~ File ﬁumber 1710—36
Form 02_6—5759—1

IBM Systems Reference Library

IBM 1710 Executive II Control Programs
Reference Manual

This manual contains the specifications and
operating procedures for the following 1710
Executive II Control Programs:

Master Interrupt and Executive Control
Program

Process Schedule Control Program

Disk Access Control Program

Analog-Digital Control Program

Analog Output Control Program

Contact Sense Control Program

Serial Input/Output Control Program

System Alert Control Program

Also included is a chart which shows the
execution times of all Executive programs.

© 1963 by International Business Machines Corporation

This publication, a major revision of Form C26-5759-0, makes
the prior edition obsolete as well as the following publications:

IBM 1710 Executive II Programming System
Specifications, Form C26-5698
Technical Newsletter, Form N26-0040

Copies of this and other IBM publications can be obtained through IBM Branch Offices,
Comments concerning the contents of this publication may be addressed to:
IBM, Product Publications Department, San Jose, California.

PREFACE ¢ o e o ovesosoesesseonoesnasssnnssoces
Machine Configuration and Feature Requirements « + + « « o &

GENERAL DESCRIPTION + v e s ¢ o et o veessoncacssses
PHILOSOPHY OF A COMPUTER-CONTROLLED PROCESS . .

COMPONENTS OF THE SYSTEM + ¢ ¢ ¢ e o tsvonconnnss
Executive Control Programs « « s e e s o s v o oo vevanecscse
User-Written Programs « o o oo oo oo v o s oo s s ocoesoss
Call SeqUeNCes. « + s e v ot o essossassenoneeones
Control and Identification Maps o . ¢ oo veesevnnocsse
Skeleton Executive ++ oot oosn o evvecaccnvsnnes

MASTER INTERRUPT AND EXECUTIVE CONTROL
PROGRAM ¢ ¢ 006 s evonsonssaosssosonncneasn
FUnction « . e eo oo eovoscssosesenoooscnocesses

PROCESS SCHEDULE CONTROL PROGRAM + ¢ v s e v v ess
FUnction o e s o v v ovovoeosneooeoorosonnssanose

DISK ACCESS CONTROL PROGRAM « ¢ v eeevvesnnnsa
Funetion «veovioen e enonienstncnenseaenns
Using the PrOgram « e o e v o v e oo e s aso st neescasss
Operation o o ¢« « oo ot v st ot oo sasnssessssssncsns

ANALOG=-DIGITAL CONTROL PROGRAM =+ ¢t s v e v an s
Function
Analog Input Terminology o ¢ « e v v e v vt essnnensnns
Description of ADC Program 1 « oo oot enosttsonenss
Operation of ADC Program 1 e e s e e ceteetevonannns
Description of ADC Program 2 « e v s e v ot eeesessnoeas

D R I R T S S SN S S AP PY

ANALOG OUTPUT CONTROL PROGRAM + e vt v vvus e
FUnction « s e s oot ettt oosonssenoasosonsssnss
Analog Output Logic s e e vt v v e v v enenvvansoneoes
Requirements of AOC Program 1 . . v oot vvnnonnnes
Operation of AOC Program 1 «e. v vt vvenrsonanvons
Analog Output Program 2 « e e e o o v oot anonosoenas

CONTACT SENSE CONTROL PROGRAM ¢ s vt v vt ennas
Function
Using the Contact Sense Program . « o v v oo s v v e oo oss
Operation of the Contact Sense Program « s« v o v v v 00

L R R NN I S N S SN S S AP

v e oo un1

18

18

20
20

25
25
25
28

32
32
32
32
40
43

46
46
46
47
50
51

54
54
54
57

SERIAL INPUT/OUTPUT CONTROL PROGRAM .
FUNCTION ¢ « ¢ o e v eevvsnnnnnnanss

Call Sequences « + ¢« ...
INPUT OPERATIONS ...
Call Sequence Procedwre .
Interrupt Procedure .+ .. .
OUTPUT OPERATIONS . .
Manual Entry Unit
Digital Display Unit +. ..
Output Printer .+« ¢ o0

.

SYSTEM ALERT CONTROL PROGRAM
Function .+ . eoeeesevoveneonas
Description of the Program « . « «+ «
Post-Error Alternative Procedures .

DIAGNOSTIC AIDS « ...
Trace Option ««es e s
Quick Look Diagnostics .
Diagnostic Control Program

ASSEMBLY AND LOADING PROCEDURES

.

.

Master Interrupt and Executive Control . .
Process Schedule Control « 4 44 o

Disk Access Control
Analog-Digital Control . .
Analog Output Control ..
Contact Sense Control . . .
Serial Input/OQutput Control
SIOC Format Control . .
System Alert Control. . . .
Diagnostic Control Program

.

.

.

User-Written Programs . . .

Maps ecooeevesenos
Loading Procedure o+ ¢ « o o

.

Starting Procedure

APPENDIX « « .

L

Transfer Vector - Common Area
Timing Chartcv00s..

CONTENTS

ceeses 59
cesses 59
esees. 59
veeses 61
ceeee. 62
seeess 62
cenue 63
cesen 63
ce e 64
ciee 64
R 74
cee e 74
cesas 74
ceeae 79
cer e 82
ceeee 82
ceiae 83
84
R 86
teees 86
ceee. 89
ceees 91
R 92
R 94
cenen 95
ceees 96
ceeee 98
R 99
eee.s 101
seee. 101
eses. 102
ecess 104
evae. 105
e 0. l07
seees 107
ceee. 107

PREFACE

This manual describes the Executive II, a comprehensive, automated, and
highly flexible monitor designed specifically foruse with a 1710 Control System.

The Executive II System has the ability to direct and control all facets of
process monitoring: to skillfully supervise the transfer of programs, subroutines,
and data between disk storage and core storage; to read input points and set out-
put points at the user's discretion; to regulate the transmission of all data on
the Serial Input/Output Channel; to decode contact sense readings; and tohandle
all error conditions with a minimum of disturbance to the process under control.

In short, the Executive II provides the 1710 user with a means of making
the most effective use of his control system.

To fully understand the material in this manual, the reader should be familiar
with the information contained in the following IBM publications:

1710 Control System Reference Manual (Form A26-5709)

1620 Central Processing Unit, Model 1 (Form A26-5706)

1620 Input/Output Units (Form A26-5707)

1620 Special Features (Form A26-5708)

1710 SPS II Specifications (Form J26-5643-1)

1710 SPS II Operating Procedures (Form C26-5675)

1311 Disk Storage Drive, Model 3 (Form A26-5650)

MACHINE CONFIGURATION AND FEATURE REQUIREMENTS

The 1710 Executive II is designed to operate on a 1710 Control System which has
a 1311 Disk Storage Drive in addition to 20, 000 positions of core storage. The
Executive II offers a flexible choice of programs which permits any degree of
control, from simple data logging and analysis to complete closed-loop control.
The following list shows the attached units and special features that are
used in conjunction with the 1710 Executive II. The items marked with an
asterisk are mandatory; the others are optional depending upon the user's choice
of programs. (See Executive Control Programs.)
1. 1711 Data Converter, Model 2*
1712 Multiplexer and Terminal Unit*
1311 Disk Storage Drive, Model 3*
1621 Paper Tape Unit and/or 1622 Card Read-Punch*
Interrupts, Input/Output*
Seek Complete
Multiplex Complete
Any SIOC
Indirect Addressing*
Analog Input
Analog Output
Serial Input/Output Channel
Contact Sense
11. Timed Interrupts
Analog Oufput Setup
One Minute
One Hour

Gl W

[RN =Re SN B o]

GENERAL DESCRIPTION

PHILOSOPHY OF A COMPUTER-CONTROLLED PROCESS

Modern processing applications require the speed and accuracy of a computer
to attain maximum performance and profit. The ability of the computer to
act faster than the process, to scan and relate hundreds of instrument out-
puts, to retain them along with thousands of other items of information
(locating any one with equal facility), to solve the most involved mathemat-
ical problems rapidly, and to effect appropriate control action in time,

places a powerful tool at the command of the processing industries.

Unquestionably, the main responsibility of the computer is the safe
optimum control of the process. Consequently, this function must be given
the highest priority. The 1710 Control System ensures this priority through
the use of the Interrupt feature which permits recognition of conditions de-
manding immediate attention.

Although an industrial process can conceivably be controlled by interrupt
action alone, the majority of processing applications require a more precise
method of operation. This method consists of supplementing the process
interrupt capabilities with user-written ""mainline" programs which perform
the functions of process optimization and data evaluation. These programs
constantly examine specific areas of the process and evaluate feedback data.
Critical conditions in the process cause the mainline programs to be inter-
rupted (Interrupt feature) for the purpose of executing analytic and corrective
subroutines.

The complexities of process monitoring, interrupt recognition, program
selection and execution, and data transfers between core storage and disk
storage, provide the 1710 user with valid reasons for seeking the aid of a
monitoring system such as the Executive II.

COMPONENTS OF THE SYSTEM

The 1710 Executive II Monitoring System is made up of the following parts:

1. IBM Executive Control programs

2. User-written mainline programs, interrupt subroutines and viola-
tion subroutines

3. Call sequences—linkages providing communication between control
programs and user's programs

4. Control and Identification maps generated by the user and main-
tained by the control programs

5. An "always-in-core'" Skeleton Executive containing the most used
control programs, map data, common program indicators, etc.

EXECUTIVE

6. A trace option to aid in ""debugging' programs.

For each individual process control application, the forementioned
items must be judiciously combined to produce an efficient monitoring
system.

CONTROL PROGRAMS

The control programs available for use in "building" a control system
monitor are listed below. A detailed description of each program is given
later in the manual.
1. Master Interrupt and Executive Control (MIEC) Supervises rec-
ognition of interrupts and execution of their respective subroutines
2. Process Schedule Control (PSC) Supervises program loading and
maintains the status of the control and identification maps
Disk Access Control (DAC) Performs all transfers between core
storage and disk storage
Analog-Digital Control (ADC) Performs all analog input operations
Analog Output Control (AOC) Performs all analog output operations
Contact Sense Control (CSC) Compares contact sense readings
Serial Input/Output Control (SIOC) Handles all operations on the
Serial Input/Output Channel
8. System Alert Control (SAC) Handles all 1710 error conditions

w

\‘IOSUWD‘-P

The Executive Control programs are available in either card or paper
tape form. They are separated into individual decks or tapes so that the
user may select only those programs which fit his needs.

The programs are in 1710 SPS II source language when received by the
user. Before they can be used, they must be assembled by the 1710 SPS
II Assembly program.

The programs are unassembled so the user can assign program ad-
dresses, stipulate error procedures, and in general provide the parameters
of the process. These items are supplied through the use of control cards
(or tapes) which are assembled with the individual programs. The assem-
bly procedures are described later in the manual.

USER-WRITTEN PROGRAMS

User-written programs for the Executive II Monitoring System fall into
three categories: mainline programs, interrupt subroutines, and violation
subroutines.

Mainline Programs

As its name suggests, a mainline program is concerned with the main
business at hand. In a control system this generally consists of process

optimization. A mainline program is constantly examining different areas
of the process to maintain maximum efficiency.

In the Executive II System, mainline programs should be written to take
full advantage of the operations performed by the Executive Control pro-
grams. By a short instruction sequence, control programs can be called
into use during the execution of a mainline program. Upon completion of
the requested operation, the control program returns control to the main-
line program.

Analogous to this procedure is the operation of an SPS program which,
from time to time, calls subroutines via macro-instructions, to do specific
jobs.

Interrupt Subroutines

Interrupt subroutines are written to handle various situations which arise
in critical areas of the process. Through the Interrupt feature, the main-
line prograra is interrupted whenever the prescribed limits in a specific
area of the process have been exceeded. The interrupt allows the user's
interrupt subroutine to be executed. Except for a few minor regulations,
the interrupt subroutine can handle the disturbance in any manner the user
desires. This includes complete access to the Analog-Digital Control
(ADC), Analog Output Control (AOC), Contact Sense Control (CSC), Serial
Input, Output Control (SIOC), and Disk Access Control (DAC) programs.

The user must assign an interrupt subroutine to each process interrupt
being used. The assignment is made at assembly time. (Refer to Assembly
Procedures.)

Vioclation Subroutines

Violation subroutines, like interrupt subroutines, are executed when the
user's prescribed limits have been exceeded. Violation subroutines how-
ever, are concerned with programmed limits rather than limits set mech-
anically within the process.

The programmed limits are placed in tables which are used by the
ADC, AOC, and CSC programs. If, in performing their respective jobs,
the programs encounter a condition which exceeds the user's limits, the
proper violation subroutine is called.

The use of violation subroutines is more fully explained in the sections
describing the control programs.

Regulations for User-Written Programs

The following regulations must be followed with regard to user-written
programs:
1. Branch and Transmit (BT or BTM) and Branch Back (BB) instruc-
tions may not be used by an interrupt subroutine unless the IR-4
feature is installed.

2. In general, any interrupt subroutine must restore machine condi-
tions (including core storage) to the status they were when the
interrupt occurred. Although the reason for this might seem
obvious, an example should clear up any misinterpretations.
Assume that the product area (locations 00080-00099) contains
a partial solution to a problem when an interrupt occurs. If the
interrupt subroutine uses that area and does not restore it, the
mainline program upon resumption of control will be working with
incorrect data.

3. Interrupt subroutines should not share subroutines with the main-
line programs for essentially the same reason given in Item 2.
Interrupts can occur at any time; therefore, sharing subroutines
creates the possibility of losing partially calculated data.

4. Unmasking is not allowed in an interrupt subroutine or a violation
subroutine.

5. The user's programs must allow the Executive Control programs
to perform all disk, serial input/output, analog input, and analog
output operations.

6. When returning control to the mainline program from an interrupt
subroutine, the following return statement must be used:

B EXMICP

The label EXMICP references a statement in the Master Interrupt
and Executive Control program.

7. The user's programs should not use core locations 00000-00060,
as these are used by the Executive programs for a communication
area.

CALL SEQUENCES

To call an Executive Control program from a mainline program or interrupt
subroutine, the programmer must insert a call sequence in his program.
Each call sequence consists of the following:
1. A branch instruction which makes provision for a subsequent
return to the "branched-from' program
2. A series of parameters by which the programmer conveys his
requirements to the called program
When calls are made from an interrupt subroutine, the programmer uses
different call sequences than those used in a mainline program. This pro-
cedure prevents the loss of return paths to the mainline program from an
interrupt subroutine.
The general form of the call sequences follows. Specific call sequences
are given as each program is described.

Mainline Program

Label op Operands
BTM EXECML, RETURN
DC 2, XX Executive control digits
DSA A, B, C...|particular parameters
DC i required by call sequence
DC 3, XX @ Parameter core count
RETURN OP code P, Q

Interrupt Subroutine

Label OoP Operands
TFM EXECIN -1, RETURN
B EXECIN
DORG * -4
DC 2, XX Executive control digits
DSA A, B, C...|particular parameters
DC e required by call sequence
DC 3, XX @ Parameter core count
RETURN OP code P, Q

The operands used in the preceding two sequences are defined as follows:

EXECML and EXECIN - These are labels of locations that contain a
branch to the Master Interrupt and Executive Control (MIEC)
program where the parameters are interpreted.

Executive Control Digits - These digits tell the MIEC program which
Executive Control program is being called.

Parameter Core Count - This count, along with the record mark, is
used by the MIEC program for the purpose of transferring
the parameters to a work area. The MIEC program requires
that the record mark be in the odd location immediately pre-
ceding the RETURN address.

RETURN - This is the location to which the Executive Control program
will return after the request has been satisfied.

CONTROL AND IDENTIFICATION MAPS

The Executive II System allows the user to specify various sequences,
priorities, address information, and error restart procedures. These
items, placed in maps which are loaded with the system, permit the
Executive II to be self directing with no mandatory operator intervention.

An Executive II map is simply a series of records occupying adjacent
positions of storage. All records in a particular map are of equal length
and contain the same type of information.

Three different maps are used in the Executive II System: a Core Load
map, a Subroutine Identification map, and a Disk Identification map.

Core Load Map

10

The Core Load map is used by the Executive II System to determine how
the user wants each "core load' to be handled. A core load is defined as
a mainline program together with all subroutines and data that are to be
made available to the mainline program. There will be at least as many
core loads as there are mainline programs, and more if some mainline
programs are broken into sections.

Although the term "core load" implies an "in-core" status, some of
the subroutines and data are kept on disk storage until needed thus allow-
ing more core storage for the mainline program.

As previously stated, a map is simply a series of data records assembled
for a specific purpose. In the case of the Core Load map, each record repre-
sents a core load which is to be executed.

The data in each record of the Core Load map is logically divided into
three tables (Figure 1).

1. Core Load Table

2. Subroutine Status Table

3. Interrupt Priority Table

When a particular core load is brought into core storage for execution,
the record that pertains to that core load is also loaded.

Core Load Map
Core Load #1
wow g
- - D B 7
P - ,/ n " f4
P ~ oo g
P Vad o g
- 4 g
- ya 7
P / "o 4g
P - Subroutine Interrupt V etc
_ <" Core Load Table Status Teble Priority Table 7
[\ —
N ~
\ IR
\ - _
\ -~
\ =~
\ o~
\ ~ -
Current Next Exception | Restart Se ?
Core Load |Core Load | Core Load | Core Load Disk Address ctor Core Address |
1D 1D ID 1D Count :

NOTE: All fields must be flagged in the high order position.

Figure 1. Breakdown of Core Load Map

Core Load Table. This table contains core load identification and address
information. It consists of 28 core locations apportioned in the following
manner:

1. The 3-digit identifier of the core load related to this record

2. The 3-digit identifier of the next core load (the one the user wants
to have executed at the completion of the current core load)

3. The 3-digit identifier of the exception procedure core load. (Re-
fer to System Alert Control Program.)

4. The 3-digit identifier of the restart procedure core load. (Refer
to System Alert Control Program.)

5. The 6-digit disk address of the current mainline program.

6. The 3-digit sector count of the current mainline program.

7. The 5-digit core storage address which is the core loading address
and starting address of the current mainline program.

8. A 1-digit Alert Procedure indicator. This indicator is interro-
gated by the System Alert Control program to determine how the
user wants a particular error condition to be handled. The user
has three choices:

0 Halt the program
1 Record the error, but do not halt
1 Branch to the exception procedure program

9. A 1-digit record mark.

Subroutine Status Table. Core storage might not always be able to simul-
taneously contain all the subroutines that are needed for a particular core
load. Therefore, some provision must be made to specify which of the
available subroutines should be loaded in core storage with the mainline
program and which subroutines should be brought in from disk storage
when needed. This is one purpose of the Subroutine Status Table. Another
purpose of the table is to allow the programmer to specify which interrupt
subroutines, if any, he would like to have recorded for execution at a later
time.

This table consists of a series of 1-digit entries. These entries cor-
respond directly to a list of subroutines, data fields, etc., that the user
has placed in a Subroutine Identification map. This map is described later.
Every entry in the Subroutine Identification map must have a corresponding
entry in the Subroutine Status Table.

When preparing the Subroutine Status Table, the programmer inserts
al, 0, 1, or 0 into each 1-digit location. These digits cause the following
actions when interrogated by the Executive II System.

ELg_lt Action

1 The corresponding subroutine is loaded
into core storage with the mainline pro-
gram and will be executed if it is called.

0 The corresponding subroutine is left on

disk storage and will be brought into core
storage only if it is to be executed.

11

]

The corresponding interrupt subroutine
is loaded into core storage with the main-
line program. However, if the interrupt
associated with this subroutine occurs,

it is simply recorded for servicing at a
later time.

=

The corresponding interrupt subroutine
is left on disk storage. If the interrupt
associated with this subroutine occurs,
it is recorded for servicing at a later
time.

When a Core Load map record is brought into core storage along with
its respective core load, the data in the Subroutine Status Table is trans-
ferred to the Subroutine Identification map. Thus the Subroutine Status
Table, as such, is not in core storage when the mainline program is being
executed.

Interrupt Priority Table. As the name suggests, this part of the Core Load
map determines the order in which the interrupt indicators are to be in-
terrogated. It consists of a 2-digit field for each interrupt.

Rlx ilx >_<|x T(Ix xlx §|x ilx

Field 1 contains the interrupt number to be tested first; Field 2 con-
tains the interrupt number to be tested second, and so on. Table 1 shows
the numbers assigned to each interrupt. Thus, a 03 in Field 5 means that
the Any SIOC indicator is to be the fifth interrupt indicator tested.

Because of its importance, the Any Check indicator (19) should always
be interrogated first. However, the interrogation sequence of all Interrupt
indicators is entirely up to the user.

Subroutine Identification Map

12

The Subroutine Identification map (Figure 2) contains address information
relating to the following Executive Control programs and subroutines.
1. System Alert Control
Analog-Digital Control
Analog Output Control
Process Schedule Control
Contact Sense Control
CE Interrupt Subroutine
Operator Entry Interrupt
All Process Interrupt Subroutines
Any other programs, subroutines or data that are to be brought
into core via the Process Schedule Control program.

© W0 10 O &~ W N

Table 1, Interrupt Numbers for Priority Assignment

Interrupt

Number To Be Placed In Table

Any Check (19)

Seek Complete (42)
Any SIOC (45)
Multiplex Complete (40)
CE Interrupt (27)
Operator Entry (18)
Analog Output Setup (41)
One Minute (43)

One Hour (44)

Process Interrupt 1 (48)
Process Interrupt 2 (49)
Process Interrupt 3 (50)
Process Interrupt 4 (51)
Process Intemupt 5 (52
Process Interrupt 6 (53)
Process Interrupt 7 (54)
Process Interrupt 8 (55)
Process Interrupt 9 (56)
Process Interrupt 10 (57)
Process Intemupt 11 (58)
Process Interrupt 12 (59)

01
02
03
04
05
06
07
08
09
10
11
12

Subroutine Identification Map

e
07
7,
7,
7 /
e
// // / /
v
e / /
// 7
Ve Ve 7 /
s % s
Ve s/ / /
pid / / //
s /s
L7 L, Any Map Record Y ,
S C 7/
LR /
a
Disk Address Sector Count Core Address 5 4 + //
s 9 /

Figure 2, Subroutine Identification Map

Subroutine #1
" #2
" #3
" l4
u 5
M ¥
" t7
" #g

13

Format

NOTE: Map records 1-8 must remain in core storage at all times. The
remaining entries can be on disk or in core. (See label NPIN in Assembly
Procedure for the PSC program.)

The Subroutine Identification map consists of a series of records, one for
each program that is represented by the map. Each record is 16 digits in
length and is composed of the following fields:

1. The 6-digit disk address of the subroutine.

2. The 3-digit sector count of the subroutine.

3. The 5-digit core storage address where the subroutine will be
located when it is executed. This is also the starting address
of the subroutine.

4. A 1-digit status control code.

5. Record mark.

The address information in the map is used by the DAC program

whenever the represented programs are loaded to core storage. The
use of such a map allows the programmer to call programs without
knowing specific addresses. This is a significant point because it
permits the redistribution of subroutines and data on disk storage
without the necessity of reassembling the calling programs.

Status Control Digit

14

After all subroutines for a particular core load have been loaded to core
storage according to the Subroutine Status Table in the Core Load map,
the digits in that table are transferred to the status control locations in
the corresponding records in the Subroutine Identification map (Figure 3).
Each time an interrupt occurs, the respective digit is interrogated to
determine if the interrupt subroutine is to be executed immediately (no
flags over digit), or if the interrupt is to be recorded for later execution
of the subroutine (digit flagged). If the programmer has designated an
interrupt to be recorded, the MIEC program places a flag over the record
mark in the respective Subroutine Identification map record. See Process
Schedule Control Program for a description of how recorded interrupts are
serviced.

One Strip of Core Load Map Corresponding to One Core Load

Core Load Table Subroutine Status Table Interrupt Priority Table

? TlolTlvlol1]1]o Z

S-1 $-2 $-3 S$~4 S-5 5-6(5-7|5-8

The Subroutine Status Table

witha 1in $-7 specifies that
subroutine 7 is to be brought

7 in to core storage when the

Status Control Digits

- mainline program is brought
S-1 ; A iy prog g
5-2

(_) * After the subroutines speci-
5-3 T+ fied by the table are loaded,
S-4 1= all digits from the table are

Subroutines X transferred to the status con-

S-5 0|+ trol locations in the Sub-
5-6 T routine Identification Map.
$-7 | EF
5-8 0l #

Subroutine Identification Map

Figure 3, Relationship of Subroutine Status Table to Subroutine Identification Map

Disk Identification Map

A Disk Identification map can be used to reduce the amount of core storage
needed for subroutine address information. This map resides on disk storage
and may include references to any subroutines except those which must be
referenced in the Subroutine Identification map.

The Disk Identification map (Figure 4) consists of a series of 10-digit
records, each of which contains a disk address and sector count. The core
address must be specified by the programmer when a subroutine, referenced
in the map, is called. (See Call Sequences under Disk Access Control Program.)

Disk Identification Map

Vd /
7 -
< 7
Ve Id 7
s s L/
7 /7 Y
’ 7 7/
7 4 4 /7
-, 4 /
'l 7 / /
el o
- +7" Any Map Record o/
ap Recor p
P s y Map < /
!
Disk Address é‘:z::' * /
/

Figure 4. Disk Identification Map

15

The Disk Identification map may occupy up to one full cylinder (20,000
locations).

SKELETON EXECUTIVE

The Executive II System is divided into two portions: the larger portion
remains on disk storage until needed; only the smaller, called the Skeleton
Executive, is in core storage at all times. This allows more core storage
for the user's programs. The Skeleton Executive is made up of the most
often needed control programs, certain map data, common program indi-
cators, linkage, etc.

The Skeleton Executive is divided into two sections, one relocatable,
and one fixed (i. e., cannot be relocated unless all Executive programs
are reassembled). The relocatable section includes:

1. The Master Interrupt and Executive Control program

2. The Disk Access Control program

3. Minor portions of the Process Schedule Control, System Alert

Control, and Serial Input/Output Control programs.
The fixed section includes:

1. A Transfer Vector-Common (TVC) area which consists of:

A. A group of branch instructions and indirect addresses which
serve as linkage between programs

B. Program indicators and other cross-reference control pro-
gram variables

Items A and B are not distinctly divided but are interspersed

throughout the TVC area.

2. The in-core portion of the Subroutine Identification map.

NOTE: A layout of the TVC area is shown in Table 11 located in the Appendix.

Transfer Vector Area

16

The Transfer Vector portion of the TVC area consists of a group of un-
conditional branch instructions and indirect addresses. All communica-
tions between the Executive Control programs themselves and between
the Executive Control programs and the user's programs are made via
this area. This scheme permits any program (Executive or user's) to be
relocated without changing any related programs.

A simplified use of the TVC area is shown below.

Mainline Program Transfer Vector Area Executive Program
.................................. START OP P, Q

..................................

..................................

LABL BTM VECT, RET

................

When an Executive program is reassembled, all addresses pertaining to

the Executive program in the TVC area are updated automatically. In the
above illustration if the address associated with the label START were
changed in the Executive program, the address would also be changed in the
TVC area. Thus, no changes would have to be made to the mainline program.

Skeleton Executive Loader

The Skeleton Executive loader is a small loading program whose primary
function is to load the Skeleton Executive when the Executive II System is
initially started or when a restart operation is necessitated. It is assigned
a disk address and core address by the user when he assembles the MIEC
program.

17

MASTER INTERRUPT AND EXECUTIVE CONTROL PROGRAM

FUNCTION

The Master Interrupt and Executive Control (MIEC) program performs
two services: (1) it functions as an interrupt identification routine, and
(2) it coordinates all communications between Executive Control pro-
grams and user's programs.
These services can be more specifically defined as follows: The
MIEC program
1. Determines which interrupt(s) occurred
2 Services interrupts in a predetermined sequence
3. Records interrupts for servicing at a later time
4. Determines whether desired interrupt subroutines are in core
storage and, if not, calls them in
5. Handles the call sequences between user's programs and Executive
programs
6. Returns control to the mainline program when no interrupts remain
to be serviced

Interrupt Identification

Whenever an Interrupt indicator is on while the computer is in the interrupt-
ible mode, an automatic branch to the address stored in Instruction Register
3 (IR-3) occurs. For proper operation of the Executive II System, the ad-
dress in IR-3 must be that of the MIEC program.

Upon assuming control, the MIEC program tests the interrupt indica-
tors to determine which interrupt occurred. The sequence of interrogation
is specified by the user in the Interrupt Priority Table for the mainline
program currently being executed. (See Interrupt Priority Table.)

Interrupt Servicing

18

Upon finding the interrupt indicator that is on, the MIEC program first de-
termines whether the desired program or subroutine is in core storage.

If it is, a branch is executed to that program or subroutine; if it is not,

the DAC program is called to bring it in from disk storage. If the
interrupt indicator which is on is that of a Process interrupt, the MIEC
program, before branching, checks the appropriate status control digit in
the Subroutine Identification map to see if the interrupt is to be recorded.
If it is to be recorded, the MIEC program places a flag over the record
mark in the respective subroutine map record, and then branches to the
user's program (if no other interrupt indicators are on).

Table 2, Programs Branched to When Interrupts Occur

Interrupt MIEC Branches To

Any Check System Alert Control program

Seek Complete Disk Access Confrol program

Any SIOC Serial Input/Output Control program
Multiplex Complete Analog=Digital Control Program

CE Interrupt CE Interrupt Subroutine supplied with Executive |l System
Operator Entry Subroutine specified by user at assembly time
Analog Output Setup Analog Output Control program

One Minute Subroutine specified by user at assembly time
One Hour Subroutine specified by user at assembly time
Process Interrupt 1 Subroutine specified by user at assembly time
Process intemrupt 2 Subroutine specified by user at assembly time
Process Interrupt 3 Subroutine specified by user at assembly time
Process Interrupt 4 Subroutine specified by user at assembly time
Process Interrupt 5 Subroutine specified by user at assembly time
Process Interrupt 6 Subroutine specified by user at assembly time
Process Interrupt 7 Subroutine specified by user at assembly time
Process Interrupt 8 Subroutine specified by user at assembly time
Process Interrupt 9 Subroutine specified by user at assembly time
Process Interrupt 10 Subroutine specified by user at assembly time
Process Interrupt 11 Subroutine specified by user at assembly time
Process Interrupt 12 Subroutine specified by user at assembly time

Table 2 shows the program or subroutine to which the MIEC program
branches when the different interrupts occur.

Handling Call Sequences

Whenever a call sequence is executed, either in an Executive program or
in a user's program, the MIEC program is brought into use. It analyzes
the call sequence and then branches to the proper Executive program,
saving the parameters of the call sequence in the TVC area.

At the completion of the Executive program, the MIEC program is
again brought into use. This is to check for any interrupts which may have
occurred while the Executive program was being executed. If no interrupt
indicators are found on, the user's program is resumed.

19

PROCESS SCHEDULE CONTROL PROGRAM

FUNCTION

The Process Schedule Control (PSC) program ensures that all of the user's
specifications regarding core load scheduling are carried out. In addition
it handles recorded interrupts, restarts programs because of error condi-
tions, initiates logging operations, and in general, keeps track of the status
of core storage at all times.

Core Load Scheduling and Loading

20

As previously stated, a core load consists of a mainline program supple-
mented by interrupt subroutines, tables, etc. Core loads are scheduled by
the user in the Core Load map before the Executive II System is loaded.
Using the Core Load map, the PSC program sees to it that mainline pro-
grams are executed in proper sequence. The portion of a core load record
used to determine this sequence is shown below:

Current Next Exception Restart
Core Load | Core Lood | Core Load CONID(-DOd

CLL L L

A review of the purpose of each field follows.

Field 1. This field contains a 3-digit identification code for the current
core load, i.e., the core load to which the particular record
pertains. (This code number is used whenever a core load
must be referred to.)

Field 2. This field contains the identification code of the core load that
the user wants to have executed next if everything is operating
normally.

Fields 3 and 4. These fields contain codes of core loads to be executed
in the event of an error condition. These fields are explained
more fully under System Alert Control Program.

Core loads are normally concluded by a call to the PSC program. (See
Call Sequence.) This call specifies that the next scheduled core load (per
Core Load map) should be loaded. The PSC program takes the second field
in the current core load table (located in the TVC area of core storage) and
compares it to core load codes in the Core Load map (on disk storage) until
the record corresponding to this identifier is found. The record is then
picked out of the Core Load map to serve as the control and address informa-
tion for the new core load. Using this information the PSC program super-
vises the loading of the new mainline program and applicable subroutines.

(Loading is actually done by the DAC program via a call from the PSC
program.)

After the mainline program and subroutines are loaded, the PSC pro-
gram branches to the starting address of the mainline program.

Loading Considerations

When loading core storage,the PSC program can overlap itself with
programs and data being brought in. The user can take advantage of
this fact by assigning programs and data to the core storage area which
is temporarily being occupied by the PSC program. However, when
programs and data are assigned to this area the following points must
be considered:

1. The loader portion of the PSC program must not be overlayed
until it has called the last program of the core load. Since
the mainline program is the last program called, it is the only
program that can use the PSC loader area. (See illustration
below.) For the users convenience, the size of the loader
area is given in the illustration.

2. Programs that are to service recorded interrupts (those
designated by a 0 or 1 in the Subroutine Status Table) must not
have starting addresses which fall anywhere within the area
occupied by PSC. If the PSC program detects any such conflict,
it causes the following error message to be typed out:

RECORD INT ROUTINE CONFLICTS WITH PSC LOCATION XXX

In the above message, XXX is the identification number of the
current core load. The interrupt program affected will not be
executed,

3. Any data that the user desires to save for subsequent core loads
should not be placed in the core storage area occupied by PSC.
The reason is that all programs and data in that area are destroyed
when the PSC program is brought into core.

Block of core storage occupied by PSC
LOADER AREA } Number of core

This area may be assigned to the locations = 1300

mainline program only. ;Z‘;’:;:”:;":F;igrh

of 1 core load mop
record

Approx, 5600 | This area may be assigned to any programs

locations and data except

1, Programs that are to service
recorded interrupts

2, Data that is to be saved for
subsequent core loads

21

Loading Programs without the Aid of Process Schedule Control

At times, the user may find it more efficient to bypass the PSC program and
use the DAC program directly for loading programs. For example, assume
that a mainline program is too large to fit into one core load. One solution
is to divide it into several core loads; but, since each core load uses the
same subroutines, tables, etc., it would be time consuming to execute the
PSC program; hence the direct call to DAC. However, if the PSC program
is bypassed, the programmer is responsible for preventing the overlap of
any data that he intends to use again.

It is not necessary to construct a Core Load map record for any program
loaded in this manner.

Servicing Recorded Interrupts

According to the digits in the Subroutine Status Table for each core load,
interrupts are either serviced immediately upon detection or they are re-
corded for later servicing. An interrupt is said to be serviced when the
program which is designed to cope with the particular interrupt is executed.

The PSC program handles the servicing of recorded interrupts at the

user's request,either during the execution of a core load or at the conclusion
of a core load.

Servicing recorded interrupts at the end of a core load does not require

a specific call sequence. The PSC program, when it is called to load a new
core load, handles recorded interrupts according to the following rules:

1. If the units digit of the 3-digit identification code of the next core
load (second field in Core Load map record) is flagged, then all
recorded interrupts are serviced before that core load is entered.

2. If this digit (see Item 1 above) is not flagged, the PSC program checks
the Subroutine Status Table in the next Core Load map record. Any
current recorded interrupts not scheduled to be recorded in the next core
load are serviced before that core load is entered.

If a particular recorded interrupt does not meet either condition above, it
continues to be recorded.

Programming Considerations for Servicing Recorded Interrupts.

22

For the user's convenience, the PSC program executes an Unmask instruction
before branching to an interrupt subroutine between core loads. This means
that the subroutine will be executed in the interruptible mode. Any subsequent
return to the noninterruptible mode within the subroutine must be programmed
by the user via a Mask instruction.
The following rules must be observed whenever an interrupt subroutine is
being executed in the interruptible mode:
1. A Mask instruction must be executed before executing any call sequence
to an Executive Control program.
2. A Mask instruction must be executed upon completion of the subroutine,
prior to branching to EXMICP.

3. Calls to the DAC program must be ""hold" calls. (See Disk Access
Control Program.)

NOTE: A Multiplex Complete or Analog Output Setup interrupt that is re-
corded must be serviced during a core load, never between core loads.

Call Sequence

The Process Schedule Control program may be called at any time from a

mainline program.
rupt subroutines.

Calls to the PSC program are not permitted from inter-

The call sequence is as follows:

RETURN

MK
BTM EXPSCP, RETURN

3, IDENT
P, Q

NOTE: In this call sequence, the parameter count and the record mark are
not needed because the parameter count is always three.

The operands in the preceding call sequence are defined as follows:
EXPSCP - A location in the TVC area that contains a branch to the first
instruction of the PSC program.
IDENT = 000 - This code indicates that the user is finished with the cur-
rent core load, and the PSC program should bring in the next
scheduled core load (per second field in current core load

record).

IDENT = XXX - This code indicates that the user is finished with the
current core load, and the PSC program should bring in the
core load identified by XXX in the Core Load map.

IDENT = XXX - This code is used for the purpose of branching out of
the normal preset sequence of programs, executing a special
program or series of programs, and then returning to the
current program. For example, assume the following sequence
of events.

1.

The current mainline program senses a disturbing
condition.

A branch is executed to a PSC call sequence with an
IDENT code of XXX. This code identifies a core
load that will perform some function relating to the
disturbing condition.

PSC, sensing this as a special code, saves the 3-digit
identifier of the current core load, brings in the core
load identified by XXX in the Core Load map, and
branches to the beginning of this new mainline pro-
gram.

After this program has been executed, and assuming
that the disturbing situation has been handled satis-

23

factorily, control should be returned to the RETURN
address of the program that called XXX. The exit
is accomplished by executing, in the XXX core load,
a PSC call sequence with an IDENT code of 111. If a
series of programs is required, they should be linked
together by one of the two previously described
IDENT codes. When control is to be returned to the
original mainline program, the last program in the
series must use a call sequence with an IDENT code
of 111.
IDENT = 000 - This code calls the PSC program to service recorded
interrupts (see Servicing Recorded Interrupts); no new core
load is brought into core storage.

Map Search Error

If, when searching the Core Load map, the PSC program cannot find the
identification code it is seeking, the following error message is typed out
on the console typewriter:

NO MLCL MAP ID XXX

In this message, XXX is the number which cannot be found. The PSC pro-
gram continues to search and type the message until the operator intervenes.
The restart procedure is as follows:
1. Depress the SIE key to stop the program
2. Depress the Reset key and Insert
17 EXPSCP 00016
XXX

Where EXPSCP is the Transfer Vector branch to the PSC program, and
XXX is the identification code of any core load the user wants to execute.

Logging Operations

24

The PSC program has the ability to initiate logging operations between core

loads. At assembly time the user specifies the desired time period between
logging, and the disk address, sector count and core address of his logging

subroutine.

DISK ACCESS CONTROL PROGRAM

FUNCTION

The function of the Disk Access Control (DAC) program is to coordinate
the large storage capacity of the disk with the high-speed computing
facility of core storage. Its specific tasks are listed below:
1. Read from disk storage
2. Write on disk storage
3. Establish a '""home address' for the access arm to enable faster
disk operation
4. Perform exchange operations when disk data must be brought into
core storage

USING THE PROGRAM

The DAC program is called whenever any data must be transmitted to core
storage. A typical operation follows: the amount of core storage needed
for the disk data to be transferred is calculated and that exact amount of
core data is saved by transferring it to a buffer area on disk storage. After
the disk data has been used, it is automatically transferred back to disk
storage and the core data is returned to core storage.

Call Sequences

Four variations of call sequences may be used to request disk activity:
short, modified, long, and disk map. These call sequences differ in the
amount of address information provided by the programmer versus the
amount provided by the Subroutine Identification map. Each variation may
be used in interrupt subroutines as well as mainline programs.

Short Call. This call uses the Subroutine Identification map exclusively to
obtain all address information.

Mainline Program

BTM EXECML, RETURN

DORG * 42

DC 2, 11 Executive control digits

DC or DSC 3, HRC

DSA SIM +N*16-16

DC 3, 13 @ Parameter count
RETURN oP P, Q

25

26

Interrupt Subroutine

TFM

B

DORG

DC

DC or DSC

DSA

DC
RETURN opP

EXECIN-1, RETURN
EXECIN

*-4

2, 11 Executive control digits
3, HRC

SIM +N*16-16

3, 13 @ Parameter count

P, Q

Modified Call. This call obtains only the disk address and sector count
from the Subroutine Identification map; the call sequence specifies the core

address.
Mainline Program

BTM

DC

DC or DSC

DSA

DC
RETURN opP

Interrupt Subroutine

TFM

B

DORG

DC

DC or DSC

DSA

DC
RETURN OoP

EXECML, RETURN

2, -11 Executive control digits
3, HRC

SIM +N*16-16,CORE ADDRESS
3, 18 @ Parameter count

P, Q

EXECIN -1, RETURN
EXECIN

*-3

2, -11 Executive control digits
3, HRC

SIM+N*16-16,CORE ADDRESS
3, 18 @ Parameter count

P, Q

Long Call. This call does not use the Subroutine Identification map; all
address information is specified in the call itself.

Mainline Program

BTM

DC

DC or DSC
DC or DSC
DC

EXECML, RETURN

2, 10 Executive control digits
3, HRC

6, DISK ADDRESS

3, SECTOR COUNT

DC
DC
RETURN opP

Interrupt Subroutine

TFM

B

DORG

DC

DC or DSC

DC or DSC

DC

DC

DC
RETURN OP

Disk Map Call.

5, CORE ADDRESS
3, 22 @ Parameter count

P, Q

EXECIN -1, RETURN
EXECIN

*-3

, 10 Executive control digits
, HRC

DISK ADDRESS

SECTOR COUNT

CORE ADDRESS

, 22 @ Parameter count

» Q

w N

-

How o w o

This call obtains the disk address and sector count from

the Disk Identification map; the call sequence specifies the core address.

Mainline Program

BTM

DC

DC or DSC

DSA

DC
RETURN op

Interrupt Subroutine

TFM

B

DORG

DC

DC or DSC

DSA

DC
RETURN oP

EXECML, RETURN

2, -10 Executive control digits
3, HRC

SN*10-10, CORE ADDRESS

3, 18 @ Parameter count

P, Q

EXECIN -1, RETURN
EXECIN

*-3

2, -10 Executive control digits
3, HRC

SN*10-10,CORE ADDRESS

3, 18 @ Parameter count

P, Q

An explanation of the operands used in the disk call sequences follows:
SIM - The core storage address of the Subroutine Identification map
N - The number of the record in the Subroutine Identification map that

corresponds to the subroutine or data being called.

IfN=5,

the DAC program will look for the subroutine address infor-
mation in the fifth record of the Subroutine Identification map.

27

SN - The number of the record in the Disk Identification map that cor-
responds to the subroutine or data being called.
H - Read-Back Check and "hold control" digit

H=0

H=1

Control returns to the calling program immediately
after a seek is initiated.

No further instructions are executed until the seck
is completed and the read or write operation is
performed.

H=0or1 A Read-Back Check is performed.
R - "Disk Arm Reposition Control" digit.

R=0

R=1

After a disk operation, the access arm is returned

to a "home address' specified by the user. This
address can be used for Module 0 only, and is set

up with the following statement in the user's program.

TFM EXARPS, DISK ADDRESS

EXARPS is a 5-digit location in the TVC area and
DISK ADDRESS is the "home address," (usually
the most used cylinder) desired by the program-
mer. (This address should be an even address.)
Repositioning to the "home address' does not
occur when DAC is in an exchange operation; in
that case, the access arm is repositioned to the
first disk buffer area. (See Exchange Operation.)
The access arm remains at the address where the
disk operation was completed.

C - Read, write, and "seek only" control digit.

C=0
C:
C

I

| =

OPERATION

Data is read from disk storage.

Data is written on disk storage.

"Seek only," i.e., the access arm is positioned
to the address specified in the Seek instruction,
but no reading or writing is done.

The DAC program is perhaps the most versatile and undoubtedly the most
used of all the Executive Control programs. Always in core storage, it is
immediately available for use by other Executive Control programs as well

as user's programs.

Its primary duties of seeking, reading, and writing

are only a part of the complex manipulations of data necessary for the ef-
ficient operation of the Executive II System. For the purposes of this pub-
lication, however, only the primary duties mentioned above are important,
Therefore, only they are described in detail.

Results of a Call from a Mainline Program

A call from a mainline program, possibly to bring in a new program (as

28

described under Loading Programs without the Aid of PSC), may be given
at any time. As can be seen by the parameters in the call sequences, the
direction of the DAC program is under control of the user whose options
are described with the call sequence operands.

A request for disk activity causes at least one of three operations:
seek, read, or write.

Read. The following events occur when a read operation is called for:

1. The position of the access arm is checked. If it is at the re-
quired position, the requested information is read into core
storage and a branch to the RETURN address in the call sequence
is executed.

2. If the access arm is not at the required position, a seek is ini-
tiated.

3. A digit is set in a ""disk busy' location, EXFILE, to indicate that
the disk operation is incomplete.

4. A branch to the RETURN address in the call sequence is executed
and the mainline program continues until the Seek Complete inter-
rupt occurs.

5. When the mainline program is interrupted by a Seek Complete,
the requested information is read into core storage and EXFILE is
reset to zero.

6. If no other disk requests are pending, control is returned to the
MIEC program and subsequently to the mainline program.

Read with Hold. This operation is similar to a normal read except that if
a seek must be initiated, all activity ceases until the Seek Complete inter-
rupt occurs. Thus the entire seek time is unavailable for computation.

Write and Write with Hold. The write and write with hold operations are
similar to the read operations except that data transfer is from core stor-
age to disk storage.

Seek Only. When a ""seek only'" is requested, the position of the access

arm is checked, and if it is at the required position, a branch to the RETURN
address is executed; if it is not at the required position, a seek precedes

the branch.

Results of a Call from an Interrupt Subroutine

Calls from interrupt subroutines are handled similarly to those from main-
line programs with these exceptions: after a seek operation, control is
transferred to the mainline program if it is in core storage. (The main-
line program might be on disk storage if an exchange was performed to
bring in the interrupt subroutine. See Exchange Operation.) Control
cannot be returned to the calling interrupt subroutine immediately follow-
ing the seek because an interrupt subroutine, operating in the noninterrupt-
ible mode, cannot recognize a Seek Complete interrupt when it occurs.

29

If the mainline program takes control due to the forementioned cir-
cumstances, it will retain control until the Seek Complete interrupt is
sensed. Control then returns to the calling interrupt subroutine.

If the mainline program is not in core storage at the time of the call,
the DAC program retains control until the Seek Complete interrupt is
sensed. Control then returns to the calling interrupt subroutine.

Exchange Operation

An "exchange'' is a procedure whereby an interrupt subroutine or an
Executive program on disk storage can temporarily replace data in core
storage while saving the replaced data in a disk buffer area. It is used
when a requested program or subroutine is not in core storage. The
sequence of operations is as follows:

1. The MIEC program determines that the requested program is not

in core storage.
2. The MIEC program turns control over to the DAC program which

transfers the core storage data that is to be replaced to a disk buffer

area, (XFILA, specified at assembly time).

3. The DAC program reads in the requested interrupt subroutine or
Executive Control program.

4. After execution of the requested subroutine or program, the DAC
program transfers the data saved in the disk buffer area back to
its original location in core storage.

If an interrupt subroutine, which is in core storage as a result of an
exchange, requests either the ADC program or the AOC program, another
exchange is performed. This time, however, a different buffer area must
be used because the original area still contains the data that was removed
from core storage to make room for the interrupt subroutine. The second
exchange proceeds as follows:

1. The DAC program stores the interrupt subroutine in the second

disk buffer area (XFILB, specified at assembly time).

2. The DAC program reads in the requested Executive program.

3. The DAC program returns the interrupt subroutine to core storage
after execution of the Executive Control program.

No more than two buffer areas are ever used by the DAC program for the
purpose of exchanging.

Disk Request Priority

30

Disk requests from an interrupt subroutine normally take precedence over
those from the mainline program. However, if a seek is executed as a
result of a mainline request, all subsequent interrupt subroutine requests
are deferred until the mainline read or write operation has been performed.

Additional Modules

The use of additional disk modules is subject to the following conditions:

1.

2.

All portions of the Executive II System must be on the first
module.

If a call to the DAC program requests any module other than the
first module, no check of the present position of the access arm
is made by the program; that is, a seek is initiated each time a
read or write operation is performed.

31

ANALOG-DIGITAL CONTROL PROGRAM

FUNCTION

The primary function of the Analog-Digital Control (ADC) program is to
read and analyze analog input points and to inform the user of violations
and/or overloads in the analog input area. In addition, it assigns priority
to all input requests according to the source (mainline or interrupt sub-
routines), and handles analog output feedbacks.

Two ADC programs are available. Program 1 performs diagnostic
analysis on the specified readings, while Program 2 reads the points
without analyzing them. Both programs are described in this section.
Before they are described, however, some analog input terms should be

defined.

ANALOG INPUT TERMINOLOGY

Delta An allowable change in a variable from one reading to the next.
If the change exceeds a specified value, the delta is violated.

Limit The limits within which the variable may move. If it moves
beyond a specified high and low limit, the limit is violated.

Overload A condition that results when signals entering the ADC (1711)
exceed the acceptable voltage range.

DRO The 4-place Digital Readout value of the ADC.

Conversion The act of changing analog signals to 4-place digital (DRO)
values.

DESCRIPTION OF ADC PROGRAM 1

Analog-Digital Control Program 1 is very versatile, offering the user a
variety of optional procedures.

Reading Options

Since the Random Addressing feature is mandatory when the Executive II
System is used, input points can be read in either a sequential or random
manner. The method of reading each point is user-controlled by the type
of call sequence that is selected.

Diagnostic Options

32

An addressed point is subject to three kinds of tests: a delta violation test;
a high and/or low-limit test; and a delta-limit test. Only one of these tests

may be made for each reading of a point. The type of test made is specified
by the user when he calls ADC Program 1 to read a point. A description of
each test is given along with the definition of the call sequence operand,
CONTROL.

Call Sequences

Whenever the user wants one or more input points to be read, he inserts

a call sequence into his program. Calls may be given either from a main-
line program or from an interrupt subroutine. In the call sequence, the
user specifies which points are to be read, how many are to be read, and
what type of action ADC Program 1 should take regarding the points read.

Mainline Program

To read sequentially:

BTM EXECML, RETURN
DSC 2, -0 Executive control digits
DC 4, ADC POINT
DSA ADCTBL -3, SUBROUTINE
DC 3, CONTROL
DC 3, NUMBER
DC 3, RECORD LENGTH
DC 3, 28 @ Parameter count
RETURN oP P, Q
To read randomly:
BTM EXECML, RETURN
DSC 2, -1 Executive control digits
DSA ADCTBL -7, SUBROUTINE
DC 3, CONTROL
DC 3, NUMBER
DC 3, RECORD LENGTH
DC 3, 24 @ Parameter count
RETURN oP P, Q

Interrupt Subroutine

To read sequentially:

TFM EXECIN-1, RETURN

B EXECIN

DORG * -3

DSC 2, -0 Executive control digits
DC 4, ADC POINT

33

34

DSA ADCTBL -3, SUBROUTINE

DC 3, CONTROL

DC 3, NUMBER

DC 3, RECORD LENGTH

DC 3, 28 @ Parameter count
RETURN op P, Q

To read randomly:
TFM EXECIN-1, RETURN
B EXECIN
- DORG * -3

DSC 2, -1 Executive control digits

DSA ADCTBL -7, SUBROUTINE

DC 3, CONTROL

DC 3, NUMBER

DC 3, RECORD LENGTH

DC 3, 24 @ Parameter count
RETURN oP P, Q

The operands used in the foregoing call sequences are defined as follows:

ADC POINT - The multiplexer address of the first point to be read.

This operand is used only when reading sequentially.
ADCTBL -3 - The high-order position of a field that contains the
previous reading of the specified point. ADCTBL is a
symbolic address that refers tothe record in the ADC Table
which pertains to the specified point. (See ADC Tables.)
This operand is used only when reading sequentially. -
ADCTBL -7 - The high-order position of a field that contains the
multiplexer address of the first point to be read when reading

randomly.

ADCTBL is as described above.

SUBROUTINE - The function of this operand depends upon the CONTROL
code (see definition of CONTROL) used in the call sequence.
The operand can be:

1.

The address of a violation subroutine. The operand

is used in this way when diagnostic checks are being
made and the user wishes to handle a violation
immediately after it is detected. (See Violation Option 1)
The address of a constant, 99999. The operand is

used in this way when diagnostic checks are being

made and the user does not want to take immediate
action when a violation is detected. (See Violation Option 2)
The address of a subroutine (possibly a convert-to-
engineering units subroutine) to be branched to after
each point is read. (See CONTROL Code 010.)

The address of a 1-digit indicator set by ADC Pro-
gram 1 to signify that all specified points have been
read. (See CONTROL Code 000.)

CONTROL - A 3-digit code that conveys one of the following commands
to the ADC program.

000

1171
011
100

010

Perform a delta check. ADC Program 1 performs this
check in the following manner: the most recent DRO is
subtracted from the present DRO; the difference (plus
or minus) is compared to the user-specified delta to
ascertain whether a violation has occurred. If it has,
the ADC program branches to a user-written subroutine;
if not, the ADC program returns control to the Master
Interrupt and Executive Control program.

Perform a high- and low-limit check. ADC Program 1
performs this check in the following manner: the new
DRO is compared with the user-specified high- and low-
limit values of the variables; if either limit is exceeded,
the ADC program branches to a user-written subroutine;
if not, the ADC program returns control to the calling
program, If desired, a "high-only" or "low-only'" limit
check can be specified.

Perform a high-limit check.

Perform a low-limit check.

Perform a delta-limit check. ADC Program 1 performs
this check in the following manner: both the delta check
and the high- and low-limit checks are performed; if a
violation occurs, the ADC program branches to a user-
written subroutine; if not, the ADC program returns
control to the calling program.

Make no checks; simply branch to SUBROUTINE after
each point is read. The user's subroutine in this case
might be a convert-to-engineering units routine.

Make no checks; simply branch to SUBROUTINE after
all points are read.

Make no checks; simply store a 1 (one) in the location
SUBROUTINE after a point or series of points are read,
and branch to the mainline program. The user is re-
sponsible for resetting this digit when it is to be interro-
gated more than once.

NOTE: If some of these checks are never going to be used, they
can be deleted from the program by ‘the use of control statements
at assembly time. (See Assembly Procedures.) In deleting some
of these checks, the user can realize a definite saving of core
storage. Table 3 shows the different combinations of checks that
may be incorporated into ADC Program 1. Only one combination
may be used for any one assembly.

NUMBER - The number of points to be read either sequentially or
randomly.
RECORD LENGTH -~ The length of the record in the ADC table that

includes the information relating to the point being read.

35

Table 3, Combinations of Analog Input Diagnostic Checks

Diagnostic Checks

Combination | A B C D

Ci X X X X

Cc2 X

Cc3 X

Cc4 X

Cc5 X

Cé X X

c7 X X

c8 X X

Cc9 X X

cio X X

ch X X

Legend

A = control code (:)Og - perferm o delta check,
B - control code 111 - perform o high limit check,
(:)11 ~ perform a low limit check,
001 - perform o high and low limit check.

C - control code 100 = perfern a delta-limit check,

D ~ control code 010 - make no checks; simply branch tc

SUBROUTINE after gach puint is
read,
The user's subroutine in this case
might be a convert=tc-engineering-
units routine,

001 = make no checks; simply branch to
SUBROUTINE after all points are
read,

000 - make no checks; simply store a 1
(one) in the location SUBROUTINE
after a point or series of points is
read, and branch to the mainline
program,

Call Sequence Considerations

36

Certain facts should be remembered when ADC Program 1 is called into
use.
1. If the ADC program is not in core storage when it is called for,
it will be loaded by the exchange method. (See Disk Access
Control Program.) All multiplexer operations specified in the
call sequence are then performed before control is returned to
the calling program. This approach might be used if core storage
requirements are much more critical than time requirements,
since 40 ms of the user's computing time (for each point) is lost
while waiting for the Multiplex Complete interrupt.

2. If ADC Program 1 is in core storage when called for, control is
returned to the calling program between each point that is read.
However, because of certain operating characteristics, the ADC
program must remain in core storage until all specified muiti-
plexer operations have been completed. This is the user's re-
sponsibility. It means that during the periods when the calling
ﬁ'ogram is in control, no call sequences may be executed that
would disrupt the ADC program. To determine if the ADC (1711)
has completed its operations, the user can interrogate an "ADC
busy" digit at symbolic location CTVT + 45 in the TVC area. A
one in this location indicates that ADC operations have not been
completed. (CTVT is a symbolic address defined by the user at
assembly time.)

ADC Tables

To enable ADC Program 1 to carry out the commands specified in the call
sequence, the user must provide the allowable limits which will be used
to determine whether a particular violation has occurred. This data must
be in table form and must consist of one record of information for each
point that is to be examined. In addition to this data, the user may utilize
the records in the table for other pertinent information such as the name,
function, or description of the point related to the particular record.

All records within a table must be of the same length and must be in
successive addresses. The table forms vary with the control code specified
in the call sequence; therefore each different code used requires that a
different table be made available. Figure 5 illustrates a table designed for
a delta check (CONTROL Code 000).

ADC Point Most Recent Delta

— l_.DRO_ .
I A A I

a0 —=0<Q
50 —~+0 —0 <

[« |

ADCTBL
(point at which record is addressed)

Figure 5. ADC Table Form for Delta Check

How the Tables Are Used by the ADC Program

To construct the tables properly, the user should understand how the
ADC program uses the tables. The use is peculiar to the type of

37

Table Makeup

38

reading (sequential or random) specified.

Sequential Reading, When reading sequentially, the program, using the
address (ADC POINT) specified in the call sequence, compares the read-

ing with the data in the record associated with the label ADCTBL. After
finishing with one point, the program proceeds to the next sequential point
(determined by adding 1 to the previous point) and, using the data in the

next sequential record (determined by adding RECORD LENGTH to ADCTBL),
performs the same operation as was performed on the first point. This
sequence of operations continues until the specified NUMBER of points

have been examined.

Random Reading. When reading randomly, the ADC program operates in

a manner similar to sequential reading except that the address of the point
to be read is now found in the ADC Table (Figure 5). The record of data

to be used is still determined by the label, ADCTBL, in the call sequence.
When more than one point is to be read, as determined by NUMBER in the
call sequence, the program simply uses successive records and ADC points
in the table until the specified number of points have been read.

NOTE: When reading either sequentially or randomly, the first record of
data used does not have to be the first record in the table; however, each
record that is addressed must be labeled at the position shown in Figure 5.

As previously stated, each different control code requires a different table
form. The declarative statements needed to construct the various tables
are shown below. All tables shown contain the 4-digit field, ADC POINT.
If a particular table is to be used only for sequential readings, this field
can be eliminated since ADC POINT is then specified in the call sequence.

Delta Check - CONTROL =_000.

DC 4, ADC POINT
ADCTBL DC 4, MOST RECENT DRO

DC D, DELTA

DSC 1, OVERLOAD DIGIT

DSC 1, VIOLATION DIGIT

DC 1, @ Record mark

User's data

High Limit Check - CONTROL = T11.

DC 4, ADC POINT
ADCTBL DC 4, MOST RECENT DRO

DC 4, HIGH LIMIT

DSC 1, OVERLOAD DIGIT

DSC
DC

1,
1,

VIOLATION DIGIT
@ Record mark

User's data

Low Limit Check - CONTROL = 011.

DC
DC
DC
DSC
DSC
DC

4,
ADCTBL 4,
4’
13
17
1,

ADC POINT

MOST RECENT DRO
LOW LIMIT
OVERLOAD DIGIT
VIOLATION DIGIT
@ Record mark

User's data

High and Low Limit Check - CONTROL = 001.

DC
DC
DC
DC
DSC
DSC
DC

ADCTBL ,

2

’

o e s R N

3

ADC POINT

MOST RECENT DRO
LOW LIMIT

HIGH LIMIT
OVERLOAD DIGIT
VIOLATION DIGIT
@ Record mark

User's data

Delta-Limit Check - CONTROL = 100.

DC 4,

ADCTBL DC 4,
DC D

DC 4,

DC 4,

DSC 1,

DSC 1,

DC 1,

U

ADC POINT

MOST RECENT DRO
, DELTA

LOW LIMIT

HIGH LIMIT

OVERLOAD DIGIT

VIOLATION DIGIT

@ Record mark
ser's data

NOTE: When the preceding five violation tables are loaded initially,
the existing reading of each point should be placed in the locations in
the tables reserved for the MOST RECENT DRO.

Go to SUBROUTINE After Each Point is Read - CONTROL = 010.

DC 4,
ADCTBL DC 4,
DSC 1,

U

ADC POINT

MOST RECENT DRO

@ Record mark
ser's data

39

Go to SUBROUTINE After All Points are Read - CONTROL = 001,

DC 4, ADC POINT
ADCTBL DC 4, MOST RECENT DRO
DSC 1, @ Record mark

User's data

Read a Specified Point or Group of Points ~ CONTROL = 000.

DC 4, ADC POINT
ADCTBL DC 4, MOST RECENT DRO
DSC 1, @ Record mark

User's data
The operands used in the above statements are defined as follows:

ADC POINT - See Call Sequences
MOST RECENT DRO - The updated reading of the point to which the
particular record refers
DELTA - The amount of change that is allowed from one reading to
the next. D may be 0, 2, 3, or 4 digits in length; however,
it must be the same length in all tables. D is specified at
assembly time by a DS statement with the label DELTA.
(See Assembly Procedures.)
LOW LIMIT - A 4-place digital value representing the allowable low
limit of the reading
HIGH LIMIT - A 4-place digital value representing the allowable high
limit of the reading
OVERLOAD DIGIT - A digit (1) set by ADC Program 1 whenever an over-
load occurs
VIOLATION DIGIT - A digit set by ADC Program 1 to indicate a viola-
tion. The code is as follows:

Digit Type of Violation
3 delta
0 low limit
1 high limit
0 low limit and delta
1 high limit and delta

A violation will not be indicated, however, if an overload has
already been detected.

User's Data - Any information that the user desires to include in the
record of data for a particular point

OPERATION OF ADC PROGRAM 1

Before using ADC Program 1 the user should have a general knowledge
of the details regarding its operation. These details can be divided into

40

two sections which describe how points are read and analyzed and how
user's routines must be written to take full advantage of the ADC program.

Reading and Analyzing DRO Values

When a call sequence to ADC Program 1 is executed, the specified ADC
record is stored in an ADC work area.

NOTE: The form of the work area depends upon the type of check being
performed, which in turn depends upon the control code used in the call
sequence. A delta violation work area is shown in Figure 6.

Notice that the form of the work area is similar in appearance to the
ADC Table form described previously, the main difference being the
presence of the EXTASI digit. This digit is used as a reference point for
the work area and as an indicator to identify the type of violation (same
code as Violation Digit).

When reading randomly, the ADC record is transmitted to EXTASI +1;
when reading sequentially it is transmitted to EXTASI +5. In the latter
case, the ADC program fills in ADC POINT with the point address specified
in the call sequence.

After the ADC record is stored, the specified point is read and its DRO
value is also stored in the work area. The ADC program then compares
the NEW DRO to the users limits to check for a limit violation and then
subtracts the new DRO from the MOST RECENT DRO to check for a delta
violation. If any violations are detected the EXTASI digit is set with the
appropriate indicator and a branch is executed to the address specified by
SUBROUTINE in the call sequence. If no violation is detected, the NEW
DRO value is transmitted to the MOST RECENT DRO entry in the corres-
ponding ADC record and control is returned to the calling program.

Violation Subroutine Considerations

When a violation occurs, the ADC program branches to the address
specified by SUBROUTINE in the call sequence. At that address the ADC
program will find either a violation subroutine to be executed (violation
option 1) or the constant 99999 (violation option 2).

<

Most
Recent DRO Delta

[

a00—=0<Q

SO= =0 —0 =

4

Eew DRO ‘ ‘ ADC Point
[11 [1]
EXTASI

Figure 6, Work Area for Delta Violation

41

Violation Option 1

42

Option 1 is used when the violation is to be analyzed immediately. Any
method of analyzation and correction is permissible, including the use
of Executive Control programs such as Analog-Digital Control, Contact
Sense Control, and Analog Output Control. The ADC work area is also
available for use. Certain restrictions, however, are placed upon the
use of violation subroutines.

1.

2.

A violation subroutine must be in core storage if it is likely to be
called.

No more than two levels of violation are allowed. For example,
if a user's program calls the ADC program to read a point which
is found to be in violation, and the respective violation sub-
routine in turn calls the Contact Sense Control (CSC) program

to perform a compare operation which results in a violation,
then any subsequent use of an Executive program must not re-
sult in a violation. Otherwise return paths are lost and im-
proper operation results.

The violation subroutine must exit by means of a call sequence.
Three exit options are available:

A. Read the remaining points specified in the respective call

sequence.
TFM EXECIN -1, *+25
B EXECIN
DORG *-4

DSC 2, -0 Executive Control digits
DSC 1, 0 ADC Control digit
DC 3, 6 @ Parameter count
B. Discontinue the present call sequence and return to the ADC
program to execute any calls which may be "stacked, ' wait-
ing for execution.
TFM EXECIN -1, *+25
B EXECIN
DORG *-4
DSC 2, -0 Executive Control digits
DSC 1, 1 ADC Control digit
DC 3, 6 @ Parameter count
C. Discontinue any ADC operations and return to the user's
program that originated the call sequence which, in turn,
caused the violation. If this option is chosen, any "stacked"
ADC calls are lost.
TFM EXECIN -1, *+25

B EXECIN

DORG *-4

DSC 2, -0 Executive Control digits
DC 1, 0 ADC Control digit

DC 3, 6 @ Parameter count

NOTE: When violation option 1 is exercised, the violation information in
the work area is not returned to the respective ADC Table record. The
user may perform this operation if he desires.

Violation Option 2

Option 2 permits the user to save the violation data for subsequent analysis
When this option is exercised, the ADC program will transfer the contents
of the work area (from the MOST RECENT DRO entry through the record
mark) to the appropriate record in the ADC Table. The MOST RECENT
DRO entry is not updated to the NEW DRO value that caused the violation.
After storing the digit 1 at symbolic location EXANYV, the ADC program
branches back to the user's program.

To subsequently determine if any violations occurred, the EXANYV
digit can be interrogated by the user. If it is a one, the user must then
determine which point or points were in violation. This is done by inter-
rogating the overload digit in each ADC record involved in a read opera-
tion. If the overload digit in a particular record is not flagged, no viola-
tion of that point has occurred; if the overload digit is a 0, a violation has
occurred; if the overload digit is a I, an overload has occurred.

The type of violation may be determined by interrogating the viola-
tion digit in the ADC record of the point in violation. This violation
digit is a duplicate of the EXTASI digit set in the work area when the
violation occurred.

The overload and violation digits must be reset to 0 by the user if
they are to be used again,

Handling Multiple Calls

Analog-Digital Control Program 1 has the ability to "stack'' up to two
requests for a read. All additional requests are deferred until the first
has been serviced. ADC Program 2 does not have this stacking ability.

DESCRIPTION OF ADC PROGRAM 2
Analog-Digital Control Program 2 provides the user with a means of

reading and storing ADC values when no checking is desired. A definite
saving of core storage is realized when this program is used.

Call Sequences

As in Program 1, points may be read sequentially or randomly from a
mainline program or from an interrupt subroutine. The call sequences
follow.

43

44

Mainline Program

To read sequentially:

RETURN

To read randomly:

RETURN

BTM
DORG
DsC
DC .
DSA
DC
DC
OoP

BTM
DORG
DSC
DSA
DC
DC
op

Interrupt Subroutine

To read sequentially:

RETURN

To read randomly:

RETURN

TFM
B
DORG
DSC
DC
DSA
DC
DC
op

TFM

DORG
DSC
DSA
DC
DC
0] 5

EXECML, RETURN

* +2

2, -0 Executive control digits
4, ADC POINT

ADCTBL -3

3, NUMBER

3, 17 @ Parameter count

P, Q

EXECML, RETURN

* 42

2, -1 Executive control digits
ADCTBL -7

3, NUMBER

3, 13 @ Parameter count

P, Q

EXECIN -1, RETURN
EXECIN

* -4

2, -0 Executive control digits
4, ADC POINT

ADCTBL -3

3, NUMBER

3, 17 @ Parameter count

P, Q

EXECIN -1, RETURN
EXECIN

* -4

2, -1 Executive control digits
ADCTBL -7

3, NUMBER

3, 13 @ Parameter count

P, Q

The operands used in the preceding call sequences have the same
meanings as those described for ADC Program 1 call sequences.

ADC Tables

ADC Tables for version 2 are required only if random reading is de-
sired. The tables must be in the following form;

DC 4, ADC POINT
ADCTBL DC 4, MOST RECENT DRO

45

ANALOG OUTPUT CONTROL PROGRAM

FUNCTION

The function of the Analog Output Control (AOC) program is to select and
adjust the various Set-Point Positioners (SPPs) within the user's process.
In doing this, the program allows the user to specify different rates of
adjustment so that set-point movements can be synchronized. Maximum
accuracy can be ensured by reading feedback signals from the SPP just
before adjustment.

Two Analog Output programs are available. Program 1 performs
diagnostic analysis on the status of the SPPs while Program 2 simply adjusts
the SPPs according to the user's call sequence.

ANALOG OUTPUT LOGIC

The analog output area of a computer-controlled process consists mainly of
controlling instruments operated by SPPs. Each SPP is under control of
the 1710 System. The frequency and extent of adjustment are determined
primarily by the analog output timer.

Analog Output Timer

The analog output timer is composed chiefly of a continuously running motor
that completes a cycle every 3.6 sec. This cycle is divided into two parts,
a 0.7 sec setup period and a 2. 9-sec action period. The setup time is used
to select the points needing adjustment; the action time is used to perform
the adjustment.

Slews and Trims

The adjustment of the SPPs can be accomplished by either a 2.5-sec signal
(slew) or a 0.5-sec signal (trim). Depending upon the desired setting, an
SPP may require several slews and trims to bring it into proper adjust-
ment. A slew or trim adjustment can be made only once during each 3. 6-
sec cycle; however, this one adjustment services all SPPs that were selected
during the setup time.

Feedback (Program 1 only)

46

To achieve maximum accuracy in adjusting SPPs, the computer can read a
feedback signal from each SPP. This signal reflects the most current setting

of the SPP, and if read just prior to adjustment ensures that the new setting
will be as near as possible to the desired setting.

Interrupts

Two interrupts are associated with the Analog Output feature of the 1710
System.

Analog Output Setup. This signal interrupts the mainline program at the
beginning of the setup portion of the analog output cycle. It ensures that
the AOC program has the full setup time for selecting the analog output
points to be adjusted. This interrupt is initiated every 3. 6 sec whether
analog output is or is not addressed. The regularity of the interrupt makes
it a timing device that can be used for other program functions for which a
3. 6-sec cycle is satisfactory.

Multiplex Complete. This signal provides an interrupt at the completion of
any operation utilizing the analog-to-digital converter. Although this inter-
rupt is primarily an analog input interrupt, it must be used by the AOC pro-
gram when the Analog Output Setup interrupt is not available. When used
jointly by the ADC program and the AOC program, this interrupt gives
higher priority to the former program. After all input operations are
completed, the AOC program is serviced. As stated before, this interrupt
can only originate as a result of an input operation; therefore, if the AOC
program wants to use the interrupt at a time when no input operations have
been initiated, it executes a "dummy'" input instruction addressing a non-
existent input point. This serves the purpose of initiating the interrupt when
the dummy operation is completed.

REQUIREMENTS OF AOC PROGRAM 1

Call Sequences

Whenever an SPP is to be analyzed and/or adjusted, the programmer inserts
one of two call sequences in his program, depending upon whether it is a
mainline program or an interrupt subroutine.

Mainline Program

BTM EXECML, RETURN

DC 2, 0 Executive control digits

DSA AO TABLE +N *31-31

DC 4, DESIRED SETTING

DC 2, FREQUENCY

DC 3, 16 @ Parameter count
RETURN oP P, Q

47

Interrupt Subroutine

TFM EXECIN -1, RETURN

B EXECIN

DORG *-3

DC 2, 0 Executive control digits

DSA AO TABLE +N * 31-31

DC 4, DESIRED SETTING

DC 2, FREQUENCY

DC 3, 16 @ Parameter count
RETURN OoP P, Q

The operands are defined as follows:
AO TABLE - The core storage address of the beginning of the Analog
Output Table. (See Analog Output Table.)
N - The number of the desired record in the Analog Output Table. The
records are numbered sequentially starting with No. 1.
DESIRED SETTING -~ See Analog Output Table.
FREQUENCY - See Analog Output Table.

Analog Output Table

Although some pertinent information is given in the call sequence itself,
other more or less fixed data is required by the AOC program. This data
must be defined at assembly time and made available to the AOC program
in the form of a table. This table, known as the Analog Output Table, is
shown in Figure 7.

Slew % Trim % SPP Frequency Desired Feedback Present
- - — Address - - — Setting _ Address _ Setting
X[X X.X X|X X.XXXXXXlOOXX[XXXXXXXXXXX.XX ¥

< gm0

xoagaocom

Ist Record

2nd Record

3rd Record

—— T TTT— T —— e — e
WW—AM\._.N-—/\/T

#[oi»r

Nth Record

Figure 7, Amalog Output Table

The Analog Output Table is composed of one 31-digit record for each
SPP the user wants to control. Each record is terminated by a record

48

mark. A record mark in the second position after the last record indicates
the end of the table. The meanings of the various table entries follow:

Activity Indicator. A digit that indicates whether or not the SPP is in
need of service, i.e., whether a slew or trim is needed. The
coding is:

1 - service required
0 - no service required

Initially, a zero is loaded by the user; the AOC program then
controls the status of the indicator on the basis of comparisons
between desired settings and present settings.

Slew %. The amount of change in the setting of an SPP caused by one
slew operation. This amount is expressed as a percentage of
full scale.

Trim %. The amount of change in the setting of an SPP caused by one
trim operation. This amount is expressed as a percentage of
full-scale (must be 1/5 of slew percentage).

SPP Address. The terminal address for upscale movement of the SPP.
This address plus one is the terminal address for down-scale
movement.

Frequency. Specifies how often the SPP will be serviced. This entry
ranges from 01 to 99, where 1 calls for service every 3. 6-sec
cycle, 4 calls for service every fourth 3. 6-sec cycle, etc.
Thus, the higher the number the lower the frequency of ad-
justment. The 4-digit field is of the form 00XX where XX is
the frequency count. This count is placed in the two leftmost
digits which are then "counted down' and permit service when
they reach 00. The two rightmost digits are used to restore
the two leftmost digits to XX after the SPP has been serviced.

Desired Setting. The SPP setting which the user desires. This setting
is expressed as a percentage of full-scale.

Feedback Indicator
1 - feedback is available from this SPP
0 - feedback is not available from this SPP.

Feedback Address. The terminal address at which the present position
of the SPP may be read.

Present Setting. The present setting of the SPP expressed as a per-
centage of full-scale. If feedback is available, this field is
updated initially (when the AOC program is called) by the feed-
back information and subsequently by each slew and trim of
the SPP. If feedback is not available, the user must load the
initial SPP reading into the field which will then be updated by
each slew and trim. ‘

Record Mark. The end of the information pertaining to one SPP.

49

OPERATION OF AOC PROGRAM 1

The AOC program may be logically divided into two operating phases. The
first is the initializing phase which sets up the conditions for selecting and
adjusting the SPPs; the second is the service phase which selects the SPPs
and starts the slew and trim operations.

Initializing Phase

When a call sequence to the AOC program is executed, the initializing phase
is entered and the following events occur.

1. The call sequence parameters are stored in the applicable record
in the Analog Output Table, and the activity indicator in. that
record is set.

2. If a slew is required, a Slew/Trim Program indicator (located in
the TVC area), is set to slew. This is done with no regard to the
previous setting of the indicator since slews are always given
priority over trims. The slew/trim indicator is used by the AOC
program to determine which type of operation (slew or trim) is to
be performed next. If only a trim is required, the AOC program
checks an "AOC busy" indicator in the TVC area; if it is not on,
indicating that an AOC operation is not in progress, the slew/trim
program indicator is set to trim.

3. The feedback indicator is checked and if feedback is available the
address specified in the Analog Output Table is selected and read.
After the point is read, control returns to the calling program to
await the interrupt that indicates setup time. If no feedback is
available, control returns to the calling program after checking
the feedback indicator.

If the feedback reading results in an overload condition, the
ADC-1 program stores a flag over the record mark in the corres-
ponding record in the Analog Output Table, Also, the AOC pro-
gram stores a one in the TVC area at symbolic location CTVT
+324. If these indicators are used, they must be reset by the user
after interrogation.

If ADC Program 1 is being used to read the feedback signal,
the SPP will be adjusted to the present setting in the Analog Out-
put Table. If ADC Program 2 is being used, the present setting
in the Analog Output Table will be destroyed and no adjustments
made.

Since the interval between setup times is 3.6 sec, many SPPs can be
selected before the service phase is entered.

Service Phase

This phase begins when setup time is recognized either by the Analog Out-
put Setup Interrupt, or if it is not available, by the Multiplex Complete

50

interrupt in conjunction with a BI instruction which checks the Analog Out-
put Setup indicator. The operations performed in this phase are listed below.

1.

The Slew/Trim Program indicator is interrogated to determine if

a slew operation has been requested for any SPP; if it has, the ad-
dresses are selected for each SPP record that has:

a. an activity code of 1, and

b. a frequency code of 01.

After all SPPs which require service have been selected, the Analog
Output Setup indicator is tested and, if it is still on, the slew opera-
tion is readied.

NOTE: This Analog Output Setup indicator (28) is not the same as
the Analog Output Setup Interrupt indicator (41). Indicator 41 is
turned off when the interrupt is recognized, but Indicator 28 re-
mains on until the 0.7 sec setup time has elapsed.

When the slew portion of the output cycle is reached, the slew is
performed and all selected SPPs are adjusted. No further adjust-
ments are made until the next 3.6 sec cycle. When no more slews
are needed, the Slew/Trim Program indicator is set to trim; trims
are then performed in the same manner as were slews. As the
adjustment of each SPP is completed, its activity code is changed
from 1 to 0.

When all SPPs have been trimmed, the AOC program is terminated,
the AOC busy indicator is turned off, and control is returned to the
calling program.

Analog Output Diagnostics

At the completion of one or more analog output adjustments, the user may
perform a diagnostic analysis of the SPPs that were adjusted. A suggested
procedure follows:

1.

Interrogate the AOC Busy indicator to determine when all desired
SPPs have been adjusted.

Call the ADC program to read the feedback addresses of the SPPs
to be analyzed. At the same time, the ADC program can be used

to perform limit checks on the SPP readings. If any readings are
out of the desired range, a violation subroutine can be used to call
the AOC program to make another adjustment to the SPP or SPPs.

ANALOG OUTPUT PROGRAM 2

In the AOC1 program, it is assumed that for a given SPP, the amount of
adjusting done by slewing or trimming increases linearly as the number of
slews or trims increases (i, e., three slews will drive the SPP three times
as far as one slew),

If the user's process does not operate in this manner, it is necessary
to use AOC2. In AOC2 the user specifies how many slews and trims he
wants to make on an SPP. No feedbacks are taken and no calculations are
made concerning desired setting.

51

Call Sequences

As in Analog Output Program 1, SPPs may be adjusted via a call from a
mainline program or an interrupt subroutine.

Mainline Program

BTM EXECML, RETURN
DC 2, 0 Executive control digit
DC 4, SPP ADDRESS
or 4, -SPP ADDRESS
DC 2, SLEW COUNT
DSC 1, TRIM COUNT
DC 2, FREQUENCY
DC 3, 14 @ Parameter count
RETURN op P, Q
Interrupt Subroutine
TFM EXECIN -1, RETURN
B EXECIN
DORG * -3
DC 2, 0 Executive control digit
DC 4, SPP ADDRESS
or 4, -SPP ADDRESS
DC 2, SLEW COUNT
DSC 1, TRIM COUNT
DC 2, FREQUENCY
DC 3, 14 @ Parameter count
RETURN op P, Q

The operands are defined as follows:

SPP ADDRESS This address must be the "up" address of an SPP.

For up-scale movement, the DC 4, SPP ADDRESS statement

is used. For down-scale movement, the DC 4, - SPP

ADDRESS statement is used. (As in A0C1, SPP ADDRESS

plus one is the terminal address for down-scale movement.)

FREQUENCY Same as AOC Program 1

SLEW COUNT The desired number of slews for the SPP that is
specified in the call sequence

TRIM COUNT The desired number of trims for the SPP that is
specified in the call sequence

Analog Output Table for Program 2

The Analog Output Table for Program 2 seen below has been substantially
reduced to increase the speed of the AOC program. This table, unlike
the table used in Program 1, is created by the program, not by the user.

The table will vary in size, depending upon the number of SPPs that are
being adjusted at any one time.
enough storage available in the table whenever SPPs are being adjusted. -
The core address for the table is specified by the user at assembly time,.

SPP Address

The user must ensure that there is

Action

Frequency

X

X

X

=1

X

X| XX

0

+

A description of the table entries follows:

SPP ADDRESS - Same as call sequence operand
ACTION - This field is composed of the slew and trim counts

from the call sequence.
is the trim count.

FREQUENCY - Same as AOC program 1

The units position of this field

53

CONTACT SENSE CONTROL PROGRAM

FUNCTION

The function of the Contact Sense Control (CSC) program is to compare
current contact sense readings with either predetermined contact sense
information or with previous contact sense readings. If any points do not
compare, the contact sense program branches to a user-written violation
subroutine. ‘

USING THE CONTACT SENSE PROGRAM

To use the contact sense program, the user must take the following
steps.

1. Set up a table in core storage containing the desired contact
sense information. This table must have the same form as
that used by the computer to store contact sense data when a
Select Contact Block (SLCB) instruction is executed (7 digits
for each 20 points).

2. Execute an SLCB instruction to read the current status of a
group of points into core storage. (Table 4 lists the numbers
of the points scanned for each terminal address - Q19 and Q13
of the SLCB instruction.) Remember that this instruction
destroys flags in the read-in-area.

3. Call the contact sense program to compare the established
table with the current readings.

Call Sequences

Mainline Program

BTM EXECML, RETURN
DC 2, -00 Executive control digits
DSA TABLE, CURRENT STATUS, SUBROUTINE
DC 3, LLL
DC 3, HHH
DC 3, 26 @ Parameter count
RETURN oP P, Q

Interrupt Subroutine

TFM EXECIN -1, RETURN

B EXECIN

DORG *-3

DC 2, -00 Executive control digits

54

DSA TABLE, CURRENT STATUS,

SUBROUTINE
DC 3, LLL
DC 3, HHH
DC 3, 26 @ Parameter count
RETURN OP P, Q

Table 4, Points Scanned by SLCB Instruction

rerminal Address Contact Sense
g end S ef st Pornts Scanmed
0o * 000-199
01 020-199
02 040-199
03 060-199
04 080-199
05 100-199
06 120-199
07 140-199
08 160-199
09 180-199
10 * 200-399
N 220-399
12 240-399
13 260-399
14 280-399
15 300-399
16 320-399
17 340-399
18 360-399
19. 380-399

* The maximum number of points scanned
with one instruction is 200,

The operands used in the foregoing call sequences have the following
meanings.

TABLE - The address of the rightmost digit in the table of desired
contact sense information.

CURRENT STATUS - The address of the rightmost digit in the core
area where the current readings were placed by means of the
SLCB instruction.

SUBROUTINE - The address of the first instruction in the user's
violation subroutine.

LLL - The lowest-numbered point to be tested.

HHH - The highest-numbered point to be tested.

NOTE: Contact sense TABLE data and the user's violation subroutine

must be in core storage when a call sequence to the CSC program is ex-

ecuted.

Low and High Point Number Restrictions

Because of the manner in which the contact sense program operates,
some contact sense point numbers must not be used as low and high
limits (LLL and HHH) in a call sequence. Tigurc 8 shows the specific
core storage bits and associated point numbers as they would be re-
lated if a given SLCB instruction was executed.

The following stipulations are made concerning the use of low and

high point numbers in a call sequence.

1. Any point number represented by a 4-bit may be used as a
low point number (LLL) in a call sequence.

2. A point number represented by a 2-bit may be used as a low
point number only if it is the first number in a group of 20
points; for example: 000, 020, 040 180. No other point
number represented by a 2-bit may be used.

3. Any point number represented by a 1-bit may be used as a high
point number (HHH) in a call sequence.

In Figure 8 for example, the circled limits shown below could not be

used.

LLL =87 HHH = 196

Low limit may not be represented by a 1-bit.

LLL =89 HHH ={98

All points represented by 2-bits are unacceptable except Point
180 in this example.

LLL = 188 HHH =97

High limits may not be represented by a 4-bit.

56

Figure 8 illustrates the representation of only 20 points; however,
all points in sets of 20 are similarly represented by the bits shown.
Therefore, the rules just stated apply to all point numbers.

4 4 4 point 188) 4 4 4 (point 197)
2 (point 180 2 2 2(point 189) 2 2 2 (point 198)
1 @oint 181) 1(point 184) 1 (point 187) 1(point 190) 1 (point 193) 1 (point 196) 1 (point 199)
Core Addresses |_1 0000 | 10001 | 10002 | 10003 | 10004 | 10005 | 10006 |
Instruction sLCB 10000 0000¢9 (This instruction will read the status of 20

contact sense points (180 through 199) into
core storage locations 10000 through 10006.)

Figure 8, Core Storage Bits and Associated Point Numbers

OPERATION OF THE CONTACT SENSE PROGRAM

As stated previously, the contact sense program compares two sets of
contact readings and branches to a user's subroutine if the readings

are not equal. These two sets of data must not contain any flagged
digits. The compare operation begins at the symbolic addresses TABLE
and CURRENT STATUS and proceeds as follows: A compare operation
is initiated which matches the two sets of readings within the user's
specified range (LLL to HHH). If the two sets of readings are not equal,
the number of the point in error is stored in the TVC area (at label IISCSPT),
and a branch is executed to the user's specified violation subroutine
(SUBROUTINE in the call sequence). If more than one point is in error,
the highest number is stored in the TVC area. The contact sense pro-
gram will place a flag over the digit in HSCSPT-2.

Violation Subroutine

The user's violation subroutine may handle the violation in any manner.
After the subroutine is completed, the user has the option of returning
to the program that initiated the original call sequence (Option 1) or of
continuing the compare operation to determine if any more points are in
error (Option 2). The options are selected by executing the following
call sequences:

Option 1
TFM EXECIN -1,*+25
B EXECIN
DORG * -4
DC 2, -0 Executive control digits
DSC 1, 1 Contact sense control digit
DC 3, 6 @ Parameter count

57

58

Option 2

TFM EXECIN -1, *+25

B EXECIN

DORG * -4

DC 2, -0 Executive control digits
DSC 1, 0 Contact sense control digit
DC 3, 6 @ Parameter count

If the test is continued (Option 2) the CSC program will start with the
point which is one number lower than the point in error. For example, if
the point in error was 187, the next point tested would be 186.

CSC violation subroutines must respect the same restrictions that
were placed upon ADC violation subroutines. (See Analog-Digital Control

program.)

SERIAL INPUT/OUTPUT CONTROL PROGRAM

FUNCTION

The Serial Input/Output Control (SIOC) program directs all input and
output operations relative to the Serial Input/Output Channel. By the use
of a call sequence or an SIOC interrupt, data can be read from a manual
entry unit or a sense switch unit, and can be written on a digital display
unit or an output printer.

A feature of this program is an optional formatting routine which will
handle all formatting of messages to the output printer.

When the SIOC program is used, either with or without the optional
formatting routine, the Any SIOC interrupt is required.

CALL SEQUENCES

Sense Switch, Digital Display, and Output Printer

To read a sense switch unit or to write on a digital display unit or output
printer, the following call sequences are used:

Mainline Program

BTM EXECML, RETURN

DORG * 42

DSC 2, EE Executive control digits

DC or DSC 1, M

DC 2, XX Unit indicator

DSA XXXXX Starting core address of the
message,or read-in area, or address of
the "list" statement. (The use of this
parameter for each unit is explained
later.)

DC 3, 13 @ Parameter count

RETURN oP P,Q

Interrupt Subroutine

TFM EXECIN -1,RETURN

B EXECIN

DORG * -4

DSC 2, EE Executive control digits
DC or DSC 1, M

DC 2, XX Unit indicator

59

Manual Entry

60

RETURN

DSA XXXXX Starting core address of the
message, or read-in area, or address
of the list statement.

DC 3, 13 @ Parameter count

OP P, Q

An explanation of the operands used in the above call sequences

follows.

EE - Control digits which designate the type of unit:

10 = output printer
11 = digital display unit
10 = sense switch unit

M - Modifier to signify the type of operation:

0 - Print a message in a format that was specified by
the user, but actually prepared by the SIOC program.

0 - If an output printer is the unit selected ontrol
digits = 10) print a message exactly as the user
has prepared it in his program; if a digital display
unit is selected (control digits = 11), display the
message on the unit as the user has laid it out in
core storage.

1 - Read the designated sensc switch unit in the
numerical mode.

1 - Read the designated sense switch unit in the
alphameric mode.

Unit indicator - 2-digit constant that signifies the unit the user wishes
to operate. The constant is identical to the last two digits of the
unit indicator associated with the unit being addressed. For
example, if 6070 is the indicator number for a particular unit,
then the user inserts the constant 70 in the call sequence when-
ever that unit is to be addressed.

To read a manual entry unit, the following call sequences are used:

Mainline Program

BTM EXECML, RETURN

DORG *+ 2

DSC 2, -11 Executive control digits

DC or DSC 1,M Modifier

DC 2, XX Unit indicator

DSA XXXXX Read-in arca

DC 2, XX Number of switches to be read

DC 3, 15 @ Parameter count
RETURN OP P, @

Interrupt Subroutine

TFM EXECIN -1, RETURN
B EXECIN
DORG * -4
DSC 2, -11 Executive control digits
DC or DSC 1, M Modifier
DC 2, XX Unit indicator
DSA XXXXX Read-in area
DC 2, XX Number of switches to be read
DC 3, 15 @ Parameter count
RETURN OP P, Q

An explanation of the operands used in the manual entry call sequences
follows:

M - Modifier to signify the type of operation

0 - Exccute a write instruction to turn on the Enter
light on the designated unit.

1 - Read the designated manual entry unit in the
numerical mode.

T - Read the designated manual entry unit in the
alphameric mode.

Unit indicator and rcad-in area - Same as described carlier for call
sequences to other SIOC units.

Number of Switches to be Read - This 2-digit constant in the range of
01 to 12 specifies how many of the 12 switches should be read.

NOTE: Reading always begins with the lowest switch address of
the unit.

INPUT OPERATIONS

The SIOC program takes control when one of the following two situations
occurs:
1. A call sequence is executed which specifies cither a sense switch
unit or a manual entry unit.
2. An interrupt is initiated by the depression of the Execute button
on any of the input units.

61

CALL SEQUENCE PROCEDURE

Input devices are read in a masked mode starting with the lowest numer-
ical address associated with the sclected unit. After each reading, the
address just read is incremented by one until the twelve addresses of a
manual entry unit or the four addresses of a sense switch unit have been
read.

The data is read into core storage starting with the address specified
by "read-in area'' in the call sequence, and continuing into successively
higher core storage locations. If the data to be read is in alphameric
form, "read-in area' must reference an odd core location.

INTERRUPT PROCEDURE

The operator can initiate the reading of an input unit by depressing the
Execute button on the unit. This causes the user's program to be
interrupted, thereby bringing the SIOC program into use. The SIOC
program branches to a user's interrupt subroutine (specified at assembly
time) which can handle the interrupt in any manner the user desires.
There may be one interrupt subroutine for all units or a separate sub-
routine for each unit. The user must execute a call in the interrupt
subroutine to read the unit. If no call is given, there will be no SIOC
response generated. The operation that ensues after the call is similar
to that described under Call Scquence Procedure.

Multiple Subroutines

62

In certain applications it is advantageous to use individual subroutines
rather than a common subroutine to handle ""Execute button" interrupts;
provision has been made in the assembly procedure for this option.
Taking sense switch units as an example, assume that five units are
being used and the interrupt for each unit requires a different interrupt
subroutine. The five subroutine addresses are calculated by the SICC
program from the following user-supplied information.

1. The core storage address of the interrupt subroutine associated
with the first sense switch unit (the first sense switch unit is
defined as the one with the lowest indicator number).

2. An increment that will be added to the given address to determine
the subroutine addresses for sense switch units 2, 3, 4, and 5.

For example, assume that the given address is 05000 and the increment
is 50. When each of the five sense switch interrupts occurs, the SIOC
program will branch to these addresses:

Sense Switch Unit 1 - 05000
Sense Switch Unit 2 - 05050
Sense Switch Unit 3 - 05100
Sense Switch Unit 4 - 05150
Sense Switch Unit 5 - 05200

If it is not convenient to have all the subroutines in consecutive
locations, or if two or more units use the same subroutine, the following
scheme can be used. (This example assumes five sense switch units.)

Core storage address = 10000 data supplied to SIOC program at
Increment =8 assembly time

User's Main Program

Location 10000 B AAAAA AAAAA is address of interrupt
DORG *-3 subroutine for Sense Switch
Unit 1.
10008 B BBBBB BBBBB is address of interrupt
DORG * -3 subroutine for Sense Switch
Unit 2.
10016 B AAAAA Sense Switch Unit 3 uses
DORG * -3 same subroutine as Unit 1.
10024 B DDDDD DDDDD is address of interrupt
DORG * -3 subroutine for Sense Switch
Unit 4.
10032 B EEEEE EEEEE is address of interrupt
subroutine for Sense Switch
Unit 5.

OUTPUT OPERATIONS

Three of the four available types of units can be involved in an
output operation:

1. Manual Entry Units

2. Digital Display Units

3. Output Printers

MANUAL ENTRY UNIT

Although a manual entry unit is essentially an input unit, it can some-
times be considered as an output unit. For example, a user's program
may require some input data from a manual entry unit. To signal the
operator that the data is needed, a call sequence with a control code

of 11 and a modifier of 0 is executed. This causes the SIOC program to
turn on the Enter light on the selected unit and then branch back to the
calling program. When the operator has entered the data, he can initiate
an interrupt by depressing the Execute button.

63

DIGITAL DISPLAY UNIT

When a call sequence specifies a digital display unit, the SIOC program
immediately writes four digits on the unit, starting at the address
associated with the "thousands'" position of the unit. This position is
addressed first because it resets the unit.

The data to be written must be stored in X through X plus 3, where
X is the address specified by ''starting address of the message' in
the call sequence.

The "sign' of the 4-digit value is transmitted to the sign position
in the unit.

Digital Display Errors

When a digital display error occurs, the SIOC program transfers control
to the System Alert Control program which prints an error message.

The message contains the 4-digit value that was supposed to be displayed.
(See System Alert Control Program.)

OUTPUT PRINTER

Programming the output printer is a complex task because of its ability
to perform many different types of operations (return carriage,
tabulate, space, form feed, etc.). The SIOC program is designed to
relieve the programmer of many of these details concerning format of
printed matter.

Analyzing a Printer Call

64

When the programmer writes an output call sequence to print a message
he must provide the SIOC program with address information concerning
the message. This can be done in two ways: if the message is to be
printed exactly as it appears in the program, the user must give the
SIOC program the "starting address of the message' (see Call Sequences);
if the message is to be printed after the SIOC program has placed it in
a user-specified format, the user must provide the "address of the list
statement" which tells where the data and the format specifications can
be found. (See Format Control.) If the first method is used, the message
data must be in consecutive core storage locations; if the second method
is chosen, the message can be composed of data located in different
areas of core storage. These two methods can be thought of as ""format
by user'" and "format by SIOC." This is slightly misleading because in
each case the final output format is of the user's choosing, but in the
latter case the actual "formatting' is done by the SIOC program.

As previously stated, the "starting core address of the message' must
be given when the "format by user' method is used. Also needed by
SIOC is the length of the message in disk sectors. This sector count,
in the form XXX, must be in the three core locations immediately

preceding the message (not the call sequence). The count can be
determined by dividing the total number of characters in the message
by 100 and then adding 1. If the number of characters constitutes an
exact multiple of 100, a 1 is not added.

Example:

3 + 1 = sector count of 004
100)J350 = characters in message

Printing the Message

When the SIOC program determines that the message is in the desired
format (arranged either by the user or by the SIOC program), the
message is transmitted to a "'disk buffer area.” This area (label
SBUFF) specified by the user at assembly time, may be up to five
cylinders in length.

NOTE: Regardless of the size of SBUFF, there is a limit to the number
of messages (of any length) that may be stored there at any one time.
This limit (label NUMMES) is specified at assembly time. (See
Assembly and Loading Procedures.)

If no previous messages are waiting in the disk buffer area and the
Serial Input/Output Channel is not busy, the first character of the
message is processed immediately upon being received, and control is
returned to the calling program. If some previous message is in the
process of being printed, this new message is stored in the buffer area
"behind" all previous messages. In case the buffer area is full when a
new message arrives, or contains more messages than specified, the
SIOC program '"interlocks" and prints messages continuously until there
is either room for the latest message or the number of messages is
down to the user's limit.

Since messages are printed via core storage, the user must provide a
100-digit buffer area in core storage from which characters can be
printed. Up to ten internal buffer areas may be used for output printer
messages.

When the first 100 characters of a message have been written, the
next 100 characters are brought into the internal buffer area from the
disk buffer area. Upon completion of the message, the SIOC program
checks the disk buffer area and starts outputting a new message if one
is found to be waiting.

While the output printer is actually printing a character, the user's
mainline program or interrupt subroutine is being executed. When the
character has been printed, a signal is generated to initiate an SIOC in-
terrupt which permits the next character to be transmitted to the printer.

65

Format Control

As previously stated, an SIOC Format Control program is available to
handle the format of data to be printed if the user so desires. (See Call
Sequence Operands.)
When this program is used the programmer must provide these items:
1. A "list" statement (Define Symbolic Address) that defines the
addresses where the data to be printed can be found.
2. A "format" statement (Define Al phameric Constant), that tells
the SIOC program how to prepare the data for printing.
The data that composes the message.
4. Two buffer areas, MLBUF and INTBUF (see Assembly Procedures)
to be used for exchanging core data with the format program.

w

List Statements

A list statement consists of a Define Symbolic Address (DSA) statement,
or a series of DSA statements each of which may not contain more than
ten operands. A record mark must follow the last operand in the list.
The first operand must be the address of the format statement that is
associated with the list statement.

LIST DSA FORMAT, DATA, 15555, MESAG
DC 1, @

The remaining operands (nine in the first DSA statement, ten in a sub-
sequent statement or statements) define addresses where data is located.
An address references the leftmost position of the field (leftmost plus
one for alphameric fields). If fields of data are continuous, that is,
stored in consecutive locations, one address is sufficient to specify many
fields. (See definition of n in Table 5.)

NOTE: Data to be formatted must not contain any record marks.

Format Statements

66

A format statement consists of a Define Alphameric Constant (DAC) state-
ment, or a series of DAC statements, each of which must not contain more
than 50 characters.

Before looking at some format statements to see how they are used with
list statements, it might be well to describe what can be specified when
formatting messages.

Options of Conversion. The user has the option of converting stored

numerical data into any one of four formats before it is printed. The four
types of numerical conversion are coded as E, F, I, and L. The format
of each is shown in Table 5.

If the user desires to make use of the conversion specifications he
must specify, at assembly time, a fixed length for integers and a mantissa
length for floating point numbers. (See Assembly Procedures.)

Table 5. Conversion of Numerical Data

Conversion In Core Storage
Specification As Printed As

nEw.d floating point number | floating point number
with an exponent

nFw.d floating point number | floating point number
without an exponent

nlw.s integer integer

nlw.d integer integer with a fixed
decimal point

Legend n The number of consecutive fields of data (in
consecutive storage locations) that will be
printed according to the specification that
follows n. If n is not specified, only one
field is printed.

w The total number of places that the user desires
to have reserved for the converted data.

d The number of places that the user desires to
have reserved for data to the right of the
decimal point.

s Size of the fixed field in core storage.

E-Convergion (Ew.d). A floating point number in core storage is
printed as a floating point number with an exponent. The w (total)
length reserved) in the specification must be sufficient to contain a sign,
a decimal point, and an exponent (four places) in addition to the number
itself. E-specifications should provide for the largest quantities to be
transmitted with the greatest accuracy. If the specified w. d is not large
enough to accommodate a number that is to be printed, the SIOC program
will substitute a w. d specification of 14. 8.

Examples of E-conversion are shown below:

In Core Storage Actual Printed
As Number Format As
23320000@ 233.2 E10.3 bb. 233E+03
3000000002 .003 E7.1 b. 3E-02

NOTE: b = blank or space

F-Conversion (Fw.d). A floating point number in core storage is printed
as a floating point number without an exponent. The w in the specification
must be sufficient to include a decimal point, a sign, and at least one digit.

The fractional portion of the number is truncated from the right if
insufficient spaces are reserved for it; if excessive spaces are reserved,
zeros are filled in from the right.

67

68

Examples of F-conversion are shown below:

In Core Storage Actual Printed
As Number Format As
2332000@3 233.2 F6.1 b233.2
4323400003 432.3 F5.1 -432.

I-Conversion (Iw) or (Iw.s). An integer in core storage is printed as an

integer, right-justified in the field reserved by w. If the size of the
number exceeds w spaces, the least significant digits are truncated
from the right until the number can be contained (no rounding occurs).
A negative quantity is preceded by a minus sign.

As previously stated, a standard s (field length) is specified by the
user at assembly time. Therefore, the s in the format specification is
not normally needed. However, if the user desires to change the standard
predetermined length of any particular piece of data, he must inform
the SIOC program of the change by placing the new field length after w
in the specification (Iw. s).

Examples of I-conversion are shown below:

In Core Storage Printed
As Format As
12 13. 2 b12
17 I3 -17

NOTE: In the second example a field length of two is assumed to have
been specified by the user at assembly time.

L-Conversion (Lw.d). An integer in core storage is printed as an integer
with a fixed decimal point. The ‘w and d portions of the specification
are as described for F-conversion except that no truncation occurs. This
means that if insufficient spaces are reserved, the SIOC programwill
make up the specified width by overlaying other data.
The fields in core storage may range from 3 to 97 digits in length
and must be flagged in the high-order position. Successive fields need
not be of the same length. The end of a field or group of fields must be
followed by an additional field with a flag over the high-order position.
Examples of L-conversion are shown below:

In Core Storage Printed
As Format As
222 L5.1 b22. 2
§33§ L6.2 b33. 33
7777 L6.1 -777.7

Alphameric Specifications. There are two specifications that can be used
to format alphameric data. They are designated A and H.

A specification (nA) This specification causes n alphameric characters
to be printed. The characters are found at the address specified
in the list statement. The specified address should be an odd
address.

H specification (nH) This specification causes the printing of the n
alphameric characters that follow the specification nH. For
example, 3HABC will cause ABC to be printed.

Space Specifications. To allow spaces in the printed output, the user can
specify nX. For example, 25X will cause the SIOC program to place 25
spaces in the printout.

Use of Format Statements

Format statements are used in conjunction with list statements. The
first operand in a list statement (DSA) defines the location of the format
statement. The format statement in turn specifies how the data at the
address in the list statement is to be printed.

For example:

List Statement

LIST DSA FORMAT, 15000, 16000
DC 1, @

Format Statement

FORMAT DAC 13, I7.2, F8.1, (E)

In this example, the data at address 15000 will be printed according to
format specification I7. 2 and the data at 16000 will be printed according
to format specification F8. 1.

The (E) in the format statement indicates the end of the statement.
If (E) is encountered before all the data specified in the list statement
has been formatted (in the previous example, assume the (E) to be after
17. 2), the SIOC program will revert to I7. 2, the first format specifica-
tion in the format statement. Formatting continues in this manner
until the record mark in the list statement is reached.

The (E) just mentioned is only one of the control codes that can be
used in format statements. A complete list is shown in Table 6. These
codes are the same as those used for DMES statements in the 1710 SPS
IT Assembly program.

NOTE: The change mode code (M), though a valid printer control code,
should not be used in a format statement. The SIOC Format Control
program automatically handles all mode changes. This code must be
used, however, when the user is formatting his own messages.

69

Table 6. Printer Control Codes for Format Statements

Format Code Operation
P) Type Numerical Pericd
(M) Change Mode
(] Type Numerical Comma
(8 Print Black
(A) Print Red (alert)
M Tabulate Printer Carriage
(S) Space Printer Carriage
(R) Return Printer Carriage
(] Form Feed
(B) End Message

The following is an example of a format statement using control codes.
FORMAT DAC 25, 16, (R), F10.2 (T), ¥8.1, (E)

Notice that commas, parentheses, and decimal points are required
punctuation and are counted in the total length of the statement. Paren-
theses may not be used in a format statement for any purpose other than
to define control codes.

Examples of Format Specifications

Two examples of format specifications are shown in Figure 9 together
with the printed output that can be expected. Notice that H and X
specifications, and control codes do not require any addresses in the
corresponding list statement.

Output Printer Programming Considerations

"Format by User' Starting Mode

The SIOC program assumes that all messages begin in the numerical
mode. If the user wants to start in the alphameric mode when he is
formatting his own message he must place a '""change mode'" control
character (M) at the beginning of the message.

Carriage Returns

70

If the programmer does not use ''tabs'" (T) in a line of print, the SIOC
program will automatically return the carriage after the user-specified
(at assembly time) number of characters per line have been printed. If
'"tabs' are used, the programmer is responsible for returning the
carriage before the end of the printed line is reached. In any case, the
carriage return for the first line of print must be provided by the user.

List statement 1:

LIST DSA FORMAT, MESAG
DC 1,®
Format statement 1:
FORMAT DAC 40, 11H START DATA, 3X, 16, (R), 9H END DATA, (E)

Printed as:

START DATA bbbXXXXXX
END DATA ‘“v“——
1 (2

(1) 3 spaces

(2) Six-digit field stored at symbolic location MESAG

List statement 2;

LIST DSA FORMAT, 00051, 00500, 00600
DC 1L,
Format statement 2:
FORMAT DAC 32, 154, 213, 9H PRESSURE, 10X, E9. 2, (E)

Printed as:

F + +
KXXXXXXXXXXXXXXXXKXXXXbPRESSURE, bbbbbbbbbb X. XXE XX
39) @ (3) 4)

(1) 15 alphameric characters stored in locations 00050 thru 00079
(2) Two 3-digit fields stored in locations 00500-00505

(3) Nine alphameric characters (SH)

{4) 10 spaces

(5) Floating point number stored in locations 00600-00608

Figure 9, Examples of Format Specifications

Form Feed

The programmer is responsible for form feed control. If the printed
data is to be spaced properly on form paper, the user must insert the
form feed control code (F) at the proper place in the message.

Print Red (Alert)

This control code is used primarily for important messages. When the
first character in a message is (A), i.e., Print Red, the SIOC program
immediately prints the message from core storage (alert messages are
never put on disk storage). If a previous message is in the process of

being printed, it is interrupted so that the alert message can be printed.

71

After the SIOC program has completed printing the alert message, it
continues with the interrupted message. The user should end his alert
messages with a Print Black, and a Return Carriage.

When a Print Red code is used within a message, it causes the
printer to start printing in red. Black printing is not resumed until a
Print Black code is executed.

NOTE: A Return Carriage should be programmed by the user at the
be ginning of an alert message so that the message will start on a new
line.

Length of Printed Line

At assembly time the user specifies how many characters per line
should appear in the printed output. This specification is subsequently
placed in the TVC area where it is available to the programmer. This
means that within a given program, the programmer can change the
original specification to a new number of characters per line.

This new length will then be in effect until changed by the programmer.
A caution here: if the section of program affected by the new length is
unmasked, there exists the possibility that an interrupt may occur,
bringing into use an interrupt subroutine. If this interrupt subroutine
(still assuming the original number of characters per line) calls an
output printer, the output format will not be correct.

Mantissa Length

Printer Errors

72

A 2-digit mantissa length is specified by the user at assembly time. This
length is placed in the TVC area at symbolic location MANTIS. This length
may be altered at any time. However, the same precautions mentioned

for Length of Printed Line must also be observed here.

The method of handling output printer errors is dependent upon the type
of message that is being transmitted when an error occurs.

If an Alert (Print Red) message is being processed when a
printer error occurs, the SIOC program will attempt to print the message,
from the beginning, up to three times. If the error persists after three
tries, the program will force the erroneous message to print out on the
selected printer and will type the following message on the console type-
writer:

THREE ERRORS ON ALERT MESSAGE

If a regular (non-alert) message is being processed when an error
occurs, the SIOC program will attempt to print the message up to nine
times. If the error persists, the selected unit will be logically dis-
connected and the secondary unit specified at assembly time will be used
to print all subsequent messages sent to the faulty unit.

Missing Unit Responses

ADC Calls

The PSC program periodically checks to see if unit responses are being

received from output printers in use. If a missing unit response is
detected, the PSC program transfers control to the SAC program which
determines the unit that is not responding. The SAC program types the
character . (period) on the unit in error, types the message

NO RESPONSE UNIT XX

on the console typewriter, and then returns control to the PSC program.
There will be no check for missing unit responses if the PSC
program is not used to load programs.

ADC calls from a mainline program must be completed before any calls
from a mainline program to the Format Control Program are given.

73

SYSTEM ALERT CONTROL PROGRAM

FUNCTION

The primary function of the System Alert Control (SAC) program is to take
control of the 1710 whenever an error condition is detected. SAC deter-
mines which error(s) is present, records each error by type, analyzes the
error(s) with respect to operating conditions and decides which of the
following procedures to execute:
1. Restart, using the program specified by the user in the current
record of the Core Load map.
2. Branch to the exception program specified by the user in the current
record of the Core Load map.
3. Record the error and continue with the current core load.
4. Halt.
In addition, the SAC program contains the CE Interrupt subroutine
which is called into use as a result of depressing the CE Interrupt key.

DESCRIPTION OF THE PROGRAM

Being an error control program, SAC is mainly concerned with post-error
alternative procedures. However, before describing the alternative pro-
cedures offered to the user, the various means of bringing the SAC pro-
gram into use will be described. Any one of two occurrences will cause
the SAC program (or part of it) to be executed: (1) Any Check Interrupt;

(2) depression of the CE Interrupt key.

Any Check Interrupt

When any of the errors listed in Table 7 occurs, the Any Check Interrupt
brings the SAC program into use. The SAC program analyzes the error
and places it into one of the categories shown in Table 8 and prints an
error message on the console typewriter. The program then determines
which alternative procedure to follow and proceeds accordingly.

Error Messages

All of the error messages that might appear during execution of the SAC
program follow the pattern shown in Table 9. Nine items make up a full
message. Items one through eight are printed on the first line; item nine
is printed on a second line. However, every message might not contain
all nine items. Certain errors require only a portion of the full message.

74

Table 7. Error Checks

Name Indicator Code
1620:
Read Check 06
Write Check 07
MAR Check 08
MBR-E Check 16
MBR-O Check 17
1711
*Any Check 19
TAS Check 2]
Function Register Check 22
Analog Qutput Check 23
1311:
Address Check 36
Wrong Length Record/Read
Back Check 37
Cylinder Overflow 38
*Any Disk Check 39
SIOC:
OQutput Error 6043

* No error count kept,

CE Interrupt

When
three

1.

used with the Executive II Control programs, the CE Interrupt has
functions:
To type out a current count of all errors that have occurred since
the last depression of the CE Interrupt key.
To allow the Customer Engineer to set or reset the AODOWN digit
(a digit that, when set to 1, makes the Analog Output Control
program inoperative).
To allow the Customer Engineer to logically disconnect from, or
reconnect to the system, any SIOC units.

Typeout of Error Count

Upon

depression of the CE Interrupt key, the CE Interrupt subroutine is

called into use. The first function of the subroutine is to type out error
codes and error counts. The format of the typeout is as follows:

Error Indicator Error Count
XX XX
XX XX

75

Table 8, Error Codes

Code Description

TAS Errors:
01 TAS Check occurred while TAS was not in use.

02 Function Register Check occurred while TAS was not in use.

03 lIllegal OP code was detected during the execution of a TAS instruction.
04 Hlegal function code (Q7digi7) was detected during the execution of a TAS instruction.
05 1llegal terminal address was detected during the execution of a TAS instruction.

06 An 03, 04, and/or 05 code occurred but the TAS instruction was re-executed with a legal OP

code, function code, and fterminal address.

Analog Output Error:

07 Analog Output Check - the analog output relays failed to unlatch. The AOC program cannot be
used until the condition that caused this error is corrected (see C.E. In'rerr_gfﬁt_)_.

Disk Errors:
10 The P address of the disk instruction was not the high-order position of the disk address.
Al Wrong length record check.
13 A disk address was illegal.
14 The Any Disk Error indicator was turned on by a Read Disk Track instruction in the SAC Program.
15 The third error in this mainline core load has occurred.
16 This error has occurred as a result of a disk instruction executed by the user; i.e., outside
the DAC program.
17 This error was caused by frying to write on a protected area of the disk (read-only status}.

18 There was no indelible address on the track matching the disk address requested in the read/write
disk instruction.

Errors other than
Disk, TAS, or AO:
20 Less than three errors have occurred in this core load; a process interrupt program is being executed.
21 Three errors have occurred in this core load; a process interrupt program is not being executed.
22 Less than three errors have occumred in this core load; a process interrupt is not being executed.
23 All error indicators have been interrogated and the Any Check indicator (19) will not turn off.
25 Three errors have occurred in this core load; o process interrupt program is being executed.

S10C Errors:

30 An error, other than a parity error, has been detected on a digital display unit. When this code
appears in an error message, the digital value that could not be displayed follows the code
in the message, e.g., 30 XXXX,

31 A parity error has been detected on a digital display unit. When this code appears in an error
message, the digital value follows the code in the message (see Code 30).

32 This code is always used in conjunction with code 30. If a digital value will not display properly,
the SIOC program will try to display 9999, If the nines display properly, code 32 is indicated.
In an error message, this code is followed by the indicator number of the unit in error,

33 This code is similar to code 32, except that if the nines do not display properly, code 33 is indicated.

In an error message this code is followed by the indicator number of the unit in error.,

The error indicator numbers that might be typed out are listed in Table 7.
Only non-zero error counts are typed out. For example, if no Read Checks
occurred since the last error count typeout, then neither 06, nor a count
for 06 would be typed out. After each typeout the counts are restored to

00.

Table 9, Error Message Format

No., of
Item | Characters Message Description
1 3 ERR Each message from the SAC program starts with these three
characters.
2 3 XXX Current Core Load Identification Code
3 2 XX Error code (Table 8)
4 7 RESTART Alternative procedure to be taken
or
ERR MSK
or
SKIP TO (exception)
or
STOP
5 3 XXX Identification code of the alternative procedure core load.
This is either the Restart Procedure identification code or the
Exception Procedure identification code.
6 22 0200000001 Two digit count of all error indicators., This message indicates
000000010000 two Read Check errors, one MBR-O Check error and one Address
Check error (see Table 7).
7 5 KXXXX Core location of the instruction that caused the error condition.
This will either be a TAS or Disk instruction.
8 12 KXXXXXKXXXXX Disk or TAS instruction that caused the error condition.
Q? 14 XXXXXXXXXXXXXX | This item is typed for disk errors 13, 14, 17, and 18 only. The
first six characters are the disk address; the next three are the
sector count; and the last five are the core address.

NOTE: Every message might not contain all nine items. If RESTART is the alternative procedure to be faken,
only items | through 5 are typed; if the alternative procedure is other than RESTART, and no disk or TAS opera~
tion is involved, only items 1 through 6 are typed; if TAS is involved, items 1 through 8 are typed, and if the
disk is involved, items 1 through 9 are typed.

AODOWN Status

The AODOWN digit (CTVT+105) is set to 1 whenever an Analog Output
Check (analog output relay failure) occurs. Until this digit is reset to 0,
the AOC program is inoperative. To allow the Customer Engineer to set
the digit to 0 or 1, the CE Interrupt subroutine types out the following
message after the error count typeout:

CHANGE STATUS OF AODOWN DIGIT
YES, INSERT 1. NO, 0. RS

NOTE: RS = Release and Start

If a 1 is inserted, the following message will be typed out.

INSERT 1 TO DISCONNECT OR
0 TO REACTIVATE. RS

77

If a 0 is inserted in response to the first message, the subroutine will
proceed to the SIOC disconnect routine.

SIOC Disconnect Routine

78

During each execution of the CE Interrupt subroutine, the Customer
Engineer is given the opportunity to logically disconnect or connect any
SIOC units. The following message is typed:

CHANGE SIOC UNIT STATUS. YES, INSERT 1, NO, 0. RS
If a 0 is inserted, the subroutine returns control to the MIEC program.
If a 1 is inserted, indicating that a change is desired, a second message
is typed.

ENTER UNIT NUMBER 70-89. RS

An SIOC unit code must be entered, after which the following message is
typed:

TO DISCONNECT UNIT ENTER 1, CONNECT, 0. RS

If a 0 is entered, the message
UNIT CONNECTED XX

is typed and control returns to the beginning of the SIOC disconnect routine.
If a 1 is entered, the following message is typed:

TO INDICATE PRINTER UNIT, ENTER 1. OTHER 0. RS

If a 0 is entered the message

ENTER SECONDARY UNIT NUMBER 70-89. NONE 00. RS

is typed and control returns to the MIEC program. If a1 is entered,
indicating a printer unit, the message shown below is typed out.

ENTER SECONDARY PRINTER NUMBER 70-89. NONE 00. RS

This gives the Customer Engineer the opportunity to specify a different
secondary printer unit than was specified in the SAC program at assembly
time. (See Assembly Procedures.) After a number is entered, the sub-
routine transfers control to the MIEC program.

NOTE: Any printer messages that are in progress when the CE Interrupt
key is depressed will be completed on the original printer unit even if that
unit is logically disconnected via the CE Interrupt subroutine.

Invalid Unit Indicator Numbers. If the Customer Engineer enters an in-
valid unit indicator number, i.e., one that is outside the range of 70-89,
the message

UNIT CODE OUT OF LIMITS

is typed along with a repeated request for a unit number.

POST-ERROR ALTERNATIVE PROCEDURES

To a great extent, the alternative procedures followed by the SAC program
are user-controlled by certain fields in the Core Load map shown below.

Exception Restart

" Core Load ID j (_Core Load ID

Partial Record in Core Load Map

However, some actions taken by the SAC program are mandatory
because of the type of error. Figure 10 shows the logic of alternative
procedure selection.

Restart Procedure

When SAC branches to the restart procedure, a chain of events is initiated
which ultimately results in a new core load in core storage. New sub-
routines, data, etc., might be loaded over data that is already in core
storage. Therefore, when the user requests this procedure he must be very
careful not to destroy any useful information,

Exception Procedure

The exception procedure operates similarly to the restart procedure.
There is one major difference however. The System Alert Control
program, considering the possibility that the user's exception procedure
program might consist of some type of error analyzation, provides the
following information for interrogation:
1. A 2-digit error code which provides the user with diagnostic
information concerning the error
2, The 5-digit core storage address of the Subroutine Identification
record which pertains to the process interrupt subroutine being
executed, If no process interrupt subroutine is being executed,
this data will not be provided.

79

80

Error

Update
Error
Count

More Errors of
any Type (Except SIOC)
in this Core
Load

Is this
Program a Process
Interrupt
Suoroutine

Restart Code in
the Core Load Map
Equal to 800

Alert Procedure

Go to Restart
Procedure

Ind. in Core Load
Map

Is this
Program a
Process !nterrupt
Subroutine

Is this
a Disk Error

& Halt

Record Error, but

* do not halt

o Go to Exception

Figure 10, Logic of Alternative Procedure Selection

-
Procedure

3. The 3-digit identifier of the current core load
This information will be available in core locations, 00051-00060.
Theé format of the data is shown below.

[x| 50| x| x|]3] x|

Core Location f e e e Ut SIS

00051 J
Error code
Core address
Core load identifier

Call to Diagnostic Control Program

If the exception procedure is to be executed as a result of three or more
errors in the current core load (Figure 10) the System Alert Control pro-
gram will call the Diagnostic Control program and execute it before the
exception procedure core load is executed. (See Diagnostic Control
Program in next section.)

81

DIAGNOSTIC AIDS

Several diagnostic aids are included in the Executive II System. These
include a trace option, a set of five, short, specialized diagnostic routines
(Quick Look Diagnostics), and a comprehensive Diagnostic Control program.
The latter two aids are real-time diagnostics which attempt to detect

errors before machine malfunctions occur.

TRACE OPTION

82

To aid the user in checking out his mainline programs and subroutines,

the Executive II Sy stem provides for a trace option within each Executive
program. When used, this option traces the logical flow of the programs
and types out messages when significant changes in flow occur (Table 10).

Table 10, Description of Typeouts from Trace Option

Typeout Description of Typeout

AIC The Analog-Digital Control program has been "branched to" be-
cause of a call fiom either a mainline program or an interrupt
subroutine.

Al The Analog-Digital Control program has been "branched to" be-
cause of a Multiplex Complete interrupt.

AOC The Analog Output Control program has been "branched to" be-
cause of a call from either a mainline program or an interrupt
subroutine,

AO The Anclog Output Control program has been "branched to" be-
cause of an Analog Output Setup interrupt.

Sic The Serial Input/Output Control program has been "branched to"
because of a call from either a mainline program or an interrupt
subroutine.

Sl The Serial Input/Output Control program has been "branched to"
because of an Any SIOC interrupt.

cscC The Contact Sense Control program has been "branched to" be-
cause of a call from either a mainline program or an interrupt
subroutine.

DAC The Disk Access Control program has been "branched to" because

of a call from either a mainline program or an interrupt subroutine.

PSC The Process Schedule Control program has been 'branched 10" be~

cause of a call from a mainline program.

XXXXX The digits XXXXX represent the RETURN address of a specific call
sequence. This typeout occurs when the purpose of the specific
call sequence has been fulfilled and the “calling program" (mainline

program or interrupt subroutine} is again in control.

To use the trace option of the Executive II, the user must insert a
control statement in front of the source deck of each Executive program.
This statement, when assembled, will cause the trace instructions to be
incorporated in the individual object programs. For a description of the
statement, see the section concerning Assembly Procedures.

When program checkout is completed, the trace instructions can be
removed by reassembling the Executive programs using a modification of
the original control statement.

If the trace option is used with the AOC program, there is likely to
be some delay in performing output operations. The delay is caused by
the trace message being typed during the 0.7 sec setup period, thereby
leaving less time for output operations

NOTE: When the trace option is in operation, the typeouts can be suppressed
by turning program Switch 4 ON.

QUICK LOOK DIAGNOSTICS

The Quick Look diagnostics are a set of five routines designed to verify
proper operation of selected machine circuits. Each diagnostic routine is
short (approximately 200 core locations) and has a relatively fast execu-
tion time (less than 28 msg).

These routines are under direct control of the PSC program. The
user does not have to load them nor be concerned about their exccution.

The primary function of the routines is to determine that a block of
circuitry is functioning normally. There is no attempt to provide any
information of a descriptive or analytic nature. If a malfunction is
detected the more comprehensive Diagnostic Control program is called
upon to further isolate the error.

Only one of the five routines is ever in core storage at any one time.
It is brought into core by the PSC program when a new core load is loaded.
It is executed only during "seek with hold" disk operations. (See Disk Access
Control Program.) If no such operations occur within a current core load,
the routine is overloaded with a different routine when the next core load
is brought into core storage. Thus, the five routines are rotated so that
each is executed periodically.

Circuitry Tested

The Quick Look diagnostics concentrate on the circuitry in the computer
that might fail and yet not cause an error check. The circuitry most
susceptible to such failure is related to conditional branch and arithmetic
operations. Consequently, the five diagnostic routines perform their tests
in these areas. Specifically, the circuitry tested by each of the routines is
apportioned as follows:

Routine 1 - Add, Add Immediate, Compare Immediate, Branch Not
Equal, Branch No Overflow

83

Routine 2 - Add, Add Immediate, Subtract, Subtract Immediate,
Compare Immediate, Branch No Overflow

Routine 3 - Transmit Digit, Branch On Digit, Branch No Record
Mark, Branch No Flag, Set Flag, Clear Flag

Routine 4 - Branch On Indicator, Branch No Indicator, Branch No
Overflow, Branch On Overflow

Routine 5 - Branch High, Branch Low, Branch Zero

DIAGNOSTIC CONTROL PROGRAM

The Diagnostic Control program is a comprehensive error detection
program that is executed as a result of either a direct call from the
user or a call from the System Alert Control program.

This diagnostic program performs all of the checks that the Quick
Look Diagnostics perform plus analysis of the divide special feature
(if installed). The program determines whether a particular circuit is
functioning properly. If it is not, a digit is set for interrogation by the
user.

The Diagnostic Control program uses the first 100 positions of core
storage for a communication area. To avoid destroying user's data
which might be in the Product area, the program saves the data in core
locations 00070 - 00099 and then restores it at the completion of the
program. However, any record marks in these locations will terminate
the save operation and the remaining data will be lost.

User's Call

The user may call the Diagnostic Control program by executing the
following call sequence:

BTM EXECML, RETURN
DORG * 42
DC 2,99
DC 3,05 @
RETURN OP P, Q

This call may be executed at any time but will probably find more use
during times when the computer is "idling," i.e., not performing any
critical operations.

System Alert Control Call

The System Alert Control program will execute the Diagnostic Control
program under the following conditions:

84

1. One of the Quick Look routines has detected an error.
2. An error has been detected in a user's Exception Procedure
program. TFor example, during a given mainline core load the
SAC program has recorded three errors. The user has selected
the alert code option of continuing by branching to the exception
routine. The SAC program will execute the Diagnostic Control
program before branching to the exception routine.
When the SAC program branches to the Diagnostic Control program, the
following message is typed on the console typewriter:

ERR ENTER DCP

When the Diagnostic Control program is completed, the return to the
SAC program is denoted by the following message:

RETURN FROM DCP XXXXXX

In this message, XXXXXX is the contents of a 6-digit communication
area containing an indication of any errors that may have been detected.
The six possible configurations of XXXXXX are shown below along with
the condition they indicate:

100000

010000
001000
000100

000010
000001

Any error which indicates that the 1710 System is no longer
reliable. The following message is typed along with this
configuration:

CALL IBM

The arithmetic tables contained an error but were corrected
by the SAC program.

The High Positive indicator circuitry is not functioning
properly.

The Overflow indicator circuitry is not functioning properly.
The multiply circuitry is not functioning properly.

The divide circuitry is not functioning properly.

85

ASSEMBLY AND LOADING PROCEDURES

As previously stated, all Executive II Control programs are unassembled
when received. This allows the user to tailor each program to fit his
particular application. This is accomplished by assigning addresses or
constants to labels that are used throughout the individual Executive
Control programs and user's programs. A Define Symbol (DS) statement
is used for this purpose.

The procedure is to punch the DS statements in cards or tape and
place them ahead of the associated program when it is assembled. If
paper tape is being used, a SEND statement must follow the DS statements.
This section of the manual describes the purpose of each label that must
be defined before assembling the programs. Only those programs re-
quired by the user need be assembled.

Another part of the assembly procedures concerns the construction of
the various maps used by the Executive Control programs.

MASTER INTERRUPT AND EXECUTIVE CONTROL

86

The following DS statements must be assembled with the Master Interrupt
and Executive Control (MIEC) program.

CTVT DS , XXXXX Core address of the Transfer Vector-
Common (TVC) area. This address,
once established, must not be changed
without reassembling all Executive
Control programs. This restriction
also pertains to the three addresses
which follow.

FTV DS , XXXXX Disk address of the TVC area.

CSKLD DS , XXXXX Core address of the Skeleton Execu-
tive loader.

FSKLD DS » XXXXX Disk address of the Skeleton Execu-
tive loader.

CMIE DS , XXXXX Core address of the MIEC program.

FMIE DS » XXXXX Disk address of the MIEC program.

FMAT DS
FSIM DS
NSIM DS

, XXXXX

, XXXXX

, 000XX

Disk address of the arithmetic tables.
The tables include a record mark
which is placed in core location
00400 when they are loaded to core
as part of the Skeleton Executive.
The tables are part of the MIEC
program and do not have to be loaded
separately by the user.

Disk address of the Subroutine
Identification map.

Number of records in the Subroutine
Identification map.

The next two labels are for the purpose of decreasing the core
storage requirements of the MIEC program when certain items are not
used. A zero in the units position of the DS operand causes appropriate
instructions to be eliminated.

DS
AQIND

DS

DS
SIOCUD

DS

DS
DEBUG

DS

, 00000

, 00001

, 00000
, 00001

, 00000

, 00001

The Analog Output Setup interrupt is
not used.

The Analog Output Setup interrupt is
used.

The SIOC program is not used.
The SIOC program is used.

The trace feature is not to be in-
corporated in the object output of this
program.

The trace feature is to be incorporated
in the object output of this program.
(For a description of the trace feature,

see Trace Option under Diagnostic

Aids.)

Assigning Process Interrupts and Timed Interrupts

Since the number of Process interrupts and Timed interrupts (One Minute
and One Hour) used is entirely up to the user, the MIEC program must be
provided with a label-versus-indicator assignment for each of these

interrupts that are used.

For the purpose of this assignment, the Timed

interrupts are treated like Process interrupts.

87

88

The labels to be used for this assignment are PINO1 through PIN14.
The 14 labels must be defined even if all 14 interrupts are not used. For
example, if only six interrupts are used, the labels PINO1 through PIN06
would be assigned to the six interrupts, in any order, while the remaining
PINXX labels would be defined with zeros in the address operand.

The label assignment below indicates that eight Process interrupts and
the two Timed interrupts are being used.

PINO1 DS , 04800 Process interrupt indicator 48
PINO2 DS , 04900 Process interrupt indicator 49
PINO3 DS , 05000 Process interrupt indicator 50
PIN04 DS , 05100 Process interrupt indicator 51
PINO5 DS , 05200 Process interrupt indicator 52
PINO6 DS , 05300 Process interrupt indicator 53
PINO7 DS , 05400 Process interrupt indicator 54
PINO8 DS , 056500 Process interrupt indicator 55
PINO9 DS , 04300 One Minute interrupt indicator 43
PIN10 DS , 04400 One Hour interrupt indicator 44

NOTE: The label-versus-indicator assignment above does not have to
be in any particular order.

PIN11 DS , 00000 Unused indicator
PIN12 DS , 00000 Unused indicator
PIN13 DS , 00000 Unused indicator
PIN14 DS , 00000 Unused indicator

The following label is used to define the number of combined Process
interrupts and Timed interrupts that are to be used. In the label assign-
ment above, the number would be 10,

NPIN DS , 000XX

PROCESS SCHEDULE CONTROL

The following DS statements must be assembled with the PSC program.

CTVT DS , XXXXX Core address of the TVC area.
FTV DS , XXXXX Disk address of the TVC area.
CSKLD DS , XXXXX Core address of the Skeleton

Executive loader.

FSKLD DS , XXXXX Disk address of the Skeleton
Executive loader.

CPS DS , XXXXX Core address of the PSC program.

This is the main PSC program that

is normally kept on disk until needed.
When allotting core storage for this
program, the user should add the fol-
lowing to the length of the program:
number of Subroutine Identification
Map records *16 plus length of 1 Core
Load Map entry.

FPS DS , XXXXX Disk address of the main PSC pro-
gram.
CPSE DS , XXXXX Core address of the Skeleton

Executive portion of the PSC program.

FPSE DS y XXXXX Disk address of the Skeleton
Executive portion of the PSC program.

FPSB DS » XXXXX Disk address of a storage buffer used
by the PSC program when servicing
interrupts between core loads. The
size of this buffer must be the same
as the size of the main (disk) portion
of the PSC program.

SPSB DS , XXXXX Disk address of a storage buffer used
by the PSC program to save a core
load while a special core load sequence
is executed. The size of this buffer
must be the same as the size of the
main portion of the PSC program.

89

NML

NSIM

NIN

FMLC

FSIM

TIME

FLOG
CLOG
SLOG

XFILA

NPIN

SIOCUD{

DEBUG

90

DS

DS

DS

DS

DS

DS

DS

DS

DS

DS

DS

DS

DS

DS

DS

, XXXXX

, 000XX

, XX . XX

, 00XXX

, 00000
, 00001

, 00000

, 00001

Number of core loads. This number
should coincide with the number of
records in the Core Load map.

Number of records in the Subroutine
Identification map.

Number of interrupts actually being
used. This includes internal interrupts
and external interrupts.

Disk address of the Core Load rap.

Disk address of the Subroutine
Identification map.

Desired time interval between logging
operations. If no logging is desired,
this field must contain zeros. XX.XX
is hours and hundredths of hours.

Disk address of the user's logging
subroutine. If no logging is desired,
this field must contain zeros.

Core address of the user's logging
subroutine. If no logging is desired,
this field must contain zeros.

Sector count of the user's logging
subroutine. If no logging is desired,
this field must contain zeros.

See DAC statements.
Number of Subroutine Identification

map records that are to be kept in
core at all times. This number should

not include the first 7 records in the map.

Serial Input-Output program not used.
Serial Input-Output program used.

The trace feature is not to be incor-
porated in the object output of this
program.

The trace feature is to be incorporated
in the object output of this program.
(For a description of the trace feature,
see Trace Feature under Diagnostic
Aids).

DISK ACCESS CONTROL

The following DS statements must be assembled with the Disk Access
Control (DAC) program.

CTVT DS
FTV DS
CSKLD DS
FSKLD DS
CFA DS
FFA DS
XFILA DS
XFILB DS
DS

UDIM
DS
FDIM DS

, XXXXX
, XXXXX

, XXXXX

, XXXXX

,00000

, 00001

, XXXXX

Core address of the TVC area.
Disk address of the TVC area.

Core address of the Skeleton Execu-
tive loader.

Disk address of the Skeleton Execu-
tive loader.

Cor e address of the DAC program.
Disk address of the DAC program.

Disk address of a buffer area used to
temporarily contain core data when an
interrupt subroutine must be brought
into core from the disk. This area
must be at least equal to the longest
subroutine or control program on disk
that might be brought into core via
the exchange method.

Disk address of a buffer area used to
temporarily contain an interrupt sub-
routine which is in core as a result
of an exchange. This area must be
at least equal to the longest interrupt
subroutine that might call the ADC or
AOC program.

Call sequences which use the Disk
Identification map are not used.

Call sequences which use the Disk
Identification map are used.

Disk address of the Disk Identification
map.

9

DS

DEBUG

DS

ANALOG-DIGITAL CONTROL

92

, 00000

, 00001

The trace feature is not to be incor-
porated in the object output of this
program.

The trace feature is to be incorporated
in the object output of this program.
(For a description of the trace feature,
see Trace Option under Diagnostic

Aids.)

The following DS statements must be assembled with Analog-Digital
Control (ADC) program 1 or 2.

CTVT DS
FTV DS
CTAS DS
FTAS DS
FSIM DS

DS
DEBUG

DS

y XXXXX
, XXXXX

» XXXXX

, 00000

, 00001

Core address of the TVC area.
Disk address of the TVC area.

Core address of the ADC program (1
or 2).

Disk address of the ADC program (1
or 2).

Disk address of the Subroutine
Identification map.

The trace feature is not to be incor-
porated in the object output of this
program.

The trace feature is to be incorporated
in the object output of this program.
(For a description of the trace feature,
see Trace Option under Diagnostic '€
Aids.) ""

The remaining DS statements apply only to ADC Program 1.

DELTA DS

, 0000X

This statement defines the number of
positions that DELTA occupies in the
ADC tables.

Specifying Diagnostic Options

ADC 1 allows the user to select only those analog input checks that are
suited to his particular application. (See Call Sequences in the analog
input section of this manual.) Table 3 in that section shows the combina-
tions of checks that may be selected. To use a particular control code in
a call sequence, its associated diagnostic check (A, B, C, or D) must be
incorporated in ADC Program 1. This is done by preparing a DS state-
ment for each of the eleven combinations. Each statement specifies
whether that particular combination is desired. Only one combination
out of the eleven shown in Table 3 may be selected for any one assembly.
The eleven statements are shown below:

NOTE: If analog output with feedback is being used, the chosen combina-
tion must include diagnostic check D.

DS , 00000 Combination 1 is not desired
C1

DS , 00001 Combination 1 is desired

DS , 00000 Combination 2 is not desired
Cc2

DS , 00001 Combination 2 is desired

DS , 00000 Combination 3 is not desired
C3

DS , 00001 Combination 3 is desired

DS , 00000 Combination 4 is not desired
C4

DS , 00001 Combination 4 is desired

DS , 00000 Combination 5 is not desired
C5

DS , 00001 Combination 5 is desired

DS , 00000 Combination 6 is not desired
Cé6

DS , 00001 Combination 6 is desired

DS , 00000 Combination 7 is not desired
Cc7 {

DS , 00001 Combination 7 is desired

DS , 00000 Combination 8 is not desired
C8

DS , 00001 Combination 8 is desired

93

{ DS , 00000 Combination 9 is not desired
C9

DS , 00001 Combination 9 is desired

DS , 00000 Combination 10 is not desired
C10 {

DS , 00001 Combination 10 is desired

DS , 00000 Combination 11 is not desired
Ci1

DS , 00001 Combination 11 is desired

ANALOG OUTPUT CONTROL

The following DS statements must be assembled with Analog Output Control
(AOC) Program 1 or 2.

CTVT DS s XXXXX Core address of the TVC area.

FTV DS , XXXXX Disk address of the TVC area.

CAO DS , XXXX Core address of the AOC program (1
or 2).

FAO DS , XXXXX Disk address of the AOC program (1
or 2).

FSIM DS , XXXXX Disk address of the Subroutine

Identification map.

AOTABL DS s XXXXX Core storage location (first digit) of
the Analog Output table.

AOSLEW DS » 00XXX Three-digit terminal address for
selection of a slew operation.

AOTRIM DS » 00XXX Three-digit terminal address for
selection of a trim operation.

DS , 00001 The Analog Output Setup interrupt is
going to be used in conjunction with
MULTC analog output operations.
DS , 00000 The Multiplex Complete interrupt is

going to be used in conjunction with
analog output operations.

94

DS , 00000 The trace feature is not to be incor-
porated in the object output of this
DEBUG program.

DS , 00001 The trace feature is to be incorporated
in the object output of this program.
(For a description of the trace feature,
see Trace Option under Diagnostic
Aids?)

The remaining DS statement applies only to Analog Output Program 1.
Remember that only one of the two programs may be used for any one
assembly.

DS , 00000 ADC program 1 used
VER1

DS , 00001 ADC program 2 used

This label is used by the analog output
program to determine what type of
call sequence should be used to read
analog output feedback points.

CONTACT SENSE CONTROL

The following DS statements must be assembled with the Contact Sense
Control (CSC) program.

CTVT DS , XXXXX Core address of the TVC area.
FTV DS , XXXXX Disk address of the TVC area.
CHSCS DS , XXXXX Core address of the CSC program.

FHSCS DS , XXXXX Disk address of the CSC program.
i

FSIM DS » XXXXX Disk address of the Subroutine
Identification map.

DS , 00000 The trace feature is not to be incor-
porated in the object output of this
DEBUG program.
DS , 00001 The trace feature is to be incorporated

in the object output of this program.
(For a description of the trace feature,
see Trace Option under Diagnostic
Aids.)

95

SERIAL INPUT/OUTPUT CONTROL

The following DS statements must be assembled with the Serial Input/Output
Control (SIOC) program.

CTVT DS , XXXXX Core address of the TVC area.
FTV DS , XXXXX Disk address of the TVC area.
CSKLD DS , XXXXX Core address of the Skeleton Execu-

tive loader.

FSKLD DS , XXXXX Disk address of the Skeleton Execu-
tive loader.

CSIOC DS , XXXXX Core address of the SIOC program.
DASIOC DS , XXXXX Disk address of the SIOC program.
FSIOC DS » XXXXX Core address of Format Control program.

FDADDR DS » XXXXX Disk address of Format Control program.

NUMDEV DS , 000XX Total number of SIOC units (01-20).
DEVT0 DS , 00XXY Labels DEV70 through DEV89 are
through used to show which unit response
DEVS9 indicators (6070-6089) are associated

with the various SIOC units. The
numbers (70-89) in the label corres-
pond to indicators 6070-6089. In the
operand, XX is the lowest-numbered
address of the associated unit and Y
is a code that designates the type of

unit-
0 = output printer
0 = sense switch
1 = digital display
1 = manual entry
SSSUB DS , XXXXX This label represents the core address

of the user's subroutine that the SIOC

program branches to when the Execute
button on the first sense switch unit is
depressed. (See Multiple Subrcutines
in SIOC section of this manual.)

96

SSADD DS

MESUB DS

MEADD DS

DS
PRPRES

DS
NUMPRT DS

SBUFF DS

NUMCYL DS

NUMMES DS

, XKXXX

XRXXX

, XXXXX

, 00000
, 00001
, 000XX

, XX000

, 0000X

, 000XX

The number that is used as an incre-
ment to SSSUB. (See Multiple Sub-
routines in SIOC section of this
manual.)

Same function for manual entry units
as SSSUB is for sense switch units.

Same function for manual entry units
as SSADD is for sense switch units.

Output printers are not used.
Output printers are used.
Number of output printers used.

Disk address of a buffer used to store
printer messages which are waiting to
be printed. This buffer area must
begin with an address which has zeros
in the last three positions; i. e.,
01000, 09000,etc. This limits the
possible buffer addresses to 20 per
disk module. The buffer area may
not be more than five cylinders long.

Number of cylinders (1 -5) which make
up SBUFF.

The maximum number of printer
messages (of any size) that can be
"stacked" in the disk buffer area
(SBUFF). The number specified must
be either 18, 38, 58, 78, or 98.
Whenever the buffer contains more
than the specified number of messages,
the SIOC program interlocks and
outputs messages until the number of
messages is within the specification.
Each specification above 18 requires
an additional 100 core storage loca-
tions for the SIOC program.

97

NUMSEC DS

MLBUF DS

INTBUF DS

NUMBUF DS
DS
DEBUG
DS

SIOC FORMAT CONTROL

98

, 0000X

» 000XX

, 00000

, 00001

This constant must be equated to the
NUMMES constant in the following

manner:
NUMMES NUMSEC
18 1
38 2
58 3
78 4
98 5

Disk address of a buffer area used to store
core data when the Format Control program
is called from a mainline program. (The
format program is normally on disk and must
be exchanged when it is to be used.) This
buffer must be at least equal to the size of the
Format Control program.

Same as MLBUF except the Format Control
program is called from an interrupt sub-
routine.

Number of 100-digit core buffers
used for outputting printer messages.
The number of buffers may range
from 1 to 10.

The trace feature is not to be incor-
porated in the object output of this
program.

The trace feature is to be incorporated
in the object output of this program.
(For a description of the trace feature,
see Trace Option under Diagnostic
aids.) o

The SIOC Format Control Program is used when output printer data is to
be formatted by theExecutive System. This program cannot be used alone;
it must be used with the standard SIOC program. However, it must con-

tain its own list of DS statements.

below.

CTVT DS

» XXXXX

The statements required are listed

Core address of the TVC area.

FTV DS » XXXXX Disk address of the TVC area.

FSIOC DS » XXXXX Core address of the Format Control
program. This address must be
below 11398.

FDADDR DS y XXXXX Disk address of the Format Control
program.
MLBUF DS » XXXXX Disk address of a buffer area used to

store core data when the Format
Control Program is called from a
mainline program. (The formatting
program is normally on disk and
must be exchanged when it is to be
used.) This buffer must be at least
equal to the size of the Format Con-
trol Program.

INTBUF DS , XXXXX Same as MLBUF except the Format
Control Program is called from an
interrupt subroutine.

MANTIS DS , 000XX Size of mantissa
EXLOFK DS , 000XX Fixed length of integers (1-98 digits).
LOFCAR DS , 00XXX Length of printed line (output printers).

The program will automatically re-
turn the carriage after the specified
number of characters have been
printed (second and succeeding lines
only).

COMPS DS » XXXXX Last core storage address available
on 1710 System (19999, 39999, etc.)

NUMSIM DS , 000XX Number of Subroutine Identification
map records always kept in core.
SYSTEM ALERT CONTROL

The following DS statements must be assembled with the System Alert
Control (SAC) program.

CTVT DS , XXXXX Core address of the TVC area.

FTV DS s XXXXX Disk address of the TVC area.

99

CSKLD DS , XXXXX Core address of the Skeleton Execu-
tive loader.

FSKLD DS » XXXXX Disk address of the Skeleton Execu-
tive loader.

CSA DS , XXXXX Core address of the main portion of
the SAC program.

FSA DS y XXXXX Disk address of the main portion of
the SAC program.

CSAE DS , XXXXX Core address of the Skeleton Iixecu-
tive portion of the SAC program.

FSAE DS , XXXXX Disk address of the Skeleton Execu-
tive portion of the SAC program.

FSAB DS » XXXXX Disk address of a buffer area used by
the SAC program. This area must
be at least equal to the size of the
main portion of the SAC program.

FSIM DS y XXXXX Disk address of the Subroutine
Identification map.

DS , 00000 The Divide special feature is not
installed on the 1710 Control System.
DIVIDE
DS , 00001 The Divide special feature is
installed on the 1710 Control System.
CCE DS , XXXXX Core address of the CE Interrupt
subroutine.
DS , 00000 SIOC printers are not used.
SIOCPR
DS , 00001 SIOC printers are used.
SIOC70 DS , 000XX Labels SIOC70 through SIOC89 are
through used to indicate a secondary printer
SIOC 89 for each output printer in use. The

XX in each DS statement is the
indicator number (70 - 89) assigned

to an output printer. For exaraple, if,
00089 is used with label SIOC 70, then
the printer with indicator number 89 is

the "backup" printer for printer number
70.

100

FCDCP

DIAGNOSTIC CONTROL PROGRAM

DS

Disk address of the Diagnostic Control
program.

The following DS statement must be assembled with the Diagnostic Control

program.

FCDCP

USER-WRITTEN PROGRAMS

DS

Disk address of the Diagnostic Control
program.

The following DS statements must be assembled with the user's mainline

program and interrupt subroutines.

If some ofthe Executive Control

programs are not used however, the statements pertaining to those pro-
grams need not be assembled.

CTVT

EXECML

EXECIN

EXPSCP

EXFILE

EXMICP

DS

DS

DS

DS

DS

DS

» XKXXXX

, CTVT+6

, CTVT+18

, CTVT+30

, CTVT+37

, CTVT+38

Core address of the TVC area.

Location of a branch instruction in the
transfer area. This instruction
transfers control to the MIEC program
where the user's mainline call
sequence is interpreted.

This label references a branch instruc-
tion which transfers control to the
MIEC program where the user's
interrupt subroutine call sequence is
interpreted.

This label references a branch instruc-
tion which transfers control to the
MIEC program where the user's
mainline call to the PSC program is
interpreted.

Location of a "disk busy' program
indicator. Whenever a disk operation
is in progress, this location contains
al.

Location of a branch instruction which
returns control to the MIEC program
at the completion of a user's sub-
routine.

101

EXARPS

EXANYV

EXTASI

MAPS

Core Load Map

DS » CTVT+57 Units position of the ""home address'

of the disk access arm.

DS , CTVT+73 Location of an ADC violation digit.

This digit is interrogated to deter-
mine if a violation or an overload
has occurred.

DS , CTVT+226 Location of a 1-digit ADC violation

indicator, and reference point for
the ADC work area.

The Core Load map can be constructed by preparing a set of SPS state-
ments for each item that is to be in the map. A sample item is shown

below.

DC

DC

DC

DC

DSC

DC

DC

DC

DC

DSC

102

3, XXX

3, XXX

3, XXX

3, XXX

6, XXXXXX
3, XXX
5, XXXXX

1,X

1,@

1,X

Identification code of current core load.

Identification code of next scheduled core
load.

Identification code of exception procedure
core load.

Identification code of restart procedure
core load.

Disk address of current core load.
Sector count of current core load.
Starting core address of current core load.

One-digit alert procedure code--
0 - halt
1 - record error, but do not halt
1 - branch to exception procedure
core load

Record mark

This is the start of the Subroutine Status
Table. The number of SPS statements needed
for this table should be equal to the number of
entries in the Subroutine Identification map.

In each statement, X is either 1, 0, 1 or 0.
(See Subroutine Status Table in a previous
section of this manual.)

DC 2,XX This is the start of the Interrupt Priority
Table. The number of SPS statements
needed for this table should be equal to the
number of interrupts that are to be used.
(See Label NIN in the PSC assembly proce-
dure.) In each statement, XX is one of the
numbers listed in Table 1.

NOTE: The statements listed above must be repeated for each core load
that is to be referenced in the Core Load map.

Subroutine Identification Map

The Subroutine Identification map is constructed in a manner similar to
that used to make up the Core Load map; however, the sequence of records
in the subroutine map must follow this pattern:

Record 1 - System Alert Control program
Record 2 - Analog-Digital Control program
Record 3 - Analog Output Control program
Record 4 - Process Schedule Control program
Record 5 ~ Contact Sense Control program
Record 6 - CE Interrupt subroutine

Record 7 - Operator Entry Interrupt subroutine
Record 8 - Process Interrupt X

Record 9 - Process Interrupt X

After the "Process Interrupts,' the map may contain any other programs,
subroutines, etc.

NOTE: The first six entries will be automatically filled in as the Execu-
tive Control Programs are loaded. Therefore, the user's map assembly
can start with the seventh record. There must not be any blanks in the
Subroutine Identification Map. If any of the seven Executive programs
are not required, the user should load the following in its place:

000000000000000+

103

A sample of the statements needed to construct one record is shown below:

DSC 6, XXXXXX Disk address of the respective entry.

DC 3, XXX Sector count of the respective entry.

DC 5, XXXXX Starting core address of the respective
entry.

DSC 2,0@ Status control location and record mark.

Disk Identification Map

The Disk Identification map is made up by assembling three SPS state-
ments for each record that is to be in the map.

DSC 6, XXXXXX Disk address of the respective entry.
DC 3, XXX Sector count of the respective entry.

DC 1, @ Record mark.

LOADING PROCEDURE

After all programs and maps have been assembled into object data, they
can be loaded onto the disk. The Executive Control programs are self-
loading to the disk, that is, they will load to core from the input unit and
then load themselves to disk with no operator intervention. Disk loading
of user's programs and maps must be handled by the user.

The sequence of loading programs and maps is entirely up to the
user. One caution,however, must be observed when loading the Subror+ine
Identification map. Since the first six entries in the map are loaded by
the Executive Control programs, there is the possibility that these entries
might be destroyed if the user loads his Subroutine Identification map
entries after he loads the Executive programs.

To prevent this from occurring, one of the following alternatives
should be chosen when loading programs and maps.

1. Load all Executive Control programs last, or

2. If Executive Control programs are loaded first, make sure that

each time an entry is added to the Subroutine Identification map,
the entire map is read into core storage and then written back on
the disk after it is updated. This procedure (reading and writing)
has to be done only once if the entire map is loaded at one time.

104

STARTING PROCEDURE

After all data is loaded, the Executive II System can be started by
following these procedures:
1. Reset all interrupt indicators. This may involve removing and
restoring power to some of the 1710 units.
2. Be sure the computer is under control of IR-1.
3. Depress the Reset key on the computer console and enter the
following data from any available input unit:

34 00032 00701
36 00032 00702
49 CSKLD 00
FSKLD 009 CSKLD

W
Disk address, sector count and core address
of the Skeleton Executive loader.

These instructions will cause the Skeleton Executive to be loaded to core
storage at the locations specified by the user in the various DS statements.
After the Skeleton Executive is loaded to core the message

KEY IN GM

is typed out. The user should type in a group mark and depress the R-S
key. If the Skeleton Executive and the group mark were loaded properly,
the message

LOADED

is typed out. The user may then call the first core load by depressing the
Reset key and entering the following:

17 EXPSCP 00016

N 0 \OVXXX~/

Location of a branch Identification code of core load
instruction for entering to be executed.

the PSC program

When the R-S key is depressed, the users mainline program will begin
execution.

105

Loading Errors

If any portion of the Skeleton Executive does not load to core properly,
the following message is typed out.

PROGRAM NOT LOADED

To restart:
1. Reload the Executive Control programs to the disk.

2. Re-execute the instruction sequence to call the Skeleton
Executive.

NOTE: There should be no group marks in core storage when the
Executive programs are loaded.

106

APPENDIX

TRANSFER VECTOR - COMMON AREA

A core storage layout of the Transfer Vector - Common (TVC) area is shown
in Table 11. This layout should prove helpful when extensive program ana-
lyzation is necessary.

TIMING CHART

The timing chart in Table 12 shows the average execution times for all Ex-
ecutive II functions with the respective control programs in core. Each
entry in the table illustrates the time required to do one operation. When
the execution times given in Table 12 are used, the following items must be
taken into consideration.

1. Analog output adjustments, when requested from an interrupt sub-
routine, are not initiated until the computer is placed in the inter-
ruptible mode.

2. When analog input readings are requested from an interrupt sub-
routine, the Analog Input program retains control until all requested
readings have been completed.

3. There will always be one extra Multiplex Complete interrupt that
occurs after all analog input readings have been completed.

4. When a call involving a digital display, manual entry, or sense
switch unit is completed, the Any SIOC interrupt will occur. This
temporarily returns control to the SIOC program where unit re-
sponse indicators are checked. If none are on, the mainline pro-
gram resumes control.

5. Execution times do not include trace time.

6. DAC calls listed in Table 12 are variable depending upon the loca-
tions of programs on the disk.

107

Table 11. Layout of Transfer Vector - Common (TVC) Area

Legend MIEC Master interrupt and Executive Control Program
PSC Process Schedule Control Program
DAC Disk Access Control Program
ADC Analog - Digital Control Program
AOC Analog Output Control Program
SAC System Alert Control Program
SIOC Serial Input/OQutput Control Program
CsC Contact Sense Control Program
QL Quick Look Diagnostics
CE CE Interrupt Subroutine
USER Mainline or Interrupt Programs
Number of Label Using
Location Characters If Any Programs Description
CTVT 1 Not used.
CTVT +1 5 MIEC Low-order position of the location where the retuin acldiess
of a maintine call is stored.
CTVT + 6 7 EXECML USER, MIEC Location of a branch inshuction for entering the MIEC
program when a mainline call is executed.
CTVT + 13 5 MIEC, DAC Low-order position of the location wheie the refurn acdress of
an interrupt subroutine call is stored.
CTVT + 18 7 EXECIN USER, MIEC, PSC Location of a branch instruction for entering the MIEC program
when an interrupt subroutine call is executed.
CIVT + 25 5 PSC Low-order position of the location where the 1eturn addiess of
a mainline call to PSC is stored.
CTVT + 30 7 EXPSCP USER, PSC Location of a branch instruction for entering the PSC program
when a mainline call to PSC is executed.
CTVT +37 1 EXFILE USER, DAC Digit set by DAC to indicate that a disk operation is in progiess.
CTVT +38 7 EXMICP USER, all control Location of a branch insfruction for returning to MIEC from all
programs executive programs and user's interrupt subroutines
CTVT + 45 1 MIEC, ADC Digit set by ADC to indicote that analog input operations are
in progress.
CTVT + 46 Not used.
CTVT + 53 5 EXARPS DAC, SAC Home address of the disk access arm.
CTVT + 58 7 MIEC, DAC Location of a branch instruction for entering DAC fiom a disk
call sequence.
CTVT + 65 1 MIEC, AOC Digit set by AOC when analog output operations are in progress.
CIVT + 66 7 MIEC, DAC Location of a branch instruction for re-entering DAC ofter an
exchange operation.
CIVT +73 1 EXANYV USER, ADC Digit set by ADC whenever a violation occurs
CIVT + 74 7 MIEC, DAC Location of a branch instruction for entering MIEC from DAC
during an exchange operation.
CTVT + 81 1 MIEC, DAC, ADC,| Digit set by DAC when an exchange operation is in piogress.
AOC
CTVT +82 7 MIEC, DAC Location of a branch instruction for re-entering DAC after a
double exchange operation.
CTVT +89 1 MIEC, DAC Control flag.
CTVT + 90 7 MIEC, DAC Location of a branch instruction for entering MIEC from DAC
after a double exchange operation.
CIVT +97 1 MIEC, DAC Control flag.
CTVT + 98 7 MIEC, DAC, ADC, Location of a branch instruction for entering MIEC fror
AQC, SIOC, another control program.
CsC

108

Table 11, Layout of Transfer Vector = Common (TVC) Area (Cont'd)

Number of Labeli Using
Location Characters If Any Programs Description
CTVT + 105 1 AOC, SAC Digit set as a result of an analeg output check. This makes
the AOC program inoperative .
CTVT + 106 5 EXSIOC MIEC, SIOC Entry point in the SIOC program when a call to SIOC has
been executed.
CTVT + 111 2 CsC Contact Sense Violation save area.
CTVT + 13 1 AOC AQC control digit.
CTVT + 114 7 MIEC, DAC Location of a branch instruction for entering DAC when a seek
complete inferrupt occurs.
CTVT +121 1 AOC AOC control digit.
CTVT +122 7 MIEC,ADC Location of a branch instruction for entering ADC when a call
to ADC has been executed,
CTVT + 129 1 MIEC, DAC Control digit used when AOC feedback s required.
CTVT + 130 7 MIEC, AOC Location of a branch instruction for entering AOC when a call
sequence to AOC has been executed.
CTVT +137 3 PSC, SAC Three-digit code of restart core load when the restart procedure
is directed by SAC.
CTVT + 140 7 ADC Location of a branch instruction for entering ADC when the -
request table is full (3 requests).
CTVT + 147 1 MIEC, DAC Control digit
CTVT + 148 7 DAC Location of a branch instruction for entering DAC to complete
o disk overation before returning to the mainline progiam.
CTVT + 155 1 MIEC, DAC Double exchange control digit.
CTVT + 156 7 PSC Location of a branch instruction for entering PSC after disk
usage to see if PSC is finished with all loading.
CTVT + 163 1 MIEC, SAC Digit set by MIEC to indicate that a process interrupt sub-
routine is being executed.
CTVT + 164 7 MIEC Location of a branch instruction for entering MIEC before
returning fo the mainline program.
CTVT + 171 5 MIEC, SAC Core address of the process interrupt subroutine currently being
executed.
CTVT + 176 5 INTSIO MIEC, SIOC Entry point in the SIOC program when an SIOC interrupt
occurs.
CTVT + 181 4 PSC Previous reading of the time clock.
CTVT +185 4 PSC Time of next logging operation.
CTVT + 189 3 PSC Save area for the Ident code of a mainline program whick.
called a special series of programs out of the normal sequence.
CTVT + 192 28 PSC, SAC Location of core load map for current core load.
CTVT + 220 30 MIEC, DAC, ADC,| Work area for ADC call sequence parameters.
AOC
CTVT + 226 1 EXTASI USER, ADC Location of ADC work area.
CTVT + 250 2 PSC, SAC Error count for each core load.
CTVT + 252 5 MIEC, PSC Beginning address of MIEC used by PSC to load pricrity table.
CTVT + 257 5 DAC, SAC Current position of the disk access arm
CTVT + 262 5 MIEC, AOC, Location of the instruction that caused error if a disk TAS or
SIOC SIOC error was detected.
CTVT + 267 3 PSC Number of mainline core loads.
CTVT + 270 3 PSC Number of records in the Subroutine Identification Map.
CTVT + 273 3 PSC Number of internal and external interrupts.
CTVT + 276 3 PSC Length of one item in the Core Load Map.
CTVT + 279 1 Not used.
CTVT + 280 7 MIEC, SAC, AOC,| Entry to core portion of the SAC program.
ADC,SIOC
CTVT + 287 1 Not used.
CTVT + 288 5 COMO SAC, SI0C Entry point to SIOC from SAC after an SIOC printer error.
CTVT + 293 2 NO UNIT SAC Number of SIOC units in 1710 system.
CTVT + 295 2 MANTIS | SIQC Length of mantissa.

109

Table 11, Layout of Transfer Vector = Common {TVC) Area (Cont'd)

Number of Label Using
Location Characters 1f Any Programs Description

CIVT + 297 1 TYERR SIOC, SAC, BSC Control digit for SAC, to know if SIOC peripheral error has
occurred.

CTVT + 298 16 KEEP - 2 SIOC Save area for SIOC call sequence.

CTIVT + 314 5 OUTPUT SIOC Address of SIOC branched to by Format Control program.

CTVT + 319 3 LOFCAR SIOC, USER Length of one line of output printer message.

CTVT + 322 1 MASK SIOC, MIEC Mask indicator — flag = masked, no flag = unmaskecl.

CTVT +323 5 AOCNT AOC Analog output item counter (Program 2 only).

CTVT +328 5 LASTR AOC Address of last record in analog output table (Program 2 only).

CTVT + 333 1 INTPRO MIEC, PSC Control flag set by MIEC to tell PSC that it has completed the
processing of a recorded interrupt subroutine.

CTVT +334 1 AIVIOL ADC, MIEC Digit-stored by ADC when an ADC violation has occurred and
the user's violation program has been entered.

CTVT + 335 i HSCS VI CSC, MIEC Digit stored by CSC when a violation has occurred and the
user's violation program has been entered.

CTVT + 336 1 BTMHSC CSC, MIEC Flog set by CSC to indicate BTM call sequence caused a viola-
tion.

CTVT + 337 5 AISPR ADC, MIEC, DAC Entry to MIEC from ADC after processing an ADC violation
subroutine.

CTVT + 342 5 HSCSPR CSC, MIEC, DAC Entry to MIEC from CSC after processing a violation subroutine.

CTVT + 347 1 VIODAC ADC, CSC, DAC Digit stored by ADC 1 or CSC after processing a violation
routine to indicate to DAC the return address to MIEC.

CTVT + 348 2 DIAGNO PSC, SAC Cumrent quick look identification number.

CTVT + 350 50 csc CSC call sequence reservation area.

CTVT + 400 3 HSCSPT CSC, USER CSC point number in violation.

CTVT + 403 31 ADC ADC call sequence save area.

CTVT + 434 5 EXDIAG MIEC, SAC Entry point to SAC from a call sequence.

CTVT + 439 5 PRTTBL SIOC, SAC, CE, High-order address of buffer table which designates the buffer

PSC area to be used with a particular output printer.

CTVT + 444 5 QLERR QL,SAC Entry point to SAC from a Quick Look error.

CTVT + 449 5 EXDDSK SAC, USER Disk address of Diagnostic confrol program.

CTVT + 454 QLOK SQALC,DAC Return address in DAC ofter a successful Quick Look execution.

CTVT + 459 5 SDIGIT SI0C, SAC, CE SIOC unit busy digit table.

CTVT + 464 5 DSAI S10C, SAC, CE Disk address of SIOC message buffer.

CTVT + 469 5 QLOOK DAC, PSC Enfry point to current Quick Look program.

CTVT + 474 5 TAB9 SIOC, SAC, CE Address of SIOC error count field.

CTVT + 479 2 NUMBUF SIOC, PSC, CE Number of buffers used in SIOC.

CTVT + 481 1 SIOCCT SIOC, MIEC, PSC Any SIOC interrupt control digit.

CTVT + 482 2 VIODAC ADC, CSC, DAC Control field used by ADC or CSC after processing o violation
routine. It indicates to DAC the return address to MIEC.

CTVT + 484 5 SACPSC SAC, PSC Entry point to PSC after a unit response failure.

CTVT + 489 5 Not used.

CTVT + 494 5 XTFM SIOC, DAC Address used to indicate TFM or BTM calls.

CTVT + 499 1 FORMAT SiIOC Digit to indicate that formatting is in process.

110

Table 12, Timing Chart

Executive II Program

Operation

Execution Time

MIEC

MIEC

MIEC (Call Sequence)

MIEC (Interrupt)

PSC

DAC (Cal! Sequence)

ADC Program 1 (Call Sequence)
ADC Program 1 (Interrupt)

ADC Program 2 (Call Sequence)
ADC Program 2 (Interrupt)
AOC Program 1 (Call Sequence)

AOC Program 1 (Call Sequence)
AOC Program 1 (Interrupt)
AQC Program 2 (Call Sequence)

AQOC Program 2 (Interrupt)
CSC (Call Sequence)
S10C (Call Sequence)

StOC (Call Sequence)
SIOC (Call Sequence)
SIOC (Call Sequence)
SIOC (Call Sequence)
SIOC (Call Sequence)

S1OC (Interrupt)
S1OC Format Control {Call Sequence)

Exit from a control program

Exit from an interrupt subroutine
Decode call sequence parameters
Determine which interrupt occurred
Load new core load

Seek and Read

Read one analog input point

Read one analog input point

Read one analog input point

Read one analog input point

{nitialize analog output (without
feedback)

Initialize analog output (with feedback)
Service analog output
Initialize analog output

Service analog output
Decode 20 contact sense points

Turn on enter light on manual entry
unit

Read a manual entry unit

Read a sense switch unit

Write on a digital display unit
Write on an output printer (Alert)

Store message on disk and send
one character

Write on an output printer

Format a message

1.3 ms

2.2ms

5.6ms

3.8 ms +.2ms * priority t
59.8 ms + 6 DAC calls

8.1 ms + seek and read time
7.6ms

7.6ms

5.8 ms

5.4ms

5.4 ms +13.4 ms if Multiplex Complete interrupt is used.
Subtract 13.4 ms if AO Setup interrupt is used.

6.3 ms + the time required for the analog input call
16,6 ms

4.3 ms +3,6 ms * number of current table entries + 13.3
ms if using’Multiplex Complete Interrupt. If using AO
Setup Interrupt, subtract 13.3 ms,

12.7 ms
13.4 ms with no errors
14.1 ms +3 DAC calls

170 ms + 3 DAC calls

59.2 ms +3 DAC calls

59.8 ms + 13 DAC calls

14 ms + time to send complete message
52.5 + 10 DAC calls

7.1 ms to output one character

45 ms + 3 ms * Number of Subroutine Map records + 4.6 ms*

number of characters + SIOC call time + 7 DAC calls

+ It takes .2 ms to interrogate each interrupt indicator, Therefore, execution time

depends upon the assigned priority of the interrupt.

Activity indicator (Analog Output)
ADC POINT
call sequence operand

ADC table entIy e o e oo o0 a0 00 s
ADC tables

description « e v e en e c0 b0 00

fOrmat ¢ « e o oo e s oo o 0o a0
ADCTBL, label e« v v eevoveenenns
ADC Work area « . «v oo o6 0o v o ve ue

Alert Messages« « s oo o0 0 s s s us
Alert Procedure indicator . .
Analog-Digital Control Program 1
assemblingof
Analog-Digital Control Program 2
assembling of + «cc oo o0 vo
Analog INPUL « s ¢ e s s 6 00 00 0 v
diagnostics ¢+ . o .
violation routines « « oo oo+
Analog Outpttt + ¢ « oo o0 s 6 00 o
diagnostics « oo s o a0 00 o
Analog Output Control Program 1.
assembling of .. .
Analog Output Control Program 2
assembling of000..n
Analog Output Setup
indicator +..e0oevevenan
interrupt
Analog Output Table.
Any Check interrupt « « v v s 00w
Any SIOC interrupt « « e ¢ e 0 - 0 o

¢« v e

e e 0 s e

e oo o

R

AOC Busy, program indicator ...

AODOWN digit eeoavovv oo oe

Assembly procedures
Analog-Digital Control «+ .« . .
Analog Output Control.
Contact Sense Control + + . . »
Diagnostic Control «
Disk Access Control . ..

..

..

.

Master Intexrupt and Executive Control
Process Schedule Control « « e o v o o
Serial Input/Output Control .+
Serial Input/Output Control (Format) .

System Alert Control
User-Written Programs

Call sequences

Analog-Digital Control Program 1+

Analog~Digital Control Program 2« « «

Analog Output Control Program 1 *
Analog Output Control Program 2 =«
Contact Sense Control Program - ¢ -
Diagnostic Control Program - =« ¢
Disk Access Control Program « ¢ ¢+ ¢ «
Process Schedule Control Program « -

Serial Input/Output Control Program -

.

92
94
95
101
91
86
89
96
98
99
101

34
44
48
52
55
84
27
23
61

Carriage Return «+ v+« -
CE Interrupt key » + o+ ¢« »
CE Interrupt, subroutine - -

Contact Sense Control Programse « « e s oo e e o

assembling of
Control codes, printer « » -
Core load
makeupo-..--..oc
scheduling « « » <o v o o
Core Load map cee e
assembling of ++ . ¢ .+«
Core Load table..

Deltacheck s v v s v 00000

DELTA, description « «+

Delta-Limit check «+- -

Diagnostic Control Program
assembling of

Digital Display Unit« « « « «
call sequence + ¢ » ¢« »

Disk Access Control Program « s» s e sessssesoccranas

assembling of -+« -
Disk buffer areas

DAC e et ovosocens

SIOC-

s s e e 0o bt s

Disk Identification Map =+ ¢+« -

assembling of + + « .-«

DRO (digital readout) value

E-Conversion e+ ¢+« oo+«
Enter light » ¢ s o v e e v v vt
Error counters » « » s s o ¢+ »

Exception core load « » + + » -

Exchange operatiom « ++ « ¢
EXECIN, label + - -
EXECML, labele oo v v 0o
Execute Button ¢+« s+«
EXMICP, label e o v o s oo
EXTASI digit <«

F-Conversion « « s ¢ ¢ o o0
Feedback e« e o oo s 0000
indicator » c+ v s s
address * s s ¢ o0 e o
Form Feed «+ »+ oo o

o

Format Control Program (SIOC)+

INDEX

teseseeereseena e e70, 100
ceeraeanes 7475
12, 13, 19, 75, 103
54
95

70

P A]
DI A A]
ee 00 00 0

e e s s o0 08 02 a0 00 00 s e s s s

A R RN -}
10
20
10
<. 102
10, 11
P I N R R N N S A A A 35
32

cese s eecassesasessesses 35
R R R . 84
csee it sesesssess e eess 101
ceer et e s et et se s 64
seceseseressesessasessss 59

25
91

L R R I I I I R N S A

0 s 8 s s E s L P B e LS EE GBS 0 30
65
15, 27
.-104
.32, 41

P R R I R I I A A A A]
D I I I R R Y

e e s e s 4 e e s s s e s s e

D I N I R I SR R R R Y

67
B
74, 75, 76, 77
.+ .10, 11, 79
«+ 29, 30
.. 9

0 8 o s 0 08 s s s s e B e s s

D I R N N R S A

L I A I I N I AT AR

L I RN B NN S N A SR A Y

L I I I R)

D I R R A I I N I IR AP R A S AN

D I R R I S S R R R A Y

tee s e s e 0 a0

assembling of
Format Statements « * « *
use of « -
exampleg s+ v o0 e e e
Frequency (analog output) « - - -

o e 0 o0 0

e s e s 06 00 a8 s 00

High Limit check «+ .+« -«
Home address

s e s s 00 s

ORI A A A)

ee e s e v e e

71
49, 51

. . 35,

LR RN ST

38, 40
28

113

I-Conversion * * e s e e¢ s 0o 00000
Interrupt
Analog Output Setup « « e« ¢ o
Anycheck.-...-.......
Any SIOC
CE s¢+o-
Multiplex Complete « «+ -«
Operator Entry + o ¢ e v 00 e
Process = « ¢«
OneHour » »vcvoecceoeees
One Minute
Seek Complete « + s s 0o
Interrupt Identification «: ¢« ..
Interrupt Priority Table « ¢+ ¢+
Interrupts
recorded » s c s o0 o 00 v e o
servicing

assigning priorities to ¢ ¢« s

R IR IR

e s e s a0 00 0

¢ s 0 s eo s 00

s s e s e s e

® s s e 0 co s e

L-Conversion » s+ « s ¢ s ¢« e« s 0 00 e
List statements-e « s+ « ¢+« s ¢ s ¢ ¢ o o

examples s eceo oo oo o
Loading Procedure« « « » + ¢+ oo » o &
Logging Operations o« ¢ ¢ o e o 0 s s
Low Limit Check e ev oo oo ess

Mainline Programs « ¢ s oo oo o0 s
Manual Entry unit « o« ¢ ¢« o ¢ a0 0
Map “ e s e e e s a e e es e
CoreLoad « « oo s s 0a s 0 00
Disk Identification -« ++¢ .«

Subroutine Identification

Master Interrupt and Executive Control Programe « -

assembling of

Multiple ADC Calls (stacking) -« « -

Multiplex Complete Interrupt
Numerical Conversion « ¢ ¢« o+ ¢ o

One Hour interrupt « « o v c ¢ o o o s
One Minute interrupt « « « « « ¢ s o «
Operator Entry interrupt « « « « + + «
Qutput Printer « « o s v o o oo v 0 v e

@ITOTS + e s s s o s s s sn st aun

specifying number of -

Overloade s ¢ s s s e s s e eesvses

Parameter core count
description « s s« oo s v o0
HoCESsinterrup ® o o 0 8 0 s 0 0 s
Process Schedule Control Program
assembling o
Programs
Analog-Digital Control 1 * * *
Analog-Digital Control 2 * *
Analog Output Control 1 =+
Analog Output Control 2 - * -
Control Sense Control
Diagnostic Contro!

-

R N I B T

68

ceeveee...47, 51

e s 00

.12, 19, 74
19, 59

12, 13, 19, 75, 103
<. ... 19, 36, 47

cee. 12, 13, 19, 103

v e

.

<7,

« o0

.

88
87
87
19
18
18

12, 13, 19,
<. 413, 19,
.13, 19,
.13,

10, 12,

18
22
87

12, 14,

PR 12,
68
66
71

104

24, 90

35, 39, 40

s e e s a e
e e e e
s e s s s
e s e e

..

<.5,6
. + 60, 63
se e 9
10, 102
15, 104
12, 103
18
86
43
19, 36, 47

s e e e
s 00 s e

66
c.e. .13, 19, 87
ce..13, 19, 87
12, 13, 19, 103
64
72

P V4
. ce. 40
sresereee o« 9

88
20
89

92
92
94

. 32,
- 43,
. 47,
.51, 94
- 54, 95
84, 101

Disk Access Control® * =+« -

Master Interrupt and Executive Control *
Process Schedule Control *+ ¢ ¢+« ¢ o

Quick Look Diagnostics * * *
Serial Input/Output Control
System Alert Control
User-Written ¢ ¢ ¢ o r o« * ¢

.

Quick Look Diagnostics « « «« + « +

Read Back Check « e ¢ oo ¢« oo s
Recorded Interrupts « <« =+« ¢
Response, umit + e v
Restart core load * s e ¢ v e
RETURN, label =« == covoooe

Seek Complete interrupte = * * *
Sense Switch Unit » -

s e 0

Serial Iput/OQutput Control Program -

assembling of
Set Point Positioner
setting, desired ¢« ¢«
setting, present
specifying number of ¢ + « « »
SIOC Output Error+ « « ¢
Skeleton Executive * * ** ¢« * ¢
loader <+
Slew < e=v -
Slew/Trim program indicator -
SPP.....--..-.-.
Starting procedure ¢ o -
Status Control digit s =« ¢+ =" - -
Subroutine Identification Map - -
assembling of <« oo+ oo
Subroutine Status Table ¢« + =+
Subroutines
Interrupt
Violatio

e 0 0 e 00

Tables

AnalogInput .. eeev 0.

Analog Output
Coreload ¢« e evevennn
Interrupt Priority
Subroutine Status ,.....
Tabulate Carriage. « « o v o0 oo«
Timing Charte . ¢+ . v o o v 0 v e
Trace option . .
Transfer Vector ~

Trim oo e vvvevovoonense

Unit Indicator. « « o o o0 o0 00 00 s v o

Unit ReSponse « o« o s oo 06 60 0

Violation digit . .
Violation options . .
Violation subroutines

programming considerations

)

82,
16,
46,

.-+ 47, 48,
« v 48, 49,
64, 72, 75,
50, 51, 52,
ee e 050,
47, 48, 49,

14,

s o 00 e e s e

11
41

» 12,
y 42,

<7,
<7,

34, 37, 38,

39,

DI Y

R L)
o e e .
. . .

87, 90, 92, 95,

. 107, 111

22

79

30
97
59
96

49
50
94
76
16
17
53
51
52

ceeseees105

15
12

++103

11

19
43

45
52
11
12
11
70

98

107, 108, 109, 110

49, 50, 51, 52,

-+« 59, 60, 61, 96,

s o s e o s e s e s

42,

53

99
73

43
43
35
41

C26-5759-1

TSI

®
International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, New York

1-65£5-92D "V¥'S$'n ut pajuld 0L/1 wal

K3

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116

