Systems Reference Library

IBM 1710 FORTRAN Executive System
Specifications

The ForTrAN Executive System provides the user with the
ability to direct process control operations with programs
written in the FORTRAN language.

© 1963 by International Business Machines Corporation

File Number 1710-36
Form C26-5733-0

Copies of this and other IBM publications can be obtained through IBM Branch Offices. Comments concerning the
contents of this publication may be addressed to: IBM, Product Publications Department, San Jose, California

Contents

IBM 1710 FORTRAN Executive System 5 Master Interrupt Control Program 13
Introductioncceeeeiiiiiiiiiiiiiiiiiiaan. 5 Disk Access Control (DAC) Program 14
Disk Loading Program 10 Analog Output Control (AOC) Program 15
Compiler Output Routines 10 System Alert Control (SAC) Program 16
IBM 1710 FORTRANIN-D 12 Process Schedule Control (PSC) Program 18
Executive Control Programs 13 Sertal Input/Output Control (SIOC) Progrem 18

Skeleton Executive Programcounn. 13 Executive Subprogramscciiiia.... 20

Preface

The 1BM 1710 ForTRAN Executive System provides the
1710 Control System user with the ability to use pro-
grams written in FORTRAN language with the Executive
programs. The Executive Programming series, first pro-
duced as the 1710 Basic Executive and later modified
and named the 1710 Executive II, is a group of pro-
grams designed to direct and control all facets of proc-
ess monitoring.

The user-written FORTRAN programs will be com-
piled using the 1710 rorTrAN 11-p Compiler program
supplied with the ForTran Executive package. Call se-
quences to the Executive programs are handled by the
use of a FORTRAN CALL statement in the user-written
program.

To fully understand the material in this publication,
the reader should be familiar with the information con-
tained in the following list of M publications.

1710 Control System Reference Manual (Form
A26-5709)

1710 Additional Special Features and Attached Units
(Form A26-5660)

1311 Disk Storage Drive, Model 3 (Form A-26-5650)

1620 Monitor 1 System Reference Manual (Form
C26-5739)

Machine Requirements

The rorTrAN Executive requires that the following
features be installed on the user’s 1710 Control System
with the 1711 Data Converter, Model 2.

1. 1M 1311 Disk Storage Drive, Model 3

2. Indirect Addressing

3. Automatic Divide

4. Basic Interrupt

5. Seek Complete Interrupt

6. Analog Output Setup Interrupt (optional)

7. Serial Input/Output Channel (optional)

Introduction

The preparation of programs for computer control of
process operations is simplified by the 1710 FORTRAN
Executive System. FORTBAN is a problem oriented pro-
gramming system. Using FORTRAN, the programmer can
describe process relationships in a format close to that
of mathematical equations. The Executive Control
programs provide the user with an efficient method of
controlling his process. The combination of the versatile
FORTRAN language and the’Executive Control programs
makes a powerful tool that provides the user with a
means of making the most effective use of his 18m 1710
Control System. The rorTRAN Executive can be logically
divided into the three parts listed below:

1. FortrAN 1-p. This is a compiler program, i.e., it
is a program that accepts user-written statements
as input and produces compiled machine language
instructions as output. FORTRAN 11-D is used in the
first step toward “organizing” a process-control
program to operate with the ForTrRaN Executive
System.

2. Disk Loading Program. This program moves pro-
grams to and from disk storage and core storage.
Furthermore, it creates (and deletes) entries for
various communications areas that are used (a) by
the Disk Loading program at load time, and (b)
by the Executive Control programs during execu-
tion of the user’s program. The Disk Loading pro-
gram is used in the second step of organizing a
process-control program.

3. Executive Control Programs. These programs
(and subprograms) supervise the transfer of pro-
grams and data between disk storage and core
storage, read input data from the process, control
output signals, and handle all error conditions
during execution of the user’s programs. The user
can call for the Executive programs at any time
by using a caLL statement in his program.

Figure 1 shows the flow of control between the user’s
programs and the programs and routines of the 1710
FORTRAN Executive. All the programs are stored on disk
storage so that during control of the process any of the
user’s programs or any of the Executive programs may
be transferred from disk storage to core storage for
execution.

IBM 1710 FORTRAN Executive System

General Operation

The implementation of the rorrrRAN Executive System
consists of four phases.

Phase 1. Phase 1 consists of loading the M sup-
plied programs to disk storage. The programs arc self-
loading and are supplied in card or paper tape form.
Through the use of a control statement, certain param-
eters for the Executive programs can be assigned

at this time.
% Input
Disk Loading Program

Executive Control Programs
Card or Paper Tape 9

1710 FORTRAN [I-D
| 4
1710 | ey

rON

. Library Subroutines

Phase 2. Phase 2 consists of using the 1710 FORTRAN
1-p program to compile user-written programs. Input
may be in the form of punched cards or paper tape,
and output may be in cards or paper tape. Compilation
is done with the interrupt feature disabled.

— 7

St
: \ Card or Paper Tape Source Statements

o .l_.

Optional Output

'Y

Output
Obiject Program

After compiling, the object program is in relocatable
form, i.e., the addresses of the instructions must still
be modified relative to the program starting address.
The modification must take place before the object
program can be executed.

FORTRAN
Arithmetic and

Figure 1. Flow Chart of Program Control

Phase 3. Phase 3 consists of using the Disk Loading
program to load the object programs (output from
FORTRAN II-D) to disk storage. The object program may
be loaded from cards, paper tape, or from disk storage
itself. The program being loaded may be loaded to
disk storage as it is (in relocatable form) or it may
be changed to core image form (with absolute ad-
dresses) so that when the program is loaded to core
storage it can be executed immediately.

For permanent storage, programs are combined into
groups called “core loads.” A core load consists of the
core image form of a main program and the subpro-
grams that it utilizes. Core loads are always kept on
disk storage and the relocatable form of the programs
may also reside on disk.

When making up core loads, the Disk Loading pro-
gram begins its task by changing the main program to
core image form. Then it loads this program to disk
storage, makes entries for various maps, changes the
subprograms to core image form, loads them to disk
storage, and again makes map entries. Maps are simply

6

1 Input/Qutput
Routines v
User's | User's
Subprograms nterrupt
Subprograms
User's
Mainline Program
/
Executive Subprograms: Skeleton
Contact Operate ,Contact Executive
Sense,Analog/Digital SPrﬁc:s7
Conversion, Read ADC, 1 Cco:frl;Ie
Mask, Unmask, Real Time Y
Clock, Manual Entry Disk
Access
Control Serial
[Input/Qutput
Control
Master
Interrupt
Control
Q Analog
System Output
Alert Control
Control

records of data containing addresses and identification
information (see COMMUNICATIONS AREAS).

— 4

Card or Paper Tape

[4
1710 4.->

Optional

'Y

Phase 3 is completed when all programs and sub-
programs have been loaded to disk storage. The pro-
grams are in executable form, so that when they are
called from disk storage to be executed, no time will
be lost adjusting addresses.

Input may be from Card,
Paper Tape, the Disk
Work Area, or a permanent
disk focation.

Phase 4. This is the execute phase. The operator
first calls in the Skeleton Executive loading routine.
This routine loads the:

Multiply and Add tables

FORTRAN Arithmetic and Input/Output routines
Skeleton Executive program

Core portion of the Disk Access Control program

The user then specifies the desired mainline program,
and the core load is loaded into core storage. After the
core load is loaded, a branch occurs to the starting
address of the user’s main program. From this point
the 1710 Control System is capable of controlling the
process. The degree of control the computer maintains
over the process is dependent only on the machine
configuration and the user’s programs.

Console
Typewriter

171

<D
1710 ,_,——4__—:‘:

>
S/ANE

% 1717
Data Card

1714

Communications Areas

There are several areas of disk storage and core storage
that must be reserved for use as communications areas
by the user’s programs and the programs that make up
the FORTRAN Executive System. The disk storage areas
must be assigned before loading any user-written pro-
grams (see DISK LOADING PROGRAM).

CORE STORAGE

1. FORTRAN COMMON Area
2. Program Linkage Area

FORTRAN COMMON Area. This area is assigned
by the user through the use of commoN and prMENsION
statements in the main program and subprograms. This
area will contain tables and any other information
deemed necessary by the user.

Program Linkage Area. This area contains the infor-
mation needed by the main program (in core) to call
a subprogram in from disk storage. The linkages are

put together by the Disk Loading program when main
programs are loaded to disk storage (to form a core
load). Each linkage contains the disk sector address,
sector count, and the core address where the subpro-
gram is to be loaded. The program linkage area is
entered by a branch instruction from the main program.
When the program linkage area is entered, another
branch is executed to a routine that reads in the sub-
program desired. After the routine is read into core
storage, a branch instruction that is in the read-in
routine transfers control to the subprogram.

DISK STORAGE
1. Core Load Map
2. Disk Identification Map
3. Interrupt Subprogram Identification Map
4. Equivalence table

Core Load Map (CLM). The CLM is used by the
Executive programs to determine how each core load
is to be handled. The Core Load Map is a series of
records that contain address and status information.
This map is created by the Disk Loading program when
organizing a core load. One entry (record) for the
Core Load Map is created for each core load. Each
record is divided into three tables (see Figure 2).

1. Core Load table

2. Interrupt Subprogram Status table

3. Interrupt Priority table

Core Load Table. This part of a record in the Core
Load Map contains core load identification and ad-
dress information. It conmsists of 28 core locations
apportioned in the following manner:

1. Three-digit identifier of the core load related
to this record.

2. Three-digit identifier of the next core load (the
core load the user wants to have executed at the
completion of the current core load).

3. Three-digit identifier of exception procedure
core load (see SYSTEM ALERT CONTROL PROGRAM).

4. Three-digit identifier of the restart procedure
core load (see SYSTEM ALERT CONTROL PROGRAM).

5. Six-digit address of the current mainline pro-
gram.

6. Three-digit sector count of the current mainline
program.

7. Five-digit core storage address which is the
beginning core storage address and starting ad-
dress of the current mainline program.

8. One-digit Alert Procedure indicator. This indi-
cator is interrogated by the System Alert Control
program to determine how the user wants a

7

Core Load Map

Core Load #1
" " #2
// - / " u #3
_ ~ / n " #4
P - 7/ n " #5
s - / " " #6
-~
-~ - 7/ n n #7
- 7
~ " " #8
- Interrupt etc
_ - Subprogram Interrupt /
_~ Core load Table Status Table Priority Table 7
\ T~] -
\\ —
\ = -
\ ~ — _
\ -~ < _
\ = -
\ ~ — _
\ —
Current Next Exception | Restart Sactor /'5«
Core Load |Core Load | Core Load | Core Load Disk Address Count Memory Address | e |4
ID ID iD ID oun r

Figure 2. Core Load Map

particular error condition to be handled. The
user has three choices:

1 — halt the program

2 — record the error, but do not halt

3 — branch to exception procedure program

9. Record mark.

The map entry for a particular mainline program
is loaded to core storage with that program. It is
referred to as the “current” record in the Core Load:
Map.

Interrupt Priority Table. As its name suggests, this
part of the core load map determines the order in which
the various interrupt indicators are to be interrogated.
It consists of a two-digit field for each interrupt. The
number in the field specifies the order directly, e.g.,
48 in field three means that interrupt indicator number
48 is to be the third indicator tested. The interrupt
indicator numbers are assigned by using the NTPR
control statement.

Interrupt Subprogram Identification Map (ISIM).
The ISIM consists of a series of 16-digit records (see
Figure 3). There is a record for each interrupt subpro-
gram. Each record is composed of the following fields:

1. Six-digit disk address of the subprogram.

2. Three-digit sector count of the subprogram.

3. Five-digit core storage address where the sub-
program is to be placed. This is also the starting
address of the subprogram.

4. One-digit status control code.

5. Record mark.

The ISIM is updated each time a core load is trans-
ferred to core storage for execution.

If an interrupt occurs and the interrupt subprogram
associated with it is not to be executed immediately,
the interrupt is recorded by the Master Interrupt Con-
trol program which places a flag over the record mark in
the corresponding ISIM record. See PROCESS SCHEDULE
CONTROL PROGRAM for a description of how recorded
interrupts are serviced.

The address information in the ISIM is utilized by
the Disk Access Control (DAC) program when certain
call sequences are given. The ISIM allows the user to
refer to subprograms without knowing specific ad-
dresses. This is a significant point because it permits
the redistribution of subprograms and data on disk
storage without the necessity of reassembling the
calling programs.

Disk Identification Map (DIM). The DIM consists
of entries that are 20 positions in length. Each entry
specifies the disk address and the length (in sectors)
of a program that is located on the disk. It also contains
core addresses for the program (see Figure 4). A map

Interrupt Subprogram ldentification Map

Subroutine #1
n #2
Py s " #3
Ve
_ // s/ u #4
/// . / " #5
~ Vs / / " #6
/
// // / / " #7
e 7 s " #g
P ,
i i e / etc
P Ve / J/ /
s // s 4
e , Any I1SIM Record yd //
S C /
LR /
Disk Address Sector Count Memory Address ? :_ /
U o /
S 1 /

Figure 3. Interrupt Subprogram Identification Map

entry is created when a program is loaded to disk
storage.

The Disk Loading program will assign the Disk
Identification Map entry number in consecutive

sequence starting with the lowest available entry. When

a user wishes to change or replace a program, the Disk
Loading program will change the map entry to reflect
the change, if any, in disk storage. If the map entry is
deleted, the position of this entry becomes available
for future use. All changes to the DIM will result in
automatic updating of the Equivalence table.

Disk Identification Map

Entry 1
Entry 2
7/ i
, , Entry 3
7
, / / Entry 4
7
Y // // ! Entry 5
7/ / !
, / Y, /4| | Entry 6
/ / I etc,
7 / L
/ /
/ y / /
/
P
Disk Sector Program S rogn:um !
Address | Count Core tarting # /
Address Address /

Figure 4. Disk Identification Map

Equivalence Table. The Equivalence table contains
the alphabetic name and the DIM entry number of each
program that has been assigned a name by the user.
A name is not necessary unless the program is to be
referenced using the name. In many cases only a DIM
number is needed. The format of the Equivalence
table is shown with an example below:

4142434400000234
__—_W-_I\W_J

Program pim
Name Entry Number

This example shows a program named ABCD as
being equivalent to DIM entry number 0234.

Sequential Program Table. This table contains the
four-digit DIM entry number for every program and
data area. In addition to the DIM entry, a special four-
digit field is used to denote the available storage area
between programs. This four-digit field contains a 9 in
the high-order position for identification. The three
low-order positions denote the number of available
consecutive sectors; for example,

04189021

indicates that 21 sectors are unused by programs or
data following the program identified with DIM entry
0418.

Disk Loading Program

The purpose of the Disk Loading program (DLP) is
to efficiently deal with all disk loading and mainte-
nance. The DLP is made up of a group of routines that
reside on disk and are called into core storage and
executed by use of a control statement. The type of
control statement determines which operation the user
wants the Disk Loading program to perform. The com-
munications areas that are formed and acted upon by
the DLP are listed below. '

DLP Communications Areas

Core Load Map (CLM). An entry in the CLM is
made for each core load. The Core Load Map is created
by the Disk Loading program from (1) data the user
supplies in a pLOAD or DREPL control statement, and
(2) from tables and other maps.

Interrupt Subprogram Identification Map (ISIM). An
entry is created in the ISIM for each subprogram that
is identified as an interrupt subprogram at load time.

Disk Identification Map (DIM). An entry is auto-
matically placed in the DIM each time a new program
is loaded to the disk. The Disk Identification Map con-
tains entries for all portions of the disk occupied by
data or programs.

Equivalence Table. An entry to this table is created
by the DLP when a new program is loaded to disk.
The table contains the user-assigned name of the pro-
gram and the DIM entry number. In this way a cross-
reference is established whereby programs can be
referred to by the name or DIM entry number.

Sequential Program Table. The order of the pro-
grams is contained in this table. Whenever a program
is added or deleted, the Sequential Program table is
updated to reflect the change. The length of the table
is 199 sectors, unless changed by a control statement.

DLP Control Statements

Control statements are used to direct the Disk Loading
program to accomplish a desired operation. A state-
ment can be used to define program type, assign user-
specified addresses of core storage and disk storage,
load programs, and make entries for communications

10

areas, etc. Before loading any user-written programs,
an option is available for the user to reassign reserved
areas of disk storage for various work and communica-
tions areas. A description of the use of the control state-
ments follows:

DLOAD. The pLoaD statement assigns programs to
disk storage. It causes the DLP to update the system
communications areas and to moaify the program
being loaded into core image form (absolute addresses),
if it is in relocatable form.

DELET. The peLET statement deletes programs and
associated DIM entries (and ISIM entries, if applica-
ble) and Equivalence table entries.

DREPL. The prepL statement replaces a program in
disk storage with an updated, changed, or new pro-
gram.

DDUMP. This statement transfers data or programs
from disk storage to cards, paper tape, or the type-
writer.

INTCR. The iNTcr statement identifies interrupt sub-
programs that are to be loaded as part of the main core
load.

INTPR. The IxTPR statement identifies the sequence
in which process interrupts are to be checked, i.e., it
assigns the priority.

LOCAL. The rocaL statement identifies user sub-
programs as “load-on-call” subprograms. A subprogram
called in a main program will be loaded as part of the
main core load if not identified as a load-on-call sub-
program. If defined as a load-on-call subprogram, it
is not loaded with the core load but remains on disk
storage until called.

DFINE. The prINE statement allows the user to
enlarge, shorten, or relocate the disk storage areas
assigned for work cylinders, DIM, ISIM, and the
Equivalence table. If used, the prixE statement should
precede loading of any user’s program to disk storage.

Compiler Output Routines

The DLP also contains the output routines for the
FORTRAN II-D program. At compile time the user indi-
cates the type of output desired, and the FOrRTRAN

compiler calls the DLP routine when compilation is
complete. At this time the object program is in the
“work area” in disk storage. Depending upon the
option(s) chosen, DLP will load the object program
to a permanent area of disk storage and/or punch the
object program into cards or paper tape. Object pro-
grams punched or loaded in this manner are in the
relocatable form. That is, all object programs are
created with a beginning address of 00000. The pro-

gram instruction addresses must be modified before
the program can be executed. The modification is done
by the DLP when core loads are being formed. In this
way, a program is compiled once, then it can be modi-
fied n-number of times so it can be executed from
n-number of locations in core storage. When a pro-
gram has been modified, it is in core-image form. Up
to nine core-image versions of a program may be on
disk storage.

11

IBM 1710 FORTRAN II-D

The 1710 FORTRAN II-D program is a compiler program;
it reads user-written FORTRAN statements in the form
of punched cards or paper tape, and compiles an object
program. It is similar to the 1620 FORTRAN 11-D program,
and, with few exceptions, all the statements that are
available for use with the 1620 version apply to the
1710 version.

The user may write process interrupt subprograms
in the FORTRAN 11-D language. The FORTRAN arithmetic
and input/output work areas will be stored on the disk
in a “save” area when a process interrupt occurs. Then
the interrupt subprogram is transferred to core storage
and executed (it may also be necessary to save the
core area that the interrupt subprogram occupies while
it is being executed — see EXCHANGE OPERATION). Dur-
ing execution of the interrupt subprogram, the FORTRAN
arithmetic and input/output subroutines may be used.
But, before operation of the original program (the pro-
gram that was being executed at the time of the inter-
rupt) can be resumed, the ForTRAN arithmetic and
input/output work areas are restored because the
original program could have been in the middle of an
operation with partially calculated data in the FORTRAN
work areas. When the work areas are restored, control
is returned to the original program.

Statement Exceptions

The following FORTRAN statements that are acqeptable

in 1620 FOoRTRAN u-b are not allowed in the 1710 ror-

TRAN II-D program.

STOP
CALL EXIT

CALL LINK

INTERRUPT SUBPROGRAM CONTROL STATEMENT

Source statements for interrupt subprograms must be
identified with an INTER control statement. This control
statement serves as notification to the FORTRAN program
to compile a branch instruction to the Master Interrupt
Control program for RETURN statements.

12

When the reTURN statement instruction for an inter-
rupt subprogram is executed, a branch occurs to the
Master Interrupt Control (MIC) program to return
control to the mainline program. This allows waiting
interrupts to be serviced as soon as possible.

CALL EXEC Statements

The user may call the Executive Control programs into
operation at any time by using a caLL statement in
his programs. The statement may be used in both main
programs and subprograms. The general form of the
statement is as follows:

CALL EXEC (IDENT, Py, P:, . .. Pa)

The parameter list is variable in length, but mENT is
always the control program identification. For detailed
descriptions of the caLL statements and their parameter
lists refer to caLL STATEMENT under each specific control

program.
The caLL EXeC statement, when executed, transfers
control to the proper Executive Control program.

FORTRAN Disk Work Area

The ForTRAN compiler program uses a “work area” of
disk storage when compiling programs. This work area
is assigned from disk cylinder 00 through cylinder 23.
The area can be changed by using a pEFINE control
statement and specifying the desired cylinders. The

"DEFINE control statement must be entered before any

data has been loaded to the disk pack being used.

At the end of compilation, the object program will
reside on disk even if the user has obtained card or
paper-tape output from the compiler. The object pro-
gram in the work area is in relocatable form and (1) can
be moved, in this form, to a permanent area of disk
storage, or (2) can be changed to core-image form
and assigned a permanent location on disk. The move
operations would be performed through the use of
DLOAD Or DREPL control statements to the Disk Loading
program.

Skeleton Executive Program

The Skeleton Executive program handles all requests
for entry to and exit from the user’s programs and the
Executive program. The Skeleton Executive saves the
FORTRAN arithmetic and input/output work area when
an interrupt occurs or when a subprogram is called in
to core storage from disk storage.

Whenever a call to one of the Executive programs is
executed, the Skeleton Executive program transfers the
parameters of the caLL statement and temporarily
stores them in the caLL area of the Skeleton Executive.
The parameters are then analyzed, the required area
of core storage is transferred to the “save area” of disk
storage, and the proper Executive program is trans-
ferred to core storage for execution.

The Skeleton Executive program is available in two
versions. The first version takes care of the aforemen-
tioned tasks and always resides in core storage during
execution of the user’s programs. The second version
also continually resides in core storage, but requires
a slightly larger area as it contains the routines required
for operation of an SIOC output printer (see SERIAL
INPUT/OUTPUT CONTROL PROGRAM).

Operation

When an interrupt occurs, the Skeleton Executive takes
control and:

1. Interrogates the process interrupt indicators asso-
ciated with the interrupt-subprograms-in-core. If
one of these indicators is on, control is transferred
to the interrupt-subprogram-in-core.

2. If an indicator associated with the interrupt-sub-
programs-in-core is not on, the SIOC interrupt
is interrogated. If the SIOC interrupt is on and
is associated with an output printer, control is
transferred to the SIOC output printer routine
(version 2 of the Skeleton Executive is assumed
in this case).

3. If none of the previously mentioned indicators
are on, the Skeleton Executive saves the required
area of core storage (transfers the area to disk
storage). Then the Master Interrupt Control pro-
gram is called into core and executed.

Executive Control Programs

Master Interrupt Control Program

The MIC program has one important function: it serves
as the interrupt identification routine. Specifically, it
Determines which interrupt(s) occurred.

. Services interrupts in the user specified sequence.
. Records interrupts for servicing at a later time.

> W o

. Returns control to the Skeleton Executive and
thus to the mainline program when no interrupts
remain to be serviced (see Figure 1).

The return path from interrupt subprograms to the
mainline program is through the MIC. The means of
exit from an interrupt subprogram must always be a
RETURN statement.

Operation of MIC

When the computer is in the interruptible mode and
an interrupt occurs, one of three courses of action will
result:

1. The interrupt is associated with an interrupt-
subprogram-in-core, chosen by the user. In this
case, a branch to the interrupt-subprogram-in-
core occurs and the subprogram is executed im-
mediately.

2. The interrupt is associated with an SIOC output
printer, and, since this program is in core, a branch
to and execution of the SIOC output printer
routine occurs. S

3. The interrupt is (a) created by a process interrupt
associated with a subprogram that resides on disk
storage or, (b) the interrupt is associated with an
internal interrupt. Since the interrupt was not
associated with the SIOC output printer program
nor the interrupt-subprogram-in-core, the Master
Interrupt Control program is called into core
storage.

Indicators for process interrupts are tested in a
sequence that is prescribed by the user in the Interrupt
Priority table of the Core Load Map. If an indicator
is on, MIC checks the status control digit in the ISIM
to determine whether the interrupt is to be serviced at
once or recorded for servicing at a later time. If the

13

interrupt is to be serviced immediately, MIC ascertains
whether or not the interrupt subprogram or control
program that is needed to service the interrupt is in
core storage. If it is in core storage, the FORTRAN arith-
metic and input/output work areas are stored on the
disk and control is transferred to that interrupt sub-
program or control program. If it is not in core storage,
the Disk Access Control program is called to preserve
core storage (the FORTRAN subprogram area and the
area presently occupied that the needed subprogram
will fit into) and to bring the needed subprogram in
from disk storage.

Interrupt Indicators Interrogation

Interrupts are classed as internal or external depending
upon their origin. Those that come from within the
control system (computer) are internal; those that
originate within the process are external.

INTERNAL
The internal interrupts are listed below with the name
of the program that MIC branches to when the inter-
rupt occurs.

Interrupt MIC branches to

Any Check System Alert Control

Seek Complete Disk Access Control

Any SIOC Serial Input/Output Control

Multiplex Complete Analog/Digital Control
CE Interrupt CE Interrupt Subroutine
Operator Entry Program specified by user
Analog Output Setup Analog Output Control

One Minute Program specified by user
One Hour Program specified by user
EXTERNAL

There are twelve process interrupt indicators available
for assignment by the user. When any one of them is
on, MIC checks the status control digit in the ISIM
and either records the interrupt or transfers control to
the interrupt subprogram designated to service that
particular interrupt.

Disk Access Control (DAC) Program

The DAC program is used to coordinate the large
storage capacity of the disk drive and the high-speed
computing facility of core storage. It has three specific
tasks:

1. Read from disk storage.
2. Write on disk storage.

3. Exchange data between core storage and disk
storage.

14

A request for disk activity causes at least one of three
operations: seek, read, or write as described below.

Seek. When a seek operation is called for (by means
of a FORTRAN FIND statement), the disk access arm is
positioned over a cylinder.

Read. When a read operation is called for (by means
of a FORTRAN FETCH statement), the position of the ac-
cess arm is checked and one of the following sequences
of events takes place:

1. If it is at the required position, the requested
information is read into core storage.

2. If the access arm is not at the required position,
a seek is initiated, and, when completed, the re-
quested information is read into core storage.
(The seek time is unavailable for computation.)

Write. The write operation is similar to the read
operation, except that data transfer is from core storage
to disk storage. The write operation is called for by the
FORTRAN RECORD statement.

Exchange Operation

An “exchange” is a procedure whereby an interrupt
program or an Executive program on disk storage can
temporarily replace data in core storage while saving
the replaced data in a disk buffer area. It is used when
a requested program or subprogram is not in core stor-
age. The sequence of operations is as follows:

1. The Skeleton Executive program determines that
the requested program is not in core storage.

2. The Skeleton Executive turns control over to the
Disk Access Control program which transfers to
a disk buffer area the core storage data that is to
be replaced.

3. The Disk Access Control program (DAC) reads
in the requested interrupt subprogram or Execu-
tive program.

4. After execution of the requested subprogram or
program, DAC transfers the data saved in the disk
buffer area back to its original location in core
storage.

If an interrupt subprogram, which is in core storage
as a result of an exchange, requests either the Analog/
Digital Control program or the Analog Output Control
program, another exchange is performed. This time,
however, a different buffer area must be used because
the original area still contains the data that was re-
moved from core storage to make room for the interrupt
subprogram. For a second exchange operation, the Disk
Access Control program proceeds as follows:

1. Stores the interrupt subprogram in the second
disk buffer area.

2. Reads in the requested Executive program.

3. Returns the interrupt subprogram to core storage
after execution of the Executive program.
No more than two buffer areas are ever used by the
Disk Access Control program for the purpose of ex-
changing as a result of an interrupt.

Additional Modules

Additional modules may be used for storage of pro-
grams and data, but all portions of the Forrran Execu-
tive System must reside on the first module.

Analog Output Control (AOC) Program

The purpose of the AOC program is to select and adjust
the various set-point positioners (SPP) within the user’s
process. In doing this, the program allows the user to
specify different rates of adjustment so that set-point
movements can be synchronized.

Analog Output Logic

The analog output area of a compiler-controlled proc-
ess consists mainly of controlling instruments operated
by set-point positioners. Each SPP is under control of
the 1710 System, which determines the frequency and
extent of adjustment through the use of the analog out-
put timer. The analog output timer is composed chiefly
of a continuously running motor that completes a cycle
every 3.6 seconds. This cycle is divided into two parts:
a 0.7-second setup period, and a 2.9-second action
period. The setup time is used to select the points need-
ing adjustment; the action time is used to actually
perform the adjustment.

The adjustment of the SPPs can be accomplished
by either a 2.5-second signal (slew) or a 0.5-second
signal (trim). Depending upon the desired setting, an
SPP may require several slews and trims to bring it
into proper adjustment. A slew or trim adjustment can
be made only once during each 3.6 second cycle; how-
ever, this one adjustment services all the SPPs that were
selected during the setup time.

Analog Output Setup Interrupt

This signal interrupts the mainline program at the be-
ginning of the setup portion of the analog output cycle.
It ensures that the AOC program has the maximum
setup time for selecting the analog output points to
be adjusted and for executing a slew or trim operation.
This interrupt is initiated every 3.6 seconds whether
or not analog output is addressed. The regularity of
the interrupt makes it a timing device that can be used
for other program functions for which a 3.6-second
cycle is wanted. If the Analog Output Setup interrupt
is not available, the Multiplexer Complete interrupt
can be used.

CALL Statement

Whenever an SPP is to be analyzed and/or adjusted,
the programmer inserts a cALL statement in his pro-
gram in the following form.

CALL EXEC (IDENT, P,, P.)

IDENT — 040FF, where FF is the frequency 1-99.

P. — OOPPP, where PPP is the SPP address.

P; — 00SST, where SS is the number of slews to be
executed and T is twice the number of trims to be
executed.

Frequency. This indicates how often the SPP will be
serviced. The digit in the parameter’ entry ranges from
1to 99, where 1 calls for service every 3.6-second cycle,
4 calls for service every fourth 3.6-second cycle, etc.
Thus, the higher the number, the lower the frequency
of adjustment.

SPP Address. The terminal address for upscale move-
ment of the SPP being operated upon. This address plus
one is the terminal address for down-scale movement.

Operation

The AOC program may be logically divided into two
operating phases. The first is the initializing phase
which sets up the conditions for selecting and adjusting
the SPPs; the second is the service phase which actually
selects the SPPs and starts the slew and trim operations.

Initializing Phase. When a caLL statement to AOC
is executed, the initializing phase is entered and the
following events occur:

1. The caLL statement parameters are stored in the
applicable record in the Analog Output table por-
tion of the AOC program.

2. If a slew is required, a slew/trim indicator is set
to slew. The slew/trim indicator is used by the
AOC program to determine which type of opera-
tion (slew or trim) is to be performed next.

Since the interval between the setup times is 3.6
seconds, many SPPs can be activated before the service
phase is entered.

Service Phase. This phase begins when the Analog
Output Setup interrupt occurs. The operations per-
formed in this phase are listed below:

1. The slew/trim program indicator is interrogated
to determine if a slew operation has been re-
quested for any SPP. If it has, the addresses are
selected for each SPP record that requires slewing.

2. After all SPPs which require slewing have been
selected, the Analog Output Setup indicator is
tested and, if it is still on, the slew operation is
readied.

15

Note: This AO Setup indicator (28) is not the
same as the AO Setup Interrupt indicator (41).
Indicator 41 is turned off when the interrupt in-
dicator is tested, but indicator 28 remains on until
the 0.7-second setup time has elapsed.

3. When the slew portion of the output cycle is
reached, the slew is performed, and all selected
SPPs are adjusted. No further adjustments are
made until the next 3.6-second cycle. When no
more slews are needed, the slew/trim program
indicator is set to trim; trims are then performed
in the same manner as were slews.

System Alert Conirol (SAC) Program

The SAC program takes control of the 1710 whenever
an error condition is detected. SAC determines which
error(s) is present, records each error by type, analyzes
the error(s) with respect to operating conditions, and
decides which of the following correction procedures
is to follow:
1. Restart, using the program specified by the user
in the current record of the Core Load Map.
2. Branch to the exception program specified by the
user in the current record of the Core Load Map.
3. Record the error, but do not halt.
4. Halt.

Corrective Procedure

To a great extent, the corrective procedures previously
mentioned are user-controlled by certain fields in the
Core Load Map shown below.

Restart

LR

Exception

Partial Record in Core Lo

However, some actions taken by the SAC program are
mandatory due to the type of error. Figure 5 shows the
logic of corrective procedure selection.

Restart Procedures

When SAC branches to the restart procedure, a chain
of events is initiated which ultimately results in a new
core load in core storage. New subroutines, data, etc.,
might be loaded over data that is alreadv in core stor-
age. Therefore, when the user requests this procedure,
he must be very careful not to destroy any updated
information.

16

Exception Procedure

The exception procedure operates similarly to the re-
start procedure. There is one major difference, how-
ever. The SAC program, considering the possibility that
the user’s exception procedure program might consist
of some type of error analyzation, provides the follow-
ing information for interrogation:
1. A two-digit “alert” code which provides the user
with diagnostic information concerning the error.
2. A five-digit core storage address of the Interrupt
Subprogram Identification Map record, which per-
tains to the process interrupt subprogram being
executed. If a process interrupt subprogram is not
being executed, this data will not be provided.
3. A three-digit identifier of the current core load.

Error Conditions

The error conditions that SAC analyzes and records
are shown in Table 1.

A counter, used for recording purposes, is associated
with each error. The contents of the counters are typed
out on the console typewriter when the CE Interrupt
switch is depressed. After the typeout, the counters are
reset to zero.

The SAC program has the ability to logically discon-
nect any SIOC unit when an SIOC error is repetitive.
In either case, the instruction is re-executed in an at-
tempt to correct the error before the unit is discon-
nected.

Table 1. Error Conditions

Name Indicator Code
1620
Read Check 06
Write Check 07
MAR Check 08
MBR=E Check 16
MBR-O Check 17
1711
*Any Check 19
Function Register Check 22
TAS Check 21
Analog Output Check 23
131
Address Check 36
Record Length Check/Read Back Check 37
Cylinder Overflow 38
*Any File Check 39 |
|
SI0C
Peripheral Error 6043

*No error count kept

Error

Updh te
Error
Count

More Errors of
any Type (Except SIOC)
in this Core
Load ?

Is this
Program an
Interrupt
Subprogram
?

Is the

Restart Code in

the Core Load Map

Equal to 000
?

Alert Procedure

Go to Restart
Procedure

» Halt

Ind. in Core Load
Map

Is this
Program an
Interrupt

Subprogram
?

“Is this

a Disk Error?

Record Error, put

* do not halt

Figure 5. Logic of Corrective Procedure Selection

o Go to Exception
-
Procedure

17

An 1M Customer Engineer will be able to reinstate
the unit on-line by keying in a special code at the
console typewriter after depressing the CE Interrupt
switch. The Customer Engineer may also disconnect
any SIOC unit by keying in a special code at the con-
sole typewriter.

Besides the error counters mentioned previously,
another counter is used to record errors; this one, how-
ever, records errors of any type (except SIOC) and
is reset at the end of each core load. It is used by SAC
to help determine corrective procedures.

An error message is typed for all error conditions
except a disk, TAS, or SIOC instruction that was in
error, but was re-executed successfully,

Process Schedule Control (PSC) Program

The main task of the PSC program is to carry out the
user’s stipulations with regard to core load scheduling.
In addition, it performs the duties of servicing recorded
interrupts, restarting programs because of error con-
ditions, reading the time clock, and in general, keeping
track of the status of core storage at all times.

CALL Statement

At any time during the execution of the mainline pro-
gram, the user may call PSC to perform any of its
aforementioned tasks. The carL statement and param-
eter are shown below:

CALL EXEC (IDENT, P,)

IDENT — 01000 PSC Identification Code (option A)
01001 PSC Identification Code (option B)
01002 PSC Identification Code (option C)
01003 PSC Identification Code (option D)
01004 PSC Identification Code (option E)

P, — 00XXX, where XXX is the program identification
code for the next mainline program to be executed.
P. is required only for options B and C.

Option A The next core load will be the one specified in the
Core Load Map (see Figure 3).

Option B The next core load will be the one identified by XXX.

Option C The next core load will be the one identified by XXX,
which is a special purpose program. (This option
differs from Option B in that the user can return to
the “calling program” by utilizing Option D.)

Option D Return to the mainline program that called the
special purpose program.

Option E Service all recorded interrupts and return to the next
statement in the main program.

Scheduling and Loading

The Process Schedule Control program performs its
scheduling activities through the use of the Core Load
Map (CLM). When a new program is to be brought

18

into core storage, PSC first checks the caLL statement
mENT code and the list of parameters for instructions.
If the code specifies that the user’s predetermined se-
quence of programs (per CLM) should be followed,
PSC searches the current Core Load table (located in
the Skeleton Executive) for the three-digit identifier
of the next core load to be loaded. The CLM (on disk
storage) is then searched until the record correspond-
ing to this identifier is found. The record is picked out
of the CLM to serve as the control and address informa-
tion for the new program.

If the mENT code specifies a program other than the
one which would be next in sequence, PSC will go
directly to the CLLM on disk storage and begin search-
ing for the proper record which, when found, will be
used for control and address information for the new
program.

Using the new map information, PSC then supervises
the loading of the new mainline program.

Servicing Recorded Interrupts

As stated previously, the recording of interrupts is a
user controlled action; similarly, the servicing of the
recorded interrupts is at the user’s option. At any time
during the execution of the mainline program, the user
can call PSC to service all recorded interrupts. If no
call is given for this purpose, then PSC, when called
at the end of each mainline program, will service all
recorded interrupts. In either case, the recorded in-
terrupts will be serviced in the interruptible mode.

Serial Input/Output Control (SIOC) Program

The SIOC program directs all input and output opera-
tions relative to the Serial Input/Output Channel. By
the use of a caLL statement for the SIOC program, data
can be read from a manual entry unit or a sense switch
unit, or can be written on a digital display unit or an
output printer. An operational function of the SIOC
program is to put printer messages in a format if speci-

fied by the user.

CALL Statement
The SIOC program may be called from any user-
written program. The caLL statements and parameters
are shown below:
CALL EXEC (IDENT, P,, P,)
or
CALL EXEC (IDENT, P, P;, Py, Ps)

The longer caLL statement from either a mainline
program or an interrupt subprogram pertains to the

formatted output data for an output printer. Nonformat
data for the output printer or another type of unit will
use the shorter caLL statement.

The operands of the above caLL statements are de-
fined as follows:

IDENT — 00600
P. —EEMUU, where EE are the control digits which
designate the type of device and must be one of the
following:
10 — output printer
11 — digital display unit
12 — sense switch unit
13 — manual entry unit
M-is the modifier to designate the type of operation
and must be one of the following:

0 — Print a message in a format specified by the
user, but actually prepared by the SIOC pro-
gram.

1—1If an output printer is the device selected
(control digits = 10), print a message exactly
as the user has prepared it in his program; if
a manual entry unit is selected (control
digits = 13), execute a write operation to
turn on the Enter light on the unit; if a digital
display unit is selected (control digits = 11),
display the message on the unit as the user
has laid it out in core storage.

2 — Read the designated sense switch or manual
entry unit in the numeric mode.

3 — Read the designated sense switch or manual
entry unit in the alphameric mode.

And UU is the unit indicator; a two digit constant
which indicates the specific unit the user wishes to
operate. The constant is identical to the last two
digits of the unit indicator associated with the unit
being addressed. For example, if 6070 is the unit
indicator for the unit, then the user would define
UU as 70 in the parameter of the caLL statement.
Short Call

P; — The core address of the leftmost position of the

message or read-in area.
Long Call

P; — Is the statement number of the FORMAT statement
to be used in conjunction with the data.

P, —Is a literal describing the number of data addresses
in the vList, which follows.

Ps — The list of the.address(es) of data to be transmitted
to the output printer. The LisT and the FORMAT
statements are used as described in the M 1620
Monitor I System Reference Manual (Form C26-
5739).

Input Operations

The SIOC program takes control when one of the fol-
lowing two situations occurs:
1. A caLL statement is executed which specifies
either a sense switch unit or a manual entry unit.
2. An interrupt is initiated by the depression of the
Execute button on any of the input units.
CALL Statement Procedure. Input devices are read
in a masked mode, starting with the lowest numerical

address associated with the selected device. After each
reading, the address just read is incremented by one
until the twelve addresses of a manual entry unit or
the four addresses of a sense switch unit have been read.

The data is read into core storage, starting with the
address specified by “read-in area” in the caLL state-
ment, and_continuing into successively higher core
storage locations. If the data to be read is in alphameric
form, “read-in area” must specify an odd core location.

Interrupt Procedure. The operator can initiate the
reading of an input device by depressing the Execute
button on the unit. This causes the user’s program to
be interrupted, thereby bringing the SIOC program
into use. The SIOC program branches to a user’s inter-
rupt subprogram which can handle the interrupt in
any manner the user desires. There may be one inter-
rupt subprogram for all units or a separate subprogram
for each unit. If the user wants to read a unit, a CALL
statement must be executed. The operation that ensues
is similar to that described under caLL STATEMENT PRO-
CEDURE.

Output Operations

Three of the four available types of devices can be in-
volved in an output operation:

1. Manual Entry Units

2. Digital Display Units

3. Output Printers

Manual Entry Unit. Although a manual entry unit is
essentially an input device, it can sometimes be con-
sidered an output device. For example, a user’s pro-
gram may require some input data from a manual entry
unit. To signal the operator that the data is needed,
a cALL statement with a control code of 11 and a modi-
fier of 0 is executed. This causes the SIOC program to
turn on the Enter light on the selected device and
branch back to the calling program. When the operator
has entered the data, he can initiate an interrupt by
depressing the Execute button.

Digital Display Unit. When a caLL statement speci-
fies a digital display unit, the SIOC program immedi-
ately writes four digits on the unit, starting at the ad-
dress associated with the “thousands” position of the
unit. This position must be addressed first because it
resets the unit.

The data to be written must be stored in X through
X + 3, where X is the address specified by the p, ad-
dress in the caLL statement.

The “sign” of the four-digit value is transmitted to
the sign position in the unit.

Output Printer. The SIOC program section that per-
tains to the output printers may reside in core with the
Skeleton Executive program. This allows the SIOC pro-

19

gram to return to the user’s programs between char-
acters of the message being sent to an output printer.

When the user writes a cALL statement to print a

message, he must provide the SIOC program with ad-
dress information concerning the message. This can be
done in two ways: if the message is to be printed ex-
actly as it appears in the program, the user must give
the SIOC program the starting address of the mes-
sage; if the message is to be printed after the SIOC
program has placed it in a user-specified format, the

- user must provide the statement number of the ForRMAT
statement and the starting address of the output mes-
sage. If the first method is used, the message data must
be in consecutive core storage locations; if the second
method is chosen, the message can be composed of data
located in different areas of core storage.

Printing the Message. When the SIOC program deter-

mines that the message is in the desired format, the
message is transmitted to a “disk buffer area.” This
area, specified by the user at assembly time, can be
up to five cylinders in length.

If no previous messages are waiting in the disk
buffer area and the SIOC is not busy, the first char-
acter of the message is printed immediately and con-
trol is returned to the calling program. If some pre-
vious message is in the process of being printed, this
new message is stored in the buffer area “behind”
all previous messages. If the buffer area is full when
a new message arrives, the SIOC program “inter-
locks” and prints messages continuously until there
is room for the latest message.

The user must provide a 100-digit buffer area in
core storage from which characters can be printed.
When the first 100 characters of a message have
been written, the next 100 characters are brought
into the internal buffer area from the disk buffer area.
Upon completion of the message, the SIOC program
checks the disk buffer area and starts outputting a
new message if one is found to be waiting.

While the output printer is actually operating on
a character, the user’s mainline program or interrupt
subroutine is being executed. When the printer has
completed the indicated operation, a signal is gen-
erated to initiate an SIOC interrupt which permits
the next character to be transmitted to the printer.

Output Printer Programming Considerations. The

20

SIOC program assumes that all messages begin in the
numerical mode. If the user wants to start in the
alphameric mode when he is formatting his own mes-
sage, he must place a “change mode” control char-

acter (M) at the beginning of the message.

The user is responsible for form feed control. If
the printed data is to be spaced properly on form
paper, the user must insert the form feed control
code (F) at the proper place in the message.

When the first character in a message is Print Red
(A), the SIOC program immediately executes a Re-
turn Carriage (R) instruction and permits the mes-
sage from core storage (alert messages are never
put on disk storage). If a previous message is in the
process of being printed, it is interrupted so that
the alert message can be printed. After the SIOC
program has completed printing the alert message,
it executes a Return Carriage, a Print Black (B)
and then continues with the interrupted message.

When a code (A), Print Red, is used within a mes-
sage, it causes the printer to start printing red. Black
printing is not resumed until a Print Black code (B)
is executed.

>

Executive Subprograms

The following descriptions cover the subprograms that
are supplied to provide the user with specific 1710
operations.

Contact Sense Subprogram

The Contact Sense subprogram is used to read the
status of HSCS contacts into core storage.

CALL STATEMENT
CALL CS (P, P»)

where P, is a fixed-point variable containing the ter-
minal address as shown in Table 2. P, specifies the left-
most position of the field into which the contact status
information will be read.

Contact Operate Subprogram

This subprogram will cause the specified point to be
closed for 50 ms.

CALL STATEMENT
CALL CO (P)

where P, is the Terminal Address of the contact to be
operated.

Real-Time Clock Subprogram
This subprogram reads the 1711 real-time clock.

Table 2. Contact Sense Points

Terminal Address

(Qyp and Q1 of SLCB Addresses of Points Scanned

Instructions)
00 000-199
0l 020-199
02 040-199
03 060-199
04 080-199
05 100-199
06 120-199
07 140-199
08 160-199
09 180-199
10 200-399
11 220-399
12 240-399
13 260~399
14 280-399
15 300-399
16 320~-399
17 340-399
18 360-399
19 380-399

CALL STATEMENT
CALL CLOCK (P;)

where P, is the core storage address for the value of the
clock to be stored in.

Mask Subprogram

The Mask subprogram allows a program which is being
executed in an interruptible mode to be “masked” from
all interrupts. Masked interrupts are not lost — they are
merely detained until the unmasx subprogram is
called. The Mask indicator (26) is turned on by execu-
tion of the mask subprogram.

CALL STATEMENT

CALL MASK

Unmask Subprogram

The unMask subprogram is used to “unmask” the 1710
interrupt feature. Execution of the uNmask subprogram
places the computer in the interruptible mode if the
noninterruptible mode exists as a result of the mask
subprogram. The Mask indicator (26) is turned off by
execution of the unmask subprogram.

CALL STATEMENT

CALL UNMASK

Manual Entry Subprogram

This subprogram reads in seven digits of information
from the 1711 Manual Entry Switches.

CALL STATEMENT
CALL MEOP (P, P.)

where P, is the core storage address where the data of
the two high-order Manual Entry switch positions is to
be stored, and P, is the core storage address where the
data of the five low-order Manual Entry switches is to
be stored.

Analog to Digital Conversion Subprogram

This subprogram causes the analog signal specified to
be read into the ADC register for conversion. The con-
verted signal is later read into the computer by execu-
tion of the rRpaDC subprogram.

CALL STATEMENT
CALL ADC (P)

where P, is the terminal address of the signal to be
converted.

Read ADC Register Subprogram

This subprogram reads the contents of the ADC register
into core storage and causes another analog signal to
read into the ADC register for conversion.

21

CALL STATEMENT
CALL RDADC (P, P:)

where P, is the terminal address of the next signal to be
converted and P, is the core storage address where the

present contents of the ADC register are to be stored.
The apc and Rpapc subprograms may be used to-

gether to read a series of points. Assume 1Tas is a di-
mensioned variable containing a list of addresses of
analog input points and mro is a dimensioned variable
where the converted signal of each analog input point
is to be stored. The following statements would cause
points corresponding to rras 6 through itas 25 to

22

be read, converted, and stored in mro 6 through
RO 25 .

CALL ADC (ITAS (6))

DO 20 I =6, 25
10 CALL RDADC (ITAS (I + 1), IDRO (I))
20 CONTINUE

When mpanc is called, the program is interlocked
until conversion of the previous signal is completed. The
total conversion time is 50 milliseconds. Statements to
perform diagnostic analysis and conversion to engi-
neering units of the readings may be inserted between
statement numbers 10 and 20 to overlap this conversion
time.

C26-5733-0

B

E
International Business Machines Corporation

Data Processing Division
112 East Post Road, White Plains, New York

0-€€45-92D 'V'S'N Ul pajuiid OLLL Wal

13

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23

