming
Variables

they can be identified and referred to by the object program. When reading this
description of variables, it is important to distinguish between the value of a vari-
able and the name of a variable. (When using constants, the name and the value
of the constant are the same.) For example,

VOLT

could be the variable name assigned to a series of values used in a calculation of
current in a circuit. Variables may be in fixed point or floating point.

Definition: A fixed point variable name consists of from 1 to 5 alpha-
meric characters (i.e., letters A to Z, digits 0 to 9). The first
character must be either I, J, K, L, M, or N. The value of
a fixed point variable cannot exceed 4 digits.

Example: 1
JOB 1
MAX
N44

The requirement that a fixed point variable must begin with the letters 1
through N is because these letters have been arbitrarily chosen to indicate to the
processor that the values of the variable so named will be in fixed point. Floating
point numbers can never be the values for a variable defined as fixed point.

Definition: A floating point variable name consists of from 1 to 5 alpha-
meric characters (i.e., letters A to Z, numbers 0 to 9). The
first character in the name must be alphabetic (not nu-
meric) and must not be the letters I through N. (Remem-
ber, I through N indicate to the processor fixed point values.)

Example: A

B7
DELTA
VOLT
RATE1L

The rules for naming variables allow extensive selectivity. It will be easier for you
to follow the flow of a program if you use meaningful symbols wherever possible.
For example, to compute distance you could use the statement

X=Y*Z
but it would be more meaningful to write
D=R*T
or even
DIST = RATE * TIME

Similarly, if you want a computation to be performed using fixed point, you could
write

I=]*K

Writing the 1620 FORTRAN Program 15

Subscripts

16

or
ID=IR*IT
or, better yet
IDIST = IRATE * ITIME

Variables can be written in a meaningful manner by using an initial character
to indicate whether the variable is fixed point or floating point and by using
succeeding characters as an aid to memory.

Another aid to programming FORTRAN is to vary the last character of a variable
name. For example, to compute four different quantities called urs, you could use
the following:

HRS 1
HRS 2
HRS 3
HRS 4

If the values of these variables were in fixed point, you could precede each
of these names by I, J, K, L, M, or N.

The rules for naming and forming variables and constants might be easier to
understand if you know how the processor uses the names that you assign. When
you establish a name for a constant or variable, the processor establishes for the
object program a specific location in storage that will contain the data that you
have named. Whenever this name appears in the object program, you are, in effect,
telling the program to go to the position in core storage where the data, repre-
sented by its name, is stored, in order to perform a calculation with the data,

Thus, each constant and variable that you use is assigned a location in 1620
storage where its value is located. Therefore it is important that you remember:

1. When you are forming a constant, do not use more than 4 digits if it is a
fixed point number, and be certain to use a decimal if it is a floating point
number.

2. When you are naming a variable, use one of the letters I through N as the
first character if the value is a fixed point number, and do not use the letters
I through N if it is a floating point number.

3. Do not assign the same name to more than one variable.

4. Be certain that data is in the same mode (fixed point or floating point)
as its variable name indicates it should be.

Variables in your program can be subscripted so that you can represent many
quantities with one variable name. In an earlier example, four different quantities
called urs were named ®rs 1, Hrs 2, HRs 3, and =rs 4. If a program contained 50
quantities for ars, it would be cumbersome and time consuming to name all of
them in this manner.

A group of 50 such quantities can be referred to as an “array.” Rather than
name all 50 quantities in the array, it is much easier to refer to the entire array by
one name and refer to each individual quantity (element) in the array in terms of
its place in the array.

For example, assume the following is an array named Hgs:

38.6 1st element
40.2 ond element
36.4 3rd element

47.3 50th element

If you want to refer to the second element in the array, the variable name
would be “mrs(2).” The quantity “2” is the subscript to the variable “ngs.” (In
FORTRAN, language subscripts are always enclosed in parentheses.)

the value of HRS (2) is 40.2
the value of HRS (3) is 36.4
the value of HRS (50) is 47.3

If you want to refer to any element of the array, you can write the variable
name Hes (1), where I may equal 1,2, 3,. .., 50. As you can see by this example,
the subscript is also a variable. The fact that a subscript can be a variable is ex-
tremely important in FORTRAN programming. It means that you can set up a pro-
gram to do a basic computation, then make the same computation on many differ-
ent values by merely changing the value of the subscript. This technique is de-
scribed in a later section.

So far we have only considered arrays that are one dimensional, i.e., there is
only one subscript for a variable.

A 1620 FORTRAN program may also use two-dimensional arrays. For example
assume the following is an array named MRATE.

Column 1 Column 2 Column 3
Row 1 14 12 8
Row 2 48 88 4
Row 3 29 25 17
Row 4 1 3 43

If you want to refer to the quantity in row 4, column 2 you would write the
variable name MRATE (4, 2).

the value of MRATE (3, 3) is 17
the value of MRATE (1, 2) is 12

If you want to refer to any element of the array, you can write the variable
name Mra1E (I, J), where I equals (rows) 1, 2, 3, or 4 and | equals (columns)
1,2, 0r 3.

Definition: A subscript can be either a variable or a constant, but must
always be positive and in fixed point form.

If v represents a variable and ¢ represents a constant, then
subscripts can be written in the following forms.

v

c

v+corv—c

Example: Of subscripts:
IRATE

J

4

NO + 3

Writing the 1620 FORTRAN Program 17

Arithmetic Statements

Expressions

Operation Symbols

18

Example: Of variables that are subscripted:
A(])

K(3)

B(L]J)

1(4,2)

BETA (J—2 .K+4)

In the last item in the example above, the object program computes the
value of the two-dimensional subscript by subtracting 2 from the value of | and
adding 4 to the value of K.

The numerical calculations to be performed in the object program are defined
by arithmetic statements. FORTRAN arithmetic statements closely resemble conven-
tional arithmetic formulas. They contain a variable to be computed, followed by
an = sign, followed by an arithmetic expression. For example, the arithmetic
statement

Y = A — SIN(B)

means “replace the value of the variable on the left side of the equal sign with the
value of the expression on the right side of the equal sign.” In a FORTRAN program,
the equal sign means “is to be replaced by” rather than “is equivalent to.”

The meaning of the equal sign is important in FORTRAN. Earlier in the manual
we learned that each variable in the object program is assigned a specific location
in storage that contains the data you have named. As an example, assume a fixed
point variable named NumsR has the value of 6. The statement

NUMBR = NUMBR + 2

would cause the object program to take the value of NuMBR, which is 6, increase it
by 2, and then set the result 8 as the new value of NUMBR.

Format: “‘a=Db"
a is a variable and may be subscripted
b is an arithmetic expression (explained later)

Example: A=B4+C
D(1) = E(I) + 2.—F

An expression in FORTRAN consists of a series of constants, variables, and functions
(explained later) separated by parentheses, commas, and/or operation symbols,
so as to form a mathematical expression, Expressions appear on the right-hand
side of arithmetic statements.

Five basic operations can be used in ForTRAN: addition, subtraction, multiplication,
division, and involution (raising to a power). These operations are represented in
FORTRAN by the following symbols:

+ addition

- subtraction

* multiplication
/ division '
wx involution

Rules for Forming There are five rules that you must follow when you write FORTRAN arithmetic state-
Expressions ments. The purpose of these rules is to help you write your statement correctly
in FORTRAN language.

1. The constants and variables used in a FORTRAN expression may be either
in fixed point or floating point mode, but both modes cannot be used in the
same expression, For example:

426 Constant — fixed point mode
3. Constant — floating point mode
I Variable — fixed point mode
R Variable — floating point mode

HRS (J) Subscripted variable — floating point mode

In the last example, the subscript J, used with the floating point variable
HRs, is in fixed point mode. The mode of the expression is determined only
by the mode of the quantity. Using a fixed point subscript with a floating
point variable does not violate the rule of mixing modes in an expression.

2. Involution of a quantity does not affect the mode of the quantity. However,
a fixed point quantity may never be given an exponent. The following are
valid.

A**B floating point
A**] floating point

3. Whenever two operation symbols follow in succession, they must be sep-
arated by parentheses. The following examples illustrate this rule:

Mathematical FORTRAN Incorrect FORTRAN
Expression Expression Expression
s A/(—B) A/—B
ABorA.B A*B AB
AFE+2. A**(E+2-) A**E + 2.

Common algebraic rules must also be observed. For example the ambig-
uous mathematical expression

C
A
R

can be written as R** (A**C) or as (R**A) **C, whichever it is intended
to be.

The mathematical expression

AB
CD

can be correctly written as A*B/(C*D) or as A/C* B/D. But the ex-
pression A*B/C*D, although it is a valid FORTRAN expression, does not

represent the mathematical expression %% .

Writing the 1620 FORTRAN Program 19

Verification of Correct Use
of Parentheses

Mode of an Arithmetic
Statement

20

4. Parentheses are used to specify the order of operations in an expression.
If parentheses are omitted, the order is taken to be from left to right as

follows:
o involution (raising to a power)
* and / multiplication and division
+ and — addition and subtraction

For example the FORTRAN expression
A 4+ B/C + D **E*F —G
will be taken to mean the mathematical expression

A+ L+ (D*F) =G

The rorTrAN expression could have been written with parentheses as
follows:

A + (B/C) + (D**E*F) — G

5. A sequence of consecutive multiplications and divisions (or consecutive
additions and subtractions) without parentheses will be grouped from the
left. For example:

A*B*C*D*E
will be taken to mean
((((A*B)*C)*D)*E)

Until you become proficient in writing FORTRAN programs, always use paren-
theses to specify the order of operations.

To check a complicated FORTRAN expression to determine that the parentheses are
correctly inserted in pairs, use the following method.

Working from the left to right, label the first open parenthesis “1,” and increase
the label by 1 for each open parenthesis and decrease it by 1 for each closed paren-
thesis. The label of the last parenthesis should be 0. The mate of an open paren-
thesis labelled n will be the next parenthesis labeled n-1.

— o~y
N ™ m e

The difference between a FORTRAN expression and a FORTRAN arithmetic statement
should be emphasized at this time. By definition, an arithmetic statement is com-
posed of a single variable on the left and an arithmetic expression on the right. This
distinction is important because, although an expression must not be in mixed
mode (containing both fixed point and floating point quantities), an arithmetic
statement may be in mixed mode. For example, when you write

A = (I*])/X

(I*])/K is an expression and A = (I*]J)/K is an arithmetic statement,

FORTRAN Arithmetic

Functions

If an arithmetic statement is in mixed mode, the mode of the variable on the
left side of the equal sign determines the mode of the result.

If the variable on the left is in fixed point and the expression on the right is
in floating point, the expression will first be evaluated in floating point, the portion
following the decimal point will be dropped, and the remainder will be converted
to fixed point by retaining only the four digits immediately to the left of the decimal.
If a result is

123456.78

the fixed point quantity stored is 3456,

If the variable on the left is in floating point and the expression on the right
is in fixed point, the expression will be evaluated in fixed point and the result con-
verted to floating point. For example,

Arithmetic Statement Result
A=5/3 . A=
A =5./3. A = 1.6666666
I =5/3 I =1
I =3./2 I =1
I = 123456.78/4. I = 864 (was computed as 30864.195)

If your problems are programmed in floating point rather than in fixed point, you
will find it is easier to process fractions because you will not have the problem of
locating decimal points. If a particular problem that you are programming requires
the use of fixed point quantities, you must understand exactly how fixed point
arithmetic is accomplished.

In fixed point calculations, if the result is not an integer (whole number) the
result is truncated to a whole number. That is, the fractional portion of the result
is discarded, and no rounding takes place.

The fixed point division 5/3 is 1, not 2. Therefore, if you write an expression
with a series of operations that includes a division, you must be careful when
grouping. For example,

A=5/3*%4.

In floating point, 5 divided by 3 equals 1.6666666, and this value multiplied
by 4 equals 6.6666664.
If this arithmetic statement is written in fixed point,

I1=5/3*4

then 5 divided by 3 equals 1.6, which is truncated to 1. The 1 is multiplied by 4
and the answer is 4.
If you had reversed the grouping in the statement,

I=4%5/3

the result would be 6. Remember, in a statement with a series of multiplications
and divisions where the parentheses have been omitted the operations are per-
formed from left to right.

Assume that you are writing a FORTRAN program that requires taking the square
root of a number at different locations in the program. The statements to perform
the square root would be identical, except for the different arguments used each
time,

Writing the 1620 FORTRAN Program 21

Conirol Statements

22

Instead of writing the same statements many times, the FORTRAN program
allows you to take the square root of a number by merely inserting the expression
“sQrT (x)” into an arithmetic statement wherever it is required. The mathematical
operations which are required to take the square root of a number are “prewritten”
into the FORTRAN program as a subroutine. (A subroutine is a program which per-
forms certain operations and may be included in another program to cause those
operations to be carried out each time the subroutine is used.)

The following functions can be used in FORTRAN:

Mathematical Function FORTRAN Name
Square Root SQRT
Exponential EXP

Sine of an angle in radians SIN
Cosine of an angle in radians cos
Arctangent, angle given in radians ATAN
Natural logarithm LOG

For each of the functions shown above, there exists a subroutine within the
FORTRAN system which computes the function of the argument enclosed in the
parentheses. These subroutines will be compiled into the object program auto-
matically when called for by a statement containing the name of one of these
functions. (These subroutines are sometimes called “relocatable subroutines”).

To take the square root of a quantity with the variable name pELTA, you
could write the statement

D = SQRT (DELTA)

. The argument enclosed in the parentheses must follow the name of the function.

The argument can be a variable or an expression and the variable can be sub-
scripted, The argument must always be in floating point mode. For example:

A = COS (BT)
A = SQRT (BETA)
A =LOG (A)

Y = A — SIN (B * SQRT (A))

FORTRAN statements are executed in the object program in the same sequence as
they are written on the coding sheet, unless you specify a different sequence.

Control statements provide flexibility in program development. If statements
could only be followed sequentially in a fixed pattern, a program would follow a
single path of operation without any possibility of dealing with predefined ex-
ceptions to the procedure, and without any ability to choose alternatives based
upon conditions encountered during the processing of the program.

As an example of the program control that can be exercised, assume that you
have written a FORTRAN program consisting of fifteen statements. These statements
perform a number of operations upon a series of variable quantities. Now, if the
first ten statements develop meaningless results when processed with variable
quantities of zero, the processing time of the object program would be reduced
if the first ten statements could be bypassed when the quantity to be processed is
zero. A single FORTRAN control statement permits you to evaluate a quantity, and
depending upon the value, permits you to direct the program to some other
statement rather than have the program continue in the sequence of the state-
ments.

Statement Numbers

Unconditional GO TO

In a previous section of this part of the manual, it was stated that you can
set up a program to perform a basic computation, then make the same computa-
tion on many different values simply by changing the value of the subscripts.
This kind of operation is called “looping.” You would use a control statement to
establish the number of statements that are to be included in the basic computa-
tion to determine how many times the loop is to be performed.

Control statements that direct the program to another statement in the pro-
gram are referred to in this manual as program transfer statements.

Whenever you direct the program to a specific statement (other than the next
sequential statement), the statement must be numbered so that it can be identi-
fied by the processor. On the FORTRAN coding form, the first five columns are
reserved for statement numbers. A statement number can be any number from
0001 to 9999 (leading zeros are not required).

Statements must be numbered only when they are referenced by another
statement and no two statements can have the same number. Also, there is no
requirement that every statement must have a number, nor that statements must
be numbered in sequence. It is possible to number every statement as an aid in
programming, but each number you assign requires positions of storage. If the
problem being programmed is very long and requires a large amount of storage,
you may not be able to afford the luxury of numbering every statement.

This statement interrupts the sequential execution of statements, and specifies
the number of the next statement to be performed.

Format: “GO TO n”

where n is a statement number.
Example: .GO TO 30

GO TO 1000

A coding example is shown below:

C FOR COMMENT
ISTA'EMENI

i FORTRAN STATEMENT
] slel7 10 15 20 25 30 35 2 45 50 55
b L 1 t 1 1 2 ! | 1 1
d 1 L 1 1 1 L 1. 1 L L
A=4 | L 1 1 1 1 L 1 L L
B=7 . 1 I | ! L I i t n
— 60 Tlo 46 KR t 1 i 1 1 o 1 L
18] B=3.-#A L L 1 et 1 L i ady 1
6 A=3 lL“’B 1 1 1 1 i 2 1 1 1
* L 1 1 N SR) it L i L
. LR NN 1 1 1 t 1 e d L il '
hd i 1 1 1 N L - 1 1. 1 i 1
! L 1 L L 1 L L 1)

The 6o TO statement transfers the program to statement 8 where the result
21 is obtained.

Writing the 1620 FORTRAN Program 23

Computed GO TO

24

This statement also specifies the number of the next statement to be performed.
Tt is different from the unconditional co TO, because the statement number
that the program is transferred to can be altered during the program in a com-
puted Go TO statement. '

Format: “GO TO (N, Mgy « + o Mim), &
where n;, n,, . . ., Ny are statement numbers and i is a
fixed point variable. The variable cannot be subscripted.

The parentheses enclosing the statement numbers, the com-
mas separating the statement numbers, and the comma fol-
lowing the right parenthesis, are all required punctuation.

Example: |GO TO (3, 4, 5), L
GO TO (4, 4, 8,14, 24), M

The computed co TO statement transfers the program to the 1st, 2nd, etc.,
statement number in the list depending upon whether the value of iis 1,2 . . .,
etc. The variable i must never have a value greater than the number of items on
the list in the parentheses.

In the first example above, if the value of L is 2, the program is transferred
to statement 4. In the second example, if the value of M becomes 1 or 2 the pro-
gram is transferred to statement 4. If it becomes 3, 4, or 5, the program is trans-
ferred to statements 8, 14, and 24, respectively.

A coding example is shown below:

[C~FOR COMMENT

(v FORTRAN STATEMENT
' slelr 10 15 20 25 30 35 © 4 50 55
* ! L 1 1 1 1 1] 1 i 1
hd) 1 L 1 ! ! L 1 1 n
A=3 -, I I L 1 1 1 1 1 .
B=4-, L L i I 1 L 1 1 .
C"ﬁ‘l 1 1 1 1 1 A 1 1)
K=0. . I 1 L 2 1)) 1 .
| K= Kl 1 \ L 1 1 i ; L L
GO T.O (10.>2O.3L0),K1 1 " [ot O TP PERIT N BV i
hd ! L 1 1 1 R it N [
— ® L 1 L 1 i 1 1 1 1) -
30 F=A '|B . 1 Ll 1 ! I 1 L I L
. 60 TO0 12,) ; : : ; . f e
20 | E=A-C . .) ' . : : : L
GO TO V. . i 1 1) 1 1 i L
10 D=B-C 1 ! 1 1 1 ! L ! .
0.T0 1, ., 1 1 1 1 1 1 L L
* 1 1) 1 1 1 1 \ 1 L
Ld 1 L L 1 1) 1 3) 1
4 ! 1 L 1 1 ! 1 { i 4.
12 L i) i 1 1 L 1 1 L

In the example, D, E, and F are computed, in that order, and the program
is transferred to statement 12. This is a simplified example used to illustrate a
computed Go To statement. If these were the only computations in a program,
you would probably just compute D, E, and F in sequence without using a
computed 6o TO statement.

IF Statement The 1F statement permits you to transfer the program to a particular statement
depending upon the value of an expression.

Format: “IF (a) ny, N, 05~
where a is an expression and n, n, and n; are statement
numbers.

The expression must be enclosed in parentheses. The state-
ment numbers must be separated from each other by com-
mas.

Example: IF (A—B) 10,57
IF (A(I)/D) 1, 2,3

The program is transferred to statement number 7., f1, s, depending upon
whether the value of the expression a is less than, equal to, or greater than zero,
respectively.

In the first example, if both A and B have the value of 2, the program is
transferred to statement number 5. In the second example, if the result of the
expression _» greater than zero, the program is transferred to statement number 3.

Suppose a value, s, is being computed. Whenever this value is positive,
the main routine of the program should be followed. Whenever the value of
HRS is negative, an alternative routine starting at statement 12 is to be followed,
and if HRs is zero, an error routine at statement 72 is to be followed. This prob-
lem can be coded as follows:

(—— G FOR COMMENT

Vs e FORTRAN STATEMENT
t 51617 10 15 20 25 30 .“A_:'!-b 40 ‘5 S 750‘ A 55
*]] 1 1 1 sk 1 1 1 P PR
hd 1 1 1 1 L L 1 1 ! '
H= (B.+C) /(.D**E)\"‘ F L 1 [1 I | L
IF (H)12,72,10, l l . . . l L
N I 1 i el 1 1 t y) L
hd) 1 { L I L 1 : [N [
{0 |s L 1 L L I L 1 L L §
¢ 1 i 1 — 1 1 1 . 1 1 1 1
V200 .] L) 1 L | 1 B
e, L L I i et L L)) 1
hd ! L \ ! 1 1 ' 1 1 i
L 7.2- ® i L L L 1 1 1 1 Il e
- 1 F L 1 1 L i 1 1 i
IF (SENSE SWITCH) This statement permits the program to transfer to a particular statement depend-
Statement ing upon the setting of any one of the four console program switches.
Format: “IF (SENSE SWITCH &) n,, n,”

where i is the number of one of the console program
switches, and n, and n, are statement numbers.

The parentheses, enclosing the words SENSE swrircH, and
the commas, separating the statement numbers, are required
punctuation.

Example: IF (SENSE SWITCH 3) 14, 50
IF (SENSE SWITCH 1) 20, 40

Writing the 1620 FORTRAN Program 25

PAUSE Statement

STOP Statement

DO Statement

26

The program transfers to the statement numbered n, when the designated
program switch is on, or to the statement numbered n, when it is off.

The pAUSE statement is used as a convenient means of causing the object pro-
gram to halt temporarily. Halting the object program is sometimes required so
that the machine operator may check part of the output to determine if one or
more values are within predetermined limits before continuing with the program.
The paUSE statement is also useful as an aid in the initial testing of a new pro-
gram. PAUSE statements, located at the end of one or more phases in a program,
permit you to check the accuracy or validity of a part of a problem by checking
the data obtained in that part before altering the data in subsequent operations
in the program.

Format: “PAUSE”
Example: PAUSE

The pause causes the computer to halt. Pressing the start switch causes the
program to resume with the statement following the PAUSE statement.

This statement causes the computer to halt during the processing of the object
program, to return the typewriter carriage, and to type the word “stop.” In con-
trast to the pausg, this statement is used where a final, rather than a temporary,
stop is required. '

Format: “STOP”
Example: STOP

As discussed earlier, the ability of the FORTRAN program to repeat the same
operations with different data, called looping, is a powerful tool which greatly
reduces programming effort. There are several ways to accomplish looping, one
way is to use an IF statement. For example, assume that a plant carries 1,000
parts in inventory. Periodically it is necessary to compute stock on hand of each
item (1nv), by subtracting stock withdrawals of that item (1out) from a previ-
ous stock on hand.

It would be wasted effort to write a program which would indicate each of
the 1,000 separate subtractions by a separate statement. (It would also waste
computer storage, since each separate instruction to the computer must be in
computer storage.) The same results could be achieved by the following pro-
gram:

[~ C FOR COMMENT
[{starement]z

NUMBER |8 FORTRAN STATEMENT .
! slel7 0 15 20 25 30 35 4 s o
hd i 1 1 1 o 1 L 1 1 L
b] 1 L]) ! I i 1 1
5 J=0 , L 1 I 1] 1 L L L
10 J‘J'hl L 1 L 1 L L L L L
25 INV(J)=INV(J)-TOUT(J) . o s A . L
'5 IF(I|000'J|)20_;2:0;'Q._l_...._.;_._l. 1 1 1 1 P
20| 1o I L L Lo 1 ad L L 1 L
hd | L 1 Lttt (SR T § [
hd 1 L 1 L s 1 el L TR S B
) i el 1 L. 1 1) 1 L

An index, J, is established which will be increased by 1 each time statement
10 is executed. Statement 5 sets] to zero (this statement is processed on the
first loop only) so that statement 10 will set J equal to 1 for the first execution
of statement 25,

Statement 25 will compute the current stock on hand by subracting the
stock withdrawal from the previous stock on hand. The first time statement 25
is executed, the stock on hand of the first item in inventory, ivv(1), will be com-
puted by subtracting the stock withdrawal of that item, 1our(1). Statement 15
tests to determine if all items in stock have been updated. If not, the expression
1000-J will be positive and the program will transfer to statement 10, which will
increase the value of J by 1. Statement 25 will be executed again, this time for
the stock on hand of item 2, vv(2), and the stock withdrawal of item 2, out(2).
This procedure will be repeated until the stock of item number 1000 has been
updated. At this point, J will be equal to 1000, and the expression in statement
15 will be equal to zero. At this time, statement 15 will cause the program to
transfer to statement 20 in order to continue with other parts of the program.

Notice that three statements (5, 10, and 15) were required for this looping
which could have been accomplished with a single po statement.

The purpose of the po statement is to simplify the programming of loops and
to provide greater flexibility in looping.

Format: “DO n i = m,, my, my”

where n is a statement number, i a fixed point variable, and
m;, m, and m, can be either a fixed point constant or a
fixed point variable.

Subscripts and sign indication are not permitted in a po
statement,

If m, is not stated, it is taken to be 1.

The commas are required punctuation.

Example: DO 20 JBNO = 1, 10
DO 20 JBNO = 1, 10, 2
DO 20 JBNO =K, L, 3
DO 16K = 1,M
DO16] = L,2

DO 18 INDEX = J,K

The po statement is a command to repeatedly execute the statements that
follow the po statement, up to and including the statement with the number
equal to the value of n. The first time through the loop, the statements are
executed with i equal to the value of m,. For each succeeding execution of the
statements, i is increased by the value of m,. After the statements have been
executed with i equal to the highest value that does not exceed m,, the program
transfers to the statement which follows the last statement in the range of the o
(the statement after statement number n),

Thus, the po statement does three things:

1. It establishes an index which may be used as a subscript or in a computa-
tion.

2. It causes looping through any desired series of statements as many times
as required.

3. It increases the index (by any amount specified) for each separate execu-
tion of the series of statements in the loop.

Writing the 1620 FORTRAN Program 27

28

In the example below, an inventory problem is programmed using the po
statement.

= C FOR COMMENT

[VerssenTs FORTRAN STATEMENT
) slslr 10 5 20 25 30 35 4) 55
hd 1 1 1 L 1 L 1 | ' "
* i L L 1 1 1 1 1 : 1
hd] |] 1 1 1 I 1 s L
15 DO 2(5 J’ L}IOOO, ' 1 L ! 1) .
25 INV_(J)=TINV(J)-IOUT(J) . . . s . .
35 * Nl 1 i 1 1 1 L 1 1 1
hd L 1 1 L 1 1 L) 2 N
o i " B | Y 1L PRUS | 1 1 P TP i | PRSP
PRSI | 1 i { 1 | IR e PO |]

Statement 15 is a command to execute the following statements up to and includ-
ing statement 25; the first time the value of] will be 1, thereafter the value of
will be increased by 1 for each execution of the loop until the loop has been
executed with the value of J equal to 1000. After the loop has been executed
with J equal to 1000, the statement following statement 25 will be executed,

The following is a comparison of statement 15 with the format of a po state-
ment, and an introduction to some of the terms used in describing a po statement.

po Format n i = m,, m,, m,

po Statement 25 J = 1 1000
——— : e e —
Range Index Initial Test Increment

Value Value

The range is the series of statements to be executed repeatedly. It consists
of all statements following the po statement up to and including statement n. In
this case, statement n is statement 25, and the range consists of only one state-
ment. The range can consist of any number of statements. (Note: throughout
the remainder of the manual, the word po means the po statement and all state-
ments within the range of the po statement.)

The index is the variable which will change for each execution of the range.

In the example, the index] was also used as the subscript to the variables in

statement 25. Thus, it served two purposes: to maintain a count of the number
of loops executed, and to establish the correct variable for each execution of the
loop.

The initial value is the value of the index for the first execution of the range.
Although the initial value was 1 for this example, in another problem it might be
some other quantity. Often, the initial value will change at different times within
the program. In such cases it may be stated as a fixed point variable rather than
as a constant, as in the example. If it is a variable, its value must be set up in a
statement that precedes the po statement.

The increment is the amount by which the value of the index will be increased
after each execution of the range. In the example, it is not coded because the in-
crement desired is 1 and the po statement automatically uses 1, unless some other
value is specified. As with the initial value, the increment may be written as a
fixed point variable.

DO Statements Located
Within a DO Statement

The test value is the value which the index may not exceed. After the range
has been executed with the highest value of the index which does not exceed the
test value, the po is satisfied and the program continues with the first statement
following the range. In the example, the po was satisfied after the range was exe-
cuted with the index value equal to the test value. In some cases, the Do is satisfied
before the test value is reached. Consider the following:

—— C FOR COMMENT

voaTs FORTRAN STATEMENT
] slel7 10 15 20 25 Y 35 © s % 55
hd f i 1 ! L L L I L 1
L4 1) 1 I i L ! 1 L n
DO_5 K=1,9.3 1 1 1 i I L 1

=y

* L | [L i [} 1 1 1 I
i d 1 1 1 i i 1 1 Il 1 L
5 o 1 1 1 1. 1 | L 1 P R
! 1 el 1 L 1 i . L i

“In this example, the range will be executed with K equal to 1, 4, and 7. The next

value of K would be 10, but since this exceeds the test value, the program transfers
to the statement following statement 5 after the range is executed with K equal
to 7. Note that after the transfer, the index value K (10) was not the same as the
test value (9). :

One or more Do statements may be included within the range of a Do statement.
When this is done the following rule must be observed:

If the range of a po statement (the major po statement) includes another
po statement (the minor po statement), all statements in the range of the
minor po must also be in the range of the major po.

This rule is illustrated in the drawing below. (Brackets are used to illus-
trate the range of a po.)

Permitted Not Permitied

DO

DO

DO

DO

DO

DO

DO

DO L

Qe st

Writing the 1620 FORTRAN Program 29

Preservation of Index Valuves

Restriction on Statements
Used In the Range of o DO

CONTINUE Statement

30

In 1620 FORTRAN it is possible to transfer into the range of a po statement from
outside its range by either an 1F or 6o To statement. (This cannot be done on many
other FORTRAN programming systems, and, if there is a possibility that the source
program will be compiled on some other FORTRAN system, you should not use this
technique.)

If you write a statement to transfer into the range of a po from outside of its
range, you must understand that the value of the index is not reset by such a
transfer, You may use the current value of the index or you may redefine the index
prior to the transfer. If you want to use the current value of the index, read the
next paragraph carefully, and then review the explanation of “Test Value.” The
current value of the index in a problem may not be what you think it is.

When the program transfers out of the range of a Do in the normal manner (that
is, when the po becomes satisfied and the program transfers to the next statement
after the range), the exit is defined as a normal exit. After a normal exit from a po
occurs, the value of the index is not redefined to its original value. To determine
the value of the index after a normal exit, remember that after a loop is completed,
the index is increased by the increment before it is tested to determine if additional
loops are to be taken.

When the program transfers out of the range of a po by an 1¥ or Go TO state-
ment, the value of the index is its current value at the time of the transfer.

In both types of exits, the current value of the index is preserved for any sub-
sequent use. If the exit occurs by a transfer which is in the range of several p0’s,
the current values of all the indexes controlled by those po’s are preserved for any
subsequent use.

The range of a po cannot contain any statement which redefines the value of the

- index or the value of any of the indexing parameters (m,, m,, or m,). The indexing

of a po statement must be completely set before the range of the po is entered.

The first statement in the range of a po cannot be a nonexecutable statement.
A nonexecutable statement is a statement in the source program that does not
create instructions in the object program. The control statement coNTINUE and the
specification statements prMENSION and FORMAT are the only nonexecutable instruc-
tions. These instructions are described later.

The last statement in the range of a po must not be a program transfer state-
ment (IF or GO To, etc.)

This statement is used as the last statement in the range of a po when the last state-
ment would otherwise be a program transfer statement (see rule previously given.)
This statement does not create any instructions in the object program.

Format: “CONTINUE”
Example: CONTINUE

Consider the following table search program which requires a CONTINUE state-
ment. This program will scan the 100-entry array named VALUE until it finds an
element which equals the value of the variable named ARG, then the program will
transfer to statement 20 with the value of I available for use. If no element in the
array is equal to the value of Arc, the program is transferred to statement 12. No
operations are performed by the CONTINUE statement; the program merely con-
tinues with the next sequential statement following statement 12.

END Statement

Some Thoughts About
Programming FORTRAN

— C FOR COMMENT

S| FORTRAN STATEMENT
1 5|67 10 15 20 25 30 35 40 45 50 55
. 1 1 \] 1 1 1 1 1 L
[L 1 1] 3 1 1 1 1 i
b L L 1 { i 1 L L L t
10! DO 1.2 I"l;|00| 1 1 1 i 1 L L
LE(ARG-VALUE(I)), 12,20,1.2) :) L N

12 CONTI’NQELJ 1 1 N | | 1 1 1 1

The EnD statement is a signal to the compiler that the end of the source program
has been reached.

Format: “END”
Example: END

The object program will not be compiled unless the END statement appears as the
last statement in the source program.

Learning how to program FORTRAN can be divided into two phases. One might be
called “How to write statements that perform caleulations upon data.” The second
could be called “How to get data into and out of the program.”

After you have programmed a few problems in FORTRAN, you will find that
most of your programming time will be concerned with calculations upon data;
moving data into and out of the program will be of secondary importance. How-
ever, getting data into and out of the program may be the most difficult part of
FORTRAN to learn because it may involve concepts with which you are not familiar.

A brief review at this time should help.

1. The 1620 system consists of a Central Processing Unit with a typewriter for
entering or printing out data. The system may contain a 1621 Paper Tape
‘Reader, a 1624 Paper Tape Punch, or 1622 Card Read Punch.

9. The IBM FORTRAN processor may be punched in either 1M cards or paper
tape, depending upon the type of 1620 system you have,

3. The FORTRAN processor is read into the 1620 first, followed by paper tape or
card records containing the source program. The result of this compilation
is an object program containing 1620 machine language instructions.

4. The object program (in cards or paper tape) is then placed into the 1620,
followed by card or tape records containing the data that is to be processed.

5. The results of the computations are either printed on the typewriter,
punched into cards, or punched into paper tape.

The remainder of this part of the manual, WRITING THE FORTRAN PROGRAM, is
concerned with statements that move data into and out of the program, statements
that determine how much data will be read into the program, and the kind of
data that is read (fixed point or floating point).

Writing the 1620 FORTRAN Program 31

Input/Output Statements

32

Input statements are used to read data into the program and output statements
are used to print or punch the results of calculations.

Consider the following mathematical problem

L1 :
Y= + +MN

L.
K

and assume that I, J, K, L, and M are variable quantities punched into a file of
cards, with N equal to 48. If you write the source statement

N = 48
the processor sets aside an area in storage (in the object program) called N, and

sets up the necessary instructions to place the quantity 48 in that area at object
time. The variables may be punched into the cards as shown below.

/aﬂe! s il F

klolmul|d

nnlonuonulnnuaunnouunnnnonuonnounounnuoonououuoonucnooooonoonnooouunnuoooooo

56 7 8[9 1013 12[13 14 15 1637 16 19 7111111‘2“”72“31)11:k::lsusn:/xnmuulauuyasnunmsts:s:M55ulvnswuuﬂuiﬂs&uluumnlnnusnn"un

0

.
lll]\!ll||III1111|Illl\1llllllil\lllll\lllll!‘l|l\11|1lllIll||lllI|l!1lll|l|l
2

2228222 221222222122222222221221
333333333333333333333333JJJ33333333333333333353333333333333333333333333333333333
44'44'44‘444444#444444441‘444444444444444444444446444444‘4444444444444444444‘All
lﬁ555655
GDBEG55666656ﬁ&ﬁssﬁﬁsBGGGBEGﬁGSESGBGGSQGEG%PBbGBEEBGBGGEBGG565656&55685668666556

4 5081

IRRRI AR Rt RRN RN 11777777717777171]777777777117177177117777117771777117177717
858838833838658808838888BBBIBBBHIlaﬂﬂSEB&ﬂ&&lﬁBO!ﬂﬂ38885580BGBBEBBHBBBIBBSBB
9999996999999909999953899
» %

23 40 A% 42 43 44 45 4G &7 48 49 50 51 52 53 51

4
9499/98359/3996(9899/9909/993¢999899098999
1234|568 1efs

]
T R B I R E R T

99999999995990599808899
5657 5 59 89 6) 62 63 64 85 66 67 61 89 0 11 72 1) 14 1 14 11 16 19 4|

Remember that the data cards are not available while the source program is being
compiled. Therefore, in this example, an input statement would be included in
the source program to tell the processor that the object program will read the input
data from cards (that there will be five data fields in the sequence of K, L, M,
I, and J). The input statement also contains the statement number of another type
of statement called FormaT. In this example, the FORMAT statement, referenced by
the input statement, tells the processor that each field named in the list is four col-
umns long and that the quantities are in fixed point mode. Thus, as the object
program is executed, each data card is read by the program and the quantity fields
are placed into the storage locations named K, L, M, I, and]. When processing is
completed for the set of values in one card, the values for the next card are read
into the same storage locations and processing for the new set of values is per-
formed.

Thus, an input or output statement, each with its corresponding FORMAT state-
ment specifies the number and sequence of the data input or output fields, the
length of the data fields, and whether they are in fixed or floating point mode.

NoTE: FORMAT statements are described in a later section entitled SPECIFICATION
STATEMENTS.

READ Statement
{Card Input)

ACCEPT Statement
(Typewriter Input)

This statement causes data to be read from a card in the 1622 Card Read Punch.

Format: “READ n, List”
where n is the statement number of a FORMAT statement
and List is a list of the quantities to be transmitted.

Example: READ 4, A, B, C
READ 30, HRS1, HRS2, HRS3
READ 2, VOLT(1), OHM(])

The ReAD statement causes data to be read from a card (at object time) and causes
the quantities from the card to become the values of the variables named in the list.

If the quantities for a set of values require more than 80 digits (the number
of columns in an BM card) the program reads successive cards until the complete
list of quantities has been “satisfied,” i.e., the data for all of the variables has been
brought in and stored in the locations specified by the rEAD statement.

If there are more quantities in the card than there are on the list, only the num-
ber of quantities specified on the list are read by the program. Thus, if a card con-
tains five quantities, but the list in the READ statement contains only two, the re-
maining three quantities are ignored.

It is important to note that every item in a list corresponds to one and only
one quantity. Arrays whose members are so numerous that itemizing them in a
list is impractical may be handled by using a shorter list and including the input
or output statement in the range of a po.

For example, suppose items B, A, and C are to be punched, in that order, and
A represents a one-dimensjonal array consisting of 100 elements. The output state-
ments could be written in the following manner:

— C FOR COMMENT

voes FORTRAN STATEMENT
1 51617 10 15 20 25 30 35 40 45 50 55
h 1 1 1 1 1 { 1 i 1 .
hd L 1 1 ! L L 1 L { 1
PUNCH !} ;B. i 1 ¢ o L) 1 .
Do 3[I:')I!OO 1 . i i i i A "l 1.
B PUNCH B A(T) .\ P s A . i
PUNC'HL] #C[‘- 1 U TR L 1 1] 1 " 1
° L L \ L 1 L L I 1 4.
N . ' . A . . - . . B
° 1 1 1] L 1 . 1 i 1 1
L 1 1 i 1 e 1 L L 1 1 1

The po would punch the 100 elements of the array A.

This statement is used when input data is to be entered into the program from the
console typewriter.

Format: “ACCEPT n, List”
where n is the statement number of a FORMAT statement
and List is a list of the quantities to be typed.

Example: ACCEPT 30, A, B,C, D(3)

Writing the 1620 FORTRAN Program 33

ACCEPT TAPE Statement
(Paper Tape Input)

PUNCH Statement
{Card Output)

TYPE Statement
{Typewriter Output)

PUNCH TAPE Statements
(Paper Tape Output)

Specification Statements

34

This statement selects the typewriter as the input device, returns the typewriter
carriage, and halts the computer to await manual entry of data. Data must be typed
in accordance with the FOoRMAT statement until the complete list is satisfied.

This statement is used when input data is to be entered into the program from the
1621 Paper Tape Reader.

Format: “ACCEPT TAPE n, List”
where n is the statement number of a FORMAT statement
and List is a list of the quantities to be entered.

Example: ACCEPT TAPE 48, K, A(])

Paper tape records are read into storage until the complete list is satisfied.

Format: “PUNCH n, List”
where n is the statement number of a FORMAT statement,
and List is a list of the quantities to be punched.

Example: PUNCH I, A, D, C
PUNCH 2045, SQRT

One or more cards are punched until the complete list has been satisfied.

Format: “TYPE n, List”

“PRINT n, List”

where n is the statement number of a FORMAT statement
and List is a list of the quantities to be typed.

The words TvPE and PRINT are interchangeable.

Example: TYPE 19, X, Y
PRINT 2, DELTX

One or more lines are typed until the complete list is satisfied.

Format: “PUNCH TAPE n, List”
where n is the statement number of a FORMAT statement
and List is a list of the quantities to be punched.

Example: PUNCH TAPE 4, A, B, C
PUNCH TAPE 100, AVGHR

One or more records are punched until the complete list is satisfied.

There are two types of specification statements, ForMAT and piMENSION. The
FORMAT statement has already been defined as a statement that tells the FORTRAN
processor the length of each input or output data field, and whether the field
is (or will be) in fixed point or floating point mode. The pIMENSION statement
provides the processor with the information necessary to allocate storage in the
object program for arrays of quantities.

A prMENSION statement does not create instructions in the object program.
Its function is merely to supply information to the processor.

FORMAT Statement

Input Specifications

The FORMAT statement permits you to determine how you want the results of
computations to look in the output data and allows you to tell the processor how
to punch or type the input data. In both instances, you are concerned with the
problem of converting data from either its external form (cards, tape, typewriter)
to an internal form (core storage), or from its internal form to cards, paper tape,
or the printed line.

Format: “FORMAT (\91, 825 83y v v oy Sn)”
where s,, $,, 5; and s, are specifications as described below.
Example: 4 FORMAT (12/F104, E124)

6 FORMAT (I2,14)
3 FORMAT (E124, 15)

FORMAT specifications have three forms:

Typ Format Description
1 Tw Fixed point numbers
F Fw.d Floating point numbers
without an exponent
E Ew.d Floating point numbers

with an exponent

where w is the width of the field (that is, the total number of positions printed
or punched) and d is the number of decimal places as explained in the follow-
ing paragraphs.

All three forms can be used in FORMAT statements for both input and output
statements. However, there is a slight difference in the meaning between an input
and an output specification, so they will be described separately. The FORMAT
statement may be written anywhere in the source program (except as the first
instruction of a po).

An example of card input is used here, but the principles illustrated also apply
to paper tape records and to typed input.

/03/ 46/ -0246211234567 —0/23456i 78921245 -/ i2345 67; 0.5'/2;041

A’l.MA.B L C | D

lonoﬂnlonnunooouonuolnooonooncnoononuoounuuouunnauuuoannaooloeoalﬂnnauaaonaaooo

12045 0]7 8 0RuRUBBUTNBANRINBANAARNARNATBUNNVHMLOHEETH4 515253 3¢ 85 50 §7 50 526081 Q2RI A RS BRENM I 1O TE T2 A TN TS T8 77 T8 19 80

IR] RN (RBRRR! A S T RN R RN XY IR R R R RAK N EARRRRARE! IRRRIRRRRRERARRRR!
zzzzzzzzlzzlzzlzzzzzzzzlzz2zzzzzlzlzzzzzzzzzzzzzzzzzzIzzzzzzzizlzzzzzzzzzzzzzzzz
93333303333333033033330333383330333/33333333333333333333M3033333331333333333333333333
444'04!44.04444‘l4l644444l444444444.44444444444‘4444444'4!44444444‘444444!4‘4!!4
55555555555555555!555ssssslssssssss5I55555sssss555555555!5555!555555555555555555
’ asaalssssslssssssalsssasssslssesessssssaessassssasssssssalssnsssessasssssesessas
IRRARRI RRARRR (RARRE] P SERRERR] tR AR R R AR RN R R RRARRRRA 1NN IRRRN (RRRRRRRARREN|
saosselsasssesjenssosssacessaalsfsasnasosessensonsonaolansossssascasseosensasanses

9999999989990/999990699999/999991999998939¢9
????’3???3333,3333333@333333323353332&.”“3.,.,m..,..m.,mm.m.n.,...m...m....,,..m, Y

e 5081

-

Writing the 1620 FORTBAN Program 35

36

The statements required in the source program to enable the object program
to read this data card are:

|- C FO

R COMMENT

psiaTaeTE , FORTRAN STATEMENT

| slelr 10 15 20 25 30 35 0 45 50 55
- h] 1 I 1 1 L 1 1 1 L
b 1 1) 1 1 1 1 1 ' 1

b ! L ! L L 1 1 1 1 .

READ 4, K,M,A,B,C,D . ' .) : L.

4 FORMAT (16,17 F7.3,F12-0,18X,E12:0,E5:1) o+ &

" b 1 1 1 1 L L) 1 1 1.

hd 2 L L L L 1 1 \ 1 .

L. b 1) 1 b] 1 L e 1 y .
! L 1 1 i 1 1 1 L 1

The input card in this example contains a variety of formats, and, although
it is not a representative example of an input card that might be used in an actual
program, it does show how various data formats can be read into the program.
The object program will store these values as shown in the chart and text that

follow.
Considered By The Stored In
Item Variable Punched In FORMAT Object Program The Object
No. Name Card As: Specification To Have The Value Of: Program As:
1 K 001461 16 +146} 0000001461
2 M ~024621 17 -4621 0000004621
4]
3 A 1234567 F7.3 +1234.,567 2345670 | 04]
4 B -0123456.789 F12.0 -123456.78 (12345678 1 06]
5 - 21245 (and 13 blonks)}| 18X {No value taken; these columns skipped)
vy
6 C -1.234567+05 E12.0 -123456.7
4!
7 b 12 +04 E5.1 12000. 12000000] 05 }
1. The first variable in the card, K, has been assigned the FORMAT of I6.

This format tells the processor that the first field in the card contains 6
columns and that the number is in fixed point mode. The maximum size
of a fixed point number is 4, so at object time the leading zeros are
truncated and the value is stored as -+1461. The value is assumed to be
plus because no sign indication is given.

9. The next variable, M, has been assigned the FormaT of I7. This format

tells the processor that the next field in the card consists of 7 columns and
that the number is in fixed point mode. The value will be stored as —4621
with the high-order digits truncated. A number would be truncated in this
manner only if you wanted to lose the high-order digits, or if you hap-
pened to set the specification in error. It is important to note that the
width (w) must be the width of the field on the card, not just the number

of positions of the card that you want to bring into the program. In this
example, if the specification of X had been I4, the processor would
assume that the value for K was located in columns 1 to 4, that the value
for M was punched beginning with column 5, and that the value of A
was punched beginning with column 12, etc.; thus all subsequent fields
would be read incorrectly,

3. The floating point variable A has rormat F7.3. This format tells the
processor that the value is a floating point number, that the field in the
card contains 7 columns, and that there are 3 digits to the right of the
decimal place. The object program will consider A to have the value of
1234.567, then “places” the decimal point to the left of the high-order
(leftmost) digit, and sets the exponent as 04 for this value to account
for the number of positions that the decimal point was shifted.

4. The floating point variable B has rormat F12.0. This format tells the
processor that the value is a floating point number, and that the field in
the card contains 12 columns, Because the decimal point is punched in the
card in its proper place, a specification for d is not required, and if speci-
fied in error would be ignored by the object program. The maximum size
of a mantissa in floating point is 8 positions, so the low-order positions of
the quantity are truncated. When the value is stored, the decimal point is
adjusted 6 places and the exponent is set to 06.

5. Columns 33 through 50 contain blank columns and punched data that are
not required in the program. These columns are ignored by giving the
processor the specification 18X. This specification reads these columns into
storage as blank characters. The maximum number of columns that can
be ignored with one specification is 49.

6. The floating point variable C is punched into the card using a standard
mathematical notation: that is, the decimal point has been adjusted to a
specific location and the magnitude of the quantity is given by punching
the exponent in the columns following the value. The rFormat for C,
E12.0, tells the processor that the value is in floating point mode with an
exponent to indicate its magnitude, and that the field in the card contains
12 columns. Because the decimal point has already been punched into
the card, the specification d is ignored. The object program will assume
that C has a value of —123456.7 by noting where the decimal is punched
in the field and what the value of the exponent is. When the value is
stored, the decimal is adjusted to the left of the high-order digit, and the
exponent is set to the new value of 06.

7. The floating point variable D is punched into the card as a 2-digit man-
tissa with an exponent. A decimal point is not punched. The rormar for
D, E5.1, tells the processor that the value is in floating point mode with
an exponent, that the field in the card contains 5 columns, and that there
is one digit to the right of the decimal point. THe object program will
consider D to have the value of 12000. When the value is stored, the
decimal is adjusted to the left of the high-order digit and the exponent
is set to the new value of 05.

There are no more variables in the list, so columns 68 through 80 are

ignored.

Writing the 1620 FORTRAN Program 37

Output Specitications

38

Specifications using the E-type format provide a great deal of flexibility. For
example, consider the various methods that can be used to enter the value 10,000
into a program (1 X 10¢):

Punched in FORMAT Placed in
a card as specifications storage as
M E
1LE4 E4.0 10000000 05
1E5 E4.0 Same
1E5 E3.1 Same
1E4 E3.0 . Same
1E6 E3.2 Same

The same ForMAT specifications of 1w, Fw.d, and Ew.d are used for output state-
ments: except that w now specifies the number of positions to be “reserved” for
printing the number, regardless of how large the number actually is, and d is the
number of digits to be retained to the right of the decimal point, regardless of
how many digits are to the right of the decimal in the actual number in storage.

The following description of FoRMAT deals with the printed line, however
the principles stated also apply to paper tape and card records.

I Conversion. The specification, 14, could be used to print a number that
exists in storage as a fixed point value. Three print positions would be reserved
for the number and one for the sign. It is printed in this 4-space field right-
justified, that is, the units position is at the extreme right. If the number in
storage is greater than 3 spaces, the excess high-order positions are lost, no
rounding occurs. If the number has less than three digits, the leftmost spaces
are filled with blanks. If the quantity is negative, the space preceding the left-
most digit will contain a minus sign. If the quantity is plus, a blank will precede
the leftmost digit.

The following examples show how each of the quantities on the left is
printed according to the specification 14.

Value - Printed as
7 bbb7*
0 bbbo
~29 b—29
—3 bb—3
—146 —146
2146 b 146

*b is used to indicate blank spaces
The last item is incorrect because the specification did not provide enough spaces.

F Conversion. The F-type specification is used to print a number as a floating
point number without an exponent.

The d part of the format specifies the number of digits to be retained to the
right of the decimal. If the number in storage has more decimal places to the
right than there are places reserved for them by d, the extra places are truncated.
If more spaces to the right of the decimal are reserved than there are decimal
places in the number, zeros are filled in from the left. The numbers to the left

of the decimal are handled in the same manner as numbers converted by I-type
conversion, one space is always reserved as a sign position.

Included in the count, w, must be a space for the decimal point and a space
for the sign.

The following examples show how each of the quantities on the left is
printed according to the specification F7.3.

Value Printed as
28.601 b28.601
—6.4 b—6.400
-8 bb—.800
4.721 bb4.721
2.48721 bb2.487

The last item is inaccurate because the specification did not provide enough
spaces. ,

The F-type format is a convenient way of expressing the results of your
computations, but it has one small pitfall. You must have some knowledge of
the magnitude of the numbers you are working with. The magnitude of the
number must not be so great that the size of number (the mantissa and as many
decimal places as specified by the exponent) is not larger than the number of
places reserved for it by your specification statement,

For example, consider the floating point number in storage

M E
12345678 14

with the rormar of F10.3 (which was assumed to be large enough for this value
and any other value in the series). The size of this number would be

12345678000000.

which, of course, is greater than the 10 places reserved for it. If this type of
error is made, the FORTRAN program disregards the format that is specified, and
instead prints the number as

b.12345678Eb14

and a message is typed on the typewriter which indicates that a floating point
number is not in the allowable range of values.

The same value could have been obtained if the specification had been
written E14.8 (floating point with exponent form). Of course you will get the
right answer in this case, but the point is, that if you are not certain of the
magnitude of your numbers, program your problem so that your answers will
be printed (or punched) in floating point mode with an exponent (E con-
version).

E Conversion. For E-type conversion, the d part of the format again specifies
the number of digits to be retained to the right of the decimal. Included in the
count, w, must be spaces for the sign and decimal point, plus four spaces for the
exponent.

In 1620 romrTraN, the object program will try to place as many significant
digits to the left of the decimal that is possible by using the specification pro-
vided. Depending upon the size of the mantissa, zeros may be added to the right
of the number. The position of the decimal point may be moved, and if it is, the

Writing the 1620 FORTRAN Program 39

Specifying Alphameric Fields

40

program automatically adjusts the value of the exponent to indicate the actual
position of the decimal. The number of significant digits that will be printed can
be determined by the following rules:

if w—d > 8, then 8 significant digits are printed
if w—d < 8, then w—6 significant digits are printed

The following examples show how each of the quantities on the left is
printed according to the specification E10.3:

Value In Storage Printed
—.008 8000000002 b—.800E—02
A72 4720000000 b4.720E—01
.00000000006 6000000010 bb.600E—10
—10.0468 1004680002 —1.004E +01
1234567.8 1234567807 b1.234E+06

If your specification is not large enough, the program will automatically use the
specification E14.8,

In the examples just given, it can be seen that you must know the data in
order to specify a satisfactory format. Your specifications should provide for the
largest number of significant mantissa digits transmitted with the greatest ac-
curacy required.

Alphameric data can be read into the FORTRAN program from cards, paper tape,
or the typewriter. This data can be contained in the program and printed or
punched as part of the output data. Alphameric fields are often used to identify
totals or certain phases of the program. The following are typical output mes-
sages:

PROGRAM ERROR
...... OHMS, VOLTS
END OF PROGRAM
R C JONES

Alphameric fields require the ForMAT specification of wH, where w is the num-
ber of alphameric characters, including blanks, in the message.

The first message shown above could be printed by the following statements:

PRINT 9
9 FORMAT (14H PROGRAM ERROR)

(The count of 14 includes a blank position before and after “program.”)
The next message in the example illustrates how totals can be identified in
the program. The print statement would be

PRINT 6, O, V
and the FORMAT statement might be,
6 FORMAT (F6.2, 5H OHMS, F6.2, 6H VOLTS)

The two preceding examples show how alphameric data is entered by a state-
ment in the source program. Alphameric data can also be read from individual

Blank Field Specification

Multiple Use of Single
Specifications

cards or tape records. For example, suppose that a series of calculations is to be
performed upon each customer record card in a file. To identify the results of
each computation with the appropriate customer name, the following rEAD state-
ment would be used:

READ 6, A, B, C

The data fields in the input card are punched A, B, customer name, and C,
in sequence. The ForRMAT statement therefore would be:

6 FORMAT (F8.2, F8.2, 14HbCUSTOMERbNAME, F8.2)

When the first customer card is read into the object program, the customer’s
name (assume it is Anderson) replaces the words “customer name” in storage.
The computations for the first customer card would be printed with the PRINT
statement

PRINT 6, A, B, C

and the printed line would be
124.16 19.14 ANDERSON 2461.25

Information handled with a wH specification is not given a variable name
and cannot be referred to or manipulated in storage in any way. The maximum
number of alphameric characters that can be specified is 49.

Skipping a blank field in input data was shown in an earlier example. Blank
characters may be provided in an output record with the same specification, wX.
The FORMAT statement

6 FORMAT (10X F10.3, E14.8)

would provide 10 blank spaces before the first value is printed. A comma is not
required after the blank field specification.

The maximum blank field specification is 49, but two specifications may be
written in succession to provide more than 49 blank positions.

It was stated earlier, that each variable listed in an input or output statement
must have a corresponding specification provided in a ForRMAT statement. How-
ever, one specification could be used for one or more variables in an input list,
if all items in the list required the same specification.

For example, a READ statement containing six variables, all requiring the
same format specification, could use the FORMAT statement

1 FORMAT (E8.2)

The object program processes all input and output (1/0) statements by (1)
scanning the 1/0 statement to get the name of the variable, and (2) scanning
the FORMAT statement to get the specification for the variable. It repeats this
process until all variables have been processed. When the program has reached
the last specification in the FORMAT statement, and there are variables in the 1/0
statement that have not yet been processed, the program returns to the last open
parenthesis in the FORMAT statement and continues to scan the next specification
in sequence from left to right. The program will use the ForRMAT specifications

Writing the 1620 FORTRAN Program 41

Printing Multiple Lines with
One Format Statement

42

repeatedly (always returning to the last open parenthesis) until all variables in
the input or output statement have been processed. Each time the program re-
turns to the last open parenthesis, the input or output record is terminated. In
output operations, this means that a new card or paper tape record is punched
containing the remaining items on the list. In input operations, a card or paper
tape record cannot contain more items than there are specifications in the FORMAT
statement. Thus, the input or output statement is completed when there are no
items remaining on the list.

If there is a long list of data to be printed, the statement
8 FORMAT (F10.6,E10.2,(E8.4,13))
is the same as writing the statement
8 FORMAT (F10.6,E10.2,E8.4,13/E8.4,13/ . ..)

In this example, the first printed line would contain the first four variables
in the print list, with the format of F10.6, E10.2, E8.4, and 13, All remaining
variables in the prINT list would be printed on succeeding lines, two to a line, in
the format E8.4, I3. As explained next, the use of a slash symbol (/) as a special
character makes it possible to print on more than one line.

A list of variables in a PRINT statement can be printed on one or more lines by
placing a slash between the specifications. For example, a list of four variables
with the FORMAT statement of

6 FORMAT (F10.2,F10.2/E104,E104)

would be printed with the first two variables on the first line, and the last two
variables on the next line.

A great deal of flexibility can be obtained in specifying multiple-line print-

'ing. Consider the following statements:

PRINT 3, AB,...Z
3 FORMAT (F9.2,F10.4/E14.5)

(In an actual program, each item from A to Z would have to be listed.) When
the output data is printed, lines 1, 3, 5 . . . have format (F9.2,F10.4), and lines
2, 4, 6 . . . have format (E14.5),

Notice that both the slash and the closing parenthesis in a FORMAT statement
indicate the termination of a “record.” This is not too significant when you are
printing on the typewriter because a “record” is merely a typewritten line. If you
are using card output, the end of a record means the end of punching in one
card and the remaining variables are punched in the next card. If you are using
paper tape output, the termination of a record means that an end-of-line char-
acter is punched into the tape and the remaining variables are punched into the
following tape record.

Blank lines can be included in typewritten output by inserting slashes into
a multiline rormaT. N + 1 consecutive slashes produce N blank lines if it is
included between two specifications, N slashes before the first specification, or
after the last specification produces N blank lines (using the slash in card and
paper tape output is possible, but of limited value).

Some Review and Additional
Thoughts About Format and
Input/Output Statements

DIMENSION Statement

1. Specifications in a FORMAT statement must be in the same mode (fixed
point or floating point) as the corresponding items in the input or output
list. For example:

PRINT 2,AB,J
2 FORMAT (F8.2F8.3]8)

2. If a FORMAT statement specifies more characters to be printed or punched
than there are positions in the output record, the excess characters are
lost.

a. A typewritten line has a maximum of 87 characters.
b. A punched card has a maximum of 72 positions.
c. A paper tape record has a maximum of 87 characters.

3. In input statements, I-type data must be located at the extreme right (to
avoid truncating pertinent data).

4. In an input statement, minus or plus signs must occupy a separate column
of the record. Plus signs may be indicated by a plus symbol or a blank.
A number without a sign position is assumed to be plus. Blanks in numeri-
cal fields are regarded as zeros.

5. Numbers for E-type conversion need not have four columns devoted to
the exponent field. The start of an exponent field must be marked by
an E, or if that is omitted, by a + or —, but not a blank. Thus, E2, E02,
+2, +02, E02, and E+02 are all permissible exponent fields, and must
always be right-justified. Whichever of these forms you use, it is sug-
gested that you be consistent in using the same one.

Whenever you use subscripted variables in your program, you must provide the
processor with the following information:

1. Which variables (of all the variables you may have used in your pro-

gram) are subscripted.

2. Whether your subscripted variables (arrays) are one- or two-dimensional.

3. The number of elements in each array.

The prMENsION statement provides information to the processor necessary
for the allocation of storage in the object program for the elements of arrays of
quantities. One DIMENSION statement may be used to dimension any number of
arrays, as long as the entire pIMENSION statement does not exceed the length of
a statement (72 characters).

Format “DIMENSION o(d), v(d,d), v(d)”.. .for one- and two- di-
mensional arrays.

where each v is the name of a variable, followed by paren-
theses enclosing one or two constants, representing the
number of elements in each array.

The vs must be separated from each other by commas.

The constants must be unsigned and in fixed point mode.

Examples: | DIMENSION HRS (12)
DIMENSION A(10), B(10, 5)

Every variable which appears in the program in subscripted form must
appear in a DIMENSION statement, and the piMENSION statement must precede
the first appearance of the variable. When the object program is processed, the
number of elements in an array must not be larger than the number specified in
the pIMENSION statement. In the first example shown, the variable, Hgs, is an array

Writing the 1620 FORTRAN Program 43

A FORTRAN Problem

Block Diagramming

44

consisting of 12 elements, and the processor will set aside twelve 10-position
fields of storage (this is, a floating point variable — 8 for mantissa and 2 for char-
acteristic). In the second example, the variable, B, represents a two-dimensional
array that will consist of 10 rows with 5 columns in each row. The processor will
set aside fifty (10x5) 10-position fields in which to store the elements of the
array B,

You may include both fixed point and floating point variables in the same
DIMENSION statement. The DIMENSION statement does not create instructions in
your object program, its function is merely to supply information to the processor.

The problem contained in this section is intended as a guide for developing your
first FORTRAN problem. Rather than try to show the power of FORTRAN, a simple,
uncomplicated problem was chosen. It indicates how a problem is developed, how
it is written on the coding form, and how it is documented as it is processed at
compile time and object time.

Diagramming is a technique of schematically showing the steps which the com-
puter must take to produce the answers required by the problem.

Diagrams serve two purposes:

1. They offer an easy notation for analyzing the steps required in the solution
of a problem.

2. They provide the basic documentation in the form of a “map” of the
program, so that someone unfamiliar with the program can easily de-
termine what the program does and how it does it.

It is for these reasons that diagramming is not only highly recommended,

but is often required at data processing installations.

Techniques of diagramming vary greatly, as do the symbols used. In addi-
tion, diagramming may be very general, or extremely detailed to the point where
every machine instruction is included.

The more complete the diagram, the easier the job of actually writing the
program; however, initial analysis of a problem can usually be noted only in
major steps.

Only simple diagramming techniques will be explained here. Further details
of the technique are available in the 1BM Reference Manual, Flow Charting and
Block Diagramming Techniques (Form C20-8008).

The symbols to be used are explained below:

Direction of Flow Program Step

Decision Input-Output

O

Stop

Diagramming the Problem

The Direction of Flow symbol simply shows the relationship between symbols.

The example shows that A is executed first, then B.

The Input/Output symbol is used to refer to any operation that involves an
input/output device.

Reqad Print
Card Y

. The Program symbol is used to represent any steps in the program which
are not represented by special symbols.

Increase Pay Find
t
io:';lice Number Average
by 1 Temperature

The Decision symbol represents any logical decision that is contained in the
program.

What is ‘
Relationship
between

Is There
Ancther
Case

?

A>B A<B Yes

No

The Stop symbol is used to indicate the end of the program.

Problem: Solve for f(x)

Given: Values for a, b, ¢, and d punched on a card, and
a set of values for the variable x punched one per card
Evaluate the function defined by

ax2+bX+C ifX<d

o

f(X) = ifX =d

ax2+bX-C X > d

Weriting the 1620 FORTRAN Program 45

Writing the FORTRAN
Statements

46

for each value of x, and print the value of x and £(x).

A block diagram of a possible FORTRAN program to solve this problem follows:

START

Read Cards with
Values of
a, b, c, d

x<d Aﬂpure x>d

Compute Set
fx) = axZ +bx +C

Compute
f(x) = —axZ+ bx = ¢

x, f(x) ’—

The FORTRAN statements to solve this problem are shown in the coding chart
which follows. In this problem, statement numbers required by the logic of the
program are either 1 or 2 digits; statements with 3-digit numbers are numbered
only for the purpose of explanation here, and would not need to be numbered
in an actual program.

1+ = € TOR COMMENT

§ STATLMENT
NUMBER

! 5

o Cont.

FORTRAN STATEMENT
7 10 15 2 25 30 35 40 45 50 55

C

FUNCTION OF X PROBLEM

L | ! L L

100

1 1 1 1 1

e B

READI 7,\A;IB,\C |Dl L

READ

7, X

1 1 1 1]

101

1E G X= D) 2,3,4

FOF_XI = A*.Xl'*z'.-f' BﬁXr’-C

1 : L 1 " 1

102

60. T0 5 . . ' -

FOFX, = 0. i 1

4
L. ...5

103 K

PR, »

0.70 5 ., 1 i

FOFX = -~A¥X®%2 -+ B¥X-C

..1.04]
- FORMAT (F|'4 M 5 ;|F|4~5|)

PRINT |, X, FOEX . | . .
G0 TO 6. . . L)

~

FORMAT. (F4.0) .)

END._, | 1 L

i L i 1

A O o O O A O A

Processing the Source
Statements

The first statement is a comment which will appear on source program
listings. A comment statement must be identified by placing a C in
column one of the coding form.

Statement 100 causes the first card to be read and the values
punched in that card to be assigned as the values of A, B, C, and D.
This statement references FORMAT statement 7, which specifies that each
field of the card is four columns long, and that each value has a decimal
point punched into the card.

Statement 6 causes the next card to be read, and references FORMAT
statement 7. Statement 6 contains the first value of x to be used by the
program.

Statement 101 determines the relationship between X and D and
determines which formula to use in the computation of £(x). If X—D is
negative (X < D), the program is transferred from 101 to statement 2;
if X — D is zero (X = D), the program is transferred from 101 to state-
ment 3; if X — D is plus (X > D), the program is transferred from 101 to
statement 4.

Statements 2, 3, or 4 are used to determine the correct value of
f(x); ie., Forx. Regardless of which of the three computations occurs,
the program is always transferred to statement 5.

Statement 5 types out the values of x and f(x) and references
FORMAT statement 1. This FORMAT specifies two 14-position fields; each
field contains five positions to the right of the decimal point.

Statement 104 causes the program to transfer to statement 6 to read
the next value of X, and the pattern continues until all of the X cards
have been processed.

The computer will automatically stop when it attempts to execute
the READ statement and there are no more cards in the card reader.

Statement 1 and 7 contain the ForMaT specifications for the input
and output statements.

The EnD statement indicates to the processor that the source pro-
gram is completed.

The operating procedure for processing a source program is given in OPERATING
principLEs. The information contained here concerns only the documentation
that is available as the object program is compiled or processed.

The following illustration shows the typed output that can be prepared for
the function of x problem.

Numbers have been drawn in the left margin of the typeout to indicate the
phases of processing for this explanation.

1. After the processor is loaded into the 1620, this message is typed.

9. As each source statement is compiled it can be typed. The 5-digit address
is the starting address in core storage for instructions compiled for that
statement.

3. After the source statements have been compiled, the programmer or
operator can have the symbol table typed.

4. A symbol table can contain the storage addresses for the subroutines
used; it can also contain storage area for constants and variables, vari-
able arrays, temporary accumulators, and statement numbers. (This sub-
ject is covered in more detail in Part 4, ANALYSIS OF THE FORTRAN PRO-
GRAM,)

Writing the 1620 FORTRAN Program 47

(:::}-—-——-'ENTER SOURCE PROGRAM, PUSH START

7/~ 108300 C FUNCTION OF X PROBLEM
08300 100 READ 7,A,B,C,D

08360 6 READ 7,X
08384 101 IF (X-D) 2,3,k
08452 2 FOFX = A*X**2 4 B*X+C
68560 102 GO TO 5

08568 3 FOFX = O,

08592 103 GO TO 5

08600 L FOFX = =A*X**2 4 B*X-C
08708 5 PRINT 1,X,FOFX
08744 104 GO TO 6
08752 1 FORMAT (F14,5,F1L4,5)
08780 7 FORMAT (FL4,0)
__ 08802 END

PROG SW 1 ONFOR SYMBOL TABLE, PUSH START

7~ T9999 sSIN
19989 SINF
79979 cos
79969 COSF
19959 ATAN
(9949 ATANF
19939 EXP
79929 EXPF
79919 LOG
9909 LOGF
19899 SQRT
9889 SQRTF
(9879 0100
19869 0007
79859 2007

B
19819 D
79809 0006

X
1 0101
19779 Goo
9769 0002
0003
19739 ?823
9
19729 0002
79719 001
79709 0102
19699 0005
79689 0000000033
19679 0103
19669 0001
19659 0001
9649 0104

SW 1 OFF TO IGNORE SUBROUTINES, PUSH START

o T sl weoid)
0
oo
w
\0

O
~J
o]
Xe]

OO
N~
F Al
0\

.

‘PROCESSING COMPLETE

Processing the Object
Program

Program Testing

Program Verification

5. In this program, the object program was processed immediately following
. its compilation, therefore the subroutines were not assembled as part of
the object program, but instead, were loaded into the 1620 after the object
program was loaded. ‘
8. “Processing complete” means the object program has been executed.
The illustration shows the typeout information that results when the object
program is processed with data for various values of x, and A, B, C, and D have
the values of 10.0, 11.0, 12.0, and 13.0 respectively.

ENTER SUBROUTINES, PUSH START
1620 FORTRAN SUBR, AUTO DIV 9/30/61

LOAD DATA
9.00000 921,00000
10.00000 1122.,00000
15.00000 =-2097.00000
26,00000 ~5987.00000
5.00000 317.00000

7. The subroutines are placed into the 1620, read into storage, and the mes-
sage “Load Data” is typed.

8. The data is loaded. Five values of x are shown with their corresponding
values of f(x).

After you have written your program, you should thoroughly “desk check” it.
Desk checking is the process of looking over the source program for obvious
mistakes in logic or form, and the actual manual run of an item of data through
the program. This technique will quite often turn up a surprising number of
errors in a new program.

After you have desk checked your program, you should prepare test data
that can be processed on your program. The test data should be accompanied
by the correct results so that they can be compared by the machine operator to
the results obtained when your program is tested.

You should devote enough time for a careful selection of test data which
will check out the various and numerous combinations that may exist in the
logical flow of your program. It is advisable to start out with items of data which
will produce the simplest logical flow through your program and then to follow
with items of data which will take increasingly more complex paths, so that each
new item will involve the use of a new subroutine or segment. The more care-
ful your data selection is, the less chance there will be of errors in actual data
results.

When your object program is processed with the test data, and the results indi-
cate that there is an error in the program, you can do several things to locate the
difficulty.

1. Check the test data to be certain it is punched (or typed) exactly as you
think it is punched. This is also true for actual input data. Keep in mind
that persons preparing data for your program may occasionally make
common errors peculiar to the format you are using.

9. If possible, have an associate make a desk check of your program, or if
the program was typed out when it was compiled, check that program.

Writing the 1620 FORTRAN Program 49

3. During the compilation of an object program, a number of tests are made
for source program errors. If an error is found in a source statement, an
error message is typed and the processing continues. You should de-
termine if an error message was typed out and not noticed by the machine
operator. These error tests are concerned with the violation of the rules
for forming expressions and statements. (The meaning of the error mes-
sage typed out is described in Part 3, OPERATING PRINCIPLES.)

4. You can make a more thorough test of your source program by process-
ing it on the M ForTRAN Pre-Compiler program which is available from
M upon request. The Pre-Compiler program detects and permits cor-
rection of errors in a FORTRAN source program before it is compiled. It
detects many of the more common programming errors and indicates
possible logical errors in the source program as a whole. If you do not
have time to use the Pre-Compiler program, a knowledge of the types
of errors which can be detected by this system may help you to visually
locate errors in the source program. The Pre-Compiler program is de-
scribed in Part 5. The Pre-Compiler description contains a list of 51 of
the most common programming errors.

5. If you still haven’t located the difficulty, you can use the “trace feature”
of the FORTRAN program. The FORTRAN processor can compile certain in-
struction into an object program which will permit tracing the flow of
the object program in order to check its correctness. When the object
program is executed, the trace output consists of the evaluated left-hand
side of each executed arithmetic statement.

To use the trace feature, you would have to compile the program
again with the trace feature instructions included and execute the object
program using this feature. Checking your program with the trace feature
is time consuming, but it will locate the errors in your program. The fol-
lowing illustration shows how the results of the function of x problem
would look if the trace feature had been used.

ENTER SUBROUTINES, PUSH START
1620 FORTRAN SUBR, AUTO DIV 9/30/61

LOAD DATA
.92100000E+03 .
9.00000 921.00000
.11220000E+0L
10,00000 1122.00000
- .20970000E+0L
15.00000 -2097.00000
- .59870000E+0L4 |
25,00000 -5987,00000
.31700000E+03 :
5.00000 317.00000

Additional information about the trace feature is provided in Part 3, OPERAT-
ING PRINCIPLES.

Part 3— Operating Principles

This part of the manual provides the information necessary for implementing the
FORTRAN program on the 1620 computer. It is assumed that the reader has a prior
knowledge of 1620 operating principles. OPERATING PRINCIPLES is divided into two
parts, PRODUCING THE OBJECT PROGRAM and EXECUTION OF THE OBJECT PROGRAM.

Producing the Object Program

Clearing Core Storage

to Zero

Switch Settings

The FORTRAN program is available in two forms, card or paper tape. Both forms
are divided into two sections; the processor and the subroutines. The sequence
of operations that follows is written for both card and paper tape systems.
Eight basic steps are required for producing the object program. These eight
steps are summarized below, followed by additional detailed information for
steps 1, 2, 6, 7, and 8.
1. Clear core storage to zeros.
2. Set the console program switches for compilation.
3. Set the overflow check switch to ProcRaM and all other check switches to
STOP.
4. Press the reset key.
5. For the card system, prepare the card punch for operation by loading
blank cards into the punch hopper and by pressing the punch start key.
For the paper tape system, prepare the paper tape for operation.
6. Load the compiler program deck or tape.
7. Enter the source program statements. These may be read in through the
card reader, the paper tape reader, or typed in at the console typewriter.
8. If required, load the subroutine deck or tape.

(Step 1)

A suggested method for clearing core storage to zeros is:

1. Press the reset key.
. Press the insert key.
. Type the instruction 16 00010 00000.
- Press the release key.
. Press the start key.
After all storage positions have been cleared, press the instant stop key.

D Utk O

(Step 2)

During compilation of the source program, the console program switches per-
form the following functions:

ON OFF
Switch1 Causes the source statements to be typed on Source statements
the console typewriter as they are processed. are not listed.

The first 5-digit field is the object program
address of the first instruction compiled for
the source statement.
Switch 2 Causes trace instructions to be compiled. Trace instructions
are not compiled.

Operating Principles 51

Loading the Compiler

Card System

Paper Tape System

Compilation of the Source
Program

52

Switch3 Input to the compiler (source statements) is Source program
being entered via the console typewriter. entered from card
reader or paper
tape reader.

Switch4 This switch is used in conjunction with switch 3 when switch 3 is on.
It provides the ability to restart the typing of a statement if you have
made an error. Switch 4 is normally oFr. When a typing error is made
in a source statement and it is to be corrected, this switch is turned
on, the release and start keys are pressed, and then switch 4 turned oFF.
The statement can now be retyped.

(Step 6)

When operating with the card system, you can load the compiler program deck
by placing the deck in the read hopper and pressing the load key. The cards in
the FortRAN compiler deck are punched with sequence numbers in columns 76
through 80 and must be loaded in sequence. If the first card read is not card
number 1, the machine will stop with an operation code of 00 displayed in the
operation register lights. If cards 2 through 24 are not read in the proper se-
quence, the message “CARDNN,” where NN is the number of the missing card,
will be typed on the console typewriter and the machine will halt. The cards
must be removed from the reader and placed in proper order. Core storage must_
be cleared to zeros before the deck is read in again starting with card 1.
Beginning with card number 25, if any card is out of sequence, the console
typewriter carriage will be returned and the following message will be typed:

CARD ONNNN OUT OF SEQUENCE

and the machine will halt. When this occurs, the card numbered ONNNN has
been read out in sequence. Remove the cards from the reader and arrange them
correctly. Starting with the card replacing card number ONNNN, put that part
of the deck which has not yet been loaded, back into the read hopper. Press

the reader start key on the 1622, and continue reading by pressiﬁgwthe start ‘keyﬂ

on the 1620 console.

To load the compiler tape, the following procedure must be followed:
1. Mount the compiler tape on the paper tape reader.
2. Press the insert key. '
3. Type the instruction 36 00000 00300.
4. Press the release key.
5. Press the start key.

The following instructions are typed on the console typewriter after the compiler
has been successfully loaded:

ENTER SOURCE PROGRAM, PUSH START

To begin compilation after the compiler has been loaded, either press the start
key or manually insert the instruction 49 00402.
Two methods of source program input may be used under control of program
switch 3, as follows:
1. If input is in cards (switch 3 off), place the source program deck in the
read hopper and press the reader start key. If input is in paper tape,
mount the source program tape on the paper tape reader.

Loading the Subroutines

Card System

2. If the source program is to be entered from the typewriter (switch 3
on), the compiler will transfer control to the console to await the first
statement, After you type a statement, press the record mark key and then
press the release and start keys to continue compilation. The carriage will
return after each statement has been processed, to await the entry of the
next statement until an END statement is entered.

As the source program is processed, a test is made in the compiler to deter-
mine whether the compiled object program (not including relocatable subrou-
tines), together with the object program data table, will occupy more core stor-
age locations than will be available. If the object program is too long, the state-
ment which caused the overlap is processed, and the following message is typed
immediately:

OVERLAP

Compilation continues, and the message is typed after each statement there-
after.

After an END statement is processed, the following instruction message is
typed on the console typewriter:

SW1 ON FOR SYMBOL TABLE, PUSH START

If a typed listing of the symbol table, that was developed during compilation,
is not desired, turn off program switch 1. If the listing is required, turn on
switch 1.

To continue processing, press the start key.

The following message is typed next, whether the symbol table has been
typed or not.

SW1 OFF TO IGNORE SUBROUTINES, PUSH START

If the subroutines are to be included in the object program deck or tape,
turn on program switch 1, load the subroutine deck or tape, and press the start
key. If the subroutine deck or tape is to be read in when the object program is
run, turn off switch 1.

To complete the processing, press the start key.

If program switch 1 is off, the following message will be typed:

PROCESSING COMPLETE

(Step 8)

Under control of program switch 1, as previously described, the subroutine deck
or tape may be loaded immediately after compilation, or loaded when the object
program is loaded.

When operating with the card system, place the subroutine deck in the read
hopper and load the deck into storage by pressing the start key. (Or you may
press the reset key on the console, and then press the load key on the card reader.)

The cards in the subroutine deck have a sequence number punched in col-
umns 76 through 80, and must be loaded sequentially in that order. If cards
numbered 1 through 8 are not read in proper sequence, the machine will halt
with an invalid operation code displayed in the operation register lights. If this
occurs, remove the cards from the reader, place them in the proper sequence, and
replace the deck in the read hopper. Press the reset key and then the load key.

Operating Principles 53

Paper Tape System

Errors in the Source Program

54

Cards out of sequence, other than cards 1 through 8, will cause the message
CARD OUT OF SEQUENCE

to be typed on the console typewriter, and the machine will halt. The second
card from the back in the read stacker is the one out of sequence. All preceding
cards were Joaded properly. Remove the cards from the reader which have not
been loaded, arrange them sequentially, and replace the deck in the read hopper.
To continue reading the subroutine deck, press the reader start and start keys.

When operating with the paper tape system, mount the subroutine tape, and load
it by pressing the start key. (When restarting, you may insert the instruction
36 00000 00300, press the release key, and then press the start key.)

If the source program has used any of the relocatable subroutines, they will
either be punched out into the object program if the subroutines are read in im-
mediately after compilation, or they will be loaded into core storage if the sub-
routines are processed at object time.

If the compiled instructions and required data will exceed the storage capac-
ity of the 1620 at object time, the following message will be typed on the console
typewriter just after the first relocatable subroutine that causes the overlap has
been processed for possible inclusion in the object program:

OVERLAP XXXXX POSITIONS

The “OVERLAP XXXXX” is the number of core storage positions which overlap
between the end of the object program and the data storage area. The object
program is allocated to increasing core storage locations and includes the com-
piled program and relocatable subroutines used. The data storage area is allo-
cated to decreasing core locations starting with the highest addressed position of
storage. After the overlap message is typed, the machine will halt and pro-
grammed processing of the subroutines cannot be continued.

After the subroutines have been processed, the following message will be
typed on the console typewriter:

PROCESSING COMPLETE

A number of tests are made for source program errors during compilation of the
object program. If an error is found in a source statement, an error message is
typed, “ERROR NO. n,” where n is the error code; and processing continues.
A list of possible errors follows:

Error
No._ Condition

1 An incorrectly formed statement.

2 A subscripted variable is used and no prMENsioN statement for it has
previously appeared in the program, or a dimensioned variable is used
without subscripts, or a variable used in a prMENsION statement has al-
ready appeared in the source program.

3 A floating point number is not in the allowable range of values, or a fixed
point number contains more than four digits.

4 The symbol table is full.

5 A mixed mode expression (fixed point and floating point in the same ex-
pression.) .

6 A variable name in an expression containing more than five characters.

7 The switch number has been omitted in an IF (SENSE SWITCH n) state-
ment, or the first character following the right parenthesis in an 1F state-
ment is a comma,

8 A comma follows the statement number in a po statement.

9 A DIMENSION statement ends with a comma, or more than two dimensions
have been specified in a prMENsioN statement, (Only two-dimensional
arrays are permitted.)

10 Unnumbered FORMAT statement.
11 Incorrect representation in a FORMAT statement in one of the following
ways:
a. A special character is used
=@—*§+.,
in a numerical field specification.
b. An alphabetic character other than E, F, or I is used in a numerical
field specification.
c. A decimal point is missing in an E- or F-type numerical field specifi-
cation.
d. The number of positions to the right of the decimal point has not
been given in an E- or F-type numerical field specification.
e. A record mark appears in a numerical field specification or in an
alphameric field.
f. The first character following the word FORMAT is not a left parenthesis.
12 The total record width specified in a FORMAT statement is greater than
87 characters.
13 A rFoRMAT statement number has been omitted in an input/output state-
ment.

Compilation of the program proceeds after the error message is typed, but
the statement in which the error has occurred may either be partially compiled
or not compiled at all.

Execution of the Object Program

Card System

Paper Tape System

When operating with the card system, the object program may be loaded imme-
diately after compilation by placing the deck in the read hopper, pressing the
reader start key and the start key on the console. The object deck may also be
loaded at this or any other time by first pressing the reset key and then the load
key on the card reader.

The cards in the object program must be loaded, sequentially by number,
starting with number 0001 which is punched in columns 77 through 80. If cards
numbered from 1 through 8 are not read in proper order, the machine will halt
with an invalid operation code (00) displayed in the operation register lights.
The cards must then be removed from the reader and placed in proper sequence.
Reload by placing the cards in the read hopper again and by pressing the reset
and load keys.

Any other card out of sequence will cause the message
CARD OUT OF SEQUENCE

to be typed on the console typewriter, and the machine will halt. The procedure
for continuing the operation is exactly as described for reloading the subroutine
deck under similar conditions. '

When operating with the paper tape system, the object program may be proc-

essed immediately after compilation by mounting the object tape and pressing
the start key.

Operating Principles 55

Input Data From the Keyboard

Trace Feature

56

The object tape may also be entered by pressing the insert key, typing the
instruction 36 00000 00300, and pressing the release and start keys.

If the subroutine tape or deck is to be loaded at object time, after the object
program has been loaded, the machine will halt and the following message will
be typed on the console typewriter.

ENTER SUBROUTINES, PUSH START

The subroutine deck or tape must then be loaded in the manner already
described.

After the subroutines have been loaded, the machine will halt and the fol-
lowing message will be typed:

LOAD DATA

If the subroutines are already contained in the object deck or tape, the fol-
lowing message will be typed after the object program has been loaded, and the
machine will halt:

LOAD DATA

To initiate the execution of the object program, press the start key on the
1620 console, or manually insert the instruction 49 08300.

Each execution of an AccepT statement in the object program causes the type-
writer carriage to return as a signal for you to type the input quantities corres-
ponding to the variables named in the list. If you make a typing error during con-
sole entry of data, you may correct the error by using program switch 4, as de-
scribed under sWITCH SETTINGS.

Note: When typing data from the keyboard, the total width specified in the
FORMAT specification should be typed. Leading or trailing blanks may be
used to fill out a specification.

The FORTRAN processor can (under program switch control) compile certain instruc-
tions into the object program for tracing the flow of the program and for checking
its correctness. When the object program is executed, program switch 4 performs
the following function:

ON OFF
Switch 4 Causes compiled trace in- Trace instructions are not
structions to be executed. executed.

The trace output provided is the evaluated left-hand side of each executed
arithmetic statement, which is typed at the left margin. Normal output, resulting
from PUNCH, PUNCH TAPE, PRINT, and TYPE statements is not inhibited. The output
format of the trace data is E14.8 for floating point results and I5 for fixed point
results.

Note that program switch 4 serves a dual function during execution of the
object program: i.e., provision of trace data and correction of input data incor-
rectly entered at the console keyboard. Thus, when running in the trace mode,
you must turn off program switch 4 before typing output data. Following the
entry of the last item on the input list (after pressing the record mark key and
release key), press siE two or three times, turn the switch on, and press the start
key. (If a trace routine is desired, switch 4 cannot otherwise be used in the
program.)

Part 4 — Analysis of the FORTRAN Program

Subroutines

This part of the manual is intended to assist experienced programmers in under-
standing, modifying, and testing FORTRAN programs. It is assumed that the reader
has had previous experience in programming, and has some knowledge of the
1620 Symbolic Programming System, if subroutines other than those provided
by FORTRAN are to be added.

The ¥orTRAN subroutine deck or tape contains thirty-one subroutines. Up to
nineteen additional subroutines may be added at the user’s option. It is entirely
feasible for several subroutine decks or tapes to be maintained by an installation
when it is desirable to have several sets of optional subroutines available.

Two hardware-oriented systems are available; one for use on machines hav-
ing the automatic divide feature, and one for machines which do not have auto-
matic divide.

The subroutines are classified as follows:

Type A: Automatically compiled, used by the FORTRAN system only; not di-

rectly available to the programmer.

Type B: Automatically compiled if used in the source program, or used by

the system, available to the programmer.

Type C: Not used by the system, automatically compiled if used by the

programmer.

The table which follows shows each subroutine provided, its type, the num-
ber of operands it requires, and its symbolic name. The symbolic names shown
on this table are not used in programming; they are included to provide refer-
ence to the symbolic listing of the subroutines.

Symbolic
Subroutine Name Operation Type
Floating Add FAD A+8B A
Floating Subtract FSB A-B A
Floating Multiply FMP A*B A
Floating Divide FOV A/B A
Reverse Floating Divide FDVR B/A A
Floating A**B FAXB A**B A
Floating A**B(~B) FAXBN A**(-B) A
Fixed Add FXA 1+1J A
Fixed Subtract FXS 1-J A
Fixed Multiply FXM I*) A
Fixed Divide FXD 1/ A
Load Into FAC TOFAC A
Store from FAC FMFAC A
Reverse Fixed Divide FXDR } J/1 A
A** FAXIL A**] A
A**(=I) FAXIN A** D) A
Convert Sign RSGN -A A
Floating Natural Log FLN LOG(A) B
Floating Exp(A) FEXP EXP(A) B
Floating Square Root FSQR SQRT(A) C
Floating Sine FSIN SIN(A) C
Fioating Cosine FCOS COS(A) C
Floating Arctangent FATN ATAN(A) C
Convert: float=to-fix FIX FIX(A) A
Convert: fix-to-float FLOAT FLOAT(M) A
Read Card RACD A
Read Tape RAPT A
Read Typewriter RATY A
Write Card WACD A
Write Tape WAPT A
Write Typewriter WATY A

Analysis of the FORTRAN Program 57

Floating Point

Accumulator

Subroutine Linkage

Error Analysis of

Subroutines

58

The results of all floating point subroutines appear in a 10-digit field which ex-
tends from storage positions 00051 through 00060. This field is called the floating
point accumulator (Fac). The symbol, Fac, is associated with the address 00060
in the symbolic listing of the system.

FAC is also used as the fixed point accumulator. Fixed point numbers occupy
only the four low-order positions of rac, 00057-00060.

The subroutine linkage is in the form
BTM SUBR A (where A is the address of the argument)

for arithmetic subroutines. The operand is added to, subtracted from, divided by,
or multiplied by the number stored in Fac.

Both type B and type C subroutines are relocatable and are loaded only if
called for. Toward the beginning of the compilation phase, the symbol table area
is cleared. The symbolic name of the subroutine, siv, is loaded into a specific
10-digit field in the symbol table. The address of this field is derived from the
order in which the subroutine names are listed in the ForRTRAN processor. The
symbol is left-justified in the field, and the high-order address of that field is
associated with the function subroutine. The 10-digit field immediately preceding
this field is also associated with the same function subroutine. For example, if the
subroutine order is the order used by 1M Applied Programming in the decks
they prepare and release, the locations 19990 through 19999 are reserved for the
symbol siv and the preceding ten digits, 19980 through 19989, are also reserved
for the sine subroutine. If the program calls for the sine subroutine (i.e., the sine
function is used in an arithmetic statement), the following instruction is compiled:

BTM 19990 , A

where A is the address of the subroutine argument. When the subroutine has
been assigned an absolute address, the symbol siv is replaced by 49 xxxxx, where
xxxxx is the absolute address of the rsiv subroutine in memory. Thus, when the
BT™ 19990 A instruction is executed in the object program, the address of the
argument will be transmitted to 19985 through 19989, and the branch to 19990
will be followed by a branch to the FsiN subroutine.

Results of all FORTRAN subroutines are truncated (except FmMp and FExp, where

the result is rounded), and, in general, errors are no greater than one in the

last digit of the resulting mantissa. The exceptions to this statement are listed

below.

FLN: The argument of the rLN subroutine is broken into an integral and a frac-
tional part. The logarithm of the fraction is evaluated using a series expansion.

~ The result is correct to nine decimal digits. The integral part of the argument
is multiplied by In10 and added to the above result to produce the desired
value. For values of the argument in the range .99 <<ARG <1.01, some loss of
accuracy will occur. The reason for this is that some of the digits calculated
will be leading zeros, and, when the result is normalized, fewer than eight sig-
nificant digits will remain.

FEXP: The antilogarithm is computed using a Hastings’ approximation* for 10%.
The argument is initially multiplied by log e and then divided into an integral
and a fractional part. The integral part becomes the characteristic of the re-

*Hastings, Cecil, Jr., Approximations for Digital Computers,
Princeton University Press, New Jersey,
The Rand Corporation, 1955

Error Checks

sult; the fractional part is evaluated in the polynominal to produce the man-
tissa. When the argument of the function is positive, the error in the result
does not exceed one in the last digit of the mantissa; when the argument is
negative, the limit of error is five in the last digit of the mantissa.

FAXB and FAXBN: A® is evaluated as ¢®'"4; therefore, it is evaluated by means

of three linking subroutines, FL~, FMp, and FExp. An error in one of these sub-
routines may propagate and increase in succeeding subroutines. An effort is

made to counteract this effect by rounding the product BlnA in the rmp sub-
routine. The error thus produced is in general no greater than one in the

seventh digit of the mantissa.

FSQR: The square root is computed by means of the odd integer method. The
result is accurate to 1 in the last digit of the mantissa.

FSIN and FCOS. The sine and cosine functions are computed using a Hastings’
approximation for sine

X

ISTE

Before it can be used, this approximation is transformed to compute sine X for

ki
X< 3

IS

and cosine is evaluated as the sine

—X

Y E

The result of this subroutine is correct to eight decimal digits. However, for
arguments less than or equal to one-tenth of a radian, leading zeros in the re-
sult will cause a loss of accuracy upon normalization, as with FLN. Loss of ac-
curacy will result for arguments larger than 4 = and less than 100 radians, but
will not exceed one in the seventh digit of the mantissa. The reason for this
is that the larger the number of radians, the less accurately the angle can be
specified when reduced to within one revolution. For arguments greater than
100 radians, correspondingly greater errors will be produced.

FATN: The arctangent function is evaluated by using the first six terms of a
series expansion, which results in an error of less than one in the last digit of
the mantissa. In the computation, arctan x must be in the range

T m
B) < arctan x < B)
If |x| < 1 x 10-* the resulting angle is equal to the argument x.

A number of error checks have been built into the FORTRAN subroutines. The
basic philosophy that has been followed with respect to an error situation is to
have an error message typed out, to set the result of the operation equal to the
most reasonable value under the circumstances, and to have the program con-
tinue. The following list shows the error checks that exist in the subroutines,
the error codes that are typed out, and the value to which Fac is set before the

program continues. In the list it will be noted that the terms “Overflow” and
“Underflow” occur several times. Overflow means that the characteristic of the

result has exceeded 99; underflow means that the characteristic of the result is
less than —99.

Analysis of the FORTRAN Program 59

Adding Subroutines

Language

60

ERROR CHECK ERROR CODE CONTENTS OF FAC
Overflow in FAD or FSB E1 599 999 9999
Underflow in FAD or FSB E2 000 000 0053
Overflow in FMP E3 599 999 9959
Underflow in FMP E4 000 000 0099
Overflow in FDV or FDVR ES 599 999 9959
Underfiow in FDV or FDVR E6 000 000 0059
Zero divisor in FDV or FDVR E7 599 999 9959
Zero divisor in FXD or FXDR E8 999 999 9999
*Argument in FIX =10, 000 E9 599 999 9999
*Argument in FIX = - 10,000 E9 $99 999 9559
Loss of all significance in FSIN or FCOS F1 599 999 9959
Zero argument in FLN F2 599 999 9599
Negative argument in FLN F3 Anixi
Overflow in FEXP or FEXN F4 599 999 9959
Underflow in FEXP or FEXN F5 000 000 0093
Negative argument in FAXB Fé |A|B
Negative argument in FSQR Fé6 AT
Input data in incorrect form or outside allowable
range F7
Floating point output data outside allowable range,
or in form not acceptable to FORMAT specification F8
Input or output card record is longer than 72
characters, or there is an element in an input
or output list for which there is no specification
in the corresponding FORMAT statement F9
* Floating=-point hardware subroutine only

Input/Output Data. Input data to the object program is read alphamerically at
the paper tape reader, the card reader, or the console typewriter.

If error F7 occurs during the execution of the instructions compiled for
an input statement, the data which is incorrect will be ignored and processing
will continue.

If error F8 occurs, the incorrect data will be ignored in the output record,
and an additional record will be created containing the incorrect data in the
form specified by E14.8 for floating point data. Fixed point data outside the
range of the format specifications will be output in the form I {w-1) where w
is the specified width. No error indication will occur.

If error F9 occurs, the incorrect data will be ignored and processing will
continue.

As indicated earlier, up to 19 additional subroutines can be added to the 31
subroutines provided by the program. Additions of relocatable subroutines to the
FORTRAN system involve changes in the language, the processor, and the sub-

routines,

The four type C subroutines provided with the system may be replaced subject
to the restrictions mentioned below. The two type B subroutines are an integral
part of the system and may not be replaced.

Subroutines added to the system are type C. Such subroutines must be given
a one-to-four character symbolic name. For example, a subroutine to calculate
hyperbolic sine might be called svm, and in a source program might be used in

such a statement as

Y = SNH(X) or as Y = SNHF(X).

Processor

Subroutines

A 4-character record in the processor specifies the number of functional sub-
routines included in the subroutine deck or tape to which direct teference may
be made in a source program. There are six such subroutines included in the
standard system, and the record bb06, where b is a blank, is punched in the
processor. This record appears in card number 02001 in the processor deck and
is the fifty-sixth record in the processor tape. If additional subroutines are added,
or if some of the available subroutines are not used, this record must be changed
to the actual number of type B and type C subroutines included in the program.
Immediately following the 4-digit record specifying the number of included
functional subroutines, are cards in the processor deck or records in the processor
tape giving the symbolic names of the associated functions. Each symbolic name
must be preceded by two blanks. In the card system, a 5-digit sequence number
must appear in columns 76 through 80, starting with 02002. The names of the
subroutines in the standard system and the order in which they appear are as
follows:

Subroutine Subroutine
Name Number
glg S } g } (treated as one subroutine)
ATAN 6
EXP 7
1.OG 8
SQRT 9

This is an ordered list, and the sequence in which the function names are
read. by the compiler must not be changed. Each subroutine, starting with siv
is assigned a serial number NN, dependent upon its position in the list, to which
the subroutine relocator program refers. The serial number of the sQRT routine,
for example, is 09. The addition of the hyperbolic sine routine mentioned above
would require the addition of a card numbered 02008 containing the name sNu
punched in card columns 3 through 5. The serial number automatically assigned
to this function would be 10. Subroutine numbers 1 through 3 cannot be used.

The subroutine relocator routine contained in the subroutine deck or tape will
relocate and reproduce into the object program, or store in core storage, any re-
locatable subroutines called for by the source program. The first relocatable
subroutine will start in the next even address beyond the object program.

The relocator requires the relocatable subroutines to be in the same order
in the subroutine deck or tape as their corresponding symbolic names appear
in the processor. In addition, there must be a relocatable subroutine in the sub-
routine deck or tape for each symbolic name used in the processor.

All relocatable subroutines have been written in 1620 sps language. In the
card system, the assembled object programs have been condensed by the sps
condensing routine; the first two and last seven cards of the condensed output
have then been discarded. In the tape system, the 2-record loading routine at
the beginning and the single record containing the multiplication and addition
tables at the end of the sps output are removed. A flag is inserted in the low-
order position of the 10-digit loader record that precedes instructions only
(XXXXX XXXXX). The header and trailer records are added, and in the card
system proper sequence numbers are punched in colums 76 through 80.

For the paper tape system, an sps modification tape is included which will
modify the standard 1620 sps paper tape system (1620-sp-008) so that the header
and trailer records will automatically appear in the sps output tape. To use this

Analysis of the FORTRAN Program 61

Writing Relocatable
Subroutines in SPS

Header Record

Trailer Record

62

tape after the sps system has been loaded in the normal way, insert the instruction
36 00000 00300, mount the modification tape, and press the release and start keys.
After the modification tape has been read in, the following message will be typed:

TYPE IN TWO DIGIT SUBROUTINE NUMBER

The correct 2-digit subroutine number must be typed, and the release and
start keys pressed. If a typing error is made, the error may be corrected by using
program switch 4, as described under oPERATING PRINCIPLES. Processing may be
continued by entering the sps source program.

Since the sine-cosine subroutines are together as one subroutine with differ-
ent entries, they must remain in the subroutines for compatibility with the re-
locator. However, if you wish to write a new sine-cosine subroutine, it must be
compatible with the relocator, i.e., the sine entry equals cosine entry +44.

The origin of a relocatable subroutine must be at location 5000, and must be
the address of the first instruction executed in the subroutine. Relative addresses
in an instruction are indicated by flags over the 0 or 1 positions of the operation
code. For example, if the P address of an instruction is relative to the origin
5000, a flag must be over position 0. The P address will then be modified when
the subroutine is relocated. The flags are not removed by the relocator but are
stored in memory with the instruction at object time. Since relative P and Q
addresses are to be modified, they must not contain any flags other than in the
P, or Q. positions. (Flags on P, or Q. are not necessary to the subroutine re-
locator.)

The address of the argument will be found in location 19989 —20(NN —4)
where NN is the subroutine number. (If compilation needs additional memory,
the location of the argument must be modified by 20 or 40 X, depending upon
the amount of additional memory used.) The calculated result of a relocatable
subroutine must be left in the floating point accumulator (Fac, 00051 through

+ 00060), or a flag must be set in location 00051. Although record marks may be

contained within a subroutine, one is available in location 00401).

Relocatable subroutines must exit by a Branch Back (BB).

A flagged digit, representing the high-order digit of the highest numbered
core storage location used in the system, is in location 00400. This digit is, for
example, 5 for a 60,000 location machine configuration.

In the card system, the header card has the following form:

Columns 1-2 Subroutine number (NN).
62 Zero.
76-80 Sequence number (sequence number = NN00O, where
NN is the subroutine number. The first sequence num-
ber in the subroutine itself would then be NNO0O01.)

In the tape system, there are two header records: the first contains a single
zero and the second contains the 2-digit subroutine number.

In the card system, the trailer card has the following form:

Columns 1-5 The next even number above the number of locations
used by the subroutine.
62 0 (flag zero).
76-80 Sequence number.

Writing Relocatable
Subroutines in Machine
Language

In the tape system, the first two of the preceding items are reversed and ap-
pear as individual records, i.e., the first record contains a flag zero and the second
record contains the next even number above the number of locations used by the
subroutine. The last card of the relocatable subroutine section of the subroutine
deck contains a flag one (I) in column 62 and the sequence number 29000 in
columns 76 through 80. This card follows the last trailer card and indicates to the
relocator that all relocatable subroutines have been processed. In the paper tape
system, this record is a single one (1).

If a relocatable subroutine is written in machine language, the origin and oper-
ation code flags must be as described for writing in sps. The card format must
also conform to the condensed sps as follows:

Instruction Card
Columns 1-61

One to five instructions with operation codes flagged for
relative P or Q addresses. A record mark must be in col-
umn 61 or must immediately follow the last instruction
on the card (the record mark is not loaded at object
time). Instructions must use the full 12 digits. If packing
is done, the Q field must still be filled with zeros and the
packed instructions would start a new card.

62 0 (zero-instruction card).

65-69 Storage address where column 1 of the card will load.
(High-order digit must be flagged.)

70-74 Address of next storage location beyond the number of
locations used by the instruction. (High-order digit must
be flagged.)

76-80 Sequence number.

Constant Card
Columns 1-61

Constants which will be loaded sequentially into memory.
A record mark must be in column 61 or immediately fol-
lowing the last digit of a constant on the card. Consecu-
tive constants terminated by record marks must be on
individual cards with double record marks at the end.

62 1 (one-constant card).
65-60 Same as instruction card.
70-74 Address of next core location beyond number of locations
used by constants. (High-order digit must be flagged.)
76-80 Sequence number.

In the paper tape system, an absolute language version of a relocatable

subroutine must be in the same form as output by the paper tape version of
1620 sps.

In the card system, the subroutine relocator checks sequence numbers upon

reading. If a card is missing or out of order, the error message

CARD OUT OF SEQUENCE

will be typed. In this case you must restore the proper sequence and then push
the start key.

Analysis of the FORTRAN Program 63

Storage Allocation

After Loading the Compiler After the standard processor deck or tape has been read into 1620 storage, and
before processing of the source statements has begun, storage is allocated as
follows:

1. The multiply-add tables are in locations 00100 through 00399.

2. The compiler program begins in location 00402.

3. The work areas in which the source program will be processed have been
cleared where necessary. These areas, and a constant defining the end
of the symbol table area used for function names, are in locations 16800
through 17498.

4. In the standard system (20,000 positions of storage), twelve 10-digit
fields are located in positions 19880 through 19999. The alphabetic repre-
sentation of the names of the six relocatable subroutines, in the two forms
allowed — one with and one without the terminal F — are stored in the
12 fields. The name of each additional relocatable subroutine inserted by
the user will be added to this list, and will appear in the symbol table in
both forms.

5. The rest of the symbol table from location 17500 through 19879 contains
238 10-digit fields, each containing the constant 00000000 == ==. The end
of the symbol table is defined by the constant 0 == in locations 17498
through 17499.

It the system has been modified for use with the 1623 Core Storage unit,
the symbol table will occupy the highest positions of storage. If, for example,
the highest available address is 59999, the subroutine names will appear in loca-
tions 59880 through 59999. The constant defining the end of the symbol table
will be in locations 40008 through 40009.

After Processing the After compilation, the areas previously cleared for the symbol table will contain:
Source Program 1. The alphabetic form of every variable used in the source program.

2. In the next lower field after the name of every variable array, a field of
the form 0TI 1 I NNNNN, where the Is represent the first specification
listed in the pimMENsION statement for the array, and the Ns represent the
address of the last element in the array.

3. Every constant used in the source program. Floating point constants will
have the form of an 8-digit mantissa and a 2-digit exponent. Fixed point
constants are in 4-digit subfields (right-justified) within the 10-digit fields
in which they appear. All constants have a flag over the low-order digit.

4. All statement numbers will be in the form TLLLLOMMMM, where the
Ms represent the statement number, and the Ls the location in the object
program of the first instruction compiled for the source statement indi-
cated.

5. Intermediate storage, or accumulator numbers, from 000 -through 998,
as required and assigned by the compiler.

6. In the next lower field after the final field used in the symbol table by the
compiler, the constant 0000000999 will appear.

A record, consisting of three 5-digit fields which has been punched into the
object program at the conclusion of compilation, is stored in locations 00402
through 00416. The first of these fields contains the address of the first location
available for the storage of relocatable subroutines after the object program
has been properly loaded.. The next field contains the address of the end of
the symbol table when it is loaded at object time, and the third field contains
the corresponding address for the symbol table as it appears in compressed form
at the end of compilation.

64

After Loading the
Object Program

System Deck

General Make-up of the
Compiler Deck

A 50-digit record is in location 00418 through 00467, which indicates the
particular relocatable subroutines to be added to the object program by the
subroutine relocator program. The digit 1, appearing in an odd position of this
record, reading from ;ight to left, is interpreted as meaning that the correspond-
ing subroutine is to be included (the 6 relocatable subroutines, and then the
19 optional subroutines). The order of the indicators is the same as the order
in which the names of the subroutines are read in during the initialization phase.

After the object program has been loaded, including the subroutines, if neces-
sary, the multiply-add tables are in locations 00100 through 00399. The arith-
metic and input/output subroutines, together with the work areas they require,
begin in location 00402. The object program begins at location 08300 and is fol-
lowed by any relocatable subroutines called for by the source program. The
symbol table has been loaded and modified to form a data table. Locations 00051
through 00099 are used for intermediate storage and a product area required
by multiply instructions. The following illustration shows the location in storage
of all subroutines except FsiN, Fcos, and FATN.

Location of Subroutines at Object Time

Symbolic Storage
Subroutine Name Location
Floating Add FAD 00518
Floating Subtract FSB 00408
Floating Multiply FMP 01378
Floating Divide FOV 01862
Reverse Floating Divide FDVR 01756
Floating A**B FAXB 03270
Floating A**B(-B) FAXBN 04232
Fixed Add FXA 02644
Fixed Subtract FXS 02700
Fixed Multiply FXM 02748
Fixed Divide FXD 02876
Load Into FAC TOFAC 01238
Store from FAC FMFAC 01306
Reverse Fixed Divide FXDR 02816
AF*] FAXI 03670
A1) FAXIN 03622
Convert Sign RSGN 02546
Convert:float~to-fix FIX 03494
Convert: fix~to-float FLOAT 03222
Read Card RACD 04512
Read Tape RAPT 04596
Read Typewriter RATY 04548
Write Card WACD 04748
Write Tape WAPT 04844
Write Typewriter WATY 04796
Trace TRACE 05124

The compiler deck is comprised of two programs separated by a group of cards
consisting of an object program loader and the number and names of the sub-
routines included. The first program is the initialization phase which reads in the
object program loader and punches it out into the object deck. This program
continues by initializing the symbol table area and the area into which source
statements will be read. Finally, a card containing the number of subroutines
included, and individual cards containing the names of the subroutines are read
in and processed. The second of the two compiler programs is then read in and

Analysis of the FORTRAN Program 65

General Make-up of the
Subroutine Deck

General Make-up of an
Object Deck

66

a halt instruction is executed. The starting instruction for each program is in
location 00402. After each statement is processed during compilation, the pro-
gram returns to location 00462 to continue.

The sections of the standard deck, identified by card number, are as follows:

Card Numbers

00001 through 00044
01001 through 01054
02001

Loading routine and initialization program
Object program loader
Number of included subroutines

Names of included subroutines
Compiler program

02002 through 02007
03001 through 03229

The first section of the subroutine deck is a loading routine which loads the sub-
routine relocator. The relocator processes the relocatable subroutines which im-
mediately follow it in the deck and finally reads in and processes the arithmetic

and input/output subroutines (type A) which are contained in the last section
of the deck.

The sections of the standard subroutine deck, identified by card number, are
as follows:

Card Numbers

04001 through 04008
04009 through 04059
05000 through 05019
06000 through 06029
07000 through 07015
08000 through 08022
09000 through 09017
29000

Loading routine

Subroutine relocator
SIN/COS subroutine

ATAN subroutine

EXP subroutine

LOG subroutine

SQRT subroutine
Relocatable subroutine trailer

30000 through last card Arithmetic and input/output subroutines

The first two sections in the object deck have been punched during the initializa-
tion phase and consist of a short loading routine which loads the add tables and
the program and symbol table loader. The cards following these contain the
compiled_instructions which are concluded by a record containing only the
constant 00009990 and a communication card. The communication card consists
of three 5-digit fields, the 50-digit field indicating which subroutines are being
used, followed by a 5-digit field indicating the memory capacity. When executed,
the first loading routine branches to the program loader which loads the compiled
instructions in proper order into storage to form the object program. Following
this is the symbol table, as it appears at the end of compilation, which is read
into storage by the program loader. These cards are read into storage by the
program loader which expands the table to allow for any dimensioned variables
which were used in the source program. The next section contains any relocated
subroutines (type C) which may have been called for, if the subroutines were
processed when the object program was compiled.

The last section of the deck contains the arithmetic and input/output sub-
routines, the multiply and add tables, and the instructions which cause the ma-
chine to halt before branching to the start of the object program.

System Tapes

General Make-up of
the Compiler Tape

General Make-up of the
Subroutine Tape

The sections of the object deck, identified by card number, are as follows:

Card Numbers

0001 through 0008 Loading routine and add tables
0009 through 0054 Program loader
0055 through last card Compiled instructions

Communication card

Symbol table

Relocated subroutines and arithmetic and
input/output subroutines, when required.

Note: When the symbol table is loaded, only constants and statements are placed
into the data tables.

Variables computed in a FORTRAN object program are stored in specific 10-digit
fields in core storage, the addresses of which have been determined in the com-
pilation process. Addresses are assigned in descending order from the highest-
numbered storage location, in the order in which the variables, constants, and
statement numbers are encountered in the source program. The order of address
assignment is repeated for each object program compiled. The values computed
and stored during the execution of an object program are not disturbed by the
loading of another object program, if the variables have appeared in the second
source program in exactly the same order as in the first. By this means, for example,
if an array of variables is computed in an object program, another object program
may be loaded immediately to use the same computed values in further computa-
tions. The names of the variables used in this way need not be the same from one
source program to another.

An involved algebraic calculation might require the use of temporary storage
fields which are automatically assigned by the compiler. For this reason, variables
appearing in the same order, but which are defined for the first time in the body
of different source programs may not be given the same assigned address. Symbol
table listings at compilation time will disclose any such lack of correspondence.

The compiler tape consists of two programs separated by a group of records
which are processed when the tape is read into the 1620. The first program is the
jnitialization phase which reads in the first five records on the tape following the
program itself, and punches them out into the object tape. This program then
initializes the symbol table area and the area into which source statements will
be read. Finally, a record containing the number of the subroutines included and
individual records containing the names of the subroutines are read in and
processed. The rest of the tape which contains the compiler is then read in and
a halt instruction is executed. The starting instruction for each program is in
location 00402. During compilation, after each statement is processed, the pro-
gram returns to location 00462 to continue.

The first section in the subroutine tape is a loading subroutine which causes the
subroutine relocator program which follows it to be read and executed. The
relocator processes the relocatable subroutines which immediately follow it on
the tape, and finally reads in and processes the arithmetic and input/output sub-
routines which are contained in the last record on the tape.

Analysis of the FORTRAN Program 67

General Make-up of
an Object Tape

Making Corrections fo
FORTRAN System Tapes

Duplicating the Processor
and Subroutine Tapes

Description of the Program

68

The first five records in the object tape have been punched during the initializa-
tion phase, and contain a short loading routine which loads the multiply-add
tables and the program loader. The records following are the compiled instruc-
tions which are concluded by a record containing only the constant 00009990.
The first loading routine branches to the program loader which loads the com-
piled instructions in proper order into storage to form the object program. Im-
mediately following the compiled instructions is a record consisting of three 5-
digit fields and a 50-digit field that indicates which subroutines are being used,
followed by a 5-digit field that indicates the memory capacity. The symbol table
follows (punched in 60-character records) as it appears at the end of compila-
tion, and is read into storage by the program loader. The symbol table is ex-
panded as it is loaded to allow for any dimensioned variables which were used in
the source program. The next section contains any relocatable subroutines (type
C) which may have been called for when the object program was produced. The
records following the relocatable subroutines modify a loading routine to read
in a record containing the arithmetic and input/output subroutines (type A).
The last records in the object tape modify the routine to cause it to read in and
type out the message which calls for the loading of data, and to come to a halt
before starting the execution of the object program. See the note at the end of
the description of the general make-up of the object deck.

The loading routine used to read in the compiler program requires two records
to load information into storage. The first record is in the form

TLLLL HHHHH

where the Ls represent the low position into which the data is to be read, and
the Hs represent the location immediately following the last location to be used.
The records following are read into storage in accordance with the addresses
given. Corrections to the compiler program are prepared in the form required
by the compiler loading routine, punched in paper tape, and may be inserted in
the compiler tape by using the following method.

1. Duplicate the processor tape by means of the special duplicating program,
then single instruction execute the machine toward the end of the original
tape until the third record from the end has been read into storage. Re-
move the processor tape from the tape reader.

2. Mount the correction tape and continue duplication until the last record
has been read, then remove it from the reader.

3. Replace the processor tape at the start of the second record from the end
and complete the duplicating process.

The duplicated tape will contain the new information desired, and will cause

the machine to execute the normal halt immediately after loading.

The purpose of this program is to duplicate the FORTRAN processor and sub-
routine tapes for use on the basic 1620 system (20,000 storage positions), or to
duplicate and alter the processor tape for use on 1620 systems that utilize addi-
tional memory (40,000 or 60,000 storage positions). Program switches 1 and 2
control the setup for the tape to be duplicated and also control whether
alterations are to be made to the tape. Since the processor tape contains some
alphabetic records, a special test is incorporated in the duplicating program to

Operating Procedure

Error Detection

reproduce these records as well as the numerical records. The duplication of the
subroutine tape is entirely numerical.
Restrictions to this program are as follows:

1
2.

The maximum permissible record length is 9000.
This program is intended to be used to duplicate FORTRAN processor and
subroutine tapes only.

The procedure for using the program is:

1.
2.

S UL

Thread the processor and subroutine duplicating tape.
Set the parity and 1/0 switches to stop, set the MAR switch, if any, to stop,
and the orLow switch to PROGRAM.

. Press the reset and insert keys.

. Insert 36 00000 00300.

. Press the release and start keys to load the duplicating program.

. Run out the duplicating tape and thread the FOoRTRAN tape to be dupli-

cated (processor or subroutine).

. Set the parity and 1/0 switches to ProcraM, the MAR switch, if any, to

stop and the oFLow switch to PROGRAM..

a. For duplicating the processor tape, set program switch 1 on, and pro-
gram switch 2 orr.

b. For duplicating the subroutine tape, set program switch 1 orF and
program switch 2 oFr.

c. For modifying the processor tape, for 40,000 or 60,000 storage positions,
set program switches 1 and 2 on.

. Ready the punch.
. Press the start key.

a. If program switch 1 is o~ or orr and 2 is oFF, the tape duplication will
begin.

b. If program switches 1 and 2 are on, the following message will be
typed after twelve records have been duplicated:

TYPE SIZE OF MEMORY IN THOUSANDS

After typing the specified information, press the release and start keys
and the tape duplication will continue.

If you have made an error in typing , you may recover in the fol-
lowing manner: turn switch 4 oN, press release and start keys, turn
switch 4 OFF, re-enter the information. This process may be repeated.

To duplicate another tape (processor or subroutine), thread the tape, ready
the punch, press reset and insert, insert 49 00966, and press release and start
keys. Make certain that program switches are set correctly each time you repeat
the duplication process.

During the duplication, one or two error messages may be typed out after which
the machine will halt.

1

“ERROR 17— An invalid character has entered the input area. Back the tape
up to the beginning of the record and press the start key. If the error
message is repeated, examine the tape for an invalid character.

“ERROR 2°— A machine error has occurred. Back the tape up to the be-
ginning of the record and press the start key. If the program hangs up or
keeps typing ERROR 2 messages, this indicates that a portion of the pro-
gram may have been destroyed. If this occurs, reload the program and
restart the duplication process.

Analysis of the FORTRAN Program 69

Tape Duplication

Modification of
1620 FORTRAN for
Additional Core Storage

Modifying the Processor

70

The procedure for duplicating the “1620 Program for Duplicating the FORTRAN
Processor and Subroutine Tape” is:
1. Thread the ForRTRAN processor and subroutine duplicating tape.
2. Set the parity, 1/0, MaR (if any), and oFLow switch to sTop.
3. Ready the punch.
4. Press the reset and insert keys.
5. Insert 36 00500 00300
38 00500 00200
49 00000
6. Press the release and start keys.
To duplicate the 1620 rorTrAN-sPs Modification tape:
1. Thread the rorTRAN-sPS Modification tape.
2. Proceed as in step 2 above.

The standard ForTRAN system decks and tapes, as issued, do not require a ma-
chine system containing more than 20,000 positions of core storage. The processor
tape or deck must be modified to allow the use of the 1623 Core Storage Unit.
No modification of the subroutines is necessary.

In the card system, the two high-order digits of the highest address in storage
are punched in card columns 25 and 26, or card number 00025 in the processor
deck. To modify the program for additional storage, duplicate card 00025 with
the proper digit in column 25. If, for example, the deck is to be used with a
system in which the highest address is 39999, punch into column 25 the flagged
digit 3.

To modify the tape system, use the 1620 program “Duplicating the Processor
and Subroutine Tapes.”

Part 5—The FORTRAN Pre-Compiler Program

The M ForTRAN Pre-Compiler is a program that detects and permits correction
of errors in a FORTRAN source program before the object program is compiled.
The Pre-Compiler detects many of the more common programming errors in
individual source statements, and indicates possible logical errors in the source
program as a whole.

Two versions of the Pre-Compiler are provided, one for use with the M
1621 Paper Tape Reader and 1sm 1624 Tape Punch, and the other for the mm
1622 Card Read Punch. A rorTRAN source program which is to be processed may
be punched in paper tape or cards, or may be entered directly from the type-
writer.

The operation of the Pre-Compiler can be divided into two phases: Error
Analysis and Final Program Summary.

During the error analysis phase, each statement in the FORTRAN program is
analyzed for an error. If an error is detected, an error code is typed, the state-
ment containing the error is typed, and the program halts so that you can type
the statement correctly. During this phase, a new FORTRAN source program can be

- punched in paper tape or cards. After all statements have been analyzed and

corrected, if desired, a final program summary is typed.

The final program summary phase includes information about possible
sources of errors not detectable in individual source statements.

An additional feature of the Pre-Compiler program, using the 1620 program
switches, permits you to easily alter the functions of the error analysis phase for
individual requirements. The following options are available.

1. You can suspend the halt and error correction routines, thereby providing
a quick error analysis only. These routines can be suspended for the entire
program or for individual error halts during normal processing.

2. You can enter the program through the console typewriter rather than by
card or paper tape input.

3. You can eliminate punching of an edited source program.

4. You can have correct program statements typed, in addition to the normal
operation in which only incorrect statements are typed.

The standard 1620 rortran Pre-Compiler system contains all of the functional
subroutine names included in the standard FOoRTRaN system. If you make altera-
tions to the functional names, or if you add additional subroutines to the FORTRAN
system, you must make the corresponding alterations and additions to the Pre-
Compiler system.

Operation of the Pre-Compiler Program

Error Codes

Before you process any program on the Pre-Compiler, you should be familiar with
the nature of the errors that the program is designed to detect.

During the error analysis phase of the program, each statement is analyzed for
one or more specific errors. These errors consist of 51 of the most common errors
usually found in FORTRAN source programs. As an aid in evaluating these errors,
they have been grouped into seven categories:

Arithmetic statements

The FORTRAN Pre-Compiler Program 71

Arithmetic Statements

Variables in Arithmetic
Expressions

DO Loops

Constants

72

Variables in arithmetic statements
po loops

Constants

Statement numbers

Transfer statements

General

When an error is detected, an error code is typed on the console typewriter.
This code consists of an alphabetic abbreviation of one of the categories listed

above,

oY T

e
O W PO Ut

=

[V S

followed by a number that designates the particular error in the category.

ARITH

. Unacceptable form to left of = sign.

. Multiple = signs.

. This code has been deleted.

. Successive operation symbols, or a function which is followed by an opera-

tion symbol.

. Missing operation symbol or operand.

Right parenthesis encountered before corresponding left parenthesis.

. Missing right parenthesis.
. Mixed mode expression (expression contains fixed and floating point).

No variable to the left of equal sign.

. Involution of a fixed point variable or constant.

VAR
Variable name longer than 5 alphameric characters.

. Variable appearing in an expression or as a subscript not previously de-

fined in an input statement; as the index of a po loop; or defined as the
left side of another arithmetic statement.

. Variable written with a subscript has not been previously defined in a

DIMENSION statement.

. Variable previously defined in a DIMENSION statement has not been sub-

scripted correctly: subscript is in unacceptable form, number of sub-
scripts does not agree with the number specified in DIMENSION statement,
numerical subscript is greater than maximum allowed by PIMENSION state-
ment or is less than 1.

DO

In the statement Do n & = My, Me, My, the indices m,, m., and m,, if given,
are not all unsigned fixed point variables or constants greater than zero.
There are more than 3 indices given,

The second index, m,, is less than m,, when both are constants.
. The third index, m,, is signed, is zero, or is missing when specified as a

constant.

. The statement number 7 is not in acceptable form or is missing.
. The variable name has either been omitted, or is incorrectly stated, or the

po statement is incorrect.

. The statement specified as the end of an outer loop in a nest of po’s has

been found before an inner loop is complete.

. A po loop terminates with a transfer statement, 6o 1o, computed co TO,

or IF.

CONST

. Fixed point constant longer than 4 digits.
. Floating point constant outside the allowable range.

Decimal point omitted from floating point constant that is written with a
decimal exponent.

Statement Numbers

Transfer Statements

General

o w

W N o~

S Ul O DN

-3

10.
11.

12,

13.
14,

15.

The decimal exponent following the E in a floating point constant is in-
correctly expressed in form or size.

. The exponent following an E has been omitted.

Floating point number followed by an alphabetic character other than E.

STNO

. Statement number longer than 4 digits.
. Statement number has been previously defined.

Unnumbered coNTINUE statement. (Should be numbered when used as
last statement in a po loop.)

Statement immediately following a transfer statement is not numbered,
and is therefore inaccessible to the source program. (If the previous state-
ment is a transfer, the only way the program can process this statement
is by a transfer to it, and therefore it must always be numbered.)

TRANS

. Statement numbers in a transfer statement (Go TO, computed Go TO, or

1¥) are not acceptable fixed point numbers; there is no comma between
statement numbers, or there is not the required number of statement
numbers.

. Comma missing after the right parenthesis in a computed Go To statement.
. Index in a computed co TO statement is not a fixed point variable, or is

missing.

. Nonnumerical character follows right parenthesis in an 1r statement.
. In an 1F statement, a character other than a left parenthesis follows the

word 1F.

. No arithmetic statement within the parentheses after the 1r. (However,

empty parentheses in an arithmetic statement will not be detected.)

GEN

. Misspelled or unacceptable nonarithmetic statement.

. Statement contains an unacceptable character.

. More than 72 characters in statement (not applicable to cards).

. Symbol table full (occupies more than 2,500 digits in storage).

. Statement contains decimal point that is not in a floating point constant.
. Input/output statement contains no FORMAT number, or is incorrectly

stated.

. First character in an input/ouput list is not alphabetic, or the final char-

acter is not a letter or a digit.

. In a DIMENSION statement, a nonalphabetic character precedes the first

variable name or a dimension, or three dimensions have been specified
(only two-dimensional arrays are permitted).

. A specified dimension is incorrect: a parenthesis has been omitted, a

floating point constant or an unacceptable fixed point constant has been

used, ete.

Unnumbered ForRMAT stazzéxent.

Incomplete FORMAT statement: invalid or incorrect specification, missing
parentheses, character after right parenthesis, etc.

In an input/output statement, comma is missing after the FORMAT state-
ment number, or the list is missing or invalid.

The total record width specified in a FORMAT statement exceeds 87.

A variable appearing in a DIMENSION statement has been previously de-
fined.

H or X missing in alphameric ForRMAT specification or the width of alpha-
meric specification is greater than 49.

The FORTRAN Pre-Compiler Program 73

Error Analysis Phase

Restart Procedure

Final Program Summary

74

After an error has been deteced in a statement, and the appropriate error code
has been typed, the original error statement is typed. If switch 3 is off, the car-
riage is returned and the program halts to wait for a corrected statement to be
typed in. After reviewing the erroneous statement and the error code or codes
indicated, you can, in most cases, make an immediate correction to the statement.
Type the correct statement (followed by a record mark), then press the release
and start keys. The program resumes by analyzing the statement just typed to
determine if any errors still exist. If the statement is correct, the program will
begin analyzing the next statement in the FORTRAN program.

In some cases, it may not be possible to re-enter a corrected statement with-
out certain modifications because part of the statement has already been proc-
essed as a correct statement. For example, if an error is discovered in a transfer
statement (6o TO), you must enter the correct statement with a statement num-
ber to avoid error sTNO 4, or enter it twice without a statement number. (The
program considers the first part of the co To to be correct, and requires that any
statement following a transfer statement must contain a statement number).

When a statement containing a statement number is partially processed due
to an error, you cannot re-enter the statement with the statement number be-
cause an error stNoO 2 will result.

In an erroneous DIMENSION statement, for example piMensioN C(N), the C
is stored as a nonsubscripted variable and cannot be used later in the program
as a subscripted variable. In case of C(10,N), the C is stored as a one-di-
mensioned variable. Restart of the Pre-Compiler is necessary.

For expressions involving involution (raising to a power), the exponent
cannot have an involution operation. For example, A**(B**2.+.1) will result
in erroneous operation of the Pre-Compiler. This restriction also applies to the
arithmetic expression in an 1r statement.

There is no check for the termination of a o loop. If a dimension specifica-
tion exceeds the capacity of the storage, erroneous results will follow.

If an immediate correction cannot be made, you can resume testing of the
next statement by manually branching to BEGIN (see RESTART PROCEDURES).

It is important to note that if a new source program is being punched, by-
passing the error correction routine will result in the incorrect statement being
punched into the output tape or cards.

The normal operation of the Pre-Compiler program is to type incorrect
statements only. If you require a typed copy of all statements, turn on program
switch 1.

You may find it necessary during processing to interrupt the normal operation
of the program. To allow such interruptions, the following re-entry points, given
by symbolic label and storage location, are available:

cLEAR location 01208: The symbol table and table of statement numbers
referenced by po statements are cleared. CLEAR is the restart point for a
new program to be tested.

inrTL location 01340: The table of statement numbers referenced by
po statements is cleared.

BEGIN location 01472: No tables are cleared, but the program will con-
tinue to read source program statements. BEGIN is the normal entry
point for restarting after a check stop or other interruptions of the
Pre-Compiler.

After the EnND statement in a source program has been processed by the Pre-
Compiler program, a final program summary is typed on the console typewriter.

Interpretation of Detected
Errors

The summary includes information about possible sources of error not detectable
in individual source statements, and is in the form of four alphabetic messages
together with related lists, as follows:

UNDEFINED STATEMENT NUMBERS
nnnn
nann...

The numbers listed are those which have not been used for statement identifica-
tion but have been referenced by transfer or po statements.

UNREFERENCED STATEMENT NUMBERS
nnnn
annn...

The numbers listed are those which have been used for statement identification
but have not been referenced by transfer or po statements. These numbers are
not necessary to the compilation of the source program and may be eliminated.

RELOCATABLE SUBROUTINES CALLED
LOG
SIN....

The names listed are those of the functional subroutines used in the source
program.

OBJECT PROGRAM DATA TABLE
XXXXX STORAGE POSITIONS

The number of storage positions given includes those used for variables, con-
stants, and statement numbers, but not the total number of storage positions that
will be required in the FORTRAN object program, since this depends upon the
number of machine instructions produced when the source program is compiled.

Premature typing of the summary indicates that the END statement appears
earlier than anticipated in the source program. Conversely, if the END statement
has been omitted, the summary will not be typed.

If statement number 999 is used it will cause errors in the final program
summary. However, no damage will be done to the Pre-Compiler.

An expression may appear so ambiguous to the Pre-Compiler program that any
of several possible errors might be detected. For example in the expression

ABE(C+D)

if ABE is not the name of a function, and has not been defined previously in the
program, it might be regarded as a subscripted variable name with subscripts
written in an unacceptable form. When the name ABE has been defined as a non-
subscripted variable, however, the obvious error is that of omission of an opera-
tion symbol.

Under certain conditions, an error in one source statement may affect the
validity of other statements which follow it in the source program. It is recom-
mended that a new FORTRAN source program tape or deck produced by means
of the Pre-Compiler program be reprocessed until no errors can be detected.

Conditions which might possibly lead to error have been assigned error
codes or are noted in the final summary. The fact that a statement is indicated

The FORTRAN Pre-Compiler Program 75

Program Switch Settings

to be in error does not necessarily mean that the source program cannot be com-

piled ¢

orrectly or that the object program cannot be successfully run. Conversely,

a source program which has been processed by the Pre-Compiler and found free
of error might have certain undetectable mistakes in logic, or be too large for
the particular 1620 system in use.

The 1620 ForTRAN Pre-Compiler cannot determine the intent of your pro-
gram. Even though no errors are present in individual source statements, you

should

examine the final program summary to determine if any logical errors in

the flow of the source program still remain to be corrected.

The possible settings for the program switches are shown below

Print On Punch Edited
Input Typewriter Source Program SW 1 SW2 SW 4
Cards/Tape Yes Yes On On On
Cards/Tape Yes No On Off On
Cards/Tape No Yes On On Off
Cards/Tape No No On off Of
Typewriter No Yes off On On/Off
Typewriter - No No Off Off On/Off

Switch

3 has the following function:

On — Error correction routines are bypassed.
Off — Error correction routines are not bypassed.

Note:

Switch 4 is normally turned off. When you make an error in typing either
an original or a corrected source statement, turn this switch on, press the
release and start keys, and return the switch to its normal off position.
You must then retype the entire statement.

Processing with the Pre-Compiler Program

Loading the Program —

Card Deck

Loading the Program —
Tape File

76

The sequence of operations required to load the program card deck is as follows:

1

2.
3.

4.
5.
Th.

Clear core storage to zeros. A suggested method for clearing to zero is to:
a. Press the reset key.

b. Press the insert key.

c. Type the instruction 16 00010 00000.

d. Press the release key.

e. Press the start key. _

f. When all storage position have been cleared, press the instant stop key.
Set the console program switches for the input/output option you want.
Set the overflow check switch to procram and all other check switches to
STOP.

Press the reset key.

Place the deck in the read hopper and press the load key.

e cards comprising the FoRTRAN Pre-Compiler deck are punched with

sequence numbers in columns 76 through 80 and the deck must be loaded in
sequence.

The sequence of operations required to load the program tape is as follows:

1.

Clear core storage to zeros, set the console program, and check switches
as in steps 1, 2, and 3, just given.

Processing the Source
Program

General Make-up of
Program Deck

. Mount the program tape.

. Press the reset key.

. Press the insert key.

. Type the instruction 36 00000 00300.
. Press the release key.

. Press the start key.

1O UL WM

After the Pre-Compiler has been successfully loaded, the following instructions
will be typed on the console typewriter:

ENTER SOURCE PROGRAM
THEN PUSH START

and the program will halt. Set the console program switches for the correct
input/output options, mount the source tape or load the source deck, and begin
processing by pressing the start key.

After the mND statement in a source program has been processed, the final
program summary will be typed on the console typewriter. This will consist of
the following four messages, together with the related lists of statement numbers
and relocatable subroutines called by name in the source program.

UNDEFINED STATEMENT NUMBERS
UNREFERENCED STATEMENT NUMBERS
RELOCATABLE SUBROUTINES CALLED
OBJECT PROGRAM DATA TABLE

XXXXX STORAGE POSITIONS

The absence of one of the first three messages indicates that no undefined or
unreferenced statement numbers have been found, or that no relocatable sub-
routines have been used by name in the source program. Undefined statement
numbers are those referenced by a transfer, po or 1/0 statement, but not defined.

After the final summary has been typed, the following message will be typed
on the console typewriter and the program will halt.

PROCESSING COMPLETE

Pressing the start key causes the program to clear the symbol table compiled
during the procesing of the previous source program and to prepare to process a
new program. When this has been done, the program will type the message
which calls for the entry of the source program.

The 1620 rortraN Pre-Compiler program deck is made up of four sections,
identifiable by sequence number as follows:

00000 - 00001 Loading routine

00002 - 00348 Pre-Compiler program
00359 - 00365 Arithmetic tables

02001 - 02007 Relocatable subroutine data

The relocatable subroutine data consists of a card containing the number of
relocatable subroutines included in the program deck, and the following cards
contain the names of these subroutines. These cards must be in the proper se-
quence. If they are out of sequence, an error message will be typed and the 1620
will halt. Restore the sequence of these cards (including the two cards from the
reader stacker), press the reader start and start keys to continue the operation.

The FORTRAN Pre-Compiler Program 77

General Make-up of
Program Tape

Tape Data

Duyplicating the
Pre-Compiler Tape

78

The relocatable subroutine cards are punched with the function name start-
ing in column 1 and the sequence number in columns 76 through 80. Subroutine
names added to the system must be punched in the same manner.

The 1620 rorTRAN Pre-Compiler tape consists of a loading routine which loads
the multiply and add tables, and the program which follows. The last seven
records are the relocatable subroutine data containing the number and names
of the relocatable subroutines included in the program. These records must be
exact duplicates of the corresponding records which are included in the 1620
FORTRAN processor tape. Additions to the list of relocatable subroutines in the
systern must be made to the Pre-Compiler tape in exactly the same form as pre-
scribed for the 1620 FORTRAN processor tape.

For the purpose of tape identification, a title and data message have been incor-
porated in the 1620 rorTRAN Pre-Compiler tape. The first two records of the tape
contain the title and data information, After these records have been read into
the 1620, the following message will be typed:

1620 FORTRAN PRE-COMPILER 11/15/61
Normal processing continues after the message has been typed.
The rorTRAN Pre-Compiler tape may be duplicated and/or modified by the use

of the program for duplicating the FORTRAN processor and subroutine tapes, in
the manner described for duplicating the processor tape.

Appendix A — Summary of 1620 FORTRAN Statements

ACCEPT

ACCEPT TAPE

CONTINUE

DIMENSION

DO

Format:

Purpose:

Example:

Format:

Purpose:

Example:

Format:

Purpose:

Example:

Format:

Purpose:

Example:

Format:

Purpose:

Example:

“ACCEPT n, List”
where n is the statement number of a FORMAT statement and List,
is a list of the quantities to be typed.

This statement causes the program to read information from the

‘console typewriter in accordance with ForMAT statement n and to

transmit this information into core storage as the values of the vari-
ables in the list.

ACCEPT 30, A, B, C, D(3)

“ACCEPT TAPE n, List”
where n is the statement number of a FORMAT statement and List
is a list of the quantities to be entered.

This statement causes the program to read data from the tape
reader and transmit this data into core storage as the values of the
variables in the list.

ACCEPT TAPE 48, K, A(])

“CONTINUE”

This statement is used as the last statement in the range of a po
when the po would otherwise end with an 1F or co TO statement.

CONTINUE

“DIMENSION v(d), v(d, d), v(d)”. .. for one- and two-dimensional
arrays.

where each v is the name of a variable followed by parentheses en-
closing one or two constants, d, represents the number of elements
in each array.

The DIMENSION statement provides information for the processor
necessary for the allocation of storage in the object program for
the elements of arrays of quantities.

DIMENSION A(10), B(10,5)

“DO ni=m,;, my, my”

where n is a statement number, i a fixed point variable, and m,, m,,
and m, can be either a fixed point constant or a fixed point ¥ari-
able.

Subscripts and sign indication are not permitted in a po statement.
If m; is not stated, it is taken to be 1.

The commas are required punctuation.

The po statement simplifies the programming of loops and provides
greater flexibility in looping.

DO 20 JBNO = 1, 10

Appendix A 79

END

FORMAT

GO 10

Computed GO TO

IF

IF (SENSE SWITCH)

80

Format:

Purpose:

Example:

Format:

Purpose:

Example:

Format:

Purpose:

Example:

Format:

Purpose:

Example:

Format:

Purpose:

Example:

Format:

Purpose:

Example:

“END”

The END statement is a signal to the compiler that the end of the
source program has been reached.

END

“FORMAT (s;, S¢, 83, « . - 5 8n)
where s,, s, 85, and s, are specifications.

This statement describes the type of conversion and format of data
to be used in the transmission of input/output lists.

2 FORMAT (12/F104,E12.4)

“GO TO n”
where n is a statement number.

This statement interrupts the sequential execution of statements; it
specifies the number of the next statement to be performed.

GO TO 30

“GO TO (n,, Ny .+« , M)y §
where n;, n,, . . . , N, are statement numbers and i is a fixed point
variable. The variable cannot be subscripted.

The computed co To statement transfers the program to the 1st,
2nd, etc., statement number in the list depending upon whether the
valueof iis 1, 2, . . ., etc.

GO TO (3,4,6), L

“IF (a) n,, ns, n;°
where ¢ is an expression and n,, n., and n, are statement numbers.

The 1F statement transfers the program to a particular statement
depending upon the value of an expression.

IF (A-B) 10,5, 7

“IF (SENSE SWITCH i) n,, n,”
where i is the number of one of the console program switches, and
n, and n, are statement numbers.

This statement transfers the program to a particular statement de-
pending upon the setting of any one of the four console program
switches.

IF (SENSE SWITCH 3) 14, 50

PAUSE

PRINT

PUNCH

PUNCH TAPE

READ

TYPE

STOP

Format:

Purpose:

Example:

(See TYPE)

Format:

Purpose:

Example:

Format:

Purpose:

Example:

Format:

Purpose:

Example:

Format:

Purpose:

Example:

Format:

Purpose:

Example:

“PAUSE”

The paUSE statement is used as a convenient means of causing the
object program to halt temporarily. Pressing the start switch causes
the program to resume with the statement following the PAUSE
statement.

PAUSE

“PUNCH n, List”
where n is the statement number of a FORMAT statement and List
is a list of the quantities to be punched.

This statement causes the items in the list to be punched in cards in
the format specified by the statement n.

PUNCH 1, A, D, C

“PUNCH TAPE n, List”
where n is the statement number of a FORMAT statement and List
is a list of the quantities to be punched.

This statement causes the items in the list to be punched into paper
tape in the format specified by statement number n.

PUNCH TAPE 4, A, B, C

“READ n, List” .
where n is the statement number of a FORMAT statement and List
is a list of the quantities to be transmitted.

This statement causes data to be read from a card in the 1622 Card
Read Punch,

READ 4, A, B, C

“T'YPE n, List”

“PRINT n, List”

where n is the statement number of a FORMAT statement and List
is a list of the quantities to be typed.

This statement causes the quantities in the list to be typed on the
typewriter in accordance with FORMAT statement 7.

TYPE 4, A, B, C

“STOP»

This statement causes the computer to halt during the processing
of the object program, return the typewriter carriage and type the
word “STOP.”

STOP

Appendix A 81

Appendix B — Summary of 1620 Operating Principles

Typewriter Input

The typewriter is part of the 1620 console and is used
for both input and output.

Input

The typewriter is used to enter both data and instruc-
tions directly into core storage. Pressing the console
insert key unlocks the keyboard and permits data to be
entered into core storage starting at location 00000.
Each depression of a typewriter key enters the char-
acter into core storage one location higher than the
previous character. As many as 100 characters can be
entered from the typewriter. After the 100th character
is entered, an automatic release is initiated and the
machine returns to manual mode.

Figure 1.

1M 1620 1/0 Typewriter

82

When less than 100 characters are entered, entry of
the last desired character should be followed by press-
ing the console release and start keys, or by pressing
the R-S key on the typewriter keyboard. The R-S key
combines the release and start functions of the console
keys. The R-S symbol is typed as a permanent record
that the R-S key has been used.

Programmed selection of the typewriter unlocks the
keyboard and leaves the computer in automatic mode
for manual entry of data on the typewriter. Data entry
starts at the addressed location (P address) of the in-
struction and enters core storage at successively higher-
order positions until the release key is depressed.

If a record mark is required in core storage following
the last character entered, the record mark key on the
typewriter must be pressed before pressing the release
key on the console.

Pressing the console release key relocks the keyboard
and gives the computer an end-of-1/0 indication. No
record mark is entered into core storage by pressing
the release key.

Output

The typewriter prints data from core storage when
programmed to do so. When the right-hand margin
is reached, the carriage returns automatically and typ-
ing continues until a record mark is sensed or until the
release key is pressed.

Manvual Adjustments to Typewriter

(1) Impression Indicator. To determine the force
with which the type bars strike the paper, posi-
tion the lever under this window for settings
from 0 to 10. The higher the indicator setting,
the harder the type bars strike.

(2) Tab Clear Lever. To clear tab stops, tabulate to
the point to be cleared and press the clear lever.
To clear all stops at once, position the carriage
at the right margin, hold down the clear lever,
and return the carriage to the left margin stop.

(3) Tab Set Lever. To set-tabular stops, move the
carriage to the desired position and press the
set lever. Set tab stops only when the indicator
pointer is in line with a white marking on the
front paper scale below it.

(4) Carriage Release Lever. Press the lever on either
side to free the carriage then manually move the
carriage to the right or left.

(5) Paper Release Lever. To free the paper for posi-
tioning or quick removal, move this lever
forward.

(6) Line Space Lever. Moved to position 1, 2, or 3,
the line space lever provides for single, double,
or triple line spacing, respectively.

TRACKS

| JKLMNOPQRSTUVWXYZI

(7) Multiple Copy Control. This lever moves the
platen backward to compensate for the greater
thickness of additional copies. As a general rule
the lever should be set at “A” for one to three
copies and moved back one position for each
additional three to five copies.

(8) Left-Hand Margin Set. The left margin stop is
set as follows:

1. Return the carriage to the present left mar-
gin stop.

2. Press the margin set key.

3. Manually move the carriage as near as
possible to the position desired. The back-
space key and space bar are convenient to
use to obtain the exact position desired,
with the margin set key depressed.

4. Release the margin set key.

(9) Right-Hand Margin Set. The right margin stop
is set as follows:

1. Move the carriage to the left until stopped
by the right margin stop.

2. Press the margin set key.

3. Move the carriage right or left to the de-
sired position.

4. Release the margin set key.

Paper Tape Input

Data is punched and read as holes in a 1-inch-wide chad
paper tape (in chad paper tape the holes are completely
punched out) at a density of ten characters to the inch.
Eight-track paper tape code is used. Seven positions, or
tracks, across the width of the tape, are used for the
coding of numerical, alphabetic, and special characters.
One track is used for L (end-of-line) characters.
Figure 2 represents a section of paper tape, which illus-
trates the eight tracks and all coded characters.

EL—
X

0o
CHECK—
[
FEED—

§ e

2

Figure 2. Paper Tape Tracks and Codes

Appendix B 83

1624 Tape Punch

The tape punch (Figure 3), housed below the tape
reader in the 18M 1621, punches data from core storage
into paper tape at the rate of 15 characters per second.
The characters are sent serially from core storage
starting with the location addressed by an output in-
struction. Each character is translated to 8-track code
before being punched.

If a character with incorrect parity is transmitted
from core storage and punched, or if a valid character
is incorrectly punched, the tape feed does not advance.
The computer stops in both the automatic and manual
mode; the automatic and manual lights and the punch
no feed and write check lights on the 1620 console are
turned on. Functions of these lights are described under
CONSOLE. Program processing can be resumed with the
following procedure:

Figure 3.

1M 1624 Tape Punch

84

1. Position the 1624 tape feed switch on.
a. The feed code (all punches) is punched over
the incorrect character.
b. The punch no feed and write check lights are
turned off.
c¢. The machine is returned to manual mode only.

2. Press the start key on the 1620 console.

a. The original character from storage is again
punched. If an incorrect character still persists,
the record may be corrected, if desired, before
processing continues.

b. The computer continues processing.

If the 1624 runs out of paper tape, the machine stops
in automatic mode and the punch no feed light turns on.
The “character correction procedure” outlined is used
to resume operation.

Loading the Tape Punch

Place the roll of unpunched tape on the turntable and
thread as shown in Figure 3. The tape retainer (F)
must be rotated to the left by pushing back on its
extended left edge. This moves the tape lever (D)
forward to facilitate threading. An unwound section of
tape is then threaded as follows:

1. Through tape guide (A).
. Inside tape guide (B).
In front of tape tension guide (C).
In back of tape lever (D).
Between the punching mechanism and the punch

guide block (E), which can be seen in front of
the tape.

6. Between the guides on the tape retainer (F'). With
the end of the tape held to the left, the tape
retainer (F') is returned to normal position, which
causes the pins on the feed roll to pierce through
the blank tape. The tape lever simultaneously re-
turns to normal position with the top guide above
the tape.

S

Buffer
Arm Rollers

Reel Buffer
Arm

Guide

i Feed Pinwheeli‘
-, and Tape
- Tension Bar

The tape feed key is used to repetitively punch auto-
matic feed punches and to provide a leader section of
paper tape. Approximately 60" of leader is needed for
threading paper tape on the 1621 and can be obtained
from the 1624 in 40 seconds. The leader is threaded into
the 1624 take-up reel so that the top edge of the tape
is at the outside of the reel.

1621 Paper Tape Reader

The paper tape reader reads coded alphameric charac-
ters from 8-track paper tape at the rate of 150 characters
per second. The characters are photoelectronically
sensed and placed in core storage. If a parity error is
sensed, the read check indicator (console panel) is
turned on. The computer remains in automatic mode
and continues to read until the end-of-record indication
(a hole in the eL channel) is reached. Whether the
computer stops, depends upon the setting of the 1/0
check switch. The end-of-record signal causes a record
mark to be placed in core storage as the rightmost digit
of the input record.

idler
Roller

Buffer Arm
Rollers

Reel Buffer Arm -
(in upper latched
position)

Stationary Buffer Rollers
y Arm and Tape Guides
g Rollers —

£y

Reel Power Key
(Lowers Buffer Arms)

Stationary
Buffer Arm
and Rollers

Figure 4. 1BM 1621 Tape Loading Area

Appendix B 85

Loading the Paper Tape Reader

Paper tape can be handled in 2 forms. The procedure
for loading each one varies slightly, The names of ma-
chine components used in the following descriptions
of loading procedures are given in Figure 4.

CENTER ROLL FEED

The center roll feed eliminates the necessity for rewind-
ing paper tape rolls which would expose the starting
end of the tape on the outside of the tape roll. Figure
5 shows that tape is supplied from the inside of the
center roll feed, to the supply reel, around the read
head, and onto the take-up reel.
The procedure for loading paper tape from the center
roll feed is as follows:
1. Position the reel strip switch to ReEL.
2. Place the reel buffer arms in the upper latched
positions,
3. Open the tape guides and form an inverted U (1)
with the center section of the first eight feet of

o

paper tape. Wrap the paper tape around the read
head with sufficient tension to keep the runout and
tape tension contacts closed. Start on the take-up
reel side of the read head. Run a finger up over the
tape on top of the read head, smoothing the tape
down with a firm, moderate pressure so that the
tape tension bar is slightly depressed and the
right side of the feed pinwheel engages the tape
feed holes. Be careful not to tear the feed holes.
The tape feed holes must mesh with both sides
of the pinwheel,

Close the tape guides.

Thread the leading section of paper tape under
the guide roller, between the stationary buffer
rollers and buffer arm rollers, and onto the take-up
reel, as shown in Figure 5.

. Thread the paper tape from the right side of the

read head under the guide roller, between the
stationary buffer rollers and buffer arm rollers,
over the supply reel (the rubber drive hub must

Figure'5. Center Roll Feed Loaded

86

be installed), around the tape guide stand, and
around the tape reel nylon roll.

7. Lower the idler roller onto the supply reel.

8. Lower the buffer arms gently.

9. Press the reel power key. The buffer arms should
swing down to a neutral position, applying tension
to the paper tape.

Note: The roll of paper tape must be positioned cen-
trally, or evenly, around the center rollers to prevent
excessive vibration during reading.

' REEL

A reel of paper tape may be read on the 1621 by remov-
ing the rubber drive hub from the supply reel and by
mounting the reel of tape in its place. The tape ‘is
threaded from the right-hand side of the reel directly
to the stationary buffer rollers, and then to the take-up
reel as described under center rorL FEED. Figure 6
shows a reel of tape threaded on the 1621.

Figure 6. Paper Tape Reel Loaded

Operating Switches and Lights

The following switches and lights are used in the
operation of the 1621.

Power Switch. With this switch on, all necessary power
for operation of the 1621 is supplied by the 1620.

Reel Strip Switch. In reel mode, tape is fed from the
supply reel then to the left onto the take-up reel.

Reel Power Key. Pressing this key operates the supply
and take-up reels to position the paper tape for read-
ing and to place the machine in ready status.

Nonprocess Runout Key. Pressing this key causes paper
tape to feed. Ready status is terminated and all data
transfer is blocked until all paper tape has passed.
Paper tape must be reloaded and the reel power key
pressed before the machine can be returned to ready
status.

Power On Light. This light on indicates that power is
supplied from the 1620.

Appendix B 87

Card Input

1622 Card Read Punch

The M 1622 Card Read Punch (Figure 7) provides
punched card input and output for the 1M 1620 Data
Processing System. The reader and punch feeds are
separate and functionally independent, with individual
switches, lights, checking circuits, buffer storage, and
instruction codes. Under program control, up to 250
cards per minute can be read and 125 punched. Read-
ing, punching, and processing can occur simultaneously
because of individual buffer storage. Buffer storage data
is transferred in 3.4 milliseconds; the remainder of the
reader and punch feed cycle time is available for
processing,

As shown in Figure 8, cards are fed from the read
hopper on the right and the punch hopper on the left.
Each hopper has a capacity of 1,200 cards. Both feeds
have misfeeding and jam detection, and a select and
nonselect stacker. The 1,000-card-capacity stackers are
of the radial type: the cards are stacked on end to
permit their removal while the 1622 is running.

CARD READER AND PUNCH DRIVE MOTORS

If either the read or punch feed is not used for approxi-
mately one minute, the drive motor for that feed is
turned off to reduce noise and wear. However, the 1622
is still in ready status and will respond to a read or
write command.

Card Read

Cards are fed 9-edge first, face down, past two reading
stations, check and read. Input buffer storage is initially

loaded with 80 columns of card data during the start
key or load key run-in operation. Thereafter, each card
feed cycle is under program control.

Card Punch

Cards are fed 12-edge first, face down, past the punch
and check stations,

Operator Keys and Lights

The card reader and card punch have separate keys and
lights (see Figures 7 and 8).

CARD READER

Reader On/Off Switch. The ireader on/off switch is
used to supply power to the reader and to turn on the
power ready light. The 1620 power on/off switch must
be on to make the 1622 reader on/off switch active.

Load Key. The load key causes data from the first
card to be checked, read into buffer storage, and auto-
matically transferred in numerical mode to core storage
positions 00000 through 00079. Upon completion of this
data transfer, another card feed cycle occurs which
loads buffer storage with data from the second card.
The 1620 then simulates release and program start at
00000. The instructions from the first card, now in
00000 through 00079, can be used to continue loading
the program or to begin processing. The 1620 must be
reset and in manual mode to make the load key oper-
ate correctly.

Start Key. The start key is used (1) to run in cards,
which are then placed under program control (data
from the first card is checked and loaded in input buffer
storage); (2) to set up a runout condition, which per-
mits programmed reading of the cards remaining in the

PUNCH] [[SELECT POWER PUNCH READER POWER
OF N-STO READY CHECK CHECK READY
- NON PUNCH CHECK READER oW
puncH] lIseectll f proc Sy e [] [sor) |G EERESIRES] READY || pROC
ON sTOP RN OUT] - RN OUT]
BHOUT FUSE RN STACKER THERMAL
KEYS AND LIGHTS
PUNCH | READER
RiAbl AL BAL-al A AN
PUNCH CHECK I READ CHECK
PUNCH STATION STATION : STATION STATION READER
HOPPER l HOPPER
SELECT 1 SELECT
e u STATION | STATION e
) l {
PUNCH PUNCH READ READ
NON-= ERROR || NOTUSED || ERROR

SELECT SELECT

NON -~
SELECT SELECT

CARD READER AND PUNCH STACKERS

Figure 7,

88

Schematic Diagram of 1622 Keys, Lights, and Card Feeds

M 1622 Card Read Punch

Figure 8.

feed when the hopper has become empty; and (3) to
restore ready status after the reader has been stopped
by either the stop key, an empty hopper, an error, a
misfeed, or a transport jam,

Stop Key. The stop key is used to stop the read feed
at the end of the card cycle in progress and/or to re-
move the reader from ready status. Data that is entered
into buffer storage during the read cycle in progress
is transferred to core storage. The computer continues
processing until the next read card command causes
a reader no feed stop.

Nonprocess Runout Key. The nonprocess runout key
is used to run cards out of the read feed after a reader
check error, or after the stop key has been used to stop
the reader. The cards are run out into the read select
stacker without a buffer storage to core storage trans-
fer. The reader check light and check circuits are turned
off. Cards must be removed from the hopper to make
the nonprocess runout key active.

Reader Ready Light. The reader ready light is turned
on to indicate that the first card has been loaded into
buffer storage with the start key, without a reader check
error. It remains on until the following occurs: a de-
pression of the stop key, a reader check error, a trans-
port jam, a misfeed, or an empty hopper.

Reader Check Light. The reader check light is turned
on by an unequal comparison between the read and
check stations and by incorrect parity detected in buffer
storage during card read. When there is an unequal
comparison, the reader is stopped, ready status is termi-

nated, and the buffer storage data just read cannot be
transferred to core storage on the next read command.

1620 Console Read Check Light. The 1620 read check
(06) indicator and console read check light are turned
on by a 1620 parity error during a buffer storage to
core storage transfer.

1620 Console Reader No Feed Light. The console
reader no feed light is turned on each time the reader is
selected by a read command. The light remains on, if for
any reason the reader is not in ready status and the read
command therefore cannot be executed. It appears to be
on almost continuously when the time between read
calls is less than 240 ms, indicating that processing time
is available.

CARD PUNCH

Punch On/Off Switch. The punch on/ off switch is
used to supply power to the punch and to turn on the
power ready light. The 1620 power on/off switch must
be on to make the 1622 punch on/off switch active.

Start Key. The start key is used to feed cards to the
punch station initially or after an error and nonprocess
runout, and to re-establish ready status after an empty
hopper, a misfeed, a transport jam, or a stop key depres-
sion.

Stop Key. The stop key is used to stop the punch feed
at the end of the card cycle in progress and/or to re-
move the punch from ready status.

Check Reset. The check reset key is used to reset error
circuits and turn off the punch check light. A start key
or nonprocess runout key depression follows.

Select N Stop — Select Stop Switch. This switch is
used to control the stopping of the punch when error
cards are selected into the punch error select stacker.
With the switch set to stop, the punch feed stops with
the error card in the select stacker.

Nonprocess Runout Key. Following a punch check
error, pressing of the nonprocess runout key resets the
error circuits and causes the punched card that is be-
tween the punch station and the punch check station, if
it is in error, to follow the error card into the select
stacker, If this card is in error, the punch check light is
turned on again. The next two (blank) cards go into the
nonselect pocket. These cards should be removed be-
fore further processing.

This key is also used to run out and check the last
punched card of a job. Cards must be removed from
the hopper to make the nonprocess runout key opera-
tive.

Punch Ready Light. The punch ready light is used to
indicate that the 1622 has a card in punch position and
will respond to a write command from the 1620. The
ready light is turned off by a punch check error, an
empty hopper, a full chip box, a stop key depression,
a transport jam, or a misfeed.

Appendix B 89

Punch Check Light. The punch check light is turned
on when there is an unequal comparison between the
data punched and the data read (one card feed cycle
later, at the check station), or when a 1622 parity error
occurs during punching (select stop switch set to sTop).
The machine stops, and ready status is terminated.

Chip Light. The chip light is turned on to indicate
that the chip box should be emptied.

1620 Console Write Check Light. The 1620 write
check (07) indicator and console light are turned on
by a parity error during a core storage to buffer storage
transfer. The 07 indicator may be programmed to trans-
fer data several times and to halt if a correct transfer
cannot be obtained.

1620 Console Punch No Feed Light. The console
punch no feed light is turned on each time the punch
is selected by a write command. The light remains on
until the punch unit is ready and executes the com-
mand. Normally, no light is seen if commands are
further apart than 480 milliseconds. The write com-
mand cannot be executed until the punch is in ready
status.

CARD READER/PUNCH LIGHTS

The stacker, transport, fuse, and thermal lights are used
commonly by both the read and punch feeds as follows:

Stacker Light. The stacker light is turned on when
a stacker is full. Both feeds are stopped temporarily and
removed from ready status. The ready light remains on.
Operation resumes automatically after the stacker is
emptied.

Transport Light. The transport light is turned on
when a card jam has occurred in either the read or
punch feed or above any stacker. When this occurs,

© INSTRUCTEON AWG EXECUTE CYale ©

both feeds are stopped and removed from ready status.
Both start keys must be pressed to resume operation
after the condition is corrected.

Fuse Light. The fuse light turns on to indicate a
blown fuse.

Thermal Light. The thermal light is turned on if the
internal temperature of the 1622 becomes excessive.
After several minutes delay, the 1620 console reset key
may be pressed to turn off the thermal light. If press-
ing the reset key turns off the thermal light, the 1620
power switch must be turned off and then on again.
Operation may be resumed after the power ready light
is turned on.

Console

The console (Figure 9) is an integral part of the cen-
tral processing unit and provides for manual or auto-
matic control of the system. The console lights, keys,
switches, and typewriter are used to:

Instruct the machine manually.

Display machine and program status indicators.

Display the contents of core storage and registers.

Place data and instructions in core storage.

Alter the contents of core storage.

Alter machine functions.

Keys, Indicator Displays, and Switches

Small incandescent lights are used to represent the on
and off conditions of internal check indicators.

Seven console switches (four program and threc ma-
chine check switches) are provided to externally con-
trol the execution of machine functions for which two

Figure 9. 1BM 1620 Console

90

alternative logic pafhs are provided. One or the other
of the paths is selected, depending upon the setting of
the appropriate switch,

Machine Check Indicators and Switches

Machine operation may be altered by the condition of
a machine check indicator and an associated check
switch (Figure 10). An indicator that is turned on
causes the computer to halt if the associated check
switch is set to sTOP, or to continue in automatic mode
if the associated check switch is set to PROGRAM. Re-
gardless of the check switch setting, the associated
check light provides a visual sign of the indicator status.

Pressing the reset key turns all check indicators and
lights off. Parity, 1/0, and overflow check indicators
are provided.

PARITY CHECK INDICATORS

Internal data flow errors are recorded by the parity
check indicators: MBR-E and MBR-0. Normally, the par-
ity check switch is set to sTop.

MBR-E (Memory Buffer Register-Even) Check
Light. This light and indicator are turned on when the
digit in the even address portion of the MBr has a parity
error.

MBR-O (Memory Buffer Register-Odd) Check Light.
This light and indicator are turned on when the digit
in the odd address portion of the MBR has a parity error.

MARS (Memory Address Register Storage) Check
Light. This light turns on when a digit in Mars has a
parity error. This is an unconditional machine stop
and is not affected by the position of the parity check
switch.

Figure 10.

Indicator Displays and Switches

INPUT/OUTPUT (1/0) CHECK INDICATORS
RD CHK (Read Check) Light. This light and indica-

_tor are turned on when an input character with a parity

error is detected prior to conversion of input data to
BCD code.

WR CHK (Write Check) Light. This light and indi-
cator are turned on when an output character with an
even number of bits is detected during conversion of
output data from Bop to output code.

OVERFLOW ARITH CHK <ARITHMETIC CHECK) INDICATOR

An overflow that occurs as a result of an add, subtract,
divide, or compare operation turns on the overflow
check indicator and light.

CONSOLE PROGRAM SWITCHES

There are four modifier switches in this group. They
are labeled procraM swiTcHES on the console and are
numbered 1 through 4.

REGISTER DISPLAY INDICATORS AND SWITCHES

The console panel displays the contents of registers by
means of small incandescent lights, used to represent
the bits present in each digit of a register (Figure 11).
Each light, representing a particular bit position, is on
only when its corresponding bit is present in the digit
displayed.

Memory Buffer Register (MBR). The two stored
digits affected by a core storage address (previously
explained under TWO-CHARACTER TRANSFER) are dis-
played in the MBR. When the core storage location ad-
dressed for display is an even-numbered address, the
digit at this location is placed in the mer display in the
£ (even line); the o (odd) line contains the digit in
the next higher-numbered location. If the core storage
location addressed for display is an odd-numbered ad-
dress, the digit at this location is placed in the mMBR
display on the o line; the E line contains the digit in
the next lower-numbered location. When the machine
is in alphabetic mode, the complete 2-digit represen-
tation of an alphameric character may be viewed at
one time.

Memory Data Register (MDR). One line of six indi-
cator lights displays the bit configuration of each digit
in core storage as it is read out. These digits can be
seen on single cycle operation by using the scE key (de-
scribed under CONTROL SWITCHES, KEYS, AND SIGNAL
Licuts). The digit displayed in the mpr display is dupli-
cated in the mBR-even or MBR-0dd display, depending
on whether the digit read out is located at an even or
an odd numbered core storage position. v

Operation (OP) Register. Two lines of five lights each
display the bit configuration of the two digits represent-
ing the operation code of the instruction last executed.
Flag bits of these two digits are not displayed.

Appendix B 91

Figure 11,

Register Display Indicators

Sense and Branch (S-B). Two lines of five lights each
display Q. and Q, of the Branch Indicator, Branch No
Indicator, and Input/Output instructions, from the
Sense and Branch register. Input/output device codes
(digits 01-05) are displayed for input/output and con-
trol instructions.

Digit Register. These two lines of six lights each are
used primarily for diagnostic testing by customer engi-
neers.

Multiplier. This 5-light multiplier register display
shows each multiplier digit as it is used during a multi-
ply operation.

Memory Address Register (MAR). Five lines of five
indicator lights each display the bit configuration of
the five-digit address in any one of the eight MaRms

entry. Signal lights associated with the control keys
provide a visual indication of a specific operating con-
dition of the computer and indicate which step of the
keying procedure was last completed.

POWER ON /OFF SWITCH — POWER ON LIGHT

The power on/off switch has an on and oFF position.
Set to the o position, it applies electrical power to the
computer and turns on the power on light.

POWER READY LIGHT

The power ready light comes on when internal ma-
chine temperature and voltages reach proper operating
values. There is a delay from the time the power on/off
switch is positioned oN until operating temperature and

wernlbnmnn ama Altntea Ad MLl JaVace ciniton ccifa b o e

““No FEep || MO FEED

"AUTOMATIC

DISPLAY

i MANUAL. &

INSTANT
STOP

e
~8CE

Figure 12. Control Keys and Signal Lights

The automatic light, when on, indicates that the com-
puter is in automatic mode (e.g., while executing a
stored program or while entering data into core storage
from the typewriter keyboard).

Manual mode is initiated and the manual light is
turned on by the execution of a Halt instruction or by
pressing the release key (on an 1/0 operation only),
instant stop key, or stop key. Pressing the start key,
insert key, or display MaR key initiates automatic mode
and turns the manual light off. The save light and/or
the no feed light can be on when the manual light is on.

Both the manual and automatic lights are on when
an instruction is single-cycled with the scE key.

RESET KEY

The reset key is used to restore all machine status indi-
cators, machine check indicators, and signal lights to
their initial or reset condition. The reset key functions
only when the computer is in the manual mode (manual
light on). Parity errors can occur if the reset key is used
while the computer is in the automatic mode. When the
computer is in the automatic mode, the instant stop
key should be pressed to put the computer in the
manual mode and permit use of the reset key.

INSERT KEY AND INSERT LIGHT

Pressing the insert key places the 1620 in automatic
mode. Pressing the insert key also turns on the insert
light and activates the typewriter keyboard so that
direct entry of instructions may be made in numerical
mode, starting at 00000 and continuing into higher-
numbered storage positions. As many as 100 digits may
be keyed in. After the 100th digit is entered, an auto-
matic release is initiated and the 1620 returns to manual
mode. Pressing the start key initiates computer opera-
tion beginning at 00000.

SAVE KEY AND SAVE LIGHT

Pressing the save key turns on the save light and saves
the address of the next sequential instruction to be
executed. This address is saved in Product Address
Register 1 (PR-1).

RELEASE KEY

The release key is used to terminate any input/output
operation, including console keyboard entry of data into
core storage. When this key is pressed, manual mode
is initiated, the manual light is turned on, and the insert
light is turned off.

The release key is operative only when the computer
is in automatic mode and performing an 1 /o operation.

STOP/SIE (SINGLE INSTRUCTION EXECUTE) KEY

Pressing the stop/sie key stops the computer in
manual mode at the end of the instruction being ex-
ecuted.

The stop/sie key also serves as a single instruction
execute key. Successive depressions of the key cause
one instruction to be executed for each depression, The
manual light remains on.

INSTANT STOP/SCE (SINGLE CYCLE EXECUTE) KEY
Pressing the instant stop/sme key causes the ma-
chine to stop at the end of the 20-microsecond machine
cycle in progress. Successive depressions of the key
cause single machine cycles. Both manual and auto-
matic lights remain on.

CHECK STOP LIGHT

The check stop light is turned on when the machine
stops because of a parity check. One or more of the
parity or 1/0 check indicators that caused the stop is
also on. The check stop light is turned off when the
check indicators are reset or the parity or 1/0 switch
is set to PROGRAM.

DISPLAY MAR KEY
The display Mar key is operative only when the manual
light is on and the automatic light is off. Pressing the
display MaR key causes display of the maRs register
to which the mars display selector switch is set.

The rotary switch should not be turned while the
display MAR key is pressed.

READER NO FEED LIGHT

The reader no feed light is turned on when the com-
puter attempts a paper tape read or card read opera-
tion and the reader is not in the ready status.

Appendix B 93

PUNCH NO FEED LIGHT

The punch no feed light is turned on if one of the fol-
lowing conditions exists:

1. The computer executes a write instruction using
the tape punch and there is no paper tape on the
feed reel.

2. A parity check occurs while punching paper tape.
3. The paper tape supply is exhausted.

4. The card punch is not ready. This not ready status
is often temporary on a card punch operation be-
cause the buffer is interlocked while the punch
cycle is in process.

Any of these conditions stops the computer in auto-
matic mode with both the automatic and punch no feed
lights turned on. When a parity error occurs, the 1/0
write check light is also turned on. Pressing the release
key disconnects the punch and puts the computer in

94

manual mode, Pressing the reset key, while in manual
mode, turns off the punch no feed and 1/0 write check
light. Manual correction and restart procedures can
begin after pressing the release and reset keys.

THERMAL LIGHT

The thermal light is turned on if the internal tempera-
tures of the 1620, 1622, or 1623 become too high. Power
is turned off, and the power ready light goes off. The
thermal light may be turned off by pressing the reset
key after the internal machine temperatures return to
normal, The power switch must be turned off and on
again before power can be applied to the machine.

EMERGENCY OFF SWITCH

This switch is for emergency use only. If positioned
orF, all power is turned off in the machine and the
blowers that cool the electronic circuits are stopped.
Damage to the machine may therefore result.

ACCEPT Statementovvvirinnninninenenienss 33
ACCEPT TAPE Statementc.viuiinininiiinneenns 34
Adding Subroutinesl 60
Additional Core Storage, Modification for 70
Alphameric Specifications 40
Analysis of the FORTRAN Program, Part4 57
Arithmetic Statements covv et 18
Arithmetic Symbols 18
ATTAYS © ot v vr et e i 17
 Blank Field Specification 41
Block Diagrammingo ouei 44
Card Form, FORTRAN « ..\ oot ettt eeeinaeennns 12
Card, IBM .« ot e 10
Card Input, 1620 Operating Principles 88
Coding FOrmoovviiviii i 11
Compiler, Loading oo 52
Compiler Program, Formatof 65, 67
Compiling the Source Programoovivn oo, 52
Computed GO TO ..o S 24
COMSOLE « vt vttt e it e e e 90
COnSEARES v e v ettt 14
CONTINUE Statemento uirvirirnraniiiinrarea 30
Control Statementst in i 22
Unconditional GO TO ..o vit it 23
Computed GO TO « . vvv v 24
2 e 25

IF (SENSE SWITCH) 4\ttt untenrsnnsansnesanrsnnses 25
PAUSE « o\t ettt et tat ooty 26
STOP & ot e ve et it itn it on e sae i 26
2o T 26
CONTINUE 1 vttt v v et atetaaneaeeatnetaaeeenoeeens 30
END o oot vt it e e et e e 31
Correcting FORTRAN Tapest 68
Diagramming Symbolso 44
DIMENSION Statemento.ovveeinirononoinananans 43
poStatement i e e 26
po Statement, Restrictionsoncovvviiiiiiiiiiin, 30
Duplicating Tapes .. «..c.vvvvvvreirinanne e, 68
END Statement vvvvit vt in i 31
Error Analysis, Pre-Compiler Program 74
Error Analysis, Source Program oot 54
Error Analysis, SUBROUTINEScovvvvveninnei e, 58
Error Codes, Pre-Compiler Program 71
Execution of the Object Programooivivnn 55
EXpressions i e 18
Fixed Point Arithmeticcoiiii i 13
Fixed Point Constantsivveviiivrennneanns 14
Fixed Point Variablest 15
Floating Point Accumulator (FAC) in.s, 58
Floating Point Arithmetic, 12
Floating Point Constantsooiuevna... 14
Floating Point Variables 15
FORMAT Statement i iiiinrnanenn. 35
FORTRAN Arithmetic o oL, 21
rorTRAN Pre-Compiler Program, Part 5 7L
Functions .o ve et v et e 21

Index

co 1o, Computedovuiiii i 24
co 1o, Unconditionaloviiiiiiiiiiin 23
IF Statementvnneirinn i 25
IF (SENSE SWITCH) Statementc.oooveeveenn. 25
Index Values, Do Statementovvernesienienen, 30
Input Data, Typewriterooovvii i 56
Input/Output Statementsoooiviiiineaienen. 33

12107 S 33

JNelo) -1 e R 33

ACCEPT TAPE ... tvvantrrnnnornnartonnoiienssesas 34

PUNCH -+« v eeneve sttt one e ane e i 34

TYPE « ottt i inn et 34

PUNGH TAPE Lt tunvenarrneentnissnteasronsaesons 34
Input Specifications, Example 35
Interpreting Errors, Pre-Compiler Program 75
Loading Subrountinesc.o.ouiiiiiii i 53
Loading the Compiler 52
Mode, Fixed Point — Floating Pointoooooh 20
Modifying ForrraN for Additional Core Storage 70
Naming Variables 15
Object Program, Definitiont 7
Object Program, Execution ofcooviiiiniin. 55
Object Program, Format of ... ot 66, 68
Object Program, Producing theo, 51
Operating Keys and Lights, Card Read Punch 88
Operating Keys and Lights, Consolecooooniits 90
Operating Switches and Lights, Paper Tape Reader 87
Operating Principles, Part 3o, 51
Operating Principles, 1620 82
Operation Symbols 18
Output Specifications, Exampleooiiiinn. 38
Paper. Tape, Description of ... 10
Paper Tape Input, 1620 Operating Principles 83
Paper Tape Punchooviviiiii e 84
Paper Tape Readerocooviiiiii i 85
Parentheses, Correct Use ofo, 20
PAUSE Statement oo vvrvine i 26
Pre-Compiler Program, Descriptionof 71
Pre-Compiler Program, Format of 77
Pre-Compiler Program, Processing with 76
Preservation of Index Values ...t 30
Printing Multiple Lines ...t 42
Processor, Definition of . v .ot 7
Program, Example of ... 44
Program Summary, Pre-Compiler Program 74
Program Testing e e e e 49
Program Verificationo 49
PUNCH Statement.coeeiinieriii 34
PUNCH TAPE Statementovevanriiiiiinriinn. 34
READ Statementovvvvnieene i 33
Restart Procedures, Pre-Compiler Program 74
Rules for Forming Expressionso, 19
Sample Programcoveiiiniiiiiiiiii e 44
Source PrOgram ..o vt veenenaennaneireiiiians 7
Source Program Errorst 54

C26-5619-1

Specifications Statements
FORMAT + ottt vvvvvnns tnenesanaeseneeanoroeeessons
DIMENSION + vt s vt o ve s v eoennnennseeanneesansos

Statement Numberso v i in i it et

Statementst s beeee e

Arithmetic
Control
Input/Output
Specification
Statements, Summary of
sToP Statement

Stored Program
Subroutine Linkage
Subroutine Program, Format of
Subroutines, Addition of

Subroutines, Error Checks
Subroutines, List of
Subroutines, Loading

183

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, New York

Subroutines, Writing in Machine Language
Subroutines, Writing in sps

\f 1620 FoRTRAN Statements
Summary of 1620 Operating Principles
Switch Settings, FORTRAN Program
Switch Settings, Pre-Compiler Program

..................

..

..

Tape Duplication

......................................

Trace Feature

TYPE Statement
Typewriter, Keys and Switches
Typewriter Input, 1620 Operating Principles
Typing Input Data

..............................

.....................................

Storage Allocation ... oot

.....................................

..................................

..................................
......................

Unconditional co To

..............................

Subroutines, Error Analysiso 58

Variable Arrays

................................ Writing the 1620 rorTraN Program, Part 1

0791 wal

V'S Ui paiulid

1-6196-92D

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78
	79
	80
	81
	82
	83
	84
	85
	86
	87
	88
	89
	90
	91
	92
	93
	94
	95
	96

