
Systems Reference Library

IBM 1800 Time - Sharing Executive System
Specifications

This publication describes and illustrates the use of the IBM
1800 Time-Sharing Executive System. The calling sequences
to all the programs are described in terms of the FORTRAN
CALL statements. The Assembler language equivalents of
the calling sequences are included in an appendix.

It is assumed the reader has knowledge of the 1800 Data
Acquisition and Control System and the 1800 FORTRAN
Language.

The 1800 Time-Sharing Executive System provides the user
with an easy means of generating, testing, and executing
programs for process control and data acquisition applications
as well a,s nonprocess applications.

File No. 1800-36
Form No. C26-5990-1

Form C26-5990-1

Page Revised 10/25/66
By TNL N26-0560

PREFACE

This publication presents the specifications for the
IBM 1800 Time-Sharing Executive (TSX) System.
The 1800 TSX system provides a means for genera­
ting, organizing, testing, and executing programs
for process control and data acquisition applications
and nonprocess operations.

The publication is divided into four parts:

• Introduction

• System Director

• Nonprocess Monitor

• Subroutines

The first section describes the terms used, the
layout of core and disk storage, and general
system operation.

The next three sections describe the operation,
statements, and control records of the system pro­
grams. Linkages to the various system programs are
described in terms of the FORTRAN CALL statements
used. The equivalent calling sequences for 1800
assembler language programs are given in Appendix A.

The FORTRAN language and assembler language
for the system are described in the publications listed
below. Also listed are the publications describing
the IBM 1800 Data Acquisition and Control System. To
fully understand the material in this manual, the reader
should be familiar with the information contained in
the se publications.

IBM 1800 FORTRAN Language (Form C26-5905)
IBM 1800 Assembler Language (Form C26-5882)
IBM 1130/1800 Plotter Subroutines (Form C26.;..3755)
IBM 1800 Data ACquisition and Control System
Functional Characteristics (Form A26-5918)
IBM 1800 Data Acquisition and Control System
Data Processing Input/Output Units (Form A26-5969)

MACHINE REQUIREMENTS

The machine units required for operation of the 1800
TSX System are listed below. Normally, only one
device per data channel is permitted. For exceptions
to this rule see Test Function under BASIC CALLING
SEQUENCE in the Subroutine Library section.

1. IBM 1801 or 1802 Processor-Controller, with
a minimum of 8192 words of core storage.

2. IBM 2310 Disk Storage.
3. IBM 1053 Printer or IBM 1443 Printer or

IBM 1816 Printer-Keyboard.
4. IBM 1442 Card Read Punch.

MACHINES AND FEATURES SUPPORTED

In addition to the machine units required, the following
optional units and features can be used during operation
of the TSX System.

1. Additional core storage (total, 32, 768)
2. Additional IBM 2310 Disk Storage units (total, 3)
3. Additional IBM 1442 Card Read Punch unit

(total, 2)
4. Additional IBM 1816 Printer-Keyboard unit

(total, 2)
5. Additional IBM 1053 Printer units (total of

eight 1053s and 1816s)
6. Additional Data Channels (total, 9)
7. Additional Interrupt Levels (total, 24)
8. Multiplexer Unit (S and R)
9. Analog-Digital Converter (total, 2)

10. Digital! Analog Output
11. Digital Input
12. Comparator

113. IBM 1443 Printer unit (total, 1)
14. IBM 2401-2402 Magnetic Tape Units (total, 2)

115. IBM 1627 Plotter unit (total, 1)
16. IBM 1054 Paper Tape Reader.
17. IBM 1055 Paper Tape Punch.

This edition is a major revision of the previous edition (C26-5990-0), which is

now obsolete. Significant changes have been made throughout this edition;

therefore, it should be reviewed in its entirety.

Copies of this and other IBM publications can be obtained through IBM Branch Offices. A form has

been provided at the back of this publication for reader's comments. If the form has been detached,

comments may be directed to: IBM, Programming Publications Dept. 452, San Jose, Calif. 95114

© International Business Machines Corporation 1965

ii

INTRODUCTION ••••
Terms •••••••••
Systems Components

Core Loads •••

SYSTEM DIRECTOR
Program Sequence Control Program ••

Direct Sequence Statements. • •
Queuing Statements • • • • • •

Master Interrupt Control Program. •

External Interrupts. • • • • • • •
Recorded Interrupt Servicing ••
Combination Core Load • • • •
Interrupt Assignment Restrictions

PISW Assignment Restrictions • •
Interval Timer Control Program
Time-Sharing Control Program.

Error Alert Control Program. •

Loaders ••••••••••

NONPROCESS MONITOR.

Supervisor Program • • • •

Supervisor Components • •

Skeleton Supervisor • • •
Monitor Control Record Analyzer

Disk Utility Program

Assembler Program • •

FORTRAN Compiler
Simulator Program •

Subroutines

Restrictions • • •

SUBROUTINE LIBRARY
I/O Subroutines. • • ••

Methods of Data Transfer •
I/O Subroutine Operation
General Error Handling Procedures
Basic Calling Sequence

Card Subroutine • • •

Disk Subroutine • • • •
Printer Subroutine • • •
Magnetic Tape Subroutine
Printer-Keyboard Subroutine.

Paper Tape Subroutine ••

Plotter Subroutine (PLOTX) •
Digital Input Subroutine. • • •
Digital Input Read/Compare
Digital Input Read/Expand • • •

Digital! Analog Output Subroutine.
Analog Input-Sequential Subroutine. •

2

5

7
7
8
9

14
14

16

16
16

17
18
23

24
25

29

30

30

30
31
32

35

....... 36

37

....... 38

38.1

39

39
40
40
41
43

45

46

49
51
54

57
58

59
61
62

62

64

iii

Form C26-5990-1

Page Revised 10/25/66
By TNL N26-0560

CONTENTS

Analog Input-Single Read Subroutine • • • • • • • • •

Analog Input Random Read Subroutine • • • • • • • •

Subprograms Linking FORTRAN With Analog/Digital I/O
Call Statements • • • • •

Analog Input Single Read •
Analog Input Sequential •••

Analog Input Random Read •
Digital/Analog Output. • •
Digital Input. • • • • • •

Conversion Su,?routines • ., •
Data Codes ••••••••

Descriptions of Conversion Subroutines
Arithmetic and Functional Subroutines

Floating-Point Data Formats. • • • •

Fixed-Point Format • • • • • • • • •
Floating-Point Pseudo-Accumulator.
Programming Considerations. • • • •

Calling Sequences • • • • • • • • • • •

Arithmetic and Functional Subroutine Error Indicators
Functional Subroutine Accuracy • •

Extended Precision Subroutines
Standard Precision Subroutines.

Elementary Function Algorithms

Sine-Cosine • • • •
Arctangent. • • • • •
Natural Logarithm.

Exponential • • • •

Hyperbolic Tangent

Floating-Point Base to an Integer Exponent

Selective Dump and Miscellaneous Subroutines. •

Selective Dump Subroutines • •
Overlay Routine (FLIP) •••••••••

Machine Function Subroutines. • • •

Writing Assembler Language Subroutines •
Programming Multi-Level Interrupts by Using

66

68
73

73
73
74

79
85
89
92
92

94
103
103
105

105
105

105

109
109

110

110
111

111
112

113
114

114
114

115
115

116.1
116.1

119

Re-entrant Coding ••••••••••••••••••• 120.1

APPENDIX A. ASSEMBLER LANGUAGE CALLS 121

APPENDIX B. SUMMARY OF TSX STATEMENTS •••••• 125

APPENDIX C. INTERRUPT LEVEL ASSIGNMENT CHART. • 127

APPENDIX D. CHARACTER CODE CHART 129

APPENDIX E. SUBROUTINE LIBRARY. • • 132.1

APPENDIX F. SUBROUTINE CORE REQUIREMENTS 132.5

INDEX ••• 133

The IBM 1800 Time-Sharing Executive (TSX) System
is a group of programs designed to provide the user
with a means of generating, organizing, testing, and
executing user-written programs for process
control, data acquisition, and non-process-control
applications. The user-written programs can be
written in FORTRAN language or symbolic form and
compiled or assembled, tested, and stored on disk
while the TSX System is monitoring the process
under control. Nonprocess-control programs, such
as scientific and engineering calculations, or normal
data processing jobs, can be executed simultaneously
with monitoring of the process. When a process
interrupt is recognized, its occurrence is either
recorded or control is transferred to the proper
interrupt servicing program. When the interrupt
servicing program has completed its operation,
control is normally returned to ~he program that was
operating when the interrupt occurred.

With the full complement of interrupt priority
levels, it is possible for up to 28 interrupted pro­
grams to be in a suspended state of operation while
the highest priority interrupt is being serviced by
another program. Execution of each suspended
program is resumed as the higher priority
interrupt programs are completed.

The TSX system keeps track of the partially
completed programs when interrupts occur and,
when necessary, moves some of the programs to
disk storage in order to provide a core storage
area for the interrupt servicing routine. Through
the use of various system-built tables, the TSX
System can locate any required user's program or
system program.

It is important to note that certain system pro­
gram s must be assembled by the user when the
system is received. This allows various program
options and the user's particular machine configura­
tion to be stated; thus, each user's system is
tailored to fit his needs.

TERMS

The following terms are described briefly as they are
used in this publication. More detailed definitions
and descriptions are given in the applicable sections.

Process Program: A program that performs some
function related to the process under control .. It
usually involves the use of analog/digital input/output
devices. There are two types of process programs:
interrupt and mainline.

INTRODUCTION

Interrupt Program: A program that performs a
desired operation due to the occurrence of an
interrupt. The terms interrupt program, interrupt
routine, and interrupt servicing routine are used
synonymously.

Mainline Program: A program which does not
directly service an interrupt (analysis programs,
logging programs).

Nonprocess Program: A program that operates under
control of the nonprocess monitor, but does not
normally perform any function related to the process.
It may be written by the user (instrument calibration,
scientific or engineering calculations, payroll
inventory) or provided by IBM (FORTRAN compiler,
assembler) .

Core Load: A complete, executable programming
package, which is stored on the disk in core-image
form. A core load consists of a main program
(interrupt, mainline, or nonprocess), all required
subroutines not permanently in core, and the core
load communication tables. Mainline core loads can
also include in-core interrupt routines.

System Skeleton: The permanently assigned area of
core storage that contains the framework of the
system, including the necessary programs, work
areas, communications areas for system operation,
and any user defined options.

Variable Area: The area of core storage is reserved
for process and nonprocess core loads, TSX pro­
grams such as the nonprocess monitor and system
error programs.

Save: An ope ration in which a portion or all of
variable core storage is moved to one of the
save areas on disk to make room for a higher
priority operation.

Restore: An operation in which the contents of a disk
save area are returned to the variable area of core
storage.

Exchange: A save operation followed immediately
by the overlaying of the variable core area with a new
core load.

Time-Sharing: The ability to utilize the P-C
(processor-controller) for execution of nonprocess
programs during the time that process programs are
not being executed. The P-C retains the ability to
respond to process interrupts.

Introduction 1

SYSTEM COMPONENTS

The 1800 Time-Sharing Executive system (Figure 1)
consists of the system director, nonprocess monitor,
and subroutine library.

• System Director - in general, handles all
interrupts, controls the user-specified sequence
of process control programs, and controls the
time-sharing of nonprocess programs.

• Nonprocess Monitor - contains the supervisor
program, disk utility program, FORTRAN
compiler, assembler program, and the
simulator program. It also controls operation of
the user's nonprocess programs.

• Subroutine Library - contains the most often
required subroutines used by process and non­
process programs.

System
NON PROCESS Director

""
I
..--------4

I
I

MONITOR

Includes: Includes:
Supervisor Time - Sharing Control c:
Disk Utility - -Program Sequence Control
Fortran Master Interrupt Control
Assembler Interval Timer Control
Simulator Error Alert Control

~ r--------------1
i I
= I

SUBROUTINE LIBRARY
_ USER'S ,
II. NONPROCESS k::======~>:::
I PROGRAMS I

Arithmetic, Input/Output
and Conversion

I I
I = L.. ________ ..J

- -

~~tlr ~ '® ffffE
~Console -=:- DiS_k----=ff ~. '_ Typewriter Paper Tape

.....,:::E:;;;a;;;;;:~1 x-v Plotter

Rd~~
f2~

Card Magnetic Tape Printer

I BM Programs --_.... User - Written Programs

Figure 1. IBM 1800 Time-Sharing Executive System

2

I
-- ~I

• I
USER'S
PROCESS
PROGRAMS I

-
I a.. ________ .J

Process, Input/Output

-

-

Customer Process Devices

In addition to these major components, the system
includes loaders comprised of the system loader,
skeleton builder, core load builder and temporary­
assembled-skeleton. These programs are required
for system generation and operation. The system
loader and skeleton builder are used only for initial
loading and system generation.

Disk Storage Areas

The areas of disk storage described below are auto­
matically assigned by the system, but vary in size
depending on the system configuration and customer
definition. Some of these areas can be modified,
relocated, or removed, as shown in Figure 2.

IBM Systems Area. This area is for storage of the
integral parts of the TSX System: the system
director, nonprocess monitor, and the subroutine
library. This ar ea must be assigned to the pack on
logical disk drive zero in multiple disk systems.

Core Load Area. This area is for storage of core
image process and nonprocess core loads and data.
All programs and data files stored in this area are
assigned fixed disk locations. This permits the disk
location of a process program to be kept with the
calling program and results in faster access to the
program. A core load area can be assigned to each
disk drive.

Relocatable Program Area. This area is for storage
of relocatable programs. The number of sectors
required for a program to be stored is subtracted
from the nonprocess work storage area if they are
both assigned to the same disk pack. When a program
is deleted, a separate DUP operation must be
performed to repack the area. A relocatable
program area can be assigned to each disk drive.

Nonprocess Work Storage Area. This area is used
for temporary storage during the execution of non­
process programs. It is used extensively during
the operation of the nonprocess monitor. For
example, this area is used by the assembler during
assembly of a source program and, at the conclusion
of assembly, it contains the object program. In a
FORTRAN nonprocess program, the DEFINE FILE
statement can refer to this area. A nonprocess work
storage area can be assigned to each disk drive.

Process Work Storage Area. This area is used for
temporary storage during execution of process pro­
grams. In a FORTRAN process program, the
DEFINE FILE statement refers to this area. A
process work storage area can be assigned to each
disk drive.

Save Areas. The save areas are used for temporary
storage of interrupted programs while other programs
are utilizing core. The features or programs that
require reservation of specific save areas are:

• Error alert control program (EAC). This area is
always required and is used when the disk portion
of the EAC program must be executed.

• Dump feature of EAC. This area is required if
the core dump option is specified in the user's
error subroutine.

• Special calls. This area is required if any of the
user's programs contain the CALL SPECL
statement and no time shared operations are done.
When time sharing is specified, the special calls
area is not required unless time sharing is
entered from a core load that was entered with a
CALL SPECL.

• Interrupt core loads. This area is required only
if any process interrupts are serviced by
interrupt core loads and if the time-sharing
feature is not utilized (see next item if time shar­
ing is utiliz ed) .

• Time-sharing. Two save areas are required if
the time-sharing function is utilized; one each for
the saving of process and nonprocess core
loads.

• FORTRAN I/O. A sector for each interrupt
priority level that uses FORTRAN I/O must be
provided to save FORTRAN I/O data and param­
eters when that routine is re-entered.

Any combination from the minimum of one to the
maximum of seven save areas can be included. The
save areas can be on any drive but the process save
area and the special calls area must be on the same
drive, and the dump area and EAC save area must be
on the same drive.

Location Equivalence Table (LET). The location
equivalence table serves functionally as a "map" for
IBM subroutines and relocatable programs. Every
relocatable program or subroutine stored on disk has
at least one entry in the table. A table entry contains
the name of the item and location information. Each
entry point in a subroutine requires one entry in LET.

A LE T is required for each disk pack.

All operations which involve adding and/or deleting
relocatable programs make reference to LET. (Core
loads and data files refer to FLET.)

Introduction 3

Form C26-5990-1

Page Revised 7/20/66
By TNL N26-0559

Fixed Location Equivalence Table (FLET). The fixed
location equivalence table serves as a "map" for the
location of core loads and data files. Each core load
or data file has at least one entry in FLET.

A FLET is required for each disk pack.

Core Storage Layout

The layout of core storage depends upon the amount
of core storage available. For a system with 8192
words (minimum core size for TSX) , the fixed and
variable areas of core storage are approxima tely
equal in size.

0000 I Number of
Sectors** Sectors Reserved For

c f)(t>M .' i
1 Disk Communication Area ~ C H\;<'

\ 6° ,.,
pYle 3 ~e[~~~ -bSUP 21 Nonprocess Supervisor

, ,,~.' ... :.'

~ DuP
~J}-S I\'f

,,5//.1

-"p LET

• PR£.,VS

",rIbS
!IN5V
qpuMY

/SPSV

/ PRSV
·&$'Kfl..
• cPf?Cr

/CLS,
1599

64

40

104

100

8

48

UD*

TC*

6

VC*

UD*

UD*

UD*

UD*

UD*

VC*

VC*

UD*

30

4

Disk Uti Iity Program

Assembler

FORTRAN Compi ler

Simulator

LET -FLET

IBM Subroutines

Relocatable Program Area 1-------------
Nonprocess Work Storage

Error Dump Area

Error Save Area

Nonprocess Save Area

Message Buffer

Process Work Storage

F I/O Save Area

Interrupt Save Area

Core Load Area q DvtJ. \{ '~ ".,A·
"1,,\!'~e 1"r.

Special Save Area l Ct."': 1:}~

Process Save Area u,JtY0·\ S
Skeleton

Error Programs

Cold Start

File
Protected

Area

r
I

/
?

/
" /

I

Ir Non-

~ otecled
I' Area

i
Ii 1.
}\-rJ

File
Protected

Area

~
* NOTE: TC i ndi cates enough sectors to store toto I core; if error dump

is not used, no space is reserved. VC indicates enough
sectors to store variable core. UD indicates user defined;
relocatable program area boundary increases or decreases
nonprocess work storage as programs are deleted or added,
respectively.

** NOTE: Sector quantities are approximate figures.

0/-'

The fixed area (termed the system skeleton) is
used for the system director, disk input/output
routine, printer routines, the skeleton COMMON
ar~a, skeleton program name table, executive branch
table, and skeleton interrupt branch table. It can
also contain any desired library or user-written
subroutine.

The variable area is used for operation of the
nonprocess monitor, and process, interrupt, or
nonprocess core loads. This area, shown in
Figure 3, cannot be less than approximately 3700
words in size if any time-sharing operations are
to be executed.

Common Areas. There are three areas of core
storage that can be used for FORTRAN COMMON
storage: one located within the system skeleton, one
located at the high-address end of core storage, and
one located at the high -address end of the interrupt
area.

The skeleton COMMON area can be referenced by
any process or nonprocess program. To assign a

,1

System
Skeleton

V,oP i
":' J '1~l ' ""icc ,t" (J D01~\ Y -toq.e-r \("1/

~ \ \ ' .. l"i 8..1.) v "'l I'

Fixed Area

Skeleton Input/Output Routines

Skeleton COMMON Area

Interrupt Level Work Areas

System Director

tJSGr< d: -SA Skeleton Interrupt Routines
" 'g vUIfr.},and/orAny Subroutines
sufi .. D (Optional)

Skeleton Program Name Table

Executive Branch Table

Skeleton Interrupt Branch Table

Variable
Core
Area

Figure 2. Example of Disk Layout • Figure 3. Sample Core Storage Layout

4

variable to this area a special statement, COMMON/
INSKEL, must be used. All other attributes Of the
COMMON statement remain the same. This area~

HV
must be used for communications betwEen:j\J it \~ ~\"

nRD IJ . ,'"
\ 1 f ~

1. Core loads of a different type ? 1\ ~
2. Interrupt core loads
3. Combination core loads (if either is executed as

an interrupt core load).
4. A special core load and the mainline core load

that calls it.
5. A mainline core load (that called a special core­

load) and the core load that restores it.
6. A skeleton subroutine and any other subroutine·

or core load.

Skeleton subroutines must use COMMON/INSKEL/ '
statements only.

The COMMON area located at the high-address
end of core storage can be referenced only by main­
line or nonprocess core loads. The normal
COMMON statement in a mainline, special, or non­
process core load is used to refer to this area. This
area is saved and restored when special core loads
or time-sharing operations are initiated or terminated;
i. e., communication between mainline core loads is
possible and communication between nonprocess core
loads is possible.

The third area for COMMON is used only for
inter-program communication for programs that
form an interrupt core load or, between combination
core load when they are executed on the mainline
level. The normal COMMON statement in an inter­
rupt or combination core load is used to refer to
this area. The highest addressed location of this
area must be assigned by the user when the system
is assembled. This assigned location is the high­
address boundary of the variable core storage area
that is saved when an interrupt core load is loaded
for execution. Thus, it is necessary to save only the
area specified by the user for interrupt core loads
(not the whole variable area).

CORE LOADS

Normally, core storage is not large enough to contain
all process control programs at one time; therefore,

Form C26-5990-1

Page Revised 7/20/66
By TNL N26-0559

these programs must be formed into smaller units
which are termed core loads (Figure 4). A core load
consists of a mainline program or interrupt program,
in-core interrupt routines, and all required sub­
routines that are not with the system skeleton.

Core loads are stored on disk in core-image form
to facilitate rapid loading when the core load is called
for operation. Core loads are formed (and loaded to
disk) by the disk utility program and the core load
builder program.

Transfer Vector (TV). The core load transfer vector
is divided into two sections: the executive section,
which refers to the subroutines located within the
system skeleton, and the variable section, which
refers to the subroutines in the variable area of
core. The TV area serves as a link between pro­
grams and subroutines. There is at least one three­
word entry in the TV for each LIBF subroutine
called by a program.

Interrupt Status Table. This table is also included
as part of the header information for each core load.
It specifies which interrupt routines are in core with
this mainline core load and gives the entry address
for the interrupt routine. Interrupts that are to be
recorded for servicing at a later time are also
specified (see Master Interrupt Control Program).

Program Name Table. The name table is part of the
header information placed with each core load. It
consists of the name and disk address of any other
core loads that are called by this core load, as well
as the name of a core load specified for restart (see
Error Alert Control Program).

LOCAL Subprograms. LOCAL subprograms are read
into core storage for execution when called by the
object program. All LOCALs associated with the
same program use the same area of core storage by
overlaying one another as they are called. A copy of
each LOCAL subprogram used with a core load is
kept on disk in core-image format, together with the
core lood.

Introduction 5

Form C26-5990-1

Page Revised 7/20/66

By TNL N26-0559

Nonprocess
Core Load

Core Load Data Words

Interrupt Branch Table

FORTRAN I/o Table

Transfer Vectors

Program Name Table

LOCAL Parameter Table*

Defined Files Table*

Nonprocess
Program

All Called
Subroutines not in

Skeleton

LOCAL Loader*

LOCAL Subroutine
Area*

Interrupt
Core Load

Core Load Data Words

Interrupt Branch Table

FORTRAN I/o Table

Transfer Vectors

Program Name Table

LOCAL Parameter Table*

Defined Files Table*

Interrupt
Program

All Called
Subroutines not in

Skeleton _.
LOCAL Loader*

LOCAL Subroutine Area*

*Optional
**User Assigned Boundary

• Figure 4. Sample Core Loads

6

V

--
I--

,/'

-.... -- -- --

".,

/

--:----------- -- -- --

/
/

/
./"

/

**

/

Core Storage

System
/'" Skeleton -- ..-/

......-
>

.......-- --~

Core
Load
Area

...........-/
.......... /'" >
........-

.. / Core Load --......
COMMON

Core Storage

System
- __ Skeleton __ -"""

>~ --- ---- -

Core
Load
Area

""'" Interrupt
,// ""-

Core Load
COMMON
/' '"'-

/' "-
"-

~

-

.............

..........

;/

-

"-

"-

~s~
Mainline 6~ V(,OCt;;"
Core Load

Core Load Data Words

Interrupt Branch Table

FORTRAN I/O Table

Transfer Vectors

Interrupt Status Table

Program Name Tab·le

LOCAL Parameter Table*

Defined Files Table*

Mainline
Program

All Called
Subroutines not in

Skeleton

In-Core Interrupt Routines*

LOCA L Loader*

LOCAL Subroutine
Area*

Core Load Data Words

Interrupt Branch Table

FORTRAN I/O Table

Transfer Vectors

Interrupt Status Table

Program Name Table

LOCAL Parameter Table*

Defined Files Table*

Mainline
Program

Ali Called
Subroutines not in

Skeleton

In-Core Interrupt Routines*

LOCA L Loader*

LOCAL Subroutine
Area*

The system director forms the heart of the TSX. It
remains in core storage at all times, and all
permanent areas are storage protected to ensure that
they are not accidentally altered. Control is
transferred to the system director as a result of any
of the following:

1. TSX CALL statements in the user's program.
2 . Interrupts.
3. Errors.

Basically, the system director is made up of five
control programs and two data areas.

Control Programs

• Program Sequence Control (PSC) - controls the
sequencing and initiates the loading and execution
of user-specified process core loads.

• Master Interrupt Control (MIC) - automatically
determines the type of each interrupt as it is
recogniz ed and transfers control to the proper
interrupt servicing routine.

• Interval Timer Control (ITC) - provides a pro­
grammed real-time clock, a timer for TSC, nine
programmed interval timers, and control of two
machine-interval timers.

• Time-Sharing Control (TSC)* - controls the time­
sharing of variable core between process and
nonprocess core loads.

• Error Alert Control (EAC) - provides the follow­
ing functions whenever an error occurs:
(1) optionally saves core for future reference,
(2) optionally branches to a user's program for
further error analysis, (3) prints an error
message, and (4) executes a specified recovery
procedure.

Data Areas

• Mainline C ore Load Queue Table - contains the
names of mainline core loads (and their
respective priorities) that have been queued for
future execution.

*If the time-sharing function is not desired, the TSC
program can be 'omitted.

SYSTEM DIRECTOR

• Level Work Areas - contains interrupt level
instructions, MIC linkages, and work areas.
One level work area is required for:

1. Each interrupt level utilized
2. Process mainlines
3. N onprocess core loads
4. Trace and CE level
5. Internal" error level

PROGRAM SEQUENCE CONTROL PROGRAM

Program sequence control (PSC) is a control program
that handles the flow of control from one mainline
core load to the next. PSC functions are initiated by
execution of PSC CALL statements in the user's
program. The specific functions of PSC are:

1. Execute the next sequential mainline core load.
The new core load overlays the one that
contained the call.

2. Save the mainline core load in progress (on
disk) and load a special core load for exe~mtion.

3. Restore the core load that was saved in item 2
and continue execution from where it left off
(the statement following the CALL SPEC L) .

4. Queue mainline/core loads associated with
interrupts whose occurrence has been recorded.

5. Execute the highest priority mainline core load
listed in the core load queue.

6. Insert mainline core load entries into or delete
them from the core load queue.

For PSC to perform the above functions, a CALL
statement must be executed for each one. The
specific CALL statements and their parameters are
described below.

Functionally, the CALL statements are divided
into two groups: those for direct sequence, in
which one mainline core load calls another, and
those for queuing, in which either the highest
priority mainline core load named in the queue is
called or the core load queue is modified by insert­
ing or deleting an entry.

The CALL statements from both groups provide
the user with the flexibility of implementing his
unique scheduling requirements. Unless otherwise
stated, the results are unpredictable if these CALL
statements are used in a nonprocess program or if
they are used incorrectly in process core loads.

System Direction 7

Form C26-5990-1

Page Revised 7/20/66
By TNL N26-0S59

DIRE CT SEQUENCE STATEMENTS

The direct sequence statements are used to

• CALL the next mainline core load to be
executed.

• Save the present mainline core load (on disk)
and CALL a special mainline core load for
execution.

• Restore and continue execution of the saved
mainline core load.

These functions are performed by the PSC
program resident in the System Director.

The specific CALL statements and their param­
eters are described in the following paragraphs and
illustrated in Figure 5. These statements cannot be

CALL SPECL (0)
~

CALL CHAIN (B)

Core Load A

Normal~~·'-------------------------------~~
Call "

} Core Load B

used in ~ interrupt program unless otherwise
stated.

Core load names that appear in CALL statements
must also be specified in a FORTRAN EXTERNAL
statement. Core load names cannot be the name of a
component program of a core load.

Normal Call - CALL CHAIN (NAME)

This call terminates execution of the mainline core
load and transfers control to PSC, which loads the
named mainline core load into core storage for
operation.' This is the last logical statement in a
mainline core load; it calls the next mainline core
load into operation.

NAME is the name of the mainline core load being
called.

~speCial Call

Core Load 0
"'*L- Return to Saved r---:::!::=-------------,

Mainline

=B~CK)
CALL CHAIN (B)

CALL CHAIN (C) /
NormL-a-�-¥--------'-'--------N-o--'rma� Call '-----------"

Call" I Core Load C

CALL SPECL (F)-------+_
----.-~-------------------~~

CALL C~AIN (El >-__ l~--------/-~sPecial Can

Normal~
Call iF

Core Load E

CALL SPECL (F)-------+-, .

CALL CHAIN (A)

• Figure 5. Example of Direct Sequence Statements

8

~ Return to Saved
Mainline

CALL BACK

J

Core Load F

Special Call - CALL SPECL (NAME)

This call suspends execution of the current mainline
core load and transfers control to PSC, which

1. Saves the return address (i. e. , the address of
the instruction following the CALL SPE CL
statement) .

2. Stores the current mainline core load on disk.
3. Loads and transfers control to the new (special)

mainline core load.

NOTE: Only one mainline core load can be saved.
Thus, if CALL SPECL is used in a core load that was
called by a CALL SPECL, the mainline core load
saved originally is lost.

Return Saved Mainline - CALL BACK

This statement is normally used as the last logical
statement in a special mainline core load. When
executed, it terminates the core load and transfers
control to PSC which restores the last previously
saved core load. Execution of the saved core load
commences with the statement that follows the CALL
SPECL statement.

CALL BACK is required only if the saved core
load is to be restored and continued. Figure 5 shows
the various direct sequence statements and the
control path generated by each.

QUEUING STATEMENTS

The queuing statements are used to

o Insert entries into or delete entries from the core
load queue.

o Execute the highest priority mainline core load
specified in the queue.

These functions are performed by PSC subroutines,
which can be located with either the calling program
or the system director (user option).

The core load queue is a table that contains entries
for mainline core loads that are to be executed. The
table is located within the system director and is
required only if either queuing techniques or recorded
interrupts are used. Each entry in the queue table
requires three words to specify name and priority
(the priority requires one word, the name is con­
verted to the word count and sector address which
occupy one word each).

The maximum number of entries is specified by
the user at system generation time. The specific
CALL statements and their parameters are described
in the following paragraphs.

Insert Into Queue - CALL QUEUE

This statement is used to place a mainline core load
name and priority in the queue. If the same name
and priority are already queued, they will not be
placed in the queue a second time; however, the
same name with a different priority can be inserted
into the queue. The format of the statement is:

CALL QUEUE (NAME, P, E)

where

NAME is the name of a mainline core load that is to
be entered into the queue.

P is the integer expression that specifies the execu­
tion priority for the core load. One (1) is the
highest priority number. The allowable range of

P is from 1 to ~ 3d" 7 to 7
E is an error parameter used to specify the action

to be taken when the queue is full.
E = O. Ignore call after printing an error

message. 3~ 7bb ,
E = 1 through ~ Replace the lowest

priority entry in the queue with the name and
priority in this call, if the priority of the queue
entry is lower (numerically larger) than E. If
there is no queue entry with a lower priority,
the restart core load specified for this core
load is executed.

3,2 -, b 7
E =~. Execute restart core load.

Different core loads can be assigned the same
priority number, if desired. When two or more
queue entries have been assigned the same priority,
these entries have a priority among themselves on
a first-in-first-out basis.

The CALL QUEUE statement can be used in any
program. Examples in Figures 6, 7, and 8 provide
a more complete description of the use of this
statement.

Delete From the Queue - CALL UNQ (NAME, P)

This statement is used to delete a mainline core load
entry from the queue. If the name and priority

System Director 9

Entry to core load A via CALL VIAQ
when A is highest priority in queue ,or

CALL CHAIN (A), or CALL SPECL (A)

t A

CALL QUEUE (P, 30,1)

CALL QUEUE (B, 20,0)

CALL VIAQ

~ B

CALL QUEUE (J, 10,0)

CALL QUEUE (M, 20,0)

CALL VIAQ

J J

J - continued •

CALL QUEUE (N, 20,0)

CALL VIAQ

x
~ C.)}l.L UNQ(JV1 QO)
-C-:tttLUN~,) c:..A '-L u t-) r.. (("}J ') D)
CALL QUEUE (P, 10,0) L:(. 1\.) c"

CALL VIAQ

At this point, the queue still contains at least
two entries for core load P and one for core
load N.

Figure 6. Example of Queuing Statements

parameters do not match a queue entry, the state­
ment has no effect. The CALL UNQ statement can
be used in any program.

Execute Highest Priority Core Load - CALL VIAQ

This statement is used as the last logical statement
in a mainline core load. It terminates the present
core load and causes execution of the highest
priority core load named in the queue.

When the CALL VIAQ statement is executed and
there are entries in the queue, the highest priority
entry is removed.{t~re-eem­
preSOSe¢;. and da.i...tte:ontahIed"9:n~~d-;-enfuy
il:J' used to call the core load it references.

10

Occurrence of Process Interrupt
causes transfer of control to the
interrupt servicing routine.

CALL QUEUE (X, 2,0)

CALL INTEX

Interrupt Routine

If there are no entries in the queue, the process
is considered to be in an idle condition (i. e. , the
process does not require any action at this time).
Since variable core is not being utilized by process'
core loads, control is transferred to time -sharing
control (TSC) for execution of nonprocess core loads.
The time-sharing operation will continue for the
period of time specified at assembly time or until
terminated by an interrupt (see CALL ENDTS state­
ment in the Time Sharing Control Program section).
A CALL VIAQ operation is automatically performed
when the time-sharing time is terminated. There­
fore, if an interrupt program has placed a name in
the queue, the named core load will then be auto­
matically executed. (This.is not true if time-sharing
was initiated by a CALL SHARE statement.)

Problem: All programs of a given priority must be
executed before a certain core load.

, Solution:

A

A2

A3

CALL QUEUE (A2, 2, 0)
CALL VIAQ

~ I

Continue execution of core loads until a CALL VIAQ
is executed and core load A2 is the highest priority in
the queue. All core loads of priority 1 and 2 would
be completed before entering A2.

CALL QUEUE (A3, 4, 0)
CALL VIAQ

Continue execution of all core loads of priority 1, 2,
3, and 4 until a CALL VIAQ calls A3.

CALL CHAIN (A4)

Figure 7. Example of Core Load Sequences

The CALL VIAQ statement can be used only in
mainline core loads. Figures 6, 7, and 8 are
examples of core load sequences that can be
obtained with the queuing statements.

Queue Core Load If Indicator Is ON - CALL QIFON

This statement is used to place a mainline core load
, name and priority in the queue table if its associated

recorded interrupt indicator is on. Recorded
interrupts are those that do not require service
when they occur and can be recorded for servicing
at a later time. Examples of the CALL QIFON
statement are illustrated in Figure 9.

When an interrupt that is to be recorded is
recognized by MIC, the interrupt is reset and a pro­
grammed indicator is set. It is the programmed
indicators (set by MIC) that the QIFON subroutine
interrogates. The statement format is:

CALL QIFON (NAME, P, L, I, E)

where

NAME is the name of ,a mainline core load.

P is the execution priority to be assigned to the
mainline core load named.

L is the interrupt priority level or indicator (see
L and I Combinations).

I is the PISW bit position indicator or CALL
COUNT indicators (see L and I Combinations).

E is an error parameter used to specify the action
to be taken when the queue is full.
E = O. Ignore call after printing an error

message. ,...
E = 1 through 3?~J66. Replace the lowest

priority entry in the queue with this call if the
priority of the queue entry is lower than E.
Re start if there is no entry lower than E.

E = 3~;76 7. Execute restart core load.
y-'

L and I Combinations. The combination of L and I
are

L! Reference
0-23 0-15 Process interrupts
0-23 -n Programmed interrupts (see CALL

LEVEL)
-n 0-31 Subprogram number for CALL COUNT

statement (see Programmed Timers).

(-n means any minus number)

The CALL QIFON statement can be used in any
process program.

Clear Recorded Interrupts - CALL CLEAR

The CALL CLEAR statement is used to clear the
recorded interrupt indicators. In this way, specific
interrupts or all external interrupts can be removed
from their recorded status. The format of the
statement is

CALL CLEAR (M, L, I, L, I, ...)

where

M is an integer constant that specifies the number
of parameters to follow. If M equals 0, all
indicators specifying recorded status are

System Director 11

Problem: Repeated execution of queued core loads
during a given core load.

Solution: (The encircled numbers specify the sequence of operations.)

A

CALL QUEUE (R,2,O)
CALL SPECL (E) -------i--------i

CALL QUEUE (R,4,O)
CALL SPECL (E)-----,

CALL CHAIN (B)

B

Note 1: The CALL SPECL statements cause core load A to be
saved before transferring to core load E via lines 3
and 8. The CALL BACK statement in core load R
causes core load A to be restored before the return
is made via lines 6 or 11.

Figure 8. Example of Core Load Sequences

12

CALL VIAQ

Continue execution of core loads until
a CALL VIAQ is executed and core load
R is highest priority in the queue.

CALL BACK

Note 2: Between lines 4 and 5 all core loads of priorities 1 and
2 will be executed; between lines 9 and 10 all core
loads of priorities 1 through 4 will be executed.

E

R

PROCESS CORE LOAD QIFON ROUTINE

CALL QIFON (NAME 1,35,6,15,0) ____ +-__ --11-<:

CALL QIFON (NAME 2,8,0,1,32767) ---.....J----~<

CALL QIFON (NAME 3, 1, -1,22, 32767) __ --..,1--__ --1-.<

CALL QIFON (NAME 4,42,6,-1,0) ---------II..c

Figure 9. Example of CALL QIFON Statement

YES

QUEUE ROUTINE

Queue

NAME 1
with a priority

f 35

Queue

NAME 2
with a priority

f

Queue

NAME 3
with a priority

of 1

Queue

NAME 4
with a priority

f 42

System Director 13

Form C26-5990-1
Page Revised 7/20/66
By TNL N26-0559

changed to indicate "not recorded".
L and I are the same as for the CALL QIFON

statement.

The CALL CLEAR statement can be used in any
process program.

MASTER INTERRUPT CONTROL PROGRAM

The master interrupt control (MIC) program controls
the servicing of interrupts. An interrupt may occur
at any time but it will not be recognized by MIC
unless the interrupt is on a level that is not masked
and is of a higher priority than the present level of
machine operation. The user-specified assignment
for interrupt levels determines the priority of a
particular interrupt (see Appendix C). The user­
assigned interrupts can be delayed from being
recognized by masking the level to which they are
assigned. The servicing of process, programmed,
and COUNT subroutines can also be delayed by
recording their occurrence. This function is
explained under Recorded Interrupt Servicing.

Basically, there are two types of interrupts:
internal and external. Internal interrupts are those
associated with any input/output device, interval
timer, trace, or error condition. Internal inter­
rupts, except trace, are serviced by IBM -provided
subroutines as soon as they are recognized.

EXTERNAL INTERRUPTS

External interrupts are those associated with the
process and programmed interrupt features. They
are serviced or recorded by one of four types of
user-written routines: (1) Skeleton interrupt routine,
(2) Mainline interrupt routine, (3) Interrupt core
load, or (4) Mainline core load.

The different types of routines are provided to
permit flexibility in the use of core storage, and in
the response time requirements of a specific
interrupt (i. e. , the time required to enter an
interrupt routine after the interrupt is recognized).
Table 1 summarizes the major characteristics of
the external interrupt servicing routines.

Interrupt routines are assigned to the skeleton
area by control cards when the system. skeleton is
initially assembled. They are normally used to
service process interrupts that require immediate
response, have high priority, or that occur fre­
quently.

14

Skeleton interrupt routines are required only if
the user considers it necessary for the routine to
always be in core storage (see Interrupt Assignment
Restrictions) .

External interrupts not serviced by skeleton
interrupt routines can be serviced by routines
included as part of a mainline core load. The
response time of a mainline interrupt routine is the
same as that of a skeleton interrupt routine only if
the mainline core load containing the interrupt
routine is in core when the interrupt occurs.

A mainline core load is required for the servicing
of each external interrupt that might be recorded and
serviced at a later time (see Recorded Interrupt
Servicing) . A mainline core load is not required for
a recorded interrupt that is ignored or cleared at a
later time.

Interrupt core loads are required for those
interrupts that meet either of the following condi­
tions.

1. User specifies the interrupt servicing routine to
be out of core.

2. User specifies the interrupt servicing routine to
be in core as part of a mainline core load.

If a time -sharing operation is in progress when
an interrupt occurs, the interrupt (if riot recorded)
is serviced with the skeleton interrupt routine, if
it exists, or with the interrupt core load. Even if
the mainline that called for time -sharing has an
interrupt routine for the interrupt that occurred, the
interrupt core load associated with that interrupt is
brought in (to core) for the servicing.

When recognized, external interrupts may either
be recorded or serviced, as specified by the user.
If recognition is recorded, it can be serviced later
or cleared.

If not recorded, external process interrupts are
serviced as soon as one of the follOwing conditions
becomes true.

1. The servicing routine is located within the
system skeleton, the interrupt level is not
masked, and an interrupt of higher priority
is not being serviced.

2. No other external interrupt is being serviced,
and the servicing routine is in core as part of
the core load.

3. No other external interrupt is being serviced,
the servicing routine is out of core, and no

Type of Routine and Location

Skeleton Interrupt Routine

C ore Storage Location

Skeleton Area Variable Are

Mainl ine Interrupt Routine

Core Storage Location

Skeleton Area Variable Area

I nterrupt Core Load

Core Storage Location

System
Skeleton

Skcldon Area Variable Area

Mainline Core Load

Core Storage location

Skeleton Area Variable Area

Permanently in core.
Normally high priority.

Characteristics

Can immediately interrupt lower priority routines.
Fastest interrupt response.
Must Call INTEX as last logical statement.

Form C26-5990-1
Page Revised 7/20/66
By TNL N26-0559

Available as quickly as Skeleton Interrupt routine, if the mainline is being
executed.

Once execution is started, only interruptable by Skeleton Interrupt Routine
or i nterna I interrupt.

Can be different with each mainline core load.
Interrupt core load is also required if lower priority interrupts are serviced

by interrupt core load.
Must Call INTEX as last logical statement.

Large core area available.
Once execution is started, only interruptable by Skeleton Interrupt Routine

or internal interrupt.
Mainl ine or nonprocess program in operation at time of interrupt is saved

before and restored after Interrupt Core load operation.
Can Call DPART as last logical statement if interrupt is sometimes recorded;

otherwise, should Call I NTEX.

Large core area available.
Can include interrupt routines for other interrupts.
Queued for execution if record indicator is on when named in QIFON statement.
Must Call DPART for last logical statement if core load is sometimes executed

at interrupt level; if always queued, should Call VIAQ.

Table 1. Types and Characteristics of Process Interrupt Servicing Routines

I/O operation is in progress unless its associated
interrupt routine and I/O area are in the skeleton.
This requires an exchange operation (an opera­
tion wherein a specified portion of the variable
area of core is saved and the interrupt core load
is read in for execution). Following execution
of the interrupt core load, the original operating
program is restored.

The option of recording or servicing any external
interrupt may be different from one mainline core
load to the next. The designation is made by control
cards when the core load is being formed.

Programmed Interrupt - CALL LEVEL

This statement causes an interrupt (by pro­
gramming) on any assignable interrupt level

. (0-23). The format is:

CALL LEVEL (1)

where

I is an integer constant (0-23) that specifies the
interrupt level desired.

System Director 15

Form C26-5990-1

Page Revised 7/20/66
By TNL N26-0559

This call, which can be used only in process
(mainline or interrupt) programs, causes a pseudo
ILSW bit to be set on the level specified.

Programmed interrupts are treated the same as
process interrupts in that they can be recorded or
serviced, in-core or out-of-core, etc. The
programmed interrupt servicing routines must
follow the rules of process interrupt servicing
routines. There can be only one programmed­
interrupt routine per assignable interrupt level.

The programmed interrupt is recognized
immediately when called from a lower level. When
the servicing routine exits to MIC, program opera­
tion at the calling level is re sumed with the
statement following the CALL LEVEL statement.

A programmed interrupt called from a higher
level is recognized after the calling program is
completed and after any intervening interrupts are
serviced. If a level is called and any ILSW bit is
on when the level is recognized, the programmed
interrupt is recognized after the first ILSW bit that
is on is serviced.

Interrupt Exit-CALL INTEX

All interrupt routines serviced on an interrupt
level must return control to MI C. The CALL
INTEX statement, which has no parameters, is
normally used for this purpose. It must be used
as the last logical statement in skeleton interrupt
routines, mainline interrupt routines, and it can
be used in interrupt core loads.

Subprograms called by user-written interrupt
servicing routines must use a RETURN statement

I to return to the interrupt routine, or a CALL DP AR T
statement to return control directly to MIC. Figure
10 shows an example of the RETURN, CALL INTEX,

land CALL DPART statements.

RECORDED INTERRUPT SERVICING

External interrupts whose occurrences are re­
corded are serviced with mainline core loads. The
mainline core load performing the servicing is the
same as any other mainline core load, except it is
queued for execution by a CALL QIFON statement.
Since it is a queued core load, it should have a CALL
VIAQ as the last logical statemenL (It could, of
course, be the first core load of a special series
and, as such, would end with CALL CHAIN to get
the next core load of a sequence, but a CALL
VIAQ eventually must be executed.)

16

COMBINATION CORE LOAD

In the descriptions given thus far there is only one
major difference between an interrupt core load and
a mainline core load used for servicing recorded
interrupts. That difference is in the last logical
statement, which must be CALL INTEX for an
interrupt core load and CALL VIAQ for the
mainline core load.

If an external interrupt is serviced immediately
some times and recorded other times, it requires
two core loads that might be the same in all re­
spects, except for their last logical statement. To
eliminate this situation, a combination exit state­
ment' CALL DPART, is provided.

Departure-CALL DPART

The CALL D PART statement causes the level of
operation to be tested and

1. If the present level is an interrupt level, a
CALL INTEX is executed.

2. Otherwise, a CALL VIAQ is executed.

Thus, CALL DPART eliminates duplication of
core loads. An interrupt that is sometimes
recorded and sometimes serviced, when it occurs,
can be serviced under either condition with the same
core load. The core load operates from an interrupt
level when servicing is specified; it is queued and
operates from the mainline level when the interrupt
is specified as recorded.

NOTE: The combination core load described above
must not violate the restrictions placed on either
mainline core loads or interrupt core loads. In
other words, mainline interrupt subroutines are not
allowed as part of this core load; only statements
allowed in both mainline and interrupt programs are
permitted (See Appendix B). Combination core loads
are built in the same manner as a mainline core
load (see Figure 4).

INTERRUPT ASSIGNMENT RESTRICTIONS

The. following interrupt assignment restrictions must
be observed for proper operation of the TSX system.

1. All I/O device interrupts must be assigned to a
higher priority interrupt level than external
interrupts unless the external interrupt is
serviced by a skeleton interrupt routine.

The sequence of operations {specified by the encircled numbers} can be either
1, 2, 3, 4, 5, 6A, 6B, 6C, 8, 9, la, or 1, 2, 3, 4, 5, 7A, 7B, 8, 9, 10.

Mainl ine Core Load

Occurrence of Process Interrupt
causes transfer of control to the
interrupt servicing routine.

Form C26-5990-1

Page Revised 1/11/67

By TNL N26-0523

JOE
CALLJOE------------+-------~

Subprograms called ~
by interrupt routine. 1

BILL

CALL BI LL-------I----l

7A

CALL INTEX

SAM
CALL SAM

F:igure 10. Examples of RETURN, CALL INTEX, and CALL DPART Statements

2. If external interrupts and I/O devices are both
assigned to the same level, the external
interrupts must be serviced by skeleton
interrupt routines.

3. A skeleton interrupt routine cannot use an I/O
device whose interrupt is assigned to the same
or a lower priority level, except for disk, 1053
printer, and 1443 printer; however the 1053 test
function cannot be used. • (.~.~) . \, ,J

~ . ,1 . "~l'... f!./"'v I '\ I ~ ~~ .. t..<'I'.:>'\Ii ~..,,-..

/\Iv) ~\ f /a }}3 "\'

, l..}' j1v,\, ,

4. ILSW hits must be assigned continuously begin­
ning with position O.

PISW ASSIGNMENT RESTRI CTIONS

PISW (Process Interrupt Status Word) groups can be
ass~gned to interrupt levels either as a single

System Director 17

Form C26-5990-1

Page Revised 1/11/67

By TNL N26-0523

group per level or in multiple groups per level. The
following rules and restrictions must be observed
for proper operation of the TSX system./

One Group Per Level

Normal usage of process interrupts requires that
only one group of process interrupts be assigned to
each interrupt level. Process interrupts assigned in
this way can each be serviced with separate
interrupt routines. The servicing routines must
reside in the skeleton area only if their associated
interrupt level is the same as or higher than any

I I/O device interrupt level.
When only one PISW is connected to a level, the

correlation of the interrupt level number to the
PISW group number is as follows.

Interrupt Level PISW Group

0 1
1 2
2 3
3 4

22 23
23 24

The MIC program does the ILSW and PISW sensing
and transfers control to the proper interrupt
servicing routine.

Multiple Groups Per Level

In special cases it is desirable to have more than
one PISW group assigned to an interrupt level and
this is possible with the TSX system; however, the
following restrictions must be observed. The
interrupt servicing routine must:

1. Reside in the skeleton area.
2. Sense all PISWs assigned to the level.
3. Upon completion, exit to MIC via the I/O

exit (BSC I 90).

When assigned in this way there is no correlation
restriction between the interrupt level number and
PISW group number.

18

Combination PISW Assignments

It is possible to combine the two assignment methods
and have some interrupt levels with only one PISW
each and some levels with more than one PISW. The
same rules and restrictions for each type as out­
lined above still apply. For example, to have two
groups of four PISWs each assigned to interrupt
levels 4 and 5 one valid combination is:

Interrupt Level

o
1
2
3
4

5

6
7

17
18
19

23

PISW Group

1
2
3
4

7
8

18

one group of four
PISWs
one group of four
PISWs

Not assignable;
usage assumed
on levels 4 and 5.

Any combination can be used for the PISW assign­
ments on levels 4 and 5.

The user written routine used to service the inter­
rupts must be coded as an I/O RPQ subroutine.

INTERVAL TIMER CONTROL PROGRAM

The interval timer control (ITC) program provides
for FORTRAN language control of four types of
timers:

1. Two machine interval timers (A and B).
2. Nine programmed interval timers.
3. A programmed real-time clock.
4. A timer for time-sharing control.

The ITC also performs three additional functions.

1. Resets the operation monitor during time sharing.
2. Tests for no response from 1053 printers.
3. Performs end of time sharing.

The third machine interval timer (C) is used for
items 2, 3, and 4.

The time base periods available for the machine
interval timers are. 125, . 25, .5, 1, 2, 4, 8, 16,
32, 64 and 128 milliseconds (ms). The. 125-ms
period is available only on a 2 J.l.sec machine, and
128 ms is available only on a 4fLsec machine. Each
timer is assigned a permanent time base by the user.
All three timers can operate at different time periods,
or the same time period, but all three timers must
be assigned to the same interrupt level. In order to
schedule programs based on hours, minutes, or
seconds, the wired-in base time for interval
timer C must be an even divisor of one second
(e. g., . 5, 1, 2, 4, 8).

Machine Interval Timers

The two machine interval timers should be used
to measure relatively short time intervals. They
are controlled by the following statement.

CALL TIMER (NAME, I, INT)

where

NAME is the name of the user's subprogram to be
executed when the specified time elapses (NAME
must also appear in an EXTERNAL statement;
see the publication, IBM 1800 FORTRAN
Language, Form C26-5905).

I is an integer expression, whose value must be:
I-for machine interval timer A. (word 4)
2-for machine interval timer B. (word 5)

INT is a positive integer expression that specifies
the number of intervals counted before the user's
subprogram is ex ecuted.

The subprogram specified in a CALL TIMER
statement must be in core storage when the
interrupt generated by the timer is recogniz ed.
The interrupt occurs when the time specified has
elapsed, but it is recognized only when the level
of operation is lower than the timer interrupt
level and the timer level is unmasked. The
timers are stopped and reset to zero when the
specified time has elapsed and the interrupt is
recognized (zero is a not-busy condition).

It is the user's responsibility to ensure that the
subprogram NAME is in core when the timer
interrupt is recognized. This can be
accomplished in two ways:

-hY' ..Q,
byDv

Ji.eJ e:to ')1\ ~ l)
,S J S ;1\~.e)

1. NAME~. '5"b YO '"

2 . NAME is a mainline mteITap~ I uuthl&, all
interrupt levels with out-of-core interrupts are
masked, and the core load exit is not allowed
while the timer is busy (see Example 5
following) .

The sUl:>program name is automatically loaded
with the calling core load (unless previously
loaded with the system skeleton). Also, the sub­
program must return control to the ITC program
(RETURN statement or assembler language
equivalent) . The program is executed at the
interrupt level to which the interval timers are
assigned and cannot be recorded.

It is not recommended that periodic programs
(programs initiated by internal timers) be executed
on the timer level. If this is allowed to happen, some
timer interrupts may be missed during execution of
lengthy programs. The CALL LEVEL statement
(see ~rogrammed Interrupt) is designed to handle
this situation, and in this case, should be used to
create an interrupt at a lower level of machine
operation. The periodic program is then executed
at the programmed interrupt level.

Example 1: Assume machine interval timer A is
wired for the .125 ms time base.

CALL TIMER (SCANI, 1, 35)

When this statement is executed, ITC initializes
timer A (sets it to -35) to count 35 intervals and
return control to the statement following the CALL
TIMER statement. When 35 intervals (i. e., 35 x
.125 ms, or 4.375 ms) have elapsed, an interrupt
occurs and control is transferred to the subprogram
named SCAN 1.

Example 2: Assume machine interval timer B is
wired for the 2 ms time base.

CALL TIMER (SECl, 2, 500)

This statement causes the ITC program to initialize
timer B (sets it to -500) to count 500 intervals and
return control to the statement following the CALL
TIMER statement. When 500 intervals (Le., 500 x
2 ms, or 1 second) have elapsed, an interrupt
occurs and control is transferred to the subprogram
named SECI.

System Director 19

Example 3: Assume machine interval timer A is
wired for the 1 ms time base.

1 CALL TIMER (MIL5H, 1, 500)

2 CALL TIMER (MILL2, 1, 2)

Assuming the time (500 ms) specified in statement
1 has not elapsed, the timer A interrupt will occur
2 ms after execution of statement 2, and the sub­
program named MILL2 will be executed. The sub­
programmed named MIL5H will not be executed since
timer A was reset before time elapsed. Although
this condition can be prevented as shown in the
following example, its logic is useful under certain
conditions.

Example 4: Same conditions as for Example 3.
This example shows the use of the LD subroutine in
testing for a timer busy condition (see the sect ion
entitled Subroutines).

1 CALL TIMER (MIL5H, 1, 500)

2 IF (LD (4» 2, 3, 3

3 CALL TIMER (MILL2, 1, 2)

Statement 2 tests for timer A busy. If it is busy
(negative in core location 00004) a programmed loop
is performed until timer A is no longer busy (MIL5H
execution completed), at which time statement 3 is
executed.

Example 5: This example shows the use of the LD
subroutine in testing for a timer busy condition.

20

This test is required if SUBR 7 is not in the skeleton

and time-sharing is utilized.

CALL TIMER (SUBR 7, 1, 10)

12 IF (LD (4» 12, 13, 13

13 CALL VIAQ

In this example, statement 12 tests for timer A
busy and waits until SUBR 7 has been executed before
going to the CALL VIAQ statement.

Clock and Programmed Timers

The programmed real-time clock and the nfue
programmed interval timers are updated by the
third interval timer (C).

The time interval used for updating the clock
(termed the interrupt time base) is the product of
the wired-in time base interval and a number
chosen by the user at system generation time. For
example, assume interval timer C is wired for an
8-ms time base, and the clock is to be updated
every second. The number necessary to
accomplish this is 125 (8 ms x 125 = 1000 ms, or
1 second), smd when the ITC program is assembled,
the number -125 would be specified by the user.
The third timer would then cause an interrupt
every second. A minus number must be specified
because the interval timer is incremented and
causes an interrupt when it reaches zero.

Summary. Interrupt time base = wired-in time
base x assigned number.

The interrupt time base is used specifically for
the programmed real-time clock and as a primary
base for the programmed timers and time-sharing
clock. It is also used as the reset interval for
the operation monitor during time-sharing operations.

Clock

The programmed real-time clock maintained by the
interval timer control program records time to the
nearest thousandths of an hour. Clock accuracy
depends on the assigned interrupt time base
previously described. The clock is reset on a 24-
hour basis (Le., it is incremented from 00:000 to
23:999 and then goes to 00:000).

To set the clock at a desired time, the following
statement is used.

CALL SETCL (I)

. !Vhere

I is an integer expression that specifies the desired
time setting. The time setting must be expressed
in hours and thousandths of hours (i. e., 00000
through 23999).

To read the programmed real-time clock, the
following statement is used.

CALL C LOCK (I)

where

I is an integer variable where the time is to be
stored.

Programmed Timers

The nine programmed timers should be used to
specify long time periods. In particular, they can
be used for periodic program execution or to
initiate execution of a program at some later time.

If the called program is in the skeleton when the
specified time elapses, the program is executed. The
called program must return control to the 1TC pro­
gram (RETURN statement or assembler language
equivalent) . The program is executed on the same
level that the interval timers are on, unless CALL
LEVEL is used.

If the called program is not in the skeleton when
the specified time elapses, it must be in the same
form as a mainline core load. Out-of-core programs
are handled as recorded interrupts, i. e ., the pro­
gram will not be placed in the queue until requested
by a CALL Q1FON statement, and will not be execut­
ed until a CALL VIAQ fiIids that the queued program
is the highest priority in the queue.

To provide the user with large time intervals ti;l.e:-

...:.GiA:1;!~.qPPJ'f~,~.~~~n~. a larger time base c~ be
speCified for the programmed timers. The
programmed timer base for the programmed timers
is a user-assigned multiple of the interrupt time
base used for the programmed real-time clock. For
example, if the interrupt time base is one second,
and the user wants the programmed timers to
operate at 15 second intervals, then 15 is
specified when the 1TC program is assembled.

Summary. Programmed timer base = interrupt
time base (previously assigned) x assigned number.

The programmed timer base is used specifically
for the programmed timers and the time-sharing
clock. This base is the smallest interval of time
that can be specified for the programmed timers
or for nonprocess program operation (i. e., time­
sharing, see Time-Sharing Control Program) .

The programmed interval timers are controlled
by the following statement.

CALL COUNT (IN, I, INB)

where

IN is an integer constant or integer variable that
specifies the number (0 through 31) of the program
to be executed or recorded when the specified
time elapses. These numbers are assigned by
the user when the program core load is
prepared.

I is an integer expression that specifies the number
(1 through 9) of the programmed interval timer.

1NB is an integer expression that specifies the number
of intervals to be counted before the called
program can be executed (multiple of programmed
timer base). Program numbers are used in place
of names to provide the recorded interrupt option.

Examples

Conditions:

8 ms, wired time base for timer C
x 125, user-assigned number,

1 second (1000 ms), interrupt time base,
x 15, user-assigned number,

15 seconds, programmed timer base.

Statements:

MINUT= 4

1HOUR= 240

1 CALL COUNT (28, 1, 144)

2 CALL COUNT (28, 1, 36* MINUT)

3 CALL COUNT (31, 4, 1920)

:J.
4 CALL COUNT (3st, 4, 8* 1HOUR)

5 CALL COUNT (19, 6, 240)

6 CALL COUNT (19, 6, 1HOUR)

System Director 21

Meanings:

Statement Subprogram
Numbers Number

1,2
3,4
5,6

28
31
19

Pro­
grammed

Timer
Number

1
4
6

Time
Interval

36 minutes
8 hours
1 hour

The programmed timers can also be tested for
busy status with a procedure similar to that used to
test the machine timers.

Example 1.

Problem:

Do not execute subprogram 30 if subprograms 6
or 20 are in the process of being called.

Assume: Timer 1 is only set up to call sub­
program 6; timer 4 is only set up to call sub­
program 20 (see Subroutines) .

Solution:

IF (LD (62» 9, 2, 9

2 IF (LD (71» 9, 3, 9

3 CALL COUNT (30, 8, 4)

9

Example 2. Variable periodic scan.

Problem:

Queue an analog scan program every five minutes
with a priority of seven if J TEST (a programmed
indicator) is set to zero; if non-zero, queue the
same program every minute with a priority of one.

Assume:

1. Subroutine 19 is in the skeleton area; therefore,
a busy test such as illustrated in example 1 is
not required.

22

2. Timer interval and user-assigned expansions
are the same as for previous example
(8 ms x 125 x 15).

Solution:

The following call must be given in an initial core
load.

CALL COUNT (19, 4, 20)

This designates that subroutine 19 is to be called in
five minutes. Thereafter, subroutine 19 calls itself
within the specified time period.

SUBROUTINE A

EXTERNAL SCAN

(Number 19 assigned at
load time)

IF (JTEST) 10, 20, 10 (Test Indicator)

10 IPER= 4

IPRI = 1

GO TO 30

20 IPER = 20

IPRI= 7

(Set up for period of 1
min. and priority of
1.)

(Set up for period of
5 min. and priority of
7.)

30 CALL COUNT (19, (Call this subr., 19 to
4, IPER) cause periodic execution.)

CALL QUEUE
(SCAN, IPRI, 0)

RETURN

END

(Queue periodic scan core
load.)

(Return to ITC)

SCAN is the name of a mainline core load that
will be executed at mainline level as a result of a
CALL VIAQ when SCAN is the highest priority entry
in the queue.

In order to effect immediate execution of the scan
routine, replace the CALL QUEUE statement with a
CALL LEVEL statement to cause an interrupt on a
lower level. The scan routine, in this case, is
written as a skeleton interrupt servicing routine
associated with the programmed interrupt on the
level designated in the CALL LEVEL statement.

Operation Monitor

If the Operation Monitor is :in use, the Time­
Shar:ing Control program :initiates action for the
ITC program to automatically reset the Operation
Monitor dur:ing time-sharing operations. This
option can be omitted from the system dur:ing
initial system assembly, in which case the user is
responsible for ma:intain:ing the Operation Monitor
at all times.

NOTE: The time :interval selected for the Operation
Monitor must be greater than the programmed timer
base. selected for the ITC program.

TIME-SHARING CONTROL PROGRAM

The time-sharing control (TSC) program controls
the amount of time allowed for nonprocess program
operations.

Time-sharing can be :initiated :in two ways:

1. Execution of a CALL SHARE statement in a
process mainl:ine program.

2. Execution of a CALL VIAQ statement when the
core load queue table is empty. This causes
the VIAQ subroutine to execute a CALL SHARE
statement.

The first method can be utilized when time­
sharing is desired at specific times and for
different durations. When time-sharing is
initiated in this way, the process core load is
saved and the non -process monitor (or an
unfinished program) is read into core and
executed. When the specified amount of time has
elapsed, the nonprocess program is saved (if not
completed) and the process core load is restored.
The maximum time for a time-sharing operation
initiated in this manner is set by each CALL SHARE
statement. Operation of the process core load is
resumed with the statement following CALL SHARE.

The second method permits time-sharing when
the computer is not being utilized for the process.
The maximum time for a time-sharing operation
initiated in this manner is specified :in a control
card by the user when the system is loaded, and
remains constant. At the completion of the
specified time, another CALL VIAQ is
automatically executed by the system. If, in the
interim, a core load has been queued, it is then
executed; however, another time-sharing operation
will be initiated if nothing has been entered into
the queue.

Normally the CALL VIAQ method is used, but
in special cases, the CALL SHAR E method is also
desirable.

All interrupts that occur during the time-sharing
operation are handled by MIC the same as if a process
mainline program were in operation. After the·
interrupt is serviced (or recorded) control is
returned to the non process program unless a CALL
ENDTS statement is executed in the interrupt
routine.

If the nonprocess program is not completed
before time runs out, it is saved and continued
when the next time-sharing operation is executed.

The following statement is used to initiate time­
sharing operations for a specified time :interval.

CALL SHARE (I)

where

I is an integer expression that specifies the number
of time intervals allowed for nonprocess program
operation.

The basic time :interval is assigned by the user
when the 1TC program is assembled (see Interval
Timer Control Program).

The CALL SHARE statement transfers control
to the non process monitor supervisor program or
directly to the program that was operating when the
last time-sharing operation was terminated.

Examples.

Assume that the programmed timer base is 15
seconds (the same as for the examples shown for
the CALL COUNT statements).

Time-Sharing
Interval Requested

1 minute
5 minutes

30 seconds
1. 75 m:inutes

Statement to Obtain
Request

CALL SHARE (4)
CALL SHARE (20)
CALL SHARE (2)
CALL SHARE (7)

The time-sharing operation is terminated when­
ever the time interval specified by the user has
elapsed, and it is usually not terminated before.
That is, if the user specifies one minute for time­
sharing, it is usually one minute before control
is returned to the statement following the CALL
SHARE statement.

System Director 23

Fonn C26-5990-1

Page Revised 10/25/66
By TNL N26-0560

The nonprocess monitor performs a WAIT
operation if there are" no jobs to be performed.
Interrupts are still serviced as they occur, and if
an interrupt routine recognizes a need for the
process program to resume operation, it can
terminate the time-sharing operation by executing
the following call:

CALL ENDTS

This call can be used only in an interrupt routine,
and it sets the time sharing clock to indicate zero
time. The first timer C interrupt that occurs after
control is returned to the nonprocess program
causes the time-sharing operation to be terminated
and control is then returned to the process mainline
program.

If time-sharing is not in effect, the CALL ENDTS
statement has no effect.

Two additional functions performed by TSC are
CALL LINK and CALL EXIT when called from non­
process programs.

ERROR ALERT CONTROL PROGRAM

The Error Alert Control (EAC) program receives
control from

1. Any input/output subroutine when the subroutine
cannot correct an error or interrupt condition

2. The queue subroutine when the core load queue
table would overflow

3. The master interrupt control program when an
internal machine error occurs (i. e., invalid
operation code, parity, or storage protect
violation)

4. Other control programs

I Upon entry (EAC is entered at word 120), EAC
receives the error identification and other"pe.r,ti.nent
data. From this information, the core and disk
portions of EAC will perform the following operations:

1. Optionally, dump core storage to disk (not per­
formed for internal machine errors).

2. a. If in a nonprocess program terminate the
program if the error cannot be operator
corrected.

b. If in a process program branch to the user­
written error subroutine that is with the
core load (this step is bypassed for internal
machine errors or if an error subroutine is
not included).

3. Update error counters maintained on disk.
4. Execute a subroutine (IBM written) for the

device or error condition, print an error

24

message on the EAC printers, and set up
possible recovery action.

5. a. If in a nonprocess program return control
to the monitor supervisor program if
recovery is not possible.

b. If in an interrupt routine terminate the
program, service any other interrupts, and
perform the action specified by the user or
the device error subroutine.

c. If in a mainline core load perform the action
specified by the user or the device error
subroutine.

When the EAC program is initially assembled, the
option of the core dump in item 1 can be selected.

Also, when assem bling the skeleton program s, a
back-up unit of the same type can be specified for
1053, 1816, and 1443 printers. Backup for the EAC
printer is achieved by defining multiple EAC printers
at TASK assembly time (if the EAC printer is defined
as a 1053). When an output error occurs, or if the
unit is not ready (interrupt response not received),
EAC will logically disconnect the unit in error and
substitute the back-up unit. When backup is initiated
because of a hardware malfunction, the message in
progress on the failing unit is not continued on the
backup device. When the error condition is corrected,
the unit can be restored to its original status by using
the C. E. interrupt routine. See C. E. Interrupt
Routine in the pUblication IBM 1800 Time-Sharing
Executive System Operator's Guide, Form C26-3754.

::::; rror Subroutine

A user-written error subroutine can be optionally
included with each process core load. The purpose
of this subroutine is to allow the user to have control
before EAC overlays the variable area with the disk
portion of EAC. For example, there may be special
data or other information that the user wants to
save. Output, such as special core dumps,
messages, or contact operate functions, can also
be executed. The error subroutine cannot be
written in FORTRAN language.

Before entering the user's error subroutine,
error identification data is placed in words 00115-
00119. The words will contain the following:

Input/Output Errors.
00115 Error type code
00116 Address of illegal call or address

of the device table
00117
00118

Address of level work area
Address of originating call

Queue Overflow.
00115
00116

00117

00118

00119

Error type code
Word count of core load named in
CALL QUEUE
Sector address of core load named
in CALL QUEUE
Priority of core load named in
CALL QUEUE
Error parameter of core load
named in CALL QUEUE

The error type codes are listed in Table 2.
A standard recovery procedure is executed by

EAC according to the type of error (see EAC
EXIT column, Table 2). User options are specified
in the same table (see USER OPTN column). How­
ever, under certain conditions, EAC overrides the
user option. The EAC option is always executed if
an error subroutine is not used or the user does
not specify an option. Options can be specified by
the user before returning to EAC by loading the
A-register with -10 for S (RESTART) or -1 for
I & R (CONTINUE).

The last logical statement in the error subroutine
must be BSC I Entry to the error subroutine.

The core load named for the restart option can
be an error analysis core load, or it can be the
first of a new series of core loads. If queuing
techniques are used, the restart core load can be
simply a CALL VIAQ statement (CALL QUEUE
can be executed in the restart core load or the error
subroutine) .

The statements listed below cannot be used in an
error subroutine.

CALL BACK
CALL CHAIN
CALL DPART
CALL ENDTS
CALL EXIT
CALLINTEX
CALL LEVEL
CALL LINK
CALL MASK

LOADERS

CALL QIFON

CALLRESMK
CALL SAVMK
CALL SHARE
CALL SPECL
CALLUNMK
CALL VIAQ

Prior to execution of any user written programs, the
TSX system must be loaded on the disk and the
system skeleton must be built and loaded. The
programs provided for these functions are:

TASK
System loader

Skeleton builder
Core load builder

Temporary Assembled Skeleton (TASK)

The TASK program is an IBM supplied program that
initially controls the system loader, skeleton builder,
and core load builder. When the system skeleton is
loaded to core, it overlays TASK.

System Loader

The prime functions of the system loader are to
load the TSX system programs, build an interrupt
assignment table from user-supplied control
records, and prepare the disk for system opera­
tion.

Control records are required to supply the system
loader with information that relates to the interrupt
level assignment of I/O units, interval timers, and
process interrupts.

From the information supplied, the system
loader makes entries in the location equivalence
table (LET) for

1. Disk communication area
2. Master branch table
3. Skeleton subroutine entry table
4. Supervisor program
5. Disk utility program (DUP)
6. Assembler
7. FORTRAN
8. Simulator
9. Location equivalence table (LET)

10. Subroutine library
11. N onprocess work storage area
12. Nonprocess program save area
13. Process program save area
14. Message buffer area
15. Core image program area
16. Interrupt save area
17. Process work storage area
18. Special mainline save area
19. System skeleton
20. Error alert program save area
21. Error alert program dump area
22. Error decision programs
23. Process cold start program

Skeleton Builder

The skeleton builder program obtains information
from user-assigned control records, programs and

System Director 25

l'onn LGO-:>~~-l

Page Revised 10/25/66
By TNL N26-0560

DEVICE/ROUTINE

1053/1816 PRINTER/KEYBOARD

1442 CARD READ-PUNCH

1054/1055 PAPER TAPE
READER/PUNCH

2310 DISK

1627 PLOTTER

1443 PRINTER

ANALOG INPUT BASIC

• Table 2. EAC Error Type Codes (Part 1)

26

ERROR
CODE

00
01
02
03
04
05
06
07
08
09

10
11
12
13
14
15
16
17
19

20
21
22
23
24
25

26-29

30
31
32
33
34
35
36
37
38

·39

40
41
42

43-49

50
51-52

53
54
55

56-59

60
61
62
63
64
65

66-68
69

EAC
EXIT

S
R,S

R,S
L
S
I
R
R

S

R
L
R

R
S
R

S
S

R,S
R,S

S
L

S
R
S
S
S
L
S
S
S

S
R,S

S

R,S
S,I
R,S

S
l
S
S
S

I

USER
OPTION ERROR DESCRIPTION

N ILLEGAL CALL
S* 1053 NOT READY

NOT USED
R,S 1816 KEYBOARD NOT READY

N STORAGE PROTECT VIOLATION FROM 1816
R KEYBOARD PARITY ERROR
N* PRINTER PARITY ERROR
N* NO PRINT RESPONSE
N IN VALID MESSAGE ON DISK

NOT USED

N ILLEGAL CALL TO 1442
NOT USED

S PARITY ERROR
N STORAGE PROTECT VIOLATION
S FEED CHECK AT READ STATION

NOT USED
S READ-PUNCH CHEC K, DATA OVERRUN, OTHER FEED CHEC KS
N / /BLANK CARD
S 1442 NOT READY

N ILLEGAL CALL
I PUNCH PARITY ERROR
S READER NOT READY
S PUNCH NOT READY
I READER PARITY ERROR
N READER STORAGE PROTECT

NOT USED

N ILLEGAL CALL
S DISK NOT READY
I DATA OVERRUN
I WRITE SELECT
I DATA ERROR
N STORAGE PROTECT ERROR
I PARITY ERROR
N INVALID DISK ADDRESS
N FILE PROTECT ERROR

NO RESPONSE

NOT USED
I PARITY ERROR
S NOT READY

NOT USED

N ILLEGAL CALL
NOT USED

R,S NO PRINT RESPONSE
1* PARITY ERROR

R,S* NOT READY
NOT USED

N ILLEGAL CALL
N STORAGE PROTECT VIOLATION
N PARITY CONTROL ERROR
N PARITY DATA ERROR
N OVERLAP CONFLICT

I NTERMED IA TE INTERRUPT
NOT USED

N COMPARATOR VIOLATION

ERROR EAC USER
DEVICE/ROUTINE CODE EXIT OPTION

DIGITAL INPUT BASIC 70 S N
71 S N
72 L N
73

74-79

DIGITAL AND ANALOG OUTPUT BASIC 80 S N
81 S N
82

83-89

2402 MAGNETIC TAPE 90 S N
91
92 L N
93 S R
94 S R
95 R S

96-97
98 R,S S
99 R S

FORTRAN 100 S N
101 S N

DISK I/O 102 S N
103 S N

NON-DISK I/O 104 S N
105 S N
106 R N
107 S N
108 S N
109 S N

MISCELLANEOUS 110 S N
111 S N
112 L N
120 S N

130 S N
131 S N
140 S N

INTERNAL ERRORS 996 S,L N
997 S,L N
998 S,L N
999 S, L N

LEGEND:

I - CONTINUE AT THE POINT OF INTERRUPT
R - RETURN TO THE ROUTINE WHICH DETECTED THE ERROR
S - RESTART
L - RELOAD
N - NO OPTION - MUST TAKE EAC EXIT

- INTERNAL BACKUP ATTEMPTED

a:- able 2. EAC Error Type Codes (Part 2)

D

ERROR DESCRIPTION

ILLEGAL CALL
PARITY FRROR
STORAGF PROTECT ERROR
INTFRMEDIATF INTFRRUPT
NOT USED

ILLEGAL CALL
PARITY FRROR
INTFRMFDIATF INTFRRUPT
NOT USED

ILLEGAL CALL
NOT USED
STORAGE PROTECT VIOLATION
COMMAND REJECT
EXCESSIVE TAPE ERRORS
TAPE ERROR
NOT USED
NOT READY
END OF TAPE

Form C26-5990-1

Page Revised 7/20/66
By TNL N26-0559

ILLEGAL ADDR COMPUTED IN AN INDEXED STORE
ILLEGAL INTEGER USED IN A COMPUTED GO TO

FILE NOT DEFINED
RECORD TOO LARGE, ZERO OR NEGATIVE

INPUT RECORD IN ERROR
RANGE OF NUMERICAL VALUES IS IN ERROR
OUTPUT FIELD TOO SMALL TO CONTAIN NUMBER
ILLEGAL UNIT REFERENCE
REQUESTED RECORD EXCEEDS ALLOCATED BUFFER
WORKING STORAGE AREA INSUFFICIENT FOR

DEFINE FILES

PSC CALL BACK ERROR
CORE LOAD NOT LOADED ON DISK
RESTART CORE LOAD NOT LOADED ON DISK
ERROR OPTION IS ZERO CALL IGNORED
ERROR OPTION NOT ZERO NO LOWER
PRIORITY IN QUEUE
QUEUE ENTRY IS REPLACED BY NEW CALL
CALL RESMK ERROR
CALL UNMK ERROR
INTERRUPT LEVEL ERROR

CAR CHECK ERROR
OP CODE VIOLA TION
STORAGE PROTECT VIOLATION
PARITY ERROR

System Director 27

subroutines, and information provided by the
system loader to construct the system skeleton (in
core-image form) and then store it on disk. The
skeleton min be read into core, for execution, by
a cold start operation.

The rebuilding of the system skeleton is required
any time routines are added or deleted, or other
modifications are made.

C ore Load Builder

The core load builder is a program that converts
user-written programs and subroutines into core
loads (process mainline, interrupt, or nonprocess)

28

for storage in the core image area on disk. All
process core loads must be built and stored on disk
prior to execution under control of the TSX system.
The control records supplied by the user provide
the core load builder with the names of the relocatable
mainline, interrupts to be recorded, data files to be
used, interrupt routines to btJ included as part of the
core load, and LOCAL subprograms.

Using the information provided by the system
loader and the skeleton builder, as well as the
information from the programs and subroutines,
the core load builder generates the tables, transfer
vectors, and work areas that are combined with the
instructions that make up a core load.

NONPROCESS MONITOR

The nonprocess monitor provides the user with a
programming tool that simplifies the task of
generating, organizing, and testing programs
executed under control of the 1800 TSX System and
to supervise execution of nonprocess programs.
The nonprocess monitor can be operated on-line
under control of the system director, or it can be
operated off-line. Off-line operations are possible
after system generation. Initial assembly of certain
system programs and user r S beginning routines are
done under TASK control.

The primary function of the nonprocess monitor
is to provide continuous processor-controller
operation during a sequence of jobs that might
otherwise involve several independent programming
systems. The monitor coordinates the processor­
controller activity by establishing a common
communications area in core storage, which is used
by the various programs that make up the monitor.
It also guides the transfer of control between
monitor programs and the user r S programs. Opera­
tion is continuous and setup time is reduced to a
minimum, thereby effecting a substantial time
saving in processor-controller operation and
allowing greater programming flexibility ..

Control records, which are used to direct the
sequence of jobs without operator intervention,
must be prepared prior to the actual operation. The
control records are included in a stacked input
arrangement.

The nonprocess monitor (Figure 11) is composed
of five programs.

Supervisor Program. This program supervises all
nonprocess monitor operations. It decodes the
monitor control records in the stacked input for

r Sh

I
---- rme- arrng

Control Program

Supervisor

I
I I

Disk
Assembler FORTRAN Simulator Utility Program Compiler Program Program

Figure 11. Nonprocess Monitor

nonprocess jobs and calls the proper monitor
program to perform the desired operation. For
example, a typical sequence of jobs might be
execution of a payroll program, compilation of
a FORTRAN process control program, and
simulation of a core load that includes the program
just compiled. The supervisor program calls the
program loader, FORTRAN compiler, and
simulator program, respectively, to handle these
jobs.

Disk Utility Program (DUP). DUP is a set of
routines designed to aid the user in performing the
functions of disk maintenance. That is, it is
capable of storing, deleting, and outputting user r S

programs and defining system and machine
parameters. DUP updates the location
equivalence table (LET) when a change is
necessary and also maintains other communica­
tions areas.

FORTRAN Compiler. The compiler translates pro­
grams written in the FORTRAN language into
machine language and automatically provides for
calling the neces sary arithmetic, functi onal,
conversion, and input/output subroutines.

Assembler Program. The assembler translates
programs written in symbolic language into
machine language. Basically, it is a one-for-one
type assembly program. That is, the assembler
usually produces one machine language instruction
for each symbolic instruction of the source pro­
gram. Provision is also included for the user to
easily make use of input/output, conversion, and
arithmetic subroutines that are a part of the
subroutine library.

Simulator Program. This program is designed to
provide a means for simulating a process control
or data acquisition program without interfering
with the normal operation of the process. Each
input/output call sequence of the program being
simulated is analyzed and simulated individually.

Various options are offered throughout the
simulator. For example, an analog input call
sequence can obtain input from three sources:
cards, paper tape, and a random number
generator. The option chosen is specified in a
control record read by the simulator program.

Nonprocess Monitor 29

SUPERVISOR PROGRAM

The supervisor program performs the control
functions and directs the loading operations for
the nonprocess monitor. The FORTRAN
compiler, assembler program, disk utility
program, simulator program, and the
program loader are called for operation under
control of the supervisor.

The supervisor program operates under
control of the system director, and can be called
for operation by the CALL SHARE statement in a
process mainline program (or the nonprocess
monitor can be operated off-line).

During on-line operation of the nonprocess
monitor, process interrupts are serviced as they
occur, though the interrupt servicing time is
counted against the time allotted for nonprocess
operations. For example, assume a process pro­
gram calls for one minute of time-sharing. If,
during the one minute period, ten seconds are
used to service process interrupts, only 50
seconds are actually available for the nonprocess
job.

If all nonprocess jobs are completed before the
end of the specified time, the supervisor program
performs a Wait operation for the remainder of the
time. In other words, if the CALL SHARE
statement specified one minute of time-sharing,
control is not returned to the process program
until one minute has elapsed unless a CALL ENDTS
statement is executed by an interrupt routine (see
Time-Sharing Control Program).

If a nonprocess job is not completed before the
specified time is up, it is saved on the disk. When
the next CALL SHARE statement is executed,
operation of the nonprocess job is resumed where it
left off.

When an unfinished job is waiting, the CALL
SHARE statement causes it to be read in and
executed. Otherwise, the supervisor program is
read into core and determines by checking a
program indicator located within the system
director if any time-sharing operations are to be
performed. This indicator is turned on by the
execution of a special console interrupt routine,
supplied with the system.

When nonprocess jobs are ready to be executed,
the operator places the input in the card or paper
tape reader, sets the required configuration of the
program switches, and presses the console interrupt
key. The interrupt routine called for execution is
the one that sets the indicator to its ON status. The
indicator can be turned off only by an END OF ALL
JOBS record in the stacked input.

30

Process I Nonprocess Monitor
Program

,--------,

CALL
SHARE

(1)

y

Read-in
Unfinished
Job and
Continue
Execution

N

Wait unti I
time has
elapsed

SUPERVISOR COMPONENTS

I
Nonprocess
Program

Perform
Job

The supervisor program is a group of several
distinct, but closely related routines. The basic
components are

• Skeleton supervisor

• Monitor control record analyzer

SKE LETON SUPER VISOR

The skeleton supervisor is read into core storage
when the operation of the monitor system is
initially started. The skeleton supervisor, which
always resides in core during monitor operation,
provides the communications link between the
monitor programs and the user's programs; Le.,
the skeleton supervisor contains the necessary
logic to conduct the transition from one program
to another.

MONITOR CONTROL RECORD ANALYZER

The monitor control record analyzer routine
analyzes the monitor control records, prints out
the information contained in the control record,
and calls the appropriate program.

Monitor Control Records

The nonprocess monitor control records can be
entered from cards only. All control records
start with two slashes and a blank. The control
identification starts in the fourth position. A list
of the control records and their operations follows.

JOB: The JOB record causes termination of a
previous job and initialization for a new job (see
Job Deck). This includes identification of the packs
to be used with the job and resetting initial status of
indicators. When a job is aborted, as when an
uncorrectable I/o error occurs, records in the
card reader are passed until the next JOB record
is recognized.

END OF ALL JOBS: This record must be the last
item in the stacked input. It is used to indicate that
there are no more nonprocess operations to be per-

I formed. To restart the nonprocess monitor opera­
tion, the console interrupt routine must be executed.

ASM: The ASM record causes the assembler to be
read into core storage for execution. The assem­
bler control records and'source statements for the
program to be assembled must follow directly be­
hind the ASM monitor control record. These con­
trol records are used to cause a listing to be printed,
an object program to be punched, the system symbol
table to be used with the assembly, and to specify
other options. The name of a mainline program that
is assembled is punched in the ASM record. If the
assembly does not contain any errors, the object
program will be loaded as a temporary program,
with a temporary entry of the name in the LET.
Such entries are retained for the duration of the job
in progress.

FOR: The FOR record causes the FORTRAN com­
piler to be read into core storage for execution. The

"FOR TRAN control records and source statements
for the program to be compiled must follow directly
behind the FOR monitor control record. These con­
trol records are used to specify precision for real

Form C26-5990-1

Page Revised 7/20/66
By TNL N26-0559

variables I integer word size, traue options. litiLl11g

I options, 110 units to be used by the mainline and
subprograms, and other options. The name of the
mainline program is punched in the FOR record.
AU successfully compiled programs are temporarily
stored, with temporary entries in the LET. Such
entries are retained for the duration of the job in
progress.

DUP: The DUP record causes the disk utility pro­
gram to be read into core storage for execution.
The disk utility program requires control records
for direction (e.g., STORE, DUMP, DELET), and
DUP records must follow directly behind the DUP
monitor control record. The DUP records are
explained in the disk utility program section.

XEQ: The XEQ record causes a user's program to
be read into core storage for execution. The pro­
gram may be read in from either the core load area

lor the relocatable program area on disk. The
required subroutines are loaded with the main
program. If specified, a core map is printed during
the loading of a core load from relocatable programs.
This provides a listing of the beginning core storage
addresses of the mainline program and subroutines.
The LOCAL, FILES, INCLD, and CCEND control
records can be used when building a core load for

I

execution; however, these control records cannot be
used if the XEQ record specifies a program in the
core load area. These records are described under
the DUP STORECI heading.

SIM: The SIM record causes the simulator'to be
called for simulation of a nonprocess core load.
Process core loads must be simulated using the
SIMULCI control record. The format of the SIM
record is identical to that of the XEQ.

PAUS: The PADS record causes a WAIT instruction
to be executed to allow the operator to make setup
changes. The monitor operation proceeds when the
console START key is pressed. An interrupt that
occurs during the wait period is serviced but control
is returned to the WAIT instruction.

*(COLUMN 4): The asterisk is used to identify a
comments record. The information in this record is
printed on the LIST and SYSTEM printing
units.

Nonprocess Monitor 31

Fonn C26-S990-1

Page Revised 7/20/66
By TNL N26-0SS9

Job Deck

The input to the nonprocess monitor consists of one
or more job decks. Each job deck is preceded by a
JOB contYlll record. The last job must be followed

'by a JOB and END OF ALL JOBS records. The
processing of each job deck is controlled by the
supervisor program as specified in the monitor
control records. As an example, consider the fol­
lowing stacked input arrangement. (The sequence
of operation is from top to bottom.)

II JOB
II FOR A

(Source program A)

II DUP
*STORE A
II FOR B

(Source program B)

II XEQ A
*CCEND
II XEQ B
*CCEND
II JOB
/ / END OF ALL JOBS

The sequences listed above compile, store, and
execute both program A and program B, providing,
(1) there are no source program errors, and
(2) there is sufficient room in the work storage area.
A source program error found in a FORTRAN com­
pilation or an assembly causes the DUP store oper­
ation to be bypassed for that program. Dump
operations, if specified by *PUNCH control records,
are performed and all following XEQ requests pre­
ceding the next JOB record are disregarded.

This feature (XEQ - request disregarded) can
prove very useful when successful execution of one
program depends upon the succesful completion of
the previous program. A combination such as this
should be considered as one job and the XEQ control
records should not be separated by a JOB record.

DISK UTILITY PROGRAM

The disk utility program (DUP is a group of general­
ized routines that assist the user in day-to-day
operation of his installation. By means of these

32

routines, the most frequently required operations of
disk maintenance can be performed with a minimum
effort.

The disk utility program is called for operation by
I a DUP monitor control record.

Control Statements

The DUP record must be followed by at least one
control statement that selects the routine desired.
The DUP control statements are identified by an
asterisk in column one. Columns two through ten
contain a code word to identify the routine (e.g. ,
STORE, DEFINE). The columns after the code
word provide additional information to be used by
the routine itself.

*STORE The store routine is used to store relo­
catable programs in the relocatable program area
on disk. The program can be loaded from cards or
from the temporary program area. The drive where
the program is to be stored can be specified. Pro­
gram names are assigned at the time this routine is
used. The name specified for a program must not
already be in the LET, except that the same name
can reference two different programs if one is a

lternporary program.

* STOHEDAT A The store data routine is used to
store a block of data on the disk and to assign a name
to it. Data can be stored from cards or the nonpro­
cess work storage area. Each data block assigned a
name is stored in the first available sectors of the
fixed area on the drive specified. If the data block is
stored in the nonprocess work storage area, it is not
assigned a name and it is stored in the first sectors
of the area.

*STOREMOD The store modify routine moves a pro­
gram or data from the user area over a program.
nonprocess core load, or data block specified by
name, providing the old area will hold the modified
version. Thus, it can be used to replace an object
program already stored on disk.

*STORECI The store core image routine is used to
store a program in core image form (i.e., as a core
load) in the core load area and to assign the core

load a name. A map of the locations and the names
of subroutines and subprograms loaded in the core
lpad area can be obtained. The relocatable mainline
can come from cards or from the disk drive speci­
fied. The drive where the core load is to be stored
can also be specified. Four types of core loads are
possible; nonprocess core loads, mainline core
loads, interrupt core loads, or combination inter­
rupt and mainline core loads. These are specified
by a blank, an M, an I, or a C in the control record.
If a mainline core load is specified, the user must
include the name of a restart core load in the
record. If an interrupt core load is specified, the
level and the PISW bit position must be included.
Both a restart and a level and bit position must be
specified when a combination core load is loaded.
The name of the core load as well as the name of
the relocatable main program must be specified in
all cases. When a mainline core load is correctly
built, DUP will make a search of the program name
table that is with every other mainline and interrupt
core load. When it finds the name of the core load,
that was just built, it adds the disk address and the
word count for the core load to the name table.
Also, any programs named in the name table of the
new core load are looked up in the fixed location
equivalence table (FLET) and the disk addresses
and word count of these programs are added to the
table. Any core load names of programs that have
not yet been loaded are ignored. The disk addresses
will be added when the missing core load is stored
at some time later. The same operations take place
with nonprocess core loads that call other core loads
(CALL LINK). Only nonprocess core loads are
examined when a nonprocess core load is built.

The interrupt core loads have addresses stored
in ICLT (interrupt core load table), which is main­
tained in the skeleton. This table is updated by using
the level and bit indicators to determine where the
new core load sector address and word count should
be inserted.

The combination core load will have its disk ad­
dress stored in ICLT, to satisfy the interrupt core
load requirement. Of course all the core loads that
have the combination core load name in their name
tables will have the disk address added to the name
tables.

Five different control records are used to indicate
special core load requirements. They are the
RCORD, INCLD, FILES, LOCAL, and CCEND
records. These control words are punched in
columns two through six and an asterisk is placed in
column one. The FILES, LOCAL, INCLD, and
CCEND can be used after an XEQ control record,
after a S1M control record, after a STOREMD
control record, or after a STORECI control record

Form C26-5990-1

Page Revised 10/25/66
By TNL N26-0560

for a nonprocess core load. These are used to build
nonprocess core loads. Process core loads (loaded
with STORECI or SIMULCI) permit all five records.

*RCORD control records are used to specify the
level and PISW bit positions for interrupts that are
to be recorded if they occur during the execution of
the core load. Only mainline core loads and combi­
nation core loads need this control record.

*INC LD control records are used to specify the
interrupt subroutines by name, level, and bit that
are included with the mainline or combination core
load; to specify the trace and error subroutine to be
used with the mainline, interrupt, combination, or
nonprocess core load; or to specify the programmed
interrupt programs by name and level that are to be
included with the mainline or combination core loads.

*FILES control records are used to establish an
equivalence between a symbolic file number used in
a FORTRAN DE FINE FILE statement and the name
in FLET of a data area or, the disk drive for the
data area when it is to be at the end of work storage.
These records can be used to build any type of core
load previously described.

*LOCAL control records are used to identify what
subprograms are to be loaded into core only when
they are called by the programs that are permanent­
ly in core with the core load. It is possible to read
in more than just the program being called by speci­
fying several programs in one LOCAL block. Once
in. core, the block will remain in the area reserved
,or LOCALs until it is overlayed by another LOCAL.
~o program that is already in the LOCAL area will
be overlayed unless a program that is a LOCAL not
currently in core is called.

The *CCEND control record is used to signal that
no more loader control records follow; however,
it cannot be used with an XEQ record that specifies
a program in the core load area. Other than the
CCEND control record, all loader control records
can be multiples.

*DICLE The define interrupt core load entry con­
trol record is used to cause the same interrupt core
load, which must already be on the disk, to be used
to service more than one interrupt. All process
interrupts on any level can call in the same core
load, and the particular interrupts and interrupt core
load name are specified with this control record.

. When an interrupt that has no other service routine
occurs, as during the initial use of the system, it is
advisable to have an error core load that will be
executed if the interrupts do occur. The same core
load can be used to handle all such spurious
interrupts.

*SIMULCI The simulate core image routine is used
to store a process program in core image format for

Nonprocess Monitor 33

Form C26-5990-1

Page Revised 10/25/66

By TNL N26-0560

simulatIOn. The program is placed in nonprocess
work storage for the simulator. SIMULCI has the
same format as STORECI and serves a similar pur­
pose for a simulation run. If the program being
simulated may require additional simulation, it is
advisable that the user precede the SIMULCI card
with a STORE card (the location in working storage
of the program being simulated is changed when the
next / / JOB card is read).

*DUMP This routine is used to dump (unload)
programs from the disk to one of the following:
cards, list printer, or from a program area to
a nonprocess work storage area.

I *DUMPDATA This routine is used to dump data or a
core image program from disk to one of the following:
cards, list printer, or from a program area to a non-
process work storage area.

*DUMP LET This routine dumps the contents of the
location evuivalence table (LET and/or FLET) to the
list printer. The first line will contain the LET
(or FLET) header words and the following lines will
contain the alphabetic name and the disk address.
The drive to be used can be specified as well as the
part (fixed or relocatable) of the table to be output.

*DE LET This routine is used to delete a named
program, core load, or data file from the disk.
A mainline, combination, or interrupt core load
that is called from any other core load or as the
result of an interrupt will not be deleted unless a
replacement core load, named in the DELET card,
is available. A link that does not have a replacement
named in the DELET control record will be deleted
but the word count in the program name table of any
other core loads that could call the deleted link will
have a negative value. This will cause an invalid disk
address error message to be printed if the link that
has been deleted is called for.

*DEFINE The define routine is used to define
variable parameters required by the system. Items
that can be defined include the number of disk
drives, size of core storage, the packing of
programs on disk, the specific system programs
to be removed from disk, and the location and
size of the disk areas used by the system. When
redefining areas for optimum placement or
change in the amount of disk required, the DEFINE
routine permits a great amount of flexibility.
For example, the areas for special save interrupt
save, FORTRAN I/O save, 1053 message
buffering, and dumps to disk can be selectively
omitted. Also, a core load area, a process work
storage, a nonprocess work storage area, and an
area for the storage of relocatable programs can be

34

optionally included on any or all disk drives. This
routine will separate file protected cylinders from
nonfile protected cylinders when the user places two
such areas next to one another, or it will pack the
same type of unprotected file areas or protected file
areas when the user makes it possible by the place­
ment of his areas. The nonprocess work storage,
the message buffer, the error save, interrupt save,
and error dump areas are not file protected. The
user can control the relative placement of his areas
by the sequence in which he specifies these areas.
To begin with all newly labeled disk packs contain
only a label, a LET, and nonprocess work storage
area. When an area is defined to be on such a pack,
the area it requires is subtracted from the high
addressed cylinders of nonprocess work storage on
that pack. Another area defined on that pack will
occupy the next lower area below the area previously
defined to be on that pack, etc. The LET is main­
tained as the definitions are executed.

One important restriction that exists is that no
core image programs or data areas can be removed
from the core image area as a result of a definition
operation. For that reason it is important to define
the areas as soon as possible after the system is
obtained. Later re-definitions are possible, but
some additional problems can occur.

The DEFINE routine must be executed before the
skeleton is built. The operation establishes the size
of the skeleton in words and the size of the largest
interrupt core load area in words. Both of these
areas should be established with the possibility that
the requirements for these areas can expand. Thus,
they should almost certainly be established with
extra words to more easily expand them at a later
time.

New packs can be defined with core load area and
with process work storage area while the system is
on-line with the process. Definition of all other
areas to different drives should only be done while
the system is not on -line.

Deleting of relocatable programs does not cause
other programs to be packed over the area of the
deleted program. At convenient intervals, the user
should repack the disk using the DEFINE PAKDK
control record. The drive containing the pack to be
packed is specified. When this operation is perform­
ed the user should be certain he has a current rec­
ord of disk storage in the event that a solid disk
error should occur while the packing is in progress.
The amount of time that the operation requires will
increase with the amount of data that must be moved
in order to secure a packed disk.

Any of three different system programs can be
removed from the system using the DEFINE REMOV
control record. These are the simulator, FORTRAN,
and the assembler. When one of these is removed,

the area it occupied is incorporated into nonprocess
work storage.

*SEQCH This routine is used to change the sequence
in which mainline core loads are executed. This is
accomplished by modifying the program name tables
of specified core loads that call a given core load so
that a PSC call (CHAIN, SPECL, QUEUE, or UNQ) to
a given core load now refers to the· core load desig­
nated by the modified sequence. Up to eight core
loads can be specified for a change in sequence with
one SEQCH control record.

*DLABL The define label routine is used to place
an identifying number in the first sector of the pack.

I When a non-system drive is specified, DLABL will
cause a LET area, containing entries that define
the balance of the pack as available area, to be
created starting in the second sector of the pack.
Sector addresses will be written on the pack.

*DWRAD This routine is used to write addresses
within a specified area on a disk pack. The user can
zero the data area or retain the previous data, and
initiate or remove file protection. During these
operations, the addresses can be verified with those
already on the disk. This function can be used to
unprotect those areas in the core load area that
contain FORTRAN files that are to be written as well
as read by the FORTRAN programs.

ASSEMBLER PROGRAM

The assembler program for the 1800 TSX system is
I a disk resident version of the 1800 card assembler.

The language for the assembler is described in the
publication, IBM 1800 Assembler Language (Form
C26-5882).

General Operation

The ASM monitor control record is used to call the
assembler program into operation. The assembler
reads the control records and the source program in

I card form only. After assembly, if no errors were
detected by the assembler, the object program resides
in the user's program area as a temporary program
and can be. called for execution by an XEQ control
record, or it can be stored permanently in the user
area by a DUP operation.

Assembler Control Records

Form C26-5990-1

Page Revised 7/20/66

By TNL N26-0559 ,

The assembler control records are used to control
the assembler operation and must be in card form.
They must precede all source statements of the
program.

An asterisk in column one precedes the control
record name.

TWO PASS MODE This control record causes the
object program to be produced through two passes
of the source program. The TWO PASS MODE
record is required when the space allotted for the
nonprocess work storage area to be used by the
assembler is too small to contain the intermediate
output during assembly.

LIST DECK This record causes uncompressed
I object output to be punched in cards. Source state­

ment errors are indicated by codes punched in
columns 18 and 19.

The LIST DE CK record requires the TWO PASS
MODE record because the source program must be
read twice. During the second pass, uncompressed
object information is punched into the card just read.

LIST DECK E This record is identical to LIST
DECK, except that the uncompressed object infor­
mation consists only of the error columns (18 and
19). If the source statement contains no errors,
columns 18 and 19 are left blank.

LIST This record causes a printed listing to be
generated on the List printer during the second
phase of the assembly. The List printer can be
a 1053, 1816, or 1443 Printer.

PUNCH This control record causes the com­
pressed object output to be punched. This output
will be punched, even if errors are discovered in
the source input by the assembler.

PUNCH SYMBOL TABLE This record causes the
symbol table to be punched upon completion of the
assembly operation.

PRINT SYMBOL TABLE This record causes the
symbol table to be printed on the List printer upon
completion of the assembly operation.

SYSTEM SYMBOL TABLE This record causes the
system symbol table to become a part of the symbol

Nonprocess Monitor 35

Form C26-5990-1

Page Revised 7/20/66

By TNL N26-0559

table to be used in the assembly. Thus, the symbols
in the system symbol table can be used without
defining them in the source program.

SAVE SYMBOL TABLE This record causes the
symbol table used in the assembly to be saved in the
system symbol table area of disk storage. Symbols
previously stored are overlaid by the new symbols.

OVERFLOW SECTORSbn This record indicates the
number of sectors (n) of nonprocess working storage
the assembler a.llows for pos sible symbol table over­
flow. The range is 1-32.

COMMONbn This record allows a COMMON area to
be saved for linking from a FORTRAN mainline pro­
gram to an assembly mainline and then back to the
FOR TRAN mainline. n is the length of COMMON
in words.

FORTRAN COMPILER

The TSX FOR TRAN compiler is a disk resident
version of the 1800 card compiler. The FORTRAN
language is described in the publication, IBM 1800
FORTRAN Language (Form C26-5905).

Operation

The FOR monitor control record is used to name the
FORTRAN mainline program and call the FORTRAN
compiler into operation. The compiler reads the

I control records and source program in card form
only. After compilation, the object program resides
in the user's program area as a temporary program,
and can be called for execution by an XEQ control
record, or it can be stored permanently in the user's
program area by a DUP operation. All FORTRAN
programs are compiled in relocatable format.

FORTRAN Control Records

The following control records are used to control the
compilation operation.

*IOCS (CARD, MAGNETIC TAPE, TYPEWRITER,
KEYBOARD, 1443 PRINTER, PAPER TAPE, DISK,
PLOTTER) This record must be used to specify
any I/O device required for execution of the program;
however, only the devices required should be included.
Because the *IOCS card can appear only in the main­
line program, it must include all the I/O devices used
by all FORTRAN subprograms that will be called.
The device name must be in parentheses with a comma
between each name.

36

*LIST SOURCE PROGRAM The source program is
listed as it is read in.

*LIST SUBPROGRAM NAMES The names of all
subprograms (including EXTERNAL subprograms)
called directly by the compiled program are listed.

* LIST SYMBOL TABLE The following are listed:

o Variable names and their relative addresses

o Statement numbers and their relative addresses

o Statement function names and their relative
addresses

e Constants and their relative addresses

o Unreferenced statement numbers

* LIST ALL The source program, subprogram
names, and symbol table are listed. If this record
is used, the other * LIST control cards are not
required.

*TRANSFER TRACE The compiler generates
linkage to trace routines whenever an IF statement
or computed GO TO statement is encountered. If
Data Entry switch 15 is on at execution time, the
trace printout routine prints the value of the IF
expression or the value of the Computed GO TO
index (see Optional Tracing).

If tracing is requested, an *IOCS control card
must also be present to indicate that either the
1816/1053 Printer or the 1443 Printer is needed.
If both the 1816/1053 Printer and the 1443 Printer
are indicated in the *IOCS card, the 1443 Printer is
used for traciq; .

The traced value for the assignment of a variable
on the left of an equal sign of an arithmetic statement
is printed with one leading asterisk. For the expres­
sion of an IF statement, the traced value is printed
with two leading asterisks. The traced value for the
index of a Computed GO TO statement is printed
with three leading asterisks.

*ARITHMETIC TRACE This control record will
cause trace instructions for arithmetic statements
to be compiled with the object program. Data Entry
switch 15 must be on (the same as for TRANSFER
TRACE above) at execution time in order to effect
the trace printout. Also, an *IOCS control record
must be present to indicate the printer type' (see
Optional Tracing).

*EXTENDED PRECISION This record compiles
3-word real constants and real variables to provide
extended precision for arithmetic operation.

*ONE WORD INTEGERS This control record causes
the integer variables in a nonprocess program to be
allocated one word of storage in the object program,
instead of two words for standard precision or three
words for extended precision. All integer variables
in a process program are automatically made one
word.

*NONPROCESS PROGRAM This control record is
required for all nonprocess programs to differentiate
them from process programs. The presence of this
record prevents the usage of certain TSX CALL state­
ments as defined in Appendix B. The absence of this
record forces *ONE WORD INTEGERS.

**(HEADER INFORMATION) If the 1443 Printer is
the List printer, the information contained in card
columns 3-72 is printed at the top of each page
printed out during the compilation.

OPTIONAL TRACING

The user can elect to trace only selected parts of the
program by placing statements in the source pro­
gram logic flow to start and stop tracing. This is
done by executing a CALL to either subroutine:

CALL TSTOP (to stop tracing)
CALL TSTR T (to start tracing)

Thus, tracing occurs only if:

• The trace control records were compiled with the
source program.

• Data Entry switch 15 is on (can be turned off at
any time).

• A CALL TSTOP has not been executed, or a
CALL TSTRT has been executed since the last
CALL TSTOP.

1053/1816 CONTROL

The 1053 and 1816 output printers can be controlled
by outputting a unique value for the operation desired.
The value must be assigned as an integer constant
and outputted through A-conversion.

The operations that can be performed and the
unique values assigned to them are

Backspace
Carrier Return
Line Feed
Shift to print black
Shift to print red
Space
Tabulate

5696
5440
9536
5184

13632
16448

1344

Fonn C26-5990-1

Page Revised 10/25/66
By TNL N26-0560

As an example of the printer controls, assume that
a variable, X, is to be printed in the existing black
ribbon shift and that another variable, Y, is to be
printed in red following a tabulation. Following the
printing of Y, the ribbon is to be shifted back to
black. This can be accomplished as follows:

I = 1344
J;;:: 13632
K = 5184
WRITE (1,3) X, I, J, Y, K
FORMAT (FI2. 6, 2Al, FI2.6, AI)

Unit 1, as specified in the WRITE statement, is
assumed to be a 1053 or 1816 printer. The sequence
of operations to be performed are: print the variable
X, tabulate, shift to print red, print the variable Y,
shift to print black.

Each control variable counts as one character and
must be included in the count of the maximum line
length.

Programming Note

As a general rule, the user should use a slash as
the final format specification in an interrupt pro­
gram. This allows the printer to take a line
space prior to returning to a possible print opera­
tion that was interrupted during mainline execution.
The extra line space is required to prevent possible
overprinting which can occur as a result of an
interaction between the mainline and interrupt pro­
grams or between two interrupt programs.

SIMULATOR PROGRAM

The simulator program allows the user to check pro­
cess and nonprocess core loads for possible pro­
gramming errors. Since it is designed as an aid in
debugging process programs without disrupting the
normal operation of the TSX system, the simulator
can be operated on a time-sharing basis without
removing the 1800 System from its normal on-line
status.

Each instruction in the object program is analyzed
for a valid operation code and valid format before its
operation is simulated. Al'so, the addresses of store
instructions are checked to ensure that the instruction
will not change anything outside of the areas of
COMMON, the defined program, INSKEL COMMON,
or the work level area.

The system skeleton routines are used during
simUlation, and therefore, the skeleton area must
be built before simulation can be performed.

Since the primary design function of the simu­
lator is to detect programming errors in the object

Nonprocess Monitor 37

Form C26-5990-1

Page Revised 10/25/66

By TNL N26-0560

program that, if executed, would be detrimental to
the process under control, the following built-in de­
bugging features are provided to aid the user.

SNAPSHOT. This feature provides a display of the
registers* after an instruction, whose location has
been specified on the *SNAP control card, has been
executed.

BRANCH TRACE. This feature provides a display
of the registers* after a branch or skip has been
executed. The location limits of the branch or skip
are specified on the *TRACE control card.

*These are psuedo-machine registers maintained by
the simulator.

DUMP. This feature dumps simulated core within
the limits specified by the *DUMP control card.

The simulator operates under control of the nonpro­
cess monitor. Simulation runs for process programs
are called by a DUP control record, *SIMULCI.
Simulation runs for nonprC!cess programs are called
by a / / SIM monitor control card. The operating
procedures and stacked input for a simulation run are
described in the publication, IBM 1800 Time-Sharing
Executive System Operating Procedures (Form C26-
3754).

SUBROUTINES

General Input/Output

Each time the simulator encounters a user-called
sequence to an I/O subroutine, the location of the
calling sequence and the subroutine name are printed
on the list printer. Each time the simulator
encounters a subroutine test function (I/O function
digit = 0), the following occurs: the first time a test
is encountered, a busy return is made; the second
time, a not busy return is made. Succeeding entries
alternately cause busy and not busy returns.

Listed below are the general input/output subrou­
tines (IBM -supplied) recognized by the simulator, and
the corresponding operations which the simulator
performs:

SUBROUTINE

CARDN (Simulated card sub­

routine)

DISKN (Simulated disk sub­

routine)

MAGT (Simulated magnetic

tape subroutine)

• 38

OPERATION

Read a card, feed a card, simulate

punch a card

Read disk, write disk, simulate

disk seek

Simulates all read, write, and

control functions relative to

2401 and 2402 magnetic tape

units

SUBROUTINE OPERA TION

PAPTN (Simulated paper tape Simulate reading paper tape, simu-

subroutine) late punching paper tape

PLOTX (Simulated plotter sub- Simulate plotter output

routine)

PRNTN (Simulated printer sub- Print a line, simulate a carriage

routine) operation

TYPEN or WRYTN (Simulated Simulates printing on 1816 printer

printer-keyboard subroutine) keyboard or 1053 printer

The simulator requires that the card reader, disk,
and list printer be physically present on the system.

Process Input/Output

Call sequences which specify input from pulse input
points, digital input points, process contact points,
and analog input, may obtain the input from two
::;ourccs: cards and a random number generator.

Data cards are used if samples of specific values
are desired; the points can be read in a nonprocess
program and punched into cards to be read by the
simulator. Any value can be simulated when using
cards, but in order to obtain the desired results, the
input data must be sequenced according to the flow of
the process input subroutines called. In other words,
the card feature requires careful ordering of the card
deck.

A random number generator, within the simulator
program, produces numbers within a user-specified
range. With this option, the user can employ a wide
variety of input data to check the program operation.
A psuedo-process input environment can also be
created through the use of a random number generator.

All input values are printed on the list printer as
they are called.

In the program being simulated, call sequences
that specify output for the contact operate, pulse out­
put, digital output, and digital-to-analog output
features are printed when they are encountered. Input
call sequences, error messages, and data are included
in the printed output. This provides a complete chron­
ological record of all that occurred during the simu­
lation.

IBM -supplied process input/output subroutines are
functionally simulated; that is, the subroutines' call
parameters are analyzed according to specifications
supplied in the form of control records. The routine
name, calling parameters, and data are printed on
the list printer. Listed below are the process input/
output subroutines recognized by the simulator, and
the corresponding operations which the simulator
performs. Special condition returns are also simu­
lated.

SUBROUTINE

AIPTN or AIPN (Simulated

analog input point)

OPERATION

Simulates the read of a single

analog point

AIRN (Simulated analog input Simulates reading random analog

random) input points

AISQN or AISN (Simulated Simulates reading sequential analog

analog input sequential) data points

DAOP (Simulated digital- Simulates the transfer of digital or

analog output) analog information

DICMP (Simulated digital Simulates the reading in of digital

input: read compare) input values under program con­

trol and compares these values to

a table of user-supplied values.

Only the first compare error is

detected. A single entry to the

special routine is made with

appropriate indication. The

end-of-table interrupt will not

occur if a comparator error occurs.

DIEXP (Simulated digital Simulates the reading in of a digital

input: read expand function) input value and expands it into

1, 2, 4, 8, or 16 words.

DINP (Simulated digital input: Simulates the reading in of digital

hardware functions) input values

Arithmetic and Conversion Subroutines

Copies of the IBM -supplied arithmetic and conversion
subroutines are contained within the simulator. It is
these copies that are executed when a call to an arith­
metic or conversion subroutine is encountered. The
requested operations are performed in a psuedo­
processing environment maintained under control of
the simulator.

General TSX Subroutines

When a call to a TSX control subroutinE! is recognized
by the simulator, the subroutine name and its calling
sequence parameters are printed. There are two
categories of subroutines designed for control and
communication with the TSX system: the termination
class and the functional simulate class.

The following subroutines comprise the termination
class, and when encountered, cause the simulator to
execute the close job procedure:

BACK
CHAIN
DPART
INTEX

PAUSE
SPECL
STOP
VIAQ

The subroutines listed below comprise the func­
tional simulate class, and when encountered, cause

Form C26-5990-1

Page Added 10/25/66

By TNL N26-0560

the' simulator to simulate the function, i. e., analyze
the call parameters for validity and print the routine
name, the calling parameters, and the data contained
within the subroutine.

CLEAR REMSK
COUNT SAVMK
ENDTS SETCL
LEVEL SHARE
MASK TIMER
OPMON UNMK
QIFON UNQ
QUEUE

User-Written Subroutines

User-written subroutines are simulated in the same
manner as the mainline program.

COMMON AREA

The simulated COMMON area can be dumped on cards
whenever a program being simulated is terminated.
The output cards can be used for input to reload
COMMON, thus providing communication from one
program to another.

RESTRICTIONS

Restrictions placed upon the use of the simulator
program are listed below.

1. Nonprocess work storage must be used if actual
data is to be transferred between disk and core.

2.

3.

4.

5.

6.

7.

8.

9.

Link or cllll:in jobs must be simulated by present­
ing one core load at a time.
The simulator utilized LIBF and CALL instruc­
tions for special purposes. When analyzing post
mortem dumps, the contents of LIBF and CALL
locations should be ignored by the user.
All I/O must be performed by simulator subrou­
tines. An execute I/O (XIO) instruction is not
simulated but will be recorded on the list printer.
A wait (WAIT) instruction will be recorded on the
list printer.
A storage protect setting instruction (STS with
both the F-bit and the 9th bit equal to zero) will
result in a termination.
An attempt to store into a skeleton area other
than the INSKE L COMMON and work level areas
will result in a termination.
Operation codes of 00, 38, 58, 78, and FF are
invalid and will result in a termination.
A subroutine I/O area parameter pointing to the
skeleton will result in a termination.

38.1.

It is often necessary to repeat a group, or block, of
instructions many times during the execution of a
program (examples include conversions of decimal
values to equivalent binary values, computation of
square roots, and reading data from a card reader).
It is not necessary to write the instructions each time
a function is required. Instead, the block of instruc­
tions is written once, and the main program transfers
to that block each time it is required. Such a block of
instructions is called a subroutine.

These subroutines normally perform basic func­
tions so that they may be used in the solution of many
types of problems. When a main program uses a sub­
routine several times, which is the common situation,
the block of instructions constituting the subroutine
need appear only once. Control is transferred from a
main program to the subroutine by a set of instruc­
tions known as a calling sequence, or basic linkage.
A calling sequence transfers control to a subroutine
and, through parameters, gives the subroutine any
control information required.

The parameters of a calling sequence vary with the
type of subroutine called. An input/output subroutine
requires several parameters to identify an input/out­
put device, storage area, amount of datato be trans­
ferred, etc.; whereas an arithmetic or functional sub­
routine usually requires one parameter representing
an argument. The calling sequences used with the
TSX system subroutines consist of a CALL or LIBF
statement, whichever is required for a particular
subroutine, followed by DC statements that make up
the parameter list. The calling sequences for the
various subroutines are presented later in this section.

The subroutines provided with the TSX System con­
sist of the following groups:

1. Arithmetic and functional
2. Input/output and conversion
3. Selective dump and miscellaneous

The Arithmetic and Functional subroutines are those
most frequently utilized for mathematical computa­
tions. The Input/Output (I/O) subroutines provide a
quick and easy method for the programmer to refer­
ence the various I/O devices for input or output of
data. The conversion subroutines provide a method of
converting data from one code to another.

The selective dump subroutines allow the user to
print selected areas of core storage during execution
of an object program. The miscellaneous subroutines
provide the user with the ability to perform certain
machine operations using the FORTRAN language.
Any of the subroutines in the TSX system can be

Form C26-5990-1

Page Revised 7/20/66
By TNL N26-0559

SUBROUTINE LIBRARY

~Bsigned to permanent core. They then reside in the
skeleton area of core storage and can be called by any

I program. Two of the I/O subroutines, DISKN and
TYPEN or PRNTN) must be in the Skeleton area
because they are used by the system director.

The user should keep in mind that subroutines are
also placed in the skeleton area if they are called by
skeleton interrupt routines. If the subroutine is used
only occasionally or is of a large size, the user
should consider placing it in variable core in order to
better utilize core storage.

Programs that are executed from the variable sec­
tion of core can also call the subroutines that are in
the skeleton area. In fact, when core loads are being
formed, the only subroutines that are placed with the
core load are those that are not already in the
skeleton area.

In order to allow entry from various programs and
various interrupt levels before completing the com­
putations from a previous call, the arithmetic, func­
tional, and most of the I/O subroutines are designed
as re-entrant routines; that is, they are re-entrant
because they can be entered from a different level of
machine operation despite the fact they may not have
completed operation on a previous level.

Within the skeleton area there is a subroutine work
area for each interrupt level being utilized. Thus, if
one of the subroutines is in operation for the mainline
program and an interrupt occurs, the same subroutine
can be utilized by the interrupt servicing routine with­
out destroying the partially completed mainline work.

NOTE: The only restriction that applies to the use of
a subroutine is that the I/O subroutines (with the ex­
ception of the disk and printer subroutines) cannot
be called from an interrupt level that is equal to or
higher than the interrupt level associated with the
device being used. (The disk and printer routines,
which are described later, can be called from any

I interrupt level; see Printer Subroutine, or Disk
Subroutine.

I/O SUBROUTINES

The TSX I/O subroutines were designed to reduce the
amount of time spent by the programmer in accom­
plishing the input and output of data from and to the
various input/output devices attached to the computer.
They handle all of the details peculiar to each device,
including the usually complex interrupt functions, and
are capable of controlling many input/output devices

Subroutine Library 39

Form C26-S990-1

Page Revised 7/20/66

By TNL N26-0559

simultaneously and asynchronously. In assuming the
burden of the details of I/O operation, the subroutines
permit the programmer's attention to be directed to
the problem-solving aspects of each individual job,
rather than accessory I/O housekeeping.

In order to better understand the subsequent
descriptions of the individual I/O subroutines, the
user should be familiar with certain characteristics
which are common to the I/O subroutines, namely:.

Methods of data transfer
I/O Subroutine operation
General error handling procedures
Basic calling sequence

METHODS OF DATA TRANSFER

IBM 1800 I/O devices and their related subroutines
are grouped according to their method of transmitting
and/ or receiving data. There are two basic groups,
direct program control and data channel.

Direct Program Control

Direct program control requires a programmed I/O
operation for each word or character transferred.
A character interrupt occurs whenever a character
I/O operation is completed. This method is used for
single-word analog or digital I/O and for the following
devices: 1054/1055 Paper Tape Attachment, 1816
Printer-Keyboard, 1053 Printer, and 1627 Plotter.

Data Channel

A data channel requires an I/o operation only to
initiate the data transfer. The device is provided
with control information, word-counts, and data from
the user's I/O area. Once initiated, the transfer takes
place completely asynchronous to program execution.
An operation-complete interrupt signals the end of the
1/ a operation when all of the data has been transmit­
ted. The data channel is used for multiple-word
transfers of analog and digital I/O data and for the
following devices: 2401 and 2402 Magnetic Tape
Units, 2310 Disk Storage, 1443 Printer, and 1442
Card Read Punch.

I/O SUBROUTINE OPERATION

This section briefly describes the internal makeup of
the I/O subroutines. This description, along with
some basic flow charts, will make it easier for the

40

reader to understand the individual subroutine
descriptions presented later in the manual.

Each I/O subroutine is divided into two routines:
a call routine and an interrupt response routine. The
call routine is entered when a user's calling sequence
is executed; the interrupt response routine is entered
as a result of an I/O interrupt.

lEach subroutine saves and restores the contents
of the A- and Q-registers, index registers, and the
overflow and carry indicators except DISKN does not
save the A-register and the process I/O subroutines
(AIPIN, etc.) do not save the overflow and carry
indicators. Also, most subroutines assume that the
necessary interrupt levels are unmasked so that the
associated I/O interrupts can be recognized (the
disk and printer subroutines can operate from any
interrupt level, masked or unmasked).

\ Call Routine

The call routine illustrated in Figure 12 has four
basic functions:

1. Determine if any previous operations on the
specified device are still in process.

2. Check the calling sequence for legality.
3. Save the calling sequence.
4. Initiate the requested I/O operation.

The flow diagram (Figure 12) is not exact for any
one subroutine. It is only a general picture of the
internal operation of a call routine.

Determine Previous Operation. The TSX I/O sub­
routines contain the extra instructions necessary to
handle all of the devices of that type simultaneously.
The WRTYN subroutine is an example. When an
operation is started on one 1053, that device becomes
busy. However, a subsequent call to the WRTYN
subroutine specifying a different 1053 will be honored.
A call to another I/O subroutine, such as PRNTN or
CARDN is not affected by the fact that one or more of
the 1053's is busy.

Check Legality of Calling Sequence. Calling sequences
are checked for such items as illegal function
character, illegal device identification code, zero or
negative word count, etc.

Save Calling Sequence. The call routine saves within
itself all of the calling sequence information needed
to perform an I/O operation. The user may modify a
calling sequence even though an r/o operation is not
yet complete. However, the r/ a data area should be
left intact during an operation because the subroutine
is continually accessing and modifying that area.

Entry

Determine
Device

Set
Busy

Indicators

Save Calling
Sequence
Parameters

Determine
Requested
Function

Set Any I/O
Busy

Indicator

L fEF

!J)-f -:) L J BF
3';)$')1

Figure 12. Call Routine

Set up for
Device Not
Ready Error

Initiate I/O Operation. The call routine only initiates
an I/O operation. Subsequent character interrupts or
operation complete interrupts are handled by the
interrupt response routine.

Interrupt Response Routine

The I/O interrupt response routine, illustrated in
Figure 13, is entered as a result of an I/O interrupt.
The interrupt causes the user's program to exit to
the MIC routine which in turn exits to the I/O inter­
rupt response routine. The interrupt response
routine checks for errors, does any necessary data
manipulation, initiates character operations, and
initiates retry operations in case of errors. It then
returns control to MIC which returns control to the
user.

Character interrupts for devices under direct
program control occur whenever data may be read
or written; e.g., a paper tape character read.
Operation complete interrupts for all devices on the
data channel (and some devices under direct program
control) occur whenever the specified block of data
has been read or written, e.g., a line printed or a
card read.

Error detection and recovery procedures are an
important part of a subroutine. However, little can
be done about reinitiating an operation until a
character interrupt or operation complete interrupt
occurs. Therefore, the error indicators are not
examined until one of these interrupts occurs.

A' recoverable device is one which can be easily
repositioned by the subroutine or operator and the
1/ a operation reinitiated. If the device is not
recoverable or if the error cannot be corrected after
a specified number of retries, the user is informed
of the error condition.

GENERAL ERROR HANDLING PROCEDURES

Each subroutine has its own error detection routines.
(In this context, the term "error" includes such
conditions as last card, channel 9, end of tape, etc.)
These routines categorize the error and choose an
error procedure. Errors can be divided into two
categories: those that are detected before an I/O
operation is initiated, and those that are detected
after an I/O operation has been initiated. Table 2
contains a list of the errors detected by the sub­
routines.

Subroutine Library 41

Entry

Manipulate
Data as

Specified

Character
Operation

Yes

Yes

.", ,'''' ,")...,- (J ';; -r < 'V
lf~' l\! ,I ..I."

A , \ _\ 't,
,;,~.'\ ~ ~ t \ l/::" \)'h ""

\}.Ie l\.,t.I--t t.Jihr "'"
Figure 13. Interrupt Response Routine

42

No

-\CI ""-, \., (I,·L

\'"" t-e\""}, vpr

Housekeep

Yes

Reset Any
I/O

Indicator

Clear
Busy

Indicators

Pre-Operation Checks

Before a subroutine initiates an I/O operation, it
checks the status of the device and the legality of the
calling sequence parameters. If the device is not
ready or a parameter is in error, the subroutine
exits to EAC.

Post Operation Checks

After an I/O operation has been started, certain con­
ditions may be detected, about which the user should
be informed. These conditions may be card jams for
which manual intervention is needed in order to con­
tinue, read checks which have not been corrected
after a specified number of retries, or indications of
equipment readiness, such as end of tape marks. All
of these conditions are detected during execution of
the I/O interrupt response routine.

BASIC CALLING SEQUENCE

Each of the subroutines is entered via a calling se­
quence. These calling sequences follow a basic
pattern; in fact, some are identical except for the
name of the subroutine being called. In order not to
burden the reader with redundant descriptions, this
section presents the basic calling sequence and
describes those parameters which are common to
most of the subroutines.

Basic Calling Sequence

LIBF Name

DC Control parameter

DC I/O area

DC Special condition parameter

The above calling sequence, with the parameters
shown, is basic to most of the TSX I/O subroutines.
Unless otherwise specified, the subroutine returns
control to the instruction immediately following the
last parameter.

Name Parameter

Each subroutine has a symbolic name, which must be
written in the LIDF statement exactly as listed in
Table 3 because the core load builder must recognize
the name to generate the proper linkage.

• Table 3. I/O Subroutine Names

Subroutine

CARD

Disk

1443 Printer

Printer-Keyboard

1053 Printer

Magnetic Tape

Paper Tape

Plotter

Digital Input

Digital/Analog Output

Analog Input

Sequential Read

Single Read

Random Read

Control Parameter

CARDN

DISKN

PRNTN

TYPEN

WRTYN

MAGT

PAPTN

PLOTX

Form C26-5990-1

Page Revised 7/20/66
By TNL N26-0559

Name

DINP, DICMP, DIEXP

DAOP

AISQN, AISN

AIPTN, AIPN

AIRN

The control parameter, in the form of four hexa­
decimal digits, conveys necessary control data to

I the I/O subroutines by specifying the desired function
(read, write, etc.), the device identification, and
other similar control information. Most subroutines
do not have use for all four digits.

A typical control parameter is illustrated below.

Hexadecimal Digits

1st 2nd 3rd

I/O Function------~f i i 4th

Device Identification:----------------JJ

NotUsed~---------~--~

Since the I/O function and device identification
are used in most subroutines, a description of the
purpose of each is given here.

1/ a Function

Each device is capable of performing a set of func­
tions. The function digit in the calling sequence

Subroutine Library 43

Form C26-5990-1

Page Revised 7/20/66
By TNL N26-0559

specifies which I/O operation the user is requesting.
Four of these functions, read, write, test, and reset
are used in most subroutines.

Read. The read function causes a specified amoWlt
of data to be read from an input device and placed in
a specified input area. Depending upon the device,
an interrupt signals the subroutine either when the
next character is ready or when all requested data
has been read. When the specified number of char­
acters has been read, the subroutine becomes avail­
able for another call to that device.

Write. The write function causes a specified amoWlt
of data from the user's output area to be written (or
punched) on an output device. As with the read func­
tion, an interrupt signals the subroutine when the
device can accept another character, or when all
characters have been written. When the specified
number of characters has been written, the subroutine
becomes available for another call to that device.

Test. The test function causes a check to be made
as to the status of a previous operation on the same
device. If the previous operation has been completed,
the subroutine branches to the LIDF+3 core location;
if the previous operation has not been completed, the
subroutine branches to the LIDF+2 core location.
The test function is illustrated below:

LIBF Name

LIBF+l DC Control Parameter (speci-
fying Test function)

LIBF+2 OP Code XXXX ••••

LIBF+3 OP Code XXXX ••••

NOTE: Specifying the test function requires two
statements (one LIBF and one DC), except in the disk
subroutine where three statements are required,

This function is useful in situations where input
data has been requested, and no processing can be
done until that data is available,

The test function must also be used if the user
assigns multiple I/O devices to one data channel (see

I

Note following). If tw,o ?r more devices are attached
to the same channel, It IS the user's responsibility
to ensure that two devices are not operated simul­
taneously. In other words, if devices A and Bare
on the same data channel, a busy test for A or B
must precede any function request for either device
A or B. This is a user responsibility.

NOTE: The following require a data channel/device:
1. IBM 2310 Disk Storage
2, IBM 1443 Printer, if defined as error, list, or

system printer
13. IBM 1442 Card Reader Punch
4, Analog input if continuous scan is utilized

44

5. Analog comparator if continuous scan with
comparator is utilized.

Reset. The reset function terminates the I/O opera­
tion in progress.

Device Identification

In cases where it is possible to have more than one
device of the same type on a system the user must
specify in the calling sequence the device addressed.

The device identification digit must be 0 (zero)
for the first device, 1 for the second device, etc.

NOTE: In the Disk subroutine calling sequence, the
device identification digit appears in the sector
address word rather than in the control parameter.

I/O Area Parameter

The I/O area for a particular operation consists of
one or more tables of control information and data.
Each table is composed of a data area preceded by a
control word (two control words for disk operations
and some digital/analog operations) that specifies
how much data is to be transferred. The area param­
eter in the calling sequence is the address (symbolic
or actual) of the first control word that precedes
the data area.

The majority of the subroutines allow one table
per calling sequence. However, the magnetic tape
and several digital/analog subroutines operating on
separate Data channels permit tables to be "chained"
together. This is accomplished through scan control
bits in the control word preceding the data area of a
table, and by following one table with the address of
the next table.

The format of the control word used for all sub­
routines is shown below. The disk subroutine and
certain analog/digital subroutines require a second
control word which is described along with those
subroutines.

Scan
Control

Chaining

Bits Su ppress
Interrupt
Indicator

o 1 2

III

Word Count _______ ---1

15

The chaining bit, when set to 1, indicates that the
associated table is part of a chain and that the word
following the table is a chain-address word.

The suppress interrupt indicator bit, when set
to 0, causes an interrupt after the data related to that
table has been transferred. The resultant interrupt
causes the TSX I/O subroutine to branch to the
address specified in the error parameter, except
when the table is the last table in the chain. In this
case, the interrupt is used to initiate I/O subroutine
housekeeping functions.

The word count refers to the number of data words
in the table. It is important to remember that the
number of words in the table is not always the
number of characters to be read (or written) because
some codes pack several characters per word.

Special Condition Parameter

This parameter is used only for the AIRN, AISQN,
DICMP, MAGT, DINP, and DAOP routines and is
described with them.

For compatibility reasons it must be included in
most I/O subroutine calling sequences even though,
in most cases, it is a pseudo parameter and may be
defined as any constant.

CARD SUBROUTINE

The card subroutine performs all I/o functions
relative to the IBM 1442 Card Read-Punch; read,
punch, feed, and select stacker.

The card subroutine is not re-entrant for a given
device, though two different 1442' s may be called
from different levels. CARND may be located in
the skeleton I/o area or within a core load.

If CARDN determines a 1442 is not ready on an
I/O operation, it will exit back to the user after
notifying EAC. The I/O operation that was requested
by the user will be retained by CARDN and will be
executed the next time it is called, before any new
I/O operation, if the 1442 is ready. If the 1442 is
not ready, CARDN will wait until it is ready before
executing both calls. Therefore, the user should
give a test function after each I/O function, so that,
if the 1442 was not ready at the time of the call for
the I/O function, the function can still be executed
when it does become ready.

When the Last Card indicator comes on, CARDN
does an automatic feed operation. Therefore, the
last card cannot be stacker selected and cannot be
both read and punched. However, the last card can
be either read or punched.

Calling Sequence

LIBF CARDN

DC

DC

DC

/xxxx

AREA

00000

AREA Word Count

I/O Area

Form C26-5990-1

Page Revised 7/20/66

By TNL N26-0559

(Control)

(I/O area)

(Special Condition;
not used)

The calling sequence parameters are described in
the following paragraphs.

Control Parameter

This parameter consists of four hexadecimal digits
shown below:

1 2 3

I/O Function.----..... 1 i 1
Not Used----"'----'

Device Identification.---------I

1/ a Function

The I/O function digit specifies a particular opera­
tion performed on the 1442 Card Read-Punch. The
functions, associated digital values, and required
parameters are listed and described below.

Test

Read

Punch

Feed

Stacker Select

Digital
Value

o

2

3

4

Required
Parameters*

Control

Control, I/O area,
Special Condition**

Control, I/O area,
Special Condition**

Control, Special
Condition**

Control

*Any parameter not required for a particular
function must be omitted.

**Special Condition parameter may be
defined as any constant.

Test. Branches to LIBF+2 if the previous operation
has not been completed, or to LIBF+3 if the previous
operation has been completed.

Subroutine Library 45

Form C26-S990-1

Page Revised 7/20/66

By TNL N26-0SS9

Read. Reads one card into the input area. The sub­
routine clears the I/O area, stores a -1 in each word
in the I/O area, initiates the card operation, and
returns control to the user's program. The card
data is read into the user's input area on a cycle­
steal basis and will be in card image or packed for­
mat depending on whether the word count is equal or
unequal to SO (see I/O Area Parameter).

NOTE: Only IBM system programs are allowed to
read a / /n card. Any other program causing such
a card to be read will cause CARDN to transfer
control to EAC.

Punch. Punches into one card the number of columns
of data specified by the word count found at the begin­
ning of the user's output area. The punch operation is
similar to the read operation. The character punched
is the image of the leftmost 12 bits in the word.

Feed. Initiates a card feed cycle. This advances all
cards in the machine to the next station, i.e., a card
at the punch station advances to the stacker, a card
at the read station advances to the punch station, and
a card in the hopper advances to the read station.
No data is read or punched as a result of a feed
operation.

Stacker Select. Selects stacker 2 for the card cur­
rently at the punch station. Mter the card passes
the punch station, it is directed to stacker 2.

Device Identification

This digit specifies which of the two possible 1442's
is to be used.

o - First 1442
1 - Second 1442

I/O Area Parameter

The I/O area parameter is the label of the control
word that precedes the user's I/O area. No chaining
is permitted with the card subroutine; therefore, the
control word consists of a word count only. The word
count has different uses depending on whether the
I/O function is Read or Punch.

Read

When a Read function is specified, the I/O area word
count is used to denote the format of the input data.

46

Word Count

=SO

;fSO

Punch

Format

Card-image; data is placed in
leftmost twelve bits of each of
SO words.

Packed; data in odd-numbered
columns is placed in bits S-15,
even -numbered columns in bits
0-7 of each of 40 words (col­
ums 1 and 2 form first word,
3 and 4 form second word, etc.).

When a punch function is specified the I/O area word
count specifies the number of columns of data to be
punched, starting with column 1.

Special Condition Parameter

(See Basic Calling Sequence.)

DISK SUBROUTINE

The disk subroutine performs all reading and writing
of data relative to the 2310 Disk Storage. This
includes the major functions: seek, read, and write,
in conjunction with read-back check and file­
protection.

The DISKN Subroutine is part of skeleton I/O.

I DISKN reads and writes consecutive sectors most of
the time without extra disk revolutions. It is in core
at all times and may be called from any interrupt
level and under any mask condition. When it is called
from an interrupt level which is the same or higher
than the level that the disk interrupt is on, or if the
disk interrupt level is masked, the DISKN subroutine
operates in a masked condition utilizing indicators.
Otherwise, the DISKN subroutine will operate using
interrupts.

NOTE: DISKN does not save the A-register when
called.

Sector Numbering and File Protection

In the interest of providing disk features permitting
versatile and orderly control of disk operations, two
important conventions have been adopted. They are
concerned with sector-numbering and file-protection.

Successful use of the disk subroutines can be expected
only if user programs are built within the framework
of these conventions.

The primary concern behind the conventions is the
safety of data recorded on the disk. To this end, the
file-protection scheme plays a major role, but does
so in a manner that is dependent upon the sector­
numbering technique. The latter contributes to data
safety by allowing the disk subroutine to verify the
correct positioning of the access arm before it actu­
ally performs write operation. This verification
requires that sector identifications be pre-recorded
on each sector and that subsequent writing to the disk
be done in a manner that preserves the existing
identification. The disk subroutines have been organ­
ized to comply with these requirements.

Sector Numbering

The details of the numbering scheme are as follows:
each disk sector is assigned an address from the
sequence 0,1, ... , 1599 corresponding to the sector's
position in the ascending sequence of cylinder and
sector numbers from cylinder 0 (outermost) sector 0,
through cylinder 199 (innermost) sector 7. (The disk
subroutine can address 200 cylinders, each cylinder
containing eight sectors, each sector containing
321 words.)

This sector address is recorded by the user in
the sector's first word, and occupies the rightmost
eleven bit positions. Of these eleven positions, the
three-low-order positions identify the sector (0-7)
within the cylinder. Utilization of this first word for
identification purposes diminishes the per sector
availability of data words to 320; therefore, trans­
mission of full sectors of data is performed in units
of this amount.

File Protection

File protection is provided to ,guard against the
inadvertent destruction of previously recorded data.
By having the normal writing functions uniformly
test the file-protection status of cylinders they are
about to. write , this control can be achieved.

File protection is implemented in the TSX System
by defining any disk cylinder as being either file
protected or not file protected. The DUP operations
are used to designate file protection.

If a cylinder is file protected, the sector
addresses on that cylinder contain a one bit in bit
position zero of the sector address word.

Calling Sequence

LIBF DISKN

DC

DC

DC

AREA

/XXXX

AREA

00000

Word Count

(Control)

(I/O area)

(Special condition;
not used)

Device I
Ident. Sector Address

I/O Area

The calling sequence parameters are described in the
following paragraphs.

Control Parameter

This parameter consists of four hexadecimal digits
which are used as shown below:

I/O Function~: f 3

Test Option

Seek Option

4

Displacement Option------....

I/O Function

The I/O function digit specifies the operation to be
performed on a 2310 Disk Storage. The functions,
their associated digital value, and the required
parameters are listed and described below.

Subroutine Library 47

Test

Read

Write without RBC

Write with RBC

Write Immediate

Seek

Seek Home

Digital Required
Value Parameters*

o Control, I/O area

Control, I/O area,
Special Conditions**

2 Control, I/O area,
Special Conditions**

3 Control, I/O area,

4

5

7

Special Conditions**

Control, I/O area

Control, I/O area,
Special Conditions**

Control, I/O area,
Special Conditions**

*Any parameter not required for a particular function

must be omitted.

**Special Condition Parameter may be defined as

any constant.

Test. Executes the test as specified by the test
.opti.on digit. Branches t.o LIBF+3 if the test indicates
busy, .or t.o LIBF+4 if the test indicates n.ot busy.

NOTE: This functi.on requires tw.o parameters. The
I/O area parameter must be at a l.ocati.on .other than
the read .or write being tested f.or the device busy
test and must be the same l.ocati.on as the read .or
write being tested f.or a buffer busy test.

Read. P.ositi.ons the access arm and reads data int.o
the user's I/O area until the specified number .of
w.ords have been transmitted. Although sect.or
identificati.on w.ords are read and checked f.or agree­
ment with expected values, they are neither trans­
mitted t.o the I/O data area n.or are they c.ounted in
the tally .of w.ords c.onveyed.

If during the reading .of a sect.or a read check
.occurs, up t.o ten retries are attempted. If the error
persists the functi.on is disc.ontinued, and an exit is
made t.o EAC.

Write with Readback Check. This functi.on first
checks if the specified sect.or address is in a file­
pr.otected area. If it is, the subr.outine exits t.o EAC.

If the specified sect.or address is n.ot file pr.otected,
the subroutine writes the c.ontents .of the indicated
I/O data area int.o c.onsecutive disk sect.ors. Writing
begins at the designated sect.or and c.ontinues until
the specified number .of w.ords has been transmitted.
A readback check is perf.ormed .on the data written.

If any err.ors are detected, the .operati.on is
retried up t.o ten times. If the functi.on cann.ot be
acc.omplished by this time, an exit is made t.o the
EAC r.outine.

48

J..J()1& ~ DClYP1 t d 714 vlll pie sec-1-o)-
(J LV rl 're.- D p...(J~a -1-1 01-'1)

~ &~Q!l secJ,.oL!§...\Y!'Jllim..,~
supplies the sect.or identificati.on w.ordJ~rhis w.ord
is neither .obtained fr.om the I/O area n.or is it
c.ounted in the tally .of w.ords.

Write With.out Readback Check. The functi.on is
the same as the functi.on just described except that
n.o readback check is perf.ormed.

Write Immediate. Writes data with n.o attempt t.o
check f.or err.ors. This functi.on is pr.ovided t.o fulfill
the need f.or m.ore rapid writing t.o the disk than is
pr.ovided in the previ.ously described Write functi.ons.
Its primary applicati.on is in the "streaming" .of
anal.og input data t.o the disk f.or temp.orary bulk
st.orage.

Seek. Initiates a seek as specified by the seek .opti.on
digit. If any err.ors are detected, the .operati.on is
retried up t.o 10 times.

Seek H.ome. This functi.on seeks the arm t.o cylinder
zer.o, ign.oring sect.or addresses. Since all interrupt
levels are masked during the .operati.on .of this functi.on,'
it is rec.ommended that it be used .only f.or rec.overy I

fr.om disk err.ors.

Test Opti.on

If zer.o, the test determines if the particular device
specified by the device code in the sector address is
busy or n.ot. When this test is used, do n.ot reference
a sector address parameter that might then be in use
reading or writing t.o disk, since the sect.or address

(parameter is temporarily altered by f)fflJq'!\t"during 1)/ Sk N
the execution of a read or write .

If the test .opti.on parameter is .one, the test
determines if the I/O area referenced by the area
parameter is in use by any .of the disk devices.

Seek Opti.on

If zer.o, a seek is executed t.o the cylinder wh.ose
sect.or address is in the disk I/O area c.ontr.ol w.ord:
if n.on-zer.o, a seek is executed t.o the next cylinder
t.oward the center, regardless .of the sect.or address
in the disk I/O area c.ontrol w.ord. This .opti.on is
valid only when the seek functi.on is specified.

NOTE: The seek function requires that the user
set up the n.ormal I/O area parameter (see I/O
Area Parameter) even th.ough .only the sect.o-;-

address in the I/O area is used. The I/O area con­
trol word (first word) is ignored.

Displacement Option

If zero, the sector address word contains the abso­
lute sector identificatIOn; if one, either the process
or nonprocess work storage address for the speci­
fied disk (depending upon which program called
DISKN) is added to the sector address word to gener­
ate the effective sector identification.

110 Area Parameter

The I/O area parameter is the label of the first of
two control words which precede the user's I/O
area. The first word contains a count of the number
of data words that are to be transmitted during the
disk operation. This count need not be limited by
sector or cylinder size, since these subroutines cross
sector and cylinder boundaries, if necessary, in
order to process the specified number of words.

The second word contains the sector address
parameter where reading or writing is to begin.
Bits 0-3 specify the device identification and bits
4-15 specify the sector address. The device iden­
tific ation is 0 for the first disk, 1 for the second
disk, and 2 for the third disk.

Following the two control words is the user's
data area. No chaining of disk I/O areas is per­
miteed.

Special Condition Parameter

(See Basic Calling Sequence.)

PRINTER SUBROUTINE

The printer subroutine PRNTN handles all print and
carriage control functions relative to the IBM 1443
Printer. Only one line of data can be printed, or one
carriage operation executed, with each call to the
printer subroutine. The data in the output area must
be in printer BCD form, packed two characters p~r
computer word (See Data Codes).

The PRNTN subroutine is in core at all times as
part of the skeleton if the user's system has a 1443
Printer attached. PRNTN may be called from any
interrupt level or under any mask condition. When
it is called for an interrupt level which is the same
or higher than the level that the printer is on, or if

Form C26-5990-1

Page Revised 7/20/66
By TNL N26-0559

the printer interrupt level is masked, the PRNTN
subroutine operates in a masked condition utilizing
indicators. Otherwise, PRNTN will operate using
interrupts.

NOTE: PRNTN cannot determine if the 1443 ready
indicator is on. Therefore, it is the responsibility
of the operator to ensure that the ready indicator is

I
always on. When an i;nterrupt response is not received
during on-line operation, control is transferred to
EAC and a message is printed on the EAC printer.

Calling Sequence

LIBF PRNTN

DC /XXXX (Control)

DC AREA (I/O area)

DC 00000 (Special Con-
ditions; not used)

AREA Word Count

I/O Area

The calling sequence parameters are described in
the follOWing paragraphs.

Control Parameter

This parameter consists of four hexadecimal digits
which are used as shown below.

1 2 3 4

I/O Function 1 i :d
. Carriage Control-- (2 and 3)

Test Control (3 only

D,exice Identification.-------....J

1/ a Function

The I/O function digit specifies a particular operation
to be performed on a 1443 Printer. The functions, .
their associated digital value, and the required
parameters are listed and described below.

Subroutine Library 49

Form C26-5990-1

Page Revised 7/20/66

By TNL N26-0559

Digital Required
Function Value Parameters*

Test 0 Control

Print/ no checks Control, I/O area

Print/with checks 2 Control, I/O area,
Special Condition**

Control Carriage 3 Control

Read Control Tape 4 Control

*Any parameter not required for a particular
function must be omitted.

**Special Condition Parameters may be defined
as any constant.

• Table 4. Control Operations

50

Digit #2: Immecliole Carriage Operations

Print Functions

o - Ignore channel 12 indicator
1 - Automatically skip to channell when

channel 12 is detected

Control Function

1 - Immediate Skip To Channell
2 - Immediate Skip To Channel 2
3 - Immediate Skip To Channel 3
4 - Immediate Skip To Channel 4
5 - Immediate Skip To Channel 5
6 - Immediate Skip To Channel 6
7 - Immediate Skip To Channel 7
8 - Immediate Skip To Channel 8
9 - Immediate Skip To Channel 9
A - Immediate Skip To Channell 0
B - Immediate Skip To Channel 11
C - Immediate Skip To Channel 12
D - Immediate Space Of 1
E - Immediate Space Of 2
F - Immediate Space Of 3

Test. Branches to LIBF +2 if the previous operation
has not been completed or to LmF +3 if the previous
operation has been completed. (Hexadecimal digit 3
determines the type of test.)

Print/No Checks. Prints characters from the user's
I/O area, ignoring print checks.

Print/With Checks. Prints characters from the
user's I/O area, checking for print errors. If print
errors are detected, the subroutine branches to EAC.
This branch occurs after the line of data has been
printed.

Control Carriage. Control the carriage as specified
by the carriage control digits listed in table 4.

Digit #3: Test and After-Print Carriage Operations

T est Function

o - Printer Busy
1 - Message Transfer to Buffer Busy

Print Functions

o - Space One line After Printing
1 - Suppress Space After Printing

Control Function

1 - Skip After Print To Channell
2 - Skip After Print To Channel 2
3 - Skip After Print To Channel 3
4 - Skip After Print To Channel 4
5 - Skip After Print To Channel 5
6 - Skip After Print To Channel 6
7 - Skip After Print To Channel 7
8 - Skip After Print To Channel 8
9 - Skip After Print To Channel 9
A - Skip After Print To Channel 10
B - Skip After Print To Channel 11
C - Skip After Print To Channel 12
D - Space 1 After Print
E - Space 2 After Print
F - Space 3 After Print

Read Carriage Control Tape. The A-register is set
as follows for the respective conditions. If the 1443
is busy at the time of the call, PRNTN will wait until
it is not busy before reading the carriage control tape.

A-register

Bit 0 set to 1

Bit 1 set to 1

Bit 2 set to 1

Carriage Control

Condition

If control tape channel 9. is on.

If control tape channel 12 is on.

If control tape channell is on.

Digits 2 and 3 spE!cify the carriage control functions
listed in Table 4. An immediate request is executed
before the next print operation; an after print
request is executed after the next print operation and
replaces the normal space operation.

If the I/O function is print, digits 2 and 3 are
examined; if the I/O function is control, and digits 2
and 3 both specify carriage operations, only digit 2
is used.

Test Control

Digit 3 determines the type of test. It is shown here
and repeated in Table 4.

Test Function

o - Printer busy

1 - Message transfer to buffer busy

Device Identification

I This digit must be o.

I/O Area Parameter

The I/O area parameter is the label of the control
word that precedes the user's I/O area. No chaining
is permitted with the printer subroutines; therefore
the control word consists of a word count only. The
word count specifies the number of computer words
of data to be printed. The data must be in printer
BCD format, packed two characters per computer
word.

Special Condition Parameter

(See Basic Calling Sequence.)

MAGNETIC TAPE SUBROUTINE

Form C26-5990-1

Page Revised 10/25/66
By TNL N26-0560

The magnetic tape subroutine performs all read,
write, and control functions relative to the IBM 2401
and 2402 Magnetic Tape Units.

Calling Sequence

UBF

DC

DC

MAGT

/xxxx

AREA

DC SPEC

SPEC Return Link

Violation Routine

BSC I SPEC

AREA Control Word

I/O Area

(Control)

(I/O area)

(Special condition routine)

The calling sequence parameters are described in
the following paragraphs.

Control Parameter

This parameter consists of four hexadecimal digits
which are used as shown below:

I/O. Function ~~ J 3

Panty

Density/Bytes

4

Device Identification _______J

1/ a Function

The I/O function digit specifies the operation to be
performed on a magnetic tape unit. The functions,
their associated digital value, and the required
parameters are listed and described below.

Subroutine Library 51

Form C26-5990-1

Page Revised 10/25/66

By TNL N26-0560

Hexadecimal Required

~ Value Parameters*

Test 0 Control

Read/with error Control, I/O Area

retries Special Condition**

Read/without error 2 Control, I/O Area,

retries Special Condition**

Write/with error 3 Control, I/O Area

retries Special Condition**

Write/without error 4 Control, I/O Area

retries Special Condition**

Rewind 5 Control

Rewind and unload 6 Control

Backspace 7 Control

Write tape mark 8 Control

Erase 9 Control

Reset A Control

*Any parameter not required for a particular function

must be omitted. All required parameters for a

particular function must be present.

**Special Condition parameter is the label of the user's

routine to process intermediate interrupts, error

conditions, etc.

Test. Branches to LIBF +2 if the previous operation
has not been completed or to LIDF +3 if the previous
has been completed.

Read/with error retries. Reads the next record into
the I/O area. If a read check occurs, the subroutine
retries the operatIOn up to 100 times. Each attemI?t
includes backspacing the tape one record and then re­
reading the record. Every third attempt, the tape is
backspaced three records and then spaced forward
twice before re-reading begins. If at any time, be­
fore 100 retries have been attempted, the record is
read correctly, the subroutine exits from the retries
as if no error had occurred.

If a read check still exists after 100 attempts to
re-read, the subroutine exits to EAC, then to the
user via the special condition parameter, then clears
the routine Busy indicator, and exits normally.

If intermediate end-of-table interrupts are sensed,
the subroutine exits to the user via the special condi­
tion parameter, with a code of 96 in the A-register.
This occurs for every such interrupt on each attempt
to re-read the record.

Read/without error retries. Reads the next record
into the I/O area. No error correction is attempted
on error conditions. This read mode is useful when

52

the end-of-table interrupts are used to process data
I already transferred to core storage from tape dur­

ing the read operation. It is the user's responsi­
bility to perform any error correction desired.

Write/with error retries. Writes the requested
number of words from the I/O area as one record
on the specified tape. If a write check is detected,
the tape is backspaced, several inches of tape are
erased, and the write operation is restarted. If a
write check still occurs after three attempts, the
subroutine exits to EAC, then to the user via the
special condition parameter, then exits normally.

If intermediate end-of-table interrupts are
sensed, the subroutine exits to the user via the
special condition parameter, with a code of 96 in the
A-register. This occurs for every such interrupt on
each attempt to write the record.

Write/without error retries. Writes the requested
number of words from the I/O area as one record
on the specified tape. No error correction is
attempted if a write check occurs. This write mode
is useful when streaming high speed inputs onto tape
for bulk storage.

Rewind. Initiates a tape rewind and returns control
to the user.

Rewind and unload. Initiates a tape rewind and un­
load and returns control to the user.

Backspace. Backspaces one record. If the tape is
at load point, no backspace occurs.

Write tape mark. Writes a tape mark on the tape.

Erase. Erases approximately three and one-half
inches of tape.

Reset. Stops the magnetic tape operation in progress
and resets all indicators.

Parity

The parity digit specifies the parity of the records
that are being read or written. A zero specifies
odd-bit parity and a one specifies even-bit parity.
This digit is used only for read and write functions
on 7-track tape and is ignored for 9-track magnetic
tape.

When writing 7-track tape in even parity, an all
zero (000000) or A bit (010000) character will be
written as an A bit (010000). When reading 7 -track
tape in odd parity, an A (010000) tape character will
be read as an all-zero (000000) character. What bits
in core are read as a character on tape depends on
the byte mode (see IBM 1800 Data Acquisition and
Control System Data Processing Input/Output Units,
Form A26-5969.

Density/Bytes 1/ a Area Parameter

Form C26-5990-1

Page Revised 10/25/66
By TNL N26-0560

This digit specifies the density and the number of
tape bytes (6-bit characters) per word to be used
with 7 -track magnetic tape. It is ignored for 9-
track operations.

The I/O area parameter is the label of the control
word which precedes the user's first I/O area. This
control word consists of a word count, chLinirl5 indi-

I cator, and end-of-table interrupt indicator. The
word count must not be less than 8 characters for a
read and 9 characters for a write. For a complete
description of this word, see IBM 1800 Data Acquis-

Bits zero and one specify the number of bytes
per word:

00 Three bytes

01 Two bytes

Bits two and three specify the density:
00 800 bits/inch

01 200 bitS/inch

10 556 bits/inch

Device Identification

ition and Control System Functional Characteristics
Manual (Form A26-5918).

End -of-table interrupts are recognized by the sub­
routine and control is given to the user via the spec­
ial condition parameter, with a code of 0600 in the
A-register. Note that on error retries, every end­
of-table interrupt on each attempt to read or write,
the record is recognized.

Special Condition Parameter

This digit specifies which of the two possible mag­
netic tape units is to be used. The units may not
operate simultaneously.

The special condition parameter is the label of the
user's routine to which control is transferred ac­
cording to Table 5. The user's routine is entered
with a BSI instruction and should return control to
the magnetic tape subroutine at the next location
following the call.

o
1

First unit
Second unit

• Table 5. Magnetic Tape Special Conditions

Contents of Contents of
A-register Q-register Reason

0600 XXXX End-of-tabl e
Interrupt

0001 xxx X End-of-fi I e
on read

0002 Channel word Wrong length
count record read,

no read
checks

0003 XXXX Intermediate
read or wri te
check

0004 Channel word Read or write
count checks on

last record

If the I/O area and the I/O subroutine are in the
system skeleton, the special condition routine must
also be in the skeleton •

Notes

An end-of-table interrupt has occurred for the current record being read or written.

An end-of-file mark has been read. The subroutine will clear busy and exit
normally when the user retums control.

The wrong length record indicator was on for this read. The subroutine will clear
busy and exit normally when the user returns control.

Read or write checks have occurred on the last record. This exit occurs only if the
read/ or write/ with retries was specified. The subroutine will continue when the
user retums control.

Read or write checks have occurred on the last record. This exit occurs when the
error correction procedure has failed to clear up the problem if read/ or write/
without retries has been specified. The subroutine will clear busy and exit normally
when the user retums control. The subroutine does not check for noise records and
the user must determine the length of the record read or written.

Subroutine Library 53

Form C26-5990-1

Page Revised 10/25/66
By TNL N26-0560

End-of-Tape

When an end-of-tape condition is detected, the sub­
routine takes the following action:

For read functions, the subroutine executes a re­
wind and unload instruction, then exits normally.

For a write with error retries, the subroutine
writes a tape mark, then executes a rewind and un­
load instruction, then exits normally.

Sensing of an end-of-tape condition terminates
any error recovery procedure.

Error Count

The subroutine maintains an error count of the num­
ber of times EAC has been called. When the count
exceeds 50, the subroutine calls EAC for an exces­
sive tape error message. The error count is set to
zero whenever a tape is rewound.

PRINTER-KEYBOARD SUBROUTINE

There is one subroutine for the transfer of data to
and-from the IBM 1053 and the 1816 Printer­
Keyboard. It can be called by either of its two
names: TYPEN or WRTYN.

I If the system configuration does not include the
1816 Printer-Keyboard, the keyboard portion of the
subroutine is removed (origined out).

Message Storage

At TASK assembly time, the user must define two
things for the TYPEN subroutine: Whether messages
to the 1053 are to be buffered to disk or not, and the
message unit size required for each 1053.

If buffering of messages to disk has been defined,
the size of any message can be greater than the size
of the message unit. If no buffering has been defined,
the message can never be of a greater size than that
defined for the message unit.

54

Buffering of Messages to Disk

The maximum core size that may be specified for a
message buffer is 319 words, and the minimum core
size is 20 words. Each buffer can be a different size.
The optimum size is between 40 and -80 words (80 to
160 characters).

When a 1053 or 1816 printer is busy and another
call to the printer is given, the excess message data
is temporarily stored in a disk buffer. (The data of
other additional calls will be placed behind the first
call.) When the current message (or portion of a mes-

I sage) has been completed, the longest stored (time­
wise) disk message is brought into core and printing
continues (see Message Priority). If a call is given to
a printer that is not busy and the entire message fits
into the core buffer, no buffering to disk occurs.

If TYPEN/WRTYN is called from an interrupt level
higher than or the same as the interrupt level for the
1053, or the 1053 interrupt level is masked, the
message will be stored on disk, but no output will
take place on the 1053 until operation has been
restored to an interrupt level that is lower than that
of the 1053. If the disk buffer is full in the case just
described, the message being printed will be temp­
orarily discontinued, while the new message is typed
by using indicators rather than using the interrupts.

Non-Buffering of Messages to Disk
~

There is no maximum
tO

message unit size specified.
The minimum size is 20 words, except if the user
plans to use FORTRAN I/O, in which case the
minimum size is 80 words.

WhEm non-buffering of messages to disk has been
defined, the user should not call to print a message
from an interrupt level that is higher than or equal
to the priority of the typewriter interrupt level, or
call to type a message if the interrupt level of the
typewriter is masked. If such calls are executed,
the present message will be temporarily discontinued,
while the new message is typed by using indicators

instead of the interrupts. TYPEN moves the user's
message into the buffer in the typewriter device table
in core before returning to the user, therefore, the
user's message area is free as soon as a return
from "TYPEN has been executed.

Calling Sequence

LIBF TYFEN or WR TYN

AREA

DC

DC

DC

/xxxx

AREA

00000

(Control)

(I/O area)

(Special Condition; not used)

Word Count

I/O Area

The parameters used in the above calling sequence
are described in the following paragraphs.

Control Parameter

This parameter consists of four hexadecimal digits
which are used as shown below:

1 234

I/O Function _1 i r r
Me,,.ge P,;o,;ty~ I I
Device Identification-----L----I

I/ a Function

The I/O function digit specifies a particular operation
to be performed on an 1816 Printer-Keyboard and/or
1053 Printers. The functions, their associated digital
value, and the required parameters are listed and
described below.

Test

Read-Print

Print

Digital
Value

o

2

Required Parameters*

Control

Control, I/O area,
Special Condition**

Control, I/O area,
Special Condition**

*Any parameter not required for a particular function
must be omitted.

**Special Condition parameter may be defined as any
constant.

Form C26-5990-1

Page Revised 10/25/66
By TNL N26-0560

Test: Branches to LIBF +2 if the previous operation
has not been completed or to LIBF +3 if the previous
operation has been completed.

Read-Print: Reads from a keyboard and prints on
specified 1053 printer the requested number of
characters. The operation sequence is as follows:
1. The calling sequence is analyzed by the call

routine which then unlocks the keyboard.
2. When a key is pressed, a character interrupt

signals the interrupt response routine that a
character is ready to be read into core storage.

3. The interrupt response routine converts the
keyboard data to the typewriter output code (see
Data Codes), printing each character on the
specified printers as the character is read and
unlocking the keyboard for entry of the next
character, if any.

4. The printer interrupt occurs whenever the
specified printer has completed its print
operation.

5. Items 2 to 4 are repeated until the specified
number of characters has been read and printed
or an E OF character is entered. The characters
read into the I/O area are in IBM card code; that
is, each 12-bit image is left-justified in one 16-
bit word.

Three keyboard functions are recognized by the
printer-keyboard subroutine:

Backspace (ER CRR). The operator presses the back­
space key whenever the previous character is in error.
The interrupt response routine, sensing the control
character, backspaces the specified printer and prints
a slash (/) through the previous character. In addition,
the routine prepares to replace the previous character
in the I/O area with the next character.

I Re-entry (ER FLD). When the interrupt response rou­
tine recognizes the re-entry control character, it
assumes that the entire message is in error and is to
be re-entered. The routine restores the carrier to a
new line. In addition, the routine prepares to replace
the old message in the I/O area with the new message.

I End-of-Message (EOF). When the interrupt response
routine recognizes the end-of-message control char­
acter, it assumes the message has been completed,
stores an NL character in the I/O area, and termin­
ates the operations.

Subroutine Library 55

Form C26-5990-1

Page Revised 10/25/66
By TNL N26-0560

NOTE: There will be no NL character in the I/O area
if the message was terminated because the word count
went to zero.

Print: Prints the specified number of characters on
the specified printer. Printer interrupts occur when
the specified printer has completed a print operation.
When the interrupt has been received, the character
count is checked. If the specified number of charac­
ters has not been printed, printing is initiated for the
next character. This sequence continues until the
specified number of characters has been printed.
Data to be printed must be in typewriter-output code
(see Data Codes) packed two characters per 16-bit
word. Control characters can be embedded in the
message wherever desired.
NOTE: Printing starts wherever the printing element
is positioned; that is, a carrier return to a new line is
not automatic when the subroutine is called. Do not
press carrier RETURN with the motor off (it times
out in two minutes) as it causes the TSX system to
loop when the 1816 is selected.
The two words preceding the beginning of the I/O
area may be altered temporarily if the message is
buffered to disk. Therefore, these words should
never be storage protected, nor should they be
executable instructions in an interrupt routine.

Message Priority

The message priority digit is used to denote the type
of message to be printed: (0) normal or (1) priority.
Messages are stacked (if necessary) on the disk and
are printed when those that precede it have been
printed. Priority messages are also stacked if the
printer is busy at the time of the call, but as soon as
the message unit in the core buffer area is completed,
printing of the priority message begins. Message
priority has no meaning on those systems that do not
buffer messages to disk.

Note that although a message can be of any length,
when a priority call is made, a normal message can
be interrupted at the place(s) it overflows the core
buffer and becomes stored on disk.

Printing of any stacked normal messages resumes
at the completion of the priority message printing.

NOTE: When there is buffering of messages to disk,
there are, in effect, four priorities by which
messages are printed:

1. EAC messages
2. Keyboard entries
3. Priority messages
4. Normal messages

When there is no buffering of messages, there
are, in effect, two priorities of messages:

S6

1. EAC messages
2. Keyboard, priority, and normal messages.

Device Identification

Two groups can be controlled by the printer-keyboard
subroutine: the basic group (which includes the pri­
mary 1816 or 1053) and the output printer expander
group. Each group may include up to four 1053 Print­
ers, or one 1816 Printer-Keyboard and up to three
1053 Printers.

Hexadecimal digit #4 identifies which 1816/1053 is
to print the message on a print function and which
1816/1053 is to print the keyboard entry for visual
verification on a read function. Hexadecimal digit #3
is used only on a test function. If digit #3 is aI, it
indicates that a busy test is to be made for the key­
board on the same group as the 1816/1053 specified
in hexadecimal digit #4. The possible combinations
for the test and read/write functions are listed below.

Test Re ad/W rite*

Hexadecimal Hexadecimal Hexadecimal
Device

Digit #3 Digit #4 Digit #4

0 1 1 1816/1053-1,Group 1

0 2 2 1053-2, Group 1

0 3 3 1053-3, Group 1

0 4 4 1053-4, Group 1

1 1, 2, 3, 4 Keyboard on Group 1

0 5 5 1816/1053-1,

Group 2

0 6 6 1053-2, Group 2

0 7 7 1053-3, Group 3

0 8 8 1053-4, Group 4

1 5, 6,7, 8 Keyboard on Group 2

*Hexadecimal digit #3 is ignored on a read/write instruction. The

keyboard being used for input (read) will be on the same group as
the printer selected to type the input message for visual verification,

i. e ., if hexadecimal digit #4 for a read/write instruction is a
number between 1 and 4, the keyboard on printer group 1 must
be used for input.

I/O Area Parameter

The I/O area parameter is the label of the control
word which precedes the user's I/O area. Chaining
is not permitted; therefore, the control word con­
sists of a word count only. The word count specifies
the number of words to be read into or printed from.

This word count is equal to the number of characters
if the read-print function is requested but is equal to
one-half the number of characters if the print function
is requested. .

Special Condition Parameter

(See Basic Calling Seguence.)

Operator Request Function

By pressing the operator request key on the keyboard,
the operator can inform the program that he wants to
enter some data from the keyboard. The interrupt
that results from such a request causes the Keyboard­
Printer subroutine to program an interrupt to a lower
level. The user must specify the level at task assem­
bly time, and provide an interrupt program to service
the programmed interrupt. This precludes the user

The parameters used in the above calling sequenc'e
are described in the following paragraphs.

Control Parameter

This parameter consists of four hexadecimal digits
which are used as shown below:

1 2 3 4

1/ 0 Function 1
J I Check

Not Used

Device Identification

I/O Function

from having any other programmed level interrupts on The I/O function digit specifies a particular operation
this level. Word 149 of core is set to a negative value to be performed on a 1054/1055 Paper Tape attach-
if the request is from the 1816 in the first group of ment. The functions, their associated digital value,
1053/1816s, and is set to a positive value if the re- and the required parameters are listed and described
quest came from the 1,816 in the seCOndfg:rouP~ I' r below. /r'Y1 'Fib it<'-eyDoC)r(., -c,",,,,'rMj S"oulc b-t. epel--lCe\\

01--. ~'h I"",+f'Y}-("I'i-fro"l..,..,. ~h~ kejP61~ r-e1vesr }(etx
PAPER TAPE SUBROUTINE Tn-.e ,Plb ,s "'1loT cO sld-tll-'eci

? prDc't?SS '10 d'tVl e-e..
The paper tape subroutine handles the transfer of data
from the IBM 1054 Paper Tape Reader to core storage
and from core storage to the IBM 1055 Paper Tape
Punch. Any number of characters can be transferred
with one calling sequence.

When called, the paper tape subroutine starts the
reader or punch and then, as interrupts occur, trans­
fers data to or from the user's I/O area. The data is
packed two characters per computer word by the sub­
routine when reading, and must be in that form when
the subroutine is called for a punch function.

Calling Sequence

LIBF

DC

DC

DC

PAP TN

/xxxx

AREA

00000

AREA W=lcountl
I/O Area

(Control)

(I/O area)

(Special Condition; not used)

Test

Read

Punch

Digital
Value

o

2

Required Parameters*

Control

Control, I/O area,
Special Condition**

Control, I/O area,
Special condition**

*Any parameter not required for a particular function
must be omitted.

**Special Condition parameter may be defined as any
constant.

Test. Branches to LIBF+2 if the previous operation
has not been completed or to LIBF+3 if the previous
operation has been completed ..

Read. Reads paper tape characters into the specified
number of words in the I/O area. Initiating read mo­
tion cause s an interrupt to occur when a character can
be read into core. If the specified number of words
has not been filled, or the stop character has not been
read (see Check), reader motion is again initiated.

Punch. Punches paper tape characters into the tape
from the words in the I/O area. Each character
punched causes an interrupt which indicates that the
next character can be accepted. The operation is

Subroutine Library 57

terminated either by encountering a stop character or
by the tot al number of words having been transferred.
(See Check.)

Check

The check digit specifies whether or not checking is
desired while doing a read or punch operation.

0- Check

1- No check

No Check. The read or punch function is terminated
when the specified number of words has been read or
punched, two characters per word. No 9heck is made
for a delete or stop character.

Check. This function should be used with the perfo~
rated tape and transmission (PTTC/S) code only (see
Data Codes). The PTTC/S code for DEL will be used
as the delete character when doing a Read. The de­
lete character is not placed in the I/o area and there­
fore does not enter into the count of the total number
of words to be filled.

The PTTC/S code for NL will be used as the Stop
character when doing a read or punch. On a read
operation, the stop character is transferred into the
I/O area and causes the operation to be terminated.
On a punch operation, the stop character is punched
in the paper tape and causes the operation to be
terminated.

When the stop character is encountered before the
specified number of words has been read or punched,
the operation is terminated. When the specified num­
ber of words has been read or punched, the operation
is terminated even though a stop character has not
been encountered.

Device Identification

Since only one 1054/1055 Paper Tape attachment is
supported by the paper tape subroutines, the device
identification code is not needed to indicate which
1054/1055 device the user is specifying, nor is the
identification code needed to identify whether the read­
er or the punch is being called, since the I/o function
is sufficient for this determination. However, when
the Test function is specified, the P APTN subroutine
must be told which device (reader or punch) is to be
tested for an "operation complete" uidication. (Re­
member that both the reader and the punch can operate

58

simultaneously.) If it is a 0, the subroutine tests for
a "reader complete" indication; if it is a 1, the sub­
routine tests for a "punch complete" indication.

I/O Area Parameter

The I/O area parameter is the label of the control
word which precedes the user's I/O area. Chaining is
not permitted with the paper tape subroutine; there­
fore, the control word consists of a word count only.
The word count specifies the number of words to be
read into or punched from. Since characters .. are...:
packed two per word in the I/O area, this counf is
one-half the maximum number of characters trans­
ferred. Because an entire S-bit channel image is
transferred by the subroutine, any combination of
channel punches is acceptable. The data may be a
binary value or a character code. The code most
often used is the PTTC/S code (see Data Codes).

Special Condition Parameter

(See Basic Calling Sequence.)

PLOTTER SUBROUTINE (PLOTX)

The PLOT X subroutine converts the hexadecimal
digit in the parameter· into a control word. The con­
trol word is stored in a buffer inside the PLOTX
subroutine. One digit is transferred with each calling
sequence. When the plotter is ready to accept con­
troIs, the movement of the plotter recording pen is
controlled by the words in the PLOTX buffer.

Calling Sequence

UBF PLOTX

DC /XXXX (Control)

Control Parameter

This parameter consists of four hexadecimal digits
which are used as shown below.

::~~:e-d====:+ ___ I 2 __ -at i
Plotter Control---------.....I

Device

I The device identification digit must be a number
between 0-7.

I

Control Plotter

The control plotter digit specifies the recording pen
action to be taken. This digit is expressed in
hexadecimal.

Hexadecimal Plotter
Digit Action

0 Pen down

Line segment = +Y

2 Line segment = +X, +Y

3 Line segment = +X

4 Line segment = +X, -Y

5 Line segment = - Y

6 Line segment = -X, -Y

7 Line segment = -X

8 Line segment = -X, + Y

9 Pen up

A-F Not used

If there is no room to put the control digit into the
buffer, the routine will loop until there is room.

DIGIT AL INPUT SUBROUTINE

This subroutine is used to read in or to check digital
information for a number of digital input groups under
either direct program control or data channel control.
Table chaining is permitted when the data channel is
specified, however, continuous scanning is not
permitted.

Calling Sequence

LIBF DINP

DC

DC

DC

SPEC

/xxxx

AREA

SPEC

Return Link

Form C26-5990-1

Page Revised 10/25/66
By TNL N26-0560

(Control)

(I/O Area-DI address)

(Special condition routine)

Violation Routine

BSC I SPEC

AREA Control Word

DI Address

I/O Area

The calling sequence parameters are described in the
following paragraphs.

Control Parameter

This parameter consists of four hexadecimal digits,
used as shown below:

t 2 3 4

~: ::::tion-----

j iii
Data Cha=el Addre"ing MOde~

110 Function

The 110 function digit specifies the operation to be
performed by the digital input subroutine. The func­
tions, associated digital value, and required param­
eters are listed and described below.

Subroutine Library 59

Form C26-5990-1

Page Revised 10/25/66

By TNL N26-0560

Test

Read Data

Channel

Digital
Value

o

Read Sequential 2
Program Control

Read One Point
Into A-Reg.

Reset

3

4

Required Parameters*

Control

Control, I/O Area,
Special Condition

Control, I/O Area,
Special Condition

Control, I/O Area,
Special Condition

Control

*Any parameter not required for a particular function
must be omitted.

Test. Branches to LIBF+2 if the previous operation
has not been completed, or to LIBF+3 if the previous
operation has been com pleted.

Read Data Channel. Initiates the operation and re­
turns control to the user. A table-complete interrupt
occurs after the last word of a data table has been
processed. (The user can suppress this interrupt by
placing a 1 in bit position 1 of the I/O area control
word. However, the subroutine requires the interrupt
on the last table in the chain and will force the inter­
rupt by clearing bit position 1 of the control word for
the last table.) Whenever this interrupt occurs (ex­
cept on the last table), the subroutine branches indir­
ect via the address specified in the special condition
parameter, with a code of 73 in the A-register. The
subroutine is ''busy'' until all of the data has been
read, and the last table interrupt has occurred.

NOTE: Continuous scan of digital input is not
allowed, since this can lock out the CPU.

Read Sequential-Program Control. Reads in the re­
quested number of digital input values. After each
value is read, the word count is checked. If the re­
quested number of values has not been read, the sub­
routine reads in the next value. When the requested
number has been read, the subroutine returns control
to the user. There are no interrupts involved in the
operation, and the subroutine does not return control
to the user until the entire operation is complete. The
special condition parameter is not used; it can be any
data.

60

Read One Point Into A-Register. Reads the point
specified in the area parameter and places the value
in the A-register. The special condition parameter
is not used; it can be any data.

Reset. Halts all digital input operations in progress
and resets all indicators.

Data Channel Addressing Mode

The addressing mode digit specified one of six ad­
dressing options available. The addressing mode
digit is used only if the function is read data channel.

o - Random addressing

1- Sequential addressing

2 - Single addressing

3 - Random addressing with external
synchronization

4 - Sequential addressing with external
synchronization

5 - Single addressing with external
synchronization

I/O Area Parameter

The I/O area parameter is the label of the control
word that precedes the user's I/O area. Since chain­
ing is permitted (data channel control only), the chain­
ing bit and the suppress interrupt indicator bit are ex­
amined by the subroutine.

If single or sequential addressing mode is speci­
fied, the word count is the number of groups (words)
to be read, plus one, since the count includes the
digital input address word, which contains the ad­
dress of the initial digital input group to be read. If
single addressing mode is speCified, the initial input
group is read repeatedly into successive I/O area
locations. If the sequential addressing mode is
specified, the initial group address is incremented
after each data word is read.

If the random addressing mode is specified, the
word count is twice the number of groups (words) to
be read. Each digital address precedes its data
word.

For the fWlction of reading one point into the
A-register, the I/O parameter is the address of the
digital input group.

Special Condition Parameter

(See FWlctions Used.)

If the I/O area and the I/O subroutine are in the system
skeleton, the special condition routine must be in the
skeleton.

DIGITAL INPUT READ/COMPARE

This subroutine reads in a number of values under
program control and compares them with a table of
values supplied by the user. If any value read is not
equal to the user-supplied value, the subroutine
branches to a user's violation subroutine. There is
no interrupt associated with the routine; therefore,
it may be in core with either of the other digital
input routines.

Calling Sequence

LIBF DICMP

. DC /xxxx

DC AREA

DC SPEC

SPEC Return Link

Violation routine

BSC I SPEC

AREA Control Word

DI Address

Compare Values

(Control)

(I/O area)

(SpeCial Conditions

Routine)

The calling sequence parameters are described in
the following paragraphs.

Control Parameter

This parameter consists of four hexadecimal digits,
as shown below:

1 2 3 4

I/O FunCtion~ iii
Not Used--.l....---JI...----.I

I/O Function

Form C26-5990-1

Page Revised 10/25/66
By TNL N26-0560

The I/O function digit specifies the function to be
performed. The functions, associated digital values,
and the required parameters are listed and described
below.

Test

Read/
Compare

Digital
Value

o

Required Parameters*

Control

Control, I/O Area,
Special Condition

*Any parameter not required for a function must
be omitted.

Test. Branches to LIBF+2 if the previous operation
has not been completed, or to LIBF+3 if the previous
operation has been completed.

Read and Compare. Reads in, under direct program
control, compares with the number of words in the
user's I/O area. Each group is read in separately
and compared with one word in the I/O area. If
the two are not equal, the subroutine branches in­
direct via the special condition parameter.

When an error exit occurs, the A-register con­
tains the digital input address of the group in error;
the Q-register contains the current reading that did
not compare with the word in the I/O area. Mter
all the specified comparisons have been made, the
subroutine exits normally.

I/O Area Parameter

The I/O area parameter is the label of the control
word that precedes the address of the first group and
the values compared. The control word specifies the
word count of the number of values (words) to be com­
pared, plus one, for the address of the initial digital
input group to be read.

Special Condition Parameter

This parameter specifies the address of the violation
routine to be executed when a comparison of unequal
values results.

If the I/O area and the I/O subroutine are in the
system skeleton, the special condition routine must
also be in the skeleton.

Subroutine Library 61

DIGITAL lliPUT READ/EXPAND

This subroutine reads in a digital input value and
expands it into 2, 4, 8, or 16 words. It provides
the FORTRAN programmer with the ability to put
each of the different digital input values into a
number of words, with 8, 4, 2, or 1 bit per word.
(All output values are right-justified.) There is no
interrupt associated with the routine; therefore, it
can be in core with any of the other digital input
routines.
C aIling Sequence

LIBF DIEXP

DC /xxxx (Control)

DC AREA (I/O Area)

DC 00000 (Special Condition;
not used)

AREA DI Address

Input

Area

The calling sequence parameters are described in the
following paragraphs.

Control Parameter

This parameter consists of four hexadecimal digits,
as shown below:

1 234

I/O Function j iii
:::::n ReSOlUtiOn~

I/O Function

The I/O function digit specifies the type of operation
to be performed. The functions, associated digit
values, and required parameters are listed and des­
cribed below.

62

Test

Read/
Expand

Digit
Value

o

Required Parameter*

Control

Control, I/O Area,
Special Condition

*Any parameter not required for an operation
must be omitted.

Test. Branches to LIBF+2 if the data channel is
busy, or to LIDF+3 if ~t is not busy.

Read/Expand. Reads the digital input value specified
by the area address and separates the value into the
number of bits per word specified by the expansion
resolution digit.

Expansion Resolution

This digit specifies one of four resolutions.

1 - 16 Words, 1 bit per word

2 - 8 Words, 2 bits per word

4 - 4 Words, 4 bits per word

8 - 2 Words, 8 bits per word

I/O Area Parameter

The I/O area parameter is the label of the DI address
that precedes the input area. The first word of the
I/O area contains the DI address. High-order bits
of the DI value (bit 0, etc.) will be stored in the
second word of the I/O area, while low-order bits
(bit 15) will be stored in the last word of the I/O
area. All stored values are right-justified.

Special Condition Parameter

(See Basic Calling Sequence.)

DIGITAL/ANALOG OUTPUT SUBROUTINE

This subroutine transfers digital/analog information
to a number of addresses, under direct program.
control or data channel control. Table-chaining is
permitted on the data channel; however, continuous
scanning is not permitted.

Calling Sequence

LIBF DAOP

DC /xx:x.x

DC AREA

DC SPEC

SPEC Return Link

Violation Routine

BSC I SPEC

AREA Control Word

Address

I/O Area

(Control)

(I/O Area)

(Special Condition
Routine)

The calling sequence parameters are described in
the following paragraphs.

Control Parameter

This parameter consists of four hexadecimal digits
used as shown below:

1 2

I/O FunCtion---..1 i
Addressing Mode---1

3

Ch anne l------__ ..J

4

Test Option _________J

I/O Function

The I/O function digit specifies the operation to be
performed by the digital/analog output subroutine.
The functions, associated digital values, and required
parameters are listed and described below.

Test

Write

Write Pulse

Write Buffered

Reset

Digital
Value

o

2

3

4

Required Parameters*

Control

Control, I/O Area,
Special Condition

Control, I/O Area,
Special Condition

Control, I/O Area,
Special Condition

Control

*Any parameter not required for a particular fWlction
must be omitted.

Test. Depending on the test option, branches to
LIBF+2 if test indicates busy, or to LIBF+3 if test
indicates not busy.

Write. Writes the requested number of digital/
analog values. If direct program control is speci­
fied' no interrupts are involved in the operation.
Therefore, the subroutine does not return control
to the user until the entire operation is complete.
After each value is written, when using direct
program control, the word count is checked. If
the requested number of values has not been written,
the subroutine writes the next value. If the requested
number has been written, the subroutine returns con­
trol to the user. This routine only operates in the
sequential mod~. The DAO address is incremented
by one for each value written.

If the data channel is specified, the subroutine
initiates the operation and returns control to the
user. Table-complete interrupts occur after the
last word of a data table has been processed. (The
user can suppress this interrupt by placing a 1 in
bit position 1 of the I/O area control word. How­
ever, the subroutine requires this interrupt on the
last table in the chain and will force the interrupt
by clearing bit position 1 of the control word for the
last table.) Whenever these interrupts occur (except
on the last table), the subroutine branches to the ad­
dress speCified in the speCial condition parameter
with a code of 82 in the A-register. The subroutine
is "busy" until all of the data has been written and
the last table interrupt has occurred.

NOTE: Continuous output is not allowed on DAOP,
since this can lock out the P-C.

Write Pulse. Same as write, except that the control
for pulse output is given after the write function has
been performed.

Subroutine Library 63

Form C26-5990-1

Page Revised 10/25/66
By TNL N26-0560

Write Buffered. Same as write, except that the con­
trol for buffered output is given after the write
function has been performed.

Reset. Resets all digital/analog output operations in
progress and resets all indicators.

Addressing Mode

The addressing mode digit specifies one of four ad­
dressing options for data channel operations only.

o - Random addressing

1 - Single addressing

2 - Random addressing with external
synchronization

3 - Single addressing with external synchronization

Channel

This digit specifies the method of data transfer used
for this operation.

o - Direct program control

1 - Data channel control

Test Option

If zero (0), DAOP tests to see if the previous call has
been completed. If one (1), it tests to see if the pulse
output timer is on.

I/O Area Parameter

The I/O area parameter is the label of the control word
that precedes the user's I/O area. If the function
is direct program control, the word count is the num­
her of points to be written, plus one for the first
DAO address. If the function is data channel control,
the mode determines what the word count should be.
If the mode specifies random addressing, the table
contains interleaved digital/analog addresses and
data to be written. Each address precedes its data
word. If the mode specifies single addressing, the
table contains one address followed by all the data
words to be written for that address.

The word count is equal to the number of address
words and data words in the table. If the mode
indicates random addressing, the word count is twice
the number of data words to be written, since there
is an address for each data word. If the mode indi­
cates single addressing, the word count is the num­
ber of data words to be written plus one, since there

64

is only one address word. The subroutine expects
the 16-bit digital value for output to be in the follow­
ing format.

Bits 0 Sign
1-13
1-10

Data bits (DAC Models 3 and 4)
Data bits (DAC Models 1 and 2)

Special Condition Parameter

(See Functions Used)

I If the I/O area and the I/O subroutine are in the sys­
tem skeleton, the special condition routine must be
in the skeleton.

ANALOG INPUT - SEQUENTIAL SUBRQUTINE

This subroutine is used to read analog data (relay or
solid state) for a number of sequential points under
direct program control or o::Jta channel control. The
subroutine can be in core storage at the same time
as the AIPTN and AlliN subroutines, but the only
analog subroutine with which it can operate simul­
taneously is the AIPTN, and only if the multiplexer
overlap feature is attached and the AIPTN subroutine
is reading in a relay value. Within a table, relay
data and solid state data cannot be mixed for anyone
operation; however, relay tables and solid state
tables can be interleaved by chaining the tables
together.

Calling Sequence

LIBF AISQN

DC /xxxx (Control)

DC AREA (I/O Area)

DC SPC (Special Condition)

SPC Return Link

Error Routine

BSC I SPC

AREA Control Word

Multiplexer Address

I/O Area

The calling sequence parameters are described in
the following paragraphs.

Control Parameter

This parameter consists of four hexadecimal digits
as shown below:

I/O Function __ ~l j2 3

Data Resolution--­

External Synchronization

4

Device Identification ________ ----1

I/O Function

The I/O function digit specifies the operation to be
I performed by the AISQN subroutine. The functions,

associated digital values, and required parameters
are listed and described below.

Test

Read-Direct
Program Control

Digital
Value

o

Read-Data Channel 2
Control

Read-Data Channel 3
Control Without
Error Retry

Reset 4

Read and· Transfer 5

Required
Parameters*

Control

Control, I/O Area,
Special Condition

Control, I/O Area,
Special Condition

Control, I/O Area,
Special Condition

Control

Control, I/O Area,
Special Condition

*Any parameter not required for a particular function
must be omitted.

Test. Branches to LIBF+2 if the analog feature is
busy, or to LIBF+3 if the analog feature is not busy.

Read-Direct Program Control. Under direct program
control, reads the specified number of analog point
values into the I/O area. An interrupt occurs when a
value has been converted and can be read into core
storage. If the number of points specified has not
been read, another sequential point read operation is
initiated. If the number of points specified has been
read, no more read operations are initiated and no
more interrupts will occur. The special condition
parameter is not used; it can be any data.

Read-Data Channel Control. Under data channel con­
trol, reads the specified number of analog point values

Form C26-5990-1

Page Revised 10/25/66
By TNL N26-0560

into the I/O area tables. Table-complete interrupts
occur after the last word of a data table has been
processed. (The user can suppress this interrupt by
placing a 1 in bit position 1 of the I/O area control
word. However, the subroutine requires this inter­
rupt on the last table of the chain and will force the
interrupt by clearing bit position 1 of the control word
for the last table.) Whenever these interrupts occur
(except on the last table), the subroutine branches to
the address specified in the special condition param­
eter with a code of 65 in the A-register. The sub­
routine is "busy" until all of the data has been read
and the last table interrupt has occurred. If a
continuous scan is performed, both the AISQN sub­
routine and the data area must be in skeleton.

Read-Data Channel Control Without Error Retry.
This is the same as read-data channel control,
except that on an error, no retries will be attempted.
If an error occurs, AISQN will branch to the user's
special condition routine with an error code of 65
in the A-register. The user is expected to return to
AISQN to continue.

Reset. Halts all analog input operations in progress
and resets all indicators.

Read and Transfer. Same as read-direct program
control, except that after each ADC value is read
into core, the subroutine branches to a user­
specified special condition routine. The multiplexer
address is in the A -register and the c ore location of
the read value is in the Q-register. The user must
return to AISQN after performing conversion.

Data Resolution

This digit indicates one of three data -resolution
options.

o - Standard, 11 bits, plus sign

1 - High, 14 bits, plus sign

2 - LOW, 8 bits, plus sign

External Synchronization

This digit indicates whether external synchronization
is desired.

o - No

1 - Yes

Subroutine Library 65

Form C26-5990-1
Page Revised 10/25/66
By TNL N26-0560

Device Identification

This digit indicates one of two ADC' s.

o - First ADC

1 - Second ADC

I/O Area Parameter

The I/O area parameter is the label of the control
word that precedes the user's I/O area. If chaining
is desired and the read-data channel control function
has been requested, the user must set chaining bits
and suppress interrupt indicator bits; otherwise, the
control word contains a word count only. The word
count is one greater than the number of ADC values
read since it must include the multiplexer address
as well as the data words.

The multiplexer address word follows the control
word and contains the address of the first point to
be read. The number of points to be read is one less
than the word count in the control word. The address
word has the following format.

Bits 0-2 - Not used

3 - 1 for solid state; 0 for relay

4-5 - Not used

6-15 - Multiplexer point address

The subroutine reads in I6-bit values having the
foUowing format.

Bits o - Sign

1-14 - Data bits (1-8 if low, 1-11 if
standard, 1-14 if high)

15 - Overload indicator

An example of an I/O area used to read in the
value of 15 sequential solid-state analog points,
starting with an analog point address of 6, is shown
below.

AREA +0 DC

+1 DC

+2 DC

66

10 (word count)

/1006 (multiplexer address word)

o (register for value of point #6)

+3 DC o (register for value of point /fl)

+16 DC 0 (register for value of point #20)

Special Condition Parameter

(See Functions Used.)

If the I/O area and the II 0 subroutine are in the
system skeleton, the special condition routine must
be in the skeleton.

ANALOG INPUT - SINGLE READ SUBROUTINE

This subroutine has three major uses: (1) to read
analog data if there is no data channel for analog,
(2) to read a single point even if there is a data
channel for analog, and (3) (if the multiplexer over­
lap feature is on the system) to provide that form of
relay overlap in which a single relay conversion is
started and then overlapped by a series of AISQN
subroutine conversions. The AIPTN subroutine can
be in core at the same time as the AISQN or AlliN
subroutines; all three subroutines use ANINT to
process interrupts. Both ADCs can be operated
simultaneously.

Calling Sequence

LIBF AIPTN

DC

DC

DC

DC

/xxxx

AREA

POINT

00000

AREA 1-Word Input Area

POINT Multiplexer Address

(Control)

(I/O Area)

(Point Address)

(Special Condition)

The calling sequence parameters are described in

the .following paragraphs.

Control Parameter

This parameter consists of four hexadecimal digits,
as shown below:

~:::::l::-o-n=~~----- + j I
External Synchronization

4

Device Identification-------~

I/O Function

The I/o function digit specified the operation to be
I performed by the AIPTN subroutine. The functions,

associated digital values, and required parameters
are listed and described below.

Function

Test

Read

Digital
Value

o

Required Parameters*

Control

Control, I/O Area, Point

1 '- High, 14 bits, plus sign

2 - lDw, 8 bits, plus sign

External Synchronization

Form C26-5990-1

Page Revised 10/25/66
By TNL N26-0560

This character indicates whether external synchroni­
zation is desired.

o - No

1- Yes

Device Identification

This digit indicates one of two ADC' s.

o - First ADC

1 - Second ADC

I/O Area Parameter

I/O area parameter is the label of the user's I-word
input area. After the subroutine returns control to
the user, this area contains the requested data. The
data is in the following format.

Address, SpeCial Condition Bits

Reset 3 Control

*Any parameter not required for a function must
be omitted.

Test. Branches to LIBF +2 if the analog feature is
busy, or to LIDF +3 if the analog feature is not busy.

Read. Reads in the converted analog value for the
specified multiplexer point and places it in the user's
I-word input area.

Reset. Halts all analog input operations in progress
and resets all indicators.

Data Resolution

This character indicates one of three data resolution
options

o - Standard, 11 bits, plus sign

o - Sign

1-14 - Data bits (1-8 if low, 1-11 if standard, 1-14 if
high)

15 - Overload indicator

Point Address Parameter

The point address parameter is the label of a I-word
location that contains the multiplexer address of the
point to be read. This location need not immediately
follow the input area. The multiplexer address has
the fonowi~g format:

Bits

0-2 - Not used

3 - 1 for solid state; 0 for relay

4-5 - Not used

6-15 - Multiplexer point address

Subroutine Library 67

Form C26-5990-1

Page Revised 10/25/66
By TNL N26-0560

Special Condition Parameter

(See Basic Calling Sequence.)

ANALOG INPUT RANDOM READ SUBROUTINE

This subroutine reads in analog data for a number of
random points under data channel control. The points
read can be any mixture of relay and solid-state analog

I

points; however, if the overlap feature is being used,
at least 200 solid state points must be read between
relay points to avoid an overlap error. The AlliN
subroutine can be in core storage at the same time
as the AIPTN and AISQN subroutines but cannot
operate simultaneously with either. If a continuous
scan is performed, both the AlliN subroutine and
the data area must be in skeleton.

Calling Sequence

LIBF AIRN

DC /xxxx (Control)

DC AREA (I/O area)

DC POINT (Point address)

DC SPEC (Special Condition Parameter)

DC CMPER (Comparator Error Routine)

DC RELAY (Relay Area)

SPEC Return Link

Error Routine

BSC I SPEC

CMPER Return Link

Comparator

Error Routine

BSC I CMPER

AREA Control Word

I/O Area

68

POINT
Multiplexer Address Table

RELAY Relay Input Area

The calling sequence parameters are described in
the following paragraphs.

Control Parameter

This parameter consists of four hexadecimal digits,
as shown below:

I/O FunCtion ___ ~l r2 3

Data Resolution --­

External Synchronization

4

Device Identification--------..J

I/O Function

The I/O function digit specifies the operation to be
performed by the AlliN subroutine. The functions,
associated digital values, and required parameters
are listed and described below.

Digital Required

Function Value Parameters*

Test

Read Without
Overlap

Read Without

Overlap and
Without Error
Retries

Read With

Overlap

Read With
Overlap and

Without

Error Retries

Reset

o

2

3

4

5

Control

Control, I/O Area, Point, Special
Condition, Comparator error routines

Control, I/O Area, Point, Special

Condition, Comparator error routine

Control, I/O Area, Point, Special
Condition, Comparator error routine,

Relay Table

Control, I/O Area, Point, Special

Condition, Comparator error routine,

Relay Table

Control

*Any parameter not required for a function must be omitted.

Test. Branches to LIDF +2 if the analog feature is
busy, or to LIDF +3 if the analog feature is not busy.

Read Without Multiplexer Overlap. Reads the con­
verted values for both relay and solid-state analog
points into the I/O area table(s). Table complete
interrupts and comparator interrupts may occur
during the operation.

Table-complete interrupts occur after the last
word of a data table has been processed. (The user
can suppress this interrupt by placing a 1 in bit
position 1 of the I/O area control word. However,
the subroutine requires this interrupt on the last
table of the chain and will force the interrupt by
clearing bit position 1 of the control word for the
last table.) Whenever these interrupts occur (except
on the last table), the subroutine branches to the
address specified in the special condition parameter
with a code of 65 in the A-register. The subroutine
is "busy" until all of the data has been read and the
last table interrupt has occurred.

A comparator interrupt occurs if the comparator
feature is attached and an analog value is found to be
out of the specified limits or an overload condition
occurs. When this interrupt occurs, the subroutine
exits to the user's special condition routine with an
error code of 69 in the A -register and the comparator
DSW in the Q-register. When the user's routine
returns control, the AIRN subroutine exits normally,
as if no error had occurred. The only effect of this
error on the current operation is that no more limit
checking is done until the AlliN subroutine has read
the comparator status word (error indicator and
multiplexer address) into the Q-register. Point
conversions are not delayed.

Overload, parity, and storage protect interrupts
can also occur and cause a branch via the analog
input error parameter.

Read Without Multiplexer Overlap and Without
Error Retries. This is the same as read without
multiplexer overlap, except that on an error, no
retries will be attempted. If an error occurs, AIRN
will branch to the user's special condition routine
with an error code of 65 in the A-register. The
user is expected to return to AIRN to continue.

Read With Multiplexer Overlap. Reads converted
solid-state values into the I/O area and converted
relay values into the relay area. Table-complete
interrupts and relay interrupts may occur indicating
conversion complete conditions. The table-complete
interrupt is as described above for the read without
overlap function.

A relay interrupt occurs when a relay-point value
has been converted and can be read into core storage.
The subroutine reads the converted value into the
next available word in the relay data table.

Error conditions detected are indicated by relay­
misplaced interrupt, which occurs if a relay con-

version is not complete when a second relay point is
encountered in the point address table. When this
interrupt occurs, the subroutine exits to EAC. The
effect of this error on the current operation is that
the second point is not converted. The equipment
skips that point and continues with solid-state con­
versions. A comparator limit error is described in
read without multiplexer overlap.

Read With Multiplexer Overlap and Without Error
Retries. This is the same as read with multiplexer
overlap, except that on an error, no retries will be
attempted. If an error occurs, AIRN will branch
via the user's special condition routine with an error
code of 65 in the A-register. The user is expected
to return to AIRN.

Reset. Halts all analog input operations in progress
and resets all indicators.

Data Resolution

This digit indicates one of three data resolution options.

o - Standard, 11 bits plus sign

1 - High, 14 bits plus sign

2 - Low, 8 bits plus sign

External Synchronization

This digit indicates whether external synchronization
is desired.

0'" No

1- Yes

Device Identification

This digit indicates one of two ADC 's •

0- FirstADC

1 - Second ADC

I/O Area Parameter

The I/O area parameter is the label of the control
word that precedes the user's I/O area. Since
chaining is permitted with the AIRN subroutine,
the chaining bit and the suppress interrupt indi-

Subroutine Library 69

Form C26-5990-1

Page Revised 10/25/66
By TNL N26-0560

cator bit are meaningful. The chaining indicator
controls chaining of both the data and multiplexer
tables. If chaining is indicated, the word imme­
diately following each data table references the
next table in the data chain. The address word
following each multiplexer address table refer­
ences the next table in the address-table chain.

If the function is read without multiplexer over­
lap, the data word count is equal to the number of
ADC values for the data table (equal to the number
of multiplexer addresses in the corresponding
multiplexer table). If the function is read with
multiplexer overlap, the data word count is equal
to the number of ADC values for the data table
(equal to the number of solid state multiplexer
addresses in the corresponding multiplexer table).
Limit words are not included in either count.

The subroutine reads in 16-bit values having
the following format:

Bits

o - Sign

1-14 - Data bits (1-8 if low, 1-11 if standard,
1-14 if high)

15 - Overload indicator

Point Address Parameter

This parameter is the label of the first multi­
plexer address table to be used in the read
operation. The subroutine reads the ADC value
for each multiplexer addressed point into a data
word in the corresponding data table (or relay
table if the function is read with multiplexer
overlap). A multiplexer address table contains
address words and limit words. Limit words
should be used only if the comparator feature is

I

attached. In addition, if the overlap feature is
attached, limit words should only be used with solid
state multiplexer addresses.

These two types of words are interleaved in the
table, with the multiplexer address word preceding
its associated limit word.

Address Word Format

Bit

o - Not used

70

1 - I-limit word follows; O-no limit word
follows

2 - I-compare limit word; O-don't compare limit
word

3 - I-solid state; O-relay

4-5 - Not used

6-15 - Multiplexer point address

Comparator Word Format

Bit

o - High-limit sign

1-7 - High-limit data bits

8 - Low-limit sign

9-15 - Low-limit data bits

Special Condition Parameter

This parameter specifies the entry location of a user's
special condition subroutine. When the branch to the
user's routine is performed, the error code is con­
tained in the A-register. The user's routine must
return control to the AmN subroutine after performing
the desired operation.

If the 110 area and the 110 subroutine are in the
system skeleton, the special condition routine must
be in the skeleton.

Comparator Error Routine

This parameter is the address of the user-written
subroutine to which the program will branch on a
comparator error.

If the 110 area and the 110 subroutine are in the
system skeleton, the comparator error routine must
be in the skeleton.

Relay Area Parameter

This parameter is the label of the first word into
which relay multiplexer ADC values are to be read
if the multiplexer overlap feature is attached. Since
chaining is not permitted with relay data, this
area must be large enough to contain all of the relay
readings for an entire operation.

Example Without Overlap

An example of a multiplexer address table and a
corresponding data table follows. This example
illustrates reading in five solid-state and relay
analog points, with some limit-checking.

POINT +0 DC /1006 (multiplexer address for SS point #6)

+1 DC /700A (multiplexer address for SS point #10)

+2 DC /3S04 (limit word for point #10)

+3 DC /4002 (multiplexer address for R point #2)

+4 DC /1001 (limit word for point #2 - not used)

+S DC /0030 (multiplexer address for R point #48)

+6 DC /100C (multiplexer address for SS point #12)

AREA +0 DC 5 (word count)

+1 DC 0 (register for value of SS point #6)

+2 DC 0 (register for value of SS pOint #10)

Form C26-S990-1

Page Revised 7/20/66
By TNL N26-0SS9

This example illustrates the reading in of many
solid-state and two relay analog points, with some
limit checking.

POINT

AREA

+0 DC /1006 (multiplexer address for SS point #6)

+1 DC /700A (multiplexer address for SS point #10)

+2 DC /3S04 (limit word for point #10 - used)

+3 DC /4002 (multiplexer address for R point #2)

+4 DC /1001 (limit word for point #2 - not used)

+S DC /100C (multiplexer address for SS point #12)

*
*
*
*
*

+317 DC /0030 (multiplexer address for R point #48)

+0 DC 3 (word count)

+3 DC 0 (register for value of R point #2) +1 DC 0 (register for value of SS point #6)

+4 DC 0 (register for value of R point #48) +2 DC 0 (register for value of SS point #10)

+S DC 0 (register for value of SS point #12) +3 DC 0 (register for value of SS point #12)

RELAY +0 DC 0 (register for value of R point #2)

Example With Overlap +1 DC 0 (register for value of R point #48)

An example of a multiplexer address table and
corresponding solid-state and relay tables follows.

*NOTE: At least 200 SS points must be scanned between
R point #2 and R point #48. More than 200 SS points
can be scanned if desired.

Subroutine Library 71

The IBM 1800 Subroutin~ Library contains a.set of
special subprograms which transfer control to cer­
tain of the analog/digital subroutines previously
described in this manual. Specifically, the functions
of each of these subprograms are:

1. To decode the control parameter.
2. To set up data and address tables.
3. To set up and execute the calling sequences to

the proper subroutine.
4. To handle error and exception conditions.
5. To return control to the next sequential state­

ment in the calling program.

The subprogram names and the analog/digital sub­
routine to which they provide linkage are listed below.

FORTRAN
Subprogram

AlP
AIS
AIR
CO
DAC
DO
CS
CSC

CSX
VS
VSC

VSX
PI
PIC
PIX
DI
DIC
DIX
PO

Subroutine Called

AIPTN (Analog Input Single Read)
AISQN (Analog Input Sequential)
AIRN (Analog Input Random)
DAOP (Digital Analog Output)
DAOP
DAOP
DINP (Digital Input)
DICMP (Digital Input Read and
Compare)
DIEXP (Digital Input and Expand)
DINP (Digital Input)
DICMP (Digital Input Read and
Compare)
DIEXP
DINP
DICMP
DIEXP
DINP
DICMP
DIEXP
DAOP

NOTE: To fully understand these FORTRAN sub­
programs, the user must be familiar with the
descriptions of the corresponding IOCS
subroutine s.

SUBPROGRAMS LINKING FORTRAN WITH
ANALOG/DIGITAL I/O

CALL STATEMENTS

The following paragraphs describe the CALL state­
ments used to gain access to the FORTRAN sub­
programs. For detailed descriptions of the
parameter, refer to the appropriate subroutine.

ANALOG INPUT SINGLE READ

The FORTRAN CALL statement shown below is used
to call the AIPTN (analog input single read) sub­
routine via a FORTRAN subprogram.

CALL AlP (I, J, K)

I Parameter

The I parameter is an integer constant or integer
variable that specifies various control options. It
consists of 5 decimal digits for the options desired.

Data ReSOlUtion~~l dJ j2 3 4

I/O Function=-----.J

External Synchronization

Device Identification

5

Not used, must be zero---------'

Data Resolution

This digit indicates one of three data-resolution
options.

o - Standard, 11 bits plus sign
1 - High, 14 bits plus sign
2 - Low, 8 bits plus sign.

I/O Function

The I/O function digit specifies the function to be
performed by the AIPT subroutine. The functions,
associated digital values and required parameters
are listed and described below.

Subprograms Linking FORTRAN with Analog/Digital I/O 73

Digital
Function Value Reguired Parameters

Test 0 I,J

Read I,J,K

Halt 3

Test. The test function determines if the analog in­
put device called for is busy. If the device is busy,
the second parameter, J (a smgle integer variable)
will be loaded with a 1; if it is not busy, J will be
loaded with a 2. The device code is used with the
test function to specify the first or second ADC.

Example:

5

10

CALL AlP (0, JTEST)

GO TO (5, 10) JTEST

In the above example, the first parameter of the
CALL statement indicates the test function. The
second parameter is loaded with 1 or 2 ·for busy or
not busy, respectively. The Computed' GO TO state­
ment will transfer control back to statement 5 if the
first analog input device is busy or to statement 10 if
it is not busy.

NOTE: The test function can test the busy or not busy
condition of any of the analog or digital I/O devices
called by the FORTRAN subprograms. When an I/O
subroutine is called and the device is busy, the new
operation must wait until the operation already in
progress is completed.

Read. Reads one relay or solid state point under
direct program control.

Halt. Terminates input on the addressed device.

External Synchronization

This digit indicates whether external synchronization
is desired.

74

o - No
1 - Yes

Device Identification

This digit indicates one of two ADC's

0- First ADC
1 - Second ADC

J Parameter

The J parameter is an integer variable that specifies
the input word where the value of the point is to be
placed.

K Parameter

The K parameter is an integer constant or integer
variable that specifies the multiplexer point to be
read. This variable must include a I-bit in binary
position 3 if the point to be read is a solid state point
(as opposed to a relay point). The bit will be placed
in position 3 automatically if the K parameter is an
expression with 4096 added to the point address.

Example:

CALL AlP (21100, INWD, 75)

In this example, the first parameter specifies that a
read operation, with a resolution of 8 bits and
controlled by some external synchronization, is to be
performed, using the first ADC. The second para­
meter (INWD) specifies the input word for the analog
input, and the third parameter specifies that multi­
plexer point 75 is to be read. This is a relay point;
the same numbered solid-state point would be written
as 75 + 4096.

ANALOG INPUT SEQUENTIAL

The FORTRAN CALL statement shown below is used
to call the AISQN (Analog Input Sequential Read) sub­
routine via a FORTRAN subprogram.

CALL AIS (I, J, M)

I Parameter

The I parameter is an integer constant or integer
variable that specifies the control options. It
consists of 5 decimal digits for the options
desired.

Data Resolution t r]3

I/O Function

External Synchronization-Continuous Input

4

Device Identificationl----------l

5

Number of Data Tables----______ --l

Data Resolution

This digit indicates one of three data-resolution
options.

o - Standard, 11 bits, plus sign
1 - High, 14 bits, plus sign
2 - Low, 8 bits, plus sign

I/O Function

The I/O function digit specifies the function to be
performed by the AISQN subroutine. The functions,
associated digital values, and required parameters
are listed and described below.

Function

Test

Read-Direct
Program Control

Read-Data Channel

Control

Halt this AI Data

Channel

Read and Transfer
(Uses Direct
Program Control)

Digital
Value

0

2

4

5

Required Parameters

I, J *
I, J

I, J

I, J, M

*The J parameter for the test function is a single
integer variable (same as described under AlP) .

Test. Tests for device busy are the same as de-
. scribed for the analog input single read subroutine
(CALL AlP).

Read-Direct Program Control. Under direct
program control, reads the specified number of
analog input values into the I/O area.

Form C26-S990-1

Page Revised 10/25/66
By TNL N26-0560

Read-Data Channel Control. Under data channel con­
trol, reads the specified number of analog input values
into the I/O area. If continuous I/O (see below) is
specified, the subroutine reads continuously by chain­
ing back to the beginning of the I/O area. This oper­
ation, once initiated, will continue indefinitely. For
this reason, the I/O area must not be overlaid.

Halt. Terminates input on the addressed device.

Read and Transfer. Under direct program control,
reads the specified number of analog input vruues
into the I/O area. Mter each point is read, the
routine transfers to the EXTERNAL declared sub­
program specified by M. This subprogram, written
by the user, must use two parameters: the address
of the point read and the address of the variable in
the I/O area filled by the reading, in that order.

External Synchronization - Continuous Input

This digit indicates whether external synchronization
and/ or continuous input operation are desired.

o - No external synchronization; no continuous
input

1 - External synchronization; no continuous input
2 - No external synchronization; continous input

(data channel only)
3 - External synchronization; continuous input

(data channel only)

Device Identification

This digit indicates one of two ADCs.

o - First ADC
1 - Second ADC

Number of Data Tables

This digit specifies the number of sets of variables
(three variables per set) that identify I/O area
boundaries. Up to nine sets of variables (nine I/O
are3:s) can be specified when data channel control is
also specified. Only one I/O area can be used if
direct program control is specified. This digit
must correspond to the actual number of sets
included in the J parameter.

Subprograms Linking FORTRAN with Analog/Digital I/O 75

Form C26-5990-1
Page Revised 10/25/66
By TNL N26-0560

J Parameter

The J parameter consists of one or more sets of
variables (three variables per set) that define the
boundaries of the data tables to be used and the
starting multiplexer addresses. The number of J
parameter sets is defined by the fifth digit of the I
parameter.

There must be one set of J parameters for each
data table. The first variable of the J parameter set
must be the last variable of the data table, the second
must be the first variable of the data table, and the
third must be the starting multiplexer address. When
only one table is required, the DIMENSION statement
must allow two extra variable positions in the data
table for the word count and the starting multiplexer
address. These two words are set up by the AIS
routine when it is called.

NOTE: Arrays are stored in a sequence opposite to
the sequence of I/O data transmission. Therefore,
if the data table is defined as an array, data is first
transmitted to or from the variable with the largest
subscript.

If the data table is to be "chained", one additional
set of J parameters will be required for each data
table in the chain. In addition, the DIMENSION
statement must allow three extra variable positions
in the first data table. The first two extra positions
are the same as for a single table, and the third
extra position is for the chaining address, which is
also placed in the table area by the AIS routine. The
DIMENSION statement must allow four extra variable
positions in the second data table. The first extra
position in the second data table is the channel address
register (CAR) and corresponds to the chaining
address in the first data table. This address is placed
in·the table area by the AIS routine. The second and
third extra positions are the word count and starting
multiplexer address of the second data table, respec­
tively. The fourth extra position is the chaining
addre ss to the next table in the chain.

Each additional table, not including the last table,
must allow these four extra variable positions. In
the last table, only three extra variable positions
are needed because the chaining address is omitted.

If the continuous scan mode is to be used, all
tables will require four extra variable positions.
The chaining address of the last data table in the
chain will be set to the address of the CAR check
word in the first data table.

76

Relay point addresses must include a zero in bit
position three to distinguish them from solid-state
point addresses. Solid state point addresses must
have a one in bit position three. In addition, relay
points and solid state points cannot be intermixed
with a table; however, they can be interleaved by
chaining the tables together.

M Parameter

The M parameter consists of the name of an EX­
TERNAL subprogram written by the user to process
each input reading as it is obtained when using the
read and transfer function. This subprogram must
be written to use two parameters: the address of

I the point read and the address of the variable in the
I/O area filled by the readings.

Example 1: (Figure 14)

DIMENSION INDAT (27)

CALL AIS (01011, INDAT (1), INDAT (27), 81)

The first parameter, I, specifies:

o - Standard data precision.
1 - Read -direct program control.
0.- No external synchronization; no continuous

input.
1 - Second ADC.
1 - One data table.

The se.cond parameter, J, specifies:

INDAT (1) Last variable position of the data table,
where the last multiplexer point reading will be
placed.

INDAT (27) First va~iable position of the data
table, where the data table word count is placed.

81 Multiplexer address is placed in INDAT (26).

The DIMENSION INDAT (27) specifies that the data
table will be 27 variables in length, but the first data
point read will be placed in the position of the data
table that would correspond to INDAT (25).

Word Count INDAT (27)

INDAT (26)

INDAT (25)

------~------------
Multiplexer Address (81)

First Data Word

INDAT (1) Last Data Word

Figure 14. Single Multiplexer Data Table

Example 2:

DIMENSION INl (21), IN2 (14)

CALL AIS (12002, INl (1), INl (21), 5, IN2 (1), IN2 (14), 17)

The first parameter, I, specifies:

1 - 14 bit resolution.
2 - Read-data channel control.
o - No external synchronization; no continuous

input.
o - First ADC
2 - Two data tables

The second parameter, J, specifies

IN1 (1) Last variable position of the first data table,
where the chaining address is placed.

IN1 (21) First variable position of the first data
table, where the word count of the first table is
placed.

5 Multiplexer address is placed in IN1 (20).
IN2 (1) Last variable position of the second data

table, where the last Multiplexer point reading
will be placed.

IN2 (14) First variable position of the second data
table, where the chaining address from the first
table is placed.

17 Multiplexer address is placed in IN2 (12).

The DIMENSION IN1 (21), IN2 (14) specifies that the
first data table will be 21 variables in length and
the second data table will be 14 variables in length.
The first data point read will be placed in the
position of the first data table that corresponds
to IN1 (19) and the last data point read will be
placed in the position of the second data table that
corresponds to IN2 (1).

IN1 (21)

IN1 (20)

IN1 (19)

IN1 (2)

IN1 (1)

IN2 (14)

IN2 (13)

IN2 (12)

IN2 (11)

IN2 (1)

Word Count of IN1

Multiplexer Address (5)

First Data Word of IN1

Last Data Word of IN1

Chaining Address (IN2 (14»

CAR (IN2 (14»

Word Count of IN2

Multiplexer Address (17)

First Data Word of IN2

Last Data Word of I N2

Figure 15. Example of Two Chained Multiplexer-Data Tables

Subprograms Linking FORTRAN with Analog/Digital I/O 77

Example 3:

DIMENSION IN1 (23), IN2 (23), IN3 (23)

CALL AIS (12203, IN1 (1), IN1 (23), 1, IN2 (1), IN2 (23), 20,
IN3 (1), IN3 (23), 40)

The first parameter, I, specifies:

1 - 14 bit resolution.
2 - Read-data channel control.
2 - No external synchronization, continuous

input.
o - First ADC •
3 - Thl-'ee data tables.

The second parameter, J, specifies:

IN1 (1) Last variable position of the first data table,
where the chaining address of the secop.d data
table is placed.

IN1 (23) First variable position of the first data
table, where the chaining address from the third
data table is placed.

1 Multiplexer address is placed in IN1 (21).
IN2 (1) Last variable position of the second data

table, where the chaining address of the third data
table is placed.

IN2 (23) First variable position of the second data
table, where the chaining address from the first
data table is placed.

20 Multiplexer address is placed in IN2 (21).
IN3 (1) Last variable position of the third data table,

where the chaining address of the first data table
is placed.

IN3 (23) First variable position of the third data
table, where the chaining address from the second
data table is placed.

40 Multiplexer address is placed in IN3 (21).

The DIMENSION IN1 (23), IN2 (23), IN3 (23) specifies
that the first data table will be 23 variables in length,
the second data table will be 23 variables in length,
and the third data table will be 23 variables in length.
The first data point read will be placed in the position
of the first data table that corresponds to IN1 (20) and
the last data point read will be placed in the position
of the third data table that corresponds to IN3 (2).

78

IN1 (23)

IN1 (22)

IN1 (21)

IN 1 (20)

IN1 (2)

IN1 (1)

IN2 (23)

IN2 (22)

IN2 (21)

IN2 (20)

IN2 (2)

IN2 (1)

IN3 (23)

IN3 (22)

IN3 (21)

IN3 (20

IN3 (2)

IN3 (1)

CAR (I N 1 (23»

Word Count of IN1

Multiplexer Address (1)

First Data Word of IN1

Last Data Word of IN 1

Chaining Address {lN2 (23»

CAR (I N2 (23»

Word Count of IN2

Multiplexer Address (20)

First Data Word of IN2

Last Data Word of IN2

Chaining Address (lN3 (23»

CAR (I N3 (23»

Word Count of IN3

Multiplexer Address (40)

First Data Word of IN3

Last Data Word of IN3

Chaining Address (lN1 (23»

Figure 16. Example of Continuous Input Multiplexer-Data Tables

ANALOG INPUT RANDOM READ

The FORTRAN CALL statement shown below is used
to call the AIRN subroutine.

CALL AIR (I, J, K, N, M)

I Parameter

The I parameter is the same as that described for

I
analog input sequential, except the I/o function is
different and that external synchronization is not
allowed with an overlap request. The I/O function
digit specifies the function to be performed by the
AIRN subroutine. The functions, associated digital
values, and required parameters are listed and
described below.

Digital Required
Function Function Parameters

Test 0 I, J*

Read-Without Multiplexer I, J, K, N, M
Overlap With Comparator

Read-Without Multiplexer 2 I, J, K, N
Overlap Without Comparator

Reset 4

Read-With Multiplexer 5 I, J, K, N, M
Overlap With Comparator

Read-With Multiplexer 6 I, J, K, N
Overlap Without Comparator

*The J parameter for the test function is a single integer
variable (same as described under AlP).

Test. Tests for device busy are the same as de­
scribed for the analog input-single read subroutine
(see AlP).

Read-Without Multiplexer Overlap With Comparator.
Reads the solid state and relay points, speCified in
the multiplexer address table, into the successive
words of the data table. Each value is compared with
the limits for the point read when speCified by the
control bits in the address word. Each point is read,
and if specified, compared before the next point is
used, and a transfer to the named subprogram in the
M parameter is made if a: limit is violated.

Read-Without Multiplexer Overlap Without Compa­
rator. This function is the same as described for
read-without multiplexer overlap with comparator,
except the comparator is not used, therefore

Form C26-5990-1

Page Revised 7/20/66

By TNL N26-0559

parameter (M) that names the violation subprogram
must be omitted when this fllllCtion is specified.

Reset. Halts all I/O operations of this analog
function.

Read-With Multiplexer Overlap With Comparator.
Reads the solid state points, specified in the multi­
plexer address table, into successive words of the
data table for solid state points. Each value is
compared with the limits of the point read, when
specified by the control bits in the address word.
Also reads relay points, included in the multiplexer
address table, into successive words of the data
table for relay points. Conversion of the relay point
does not stop the conversion of the solid state points
that follow the relay point in the multiplexer address
table. Each relay point requires 10, 000 J1.s for
conversion, therefore, 200 solid state points must
be converted between each relay point. If a limit is
violated, a transfer is made to the named subprogram
in the M parameter.

Read-With Multiplexer Overlap Without Comparator.
This function is the same as described for read-with
multiplexer overlap with comparator, except the
comparator is not used, therefore parameter (M)
that names the violation subprogram must be omitted
when this function is specified.

J Parameter

The J parameter is the same as described for the
analog input sequential subroutine, except that the
multiplexer point variable is not included in the set.
Therefore, the data tables for AIR require one less
extra variable than for AIS. The multiplexer point
addresses are specified in the K parameter.

K Parameter

The K parameter consists of one or more pairs of
variables which define the boundaries of the multi­
plexer address tables and the limit words that cor­
respond to the multiplexer addresses. The number
of K parameter pairs (specifying multiplexer address
tables) must be the same as the number of J para­
meter pairs. One extra variable position must be
included in the DIMENSION statement for the K para­
meter if, this is the first multiplexer address table
in a chain (the extra variable position will be used
for the chaining address to the next table), or this is
the last multiplexer address table in a chain (the

Subprograms Linking FORTRAN with Analog/Digital I/O 79

Form C26-5990-1

Page Revised 7/20/66

By TNL N26 -0559

extra variable position will be used to store the
chaining address 9f the previous table in CAR). Two
extra variable positions must be provided if this is
an intermediate multiplexer address table in a
chain (the first extra variable position will be used
to store the chaining address of the previous table
in CAR and the second will be used for the chaining
address to the next table in the chain). If continuous
input is specified, each table (including the first)
must include two extra variable positions. The first
extra variable will be used to store (in CAR) the
chaining address from the last table; the second extra
variable will be used for the chaining address to the
next table. The multiplexer addresses and limit
words must be placed in the tables defined by the K
parameter. This can be done by using the FORTRAN
DATA statement.

N Parameter

The N parameter specifies the first core storage
address of a distinct table where relay points will
be stored when using the multiplexer overlap feature.
This could be the highest subscripted element of an
array. The N parameter must always be included
even if no overlap is being used (i. e., CALL Am
(I, J, M) is illegal); however, if no overlap is used,
the dummy address specified by N will not be used
by the AmN subroutine). Relay points will be stored
in the same data table used for solid state points
when there is no overlap feature on the machine.
Each point will be read into the table before the next
point reading is initiated. Since chaining is not per­
mitted with relay data tables, the data table must be
large enough to contain all the relay readings for an
entire operation.

M Parameter

The M parameter must always be included when the
comparator is used; it specifies the name of the
subprogram to which the Am subprogram will branch
if a limit violation is detected. The M parameter
must be declared in an EXTERNAL statement with
the same core load that calls Am.

'

The subprogram must be written to include
two parameters. The first will be the address of
a type-of-limit indicator. If the value is one, a
low-limit violation has occurred, if the value is
two, a high-limit violation has occurred, or if the
value is three, an overloaded point caused the
violation. The second parameter will be the ad­
dress within the Am routine where the number of
the input point is stored.

80

Example 1:

EXTERNAL LIM

DIMENSION NAREA (4), 1M (6)

DATA 1M (6), 1M (5)/Z7051, Z3CIE/

DATA 1M (4), 1M (3)/Z7056, Z3214/

DATA 1M (2), 1M (1)/Z7025, Z4628/

CALL AIR (01011, NAREA(I), NAREA(4), IM(I),
IM(6), 0, LIM)

Including the DATA statement results in the following:

IM(6) = Point 81 with bits in positions one, two, and
three.

IM(5) = Limits 60 - 30 in left and right bytes,
respectively.

IM(4) = Point 86 with bits in positions one, two, and
three.

IM(3) = Limits 50 - 20 in left and right bytes,
respectively.

IM(2) = Point 37 with bits in positions one, two, and
three.

IM(I) = Limits 70 - 40 in left and right bytes,
respectively.

The derivation of the hexadecimal constants for IM(6)
and IM(5) is as follows:

IM(6)

7 0 5 1

10 11 i ~ 11 Io I 0 (0 I oro 11 (011 r 0 10 1 0 I
Bit Positions

1, 2, and 3 on

3

Upper limit 60
10

Binary Representation of
the decimal number point 81

C 1

I 0)

Lower limit of 30
10

The characters 7, 0, 5, 1 and 3, C, 1, E are the
hexadecimal representation for each set of four bits
in the table words. These are the values to be used
in the DATA statement preceded by a letter Z.

(The advantage of the DATA statement over the
method of table generation as shown in Example 2 is
that the DATA statement does not generate any object
time executable code and thus requires no object
execution time. The FORTRAN compiler gener.ates
the table as part of the object program from the
information supplied in the DATA statement.)

In this example, .the I parameter (01011) specifies:

o - Standard data resolution
1 - Read-without multiplexer overlap with

comparator
o - No external synchronization; no continuous

input
1 - Second ADC
1 - One data table

The J parameter (NAREA(I), NAREA(4» specifies:

NAREA(I) The last data point to be r~ad, compared,
and entered into the data table (multiplexer address

i 37).
NAREA(4) The word count (3) of the data table
\ NAREA. .
\
i

rhe K parameter (IM(I), IM(6» specifies:

IM(I) The last specified limit word, which will be
the last entry in the multiplexer address table.

IM(6) The first multiplexer address to be read and
compared, and the first entry in the multiplexer
address table.

The multiplexer addresses of the K parameter (in
this example, table variables with even numbered
subscripts) can have 1-bits placed in positions one,
two, and three of the address word, which can mean:

IM(6)

IM(5)

IM(4)

IM(3)

IM(2)

IM(l)

NAREA(4)

NAREA(3)

NAREA(2)

NAREA(l)

MULTIPLEXER ADDRESS TABLE

Multiplexer address 81

Limit word 30-66 ~SJ- '0
Multiplexer address 86

Limit word 20-50 S"'O -1-0

Multiplexer address 37

Limit word 40-70 "1 D - L}- D

DATA TABLE

Word count (3) of NAREA

First data word (point 81)

------~-------------
Second data word (point 86)

Last data word (poi nt 37)

Figure 17. Single Multiplexer Address and Data Tables

Form C26-5990-1

Page Revised 7/20/66
By TNL N26-0559

1. One-bits in all three positions means a
limit word follows, the comparator feature
is used, and this is a solid-state point.
If no bit is in position three, a relay point
is specified.

2. One -bits in positions one and three means a
limit word follows, no comparator feature is
used, and this is a solid-state point.
If no bit is in position three, a relay point

3. A one-bit in position three only means no limit
word follows, no comparator feature is used,
and this is a solid-state point. If no bit is in
position three, a relay point is specified.

NOTE: The combination of I-bits in positions two and
three only is not a logical condition since this would
mean no limit word follows, the comparator feature
!§ used, and this is a solid state point, respectively.
Both the low and high limit values are placed in one
word. To accomplish this, the hexadecimal specifi­
cation in the DATA statement can be used as shown
in Example 1 or the high limit can be multiplied by
256 as shown in Example 2.

The N parameter (0) specifies:

o Since no multiplexer overlap will take place, both
solid state and relay points can be read under
this condition, but each point will be converted
before the next point is read. If no multiplexer
overlap is used (as in this example) a zero must be
included in the place of the N parameter.

In this example, the M parameter (LIM) specifies:

LIM A user written subprogram that the Am sub­
program will branch to if a limit violation occurs.
The parameters of this subprogram might be LH
and MPT, where LH would contain the address of
the violation indication, and MPT would contain
the number of the multiplexer point that violated
the limits. Both LH and MPT are parameters of
LIM, so the violation subprogram can reference
them. A Computed GO TO statement could have
been used to distinguish the low limit, high limit,
and overload violations.

NOTE: The following examples are to clarify the
J, K, N parameters, by giving examples of the
possible variations of chaining. Therefore, each
example will use the same M parameter described
for example 1.

Subprograms Linking FORTRAN with Analog/Digital I/O 81

Form C26-5990-1
Page Revised 7/20/66
By TNL N26-0559

Example 2: (Figure 18)

EXTERNAL LIM

DIMENSION NAREA (202), NTABL (202),
1M (403), IK (403), F007(2)

IM(403) = 6 * 4096 + 3

IM(402) = 10 + 40 * 256

IM(401) = 7 * 4096 + 1

IM(400) = 15 + 35 * 256

IM(399) = 7 * 4096 + 81

IM(398) = 15 + 35 * 256

SEE NOTE BELOW

IM(3) = 7 * 4096 + 86

IM(2) = 15 + 35 * 256

IK(402) = 6 * 4096 + 7

IK(401) = 50 + 80 * 256

IK(400) = 7 * 4096 + 37

IK(399) = 15 + 35 * 256

IK(398) = 7 * 4096 + 44

IK(397) = 15 + 35 * 256

SEE NOTE BELOW

IK(2) = 7 * 4096 + 77

IK(l) = 15 + 35 * 256

Relay point 3

Limits 10-40

Point 1

Limits 15-35

Point 81

Limits 15-35

Point 86

Limits 15-35

Relay point 7

Limits 50-80

Point 37

Limits 15-35

Point 44

Limits 15-35

Point 77

Limits 15-35

CALL AIR (05012, NAREA (1), NAREA (202), NTABL (1),
NTABL (202), 1M (1), 1M (403), IK (1), IK (403), FOO7 (2), LIM)

NOTE: Assume that at least 200 solid state points have been
specified between the two relay points 3 and 7.

82

In this example the I parameter (05012) specifies:

o - Standard data resolution
5 - Read-with multiplexer overlap with

comparator
o - No external synchronization; no continuous

input
1 - Second ADC
2 - Two data tables

The J parameter (NAREA(I), NAREA(202),
. NTABL(I), NTABL(202» specifies:

NAREA(I) The chaining address to the data table
NTABL(202), which is the last entry in this data
table.

NAREA(202) The word count of the data table NAREA.
NTABL(I) The last read, compared, and stored

data point of the entire chain, multiplexer address
77.

NTABL(202) The chaining address of NAREA(I), the
previous data table, stored in CAR as (NTABL
(202» .

The K parameter (IM(I), IM(403), IK(I), IK(403»
specifies:

IM(I) The chaining address to the multiplexer address
table IK(403), which is the last entry in this multi­
plexer address table.

IM(403) The first multiplexer address (relay point 3)
of the chain to be read and compared, and the first
entry in this multiplexer address table.

IK(I) The last specified limit word (limit word for
point 77) of the chain, which is the last entry in
this multiplexer address table.

IK(403) The chaining address of IM(I), the previous
multiplexer address table, stored in CAR as
(IK(403» .

I In this example, the N parameter (IF007(2» specifies:

I IF007(2) The core storage address where the relay
data table will start. The address will automatic­
ally be incremented by one each time an entry is
made in the relay data table.

The M parameter (LIM) is the same as described for
Example 1.

IM(403)

IM(402)

IM(401)

IM(400)

IM(399)

IM(398)

IM(3)

IM(2)

IM(I)

IK(403)

IK(402

IK(401)

IK(400)

IK(399)

IK(398)

IK(397)

IK(2)

IK(I)

MULTIPLEXER ADDRESS TABLE

Multiplexer address 3 (Relay Point)

li mit word 10-40

Multiplexer address 1

li mi t word 15-35

Multiplexer address 81

limit word 15-35

Multiplexer address 86

limit word 15-35

Chaining address (IK(403»

CAR (IK(403»

Multiplexer address 7 (Relay Point)

limit word 50-80

Multiplexer address 37

limit word 15-35

Multiplexer address 44

limit word 15-35

Multiplexer address n

li mi t word 15-35

NAREA(202)

NAREA(201)

NAREA(200)

NAREA(2)

NAREA(I)

NTABL(202)

NTABL(201)

NTABL(200)

NTABL(199)

NTABL(I)

F007(2)

F007(1)

DATA TABLE

Word count (200) of NAREA

First solid point data word (1)

Next solid point data word (81)

Last solid point data word (86)

Chaining address (NTABL(202»

CAR (NTABL(202»

Word count (200) of NTABL

First solid point data word (37)

Next solid point data word (44)

Last solid point data word (n)

First relay point data word (3)

Second relay point data word (7)

Figure 18. Example of Two Chained Multiplexer Address and Data Tables Using the Multiplexer Overlap Feature

Example 3: (Figure 19)

EXTERNAL

DIMENSION

IM(6) = 7*4096 + 81

IM(5) = 15 + 35*256

IM(4) = 3

IM(3) = 7*4096 +86

IM(2) = 15 + 35*256

LIM

NAREA (5), NTABL (5), 1M (7)

Point 81

Limits 15-35

Relay point 3

Point 86

Limits 15-35

CALL AIR (01012, NAREA (1), NAREA (5), NTABL (1),
NTABL (5), 1M (1), 1M (6), 1M (2), 1M (7), 0, LIM)

In this example, the I parameter (01012) specifies:

OJ.'- Standard data resolution
I ~ - Read-without multiplexer overlap with

comparator
Op No external synchronization; no continuous

/ input
I ,0..- Second ADC
~~..: Two data tables

The J parameter'{NAREA(l), NAREA(5), NTABL{l),
NTABL(5» specifies:

NAREA{l) The chaining address to NTABL(5), which
is the last entry in this data table.

NAREA(5) The word count of the data table NAREA.

Subprograms Linking FORTRAN with Analog/Digitall/O 83

IM(7)

IM(6)

IM(5)

IM(4)

IM(3)

IM(2)

IM(l)

MULTIPLEXER ADDRESS TABLE

CAR chaining address (IM(8»

Multiplexer address 81

Limit word 15-35

Multiplexer address 3

Multiplexer address 86

Limit word 15-35

Chaining address (IM(8))

NAREA(5)

NAREA(4)

NAREA(3)

NAREA(2)

NAREA(l)

NTABL(5)

NTABL(4)

NTABL(3)

NTABL(2)

NTABL(1)

DATA TABLES

Word count (3) of NAREA

First data word (point 81)

Second data word (point 3)

Last data word (point 86)

Chaining address (NTABL(5»

CAR (NT ABL(5»

Word count (3) of NTABL

First data word (point 81)

Second data word (poi nt 3)

Last data word (point 86)

Figure 19. Example of Two Chained Data Tables and Multiplexer Address Table Chained to Itself

NTABL(l) The last read, compared, and stored data
point of the entire chain, multiplexer address 86.

NTABL(5) The chaining address of NAREA(l), the
previous data table, stored in CAR as (NTABL(5».

The K parameter (IM(l), IM(6), IM(2), IM(7»
specifies:

IM(l) The chaining address' this multiplexer address
table's CAR (IM(7», the last entry in this multi..:.
plexer address table.

IM(6) The first multiplexer address to be read and
compared.

IM(2) The last specified limit word (limit word for
point 86) of this multiplexer address table.

IM(7) The chaining address from IM(l), stored in
CAR as (IM(7».

Note that IM(4) ,contains a multiplexer point for
which no limit check is required. In this case, the
next word is a· multiplexer point. The N parameter
(0) is zero as ~~ no multiplexer overlap. , a CI v'~ ~ y ;)cJd ,..eSS SI'I\ t ~ 1"/",(,);-(.. IS

The M parameter is the same as described in
Example 1.

84

Example 4: (Figure 20)

EXTERNAL LIM

DIMENSION INl (23), IN2 (23), IN3 (23), 1M (42)

IM(41) = 7*4096 +77

IM(40) = 15 + 35*256

IM(39) = 7*4096 + 81

IM(38) = 15 + 35*256

IM(37) = 7*4096 + 86

IM(36) = 15 + 35*256

IM(3) = 7*4096 + 44

IM(2) = 15 + 35*256

Point 77

Limits 15-35

Point 81

Limits 15-35

Point 86

Limits 15-35

Point 44

Limits 15-35

CALL AIR (11203, INl (1), INl (23), IN2 (1), IN2 (23),
IN3 (1), IN3 (23), 1M (1), 1M (4:t), 1M (1), 1M (42),
1M (1), 1M (42), <JUM) 4~

In this example, the I parameter (11203) specifies:

1 - 14-bit resolution
1 - Read-without multiplexer overlap with

comparator
2 - No external synchronization; continuous

input
0- First ADC
3 - Three data tables

The J parameter (IN1 (1), IN1 (23), IN2 (1), IN2 (23)
IN3 (1), IN3 (23» specifies:

IN1 (1) The chaining address to IN2 (23), which is
the last entry in this data table.

IN1 (23) The chaining address from IN3 (1), the
previous data table with continuous input, stored
in CAR as (IN1 (23».

IN2 (1) The chaining address to IN3 (23), which is
the last entry in this data table.

IN2 (23) The chaining address from IN1 (1), the
previous data table, stored in CAR as (IN2 (23».

IN3 (1) The chaining address to IN1 (23), which is
the last entry in this data table ~

IN3 (23) The chaining address from IN2 (1), the
previous data table, stored in CAR as (IN3 (23».

I The K parameter (1M (1), IM(42), 1M (1), 1M (42),
"1M (1), 1M (42» specifies:

1M (1) The chaining address to this multiplexer ad­
dress table's CAR (IM(42», the last entry in this
multiplexer address table.

1M (41) The first multiplexer address to be read and
compared.

1M (42) The chaining address from 1M (1), stored in
CAR as (1M (42».

I The N parameter (0) is zero as a dummy address
since there is no multiplexer overlap.

The M parameter (LIM) is the same as described in
Example 1.

Example 4 illustrates that continuous input
requires only one multiplexer address table, since

Form C26-5990-1
Page Revised 7/20/66
By TNL N26-0559

the table is merely chained to itself. However, as
many multiplexer address tables as required can be
used, as long as the chaining address (last variable
position in the table) of the last table is the address
of CAR in the first table.

Also, in all four examples, the comparator fea­
ture has been used to illustrate the maximum relative
size of the multiplexer address tables as compared
with the data tables. If the comparator feature is
not installed, limit words must be omitted from the
multiplexer address table. The limit words must
also be omitted for any multiplexer address that
does not contain a bit in position one (the bit
indicating a limit word follows), even if the compa­
rator feature is installed.

DIGITAL/ANALOG OUTPUT

The FORTRAN CALL statements shown below are
used to call the DAOP digital analog output sub­
routines for the purpose of executing contact operate,
digital to analog conversion, and digital output
operations.

Contact Operate CALL CO (I, J)
CALL DAC (I, J)
CALL DO (I, J)
CALL PO (I, J)

Digital to Analog Conversion
Digital Output
Pulse Output

I Parameter. The I parameter is an integer constant
or integer variable that specifies various control

I
options. It consists of 5 decimal digits for all
functions. Note that for the Halt function, I can be
04000 to terminate output.

1 2

Adme"ing Mode-.J 1
I/O Function _____ ...J

3 4 5

Channel----------I

Test Option-------------I

Number of Data Tables ---_____ ~

Subprograms Linking FORTRAN with Analog/Digital I/O 85

IM(42)

IM(4l)

IM(40)

IM(39)

IM(38)

IM(37)

IM(36)

IM(3)

IM(2)

IM(l)

MULTIPLEXER ADDRESS TABLE

CAR chaining address (IM(42))

Multiplexer address 77

Limit word 15-35

Multiplexer address 81

Limit word 15-35

Multiplexer address 86

Limit word 15-35

Multiplexer address 44

Limit word 15-35

Chaining address (lM(42»

I N1 (23)

I N1 (22)

I N1(21)

IN1(2)

IN1(1)

IN2(23)

I N2(22)

I N2(21)

IN2(2)

IN2(1)

IN3(23)

IN3(22)

I N3(21)

IN3(2)

IN3(1)

Figure 20. Example of Continuous Input Multiplexer Address and Data Tables

86

DATA TABLES

CAR chaining address (I N1 (23)

Word count (20) of IN1

First data word (point 77)

Last data word (point 44)

Chaining address (IN2(23»

CAR chaining address (lN2(23»

Word count (20) of I N2

First data word (point 77)

Last data word (point 44)

Chaining address (J N3(23»

CAR chaining address (lN3(23»

Word count (20) of I N3 77

First data word (point 77)

- . Last data word (point 44)

Chaining address (INl (23»

Addressing Mode

This addressing mode digit specifies one of four
available addressing options: c:. ~ " ·i"'j

l fI' i ,I., (i

o - Random addressing
1 - Single addressing

.,,.. /\~. \.

2 - Random addressing with external synchron­
ization

3 - Single addressing with external synchron-
ization

Random Addressing. One multiplexer address for
each output value in a random mode, must precede
its associated data output value.

Single Addressing. A single address, preceding a
series of data output values, can be specified.

Random Addressing With External Synchronization.
Same as random addressing, except the output is
externally synchronized.

Single Addressing With External Synchronization.
Same as single addressing, except the output is
externally synchronized.

I/O Function

The I/O function digit specifies the function to be
performed by the DAOP subroutine. The functions,
associated digital values, and required parameters
are listed and described below.

Digital
Function Value Re9,uired Parameters

Test 0 I, J*

Write I, J

Write Pulse 2 I, J

Write Buffered 3 I, J

Halt 4

*The J parameter for the test function is a single integer
variable (same as described under AlP).

Test. The test function is used in conjunction with
the test option to determine program busy status or
pulse timer busy status. The J parameter is the
same as described for the analog input single read
subprogram (see AlP).

Form C26-5990-1

Page Revised 7/20/66

By TNL N26-0559

Write, Write Pulse, and Write Buffered. Writes the
requested number of digital/analog values, using the
mode requested.

Halt. Terminates output on the addressed
device.

Channel

This digit specifies the mode of data transfer for the
operation.

o - Direct program control
1 - Data channel control

Test Option

This digit tests the status of the previous operation
or the pulse output timer. This digit must be zero
for' analog output.

o - Test the st~tus of the previous digital/analog
output operation.

1 - Test the status of the pulse output timer.

Number of Data Tables

Same as described for analog input sequential sub­
program.

J Parameter

The J parameter consists of one or more pairs of
integer variables that define the boundaries of the
data tables (or combined data and point address
tables) to be used.

There must be one pair of J parameters for each
data table. The first and second variables of the J
parameter set must specify the last and first variables
of the data table ,respectively. If random address­
ing is used, each point address must precede its
associated data word. (In an array, the subscript of
the point address variable must be one larger than the
subscript of the data word variable.)

If only one data table is specified, the J parameter
set must allow one extra variable position in the data
table for the word count.

If chaining is specified, the first and last tables
must allow two extra variable positions in the J
parameter set. The two extra variables in the first
table will be used for the word count and the chaining
address, and in the last table for CAR and the word
count. All tables between must allow three extra
variable positions to be used for CAR, word count,
and chaining address.

Subprograms Linking FORTRAN with Analog/Digital I/O 87

Form C26-S990-1

Page Revised 7/20/66
By TNL N26-0SS9

Example 1: (Figure 21)

DIMENSION IDATA (5)
IDATA (4) = 84
IDATA (2) = 81
CALL CO (01101, IDATA (1), IDATA (5»

In this example, the I parameter (01101) specifies

o - Random addressing
1 - Write operation
1 - Data channel control
o - Not used, must be zero
1 - One data table and addresses

The J parameter (IDATA (1), IDATA (5» specifies:

IDATA (1) The last data word output to its
associated address

IDATA (5) The word count (4) of the table IDATA.

IDATA (5)

IDATA (4)

IDATA (3)

Word count (4) of IDATA

Address of point 84

Output data to poi nt 84

• Figure 21. Random Address and Data Table

Example 2: (Figure 22)

DIMENSION IDATA (5)
IDATA (4)",",84
CALL DO (11101, IDATA (1), IDATA (5»

In this example, the I parameter (11101) specifies:

1 - Single addressing
1 - Write operation
1 - Data channel control
o - Not used, must be zero
1 - One data table and address

The J parameter (IDATA (1), IDATA (5» specifies:

88

IDATA (1) The last output data word to the
addressed point.

IDATA (5) Word count (4) of the table IDATA.

IDATA (5) Word count (4) of IDATA

IDATA (4) Address of point 84

IDATA (3) First output data word to point 84

IDATA (2) Second output data word to point 84

IDATA (1) Last output data word to poi nt 84

• Figure 22. Single Address and Data Table

Example 3: (Figure 23)

DIMENSION IN1 (6), IN2 (7), IN3 (6)
IN1 (5) = 84
IN1 (3) = 81
IN2 (5) = 86
IN2 (3) = 64
IN3 (4) = 77
IN3 (2) = 74
CALL CO (01103, IN1 (1), IN1 (6), IN2 (1),
IN2 (7), IN3 (1), IN3 (6»

In this example, the I parameter (01103) specifies:

o - Random Addressing
1 - Write operation
1 - Data channel control
o - Not used, must be zero
3 - Three data tables and addresses

The J parameter (IN1 (1), IN1 (6), IN2 (1), IN2 (7),
IN3 (1), IN3 (6» specifies:

IN1 (1) The chaining address (IN2 (7» that is stored
in CAR of the second data table.

IN1 (6) Word count (4) of the table INl.

IN2 (1) The chaining address (IN3 (6» that is stored
in CAR of the third data table.

IN2 (7) CAR where the chaining address (IN2 (7» is
stored.

IN3 (1) The last output data word of the chain of
tables, to its associated address.

IN3 (6) CAR where the chaining address (IN3 (6» is
stored.

NOTE: The chaining methods described in Example 3
would be the same for single addressing. The only
difference is the appearance of the data table, only
three variable positions would be designated as ad­
dress points.

IN] (6)

IN] (5)

IN] (4)

IN] (3)

IN] (2)

IN1 (])

IN2 (7)

IN2 (6)

IN2 (5)

IN2 (4)

IN2 (3)

IN2 (2)

IN2 (])

IN3 (6)

IN3 (5)

IN3 (4)

IN3 (3)

IN3 (2)

IN3 (])

Word count (4) of IN1

Address of point 84

Output data word to point 84

Address of point 81

Output data word to point 8]

Chaining address (lN2 (7»

CAR (I N 2 (7»

Word count (4) of IN2

Address of point 86

Output data word to point 86

Address of point 64

Output data word to point 64

Chaining address (IN 3 (6»

CAR (lN3 (6»

Word count (4) of IN3

Address of point 77

Output data word to poi nt 77

Address of point 74

Output data word to point 74

Figure 23. Chained Address and Data Tables

DIGITAL INPUT

The FORTRAN CALL statements shown below are
used to call the digital input subroutines to execute
contact sense, voltage level sense, digital input, and
pulse counter operations.

CALL CS (I,J)

CALL CSC (I,J ,M)

CALL CSX (I, J)

CALL VS (I,J)

CALL VSC (I,J,M)

CALL VSX (I, J)

Contact Sense

Contact Sense and
Compare

Contact Sense and
Expand

Voltage Level Sense

Voltage Level Sense and
Compare

Voltage Level Sense and
Expand

CALL DI (I, J)

CALL DIC (I,J ,M)

CALL DIX (I, J)

CALL PI (I, J)

CALL PIC (I,J,M)

CALL PIX (I,J)

I Parameter

Fonn C26-5990-1

Page Revised 10/25/66
By WL N26-0560

Digital Input

Digital Input and Compare

Digital Input and Expand

Pulse Counter Input

Pulse Counter Input and
Compare

Pulse Counter Input and
Expand

The I parameter is an integer constant or integer
variable that specifies various control options. It
consists of a 0 for the test function or 5 decimal
digits for a read or read and compare function.

1 2

Zero,--------It 1
I/O Function-----.....I t

4 5

Zero

Addressing Mode or
Output Format-----------'

Number of Data Tables-----------J

I/O Function

The I/O function digit specifies the function to be per-
formed by the DINP, DICMP, DIEXP subroutines.
The functions, associated digital values, and required
parameters are listed and described below.

FORTRAN
Digital Required Subroutine Subroutine

Function Value Parameters Used Used

Test 0 I, J* Any DINP,DICPM,
DIEXP

Read Data I, J CS,VS, DINP
Channel DI, PI

or Read and I,], M CSC, VSC, DICMP

Compare DIC, PIC

or Read and I,] CSX,VSX, DIEXP

Expand DIX, PIX

Read Program 2 I, J CS,VS, DINP

Control DI, PI

*The J parameter for the test function is a single integer variable
(same as described under AlP).

Subprograms Linking FORTRAN with Analog/Digital I/O 89

Form C26-5990-1

Page Revised 10/25/66
By TNL N26-0560

~. The test function determines if the requested
device is busy. The J parameter is the same as
described for the analog input single read sub­
program (see AlP).

Read Data Channel. Reads the requested number of
input values using data channel control. Used with
CS, VS, DI, and PI only.

Read and Compare. Reads, under direct program
control using sequential addressing, and compares
input groups (words). Used with CSC, VSC, DIC,
and PIC only.

Read and Expand. Reads the requested group of
digital input points (i. e., one word at a time) and
expands them into 2, 4, 8, or 16 words containing
8, 4, 2, or 1 bit each, respectively. Read and
expand is used with CSX, VSX, DIX, and PIX only.
The addressing mode is replaced by an output format
digit for this function.

Read Program Control. Reads the requested number
of input values, using program control and sequential
addressing. Used with CS, VS, DI and PI only. The
addressing mode/output format digit is not used.

Addressing Mode or Output Format

The addressing mode digit specifies one of six avail­
able addressing options for data channel operation:

o - Random addressing
1 - Sequential addressing
2 - Single addressing
3 - Random address with external synchro­

nization
4 - Sequential addressing with external

synchronization
5 - Single addressing with external synchro­

nization_

The output format must be specified for the read
and expand function only; 1, 2, 4, or 8 indicates 16
one-bit words, 8 two-bit words, 4 four-bit words, or
2 eight-bit words, respectively.

Number of Data Tables

This digit specified the number of pairs of variables
that identify I/O area boundaries. Up to nine pairs

90

of variables (nine I/O areas) can be specified with CS,
VS, DI, or PI. This digit must correspond to the
actual number of pairs specified by the J parameter.
Only one pair can be used with CSC, CSX, VSC, VSX,

I DIC, DIX, PIC, AND PIX, or if the read program
control function is specified, with CS, VS, DI, and PI.

J Parameter

The J parameter consists of one or more pairs of
integer variables that define the data table area.
There must be one pair of J parameters for each data
table. If random addressing is used, each point ad­
dress must precede its associated data word. If

I
single or sequential addressing is used, there is only
one digital point address and that address precedes
all data words. (In an array, the subscript of the
point address variable must be one larger than the
subscript of the data word variable.) The first and
last variables of a J parameter pair must specify the
last and first variables of the data table, respectively.

If only one data table is specified, the J parameter
must allow one extra variable position in the data
table for the word count except if the function is read
and expand. In that case, the number of words of
expanded input is equal to the number of words of
expanded data specified by the output format code,
i. e., 16, 8, 4, or 2 words of expanded data (CSX,
VSX, DIX, and ,PIX). Also, the first word of the
table must be the digital input address.

If chaining is specified (more than one data table
with data channel control), the first and last data
tables must have two extra variable positions each.
In the first table, the extra variables will be used for
the word count and the chaining address. In the last
table, the extra variables will be used for CAR and
the word count. All tables between must have three
extra variable positions that will be used for CAR,
word count, and chaining addre ss.

M Parameter

The M parameter specifies the name of the user­
written subprogram to which control will be trans­
ferred upon comparison of unequal values. The
subprogram name must also be listed in the

EXTERNAL statement. This subprogram must have
two parameters in the calling sequence: one must be
an integer variable that will be loaded with the current
reading that did not provide an equal comparison; the
other must be an integer variable that will be loaded
with the address of the point group that did not
provide an equal comparison. The M parameter is
required only with CSC, VSC, DIC, and PIC calls.

Example 1: (Figure 24)

EXTERNAL
DIMENSION

IN(ll) = 87

CLIM
IN(12)

CALL CSC (01001, IN(l), IN(12), CLIM)

In this example, the I parameter (01001) specifies:

o - Not used, must be zero.
1 - Read and compare function.
o - Must be zero.
o - Not used.
1 - One data table.

The J parameter (IN(I), IN(12» specifies:

IN(1) The last data word read into the table from
the point that is ten positions (sequentially)
from the first address, point 87 in this case.

IN(12) The word count (11) of the data table IN.

The M parameter (CLIM) specifies:

CLIM This is the user-written subprogram to
which the CSC call would transfer control upon a
comparison of unequal values. The subprogram
might have the two required parameters designated
as LV and MX, where:
LV is the integer variable that will be loaded·with

the current reading that did not provide an
equal comparison, and

MX is the integer variable that will be loaded with
the address of the point group that did not
provide an equal comparison.

NOTE: Except for the difference between a write
operation and a read operation, the examples of

Form C26-5990-1

Page Revised 10/25/66
By TNL N26-0560

multiple tables and chaining for digital/analog out­
put apply to digital input.

IN (12)

IN (11)

IN (10)

IN (9)

Word count (11) of IN

Address of point 87

Data word read from point 87

Data word read from point 88

-
,.lI

IN (2)

IN (1)

Data word read from point 95

Data word read from point 96

Figure 24. Single Address and Data Table

Example 2: (Figure 24.1)

DIMENSION IN(5)
IN(5) = 64
CALL CSX (01041, IN(I) , IN(5»

In this example, the I parameter (01041) specifies:

o - Not used, must be zero.
1 - Read and compare function.
o - Must be zero.
4 - Sequential point addressing.
1 - One data table.

The J parameter (IN(l), IN(5» specifies:

IN(I) The last data word filled in.
IN(5) Digital input address.

Figure 24.1. Single Address and Data Table (CSX)

IN(5)

IN(4)

IN(3)

IN(2)

IN(1)

D I address

Bits 0,1,2,3 of data word (right justified)

Bits 4,5,6,7 of data word (right justified)

Bits 8,9,10,11 of data word (right justified)

. Bits 12,13,14,15 of data word (right justified)

I'll

Subprograms Linking FORTRAN with Analog/Digital I/O 91

CONVERSION SUBROUTINES

The basic unit of information within the IBM 1800
Data Acquisition and Control System is the 16-bit
binary word. This information may be interpreted
in a variety of ways, depending on the circumstances.
For example, in purely internal computer opera­
tions, computer words may be interpreted as
instructions, addresses, binary integers, or
floating-point numbers.

This section is concerned with the interpretations
of bit configurations that relate computer information
with the outside world. These interpretations are
made necessary by the following considerations:

1. A compact notation to represent externally the
bit configuration within each computer word is
needed by the programmer. This is provided
by hexadecimal notation.

2. A code is required to represent alphameric
(mixed alphabetic and numeric) data within the
computer. This is provided by the extended bi­
nary coded decimal interchange code (EBCDIC).

3. The design and operation of the various input/
output devices is such that many of them impose
a unique correspondence between character re­
presentations in the external medium and the
associated bit configurations within the computer.
Conversion subroutines are needed to convert in­
puts from these devices into a form on which the
computer can operate, and to prepare computed
results for output on the devices.

This section of the manual describes the sub­
routines for converting data representations among
these various codes.

DATA CODES

In addition to the 16-bit binary internal representa­
tion, the conversion subroutines handle the following
six codes:

1. Hexadecimal notation
2. IBM card code
3. 1443 Printer code
4. Perforated tape and transmission code (PTTC/8)
5. 1053 Printer code
6. Extended binary coded decimal interchange

code (EBCDIC)

A list of these codes can be found in Appendix D.

92

Hexadecimal Notation

Although binary numbers facilitate the operations of
computers, they are bulky and awkward for the pro­
grammer to handle. A long string of l's and O's
cannot be effectively transmitted from one individual
to another. The hexadecimal number system is
often used as a shorthand method of communicating
binary numbers. Because of the simple relation­
ship of hexadecimal to binary, numbers can easily
be converted from one system to another.

In hexadecimal notation a single digit is used to
represent a four-bit binary value. The correspond­
enc~ between binary, decimal, and hexadecimal is
shown in Figure 25. Thus, a 16-bit word in the IBM
1800 system can be expressed as four hexadecimal
digits. For example, the binary value

1101001110111011

can be separated into four sections.

BINARY DECIMAL HEXADECIMAL

0000 0 0

0001

0010 2 2

0011 3 3

0100 4 4

0101 5 5

0110 6 6

0111 7 7

1000 8 8

1001 9 9

1010 10 A

1011 11 B

1100 12 C

1101 13 D

1110 14 E

1111 15 F

Figure 2S. Hexadecimal Notation

Binary
Hexadecimal

1101/0011/1011/1011
D 3 B B

Another advantage of hexadecimal notation is
that fewer positions are required when output data is
printed, or punched in cards or paper tape. In the
example above, only four card columns are required
to contain the data from a 16-bit binary word.

IBM Card Code

The IBM card code can be used as an input/output
code with the 1442 Card Read/Punch, and is the in­
put code for the 1816 Printer-Keyboard.

This code defines a character by a combination
of punches in a card column. Card-code data is
taken from, or placed into, the leftmost twelve bits
of a computer word as shown below:

Card Row 12 11 0 1 2 3 4 5 6 7 8 9

Computer Word 0 1 2 3 45 6 7 8 9 10 11 12 13 14 15

For example, a plus sign which has a card code
of 12, 6, 8 is placed into core storage in the binary
configuration illustrated in the following diagram.

Card COde~ Binary Word

1000000010100000 o----t
00000000
1214S' J I

11111111

22222222

333 J J 3 JJ

44444444

~~~~~~s~ 

66 G 6 6 6 6 D-----------....J 
7111 J 111 

888 818 80--------------" 

9 9 9 9 9 9 9 9 

1443 Printer Code (6-bit BCD) 

In this code, all characters are represented by six 
positions of binary notation. These positions consist 
of two zone positions and four numeric positions as 
shown below. 

Zone Numeric 

BA 8 4 2 1 

The four numeric positions are assigned decimal 
values of 8, 4, 2, and 1. Combinations of zone 
and numeric bits represent alphabetic and special 
characters. 

Each computer word must contain two printer 
characters as shown below: 

Printer BCD - - B A 8 4 2 1 - - B A 8 4 2 1 
Characters 

Computer 0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
Word 

(Bits 0, 1, 8, and 9 are not used) 

For example, the printer characters? Rare 
shown in Figure 26 as they would be represented by 
a 6-bit BCD code and as they are packed into a com­
puter word. 

Perforated Tape and Transmission Code (PTTC/8) 

The PTTC/8 code is an 8-bit code that can be used 
with the 1054/1055 Paper Tape units 0 This code re­
presents a character with a stop position, a check 
position, and six positions representing the 6-bit code 

? R 

BA8421 B A 8 4 2 

x x x- x x x x 

Computer 
Word 000 0 1 1 1 110 0 1 0 1 0 0 1 

Figure 26. 1443 Printer Code for ?R 

Subprograms Linking FORTRAN with Analog/Digital I/O 93 



BA8421. PTTC/8 characters can be packed two per 
computer word, as shown below. 

1st 2nd 

PTTC/8 Characters I S B A C 8 4 2 l' '5 B A C 8 4 2 

Computer Word 
1

0 2 3 4 5 6 7 8 9 10 11 12 1314 151 

The binary configuration of paper tape code for the 
characters ? R is shown in Figure 27. 

Binary Word 

I 0 o 1 1 0 0 o 1 0 1 0 010 o 1 I 
~ I~ h • I~ • 

5 
B 
A X 

? C X 
8 
4 
2 
1 X 

5 
B X 
A 

R C 
8 X 
4 
2 
1 X 

Figure 27. PTTCj8 Code for ?R 

NOTE: The DEL and NL characters have a special 
meaning when encountered by the paper tape sub­
routine (check mode only). 

1053 Printer code 

This code is the 8-bit output code for the 1816 
Printer-Keyboard and the 1053 Printer. Characters 
can be packed two per computer word. 

94 

NOTE: The following control characters have special 
meanings when used with the 1816 Printer-Keyboard 
and the 1053 Printer: 

Character 
HT 
RES 
NL 
BS 
LF 
RS 

Control Operation 
Tabulate 
Shift to black ribbon 
Carrier return on new line 
Backspace 
Line feed without carrier return 
Shift to red ribbon 

Extended Binary Coded Decimal Interchange Code 
(EBCDIC) 

EBCDIC is the standard code for internal repre­
sentation of alphameric and special characters. The 
code occupies eight binary bits per character, 
making it possible to store one, or two characters 
per computer word. The eight bits allow 256 pos­
sible codes. (At present, not all of these combi­
nations have been assigned to represent characters.) 
The complete EBCDIC code is shown in Appendix D. 

Most of the conversion subroutines do not recog­
nize all 256 codes. The asterisked codes in 
Appendix D constitute the subset which is recog­
nized by most of the conversion subroutines. 

DESCRIPTIONS OF CONVERSION SUBROUTINES 

The following data conversion subroutines are pro­
vided: 

BINDC Binary value to IBM card-coded 
decimal value. 

DCBIN IBM card-coded decimal value to 
binary value. 

BINHX Binary value to IBM card-coded 
hexadecimal value. 

HXBIN IBM card-coded hexadecimal value 
to binary value. 

HOLEB IBM card code subset to EBCDIC 
subset; EBCDIC subset to IBM card code subset. 



PAPEB PTTC/8 subset to EBCDIC subset; 
EBCDIC subset to PTTC/8 subset. 

PAPHL PTTC/8 subset to IBM card code 
subset, IBM card code subset to PTTC/8 subset. 

PAPPR PTTC/8 subset to either 1443 or 1053 
Printer code. 

HOLPR IBM card code subset to either 1443 
or 1053 Printer code. 

EBPRT EBCDIC subset to either 1443 or 1053 
Printer code. 

In addition to the subroutines listed above, the 
following conversion tables are used by some con­
version subroutines. 

PRTY Typewriter output and 1443 
Printer codes. 

EBPA EBCDIC and PTTC/8 subsets. 

HOLL IBM Card code subset. 

The first four of the conversion subroutines 
change numeric data from its input form to a binary 
form, or from a binary form to an appropriate out­

. put data code. The last seven convert entire mes­
sages, one character at a time, from one 

IBM Card 
CONVERTED Code PTTC/8 EBCDIC 

FROM Bi nary (Subset) (Subset) (Subset) 

Binary 

IBM Card 
Code PAPHL HOLEB 

(Subset) 

PTTC/8 PAPHL PAPEB 
(Subset) 

ESCDIC HOLEB PAPEB 
(Subset) 

HEX 
Equivalent HXBIN 

(Card Code) 

Decimal 
Eguivalent DCBIN 
(Card Code) 

Table 6. Types of Conversions 

Form C26-5990-1 

Page Revised 7/20/66 
By TNL N26-0559 

input/ output code to another. The different types of 
conversions offered by these subroutines are illus­
trated in Table 6. 

Error Checking 

All of the subroutines will accept only the codes 
asterisked in Appendix D. It is considered an 
error if any input character does not belong to the 
specified input code. A space character in the out­
put code, is stored in the output area in place of the 
input character in error. 

If any such error occurs, bit one of word 55 of 
the work level is turned on when the conversion sub­
routine returns control to the user. Otherwise, the 
settings of the carry and overflow indicators are not 
altered by the subroutine. 

It is the user's responsibility to turn off this bit 
before calling a conversion subroutine if he plans to 
test it later. This word can be reached by picking 
up the address in location 104 and adding 55 to it. 
(The contents of 104 must not be changed.) 

This subroutine converts a 16-bit binary value to its 
decimal equivalent in five IBM card-coded numerical 
characters and one sign character. The five charac­
ters and the sign are placed into six computer words 
as. illustrated in Figure 28. 

CONVERTED TO 

! 
Hex Decimal 

1443 1053 Equivalent Equivalent 
Printer Printer (Card Code) (Card Code) 

BINHX BINDC 

HOLPR HOLPR 

PAPPR PAPPR 

EBPRT EBPRT 

Subprograms Linking FORTRAN with Analog/Digital I/o 95 



, Calling Sequence 

OUTPT 

LIBF 
DC 

BSS 

BINDC 
OUTPT 

6 

Input. Input is a 16-bit binary value in the 
A-register. 

Output. Output is an IBM card-coded sign charac­
ter (plus or minus) in location OUTPT, and five IBM 
card-coded numerical characters in OUTPT +1 
through OUTPT +5. 

DCBIN 

This, .subroutine converts a decimal value in five IBM 
card-coded characters and a sign character to a 16-
bit binary word. The conversion is the reverse of 
the BINDC subroutine conversion illustrated in 
Figure 28. 

Calling Sequence 

INPUT 

LIBF 
DC 

BSS 

DCBIN 
INPUT 

6 

Input. Input is an IBM card-coded sign character in 
location INPUT and five 12-bit IBM card-coded 
decimal characters in INPUT +1 through INPUT +5. 

Output. Output is a 16-bit binary word in A-register, 
containing the converted value. 

Error Conditions Detected 

Any character other than an IBM card-coded plus, 
ampersand, space, or minus as the sign, and space 
or 0 through 9 as a decimal digit is considered an 
error. Any converted value greater than +32767 or 
less than -32768 is considered an error. 

96 

I/O Conversion Bits in Core Storage 
Locations Data 004 "15 

A - Register +0153U 0000 a 1 10 0000 0010 

OUTPT + 1000 0000 1010 0000 

OUTPT + 1 a a a 1 a 0000 0000 0000 

OUTPT +2 1 o a a 1 0000 0000 0000 

OUTPT +3 5 0000 a a a 1 0000 0000 

OUTPT +4 3 0000 a 1 a a 0000 0000 

OUTPT +5 8 0000 0000 a a 10 0000 

Figure 28. BINDC Conversion 

This subroutine converts a 16-bit binary word into 
hexadecimal notation in four IBM card-coded char­
acters as illustrated in Figure 29. 

Calling Sequence 

OUTPT 

LIBF 
DC 

BSS 

BINHX 
OUTPT 

4 

Input. Input is a 16-bit binary word in the A-register. 

I/O Conversion Bits in Core Storage 
Locations Data 004 "15 

A - Register A59E 1010 a 10 1 100 1 1 1 10 --
OUTPT A 100 1 0000 0000 0000 

OUTPT + 1 5 0000 0001 0000 0000 

OUTPT +2 9 0000 0000 a a a 1 0000 

OUTPT +3 E 10 a a a a a 1 0000 0000 

Figure 29. BINHX. Conversion 



Output. Output is four IBM card-coded hexadecimal 
digits in location OUTPT through OUTPT +3. 

This subroutine converts four IBM card-coded hexa­
decimal characters into one 16-bit binary word. The 
conversion is the reverse of the BINHX subroutine 
conversion illustrated in Figure 29. 

Calling Sequence 

LIBF 
DC 

BSS 

HXBIN 
INPUT 

4 

Input. Input is four IBM card-coded hexadecimal 
digits in INPUT through INPUT +3. 

Output. Output is a 16-bit binary word in the 
A-register. 

Error Conditions Detected 

Any character other than IBM card-coded 0 through 
9 or A through F is considered an error. 

HOLEB 

This subroutine converts IBM card code subset to 
EBCDIC subset or converts EBCDIC subset to IBM 
card code subset. This code conversion is illus­
trated in Figure 30. 

Only the character codes asterisked in Appendix D 
can be converted by this subroutine. 

Calling Sequence 

LIBF HOLEB 
DC /xxxx (Control) 
DC INPUT 
DC OUTPT 
DC nnnnn (Character count) 

I/0 Conversion Bits in Core Storage 
Locations Data 0 .. ... 15 

INPUT JS 1 101 a a 0 1 1 1 10 001 a ---

OUTPT J a 1 a 1 0000 0000 0000 

OUTPT + 1 S a a 1 a 100 a 0000 0000 

Figure 30. HOLEB Conversion (EBCDIC to Card Code) 

Control Parameter. This parameter consists of four 
hexadecimal digits. Digits 1-3 are not used: the 
fourth digit specifies the direction of conversion: 

o - IBM card code to E BC DIC 
1 - EBCDIC to IBM card code. 

Input. Input is either IBM card code or EBCDIC 
characters (as specified by the control parameter) 
starting in location INPUT. EBCDIC characters 
must be packed two characters per one binary word. 
IBM card-coded characters are stored one charac­
ter to each binary word. 

Output. Output is either IBM card code or EBCDIC 
characters starting in location OUTPT. Characters 
are packed as described above. 

If the direction of the conversion is IBM card 
code input to EBCDIC output, the input area can 
overlap the output area if the address INPUT is equal 
to or greater than the address OUTPT. If the direc­
tion of the conversion is EBCDIC input to IBM card 
code output, the input area can overlap the output 
area if the address INPUT + (n/2) -1 is equal to or 
greater than the address OUTPT -tn-1, where n is 
the character count specified. The subroutine starts 
processing at location INPUT. 

Character Count. This parameter specifies the 
number of characters to be converted; it is not equal 
to the number of binary words used for the EBCDIC 
characters because those characters are packed two 
per binary word. If an odd count is specified, and the 
output code is EBCDIC, bits 8 through 15 of the last 
word in the output area are not altered. 

Error Conditions Detected 

Any input character which is not asterisked in 
Appendix D is considered an error. 

PAPEB 

This subroutine converts PTTC/8 subset to EBCDIC 
subset or converts EBCDIC subset to PTTC/8 subset. 
The conversion is illustrated in Figure 31. 

Subprograms Linking FORTRAN with Analog/Digital I/O 97 



I/O Locations Conversion Data 
Bits in Core Storage 

O~ • 15 

INPUT JS 1101 0001 1110 0010 
-- -

OUTPT f{) UC J 0000 1110 0101 0001 
+1 S DEL 0011 0010 0111 1111 

Figure 31. PAPER Conversion (EBCDIC to PTTC/B) 

Calling Sequence 

INPUT 

OUTPT 1= 

LIBF 
DC 
DC 
DC 
DC 

PAPEB 

/xxxx (Control 

INPUT 
OUTPT 
nnnnn (Character count) 

Control Parameter. This parameter consists of 
four hexadecimal digits. Digits 1 and 2 are, not used. 
The third digit indicates whether the case 'is to be 
initialized for the first graphic character before 
conversion begins. 

o - Initialize case 
1 - Do not alter 

The fourth digit indicates the direction of con­
version. 

o - PTTC/8 to EBCDIC 
1 - EBCDIC to PTTC/8 

Input. Input is either PTTC/8 or EBCDIC charac­
ters, as specified by the control parameter, starting 
in location INPUT. Both character codes are packed 
two per computer word. 

If the input is in PTTC/8 code, all control char­
acters except case shift (LC or UC) characters are 
converted to output. Case shift characters are used 
to define the case mode of the graphic characters 
which follow. 

If the input is in EBCDIC, all data and control 
characters are converted to output. The user 
should not specify case shifting in his input mes­
sage; this is handled automatically by the PAPEB 

98 

subroutine. If a case shift control character ap­
pears in the input message, it may appear twice in 
the output. 

Output. Output is either EBCDIC or PTTC/8 char­
acters, starting in OUT PT. Both character codes are 
in packed format. The subroutine starts processing 
at location INPUT. 

If the output is in EBCDIC, overlap of the input 
and output areas is possible if the address INPUT 
is equal to or greater than the address OUTPT. 

If the output is in PTTC/8, overlap of the input 
and output areas is not recommended because the 
number Df output characters might be greater than 
the number of input characters. 

Case shift characters are inserted in a PTTC/8 
output message where needed to define certain 
graphic characters. This is necessary because 
some graphic characters have the same binary val­
ue and are differentiated only by a case mode char­
acter. For example, the binary value 0101 1011 
(5B), will be interpreted as an $ in lower case and 
an ! in upper case (see Appendix D). 

Character Count. This parameter specifies the 
number of PTTC/8 or EBCDIC characters in the in­
put area. The count must include case shift char­
acters even though they will not appear in the out­
put. Because the input is packed, the character 
count will not be equal to the number of binary words 
in the input area. 

If an odd number of output characters is pro­
duced, bits 8-15 of the last word used in the output 
area are set to a space character if the output is 
EBCDIC or to a delete character if the output is 
PTTC/8. 

The conversion is halted whenever the charac­
ter count is decremented to zero or a new line (NL) 
control character is detected. 

Error Conditions Detected 

Any input character which is not asterisked in Ap­
pendix D is considered an error. 

PAPHL 

This subroutine converts PTTC/8 subset to IBM card 
code subset or IBM card code subset to PTTC/8 
subset. Figure 32 illustrates the relationship of the 
two codes for converting PTTC/8 to IBM card code. 



Calling Sequence 

INPUT 

OUTPT 

LIBF 
DC 

DC 
DC 

DC 

1= 

PAPHL 

/xxxx (Control) 

INPUT 
OUTPT 
nnnnn (Character count) 

- - -I - --

Control Parameter. This parameter consists of four 
hexadecimal digits. Digits 1 and 2 are not used. 
The third digit indicates whether or not the case is 
to be initialized for the first graphic character be­
fore conversion begins. 

o - Initialize case 
1 - Do not alter 

I/O Locations Conversion Data 
Bits in Core Storage 

o 04 .. 15 

INPUT UC J 0000 1110 0101 0001 
S T 0011 0010 0010 0011 

-- ---
OUTPT J 0101 0000 0000 0000 
OUTPT +1 S 0010 1000 0000 0000 
OUTPT +2 T 0010 0100 0000 0000 

Figure 32. PAPHL Conversion (PTTC/B to Card Code) 

The fourth digit indicates the type of conversion. 

o - PTTC/8 to IBM card code 
1 - IBM card code to PTTC/8 

Input. Input is either PTTC/8 or IBM card code 
characters, as specified by the control parameter, 
starting in location INPUT. PTTC/8 characters 
are packed two per binary word; IBM card code 
characters are not packed. 

If the input is in PTTC/8 code, all control 
characters, except case shift (LC or UC) characters 
are converted to output. Case shift characters are 
used simply to define the case mode of the graphic 
characters which follow. 

If the input is in IBM card code, all data and 
control characters are converted to output. The 
user should not specify case shifting in the input 
message. This is handled automatically by the 
PAPHL subroutine. If a case shift control charac­
ter appears in the input message, it may appear 
twice in the output. 

Output. Output is either IBM card code or PTTC/8 
code characters, starting in location OUT PT. 
PTTC/8 codes are packed two per binary word; IBM 
card code characters are not packed. 

If the direction of the conversion is IBM card 
code input to PTTC/8 output, the input area may 
overlap the output area if the address INPUT is 
equal to or greater than the address OUTPT. Case 
shift characters are inserted in the output message 
where needed to define certain graphic characters 
(see PAPEB). 

If the direction of the conversion is PTTC/8 
input to IBM card code output, the input area may 
overlap the output area if the address INPUT + (n/2) 
is equal to or greater than the address OUTPT + n, 
where n is the character count. The subroutine 
starts processing at location INPUT. 

Character Count. This parameter specifies the 
number of PTTC/8 or EBCDIC characters in the 
input area. The count must include case shift 
characters even though they might not appear in the 
output. Because the input can be packed, the char­
acter count may not be equal to the number of binary 
words in the input area. 

If an odd number of PTTC/8 output characters 
is produced, bits 8-15 of the last word used in the 
output area are set to a delete character. 

The conversion is halted whenever the character 
count is decremented to zero or a new line (NL) 
control character is detected. 

Error Conditions Detected 

Any input character which is not asterisked in Appen­
dix D is considered an error. 

This subroutine converts PTTC/8 subset to either 
1053 or 1443 Printer code. The conversion to 
1443 Printer code is illustrated in Figure 33. 

Subprograms Linking FORTRAN with Analog/Digital I/O 99 



Calling Sequence 

INPUT 

OUTPT 

LIBF 
DC 
DC 
DC 
DC 

r -- -

PAPPR 
/Y;;xxx (Control) 

INPUT 

OUTPT 
nnnnn (Character count) 

Control Parameter. This parameter consits of four 
hexadecimal digits. Digits 1 and 2 are not used. The 
third digit indicates whether or not the case is to be 
initialized for the first graphic character before 
conversion begins. 

o - Initialize case 
1 - Do not alter 

The fourth digit determines the output code. 

o - 1053 Printer code 
1 - 1443 Printer code 

I/O locations Conversion Data 

INPUT UC J 
INPUT +1 lC $ 

---
QUTPT J $ 

Bits in Core Storage 
a .. 
0000 1110 I 0101 
0110 1110 : 0101 

I 

0111 1100 I 0100 

Figure 33. PAPPR Conversion (PTTC/B to 1443 Printer Code) 

100 

"15 

0001 
1011 

0000 

Input. Input is PTTC/8 characters, starting in 
location INPUT. PTTC/8 characters are packed 
two per binary word. 

All control characters, except case shift (LC or 
UC) characters, are converted to output. Case shift 
characters are used to define the case mode of the 
graphic characters which follow. 

Output. Output is either 1443 or 1053 Printer 
characters, starting in location OUT PT. Both codes 
are packed two per binary word. 

If overlap of the input and output areas is de­
sired, the address INPUT must be equal to or 
greater than the address OUT PT. This is neces­
sary because the subroutine starts processing at 
location INPUT. 

Character Count. This parameter specifies the 
number of PTTC/8 characters in the input area. 
The count must include case shift characters even 
though they will not appear in the output. Because 
the input is packed, the character count will not 
be equal to the number of binary words in the 
input area. 

If an odd number of output characters is pro­
duced, bits 8-15 of the last word used in the output 
area are set to a space character. 

The conversion is halted whenever the charac­
ter count is decremented to zero or a new line 
(NL) control character is detected. 

Error Conditions Detected 

Any input character which is not asterisked in Ap­
pendix D is considered an error. 

HOLPR 

This subroutine converts IBM card code subset to 
either 1443 or 1053 Printer characters. The 
conversion to the 1053 Printer characters is 
illustrated in Figure 34. 



Calling Sequence 

LIBF 
DC 

DC 

HOLPR 

/xxxx (Control 
INPUT 

DC OUTPT 

DC nnnnn (Character count) 

INPUT 1=: - -I - -

OUTPT 1= 

Control Parameter. This parameter consists of four 
hexadecimal digits. Digits 1-3 are not used; the 
fourth digit determines the output code. 

o - 1053 Printer code 
1 - 1443 Printer code 

Input. Input is IBM card code characters starting in 
location INPUT. The characters are not packed. 

Output. Output is either 1443 or 1053 Printer 
characters, starting in location OUT PT. Both codes 
are packed two per binary word. 

The input area may overlap the output area if 
the address INPUT is equal to or greater than the 
address OUT PT. The subroutine starts processing 
at location INPUT. 

I/O Conversion Bits in Core Storage 
Locations Data 0'- ... 15 

INPUT J o 1 0 1 0000 0000 0000 

INPUT + 1 ? 0010 0000 o 1 10 0000 

INPUT+2 W 0010 0000 1 000 0000 -
OUTPT J? o 1 1 1 1 100 1000 01 10 

OUTPT + 1 W 1001 0000 0000 0000 

Figure 34. HOLPR Conversion (Card Code to 1053 Printer Code) 

Character Count. This parameter specifies the 
number of IBM card code characters to be converted. 
This count is equal to the number of words in the 
input area. If an odd count is specified, bits 8-15 

of the last word used in the output area are not 
altered. 

Error Conditions Detected 

Any input character which is not asterisked in Ap­
pendix D is considered an error. 

EBPRT 

This subroutine converts EBCDIC subset to either 
1443 ·or 1053 Printer characters. The conversion 
to 1443 Printer code is shown in Figure 35. 

Calling Sequence 

INPUT 

OUTPT 

1= 

1= 

LIBF 
DC 

DC 

DC 
DC 

EBPRT 

/xxxx (Control) 

INPUT 

OUTPT 
nnnnn (Character count) 

=1 

=1 

Control Parameter. This parameter consists of 
four hexadecimal digits. Digits 1-3 are not used; 
the fourth digit determines the output code. 

o - 1053 Printer code 
1 - 1443 Printer code 

Input. Input is EBCDIC characters, starting in 
location INPUT. EBCDIC characters are packed 
two per word. 

Output. Output is either 1443 or 1053 Printer 
characters, starting in location OUT PT. Both 
codes are packed two per binary word. 

The address INPUT must be equal to or greater 
than the address OUTPT if overlap of the input and 
output areas is desired .. The subroutine starts 
processing at location INPUT. 

Character Count. This parameter specifies the 
number of EBCDIC characters to be converted. 
This count is not equal to the number of words in 

Subprograms Linking FORTRAN with Analog/Digital I/O 101 



the input area. If an odd count is specified, bits 
8-15 of the last used word in the output area are 
not altered. 

Error Conditions Detected 

Any input character which is not asterisked in 
Appendix D is considered an error. 

102 

I/O Conversion Bits in Core Storage 
Locations Data O...a '-'15 

INPUT LE 1 101 001 1 1 100 a 10 1 

INPUT + 1 ES 1 100 a 1 a 1 1 1 10 a a 1 a --
OUTPT LE a a 1 a a a 1 1 a a 1 1 a 1 a 1 

OUTPT + 1 ES 001 1 o 10 1 0001 a a 1 a 

Figure 35. EBPR T Conversion (EBCDIC to 1443 Printer Code) 



ARITHMETIC AND FUNCTIONAL SUBROUTINES 

The TSX subroutine library includes a selection of 
arithmetic and fqnctional subroutines which are most 
frequently required because of their general applic­
ability. There are 28 basic subroutines, some of 
which have several entry points. The various addi­
tional entry points allow indexed linkage, and/or a 
choice of format when working with floating-point 
numbers. 

Table 7 lists the arithmetic and functional sub­
routines that are included in the subroutine library. 
After a brief description of data formats, the parti­
culars of each subroutine are presented. 

FLOATING-POINT DATA FORMATS 

Many of the arithmetic and functional subroutines 
offer two ranges of precision. These ranges are 
called standard range and extended range. The stand­
ard range -provides 23 bits of precision, while the 
extended range provides up to 31 bits of precision. 

To achieve correct results from a particular sub­
routine, the input arguments must be in the proper 
format. 

Standard Precision Format 

Standard precision floating-point numbers are stored 
in core storage as shown below: 

1st Word 16 most significant bits of Mantissa 

o 15 

2nd Word 
8 least significant 
bits of Mantissa 

078 

Characteristic 

15 

Numbers can consist of up to 23 significant bits 
with a binary exponent ranging from -128 to +127. 
Two adjacent storage locations are required for each 
number. The first (lowest) location must be even­
numbered. The sign of the mantissa is contained in 

~Dt"l-\{}/'3"ed -10 ~"aC.t(D"'o I ·t6 )·"'h) he,) +h-e -", 
( 1·1-t~ .. p/l e ~ . d.e.c..t '1,,0 I pDn ... d- IS. l><.'.'t wi!"t" >'\ /)t'lS 

\...:..01-0 a~, d D" -e "-

bit ~·;;-~·th;-fi;st ~ord~Th;~ext 23 bits"'re~ 
sent the mantissa (2's complement) and the re~~~~g ,~) 
8 bits represent the characteristic. Th-e... Vvl~·h."lnJ- 15 . 

The characteristic is formed by adding + 128 to 
the exponent. For example, an exponent of -32 
would be represented by a characteristic of 128 -32 
or 96. An exponent of +100 would be represented by 
a characteristic of 100 + 128 or 228. Since 128 10 = 

2008 (8016) the characteristic of a non-negative expo­
nent always has a I-bit in position 1, while the charac­
teristic of a negative exponent always produces a 
O-bit in position 1. A normal zero consists of all 
zero bits in both the characteristic and the mantissa. 

Extended Precision Format 

Extended precision floating-point numbers are stored 
in three adjacent core locations as shown in the follow­
ing illustration. 

1 st Word Unused Characteristic 

o 7 8 15 

2nd Word Mantissa 

o 1 15 

3rd Word Mantissa 

o 15 

Numbers can consist of up to 31 significant bits with 
a binary exponent ranging from -128 to + 127. Bits 
zero through seven of the first word are unused; bits 
eight through 15 of the first word represent the char­
acteristic of the exponent (formed in the same manner 
as in the standard precision format) ; bit zero of the 
second word contains the sign of the mantissa; and the 
remaining 31 bits represent the mantissa (2's 
complement) . 

Negative Number Representation 

Negative numbers differ from positive numbers in one 
respect only. The mantissa is always the 2 's 

Subprograms Linking FORTRAN with Analog/Digital I/O 103 



Table 7. Arithmetic and Functional Subroutines 

104 

SUB~OUTINE 

Floating-Point 

Add/Subtract 

Multiply 

Divide 

Load/Store F AC 

Trigonometric Sine/Cosine 

T ri gonometri c Arctangent 

Square Root 

Natural Logarithm 

Exponential (eX) 

HYFerbolic Tangent 

Floating-Point Base to an Integer Exponent 

Floating-Point Base to a Floating-Point Exponent 

Floating-Point to Integer 

Integer to Floating-Point 

Normalize 

Floating Binary to Decimal/Floating Decimal to Binary 

Floating-Point Arithmetic Range Check 

Integer Base to an Integer Exponent 

Fixed-Point Square Root 

Fixed-Point Fractional Multiply (short) 

Fixed-Point Double-Word Multiply 

Fixed-Point Double-Word Divide 

Special Function 

F loati ng-Poi nt Reverse Subtract 

Floating-Point Reverse Divide 

Floating-Point Reverse Sign 

Floating-Point Absolute Value 

Integer Absolute Value 

Standard 
Precision 

*FADD/*FSUB 

*FMPY 

*FDIV 

*FLD/*FSTO 

FSINE/FCOSN, FSIN/FCOS 

FATN, FATAN 

FSQR, FSQRT 

FLN, FALOG 

FXPN, FEXP 

FTNH, FTANH 

*FAXI 

*FAXB 

IFIX 

FLOAT 

NORM 

FBTD/FDTB 

FARC 

FIXI 

XSQR 

XMDS 

XMD 

XDD 

FSBR 

FDVR 

SNR 

FAVL, FABS 

lABS 

NAME 

Extended 
Precision 

* EADD/* ESUB 

*EMPY 

*EDIV 

*ELD/*ESTO 

ESINE/ECOSN, ESIN/ECOS 

EATN, EATAN 

ESQR, ESQRT 

ELN, EALOG 

EXPN, EEXP 

ETNH, ETAHN 

*EAXI 

*EAXB 

IFIX 

FLOAT 

NORM 

FBTD/FDTB 

FARC 

FIXI 

XSQR 

XMD 

XDD 

*ESBR 

*EDVR 

SNR 

EAVL, EABS 

lABS 

NOTE: By adding an X to those names prefixed with an asterisk, the user can cause the contents of the index register 1 
to be added to the address of the argument specified in the subroutine calling sequence to form the effective 
address. For example, FADDX would be the modified form of FADD. 



complement of the equivalent positive value. For 
example: (1) +. 53125 is represented in core storage 
as 44000080; -.53125 is represented as BC000080, 
(2) +4.0 is represented in core storage as 40000083; 
-4. 0 is represented as C0000083. A negative number 
can never be represented by a mantissa value of 
800000xx. This number is its own 2' s complement 
and therefore lies outside the definition of a negative 
number as the 2' s complement of the absolute value. 

FIXED-POINT FORMAT 

Fractional numbers, as applied to the fixed -point 
subroutines, XSQR, XMDS, XMD, and XDD, are 
defined as binary fractions with implied binary points 
of zero. That is, the binary point is positioned 
between the sign (bit 0) and the most significant bit 
(bit 1). The user can consider the binary point to be 
in any position in his fixed-point numbers. To cor­
rectly interpret the results, the follOwing rules must 
be observed. 

1. Only numbers with binary points in equivalent 
positions can be correctly added or subtracted. 

2. The binary point location in the product of two 
numbers is the sum of the binary point locations 
of the multiplier and the multiplicand. 

3. The binary point location in the quotient of two 
numbers is the difference between the binary point 
locations of the dividend and the divisor. 

4. The binary point location in a number that is the 
input to the fixed -point square root subroutine 
(XSQR) must be an even number from 0-14. The 
binary point location in the root is half the binary 
point location of the input number. 

FLOATING-POINT PSEUDO-ACCUMULATOR 

The floating-point subroutines used in the 1800 TSX 
system sometimes require a register or accumulator 
that can accommodate numbers in floating-point 
format. These subroutines can be used at any level 
(i. e., mainline, interrupt, and nonprocess). There­
fore, a register or accumulator must be provided for 
each level that can call a floating-point subroutine. 
These accumulators are located in the work levels of 
the system director. They are designated as the 
floating accumulator (F AC). The F AC is a three­
word register that occupies the word 41, 42, and 43 
of the work levels. 

Characteristic I Mantissa 

t 
FAC 

(XR3-41) 

Mantissa 

NOTE: The effective address of the mantissa will 
always be even. 

PROGRAMMING CONSIDERATIONS 

Subroutines which use the machine Registers A and Q 
do not save and restore its contents. Therefore, a 
main program should save the contents of the A­
register, if the A-register is to be used. 

CALLING SEQUENCES 

The arithmetic and functional subroutines are called 
via a CALL or LIBF statement, in some cases fol­
lowed by a DC statement containing the actual or sym­
bolic address of an argument. In the descriptions 
which follow, the notations (ARG) and (F AC) refer to 
the contents of the operand rather than its address. 
The name FAC refers to the floating-point pseudo­
accumulator. The extended precision subroutine 
names are prefixed with the letter E (subroutines 
which handle both precisions have the same name and 
do not have a prefix) . 

Note that some of the functional subroutines may 
be called via two different calling sequences. One 
calling sequence assumes the argument is in FAC, 
while the other specifies the location of the argument 
with a DC statement. 

In addition, some subroutines can have indexed 
linkage to the argument. The calling sequence is the 
same except for the subroutine name which contains 
an X suffix. Also, some subroutines perform more 
than one type of arithmetic or function. For example, 
FSIN and FCOS are different entry points to the same 
subroutine. Each subroutine is listed in Table 4 with 
the corresponding entry points. 

Floating-Point Add 

LIBF 
DC 
Input 

Result 

FADD, FADDX, EADD or EADDX 
ARG 
Floating-Point augend in F AC 
Floating-Point addend in location ARG 
(FAC) + (ARG) replaces (FAC) 

Floating-Point Subtract 

LIBF 
DC 
Input 

Result 

FSUB, FSUBX, ESUB, ESUBX 
ARG 
Floating-Point minuend in F AC 
Floating-Point subtrahend in location ARG 
(F AC) - (ARG) replaces (F AC) 

Subprograms Linking FORTRAN with Analog/Digital I/O 105 



Floating-Point Multiply 

LIBF 
DC 
Input 

Result 

FMPY or EMPY 
ARG 
Floating-point multiplicand in F AC 
Floating-point multiplier in location ARG 
(FAC) times (ARG) replaces (FAC) 

Floating-Point Divide 

LIBF 
DC 
Input 

Result 

Load FAC 

LIBF 
DC 
Input 
Result 

Store FAC 

LIBF 
DC 
Input 
Result 

FDIV, FDIVX, ED IV , or EDIVX 
ARG 
Floating-point dividend in F AC 
Floating-point divisor in location ARG 
(F AC) / (ARG) replaces (F AC) 

FLD, FLDX, ELD or ELDX 
ARG 
Floating-point number in location ARG 
(ARG) replaces (F AC) 

FS TO) 

~ FSTOX, ESTO or ESTOX 
ARG 
Floating-point number in F AC 
(FAC) replaces (ARG) 

Floating-Point Trigonometric Sine 

CALL 
Input 

Result 

CALL 
DC 
Input 

Result 

FSINE or ESINE 
Floating-point argument (in radians) 

in FAC 
Sine of (FAC) replaces (FAC) 

or 

FSIN or ESIN 
ARG 
Floating-point argument (in radians) 

in location ARG 
Sine of (ARG) replaces (FAC) 

Floating-Point Trigonometric Cosine 

CALL 
Input 

Result 

106 

FCOSN or ECOSN 
Floating-point argument (in radians) 

in FAC 
Cosine of (FAC) replaces (FAC) 

CALL 
DC 
Input 

Result 

or 

FCOS or ECOS 
ARG 
Floating-point argument (in radians) 

in location ARG 
Cosine of (ARG) replaces' (F AC) 

Floating-Point Trigonometric Arctangent 

CALL 
Input 
Result 

CALL 
DC 
Input 
Result 

FATN or EATN 
Floating-point argument in FAC 
Arctangent of (F AC) replaces (F AC) ; 

the result lies within the range ± TT /2 
radians 

or 

FATAN or EATAN 
ARG 
Floating-point argument in location ARG 
Arctangent of (ARG) replaces (F AC) ; 

the result lies within the range ± TT /2 
radians 

Floating-Point Square Root 

CALL 
Input 
Result 

CALL 
DC 
Input 
Result 

FSQR or ESQR 
Floating-point argument in F AC 
Square root of (FAC) replaces (FAC) 

or 

FSQRT or ESQRT 
ARG 
Floating-point argument in location ARG 
Square root of (ARG) replaces (FAC) 

Floating-Point Natural Logarithm 

CALL 
Input 
Result 

CALL 
DC 
Input 
Result 

FLN or ELN 
Floating-point argument in F AC 
LOGe (FAC) replaces (FAC) 

or 

F ALOG or EALOG 
ARG 
Floating-point argument in location ARG 
Log (ARG) replaces (F AC) 

e 



Floating-Point Exponentia~ 

CALL 
Input 
Result 

CALL 
DC 
Input 

Result 

FXPN or .EXPN 
Floating-point argument in F AC = n 
en replaces (FAC) 

or 

FEXP or EEXP 
ARG 
Floating-point argument in location 

ARG=n 
en replaces (F AC) 

Floating-Point Hyperbolic Tangent 

CALL 
Input 
Result 

CALL 
DC 
Input 
Result 

FTNH or ETNH 
Floating-point argument in F AC 
TANH (FAC) replaces (FAC) 

or 

FTANH or ETANH 
ARG 
Floating-point argument in location ARG 
TANH (ARG) replaces (F AC) 

Floating-Point Base to an Integer Exponent 

LIBF 
PC 
Input 

Result 

FAXI, F AXIX, EAXI or EAXIX 
ARG 
Floating-point base in F AC Integer 

exponent in location ARG 
(F AC), raised to the exponent contained 

in ARG, replaces (F AC) 

Floating-Point Base to a Floating-Point Exponent 

CALL 
DC 
Input 

Result 

FAXB, FAXBX, EAXBorEAXBX 
ARG 
Floating-point base in F AC 
Floating-point exponent in location ARG 
(F AC), raised to the exponent contained 

in ARG, replaces (FAC) 

Floating-Point to Integer 

LIBF 
Input 
Result 

IFIX 
Floating-point number in F AC 
Integer in the A-register 

Integer to Floating-Point 

LIBF 
Input 
Result 

Normalize 

LIBF 
Input 

Result 

FLOAT 
Integer in the A -register 
Floating-point number in F AC 

NORM 
Floating point unnormalized number 

in FAC 
The mantissa portion of F AC is shifted 

until the most significant bit resides 
in bit position 1. The characteristic 
is changed to reflect the number of bit 
positions shifted. 

Floating Binary to Decimal 

CALL 
DC 
Input 
Result 

FBTD 
LDEC 
Floating-point number in F AC 
A string of EBCDIC-coded data starting 

at location LDEC. Each EBCDIC 
character occupies the rightmost 8 
bits of a word. 

The output format is exactly as follows: 

sd. ddddddddEsdd 

where s represents a sign (Plus or minus) 
and d represents one of the decimal 
digits 0-9. 

Floating De cimal to Binary 

CALL 
DC 
Input 

Result 

FDTB 
LDEC 
Same as output from FBTD subroutine. 

The input field may not contain any 
embedded blanks. The first blank 
encountered is interpreted as the end 
of the string. 

Floating-point number in F AC 

Floating-Point Arithmetic Range Check 

LIBF FARC 

Subprograms Linking FORTRAN with Analog/Digital I/O 107 



Result This subroutine checks for floating­
point overflow or underflow, and sets 
programmed indicators for interroga­
tion by a FORTRAN program. 

Integer Base to an Integer Exponent 

LIBF 
DC 
Input 

Result 

FIXI or FIXIX 
ARG 
Fixed -point base in the A -register 
Fixed -point exponent in location ARG 
(A-register) raised to the exponent 

contained in ARG replaces 
(A -register) 

Fixed -Point Square Root 

CALL 
Input 

Result 

XSQR 
Fixed -point fractional argument (16 bits . 

only) in the A -register 
Square root of (A-register) replaces 

(A-register) .. If the argument is nega­
tive, the absolute value is used and the 
Overflow indicator is turned on. 

Fixed -Point Fractional Multiply (short) . 

LIBF XMDS 
~~~·:S;,.~·· 

Input Double-word fractional multiplicand in .
the A- and Q-registers. Double-word
fractional multiplier in F AC (addressed
by XR3 + 41).

Result Product in the A- and Q-register (XMDS
is shorter and faster than XMD, how­
ever, the resulting precision is 24 bits).

Fixed-Point Double-Word Multiply

LIBF
Input

Result

XMD
Double-word fractional multiplier in the

F AC (addressed by XR3 + 41)
Double-word fractional multiplicand in

the A- and Q-registers.
Double -word fractional product in the

A- and Q-registers.

Fixed-Point Double-Word Divide

LIBF XDD

108

Input

Result

Double -word fractional dividend in the
FAC (addressed by XR3 + 41)

Double -word fractional divisor in the
A- and Q-register

Double-word fractional quotient in the
A - and Q-registers. The double -word
dividend in F AC is destroyed by the
execution of the subroutine.

Floating-Point Reverse Subtract

LIBF
DC·
Ingut

Result

FSBR, FSBRX, ESBR or ESBRX
ARG
Floating-point minuend in location ARG
Floating-point subtrahend in F AC
(ARG) - (F AC) replaces (F AC)

Floating-Point Reverse Divide

LIBF
DC
Input

Result

FDVR, FDVRX, EDVRorEDVRX
ARG
Floating-point dividend in location ARG
Floating-point divisor in FAC
(ARG)/ (F AC) replaces (F AC)

Floating-Point Reverse Sign

LIBF
Input
Result

SNR
Floating-point number, X, in F AC
-X replaces X in FAC

Floating - Point Absolute Value

CALL
Input
Result

CALL
DC
Input

Result

FAVL or EAVL
Floating-point number, X, in FAC
Absolute value of X replaces X in FAC

or

FABS or EABS
ARG
Floating-point number, X, in location

ARG
Absolute value of X replaces (F AC)

Integer Absolute Value

C~~IA~S""'-:; ~;; :rm;fri .. Af(· tegeI:.,.-rl,. m m·the A-t.e.A!rlsier . __ -... '. ;'/ . ;...--- /' 7-=_-~s t/ ~olute vlue~ep~e~ ... IJ'·ih the

e/}LL

DC.
I~pui

ResulT

A-register. c:....,.....,....

ARITHMETIC AND FUNCTIONAL SUBROUTINE
ERROR INDICATORS

Words 55, 56, 57 for each level are reserved for the
arithmetic and functional subroutine error indicators.

Word 57 (addressed XR3 + 57) is used for floating­
point arithmetic overflow and underflow indicators.
Word 56 (XR3 + 56) is used for a divide check indica­
tor, and the word 55 (XR3 + 55) is used for functional
subroutine indieators. It is the user's responsibility
to ensure that the indicators are reset before they are
used.

Word 57

Each floating point subroutine checks for exponent
underflow and overflow. If either occurs, word 57
and FAC are set as follows.

1, if overflow has occurred (F AC = ± maximum).
3, if underflow has occurred (FAC = zero).

The last error condition replaces any previous
indication. Also, when an underflow occurs, FAC is
set to zero.

When an overflow occurs, F AC is set to the
largest valid number of the same algebraic sign as
the contents of F AC when the overflow was detected.

Word 56

The floating-point divide subroutines check for divi­
sion by zero. If this occurs, word 56 is set to l.
The dividend is not changed.

Word 55

The functional subroutines check for the following
. error conditions and set word 55 as described.

Floating-Point Square Root

When the argument is negative, the square root of
the argument's absolute value is returned, and a bit
is ORed into position 13 of word 55.

Floating-Point Natural Logarithm

When the argument is zero, FAC is set to the largest
negative value and a bit is ORed into position 15 of
word 55. When the argument is negative, the
absolute value of the argument is used and a bit is
ORed into position 15 of word 55.

Form C26-5990-1

Page Revised 10/25/66
By TNL N26-0560

Floating-Point Trigonometric Sine and Cosine

When the value of the sine argument lies outside the
range -1. 0 x 223 + 1 < sin argument < 1. 0 x 223 -1
or the value of the cosine argument lies outside the
range -1. 0 x 223 + 1 + 7r /2 < cos argument < 1. 0 x
223 -1 + 7r /2, F AC is set to zero and a bit is ORed
into position 14 of word 55.

Floating-Point to Integer

When the absolute value of the argument is greater
than 215 -1, the largest possible signed result is
placed in the A-register and a bit is ORed into

I position 12 of word 55.

Integer Base to an Integer Exponent

When the base is zero and the exponent is zero or
negative, a zero result is returned and a bit is ORed

I into position 11 of word 55.

Floating-Point Base to an Integer Exponent

When the base is zero and the exponent is zero or
negative, a zero result is returned and a bit is ORed

I into position 10 of word 55.

Floating-Point Base Raised to a Floating-Point
Exponent

When the base is zero and the exponent is zero or
negative, a zero result is returned and a bit is
ORed into position 9. of word 57. When the base
is negative and the exponent is not zero, the absolute
value of the base is used and a bit is ORed into I position 15 of word 55 •

FUNCTIONAL SUBROUTINE ACCURACY

Given:

e _ Maximum error
f (x) _ True value of the function

f* (x) _ Value generated by subroutine
«+ en) _ =:;: Largest valid floating-point number
(>- en) _ ~ Most negative floating-point number

Subprograms Linking FORTRAN with Analog/Digital I/O 109

EXTENDED PRECISION SUBROUTINES

The following statements of accuracy apply to
extended precision subroutines.

e I sin(x) : sin* (x) I -9
< 3.0 x 10

for the range

-1. 0 x 106 ~ x < 0

1. 0 x 106 2: x > 0

for x = 0 sin (x) = 0

ECOS

e ==
cos(x) - cos*(x) -9 < 3.0 x 10

Ixl

for the range

7T
+-

2

6 6
-1. 0 x 10 ~ x ~ 1. 0 x 10

EATAN

= I atn (x) - atn * (X)j 2 0 x 10-9
e - atn(x) <.

for the range

-3.88336148 x 10
37 ~ x ~ 3.88336148 x 10

37

EEXP

e ==

x x
e - (e)*

x
e

< 2. O. x 10
or I

-9

-9
2.0 x 10

for the range

-In (00) < x < In (00)

. x
I.e., 0 < e <00

110

Ixl]WhiC.hever
IS

greater

ELN

= lIn (x) - In* (x) I 3 0 x 10-9
e - In(x) <.

for the range

o < x <<>0

ETANH

e == \tanh(x) - tanh*(x)1 <3.0 x 10-
9

for the range

-(10 < X < 00

ESQRT

for the range

0< x<oo

STANDARD PRECISION SUBROUTINES

The following statements of accuracy apply to the
standard precision subroutines.

FSIN

e " I sin(x) ~ sin*(x) I
for the range

-1. 0 x 10
6 ~ x < 0

6
1. 0 x 10 ~ x > 0

for x = 0 sin (x) == 0

FCOS

e ==
cos (x) - cos*(x)

Ixl

for the range

-7 < 2.5 x 10

-7 < 2.5 x 10

-1. 0 x 10
6 ~ x ~ 1. 0 x 10

6

FATAN

_I atn (x) - -atn * (x) 1 -7
e = atn(x) <5.0 x 10

for the range

-3.883361 x 10
37 ~ x ~ 3.883361 x 10

37

FEXP

e _

for the range

1
-7

2.5 x 10

or -7
2.5 x 10

Ixl) whic.hever
IS

greater

-In (00) < x < In (00) i. e., 0 < eX < 00

FLN

for the range

FTANH

In (x) - In * (x)
In(x)

o < x <00

I
-7

< 4.0 x 10

e == /tanh (x) - tanh* (X)I < 2.5 x 10-
7

for the range

-oo<x<+oo

FSQRT

for the range

ELEMENTARY FUNCTION ALGORITHMS

The choice of an approximating algorithm for a given
function depends on such considerations as expected
execution time, storage requirements, and accuracy.
F or a given accuracy, and within reasonable limits,
storage requirements vary inversely as the execution
time. Polynomial approximating is used to evaluate
the elementary functions to effect the desired balance
between storage requirements and efficiency.

SINE-COSINE

Polynomial Approximation

Given a floating point number, x, nand yare
defined such that

xt;) = n + y

where n is an integer and 05y < 1. Thus, x =

27rn + 27rY, and the identities are

sin x sin 27rY and cos x 27rY .

The polynomial approximation, F(z) , for the func­
tion (sin 27rz)/z is used where -1/4 5 z 5. 1/4 .

The properties of sines and' cosines are used to
compute these functions as follows.

cos 27ry F(z)

Subprograms Linking FORTRAN with Analog/Digital I/O 111

where:

z =
z =

1/4-y in the range 05 y ~ 1/2
y-3/4 in the range 1/25 Y < 1

sin 27Ty F(z)

where:

z = y in the range 0 5 y < 1/4
z = 1/2-y in the range 1/4~ y < 3/4
z = y-l in the r~nge 3/4 ~ Y < 1

Extended Precision

where

6.2831853071
-41. 341702117

81. 605226206
-76.704281321

42.009805726·
-14.394135365

Standard Precision

F(z)

where:

112

6.2831853
-41. 341681

81. 602481
-76.581285
39.760722

5
+ a z

3
9

+ a z
5

ARCTANGENT

Polynomial Approximation

The routine for arctangent is built around a polynomial,
F (z) , that approximates Arctan (z) in the range
-. 23 ~ z ~ .23. The Arctan (z) for z outside this
range is ·found by using the identities:

Arctan (-z) = - Arctan (z)

Arctan(z)

where

and k is determined so that

(2k-1)7T (2k + 1)7T k
tan 14 ~ z < tan 14 1, 2, 3

Having determined the value of k appropriate to
z, the transformation x = (z-bk)/(zb

k
+ 1) puts x in

the range -tan 7T/14 ~ x < tan 7T /14. The poly­
nomial F (z) was chosen to be good over a range
slightly larger (i. e., .23 > tan 7T /14) so that the
comparisons to determine the interval in which z
lies need be only standard precision accuracy.

Extended Precision

F (z)
2 4 6 8

x (1. 0 - a
1

x + a
2

x - a
3

x + a 4 x)

.33333327142

.19999056792

.14235177463

.09992331248

Standard Precision

F (z) x (1.'0 - .333329573z
2

+ .199641035z
4

- .131779888z
6

)

SQUARE ROOT

Square Root (x)
Let x = 22bF when • 25~ F<1
then JX = 2b .JF
where JF=P i i = number of approximation

AF + B as a first approximation
followed by 2 Newton
iterations

where

A .875, B • 27863 when. 25 ~ F < .5

or

A .578125, B = .421875 when .5~F<1

NATURAL LOGARITHM

Polynomial Approximation

Given a normalized floating point number

k (1 <) x = 2 x f"'2-' f < 1 ,

j and g are found such that x = 2
j

g where
(~2/2 ~ g < ~2). This is done by setting j = k-l,
g = 2f if f < ~2/2 and j = k, g = f otherwise.

Thus:

In(x) = j .In(2) + In(g).

The approximation for In (g), ~2/2 ~ g < ~2,
is based on the series

v+x l 3 3 5 5] In-- = 2 (x/v) + (x /3v) + (x /5v) + ..•
v-x

which COIN erges for (-v < x < v) .
With the transformation

f-l 2
x = vf+l ' v = (~2 + 1)

so that -1.:s. x < 1 for J2/2 ~ g < ~2.
Substituting,

3 5
In (g) = 2 (z + z /3 + z /5 + •.•)

where z = x/v = (f-1)/(f+l). The approximation
used is G(z) for In(g)/z in the range ~2/2 ~ g <
~2 •

Extended Precision

2 4 6 8
G(z) = b

O
+ b z + b z + b z + b z

2 4 6 8

bO 2.0

b
2

.666666564181

b
4

.400018840613

b
6

.28453572660

b
8

.125

z =
g-1
g+1

~2/2 .7071067811865

In (2) = .6931471805599

Thus, the required calculation is:

In(x) = j ·In(2) + zG(z)

Standard Precision

G(z) = 2.0 + .66664413786 z2
4 6

+ .4019234697z + .25z

Subprograms Linking FORTRAN with Analog/Digital I/O 113

EXPONENTIAL

Polynomial Approximation

To find
x

e , the following identity is used.

x
e

To reduce the range, we let

where:

n is the integral portion of the real number,

d is a discreet fraction (1/8, 3/8, 5/8, or 7/8)
of the real number, and

z . is the remainder which is in the range
-1/8 $. z $. 1/8 .

Thus,

and it is necessary to only approximate 2
z

for
-1/8 ~ z ~ 1/8 by using the polynomial F(z) •

Extended Precision

F (z)

where:

114

1.0

.69314718057

.24022648580

.055504105406

.0096217398747

.0013337729375

Standard Precision

where:

ao = 1. 0

a
1

= • 693147079

a
2

= .240226486

a
3

= • 0555301557

a
4

= • 00962173985

HYPERBOLIC TANGENT

Tanh (x)

for

2x 1 e -

2x 1 e +

x ~ 32

x 5. -32

Tanh (x) 1

Tanh (x) -1

FLOATING-POINT BASE TO AN INTEGER
EXPONENT

therefore:

InA
A = e

SELECTIVE DUMP AND MISCELLANEOUS SUB­
ROUTINES

I These subroutines allow the user to dump or trace
selected portions of core storage at object time and
also allow certain machine functions to be performed
using the FORTRAN language.

SE LEC TIVE DUMP SUBROUTINES

These subroutines allow the user to dump selected
portions of core storage during execution of an ob­
ject program. There are two dump subroutines:
one to dump selected data on the printer assigned as
the LIST printer; and one to dump status informa­
tion on that printer. These dump routines can only
be called from a single interrupt level or from the
mainline level while ~ebugging a core load (i. e., they
are not re-entrant).

Dump Selected Data

A subroutine is available for the purpose of select­
ing an area of core storage and having it dumped out
on the LIST printer. This subroutine has two entry
points, one for hexadecimal output, and one for deci­
mal output. The entry points for the various configu­
rations are shown below:

Entry Point

DMPHX

DMPDC

Function of Subroutine

Dump on the LIST printer, using hexa­
decimal output.

Dump on the LIST printer, using deci­
mal output.

C aIling Sequence

The calling sequence for both of the above functions
is as follows:

CALL
DC
DC

ENTRY POINT
START
END

START and END represent the starting and end­
ing addresses of the portion of core storage to be

Form C26-5990-1

Page Revised 7/20/66
By TNL N26-0559

dumped. The starting and ending addresses may be
the same, in which case, one word will be dumped.

Format

Before the actual dump appears on the selected
output device, the user is given one line of status
information. This line indicates the status of the
overflow and carry triggers, and the contents of the
A - and Q-registers and the three index registers.
The register contents are given in the same form
(hexadecimal or decimal) as the rest of the dump.
The format of the status information is shown below:

0,1,2, or 3

'--v---'
HHHH{ + DDDDD)
~

HHHH{+ DDDDD)

~
Status A-Register Q-Register

HHHH{+ DDDDD)

~
HHHH{ + DDDDD)

~
HHHH{+ DDDDD)

~
Index Register 1 Index Register 2 Index Register 3

The status will be zero if both overflow and
carry are off, one if only overflow is on, two if
only carry is on, or three if both overflow and carry
are on.

All other data is dumped eight words to a line,
with the address of the first word in each line printed
to the left of the line. Hexadecimal data is printed
four characters per word; decimal data is printed
five digits per word with a preceding plus or minus
sign.

Page numbers will not be printed for either sub­
routine.

The dump selected data routine can be called
from a FORTRAN program using the statement:

CALL DMP (I, J, K)

where

I is a control parameter that specifies the form of
the dump that will be made on the list printer.

o - indicates hexadecimal form

1 - indicates decimal form

J is an integer variable that contains the start ad­
dress to be dumped.

K is an integer variable that contains the end address
to be dumped.

Subprograms Linking FORTRAN with Analog/Digitall/0 115

Form C26-S990-1

Page Revised 7/20/66
By TNL N26-0SS9

Dump Status

This subroutine provides a relatively easy and effi­
cient means of dumping the status of the 1800. Words
that contain status information relating to index reg­
isters, status indicators, the Q-register, and the
contents of a portion of the work area in use are
dumped. The number of the level is also printed.
This information may frequently be required when
testing a program.

This subroutine is called via the following
statement:

CALL DMPST
DC (no. wds of wk area)

The words of core storage are dumped on the
lUst printer in hexadecimal form with a space between

each word. The dump status routine can be called
from a FORTRAN program using the statement:

CALL DMPS (I)

where

1 is an integer variable that specifies the number of
words of the work area to be printed. The DMPS
routine calls the DMPST routine, which uses the
list printer for output.

TRACE INTERRUPT ROUTINES

A user-written mainline trace interrupt routine can
be included in a process core load to process a trace
interrupt. The routine can be designed to monitor
a number of conditions such as checking all branch
instructions, checking all instructions, except branch,
checking all instructions within a defined limit, or a
combination of these and many other options.

The following items should be noted in writing a
trace interrupt routine.

1. The trace interrupt routine should be written as
a CALL or LIBF subroutine.

2. The index registers, A- and Q-registers, and
Carry and Overflow status that are used by the
routine should be saved and restored.

3. The address of the current instruction is avail­
able indirectly via absolute location 9.

4. The subroutine must be specified on an *INCLD
control card at core load build time.

116

5. The conversion subroutine CONHX and the print
subr~utine TRPR T are used for listing the trace
output. These are the only IBM-supplied sub­
routines that can be called from the user-written
trace routine.

Trace Print

The trace print subroutine (TRPR T) is designed to be
called by an assembler-language trace interrupt sub­
routine. It prints specified characters on the 1053/
1816 or 1443 printers without masking any interrupts.
Indicators are sensed to determine the status of the
selected unit. The calling sequence is as follows.

CALL TRPRT
DC n
DC OUTPT

where

n = 0 for the 1053/1816 printer and n = 1 for the 1443
printer. The first printer of the first group is
used for output when a 1053 or 1816 is specified.
No backup is available.

OUTPT specifies the number of words to be printed.
The output area begins at OUTPT + 1.

TRPRT saves and
OUTPT specifies the number of words to be printed.

The output area begins at OUTPT' + 1.
TRPRT saves and restores the A- and Q-registers,

XRl and XR2, and the status of the carry and
overflow indicators (XR3 is not used). If an
1816 is specified, the keyboard indicator status
is saved and then set busy. The indicator is
restored to its original status when TRPRT
exits to the calling program.

Trace Hexadecimal Conversion

The trace hexadecimal conversion subroutine
(CONHX) is designed to be called by an assembler­
language trace interrupt subroutine. It converts
hexadecimal data to printer codes. The digits to
be converted are placed, four at a time, in the
A -register and the following calling sequence is used.

CALL
DC
DC

CONHX
n
OUTPT

where

n = 0 for conversion to the 1053/1816 printer code,
and n = 1 for conversion to the 1443 printer
code.

OUTPT is the address of the first of two consecutive
locations where the printer code characters are
to be placed (two characters per word).

CONHX does not mask interrupts, but does save and
restore the Q-register, XR1, XR2, and XR3.
No re-entrant provisions are made.

OVERLAY ROUTINE (FLIP)

The 1800 TSX subroutine library contains a flipper
routine which is used. to call LOCAL (load on call)
routines into core storage. FLIP passes the total
word count to DISKN and that routine reads in the
entire LOCAL. When a LOCAL routine is called,
control is passed to the flipper routine which reads
the LOCAL into core storage and transfers control
to it. All LOCALs in a given core load are executed
from the same core storage locations; each LOCAL
group overlays the previous one.

MACHINE FUNCTION SUBROUTINES

These subroutines allow the user to perform certain
machine functions using the FORTRAN language.

OR Function

This subroutine performs an OR operation on the two
parameters specified. The function must be specified
as:

lOR (I,])

where

I and J are integer expressions.

The values of I and J are logically ORed and the
result is placed in the accumulator; I and J are not
changed.

Example:

K = lOR (I,])

Form C26-5990-1

Page Revised 10/25/66
By WL N26-0560

I.and J are logically ORed and the result is stored in
K.

The .following table shows the result of an OR
operation on individual bits.

I 1 1 0 0

J 1 0 1 0

Result 1 1 1 0

Exclusive OR Function

This subroutine performs an Exclusive OR operation
on the two parameters specified. The function must
be specified as:

IEOR (I,])

where
/

I and J, are integer expressions.

The values of I and J are Exclusively ORed and
the result is placed in the accumulator; I and J are
not changed.

Example:

K = IEOR (I,])

I and J are exclusively ORed and the result is stored
in K.

116.1

\

The following table shows the result of an Exclu­
sive OR operation on individual bits.

I 1 1 0 0

J 1 0 1 0

Result 0 1 1 0

AND Function

This subroutine performs an AND operation on the
two parameters specified. The function must be
specified as:

lAND (I,])

where: I and J are integer constants or integer
variables.

The contents of I and J are logically ANDed and
the result is placed in the accumulator; I and J are
not changed.

Example:

IF (IAND (I,])) 3, 2, 5

I and J are ANDed and the result is tested in the IF
statement. There will be: a transfer to statement 3

if the AND result is negative; a transfer to statement
2 if the result is zero; or a transfer to statement 5 if
the result is positive.

The following table shows the result of an AND
operation on individual bits.

I 1 1 0 0

J 1 0 1 0

Result 1 0 0 0

Load Function

This subroutine performs a load operation for the
parameter specified. The function must be specified
as:

LD (I)

Form C26-S990-1

Page Revised 7/20/66
By TNL N26-0SS9

where: I is an integer expression that specifies a
core storage address. The contents of the core stor­
age are moved to the accumulator. This allows
"testing for busy", etc., of known storage locations
outside of the program area.

The core storage locations for the various timers
maintained by the ITC program are given in Table 8.
For various examples of the LD subroutine see
Interval Timer Control Program.

Call Mask

The mask subroutine is used to perform a mask oper­
ation which prevents interrupt recognition on the. des­
ignated levels. The status of levels not designated is
unchanged. The format of this statement is:

CALL MASK (I, J)

where: I and J are integer expressions which desig­
nate the level(s) to be masked. I refers to levels 0
through 13, J refers to levels 14 through 23. Both
parameters are always required.

Table 8. Timer Locations

Name Core Storage Location

Machine Timers

A 00004

B 00005

C 00006

Programmed Timers

1 00062

2 00065

3 00068

4 00071

5 00074

6 00077

7 00080

8 00083

9 00086

Time-Sharing Clock 00089

Subprograms Linking FORTRAN with Analog/Digital I/O 117

Form C26-5990-1

Page Revised 7/20/66
By TNL N26-0559

Example:

Conditions:

DATA statements may be used in conjunction with
the CALL MASK (and CALL UNMK) statement
(see the publication, IBM 1800 FORTRAN Lan­
guage, Form C26-5905). They can be set up as
follows.

Problem:

Mask levels 5, 7, 11, 12, 21, 22, and 23.

Solution:

DATA I, J/Z0518,ZOlCOI

CALL MASK (I, J)

Call Unmask

The unmask subroutine is used to perform an unmask
operation which allows interrupts to be recognized on
the designated levels. The status of levels not des­
ignated is unchanged. The format of the statement is:

CALL UNMK (I, J)

where I and J are integer expressions which desig­
nate the levels to be unmasked. I refers to levels 0
through 13, J refers to levels 14 through 23. Both
parameters are always required.

Example:

118

Conditions:

Same as for CALL MASK in previous example.

Problem:
0" 7 III:!.. 2/ :U..) ~

Unmask levels 1, 2, 3, 5, 12, and 21.

Solution:

DA TA I,]/Z7408, Z01001

CALL UNMK (I, J)

NOTES: 1. The combination of the examples (in the
sequence given) for the CALL MASK and CALL UNMK
statements would produce the following conditions.

Levels 1, 2, 3, 5, 12, and 21 are unmasked.

Levels 7, 11, 22, and 23 are masked.

Levels 4, 6, 8, 9, 10, 13-20 are unchanged.

2. The mask and unmask subroutines maintain a cur­
rent record of the interrupt level mask status. This
is necessary since the system director sometimes
masks all levels and then restores the status accord­
ing to this record. Thus, the user should always
mask and unmask via these routines in order to keep
this record current.

Call Save Mask

The save mask subroutine causes the contents of the
current mask words (conditions set by previous CALL
MASK or CALL UNMK statements) to be moved to
variables so that they can be restored at a later
time, if desired. The statement format is:

CALL SA VMK (I, J)

where I and J are integer variables that will receive
the contents of the retained mask words.

Call Restore Mask

The restore mask subroutine is used to perform a
mask and unmask operation to restore the interrupt
mask register to its previously saved condition. The
variables used as parameters are normally those
named in a previous CALL SA VMK statement. The
format of the statement is:

CALL RESMK (I, J)

where I and J are integer' expressions which desig­
nate the levels to be masked. I refers to levels 0
through 13, J refers to levels 14 through 23. Both
parameters are always required.

Example:

Conditions:

Same as for CALL MASK in previous example.

Problem:

Mask levels 5, 7, 9, 10, and 12.

Unmask all other levels.

Solution:

DATA I, J!Z0568,ZO/

CALL RESMK (I, J)

Call Operation Monitor

This subroutine is used to reset the operation moni­
tor. Once the operation monitor has been activated
by the operator, the reset command must be executed
frequently enough to prevent the timer from timing
out. The format of the statement is:

CALLOPMON

WRITING ASSEMBLER LANGUAGE SUBROUTINES

User-written assembler language subroutines must
follow the writing specifications outlined below.

The subroutine source statements shown in the
following examples should be preceded and followed
by the following control cards for the assembly
process.

II JOB
II ASM
*LIST
*PRINT SYMBOL TABLE

SUBROUTINE SOURCE DECK

II DUP
*STORE NAME

I

Form C26-5990-1

Page Revised 10/25/66
By TNL N26-0S60

CALL Subroutines

A subroutine that is called by a CALL statement is
linked to via a long BSI instruction. For example, a
FOR TRAN source statement

CALL SUB (I, J, K, 101)

or an assembler language calling sequence

CALL SUB
DC ADDRI
DC ADDRJ
DC ADDRK
DC ADCON

appears in core at execution time as

BSI L SUB
DC ADDRI
DC ADDRJ
DC ADDRK
DC ADCON

where ADDRI, ADDRJ and ADDRK are the core
addresses at which the variables I, J, and K are
stored, and ADCON is the core address where the
constant, 101, is stored.

Note that most subroutines entered by an assem.­
bIer language calling sequence expect the constants
th~mselves to appear in the calling sequence rather
than the address of the constants. Therefore, not
all subroutines entered by a CALL can be called
from a FOR TRAN program.

The following example illustrates how to define
the entry point, save the contents of the registers,
get the parameters, and return to the calling program.

lIDNG SAMPLE CALL SUBROUTINE

ENT SUB DEFINES ENTRY POINT

SUB DC 0 SUBROUTINE ENTRY POINT
SID TEMP SA VE A AND Q REGIS TERS

STX 1 XR1+1 SAVE INDEXREGISTERS
STX 2 XR2+1

STX 3 XR3+1

IDX 11 SUB SET XR1 TO PARAMETER

ID 11 0 GET FIRST PARAMETER

STO PARA1

ID 11 1 GET SECOND PARAMETER

STO PARA2

ID 11 2 GET TIiIRD PARAMETER
STO PARA 3

119

Form C26-5990-1
Page Revised 10/25/66
By TNL N26-0560

MDX 3 SET UP TO RETURN TO MAINLINE
STX SUB FOLLOWING 1HIRD PARAMETER
IDX 13 103 SET XR3 TO TRANSFER VECTOR IF

* ANY LIBF ARE TO BE MADE WI1HIN
* TIlE PROGRAM
*

'*' EXECUTION INS TRUCTIONS
*USE STO 11 0 TO STORE RESULT IN I, ETC.
*USE STO L /FFFF TO STORE RESULT IN FIRST

* WORD OF FORTRAN COMMON.
*USE LIBF FLD (OREID) AND

* DC DATA TO STORE RESULT IN FAC.
*
* EXIT FROM SUBROUTINE
XR1 IDX 11 *-* RELOAD INDEX REGISTERS
XR2 LDX L2 *-*
XR3 IDX L3 *-*

IDD TEMP RELOAD A AND Q REGISTERS
BSC SUB RETURN TO MAINLINE

TEMP BSS E 2
PARA 1 DC 0
PARA2 DC 0
PARA 3 DC 0

END

LIBF . Subroutines

The source statements for subroutine s that are
called by a LIBF statement must be preceded by a
LIBR statement.

At execution time, the LIBF call appears as a
BSI instruction indexed by XR3 and with a displace­
ment that reflects the transfer vector entry for the
subroutine being called. XR3 contains the address
of the transfer vector. The transfer vector entry
contains a long BSI instruction to the subroutine
entry point.

The following example illustrates a LIBF sub­
routine and shows how to define the entry point,
save the machine status, get the address of the
parameter list, and return to the calling program.

HDNG SAMPLE LIBF SUBROUTINE

* LIBF SUB1 SOURCE LANGUAGE

* DC PARA 1 CALLING SEQUENCE
LIBR LIBF CONTROL CARD
ENT SUB1 DEFINES ENTRY POINT

SUB1 DC 0 SUB1 ENTRY POINT
STD TEMP SAVE MACHINE STATUS
STX X1+1 rnA T IS TO BE USED
IDX 11 SUB1 GET ADDRESS OF PARA LIST
ID -3 FROM TV
STO *+1
IDX 11 * ... * XR1 POINTS TO PARA LIST
ID 0 GET PARAMETER
STO PARA 1
MDX SET UP RETURN ADDR IN SUB1
STX SUB1

*SUBROUTINE OPERATION
Xl IDX 11 *-* RESTORE MAcmNE

IDD TEMP

120

BSC SUB1 RETURN TO MAINLINE
TEMP BSS E 2
PARA 1 DC 0

END

Input/Output Subroutines

The procedures for writing input/output subroutines
are similar to those for CALL or LIBF subroutines,
except that an ISS statement is used to define the
entry of the call section of the routine; also, the
interrupt entry points must be defined.

The basic identification for the interrupt entry
portion is the lAC code. There is a unique lAC code
for each ILSW bit that is turned on by an 1/0
interrupt. At system generation time, the user
defines the lAC codes and their corresponding ILSW
bit. The same lAC code must be used when writing
an I/O subroutine.

As stated previously, an ISS statement is used
to define the call entry point (only one call entry
point is permitted). If the subroutine is to be called
by a LIBF statement, the ISS statement must be
preceded by a LIBR statement. The LIBR statement
is omitted if the subroutine is to be called by using
a CALL statement (the CALL statement method must
be used if the subroutine is to be called from a

I FORTRAN program). Following the ISS statement,
there must be a pair of DC statements for each inter­
rupt entry point. The first DC statement must define
the lAC code for that entry, and the second DC must
define the address of the interrupt entry point. This
is followed by an ORG*-2X where X is the number of
pairs of DC statements.

HDNG SAMPLE CARD I/O ROUTINE

* LOADER INFORMATION
LIBR SIGNIFIES THIS IS A LIBF
ISS 2 CARD 2= NO. OF INT. ENTRY POINTS

* CARD IS LIBF ENTRY POINT
DC 2 1442-1 lAC CODE
DC INT1 1442-1 INTERRUPT ENTRY POINT
DC 17 1442-2 lAC CODE
DC INT2 1442-2 INTERRUPT ENTRY POINT
ORG *-4 CAUSESOVERLA Y OF LDER INFO

* DESCRIPTION OF CALL

* LIBF CARD

I * DC /AOOB A:::() READ, A=l PUNCH, B:::() 1442-1

* DC AREA I/O AREA
CARD DC 0 LIBF ENTRY POINT

BSI 172 CALL TVSA VE TO SAVE MACHINE

* REGISTERS AND STATUS. ALSO

* SETS WORD 55 TO POINT TO FIRST

* PARAMETER (RETURN ADDRESS)
IDX 11 55 XR1=UBFPARAMETERS
IDX 12 CD1 XR2=1442-1 DEVICE TABLE
ID Xl 0 DETERMINE DEVICE
BSC E SKIP IF FIRST 1442
MDX 2 CD2-CD1 INCREMENT TO POINT TO 1442-2
SRA 12 TEST FOR READ OR PUNCH
BSC L PUNCH, Z BRANCH IF FUNCTION IS PUNCH

Form C26-5990-1
Page Revised 10/25/66
By TNL N26-0560

READ LD Xl GET SECOND PARANffiTER PROGRAMMING MULTI-LEVEL INTERRUPTS BY
STO X2 RD STORE IN 10CC USING RE-ENTRANT CODING
XIO X2 SENSE SENSE DSW
BSC L *-3,E LOOP IF 1442 IS NOT READY
XIO X2 RD READ A CARD

Need For Re-Entrant Coding MDX L 7,1 INCRENffiNT GENERAL I/O BUSY IND
Nap

MDX OUT EXIT BACK TO USER VIA OUT, One of the basic problems that arises in multi-level
PUNCH LD Xl 1 GET SECOND PARANffiTER programming is requirement of the same subroutine

STO X2 PH by different levels of operation.
XIO X2 SENSE SENSE DSW For example, the computer is servicing a main-
BSC L *-3,E LOOP IF 1442 IS NOT READY line program which is executing a square-root sub-
XIO X2 PH PUNCH A CARD
MDX L 7,1 INCRENffiNT GENERAL I/O BUSY IND routine when an external interrupt occurs. The
Nap hardware interrupt will automatically branch to an

OUT MDX 2 XR1=RETURN ADDRESS TO USER address which will allow servicing of the interrupt.
STX L2 55 55 NOW CONTAINS RETURN ADDRESS The program that services the interrupt may also
BSI 173 RETURN TO USER VIA TV EXIT require use of a square-root subroutine. Ifa method

* INTERRUPT ROUTINE of re-entrant coding were not used, the identical
INTl wx L2 CDl XR2=1442-1. THIS IS INTERRUPT square-root subroutine would have to be in core
* ENTRY FOR 1442-1 storage twice (once for each program that called it);

MDX *+2
INT2 LDX 12 CD2 XR2=1442-2. INTERRUPT ENTRY

otherwise, the intermediate results which are needed

* FOR 1442-2. when the computer returns to complete the mainline
XIO X2 SENSR SENSE DSW WITH RESET program would be destroyed by the interrupt program.
SLA 2 TEST FOR ERROR
BSC +z SKIP IF NO ERROR
MDX *-1 HAL T IF ERROR
MDX L 7,-1 DECREMENT GEN I/O BUSY IND. Concept Of Level Work Areas
Nap

BSC 90 RETURN TO MIC To allow one subroutine to be entered at any time and
* DEVICE TABLES from any interrupt level, without loss of intermediate

BSS E 0 10CC MUST START AT EVEN ADDRESS results, a method of re-entrant coding using level
CDl DC 0 DEVICE TABLE FOR 1442-1 work areas is used.

DC /1600 READ lace
(Re-entrant coding is defined as coding which DC 0

DC /1500 PUNCH 10CC allows a program to be entered and executed from
DC 0 different levels without destroying the intermediate
DC /1700 SENSE 10CC results.)
DC 0 The IBM 1800 TSX System provides features which
DC /1701 SENSE/RESET 10CC facilitate the coding of re-entrant subroutines.

CD2 DC 0 DEVICE TABLE FOR 1442-2
Each interrupt level specified by the user is pro-

DC /8EOO READ 10CC
DC 0 vided with a level work area of 100 locations, which
DC /8DOO PUNCH 10CC are reserved for the exclusive use of programs
DC 0 operating on that priority level.
DC /8FOO SENSE 10CC The first 58 of these locations are specifically
DC 0 reserved for use by the TSX System, while the re-
DC /8FOl SENSE/RESET 10CC maining 42 locations are available to allow all other

* DEVICE TABLES EQUATES subroutines to maintain the ability to re-enter.
RD EQU 0 READ lace
PH EQU 2 PUNCH 10CC The start address of the level work area for any

SENSE EQU 4 SENSE 10CC priority level always appears in location LWA (fixed
SENSR EQU 6 SENSE/RESET 10CC location 10410 = 6816). If an index register is loaded

END with the contents of this location, and all references

120.1

Form C26-5990-1
Page Revised 10/25/66
By TNL N26-0560

to temporary storage locations are indexed, 42
temporary storage locations are made available to
the subroutine for each level it may be operating on.
If the subroutine is re-entered, different effective
addresses are generated for each such indexed
operand, and the re-entry problem is solved.

The following sequence of instructions illustrates
how the contents of the A-register are saved in
TEMP in the level work area and later restored by
the instruction at LOAD:

LWA EQU
TEMP EQU

104
58

LDX 11 LWA WORK AREA ADDR TO XR1
ISTRE STO 1 TEMP SAVE A-REGISTER IN TEMP

LOAD LD TEMP RESTORE A-REGISTER

Should the subroutine be interrupted and re­
entered, there will be no storage conflicts, since
the contents of LWA changes with each interrupt
level. Hence, the instructions at STRE and LOAD
reference different effective addresses for each
interrupt level.

Mechanism For Re-Entrant Control

For each interrupt serviced, MIC (Master Interrupt
Control program) saves and subsequently restores
the contents of the A- and Q-registers, index
registers, machine status, and locations WK4
(5410 = 3616) and WK5 (5510 = 3716). MIC also
sets LWA to the correct level work area address
for each interrupt level.

Since locations WK4 and WK5 are saved by MIC
for each interrupt level, these locations may also be
used for temporary storage by re-entrant subroutines,
e. g., loading and storing of index registers. Further­
more, these locations are also used for other pur­
poses, as explained below.

Protecting Entry and Return Addresses

The first location of a callable subroutine is set by a
BSI instruction. As with all fixed locations upon re-

t20.2

entry, this location may be changed and the return
address may be lost. The TSX System supplies two
pairs of subroutines which provide a method of
protecting the return address. They also perform
several additional functions useful for subroutines.

Subroutines Referenced by a CALL Instruction

For subroutines referenced by a CALL (2-word BSI)
instruction:

QZSAV EQU
QZEXT EQU

SUBRT DC
BSI

EXIT BSI

154
155

o ENTRY TO CALL ROUTINE
QZSA V CALL TO QZSA V

QZEXT EXIT FROM SUBROUTINE

The QZ SAV subroutine saves the contents of in­
dex registers 1, 2, and 3, the A- and Q-registers
and machine status and places the return address in
location WK4 (54

10
= 36 6). In addition, index

registers 1 and 3 are set to the first location of the
level work area, and index register 2 is set to
127 = 7F .

tRe QZ ~~T subroutine restores the index regis­
ters, machine status, and A- and Q-registers and
returns control to the calling routine via a BSI I WK4.
The address set in WK4 by QZSA V must, therefore,
be incremented by 1 for every parameter following
the CALL.

Subroutines Referenced By A LIBF Instruction

For subroutines referenced by a LIBF (I-word BSI)
instruction through the transfer vector:

TVSA V EQU 172
TVEXT EQU 173

I SUBRT DC
BSI

EXIT BSI

o ENTRY TO LIBF ROUTINE
TVSA V CALL TO TVSA V

TVEXT EXIT FROM SUBROUTINE

The TVSAV subroutine saves the contents of
index registers 1 and 2, the A- and Q-registers, and
machine status and places the return address in WK5
(55

10
= 37 6). In addition, index registers 1 and 3

are set to lne first location of the level work area,
and index register 2 is set to 127 = 7F .

The TVEXT subroutine restor~g the ~gntents of
index registers 1 and 2, A- and Q-registers, and
machine status. Index register 3 is set to the
transfer vector location, and control is returned to
the calling routine via a BSI I WK5. The address
set in WK5 by TVSA V must, therefore, be incre--

I mented by 1 for every parameter following the LIBF.

Other Considerations

It should be understood that the use of QZSA V or
TVSA V does not obviate careful logic control. If
parameters follow the call to the subroutine, it is
the responsibility of the subroutine to obtain these
parameters and to adjust WK4 or WK5.

If subroutines are nested, that is, one subroutine
calls another, care must be exercised to save and
restore the storage locations used by QZ SA V and
TVSA V across the nested call, as well as the return
address in WK4 or WK5. Furthermore, ne sted
subroutines must be planned so that the same locations
in the level work area are not used by more than one
subroutine.

Note that TVSAV, TVEXT, QZSAV, and QZEXT
are referenced by indirect BSI instructions and!!Q!
by CALL statements. The call to TVSAV or QZSAV
must be the first instruction executed in (and
immediately following) the entry location, as
illustrated.

Masking Out The Interrupts

Another method of providing re -entrant coding is to
prevent the interrupts from being recognized. This
may be accomplished through appropriate use of the
TSX subroutines MASK, SA VMK, RESMK and UNMK.

In assembler language, it is possible to use the
XIO command with the IOCC-Masking words provided
by the TSX system. To mask all interrupt levels
completely, the following instructions may be
executed:

MSK1 EQU
MSK2 EQU

50
52

LOCA nONS OF MASK loee WORDS

XIO L MSK1 MASK All INTERRUPT LEVELS
XIO L MSK2

To restore the interrupt mask status, the following
instructions may be executed:

I XIO L MSK3 RESTORE INTERRUPT STA TUS
_ XIO L MSK4

MSK3 EQU
MSK4 EQU

46
48

Form e26-5~90-1
Page Revised 10/25/66
By TNL N26-0560

LOCA nONS OF UNMASK Ioee WORDS

This particular method of re-entrant coding is
effective and permissible, but is, in general, un­
desirable. If interrupts are prevented from being
recognized as may occur, the philosophy of the IBM
1800 interrupt system is defeated. However, for
short sequences of instructions, the method of
masking out the interrupts may be the fastest means
of obtaining re-entrant coding.

Programming Notes

An illustration of the use of WK4, WK5, and masking
occurs when an index register is to be loaded with a
value from the level work area. Double indexing can
not be done; therefore, it'is impossible with one in­
struction to load an index register with a value that
can be reached only by an index register. The follow­
ing examples illustrate re-entrant and non-re-entrant
methods of loading an index register.

Non -re-entrant

CONST EQU

LD 1
STO
LDX L2

Re-entrant

CONST
MSK1
MSK2
MSK3
MSK4

or

CONST

EQU
EQU
EQU
EQU
EQU

XIO L
XIO L
LD 1
STO
LDX L2
XIO L
XIO L

EQU

LD 1
STO L
LDX 12

53

CONST
*+1
-

53
50
52
46
48

MSK1
MSK2
CONST
*+1
* - *
MSK3
MSK4

53

CONST
54 (location WK4)
54

120.3

This section describes the Assembler language state­
ments to be used in place of the FORTRAN CALL
statements provided in the time-sharing executive
system.

Machine futerval Timers

The assembler language statements to call the
TIMER subprogram are:

CALL TIMER
CALL NAME
DC A
DC B

where NAME is the name of the subprogram to be
executed when the time specified by B has elapsed.
A and B must be defined as:

A DC

B DC

1 for machine interval timer (A).
or
2 for machine interval timer (B).

xx the num be r of inte rval s to be
counted before the subprogram is
executed.

Programmed futerval Timers

The assembler language statements to call the
COUNT subprogram are:

CALL COUNT
DC A
DC B
DC C

where the parameters A, B, and C must be defined as:

B DC 1 programmed timer number
through

9

C DC XX the number of intervals to be
counted before the subprogram
is executed.

A DC 0 number of the subprogram to
be executed when the time has

through elapsed.
31

APPENDIX A. ASSEMBLER LANGUAGE CALLS

The assembler language statements to be used to read
and to set the programmed real-time clock are:

Read:

CALL CLOCK
DC A

where A is the address of the location where the con­
tents of the clock are to be stored.

Set:

CALL SETCL
DC A

where. A must be defined as:

A DC

PSC Statements:

xxxx the time to be used for
setting the clock. The
time must be represented
in hours and thousandths of
hours (i. e., 00000 through
23999).

The following assembler language statements are
equivalent to the FORTRAN language calls for core
load sequencing.

CALL BACK no parameters are required for

CALL ENDTS
CALLVIAQ
CALL DPART

Call Chain:

CALL CHAIN
CALL NAME

these calls.

where NAME is the name of the core load to be
execu.ted.

Call Special:

CALL SPECL
CALL NAME

Appendix A. Assembler Language Calls 121

where NAME is the name of the core load to be
executed.

Call Queue:

CALL QUEUE
CALL NAME
DC A
DC B

where NAME is the name of a core load to be added
to the queue. A and B must be defined as follows.

A DC

B DC

Call Unqueue:

CALL UNQ
CALL NAME
DC A

1 priority number.
through
32;767 -1-32 ... 766 replace lowest priority

entry.
or
0 ignore the call.
~

32 ... 767 restart.

where NAME is the name of a core load whose entry
is to be removed from the queue. A must be defined
as follows.

A DC

Call Time-Share:

CALL SHARE
DC A

where A must be defined as follows:

A DC xx number of programmed
timer base intervals to be
used for nonprocess
operations.

Call Programmed Settable Interrupts:

CALL LEVEL
DC A

122

where A must be defined as:

A DC

Interrupt Calls:

o user specified hardware
level to cause interrupt.

to
23

The following assembler language statements are
used to service and clear recorded interrupts.

Call Interrupt Exit:

CALL INTEX no parameters are required for
this call.

Service Recorded Interrupts:

CALL QIFON
CALL NAME
DC A
DC B
DC C
DC D

where NAME is the name of the core load to be ser­
viced if recorded. A, B, C, and D must be defined
as follows:

A DC XX priority number.
B DC XX interrupt level number or

indicator.
C DC XX position within PISW or

indicator.
D DC 1-32:76~ replace lowest 1-3;J.7b{~

priority entry.
or
o ignore the call.
32:767 restart

Clear Recorded Interrupts:

CALL CLEAR CALL CLEAR
DC A DC A (when A = 0)
DC B(1)
DC C(1)
DC B(2)
DC C(2)

where A, B, and C must be defined as follows:

A DC XX number of Bs and Cs
which follow. If zero,
all recorded status is
cleared.

B DC XX interrupt level number
or indicator. Not used
if A = o.

C DC XX position within PISW or
indicator. Not used
if A = o.

Miscellaneous Subroutines:

The following assembler language statements are
used to link the miscellaneous subroutines.

Mask:

CALL MASK
DC A
DC B

where A and B must be defined as:

A DC

B DC

/0000 levels to masked. A
represents the first 14
levels (0 through 13).
F or example, to mask
levels 0 - 13, use: /FFFC.

/0000 levels to be masked. B
represents the second 10
levels (14 through 23).

Unmask:

CALL UNMK
DC A
DC B

F or example, to mask
levels 14 through 23,
use: /FFCO.

where A and B must be defined the same as shown for
CALL MASK. The designated levels are unmasked.

Save Mask:

CALL SAVMK
DC A
DC B

where A and B are the addresses of the core storage
words where the contents of the interrupt mask regi­
ster are to be placed.

Restore Mask:

CALL RESMK
DC A
DC B

where A and B are the levels defined for the CALL
MASK or CALL UNMK.

Reset Operation Monitor:

CALL OPMON no parameters are required
for this call.

Appendix A. Assembler Language Calls 123

I

Where
Used
Code

M

M

M

M, I, N*, C

M, I, N*, C

M, I, N*, C

M, I, N*, C

Statement

CALL INTEX

CALL CHAIN
(NAME)

CALL SPECL
(NAME)

CALL BACK

CALL QIFON
(NAME, P, L, I,
E)

CALL CLEAR
(M, L, I, L, I,
... , L, I,)

CALL QUEUE
(NAME, P, E)

CALL UNQ
(NAME, P)

Form C26-5990-1

Page Revised 7/20/66
By TNL N26-0559

APPENDIX B. SUMMARY OF TSX STATEMENTS

Description

Causes return of control to MIC on inter­
rupt exit.

Mainline core load designated by NAME
is loaded and executed.

Mainline core load containing this call is
saved on disk. Mainline core load desig­
nated by NAME is loaded and executed.

Mainline core load saved as a result of a
CALL SPECL is restored to core and
execution continues with the statement
following the special call.

Specified interrupts, that have been re­
corded, will be queued in the order called
by the CALL QIFON statement and ac­
cording to its designated parameters.
NAME - name of the mainline core load.
P - execution priority of the named main-

line core load.
L - interrupt level or indicator.
I - PISW bit position indicator or CA LL

COUNT indicators.
E - error parameter to specify the action

to be taken if queue is full.

Specified interrupts will be cleared of
recorded status whether they were re­
corded or not. M specifies the number
of L and I parameters to follow. L and I
are the same as designated for CALL
QIFON. If M = 0, all recorded status is
cleared.

Mainline core load designated by NAME
is entered in core load queue with pri-
0rity P and error option E.

Mainline core load designated by priority
P and NAME will be removed from the
core load queue.

Appendix B. Summary of TSX Statements 125

Fonn C26-5990-1

Page Revised 7/20/66
By TNL N26-0559

126

M

M, I, C

M, I, C

M, I, N*, C

M, I, C

M, I, N, C

M, I, N*, C

M, I, N*, C

M

I, C

M, I, N*, C

M, I, N*, C

M, I, C

M, I, C

CALL VIAQ

CALL MASK (I, J)

CALL UNMK
(I, J)

CALLSAVMK
(I, J)

CALL RESMK
(I, J)

CALL OPMON

CALL TIMER
(NAME, I, INT)

CALL COUNT
(IN, I, INB)

CA LL SHARE (I)

CALL ENDTS

CALL SETCL (I)

CALL C LOCK (I)

CALL LEVEL (L)

CALL DPART

M - Mainline programs only.
I - Interrupt programs only.
N - Nonprocess programs only.

Last logical statement of a mainline core
load. The first core load, of the highest
priority entered in the queue, is loaded
and executed.

Interrupt levels specified by data state­
ments for I and J are masked (no unmask­
ing occurs).

Interrupt levels specified by data state­
ments for I and J are unmasked (no
masking occurs).

Interrupt level mask status is saved in I
and J (no masking or unmasking occurs).

Interrupt levels are masked according to
I and J (all others are unmasked).

Operation monitor is reset.

Interval timer specified by I (lor 2) is
set up to count INT intervals. Arter INT
intervals have elapsed, ITC will branch
to NAME (user's subprogram).

Program interval timer specified by I (1,
2, 3, ... , 9) is set to count INB intervals.
Upon completion of INB intervals, the
ITC will branch to the subroutine specified
by IN (IN specifies a subroutine number
from 0 - 31).

The present core load is saved and non­
process time-sharing is set up for I timed
intervals.

Time sharing is terminated.

Programmed clock is set to equal 1.

Clock is read into 1.

C aIls the programmed interrupt specified
by the hardware level L (L must be between
o - 23).

Tests the operation level of present use
and, if an interrupt level exists, executes
a CALL INTEX, otherwise a CALL
VIAQ is executed.

C - Combination mainline and interrupt core load.
* - Must be an XEQ from core load area (TIME SHARING REQumED)
X - Must be an XEQ from core load area (TIME-SHARING NOT REQUffiED)

PRIORITY DECIMAL
INTERRUPT

LEVEL CD ADDRESS

0
Internal 1 8
Trace 26 9
CE 27 1@
Assigned 0 2 11
Levels 1 3 12

2 4 13
3 5 14

BASIC
4 6 15
5 7 16
6 8 17
7 9 18
8 10 19
9 11 20
10 12 21

" 11 13 22 .. 12 14 23
SPECIAL 13 15 24
FEATURE 14 16 25
GROUP 1 15 17 26

~
16 18 27
17 19 28

• 18 20 29
SPECIAL 19 21 30
FEATURE 20 22 31
GROUP 2 21 23 32

1 22 24 33
23 25 34

CD NOTE: 1 Highest priority
27 Lowest priority

ILSW

Yes
No
No
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes

Form C26-5990-1

Page Revised 10/25/66
By TNL N26-0560

APPENDIX C. INTERRUPT LEVEL ASSIGNMENT CHART

PISW 0 MASK & PROGRAM
I/O, TIMER, PROCESS

INTERRUPT:
ASSIGN'T UNMASK INTERRUPT

ASSIGNMENT ALLOWED

- No No No
- G) No No
- No No No
2 Yes Yes Yes
3 Yes Yes Yes
4 Yes Yes Yes
5 Yes Yes Yes
6 Yes Yes Yes
7 Yes Yes Yes
8 Yes Yes Yes
9 Yes Yes Yes
10 Yes Yes Yes
11 Yes Yes Yes
12 Yes Yes Yes
13 Yes Yes Yes
14 Yes Yes Yes
15 Yes Yes Yes
16 Yes Yes Yes
17 Yes Yes Yes
18 Yes Yes Yes
19 Yes Yes Yes
20 Yes Yes Yes
21 Yes Yes Yes
22 Yes Yes Yes
23 Yes Yes Yes
24 Yes Yes Yes
25 Yes Yes Yes

~
24 PISW's Basic IBM 1800.

3 Manually masked and unmasked by switch.
4 Return address in I-counter stored in decimal address 0010, but hardware-generated BSI addresses decimal address 0001.

Appendix c. 127.

* Recognized by all Conversion subroutines
NOTE: Codes that are not asterisked are in error.

EBCDIC IBM Card Code
Ref
No. Binary Hex

0123 4567

a 0000 0000 00
I 0001 01
2 0010 02
3 0011 03
4 0100 04
~* 0101 as
6* OlIO 06
7* 0111 07
8 1000 08
9 1001 09

10 lOla OA
11 lOll OB
12 1100 OC
13 1101 00
14 lila OE
IS 1111 OF

16 0001 0000 10
17 0001 II
18 0010 12
19 0011 13
20* 0100 14
21* 0101 15
22* 0110 16
23 aliI 17
24 1000 18
25 1001 19
26 1010 IA
27 1011 IB
28 1100 lC
29 1101 10
30 1110 IE
31 1111 IF

32 0010 0000 20
33 0001 21
34 0010 22
35 0011 23
36 0100 24
37* 0101 25
38* OlIO 26
39 0111 27
40 1000 28
41 1001 29
42 lOla 2A
43 lOll. 2B
44 1100 2C
45 1101 20
46 Ilia 2E
47 1111 2F

48 0011 0000 30
49 0001 31
50 0010 32
51 0011 33
52 0100 34
53* alaI 35
54* 0110 36
55 alII 37
56 1000 38
57 1001 39
58 1010 3A
59 lOll 3B
60 1100 3C
61 1101 3D
62 lila 3E
63 1111 3F

NOTES: Typerwriter Output

<D Tabulate

@ Shift to black

Rows

12 II a 9 8

12 a 9 8
12 9
12 9
12 9
12 9
12 9
12 9
12 9
12 9 8
12 9 8
12 9 8
12 9 8
12 9 8
12 9 8
12 9 8
12 9 8

12 11 9 8
11 9
11 9
11 9
11 9
11 9
11 9
11 9
11 9 8
11 9 8
11 9 . 8
11 9 8
11 ·9 8
11 9 8
11 .9 8
11 9 8

II a 9 8
a 9
a 9
a 9
a 9
a 9
a 9
a 9
a 9 8
a 9 8
a 9 8
a 9 8
a 9 B
a 9 8
a 9 8
a 9 8

12 11 a 9 8
9
9
9
9
9
9
9
9 8
9 8
9 8
9 8
9 8
9 8
9 8
9 8

® Carrier Return

o Shift to red

7-1

1
I
2
3
4
5
6
7

1
2
3
4
5
6
7

1
I
2
3
4
5
6
7

I
2
3
4
5
6
7

I
1
2
3
4
5
6
7

I
2
3
4
5
6
7

1
1
2
3
4
5
6
7

1
2
3
4
5
6
7

APPENDIX D. CHARACTER CODE CHART

1443 PTTC/8
Graphics and Control 1053/1816

Hex Printer Hex
Printer

Names U-Upper Case Hex
L-Lower Case

Hex

B030 NUL
9010
8810
8410
8210 PF Punch Off
8110 HT Horiz. Tab

6D ~ 41 <D
8090 LC Lower Case 6E 5
8050 DEL Delete 7F 5
8030
9030
8830
8430
8230
8130
8080
8070

0030
5010
4810
4410
4210 RES Restore

4C ~ as m
4110 NL New Line DO 5 81 3
4090 BS Backspace 5E 5 II
4050 IDL Idle
4030
5030
4830
4430
4230
4130
40BO
4070

7030
3010
2810
2410
2210 BYP Bypass
2110 LF Line Feed 3D $ 03
2090 EOB End of Block 3E 5
2050 PRE Prefix
203C1
3030
2830
2430
2230
2130
2OBO
2070

F030
1010
0810
0410
0210 PN Punch On
0110 RS Reader Stop 00 ffi 09 0
0090 UC Upper Case OE 5
0050 EaT End of Trans.
0030
1030
0830
0430
0230
0130
OOBO
0070

® The same in either upper or lower case.

Appendix D. Character Code Chart 129

EBCDIC IBM Card Cade 1443 PTTC/8
1053/1816

Ref
Binary Hex Raws Hex

Graphics and Control
Printer

Hex
Printer

No. Names
Hex

U-Upper Case Hex
0123 4567 12 II 0 9 8 7-1 L-Lower Case

64* 0100 0000 40 no punches 0000 (space) 00 10 ® 21
65 0001 41 12 a 9 I BOlO
66 0010 42 12 a 9 2 ASia
67 0011 43 12 a 9 3 A410
68 0100 44 12 a 9 4 A210
69 0101 45 12 a 9 5 Alia
70 0110 46 12 a 9 6 A090
71 0111 47 12 a 9 7 A050
72 1000 48 12 a 9 8 A030
73 1001 49 12 8 I 9020
74* 1010 4A 12 8 2 8820 ¢ 3D 20 (U) 02
75* 1011 4B 12 8 3 8420 • (period) 3B 6B (L) 00
76* 1100 4C 12 8 4 8220 < 3E 02 (U) DE
77* 1101 40 12 8 5 8120 (IC 19 (U) FE
78* 1110 4E 12 8 6 80AC + 10 70 (U) OA
79* 1111 4F 12 8 7 8060 I (logical OR) 3F 3B (U) C6

80* 0101 0000 50 12 8000 & 30 70 (L) 44
81 0001 51 12 II 9 I 0010
82 0010 52 12 II 9 2 C810
83 0011 53 12 II 9 3 C410
84 0100 54 12 II 9 4 C210
85 0101 55 12 II 9 5 CliO
86 0110 56 12 II 9 6 C090
87 0111 57 12 II 9 7 C050
88 1000 58 12 II 9 8 C030
89 1001 59 II 8 I 5020
90* 1010 5A II 8 2 4820 1 2D 5B (U) 42
91* 1011 5B II 8 3 4420 $ 2B 5B (L) 40
92* 1100 5C II 8 4 4220 * 2C 08 (U) D6
93' 1101 5D II 8 5 4120) 3C IA (U) F6
94* 1110 5E II 8 6 40AO

~ (logical NOT)
2E 13 (U) D2

95* 1111 5F II 8 7 4060 2F 6B (U) F2

96* 0110 0000 60 11 4000 - (dash) 20 40 (L) 84
97* 0001 61 a I 3000 / II 31 (L) BC
98 0010 62 II a 9 2 6810
99 0011 63 II a 9 3 6410

100 0100 64 II a 9 4 6210
101 0101 65 II a 9 5 6110
102 0110 66 II a 9 6 6090
103 0111 67 II a 9 7 6050
104 1000 68' II a 9 8 6030
105 1001 69 a 8 I 3020
106 1010 6A 12 II COOO
107* 1011 6B a 8 3 2420 , (comma) IB 3B (L) 80
108* 1100 6C a 8 4 2220 c/o IA 15 (U) 06
109* 1101 60 a 8 5 2120 (underscore) ID 40 (U) BE
110* 1110 6E a 8 6 2OAO "> OE 07 (U) 46
111* 1111 6F 0 8 7 2060 ? OF 31 (U) 86

112 0111 0000 70 12 II 0 EOOO
113 0001 71 12 II 0 9 I FOIO
114 0010 72 12 II 0 9 2 E810
115 0011 73 12 II 0 9 3 E410
116 0100 74 12 II 0 9 4 E210
117 0101 75 12 II 0 9 5 Ella
118 0110 76 12 II 0 9 6 E090
119 0111 77 12 II 0 9 7 E050
120 1000 78 12 II 0 9. 8 E030
121 1001 79 8 I 1020
122* 1010 7A 8 2 0820

i
IE 04 (IJ) 82

123* 1011 7B 8 3 0420 2A OB (L) CO
124* 1100 7C 8 4 0220 @ OC 20 (L) 04
125* 1101 7D 8 5 0120 I (apostrophe) 00 16 (U) E6
126* 1110 7E 8 6 OOAO = OB 01 (U) C2
127* 1111 7F 8 7 0060 " IF OB (U) E2

130

EBCDIC IBM Card Code 1443 PTTC/8 1053/1816
Ref

Binary Hex Rows Hex
Graphics and Control Printer Hex

Printer
No. Names Hex U-Upper Case Hex

0123 4567 12 11 0 9 8 7-1 L-Lower Case

128 1000 0000 80 12 0 8 1 B020
129 0001 81 12 0 1 BOoo a
130 0010 82 12 0 2 ABOO b
131 0011 83 12 0 3 MOO c
132 0100 84 12 0 4 A200 d
133 0101 85 12 0 5 A100, e
134 0110 86 12 0 6 A080 f
135 0111 87 12 0 7 A040 9
136 1000 88 12 0 8 A020 h
137 1001 89 12 0 9 A010 I
138 1010 8A 12 0 8 2 A820
139 1011 8B 12 0 8 3 M20
140 1100 8e 12 0 8 4 A220
141 1101 80 12 0 8 5 A120
142 1110 8E 12 0 8 6 AOAO
143 1111 8F 12 0 8 7 A060

144 1001 0000 90 12 11 8 1 0020
145 0001 91 12 11 1 0000 i
146 0010 92 12 11 2 CBOO k
147 0011 93 12 11 3 C400 1
148 0100 94 12 11 4 C200 m
149 0101 95 12 11 5 CIOO 'n
150 0110 96 12 11 6 C080 0

151 0111 97 12 11 7 C040 P
152 1000 98 12 11 8 C020 q
153 1001 99 12 11 9 COlO r
154 1010 9A 12 11 8 2 C820
155 ' 1011 9B 12 11 8 3 C420
156 1100 9C 12 11 8 4 C220
157 1101 90 12 11 8 5 C120
158 1110 9E 12 11 8 6 COAO
159 1111 9F 12 11 8 7 C060

160 1010 0000 AO 11 0 8 1 7020
161 0001 AI 11 0 1 7000
162 0010 A2 11 0 2 6800 s
163 0011 A3 11 0 3 6400 t
164 0100 A4 11 0 4 6200 u
165 0101 AS 11 0 5 6100 v
166 0110 A6 11 0 6 6080 w
167 0111 A7 11 0 7 6040 x
168 1000 AS 11 0 8 6020 Y
169 1001 A9 11 0 9 6010 z
170 1010 M 11 0 8 2 6820,
171 1011 AB 11 0 8 3 6420
172 1100 AC 11 0 8 4 6220
173 1101 AD 11 0 8 5 6120
174 1110 AE 11 0 8 6 ,SOAO
175 ~ 1111 AF 11 0 8 7 6060

176 1011 0000 BO 12 11 0 8 1 F020
177 0001 B1 12 11 0 1 FOOO
178 0010 B2 12 11 0 2 E800
179 0011 B3 12 11 0 3 E400
180 0100 B4 12 11 0 4 E200
181 0101 B5 12 11 0 5' E100
182 0110 B6 12 11 0 6 E080
183 0111 B7 12 11 0 7 E040
184 1000 B8 12 11 0 8 E020
185 1001 B9 12 11 0 9 EO 10
186 1010 BA 12 11 0 8 2 E820
1117 1011 BB 12 11 0 8 3 E420
188 1 ~oo BC 12 11 0 8 4 E220
189 1101 BO 12 11 0 8 5 E120
190 1110 BE 12 11 0 8 6 EOAO
191 1111 BF 12 11 0 8 7 E060

Appendix D. Character Code Chart 131

EBCDIC IBM Card Code 1443 PTTC/8 1053/1816 Ref
Binary Hex Rows Hex

Graphics and Control Printer Hex Printer No. Names Hex U-Upper Case Hex 0123 4567 12 11 0 9 8 7.:.1 L-Lower Case

192 1100 0000 CO 12 0 AOOO (+ zero)
193* 0001 Cl 12 1 9000 A 31 61 (U) ~3E
194* 0010 C2 12 2 8800 B 32 62 (U) ~a::0l' lA
195* 0011 C3 12 3 8400 C 33 73 (U) "10Clr IE
196* 0100 C4 12 4 8200 0 34 64 (U) ~32
197* 0101 C5 12 5 8100 E 35 75 (U) J.4-e.r 36
198* 0110 C6 12 6 8080 F 36 76 (U) 10..-12
199* 0111 C7 12 7 8040 G 37 67 (U) 1~16
200* 1000 C8 12 8 8020 H 38 68 (U) ~r26
201* 1001 C9 12 9 8010 I 39 . 79 (U) ~r22
202 1010 CA 12 0 9 8 2 A830
203 1011 CB 12 0 9 8 3 A430
204 1100 CC 12 0 9 8 4 A230
205 1101 CD 12 0 9 8 5 A130
206 1110 CE 12 0 9 8 6 AOBO
207 1111 CF 12 0 9 8 7 A070
208 1101 0000 DO II 0 6000 (- zero)
209* 0001 01 11 1 5000 J 21 51 (U) ~7E
210* 0010 02 11 2 4800 K 22 52.(U) S8...0r5A
211* 0011 03 11 3 4400 L 23 43 (U) 5G-or 5E
212* 0100 04 11 4 4200 M 24 54 (U) ~r72
213* 0101 05 11 5 4100 N 25 45 (U) ;z4..or 76
214* 0110 06 11 6 4080 0 26 46 (U) SQ..Qr.52
215* 0111 07 11 7 4040 P 27 57 (U) S4-<lr56
216* 1000 08 11 8 4020 Q 28 58 (U) M-or 66
217* 1001 09 11 9 4010 R 29 49 (U) 6O-or 62
218 1010 OA '12 11 9 8 2 C830
219 1011 DB 12 11 9 8 3 C430
220 1100 DC 12 11 9 8 4 C230
221 1101 DO 12 11 9 8 5 C130
222 1110 DE 12 11 9 8 6 COBO
223 1111 OF 12 11 9 8 7 C070
224 1110 0000 EO 0 8 2 2820
225 0001 El 11 0 9 1 7010
226* 0010 E2 0 2 2800 S 12 32 (U) 28:gr 9A
227* 0011 E3 0 3 2400 ,..

13 23 (U) ex:.- 9E
228* 0100 E4 0 4 2200 U 14 34 (U) 8O-or B2 .
229* 0101 E5 0 5 2100 V 15 25 (U) B.4,..Qr 86
230* 0110 E6 0 6 2080 W 16 26 (U) 2O-or92
231* 0111 E7 0 7 2040 X 17 27 (U) .Q4..Qr96
232* 1000 E8 0 8 2020 Y 18 38 (U) M-A6
233* 1001 E9 0 9 . 2010 Z 19 29 (U) ~A2
234· 1010 EA 11 0 9 8 2 6830
235 1011 EB 11 0 9 8 3 6430
236 1100 EC 11 0 9 8 4 6230
237 1101 ED 11 0 9 8 5 6130
238 1110 EE 11 0 9 8 6 6OBO
239 1111 EF 11 0 9 a 7 6070

240* 1111 0000 FO 0 2000 0 OA IA (L) C4
241* 0001 Fl 1 1000 I 01 01 (L) FC
242* 0010 F2 2 0800 2 02 02 (L) 08
243* 0011 F3 3 0400 3 03 13 (L) DC
244* 0100 F4 4 0200 4 04 04 (L) FO
245* 0101 F5 5 0100 5 05 15 (L) F4
246* 0110 F6 6 0030 6 06 16 (L) DO
247* 0111 F7 7 0040 7 07 07 (L) 04
248* 1000 Fa a 0020 8 08 08 (L) E4
249* 1001 F9 9 0010 9 09 19 (L) EO
250 1010 FA 12 11 0 9 8 2 E!:l30
251 1011 FB 12 11 0 9 a 3 E430
252 1100 FC 12 11 0 9 8 4 E230
253 1101 FO 12 11 0 9 8 5 EI30
254 1110 FE 12 11 0 9 8 6 EOBO
255 1111 FF 12 11 0 9 8 7 E070

132

Subroutine

FORTRAN

Called by CALL

Sense and Program Select Switches

Test Data Entry Switches

Sense Light Control and Test

Overflow Test

Divide Check Test

Functional Error Test

Trace Start

Trace Stop

Integer Transfer of Sign

Transfer af Sign (Extended Precision)

Transfer of Sign (Standard Precision)

Analog Input-Single Read (point)

Analog Input-Sequential Read (table)

Analog Input-Random Read (table)

Contact Operate, Digital Output, Digital-Analog
Conversion, and Pulse Output

Contact Sense, Voltage Level Sense, Pulse Output,
and Digital Input

Contact Sense and Compare, Voltage Level Sense
and Compare, Pulse Input and Compare, and Digital
Input and Compare

Contact Sense and Expand, Voltage Level Sense
and Expand, Pulse Input and Expand, and Digital
Input and Expand

Save, Restore, and Error Handling

Called by UBF

Magnetic Tape Control (multiple device)

Address Check

Computed GOTO Check

Indexed Integer Store

Transfer Trace

Trace Test and Set

Pause

Stop

Subscript Displacement Calculation

Subroutine Initialization

Logical to Physical Unit Cross Reference Table

Interface Routines for FAC

Disk FORTRAN I/O

Disk FIND

Names

SSWTC

DATSW

SUTE, SUTT

OVERF

DVCHK

FCTST

TSTRT

TSTOP

ISIGN

ESIGN

FSIGN

AlP

AIS

AIR

CO, DO, DAC, PO

CS, VS, PI, DI

CSC, VSC, PIC, DIC

CSX, VSX, PIX, DIX

QZERQ, QZ010, XSAVE,
XEXIT, XLOAD, ETS, lOPE,
OULSY, UNGAG, GAGED

REWND, BCKSP, EOF

ADRCK

COMGG, COMGI

ISTOX

MGOTO, MFIF, MIIF,
MEIF

TTEST, TSET

PAUSE

STOP

SUBSC

SUBIN

IOU

LDFAC, STFAC, SBFAC,
DVFAC

MDFIO, MDAF, MDAI,
MDCOM, MDF, MDI, MDFX,
MDIX, MDRED, MDWRT

MDFND

Form C26-5990-1

Page Added 7/20/66
By TNL N26-0559

APPENDIX E. SUBROUTINE LIBRARY

Other Subroutines Required

None

None

None

None

None

None

TSET

TSET

None

ESUB, ELD

FSUB, FlO

AIPTN, GAGED, QZ010, QZERQ

AISQN, GAGED, QZ010, QZERQ

AIRNN, GAGED, QZOlO, QZERQ

DAOP, GAGED, QZ010, QZERQ

DINP, GAGED, QZ010, OZERQ

DICMP, XSAVE, lOPE, QZERQ

DIEXP, GAGED, QZ010, QZERQ

None

IOU, MAGT

None

None

ADRCK

TTEST, COMGI, MWRT, MIOI, MIOF, MCOMP

None

None

EXIT

None

None

None

None

ADRCK, DISKN, BT2BT, SAVE, 10FIX

DISKN

Appendix E. Subroutine Library 132.1 •

Form C26-S990-1
Page Added 7/20/66
By TNL N26-0SS9

FORTRAN (continued)

Called by L1BF (continued)

Non-Disk FORTRAN I/O

Subroutine

Buffer Save and Get Precision and Integer Size

Arithmetic Trace

ARITHMETIC AND FUNCTIONAL *

Called by CALL

Real Hyperbolic Tangent (E)

Real Hyperbolic Tangent (S)

Real Base to a Real Exponent (E)

Rea I Base to a Rea I Exponent (S)

Real Natural Logarithm (E)

Real Natural Logarithm (S)

Real Exponential (E)

Real Exponential (S)

Rea I Square Root (E)

Real Square Root (S)

Real Trigonomentric Sine/Cosine (E)

Real Trigonometric Sine/Cosine (S)

Real Trigonometric Arctangent (E)

Real Trigonometric Arctangent (S)

Fixed-Point Square Root

Real Absolute Value (E)

Real Absolute Value (S)

Integer Absolute Value

Real Binary to Decimal/
Real Decimal to Binary

Save and Restore (E)

Save and Restore (S)

AND

OR

EOR

LD

Called by L1BF

Real Base to an Integer Exponent (E)

Real Base to an Integer Exponent (S)

Real Divide (E)

Real Divide (S)

Real Multiply (E)

Real Multiply (S)

Real Add/Subtract and Reverse Subtract (E)

*The word "reo I " is synonymous with the word floating point •

• 132.2

Names Other Subroutines Required

MFIO, MRED, MWRT, MCOMP, DISKN, IOU, 10FIX, BTlBT, SAVE, ADRCK,
MIOAF, MIOAI, MIOF, MIOI, FLOAT, IFIX
MIOFX, MIOIX

SAVE, IOFIX None

MIAR, MIARX, MFAR, ADRCK, TTEST, MWRT, MIOI, MIOF,
MFARX, MEAR, MEARX MCOMP

ETANH, ETNH EEXP, ELD/ESTO, EADD, EDIV

FTANH, FTNH FEXP, FLD/FSTO, FADD, FD IV

EAXB, EAXBX EEXP, ELN, EMPY

FAXB, FAXBX FEXP, FLN, EMPY

ELN, EALOG XMD, EADD, EMPY, EDIV, NORM

FLN, FALOG FSTO, XMDS, FADD, FMPY, FDIV, NORM

EEXP, EXPN XMD, FARC

FEXP, FXPN XMDS, FARC

ESQR, ESQRT ELD/ESTO, EADD, EM.py, EDIV

FSQR, FSQRT FLD/FSTO, FADD, FMPY, FDIV

ESIN/ECOS, ESINE/ECOSN EADD, EMPY, NORM, XMD, ESTO

FSIN/FCOS, FSINE/FCOSN FADD, FMPY, NORM, XMDS, FSTO

EATN, EATAN EADD, EMPY, EDIV, XMD, NORM

FATN, FATAN FADD, FMPY, FDIV, XMDS, FSTO

XSQR None

EABS, EAVL None

FABS, FAVL None

lABS None

FBTD/FDTB None

ETRTN, ETNTR None

FTRTN, FTNTR None

lAND None

lOR None

IEOR None

LD None

EAXI, EAXIX ELD/ESTO, EMPY, EDVR, ETNTR, ETRTN

FAXI, FAXIX FLD/FSTO, FMPY, FDVR, FTNTR, FTRTN

EDIV, EDIVX, EDVR, EDVRX XDD, FARC, ETNTR, ETRTN, FLD/FSTO

FDIV, FDIVX, FDVR, FDVRX FARC, ELD/ESTO, FTRTN, FTNTR

EMPY, EMPYX XMD, FARC, ETNTR, ETRTN

FMPY, FMPYX XMDS, FARC, FTNTR, FTRTN

EADD, EADDX/ESUB, FARC, NORM, ETNTR, ETRTN
ESUBX, F5BR, ESBRX

Subroutine

ARITHMETIC AND FUNCTIONAL (continued)

Called by LlBF (continued)

Real Add/Subtract and Reverse Subtract (S)

Load/Stor.e FAC (E)

Load/Store FAC (S)

Fixed-Point Double-Word Divide

Fixed-Point Double-Word Multiply

Fixed-Point Fractional Multiply

Real Reverse Sign

Integer to Real

Rea I to Integer

Integer Base to an Integer Exponent

Normalize

Real Arithmetic Range Check

INTERRUPT SERVICE

Called by LlBF

Card I/O

Disk I/O

Paper Tape I/O

Plotter Control and Output

1443 Printer Output, Overlapping

1816/1053 Pr.inter-Keyboard I/O, Overlapping
(Error Parameter)

1816/1053 Printer Output, Overlapping
(Error Parameter)

Magnetic Tape I/O

Digital Input

Digital Input Read/Compare

Digital Input Read/Expand

Digital/Analog Output

Analog Input Interrupt Processing

Single Point Analog Input

Sequential Analog Input

Random Analog Input

I/O Busy Test

I/O Busy Test

CONVERSION

Called by LlBF

Binary Word to 6 Decimal Characters (card code)

Binary Word to 4 Hexadecimal Characters (card code)

6 Decimal Characters (card code) to Binary Word

EBCDIC to 1053 or 1443 Printer Output Code

IBM Card Code to or from EBCDIC

I BM Card Code to 1053 or 1443 Printer Output Code

Names

FADD, FADDX/FSUB, FSUBX
FSBR, FSBRX

ELD, ELDX/ESTO, ESTOX

FLD, FLDX/FSTO, FSTOX

XDD

XMD

XMDS

SNR

FLOAT

IFIX

FIXI, FIXIX

NORM

FARC

CA.RDN

DISKN

PAPTN

PLOTX

PRNTN

TYPEN

WRTYN

MAGT

DINP

DICMP

DIEXP

DAOP

ANINT

AIPTN, AIPN

AISQN, AISN

AIRN

BT1BT

BT2BT

BINDC

BINHX

DCBIN

EBPRT

HOLEB

HOLPR

Form C26-S990-1

Page Added 7/20/66
By TNL N26-0SS9

Other Subroutines Required

FARC, NORM, FTNTR, FTRTN

ADRCK

ADRCK

XMD

None

None

None

NORM

None

None

None

None

None

None

None

None

None

None

None

None

None

lOPE

GAGED

GAGED

None

ANINT, GAGED

ANINT, GAGED

ANI NT, GAGED

None

None

None

None

None

PRT

None

PRT

iJ

Appendix E. Subroutine Library 132.3.

Fonn C26-5990-1
Page Added 7/20/66
By TNL N26-0559

CONVERSION {continued}

Called by LlBF {continued}

Subroutine

4 Hexadec ima I Characters {card code} to Binary Word

EBCDIC to or from PTTC/8

I BM Card Code to or from PTTC/8

PTTC/8 to 1053 or 1443 Printer Code

EBCDIC and PTTC/8 Table

1053 or 1443 Printer Code Table

MISCELLANEOUS SUBROUTINES

Called by Call

Clear Recorded Interrupts

Read the Time Clock

Programmed Timers

Exit from Combination Core Loads

End Time Sharing

Programmed Interrupt

Mask Interrupt Levels

Reset Operatiohs Monitor

Service Recorded ,Interrupts

Queue Mainline Core Loads

Restore Mask

Save Mask

Set the Time Clock

Hardware Timers

Unmask Interrupt Levels

Remove Mainline from Queue

Load Highest Priority Mainline

Dump Status

Selective Dump

Trace Hex Conversion

Trace Print

• 132.4

Names Other Subroutines Required

HXBIN None

PAPEB EBPA

PAPHL EBPA

PAPPR EBPA

EBPA None

PRT None

CLEAR None

CLOCK None

COUNT None

DPART VIAQ INTEX

ENDTS None

LEVEL None

MASK None

OPMON None

QIFON QUEUE

QUEUE None

RESMK None

SAVMK None

SETCL None

TIMER None

UNMK None

UNQ None

VIAQ CHAIN, SHARE

DMPS, DMPST None

DMP, DMPHX, DMPDC None

CONHX None

TRPRT None

Tables 9 through 14 list the core requirements for
the functional, FORTRAN, I/O, conversion, plotter,

Table 9. Arithmetic and Functional Subroutine Core Requirements

Standard Precision

No of.
Core

Subroutines Locations

FADD, FADDX, FSBR, FSBRX, FSUB, FSUBX 158
FALOG, FLN 148
FATAN, FATN 170
FAVL, FABS 28
FAXB, FAXBX 70
FAXI, FAXIX 68
FDIV, FDIVX, FDVR, FDVRX 106
FEXP, FXPN 124
FlO, FLDX, FSTO, FSTOX 102
FMPY, FMPYX 65
FSIN, FSINE, FCOS, FCOSN 148
FSQRT, FSQR 86
FTANH, FTNH 84
FTRTN, FTNTR 40

Form C26-5990-1

Page Revised 10/25/66
By TNL N26-0560

APPENDIX F. SUBROUTINE CORE REQUffiEMENTS

and miscellaneous subroutines, respectively.

Extended Precision

No. of
Core

Subroutines Locations

EADD, EADDX, ESBR, ESBRX, ESUB, ESUBX 158
EALOG, ELN 164
EATAN, EATN 184
EAVL, EABS 28
EAXB, EAXBX 74
EAXI, EAXIX 72
EDIV, EDIVX, EDVR, EDVRX 98
EEXP, EXPN 154
ElO, ElOX, ESTO, ESTOX 107
EMPY, EMPYX 42
ESIN, ESINE, ECOS, ECOSN 180
ESQRT, ESQR 90
ETANH, ETNH 76
ETRTN, ETNTR 44

Either Precision

No. of No. of
Core Core

Subroutines Locations Subroutines Locations

FARC 52 lOR 14
FBTD, FDTB 428 LD 16
FLOAT 26 NORM 44
FIXI, FIXIX 68 SNR 24
lABS 26 . XDD 78
lAND 14 XMD 58
lEaR 14 XMDS 42
IF IX 46 XSQR 50

Table 10. FORTRAN Subroutine Core Requirements

No. of
Core

Subroutines Locations
Table 11. I/O Subroutine Core Requirements

ADRCK 82
COMGG, COMGI 82
DATSW 44 . DVCHK 20
ESIGN (EXTENDED PRECISION) 60

No. of
Core

Subroutines Locations

FSIGN (STANDARD PRECISION) 60
FCTST 38
IOU 90
ISIGN 34
ISTOX 32
lOFAC, STFAC, SBFAC, DVFAC 46
MDFIO, MDAF, MDAI, MDCOM, MDF,

MDFX, MDI, MDIX, MDRED, MDWRT 883
MDFND 120
MFIO, MRED, MWRT, MCOMP, MIOAF,

MIOIX, MIOAI, MIOI, MIOFX, MIOF 1595
MGOTO, MFIF, MIIF, MEIF 208
MIAR, MIARX, MFAR, MFARX, MEAR,

MEARX 200
OVERF 20
PAUSE 16
SAVE, 10FIX 116
SLlTE, sLln 76
SSWTC 42
STOP 26
SUBIN 36
SUBSC 44
STOP 26
TSTOP 14
TSTRT 14
nEST, TSET 26

CARDN 356
PAPTN 258
MAGT 542
PLOTX 222
REWIND/BCKSP/EOF 62
DAOP 298
AIPTN, AIPN 130
AISQN, AISN 246
AIRN 212
DIEXP 76
DICMP 92
DINP 298
ANINT 316
AlP 44
AIS 204
AIR 276
CO, DO, PO, DAC 92
CS, VS, PI, DI 100
CSC, VSC, PIC, DIC 146
CSX, VSX, PIX, DIX 38
lOPE, OUSLY, ETS 206
XSAVE, XEXIT, XLOAD 270
GAGED, UNGAG 32
QZERQ 14
QZ010 84
BTlBT 80

UFIO 577 BT2BT 28

Appendbc F. Subroutine Core Requirements 132.5 •

Form C26-5990-1
Page Revised 10/25/66
By TNL N26-0560

• Table 12. Conversion Subroutine Core Requirements

No. of
Core

Subroutines Locations

BINDC 78
OCBIN 88
BINHX 52
HXBIN 70
HOLEB 290
HOLPR 196
EBPRT 160
PAPEB 264
PAPHL 330
PAPPR 272
EBPA 76
PRT 74

Table 13. Plotter Subroutine Core Requirements

No. of
Core

Subroutines Locations

FCHAR 52
SCALF 4
FGRID 102
FPLOT 48
ECHAR 58
SCALE 4
EGRID 110
EPLOT 56
POINT 108
FCHRX, FCHRI, WCHRI, 596
FRULE, FMOVE, FINC 130
ECHRX, ECHRI, VCHRI 604
ERULE, EMOVE, EINC 144
XYPLT 100
PLOTl, PLOTS 28

132.6

• Table 14. Miscellaneous Subroutine Core Requirements

No. of
Core

Subroutines Locations

DMPHX, DMP, DMPDC 426
OMPS,OMPST 318
OPART 14
ENOTS 10
LEVEL 56
MASK 38
OPMON 6
QIFON 154
QUEUE 194
RESMK 44
SAVMK 26
SETCL 26
TIMER 86
UNMK 74
UNQ 70
VIAQ 96
COUNT 52
CLOCK 18
CLEAR 128
CONHX 78
TRPRT 86
FLIP 59

Algorithms for functional subroutines 111

Analog Input Random Read (FORTRAN) subroutine 79
Analog Input Random Read Subroutine 68

Analog Input Sequential (FORTRAN) subroutine 74

Analog Input - Sequential Subroutine 64
Analog Input - Single Read (FORTRAN) subroutine 73

Analog Input - Single Read Subroutine 66
Arithmetic and Functional Subroutines 103
Arithmetic and Functional Subroutine Error Indicators 109
Assembler Language Calls 121

Assembler Program 35

Basic Calling Sequence (of subroutines) 43
Buffering messages to disk 54

CALL BACK Statement 9
CALL CHAIN Statement 8

CALL CLEAR Statement 11

CALL CLOCK Statement 21

CALL DPART Statement 16
CALL ENDTS Statement 24

CALL EXIT Statement 24
CALL INTEX Statement 16

CALL LEVEL Statement 15

CALL LINK Statement 24

CALL QUEUE Statement 9

CALL QIFON Statement 11
CALL SETCL Statement 21

CALL SHARE Statement 23

CALL SPECL Statement 9

CALL TIMER Statement 19
CALL UNQ Statement 9
CALL VIAQ Statement 10
Card subroutine 45

Character Code Chart 129
Clock 20

Combination core load 16
Common areas 4
Control records,

Assembler 35
Disk Utility Program 32

FORTRAN 36
Monitor 31

Conversion Subroutines 92
Core load area 3
Core Load Builder 28

Core loads 5

Core storage layout 4

Digital Analog Output (FORTRAN) subroutine 85
Digital/Analog Output subroutine· 62
Digital Input (FORTRAN) subroutines 89

Digital Input Read/Compare subroutine 61
Digital Input Read/Expand subroutine 62

Digital Input subroutine 59

Disk Storage areas 3

Disk subroutine 46
Disk Utility Program 32

EAC Error Type Codes 26
EAC program 24
Elementary function algorithms 111

Error Alert Control (EAC) program 24
Error indicators (ArithmetiC and Functional subroutines) 109

Error subroutine 24
Extended Binary Coded Decimal Interchange Code (EBCDIC) 94

External interrupts 14

FAC lOS

File protection 4

File protection 47
Fixed Location Equivalence Table 4
Fixed point data format 105

FLET 4

Floating-Point data formats 103

Floating-Point pseudo accumulator 105
FORTRAN Compiler 36

FORTRAN Control records 36

Function Algorithms 111

Functional Subroutine accuracy 109

Hexadecimal notation 92

IBM card code 93

IBM systems area 3

I/O subroutines 39
Internal errors 24
Input/Output errors 24
Interval Timer Control (ITC) program 18

Interrupt assignment restrictions 16

lTC program 18

Job Deck 32

LET 3
Loaders 25
LOCAL subprograms 5
Location Equivalence Table 3

Machine function subroutines 115

Machine interval timers 19

Magnetic Tape Subroutine 51
Master Interrupt Control (MIC) program 14

Message buffering (to disk) 54
Message priority 55
Methods of data transfer (subroutines) 40

MIC program 14

Monitor Control Record Analyzer routine 31

133

Monitor Control Records 31

Nonprocess monitor 29
Nonprocess work storage area 3

Operation monitor 23

Paper Tape Subroutine 57
Perforated Tape and Transmission Code (PTTC/8) 93
PISW Assignment restrictions 17

Plotter subroutine 58
Printer-Keyboard subroutine 54

Printer subroutine 49

Process work storage area 3
Program sequence control program (PSC) 7

Programmed timers 20

PSC program 7

Queuing statements 9

Recordeu Interrupt Servicing 16
Relocatable Program Area 3

134

Save areas 3
Sector numbering 47

Selective Dump Subroutines 115
Skeleton Builder 25

Skeleton supervisor 30
Simulator Program 37
Subprograms Linking FORTRAN With Analog/Digital I/O 73
Subroutine Library 39

Summary of TSX Statements 125
Supervisor program 30

System Components 2

System director 7
System Loader 25

TASK 25

Temporary Assembled Skeleton (TASK) 25

Term definitions 1

Time-Sharing Control (TSC) Program 23

Transfer Vector 5
TSC program 23

1053 Printer Code 94
1443 Printer Code 93

Technical Newsletter File Number 1800-36

C26-5990-1 Re: Form No.

This Newsletter No. N26-0560

Date October 25, 1966

Previous Newsletter Nos. N26-0559

IBM 1800 Time-Sharing Executive System Specifications (Form C26-5990-1)

The attached pages and listed changes to existing pages bring the above publication up to
date. Changes on replacement pages are indicated by a vertical line at the left of affected
text, a bullet (e) at the left of the title of a changed illustration, and a bullet beside the
page number of a page that should be reviewed in its entirety. Pages that contain changes
are coded in the upper outside corner.

Note the following corrections on page 3 of 4, TNL N26-0559.

Page 104, Col. 2

Replace the following pages:

Cover and ii
iii and blank
23 and 24
25 and 26
33 and 34
37 and 38
51 through 56
59 through 70
75 and 76
89 and 90
91 and 92

Add the following pages:

38. 1 and blank

Page reference should have been 103

109 and 110
116. 1 and blank
119 through 120. 2
120. 3 and blank
127 and blank
132. 5 and 132. 6

File this Newsletter at the back of the manual. It will provide a reference to changes,
a method of determining that all amendments have been received, and a check for
determining if the manual contains the proper pages.

IBM Corporation, Programming Publications, Dept. 452, San Jose, Calif. 95114

PRINTED IN u. s. A. N26-0560 (C26-5990-1) Page 1 of 3

Make the following changes on the pages indicated:

Page 5, Col. 2

Page 7, Col. 2, Line 8

Page 11, Col. 1

Under the heading ;, LOCAL Subprograms", change the first
sentence to read as follows:
LOCAL subprograms are read into core storage by an over­
lay routine (FLIP) for execution when called by the object
program.
Add the following paragraph at the bottom of the column.
Skeleton TV. The Executive Transfer Vector (ETV) serves
as a link between in-skeleton routines and in-skeleton pro­
grams.

Delete the following line:
4. Trace and C. E. level.

Add the following sentence after the word "interrogates" in
the last line of the column:
The QIFON subroutine then automatically clears the interro­
gated program indicator.

Page 18, Col. 1, Line 12 Change to read as follows:
I/O device interrupt level.

Col. 2 After the statement "Any combination can be used for PISW
assignments on levels 4 and 5, " insert the following para­
graph:
The user written routine used to service the interrupts must
be coded as an I/O RPQ subroutine.

Page 27, Table 2 In the DEVICE/ROUTINE column change the DISK I/O and
NON-DISK I/O entries as follows:
DISK I/O (FORTRAN)
NON-DISK I/O (FORTRAN)

Page 29, Col. 2 In the second paragraph under Sim ulator Program, change
the second sentence to read as follows:

Page 30, Col. 1

Page 32, Col. 2

Page 44, Col. 1

Page 45, Col. 1

For example, an analog input call sequence can obtain input from
either cards or a random number generator.

Change the first three lines of the last paragraph to read as
follows:
When nonprocess jobs are ready to be executed, the operator
places the input in the card reader, sets the required configura­
tion of the

Change the heading *STOREMOD to *STOREMD

Change the first line of the note at the bottom of the column
to read as follows:
NOTE: The following require a data channel per device:

Under Special Condition Parameter add the following para­
graph:

N26-0560 (C26-5990-1) Page 2 of 3

Page 48, Col. 2

Page 49, Col. 1

Page 73, Col. 2

Page 82, Col. 1, Line 4

Last line

Page 83, Col. 2

Page 87, Col. 1

Page 88, Col. 2

Page 103, Col. 1

Page 104, Table 7

Page 105, Col. 1

Page 114, Col. 2

Page 132.1, Appendix E

If the I/O area and the I/O subroutine are in the system
skeleton, the special condition routine must also be in the
skeleton.

Add the following statement to the note at the top of the
column and to the paragraph headed Write Immediate:
Writing a partial sector clears the remainder of the sector
to zero.

Under I/O Area Parameter, change line 6 to read as follows:
sector or cylinder size, since DISKN crosses

Under "I/O Function" change line 2 to read as follows:
performed by the AIPTN subroutines. The functions,

Change to read as follows:
1M (403), IK (403), IF007 (2)
NTABL (202), IM(l), IM(403), IK(l), IK(403), IF007(2), LIM)

Under DATA TABLE change the last two margin entries to
read as follows:
IF007(2)
IF007(1)

Change the first paragraph to read as follows:
This addressing mode digit specifies one of four available
addressing options and is valid only for data channel opera­
tions. Program channel is always in sequential mode.

Under NOTE at the bottom of the column, change the second
sentence to read as follows:
The only difference is the appearance of the data table in
which only one variable position would be designated as an
address point.

Change the first illustration as follows:

1st word I S 115 most significant bits of mantissa
o 1 15

In the Extended Precision column change ETAHN to ETANH.

Change the text under the illustration as follows:
FAC
(XR3+41)

Change the heading FLOATING-POINT BASE TO AN INTEGER
EXPONENT to read as follows:
REAL BASE TO A REAL EXPONENT

Under the column~, change COMGG to COMGO.

N26-0560 (C26-5990-1) Page 3 of 3

Technical Newsletter File Number 1800-36

Re: Form No. C26-5990-1

This Newsletter No. N26-0523

Date January 11, 1967

Previous Newsletter Nos. N26-0558
N26-0559

IBM 1800 Time-Sharing Executive System Specifications (Form C26-5990-1)

Two restrictions that do not apply to TSX version two have been removed from the
attached page. Changes are indicated by a vertical line at the left of the affected text.

Replace the following pages:

17 and 18

File this Newsletter at the back of the manual. It will provide a reference to changes,
a method of determining that all amendments have been received, and a check for
determining if the manual contains the proper pages.

J 13M CorjJOratioll, Programming Publications, Dept. 232, Sail Jose, Calif. 95114

PRINTED IN U. S.A.

Technical Newsletter File Number 1800-36

Re: Form No. C26-5990-1

This Newsletter No. N26-0559

Date July 20, 1966

Previous Newsletter Nos. N26-0558

IBM 1800 Time-Sharing Executive System Specifications (Form C26-5990-1)

The attached pages and the listed changes to existing pages bring the above
publication up to date. Changes on replacement pages are indicated by a vertical line
at the left of affected text, a bullet (0) at the left of the title of a changed illustration,
and a bullet beside the page number of a page that should be reviewed in its entirety.
Pages that contain changes are coded in the upper outside corner.

Replace the following pages:

Cover and ii 61 and 62
3 and 4 63 and 64
5 and 6 65 and 66
7 and 8 67 and 68
13 and 14 69 and 70
15 and 16 71
17 and 18 75 and 76
23 and 24 79 and 80
25 and 26 81 and 82
27 and 28 85 and 86
31 and 32 87 and 88
33 and 34 89 and 90
35 and 36 91 and 92
37 and 38 95 and 96
39 and 40 115 and 116
43 and 44 117 and 118
45 and 46 119 and 120
49 and 50 125 and 126
55 and 56

Add the following pages:

116.1
120. 1 and 120.2
120.3

132.1 and 132.2
132.3 and 132.4
132.5 and 132.6

Make the following changes on the pages indicated:

IBM Corporation, Programming Publications, Dept. 452, San Jose, Calif. 95114

PRINTED IN U.S.A. N26-0559(C26-5990-1) Page 1 of 4

Page 9, Col. 2,
Line 19.
Line 24.
Line 31.

~
Change to read as ~s:
Pisfrom1t 27~7.
E = 1 thro 32766~lace the lowest
E =. 67. Execute restart core load.

Page 10, Figure 6, Changes the first two lines of block X to read:

Col. 1. Change last'p~graph to read:
When the CAL~XIAQ~ ment is executed and there are

entries in t,eue;>fIl~ghest priority entry is removed and
used to~ the core load it--re!erences .

... '-..... ,-. ,

Page ;1'r-Cor:--2;"""ehang~~()lle~
Line 14. ~.-E--==-t"1liro'Uglb...3~6&;-Replace the lowest,.
Lin~--18:-/-'-- ~3Z767.'Ex;Clite:resta:CLcJ!!:..E0oad. :)

Page 19, Col. 2, Change to read as follows:
Line 1._~~t6n::sJJ:QIoatIne
Line 2. .' ~nline subrou~, all

Page 21, Col. 1, Change the first sentence of the last paragraph under "Programmed
Timers" to read: __________ ,

To P:r:.C?y~.de_t!?-_~,Jlser:::W.!:~h,,!.::trge time intervals, a larger time base
-··ca:ifhe.:specifled for the programm-ed'>'timers

-y"-~) Col. 2 .. --BJiange to read: J

Line 3 7 -';':::'::"'-4-··CAL:CC~6UNT'-(31c,. 4""'8*IHOURf~'<'<"

Page 47, Col. 1. Change LinEL~L!1I1.9~r. .. _~~.[.i1eP.:r::.ote6iion!j to read as follows:
abouttQ3VIi~~.r::this:::-cofiiForcartbe~a~hieved.

Page 48, Col. 2, Change the first sentence to read as follows:

NOTE: During a multiple ctor wr,ite ope ation, the subroutine

S~!1plieJdh"L~~j;QE.!~~n~~~ ach sector is written.

(~han~de "Test Option' to read:

::-amete~ed by DISKN during

,(
eo!., ..), Change to read as follows:

"-" // Hexadecimal
Page 52,

Line 1: FUnction Value

Line 16:
X'-.,'\"

/eset ~"
J//" -"',

A

./

N26-0559(C26-5990-1) Page 2 of 4

Required
Parameters*

Control

""-~-.. , ---~--.-~,---.. ----.~.'"
Page 53, TableJ). Change Line 1 under "Contents otA-reglster" to read: 0600.

--'''-, , ------~.-
Page 54, Col. 2, c~:-;~-ifne-"l1.~und~r-ilj3;r:ring of Messages to Disk" to read:

__ -,-------mess'agej-has been ~~mpleted,,,!.he longest stored (time-wise)
~-. "".

Page 57, Col. 1, Under "Operator Request Function", add the following:
~n 1816 keyb~entryS1ioum be dependent on an inte~om
th~~oafitr.~key. The 1816 is not c~idered a process

Line 1.
Line 3.

Page 60, Col.
Col.

Line 7.
Line 9.

))EJdevice. -------------c
.. ,/'l:fnd;;-·"Non~Buffering o!~Messages to Disk", change to read as

/ '/~ ~,/

I follows: ~..-/
\,,~~a:Xfm to ~he message unit size specified.

mInImum size is 80 wor s.

1.---D(llete lines 6 ~~Read Sequential-Program Control".
2, Ch"an~ to r.ead as follows:
D~ta-e~el Addressing Mode

~--------dressing oPtions available. The addressing mode digit is used only
if the function !?read data channel.

Page 83, Co ~e-to.{ead,as_~ol1oWs:
Line 2. 0 - StandarCl datadsolution
Line 3. 1 - Read wi lib?tm~ltiplexor overlap with
Line 5. - 0 external'sYQchronization; no continuous
Line 7. 1 - Second ADC ------.. ,.

Page 84, Col. 1,
Line 19.

Col. 2,

Change to read as follows:
(0) is zero as a dummy address since there is no multiplexor
overlap. ~
Change l~o1ines under3~mple 4" to read:

_ " IM(42), IM(l), IM(42),
IM(l), 1M ~ __ .~,

Page 106, CoLI, Change line 1 under "Store FAC" to read:
LIBF FSTO, FSTOX, ESTO, or ESTOX

Page 108, CoLI, Delete line 2 (DC ARG) under "Fixed-Point Fractional Multiply
(short)

N26-0559(C26-5990-1) Page 3 of 4

Page 109, Col. 1,

Page 112,Col.~geto r~gfollo. ws:
Line 11 ~~

Page 12.2,-C6r.l; Change A and B definitions under "Call Queue": to read as follows:
< ... __ ." .. -- .. ". __ _-- A·· ... " .. ·.· ·.DC·--·"'-··-I .. ,·."~ ... w ____ ••• -. -~, .priority .. number -.-... -. -.. -. -

" .. ,."Jhrough ...
. " .. - .~.,.- 32767

or

o .. "". ' ignore the call._ _ ..
... ,..-,,···32767 -:-. .-' restar't" " .. , , .. ""'- -:-:::.:. .. - '-

............. -----., •• < , -.---... ~ -" ... ~." .. -.---.".--~. ,,' •

" Change the A. def~EjJiQ~under":"!JGaIi-~Unqiieue:!.!::t(f:reag::3§-lollows:

A DC 1 priority number.
through···· .. · .. " . ------:.~~.==-~-~~-~~:-~~---~

Col. 2, Chang~~theLr definitio~,.!illde·~,!IService·Recorded Interrupts" to read
./~s.~f61ioWS:.,~: __ ._.~~".:,-.~ - .. --.......... -.. - -- .

,/ D DC_·---l--"=32766 replace lowest priority entry. (-:;-'-.
or ,.--•. --.... ~ -'-'-~ .. " . ..,'''' -~'',... ... - ...

.. '.' '". .' . __ . ___ O---~---·-'---·~·~~]gnore".the call •
. ' --'-'"'~'--"'-',_32767 ~ .. ---.,.~~" ... - restart

......... ~ - --
. ,~- --:--......

Page 132, Right-most ~. a u.e.:-dele~~t~'::.and-:each:two#digit;.Jlumber
P~-<·FO~Plew1'·3'C·"or 3~" becomes "3E".

File this Newsletter at the back of the manual. It will provide a reference to changes,
a method of determining that all amendments have been received, and a check for
determining if the manual contains the proper pages.

N26-0559(C26-5990-1) Page 4 of 4

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

. I
I
I
I
I
I
I
I
I

READER'S COMMENT FORM

IBM 1800 Time-Sharing Executive System
Specifications

Form No. C26-5990-1

• Your comments, accompanied by answers to the following questions, help us produce better

publications for your use. If your answer to a question is "No" or requires qualification,

please explain in the space provided below. Comments and suggestions become the property of
IBM.

Yes

• Does this publication meet your needs? D
• Did you find the material:

Easy to read and understand? D
Organized for convenient use? D
Complete? D
Well illustrated? D
\Vritten for your technical level? 0

• \-\That is your occupation~

• How do you use this publication?

As an introduction to the subject? 0
For advanced knowledge of the subject? 0
For information about operating procedures? 0

No

D

o
o
D
o
o

As an instructor in a class? 0
As a student in a class? 0
As a reference manual? 0

Other _______________________________ _

• Please give specific page and line references with your comments when appropriate.
-If you wish a reply, be sure to include your name and address.

COMMENTS

• Thank you for' your cooperation. No postage necessary if mailed in the U.S.A.

C26-5990-1

fold

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN U. S. A.

POSTAGE WILL BE PAID BY ...

IBM Corporation
Monterey & Cottle Rds.
San Jose, California
95114

Attention: Programming Publications, Dept. 452·

FIRST CLASS

PERMIT NO. 2078

SAN JOSE, CALIF.

fold

~--1
fold fold

lllIDllir e

International Business Machines Corporation
Data Processing Division
112 East .Post Road, White Plains, N. Y. 10601

r-

,....
00 o o

n
N
0'1
I

U1
\0
\0 o
I ,....

C26-5990-1

ilJIDlill
®

InternatioI!.al Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, New York

()
l\J
0\
I
tn
\0
\0 o
I

	0001
	0002
	0003
	0004
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038.0
	038.1
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116.0
	116.1
	116
	117
	118
	119
	120.0
	120.1
	120.2
	120.3
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132.0
	132.1
	132.2
	132.3
	132.4
	132.5
	132.6
	133
	134
	A-01
	A-02
	A-03
	B-00
	B-01
	B-02
	B-03
	B-04
	replyA
	replyB
	xBack

