File No. S360-25
Form Y27-7152-0

Program Logic

IBM System/360 Operating System
Graphic Programming Services for FORTRAN IV

Program Number 3605-LM-537

This publication describes the internal logic of the
graphic subroutine package (GSP) for FORTRAN IV. GSP
is a program that enables a FORTRAN programmer to write
graphic programs for use with the IBM 2250 Display Unit
in association with the IBM System/360 Operating Sys-
tem. It is not an extension of FORTRAN IV, but does
extend graphic capabilities via subroutines and func-
tions to the FORTRAN programmer. GSP may also be used
in an assembler language program.

This program logic manual is intended for wuse by
persons involved in program maintenance and system
programmers who are altering the program design. its
primary purpose 1is to serve as a guide to the program
listings with which it is to be wused. Since program
logic information is’'not necessary for the operation of
the program, distribution of this publication is limit-
ed to those with the aforementioned requirements.

Restricted Distribution



PREFACE

This publication discusses the operation
of +the graphic subroutine package (GSP)
routines that constitute the graphic pro-
gramming services for FORTRAN IV.

The publication is organized into three
secticns. The first section describes the
overall structure of GSP and, explains
operations (such as initialization and pa-
rameter +testing) that are performed simi-
larly by many of the GSP routines. The
second section discusses the program organ-
ization, including functions and logic of
GSP routines. The third section contains
flowcharts for the GSP routines.

Aprendixes at the end of this publica-
tion rrovide information pertaining to the
control blocks created by GSP routines, a
module directory, and other reference
material related to the program.

For detailed information about program-

ming techniques wused in these routines,
refer to the applicable program listings.

First Edition (September 1967)

PREREQUISITE PUBLICATIONS

Familiarity with the following publica-
tions and their prerequisites is assumed:

IBM System/360 Operating System: Graphic
Programming Services for FORTRAN 1V,
Form C27-6932

IBM System/360 Operating System: Graphic
Programming Services for IBM 2250
Display Unit, Form C27-6909.

In addition, the following publications
may be convenient for reference:

IBM System/360 Operating System: Graph-
ics Access Method, Program Logic
Manual, Form ¥Y27-7113

IBM System/360 Operating System: Super-
visor and Data Management Macro
Instructions, Form C28-6647.

Specifications contained herein are subject to change from time to time.
Any such change will be reported in subsequent revisions or in Technical

Newletters.

This publication was
update the text and to control the page
sions for photo-offset printing were obtained from
using a special print chain.

prepared for production

Copies of this and other
Branch Offices.

IBM publications

A form for reader's comments appears at the back

and line format.

using an IBM computer to
Page impres-
an IBM 1403 Printer

can be obtained through IBM

of this publication.

Address any additional comments concerning the contents of this publica-

tion to:

637, Neighborhood Road, Kingston, New York 12401

© International Business Machines Corporation 1967

IBM Corporation, Programming Systems Publications,

Department



INTRODUCTION o & « « o o « o o o o o @

Characteristics of GSP Routines. . . .
Location « « o ¢« ¢« ¢ o o o« o o
Attributes . . .« « ¢ ¢ o 4 o . .
Methods of Passing Control . . .
Level of Support . « « « « « .+ o

Control Flow Among GSP Routines . .
Input to Many GSP Subroutines . . .

control Blocks and Tables Used by GSP.
Formats and Main Storage
Arrangements. « <« < ¢ . o o o .
Chaining « « ¢ ¢ « o « o o « o &«

Operations Performed by all GSP
ROULINES. « o o o « o« o « s o o o o o
Initialization . . . . . . . . .
Testing Parameters . . . . . . .
Passing Return Codes . . . « . .
Macro Instructions Used by GSP. . .
Operating System Macro

Instructions. . . .« .

Graphics Access Method (GAM)
Macro Instructions. . « . . . .

PROGRAM ORGANIZATION . « « o « « o o o

Initiation and Termination of GSP. . .
Resident Modules. . . . . « e o o
INGSP Part 1 (Module Name
IHCGSPO1l) . . o o o o @ - e
Director Part 1 (Module Name
TJHCGSPO3) v v« « o o o e o o o =
TMGSP Part 1 (Module Name
JHCGSPO2) . ¢ ¢ « o « o o o o o
Internal Director . . . o . o
Director Part 2 (Module Name
IFFAHAL1) o o o o o o e o o o o
Status Table (Module Name
IFFAHAL12) ¢ o« o o o o o« o o o @
Initiation and Termination
Subroutines. . . . . . . e o o o
INGSP Part 2 (Module Name
IFFARRAOL) ¢ o o« o « o o o @
INDEV (Module Name IFFAAAO03)
INGDS (Module Name IFFAAAQS)
TMGDS (Module Name IFFAAAOQ6)
TMDEV (Module Name IFFAAAOL4)
TMGSP Part 2 (Module Name
IFFRAAAO2) o o o o o o o o o« o @

Generation And Modification Of A
Display « o « ¢ o ¢ o o o o o o o« o o

Option Definition Subroutines
(Module Names IFFAEA(O1, IFFAEAQ2,
IFFAEAO3, IFFAEAO4, IFFAEAO6, AND
IFFAEAO7). o « o o o o o o o o o =
Image Generation Subroutines. . . .

Linkage for Image Generation

Subroutines . « « ¢ ¢ « o o . .

O NNNNNNN ~

o]

22

23

CONTENTS

oOoutput from Image Generation
Subroutines . . . e o e e =
General Operation of Image
Generation Subroutines. . . .
STPOS/MVPOS (Module Names
IFFAFAO4 and IFFAFA17). . . .
PLINE/PPNT (Module Names
IFFAFAO1 and IFFAFAl16). . . .
PSGMT (Module Name IFFAFA02) .
PTEXT (Module Name IFFAFA03) .
STEOS (Module Name IFFAFAl15) .
Image Identification Subroutines.
BGSEQ/BGSUB (Module Names
IFFAFA05 and IFFAFAl18). . . .
ENSEQ (Module Name IFFAFA06) .
ENSUB (Module Name IFFAFAQ07) .
LKSUB (Module Name IFFAFA08) .
Image Control Subroutines . . .
EXEC (Module Name IFFAFAll).

INCL/OMIT (Module Names IFFAFA09

and IFFAFA10) . . . . . . -
RESET (Module Name IFFAFA12) .
IDPOS (Module Name IFFAFA13) .
FSMOD (Module Name IFFAFAl1H4) .
ORGDS (Module Name IFFAFA19) .

Allowing Keyboard Input And Buffer
Data Analysis . . . . . . .
ICURS (Module Name IFFADA03) .
RCURS (Module Name IFFADAO2) .
GSPRD (Module Name IFFADAO1l) .

Communication Between 2250 Operator
and GSP Program « « « « o « = o o =
Attention Related Subroutines . .
CRATL (Module Name IFFACA(00) .
ENATL (Module Name IFFACAO01) .
ENATN (Module Name IFFACAO02) .
DSATN (Module Name IFFACA03) .
SLPAT (Module Name IFFACA06) .
RQATN (Module Name IFFACA08) .
MLITS (Module Name IFFACAQ07) .
MLPEO (Module Name IFFACA05) .
MPATL (Module Name IFFACAO4) .
CANCEL Key (Panic Key) Routine
(Module Name IFFAHAO09). . . .

SALRM (Module Name IFFACA13) .
Light Pen Subroutines . . . . . .
LOCPN (Module Name IFFAGAO1l) .
BGTRK (Module Name IFFAGA02) .
ENTRK (Module Name IFFAGAO4) .
RDTRK (Module Name IFFAGRA03) .

status Information Functions (Module
Names IFFAJAO1, IFFAJAO2, IFFAJAO3,
and IFFAJAOUL) o « o« o « o o o o « =

Stroke Table Creation and Use. . .

System Stroke Table (Module Name

IFFAHA16 Alias GSPO1) . . . .
Creating a Stroke Table. . . .

Sstroke Table Control Information

43

44

4y

4y



DFSTR (Module Name IFFAGAOQO5) . .
PLSTR (Module Name IFFAGAO6) . .

Direct Order Generation Subroutine . .
ORGEN (Module Name IFFAGAQ07) . .

Converting Coordinates Subroutine. . .
CNVRT (Module Name IFFAGAO8) . .

Internal Routines. . . . . . « 4« .« « .
Flcw Control Management « . . o« . .
Flow Control Table . . . .
Flow Control Structure . . . . .
Flow Control Management Routine
(Module Name IFFAHAO1). . . . .
Buffer Management . . . . . . . . .
Buffer Control Table . . . . . .
Buffer Management Routine
(Module Name IFFAHAO02). . . . .
Key Table Management. . . . . . . .
Key Table. . . &« ¢ v & & & & o &
GSP KE€YS v v v o o o o o o « o« @
Key Table Management Routine
(Module Name IFFAHAO3). . . . .
Scaling and Scissoring of Input
DAata o o ¢ ¢ ¢ ¢ o o o o o e o« o @
Scaling Routine (Module Name
IFFAHAOG6) . o & o v o o o o o &«
Scissoring Routine (Module Name
IFFAHAOT7) .o v v 4 4 ¢ o o o o «
Data Generation, Data Storing, and
Updating « . « ¢ & ¢ 4« 4 4 &« o« o« .

uy
45

45
45

56

57

60

CHARTS

APPENDIX A:

APPENDIX B:

APPENDIX C.

Data Generator Routine (Module
Name IFFAHAO4). . . .« & ¢ o o« .
Data Store Routine (Module Name
IFFAHAOS) . v v v 4 ¢ o o o o

Update Routine (Module Names
IFFAHA13 and IFFAHA1L4) . . .

CONTROL BLOCK FORMATS. . .
Graphic Subroutine Package
Control Block (GSPCB) . . . . .
Graphic Terminal Control Block
(GTMCB) «¢ +v v o o o « o o o o «
Graphic Data Set Control Block
(GDSCB) =« ¢ o o o « o « 2 o o &
Graphic Attention Control Block
(GACB) . ¢« +¢ o o « « o o o o o &
Output Area Control Block (OACB)
Attention Level Control Block
(ATLCB) « & & o « o« 2 o o o o «
Attention Data Entry Queue
(ADEQ) . v v & v 4 4 4 o o o o @

MODULE DIRECTORY . . . . .

ACRONYMS AND

ABBREVIATIONS o ¢ ¢ o & o o « « o « «

APPENDIX D:

INDEX.

AUTOCHART SYMBOLS. . . . .

.110
.110
.112
-113

.115
.116

.117
.118

.119

.122
.123

.124



ILLUSTRATIONS

FIGURES

Figure 1. Linkage from a CALL to a
GSP Subroutine that Uses Another GSP
ROutine « .o v o o o o o o o o« o o« « =

Figure 2. Control Blocks Created and
Used by GSP . . . . e o o o o e o e

Figure 3. Relatlonshlp and Chaining
of GSP Control Blocks . . . . . -

Figure 4. MAccessing a Control Block.

Figure 5. Linkage from User's
Program to Initiation and Termination
Subroutines . . .« ¢ ¢ o o o @ s o o o

Figure 6. Output to GSP Subroutines
from LCirector Part 2. . . - e o =

Figure 7. Status Table Entrles o o o

Figure 8. Linkage from User's
Program to Image Generation
Subroutines . . . ¢ . . . ¢ 2 o o o

Figure 9. Manipulation of Control
Blocks During Attention Processing. .

TABLES

Table 1. GSP External References and
Relationship. . . . . . « e o e o e

Table 2. GTMLIGHT Optlons. e o o o o
Table 3. ATTNLITE Options. . « . - .
Table 4. MLPEO Options . . o« o o e
Table 5. GSP Key Informatlon o o
Table 6. Formulas Used in Scallnqu -

11
12
13
16
18
19

24

35

Figure 10. Flow Control Table Upon
Initialization. . . . « « &« « ¢« « <« .

Figure 11. Reordering the FCT . . . .
Figure 12. Flow Control Structure . .
Figure 13. Example of Buffer Control
Table Entries . . . « e e o o o = =
Figure 14. The Key Table. « v e o = =
Figure 15. Examples of Scissoring . .
Figure 16. Include/Omit Structure by

Type of Element . . . . . « e =« = =
Figure 17. Buffer Subroutlne
Structure and Linkage . « « « <« - . .
Figure 18. Examples of Structure of
Keyed Sequences . . . - - - -
Figure 19. GDOAs with Loglcal and
Physical Buffer . . . . . . . « « . .

Figure 20. Autochart Functional
Symbols and Sample Flowchart. . . . .

Table 7. Input/Output Data Array for
Scissoring. . - . e o o « o o = @
Table 8. Contents of Data
Information Word Used by Data
Generator .« . « « o o 2 o @ o o o
Table 9. Data Store Input Flag Codes
Table 10. Creation and Termination of
GSP Ccontrol Blocks. « « « « « « <« . .

.123

-110



ILLUSTRATIONS

CHARTS

Chart
Chart
Chart
Chart
Chart

AA.
AB.
AC.
AD.
BA.

INDEV
INGDS
TMGDS
TMDEV
Image

Subroutine. . . .
Subroutine. . . .
Subroutine. . . .
Subroutine. . . .
Generation

Subroutines . « « ¢« & 4 & o o o o

Chart
Chart

EB.
BC.

STPOS/MVPOS Subroutines
PLINE/PPNT and PSGMT

Subroutines . « <« ¢ o ¢ o o o o o

Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart

BD.
BE.
CA.
CB.
CA.
LCB.
DC.
EA.
EB.
EC.
FA.
FBQ
FC.
FD.
FE.
FF.

PTEXT Subroutine. . . .
STEOS Subroutine. . . .
BGSEQ/BGSUB Subroutines
LKSUB Subroutine. . . .
EXEC Subroutine . .
RESET Subroutine.
IDPOS Subroutine.
ICURS Subroutine.
RCURS Subroutine.
GSPRD Subroutine.
CRATL Subroutine.
ENATL Subroutine.
ENATN Subroutine.
CONVERTA Routine.
RQATN Subroutine.
ROATN Subroutine

(continued) . o« o« o o « « o « o o

« o & o

LI T S S )

70
71
72
73

Chart FG. RQATN Subroutine
(continued) . « « o« « o« o « « o o« @

Chart FH. MPATL Subroutine. . . . .

Chart FJ. MPATL Subroutine
(continued) . « « o o « o « « o « =

Chart GA. PLSTR Subroutine. . . . .
Chart HA. ORGEN Subroutine. . . . .
Chart HB. ORGEN Subroutine

(continued) . .« <« « o o ¢« ¢« o « o &
Chart JA. CNVRT Subroutine. . . . .
Chart KA. Flow Control Management

ROULINE o ¢ « o o o o o o « s o « =
Chart KB. Flow Control Management

Routine (continued) . . . . . . . .
Chart KC. Buffer Management Routine
Chart KD. Buffer Management Routine

(continued) . « « « « ¢ ¢ ¢ o & « =
Chart KE. Key Table Management

Routine . « ¢ « « o o o ¢ o« o o o«

Chart KF. Scaling Routine . . . . .
Chart KG. Scissoring Routine. . . .
Chart KH. Data Generator Routine. .
Chart KJ. Data Store Routine. . . .
Chart KK. Data Store Routine

(continued) . « « o« o ¢ « « o o « =

.101
-102

.103

.104
.105
-106
.107
.108

.109



The graphic programming services for
FORTRAN IV, called the graphic subroutine
package (GSP), enable displays to be pro-
duced on one or more IBM 2250 Display Units
attached to an IBM System/360 Computing
Syster. These services are also usable
with the assembler language.

CHARACTERISTICS OF GSP ROUTINES

GSP consists of subroutines and func-
tions that can be included in a FORTRAN
program, and internal routines that perform
when certain subroutines and functions are
executed.

Location

Three of the GSP routines (INGSP Part 1,
Director Part 1, and TMGSP Part 1) reside
in the FORTRAN library (SYS1.FORTLIB). All
other GSP routines reside in the 1link
library (SYS1.LINKLIB). The routines in
the FORTRAN 1library are processed by the
linkage editor at the same time the user's
program is processed by the linkage editor.
Therefore, these routines remain in main
storage throughout execution of the wuser's
program and are known as resident modules.

Attrikbutes

All routines have the same two attri-
butes: (1) problem program mode, and (2)
reenterable coding. Main storage areas
acquired by GSP routines are allocated from
subpool zero.

Methods of Passing Control

The routines that reside in the link
library are brought into main storage eith-
er by a LINK or a LOAD macro instruction.
Control is passed to the routine in one of
two ways:

1. LINK causes control to be
the routine automatically.

passed to

2. IOAD brings the routine into storage;
a CALL macro instruction 1is then
issued to pass control to it.

A copy of a routine brought into main
storage via a LOAD macro instruction
remains in main storage until the use of
GSP is terminated. A copy of a routine
brought into main storage via a LINK macro
instruction is removed from main storage
once its execution has been completed.

INTRODUCTION

The module directory in Appendix B lists
the method of entry for each GSP routine.

Level of Support

GSP offers two 1levels of support in
regard to keying and correlating features.
The term level 1 refers to the standard GSP
keying and correlating features, and the
term level 2 refers to a programmer-defined
correlation scheme. The level under which
a routine 1is functioning may affect the

action taken at specific points in the
operation. For additional information on
these two levels, refer to the publication

IEM System/360 Operating System: Graphic

Programming Services for FORTRAN IV, Form

C27-6932.

CONTROL FLOW AMONG GSP ROUTINES

All GSP subroutines are invoked by a
CALL statement that is issued in the user's

program. All of the subroutines (except
INGSP and TMGSP) receive control through
the Director. Figure 1 depicts 1linkage

from a CALL statement to a GSP subroutine,
which in turn calls another routine (called
an external reference) +to complete its
function. The figure also shows the path
taken when control is returned to the
calling routine (calling program).

In Figure 1, subroutine A is called from
the user's program. From the CALL state-
ment, control is passed to Director Part 1
which computes the internal entry point for
the called subroutine and passes control to
Director Part 2. Director Part 2 accesses
the status table to determine if the rou-
tine 1is already in main storage or if it
must be brought into main storage, brings
the routine into main storage if necessary,
designates a work area to be used by the
routine, and passes control to the zroutine
(in this case, 1). If A calls another
routine (in this case, B), it also accesses
the status table to determine the location
of the routine, brings the routine into
main storage if necessary, constructs a
parameter list for that routine, and passes
control to the routine.

Once control has passed from Director
Part 2, control is always returned from the
called routine to the next sequential
instruction in the routine that called it.
This culminates 1in control being returned
back to Director Part 2 which in turn
passes control to the next sequential
instruction in the user's program. Control
is never returned to Director Part 1.

Introduction 7



USER'S PROGRAM —I

CALLA

-
|  Status Table |
L |

»1 Director Part 2

]

NSI

|

| i
| |
|

| |
| |
| Director Part 1 [ -———-
| l
| |
| |
I i
| |

Legend: D Resident Module

Externally
Referenced Routine

——— Control Flowlines

™™ =71 Module is

E Executable i
GSP Routine e

Figure 1.

Table 1 shows the relationship between
the routine that is called to perform a
function and other GSP routines (external
references) that it calls to perform the
complete operation. The GSP routines
called are 1listed alphabetically down the
first column. External references are
listed across the top of the table. Those
routines not listed perform their complete
operation without referring to GSP external
references during processing.

Control flow among the initiation and
termination subroutines, and among the
image generation subroutines is described
in the sections "Initiation and Termination
of GSP" and "Image Generation Subroutines,”
respectively.

INPUT TO MANY GSP SUBROUTINES

Input to GSP subroutines consists of a
variakle 1length parameter list that is set
up when the user issues a call to any GSP
subroutine. This 1list consists of full-
word entries containing the addresses of
the arquments specified by the user.

_J Referenced only

Linkage from a CALL to a GSP Subroutine that Uses Another GSP Routine

All GSP subroutines except INGSP and
TMGSP receive the address of a work/save
area in register 1. The first word of this
area contains the address of the parameter
list described here.

CONTROL BLOCKS AND TABLES USED BY GSP

To establish communication links between
the user's program, GSP, and each 2250
Display Unit, several control blocks and
tables are created and used by GSP. The
control blocks and tables created,
initialized, and used during the processing
of GSP subroutines are described briefly in
the paragraphs that follow.

GSP control blocks, for which the for-
mats and contents are described in Appendix
A, are: -

e Graphic subroutine package control
block (GSPCB), which is constructed by
INGSP for communication between the
user's program and GSP subroutines;
only one of these control blocks should
exist.



GSP External References and Relationship

1.

Table

M
[
<]
+
o
&
2]
Q]
. =4
Y
+
i
o]
Q
=]
Tl.-m‘_l
M
+ 0
@+
Quw
=
7] [}
% U}
= o]
m +
gt &
53
~ s
| e
= 0w M
© |0
S L 0
R
A
» =
5] !
=
]
3]
5]
o o
=
el
oy
NE
U
¥
o
2]
3
2%
-3
m
T.W-“
.m -
24
T e
O
s
o
5
o
® o
~
3
(URY)
e e by o e

e

L

o e e e e e s e

e e s s e e o

L

L

R S— R,

——— s s et s i e e

T

| pata Store |

| BGSEQ
| BGSUR
| BGTRK
| CNVRT

L
r

e e ]

X

—

X

i

+
|
1

{Data Gen
| ENSEQ
| ENSUB
| ENTRK

L
L}

o e e

SR WS SN S
<
e e e e e
Bigiolalh
AP Il lAa
nioiglz1a
O+ o
B

e e e o e e e e e ]

(o e o e oo e s e et ]

S T S

e e e s e o o]

- e o e e e o

| LKSUBR
LOCPN
| MVPOS
| OMIT
| ORGEN
| PLINE
| PSGMT
| PTEXT
| RDOTRK
| RESET

(continued)

9

Introduction



Table 1.

GSP External References and Relationship (continued)

T

-, -

| External References

[
T T T L]
|GSP Routine|Flow|Buffer|Key Tbl|

T

|Scis- | |

Mgt |Scaling| soring|Data Gen|Store|Update|RESET |Other
L L [l L 1

T

Ll ]
| |Data |

———— ok o d

{Called |Ctrl| Mgt |
:, R L L L L _JI
| RQATN I | | | | | | | | | CNVRT |
|8 Hl 1 1 1 1 (R ] 1 1 J 4
r ] ] T T T T T T T T . 1
| RTBP I | | | | | | | I | CNVRT |
s 1 1 +___ [ L 4 ] 1 N 1 J
T T T T T T T T T 1 1
| SDATN | | | D S | | | | | |
F e + $ t + 4 ¢ S |
| SGDSL | | | I x| | | | | I I
I 1 1 4 (] 4 4 1 1 IS L J
r ) T T T h 1 ] T ] T 1
| STEOS I I I x| | | I X | | x| |
L 1 1 [l 1 (R 1 4+ 4 ] J
13 T T T T T T T T ] 1
| STPOS | | I x | x| I x| X | x| |
L 1 i 1 1 ] 1 J | 1 4
r 1 13 T T T T T T L] q
| TMDEV | x| x | I | | | [ | | ENATL |
| | I I | | | | i | | TMGDS |
L 1 1 1 (R L] } [ 4 4 4 ,l
r 1 T T T T T 1 T L ]
| TMGDS I x!1 x| x| | | | | | ] |
[N 1 1 1 1 } 4 4 ] L 4 _'
v L) 1 I ) +t 1 1 T ] L}
| TMGS P I | | | | | | | | | TMDEV |
L L 1 1 L L 1 L 1 1 L J
e Graphic terminal control block (GTMCB), Three tables are created by GSP rou-
which is constructed by INDEV for each tines. They are described in the section

2250 identified by the user.

e Graphic data set control block (GDSCB),
which is constructed by INGDS for each
graphic data set (GDS) that is initial-
ized for a 2250.

e Graphic attention control block (GACB),
which is necessary for attention han-
dling. Two of these are created, acti-
vated, and used for each 2250; one for
the use of most GSP attention related
subroutines and one for the Panic Key
routine. The GACB is described in the
publication IBM System/360 Operating
System: Graphics Access Method, Program
Logic Manual, Form Y¥Y27-7113. GSP
arpends eight bytes of information to
the beginning of the GACB. These
arpendages are described in Appendix A.

e Qutput area control block (OACB), which
is constructed +to contain information
regarding the graphic data output area
(GDOA) . Two are created per GDS, one
for each GDOA.

e Attention level control block (ATLCB),
which 1is required for attention han-
dling and is constructed for each
attention level specified by the user.

e Attention data entry queue (ADEQ) ,
which is attached to the ATLCB and is
used for attention information data.
Several ADEQs follow each ATLCB.

10

"Internal Routines."™ Tables used for con-
trolling certain functions performed by GSP
routines are:

e Buffer control table (BCT), which is
initialized for wuse by Buffer Manage-
ment when buffer sections are assigned
or released. One BCT exists for each
2250.

e Flow control table (FCT), which is
initialized for wuse by Flow Control
Management in organizing and maintain-
ing information about the regeneration
sequence of GDSs. One FCT exists for
each 2250.

e Key table, which is constructed by Key
Table Management for each level 1 GDS
using key ands/or correlation facilities
to contain keys and correlation values
specified by the user.

In addition, there are several control
blocks which are required for graphic pro-
gramming services, and are described in
detail in the publications: IBM System/360
Operating System: Graphic Programming Ser-

vices for IBM 2250 Display Unit, Form

C27-6909 and IBM System/360 Operating Sys-
tem: Graphics Access Method, Program Logic

Manual,

Form Y27-7113. These control
blocks are:

e Data control block (DCB), which is
created for each 2250 initialized.



e Data event control block (DECB), which
is a parameter list used for overlapped
input/output operations. That 1is,
while the contents of one output area
are being written to the buffer, anoth-
er output area is being filled with
data.

e Graphic data output area (GDOA), which
is initialized for use in input/output
operations. To facilitate input/output
overlap, defined above, two of these
GLOAs are acquired for each GDS.

area (COMAREA), which is
related to attention handling. One
COMAREA is required for each GACB to
contain attention information when an
attention occurs.

e Communication

there is one control block for
It is:

Finally,
GSP which represents its own GDS.

e System GDSCB, which is constructed for
GSP, and is wused by the light pen
subroutines. Its format is the same as
the GDSCB created for the user's GDS.
It is always the first GDSCB created in
the chain of GDSCBs.

Formats and Main Storage Arrangements

Detailed formats of all GSP control
blocks except the BCT, FCT, and key table
are contained in Appendix A. The BCT, FCT,
and key table are described in detail in
"puffer Management," "Flow Control Manage-
ment,"” and "Key Table Management" respec-
tively.

Figure 2 depicts the subroutines that
establish the control blocks, shows these
blocks as they are arranged in main stor-
age, and indicates the pointers contained
in the various blocks.

INGSP I INDEV ‘ INGDS
GSPCB | GTMCB l GDSCB
. I Flow I Buffer
GSP Return Eurector Control Control
art 2 on N
Code Array Table ystem | Table
GDSCB Entr
\ | OACB 1 Y
Work Area I DCB DECB | Flow Control
Storage ‘ Structure
Entry
GSP GACB
| GDOA 1
Status COMAREA 1 :l I
Table |
‘ Reserved GACB/| l OACB 2
COMAREA 2 :I |
l Panic GACB | | GDOA 2
‘ COMAREA 3 :I |
| Buffer l
Control
| Table l
Figure 2. Control Blocks Created and Used by GSP

Introduction 11



Attention Queve

ADEQ7

ADEQFPTR=0

ATTENTION
INFORMATION

ADEQFPTR

>}

ADEQS

ADEQFPTR

ADEQ4

ADEQ1

ADEQFPTR=0

Top of ATLCB Chain

ADEQ6 e

ATLCBI

ATTNFWPT

ATTNBKPT

GSPCB

G5PGTMCB

e

ATLCB2

ATTNFWPT

ATTNBKPT

ATLCB3

e

ATTNFWPT

ATTNBKPT

N

ATLCB4

ATTNFWPT=0

ATTNBKPT

Top of GTMCB Chain

GTMCBI e

GTMNXGTM=0

~

GTMCB2

GTMNXGTM |—

GTMCB3

GTMNXGTM

GTMCB4 =

Top of GDSCB Chain

GDSCB1

et

GDSNXGDS=0

GDSSHDBK=0

GDSSHDFD=0

—»4

GDSCB2

GDSNXGDS

GDSSHDBK =0

GDSSHDFD

GDSCB3

le—]

GDSNXGDS

GTMNXGTM

GTMGSPCB

GTMGDSCB

GDSSHDBK

GDSSHDFD=0

GDSCB4

GDSNXGDS

GDSGTMCB

ATTNAVAL

Figure 3.

12

ATTNMLEN

Bottom of
ATLCB Chain

¢I Active ATLCB

GTMLATBL

Bottom of
GTMCB Chain

Relationship and Chaining of GSP Control Blocks

GDSSHDBK=0

GDSSHDFD=0

Bottom of
GDSCB Chain



Chaining

Chaining of control blocks is accom-
plished by placing the appropriate address-
es (or zero) in the fields designated as
forward pointers and/or backward pointers.
These fields are manipulated at the time a
control block is created. An address in
the field refers to the next control block
of the same type, or to a related control
block. A value of zero in the field
indicates the end of a series of control
blocks.

Figure 3 shows the relationship of the
various GSP control blocks and how control
blocks of the same type are chained.

The numbers 1 through 4 after GTMCB,
GDSCB, and ATLCB represent four control

blocks of each type in the order they were
created. In all cases, the fourth control
block is the most recently created one.

GDSCB2
GDSs.

and GDSCB3 represent equivalent

The numbers following ADEQ represent the
data queues that are attached to each
ATLCB. In this case, ADEQ7 already con-
tains attention information. The remaining
ADEQs are available to accept attention
informwation.

Whenever a new control block is added to
the GTMCB, GDSCB, or ATLCB chain, it is
inserted at the bottom of the chain, and
the pointers to the bottom of the chain are
updated.

OPERATIONS PERFORMED BY ALI. GSP ROUTINES

Certain operations are performed by all
GSP subroutines and related internal rou-
tines. These operations are described in
the paragraphs that follow, rather than
being included in the description of each
routine.

Initialization

All GSP routines perform certain prepar-
atory functions before performing the main
processing function. These preparatory
functions, called initialization, consist
of:

e Saving register contents upon entry to
the routine.

e Establishing addressability of the rou-
tine by defining a base register.

e Establishing addressability of one or
more of the four major control blocks
(GSPCB, GTMCB, GDSCB, and ATLCB) by the
use of DSECTs and the USING statement.

e Setting the return code array, which is
used by every subroutine to pass infor-
mation to the wuser, to zero before
processing 1is begun by the routine.
This array, called the GSPARRAY, is
located in the GSPCB. This function is
not performed by the internal routines.

e Chaining the register

together.

sSave areas

e Testing parameters for validity (see
"Testing Parameters®™).

All these functions, linkages, and reg-
ister usage are in accordance with standard
IBM System/360 Operating System conven-
tions. :

Testing Parameters

All GSP subroutines test parameters that
have been passed to them before any pro-
cessing is done. Any parameter error
encountered during these tests causes con-
trol to be returned to the calling program
with the appropriate return code and addi-
tional information, if applicable, in the
return code array. For further information
about return codes, see "Passing Return
Codes™ in this section.

The validity of "gspname®™, "devicename",
®"gdsname®, or “attnlevel® is determined by
accessing the actual value of the specified

variable. This value should point to one
of four control blocks (GSPCB, GTMCB,
GDSCB, or ATICB). Figure 4 depicts the

method of accessing control blocks. Each
control block contains an identification
field, which is tested to determine the
validity and type of the control block.

I Register 1 I

Variable

——l A (GSPCB) J——-

or
(GTMCB)
or

(GDSCB)

Work Area Paramefter List

A (; list)

P

A (variable)

Other
parameters

or
(ATLCB)

Control Block

Figure 4. Accessing a Control Block

Introduction 13



Passing Return Codes

Before returning control to the wuser's
program, each subroutine makes a return
code available to that program. These
return codes and additional information are
always placed in the GSPARRAY field located
in the GSPCB. The GSP return code struc-
ture is described in detail in Appendix A.

Return codes and their meanings are
described in the publication IBM System/360
Operating System: Graphic Programming Ser-
vices for FORTRAN IV, Form C27-6932.

Internal routines 1in GSP and other
externally referred to routines used by GSP
subroutines pass a return code in register
15. A return code other than zero indi-~
cates that an error was encountered during
processing.

After an internal or externally referred
to routine has returned control to the GSP
subroutine, any error code in register 15
is translated into a GSP return code, which
is placed in the GSPARRAY. In many cases,
the internal routines themselves place the
appropriate return code in the GSPARRAY.
If this is done, the GSP subroutine usually
returns control to the calling program
after any resetting function required has
been accomplished. An exception occurs
when image generation is to continue after
the scissoring option has been applied.

MACRO INSTRUCTIONS USED BY GSP

The routines described in this publica-
tion use operating system macro instruc-

14

tions and Graphics Access Method (GAM)

macro instructions.

Operating System Macro Instructions

Whenever the LOAD, LINK, CALL, SAVE,
DELETE, GETMAIN, FREEMAIN, WAIT, DCB, OPEN,
or CLOSE macro instruction is issued, con-
trol is given directly to the operating
system to perform the required operation.
The DCB, OPEN, and CLOSE macro instructions
also cause control to be passed to the
applicable GAM routines from the operating
system. Whenever the RETURN macro instruc-
tion is issued, control is returned to the
calling program. If an ABEND macro
instruction is issued, the task is abnor-
mally terminated. For a description of
these macro instructions, refer to the
publication IBM System/360 Operating Sys-—
tem: Supervisor and Data Management Macro
Instructions, Form C28-66U47.

Graphics Access Method (GAM) Macro
Instructions

Whenever the ASGNBFR,
GWRITE, GREADR, GCNTRL, SAEC, SPAR,
ATTNINQ, or DAR macro instruction is
issued, control is given directly to the
GAM routines to perform the desired opera-
tion. For a description of these macro
instructions and the graphic orders used by
GsP, refer to the publication  IBM
System/360 Operating System: Graphic Pro-
gramming Services for IBM 2250 Display
Unit, Form C27-6909. The GAM routines are
described in the publication IBM System/360
Operating System: Graphics Access Method,

Program Logic Manual, Form Y27-7113.

RLSEBFR, GREAD,




The detailed organization of all the
routines (modules) in GSP is described in
this section. Each module description
includes the following information:

* Module name (identification) for each
routine is included in the heading for
that particular routine.

e Chart identification(s), where flow-
charts are included for the module.
These flowcharts appear in the next
section of this publication.

* Function, which states the routine's

overall purpose(s).

which

e Entry point (s) and from

routine(s) it is entered.
e Exit, which states where the routine
returns control.

e Input, which defines the information
passed by the user or another routine
to be used by this routine.

e Output that is passed or made available
to the caller.

the manner
performs its

® Operation, which describes
in which +this routine
function.

GSP subroutines and functions are divid-
ed into several areas according to the
operations they perform. These areas are:

1. Initiation and termination

2. Generation and modification of a dis-

play

3. Keyboard input and buffer data
sis

analy-

4. Communication between the operator and
the program

5. Testing the status of subroutines

6. Producing characters without using the
2250 character generator

7. Tirect generation of graphic orders
8. Converting coordinates

This publication is organized to de-
scribe the subroutines in this manner. In

addition, the internal routines for GSP,
which are not directly invoked by the

PROGRAM ORGANIZATION

user's program, are described under

"Internal Routines."”

INITIATION AND TERMINATION OF GSP

Initiation and termination procedures
for GSP are performed by three resident
modules, six subroutines, an internal rou-
tine, and a status table. The resident
modules function when a GSP subroutine is
called. The six subroutines serve to ini-
tialize and terminate the use of GSP, a
2250, and a GDS. The internal routine,
Director Part 2, controls entry into most

of the subroutines by using the status
table.
Figure 5 depicts the linkage from the

user's program to the initiation and termi-
nation subroutines. The figure includes
the resident modules and shows the rela-
tionship of all routines or modules that
function during initiation and termination
procedures. It also shows the routines
that are loaded at initiation time.

All subroutines that are called in the
user's program except INGSP and TMGSP
receive control via Director Part 1 and
Director Part 2. After all processing is
complete, control is returned to Director
Part 2 via the same path through which it
was passed. Director Part 2 then returns
control +to the next sequential instruction
in the user's program. This is explained
in the section "Control Flow Among GSP
Routines.”

RESIDENT MODULES

total function, each
resident module invokes Part 2 of its
counterpart, which is described under
"Initiation and Termination Subroutines" or
"Internal Director"™ in this section.

To perform its

The resident modules consist of:

® INGSP Part 1, which initializes the use
of GSP.

® Director Part 1, which passes the entry
number of the called subroutine to
Director Part 2, so that the location
and status of the subroutine can be
determined.

® TMGSP Part 1, which terminates the use
of GSP.

Program Organization 15



SOUT3NOIQNS UOTIRUTWISL PUe UOTIBTITUI 03 weaboig s,I8s) wWOiz sbeyurT G oanbrJd

Ajuo o) paiisgel “I -7
Ajuo uoijouny BUIPBOT] ¢ — — — st elnpOW L _ |
-wpiBoid s,Jesn By} Of [OIIUOD SUINESL T Hbd 040311Q ‘I8AsmOH o14u0D Bujssny 4 s9|npo 4uspIsey
“}1 P8||PO 4DY4 BU1INCI Buy OF BULNCI D Aq PauINiel sAOMID 5| [o14U0D FILON : spuabs

JusweBoudyy
LYN3 e
Buijpog
Bujioss}og
gLV _—
800—0._ ol eulnoy —|| Il—
LOW Aoy oiupg
1OW ¥34dN8  [*Ty5aq 0gzz 9569194 oL | TOUINOD _ _
MO Jojoisues) pipQq dSOWL 11VD @
104§ DIOQ _ e —
1ayynq
o 154 Wy §O 9%oe[e3 o] ! __ L o4 dSOWL _
930I|34 SpRO]
o] 154 espsjel o] 194 eipei of |
| | _
|
_ AJAWL 1IYD _
SAOWL - AJAWL SAONI A3IANI @
§Q9o espa|al o] . _ _
sqo weysis
® ® © 10 | = |
_ | HBg Joyoeuiq _
Z Hod dSOWL _ _
® _ $SaONI T1vD @ ,
r————7" _ AJANI TIVD _
_ | | ® |
| eqgoy sipss | Z 40g Joposaiq
I I
rIIJIIL T _ L #2d dSONI _
| dd _ i _
|
| _ 4SONITIV |(T) _
L — — —— —— 7 #0d dSONI _

WVYYIOO¥d Si¥3sN

-

16



INGSP Part 1 (Module Name IHCGSP01)

Chart : None

Function: Obtains storage for the construc-
tion cf the GSPCB and for save and work
areas. Links to INGSP Part 2. Upon return
of control from INGSP Part 2, frees
work/save area obtained for use of INGSF.
Retains other storage (GSPCB and work area)
that it had cobtained for use by other GSP
routines.

Entry: INGSP from a call to the INGSP
subroutine.

Exit: To the calling program.
Input: In register 1, the address of a
parameter list specified by the user in the
call to the INGSP subroutine.

Output: To INGSP Part 2, in register 1, the

address of the first byte of the main
storage area obtained by this routine. The
first word in this area contains the

address of the parameter list received as
input. To the calling program, the address
of the GSPCB which was placed in the
user-specified variable by INGSP Part 2.

Operation: See "Function® above.

Director Part 1 (Module Name IHCGSP03)

Chart : None

Function: Locates Director Part 2, and
branches to it to accomplish entry into the
desired subroutine. once Director Part 1
relinguishes control, control is not
returned to it until another GSP subroutine
is called.

Entry: From a call to any GSP subroutine,
except INGSP or TMGSP. Entry is made into
a table of entries, called the GSP_directo-

register 3, the entry number of the

requested GSP subroutine.

Operation: The GSP directory is used to
resolve the actual subroutine entry
requested by this call. This directory
contains the name of every GSP subroutine
(no internal routines) except INGSP and

TMGSP. Each name is identified as an
entry, and is followed by a branch instruc-
tion that passes control to the executable
instructions in Director Part 1. Effec-
tively, the GSP directory causes the
address of the location of the requested
subroutine name in the table to be placed
in register 15. This address is later used
to determine the entry number that is
passed to Director Part 2. (See "Director
Part 2" and "Status Table.")

Once entry is made to the main execut-
able instructions in Director Part 1, the
first parameter in the input list is
accessed, the address of the specified
control block is found, and the control
block is tested for validity and type

(i.e., GSPCB, GTMCB, GDSCB, or ATLCB) .
Figure 4 shows how the control block is
accessed. Depending on the type of control

block located, the address of the GSPCB is
obtained by accessing pointers in the
appropriate control block fields. If the
first parameter is not a GSP control block,
the value of this parameter is set to zero,
and control is returned immediately to the
calling program. If the first parameter is
valid, the entry number of the subroutine
is computed. This entry number is used by
Director Part 2 to locate the GSP subrou-
tine entry in the status table (described
in this section under “Status Table").
control is then passed to Director Part 2.

TMGSP Part 1 (Module Name IHCGSP02)

Chart: None

ry, which contains branch instructions to
the main body of executable instructions in
Director Part 1.

Exit: To Director Part 2.

Input: In register 1, the address of a
parameter list specified by the user in a
call to a GSP subroutine (other than INGSP
or TMGSP). The first word of the parameter
list points to a variable that contains the
address of a GSP control block (GSPCB,
GTMCB, GDSCB, or ATLCB) as shown in Figure
4. This first word is the only parameter
used Ly Director Part 1.

Output: In register 1, the address of the
parameter list received as input. In reg-
ister 2, the address of the GSPCB. In

Function:
termination functions.
trol, it deletes any stroke tables that
have been loaded, the status table, and
Director Part 2. It also frees main stor-
age used for the GSPCB and the work/save
area.

Links to TMGSP Part 2 to perform
Upon return of con-

Entry: TMGSP from a call to the TMGSP

subroutine.

Exit: To the calling program.

Input: In register 1, the address of a
parameter list that contains the address of

the variable that in turn contains the
address of the GSPCB.

Program Organization 17



Output: To TMGSP Part 2, in register 6, the
address of the GSPCB. To the calling
program, there is no output.

Operation: TMGSP Part 1 tests the GSPCB for
validity. If it is wvalid, +the routine
proceeds as described under "Function”
above. If the GSPCB is invalid, the value
of the parameter is set to zero, and
control is returned immediately to the
calling program.

INTERNAL DIRECTOR

The intermnal director, which is divided
into two parts, Director Part 1 and Direc-
tor Part 2, handles the function of passing
control to the proper GSP subroutine when-
ever one 1is called. Director Part 1 is
described in this section under ™"Resident
Modules. "™ Director Part 2 works in con-
junction with the status table also de-
scribed in this section.

Director Part 2 (Module Name IFFAHA11)

Chart : None

Function: Performs interface functions
between the calling program and GSP subrou-
tines as follows:

® Determines via information in the sta-
tus table whether the requested GSP
subroutine should be linked, called, or
loaded and called, and passes control
to the subroutine. If the subroutine
is loaded by Director Part 2, it places
the entry point address in the status
table.

e Passes the address of a work area to
the subroutine (see "Output™).

s Indicates upon entry to a GSP subrou-
tine that GSP is busy, and upon return
of control from the subroutine, that
GSP is not busy. The GSPBUSYS field in
the GSPCB is used for this purpose.

® Upon return of control from any GSP
subroutine, the GSPDUMP and GSPABEND
fields in the GSPCB are appropriately
set each time by Director Part 2. It
also tests the return code in the
GSPARRAY field. If this return code is
equal to or greater than the absolute
value of the null variable, the routine
issues the ABEND macro instruction with
appropriate completion code. If the
null variable contains a value of zero,
this routine treats it as a value of
one. If the null variable contains a
value of six or greater, no ABEND macro
instruction is issued.

18

* Returns control to the next sequential
instruction in the wuser's program if
processing 1is to continue after the
requested GSP subroutine completed its
execution.

Entry: IFFAHAl1l from Director Part 1.

Exit: Normally, to the user's program.
However, under certain conditions the pro-
gram is abnormally terminated.

Input: In register 1, the address of the
parameter list specified by the user in the
call to a GSP subroutine. In register 2,
the address of the GSPCB. In register 3,
the entry number of the requested GSP

subroutine.
Output: In register 1, the address of a

work area. This work area contains the
address of the parameter 1list and the
address of the return code array (GSPARRAY)
as shown in Figure 6.

If the ABEND macro instruction is issued
upon return of control from a GSP subrou-
tine, a dump will be furnished when the
null variable contains a negative value.

No dump is furnished if the null variable
contains a positive value. Register 2
contains the address of the status table

entry last invoked. Register 3 contains
the address. of the GSPARRAY field in the
GSPCB.

Operation: See "Function" above.

Parameter List

I Register 1 l

— A (control block pointer)

Work Area Other parameters

A (user's parameter list)

A (return code array)

GSPCB

—1 Return Code Array (GSPARRAY)

Output to GSP Subroutines from

Director Part 2

Figure 6.

Status Table (Module Name IFFAHA12)

The status table is an "only loadable"
module residing in the SYS1.LINKLIB and
loaded by INGSP Part 2. Whenever a GSP



subroutine is <called, Director Part 2
refers to it as explained earlier.

The status table consists of 12-byte
entries for each GSP subroutine and inter-
nal routine. These 12 bytes contain three
fields of information about each zroutine,
as follows:

+0 Address of the entry point for the
routine, which is =zero initially.
When the module is brought into stor-
age by a LOAD macro instruction, the
entry point address is placed in this
field. If a module is linked to, this
field remains zero.

+4 Module identification which consists

of the last four characters of the
module name. For example, "AAO3"
would identify INDEV (module name
IFFAAAQ03).

+8 Flag in the first byte that indicates
the proper linkage for this module, as
follows:
X*01*' - LINK
X*'02* - LOAD and CALL
The contain
ZEeros.

remaining three bytes

Note: The linkage (method of entry) for
each GSP module as contained in the status
table is given in the module directory in
Appendix B.

Typical status table entries are shown
in Figure 7, which depicts the entries for
ICURS and SDATM.

< 4 bytes >
I

| A(EP of ICURS)

L

r

| C*'DAO3*

5 T

| x*02" | 000000

% L

| Zero (module is linked to)

k 1
| C"EA01' |
[ i |
| x'o01* | 000000 I
L 3

i
Status Table Entries

Figure 7.

INITIATION AND TERMINATION SUBROUTINES

These subroutines create and delete con-
trol blocks, tables, and work areas used
throughout the processing of the program
for communication among the subroutines.
Detailed descriptions and formats of the
control blocks are contained in Appendix A.

The subroutines described herein are:

e INGSP Part 2, which completes initiali-
zation of GSP.

e INDEV, which establishes communication
links between the 2250 and GSP.

e INGDS, which creates a GDS and asso-
ciates it with a 2250.

e TMGDS, which terminates the use of a

particular GDS.

e TMDEV, which terminates the use of a
2250 and all GDSs associated with it.

e TMGSP Part 2, which terminates the use
of GSP in conjunction with TMGSP Part
1.

INGSP Part 2 (Module Name IFFAAAOQ01)

Chart: None

Function: Initializes the GSPCB. As part
of the initialization, the address of the
null variable is placed in the GSPCB and
the status table and Director Part 2 are
loaded.

Entry: IFFAAAO1 from INGSP Part 1.
Exit: To the calling program.

Input: In register 1, the address of the
main storage area where the GSPCB is to be
built. The first word in this area con-
tains the address of the parameter 1list
specified by the user in the call to the
INGSP subroutine.

Output: The GSPCB is initialized and its
address is placed in the user-specified
variable ("gspname®) which is the first
parameter.

Operation: The address of the null variable
is obtained from the parameter list and
placed in the GSPCB. If the null variable
is not specified, the value of the user's
variable that points to the GDSCB is set to
zero and control is returned immediately to
the calling program.

speci-
are

If more than two parameters are
fied, the additional parameters
ignored.

Next, the GSPCB address (in register 1)
is placed in the user-specified variable,
and the fields in that GSPCB are filled in.
The status table and Director Part 2 are
then loaded and their addresses are placed
in the GSPCB. The address of the work area
is determined and placed in the GSPCB. All
GSPCB fields not initialized by this time

Program Organization 19



are cleared and control is returned to

INGSP Part 1.

INDEV (Module Name IFFAAA(03)

Chart: AA

communication 1links
To do so, it:

Function: Establishes
between GSP and a 2250.

e Creates a GTMCB.
e Creates a DCB to be used by GSP.
and activates

» Creates a GSP graphic

attention control block (GACB) and its
associated communication area
(COMARERA) .

e Creates and activates a panic GACB and

its associated COMAREA.

e Oktains and clears main storage for the
buffer control table (BCT).

e Initiates
GDSCB.

construction of the system

e Initiates construction of the flow con-
trol table (FCT) and flow control
structure.

e Initiates construction of the DECB used
for input/output overlap.

e Loads the following routines: Panic Key
(CANCEL Key), Scissoring, Scaling, Buf-
fer Management, Data Generation, and
Data Store.

e Unlocks the alphameric keyboard.

All these control blocks and tables are
associated with the 2250 specified by the
user as the "unit" parameter in the call to
INDEV.

Entry: XIFFAAAO3 from Director Part 2.
Exit: To the calling program.

Input: See "Input to Many GSP Subroutines.®

Output: The address of the GTMCB is placed
in the address of the user-specified

"devicename" parameter. The various con-
trol blocks and tables associated with the
2250 are established (see "Function"
above).

Operation: If any function is not performed
successfully throughout processing by
INDEV, all functions previously performed
by this execution of INDEV are negated, an
appropriate return code is placed in the
GSPARRAY, and control is returned to the
calling program.

20

INDEV first tests all parameters for
validity, except for the "gdoalength®™ pa-
rameter. If these parameters are valid,
the amount of main storage necessary for
the GTMCB, DCB, BCT, GSP GACB, panic GACB,
and their associated COMAREAs is computed
and obtained. The starting address of the
main storage obtained (i.e., the address of
the GTMCB) is placed in both the GTMCB and
the GSPCB.

The value used to form the data defini-
tion name (ddname) of the data definition
(DD) job control statement is placed in the
“"ddname®” field of the DCB. The address of
the DCB is then placed in the GTMCB and the
DCB is opened.

Once the DCB is open, the bit configu-
rations associated with the features avail-
able for the designated 2250 and the
address of the 2250 are interpreted from
the unit control block (UCB) and placed in
the GTMCB. Next, the BCT is cleared and
its address is placed in the GTMCB.

At this point, INGDS is called to ini-
tialize the system GDSCB and to place its
address in the GTMCB. Flow Control Manage—
ment is called to establish the flow con-
trol table and flow control structure.

Next, the GSP GACB, the panic GACB, and
their associated COMAREAs are created, and

the GSP GACB address is moved into the
GTMCB. The 1length specified for GDOAs
associated with this GTMCB is determined

and placed in the GTMGDOAL field of the
GTMCB. Then, the alphameric keyboard is
unlocked.

The GTMCB is added to the chain of
GTMCBs as described under "Chaining™ in the
"Introduction.” The address of the new
GTMCB is placed in the variable specified
by the "devicename®™ parameter.

Next, the five internal routines and the
Panic Key routine mentioned under
"Function" are loaded by this routine, and
their entry point addresses are placed in
the appropriate fields in the status table.
Control is then returned to the calling
programe.

INGDS (Module Name IFFAAA(QS5)

Chart: AB

Function: Creates a GDS and associates it
with a 2250. To do so, it:

e Establishes a GDSCB for each GDS, and
each equivalent GDS.

e Establishes two OACBs for each GDSCB
(one for each GDOA).



e Establishes two GDOAs for each GDSCB
(for input/output overlap).

Entry: IFFAAAOS from Director Part 2.
Exit: To the calling program.
Input: See "Input to Many GSP Subroutines."”

Output: The address of the GDSCB is placed
in the corresponding variable specified as
the “gdsname™ parameter. The various con-
trol blocks and output areas associated
with each specified GDS are established
(see "Function™ above).

Operation: All parameters are processed and
checked for validity. If the "gdoalength"
parameter is not specified, the length of
the GDOA is found in the GTMGDOAL field of
the GTMCB. If this value is less than 128,
it is rounded to 128. If the value is
greater than 128, it is rounded to the next
higher multiple of 256. All information
obtained from the processing of these pa-
rameters is saved for further use.

Main storage is obtained for the GDSCB,
two OACBs and two GDOAs. Additional stor-
age 1is obtained if equivalent GDSs are
specified. If insufficient storage is
available at any time, all storage pre-
viously obtained is freed, and control is
returned to the calling program with an
appropriate return code.

once storage has been obtained, a skele-
ton GLSCB is positioned at the beginning of
the wmain storage area just obtained, and
its own address, the address of the GTMCB,
the GDS 1level, and the GDOA length are
placed in that GDSCB. Associated OACBs and
GDOAs are then positioned behind the skele-
ton GDSCB as shown in Figure 2. Format of
the OACB is shown in Appendix A.

If equivalent (shared) GDSs have been
specified, the procedure described im this
paragraph is repeated until all of the
equivalent GDSs have been defined. Storage
is obtained individually for each equiva-
lent GDS. The address of the GDSCB for the
shared GDS 1is placed in its associated
"gdsname® variable. A flag is set in the
previously created GDSCB to designate it as
belonging to an equivalent GDS group. The
GDSCB is duplicated at each new address in
main storage for each equivalent GDS, and
the GLSCBs are chained together using the
GDSSHLFD and GDSSHDBK fields as shown in
Figure 3. OACBs and the GDOAs associated
with each GDSCB are initialized and the
GDSCB is added to the chain.

When all equivalent GDSs have been pro-
cessed, the address of the first GDSCB is
placed in its associated "gdsname" vari-

able.
program.

control is returned to the calling

TMGDS (Module Name IFFARA06)

Chart: AC

Function: Terminates the use of the desig-
nated GDS and all equivalent GDSs by
freeing all main and buffer storage asso-
ciated with the control blocks and tables
used by those GDSs.

Entry: IFFAAAO6 from Director Part 2.

Exit: To the calling program.

Input: See "Input to Many GSP Subroutines.”
Output: None

Operation: If a key table exists for this
GDS, Key Table Management 1is called to
delete the key table. Then, if a flow
control entry exists, Flow Control Manage-
ment is called to delete the specified GDS
from the flow control structure. Buffer
Management is then called to free the
buffer storage assigned to this GDS.

The GDSCB is removed from the chain of
GDSCBs by manipulating pointers. (See
"Chaining®™ under "Introduction.") Its asso-
ciated storage —-- including OACBs and GDOAs
-- is then freed. If this is an equivalent
GDS, the forward and backward pointers are
saved before freeing storage.

Any equivalent (shared) GDSCBs are now
removed from the chain of GDSCBs in the
same manner as above. The forward pointer
is used to determine the next GDSCB to be
deleted. When all forward shared GDSCBs
are deleted, the same process is repeated
with backward pointers. Then, each time an
equivalent GDSCB is removed from the chain,
the key table for that GDS is deleted, if
present, and storage occupied by the GDSCB
and its OACBs and GDOAs is freed.

When all equivalent GDSCBs have been
deleted from the chain and all storage has
been freed, control is returned to the
calling program.

TMDEV (Module Name IFFAAAOY)

Chart: AD

Function: Terminates the use of the desig-
nated 2250 by freeing all main and buffer
storage associated with the control blocks
and tables used by that 2250.

Entry: IFFAAAO4 from Director Part 2.

Program Organization 21



Exit: To the calling program.
Input: See "Input to Many GSP Subroutines."
Output: None

Operation: Flow Control Management is
called to stop regeneration and to free the
storage assigned to the flow control table.
Buffer Management is then called +to free
all tuffer assigned to any GDSs associated
with the specified 2250.

Once all buffer has been freed, the
GTMGDSCE field in the GTMCB is inspected
for any open GDSs associated with that
2250. 23 an open GDS is encountered, TMGDS
is called to terminate its use. The
GTMLATBL field in +the GTMCB is then
inspected for any attention levels asso-
ciated with that 2250. As an attention
level is encountered, ENATL is called to
terminate its use.

At this point, the GTMCB is removed from
the chain of GTMCBs. Finally, the DCB is
closed, and all main storage associated
with the GTMCB, DCB, BCT, the GACBs and
their COMAREAs is freed.

TMGSP Part 2 (Module Name IFFAAAQ2)

Chart: None
Function: Terminates the use of GSP by:

e Calling TMDEV to terminate the use of
all associated 2250s.

e Deleting all GSP subroutines and inter-
nal routines that were previously load-
ed.

Entry: IFFAAAQ2 from TMGSP Part 1.
Exit: To TMGSP Part 1.
of the

Input: In register 6, the address

GSPCB.
Output: None

Operation: See ®Function" above.

GENERATION AND MODIFICATION OF A DISPLAY

Nurerous subroutines and internal rou-
tines work together to produce a display on
the 2250, and to implement the wupdate
facility available in GSP. This area
includes the option definition, image gen-
eration, image identification, and image
control subroutines. The internal routines
used by these subroutines are listed as
"External References™ in Table 1 and are
described under "Internal Routines."

22

OPTION DEFINITION SUBROUTINES (MODULE NAMES
IFFAEAO1, IFFAEAO2, IFFAEAO03, IFFAEAO4,
IFFAEAO6, AND IFFAEAQ07)

These subroutines define the charac-
teristics of the input data tc be supplied
to image generation subroutines, the output
to be generated by the Data Generator
routine, and the characteristics of the
display to be produced. Each one of these
subroutines sets appropriate fields in the

GDSCB. Locations of fields and bit set-
tings are given with the GDSCB format
description in Appendix A. Subroutine

functions are as follows:

* SDATM (module name IFFAEAO01) sets bits
in the GDSDATMD field to indicate the
type (real or integer) and form
(absolute or incremental) of data that
the user will provide as input to GSP
subroutines that refer to the specified
GDS. If the type and form of data is
changed by a call to SDATM, the data
limits are converted to the new data
type as necessary.

e SGRAM (module name IFFAEA02) sets bits
in the GDSCURMD field +to define the
form of output (absolute, incremental,
or optimized) that will be produced by
the Data Generator routine for the
specified GDS.

e SCHAM (module name IFFAEAO7) sets bits
in the GDSCHARS field to define the
size of characters to be displayed for
the GDS and whether or not those char-
acters are to be protected or unpro-

tected.
* SDATL {(module name IFFAEA03) places
values in the GDSUVLLL, GDSVVLLL,

GDSUVLUR, and GDSVVLUR fields that rep-
resent the user-specified x- and y-
coordinates for the lower-left and
upper-right limits of input data. Upon
successful corpletion of its function,
this routine sets the GDSFLGS2 field to
indicate that the SDATL subroutine was
called.

e SSCIS (module name IFFAEA06) sets bits
in the GDSSCISS field to indicate
whether or mnot scissoring is to be
perxformed, where the image is to be
truncated, and whether or not image
generation is to be continued after
scissoring.

e SGDSL (module name IFFAEAO4) places
integer values in the GDSXVILL,
GDSYVILL, GDSXVIUR, and GDSYVIUR fields
that represent the user-specified x-
and y-coordinates for the lower-left
and upper-right corners of the GDS.
This routine also places real values in
the GDSXVRLL, GDSYVRLL, GDSXVRUR, and



GDSYVRUR fields that represent the same
user-specified coordinates. SGDSL tests
the GIDSFLGS2 field to determine if SDATL

has been called. If not, this xoutine
places the values for data limits in the
appropriate fields (see SDATL above) using

the same parameters passed for GDS limits.
If no data has been generated for the GDS,
the GDSXCURR, GDSYCURR, GDSXLAST, and
GDSYLAST fields are set equal to the lower-
left corner of the GDS if 0,0 is mneither
within nor on the boundary of the GDS.

The entry point in each routine is the
same as its module name. Entry is from
Director Part 2. Exit is back to Director
Part 2. During the processing, appropriate
return codes are placed in the GSPARRAY
field of the GSPCB.

subroutines is
Many  GSP

Input to each of these
described wunder "Input to
Subroutines.”™

Each routine tests the parameters for
validity. If an invalid parameter is
passed, a return code is set, and the
fields that would normally be set according
to +the specified parameters remain as they
were prior to this execution of the rou-
tine.

IMAGE GENERATION SUBROUTINES

These subroutines create elements neces-
sary for displaying images on the 2250
screen. They analyze the input passed to
them, and call upon various internal rou-
tines to perform the functions necessary
for producing appropriate graphic orders
and data, and the associated control func-
tions for GSP.

The subroutines described in this sec-
tion are:

e STPOS/MVPOS, which moves the beam in
blanked mode to a specified position on
the 2250 screen.

e PLINE/PPNT, which plots lines or points
as specified.

e PSGMT, which plots one or several line
segments.

e PTEXT, which causes characters +to be
displayed using the character generator
feature of the 2250.

e STEOS, which generates an end-order-

sequence order.

Linkage for Image Generation Subroutines

Figure 8 depicts the 1linkage for the
image generation subroutines, and all
external routines referreu tc by them. The
figure shows the patnh followed when a call
is issued in the user's program for each of
the subroutines.

All subroutines receive control via
Director Part 1 and Director Part 2.
Whenever control is passed to another rou-
tine, the called routine completes its
processing before control 1is returned to
the calling routine (calling program). The
use of external references may vary from
one execution to another, since their use
is contingent on the results of various
tests performed by the image generation
subroutines. When processing is complete,
control 1is returned via the same path
through which it was passed, as explained
under "Control Flow Among GSP Routines."

output from Image Generation Subroutines

Output from each image generation sub-
routine except STEOS consists of calls to
routines that scale, scissor, generate, and
store graphic orders and data for display-
ing the desired images. When required, a
key is built, a key and/or correlation
value 1is placed in the key table via Key
Table Management, and the key value is
placed in the variable specified by the
user as the "key" parameter.

General Operation of Image Generation

Subroutines

Part of the operation for each of the
subroutines except STEOS is the same. Each
subroutine builds a parameter list that it
will pass as input to Scaling, Scissoring,
and Data Generator. Bits are set in this
parameter 1list to indicate whether the
element is a new or update element, is
keyed or correlated, or is in include or
omit status. Also placed in this parameter
list 1is the correlation value (if passed)
and the address of the variable into which
the key is +to be placed before exit from
the subroutine.

Each image generation subroutine saves
the current raster unit coordinate posi-
tions of the 2250 beam, and the raster unit
coordinate values generated from the
preceding call to an image generation sub-
routine. (These values are obtained from
the GDSXCURR, GDSYCURR, GDSXLAST, and
GDSYLAST fields in the GDSCB.) If the

Program Organization 23



sauTjnoIqng uoTjeisusyn obewy 03 weaboaxd s,a9sn wWoxF dbeyurT g 2INBTL

|oijuod Bujsspy w-—

Ao oy panreyes 7 T 1
si 9|npoyy ”l I“

*wpibBoud 5,395n By} O} |OLJUOD SUINJDI g HIDd J0Joa11Q ‘J9AamOY
*41 Pa[|0D DY} SUIINOI By} Of BUlnol b Aq psuingal sAbM|D sI joljuo) JION

O_DTO<< Juapisay "—ucmmmum

1353y 1353y _l 1_
ajopdn ayopdn _ _
SOLS T1¥D
1B 3|qp] Ao 16y 2|qp) Ao _ ® _
13STy Jlojpiauac) bypQg Jojplauag) by _ _
1INdd T1¥D
1By ojqp) Aey Bujlossiog Buliossiog _ @ '
104G DD Buy|pog _
2404g DypQ S PiRQg SOdAW TTVD 7
[ [ 1 _ @ _
_ 1X3ld 17vD @ _
Y
' LWOSd TIVD @w _
5011S 1x3ld 1IWOSsd INdd/INITd SOdAW/SOdLS _ ~
; ; _ INITd 1IvD @

@ ® '® ®0e ®0O |
“ SOd1S 1IvD @ _
Z Hog Jopoulg e _ | Hog 1040311 | _

r—-
_ | |
“ a|qp] SNId4g “ _’ A
| WY¥OO¥d S.¥3sN |

24



subroutine fails to perform its
functions for any reason (e.g., update
element is too large), these saved coordi-
nate values are placed back in their re-
spective fields in the GDSCB, and the GDS
is reset, thus returning the program to the
condition that existed prior to the call to
the image generation subroutine.

prescribed

Scaling and Scissoring are called as
necessary to determine the raster unit
coordinates for each new beam position
(beginning and end points in the case of
PSGMT) . Scissoring updates the GDSXCURR,
GDSYCURR, GDSXLAST, and GDSYIAST fields of
the GDSCR appropriately. If no Scissoring
is requested, the image generation subrou-
tine updates these fields after Scaling has
been performed.

If the element to be produced by an
image generation subroutine is to be part
of a buffer subroutine, the image genera-
tion subroutine changes the contents of the
GDSDATMD field in the GDSCB to reflect
incremental input. Upon exit from the
image generation subroutine, this field is
restored to reflect the input mode that
existed prior to the time the image genera-
tion subroutine was called.

STPOS /MVPOS (Module Names IFFAFAQ4 and
IFFAFA17)

Charts: BA, BB

Function: Causes graphic orders and data to
be generated for moving the 2250 beam in
blanked mode to a specified position on the
screen.

Entry: IFFAFAOU for STPOS, and IFFAFAl17 for
MVPOS, both from Director Part 2.

Exit: To the calling program.
Input: See "Input to Many GSP Subroutines."

Output: See "Output From Image Generation

Subroutines."

Operation: On entry, a switch is set desig-
nating whether the call was to MVPOS or
STPOS. This switch is used in determining
if the data (input) mode and graphic
(output) mode set in the GDSCB are to be
overridden (i.e., forced absolute input and
output for STPOS). STPOS/MVPOS then builds
a parameter list that it will pass as input
to the Scaling, Scissoring, and Data Gener-
ator routines, and saves the current raster
unit coordinate positions of the 2250 beam
(see "General Operation of Image Generation
Subroutines®).

Scaling and Scissoring are called as
necessary to determine the new beam posi-

tion coordinates. (See "General Operation
of 1Image Generation Subroutines.") Data
Generator is called to produce the element

for +the GDOA associated with the GDS iden-
tified in the call to the STPOS/MVPOS
subroutine, and to complete the key (if

any) that is to be associated with that
element. If the element is keyed, and it
is not an update element, Key Table Manage-
ment is called to insert the key in the key
table.

If the element is an update element
(i.e., is to be substituted for a previous-
ly created element), Key Table Management
is called to determine the validity of any
key or correlation value passed by the user
in the call to the STPOS or MVPOS subrou-
tine. Update is called tc create a tem-
porary GDOR. The update element is gener-
ated as described in the preceding para-
graph. Once the wupdate element has been
generated, Update is recalled to substitute
this new element for the previously created
element (identified by the key or correla-
tion value or both).

PLINE/PPNT (Module Names IFFAFA0O1 and
IFFAFAL16)

Charts: BA, BC

Function: Causes graphic orders and data to
be generated for producing one or more
lines or points at specified positions on
the 2250 screen.

Entry: IFFAFAO1 for PLINE, and IFFAFAl16 for
PPNT, both entered from Director Part 2.

Exit: To the calling program.
Input: See "Input to Many GSP Subroutines."”

Qutput: See "Output From Image Generation

Subroutines.”

Operation: Is the same as described for
STPOS/MVPOS, except as follows:

e An entry switch set in the work area
indicates if entry was from PLINE or
PPNT. If entry was from PLINE, an
element for displaying lines is gener-
ated. If entry was from PPNT, an
element for displaying points is gener-
ated.

e The routine plots a single line or
point or multiple lines or points. For
multiple input, new beam positions are
obtained by indexing through the user's
array of input coordinates or by adding
a user-specified increment to the abso-
lute position of the last 1line or
point.

Program Organization 25



PSGMT _(Module Name IFFAFA02)

Charts: BA, BC

Function: Causes graphic orders and data to
be generated for producing line segments on
the 2250 screen.

Entry: IFFAFA02 from Director Part 2.
Exit: To the calling program.
Input: See "Input to Many GSP Subroutines."

Output: See "Output From Image Generation

Subroutines."

Operation: Upon entry, PSGMT builds a pa-
rameter 1list that it will pass as input to
Scaling, Scissoring, Data Generator, and
Update, and saves the current raster unit
coordinate positions of the 2250 beam (see
"General Operation of Image Generation
Subroutines").

Scaling and Scissoring are celled as
necessary to determine the raster unit
coordinates for the starting and ending

beam positions of each line segment +to ke

produced (again, see "General Operation of
Image Generation Subroutines™). Bits are
set +to unblank +the beam for movement

between the starting and end positions of
each line segment, and to blank the beam
for novement between the end position of
o:e segment and the starting position of
the next segment.

Scaling and Scissoring are entered twice
for each line segment to be produced. For
multiple line segments, depending upon the
arguments specified 1in the call +to the
PSGMT subroutine, new beam positions for
each segment are obtained by indexing
through the wuser's array of input coordi-
nates or by adding a user-specified incre-
ment to the original value that was passed.

If the input data mode is incremental,
the starting positions ¢f all line segments
are determined by adding the start incre-
ments to the previous starting positions.
The end position of the first line segment
is determined by adding the end increment
to the first starting position of the first
line segment. The end positions of all
other segments are determined by adding the
end increments to the previous end posi-
tions.

Data Generator is called as many times
as necessary to produce the orders and data
for displaying each desired line segment.
Data Store is called to place these orders
and data in the GDOA (or buffer on GDOA
overflow) associated with the GDS identi-
fied in the call to the PSGMT subroutine.

26

After Scaling and Scissoring, Data Genera-
tor and Data Store are entered twice for
each line segment to be produced. If the
element is for a level 1 GDS and is keyed
or correlated, a key is structured if it is
not an update element, and Key Table Man-
agement is used +to insert the key in the
key table.

If the element to be created is an
update element, Key Table Management is
called to verify the validity of any key or
correlation value passed by the user.
Update is called to create a temporary
GDOA. The update element is generated as
described above. Once the update element
has been generated, Update is recalled to
substitute this new element for the pre-
viously created element (identified by the
key or correlation value, or both).

PTEXT (Module Name IFFAFA03)

Charts: BA, BD

Causes graphic orders and data to
be generated for producing the text at
specified positions on the 2250 screen
using the character generator.

Function:

Entry: IFFAFAO3 from Director Part 2.
Exit: To the calling program.

Input: See "Input to Many GSP Subroutines."
~nput P Yy

Output: See "Output From Image Generation
Subroutines.”
Operation: If +the element is keyed or

correlated, Data Store is called to set wup
the include/omit structure for the element.
If positioning is required (i.e., the
"xcooxr" and "ycooxr"” arguments are
provided), MVPOS is called to position the
beam.

If scissoring is specified in the GDSCB,
the length of the text to be displayed is
calculated in raster units and used to
determine the x- and y-coordinates for
input to the Scissoring routine. Scissor-
ing 1is then called to scissor the data
according to the options set in the GDSCB
by the SSCIS subroutine. The data returned
from Scissoring is then tested. If any x-
and y-coordinates have been entered in the
blanked fields of the Scissoring input/
output area (see "Scissoring Routine"), a
positioning element is generated via Data
Generator. The number of characters that
will fit in the scissored area is calculat-
ed, character mode is set, graphic orders
and data are generated by PTEXT, and Data
Store is called as many times as necessary
to store all the characters in the GDOA.



If the scissoring option set in the
GDSCB indicates no scissoring is to take
place, the Scissoring routine is not
called; the x-coordinate is repositioned
(GDSXLAST and GDSXCURR fields in the
GDSCB); character mode is set; graphic
orders and data are generated by PTEXT; and
Data Store is called to store +the charac-
ters in the GDOA.

If the element is not an update element
and is a keyed or correlated (level 1 GDS)
element, the key is placed in the key table
via Key Table Management. If the element
is an update element, Key Table Management
is called in order to verify the walidity
of the key or correlation value passed.
Update is called immediately after initial-
izaticn to assign a temporary GDOA, and
again after the element has been generated
to write the graphic orders and data from
the temporary GDOA to the buffer. Control
is then returned to the calling program.

STEOS_(Module Name IFFAFA15)

Chart: BE

Functicn: Places an end-order-sequence
(GEOS) order in the specified GDS.

Entry: IFFAFA15 from Director Part 2.
Exit: To the calling program.
Input: See "Input to Many GSP Subroutines."

Output: The end-order-sequence order is
placed in the GDOA. When required, a key
is built, a key and/or correlation value is
placed in the key table via Key Table
Management, and the key value is placed in
the variable specified by the user as the
"key" parameter.

Operation: Depending on the parameters
specified, the following operations are
performed.

If neither "key" nor "corrval" is speci-
fied, STkOS constructs a GEOS order and
calls Lata Store to place it in the GDOA.
Control is then returned to the calling
program.

If a key for a level 2 GDS is specified,
STEOS computes a new key and places its

value in the variable designated as the
"key" argument. It then constructs a GEOS
order and calls Data Store to place the
order in the GDOA. Control is then

returned to the calling program.

If the user specifies either "“key" or
"corrval®, or both, for a level 1 GDS, an
appropriate key structure is established.
Then, an appropriate includes/omit

(GNOPU/GTRU) structure is established, tie
GEOS order is created, and generated data
is stored in the GDOA. To store the
information, if necessary, Data Store may
be called three times: (1) for the
GNOP4/GTRU order, (2) for the GEOS order,
and (3) for resolving the address associat-
ed with the GTRU order.

If an error is detected after the
GNOP4/GTRU order has been stored, RESET is
called to restore the GDS to the condition
that existed immediately before STEOS was
called, an appropriate return code is
placed in the GSPARRAY field of the GSPCB,

and control is returned to the calling
program.

After the data is stored, Key Table
Management is used to enter the key or

correlation value,
table. Control is
calling program.

or both, in the key
then returned to the

IMAGE IDENTIFICATION SUBROUTINES

These subroutines create the orders
which identify limits for a buffer subrou-
tine or sequence that is to be referred to
as a unit by an individual key or correla-
tion value. They also establish linkage to
a buffer subroutine by means of the key or
correlation value.

The subroutines described in this sec-
tion are:

®* BGSEQ/BGSUB, which indicates the begin-

ning of a sequence or a buffer subrou-
tine.

e ENSEQ, which indicates +the end of a
Sequence.

e ENSUB, which indicates the end of a

buffer subroutine.

¢ LKSUB, which establishes linkage to a
buffer subroutine.

BGSEQ/BGSUB (Module Names IFFAFAO0S and

IFFAFA18)

Chart: CA

Function: For BGSEQ, indicates that all the
elements that are subsequently generated
for this GDS wuntil a call to ENSEQ is
issued for the same GDS make up an entity
that can be identified by a single key or
correlation value. For BGSUB, designates
the beginning of a buffer subroutine in a
particular GDS.

Entries: IFFAFAOS5 for BGSEQ, IFFAFA18 for
BGSUB, both entered from Director Part 2.

Program Organization 27



Exit: To the calling program.
Input: See "Input to Many GSP Subroutines.”

Qutput: Graphic orders and data that affect

the status (include or omit) of all ele-
ments within the specified sequence oOr
buffer subroutine are placed in the GDOA

via Data Store. The key value is placed in
the variable specified by the user as the
"key" argument. Unless it is a level 2
GDS, the key is placed in the key table via
Key Table Management.

Operation: After checking the validity of
the input, switches are set to indicate
whether a sequence or a buffer subroutine
is being established, whether the status is
include or omit, and whether level 1 or
level 2 key or correlation values are used.
A skeleton parameter list for Data Store
and the key structure (if it is level 1)
are built.

established, a
status) or a GNOP4 (for
order is placed in the
input parameter list for Data Store, with
an indication of an wunresolved address.
(This address will be resolved upon an
entry from ENSEQ.) Data Store is called to
place the order in the GDOA. It a level 1
key is indicated, the key is completed and
Key Table Management is called to place it
in the key table. Control is then returned
to the calling program.

If a sequence is
GTRU (for omit
include status)

being

If a buffer subroutine is being estab-
lished, a GTRU order to the unresolved
address that will be resolved at ENSUB

time, a GTRU to a zero address that will be
changed by buffer subroutine linkage, a
GNOP4 (include) or GTRU (omit) order with
an unresolved address, and a GDRD order are
set up in the input parameter list for Data
Store, with indication of unresolved
addresses. Data Store is called to place
the orders in the GDOA. The address for
the include/omit order is resolved. If a
level 1 key is indicated, the key is
completed, placed in the key table by Key
Table Management, and control is returned
to the calling program.

Note: The buffer subroutine facility is
provided only on an IBM 2250, Model 3.
BGSUB tests the GTMFEATS field in the GTMCB
for a Model 3. If any other model is
indicated, control is immediately returned
to the calling program along with an
appropriate return code.

ENSEQ (Module Name IFFAFA06)

Chart: None

28

Function: To indicate the end of a sequence
of elements.

Entry: IFFAFAO6 from Director Part 2.

Exit: To the calling program.

Input: See "Input to Many GSP Subroutines.”

output: Length of the sequence is placed in
the key, and the address is resolved in the
include/omit structure for the sequence via
Data Store.

Operation: Input is tested for validity,
and the key for the sequence is obtained
from the key table via Key Table Manage-
ment. The length of the sequence is com-
puted and stored in the key. A parameter
1ist for Data Store is set up. Data Store
is called to resolve the address in the
GNOP4/GTRU order in the include/omit struc-
ture of the sequence.

control
gram.

is returned to the calling pro-

ENSUB (Module Name IFFAFAQ07)

Chart: None

Function: To indicate the end of a buffer

subroutine.
Entry: IFFAFA07 from Director Part 2.
Exit: To the calling program.

Input: See "Input to Many GSP Subroutines."

output: A GTRU order which points to the
beginning of the buffer subroutine is

placed in the GDOA (or buffer, on GDOA
overflow). If level 1 keying is used, the
subroutine length is added to the key in
the key table.

Operation: If 1level 1 keying is used, the
key is obtained from the key table via Key
Table Management. For both level 1 and
level 2, the key address is placed in a
parameter list for Data Store, a GTRU order
is constructed with the computed address of
the beginning of the buffer subroutine, and
Data Store is called to place the order in
the GDOA. The unresolved address for the
first GTRU order placed in the GDOA for
BGSUB is resolved at this time by Data
Store. Upon the return of control from
Data Store, if level 1 keying is used, the
length of the buffer subroutine is placed
in the key. Control is returned to the
calling program.



LKSUB (Module Name IFFAFA08)

Chart: CB

Function: Creates linkage to execute a

buffer subroutine and return.

Entry: IFFAFAO8 from Director Part 2.

Exit: To the calling program.

Input: See "Input to Many GSP Subroutines.”
Output: Orders are created and stored in
the GLOA (or buffer on overflow) to effect

linkage to the buffer subroutine. If a
level 1 key is designated for the linkage,

the key is built and placed in the key
table.
Operation: The key for the subroutine

(either level 1 or level 2) is obtained and

used for calculating addresses for the
orders that LKSUB generates to establish
linkage. Linkage orders are created and

the input parameter list for Data Store is

built. The beginning address of the sub-
routine for which linkage is being estab-
1ished is calculated and placed in the

appropriate orders of the linkage with the
proper displacement. Data Store is then
called to resolve the return address in the
orders, and to store them in the GDOA (or
buffer, if the GDOA is full). If a level 1
key was specified for the linkage, the key
is placed in the key table. Control is
returned to the calling program.

IMAGE CONTROL SUBROUTINES

These subroutines designate when and how
an image is to be displayed on the 2250
screen. Three of them implement the update
facility supported by GSP.

The subroutines described in this
tion are:

sec-

e EXEC, which places all graphic orders
and data in executable form in the
buffer so that a display will appear on
the 2250 screen.

e INCL/OMIT, which places a GDS, a keyed
or correlated element, sequence, buffer
subroutine, or buffer subroutine 1link-
age in include or omit status.

e RESET, which resets (removes) all or
part of a GDS without terminating the
use of the GDS.

e ICPOS, which provides the starting
points from which the x- and y-
coordinates are to be computed on any

call where the GDSCB may not have

correct information for subsequent
calls.
e FPSMOD, which causes an appropriate set

mode order to
image generation
subsequently called.

be generated when an
subroutine is

e ORGDS, which controls the image being
displayed by ordering the regeneration
sequence for GDSs associated with a
particular 2250.

EXEC (Module Name IFFAFAll)

Chart: DA

Function: Writes to the buffer any data
that has been generated for a GDS since the
last call to EXEC or since an overflow
occurred in the GDOA.

Entry: IFFAFAll from Director Part 2.

Exit: To the calling program.

Input: See "Input to Many GSP Subroutines.”
Output: See "Functicn.”

Operation: If the GDOA is empty, or if no
data has been generated since the last call
to EXEC, and if the GDS is not an equiva-
lent GDS, buffer execution is started and
control is returned to the calling program.

The GDSREPDT field in the GDSCB is
checked to determine if any replacement
data was stored from a previous overflow.
This replacement data is to be used to
overlay the return address to the flow
control structure written out by the pre-
vious call to EXEC. If this replacement
data was saved, it is written to the
buffer. Then, all graphic orders and data
in the GDOA located between the CRSA point
and the OLP point are written to the
buffer. This is followed by the GTRU order
back to +the flow control structure, which
is contained in the GDSOVDAT field of the
GDSCB.

If this is an equivalent GDS, the bit in
the GDSFLAGS byte is set to indicate that
this GDS is in the buffer. All similar
bits in the other GDSs in the same equiva-
lency group are turned off. If the GDS is
not an equivalent GDS, a flag is set in the
OACB to indicate that on overflow the first
four bytes at the CRSA must be placed in
the GDSREPDT field of the GDSCB. The
fields in the OACB are updated to reflect
the new positions in the GDOA and the
buffer. Any unresolved addresses previous-
ly noted in the GDOA are noted to now be in
the buffer. If there is a cursor in the
GDS, EXEC inserts the cursor in the buffer.

Program Organization 29



INCL/OMIT (Module Names IFFAFA09 and
IFFAFR10)

Chart : None

Function: Generates

(GNOP4) or omit (GTRU)

necessary include
orders and sets bits

to unblank or blank the 2250 beam to place
elements, sequences, buffer subroutines,
buffer subroutine 1linkages, or GDSs in

include or omit status as designated by the
user.

Entry: IFFAFA09 for INCL, or IFFAFA10 for
OMIT, both entered from Director Part 2.

Exit: To the calling program.
Input: See "Input to Many GSP Subroutines."

Output: For multiple elements, an order
immediately preceding the image generation
orders and data for an element, sequence,
buffer subroutine, buffer subroutine link-
age, or GDS is changed either +to transfer
around the image generation orders speci-
fied (OMIT), or to allow them to be pro-
cessed (INCL). For single elements, the
beam kit of the image generation order is
changed to allow blanking or unblanking.
Except for sequences and STPOS/MVPOS or
PTEXT elements being placed in omit status,
the team will be positioned where the
element ended.

Operation: If omit status is to be esta-
blished for multiple elements, a sequence,
a buffer subroutine, buffer subroutine
linkage, or a GDS, a GTRU is positioned in
the bLuffer to transfer around the image
generation orders for the elements referred
to by the routine.

If include status is to be established
for multiple elements, a GNOPY4 is posi-

tioned in the buffer preceding the image
generation orders for the elements. This
order overlays any previously stored GTRU

order which would have caused the image
generation orders to be bypassed.

For a buffer subroutine, the position of
the appropriate order within the structure
is determined, and the includes/omit status
is handled the same as for multiple ele-
ments. For buffer subroutine linkage, the
include/omit status is handled exactly the
same as for multiple elements.

For single elements in either include or
omit status, a bit specifying that the beam
is to be unblanked or blanked is set in the
image generation order as appropriate.

For both INCL and OMIT, a bit is always

set in the key to specify the new status as
include or omit.

30

For examples of the include/omit struc-

ture in various types of elements, see
Figure 16.
RESET (Module Name IFFAFA12)

Chart: DB

Function: Resets a GDS, or a keyed or

correlated element and all elements gener-
ated after the one referred to. To do so,
it:

® Removes orders from the buffer as nec-

essary.
* Frees any unused buffer.

® Sets up the GDOA and fields in the OACB
to reflect the reset condition of the

GDS.
¢ Removes appropriate keys from the key
table.
Entry: IFFAFA12 from Director Part 2,

BGTRK, ENTRK, LOCPN, ORGEN, or from any GSP
image generation subroutine which encoun-
ters an error while generating data and
must restore the GDS to the condition that
existed before the call.

Exit: To the calling program.

Input: See "Input to Many GSP Subroutines."
The parameter list may be passed by another
GSP subroutine.

The key table, GDSCB, and OACB are
If reset occurred

Output:
appropriately updated.

in the buffer, unused buffer sections are
released, and those images reset are
removed from the display regeneration
cycle.

Operation: Processing by RESET encompasses
three major phases: (1) manipulating the
key table, (2) checking for orders and data
to be reset, and (3) resetting within the
GDOA or the buffer. After third phase
processing is completed successfully, the
current mode field (GDSGRMOD) in the GDSCB
is set to zero so that the next execution
of an image generation subroutine will
generate a set mode order. Control is then
returned to the calling program. Each of
the processing phases is described in
detail in the paragraphs that follow.

Manipulating the key table depends on
various conditions as follows:

® Only "gdsname" parameter is specified
-—- Key Table Management resets the
entire key table for this GDS.

"corrval"”

¢ The "key" and/or parameters



are specified -- Key Table Management
locates the specified key in the key table.
RESET saves this key. Key Table Management
then resets the key table to the specified
key so +that this key and all subsequent
keys in the table are removed.

e Input "key" is not found in the key
table and length of input "key"™ is zero
-- RESET assumes it was called by
another GSP subroutine. The key table
is not reset because the key has never
been entered in the key table.

e Input "key" or "corrval®™ is not found
in the key table and length of input
"key" 1is not zero -- RESET places
appropriate return code in the GSPARRAY

and returns control to the «calling
program.

e A level 2 GDS is specified —- key table
manipulation is bypassed.

After key table manipulation, the fol-

lowing information is available for further
use by RESET:

e If the entire GDS is to be reset, the
key contains zeros.

e If it is a level 1 GDS, with a
correlation value, the key
assorted information about the
to which the GDS is to be reset.

key or
contains
element

e If it is a level 2 GDS, or if RESET was
entered from another GSP subroutine,
the key contains the 1logical buffer
address, but does not contain informa-
tion about the element to which the GDS
is to be reset.

checking for orders and data in the GDS
to be reset is done next. If the GDS does
not contain any graphic orders and data,
the current mode field in the GDSCB is set
to zero so that the next execution of an
image generation subroutine generates a set
mode order; control is then returned to the
calling program. If the GDS contains
graphic orders and data, RESET proceeds to
its third processing phase, depending upon
whether the GDS to be reset is in the GDOA
or in the buffer.

Resetting within the GDOA includes the
approrriate updating of the OACB from
information in the key. The point to which
the GDS is to be reset is determined and
one or more of the following occurs:

e If the GDS is being reset to within a
sequence or buffer subroutine, the
sequence or buffer subroutine is re-
opened if necessary, and the key asso-
ciated with it is updated accordingly.

e If the GDS is an equivalent GDS which
is currently in the buffer, the reset
GDS is executed by a call to EXEC.

e If the GDS is being reset to a point
within a sequence or buffer subroutine
that is not presently open, the key of
the sequence or buffer subroutine is
obtained from the key table, and the
length of the key is set to zero. This
reopens the sequence or buffer subrou-
tine. The GDSKEYSV field in the GDSCB
is set to the logical address of the
key. The bit in the key denoting that
a sequence or buffer subroutine has
been started is set to one. In addi-
tion, the flow control return address
is placed at the top of the sequence or
buffer subroutine in the GDOA and the
location of this unresolved address is
saved in the OACB.

If the reset condition is none of the
above, the third phase of processing is
complete.

Resetting within the buffer involves
computing the location within the buffer at
which the resetting is to begin. The OACB
is appropriately updated from information
in the key. If the buffer assigned to the
GDS is not a 128-byte buffer subsection,
Buffer Management is wused to reset any
buffer freed. If any replacement data in
the GDSCB 1is part of the reset, the
appropriate GDSCB fields are set to zero
and a flag in the OACB is set to save the
next four bytes as replacement data. The
address that transfers control back to the
flow control entry is written to the buffer
at the 1location specified in the key. If
the entire GDS is being reset, this 1loca-
tion will be at the beginning of the GDS.
Thus, any image created by the graphic
orders and data being reset will be removed
from the display.

The
reset is determined and one of the
ing occurs:

point to which the GDS is to be
follow-

e If the GDS is being reset to the
beginning of a sequence or buffer sub-
routine, the sequence or buffer subrou-
tine is removed.

e If the GDS is being reset to a point
within a sequence or buffer subroutine
that is not presently open, the key of
the sequence or buffer subroutine is
obtained from the key table. Next, the
length of the key is set to zero, thus
reopening the sequence or buffer sub-
routine. The bit in the key denoting
that a sequence or buffer subroutine
has been started is set to one. 1In
addition, in the case of resetting
within a sequence, the physical buffer

Program Organization 31



address of the sequence is computed so
that the address that branches +to the
end of the sequence can be replaced
with the address that will transfer
back to the flow control entry.

If the reset condition is not one of the
above, or after one of the above processes
is complete, the third phase of processing
is complete.

Note: If this is a 1level 2 GDS, it is
impossible to determine whether or not the
GDS 1is being reset to a point within a
sequence or buffer subroutine that is not
currently open. Therefore, such a sequence
or buffer subroutine cannot be reopened.

IDPOS (Module Name IFFAFA13)

Chart: DC

Function: Determines absolute x- and y-
coordinate beam positions for subsequent

use by image generation subroutines.
Entry: IFFAFA13 from Director Part 2.
Exit: To the calling program.

Input : See "Input to Many GSP Subroutines."

Output: The GDSXCURR, GDSYCURR, GDSXLAST,
and GDSYLAST fields of the GDSCB are

updated with the new beam position coordi-

nates.

Operation: After determining the location
and validity of the GDSCB identified by the
"gdsname® input parameter, IDPOS processes
the values of the remaining input parame-
ters in pairs.

Values specified as the “xlast™ and
"ylast® parameters are processed first.
IDPOS moves these values into a data array
that will be passed to Scaling, sets the
GDSDATMD field of the GDSCB to indicate
that absolute input data is being provided,
and calls Scaling to scale the input data
to actual raster wunit coordinates. Upon
successful completion of the scaling opera-
tion, IDPOS places the newly scaled values
in the GDSXLAST and GDSYLAST fields of the
GDSCB and checks to see if the "xcurr"
parameter has been specified. If not,
IDPOS also places the scaled values in the
GDSXCURR and GDSYCURR fields of the GDSCB,
and restores the GDSDATMD field of the
GDSCB to the condition that existed immedi-
ately before IDPOS was entered.

If the "xcurr® and “ycurr"™ parameters
were specified, their values are moved into
a data array and Scaling is called to scale
these values to raster unit coordinates.
Upon successful completion of the scaling

32

operation, IDPOS places these newly scaled
values in the GDSXCURR and GDSYCURR fields
of the GDSCB and restores the GDSDATMD
field to the condition that existed immedi-
ately before IDPOS was entered.

If an error is encountered at any time
during processing by IDPOS, contents of all
fields in the GDSCB are restored to the
condition that existed immediately before
IDPOS was entered.

FSMOD (Module Name IFFAFA14)

the GDSGRMOD field of the

so that the next image
subroutine to be called will
generate a set mode order. Entry is from
Director Part 2. Exit is to the calling
program. Input consists of the address of
a work area in register 1. The first word
of this area contains the address of a
variable that points to the GDSCB.

FSMOD
GDSCB to
generation

sets
Zero

ORGDS (Module Name IFFAFA19)

Chart: None

Function: Reorders the flow control struc-
ture in the buffer and the in-use 1list in
the FCT in main storage to reflect the new
regeneration sequence of GDSs as specified
by the user. The system GDS is always left
as the first GDS in the flow control
structure.

Entry: IFFAFA19 from Director Part 2.

Exit: To the calling program.

Input: See "Input to Many GSP Subroutines."
OQutput: See "Function."

Operation: See "Function.™ For a complete
discussion in regard to the flow control

structure and the FCT, refer to the section
"Flow Control Management."

ALLOWING KEYBOARD INPUT AND BUFFER DATA
ANALYSTS

GSP provides subroutines that allow data
to be entered from the alphameric keyboard,
and also allow orders and data or charac-
ters to be read from the 2250 buffer into
main storage to be analyzed. Two of these
subroutines (ICURS and RCURS) insert or
remove a cursor in the specified GDS. One
subroutine (GSPRD) allows data to be read
from the buffer into main storage.



ICURS (Module Name IFFADAO3)

Chart: EA

Function: Inserts a cursor into a specified
location within a GDS. ‘

Entry: 1FFADAO3 From Director Part 2.
Exit: To the calling program.
Input: See "Input to Many GSP Subroutines."

Qutput: If the cursor location within the
GDS is not in the Dbuffer, the buffer
address of the cursor location is placed in
the GTMCB and appropriate flags are set in
the GTMCB and GDSCB. If the cursor loca-
tion is in the buffer, the cursor is
inserted in the buffer and appropriate
flags are set in the GDSCB and GTMCE.

Operation: ICURS checks the GDSFLAGS field
of the GDSCB to determine if the programmer
is wusing a level 1 or level 2 GDS. If
level 2 is being used, the 1logical buffer
address is computed from the locations
specified in the key supplied by the user.

If level 1 is being used, the logical
buffer address for insertion of the cursor
is computed from the key table using the
key or correlation value supplied in the
call to the ICURS subroutine. If both key
and ccrrelation value are supplied, the key
is used to compute the 1logical buffer
address and the correlation value is sub-
stituted in the key table for the correla-
tion value previously assigned to the ele-
ment or sequence into which the cursor is
to be inserted.

ICURS then checks the GTMFLAGS field in
the associated GTMCB to determine if a
cursor is already present in the 2250. If
it is present, RCURS is called to remove
the cursor.

once the logical buffer address has been
computed, ICURS determines whether the ele-
ment or sequence into which the cursor is
to be inserted is in the buffer or in the
main storage GDOA. If the element or
sequence is in the buffer, the physical
buffer address is computed, the cursor is
inserted in the buffer, and flags are set
in the GDSFLAGS field of the GDSCB and the
GTMFL2GS field of the GTMCB to indicate the
presence of a cursor. If the element or
sequence is in the GDOA, the physical
buffer address is computed and placed in
the GTMCRLOC field of the GTMCB. Flags are
then set in the GDSFLAGS field of the GDSCB
and the . GTMFLAGS field of the GTMCB to
indicate the presence of a cursor. The
cursor is then moved to the buffer the next
time +the contents of the GDOA are trans-

ferred to the buffer by a call to the EXEC

subroutine.

RCURS (Module Name IFFADA02)

Chart: EB

Function: Removes the cursor from a GDS.
Entry: IFFADAO2 from Director Part 2, or
from ICURS.

Exit: To the calling program.
Input: See "Input to Many GSP Subroutines.®”

Output: Cursor is removed from the GDS, and
applicable flags are removed from the
GDSFLAGS and GTMFLAGS fields of the GDSCB
and GTMCB.

Operation: RCURS checks the GTMFLAGS field
in the GTMCB associated with the specified
GDS to determine if a cursor is present in
this 2250. If there is none, the flag
fields in the GTMCB and all its associated
GDSCBs are reset, the GTMCRLOC field in the
GTMCB is set to zero, and control is
returned to the calling program.

If the cursor is present, RCURS locates
any cursor that is in the buffer assigned
to this 2250 which was allocated by GSP
buffer management, and removes the cursor.
The GTMCRLOC and the GTMFLAGS fields of the
GTMCB and the GDSFLAGS fields of the asso-
ciated GDSCBs are reset.

GSPRD (Module Name IFFADAO1)

Chart: EC

Function: Reads all or part of a GDS from
the buffer into main storage as specified
in the user parameters.

Entry: IFFADAO1 from Director Part 2.
Exit: To the calling program.
Input: See "Input to Many GSP Subroutines.®

Output: Requested data from the buffer is
placed in a user-specified array in main
storage. The result of the read operation
is placed in the variable specified by the
"termcode®™ parameter.

Operation: The parameter list is tested for
various combinations of parameters. Based
on the results of these tests, the logical
length of the buffer is determined, either
from the key, or the OACB (for an entire
GDS). The logical buffer 1length and the
"count"™ parameter are compared, and the
smaller one is wused to set up a read

Program Organization 33



contrcl area which determines the amount of
data to be read from the buffer. The BCT
is used to convert the logical buffer start

address into a physical buffer start
address, and the 1length of the buffer
section is calculated.

The buffer is read into the work area.

This operation is ended if (1) the cursor
is detected when "count"™ was negative, (2)
the specified amount of data has been read,
or (3) the end of the GDS or the last
element has been reached.

The data is then moved from the work
area to the user's main storage array. If
text only is specified in the parameter
list, characters appearing in the work area
are moved to the user-specified area. If
all data is requested, all orders and data
from the work area are moved to the user-
specified area. The type of action that
resulted in a termination of the read
operation is recorded in the variable
specified as the "termcode" parameter, and
control is returned to the calling program.

COMMUNICATION BETWEEN 2250 OPERATOR AND GSP
PROGRAM

Cormunication between the 2250 operator
and GSP is accomplished through the use of

the attention related subroutines and the
light pen subroutines. These subroutines
make available to the operator the light

pen, the programmed function keyboard, or
the alphameric keyboard. If the operator
desires to do so, he can interrupt the
program by depressing the CANCEL key on the
alphareric keyboard. The CANCEL Key (Panic
Key) routine is described in this section,
although it is an internal routine which is
loaded by INDEV.

ATTENTION RELATED SUBROUTINES

Attention related subroutines are used
for two-way communication between the 2250
user and the GSP program. They create,
manipulate, and terminate control blocks
that make this communication possible. By
using these control blocks, the attention
related routines enable attention informa-
tion to be received from the 2250 operator
and passed to the GSP program. The atten-
tion related subroutines designate the
attentions that are to be accepted from the
2250 operator, and those that are to be
ignored. They define the type of informa-
tion that 1is to be made available to the
program, and make that information avail-
able to the program.

The attention related subroutines de-
scribed in this section are:

34

e CRATL, which creates an attention level
control block (ATLCRB).

e ENATL, which terminates the use of an
ATICB.

® ENATN, which designates the sources
from which attentions will be accepted.

* DSATN, which designates the sources
from which attentions are no longer to
be accepted.

¢ SLPAT, which permits light pen atten-

tions to be accepted.

e ROATN, which makes information about an
attention available to the GSP program.

e MLITS, which designates the programmed
function keyboard indicator lights that
are to be on and those that are to be

off.
* MLPEO, which designates the type of
information that is to be made avail-

able for 1light pen or end-order-

sequence attentions.

* MPATL, which modifies the position of
an ATLCB within the hierarchy of
attention levels.

e CANCEL Key (also called Panic Key)
routine, which allows an abnormal ter-
mination dump to be produced when the
2250 operator senses that his program
is not performing properly.

e SALRM, which sounds the single stroke

audible alarm on the 2250.

Figure 9 depicts how the attention
related routines manipulate the contents of
the control block fields as an attention
level is created, the light pen attention
source is enabled, a light pen attention is
received, and information is requested
about that light pen attention.

CRATL_(Module Name IFFACA00)

Chart: FA
Function: Establishes an active attention
level by creating and initializing an

attention level control block (ATLCBs) and
its attention data entry queues (ADEQs).
This block and its queue are described in
detail in Appendix A.

Entry: IFFACA0O0 from Director Part 2.

Exit: To the calling program.

Input: See "Input to Many GSP Subroutines."”
input P



CRATL

i,

Create an active
attention level.

ENATN

;

Enable light pen
attentions for
active level.

SLPAT

Enable light pen
for the GDS.

Via
Graphic
Attention
Handling

Receive light pen
attention on active
level; transfer
attention information
to the GSP GACB.

C

"arrayname "

GTMCB

GTMLATBL

GSP GACB

$66

GDsSCB

GDSFLAGS

ATLCB

ATTNFWPT

ATTNAVAL

ATTNMLEN

ATTNFLGA

Figure 9.

ATTNANEN

—Q
—QO

ADEQ

Request information about
a light pen attention for
the active attention level.

O]

Is there information on the
specified attention level
queue? (No. The ATLCB was
never inactive. ATTNMLEN=0)

Is the specified attention
level active? (Yes. ATTNFWPT=0)

Is there infarmation on basic
internal queve ? (Yes. A light
pen attention has occurred.)

Is the light pen enabled for

the specified attention level ?
(Yes. The call to ENATN
enabled it. ATTNANEN=X'02")

Dequeue and save attention
information.

Is the attention information
about a light pen attention?
(Yes.)

O OO 06| © O

Is the light pen enabled for

GDS that the light pen identified ?
(Yes. The call to SLPAT enabled
it. GDSFLAGS=X'02")

®

Is character information to be
returned? (No. A call was
never made to MLPEO.)

®

After necessary information is
obtained, it is placed on the
user-specified array.

Manipulation of Control Blocks During Attention Processing

Program Organization

35



ATLCB and associated ADEQs are
created. The address of the ATLCB is
placed in the user-specified variable
("attnlevel™). The indicator lights on the
prograrmed function keyboard are lit as per
the GTMLIGHT field of the GTMCB.

Output: An

Cperation: Main storage is obtained for the
ATLCB and its ADECs. If there is a pre-
viously active attention level, the ATTNINQ
macro instruction is issued to determine if
any attention informaticn is available. If
so, that information is transferred £from
the GSP GACB to the active ATICB. Atten-
tion sources in the GSP GACB associated
with +the specified GTMCB are disabled and
the light pen restart option is set for mno
restart. The ATLCB and its ADEQs are
initialized as follows:

e The ADEQs are created immediately fol-
lcwing the ATLCB, and are chained. The
address of the first ADEQ in the chain
is placed in the ATTNAVAL field.

e ATTNFLGA is set as per the
parameter.

"dequectl”™

e ATTNLITE is set to indicate the default
option in the GTMLIGHT field of the
GTMCB, for 1lighting the programmed
function indicator lights.

» The address of the ATILCB is
the user-specified variable.

placed in
If this is the first ATLCB created for
the GTMCB, pointers are set as follows:

indicate
attention

e ATTNFWPT is set to zero to
that this is the active
level.

e ATTNBKPT is initialized to the address
of the GTMCB.

e ATTNBPID is set to X'01' +to indicate
that ATTNBKPT points to the GTMCB.

e The address
the GTMCB.

of the ATLCB is placed in

If this is not the first ATLCB created
for the GTMCB, pointers are set as follows:

e The address of the newly created ATICB
is placed in the ATTNFWPT field of the
previously active ATLCB. Thus, the
previously active attention level
becomes inactive.

e The address of the previously active
ATLCB is placed in the ATTNBKPT field
of the newly created ATLCB.

e The ATTNFWPT field of the newly created

ATLCB is set to zero to indicate it is
the active attention level.

36

e The address of the newly created ATLCB
is placed in the GTMCB, which points to
the active attention level.

See "Chaining®™ under "Introduction" for the
relationship of pointers.

Next, the programmed function indicator

lights are 1lit as defined in the GTMLIGHT
field of the GTMCB. Control 1is then
returned to the calling program.

ENATL (Module Name IFFACAO1l)

Chart: FB

Function: (1) Terminates all attention
levels that are lower 1in the attention
level hierarchy for this GTMCB than the

specified attention level, thus making the
specified attention level active; or (2)
terminates the specified attention level
and all other attention level(s) lower in
the hierarchy for this GTMCB, making the
next higher remaining attention level
active.

Entry: IFFACAO1l from Director Part 2.

Exit: To the calling program.

Input: See "Input to Many GSP Subroutines.”
ATLCBs and their

Output: The appropriate
ADEQs are deleted.

Operation: If the parameters are valid, the
GSP GACB attention sources are disabled to
prevent any attention from occurring while
the attention levels are being manipulated.

If a "rangecode™ of 1 has been speci-
fied, pointers are manipulated as follows:

e If the ATTNBKPT field of the specified
ATICB points to the GTMCB, the GTMLATBL
field in the GTMCB is set to zero.

e Otherwise, the ATTNBKPT field of the
specified ATLCB is placed in the
GTMLATBIL, field of the GTMCB, and the
ATTNFWPT of the next higher ATLCB is
set to zero.

If a "rangecode™ of 2 has been speci-
fied, various pointers are manipulated as
follows:

e The address of the specified ATLCB is
placed in the GTMCB.

e The ATTNFWPT field of the specified
ATICB is set to zero.

attention 1level still
designated attention
removed from the ATLCB

If an active
remains after the
levels have been



chain, attention sources and the light pen
restart option are enabled in the GSP GACB
(according to the options specified in the
active ATLCB). Programmed function indica-
tor lights are 1it as specified in the
active ATLCB.

Storage for the detached ATICBs and
their ADEQs is now freed, and control is
returned to the calling program.

ENATN (Module Name IFFACA02)

Charts: FC, FD

Function: Performs two services, namely,
(1) defines which attention sources are to
receive attentions when the designated
attention 1level is active by setting bits
in the ATLCB (and in the GSP GACB if the
specified level is active), and (2) removes
any rprevious attention information for
those sources that may be on the queue for
the designated ATLCB.

Entry: IFFACA02 from Director Part 2.
Exit: To the calling program.

Input: See "Input to Many GSP Subroutines.”
Anpuc y

Output: Appropriate bits are set in the
proper control blocks (see "Function"™

above) . Any attentions currently queued
for the specified level that match atten-
tion - sources just enabled are removed from
the queue. Programmed function indicator
lights are 1lit as appropriate.

Operation: While the "attnsource"™ parame-
ters are being tested, two terporary atten-—
tion source masks -- one for programmed
function keys and one for all other atten-
tion sources -- are set up. For each
*attnsource®™ specified, a bit is set in the
approrpriate mask. The meaning of the bits
in these masks 1is the same as for the
ATTNPFEN and ATTNANEN fields in the ATLCB.
These masks are then added to the ATTNPFEN
and ATTNANEN fields in the ATLCB.

If the specified attention level is
active, all attention information in the
GSP GACB that was obtained from an atten-
tion source just enabled is removed from
the GSP GACB and from the ATLCB. The freed
ADEQs are +transferred from the ATTNMLEN
field of the ATLCB to the ATTNAVAL field.
The mnewly constructed attention source
masks are now added to the attention source
masks in the GSP GACB. Indicator lights
for newly enabled programmed function keys
are 1lit, and control is returned to the
calling program.

If the
inactive,

specified attention 1level is
the ATTNMLEN field of the ATICB

is checked and any information queued for
an attention from one of the newly enabled
sources is removed. The ATTNAVAL field is
updated to include these free areas. Con-
trol is then returned to the calling pro-
gram.

DSATN (Module Name IFFACA03)

Charts: None

Function: Causes future attentions for the
designated attention sources to be disre-
garded by deleting the attention sources
from the enabled attention source masks 1in
the ATLCB, and in the GSP GACB if the
designated attention level is active.

Entry: IFFACAO3 from Director Part 2.

Exit: To the calling program.
Input: See "Input to Many GSP Subroutines.”

Output: The enabled attention source bits
are properly reset in the appropriate con-
trol block(s). (See "Function" above.)
Programmed function indicator 1lights are
relit as appropriate.

while the
being tested,

Operation: As in ENATN,
"attnsource™ parameters are

two temporary attention source masks are
set up. These masks are now subtracted
from the corresponding ATTNPFEN and

ATTNANEN fields in the specified ATLCB. If
the ATLCB is inactive, control is returned
to the calling program.

If the ATICB is active, the new atten-
tion masks in the ATLCB are placed in the
associated GSP GACB. Programmed function

indicator 1lights are relit as appropriate,
and control 1is returned to the calling
program.

SLPAT (Module Name IFFACA06)

Chart: None

Function: Enables or disables 1light pen

attentions for a specified GDS.

Entry: IFFACAO0O6 from Director Part 2.

Exit: To the calling programe.

Input: See "Input to Many GSP Subroutines."
Output: The appropriate bit is set in the
GDSCB and the appropriate graphic order is
placed in the buffer.

Operation: Depending on the value of the

*"detect™ parameter, the following steps are
taken:

Program Organization 37



e If "detect™ is 1, bit 7 in the GDSFLAGS
field of the GDSCB is set to one, and
the Enable Switch Detect (GESD) order
is written to the buffer location spec-
ified by the GDSFCBUF field in the
GLSCB. Control is then returned to the
calling program.

o If "detect™ is 2, bit 7 in the GDSFLAGS
field is set to zero, and the Disable
Light Pen Detect (GDPD) order is writ-
ten to the buffer location specified by
GLSFCBUF. Control is then returned to
the calling program.

ROATN (Module Name IFFACA(08)

Charts: FD, FE, FF, FG

Function: Performs the following as desig-
nated in the call to the RQATN subroutine:

e Makes available attention information
about an attention from a designated
source. It dequeues that information
as it is made available unless the

do-not-dequeue option for an inactive
ATLCB was specified in the call to the
CRATL subroutine for the associated
ATLCB.

e Delays execution of the main line pro-
gram until an attention occurs from a
designated source. Then information
about that attention is made available
to the calling program.

e Places additional information for light
pen, end-order-sequence, and programmed
function keyboard attentions in a user-
defined array.

Entry: IFFACAO8 from Director Part 2.
Exit: To the calling program.
Input: See "Input to Many GSP Subroutines."

Output: A code indicating which designated
source caused the attention is assigned as
the value of the "codeloc" parameter. If
the designated source was the light pen, an
end-order-seguence order, or a programmed
function key, additional information about
the attention is placed in the area
jdentified by the "arrayname®™ parameter.

Operation: While the "attnsource" parame-
ters are being tested for validity, two

temporary attention source masks are esta-
blished. These masks are used later to
deterrine (1) whether attention information
is from one of the sources designated in
the <call to the RQATN subroutine, and (2)
whether those sources are enabled for the
ATLCB if that ATLCB is active. The masks

38

are discussed in detail in the description

of the ENATN routine.

attention source masks are
established, processing proceeds in two
ma jor phases: (1) to determine if an atten-
tion has occurred from designated attention
sources, and (2) to determine which source
caused the attention and then make
appropriate information about that atten-
tion available to the calling program.

Once the

Determining if an attention had occurred
from designated attention sources. A test

is made to determine if attention informa-
tion for any of the designated sources is
on the ATLCB queue. If it is on the queue,
that information is saved in a work area.
The information is then removed from the
queue unless the ATLCB is inactive and the

do-not-dequene option is specified (see
CRATL subroutine).
If there is no information on the queue

and the specified ATLCB is inactive, con-
trol is immediately returned to the calling
program. If no immediate return is wanted,
a return code designating a parameter error
is placed in the GSPARRARY field of the
GSPCB.

If there is no information on the queue
and the specified ATLCB is active, process-
ing continues as follows:

1. If the designated attention sources
are disabled, control is immediately
returned to the calling program along
with an appropriate return code.

2. If +the designated attention sources
are enabled, RQATN determines if there
is any attention information from one
of the designated sources in the GSP
GACB. If there is none and an immedi-
ate return is wanted, control is

immediately returned to the calling
program. If there 1is none and no
immediate return is wanted, RQATN

wailts until an attention occurs. When
the awaited attention occurs, informa-

tion about it is saved in a work area
and removed from the GACB.
Determining which source caused the

attention and making appropriate informa-
tion available. Once information either
from the ATLCB queue or from the GSP GACB
has been obtained, tests are made to deter-
nmine which requested source caused the
attention. Depending on the attention
source, the following processing is done:

1. If the light pen caused the attention,
the GDSCB is 1located via the buffer
control table (BCT). If the GDSCB
cannot be located, or if the light pen
is not enabled for this GDSCB, regen-



eration of the display occurs (if the
restart flag is set to zero) and a
test is made to determine if any other
attention has occurred for one of the
requested sources.

If the light pen is enabled for this
GLCSCB, RQATN determines if character
information is to be returned. If it
is, the information is obtained from
the buffer, and the display is regen-
erated (if desired).

If the "arrayname" parameter was spec-
ified, the designated array is filled
in with information from the GTMCB,
BCT and key table. If coordinate
information is desired, CNVRT is used
to provide that information. A value
cf 34 1is placed in the "codeloc"
variable and control is returned to
the calling program.

2. If an end-order-sequence order caused
the attention about which information
has been obtained, and if coordinate
information 1is to be returned, RQATN
obtains the information from the X and
Y position registers, and restarts the
display (if desired).

If the "arrayname"™ parameter was spec-—
ified, the array is now filled in the
same way that it was for a light pen
attention. A value of 35 is placed in
the "codeloc® variable and control is
returned to the calling program.

3. If a programmed function key caused
the attention about which information
has been obtained, the overlay code is
rlaced in the first word of the array
if the "arrayname"™ parameter has been
specified. The numeric value of the
programmed function key is then placed
in the "codeloc"™ variable and control
is returned to the calling program.

4. If the END key caused the attention, a
value of 32 is placed in the “codeloc"
variable and control is returned to
the calling program.

5. If the CANCEL key caused the atten-
tion, a value of 33 is placed in the
"codeloc" variable before control is
returned to the calling program.

Note: CANCEL key is currently unavailable
for use as it is enabled for the Panic Key
routine which has the highest possible
priority. Thus, a CANCEL key attention is
always recognized by the Panic Key routine.

MLITS (Module Name IFFACAQ07)

Charts: None

Function: Sets bits either in the GTMCB or
the ATLCB that indicate which programmed
function indicator lights are to be 1lit.

Entry: IFFACAO7 from Director Part 2.

Exit: To the calling program.

Input: See "Input to Many GSP Subroutines."
inpuc p

Ooutput: The designated programmed function
indicator lights are 1lit.

Operation: Depending on the parameters that
were specified, the appropriate setting of
bits is accomplished. If the first param-
eter points to a GTMCB, bits are set in the
GTMLIGHT field as shown in Table 2.

Table 2. GTMLIGHT Options

T 1 1
| "status" | Bit Setting and Meaning |
} ] 4
r T 1
| 1 | Exror return with appropriate|
i | return code |
t 1 1
| 2 | X'02° Turn all indicator |
| | lights off |
t t {
| 3 | X*03° Light enabled keys |
L 1 4
L) T 1
| 4 | XTour* Use GTMCB light mask |
1 [ 4
¥ T h)
| other | Error return with appropriate|
| | return code |
L L J
Note: If "status"™ equals four, the

"lights® parameters are tested for validi-
ty. If they are invalid, control is
returned to the calling program along with
an appropriate return code. If they are
not specified, the present light mask in
the GTMPFKSS field of the GTMCB is used.
Otherwise, a light mask is created. A bit
is set for each "lights" parameter speci-
fied. Bit positions 0-31 in the mask
correspond to programmed function keys
0-31, respectively. This 1light mask is

placed in the GTMPFKSS field of the GTMCB.
If the first parameter points to an
ATICB, bits are set in the ATTNLITE field

as shown in Table 3.

Program Organization 39



Table 3. ATTNLITE Options

] L L)
| "status™ | Bit Setting and Meaning |
1 L d
t 1 H
| 1 | X*'01' Use GSP default |
| | option in GTMCB |
b t 4
| 2 | X*02' Turn all indicator |
| | lights off |
L 1 (]
) 1 1
| 3 | X'03' Light enabled keys |
L 4 4
] T 1
| 4 | X'04' Use ATLCB light mask |
L i J
r 1 1
| other | Error return with appropriatej
| | return code |
L L ]

Note: 1If "status"™ equals four,

* The present light mask in the ATTNPFLM
field of the ATLCB is used if "lights"
is not specified.

e A light mask created by MLITS is placed
in the ATTNPFLM field of the ATLCB.

Once the bits are set, the active ATICB
is located via the GTMCB and the programmed

active ATLCB. Control is then returned to
the calling program.

MLPEO (Module Name IFFACAQS5)

Charts: None

Function: Designates (1) the type of infor-
mation to be queued about a 1light pen or
end-order—-sequence attention, and (2) when
display regeneration is to begin after a
light pen or end-order-sequence attention
has occurred.

Entry: IFFACAO5 from Director Part 2.

Exit: To the calling program.

Input: See "Input to Many GSP Subroutines.”
Output: Appropriate bits are set in
ATTNFLGA field of the ATLCB. If the speci-
fied attention level is active, appropriate
bits are also set in the GSP GACB.

Operation: Depending on the values of the
parameters, the option bits are set in the

function indicator lights are lit according ATTNFLGA field of the specified ATLCB as
to the lights option byte (ATTNLITE) of the shown in Table 4.

Table 4. MLPEO Options

I L 1
| Parameters | ATTNFLGA Field |
b T T 1 T i
| | | [ o _ |
| "attntyp"™ | "info" | "restart®™ | Bit Setting | Meaning |
L (1 i L 1 J
1) L 1 T ) 1
| 1 | 1 | | Bit 0 = 0 | Return no coordinate information for |
| | | I | EOS attentions. |
b } + { } 1
| | 2 | | Bit 0 = 1 | Return coordinate information for EOS |
| | | | | attentions. |
k 1 t + ! 1
| 2 | 1 | | Bit 2 = 0 | Return no coordinate or character |
| | | | Bit 3 =0 | code information for light pen atten- |
| | | | | tioms. |
F } : : + {
| | 2 | | Bit 2 = 1 | Return coordinate information for light|
| | | | | pen attentions. |
F ¢ + : : :
| | 3 | | Bit 3 =1 | Return character code information for |
| | | | | 1light pen attentions. |
b i t { i 1
| | ) | | Bit 2 = 1 | Return coordinate and character code ]
| | | | Bit 3 =1 | information for light pen attentions. |
L 1 L 4 ] J
) T L T ¥ 1
| 2 | | 1 | Bit 4 = 1 | Restart display immediately after ]
L 4 1 (1 (] l
LB T T 1 1

| 1 | i 1 | Bit 1 1 | attention occurs. |
19 [ L [ 1 § ]
T T T Ll ¥ 1
| 2 | | 2 | Bit 4 = 0 | Restart display after the mext call to |
L (] 1 | 4 I
1) 1] ] L] L}

| 1 | | 2 | Bit1 =0 | the EXEC subroutine. |
L L L 1 | § 3
v 1
[Note: If the "info" or "restart" parameters are not specified, a value of 1 is assumed. |
t ]

40



If the specified ATLCB is active, the
restart option byte in the GSP GACB is set
to reflect the information specified by the
"restart®™ parameter. Control is then
returned to the calling program.

MPATL (Module Name IFFACAO4)

Charts: FH, FJ

Function: Changes the relative position of
a specified ATLCB within the hierarchy of
all ATLCBs currently associated with this
GTMCB.

Entry: IFFACAO4 from Director Part 2.
Exit: To the calling program.
Input: See "Input to Many GSP Subroutines."

Cutput: The hierarchy of ATLCBs is properly
reordered. The light pen restart option in
the GSP GACB is set as specified by the
active ATLCB. Programmed function indica-
tor lights associated with the GTMCB are
1lit as specified by the ATTNLITE field of
the active ATLCB.

Operation: This consists of manipulating
ATLCBs in the chain. For chaining informa-
tion, see "Chaining" under "Introduction."

The new position in the chain for the
specified ATLCB is determined as follows:

e If the "relattnlevel"™ parameter is not
srecified, the value of the "direction"™
parameter determines the new position.

e If +the "relattnlevel™
srecified, a value 1is computed that
indicates the direction (up or down)
and the number of ATLCBs between the
relative ATLCB and the ATLCB designated
by +the ™“attnlevel™ parameter. This
value is then added to the value of the
"direction" parameter to produce a sum
that positions the specified ATLCB.
(Note: If the designated ATLCE is not
associated with the specified GTMCB,
centrol is returned to the calling
program along with an appropriate
return code.)

parareter is

The "direction"™ value (or computed sum
in cases when the "relattnlevel"™ parameter
is specified) is tested for validity. This
is accomplished by counting up or down the
chain of ATLCBs in the desired direction
until the top or bottom of the chain is
reached. If this count is less than the
"direction®™ value (or computed sum), con-
trol is returned to the calling program
along with an appropriate return code.

Before the specified ATLCB is moved to
its new position, attention information in
the GSP GACB is placed in the active ATLCB
ATTNMLEN queue. All attention sources for
the GSP GACB are then disabled, thus pre-
venting attentions from occurring while the
ATLCBs are being moved. The ATLCB to be
moved is then deleted from the chain.

Once the ATLCB 1is deleted from the
chain, its ATTNBPID field is set to zero
and the new point of insertion is deter-
mined. This is done by using the
"direction" value (or computed value) for
searching up or down the chain of ATLCBs.
The value is decremented by one for each
ATLCB reference until the value reaches
zero. The specified ATLCB is then inserted
into the chain at this new location.

Attention sources for the GSP GACB are
now reenabled; the light pen restart option
is set in the GSP GACB as specified in the
ATTNFLGA field of the active ATLCB, and
programmed function indicator 1lights are
lit as specified in the ATTNLITE field of
the active ATLCB. Control is then returned
to the calling program.

CANCEL Key (Panic Key) Routine (Module Name
IFFAHA09)

Chart: None

Function: Presents to the user the follow-

ing options:

e Abnormally terminate the
produce a dump.

program and

e Abnormally terminate the program with-
out a dump.

e Resume normal processing.

Entry: IFFAHAO9 from an attention caused by
the depression of the CANCEL key.

Exit: Abnormal termination via the ABEND
macro instruction if the END key was de-
pressed; or a return to the calling program
if the CANCEL key was depressed.

Input: In register 1, the address of the
panic GACB.

Output: A dump may be produced if the END

key was depressed. This depends on the
null variable. If the null variable is
negative, the dump is produced. If the
null variable is positive, no dump is
produced.

Operation: After the registers are saved,
work areas are set up, and a check is made
to ensure that this routine was entered by
a CANCEL key attention. If it was, the END

Program Organization 41



key is enabled and an attention is awaited
from either the END or CANCEL key. The
following action is taken when an attention
is detected:

e ITf from the END key, an ABEND macro
instruction with appropriate completion
code 1is issued +to terminate the pro-
gram. Whether the null variable is a
negative or positive value determines
whether or not a dump is produced.

e If from the CANCEL key,
disabled.

the END key is

SALRM (Module Name IFFACA13)

Chart: None

Function: Sets the audible alarm on the

2250.

Entry: IFFACA13 from Director Part 2.

Exit: To the calling program.

Input: See "Input to Many GSP Subroutines."

Output: A single stroke of the audible

alarm is sounded.

Operation: GCNTRL macro instruction is
issued to create the order for sounding the
audible alarm. The DCB address used for
this macro instruction is obtained from the
GTMGRLCB field of the associated GTMCB.

LIGHT PEN SUBROUTINES

These subroutines facilitate two-way
communication between the GSP program and
the 2250 operator through use of the light
pen. The subroutines involve 1locating a
position on +the screen at which the light
pen is pointed (LOCPN), and using the light
pen to cause the program to move a tracking
symbol from one screen location to another
(BGTRK, RDTRK, and ENTRK).

LOCPN (Module Name IFFAGAO1)

Chart: None

Function: Locates the coordinates on the
screen to which the light pen is pointed.

Entry: IFFAGAO1l from Director Part 2.

Exit: To the calling program.

Input: See "Input to Many GSP Subroutines."”
Output: The coordinates of the 1light pen

detect are placed in the user-specified
variakles.

42

Operation: A LOCPN GACB is created in the
work area to accept the light pen atten-
tion. The screen scanning orders are
placed in the GDOA of the system GDS via
ORGEN and then into the buffer via EXEC to
start the display. Approximately 1/2 sec-
ond after the start of the display, a check
is made to determine if a light pen atten-
tion occurred.

If no light pen attention had occurred,
regeneration of the display is started and
scanning continues. :

If a light pen attention had occurreg,
the coordinates of the location of the
light pen are converted to user units via
CNVRT and are placed in the variables
designated by the "xpos" and "ypos" param-—
eters. RESET is called to remove the
screen scanning orders from the buffer.
Before control is returned to the calling
program, the LOCPN GACB is disabled.

BGTRK (Module Name IFFAGA02)

Chart: None
Function: Displays tracking symbol at
designated screen position.

Entry: IFFAGAO2 from Director Part 2.
Exit: To the calling program.
Input: See "Input to Many GSP Subroutines."

Output: The tracking symbol is displayed on
the screen.

Operation: The user-specified positioning
coordinates are converted to raster units.
If conversion was unsuccessful or if the
coordinate values are off-screen, raster
unit values corresponding to the center of
the screen aré assumed. The return code
for scissoring is placed in the GSPARRAY
field of the GSPCB, and processing contin-
ues.

Once the raster unit coordinate values
are obtained, they are placed in the track
routine orders. The orders are entered
into the GDOA of the system GDS via ORGEN
and then into +the buffer to start the.
display via EXEC.

If the track routine orders are already
in the buffer, the tracking symbol is
repositioned by writing the new coordinates
into the buffer. The GTMREPOS field in the
GTMCB contains the buffer address of the
coordinates for the tracking symbol.



ENTRK (Module Name IFFAGAO4)

Chart : None

Function: Removes tracking symbol from the

screen.
Entry: IFFAGAO4 from Director Part 2.
Exit: To the calling program.

Input: See "Input to Many GSP Subroutines."

Output: None

Operation: The GTMFLAGS field of the GTMCB

is checked to see if +the +track routine
orders are in the buffer. If they are,
RESET is called to remove the orders from
the Fkuffer, and the indicator in the GTMCB
is reset. Otherwise, control is immediate-
ly returned to the calling program.

RDTRK (Module Name IFFAGA03)

Chart: None

Function: Reads the current position of the
tracking symbol from the buffer.

Entry: IFFAGAO3 from Director Part 2.
Exit: To the calling program.

Input: See "Input to Many GSP Subroutines."

Output: The coordinates of the tracking
symbol are placed in the user-specified
variakles.

Operation: The GTMFLAGS field of the GTMCB
is checked to see if the tracking routine
orders are in the buffer. If they are not,
control is immediately returned to the
calling program. Otherwise, the GTMREPOS
field of the GTMCB indicates where the
current position of the tracking symbol can
be found in the buffer. The coordinates
are converted to user units via CNVRT and
placed in the variables designated by the
"xval" and "yval" parameters. If CNVRT
fails to execute successfully, control is
returned to the calling program along with
an appropriate return code, and no values
are placed in the user's variables.

STATUS INFORMATION FUNCTIONS (MODULE NAMES
IFFAJAQOLl, IFFAJAQ2, IFFAJA03, AND IFFAJAOL)

These functions return status informa-
tion about the execution of GSP subroutines
to the user's program.
placed in word 6 (contents of register 0)
of the save area in the user's program.
Note that this area is not the save area in

The information is:

the routine (Director Part 2) that actually
passed control to the function.

The four functions are
three routines as follows:

performed by

e ITRC (module name IFFAJAOl1l) returns GSP
return code information to the calling
program. Depending on the value of the
"code" parameter, the following infor-
mation is returned:

Value of "code"™ Value Placed in Word 6

The return code if it is
higher than or equal to
the wvalue of the "code"
parameter. If the return
code 1is zero, a value of
zero is placed in Word 6.

i, 2, 3, 4, 5

9 Contents of corresponding
additional information
word in the GSPARRAY, pro-
viding the value in Byte 1
of the GSPARRAY is not
zZero.

9 Maximum negative wvalue, if
the value in Byte 1 of the
GSPARRAY is zero.

Any other value Maximum negative value.

e ITST (module name IFFAJAO4) returns
information identifying current options

selected for the specified GDSCB.
Depending on the value of the
"optionsub" parameter, the following
information is returned.
Value of
"optionsub"” Value Placed in Word 6
1, 2 A value of 1-4, depending
on the contents of the
GDSDATMD field in the
GDSCB.
3 A value of 1-3, depending
on the contents of the
GDSCURMD field in the
GDSCB.
4 A value of 1-4, depending
on the contents of the
GDSCHARS field in the
GDSCB.
e ITBP (module name IFFAJA02) and RTBP
(module name IFFAJAO3) return the

actual or desired beam position (actual
is different from desired if scissoring
occurred) for the specified GDSCB for
integer and real coordinates respec-
tively. Depending on the value of the

Program Organization 43



"jnfo"” parameter, the following information
is returned:

Value of
"info" value Placed in Word 6

1 The contents of +the GDSXLAST
field of the GDSCB converted
to user units via CNVRT sub-
routine.

2 The contents of the GDSXCURR
field of the GDSCB converted
to user units via CNVRT sub-
routine.

3 " The contents of the GDSYLAST
field of +the GDSCB converted
to user units via CNVRT sub-
routine.

4 The contents of the GDSYCURR
field of the GDSCB converted
to user units via CNVRT sub-
routine.

Note: If the information requested is not

in the mode requested, the maximum negative
value is returned in Word 6 of the save
area.

The entry point in each routine is the

same as its module name. Entry is from
Director Part 2. Exit is back to Director
Part 2.

Input to each of these routines consists
of the address of a work area in register
1. The first word of +this area contains
the address of the parameter list specified
by the user in requesting the status infor-
mation function. In the case of ITRC, the
second word of the work area contains the
address of the GSPARRAY.

Each routine tests the parameters for
validity. An invalid parameter causes con-—
trol to be returned to the calling program
along with a value of zero in Word 6
(contents of registor 0) of the save area
in the user's program.

STROKE TABLE CREATION AND USE

This section contains information about
the system stroke table, the creation of a
stroke table, and describes the control
information placed in a stroke table. The
subroutine (DFSTR) that changes a stroke
table, and the subroutine (PLSTR) that uses
a stroke table to create orders and data
for displaying symbols are also described
in this section.

5y

System Stroke Table (Module Name IFFAHA16
Alias GSPO01l)

The GSP system stroke table resides in
the 1link library (SYS1.LINKLIB). 1Its con-
tents and use are described in the publica-
tion IBM System/360 Operating System:
Graphic Programming Services for FORTRAN
1V, Form C27-6932.

Creating a Stroke Table

The GSP programmer may create his own
stroke table of addresses and space for
defining the strokes. The method of creat-
ing a stroke table is also described in the
publication IBM System/360 Operating Sys—
tem: Graphic Programming Services for FOR-
TRAN_IV.

Stroke Table Control Information

The first two words of any GSP stroke
table contain control information which is
either inserted or referred to whenever a
stroke table is requested by the user.

The first word contains the identifi-
cation of the stroke table. Once a stroke
table has been loaded, this word is used to
locate the stroke table specified in a call
to DFSTR or PLSTR. When a stroke table is
loaded, the value of the "table™ parameter
passed by the user is placed in this word.
The wvalue %01" identifies the GSP system
stroke table.

The second word contains a chain
address, which points to the main storage
location where the next stroke table is
loaded. The chain address is used to
locate all stroke tables that are loaded
after the first stroke table. When a
stroke table is loaded, this word is set to
Zero. Wwhen the next stroke table is load-
ed, the load address returned by the LOAD
macro instruction is placed in this word.
If this word is zero, it indicates the end
of the chain of strokes tables.

The address of the first stroke table
loaded is placed in the GSPSTRTB field of
the GSPCB. This stroke table is not neces-
sarily the GSP system stroke table.

DFSTR (Module Name IFFAGAO05)

Chart: None

Function: Replaces a symbol currently in a
stroke table with another symbol specified
by the user.

Entry: IFFAGAO5 from Director Part 2.

Exit: To the calling program.



Input: See "Input to Many GSP Subroutines."

Output: The strokes that create the new
symbol are placed in the stroke table area
that contained the strokes for creating the
old symbol.

Operation: If the specified stroke table is
not yet in main storage, it is loaded and
added to the chain of stroke tables. The
new strokes in the user-specified array are
then ccnverted to the correct form (see IBM
Systen/360 Operating System: Graphic Pro-
gramming Services for FORTRAN IV, Form
C28-6932) and are placed in the stroke
table area defined by the "symbol"™ parame-—
ter one at a time, overlaying any previous
informration in that area. Control is
returned to the calling program when all
the strokes have been transferred from the
user's array.

PLSTR (Module Name IFFAGA06)

Chart: GA

Function: Causes graphic orders and data to
be generated for displaying a symbol, the
strokes of which are in a stroke table.
Entry: IFFAGAO6 from Director Part 2.

Exit: To the calling program.

Input: See "Input to Many GSP Subroutines."

Output: Orders and data are generated and
stored in the GDOA to display the desired
symbols.

Operation: The stroke table referred to is
located or brought into main storage via
the LOAD macro instruction. It is added to
the chain of stroke tables, if necessary.
If the "xcoor™ and "ycoor" parameters are
provided, their values are scaled, scis-
sored, and graphic orders and data are
generated for positioning the beam to the
specified location. Otherwise, the current
beam position is used as the center point
of the first symbol to be displayed.

PLSTR 1locates the strokes necessary to
produce a symbol, and converts each stroke
from the stroke table format into a vector
to be displayed on the screen, taking into
account the height, width, and orientation
provided by the user. Scissoring is called
to scissor each stroke. Data Generator is
called to create the orders and data for
displaying the stroke, which are then
placed in the GDOA before control is
returned to PLSTR. This process is repeat-
ed until the orders and data for producing
all desired symbols have been placed in the
GDOA. After each character has been gener-
ated, the beam is positioned to the center

point of the next character (determined by
the "spacing™ parameter or by default).

If a symbol is referred to which has no
strokes defined for it, the next symbol is
processed. No spacing occurs.

If the element produced is not an update
element and a level 1 key or correlation
value is specified, the key is established
and placed in the key table via Key Table
Management.

If the element is an update element, Key
Table Management is called to verify the
validity of the key or correlation value.
Update is called to obtain a temporary GDOA
before any initial beam positioning is
done, and Update is recalled after the
orders and data for producing all desired
symbols have been placed in the GDOA to
write these orders to the buffer. Control
is then returned to the calling program.

DIRECT ORDER GENERATION SUBROUTINE

The direct generation of graphic orders
and data is accomplished through the use of
the ORGEN subroutine.

ORGEN (Module Name IFFAGAO07)

Charts: HA, HB

Function: Moves user-specified graphic
orders and data into a GDS from a main
storage array. The 1logic of the moved
orders is not checked.

Entry: IFFAGAO7 from Director Part 2.

Exit: To the calling program.

Input: See "Input to Many GSP Subroutines.”
and

Output: User-specified graphic orders
data are placed in the designated GDS.

Operation: Processing by ORGEN depends upon
the input parameters that are passed to it.

If either "key" or ®"corrval" parameters,
or both, are specified for a level 1 GDS,
ORGEN establishes appropriate key and
include/omit structures. The include/omit
structure is stored in the GDOA preceding
the graphic orders and data that are to be
moved.

If it is an wupdate call, Key Table
Management is called to verify the validity
of the key or correlation value.

If a key for a level 2 GDS is specified,
ORGEN computes a new key and places it in

Program Organization 45



the variable designated as the "key" param-
eter.

In any case, Update is called to furnish
one or more temporary GDOAs to be used by
ORGEN to manipulate the graphic orders and
data passed by the calling program. The
graphic orders and data are moved to the
temporary GDOAs. If a GDOA 1is filled
before all orders and data have been trans-
ferred, the set mode order for the next
GDOA is established, and ORGEN moves orders
and data to the next GDOA. If more than
one temporary GDOA is obtained and this is
not an update call, additional buffer is
assigned via Buffer Management. The trans-
fer orders from one GDOA to another are
completed with the assigned buffer address-
es.

Address manipulation is
within the set of graphic orders and data
that are now in the temporary GDOAs. The
entire set of orders and data 1is searched

accomplished

for set mode orders. As each set mode
order is encountered, the following is
performed:

» Non-address-type orders remain un-

changed and the search continues.

» Address—-type orders that refer to a
location within the array of orders and
data are resolved by determining which
GLCOA contains the address referred to
and then calculating the physical buf-
fer address. This procedure is
referred to as relocation.

» Address~-type orders that refer to a
location represented by X'FFFF' are
resolved by translating the logical
address in the corresponding key into a
physical buffer address. The key is
not checked for validity. However, it
is checked to ensure that it is asso-
ciated with the specified GDS.

1f the call to ORGEN is not an update

Data Store (if required). The key is added
to the key table via Key Table Management.

In case of an update call, ORGEN con-
pletes the includes/omit structure as above,
and then calls Update to write the tempora-
ry GDOAs to the buffer and to release
storage used for the temporary GDOAs and
OACBS. If a correlation value is speci-
fied, ORGEN places this value in the
appropriate field of the key associated
with the element.

The GDSGRMOD field, which designates the
current mode, 1is set to zero to indicate
that a set mode order is required for the
next call before control is returned to the
calling program.

If an erxrxror 1is detected during the
operation of ORGEN, an appropriate return
code is placed in the GSPARRAY field of the
GSPCB. Storage obtained for the temporary
GDOAs and OACBs is freed. If buffer was

acquired, Buffer Management is called to
release this buffer. Control 1is then
returned to the calling program.
CONVERTING COORDINATES SUBROUTINE

The CNVRT subroutine converts coordi-
nates from user values to raster units and

vice versa.

CNVRT (Module Name IFFAGA(08)

Chart: JA
Function: Accomplishes the following:

e Converts real or integer wuser coordi-

nates to integer raster units.

e Converts integer raster units to real
or integer user coordinates.

Entry: IFFAGAO8 from Director Part 2,

call, the contents of each temporary GDOA
are moved, one GDOA at a time, to the
original GDOA for the GDS. After the
contents of each temporary GDOA have been
transferred, Data Store is called to trans-
fer data to the buffer assigned to that
particular GDOA. Data Store is not called
when the contents of the last GDOA have
been moved. However, the OLP, LOGCURR, and
LENLEFT fields of the original OACB are
updated. (The user must call the EXEC
subroutine to transfer this data to the
buffer.)

ORGEN then frees
for temporary GDOAs

the storage obtained
and OACBs, completes

the key, places the key in the user's
variakle (if specified), and proceeds to
complete the includes/omit structure via

46

LOCPN, BGTRK, RDTRK, or RQATN.
Exit: To the calling program.
Input: See "Input to Many GSP Subroutines."

Output: The converted information is placed
in the user-specified variables.

Operation: The following operations are
performed, based on the specified value of

the "convert" parameter:

e If "convert™ equals 1, input is assumed
to be absolute, integer raster unit
coordinates. If the GDSDATMD field of
the GDSCB specifies real mode, the
input values are converted to real.
Then, these values are converted to



user units and placed in the user-specified
variakles. If the GDSDATMD field does not
specify real mode, the integer values are
converted to user units and placed in the
user-specified variables.

e If "convert™ equals 2, input is assumed
tc be absolute and either real or
integer, as specified in the GDSDATMD
field. An appropriate parameter list
is set up for Scaling, and the GDSDATMD
field is set to force absolute mode
before Scaling is called to convert the

values. Output from the Scaling rou-
tine is absolute and integer. CNVRT
places this output in the user-—

srecified variables.

INTERNAL ROUTINES

Internal routines in GSP perform various
services for GSP subroutines. These
internal routines are described in detail
according to the following categories:

e Flow Control Management

e Buffer Management

e Key Table Management

o Scaling and Scissoring of Input Data

e Data Generation, Data

Ugdating

Storing, and

FLOW CONTROL MANAGEMENT

When INDEV is called to initialize the
2250, Flow Control Management is used to
establish and initialize the flow control
table (FCT) in main storage and the flow
contrcl structure in a buffer section.

During the processing of the wuser's
program, Flow Control Management updates
the FCT and the flow control structure as
required and terminates their use when the
use of the 2250 is terminated.

Together, the FCT and the flow control
structure manage the regeneration sequence
of GDSs as specified in the user's program.
The FCT is used to record the status
(in-use or free) of eacnh possible entry in
the flow control structure. The flow con-
trol structure governs the transfer of
control to GDSs within the buffer. Both
are described in the paragraphs that fol-
low.

Flow Control Table

The FCT consists of ten bytes of control
information followed by a series of two-
byte entries that contain the buffer

addresses for each flow control entry in
th2 flow control structure, including the
system GDS. A total of 24 flow control
entries is permitted for the user's GDSs.
Figure 10 shows the format and contents of

the FCT at the time it 1is first initial-
ized.
Cmmmmm - 4 Bytes - ——

Address of Free List (FCT + 12)

Length of In—use List (2)

Buffer + 6

+ 8 Buffer Address (System GDS)

+12 Buffer + 16 Buffer + 26

+16 Buffer + 36 Buffer + 46

+20 Buffer + 56 Buffer + 66

+24 Buffer + 76 Buffer + 86

+28 Buffer + 96 Buffer + 106

+32 Buffer + 126

+36 Buffer + 136 Buffer + 146

+40 Buffer + 156 Buffer + 166

+iy Buffer + 176 Buffer + 186

+48 Buffer + 196 Buffer + 206

+52 Buffer + 216 bBuffer + 226

+56 Buffer + 236 Buffer + 246

[ e . S e S — e —— A . S - o S G— A S S[3 ane WA S NP Ctt S S o Y e, )
(SRR SR TR TSN VS SRR S S S " e s ol e e s e V

T
|
|
4
1]
|
4
T
|
1
L]
|
J
i
|
1
L)
|
=
Buffer + 116 |
L
1
|
L
L]
|
1
]
|
1
[)
|
4
T
|
1
1
|
4

Flow Control
tialization

Figure 10. Table Upon Ini-

In this figure, the address of the free
list is the 1location in the FCT of the
first buffer address that 1is free for
entering the next flow control entry.
Since the system GDS is always the first
one in the order of flow control, the first
available flow control entry is located at
FCT + 12. Each time a flow control entry
is used, the address of the free 1list 1is
incremented by two bytes. Each time a flow
control entry is released, this address is
decremented by two bytes. All in-use
entries are always in the first part of the
FCT. All free entries are always 1in the
latter part of the FCT.

The length of the in-use l1list at FCT + 4
is the total 1length (in bytes) of the
entries in the FCT (beginning at FCT + 10
to include the system GDS) that are point-
ing to buffer locations currently being
used for flow control entries. Initially,
this field contains two. Each time a GDS

Program Organization u7



is assigned a flow control entry, the
length is incremented by two bytes. When a
GDS is deleted and its flow control entry
is released, the length is decremented Ly
two bytes. This length field determines if
all 24 entries have been used.

The buffer address field contains the
address of the buffer section assigned when
Flow Control Management requested buffer
for the flow control structure. The system
GDS entry at FCT + 10 is never deleted
until the FCT is freed (i.e., use of the
2250 is terminated). The rest of the
buffer addresses act as pointers to the
flow control entries. During the process-
ing of the user's program, these addresses
may Fkecome rearranged and will not neces-
sarily be sequential. However, the in-use
addresses will always be at the beginning
of the FCT, followed by the free addresses.

Rearrangement occurs when the use of a
GDS is terminated and its flow control
entry is deleted, or when ORGDS is called.
If the address of the flow control entry is
not at the end of the in-use list when it
is deleted, the remaining addresses in the
in-use 1list are moved up two bytes in the
table so that all the entries in the in-use
list are together. The deleted flow con-
trol entry address becomes the first free
entry in the FCT, and the others in the
free 1list remain untouched. Figure 11
depicts an example of reordering in the
FCT.

This example shows the FCT in-use
entries when six GDSs have been ini-
tialized and included in the flow
control structure. It also shows
these same entries after the user has
issued a call to ORGDS.

FCT after six GDSs have been initialized:

r L L]
+12] Buffer + 16 GDS1| Buffer + 26 GDS2|
'8 4 4

r T
+16| Buffer + 36 GDS3| Buffer + 46 GDSU4
|

b s wd

g 1
+20| Buffer + 56 GDSS| Buffer + 66 GDS6|
L L ]

CALL ORGDS(GDS5,GDSé6,GDS3,GDS1,GDS2,GDSHY)

+*
[y
N

—

T 1
Buffer + 56 GDSS5| Buffer + 66 GDS6|
1 4

-

&

L] 1
16| Buffer + 36 GDS3| Buffer + 16 GDS1|
1 1

-

T 1
+20| Buffer + 26 GDS2| Buffer + 46 GDS4

L 1

-

[ O o it e U S ) S S S S S — - G MY S — " — — ——
b i cs s s S —— c — —— — — o S — —— t— o — — —a— — —v— ]

Figure 11. Reordering the FCT

48

Flow Control Structure

The flow control structure in the buffer
section consists of six bytes that contain
a GSRT order and a GTRU order to the system
GDS flow control entry. The remaining 250
bytes of +this buffer segment contain a
series of ten-byte entries required for
each GDS. The system GDS is always
assigned the first entry in the flow con-
trol structure (located at buffer + 6).
The user's flow control entries begin at
buffer + 16.

When a GDS is called into use, an entry
is made in the flow control structure that
governs the light pen mode setting, the
transfer of control to the graphic orders
and data in the GDS, and the transfer of
control to the appropriate flow control
entry when the execution of the GDS is
complete. Each of the ten-byte flow con-
trol entries contains a light pen mode
setting order (i.e., GESD, GDPD, or GNOP2)
in its first two bytes, a GTRU with the
address of the GDS in the next four bytes,
and a GTRU in the last four bytes. This
last GTRU order contains either the address
of the GSRT order at the beginning of the
structure or the address of the next flow
control entry in the structure. Figure 12
depicts the flow control structure.

Flow Control Management Routine (Module
Name IFFAHAO1)

Charts: KA, KB

Function: Manages the regeneration sequence
of the GDSs in the buffer. To do so, it
creates and maintains a flow control table
(FCT) in main storage, and a flow control
structure in a buffer section. The FCT and
the flow control structure are described in
detail in this section under "Flow Control
Table®™ and "Flow Control Structure."

Flow Control Management performs four
different functions depending on the codes
passed to it as input, as follows:

Code 1 —— Causes the FCT and the flow
control structure to be initialized, and a

data event control block (DECB) to be built
following the FCT.

Code 2 —— Causes the specified GDS to be
added to the flow control structure and the
FCT to be updated accordingly.

Code 3 -- causes the specified GDS to be
deleted from the flow control structure and
the FCT to be updated accordingly.

Code 4 —— cCauses the flow control structure
to be deleted, and frees the storage
acquired for the FCT and the DECB.



BUFFER SECTION

- 2 Bytes —

Buffer + 0

GSRT

GTRU

Buffer + 6

Buffer + 6

GESD

GTRU

System GDS

System GDS

GTRU Buffer + 12 |- —

Buffer + 12

GTRU

Buffer + 16

Buffer + 16

GDPD

GTRU

GDs1

GDS1 (GDOA1) GDS1 (GDOA2)

0000 l > Sefmodel

GTRU Buffer +22 |— |

GTRU GDOA2 |

Buffer + 22

GTRU

Buffer + 26

Buffer + 26

GDPD

GTRU

GDs2

GDS2 (GDOAT1)

OOOOJ

GTRU Buffer + 32 |— —

Buffer + 32

GTRU

Buffer + 36

Buffer + 36

GTRU

Buffer + 0

Buffer + 254

Used for
additional
GDSs

Figure 12.

Legend:

——» Passing control to the graphic orders
and data in a GDS
— « — —— > Returning control to the flow control
structure.

Flow Control Structure

Program Organization

49



Entry: IFFAHAO1 from INDEV,
TMGDS, or TMDEV routines.

Data Store,

Exit: To the calling program.

Input: In register 1, the address of a
parameter list which varies with the call-
ing fprogram. The first word of the param-
eter list for each of the four codes passed
contains the actual code. The other fields
in the parameter list contain information
as follows:

Codes 1 and 4:
+4 Address of the GTMCB.

Code 2:
+4 Address of the GDSCB for the GDS to
be added.
+8 Address of the buffer assigned to
this GDS.
Code 3:
+4 Address of the GDSCB for the GDS to be
deleted.
Output: Varies with the input code upon
entry. See "Function" above.

Operation: Flow Control Management first
tests the code passed to it as input to
determine the function required. The ser-

vices performed for a corresponding func-
tion are described in the paragraphs that
follow.

Code 1 -- Buffer is acquired for the flow
contreol structure. If this is completed
successfully, storage for the FCT is
obtained. If buffer is unavailable, con-

trol is returned immediately to the calling
program with the appropriate return code in
the GSPARRAY. If main storage is unavaila-
ble, the buffer is released and control is
returned to the calling program with the
appropriate return code in the GSPARRAY.

Next, the FCT is initialized, and a DECB
(used for input/output operations) is built
following the FCT. Graphic orders and data
for initializing the flow control structure
are written to the buffer.

Code_2 -- The address of the next free flow
control entry is obtained from the FCT, -and
the FCT is updated. Graphic orders and
data for the new flow control entry for the
specified GDS are written to the buffer.

If all 24 flow control entries available
to the GDSs have already been used, control
is returned to the calling program with the
approrriate return code.

GTMFCTBL field in the GTMCB
if the FCT is
zero), in which

Code 3 -- The
is accessed to determine
already freed (field is

50

case control is returned immediately to the
calling program.

Otherwise, the GDSFCBUF field is
accessed to determine if an entry was made
in the flow control structure. If no entry
exists, control is returned to the calling
program.
of the flow

- When the address control

entry exists, the FCT is updated and the
removed entry is made available again.
Then, the flow control entry is removed
from the flow control structure in the

buffer. This is done by writing an address
to the preceding flow control entry that
will branch either to the beginning of the
flow control structure (if the removed
entry was the last one in use), or around
the flow control entry being removed.

Code 4 -- The buffer regeneration cycle is
stopped, the main storage used for the FCT
and the DECB is freed, and the GTMFCTBL and
GTMDECB1 fields in the GTMCB are cleared.

Note: Buffer assigned to the flow control
structure is not released by this routine,
but is released by the Buffer Management
routine which is called by TMDEV.

BUFFER MANAGEMENT

Assignment and release of buffer for the
GDSs is handled by Buffer Management
through the use of a buffer contrcocl table
(BCT). Buffer Management consists of a
buffer control table (BCT) and the Buffer
Management routine, which creates, main-
tains, and terminates the BCT.

Buffer Control Table

The BCT consists of 128 three-byte
entries, each of which is associated with a
256-byte buffer section. The INDEV subrou-
tine obtains storage for the BCT following
the GTMCB, and fills the entire table with
zZeros.

Buffer Management completes the three-

byte BCT entries with information
indicating the status of each buffer sec-
tion as it is assigned or released. Each

BCT entry corresponds to one buffer section
(256 bytes). Entries are arranged in the
table in ascending order as shown in Figure
13. The appropriate BCT entry number is
found by dividing the buffer address by 256
(length of buffer). The buffer address can
be obtained by multiplying the entry number
by 256.

Generally, the BCT entry is divided into
three one-byte fields which contain (1) the
identification code that associates it with
the appropriate GDSCB, (2) the pointer to




the next entry in the BCT for the same
GDSCB, and (3) a count of the number of
assignrents made for this GDSCB. Specifi-
cally, the three-byte BCT entry contains
information as follows:

e If a buffer section is divided into two
128-byte subsections, the first byte of
the entry contains a code that iden-
tifies the GDSCB associated with the
first subsection. The second byte con-
tains a code that identifies the GDSCB
associated with the second subsection.
The third byte always contains zeros.
If either of the subsections is unas-
signed, a code of X'80' is placed in

the byte associated with that subsec-
tion. The code placed in the entry to
identify each GDSCB ranges from X'81'

through X'FF'.

buffer 'section is
entry

o IF one 256-byte
assigned, the first byte of the

contains a code that identifies the
GLSCB associated with this buffer sec-
ticn. The code ranges from X'o1"

through X'7F°'. The
tains a pointer to itself in the form
of the entry number in the BCT. The
third byte contains a =zero indicating
that it is the first section assigned.

second byte con-

e If another buffer section is obtained
fer the same GDSCB, the same identifi-
cation code is placed in the first byte
of the corresponding entry. The pre-

vious entry assigned to this GDSCB is
updated to point to this entry by
placing this entry number into the
second byte of the previous entry.

Then, this entry is completed by set-
ting the second byte +to point to
itself, and then adding one +to the
value in the third byte of the previous
entry, and placing this sum in the
third byte of the current entry. This
serves as a count of the number of
sections assigned to this GDSCB. Addi-
tional buffer sections assigned are not
necessarily contiguous.

o If multiple buffer sections are
assigned at one time to one GDSCB, the
code for the GDSCB is placed in the

first byte of each entry that corres-
ponds to the buffer sections assigned.
The second byte in the first entry is a
pointer to itself (until additional
buffer is assigned to this GDSCB), and
the third byte is zero, indicating that
this is the first multiple section
assigned. The second byte in the other
entries contains a pointer (entry
nurber) to the first entry, and the
third byte in the other entries con-

tains a X'FF' to indicate that they are

part of a multiple assignment. Each
multiple assignment consists of con-
tiguous 256-byte buffer sections. How-

additional multiple sections are
necessarily contiguous with the
multiple sections assigned to a

ever,
not
other
GDS.

Note: The entry number multiplied by three
results in the displacement of any given
entry from the beginning of the BCT.

Figure 13 shows an example of entries
that may be made in the buffer control
table by Buffer Management. The example

depicts three buffer sections divided into
128-byte subsections, the assignment of
non-contiguous buffer sections to one
GDSCB, the assignment of more than one
multiple section to a GDSCB, and an unas-
signed buffer section.

Buffer Management Routine (Module Name
IFFAHAQ2)

Charts: KC, KD

Function: Obtains buffer for the various
GDSs, releases all or part of the buffer
associated with a GDS, releases all buffer
associated with a 2250, and keeps informa-
tion as to which GDS is assigned which
buffer sections.

Entry: IFFAHAO02 from Data Store, TMGDS,
TMDEV, ORGEN, and RESET routines.

Exit: To the calling program.

Input: In register 1, the address of a work
area, the first word of which points to a
parameter list. This parameter list varies
depending on the service desired. The
first word of the parameter 1list always
contains the code that specifies the ser-
vice desired. The services and their re-
spective parameter lists are:

® Allocate 128-byte buffer subsection to
a GDS being initialized.

+0 ("code") 1
+4 ("gdscb") Address of the GDSCB being
initialized.

® Allocate 256-byte buffer section(s) to
a GDS being initialized.

+0 ("code") 2

+4 ("gdscb") Address of the GDSCB being
initialized.

+8 ("gdslength"™)
allocated.

Size of buffer to be

Program Organization 51



T T L) L ]
| | | BCT Entries | |
| | F T T i |
Buffer En Number First Secon 1k i
|Buff JEntry be | Fi I d {Third | |
|Address |In BCT |Byte | Byte | Byte | Comments |
| | (Hexadecimal) | i | | |
I8 1 1 i (| 1 J
F + 1 T T T H
i 0 | X"00" |X*86" jX*92° |X*00°* | Two 128-byte subsections assigned |
L [] 1 } i 3 y ]
] T T i T T 1
| 256 | X*01"* }jX*36* |X"05° |X*00" | First 256-byte section assigned |
[} ] L 3 IR 1 iy
L} T L) L] 1 T 1
| 512 | X*02°" |X*42* |X'07" |X*00* | First section of a 768-byte assign-|
| | | | | | ment |
I + 1 } { + - |
| 768 | X*03" |X*42* |X'02" |X"FF*' | Second section of a 768-byte |
| | l | | | assignment |
I + + t ; : {
| 1024 ] X'o4" jx*u2* jx702° |X*FF* | Third section of a 768-byte assign-|
| | 1 | | | ment |
b + $ ¥ + ¥ . . {
| 1280 | X'05" |X*36* |X'0OC" |X*01* | Second 256-byte section assigned to|
| | | | | | GDSCB with code '36° |
b 4 + { ;- { {
| 1536 | X'06° |xX*80" |X'AA" |X'00* | First subsection unassigned, and ]
| | | | | | second subsection assigned |
L 1 [} L [ J
] T T T T 1
1792 | X'07°* jX*42* |X'07° |X'01* | Second multiple assignment |
[] [} 4 [l L ]
L) T T v 1 1
| 2048 i X'08"* [X*42* |X'07° | X*FF' | Second 256-byte section of multiple]
! ] | | | | assignment |
| + + } + + _ _ i
| 2304 | X*09"* jX*42* |X'07° |X'FF' | Last 256-byte section of multiple |
assignment
S S S W |
| 2560 | X'oar }X*36" |X'0A°* |X*03* | Fourth section assigned to GDSCB |
! | | ! | ! with code '36" |
L] ‘} : T = L] . . {
| 2816 | X*0B’* |X"96° |X*'80°" |X*00* | First subsection assigned, second |
| | | | | | subsection unassigned |
i ] 1 i 1 [ ¥}
¥ )] 1] T T T 1
| 3072 | X*0c* |X*36°* |X"OA" }]X*02* | Third section assigned to GDSCB |
| I | | [ | with code *36° |
+ 1 1 1 1 1
3328 i X*0D" |X*00* (X*00° |X°00* | Unassigned buffer section |
L 4 i i L d
Figure 13. Example of Buffer Control Table Entries

52

e Allocate an additional 256 bytes of

buffer, or more, to a GDS which has
buffer already allocated.

+0 ("code™) 3
+4 ("gdscb") Address of the GDSCB.

Release a 128-byte buffer subsection
allocated to a GDS to be terminated.

+0 (“code™) 4
+4 ("gdscb™) Address of the GDSCB to be
terminated.

Release all 256-byte buffer sectiomns
allocated to a GDS to be terminated.

+0 ("code™) 5
+4 (“"gdscb"™) Address
terminated.

of GDSCB to be

Release ome or more 256-byte buffer
sections most recently allocated to a
GDS that is to remain in use.

+0 ("code™) 6

+4 ("gdscb"™) Address of GDSCB.

+8 ("bufloc®™) Address of buffer after
which sections are to be released.
This section is not released.

Release all buffer currently assigned
to a GTMCB being terminated.

+0 ("code™) 7

+4 ("gtmcb") Address of GTMCB to be

terminated.
Output: Varies according to the “code"
specified in input parameter list. See

"Operation" for this routine.



Operation: Depending on the value of the
"code" parameter, control is transferred to
the arpropriate routine within this module.

(The services associated with each "code"
parameter are described under "Input”
above.)

The operations of the service routines

are described in the following paragraphs
under their respective codes.

Code 1 -- A 128-byte buffer subsection is
obtained by searching the BCT. If the
first byte of a BCT entry indicates an
assigned subsection, the second byte of the
entry is investigated.

If no unassigned subsection is found,
buffer is obtained. The buffer address is
saved, the BCT entry number associated with
that buffer address is placed in the
GDSBCTEL field of the GDSCB, and the second
byte of that entry is set to X'80°'.

If an unassigned subsection is found by
searching the BCT, the buffer address is
saved and the BCT entry number is placed in
the GLSBCTEL field of the GDSCB.

The identification code, which is to be
placed in the BCT entry and the GDSBCTID
field of the GDSCB, is now obtained in the
following manner. The value of the
GTMBCTSM field in the GTMCB is compared to

X'7E'. If it is 1less than or equal to
X'"7E', this field plus a X'81' forms the
code. A X'01' is then added to this field

so that the next code can be computed.

When the GTMBCTSM field compares higher
than X'7E', all the possible identification

codes have already been used once. Howev-
er, only 24 GDSs can be associated with
each 2250 at any one time. Thus, some of

the identification codes must be available
for use again since at least one associated
GDS must have been terminated. When the
GDS is terminated, its code is removed from
the BRBCT entry. Every possible code is now
compared to every code still assigned in
the PCT until one that is not in use is
obtained.

Oonce an identification code 1is deter-
mined, it is placed in the appropriate
fields of the BCT and the GDSCB. The
buffer address of the allocated subsection
is placed in register 1, and control is
returned to the calling program.

code 2 -- A 256-byte buffer section, or
contiguous multiple thereof, is obtained.
If insufficient buffer is available, con-
trol is returned to the calling program
along with an appropriate return code.
Othervise, the buffer address is saved and
the BCT entry number is placed in the
GDSCB.

The identification code, which is to be
placed in the BCT entry and the GDSBCTID
field of GDSCB, is now obtained in the
following manner. The value of the
GTMBCTLG field in the GTMCB is compared to
X'7E'. 1If it is 1less than or equal to
X'7E', a one is added to the field and this
sum is used as the code.

When the GTMBCTLG field compares higher
than X'7E', the code is determined in the
same manner that it was for Code 1 when the
GTMBCTSM field was higher than X'7E'.

Once an identification code is deter-
mined, it is placed in the appropriate
fields of the BCT and GDSCB. The number of
256-byte buffer sections obtained is deter-
mined, +the entry number of the first asso-
ciated BCT entry is placed in the GDSCB,
and the BCT is appropriately completed (see
"Buffer Control Table"). Control is then
returned to the calling program.

Code 3 -- An additional 256-byte buffer
section, or contiguous multiple thereof, is
obtained. If a 128-byte buffer subsection
was previously obtained for this GDS, con-
trol is returned to the calling program
along with an appropriate return code.
Otherwise, the amount of buffer desired
(from the length specified in the GDSGDOAL
field of the GDSCB) is obtained.

The number of buffer sections is deter-
mined, and appropriate entries are complet-
ed in the BCT (see "Buffer Control Table").

Register 1 contains the buffer address.
control is then returned to the calling
program.

Code 4 -- A 128-byte buffer subsection is
released, and the BCT entry is set to
X'80'. If the byte designating the other
subsection contains X'80', the buffer is
released and the entire BCT entry is set to
zeros. The GDSBCTEL and GDSBCTID fields in
the GDSCB that contain the BCT entry number
and the identification code associated with
the buffer just released are also set to
Zeros. Control is then returned to the
calling program.

Code 5 -- All buffer assigned to the GDS
being terminated is released. After the
BCT entry number is saved, the GDSBCTEL and
GDSBCTID fields in the GDSCB are set to
Zeros. The first buffer address is
cbtained by multiplying by 256, and the
pointer to the next buffer section to be
released is contained in the BCT entry.
Each time the buffer associated with an

entry is released, the BCT entry is set to
zeros. When all buffer assigned to this
GDSCB is released, control is returned to

the calling program.

Code 6 -- All buffer allocated to a GDS

Program Organization 53



more recently than the buffer section spec-
ified by the "bufloc” parameter is
released. If the buffer to be released is
not the last section obtained, all sections
obtained after it are released in the same
manner as they were for Code 5. However,
the GLSCB fields cleared for Code 5 are not
cleared because some buffer is still asso-
ciated with the GDSCB. When all specified
buffer is released, control is returned to
the calling program.

Code 7 -- All buffer currently assigned to
a 2250 being terminated is released. The
entire BCT is set to zeros. As each GDSCB
associated with the specified 2250 is
referred to, the GDSBCTEL and GDSBCTID
fields are set to zeros. Control is then
returned to the calling program.

KEY TAELE MANAGEMENT

When standard GSP keying and correlating
features are wused, known as level 1, Key
Table Management is called upon to create
and maintain a key table for each GDS that
has keys and/or correlation values speci-
fied in the program. The key table is used
for storing keys associated with key and
correlation values as they are assigned
within each GDS. If the programmer uses
his own correlation scheme, known as level
2, Key Table Management is bypassed.

Key Table

The Kkey table is a list of all keys and
correlation values assigned for a 1level 1
GDS. The table occupies one or more
496-byte blocks of storage. These blocks
are chained together, but may or may not be
in contiguous locations. The address of
the key table is entered in the GDSKEYTB
field of the GDSCB.

Each block in the key table contains 12
bytes (three words) of control information
followed by a series of 12-byte key entries

(called keys). There may be up to 40
entries in a block. The last word of each
block is not used. The key table format

and contents are shown in Figure 14.

The control information is set up as
follows:
Word 1 -- Contains the chaining address,

which is =zero in the last block acquired
for the key table. If the address is not
Zzero, it contains the address of the next
block of storage used to continue the key
table.

54

Kmmmmmm e 4 Bytes ————-————--——- >
r 1
+0 | Chain address (zero if last block) |
[ ]
] 1
+4 | Next available space for key entry |
b J
L] 1
+8 | Address of last word in block |
I 4
) 1
+12 | Key 1 (12 bytes of information) |
i !
+24 | Key 2 (12 bytes of information) |
1 |
r 1
[ ]
L
[ ]
t !
+480 | Key 40 (12 bytes of information) |
i l
+492 | Not used |
L Jd
Figure 14. The Key Table
Word 2 -- Contains the address of the next

unused space in the block. If there is no
space available for key entries in the
klock, this address points to the last word
in the block. If space is available in the
block, this address indicates the location
where +the next key can be added. It also
indicates that the end of the table has
been reached when a search for key or
correlation value is made.

Word 3 -- Contains the address of the last
word of the block (the unused word). When
the address in word 3 is the same as the
address in word 2, the block is full and
another block of storage must be acquired
for additional keys.

GSP_Keys

Keys consist of 12 bytes (three words)
of information about the element, sequence,
buffer subroutine, or buffer subroutine
linkage associated with the specified key
or correlation value.

If a level 1 GDS is being used, and an
update is not requested, certain GSP
subroutines compose key values and set up
key entries for both the keys and the
correlation values that are specified by
the user. A correlation value causes a
standard key to be structured with the
correlation value placed in the third word
of the key entry. If update of an element
is specified, this key is wused to locate
the element to be updated. Keys are
entered in the key table and removed from
the key table as described under "Key Table
Management Routine."™



Kach key consists of the following three
words :

Word 1 -- The first two bytes contain a
value indicating the amount of buffer space
(in bytes) used to store the graphic orders
and data for the element, sequence, Orx
buffer subroutine associated with this key.
The next two bytes contain a value indicat-
ing the logical buffer start address,
formed by determining the total amount of
storage previously used for storing graphic
orders and data for this GDS. This address
is nect the same as the physical buffer
address.

Word 2 —-- The first byte contains eight
flag bkit settings that describe the input
data associated with the key. The second
byte, used only for a single request,
consists of data that is to be inserted in
the second byte of the image generation
order, to indicate blanking or unblanking
of the Dbeam. The third byte contains a
count of characters if text input is asso-
ciated with the key. The fourth byte
contains flags required for updating.

Word 3 —-- Contains the correlation value,
if any, specified by the user. Otherwise,
it contains zero.

Takle 5 lists the information that is
placed in the three words of a GSP key. It
also shows the arrangement of this informa-
tion in the various fields.

Key Takle Management Routine (Module Name
1FFAHAQ3)

Chart: KE

Function: Builds and maintains a key table,
and ugpon request:

e Lccates a key in the key table.
» Adds a key to the key table.

e Resets the key table from a specified
key.

e Deletes an entire key table.

Entry: IFFAHAO03 from INCL/OMIT, PLINE/PPNT,
STPOS/MVPOS, PSGMT, PTEXT, STEOS,
BGSEQ/BEGSUB, ENSEQ, ENSUB, LKSUB, RESET,
ICURS, GSPRD, ORGEN, PLSTR, and TMGDS sub-
routines.

Exit: To the calling program.

Input: In register 1, the address of the
following parameter list:

Table

5. GSP

Key Information

No.

Contents

—— e e =
= ;

o}

[a]

o]

[y

o
|

15

Buffer length

— e o o

=
[+
|

31

Logical buffer start
address

— s . —

Word 2

= o
I

Single entry
Multiple entry

(=]
I

'—l
1l

First order is not
set mode

First order is set
mode

B s i

|output is:

{000
001
1010
{011

|
{100
|101

I
[110

-
-
el

P S SR SRR SRR S

Line
Character
Point
Subroutine
linkage
Sequence
Buffer subrou-
tine
= End Orxder
Sequence order
= ORGEN

i

Oomit
Include

~

(=Nl = o

o

L]

X,Y are absolute
X,Y are incre-
mental

[y
(8]

One byte of data

38}
w

count of characters

o

[EN
I

Not part of buffer
subroutine

Part of buffer sub-
routine

25

o
Il

Not part of a
sequence
Part of a sequence

[ o e S S e o P —— ——— — f— — — — — —— — o —_ ———s T . S S W —— —— o e S S i o, O S, S

Word 3

[ oo e o e e e e S e . o e Sy s S o S o e et ST (et e e . St S e S S S S o o i et S i e e S S S s o e

e — e e e e e e e e e

1
Reserxrved
C

orrelation value
(if specified)

b e v e, . el s s it e S e o o — o S— i, — — — s —— . ————— ———— T——

+0
+4

+8

GDSCB address.
Address of a code that designates the
function to be
execution of Key Table Management.
The code is one of the following:

1
2
3
4

I (I I (]

add a key
search for
reset from
delete the

5 = search for
of key or correlation value
(or zero).

Address

performed by this

a key

a key

key table

a correlation value

Program Organization 55



Output: For the various codes, as follows:

Code 1 —— If no key table exists for this
GDS, cne is built and its address is placed
in the GDSKEYTB field of the GDSCB. The
key is entered in the table, and control
information is updated.

Codes 2 or 5 -- In register 1, the address
of the key in the key table.

Code 3 -- Starting with the specified key,
the keys for a GDS are made inaccessible.
Any blocks of storage beyond the one con-
taining the specified key are freed. Con-
trol information is updated.

Code 4 -- Storage used for the key table is
released, and the key table address is
removed from the GDSCB.

The code in the input parameter
and, depending wupon the
the following operations

Operation:
list is tested,

code designated,
are performed:

Code 1 -- The routine tests for a key table
address in the GDSCB. If there is none,

storage 1is obtained and the key table is

initialized. If the key table block is
full, additional storage is obtained. The
first 12 bytes of this storage are set up

with control information (see "Key Table"),
and the beginning address of this storage
block is placed in the first word of the
preceding storage block in the key table.
The key is placed in the key table, the
address in Word 2 of the control portion of
the Fklock is wupdated to reflect the next
available entry address, and control is
returned to the calling program.

If a key table has already been set up
and is not full, the routine simply places
the key in the key table at the next
availakle address indicated in the control
portion of the block, and increments the
next available entry address in Word 2.

Code 2 -- The key table address is obtained
from the GDSCB. If it is zero, an error
return is made immediately to the calling
program. If it is not zero, a search is
made for the key. The search consists of
comparing the key value from the input
parameter list to each key in the key table
until a matching value is found. Then, the
address of the key within the key table is
placed in register 1, and control is
returned to the calling program.

Code 3 -- The key table address is obtained
from the GDSCB. If it is zero, an immedi-

ate error return is made to the calling
routine. If it is not zero, a search is
made for the specified key. When the key

is found in the key table, its address is

56

of the control portion

available entry. Any
blocks of storage that were used for the
key table that follow this block are
released. Control is returned to the call-
ing program.

placed in Word 2
making it the next

Code 4 -- The key table address is set to
zero 1in the GDSKEYTB field of the GDSCE,
and all blocks of storage used for the key
table are released. Control is returned to
the calling program.

5 -- The steps performed are the same
as described under Code 2, except that the
correlation value is used for the search to
find the key. The address of the first key
located within the key table that contains
the same correlation value is placed in
register 1. Control 1is returned to the
calling program.

Code

SCALING AND SCISSORING OF INPUT DATA

Scaling and scissoring of input data is
accomplished by two routines which are
described in the paragraphs that follow.
These routines are called during the gener-
ation of graphic orders and data by the
image generation subroutines.

Scaling Routine (Module Name IFFAHA06)

Chart: KF
Function: Performs the following:

® Scales user input coordinates to raster
units (integer).

e Converts any real number to integer.

Entry: IFFAHAO6 for scaling. IFFAHA1l5 for
converting real numbers to integer.

Exit: To the calling program.

Input: For entry at IFFAHA06, in register
1, the address of a work/save area. The
first word of +this area contains the

address of the following parameter list:
+ 0 Address of the GDSCB.

+ 4 Address of the GSPARRAY.

+ 8 A data array consisting of eleven
full words. The first four words
of this array are ignored. The
next four words contain the input
coordinates as follows: i

+24 SCAXABS Absolute value of x-
coordinate, or =zero if
it is incremental.



+28 SCAYABS Absolute value of y-
coordinate, or zero if

it is incremental.

Incremental value of x-
coordinate, or zero if
it is absolute.

+32 SCAXINC

+36 SCAYINC Incremental value of y-

coordinate, or zero if
it is absolute.

+40 These two words are
ignored.

+48 SCAPTCNT Count of points scaled

to date.

For entry at IFFAHA15, in register 1,
the number to be converted from real to
integer.

Output: Both the incremental and absolute
values are computed and placed in the data
array fields (SCAXABS, SCAXINC, SCAYABS,
SCAYINC). If entry was at IFFAHA1S5, reg-
ister 1 contains the results of the conver-
sion from real to integer. For both
entries, register 15 contains zero if scal-
ing and conversion were completed success-
fully, or four if scaling or conversion was
unsuccessful. The GSPARRAY field is set as
required.

Operation: Scaling computes the scaled
value of the input coordinates according to
their input data mode as determined by the
GDSDATMD field of the GDSCB. Based on
values found in various GDSCB fields, the
computations are made as indicated in Table
6. If the input coordinates are real, they
are first computed with real numbers, and
then converted to integer. If the conver-

sion 1is unsuccessful, the GSPARRAY is
appropriately set to specify a scaling
error, and control is returned +to the

calling program.

If the scaled values for the x-
coordinate are successfully obtained, the
scaled values for the y-coordinate are
computed. This is accomplished in the same
manner as for the x-coordinate (shown in
Table 6), except that the corresponding
GDSCB fields dealing with the y-coordinate
are used in the computation. When all
scaled values have been obtained, control
is returned to the calling program.

Scissoring Routine (Module Name IFFAHAO07)

Chart: KG

Function: Scissors data according to the
option specified in the most recent call to
the SSCIS subroutine.

Entry: IFFAHAO7 from PLINE/PPNT, PSGMT,
STPOS/MVPOS, PTEXT, IDPOS, and PLSTR
subroutines.

Exit: To the calling program.

Input: In register 1, the address of a
work/save area. The first woxrd of this
area contains the address of the

input/output array shown in Table 7.

Output: Positioning coordinates (absolute
and incremental, blanked or umblanked mode)
are placed in the input/output array if
either the current or any previous data was
within screen 1limits (see "Input®™). The
appropriate return code is placed in the
GSPARRAY field of the GSPCB and in register
15. The GDSXCURR, GDSYCURR, GDSXLAST, and
GDSYLAST fields in the GDSCB are updated as
necessary.

Operation: Coordinates for data +that fall
within the prescribed limits are placed in
the unblanked area (+24 through +36) of the
input/output array (see "Input"). Coordi-
nates for any data that falls outside the
prescribed limits are placed in the blanked
area (+8 through +20) of that array unless
image generation 1is mnot to be continued
when this occurs. If image generation is
not to be continued, only the coordinates

that fall within the screen 1limits are
passed in the unblanked area of the
input/output array; no coordinates are

placed in the blanked area.

All fields in the GDSCB mentioned under
"Output” are updated except when no data
has been plotted within screen limits. 1In
this case, the GDSXCURR and GDSYCURR fields
of the GDSCB are not updated.

Figure 15 shows examples of the applica-
tion of scissoring options. The boundary
refers to the prescribed limits (either GDS
or screen) as specified in the GDSSCISS
field of the GDSCB. The values of these
limits for the GDS are also specified in
the GDSCB. If the GDS limits are off the
screen for any boundary, then Scissoring
assumes the screen limits for that particu-
lar boundary. These 1limits determine
whether or not there is an intersection
with any boundary, and how many intersec-
tions occur (0, 1, or 2).

In Figure 15, points and intersections
are indicated by dots and labeled appropri-
ately. In all cases, plotting takes place
in the direction from the previous point to

the current point. Broken 1lines indicate
the portions of the 1lines that are not
displayed. Solid 1lines indicate those

lines that are plotted and displayed. The
orders that are generated in each case are
also indicated.

Program Organization 57



Table 6.

Formulas Used in Scaling

T T
|Mode for X-Coordinate |Values Placed in Data Array
it 1

are performed in the

converted to integer.

1

|
L 8 T {
| Integer, absolute | SCAXABS = GDSXVIUR - GDSXVILL times SCAXABS (input) - GDSUVLLL |
| i GDSUVLUR - GDSUVLLL + GDSXVILL |
| |
| SCAXINC = SCAXABS - GDSXCURR |
i J
3 1
| Integer, incremental | SCAXINC = GDSXVIUR - GDSXVILL times SCAXINC (input) |
| GDSUVLUR - GDSUVLLL |
| |
| SCAXABS = SCAXINC + GDSXLAST |
| | SCAXINC1= SCAXABS - GDSXCURR |
i L ]
[} T 1
|Real, absolute | SCAXABS2= GDSXVRUR -~ GDSXVRLL times SCAXABS (input) - GDSUVLLL |
| GDSUVLUR - GDSUVLLL + GDSXVRLL |
| |
| SCAXINC = SCAXABS2 - GDSXCURR |
[l [l }
¥ T 1
|Real, incremental | SCAXINC2= GDSXVRUR - GDSXVRLL times SCAXINC (input) ]
| | GDSUVLUR - GDSUVLLL |
| | |
| | SCAXABS = SCAXINC2 + GDSXLAST |
| | SCAXINC1= SCAXABS - GDSXCURR |
[l L i |
r T
|tIndicates this is the final output value passed to the calling program. Computations |
I I
| |
| |
L J

2Indicates this is an integer value.

order shown.

It is first computed with real numbers, and then

Table 7. Input/Output Data Array for Scissoring

I L] L] 1
| Displacement | | |
| in Bytes | Input | Output |
L L] 1 4
r T + 4
| + 0 | Address of GDSCB | Same as input |
| + 4 | Address of return code | Same as input |
| l array | |
| + 8 | Zero | X-coordinate, absolute, blanked |
| +12 | Zerxo | Y-coordinate, absolute, blanked |
| +16 | Zero | X-coordinate, incremental, blanked |
| +20 | Zero | Y-coordinate, incremental, blanked |
| +24 | X~-coordinate, absolute | X-coordinate, absolute, unblanked

| | (to be scissored) | |
| +28 | Y-coordinate, absolute | Y-coordinate, absolute, unblanked |
| | (to be scissored) | |
| +32 | X-coordinate, increm- | X-coordinate, incremental, |
| ] ental (to be scissored) | unblanked |
| +36 | Y-coordinate, increm- | Y-coordinate, incremental, |
| | ental (to be scissored) | unblanked |
| +10 | Total x-increment | Same as input |
| ] to date | |
| +4y | Total y-increment | Same as input |
| | to date | |
| +438 | Number of points | Same as input |
| | scissored to date | |
L L 1 (]

58



Number of Intersections

If the previous point

is outside the boundary,
and the current point

is within or on the
boundary:

NOTE: 0 intersections
indicates that the
current point is
directly on
boundary.

\Previ ous point

\
\
\ |

\
\ .
¢ Current point (P2)
I

Current point (P2)

: Intersect (I1)
¢ Previous point

Not applicable

Orders Generated

GDV P2X, P2Y, B
GDV P2X, P2Y, U

GDV IiX, IlY, B
GDV P2X, P2Y, U

Not applicable

If the previous point
is within or on the
boundary, and the
current point is
outside the boundary:

NOTE: O intersections
indicates that the
previous point is
directly on
boundary.

//' Previous poinf
7

«Current point

§ Current point

\
\ Intersect (I1)
Previous point

Not applicable

Orders Generated

None

GDV IIX, I1Y, U

Not applicable

If the previous and
the current points
are both outside
boundaries:

NOTE: 1 intersections
indicates that
it intersects
directly on the
boundary.

‘Previous point

\
\

\

\
\
\

\
& Current point

A Current point
s

7 Intersect
7

7
*Previous point

Intersect 1 (I1)

« Current point

\\_ Intersect 2 (I2)

»

Previous point

Orders Generated

None

None

GDV IiX, I1Y, B
GDV I2X, I2Y, U

NOTE: If both the previous point and the current point are within boundaries, no
scissoring occurs. The order generated would be GDV P2X, P2Y, U.

Legend:
X = x-coordinate of specified point or intersection.
Y = y-coordinate of specified point or intersection.
B = blanked beam.
U = unblanked beam.
-—- Indicates portion of line that is not displayed.
—  Indicates that line is plotted and displayed.

Figure 15. Examples of Scissoring

Program Organization 59



DATA GENERATION, DATA STORING, AND UPDATING

The Data Generator routine uses informa-
tion passed to it by image generation
subroutines and produces the graphic orders
and data for displaying appropriate images.
The TLCata Store routine places the orders
and data produced by Data Generation in the
GDOA so that they can be written to the
buffer and executed by the 2250. The
Update routine handles functions made nec-
essary when the update facility is applied.
These three routines are described in the
paragraphs that follow.

To assist in wunderstanding the struc-
tures of the various elements, sequences,
and buffer subroutines that are created
during image generation, there are four
figures included in this section. These
figures are:

e Fiqure 16, which depicts the include
and omit structures for single keyed
elements, and for multiple keyed and
non-keyed elements.

e Figure 17, which depicts the buffer
subroutine structure and linkage, both
keyed and non-keyed.

e Figure 18, which depicts the structure
of keyed sequences in both include and
orit status.

e Figure 19, which depicts the GDOAs and
their 1logical and physical buffer
addresses.

Data Generator Routine (Module Name
IFFAHAQY)

Chart: KH

Function: Generates the graphic orders and
data necessary for performing the function
requested by a call to an image generation
subroutine. Calls Data Store to place
orders and data in the GDOA for the GDS
associated with the element to be produced.

Entry: IFFAHAO4 from PLINE/PPNT,
STPOS/MVPOS, PSGMT, PTEXT, or PLSTR subrou-
tines.

Exit: To the calling program.

Input: In register 1, the address of the
following parameter list:

Displacement
(In Bytes) Contents

+0 A value indicating the
length of the available buf-
fer. This value is zero if

60

+2

+4

+8

+12

+16

+20

+24

+28

+32

+36

+40

+44

+48

+52

+56

the element is not an update
element.

A value indicating the logi-
cal buffer start address of
the entire element.

Information about the data
to be generated. This word
is called the data informa-
tion word. Its contents are
depicted in Table 8.

The correlation value of the
element or sequence asso-
ciated with this cycle of
Data Generator. This value
is zero if the element is
not correlated.

The address of the user's
variable where the key is to
be placed. This field is
zero if the element is not
keyed.

The address of the associat-
ed GDSCB.

The address of the return
code array in the GSPCB.

A value indicating the x-
coordinate, in absolute
form, for positioning the
beam.

A value indicating the y-
coordinate, in absolute
form, for positioning the
beam.

A value indicating the x-
coordinate, in incremental
form, for positioning the
beam.

A value indicating the y-
coordinate, in incremental
form, for positioning the
beam.

A value indicating the
absolute x—-coordinate
requested.

A value indicating the abso-
lute y-coordinate requested.

A value indicating the
incremental x-coordinate
requested.

A value indicating the
incremental y—-coordinate
requested.

A value indicating the total



Table

+60

8.

Contents
Word Used by Data Generator

of all x-coordinate incre-
ments requested. This will
be zero upon entering the

first cycle.

A value indicating the total
of all y-coordinate incre-
ments requested. This will
be =zero upon entering the
first cycle.

of Data Information

T
Bit Number|

Interpretation of Setting

) 1
I I
t ¥ : i
| o | 0 = Single request |
| | 1 = Multiple requests |
'y + 4
| 1 | Reserved |
L L

r T

| 2-4 | Output will be:

| | 000 = Line

| | 001 = Character

| | 010 = Point

| | 011 = Subroutine linkage |
| | 100 = Sequence

| | 101 = Buffer subroutine

| | 110 = End-order-sequence |
| | 111 = ORGEN |
F 4 '
| 5 | 0 = Omit status |
| | 1 = Include status |
1 4 4
] T \
| 6=7 | 00 = X,Y are absolute |
| | 01 = X,Y are incremental |
| | 11 = X,Y are optimized |
¢ } :
| 8-15 | Reserved |
! 4 d
v 1 i)
| 16-17 | 00 = First cycle(request) |
| | 01 = Not first or last |
| | 11 = Last cycle(request) |
L } 4
¥ T 1
| 18 | 0 = bata not keyed, level 1 |
| | 1 = Data keyed, level 1 |
L 1 d
r 1 1
| 19 | 0 = Data not correlated |
| | 1 = Data correlated |
b L] 1
r i) 1
| 20 | 0 = Beam blanked (off) |
| | 1 = Beam unblanked (on) |
i L1

L) T

| 21 | 0 = Repositioning element

| | required

| | 1 = No repositioning

| | element required

R 1

r T

| 22-23 | Reserved

; + :
| 24 | 0 = Not part of subroutine |
| | 1 = Part of subroutine |
L iR R |
T T 4
| 25 | 0 = Not part of sequence |
| | 1 = Part of sequence |
L 1

[ ) T

| 26-31 | Reserved

L 1

Output: Graphic orders and data for the
associated GDS in a form that can be
executed by the 2250.

Operation: Data Generator tests the data

information word (Table 8) to determine the
type of output to be produced. Operation
of Data Generator varies for keyed or
non-keyed elements according to the type of
output desired and the type of cycle desig-
nated by the calling routine. A cycle is
defined as one execution of Data Generator
resulting from a request by another rou-
tine.

Single or multiple requests for the
execution of Data Generator may be issued
by the calling program, as determined by

the "count" parameter, or if the increment
is such that it requires more than one
incremental set of coordinates, the entry

is treated as a multiple request. Each
time a cycle of Data Generator is request-
ed, bits are set by the calling routine to
indicate whether this is the first, the
last, or an intermediate cycle.

During any cycle of Data Generator, if
the code returned in register 15 from Data
Store indicates that the attempt to store
orders was unsuccessful, Data Generator
immediately returns control to its calling
program, passing that same code.

The following paragraphs describe the
operation for keyed and non-keyed elements.
If an element has a correlation value, this
routine considers it to be keyed.

Non-Keyed Element

1. Preliminary processing for first cycle
of the routine:

The graphic orders to set the mode and
to position the beam are generated from
data in the input parameter list, and then
stored via Data Store before the basic
cycle operation is begun.

2. Basic operation for each cycle of the
routine:

For absolute or incrememtal output,
graphic orders and data for displaying the
desired image are generated and stored.
The type of image to be displayed and
whether the beam is to be blanked or
unblanked is determined from the data
information word. The x- and y-coordinates
are determined from data in the input
parameter list.

For optimized output, the length of the
increment is checked, and the shortest
output is generated. Determination of the
optimal mode depends upon the mode pre-
viously established. If this previously

Program Organization 61



established mode was absolute, the increm-
ental line or point must be +two bytes to
cause the mode to be changed to incremen-
tal; if it is more than two bytes, the
output mode remains absolute. If the pre-
viously established mode was incremental,
the incremental 1line or point must be
greater than six bytes to cause the mode to
be changed to absolute; otherwise, output
mode remains incremental. After the mode
has been determined for this cycle, 1lines
or pcints are determined from data in the
input parameter list and graphic orders and
data are generated and stored in the GDOA.

Keyed Element
Single request processing:

output mode is checked. If it is abso-
lute, the graphic orders and data to dis-
play a 1line or point and any mode setting
required are generated from information
contained in the input parameter list.

If the output mode is incremental, the
length of the incremental line or point is
computed and the graphic orders and data
are generated and stored as described for
absolute mcde.

If the output mode is optimized, the
length of the increment is checked and the
shortest output is generated. If the
increrental length is greater than two
bytes, orders are created to generate a
line or point in absolute mode. If the
incremental length is two bytes, orders are
created to generate a line or point in
increrental mode.

Multiple request processing:

1. Preliminary processing for the first
cycle of the routine:

For the first element of multiple
requests, the structure required to place
the element in include or omit status is
built, and stored in the GDOA via Data
Store. This structure consists of a GTRU
order (for omit status) or a GNOP4 order
(for include status) to an unresolved
address, and bits are set in the input
parameter list for Data Store to indicate
that there is an address to be resolved
during the last cycle of Data Generator.
See Table 9, Code X'01' and Figure 16 in
this section.

2. PRasic operation for each cycle of the
routine:
This is the same as described for non-

keyed elements, basic operation.

3. Post-processing for last cycle of the
routine:

62

A GTRU to transfer arcund the orders for
repositioning the beam is set up. Current
mode settings are turned off 1in the
GDSGRMOD field. Graphic orders for reposi-
tioning the beam are generated for all
calls except STPOS/MVPOS. The unresolved
address mentioned under first cycle pro-
cessing is 1resolved to the address of the
repositioning order, if applicable.

Data Store Routine (Module Name IFFAHAOQ5)

Charts: KJ, KK

Function: For various routines,

the following functions:

performs

e Stores data in the GDOA and writes the
GDOA to the buffer on an overflow.

e Resolves any unresolved addresses that
have been flagged by the calling rou-
tine (see Table 9).

e Ccauses buffer to be assigned to this
GDs if the STATUS field in the OACB
indicates that none has been assigned
previously.

e Causes an entry to be made in the [low
control structure if buffer is assigned

to the GDS by this execution c¢f Data
Store.
Entry: IFFAHAO5 from BGSEQ/BGSUB, ENSEQ,

ENSUB, LKSUB, STEOS, PTEXT, Data Generator,
or ORGEN routines.

Exit: To the calling program.

1, the address of a
containing informaticn as

Input: In register
work/save area,
follows:

+0 Address of the GDSCB.

+4 Address of the GSPARRAY field in the

GSPCB where the return code is
placed.

+8 Flags which indicate to the rcutine
that some action must be taken in
resolving addresses. The codes used
to set these flags are explained in
Table 9.

+10 Length (in bytes) of the data to be

stored.

+12 Graphic orders and data to be stored.
(Length is nine full words.)

+48 Register save area.



Table 9. Data Store Input Flag Codes

r
| Code Orders Passed to Data Store

L
T
|X*01°"
t

GTRU/GNOP4 unresolved address (1)

(=]
[\*]
-

No order; (1) will be resolved
Address (3) will be resolved at
ENSUB time

B

%
o
w

GTRU unresolved address (2)
Address (1) will be resolved
Address (2) is resolved when the
repositioning order is stored

X*04"|] GTRU unresolved address (3)
GTRU zero address

GDRD

X'08"|] GMVA subroutine address + 6,
unresolved address (5)

GTRU subroutine address + 8
GPDI

Address of (5) will be resolved

ey e o — . o T o —— —— ———— Y — f—

GTRU unresolved address (3)

GTRU zero address

GTRU/GNOPY4 unresolved address (4)
GDRD

Address of (4) will be resolved

Lo
-
[
=
-
N SN SN SNSRI - PR SO |

»
[y
«©

GTRU/GNOP4 unresolved address (6)
GMVA subroutine address + 6,
unresolved address (7)

GTRU subroutine address + 8

GPDI

Addresses (6) and (7) will be
resolved

X*20"| No order; perform overflow

function for ORGEN

,._‘—..1,.——————__,__—_5——.iﬁ—————..i..——_.‘_—-———-—-—.—.{-——.1-—-{

Note: The numbers within parentheses are
referenced under "Operation" where the
resolving of addresses is explained.

e s S —————
b e e e e s e b e e e s

Qutput: Graphic orders and data are moved
to the GDOA. If Data Store is unsuccessful
in any of its functions, a return code of
four is placed in register 15.

Operation: Data Store tests the STATUS
field in the OACB to determine if buffer

has yet been assigned to the specified GDS.
If no buffer has been assigned, Buffer
Management is called +to assign buffer.
Then, Flow Control Management is called to
create a flow control structure entry for
the specified GDS. These two functions are
bypassed if the specified GDS has had
buffer assigned to it before this execution
of Data Store. Should Data Store be unsuc-
cessful during any of its functions, con-
trol is returned immediately to the calling
program with the appropriate code in reg-
ister 15.

Data Store resolves any unresolved
addresses as explained later, and moves the
graphic orders and data to the GDOA.

If +the GDOA is full or if the remaining
space is not large enough for all the
graphic orders and data to be moved (the
last four bytes of the GDOA are reserved),
the GDOA is filled with as much of the data
as it can contain and a GTRU order to the
buffer section for the next GDOA is placed
in its last four bytes. Buffer is obtained
for the next GDOA by calling Buffer Manage-

ment. The buffer address that is returned
is placed in the GTRU order. Any unre-
solved addresses in the OACB fields (+32

through +47) are then noted as being in the
buffer. A test is made to determine if
four bytes of data from the CRSA point in
the GDOA must be saved in the GDSCB. The

graphic orders and data are written to the
buffer from the CRSA point on; if four
bytes of data were saved, it is written
from CRSA + 4. This is known as the

overflow function.

Finally, the next OACB is accessed and
initialized for the next GDOA, and the
appropriate set mode order is determined

and placed in the first two bytes of the
next GDOA. Any remaining graphic orders
and data are moved to the next GDOA, and
control is returned to the calling program.

Figure 19 depicts the GDOAs with logical
and physical buffer addresses.

Unresolved addresses may be resolved
either in the GDOA or in the buffer. if
the address to be resolved is for an order
in the buffer, field BUF1 or BUF2 in the
OACB will contain the buffer location of
the order containing the unresolved
address. If the address to be resolved is
for an order in the GDOA, field CPUl or
CPU2 of the OACB will contain the GDOA
location of the order containing the unre-
solved address. These fields in the OACB
are set up at the time the order is placed
either in the GDOA or in the buffer with an
unresolved address.

Resolving of addresses is accomplished,
based on codes in the flag field of the
input work area shown in Table 9. Numbers
within parentheses refer to Table 9.

X'01' —- Indicates entry from BGSEQ, PTEXT,
ORGEN, or Data Generator (first call for
multiple requests) where a key is used. No
addresses are resolved. See Figures 17 and
19 for the structure of multiple requests.

X'02' —-- Indicates entry from ENSEQ, ENSUB,

PTEXT, ORGEN, or Data Generator (last call
for multiple requests) where a key is used.
Address (1) shown in Table 9 is resolved to
the current location. Address (3) is

Program Organization 63



resolved at ENSUB time to the current
location. Address (2) is resolved to the
current location when a repositioning order
is stcred.

X*03' -- Indicates entry from Data Genera-
tor for a keyed element, where a GTRU has
been set up preceding the positioning ele-
ment (multiple request). Address (1) shown
in Table 9 1is resolved to the current

location.
X'04" -- Indicates entry from BGSUB for a
level 2 buffer subroutine. Address (3) is

resolved at ENSUB time with a code of
X'02'. This GTRU transfers control around
the subroutine so that it is not executed
in line.

X'08' -- Indicates
non-keyed linkage to a

entry from LKSUB for
buffer subroutine.

See Figure 17 for the structure of buffer
subroutine linkage. Address (5) is
resolved to the current 1location + 10,

which is the return address from the buffer
subroutine.

X'14"' -- Indicates entry from BGSUB for a
keyed buffer subroutine. Address (4) shown
in Takle 9 is resolved to the current
location minus four, which points to the
return transfer. See Figure 17.

X'18* -- Indicates entry from LKSUB for
keyed 1linkage to a buffer subroutine.
Addresses (6) and (7) shown in Table 9 are
resolved to +the current location + 14,
which is the return address from the buffer
subroutine.

X'20' -- No addresses are resolved, but it
indicates entry from ORGEN, and only part
of the overflow function is performed.

Update Routine (Module Names IFFAHA13 and
IFFAHA14)

Chart : None

Function: Obtains storage for a temporary
GDOA and OACB for storing graphic orders
and data created for an update, or writes
these orders and data from the temporary
GDOA to the 2250 buffer.

64

Entry: IFFAHA13 or IFFAHAlY4 from
STPOS/MVPOS, PSGMT, PLINE/PPNT, PTEXT,

PLSTR, or ORGEN subroutines.

Exit: To the calling program.

Input: In register 1, the address of a
work/save area. The first word of this
area contains the address of the following
input parameter list:

+0 Address of the key in the key
table.

+U Three full words reserved.
+16 Address of the GDSCB.

+20 Address of the GSPARRAY field in
the GSPCB.

+24 Eleven full words reserved.

Output: For entry IFFAHAl13, a temporary
GDOA and its OACB are constructed and the
address of the temporary OACB replaces the
address of the regular OACB in the GDSCB.
For entry IFFAHAl14, the contents of the
temporary GDOA are written to the buffer,
the storage occupied by the temporary GDOA
and the OACB is freed, and the GDSAOACB
field in the GDSCB is restored to its
previous condition.

Operation: At IFFAHA13, storage needed for
temporary GDOAs and OACBs is obtained.
Fields in the OACB are set to point to this
temporary GDOA. The original OACB address
in +the GDSCB is saved when the replacement
OACB address 1is 1inserted. Control is
returned to the calling program.

At IFFAHA14, if the length of the update
orders and data is less than the length of
the element(s) being replaced, a GNOP2
order (if only two bytes are 1left) or a
GTRU order (if four bytes or more are left)

to the next element 1is placed in the
temporary GDOA. Contents of the temporary
GDOA are then written to the buffer, and

the storage used for the temporary GDOAs
and OACBs is freed. The GDSAOACB field in
the GDSCB 1is restored, and control is

returned to the calling program.



A. Mvultiple Request B. Multiple Request
Keyed Element in Keyed Element in
Include Status (PLINE) Omit Status (PPNT)

r— 1 r 1
| GNOP4  ADDR | | GTRU ADDR |
| GEVM | | GEPM |
| . | | . |
| . | | . |
| . | | . |
| element (unblanked) | | element (unblanked) |
| . | | . |
| . | | . [
| . | i . [
¢ { b 1
| GTRU LocC | | GTRU Loc |
t 1 t 9
ADDR| GEVM positioning | ADDR| GEPM positioning |
| element (blanked) | | element (blanked) |
t i t .|
LocC next element | Loc | next element |

{

|

C. Multiple Request D. Single Request
Ncn-keyed Element in Keyed Element in
Include Status (PLINE) Include Status (PLINE)
r 1 r 1
| GEVM | | GEVHM |
| . ] | unblanked element |
| . | L 1
| . | ‘
| element (unblanked) | E. Single Request
| . | Keyed Element in
| . | Omit Status (PLINE)
I . |
¢ i r .
| next element | | GEVM |
L“*\\ﬁd/——”\\_~\~qd/JJ | blanked element |

L 4

Figure 16.

Include/Omit Structure by Type of Element

Program Organization

65



A. Structure of Level 1 Keyed

Buffer Subroutine

This address is resolved by a call to ENSUB.
This address is resolved by a call to LKSUB.
(Omit status)

(Include status)

Note: The includes/omit structure is omitted
for a non-keyed or level 2 buffer
subroutine.

Linkage for

r 1
From EBGSUB: SUBR| GTRU B |
A | GTRU RET |
| GTRU A |
| or I
| GNOP4 A |
| GDRD |
t 1
| . I
| . |
| - |
| elements |
| . |
| . |
| . |
b 4
From ENSUB: | GTRU SUBR+4 |
I N 1
r A
B | Next element beyond |
| buffer subroutine. |
B. Linkage for C.
Level 1 Keyed

Buffer Subroutine

r 1
|GTRU  RET | (Omit)
or |
| GNOP4  RET | (Include)
|GMVA  SUBR+6,RET|
| GTRU  SUBR+8 i
3 1
RET |GPDI |
L 1

Figure 17.

66

b
RET |GPDI
L

Level 1 Non-keyed or
Level 2
Buffer Subroutine

-
|GMVA SUBR+6,RET
|GTRU SUBR+8

I

No include/omit
structure is set up.

e

Buffer Subroutine Structure and Linkage



From BGSEQ:

1st Keyed
Element

LOC1
2nd Keyed
Element

LOC2
Non-keyed
Element

Keyed Sequence in
Include Status

GNOP4 ADDR3*

GNOPL4 ADDR1
GEVM

element (unblanked)

-

GTRU LOC1

GEVM positioning
element (blanked)

GTRU ADDR2
GEPM

element (unblanked)

GTRU LOC2

GEPM positioning
element (blanked)

GEVM

eleme;t (unblanked)

Beginning of next
element or sequence

&“&E“m—-_————————-L——nu.—_-———————_-‘-_—di——-d--—-———.—-——-_-lh——

|

From BGSEQ:

1st Keyed
Element

Loc3
2nd Keyed
Element

Locu
Non-keyed
Element

*These addresses are resolved by a call to ENSEQ.

Figure 18.

Examples of Structure of Keyed Sequences

Keyed Sequence in
Omit Status

GTRU ADDRo6*

GNOP4 ADDRY

element (unblanked)

GTRU LOC3

GEVM positioning
element (blanked)

GTRU ADDRS

element (unblanked)

LOCY

GEPM positioning
element (blanked)

element (unblanked)

Beginning of next
element or sequence

1
I
4
1
|
I
I
I
I
|
I
I
|
i |
1
|
4
1
|
I
d
i
|
|
|
!
|
I
I
I
I
4
i
I
J
1
|
|
4
1
|
I
|
I
|
|
I
I
4
1
|
|

—

Program Organization

67



~Logical Buffer Address 0
(Physical Buffer Address 258)

I

|

|

First Section <=2 Bytes—>+
1

- L}
Physical Buffer | 0000 | |
Address 256 p——————— J |
| | GDOA1
| I Length 256 Bytes
i |
| |
| |
| |
i |
| 1
|GTRU 1024 | Transfer to next buffer section
L 4 for GDOA2.
L= 4 Bytes—-————-— >
r Logical Buffer Address 250
| (Physical Buffer Address 1026)
|
Second Section <-2 Bytes—)}
T L L]
Physical Buffer |Set mode | |
Address 1024 b |
| | GDOA2
| | Length 256 Bytes
| |
| |
| |
| 1
| |
t {
|GTRU next section | Transfer to next buffer section
L 4 if another GDOA exists. If not,

=== ) Bytes———é——> this transfers to appropriate
flow control structure address.

Figure 19. GDOAs with Logical and Physical Buffer

68



CHARTS

This section contains autocharts for many of the GSP routines described in the
preceding section. Charts are not included for all GSP routines, but only for the
routines where it is believed the charts are an aid toward better understanding. The
charts should be used in conjunction with the detailed descriptions of corresponding
routines in the preceding section. The charts are ordered alphabetically (according to
identification number) in the sequence in which the routines are described. Refer to
Appendix D for an explanation of the symbols used on the autocharts.

Charts 69



Chart BAA.

AERRALRRRER RN SR
* *®
*IFFAAAO03 ENTRY :
*

FRkRERERR R Rk

Xeosnoe

RS EBLERE R RRNE
* *
* *
*INITIALIZATION :
*

* *
ERFERERERRRRRREX

«% ARE
ok REOUIRED ‘s, NO

*s VALID oF
*o ok

*e o¥

YES

Xe os 00 ¥

cxtttnlttttatttct
*GETMAIN

:—t—t—a-t—t—-—*-t
*OBTAIN STORAGE *
*  FOR SD'I:TROL *

* *
L AL SRS S R )

X
RARRRE L RS R R R
*OPEN
L e ot 4
* FORM DONAME *
* OPEN DCB FQR *
* GSP SYSTEM *
L2 PR e e

PARAMETERS o%anns

INDEV Subroutine

AR RC2AR kbR EE &R

eaX* ERROR RETURN *
*

Rk RR kR Rk Rk bk

R R N T R R AN

-
-
X
LR LTS
* PLACE * *CLOSE *
* PHYSICAL UNIT * '—‘-‘-‘-"‘—‘—‘—#
* ADDRESS AND *
* FEATURES FROM * t CLOSE THE DC8B ‘
* UCB IN GTMCB * * *
Rl Er T I P T HERER R R RO
x
-
.
- -
X .
TINCOO1O o*. .
Gl *, EEERRGZERAR AERRE
. *FREEMAIN *
HIS *. YES - -t-t-‘-t-#-t-t
.2250 ALREADY ok X% FRE *
EN . * STOR!GE *
- -® * OBTAINED *
*, % L e
* N
-
-
.
3

T INOOO!

TINO

70

50
.ﬁﬁ“Hl"“*."“
*INGD!
Ql—"—ll—#—‘—t—.—i—i
*
-l- SYSTEH GDSCB t
* R GSP
‘."‘."I#“***"

Xeos oo

AERERD LA AR
®FLO CTRL MGT KA®
B e b L d
‘ INITIAL 12E :
!CTN. STRUCTURE

4.0:#1.:.;*:&##..

Xesres

0030
‘#“‘Kl'w#‘li*“‘
*SAEC AND SPAR

'—'—‘—‘—t*l—**i—‘
* CREATE A4
* AND ACTIVATE *

* GACBS *
XX ERBRRR R

Xo o

LEL L]

LE X
>
>
"

P

TINOS4.

TINOCOOSS

EEE 2

AEEE

TINOOL1O

tttttAatt#tttttat

*ALDAD

t k- t—i-t-'—t t
*

t (CANCEL) KEY *

* ROUT INE *
ERE 22 S22 RS 22 2 a3 20

ELR Y

HREERDARR R Rk Rk

Ca *a

HEEFRCSERREERERKE
* *

- *a
¥ NO * ASSUME *
*s GDOA LENGTH -t ssssasen X¥ 256-BYTE GDOA *
* LENGTH *

*s GIVEN %
*

* *
R AR AR
.

aXsessencenscsssaccasencsne

X
EEEERDI Rk ER Rk kR bR
* *

* PLACE IN *
*GTMGDOAL FIELD *
* OF GTMCB *

* *
EEERESRERORRE Rk

Xeaeee

00
SRR RES KAk R Rk
*GREADR *
W o o = K kK
* UNLOCK *
* ALPHAMERIC *
* KEYBOARD

ok kR Rk okok
.
.
TINOOL120 X

ERRERE SRR R AR E
*_OAD *
H ke K e K m R R
* INTERNAL *
* ROVUTINES *

*
RN ERRE RSk bRk
.

Xe s e o0

EERRGAFRR R AR
* *
- RETURN *
*

FRp Rk bR



Chart AB. INGDS Subroutine

HEEEA DR R kR
* *
*IFFAAAOS ENTRY #*

AR Rk Rk

LR Y

EERKADLIRRE S REREEE
* *

* *
*INITIALIZATION *
* *

* *
ERREEREEER Rk Rk

AR RC 24K KRR KRRk
* *
o«X* ERROR RETURN *

AR Rk Kk Rk k
.
* hkE
. *
. *C2 %
. * *
. Rk
.
X
HHAORRD kR kKRR K
* *
* OBTAIN GDOA *
* LENGTH FROM *
* PARAMETER OR *
* GTMCB *
TRk R ARk kR
.
:
OPNO0100
ttt#tElttttt‘t*tt
*GETMAIN
to'—t—t«t—t—t—t—t
*0BTAIN STORAGE *
* FOR GDSCBy, 2 *
#0ACBS, 2 GDOAS *
PR T Ty
.
-
.
-
X
ke OPN0O110
Fi *e tt#*thtttttttt‘t
ok L *GE TMAIN
«* IS THERE *. YES k= — t—t—t—t
#.AN EQUIVALENT e¥sccacseeX¥ OBTAIN *
*, GDS * X % STORAGE FOR *
*o ok - *EQUI VALENT GDS *
*e oF - AR AR AR AR AR
* NO . .
e - .
* L - .
t Gl #.Xa . .
t - .
: - x *
opnooll . ko
tt*ttcl"#*#t#ttt - G *e FEEXRGIRAAKN RN R AR
* . % 1S %, *FREEMAIN
* SET UP GDSCB t - -k THERE *e NO ek K= kR kK
* FOR FIRST OR # . ox ..x* FREE *
*  ONLY GDS * . STORAGE <% STORAGE *
* * . *a o lOBTAlNED S0 FAR¥
P L e TP - *, ok TR AR T P R Y
- - * YES .
31 - - . .
* - - . .
t H1 *.Xe . . X
L . . Aok
& s - x * *
uPNoonzo . ke * C2 %
tm:txnlt:st*attts . H2 *. * *
t *o haE
SE -VE 1s NO
toACBs AND GDUASt Teeere THERE ANOTHER-'...‘
»* FOR GDS * GDS
* - - -
R R I 2 s . *e ok X
- * AR
. * *
- * GY *
. * *
- kk
-
OPNOO160 X
to:ntJlt&tt*ttta:
*
* ADD GDSCB
-cHAlN ATTACHED #
TO
l
R R T T
-
.
x
¥ OPN00220 OPN00230
K1 *e ARERK2AREAR AR EK
- *e * * EEEEK I EREER AR
% 1S THERE *. NO * STORE GDSCB *
*2AN EQUIVALENT<¥ecoseoaaX® ADDRESS IN ¥ can Xk RETURN *
*e GDS ¥ *USER'S VARIABLE*
. o * * AR
.k P R TP PR T
* YES
-
X
AERk
* *
* A4 %
- *
ke

kK

* "
>
* 2
*
* %

Xs s o ®

EEERAGE R Rk REE
* STORE GDSCB *
*ADDR IN USER*®S *
* VARIABLE, GET *
*STDRAGE ADDR UF!

NEXT CB
tll*‘*“*#t'#*#‘*

OPNOO1

70
:t*xtnnt*ttttttt*
*  COPY GDSCHB *
* INFORMATION, *
*SET UP GDSSHOFD¥
* AND GDSSHDBK %
* FIELDS *
EE e e e T

.
-

X
kAo
*
* H1 ¥
Aok

Charts

71



Chart AC. TMGDS Subroutine

HAAE
* *
* A4 *
* *
EE
X
LY DSC00030
Aa *a
RRAkA LkkdoR Rk Rk ok 1S LX) EREEASERREERES ¥
* - THERE *s NO * *
*IFFAAA0G6 ENTRY x *e ANOTHER e¥ecacenan X¥ RE TURN *
* *e SHARED of * L4
AR AR KRk KKK %+ GDS o* RS LR S e g T s sl
. e ok
- * YES
. .
- -
X X
Ra AL PR AL LI L] .#"#Dbttit‘tttl;
* * *
* * * OBTAIN *
*INITIALIZATION * * SHARED GDSCB
* * ADDRESS *
* * * *
ThEERR Rk kkkhkkk R RREERRARREERER
- -
.
- -
X x
ke %o
c1 *ao ca *a
-k *e HRRRC2R kR Rk kkk -k *a heE
* «*IS THERE A #. NO * *
ERROR RETURN * *.KEY TABLE FOR.‘.-..X‘ H1 *
*«THIS GDS ¥
ok ok K ok KK KO K *o o* tstt
* *e ok
* YES * YES
- -
- -
. -
X -
aka
D1 *, FERERDARETRE KK EEK
3 *a *KEY TBL MGT KE*
«*DOES A KEY *. NO e e o e R R

* *
* DELETE KEY *
* TABLE

RS2 P2 222 S22 s

Xe oo #

ARERRE L KRR AR RK
*KEY TBL MGT KE*
W e e e K B

* *
* DELETE KEY *
* ABLE *
BERERRERR KRR RRERE

sesessassssrsesstsae

sXeoovonsvoe
-

DSC0000S
#i#t‘Flt*‘*‘."*.
*FLO CTRL MGT KAX
e e e e o e e e
t DELETE THIS *

FROM FLOW *

‘CTRL STRUCTURE *

RRRE Rk kR kbkkkkk
-

Xessen

ARRRKG ] Kk kok ok ko
*BUFFER MGT KC*
‘—*-t—l-t—t-t‘t"
RELEASE
.ﬂJFFER USED FDR#
S
#itt.‘.i“‘ll“t‘
LR il .
x * .
l HL %eXo
* .
L o
DSCOODIS
t*‘ttHlt“‘*t“‘*

t REMOVE GDSCB t
% FROM CHAIN OF *
- GDSCBS *

*
ARREREEEFRRREEREEK

t"#‘JZ"“."."

SAVE
YES *SHARED POINTERS*
seeseseX® FOR REMOVING *
* DTHERS FROM %

* CHAIN *
wRRRr Rk kkR ek

* NO .
. .
- .
-
:
DSC00050
tttttxltttnttxtta
AFREEMAL
N s

* FREE STORAGE #*
*USED FOR GDSCB,*
*0ACBS AND GDOAS*
EERERR AR R R R RE

'72 LR 2]



chart AD. TMDEV Subroutine

*REE
* *
* A3 *
* *

*¥kk

X
EXEERAT AR R T RN

SEEFALKERREREKE *FREEMAIN
'—#—‘ut—t =k t
*IFFAAAO4 ENTRY *
* ‘ STOHAGE USED *

FEAEEEEER KRR K FDR GTMCB *
- tt#ttll‘t‘#t#!#*#t
. -
. -
- .
x .
B e X
* * FREEDIREAERRREK
* * * *
*INITIALIZATION * * RETURN *
* *
EEERER AR RN

* *
xERERRRk ek Rk kk

HRERC2RERERERKK

- *o
% *, NO
®. THE GTMCB o¥%savseceeesX* ERROR RETURN %
*. OPEN o * *
*, ¥ kR EERRk Rk R

o o¥
YES

*

X

SR EDIRR Sk REkbk
*FLO CTRL MGY KA%
T e e e e
* *
* TERMINATE FCT *
* AND DECB

xskkkhakk kR RkEk

X
FREREE IR AR AR EERREE 2R RERRAERER
*BUFFER MGT  KCx *#TMGD S ACk
Sk B Rk & A i ek el
- RELEASE * oo XE
*oaL BUFFER % - TERMINATE USE i
CLEAR BCT . OF THE GD
t‘*..t""‘t"‘*‘ - “"Bt't““t'*"t
. - .
L TR -
* * - .
* F1 %oXe - .
* = . . -
hkE X - -
TCLO0010 _ .%. . x
F1 . s pETeEZaveRbebest
-‘ -
*. YES . UPDATE :
t.rHERE AN OPEN.*--c0ss + To NEXT GDSCB *
*  IN CHAIN
“e. o *
-k t‘."t.'?#'t“i“
* NO -
- - KK
- - * *
- caX® F1 ¥
- *
X orx

TCLOOO030 o*.

HEEEXG2R KR RE Rk REE
FB*x

¥ *e ®ENAT!

¥ OPEN *. YES *— *—‘—'-t-t—t—i—
*g ATTENTION e¥ounesooaX¥k .o
*e LEVELS ¥ ‘A'TEN'] DN LEVEL# .
- ¥ * * .
*a ¥ EERER KRR ERR TR RER -
* NO - -
- - -
- . -
- . .
- x -
TCL00040 X * .
SEBREH] S EEEEkkEEE -
b d CLEAR * 0 -
* GTMCB FIELDS * NO o% MORE YESe
* THAT IOENTIFY *Xeecocosso¥®e e¥s000

* IT AS A GTHMCB * LE VE!

*
SRR REEEE kRN R RE

Heense

TR LR AR
#DAR *
e L = ]
= *
* DELETE GACBS *
*

SRR AR EEEESER e bk

-
-
-
-
.
TQL00060 X
it Tttt
*COLOSE M

t-t—t-v—t—t—t—t—t
* QLOSE *
* DCB FOR THIS *
* 2250 *
AEESRRS SRR EREEENE

Charts 73



Chart BA.

74

Image Generation Subroutines

Rk RAZK KK KRk RK K

*
* ENTRY *
* *

HEREEKRR KRk kK

cre e

x
*EEERD2RkRRAkkR RS
* *

*
*INITIALIZATION
*

* %%

* *
SRRk R Rk kR kR kR kR

IR

cz2 *a

-k *a
¥ ARE *
*o. PARAMETERS
*a VALID -¥
* o -%
*o ok
YES

Xeae e g

REERKD2 KRk kK ROk kk K
* INITIALIZE *
* SWITCHES AND %
*SET UP SKELE TON%
*PARAME TER LIST %
* FOR DATA GEN %
EEREERKERRKRERRER

.
X
ok

E2 *a

-k ¥a
«*% IS THIS *. YES
*o A BUFFER
*e SUBRTN .*%
*

-* *.
.k IS THIS *. NO
*. AN UPDATE
*e CALL -¥

-

-
* YES

MR

HRRREG2% R Rk kkkkx
*KEY TBL MGT KEx*
b bt ot Sk Sk Dot SL 2L ]
* cenos

*
*VERIFY VALIDITY*®
*

AEERR R KKEKS

e¥essseaan Xk

accanse

X

R

FOR STPOS/ MOVPOS
PLINE/PPNT
PSGMT
PTEXT

FRRECHERTREREE ¥

« NGO
e¥eseccencasntcenossencsancnassecnasX* ERROR RETURN *
*

kAR AOk KRR ROk

FEREFETHFFE RN kN
*

*SET INPUT DATA *
NMOD! *

* INCREMENTAL ¥

*
FEEREKRE R Rk Rk

FREEKKF TRk F hkk kR Rk
*SAVE GDSXLAST, *
* GDSYLAST *

sasesX¥ GDSXCURR AND

*
*GDSYCURR FIELDS*
* *
Ea it PSRRI TY

* TO*
* *
*
CHART

CHARY
CHART

BB FOR STPOS/MVPOS
BC FOR PLINE/PPNT OR PSGMT
0D FOR PTEXT

FOR ERRURS ENCOUNTERED DURING PROCESSING,

FEEKEHIEkF R R kR ok
*

* ERROR ENTRY *

*

EEREAREERAR K

.
.
X
-¥a
J3 *o LRt Lt S L2 LS
ok *a *RESET DB*
- ¥ 1S *a NO Lt St D S B B S

*a THIS AN
*s UPDATE -

e¥seeeanoaX

* *
* RESETY GDS Tu =*

*. ok KEY *
*u ¥ R R KKk Rk
* YES -

scecen

X
AEERRK ISRk e F bk k

RESTORE * ERRK AR Rk Rk
*FLOGICAL BUFFER * * *
* START IN KEY, RNETURN *

¥eosasoaaX¥
* STORE KLY IN * *
* USER VARIABLFE *
R R R R RS 223

*
KA TRk

THIS 1S ENTERED.



Chart BB. STPOS/MVPOS Subroutines

POS00100 %,
Al *o

«%IS THIS*,
* A BUFFER *. YES
SUBROUT INE

ES

R RC ] Rk Rk
* SET y

= MODE TYPE
* ( ABSOLUTE OR
* INCREMENTAL )
* PER GDSGRMOD
ERREERER KR RRRk Kk

LEREZ X

.
oXco.-.o.
PCS500120
‘*“‘Dl“it‘it‘i#
*SCAL ING KF¥
K E— kA
* *
* SCALE INPUT *
A *

* DAT
PR e P P

*#Xe0a e

ot
'E1 * o
%15 THIS‘-

*SCISSORING KG*
B e it 2t

* *
* SCISSOR INPUT *
* DATA *
RSP REERRERREREK

.o e X¥

*RAKKAZRERRKRR Rk

*

* SET OUTPUT
MODE TO

* INCREMENTAL

EX XXX

*
AR AR KRR KOK KR

AEAKEB2EREAK KK EKE
*

*
*  SET UUTPUT *

oo XX MODE To :..'

* ABSOLUTE
* *
kR Rk Rk

YES % A BUFFER *.

seee®. SUBROUTINE ok

- ¥

. *a -®

- e o¥

- * NO

- -

. -

- X

- ke PDS00240

- F1 *, EERKEF2aRR kR bRk
- 2] * *SET UP GDSXCURR#*
- % Is * * GDSYCURR *
- o SCISSORING «X* GOSXLAST AND *
- *eREQUIRED % *GDSYLAST FIELDS*
- . ok * IN GDSCB *
- *o o¥F AR AOK ok kKR KKk Rk ok
- * YES

- .

- .

- .

. -

- X

- ARG LR R

-

-

-

-

.

Xeeoos

X ERH LSRR REEEHK
‘ ADD SCISSDRED *

*
t PREV!DUS DAYA *
* *

AERERRREEERERERRE
-

sXoesososssvcnve

POS00160 ke
J

-

¥ -
«% IS THIS *. YES

H
*e AN UPDATE e¥ocssasesX¥

*. CAl ok
*o ok
e ok
eXoasassaneese
Rk
* *
* A4 *®
* *
*EEX

TR R R R I I A A A R A A A

Fkkk J2kkkkkRkokkk
*UPDATE
ke —k— #
Gl
*TEMPORARY GDOA l

HRERERREER AR R RN E

-
-
.
-
.
.
.
X

.
-
-
.
-

RkE
® *
* A6 X
* *
kKK
.
X
FERE ALK KRR
*DATA GEN KH*
dm ko = R R
* SET *
* UP ORDERS AND *
A
FREEERERRERRRRR R

AXe oo

a¥o

Ba *o

-k .
¥ IS THIS *. YES
*o AN UPDATE ko
*e CALL ¥
*o ¥
e ok
N

Xeeoeen

EERRKKCARRERRERER %

* COMPUTE
*. OGICAL LENGTH
* OF ELEMENT

L XYY

*
Rk ARk R Rk kKRR
-

X o0

EERKEDARRE KA KR KKK
* *

*PREPARE KEY AND*
* KEY TABLE MGT *
* PARAMETERS *

*

*
FhERKEERKERRRERF K

POS00300 X
KRR RESER IRk Rk k&
*KEY TBL MGT KE*
‘—*—t i-"# it ot
*
t KEY TD KEV *
*

*
*it*tti*'ti*t!l*'
-
-
.
-
eXeoevssssnas
-
»

X
RERRF kR kR hbk
* *
* RETURN *
* *

FEFEREERREEKKERK

P0OS00230
1‘*#‘55'1"““"
*UPDATE
L e e ket Sk O t

X WRITE *
* TEMPORARY GDOA ¥
* TUO BUFFER *
kERERREERR AR ER KR

.

X
KEKKFCORREREERERE
i *

UPDATE *

tKEY lN TH& KEY ®
t *

*
*C**!*i**##*tt*“

sse s s e s esas s s et et et At e b

Charts

75



Chart

[

PLT

76

BC.

i&ttt
*BC
* Alt

02000 x AFADAT10
bt L SEL L L L TL LY
* *

* COMPLETE DATA *
*GENERATOR INPUT*
*PARAMETER L IST *

*

*
TR Rk Rk

X v 00

B1

IS THIS
AN UPDATE
*e CALL

.
*.
o “x. YES
*o
ok

X o anse

ttﬁt*c]it'ltilttt
GEY DACE
AD AND
nLOGchL BUFFER
* START FOR

I XXZ X

* ELEMENT
L L T e

s

eXouvesusssesascosnssssnnnsna

ke
Dl *.

-* MDRE THAN 1- NO

*e ONE POINT, e¥enas
*. LINE DR % -
*a SEG % .
*a ok .
* YES -
- .
- .
- .
. -
X .
‘*“tEl“##.tt‘tt -
*  SET_UP LOOP -
* CONTROL FOR ‘ .
* UMBE! F * -
* ORDERS TO 8& = .
* GENERATED * .
ARR SR a s S LR 22223 -
. -
ok . .
* ¥ eXessressessea
* Fl %.Xa
*
ke
02400 AFASSD10O

hdbbndit bbbt 21 L L1
*SCAL ING KF¥
t—t—*-&—t—t-#—i—t
* *
* CQOROINATES *
* *

EERRERRR R R R RNk
-

-
.
.
.
X
*

.‘ THlS PART *e YES

NDTE—-LABEL ON

LEFT SIDE OF BLOCK
RS TO PLINE/PPNT.

LADEL ON RIGHT SIDE OF BLOCK

REFERS TO PSGMT.

REEE
PLTO3200 AFADAT?S
‘kt"Ea.**.t*titt
*UPDATE

t—t—t-t-t t—*—t-t
*TEHPORARV GDOA *
* *

AR R R Rk
.

e¥eonsaeseX¥

Pe et serrssnsrsnne

A _BUF .
t. SUBRTN
. . .
*o ok X
* NO LT
- * *
- * B3 *
. * *
. ke
x
at¥e PLTO3000
J1 . nntt:Jzttttttt#tt
-k *. : ET
ok 1s *e NO GDSCB FIELDS
*s SCISSORING -‘.....-Q-X*FUR CURRENT AND'
*.REQUIRED .* LAST
- COORDINATES
tt.cttttttttttt‘t
-
.
.
X
e
* *
AFASSD1S * 83 *
tt!ttxltt“tit.tt * *
tSclSSDRlNG KG* R
- t—t—t—t-t—‘-#

* *

:CODRDINATE DATA:

EERREERER AR
-

X
EET 1]
*
* A3 &
Rk

PLTO24 X

PLT02700

PLINE/PPNT and PSGMT Subroutines

- S .k

1s “x. YES
*a THE DATA ZERO.‘-.-.

“x.
*o

EEEE)

50 FASSD25
#tttth‘t#tit#xtt
*DATA GEN KH¥
t-t-t-t-t

tGENERAYE ORDERSt
AND OATA
#tt#ttattttn:tttt

D A I )

eXasnaesosesa

ks
* E3 *.X

EE R

EXs e vessrsecans s

.
*o

m
G

o* ARE #,
«*THERE MORE *. YES
*e COURDINATSS s¥o0ee
*. TO DO

*e
*. YES
E

cse

Xeowse

HEERRGI SRR e R Rk

*

‘PREPARE KEY AND#*
* Y TBL MGT %
CPARAMETER LIsTY t
*

t‘.t.“‘iti““l‘

X
REXERHIR RIS R R E R R
*KEY TBL MGT

PU
* KEY 1IN KEY
* TABLE
REEFEERE R RERER NN

-
eXoossacsenns

X AFARET 1S
EAL I NEE SIS, Y

* BEFQRE THIS x

* CA

RERRRRKKE SRR R AR R
.

X
ERRAKIE R AR RS S
*
RETURN *
AERRERERIEREEE R

*
*

HEERAQRERRXRR R
*
seeeX* ERROR RETURN *
*

AR Rk Rk

. aeasasccsasaasns
: .
: TEREsEARER b LS :
. * .
:...x-rsem ON GRQFF 3eeet
. As NegoED | +77I
. Trertrrernrersens 0
+FO .
“PSGMT ONLY .
Ceeesresecnsisctcsacsacans

PLTO03300 AFASSD80
tttttFAtatatitatc
*UPDATE

B K = .—‘—t—i

Xk WRITE *
* OUT TEMPQORARY #*
*

DOA *
LR R LR eI I 2 2 1

-

.

.

.

-

b3
ERERRGAKS KRR EES
* *
* UPDATE *
* KEY IN KEY *
* TABLE *
* -
REREERREERRREEREY

-
.
.
-
.
-

sessscasscnsa

ARARKE SRR AR AR R
* *
* UP PARAMETER &
seeaXt LIST FOR NEXT *
* COORDINATES *
*
AERERERE R R R
X
R
* *
* FL *
* *
EER



Chart BD. PTEXT Subroutine
Fkkkk
*BD *
* Al%
*x ®
*
X
AFADAT10 ko AFADAT70
*a tttttAzﬁtttttt‘tt
*UPDA T
¥ IS THIs *—-t—t-*-#—*-t—t—t
%« AN UPDA X& GET *
*e CALL - *TEMPORARY GDOA #
*e -k * AND OACB
*a ok t#*tt‘tt‘t'tttttt
* NO .
:
X

e AL RS T RS 2L T T T

-
* * :
* PUT LOGICAL * .
* START ADDRESS % .
*IN ELEMENT KEY * .
* *
LRSI ST R 21T I :
- .
- .

eXesseosanssncscsssssnannnce

X
ke
c1 *. FRREREC2R Rk R RRRKE
-k *a 'DATA STORE KJ*
«*1S IT KEYED* YES ' —R—k -k k%
coaa Xk SET *
*e ok * INCLUDE/OMIT t

* STRUCTURE
1&::*:*:.#*0‘*:3‘

AFAPOS10
D - t‘f“bzi**ttit*ti
¥ lS *o *MVPOS

¥ *. YES t—t—t-‘—*—t—‘—!-t
. POSITIONING e¥seuncnnaXk SET up x
*.REQUIR * NEW BEAM *
*o \t * POSIT *
*o a¥ AEEREREEERRERRERN

* NO .

. -

- -

*Xecsscesesscnscsannssnscnse
AFASCSJO o¥e

o.IS THIS‘- Rk
BUFFER *. YES
- SUBRDUTIN
o
*, -k
*e o¥

AFASET10
EEREEF 2R R R REREREE

*

* COMPUTE NEW
ssss -o.X#BEAH POSITION»
STARE IN GDSCH

LXT R

ttttttttttttt*ctt
##t. .
‘ G2 ". X-
t %
AFASEIZO
.tttG2t‘t.tttttt

*
*DHTAIN LDDRESS *

‘FROM LEFT SIDE * t

OF STRING - *
0*.&‘#.***‘#‘*1'. BEEEEEEEERREERkEE

ET X223

* RASTER UNITS
BrerkkrhkRER bk s

AFASC.
tttttJl**t‘.t*t‘#
*SCISSORING KG%
el e e K e
* SCISSOR *
* THE CHARACTER *
* STRING b
LI PRI

Xesaose

o AFARE S0S
A Test

«+%CODE PASSED'- 4 OR

*.BY SCISSORING.#esceceesX* ERROR RETURN #

*.IN REG 15.‘
*o EEEEREERE ARk

EEERK2HEE Rk

*t*t
*S TEXT t-o..X‘ Ea .
Y

0"#

AFATST30

ttt#tnst'tatt't.t
SUPDATE

okt S

* WRITE
* OUT TEMPORARY
* DOA

EEEEL IS SRR EL LT ]

.

-

.

-

.

X
BRARRSIR AR R R RE
* *
* UPDATE *
* KEY IN KEY *
* TABLE *
- *

AEERNREE SR ERES TN
-

*oeessnsoos®s
*

EEE
* *
* A4 *
* *
EEE
X
*t#taAattttt‘tttt
*
* NUHBER OF t
*RASTER UNITS Tox

* BE SCISSORED *
AR ERERE KRR

.
-
X
ek o
a4 * -
«*[S THE %,
*BEAM TO BE *. YES
*eREPOSITIONED o#scveesseX

*o -

*
.

AFASCS40  .*.
ca *

%k Ul L
* YES
-CHARAC\'ERS HBEe¥eeae
.DlSPLAVEIz- .
*e o¥ -
* NU .
x -
HEEERDAR AR RS Rk R kR -
* DETERMINE N« * -
*OQF CHARS TO BE * -
*SCISSURED FROM * -
'LEFT AND RIGHT.% -
* VISE COUNT * -
“!'*#‘t#tt‘."li -
eXeaosssaccns

AFAGEN10O x
fhihid TR LS £ E L L LY
*

* SET uP
= o X*PARAMETERS FOR
. * DATA STORE

EE RN

- *
o RREAREEREEREREEEE
LR L] -
* *
* EA *
* *
*kk¥

Xoaaws

AFAGEN30

#‘ittF4“#‘t"'#t
#DATA STORE KJk
t—t“—‘—t-‘—t-‘—t

EXEXEBSE R R KRR
*DATA GEN KH%
t S R e e t

*GENERAYE URDERS*
AND DATA
tttttttttttttttta

Xeooesossssssecssncnnsncccs

¥Xeeoossessssccance

‘ STORE TeXT IN ¥

ttt#‘t#t'tt"t’tt
.

-
-
.
X
*.
*a
- ARE ¥,
«*THERE MORE *. YES

*+CHARACTERS \'u.t........xs FOR

*. STORE %
*o a¥
£, ok

NO

#Xe a0 e n

AFATST1IO0 o
H4

% *e
YES % 1s .
THIS AN ok
*o UPDATE o%
*

e o¥
* NO
.
-
-
.
X
o¥a
J& *e

-k *a
«%1IS THERE A *. YES
- KEY
*+ "CORRVAL * %
»
*a ok

cenne
AFARET10 .
FEREK ARk R E Rk Rk
* RETURN
ek EEP Rk RER

#Xesnvooaak

IR RN

tt.tt(,sttittttttt

t REINITIALIZE
CALL ?O DATA

HhE kKRR EEEREE

AERERISEER R R EERER
* *
* PREPARE KEY ¥

e¥asssssnaX® AND PLACE IN *

*USER'S VARIABLE*®
* *
EERRRERRREEREERRE

Xeweow

EREEEKSKREEREERRE

*KEY TBL KE*

At e ek it St S
ADD *

* KEY_TO KEY *

* L

e A E LSS TS S S 22 2]



Chart BE.

ceeX¥k

co¥e

aka

E1l -
ok 1S5 *e

THE *
KEY/CORRVAL

*4SWITCH ONa*

¥

-
s¥Xeoses

ST1

N

STEOS Subroutine

ERERA2RKR KRR KR
*IFFAFAL1S ENTRY *
e L R eI e )

X
FERERB2RERER R KRR
*

*
*INITIALIZATION
*

EX X

*
FEEERAEERKFRAERER

o* *o
*a pARAME Fers
%e VALID ¥
. %
Ko oF
N

FRERD2¥RE XK RRRS
* ERROR RETURN *
LR E et 2222l TS 1

2 ¥
¥ *.

.ls IT LEvEL z.tx.
*a
*,
*o

.t
-
YES

EEE ]

.
X
*tt'thtttlttt.tt
PLACE
l!LDGI CAL BUFFER ‘

*
i F3 %Xesee* START IN KEY, *
*

ST17

tttthlt'#‘*ttttt
SET

1 KEY SYRUCTURE ')l

WITH ZERO

* CORRELATION *
v

* *
EEE S S TR e e 2T

¥eugeo

STORE KEY IN %
*USER*S VARIABLEX*
EER TR LR SR LS ey

NOTE—THIS IS ENTERED WHENEVER DATA STORE OR
KEY TABLE MANAGEMENT IS UNSUCCESSFUL.

RESET

ARrsHl ek kREk
* ERROR ENTRY ¥
*

R EEEERE RN

Xe oo oo

SERTES LR ERERRREE
* *
* SET_up *
*PARAMETERS FOR *
* RESET *

* =
SRR EERR R bRE

Xe oo s

ST32

78

#t#tﬂ(l#“ttttltt
SRESET

P )4
* RESET GDS TO

* BEFORE CALL *
Rk kR kR k Rk

¥eseonuoa X
* x

ERREK2EBEREAKEE
RE TURN *
*
HEEEREr kR Rk

...xt.xALUE PASSED

NONE

esesta

5701

YE

€S
ecoss ‘. A KEY FASSED

s ¥
c3 *e

o¥ 1S A ¥,

« ¥*CORRELATION*.
¥

¥

YES

*o
*.

*
.

X
bt DELLE LI SR L]
* SET UP KEY *
#STRUCTURE. MOVE#*
*IN CORRELATION x
*VALUE, SET KEY/*
*CORRVAL SWITCH *
FERER R RRRR TR Rk

X

X
«*a
EJ *e
t-

%

*a
.t NNAE 15
*a° GENCUDE' ok

.
Tee ok
1
R
x
sT21 v
63" *.

sT18

¥ *o
IS THERE A KEY.»

X
AEEERHI* R kRS0
*

* SET
* UP PLAIN EQS
* ORDER

IR

*
EE 2L EE L2 R 22232

Xe s e us

FREREITEARHER ARk
*DATA STORE La¥
Rt aet BE S LI DRt
* *
*PLACE ORDER IN *

GDOA *
i AR SRR LT E LTS

Xesrenn

FEREKIRERREEOEE
*
* RETURN *
ERkERER R BBk F Rk

ST2

ST30

OUTRTN

ST

ST

5T26

5T27

15 i
ARBERGAREKKE RN R &
*

x*

kK
* A4 ¥
*

*hkk

8 X
FH R KAR KAk
* *

* STORE *
HOGICAL LENGTH *
* IN KEY *
* *
EREARRE R R RRRK

x
EEERFPLEREEFERERR
AKEY THBL MGT KE*
A i o s e o B
* ADD x
* KEY TO KEY  *
* ABLE
AREEE AR EREE

Xeavense

FEEKCHEREREEE R
*
* RETURN *

R EERRERRER SRR

NO

F R REFSHRR KRR RE

esewesseX¥ ERROR RETURN %

A AR kKK R

secssessscssnsssscsssassans

* SET¥ uP
INCLUDE
* STRUCTURE

*
EE AL E 22 2SS S 222 ]

LXXT 2]

-

ST

22 X
HRFRAGSEEE AR ERERE
*

* SET uP
*0OMIT STRUCTURE
*

EXEZT 2]

*
LA AL E 22 2 22 L]

25 X
AEERFHEF ke R ERRE X

*DATA STORE KJ*x
e e K Rk KR

* PLAC *
*ABOVE ORDER 1IN *
* GDOA *
ERRERERERRRE TS

Xeowse

HERRR) Gk kR ARkE
'DAI’A SYORE

* EOS ORDER IN %

* GDOA *
EXRRERERRRREBRRRK
-

X
PGt it dihibtnd
*

* FIRST ORDER

*
* ADDRESS FOR *
*
a2 it it 2 2



Chart CA.

FREEA LRk R K
* IFFAFAOS *
* DR 1FFAFAl18 x

* Y
LAEEEEE LSS TS 2T

Xesonus

bbb : SR L EL S L LT 1Y
* *
* *
*INITIALIZATION *
* *

* *
kKRR Ok ok Kok K ok ok

c1 *a
¥

*.
¥ I1s *
*, THE GDSCB
*o VAL ID -k
*a

% -
o W% -
* YES
. .
. -
. -
X .
o*. .
. .
«% IS .
«%A SEQUENCE *. YES .
*« OR BUFFER .t....x.

*SUBROUT INE « %
*+BEGUN o %
e o X%

* NO

#Xe s a8

ek
E1 *,
¥

*.

¥
*, PARAMETERS
*o

Xo e

BEGLPE2 ok
Fi .
«¥I5 IT A¥x,
«*¥2250 MODEL *
*+3 FOR BUFFER
*e SUBRTN ¥

»*
.
.
*
D N I T T )

*e ¥

*Xe 000

BGSEQ/BGSUB Subroutines

ERRKC2HRKRKKEK K

« NO *
e¥easeeoesX¥ ERROR RETURN *
X *

* KOk ok R Rk kR Rk Kok

tt#ttczxtxttttttt
* SET up
* APPROPRIATL t

*e
NO
* lT A SEQUENCE ¥ eoenaeeaX® INCLUDE/OMIT *

BEGPGB1
"ttlHlttttt*tt*t
SET uP *

t APPROPRIATE %

¥ INCLUDE/OMIT *ueeoaaseX¥
‘

* STRUCTURE FOR
* SEQUENCE
t*‘i#*i“#t**#‘**

SEE FIGURE 18.

BEGPGD 2A

STRUCTURE FOR *
* BUFFER SUBRTN %
kK OR A ROK R kKKK K R koK

MIEREEE]

RERARH 2k kK ok ok Rk
*DATA STORE KJ*
bt Bt St DL SF S T 3

STORE *
*ORDERS AND DATA*
* *

Ak KRR KK Rk kR ok K
-

MEEEE)

KRR 2Rk ok kK
* SET UP KEY, *
* STORE LOGICAL *
* BUFFER START *e.
* ADDR IN *
*GDSKEYSV FIELD *
O RR RO Rk Rk Rk kK

SEE FIGURE 17

t- YES
.X*.IT A LEVEL 2 e¥esssee
- ¥ -
- % .
*e o ¥ -
* ND -
HEGPGG2A X €GP GF 3
kK koK kok ok kR okok .
*KEY TBL MGT KE=* - ttttkqtt*txxt*t
ke t - Kk k= X *
* STCGRE x........xt RETURN *
* KEY IN KEY * *
* LE ***tt**ttt****t

TAB;
t*ttitt*#tttt‘#tt

Charts

79



tiotttttt"tttttt

Chart CB. LKSUB Subroutine
xtxtazttt#.)tt#
tlFFAFADB ENTRY #
‘t.tlltltt‘*ttt
:
x
FEERRB2e ek Rk bkk
* *
* *
*INITIALIZATION *
* »
* *
ShEEEEERAREREERNE
.
x
LKBLTB1 e
*a
¥ *e FEESCIEREREIHEE
¥ IS *. NO *
%o IT A VALID e¥eoemuuee X® ERROR RETURN *
*o GDS -k X
o - - SERRRRESLEEREKS
*e ok - X
* YES *REE -
- * * -
- * C3 * -
- * * -
- “EEE -
X « NO
ke a®a
D2 *e D3 *s
-# *o -k *e
NG « *SUBRTA KEY %,
enasese Xk, OR *CCRRVAL'" .%
*. PASSED ok
e ¥
e ¥
* YES
- “hEE
: . .
- % E4 %¥aes
- * -
- HEEE -
LKBLTBS4 X
ARERREZR RIS BR R EEEEKEL AR EREERER
*KEY THL MNGT KE* * *
* 1s NO PR S Bk T8 ool St o * StT UP ORDERS #*
%o SUBRTN KEY L d OBTAL * *T0 CALL DUFFER *
*. PASSED - - * KEY FROM KEY * * SUBROUT INE *
*q ¥ - ABLE * * *
*e o¥ x Sk EEE * EEEEE
* YES REEE - -
- * * - -
- * C3 * - -
- » * -
- FhEE - -
- X -
- -ka x
- KEEEEFQEEEEEEEEEE
ttttFlttttttttt . *DATA STORE KJI*
- t—t—t—t—t—t—t—.—t
* LKBPHYS ENTRY ‘ - *
* * - tGRAPH[C GRDERS *
FTSII TSR 2 2 24 - *
:
:
:

- .
- .
. cescsaseveacssssssassnseXe hEk .
x X LRELTOS x
ETT I ISR 2222 L Lol AEEEKGIF SRR EERRE KRS RRGAFEFREEREEE
s DETERMINE  * * SET * * *
« SIZE OF GDOA * = yP INPUT * * COMPLETE THE #
* AND LOCATE % SPARAMETER LIST * *KEY 1F PRESENT.*
*BUFFER ENTRY IN% *FOR DATA STORE * * PASS TO USER *
- BCTY * * * * *
FEEEARERRRRRRERES SRR EREEERESRRRRE EEEREFEEREEREEREE
. - .
. - .
- - x
X X aka
"‘*‘Hl"'.“"tt 'l..'Hj#"".lt't H& *a
*LKBPHYS o
CAMPUTE bl el G- “e. VES
tPHYSTCAL auFFERt * CCHMPUTE * - Ir oA LEVEI_ 2 kuae
*  ACOR FOR * *PHYS1CAL BUFFER¥ . o+
* L INKAGE * * * - -*
HEREEREEBERAERE R R SRRAFRRERERERISER ke ok
- - * NO
- X -
- L2 2] -
- * * .
. * E4 % LKBLTJS x
X * * REEEKJAEEEREREEEE
L2 I NRE LIS L2 2] hEE SKEY ¥OL MGT KE*
- k— -k —F— &
* RETURN * * STORE *.
* * KEY IN KEY *
KRR ERERRREAREE

80

* TABLE *
R R RERREER R

Xeseaenanresas

seeseXE
*

A ISR K
*

RE TURN *

*

ST ECEERREEEE



Chart DA.

EXCO01:00

EEERALERRERREEE
#IFFAFALL ENTRY *
-

2SSk Ekk R RRREE
-

Xeeeann

Ra i IR RS EL 22 2
- *
»* *
*INITIALIZATION :
-

* L d
bbbk kbbb k kR

*Xees o

ot
cx *a
-

EXEC Subroutine

HEERC2ERR R Tk

e
ND * *
- GDSCB VALID T%ccecccecXt ERROR RETURN *
* *

- -
x, ak
*a o¥
* YES
-
x
ke
21 *a
- a
¥ *,

NO
t.GDﬂA CONTAIN P 4
x

FaANY DATA %
*g ok
e %

* YES

x
oka
*o

-t THERE ANY i. NO
REPLACEM

T e¥acee

t- DATA ¥
e ok
e o¥

YES

Xe o000 W

podas Al bt
*GWRITE

l—'—t—'—i—'—t—#—'
- WRITE *
* REPLACEMENT =
#DATA TO BUFFER *
P e e e

eXooeerasnee

HL *a

e
*o NO

LE X ]

EXC

-
-

LR i 222 2222l

00550
tttttoztttttttttt
*GCNTRL
t—t—i-l—'—*—t—'—t

*RESTART DISPLAY*
* =
FEEREEEER SRR R kkE

ke
*

o2

*

=
ok

EXC

EXC

0032
REEEEG2ERE bk kEkE
. SET SIITCH T0O *

SAVE *
-.X‘CLEAR GDSREPDT tX.

t AND GDSREP
FIELDS
‘t.tt“."".“t*

-

- R

- ¥ *

eeX® BA %

=

Rl 2 o
ao2s50

tttttuz.nttntttt#
*GWRI TE

t—t—t-t—t~t—-a—t

‘ AN EOUIVALENY-‘-------.X

.- ..

*a
ES

<%

EXC01000

x
AEREE) L BSE IR EREEE

*GDSOVODAT FIELD *
* TO GDOA *
Fhkahkbhkkekerkkk

IZI!DERS API) DA?A!
FROM GDO.
'*“""“'.ttt.‘

T IR RN

32 e

*noneoses X¥

rereex

*a
*e -k

e X%
* YES
-

x
EEE

LEE )
[
»

E

EHEE

LS
T
'.AN EOU‘VALEN‘-'----...;X“-
GDS ¥

EXCODA00

EEEEDIHREERESEE
*
RETURN *

*

et Li bl il st

oka
J3 ‘.

¥
¥ HERE AN
UNRESOLVED

to N

mttttxstct't'tt't
* SEY OACB
* FIELDS TO t

%k INDICATE ADDR '-----

W IS NOW IN

BUFFER #
wttttttttt:xttt:v

EXC00340 .«
B4

-k
NO %
eemsemccccnsessscnsencaccssackaAN EQgs;ALENYo.

*a

¥ *
+* IS THERE
*s A CURSOR IN
-YHIS GDS ¥

‘- ok
NO

v e n

-
*. YES

e¥esoesaseX¥
*

t#l#*ﬁsttt..tt."

*GCNTRL

L e s et et *—l—
INSERT *

CURSOR IN *

* BUFFER *

AR EEREEERERES R X

aXsesesescsassnsvscscsevrcenne

Xs o0 B

ttii*oh*#t‘tttil‘
*GWRITE
i—'—‘—.—t-t—i-t—t
*WRITE TRANSFER *
* TO FLOW CTRL t
* STRUCTURE
"'ttttt#t""‘#‘

#Xe o000

Ea” %,
* g

IS THIS *.

s, .
*a o
+"veS

aXessssososss

-

EXC00600 X

KRR EF4EEEEREERRE
* SET BIT TO *
% INDICATE THIS *

ses st es st e et e s s

EXC0030

X
-
-
-

"“#Jht‘ittt‘*"
* UPDATE O0ACB
* FIELDS ——

*CRSA,LOGSTART,

*

0 *
e¥eosnneaeX® BUFSTART,.BLP, *
*

*

*

* AND BUFLEN
EL S22 PR S L2 22

-
-
-
.
-
.
-
.
.
-
.
-
-
-
-
-
-
.

Charts

81



Chart LCB.

RESET Subroutine

ER AL S ELE T PTTY
*

*IFFAFAL2 ENTRY *
*

AEEKERRE KR RRRK

Xsseseae

HEEERD LR AR
* *

* *
*FINITIALIZATION #
* *

* *
AR AR ARk
.
-
:
%
c1 *a
-k *eo HAERC2 R Rk
% *, *
*e PARAMEYERS e¥eeoea X* ERROR RETURN %
- Al *
- .t LR R T
*o ok
* YES
.
x
%o
D1 *. AEERED2R R AR KR
* IS A *, * SET UP A *
KEY OR *, NO ¥ DUMMY KEY, *

CORRELATION s%eesoconoXt LENGTH=04 *
VALUE PASSED* *LOGICAL START=0%
*

*o .
*e o% ok ok ROk ok kK kR K
* YES .
. .
X x
ok ke
(31 E2 .
YES % 1
seea®eIT A LEVEL TN LEVEL 2
- « GO *e ok
- *.
. *
- . -
- . -
- - .
- ; -
«RST0020 .
- ‘4“*F|l'lit!#t“ -
- #KEY TBL MGT KE* -
o KAk kK ke -
-  #SEARCH FOR KEY * -
-« *OR CORRELATION * -
. * VALUE * .
- EEREAERERE R R AR RAR -
- - .
- . .
- . -
eXeasssnews sencace
-
“RST00300 X
o AEEREGLEREEREERES
«  #KEY TBL MGT KE*
- e e e e e e R
- * ES| *
+ L KEY TABLE To %
- ABOVE KEY  #

- -
‘esmemesssaaXe

x
RSTO0400 o *.
H1 *

82

t"t.lttiii*ttt‘*

wXnaneseseenssessstccscsncnsnccsncncan

n. NO
*o RESET UITHIN e¥uone
«THE GDOA % -
%o ¥ -
e ok x
* YES ERER
- * *
* A2 ¥
. * *
- ke

X
AREERY I KR ARk
* *
- RESET ALL *
* NECESSARY *
*FIELDS IN OACB *

* *
WEREERE RN AR

X s v 0

1..0‘K1‘lt*'*#t'i
* REOPEN A

* SEQUENC

* BUFFER $UBRTN ‘
* IF NECESSARY *

- *
AREEREEET R RRR SR

D R N I N A A N I

Crersas e ssare

RS5T00600
tttt‘AJ“‘i#‘.#t‘
t

MPUTE ‘
*DUFFER ADDR OF ¥
*GDS TO BE RESET*

* *
EERRRERRA R AR R RN

Xt o0

tttttﬂjcot#*ttttt

tTHE 0ACB 15 SET*
*UP TO POINY TC *
* THIS LOCATION *
* *
FEEBHERF AR R DR E

Xesuas

RS5701400
BEEXECIEERRRS DR AK

AEEFADI RN AR IR R
* *

* RESET *
* REPLACEMENT *
*DATA If NEEDED ¥
* *
AR Rk Rk

Xea o

RST01600
t‘.t!EJt.ti‘#ttt*
TE

LR T T T

.
X
‘.“.FJI‘*.“‘.*&
*
*REUPEN SEGUENCE#
*

PR S P T
-

R -

* E I

* G3 FaXe

EkE .

X
HEERGIHEN R RRRE
*
* RETURN *
*
LEEE ST ST P 22

RSTOOA40 ok
A4
ok .
¥ 1s IT ¥« NO
*eAN EQUIVALENT«¥oaes
- GDS *

. -F .
*e o X
* YES *RER
. * *
- * G3 *
*
- LT
X
ok
B2 *a
-¥ .
- IS THI *o NO
*s GDS IN TH e¥oune
*eo BUFFER o% .
*e ok X
* YES xRk
. * *
. * G3 *
. * *
. L
X
AR CAREREEERERR
*EX DAX
AR gk
EXECUTE *
t THE RESET GDS *
*
kR R AOR AR KRRk
- EERE
- * *
eX¥ G3 *
* *
LI Y



Chart LC.

IDPOS Subroutine

ERROR

BRERALEERESREEE

ttl‘#AZtttttttttt

* tSEY ERROR CODE :
*IFFAFA13 ENTRY ¥ eeeXkAND ADDITIONAL *
* - * [NFORMATION #
AEREA R AR AR E . ox *
. o EEEERREREREREEREE
- . .
- - .
. . .
- -
- -
- - .
X . .
T R L . .
* * . .
* * . .
*INITIALIZATION * - .
- * - .
* * - .
EREEE R AR . .
- . .
. - Ll -
. . % * .
- . * cz2 ‘.X'
. - sXeaosos
X - t
AROUND ke .DUTRTN
c1 . . X
. FEEEC2H AR ERERE
“x. NO . *
PARAMETERS ko * RE TURN *
*e VALID %
*. o* AR AR
%o ¥
* YES
.
-
X
RARKAD LR ERR AR REE
* MOVE INPUT X— *
* AND Y- *

I~pos

tCODRDlNATES T0 *
SCAL ING INPUT t

ARRAY
l“‘.l‘t*t‘*tﬁ.t‘

Xeoevan

‘t‘ttEltt"ttstit
*
tTEHPDRARILV SErt

* ABS(I_UYE ‘
* (GDSDATMD) *
AEREREEEE R EREK

Xe o000

BEEERF LEER RS RS RR
*SCAL KF¥*
e o e R e o e K
* OBTAIN *
* SCALED VALUES *

*

*
Rk kR Rk kK

X
*
*-

«%  WAS
¥ CAL[NG ‘. NO

‘. SUCCESSFUL e¥ovewosesX¥ INPUT MODE
¥ *

*a -k
*e o¥F
* YES
.
INDO9 X
BRI IR PR LS ad
* *
* SAVE GDSXLAST *
* AND GDSYLAST %
* FIELDS FROM *
* *

GDSCB
R REF Rk REE

Xeovasase

ERERS LRk rhkkkk
* MOVE SCALED *
* DATA TO *
* GDSXLAST AND *
*GDSYLAST FIELDS*

* *
RRERE R R RRRREEREE
X
RN
AL
L L L

»un
EX X

AR ERRKG2EER KR RRERE
*

* RE STORE

XX XX

{GDSDATMD)
*
Aok ok RO R RO R RO

x
*EEF K
* C2 *
* *

*kkk

IND10O
IE IS T RES S et il
* MOVE SCALED *
* DATA TO *

ARE tu
-t

NO -
* GDSXCURR AND *Xeevooscas¥s CDDRDINATES ¥

*GDSYCURR FIELDS*

*4 PASSED ok
*

* - -
AR AR KRk ok ke ok
. % YES
. .
X INDL1 X
R REBIRRF R E KKK AEEERDAREEREREEE R
* * * *
* RESTORE * * MOVE THEM *
* INPUY MODE * * TO SCALING *
* " (GDSDATMD) * * INPUT ARRAY %
* * * *
LRSS LR 2 22 22 s sl ok oKk dok ok kKKK
- -
. -
-
IND1 X
‘ttt‘cﬂit*tttt#‘*
*SCAL ING KF*
t—t-i—'— - -t—t—t
OBTA *
# SCALED VkLUtS t
*
**tt““t#*tt*ti#
.
.
X
L
A ERKDI kKRB A kK -
* RESTORE PRIOR * WAS X

* GDSXLAST AND * NO
*Xososasae*e SUCCESSFUL ok
* *

* GDSYLAST
*FIELDSs RESTOREX*
* INPUT MODE *
*ERREERE R R kR kR

% SCALING *.

.
X
k¥k
* *
* C2 % IND1S X
* * RERKEREL Rk RER K
Ak * MOVE SCALED *
* DATA TO *

* GDSXCURR AND ¥
*GDSVCURR FIELDS'
IN GDSCB
t*‘##**t**ttttt#t

-

.

X
EEREREFARRREERRERK
*
*
*
*
*

AR AR R KRR K

RESTURE
INPUT MODE
(GDSDATMD)

EE R

X

* kK
*
* C2 *

*kkk

Charts

83



Chart EA.

HEERAL RS R R
» *
*IFFADAO3 ENTRY *

*
EEESBEER AR R RREK

EaAE LA PR L1 FE LY
*

*
*INITIALIZATION
*

L XX Y]

*
LR RS SRS P T RS 2T

ICURS Subroutine

-
x
o%.
c1 *o
.‘ a. ARERC 2Rk hR kA kK
*. ND *
‘-lS GDS VAL[D sesacaec Xt ERROR RETURN *
- *
- iy AR KRR AE
%, ok
* YES
.
-
X
TEMPSTRT o¥a ke
D1 *, D2
ok *a -t FERADIE R IR RRRK
«*IS IT LEVEL*. NO - s *- NG
*a 1 XEY OR e¥esseccnaXke IT LEVEL 2 w#¥eveaaaveX¥ ERAGR RETURN *
% *CORRVAL * o % - KEY ¥
. - - - R T PR PR TS
*o oX *e W%
* YES * YES
- -
- -
KEYTBL X PARMCKL 2 x
FERRFELRREAREER LR HERERE2RFARARERRE
'KEV TBL MGT KE¥* * *
e R K e B * GET LOGICAL *
tSEARCH FOR KEY % * BUFFER ADDR *
*0R CORRELATION * * FROM USER KEY *
* VALUE * * *
LS LT T Pt PR FEREERRERRRE KRS
. -
- -
- .
Fl1 . AERRRF 26k kR Rk
. * SET *
«%*1S ADDRESS *e YES * FLAG TO *
*eo IN MAIN e¥acasassaX® INDICATE THIS *
*. STORAGE % * IS THE CASE =
«GDOA o *
e % ERRERERRREKEREEK
* NO -
- .
.x.........................
COMPPHYS
t:tttcxt:t#ttittt
PUTE
#PHYSIC‘L BUFFER*
#ADDR FOR CURSOR¥
* *
FERERR SRR EERERNE
.
.
-
X
¥y RESETRTN - INSRTCUR
H1 *eo HAREAH2R R SR EnhkF H3 t. AEEFRHAREE R KRR XK tttttﬂsatttt*tttt
-¥ 1S * * STORE BUFFER * *GCNTRL * *GCNTRL
«% THERE A * ADDR IN * o ]S CURSOR *. NO i e et 2 T L D T S B t
*. CuURSOR IN eeX® GTMCRLOC s SET ¥eceeesee X¥ADDR IN MAIN ¥ ueoveeaseX® INSERT ¥osoersee Xk RESTART *
-THIS 2250.* * GTMFLAGS AND * ¥a STCRAGE .¥ * URSOR IN * * REGENERATION *
. *GDSFLAGS FIELDS* *o - * BUFFER * * *
“oe %" . LEEEE T P T Ty ey LS LR Y T T LR
* YES - * YES -
. - - -
- - .
. - -
- - . -
RESET X - ALLDONE » X
REEEES | ERERE R - X tttttJSt#nvtttttt
*RCURS EB% - FEERYIERFRRRAER *
u—t—t-tct-t—t-t-t - *
- Xeeeons * RETURN ¥Xssavosnesncsscscnessane *GTHCRLDC FltLD *
* REMOVE CURSOR * * IN MCcy *
* FEEEERERERRATRR *

EERREEEER AR RR R RE

84

ttttttttttthtat*t



Chart EkB.

RCRO

16
RIEESO SRR RRERESE
*GCNTRL
B e
* STARY
* REGENERATION *
*
CRAEE AR LS B R RS K
.

RCURS Subroutine

D
HAVE ‘-

ok
YES «% ALL *o
#x....-...t.ENTRIES BEEN ok

t‘ttABtit##"tt
*IFFADAQZ ENTRY ‘

"it‘l‘t“t‘ll.

PIEEEER

baht s - REL L EL L L L L]
*

*
*IMITIALIZAT ION
*

XY R

*
ES S S LS R SRS S22 L2 )

¥ .
«% IS THE *4 NO

PIREEEE 3

FADRRDIS K FRE R RE KK
* BYAIN *

*« SEARCHED #RF ER TO TOP ort
*. ok BCT
. o U SR

* NO .

. -
. sXsassesenane
- x .
- RCROO I .
. ttutts:tt:g:ttatt -
. * sEAncu * .
- FOR : .
secsssnsnrsnsscvan XX ASS!GNED -
*ENTRIES » UPDATEa .
*  POINTERS -
#tﬂ“"t.t.“““ -
ExE . .
* * - -
* F2 %u.. . -
- * . . .
KR - X -
X . -
KRR 2EREREEERRE F3 *o .
#GCNTRL o* 15 #. .
K K K o K «% THIS BCT #%. YES.

* *
* REMOVE CURSOR *

bk kkk kb bRk

Axe s e

G2 *o

-k *e
% HAVE WE *e
*+SEARCHED ALL
*CONTIGUDUS,. %
*BUFFER. ¥
*e ¥
* NO

Xe 8000

TE

* BUF STARY *
* AND REMAINING *
* LENGTH TO BE
* SEARCHED *
HERKEEEREEEERERES
.

YES
-

- ENTRY
%, ASSIGNED %
*

- -
e %
NO

R

RCRO113

3
AEXREGIRFERFE KKK
* CONMPUTE NO. *
* OF BYTES OF %
* BUFFER IN *
* CONTIGUOUS *
*ASSIGNED BUFFER%
FEREEEARARARBREEK

-

-
x
HREERHIE ¥ B E AR KK
t *

COMPUTE *

0 BUFFER START *
ESS *

*

*t*tlt’t'i“tttit
.

weosssescesssssvacncsssnsansXae

RCROL#H

.t*..JJ*‘tt*tttt*
*GREAD

Kk — ‘—‘—t—i
* CHECK FOR *
*CURSOR IN ABOVE¥

* BUFFER *
EE I ety P22

e¥eose

.
.
-
-
-
-

-
x
.k,
K3 *o
- L
-k 1s *. YES
*2CURSOR FOUND o¥saes
*e - -
*o % .
e ok X
* NO *EEK
- *
- * F2
x *
LR EREE
* *
* D2 %
* *
*k ok

-

-

EEE -

* * -

* D4 %.Xe

* * -
¥R .
RCRO17 X

RCR

*1S
-..x*-DNE éN GD5C8

e¥eovesernssvencocese

EFEREDA R EREkFRkkF
* *

*RESET GTMCRLOC *
* AND GTMFLAGS *
tFlELDS IN GTMCB‘
ttt#tt#t#ttttttt*

X oo

ttlttEdt*t‘t‘t#tt
t UBTA!

tFlRSY GDSCH IN t
* CHAIN FROM *

* GTMCB *
FEEEERRER RS R RE KK

*Xe s s

018 -
Fa #o

17 LAST ‘-

™ ok
*e o ¥
o W%
NO

Xaee b ®

FEERXRGARERERXRERRE
* *

* QREMOVE CURSOR *
*FLAG FROM GDSCBX
* (GDSFLAGS) *

* *
hEREER KRR REEERKEE

Heawue

X EEEHGE R Rk Rkkk %
* x
*DBTAIN ADDRESS *
* OF NEXT GDSCO *
* IN CHAIN *

*

*
AEFEERFEERREREREE

YES

e¥esnsnnsaX¥
*

RE TURN

R EFRAKERERETE

ARRAFSEREFERRER
* *

*
*

Charts

85



Chart EC.

ADD1

KEYT!

COMPL

GSPRD Subroutine

FERRALERBRESRRE
x
#IFFADAOL ENTRY *
* *

SRR SRRRRERRKR
.
-
X
L R
. *
- *
*INITIALIZATION *
* *
* *
AEREEREERE R RE R
.
X
=
ct *e
o* ERERC2EH AT RREE
¥ ARE *. NO *
%o PARAMETERS +%cceweeceX®* ERROR RETURN *#
o VALID % * *
. o* EEEERREEERR R
o ¥
* YES
X
ok RDALLGDS
D1 ERREIDZERSSEARSSS

*e
-ENTIRE GDS TO.*

YES

eae .X‘LOGI CAL LENG‘I‘H *

*s BE READ <% FROM OACB *
*e . # *
*o o¥ RS RIS LSS S L Td
* NO
-
-
X
ake PARMCKL2
El *e FRERRED RN EKKE
¥ *

*
l- ES * OBTAIN BUFFER *
e¥soeseneaX®* LENGTH FROM *ucese
* USER'S KEY(S) %

- o* * *
LI REEEREREERRARERER
* NO
-
-
.
.
BLE X
HAEEAF L ERERRRRRRE THIS IS DONE
SKEY THL MGT KE* ENDIVIDUALLY
e B e e R e e & FOR EACH KEY
a4 SEARCH FOR * OR *‘CORRVAL*
:KEV/CDﬂRELAY!DN! PASSED.

VALUE *
LRI DI T LT ey

-

Kevooa

GTH
ARG LEFEERAERES
* *

- COMPUTE *
* BUFFER LENGTH #*.
A4 FROM KEY(S) *
- *
HEESEEEE LR R RR kR

ABC

Rl EER

* * * *

* A4 ¥ * AS ¥

* * * *

AokR HREFX

X X

tstt:AAtttt*ttta: ttit*AS#t#tttt#t*
*GREAD *GCNTRL
t—t-t—t-t-t—t—x-t —t-t—t-‘-#—t-t—t
* READ FROM * * RESTART *
*BUFFERs RESTARTH® * REGENERATION #

* REGENERATION *

*
P T e FRR R KRR ARRA

. -

eXenoeesssssnaccecscnseccncncs

X
MOVEDATA .%o MOVECHAR
B4 *a BEEREOSERR IRk R R R
-k *a * TE ST FOR *
+*CHARACTERS %. YES * CHARACTERS, *

*e ONLY TO BE as¥eeeveoeasX*UPDATE COUNTERS*
*. READ X * AND MOVE ONLY *
*o ok * CHARACTERS *
*o oX EEREREREEEE R
* NO .
- .
. .
X .
BERERCAREERRRRARE .
* MOVE * -
* ALL DATA READ * -
* INTO WORK AREA * .
*TO USER®S AREA * .
* .
LA EL S L e L .
- .
“Xseeescsssssscsncssssancns
x
¥
D4 *o
t AEKRDSHERERRIRK
THERE t. NO *
. *e MORE TO READ o*40 e X¥ RETURN *
. *«FROM BFR o
. *e . AEREEEERKEERRRE
. Ko oF
. * YES
«TSTCOUNT o *. GHI X
. E3 - REREXESRTREERERRE
- . is * t -u:u
X COUNT ORE *. NO *CAL CULATE NEXT *
ceeX¥s THAN BUFFER e*seanss tBuFFEﬁ SECTKON *..-.xt K3 *
X %o LENGTH % . *
. - - tto:
*. ¥ - tt.tttttttttttt#t
* YES -
. .
. -
BUFLGTH X -
FERERF IR AR R R - badad I SRS S 2T 2
* SET * . * SET *
* READ CONTROL * . * READ CONTROL *
*AREA AND INDEX=% eeeX® AREA = COUNT %
* BUFFER LENGTH ¥ * AND INDEX=0 ¥
* * * *
ARRRRRER R RNk EREERRERERRREEER

sXesosoescnnnoessssccssssnscse

PRECONP

X
)’!“GB“(‘*."“
COMPUTE
*PHVSICAL WFFERt
t SECTIQN 1(] BE t

* READ *
LRSS S SRR 2L 22 L

Xs a0

"l‘.H!##“#.#“t
* INITIALIZE
*® COUNTERS »
* CALCULATE
: LENGTH OF
-

BUFFER
EAEEERRNRERRERES

RN

'Y TR

a3”
¥
¥

*e

S
* CAUNT*
*«NEGATIVE
*e -

e o¥
N

¥

EEZ 2 .
* * o
* K3 #*.Xa

* .
il -
XTI HEBRERNR LR
* *
* SET PARAMETER x*
*LIST TO READ BY*
* COUNT *

*
PR 2 EE L RS 22 )

CURSCTL.
HERERJARER RN ERNK
* *

* SET PARAMETER *
....xu.lst TO READ To*
CURSOR
t
t.“i.*““"ii‘t
.

AEEEBK ARREXEEEREE
*GREAD *
Hom B Hm e e R B
* *
:READ TO CURSOR :

REEREEEFERRRRERKR



Chart FA.

*RERAL KRR KRREEE
* *
*IFFACAOO0 ENTRY *
- *

LR 2 AL L LSS

.

Xo s o s

LS PR - PR LS LS T )
* *
* *
*INITIALIZATION *
* *

* *
RRkERk kR kR Rk kRkk

*¥Xe v o

AROUND .
(o33 *a

-k *a
ok ARE *. NO
*. PARAMETERS e¥seceasessX
o VALID -k
.. %
e ok
YES

Xoeooo o #

CROY
Aok KD | KRR A SRRk
* *

*ASSUME DERAULT *
*FOR *DEQUECTL * *
* IF NECESSARY =

* *
kR AR R Rk R Rk

Ke s oo

.“llEl"####t#tt
*GETMAIN

t—t—t—*—t—t—k—t—t
* CBTAIN *
* STORAGE FOR *
*ATLCB AND ADEQS*
SEEkERREREE ROk

X0 e 800

Fl *e
-k 1S5 *a
. THERE *. YES
*2PRESENTLY AN e¥cses
*. ACTIVE ok

X

CRATL Subroutine

EEFEC2RE R KRNk
* *
* ERROR RETURN *
* *

bRl LSS L R R S L

12
ttt*tFZ*l#‘*t“t*

*ATTNING

*—t‘#—*—i—t—t—t—t

* INQUIRE IF *Xeo
GSP GACH *

*
*o ATLCB o * *INDICATES ATTN *
. o HRERKEEKEERERERER
* NO .
. x
CR10 X *
il LA L LYY G2 *a
*SAEC o% ANY -
W e o N o R NO <% ATTENTION *.
* 'x.--o..'-‘- [NFDRMAT!DN .*
* DISABLE GSP * *. AVAIL
* GACB *o e
TRRRRBR AR RRE *e ok
- * s
. .
- .
X CR11 X
FhkRRH2R Rk R

RRREEKH | EEF AR E R
* TAR *

* INITIALIZING *
* ATLCB, OBTAIN *
* ADDR OF FIRST :

B ADEQ
AEREEK S RAKERRRREN

Xesoas

CR14
LRSI NS LI LSS L)
* *

t CHAIN ADEQS t
ETHER «
tCOMPLETE ATLCB *

F oS
tt‘*###ttt‘#l*t**

X
£xa¥

ThRk

* PLACE DATA IN *
* ACTIVE ATLCB *
* ADEQ. SET *eaa
*ATINNLEN FIELD +
* APPROPRIATELY *
LR 22 RS S R R S 2]

A
* *
* AL ¥
* *
*kKE
.
:
CR1S
tttitAA#*ttt!ttt*
E

* ADDR DF ATLCE *
*USER SPECIFIED t

* VARIAD
*t*#‘##‘**“#titt
.

.

X
oka
Ba t.
is

-¥
THIS THE *.

*EXERDSEFRRKEKELE
* *

o * PLACE *
*e FIRST ATLCH eXsoseevasXk THIS ATLCB IN *
* CHAIN *

*e CREATED %

CR16
KRR C ARk Rk Rk Rk
* *

* SET PROPER *
*FIELDS IN ATLCHX
* AND GTMCB *

* *
EEREERERRREERRRKE
.

* *
kEkkkkkk kR Rk kkk

.

*REERCSEREREEXRRE

* *
* *
* *
% ADDR IN THE *
* GTMCB *
AhkkRk kbR kR R Rk kKK

cr17 X
TEREEDGEERERREEEE
*GCNTRL
Ak Km K
* TURN ON PFK %
HINDICATORS PER *
*  GTMLIGHT
#*‘i"*t#*###tttt

DUTRTN

.
.
X

HERKEEARKERERERE
*

*
* RETURN *
* *

kR kR Rk R

Charts

87



Chart FB.

END

EN

ENDO9

END1O

88

ThEFAL SRR R R k%
* *
*IFFACAO1 ENTRY %
* *

R TR SR LT T4

Xe s o e

ERAXSD ] SR ER SR RRREK
*

ENATL Subroutine

*
* *
*INITIALIZATION *
* *
* *
EERRERI R EER SRR
.
X
at¥a
ci1 ..
- *o FERAC2hErxE AR S
ox ARE *. NO
*. PARAMETERS a%seseecsseX®# ERROR RETURN *
*. VALID % *
*a -k LRI RS 2222 222 30
e o
* YES
.
x NO
. END U6 .
D1 *a. *, ltt‘toJ"““‘tt‘
% IS %, ok ARE  *. SEND2
-% SPECIFIED %« NO «* THERE ANY *. s ot <P
#, ATLCB TD BE e#veceoccsoX¥oLOWER ATLCBS a¥ecoeemeaXk REMCVE *

DELETED %
¥

DR 3

0S X
"tttE]ltitt'.t.t
*END20
e A e B — t-t-t
* REMOVE *
*ATTENTION DATA *
* FROM GSP GACB *
BERXEEETRRREEF LR
-
-

-

D21 X
AERERF I REER KRN REN
-

*#SAEC
e A o e R W R R —

* *
% DISABLE GSP x
* G

ARREENRER SRRk

X v

oke
Gl *o
«% DOES *.

«% SPECIFIED *, ND

e¥sovennse Xk

*e. ATLCB POINT
*¥.TO GTMCB X%
*. ¥
%o o ¥

Xs e a0 e ¥

REEREHLERER R ERXE

* CLEAR

*GTMLATBL FIELD

* YO INDICATE

* THERE IS NO

* ACTIVE ATLCB

'##‘tt‘t.‘*t“*“
-

XY

IR

ttt.tJlt.ttttt'#t
#GNCTRL

Hm ki B e B B e e
*  TURN OFF

% PFK INDICATOR *

* L IGHTS *
LR RS L TR Lt S L it

«ON CHAIN . ¥
*a -¥
¥

*

#"‘iGZ**‘##“.#*
ESTABL I SH *
NE W ACYIVE *

ATLCB
‘FIELDS in GYMCB!
AND ATLCH *

tttttt'x*ttt'tttt

ENDL19

ENDO8

END

END1

END17

*ATTENTION DATA *
* FROM GSP GACB ¥
FEERESRRER RSN S

Xv e

1

AERRRETEFSVEREE R,

*SAEC

Lot et g Sl Sk S 2ot ot

*

* DISABLE GSP ¥
*

* G.
SEFRREREREREREEES

Xe o e

.“t‘FB.'O’t‘O“*
* PLACE ADDR

* OF SPECIFIED v
*ATLCB IN GUMCB,.*
SSET ATINFWPT TO*

* ZEROC *
5 RAE R IR AR &K

Mo e

l#.thJ"‘.t‘.‘t.
PLACE ¥
t ACTIVE ALTCB *

t.-.-----X‘ATTENYlDN MASKS *

‘SET LP RESTART %

13
tt.s.HJttttttatt:
FGCNTRL
—t—‘-#—t—.-‘—.—’
* LIGHT PFK *
*INDICATORS PER #
SATTNLITE FLELD *
EEEREEEERAEB B AR Rk

*a

EEEAGERRKREEBEE

ENC20 ENTRY

INEERK]

*
FEESRECERRREETE

*
*
*

Xusesosascsss

INGUIRE IF

Xo s 4

ATTENTION
OCCURRED
ttttttatttttczttt

¥ o

ca

-

«* ATTENTION %,
INFORMATION
*. ¥

o

EEREDASRE RS SRS
*

*e

ANY

AVAIL

*e

Mo a v vt s ¥

¥
¥
NO

RETURN

sXesosenssranssvansnnencensws

1
."..JJ""O““‘

#.................--...............xt ADDR DF A'LCB '
*

TO BE FREED *

* *
FRREEB RN ER RN A E

X0 o0

'.vttkjtot'tt‘ttt

* FREE STORAGE
‘ FOR :VLCB AND '

DEQS
tt.tl‘tttto#oottt

L3

.

4

Bret s nerens ey

YES

*a

- *
«% ANY MORE

..
*

¥

tttt'BQ.*tktttttt
*ATTNINQ
*— u—t—t—t—t-t-t-t
*
t

BEEREEEEEEREREK

*

’.---.-.-X‘-ATLCBS TO BE

EED ¥
¥

YES.

sXevwe

UUTR

NO

cescesee X¥

™
EESEKSEEERREREE
RETURN

AEREEAEEEERERRE

*



Chart FC.

ENATN Subroutine

IFFACAO2
BEERAZEKEE RS EEES
*
*IFFACAQOZ2 ENTRY *
*

AEREEEERREEREEE

xeeveran

EREEEB2EE BT EREEE
* »
* *
#INITIALIZAYION *
* *

- *
TEREEEEREREESRERE

x
o

REQOL .
€2

*.

- ARE
*., PARAMETERS

*. VALID .

*e o X
YES

* ATINSOURCE *
* CONVERSION *
*

*
EESRERERRESERRERR

MERER]

Good
t:.ttht‘ta'ttttt

’ATI‘ENTION ﬂASKS'
IN ATLCB

ttttttttt..ttr.tt

I TR RN

F2 .
- *a

ok 18 *
o THE ATLCB
#e ACTIVE %
- s
*a o ¥
YES

XEEREER]

Xeev e e @

™o
SREREG2EEREERRARE
*ATTNING
B 4

.ooX¥ *

* REQUESTED =
* SOURCE S *
SRS R ARR R SR ERE

R RN RN IANY
PO

L *eo
% ANY %o
oVES % ATTENTION *.
essete INFORMATION . %
*e AVAIL -¥

IR RN N I IR N )

eXesnsoswsoe

-
<  TEST ATTN

REQ6

SRS J2E S SRR SH K

»

*

- UE

* NEWLY ENABLED *

* URCH *

RS EEEBEESSE DRSS

xeeran

oo
K2 %o
o% ARE %,
% VTHERE ANY #%. YES

SATTENTIONS. ¥
- -
%o o
* ND
-

X
Lt i

L2 2]
m
>

e

L L]

ERROR

tt‘scsctsotttt'

FEEBERER SRR RN R

EEEIFIKI S SRR RER R
* *

*+ NO
.t........xt ERROR RETURN
* *

REMOVE THI

- * ENFRIES FROM
*e  MATCHING e¥senvacse XKEATTNMLEN QUEUE *
* AND PIﬁACE ON *

* ATT AL *
FEREEEERRB BRI RE NS

X
ACTATNLY ke
E4

TURNOM

EEE
E4

sk
-

- %%
"

RETCODEO

¥ *a

-k *
*e THE ATLCB

*o ACTIVE %
o -k

LI
Y

RETURN
TEREE R

X
-
.
.

-we X%
*

ES

Xeosos #

.ttttFA“.'.#*iit
' NE. AT‘Y‘ENTION :
CGACB 2R0" ATLCB!II
ttttttﬁ““tt“*‘

E ANY .t- NO

e¥eacecsssccsccnnse

%o ENABLED %

sessrers s s

Xeass oo @

tc.ttJ‘tltttstt*t
*GCNYRL
’—*—t—.—t—'—'—‘—#

% TURN ON PFK *cescecsscececcacs
* LIGHTS PER

* ENABLED KEYS #
EEERER SRR RS R REES

ERERESERRREREER

*

Charts

89



*o
GT *a YES

Chart FD. CONVERTA Routine
THIS ROUTINE IS5 CONMON TO (AND INCLUDED WITHIN)
AEEKA L HOR KRRk ENATN., DSATN, AND RQATN. IT IS USED TO CONVERT THE
* * *ATTNSOURCE® ARGUMENTI(S) INTO ATTENTION MASKS .
*CONVERTA ENTRY *
* *
TRk kR bk kR
.
X
FEEERB LR Rk R
*
* INDICATE THIS *»
* 1S FIRST *
& ARGUMENT UPON *
* ENTRY *
ARORORROR Rk k k bRk ok
*EE% -
* -
* Cl *oXe
* -
REE X
REQ18 LY a¥ao %o ¥
c1 *a c2 *a c3 *a ca *.
*e «% WAS *e ¥ 15
* ATTENTION *. YES - IS IT *s NO «* PREV]IOUS *. NO «¥% VALUE
SOURCE eXesosvesesX¥e THE FIRST a%ecesaaeasX¥ks ARGUNMENT e¥aeeescssX®ke PREVIOUS
*4NEGATIVE .% *«ARGUMENT o * *«NEGATIVE % *, ARGUMENT
*a -k *o -k . ¥ *a %
Ke ok *e o ¥ ke a¥ *e ok
* NO * YES * YES * NO
*hkE - - -

* * -
* D1 *¢Xa
* * .

kR X
REQ24 ke .
*. X
¥ *, ERERD2RE A KK Rk Rk
- 1S *. YES * *
o ARGUMENT GT o#ecesvessX# ERROR RETURN *
*. 36 o* *
*q -k EES I RIS L 222 TE 2
*e oF
* NO
ek o
* *
* El *.X
*hEE X
s REQ21
E1l *o RERERE2k kb Rk xRk
o* *. * SET _up *
o% 1S *. YES #MASK FOR_OTHER *
%o ARGUMENT GT o%aecessssX THAN PFK *
*. 31 o * ATTENTIONS IN *
*  REGISTER *
TR R EEERE kR R
.
.
.
R D kR Rk -
+ SET UP PFK  * -
& MASK FOR * .
*  ATTENTION * .
* SOURCES IN  #* .
*  REGISTER * .
WREREI KRRk kR Rk -
- -
. -
eXaseaenesessssssenae .e
X
%o
Gl *.

ARERKG2EREFRK R F kXK
* *

- IS e
«& ATTENTION *. YES * DECREMENT *

*.  SOURCE e*eseevae s XRARGUMENT BY ONE%
*.NEGATIVE o* * *
*o ¥ * *
*e ¥ ERREREERR kR R kEE
* NO -
N .
. .
. .
. .
- X
. .
. H2 %,
. .* DOES
. YES +*ARGUMENT
“Xeesessacesenseseks PREVIOUS o%
N *ARGUMENT .#
. *.VALUE. %
. . oF
- * NO
. . wEEE
- - *
. eeX* E1 %
- *
X k¥
%o
J1 *a AEREE JR AR AR R Rk
o* *. * SAVE PRESENT *
«% ARE THERE *. YES * ONE, STEP TO *
*a MORE e¥asenasss XANEXT ARGUMENT . #
X< ARGUMENTS . % * INDICATE NOT *
. o * 1ST ARGUMENT #
¥y o ¥ EEEREEREEREERREKS
* NO -
- - EEL 2]
- - * *
- sa X% C1 ¥
- * *
- EEE
FEQDK x
AERERK JRE R RN RR
* * ERER K2k e ek kER%
*  PLACE MASKS # *
®IN REGISTERS 0 ¥eseeesoeX* RE TURN -
P AND 1
AEER R R KR,

920

*
SRS ORI AR

esees

ecssscsacsvsasessncnan

.
¥

EEREBCSR KRR R RRREE
*

* MAKE ARGUMENT *
- X¥ POSITIVE -
* *

* *
EEEEREER R R Rk
.

X
EEL 2]

ERkEK



Chart FE. RQATN

FAEKALERRE KR RKE
*
*IFFACAQ8 ENTRY %

Subroutine

A3 ¥e
-t

NO
'oIEDS ATYEN‘I’[ON *eaoa
.

HRAAE R AR *o o -
. e o% X
- * YES SRR
- N *FF *
- . * ALX
. . * %
. - . *
. X
X REQ71 30 REQ72
FRRRRE ] R R A RRRER *. a*ntaqnnunn
* * .uﬂE x- e *GREAD]
* * -k t—t~t-t—t—t-*—t-—
*INITIALIZATION % *a CODRD]NATES .t........xt READ X+ Y %
* * e WANTED % *  POSITION *
* * *o % *  REGISTERS
FRREF KRR L PIIIAS A
. * NO .
- L . .
. FE_* -
* €3 #.xo -
. * #Xoeesssesseanscccscsseansans
X *EKk X
AROUND ERROR o*.
c &3 * *uc*cuunnuv
o FAEERC 2HRR KA AKX *GCNTRL
“¥. NO .sis ﬂssrm'r *. VES *— %i—t—t-t—t—#—
PARAMETERS e¥eesseesoX¥ ERROR RETURN * *. OF st LAY  c¥eceseeaoX® RESTART
*a  VALID o% * . WANTED .* *OISPLAY AT NexT#
o . AR RN xk. * BYTE *
e o ¥ *, i“t'*“'t‘t‘t'#‘
* YES -
. .
-
REQ14 X REQ101 .
ARRRRD L R R E AR AR K 03 tuctouuuunt
*CONVERTA FD#* *. *LP
W e K B K e e ot wAS *. YES *-#—t—t—#—t—#—t—t
#  ESTABLISH % *o TARRAYNAME' o¥ecensansX¥ Lp
®ATTENT ION MASK S% #.SPECIFIED* *EOS ccmvensmn .
* * 'S ok *
R T T *e o ¥ ERRRRRR R R
- * N .
AREk - .
* * . .
& EL Hux . .
R eXeosecessesssseanccscconna
NTDIREC
auuennnnau tttltEJclttttt#tt
% PROCEED TO  * * LACE Rk
# TEST ATTNMLEN * *  APPRCPRIATE : * *
*FOR A MATCH ON #* * CODE IN *seeoX® G4 X
*  ATTENTION ¥ * ¢ CODELOC* * * *
% INFORMATION * * * ok P
LRI PR e L T e * *
. * F4 *
. * *
. rkk
. .
. .
X .
¥ - o¥e REQS2 X
F1 *. F2 - F3 * D i
% ANY ¥ ok . * INDICATE NO *
<% ATTENTION #. NO o 1s NO o INMEDIATE *. YES * ATTENTION HAS *
*«FOR REQUESTED.*, eseX¥a THE ATLCH .*..--....Xt.ﬂETURN WANTEo.t........xt OCCURRED FOR *
*. SOURCES . *. ACTIVE .% * THIS SOURCE :
. - *a - t. ¥ ( CODELOC=0)
o ¥ *e ok *e ok antunnuu"t
* YES * YES * NO .
- . . *xkk .
- . - * ®
- . - * G4 koX
- . . * * .
X X EX o
REQS56 oXa REQS1 o¥e OUTRTN .
Gl %, X X
% *e EEERGIEESERRBER AEREGARRERKRAKK
YES o% 18 *o N REOUESTED *. NO * * *
eceaks THE ATLCB % *o SDURCES  «% eeeX* ERROR RETURN ¥ * RETURN *
- *e AC TIVE % *e ENABLED ok * * *
. ¥ - % L T L AR AR R K
. “ee ot o 0%
. * NO % YES
- - -
. - .
. - -
. - .
. X X
- k. ke REQ63
- HL %4 Mz e unumsuntn:tt
- X ] SATYNIN
. % OPTION TO ¥. NO MED I ATE *, YES * *.v
#+ DEQUEUE ¥eoen .. REYURN WANTEDe ¥eseceeeaXt REMOVE *MODE=C
*.INACTIVE ox . %. .k * SOURCES FROM *
. % ATLCB.* . *. ok * SP GACB *
. *. . . e o* AREAERERRERRKARRR
- * YES - * NO -
. - - . -
jeesansceenaXa . . .
- . . .
- . . -
. . . X
X - X REQ66 ek
FERARS TSR E RN T . AEREK I EREXRRRRRK 3
* * . #ATTNING o%®__ANY o,
*® . #o ok —f—R—K—A~k—*TYP=ANY % ATTENTION *. NO
* DEQUEUE ENTRY * - * REMOVE #MODE=w *eFOR REQUESTEDe¥sses
* * . * SOURCES FROM * *o SOURCES % .
- *  GSP GACB * *o o -
. BERERRREERER R SRR o ok X
. N & YES L
- . . ® *
. . . * Fa %
X - * *
eee “eeessecscnacscstosasensnsanaa hxk
x
REQ60 ke
*o
o 1T _ #%. YES
*e LIGHY PEN  o%saas
. ATVEN'nnN.t .
o* -
“ae ux X
* NO LT
. * *
- * AS ¥
X * *
RN LTS
# *
* A3 *
] *
Ak

*0F LP ATTENTION#®
*
RRRAEEA KR KR EE TR

xe o e

‘ttt*uattlt#.ttt‘
tCHAlN OF GDSCBS‘

* FOR GDS WITH *
ABOVE BUFFER *
* ASSIGNED IT *
LA LT T
.
X
REQ78 o %
Cs  #.
o .
% THE LIGHT *. YES
*o PEN ENABLED e*aeee
*.IN GDSCB .* .
*. % .
*o ox x
* No b
. SFF %
. * Fl1x
- *
x
. %
*o
¥ _WAS %,
% ATTENTION %. YES

%e INFORMATION e¥%eeee
UE *

NO

X1 et s g

FEXFRESkRRER Rk EEE
*

*
* DEQUEUE ENTRY
*

* RN

*
AERKRE R R KRR
-

eXeoaseesaae

R R A N A I N ST

X
REQ79 ke
*.
- .
YES o% *e
cee¥e ¥
- *+.GSP GACB %
- * *
X
EEL L]
* *
* E1 *
* * -
LEE L] -

%
xtat*cstotttttttt
*GCNTRL
Wk e t—t-t

* RESTART *
*DISPLAY AT NEXT#
* E *

FERRKERER R AR R kR
.

X
_kk

R

Charts



Chart FF. RQOATN Subroutine (continued)
hEEE
*FF *
* Al¥X
* %
*
X
REQ100 a¥a REQIOS ¥ REQ203
Al *a A2 ¥e ttt.tAatOﬁ“tt.tt SARNRALREEERFRRES
- . .t ¥a - *
¥ 1S 1T *s YES *a YES % STORE ADDRESS *
*o PFK KEY --......xt. 'ARRA N.AHE' .t.-o--...X‘DVERLAY (ODE TO' eseX®* OF GDSCB IN %
H ATTENTION* *o SPECIFIED. % ARRAY * - SWORD I OF ARRAYX
*eo ok LY ¥ » - * *
e ok *e ok ttt‘tttt# -
% ND * NO - - -
- esesXKe - -
X - - X
ke X - ¥ REQ400
81 *a FERAEB2ERR AR TRKES SRS EBIEIFSES AR EE - BAS ‘. FERERBSEERET TSR FE
. - * * * * - i d DE TERMI NE *
-¥ 1s IT *. YES * PLACE * * PLACE PFK * - .tls IT PART *+ HO #BEGINNING ADDR *
g END KEY ekevossaneX® CODE 32 IN * * KEY NUMBER IN * - %o OF MULTIPLE oe¥oesovass X®OF THIS BUFFLCR »
* ATTENTION.* = *CODELOC * * * YCODELOC® * - tBUFFER ASGN¥ % ASSIGNMENT *
Xa - * * * * - ok * *
*a ok EREEEEEFEE R AR RS BERRERRBRR IR SRS - 3. i FEEEEEFERR SRR A LN
* N - - - * YES -
« IT IS CANCEL KEY - . - - -
» ATTENTION. - - - - -
X - - - X x
FeRRRCIERRTREFEREE - - - ¥R CATEREAEEERD FERERCSEERREREREER
* - - - % USE POINTER * *COMPUTE LOGICAL®*
PLAC! * - - - # BYTE OF BCT x *DIFFERENCE FROM¥
‘ CODE 33 IN * - - - * ENTRY TO FIND % +# BEGINNING TO
o8 0C * - - - *START OF BUFFER#* tBWFER ADDR IN *
* - - - * ASS IGNMENT * SEN BYTES *
"‘Q#“Q.t##'!ttt - - - SEFRFRREERRERRERE ‘tt#‘t#‘tt*##tt‘t
- x - - - -
eXesssessscnaace - ssssane - - - -
- - x -
x - SERERDASERIREEETE -
EIFT LTSS 22223 - *COMPUTE LOGICAL¥® -
* - *DIFFERENCE FROM¥ -
* RETURN * - SPUFFER START TO®% -
» - tBuFFER ADDR IN * -
ERERREERERREEER - ENSE BYTES * -
- t’tl‘ttttittt'ttt -
«RECQAD2
- ttlo‘ehtitttttttt
SEXEEIEIRARERRER - bl DETERMINE
* * - *COUNT FROM BCT '
% LPEQGS ENTRY * - *ENTRY, MULTIPLY®
- - - O BY GDOA '
AR SEEFSEE SR EEREES - LENGTH-6
*FF * - - ttt‘ttit‘ktttot't
® Fi1¥* - - -
L - -
* - -
. :
X - -
REQ700 o¥e X
Ft - 3% A%¥
- ls LP *, #* CLEAR ARRAY, * * ADD RESWLT TO *
¥ AR e * OBTAIN PROPER ¥* * LOGICAL *
*y INFDRMAIION eXasnme * BCY ENTRY FOR #* *DIFFERENCE AND #*
*o. WAN - #*BUFFER ADDR OF #* *STORE IN WORD 3%
L - * ATTENT ION * * OF ARRAY *
- PTII RS LSS PSS 2L s ERI ek EE

PIRERX]

REXBEGAFSARRR SRS
* ARCH b

-
% . .
ok 1s %o ND o #CHAIN OF GDSCBS*
%e THE_ATLCB e%eeXe * FOR GOS WITH *
e Act VE % . # ABOVE BUFFER +
- - #*  ASSIGNED
“ke o . ti'tnttt’.ttttt‘t
* YES - -
- . -
- - .
- . .
X . x
» . REQ204 oke
. M .-
ok IS *o . -
«® THE LIGHT %+ NO o DODES *.
*e PEN IN ekaaXe ...X.. GDSBC TID =
#oCHARACTER o % . . «BCT ENTRY.®
*.MODE % . - *. ID %
L . . . o
+* YES . - * NO
- - . .
. . -
- - -
- - .
- - -
X - - X
AERERS LEEEREEREEE o M ASERBITEESISREREE
*GREA . - * *
--n—t—t—t—»—o—t-t X . * OBTAIN -
Koasesane - % NEXT GDSCB ON *
tCHARAcTEn FROM & X . * CHAIN *
rEEE . * *
bR+ 4 S *FE _* . FEEIREERIRRRRREEE
* C3% . .
* % . -
. -
- x
- o¥e
- K3 *o
- o
-YES o% ANY ..
cace¥e GDSCB -*
*<REMAINING. %
- %
. o
* NO
X
SEISE
*FG *
» ALS
- *
*

92

.

-

- -

- -

- -

- X

+<REQ401 ke

- GA e

- .t *e

. *e

- .-YHIS A LEVE.L B

- *a S -

- o E b

- *a -‘ *FG
* NO * AL
- * %
- *
X
-¥e

Ha *a

RE°300
.‘.‘.JQ'!‘."““

tFlﬂST BCYRY N
- KEY TABLE

RN

*
RSB SREREESSNBES

ﬂEO;OI
l.."x."‘.“.‘t‘
* ADD BUFFER t
* LENGTH TO

* LOGICAL START ‘---.-...X‘.

2]
P e T e S L et

*
*
*

a¥e
K5 ‘o

-3 l S VILUE
OF WORD 3
- LESS %
*. -




Chart FG. RQATN

YES

a8t *e
«#ARE X— *,
=% AND Y- *s NO
%o COORDINATES eXeocass
* . WANTED ON.*
*e EOS o%
*e oF
* YES
—EEE -
» * -
* CI %aXo
* * -
TEEN X
REQ503 ke
c1 *o

DN AN

- *a
-% THESE *e YES
*o COORDINATES e¥eceeeX
SEQUAL ZERO.*

-
o -k -
*e ok -
* ND -
REQS03 x

-
-
-
a

FREERDIREERREER RS
* *

* ESTABL ISH »
*PARAMEI’ER LIST
FOR CNVRY t

.t.‘tttt.ottt.ttt

."i)EIttt.“‘.tt

SCNVR

t t—t—t-t—‘—t-t-t

tCDNVER' TO USERQ
*

BEEEEEEEN RSN RN

st saen

tt."Fl‘t‘.."...
* STDRE K—
*

tcunnnmn'rss ™ 0
* WORDS 8 AND 9
hd OF AR
Oltt.t.t..‘tt‘t‘t

-
-

eemccccssssnnae

Subroutine

REGS501 ek
*

AZ -
-k S *a
% CHARACTER *.

YES

(continued)

EEEERAT RS AR B REES
* PLACE *
' *CHARACTER CODE #

eaX¥, CODE WANTED e¥caeenceeX® IN WORD 10 OF *

e -k
*e ¥
* NO

FAERB2EEE AR R
* *
e XE RE TURN *
* *
X RERRE RS R

REG303 ko
D2

*
% IS

«% VALUE OF ‘.- YES
%e WORD 3 LT o#eaae

¥e LOGICAL o %
2.START. *
. .

* NO

ek,

F2 e
«#1S THIS#*.

-
X
LLld
*
+ AL

*
EL L2

YES

«¥ A BUFFER #. YES

%o SUBROUTINE .%cceonsaeX®
x

o KEY ok

Xut oo

AEEESG2EEESIRR e
* A b d

‘UURD 2 l} ARRAY'
!t't’t".t’tt.‘t'

Xe et

SEEFEH2AEERE S E RS &
* P

#WORD4A OF ARRAY

RAERN

EEFEE AR E R R R R

#xrraes

ok

J2 *a
% IS IT *.
% CHARACTER #o
- MODE .
%« DETECY o#
*

- ¥
%o a¥

* NO

-

-

X
EEERRK2ESERE R RN R K
* DECREMENT *
* WORD 3 OF -
* ARRAY BY *
* LOGICAL *
* *

STARTY
SEEEFERERERR KR RSN

YES

* ARRAY. LEFTY *
* JUSTIFIED *
HEEERFEEER R R RREE

senssnceXa
.‘.

-'ARE X— ..

¥ NO
e COORDINATES .t---.
*.WANTED ONe¥
*

EESRDASERF S RERE

*
- e Xk RETURN *

EEEEREAEE SRS KRR

LT
* *
* CI *
*

HEX

*
*
*
*
*
REQ306
BESRREI RS R ER B R AR E tt'ttedtttttﬁtttt
> PLACE *
IRST WORD OF * ‘ THXRD 'ORD OF ‘

T
*WORD S OF ARRAY* D 7 OF ARRAY'
*

»
BEFSERAERRRER SR NE *tt*ttt.tt.t"“.

ek

*FG *

* F3 %eca

* * -

L -
REQ30S

X
CEEEFEI RS SR AR AA
£ *
#*QBTAIN ADDRESS *
NEXT KEY #Xeeceo
#* ENTRY 1IN KEY *

« B BLE *
o TEEREESEFDFERERRE
**

#Xe s 000

G3 *o Ga *o

* *a
-..ARE THERE *. YES
BLEXCEEDED END e%cccasssaX*. MORE KEY

¥ *o
«¥ HAVE WE *. YES

o¥esen

*. OF KEY -k e TABLES % -
*.TABLE. * *e ok .
*. o *e oF X
* ND * NO HEREE
- - *FF *»
- - * Jat
X X * ¥
L bt e -
SFF % * -
* K&x * AL ¥
* * - *
* REE

‘O’t‘JJOit“l'.‘t

*

*PLACE CHARAC"ER‘

eee X¥COUNY OF DETECT*
* IN WORD 3 OF *

* ARRAY *
SEIBRESS B AN RS RE SR

‘tt.tEstttottt't'

LOGICAL S'I’Aﬂl' 0
3-..-.-¢.X‘ KEY ENTRY IN *.-.-----Xt Fﬂﬂ"
OR

tSYDRE IN WORD G#
EESRBREEIRR A RERNE

YRR

Charts

93



Chart FH. MPATL Subroutine

MP23
#t*ttAA‘***‘tt#t*

SEREALRRRRSARRE HERRATEN AR RRR K *SAEC RRKKASEAEEREKRK
b * ke K K K W t-t *
*IFFACAOA ENTRY * *DATA SAVE ENTRY®* * * o eeeee X¥ RE TURN *
* *DISABLE THE GSP¥ * *
kRt R Rk Rk EERRE TR RE AR AR * G * R ERRR R Rk
- - e e e P ]
- -
. -
- N
X X MP27
ERKRBIRRRERRERRR .uttna;tttttttttt ARERABSKRKEE KKKEE
*® * *ATTNINO Y %, *
* * Pt ot Bt D Bt Lo .—'-‘ «* ATTENTION *. YES * PLACE DATA *
*INITIALIZATION * * ¥aavsevesoX¥a e¥asesseae Xk TN ATTNMLEN %
* * * GSP GACB * *. AVAILAELC * * QUEUE *
* * * * .k * *
R e e e s SEEEREEERERRRRENR Txe ok kR R Rk
B X * .
- .
. cscesssssssrssenaranas
X
ARDUND % ERROR
1 *. xRk RCS kAR Rk
wk *a ARERC2HREERAERK * *
ok ARE * » * * *
*. PARAMETERS eeseX® ERROR RETURN * .----n-.-'-o..----o--..-------..-o-.oo...-.-*lNCREMENT COUNT*
#a VALID X * - * BY UNE *
*, o¥ . AEEEARK AR AR R R K . * *
Fa wF . - KKK EEERRRREE
* YES Rk . X
- * * . -
. * C2 *x - -
- * * . .
- ERE - RELATIVE ATLCB IS LOWER IN ATLCB .
x X HIERARCHY THAN THE SPECIFIED ATLCB s NO
207 ¥, MP10 MP11 ke -k
D1 *ao EERRRD2KRKRRRRR KA 03 t. AR R RDAR AR R S *.
e *a * DETERMINE * DCES ' LOAD BACKWARD *
o IS *, YES *RELATIVE ATLCB,.* o* R AT[VE *. NO PO INTER THKS to
*¢RELATTNLEVEL *a%es «X® SAVE ADDRESSs *e ...X‘. ATLCB POIN ke X’I( ATTNBKPT) FOR *ooo.oc.-x* THE SPEC!FIED *
*eSPECIFIED «% * SET COUNT REG * «TO GTMCB -i * NEXT ATLCB Lc
*o ¥ * Y0 ZERO * *e - * ato .#
%o uk e et P L L. P e R L e e ok
* NO * YES * YES
*hEk - . -
* * . . -
& E1 #*eXe - -
Ll * - - RELATIVE ATLCB IS HIGHER IN ATLCHB -
REE - . HIERARCHY THAN THE SPECIFIED ATLCB -
HPO8 x MPL2 X X
*mtttenttntttt-tt ERREREIRRIRRFIAKR *tt‘*EAtQ*tttt#t# AEKRKESEERXRERRKK
3 * SET COUNT REG * * *
‘ TO ZERCs PICK * ‘INCREMENT COUNT' * MAKE COUNT *
tCDUNT REG[STER ‘ UP RELATIVE * eek * A NEGATIVE *
ERO *ATLCB TD START ‘ * REFER TO NEXT t * VALUE *
cc - * ATLCB * * *
n#:u‘tttttttttttt #ttttttatttttatat . EE R AR R AR R Rk B e
- - - X -
- «uXeavwesssunsoo - .
X X s NO X
% ¥ ko MP1S o ¥
F1 *a 1ttt‘F2ttmst#tttn F3 *a F4 *o FS *a
% 1S * o START « ¥ DOES *o «* DDES % «*[S THE *a
«% DIRECTION %, POS *NIYH SPEC[F[ED * «*THIS ATLCB *. NO % ATTNFWPT *, YES «% DIRECTION *s NO
%o NEGATIVE OR s¥oeeescaseX¥ ATLCB TO sne¥s ATTNFWPT e¥eoeeaaneX¥e POINT TO e¥eoenne X*, PARAMETER e*ssee
#*.POSITIVE % "DETERNINE COUN’[‘ . *FIELD = O.% * o SPECIF1ED* .PDSI TlVE -3 .
- ¥ * . *a -k *.ATLCB.* -
o W% ttttttttttattt-tt X L e ok RFo— -
* NEG - *EkE * * * YES .
. t:tt - * * . .
- * * C2 * . .
- * G2 '-X- * * - -
. - ok . .
- tttt x . -
P17 X ¥ X .
AEAERGLERRERERERE 62 *o EHEERGIARF SR E R KA RN t:tttcaxtttttxt‘t HREERGSHRRR KRR K -
& START * - *a #* LOAD BACKWARD * t * * -
*WITH SPECIFIED * «*DOES ATLCB *. NO * PCINTER * * DECREMENY * -
* ATLCB TO * % POINT TO THE o%eseossees Xk(ATTNBKPT) FOR i--o-....X‘lNCREMENT CDUNT‘ * DIRECTION * -
*DETERMINE COUNT%® *s GTMCB o ¥ * NEXT ATLCH * * PARAMETER BY * .
& *q -k * * * -
EREARERRRERR R AR *. ok AERERERERR R RRR AN tilttt*tt*ttit*tt P e T P -
. * YES - - .
- - . . .
- . - eXoessenasssn
- - X -
sensescsansaXs - LA ALl -
- . X * * -
- X MP18 a¥. * G2 x MP16 X
- FEEEAH I ERARRRER R H2 t. * * AR RHSK LKA KR
- % LOAD FORWARD * KN * *
- * POINTER * .#IS COUNT EO!. * ADD COUNT TO *
- #(ATTNFWPT) FOR * *ao 6T cssns # THE DIRECTION *
- &« NEXY ATLCB * .DIRECTION. * PARAMETER *
- * * *o - * *
- FRRERRREEERRREREE P— . R e e e
2 - * . .
- . - -
- - - x
- - - _Ekk
. X - * *
- ke a¥e MP20 X * E1l *
. J1 *, J2 t. #“t‘tht*O#‘.t!t * *
. ¥ *a *DATA SAVE *RKE
- 1s YES .'IS COUNT EO‘. YES Hm ke e Kk '
. -.ATYNFHPT ZERD-*--..-.--X‘. a¥ssssenne Xk SAVE
- #-DIRECTION.* * ATTEANTION *
- 'I- .t *, * INFORMATION &
- ¥ ¥ P BEEEERRE N R R R KRRK
- * NO * NO -
- - - R -
- - - * * -
- - eseX¥ C2 % X
- - * * 2EEER
- - Rk *EJ *
- X * Alx
- HEREAK IRRRR R * %
. * *
. *INCRENENT CDUNTt
sesek

Ed *
BAEREERERKERERRER

o4



Chart FJ.

MP29 -
Al

MP30 -

MP32

MP3S -

.....-.....x.x......................

-MP

-
-
-
-
-
-
.
.
-
-
-

MP37

*a
«%* DOES %,
«¥ SPECIFIED %
%o ATLCB POINT .%o
*.T0 GTMCB %
*

-k
YES

-k *a
o % DOES *. YES
-*.-.--o.-XtFlELO lN GTMCB *

L X ATTNFWPT

MPATL

Subroutine (continued)

badidd:-FE 22l T2
* *
& SET GTMLATBL *

#sesenscanrcscssvanencnenns XKy

o*o
A3 *q

*a
DOES *. YES

e¥oovasanaXk

ATTNFWPT
*.FI1ELD = 0.
*a
%, ..
* NO.

Xess o

FRAERD TRk ok kok ok Kk
* MOVE ATTNFWPT *
*TO NEXT HIGHER *
*ATLCB, ATINBKPT*

MP 31

ARKKEAGERR R KRR RRE
*

* ATINFWPT TO %
NEXT HIGHER x

tATLCB; ATTNBKPY‘
TO GTMCB
"t****“tt‘#‘#‘t

.
-
-
.
.

*.FIELD = QOe% T0 ZERO * * TO NEXT LOWER * .
*. o* * * ATLCB * .
*. % EERERRREK R K FRAREEERR Rk Rk -
* NO - . .
- . - .
. . . .
. . - -
. - - .
: . . .
. - .
iitttclttttt#tt#t - : M
. . .
t GTHCB ADDRESS * - . -
% AND INDICATOR * . . .
*IN NEXT (LquR)t . . .
ATLCB - . -
PEPRETR- L S . . -
. - . .
. . - -
- - . .
- x x
.X......-....-................--..-.;.-..---...-oo---...oo....-o.n..oo..
X
-t MP34 ke
D1 *eo FREREDRRAKA KK AR R AEKRRDIN R AR ERR SR D4 .
IS * * LOAD ATTNFWPT * .t

ok *
<% DIRECTION *. NEG
%< POSITIVE OR u¥e.

#.N‘GATXVE o
-k

t. ¥
POS

*Xo 000 #

E1l *o
%

*a
ok 1S
t'RELAYTNLEVEL'
*.SPECIFIED.*
*

- -k
*e ok
* NO
-

‘t.*#Fl“‘#*t*ttt
* LOAD ATTNBKPT *
4 {NEXT HIGHER *

ATLCB) *
‘ DECREMENT *
*DIRECTION BY 1 *
FEEREREEB KRR R ERR

*Xs on s

61 *o

NO .* DOES '
“e«#.DIRECTION = Ouk
*y ¥

*a a¥
o ¥
* YES

iiti’Hl‘#“#.tttt
* MOVE ATTNBKPT *
% AND ATTNBPID *
*FROM THIS ATLCB*
* TO SPECIFIED *

b ATLCB *
SREEE KR FRREE KRR K

Xo v e

L L T T T
* PLACE THIS *
* ATLCB_ADDRESS *
t IN ATrnsva *

FLEl
‘SPECIFIED ATLCB*
BHEE R R ok Rk Rk

-

X ve o0

bbb LS LE L LT T T Y
* PLACE ADDRESS *
* OF SPECIFIED
ATLC8 IN *.
*ATTNBKPT FIgLD #
* OF THIS ATLCB *
ERKEREEREE RS ER KR

YES

SPEC IFIED
ATLCB GDES
ABOVE THIS
ATLCHE

*
* LOAD POSITIVE *
AL UI

o X% *.
* DIRECTKON *
* *
FREERERERRER SR Rk
lt‘t#EZ#t#t'*t‘tt

*
1NCRE M *
....-X* DIRECTIDN HY *
*
*
ttt#‘*"#*‘##..#t
.
-
.

PR N N T IR

KRR J2RERRE SR RKE

* ATLCB IN *
* ATTINFWPT OF *
* HIGHER ATLCB %
ok kR ko ok Rk

YES

MP39

DECREMENT

*DIRECTION BY t *
FEARRRREF R R R KK

.
.
-
.
.
-
.
-
.
-
-
-

*‘."KB*;“‘*““
*
* SET ATYNBPID *

e¥saonesseX® FIELD DF THIS *
*

* ATLCB TO ZERQ *
*
R R Rk kb ok k

*e
DOES *a

'. .t
Ko oX
* NO
-

MP43

deescescsrnssssencrscevsetsssenesnsssscssnnsnsassssnXs

MPa

MPa6

t*‘i#ﬁQ!'tttt#t.'
PLACE *
t ADDRESS OF *

SPECIFIED ATLCB
GOES BELOW THIS
ATLCB

41
EXRERDSKRERXK KR KKEK

MOVE *
* ATTANFWPT FROM *

*o-..-...X*-DlRECTlON = 0-*-..-....xt THIS ATLCB TO *

*SPECIFIED ATLCB*
* (ATTNFWPT)
*tt‘ttt‘#ttt*tttt

Xt oo

‘t*ttESit*ttt‘*t*

PLA
*ADDRESS DF THIS‘
* ATLCB IN
*SPECIFIED ATLCB.

(ATTNDKPT) *
HRERERRERRKREENRE

x® e o0 e

EEKEEFESEA SRR KRR R
* LACE *
* ADDRESS UF *
*SPECIFIED ATLCB*
* IN THIS ATLCB *
* (ATTNFWPT) *
R KRR EA AR R

Exr 0 e

GS *a

*ao
YES .tlS ATTNF WPT %,

tSPEClFIED A?LCB*X---.-.-.‘-DF SPECIFIED .*
GTMCB

IN
t {GTMLATEL ) *
LR T LTt 22 T 1

.
-

0
#’#t#HA#"‘*##t‘i
ET

tRESTART OPTION 3
*AND EN
*GkCB PER ACTI1vi

A
tt‘**#‘tttttttt'*

tt*tt44‘tttttttti
*GCNTRL

ke ke ‘—t-t-t-t~t
* LIGHT PFK *
*INDICATORS PER *
* ACTIVE ATLCB *
HRRRK Rk

.

OUTRTN .
#tttK‘t:t#tt#*a
* RETURN :
t*t#!t*ttittt'&‘

BLE GSP *X-.--.--.t ATLCB IN NEXT

*.ATLCB = O.%

x9os 0 &

FERkGRKHS KRRk kR kR
* PLACE ADDR
* OF SPECIFIED

X

tttttttttttxtt*tt

Charts

95



Chart GA.

YES
e -*.51““5 TAﬁ.E
¢« LOA

R LR R )

AGADAT1IO0 -
F1

SREEALTBERERSERS
*#IFFAGAQE ENTRY %

*
EEFFEEEEBEREES

Ko s s

FHEREBIREEEESEREE
- -
- -
=INITIALIZATION *
- -

* *
SAEESRERBERSIEBER

ETN NN ]

CRERSDIEEEEREEEEE
. SET -
% SHITCHES AND &
2FJELDS BASED ON¥
+ PARAMETERS .

= ASSED *
R EEFEREESEERRERE

t-
o

.. -
*. ¥
nO

Xervreed

ovvttclttctttto»a
*LOAD

t—a—.—t-c‘t-t—t-t
* STROKE *
*TABLE REQUESTED®

*
FLREERIEEREESESES
-

AGAGEN2S

t‘ttnﬂl"t"’tt!.
.PDINYER 70 YExtt
» ARRAY *

* *
SEEEPERRR AR REBEE

TR

2HREBSUSBERESSEES
»* -

* ACCESS STROKE *
*TABLE AND FIRSTS®
- STROKE L

b -
AASPBSREERB RIS

*o
*e YES

e¥semccenoX?
=

-‘X---.

PLSTR Subroutine

tt‘tcztototttt’

e
¢3-.--c—-.x¥ ERROR RE YURN ‘
* .

HERBEEERESEIRRD

AGAOP 135

AGAGENTS

asaX®
-

et e

EEERSEZRERE SR
KE

*CORRVAL *
ttttttttttt'.tttt

MEEEEE)

FREEREZITRARIIS
*UPDA TE

t—t—'-i-t-t—t-t-t
tl’EMPmARV GOOA ﬁ

t#tttt’ttt'..sztz

BERER JOEBFBESRREE
#SCALING KF*
e ot kbt d
SCALE *
COORDINATES *
-
EEEREETEESREPEEEE

octtixzt.tttt:.‘t
*AGAGDO2S5

c—t—t—t—t-t—t—o

» GENERATE *

* BEAM POSITION &

*

-
EEEAESEEERNESRNRS

AGATXT30

N EEE
* - *

* A3 * * A4 ¥
* - - *
Eenn e
- x

X

FRASEATERREE RN RSN
* COMPUTE NEXY =
* CHARACTER *
* POSIYIOW ON  *
*SCREEN AND SAVE®

» *
AEBREREBEERIERE RS

AGAGOTIO

tlnatAStttvoottto

*AGAGDO2S

*— t-t—t-'-t-t-t—:
GENERATE

' BLANKED BEAMS® l

*tt*'t'*!ttt"tt‘

AGATXT

ERN)

t..ttﬂ]ozttt't'»t
SET

»
* CURRENT *
s+ POSITION TGO %
* CENTER OF *
+ *

MATRIX
FEEEERARBERAS DRSS

Xs o

'0.4‘C3'.tttt9t‘t
‘ AIN '
- sTROKE FROKR  *X.
t STROKE TABLE t

t.tovtsttttttto.t

#, STROKE %

X
'ttt‘ez..ot't'tto

*BEAM IS POSITIONED
0 CENTER OF NEXT
CHARACTER «

*a
A *s YES
-‘—-.‘...-X. INDICA"E BEAM ‘

SR EBAPEREREEEL S
* =
bd UPDATE *
PO INTER TO NEXT*
* STROKE *

* *
EERERAIEREESERT R

EEEEEEEEER]

.
.
.

AGATXT90

tttotntt'ttctttaa

t

tt‘tattttttott.tt

AGATXTAS

tt‘tEA‘ttttttttt
.(wVER ¥ STROKE 5'

‘ INDICATE BEAM .-.......XCI’D REAL VALI.ES':
t

!ﬁ..t"‘t.“"'#'

FESEGIFHIFEREES
#AGAGDO25 ENTRY %
» -

BRI PSORDRRR

- %

-t Is
#. SCISSORING
* . REQUESTED.*
e %
. ¥
NO

IR ]

SS00R TR ANRRIRERS
: SE'; GDSXLAST. *

#*GDSYCURR FIELDS*®
- =
AEESERBETEERERRNE

..‘.*3'0.."‘..'
SDATA GEN KH*
et B BB R Gk

- ELEMENT -
BEEXEESH R SERSRRS

*o
*a YES

e¥esssesvssnacnrsaves

$osoaneeeX®
- Ed

HPUTE
0 INCRENENTS *
LRSS RER SRS

Xeoes e

AGATXTS

1]
tttt.FQ‘tt".tO.‘
*SCAL ING KF%
G F— G- B—— %
* CONVERT FROM *
*REAL. TO INTEGER®

*.

- e
«%1S 1T KEYED®. NO

.00 CORRELATED«%seso

*. LEVEL 1 %
. .
o o
* YES
-
.
x

FEEFSESEEES R RS EE
#KEY TBL MGY KEX
*—%

P R R I I IR IO

¢FOR ABS POSIT*N# * TAHLE *
TR ESRS SR S ESE BESFESEEEERTERERE

.

-

x AGACOM1O
SAGAGDOG25 . SUPDATE *
. * aeX¥ WRITE *
# GENERATE DATA * = DUT TEMPORARY *
L * » GOOA *
*

x
EXT 2
- *
* AA ®

- -
TEER

Xeasrratee

EREARJARSREREEER S
*SCISSORING KG¥
- BB B — BB
* *
* SCISSOR INPUT *

*

DAT,
BESABESSB BT RIBH S

-

ARSI AEBREES AR
RETURR -
BEREEIRBRSE SR

AGARET10

Xt e een

FEEERHSHSERBHRELE
UPDATE KEY
IN
KEY TABLE
FEXEERERBERERINEE

SRR
LA R LAl

wXeoswasovons

x
S S JSEEREEEEEE
- *
- RETURR -
* *
HEESRASREESBRES

YES

R R N A Y

MIERRREN]

-
-
-
-

-
-

.
-
-
-
-
-
-



Chart HA.

BREEALEF SRR RSN
* *
*IFFAGAOT ENTRY #
*

Raia i S Rl 22222 23

X 00880

A EERR | FEEERREEEE
- *
* *
FINITIALIZATION *
* -

- -
EEEEEN I E R SR SRREE

-
X
ko
c1 *
% ARE FRERC2AEEEEEEEE
=% REQ! UlﬂED " ND * =
*s PARAMETERS ,#¥,.eesecceX¥ ERROR REYURN #

*e VALID .#%

*a -t
e ¥
* YES
-
-
X
ke
LI B

*a
-t xs THERE *. NO
*a ANY DATA IN a¥ecsanessX® OBTAIN BUFFER *
*a YHE *

ORGEN Subroutine

*
SRS KR EEER S SR

FEEREED2E R ERERRREXK

AND ADD GDS 7O *
= FLOW CTRL *
FREREEE KRR KRR

*eSPECIFIED <%
*oVALIDL¥

e ¥
* YES
-
X
ks
Fl *a

- *a
o% 1S THIS +*. NO
*e AN UPDATE
*, CAL -®
*a -¥
o a¥
YES

[N

ORGO0S00
BEREXG LR SR EkkE
AKEY THBL MGT KE®
B e B = = — k=&
= SEARCH ON *
'KEYICORREI.AT!ON.

VALUE

FXESE2E RO R RE

%o NO * *
e¥eoavssea XK ERROR RETURN ¥
*

EEESEREEE R R SRS

ORGOO70
ccﬂrtsztttttttttt
*DRGG TI
t-t—t—t-t—t—'—‘—t

aneaX¥ SEY *
* INCLUDE/ORIT %
*

* STRUCT!
AEEERAEE LR ERRR KK
-

-

-

x
HEEEEGR AR EE RS ttt
* CONPUTE
* STORAGE t

* REQUIRED FOR
*TEMPORARY GDOAS®
* *

- *a
% 1S THIS *, NO

- - ¥ -

%o ok -

* YES -

- -
ORGO0820 X -
AEECABIE SRRk KK .
*ORGGYRU1 HB* -
AW - k—k— K -
* SET up * -
' INCLUDE/OMIT & -
CTURE * -
tttotttvn't‘ttctt -

aXosamansanas

ORGO0840 X
ottttc::t.cttttt#
N

t ADDR Luglcnl. *
AD
’t:ttttttttttotttt

X
xEEES
*HB *
* Alx

* ASSIGN -
*BUFFER FOR GDODA*
* *
EENS AR EREREEEEEE

Xé 4 e

FREEECHERETEEREEEE

*
*TRANSFER ORDER *

* 1
FEERREEEREREEER AR

*
* PLACE BUFFER ¥
* ADDR IM

.
NO
t-‘IHERE ANOTHERS %o s
*.  GOOA -¥
o %
*. ok
* YES

TR

FHEREF I KR ERRSE

- *

* RESEY *

* RODE FOR NEXT *

- GDOA *
*

AREFEEEEE R R ERR G

EEE :

* * .

* G3 #.X.

* *

b -
ORGO0900 .3
ttts.gztttt’attat
tnovE DATA FROM t

* ARRAY TO GDOA *
: UNTIL FULL bd

-

NN EN]

eKavooen

ORGO0800 X
Lhbhac i il 2 L2212 2]

FUPD, *
B e
* OBTAIN *
STEMPORARY GDOAS®

®
SRR EEERE RS SRk

-
-
.
-
-

EEEKEESE K EEEREEEE

*FREEMA IN *

H— ke KK K- &

-s X& ERRUR RETURN
*

AESERCEEEERETFRRER

EREKESEREXEEREE
*

*

EEEESAEEERERERR

*
-
- cen sncasse
X - -
-&a «0RGO1100 -
H3 *a -
- t - *DRGSTMDI HB* * *
-% *e NO X bk — K~ K—R—REXLT 1 * *
*a DATA BEEN efervonan s X& DETERM INE t---o---.l’ ‘I'MIS SE‘ MODE *
o * LAST SET MODE * *
t. -' * DRDER * t *®
$a 2% .
* YES <EXIT 2
- -
- -
- -
x -
¥, X
J3 *e Bt b ittt 3

L *a
«%* IS THIS &. YES
*a AN UPDATE w%.

*o  CALL ¥ - * GNOP2, OBTAIN =
*e ¥ - T
e o¥ X SEEEEREEERERRRRE K
* NO ExakE -
- *HB * -
- * AlS -
- * % X
- EEE
- * *
x *« E3 %
FEREEK IS SRR EE 4K * =
BUF Ll 2 2]

Charts

97



Chart HB.

AR
*HB *
* Al¥

* *

x
0RG02300 o*.
*.
.‘

ORGEN Subroutine

tttt#Azct-zt:tttt
* SET UP GTRUS v

NO
. THIS THE LAST-'.-.-.»..X‘TO CHAIN GDOAS *

“x. .t
*o o ¥

* YES

t“‘ -

8 81 ‘.X-

IN BUFFER ‘l
tttttt*#ttctntttt

.

aXewssnscssevesssssccasnoscsas

QRGO
*ORGSTMOD1L

tt‘#tﬁl‘*#“#it‘#

ExiT 2
Rl

)—t-s‘t-t—t—*~t—

eaX¥ SEARCH
‘ FOR SET NDDE

-
-
.
X
ok
*.

IS

ONTAIN AN

coe®,

=% DOES *.
NO +*%THIS ORDER *.
Cl 34

i....x‘ F1l ‘
x
tttr

tttt‘t#ttt.attnvt
CEXIT 1

*. ADDRESS ok

The o’
YES

RXe s e 8

ORGO3000 .
D1

ok *a

1S
«  XSFFFFt

ORGO03800 «*.
02

ok

*oSPECIFIED* *a PASSED %
*. . *. -
*e o *e ok
* NO * S
- .
0RGO3100 X X
ttttiE[““*t“t# EREERE2FRRER KR KK
MP
' RESOLVE THE *PHYSICAL BUFFER%
:ADDRESS IN GDOA*---. *ADDR FROM KEYs ¥
* .

AND PLACE IN

* ORDER *
EEKRERRERERRERERR

*PLACE IN ORDER *
*

x AERAEEEERRRESAEAEE
xxk .
hEE * *
* * * Bl ¥ .
® Fl %eoe * * x
* * . LR *HER
%k X * *
ORGO2700 % * 81 %
F1 *. * *
P * R
AT THe LAST RITE
*. GDO ox .
*a -* -
*o % x
* YES LR
. * *
- * B1 ¥
- * *
- -k
x
ORGO4400  o%a ORGOA700 .*.
Gt %, Gz
% *o o
15 NO Ly a
t.lT AN UPDATE .....-.xv.lr FIT IN onE.t...-....xt FIELD
ox *. GDOA ¥
-* *. .
o* -
* YES * YES
. .
X X

EFEREH LR Pk kg FEE
SDATA STORE KJ*
e e e R K e e K
* RESOL VE *
* INCLUDE/OMIT *
* ADDRESS

HERERESEERERERAEE

ORG

* WRITE
#0UT UPDATE DATA®

tt.l‘Hz#"‘t##t‘t

‘DACE- MOVE DATA‘
* TO ORIGINAL *
* GDOA,

* GO SADAC *
PR L e e S et

kR .
* * o
* J2 %eXe
* * .

e %
4850
ctttthtttzttttt.
*FREEMAIN
e K= — = a-t—#—t

*FREE TEMPORARY *eccesene .X‘oOR CORRELATED«*

* OACB AND GDOA t

(continued)

AEEEATIAR BN E
*
*0ORGSTMC1 ENTRY *
* *
EEEEEREERRRREAE

ok ORGSTMO3
B3 ‘. #‘attBAtttttttt‘#
* IS TH!S
A SEY MODE
%« ORDER %
ok

“x. vES DETERMINE t
-‘-....---X’LENGTH OF ORDER®*
*#AND PLACE IN A t
* REGISTER

ttttttttitattttt#

.o X¥a

T

. + No
. . TEXIT 1
N . :
. X :
T sesacIERsasanas :
uP .
1 teoINTER'TD NEXTE .
. & ORDER AND THE * :
. SLENGTH LEFT TD * .
R SEARCH * .
L RARRAEREREER AR .
: X .
roResTMDZ .. .
*. x
““DA“““*“
NO  SYES o% “x. NO
....!-ANOTHER ORDER.‘-.......X# RETURN *
. *. THIS o+ EXIT 2
. +CobA 2a PP
. He ot
.
:
: ‘t#tE3ttt'ttttt
leev.Xs ERROR RETURN :
ESTTI RIS 2222
ORG05000 ORGOS100
"*“GZ‘.'."‘.“ *““G“"““‘*‘

tRESE? G?SAOACB ‘ ‘ UPDATE FIELOS ‘
o

*¥seene

t ORIGINAL OACB *

* DATA TO
* ORIGINAL GDOA *

ttatttattant‘tttt Ll P L e St Lt
ORG05200
tttttH&ttttt#tttt
*DATA STORE KJa*
ek Rk ke
* USE_GDOA *
t OVERFLOW t
FUNCT L
tktttt:tttt:ttttt
.
.
X
- o*a
J3 . Ja
¥ *o ¥
«%1S IT KEYED*. NO o®

*.GDOA USEDe*

. .
* * * STORA ‘. ¥ - *. ¥
R R L s L2 uttttttttasttt.:t . . X o o®

. * YES ENE * NO
R . . * .
* - * K1 * -
® K1 ¥eXe * * -
* . R .
b - . .

ORGOAS500 X ORG 04600 x ORGOS400 X
FARRAK [ RASRERERRE BEREAKIESRRAR SR AR FFe4 3 AT
* * AEREK2RRERERRRE *KEY TBL MGT KE* * MOVE LAST *
* SET GOUSGRMOD % * * —‘—t“ Lt ok S * DATA TO *
- FIELD TO * - X% RE TURN * * * *ODRIGINAL GDOA» *
* CONTROL MDDE * * * KEY YQ KEY * * UPDATE OACB *

- AEERRRERERR R NE * L * * L *
AR Rk R AREREEEEARERN AN NS FRERRERR AR AR
x - -
cecsscssccmcncsnsentesensnsessvasnenrrsosonaanTnTRon . -
X
E 2]
* *
* 42 %
* *
ey

98

BEEEASEREF RN EKE
*
*DRS5GTRUL ENTRY *
*

EEEEERREREERRK

xs e 00 e

ERERECSERRERRRKES
* SET *

* UP THE

* APPROPRIATE *
*1INCLUDE QR OMIT#*
* ORDER *
EE s e L L L

xe e

EERKKCSEERE S FhRkE
*DATA STORE KJ*
K e e K e M K
*STURE ORDER. IN ¥
* GDOA WITH

*UYNHESOLVED ADDR*
REREEREREREE AR

PIREERE)

EREADSEREE X FERK
*
* RE TURN *
*

REERREARRRRRRE



Chart JA.

CVTO1L10

cVvT013

AR RALERERRERERE
*

*IFFAGAO8 ENTRY *
*

EREEEBREE R R KK

X
*ERKRBLEKRRRFRRRE
* *

* *
*INITIALIZATION *
- *

*a

t##t#El#titttt#tt

RCE
. ABSDLUVE MODE *
% AND CREATE *
¥ INPUT ARRAY FOR*
* SCAL ING *
(222222222212

Xe oo

'*ttﬁFl‘t#t‘itt‘#
*SCAL ING

st et SN it 4
* CONVERT *
*TO RASTER UNITS#
* *
EREEREREREE R RS

-

Xs o 00

tttttGlt"#t‘t‘tt
STO!

tDRlGlNAL lNPUY t

DATA MODE *

* (GDSDATMD )} *

* *
EEREERRER R R R

xe

CVTOo1l1

X
.t‘ttﬂl***ttﬂ‘t“
ACE

*

* CONVERTED
* VALUES IN
* USER'S

* VARIABLES
TEREERRK RN F KRR

*n N

Xeosase

LA NBELELE LSS L]
* *
* RETURN *

*

SRR RN RREE

Eaidd
CvVTOol16 ake
E2

CNVRT Subroutine

Rk .
* -
* E2 *oXe
* * .

X

*o
X Is *e

ok *s YES
*.Y-COORDINATE o%evoee

*.REQUESTED %
*

- -
*e ok
NO

P O R N N R N R S N T R B S S S S S AT ST ST ey

* *
FREREEER R Kok
-
-
X
¥,
c1 *a
¥ *a ERERC2E KRR KKK
¥ ARE *e NO *
*o PARAME;ERS e¥oscescseX® ERROR RETURN *
*e - *
- - ERHEREEEE R RREE
*e ok
* YES
.
-
X
CVT002 o¥e CvTOol4 o¥e
D1 *o 02 .
o¥ *a ¥ Is *e
¥ k3 *e 1 . *o
¥a *CONVERT® 1 oe¥eoesseseX*aX~COORDINATE
*e OrR 2 ok *, REDUESTED-

YES

cvTo17

FRREKDI SRRk kkkkk
* *

*
.*........xt DBTAIN INPUT *,
*

*
"*’#*i‘*‘tt#***t

AEEXRET kXX KK F KKK
*

*
X* OBTAIN INPUT
* VALUE

LER R

*
EE SRS RS RS L 2]

-k s
*. [T REAL HDDE
*o -k
*e o ¥

BREEEGIERERE R RN
*

* CONVERT TO
* USER'S UNITS
t AND STOHE IN

WORK REA
)iﬁttti*ti‘*i***t

LT TR

FRREHIE KRR ERE
* *
*CYTFLOAT ENTRY *
* *

L T

Xs oo as

FREERIZEEF R RRRRR

*

SET UP *

CONVERS ION
CONSTANT

*
BERKEERRRRRRRER RN

LA X X

*anne
*

CcvTo15 X

T

* *

* CONVERT TO %

* USER'S UNITS =%

* AND STORE IN  *
WORK AREA  *

L AN

: ELE2]
*

R N X

CVTFLT2

. *
aaX® E2 %
* *
LI 22
‘*ttle*tt‘t"##*

*CVTFLOAT
*—t—t—‘-t-t—t—t—

YES
-*.-..---cX*CONVERTSRASTER *®

*FLOATING POINT #
AEkkkRokEklok Rk R R Rk

KERERGARRRKR R Rk
*

* CONVERT TO
* USER'S UNITS
* AND STORE IN
* WORK AREA
kR Rk R Rk

LR XXX

ok

Ja *e
* *a
IS THE *.

NUMBER
.NEGATIVE ok

*, ok

*e o¥
YES

Xesoss ¥

etk G E LSS L LY
SET *

*

* S!GN Blfs *
* OBTAIN *
* MAGNITUDE OF t
*
*

Nui
ttttt*;ttttt#tat

EREEFDSEAREERRRRR
*CVTFLOAT *
B o et S 2

*FLOATING POINT x
Akkkkk Rk kkERNRERK

Xe s eeus

HREARESERRKRE AR AR

CONVERT TO
USER'S UNITS
AND STORE IN

WORK AREA
t**ttttttttt*t#tt

LR R 2
EX TR

- *ERE

- % *

seX¥ EZ X
* *

LTS

CVTFLTL

NO

sssesceeX¥ IN,

DI IS EFEPEN

RERERJSE R RRRRER
* *

*MOVE MAGNITUDE *
NURMAL [ ZE *
* NUMBE R AND *

* STORE *
HREERERKRR KRR R

Xevev e

*ERRKSEERKERREE
*
* RE TURN *

AEREREREERE R

Charts

99



Chart KA. Flow Control Management Routine

CUDE 1
FLCOOGD10
ttt‘tAttttttttttt
AEEBALFREEKETEEE *ASGNBFR
« —t—c—t-v-t-t—t—t
«IFFAHAOR ENTRY * * ASSIGN GUFFER *
- * * FOR FLOW CTRL *
AR EREEERERRE * STRUCTURE *
- EEERREREEREE AN
- smecessuseascasssscssecessvenanasrssoernenT e .
- « CODE o FUMTIUN - 10 - -
- seee seencsnss .
x l'lALllE FLD INT R . - X
LY TABLE AND STNUCYURE KAAS - L ERR1
B1 . esnseneeve esee Bs .
-% *. ADD A GDS 'I’o FLOW - - -* *eo EEEABSECRRRERER
=% 1S THE *e YES « CONTROL STRUCTURE - KAEZ - - 15 *4 NO
%o INPUT CODE o%essese=aKasasass cnsetevessseccssens eesesensasenna *e BUFFER e¥seasssess Xt ERROR RETURN ¥
*e VALID <% - 3 + DELETE A GDS FROW FLOI - - *LAVAILABLE =% *
£y ¥ - - CONTRDL STRUCTURE * KBAL . . -¥ BEEFSEEREERERER
%, % sesssacsmscecscsssssnesnasssnn *, o
* NO - 4 - THE FLOW - - * YES
- CONTRDL TABLE KBA3 . -
- ee cees . aseses -
- -
- X
< tnt:QCActtttttttt
FRAAC I EEEEREERE *GETMAIN
* i e t-l-t—t
* RETURN - *OBTAIN STORAGE ¥
* * FOR FLOW CTRL t
EHEFRRREEERREEE *TABLE AND DECB
tt!tttt.tt“tt#“
X
-¥ . ERRZ
DA ‘t#ttDStt‘lttttt.
- *RL SEBF
- -k t—t—t-‘—t—#
*., STD AGE - XE RELEASE
*a AVAlLABLE ‘ ‘BIFFER ASSIGNED‘
e
- tttttttt‘ttat.:tt
* YES -
CODE 2 - -
FLCCOO0AD %, FLCO00A FLCO002 X -
£2 *o '!t.‘EJ‘C‘."C‘.t sos'tEAtttttstct‘ x
" *a SET UILD SEERESHERERRRAE
aE 1S 17T *e YES WP BUFFER ADDR ‘ * FLOw CONTROL ' *
*, THE SYSTEM <%cesessesX® AND ADDR FOR * *TABLE AND DECB.+* * ERROR RETURN *
¥ GDS ¥ *SYSTEV GDS GTRU# *STORE DECB ACDR¥* *
LD % - ORDER * = IN GTHMCB * EEERERBESSSEREE
o o ¥ CEETEERRFEREARH NN EEEEESRERIRAEERAES
* NO - -
- - -
x - -
ERR1 o¥s - L3
F2 *. Oﬁﬁt.Fﬂtttttttt*‘
l’t*Fl.'Q.tQt't «%  ANY t. - £GWRITE
NO ¢ FREE FLOW - “t—t—‘-t—t—t—t—t
* ERROR RETURN 'l--.-.--.'-CmL ENYR[ES -‘ - * WRITE INIVIAL *
: *,IN TABLE % - *GRAPHIC ORDERS *
it'l.‘t."t‘." *a ¥ . * TO BUFFER *
*e o¥ - P s e s ]
* YES - -
- - .
- - -
x - X
AXABEG2ESKOREREEE . EEREAGAREEE RN EEE
* UPDAYE TABLE =+ - * *
« POINTERS. SET % - * PLACE FLOW *
*FP GTRU ORDERS * - * CONTROL TADLE #
* FOﬂ THE FLOW % - *® ADDRESS IN *
* CONTROL ENTRY ¢ . * GTMCB *
Q‘.“t.“"t“". - EERERRRERRERRRER R
. - R -
- - KA ¥
- - * HA %.Xeo
- - * * -
- - TRk .
X - #LCO0039 -
tttttnztccto’tn.! .
*GwR1 TE - AESFHE TR &R
O-SOt-‘-‘—‘—O—‘——‘ . *
« wRi TE * - * RETURN *
* OUT FLOW CTRL * - *
. NT - SEEARERERREREEE
SEEER SRS REIRR .
- -
eXewvaeesavaascansrasnnnssce
FLCOODA2
HEAEEIZEEEREREIES .“‘.JSO’Q‘.""!
* STORE FLOW - *GWRITE
*CTRL ENTRY BFR % t—t—t—‘—‘—t—t-t-!
*ADDR AND RE TURN® - K¥® RIT *
*ADOR FOR OVFLO * - ‘TD TﬂANSFER 70 ‘
* 1% GOsSCB * - THE 0S
XA E R TSRS RERESER - .."‘..“.".'ti.
. ek -
* * -
* 43 * -
* * -
i .
l.l"KJ.’i‘t’..‘.
*GURITE .'tt
YES 0-.-t—t-o—t—t-¢-0
esseeseX¥ GTRU 70 '.o--XC Ha ‘
* RETURN CTRL ‘
- PROPERLY titt

at.ottttttt...t.x

100



Chart KB. Flow Control Management Routine (continued)

*ACTUAL ENTRY IN'

LiL sl d Shkkdx
*KB * *KB %
* Al% * A3¥
* % * *
* *
CODE 3 - CODE & -
- -
X o
FLCO00SO0 o%. FLCOO0100
Al *a "".AJ*I“'.#‘#*
-k o *GCNTRL
-' 00 BLE *. NO R R - -k
*a AND ENTRV -k cos * sSTaeP *
*o EXIST o% x * REGENERATION *
*a ¥ bbb * *
e o *KA * FERRKREEE SRk E r kR
* YES * HAx -
- * X -
- * -
- -
- -
-
FLCO0060 X X
SEREED 1 REE R RS R kE "...BJ"‘.."“*
* REMOVE ENTRY % *FREEMAIN
* FROM IN—-USE Q R -l—t—.—'-—t—t

* FREE STORAGE ¥
* FOR TABLE AND %

* DECA *
FEEEERE R RS R KRR REK

ottttt-.tttttoctt
- .
- -
- -
- .
- -
x -
FLCO00T70 %« FLCGO090 X
c1 *o tttttcztttt'ttt#! 'c*ttcatttttttttn
% *a * SET UP LEAR
=% IS ENTRY ¥, YES % ADDR FOR GTRU t i THE GYMFCTBL *
*a LAST ONE ON .¥,... ....Xi BACK TO FLOW % * AND GTNDECB1 %
*. IN-USE % CONTROL t * FIELDS IN THE *
®al IST % BEGINNING * 6 ;] *
%o o ttttti'#'ittttttt EE A TR T e
* NO - -
- - -
- - -
X
eXeaceeasnnonsce AEEXE
KA *
FLC00080 * Ha®
ttatcoltttttttttc * %
- MOVE UP *

* ENTRIES IN t
* TABLEs UPDATE *
: FREE POINTER *

*
FEREE RS AR SRR R

“"tiEl.*'..itt't
*GWRITE
O-O—.-'—‘—‘-t—*—t
* WRITE ADDR TO *
- BUFFER TO ‘
*® REMOVE ENTRY
‘t.."tt“..""*

rkERF l‘ttttit‘lt
*

* THE GDSDVDAT '
% AND GDSFCBUF =%
* FIELDS IN THE *

* 'S *
baa st s S S

Charts 101



Chart KC.

ARREA L RREEREREE
x

*IFFAHAO02 ENTRY :

ARREEEEEE R ERRE

.
.
.
.
X
oo

81 -

* *,

-k Is *
*. INPUT CODE
-, =7 .
*o ¥
e o®

Xeoovwasn

AERRC L RERRREERK
*
* ERROR RETURN *

RS SRS 22 LT ]

*o
*e NO

%o BUFFER %
*<ENTRY o ¥
o ¥

* YES

.

.

.

X
EREERE L HEARRERRER
-~ SAVE *
*BUFFER ADDRESS . *
*PLAC

€ BCT ENTRY®
*NUMBER IN GDSCB®%
*

-
REERE R R kR R RRE
.

lt‘. -
# F1l ‘.X.
‘
X
BUFOOO&O o¥e
F1l *e
t. YES
Q-GODE READ!LV ekoaee
*. FO
*e
e -t
* NO
.
.
-
.
.
X
AERARG LERERRRER Rk
¢50F00280 - KD*'

om A K e e =

L d

# OBTAIN UNUSED *
L 0 *
ook ok ok Rk

4so e s assessssens e

.
sXeanoossesass
-
-
H
.tt**"l#t'#l‘#‘##t
TOR!
tlDENTlFlCAVlON
CODE
t ENTRY AND lN
- GDSCB
RERERREERESRARRRE

LT X2

-
*ERK .

* .

% J1 *oXa

* *® .

Pl ld -

BUF00067

tl‘l“J l.'t."“"

* PLACE BUFFER
& ADDRESS IN
* REGISTER 1

*
AEREEEEEEEERRE R

EX T X2

Xe e ss o0

KRR | R KR REREK
e *
»* RETURN *

ARREERRERERRKER

102

skeasncnanXe

Buffer Management Routine

.Assxeu 25 ER
. “ASSIGN ADDI TIONAL BUFFER.KCH2.
. *RELEASE 128-BYTE BUFFER .KDA1.
. CRELEASE BUFFER FOR A GDS.KDA2.
. <RELEASE PART OF BUFFER oKDA4.
. +RELEASE AtL BUFFER -KDD4 -
ceecassasssascsscncscssennsssannnsnn
BUF 00020
EERERD2R EE R R REK
*ASGNBF R

—#-.-‘—‘—t—t—#-#

akosseses e Xk

* OBTAIN BUFFER t
*
AR REERR SR RERER

*
ok 1$ o
. BUFFER
*.AVAILABLE ¥
. ox
*e o %
YES

xe o0 e %

EERRRF 26N RERRERE
*

* SET GDSBCTEL
* FI1ELD
AR Rk AOK R KK

*
*
*# BUFFER ADDR. *
*
*
*

X
kR
*
* F1 *x
* *
. RRER

CODE 3 ¥
HZ 0-

-i D(ES BCT #.
*.SHOW 128-8YTE.*
*, B8FR ¥
*e ¥
*e ok

ND

oo se e

*t‘*.JZ*'*."*"‘
*A SGNBFR

i-t—‘—#—‘—l—‘—#—‘
* OBTAIN *
* ADDITIONAL *
* B! *
BEESRBEAERKREEREEEE

Exe 8

ke
K2 *o
- *a
1S *e
*e BUFFER -k
*4AVAILABLE . *
*e -

*e oF
N

*SEREI R e bR kKR

NO

*
e« X®* ERROR RETURN *
*
AERERREREBREREE

t*’#
*

' Fa '----X‘
*

Yerer
SEEAHIE SRR IARE
YES * *
asesssesX* ERROR RETURN %
X *
. P R T
han
* *
* H3 *
* *
EET
BUF001
‘itt‘KSltt*t'.t#t
*
YES *  DETERMINE

t
NUMBER OF *
SECTI1ONS OF :

* BUFF
BERRERE SRS RED BN

sesnvace Xk
*

CODE 2
#vtttAat%t*t*ct*t

* SECTION(S) x
Aok ok AR K ROk

* * .
-k 1S *e NO
*a BUFFER
*, AVAILADLE ok

“ke on”
* YES

tti.'CO"t#*“'**
AVE

FFER ADDR AND*

.PLACE BCT ENTRY*®

* NUMBER IN *

* GDSC8 *
PR Ll T e S S

*xaaw e

04 * o
.t * o

*s YES
.CDDE READ ll.V
*e F

*a .‘

o oF

NO

Xes s oo ¥

‘BUFOO?GO
# K K R kK=

t OBTAIN UNUSED *
* DE

.
.
AEEREEQH AR R K .
KD* .
A AR R A KRRk -
- -
. -
eXeosossesnce

-

BUF00100
.tt:xFAtt*#ttt*tt

*IDENYIFICATIDN ‘
CODE _IN BCT *
'ENTRY FOR YHI s *x

SECT10
tt.t*t*tt‘*t#ttt#

L TN

G4 * o
o IS IT %o
<% MORE THAN *. YES
*+ ONE BUFFER
*. SECTION o*
*o -k

BUF00115 X

kR R HARAOR RSO R Rk
* *
* COMPLETE *
*THE BCT ENTRIES*
* *
* *
PRI e 22223 222 L)

- LRSS
- *
eaX¥ J1 ¥
* *

TEEE

n¥ecsennee XK

*#*#BS'**#*!*“

.*........xt ERROR RETURN t

Aok kAR KRRk

FhEAKGSE AR RRRREEK
*

* COMPLETE BCT
ENTRIES FOR
* EACH SECTION

*
Ak T AOR R K R RO

YT X3

coe e




Chart

Co!

8UY

8y

KD.

DE 4
“l#tAl%‘##*tt*t*

t LOCATE BCT *
%*ENTRY FDR THIS *
* SUBSECTION *

* *
AR RNk koK

Xeeseoe

KRR E | KRR ko koK
* *
* SET *
*  APPROPRIATE *
% BYTE TD X'80° %
L *
AR Rk ok ok
.
.
.
.
X
oke
c1 .
«% ARE. k.
ok BOTH *e NO
*eo SUBSECTIONS ot---.
*. UN

W e e o e ‘~t—

* RELEASE *
*BUYFFER SECTION *
- *
MR R o Ok R Rk ok

*a .t .

*o ok -

* YES .

. .

- .

- .

» .

- -

UF00 X .
Ed D]"###ttt*‘ .
* * .
* SET * -
* BCT ENTRV TO * .
* * -
* * .
AR RN KRRk K -
. -

. -

. -

- -

. -

M .

.

#i“tﬁl#‘t‘#*‘tt* -
*RLSEBFR .
.

-

.

.

-

-

-

-

.
.
.
.

FOO 170 %
RAKKF | SRR KRRk

*
-t SET GDSBCTID *
* AND GDSBCTEL %
*FIELDS TD ZERO :

*
ARARA KRRk Rk

F00070
HEERG LRk kR

*

* RETURN *

* *
Ak ok ok OOk oKk

Xeeoenn

kAR H 1 Kk ok kR
Ed x
*BUF00280 ENTRY :

Rk Rk Rk KRk

Xesoeea

FAAOKRS LRk kR
*

* FOR SEARCHING *

* 8cT * -

kKoK ROk KRk Rk -
. -
. .
eXosoesassnsnse
-

!'I‘*Kl*.“*t‘ti‘

IS
*ENTRIES lN BCT ‘-.......Xt CDDE FQUND

FOl
t
Rk ORR Rk Kk kR

seccenk

CODE S5 -
A

ok *o
«* BUFFER *o
*a ALREADY
*,RELEASED . %
*, ok

*e o ¥
NO

Xeven e n

H AR K B 2 Ak KAk ok ok K
* *

*¥REFERENCE FIRST*
* BCT ENTRY IN %
*CHAIN FOR THIS *

* GDS *
e T T T

xvesas

EERRRC2R kR R KRk
*

* SET GDSBCTID
* AND GDSRCTEL
*FIELDS TO ZERO

EX T X TN

*
Rk ok ok kR kR
.

t“‘ 3
t D2 *oX.

YES

ekesscense X
*

sXesooonsscos

1*“
BUF00210

t.#‘*DZ!***‘ttt*#
B .

* RELEASE *

*BUFFER SECTION *

*

Aok ok KoKk koK R #ofok
.

Xe oo e

**tt‘E2*&"“**it
PICK

t UP POINTER 7O *

*NEXT _BCT ENTRY, ¥

*SET THIS ENTRY *

* TO ZERO *
HAOR KRR R R KRR

F2 *e
*

X
HRERG2RE R R kAR

* *
* RE TURN *
* *
ook ok kR koR koK

FAKRE SRR KRRk

* up

* TO NEXT *
s

*IDENTIFICATION *

* oD *

L T e

YES
ok

K2 l.
THI S .

Koo e x

*o BCT ok
*e ¥
Xe o
*

NQ

L R R I R R I I I N S ST A AP PO

Ne#cooae

KEEEAIEN RS R KRRk
*

RETURN *

KAk K koK kK

HERRRKI kN hhkd bRk
* *

* PLACE *
» X% CODE _IN *o
’: REGISTER 1 :
HERARRER R RS kR

Buffer Management Routine (continued)

CODE 6 0
A4

CODE

BUF00270
G4

ses e XX

ok .
«*IS IT LAST *, YES
BFR _SECTION
*«OBTAINED %

*o

.
*e ok
NO

Xeoeso o %

*RRERDARER A KRR R
* *
* FIND FIRST *
*BUFFER SECTION *
*TO BE RELEASED *

* *
Ak ROk ok ok ok ok kKo ok K
.

LES 2 S
*

7
KR KDY KRR Rk k kKK
*RLSEBFR
Lt il Bt g Sl Dt St 22 2
* *
* RELEASE ALL *

* B *
AR R RO F Rk kR

Xe o aon

ARRKKE 4Rk IOk Rk
* *
* SET *
* ENTIRE BCT TO #%
* ZEROS *

* *
Rk R kKRR ROk K
.

.

eXeseosss0ccne
.

X
bt LTS 2L EL S L T PR
* *
* SET GDSBCTID %
* AND GDSBCTEL *
*FIELDS TO ZERO *

*
AR RN ok ok K

FXe o ue

.

*.

D A N I T I I R Y

¥ *o
+% ARE THERE *e« YES.
*o. ANY MORE
*e GDSCHBS o%
*

.

s¥aeaa

Tee ux
*“No

X
HRERHARRE AR KR &
* *
* RETURN *
* *
FRE AL R KRR

HREAK SRR
*
RETURN :
ERERRR Rk KRRk E

REEKASERKKERERE
*

RE TURN
FOR Ok AR Rk kK

Charts

103



*

* LOCATE SPACE
oX# FOR KEY AND *

#* INSERT KEY IN *

=

* INITIALIZE *
*POINTERS IN KEY#.
* TABLEs ADD TO *

* C N -
SREEEEFREEERRERNE

- TABLE *
RERRRSEREEERERERE
-

Chart KE. Key Table Management Routine
CODE_& CODE 3 .t
EREERAMEREEEEREE A -,
AEEEALERRRRE RS OBTAIN *
- * KEY TABLE _* NO o+ IS EN'I[R& *.
SIFFAHAO3 ENTRY % *ADDRESSs RESETV * eee*e GDS TO BE %
* »GD:;KEVTB FIELD * - *. RESET %
BEERETESRE TR TO ZERO . *e ¥
- ttunu:uutunutt x e %
- EEEE * YES
. * * -
. * E3 % .
- - - *
. - Rk
X -
ke KEYEMH3 X
Bl % tesstsesssverasasscesasscessenne
ul oN *FREEMA IN * * RESET FREE *
VAL ID wseescesssssanee e e K R R * POINTER TO *
INPUT CQOI ADD KEV TO TABLE « KEE1 o --Xt RELEASE tX-.......tFlRST ENTRY IN *
PASSED . - - UNUSI * KEY TABLE  #
. 2 SEARCH FOR KEY - KEE3 . M TABLc srum\c.e * *
*e X - . P L e TR EREAEL ERELEE
* - 3 + RESEY KEY TABLE R .
- - - * * -
- = & o DELETE KEY TABLE * BA * -
- - 5 o SEARCH FOR CORRELATION - R .
- - « VALUE - - .
- cssscescssvsesevsscsseasnsesosnssessoeraaTes M
X
HEERC I RES AR BERE EERRCARREERRREE
- ® * *
* ERROR RETURN * * RETURN =
= * -
ARREERRRE R B et
EE L L]
* *
* E3 %
* *
LR
-
X
CODE 1 e KEYELE2 CODE 2 ate
E1l %. BEERRE2RRAKRRARE E3 s
¥ *e * LOCAI’E us * CODE s ot EERREAS TR
o* HAS KEY *. YES * HAS A Ev “%. NO *
*. TABLE BEEN .t........xa SI’ORAGE USED * . TABLE BEEN e¥esoereaeX® ERROR RETURN *
%o BUILT % FOR KEY TABLE * . - -
- o* t * *. ok P e
e ok PR TR LS P Y . u¥
* NOD - * YES
- - 2EEE -
- . * * o
- . * F3 #oXe
- - * * o
- x Rk x
KEVELF1 X ¥e KEYEMBZ oka KEYEMC2
BEEREF LERREEER0RE F2 % F3 % e T e
*GETMAIN * -® - - * *
t—t—t—tat«t—t—t YES o% *e -
tx.-..-.--t- IS IT FULL % ‘.SEARCH BBE
ts'ﬂ)RAGE FOR xevt *eo - *.ON A KEY o%
- T % % o .k
bR L -S4 *e o¥ e o
- * ND * YES
- - -
- - -
- - -
. . -
- . -
X x X
ARAEAGLEERE R R BEEEEGZERE RN KK P T L
* * * *

* *
*SEARCH FOR KEY *
* *

* -
*REEREFEER RS R AR

-
-
- X
KEYEMJ3A - KEYEMB3 ake
X H3 ‘.
EEEEH2 SRR SRR .'
* * NO
R RE TURN * .. KEVICIJRWAL -O---
* FOUND «
LR A2 2222t 2l il l .. -¥ * *
*e oF TR Rk E %o ¥
* YES * YE
- -
b3 -
* -
EZ LI NPT LS 2 22222 ) x
* * Ak JSERERE Rk
. * PLACE ADDR OF *
X% KEY (IN KEY * * ERROR RETURN *
* TABLE) IN * £
*e -¥ * REGISTER 1 * EREEERERREEREES
By ¥k Aok kR kR kR
* Y -
- -
. -
- -
- -
- -
KEYEMF1 X -
.‘tt‘K]."'."‘.* X
* EEEEK ARk S REER
* RESETY FREE * -
*POINTER TO 'I’Hls\l * RETURN =
* ENTRY IN KEY X *
RS RE R

* TASLE -
SEEERERRRERRE AR

104



Chart KF.

kAL kR kR Rk

*
*IFFAHAOG6 ENTRY X
* *
ok ok ROk koK k

.
.
o
.
M
x
ok
Bl .
% IS *e
ok
*.X—COORDINATE
%, REAL <%
. o
*a oF

RREEC LRkk kR kK
* *

* COMPUTE *
*SCAL ING FACTOR *
* (SEE TABLE 6) *
* *
Akl Rk R

Xes s

o*e
D1 *e
o* IS *q
-k

SCA

SCA

Scaling Routine

004
FEXEEB2ER R KR KRR REE
* *

* (SEE TABLE 6) *
* *
sk ko Rk ok ko kk

002
titttnz‘tttt*ttt#
*

*COMPUTE SCALED t

*s NO
t.X—CUORBlNéYE -t----....X: REAL, INCR

* ABsnLur ok
k

'- ¥
YES

Xs s s0ae #

EREERE LRk Rk kR

* *
*COMPUTE SCALED #*
#REAL, ABSOLUTE x
* X-COORDINATE *
* *

SCA

X—COORDINATE t

* *
ARk Rk Rk
.

.

-

-

.

X
TR E 20K R Rk

*IFFAHALS
K e R e
* CONVERT *
* 70 INTEGER *
*
PR eI TR
L2 .
* * .
* F2 %o Xe
* x o
P eld %
003
;.‘ggrz.tttnttttt
COMPUTE

* OUTPUT ARRAY ¥
* *
SkkrkhkkkekkkikEk

eXeccemcscssnccssscccenncese

PR LT PR T T,

.

.

-

.

-

X
tttttFlt‘titt.t#t
*IFFAHALS
t—t—t—i—t—t—t—#—t
* CONVERT *
* TO INTEGER *
* *
LTI ETT TS B Y

.

aEEE .
*
e t.x.
tt :
SCADOI
tn*ttcxtttttttt:t
COMPUTE

* INCREMENT, *
*STORE VALUES IN%
* OUTPUT ARRAY %
* *
RL St LIRSS R 2

Xe o 0w

SCA006 o¥q
H1 -
-* | £ l-

NO * COMPUTE * -k
-V—COORD!NATE “Heseeeess X&SCALING FACTOR %, .00ceeeX¥¥~COORDINATE
* *

*e
3-
*a .t
* YES

LI TN

SRR LR RREERA
* *
* COMPUTE *
#SCAL ING FACTOR *
* (SEE TABLE 6) *
* *

ok Rk kol

Xeaso s

ok
K1 *ao
.k IS *o
*a

S NO
Q.V—CDORDINATE .‘.-..-...X#
*2 ABSOLUTE o% *

- .
*e o¥%
* YES

SCAQ

11
AR H2AK Rk kK
* *

(SEE TABLE 6)
* *
RIS L2 22 A2 222l 2d

X#.x—COORDINATE

ke
B3 -
ok s *e

e ABSOLUTE L ¥
*e -k
*e ok

YES

KXo oo v

*REERCI kb kkkkEkk
*COMPUTE SCALED *
* INTE *

Ry
* ABSOLUTE *
* X—COORDINATE *
Aok AR R AR K Ok ok ko
.
.

X
L L 2]

LR i L]

a¥e
H3 .
«* IS *o

#e ABSOLUTE %
- -
e o¥
* YES

X
SRR ITRRE AR AR
* COMPUTE
*  INTEGER,

* ABSOLUTE
* Y—~CGORDINATE

XX R L]

*
HREEEEEE kR Rk

LEZ 2

*

eeX¥ G& X
Bl *

P
SCAQ009
R EER K2R KRR R ltﬁttK]ttt‘t‘it#‘
*COHPUYE SCALED * *IFFAHALS
Ly * b S

Y-COORDINATE
* *
ek kkoke Rk

REA
INCREMENTAL :-.--..-.X:

CONVERT
TO INTEGER

* *
kR kbR bkkk

SCA005

X

FPI

SCA

SCA

.#........xt

SCA

R B EERE Rk kkkEk
*COMPUTE SCALED
* INTEGER

* INCREMENTAL.
0 X—COORDINATE

LEELE]

tttt't*ttttxtt**t
.
- tt*t
--Xl F2 t
*
wkk
00S

EERKCHRERER Rk

YE
* ERROR RETURN #Xecesoccooeoko
* *

AR AR A A

kR EEQ KRRk E

* *
*COMPUTE SCALED *
*REAL» ABSOLUTE *
* Y—COORDINATE *
* *

Rl At S Sl e T d

.

.

-

.

.

X
Aok 4 3kk Rk kK
*IFFAHALS
o e i A e e
* CONVERT *
: TO INTEGER *

*
RS2 2222221222213
-
*“i -
*
* G4 '.X-
* -
aha -
007 X
Ilt“GQ'ttttt‘ttt
* CO|

* lNCREMENT'

*STORE VALUES lNl-------.X&
*

* DUTPUT ARRAY
* *
kbbb kkkkRER

012

Aok Hadkokokokok ok dok

tCDMPuTE SCALED *
GER *

lNCREMENTAL *

* Y—COORDINATE =*

* *
EREREEkREEREEREEE

.
-
-
-
.

010
##t.tkﬂtti#itttii
COMPUTE

tABSDLUTE VALUE-

¥eosesee o X*STORE VALUES IN¥
* *

OUTPUT ARRAY ¥
* *
EA L T2 S 2222 s

*EREASEEREEREEE
* *
*IFFAHALS ENTRY *
* *

hkkEhkEEk bR bEEd

xee s 0.

X ERS R R R R Rk
* *
* TEST REAL *
*NUMBER LOCATED *
* IN REGISTER 1 #*
* *

TREFEREERE KRR

-k
S o

AREREKDS ke bbbk Eik
ONVERT
TO INTEGER
NUMBER AND
RETURN IN
REGISTER
LS 2SS 2222222 2223

EXRER
R

FP1002

-
-
X

*ERRESkEEREEEEE
-

*
* RETURN *
* *
kb kkkkkkkErk

SCA008
t‘*ttﬁsttttt‘t‘tt

* INCREMENT
NUMBER OF
* POINTS SCALED

LEEXE]

*
EE RS S 222222222223

-

X
AR RHSH Rk foke
* *
* RETURN b
* *
EEEETEEEE XTSRS

Charts

105



Chart KG.

HRRERE P kkkokkkkk kR

N
TONAL *
thFDRMATlDN
* GSPARRAY
4“““'***3#*‘#*

. -
*e o %
NO

- '*‘*
-.X* Fa ‘

EE S 10
ARG L RN E R RRkkK
* *
* PLOT TO *

* POINT OF *o
* INTERSECTION *
*

Scissoring Routine

NOTE -—- THE RETURN CODE THAT SCISSORING PLACES IN REGISTER 15
HRERAZ R RN EERK INDICATES THE FOLLDWING TO THE CALLING PROGRAM ——
- *
*IFFAHAO7 ENTRY * 0 = ALL OR PART OF THE INPUT DATA WILL BE DISPLAYED,
* * AND IMAGE GENERATION IS TO BE CDNTINUED.
EEAL EL RS L]
- 4 = ALL OR PART OF THE INPUT DATA 1S QUTSIDE
. SCISSORING LIMITS, AND IMAGE GENERATION IS TO BE DISCONTINUED.
.
- 8 = ALL INPUT DATA IS QUTSIDE SCISSORING LIMITS, BUT
- IMAGE GENERATION 1S TO BE CONTINUED.
.
X
AR EB2F R RE R R RN
* *
* *
*INITIALIZATION *
* *
* *
Rk R Rk
X
ake $CS005
c2 *, FERERCITRAR RN R R AR
3 AR . * EERKCHRKENR KK RN
«¥CURRENT ANDX¥ * *
*«PREVIOUS PTS KooonomeoXk RETURN *
*eIN SCREEN. * * *

¥+ GDSe*

*e ok
* NO

*xe v

o ke
D2 *a
ok IS IT %,

* REGISTER 1S5=0 ¥ sokokROR R RO R R R
RS AR AR ARk X

X .

. .

. .

. -

- .

« YES -

.
D3
.*" ARE BOTH

*e

*.

«% OPTION TO *e YES *e -
%o SCISSOR AT e*esecoesaXke POINTS ON % -
*e SCRE ¥ *. SCREEN % .
*oLIMIT,. ¥ . - .
Ko o¥ *e o ¥ -
* NO * N -
- . -
. - -
. .
. - .
x - .
SCsS010 » ke X .
*, FRARREI R R R R A -
ok . *SET APPROPRIATEX* .
NO % ARE BOTH ¥, *RETURN CODE ANO¥ .
Xooosoeones®Xas POINTS WITHING X * ADDITIONAL .
*e -k ﬁlNFORNATlDN IN " -
*eo o GSPARRAY -
e o X% t‘*‘#t*‘*#*t“tt* .
* YES . .
. M .
. . .
. . .
. - .
. X .
scsor2 X ake sSCso08
RERKF 2R Rk kR F3 *o *ttttF4‘**ttt#tt*
#SET SCISSORING * -* - ¥
* LIMITS = GDS % IS *. NO # GDSXLAST ANO '
eeX¥ LIMITS UNLESS * t.GENERATIUN TO.t.--....-Xt GDSYLAST *
*GDS 1S OFF THE * «CONT I ¥ * FIELDS, SET *
* SCREEN * - - - * REGISTER 15=4 *x
L P L PR e e o¥ P L e Pt L
«(IF GDS IS OFF SCREENs * YES ok
e SET SCISSORING LIMITS * x
« EQUAL TO SCREEN LlMlTSol- * F4 *
- . * *
. - *kkK
. .
s5CsQ20 X X
ARG 2K ARk KERKAGIERR IR AR
* COMPUTE NOe * SET *

*
* AND LOCATIONS *
* OF *X
* INTERSECTIONS ¥

seac*¥LIMITS =
* LRI

* SCISSORING *
SCREEN*
TS *

* o *WITH LIMITS SET#* * '
PP R T T L F KRR O R KRR T T T P e Y
x ok .
. * * .
- * Kz * .
- * * .
. LT .
. YES X
ke SCS035 ke
H1 *e *o FEEREHARRE AL
LI - «XNUMBER *o *  GENERATE R
PREvlous POINT. 1 .x OF *e 0 * POSITIONING : * x
*.  WITHIN e*Xeoeeseae*s INTERSECTIONS. ¥o oX* VECTOR AND  *.
#SCISSORINGe* *e . *.BOUNDARY . % * DISPLAY POINT *
*aLIMIT o % *e * *o o* #0F INTERSECTION* Rk
*e ok e o e ¥ AR R AR KK
* NO * 2 NO
. . R .
. . x 93 t.x.
. .
X . Yerant -
ke x
AN N AR J2 KRR AR TARERITH B E R
1S *  PLOT FROM % * SET GOSXLAST %
.CURRENT PolNT. NO *PREVIQUS POINT * * AND GDSYLAST *
wi ST *[NTERSECTION TO¥ *  FIELDS IN
*SC]SSOR!NG.‘ * CURRENT POINT * tGoscn. nEGxSTeR*
*.LIMIT . * INTERSECTION * *
e ok x AR AR KRR KR KRR K R+ 3t PO
* YES *EAE . .
. * * . .
- * 43 * . .
. * * . .
. R . .
. . .
b X .
HRRR R ] ROk SRRk R A EERK2E Rk ok Rk kX - .
* POSITION TO * * SET * . HRARK 4 ERRKE AR
* INTERSECTION * * GSPARRAYs SET * X
*POINTe PLOT TO ¥eecesvesesX® GDSCHB FIELDSs ¥eossesvecsceavcccssnnssscsnnensnsseXk RETURN *
# CURRENT POINT * X #REGISTER 15 = 0%
* * . x P e
AR R RO AR o RRERERRRRE KR KRR

106

*K kK
* *
* K2 *
* *
*kkE



Chart KH.

NOTE —— ONE OF THE FCLLOWING
EREKEA L RKKAEAEER ORD 1S GENERATED IF THE
* PRECEDING ORDER IS NOT OF
*1FFAHA04 ENTRY * DESIRED MODE.
L
. ABS POINT = GEPM
-
. ABS LINE = GEVM
-
- INCR POINT = GEPI2
-
- INCR LINE = GEVI2
X
Lhabhd: R L PR TR
* *
* *
*INITIALIZATION *
* *
* * Rk kR
LR I e R * * * *
. * C2 * * CS5 %
. * * * *
. Rk K EXTL]
- . s
. . .
X X - YES
L XY DAT00150 o ¥e ke
<1 *, *o C3 #.
ok *. *.
«% IS THIS *. NO o s OLTPUT *. NO o ls UUTPUT *. NO
*, THE FXRST .t........xt. BE e¥oone X2
*s PAS ok X t.ABSDLUTE ok *INCRENENTAL*
*e ¥ . *o . *y ¥
*e oX - *e ok . o¥
* YES . * YES *
. . .
- - .
. . .
. - tecsersesssrscncccetsssessssenssonsnccan
X .
DATO00100 %o .
01 *o .
ok *o .
+*1S IT KEYED*.
* on CORRELATED .
o
"o o
*o o¥
* YES
-
.
-
-
x
DAT03400 %, ke ok
El E2 *a E3 *e
% IS ok IS *e .' *e
- IT A o* BEA *e NO 1s *
*. MULTIPLE X¥o POS!TIONlNG .*........xt. DUTPUT MODE <%+
*a REQUEST ok ok

Data

Generator Routine

*«REQUIRED

*. ABSOLUTE %
*

. .
e ok
* NO
.
.
o
x
o Xo

AR ERF LR Rk F2 *o F3 *,
* * -k *a ¥ *o
* SET_Up * INCR o% 1S OUTPUT *, YES »% DQOES IT *. NO
# INCLUDE/OMIT tx........:.MDDE INCR OR .zx........t,REQUIRE HDRE akae
*  STRUCTURE *.0PTIMIZED. * *e
* *. .k t-lNCR o
t#tt**tti***'tttt *e ok *e ¥

. * 0PT *

- . *kkk *

. . % * *

. aeX¥ D4 * *

- *

- K&k

X
ARG kR Rk kR kR t*ﬂ**GZ****tt****
%DATA STORE  KJ* * S
A i e R e — e K « STORE *
* STORE ORDER #........xn LDGICAL START *....xﬁ cz *
& AND SET UP  * IN KEY t
* UNRES ADDR 1 % *t**
LS ERL RSS2 L S i*‘*********‘t*t*

AR EH 3ok K Ak kA Kok

RE GTRU
*RESDLVE ADDR 1 *
*

FLAG ADDR 2 *
R Ak K bRk ok ok
-

-
-
X

LES LI NKE LRSS
* *

*  SET up *
*FOR PGS ITIONING®
* ORDER *
* *
HEEREERR AR
X

Tk kk

* *

*c2 *

* *

xok ¥k

*
oo XX

-
.

OPTIMIZED OUTPUT

DAT00200
e RRALEREREkRRkE
* COMPUTE

-
-
-
-
-
.

x REQUIRED
EEEREEREREE R ERE

*
*
*
* LINES/POINTS %
*
*

X
kR RBGETR KT R RER
* DETERMINE IF *
* MODE IS

* CURRENTLY SET #
: IN GDSGRMOD *
*

xEER
ko rk Rk kR ok k * *
. * C5 *
. * *
- kkk

. .

. .

X %

* DATO01900
C *itt*cﬁ*‘*tt‘*"‘

.t DDES t. GENERATE

-k

ENG tAPPROPR)ATE SETI
*o HARRANT ABS

X*MODE ORDERs SET*

%*e OR INCR o% * GDSGRMOD IF ¥
<~DATA o* * NE 0 *
*eo o EEREREREERR K RREKE
* ABS -
- .
- .
. -
sscassesncaXa .
DATO01200 X X
*ttt*oottttttt*tt AERREDSHERREXERER
* GENERATE * *
*APPROPRIATE SET* * SET uP *
X*MODE QORDER, SET*Xeee % BEAM BIT AS %
*P GDSGRMOD IF * - *NEEDED+ UPDATE ¥*
- * NEEDED * - F S *
- LR i R T e - L e L
- - *EKE -
- - * * .
. - * D4 * -
- . * * -
. . Rk -
. - X
« ¥
tt-tteattt**tttvt ES *e
. * SET BE, * *a
- * BIT AS # - IS IT A *. YES
esea * NECESSARY, ¥esssuons Xks SINGLE s*ense
* UPDATE FIELDS * *e REQUEST .* .
* * - ok .
L *a ok .
* NO -
. -
. .
asssae .
.
DATO01550 X .
R KF AR RR KR RAR K ERERKESEERRKRRREK .
*DATA STORE KJ* * SET * -
t—t—t—l—t—‘-t-t—i * BEAM PER * -
. STO Xco.--.--*lNCL/OMlT. SAVE%®Xees
- ‘DRDERS AND DATA* NE BY oF *
- * t A *
X tt#ttt&kttt*ltttt L e T L e T
Rk .
*
CcS x
*
Rk
.ky
*o GS *a
*.
-t lS IT A *, NO
*o 1T 'HE LASI .t........x*. SINGLE e¥soee
%o PASS L *« REQUEST % -
*ao ok . . .
*e oK *a o X .
* YES * YES -
- . -
. . -
. . .
. . -
X - -
ke X -
EEREEHSE R R R R Rk EE .
* * .
* STORE * -
*LOCIAL ADDR IN * .
*. O R ok * KEY * -
*e o* * * -
*y ok R R RRE -
* YES . .
- -
- sXeessacssnne
-
. seescescsacXe
- . -
X . -
b Db b d . x
*DATA STORE KJ* - FERRYSERER KRR
e ke Rk R R K . *
* * . * RE TURN *
A*RESOLVE ADDR 2 * . *
* * . ROk Ok & R
Rk R kbR kR kR .
- .
- .
. -
X
AR QAR R Rk
* *
* SET GDSGRMOD %
*TO CONTROL FOR *eus
* NEXT ELEMENT *
* *
R e P S T
Charts

107



Chart KJ.

BEFSAL SRR EER RN
- Ld
*IFFAHAOS ENTRY *
» *

BEEREERRS SRR REE

-

Xeeoovese

R EREBLER SRRk R
* *
- *
*INITIALIZATION *
- »

- -
BEEREREESE SRR RN RR
-

*«Xe 0 e

-
(=1

-

.

.

wAS *,

BuFFER EVER

*ASSIGNED <%
* ok

.

e
-
e @

® YES

kX -

» * .

* D1 *oX.

* * e
bbb x
STRO0100 %«

D1 *

-% ..n
«% ARE THERE *.

*e ANY INPUT %
*e¢ FLAGS o¥
- *

DOES
*, DATA FI17 lN
*oONE GDOA %
L

X
BREREG L EEERRAE SR

* *
* STORE DATA IN ¥
* GDDAe UPDATE *
* OACB POINTERS *

* *
ERRRERNARPENBRRRK

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
esemasscaaXe

eXeeosone
-

STR0O0200 :

EEERHLKESR RS

»*

* RETURN b

* *

AEERRSERRKEEERRH

108

Data Store

THeaccacaXs

YES
ceea
-

Routine

STROOGEOO
ERRERC24 2k kR kd
SBUFFER MGT KC*
A W A — B e e e B

»

* ASSIGN BUFFER ¥

* T0 S *

RE 22 22222222 222t 2 ]
-

Xe v

AR ED2EE2 R M kSR
'FLU CTRL MGT KA®
W e R -t—‘—‘—*-t

40D *
‘ GDS TO FLOW *
* NTROL *
ERREERRRERRE RN BEE

x
e td -

*KK &
* Alx

* ¥
*

TR IR

-
-
-
X
»
E2 *a
¥ ARE *o
% LIGHT PEN %,

STR0OQ300
FEREF 202 L0
* MOVE AS MUCH !
* DATA AS

NO
e¥eswesasaeXd POSSIBLE INTO t
*

GDOAs UPDATE *
*

* O
PR R S T P T

X
0""62”""#“'
*STRO0350
e s e t-t
* OVERFLOW »
* FUNCTION *

* *
kbbb kkkkkkk

-

STRCOS0S x
SEEEEH2E R Pk &
* SEV UPp NEXT »
* OACB. PLACE *

R 2R SRR
*

* MOVE REST OF
ewask DATA TO GDDA.
* UPDATE OACB

XX NT )

-
R s L2 222 2222 2 L L2

FRERDIEEPESEREE
*

* ERROR RETURN
*

tsxt'.tnmﬂt'tt»

ttttte:*t.as.tntn
*GWRITE
.—t-t-.—t—t-t—t—.
PEN
‘HODE Iﬂ PERMIT t
ETECT
..tt.tvt.ttt..tkt
-
-

wsssessncscresnvesssasssake

YES

tx--u.oo-o*. CDNTA!N ALL

STRO0920 X
““.FB'I'.““O#
ll '
x» OACB FlELDS *
- * *
- * »
o AERERRREREERRERAE
. -
- .
X
ke STR
. G3 %,
- o* *e
- «* IS THERE #%. NO
«  %<AN EQUIVALENT o¥ceee
. *.  GDS % -
- - ¥ -
. e ¥ x
- » YES *EEE
- . * *
* D1 *
* *
L2 22
X
SRS EHIE AR R DR N

FSET UP GDSFC&.IF*
* GDSBCTEL

ses¥% GDSCVDAT AND ‘
* GDSBCTID. GET *
* OACE FOR GDS ¥
RI 22 22t 22 bl it d

-
-
-
-
-
.
-

't"AQ'i...‘##‘
‘SYROOZSO ENTRY i
BEERERERRED KR KK

t. YES

CQ
-' DVEﬁFLDl
R

». DRGEN
£ XS %

e ok
NO

X 00 #

D& * o
-'DID DNE.-
- *o
-k
‘-THE DATA 1
t- -'
* ND

xeoaus

BERARESTEEERAERES
*BUFFER MGT  KC*
e e ot St
* GET *
*MORE BUFFER FOR*
* Gl *
RETEESPREERE S EREA

Xe eu s

FEEFSFARER RN R 0%
* *
* UP GTRU TO *
#NEWLY ASSIGNED *
* BUFFER *

» =
AR SRR EFERERR AR
.

R R N I R R I N I I RN I N NN AR RN NN

B T Y
-
-

00370 X
KEERFGHFER R RREEN
* SHIFT ANY -

A#UNRESOLVED ADDR*
* FROM CPU TO *
] BUFFER *

* *
PR R A2 22222221 E )

'tt*lﬂ‘.‘#"i‘tt#
*GuRITE
'—.—O—O—O—t—*—t t
tGDDA 10 BUFF&R .
*

*
EREFERERREESERRRE

Xeeovan

AEEESARERER KD AR
* *
* RETURN *
» -

BEEEFEEERERRRES

OVERFLOW FUNCTION

STRO0520
l""as**’t‘#‘it‘

t
*

-
*
*

ALN t

otoo.o.-.-KiNEXT OACBIGDUA ‘

“.‘#“"“8‘8#‘

xeveren

HRERCSEREEERRRE
RETURN *

EEEEE R EEkb S EEE



Chart KK. Data Store Routine (continued)

PRERE
#KK X
* A%
* ®
*
.
T : .
STROLLOO e, a2 IXEREASEERELORLAS
*poES 1Ts. ! o ». *STR00350 KJ
St eBRTAIN ", vES +"% Ay 10 %, vES ot WILL e A S I utd
ARESOLVING -'--------X#-AN UNRESuLVED.t........xt. e¥easevnask¥ OVERFLOW
%. ADDRESS % *. ADDR % . *  FUNCTION »
*a ¥ * o THERE <« ¥ - *
PO, EEEER R R
* NO
£l 12 -
* -

esecsssece

* Bl %*.Xe
* -

bl X
STRO1200  «¥. STRO2200 «*.
a1 .. 82 e #3’*'53*.“‘..."
«% EOES *STROO K%
«xIT CONTAIN *, YES NO i t-t—t-t—t—t—
*+ AN UNRESOLVED.‘.--.---.x‘-BYTES LEFT lN-t--.-----X‘ OVERFLOW *
*+ ADDR ¥ *. GDI - t FUNCT ION *
o ¥ *e ¥ *
e ok *e o¥ ‘&t""*'t"'.#‘l
* NO * YES .
- - -
- - -
- - -
- sscscsccsesscssvnssensncsoXe
x -
¥ X
(%] *a SRR FCI R R EERK
*

*SET UP LOCATION*®

-k t-
-k IS 17 YES
* * OF UNRESCLVED *

+BGsUB LINKAGE-'

*e * ADDR IN OACB *
*e o * *
He SRRk s KRR REEE
* NO .
. -
. X
- et
x *KJ ¥
ote STR03100 .*. * El%
D1 *. D2 *. * %
-t ok . *
YES ¥ witL *a YES
.LKSUB LlNKAGE-‘ eex®*e IT FIT IN o
= GDOA  .* .
“s. - *a ¥ .
e o *e ok .
* NO * NO .
- - .
- . .
- - .
- - -
x - .
-*. x
El ) SEREEE2 R RS ARAS R .
- xs IT #*e *STROCG350 KJ* .
o% A R — R — .
*. DVERFLD' * OVERFLOW * -
*.FUNCTION *  FUNCTION * .
*.ONLY % * * .
e W% T TR R Y .
* YES . .
. - -

- - %
X -

BEREPF LRk ER bRk - 'ttl.Fz'l.‘*#.it‘

#STROO0350 KIx - - RE SOLVE

e e e o e e e - * ADDRESSE S ‘

* OVERFLOW * - * wITHIN BUFFER *

Ed FUNCTION * . *SUBRTN LINKAGE *

* * - * *

BEEREERR RS F RSN EE - BEEFEEEERE R SRR
- - -

- x
- L bbb d
- *KJI *
- * El1%
x * %
SEEEGLER RN RN RN *
- RETURN *
* *
RS REES RSP REE

X
STRO2600 oke
D

L i ot

Da

LR 2]
* %%

*kkk
-
.

¥
-k
£
e ok

* NO

-

-

-

X
‘*.‘.EA*.*“."“
*STRO0350

e e R — A — —'—‘vt—t
* OVERFLOW *
* FUNCTION *

* *
LRI i 2 22 St 22222t 2]
-

sXsosessssse

-

-

X
EEESEFARR KRR EF Rk
* *
* RESOLVE *
* ADDRESSES IN *
* BUFFER SUDRTN ¥

*

*
HERRERE R RS

.
.
:
.

ke
AS *a

-k |53 *e
«*¥AN ADDR TO *.
*. IN CPU W%

*e

EREEEESERR R kR
* STORE *
* CURRENT
*PHYSICAL BUFFER%
t ADDR IN CPU t
LUCATION
ttttttttttttott‘t

- LE2 24

- * *

= X%* BI *
* *
L2 E 2

BREEBCOFRREEREERE
*GWRI TE *
# ek ' -~

WREITE *Xew
tADDR TO BUFFER *
* AND START *
EREREREEER AR RER BN

ttttrsttttttttt
* RE TURN
*

tttttttctt#itot

Charts

¥oecevevaX¥e HE RESOLVED «#*souea

R

-

.X--.

109



APPENLIX A: CONTROL BLOCK FORMATS

This appendix contains detailed formats
of the control blocks that are created by
GSP routines. Refer to "Control Blocks and
Tables Used by GSP" for general information
describing their use.

Takle 10 contains a 1listing of each
control block and table created by GSP and
gives the name of the routines that create
and terminate the control block or table.

Table 10. Creation and Termination of GSP
Control Blocks

] v T 1
|Control Block| | |
| or Table |[Created By | Terminated By |
b + + 1
| GSPCR | INGSP | TMGSP |
b t t 1
| GTMCE | INDEV | TMDEV |
! ¥ } :
| GDSCE | INGDS | TMGDS |
I L 1 i ]
r T T 1
| GACB | INDEV, LOCPN |TMDEV, LOCPN |
[N 4 N )
v T T b
| COMAREA | INDEV, LOCPN |INDEV, LOCPN |
L. i [l

! T T

| DCB | INDEV | TMDEV

F + ¢

| DECB#* | Flow Control |Flow Control |
| | Management | Management |
b } + 4
| GDOA | INGDS, Update]TMGDS, Update|
1 1 N 4
T T T ]
| OACB | INGDS, Update|TMGDS, Update|
F ¢ t i
|ATLCR | CRATL | ENATL |
b + $ 1
| ADEQ | CRATL | ENATL ]
; + ¢ .
| BCT | Buffer Mgt |Buffer Mgt |
e $ $ .
| FCT | Flow Control |Flow Control |
| | Management | Management |
I t I 1
L} Ll T |
|Key Table |Key Tbl Mgt |Key Tbl Mgt |
L 1 1 4
r T T 1
|system GDSCB | INDEV | TMDEV |
L L L. J
| *Numerous subroutines create their own]|
| DECB for input/output operations. Such|
| a LCECB is constructed in the work/save|
| area used by all subroutines. |
L J

The control blocks described in this
appendix in their order of description are:

e Graphic subroutine package control

block (GSPCB)

e Graphic terminal control block (GTMCB)

110

® Graphic data set control block (GDSCB)

e Graphic attention control block (GACB)
appendage only

® OQutput area control block (OACB)
®» Attention level control block (ATLCB)
e Attention data entry queue (ADEQ)

These blocks are illustrated showing the
layout of the fields within them. Detailed
descriptions of the contents of these
fields follow each block. Fields that
contain addresses which point to other
control blocks, tables, buffer locations,
routines, and main storage areas are indi-
cated by an upright arrow (t) in the field.

The buffer control table (BCT), flow
control table (FCT), and key table are
described under their appropriate headings

in the section "Program Organization®". The
communication area (COMAREA), data control
block (DCB), data event control block
(DECB), and graphic data output area (GDOA)

are described in the publication IBM
Systemn/360 Operating System: Graphic Pro-
gramming Services for IBM 2250 Display

Unit, Form C27-6909.

Graphic Subroutine Package Control Block
(GSPCB)

B G ettt 4 Bytes---------—-——- >
r 1
+0 | GSPGTMCB t |
p-—- 1
+ 4 | GSPDCTR2 t |
F , . T !
+ 8 |GSPSYSID| GSPCBID|GSPBUSYS|Reserved |
k 4 4 3
r - T Il 1
+12 |Reserved| GSPDUMP|GSPABEND|Reserved |
1 A L. 4 4
r 1
+16 | GSPAWORK t |
L 4
F !
+20 | GSPSTRTB t |
¢ 1
+24 | GSPARRAY |
i J
r 1
+28 | Second Word of GSPARRAY |
L
[ -4
+32 | Third Word of GSPARRAY |
I8 ¥
] 1
+36 | Fourth Word of GSPARRAY |
L ]
3 1
+40 | Fifth Word of GSPARRAY |
I 4
r 1
+44 | GSPNULLV t |
¢ -1
+48 | GSPASTAT t |
L -1




GSPGTMCB
Address of the most recently created
GTMCB in the chain of GTMCBs attached
to the GSPCB.

GSPDCTR2
Address of Director Part 2.

GSPSYSID
One-byte field containing X'F2' that
identifies this as a GSP control
klock.

GSPCBID
Cne-byte field in which X'01' iden-
tifies this as the GSPCB.

GSPBUSYS
One-byte field that indicates status

of GSP routines:

X*'00' - not busy, or
X'FF' - busy.
GSPDUNMP
Cne-byte field that indicates whether

the null variable is negative, meaning
a dump is desired if the ABEND macro
instruction is issued; or positive,
reaning there should be no dump. The
kit setting is:

X'00' - no dump, or
X'FF' - dump.
GSPABEND

Cne-byte field that contains the abso-
lute value of the null variable which
determines whether or not the program
is to be abnormally terminated when
the return code is tested.

GSPAWORK
Address of a work/save area that
lows the GSPCB.

fol-

GSPSTRTB
Address of the first stroke table that
was loaded.

GSPARRAY

The first word of a five-word field
which is the return code array. In
this first word, Byte 0 contains the
return code that is being passed by a
GSP subroutine. Byte 1 contains the
last return code tested by ITRC, and
it is set each time a returmn code is
tested by the ITRC subroutine. Bytes
2 and 3 are reserved. Bit settings
for Bytes 0 and 1 are as follows:

iReturn Codes 1 Bit Settings ]
1and Meanings 1 012345867 l
iO - Satisfactory 1 00000O0O00O0 E
1 - Scissoring used i 01000000 !
[2 - Scaling error j 00100000 ]
i3 - Storage exceeded [ 00010000 E
[u - Parameter error I 00001000 ]
is - Input/output errori 00000100 E

Second Worxd

When return code 1 is issued, this
word contains additional information
consisting of the value of the count
field associated with the data that
was last scissored. A value of zero
indicates no data was generated. A
value of 1 is the count for the STPOS
or the MVPOS subroutine.

Third Word

When return code 2 1is issued, this
word contains additional information
consisting of the value of the count
field associated with the data that
was last scaled. A value of zero
indicates no data was generated. A
value of 1 is the count for the STPOS
or the MVPOS subroutine.

Fourth Word
When return code 3 1is issued, this
word contains additional information
which is one of the following values:
1 - update attempt failed.
2 - 128-byte GDS exceeded, or
valent GDS exceeded.
3 - buffer for data not available.
4 - main storage not available.

equi-

Fifth Word
When return code U4 is issued, this
word contains additional information
which is one of the following values:

0 - cannot determine that any one
parameter is in error.
1-n - parameter number, counting

from left +to right, that was
in error. In this case, "n"
represents the maximum number
of parameters specified in the
call to the subroutine.

GSPNULLV

Address of the null variable which is
recognized in the absence of a param-
eter. The null variable itself is
accessed to determine whether or not
the program should be abnormally ter-
minated, and to determine whether or
not a dump is requested.

Appendix A. Control Block Formats 111



GSPASTAT
Address of the status table.

Graphic Terminal Control Block (GTMCB)

Cmmmmm - 4 Bytes- >
r 1
+ 0 | GTMNXGTM t |
t 1
+ 4 | GTMGSPCB t |
| T T 1
+ 8 | GTMVALID|GTMTERID| Reserved |
b : L 1
+12 | GTMGTMCB t |
t {
+16 | GTMGRDCB t |
3 .|
+20 | GTMGDSCB t |
F 1
+24 | GTMLATBL t |
t 1
+28 | GTMGACBA |
t i
+32 | GTMSYGDS t |
3 !
+36 | GTMBCTBL t |
t 1
+40 | GTMFCTBL t |
t 1
+4y | GTMPFKSS |
t T 1
+48 | GTMFEATS | GTMREPOS l
t L 1
+52 | GTMDECB1 t |
| T 1
+56 | GTMGDOAL | GTMDVADR |
t + i
+60 | Reserved I GTMCRLOC ¢t |
| 1 { T 1
+64 | GTMBCTSM|GTMBCTLG|GTMFLAGS | GTMLIGHT |
L L. L 1 []
GTMNXGTM
BAddress of the next GTMCB in the
chain.
GTMGSPCB
Address of the GSPCB.
GTMVALID
One-byte field containing X'F2' that
identifies this as a GSP control
block.
GTMTERID
Cne-byte field in which X'02" iden-
tifies this as a GTMCB.
GTMGTMCB
Address of this GTMCB used for deter-
wining that it is the control block
specified by the user.
GTMGRLCB
Rddress of the DCB created for this
2250.

112

GTMGDSCB
Address of the most recently created
GDSCB in the chain of GDSCBs that is
associated with this 2250.

GTMLATBL
Address of the active attention level,
which is represented by the most
recently created ATLCB.

GTMGACBA
Address of the GSP GACB.

GTMSYGDS
Address of the system GDSCB. This
GDSCB represents the GDS used for the
graphic orders and data generated by
the 1light pen subroutines for screen
scanning or displaying the +tracking

symbol.

GTMBCTBL
Address of the buffer control table
for this 2250.

GTMFCTBL
Address of the flow control table for
this 2250.

GTMPFKSS

This field contains the 1light mask
which designates the programmed func-
tion indicator 1lights that are to be
lit. Bits 0 through 31 correspond to
the programmed function keys 0 through
31. This field is used in conjunction
with the GTMLIGHT field.

GTMFEATS
This half-word field is divided into
one-byte fields which define the char-
acteristics of this 2250, as follows:

r R L} . 1
| Setting | Meaning |
F ¥ {
| Byte 0 | |
| X*o1° | IBM 2250, Model 1 |
| X'03' | IBM 2250, Model 3 |
| Byte 1 | |
| X'04* | Graphic design feature |
| X'08' | Character generator |
| X'10* | Programmed function key- |
| | board |
| X'20" | Light pen |
| X*40' | Alphameric keyboard |
| X"80" | Absolute vectors |
L L J
GTMREPOS

A half-word field that contains the
buffer address of the coordinates used
for repositioning the 2250 beam for
light pen tracking.

GTMDECB1
Address of the data event control
block (DECB) used by GSP for



input/output overlap. This DECB is
created by Flow Control Management.

GTMGDOAL
A half-word field that contains the
length of each GDOA for the GDSs
attached to this 2250 as specified by
a call to the INDEV subroutine.

GTMDVALR
The physical address of this 2250 as
obtained from the UCB.

GTMCRLOC
Address of the physical buffer loca-
tion that will contain the cursor.

GTMBCTSM
Index used to obtain an identification
number for Buffer Management when a
128-byte buffer subsection is
assigned.

GTMBCTLG
Index used to obtain an identification
number for Buffer Management when a
256-byte buffer section, or multiple
thereof, is assigned.

GTMFLAGS
One-byte field containing miscellane-
ous flags, as follows:
X'01" - cursor is in the 2250.
X'08* - pen tracking subroutine is
in the buffer.

GTMLIGHT
One-byte field that specifies the pro-
grammed function keyboard lighting
option selected:
X*02' - light no programmed function
indicators (default option).
X*03' - light enabled keys.
X*04* - light keys as specified in
the light mask (GTMPFKSS).

Graphic Data Set Control Block (GDSCB)

+ 12

+ 16

+ 20

+ 24

+ 28

+ 32

+ 36

+ 40

+ 44

+ 48

+ 52

+ 56

+ 60

+ 64

+ 68

+ 72

+ 76

+ 80

92

-

+100
+104
+108

+112

A

4 Bytes -

GDSNXGDS

t

GDSGTMCB

L

T T
GDSVALID|GDSGDSID|GDSFLAGS | GDSFLGS2
1 i

GDSAOACB

t

GDSGDSCB

t

s o Y a, G — A i T wa— 2 o

GDSKEYTB

t

GDSXLAST

GDSYLAST

T
GDSXCURR | GDSYCURR
1

GDSUVLLL

o o a— - —

GDSVVLLL

GDSUVLUR

GDSVVLUR

GDSXVILL

GDSYVILL

GDSXVIUR

GDSYVIUR

ok e i et e iy e ol s sl s s e ki s ke e ki st o, el e bt v s o et s it e kit e d N\ f

GDSXVRLL

GDSYVRLL

GDSXVRUR

GDSYVRUR

T T T
GDSCHARS |GDSSCISS | GDSCURMD | GDSDATMD
1 i L

P e e S

GDSOVDAT

T
GDSFCBUF t | GDSBCTEL
1

T T
GDSBCTID |GDSGRMOD| GDSGDOAL
1 L

GDSSHDBK

GDSSHDFD

T
GDSREPPB t | GDSKEYSV

[ e S o S o —— — T E B A— - S " S X T - S o S — > S S — R G DO

GDSREPDT

e e sk e s o b s ek e vobn o dn c—caden

Appendix A. Control Block Formats

113



GDSNXGDS
Address of the next GDSCB in the chain
of GDSCBs attached to the GTMCB.

GDSGTMCB
Address of the GTMCB associated with
this GDS.

GDSVALID
One-byte
identifies
klock.

field
this as a

containing X'F2' that
GSP control

GDSGDSID
One-byte field in which X'03°
tifies this as a GDSCB.

iden-

GDSFLAGS
One-byte field that contains assorted
flags, as follows:

0 or Off 1 or On

td
[l
o

L s e e s i
4

(=]
2
[}
=]
®

| Equivalent GDS
|is in the buffer
]

T
|No correlation
| value passed

Corrxelation
value passed
(BGSEQ/BGSUB)

— i e . e

Cursor absent |Cursor present

e e s e

Level 1 GSP | Level 2 GSP
4

+
4 |Not equivalent|Equivalent GDS
] [

T T
5 |No sequence | Sequence begun
1 1

T 1
6 |[No subroutine |Subroutine begun
1 L

T T

7 |bisable light |Permit light
|pen attentions|pen attentions
1 1

= . e i S e S i A e, S, S . . s St . e, WO e )

b s e i e s e e

GDSFLGS2
Cne-byte field that contains flags, as
follows:
X"'01' - SDATL
called.

subroutine has been

GDSAOACB
Address of the
control block.

active output area

GDSGDSCB
Address of this GDSCB used for deter-
mining that it is the control block
specified by the user.

GDSKEYTB
Address of the key table for this GDS,
if present, or zero.

GDSXLAST
vValue in raster wunits of the x-
coordinate for the 1last call to an
image generation subroutine, before
scissoring.

114

GDSYLAST

Value in raster wunits of the y-
coordinate for the 1last call to an
image generation subroutine, before
scissoring.

GDSXCURR
Current x-coordinate position of the
2250 beam in raster  units, after
scissoring.

GDSYCURR

Current y-coordinate position of the
2250 beam in raster units, after scis-
soring.

GDSUVLLL
Value in user's units of
x-coordinate of +the GDS.
may be real or integer.

lower-left
This wvalue

GDSVVLLL
Value in user's units of
y-coordinate of the GDS.
may be real or integer.

lower-left
This value

GDSUVLUR
Value in user's units of
x-coordinate of the GDS.
may be real or integer.

upper-right
This value

GDSVVLUR
Value in user's units of
y-coordinate of the GDS.
may be real or integer.

upper-right
This value

GDSXVILL
Integer value in raster wunits of
lower-left x-coordinate of the GDS.
GDSYVLLL
Integer value in raster units of

lower-left y-coordinate of the GDS.

GDSXVIUR
Integer value in raster units of
upper-right x-coordinate of the GDS.

GDSYVIUR
Integer value in raster units of the
upper-right y-coordinate of the GDS.

GDSXVRLL
Real value in raster wunits of the
lower-left x-coordinate of the GDS.

GDSYVRLL
Real value in raster units of the
lower-left y-coordinate of the GDS.

GDSXVRUR '
Real value in raster units of the
upper-right x-coordinate of the GDS.

GDSYVRUR
Real value in raster units of the
upper-right y-coordinate of the GDS.

GDSCHARS
One-byte field that contains the char-
acter option flags, as follows:



xX*08" basic, protected
xToyu" large, protected
X'02' - basic, unprotected
X'01' - large, unprotected

GDSSCISS
One-byte field that contains the scis-
soring optlon flags, as follows:

X'10" no scissoring
X'08' - scissor at screen boundaries
X'04' - scissor at GDS boundaries
X'02' - continue generation
X'01' - discontinue generation
GDSCURMD

One-byte field that contains the out-
put data mode option, as follows:
X'04' - optimized
X'02' - absolute
X'01' - incremental

GDSDATMD
One-byte field that contains the input
data mode option, as follows:

r 1
| Code |Coord1nate|Rea1|Int|Abs|Incr |
t +—-1 4
| X'80'| X | Yes | |Yes| |
| X*'u0"| X |Yes | | |Yes |
| X*20°%| X | | Yes|Yes| i
| X'10°| X | | Yes| | Yes |
| X'08°*| Y |Yes | | Yes| |
| X'ou*| Y |Yes | | |Yes |
| X'02'| Y | | Yes| Yes| |
| xX'01*| Y | | Yes | | Yes |
L L L 1 ] J

The default option is set by wusing
X*'88' which indicates real, absolute
input data will be supplied for both
x- and y-coordinates. This applies in
cases where the SDATM subroutine is
not called.

GDSOVLAT
Contains a GTRU order that transfers
control to the flow control structure
in the buffer when the GDS is execut-
ed.

GDSFCEUF
A half-word field containing the buf-
fer address of the flow control entry
for this GDS.

GDSBCTEL
A half-word field containing the BCT
entry number for the first buffer
section assigned to this GDS.

GDSBCTID
Cne-byte field containing the iden-
tification code of this GDS that is
entered in the buffer control table
entry.

GDSGRMOD

One-byte field that indicates the cur-

rent mode of the 2250 associated with

this GDS, as follows:
X'80°" character basic, protected
X'40' - character large, protected
X'20* - character basic, unprotected
X'10' - character large, unprotected
X'08*' - line absolute

X'04' - line incremental
X'02' - point absolute
X'01' - point incremental

X'00' - control

GDSGDOAL
A half-word field that contains the
length of every GDOA associated with
this GDS as specified by a call to the
INGDS subroutine, or by the GTMGDOAL
field in the GTMCB.

GDSSHDBK
Address of the equivalent GDS that was
created just prior to this one.

GDSSHDFD
Address of the equivalent GDS that was
created immediately after this one.

GDSREPPB
A half-word field containing the phys-
jical buffer address of the replacement
data stored in the GDSREPDT field.

GDSKEYSV
A half-word field containing the logi-
cal buffer address which is in the key
created by the call to BGSEQ or BGSUB.
It is used to locate the key in the
key table when ENSEQ or ENSUB is
called.

GDSREPDT
Four bytes of orders and data from the
GDOA associated with this GDS that
will be used to replace the GTRU order
to the flow control structure when the
next call to the EXEC subroutine is
made.

Graphic Attention Control Block (GACB)

Three GACBs, one of which 1is reserved,
are created by INDEV. The format of each
of these GACBs is the same as created by
the Graphics Access Method (GAM), except
that each GACB has eight extra bytes
appended to the beginning of it. The
format of the GAM GACB is depicted in the
publication IBM System/360 Operating Sys-
tem: Graphics Access Method, Program Logic
Manual, Form Y27-7113. The format of the
eight extra bytes in each GACB for GSP and
the priority of each GACB for GSP are shown
below.

Appendix A. Control Block Formats 115



GSP GACB: Priority = 0

< 4 Bytes >
r 1
| Address of reserved GACB t |
L 3
T ]
l Address of associated GTMCB t |
i |
RESERVED GACB: Priority =1
Bytes——--———srm—e e >
r 1
| Address of Panic GACB t |
L |
v 1
| Address of associated GTMCB t |
L i |
PANTIC GACB: Priority = 127
< 4 Bytes -—D
T 1
I Zero |
I L
| Address of associated GTMCB t |
L 3
Output Area Control Block (OACB)
< Bytes >
] 1
+ 0 | OACB2PT t |
[ 1
T 1
+ 4 | GDOA1PT t |
b i
+ 8 | STATUS |
L 4
L] )
+12 | CRSA t |
L ¥
r 1
+16 | oLP t |
L 4
L) 1
+20 | BLP t |
b 4
+24 | BUFSTART t |
f |
L) ]
+28 | BUFLEN |
L B |
r 1
+32 | CPU1 t |
L 4
r L]
+36 | BUF1 t |
'R |
1 1
+40 | CPU2 t |
¢ {
+44 | BUF2 t |
3 ]
v 1
+48 | LOGSTART i
1 4
] 1
+52 | LOGCURR I
L ]
¥ 1
+56 | LENLEFT |
L ) |
OACB2PT
Address of the next OACB for this GDS.
GDOA1PT

Address of the GDOA associated with

this OACB.

116

STATUS

CRSA

OLP

BLP

Flag field used to show the status of
the OACB. Flags are as follows:

X'80" - This GDS has not been added
to the flow control struc-
ture, and no buffer has been
assigned yet.

X'40*' - Four bytes of data located
at CRSA must be saved in the
GDSCB, along with the physi-
cal buffer address.

(Current Routine Start Address) is the
address of the location in the GDOA
that is the start of the set of
graphic orders to be stored by the
next input/output operation.

(Order Load Point) is the address of
the next available location in the
GDOA where the next graphic order of
the current routine will be stored.

(Buffer Load Point) is the address of
the buffer location where the first
byte of data from the output area will
be written by the next input/output
operation.

BUFSTART

Is the buffer start address which is
the address of the buffer location
where the first byte of data from the
GDOA is written.

BUFLEN

CPU1

BUF1

CpPU2

BUF2

Length of the buffer that is currently
available for writing out graphic
orders and data. Initially this is
set to the GDOA length. It is adjust-
ed whenever part of the GDOA is writ-
ten to the buffer.

Location in the GDOA of an unresolved
address in connection with a sequence
or buffer subroutine. This unresolved
address is resolved by Data Store.

Location in the buffer, because of an
overflow, of an unresolved address in
connection with a sequence or buffer
subroutine. Either CPU1 or BUF1 is
used by Data Store for resolving
addresses, but both of these fields
are never used at a given time.

Iocation in the GDOA of a second
unresolved address that is resolved by
Data Store. ’

Location in the buffer, because of an
overflow, of a second unresolved
address. Either CPU2 or BUF2 is used



ky Data Store for resolving addresses,
ktut both of these fields are never
used at a given time.

LOGSTART
Logical buffer address of the buffer
load point (BLP).

LOGCURR
Iogical buffer address of the order
load point (OLP).

LENLEFT
Unused length (in bytes) remaining in
the GDOA after graphic orders have
keen stored, which does not include
the 1last four bytes (reserved for a
GTRU to the next buffer section).

Attention Level Control Block (ATLCRE)

ATTNBKPT
Address of next higher ATLCB in the

chain. If there is no highexr ATLCB,
ATTNBKPT contains the address of the
GTMCB.

ATTNLVID

A value of X'F2040000°* +to identify
this control block as a valid ATLCB.

ATTNAVAL
Address of the first available ADEQ
where the information from the next
attention will be placed.

ATTNMLEN
Address of the ADEQ where information
from the first attention that occurred
has been placed.

< 4 Bytes- >
r »  ATTNFLGA ) ) ]
+0 | ATTNFWPT t | One-byte field which contains the fol-
3 i lowing options for the designated
+4 | ATTNBKPT | attention sources:
L ]
3 1
+8 | ATTNLVID |
I' ll 1) . L] R . L]
+12 | Reserved | |Source and Option | Bit Settings |
¥ | 101234567 |
+16 | ATTNAVAL * 3 1 {
b |EOS 1. Return x-, y- ]1 0000O0O0O0 |
+20 | Reserved | | coordinates | |
-t 1 + 1
+24 | ATTNMLEN t | |EOS 2. Restart display |0 1 0 0 0 0 0 O |
| T T T 1 | immediately | |
+28 | ATTNFLGA|Reserved |ATTNBPID|ATTNLITE| I + }
t L L L | |JLP 1. Same as EOS 1 100100000 |
+36 | ATTNPFLM i 3 } {
b 9 |LP 2. Same as EOS 2 |0 0O0O01000 ||
+40 | ATTNPFEN | 3 4 {
3 i |LP 3. Return charac- |0 0 01 0 0 0 0 |
+44 | ATTNANEN | | ter information | |
L | [ 1 J
T 1 1 ] T R
+43 | Reserved | |All: Do not dequeue data|0 0 0 0 0 1 0 0 |
3 ] | on inactive level | |
+52 | Reserved | 2 L 4
¢ i |Note:If data is always to be dequeued |
+56 | Reserved | | after a call to ROATN, bit 5 |
t i | remains zero. |
+60 { Reserved J L 1
1
+64 | Reserved |
} ATTNBPID
+68 | Reserved One-byte field which indicates whether
b the ATTNBKPT field points to another
+72 | Reserved | ATLCB (ATTNBPID = X'00') or the GTMCB
} i (ATTNBPID = X'01").
+76 Reserved :
! )
ATTNLITE
ATTNFWPT . One-byte field. whic@ §ontains pro—
Address of next lower ATLCB in the grammed function indicator 1lights
chain. If there is no lower ATICB, options for this attention 1level as
ATTNFWPT = 0. follows:

Appendix A. Control Block Formats 117



iBit Settingi Meaning }
rx'01' IUse default option in GTMCB
X102° !rTurn off all indicator lights|
X'03" TLight enabled keys }
LX'Ou' Use ATTNPFLM light mask
ATTNPFLM

LCetermines which programmed function
indicator lights are to be 1lit if
ATTNLITE = X'04'. Bit positions 0-31
of this field correspond to programmed
function keys 0-31, respectively.
When the bit is on, its corresponding
indicator light is 1lit.

ATTNPFEN

Specifies which programmed function
keys are enabled for this ATLCB. Bit
positions 0-31 correspond to pro-
grammed function keys 0-31, respec-
tively. When the bit is on, its
corresponding key is enabled.

ATTNANEN

Specifies which attention sources
other than programmed function keys
are enabled for this ATICB. The fol-
lowing bits are set in byte 0 to
enable the specified attention source:

1

Attention i Bit Settings |
Source | 01234567
END key 100000001
CANCEL key 100001000
Light pen 100000010 i
[ End-order-sequence i 00000100 ]

118

Attention Data Entry Queue (ADEQ)

{mmmmmm 4 Bytes——=-——————-—————- >
r 1
+0 | ADEQFPTR t |
k 1
+ | Reserved |
F -4
+8 | ADEQWRD1 |
L 4
T 1
+12 | ADEQWRD2 |
L J
r 1
+16 | ADEQWRD3 |
L 4
r 1
+20 | Reserved |
L J
ADEQFPTR

Address of next ADEQ in the chain.

ADEQWRD1, ADEQWRD2, ADEQWRD3
Ccontain information from the first
three words of the COMAREA associated
with the GSP GACB.



This appendix contains the names of all the

order, together
indicated in the status table.

Module Name

Associated
Routine

Type of Ro

utine

IFFAAROL
IFFAARAQO2
IFFAARO3
IFFAAROL
IFFAAROS
IFFAARAQOG
IFFACRA00
IFFACAOL
IFFACA02
IFFACRO3
IFFACROU
IFFACAOS
IFFACAO6
IFFACRO7
IFFACRO08
IFFACR13

IFFADAO1

IFFADAO2

IFFADAO3

IFFAERAO1
IFFAEAQ2
IFFAERO3
IFFAEAQYL
IFFAEAQ6
IFFAEAQ7

IFFAFAQ1

INGSP Part 2
TMGSP Part 2
INDEV
TMDEV
INGDS
TMGDS
CRATL
ENATL
ENATN
DSATN
MPATL
MLPEC
SLPAT
MLITS
ROATN
SALRM

GSPRD

RCURS

ICURS

SDATM
SGRAM
SDATL
SGDSL
SSCIsS
SCHAM

PLINE

Initiation

Termination

Initiation
Terminatio
Initiation
Terminatio
Attention
Attention
Attention
Attention
Attention
Attention
Attention
Attention
Attention

Attention

Keyboard Input and
Buffer Data Analysis

Keyboard Input and
Buffer Data Analysis

Keyboard Input and
Buffer Data Analysis

Option Def
Option Def
Option Def
Option Def
Option Def

Option Def

n

n
Related
Related
Related
Related
Related
Related
Related
Related
Related

Related

inition
inition
inition
inition
inition

inition

Image Generation

APPENDIX B: MODULE DIRECTORY

modules in GSP, 1listed in alphameric
with their associated routine name, type, and method of entry, which is
These module names also appear in the table of contents.

Method of Entry

LINK
LINK
LINK
LINK
LINK
LINK
LINK
LINK
LINK
LINK
LINK
LINK
LINK
LINK
LOAD and CALL
LINK

LOAD and CALL

LOAD and CALL

LOAD and CALL

LINK
LINK
LINK
LINK
LINK
LINK

LOAD and CALL

Appendix B: Module Directory 119



Associated

Module Name Routine Type of Routine Method of Entry

IFFAFA02 PSGMT Image Generation IOAD and CALL

IFFAFAO3 PTEXT Image Generation LOAD and CALL

IFFAFAOY STPGS Image Identification LINK

IFFAFA05 BGSEQ Image Identification LINK

IFFAFRO6 ENSEQ Image Identification LINK

IFFAFRAO07 ENSUB Image Identification LINK

IFFAFAOS8 LKSUB Image Identification LINK

IFFAFR09 INCL Image Control LINK

IFFAFA10 OMIT Image Control LINK

IFFAFR11 EXEC Image Control LOAD and CALL

IFFAFR12 RESET Image Control LINK

IFFAFA13 IDPOS Image Control LINK

IFFAFR1L FSMOD Image Control LINK

IFFAFA15 STEOS Image Generation LINK

IFFAFAl6 PPNT Image Generation LOAD and CALL

IFFAFAl7 MVPOS Image Generation LINK

IFFAFRA18 BGSUB Image Identification LINK

IFFRAFR19 ORGDS Image Control LINK

IFFAGAO1 LOCPN Light Pen LINK

IFFAGAQ2 BGTRK Light Pen LINK

IFFAGAO3 RDTRK Light Pen LINK

IFFAGAOUL ENTRK Light Pen LINK

IFFAGAOS DFSTR Stroke Generator LINK

- IFFAGA06 PLSTR Stroke Generator LINK

IFFAGRAO7 ORGEN Miscellaneous LINK

IFFAGAO8 CNVRT Miscellaneous LINK

IFFAHAO1 Flow Control Internal LOAD and CALL
Management

IFFAHAO2 Buffer Internal LOAD and CALL
Management

IFFAHAO3 Key Table Internal IOAD and CALL
Management

IFFAHAOY Data Internal . LOAD and CALL
Generator

120



Modul e _Name

Associated
Routine

IFFAHADS
IFFAHAO6
IFFAHAO7

IFFAHAO9

IFFAHR11

IFFAHA12
IFFAHRAL13
IFFAHALY
IFFAHAL1S
IFFAH216
IFFAJRO1
IFFAJRAO02
IFFAJRO3
IFFAJROU
IHCGSPO1
THCGSPO2

IHCGSPO3

Data Store
Scaling
Scissoring

CANCEL Key
(Panic Key)

Director
Part 2

Status Table
Update
Update
Scaling
Stroke Table
ITRC

ITBP

RTBP

ITST

INGSP Part 1
TMGSP Part 1

Director
Part 1

Type of Routine

Internal
Internal

Internal

Attention Related

Internal

‘Only Loadable

Internal
Internal
Internal
Only Loadable
GSP Function
GSP Function
GSP Function
GSP Function
Initiation
Termination

Internal

Method of Entry

LOAD

LOAD

LOAD

LOAD

LOAD

LOAD

LOAD

LOAD

LOAD

LOAD

LOAD

LOAD

LOAD

User's Program
User's Program

User's Program

and
and
and

and

and

and
and

and

and
and
and

and

CALL

CALL

CALL

CALL

CALL

CALL
CALL

CALL

CALL

CALL

CALL

CALL

Appendix B:

Module Directory

121



APPENLCIX C.

ACRONYMS AND ABBREVIATIONS

abs
addr

ADEQ

asgn
ATLCB
attn
avail
BCT
bfr
chars
COMAREA
CPU
ctrl
DCB
DECB
EOS
EP

EQ
FCT
flo
GACB
GDOA

GDS

122

absolute
address

attention data entry queue

assignment

attention level control block
attention

available

buffer control table
buffer

characters

communication area
central processing unit
control

data control block

data event control block
end-order-sequence

entry point

equal

flow control table

flow

graphic attention control block

graphic data output area

graphic data set

GDSCB

gen

GSPCB

GTMCB
ID
incr
P

LT
mgt
no.
OACB
opt
ovflo
PFK
pts
reg
seg
subrtn
tbl
UCB

unres

graphic data set control block
generator

graphic subroutine package control
block

greater than

graphic terminal control block
identification

incremental

light pen

less than

management

number

ouput area control block
optimized

overflow

programmed function keyboard
pointers

register

segment

subroutine

table

unit control block

unresolved



APPENDIX D: AUTOCHART SYMEOLS

Figure 20 shows the functional symbols used by Autochart. These symbols and the
explanation of the sample flowchart in the figure describe the way they are used in the
flowcharts for this manual.

FUNCTIONAL SYMBOLS

EXPLANATION

IDENTIFIES THIS CHART AND BLOCK LOCATION
AND INDICATES THIS CHART IS ENTERED FROM
AT LEAST ONE OTHER CHART.

X

XEM *

* B3 ¥—

* *

RS 2 ]

ER 2 RSN SR TR R L 2 2 T v
* HRERDIH KRR HRE R
*

*
* * * TERMINAL BLOCK SHOWS ENTRY POINT
*  PROCESSING  # * ENTRY * OF THIS ROUTINE.
* * * *
* * E2 2232 T TS LT
EEE AL L E LR S LTS
L 2.2
* *
* C3 *—>
* *
EXER Y SHOWS CONTROL IS TRANSFERRED TO
¥ LABEL1 PN BLOCK C3 FROM BLOCK F3.
c1 *. c3
o ¥ *a ¥ LASEL1 IS THE SYMBOLIC LOCATIDN OF THE
*. ok YES FIRST INSTRUCTION OF A SUBROUTINE WITHIN
DECISION o¥ *e THIS ROUTINE.
BLOCK % *e INDICATES THE FLOW OF CONTROL WHICH
*. o *o o* DEPENDS ON THE RESULT OF SOME TESTe
He ¥ *e o
* * NO

v
WA DT KKK AR
HHERD ] KK KRR * 3*

* *
*TERMINAL BLOCK * INDICATES PRCCESSING.
* *

X % %k %

*
*
*
MWK WX RN *
*

I BN H R HR

— ]
|

) LABEL2 v
N R XKW BN T W N NN
* * SUBNAME * LABEL2 SHOWS THE SYMBOLIC LOCATION OF
* * Tk ek T et R S THE FIRST INSTRUCTION OF A SUBROUTINE
* MODIFICATION * * * THAT TRANSFERS CONTROL TO A PREDEF INED
* 8LOCK * * * SUBROUTINE ( SUBNAME) DESCRIBED
* * * ELSEWHERE.
LR L 2L XL LR ER 22 22T TR T

FRERRRFT ] RREE KN XRR

* *
INPUT/0UTPUT
* BLCCK

SHOWS CONTROL IS TRANSFERRED TO BLOCK C3
IN THIS CHART WHEN THE RESULT OF SOME
* TEST IS *'NO'.

HREERHERHNLRR

ON—-PAGE
CONNECTOR
KRG L IR
* * *RER
B e T e o ek ot 3 * * SHOWS CONTROL IS TRANSFERRED TO BLOCK Al
* * >% C3 % ON ANOTHER CHART (EB) WHEN THE RESULT OF
#  SUBROUTINE * * * SOME TEST IS 'NO‘.
* BLOCK * R 22
EREREEEARAHRRRERRE
CFF—PAGE
CONNECTOR
v
PrTYs LR LT TR SR
XX * * * INDICATES AN EXIT IS MADE FROM THIS
=>% A1 » * EXIT * ROUTINE WHEN THE RESULT OF THE TEST MADE
* * * AT BLOCK G3 IS *YES'a.

EZ 223 W NN KRR

Sk ok sk ok ok ek % ok 3k ok ok ok koK ok 3k 3 ok ok k% ok ok 3k ok ok sk sk ok %k ok ok gk s ok kK ok kK g ok 3k % 3k ik ok gk %k ok k3 o ok ok ok ok 3k ok dk 3k 3k 3k ok sk ok ok ok ok ok ok ok ke ok s ok ok ok ok ok ok K % e d ok ok k3 3 sk ok ok ok R o % K K K

Figure 20. Autochart Functional Symbols and Sample Flowchart

Appendix D: Autochart Symbols 123



INDEX

When more than one reference is given,
the first page number indicates the major
reference.

ABEND macro instruction 14,18,41,42
absolute data 22,32,61,62
accessing control blocks 13
active attention level 34,36,37,38,41
ADEQ (see attention data entry queue)
alphameric keyboard

CANCEL key attention 39,41-42

END key attention 39,41-42

enabling 37,34

unlocked 20

using to cause abnormal

program termination 41-42
arguments 8
assembler language 7
ATLCB (see attention level control block)
attention data entry queue

creation 34-36,110

description 10,118

format 118

termination 36-37,110
attention information

in ADEQ 13,12,117

made available 35,38-39

requested about the light

pen 35,38-39
attention level control block

creation 34-36,110

description 10,117-118

format 117

initialization 34,36

termination 36-37,110
attention levels

active 34,36,37,38,41

creating 34-36

hierarchy 34,36,41

inactive 36,37,38

relative position 41

terminating 34,36-37
attention related subroutines 34-42
attention source masks 37,38
attention sources

disabled 37

enabled 35,37,118
attributes of GSP routines 7
audible alarm 42

BCT (see buffer control table)
BGSEQ 27-28
BGSUB 27-28
BGTRK 42
buffer assignment 50-53,62-63
buffer control table
cleared 20,50,54
description 10,50-52
buffer control table (BCT) entry 50-52

124

buffer data analysis 33-34
buffer management 50-54
buffer subroutine facility 27-29
buffer subroutine linkage

creation of 29

structure of 66
buffer subroutines, structure of 66
buffer subsection 51-53

CALL macro instruction 7
CALL statement 7
calling program 7,23,14
CANCEL key 34,39,41-42
CANCEL Key routine 34,41-42
chaining 12,13
character generator 23,26
characters 22,114-115
CNVRT L46-47
COMAREA (see communication area)
communication area
creation of 20,110
information from 118
termination of 22,110
use of 11
communication between 2250 operator and
GSP program 34-43
control blocks
accessing 13
chaining 13,12
creation and termination 110
formats of 110-118
main storage arrangements 11
names of 8,10-11,110
relationship 12-13
validity 13
control flow among
GSP routines 7-8
image generation subroutines 23-24
initiation and termination
subroutines 15-16
converting coordinates #46-47
converting real numbers to integer 56-58
correlation values
passing to internal routines 23
storing by GSP 10,23,54-56
use in inserting a cursor 33
use in locating a key 56
use in resetting 30-32
verifying validity of 27,45
CRATL 34-36
current data mode 30,46,115
cursor subroutines 33
cycle (data generation) 61

data
absolute 22,32,61,62
incremental 22,61,62
input 22
integer 22,46-47,56-57
limits 22-23,57-58



modes of 22-23,115
optimized 22,61,62
output 22,25,58
raster unit conversion 46-47
real 22,46-47,56-58
scaling of 56-58
scissoring of 57-58
data control block
creation 20,110
description 10
freed 21-22,110
data event control block
construction 20,48,50,110
description 11
freed 48,50,110
data generation 60-62
data storing 60,62-64
DCB (see data control block)
DECB (see data event control block)
direct generation of graphic orders U45-U6
Director
Part 1 7-8,15-17
Part 2 7-8,15-18
DFSTR 44-45
DSATN 37,35

ENATL 36-37,35

ENATN 37,35

END key 39,41-42,118

end-order-sequence
attention 39,40,117,118
order 27,39

ENSEQ 28
ENSUB 28
ENTRK 43

equivalent GDS
chaining 13,12
creating 20-21
execution of 29
EXEC 29
external references 7,8,9-10,23

FCT (see flow control table)
flow control entry 47-50
flow control management #7-50
flow control structure #7-50,20
flow control table #7-50,20,22
forms of data 22
formats of
buffer control table 50-52
flow control table 47-48
GSP control blocks 110-118
key table 54
status table 19
formulas used in scaling 58
FORTRAN library 7
FSMOD 32
functions (GSP status information) 43-44

GACB (see graphic attention control block)
GAM (see graphics access method)
GDOA (see graphic data output area)
GDS (see graphic data set)
GDSCB (see graphic data set control block)
graphic attention control block

creation 20,110

description 10,115,116

freed 21-22,110

graphic data output area
description 11,68
establishing 21
freed 21-22,46
storing data in 60-64,45-46
writing to buffer 29,64
graphic data set 20-21
graphic data set control block
description 10,113-115
establishing 20-21,110
termination 21-22,110
graphics access method (GAM) 14
graphic subroutine package control block
construction 17,110
description 8,110-112
initialization 19
termination 17-18,110
graphic terminal control block
creation 20,110
description 10,112-113
termination 21-22,110
GSPCB (see graphic subroutine package
control block)
GSPRD 33-34
GTMCB (see graphic terminal control block)

hierarchy of ATLCBs 34,36,41

ICURS 33
IDPOS 32
image control subroutines 29-32
image generation subroutines 23-27
image identification subroutines 27-29
inactive attention levels 36,37,38
INCL 30
include

structure 30,27,28,45,46,62,65-67
incremental data 22,61,62
INDEV 20
indicator

lights 39-40,36,37,41,117-118
INGDS 20-21
INGSP

Part 1 17

Part 2 19-20
initialization 13
initiation 15
initiation subroutines 19-21
input data mode 22
input to many GSP subroutines 8
insert a cursor 33
integer data 22,46-47,56-57
internal director 18-19
ITBP 43-44
ITRC 43-44
ITST 43-44

key entries 54-56

key table 54-56,10

key table management 54-56

keyboard input and buffer data analysis
subroutines 32-34

keying and correlating features 7,54

keys 54-56,23,27-31,45-46

light pen

attention 37-40,42-43,117,118
disabling 37

Index 125



enabling 37-38
locating position of 42
subroutines U42-43
line segments 26
lines 25
link library 7,44
LINK macro instruction 7,14,19
linkage for
GSP modules 8,19,119-121
image generation subroutines 23-24
initiation and termination
subroutines 15-16
LKSUB 29
LOAD macro instruction 7,14,19,44
location of GSP routines 7
LOCPN 42

macro instructions
Graphics Access Method (GAM) 14
operating system 14
used by GsSP 14
MLITS 39-40
MLPEO 40-41
module description 15
module directory 119-121
module name 15,119-121
MPATL 41
multiple buffer sections 51,52,53
multiple requests 61,62,65
MVPOS 25

null variable 18,19,110

OACB (see output area control block)
OMIT 30
omit structure 30,27,28,45,46,62,65-67
operations performed by all GSP
routines 13-14
optimal mode 61
option definition subroutines 22-23
ORGDS 32
ORGEN 45-46
output
absolute 22,61,62
incremental 22,61,62
optimized 22,61,62
output area control block
description 10,116-117
establishing 20-21
freed 21,46
output from image generation
subroutines 23
overflow function 63
overlay code 39

panic GACB 10,20,116
Panic Key routine 41-42
parameter error 13
parameter list 7,8,23
passing control 7-8,23
passing return codes 14

PLINE 25
PLSTR 45
points 25
PPNT 25

programmed function keyboard
attention information 38,39
indicator

126

lights 39-40,36,37,41,117-118
PSGMT 26
PTEXT 26-27

RCURS 33
RDTRK 43
real data 22,46-47,56-58
reenterable coding 7
relationship of
control blocks 12,13,35
GSP routines 8,9-10,16,24,35
remove a cursor 33
reordering the FCT 48,32
RESET 30-32
resident modules 7,15,17-18
resolving of addresses in
buffer 63-64
GDOA 63-64
ORGEN 46
return code array 13,111,18
return codes
in GSPARRAY 14,118,111
in register 15 14
passed by Scissoring 106
structure 14,111
RETURN macro instruction 14
returning control 7,13,14,15,23
RQATN 38-39
RTBP 43-44

SALRM 42
scaling formulas 58
scaling routine 56-58
SCHAM 22
scissoring examples 59
scissoring limits 57,115
Scissoring routine 57-59
SDATL 22
SDATM 22
segments (see line segments)
sequences
creation of 27-28
structure of 67
set mode order 32,30,46,68
SGDSL 22-23
SGRAM 22
shared GDS (see equivalent GDS)
single requests 61,62,65
SLPAT 37-38
SSCIs 22
status information functions U43-44
status table
accessed 7,8
deleted 17
description 18-19
loaded 19
using 15
STEOS 27
STPOS 25
stroke table
description 44-U45
deleted 17
loaded 17,45
system 44
subpool zero 7
subroutines
attention related 34-42
converting coordinates 46-47



cursor 33 buffer control 50-52,10

direct order generation U45-46 - flow control 47-50,20,22
image control 29-32 key 54-56,10
image generation 23-27 status 18-19
image identification 27-29 stroke 44
initiation and termination 19-22 used by GSP 8,110
invoking 7-8 termination procedures 15
light pen 42-43 termination subroutines 21-22
read data from buffer to main testing parameters 13
storage 32-33 TMDEV 21-22
requested 18 TMGDS 21
status information about 43-44 TMGSP
stroke 44-45 Part 1 17-18
system GDSCB 11,20 Part 2 22
system stroke table 44 tracking symbol 42-43
tables Update routine 64

Index 127



READER'S COMMENTS

IBM System/360 Operating System: Graphic Programming Services for
FORTRAN IV; Program Number 360S-LM-537

Y27-7152-0

Your comments will help us produce better publications for your use. Please check or
fill in the items below, adding explanations and other comments in the space provided.

All comments and suggestions

Which of the following terms

I Programmer
X Manager

I Operator

I Instructor

)G == g = §

become the property of IBM.

best describes your job?

Systems Analyst X Customer Engineer
Engineer X Systems Engineer
Mathematician I Sales Representative
Student/Trainee X Other (explain)

Does your installation subscribe to the SRL Revision Service? I Yes I No

How did you use this publication?

As an introduction
As a reference manual
As a text (student)

)= =G = G = G =

As a text (instructor)
For another purpose (explain)

Did you find the material easy to read and understand? I Yes I No (explain below)

Did you find the material organized for convenient use? & Yes I No (explain below)

Specific criticisms (explain below)

Clarifications on pages

Additions on pages
Deletions on pages

Errors on pages

Explanations and other comments:

No postage necessary if mailed in U.S.A.



¥27-7152-0

FIRST CLASS
PERMIT NO. 116
KINGSTON, N. Y.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN U.S. A.

POSTAGE WILL BE PAID BY

IBM CORPORATION
NEIGHBORHOOD ROAD
KINGSTON, N. Y. 12401

ATTN: PROGRAMMING PUBLICATIONS
DEPARTMENT 637

BV

®

International Business Machines Corporation
Data Processing Division

112 East Post Road, White Plains, N.Y. 10601
[USA Only]

IBM Warld Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

¥*S*n UT pe3uUTAd

0-25LL-LZK



Y27-7152-0

TSI

®

International Business Machines Corporation
Data Processing Division

112 East Post Road, White Plains, N.Y.10601
{USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
{International]

*¢*stn UT pI3uTad

0-2SLL-LTA



	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	replyA
	replyB
	xBack

