Systems Reference Library

IBM 1620 FORTRAN II Programming System
Reference Manual

This manual contains the specifications and operating procedures
for Version 2 of the 1620 FORTRAN II Programming System.

It should not be used with Version 1 of the subject system. Included
are rules for constructing the various types of FORTRAN
expressions and statements; procedures for adding subroutines;
descriptions of core storage during compilation; and complete
operating instructions with details of error messages and

restart procedures.

Also described in this manual are the 1620-1443 FORTRAN II
and the 1620 FORTRAN II for Automatic Floating Point
Programming Systems. The first is a printer-oriented
modification of the standard FORTRAN II System, and the
latter is designed to compile an object program

with in-line arithmetic instructions.

File No. 1620-25
Form C26-5876-2

This is a reprint of an earlier edition
incorporating the following Technical Newsletters :

TNL Pages Dated
N26~-0083 15, 24, 36, 37, 37, 1 8/19/64 .
N26-0112 37,37.1,38 3/15/65

Copies of this and other IBM publications can be obtained through IBM Branch Offices,
Comments concerning the contents of this publication may be addressed to:
IBM, Product Publications Department, San Jose, Calif. 95114

© 1961, 1962, 1964 by International Business Machines Cdrporation

Page
IBM 1620 FORTRAN H Programming System 1
LANGUAZE « - v vevevnee vt 1
Arithmetic Modesvvireiiiin e 2
Constants, Variables and Subscripts, 2
EXPIessionsevenvvtieit i 4
Arithmetic Statementsovoeiiinioy 5
Control Statementsooiiiiiiiiiiie 6
Input/Output Statementscoovviieeon. 10
Specification Statements 12
FUNCHONS v v vt e e st o temeaneeoa e ae s 16
Compilation Process ...l 22
Pass I o oiiei e 22
Pass IL o ovre e et i e 26
Batch Compilation ... 27
Object Program., 29
DeSCIiption .« ..o vttt 29

i

Contents

Page
Execution of the Object Program 30
ErTor MesSagesoovvnumvmnnennionmteeneee s anns 31
Adding Library Subroutines 34
IBM 1620-1443 FORTRAN I
Programming System................... 36
Languagece.eeeintiiniiaaniaiii e 36
Compiler ... 36
IBM 1620 FORTRAN II for
Automatic Floating Point...................... 37.1
AppendixX.l 38
Supplementary Informationo 38
Y [42

Preface

FORTBAN II is a coding system with a language that
closely resembles the language of mathematics. It is a
system designed primarily for scientific and engineer-
ing computations. Since this system is essentially prob-
lem-oriented rather than machine-oriented, it provides
scientists and engineers with a method of communica-
tion that is more familiar, easier to learn, and easier to
use than actual machine language. In addition, ma-
chine language programs produced by the FORTRAN I
System are generally as efficient as those which might
be written by an experienced programmer.

This manual is a reference text for the 1620 FORTRAN
1 Programming System; it should not be used as a
FORTRAN primer. For general information about roR-

v

TRAN, refer to the IBM FORTRAN General Informa-
tion Manual, Form F28-8074. For a list of literature
applicable to the 1620 Data Processing System, refer to
the IBM 1620 Bibliography, Form A26-5692.

Machine Configuration and Feature Requirements

The minimum machine configuration and feature re-
quirements needed to use the 1620 rorTRAN 1 Pro-
gramming System are as follows:

e 18BM 1620 Data Processing System with 40,000

positions of core storage

e 1BM 1622 Card Read-Punch

e Automatic Divide

¢ Indirect Addressing

The 1620 FoRTRAN 11 Programming System consists of
two parts: the language, and the compiler. The lan-
guage is composed of a number of types of statements
that are used to define the problem being solved. The
compiler is a program which translates the statements
into 1620 machine language.

The problem in rorTRAN 1 language is called the
source program; the 1620 machine language translation
is called the object program.

The rorTRAN 1 language and the rules for writing
source programs are described in the first part of this
manual, while the compiler and its related functions
are described in the section entitled cCOMPILATION
PROCESS.

Language

A 1620 FORTRAN 11 source program consists of a number
of statements. Each statement deals with one aspect of
the problem; that is, it may cause data to be fed into
the computer, calculations to be performed, decisions
to be made, results to be printed, etc.

Some statements do not cause speciﬁc computer
action, but rather provide information to the compiler
program.

The 1620 ¥ORTRAN I statements are arranged into
five groups as follows:

e Arithmetic statements, which are used to specify
the mathematical calculations to be performed.

e Control statements, which are used to govern the
sequence in which the statements will be executed.

e Input/Output statements, which are used to read
data into the program, or print or punch the re-
sults of the program.

® Specification statements, which are used to pro-
vide information about the data that the object
program is to process.

® Subprogram statements, which are used to define
and use subprograms.

The above statement types are explained in detail
later in this manual.

Coding Form

1620 FORTRAN I statements are written on a standard
FORTRAN coding form (X28-7327) which is designed to
organize the statements into the special format re-

IBM 1620 FORTRAN Il Programming System

quired by the compiler program. All statements and
comments of the source program are written on this
form. Space is provided at the top of each page for the
name of the program, date, etc. This information does
not constitute part of the source program and is not
punched into cards.

The series of numbers (1, 5, 6,7, 10, . .., 72) across
the top of the form indicates the card column into
which the information is to be punched.

Comments to explain the program are written in
columns 2-72 of a line with a C in column 1, A com-
ment line is not processed by the compiler but is listed
when the source program cards are listed.

Columns 2 through 5 are used for the statement
number. Any number from 1 through 9999 may be
used as a statement number. Statement numbers are
used for cross reference within a program (see ex-
planations of po and co TO statements), or merely as
a means of identifying statements. No two statements
may have the same number. Statements need not be
numbered in sequence.

Column 6 of the initial line of a statement must be
blank or zero. If a statement is too long to be written
on one line, it can be continued on as many as four
“continuation lines.” Continuation lines are written by
placing any character or any number from 1 through 9
(zero allowed only for initial line) in column 6. The
normal method is to number the initial line zero, the
second line one (first continuation line), the third line
two, etc. A statement other than a comment statement
may not consist of more than 330 characters (ie., 5
lines).

The body of a statement is wfitten in columns 7
through 72. Blank columns for the most part are
ignored by the compiler and may be used freely to
improve the readability of the source program listing.

Columns 73 through 80 are not processed and there-
fore may contain any identifying information.

FORTRAN Card

To prepare a source program for use, the statement
data is transferred from the coding form into cards.
After the cards are punched, they should be verified to
minimize clerical errors.

Arithmetic Modes

Quantities used in FORTRAN statements may be ex-
pressed in either fixed-point mode or floating-point
mode. Numbers expressed as integers (whole numbers)
are considered fixed point. Numbers expressed with a
decimal point are considered floating point. Thus the
numbers 3, 57, and 115 are fixed point numbers, while
the numbers 1.72, 35.6, and 1.7772 are floating point
numbers.

In rorTRAN 11, fixed point and floating point numbers
may be used, subject to the rules listed under AriTH-
METIC STATEMENTS.

Floating Point Arithmetic

Floating point arithmetic is a technique used to elimi-
nate the complex programming required for correct
placement of the decimal point in arithmetic opera-
tions. Floating point numbers are represented in a
standard format which specifies the location of the
decimal point. With this method, quantities which
range from minute fractions to large numbers can be
handled by the computer. Floating point numbers are
expressed as decimal fractions, times a power of ten.
For example:

3.14159 is expressed as .314159 x 10*
4800.0 is expressed as .48 x 10*
0.0187 is expressed as .187 x 10-*

The numeric part of the floating point number is called
the mantissa; the power of ten is called the exponent.

Constants, Variables and Subscripts

FORTRAN 11 provides a means of expressing numeric
constants, variable quantities, and subscripted vari-
ables. The rules for expressing these ‘quantities are
quite similar to the rules of ordinary mathematical
notation.

Constants

A constant is any number which is used in computa-
tion without change from one execution of the program
to the next. A constant appears in numeric form in the
source statement. For example, in the statement

J:3+K

3 is a constant, since it appears in actual numeric form.
Two types of constants may be written in FORTRAN 11:
fixed point, and floating point.

Fixed Point Constant

A fixed point constant is an integer consisting of 1 to
10 numeric characters (see ARITHMETIC PRECISION). A

2

preceding plus sign is optional for positive numbers.
An unsigned constant is assumed to be positive.

EXAMPLES

3
+1
—28987

Floating Point Constant
A floating point constant may be in either of two forms:
1. Any number consisting of 1 to 28 decimal digits
with a decimal point at the begin}:ring, at the
end, or between two digits (see ARITHMETIC
PRECISION). A preceding plus sign is optional for
positive numbers. Zeros to the left of the decimal
point are permissible,

EXAMPLES

17.
5.0
—.0003
0.0

2. An integral decimal exponent preceded by an E
may follow a floating point constant. The magni-
tude thus expressed must be between the limits
of 102 and 10°°, or must be zero.

EXAMPLES
5.0E3 =(5.0x10%)
S50E +3 =(50x 10%)
3.14E =(3.14x10°)
Variables

A FORTRAN variable is a symbolic name which will as-
sume a value during execution of a program. This
value may change either for different executions of
the program or at different times within the program.
For example, in the statement

A=30+B

both A and B are variables. The value of B will be
assigned by a preceding statement and may change
from time to time; the value of A will change whenever
this computation is performed with a new value of B.

As with constants, a variable may be in fixed point
or floating point form.

Fixed Point Variables

A fixed point variable is named by using 1 to 6 alpha-
betic or numeric characters (not special characters) of
which the first must be I, J,K,L,M,orN.

EXAMPLES

I
M2
JOBNO1

A fixed point variable can assume any integral value
provided the magnitude is less than the maximum
size as defined through the use of a control record as
stated under arrrHMETIC PRECISION. (If not defined,
the maximum size will be 5 decimal positions for fixed
point numbers.)

Floating Point Variables

A floating point variable is named by using 1 to 6
alphabetic or numeric characters (not special char-
acters), of which the first is alphabetic but not I, J, K,
L,M,orN.

EXAMPLES

A
B7
DELTA

A floating point variable may assume any value ex-
pressible as a normalized floating point number; i.e.,
zero or any number between 10-1°° and 10°°. The num-
ber of mantissa characters may be from 2 to 28 (see
ARITHMETIC PRECISION). If not defined, the maximum
size will be 8 characters for the mantissa.

Arithmetic Precision

The precision of the quantities used in the calculation
is an important consideration in most types of scientific
computation. For example, the computation of 7.19 x
3.14 would not be as precise as 7.19286 x 3.14159.

In the ForRTRAN 11 System, the variable-field length
capability of the 1620 is used to allow varying degrees
of precision from one program to another. Floating
point precision, denoted in this publication as f, may
be varied from 2 to 28 places; fixed point precision,
denoted by k, may be varied from 4 to 10 places.

The precision of the values may be specified by the
use of a control card which precedes the source pro-
gram. This card is described in the section entitled
SOURCE PROGRAM CONTROL CARD.

Values for f and k must be the same for subpro-
grams called by the main program.

Subscripts

An array is a group of quantities. It is often advan-
tageous to be able to refer to this group by one name
and to refer to each individual quantity in this group

in terms of its place within the group. For example,
assume the following is an array named NEXT:

15
12
18
42
19

If it were desired to refer to the second quantity in
the group, the ordinary mathematic notation would
be NExXT,. In FORTRAN this becomes

NEXT (2)
The quantity in parentheses is called a subscript. Thus

NEXT (2) has the value of 12
NEXT (4) has the value of 42

The ordinary mathematical notation might be NexT;,
to represent any element of the array NExr. In FoR-
TRAN, this is written

NEXT (I)
where I equals 1, 2, 3, 4, or 5. A program may also

use 2- or 3-dimensional arrays. For example, the fol-
lowing is a 2-dimensional array named MRATE.

Columnl Column2 Column3
Row 1 14 12 8
Row 2 48 88 4
Row 3 29 25 17
Row 4 1 3 43

To refer to the quantity in Row 4, Column 2, the
FORTRAN statement would be written as MRATE (4,2).

The value of MRATE (4,2) is 3.
The value of MRATE (3,3) is 17.

Thus, subscripts are positive fixed point quantities
whose values determine the member of the array to
which reference is made.

GENERAL FORM

If v represents any fixed point variable and ¢ (or c’)
represents any fixed point constant, then a subscript is
an expression in one of the following forms.

v,c, vV +¢, v —c¢, c*v,

c*v +c, or c*v —¢’

(The symbol * denotes multiplication.)

EXAMPLES
I
3
MU +2
5%]
5¢]—2

In a subscript the variable itself must not be sub-
scripted.

Subscripted Variables

A fixed or floating point variable may be subscripted
by enclosing up to three fixed point subscripts in par-
entheses to the right of the variable.

EXAMPLES

A(T)
K(3)
BETA (5°] —2,K +2,L)

The commas separating the subscripts are required
punctuation. Note that subscript arithmetic may take
place as shown in the third example above. For in-
stance, if] is equal to 20, the first subscript will be 98.

The value of a subscript (including the added or
subtracted constant, if any) must be greater than
zero but not greater than the corresponding array
dimension. Each subscripted variable must have the
size of its array (i.e., the maximum values which its
subscripts can attain) specified in a pIMENsION state-
ment preceding the first appearance of the variable

in the source program. (DIMENSION statements are

described later.)

Arrangement of Arrays in Storage

Arrays are stored “column-wise,” with the first of their
subscripts varying most rapidly, and the last varying
least rapidly. Arrays which are 1-dimensional are sim-
ply stored sequentially. A 2-dimensional array named
A would be stored sequentially in the order A,

Az,v s Ay A1,2’ Az,z’ .- «» Ay A 3-dimensional

array named T would be stored in the order

Tl,l,l’ T2,l,l’ T3,1,l’ DR TM,l,l’ T1,2,1’ A TM,N,I’ T],I,Z’
PRPIRR

The storage of arrays is in ascending order; i.e., the
elements are stored sequentially in locations with
ascending addresses.

Expressions

An expression in FORTRAN language is any sequence
of constants, variables (subscripted or not subscript-
ed), and functions (explained later), separated by
operation symbols, commas, and parentheses, which
comply with the rules for constructing expressions.
Expressions appear on the right-hand side of arith-
metic statements.

In arithmetic-type operations, the following opera-
tion symbols are used:

+ addition

— subtraction

* multiplication

/ division

% exponentiation (i.e., raising to
a power)

Rules for Constructing Expressions

Since constants, variables, and subscripted variables
may be fixed point or floating point quantities, ex-
pressions may contain either fixed point or floating
point quantities; however, the two types may appear
in the same expression only in certain ways,

1. The simplest expression consists of a single con-
stant, variable, or subscripted variable. If the
quantity is an integer quantity, the expression
is said to be in the fixed-point mode. If the
quantity is a floating point quantity, the expres-
sion is said to be in the floating-point mode.

EXPRESSION TYPE OF MODE OF
_— QUANTITY EXPRESSION
3 Fixed Point Fixed Point
constant
3.0 Floating Point F loating Point
constant
I Fixed Point Fixed Point
variable
A Floating Point Floating Point
variable
I(J) Fixed Point Fixed Point
subscripted
variable
A(]) Floating Point Floating Point
subscripted
variable

In the last example, note that the suﬁcript, which
must be a fixed point quantity, does not affect
the mode of the expression. The mode of the
expression is determined solely by the mode of
the quantity itself.

2. Exponentiation of a quantity does not affect the
mode of the quantity; however, a fixed point
quantity may not be given a floating point ex-
ponent. The following are valid:

I**] Fixed Point
A**] Floating Point
A**B Floating Point

The following is not valid:
I**A (Violates the rule that a

fixed point quantity must not

have a floating point exponent)

Note: The expression A**B**C is not permitted.
It must be written A**(B**C) or (A**B)**C,
whichever is intended.

3. Quantities may be preceded by a + or a — or
connected by any of the operators (+, —, ¥, /,
#) to form expressions, provided:

a. No two operators appear consecutively.

b. Quantities so connected are all of the same
mode. (Exception: floating point quantities
may have fixed point exponents.)

The following are valid:

—A+B
B+C—-D
1/]

K*L

The following are not valid expressions:

A4+ —B (must be written as A+ (—B)

A+1 (variables are of different modes)

3] (must be written as 3 * J if multipli-
cation is intended)

4. The use of parentheses in forming expressions
does not affect the mode of the expression. Thus,
A, (A), and (((A))) are all floating point
expressions.

5. Parentheses may be used to specify the order of
operations in an expression. Where parentheses
are omitted, the order is taken to be from left
to right as follows:

ORDER SYMBOL OPERATION
1 e Exponentiation
2 * and / Multiplication and Division
3 + and — Addition and Subtraction

For example, the expression
A +B*C/D +E**F —G
will be taken to mean

B*C

A+ Tf

+EfF —_G

Using parentheses, the expression could be written

(A +B)*C/D +E**F —G

which would be taken to mean

(A +B)*C
D

A valid expression will be evaluated when the object
program is executed. An invalid expression may re-
sult in an error message from the FORTRAN 11 compiler
or may result in inaccurate object program results.

+EF _G

Arithmetic Statementis

GENERAL FORM
A=B

where A is a variable (subscripted or not subscripted)
and B represents an expression.

EXAMPLE

Q=K+1
A(I) = 2(X) + SINF (C(I))

The numeric calculations to be performed in the
object program are defined by arithmetic statements.
FORTRAN arithmetic statements closely resemble con-
ventional arithmetic formulas. They contain a variable
to be computed, followed by an equal (=) sign, fol-
lowed by an arithmetic expression. In FORTRAN lan-
guage, the equal sign means “is to be replaced by’
rather than “is equivalent to.” For example, the arith-
metic statement

Y = N —LIMIT (] —2)

means that the value in the storage area assigned to
Y is to be replaced by the value of N —LIMIT (J —2).
The equal sign description can be emphasized more
with the example of

I=1+1

which means that the variable I is to be replaced with
its old value plus one.

The result of the expression is stored in fixed point
form if the variable to the left of the equal sign is a
fixed point variablc; it is stored in floating point form
if the variable is a floating point variable.

If the variable to the left is in fixed point form and
the expression to the right is in floating point form,
the result is first computed in floating point, then
truncated (the fractional value is dropped) and con-
verted to a fixed point number. Thus, if the result of
an expression is 3.872, the fixed point number stored
is 3, not 4. Likewise, the statement

J=A/B

produces a result of 1 if the value of A is 7, and the
value of B is 4.

If the variable to the left is in floating point form
and the expression to the right is in fixed point form,
the expression will be computed in fixed point and
then converted to floating point before it is stored as
the new value of the variable.

EXAMPLES MEANING

A=B Store the value of B in A.

I=B Truncate B to an integer, convert to
fixed point, and store in I

A=1 Convert I to floating point, and store
in A.

A = 3.0*B Replace A with 3 times B.

A =T1*B Not permitted. The expression is
mixed; i.e., contains both fixed
point and floating point variables.

A=3*%B Not permitted. The expression is

mixed.

Control Statements

The second class of FORTRAN 11 statements is com-
prised of control statements that enable the program-
mer to state the flow of the program. Normally, state-
ments may be thought of as being executed sequen-
tially; that is, after one statement has been executed,
the statement immediately following is executed. How-
ever, it is often undesirable to proceed in this man-
ner. The following statements may be used to alter
the sequence of a program.

GO TO Statement (Unconditional)

This statement interrupts the sequential execution of
statements, and specifies the number of the next state-
ment to be performed.

GENERAL FORM

GO TO n

where n is a statement number.

EXAMPLES

GO TO 1009
GO TO3

Computed GO TO

This statement also indicates the statement that is to
be executed next. However, the statement number
that the program is transferred to can be altered dur-
ing the program.

6

GENERAL FORM

GO TO (ny,n,, ..

, M), 1

where n;, n, . ., n, are statement numbers and i is
a non-subscripted fixed point variable.

The parentheses enclosing the statement numbers,
the commas separating the statement numbers, and
the comma following the right parenthesis are all re-
quired punctuation.

This statement causes transfer of control to the first,
second, third, etc., statement in the list depending on
whether the value of i is 1, 2, 3, etc.

The variable i must never have a value greater than
the number of items in the list.

EXAMPLES MEANING

If L is 1, transfer to
statement 3.

If L is 2, transfer to
statement 4.

If L is 3, transfer to
statement 5,

If J is I or 2, transfer
to statement 4.
If J is 3, transfer to

statement 5.
If] is 4, transfer to
statement 2.

GO TO (3,4,5), L

GO TO (4,4,5,2),]

Further examples of the Computed co To and the
Unconditional co 10 statements are illustrated below:

[—— C FOR COMMENT

“'JJL%%?'; FORTRAN STATEMENT
I s18]7 10 15 20 25 30 35 40 45

hd 1 1

A=3., . 1

B=4., ! 1 L L 1 1 s
t
1

c=5.
K=0-,

d ’K"J 1 ! L 1 1 1 i
60_T0_ (10,20,30),.K . . : \ u

L 1 1 L il Il " L 1

1

.
30 |F=A-8 _ |

60 T0 12 ., |)) . ; L
20| E=A-C 1
GO .10 1
10 =B-,C s
60 _T0 1

1
1
1
1 1 L I ol 1 L i
1
1

12 \

In the example, D, E, and F are computed in that
order, and the program is transferred to statement 12.
This is a simplified example and if these were the only
computations in the program, the programmer would
simply list the arithmetic statements to compute D, E,
and F in the desired order without using the Com-
puted o TO statement.

IF Statement

This statement permits the programmer to change the
sequence of statement execution depending upon the
value of the arithmetic expression.

GENERAL FORM
IF (a)n,, n,, n,

where a is an expression, and n,, n., n, are statement
numbers.

The expression must be enclosed in parentheses and
the statement numbers must be separated by commas.
The expression may be in either fixed or floating
point mode.

Control is transferred to statement number n,, n,, n,
depending on whether the value of a is less than,
equal to, or greater than zero, respectively.

EXAMPLE

IF (A —B) 10,5, 7

which means “If the value of A minus B is less than
zero, transfer to statement 10. If the value of A minus
B is equal to zero, transfer to statement 5. If the value
of A minus B is greater than zero, transfer to state-
ment 7.7

Suppose a value, X, is being computed. Whenever
this value is negative or positive, it is desired to pro-
ceed with the program. Whenever the value is zero,
an error routine is to be followed. This may be coded
as:

= € FOR COMMENT
dstanement]e
NuMBER |&

' sjel’ 10 s 20 23

FORTRAN STATEMENT
30 35 4 45

h 1 1 L] i 1 1 1
X=(B+C/FamE)-Z/C .

F (X)10,40,10) .
Ia . 1 PR | I L

1l 1

1
4
e ! 1
1
L

- F O -

1

e i H 1
(ERROR ROUTINE)

1 1 i

IF (SENSE SWITCH) Statement

This statement permits the program to transfer to a
particular statement depending on the setting of any
one of the four Console Program switches.

GENERAL FORM
IF (SENSE SWITCH i) n,, n,

where i is the number of one of the Console Program
switches, and n,, n, are statement numbers.

The parentheses enclosing the words SENSE SWITCH,
and the commas separating the statement numbers
are required punctuation.

The program transfers to statement number n,
when the designated Program switch is on, and to
statement number n, when it is off.

EXAMPLE

IF (SENSE SWITCH 3) 14, 10

which means, “If Sense Switch 3 is on, transfer to
statement 14; otherwise, transfer to statement 10.”

DO Statement

GENERAL FORM

DOni=m,,m,
or
DOni=m,, m,, m;

where n is a statement number, i is a non-subscripted
fixed point variable, and m,, m, and m; (none of
which may be zero) are either unsigned fixed point
constants or non-subscripted fixed point variables, If
m; is not stated, it is understood to be 1.

EXAMPLES

DO 30] = 1,10
DO30] =1,K, 3

The po statement is a command to repeatedly exe-
cute the statements that follow, up to and including
the statement with statement number n. In other
words, a po statement forms a program loop.

The statements are executed with i = m, the first
time; for each succeeding execution, i is increased
by m;. After the statements have been executed with
i equal to m, (or as near as possible without exceed-
ing m,), control passes to the statement following the
last statement in the range of the po.

DO Range

The range of a po is that set of statements which are
executed repeatedly; i.e., it is the sequence of con-
secutive statements immediately following the po, up
to and including the statement numbered n.

DO’s Within DO's
There may be other po statements among the state-

ments in the range of a po. When this is so, the fol-
lowing rule must be observed.

If the range of a DO includes one or more other
DO’s, then all of the statements in the range of the
latter must also be in the range of the former.

A set of po’s satisfying this rule is called a “nest of

> »

po’s.” This rule is illustrated in the drawing below.
(Brackets are used to illustrate the range of a po).

Permitted Not Permitted
DO
DO
DO
D0
o 0
bo
DO SO
DO Index

The index of a po statement is the fixed point variable
i, which is controlled by the po in such a way that its
value begins at m,, and is increased each time by ms,
up to, but not including the value which exceeds m.,.
Throughout the range, the i-value is available for
computation, either as an ordinary fixed point variable
or as the variable of a subscript. After the last execu-
tion of the range, the po is said to be “satisfied.”

Suppose for example, that control has reached
statement 10 of the program:

10 DO111=1,10
11 A(I)=1%N(I)
12

The range of the po is statement 11, and the index
is I. The po sets I to 1 and control passes into the
range. The value of 1 * N(1) is computed, converted
to floating point and stored in location A(1). Since
statement 11 is the last statement in the range of the
po, and the po is unsatisfied, I is increased to 2 and
control returns to the beginning of the range, (which
is statement 11). The value of 2 * N(2) is then com-
puted and stored in location A(2). The process con-
tinues until statement 11 has been executed with
I = 10. Since the po is then satisfied (m; =m,),
control passes to statement 12.

Transfer of Control Within a DO
Transfers of control from and into the range of a po
are subject to the following rule:

No transfer is permitted into the range of any DO
from outside its range. Thus, 1, 2, and 3 are allowable
transfers in the drawing below, but 4, 5, and 6 are not.

DO

DO

Preservation of Index Values. When control leaves
the range of a po in the ordinary way (i.e., when
the po becomes satisfied and control passes on to
the next statement after the range), the exit is said
to be a normal exit. After a normal exit from a o
occurs, the value of the index controlled by that po
is not defined, and the index cannot be used again
until it is redefined. However, if the exit occurs by
virtue of a transfer out of the range, the current
value of the index remains available for any sub-
sequent use. If the exit occurs because of a transfer
which is in the ranges of several po’s, the current
values of all indexes controlled by those po’s are
preserved for any subsequent use.

Exits. When a CALL statement (see CALL STATEMENT)
is executed in the range of a po, care must be taken
that the called subprogram does not alter the po
index or indexing parameters. This applies as well
when a FORTRAN function is called for in the range
of a po.

- Restrictions on Statements in the Range of a DO.

A statement which redefines the value of the index
or of any of the indexing parameters (m’s) is the
only type of statement not permitted in the range
of a po. In other words, the indexing of a po loop
must be completely set before the range is entered.
The first statement in the range of a po must not be
a non-executable statement, such as END, CONTINUE,
and FORMAT statements. Also, a po loop cannot end
with a transfer statement.

CONTINUE Statement

CONTINUE is a dummy statement which results in no
instructions in the object program. It is most fre-
quently used as the last statement in the range of a
po to provide a transfer address for 1F and co TO
statements that are intended to begin another repeti-
tion of the o loop.

EXAMPLE
CONTINUE

As an example of a program which requires a
conTINUE, consider the table search:

10 DO121= 1,100

IF (ARG —VALUE (I)) 12, 20, 12
12 CONTINUE
13

This program causes a scan of the 100-entry VALUE
table until it finds an entry that equals the value of
the variable ARG, whereupon it exits to statement 20
with the value of I available for fixed point use; if no
entry in the table equals the value of ArgG, a normal
exit occurs to the statement (13) following the
CONTINUE.

PAUSE Statement

GENERAL FORM
PAUSE or PAUSE n

where n is an unsigned fixed point constant

EXAMPLES

PAUSE
PAUSE 33333

This statement halts the machine. Pressing the Start
key causes the program to resume execution of the
object program with the next statement. In a PAUSE n
statement, where n is a 5-digit number within the
range of valid 1620 addresses, the n can be displayed
on the 1620 console in OR-2.

STOP Statement

GENERAL FORM
STOP or STOP n

where n is an unsigned fixed point constant.

EXAMPLES

STOP
STOP 33333

This statement causes a halt in such a way that press-
ing the Start key has no effect. Therefore, in contrast
to pausk, this statement is used where a terminal,
rather than a temporary stop, is desired. When this
statement is executed, the message “stop” is typed on
the console typewriter, and n can be displayed as in a
PAUSE n statement.

END Statement

GENERAL FORM
END or END (11, Iz, 13, 14, I5)

where I is 0, 1, or 2.

EXAMPLES

END
END (1,2,0,1,1)

This statement differs from the previous control state-
ments in that it does not affect the flow of control in
the object program being compiled, It applies to the
FORTRAN 11 compiler during compilation. An END state-
ment will generate a halt and branch in the object
program. The statement END (L, I, I, L, I5) is ac-
ceptable; however, the I's specified are meaning]less
in 1620 FORTRAN IIL.

The END statement must be the last statement
(physically) of the source program.

Input/Output Statements

Input statements are used to read data into core stor-
age and output statements are used to print or punch
data. The READ, ACCEPT, ACCEPT TAPE, PUNCH, PUNCH
TAPE, PRINT, and TYPE statements require the use of
the FoRMAT statement which is described in the section
entitled SPECIFICATION STATEMENTS,

Specifying Lists of Quantities
The input/output statements that call for transmission
of data must include an ordered list of the quantities
to be transmitted. The listed order must be the same
as the order in which the words of information exist
(for input), or the desired order for the output.
The formation and meaning of a list is best de-
scribed by an example. Assume that the value of K
has been previously defined.

A, B(3), (C(I1), D(LK), I = 1, 10),
((E(L]),I=1,10,2),F(]3),] = LK)

If this list is used with an output statement, the infor-
mation will be written on the output medium in this
order:

A, B(3), C(1), D(1,K), C(2), D(2, K), ..,
C(10), D(10, K), E(1, 1), E(3,1), . . . , E (9,1),
F(1,3),

E(L 2),E(3,2),...,E(9,2),F(23),

.E.(‘l,,K),E(S,K),...,E(Q,K),F(K,3)

Similarly, if this list is used with an input statement,
the successive values, as they are read from the ex-
ternal medium, are placed into core storage in the
indicated order. The list reads from left to right with
repetition for variables enclosed within parentheses.
Only variables, not constants, may be listed.

If such a list is used, the execution is exactly that
of a po loop. It is as though each opening parenthesis
(except subscripting parentheses) were a po, with
indexing given immediately before the matching clos-
ing parenthesis, and with the po range extending up to
that indexing information. The order of the above list
can thus be considered the equivalent of the following
“program”:

. OUTPUT A

. OUTPUT B(3)
.DO5I=110

. OUTPUT C(I)

. OUTPUT D(I, K)
DO9J = 1K
DOS8I =1,10,2
OUTPUT E (I, 7J)
OUTPUT F (], 3)

© P 1D U WO

10

Note that indexing information, as in pO’s, consists of
three constants or fixed point variables, and that the
last of these may be omitted, in which case it is
assumed to be 1.

For a list of the form K, A(K) or of the form K,
(A(I), I =1, K), where an index or indexing para-
meter itself appears earlier in the list of an input state-
ment, the indexing will be carried out with the newly
read-in value,

Input/Output in Matrix Form

As outlined in a previous section, FORTRAN 11 treats
variables according to conventional matrix practice.
Thus, the input/output statement,

READL ((A (L]),I=12),]=13)

causes the reading of I times J (in this case, 2 times 3)
items of information. The data items are read into
storage in the same order as they are found on the input
medium.

Input/Output of Entire Matrices

When input or output of an entire matrix is desired, an
abbreviated notation may be used for the list of the
input/output statement; only the name of the array
need be given and the indexing information may be
omitted.

Thus, if A has previously been listed in a pimMENSION
statement, the statement,

READ 1, A

is sufficient to read in all elements of the array. The
elements of the array are stored in successively higher
storage locations. (If A has not previously appeared
in a DIMENSION statement, only the first element would
be read in.)

Avutomatic Fix/Float

During execution of input/output statements, it is
permissible to read a fixed point argument into a float-
ing point field or a floating point argument into a fixed
point field, and to write from a floating point field in a
fixed point format or from a fixed point field in floating
point format. During reading, the format specification
dictates the data conversion, and the list designation
controls the mode of storing the argument. During
writing, the format specification dictates the mode of
the field which is printed or punched.

READ Statement

The RreADp statement is used to read data into core
storage from the 1622 Card Read-Punch.

GENERAL FORM

READ n, List

where n is the statement number of a FORMAT state-
ment and List is a list of the quantities to be read.

EXAMPLES

READ §, A, B, C
READ 211, VOLT (I), OHM (])

The READ statement causes data to be read from a
card and the quantities from the card to become the
values of the variables named in the list. Successive
cards are read until the complete list has been “satis-
fied”; i.e., all data items have been read, converted,
and stored in the locations specified by the list of the
READ statement. The FORMAT statement to which the
READ refers, describes the arrangement of information
on the cards and the type of conversion to be made.

ACCEPT TAPE Statement

The ACCEPT TAPE statement is used to cause data
to be read into core storage from the 1621 Paper Tape
Reader.

GENERAL FORM

ACCEPT TAPE n, List

where n is the statement number of a FORMAT state-
ment, and List is described under INPUT/OUTPUT STATE-
MENTS.

EXAMPLE
“ ACCEPT TAPE 30, K, A (])

The AcCEPT TAPE statement causes the object program
to read information from the paper tape reader. Rec-
ord after record is brought in, in accordance with the
FORMAT statement, until the complete list has been
satisfied.

ACCEPT Statement
The ACCEPT statement is used to allow data to be read

in from the console typewriter.
GENERAL FORM

ACCEPT n, List

where n is the statement number of a FORMAT state-
ment, and List is as described under iNpuT/oUTPUT
STATEMENTS.

EXAMPLE
ACCEPT 20, A, B, C, D (3)

The Accepr statement causes the object program to
return the carriage of the console typewriter to await
the entry of data. The information is entered in
accordance with the FORMAT statement until the com-
plete list has been satisfied.

PUNCH Statement

The PuNcH statement is used to cause data to be
punched out in cards by the 1622 Card Read-Punch.

GENERAL FORM
PUNCH n, List

where n is the statement number of a FORMAT state-
ment, and List is as described under mNpur/oUTPUT
STATEMENTS,

EXAMPLE
PUNCH 40, (A (]),] =1, 10)

The puncu statement causes the object program to
punch cards in accordance with the FORMAT statement
until the complete list has been satisfied.

PRINT and TYPE Statements

The PRINT statement and the TYPE statement are used
to type out data on the console typewriter.

GENERAL FORM

PRINT n, List
TYPE n, List

where n is the statement number of a ForMAT state-
ment and List is as described under NpuT/OUTPUT
STATEMENTS.

EXAMPLE
PRINT 2, (A (]),] = 1, 10)

The prINT and TYPE statements cause output data to be
typed on the console typewriter. A carriage return
occurs, and successive lines are typed in accordance

with the FORMAT statement until the complete list has
been satisfied.

PUNCH TAPE Statement
The PUNCH TAPE statement is used to cause data to be

punched by the paper tape punch.

11

GENERAL FORM
PUNCH TAPE n, List

where n is the statement number of a FORMAT state-
ment, and List is as described under iNnpur/ouTPUT
STATEMENTS.

EXAMPLE
PUNCH TAPE 25, (A (]),] = 1, 10)

The puncH TAPE statement causes information to be
punched by the paper tape punch.

Successive records are punched in accordance with
the ForRMAT statement until the complete list has been
satisfied.

Specification Statements

The Specification statements supply necessary infor-
mation to the FORTRAN compiler, or information to in-
crease program efficiency. No executable instructions
are created in the object program as a result of a
Specification statement.

DIMENSION Statement

The piMENsION statement provides the information
necessary to allocate storage for arrays in the object
program.

GENERAL FORM
DIMENSION v, v, v ...

where each v is the name of a variable, subscripted
with 1, 2, or 3 unsigned fixed point constants. Any
number of v’s may be given.

EXAMPLE
DIMENSION A(10), B(5, 15), CVAL (3, 4, 5)

Each variable which appears in subscripted form in
a program or subprogram must appear in a DIMENSION
statement of that program or subprogram. The prMEN-
sioN statement must precede the first appearance of
that variable. The pIMENSION statement lists the maxi-
mum dimensions of arrays. In the object program,
references to these arrays must never exceed the speci-
fied dimensions.

The above example indicates that B is a 2-dimen-
sional array for which the subscripts never exceed 5
and 15. The piMENSION statement, therefore, causes
75 (i.e., 5x 15) fields to be set aside for the B array.

12

A single DIMENSION statement may specify the di-
mensions of a number of arrays. The maximum num-
ber is limited by the number of continuation cards
permitted. A program must not contain a DIMENSION
statement which includes the name of the program
itself, or any program which it calls. If any of the sub-
scripts in a DIMENSION statement exceeds 9999, an error
will be indicated.

EQUIVALENCE Statement

The EQUIVALENCE statement provides one method of
controlling the allocation of data storage in the object
program.

GENERAL FORM
EQUIVALENCE (a, b, c,...), (d, e f,...),.

where a, b, ¢, d, e, f, . . . are variables that may be
subscripted with constants only.

EXAMPLE
EQUIVALENCE (A, B(1), C(5)), (D (17),E(3))

When the logic of the program peérmits, the number of
storage locations used can be reduced by causing
locations to be shared by two or more variables. The
EQUIVALENCE statement should not be used to obtain
mathematical equality between two or more elements.
If fixed point and floating point variables are equiva-
lenced, their word lengths must be the same; ie.,
f + 2 must equal k.

An EQUIVALENCE statement may be placed anywhere
in the source program except as the first statement in
the range of a po. Each set of parentheses in the
statement list encloses the names of two or more quan-
tities which are to be stored in the same locations
during execution of the object program; any number
of equivalences may be given.

In an EQUIVALENCE statement, a term such as C(p)
can be defined for p>0 to mean the pth location of
the C array. For example, C(5) would be the fifth
location in the C array. If p is not specified, it is un-
derstood to be 1.

Thus, the example indicates that the A, B, and C
arrays are to be assigned storage locations such that
the elements A(1), B(1), and C(5) occupy the same
location. In addition, it specifies that D (17) and E(3)
are to share the same location.

Quantities or arrays which are not mentioned in an
EQUIVALENCE statement are assigned unique locations.

Locations can be shared only among variables, not
among constants,

The sharing of storage locations cannot be planned
safely without a knowledge of which FORTRAN 1 state-
ments, when executed in the object program, will cause
a new value to be stored in a location. There are five
such FORTRAN 1I statements:

1. Execution of an Arithmetic statement stores a new

value of the variable for the left-hand side of the
formula.

2. Execution of a po statement stores a new indexing
value,

3. Execution of a READ, ACCEPT, Or ACCEPT TAPE state-
ment stores new values for the variables men-
tioned in the statement list.

COMMON Statement

Variables, including arrays, appearing in COMMON
statements are assigned to specific storage locations.
Storage is assigned separately for each program com-
piled.

GENERAL FORM
COMMON A,B...

where A, B . . . are the names of variables and non-
subscripted array names.

EXAMPLE
COMMON X, ANGLE, MATA, MATB

The coMMoON storage area may be shared by a pro-
gram and its subprograms. In this way, the common
statement enables a data storage area to be shared
between programs in a way analogous to that by
which the EQUIVALENCE statement permits data storage-
sharing within a single program. Where the logic of
the programs permits, this can result in a large saving
of storage space.

Array names appearing in the comMmon statement
must previously have appeared in a DIMENSION state-
ment in the same program.

The coMMoN storage area is located at the high end
of core storage, starting with address 19999, 39999 or
59999, Variables in a coMMON statement are assigned
storage locations in descending sequence. For example:

COMMON A, B, C

With f = 10, A, B, and C would be stored in locations
19999, 19987, and 19975, and similarly for 40,000 or
60,000 positions. If C is dimensioned as C(10), then
19975 is the address of C(10), which is the last ele-
ment in the array, and 19867 is the address of C(1).

The comMoON statement takes precedence over the
EQUIVALENCE statement. Due to the complex interac-
tion of these two statements, the programmer must
adhere to the following two rules:

1. Variables which are to be placed in common
storage must be assigned prior to any EQUIVA-
LENCE statement containing these variables. For
example,

COMMON A
EQUIVALENCE (A, B, C)

The order in which the variables appear in the
EQUIVALENCE statement is irrelevant and Rule 1
applies if the comMoN variable is B or C.

2. Within an EQUIVALENCE list there may be no more
than one variable which previously has been:
a. equivalenced, or
b. placed in common.

The following sequence of statements is invalid.

EQUIVALENCE (A, B, C)
EQUIVALENCE (X,Y,Z)
EQUIVALENCE (A, Z)
COMMON D
EQUIVALENCE (D, X, P) Violates combina-
tion of (a) and (b)

The sharing of storage locations desired in the above
statements can be achieved by writing the statements
as follows.

COMMON D
EQUIVALENCE (D, X, P)
EQUIVALENCE (A, B, C, X)
EQUIVALENCE (X, Y, Z)

Violates (a) above

or

COMMON D
EQUIVALENCE (D, A,P,B,C, X, Y,Z)

A diagnostic error message/results if either Rule
1 or 2 is violated.

Arguments in Common Storage

COMMON statements may be used as a medium for
transmitting arguments from the calling program to
the called rorTrAN function or sSUBROUTINE subpro-
gram. In this way, they are implicitly, rather than
explicitly transmitted as when listed in the parentheses
following the subprogram name.

To obtain implicit arguments, it is necessary to have
only the corresponding variables in the two programs
occupy the same location. This can be accomplished
by having them occupy corresponding positions in

13

coMMON statements of the two programs. For ex-
ample, (A, B, C) and (E, F, G) become implicit argu--
ments when the calling program contains the statement
comMoN A, B, C, and the called subroutine contains
the statement, comMmoN E, F, G.

NoTESs:

1. To force correspondence in storage locations be-
tween two variables in different programs, which
otherwise would occupy different relative posi-
tions in comMoON storage, it is valid to place
dummy variable names in a commMoN statement.
These dummy names, which may be dimensioned,
will cause reservation of the space necessary for
correspondence.

2. While implicit arguments can take the place of
all arguments in cALL-type subroutines, there
must be at least one explicit argument in a
FORTRAN function. Here, too, a dummy variable
may be used for convenience.

When one variable is equivalenced to a second
variable which appears in a comMoN statement,
the first variable is also located in comMoON stor-
age.

FORMAT Statement

The rorMaT statement is used to describe the format
of data being transmitted to and from the typewriter,
card, or paper tape units.

GENERAL FORM

FORMAT (s,, . ., s)

where s, is a format specification. The FoRMAT speci-
fications must be separated by commas, slashes, or left
parentheses.

EXAMPLE
FOBRMAT (12/ (El124, F104))

The Input/Output statements, in addition to the list
of quantities to be transmitted, contain the statement
number of a FORMAT statement describing the informa-
tion format to be used. The ForMmAT statement also
specifies the type of conversion to be performed be-
tween the internal machine language and the external
notation. FORMAT statements are not executable; their
function is merely to supply information to the object
program. Therefore, they may be placed anywhere in
the source program (except as the first statement in
the range of a po).

For the sake of clarity, examples given in this section
are for typing on the console typewriter. However, the

14

description is valid for any input/output unit simply
by generalizing the concept of “typewritten line” to
that of the unit record in the selected input/output
unit. Thus, a unit record may be:
1. A typewritten line with a maximum of 87 char-
acters.
2. A punched card with a maximum of 80 char-
acters.
3. A paper tape record with a maximum of 87 char-
acters. (The input record length may be variable
up to 87; the output record length is fixed at 87).

Numeric Fields

Three forms of conversion for numeric data are avail-
able:

TO/FROM
EXTERNAL

FROM/TO

INTERNAL TYPE

Floating point variable E Floating point

decimal number

Floating point variable F Fixed point

decimal number

Fixed point variable 1 Integer

These types of conversion are specified in the forms:
Ew.d, Fw.d, and Iw.

where w and d are unsigned fixed point constants.

Format specifications are used to describe input
and output formats. The format is specified by giving,
from left to right, beginning with the first character of
the record:

1. The control character (E, F, or I) for the field.

2. The width (w) of the field. The width specified

may be greater than required to provide spacing
between numbers.

3. For E- and F-type conversions, the number of

decimal positions (d) (of the field) which appear
to the right of the decimal point. A maximum of
f digits to the right of the decimal point is allowed
for the output.

Specifications for successive fields are separated by
commas. No format specification that provides for more
characters than the input/output unit record should be
given. Thus, a ForMAT statement for typewritten out-
put should not provide for more than 87 characters
per line including blanks.

Example: The statement, rormaT (12, E12.4, F10.4)
might cause typing of the line:

I2 El124 F104
Af /s NS A TN
b7 —92.3100E + 00bbbb—.0076

(In these examples, b is included to indicate blank
spaces.)

Alphameric Fields
FORTRAN 1 provides a method by which alphameric
information may be read or written.

The specification for this purpose, wH, is followed
in the FORMAT statement by w alphameric characters.
For example:

24H THIS IS ALPHAMERIC DATA

Note that blanks are considered alphameric charac-
ters and must be included as part of the count w.

Information handled with the H specification is not
given a name and may not be referred to or manipu-
lated in storage in any way.

The effect of wH depends on whether it is used with

input or output.

1. Input. w characters are extracted from the input
record to replace the w characters included with
the specifications.

2. Output. The w characters following the specifica-
tions, or the characters which replaced them, are
written as part of the output record.

Example: The statement, Format (3HXY = F8.3)

could produce any of the following lines:

XY = b —93.210
XY = b999.999
XY = bb28.768

Another alphameric specification, Aw causes W
alphameric characters to be read into or written from
a variable or array name. Since each alphameric char-
acter is represented in core storage by two decimal
digits, w must be less than, or equal to, the largest
whole number resulting from k/2 or f/2, depending on
whether the variable or array name is fixed or floating.
If k or f is odd, a zero will be supplied as the least signi-
ficant digit for the field in core storage. To facilitate
manipulation of alphameric fields which are stored as
floating point numbers, the numbers will have zeros as
an exponent. This will have no effect on input/output.
However, if the first character in a field is a blank,
decimal point, or close parenthesis, the field will be
treated as a zero in the floating point arithmetic sub-
routines.

Blank Fields

Blank characters may be provided in an output record,
and characters of an input record may be skipped, by
means of the specification wX where 0< w <87 (w is
the number of blanks provided or characters skipped).
When the specification is used with an input record, w
characters are considered to be blank (regardless of
what they actually are) and are skipped over.

Repetition of Field Format

It may be desirable to print n successive fields within
one record, in the same fashion. This may be specified
by giving n (where n is an unsigned fixed point con-
stant which must be <99) before E, F, I, or A, Thus,
the statement, Format (12, 3E12.4) might result in:

27 —92.3100E + 00b75.8000E —02b55.3600E —02

Repetition of Groups

A limited, one-level, parenthetical expression is per-
mitted in order to enable repetition of data fields
according to certain format specifications within a
longer FORMAT statement specification. Thus, FORMAT
(2(F10.6, E10.2), 14) is equivalent to FormaT (F.10.6,
E10.2, F10.6, E10.2, 14). The number of repetitions is
limited to a maximum of 99.

Scale Factors

The E-type specification implies a scale factor. There-
fore E16.8 for an output field will result in the printing
or punching of a maximum of ten significant digits
in the form (—)XX.XXXXXXXXE(—)XX. A maxi-
mum of f digits can be placed to the right of the deci-
mal point if the d specification is greater than f. In this
case d —f low order zeros will be inserted to satisfy
the d specification. The following guide may be used
when working with E-type specifications.

1. If f (floating point precision) < w —86, then f sig-

nificant digits will be printed or punched.

2. If f >w —8, then w —6 significant digits will be

printed or punched.

For example, if f = 10 and the floating point num-
ber is stored as 123456789135, it will be printed as
—12.34567891E —37, according to specification E16.8.

The F-type specification also implies a scale factor.
Therefore, F16.8 for an output field will result in the
printing or punching of a maximum of fourteen sig-
nificant digits in the form (—) XXXXXX. XXXXXXXX.
However, a maximum of f digits will be placed to
the right of the decimal point and the result will be
right-justified in the output field. If f is larger than
w —2, only w —2 digits will appear in the output.

The X specification should be used to space fields
in the E-type format. In the statement

E16.38, 1X, E16.8, 1X, E16.8

a space will be provided between adjacent fields.

A field read according to the E-type format need
not hgve :‘.he exponent E(—)XX; i.e., it may actually:
take the same form as the F-type format.

The P-scale factor may be used in a specification,
but it will be ignored by the ForTRAN 11 compiler.

15

Multiple Record Formats

To deal with a block of more than one typewritten
line, a ForMAT specification may have several differ-
ent one-line formats, separated by a slash (/) to indi-
cate the beginning of a new line. Thus, FORMAT
(3F9.2, 2F10.4/6E14.5) specifies a multiline typewrit-
ten block in which line 1 has format 3F9.2 and 2F10.4,
and line 2 has format 6E14.5

If a multiple-line format is desired, such that the
first two lines are typed according to a special format
and all remaining lines are typed according to an-
other format, the last line specification should be en-
closed in a second set of parentheses; e.g., FORMAT
(12, 3E12.4/2F10.3, 3F9.4/(5F124)). If data items
remain to be transmitted after the last line format spe-
cification has been completely satisfied, the format
repeats from the last left parenthesis.

As these examples show, both the slash and the
closing parenthesis of the FORMAT statement indicate
the termination of a record.

Blank lines may be introduced into a multiline
FORMAT statement by listing consecutive slashes.

FORMAT and Input/Output Statement Lists

The ForMAT statement indicates, among other things,
the maximum size of each record to be transmitted.

In this connection it must be remembered that the:

FORMAT statement is used in conjunction with the list
of some particular input/output statement, except
when a FORMAT statement consists entirely of alpha-
meric fields. When the rormaT statement is used
with the list, control in the object program transfers
back and forth between the list (which specifies wheth-
er data remains to be transmitted) and the FormaAT
statement (which gives the specifications for transmis-
sion of that data).

Ending o FORMAT Statement

During input/output of data, the object program scans
the FORMAT statement to which the relevant input/
output statement refers. When a specification for a
numeric field is found and list items remain to be
transmitted, input/output takes place according to the
specification, and scanning of the FORMAT statement
resumes. If no items remain, transmission ceases and
execution of that particular input/oufput statement is
terminated. Thus, a numeric input/output operation
will be brought to an end when a specification for a
numeric field or the end of the FORMAT statement is en-
countered, and there are no items remaining in the list.

Data Input to the Object Program

Input data to be read when the object program is exe-
cuted must be in essentially the same format as given in

16

the previous examples. Thus, a card to be read accord-
ing to FORMAT (I2, E12.4, F10.4) might be punched:

27b —0.9321Eb02bbb —0.0076

Within each field, all information must appear at the
extreme right. Plus signs may be omitted or indicated
by a b (blank) or +. Blanks in numeric fields are
regarded as zeros, but zeros may not be substituted for
blanks. For example, a sign cannot be preceded by
zeros. Numbers for E-type and F-type conversion may
contain any number of digits, but only the high-order
f digits of accuracy are retained. Numbers for I-type
conversion may not contain more than k significant
digits.

To permit economy in punching, certain relaxations
in input data format are permitted.

1. Numbers for E-type conversion need not have four

columns devoted to the exponent field. The start
of the exponent field must be marked by an E,
or if the E is omitted, by a + or — (not by a
blank). Thus E2,E02, +2, 402, Eb02, and E +02
are all permissible exponent fields. Blanks are not
permitted between characters in the exponent
field except that a blank may be used in place of
a plus sign. Numbers for E-type conversion must
be right-justified in the data record field.

2. Numbers for E-type or F-type conversion need
not have their decimal points punched. If not
punched, the FORMAT specification will supply
them; for example, the number —09321 +2 with
the specification E12.4 will be treated as though
the decimal point has been punched between the
0 and the 9. If the decimal point is punched in
the card, its position overrides the indicated posi-
tion in the FORMAT specification.

Functions

Functions in the 1620 FORTRAN 11 System are divided
into three types. These are (1) Library functions, (2)

-Arithmetic Statement functions, and (3) FORTRAN

(subprogram) functions.

Library Functions

Seven library (closed) functions are included in the
FORTRAN 11 System, as distributed. These functions are:

NAME TYPE OF FUNCTION
LOGF Natural Logarithm
SINF Trigonometric Sine
COSF Trigonometric Cosine
EXPF Exponential
SQRTF Square Root
ATANF Arctangent
ABSF Absolute Value Function

Library functions are prewritten and exist in pre-
pared card decks. These functions constitute “closed”
subroutines; that is, instead of appearing in the object
program every time they are referred to in the source
program, they appear only once.

Library functions can be “called,” or used, by in-
cluding the name of the function in an arithmetic ex-
pression. The name is followed by an argument en-
closed in parentheses. The argument can be a variable
(subscripted or not subscripted), or an expression.

EXAMPLES

A = COSF (B)
A = SQRTF (BETA)
Y = A — SINF (B® SQRTF (C))

For the last example, the assembled instructions of the
object program will:
1. Branch to the square root subroutine to compute
the value of C.
2. Multiply the square root value of C (obtained
in Step 1) by B.
3. Branch to the sINF subroutine to compute the
sine of the value obtained from Step 2.
4. Subtract the value computed so far from the
variable A.
5. Replace the present value of the variable Y with
the value of the complete expression.

Only one value is produced by a given library func-
tion. The mode of a library subroutine is determined
by its argument.

EXAMPLES

COS (A)
ABSF (I)

floating point
fixed point

The relocatable library subroutines supplied with the
1620 rorTRAN 1 System, with the exception of Abso-
lute Value Function (assr), will not accept fixed point
arguments,

Approximation Methods and Estimated Errors
Results of the library subroutines are truncated, and,
in general, errors are no greater than one in the last
digit of the mantissa. Approximation methods and
estimated errors for functional subroutines are de-
scribed in greater detail in the following paragraphs.
1. Logarithm. The natural logarithm of the frac-
tional part of the positive argument is evaluated
by using a power series expansion. The exponent
of the argument is multiplied by In 10. The prod-
uct is added to the logarithm of the fraction, and
the sum is the logarithm of the argument. For

an argument with its value A in the range
99< A <1.01, the leading digits of its logarithm
will be zeros, and the result will contain less
than f significant digits because of normalization.
The maximum truncation error in the result is
+=10-1.

2. Exponential. The value of e*, where A is the value
of the argument, is calculated by using a series
approximation for 104, For |A| = 227.955924206. . .
an exponent overflow will result for A>0 or ex-
ponent underflow for A <0. The value of A is mul-
tiplied by log e and the product separated into
an integer and a fractional part. The integer be-
comes the exponent of the result and the fractional
part is used to produce its mantissa by series
approximation. If A is greater than zero, the maxi-
mum error in the result is =5 x 101,

3. Cosine-Sine. The cosine and sine functions of an
argument with value A in radians are computed
by using a series approximation for cosine A with
sine A = cosine (-lr-— A). The value A is re-

2
duced to within the range —% <A g% For

arguments with exponents less than 03, the mag-
nitude of the maximum truncation error in the
mantissa of the result does not exceed 10-f, Ac-
curacy in the mantissa of the result decreases as
the size of the argument (exponent 03 or greater)
increases.

4. Arctangent. The arctangent function of an argu-
ment with value A is evaluated by using a series
approximation. The result is given in radians.
The maximum trunction error in the mantissa
of the result is 10, except for results with an
exponent less than or equal to —2. The maximum
error for these results is =1 in the (f + 1) deci-
mal place.

5. Square Root. The square root is derived by the
odd integer method. The result is accurate to 1
in the last digit of the mantissa.

6. A ** B. AP is evaluated as EXPF (B*LOGF
(A)). Three subroutines, logarithm, multiply,
and exponential, are involved. An error in one
of these subroutines may propagate other errors
or increase the error in a succeeding subroutine.
Normally, the magnitude of the error does not
exceed 101,

Additional Library Functions

Up to 43 additional functions can be added to the
library of subroutines. The user must code the new
subroutine in 1620 sps language with the origin defined
at core location 10,000. The P and Q addresses of an

17

instruction which are relative to address 10,000 must
be indicated by placing flags over the O, and O, digits
(the Op code digits) respectively, so that these ad-
dresses can be modified properly when the subroutine
is relocated in storage.

When programming a subroutine with variable
length floating point numbers, it may be desirable to
use certain addresses and constants available in the
arithmetic and input/output subroutines. A reference
to the program listings of these subroutines will yield
the information on these addresses and constants.
As the mode of operation (fixed or floating point) is
determined by the argument of the subroutine, the
FORTRAN 11 compiler does not distinguish between
fixed point and floating point subroutines. It is up to
the user to have a thorough knowledge of the added
subroutines and to use them correctly.

Linkage
In an object program the linkage to the library sub-
routines is in the form,

BTM —SUBR, A for a normal variable
A, and

BT —SUBR,A if A isa parameter in
a subprogram

where suBr is the indirect address of the subroutine
entrance, and A is the address of the argument. The A
may or may not be in Fac.

It is imperative that space be provided at the end
of each subroutine for storing the 5-digit address of
the argument for the succeeding subroutine,

The total number of storage locations required must
be even. Therefore, if the subroutine ends with a
branch instruction (Op 49), then the instruction
should be counted as 12 digits long in calculating the
total length of the subroutine. If the subroutine ends
with a Branch Back (Op 42), the instruction should be
counted as at least 8 digits in length. In case the sub-
routine ends with a constant, then an additional 5 or 6
digits, depending on whether the constant has an even
or odd address, should be added to the length of the
subroutine.

For arithmetic and input/output subroutines, the
actual addresses of the subroutines are used in the
linkage.

Work Areas

In writing the subroutines, the programmer may first
move the argument into one of the work areas such
as FAC, BETA or SAVE. In arithmetic subroutines the ex-
ponent of a floating point result is usually stored in
savE before being moved to rac. A careful study of the
arithmetic subroutines may reveal that the relocatable

18

subroutine to be added can share the normalization,
sign determination, overflow, underflow, and error
typeout sections. The value calculated by the sub-
routine must be left in Fac. Even if no value is cal-
culated, it is advisable to place a constant in Fac.

The procedures to add a subroutine to the library
are described under ADDING LIBRARY SUBROUTINES.

Arithmetic Statement Functions

An arithmetic statement function is defined by a single
arithmetic statement and applies only to the program
in which it appears.

All arithmetic statements defining functions must

precede the first executable statement of the program.

The name assigned to an arithmetic statement func-

tion must conform the the following rules.

1. The name must consist of at least one, but not
more than six characters.

2. It must begin with an alphabetic character; nu-
meric and alphabetic characters may follow the
first character in any combination.

3. No special characters may be used.

The function name determines the mode of the value
that is computed; for example, if the function name be-
gins with I through N, the mode of the value will be
fixed point.

The function statement is defined as follows.

NAME (ARG) = E

where NAME is the name of the function; agrc is the
argument which consists of one or more non-sub-
scripted variables, separated by commas and enclosed
in parentheses; and Exp is an expression which con-
forms to the rules for forming expressions.

EXAMPLES

FIRST (X) =A*X + B
SECOND (X, B) = COS (X) * FIRST (B)

Any function name appearing in an expression must
have previously been defined in a preceding state-
ment.

The appearance of the name in an arithmetic state-
ment serves to call the function. The value of the func-
tion (a single numeric quantity) is then computed,
using the arguments which are supplied in the paren-
theses following the function name.

As many as desired of the variables appearing in
the expression on the right-hand side may be stated on
the left-hand side as arguments of the function. Since
the arguments are really only dummy variables, their
names are unimportant (except insofar as they indi-

cate fixed-point or floating-point mode) and they may
even be the same as names appearing elsewhere in the
program.

Those variables on the right-hand side which are
not stated as arguments are treated as parameters.
Thus, if FIrsT is defined in a function statement as
FiesT (X) = A * X + B, then a later reference to FirsT
(Y) will cause a y + b, based on the current values of
a, b, and y, to be computed. The naming of param-
eters, therefore, must follow the normal rules of
uniqueness.

The arguments of an arithmetic statement function
reference may be expressions and may involve sub-
scripted variables; thus, a reference to First (Z + Y (1)),
as a result of the previous definition of igst, will cause
a(z + yi) + b to be computed on the basis of the cur-
rent values of a, b, y; and z.

Functions defined by arithmetic statements are
always compiled as closed subroutines; that is, the
machine-language instructions are compiled only once
in the object program.

Dummy Variables Within an Arithmetic Statement Function

A variable appearing as a dummy argument within an
arithmetic statement function must not have been de-
fined previously except as a dummy argument in a pre-
vious arithmetic statement function. After the variable
is used as a dummy argument, it may appear elsewhere
in the program.

FORTRAN Functions

This class of functions covers subroutines that are not
utilized frequently enough to be library functions, yet
because of their size or complexity, they cannot be de-
fined in a single arithmetic statement.

FORTRAN functions are compiled separately, yet the
object program cannot be executed as an entity. For
execution, they must be loaded (to core storage) and
called by a main program. For this reason, FORTRAN
functions are termed subprograms.

Subprograms allow large problems to be defined as a
group of smaller problems, thus allowing several pro-
grammers to work concurrently in different areas of
the same program. Since each subprogram is compiled
separately, the arithmetic statement function name and
variable names used in ene subprogram are completely
independent of the function and variable names used
in the main program or other subprograms.

Subprograms are divided into two types: FUNCTION
subprograms, and suBrOUTINE subprograms. Four
statements, FUNCTION, SUBROUTINE, CALL, and RETURN
are necessary for their definition and use. These state-
ments are described later.

Although ruNcTION subprograms and SUBROUTINE
subprograms are treated together and may be viewed
as similar, they differ in two fundamental respects:

1. The ruNcrioN subprogram can compute only one
value, whereas the SUBROUTINE subprogram can
compute many values (and then return them to
the main program).

2. The runcrioN subprogram is called by an arith-
metic expression containing its name; the sus-
ROUTINE subprogram is called by the use of a caLL
statement.

In all respects, subprograms must conform to the
rules for FORTRAN 11 programming. They are usually
compiled separately; however, they can be compiled
together as described under BATCH COMPILATION.

FUNCTION Statement

"The FUNCTION statement, always first in a FUNCTION
subprogram, defines it as a FORTRAN FUNCTION sub-
program.

GENERAL FORM

FUNCTION Name (a;,as,...,8an)

where Name is the symbolic name of a single-valued
function, and each argument a,, a., . . ., a, (of which
there must be at least one) is a nonsubscripted variable
name. The function name consists of 1 to 6 alphabetic
or numeric characters, the first of which must be al-
phabetic.

EXAMPLES

FUNCTION ARCSN(RADS)
FUNCTION ROOT (B, A, C)
FUNCTION INTRT (RATE, YEARS)

In a FUNCTION subprogram, the name of the function
must appear either in an input statement list, or at least
once as the variable on the left-hand side of an arith-
metic statement. An example of the latter is:

FUNCTION NAME (A, B)

NAME = A + B

RETURN

The value of the function is returned to the calling
program. The mode of a FuNcriON subprogram is de-
termined by its name.

19

EXAMPLES

FUNCTION AMAST (A, K) Floating point
FUNCTION IAMAST (A, K) Fixed point

The arguments following the name in the FUNCTION
statement may be considered as “dummy” variable
names; that is, during object program execution, other
actual arguments are substituted for them. Therefore,
the arguments which follow the function reference in
the calling program must agree in number, order, and
mode with those in the runcTiON statement in the
subprogram. Furthermore, when a dummy argument
is an array name, the corresponding actual argument
must also be an array name. Each of these array names
must appear in similar prMENSION statements within
its respective program. None of the dummy variables
may appear in EQUIVALENCE statements in the
FUNCTION subprogram.

SUBROUTINE Statement

GENERAL FORM

SUBROUTINE Name (a;, as, ...,an)

where Name is the symbolic name of a subprogram,
and each argument, a,, a, . . ., a,, if any is specified,
is a nonsubscripted variable name. The name of the
subprogram consists of 1 to 6 alphabetic or numeric
characters, the first of which must be alphabetic.

EXAMPLES

SUBROUTINE MATMP (A, N, M, B, L, C)
SUBROUTINE QDRT (B, A, C, ROOT 1, ROOT 2)

The suBROUTINE statement, always first in a SUBROUTINE
subprogram, defines it as a SUBROUTINE subprogram. A
subprogram introduced by the sUBROUTINE statement
must be a FORTRAN program and may contain any
FORTRAN II statements except FUNCTION, or another
SUBROUTINE statement.

A SUBROUTINE subprogram must be referred to by
a CALL statement in the calling program. The caLL
statement specifies the name of the subprogram and
its arguments,

Unlike the runcrion subprogram which results in
the calculation of only a single numeric value, the
SUBROUTINE subprogram uses one or more of its argu-
ments to return results. Therefore, the arguments so
used must appear on the left side of an arithmetic
statement in the subprogram (or alternately, in an
input statement list within the subprogram).

20

The arguments of the sUBROUTINE statements are
dummy names that are replaced, at the time of execu-
tion, by the actual arguments supplied in the carL
statement. There must, therefore, be correspondence
in number, order, and mode, between the two sets of
arguments. Furthermore, when a dummy argument is
an array name, the corresponding actual argument
must also be an array name. Each of these array names
must appear in similar DIMENSION statements within
its respective program.

For example, the subprogram headed by
SUBROUTINE MATMP (A, N, M, B, L, C)

could be called by the main program through the

CALL statement
CALL MATMP (X,5,10,Y,7,Z)

where dummy variables, A, B, C, are the names of
matrices. A, B, C must appear in a DIMENSION state-
ment in subprogram MATMP, and X, Y, Z must appear
in a DIMENSION statement in the calling program. The
dimensions assigned must be the same in both state-
ments.

None of the dummy variables may appear in
EQUIVALENCE statements in the SUBROUTINE subpro-
grams. These subprograms may be independently com-
piled or used in a multiple compilation with others
(see BATCH COMPILATION).

CALL Statement

The carL statement refers only to the SUBROUTINE sub-
program, whereas the RETURN statement (described
later) is used by both the FuNcrioN and SUBROUTINE
subprograms.

GENERAL FORM

CALL Name (ay, as, . . ., an)

where Name is the name of a suBROUTINE subprogram,
and a,, a,, . . ., a, are the arguments.

EXAMPLES

CALL MATMP (X, 5,10,Y,7,Z)
CALL QDRT (P®9.732, Q/4.536, R —S* 2.0, X1, X2)

This statement is used to call suBrOUTINE subpro-
grams; the caLL transfers control to the subprogram
and presents it with the parenthesized arguments.
Each argument must be one of the following types:

1. Fixed point constant.

2. Floating point constant.

3. Fixed point variable, with or without subscripts.

4. Floating point variable, with or without sub-
scripts.

5. Arithmetic expression.

The arguments presented by the caLL statement
must agree in number, order, mode, and array size
with the corresponding arguments in the SUBROUTINE
statement of the called subprogram, and none of the
arguments may have the same name as the SUBROUTINE
subprogram being called.

RETURN Statement

EXAMPLE

RETURN

This statement terminates any subprogram of the type
headed by either a SUBROUTINE or a FUNCTION state-
ment, and returns control to the calling program. A
RETURN statement must, therefore, be the last executed
statement of the subprogram. It need not be the last
statement of the subprogram physically, but can be
any point reached by a path of control. Any number
of RETURN statements may be used.

21

Compilation Process

The process of compiling a FORTRAN 11 program is di-
vided into two passes or machine runs. The first pass
uses one deck (Pass I deck) of the compiler to proc-
ess source statements and to produce an intermediate
output. The second pass utilizes a second deck (Pass
IIdeck) of the compiler and the intermediate output
from Pass I to produce the object program and its
loader.

Subroutines may be included in the object deck or
loaded separately at object time. If any subprograms
are to be included, they are loaded at object time when
they are called for by the main program.

Norte: If compilation is being done on a 1620 Model 2,
the indexing feature must be in the “no band” mode.

Arithmetic and Input/Output Subroutines

The arithmetic and input/output subroutines, includ-
ing constants and work storage, are basic routines
needed for the proper execution of the object program.
They are loaded without being specifically called for

by the object program, and are stored in locations.

00402 through 10999 at object time. Besides perform-
ing the fundamental tasks of adding, subtracting, etc.,
these routines also perform some diagnostic testing on
the data being manipulated.

The arithmetic and input/output subroutines avail-
able with rorTRAN 11 are shown in Table 1. By re-
ferring to the symbolic names for the subroutines in
the listing, their equivalent absolute addresses can be
found.

Pass |

Compiler Deck
The composition of the Pass I compiler deck is shown
below.

Card Numbers (columns 76-80)
00001-00009 Loader

00010-00413 Pass I compiler program
02000-02005 Multiply-Add tables
03000 Library subroutine count and

names of library subroutines

Operating Procedures
The sequence of operations required to process a
source program is as follows:

1. Set the Program switches for Pass I compilation
(see Table 2).

22

Table 1. Arithmetic and Input/Output Subroutines

Subroutine Symbolic Nome Operation

Floating Point Arithmetic

Add FAD FAC + A — FAC
Subtract FSB FAC - A — FAC
Reverse Subtract FSBR A - FAC — FAC
Multiply FMP FAC x A —= FAC
Divide FDV FAC / A — FAC
Reverse Divide FDVR A / FAC — FAC
Set FAC to zero ZERFAC 00— FAC

Fixed Point Arithmetic

Add FXA FAC + 1 —= FAC
Subtract FXS FAC - I — FAC
Reverse Subtract FXSR [- FAC —» FAC
Multiply FXM FAC x I —»FAC
Divide FXD FAC /1 —»FAC
Reverse Divide FXDR 1/ FAC —»FAC

Common Subroutines

A —=FAC or I —=FAC

Load FAC TOFAC
Store FAC FMFAC FAC —=A or FAC -]
Reverse Sign of FAC RSGN - FAC —=FAC

FIX (FAC) =FAC

Fix a Floating Point Number | FIX
FLOAT (FAC) -»FAC

Float a Fixed Point Number | FLOAT

Exponentiation

Fixed Point J ** | FIXI FAC ** | —==FAC

Floating Point A ** (£I) FAXI FAC ** (I)—=FAC

Floating Point A ** (+B) FAXB FAC ** (£B)—FAC
Input/Output

Read Card RACD

Read Tape RAPT

Read Typewriter RATY

Write Card WACD

Write Tape WAPT

Write Typewriter WATY

FAC - simulated accumulator
A &B - floating point variables
18&J - fixed point variables
—> - storein

2. Set the Overflow Check switch to PrRoGRAM and

all other Check switches to stop.

. Press the Reset key.

4. Ready the card punch by loading blank cards into
the punch hopper and pressing the Punch Start
key.

5. Load Pass I of the compiler program by placing
the deck in the read hopper and pressing the
Load key. The cards are punched with sequence
numbers in columns 76-80 and must be loaded in
sequence. When the Pass I deck is successfully
loaded, the console typewriter types out the fol-
lowing instruction,

w

ENTER SOURCE PROGRAM, PRESS START

and the 1620 halts.

Table 2. Program Switch Settings for Passes I and I1

PASS |
Switch

PASS 11

ON OFF

ON

OFF

1 Source statements are listed as Source statements are not

they are processed. listed.

Source statement errors are
listed in the form SSSS +
CCCC ERROR n. *

Source statement errors are listed in
the form ERROR n.*

At end of pass, symbol table is listed Symbol toble is not listed.

out.

Statement numbers and addresses
are listed.

At the end of Pass i, subroutines
are punched into object deck.

Statement numbers and addresses
are not listed.

At the end of Pass |, subroutines
are not punched into object deck.

2 Enables batch compilation. No batch compilation.

Not used.

Not used.

3 Source statements are entered ot the Source program is entered

console typewriter. from card reader.

A trace instruction is compiled to
trace the value of the expression
generated in an IF statement. An
additional instruction is generated
in the object program for every IF
statement .

Trace instructions for IF statements

are not compiled.

4 Errors made while typing source state~
ments can be corrected by

a. turning on switch 4, c. turning off switch 4
b. pressing the Release l d. retyping statement.
and Start keys,

Trace instructions for arithmetic
statements are compiled but no
additional instructions are gener-
ated.

Trace instructions for arithmetic

statements are not compiled.

* See description under Errors in Source Program

6. Enter the source program statements through
either the card reader or the console typewriter. If
source statements are entered via the typewriter,
each statement must be terminated by a record
mark. A statement of up to 330 characters may
be typed with no intervening punctuation, spac-
ing, etc. Normally, card format need not be fol-
lowed; however, in the case of a comment state-
ment, the C must be followed by at least two
blanks before the comment is typed. If the oper-
ator wishes to compile the program with f (float-
ing point word length) and k (fixed point word
length) not equal to 8 and 5, respectively, he
should follow the procedure outlined under source
PROGRAM CONTROL CARD.

Pass | Compiler Loading Errors

Sequence Errors. The Pass I deck of the compiler will
not load if any of the first nine cards (loader) are out
of sequence. If a sequence error is found, it must be
corrected and the deck reloaded.

Following the loader, the cards numbered 00010
through 02000 are sequence-checked. If any of these
cards are not in sequence, the message,

CARD OUT OF SEQUENCE

is typed. The card read out of sequence will be the
second one from the back in the reader stacker. To
restart,

1. Remove the cards remaining in the hopper.

2. Press the Nonprocess Runout key.

3. Remove the last two cards from the stacker.

4. Arrange the cards (gathered in 1, 2, 3 above, in
proper sequence and press the Reader Start and
Start keys.

Library Function Declaration Errors. After the main
body of the Pass I deck is loaded, the program
reads in the library function declaration card(s) at
the end of the deck. If the message,

LIBRARY FUNCTION DECLARATION ERROR

is typed, it signifies that one of the following error

conditions has been detected.

1. Library function declaration cards are out of se-
quence.

2. More than 50 library functions have been declared.

3. Library function name has more than 6 alphameric
characters.

4. Library function name does not begin with an
alphabetic character.

To restart after any one of these conditions occurs,

a. Remove the library function declaration cards
from reader (first function card will be num-
bered 03000).

b. Correct the error.

c. Reload function cards.

d. Press the Reader Start and Start keys.

23

Entering the Source Program
The form of the source program can be either a punched
deck or a list of statements to be typed in at the console
typewriter. This entry option is exercised by position-
ing Program Switch 3 as follows:

1. Card input — Switch 3 off

2. Typewriter input — Switch 3 on

When typewriter input is selected, the compiler
transfers control to the 1620 console to await typing
of the first statement. Each typed statement must ter-
minate with a record mark. After a statement is typed,
the operator should press the Release and Start keys
to process that statement. As soon as the statement is
processed, the carriage returns to await entry of the
next statement. After an ExD statement (the last state-
ment of a source program) is processed and provided
there have been no Type 1 errors (see Table 3), the
message,

TURN SW 1 ON FOR SYMBOL TABLE, PRESS START

is typed on the console typewriter. If the operator does
not want a symbol table listing, he should ascertain
that Switch 1 is off, and press the Start key. The
message,

END OF PASS 1

will then be typed. If a symbol table listing is re-
quested, this message is typed following the listing.

Page Heading Card

The source program may be preceded by an identifi-
cation card containing the following information.

Columns 1-2 ww
Columns 3-72 Identification data

If Switch 1 is on, the identification data will be typed
out as a heading at the start of Pass I, at the start of
the symbol table, and at the start of Pass II. This data
will be typed out at the start of Pass I, regardless of
the switch setting, if a source program control card is
used.

The page heading card is punched out as the first
card of the intermediate output and as the first card of
the object deck. The first card of the intermediate out-
put and the first card of the object program will be
blank if the page heading card is omitted from the
source program. Record marks and group marks
should not be present in the card.

Source Program Control Card

The compiler will process an object program with a
floating point mantissa length (f) of 8 digits and a
fixed point word length (k) of 5 digits and assume the

24

object machine has the same size core storage. The
operator may vary these by using a control card. The
control card must precede the source program, and
follow the page heading card if one is present. The
card should have the following format,

Column 1 * (asterisk)
Columns 2-3 ff

Columns 4-5 kk

Column 6 s

Columns 7-89 Not used

where ff is the floating point mantissa, kk is the fixed
point word length, and s is the object machine core
size (s = 2, 4, or 6 for 20,000, 40,000, or 60,000 posi-
tions).

If entry is from the typewriter, the following config-
uration should be typed preceding the source program.

*ffkks

If s is left blank, the compiler assumes the object and
source machines to be the same size. The range of f
is 2 through 28; of k, 4 through 10. If either f or k is
out of the prescribed range, the message,

ERROR, F OR K OUTSIDE RANGE

is typed. To restart, replace the control card with a
correct card and press the Reader Start key. If entry is
from the typewriter, press starrt, type the correct
values, and press the Release and Start key.

No correlation is necessary between f and k unless
there is equivalence between fixed and floating point
variables, in which case k must equal f + 2.

Errors in the Source Program

During compilation of Pass I, a number of tests are
made foy source program errors. If an error is found in
a source statement and Switch 1 is on, a message in the
form,

ERROR N

is printed, where n is the error code (see Table 3). If
Switch 1 is off, the error message is in the form,

§SSS - CCCC ERROR N

where ssss is the last statement number encountered
by the program prior to the error, and cccc —1 is
a count of how many statements lie between the last
numbered statement and the statement in error. For
example,

509 +12

means the twelfth statement following the statement
numbered 509. If an error occurs before a statement
number is encountered, ssss will be blank. Comment

Table 3. Source Program Errors

TYPE 1: Compilation continues but punching of intermediate output is stopped. Only one error of this type is detected in any one statement.

Error No. Condition

1 Undeterminable, misspelled, or incorrectly
formed statement .

2 Syntax emor in a nonarithmetic statement
(exception: DO statements).

3 Dimensioned variable used improperly,
i.e., without subscripting; or subscripting
appears on a variable not previously
dimensioned.

4 Symbol table full (processing may not be
continued).

5 Incorrect subscript.

6 Same statement number assigned to more
than one statement.

7 Control transferred to FORMAT statement .

8 Variable name greater than 6 alphameric
characters.

9 Variable name used both as a nondimensioned
variable name and as a Subroutine or Function
name.

10 Invalid variable within an EQUIVALENCE
statement.

2] Subroutine or Function name or dummy var=
iable used in an EQUIVALENCE state-
ment (subprogram only).

12 k not equal to f + 2 for equivalence of
fixed point fo floating point variables.

13 Within an Equivalence list, placement of
two variables previously in Common, or one
variable previously equivalenced and
another either equivalenced or placed in
Common.

14 Sense switch number missing in an IF
(Sense Switch n) statement.

15 Statement number or numbers missing,
not separated by commas, or nonnumeric
in a transfer statement.

16 Index of a computed GO TO missing,
invalid, or not preceded by a comma.

17 Fixed point number greater than k digits.

18 Invalid floating point number.

19 incorrect subscripting within a DIMENSION
statement.

20 First character of a name not alphabetic.

TYPE 2. Both compilation and the punching of intermediate output continue.
Error No. Condition

51 DO loop ended with a transfer statement.

52 No statement number for next executable
statement following a tronsfer statement.

53 Improperly ended nonarithmetic statement.

54 Unnumbered CONTINUE statement.

55 Number of Common addresses assigned in
excess of storage capocity becouse of
Equivalence. See note ot end of Table.

Error No. Condition

21 Variable within a DIMENSION statement
previously used as a nondimensioned
variable, or previously dimensioned,or
used os a Subroutine or Function name.

22 Dimensioned variable used within an
arithmetic statement function.

23 More than four continuation cards.

24 Statement number in a DO statement
appeared in a previous statement.

25 Syntax error in a DO statement.

26 FORMAT number missing in an input/
output statement.

27 Statement number in an input/output
statement appeared previously on a state-
ment other than a FORMAT statement, or
a number on a FORMAT statement appeared
in other than an input/output statement.

28 Syntax ervor in input/output list,or an
invalid list element.

29 Syntax error in CALL statement, or an
invalid argument.

30 SUBROUTINE or FUNCTION statement
not the first statement in a subprogram.

31 Syntax error or invalid parameter in a
SUBROUTINE or FUNCTION statement.

32 Syntax emor or invalid variable ina
COMMON statement.

33 Variable in a Common list previously
ploced in Common or previously equivalenced.

34 Function name appeared to the left
of an equal sign or input/output
statement.

35 Syntax eror in FORMAT statement, or
invalid FORMAT specifications.

36 Invalid expression to the left of an equal
sign in an arithmetic expression.

37 Arithmetic statement function preceded
by the first executable statement.

38 Invalid expression in an IF or CALL state-
ment, or invalid expression to the right of
an equal sign in an arithmetic statement.

39 Unbalanced parenthesis.

40 Invalid argument used in calling an
Arithmetic statement function or Function
subprogram .

Error No. Condition

56 Statement number or subscript greater than
9999 (only first 4 significant digits are
retained).

57 RETURN statement appeared in program
other than a subprogram (statement ignored).

58 RETURN statement not contained in a Sub—

routine or Function subprogram.

NOTE: Error 55 is not detected if Type 1 errors occur during compilation.

25

cards, blank cards, and continuation cards are not in-
cluded in the statement count, If a statement number
is not defined, the message,

STATEMENT NUMBER SSSS UNDEFINED

is printed, where ssss is the undefined statement num-
ber.

Pass Ii

Compiler Deck
The composition of the Pass II compiler deck is as
follows.

Card Numbers (columns 76-80)

04001-04009 Loader
04010-04493 Pass II compiler program
05000-05005 Multiply-Add tables

Operating Procedures

1. Set the Console Program switches for Pass II
(Table 2).

2. Set the Overflow Check switch to PRoGRAM, and
all other check switches to stop.

3. Press the Reset key.

4. Ready the card punch by loading blank cards
into the punch hopper and pressing the Punch
Start key.

5. Load the Pass II deck of the compiler by placing
the deck in the reader hopper and pressing the
Load key. The deck should be in proper se-
quence; only cards 04010 through 05000, however,
are sequence-checked by the compiler. If any of
these cards is not in sequence, the error message,

CARD OUT OF SEQUENCE

is typed. For restart procedures, refer to pass 1
COMPILER LOADING ERRORS. When the deck has
been successfully loaded the computer will come
to a programmed halt.

6. Place the intermediate output from Pass I into the
reader hopper.
7. Press the Reader Start and Start keys.

Processing the Intermediate Output

The page heading card punched during Pass I must be
the first card read by Pass II. As the intermediate
output is being read, the card numbers (columns 77
through 80) are tested for proper sequence. In the
mainline program, the number starts with 0001; in

26

subprograms, 0000. If the cards are not in sequence,
the message,

CARDS NOT IN ORDER

is typed and the machine halts,

To restart,

1. Remove the last two cards from the reader stacker.

2. Remove the cards that remain in the reader
hopper.

3. Press the Nonprocess Runout key.

4. Arrange cards (from 1, 2, 3 above) in proper
sequence, load them in the reader, and press the
Reader Start and Start keys.

Overlap. During processing of the intermediate out-
put, a test is made to determine whether the com-
piled object program (not including relocatable
library subroutines), together with the required
data, will occupy more core storage than is avail-
able. If this condition is found to exist, the message,

XXXX OVERLAP

is typed immediately after the processing of the state-
ment which caused the overlap. Here Xxxx is the
relative number of the statement within the pro-
gram not counting storage allocation statements,
comments, or blank cards. For example, if Xxxx is
0050, then the overlap is caused by the fiftieth state-
ment in the program.
If an overlap exists, the message,

OVERLAP NNNNN

is typed at the end of the compilation; NNNNN
being the total number of core storage positions
overlapped.

Subroutines

If a mainline program (not a subprogram) is being
compiled, the message,

SW 1 ON TO PUNCH SUBROUTINES, PRESS START

will be typed after all intermediate output has been
processed. If the subroutines are to be included in
the object deck, the operator must

1. Turn on Program Switch 1.

2. Load the subroutine deck.

3. Press the Reader Start and Start keys.

If the subroutine deck is to be read in when the
object program is executed, Switch 1 should be turned
off and the Start key pressed. When processing is com-
pleted, the message,

END OF PASS II

is typed.

When the subroutines are reproduced for inclusion
in the object deck, the following error messages may
occur:

SUBROUTINE OVERLAP XXXXX

_ If a subroutine being punched overlaps the available
space, further punching of that subroutine and succeed-
ing called-for subroutines ceases. However, a total count
of the overlapped locations of all subroutines is stored
and printed out with the message.

LIBRARY SUBROUTINE MISSING
If one or more subroutines is missing, the 1620 will
halt to allow corrective action. Proceed as follows:

1. Remove the last two cards from the reader stacker.

2. Remove the deck from the reader hopper.

3. Run out the two cards in the reader.

4. Arrange the cards (from 1, 2, 3 above) in proper
sequence.

5. Place the required relocatable subroutines ahead
of the deck.

6. Place the deck back into the reader hopper and
press the Reader Start and Start keys.

If the operator does not know which subroutine(s)
is missing, he may print out storage locations 00415-
00464 at the console typewriter. If the nth digit(s)
is a 1 (one), the subroutine(s) numbered n was called
but not loaded.

MISSING HEADER CARD

If the subroutine header card is missing, follow
Steps 1, 2, 3, as outlined for LIBRARY SUBROUTINE MISS-
ING, then

4. Arrange the cards in proper sequence and ascer-

tain that the first card is a header card.

5. Place the deck back into the reader hopper and

press the Reader Start and Start keys.

At the end of Pass II, the messages,

XXXXX LENGTH
YYYYY NEXT COMMON

are printed, where xxxxx is the number of core positions
the object program requires (mainline program length
includes length of Arithmetic and 1/0 subroutines),
and vyyyy is the next available core storage position of
the comMoN area(yyyyy + 1is the last reserved position
of comMoN).

Errors in the Source Program

During compilation of the intermediate output, some
diagnostics are performed which were not performed

during Pass I. If an error is detected, an error message
in one of the following forms is printed.

XXXX SYMBOL TABLE FULL
XXXX IMPROPER DO NESTING
XXXX MIXED MODE

XXXX DO TABLE FULL

Here, xxxx is the relative number of the statement
within the program, not counting storage allocation
statements, comments, or blank cards. The number
xxxx does not correlate with any actual statement
number.

If an IMPROPER DO NESTING Or MIXED MODE €rror is
detected, compilation continues; however, the output
will not be usable. If the message, SYMBOL TABLE FULL,
is printed (due to too many symbols), compilation
stops. The po TABLE FULL message appears when more
than 29 po statements are nested; compilation does
not continue.

Batch Compilation

Batch compilation is a method by which several inputs
can be processed and the output obtained without
reloading the compiler program.

1620 rortraAN 1 allows batch compiling for both
Pass I and Pass II.

Pass |
To batch-compile for Pass I, proceed as follows:

1. Remove intermediate output from the punch
hopper after the message END OF Pass 1 has been
typed.

2. Turn on Program Switch 2. (Program Switch 2
may be turned on at any time during Pass I.)

3. Press the Punch Start key on the card punch and
press the 1620 Start key. This will cause a symbol
table deck containing a 3-digit sequence number
in columns 78 through 80 (numbering starts
with 101) to be punched out.

4. After the necessary initialization is done, the
following message is typed:

ENTER SOURCE PROGRAM, PRESS START

Set the program switches as desired and proceed
to enter the source statements,

Pass I
To batch-compile for Pass II, proceed as follows:

1. Place deck containing symbol table between the
page heading card and the remainder of the
intermediate output deck from Pass I, and load
both into the card reader.

27

28

2. Press the Reader Start key.

3. After the output is obtained, load another inter-
mediate output with its page heading card and
symbol table and press the Reader Start key.

If the operator wishes, he may load a series of

decks on top of each other, taking care to keep
respective symbol tables between the page head-

. ing card and the intermediate decks. The output

will be one composite deck which will have to
be separated manually.

Description

A 1620 rorTraN 1 object program will most likely
consist of two parts: a mainline program and a group
of subprograms. Although these two segments are
similar in most respects, they will be described sep-
arately to show their relative position in, and im-
portance to, the over-all objective.

Discussion of subroutines in this section will be
limited to the way they affect the loading of the
object program.

Mainline Program

As the name implies, a mainline program exercises
control over the entire object program. In addition to
the normal execution of instructions, it has the ability
to call subprograms and subroutines when they are
needed.

Makeup. The mainline program is comprised of three
segments:

1. Loader (cards 000001 -000035). Located at the
beginning of the object deck, this loader is used
for loading both the mainline program and any
subprograms that are called._

9. Communication card (card 000036).

This card contains:

Columns 1-2 Value of f.
Columns 3-4 Value of k.
Columns 5-9 Address of first instruction in

the object program.
Next available address in the
Common area.

It is loaded into locations 00401 - 00414.

3. Object program (card 000037 to end of deck).
FORTRAN T employs five different types of cards
in the mainline object deck. The cards are identi-
fied by the character punched in column 62, as
follows:

Columns 10-14

0 Instructions. One to five relocatable in-
structions are contained in columns 1-60
of an instruction card. The P or Q fields
of the instructions are modified for relo-
cation depending upon whether a flag is
present over the O, (for P) or O, (for Q)
position of the operation code. The load-

Object Program

ing addresses are punched in columns 65-
69 and 70-74.

1 Constant. Only the loading addresses are
modified.

0 Relative addresses. One to twelve relo-
catable 5-digit addresses are contained
in columns 1-60 of this card. As in a con-
stant card, the loading addresses of this
card are also modified.

1 Nonrelocatable constants. This card con-
tains constants which are not relocatable;
hence the loading address are not modified.

=+ Subprogram calling card. The name in
numeric representation of the subprogram
being called is right-justified in columns
1-12. The address where the starting ad-
dress of the subprogram (after relocation)
is to be placed is contained in columns

13-17.
The loading addresses in each card are as follows.

Columns 65-69 leftmost address where instructions
or constants will be loaded.

Columns 70-74 rightmost address plus one, where
instructions or constants will be

loaded.

A card containing a 1 in column 63 indicates to the
loader the end of the mainline program or subprogram.

Subprograms

Subprograms are compiled in the same manner as
mainline programs, except they do not have their
own loader. Therefore they can be loaded only when
called for by a mainline program or another subpro-
gram.

Makeup. A subprogram is made up of a header card
and a number of program cards. The header card
contains:

Columns 1-12 Subprogram name, right-justified, in
numeric representation,

Columns 21-22 Value of f (floating point mantissa

length).

Columns 23-24 Value of k (fixed point word
length).

Column 63 Record mark (identifies header
card).

29

The subprogram cards have the same format as de-
scribed for mainline program cards 37 and up.

Library Subroutines

If the subroutine deck was processed at compilation
time, then the subroutine loader, any relocatable sub-
routines used by the object program, and the arith-
metic and input/output subroutines are already a part
of the object deck. If not, they will have to be loaded
after the mainline program and the subprograms are
loaded (see LOADING LIBRARY SUBROUTINES).

Makeup. The subroutine deck is composed of cards
containing the following information.
For users without the Automatic Floating Point
Operations feature:

Card Numbers Storage Locations
(columns 75-80) Routine Required
009970-009991 Loader None
010001-010017 LOGF 848
020001-020025 EXPF 1132
030001-030019 COSF-SINF 882
050001-050026 ATANF 1256
060001-060011 SQRTF 536
070001-070004 ABSF 82
510001-510228 Arithmetic and 11000

Input/Output
subroutines

510229-510255 *Modifier cards None
510256 Trailer card None

For users with the Automatic Floating Point Opera-

tions feature:

Card Numbers Routine Required
009970-009991 Loader None
010001-010016 LOGF 824
020001-020024 EXPF 1108
030001-030018 COSF-SINF 846
050001-050026 ATANF 1232
060001-060011 SQRTF 536
070001-070003 ABSF 58
510001-510212 Arithmetic and 11000

Input/Output

subroutines
510213-510240 *Modifier cards None
510241 Trailer card None

Execution of the Object Program

Loading the Mainline Program

To load the mainline program,

1. Remove the first card of the object deck. (This is

the page heading card.)

2. Place the mainline object deck into the card

reader.

*The modifier cards alter the subroutines to accommodate the
word length being used in the object program.

30

Storage Locations

3. Set the Overflow switch to PROGRAM.
4. Set the Check switches to sTop.

5. Press the Reset key.
6. Press the Load key on the card reader.

Loading Subprograms

Subprograms are normally loaded directly back of the
mainline program. The first card of the subprogram
object deck is the page heading card which must be
removed before the subprogram is loaded. If subpro-
grams are called by the mainline program and have
not yet been loaded, a printout will remind the oper-
ator to load subprograms (see ERROR MESsAGEs for
Loading Object Programs).

Nore: If library subroutines were included in the ob-
ject deck at compilation time, they must be separated
from the mainline program before the subprograms
are loaded. The procedure is:
1. Search object deck for beginning of library sub-
routines (card number 009970),
2. Place subprograms between the mainline pro-
gram and the subroutines.

3. Place the deck into the reader hopper.
4. Press Load key on the card reader.

Loading Library Subroutines

After all subprograms are loaded, the typewriter types
out the message,
LOAD SUBROUTINES

and the 1620 halts. If subroutines were processed at
compilation time, the operator need only press the
Start key to continue. However, if the subroutines
were not previously processed, he must:

1. Place the subroutine deck into the card reader.
2. Press the Load key on the reader, or press the
Reader Start and Start keys.
When the subroutines have been processed, the
message,
ENTER DATA

is typed, and the machine halts.

After the data is entered, the operator presses the
Start key to initiate execution of the object program.

Entering Input Data from the Typewriter

With each execution of an AccepT statement, the type-
writer carriage returns, signaling the operator to type
the input quantities corresponding to the variables
in the acceprt statement list. Should the operator com-
mit a typing error during console entry of data, he
may recover by:

1. Turning on Program Switch 4,
2. Pressing the Release and Start keys,
3. Turning off Program Switch 4, and
4. Re-entering the complete record of data.
This process may be repeated as often as necessary.

Trace Feature

Under program switch control, instructions are com-
piled into the object program, enabling the operator to
trace the flow of the program for checking purposes.
Program Switch 4 controls the trace feature and oper-
ates as follows:

ON OFF

Trace instructions
are not executed,

Switch 4 Compiled trace
instructions are
executed.

The trace output provided contains the value of the
left-hand side of each executed arithmetic statement,
and the value of the expression calculated in an 1r
statement (if trace instructions for 1 statements were
compiled). Normal output resulting from puUNCH,
PUNCH TAPE, PRINT, and TYPE statements is not in-
hibited. The output format of the trace data, printed
at the left margin, is the same as that carried in-
ternally in the object program.

Note that Program Switch 4 serves a dual control
function during execution of the object program:
(1) the provision of trace data (2) the correction of
input data erroneously entered at the console key-
board. Thus, when the machine is in the trace mode,
the operator should turn off Switch 4 before typing
input data. Following the last entry of the list, the
operator should:

1. Press the Release key.

2. Press the sie key two or three times.

3. Turn on Switch 4.

4. Press the Start key.

Care should also be exercised when using 1¥ (Sense
Switch 4) statements in a source program,

Error Messages

Loading Object Programs
1. Except for the first six cards in the object pro-
gram deck, the card sequence number punched
in columns 75-80 is checked during loading. If
a card is out of sequence, the message,

CARD OUT OF SEQUENCE

is typed on the console typewriter and the load-
ing process is halted.

To resume loading:

a. Remove the last two cards from the reader
stacker.

b. Remove the deck from the reader hopper.

c. Run out the two cards in the reader,

d. Arrange the cards in proper sequence (from
a, b, ¢ above).

e. Place the deck back into the reader hopper.

f. Press the Reader Start and Start keys.

. A table of 100 entries is provided for storing in-

formation concerning the calling of subprograms.
If more than 100 subprograms are called during
the loading of the main object program, the mes-
sage,

SUBPROGRAM TABLE FULL

is typed and loading is halted. The rest of the
program cannot be loaded until two constants
in the loading program are modified. After the
constants are modified, the entire object program
should be reloaded.

The constants are located in columns 56-58 of
Card 000007 and columns 8-10 of Card 000015.
Both have the value 101 for 100 table entries and
can be changed to any number not greater than
400. This limit is imposed for the following reasons:

a. The table area starts at location 04001.

b. Each table entry occupies 20 digits of stor-

age.

c. The main object program, including data and

constants, starts at location 11000.

. Each subprogram has a header card as the first

card, and a trailer card as the last card of the
object deck. If another header card appears be-
tween these two cards, the message:

EXTRA HEADER CARD

is printed and loading is halted.

To resume loading, follow the same procedures
as described for carp ouT OF SEQUENCE with one
exception; i.e., discard the second card (record
mark, 0-2-8, in column 63) that was removed
from the stacker. As in the previous procedure
it is essential that the remaining partial deck be
loaded in sequence.

. The second card in a subprogram object deck

must be an instruction card punched with a 0
(zero) in column 62. The message,

INSTRUCTION CARD MISSING

appears only when this card has the correct se-
quence number (000002) but does not have a
zero punched in column 62.

31

32

Reloading is possible by following the same
procedures outlined for caRD OUT OF SEQUENCE
and ascertaining that the card with the number
000002 is an instruction card.

. The header card of a subprogram deck contains

the lengths of floating point mantissa (f) and
fixed point integers (k) in columns 21-22 and
23-24, respectively. If the subprogram is called,
these lengths are compared with the correspond-
ing f and k values in the main program. Both
values must agree or the message,

SUBPROGRAM HAS DIFFERENT F OR K

is printed and loading stops.
To resume loading, follow the procedures be-

low:

Remove the last two cards from the reader

stacker.

b. Remove the deck from the reader hopper.

. Press the Nonprocess Runout key.

d. Remove the deck that did not compare and
replace it with the correct deck.

e. Place the entire deck back into the reader
hopper.

f. Press the Reader Start and Start keys.

o

o

. After the object program is completely loaded,

the names of subprograms called but not loaded
are typed, followed by the message,

READ SUBPROGRAMS NAMED ABOVE

Since it is possible for one subprogram to call
another, the deck of subprograms may be so
arranged that several loading passes are neces-
sary to place all called subprograms into core stor-
age. For example, if the main program calls for
subprogram A and this subprogram in turn calls
for subprogram B, and B precedes A in the deck,
then subprogram B is bypassed the first time.
After loading subprogram A, subprogram B must
be reloaded. The programmer can eliminate
these multiple passes by properly arranging the
deck of subprograms.

When the message is printed, the operator
must:

a. Press the Nonprocess Runout key.

b. Place the required subprograms(s) into the

hopper.
c. Preds the Reader Start and Start keys.

. If a non-blank card is read after the trailer card

of an object program (mainline or subprogram),
the message,

EXTRA CARD AT END OF DECK

is typed and the 1620 halts.

Remove the extra card from the reader stacker
and run out the cards in the reader. Examine the
deck to assure its correctness, and replace it into
the hopper. Resume loading by pressing the
Reader Start and Start keys.

Loading Library Subroutines
1. During loading, the sequence numbers of all re-

locatable subroutines are checked; the subrou-
tine loader is not sequence-checked. If a card is
out of sequence, the message,

CARD OUT OF SEQUENCE

is typed and the loading process is halted.

To resume loading:

a. Remove the last two cards from the reader

stacker.

b. Remove the deck from the reader hopper.

c. Run out the two cards in the reader.

d. Arrange the cards (from a, b, ¢ above) in
proper sequence.
Place the deck back into the reader hopper.

f. Press the Reader Start and Start keys.

The cards for the arithmetic and input/output
subroutines are not checked for proper sequence
because of storage limitations.

o

. The message,

SUBROUTINE HEADER MISSING

appears if the twenty-third card in the library
subroutine deck is not a header card.
To resume loading:
a. Remove the last two cards from the reader
stacker.

. Remove the deck from the reader hopper.

. Run out the two cards in the reader.

. Arrange the cards (from a, b, ¢ above) in
proper sequence and ascertain that the first
card is a header card (identified by a 0-2-8
punch in column 63).

e. Place the deck back into the reader hopper.

f. Press the Reader Start and Start keys.

[P el

. When all the selected relocatable subroutines in

the deck have been loaded, a check is made to
determine if any required subroutines have not
been loaded. If one or more of these subroutines
is missing, the message,

LIBRARY SUBROUTINE MISSING

is printed, and the loading process is halted.
The operator can determine which subrou-

tine(s) is missing by comparing his program re-

quirements with the subroutine deck. An easier

method is to print out storage locations 00415 -
00464 (fifty digits) by inserting:

38 00415 00100
48 00000 00000
41

at the console typewriter. If the nth digit(s) is

a 1 (one), then the subroutine(s) numbered n

was called but not loaded.

Loading can be resumed by following these
procedures:

a. Remove the last two cards from the reader

stacker.

. Remove the deck from the reader hopper.

. Run out the two cards in the reader.

. Arrange these cards in proper sequence.
The first card should have 510001 punched
in columns 75-80.

e. Place the required subroutines ahead of the
deck.

f. Place the deck back into the reader hopper.

g. Press the Reader Start and Start keys.

4. If the capacity of core storage is exceeded during
the loading of subprograms and library subrou-
tines, the overlapping data will not be loaded
into storage. At the end of reading the library
subroutines, the message,

oFel N

OVERLAP XXXXX DIGITS

is typed and the 1620 halts before loading the
rest of the subroutine deck. (If the subprograms
caused the overlap, the message is not typed until
this time.) In the error message, Xxxxx is the total
number of digits overlapped.

Since it is not possible to execute the object
program without the required subprograms and
subroutines, the operator should discontinue
loading and then revise his source program.

Subroutine Error Checks

A number of error checks have been built into the
library subroutines. The basic philosophy in the dis-
position of an error is to print an error message, set the
result of the operation to the most reasonable value
under the circumstances, and continue with the pro-
gram. Subroutine error codes, the nature of the error,
and the value of the result in Fac (symbolic name of
the accumulator in which arithmetic operations are
performed) are listed in Table 4.

In the Table, the terms “overflow” and “underflow”
appear several times. Overflow means that the ex-
ponent of the result has exceeded 99; underflow means
that the exponent of the result is less than —99. The

result of overflow is affixed with the proper sign (not
indicated in Table 4).

Table 4. Subroutine Error Codes

Error Code Error Result in FAC
El Overflow in FAD or FSB 39...... 9%9
E2 Underflow in FAD or FSB 0o...... 0%
E3 Overflow in FMP 99......999
E4 Underflow in FMP 00...... 0%
E5 Overflow in FDV or FDVR P...... 999
E6 Underflow in FDV or FDVR 00...... 099
E7 Zero division in FDV or FDVR %...... 999
E8 Zero division in FXD or FXDR 999.....

E9 Overflow in FIX 99unnnn
Fl Loss of all significance in - .
FSIN or FCOS 000..... 099
F2 Zero argument in FLN 99, uu.. 959
F3 Negative argument in FLN In /x/
F4 Overflow in FEXP 39 999
F5 Underflow in FEXP 00...... 0%
F6 Negative argument in FAXB /A/B
Negative argument in FSQR SQR /x/
F7 Input data in incorrect form
or outside the allowable range
F8 Qutput data outside the allowable
range
F9 Input or output record longer than
80 or 87 characters (whichever
is applicable to the I/O medium
being used)
Gl Zero fo minus power in FIXI| 999.....
G2 Fixed point number to negative _
power in FIXI| 000.....
G3 Overflow in FIXI 999.....
G4 Floating point zero to negative . _
power in FAXI 99uinnn 999
G5 Overflow in FAXI 9 nnns 999
G6 Underflow in FAXI 00...... 0%
G7 Zero to negative power in FAXB 99 999

The error printout is in the form:
ER XX

where xx is the error code in the table.

If Error F7 occurs during the execution of the in-
structions compiled for an input statement, the field
which is incorrect is replaced by zeros, and processing
continues.

The exponent portion of an E-type input data field
must be right-justified in that field and may contain
only one sign. Deviations from this rule are not
checked. For exponents greater than 99 (absolute
value), the value is reduced modulo 100.

33

If Error F8 occurs, the incorrect field is set to blanks
in the output record, and an additional record is
printed. This record contains the incorrect field in the
form:

E (f +6).f
I(k+1)

This additional record is also produced on the output
device (card punch, tape punch, or typewriter) called
for by the source statement.

If Error F9 occurs, the incorrect field is ignored and
processing continues. However, it is possible that part
of the subroutines or object program may have been
destroyed by the abnormal record. In this case, the
program may inexplicably halt at some point during
its execution.

for floating point numbers, and
for fixed point numbers.

Adding Library Subroutines

Any library subroutines, with the exception of loga-
rithm and exponential (needed for evaluating A**B),
may be deleted or replaced with new subroutines.
Up to 50 subroutines can be accommodated by the
FORTRAN 1II System.

Addition of a library subroutine involves the modi-
fication of the compiler deck (Pass I) and the library
subroutine deck.

Modifying the Compiler Deck

At the end of the Pass I deck, a card (numbered
03000) is used to indicate the total number of relo-
catable subroutines and their names, This card has
the total number of library subroutines punched in
columns 1 and 2; for example, 07 for the seven sub-
routines provided with the system. If no subroutines
were included with the system, then 00 would be
punched in columns 1 and 2.

This card also contains the names and synonyms of
the subroutines. The names may not be composed of
more than six characters. The synonyms are separated
by commas with no intervening spaces. The set of
synonyms for each subroutine is terminated by a
period.

Adding a subroutine involves revision of the total
number of subroutines punched in card 03000, and an
addition to the name card(s). Assuming a hyperbolic
cosine subroutine is to be included in the library sub-
routines as the eighth relocatable subroutine, the oper-
ator should:

1. Change the number in columns 1-2 of card 03000

to 08.

2. Punch the symbol name(s), for example cosH,

cosHF in the columns following the last subroutine

34

name (aBsF). If the set of names and synonyms is
too long to fit in the remaining columns of card
03000, start the entire set in a new card with a
sequence number of 03001 in columns 76-80.
Since the subroutine names are identified internally
by their sequential position in the name card(s), the
names and cards must be in strict sequence, Care must
also be exercised when deleting subroutines so a gap
will not be created.

Modifying the Library Subroutine Deck

The new subroutine must be assembled by means of
the 1620 sps compiler. The resulting condensed object
deck, with the first two and the last seven cards re-
moved, must be preceded by a header card punched
with the following information:

Columns 1-5 77777 Total number of stor-
age locations re-
quired by the sub-

routine. This number
must be even.

The alternate sub-
routine number, if
any.

The alternate entry
point, if any.

A record mark (0-2-
8)

Card sequence num-
ber, where XX is the
subroutine number.

Columns 11-12 YY

Columns 16-20 WWWWW

Column 63 =+

Columns 75-80 XX0001

The object deck, minus the header card, must be
renumbered starting with XX0002, where XX is the
subroutine number. This number, XX, must agree with
the number punched in columns 79-80 of the name
card in the Pass I deck,

If a subroutine contains two entry points, for ex-
ample, cosine at address 10,000 and sine at address
10,036, its deck must be numbered with XX as the
subroutine whose entrance is at 10,000. The other
subroutine number, YY, becomes the alternate and is
punched in columns 11-12. If the cosine subroutine is
assigned the number 03 and the sine subroutine, num-
ber 04, the deck is numbered starting at 03001 with 04
punched in columns 11-12 to indicate the alternate
number. Columns 16-20 contain the alternate entrance
WWWWW, which in this case is 00036 (10036 minus
10000).

The complete subroutine deck should be checked
to see that all cards are sequentially numbered in col-
umns 75-80. The packet of cards can now be inserted

between any two subroutines in the library subroutine
deck. Note that each subroutine is identified by the
number in columns 75-76, and that all arithmetic and
input/output subroutines are numbered 51.

Subroutine Versions

Two sets of library subroutines are available to the
user; one contains subroutines for use on a 1620 System
without the floating point feature; the other contains
subroutines that may be used only on a 1620 System
with the floating point feature installed. The first set
mentioned may be used on a system that has the float-
ing point feature installed; however, in that instance it
is advantageous to use the second set of subroutines
since execution time of the object program is reduced.

When the second set is used, the Pass II compiler
deck must be modified by replacing cards numbered
04288 through 04292 with the cards numbered 04288-
04292 which are included with Deck 4.

Modification of Origin

It is possible to change the origin of the object program
when either of the two subroutine sets is used. More
positions of core storage can be saved if the Automatic
Floating Point Operations feature is installed; however,
the following origin modifications apply to a 1620 Sys-
tem with or without the Automatic Floating Point Op-
erations feature.

NorE: rHO indicates that a flag is required in the high-
order position of the location specified. oriGIN is the
lowest-numbered core storage location that the pro-
grammer desires to use.

STANDARD ORIGIN MODIFIED ORIGIN

Deck 1
(Compiler, Pass I)
Card No. 00269,

Columns 54-58 11000(FHO) ORIGIN+-0(FHO)
Deck 2
(Compiler, Pass II)
Card No. 04474,
Columns 40-44 11000(FHO) ORIGIN+0(FHO)
Deck 3
(Library subroutines)
Card No. 09973,
Columns 44-48 11000(FHO) ORIGIN+0(FHO)
Card No. 510250,
Columns 8-12 11001 ORIGIN+1
Columns 20-24 11005 ORIGIN+5
Columns 32-36 11006 ORIGIN+-6
Columns 44-48 11010 ORIGIN+10

Deck 4
(Library subroutines)
(For use with the Automatic Floating Point Operations feature)
Card No. 009973,

Columns 44-48 11000(FHO) ORIGIN+0(FHO)
Card No. 510238,

Columns 8-12 11001 ORIGIN+1

Columns 20-24 11005 ORIGIN+5

Columns 32-36 11006 ORIGIN+6

Columns 44-48 11010 ORIGIN+10

Summary

To summarize, the procedures for adding a relocatable
subroutine are as follows:

1. Increase the number in columns 1-2 of card 03000
of the Pass I deck to reflect a new total number
of relocatable subroutines.

2. Add the subroutine name(s) at the end of the
last card. If a new card is required, it must be
numbered consecutively.

3. Write the subroutine in 1620 sps language, ob-
serving the following rules:

a. The origin of the subroutine is at address
10,000 (porc 10000).

b. The subroutine entrance is location 10,000.

c. The address of the argument relative to 10,000
is made available at 9995-9999.

d. The P and Q addresses in an instruction rela-
tive to 10,000 must be identified by flagging
the O, and O, digits, respectively, in the in-
struction.

e. The result must be left in Fac (or a constant
placed in Fac if no result has been calculated).

4. Assemble and condense the subroutine. Remove
the first two and last seven cards. Renumber the
deck, starting at XX0002, where XX is the sub-
routine number.

5. Prepare a subroutine header card. Remember that
the number of storage locations specified on the
card must include an extra 5 locations for use by
the next subroutine at object time.

6. Place the header card ahead of the subroutine
cards and check their sequence numbers.

7. Place the packet of cards between any two sub-
routines in the library subroutine deck.

35

IBM 1620-1443 FORTRAN Il Programming System

120 Print Position Systems

The 1620-1443 FORTRAN 11 Programming System is a
printer-oriented version of the basic 1620 FORTRAN I
System described in the preceding pages of this publi-
cation. It makes use of the 1BM 1443 Printer as an inte-
gral unit during the processing of FORTRAN 1 source
programs, The advantage of the printer-oriented sys-
tem is that it provides a convenient and relatively fast
means of listing source and object program information
and the symbol table. Only the differences between
the standard system and the printer-oriented system
are described here. Specifications and operating pro-
cedures pertaining to the standard system are valid for
the printer-oriented system if no specific mention is
made of them in this section.

Language

The language specifications of the 1620-1443 FORTRAN
u System are identical to the specifications of the 1620
FORTRAN II System with the exception of the priNT and
FORMAT statements. The specifications of these state-
ments have been modified for use with the 1443 Printer
as described in the following paragraphs.

PRINT Statement

When used with the 1620-1443 FORTRAN 11 System, the
PRINT statement is used to print data on the 1443
Printer. The format of the prINT statement is as fol-
lows:

PRINTR, List

where n is the statement number of a FORMAT state-
ment, and List is a list of the quantities to be printed.

The TYPE statement is still used to type messages on
the console typewriter.

FORMAT Statement

. The ForMAT statement, when used with a pRINT state-
ment, allows for a maximum of 120 characters for each
printed line. (When used with a TypE statement, the
FORMAT statement is still limited to 87 characters.)

Carriage Control

In addition to the normal functions of a FORMAT state-
ment, there is another function that it must perform

36

when used with a prINT statement. This function con-
sists of designating a desired line-space or carriage-
skip operation. A ForMAT statement, to be used in
conjunction with a PRINT statement, will usually begin
with 1H followed by a control character which speci-
fies the desired operation. The control characters and
their effects are:

blank — Single space before printing
0 — Double space before printing
199 — Immediate skip to channels 1-9

The control character itself does not become part of
the printed output.

EXAMPLE

PRINT 2 A, B,]
2 FORMAT (1HO, F8.2, F8.2,18)

This speciﬁcationvwill provide for a double line-space
between the line being printed and the previous
printed line.

Note: The first carriage control specification is appli-
cable only to the first line printed. If more than one line
is called for, the carriage control specification must pre-
cede the normal specification for each line of print. For
example:

FORMAT (1HO, F8.2, F8.2/1H0, F8.2, F8.2)

will provide for double line spacing before each
printed line.

Compiler

Listings and Symbol Table Output

Listings and symbol table output appear on the
printer instead of the console typewriter. The console
switch settings used to obtain these outputs remain the
same as those used in the standard system. The formats
of the outputs have been changed to take advantage of
the characteristics of the printer.

Error Messages

All error messages appear on the printer. Instructions
to the operator still appear on the console typewriter.

Subroutine error code F9 has been modified to in-
clude any printer records that exceed 120 characters.

Trace Routine

If the trace routine is used, its output will appear on
the printer.

Compiler Decks

Pass |
Card Numbers (columns 76-80)
00001-00009 Loader
00010-00410 Pass I compiler program
02000-02005 Multiply-Add tables
03000 Library subroutine count and names
of library subroutines
Pass 1l
Card Numbers
04001-04009 Loader
04010-04491 Pass II compiler program
05000-05005 Multiply-Add tables

Subroutine Deck

The subroutine deck is composed of cards containing
the following information.

For users without the Automatic Floating Point Opera-
tions feature:

Card Numbers Storage Locations
(columns 75-80) Routine Required
009970-009991 Loader None
010001-010017 LOGF 848
020001-020025 EXPF 1132
030001-030019 COSF-SINF 882
050001-050026 ATANF 1256
060001-060011 SQRTF 536
070001-070004 ABSF 82
510001-510223 Arithmetic and 11000

Input/Output

subroutines
510224-510250 *Modifier cards None
510251 Trailer card None

*The modifier cards alter the subroutines to accommodate the
word length being used in the object program.

For users with the Automatic Floating Point Opera-

tions feature:

Storage Locations

Card Numbers Routine Required
009970-009991 Loader None
010001-010016 LOGF 824
020001-020024 EXPF 1108
030001-030018 COSF-SINF 846
050001-050026 ATANF 1232
060001-060011 SQRTF 536
070001-070003 ABSF 58
510001-510209 Arithmetic and 11000

Input/Output

subroutines
510210-510237 *Modifier cards None
510238 Trailer card None

Modification of Origin

When it is desired to change the origins of object pro-
grams, the following modifications must be made:

Deck 1
(Compiler, Pass I)
Card No. 00266,
Columns 12-16
Deck 2
(Compiler, Pass II)
Card No. 04472,
Columns 35-39
Deck 3
(Library subroutines)
Card No. 09973,
Columns 44-48
Card No. 510250,
Columns 8-12
Columns 20-24
Columns 32-36
Columns 44-48
Deck 4
(Library subroutines)

STANDARD ORIGIN MODIFIED ORIGIN

11000(FHO)

11000(FHO)

11000(FHO)

11001
11005
11006
11010

ORIGIN+0(FHO)

ORIGIN+0(FHO)

ORIGIN+0(FHO)

ORIGIN+1
ORIGIN+5
ORIGIN+6
ORIGIN+10

(For use with the Automatic Floating Point Operations feature)

Card No. 009973,

Columns 44-48 11000(FHO) ORIGIN+0(FHO)
Card No. 510235,

Columns 8-12 11001 ORIGIN+1

Columns 20-24 11005 ORIGIN+5

Columns 32-36 11008 ORIGIN+6

Columns 44-48 11010 ORIGIN+10

Norte: FHo indicates that a flag is required in the high-order posi-
tion of the location specified. oriGIN is the lowest-numbered core
storage location that the programmer desires to use.

37

144 Print Position Systems

The following differences should be noted when using
the 1620-1443 rorTRAN 11 System with 144 positions.

FORMAT Statement

The roRMAT statement, when used with a PRINT state-
ment, allows for a maximum of 144 characters per line.
Error Messages

All error messages appear on the printer. Instructions
to the operator still appear on the console typewriter.

Subroutine error code F9 has been modified to in-
clude any printer records that exceed 144 characters.

Trace Routine

If the trace routine is used, its output will appear on
the printer in E-type or I-type format,

Compiler Decks

Pass |
Card Numbers (.columns 76-80)

00001-00009 Loader
00010-00416 Pass I compiler program
02000-02005 Multiply-Add tables
03000 Library subroutine count and names
of library subroutines
Pass Il

Card Numbers
04001-04009
04010-04493
05000-05005

Loader
Pass II compiler program
Multiply-Add tables

Subroutine Deck
The subroutine deck is composed of cards containing
the following information.

For users without the Automatic Floating Point Opera-
tions feature:

Card Numbers Storage Locations
(columns 75-80) Routine Required
009970-009991 Loader None
010001-010017 LOGF 848
020001-020025 EXPF 1132
030001-030019 COSF-SINF 882
050001-050026 ATANF 1256
060001-060011 SQRTF 536
070001-070004 ABSF 82
510001-510236 Arithmetic and 11200

Input/Output

subroutines
510237-510266 *Modifier cards None
510267 Trailer card None

*The modifier cards alter the subroutines to accommodate the
word length being used in the object program.

37.1

For users with the Automatic Floating Point Opera-
tions feature:

Storage Locations

Card Numbers Routine Required
009970-009991 Loader None
010001-010016 LOGF 824
020001-020024 EXPF 1108
030001-030018 COSF-SINF 846
050001-050026 ATANF 1232
060001-060011 SQRTF 536
070001-070003 ABSF 58
510001-510223 Arithmetic and 11200

Input/Output

subroutines
510224-510254 *Modifier cards None
510255 Trailer card None

Modification of Origin

When it is desired to change the origins of object pro-
grams, the following modifications must be made:

STANDARD ORIGIN MODIFIED ORIGIN

Deck 1

(Compiler, Pass I)
Card No. 00269,

Columns 44-48 11200(FHO) ORIGIN+0(FHO)
Deck 2
(Compiler, Pass II)
Card No. 04472,
Columns 39-43 11200(FHO) ORIGIN+0(FHO)
Deck 3
(Library subroutines)
Card No. 09973,
Columns 44-48 11200(FHO) ORIGIN+0(FHO)
Card No. 510266,
Columns 8-12 11201 ORIGIN+1
Columns 20-24 11205 ORIGIN+5
Columns 32-36 11206 ORIGIN+6
Columns 44-48 11210 ORIGIN+10

Deck 4

(Library subroutines)

(For use with the Automatic Floating Point Operations feature)
Card No. 009973,

Columns 44-48 11200(FHO) ORIGIN+0(FHO)
Card No. 510252,

Columns 8-12 11201 ORIGIN+1

Columns 20-24 11205 ORIGIN+5

Columns 32-36 11206 ORIGIN+6

Columns 44-48 11210 ORIGIN+10

Note: rFHo indicates that a flag is required in the high-order posi-
tion of the location specified. oricIN is the lowest-numbered core
storage location that the programmer desires to use.

IBM 1620 FORTRAN Il for Automatic Floating Point

General Description

The 1620 ForTRAN 11 System for Automatic Floating
Point is a modification of the standard 1620 FORTRAN 11
System described earlier in this publication. The ma-
chine configuration for the floating point-oriented sys-
tem is as follows:

18M /1620 Data Processing System with 40,000 posi-
tions of core storage.

1BM /1622 Card-Read Punch.

Automatic Floating Point Operations feature

Indirect Addressing feature

The significant advantage of the floating point-ori-
ented system is the increased speed of object program
execution. This is made possible by the use of in-line
arithmetic instructions instead of subroutines for such
operations as Floating Add, Floating Subtract, etc.

Since the two systems are very similar, only the dif-
ferences will be described in this section. All specifica-
tions and operating procedures for the standard system
are valid for the floating point-oriented system if no
specific mention is made of them here.

Language

The language of the two systems is the same except
for the addition of two statements in the floating point-
oriented system.

IF (OVERFLOW) Statement

This statement causes the program to transfer to a
particular statement depending on whether the Arith-
metic Overflow indicator is on or off.

General Form

IF (OVERFLOW) n,, n,

where n; and n. are statement numbers. The paren-
theses enclosing the word overFLow, and the comma
separating the statement numbers are required punc-
tuation.

The program transfers to the statement numbered
n, if the Arithmetic Overflow indicator is on, or to the
statement numbered n, if it is off. If the indicator is
on, it is turned off by the interrogation.

Example
IF (OVERFLOW) 5, 21

means, “If the Arithmetic Overflow indicator is on,
transfer to statement 5; otherwise, transfer to state-
ment 21.”

IF (EXPONENT CHECK) Statement

This statement causes the program to transfer to a
particular statement depending on whether the Ex-
ponent Check indicator is on or off.

General Form

IF (EXPONENT CHECK) n,, n.

where n, and n, are statement numbers. The paren-
theses enclosing the words EXPONENT CHECK, and the
comma separating the statement numbers are required
punctuation. The space between the words EXPONENT
and CHECK is optional.

The program transfers to the statement numbered
n, if the Exponent Check indicator is on, or to the
statement numbered n, if it is off. If the indicator is on,
it is turned off by the interrogation.

Example
IF (EXPONENT CHECK) 7, 15

means, “If the Exponent Check indicator is on, trans-
fer to statement 7; otherwise, transfer to statement 15.”

Arithmetic and Input/Output Subroutines

There is only one subroutine set supplied with this
system. The fixed point word precision may vary from
4 to 10 decimal digits. Floating points precision can-
not be changed and is set at 8 decimal digits. The con-
trol card to vary the fixed point precision is identical
to that previously described, except that columns 2 and
3 (which specify floating precision) are ignored. The
error message associated with this control card will be

ERROR, K OUTSIDE RANGE

Since the FORTRAN compiler generates in-line arith-
metic instructions for such operations as floating add
and floating subtract, the arithmetic and input/output
subroutine group is reduced to the following:

37.2

Floating-Point Arithmetic

Reverse Subtract
Reverse Divide
Set FAC to zero

Fixed-Point Arithmetic
Reverse Subtract
Multiply
Divide
Reverse Divide

Common Subroutines

Reverse sign of Fac
Fix a Floating-Point Number
Float a Fixed-Point Number

Makeup of Subroutine Deck

Storage
Locations
Card Numbers Routine Required
009970-009991 Loader None
010001-010019 LOGF 800
020001-020016 EXPF 724
030001-030017 COSF-SINF 820
050001-050016 ATANF 686
060001-060012 SQRTF 512
070001-070003 ABSF 58
510001-510210 Arithmetic and 10000
Input/Output
subroutines
510211-510221 Modifier cards None
510222 Trailer card None

Exponentiation

Fixed-Point J**1
Floating-Point A**(=I)
Floating-Point A**(+B)

Input/output
Read Card
Read Tape

Read Typewriter

Write Card
Write Tape

Write Typewriter

Makeup of Compiler Decks

Pass |

Card Numbers (Col. 76-80)

00001-00009 Loader

00010-00416 Compiler

02000-02005 Arithmetic Tables

03000 Library Subroutine count and

names of library subroutines.

Pass Il

Card Numbers (Col. 76-80)

04001-04009 Loader

04010-04491 Compiler

05000-05005 Arithmetic Tables

37.3

Modification of Origin

To change the origin of an object program, the follow-
ing modifications must be made.

STANDARD ORIGIN MODIFIED ORIGIN
Deck 1 (Processor,
PassI)
Card No. 00272,
Columns 16-20
Deck 2 (Processor,
Pass 11)
Card No. 04472,
Columns 6-10
Deck 3 (Library Sub-
routines)
Card No. 009973,
Columns 44-48
Card No. 510221,

10000 (FHO) ORIGIN+0 (FHO)

10000 (FHO) ORIGIN+0 (FHO)

10000 (FHO) ORIGIN+0 (FHO)

Columns 8-12 10001 ORIGIN+1
Columns 20-24 10005 ‘ORIGIN+5
Columns 32-36 10006 ORIGIN-+6
Columns 44-48 10010 ORIGIN+10

Note: FHo indicates that a flag is required in the high-
order position of the location specified. oriGIN is the
lowest-numbered core storage location that is to be
used.

Error Messages

Since most floating instructions appear in-line rather
than in a subroutine, object time error messages E1
through E7 have been eliminated. The error conditions
previously indicated by these messages can be ascer-
tained by the use of the 1 (ovErrFLOW) and 1F (EXPO-
NENT CHECK) statements. Fixed point overflow can also

be detected by this method.

Appendix

Supplementary Information

Restart Procedures

If the operator wants to restart during compilation,
he may use the following procedures:

Pass I. Insert and execute a branch to the symbolic ad-
dress REsTR. After the machine halts, press Start and
continue as in Step 7 of OPERATING PROCEDURES
(pass 1).

Pass II. Insert and execute a branch to the symbolic
address pass 11, and continue as in Step 6 of OPER-
ATING PROCEDURES (PASS II).

Object time. Insert and execute a branch to the in-
direct address 00409 (49 00409).

Note: The absolute addresses (actual machine ad-
dresses) can be found by referring to the symbolic
addresses given in the program listing.

Diagnostic Mode

Pass I of the compiler may be used as a diagnostic
pass without punching intermediate output. After the
message,

ENTER SOURCE PROGRAM, PRESS START

is typed, the 1620 halts. The operator may then insert
the digit 1 (one) into location Ersw and manually
branch to location prac.

The digit at location ERsw is reset to zero in the
initialization process. Therefore, batch processing for
diagnostic purposes is not possible without manually
resetting the digit at ErRsw to 1.

A subprogram run in the diagnostic mode causes a
header card to be punched. This card can be ignored.

Storage ““Map" of Pass |

After Pass I of the compiler has been loaded and be-
fore processing begins, core storage contains the fol-
lowing information:

1. Multiply-Add tables are in locations 00100-00399.

2. Communication area used by Pass II in locations
00401-00483.

3. In the standard system (40,000-digit storage),
350 10-digit fields from 36500 through 39999 are
initialized for the symbol table. The first table
entries contain the addresses of the numeric rep-

38

resentation (two numeric digits for each alpha
character) of the relocatable subroutine names.
The actual alphameric representation of each
name is stored in a packed name table beginning
at location 34401,

4. The e remaining symbol table entries are initialized
to 00400==000=.

If the source machine has 60,000 positions of core
storage, the symbol table will be initialized with 800
10-digit fields from 52000 through 59999. In this case
the name table will begin at location 40001.

The symbol table is filled up from both ends with
constants and statement numbers at the higher ad-
dresses, and library subroutine names followed by vari-
ables, etc., at the lower addresses.

Storage ““Map” of Pass 1l

After Pass II of the compiler has been loaded, core
storage contains the following information:

1. Multiply-Add tables in locations 00100-00399.

2. Communication area from Pass I in locations
00401-00483.

3. The symbol table begins at either 36500 or 52000
depending on whether the program is being com-
piled on a 40,000 or 60,000 position machine. Dur-
ing batch compilation, the symbol table might not
be in memory, but might be read in later at one of
the above addresses.

At the end of Pass 11, the conditions in memory are
the same as above, with the possible exception of
additional entries in the symbol table.

If it is necessary for Pass II to generate temporary
storage in the decomposition of an arithmetic expres-
sion, the entries for the temporary areas are placed
in the symbol table, as follows:

XXXXXMOI00

where xxxxx is the “object time” address of the tem-
porary storage area.

M is either (a) 0 (zero) for floating-point
mode, or
(b) 2 for fixed-point mode.
I is either (a) 1 if the area is in use, or

(b) 0 if the area is not in use.

M and I may vary during compilation since the same
temporary areas can be used many times within one
program. Temporary storage areas which are gener-
ated during Pass II are placed in line with the object
instructions and a branch around the temporary area
is supplied by the compiler.

Description of Symbol Table in Storage during Pass |
After the message,

TURN SW 1 ON FOR SYMBOL TABLE, PRESS START

is typed, and before the Start key is pressed, the symbol
table entries are in the following forms:

1. Simple variables
AAAAAMDRRR

where AAAAA is the low-order address of the
numeric representation (two
numeric digits for each alpha
character) of the variable name
in the name table.

M is either (a) 2 for a fixed point variable,
(b) 0 for a floating point var-
iable,
(¢) 2for an equivalenced fixed
point variable, or
(d) 0for an equivalenced float-
ing point variable,

D is either (a) 0 for a common variable,
or
(b) 0 for a noncommon vari-
able.
RRR is either (a) 00=, if the variable was

equivalenced and this var-
iable was the base of the
equivalence; or if the var-
iable was not equivalenced
at all, or

(b) anumber between 001 and
349 (representing the sym-
bol table entry to which the
variable was equivalenced)
if the variable was equival-
enced.

2. Dimensioned variables (two entries)

XAAAAI_/IDRRR
AAAAAXXXXX

where A, M, and R fields are the same as for simple
variables.

D is either (a) 1for a l-dimensional array
(b) 2 for a 2-dimensional array
(c) 3fora 3-dimensional array.
D is flagged if the array isin
Common,.

XXXXX is either (a) The total number of ele-
ments in the array if the
array is not in Common, or

(b) the address of the core lo-
cations preceding the first
element in Common, or

(c) an offset reference number
if the array was equiva-
lenced.

3. Floating point constants
AAAAA00CCO

where AAAAA is the low-order address of the
constant’s mantissa in the name
table.

CCis the characteristic of the con-
stant.

4. Fixed point constants
AAAAA20CC2

where AAAAA is the low-order address of the con-
stant in the name table.
CCis the length of the constant with-
out counting leading zeros.
5. Statement numbers
0040==-=NNNN
where NNNN is the statement number. During com-
pilation, statement numbers have the form of:
00401]NNNN
where | is either (a) 0, if the statement is a
FORMAT statement.
(b) =F, if the statement ends a

po loop.
(¢) 1, if neither.

Jis flagged if the statement num-
ber is not defined.

6. Arithmetic statement function names
AAAAAMEGG=
where AAAAA is the same as for a simple var-
iable.

39

M is either (a) Q:_for fixed point mode, or
(b) 0 for floating point mode.

GGis the number of arguments of the
function.

7. Subroutine and function names
AAAAAM==00+

where all entries are as described for arithmetic
statement function names.

8. Subprogram name dummy parameters in a Sub-
routine or Function statement (two entries)

AAAAAMD=-0-=
AAAAAMO00-E

where the A, M, and D fields are the same as de-
scribed for a dimensioned variable. These variables
(parameters) are placed in the symbol table twice
because they may be dimensioned later.

A 50-digit record in locations 00415 through 00464
indicates any relocatable library subroutines that are
to be included in the object program. Starting at
00415, the digit 1 (one) in the record indicates that
the corresponding subroutines are required by the
object program. The order of the “indicators” is the
same as the order of the names of the subroutines
read in by the Pass I compiler.

9. Library function names
AAAAACCCCC

where AAAAA is the same as for a simple variable,
and CCCCC is the ‘core storage address used for
linkage to the library subroutine.

Description of Symbol Table after Pass |

After the message,
END OF PASS T

is typed, the symbol table is in the following form:

1. Simple variables and constants
XXXXMDRR==

where XXXXX is the “object time” address of the
variable or constant

M is either (a) Ofor floating point mode, or
(b) 2 for a fixed point mode.

DRR is the same as it was prior to the
storage assignment.

The record mark is used during storage allocation
to indicate that the address has been assigned,

9. Dimensioned variables (two entries)

XXXXXMDAAA
ABBBBCCCCO

where XXXXX is an adjusted “object time” ad-
dress used to compute subscript-
ing.
M is either (a) O for a floating point vari-
able or
(b) 2 for a fixed point variable.

D is either (a) 1fora l-dimensional array,
(b) 2for a2-dimensional array,

or
(c) 3 for a 3-dimensional array.

AAAA is the first dimension of the array.

BBBB is the second dimension of the
array.

CCCC is the third dimension of the array.

If the variable is only a l_-dimensiollal or a 2-
dimensional array, BBBB and CCCC or CCCC alone
will be zeros.

3. Subroutine, function names, and dummy param-
eters. _ _
XXXXXMDRRR

where the X, M, and D fields are the same as those
described for simple variables and constants; the R
field is the same as it was prior to the storage assign-
ment.

Description of the Symbol Table Listing

If Program Switch 1 is turned on after the message,
TURN SW 1 ON FOR SYMBOL TABLE, PRESS START

is typed, then the “object time” storage addresses of the

symbol table will be listed in the following order and

form. (No flags will appear if the printer is used to list
the symbol table.)

1. Floating point constants Fixed point constants
MMMMMMMME + CC XXXXX FFFFF XXXXX

where XXXXX is the low-order
address of the
constant.

MMMMMMMM is a floating point
mantissa.

CCis a floating point
exponent.

FFFFF is a fixed point
constant,

2. Simple variables Dimensioned variables
NAME XXXXX NAME XXXXX YYYYY

where XXXXX for simple variables is the ad-
dress at object time where the
value for NAME will be stored.

XXXXX for dimensioned variables is the
address at object time of the first
element in the array, NAME.

YYYYY is the address of the last element
in the array, NAME.

If NaAME® is typed, this indicates a dummy pa-
rameter within an arithmetic statement function.

3. Called subprograms
NAME XXXXX

where XXXXX is the location where the start-
ing address of the subprogram
will be stored.

Symbol Table Listing for Subprograms

When a subprogram is being compiled, the dummy
arguments are listed after statement numbers, as fol-
lows:

NAME XXXXX

where XXXXX is the location where the actual address
of the variable in the mainline program, corresponding
to the argument, NaME, will be stored upon entering the
subprogram. The same form is also used for simple
and dimensioned variables.

The addresses listed for a subprogram are not the
actual addresses at object time. Since subprograms are
relocated upon loading, the listed addresses have to
be adjusted relative to the starting location of the sub-
program,

Statement Number Listing
During Pass II, if Program Switch 1 is on, statement
numbers are listed in the form,

§5SS XXXXX

where XXXXX is the address of the first instruc-
tion gen_grated for statement
number SSSS.

41

Index

Page
Absolute Value Functionot ennenann. 16
ACCEPT Statementot iiiiiiiiinnnen.. 11
ACCEPT TAPE Statement 11
Adding Subroutineso 17
Additional Core Storage, 24
Alphameric Field Specifications 15
Approximation Methods for Subroutines 17
Arctangent Functiono 16
Arguments
ofafunction 19, 20
in cOmMmMON StOTAZE . .o\t v e iie e 13
Arithmetic and Input/Output Subroutines 22
Arithmetic Expressionscoivieniiiiiin. .. 4
Arithmetic Modes i 2
Arithmetic Precision e 3
Arithmetic Statementso i, 5
Arithmetic Statement Functions 18
ATTAYS & ottt e 3,12
arrangement of, in storageo i 4
Automatic Fix/Float i, 10
Automatic Floating Point Feature 37.2
Batch Compilation 27
Blank Field Specification 15
CALL Statementco.tiiriiieeiennnnn. 20, 19
Card FOrm, FORTRAN . .. oottt teeeieinanaeaeaeenn 1
Carriage Controll 36
Coding Formooiiiiii i 1
Comments Statementc.oiiirineenneennn. 1
COMMON Statementt 13
use of coMMON together with EQUIVALENCE 13
Common Storageoovieiiiiiii i 13
Compilation Process, 22
Compiler Deck
Non-printer
Pass I 22
Pass IT 26
Printer
Pass I ..o e e 37
Pass IT ... e e e 37
Computed o To Statement 6
Console Switch Settings 23
Constants
fixed point e 2
floating point o i i i i 2
Continuation lines, 1
CONTINUE Statement, 9
Control Card 24
Control Statementsccoiiriiininennn... 6
Computed GO TO ..o oo vt 6
CONTINUE ¢ o et ittt eeanneeseeennaeesaennnnnns 9
5o X 7
END & ottt ettt aeenteeans s anaeneeeanaenneeansn 9
5 7
IF (SENSE SWITCH) & evvvvevunennenoannennennaneenns 7

42

Page
PAUSE & oo et v te i ee et et et e et 9
3 X0 - A 9
Unconditional GOTOt ie i 6
Conversion of Numeric Data 14
Cosine Function i, 16, 17
Data Input to Object Program 16, 30
DIMENSION Statementcccouiitieiuinnnn.. 12
DO Statementiiii e e e 7
DOS Within DO™S .+ oot it it i i i i e 8
XIS oottt it i e e 9
Index . ..ovi i e e e 8
Nesting i, 8
Range . ..ot 8
Restrictionsiituiiinnnrniernannennnnenal 9
Preservation of Index Values 8
Dummy Variables oo 14,19
E-type Conversion e 14, 15, 16
Ending a FORMAT Statement 16
END Statement e 9
EQUIVALENCE Statementc.o..... 12
Error Messages (see Messages)
Execution of Object Programooo. 30
Exponento 2
Exponential Function 16, 17
EXpressionsiiiiiiiiiii 4
F, floating point precision 3,24
F-type Conversion 14, 15,16
Field Specifications
Alphameric i 15
Blank ...t e 15
NUMETIC « ot vttt ittt i it eeeeeannns 14
Fixed Point
Constantst e 2
EXpressionsciiiiiiiiiiiiiiiiiiiiiaa, 4
Variables . ..vvivini i e e 2
Fixed to Floating Conversioncciiuinnvinnnn. 10
Floating Point
Accumulator (FAC) ...t 22
Arithmetic i 2
Constantsvutii i e 2
Expressions i i 4
Variablesooiuiini i 3
Floating to Fixed Conversion 10
FORMAT Statement, 14
ending a,l 16
FORTRAN Functionso, 19
2165 oy 1 (03 N - 16
Arithmetic Statementccciiunn... 18
Library ... 16
FORTRAN L.t ittt ttttiens et enaete et nneneanonennanns 19
FUNCTION Subprogramc.oo.oo... 19
6o 1o, Computed i, 6
co 1o, Unconditional 6

Hierarchy of Operations 5
I-type Conversion ciiiiiiiininnan.. 14
IF Statement e 7
1F (SENSE SWITCH) Statementcc.cuvu... 7
Index Values, po Statement 7,8
Input/Outputo i 10
immatrixform 10
of entire matricescoiiiiiii . 10
Input/Output Statements 10
ol) -4 o 11
ACCEPT TAPE . .\ttt ittt e ettt e i eeenn 11
b300)33.Y 7 14, 36
PRINT vt ot vt ot tet s e entiaennieenonneneneonens 11, 36
226103 < (P 11
PUNCH TAPE . .. ittt ettt it et ettt et et i 11
30 00N o S 10
04 2 O 11
Intermediate Output v.... 24, 26
K, fixed point precision 3,24
Languageot e 1
Library Functions (subroutines) 16, 30
adding 34
Linkageoovinuiiiii i e 18
Listings
Printer ...t e e 36
Statement Number, 41
Symbol Table............... .o i, 40, 41
Lists
FORMAT Statement 14, 15, 16
Input/Output Statement 16
of quantities, specifying 10
Loading
Compiler i 22, 26
Subprograms o oo 30
Subroutines 30
Logarithm Functionoiiuiin. 16
Machine Configuration iv
Mantissa . ..ot vttt 2
Matriceso 3, 12
Input/Output of 10
Messages
Error
CARD OUT OF SEQUENCEuovruenan. 23, 26, 31, 32
CARDS NOT IN ORDER .« . vttt vviianns vnenannenenens 26
ERROR, F OR K OUTSIDE RANGE0uvvnrnvnnnonn. 24
ERROR N (see Table 3)iiiuro... 24
ERXX (seeTable4)c ... 33
EXTRA CARD AT END OF DECK . .ttt vvvnennnannnnnna, 32
EXTRA HEADER CARD . 0t vv vt innt e innaninnnennnas 31
INSTRUCTION CARD MISSING « vttt veeeieeenneannnn 31
LIBRARY FUNCTION DECLARATION ERROR 23
LIBRARY SUBROUTINE MISSING0vvveerennnns.. 27, 32
MISSING HEADER CARD . ..ottt vnennnnnnneennn.. 27
OVERLAP XXXXX DIGITS . .o evie e enennnnn. 33
OVERLAP NNNNN & ittt ittt tn it innen et eninennenns 26
READ SUBPROGRAMS NAMED ABOVE00c..... 32
SSSS F CCCC ERROR Tl vt vv vt reeineeeneennn, 24
STATEMENT NUMBER SSSS UNDEFINED 26

Page
SUBPROGRAM HAS DIFFERENT F OR K . ¢t vt vt nnneenns 32
SUBPROGRAM TABLE FULL .4t vvvsvrnsnnernsnnnnnn.. 31
SUBROUTINE HEADER MISSING . .00 vvvvrnennnennnn... 32
SUBROUTINE OVERLAP XXXXX « e vvveunennennenneenns 27
XXXX DO TABLE FULL .0ttt tanin it inieneae e 27
XXXX IMPROPER DO SETTING . .t v s ot vvieevnneennn. 27
XXXX MIXED MODE . .t ouvntnin it ernnannennn. 27
XXXX OVERLAP .« ..ttt ittt it ieie et tninneeennnne. 26
XXXX SYMBOL TABLE FULL . ..ot vvevntnnnneneennns 27
Instructions to operator
END OF PASS T . .t it i ittt ittt itneteneinnannnes 24
END OF PASS I .« &ttt tiitta e veetinne e nnnnaneens 26
ENTER DATA ottt ittt it et et e inne itneinne e 30
ENTER SOURCE PROGRAM, PRESS START 22,27
LOAD SUBROUTINES .\ t\tvutuvnneneenonennenennens 30
SW1 ON TO PUNCH SUBROUTINES, PRESS START 26
TURN SW1 ON FOR SYMBOL TABLE, PRESS START 24
XXXXX LENGTH ottt viie vt tsetae cn e eeenenaneans 27
YYYYY NEXT COMMON .t tvtitennnennnenenennn. 27
Mode, Diagnosticccciiiiiiiiiiia.., 38
Modes, Arithmeticot 2
Modification of
compiler deck il b, 34
library subroutinedeck 34
origin
MON-PIINLETttt 35
printer 37
Multiple Record Formats 16
Naming Functionsccouevo.... 18,19
Nesting DO’s . ..o vt e 8
Numeric Field Specifications 14
Object Machine i 24
Object Programcoiiuiiiiiiinnanannn .. 29
loading of 30
execution of 30
Operating Proceduresooooiu... 22
Overflow Switch 22, 26, 30
PageHeadingCardcvviunn.. 24
Parentheses i, 5
Pass I Procedurescouuiiiiunnne .. 22
Pass ITProceduresouvuuveenennnnannnnnn, 26
PAUSE Statementc0uiiinin... 9
Preservation of Index Values 8
Printing Multiple Lines 16
Printer-oriented system 36
PRINT Statementc.iuiiriennunnunnnnnnnn. 36
PUNCH Statementouiiiriennernnnnnnnnnnnns 11
PUNCH TAPE Statementcuuuuunnnnn... 11
READ Statement 0t 10
Repetition of Field Format 15
Repetition of Groups 15
Restart Proceduresccoviiuneeinnnnnnn... 38
RETURN Statementc0ovtvvrnun..n.. 21,19
Rules for Constructing Expressions 4
Scale Factorsouinini i 15
Sense Switch Settings 23
Sine Function iiiiiinnennnnn.n. 16, 17
Skipping, printer i 36

Source Program

Control Cardo ittt i 24
entering into computer Lo 24
L3 103 301 + NP O PP 24
Statements ii i e 1
Spacing, printer o i 36
Specification Statementsl 12
DIMENSION « tv vt v oot onaoanvnonnnesnenaneeanennnnnas 12
EQUIVALENCE . ..t tttttieit it nianeneonennennannnns 12
COMMON v et v eooeeseannonenennnnenneneesesanens 13
Square Root Functiont 16, 17
Statements
Arithmetic . ..o i i 5
(0703 ¢ o 7o) K 6
Input/Outputcoiiiiii i 10
Specification i 12
STOP Statementttt ittt e 9
Storage Maps i 38, 39
Subprograms
FUNGTION -+t vt vt et teee ettt e etaeaeneenns 19
SUBROUTINE . .. vt vt et et eeaeasieaenennnenunenen, 20, 19
loadingof i 30
Subroutines
adding - o 34
error checks i 27,33
listof ..o e 16, 22
loading of
compile time i 26

44

Page
objécttime 32
VETSIOMIS « vt v o vt et ettt e et e et e 35
SUBROUTINE Statement oot 20, 19
Subscripted variables o 4
SUbSCIIPES vttt e 3
Switch settings i 23
Symbol Table
description of i 39, 40
Hstingoo o 40
Table, Symbol il 24, 39, 40
Trace Feature it 31
Transfer of ControlinaDocooviiveineenan... 8
TYPE Statementttt e 11
Typewriter
IMput ... 24
OULPUL oL\t 11
Unconditional GO TO00ttt 6
Variables
fixed point 2
floating point i 3
subscripted o oo o 4
Work areas ...t e 18
Writing library functions, 35

C26-5876-2

LISV

®

International Business Machines Corporation
Data Processing Division

112 East Post Road, White Plains, N.Y. 10601
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

®
=
o
N
S
o
R4
3

3
1]

a
5
c
L4
>
o
[
&
én
i
¢
N

	001
	002
	003
	004
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37.0
	37.1
	37.2
	37.3
	38
	39
	40
	41
	42
	43
	44
	45

