
Systems Reference Library

IBM 1620 FORTRAN (with FORMAT)

This manual contains the specifications and operating pro­
cedures for the IBM 1620 FORTRAN (with FORMAT) Program­
ming System, Version 2, and for th<? printer-oriented system,
1620-1443 FORTRAN (with FORMAT). The manual is divided
into six sections, each developed for a specific need of a
FORTRAN user.

Part 1. Introduction to IBM FORTRAN

Part 2. Writing the 1620 FORTRAN Program
Part 3. Operating Principles
Part 4. Analysis of the FORTRAN Program
Part 5. The FORTRAN Pre-Compiler Program
Part 6. Summary of 1620 Operating Principles

File N urn ber 1620-25
Form C26-5619-4

Reader Survey Fonn

A reader survey form is included at the back of this manual. We
would appreciate your evaluation of this manual to assist us
with future revisions and to guide us in planning other manuals.
Thank you for your cooperation.

Manager, Product Publications
San Jose, California

This publication is a reprint of C26-5619-3~ it includes
Newsletter N26-0061 which revised the following pages:

Pages Dated
Front cover, revision notice, contents, 3/9/64
9, 31, 34, 37,40, 41, 42, 43, 44.1, 47,
48,49,50,51,53,54,55,56,57,58,59,
60,61,62,64,65,66,67,69,70,71,82,
95,96,97,98,99,100,101,102,103,
104, 105, 106

With the inclusion of Newsletter N26-0061,this manual is
applicable to both the standard FORTRAN (with FORMAT)

System and the printer-oriented FORTRAN (with FORMAT)

System. Thus, the programming systems supported by this
manual are:

1620-FO-003 1620 FORTRAN with FORMAT - for paper
tape (version 2)

1620-FO-004 1620 FORTRAN with FORMAT - for cards
(version 2)

1620-FO-038 1620-1443 FORTRAN with FORMAT - for
paper tape

1620-FO-037 1620-1443 FORTRAN with FORMAT - for
cards

1620-FO-005 1620 FORTRAN Pre-Compiler - for paper
tape

1620-FO-006 1620 FORTRAN Pre-Compiler ~ for cards

Copies of this and other IBM publications can be obtained through IBM Branch Offices.
Comments concerning the contents of this publication may be addressed to:
IBM, Product Publications Department, San Jose, Calif. 95114

© 1963 by International Business Machines Corporation

Contents

Part 1 - Introduction to IBM FORTRAN 5

Part 2 - Writing the 1620 FORTRAN Program 11
The FORTRAN Coding Form .. 11
Constants and Variables .. 14
Arithmetic Statements .. 18
Control Statell1ents ... 22
Input/Output Statements .. 32
Specification Statements ... 34
A FORTRAN Problem .. 44

Part 3 - Operating Principles ... 51
Producing the Object Program ... 51
Execution of the Object Program 55

Part 4 - Analysis of the FORTRAN Program 58

Part 5 - The FORTRAN Pre-Compiler Program 72
Operation of the .Pre-Compiler Program 72
Processing with the Pre-Compiler Program 77

Appendix A - Summary of the 1620 FORTRAN Statements 80

Appendix B - Summary of 1620 Operating Principles 83

Index .. 106

Preface

Each of the six sections of this manual is developed for a specific need of a
FORTRAN user. This preface was designed to enable you to quickly locate and ex­
tract the segments of 1620 FORTRAN that are most important to you.

Part l. INTRODUCTION TO IBM FORTRAN is intended for readers who have
neither a previous knowledge of other FORTRAN systems nor a background in data
processing. This part tells what FORTRAN is, and what the 1620 Data Processing
System is.

Part 2. WRITING THE 1620 FORTRAN PROGRAM is developed primarily for the
"nonprofessional programmer," a person not engaged in programming as a full
time occupation. This part of the manual tells how to write a FORTRAN program.
If your responsibilities are concerned with only writing FORTRAN programs, and
not processing them on the computer, you need not read the other parts of the
manual. Appendix A contains a summary of 1620 FORTRAN statements.

Part 3. OPERATING PRINCIPLES provides the information necessary to imple­
ment the FORTRAN syst~m on the 1620 computer. If you are a machine operator,
or a programmer processing a program, this part of the manual will show you
how to place the program into the machine, provide the proper setting of the
switches, explain the use of the keys on the 1620, explain the type of program­
ming errors that the FORTRAN program will detect, and show you how to enter
input data.

Part 4. ANALYSIS OF THE FORTE-AN PROGRAM is intended for the experienced
programmer. This part of the manual describes certain features of the program,
shows where data is located during processing, shows how the program may be
amended, and provides the general format for card and paper tape input data.

Part 5. The FORTRAN PRE-COMPILER program is described in this part. The
Pre-Compiler is a special program provided by IBM to enable the FORTRAN pro­
grammer to "pre-test" FORTRAN programs. This program detects and permits cor­
rections of the more common programming errors. Read Parts 1 and 2 before
reading this part of the manual.

Part 6. Appendix B is a summary of the operating principles described in the
following IBM publications:

IBM 1620 Central Processing Unit, "}Y1odel1 (Form A26-5706)
IBM 1621 Paper Tape Unit (Form A26-5836)
IBM 1622 Card Read-Punch (Form A26-5835)
IBM 1443 Printer for 1620/1710 Systems (Form A26-5730)

This appendix is intended for the FORTRAN user who has no previous 1620
operating experience.

Part l-Introduction to IBM FORTRAN

Digital Computers

FORTRAN (FORmula TRANslation) is an automatic coding system that allows the
engineer and scientist to utilize a computer for problem solving with only a
slight knowledge of the computer and a short period of training.

FORTRAN is written in a language that is a compromise between the language
of the computer and the language of the engineer and scientist. To satisfy the
computer, symbols are used that the computer can understand and this requires
that the rules for their use be closely followed. To satisfy the engineer and
scientist, as many of the detailed computer control operations as possible are
eliminated from the job of writing programs, and a problem statement format
close to that of the mathematical equation is used.

FORTRAN programs are written on paper coding forms, punched into IBM

cards or IBM paper tape, and then processed on an IBM Data Processing System.
This manual is written for the IBM 1620 Data Processing System, a low-cost, solid
state digital computer.

A digital computer is composed of the following elements:

1. Input Unit. Digital computers accept numbers, letters, and symbols. In­
formation can be fed into the system by using punched cards, punched
paper tape, or by inserting information manually through a typewriter
keyboard.

2. Central Processing Unit. The sequence of steps to be performed must be
translated into detailed instructions which the computer can understand.
A series of instructions is called a program. When it is retained in a stor­
age device, it is called a stored program. These coded instructions in
storage are available as needed to direct and complete an entire sequence
of operations. Special instructions may permit logical-arithmetic decisions
to be made based on intermediate results; these decisions allow the com­
puter to select the proper course among several alternatives for solving
a problem. A logical-arithmetic unit can add, subtract, multiply, divide,
and compare numbers in a manner similar to a desk calculator, but at
lightning speed. Complex calculations are usually combinations of these
basic operations. The logical-arithmetic unit can make logical decisions.
It can distinguish positive, negative, and zero values and transfer this in­
formation to other units of the computer.

3. Storage Unit. Data can be internally stored until needed. This informa­
tion is stored in a manner quite similar to the way music or speech is
stored on a tape for playback on a tape recorder, although the notation
used is quite different. Stored information can be referred to once or
many times, and can be replaced whenever desired. The information
stored by the computer can be original data, intermediate results, refer­
ence tables, or instructions. Each storage location is identified by an indi­
vidual location number which is called an address. By means of these
numerical addresses, a computer can locate data and instructions as
needed during the course of a problem.

4. Output Unit. While doing its work, the computer can produce answers
in several forms. Results may be punched into cards, paper tape, or
printed in report form.

Introduction to IBM FORTRAN 5

The Stored Program

6

The organization of these elements to form a computer may be illustrated
as follows:

t----........ I CENTRAL PROCESSING t----__ .. ,

UNIT

STORAGE

The elements of a computer function in a manner which may be compared
to the steps required for solving a problem by pap~r and pencil methods. Input
corresponds to the information given in the problem. The rules of arithmetic
control the handling of the problem. The logical-arithmetic functions are the
same as the functions of manual calculations. Storage may be compared to the
work papers on which intermediate answers are noted. The answers are the
output.

"Program" is just another way of saying "series of instructions and fixed data."
A program must define in complete detail, for every conceivable combination of
circumstances, just what the computer is to do with the data which will subse­
quently be fed into it.

An instruction may tell the computer what operation to perform and where
to locate the data on which the operation is to be performed; another will tell
what to do with the result. These computer instructions are stored in the se­
quence necessary to accomplish a given task, and form the stored program.

The various operations covered in these instructions are usually stated in a
numerical or alphabetic code. Thus, the operations in a simple problem might
be designated as follows:

Operation Code
21
22
26

Operation
add
subtract
store the result

These operation codes might be used in a stored program in the following man­
ner:

Instruction # 36
Instruction # 37
Instruction # 38
Instruction # 39

Operation
Code

21
21
22
26

Storage
Location

00879 00679
·00879 00659
00879 00639
01479 00879

Instruction # 36 - tells the computer to add the number stored at location
00679 to the number stored in 00879.

Instruction #37 - add the number stored at location 00659 to the result in
00879.

The FORTRAN System

The Processor

The Source Program

The Ob;ect Program

Instruction # 38 - subtract the number stored at location 00639 from the
result in 00879.

Instruction #39 - store the result of the two additions and the one sub­
traction at location 01479.

The same program, coded in FORTRAN, might be:

D=A+X-Y

The complete solution of a problem, depending upon the type of problem
to be solved, may require hundreds or even thousands of instructions. The com­
puter can refer to them one after another, or it can be instructed to repeat,
modify, or skip over certain instructions, depending on intermediate results or
circumstances. However, such circumstances must be anticipated and appropriate
instructions included in the program.

The ability to repeat operations combined with the ability to modify and
skip over instructions permits a significant reduction in the number of instruc­
tions required to perform any given job.

The decision-making ability of the computer enables it to handle exceptions
to standard procedures. Since a system will "remember" instructions for dealing
with the exceptions, it can be made to handle automatically any situation that
develops.

Up to this point, the computer has been treated as though it were a sepa­
rate piece of equipment to be used by itself. However, in actual practice, the
computer is used in conjunction with other equipment and with programming
systems that are designed to aid the programmer in the preparation and opera­
tion of his programs. 1hese total facilities for receiving information and produc­
ing desired results are called a data processing system. One part of such a system
may be FORTRAN which is a programming system that enables a programmer to
write a program with less effort than would otherwise be required. For the
purpose of explanation, FORTRAN will be described in two parts: the FORTRAN

System and the FORTRAN Language.

The FORTRAN System consists of the following parts.

The processor is a program developed by IBM. Its purpose is to tell the computer
how to translate the FORTRAN language, written by the programmer, into the
machine language used by the computer.

The source program defines the ultimate operations the computer is to perform
and is written by the programmer in the FORTRAN language.

The source program, then, is input to the computer along with the FORTRAN

processor. The computer follows instructions from the processor to convert the
source program into a machine language which can then be run on the com­
puter. This machine language program is called the object program. When the
object program and the data to be processed is run on the computer to cause the
desired computations, it is said to be executed. That is, execution is the actual
operation of the computer while it is under the direction of the object program.

It is important in learning FORTRAN to remember the difference between the
processor and the source program. The operation of converting the source pro­
gram to an object program is referred to throughout this manual as compilation,

Introduction to IBM FORTRAN 7

The FORTRAN Language

The 1620 Data Processing
System

8

and events that occur at this time are referred to as occurring at compile time.
The term object lime refers to events that occur while the object program is
being executed.

The diagram which follows illustrates this sequenc of events .

Source
COMPUTER • Program

(Cards

Compile FORTRAN
Time Processor

I Object

Program •••• ••• in Moc hi ne Language

+
Input

COMPUTER Results
Data

Object

~ Time

The FOHTRA T language is composed of the individual commands or statem nts
of a program consisting of operation symbols (+ or -), and expressions
(A+B-C).

Statem nts are the sentences of the FOHTRA I language. Th y may :
1. Define the arithtnetic steps which are to be accomplished by the com­

puter.
2. Provide information for control of the comput I' during th execution of

the program.
3. Describe input and output operations which are necessary to bring in

data and punch or write the results.
4. Sp cify certain additional facts such as the size 'of the input data that is

read by the program.

The mM 1620 Data Processing System is an electronic computer sys tem designed
for scientific and technological applications. The use of solid-s tate circuit com­
ponents and the avai lability of from 20,000 to 60,000 positions of core storage
prOVide the 1620 system with the 'Capacity, reliability, and speed to solve prob­
lems that in the past have required th use of larg r data processing systems.

The '8M Card

Five units are used with the IBM 1620 FORTRAN System. The IBM 1620 Cen­
tral Processing Unit contains the computer, 20,000 positions of core storage, a
console panel, and an input/output typewriter. The 1443 Printer is available for
high-speed printed output. Paper tape operations are permitted by the IBM 1621
Paper Tape Unit, which also includes the paper tape controls and Tape Punch.
The IBM 1622 Card Read-Punch is available for card operations. The IBM 1623
Storage Unit expands the 20,000 core storage positions in the Central Processing
Unit to 40,000 or 60,000 positions.

The console of the 1620 contains control keys, switches, an indicator panel,
and a typewriter. The control keys and switches are used for manual or auto­
matic operation of the system. The console panel provides visual indication of
the status of various registers and indicators. The typewriter provides direct
entry of data and instructions into core storage; it also provides a permanent log
of the operator's intervention during the execution of a program.

Information is entered into the system by input devices; namely, the IBM

1621 Paper Tape Unit, the IBM 1622 Card Read-Punch, and the typewriter.
The 1622 reads 80-column cards at a maximum rate of 250 cards per minute.
The 1621 reads an 8-track paper tape at the rate of 150 characters per second.
The operator's typing speed determines the rate at which information enters
through the typewriter.

The IBM 1622 Card Read-Punch, the Tape Punch, the 1443 Printer, and the
typewriter are output devices which record the processed data. The typewriter
prints at a maximum rate of 10 characters per second; the card punch and tape
punch operate at the rate of 125 cards per minute, 15 characters per second,
respectively. The 1443 Printer prints 240 lines per minute with the 52-character­
set type bar.

The IBM card is divided into 80 vertical areas called "columns" or "card columns."
They are numbered from 1 on the left to 80 on the right side of the card. Each
column is then divided horizontally into twelve punching positions. The punch­
ing positions are designated from the top to the bottom of the card by 12, 11
(or X), 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. The punching positions for digits 0 to 9
correspond to the numbers printed on the card. Each column of the card is able
to accommodate a digit, a letter, or a special character. Thus the card may con­
tain up to 80 individual pieces of information. Digits are recorded by holes
punched in the digit punching area of the card from 0 to 9.

ABC D E F 6 H I J K L M N 0 P Q R STU v W ~ V 2 123 4 5 6 7 890
I I I I I I I I I

I I I I I I I I I
00000000000000000000000000000000000001010101010101010000000000000000000010000000
1234 56 7891011121314151611181920212i2J242526'171SZS303132JJ.}43!1363738394{1414243444546414849S05152SJS45S56575859606162636465666768697Q7172737475,611781980

111 11 11111 11111111111111111111111111

22212222222222222222212222222222222221;; 2 2 2 2 2 2 2 2 2 2 2 2 22222122222222222222222222222

3 3 3 3313 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 313 3 3 3 3 3 3 3 3 3 3 3 3 3 3 13 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 13

44444441444444444444444441444444444444444144444444444444444414444444444444444444

555555555155555555555555555155555555555555515555555 5 555 5 55 5 55515 55555 55 5 5 5 55 5 55 5

66666666666166666666666666666166666666666666 61s 6 6 6 6 6 6 6 6 6 666666661666666666666666

7777777777777177777777777777777177777777777777717777 7 7 7 7 7 7 7 7 7 7 7 7 7 7177777777'77777

8 8 8 8 8 8 8 8 8 8 8 8 8 B 818 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 81s 8 8 8 8 8 8 8 8 8 8 8 8 8 8 18 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 18 8 8 8 8 8 8 8 8 8 8

999999999999999991999999999999999991999999999 S 9 9 9 9 919 9 9 9 9999999999999 q 19 9 9 9 9 9 999
1 2 3 4 5 6 1 8 9 10 II 12 1) '4 ~5 16 11 18 19 20 21 22 2J 24 2S 26 '27 28 29 30 31 32 33 34 35 36 31 3a 39 .\0 41 4~ 43 44 4S 46 47 48 49 50 51 52 53 54 :>S 56 57 58 59 60 61 62 5:.1 64 65 66 67 58 69 'I) II I~ 13 14 75 16 17 18 19 !m

As illustrated in the drawing, a combination of a zone punch and a digit
punch is used to accommodate any of the 26 letters in one column.

Introduction to IBM FORTRAN 9

Paper Tape

10

A card is divided into segments called "£elds." A £eld is a column or
columns reserved for the punching of data of a speci£c nature. The field may
consist of from one to 80 columns depending upon the length of the particular
type of information.

Punched paper tape serves much the same purpose as punched cards. Developed
for transmitting telegraph messages over wires between two computers, paper
tape is now used for communication with other computers as well as for basic
input to computers.

Eight-track paper tape has eight parallel tracks along which data can be
recorded. One column of eight punching positions across the width of the tape
is used to code numerical, alphabetic, and special characters.

The four lower tracks of the tape (excluding the feed holes) are called 1,
2, 4, and 8 and are used to record numerical characters. The numerical char­
acters 0 through 9 are represented by a punch or punches in these four positions.
The sum of the position values indicates the numerical value of the character:
a hole in channell represents a one; a combination of 1 and a 2 punch repre­
sents a three; and so on.

The X and 0 tracks are used in combination with the numerical channels
to record alphabetic and special characters.

VI
wow
o..wo
~wO ~

TRACKS ~ABCDEFGH 1 JKLMNOPQRSTUVWXYZ 1234567890'). $ (,* :@+- b/8

EOL­
x-
0-

CHECK­,-
FEED-
4-
2-
1-

• .. ~.................. .I~........ •••••••••••• • ••••••• •.. · I·· ..•. ..•. .. .•. • •.• •• I'!' ··1······· ::: · · · :1::: · · · · · :::: · · · · :::: · · · · · :: :1: • • • • ;; • ; • • • ; • • • • •
::: •• : I' ·1: •• ·1: .': •• : • .!: .i. 'I: 11

111: .: : :'.: •

A parity check is made to ensure that each letter or number is punched
correctly. This consists of automatically punching each column of the tape with
an odd number of holes. The check channel is reserved for punching when the
number, letter, or special character has an even number of holes. As the tape is
read or punched, each column is checked to make certain that it is punched with
an odd number of holes. For exmnple, the basic 6-hole tape code for the letter
A is coded for an odd number of holes, X-O-I, so the check hole is not punched.
However, the letter C is coded X-O-1-2, which is an even number of holes, and
the check code is punched to make an odd number.

Part 2-Writing the 1620 FORTRAN Program

The FORTRAN Coding Form

This part of the manual explains how each FORTRAN statement is prepared and
how they can be combined to solve problems in engineering and science. The
terms Processor, Source Program, Object Program, and Compile Time are used
throughout this part of the manual. If you are not certain of the meaning of each
of these terms, you should review INTRODUCTION TO FORTRAN in Part 1.

In the previous section of the manual we learned that a FORTRAN program
solves a problem by carrying out the instructions given by a series of statements.
These statements can be arranged into four groups:

Input/output statements that read data into the program or print and punch
the results of the program.

Control statements that may determine the sequence in which the state­
ments will be followed or provide the program with the ability to deal with
predefined exceptions to the procedure.

Specification statements that tell the FORTRAN program the amount and kind
of input and output data it will process.

Arithmetic statements that specify the mathematical calculations to be
performed.

A FORTRAN coding form is available for use as a guide when preparing a source
program. Besides providing a written record of the program, the form facilitates
the subsequent transfer of the source statements to cards or paper tape (see THE

FORTRAN CARD).

IBM FORTRAN CODING FORM
Program _______ _

Coded By _______ _ Dale ___ _

Checked By _______ _ Identification Page __ of __

FORTRAN STATEMENT

The FORTRAN coding form consists of 21 lines, each of which is used to record
one FORTRAN statement. Each number, letter, and special character of a statement
is written in a separate column. Statements must be written one to a line and must
start and finish on the same line. Any number of blanks may be included in a state­
ment.

Writing the 1620 FORTRAN Program .Z1

Commenfs

The FORTRAN Card

Floating Point Arithmetic

12

NOTE: The headings above the columns, e.g., STATEMENT NUMBER, are merely
guides; they do not restrict the user in any manner. In other words, statements
may start in any of the 72 columns. Of course, a statement number, if used, must
precede the statement (see STATEMENT NUMBERS).

Any statement that begins with the letter C followed by two blanks is considered
to be a comment statement. A comment statement is a means of inserting identi­
fying headings, etc., into the program. It is not compiled and therefore does not
become part of the object program.

Each line of the coding form is punched into a separate card. The standard
FORTRAN card is shown below.

/
~~
STATEMENT ~ FORTRAN STATEMENT IDENTIFICATION

HUWe!R !!
0'0000 000 00000000
,I". , ,6 71.wngg~~"n""M~nn~~~n~~~nm~~~~P~~~n~~~~.a~U~~~~M~~~Y"~~Uuw~.~.nronn 7l14~1I17J17t.
111111 1 1 1 1 1 1 11 1 111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 111 1 1 1 1 1 1 1 1 1 1 11111 1 1 11 1 11 111 11111111

,

212222 222 22222222

31333 3 333 33333333

4:44 4 4 444 44444444

51555 5 555 55555 5 5 5

6166 & 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 66 66666666
I

717 77 7 7 7 11 7 7 1111 7 111 7 1 7 7 7 11 7 7 1111 7 11 7 7 7 7 7 111 7 7 7 111 7 11 7 7 7 177 111 7 11111 717777 77777771

8: 8 8 8 B8 \8 88888888

919 9 9 9 919 ~ 99999999
11 2 J 4 ~ I 1 I • 10 11 1% 13 14 15 II 17 11 I' 28 21 22 21 24 2S 21 21 21 2t 30 31 32 33 34 l5 31 31 II 11 40 41 4Z 43 444154141 5CI " ~ 53 5UO st 57 51 51 • II 82 13 .415 16 11 II " 10 11 12 374157111117'.

'I" 888157

Columns 1 through 72 of the card are used to record data from the cor­
responding columns of the coding form. Columns 7.3 through 80 are used for
identification. The identification field is usually divided into two parts. The first
part may contain a specific job number assigned to the problem by the pro­
grammer; the second part is used to assign a sequence number to each card
in the program. The identification number "180024" in a card could mean it is
the 24th card in the deck for job no. 18. This field, used at the option of the
programmer, is of great value if cards from one program are mixed with other
cards or are accidentally upset and their sequence lost.

Scientific and engineering computations frequently involve lengthy and complex
calculations in which it is necessary to manipulate numbers that may vary widely
in magnitude. To obtain a meaningful answer, problems of this type usually
require that as many significant digits as possible be retained during calculation,
and that the decimal point always be properly located. When applying such
problems to a computer, several factors must be taken into consideration, the
most important of which is the decimal point location.

Generally speaking, a computer does not recognize the decimal point present
in any quantity used during the calculation. Thus a product of 414154 will result

Fixed Point

regardless of whether the factors are 9.37 x 44.2, 93.7 x .442, or 937 x 4.42, etc.
It would normally be the programmer's responsibility to be cognizant of the deci­
mal point location during and after the calculation and to arrange the program
accordingly.

The processing of numbers expressed in ordinary form (e.g., 427.93456,
0.0009762, 5382, -623.147, 3.1415927, etc.) can be accomplished on a computer
only with extensive analysis to determine the size and range of intermediate and
final results. This analysis and subsequent number scaling frequently requires
a larger percentage of the total time needed to solve the problem than is required
by the actual calculation. Furthermore, number scaling requires complete and
accurate information regarding the bounds on the magnitude of all numbers that
come into the computation (input, intermediate, output). Since it is not always
possible to predict the size of all numbers in a given calculation, analysis and
number scaling is sometimes impractical.

To alleviate this programming problem, a system is used in FORTRAN in which
information regarding the magnitude of all numbers accompanies the quantities
in the calculation. All numbers are represented in a standard, predetermined for­
mat which instructs the computer in an orderly and simple fashion as to the
location of the decimal point. With this method, quantities which range from
minute fractions having many decimal places to large numbers having many in­
teger places may all be handled. This system is called "floating point arithmetic."

The notation used in floating point arithmetic is an adaptation of the scien­
tific notation. That is, the decimal point of all numbers is assumed to be at the
left of the high-order nonzero digit. (This is often referred to as "normalizing"
the number.) Hence, all quantities may be thought of as a decimal fraction times
a power of ten.

427.93456 as .42793456 X 103

and 0.0009762 as .97620000 X 10-3

where the fraction is called the mantissa, and the power of ten, indicating the
number of places the decimal point was shifted, is called the exponent.

In floating point calculations, each quantity operated upon is expressed as
a 10-digit number consisting of an 8-digit mantissa, and a 2-digit exponent. The
magnitude of the number thus expressed must be zero or must lie between 10-100

and 1099
•

The mantissa consists of the leftmost eight digits of the floating point num­
ber. The decimal point is always assumed to lie immediately to the left of the high­
order mantissa digit. The range of the mantissa is between .10000000 and
.99999999.

The exponent represents the power of ten used to specify the location of the
decimal point in the original number. The sign and magnitude of the exponent are
determined by the number of places the decimal point is shifted in order to place
it to the left of the high-order nonzero digit. The direction of shift determines the
sign of the exponent; positive for left, negative for right.

The following examples demonstrate the conversion of numbers in ordinary
form to a floating point notation.

Nuuber Floating Point Form

123.45678
.00765438
-.12348693
-.00000070

.12345678 X 103

.76543800 X 10-2

-.12348693 X 100
-.70000000 X 10-6

Quantities used in a FORTRAN program may also be expressed in fixed point form.
A fixed point number is an ordinary whole number, without a decimal point, con­
sisting of the digits 0 through 9.

Writing the 1620 FORTRAN Program 13

Constants and Variables

Constants

Fixed Point Constants

Floating Point Constants

Variables

14

Mathematical problems usually contain some data that does not change throughout
the entire problem, and other data that may change many times during calculation.
These two kinds of data are referred to as "constants" and "variables," respectively.
Both constants and variables can be used in FORTRAN if they are written so that
the processor can distinguish one from the other.

A constant is any number which is used in computations without change from one
execution of the program to the next. It appears in its actual numerical form in the
source statement. In the statement

6 is a constant because it appears in its actual numerical form. (The asterisk indi­
cates the arithmetic operation of multiplication.)

You can write constants in floating point or fixed point form.

Definition:

Example:

Definition:

Example:

A fixed point constant is written without a decimal point,
using the digits 0, 1, . . . 9. A preceding plus sign or minus
sign is optional. The length of the constant cannot exceed
4 digits.

o
+3
-2496
48

Any number written with a decimal point, using the digits
0, 1, . . . 9. A preceding plus or minus sign is optional. An
unSigned constant is assumed to be positive.

The constant may contain an exponent, The exponent, pre­
ceded by the letter E, may have a preceding plus or minus
sign.

All floating point constants are converted to an 8-digit man­
tissa with a 2-digit exponent.

Constants in input data may contain up to 20 digits, but
only the first eight significant digits will be carried in the
mantissa during calculation.

42.
1.13
.0046
5000.
6.0E3
6.0E+3
4264.44
-.00004

(6.0 X 103 or 6000)
(6.0 X 103 or 6000)

When a quantity in a FORTRAN problem is not constant, that is, when its value varies
for different executions of the program, or varies at different stages within the pro­
gram, it is known as a variable quantity. Variable quantities are given names so

Fixed Point Variable

Floating Point Variable

Considerations in Naming
Variables

they can be identified and referred to by the object program. When reading this
description of variables, it is important to distinguish between the value of a vari­
able and the name of a variable. (When using constants, the name and the value
of the constant are the same.) For example,

VOLT

could be the variable name assigned to a series of values used in a calculation of
current in a circuit. Variables may be in fixed point or floating point.

Definition:

Example:

A fixed point variable name consists of from 1 to 5 alpha­
meric characters (i.e., letters A to Z, digits 0 to 9). The first
character must be either I, J, K, L, M, or N. The value of
a fixed point variable cannot exceed 4 digits.

I
JOB 1
MAX
N44

The requirement that a fixed point variable must begin with the letters I
through N is because these letters have been arbitrarily chosen to indicate to the
processor that the values of the variable so named will be in fixed point. Floating
point numbers can never be the values for a variable defined as fixed point.

Definition:

Example:

A floating point variable name consists of from 1 to 5 alpha­
meric characters (i.e., letters A to Z, digits 0 to 9). The
first character in the name must be alphabetic (not nu­
meric) and must not be the letters I through N. (Remem­
ber, I through N are used to indicate fixed point variables.)

A
B7
DELTA
VOLT
RATEI

The rules for naming variables allow extensive selectivity. It will be easier for you
to follow the flow of a program if you use meaningful symbols wherever possible.
For example, to compute distance you could use the statement

but it would be more meaningful to write

or even

DIST = RATE * TIME

Similarly, if you want a computation to be performed using fixed point, you could
write

1= J * K

Writing the 1620 FORTRAN Program 15

Subscripts

16

or

ID = IR t.' IT

or, better yet

IDIST = IRATE * ITIME

Variables can be written in a meaningful manner by using an initial charactel
to indicate whether the variable is fixed point or floating paint and by using
succeeding characters as an aid to memory.

Another aid to programming FORTRAN is to vary the last character of a variable
name. For example, to compute four different quantities called HRS, you could use
the following:

HRS 1
HRS 2
HRS .3
HRS 4

If the values of these variables were in fixed point, you could precede each
of these names by I, J, K, L, M, or N.

The rules for naming and forming variables and constants might be easier to
understand if you know how the processor uses the names that you assign. When
you establish a name for a constant or variable, the processor establishes for the
object program a specific location in storage that will contain the data that you
have named. Whenever this name appears in the object program, you are, in effect,
telling the program to go to the position in core storage where the data, repre­
sented by its name, is stored, in order to perform a calculation with the data.

Thus, each constant and variable that you use is assigned a location in 1620
storage where its value is located. Therefore it is important that you remember:

l. When you are forming a constant, do not use more than 4 digits if it is a
fixed point number, and be certain to use a decimal if it is a floating point
number.

2. When you are naming a variable, use one of the letters I through N as the
first character if the value is a fixed point number, and do not use the letters
I through N if it is a floating point number.

3. Do not assign the same name to more than one variable.

4. Be certain that data is in the same mode (fixed point or floating point)
as its variable name indicates it should be.

Variables in your program can be subscripted so that you can represent many
quantities with one variable name. In an earlier example, four different quantities
called HRS were named HRS 1, HRS 2, HRS 3, and HRS 4. If a program contained 50
quantities for HRS, it would be cumbersome and time consuming to name all of
them in this manner.

A group of 50 such quantities can be referred to as an "array." Rather than
name all 50 quantities in the array, it is much easier to refer to the entire array by
one name and refer to each individual quantity (element) in the array in terms of
its place in the array.

For example, assume the following is an array named HRS:

38.6 1st element
40.2 2nd element
36.4 3rd element

47.3 50th element

If you want to refer to the second element in the array, the variable name
would be "HRS (2)." The quantity "2" is the subscript to the variable "HRS." (In
FORTRAN language, subscripts are always enclosed in parentheses.)

the value of HRS (2) is 40.2
the value of HRS (3) is 36.4
the value of HRS (50) is 47.3

If you want to refer to any element of the array, you can write the variable
name HRs(I), where I may equal 1, 2,3, ... , 50. As you can see by this example,
the subscript is also a variable. The fact that a subscript can be a variable is ex­
tremely important in FORTRAN programming. It means that you can set up a pro­
gram to do a basic computation, then make the same computation on many differ­
ent values by merely changing the value of the subscript. This technique is de­
scribed in a later section.

So far we have only considered arrays that are one dimensional, i.e., there is
only one subscript for a variable.

A 1620 FORTRAN program may also use two-dimensional arrays. For example
assume the following is an array named MRATE.

Column 1 Column 2 Column 3
Row 1 14 12 8
Row 2 48 88 4
Row 3 29 25 17
Row 4 1 3 43

If you want to refer to the quantity in row 4, column 2 you would write the
variable name MRA TE (4, 2) .

the value of MRA TE (3, 3) is 17
the value of MRA TE (1, 2) is 12

If you want to refer to any element of the array, you can write the variable
name MRATE (I, J), where I equals (rows) 1, 2, 3, or 4 and J equals (columns)
1, 2, or 3.

Definition:

Example:

A subscript can be either a variable or a constant, but must
always be positive and in fixed point form.

If v represents a variable and c represents a constant, then
subscripts can be written in the following forms.

v
c
v + c or v - c

Of subscripts:
IRATE

J
4
NO +3

Writing the 1620 FORTRAN Program 17

Arithmetic Statements

Expressions

Operation Symbols'

18

Example: Of variables that are subscripted:
A(})
K(3)
B(I, J)
I (4,2)
BETA (}-2 ,K+4)

In the last item in the example above, the object program computes the
value of the two-dimensional subscript by subtracting 2 from the value of J and
adding 4 to the value of K.

The numerical calculations to be performed in the object program are defined
by arithmetic statements. FORTRAN arithmetic statements closely resemble conven­
tional arithmetic formulas. They contain a variable to be computed, followed by
an = sign, followed by an arithmetic expression. For example, the arithmetic
statement

Y = A - SIN(B)

means "replace the value of the variable on the left side of the equal sign with the
value of the expression on the right side of the equal sign." In a FORTRAN program,
the equal sign means "is to be replaced by" rather than "is equivalent to."

The meaning of the equal sign is important in FORTRAN. Earlier in the manual
we learned that each variable in the obJect program is assigned a specific location
in storage that contains the data you have named. As an example, assume a fixed
pOint variable named NUMBR has the value of 6. The statement

NUMBR = NUMBR + 2

would cause the object program to take the value of NUMBR, which is 6, increase it
hy 2, and then set the result 8 as the new value of NUMBR.

Format: "a = b"
a is a variable and may be subscripted
b is an arithmetic expression (explained later)

Example: A=B+C
D(I) = E(I) + 2.-F

An expression in FORTRAN consists of a series of constants, variables, and functions
(explained later) separated by parentheses, commas, and/or operation symbols,
so as to form a mathematical expression. Expressions appear on the right-hand
side of arithmetic statements.

Five basic operations can be used in FORTRAN: addition, subtraction, multiplication,
division, and involution (raising to a power). These operations are represented in
FORTRAN by the following symbols:

+

*
/
**

addition
subtraction
multiplication
division
involution

Rules for Forming
Expressions

There are five rules that you must follow when you write FORTRAN arithmetic state­
ments. The purpose of these rules is to help you write your statement correctly
in FORTRAN language.

l. The constants and variables used in a FORTRAN expression may be either
in fixed point or floating point mode, but both modes cannot be used in the
same expression. For example:

426
3.
I
R
HRS (J)

Constant - fixed point mode
Constant - floating point mode
Variable - fixed point mode
Variable - floating point mode
Subscripted variable - floating point mode

In the last example, the subscript J, used with the floating point variable
HRS, is in fixed point mode. The mode of the expression is determined only
by the mode of the quantity. Using a fixed point subscript with a floating
point variable does not violate the rule of mixing modes in an expression.

2. Involution of a quantity does not affect the mode of the quantity. However,
a fixed point quantity may never be given an exponent. The following are
valid.

A**B
A**J

floating point
floating point

3. Whenever two operation symbols follow in succession, they must be sep­
arated by parentheses. The following examples illustrate this rule:

Ma thema tical FORTRAN Incorrect FORTRAN

Expression Expression Expression

A
AI (-B) AI-B

-B
AB or A. B A*B AB
AE+Z. A * * (E + 2.) A**E+2.
AE+2·B A * * (E + 2.) *B A**E+2.*B

Common algebraic rules must also be observed. For example the ambig­
uous mathematical expression

C
A

R

can be written as R * * (A * *C) or as (R * * A) * *C, whichever it is intended
to be.

The mathematical expression

AB
CD

can be correctly written as A*B/(C*D) or as A/C * BID. But the ex­
pression A *B/C*D, although it is a valid FORTRAN expression, does not
represent the mathematical expression AB .

CD

Writing the 1620 FORTRAN Program 19

Verification of Correct Use

of Parentheses

Mode of an Arithmetic
Statement

20

4. Parentheses are used to specify the order of operations in an expression.
If parentheses are omitted, the order is taken to be from left to right as
follows:

**
* and /
+ and-

involution (raising to a power)
multiplication and division
addition and subtraction

For example the FORTRAN expression

A + B/C + D **E*F-G

will be taken to mean the mathematical expression

A+~+(DE'F)-G
C

The FORTRAN expression could have been written with parentheses as
follows:

A + (B/C) + (D**E*F) - G

5. A sequence of. consecutive multiplications and divisions (or consecutive
additions and subtractions) without parentheses will be grouped from the
left. For example:

A*B*C*D*E

will be taken to mean

((((A*B)*C)*D)*E)

Until you become proficient in writing FORTRAN programs, always use paren­
theses to specify the order of operations.

To check a complicated FORTRAN expression to determine that the parentheses are
correctly inserted in pairs, use the following method.

Working from the left to right, label the first open parenthesis "1," and increase
the label by 1 for each open parenthesis and decrease it by 1 for each closed paren­
thesis. The label of the last parenthesis should be O. The mate of an open paren­
thesis labelled n will be the next parenthesis labeled n-l.

r-- -- --- --- - --:-- - - - ------- ----- ---,
I I
I r---------------------- ____ , I
I I I I
I I I

1 : i--,-------~~---~-----l i
Tt., ~ t t t
{(({A*8)*C)*D)*E)
1234 3 2 1 0

The difference between a FORTRAN expression and a FORTRAN arithmetic statement
should be emphasized at this time. By definition, an arithmetic statement is com­
posed of a single variable on the left and an arithmetic expression on the right. This
distinction is important because, although an expression must not be in mixed
mode (containing both fixed point and floating point quantities), an arithmetic
statement may be in mixed mode. For example, when you write

A = (I*J)/K

(1* J) /K is an expression and A = (I * J) /K is an arithmetic statement.

FORTRAN Arithmetic

Functions

If an arithmetic statement is in mixed mode, the mode of the variable on the
left side of the equal sign determines the mode of the result.

If the variable on the left is in fixed point and the expression on the right is
in floating point, the expression will first be evaluated in floating point, the portion
following the decimal point will be dropped, and the remainder will be converted
to fixed point by retaining only the four digits immediately to the left of the decimal.
If a result is

123456.78

the fixed point quantity stored is 3456.
If the variable on the left is in floating point and the expression on the right

is in fixed point, the expression will be evaluated in fixed point and the result con­
verted to floating point. For example,

Arithmetic Statement

A = 5/3
A = 5./3.
I = 5/3
I = 3./2.
I = 123456.78/4.

Result

A=1.
A = 1.6666666
I = 1
I = 1
I = 864 (was computed as 30864.195)

If your problems are programmed in floating point rather than in fixed point, you
will find it is easier to process fractions because you will not have the problem of
locating decimal points. If a particular problem that you are programming requires
the use of fixed point quantities, you must understand exactly how fixed point
arithmetic is accomplished.

In fixed point calculations, if the result is not an integer (whole number) the
result is truncated to a whole number. That is, the fractional portion of the result
is discarded, and no rounding takes place.

The fixed point division 5/3 is 1, not 2. Therefore, if you write an expression
with a series of operations that includes a division, you must be careful when
grouping. For example,

A = 5./3. ~< 4.

In floating point, 5 divided by .3 equals 1.6666666, and this value multiplied
by 4 equals 6.6666664.

If this arithmetic statement is written in fixed point,

I = 5/3 * 4

then 5 divided by .3 equals 1.6, which is truncated to 1. The 1 is multiplied by 4
and the answer is 4.

If you had reversed the grouping in the statement,

I = 4 *5/3

the result would be 6. Remember, in a statement with a series of multiplications
and divisions where the parentheses have been omitted the operations are per­
formed from left to right.

Assume that you are writing a FORTRAN program that requires taking the square
root of a number at different locations in the program. The statements to perform
the sql1are root would be identical, except for the different arguments used each
time.

Writing the 1620 FORTRAN Program 21

Control Statements

22

Instead of writing the same statements many times, the FORTRAN program
allows you to take the square root of a number by merely inserting the expression
"SQRT (x)" into an arithmetic statement wherever it is required. The mathematical
operations which are required to take the square root of a number are "prewritten"
into the FORTRAN program as a subroutine. (A subroutine is a program which per­
forms certain operations and may be included in another program to cause those
operations to be carried out each time the subroutine is used.)

The following functions can be used in FORTRAN:

Mathematical Function

Square Root
Exponential
Sine of an angle in radians
Cosine of an angle in radians
Arctangent, angle given in radians
N aturallogarithm

FORTRAN Name~

SQRTF

EXPF

SINF

COSF

ATANF

LOGF

~The name can be written with or without the terminal F.

For each of the functions shown above, there exists a subroutine within the
FORTRAN system which computes the function of the argument enclosed in the
parentheses. These subroutines will be compiled into the object program auto­
matically when called for by a statement containing the name of one of these
functions. (These subroutines are sometimes called "relocatable subroutines").

To take the square root of a quantity with the variable name DELTA, you
could write the statement

D = SQRT (DELTA)

The argument enclosed in the parentheses must follow the name of the function.
The argument can be a variable or an expression and the variable can be sub­
scripted. The argument must always be in floating point mode. For example:

A = COS (B7)
A = SQRT (BETA)
A = LOG (A)
Y = A - SIN (B * SQRT (A))

FORTRAN statements are executed in the object program in the same sequence as
they are written on the coding sheet, unless you specify a different sequence.

Control statements provide flexibility in program development. If statements
could only be followed sequentially in a fixed pattern,. a program would follow a
single path of operation without any possibility of dealing with predefined ex­
ceptions to the procedure, and without any ability to choose alternatives based
upon conditions encountered during the processing of the program.

As an example of the program control that can be exercised, assume that you
have written a FORTRAN program consisting of fifteen statements. These statements
perform a number of operations upon a series of variable quantities. Now, if the
first ten statements develop meaningless results when processed with variable
quantities of zero, the processing time of the object program would be reduced
if the first ten statements could be bypassed when the quantity to be processed is
zero. A single FORTRAN control statement permits you to evaluate a quantity, and
depending upon the value, permits you to direct the program to some other
statement rather than have the program continue in the sequence of the state­
ments.

Statement Numbers

Unconditional GO TO

In a previous section of this part of the manual, it was stated that you can
set up a program to perform a basic computation, then make the same computa­
tion on many different values simply by changing the value of the subscripts.
This kind of operation is called "looping." You would use a control statement to
establish the number of statements that are to be included in the basic computa­
tion to determine how many times the loop is to be performed.

Control statements that direct the program to another statement in the pro­
gram are referred to in this manual as program transfer statements.

Whenever you direct the program to a specific statement (other than the next
sequential statement), the statement must be numbered so that it can be identi­
fied by the processor. On the FORTRAN coding form, the first five columns are
reserved for statement numbers. A statement number can be any number from
0001 to 9999 (leading zeros are not required).

Statements must be numbered when they are referenced by another state­
ment and no two statements can have the same number. Also, there is no require­
ment that every statement must have a number, nor that statements must be
numbered in sequence. It is possible to number every statement as an aid in
programming, but each number you assign requires positions of storage. If the
problem being programmed is very long and requires a large amount of storage,
you may not be able to afford the luxury of numbering every statement.

This statement interrupts the sequential execution of statements, and specifies
the number of the next statement to be performed.

Format:

Example:

"GO TO n"
where n is a statement number.

GO TO 30
GO TO 1000

An example is shown below:

!TATEMENT
NUMBER FORTRAN STATEMENT

~ 5 6 7 '0 '5 20 2S 30 35 45 50 55

• , 1 f-.
, I I I I

• , , I I I I I

A=:4 I I

B= 7 ,
GO T,D 6

1.8 C:: 3 . ,,.,A
6 c= 3 .,~B

· .i---"-~

~~.- -~.

•

The GO TO statement transfers the program to statement 6 where the result
21 is obtained.

Writing the 1620 FORTRAN Program 23

Computed GO TO

24

This statement also specifies the number of the next statement to be performed
It is different from the unconditional GO TO, because the statement numbe
that the program is transferred to can be altered during the program in a com
puted GO TO statement.

Format:

Example:

"GO TO (nl' nfl, .. " nm), i"
where nJ, nfl, .. " nm are statement numbers and i is a
ifixed point variable. The variahle may not be subscripted.

The parentheses enclosing the statement numbers, the com­
mas separating the statement numbers, and the ,comma fol­
lowing the right parenthesis, are all required punctuation.

GO TO (3,4,5), L
GO TO (4,4,8,14,24), M

The computed GO "TO statement transfers the program to the 1st, 2nd, etc.
statement number in the list depending upon whether the value of i is 1, 2 . . .
etc. The variable i must never have a value greater than the number of items or
the list in the parentheses.

In the first example above, if the value of L is 2, the program is transferrec
to statement 4. In the second example, if the value ofM becomes 1 or 2 the pro·
gram is transferred. to statement 4. If it becomes 3, 4, or 5, the program is trans·
ferred to statements 8, 14, and 24, respectively.

An example is shown below:

STATEMENT
NUMBER FORTRAN STATEMENT

~~ 5 6 7 10 15 20 25 30 35 40 45 50 55

• I 1 I I I I I I , --1._

• ,
A=3 . I I I I I I , ,
8=4.,
(;::.5.,

I I I I I I I

K=Q I I I I I , , ,
I K= K+ J I , I I I I I I I

GO TiO f1O.20 30) K I I I I I I I

• , I I I I I I I I ~

• I I I I I I I

~. 30 F:.A -,8 I I I

GO TO 12 I I I I I I I I I

20 E=A-C
--~

GO TID I I

10 D=B-,C I , I I I I I I I

GO TO J I I I I I I I I I

• I

• I I I I I I I I

• , I I I I ~~

~1~2~ , I I I , __ -1
I~

In the example, D, E, and F are computed, in that order, and the program
is transferred to statement 12. This is a simplified example used to illustrate a
computed GO TO statement. If these were the only computations in a program,
you would probably just compute D, E, and F in sequence without using a
computed GO TO statement.

IF Statement

IF (SENSE SWITCH)

Statement

The IF statement permits you to transfer the program to a particular statement
depending upon the value of an expression.

Format:

Example:

"IF (a) n1, n2, n/'
where a is an expression and n j nz and n,1 are statement
numbers.

The expression must be enclosed in parentheses. The state­
ment numbers must be separated from each other by com­
mas.

IF (A - B) 10, 5, 7
IF (A(I)/D) 1,2,3

The program is transferred to statement number n1, nz, n;J, depending upon
whether the value of the expression a is less than, equal to, or greater than zero,
respectively.

In the first example, if both A and B have the value of 2, the program is
transferred to statement number 5. In the second example, if the result of the
expression is greater than zero, the program is transferred to statement number 3.

Suppose a value, HRS, is being computed. Whenever this value is positive,
the main routine of the program should be followed. Whenever the value of
HRS is negative, an alternative routine starting at statement 12 is to be followed,
and if HRS is zero, an error routine at statement 72 is to be followed. This prob­
lem can be written as follows:

STATEMENT
NUMBER FORTRAN STA TEMENT

I 5 6 7 10 15 20 25 30 35 40 45 50 55
--

• I I I , , , I I L-~. _____ 1 __

• I I _L ... _

HRS=,(B+C) / (D**E)- F ----L-. _____ ...L ______ ..L........

IF ~LH R 5) 112, 72.r 1 0 I 1 1 I 1 ------L_~

• I 1 , ------L.....

• _I 1 I I I I I I I ~-

10 • 1 I I .1_~_~_

• .1. 1 -'- ~-~~~~

12 ~ I I I I I I I ~~~~.~

• , I I I I

• I ,
........J_~~_......L~

72 • L 1 .1. L L~~~ __ l~

I 1 I I I I I I I I

This statement permits the program to transfer to a particular statement depend­
ing upon the setting of anyone of the four console program switches.

Format:

Example:

"IF (SENSE SWITCH i) n 1 , n/'
where i is the number of one of the console program
switches, and n1 and nz are statement numbers.

The parentheses, enclosing the words SENSE SWITCH, and
the commas, separating the statement numbers, are required
punctuation.

IF (SENSE SWITCH 3) 14, 50
IF (SENSE SWITCH 1) 20, 40

Writing the 1620 FORTRAN Program 25

PAUSE Statement

STOP Statement

DO Statement

26

The program transfers to the statement numbered n1 when the designated
program switch is on, or to the statement numbered n2 when it is off.

The PAUSE statement is used as a convenient means of causing the object pro­
gram to halt temporarily. Halting the object program is sometimes required so
that the machine operator may check part of the output to determine if one or
more values are within predetermined limits before continuing with the program.
The PAUSE statement is also useful as an aid in the initial testing of a new pro­
gram. PAUSE statements, located at the end of one or more phases in a program,
permit you to check the accuracy or validity of a part of a problem by checking
the data obtained in that part before altering the data in subsequent operations
in the program.

Example: PAUSE] Format: I "PAUSE"

The PAUSE causes the computer to halt. Pressing the start switch causes the
program to resume with the statement following the PAUSE statement.

This statement causes the computer to halt during the processing of the object
program, to return the typewriter carriage, and to type the word "stop." In con­
trast to the PAUSE, this statement is used where a final, rather than a temporary,
stop is required.

Example:
i"STOP" Format:

STOP

As discussed earlier, the ability of the FORTRAN program to repeat the same
operations with different data, called looping, is a powerful tool which greatly
reduces programming effort. There are several ways to accomplish looping; one
way is to use an IF statement. For example, assume that a plant carries 1,000
parts in inventory. Periodically it is necessary to compute stock on hand of each
item (INV), by subtracting stock withdrawals of that item (lOUT) from a previ­
ous stock on hand.

It would be wasted effort to write a program which would indicate each of
the 1,000 separate subtractions by a separate statement. (It would also waste
computer storage, since each separate instruction to the computer must be in
computer storage.) The same results could be achieved by the following pro­
gram:

STATEMENT
FORTRAN STATEMENT NUMBER

I 5 6 7 10 IS 20 25 30 35 40 45 50 55
- -

• 1 J I i , , I , I I

• , ,
5 J=O I , , ,

10 JaJ+" ,
25 INv('J)~INV(J)-IOUTLJ) I I I

15 IF.tI OOO-JI)20 ,20 10 , .
20 • 1 i 1 i i i i i J I

• , , , I I I I I I ! ,

• ,
~~~L~

• , I , 1 1 J J , , ,
, , , , , I I I

An index, J, is established which will be increased by 1 each time statement
10 is executed. Statement 5 sets J to zero (this statement is processed on the
first loop only) so that statement 10 will set J equal to 1 for the first execution
of statement 25.

Statement 25 will compute the current stock on hand by subracting the
stock withdrawal from the previous stock on hand. The first time statement 25
is executed, the stock on hand of the first item in inventory, INV(1), will be com­
puted by subtracting the stock withdrawal of that item, lOUT (1). Statement 15
tests to determine if all items in stock have been updated. 1£ not, the expression
1000-J will be positive and the program will transfer to statement 10, which will
increase the value of J by l. Statement 25 will be executed again, this time for
the stock on hand of item 2, INV(2), and the stock withdrawal of item 2, IOUT(2).
This procedure will be repeated until the stock of item number 1000 has been
updated. At this point, J will be equal to 1000, and the expression in statement
15 will be equal to zero. At this time, statement 15 will cause the program to
transfer to statement 20 in order to continue with other parts of the program.

Notice that three statements (5, 10, and 15) were required for this looping
which could have been accomplished with a single DO statement.

The purpose of the DO statement is to simplify the programming of loops and
to provide greater flexibility in looping.

Format:

Example:

"DO n i = m], m 2 , ms"
where n is a statement number, i a fixed point variable, and
mJ, m2 and mJ can be either a fixed point constant or a
fixed point variable.

Subscripts and sign indication are not permitted in a DO

statement.

If ms is not stated, it is taken to be l.

The commas are required punctuation.

DO 20 JBNO = 1, 10
DO 20 JBNO = 1, 10, 2
DO 20 JBNO = K, L, 3
DO 16K = 1, M
DO 16 J = L,2
DO 18 INDEX = J, K

The DO statement is a command to repeatedly execute the statements that fol­
low the DO statement, up to and including statement number n. The first time
through the loop, the statements are executed with i equal to the value of mj' For
each succeeding execution of the statements, i is increased by the value of m 3 • After
the statements have been executed with i equal to the highest value that does not
exceed m2, the program transfers to the statement which follows the last statement
in the range of the DO (the statement after statement number n).

Thus, the DO statement does three things:

l. It establishes an index which may be used as a subscript or in a computa­
tion.

2. It causes looping through any desired series of statements as many times
as required.

3. It increases the index (by any amount specified) for each separate execu­
tion of the series of statements in the loop.

Writing the 1620 FORTRAN Program 27

28

In the example below, an inventory problem is programmed using the DO

statement.

STATEMENT
FORTRAN STATEMENT NUMBER

I S 6 7 10 IS 20 2S 30 3S 40 4S SO S5

• I I I I I I I I I I

•
• I I I I I I I I

15 DO 2.5 J= I 1000 , I I

25 INV .(J) =I,NV(J) -.IOUT,(S)
35 • I •

• I I I I I I I

• I I

• I . I I I I I I , I I

Statement 15 is a command to execute the following statements up to and includ­
ing statement 25; the first time the value of J will be 1, thereafter the value of J
will be increased by 1 for each execution of the loop until the loop has been
executed with the value of J equal to 1000. After the loop has been executed
with J equal to 1000, the statement following statement 25 will be executed.

The following is a comparison of statement 15 with the format of a DO state­
ment, and an introduction to some of the terms used in describing a DO statement.

DO Format n

DO Statement 25 J
L-y-----' L-y-----'

Range Index

m J ,

1,

L.y-'

Initial
Value

n12 ,

1000

L~

Test
Value

m.1

L~

Increment

The range is the series of statements to be executed repeatedly. It consists
of all statements following the DO statement up to and including statement n. In
this case, statement n is statement 25, and the range consists of only one state­
ment. The range can consist of any number of statements. (NOTE: throughout
the remainder of the manual, the word DO means the DO statement and all state­
ments within the range of the DO statement.)

The index is the variable which will change for each execution of the range.
In the example, the index J was also used as the subscript to the variables in
statement 25. Thus, it served two purposes: to maintain a count of the number
of loops executed, and to establish the correct variable for each execution of the
loop.

The initial value is the value of the index for the first execution of the range.
Although the initial value was 1 for this example, in another problem it might be
some other quantity. Often, the initial value will be required to change at differ­
ent times within the program. In such cases it may be stated as a fixed point
variable rather than as a constant, as in the example. If it is a variable, its value
must be set up in a statement that precedes the DO statement.

The increment is the amount by which the value of the index will be increased
after each execution of the range. In the example, it is not coded because the in­
crement desired is 1 and the DO statement automatically uses 1, unless some other
value is specified. As with the initial value, the increment may be written as a
fixed point variable.

DO Statements located
Within a DO Statement

The test value is the value which the index may not exceed. After the range
has been executed with the highest value of the index which does not exceed the
test value, the DO is satisfied and the program continues with the first statement
following the range. In the example~ the DO was satisfied after the range was exe­
cuted with the index value equal to the test value. In some cases, the DO is satisfied
before the test value is reached. Consider the following:

STATEMENT
NUMBER FORTRAN STATEMENT

I 5 6 7 10 15 20 25 30 35 ~o ~5 50 55

• I I I I_

• I I I I I I I I

DO 5 K=I 9 3 I ,
• I I

• I I i _L 1 ~ ~

5 • I I

I

In this example, the range will be executed with K equal to 1,4; and 7. The next
value of K would be 10, but since this exceeds the test value, the program transfers
to the statement following statement 5 after the range is executed with K equal
to 7. Note that after the transfer, the index value K (10) was not the same as the
test value (9).

One or more DO statements may be included within the range of a DO statement.
When this is done the following rule must be observed:

If the range of a DO statement (the outer DO statement) includes another DO

statement (the inner DO statement), all statements in the range of the inner
DO must also be in the range of the outer DO.

This rule is illustrated in the drawing below. (Brackets are used to illus­
trate the range of a DO.)

Permitted Not Perm i tted

DO

DO

DO

C DO

DO
DO

DO

C
DO

C
Writing the 1620 FORTRAN Program 29

Preservation of Index Values

Restriction on Statements
Used in the Range of a DO

CONTINUE Statement

30

In 1620 FORTRAN it is possible to transfer into the range of a DO statement from
outside its range by either an IF or GO TO statement. (This cannot be done on many
other FORTRAN programming systems, and, if there is a possibility that the source
program will be compiled on some other FORTRAN system, you should not use this
technique.)

If you write a statement to transfer into the range of a DO from outside of its
range, you must understand that the value of the index is not reset by such a
transfer. You may use the current value of the index or you may redefine the index
prior to the transfer. If you want to use the current value of the index, read the
next paragraph carefully, and then review the explanation of "Test Value." The
current value of the index in a problem may not be what you think it is.

When the program transfers out of the range of a DO in the normal manner (that
is, when the DO becomes satisfied and the program transfers to the next statement
after the range), the exit is defined as a normal exit. After a normal exit from a DO

occurs, the value of the index is not redefined to its original value. To determine
the value of the index after a normal exit, remember that after a loop is completed,
the index is increased by the increment before it is tested to determine if additional
loops are to be taken.

When the program transfers out of the range of a DO by an IF or GO TO state­
ment, the value of the index is its current value at the time of the transfer.

In both types of exits, the current value of the index is preserved for any sub­
sequent use. If the exit occurs by a transfer which is in the range of several DO'S,

the current values of all the indexes controlled by those Do'S are preserved for any
subsequent use.

The range of a DO cannot contain any statement which redefines the value of the
index or the value of any of the indexing parameters (mJ, mil, or mJ)' The indexing
of a DO statement must be completely set before the range of the DO is entered.

The first statement in the range of a DO cannot be the control statement
CONTINUE. The CONTINUE statement is sometimes referred to as a "nonexecutable"
statement; that is, a statement in the source program that does not create instruc­
tions in the object program. The nonexecutable instructions DIMENSION and FORMAT

can be the first statement in the range of a DO. These two instructions are described
later.

The last statement in the range of a DO must not be a program transfer state­
ment (IF or GO TO, etc.) or a specification statement (FORMAT or DIMENSION).

This statement is used as the last statement in the range of a DO when the last state­
ment would otherwise be a program transfer statement (see rule previously given) .
This statement does not create any instructions in the object program.

Format: I~"_C_O_N_T_I_N_U __ E_" ______________________________ ~
Example: CONTINUE

~--~

Consider the following table search program which requires a CONTINUE state­
ment. This program will scan the 100-entry array named VALUE until it finds an
element which equals the value of the variable named ARG, then the program will
transfer to statement 20 with the value of I available for use. If no element in the
array is equal to the value of ARG, the program is transferred to statement 12. No
operations are performed by the CONTINUE statement; the program merely con­
tinues with the next sequeritial statement following statement 12.

END Statement

Some Thoughts About
Programming FORTRAN

51Al£MENI
NUMBER FORTRAN STATEMENT

5 6 7 10 15 20 25 30 35 40 45 50 55
--

~-"~ ~

~. • , , , ,

• I I I I 1

I 0 DO I ,2 I = I, . J 00 ,

I. F (AI ~G - VA,~ LJ W.lJ-1)~)~, ...!o<2L}')..!:::2~O~)u..!..I~,2,-,---,-~..L....-~......-L~~...L-...~~~~....L.....
,2 iCON TIl NuE

~_~-+.1~~.L.........~......L~~-.L.~~~~~...L.....~~.L......~~L......~~~'---'--......L~~.......L~
~~~:-b~~-'--'~~~~ 

i 
I 

The END statement is a signal to the compiler that the end of the source program 
has been reached. 

Format: I "END' 

Example: END 

The object program will not be compiled unless the END statement appears as the 
last statement in the source program. 

Learning how to program FORTRAN can be divided into two phases. One might be 
called "How to write statements that perform calculations upon data." The second 
could be called "How to get data into and out of the program." 

After you have programmed a few problems in FORTRAN, you will find that 
most of your programming time will be concerned with calculations upon data; 
moving data into and out of the program will be of secondary importance. How­
ever, getting data into and out of the program may be the most difficult part of 
FORTRAN to learn because it may involve concepts with which you are not familiar. 

A brief review at this time should help. 

1. The 1620 System consists of a Central Processing Unit with a typewriter 
for entering or printing out data, or the 1443 Printer for printing output 
data. The system may contain a 1621 Paper Tape Unit with a Paper Tape 
Punch, or 1622 Card Read-Punch. 

2. The IBM FORTRAN processor may be punched in either IBM cards or paper 
tape, depending upon the type of 1620 System you have. 

3. The FORTRAN processor is read into the 1620 first, followed by paper tape or 
card records containing the source program. The result of this compilation 
is an object program containing 1620 machine language instructions. 

4. The object program (in cards or paper tape) is then placed into the 1620, 
followed by card or tape records containing the data that is to be processed. 

5. The results of the computations are either typed or printed, punched 
into cards, or punched into paper tape. 

The remainder of this part of the manual, WRITING THE FORTRAN PROGRAM, is 
concerned with statements that move data into and out of the program, statements 
that determine how much data will be read into the program, and the kind of 
data that is read (fixed point or floating point). 

Writing the 1620 FORTRAN Program 31 



Input/Output Statements 

32 

Input statements are used to read data into the program and output statements 
are used to print or punch the results of calculations. 

Consider the following mathematical problem 

and assume that I, J, K, L, and M are variable quantities punched into a file of 
cards, with N equal to 48. If you write the source statement 

N = 48 

the processor sets aside an area in storage (in the object program) called N, and 
sets up the necessary instructions to place the quantity 48 in that area at object 
time. The variables may be punched into the cards as shown below . 

:::,;..1.:: ..:~;. L:-: ;-' -- ; ~ "! "'I 
.. ' 

K L M II J 
0000 0010 0000 0100 0000 000000000000000000000000000000000000000000000000000000000000 
, ? ~ • 5618 9101112 1314151 17 18 19 ~(j ~DaMn~"Mn~nnn~n~u~.~~Q~«~~o~~~nuu~~~u~~oo~~~~~~u~wm~nnM~." •• ~ 
1111 1111 1111 1111 1111 111111111111111111111111111111111111111111111111111111111111 

2122 2221 2221 222 2 22 22 222222222222222222'-22222222222222222222222222222222222222222 

3333 3 333 3333 3333 333 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 J 3 3 3 33 J3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 

HI4 4144 4444 444. 4444 4 4 4 4 4 44 4 4 4 4 4 4 4 4 4 44 4 4 4 4 4 ~ ~ 4 4 4 4 4 4 4 4 44 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

: :55 5555 5555 5555 5555 55555555"~5555555~555555555555555555555555555555555555555555 

6G66 6666 6666 6666 6666 6666666666666666666666~G5666E6666666666666666666666666666666 * ~ 
7777 7777 7777 7777 7771 777777777777777777777177777777777777777777777777777 777777777 

8888 8 8 8 8 8888 8888 8888 J 8 8 & 8 88 B 8 888 8 8 8 8 8 a 8 8 8 6 E 8 8 8 8 8 888 8 8 888 B 8 888 8 8 8 8 888 8 8 8 888 8 8 8 8 8 8 

99 9 9 9999 9999 9999 9999 99:l~9999999999999999999S9S99999999SS9999999999999q9999999999 
1234 5 S 1 e 9101112 !3 1~ ,~ :6 " I~ , j 20 11 22 2J 2' ~5 :r. v Z6 J9 3\. ',: ;' 33 14 35 3b 31 J8 39 40 41 41 4J 44 45 46 41 48 '9 so 51 52 5J 54 5S 56 5: sa 59 60 61 62 GJ &4 65 66 67 68 69 0 /l ;~ IJ 14 15 16 11 78 19 8il 

Remember that the data cards are not available while the source program is being 
compiled. Therefore, in this example, an input statement would be included in 
the source program to tell the processor that the object program will read the input 
data from cards (that there will be five data fields in the sequence of K, L, M, 
I, and J). The input statement also contains the statement number of another type 
of statement called FORMAT. In this example, the FORMAT statement, referenced by 
the input statement, tells the processor that each field named in the list is four col­
umns long and that the quantities are in fixed point mode. Thus, as the object 
program is executed, each data card is read by the program and the quantity fields 
are placed into the storage locations named K, L, M, I, and J. When processing is 
completed for the set of values in one card, the values for the next card are read 
into the same storage locations and processing for the new set of values is per­
formed. 

Thus, an input or output statement, each with its corresponding FORMAT state­
ment specifies the number and sequence of the data input or output fields, the 
length of the data fields, and whether they are in fixed or floating point mode. 

NOTE: FORMAT statements are described in a later section entitled SPECIFICATION 

STATEMENTS. 



READ Statement 
(Card Input) 

ACCEPT Statement 
(Typewriter Input) 

This statement causes data to be read from a card in the 1622 Card Read Punch. 

Format: 

Example: 

"READ n, List" 
where n is the statement number of a FORMAT statement 
and List is a list of the quantities to be transmitted. 

READ 4, A, B, C 
READ 30, HRS1, HRS2, HRS3 
READ 2, VOLT(I), OHM(J) 

The READ statement causes data to be read from a card (at object time) and causes 
the quantities from the card to become the values of the variables named in the list. 

If the quantities for a set of values require more than 72 digits (the number 
of columns available in a card) the program reads successive cards until the com­
plete list of quantities has been "satisfied," i.e., the data for all of the variables has 
been brought in and stored in the locations specified by the READ statement. 

If there are more quantities in the card than there are on the list, only the num­
ber of quantities specified on the list are read by the program. Thus, if a card con­
tains five quantities, but the list in the READ statement contains only two, the re­
maining three quantities are ignored. 

I t is important to note that every item in a list corresponds to one and only 
one quantity. Arrays whose members are so numerous that itemizing them in a 
list is impractical may be handled by using a shorter list and including the input 
or output statement in the range of a DO. 

For example, suppose items B, A, and C are to be punched, in that order, and 
A represents a one-dimensional array consisting of 100 elements. The output state­
ments could be written in the following manner: 

STATEMENT 
FORTRAN STATEMENT NUMBER 

I 5 6 7 10 15 20 25 30 35 40 45 50 55 
.. 

· I I 1 1 I I 

· I I I I I I I I I 

PU~CIH I .BI 1 I I I 

DO 31 I.:; I "d 00 .1 

3 PU.NC,H 5 .. ACr,) I I I 

iP.UNC H J J.e. 

· · I I I I I I I I I I 

· I .L .-'- I I 

I I I I I I 

The DO would punch the 100 elements of the array A. 

This statement is used when input data is to be entered into the program from the 
console typewriter. 

Format: 

Example: 

"ACCEPT n, List" 
where n is the statement number of a FORMAT statement 
and List is a list of the quantities to be typed. 

ACCEPT 30, A, B, C, D ( 3 ) 

This statement selects the typewriter as the input device, returns the typewriter 
carriage, and stops the computer to await manual entry of data. Data must be typed 
in accordance with the FORMAT statement until the complete list is satisfied. 

Writing the 1620 FORTRAN Program 33 



ACCEPT TAPE Statement 
(Paper Tape Input) 

PUNCH Statement 
(Card Output) . 

TYPE Statement 
(Typewriter Output) 

PRINT Statement 
(1443 Printer Output) 

PUNCH TAPE Statements 
(Paper Tape Output) 

Specification Statements 

34 

This statement is used when input data is to be entered into the program from the 
1621 Paper Tape Reader. 

Format: 

Example: 

"ACCEPT TAPE n, List" 
where n is the statement number of a FORMAT statement 
and List is a list of the quantities to be entered. 

ACCEPT TAPE 48, K, AO) 

Paper tape records are read into storage until the complete list is satjc;;fied. 
Statements must be terminated by the EOL (End of Line) character. 

Format: 

Example: 

"PUNCH n, List" 
where n is the statement number of a FORMAT statement, 
and List is a list of the quantities to be punched. 

PUNCH 1, A, D, C 
PUNCH 2045, rRANS 

One or more cards are punched until the complete list has been satisfied. 

Format: 

Example: 

"TYPE n, List" 
where n is the statement number of a FORMAT statement 
and List isa list of the quantities to be typed. 

The words TYPE and PRINT are interchangeable, . except in 
the printer-oriented system. 

TYPE 19, X, Y 

One or more lines are typed until the complete list is satisfied. 

Format: 

Example: 

"PRINT n, List" 
where n is the statement number of a FORMAT statement 
and List is a list of the quantities to be printed. 

PRINT 2, DELTX 

One or more lines are printed until the complete list is satisfied. 

Format: 

Example: 

"PUNCH TAPE n, List" 
where n is the statement number of a FORMAT statement 
and List is a list of the quantities to be punched. 

PUNCH TAPE 4, A, B, C 
PUNCH TAPE 100, AVGHR 

One or more records are punched until the complete list is satisfied. 

There are two types of specification statements, FORMAT and DIMENSION. The 
FORMAT statement has already been defined as a statement that tells the FORTRAN 

processor the length of each input or output data field, and whether the field 
is (or will be) in fixed point or Boating point mode. The DIMENSION statement 
provides the processor with the information necessary to allocate storage in the 
object program for arrays of quantities. 

A DIMENSION statemen.t does not create instructions in the object program. 
Its function is merely to supply information to the processor. 



FORMAT Statement 

Input Specifications 

The FORMAT statement permits you to determine how you want the results of com­
putations to look in the output data and allows you to tell the processor how input 
data is to be read from cards, tape, or typewriter. In both instances, you are con­
cerned with the problem of converting data from either its external form (cards, 
tape, typewriter) to an internal form (core storage), or from its internal form to 
cards, paper tape, or the printed line. 

Format: 

Example: 

"FORMAT (s), S2, S.l, ..• , Sn)" 

where s], SQ, S.l and Sn are specifications as described below. 

4 FORMAT (12/FI0.4, E12.4) 

6 FORMAT (12,14) 

3 FORMAT (E12.4, 15) 

FORMAT specifications have three forms: 

Type 

I 
F 

E 

Format 

Iw 
Fw.d 

Ew.d 

Description 

Fixed point numbers 
Floating point numbers 

without an exponent 
Floating point numbers 

with an exponent 

where w is the width of the field (that is, the total number of positions printed 
or punched) and d is the number of decimal places as explained in the follow­
ing paragraphs. 

All three forms can be used in FORMAT statements for both input and output 
statements. However, there is a slight difference in the meaning between an input 
and an output specification, so they will be described separately. The FORMAT 

statement may be written anywhere in the source program. 

An example of card input is used here, but the principles illustrated also apply 
to paper tape records and to typed input. 

/001461-024621/234561-0123456.18921245 -/ .234567+0512+04 

/ I I I I 
K I M A I 8 I {! 0 

110000 0100000 0000000 010000000000 000000000000000000 oocooooooolo 00010 0000000000000 

;:i;;i ; ; ; ;';' ;'. 14151611181971 

;'7i;'~~;'~~~;' ;' 333435363138:1940414243444546414849$ 515253545556575859606162 6364656661 68691011727314157677781990 

1111111 111111111111111111 111111111111 11111 1111111111111 

222222 2212212 2122222 222122222222 121222L22222222222 222122222222 21222 2222222222222 

333333 3333333 3313333 333313331333 333333333333333333 331313333333 33333 3333333333333 

444144 4441444 4441444 444441444444 444144444444444444 444441444444 4444. 4444444444444 

55 5 5 5 5 5555555 5555155 555555155555 555515555555555555 555555155551 55555 5555555555555 

66661& 6666166 666661& 66666661&666 666666666666666666 666666616666 66666 6666666666666 

* 777777 7777777 717;17. 717777777177 777777177777777177 
~ 

777777771777 17 77 7 1777717777177 

888888 8 8 8 8 8 8 8 8888888 888888881&1& 888888888888888888 881888888888 88888 8888888888888 

'999999 9999999 9999999 999999999991 999999999999999999 999999999999 99999 99q9999999999 
t 23456 11910111213 14151611181920 212223142526212829303132 »~.~D~~~~~U"~~a~~~ 515253545556515859606162 636465666 sa 69 ro 11 1~ 13 14 15 16 77 18 19 8tl 

Writing the 1620 FORTRAN Program 35 



36 

The statements required in the source program to enable the object program 
to read this data card are: 

STATEMENT 
J FORTRAN STATEMENT NUMBER 

I 5 6 7 10 15 20 25 30 35 <40 <45 50 55 

• I I I 1 1 1 1 1 1 1 

· , 
• , , 
READ, 4, .lG M A B C 0 I 1 1 I I I 

4 ~ORM,AT (I 6 ~ I 7 "F7 I 3 i lF I Z I 01 ~ 18 X "IE I Z. QI~ ~5. 'I) I I 

· , I I I I I I I I I 

• J _ I I I I I I I I 

• ~.~ I I I I I I I I 1 I 

, , , 

The input card in this example contains a variety of formats, and, although 
it is not a representative example of an input card that might be used in an actual 
program, it does show how various data formats can be read into the program. 
The object program will store these values as shown in the chart and text that 
follow. 

Stored In 
Item Variable Punched In FORMAT 

Considered By The 
Object Program The Object 

No. Name Card As: Specification To Have The Value Of: Program As: 

I 

2 

3 

4 

5 

6 

7 

K 001461 16 +1461 1000000 1461 I 
M -024621 17 -4621 1000000 4621 I 
A 1234567 F7.3 +1234.567 M & 1 T2345670 I - I 

M E 
B -0123456.789 F12.0 -123456.78 IT2345678 106 I 
- 21245 (and 13 blanks) 18X (No value taken; these columns skipped) 

C - I .234567+05 E12.0 -123456.7 112~670 I&;I 
D 12 +04 E5. I 12000. M 5.5 112000000 1- I 

1. The first variable in the card, K, has been assigned the FORMAT of 16. 
This format tells the processor that the first field in the card contains 6 
columns and that the number is in fixed point mode. The maximum size 
of a fixed point number is 4, so at object time the leading zeros are 
truncated and the value is stored as + 1461. The value is assumed to be 
plus because no sign indication is given. 

2. The next variable, M, has been assigned the FORMAT of 17. This format 
tells the processor that the next field in the card consists of 7 columns and 
that the number is in fixed point mode. The value will be stored as -4621 
with the high-order digits truncated. A number should be truncated in this 
manner only if you want to lose the high-order digits. It is important to 
note that the width (w) must be the width of the field on the card, not 



just the number of positions of the card that you want to bring into the 
program. In this example, if the specification for K had been 14, the proc­
essor would assume that the value for K was located in columns 1 to 4, 
that the value for M was punched beginning with column 5, and that the 
value of A was punched beginning with column 12, etc:;thus all subsequent 
fields would be read incorrectly. 

3. The floating point variable A is read in according to FORMAT F7.3. This 
format tells the processor that the value is to be a floating point number, 
that the field in the card contains 7 columns, and that there will be 3 digits 
to the right of the decimal place. The object program will consider A to 
have the value of 1234.567, then "place" the decimal point to the left of 
the high-order (leftmost) digit, and set the exponent as 04 for this value to 
account for the number of positions that the decimal point is shifted. 

4. The"floating point variable B is read in according to FORMAT F12.0. This 
format tells the processor that the value is a floating point number, and 
that the field in the card contains 12 columns. Because the decimal point 
is punched in the card in its proper place, a specification for d is not re­
quired, and if specified will be ignored by the object program. The maxi­
mum size of a mantissa in a floating point number is 8 positions, so the low­
order positions of the quantity are truncated. When the value is stored, the 
decimal point is adjusted six places and the exponent is set to 06. 

5. Columns 33 through 50 contain blank columns and punched data that are 
not required in the program. These columns are read into the record by 
giving the processor the specification 18X. Even though this data may not 
be used by the program, it will be punched or printed in an output 
record if the same FORMAT statement is used for both input and output. 
The maximum number of columns that can be read with this specifica­
tion is 49. 

6. The floating point variable C is punched into the card using a standard 
mathematical-like notation; that is, the decimal point has been adjusted to 
a specific location and the magnitude of the quantity is given by punching 
the exponent in the columns following the value. The FORMAT for C, 
E12.0, tells the processor that the value is in floating point mode with an 
exponent to indicate its magnitude, and that the field in the card contains 
12 columns. Because the decimal point has already been punched into 
the card, the specification d is ignored. The object program will assume 
that C has a value of -123456.7 by noting where the decimal is punched 
in the field and what the value of the exponent is. When the value is 
stored, the decimal is adjusted to the left of the high-order digit, and the 
exponent is set to the new value of 06. 

7. The floating point variable D is punched into the card as a 2-digit man­
tissa with an exponent. A decimal point is not punched. The FORMAT for 
D, E5.1, tells the processor that the value is to be in floating point mode 
with an exponent, that the field in the card contains 5 columns, and that 
there will be one digit to the right of the decimal point. The object pro­
gram will consider D to have the value of 12000. When the value is stored, 
the decimal is adjusted to the left of the high-order digit and the exponent 
is set to the new value of 05. 

There are no more variables in the list, so columns 68 and 72 are ignored. 

Writing the 1620 FORTRAN Program 37 



Output Specifications 

38 

Specifications using the E-type format provide a great deal of flexibility. For 
example, consider the various methods that can be used to enter the value 10,000 
into a program (1 X 104

): 

Punched in FORMAT Placed in 
a card as specifications storage as 

M E 

l.E4 E4.0 10000000 os 
.lE5 E4.0 Same 

1E5 E3.1 Same 

1E4 E3.0 Same 

1E6 E3.2 Same 

The same FORMAT specifications of Iw, Fw.d, and Ew.d are used for output state­
ments: except that w now specifies the number of positions to be "reserved" for 
printing the number, regardless of how large the number actually is, and d is the 
number of digits to be retained to the right of the decimal point, regardless of 
how many digits are to the right of the decimal in the actual number in storage. 

The following description of FORMAT deals with the printed line, however 
the principles stated also apply to paper tape and card records. 

I Conversion. The specification, 14, could be used to print a number that 
exists in storage as a fixed point value. Three print positions would be reserved 
for the number and one for the sign. It is printed in this 4-space field right­
justified, that is, the units position is at the extreme right. If the number in 
storage is greater than 3 spaces, the excess high-order positions are lost; no 
rounding occurs. If the number has less than three digits, the leftmost spaces 
are filled with blanks. If the quantity is negative, the space preceding the left­
most digit will contain a minus sign. If the quantity is plus, a blank will precede 
the leftmost digit. 

The following examples show how each of the quantities on the left is 
printed according to the specification 14. 

Value 

7 
o 

-29 
-3 

-146 
2146 

*b is used to indicate blank spaces 

Printed as 

bbb7* 
bbbO 

b-29 
bb-3 
-146 
b146 

The last item is incorrect because the specification did not provide enough spaces. 

F Conversion. The F-type specification is used to print a number as a floating 
point number without an exponent. 

The d part of the format specifies the number of digits to be retained to the 
right of the decimal. If the number in storage has more decimal places to the 
right than there are places reserved for them by d, the extra places are truncated. 
If more spaces to the right of the decimal are reserved than there are decimal 
places in the number, zeros are filled in from the left. The numbers to the left 



of the decimal are handled in the same manner as numbers converted by I-type 
conversion; one space is always reserved as a sign position. 

Included in the count, w, must be a space for the decimal point and a space 
for the sign. 

The following examples show how each of the quantities on the left is 
printed according to the specification F7.3. 

Value 

28.601 
-6.4 
-.8 
4.721 
2.48721 

Printed as 

b28.601 
b-6.400 
bb-.800 
bb4.721 
bb2.487 

The last item is inaccurate because the specification did not provide enough 
spaces. 

The F -type format is a convenient way of expressing the results of your 
computations, but it has one small pitfall. You must have some knowledge of 
the magnitude of the numbers you are working with. The magnitude of the 
number must not be so great that the size of number (the mantissa and as many 
decimal places as specified by the exponent) is not larger than the number of 
places reserved for it by your specification statement. 

For example, consider the floating point number in storage 

M E 

12345678 14 

with the FORMAT of F10.3 (which was assumed to be large enough for this value 
and any other value in the series). The size of this number would be 

12345678000000. 

which, of course, is greater than the 10 places reserved for it. If this type of 
error is made, the FORTRAN program disregards the format that is specified, and 
instead prints the number as though its FORMAT was E14.8 

b.12345678E + 14 

and a message is typed on the typewriter which indicates that a floating point 
nnmber is not in the allowable range of values. 

The same value could have been obtained if the specification had been 
written E14.8 (floating point with exponent form). Of course you will get the 
right answer in this case, but the point is, that if you are not certain of the 
magnitude of your numbers, program your problem so that your answers will 
be printed (or punched) in floating point mode with an exponent (E con­
version). 

E Conversion. For E-type conversion, the d part of the format again specifies 
the number of digits to be retained to the right of the decimal. Included in the 
count, w, must be spaces for the sign and decimal point, plus four spaces for the 
exponent. 

In 1620 FORTRAN, the object program will try to place as many significant 
digits to the left of the decimal as is possible by using the specification pro­
vided. Depending upon the size of the mantissa, zeros may be added to the right 
of the number. The position of the decimal point may be moved, and if it is, the 

Writing the 1620 FORTRAN Program 39 



Specifying Alphameric Fields 

40 

program automatically adjusts the value of the exponent to indicate the actual 
position of the decimal. The number of significant digits that will be printed can 
be determined by the following rules: 

if w ~ 14, then 8 significant digits are printed 
if w < 14, then w-6 significant digits are printed 

The following examples show how each of the quantities on the left is 
printed according to the specification E10.3: 

Value In Storage Printed 

-.008 8000000602 -8.000E-03 
.472 4720000000 b4.720E-01 
.00000000006 6000000010 b6.000E-11 
-10.0468 1004680002 -1.004E+01 
1234567.8 1234567807 b1.234E+06 

If your specification is not large enough, the program will automatically use the 
specification E14.8. 

In the examples just given, it can be seen that you must know the data in 
order to specify a satisfactory format. Your specifications should provide for the 
largest number of significant mantissa digits transmitted with the greatest ac­
curacy required. 

Alphameric data can be read into the FORTRAN program from cards, paper tape, 
or the typewriter. This data can be contained in the program and printed or 
punched as part of the output data. Alphameric fields are often used to identify 
totals or certain phases of the program. The following are typical output mes­
sages: 

PROGRAM ERROR 
OHMS, ...... VOLTS 

END OF PROGRAM 
R C JONES 

Alphameric fields require the FORMAT specification of wH, where w is the num­
ber of alphameric characters, including blanks, in the message. 

The first message shown above could be typed by the following statements: 

TYPE 9 
9 FORMAT (14H PROGRAM ERROR) 

(The count of 14 includes a blank position before and after "program.") 
The next message in the example illustrates how totals can be identified in 

the program. A print statement would be 

PRINT 6,0, V 

and the FORMAT statement might be, 

6 FORMAT (lHO, F6.2, 5H OHMS, F6.2, 6H VOLTS) 

The two preceding examples show ,how alphameric data is entered by a state­
ment in the source program. Alphameric data can also be read from individual 



Slank Field Specification 

Multiple Use of Single 

Specifications 

cards or tape records. For example, suppose that a series of calculations is to be 
performed upon each customer record card in a file. To identify the results of 
each computation with the appropriate customer name, the following READ state­
ment would be used: 

READ 6, A, B, C 

The data fields in the input card are punched A, B, customer name, and C, 
in sequence. The FORMAT statement therefore would be: 

6 FORMAT (IHO, FS.2, FS.2, 14HbCUSTOMERbNAME, FS.2) 

When the first customer card is read into the object program, the customer's 
name (assume it is Anderson) replaces the words "customer name" in storage. 
The computations for the first customer card would be printed with the PRINT 

statement 
PRINT 6, A, B, C 

and the printed line would be 

124.16 19.14 ANDERSON 2461.2.5 

Information handled with a wH specification is not given a variable name 
and cannot be referred to or manipulated in storage in any way. The maximum 
number of alphameric characters that can be specified is 49. 

Skipping fields in input data was shown in an earlier example. Blank characters 
may be provided in an output record with the same specification, wX. The 
FORMAT statement 

6 FORMAT (lOX F10.3, E14.S) 

would provide 10 blank spaces before the first value is printed. It should be 
remembered that if the same FORMAT statement is used for both input and output, 
the "skipped" data from the input record will be punched or printed in the output 
record. A comma is not required after the blank field specification. 

The maximum blank field specification is 49, but two specifications may be 
written in succession to provide more than 49 blank positions. 

It was stated earlier, that each variable listed in an input or output statement 
must have a corresponding specification provided in a FORMAT statement. How­
ever, one specification could be used for one or more variables in an input list, 
if all items in the list required the same specification. 

For example, a READ statement containing six variables, all requiring the 
same format specification, could use the FORMAT statement 

1 FORMAT (ES.2) 

The object program processes all input and output (r/o) statements by (1) 
scanning the r/o statement to get the name of the variable, and (2) scanning 
the FORMAT statement to get the specification for the variable. It repeats this 
process until all variables have been processed. When the program has reached 
the last specification in the FORMAT statement, and there are variables in the r/o 
statement that have not yet been processed, the program returns to the last open 
parenthesis in the FORMAT statement and continues to scan the next specification 
in sequence from left to right. The program will use the FORMAT specifications 

Writing the 1620 FORTRAN Program 41 



Printing Multiple Lines with 

One Format Statement 

42 

repeatedly (always returning to the last open parenthesis) until all variables in 
the input or output statement have been processed. Each time the program re­
turns to the last open parenthesis, the input or output record is terminated. In 
output operations, this means that a new card or paper tape record is punched 
containing the remaining items on the list. In input operations, a card or paper 
tape record cannot contain more items than there are specifications in the FORMAT 

statement. Thus, the input or output statement is completed when there are no 
items remaining on the list. 

If there is a long list of data to be printed, the statement 

8 FORMAT (lHO,F10.6,E10.2, ( 1HO,E8.4,I3 ) ) 

is the same as writing the statement 

8 FORMAT (lHO,F10.6,E10.2,E8.4,I3/1HO,E8.4,I3/1HO ... ) 

In this example, the first printed line would contain the first four variables 
in the PRINT or TYPE list, with the format of F10.6, E10.2, E8.4, and 13. All re­

, maining variables in the list would be printed on succeeding lines, two to a line, 
in the format E8.4, 13. As explained next, the use of a slash symbol (/) as a 
special character makes it possible to print on more than one line. 

Single specifications can also be used for more than one variable without 
creating a new record. For example the statement 

24 FORMAT (13, 3E12.4) 

is equivalent to writing the statement 

24 FORMAT (13, E12.4, E12.4, E12.4) 

This specification would punch four variables in the same card or paper tape 
record or print or type four variables on the same line. Care must be taken when 
specifying multiple use of single specifications. so,that the maximum length of the 
record (87 characters or 121 characters in the printer-oriented system) is not 
exceeded. For example, the statement 

25 FORMAT (615, 5E12.4/3F10.2) 

is invalid because the first record is specified as 90 characters long 
( 6 x 5) + ( 5 x 12) . 

The number preceding the type code (E, F, or 1) can only be an unsigned 
fixed-point constant. 

A list of variables in a PRINT or TYPE statement can be printed on more than one 
line by placing a slash between the specifications. For example, a list of four 
variables with the FORMAT statement of 

6 FORMAT (lHO,F10.2,F10.2/1HO,E10.4,E10.4) 

would be printed with the first two variables on the first line, and the last two vari­
ables on the next line. 

A great deal of flexibility can be obtained in specifying multiple-line print­
ing. Consider the following statements: 

PRINT 3, A,B, ... ,Z 
3 FORMAT (lHO,F9.2,F10.4/1HO,E14.5) 

(In an actual program, each item from A to Z would have to be listed.) When 
the output data is printed, lines 1, 3, 5 ... have format (F9.2,F10.4), and lines 
2,4,6 ... have format (E14.5). 

Notice that both the slash and the closing parenthesis in a FORMAT statement 



Carriage Control 

Some Review and Additional 

Thoughts About Format and 

Input/Output Statements 

indicate the termination of a "record." This is not too significant when you are 
printing because a "record" is merely a line of information. If you are using card 
output, the end of a record means the end of punching in one card and the re­
maining variables are punched in the next card. If you are using paper tape out­
put, the termination of a record means that an end-of-line character is punched 
into the tape and the remaining variables are punched into the following tape 
record. 

Blank lines can be included in printed output by inserting slashes into a 
multiline format. N + 1 consecutive slashes produce N blank lines if it is in­
cluded between two specifications. N slashes before the first specification, or 
after the last specification produce N blank lines (using the slash in card and 
paper tape output is possible, but of limited value). 

The FORMAT statement is also used to provide 1443 Printer carriage control in­
structions. A FORMAT statement for PRINT must begin with 1H followed by the 
appropriate control character shown below for each record: 

b (blank) 
o 
1 through 9 

For example: 

Single space before printing 
Double space before printing 
Skip to Printer control 
channels 1 through 9. 

PRINT 2,A,B,J 
2 FORMAT (1HO,F8.2,F8.3,I8) 

This specification would provide a double space between the printed line and 
the previous printed line. 

Control characters are not required for typewritten output. 

1. Specifications in a FORMAT statement must be in the same mode (fixed 
point or floating point) as the corresponding items in the input or output 
list. For example: 

PRINT 2,A,B,J 
2 FORMAT (F8.2,F8.3,I8) 

2. If a FORMAT statement specifies more characters to be printed or punched 
than there are positions in the output record, the excess characters are 
lost. 
a. A typewritten line has a maximum of 87 characters. 
b. A punched card has a maximum of 72 positions. 
c. A paper tape record has a maximum of 87 characters. 
d. A printed line has a maximum of 120 characters. 

3. In data input records, I-type data must be located at the extreme right (to 
avoid truncating pertinent data). 

4. In an input data record, minus or plus signs must occupy a separate 
column of the record. Plus signs may be indicated by a plus symbol or a 
blank. A number without a sign position is assumed to be plus. Blanks in 
numerical fields are regarded as zeros. 

5. Numbers for E-type conversion need not have four columns devoted to 

Writing the 1620 FORTRAN Program 43 



DIMENSION Statement 

A FORTRAN Problem 

44 

the exponent field. The start of an exponent field must be marked by 
an E, or if that is omitted, by a + or -, but not a blank. Thus, E2, E02, 
+ 2, + 02, E02, and E + 02 are all permissible exponent fields, and must 
always be right-justified. Whichever of these forms you use, it is sug­
gested that you be consistent in using the same one. 

Whenever you use subscripted variables in your program, you must provide the 
processor with the following information: 

l. Which variables (of all the variables you may have used in your pro-
gram) are subscripted. 

2. Whether your subscripted variables (arrays) are one- or two-dimensional. 
3. The number of elements in each dimension of the array. 
The DIMENSION statement provides information to the processor necessary 

for the allocation of storage in the object program for the elements of arrays of 
quantities. One DIMENSION statement may be used to dimension any number of 
arrays, as long as the entire DIMENSION statement does not exceed the length of 
a statement (72 characters). 

Format 

Examples: 

"DIMENSION v( d), v( d,d), v( d)" . .. for one- and two- di­
mensional arrays. 

where each v is the name of a variable, followed by paren­
theses enclosing one or more constants, representing the 
number of elements in each dimension of the array. 

The vs must be separated from each other by commas. 

The constants must be unsigned and in fixed point mode. 

DIMENSION HRS (12) 
DIMENSION A( 10), B( 10,5) 

Every variable which appears in the program in subscripted form must 
appear in a DIMENSION statement, and the DIMENSION statement must precede 
the first appearance of the variable. When the object program is processed, the 
number of elements in an array must not be larger than the number specified in 
the DIMENSION statement. In the first example shown, the variable, HRS, is an array 
consisting of 12 elements, and the processor will set aside twelve 10-position 
fields of storage (this is, a floating point variable - 8 for mantissa and 2 for char­
acteristic). In the second example, the variable, B, represents a two-dimensional 
array that will consist of 10 rows with 5 columns in each row. The processor will 
set aside fifty (10 x 5) 10-position fields in which to store the elements of the 
array B. 

You may include both fixed point and floating point variables in the same 
DIMENSION statement. The DIMENSION statement does not create instructions in 
your object program; its function is merely to supply information to the processor. 

The problem contained in this section is intended as a guide for developing your 
first FORTRAN problem. Rather than try to show the power of FORTRAN, a simple, 
uncomplicated problem was chosen. It indicates how a problem is developed, how 
it is written on the coding form, and how it is documented as it is processed at 
compile time and object time. 



Block Diagramming Block diagramming is a technique of schematically showing the steps which the 
computer must take to produce th~ answers required by the problem. 

Diagrams serve two purposes: 
1. They offer an easy notation for analyzing the steps required in the solution 

of a problem. 
2. They provide the basic documentation in the form of a "map" of the 

program, so that someone unfamiliar with the program can easily de­
termine what the program does and how it does it. 

It is for these reasons that diagramming is not only highly recommended, 
but is often required at data processing installations. 

Techniques of diagramming vary greatly, as do the symbols used. In addi­
tion, diagramming may be very general, or extremely detailed to the point where 
every machine instruction is included. 

The more complete the diagram, the easier the job of actually writing the 
program; however, initial analysis of a problem can usually be noted only in 
major steps. 

Only simple diagramming techniques will be explained here. 

44.1 



The symbols to be used are explained below: 

• 
Direction of Flow Program Step 

<>OCJ 
Decision Stop Input-Output 

The Direction of Flow symbol simply shows the relationship between symbols. 

The example shows that A is executed first, then B. 
The Input/Output symbol is used to refer to any operation that involves an 

input/ output device. 

Read 
a 

Card 

The Program symbol is used to represent any steps in the prograrn which 
are not represented by special symbols. 

Compute 
A = B+C 

Increase Pay 
Number 

by I 

Find 
Average 

Temperature 

The Decision symbol represents any logical decision that is contained in the 
program. 

The Stop symbol is used to indicate the end of the program. 

Writing the 1620 FORTRAN Program 45 



Diagramming the Problem 

Writing the FORTRAN 
Statements 

46 

Problem: Evaluate f(x) 
Given: Values for a, b, c, and d punched on a card, and 

a set of values for the variable x punched one per card 
Evaluate the function defined by 

aX2 + bX + C if X < d 

f(X) = o if X = d 

-ax 
2 + bX -C if X > d 

for each value of x, and print the value of x and f ( x ) . 
A block diagram of a possible FORTRAN program to solve this problem follows: 

Compute 

f(x) = ax2 + bx + C 

x.< d 

Set 

f(x) = 0 

x>d 

Compute 

f(x) = _ax2 + bx - C 

The FORTRAN statements to solve this problem are shown in the coding chart 
which follows. In this problem, statement numbers required by the logic of the 
program are either 1 or 2 digits; statements with 3-digit numbers are numbered 
only for the purpose of explanation here, and would not need to be numbered 
in an actual program. 

The first statement is a comment which will appear on source program 
listings. A comment statement must be identified by placing a C in 
column one of the coding form. 

Statement 100 causes the first four cards to be read and the values 
punched in those cards to be assigned sequentially to A, B, C, and D. 
This statement references FORMAT statement 7, which specifies that each 



Processing the Source 
Statements 

field of the card is four columns long, and that each value has a decimal 
point punched into the card. 

Statement 6 causes the next card to be read, and references FORMAT 

statement 7. The card read contains the first value of x to be used by the 
program. 

Statement 101 determines the relationship between X and D and 
determines which formula to use in the compu ta tion of f ( x). If X - D is 
negative (X < D), the program is transferred from 101 to statement 2; 
if X - D is zero (X = D), the program is transferred from 101 to state­
ment 3; if X - D is plus (X > D), the program is transferred from 101 to 
statement 4. 

STATEMENT 
FORTRAN STATEMENT 

I 

k 

NUMBER 

5 6 7 10 15 20 25 30 35 40 45 50 55 

FUNC,TION ,01= X FR06L 1EM 1 I i I 1~ 

100 ~EAD, 7., A .. 8_,C lDi 1 

6 READ 1,X i I I 

101 IIF ( X-D, ) 2 3 .4. i i I 

2 FOFX, = A"X~".2+ B* x +C i 

102 GO T,O 5 1 i i 

3 FOFX, = o. 1 1 

103 k30 T,O 5 I --.l , ..L.....-

A FOFXI = -AI"X"*21+B*X-~, 1 , 1 ~~~-~~.~ 

5 PR.I.NIT I .X FO F)( , 

IDA G.D TIO 6 I 1 , , , , • __ . ___ L , 
1 FORM,AT .C I,HO > F ',4. 5 ) F,I/f • S 21 1 1 ~ I -~ 

:z FORMLAT ,( FA-. 01 I I I I I ------l........ 

E.ND 1 1 , , 1 , , 1 I I 

1 1 ..1 1 i 1 I I 1.~~~ . ..L........ 

Statements 2, 3, or 4 are used to determine the correct value of 
f (x); i.e., FOFX. Regardless of which of the three computations occurs, 
the program is always transferred to statement 5. 

Statement 5 prints out the values of x and f (x) and references 
FORMAT statement 1. This FORMAT specifies two 14-position fields; each 
field contains five positions to the right of the decimal point. 

Statement 104 causes the program to transfer to statement 6 to read 
the next value of X, and the pattern continues until all of the X cards 
have been processed. 

The computer will automatically stop when it attempts to execute 
the READ statement and there are no more cards in the card reader. 

Statement 1 and 7 contain the FORMAT specifications for the input 
and output statements. 

The END statement indicates to the processor that the source pro­
gram is completed. 

The operating procedure for processing a source program is given in OPERATING 

PRINCIPLES. The information contained here concerns only the documentation 
that is available as the object program is compiled or processed. 

Writing the 1620 FORTRAN Program 47 



48 

The following illustration shows the output that can be prepared for the 
function of x problem. If the 1443 Printer is not attached to the system, all out­
put is prepared on the console typewriter. 

Numbers have been drawn in the left margin of the typeout or printout' to 
indicate the phases of processing for this explanation. 

Typewriter Message Printer Output 

CD ENTER SOURCE PROGRAM, PUSH START SUU~CE PROGRAM 

CD 09000 C 
09000 
09060 
09084 
09152 
092 72 
09280 
09316 
09324 
09444 
09480 
09488 
09524 
09546 

CD PROG SWl ON FOR SYMBOL TABLE, PUSH START 

CD SW 1 OFF TO IGNORE SUBROUTINES, PUSH START CD PROCESSING COMPLETE 

FUNCTION OF X PROBLEM 
100 REAU 7, i,B,C,D 

6 kt:AO 7, X 
101 IF(X-O) 2,3,4 

2 FUFX=A*X**2+B*X+C 
102 GU T.U 5 

3 FUFX=O. 
103 GU TO 5 

4 FOFX=-A*X**2+B*X-C 
S PkINT 1, X,FOFX 

104 GU TO 6 
1 FURMAT(lHO,2F14.5) 
7 FURMAT(F4.0) 

END 

SYMBOL T ABL E 

CD 19999 SIN 
19989 SINF 
19979 COS 
19969 CO SF 
19959 ATAN 
19949 ATANF 
19939 EXP 
19929 EXPF 
19919 LOG 
19909 LOGF 
19899 SQRT 
19889 SQRTF 
19879 *0100 
19869 *0007 
19859 *0007 
19849 A 
19839 B 
19829 C 
19819 0 
19809 *0006 
19799 X 
19789 *0101 
19779 000 
19769 *0002 
19759 *0003 
19749 *0004 
19739 FOFX' 
19729 0002 
19719 001 
19709 *0102 
19699 *0005 
19689 00000000-99 
19679 *0103 
19669 *0001 

19659 *0001 
19649 *0104 

l. After the processor is loaded into the 1620, this message is typed. 
2. As each source statement is compiled it can be typed (or printed). The 

5-digit address is the starting address in core storage for instructions 
compiled for that statement. 



Executing the Object 
Program 

Program Testing 

Program Verification 

3. After the source statements have been compiled, the programmer or 
operator can have the symbol table typed or printed. 

4. A symbol table can contain the names of the subroutines used in this 
processor; it can also contain storage area for constants and variables, 
variable arrays, temporary accumulators, and statement numbers. (This 
subject is covered in more detail in Part 4, ANALYSIS OF THE FORTRAN 

PROGRAM.) 

5. In this program, the object program was processed immediately following 
its compilation, therefore the subroutines were not punched as part of 
the object program, but instead, were loaded into the 1620 after the object 
program was loaded. 

6. "Processing complete" means the object program has been compiled. 

The illustration shows the information that results when the object program 
is processed with data for various values of x, and A, B, C, and D have the 
values of 10.0, 11.0, 12.0, and 13.0 respectively. 

Typewriter Message 

(j) ENTER SUBROUTINES, PUSH START 
1620 FORTRAN PRNTR SUBR SET 2 11/63 
LOAD DATA 

CD 

Printer Output 

9.0000U 921.000UO 

10.0000U lln.ooooo 

15.UOOOO -2097.00000 

25.00000 -5987.00000 

5.00000 317.00000 

7. The subroutines are read into storage, and the message "Load Data" 
is typed. 

8. The data is loaded. Five values of x are shown with their corresponding 
values of f( x). 

After you have written your program, you should thoroughly "desk check" it. 
Desk checking is the process of looking over the source program for obvious 
mistakes in logic or form, and the actual manual run of an item of data through 
the program. This technique will quite often turn up a surprising number of 
errors in a new program. 

After you have desk checked your program, you should prepare test data 
that can be processed on your program. The test data should be accompanied 
by the correct results so that they can be compared by the machine operator to 
the results obtained when your program is tested. 

You should devote enough time for a careful selection of test data which 
will check out the various and numerous combinations that may exist in the 
logical flow of your program. It is advisable to start out with items of data which 
will produce the simplest logical flow through your program and then to follow 
with items of data which will take increaSingly more complex paths, so that each 
new item will involve the use of a new subroutine or segment. The more care­
ful your data selection is, the less chance there will be of errors in actual data 
results. 

When your object program is processed with the test data, and the results indi­
cate that there is an error in the program, you can do several things to locate the 
difficulty. 

Writing the 1620 FORTRAN Program 49 



50 

1. Check the test data to be certain it is punched (or typed) exactly as you 
think it is punched. This is also true for actual input data. Keep in mind 
that persons preparing data for your program may occasionally make 
common errors peculiar to the format you are using. 

2. If possible, have an associate make a desk check of your program, or if 
the program was typed or printed out when it was compiled, check that 
program. 

3. During the compilation of an object program, a number of tests are made 
for source program errors. If an error is found in a source statement, an 
error message is typed or printed and the processing continues. You should 
determine if an error message was typed or printed out and not noticed 
by the machine operator. These error tests are concerned with the viola­
tion of the rules for forming expressions and statements. (The meaning 
of the error message is described in Part 3, OPERATING PRINCIPLES.) 

4. You can make a more thorough test of your source program by process­
ing it on the IBM FORTRAN Pre-Compiler program which is available from 
IBM upon request. The Pre-Compiler program detects and permits cor­
rection of errors in a FORTRAN source program before it is compiled. It 
detects many of the more common programming errors and indicates 
possible logical errors in the source program as a whole. If you do not 
have time to use the Pre-Compiler program, a knowledge of the types 
of errors which can be detected by this system may help you to visually 
locate errors in the source program. The Pre-Compiler program is de­
scribed in Part 5. The Pre-Compiler description contains a list of 51 of 
the most common programming errors. 

5. If you still haven't located the difficulty, you can use the "trace feature" 
of the FORTRAN program. The FORTRAN processor can compile certain in­
structions into an object program which will permit tracing the flow of 
the object program in order to check its correctness. When the object 
program is executed, the trace output consists of the evaluated left-hand 
side of each executed arithmetic statement. 

To use the trace feature, you would have to compile the program 
again with the trace feature instructions included and execute the object 
program using this feature. Checking your program with the trace feature 
will help locate the errors in your program. The following illustration 
shows how the results of the function of x problem would look if the 
trace feature had been used. 

Typewriter Message 

ENTER SUBROUTINES, PUSH START 
1620 FORTRAN PRNTR SUBR SET 2 11/63 
LOAD DATA 

Printer Output 

.Y<:lOOOOOc+Oj 

9.00000 
.11220000C+04 

921.00000 

10.00000 1122.00000 
-.20970000E+04 

15.00000 -2097.00000 
-.:'9870000E+04 

25.00000 -5YH7.00000 
.31700000E+03 

5.00000 317.0'0000 

Additional information about the trace feature is provided in Part 3, OPERAT­

ING PRINCIPLES. 



This part of the manual provides the information necessary for implementing the 
FORTRAN program on the 1620 computer. It is assumed that the reader has a prior 
knowledge of 1620 operating principles. OPERATING PRINCIPLES is divided into two 
parts, PRODUCING THE OBJECT PROGRAM and EXECUTION OF THE OBJECT PROGRAM. 

Producing the Object Program 

Clearing Core Storage 
to Zero 

Switch Settings 

The FORTRAN program is available in four forms, card and paper tape with or 
without the 1443 Printer. All forms are divided into two sections; the processor 
and the subroutines. The sequence of operations that follows is written for all 
systems. 

Eight basic steps are required for producing the object program. These eight 
steps are summarized below, followed by additional detailed information for 
steps 1, 2, 6, 7, and 8. 

l. Clear core storage to zeros. 
2. Set the console program switches for compilation. 
3. Set the overflow check switch to PROGRAM and all other check switches to 

STOP. 

4. Press the reset key. 
5. For the card system, prepare the card punch for operation by loading 

blank cards into the punch hopper and by pressing the punch start key. 
For the paper tape system, prepare the paper tape for operation. 

6. Load the compiler program deck or tape. 
7. Ready the Printer. 
8. Enter the source program statements. These may be read in through the 

card reader, the paper tape reader, or typed in at the console typewriter. 
9. If required, load the subroutine deck or tape. 

(Step 1) 

A suggested method for clearing core storage to zeros is: 

l. Press the reset key. 

2. Press the insert key. 

3. Type the instruction 16 00010 00000. 
4. Press the release key. 

5. Press the start key. 

6. After all storage positions have been cleared, press the instant stop key. 

(Step 2) 

During compilation of the source program, the console program switches per­
form the following functions: 

ON 

Switch 1 Causes the source statements to be typed or 
printed as the are processed. The first 5-digit 
field is the object program address of the first 
instruction compiled for the source statement. 

Switch 2 Causes trace instructions to be compiled. 

OFF 

Source statements 
are not listed. 

Trace instructions 
are not compiled. 

Operating Principles 51 



Switch 3 Input to the compiler (source statements) is 
being entered via the console typewriter. 

Source program 
entered from card 
reader or paper 
tape reader. 

Switch 4 This switch is used in conjunction with switch 3 when switch 3 is ON. 

It provides the ability to restart the typing of a statement if you have 
made an error. Switch 4 is normally OFF. When a typing error is made 
in a source statement and it is to be corrected, this switch is turned 
ON, the release and start keys are pressed, and then switch 4 turned OFF. 

The statement can now be retyped. 

Loading the Compiler (Step 6) 

Card System 

Paper Tape System 

Compilation of the Source 
Program 

52 

When operating with the card system, you can load the compiler program deck 
by placing the deck in the read hopper and pressing the load key. The cards in 
the FORTRAN compiler deck are punched with sequence numbers in columns 76 
through 80 and must be loaded in sequence. If the first card read is not card 
number 1, the machine will stop with an operation code of 00 displayed in the 
operation register lights. If cards 2 through 24 are not read in the proper se­
quence, the message "CARDNN," where NN is the number of the missing card, 
will be typed on the console typewriter and the machine will halt. The cards 
must be removed from the reader and placed in proper order. Core storage must 
be cleared to zeros before the deck is read in again starting with card 1. 

Beginning with card number 25, if any card is out of sequence, the console 
typewriter carriage will be returned and the following message will be typed: 

CARD ONNNN OUT OF SEQUENCE 

and the machine will halt. When this occurs, the card numbered ONNNN has 
been read out oJ sequence. Remove the cards from the reader and arrange them 
correctly. Starting with the card replacing card number ONNNN, put that part 
of the deck which has not yet been loaded, back into the read hopper. Press 
the reader start key on the 1622, and continue reading by pressing the start key 
on the 1620 console. 

To load the compiler tape, the following procedure must be followed: 

1. Mount the compiler tape on the paper tape reader. 
2. Press the insert key. 
3. Type the instruction 36 00000 00300. 
4. Press the release key. 
5. Press the start key. 

The following instructions are typed on the console typewriter! after the compiler 
has been successfully loaded: 

ENTER SOURCE PROGRAM, PUSH START 

To begin compilation after the compiler has been loaded, either press the start 
key or manually insert the instruction 49 00402. 

Two methods of source program input may be used under control of program 
switch 3, as follows: 

1. If input is for the card system (switch 3 off), place the source program 
deck in the read hopper and press the reader start key If input is for the 
paper tape system (switch 3 off), mount the source program tape on the 
paper tape reader. 



Loading the Subroutines 

Card System 

2. If the source program is to be entered from the typewriter (switch 3 
on), the compiler will await the first statement from the typewriter. After 
you type a statement, press the record mark key and then press the re­
lease and start keys to continue compilation. The carriage will return after 
each statement has been processed, to await the entry of the next state­
ment until an END statement is entered. 

As the source program is processed, a test is made in the compiler to deter­
mine whether the compiled object program (not including relocatable subrou­
tines), .together with the object program data table, will occupy more core stor­
age locations than will be available. If the object program is too long, the state­
ment which caused the overlap is processed, and the following message is typed 
or printed immediately. 

OVERLAP 

Compilation continues, with the message being typed after each statement 
thereafter. 

After an END statement is processed, the following instruction message is 
typed on the console typewriter: 

SWI ON FOR SYMBOL TABLE, PUSH START 

If a listing of the symbol table, that was developed during compilation, is 
not desired, turn off program switch 1. If the listing is required, turn on switch 1. 

To continue processing, press the start key. 
The following message is typed next, whether the symbol table has been 

typed or not. 

SWI OFF TO IGNORE SUBROUTINES, PUSH START 

If the subroutines are to be included in the object program deck or tape, 
turn on program switch 1, load the subroutine deck or tape, and press the start 
key. If the subroutine deck or tape is to be read in when the object program is 
run, turn off switch 1. 

To complete the processing, press the start key. 
If program switch 1 is off, the following message will be typed: 

PROCESSING COMPLETE 

(Step 8) 

Under control of program switch 1, as previously described, the subroutine deck 
or tape may be loaded immediately after compilation, or loaded when the object 
program is loaded. 

When operating with the card system, place the subroutine deck in the read 
hopper and load the deck into storage by pressing the start key. (Or you may 
press the reset key on the console, and then press the load key on the card reader. ) 

The cards in the subroutine deck have a sequence number punched in col­
umns 76 through 80, and must be loaded sequentially in that order. If cards 
numbered 1 through 8 are not read in proper sequence, the machine will halt 
with an invalid operation code displayed in the operation register lights. If this 
occurs, remove the cards from the reader, place them in the proper sequence, and 
replace the deck in the read hopper. Press the reset key and then the load key. 

Operating Principles 53 



Paper Tape System 

Card and Paper Tape 

Systems 

Errors in the Source 

Program 

54 

Cards out of sequence, other than cards 1 through 8, will cause the message 

CARD OUT OF SEQUENCE 

to be typed on the console typewriter, and the machine will halt. The second 
card from the back in the read stacker is the one out of sequence. All preceding 
cards were loaded properly. Remove from the reader the cards which have not 
been loaded, arrange them sequentially, and replace the deck in the read hopper. 
To continue reading the subroutine deck, press the reader start and start keys. 

When operating with the paper tape system, mount the subroutine tape, and load 
it by pressing the start key. (When starting, you may insert the instruction 
36 00000 00300, press the release key, and then press the start key.) 

If the source program has called for any of the relocatable subroutines, they will 
either be punched out into the object program if the subroutines are read in im­
mediately after compilation, or they will be loaded into core storage if the sub­
routines are processed at object time. 

If the compiled instructions and required data will exceed the storage capac­
ity of the 1620 at object time, the following message will be typed or printed 
just after the first relocatable subroutine that causes the overlap has been proc­
essed for possible inclusion in the object program: 

OVERLAP XXXXX POSITIONS XX 

OVERLAP XXXXX POSITIONS 
TOTAL OVERLAP 

"XXXXX" represents the number of core storage positions which overlap between 
the end of the object program and the data storage area. XX is the assigned 
number of the subroutine ( s) that caused the overlap. The object program is 
allocated to increasing core storage locations and includes the compiled program 
and relocatable subroutines used. The data storage area is allocated to decreasing 
core locations starting with the highest addressed position of storage. After the 
overlap message is typed or printed, the machine will halt and programmed 
processing of the subroutines cannot be continued. 

After the subroutines have been processed, the following message will be 
typed on the console typewriter: 

PROCESSING COMPLETE 

A number of tests are made for source program errors during compilation of the 
object program. If an error is found in a source statement, an error message is 
typed or printed, "ERROR NO. n," where n is the error code, and processing 
continues. A list of possible errors follows: 

Error 
~ Condition 

1. An incorrectly formed statement. 
2. A subscripted variable is used and no DIMENSION statement for it has 

previously appeared in the program, or a dimensioned variable is used 
without subscripts, or a variable used in a DIMENSION statement has al­
ready appeared in the source program. 

3. A floating point number is not in the allowable range of values, or a fixed 
point number contains more than four digits. 

4. The symbol table is full. 



5. A mixed mode expression (fixed point and floating point in the same ex­
pression. ) 

6. A variable name containing more than five characters. 
7. The switch number has been omitted in an IF (SENSE SWITCH n) state­

ment, or the first character following the right parenthesis in an IF state­
ment is a comma. 

8. A comma follows the statement number in a DO statement. 
9. A DIMENSION statement ends with a comma, or more than two dimensions 

have been specified in a DIMENSION statement. (Only two-dimensional 
arrays are pennitted.) 

10. Unnumbered FORMAT statement or the word FORMAT misspelled in a 
FORMAT statement. 

11. Incorrect representation in a FORMAT statement in one of the following 
ways: 
a. A special character is used 

=@-~$+., 

in a numerical field specification. 
b. An alphabetic character other than E, F, or I is used in a numerical 

field specification. 
c. A decimal point is missing in an E- or F -type numerical field specifi­

cation or a blank space follows the decimal point. 
d. The number of positions to the right of the decimal point has not been 

given in an E- or F -type numerical field specification. 
e. A record mark appears in a numerical field specification or in an alpha­

meric field. 
f. The first character following the word FORMAT is not a left parenthesis. 

12. The total record width specified in a FORMAT statement is greater than 
87 characters, or 121 characters if the printer-oriented system is used. 

13. A FORMAT statement number has been omitted in an input/output state­
ment. 

Compilation of the program proceeds after the error message is typed or 
printed, but the statement in which the error has occured may either be partially 
compiled or not compiled at all. 

Execution of the Obiect Program 

Card System When operating with the card system, the object program may be loaded imme­
diately after compilation by placing the deck in the read hopper, pressing the 
reader start key and the start key on the console. The object deck may also be 
loaded at this or any other time by first pressing the reset key and then the load 
key on the card reader. 

The cards in the object program must be loaded, sequentially by number, 
starting with number 0001 which is punched in columns 77 through 80. If cards 
numbered from 1 through 8 are not read in proper order, the machine will halt 
with an invalid operation code (00) displayed in the operation register lights. 
The cards must then be removed from the reader and placed in proper sequence. 
Reload by placing the cards in the read hopper again and by pressing the reset 
and load keys. 

Any other card out of sequence will cause the message 

CARD OUT OF SEQUENCE 

to be typed on the console typewriter, and the machine will halt. The procedure 
for continuing the operation is exactly as described for reloading the subroutine 
deck under similar conditions. 

Operating Principles 55 



Paper Tape System 

Input Data From the Keyboard 

Restart Procedure 

Trace Feature 

56 

When operating with the paper tape system, the object program may be proc­
essed immediately after compilation by mounting the object tape and pressing 
the start key. 

The object tape may also be entered by pressing the insert key, typing the 
instruction 36 00000 00300, and pressing the release and start keys. 

If the subroutine tape or deck is to be loaded at object time, after the object 
program has been loaded, the machine will haIt and the following massage will 
be typed on the console typewriter. 

ENTER SUBROUTINES, PUSH START 

The subroutine deck or tape must then be loaded in the manner already 
described. 

After the subroutines have been loaded, the machine will halt and the fol­
lowing message will be typed: 

LOAD DATA 

If the subroutines are already contained in the object deck or tape, the fol­
lowing message will be typed after the object program has been loaded, and the 
machine will halt: 

LOAD DATA 

To initiate the execution of the object program, press the start key on the 
1620 console, or manually insert the instruction 49 08300, or 49 09000 in the 
printer-oriented system. 

Each execution of an ACCEPT statement in the object program causes the type­
writer carriage to return as a signal for you to type the input quantities corres­
ponding to the variables named in the list. If you make a typing error during con­
sole entry of data, you may correct the error by using program switch 4, as de­
scribed under SWITCH SETTINGS. 

NOTE: When typing data from the keyboard, the total width specified in the 
FORMAT specification should be typed. Leading or trailing blanks may be 
used to fill out a specification. 

Object programs may be stopped in the mainline program for the purpose of 
restarting without reloading the program. Stopping the program in the arith­
metic or 110 subroutines should be avoided because errors might result. If the 
program is inadvertently stopped in the arithmetic or 110 subroutines, the oper­
ator may single-instruction-execute to return to the mainline program. 

If the address in the Memory Address Register is lower than the origin of the 
object program, then the program is currently in the arithmetic and I/O subroutines. 

The standard origin of an object program is 08300 for the non-printer system 
and 09000 for the printer-oriented system. 

The FORTRAN processor can (under program switch control) compile certain in­
structions into the object program for tracing the flow of the program and for 
checking its correctness. When the object program is executed, program switch 4 
performs the following function: 

Switch 4 
ON 

Causes compiled trace in­
structions to be executed. 

OFF 
Trace instructions are not 
executed. 

The trace output provided is the evaluated left-hand side of each executed 
arithmetic statement, which is typed or printed at the left margin. Normal out-



put, resulting from PUNCH, PUNCH TAPE, PRINT, and TYPE statements is not in­
hibited. The output format of the trace data is E14.8 for floating point results 
and 15 for fixed point results. 

With the modifications shown below, the trace output can be obtained in 
cards, except in the printer-oriented system. 

Su broutine Set 1 
Card number Columns Standard Change to 
30126 54-55 95 47 
30127 6- 7 96 48 

Subroutine Set 2 
Card number Columns Standard Change to 
30124 54-55 95 47 
30125 6- 7 96 48 

Subroutine Set 3 
Card number Columns Standard Change to 
30130 30-31 95 47 

42-43 96 48 

Subroutine Set 4 
Card number Columns Standard Change to 
30135 30-31 95 47 

42-43 96 48 

Note that program switch 4 serves a dual function during execution of the 
object program: i.e., provision of trace data and correction of input data incor­
rectly entered at the console keyboard. Thus, when running in the trace mode, 
you must turn off program switch 4 before typing output data. Following the 
entry of the last item on the input list (after pressing the release key), press 8IE 

two or three times, turn the switch on, and press the start key. (If a trace routine 
is desired, switch 4 cannot otherwise be used in the program.) 

Operating Principles 57 



Part 4 - Analysis of the FORTRAN Program 

Subroutines 

58 

This part of the manual is intended to assist experienced programmers in under­
standing, modifying, and testing FORTRAN programs. It is assumed that the reader 
has had previous experience in programming, and has some knowledge of the 
1620 Symbolic Programming System, if subroutines other than those provided 
by FORTRAN are to be added. 

The FORTRAN subroutine deck or tape contains thirty-one subroutines. Up to 
nineteen additional subroutines may be added at the user's option. It is entirely 
feasible for several subroutine decks or tapes to be maintained by an installation 
when it is desirable to have several sets of optional subroutines available. 

Four different subroutine sets are available: 
Option A (Set 2) For systems with Automatic Divide feature. 
Option B (Set 3) For systems with Automatic Divide and Automatic Floating 

Point special features. 
Option C (Set 4) For systems with Automatic Divide, Automatic Floating 

Point, Indirect Addressing, and Additional Instructions special 
features. 

Option D (Set 1) For systems without Automatic Divide,Automatic Floating 
Point, Indirect Addressing, and Additional Instructions special 
features. 

The subroutines are classified as follows: 
Type 1: Automatically compiled, used by the FORTRAN system only; not 

directly available to the programmer. 
Type 2: Automatically compiled if used in the source program, or used by 

the system; available to the programmer. 
Type 3: Not used by the system, automatically compiled if used by the 

programmer. 

Symbolic 
Subroutine Name Operation Type 

Floating Add FAD A + B 1 
Floating Subtract FSB A - B 1 
Floating Multiply FMP A * B 1 
Floating Divide FDV A/B 1 
Reverse Floating Divide FDVR B/A 1 
Floating A**B FAXB A**B 1 
Floating A **B(-B) FAXBN A **(- B) 1 
Fixed Add FXA 1 + J 1 
Fi xed Subtract FXS I - J 1 
Fixed Multiply FXM 1 * J 1 
Fixed Divide FXD I/J 1 
Load Into FAC TOFAC 1 
Store from FAC FMFAC 1 
Reverse Fixed Divide FXDR J / I 1 
A**I FAXI A**I 1 
A **(-1) FAXIN A **(-1) 1 
Convert Sign RSGN -A 1 
Floating Natural Log FLN LOG(A) 2 
Floating Exp(A) FEXP EXP(A) 2 
Floating Square Root FSQR SQRT(A) 3 
Floating Sine FSIN SIN(A) 3 
Floating Cosine FCOS COS(A) 3 
Floating Arctangent FATN ATAN(A) 3 
Convert: float-to-fi x FIX FIX(A) 1 
Convert: fi x-to-float FLOAT FLOAT(I) 1 
Read Card RACD 1 
Read Tape RAPT 1 
Read Typewriter RATY 1 
Write Card WACD 1 
Write Tape WAPT 1 
Write Typewriter WATY 1 



Floating Point 

Accumulator 

Subroutine Linkage 

Error Analysis of 

Subroutines 

The preceding table shows each subroutine provided, its type, the num­
ber of operands it requires, and its symbolic name. The symbolic names shown 
on this table are not used in programming; they are included to provide refer­
ence to the symbolic listing of the subroutines. 

The results of all floating point subroutines appear in a 10-digit field which ex­
tends from storage positions 00051 through 00060. This field is called the floating 
point accumulator (FAC). The symbol, FAC, is associated with the address 00060 
in the symbolic listing of the system. 

F AC is also used as the fixed point accumulator. Fixed point numbers occupy 
only the four low-order positions of FAC, 00057-00060. 

The subroutine linkage is in the form 

BTM SUBR A (where A is the address of the argument) 

for arithmetic subroutines. The number stored in FAC is added to, subtracted 
from, divided by, or multiplied by the operand. 

Both type 2 and type 3 subroutines are relocatable and are loaded only if 
called for. Toward the beginning of the compilation phase, the symbol table area 
is cleared. The symbolic name of the subroutine, SIN, is loaded into a specific 
10-digit field in the symbol table. The address of this field is derived from the 
order in which the subroutine names are listed in the FORTRAN processor. The 
symbol is left-justified in the field, and the high-order address of that field is 
associated with the function subroutine. The 10-digit field immediately preceding 
this field is also associated with the same function subroutine. For example, if the 
subroutine order is the order used by IBM Programming Systems in the decks 
they prepare and release, the locations 19990 through 19999 are reserved for the 
symbol SIN and the preceding ten digits, 19980 through 19989, are also reserved 
for the sine subroutine. If the program calls for the sine subroutine (i.e., the sine 
function is used in an arithmetic statement), the following instruction is compiled: 

BTM 19990 , A 

where A is the address of the subroutine argument. When the subroutine has 
been assigned an absolute address, the symbol SIN is replaced by 49 xxxxx, where 
xxxxx is the absolute address of the FSIN subroutine in memory. Thus, when the 
BTM 19990 A instruction is executed in the object program, the address of the 
argument will be transmitted to 19985 through 19989, and the branch to 19990 
will be followed by a branch to the FSIN subroutine. 

Results of all FORTRAN subroutines are truncated (except FMP and FEXP, where 
the result is rounded), and, in general, errors are no greater than one in the 
last digit of the resulting mantissa. The exceptions to this statement are listed 
below: 

FLN: The argument of the FLN subroutine is broken into an integral and a frac­
tional part. The logarithm of the fraction is evaluated using a series expansion. 
The result is correct to nine decimal digits. The integral part of the argument is 
multiplied by Inl0 and added to the above result to produce the desired value. 
For values of the argument in the range .99<ARG .::::; 1.01, some loss of accuracy 
will occur. The reason for this is that some of the digits calculated will be leading 
zeros, and, when the result is normalized, fewer than eight significant digits will 
remain. 

FEXP: The antilogarithm is computed using a Hastings' approximation~ for 
lOX. The argument is initially multiplied by log e and then divided into an integral 

«Hastings, Cecil, Jr., Approximations for Digital Computers, 
Princeton University Press, New Jersey, 
The Rand Corporation, 1955 

Analysis of the FORTRAN Program 59 



Error Checks 

60 

and a fractional part. The integral part becomes the characteristic of the result; the 
fractional part is evaluated in the polynominal to produce the mantissa. When the 
argument of the function is positive, the error in the result does not exceed one 
in the last digit of the mantissa; when the argument is negative, the limit of error 
is five in the last digit of the mantissa. 

FAXB and FAXBN: AB is evaluated as eB1n\ therefore, it is evaluated by 
means of three linking subroutines, FLN, FMP, and FEXP. An error in one of these 
subroutines may propagate and increase in succeeding subroutines. An effort is 
made to counteract this effect by rounding the product BlnA in the FMP sub­
routine. The error thus produced is in general no greater than one in the seventh 
digit of the mantissa. 

FSQR: The square root is computed by means of the odd integer method. The 
result is accurate to 1 in the last digit of the mantissa. 

FSIN and Feas. The sine and cosine functions are computed using a Has­
tings' approximation for 

• 7r X sme 2" 

Before it can be used, this approximation is transformed to compute sine X for 

2 2 

and cosine is evaluated as the 

sine 7r 

2" -X 

The result of this subroutine is correct to eight decimal digits. However, for 
arguments less than or equal to one-tenth of a radian, leading zeros in the re­
sult will cause a loss of accuracy upon normalization, as with FLN. Loss of ac­
curacy will result for arguments larger than 4 7r and less than 100 radians, but 
will not exceed one in the seventh digit of the mantissa. The reason for this is 
that the larger the number of radians, the less accurately the angle can be specified 
when reduced to within one revolution. For arguments greater than 100 radians, 
correspondingly greater errors will be produced. 

FATN: The arctangent function is evaluated by using the first six terms of a 
series expansion, which results in an error of less than one in the last digit of the 
mantissa. In the computation, arctan x must be in the range 

- !!.. < arctan x < ~ 2 - - 2 

If Ixl < 1 x 10-4 the resulting angle is equal to the argument x. 

A number of error checks have been built into the FORTRAN subroutines. The 
basic philosophy that has been followed with respect to an error situation is to 
have an error message typed or printed out, to set the result of the operation 
equal to the most reasonable value under the circumstances, and to have the 
program continue. The following list shows the error checks that exist in the 
subroutines, the error codes that are typed or printed out, and the value to which 
FAC is set before the program continues. In the list it will be noted that the 
terms "Overflow" and "Underflow" occur several times. Overflow means that the 
characteristic of the result has exceeded 99; underflow means that the charac­
teristic of the result is less than -99. 



Adding Subroutines 

Language 

ERROR CHECK 

Overflow in FAD or FSB 
Underflow in FAD or FSB 
Overflow in FMP 
Underflow in F MP 
Overflow in FDV or FDVR 
Underflow in FDV or FDVR 
Zero divisor in FDV or FDVR 
Zero divisor in FXD or FXDR 

*Argument in FIX ~ 10,000 
*Argument in FIX:s -10,000 

Loss of all significance in FSIN or FCOS 
Zero argument in FLN 
Negative argument in FLN 
Overflow in FEXP or FEXN 
Underflow in FEXP or FEXN 

* Negative argument in FAXB 
* Negative argument in FSQR 

Input data in incorrect form or outside allowable 

ERROR CODE 

E1 
E2 
E3 
E4 
E5 
E6 
E7 
E8 
E9 
E9 
F1 
F2 
F3 
F4 
F5 
F6 
F6 

range F7 
Floating point output data outside allowable range, 
or in form not acceptable to FORMAT specification F8 
Input or output card record is longer than 72 
characters, or there is an element in an input 
or output list for which there is no specification 
in the corresponding FORMAT statement F9 

* Subroutine Sets 3 and 4 only 

CO NTENTS OF FAC 

9999999999 
0000000099 
9999999999 
500000 0099 
9999999999 
0000000099 
9999999999 
9999 
9999 
9999 
9999999999 
9999999999 
l.n Ixl 
9999999999 
0000000099 
IAIB 

-vrxr 

Input/Output Data. Input data to the object program is read alphamerically at 
the paper tape reader, the card reader, or the console typewriter. 

If error F7 occurs during the execution of the instructions compiled for an input 
statement, the data which is incorrect will be ignored and processing will con­
tinue. 

If error FB occurs, the incorrect data will be ignored in the output record, and 
an additional record will be created containing the incorrect data in the form 
specified by E14.B for floating point data. Fixed point data outside the range of 
the format specifications will be output in the form I (w -1) where w is the speci­
fied width. No error indication will occur. 

If error F9 occurs, the incorrect data will be ignored and processing will con­
tinue. 

As indicated earlkr, up to 19 additional subroutines can be added to the 31 
subroutines provided by the program. Additions of relocatable subroutines to the 
FORTRAN system involve changes in the language, the processor, and the sub­
routines. 

The four type 3 subroutines provided with the system may be replaced subject 
to the restrictions mentioned below. The two type 2 subroutines are an integral 
part of the system and may not be replaced. 

Subroutines added to the system are type 3. Such subroutines must be given 
a one-to-four character symbolic name. For example, a subroutine to calculate 
hyperbolic sine might be called SNH, and in a source program might be used in 
such a statement as 

Y = SNH(X) or as Y = SNHF(X). 

Analysis of the FORTRAN Program 61 



Processor 

Subroutines 

62 

A 4-character record in the processor specifies the number of functional sub­
routines included in the subroutine deck or tape to which direct reference may 
be made in a source program. There are six such subroutines included in the 
standard system, and the record bb06, where b is a blank, is punched in the 
processor. This record appears in card number 02001 in the processor deck and 
is the fifty-sixth record in the processor tape. If additional subroutines are added, 
or if some of the available subroutines are not used, this record must be changed 
to the actual number of type 2 and type 3 subroutines included in the program. 
Immediately following the 4-digit record specifying the number of included 
functional subroutines, are cards in the processor deck or records in the processor 
tape giving the symbolic names of the associated functions. Each symbolic name 
must be preceded by two blanks. In the card system, a 5-digit sequence number 
must appear in columns 76 through 80, starting with 02002. The names of the 
subroutines in the standard system and the order in which they appear are as 
follows: 

Subroutine 
Name 

SIN} 
COS 
ATAN 
EXP 
LOG 
SQRT 

Subroutine 
Number 

45} (treated as one subroutine) 

6 
7 
8 
9 

This is an ordered list, and the sequence in which the function names are 
read by the compiler must not be changed. Each subroutine, starting with SIN 

is assigned a serial number NN, dependent upon its position in the list, to which 
the subroutine relocator program refers. The serial number of the SQRT routine, 
for example, is 09. The addition of the hyperbolic sine routine mentioned above 
would require the addition of a card numbered 02008 containing the name SNH 

punched in card columns 3 through 5. The serial number automatically assigned 
to this function would be 10. Subroutine numbers 1 through 3 cannot be used. 

The subroutine relocator routine contained in the subroutine deck or tape will 
relocate and reproduce into the object program, or store in core storage, any re­
locatable subroutines called for by the source program. The first relocatable 
subroutine will start in the next even address beyond the object program. 

The relocator requires the relocatable subroutines to be in the same order 
in the subroutine deck or tape as their corresponding symbolic names appear 
in the processor. In addition, there must be a relocatable subroutine in the sub­
routine deck or tape for each symbolic name used in the processor. 

All relocatable subroutines have been written in 1620 SPS language. In the 
card system, the assembled object programs have been condensed by the SPS 

condensing routine; the first two and last seven cards of the condensed output 
have then been discarded. In the tape system, the 2-record loading routine at 
the beginning and the single record containing the multiplication and addition 
tables at the end of the SPS output are removed. A Hag is inserted in the low­
order position ~ the 10-digit loader record that precedes instructions only 
(XXXXX XXXXX). The header and trailer records are added, and in the card 
system proper sequence numbers are punched in colums 76 through 80. 

For the paper tape system, an SPS modification tape is included which will 
modify the standard 1620 SPS paper tape system (1620-sp-008) so that the header 
and trailer records will automatically appear in the SPS output tape. To use this 



Writing Relocatable 
Subroutines in SPS 

Header Record 

Trailer Record 

tape after the SPS system has been loaded in the normal way, insert the instruction 
36 00000 00300, mount the modification tape, and press the release and start keys. 
After the modification tape has been read in, the following message will be typed: 

TYPE IN TWO DIGIT SUBROUTINE NUMBER 

The correct 2-digit subroutine number must be typed, and the release and 
start keys pressed. If a typing error is made, the error may be corrected by using 
program switch 4, as described under OPERATING PRINCIPLES. Processing may be 
continued by entering the SPS source program. 

Since the sine-cosine subroutines are together as one subroutine with differ­
ent entries, they must remain in the subroutines for compatibility with the re­
locator. However, if you wish to write a new sine-cosine subroutine, it must be 
compatible with the relocator, i.e., the sine entry equals cosine entry + 44. 

The ongm of a relocatable subroutine must be at location 5000, and must be 
the address of the first instruction executed in the subroutine. Relative addresses 
in an instruction are indicated by flags over the 0 or 1 positions of the operation 
code. For example, if the P address of an instruction is relative to the origin 
5000, a flag must be over position O. The P address will then be modified when 
the subroutine is relocated. The flags are not removed by the relocator but are 
stored in memory with the instruction at object time. Since relative P and Q 
addresses are to be modified, they must not contain any flags other than in the 
P 1 or Q, positions. (Flags on P 1 or Q, are not necessary to the subroutine re­
locator. ) 

The address of the argument will be found in location 19989 -20( NN -4) 
v"here NN is the subroutine number. (If compilation needs additional memory, 
the location of the argument must be modified by 20 or 40 K, depending upon 
the amount of additional memory used.) The calculated result of a relocatable 
subroutine must be left in the floating point accumulator (FAC, 00051 through 
00060), or a flag must be set in location 0005l. Although record marks may be 
contained within a subroutine, one is available in location 00401). 

Relocatable subroutines must exit by a Branch Back (BB). 
A flagged digit, representing the high-order digit of the highest numbered 

core storage location used in the system, is in location 00400. This digit is, for 
example, 5' for a 60,000 location machine configuration. 

In the card system, the header card has the following form: 

Columns 1-2 Subroutine number (NN). 
62 Zero. 

76-80 Sequence number (sequence number = NNOOO, where 
NN is the subroutine number. The first sequence num­
ber in the subroutine itself would then be NNOOl.) 

In the tape system, there are two header records: the first contains a single 
zero and the second contains the 2-digit subroutine number. 

In the card system, the trailer card has the following form: 

Columns 1-5 

62 
76-80 

The next even number above the number of locations 
used by the subroutine. 
o (flag zero). 
Sequence number. 

Analysis of the FORTRAN Program 63 



Writing Relocatable 
Subroutines in Machine 
Language 

64 

In the tape system, the first two of the preceding items are reversed and ap­
pear as individual records, i.e., the first record contains a flag zero and the second 
record contains the next even number above the number of locations used by the 
subroutine. The last card of the relocatable subroutine section of the subroutine 
deck contains a flag one (I) in column 62 and the sequence number 26000 in 
columns 76 through 80. This card follows the last trailer card and indicates to the 
relocator that all relocatable subroutines have been processed. In the paper tape 
system, this record is a single one (1). 

If a relocatable subroutine is written in machine language, the origin and oper­
ation code flags must be as described for writing in sps. The card format must 
also conform to the condensed sps as follows: 

Instruction Card 

Columns 1-61 

62 

65-69 

70-74 

76-80 

Constant Card 

Columns 1-61 

62 

65-69 

70-74 

76-80 

One to five instructions with operation codes flagged for 
relative P or Q addresses. A record mark must be in col­
umn 61 or must immediately follow the last instruction 
on the card (the record mark is not loaded at object 
time). Instructions must use the full 12 digits. If packing 
is done, the Q field must still be filled with zeros and the 
packed instructions would start a new card. 

o (zero-instruction card). 

Storage address where column 1 of the card will load. 
(High-order digit must be flagged.) 

Address of next storage location beyond the number of 
locations used by the instruction. (High-order digit must 
be flagged.) 

Sequence number. 

Constants which will be loaded sequentially into memory. 
A record mark must be in column 61 or immediately fol­
lowing the last digit of a constant on the card. Consecu­
tive constants terminated by record marks must be on 
individual cards with double record marks at the end. 

1 (one-constant card). 

Same as instruction card. 

Address of next core location beyond number of locations 
used by constants. (High-order digit must be flagged.) 

Sequence number. 

In the paper tape system, an absolute language version of a relocatable 
subroutine must be in the same form as output by the paper tape version of 
1620 sps. 

In the card system, the subroutine relocator checks sequence numbers upon 
reading. If a card is missing or out of order, the error message 

CARD OUT OF SEQUENCE 

will be typed. In this case you must restore the proper sequence and then push 
the start key. 



Storage Allocation 

After Loading the Compiler 

After Processing the 

Source Program 

After the standard processor deck or tape has been read into 1620 storage, and 
before processing of the source statements has begun, storage is allocated as 
follows (numbers in parentheses pertain to printer-oriented systems): 

l. The multiply-add tables are in locations 00100 through 00399. 
2. The compiler program begins in location 00402. 
3. The work areas in which the source program will be processed have been 

cleared where necessary. These areas, and a constant defining the end 
of the symbol table area used for function names, are in locations 16800 
(17600) through 17498 (18143). 

4. In the standard system (20,000 positions of storage), twelve 10-digit 
fields are located in positions 19880 through 19999. The alphabetic repre­
sentation of the names of the six relocatable subroutines, in the' two forms 
allowed - one with and one without the terminal F - are stored in the 
12 fields. The name of each additional relocatable subroutine inserted by 
the user will be added to this list, and will appear in the symbol table in 
both forms. 

5. The rest of the symbol table from location 17500 (18320) through 19879 
contains 238 (156) 10-digit fields, each containing the constant 00000000 
=F =F. The end of the symbol table is defined by the constant O=F in loca­
tions 17498 (18318) through 17499 (18319). 

If the system has been modified for use with the 1623 Core Storage unit, 
the symbol table will occupy the highest positions of storage. If, for example, 
the highest available address is 59999, the subroutine names will appear in loca­
tions 59880 through 59999. The constant defining the end of the symbol table 
will be in locations 40008 (40318) through 40009 (40319). 

After compilation, the areas previously cleared for the symbol table will contain: 
1. The alphabetic form of every variable used in the source program. 
2. In the next lower field after the name of every variable array, a field of 

the form 0 I I I I NNNNN, where the Is represent the first specification 
listed in the DIMENSION statement for the array, and the Ns represent the 
address of the last element in the array. 

3. Every constant used in the source program. Floating point constants will 
have the form of an 8-digit mantissa and a 2-digit exponent. Fixed point 
constants are in 4-digit subfields (right-justified) within the 10-digit fields 
in which they appear. 

4. All statement numbers will be in the form LLLLLOMMMM, where the 
Ms represent the statement number, and the Ls the location in the object 
program of the first instruction compiled for the source statement indi­
cated. 

5. Intermediate storage, or accumulator numbers, from 000 through 998, 
as required and aSSigned by the compiler. 

6. In the next lower field after the final field used in the symbol table by the 
compiler, the constant 6000000999 will appear. 

A record, consisting of three 5-digit fields which has been punched into the 
object program at the conclusion of compilation, is stored in locations 00402 
through 00416. The first of these fields contains the address of the first location 
available for the storage of relocatable subroutines after the object program 
has been properly loaded. The next field contains the address of the end of 

Analysis of the FORTRAN Program 65 



After Loading the 

Object Program 

System Deck 

General Make-up of the 

Compiler Deck 

66 

the symbol table when it is loaded at object time, and the third field contains 
the corresponding address for the symbol table as it appears in compressed form 
at the end of compilation. 

A 50-digit record is in location 00418 through 00467, which indicates the 
particular relocatable subroutines to be added to the object program by the 
subroutine relocator program. The digit 1, appearing in an odd position of this 
record, reading from right to left, is interpreted as meaning that the correspond­
ing subroutine is to be included (the 6 relocatable subroutines, and then the 
19 optional subroutines). The order of the indicators is the same as the order 
in which the names of the subroutines are read in during the initialization phase. 

After the object program has been loaded, including the subroutines, if neces­
sary, the multiply-add tables are in locations 00100 through 00399. The arith­
metic and input/output subroutines, together with the work areas they require, 
begin in location 00402. The object program begins at location 08300 (09000 
in the printer-oriented system) and is followed by any relocatable subroutines 
called for by the source program. The symbol table has been loaded and modi­
fied to form a data table. Locations 00051 through 00099 are used for inter­
mediate storage and a product area required by multiply instructions. The fol­
lowing illustration shows the location in storage of all subroutines except FSIN, 

Feos, and FATN. 

Location of Subroutines at Object Time 

W/O Printer With Printer 
Symbolic Storage Storage 

Subroutine Name Location Location 

Floating Add FAD 00518 00518 
Floating Subtract FSB 00408 00408 
Floating Multiply FMP 01378 01378 
Floating Divide FDV 01862 01862 
Reverse Floating Divide FDVR 01756 01756 
Floati ng A **B FAXB 03270 03314 
Floating A**B(-B) FAXBN 04232 04374 
Fixed Add FXA 02644 02688 
Fixed Subtract FXS 02700 02744 
Fixed Multiply FXM 02748 02792 
Fixed Divide FXD 02876 02920 
Load Into FAC TOFAC ·01238 01238 
Store from FAC FMFAC 01306 01306 
Reverse Fixed Divide FXDR 02816 02860 
A**I FAXI 03670 03720 
A **(-1) FAXIN 03622 03672 
Convert Sign RSGN 02546 02590 
Convert:tloat-to-fi x FIX 03494 03538 
Convert: fi x-to-float FLOAT 03222 03266 
Read Card RACD 04512 04654 
Read Tape RAPT 04596 04762 
Read Typewriter RATY 04548 04702 
Write Card WACD 04748 04914 
Write Tape WAPT 04844 05034 
Write Typewriter WATY 04796 04974 
Trace TRACE 05124 05374 

The compiler deck is comprised of two programs separated by a group of cards 
consisting of an object program loader and the number and names of the sub­
routines included. The first program is the initialization phase which reads in the 
object program loader and punches it out into the object deck. This program 
continues by initializing the symbol table area and the area into which source 
statements will be read. Finally, a card containing the number of subroutines 
included, and individual cards containing the names of the subroutines are read 
in and processed. The second of the two compiler programs is then read in and 



General Make-up of the 

Subroutine Deck 

General Make-up of an 

Object Deck 

a halt instruction is executed. The starting instruction for each program is in 
location 00402. After each statement is processed during compilation, the pro­
gram returns to location 00462 to continue. 

The sections of the standard deck, identified by card number, are as follows: 

Card Numbers 

00001 through 00044 
01001 through 01054 
02001 
02002 through 02007 
03001 through last card 

Loading routine and initialization program 
Object program loader 
Number of included subroutines 
Names of included subroutines 
Compiler program 

The first section of the subroutine deck is a loading routine which loads the sub­
routine relocator. The relocator processes the relocatable subroutines which im­
mediately follow it in the deck and finally reads in and processes the arithmetic 
and input/output subroutines (type 1) which are contained in the last section 
of the deck. 

The sections of the standard subroutine deck, identified by their first card, are 
as follows: 

Card Numbers 

04001 
04010 
05000 
06000 
07000 
08000 
09000 
26000 
30000 

Section 

Loading routine 
Subroutine relocator 
SIN /COS subroutine 
ATAN subroutine 
EXP subroutine 
LOG subroutine 
SQRT subroutine 
Relocatable subroutine trailer 
Arithmetic and input/output subroutines 

The first two sections in the object deck have been punched during the initializa­
tionphase and consist of a short loading routine which loads the add tables and 
the program and symbol table loader. The cards following these contain the 
compiled instructions which are concluded by a record containing only the 
constant 00509990 and a communication card. The communication card consists 
of three 5-digit fields, the 50-digit field indicating which subroutines are being 
used, followed by a 5-digit field indicating the memory capacity. When executed, 
the first loading routine branches to the program loader which loads the compiled 
instructions in proper order into storage to form the object program. Following 
this is the symbol table, as it appears at the end of compilation, which is read 
into storage by the program loader. These cards are read into storage by the 
program loader which expands the table to allow for any dimensioned variables 
which were used in the source program. The next section contains any relocated 
subroutines (type 3) which may have been called for, if the subroutines were 
processed when the object program was compiled. 

The last section of the deck contains the arithmetic and input/output sub­
routines, the multiply and add tables, and the instructions which cause the ma­
chine to halt before branching to the start of the object program. 

Analysis of the FORTRAN Program 67 



System Tapes 

General Make-up of 

the Compiler Tape 

General Make-up of the 

Subroutine Tape 

68 

The sections of the object deck, identified by card number, are as follows: 

Card N um bers 

0001 through 0008 
0009 through 0054 
0055 through last card 

Loading routine and add tables 
Program loader 
Compiled instructions 
Communication card 
Symbol table 
Relocated subroutines and arithmetic and 
input/ output subroutines, when required. 

NOTE: When the symbol table is loaded, only constants and statement numbers 
are placed into the data tables. 

Variables computed in a FORTRAN object program are stored in specific 10-digit 
fields in core storage, the addresses of which have been determined in the com­
pilation process. Addresses are assigned in descending order from the highest­
numbered storage location, in the order in which the variables, constants, and 
statement numbers are encountered in the source program. The order of address 
assignment is repeated for each object program compiled. The values computed 
and stored during the execution of an object program are not disturbed by the 
loading of another object program, if the variables have appeared in the second 
source program in exactly the same order as in the first. By this means, for example, 
if an array of variables is computed in an object program, another object program 
may be loaded immediately to use the same computed values in further computa­
tions. The names of the variables used in this way need not be the same from one 
source program to another. 

An involved algebraic calculation might require the use of temporary storage 
fields which are automatically assigned by the compiler. For this reason, variables 
appearing in the same order, but which are defined for the first time in the body 
of different source programs may not be given the same assigned address. Symbol 
table listings at compilation time will disclose any such lack of correspondence. 

The compiler tape consists of two programs separated by a group of records 
which are processed when the tape isread into the 1620. The first program is the 
initialization phase which reads in the first five records on the tape following the 
program itself, and punches them out into the object tape. This program then 
initializes the symbol table area and the area into which source statements will 
be read. Finally, a record containing the number of the subroutines included and 
individual records containing the names of the subroutines are read in and 
processed. The rest of the tape which contains the compiler is then read in and 
a halt instruction is executed. The starting instruction for each program is in 
location 00402. During compilation, after each statement is processed, the pro­
gram returns to location 00462 to continue. 

The first section in the subroutine tape is a loading routine which causes the 
subroutine relocator program which follows it to be read and executed. The 
relocator processes the relocatable subroutines which immediately follow it on 
the tape, and finally reads in and processes the arithmetic and input/output sub­
routines which are contained in the last record on the tape. 



General Make-up of 

an Object Tape 

Making Corrections to 
FORTRAN System Tapes 

Duplicating the Processor 
and Subroutine Tapes 

Description of the Program 

The first five records in the object tape have been punched during the initializa­
tion phase, and contain a short loading routine which loads the multiply-add 
tables and the program loader. The records following are the compiled instruc­
tions which are concluded by a record containing only the constant 00009990. 
The first loading routine branches to the program loader which loads the com­
piled instructions in proper order into storage to form the object program. Im­
mediately following the compiled instructions is a record consisting of three 5-
digit fields and a 50-digit field that indicates which subroutines are being used, 
followed by a 5-digit field that indicates the memory capacity. The symbol table 
follows (punched in 60-character records) as it appears at the end of compila­
tion, and is read into storage by the program loader. The symbol table is ex­
panded as it is loaded to allow for any dimensioned variables which were used in 
the source program. The next section contains any relocatable subroutines (type 
3) which may have been called for when the object program was produced. The 
records following the relocatable subroutines modify a loading routine to read 
in a record containing the arithmetic and input/output subroutines (type 1). 
The last records in the object tape modify the routine to cause it to read in and 
type out the message which calls for the loading of data, and to come to a halt 
before starting the execution of the object program. See the note at the end of 
the description of the general make-up of the object deck. 

The loading routine used to read in the compiler program requires two records 
to load information into storage. The first record is in the form 

LLLLL HHHHH 

where the Ls represent the low position into which the data is to be read, and 
the Hs represent the location immediately following the last location to be used. 
The records following are read into storage in accordance with the addresses 
given. Corrections to the compiler program are preparep in the form required 
by the compiler loading routine, punched in paper tape, and may be inserted in 
the compiler tape by using the following method. -

l. Duplicate the processor tape by means of the special duplicating program, 
then single instruction execute the machine toward the end of the original 
tape until the third record from the end has been read into storage. Re­
move the processor tape from the tape reader. 

2. Mount the correction tape and continue duplication until the last record 
has been read, then remove it from the reader. 

3. Replace the processor tape at the start of the second record from the end 
and complete the duplicating process. 

The duplicated tape will contain the new information desired, and will cause 
the machine to execute the normal halt immediately after loading. 

The purpose of this program is to duplicate the FORTRAN processor and sub­
routine tapes for use on the basic 1620 system (20,000 storage positions), or to 
duplicate and alter the processor tape for use on 1620 systems that utilize addi­
tional memory (40,000 or 60,000 storage positions). Program switches 1 and 2 
control the setup for the tape to be duplicated and also control whether 
alterations are to be made to the tape. -Since the processor tape contains some 
alphabetic records, a special test is incorporated in the duplicating program to 

Analysis of the FORTRAN Program 69 



Operating Procedure 

Error Detection 

70 

reproduce these records as well as the numerical records. The duplication of the 
subroutine tape is entirely numerical. 

Restrictions to this program are as follows: 
1. The maximum permissible record length is 9000. 
2. This program is intended to be used to duplicate FORTRAN processor and 

subroutine tapes only. 

The procedure for using the program is: 

1. Thread the processor and subroutine duplicating tape. 
2. Set the parity and I/O switches to STOP, set the MAR switch, if any, to STOP, 

and the OFLOW switch to PROGRAM. 

3. Press the reset and insert keys. 
4. Insert 36 00000 00300. 
5. Press the release and start keys to load the duplicating program. 
6. Run out the duplicating tape and thread the FORTRAN tape to be dupli­

cated (processor or subro~tine). 
7. Set the parity and I/O switches to PROGRAM, the MAR switch, if any, to 

STOP and the OFLOW switch to PROGRAM.· 

a. For duplicating the processor tape, set program switch ION, and pro­
gram switch 2 OFF. 

b. For duplicating the subroutine tape, set program switch 1 OFF and 
program switch 2 OFF. 

c. For modifying the processor tape for 40,000 or 60,000 storage positions, 
set program switches 1 and 2 ON (not required in printer-oriented 
system ). 

8. Ready the punch. 
9. Press the start key. 

a. If program switch 1 is ON or OFF and 2 is OFF, the tape duplication will 
begin. 

b. If program switches 1 and 2 are ON, the following message will be 
typed after twelve records have been duplicated: 

TYPE SIZE OF MEMORY IN THOUSANDS 

After typing the specified information, press the release and start keys 
and the tape duplication will continue. 

If you have made an error in typing, you may recover in the fol­
lowing manner: turn switch 4 ON, press release and start keys, turn 
switch 4 OFF, re-enter the information. This process may be repeated. 

To duplicate another tape (processor or subroutine), thread the tape, ready 
the punch, press reset and insert, insert 49 00966, and press release and start 
keys. Make certain that program switches are set correctly each tIme you repeat 
the duplication process. 

During the duplication, one or two error messages may be typed out after which 
the machine will halt. 

1. "ERROR 1"- An invalid character has entered the input area. Back the tape 
up to the beginning of the record and press the start key. If the error 
message is repeated, examine the tape for an invalid character. 

2. "ERROR 2"- A machine error has occurred. Back the tape up to the be­
ginning of the record and press the start key. If the program hangs up or 
keeps typing ERROR 2 messages, this indicates that a portion of the pro­
gram may have been destroyed. If this occurs, reload the program and 
restart the duplication process. 



Tape Duplication 

Modification of 
1620 FORTRAN for 
Additional Core Storage 

Modifying the Processor 

The procedure for duplicating the "1620 Program for Duplicating the FORTRAN 

Processor and Subroutine Tape" is: 
1. Thread the FORTRAN processor and subroutine duplicating tape. 
2. Set the parity, I/O, MAR (if any), and OF LOW switch to STOP. 

3. Ready the punch. 
4. Press the reset and insert keys. 
5. Insert 36 00500 00300 

38 00500 00200 
49 00000 

6. Press the release and start keys. 
To duplicate the 1620 FORTRAN-SPS Modification tape: 

1. Thread the FORTRAN-SPS Modification tape. 
2. Proceed as in step 2 above. 

The standard FORTRAN system decks and tapes, as issued, do not require a ma­
chine system containing more than 20,000 positions of core storage. If additional 
core storage is used in the system, the processor tape or deck must be modified 
(except in the printer-oriented system), in which the size of core storage is 
automatically determined by the processor. 1\0 modification of the subroutines 
is necessary. 

In the card system, the two high-order digits of the highest address in storage 
are punched in card columns 25 and 26, of card number 00025 in the processor 
deck. To modify the program for additional storage, duplicate card 00025 with 
the proper digit in column 25. If, for example, the deck is to be used with a 
syste~ in which the highest address is 39999, punch into column 25 the Ragged 
digit 3. 

To modify the tape system, use the 1620 program "Duplicating the Processor 
and Subroutine Tapes." 

Analysis of the FORTRAN Program 71 



Part 5-The FORTRAN Pre-Compiler Program 

The IBM FORTRAN Pre-Compiler is a program that detects and permits correction 
of errors in a FORTRAN source program before the object program is compiled. 
The Pre-Compiler detects many of the more common programming errors in 
individual source statements, and indicates possible logical errors in the source 
program as a whole. 

Two versions of the Pre-Compiler are provided, one for use with the IBM 

1621 Paper Tape Reader and IBM Tape Punch, and the other for the IBM 1622 
Card Read Punch. A FORTRAN source program which is to be processed may be 
punched in paper tape or cards, or may be entered directly from the typewriter. 

The operation of the Pre-Compiler can be divided into two phases: Error 
Analysis and Final Program Summary. 

During the error analysis phase, each statement in the FORTRAN program is 
analyzed for an error. If an error is detected, an error code is typed, the state­
ment containing the error is typed, and the program halts so that you can type 
the statement correctly. During this phase, a new FORTRAN source program can be 
punched in paper tape or cards. After all statements have been analyzed and 
corrected, if desired, a final program summary is typed. 

The final program summary phase includes information about possible 
sources of errors not detectable in individual source statements. 

An additional feature of the Pre-Compiler program, using the 1620 program 
switches, permits you to easily alter the functions of the error analysis phase for 
individual requirements. The following options are available. 

1. You can suspend the halt and error correction routines, thereby providing 
a quick error analysis only. These routines can be suspended for the entire 
program or for individual error halts during normal processing. 

2. You can enter the program through the console typewriter rather than by 
card or paper tape input. 

3. You can eliminate punching of an edited source program. 

4. You can have correct program statements typed, in addition to the normal 
operation in which only incorrect statements are typed. 

The standard 1620 FORTRAN Pre-Compiler system contains all of the functional 
subroutine names included in the standard FORTRAN system. If you make altera­
tions to the functional names, or if you add additional subroutines to the FORTRAN 

system, you must make the corresponding alterations and additions to the Pre­
Compiler system. 

Operation of the Pre-Compiler Program 

Error Codes 

72 

Before you process any program on the Pre-Compiler, you should be familiar with 
the nature of the errors that the program is deSigned to detect. 

During the error analysis phase of the program, each statement is analyzed for 
one or more specific errors. These errors consist of 51 of the most common errors 
usually found in FORTRAN source programs. As an aid in evaluating these errors, 
they have been grouped into seven categories: 

Arithmetic statements 



Arithmetic Statements 

Variables in Arithmetic 
Expressions 

DO Loops 

Constants 

Variables in arithmetic statements 
DO loops 
Constants 
Statement numbers 
Transfer statements 
G~neral 

When an error is detected, an error code is typed on the console typewriter. 
This code consists of an alphabetic abbreviation of one of the categories listed 
above, followed by a number that designates the particular error in the category. 

ARITH 

1. Unacceptable form to left of == sign. 
2. Multiple == signs. 
3. This code has been deleted. 
4. Successive operation symbols, or a function which is followed by an opera-

tion symbol. 
5. Missing operation symbol or operand. 
6. Right parenthesis encountered before corresponding left parenthesis. 
7. Missing right parenthesis. 
8. Mixed mode expression (expression contains fixed and floating point). 
9. No variable to the left of equal sign. 

10. Involution of a fixed point variable or constant. 

VAR 

1. Variable name longer than 5 alphameric characters. 
2. Variable appearing in an expression or as a subscript not previously de­

fined in an input statement; as the index of a DO loop; or defined as the 
left side of another arithmetic statement. 

3. Variable written with a subscript has not been previously defined in a 
DIMENSION statement. 

4. Variable previously defined in a DIMENSION statement has not been sub­
scripted correctly: subscript is in unacceptable form, number of sub­
scripts does not agree with the number specified in DIMENSION statement, 
numerical subscript is greater than maximum allowed by DIMENSION state­
ment or is less than 1. 

DO 

1. In the statement DO n i == m], m 2 , m,J, the indices m}, m 2 , and m.l , if given, 
are not all unsigned fixed point variables or constants greater than zero. 
There are more than 3 indices given. 

2. The second index, m2 , is less than mJ, when botq are constants. 
3. The third index, m.l , is signed, is zero, or is missing when specified as a 

constant. 
4. The statement number n is not in acceptable form or is missing. 
5. The variable name has either been omitted, or is incorrectly stated, or the 

DO statement is incorrect. 
6. The statement specified as the end of an outer loop in a nest of DO'S has 

been found before an inner loop is complete. 
7. A DO loop terminates with a transfer statement, GO TO, computed GO TO, 

or IF. 

CONST 

1. Fixed point constant longer than 4 digits. 
2. Floating point constant outside the allowable range. 
3. Decimal point omitted from floating point constant that is written with a 

decimal exponent. 

The FORTRAN Pre-Compiler Program 73 



Statement Numbers 

Transfer Statements 

General 

74 

4. The decimal exponent following the E in a floating point constant is in­
correctly expressed in form or size. 

5. The exponent following an E has been omitted. 
6. Floating point number followed by an alphabetic character other than E. 

STNO 

1. Statement number longer than 4 digits. 
2. Statement number has been previously defined. 
3. Unnumbered CONTINUE statement. (Should be numbered when used as 

last statement in a DO loop.) 
4. Statement immediately following a transfer statement is not numbered, 

and is therefore inaccessible to the source program. (If the previous state­
ment is a transfer, the only way the program can process this statement 
is by a transfer to it, and therefore it must always be numbered.) 

TRANS 

1. Statement numbers in a transfer statement (GO TO, computed GO TO, or 
IF) are not acceptable fixed point numbers; there is no comma between 
statement numbers, or there is not the required number of statement 
numbers. 

2. 
3. 

4. 
5. 

6. 

1. 
2. 
3. 
4. 
5. 
6. 

Comma missing after the right parenthesis in a computed GO TO statement. 
Index in a computed GO TO statement is not a fixed point variable, or is 
missing. 
Nonnumerical character follows right parenthesis in an IF statement. 
In an IF statement, a character other than a left parenthesis follows the 
word IF. 

No arithmetic statement within the parentheses after the IF. (However, 
empty parentheses in an arithmetic statement will not be detected.) 

GEN 

Misspelled or unacceptable nonarithmetic statement. 
Statement contains an unacceptable character. 
More than 72 characters in statement (not applicable to cards). 
Symbol table full (occupies more than 2,500 digits in storage). 
Statement contains decimal point that is not in a floating point constant. 
Input/output statement contains no FORMAT number, or is incorrectly 
stated. 

7. First character in an input/ouput list is not alphabetic, or the final char­
acter is not a letter or a digit. 

8. In a DIMENSION statement, a nonalphabetic character precedes the first 
variable name or a dimension, or three dimensions have been specified 
( only two-dimensional arrays are permitted). 

9. A specified dimension is incorrect: a parenthesis has been omitted, a 
floating point constant or an unacceptable fixed point constant has been 
used, etc. 

10. Unnumbered FORMAT statement. 
11. Incomplete FORMAT statement: invalid or incorrect specification, missing 

parentheses, character after right parenthesis, etc. 
12. In an input/output statement, comma is missing after the FORMAT state-

ment number, or the list is missing or invalid. 
13. The total record width specified in a FORMAT statement exceeds 87. 
14. A variable in a DIMENSION statement has been previously defined. 
15. a. The letter H orX is missingin an alphameric FORMAT statement or the 

width of an alphameric FORMAT statement is greater than 49. 
b. A FORMAT statement does not contain any of the specification types, I, 

H, X, E, or F. 



Error Analysis Phase 

Restart Procedure 

Final Program Summary 

After an error has been deteced in a statement, and the appropriate error code 
has been typed, the original error statement is typed. If switch 3 is off, the car­
riage is returned and the program halts to wait for a corrected statement to be 
typed in. After reviewing the erroneous statement and the error code or codes 
indicated, you can, in most cases, make an immediate correction to the statement. 
Type the correct statement (followed by a record mark), then press the release 
and. start keys. The program resumes by analyzing the statement just typed to 
determine if any errors still exist. If the statement is correct, the program will 
begin analyzing the next statement in the FORTRAN program. 

In some cases, it may not be possible to re-enter a corrected statement with­
out certain modifications because part of the statement has already been proc­
essed as a correct statement. For example, if an error is discovered in a transfer 
statement (GO TO), you must enter the correct statement with a statement num­
ber to avoid error STNO 4, or enter it twice without a statement number. (The 
program considers the first part of the GO TO to be correct, and requires that any 
statement following a transfer statement must contain a statement number). 

When a statement containing a statement number is partially processed due 
to an error, you cannot re-enter the statement with the statement number be­
cause an error STNO 2 will result. 

In an erroneous DIMENSION statement, for example DIMENSION C ( N ), the C 
is stored as a nonsubscripted variable and cannot be used later in the program 
as a subscripted variable. In case of C( 10,N), the C is stored as a one-di­
mensioned variable. Restart of the Pre-Compiler is necessary. 

For expressions involving involution (raising to a power), the exponent 
cannot have an involution operation. For example, A * * (B * * 2. +.1) will result 
in erroneous operation of the Pre-Compiler. This restriction also applies to the 
arithmetic expression in an IF statement. 

There is no check for the termination of a DO loop. If a dimension specifica­
tion exceeds the capacity of the storage, erroneous results will follow. 

If an immediate correction cannot be made, you can resume testing of the 
next statement by manually branching to BEGIN (see RESTART PROCEDURES). 

It is important to note that if a new source program is being punched, by­
passing the error correction routine will result in the incorrect statement being 
punched into the output tape or cards. 

The normal operation of the Pre-Compiler program is to type incorrect 
statements only. If you require a typed copy of all statements, turn on program 
switch 1. 

You may find it necessary during processing to interrupt the normal operation 
of the program. To allow such interruptions, the following re-entry points, given 
by symbolic label and storage location, are available: 

CLEAR location 01208: The symbol table and table of statement numbers 
referenced by DO statements are cleared. CLEAR is the restart point for a 
new program to be tested. 

INITL location 01340: The table of statement numbers referenced by 
DO statements is cleared. 

BEGIN location 01472: No tables are cleared, but the program will con­
tinue to read source program statements. BEGIN is the normal entry 
point for restarting after a check stop or other interruptions of the 
Pre-Compiler. 

After the END statement in a source program has been processed by the Pre­
Compiler program, a final program summary is typed on the console typewriter. 

The FORTRAN Pre-Compiler Program 75 



Interpretation of Detected 
Errors 

76 

The summary includes information about possible sources of error not detectable 
in individual source statements, and is in the form of fbur alphabetic messages 
together with related lists, as follows: 

UNDEFINED STATEMENT NUMBERS 
nnnn 
n n nn ... 

The numbers listed are those which have not been used for statement identifica­
tion but have been referenced by transfer or DO statements. 

UNREFERENCED STATEMENT NUMBERS 
nnnn 
n n n n ... 

The numbers listed are those which have been used for statement identification 
but have not been referenced by transfer or DO statements. These numbers are 
not necessary to the compilation of the source program and may be eliminated. 

RELOCATABLE SUBROUTINES CALLED 

LOG 
SIN 
EXP 
SQRT 

The names listed are those of the functional subroutines used in the source 
program. 

OBJECT PROGRAM DATA TABLE 
XXX XX STORAGE POSITIONS 

The number of storage positions given includes those used for variables, con­
stants, and statement numbers, but not the total number of storage positions that 
will be required in the FORTRAN object program, since this depends upon the 
number of machine instructions produced when the source program is compiled. 

Premature typing of the summary indicates that the END statement appears 
earlier than anticipated in the source program. Conversely, if the END statement 
has been omitted, the summary will not be typed. 

If statement number 999 is used it will cause errors in the final program 
summary. However, no damage will be done to the Pre-Compiler. 

An expression may appear so ambiguous to the Pre-Compiler program that any 
of several possible errors might be detected. For example in the expression 

ABE(C+D) 

. if ABE is not the name of a function, and has not been defined previously in the 
program, it might be regarded as a subscripted variable name with subscripts 
written in an unacceptable form. When the name ABE has been defined as a non­
subscripted variable, however, the obvious error is that of omission of an opera­
tion symbol. 

Conditions which might possibly lead to error have been assigned error 
codes or are noted in the final summary. The fact that a statement is indicated 



Program Switch Settings 

to be in error does not necessarily mean that the source program cannot be com­
piled correctly or that the object program cannot be successfully run. Conversely, 
a source program which has been processed by the Pre-Compiler and found free 
of error might have certain undetectable mistakes in logic, or be too large for 
the particular 1620 system in use. 

The 1620 FORTRAN Pre-Compiler cannot determine the intent of your pro­
gram. Even though no errors are present in individual source statements, YOll 

should examine the final program summary to determine if any logical errors in 
the flow of the source program still remain to be corrected. 

The possible settings for the program switches are shown below 

Print On Punch Edited 
Input Typewriter Source Program SW 1 S\V :2 SW 4 

Cards/Tape Yes Yes On On On 
Cards/Tape Yes No On Off On 
Cards/Tape No Yes On On Off 
Cards/Tape No No On Off Off 
Typewriter No Yes Off On On/Off 
Typewriter No No Off Off On/Off 

Switch 3 has the following function: 
On - Error correction routines are bypassed. 
Off - Error correction routines are not bypassed. 

NOTE: Switch 4 is normally off during typewriter input. When you make an error 
in typing either an original or a corrected source statement, turn this switch 
on, press the release and start keys, and return the switch to its normal OFF 
position. You must then retype the entire statement. 

Processing with the Pre-Compiler Program 

Loading the Program­
Card Deck 

Loading the Program­
Tape File 

The sequence of operations required to load the program card deck is as follows: 
1. Clear core storage to zeros. A suggested method for clearing to zero is to: 

a. Press the reset key. 
b. Press the insert key. 
c. Type the instruction 16 00010 00000. 
d. Press the release key. 
e. Press the start key. 
f. When all storage position have been cleared, press the instant stop key. 

2. Set the console program switches for the input/output option you want. 
3. Set the overflow check switch to PROGRAM and all other check switches to 

STOP. 
4. Press the reset key. 
5. Place the deck in the read hopper and press the load key. 
The cards comprising the FORTRAN Pre-Compiler deck are punched with 

sequence numbers in columns 76 through 80 and the deck must be loaded in 
sequence. 

The sequence of operations required to load the program tape is as follows: 
1. Clear core storage to zeros, set the console program, and check switches 

as in steps 1, 2, and 3, just given. 

The FORTRAN Pre-Compiler Program 77 



Processing the Source 
Program 

General Make-up of 
Program Deck 

78 

2. Mount the program tape. 
3. Press the reset key. 
4. Press the insert key. 
5. Type the instruction 36 00000 00300. 
6. Press the release key. 
7. Press the start key. 

After the Pre-Compiler has been successfully loaded, the following instructions 
will be typed on the console typewriter: 

ENTER SOURCE PROGRAM 
THEN PUSH START 

and the program will halt. Set the console program switches for the correct 
input I output options, mount the source tape or load the source deck, and begin 
processing by pressing the start key. 

After the END statement in a source program has been processed, the final 
program summary will be typed on the console typewriter. This will consist of 
the following four messages, together with the related lists of statement numbers 
and relocatable subroutines called by name in the source program. 

UNDEFINED STATEMENT NUMBERS 

UNREFERENCED STATEMENT NUMBERS 

RELOCATABLE SUBROUTINES CALLED 

OBJECT PROGRAM DATA TABLE 

XXXXX STORAGE POSITIONS 

The absence of one of the first three messages indicates that no undefined or 
unreferenced statement numbers have been found, or that no relocatable sub­
routines have been used by name in the source program. Undefined statement 
numbers are those referenced by a transfer, DO or Ilo statement, but not defined. 

After the final summary has been typed, the following message will be typed 
on the console typewriter and the program will halt. 

PROCESSING COMPLETE 

Pressing the start key causes the program to clear the symbol table compiled 
during the processing of the previous source program and to prepare to process a 
new program. When this has been done, the program will type the message 
which calls for the entry of the source program. 

The 1620 FORTRAN Pre-Compiler program deck is made up of four sections, 
identifiable by sequence number as follows: 

00000-00001 Loading routine 
00002-00361 Pre-Compiler program 
00362-00367 Arithmetic tables 
02001-02007 Relocatable subroutine data 

The relocatable subroutine data consists of a card containing the number of 
relocatable subroutines included in the program deck, and the following cards 
contain the names of these subroutines. These cards must be in the proper se­
quence. If they are out of sequence, an error message will be typed and the 1620 
will halt. Restore the sequence of these cards (including the two cards from the 
reader stacker), press the reader start and start keys to continue the operation. 



General Make-up of 
Program Tape 

Tape Data 

Duplicating the 

Pre-Compiler Tape 

The relocatable subroutine cards are punched with the function name start­
ing in column 1 and the sequence number in columns 76 through 80. Subroutine 
names added to the system must be punched in the same manner. 

The 1620 FORTRAN Pre-Compiler tape consists of a loading routine which loads 
the multiply and add tables, and the program which follows. The last seven 
records are the relocatable subroutine data containing the number and names 
of the relocatable subroutines included in the program. These records must be 
exact duplicates of the corresponding records which are included in the 1620 
FORTRAN processor tape. Additions to the list of relocatable subroutines in the 
system must be made to the Pre-Compiler tape in exactly the same form as pre­
scribed for the 1620 FORTRAN processor tape. 

For the purpose of tape identification, a title and data message have been incor­
porated in the 1620 FORTRAN Pre-Compiler tape. The first two records of the tape 
contain the title and data information. After these records have been read into 
the 1620, the following message will be typed: 

1620 FORTRAN PRECOMPILER 11/15/61 

Normal processing continues after the message has been typed. 

The FORTRAN Pre-Compiler tape may be duplicated and/or modified by the use 
of the program for duplicating the FORTRAN processor and subroutine tapes, in 
the manner described for duplicating the processor tape. 

The FORTRAN Pre-Compiler Program 79 



Appendix A - Summary of 1620 FORTRAN Statements 

ACCEPT Format: 

Purpose: 

Example: 

ACCEPT TAPE Format: 

Purpose: 

Example: 

CONTINUE Format: 

Purpose: 

Example: 

DIMENSION Format: 

Purpose: 

Example: 

DO Format: 

Purpose: 

Example: 

80 

«ACCEPT n, List" 
where n is the statement number of a FORMAT statement and List, 
is a list of the quantities to be typed. 

This statement causes the program to read information from the 
console typewriter in accordance with FORMAT statement n and to 
transmit this information into core storage as the values of the vari­
ables in the list. 

ACCEPT 30, A, B, C, D ( 3 ) 

«ACCEPT TAPE n, List" 
where n is the statement number of a FORMAT statement and List 
is a list of the quantities to be entered. 

This statement causes the program to read data from the tape 
reader and transmit this data into core storage as the values of the 
variables in the list. 

ACCEPT TAPE 48, K, A(J) 

«CONTINUE" 

This statement is used as the last statement in the range of a DO 

when the DO would otherwise end with an IF or GO TO statement. 

CONTINUE 

«DIMENSION v(d), v(d, d), v(d)" . .. for one- and two-dimensional 
arrays. 

where each v is the name of a variable followed by parentheses en­
closing one or two consta:p.ts, d represents the number of elements 
in each dimension of the array. 

The DIMENSION statement provides information for the processor 
necessary for the allocation of storage in the object program for 
the elements of arrays of quantities. 

DIMENSION A(10), B(10,5) 

«DO n i = m}, mz, mt 
where n is a statement number, i a fixed point variable, and mJ, mz, 

and ms can be either a fixed point constant or a fixed point vari­
able. 

Subscripts and sign indication are not permitted in a DO statement. 
If ms is not stated, it is taken to be 1. 

The commas are required punctuation. 

The DO statement simplifies the programming of loops and provides 
greater flexibility in looping. 

DO 20 JBNO = 1, 10 



END Format: 

Purpose: 

Example: 

FORMAT Format: 

Purpose: 

Example: 

GO TO Format: 

Purpose: 

Example: 

Computed GO TO Format: 

Purpose: 

Example: 

IF Format: 

Purpose: 

Example: 

IF (SENSE SWITCH) Format: 

Purpose: 

Example: 

PAUSE Format: 

Purpose: 

Example: 

"END" 

The END statement is a signal to the compiler that the end of the 
source program has been reached. 

END 

"FORMAT (s), Sz, S.I, ••• , Sn)" 

where S}, Sz, Ss, and Sn are specifications. 

This statement describes the type of conversion and format of data 
to be used in the transmission of input/output lists. 

2 FORMAT (I2/F10.4,E12.4) 

"GO TO n" 

where n is a statement number. 

This statement interrupts the sequential execution of statements; it 
specifies the number of the next statement to be performed. 

GO TO 30 

"GO TO (n), nz, ... , nm), i" 
where nJ, nz, ... , nm are statement numbers and i is a fixed point 
variable. The variable may not be subscripted. 

The computed GO TO statement transfers the program to the 1st, 
2nd, etc., statement number in the list depending upon whether the 
value of i is 1, 2, . . . , etc. 

GO TO (3,4,6), L 

"IF (a) nI, nz, n./' 
where a is an expression and n}, nz, and n.1 are statement numbers. 

The IF statement transfers the program to a particular statement 
depending upon the value of an expression. 

IF (A-B) 10,5,7 

"IF (SENSE SWITCH i) nJ, nz" 
where i is the number of one of the console program switches, and 
n} and nz are statement numbers. 

This statement transfers the program to a particular statement de­
pending upon the setting of anyone of the four console program 
switches. 

IF (SENSE SWITCH 3) 14, 50 

"PAUSE" 

The PAUSE statement is used as a convenient means of causing the 
object program to halt temporarily. Pressing the start switch causes 
the program to resume with the statement following the PAUSE 

statement. 

PAUSE 

Appendix A 81 



PRINT Format: 

Purpose: 

Example: 

PUNCH Format: 

Purpose: 

Example: 

PUNCH TAPE Format: 

Purpose: 

Example: 

READ Format: 

Purpose: 

Example: 

TYPE Format: 

Purpose: 

Example: 

STOP Format: 

Purpose: 

Example: 

82 

«PRINT n List" 
where n is the statement number of a FORMAT statement and List 
is a list of the quantities to be printed. 

This statement causes the quantities in the list to be printed on the 
1443 Printer in accordance with the FORMAT statement n. 

PRINT 4, A, B, C 

"PUNCH n, List" 
where n is the statement number of a FORMAT statement and List 
is a list of the quantities to be punched. 

This statement causes the items in the list to be punched in cards in 
the format specified by the statement n. 

PUN''cH 1, A, D, C 

"PUNCH TAPE n, List" 
where n is the statement number of a FORMAT statement and List 
is a list of the quantities to be punched. 

This statement causes the items in the list to be punched into paper 
tape in the format specified by statement number n. 

PUNCH TAPE 4, A, B, C 

"READ n, List" 
where n is the statement number of a FORMAT statement and List 
is a list of the quantities to be transmitted. 

This statement causes data to be read from a card in the 1622 Card 
Read Punch. 

READ 4, A, B, C 

"TYPE n, List" 

where n is the statement number of a FORMAT statement and List 
is a list of the quantities to be typed. 

This statement causes the quantities in the list to be typed on the 
typewriter in accordance with FORMAT statement n. 

TYPE 4, A, B, C 

"STOP" 

This statement causes the computer to halt during the execution 
of the object program, return the typewriter carriage, and type the 
word "STOP." 

STOP 



Appendix B - Summary of 1620 Operating Principles 

Typewriter Input 

The typewriter IS part of the 1620 console and is used 
for both input and output. 

Input 

The typewriter is used to enter both data and instruc­
tions direc tly into cor storage. Press ing the console 
insert key unlocks the keyboard and permits data to be 
ent red into core storage starting at location 00000. 
Each depression of a typewriter key enters the char­
acter into core storage one location higher than the 
previous character. As many as 100 characters can be 
entered from the typewriter. After the 100th character 
is entered, an automatic release is initiated and the 
machine returns to manual mode. 

Figure 1. IBM 1620 I/O Typewriter 

When I ss than 100 characters are entered, entry of 
the last desired character should be followed by press­
ing the console release and start keys, or by pressing 
th R-S key on the typewriter keyboard. The R-S key 
combines the release and start functions of the console 
keys. The R-S symbol is typed as a permanent record 
tha t the R-S key has been used. 

Programmed selection of the typewriter unlocks the 
keyboard and leaves the computer in automatic mode 
for manual entry of data on the typewriter. Data entry 
starts at the addressed location ( P address) of the in­
struction and enters core storage at successively hi gher­
order positions until the release key is depressed. 

If a record mark is required in core storage followin g 
the last character entered, the record mark key on the 
typewriter mllst be pressed befor press ing the release 
key on the console. 

Appendix B 83 



Pressing the console release key relocks the keyboard 
and gives the computer an end-of-I/o indication. No 
record mark is entered into core storage by pressing 
the release key. 

Output 

The typewriter prints data from core storage when 
programmed to do so. When the right-hand margin 
is reached, the carriage returns automatically and typ­
ing continues until a record mark is sensed or until the 
release key is pressed. 

Manual Adjustments to Typewriter 

(1) Impression Indicator. To determine the force 
with which the type bars strike the paper, posi­
tion the lever under this window for settings 
from 0 to 10. The higher the indicator setting, 
the harder the type bars strike. 

(2) Tab Clear Lever. To clear tab stops, tabulate to 
the point to be cleared and press the clear lever. 
To clear all stops at once, position the carriage 
at the right margin, hold down the clear lever, 
and return the carriage to the left margin stop. 

(3) Tab Set Lever. To set tabular stops, move the 
carriage to the desired position and press the 
set lever. Set tab stops only when the indicator 
pointer is in line with a white marking on the 
front paper scale below it. 

( 4) Carriage Release Lever. Press the lever on either 
side to free the carriage then manually move the 
carriage to the right or left. 

(5) Paper Release Lever. To free the paper for posi­
tioning or quick removal, move this lever 
forward. 

( 6) Line Space Lever. Moved to position 1, 2, or 3, 
the line space lever provides for single, double, 
or triple line spacing, respectively. 

( 7) Multiple Copy Control. This lever moves the 
platen backward to compensate for the greater 
thickness of additional copies. As a general rule 
the lever should be set at "A" for one to three 
copies and moved back one position for each 
additional three to five copies. 

(8) Left-Hand Margin Set. The left margin stop is 
set as follows: 

l. Return the carriage to the present left mar­
gin stop. 

2. Press the margin set key. 
3. Manually move the carriage as near as 

possible to the position desired. The back­
space key and space bar are convenient to 
use to obtain the exact position desired, 
with the margin set key depressed. 

4. Release the margin set key. 

(9) Right-Hand Margin Set. The right margin stop 
is set as follows: 

l. Move the carriage to the left until stopped 
by the right margin stop. 

2. Press the margin set key. 
3. Move the carriage right or left to the de­

sired position. 
4. Release the margin set key. 

Paper Tape Input 
Data is punched and read as holes in a 1-inch-wide chad 
paper tape (in chad paper tape the holes are completely 
punched out) at a density of ten characters to the inch. 
Eight-track paper tape code is used. Seven positions, or 
tracks, across the width of the tape, are used for the 
coding of numerical, alphabetic, and special characters. 
One track is used for .EOL (end-of-line) characters. 
Figure 2 represents a section of paper tape, ~hich illus­
trates the eight tracks and all coded characters . 

...J 
TRACKS ~ABCDEFGHIJKLMNOPQRSTUVWXYZI234567890· • • , : + - b ~ I 

EOL­
x--
0-­

CHECK-
8--

FEED-
4--
2----
1--

••• ••• ••• .. -••• ••• ••• .. -

•• •• •• •• .~ • • •• •• •• •• • • •• •• • •• • • • • • • • • • • • • 
·1- •• •• •• •• • • ,- • •• ,. 

Figure 2. Paper Tape Tracks and Codes 

84 

•• • • •• •• • • • • •• • • • • • • •• •• •• •• •• • • • • 

• .i: -i· • • • •• •• I:· • • •• • • • • • I.· • • • • •• .1· •• I-I. •• I.· • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •• • • • • • •• • • I:i: •• • • •• I-i: ,: • ·1·· • ,- 1·1· ,- I- ,- • • • • 



Tape Punch 

The tape punch (Figure 3), housed below the tape 
reader in the IS <[ 1621, punches data from core storage 
into paper tape at the rate of 15 characters per second. 
The characters are sent serially from core storage 
starting with the location addressed by an output in­
struction. Each character i translated to 8-track code 
before being punched. 

If a character with incorrect parity is transmitted 
from core storage and punched, or if a valid character 
is incorrectly punched, the tape feed does not advance. 
The computer stops in both the automatic and manual 
mode; the automatic and manual lights and the punch 
no feed and write check lights on the 1620 console are 
turned on. Functions of these lights are described under 
o SOLE. Program processing can be resumed with the 

following procedure: 

Figure 3. IBM Tape Punch 

1. Position t~e tape feed switch ON. 

a. The feed code (all punches) is punched over 
the incorrect character. 

b. The plillch no feed and write check lights are 
turned off. 

c. The machine is returned to manual mode only. 

2. Press the start key on the 1620 console. 
a. The original character from storage is again 

punched. If an incorrect character still persists, 
the record may be corrected, if desired, before 
processing continues. 

b. The computer continues processing. 

If the tape punch runs out of paper tape, the machine 
stops in automatic mode and the punch no feed light 
turns on. The "character correction procedure" out­
lined is used to resume operation. 

Appendix B 85 



Loading the Tape Punch 

Place the roll of unpunch d tape on the turntable and 
thread as shown in Figure 3. The tape retainer ( F ) 
must be rotated to the left by pushing back on its 
extended left edge. This moves the tape lever ( D ) 
forward to facilitate threading. An unwound section of 
tape is then thr ad d as follows : 

1. Through tape guide ( A). 

2. Inside tape guid (B ). 

3. In front of tape t nsion gUide (C ). 
4. In back of tape lever ( D ). 

5. Betw en the punching mechanism and the punch 
guide block (E ), which can b s en in front of 
the tape. 

6. Between the guides on the tape retainer ( F ) . \ \ i th 
the nd of the tap h ld to the I ft , the tapc 
retainer ( F ) is returned to normal position, which 
causes the pins on th feed roll to pi erce through 
the blank tape. The tape lever simultan ollsly re­
turns to normal position with th top guide above 
the tape. 

FigtITc 4. IIJ~I 1621 Tape Loading Arca 

86 

The tape feed k is used to rep titively punch auto­
matic fe d punches and to prOVide a leader section of 
paper tap. pproximately 60" of I ader is n eded for 
threading paper tap on the 1621 and can be obtain d 
from the tap punch in 40 seconds. The leader is 
threaded into the tapc punch take-up reel so that the 
top edge of the tapc is at the outside of the reel. 

1621 Paper Tape Reader 

The paper tape reader reads coded alphameric charac­
ters from 8-b'ack paper tape at the rate of 150 characters 
per second. Th characters ar photo lectronically 
sensed and placed in core storaa . If a parity error is 
sensed, the read check indicator (console pan I) is 
turn d on. The computer remains in automatic mode 
and continue to read until the nd-of-record indication 
(a hoI in the EOL channel ) is reached. Whether the 
comput I' stops, d pends upon the setting ot the I / O 

check switch. Th end-of-record signal causes a record 
mark to be placed in cor storage as the rightmost di git 
of th input record. 



Loading the Paper Tape Reader 

Paper tape can be handled in two forms. The proce­
dures for loading each fonn vary slightly. The names 
of machine components us d in th following de 'crip­
tions of loading procedures are given in Figur 4. 

CENTER ROLL FEED 

The cent 1'1'011 feed Hminates the nec s ity for I' wind­
ing paper tape rolls which would expose the starting 
end of the tape on the outsid of th tap roll. Figure 
5 shows that tape is suppli d from the inside of the 
center roll fe d, to the supply reel around th I' - ad 
head, and onto the take-up I' el. 

Th proc dure for loading pap I' tape from th center 
roll fe d is as follows : 

1. Position the reel strip switch to REEL. 

2. Place the reel buffer arms in th upp I' latched 
po itions. 

3. Op n thc tape guid s and form an inverted 
with th c nter ection of th first eight Fe' t of 

Figure 5. Center Roll Feed Loaded 

paper tap . Wrap the paper tape around th read 
head wi th suffici nt tension to keep the runout and 
tape tension contacts closed. Start on the tak -up 
r I sid of the read h ad. Run a finger up over the 
tape on top of the read head, moothing the tape 
down with a firm , mod rate pre sure so that the 
tape tension bar is slightly depr sed and th 
right sid of the feed pinwheel engages the tap 
f d hoI s. Be careful not to tear the feed hoi s. 
The tap feed hal s must mesh with both sid s 
of the pinwl el. 

4. Clos the tape guides. 
5. Thread th l ading s ction of paper tape under 

the guid roll r, between the stationary buff r 
rollers and buffer arm roll rs, and onto th take-up 
reel, as shown in Figure 5. 

6. Thread th paper tap from th right ide of the 
r ad h ad under the guide roller, b tween th 
stationarv buff r rollers and buffer arm rollers, 
o r th . supply r el ( the rubber drive hub must 

Appendix B 87 



be installed ), around the tape guide stand, and 
around the tape reel nylon roll. 

7. Lower th idl r roller onto the supply r I. 
8. Lower the buffer arm gently. 
9. Press the reel power key. The buffer aTms should 

swing down to a neutral po ition, applying tension 
to the paper tape. 

NOTE : The roll of paper tape must be po itioned cen­
trally, or evenly, around the center rollers to prevent 
excessive vibration during reading. 

REEL 

A reel of paper tape may be r ad on the 1621 b remov­
ing the rubber drive hub from the upply reel and by 
mounting the re I of tap in its place. The tap IS 

threaded from the right-hand side of the reel directly 
to the stationary buffer rollers, and then to the take-up 
reel as described under CE ' TER ROLL FEED. Figure 6 
shows a reel of tape thread d on th 1621. 

Figure 6. Paper Tape Reel Loaded 

88 

Operating Switches and Lights 

The following switche and lights are used in the 
operation of the 1621. 

Powe.,. Switch. With this switch on all necessary power 
for operation of the 1621 i ' upplied by the 1620. 

Reel Strip Sw itch. In reel mode, tape is fed from the 
supply reel then to the left· onto the tak -up reel. 

Reel Power Key. Pressing this key operate the supply 
and take-up reels to position the paper tap for read­
ing and to place the machine in ready statu . 

onrJrocess Runout Key . Pressing this key causes paper 
tape to fe d. Ready status i terminated and all data 
tran fer is block d until all paper tape has pa sed. 
Paper tape must be reloaded and the reel power key 
pressed before the machine can be r turned to read 
status. 

Power On Light. This light 0 r indicates that power i ' 

supplied from the 1620. 



Card Input 

1622 Card Read Punch 

The IBM 1622 Card Read Punch (Figure 7) provides 
punched card input and output for the IBM 1620 Data 
Processing System. The reader and punch feeds are 
separate and functionally independent, with individual 
switches, lights, checking circuits, buffer storage, and 
instruction codes. Under program control, up to 250 
cards per minute can be read and 125 punched. Read­
ing, punching, and processing can occur Simultaneously 
because of individual buffer storage. Buffer storage data 
is transferred in 3.4 milliseconds; the remainder of the 
reader and punch feed cycle time is available for 
processing. 

As shown in Figure 8, cards are fed from the read 
hopper on the right and the punch hopper on the left. 
Each hopper has a capacity of 1,200 cards. Both feeds 
have misfeeding and jam detection, and a select and 
nons elect stacker. The 1,000-card-capacity stackers are 
of the radial type: the cards are stacked on end to 
permit their removal while the 1622 is running. 

CARD READER AND PUNCH DRIVE MOTORS 

If either the read or punch feed is not used for approxi­
mately one minute, the drive motor for that feed is 
turned off to reduce noise and wear. However, the 1622 
is still in ready status and will respond to a read or 
write command. 

Card Read 

Cards are fed 9-edge first, face down, past two reading 
stations, check and read. Input buffer storage is initially 

POWER PUNCH 
READY CHECK 

PUNCH CHIP ~ STOP II CHECK 
READY RESET 

FUSE 
TRANS-

loaded with 80 columns of card data during the start 
key or load key run-in operation. Thereafter, each card 
feed cycle is under program control. 

Card Punch 

Cards are fed 12-edge first, face down, past the punch 
and check stations. 

Operator Keys and Lights 

The card reader and card punch have separate keys and 
lights (see Figures 7 and 8). 

CARD READER 

Reader On/OfJ Switch. The reader on/off switch is 
used to supply power to the reader and to turn on the 
power ready light. The 1620 power on/off switch must 
be on to make the 1622 reader on/off switch active. 

Load Key. The load key causes data from the first 
card to be checked, read into buffer storage, and auto­
matically transferred in numerical mode to core storage 
positions 00000 through 00079. Upon completion of this 
data transfer, another card feed cycle occurs which 
loads buffer storage with data from the second card. 
The 1620 then simulates release and program start at 
00000. The instructions from the first card, now in 
00000 through 00079, can be used to continue loading 
the program or to begin processing. The 1620 must be 
reset and in manual mode to make the load key oper­
ate correctly. 

Start Key. The start key is used (1) to run in cards, 
which are then placed under program control (data 
from the first card is checked and loaded in input buffer 
storage); (2) to set up a runout condition, which per­
mits programmed reading of the cards remaining in the 

READER POWER 
CHECK READY 

LOAD II STOP II II START II READER 
READY 

STACKER THERMAL PORT 
KEYS AND LIGHTS 

i 
PUNCH I READER 

PUNCH PUNCH CHECK I READ CHECK 
READER STATION STATION STATION STATION 

HOPPER I 
~ 

HOPPER 

~ ~mCT I 

SELECT I 
0

ATION ! STATION P 

PUNCH PUNCH READ READ 0 G 
NON- ERROR NOT USED ERROR NON-

SELECT SELECT SELECT SELECT 

CARD READER AND PUNCH STACKERS 

Figure 7. Schematic Diagram of 1622 Keys, Lights, and Card Feeds 

AppendiX B 89 



Figur 8. 111M 1622 a rc! H ad Punch 

fe d when the hopper has becomc mpty ' and (3) to 
res tore l' ady status after the read l' has b en stopped 
by ith l' the stop k y an empt hopper, an error, a 
misfeed, or a h'ansport jam. 

Stop Key. The stop k y is u ed to stop the read fe d 
at the nd of the card cycle in progre s and / or to l' -

move the read I' from read statu. Data that is enter d 
into buffer storage during the read cycle in progress 
is h'ansferr d to core storag . The comput I' continu s 
processing until th next read ard command cause 
a read I' no f ed stop. 

onpl'ocess Runou.t Key. The non pro ess runou t ke 
is us d to run cards out of the I' ad feed after a r ad I' 

ch ck ITor, or after the stop k y has been us d to stop 
th I' ader. The cards are run out into th read s lect 
stack l' \: ithou t a buffer storage to cor storage trans­
fer. Th read r ch ck light and ch ck circuits are turn d 
off. ards mu t b r mo ed from th hopper to mak 
th nonprocess runout key active. 

Reader Ready Light. The read r ready light is turned 
on to indicate that th first card has b n load d into 
buffer storage with the start key, without a l' ader check 

rror. It r mains On until the following occurs: a de­
pression of the stop ke , a read I' check error, a trans­
port jam, a misfe d or an empty hopper. 

Reader Check Liaht. Th reader check light is turn d 
on by an unequal comparison b tween th read and 
ch ck stations and by incorrect parity det cted in buff I' 

storage during card read. 'iVhen there is an unequal 
comparison, the reader is stopped, ready status is termi-

90 

nated, and the buff r torage data just read cannot be 
transferred to core storage on the next read command. 

1620 Console Read Check Light. The 1620 l' ad check 
(06 ) indicator and console read check light ar hlrned 
on by a 1620 parity error during a buffer storage to 
core storag transf 1'. 

1620 Console Reader 0 Feed Light. The console 
reader no fe d light is turned on each tim the reader is 

lected by a read command. The light l' mains on, if for 
any reason the read r is not in ready status and the read 
ommand th r fore cannot b xecut d. It appears to be 

on almo t continuously wh n the time betwe n )' ad 
calls is less than 240 ms indicating that proc ssing time 
is avai lable. 

CARD P N H 

Plinch On / Off Switch. The punch on / off switch is 
used to supply power to th punch and to turn on the 
power r ady light. The 1620 power on / off switch must 
b on to make the 1622 punch on / off switch active. 

Start Key. The start key .is used to f ed cards to the 
punch station initially or after an error and nonproce 
runout, and to re- stablisl ready tatus aft l' an mpty 
hopper, a misfeed, a transport jam, or a stop k depr s­
sion. 

top Key. Th top k y is us d to stop the punch fe d 
at th nd of th card cycl in progr ss and / or to re­
move the punch from I' ad status. 

Check Re et. The ch ck reset key is us d to reset error 
circuits and turn off the punch ch ck light. A start key 
or nonproce runout key depr ssion follows. 

Select Stop - elect Stop Switch. This switch is 
used to conh'ol th stopping of th punch wh n eITor 
cards are scI cted into th punch rror select stack r. 
With the \ itch s t to STOP, the punch f ed stops with 
the error card in the sel ct stack r. 

ol1process Runout Key. FollowinO' a punch ch ck 
error, pr ssing of th nonproc s runout k resets the 
error cir uits and causes th punched card that is be­
tw n the punch station and the punch ch ck station , if 
it is in error, to follow th ITOI' card into the select 
stacker. If this card is in error, the punch ch ck light is 
turned on again. Th next two ( blank ) cards go into th 
nonselect pocket. Th se cards should be removed be­
fore furth er proc ssing. 

This k is also u ed to run out and ch ck the last 
punch d card of a job. Cards must be remo ed from 
th hopper to mak the nonprocess runout k y op ra­
tive. 

Punch Ready Liaht. The punch I' ady light is used to 
indicat that th 1622 has a card in punch position and 
will r spond to a write command from the 1620. The 
r ad li O'ht is turn d off by a punch ch ck error, an 
empty hopp r, a full chip box, a ·top k y d press ion 
a h'ansport jam or a misfe d. 



Plinch Check Light. The punch check light is turncd 
on wh n there is an un qual comparison betwecn the 
data punched and the data read (one card f ed cycle 
later, at the check station), or when a 1622 parity error 
occurs during punching (select stop switch set to STOP). 

The ma hine stops , and r ady status is terminated. 

Chip Ligl!t. Th chip light is turned on to indica te 
that the chip box should be emptied . 

1620 Console Write Ch eck Light. The 1620 writ 
check (07 ) indicator and consol Ii ht ar turn d on 
by a parity ITor during a core to rag to huffer storag 
transfer. Th 07 indicator may be programmed to trans­
fer data several times and to halt if a corr ct transfer 
cannot be ohtained. 

1620 Con ole Pllnch 0 Feed Light . The consok 
punch no feed light is turned on each timc thc punch 
is selccted by a write command. Thc li ght remains on 
until the punch unit is ready and executes the com­
mand. 10rmal\y, no light is seen if commands arc 
furth er apart than 480 milliscconds. The write com­
mand cannot b xecuted until the punch is in read:-, 
status. 

C HO HEADEn / P :\'C H LIGHTS 

The stacker, h'an port, fuse, and th rmalli ghts arc used 
commonly b both the I' ad and punch fceds as fol\ows: 

Stacker Light. The stacker light is turned on when 
a stacker is full . Both feeds ar stopped tcmporarily and 
I' moved from read statu. Th ready light remains on. 
Op ration resumes automatically after the stacker is 

mptied . 

Tran sport Light. The transport light is turned on 
when a card jam has occurred in either th read or 
punch feed or above any tacker. \\ h n this occurs, 

Figure 9. 113~1 1620 Console 

both f d are stopped and r moved from r ad status. 
Both start keys must be press d to resume operation 
after th condition is corr ted . 

Flise Light. The fuse light turns on to indicate a 
hlown fu s . 

Th ermal Light. The th rmallight is turned on if the 
internal t mperatur of the 1622 b ecomes excessiv . 
Aft I' several minutes delay, th 1620 onsole I' set key 
may b PI' sed to turn off th thermal light. 1£ press­
ing the r s t k Y turns off the th rmal light. the 1620 
power switch must be turn d off and th n on again . 
Op ration may b e r Slimed after the power ready li ght 
is tllrned on. 

Console 

The consol ( Figur 9) is an integral part of the cen­
tral processing unit and pro id s for manual or auto­
mati c control of the system. The con. ole lights , keys, 
switch s, and t:'pewritcr are used to: 

Instruct th machine manu ally. 
Displa:-' machine and program status indi a tors. 
Display the contents of core storage and registers . 
Place data and instructions in core storage. 
A Iter the content · of core storage. 
Alter machine function s. 

Key s, Indicator Displays , and Switches 

mall incand scent lights arc used to I' present the on 
and off conditions of i~ternal check in lica tors. 

Seven console switche. ( four program and three ma­
chin check switche ) are prOVided to extcrna lJ:-, 'on­
trol the xecution of machin e fun ctions for which two 

Appendix B 91 



alternative logic paths are provided. One or the other 
of the paths is selected, depending upon the setting of 
the appropriate switch. 

Machin e Check Indicators and Switches 

Machine operation may be altered by the <.:ondition of 
a machine check indicator and an associated check 
switch ( Figure 10 ). An indicator tha t is turncd on 
cau e th computer to halt if the associated check 
switch is set to STOP, or to continue in automatic mode 
if the associated check switch is set to PROGRAl\L Re­
gardless of the check switch setting, the associated 
check light provides a visual sign of the indicator status. 

Pressing the reset key turns all check indicators and 
lights off. Parity, I/ O, and overflow check indicators 
are provided. 

PARITY HE K INDICATOR 

Internal data flow errors are recorded by the parity 
check indicators: MBR- ' andl\IBR-o. ormally, the par­
ity check switch is set to STOP. 

HBR -E (Memory Buffer Register-Even) Check 
Light. This light and indica tor are turned on when the 
digit in the even address portion of the l\IBR has a parity 
error. 

HBR-O (Memory Buffer Register-Odd) Check U ght. 
This light and indicator are turned on when the digit 
in the odd address portion of the l\IBR has a parity error. 

~fARS ( Hemory Address Register Storage) Check 
Light. This light turns on when a digit in l\IARS has a 
parity error. This is an unconditional machine stop 
and is not affected by the position of the parity check 
switch. 

Figure 10. Indicator Displays and Switches 

92 

INPUT / OUTPUT ( I/ O) CHECK Il\'DICATORS 

RD CHK (Read Check) Light. This light and indica­
tor are turned on when an input character with a parity 
error i detected prior to conversion of input data to 
BCD code. 

WR CHK (Write Check) Light. This light and indi­
cator are turned on when an output character with an 
even number of bits is detected during conversion of 
output da ta from BCD to output code. 

OVERFLOW ARITH HK (ARITHMETIC CHECK) Il\'DICATOR 

An overflow that occurs as a result of an add, subtract, 
divide, or compar operation turns on the overflow 
check indicator and light. 

CO. 'SOLE PROGRA '[ SWIT HES 

There are four modifier switch s in this group. Th y 
are labeled PROGRAM SWITCHES on the console and ar 
number d 1 through 4. 

REGISTER DISPLAY Il\'DICATORS Al\'D SWITCHE 

The console panel displays the cont nts of registers by 
means of small incandescent lights, used to represent 
th bit present in each digit of a register ( Fig l1J'e 11 ). 
Each light, representing a particular bit pOSition, is on 
only when its corresponding bit is present in the digit 
di splayed . 

H emory Buffer Reaister (MBR ). The two stored 
digits aff cted by a core storage address are display d 
in the l\{BR. \\ hen the core storage location addressed 
for display is an even-numbered address, the digit at 
this location is placed in the MBR display in the E 

(ev n lin ); the 0 (odd ) line eontains the digit in the 
next higher-numbered location. If the core storage lo­
cation addressed for display is an odd-numbered ad­
dress, the digit at this location is placed in the MBR 
display on the 0 line; the E line contains the digit in 
the next lower-numbered location. \ Vhen the machine 
is in alphabetic mode, the complete 2-digit represen­
tation of' an alphameric character may be viewed at 
one time. 

Memory Data Register ( 1DR). One line of six indi­
cator lights displays the bit configuration of each digit 
in core storage as it is read out. These digits can be 
seen on single cycle operation by using the SCE key (de­
scribed under CONTROL SWITCHES, KEYS, A TO SIGNAL 
LIGHT ). The digit displayed in the {OR display is dupli­
cated in the MBR-even or MBR-odd display, depending 
on whether the digit read out is located at an even or 
an odd numbered core storage position. 

Operation (OP) Register. Two lines of five lights each 
display the bit configuration of the two digits represent­
ing the operation code of the instruction last executed. 
Flag bits of these two digits are not displayed. 



Figure 11 . Register Display Indicators 

Digit and Branch. Two lines, each with five lights, 
display tht: contents of the Digit and Branch Register. 
This register serves a dual purpose in the 1620: 

1. It decodes the Q and Q9 digits of Branch 
Indicator, Branch No Indicator, and Input/ 
Output instructions. 

2. It temporarily stores digits affecting MARS 

( Memory Address Register Storage) during all 
I cycles, and stores partial product digits 
during multiplication. 

Multiplier/Quotient. This five-light register display 
shows each multiplier digit as it is used during a mul­
tiply operation. During divide. the Multiplier/Quo­
tient (M /Q) register is used to develop quotient digits. 

Memory Address Register (MA R). Five lines of five 
indicator lights each display the bit configuration of 
the five-digit address in anyone of the eight MARS 

registers. The specific register displayed is selected 
by the MAR display selectors switch and the display MAR 

key. There is no Bag bit notation. 
Memory Address Register Storage ( MARS) Display 

Selector. This 8-po ition rotary switch permits selection 
of any of the eight MARS registers for display in MAR by 
pressing the display MAR key. The position of the switch 
can be changed without altering the display. The rotary 
switch should not be turned, however, while the display 
MAR key is pressed. 

Control Switches, Keys, and Signal Lights 

Control keys (Figure 12) are used for performing cer­
tain manual operations and for convenient instruction 

entry. Signal lights associated with the conh'ol keys 
provide a visual indication of a specific operating con­
dition of the computer and indicate which st p of the 
keying procedure was last completed. 

POWER 0 / OFF SWITCH - POWER ON LIGHT 

The power on / off switch has an ON and OFF position . 
Set to the 0 position, it"applies electrical power to the 
computer and turns on the power on light. 

POWER READY LIGHT 

The power ready light comes on when internal ma­
chine temperature and voltages reach proper operating 
values. There is a delay from the time the power on/ off 
switch is positioned 0 until operating temperature and 
voltages are obtained. This delay varies with room tem­
perature and with the elapsed time since power was 
turned off. 

START KEY 

The start key is used to start program processing and 
to put the computer in automatic mode. It is operative 
only when the computer is in manual mode. 

AUTO <lATIC AND MANUAL LIGHTS 

The manual light, when on, indicates that the computer 
is in manual mode; it is off when the computer is in 
automatic mode. In manual mode, the computer has 
terminated all operation and is prepared to accept oper­
ator intervention. 

Appendix B 93 



SAV. INSERT 

~ 

POtA/#1t 0" • .---: 

RESEr 

Figu re 12. Control Ke s and Signal Lights 

The automatic Hght, when on, indicates that th com­
puter is in automatic mode (e.g., , hile executing a 
stored proGram or while entering data into core storage 
from the typewriter keyboard ) . 

Manual mode is initi a ted and the manual light is 
turned on by the execution of a Halt instruction or b 
pressing the release key ( on an I/ O operation only), 
instant stop key, or stop key. Pressing th start key, 
insert k y, or display fAR key initiates automatic mode 
and turns the manual light off. Th save li ght and /or 
the no feed li ght can b e on when th manual li ght is on. 

Both the manual and automatic lights ar on when 
an insb'uction is single-cycled with the seE key. 

RESET KEY 

The reset k y is used to res tore all machine status indi ­
cators, machine ch ck indica tors, and signal lights to 
their initial or reset condition. The rese t key functions 
only when the computer is in the manual mode ( manual 
light on ). Parity errors can occur if th res t k Y is used 
while the computer is in the automati c mode. ' ''hen the 
computer is in the automatic mode, the instant stop 
key should be pressed to put the computer in the 
manual mode and permit use of the reset k y. 

INSERT KEY A 'D 1 SERT LIGHT 

Pressing the insert key places the 1620 in automatic 
mode. Pressing the insert key also t lrns on the insert 
light and activates the typewriter keyboard so that 
direct entry of insb'uctions may be made in num rical 
mode, starting at 00000 and continuing into higher­
numbered storage positions. As many as 100 digits may 
b e keyed in. After the 100th digit is entered , an auto­
matic release is initiated and the 1620 re turns to manual 
mod. Pressing the start key initiates computer opera­
tion beginning at 00000. 

SA VE KEY A D SAVE LIGHT 

Pressing the save key turns on the save light and saves 
the address of the next sequential instruction to be 
executed. This address is saved in Product Address 
Register 1 (PR-l ) . 

94 

AUTOMATIC .... HUAI.. 

RELEASE KEY 

The release key is used to terminate any input / output 
operation, including console keyboard nb'y of data into 
core storage. When this key is pressed, manual mode 
is initia ted , the manual light is turned on, and the ins rt 
light is turned off. 

Th release k y is operative only when the computer 
is in au tomatic mode and performing an r/ o operation . 

STOP / IE (SINGLE INSTRUCTION EXECUTE) KEY 

PI' ssing the stop / sm key stops the computer in 
manual mode a t the nd of the in h'uction being ex-

cut d . 
The stop /sm key also serves as a single instruction 

execute key. Successive depr ssions of the key cause 
one instruction to he executed for each depr ssion . The 
manual light remains on . 

[l\'STANT STOP / SCE (SI 'GLE CYCLE EXECUTE) KEY 

Pre sing the instant stop / sm key causes the ma­
chin to stop a t the end of the 20-micros cond machine 
cycle in progr ss. Successive depressions of the key 
cause single machine cycles. "Both manual and au to­
matic Hghts remain on. 

CHECK STOP LIGHT 

The check stop li gh t is turned on when the machine 
stops b ecause of a paJity check. One or more of the 
parity o~ I/ O check indi cators that caus d the stop is 
also on. The check stop li ght is turned off wh n the 
check indicators ar reset or the parity or I/ O swi tch 
is set to PROGRAM. 

DISPLAY MAR KEY 

The display MAR key is operative only when the manual 
light is on and the automatic light is off. Pressing the 
display MAR key causes display of the MARS register 
to which the MARS display selector switch is set. 

The rotary switch should not b e turned while th 
display MAR key is pressed. 

REA DER 0 FEED LIGHT 

The reader no feed light is turned on when the com­
puter attempts a paper tape read or card read opera­
tion and the reader is not in the ready status. 



PUNCH NO FEED LIGHT 

The punch no feed light is turned on if one of the fol­
lowing conditions exists: 

1. The computer executes a write instruction using 
the tape punch and there is no paper tape on the 
feed reel. 

2. A parity check occurs while punching paper tape. 

3. The paper tape supply is exhausted. 

4. The card punch is not ready. This not ready status 
is often temporary on a card punch operation be­
cause the buffer is interlocked while the punch 
cycle is in process. 

Any of these conditions stops the computer in auto­
matic mode with both the automatic and punch no feed 
lights turned on. When a parity error occurs, the I/O 

write check light is also turned on. Pressing the release 
key disconnects the punch and puts the computer in 
manual mode. Pressing the reset key, while in manual 
mode, turns off the punch no feed and I/O write check 
lights. Manual correction and restart procedures can 
begin after pressing the release and reset keys. 

THERMAL LIGHT 

The thermal light is turned on if the internal tempera­
tures of the 1620, 1622, or 1623 become too high. Power 
is turned off, and the power ready light goes off. The 
thermal light may be turned off by pressing the reset 
key after the internal machine temperatures return to 
normal. The power switch must be turned off and on 
again before power can be applied to the machine. 

EMERGENCY OFF SWITCH 

This switch is for emergency use only. If positioned 
OFF, all power is turned off in the machine and the 
blowers that cool the electronic circuits are stopped. 
Damage to the machine may therefore result. 

IBM 1443 Printer Output 
The printer (Figure 13) is another output medium 
for the FORTRAN system. This unit is available in two 
models. Model 1 has a rated speed of 150 lines per 
minute and Model 2 has a rated speed of 240 lines 
per minute. These speeds are on printers equipped 
with a standard 52-character typebar. With other 
character-sets, the rate of printing can vary from 120 
lines per minute to 600 lines per minute. The actual 
printing speed that can be obtained depends in part 
upon the total number of lines to be printed for the 
job, the amount of processing required for each line 
that is printed, and the character-set that is used. 

Horizontal spacing of 10 characters to the inch is 
standard. Vertical spacing of six or eight lines-to-the­
inch can be manually selected by the operator. The 
vertical spacing between lines is performed by a tape­
controlled carriage directed from the FORTRAN pro­
gram. The sequence and arrangement of data on a 
line of printing is also controlled by the program. 

Method of Printing 
Alphabetic, numeric, and special characters, are lo­
cated on a thin metal bar that travels back and forth 
in a horizontal plane. As each character is positioned 
opposite a magnetically-driven hammer, the hammer 
presses the print bar against the paper form and the 
character prints. 

The IBM 1443 prints serially in consecutive sequence 
from left to right, starting with print position 1. Be­
fore a character is printed, it is checked against the 
corresponding position in the print area of storage to 
ensure the accuracy of the printer output. 

Tape-Controlled Carriage 

The carriage is tape-controlled (Figure 14) and ad­
vances the form as directed by the program. The ver­
tical spacing is manually set by the operator to either 
six or eight lines-to-the-inch. The carriage can be 
single, double, or triple spaced. These operations are 
planned in the program when variable spacing opera­
tions are required. If no spacing instruction is given, 
the carriage single spaces. 

The carriage is equipped with several adjustments 
that must be set to ensure proper form feeding. An 
adjustable paper brake is provided for setting the 
proper tension on the forms. The form's thickness ad­
justment is for setting the proper clearance between 
the platen and the typebar to ensure the optimum 
printing quality on forms of different thickness. 

Forms 

The forms used on the IBM 1443 must be designed for 
use with a tractor feed (Figure 15). Therefore the 
forms must be continuous with marginal punching on 
both sides. There is no provision made for single-sheet 
feeding or pressure-feeding of documents. The maxi­
mum paper width recommended is Im4: inches and 
the minimum is 4 inches. For more detail on forms 
specifications refer to IBM 1403 and 1443 Printers 
Form Design Considerations (Form A24-3041). 

Appendix B 95 



Figure 13. IBM 1443 Printer 

IBM J 443 Printer Contro's 

Keys, Lights and Switches (Figure 16) 

Start Key. Pressing this key places the 1443 Printer 
in a ready status, provided the following conditions 
are met: 

1. AC power ON 

2. DC power ON 

3. Forms in place 
4. Typebar in position 
5. Character~Set Selector switch positioned for the 

correct character set 
6. Carriage tape mounted 
7. No error condition 
Stop Key. Pressing this key removes the printer from 

ready status The rest of the system is not affected un­
less the program selects the printer when the ready 
status has been interrupted; then the system is inter­
locked until the printer is ready. 

96 

Power On Light This light indicates when DC power 
is applied to the printer control circuits. 

Ready Light. This light indicates that the printer has 
been conditioned by the operator to accept instructions 
from this system. It is turned off if: the Stop key is 
pressed, the Typebar switch is turned off, a sync check 
error occurs, the Form Check light is on, the End-of­
Form light is on, or the Carriage Interlock light is on. 

Sync Check Light. This light is turned on when the 
typebar is not properly synchronized during a print 
operation. The Printer Check indicator and light are 
also turned on. When this error occurs, the Printer is 
removed from ready status. The Sync Check light and 
the Printer Check indicator and light (when they are 
turned on by a sync check) can be turned off only by 
pressing the 1443 Reset key. 

Parity Check Light. This light is turned on when a 
parity error is detected by the error check circuits in 



Carriage Control Tape 

Figure 14. Carriage Control Tape 

Figure 15. Control Carriage 

Platen 
Positioning 

Knob 

Insert 
Forms 
here 

Paper 
Brake 
Lever 

the 1443. The Printer Check indicator and light are 
also turned on. The Parity light and the Printer Check 
indicator and light are turned off when the Printer 
Check indicator is tested by the program, or they can 
be turned off by pressing either the 1620 Reset key or 
the 1443 Reset key. 

Form Check. This light indicates that forms are feed­
ing improperly at the carriage tractors. There is a 
Form-Check switch located at the top of each form s 
tractor. When this light is on, the Ready light is off. 

End-at-Form Light. This light turns on when ap­
proximately four inches of the last form is left to be 
printed. When this occurs, the printer is automatically 
removed from ready status. The remaining part of the 

Appendix B 97 



Figure 16. 1443 Kcy.~ , Lights, and Switches 

last form can be completed by pressing the Start key 
(once) for each remaining line to be printed. 

CCl1'riage Interlock This light indicates that either 
the control-tape brush holder is in a raised position , or 
the protective cover for the 6 or 8 line spacing belt has 
been raised. When this light is on, the Heady light is off. 

Carriage Restore Key. Pressing this key positions th 
carriage at channelL If the Manual Clutch knob is set 
to OUT, the form does not move. If it is set to IN, the 
form moves synchronously with the control tap . 

OTE: The Heady light must be off for this key to op­
erate. 

Carriage Space Key Pressing this key causes the 
form to advance one space. 

OTE: The Heady light must be off for this key to op­
erate. 

Reset Key . Pressing this key turns off the PaJity 
Check and Sync Check lights and resets th Printer 
Check indicator. 

Carriage Stop Key. Pressing this key stops the car­
riage operation. 

98 

Manual Controls 

Chara.cter-Set Selection Switch . This four-position 
switch must be set to either 13, 39, or 52 depending 
upon the character-s t being used ( Figure 17 ). If this 
switch is not set to the correct number, a sync ch ck 
error will occur. 

Typebar III ertion Wheel. This wheel is located to 
the right of the carriage and on the upper rear of the 
typebar drive unit. The typebar is positioned by manu­
ally rotating the wh el. It is used when inserting or re­
moving a typebar in the printer. After power is turned 
off and the Typebar switch is turned off, the typebar is 
inserted from the light side of the printer as far as it 
will go into the typebar guide. The T pebar Insertion 
Wheel is then turned until the notch on the typebar 
flag of the 39 or 52 character typebar is aligned prop­
erly to the decal. 

The aligning notch an the 13-character typebar-Hag 
is difficult to see when the typebar is in the machine. 
Therefore, the right edge of the upper section of the 
Hag can be used as a reference when inserting a 13-
character typebar into operating position . se care to 
avoid damage to the typebar. 



Ca1'riage Release Lever. When this lever is pulled 
forward, the printer carriage swings up and back, 
thereby permitting replacement of the printer platen. 

Forms Advance Knob. This knob allows the forms to 
be manually advanced within the control carriage in 
increments of one space. No adjustment of the carriage 
- in relation to the typebar - is made. 

After forms have been advanced manually and the 
manual clutch has been re-engaged, the Forms Ad­
vance knob should be rotated back and forth slightly 
to ensure that the detent has seated. Also, check the 
forms to ensure they are taut. 

Typebar Switch (Ribbon Switch). This switch con­
trols the typebar drive and the ribbon drive. In the OFF 

position it stops the ribbon and typebar-drive to permit 
replacement of the ribbon or to change the typebar. 
This switch is located on the right side of the printer 
under the cover. 

Removing the typebar facilitates ribbon replace­
ment and, in addition, prevents the possibility of ma-

Forms Advonce 
Knob 

Typebor Insertion 
Whee l 

Typebor Switch 
(Ribbon Switch) 

Typebor 
Guide 

Figure 17. ~Ianlla l Controls - Right Side of 1443 

chine damage if the ribbon is accidentally inserted be­
tween the type fingers. Damage can also be caused if 
ribbons are used after they have been worn through or 
frayed. The schematic diagram located to the right of 
the Typebar switch can be referred to during ribbon 
replacement. When this switch is turned off, the Ready 
light i off. 

Manual Clutch Knob. (Refer to Figure 18. ) The Man­
ual Clutch knob controls the carriage-tape drive and 
the form-feeding mechanism. The Manual Clutch knob 
has nvo settings; OUT and I ' . The OUT position disen­
gages the clutch so that the form does not move with 
the carriage drive. The I ' position engages the clutch 
so that the form is moved synchronously with the car­
riage control tape. 

Horizontal Aditlstment Knob . This knob is used for 
small adjustments of the printer carriage to the right or 
left in relation to the typebar. 

Vertical Ad;ustment Knob. This knob is used for 
small up and down adjustments of the printer carriage 
in relation to the typebar. 

Corrioge Releose 
Lever 

Chorocter-Set 
Selection ;:,w,tch 

Appendix B 99 



Protective Cover 
for line-spacing 

gears 

Vertical 
Ad justment Knob 

Horizontal 
Adjustment Knob 

Platen 
Positioning Knob 

Figure 18. 1anual Controls - Front Side of 1443 

Paper Brake. (Refer to Figure 14. ) This control is 
located on the left side of the lower fonns gUide. It has 
six positions: 0 to 5. Rotating the adjusting control 
clockwise increases the amount of drag exerted on the 
fonn. 

Excessive pressure can cause the fonns to tear; too 
little pressure can cause wavy-line printing or unequal 
spacing. 

"'-'hen fonns are inserted into the lower fonns guide, 
the Paper Brake must be retracted fully by turning the 
control as far as possible in a counterclockwise direc­
tion and locking it into position. 

Platen Positioning Knob. To compensate for the 
number of carbon copies used, the platen can be ad­
justed toward or away from the typebar by the Platen 
Positioning knob. 

The adjustment is made through a knob on the lower 
left side of the carriage. Rotation of the control moves 
the platen forward or away from the typebar. The set­
ting of the control at 3 is the standard position for the 
average one-part fonn of regular weight paper. The 

100 

left Forms 
Tractor 

Tractor 
Release 
lever 

Manual 
Clutch 
Knob 

knob should be turned counterclockwise for increasing 
thicknesses of fonns . 

Sixteen positions are provided by the control. To in­
sert a new form, the control must be turned fully 
counterclockwise (past position 15), then re-adjusted 
before p~inting is started. 

Adjustment for 6 or 8 lines-to-the-inch Spacing 
The following steps should be used to change the Iines­
to-the-inch spacing. (Refer to Figure 19). 

1. Raise the protective cover. 
2. Press the Tension Release lever toward the back 

of the machine. 
3. Slide the rubber belt to the "inside" set of gears 

for 8 lines-to-the-inch spacing or the outside set 
of gears for 6 lines-to-the-inch spacing. 

4. Press the Tension Bar to apply tension to the belt. 
5. Lower the protective cover into position . 

Control Tape 
The control tape (Figure 20 ) has 12 columnar positions 
indicated by vertical lines. These positions are called 



Rubbe r 
Belt 

Protec t ive Cover 
(Ro ised Position) 

Figure 19. Line Spacing Mechanism 

channels. Holes can be punched in each channel 
throughout the length of the tape. A maxjmum of 132 
lines can be used to control a form , although for con­
venience, the blank tapes are slightly longer. Horizon­
tal lines are spaced 6 to-the-inch for the entire length 
of the tape. Round holes in the center of the tape are 
prepunched so the pin feed dri ve will advance the tape 
to synchronize with the movement of the printed form 
through the carriage. The eHect is exactly the same as 
though the control holes were punched along the edge 
of each form . 

PU CH ING THE TAPE 

A small compact punch (Figure 21) js provided for 
punching the tape. The tape is first marked in the 
channels in wruch the holes are to be punched. Thjs 
can be done easily by laying the tape beside the left 
edge of the form it is to control, with the top line ( im­
mediately under the glue portion ) even with the top 
edge of the form (Figure 20 ). A mark is then made in 

the first channel on the line that corresponds to the first 
printing line of the form. Additional marks are made in 
the appropriate channels for each of the other skip-stops 
and for the overflow Signal required for the form . 

The marking for one form should be repeated as 
many times as the usable length of the tape (22 
inches) allows. (When the tape controls several forms 
in one revolution through the sensing mechanism, the 
life of the tape is increased .) Finally, the line cor­
responding to the bottom edge of the last form should 
be marked for cutting after the tape is punched. 

The tape is inserted in the punch by placing the line 
to be punched over a guide line on the base of the 
punch and placing the center feed holes of the tape 
over the pins projecting from the base. The dial is then 
turned until the arrow points to the number of the 
channel to be punched. Pressing on the top of the 
punch, toward the back, cuts a rectangular hole at the 
intersection of a vertical and horizontal line in the re­
qUired channel of the tape. The tape should never be 

Appendix B 101 



--t--T-·~-t--l~ 

~. ; ~ +-$ 
z -_.; :' . . ... Ii! 

;R---!..-.--

t:-.. -- ...... 

.... 
N-a ....... 

~.- - .. - -

~ ---

~-- ~ .. 

.. ·1 

-- t-~ ...... -.--c: 

. -".- .; -~ 

.- •... 'T-~ 
_ ... --!- _ -+- .J-_.~~ 

.---,. .. _-- --.; 

~--+------ ... ~---.--+---+--. 
~ _____ ~ ___ ... .L ___ ~-" ••• __ ~ 

Figure 20. Control Tape 

102 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

EARTH WORK VOLUME AND AREA 

STATION PROFILE STAKE OFFSET CUT 

NO. ELEVATION LEFT i RIGHT VOLUME 
i 
I 

START 476372 
5325 + 00 313.13 136 142 
5326 + 00 310.46 136 146 21317 
5327 + 00 307.79 135 136 16511 
5328 + 00 305.12 144 88 7452 
5329 + 00 302.45 136 97 7766 
5330 + 00 299.78 132 107 11076 
5331 + 00 297.20 93 111 4774 
5332 + 00 294.82 119 108 60 
5333 + 00 292.62 116 113 
5334 + 00 290.61 109 111 
5335 + 00 288.79 102 99 6830 
5336 + 00 287.16 103 108 9864 
5337 + 00 285.72 115 99 3034 
5338 + 00 284.47 116 112 
5339 + 00 283.41 113 117 

TOTALS 565056 

I 

COMPUTATIONS. 0 

0 

FILL ACCUMULA TED 0 
LOSS 

NET VOLUME 
0 

384137 88352 C 3883 
C 3883 0 
C 25200 

21 5 C 41685 
1457 364 C 47316 0 2183 546 C 52353 
2227 557 C 60645 
5761 1440 C 58218 0 11527 2882 C 43869 

14382 3596 C 25891 
12958 3240 C 9693 0 5824 1456 C 9243 

804 201 C 18102 
0 6570 1643 C 12923 

13097 3274 C 3448 
14532 3633 C 21613 

0 
475480 111189 C 21613 

0 

0 

0 

0 

0 

0 

0 

0 



Figure 21. Tape Punch 

punched in more than one channel on the same line. 
After the tape is punched, it is cut and looped into a 
belt. The bottom end is glued to the top section, mark d 
"glue," so the bottom line will coincide with the 6rst 
line. Before the tape is glued, the glaze on the tape 
should be removed by an ink eraser; if this is not 
done, the tape ends can come apart. The center feed 
holes should coincide when the two ends of the tape 
are glued together. 

The last hole punched in the tape should be at least 
four lines from the cut edge, because approximately 
the last half inch of the tape overlaps the glue section 
when the two ends are spliced. If it is necessary to 
punch a hole lower than four lines up from the bottom 
of the form , the tape should be placed with the top 
line (immediately under the glu portion) four lines 
lower than the top edge of the form, before marking 
the channels. To compensate for the loss, th tape 
should then be cut four lines lower than the bottom of 
the edge of the form. . 

SPACI G FOR 8 LINES-PER-INCH 

The control tape for 8 lines-per-inch spacing is punched 
as it would be for normal 6 lines-per-inch spacing. 
Each line on the tap always equals one line on the 
form , regardless of whether the latter is 6 or 8 lin s­
per-inch. In measuring a control tape for a document 
printed 8 lines-to-the-inch on the form , every 1/ 8 inch 
on the form represents one line on the tape. 

Inserting the Control Tape in the Carriage (Figure 22) 

1. To gain access to the tape-reading mechanism, 
press up on the Cover Release latch and raise the 
counterbalanced cover of the printer. 

2. Tum the Manual Clutch knob to disengage the 
clutch. 

3. Raise the brushes by lifting the latch located on 
the side of the brush holder. 

4. Place one end of the tape loop - held so that the 
printed captions can be read - over the pin-feed 
drive wheel so that the pins engage the center 
drive holes. 

5. Place th opposite end of the loop around the ad­
justable carriage control tape idler. 

6. Remove the excess slack from the tape by loosen­
ing the Locking knob on the idler and moving the 
idler in its track. Tighten the knob when the de­
sired tension is reached. The tape should be just 
tight enough so that it gives slightly when tlle 
middle portions of the loop are pressed together. 
If it Rts too tightly, damage can occur to the pin­
feed holes. 

7. Press tlle brushes into operating posi tion until 
they latch and close the printer cover when the 
tape is in position. 

8. Press the Carriage Restore key to bring the tape 
to its home position and tum the Manual Clutch 
knob back to the engaged position. The carriage is 
now ready to operate. 

FORMS INSERTION (FIGURE 23 ) 

1. Raise the cover of the printer to gain access to the 
print and fonns area. 

2. Tum the Manual Clutch knob to the OUT position . 
3. Set the Plat n Positioning knob to "16." 
4. Set the Paper Brake lever just to the left of "0," 

and lock it into position. 
5. Raise the Print-Line indicator. 
6. Raise the upper and lower Tractor Pressure plates 

of both forms tractors. 
7. Place the forms on the Boor or a paper stand b -

neath the printer. 
8. Raise the paper form up and to the left of the 

printer so that - after th form is inserted - about 
one or two pages would extend beyond the Print­
Line indicator. Insert the form from the left side 
into th opening just in front of the Paper Brake 
lever. ( Refer to Figure 14) 

9. Press down on the top edge of both Tractor Re­
lease levers to permit tlle tractors to move freely. 

10. Set the left Forms Tractor slightly to th 1 ft of 
the Rrst printing position. 

11. Insert the form on the pins and close the upper 
and lower Tractor Pressure plates. 

12. Move the right Forms Tractor to line up with 
right side of the form. 

13. Insert the form on the pins and close the upper 
and lower Tractor Pressure plates. 

14. Raise up on the top edge of both Tractor Release 
levers thereby locking the Forms Tractors into 
position . 

Appendix B 103 



Pin Feed 
Drive Wheel 

Control 
Tape Idler 

Locking + _--.,..._.....1 
Knob 

Figure 22. Inserting Carriage Control Tape 

15. Lower the Print-Line indicator to the nOl1l1al 
position . 

16. Tum the Vertical and Horizontal Adjustment 
knobs to align the form exactly with the correct 
printing position. 

17. Tum the Forms Advance l..'l1ob to align the first 
printing line of the form wi th the printing posi­
tions of the print bar. This can be accomplished 
by setting the bottom of the first printing line of 

104 

Brushes 

Lotch 

Brush 
Holde 

the form to a position just above the top of the 
Print-Line indicator and· then turning the Forms 
Advance knob backward for 10 lines. 

18. Set the Platen Positioning knob according to the 
number of parts in the form. 

19. Reposition the Paper Brake. 

20. Tum the Manual Clutch knob to IN. 

21. Close the cover. 



Tractor Release 
Lever 

Manual 
Clutch 
Knob 

Print-line Indicatar 
(Horizontal position) 

Figure 23. Forms Insert ion 

Appendix B 105 



Index 

ACCEPT Statement .................................. 33 
ACCEPT TAPE Statement ... . . . . . . . . . . . . . . . . . . . . . . . . . .. 34 
Adding Subroutines .................................. 61 
Additional Core Storage, Modification for .............. " 71 
Alphameric Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 40 
Analysis of the FORTRAN Program, Part 4 . . . . . . . . . . . . . . . .. 58 
Arithmetic Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 18 
Arithmetic Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 18 
Arra ys ....... , .. , ...... , . . . . . . . . . . . . . . . . . . . . . . . . . .. 17 

Blank Field Specification ............................ " 41 
Block Diagramming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 44 

Card Form, FORTRAN ..... , . • . • • . • . . . . . . . . . . . . . . . • . . .. 12 
Card, IBM ...••......... , .....•.....•.............•. 10 
Card Input, 1620 Opera1:ing Principles ................. " ~9 
Coding Fornl ...................... , ............... . 
Compiler, Loading ... , ........... , .................. . 
Compiler Program, Format of ....................... 66, 
Compiling the Source Program ........................ . 
Computed GO TO .......•.... , ..•.................... 

Console ................ , .......................... . 
Constants 
CONTINUE Statement ................................ . 
Control Statements ................................. . 

Unconditional GO TO .............................. . 

Computed GO TO ...............................•.. 

IF ...................•......•....••........•.... 

IF (SENSE SWITCH) ....• ....•..••..••..•..•...••... 

PAUSE ......................................... ' .. 
STOP 

DO 

CONTINUE ...•. " ...•....•. " ....... " . " .... '" .• 

END ...........•......................•.......... 

Correcting FORTRAN Tapes ........................... . 

Diagramming Symbols .............................. . 
DIMENSION Statement ., ............................. . 
DO Statement 

11 
52 
68 
52 
24 
91 
14 
30 
22 
23 
24 
25 
25 
26 
26 
26 
30 
31 
69 

44 
43 
26 

DO Statement, Restrictions on . . . . . . . . . . . . . . . . . . . . . . . . .. 30 
Duplicating Tapes ................................. " 69 

END Statement .................................... " 31 
Error Analysis, Pre-Compiler Program ................. " 75 
Error Analysis, Source Program ...................... " 54 
Error Analysis, SUBROUTINES .•..•..••••..........•.... 59 
Error Codes, Pre-Compiler Program ., ................ " 72 
Execution of the Object Program ....................... 55 
Expressions ........................................ 18 

Fixed Point Arithmetic ............................. " 13 
Fixed Point Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 14 
Fixed Point Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 15 
Floating Point Accumulator (FAC) ......•.••.•.•..•..... 59 
Floating Point Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 12 
Floating Point Constants ............................ " 14 
Floating Point Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 15 
FORMAT Statement .................................. 35 
FORTRAN Arithmetic ................................. 21 
FORTRAN Pre-Compiler Program, Part 5 ............... " 72 
Functions .......................................... 21 

GO TO, Computed ... , .............................. , 24 
GO TO, Unconditional ... . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 23 

106 

IF Statement ....................................... 25 
IF (SENSE SWITCH) Statement ........................ 25 
Index Values, DO Statement . . . . . . . . . . . . . . . . . . . . . . . . . .. 30 
Input Data, Typewriter ............................. " 56 
Input/Output Statements ., .......................... . 

READ ...........•...•...••.••••.•.•••.•.••.•••••. 

ACCEPT .•..•.•..•..•..•...•.•...•••••.....•...... 

ACCEPT TAPE ....•............••..••.••..•..•...•. 

PUNCH ..................•..•....•.•..••••••.•... 

TYPE 

PUNCH TAPE .••.........•..•.••.••.••.•..•..•..•.• 

PRINT •.•.••....••........•.•.•.••••...•...•..... 

Input Specifications, Example ........ ~ ............... . 
Interpreting Errors, Pre-Compiler Program .............. . 

33 
33 
33 
34 
34 
34 
34 
34 
35 
76 

Loading Subroutines ............................... " 53 
Loading the Compiler .............................. " 52 

Mode, Fixed Point - Floating Point ................... " 20 
Modifying FORTRAN for Additional Core Storage ........ " 71 

Naming Variables ................................. " 15 

Object Program, Definition ........................... 7 
Object Program, Execution of . . . . . . . . . . . . . . . . . . . . . . . .. 55 
Object Program, Format of ......................... 67, 69 
Object Program, Producing the. . . . . . . . . . . . . . . . . . . . . . . .. 51 
Operating Keys and Lights, Card Read Punch . . . . . . . . . . .. 89 
Operating Keys and Lights, Console .................. " 91 
Operating Keys and Lights, Printer . . . . . . . . . . . . . . . . . . .. 96 
Operating Switches and Lights, Paper Tape Reader. . . . . . .. 88 
Operating Principles, Part 3 ........................... 51 
Operating Principles, 1620 ............................ 83 
Operation Symbols .................................. 18 
Output Specifications, Example ...................... " 38 

Paper Tape, Description of . . . . . . . . . . . . . . . . . . . . . . . . . . .. 10 
Paper Tape Input, 1620 Operating Principles ........... " 84 
Paper Tape Punch ................................. " 85 
Paper Tape Reader .................................. 86 
Parentheses, Correct Use of ......................... " 20 
PAUSE Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 26 
Pre-Compiler Program, Description of . . . . . . . . . . . . . . . . . .. 72 
Pre-Compiler Program, Format of . . . . . . . . . . . . . . . . . . . . .. 78 
Pre-Compiler Program, Processing with ................. 77 
Preservation of Index Values . . . . . . . . . . . . . . . . . . . . . . . . .. 30 
Printer Output, 1620 Operating Principles ............... 95 
PRINT Statement .................................... 34 
Printing Multiple Lines .............................. , 42 
Processor, Definition of .............................. , 7 
Program, Example of ................................. 44 
Program Summary, Pre-Compiler Program .............. , 75 
Program Testing .................................... 49 
Program Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 49 
PUNCH Statement.................................... 34 
PUNCH TAPE Statement ............................... 34 

READ Statement .................................... , 33 
Restart Procedures, Pre-Compiler Program . . . . . . . . . . . . . .. 75 
Rules for Forming Expressions. . . . . . . . . . . . . . . . . . . . . . . .. 19 

Sample Program .................................... 44 
Source Program .................................... , 7 
Source Program Errors .............................. , 54 



Specifications Statements ............................. 34 
FORMAT •.......•••..........••.................. 35 
DIMENSION •..•.......•.....................•..... 43 

Statement Numbers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 23 
Statements .............................. . . . . . . . . . .. 8 

Arithmetic ....................................... 18 
Control .......................................... 22 
Input/Output .................................... 33 
Specification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 34 

Statements, Summary of . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 80 
STOP Statelnent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 26 
Storage Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 65 
Stored Program .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 6 
Subroutine Linkage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 59 
Subroutine Program, Format of ...................... 67, 68 
Subroutines, Addition of . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 61 
Subroutines, Error Analysis ................. . . . . . . . . .. 59 
Subroutines, Error Checks ............................ 60 
Subroutines, List of ............................... 22, 58 
Subroutines, Loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 53 

Subroutines, Writing in Machine Language . . . . . . . . . . . . .. 64 
Subroutines, Writing in SPS . . . . . . . . . . . . . . . . . . . . . . . . . .. 63 
Subscripts ......................................... 16 
Summary of 1620 FORTRAN Statements .................. 80 
Summary of 1620 Operating Principles. . . . . . . . . . . . . . . . .. 83 
Switch Settings, FORTRAN Program . . . . . . . . . . . . . . . . . . . .. 51. 
Switch Settings, Pre-Compiler Program . . . . . . . . . . . . . . . . .. 77 

Tape Duplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 69 
Test Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 49 
Trace Feature .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 56 
TYPE Statenlent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 34 
Typewriter, Keys and Switches . . . . . . . . . . . . . . . . . . . . . . .. 84 
Typewriter Input, 1620 Operating Principles ............. 83 
Typing Input Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 56 

Unconditional GO TO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 23 

Variable Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 17 
Variables .......................................... 1.4 

Writing the 1.620 FORTRAN Program, Part 1 ............... 1.] 

Index 107 



LLI 
Z 
J 
l!) 
z 
o 
.J 
c{ 

... 
:J 
U 

READER'S SURVEY FORM 

1620 FORTRAN with FORMAT 
Customer Reference Manual 

Instructions for Rating 

For each factor, select and circle the number which most accurately reflects your 
opinion. For example, to rate the temperature in the Arctic between HOT and COLD, 
select and circle the number 5. 

HOT 1 2 
Is the material -

3 40 COLD 

Easy to read 1 2 3 4 5 Difficult to read 
Too detailed 1 2 3 4 5 Too general 
Well organized 1 2 3 4 5 Poorly organized 
Adequately covered 1 2 3 4 5 Inadequately covered 
Too technical 1 2 3 4 5 Too elementary 
Too many illustrations 1 2 3 4 5 Too few illustrations 

Did you have any previous knowledge of the subject matter? Yes 0 No 0 

How did you use this publication? 

a. As an introduction to the subject matter? 0 
b. For information about programming? 0 
c. For information about operating? 0 
d. As a student in a class? 0 
e. As an instructor for a class? 0 
f. Other 0 

Do you prefer the loose leaf design of this publication over the conventional cover bind-
ing of other IBM publications? Yes 0 No 0 

Which of the following terms best describes your job? 

Customer Personnel IBM Personnel 

Analyst 
Manager 
Operator 
Programmer 
Other (Please specify) : 

Additional Comments: 

0 
0 
0 
0 

Customer Engineer 
Instructor 
Sales Representative 
Student 
Systems Engineer 

Space is available on the other side of this page for additional comments. 

Thank you for your cooperation. 

0 
0 
0 
0 
D 



FOLD 

STAPL,E 

BUSINESS REPLY MAIL 
NO POSTAGE STAMP NECESSARY IF MAILED IN U. S. A. 

POSTAGE WILL BE PAID BY 

IBM CORPORATION 

MONTEREY & COTTLE RDS. 

SAN JOSE, CALIFORNIA 

95114 

ATTN: PRODUCT PUBLICATIONS DEPT. 455 

STAPLE 

FIRST CLASS 

PERMIT NO. 2078 

SAN JOSE, CALIF. 

I 

-------------------------------------------------•• ------------ I 
I 

FOLD I 

w 
z 
J 
(!) 
z 
o 
.J 
« 
I­
::> 
u 



C26·5619·4 

llrn~ 
International Business Machines Corporation 
Data Processing Division 
112 East Post Road, White Plains, New York 

04 


	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044.0
	044.1
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110

