File Number 1800-~36
Order Number GC26-3718-4

Systems Reference Library

IBM 1800 Multiprogramming Executive Operating System
Introduction

This manual is an introduction to the IBM 1800 Multiprogramming
Executive (MPX) Operating System. Intended for new and pros-
pective 1800 installation managers, programmers, and operators,
it assumes only a knowledge of a few process-control and
data-processing terms.

Topics discussed are: what the 1800 system is used for, what
some of its capabilities and features are, what one might
need from an operating system, what MPX does about these
needs, and how MPX is organized.

Fifth Edition (June, 1970)

This is a major revision of, and renders obsolete, Form C26-3718-3 and
Technical Newsletters N26-0598 and N26-0602. The entire manual has been
rewritten to incorporate changes made to MPX in Versions 2 and 3.

This edition applies to Version 3, Modification 0 of the IBM 1800
Multiprogramming Executive Operating System, and to all subsequent
versions and modifications unless otherwise indicated in new editions or
Technical Newsletters. Changes may be made to the specifications in
this marual at any time; before using this manual in connection with the
operation of IBM systems, consult the latest SRL Newsletter, Order
Number GN26-1800, for the editions that are applicable and current.

Forms for reader's comments are provided at the back of this
publication. If the forms have been removed, comments may be addressed
to IBM Corporation, Programming Publications, Department D78,

Monterey and Cottle Roads, San Jose, California 95114.

For copies of this or any other IBM publication, see your IBM
representative or call your local IBM branch office.

© Copyright International Business Machines Corporation 1970

Preface: How to Use this Book

This manual is an introduction to the IBM 1800 Multiprogramming
Executive (MPX) Operating System. It is intended for new and potential
18300 installation managers, programmers, and operators; the only
prerequisite is knowledge of basic data-processing and process-control
terms. The data-processing terms are explained in Introduction to IEM
Data Processing Systems, Order Number GC20-1684.

The first chapter, "What the 1800 System Does," AdAiscusses kinds of
applications in which the 1800 system is used, and the different kinds
of work you can expect it to do.

The second chapter, "What MPX Does for You," discusses the programming
functions that are carried out by the operating system. It describes
needs that you might want the operating system to handle, and what MpPX
does apout these needs.

The third chapter, "How MPX Is Organized," tells how the various parts
of the system are put together and where they are located.

s you read this manual, you might want more detailed information about
1800 system physical units and MPX systen programs. These books can be
used for reference:

1800 System Summary, Order Number GA26-5920, which introduces the
physical units that make up an 1800 system.

1800 Functional Characteristics, Order Number GR26-5918, which
describes how the physical units work.

MEFX Programmer's Guide, Order Number GC26-3720, which discusses MPX
system organization and programming techniques.

MPX Planning for Versions 2 and 3, Order Number GC26-3731, which
describes the features of MPX added in Versions 2 and 3 of the
system.

MPX Subroutine Library, Order Number GC26-3724, which describes
each of the system subroutines.

MPX Operating Procedures, Order Number GC26-3725, which tells how
to generate, cperate, and maintain MPX.

1800 Assembler Language, Order Number GC26-5882, which tells how to
write programs in assembler language.

113071800 Macro Assembler Programming, Order Number GC26-3733,
which tells how to use macro instructions.

1130/1800 BRasic FORTRAN IV Language, Order Number GC26-3715, which
tells how to write programs in FORTRAN.

Communications Adapter Programming, Order Number GC26-3757, which
tells how to write programs to carry out communications with other
computers and terminals.

Binary Synchronous Communications--General Information, Order
Number GA27-3004, which describes the programming conventions that
govern communications between the 1800 and other computers and
terminals.

113071800 Plotter Subroutines, Order Number GC26-3755, which
describes MPX subroutines for controlling the 1627 plotter.

This page intentionally left blank.

iv

Contents

Chapter 1: What the 1800 System Does ninini... 1
Real-Time Applications i e 1
Background Processing - - - -+« « c v v i i i e e e e e e 2
CommuniCations .« -« « v v v v e e e e e e e e e e e e e e e 3
Programming . . . « « « « oo ot 3

Chapter 2: What MPX Doesfor You 6

1. The ability to write programs in symbolic languages, store them,

and execute them i i e e e e e e e e e e e e e e 6
2. Fast response to real-timeevents e 10
3. The ability to specify relative importance to different interrupts 13

4. The ability to alter the way your interrupts are serviced

without stopping the system« . .o ot ittt e 15
5. The ability to do accounting, problem-solving, and record-keeping
jobs as well as real-timetasks o, 15
6. The ability to keep the system busy and to maximize the work done 15
7. A method by which programs can communicate with each other 16
8. The ability to use the input /output deviceseasily 16
9. Accessibility of subroutines that are used by many programs 22
10. The ability to interrupt a subroutine, use it, and then
complete the interrupted execution properly., 22
11. The ability to perform some tasks on a timed basis.22
12. The ability to do conversions and arithmetic and functional
calculations e e e 23
13. The ability to communicate with other computers 23
14. The ability to communicate with the 1800 from remote devices 23
15. The ability to develop your own programming language or some
instructions for the use of people at your installation 24
16. System recovery from errors when necessary; timely assistance
in recovery from other errors it e e e e 24
17. Protection of programs and dataareas . - - 25
18. The ability to leave out parts of the system that you don’tneed 26
19. The ability to grow without disruption 26

Chapter 3: How MPX is Organized\ 0 vt i ittt e i 27

How BOM is Organized. ittt i i e e e e, 27
How the Executiveis Organized 28
How Main Storage is Organized it it 28
How the Batch-Processing Monitor is Organized 30
How the System Residence Disk is Organized 31
How a Coreload is Organized, 33
Glossary-Index e e e e e e e e 35

vi

Illustrations

Figures

Figure 1. Functions of the 1800 System « ¢ ¢« « ¢« « =« . 5
Figure 2. FORTRAN, Assembler-Language, and Machine-Language

Statements 4 0 i e i e 4 i e e e e e e e e <« . 8
Figure 3. Sequential Execution of Programs « v« « « « « o . 11
Figure Uu. Concurrent Execution of Programs . . . « « « o« « o « « . 12

Figure 5. Execution of Programs on Interrupt Levels e e s e e« « o 14
Figure 6. 1I/0 Devices Supported by MPX . . . v ¢ v 4 ¢ « & « o « o 19
Figure 7. The Basic Operating Monitor v . v 4 v + o o« « . 28
Figure 8. The Executive © e e 4 e a4 e s e 4 e e a4 & s e e & o & 29
Figure 9. Real-Time and Batch-Processing MPX Systems 30
Figure 10. The Batch-Processing Monitor ¢ ¢ o « « . « . 31
Figure 11. MPX System Residence . . . & ¢ & ¢ o o @ v« o « « o« o« « . 32
Figure 12. A Coreload & v &4 4 4 o « & o o o o« o o« « o« o« « . 33

Tables

Table 1. Minimum and Maximum Machine Configurations 21
Table 2. Maximum 2790 Loop Configuration ¢ ¢« v & & o« & « o 21

This page intentionally left blank.

viii

Chapter 1: What the 1800 System Does

The IBM 1800 Data Acquisition and Control System is a computer system
Jesigned specifically for use in real-time applications--applications
that require fast response to physical events as they take place. The
system accepts analog and digital electrical signals from devices such
as thermocouples, pressure and temperature transducers, flowmeters,
analytical instruments, and contacts. The response of the system to
these signals can take several different forms:

* The system might record data from the signals, operate on it in some
way, and make the results available for use. For example, the 1800
system might receive signals from contacts in gas pipelines. It
could convert these signals into measurements of the flow in each
pipeline and perform computations on the measurements, such as
computing the hourly or daily average flow. The system might make
the results available to gas company personnel by printing a report
or by producing a graph.

* The system might, as a result of signals received, notify an orerator
that some action is necessary. For example, the 1800 might receive a
signal from a thermocouple in a steel-mill furnace. The system could
convert the signal to a reading of the temperature of molten steel
and compare the reading with prespecified limits. If this comparison
showed that the temperature was too low, the 1800 could print a
message to an operator telling him to raise the temperature.

* The system might generate signals that cause adjustments to be made
without an operator's interventicn. For example, an 1800 might
receive signals from pulse counters at an intersection of two
Sstreets. From these signals, the system might determine that
northbound traffic was twice as heavy as westbound traffic. It could
then generate signals to controllers that would automatically adjust
traffic lights to allow the flow of northbound traffic to increase.

Real-Time Applications

The 1800 is used primarily in three kinds of applications: data
acquisition, orocess control, and manufacturing.

CATA ACQUISITION

Data acquisition is the collection, at its source, of accurate,
rhysically generated data for evaluation and control. The major
functions of data-acquisition applications are acquiring sensor-based
data as it becomes available and then editing, formatting, reducing,
recording, and displaying it. These uses of the 1800 are associated
with the monitoring of prccesses and experiments, the testing of
rhysical materials and structures, and the simulation of processes,
structures, and missions. .

In a data-acquisition application, the 1800 can acquire data from

instruments such as spectrometers, flowmeters, and thermocouples, or
from instruments that examine biological specimens such as humans and
test animals. The 1800 can also adjust data-acquisition instruments.

What the 1800 System Does 1

For example, an 1800 receiving information from a radio antenna might
control the positioning of the antenna.

After the data is acquired, the system reduces it to a manageable form.
The system may also improve the usefulness of the collected data, by
operating on and analyzing it in various ways or by reducing it on a
statistical basis.

After data reduction, the system usually compares the data with

previously acquired data or with theoretical models and sends the
results to the investigator through graphic output devices.

PROCESS CONTROL

The 1800 in a process-control application collects and analyzes data
that describes the behavior of a continuous process, such as the
refining of oil. The system can take corrective action either by
issuing instructions to an operator or by effecting direct physical
changes to the process.

The signals that the 1800 receives from devices attached to the process
are called process input. By reading and operating on various items of
process input, the 1800 can monitor the status of many parts of the
process, such as temperatures, flow rates, and the amount of raw
naterials being used. Engineering and operational data stored in the
system is used to determine what action should be taken to keep the
process running properly. These decisions can also be made by control
optimization programs, which are programs that make adjustments based on
interrelationships of various parts of the process.

The 1800 generates signals that control the valves, switches, and relays

that in turn control the process. These signals are called process
output.

MANUFACTURING

In a manufacturing application, the 1800 monitors manufacturing
operations, tests the quality of products, furnishes production data to
higher-level production and inventory control systems, and manages the
flow of work between departments. Data in these applications can be
collected directly from sensors or entered by individuals into special
devices located in the manufacturing plant. These devices are discussed
later in this chapter, under "Communications."

Background Processing

The 1800 in a real-time agplication isn't responding to real-time events
all the time. The cOmputer has some free time--perhaps hours at night
when the process it controls isn't running; perhaps fractions of seconds
between responses to real-time events. The 1800 can use such free time
to perform scientific and data-processing tasks, such as processing a
payroll and preparing production reports. This work is called
background processing, because it's done only when the 1800 has no
real-time work to perform. Data for these tasks, together with
instructions specifying what the 1800 is to do with the data, constitute
data processing input. Data processing input can be entered into the

2 IBM 1800 MPX System Introduction

system from a card reader, a disk drive, a keyboard, a magnetic tape
drive, or a paper tape reader. The results of background-processing
jobs--data processing output--can be placed on disk or magnetic tape,
punched onto cards by a card punch or onto paper tape by a paper tape
punch, made into a graph by a plotter, or printed in the form of a
message or a report on a printer.

Communications

The 1800 can communicate with individuals and with other computers in
various ways.

The 1800/2790 data communication system is a set of input devices that
allow communications between the 1800 and individuals throughout a
manufacturing plant, a school, a hospital, or another installation.
Individuals at these input devices can send the 1800 data recorded in
various media--cards, badges, and keyboard entries. The 1800 can
respond by turning on lights at some of the input devices and by
printing messages on a printer.

The 1800 can communicate with other 1800s and with System/360s by using
information stored on disk packs shared by two or more systems. A
communications adapter allows the 1800 to communicate over telephone
lines with System/360s, 1130 computing systems, other 1800s, and 2770
and 2780 data transmission terminals.

An 1800 in a manufacturing plant might, for example, send statistics on
the productivity of several manufacturing machines to a System/360.
System/360 could use this informaticn, together with data from other
sources, to determine how the overall productivity of the plant might be
improved.

Figure 1 pictures an 1800 carrying out real-time tasks, background
processing, and communications.

Programming

The 1800 performs the kinds of jobs we‘'ve been discussing by executing
programs. A program is a sequence of instructions that tell the
computer what to do in order to achieve some goal.

Some programs are unique to a single application. For example, a
program that tells the 1800 how to control a valve in a cement-making
process would be of no use to someone who uses the 1800 to test the
reactions of biological specimens; a program that optimizes gasoline
blends would be of no use to someone whose 1800 controls a stacker
crane. Each application has its own real-time, accounting,
problem-solving, and record-keeping needs, and programmers at each 1800
installation are responsible for writing programs that tell the 1800 how
to meet these needs.

Other programs are needed by all or many 1800 applications. Examples of
these are:

¢ A program that tells the 1800 how to read a punched card.
e A program that determines the order in which various programs are to

be executed.

What the 1800 System Does 3

The Multiprogramming Executive (MPX) Operating System is a set of
programs, sometimes called system programs or control programs, that are
needed by all or many applications. By using MPX, you can concentrate
on writing the programs that are unique to your application.

In the next chapter there's a discussion of the functions the operating
system performs for you.

4 1IBM 1800 MPX System Introduction

STOCK

==EEN EE=» _
.

CONTACTS
SENSOAS 0 ’ -ﬁz
CONTROL (R CONTACTS) . -
(=
Heat REJECT REJECT
ANALOG INPUT/OUTPUT DIGITAL INPUT/OUTPUT ANALOG INPUT /OUTPUT DIGITAL INPUT/OUTPUT
A
PROCESS
CONTROL
P ¢ y,
<)
K—
(CARD I
READER T ~——]
PAPER TAPE

;JNC\H_J
LLLLlizazag
L d

KEYBOARD
[IR}

MAGNETIC

TAPE
DRIVE .

PRINTER PLOTTER

PAPER TAPE
READER \/—~

DATA PROCESSING OUTPUT

U L (FC

DATA PROCESSING INPUT

SYSTEM/360

DATA ENTRY UNIT

\
AREA STATION

¥igure 1. Functions of the 1800 System

What the 1800 System Does 5

Chapter 2: What MPX Does for You

In this chapter, each numbered heading describes something you might
want from the operating system. The discussion that follows the heading
tells what MPX does about it.

1. The ability to write programs in symbolic languages, store them,
and execute them

In order for the 1800 to execute an instruction, the instruction must be
in machine language. Machine language consists entirely of zeros and
ones. Some of the zeros and ones tell the 1800 what it's to do with
data (such as add or subtract), some of them tell it the location of the
data it's to operate on, and some of them represent the data itself.
Some machine-language statements are shown in Figure 2.

For you to write long programs in machine language, however, would be
tedious, time-consuming, and error-prone. MPX includes two language
translating programs (or "language translators") to allow you to define
solutions and applications in languages that are easier to learn and use
than machine language.

LANGUAGE TRANSLATORS

The two language translators are the Macro Assembler and the FORTRAN
Compiler. The Macro Assembler translates statements written in the
assembler language, and the FORTRAN Compiler translates statements
written in the FORTRAN language. The output from both translators is
machine-language statements that the 1800 can execute.

Figure 2 shows equivalent FORTRAN, assembler-language, and
machine-language statements. Notice that the FORTRAN statement is very
much like a mathematical formula. FORTRAN stands for FORmula
TRANslating system. The language closely resembles the language of
mathematics; it allows engineers and scientists to define problem
solutions in a familiar, easy-to-use notation.

The assembler language is more like machine language than FORTRAN is.
Each assembler-language statement is translated (or "assembled") by the
Macro Assembler into just one machine-language statement. The FORTRAN
Compiler, on the other hand, might translate (or "compile") one FORTRAN
statement into several machine-language instructions. The nine
assembler-language statements shown in Figure 2 all together produce the
same results as the single FORTRAN statement shown in the same figure.

The assembler language makes use of symbols, though the symbols are
perhaps not so obvious as those used in FORTRAN. For example, in the
FORTRAN statement in Figure 2, multiplication is indicated by an
asterisk and subtraction by a minus sign. In the assembler-language
example, multiplication and subtraction are indicated by the letters M
and S.

The assempler language allows you more control over some of the system

resources than does FORTRAN. A program written in FORTRAN might require
that you write fewer statements than a corresponding program written in

6 1IBM 1800 MPX System Introduction

assembler language, but it might also require more computer time and
more storage space.

You can decrease the length of your assembler-language programs by
defining macro instructions. - A macro instruction is an instruction that
is written like an assembler-language statement. When the Macro
Assembler encounters a macro instruction, it processes a sequence of
assembler-language statements that you have specified. You need to
specify such a sequence only once. After that, you can specify that the
sequence is to be processed by issuing the macro instruction.

The definition and use of a sample macro instruction are shown in Figure
2. Once the macro definition has been stored, issuing the macro

instruction would have the same effect as issuing the FORTRAN statement
or the sequence of assembler-language statements also shown in Figure 2.

After a program has been written and assembled or compiled, you'may want
to run (execute) it immediatély, store it for future execution, or hoth.

Programs are executed by a machine unit called a processor-

controller. This unit includes a central processing unit (CPU), which
carries out arithmetic and logical operations, and main (core) storage,
where programs are executed.

There normally isn't room in main storage for all your programs to be
there all the time. Most programs are stored in disk storage and then
read into main storage when they are to be executed.

MPX allows you to manage storage and execution of your programs in
several different ways. You tell the system to store and execute
programs by issuing control statements that activate various programs
within MPX.

What MPX Does For You 7

Statement | £
5 Number S
12 3 46 27 8 9 1011121314 15161718192021‘22232425262m
4] =] 18] [+] €] x| (1o \ X)) -] e/ /L IF
FORTRAN Statement
01100101100000000000000000111110
. 11000101000000000000000000111000
Lebel Operstion FIT 10010100000000000000000000111000
21 28] [27 300 132/33] 135 490 10100100000000000000000000100010
CaaaLlLox | (72 156,71, ,, , [0001000010010000
) AR 0001100010010000
L1 L i ——tt1J 110101100000000000000000000111010
S L 3
L1 SN L1t 0y 110000100000000000000000000100000
Ly M o, L Cy v .1 4, [11010100000000000000000000011110
I T - S.L,Tl 1161 L1110 Machine-Language Statements
11 1 1 Slﬁlrl 116| 111 8
11) T L FI T T N I
I I | AI [L Bl L1 1 1]
| I N | Slrlol L Al L1111 ¢

Assembler-Language Statements

Label Operation FlT Operands & Remarks
21 25| |27 30| |32]/33] |35 40 45 50 55
I T S,MA,C I (S O T TN NN NN W N TN T LN (R W T N T N N T T S S Y
R | CIAILIC SIGITIIJAIDIIISIUIBlllMIUILIrII IDIII.VIIIMIOIRIEIllslplc
O N L |D|X| 7|1 Slglrl PO N N N TN W N Y N N TN DO N AN N (N U N TN SN N O
Y R G | L |D| 1 L 1 A|D| TN NN W W (NN N NN SN NN SN RN (NN O NN TN N AN N N N SV M B
T N | 5. L1 L slunﬁn T N N N TN VY NN JRUUN OO Iusny FEN N TN S (N O N N N T Y
T Mu 1 L ”ll/lL 1 rl TN W W TR NN W NN TN TN TN SN N TN N WY TN Y SO SO N O Y
I | 5|L17| 116. PR N N N T S N N T N T T N Y Y Y N N T T N O Y
T Snﬁn rn 1161 TN N T N TN T TN N N TN N TN N N Y Y N (N 1O N W I Y
T T | DI 11 L DIII'VI | VR N SO TN W W N U TN Y N T T S O N T T P
T T | AI L L Mlolﬁlfl TR (N N VNN NN TN [N TN SO N N Y Y T O Y N T S S N |
I T | Snrnon L Slplcl T W NN T Y TN T N N N Y N TN N N N T SO T M |
TR N ”IEIN.D T TN TS S S SN A A ST B WASUE AN S N ST S
[T L1 TN VRN NN WA N S T NN N N TN TN TN SN O N O TN U TN Y N TN B O I
Macro Definition
Label Operation FlT Operands & Remarks
21 25| (27 30| [32{33] |35 40 45 50 55
I T | CnA.an Slelrlllllpll‘lflllclllFlllﬁlllﬂl I T N
i I L1 | I N TN U T NN N N T T VN T T W N TN Y T N O

Macro Instruction

Figure 2. FORTRAN, Assenbler-Language, and Machine-Language Statements

€ IBM 1800 MPX System Introduction

IEXECUTIVE PROGRAMS

Some programs stay in main storage at all times. These programs make up
what's called the Executive. Some of the MPX control programs are part
of the Executive, and when you set up your system--during the process
called system generation--you can specify that some programs you have
written are to be included in the Executive. Two reasons that you might
want to include a program in the Executive are:

* Programs in the Executive are immediately accessible; that is, they
can be executed without waiting to be read in from disk storage.

* Programs in the Executive are accessible to all other programs. For
example, say that ten different programs stored on disk all contain
some segquence of statements that carries out some function. You
could make that sequence into a subprogram, or subroutine. If you
placed that subroutine in the Executive, it wouldn't be necessary for
each of the ten programs to contain its own copy of the subroutine.
By issuing one or two statements, each of the ten programs could
specify that the subroutine was to be executed.

There are some drawbacks to placing programs in the Executive. One is
that you can't alter the Executive without stopping the system and doing
another system generation, and another is that the bigger the Executive,
the smaller the area available for execution of other programs. You'll
propably use other means of storage and execution for most of your
programs. These other means are discussed in the next section.

CORELOADS

If a program isn't part of the Executive, then before it can be
executed, it must be made part of a coreload. A coreload is an
executable program or program portion. It contains machine-language
instructions produced by the Macro Assembler or the FORTRAN Compiler,
together with control information necessary to execute these
instructions.

Coreloads are built by an MPX program called the Builder. By issuing a
control statement, you can tell the Builder to make your assembled or
compiled program into a coreload. You can build several different kinds
of coreloads:

® You can build a coreload that is to be stored on disk and executed
repeatedly. An MPX program called the Disk Management Program stores
the coreload on disk when you issue the appropriate control
statement. Later you can use another statement to read the coreload
into main storage. The reading is done by a program called Program
Sequence Control (PSC). The coreload remains in main storage until
its execution is complete and the space it occupies is needed for
execution of another program.

® You can build a coreload that is to be executed but not stored for
reuse. Such a coreload might perform mathematical calculations that
need to be performed only once. You can use a control statement to
cause the Builder to build such a coreload and transfer it to main
storage, where it remains until its execution is complete and the
space it occupies is needed for execution of another program.

®* You can build what's called a SPAR (special area) coreload. A SPAR

coreload is different from the coreloads discussed above in that the
space occupied by an ordinary coreload can be used for another

What MPX Does For You 9

coreload as soon as execution of the first coreload is complete. A
SPAR coreload remains in main storage until you specify in a control
statement that the space it occupies can be used for another
coreload. Subroutines in SPAR coreloads can be accessed just as fast
as subroutines in the Fxecutive. The difference is that you can
change the contents of a SPAR coreload without a new system
generation, but changing the contents of the Executive requires a
regeneration of the system.

2. Fast response to real-time events

Response to events as they take place is of paramount importance in
data-acquisition and process-control applications. For example, an 1800
might count the particles from a radiocactive source that collide with a
target. Many thousands of these collisions might occur every second,
and the 1800 must record all of them in order that the data acquired be
usable.

Many features of MPX contribute to fast response to real-time events.

ACCESSIBILITY OF PROGRAMS

One feature that has already been discussed is that some programs can
reside permanently in main storage, either in the Executive or in a SPAR
coreload. The 1800 can execute such a program without spending time
transferring the program from disk storage to main storage.

Another feature is that coreloads are stored on disk in machine
language. As soon as a coreload is copied from disk into main storage,
it's ready to be executed--no additional time need be spent to make it
ready for execution.

MULTIPROGRAMMING

Multiprogramming is a technique that contributes to many of the features
of MPX--among them, fast response to real-time events. Multiprogramming
allows many programs to be in main storage at the same time and to share
the use of system resources.

To effect multiprogramming, you must divide main storage into these
sections when you generate your MPX system:

1. The Executive, which, as we've already said, includes many of the
MPX control programs and can include some of your programs.

2. Up to 24 partitions where your programs are executed. You can
define two kinds of partitions:

e Partitions for execution of coreloads that serve your real-time
needs, including SPAR coreloads.

* VCORE, a partition where your background-processing coreloads can

be executed. The Macro Assembler, the FORTRAN Compiler, and some
other MPX programs are also executed in VCORE.

10 IBM 1800 MPX System Introduction

Every real-time MPX system must include the Executive and at least one
partition. The number and size of other partitions depend on your
needs.

Multiprogramming allows programs to be executed faster--and thus
provides faster response to real-time events--by letting different
programs use different resources of the system at the same time.

Any program, at any given time, requires only a fraction of the total
resources of the system. For example, while a program is using the
central processing unit to do addition or subtraction, it isn't using a
printer; while a program is using a disk drive, it isn't using the CPU.
Under MPX, different programs can use the-CPU, printers, and disk
drives, as well as other input/output devices at the same time, thus
shortening the execution times of some or all of the programs.

let's look at an example of the advantages of multiprogramming. Suppose
programs A, B, and C are being executed in a system without
multiprogramming. Program A reads some information from disk, operates
on it, and prints out a report. Program B performs some computation,
prints a message, performs some more computation, and writes the result
on disk. Program C performs some computation, reads some information
from disk, performs some more computation, and writes the result on
disk.

Figure 3 illustrates the sequence in which various operations would be
performed when the three programs are executed one after the other.
Notice that while any one part of the system, such as a disk drive, is
being used, the octher parts, such as the CPU, are idle.

Program A Program B Program C Disk Time
P e, N S N T e — o i—

CPU Time

Time
Printer Time

Figure 3. Sequential Execution of Programs

Figure 4 shows the sequence in which the same functions might be carried
out under MPX. Note that the three resources involved (CPU, disk drive,
printer) are in some cases all used at the same time. Note also that
Program A is completed just as soon, and Programs B and C are completed
sooner, than they were in the system without multiprogramming.

What MPX Does For You 11

Program A Disk Time
Program B CPU Time
Program C Printer Time

\d

Time

Figure 4. Concurrent Execution of Programs

INTERRUPTS

In order that MPX respond to a real-time event, it must have some way of
knowing that the event has taken place. To accomplish this, each 1800
can be connected so that physical events cause interrupts. An interrupt
is the recognition of an event that alters the sequence of program
execution by causing execution of a specific program. When you set up
your system, you specify which program is to be executed in response to
each interrupt. The program is said to service the interrupt.

When the interrupt occurs, a physical indicator is set. The 1800 uses
the indicator to determine the source of the interrupt. Then MPX
executes the program that has been specified to service that interrupt.

Interrupts can, as we've said, be caused by real-time events. For
example, if an 1800 were controlling the testing of resistors as they
were manufactured, an interrupt might be generated every time the
testing mechanism finished testing a good resistor. A different
interrupt would be generated when the resistor being tested was found to
be defective. Different programs would be executed to service the two
interrupts. In an actual process, the two programs might cause the
resistors to be moved to different locations.

An interrupt is also generated each time an input/output device finishes
an operation. Programs within MPX are executed in response to those
interrupts. Interrupts can also be generated by programs. For example,
in the resistor-testing application described above, an interrupt was
generated when a defective resistor was encountered. The program
executed in response to that interrupt might move the defective resistor
to a specified spot, update some stored production data, and generate
another interrupt. The program servicing this second interrupt could
begin the testing of another resistor.

MPX can distinguish up to 760 different interrupts. The actual use of
interrupts at your installation depends on your needs.

12 IBM 1800 MPX System Introduction

3. The ability to specify relative importance to different interrupts

In real-time applications, it is essential that some interrupts be given
a higher priority than others. For example, say your 1800 is
controlling a paper-making process. Assume that an interrupt is
generated because the amount of rag being combined with wood pulp is not
correct for the grade of paper being produced. A program to correct the
rag input begins execution. Now say something goes wrong with the
machine that dries the paper, so that if corrective action is not taken
quickly a fire would result. You would want an interrupt caused by this
event to have priority over the first interrupt, even though the first
interrupt had not been completely serviced.

INTERRUPT LEVELS

The 1800 allows you to assign priorities to your interrupts by means of
a system of interrupt levels. Each interrupt, whether generated by an
external device, an input/output device, or a program, is assigned to an
interrupt level from 0 (highest priority) to 23 (lowest priority). Up
to 16 interrupts can be assigned to the same level. Each of the 16 can
be caused by up to 16 different events.

If a program is being executed as a result of a level 5 interrupt, and a
level 2 interrupt occurs, execution of the level 5 program is suspended
until the level 2 interrupt has been serviced. After the level 2
interrupt is serviced, execution of the level 5 program can be resumed
just as if it had not been suspended.

THE BASIC LEVEL

There's another level that's lower than any of the interrupt levels.
This lowest level is called the basic level. Background processing is
done on the basic level, and you can specify that other programs be
executed on the basic level, too. Programs are executed on the basic
level only when there are no interrupts waiting for servicing on
interrupt levels.

INTERRUPT LEVEL OPFRATION

Figure 5 shows the sequence of execution of four programs: a background
job and programs servicing interrupts on levels 9, 10, and 11. 1In the
figure, the level 11 interrupt occurs first, the level 10 interrupt
second, and the level 9 interrupt third.

What MPX Does For You 13

Level 9
Program

Level 10
Program

Level 11

Program
Basic Level
Program

,%///%\ - - CPU Control

Level 11 interrupt

Time

Figure 5. Execution of Programs on Interrupt Levels

Notice that the level 11 program is interrupted twice, once by a level
10 interrupt and once by a level 9 interrupt. The level 10 program is
executed without interruption, because no interrupt on a higher level
occurs during its execution. The background-processing job is suspended
when the first interrupt occurs; its execution is not resumed until
there are no interrupts waiting to be serviced.

If a program is being executed as a result of an interrupt on a level,
more interrupts on that same level may occur before execution of the
program is complete. For this reason, MPX maintains a queue (waiting
list) of coreloads to be executed on each interrupt level.

Execution priorities can also, at your option, be established within a
level. For example, say a program is executing as a result of a level 2
interrupt. During its execution, two more level 2 interrupts occur; the
one that occurs second is specified to have a higher priority than the
first. First, the program already being executed will complete its
execution. Then the two interrupts will be serviced. The one that
occurred second will be serviced first, because it has the higher
priority.

An MPX control program called Master Interrupt Control (MIC) analyzes
each interrupt as it is recognized and arranges for it to be serviced,
by passing control to a program that's already in main storage, placing
a coreload in the queue for the appropriate interrupt level, or copying
the contents of VCORE onto disk and placing an interrupt-servicing
coreload in VCORE.

14 IBM 1800 MPX System Introduction

Another MPX control program, Program Sequence Control (P3C) handles
scheduling of programs that are requested by sources other than
interrupts. For example, an instruction in one program may be a request
that another program be executed. P3C would handle scheduling of this
second program.

4. The ability to alter the way your interrupts are serviced
without stopping the system

In real-time applications, it is often necessary that interrupt-
servicing programs have a very short access time. Access time (the time
petween an interrupt and the beginning of execution of the program) for
a program is shortest if that program is already in main storage. We've
discussed before the two ways of keeping programs in main storage. One
is by making them part of the Executive; the Executive, however, can't
be altered unless the system is stopped and regenerated. The second way
to keep a program in main storage is to make it part of a SPAR coreload.

Wwhen you generate your system, you can specify, if you want, that some
of your coreloads are to be SPAR coreloads. SPAR coreloads that you
specify are loaded into their partitions by the MPX control programs
ISPCL and LSPAR. Each SPAR coreload then remains in main storage until
you call L3PCL or LSPAR to replace it or the MPX control program CSPAR
(clear SPAR) to release the partition for execution of another coreload.
By using one or more SPAR coreloads, you can ensure that interrupt-
servicing programs have minimum access time while still allowing
yourself to change these programs without stopping the system.

5. The ability to do accounting, problem-solving, and record-keeping
jobs as well as real-time tasks

Computer time not needed for real-time tasks can, as discussed under
"Background Processing," be used for other kinds of work. These include
accounting, problen-solving, and record-keeping jobs. Execution of
background joos must be carried out in VCORE on the basic level. You
can't assign priorities to backgrcund jopos; they're executed one after
the other in the order they're entered into the 1800.

fxecution of background jobs is managed by an MPX control program called
the Batch-Processing Monitor Supervisor (SUP). SUP is part of a group
of programs that make up the Batch-Processing Monitor (BPMON). EPMON
contains several programs that have already been mentioned: the Macro
Assembler, the FORTRAN Compiler, the Builder, and the Disk Management
Program. All these vrograms are executed as background jobs.

You can also build real-time coreloads to execute on the basic level.

If you do this, you can assign BPMON a priority within the basic level.
Then a prcgram called Time-Sharing Control (TSC) schedules the use of
VCORL. TSC allocates use of VCORE to BPMON if there are no coreloads of
a higher priority than BPMON waiting to be executed on the basic level.

6. The ability to keep the system busy and to maximize the work done

Several features of MPX contribute to the system's efficient use of
time.

What MPX Does For You 15

One of these is the overlap of processing and input/output operations.
This overlap keeps the CPU and the input/output devices operating
simultaneously.

Another of these features is the queueing of coreloads for execution on
each level. Queueing allows the proper coreload to be read into a
partition as soon as the one already there has completed execution.

The system is also kept busy by the automatic transfer of control to
BPMON when there is no process work to be done.

7. A method by which programs can communicate with each other

You may want to make data generated by some of your programs available
for use by other programs. For example, you might have one program that
records the number of items produced by various manufacturing machines,
and a second program that prints a report on the productivity of your
manufacturing activities. You would want the numbers recorded by the
tfirst program to be available to the second program.

MPX would allow such programs to communicate with each other by means of
main-storage areas called COMMON areas.

Any program being executed in a partition can define an area called
COMMON within that partition. It can leave data in COMMON for future
use by another program being executed in that partition. You have to be
careful when you're using this kind of COMMON, because a COMMOi
established by a coreload isn't protected from other coreloads that are
executed in the same partition. For example, say coreload TIME defines
a COMMON in its partition, and stores data there for subsequent use by
coreload PLUS. Between the execution of TIME and PLUS, coreload FILL is
executed in the sarme partition, but FILL doesn't define a COMMON at all.
FILL could use the COMMON that TIME defined for any purpose at all, and
could destroy the data stored there by TIME. By the time PLUS was
executed, the data stored by TIME would no longer be in COMMON.

A second kind of COMMON area is called INSKEL COMMON. INSKEL COMMON is
part of the Executive, so it's in main storage at all times. Any
program you write, no matter where it's executed, can store data in
INSKEL COMMON and can read data that other programs have stored there.

You define the sizes of all the COMMONs, so they can be as large or as
small as your needs dictate,

8. The ability to use the input /output devices easily

INPUT/QUTPUT CONTROL SUBRCUTINES

MPX includes subroutines that make it possible for you to use all the
input/output (I/0) devices shown in Figure 6. The minimum and maximum
number of each device supported is shown in Tables 1 and 2. For each of
the devices shown, there are one or more input/output controil
suproutines that manage the transfer of data between the device and main
storage.

Any program can initiate such a transfer by issuing a call to the
appropriate input/output control subroutine. A call consists of several

16 IBM 1800 MPX System Introduction

instructions in which you specify the location of the data to be
transferred, where it's to be sent, how much data is to be transferred,
and what's to be done when the transfer is complete. For example, a
call to the input/output control subroutine for the card read punch
might specify that the contents of one card in the card read punch are
to be read into a specified location in main storage. A call to the
input/output control subroutine for the 2311 disk storage drive might
specify that 29 characters beginning at a certain location in main
storage are to be copied onto a disk pack, beginning at a certain
location on the disk pack.

The fcllowing MPX input/output control subroutines control
data-processing I/0 devices:

s BULKN--nandles output to and input from the 1810 disk storage unit and
sections of 2311 disk storage drives that are treated like 1810s.

¢ CARDN~--nhandles the reading and punching of cards on the 1442 card read
punch.

s FILEN--handles input to and output from the 2311 disk storage drive.

¢ MAGT--handles input to and output from the 2401 and 2402 magnetic tape
units.

¢ PAPTN--handles input from the 1054 paper tape reader and output to the
1055 paper tape punch.

¢ PLOTX--handles output to the 1627 plotter.

¢ PRNTN--handles printing and line control on the 1443 printer.

e TYPEN, WRTYN--handles input from the 1816 printer keyboard and output
to the 1816 and the 1053 printer. (TYPEN and WRTYN are two names for

the same subroutine.)

The following input/output control subroutines control process 1I/0
devices:

e AIRN--handles input of data to main storage from a random set of
analog input points.

e AISN, AISQN--handles input of data to main storage from a sequential
set of analog input points. (AISN and AISQN are two names for the
same subroutine.)

¢ DAOP--handles output to digital and analog output devices.

¢ DIEXP--handles reading of a group of digital input points and storing
of the values in a special format.

¢ DINP--handles reading and checking of several groups of digital input
points.

The following input/output control subroutines control communications
I/0 devices:

e BSCIO--handles input from and output to the computers and terminals
attached to the 1800 by the communications adapter.

* 2790 Input/Output Control Subroutine--handles input from the 2791 and
2793 area stations, 2795 and 2796 data entry units, and 1035 badge
readers, and output to the 2791 area stations and 1053 printers
attached to area stations.

What MPX Does For You 17

To run MPX, you must have at least one 1442 card read punch, one 1053
printer, and one disk drive (2311 or 1810 Model 2). If you don't have
2311s, then the 2790 system requires an 1810 Model A2 or B2. The 1053
printer and the disk drive are used by some of the MPX system programs,
so the input/output control subroutines for those devices must be in the
Fxecutive. You can put CARDN in the Executive or a coreload.

Of the input/output contrcl subroutines for other devices, you need to
include only those for devices you are using in your system. Any of
these other input/output control subroutines can be put in either the
Executive or a coreload.

18 IBM 1800 MPX System Introduction

Table 1. Minimum and Maximum Machine Configurations

Device Number in Maximum System Number in Minimum System
2311 Disk Storage Drive 8 c1)r

1810 Disk Storage Unit 1(Model A3 or B3) 1(Model A1 or B1)
1442 Card Read Punch 2 1

1816 Printer Keyboard 8 1

1053 Printer (including up to two 1816s)

1443 Printer 1 0

1627 Plotter 1 0

1054 Paper Tape Reader 1 0

1055 Paper Tape Punch 1 0
2401/2402 Magnetic Tape Unit 2 0
Communications Line Adapter 8 0

2790 Loop Adapter 2 0

Taple 2. Maximum 2790 Loop Configuration

Device Number in Maximum Loop

2791 Area Station
or 100
2793 Area Station

2795 Data Entry Unit 3 per 2791 Model 1
or 2793 area station; —
2796 Data Entry Unit maximum of 1024

300 (3 per 2791 Model

1 area station)

100 (1 per 2791 Model 1
or 2793 area station)

100 (1 per 2791 Model 1
area station)

1035 Badge Reader

1053 Printer

User-Supplied Input Device

DISK UTILIZATION PROGRAMS

The Disk Pack Initialization Program (DPIP), the BOM Disk Write
Addresses Program (BDWAP), and the Disk Management Program (DMP) are
programs that give you further assistance in the use of disk storage.

DPIP allows you to test a 1316 disk pack (used with 2311 disk storage
drives) for defects and initialize it for use. BDWAP initializes a 2315
disk cartridge (used with 1810 disk storage units). By issuing control
statements that activate parts of DMP, you can carry out such functions
as storing programs and data on disk, deleting programs and data
previously stored, copying disk packs and cartridges, and reserving disk
space without actually storing anything.

what MPX Does For You 21

9. Accessibility of subroutines that are used by many programs

Some subroutines may be used as part of the execution of many different
programs. Storing a copy of such a subroutine with each coreload that
uses it would require extensive disk space. The partitions where the
coreloads are executed would also have to be large enough to accommodate
the subroutine along with the rest of the coreload. You can save space
by placing such subroutines in the Executive. Then they can be accessed
by a program executing in any partition.

10. The ability to interrupt a subroutine, use it, and then
complete the interrupted execution properly

If a program is being executed on an interrupt level, and a higher-level
interrupt occurs, execution of the program is suspended until the
higher-level interrupt is serviced. However, a problem arises when a
suproutine in the Executive is interrupted in this way and the program
servicing the higher-level interrupt calls the same subroutine.

Let's look at an example. Say you have two communications adapters, one
of which generates level 1 interrupts and the other of which generates
level 2 interrupts. The input/output control subroutine BSCIO services
all interrupts for both communications adapters. Say BSCIO is
transmitting or receiving data with the level 2 communications adapter
when an interrupt from the level 1 communications adapter occurs. The
first execution of BSCIO is suspended, and another execution of BSCIO is
pegun to service the level 1 interrupt. If BSCIO were a conventional
subroutine, the partial results of the first execution would be lost.
The communications that had taken place during the first execution would
have to be repeated.

To prevent this kind of problem, MPX subroutines can be written to be
reentrant. When execution of a reentrant subroutine on a given
interrupt level is interrupted, all the results accumulated so rfar are
saved in an area called the level work area, and execution can later be
resumed at the point where it was interrupted. There's a level work
area for each interrupt level in the system.

All MPX system subroutines that may be called from more than one level
are available in reentrant form. This means they can be called from
different interrupt levels with no loss of partial results. Many of tne
system subroutines are available in both reentrant and nonreentrant
forms. The reentrant forms generally require less main storage, but
require more execution time than the nonreentrant forms. You can choose
the form that better meets your needs.

11. The ability to perform some tasks on a timed basis

Assume that your 1800 is controlling the packaging of peanut butter.
You might want the 1800 to weigh a finished jar of peanut butter every
two seconds, check the flow of salt into the peanut butter every two
minutes, and print an inventory report every two hours.

Timers built into the 1800 system and into MPX allow you to do things on
a timed basis. A timer is a device that generates an interrupt every
time a specified interval of time elapses. Three physical timers are
built into the 1800 hardware. Two of the physical timers are available
for your use; MPX uses the third to keep track of the time of day and

22 1BM 1800 MPX System Introduction

the programmed timers. A programmed timer is a location in main
storage. A value is placed in this location and subsequently altered at
regular intervals until it reaches zero, at which time an interrupt is
generated. When you generate your system, you can include up to 30
programmed timers.

All 32 timers available to you can be specified to generate interrupts
("time out"™) at different time intervals. In the example above, you
could set three timers to time out at two-second, two-minute, and
two-hour intervals.

Timer operations are controlled by an MPX program called Interval Timer
Control (ITC). ITC can also check to make sure that expected interrupts
from I/0 devices are received. If such an interrupt is not received (a
"no response" situation), ITC prints a message and sets an indicator

that prevents the device from being used until the problem is corrected.

12. The ability to do conversions and arithmetic and functional
calculations

Part of MPX is a library of subroutines that are often needed by user
programs. Some of these subroutines change the representation of data
from one form to another. Others compute functions of variables such as
sines, logarithms, and square roots. Still others perform arithmetic
operations on data in various formats.

These subroutines reside on disk and must be made part of a coreload or
included in the Executive before they can be executed. The Builder can
make any of these subroutines part of any coreload.

13. The ability to communicate with other computers

The conmunications adapter (CA), which permits the 1800 to communicate
with other computers, was mentioned under "Communications" in Chapter 1.
All communications using the CA are done in accordance with a set of
ground rules defined as binary synchronous communications (35C). ESC
requires that data being transmitted be formatted in particular ways,
and that it contain certain defined control information.

MPX includes an input/output control subroutine and several additional
subroutines in support of communications. You must set up data to be
transmitted in accordance with BSC specifications, but the MPX control
programs handle all the actual transmission and receipt of data.

The 1800 can also communicate with other 1800s and with System/360s by

sharing information stored on disk packs. If your system includes 2311
disk storage drives, then you can create sets of data that two systems

can share.

14. The ability to communicate with the 1800 from remote devices

The 1800/2790 data communication system was described briefly under
"Communications®™ in Chapter 1. This system allows the 1800 to exchange
information with operators at special input/output devices.

What MPX Does For You 23

MPX allows you to determine the nature of these exchanges by defining
transactions. 4 transaction is a set of steps in which an operator may
send information to the 1800, the 1800 may send information to him, and
the 1800 may store the information it receives. Following the
collection and storing of a predetermined amount of data, you will
probably want to execute another program which will analyze the
collected data. MPX allows you to do this by automatically setting an
interrupt. You must specify the program to be executed and the amount
of data to be collected before the interrupt occurs. Thus the data
collected from the remote stations can be processed in any way you
choose.

For example, you might set up a transaction that allows individuals
throughout a plant to order supplies from a central warehouse. An
interrupt might occur after 100 orders had been received. The program
servicing the interrupt might print a list of the orders and punch cards
to be attached to the supplies before they are delivered.

After ycu define your transactions and set up your system, MPX handles
all transfer of data between the 1800 and the remote input/output
devices.

15. The ability to develop your own programming language or some
instructions for the use of people at your installation

You'll probably discover that there are some sequences of
assembler-language instructions that you use over and over again. The
Macro Assembler allows you to condense each such sequence into a single
instruction called a macro instruction. When the Macro Assembler
encounters a macro instruction, it processes a prespecified sequence of
assembler-language statements.

In some cases, it may be possible for you to use macro instructions to
create a programming language tailored to the needs of your application.
By writing several macro instructions with descriptive names, such as
ORDER, TEST, or FLOW, you might greatly simplify the programming effort
at your installation. '

16. System recovery from errors when necessary; timely assistance
in recovery from other errors

In a real-time application, it is important that an error--either a
programming mistake or a machine malfunction--affect system operation as
little as possible. MPX contains error-handling procedures designed to
keep the system running whenever possible.

Many programming errors are detected before a program is actually
executed. For example, the FORTRAN Compiler detects errors in the
syntax of FORTRAN statements; DMP will detect an error if you try to
store a program-in an area that is too small to hold the program. These
pre-execution errors are detected by the Macro Assembler, the FORTRAN
Compiler, the Builder, SUP, and DMP. Each of these programs causes an
error message or code tc be printed whenever it encounters an error.

You can then use the errcr messages and codes to correct your program.

Some programming errors don't come to light until a program is executed.
A program might, for example, try to write in an area of disk storage
that has been reserved for some other use. Errors that prevent
successful completion of an 1I/0 operation are detected by a program

24 IBM 1800 MPX System Introduction

called Error Alert Control (EAC). EAC also responds to machine
malfunctions. 1If overall system operation is threatened by the error,
EAC notifies you with a message and carries out recovery procedures. It
may restart the program that was executing when the error occurred; it
may reload the entire system (Executive and SPARs) from disk; or it may
terminate execution of the program that was executing when the error
occurred. If the error doesn't affect overall system operation, EAC
notifies you with a message. If the error has prevented successful
completlon of an input/output operation, a code is stored at a specified
main-storage location. This code indicates the nature of the error.

When you build a coreload, you specify the kinds of recovery procedures
to be carried out. Retrying an unsuccessful operation is often
sufficient, because an error may be due to a temporary condition. You
also have the options available to the system: terminate execution of
the coreload, restart the coreload, or reload the system.

Various other features of MPX help you in isolating errors. You can
have the system print (or "dump") the contents of an area of disk or
main storage. The system can also trace a set of main-storage
locations, recording all chdnges to the values in those locations.
Tables and logs of many of the errors that occur, whether or not the
errors are corrected, are maintained. Diagnostic programs available to
the IBM customer engineer allow him to diagnose malfunctions of hardware
units without taking them off the system.

17. Protection of programs and data areas

Various parts of MPX help you protect your programs and data from
programning errors and from interference by unauthorized users.

You may want to protect an area of main storage so that no program can
write in it. An MPX subroutine (STORP) allows you to do this. Areas
used by the system are automatically protected in this way. The first
and last two words of each partition are also protected in this way, to
keep a program from overlapping the border of the partition in which it
is being executed.

Programs are protected from errors in other programs by the recovery
techniques described under neading 16. An error that causes execution
of one program to be terminated or restarted doesn't affect the
execution of other programs.

When you're using the Disk Management Program to reserve space on a 1316
disk vack, delete information from a 1316, or copy a 1316, you can use a
system of label checking provided by MPX to make sure you're operating
on the correct disk pack before carrying out the operation.

Various checks are built into the programming supvort for the 1800/2790
system to prevent operators from entering incorrect or unauthorized
data. Wnen you set up vour transactions, you can specify that data
entered is to be checked in various ways; for example, you may require
that a data entry contain only numeric characters. You can also specify
that the system is to check the identity of the person entering the
data, in any of several ways, before accepting it.

The 1800 may have communications adapters set up so that it is possible
to establish a connection witn the 1800 by dialing a telephone. In this
case, a system of identification sequences allows the 1800 to check the
identity of another computer before carrying out any exchange of data.

What MPX Does For You 25

18. The ability to leave out parts of the system that you don’t need

Most 1800 installations don't require all the resources of MPX. You
might not, for example, plan to do any communications with other
computers; you might not plan to use a plotter; or you might not use any
SPAR coreloads. So that you can include only the resources you require,
the operating system consists of a set of independent programs. These
programs can be arranged and linked together in many combinations to
form operating systems tailored to the needs of different applications.
Thus you don't have to pay, in main storage or execution time, for
functions you're not interested in.

Your operating system isn't arranged kefore delivery. Instead, you
receive copies, on disk, of all the programs you can include in your MPX
system. During the system generation process, you construct the kind of
operating system you need.

19. The ability to grow without disruption

As your needs change, you might want to add some of the optional
features of the 1800 system. For example, you might want the 1800 to
start controlling two processes instead of one. You might want to add
magnetic tape units to your system, or you might want to establish a
communications system with other computers.

It's important that system growth not be disruptive. MPX 1s designed so
that new features can be added with a minimum of lost time and
reprogramming.

One reason MPX can do this is the construction of the system, which was
discussed under heading 18. The system is a set of independent
programs. You can add one or replace one in a new system generation
without changing the operation of the rest of the system.

Another way the operating system helps ensure growth without disruption
is by adherence to standard methods of programming. These standards are
used by all the MPX programs, and you can use them in your programs.
These include data formats, ways of linking programs, and ways of
communicating between programs. These standards help ensure that your
programs are compatible with all the MPX programs, no matter what system
configuration you choose in the future. They're described in the MPX
Programmer's Guide, Order Number GC26-3720.

26 IBM 1800 MPX System Introduction

Chapter 3: How MPX is Organized

You can define two kinds of MPX systems: one is a real-time system,
which can respond to real-time events and, if you wish, can also do
background processing. The other is a batch-processing system, which
has no real-time capabilities. A batch-processing system executes
programs one after the other as they are entered into the 1800. It can
do only the kinds of work that a real-time system handles as background
processing.

A real-time system is controlled by a set of programs called the
Executive, as discussed in Chapters 1 and 2. A batch-processing system
is controlled by a set af programs called the Basic Operating Monitor
(BOM). Either the Executive or BOM, whichever is controlling the
system, must be in main storage at all times.

You receive BOM on disk as part of your original MPX system. If you're
defining a real-time system, you use BOM to supervise the building of
the Executive. Many of the programs from BOM are incorporated into the
Executive.

How BOM is Organized

The layout of BOM is shown in Figure 7. As you can see from the figure,
BOM begins at address 0 in main storage. It is divided into two main
parts, the Executive I/0 and the BOM program set.

EXECUTIVE 1I/0

These are the main parts of the Executive I/0 part of BOM:

1. Fixed Area--an area that MPX system programs use to communicate with
each other.

2. Trap Area--an area used to preserve, or "trap," the contents of a
main-storage area for use in error diagnosis.

3. INSKEL COMMON--an area used for communications among your programs.
4. Device tables--a table of information about each input/output device

that's part of the system.

How MPX is Organized 27

5. Input/output control subroutines and shared subroutines--
Input/output control subroutines for the devices that MPX itself
uses (the 1053 printer and the disk drives), and subroutines that
are shared by all coreloads and system programs. This area can also
contain control subroutines for other devices, if you choose to put
them here.

6. Error Alert Control (EAC, described in Chapter 2).

7. BOM utility programs--Programs that carry out reloads, dumps, and

traces (described in Chapter 2). .
Address 0
Fixed Area
Trap Area
INSKEL COMMON
Device Tables Executive 1/0

1/0 Control Subroutines
Shared Subroutines

EAC

BOM Utility Programs

CARDN

MiC

Conversion Subroutines

BOM Program Set
BOM Director

Absolute Loader

Load Monitor

Figure 7. The Basic Operating Monitor

BOM PROGRAM SET

The BOM program set consists of the following programs:

1. CARDN--the input/output control subroutine for the 1442 card read
punch.

28 IBM 1800 MPX System Introduction

2. Master Interrupt Control (MIC, discussed in Chapter 2).

3. Conversion subroutines--programs that convert between card and
main-storage representations of data.

4. BOM Director--a program that initiates BOM and directs the operation
of the absolute loader and the load monitor.

5. Absolute Loader--a program that allows you to load machine-language
programs from cards into main storage for execution, and to store
programs and data on disk.

6. Load Monitor--a program that initializes a batch-processing MPX
system for execution.

How the Executive is Organized

During system generation, while your system is under control of BOM, you
can build an Executive to supervise operation of a real-time system.
The layout of the Executive is shown in Figure 8.

Address 0

Executive 1/0

Executive Director

User Programs

Figure 8. The Executive

The Executive I/0 area is identical to its BOM counterpart.

The Executive Director contains four programs that were discussed in
Chapter 2: MIC, ITC, PSC, and TSC. It also contains the level work

areas (also described in Chapter 2) and various system tables.

After the Executive Director can come any of your programs that you have
elected to include in the Executive.

How Main Storage is Organized

In a batch-processing MPX system, main storage is divided into two
parts, BOM and VCORE. BOM contains the control programs that must be in
main storage at all times, and VCORE is the partition where all other
nrograms are executed, including programs that you write, and some of
the MPX programs, such as the FORTRAN Compiler.

In a real-time MPX system, main storage is divided into three parts:

e The Executive, which contains the control programs that must be in
main storage at all times.

e Some number of partitions (from 0 to 23) where programs are executed
in response to interrupts.

How MPX is Organized 29

e VCORE, the background partition.

Figure 9 shows main-storage layouts for real-time and batch-processing
MPX systems.

Address 0
Executive |/0 Executive 1/0
BOM
Executive . BOM Program Set
Director Executive

User Programs

Partition

Partition VCORE

VCORE

Figure 9. Real-Time and Batch-Processing MPX Systems

How the Batch-Processing Monitor is Organized

The Batch-Processing Monitor (BPMON) contains the MPX programs that are
executed as background jobs. The Batch~Processing Monitor Supervisor
controls the transition between different background jobs, including
programs you write and the other programs that are part of BPMON.

The BPMON programs are shown in Figure 10. Their functions were
discussed in Chapter 2. All the BPMON programs reside on disk, and are
read into VCORE when they are to be executed.

30 IBM 1800 MPX System Introduction

Batch—
Processing
Monitor
Supervisor
Disk
Management Macro (F:O RT.FAN Builder
Program Assembler ompiler
Figure 10. The Batch-Processing Monitor

How the System Residence Disk is Organized

Copies of all programs defined for an MPX system,

together with storage

areas and tables used for special purposes, must be kept together at all

times on part of a disk.

The layout of the system residence disk area is shown in Figure 11.

How MPX is Organized

This disk is called the system residence disk.

31

Low Address

Batch-
Processing
Monitor

LET/FLET

User
Area

Batch-
Processing
Working
Storage

Nonprocess Save Area

Message Buffer Area

Process Working Storage

Interrupt Save Area

Core Image
Area

Special Save
Area

Executive Area

Cold Start Program

Figure 11. MPX System Residence

The parts of the system residence area for a real-time system are:

1.

2.

32

The Batch-Processing Monitor (already discussed in Chapters 2 and
3.

LET/FLET--the Location Equivalence Table and the Fixed Location
Equivalence Table; tables used to keep track of all the programs and
subroutines stored on a disk.

User Area--programs that can be executed in different places in main
storage and that can be stored in different places on disk. These
include the MPX subroutine library and your programs that have not
yet been built into coreloads.

batch-Processing Working Storage--an area used for temporary storage
of data during the execution of background-processing or
batch-processing jobs.

Nonprocess Save Area--an area used to save the contents of VCORE
when a background program is suspended so that a coreload with a
higher priority than that of BPMON can be executed in VCORE on the
basic level.

IBM 1800 MPX System Introduction

10.

11.

12.

Message Buffer Area--—-an area used to hold messages before they are
printed.

Process Working Storage--an area used for temporary data storage
during the execution of real-time programs.

Interrupt Save Area--an area that you can use to save the contents
of VCORE when an interrupt to be serviced in VCORE on the level of
the interrupt occurs.

Core-1lmage Area--programs that can be executed in only one place in
main storage, and that are assigned to one fixed disk location.

They can be accessed faster than relocatable vprograms, because tneir
permanent address can be kept in the calling program.

Special Save Area--an area used when a CALL SPECL statement is used.
For information on CALL SPECL, see the MPX Programmer's Guide, Order
Numper GC26-3720.

A copy of the Executive.

The Cold Start Program, which loads the Executive into main storage
and turns control over to it.

How a Coreload is Organized

The organization of an MPX coreload is shown in Figure 12. The area
labeled COMMON is an area that can be used by all coreloads executing in
the same partition to communicate with each other. Restrictions on the
use of this kind of COMMON were discussed under heading 7 in Chapter 2.

Low Address

System
Tables

Mainline
Program

Subroutines

COMMON

Figure 12. A Coreload

How MPX is Organized 33

This page intentionally left blank.

34 IBM 1800 MPX System Introduction

Absoiute Loader 29
Accessibility of Prograns
in the Lxecutive, 22
in SPAR coreloads, 15

ALRN 17. The input/output control
subroutine for random analog input.

AIsN, AISQN 17. The input/output control
subroutine for sequential analog
input.

Lssembler Language 6-8,24.
programming language.

See also Macro Assembler.

9,10

A symbolic

Background Processing 2-3,15. The
sequential execution of programs,
usually scientific and data-processing
in mature, done in VCORE during the
time not needed for real-time tasks.

Batch-Processing Working Storage, 32
Nonprocess Save Area, 32
in a real-time system, 27

Basic Level 13. The level on which some
programs, including
background-processing programs, are
executed. This level is lower in
precedence than any interrupt level.

background processing, 15
real-time programs, 15

Basic Operating Monitor (BOM) 27-29. The
set of programs and subroutines that
direct the operation of a
batch-processing MPX system.

Batch-Processing Monitor (BPMON) 15,16. A
set of programs that carry out
batch-processing and
background-processing operations; the
Supervisor, FORTRAN Compiler, Macro
Assembler, Builder, and Disk
Management Program.

error detection, 25
location, 32
organization, 30-31

Batch-Processing Monitor Supervisor
(sUP) 15,30. A program that directs
all batch-processing and
background-processing operations.

Batcn-Processing System 27. An MPX system
that has no real-time capabilities.

main-storage organization, 29-30

Batch-Processing Working Storage
(BPWS) 32. The disk area that can be
used for temporary data storage by
batch-processing or
background-processing programs.

BDWA P

See BOM Disk Write Addresses Program.

Binary Synchronous Communications
(BSC) 23. A set of control
procedures for data communications,

Glossary-Index

used by the 1800 communications
adapter and other communications
devices.
BOM
See Basic Operating Monitor.
BOM Director 29
BOM Disk Write Addresses Program
(BDWAP) 21
BOM Program Set 28-29
BOM Utility Programs 28
BPMON
See EBatch-Processing Monitor.
BSC
See Binary Synchronous Communications.
BSCIO 17. The input/output control
subroutine for the communications
adapter.
Builder, The program that is used to build
an Executive or a coreload.
building coreloads, 9,23
location, 15
BULKN 17. The input/output control
subroutine for the 1810 disk storage
unit and for mapped 1810 drives.

CA
See Communications Adapter.

CARDN 17,28. The input/output control
subroutine for the 1442 card read
punch.

Central Processing Unit (CPU) 7. The unit
of the 1800 that contains circuits
that control the interpretation and
execution of instructions.

using overlapped with 1I/0, 11,16

Cold start Program 33. The program that
loads the Executive or BOM into main
storage, and gives control to a
specified program.

COMMON 16,33. A main-storage area, either
in a partition or in the Executive,
that user programs can use to
communicate with each other.

See also INSKEL COMMON.

Communications

See also Communications Adapter, Data
Communication System, 1800/2790.

with computers and terminals, 3,23
with individuals, 3,24
between programs, 16

Communications Adapter (CA) 3,23. An

adapter that permits the 1800 to
communicate with other computers and
terminals over telephone lines.

See also BSCIO.

identification sequences, 26

control Statement 7,9. A statement that

provides instructions to some part of
the Batch-Processing Monitor.

Glossary-Index 35

Conversion Subroutines 29
Core-Image Area 33. The disk area where
coreloads and data files reside.
Coreload 9-10. An executable program or
program portion (link), stored on disk
and loaded into a partition for
execution.
See also SPAR Coreload.
on basic level, 15
communications between, 16
error handling, 25
location of input/output control
subroutines, 18
organization, 33
queueing, 16
subroutines, 23
Core Storage
See Main Storage.
CPU
See Central Processing Unit.

DAOP 17. The input/output control
subroutine for digital and analog
output.

Data Acquisition 1-2. The collection, at
its source, of physically generated
data for control and/or evaluation.

speed, 10

Data Communication System, 1800/2790 3,24

Data Processing Input 2-3. Input to the
1800 from data-processing input
devices, such as a card reader.

See also Input/Output Devices.

Data Processing Output 3. Output from the
1800 to data-processing output
devices, such as a printer.

See also Input/Output Devices.

Device Table 27. A table of information
about an input/output device attached
to the 1800.

Diagnostic Programs 25

DIEXP 17. An input/output control
subroutine for digital input.

DINP 17. An input/output control
subroutine for digital input.

Disk Management Program (DMP), A group of
disk utility and maintenance programs
that operate under control of the
Batch-Processing Monitor Supervisor.

copying disk, 21,25

deleting data, 21,25

error detection, 24

location, 15

reserving disk space, 21,25

storing coreloads, 9,21
Disk Pack Initialization Program (DPIP) 21
DMP

See Disk Management Program.
DPIP

See Disk Pack Initialization Program.

Dump 25,28. To copy data from storage to
an output device or to another part of
storage; also, the copy so obtained.

.

36 1IBM 1800 MPX System Introduction

EAC
See Error Alert Control.

Error Alert Control (EAC) 25,27. A set af.
subroutines that analyze and report
certain kinds of errors.

Error Handling 24-25

Execution, The carrying out of an
instruction or the performance of a
program.

Executive 19,27. The set of programs and
subroutines that directs the operation
of a real-time MPX system.

cold start, 33

on disk, 33

input/output control subroutines 18
INSKEL COMMON, 16

location, 10

organization, 29

residence of programs, 15

Executive Director 29. The section of the
Executive that contains Master
Interrupt Control, Interval Timer
Control, Program Sequence Control,
Time Sharing Control, level work
areas, and system tables.

Executive I/0 27-29. The section of the
Executive or BOM that contains the
Fixed Area, the Trap Area, INSKEL
COMMON, all information for I/0
control, Exrror Alert Control, and the
BOM utility programs.

FILEN 17. The 2311 input/output control
subroutine.

Fixed Area 27. The area in the Executivé
that MPX system programs use to
communicate with each other while in
execution.

Fixed Location Equivalence Table
(FLET) 32. The table that contains
information about the contents, other
than those described in LET, of a
particular 1810 drive.

FLET

See Fixed Location Equivalence Table.

FORTRAHd 6-8. FORmula TRANslating system;
a procedure-oriented programming
language.

See also FORTRAN Compiler.
errors, 24

FORTRAN Compiler 6-8. The program that
generates a machine-language program
from a FORTRAN-written program.

error detection, 24-25

execution in VCORE, 10

location, 15

production of machine language, 9

I/0, Input/Output

Identification Sequence 26. A sequence of
characters used by one station on a
communications line to identify itself
to another station.

Input/Output Control Subroutine 16-17,28
A program that queues requests for uds

of an input/output device, starts
operation of the device, and services
interrupts from the device.
Input/Output Devices
error handling, 25
interrupts, 12
no response situations, 23
overlapped with processing,
required, 18

11,16

supported, 18-21
use, 16-21
INSKEL COMMON 16,27. The area in the

Executive that user coreloads can use
to communicate with each other.
Interrupt 12-15. The recognition by the
1800 of an event that alters the
sequence of program execution by
causing execution of a specific

program.
See also Interrupt Level, Interrupt Save
Area.
of reentrant subroutines, 22

Interrupt Level 13-14. One of up to 24
categories to which interrupts can be
assigned to specify their relative
importance in being recognized and
serviced.

Interrupt Save Area 33. A disk area in
which the contents of VCORE are saved
w#hen an interrupt occurs that causes a
program to be executed on the level of
the interrupt.

Interval Timer Control (ITC) 23,29. The
program that services all interrupts
from timers. ’

ITC

See Interval Timer Control.

Label Checking 25
Language Translator 6-8
See also FORTRAN Compiler, Macro
Assembler.
LET
See Location Equivalence Table.
Level
See Interrupt Level, BRasic Level.

Level Work Area 22,29. An area in the
Executive used to store information
apbout an interruot level or the basic
level; also used to store intermediate
results of a reentrant subroutine so
that it can be interrupted in
execution and later reentered.

Library, Subcoutine 23

Loader, Absolute 29

Load Monitor 29

Location Equivalence Table (LET) 32. The
table that contains information about
the contents of the Batch-Processing
Monitor, the Jser Area, and
Batch-Processing Working Storage of a
particular 1810 drive.

LSPAR 15

L3pPCL 15

Machine Language 6-8. A language that can
be used directly by the 1800 without
translation.

in coreloads, 9,10C

Macro Assembler 6-8,24. The program that
generates a machine-language program
from an assembler-language program.

error detection, 24

execution in VCORE, 10

location, 15

production of machine language, 9

Macro Instruction 7-8,24. A source
program statement that, when
encountered by the Macro Assembler,
causes a predefined sequence of
statements to be assembled.

MAGT 17. The input/output control
subroutine for the 2401 and 2402
magnetic tape units.

Main Storage 7

RCM, 27

coreloads, 9
Executive, 8,27
organization, 29-30

programmed timers, 23
residence of programs,
sections, 10-11
Manufacturing Applications 2
Master Interrupt Control {(MIC) 14,28. The
program that passes control to the
appropriate interrupt-servicing
program whenever an external,
input/output, or programmed interrupt
occurs.

10,15

. location, 29

Message Buffer Area 32. The disk area
used to hold messages before they are
printed on a 1053 or 1816 printer.
MIC
See Master Interrupt Control.

MPX
See Multiprogramming Executive Operating
System. -

Multiprogramming 210-12. A technique for
executing numerous programs
simultaneously in a single CPU by
means of an interweaving process.

Multiprogramming Executive (MPX)

Operating System, An operating

system tor the 1800 that can control

processes and provide multiprogramming

and background processing.
background processing, 15
communications, 23-24
error handling, 24-25
growth, 26
input/output control,
interrupt handling, 12-15
multiprogramming, 10-12
organization, 10-11,26-33
protection of programs and data,
use of time, 15-16

16-21

25-26

No-Response Suproutine 23. A subroutine
within Interval Timer Control,

Glossary-Index 37

executed at a specified time interval,
that determines whether any expected
interrupts have not been received.

Nonprocess Save Area 32. The disk area
where the contents of VCORE are saved
when a background-processing program
is interrupted by a program queued to
the basic level with a higher priority
than that of the Batch-Processing
Monitor.

Optimization Program 2
Organization
of the Basic Operating Monitor,
of the Batch-Processing Monitor,
of a coreload, 33
of the Executive, 29
of main storage, 29-30
of MPX, 27-33
of the system residence disk,

27-29
30-31

31-33

PAPTHd 17. The input/output control
subroutine for the 1054 paper tape
reader and the 1055 paper tape punch.

Partition 10-11. One of the sections (1
to 24) of main storage in which
coreloads can be executed.

in a batch-processing system, 29
COMMON, 16

protection of boundaries, 25
SPAR coreloads, 15

in a real-time system, 29-30

PLOTX 17. The input/output control
subroutine for the 1627 plotter.

Priority 14. A number assigned to a
coreload queued to be executed on a
level. It specifies the precedence of
the coreload within the queue.

background processing, 15
basic level, 15

PRNTN 17. The input/output control
subroutine for the 1443 printer.

Process, A device or set of devices
monitored or controlled by a
processor-controller.

See also Process Control.

Process Control 2. The collection and
analysis of data that describes the
behavior of a continuous process,
together with corrective action in the
form of instructions to an operator or
direct physical changes to the
process.

speed, 10

Process Input 2. Input to the 1800 from
devices that respond to real-time
events, such as an analog input
device.

Process Output 2. Output from the 1800 to
devices that control real-time events,
such as a digital output device.

Process Working Storage 33. The
user-defined disk area that can be
used for temporary data storage by
process coreloads.

38 IBM 1800 MPX System Introduction

Processor-Controller 7. The unit that
contains the central processing unit,
main storage, the circuitry and
controls necessary for attachement a
process I/0, and the logic necessary
to provide real-time system
capabilities.

rogram Sequence Control (PSC) 9,15. The
program that schedules the execution
of programs requested by sources other
than interrupts.
location 29
Protection
of programs and data areas,
PsC
See Program Sequence Control.

25-26

Queue 14,16. A waiting list for the use
of some system resource, such as the

CPU or an I/0 device.

Real-Time System 27. A system in which
computation is carried out during or
immediately following the actual time
in which the related physical process
takes place, so that the results of
the guiding computation may be used in
the physical process. The time
element involved is generally
considered to be in the subsecond
range.

applications, 1-2
‘functions, 1

interrupt handling, 12-15
main-storage organization,
response time, 10-12

Reentrant Subroutine 22. A subroutine
that can be used concurrently by two
or more programs.

Reload 25,28

Response to real-time events

Restart 25

Retry 25

29-30

10-12

Save Area
See Interrupt Save Area, Nonprocess Save
Area.

SPAR Coreload 9-10,15. A coreload that,
upon being placed in main storage,
remains there until the user replaces
it. It is used as an extension of the
Executive.

Special Save Area 32. A disk area where
the contents of VCORE are saved when a
CALL SPECL is executed.

Standards, Programming 26

STORP 25

Subroutine 9

conversion, 29
Executive, 22
input/output control,
library, 23,32
reentrant, 22

SPAR coreload, 9

16-17, 28

SUP
See Batch-Processing Monitor Supervisor.

Supervisor
See Batch-Processing Monitor Supervisor.
Jstem/360 3
System Generation 9,26. The process
during which the capabilities,
contents, anl organization of a
particular MPX system are defined and
established.
building the Executive, 29
changing the Executive, 10,15
System Residence Disk 31-33. A disk pack
or cartridge containing copies of all
programs defined for an MPX system,
together with storage areas and
tables.

Time-Sharing Control (T3C) 15,29. The
program that schedules the use of
VCCGRE by programs executed on the
basic level.

22-23. A clocking device that
generates an interrupt each time a
specified time interval elapses.
Tracing 25,28
Transaction 24,25. A user-defined
sequence in which 3ata is collected
from 1800/2790 input aevices, checked,
and routed to output files.

Area 27. The area of the Executive
used to preserve the contents of a
main-storage area for use in error
diagnosis.

Timer

Trap

TSC
See Time-Sharing Control.

TYPEN 17. The input/output control
subroutine for the 1816 printer
keyboard and the 1053 printer (also
called WRTYN).

User Area 32. The disk area in which
relocatable programs are stored.

Utility Programs 28

VCORE 10-11. The partition of main

storage in which background-

processing programs must be executed,

and other kinds ofprograms can be
executed.
background processing, 15
in a batch-processing system, 293
in a real-time system, 30
scheduling of use, 15

Working Storage
See Batch-Processing Working Storage,
Process Working Storage.

WRTYN 17. The input/output control
subroutine for the 1816 printer
keyboard and the 1053 printer (also
called TYPF¥N).

2790 Input/Output Control Subroutine 17.

The input/output control subroutine

for the 2791 and 2793 area station,

the 2795 and 2796 data entry units,

and 1035 badge readers and 1053

printers attached to area stations.

Glossary-Index

39

IBM Technical Newsletter File Number 1800-36 (MPX Version 3)

Re¢: Order Number GC26-3718-4
This Newsletter Number GN26-0615
Datc October 30, 1970
Previous Newsletter Numbers None

IBM 1800 MULTIPROGRAMMING EXECUTIVE OPERATING SYSTEM INTRODUCTION

© Copyright IBM Corporation 1970

This technical newsletter provides replacement pages for the
IBM 1800 Multiprogramming Executive Operating System Introduction,
Order Number GC26-3718-4. Pages to be inserted and/or removed are

listed below.

Front Cover 17,18
v,Vvi 21,22

7,8 34.1-34.8
11,12

A change to the text is indicated by a vertical line to the left
of the change.

Summary of Amendments

This technical newsletter adds to the manual an appendix that
contains general information about the pulse count and external
alarm features for the 1800/2790 Data Communication System. These
features of the 2790 system have been announced but not yet
released.

Minor corrections and additions to the manual have also been made.

File this cover letter at the back of the manual to provide a
record of changes.

IBM Corporation, Programming Publications, Dept. D78, San Jose, Calif. 95114

PRINTED INUS A

File Number 1800-36
Order Number GC26-3718-4

Systems Reference Library

IBM 1800 Multiprogramming Executive Operating System
Introduction

This manual is an introduction to the IBM 1800 Multiprogramming
Executive (MPX) Operating System. Intended for new and pros-
pective 1800 installation managers, programmers, and operators.,
it assumes only a knowledge of a few process-control and
data-processing terms.

Topics discussed are: what the 1800 .system is used for, what
some of its capabilities and features are, what one might
need from an operating system, what MPX does about these
needs, and how MPX is organized.

An appendix describes the general characteristics of

the pulse count and external alarm features for the
1800/2790 Data Communication System. It is assumed that
the reader has a general understanding of the 2790 system
as described in the 1800/2790 Data Communication System
Programming manual, Order Number GC26-3732. The features
described in this appendix have been announced but not
vet released.

Fifth_Edition (June, 1970)

This is a major revision of, and renders obsolete, Form C26-3718-3 and
Technical Newsletters N26-0598 and N26-0602. The entire manual has been
rewritten to incorporate changes made to MPX in Versions 2 and 3.

This edition applies to Version 3, Modification 0 of the IBM 1800
Multivrogramming Executive Operating System, and to all subsequent
versions and modifications unless otherwise indicated in new editions or
Technical Newsletters. Changes may be made to the specifications in
this manual at any time; before using this manual in connection with the
operation of IBM systems, consult the latest SRL Newsletter, Order
Number GiN26-1800, for the editions that are applicable and current.

Forms for reader's comments are provided at the back of this
publication. If the forms have been removed, comments may be addressed
to IBM Corporation, Programming Publications, Department D78,

Monterey and Cottle Roads, San Jose, California 95114.

For copies of this or any other IBM publication, see your IBM
representative or call your local IBM branch office.

© Copyright International Business Machines Corporation 1970

Contents

Chapter 1: What the 1800 System Does 1
Real-Time Applications o i ittt e e e 1
Background Processing - - -« « « v v v i e e e e e e e e e 2
Communications o i e e e e e e e 3
Programming v v v it vttt e e e e e e e e e 3

Chapter 2: What MPX Does for You ui... 6

1. The ability to write programs in symbolic languages, store them,

and execute them e e e e e e 6
2. Fast response to real-timeevents0.... 10
3. The ability to specify relative importance to different interrupts 13

4. The ability to alter the way your interrupts are serviced

without stopping the system« . . o 0 e 18
5. The ability to do accounting, problem-solving, and record-keeping

jobs as well as real-time tasks 15
6. The ability to keep the system busy and to maximize the work done 15
7. A method by which programs can communicate with each other 16
8. The ability to use the input /output devices easily 16
9. Accessibility of subroutines that are used by many programs 22

10. The ability to interrupt a subroutine, use it, and then

complete the interrupted execution properly. 22
11. The ability to perform some tasks ona timed basis.22
12. The ability to do conversions and arithmetic and functional

calculations e 23
13. The ability to communicate with other computers 23
14. The ability to communicate with the 1800 from remote devices 23

15. The ability to develop your own programming language or some
instructions for the use of people at your installation 24

16. System recovery from errors when necessary; timely assistance

in recovery from othererrors Lo 24
17. Protection of programs and dataareas 25
18. The ability to leave out parts of the system that you don’tneed 26
19. The ability to grow without disruption 26

Page of GC26-3718-4
Added October 30, 1970
By TNL GN26-0615

Chapter 3: How MPX is Organizedo 27

How BOMisOrganized. ¢ i it ittt 27

How the Executiveis Organized oottt 28

How Main Storage is Organized oo oot in oo 28

How the Batch-Processing Monitor is Organized. 30

How the System Residence Disk is Organized 31

How a Coreload is Organized o v o vt i v v oo ie e 33
Appendix A. Pulse Count and External Alarm for 1800/2790 Data Communication

SYSEM . o« v v ov e e e e 34.1

Glossary-Indexottt e 35

vi

assembler language, but it might also require more computer time and
more storage space.

You can decrease the lengtn of your assempbler-language programs by
defining macro instructions. A macro instruction is an instruction that
is written like an assembler-language statement. When the Macro
hssembler encounters a macro instruction, it processes a sequence of
assembler-language statements that you have specified. You need to
specify such a sequence only once. After that, you can specify that the
sequence is to be processed by issuing the macro instruction.

The definition and use of a sample macro instruction are shown in Figure
2. Once the macro definition has been stored, issuing the macro

instruction would have the same effect as issuing the FORTRAN statement
or the sequence of assembler-language statements also shown in Figure 2.

After a program has been written and assembled or compiled, you may want
to run (execute) it immediately, store it for future execution, or both.

Programs are executed by a machine unit called a processor-

controller. This unit includes a central processing unit (CPU), which
carries out aritnmetic and logical operations, and main (core) storage,
where programs are executed.

There normally isn't room in main storage for all your programs to be
there all the time. Most programs are stored in disk storage and then
read 1nto main storage when they are to be executed.

MPX aullows you to manage storage and execution of your programs in
several different ways. You tell the system to store and execute
programns by issuing control statements that activate various programs
within MPX.

What MPX Does For You 7

Page of GC26-3718-4

Revised October 30, 1970
By TNL GN26-0615
5 Statement | €
Number S
7]2 3 4 5 |67 8 9 101112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 20 30 31 32 33 34 36

4| =] 18] |+ |

« (1o

J

]

- [E] /] F

FORTRAN Statement

01100101100000000000000000111110

_ 11000101000000000000000000111000
e I S N I R e
Laa s lleox | |2y 1S,6,72, ,, , [0001000010010000 00010
LD JAVARY) 0001100010010000
EE— 5' —t I E. 4 110101100000000000000000000111010
L1 L1y £ 121 &1 (10000100000000000000000000100000
Ll M L €, . . .4, [11010100000000000000000000011110
e i';';' ;'g' e Machine-Language Statements
PR S N | - 1" [ol S W Y U O |
[L1 L Fl PR B W |
W B | Al [| L Bl [S N |
T T - S rlo_l L - 41, 41 1] &
Assembler-Language Statements
Label Operation FIT Operands & Remarks
21 2s] |27 30| [32]33] |35 40 45 50 55
11 Suu.Anc T S U S WA WO NN U WA N SN TN (N S TN SN (NN N U SN (OO TN TN NN N S |
T CIAILIC 51617111’410!1151‘/1511 IMLU1LAT|1 IDIII.VIIIMIOIRIEII |$lp|c
L1 LIDIXI 7|1 51617‘ PORE RN (N NN SN SR TN WS NN GRS WO N [N NN N SN W N T SN N B N
PO S U anlx LI AlalllllllllllllllllllllllIll
[S..n L SlUlBllllllIllllllllllllllll]l
L1 1 ”111 L MIULLJTIIIIIII|IllllllJJlllllll
|1111 0111 l- Dnlnf‘:llllanllnl|l11|11141111
[, AJLL L MlolﬁJEIIIllllllIllllllllllllll
T | Slrlol L ipjcllllllllLJllllllllIllllll
[| ”lEl”; [WU WS WS NS WA SNS S NN UD UUNSY UNUR TN SH S [0 TR (NN SN (N (N TN SN N N N
1 o1 I [WIS WS T U NN YN SR Y NN NS GRS NN U S UUNE TN WU TN SN U TN S N N
Macro Definition
Label Operation F1T Operands & Remarks
21 25| |27 30 [32]33] |35 40 45 50 55
R T | CIAALIC‘ Slé‘lrllnlnpll1£|llc|llF|l|5|l|Al L1 31 1 B 1
14) L1 N U TN WA WA NSO NN WU SR N [N TR TR W Y A N WS N A
Macro Instruction
Figure 2. FORTRAN, Assenbler-Language, and Machine-Language Statements

& 1M 18C0 MPX System Introduction

Every real-time MPX system must include the Executive and at least one
partition. The number and size of other partitions depend on your
needs.

Multiprogramming allows programs to be executed faster--and thus
provides faster response to real-time events--by letting different
programs use different resources of the system at the same time.

Any program, at any given time, requires only a fraction of the total
resources of the system. For example, while a program is using the
central processing unit to do addition or subtraction, it isn't using a
printer; while a program is using a disk drive, it isn't using the CPU.
Under MPX, different programs can use the CPU, printers, and disk
drives, as well as other input/output devices at the same time, thus
shortening the execution times of some or all of the programs.

let's look at an example of the advantages of multiprogramming. Suppose
programs A, B, and C are being executed in a system without
multiprogramming. Program A reads some information from disk, operates
on it, and prints out a report. Program B performs some computation,
prints a message, performs some more computation, and writes the result
on disk. Program C performs some computation, reads some information
from disk, performs some more computation, and writes the result on
disk.

Figure 3 illustrates the sequence in which various operations would pe
performed when the three programs are executed one after the other.
Notice that while any one part of the system, such as a disk drive, is
being used, the cther parts, such as the CPU, are idle.

Program A Program B Program C Disk Time
e ——— e e e — e e

CPU Time

A 4

Time
Printer Time

Figure 3. Sequential Execution of Programs

Figure 4 shows the sequence in which tne same functions might oe carried
out under MPX. Note that the three resources involved (CPU, disk drive,
printer) are in some cases all used at the same time. wote also that
Program A is completed just as soon, and Programs B ani C are completed
sooner, than they were in the system without multiprogramming.

What MPX Does For You 11

Page of GC26-3718-4
Revised October 30, 1970
By TNL GN26-0615

Program A Disk Time
Program B CPU Time
Program C Printer Time

A\

Time

figare 4. Concurrent Execution of Programs

INTERRUPTS

In order that MPX respond to a real-time event, it must have some way of
knowing that the event has taken place. To accomplish this, each 1800
can be connected so that physical events cause interrupts. An interrupt
is the recoynition of an event that alters tne sequence of program
execution by causing execution of a specific program. When you set up
your system, you specify which program is to be executed in response to
each interrupt. The program is said to service the interrupt.

when the interrupt occurs, a physical indicator is set. The 1800 uses
the indicator to determine the source of the interrupt. Then MPX
executes the program that has been specified to service that interrupt.

Interrupts can, as we've said, be caused by real-time events. For
example, if an 1800 were controlling the testing of resistors as they
were manufactured, an interrupt might be generated every time the
testing mechanism finished testing a good resistor. A different
interrupt would be generated when the resistor being tested was found to
be defective. Different programs would be executed to service the two
interrupts. In an actual process, the two programs might cause the
resistors to be moved to different locations.

An interrupt is also generated each time an input/output device finishes
an operation. Programs within MPX are executed in response to those
interrupts. Interrupts can also be generated by programs. For example,
in the resistor-testing application described above, an interrupt was
generated when a defective resistor was encountered. The program
executed .in response to that interrupt might move the defective resistor
to a specified spot, update some stored production data, and generate
another interrupt. The program servicing this second interrupt could
begin the testing of another resistor.

MPX can distinguish up to 744 different interrupts. The actual use of
interrupts at your installation depends on your needs.

12 IBM 1800 MPX System Introduction

instructions in which you specify the location of the data to be
transferred, where it's to be sent, how much data is to be transferred,
and what's to be done when the transfer is complete. For example, a
call to the input/output control subroutine for the card read punch
might specify that the contents of one card in the card read punch are
to be read into a specified location in main storage. A call to the
input/output control subroutine for the 2311 disk storage drive might
specify that 29 characters beginning at a certain location in main
storage are to be copied onto a disk pack, beginning at a certain
location on the disk pack.

The following MPX input/output control subroutines control
data-processing 1/0 devices:

» BULKN--handles output to and input from the 1810 disk storage unit and
sections of 2311 disk storage drives that are treated like 1810s.

¢ CARDN--handles the reading and punching of cards on the 1442 card read
punch.

e FILEN--handles input to and output from the 2311 disk storage drive.

e MAGT--handles input to and output from the 2401 and 2402 magnetic tape
units.

¢ PAPTN--handles input from the 1054 paper tape reader and output to the
1055 paper tape punch.

¢ PLOTX--handles output to the 1627 plotter.

¢ PRNTN~-handles printing and line control on the 1443 printer.

e TYPEN, WRTYN--handles input from the 1816 printer keyboard and output
to the 1816 and the 1053 printer. (TYPEN and WRTYN are two names for

the same subroutine.)

The following input/output control subroutines control process I/0
devices:

e ATRN--handles input of data to main storage from a random set of
analog input points.

e AISN, AISQN--handles input of data to main storage from a sequential
set of analog input points. (AISN and AISQN are two names for the
same subroutine.)

¢ DAOP--haniles output to digital and analog output devices.

¢ DIEXP--handles reading of a group of digital input points and storing
of the values in a special format.

¢ DINP--handles reading and cnecking of several groups of digital input
points.

The following input/output control subroutines control communications
170 devices:

e BSCIO--handles input from and output to the computers and terminals
attached to the 1800 by the communications adapter.

e 27930 Input/Output Control Subroutine--handles input from the 2791 and
2793 area stations, 2795 and 2796 data entry units, and 1035 badge
readers, and output to the 2791 area stations and 1053 printers
attached to area stations.

What MPX Does For You 17

Page of GC26-37184
Revised October 30,1970
By TNL GN26-0615

To run MPX, you must have at least one 1442 card read punch, one 1053
printer, and one disk drive (2311 or 1810 Model A). If you don't have
2311s, then the 2790 system requires an 1810 Model A2 or B2. The 1053
printer and the disk drive are used by some of the MPX system programs,
so the input/output control subroutines for those devices must be in the
Fxecutive. You can put CARDN in the Executive or a coreload.

of the input/output control subroutines for other devices, you need to
include only those for devices you are using in your system. Any of
these other input/output control subroutines, except PRNTN, can

be put in either the Executive or a coreload. If PRNTN is included

in the system, it must be placed in the Executive.

18 IBM 1800 MPX System Introduction

Page of GC26-37184
Revised October 30, 1970
By TNL GN26-0615

Table 1. Minimum and Maximum Machine Confiqurations

Device Number in Maximum System Number in Minimum System
2311 Disk Storage Drive 8 1

1810 Disk Storage Unit 1(Model A3 or B3) 1(Modeloz\1 or B1)
1442 Card Read Punch 2 1

1816 Printer Keyboard

1053 Printer {including qu to two 1816s) 1

1443 Printer 1 0

1627 Plotter 1 0

1054 Paper Tape Reader 1 0

1055 Paper Tape Punch 1 0
2401/2402 Magnetic Tape Unit 2 0
Communications Line Adapter 8 0

2790 Loop Adapter 2 0

Table 2. Maximum 2790 Loop Configuration

Device Number in Maximum Loop

2791 Area Station
or 100
2793 Area Station

2795 Data Entry Unit 32 per 2791 Model 1
or 2793 area station; —

2796 Data Entry Unit maximum of 1024

300 (3 per 2791 Model
1 area station)

100 (1 per 2791 Model 1
or 2793 area station)

User-Supplied Input Device 100 (1 per 2791 Model 1
area station)

1035 Badge Reader

1053 Printer

DISK UTILIZATION PROGRAMS

The Disk Pack Initialization Program (DPIP), the BOM Disk Write
Addresses Program (BDWAP), and the Disk Management Program (DMP) are
programs that give you further assistance in the use of disk storage.

OPIP allows you to test a 1316 disk pack (used with 2311 disk storage
drives) for defects and initialize it for use. BDWAP initializes a 2315
disk cartridge (used with 1810 disk Storage units). By issuing control
Statements that activate parts of DMP, You can carry out such functions
as storing programs and data on disk, deleting programs and data
previously stored, copying disk packs and cartridges, and reserving disk
space without actually storing anything.

What MPX Does For You 21

9. Accessibility of subroutines that are used by many programs

Some subroutines may be used as part of the execution of many different
programs. Storing a copy of such a subroutine with each coreload that
uses it would reguire extensive disk space. The partitions where the
coreloads are executed would also have to pe large enough to accommodate
the subroutine along with the rest of the coreload. You can save space
by placing such subroutines in the Executive. Then they can be accessed
bv a program executing in any partition.

10. The ability to interrupt a subroutine, use it, and then
complete the interrupted execution properly

i1f a program is being executed on an interrupt level, and a higher-level
interrupt occurs, execution of the program is suspended until the
higher-level interrupt is serviced. However, a problem arises when a
suproutine in the Executive is interrupted in this way and the program
servicing the higher-level interrupt calls the same subroutine.

Let's look at an example. Say you have two communications adapters, one
of which generates level 1 interrupts and the other of which generates
level 2 interrupts. The input/output control subroutine BSCIO services
all interrupts for both communications adapters. Say BSCIO is
transmitting or receiving data with the level 2 communications adapter
when an interrupt from the level 1 communications adapter occurs. The
first execution of BSCIO is suspended, and another execution of BSCIO is
pegun to service the jevel 1 interrupt. If BSCIO were a conventional
subroutine, the partial results of the first execution would be lost.
The communications that had taken place during the first execution would
have to be repeated.

To prevent this kind of problem, MPX subroutines can be written to be
reentrant. When execution of a reentrant subroutine on a given
interrupt level is interrupted, all the results accumulated so far are
saved in an area called the level work area, and execution can later be
resumed at the point where it was interrupted. There's a level work
area for each interrupt level in the system.

All MPX system subroutines that may be called from more than one level
are available in reentrant form. This means they can be called from
different interrupt levels with no loss of partial results. Many of the
system subroutines are available in both reentrant and nonreentrant
forms. The reentrant forms generally require less main storage, but
require more execution time than the nonreentrant forms. You can choose
the form that better meets your needs.

11. The ability to perform some tasks on a timed basis

Assume that your 1800 is controlling the packaging of peanut butter.
You might want the 1800 to weigh a finished jar of peanut butter every
two seconds, check the flow of salt into the peanut butter every two
minutes, and print an inventory report every two hours.

Timers built into the 1800 system and into MPX allow you to do things on
a timed basis. A timer is a device that generates an interrupt every
time a specified interval of time elapses. Three physical timers are
built into the 1800 hardware. TwoO of the physical timers are available
for your use; MPX uses the third to keep track of the time of day and

22 1BM 1800 MPX System Introduction

Page of GC26-37184
Added October 30,1970
By TNL GN26-0615

Appendix A. Pulse Count and External Alarm for
1800/2790 Data Communication System

The information in this appendix is to be used only as a planning aid,
because the features described are not available at this time. This
information is subject to modification between announcement and release
of the external alarm and pulse count features of the 1800/2790 Data
Communication System.

This appendix briefly describes the pulse count adapter for the 2793 area
station, the external alarm for the 2791/2793 area station, and MPX
programming support to be provided for these features.

Information describing the 2790 Data Communication System units and MPX
programming support is in the IBM 1800 MPX Operating System, 1800/2790
Data Communication System Programming manual, Order Number GC26-3732.
The descriptions in this appendix assume that the reader has a general
understanding of the 2790 system as described in the above manual.

Pulse Count

The pulse count adapter permits the recording of events from up to 63
mechanical contact closures (contact sense points). A pulse count
adapter can be attached to each 2793 area station on the 2790 loop.

Each counter can record from 0 to 29,999 events and can be read, set to
a value, or tested by use of the specific device address assigned to each
contact sense point.

A visual readout attachment can be located at the area station. This
attachment will provide a means for displaying the value in each of the
contact sense counters. Operation of this attachment is independent of
the 2790 Data Communication System.

External Alarm

The external alarm feature provides a means of alerting anyone in the
vicinity of a 2791 Model 1 or 2793 Model 1 area station that a condition
you have designated exists. The alarm can be a bell, light, or any
device you provide that can be operated by the momentary closure of
contacts. An area station having this feature must also have a 1053
printer adapter. The alarm is activated by the receipt of the character
for bell at the area station.

Programming Support for Pulse Count

The pulse count adapter for the 2793 area station is supported by the
1800/2790 MPX Data Communication System operating under a real-time MPX
operating system.

The pulse count feature is supported by six new macro instructions and a
subroutine. Four of the macro instructions are used to read the counters,

Pulse Count and External Alarm 34.1

Page of GC26-3718-4
Added October 30, 1970
By TNL GN26-0615

set them to values, and reset them to zero. The two remaining
instructions will be used to test the status of pulse counters after a
read, set, or reset has been performed.

The PULSE subroutine reads the counters, sets them to a predetermined
value, and resets the counters from a coreload other than the 2790 SPAR
coreload. The PULSE subroutine can be called from a FORTRAN or assembler-
language program.

READC MACRO INSTRUCTION

This instruction reads from one to seven counters on loop 1 or 2 (m in

the following example). The counters to be read are specified in groups
according to area station number (000-127, aaa in the following example)
and the counter number (1-63, nn in the following example). Up to seven

counter groups may be defined in one macro instruction. A group may
range from one area station with seven counters to seven area stations

with one counter each.

The reset parameter, r, allows you to specify normal end (no reset),
reset counter to zero, and reset on overflow condition (when counter
exceeds 29,999). The r parameter can also be used to reset the count
test bit. This bit is described under the RESET macro instruction.

The fcrmat of READC is:

Label Operation F|T Operands & Remarks
21 25| |27 30| [32f33] |35 40 45 50 55 60
L1 R.EADIC Fo o (0@aa gy v
v ! 11 [ER NN Y N W U YA NS U W N W O A S O W U I I I

In a series of pulse count instructions, it will be necessary to specify
the loop number and counter group parameters in only the first macro
instruction. Subsequent pulse count instructions will pick up the loop
number, area station, and counter numbers from the I/O buffer currently
being processed. When parameters are omitted in the instructions, the
commas that would normally precede omitted parameters must be shown.

The loop number and area station number can also be omitted from the pulse
count instructions. The required information will be taken from the
2793 area station which initiated the transaction. That 2793 must have

the pulse count adapter.

SETC MACRO INSTRUCTION

This instruction sets the counters specified in the counter group
(aaa,nn) on loop m to the value specified in parameter VvVvVvVv. Up to
seven counter groups may be defined in each SETC instruction so long as
the maximum of seven counters is not exceeded.

The format of SETC is:

Operands & Remarks

Label Operation FIT
21 25 27 30 32|33 35 40 45 50 58 60
L1 S\ETC VnVlVlVanynﬂh:|(1ala|a|:|”|”|)l T N U W U N T O O
yo1 1l [||111||1I||l||||ll||InllllL

34.2 IBM 1800 MPX System Introduction

’

Page of GC26-37184
Added October 30, 1970
By TNL GN26-0615

The loop number and counter group (s) or the loop number and area station

number may be omitted under the same conditions as described for the
READC instruction.

PSETC MACRO INSTRUCTION

This instruction sets the counter specified in the counter group (aaa,nn)
to a value that is 30,000 less than the value specified in the vvvvv
parameter. This method of setting up the counter takes advantage of the
overflow transmission code that is generated by the area station when

a counter value exceeds 29,999,

Up to seven counter groups may be defined in each PSETC instruction so
long as the maximum of seven counters is not exceeded.

The format of PSETC is:

Label Operation FIT Operands & Remarks
21 25| |27 30f |32[33] |35 40 45 50 55 60
L PSETIC v, (aaa, nny I I
T | 11 | U Y N WS T TN T N 1 N Y T WY OO N WO U N N N N O |

The loop number and the counter group or the loop number and area station
number may be omitted under the same conditions as described for the READC
instruction.

RESET MACRO INSTRUCTION

This instruction resets the counter specified in the area station group
(aaa,nn) in a manner determined by the reset parameter, r. Up to seven
counters may be specified in up to seven counter groups. The m parameter
contains the loop number.

This instruction resets the counter and/or the count test bit. A count
test bit is associated with each counter. The counters are so designed
that any time the counter is incremented the count test bit is turned
on. This bit can therefore be used to determine whether a particular
counter has been operating since the last time the bit was reset.

The reset parameter determines how the counter and/or count test bit
are reset. The options available include reset counter to zero, reset
counter unconditionally, reset on overflow condition (when counter
exceeds 29,999), and reset the count test bit.

The format of RESET is:

Label Operation FIT Operands & Remarks
21 25 27 30 32|33 35 40 45 50 55 60
| RESE|IT ryome (,888,mn)0 v v i g1
T . S | W TN S A O WU U N N O T Y W N T N O T S W O Y O |

The loop number and counter group (aaa,nn) or the loop number and the
area station number may be omitted under the same conditions as described
for the READC instruction.

Pulse Count and External Alarm 34.3

Page of GC26-37184
Added October 30,1970
By TNL GN26-0615

TSTCC MACRO INSTRUCTION

This instruction tests the condition code for each of the counters
specified in the previous read, set, or reset operation.

Each time a read, set, or reset operation is performed on the counters,

a code is placed in a specific word for each counter. This code indicates
successful completion of the set or reset operation, the status of the
count test bit (on or off), counter offline or area station bypassed,

an overflow condition, and other error or status conditions.

If the condition code specified in the TSTCC instruction is equal to the
code for any counter being processed, a branch is made to the instruction
"label" in the transaction control list. If none of the counters being
tested has the condition code specified in this instruction, the next
instruction in the transaction control list is executed.

The format of TSTCC is:

Label Operation FIT Operands & Remarks
21 25 27 30 32|33 36 40 45 50 55 60
AN rsrcie labe /€€ vy vyt
T W | [WS W S W NN TN VNN WS U NN VRN N W W W U N Y N W W WO W T |

TSTNC MACRO INSTRUCTION

This instruction is similar to TSTCC because the same codes are tested.
If the completion code cc specified in this instruction is not equal to
any of the codes examined, a branch is made to the instruction "label."

This instruction also causes a branch to "label" if the data in the I/0
buffer is not from a previous pulse count operation.

The format of TSTNC is:

Label Operation FIT Operands & Remarks
21 25 27 30 32|33 35 40 45 50 55 60
Ll TS\ TWNC lyabe/ ,,€C6 v vy g bl
T N T S [W U U UG W OO T (NS WY YN (NS WY T N WA NN N SN U N D I |

PULSE SUBROUTINE

The PULSE subroutine will be able to read counters on a 2793 area station,
set them to values, and reset them. The subroutine may be called from a
FORTRAN or assembler-language program and can be executed in a coreload
other than the 2790 coreload.

34.4 1IBM 1800 MPX System Introduction

Page of GC26-3718-4
Added October 30, 1970
By TNL GN26-0615

Assembler-Language Call:

Label Operation FIT Operands & Remarks

21 25| |27 30{ [32/33] |35 40 45 50 55 60
T W | clAlLlL P|U1/-151£| | I U B O W 93".27.90.'0.0'?. I R N T O A I |
L1l D¢ | LI)ST, 4 4y g g g Addressof/OList |), |)) g
Ll il B ST UN T T NN W U W T VY YO N YO TN T S SO N NN N W A B W0
Ly °1 (RS VAN TN N NN TN WY TN YT WO T A N Y N WO O T A 0 Y U W B
P bl S T YN YN TR W WA NN TN WO SR NN N NN NN SN NN NN N NN SR TN (N WO N A I O |

LIST, n¢c | X L v 1444y Link/Busyindicator | 4)))) g
L1 0C, , N I A L A I A I A S A
Lo 8,55, 4y L 11 v 4 44y oy) SystemReservedWords1-4))y)
L1 0¢c - 1 14 1 0 1y g CompletionCode | | 4, g gy
L4 chl 1 /IXIXIXLxl | S S W I I | Clon}rollPaLaTetFrl I T Y T O |
[T | Dncl 1 A|R|E|A1 TN S U O O | I(O‘Ar?a A.‘ddfeiLL i I T Y T I |
L1 S : [N T N NS WY W N TN SN T N TN WO TN T Y Y S O T 0 M N I I
TR | hall BT [E R NN ST W N TN WO SN NN WA NN WO (N NN T O (NN TN N N NN N N 2 |
P I [SN W N Y N TS NS A T SN N TR AN TN U WO NN NN NN O [SN NN N A Y |

Anﬁné-n‘al chl 1 W|D|CIN1 U N S U N B | Word Coupt and) o0 by
Lo 0c | JHAANN, § 4, 1 4 4 AreaStation/Counter Number, | |)
[DR T T | DLC| 1 *l-l*l U U N S U R T | F\:eag/sft (.:or:'\pI'eti?n xcoqel I
L 8,5, Sy v w44y oq oy g Data/SetValue, | 41
[| 11 [SN YN NG WO NN NN U VNN N WU TN U WS N NN W O Y W OO 1

The calling sequence is similar to that used for MPX input/output control
subroutines. A description of the first six words of the I/O list is

in the MPX Subroutine Library manual, Order Number GC26-3724, listed
under, "Calling Sequences -- IOCRs." The remaining parameters are
described here as they apply to the PULSE subroutine.

Completion Code

The completion code parameter indicates successful completion of the
call or one of several error conditions. The error conditions are: a
call was made to PULSE when the 2790 coreload was not in main storage,
a call specified the number of a loop that was not active, and one of
the counters has an error condition to report and the completion code
must be checked for further error information. The completion codes
are described later in this section.

Control Parameter

The first digit of the control parameter is the function code, which
determines if a counter is to be read, set to a value, reset, or placed
online or offline.

The second digit of the control parameter is the function modifier code.

If the function code is a read or reset operation, the modifier code

can specify normal end (no reset), reset counter to zero, unconditional
reset, and reset overflow condition (counter exceeds 29,999). The function
modifier code can also be used to reset the count test bit.

Pulse Count and External Alarm 34.5

Page of GC26-3718-4
Added October 30,1970
By TNL GN26-0615

If th function code specifies an online or offline operation, the
modifier code determines if the counters specified in the I/0 area are
to be put on line or taken off line.

The third digit of the control parameter specifies the priority of the

call and the fourth digit specifies the loop number for the area stations
being addressed.

I/0 Area Address

This parameter contains the address of the I/0 area that will be used to
specify the counters, reserve space for the completion code, and provide
a data area for the read and set operations.

I/0 Area (AREA)

The first word, WDCNT, contains the word count for the entire I/0 area.
The value is determined by the number of counters defined in the I/O
area. Each counter requires five words, and the maximum number of
counters that can be specified is limited by the amount of main storage
available.

The five words required for each counter are:

Area Station and Counter. This word contains the area station and counter
number, specified in hexadecimal.

Read/Set Completion Code. This word is used by the system to return a
status or error code that applies to this counter. These codes indicate
successful completion of a set or reset operation, status of the count
test bit, counter off line, unsuccessful retry of a read or set operation,
area station bypassed, invalid counter number, or a power on condition
indicating that power has just been restored to the area station.

Data/Set Value (Three Words). These words hold the five digits and sign
that are returned by a read counter operation. If the operation is set
counter, these words will be used to specify the value to which the
counter is to be set.

Programming Support for External Alarm

The external alarm feature for the 2791/2793 area station will be
supported by the 1800/2790 MPX Data Communication System operating under
a real-time MPX operating system.

A new macro instruction, ALARM, activates the alarm by transmitting the
EBCDIC character for bell to the area station. The alarm will also be
activated by the TMSG macro instruction if the message contains the
EBCDIC character for bell.

34.6 IBM 1800 MPX System Introduction

Page of GC26-37184
Added October 30, 1970
By TNL GN26-0615

ALARM MACRO INSTRUCTION

This instruction causes the external alarm contacts at area station aaa
on loop m to be closed and activates the alarm. If the instruction is
issued while the 1053 is busy, this message is queued in main storage
until the 1053 is not busy.

The format of ALARM is:

Label Operation FIT Operands & Remarks
21 25 27 30 32§33 35 40 45 50 55 60
11 AL ARM W I I A I A I I
T | Lty | N U Y TSN T S T O N T T YO N T N T N (OO U Y Y M O |

The loop number and area station parameters can be omitted under the
same conditions as described for the READC instruction.

2790 System Definition

The system definition macros for the 1800/2790 Data Communication System
will be expanded to include provisions for defining the support required
for pulse count and external alarm features.

Storage Requirements

Programming support for the pulse count feature will add approximately
eight hundred words to the 2790 coreload. Each pulse count instruction
will add approximately five words to the transaction control list.

Pulse Count and External Alarm 34.7

This page intentionally left blank.

34.8 1IBM 1800 MPX System Introduction

IBM Technical Newsletter File No. 1800-36

Base Publ. No. GC26-3718-4

This Newsletter No. GN34-0047
Date November 1971

Previous Newsletter Nos. GN26-0615

1BM 1800 Multiprogramming Executive Operating System
Introduction

©IBM Corp. 1970

This Technical Newsletter, a part of Version 3, Modification 2, of the IBM 1800 Multiprogramming
Executive Operating System, provides replacement pages for the subject publication. These replacement
pages remain in effect for subsequent versions and modifications unless specifically altered. Pages to be
inserted and/or removed are:

Front cover, ii

iii—vi

34.1—34.8 (deleted)

Readers comment form

A change to the text or to an illustration is indicated by a vertical line to the left of the change.

Summary of Amendments

This technical newsletter deletes from the manual an appendix that contained preliminary information
about the pulse count and external alarm features for the 1800/2790 Data Communication System. With
the release of these features in Version 3, Modification 2, updated material has been inserted in the

IBM 1800 Multiprogramming Executive Operating System 1800/2790 Data Communication System
Programming manual, GC26—3732.

Minor corrections to the manual have also been made.

Note. Please file this cover letter at the back of the manual to provide a record of changes.

IBM Corporation, Systems Publications, Boca Raton, Florida 33432

PRINTED IN U.S.A

File Number 1800-36
Order Number GC26-3718-4

Systems Reference Library

IBM 1800 Multiprogramming Executive Operating System
Introduction

Page of GC26-3718-4
Revised November, 1971
By TNL GN34-0047

Fifth Edition (June, 1970)

This is a major revision of, and renders obsolete, Form C26-3718-3 and
Technical Newsletters N26-0598 and N26-0602. The entire manual has been
rewritten to incorporate changes made to MPX in Versions 2 and 3.

IThis edition applies to Version 3, Modification 2 of the IBM 1800
Multiprogramming Executive Operating System, and to all subsequent
versions and modifications unless otherwise indicated in new editions or
Technical Newsletters. Changes may be made to the specifications in)
this manual at any time; before using this manual in connection with the
operation of IBM systems, consult the latest SRL Newsletter, Order
Number GN26-1800, for the editions that are applicable and current.

Forms for reader's comments are provided at the back of this
publication. If the forms have been removed, comments may be
addressed to IBM Corporation, General Systems Division, Systems
Publications, Department 707, Boca Raton, Florida 33432. Comments
become the property of IBM.

For copies of this or any other IBM publication, see your IBM
representative or call your local IBM branch office.

© Copyright International Business Machines Corporation 1970

ii

Page of GC26-3718-4
Revised November, 1971
By TNL GN34-0047

Preface: How to Use this Book

This manual is an introduction to the IBM 1800 Multiprogramming
Executive (MPX) Operating System. It is intended for new and potential
1800 installation managers, programmers, and operators; the only
prerequisite is knowledge of basic data-processing and process-control
terms. The data-processing terms are explained in Introduction to IBM
Data Processing Systems, Order lumber GC20-1684.

The first chapter, "What the 1800 System Does," discusses kinds of
applications in which the 1800 system is used, and the different kinds
of work you can expect it to do.

The second chapter, "What MPX Does for You," discusses the programming
functions that are carried out by the operating system. It describes
needs that you might want the operating system to handle, and what MPX
does about these needs.

The third chapter, “"How MPX Is Organized," tells how the various parts
of the system are put together and where they are located.

As you read this manual, you might want more detailed infoxmation about
1800 system physical units and MPX system programs. These books can be
used for reference:

1800 System Summary, Order Number GA26-5920, which introduces the
physical units that make up an 1800 system.

1800 Functional Characteristics, Order Number GR26-5918, which
describes how the physical units work.

MPX Programmer's Guide, Order HNumber GC26-3720, which discusses MPX
system organization and programming techniques.

MPX Subroutine Library, Order Number GC26~3724, which describes
each of the system subroutines.

MPX Operating Procedures, Order Number GC26-3725, which tells how
to generate, cperate, and maintain MPX.

1130/1800 Assembler Language, Order Number GC26-3778, which tells
how to use macro instructions and write programs in assembler
language.

113071800 Basic FORTRAN IV Language, Order Number GC26-3715, which
tells how to write programs in FORTRAN.

Communications Adapter Programming, Order Number GC26-3757, which
tells how to write programs to carry out communications with other
computers and terminals.

Binary Synchronous Communications--General Information, Order
Number GA27-3004, which describes the programming conventions that
govern communications between the 1800 and other computers and
terminals.

1130/1800 Plotter Subroutines, Order Number GC26-3755, which
describes MPX subroutines for controlling the 1627 plotter.

iii

This page intentionally left blank.

iv

Contents

Chapter 1: What the 1800 System Doeso.o o0, 1
Real-Time Applicationst . 1
Background Processing « - « « - - s v i e i e e 2
Communications 3
Programming 3

Chapter 2: What MPX Does for Youo .. 6

1. The ability to write programs in symbolic languages, store them,
andexecutethem, 6
2. Fast response to real-timeevents 0. 0. " 10
3. The ability to specify relative importance to different interrupts 13
4. The ability to alter the way your interrupts are serviced
without stopping the system 15
5. The ability to do accounting, problem-solving, and record-keeping
jobs as well as real-timetasks 15
6. The ability to keep the system busy and to maximize the work dome 15
7. A method by which programs can communicate with eachother 16
8. The ability to use the input /output devices easily 16
9. Accessibility of subroutines that are used by many programs 22
10. The ability to interrupt a subroutine, use it, and then
complete the interrupted execution Properly., 22
11. The ability to perform some tasks on a timed basis. oo oL, 22
12. The ability to do conversions and arithmetic and functional
caleulations 23
13. The ability to communicate with other computers 23
14. The ability to communicate with the 1800 from remote devices 23
15. The ability to develop your own Programming language or some
instructions for the use of people at your installation 24
16. System recovery from errors when necessary; timely assistance
in recovery fromothererrors L L 0L L L 24
17. Protection of programs and data areas - « -o .t tinn 25
18. The ability to leave out parts of the system that you don’tneed 26
19. The ability to grow without disruption 26

Page of GC26-3718-4
Revised November, 1971
By TNL GN34-0047

Chapter 3: How MPX isOrganized o annn. 27
How BOMisOrganized. - - . .« « c c oo ot oo et menanaeaaaannansans 27
How the ExecutiveisOrganized - . .. ottt i i o et nnss 28
How Main StorageisOrganized - o .o ot i it 28
How the Batch-Processing Monitor is Oxrganized.- ... 30
How the System Residence Diskis Organized. 31
How aCoreloadisOrganized, ..33
Glossary-IndexX i v ittt iemeaaa et c e s 35

vi

READER’'S COMMENT FORM

IBM 1800 MPX Operating System Order Number GC26-37184
Introduction

Please comment on the usefulness and readability of this book, suggest additions and deletions,
and list specific errors and omissions (give page numbers). All comments and suggestions become
the property of IBM. If you want a reply, be sure to give your name and address.

Name Occupation
Address

Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

GC26-3718-4

YOUR COMMENTS, PLEASE. ..

Your answers to the questions on the back of this form, together with your comments, will
help us produce better publications for your use. Each reply will be carefully reviewed by
the persons responsible for writing and publishing this material. All comments and sug-
gestions become the property of IBM.

Note: Please direct any requests for copies of publications, or for assistance in using your
IBM system, to your IBM representative or to the IBM branch office serving your locality.

Fold

FIRST CLASS
PERMIT NO. 110
BOCA RATON, FLA
33432

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAIDBY . . .

IBM Corporation
General Systems Division
Boca Raton, Florida 33432

Attention: Systems Publications, Department 707

Fold

TBM

International Business Machines Corporation

Data Processing Division

1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only]

IBM World Trade Carporation
821 United Nations Plaza, New York, New York 10017
[International]

(9€-0081) 008l WAl

—_ —_— — — — — — aunbuoyin) — — —

-

#-81L£-9C0D "V'S'N Ul paiulid

GC26-3718-4

B

®

International Business Machines Corporation
Data Processing Division '

112 East Post Road, White Plains, N.Y. 10601
[USA Dnly]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

-8LLE-9ZOD °V°'S'N ul palulyd 0081 WAl

