
IBM General Information Manual

305 RAMAC Programmer's Guide
®

© 1958 by International Business Machines Corporation

CONTENTS

INTRODUCTION 0000 •• 0 •• 0 •••• 0 ••• 0 •• 0 0 ••••••

PROGRAM PLANNING .•.. 0 •• 0 •• 0 ••••••••••••

Input Consi derati ons . 0 • 0 0 0 •••••• 0 • 0 ••••••• 0 ••••

Disk File Considerations •••••. 0 •• 0 • 0 0 0 0 •• 0 •••••

Planning ..••........ 0 • 0 0 • 0 •• 0 • 0 ••• 0 •

Addressing Methods •.... 0 • 0 0 •• 0 • 0 0 •• 0 0 0 ••

Output Considerations ••.••.••.•...•.. 0 • 0 •••

Accounting Control and Audit Trail •..•...•...•.. 0 •

Multiple Routines• 0 0 ••• 0 ••• 0 •• 0 •• 0 •• 0 0 ••

MACHINE
General

PROGRAM ...•..•.•.•..•... 0 •••••

Programming Practi ce •..•..••.•..••..•.....•
Programming Aids ..•••.•.• 0 • 0 •••• 0 •• 0 ••

The Stored Program ..•• 0 0 • 0 • 0 • • • • 0 • • • • • • 0 • • • 0

Format Design and Multiple Transfers. 0 0 ••••• 0 •

The Magneti c Core Unit •••. 0 0 ••••••••••• 0 0 0 0 0 0 •

The Accumulators 0 ••• 0 • 0 • 0 0 ••• 0 0 0 • 0 • 0

The Instruction Register .. 0 ••••• 0 •• 0 •••••••

Instruction Modification 0 0 0 •••••••• 0 • 0 00 •••

The Process Control Pane I 0 ••••• 0 • 0 0 0 •• 0 • 0

Programmed Checking ••. 0 •• 0 •••• 0 0 ••• 0 •• 0 ••• 0

System Speed 0......

OPERATIN G THE 305 • 000.0 •• 00 •••••• 0 •• 0 •• 0

Manua I I nqui ry o. 0 0 0 ••• 0 ••••• 0 •••••• 0 • •• 0 ...

Test Data . 0 • •• •••• 0 • 0 • • • • • • • • • • • • • 0 • • • o ••

Console Operation

MISCELLANEOUS
Common Mistakes
Documentati on 0 •••• 0 •••••••••••••••••

The Control Panel Function Chart (Figure 55) .• 0 •••••••

Special Features 0 ••• 0 •• 0 • • • • • • • • • • •• 0 0 •• 0 0 ••

Additional Disk Storage 0 • • • • •• • •••

Dual Access
Processing Drum Tracks 0 •

Program Exit Split .•............. 0 • 0 0 • • •

Automatic Division 0 0 •••••• 0 0 •

Dual Process .. 0 o. 0 • 0 0 ••• 0 • 0 • 0 •••••••• 0

IBM 382 Paper Tape Reader .. 0 ••• 0 •• 0 0 • 0 • 0 ••

IBM 381 Remote Printing Station .. 0 • 0 0 0 ••••••

Input Rearrangement and Input Analysis Features 0 • 0

IBM 407, Model R1 and R2 • 0 0 •• 0 •• 0 0 0 • 0 ••• 0

APPENDIX 0.' 0 0 o. 0.00. 0 o. 0 •• 0.0 ••• 00.0 ••••

4

5
5
7
7
9

21
23
24

26
26
27
29
30
30
31
37
39
41
46
64
66

69
69
70
70

72
72
73
83
90
90
90
90
90
91
91
91
91
91
92

93

INTRODUCTION

One constantly sought after goal of a machine installation is increased speed
and accuracy in the accomplishment of its assigned task.

To obtain these optimum results with the IBM 305 RAMAC, certain programming
features must be considered in the utilization of its components. Effective use
of all stored program and control panel features, proper use of the disk file and
good operating techniques all playa major role in producing an efficient program.

This manual is intended to serve as a guide for developing detailed machine
programs and operating techniques. It should be used as a starting point only,
since many applications may require the development of new methods and
routines. Progranimers should be guided by the circumstances within each
application. The 305 RAMAC is a powerful tool, and every avenue should be
explored to take full advantage of the facilities provided.

PROGRAM PLANNING

Information is normally processed in the 305 by a continuous-flow type
operation. Thus, a transaction enters the system via the card reader and, after
processing, generally results in an output document being produced. It is
obvious, then, that no one area of the system can process more items than
another. Also, the over-all transaction processing speed will be determined
by the speed of the slowest area. Therefore, for maximum operating efficiency,
all areas of processing should be balanced as closely as possible.

The areas listed in this section are separated as a convenience for study and
program analysis. Each of the areas has a real effect on the others; therefore,
they must all be considered and planned as one, rather than as a series of
isolated steps. There is a natural tendency to disregard output considerations
until after the rest of the program has been planned. This is a serious mistake
in a continuous-process system and may become a bottleneck for the entire
operation. The 305 machine program, from source document to machine output
must be considered as a whole. A proper balance in all of these areas will
assure maximum efficiency of the over-all system operation.

The process to develop a program is basic to one set of control panels and
stored instructions. The same general procedure should be followed for each
program consisting of separate control panels and stored instructions. For
example, in a complex billing application, it may be desirable to process
Receipts and Issues with one program and other types of transactions with a
separate program. Although each program should be treated separately,
decisions made in one program should be continuously related to the other to
arrive at the best compatible arrangement.

INPUT CONSIDERATIONS

Data input to the 305 is by IBM punched cards. The read brushe-s sense the
punched holes from the back of the card; therefore, sense markIng on the front
of the card will not affect the accuracy of punched-hole reading. However,
sense marking on the back of the cards may cause erroneous card reading and
must not be used.

Each card is read and checked internally before it is made available to the
processing unit via track K. Card columns 1-80 are recorded on track
positions 00-79. Track positions 80-99 (inclusive) are cleared to blanks on
each card reading cycle. The principle function of the read check mechanism
is to stop the machine if the two independent sets of brushes interpret a card
differently. However, any double-punched card column that uses a character

5

6

"bit" more than once in the combined punchings will be detected as an error.
For instance, a card column double-punched 9-5 will signal an error because a
"1" bit is used in both the "9" and "5". A card column double-punched 6-1
will not cause an error signal because no bit is common to both digit values.
The bit structure for all characters used in the RAMAC is shown in Figure 1.

o 1 2 3 4 5 6 7 8 9 A B C DE FG HI J K L MN OP OR S T U v Iw xy Z &. o - $ * / '* # @ BI
o
X
1
2
4
8
C

I

I

I

Figure 1

I I

I I
I I I

I I I

I I I

I I I

I I I I

I I I
I

I I

I I

I I I I I I

I I I I I I I I I I

I I I I I
I I I I

I I I I I

I I

I I I I I I

I I I I I I I I I I I

I I I I I I I I I I I

I I I I I I I I I
I I I I I I I I

I I I I I I I I I

I I I I I I I I

I I I I I I I I I

From a systems standpoint, two types of cards may be used for input.

1. Single-item (or transaction) cards.
2. Multi-item cards (usually referred to as spread-item cards).

I I I

I I
I

I

I I

I I

The single-item card, as the name implies, contains information pertaining

I
I

I

I I

I I

to only one item or transaction. It may be produced automatically by various
methods. When this is done, it may be desirable to punch the same information
in several fields of the card. The format on the card should be arranged to
facilitate the transfer of data within the 305.

The spread-item card is used when the amount of information required for
each item is limited (Figure 2).

Figure 2. Spread-Item Card

The main advantage of the spread-item card is that it reduces card volume.
However, single-item cards are easier to incorporate in audit trails and in
any processing that may be necessary with unit record machines. Program
restart routines usually are more difficult with spread-item cards.

The program for a spread-item card usually is written so that the data in item
pOSition 1 of the card (Figure 2) is processed first, and then a track-slide

operation is performed to move items 2-9 one field to the left. The slide
instruction for Figure 2 would be K86 K79 63 A6. Note that, as item 9 is
moved into the item-8 position, the item-9 position is blanked. Thus, as each
slide operation is performed, another item position on the track is blanked.
After the 9th slide operation, all 9-item positions will be blank and the blank
transmission selector will be transferred. Program exit A, of the slide
instruction, tests for blank transmission on each slide operation, and at the
appropriate time causes a new card to be read.

To minimize card-read time ,some programs have employed a "stacking"
technique. This involves reading several cards into the machine on a series
of tracks. Each time a card is used off the end, the card data tracks are shifted
and a new card is read from track K. This technique, in some cases, can
save card-read time. However, it places an undue burden upon the operator
whenever a restart routine is required. For this reason, it is not recommended
except in very unusual situations.

All data entered into the RAMAC should be verified for correctness. There are
many ways of providing this verification, such as the self-checking number device
for part numbers, the proof punch for accumulation of control totals, accounting
machine balancing, pre-punching, and complete verification with the various
types of verifiers. This is of major importance since many RAMAC applications
will involve the updating of multiple records with input data, and if the basic data
is incorrect, it is immediately reflected in many records. The process of
correcting these errors is both time-consuming and costly, and can nearly
always be avoided through the use of proper verification methods.

DISK FILE C ONSIDERA TIONS

Planning

The disk file is the heart of the RAMAC. It provides the means to store
extensive records and allows each record to be available for use almost im­
mediately. In order for this facility to be utilized most efficiently for any given
application the programmer must select a suitable file arrangement. Among the
factors to be considered are:

1. the number of different types of records,
2. the number of records within each type,
3. the number of characters in the records of each type,
4. the physical distribution or arrangement of records within the file, and
5. the method of addressing the records.

7

8

Information pertaining to items 1, 2, and 3 is used to determine the total file
storage requirement. It may sometimes develop that there is more information
to be stored in the file than there is storage capacity. Further study might
disclose that it would not be economical to keep all this data in the file, even
if there were capacity. For instance, one RAMAC program seemed to require
file storage for 25, 000 customer records alone. It was later determined that
only 10 percent of these customers were active more than once per year.
Similar situations have been found with many items in inventory control. When
this occurs, it is best to store the most active items in the file and handle the
remainder on an exception basis. This can be done by either pre-analyzing
the card and preventing it from entering the machine if it refers to an item not
in file, or constructing a program which recognizes this situation and signals
the condition by punching a card or typing an appropriate message. If there
is the possibility of an input card referring to an item not in file, provision
rI1ust be made for this condition.

Another factor which must be considered in planning file space, is that of future
expansion. If future requirements cannot be determined realistically, a minimum
of 10 percent should be left for this purpose.

Although the file is divided into 50,000 one-hundred character sectors, each
directly addressable by a five-digit number, there is nothing to prevent the
utilization of longer or shorter records. For instance, if the record length
were 200 characters, then two 100-character locations would be required for
each 200-character record. The capacity of the file would be 25,000 records
of this type. If direct addressing were used for item numbers 00000 through
24999, the even numbered file addresses could be used for the first 100 characters
and the next higher address for the second 100 characters of the record. An
item number 13493 would be multiplied by two to develop file address 26986, and
its next higher location 26987. Item 13494 would occupy address locations
26988, 26989, and so forth.

Another method of locating records greater than 100 characters is to seek the
first file location of the record by its addre ss and record advance for the
remaining locations. If the record is not stored in consecutive locations, each
location can contain, along with its part of the record, the address of the location
of the next part of that record.

Short records may be handled in several ways. If two different applications
each require 50-character records, then the file locations may be directly
addressed on each program. The same record address would be used in both
routines. One routine would be programmed to use one end of the record, and
the other program would use the opposite end. Both programs would read and
write 100 characters in the file. Another variation is to use some equal division
of the record track, and use a sixth digit in the item identification to indicate

track position. For instance, item 12345,Q would locate 12345. The sixth
digit (3) would be used to modify the processing programs so as to refer to
the third division of the record. An example of this method is shown on page 43.
Combinations of long and short records can be devised to answer a particular
need.

Addressi ng Methods

Considerable time and effort have been spent on developing methods that will
yield maximum efficiency in addressing the disk storage of the 305 RAMAC.
To achieve this maximum efficiency, data must be stored, and subsequently
retrieved, in a manner that minimizes the average time required to locate an
item in storage, and also minimizes the amount of unused (but assigned)
storage space. The ideal addressing method, therefore, will yield a file that
utilizes 100 percent of the disk storage area allotted to it and in which each
item can be located with only one seek.

Several different methods of disk file addressing have been developed. Each
of these methods has certain advantages and disadvantages which vary in im­
portance according to the nature of the data composing the file. The methods
may be divided into two general categories, direct addressing and indirect
addressing.

Direct Addressing

In using the direct addressing method, certain information in each record is
used, either directly or by a simple conversion process, to provide the disk
file address. This information is usually the control data of the record (i. e.,
an identifying part of the record such as employee number, part number, or
account number). This control data most frequently will reflect a change or
addition that was made in order to facilitate disk file addressing, but could be
an original part of the record.

For example: A file consists of 3,000 customer records; each record can be
contained in one disk sector, and the account numbers of the records have been
modified to run consecutively from 20,000 to 22,999. If desired, the account
numbers can be used directly to locate the file in disk sectors 20000 to 22999.
Or, if it is desired to locate the records in another 3,000 consecutive disk
sectors, a simple addition or subtraction process will provide the desired
addresses. In either case, an ideal assignment of addresses will result
because all items can be located with only one seek, and the disk file area
utilized will be full.

9

10

The advantages obtainable by use of direct addressing are:

1. 100 percent utilization of file storage space can be attained.
2. Access time is minimized as each item can be located with only one seek.
3. No machine time is required to convert the control data of the record to

a file address.
4. No cross-index is required for inquiry.
5. File maintenance (additions and deletions) can be easily handled.

From a processing viewpoint, therefore, direct addressing is the most efficient
method of disk file addressing and should be used whenever practical. The
practicality of using this method can be determined by weighing the benefits
derived from the advantages, just enumerated, against the cost of changing the
control data to conform with direct addressing.

Indirect Addressing

In some applications, it is not practical to use direct addressing. These
situations usually arise because no part of the records will directly be, or easily
convert to, disk file addresses. Also, there will be a few instances in which
direct addressing will not be possible because the available addresses, if used,
will result in an excessive amount of wasted file space. In either case, it will
be necessary to use indirect addressing methods.

In developing an efficient indirect addressing system, the basic issues to be
resolved are address conversion and disk file addressing. In address conversion
the control data must be operated on by a procedure to provide an address within
the desired range. This procedure, which is illustrated in Figure 3, consists
basically of the following three steps:

Step 1. An arithmetic process must be devised which will, when applied to all
control data, produce a suitably random distribution of numbers in a
given range. This is usually 00000-99999 when converting control
data to five-digit addresses and 0000-9999 when converting to four-digit
addresses.

Step 2. The number series produced in Step 1 must be compressed to fit the
desired number of record locations. For example, if control data is
converted to five-digit addresses and only 10,000 addresses are to be
used, the compression factor would be . 1. This reduces the number
series to a range from 00000 to 09999. (NOTE: In some procedures,
it may be possible to combine Step 1 and Step 2.)

A

Number
Conversion

STEP 1

Range of
Control Data *

B

Randomly
Distributed
Series of
Numbers
Between

00000-99999

Compression

STEP 2

Displacement

Between

Limits of
Assigned File
Storage Addresses

30000

39999

49999

99999

E_ ------- -----------_____________________ T
* Between the limits of the numbers in use, there usually is a very large number

of possibilities. However, only a small percentage of these numbers is actually
used. These numbers are the ones to be used later in the number conversion process.

Figure 3

11

12

Step 3. If necessary, a displacement constant is now added to the number series.
This displacement constant is equal to the first address of the file area
to which the items are assigned. For example, 30, 000 could be added
to the number series 00000 to 09999 to develop disk file addresses
30000 to 39999.

The illustration shows that address conversion is like a funnel directing data
into the file. The example illustrates the use of 10, 000 file sectors to store
data from a list of identification numbers (control data) with possibilities
far exceeding this number. However, in the example, it should have been
determined that the maximum number of actual sectors required was approxi­
mately 8500. In planning a conversion method, it must be determined how many
numbers are used in a system having a given number of possibilities.

Experience has shown that the first step in planning an address conversion
process is to develop a complete knowledge of the control data. One point to
remember here is that the zone portion of alphabetic characters is not used
in the 305 arithmetic circuits, except in the sign-control positions. Therefore,
the study should be made on the basis of the numerical portion of the control
data only. One approach to this study is to develop a distribution of the existing
numbers between the two extremes (lowest to highest). This distribution will
illustrate the requirements of the address conversion process. Another
approach is to develop statistics relating to the control data. A count can be
made to determine digit distribution within each number position. Also, the
frequency of "pairing" of digits between columns should be considered. For
instance, the distribution of individual digit values in each of two columns may
be nearly even, but most of the 3's in one column may coincide with the 6's in
the other to form a constant of 36. Thus, there will be few 16's, 26's, 46's,
35's, 37's, and so forth. For these counts, IBM unit record equipment can be
used.

Usually, while developing a knowledge of the control data, certain facts will
stand out. It may be found that one position is predominantely zero, or that
another position ·distributes evenly. From these facts a conversion method,
consisting of selecting five digits from the control data, may be chosen and
evaiuated as explained on page 14. However, it may be determined that conl­
plete address conversion is required. If so, there are many different techniques
that can be employed. A few of the simpler techniques, as shown in Section 3,
of the Appendix to this manual, should be tried first, since they frequently
will produce satisfactory results. It should be noted that, if a complicated
formula is devised to produce near-perfect results, it will usually be extremely
sensitive to control data changes. A small number of additions and deletions
may have a major effect on its performance.

There is no common formula which will produce uniformly good results in all
cases. For each application, a formula must be selected which is best suited
to the conditions of the particular situation. Several conversion processes
should be tried and evaluated before deciding on the final process to be used.

Any standard IBM calculator can be used to compute the converted addresses
in the same manner as would be done by the 305. One card is punched with the
control data for each item to be stored in the file. These cards are processed
through the calculator and the computed file address punched in each card.
Some calculators may even compute the converted address for several different
formulae on one pass of the cards.

In developing an address con version procedure, the over-all objective is the
production of addresses which will aid in achieving maximum efficiency in
305 RAMAC disk file addressing. Five factors should be considered in this
context: overflows, item activity, file packing, file maintenance, and machine
processing time. The latter four factors may be considered in their relationship
to overflows.

Items which are located in home addresses (the original address developed in
converting control data) may be retrieved with only one seek; overflows (items
which are not located in the original developed address) require more than one
seek. It is obvious, therefore, that minimizing the references to overflows will
minimize the average seek time required to locate each record. This is
accomplished by minimizing the number of overflows, and by locating those items
which are referred to most frequently in, or as near as possible to, home
addresses; i. e., minimizing overflow items, which are among the more active
items of the file. Thus, file activity is an important factor to be considered in
developing an addressing procedure. If the expected activity of all items in the
file is approximately equal, then file activity will have little influence on average
seek time per record.

However, if file activity is unequal (e. g., 20 percent of the items account for
70 percent of the total transaction activity), it will have a considerable influence
on average seek time. In this latter case, seek time will be minimized if the
more active items are located in, or as close as possible to, their ,respective
home addresses. The conversion technique should therefore be designed,
primarily, for performance on the high-activity items, and those items should
be loaded into the file first, thus giving them priority locations. If several seek
operations are required to locate an item referred to only once a week, it will
have little over-all effect.

Disk file packing should also be considered when developing an address con­
version procedure. Usually, as packing density increases, the number of over­
flow items increases (thereby increasing the average seek time per record) and
it becomes more and more difficult to develop a satisfactory conversion procedure.

13

14

Therefore, records should be packed as loosely as possible in the disk storage
area.

The effects of subsequent file maintenance should, if possible, be estimated.
As mentioned earlier in this section, a complicated formula yielding near­
perfect results will usually be extremely sensitive to control number changes.
A small number of additions and deletions may have a major effect on its
performance.

Finally, the machine processing time required to convert control data to disk
file addresses should be considered.

Address conversion procedures can be evaluated, in terms of average seek
time per record, by using the methods described in the 305 RAMAC Bulletin,
"The Chaining Method of Disk File Addressing for the 305 HAl\LL\ ... C," form
J28-2008. If the converted addresses are to be used in a "chaining" process,
an evaluation may be made exactly as described in the bulletin. Addresses
developed for use in an "Indexing" process can be evaluated by pretending that
they are for chaining and following the procedures described in the bulletin.
The number of seeks per home address required to locate all records in the
chain should be developed as indicated in Figure 2 of the bulletin. For example,
if nine records can be stored on each track, the following chart would be
developed.

References 9 Records References 9 Records References 9 Records
per Address per Address per Address per Address per Address per Address

1 1 8 8 15 36
2 2 9 9 16 44
3 3 10 11 17 53
4 4 11 14 18 63
5 5 12 18 19 74
6 6 13 23 20 86
7 7 14 29 etc. ---

Whenever an indirect addressing method is used, it is necessary to maintain a
cross-index reference for manual inquiry purposes. For each item loaded in
the file, a card should be punched containing the control data and actual file
address of the item. These cards can be used to print the cross-index reference.
It may be wise, in some applications, to avoid using file address 00000 for
storage of valuable data. This address is sought if all zeros, all blanks, or any
combination of zeros and blanks are sent to the address register.

Because any address conversion procedure will develop a varying number of
duplicate addresses (synonyms), methods must be provided for locating those
records (overflows) that are not in the original address developed (the home
address). The remaining portion of this section is devoted to a discussion of
these methods. An outline of basic concepts and concerns that pertain to any
and all methods is presented first. This is followed by discussion of three
specific methods: Next Available Address, Indexing, and Chaining. The
discussion of each specific method parallels the outline of basic concepts
and concerns.

Basic Concepts and Concerns

1. Address Capacity--How many items can be located in each address?

2. Nature of Items in Each Address--Is each item an actual record, or is it
control data which will be used to locate an actual record?

3. Retrieval of Overflow Items--How will overflow items be retrieved
from disk storage? One technique for accomplishing this requires an
address search procedure; another requires specific overflow addresses
stored at the home location and each successive overflow location. These
techniques function as follows:

a. Address Search Procedure--In this technique, the home address
is examined to see if it contains the desired item. If it does not,
a set pattern of searching other addresses (usually, but not
necessarily, the next higher sequential address) is used until
the overflow item is found. An example of an address search
procedure is included in the discussion of the "next available
address" method.

b. Specific Overflow Address--In this technique, as in the preceding
one, the home address is examined to see if it contains the desired
item. If it does not, an "overflow address, " which was placed
in the home address at the time the first overflow occurred, is
sent to the address register, and the overflow location is checked
to see if it contains the desired item. If it does not, a second
overflow address, which was placed in the first overflow location
when the second overflow occurred, is sent to the address
register, etc. This process continues until the desired item is
found.

4. Loading the File--Provision must be made for loading items into disk
storage. In indirect addressing, this is complicated by the existence of

15

16

5.

6.

overflow items. Both the storage and retrieval of these items must be
taken into consideration in developing a loading program. Further infor­
mation concerning these factors is included in the discussions of specific
methods.

Deleting Items from the File--l

Adding Items to the File-- 'Provision must also be made for deleting
items from the file and adding items to the file. Deletions and additions
may be accomplished by various techniques, some of which are described
in the following discussions of specific methods.

The Next Available Address Method

Although this method is adequate for some applications, it often will prove to be
less efficient because too great a number of seeks will be required, on the average,
to find each record. It is included in this manual primarily for illustrative
purposes, and only secondarily as a method to be considered for use in an actual
application.

1. Address Capacity--Usually, but not necessarily, one item may be located in
each address.

2. Nature of Items in Each Address--Each item is an actual record.

3. Retrieval of Overflow Items--Overflow items are retrieved from disk
storage by means of an "address search procedure." If the desired item
is not found in the home address, the next higher addresses in the disk file
are searched sequentially until the desired item is found or the upper limit
of the file area is reached. In the latter case, the file area is then
searched starting at the lower limit until the item is not in the file. Figure 4
illustrates this type of address search.

4. Loading the File--The disk file area to be used should be blanked before
loading. In this method, the file is loaded in one pass. Each record that
cannot be stored in a home address is placed in the next available higher
address. This is done by means of a sequential search similar to the one
used in retrieving records, except that an address is sought in which the
record can be stored. As in any indirect addressing technique, records
should be loaded according to expected activity, i. e., the most active items
should be loaded first and the least active items last.

5. Deleting Items from the File--Deletions are made by searching for the item
to be deleted, and then blanking out the entire item.

Figure 4

Add One
to

Address

Develop
Address

Seek
Item Record

Move Record
to

Working Track

Begin Search at
Lower Limit.
Place Initial
Add.r,. as Upper

ImlT

Main
Routine

Item not
In File

6. Adding Items to File--Items are added to the file in the same manner as
the file is loaded, i. e., the home address is sought and, if empty, the
item is placed there. If occupied, a sequential search is used to find the
next available address in which the item can be stored.

Indexing

1. Address Capacity--Usually, but not necessarily, nine items may be located
in each address.

17

18

2. Nature of Items in Each Address--Each item is control data that is used
to locate an actual record. These control data items are arranged as
an "index record" on the zero sector of each track in the same order as
the corresponding records are arranged on the disk sectors of the track.
This permits use of the built-in field compare and skip-to-record features
of the 305 to retrieve all records located on the track.

3. Retrieval of Overflow Items--Overflow items are retrieved from disk
storage by means of a '1specific overflow address" procedure. Each zero
sector includes space in which an overflow address can be placed. This
address specifies the next zero sector to be examined for the desired item.

Thus, when the desired item is not found in the home address, each overflow
location which may contain the item is examined sequentially until the item
is found, or it is determined that the item is not in the file. Figure 5
illustrates an indexing retrieval process.

Main
Routine

Figure 5

Develop
Four Digit
Address

Seek
Zero Sector

Send Input Con­
trol Data to
Multiplicand
Track

Correction
Routine

Item Not
In File

Read Zero Sec­
tor to Working
Track to Obtain
Overflow Add.

Send Overflow
Address to
Address Reg.

4. Loading the File--Prior to loading, all zero sectors in the file area should
be blanked. Loading is accomplished in either one or two passes. During
the first pass of two-pass loading, all records are loaded whose associated
control data can be placed directly in home addresses. During the second
pass, all overflows are loaded. These overflows may be placed in unused
locations within the file area or in an area specifically set aside for over­
flows. In the latter case, loading can be accomplished as easily in one
pass as in two. Locations in which to place overflows can be found by using
an "address search" procedure. The loading process must also provide for
placing overflow addresses, when required, in the appropriate zero sectors.
As in any indirect addressing technique, items should be loaded according
to expected activity, i. e., the most active items should be loaded first
and the least active items last.

5. Deleting Items from the File--Deletions are made by blanking out the
appropriate control data in the index record.

6. Adding Items to the File--Various techniques may be developed for handling
additions. One technique is to locate the home address and:

Chaining

a. If the item can be placed in the home address, place the control
data in the zero sector and the record in the corresponding sector
of the track.

b. If the item cannot be placed in the home address, proceed to the
last overflow sector and place the item in an unused location (i. e.,
the control data in the zero sector, and the record in the corres­
ponding sector of the track). If a new zero sector is involved,
place its address in the previous zero sector.

1. Address Capacity--Usually, but not necessarily, one item may be located
in each address.

2. Nature of Items in Each Address--Each item is an actual record.

3. Retrieval of Overflow Items--Overflow items are retrieved from disk
storage by means of a specific overflow address procedure. Each record
includes an overflow address section, in which the location of the item is
stored, if one exists, in the chain. The overflow address must be placed in
each appropriate record whenever an overflow occurs during loading. This
usually consists of five digits (resulting in a 95-character record) but it
may be three or four digits if the chain is contained on only a few disks.

19

20

Figure 6

Send Overflow
Address to Ad­
dress Regi ster

Develop
Address

Move Record
to Working
Track

Item
Not

in File

Main
Routine

Space must be reserved in all records of the file for storage of
these overflow addresses. If several records are contained in one sector,
each record must contain space for the overflow address. Thus, when
the desired item is not found in the home address, each location in the
chain is examined sequentially until the item is found, or it is determined
that the item is not in the file. Figure 6 illustrates a chaining retrieval
process.

4. Loading the File--The disk file area to be used should be blanked
before loading. The file usually is loaded in two passes. During the first
pass, all items that can be placed in home addresses are loaded. During
the second pass, all overflow items are loaded. These overflows are
usually placed in unused locations within the file area, but can be made to
an area specifically set aside for this purpose. Unused locations can be
found by using an address search procedure that may be similar to the one

described under the next available address method. The location of each
overflow is recorded during loading in the preceding "link of the chain" for
subsequent use in the retrieval of these overflow items. As in any indirect
addressing technique, items should be loaded according to expected
activity; i. e , the most active items should be loaded first and the least
active items last.

5. Deleting Items from the File--Various techniques may be developed for
handling deletions, according to the nature of the application. One
technique is to blank out all of the record except the overflow address
positions.

6. Adding Items to the File--Various techniques also may be developed for
handling additions. One technique is to locate the home address and:

a. if the home address is empty, place the addition in it;

b. if the home address is occupied, proceed to the end of the chain
and by means of an address search procedure, find an unused
location in which to place the addition to the chain. If an item has
previously been deleted from the chain (this can be checked by a
blank transmission instruction), the addition may be placed in
the location vacated by the deletion.

OUTPUT CONSIDERATIONS

Output requirements should be developed early in the approach planning stages.
A rough estimate of time requirements should be made to determine if they are
within the limits of the system requirements.

Second to time requirements, format control and 370 forms-skipping control
are the major output considerations. On the 323 Punch, selectors are available
on an optional basis only; therefore, on the basic machine only one format is
possible without changing the 323 control panel. The format arrangement on the
output track must be planned accordingly. The 370 Printer is equipped with
eight-line program selectors and four co-selectors. The line-program
selectors have the capacity for six different levels of format. The program
should be planned so that this selector capacity is sufficient. One must
remember that each line of an MLP operation requires one level of the selector.
Also, only line number 1 of an MLP may be controlled to set up variable
conditions of format. The eight-line program selectors are indiVidually controlled
for pickup and dropout, and each has a capacity of eleven positions. Print
control features (print start-stop, zero suppress, etc.) may require several

21

22

positions of line-program selection. A position is also required for each
symbol printed that does not always print in the same position on all lines.

Form skipping on the 370 may be controlled by two methods. One, by a significant
code on the output track to cause skipping only after a line is printed, and, two
from the 305 panel via the communication channels. Skipping may be performed
either before or after a printed line when controlled from the 305. However, it
is very desirable to control skipping from the output track code whenever
possible. This will facilitate checking out the 370 control panels with the Print
Repeat feature, and makes the 370 more independent of the 305 operation.
When skipping is controlled via the communication channels, conditions may
exist in which the skip will not be executed if the 305 is stopped for some reason.

When planning the output, the following pointers should be kept in mind:

1. Print only the information that is actually needed.

2. Design forms, etc., to start printin~ in print position 1. A margin on the
left takes print time.

3. Keep lines short.

4. Print constant data on the left, variable on the right. This helps to keep
the lines as short as possible.

5. The "delta", Signaling a print error, is printed three positions to the left
of print position 1 (that is, two print position spaces between the delta and
position 1).

6. Maximum width of forms is 16-1/4 inches from the center of one feed hole
to the center of the opposite feed hole. Printing is restricted to the
center 8-inch area of a 16-1/4 inch form. Any 8-inch wide area of a
12-inch form may be printed.

7. Skipping is at the rate of 25 spaces per second.

8. An original, plus seven carbon copies, is the practical maximum.

9. Print all miscellaneous heading data on one line; then other heading lines
should be short ones.

10. If more than one MLP operation is used on one control panel, all
corresponding MLP lines should be the same format except MLP line 1
(for example, all MLP number 3 lines must be identical).

11. Have the program determine, just before a Print signal, if a skip is
required after the line is printed. If so, place the appropriate skip
code on the output track before Print is signaled. This eliminates most
requirements for skip control via communication channels.

12. Make the 370 self-supporting; avoid communication-channel control as
much as possible.

13. Do not change control panels and forms frequently. Line format, paper
forms, and control-panel wiring should be planned to make these changes
as infrequent as possible.

ACCOUNTING CONTROL AND AUDIT TRAIL

The theory of in-line data processing, using random access memory, is just as
dependent on sound control practices as is any other process. Therefore, every
system should include a means of accounting control.

New data processing techniques, such as those offered by RAMAC, may require
the development of new control techniques. The responsibility of providing
adequate process control rests primarily with the programmer. The first step
should be a thorough study of present control procedures. Secondly, the audit
and control procedure should be reviewed.

The information gained from these two steps should provide the basis for designing
the necessary controls for the RAMAC procedure.

Verification of the various machine processing functions will vary widely,
depending upon the requirements of the particular application. The following are
several approaches to the different areas of control:

1. Programmed machine checking. This may include use of a "proof factor",
complementary multiplication, or reverse arithmetic. Another vital check
is a programmed comparison between the file record and input item
identification numbers.

2. Accounting controls may employ off-line checking using the RAMAC input
and output cards. The output cards should be planned to contain all machine­
developed data including opening and closing balances.

3. A more comprehensive check is attained by external punched-card control.
Periodically, file balances are punched out and balanced against the previous
balance and summary transaction cards for the accounting period.

23

24

The degree of control is an important factor and must be carefully established.
It has a direct bearing on whether the system is either under-controlled and
subject to undetected errors, or over-controlled and wasteful of time and of
machine capacity.

Audit trail is the term usually applied to the progression of facts from one
balance point to the next. Audit assumes that data is at hand, or readily available,
to enable reconstruction of result data or a process for review.

Both accounting control and audit trail, with particular emphasis on the IBM 305
RAMAC, are dealt with in detail in a separate IDM General Information Manual,
Form 320-0753. This publication is the result of a study by a large public
accounting firm, and should be reviewed early in the program planning stage.

M:ULTIPLE ROUTINES

The number and nature of the various machine programs will vary with the
application. However, certain generalizations can be made relating to the use
of multiple routines.

First, there should be an over-all plan for the use and operation of different
routines. For instance, most programs will have separate routines to load the
file, unload the file, produce analyses reports, maintain the file, etc. A
schedule should be made of all the routines that will be used and how they relate
to each other. The best standard record format design for all programs is a
major consideration.

Generally, it is best to store all instructions, constants, etc., for each program
in the file. A lead card is then used to transfer the appropriate routine to the
processing drum. The functions of the lead card, used to transfer in the new
instructions, will be described more fully under Programmed Checking. When
the programs are transferred to the drum, prOvision also should be made to
clear the accumulators, clear all process tracks, drop out all selectors and
accumulator overflow, and set up the emitter track, if one is used. This process
is known as initialization.

If anyone program routine should exceed the 200-instruction capacity of the
program area of the drum, the additional steps may be stored in the file or on
unused data storage tracks. Considerable foresight is required, when planning
this type of operation, for control-panel capacity and the design of adequate
controls for the operation. Usually, the first several tracks of instructions
should be made permanent to the main routine. These instructions will be
assigned control-panel exits that are not expanded. Also, these instructions
should have firm controls to assure that other instructions are in the correct
program area of the drum at all times. If the total instructions require program
exits in excess of 47, selectors can be used to expand their use (see Special

Features, page 89). Generally, it is best to use the expanded exits as a group
and confine their use to subroutines. When this is done, the same controls that
transfer the instructions onto the program area also control the exit expansion.
If the program can be designed so that the extra instructions do not have control­
panel signals, it will simplify the use of the subroutines.

When multiple routines are used, there usually is a separate set of control panels
and input cards for each routine. Therefore, it is necessary to positively
ascertain that the programs, cards, and control panels all match. One way to
do this is to assign a discrete alphabetic code to each type of input card. The
card column used for the code must be different for each routine. The character
selector on each control panel is wired from only those card codes that are
proper to that panel. The card column used for the alphabetic code on one
routine is used only for unsigned numerical values on any of the remaining
routines. Thus, there is a three-way check built into the operation.

If the wrong control panel is installed in the machine, it will stop on a test-for­
card code, because only the correct alphabetic codes are wired for selection
purposes. If the wrong programs are used, one of the alternate card columns
will be transferred to the character selector. Because this is a numerical
value and only alphabetic codes are wired, the machine will stop. The same
condition will exist if incorrect input cards are used. The control exit, used
to test the character selector, may be wired through a combination of
communication channels to test that all control panels match. If all match, a
circuit is established to test the character selector; otherwise, the machine stops.

If subsequent tests of the same card code are required along the program, the
numerical portion of the alphabetic character may be tested, using the numerical
character selector hubs.

Another method used to interlock cards, etc., is to set up a code value for
each set of programs, control panels, and cards. A card column must be
reserved and used only for program routine number. For example, column 80
in the Issue cards may be coded "1", and this would be compared against a "1"
contained in the Issue programs. The control panels can be checked by
reserving one set of character selector hubs for this purpose and wiring only the
"1" exit on the Issue panels. The 323 and 370 panels can be tied in by wiring from
the "1" hub, through a combination of communication channels and back to a
program re-entry point.

All programs should be planned to handle automatically as many exception
routines as possible. The machine should be programmed to Stop for only
those situations where operator discretion is required. In many cases, a
basic error or signal routine can be planned to handle most conditions.

25

26

MACHINE PROGRAM

GENERAL

The machine program coordinates the large-capacity random access memory of
the RAMAC with the input data either to update the information currently in the
file, or to produce a specific type of output. An entire program can be outlined
as follows:

1. Consult the input data.

2. Obtain the indicated file data.

3. Combine the input and file information to produce data for updating the
file andlor data for output.

Although all programs that follow this outline can be called successful, not all
of them can be termed efficient. An efficient prbgram will perform its functions
in the least amount of time. Time is one of the principal criteria for evaluating
a program.

It follows, then, that a program must be constructed that will process input data
(i. e., produce output data) with the greatest possible speed. While there are
other considerations in a desirable program, such as the number of program exits
used, drum and file space used, etc., it will generally be found advisable to
sacrifice these, if possible, to achieve greater output volume.

The machine program consists of two elements: a stored program (i. e., a
list of instructions preloaded in the machine) and the wired process control panel.

While the stored program is basically used to transfer data within the 305, a
program must refer to the control panel for its logical decisions. Therefore,
these two elements must be carefully combined to produce an efficient program.

Every decision made prior to the writing of the program, from the statement of
the objectives of the installation to the details of format design, will affect
the final program. In fact, early procedural proposals should be evaluated by
the effect they might have on the efficiency of the machine program. It is clear,
then, that an understanding of RAMAC programming is essential to proper
application planning.

PROGRAMMING PRACTICE

Before considering actual programming techniques, it should be emphasized
that programming is an activity in which the qualities of neatness, simpliCity,
and orderliness are extremely important.

A program of even moderate complexity will undergo many revisions, both
major and minor, between its first draft and final version. Proper records
of the instructions and track layouts at each stage should be kept. In this way,
possible improvements to the program will become more apparent, accurate
transferral of current results to the next version is assured, and a clear
basis for discussion of the program with others is provided.

This, by no means, implies that each stage of the program should be written
in complete detail. On the contrary, the actual writing of the program in machine
language should be deferred as long as possible. When approaching a problem
initially, it is best to begin by drawing a very general block diagram (Figure 7).

Header Routine

Seek
Customer
Record

Print
Customer

Information

Next Card

Return
to Start

Figure 7

Analyze
Input Card

Code

Line Item Routine

Seek
Item

Record

Process
Item

Information

Print, Punch

Line Item

Next Item

27

28

This practice of drawing a block
diagram is already followed by
many. However, at this point
many programmers begin
writing as shown in Figure 8.

This is too much detail for this
stage of the program development.
It is far better to simply write a
list of program steps in very
general terms. Such as:

1. Move input card to track W,
feed card.

2. Move card code to character
selector. Figure 8

Writing in this way allows the programmer to keep his mind solely on the data
processing problem. He need not concern himself with counting track positions,
specifying number of characters, numbering program steps, etc. If the format
of the input card is changed to expedite keypunching, no corresponding change
is required in the program as written. If an instruction is inserted or deleted,
it need not affect the rest of the program, because the steps are as yet un­
numbered. In short, the program is in a form that can be revised, improved,
reorganized and made more efficient.

When the program has reached what is believed to be its final form, it should be
completely and properly documented. In current programming practice the most
important document to be prepared is the detailed flow chart as shown on pages
74-80. This flow chart should completely illustrate the flow of each program
step, including the control panel functions and their branches. It should include
every detail of the program with the exception of the program steps in machine
language. These would only tend to clutter the drawing. From this chart the
entire program can be visualized and each step analyzed to determine its
contribution to the program as a whole. After minor improvements have been
made and the "loose ends" taken care of, the program step numbers should be
tentatively assigned. From these step numbers the next document, the control
panel function chart, can be prepared.

The control panel function chart as shown on page 81, is like a map showing
the path of impulses through the control panel feature s. A description
of the conventions used on this chart is found on pages 82 and 83. In developing
this type of chart, it was originally intended to be used as an aid to debugging
programs and control panels. However, it was found that many wiring errors

could be prevented and the best wiring conditions determined if this chart were
made before wiring the panel.

Next, the record layouts must be carefully recorded in their final form. Examples
of the se are illustrated on page 84.

At this stage of the development, the program is ready to be written in machine
language. The 305 RAMAC Program Instruction Sheet, Form X26-6343, should
be used for this purpose. Space is provided on this form to explain each step
fully, and for the wiring diagrams associated with each instruction accompanied
by a program exit. The 305 RAMAC Selector Assignment Chart, Form X26-7502,
should be used for notes on selector assignment. Examples of these forms are
shown on pages 85, 86 and 87.

Finally, wiring diagrams can be drawn for the panels that control output format
(i. e., the 370 Printer, 323 Punch, and 380 Console).

The process just described is a proven method of writing and documenting a
successful RAMAC program. After gaining some experience, however, the
programmer may find it convenient to place some of the burden of coding and
documentation on the RAMAC itself. The RAMAC assembly program, mentioned
under Programming Aids and described briefly in Section 1 of the Appendix, is a
programming tool designed to relieve the programmer of much of the clerical labor
associated with program preparation.

PROGRAMMING AIDS

Several programming aids have been developed by IBM. These aids are
designed to assist the programmer in writing a RAMAC program in accordance
with the process described. Three of these aids, which are available upon request,
are:

1. RAMAC Assembly Program--A program which converts restrictive English
language instructions to machine language instructions (see Appendix, Section 1).

2. RAMAC Trace Programs--Two programs that may assist in debugging the
stored program and the process control panel, respectively (see
Appendix, Se cti on 2).

3. RAMAC General Purpose Board--A prewired process control panel that can
be used for any data processing job on the RAMAC. While the use of this
board eliminates those phases of program preparation associated with
designing, wiring, and debugging the process control panel, it will
frequently reduce the processing speed.

29

30

THE STORED PROGRAM

In discussing the machine program earlier in this manual, it was stated that
one of the principal criteria for evaluating a program was the speed with
which it is executed. In this section of the manual, five items will be discussed
which, when used wisely, can become powerful tools in increasing program
efficiency. It is important to study each of these areas carefully to derive the
fullest possible benefit from them.

Format Design and Multiple Transfers

A basic characteristic of in-line data processing is that all information is
processed in a continuous-flow type operation; that is, a single input card will
affect the card reader, disk file, and output. Therefore, if the format of the
input card, disk record, and output is identical, the program will be reduced
to its simplest and most efficient form. However, should the arrangement of
all the records be different, the program will require additional steps to
rearrange and shift the data, thereby causing a longer and less efficient
program.

There can be no question as to the advantages of keeping the input format and
file record format identical. This is true both for loading the disks from cards
or for unloading the disks to cards. Because card capacity is only 80 positions,
it would be desirable to develop disk records in which 80 positions contain
variable data and the 20 extra positions contain constant data. In this way,
the loading and unloading of each disk record can be accomplished with only one
card. If all 100 positions are variable the loading and unloading procedure will
require two cards for each record and the processing time will double. If
more than 100 characters must be stored, the constant data should be maintained
in one sector and variable data in an adjacent sector.

In designing record formats, it must be remembered that many of the records
may be consulted by more than one program.

Another important consideration in designing record formats is the numerical
fields. If numerical fields in a file record can be made to line up with the
accumulators, these fields can be sent to the accumulators for updating
purposes with a single multiple transfer instruction. If, in addition, an input
card field is to update two or more file record fields, the multiplicand track
(V track) can be used to advantage. These ideas are illustrated in an example
(page 88) in which six file record fields are updated by two input quantities.
Note that the first two instructions would be unnecessary if four columns
(instead of three) had been allocated to units on the input card.

It is often stated that output format will pose no problem, because the output
information can be brought to the output track in any format whatsoever, and the
required format wired at the panel with no loss in processing time. While this
is true, it must be remembered that each such wired rearrangement of output
data requires selection. Thus, only six SO-character output rearrangements
are possible through selection at the printer.

At the punch, up to 100 positions of two-way selection are available on an
optional basis only.

It would seem, therefore, that in the early stages of planning, the different
types of output cards or print lines should be as identical in format as is
possible with the input cards and file records. If and when these specifications
are found to exceed the capacity of the standard output panel, a decision must
be made as to whether additional program steps or additional control panel
features will best resolve the difficulty. The area of output formats must be
planned with the rest of the program, and definitely should not be considered
as a final detail after the program is nearly completed.

The Magneti c Core Unit

The magnetic core unit serves as an intermediate storage for each transfer of
data within the RAMAC. On one revolution of the processing drum, the desired
information is read from the source track to the magnetic core. On the following
revolution the information is read from the cores and recorded in 1he specified
positions on the recording track. By considering what actually takes place
during each revolution of the drum, the programmer may make more advan­
tageous use of the magnetic core unit.

The first drum revolution is called the From cycle. The actual execution
time is 10 milliseconds. As the data is read from the source track, the low­
order character, as specified by the instructions, is placed in core position 99.
The character to the left of this is placed in core position 9S. Each succeeding
character is placed, in turn, in the next core position until the specified number
of characters to be transferred is sent to the core, or until the 00 position
of the source track is transferred. Those positions of the core unit to which
no characters have been sent retain the characters which they were storing
from a previous instruction.

On the next drum revolution, called the To cycle, which is also executed in
10 milliseconds, the following occurs: Position 99 of the core unit is sent to the
low-order position of the receiving track as specified by the instruction. Core
position 98 is sent to the next position on the receiving track. Each succeeding
core position is transferred in turn to the next position on the receiving track.

31

32

This action continues until the number of characters to be transferred, as
specified by the instruction, is transferred, or until receiving track position
00 receives a character. The information that was placed in the core during
the From cycle remains in the core after the execution of the To cycle.

Figure 9 shows what takes place when the instruction W04 XII 08, is given .

• ~~'I~IIL'~III -----JJ!
00, , 10

T

Track W
(Source Track)

"------­,
~
~

'--y--i

~-----./ r • , ,

I ~ if (Receiving Track)
, I , ~ , , I, , (~,-____ T_ra_c_k_X ________L..1 1 L..IIL..IL..!L....L..I L..I L..! 1 L..I .L..J1

00 10

Figure 9

The effect shown in Figure 9 is that a 5-character field from track W was
transferred to track X. The instruction specified eight characters to be
transferred; therefore, three characters left in the core from the previous
instruction were also transferred to track X.

99

In the example that follows, this feature is utilized and a savings of one pro­
gram step is obtained. Fields A, B, and C are positioned on track W
(Figure 10). It is desired to reverse their positions and place them adjacent
to each other on track S (Figure 10).

I
Track A B C

W
I

I
: I I

I ! I [! I j !! I I

01 ' I 12T 31 4
a a a a a

Track
C

S
B A

I I I I i I I , [I " I I I , I I I I I I I I i I I, I I I I I I
Figure 10

This is accomplished with two instructions (Figure 11).

FROM TO
No. Prog,

Char- Control
Step

Trad Position Track Position
acters

XXX W 3 9 S 0 9 1 3

Ixxx IWIO 9 IS 2 2 1 3

Figure 11

The first step moves field C from positions 30-39 of track W to positions 00-09
of track S. The instruction specified 13 characters to be transferred; therefore,
field B, positions 27-29, was transferred to the core unit. The second step
transfers field A from positions 00-09 of track W to positions 13-22 of track S.
Because the second instruction also specified 13 characters to be transferred,
field B, which was left in the core by the previous instruction, is transferred
to positions 10-12 of track S.

A hyphen in the From portion of an instruction can be used to transfer the data
that was placed in the core by the previous instruction to any desired position.
Remember that, when using the core as a "source" track, core-position 99 is
always sent to the position designated in the To portion of the instruction. It
is customary to write -99 as the From portion of such an instruction. Careful
analysis will show when to use this feature to reduce processing time.

33

Two examples, in which the hyphen was used to address the core unit, follow:

Example 1 (Figure 12)

Accumulators 7 and 8 contain quantities A and B, respectively. It is desired
to compute and store 2A + B in accumulator 7, and 2B in accumulator 8.
Two instructions will produce this result.

FROM TO Skip
Prog. No.

To
Control Description

Step Char-
Prog.

ITrod Position Track Posiiion
acters I I ~. I ':>Tep

xxx L 8 9 L 8 9 2 0 This instruction doubles the contents I
~~--~-

of both accumulators. Quantit)l: A is

left in core positions 80-89 and

quantit~ B is left in co~sitions --------

90-99.
--~~--- -~ ~--

xxx - 9 9 L 7 9 1 0 Quantity B/ which was left in core

positions 90-99 by the previous

instruction, is added into accumulator

7. Accumulator 7 now contains

2A + B. and accumulator 8 contains

2B.

Figure 12

Example 2 (Figure 13)

Each accumulator contains a positive quantity that must be multiplied by 12.
Multiplication by simultaneous addition will be faster than executing 10 multiply
instructions. Two instructions will again produce the desired result.

FROM TO
No. Prog.

Step Char- Control Descri ption

Trad Position Track Position
acters

xxx L 9 9 L 9 9 0 0 This instruction doubles the contents

of each accumulator and leaves the

origInal~uantity in the core unit.

xxx - 9 9 L 9 8 9 9 This instruction adds the original

quantity of each accumulator to itself

but shifted one character to the left

to effect multiDlication by 10.

2A (result after first instruction) + lOA (quantity developed by second
instruction) = 12A (result stored in accumulators)

Figure 13

Skip

To

Prog.

Step

The behavior of the core unit is slightly different when data is transferred to
or from the file; that is, if R99 is used in the From portion of an instruction*,
100 characters will always transfer to the core unit, regardless of the number
of characters specified by the instruction. The number of characters specified
affects only the number of characters that will leave the core for the receiving
track. For instance, if the instruction R99 W79 20 was executed, the entire
100-character file sector would be transferred to the core unit. Only the 20
low-order characters would continue to positions 60-79 of track W.

If R99 is used in the To portion of an instruction, 100 characters will transfer
from the core unit to the disk sector, again regardless of the number of
characters specified in the instruction. The number of characters specified
will control how many characters enter the core prior to the transfer of
100 characters to the disk sector.

* It is customary to write "R99" in such instructions, although the machine
would not behave differently for any other pair of digits.

35

36

It is because of this characteristic of the core unit that the 305 Manual of
Operation states 100 characters must always be transferred to and from the
disk file. However, an advantage can be obtained through this behavior.
An example of this is using the core unit to assemble information. This is
illustrated in the following example:

The high-order half of track A and the low-order half of track B are to be
assembled and transferred to a disk sector. This can be accomplished with
two instructions (Figure 14).

FROM TO Skip

Prog. No. To

Step Char- Control Description
Prog.

Trod Position Track Position
acters

Step

~)()(X t .~ .. ~ 9 9 9 0 0 Transfer the contents of track A to

the core unit.
--- - -- ----- ---

xxx B 9 9 _IL_ 9 9 r-L 0 Transfer the 50 low-order characters
-- r--- ----- ---- --- -~

-.--~ ------- ~--- --- -- ---~-- ---~- ----- - f~om track B to the core unit and

transfer contents of core to the disk _. ----- - --- - ----- ~--. --------- --

sector. The di_sk sector now contains
f------ ----- - --- ------ -- - -

- - - - --- ------- ---- - ----- ----- -- -- _!he_hl.9..h-order half of track A and the

low-order half of track B.

Figure 14

A compare instruction, using the disk address as the From portion of the
instruction, will also transfer 100 characters to the core unit. If the instruction
R99 W04 05 Al is executed, positions 95-99 of the disk sector will be compared
with positions 00-04 of track Wand the result stored on the compare selector.
The entire disk record will be left in the core.

Another example of saving program steps by making use of the core unit is
the example in which positions 00-94 of track X are to be placed in the last
95 positions of a file record. The disk address is stored in the first five
positions of the record. The instructions shown in Figure 15 are used.

When the record was transferred from the disk file to track W, the disk
address was retained in core positions 00-04. It remained there undisturbed
during the compare instruction, and was recorded back in the file, with the
record, during the execution of the last instruction.

I
FROM TO

No.
I Skip

Prog. To

Step Char- Control Description
Prog.

Trod Position Track Position
acters

Step

025 L 9 9 J 9 9 0 5 Seek record developed in accumulator 9
-------- --- -- --

026 R 9 9 W 9 9 0 0 Transfer record to track W
-_.- - --

027 L 9 9 W 0 4 0 5 P 1 C~mpare address wi th address
--_._- ----_.

r--- -- --
develoeed in accumulator 9.

028 X 9 4 R 9 9 9 5 Transfer record to disk file.

Figure 15

In using the core storage unit to retain information between instructions, there
is one point that must be kept in mind: All 100 positions of the core unit are
used during certain console operations. Inquiry (manual and programmed) and
console-initiated transfers of information between drum and typewriter use
the core buffer the same as does a RAMAC instruction. In the last example,
if the RAMAC program were halted after execution of the second instruction,
it could be restarted at the third instruction only if no manual inquiry or
drum track read operation was initiated at the console. Inquiry would of
course, require a restart at the first instruction.

The Accumulators

An accumulator feature, use of which is made frequently in an address con­
version formula, is its ability to disregard the zone (X and 0) bits of all
incoming alphabetic characters except in the sign control position. (The
sign control position is the first, or low-order, character read into an
accumulator.) If J6DV7 is reset in an accumulator, the result will be + 16457.

If 222BSK were entered in the accumulator, the result would be 222222-.
When a negative number is read out of an accumulator, the machine will add
an X bit to the lowest order digit as the data is enroute from the accumulator
track to the core unit. Thus, if 1023- were read out of the accumulator, the
result would be 102L.

Programmers familiar with the zone-stripping property of the accumulators
can obtain some limited use from it. For example, a program to load file
records sequentially from input cards is developed. In this program an
accumulator is used to produce the next disk address to be loaded and also to
stop the machine at the appropriate time. This is accomplished by initially
placing the number of sectors, and the address of the first disk sector to be

37

38

loaded in a reset accumulator. During each pass of the program loop, 99999
is subtracted from the accumulator. This increases the disk address by one
and decreases the number of sectors to be loaded by one.

Thus, if accumulator 9 contains
and the arithmetic instruction is executed

the re suIt will be

I

000145:12400
199999

000144:12401
I

After all the sectors have been loaded, and the accumulator becomes negative,
the program stops. To eliminate storing the constant 99999, the programmer
begins investigating his program instructions and finds that instruction 198
reads X99 R99 00. He immediately sees that 99R99 can be used as a constant,
and he writes his arithmetic instruction as 185 M99 05.

Care must be exercised in \vriting instructions that address more than one
accumulator if negative quantities are involved. For example, initial quantities
of + 5, -2, and -3 are to be stored in accumulators 0, 1, and 2, respectively.
The required constants are stored on track H (Figure 16) and separated by
blanks. Character K (X-2) and L (X-3) are used to deSignate -2 and -3.

o I
a

iii i51 .

Figure 16

I I I

II I
o

Track H

K ,-11
! 2 I
o

,

(
J

~
)

L i 1 1\
I 3 I
a j

If the one instruction, H27 L27 23 b5 were executed, accumulator 1 would
receive a + 2 rather than the desired -2. The reason is the lowest order digit
read into accumulator 1 was a blank, which is not accompanied by an X-bit;
therefore, accumulator 1 is positive. To rectify this, a hyphen (X-bit) may be
placed in position 19. Another solution is to set the constants as shown in
Figure 17 and use the instruction H27 M27 23 b5.

~O~I------------~I~I~I------------~1-2~1--------------

a 0 0

i5 i
I ! ! ! ! !

01
o

Figure 17

Track H

The RAMAC, maintaining algebraic sign control, will enter these digits as
+5, -2, -3.

Another example of the care to be taken in addressing several accumulators
with one instruction is the following. A programmer decides to effect a
multiplication by eleven by using the instruction L99 L98 49. In this case,
five accumulators are affected. To produce the proper result, each accumu­
lator affected must be positive with the exception of the last (or right hand)
one; this may be negative. The reason is that when the digits are read
back from the core unit into the accumulators, they are shifted one position
to the left. This means that on each negative accumulator the X-bit will
be ignored, because it will not be replaced in the sign control position.

FROM
Prog.

Step

Track Position Track

XXX L 9 9 L

xxx - 9 9 L

Figure 18

TO

Position

9 9

9 9

No.

Char-
acters

5 0

5 0

Control

Multiplication by three, how­
ever, can be obtained on five
accumulators, regardless of
the sign of each individual
accumulator. This method
uses the advantages of the
core unit described in the
previous section. The
instructions are shown in
Figure 18.

Proper results are obtained in this method because an X-bit, in the sign control
position is always returned to the same position, maintaining the proper sign.

When reading out of an accumulator, it is best to a void the read out and reset
code (M). A basic rule in programming is to retain any stored data until it is
necessary to use the storage space for more data. This will facilitate checking
the cause of an unscheduled machine stop or error. Also, the familiar
programming error (forgetting to reset an accumulator before storing data
there) is less likely. The accumulators can generally be reset with the
same instruction that brings data in to them.

The I nstructi on Register

Each instruction in the RAMAC is executed from the instruction register to which
it is sent just prior to its execution. The instruction register is a 10-character
storage unit in which each position is assigned to one of the instruction positions.
This component is able to strip the zone bits in its second, third, fifth, sixth,

39

40

seventh, eighth, and tenth positions. The remaining positions, the first (From
track), the fourth (To track), and the ninth (program exit) positions will store
alphabetic characters. Thus, if the characters BILLSbPAGE were written
as an instruction, they would arrive at the instruction register as B93 L20 71 G5
and would be executed as such. (Each character in the instruction register can
be deternlined, as the instruction is executed, by the use of the bank of lights
labeled Instruction on the 380 Console.) This property of the instruction
register is perhaps difficult to apply to advantage. Nevertheless, the following
example is taken from an actual RAMAC program.

A subroutine is to be executed exactly three times for each pass through the
main routine. The programmer has no accumulator available to count three,
nor does he want to use any other logical device on the process control panel
in this application. The last instruction in the subroutine adds ten characters
from positions 00-09 of track Z to accumulator o.

Figure 19 represents the chosen solution.

- Step 049 - (767 768 02)

I
From Mai n Routi ne -Steps 050 - 075 -

I
Step 076

(Z09 L09 All)

~
:

~ To Main Routine
~

Figure 19

The first time through the routine, step 076 is executed as Z09 L09 11 1.
Program Exit 1 transfers the routine to step 049 which modifies instruction 076
to read Z09 L09 AA 1. When executed the second time, the action is the same-­
ten digits are added to the accumulator and the routine transfers to step 049.
At the end of the third pass through the routine, the instruction reads Z09 L09 AA Ae
This time, Program Exit A, which transfers the program to the main routine, is used.

Instruction Modification

A programming facility, frequently overlooked by RAMAC programmers is that
of instruction modification; that is, the ability of a stored program computer to
change its own instructions during the course of data processing. This powerful
feature was illustrated in the last example given in the previous section.

There are two types of instruction modification:

1. The specific modifications are known in advance to the programmer. They
occur identically each time the routine is executed.

2. These modifications cannot be predicted in advance because they depend
on the data being processed at the time the modifications occur.

Instruction modification of the first type is illustrated in the following example.
Twenty-five four-digit quantities are stored sequentially on track Z. It is
required to accumulate their sum in accumulator O. Using instruction modification,
this can be performed with four program steps and two program exits.

FROM
Prog.

Step

Trad Position Track

110 W 012 L

Figure 20

FROM
Prog.

Step

Track Position Track

111 L 1 1 1 A

Figure 21

TO
No.

Cnar-

Position
acters

1 1 1 013

TO
No.

Char-

Position
acters

2 I 2 01 2

Control

P I 5

Control

I

The solution is shown in
Figures 20, 21, and 22.

WOO-02 contains bb3. This
step serves three functions:
(a) it resets accumulators 0
and 1; (b) it sets the initial
constant of 03 in accumulator
positions 10 and 11;
(c) Program Exit P drops out
the accumulator overflow.

Step 111, shown in Figure 21,
inserts into step 112, the
location on track Z of the first
of the 25 quantities to be
added into the accumulator.
After each quantity is added
into the accumulator, this
number is increased by four
to produce the location of the
next quantity to be loaded
(step 113).

41

42

Step 112 adds the desired
quantity to accumulator O.
W03 contains a 4. Step 113
adds the 4 to accumulator 1,
which will produce the
location of the next quantity
to be loaded into accumu-
lator O. Program exit Q is
used to test the accumulator
overflow. If!!,2, the subroutine

Prog.

Step

Trod

112 Z

113 W

transfers back to step 111. Figure 22

If yes, the subroutine returns
to the main program routine
(Figure 22).

FROM

Positior'l

I
0 I 3

TO
No.

Char- Control

Track Position
acters

l 0 9 0 4
---- r---~---

l 1 1 0 1 Q

Step 110 sets up the initial conditions necessary to the routine. Such a step, or
set of steps, is called the initialization of the associated routine, and is a
necessary element in all loop-type routines. Programs that involve instruction
modification sometimes require initialization of the instructions to be modified,
although this is not necessary in the present case.

Had it been positively ascertained before time that none of the data fields of the
preceding example were zero or blank, a track slide operation could have solved
the problem. The sliding method is sometimes more desirable; although in terms
of program speed and space required, it is about equal to the instruction modification
method.

The preceding example is an illustration of the first type of instruction modification.
Note that the desired result could have been achieved by using 25 steps to send each
quantity to the accumulator. This solution is much faster, but requires 25 steps
as opposed to 4 steps and 2 program exits. It is characteristic of routines using
the first type of instruction modification that identical re sults can be achieved,
usually with greater speed, without instruction modification if one is willing to
store the additional instructions, which are known in advance by the programmer.

The situation is different in the case of modification routines of the second type.
Here the use of instruction modification reflects the requirement that the instructions
to be performed depend upon the data being processed. If modification is not used,
some other method of satisfying this requirement must be found.

Invariably the alternative method involves the use of additional logical facilities
on the process control panel. The reason is evident when one reflects that the
control panel feature s provide a means for instruction modification of a limited
sort. Consider, for instance, a program exit wired to the In hub of an accumu­
lator sign selector. The +, 0, and - hubs of the selector are wired to different

functions. The sign of the number in the accumulator, which is a part of the data
being processed, determines which of these functions will be executed by the
program exit. Thus, the instruction carrying the program exit may be modified
by the data.

A common problem in RAMAC programming is that the programmer finds his
process panel facilities (program exits, distributors, character selectors, etc.)
used up when the program is far from complete. This difficulty can frequently
be avoided by judicious use of instruction modification of the second type. Two
examples of this follow.

Example 1

Part of one disk contains 10-character records stored ten to a sector. To
address each record, a 6-digit address is required. The first five digits
denote the disk address and the last digit indicates the proper 10-character
field within the sector. The program requires the correct 10-digit field to be
selected and placed in positions 00-09 of track X. The address of the 10-digit
field is in positions 00-05 of track W.

In using the character selector to perform this operation the disk address is
sent to the address register. Next, the sixth digit of the address is stored in
the character selector, and the character selector In hub is impulsed. Each
of the 10 digits on the character selector is wired to the program step, which
will transfer the 10-digit record, corresponding to the digit stored, to
positions 00-09 of track X.

FROM
Prog.

Step
Trad Position Track

010 W 0 4 J

011 W 0 5 1

012 R 9 9 Y

013 Y 9 X

Figure 23

TO

Position

9 9

3 1

9 9

0 9

No.

Char-
acters

0

0

0

1

Control

5

1

0

0

Using the instruction modi­
fication method to perform
this operation, the instructions
shown in Figure 23 are used.

Instruction 011, place s the
10-digit field designation in
step 013, which transfers
the desired data to positions
00-09 of track X.

In addition to being faster,
the instruction modification
method is far more economical
in te rms of drum space, and
leaves the character selector
free for some better suited
purpose.

43

44

In the preceding example, the modifying data (sixth digit of the address) was
used to modify the appropriate instruction directly. Frequently, however,
this data must be adjusted slightly before modification. An "emitter" track
may be useful in solving otherwise perplexing programming problems.

Example 2

In Example 2, a billing application, a single-digit code, placed in position 99
of each item record, is used to designate the discount to be applied to the item
extension. The codes for the discount are as follows:

1 = 3%, 2 = 5. 5%, 3 = 1. 5%, 4 = 6%, 5 = 4%

Track Z

01

Figure 24

i ! !

These discounts are stored in
order in positions 01-10 of track Z.
in Figure 24. This is known as an
emitter track.

After the item record is sought
and transferred to track X, the
item extension is computed and
sent to the multiplicand track.
The four instructions shown in

Figure 25 are used to send the proper discount percentage to the multiplier.

FROM TO
No.

Skip

Prog. To

Step Char- Control Descri ption
Prog.

Trad Position Track Position
acters

Step

020 ><- 9 9 _ L ___ 9 9 0 1 5 Reset-Add item code to accumulator 9. - - ~-- ---- ----f-----

021 L 9 9 L 9 9 0 1 Double contents of accumulator 9.
--- ---- ---- - -+---

Q2_~ __ L 9 9 -- 2 3 2 0 2 Modify instruction 023 to select orooer discount ---

023 Z N 9 9 0 2 Multiply ext~nsion by discount.

Figure 25

Here, again, the character selector could have been used. It would have
resulted in a slightly faster routine (100 ms as against 120 ms), but would have
required six instructions, two program exits, two double distributors, and a
character selector. The programmer must decide in such cases whether the
20 milliseconds saved is worth the price.

Familiarity with instruction modification possibilities is valuable even in the
early stages of application planning. Some decisions made at this time are
difficult to change later on, because of printing schedules, etc. The alert

programmer can frequently suggest product codes, for instance, that will
result in time savings in the RAMAC program.

An example of this is the following billing application in which each item
belongs to one of eighteen product classes. For each item ordered, two
records must be updated: the item record and its associated 50-character
product class record. Because of the very high output volume requirements,
it is decided to batch the input orders. Before the processing begins, a
header card will transfer the product class records to drum tracks A through I.
(It is estimated that less than 100 instructions will be required on the drum.)
The updated records will be returned to the file when processing is complete.

This scheme will speed up the process by requiring only one seek instruction
per input item instead of two. It remains to assign the eighteen product class
codes, one of which will be a part of each item record. For this purpose, it
appears that the 18 pairs of digits, A4, A9, B4, B9 ... 14, 19 will constitute a
code assignment which results in efficient programming. If the appropriate
product class code is stored in positions 98 and 99 of each item record, the
program might be as follows:

The item record is sought, sent to track X for processing and returned to the
disk file. Track X retains all the item record data allowing the next step to
read as shown in Figure 26.

I D'og I FROM
TO Time ..

Char- Controi Description in miili-
Step Prog.

Trad Position Track Position
acters

Step seconds

060 X 9 9 6 2 1 0 2 The product class ~ode is insert_~iin_ ~t~ p 062
-- -----f----

061 X 9 9 7 8 4 0 2 The product class code is inserted i~ s! p 078
--~ ---

062 9 Z 4 9 5 0 The product class record is sent to a we rking t ack

Fig1.U'e26

Steps 063-077 process the product class record, and step 078, Z49--9 50,
returns the product class record to the drum.

In this example a careful choice of product class code enables steps 060 and
061 to modify steps 062 and 078 directly with the code itself.

45

46

THE PROCESS CONTROL PANEL

An exceptionally efficient machine program will depend upon the proper use of
both the stored program and process control panel. The proper use of a
program step can save process control panel space and operating time, while
a carefully planned and wired process control panel can save program steps and
also operating time. However, the machine program will only be as efficient
as the weaker of the two elements. Both must be skillfully combined to produce
an efficient machine program.

To make better use of the process control panel it is best to begin by under­
standing its functions fully. The process control panel is used to return to the
stored program once a program step has referred to the panel for a logical
decision. It is used to skip from one stored program step to another, to
initiate the input or output cycle, to start or halt processing, or to store infor­
mation on latch-type selectors. A means of communication is provided between
process control panel and the print and punch panels. Special uses of the access
arm can be obtained through the control panel. It will also control, in a limited
way, the mode of operation of the 305.

The logical devices that are available on the process control panel monitor the
data being processed so that the control panel functions just mentioned may be
selected by the nature of the data.

In learning to use the process control panel properly, programmers are
frequently confused by the apparent variety of hubs available. Actually, each
hub belongs to one of six categories. In the following listing of these categories,
two or more hubs internally connected together (o-oor~)will be referred
to as one hub.

1. Exit

An exit hub will emit an impulse 10 milliseconds in duration under specified
conditions. For example, Program Exit A emits an impulse following the
To cycle of a stored program instruction containing the character A in its
program exit position. Cycle Delay 7 -Out emits an impulse 30 milliseconds
after its In hub has received an impulse.

2. Entry (or Function)

These hubs will accept an impulse that will either return the program to
a stored program step or initiate a specific function. For example, Punch,
when impulsed, causes the machine to punch an output card. Record
Advance In causes the access mechanism to advance to the next sector on
the same disk tracks (4 to 5, 2 to 3, etc.). An impulse is emitted from
Record Advance Out (an exit hub) 30 milliseconds later. Other function

hubs include Print, stop, Feed Card, Type, Reset Stop, Program Entry
Hundreds, Tens, Units.

3. Logical Device

These devices include Accumulator Sign and Overflow, Blank Transmission,
Compare Selector, and Selectors. Each device is comprised of two or
more identical" sections." A section is a set of hubs, one of which is
called the In (or Common) hub. The remaining hubs (two or more) are
called "status" hubs, and have various designations, depending upon the
logical device to which the section belongs. The separate sections of a
logical device are electrically isolated from one another. The In
(or Common) hub of each section is at all times connected to one, and
only one, of its associated status hubs. The status hub to which the In
(or Common) hub is connected is determined by the status of the element
that controls this particular logical device. This" control element"
generally has a name similar to the device it controls. For example,
accumulator 1 is the control element for the accumulator 1 sign selector.
When accumulator 1 is negative, each negative status hub (-) of the
accumulator 1 sign selector is automatically connected internally to its
associated In hub. No two status hubs of a logical device are ever
connected together internally. * The compare selector is a logical device
having ten sections. Its control element is the compar-e selector which
is positioned by a RAMAC instruction having aI, or 3 in its last (tenth)
position, as explained in the 305 Reference Manual. The In hub of each
section is always connected to one of its two status hubs, = or -/:. Selector 1
is a logical device having two sections. The control element, selector 1,
is positioned by the arrival of an impulse at either its PU or its DO hub.
The common hub of each section is internally connected to the Normal (N)
hub if the DO hub was last impulsed, or to its Transfer (T) hub if the
PU hub was last impulsed.

4. Distributor

All distributors contain In and Out hubs. A single distributor has one
In and one Out hub and a double distributor has one In hub and two Out
hubs. An impulse received at the In hub of a distributor appears
simultaneously at the Out hub(s). An impulse arriving at an Out hub,
from a source outside the distributor, does not appear at the In hub of
the distributor. An impulse arriving at the Out hub of a double distributor
will not appear at its In hub or at the other Out hub.

* The character selector is a special logical device that does not conform to
the characteristics claimed above. It will be discussed separately.

47

5. Mode Switch

A mode switch is a pair of hubs that control the mode of a specified
RAMAC operation. For example, the File hubs, when connected, permit
data to be written in the disk file. \Vhen not connected, any attempt
to write in the disk file will produce a stop on a file interlock. Other
mode switches include ALe, ITI, and Inquire On.

6. Communication

These hubs provide a means of communication between the process control
panel and the print, punch, or typewriter panels. An impulse delivered
to a communication hub on the process control panel is transmitted to
the corresponding hub on the other control panel. For example, Punch
Communication 2, when impulsed, transmits this impulse to Punch
Communication 2 on the 323 Punch panel. Similarly, an impulse delivered
to the latter hub will appear simultaneously on the process control panel.

A full description of each of the control panel hubs is contained in the 305 Reference
Manual.

The following paragraphs discuss some of the collective properties of the hubs,
pointing out rules of operation frequently ignored, as well as useful properties
frequently overlooked.

The symbols and legends of each of the following diagrams are self-explanatory
with the exception of the convention used for distributors and program entries.
They are shown in Figure 27.

Single
Di stri butor

Figure 27

Double
Distributor

Out

Program Entry Units
--0 through --9

Program Entry Tens
-0- through -9-

Program Entry Hundreds
0-- and 1--

PROGRAM EXIT

Figure 28

Two or more function hubs may be impulsed simultaneously; however, any
impulse, wired to more than one type of function must be distributed to all
branches. Distributors allow an impulse to travel in one direction only, thereby
eliminating the possibility of back circuits or of an undesired function being
impulsed. In Figure 28, the distributor prevents Program Exit X from impulsing
Type.

PROGRAM EXITS

Copy In

Figure 29

INCORRECT

No attempt should be
made to deviate from this
rule. For example, it
may appear that the same
re sult can be obtained
if Program Exits X and
Yare wired through a
single distributor as
shown in Figure 29.
However, even if Type
is never impulsed from
another source, such a
connection can produce
electrical circuit
difficulties resulting in
improper operation.

49

50

In one instance,
an exception may
be made. Two
or more selector PU
(or DO) hubs may be
connected together and
treated as "one type
of function. TT

Thus, the
wiring in
Figure 30 is
correct.

Program
Advance

PROGRAM EXIT
A

Selectors

puN
/:2

Figure 30

If, however, it is later found that another program exit must pick up selector 2
only, the wiring must be revised as in Figure 31.

Figure 31

PROGRAM
EXIT

Selectors

When impulsing two functions simultaneously via a distributor, care must be
taken to avoid wiring improper combinations. For example, it is clearly
incorrect to impulse Program Advance together with Program Entry Tens 2
and Units 7. It is also wrong to attempt to position a logical device while at
the same time attempting to send an impulse through the status hubs. The
wiring of Figure 32 is incorrect because the status of the accumulator overflow
is being changed by an impulse passing through one of its status hubs. This
error can be corrected by wiring through a cycle delay before wiring to Drop
Out and Program Advance.

To obtain a program transfer to some desired step, Program Entry Tens and
Units must be impulsed simultaneously. Failure to do so will produce a
machine stop. The same result will also be obtained if Tens only or Units
only is impulsed.

When Stop is impulsed simultaneously with other functions, these other functions
will be executed prior to the stop. Thus, if on program step 028, stop is im­
pulsed together with Program Entry Tens 4 and Units 5, the machine will send
instruction 045 to the instruction register and then stop. The console lights
will indicate a stop on 045.

PROGRAM
EXIT

t __ A_e O_:OW
IN

Program Advance

Figure 32

INCORRECT

-5- --8

51

52

The remaining important rule concerning distributors is that the Out hub of
one distributor must not be connected to the In hub of another. An equivalent
statement is that an Exit hub must not be connected to a Function hub via two
distributors in tandem. Figure 33 is incorrect.

To obtain the results attempted in Figure 33, Program Exit A can be wired
through two double distributors to Print, Program Entry Hundreds 1, Tens 6,
and Units 5. Program Exit B will require two double distributors and a single
distributor to impulse Print, Type, Program Entry Hundreds 1, Tens 6,
and Units 5.

PROGRAM EXITS

A B

INCORRECT

Print Type

1-- -6- --5

Figure 33

An alternate method that is useful when distributors must be conserved is shown
in Figure 34.

Notice in Figure 34 that a distributor was not required when impulsing Cycle
Delay In. This is possible because the Cycle Delay In hubs are distributed
internally. However, if two impulses are split-wired into one Cycle Delay In
hub, and there is a possibility of a back circuit; either distributors should be
used, or the impulses should be wired to separate Cycle Delay In hubs.

There is no objection to the impulse of one Exit hub arriving at another Exit
hub (or hubs), whether filtered or unfiltered. This is illustrated in Figures 27
and 34.

PRO GRAM EXITS

A B

1-- -6- --5

Figure 34

The character selector is a very powerful logical device, in that many more
status hubs are available in each of its four sections than in any other logical
device section. The four sections are not, however, identical. The larger,
or alphamerical section, has one In hub and 48 independent status hubs.
Each status hub corresponds to one of the alphabetic, numerical, or

53

54

special characters used in the RAMAC. The three smaller sections each have
one In hub and 13 status hubs. The status hubs in the three smaller sections
differ slightly from other logical elements, in that one or two status hubs may
be connected internally with the In hub. This means that, on alphabetic
characters, the In hub will be connected internally with a zone hub and a digit
hub. For example, if the character "A" is stored in the character selector,
three hubs (In, 12, and 1) are connected internally. When two status hubs are
connected, one will always be a zone hub and the other a digit hub. No two-digit
status hubs, (1-9) can ever be connected together, nor can two zone status
hubs (12, 11, or 0) ever be connected together. Blank (BL) can only be
connected to the In hub.

Special characters, whose IBM card code numerical portion is 3-8 or 4-8, will
connect the zone designation and the upper punch only. For example, the
character % (0, 4, 8) will connect the In hub with zone 0 and digit 4. Care must
be exercised when storing special characters in the character selector. Consider
the following example. A program is developed in which Program Exit A is
used to transfer to step 100, 110, or 120, depending on whether the code in the
character selector is 0, 1, or 2. The other sections of the character selector
perform other functions. Program Exit Z is used in step 098 to transfer directly
to step 010. The panel is wired as shown in Figure 35.

PROGRAM EXITS
A z

1-- --0 -0- -2- -1- --0 0--

Figure 35

After the program has performed successfully for several days, a machine
stop suddenly occurs on step 098, because for the first time a slash (/) has
been stored in the character selector, internally connecting status hubs 0 and
1. When Program Exit Z emits an impulse at step 098, Program Entry
Tens 0 and Tens 1 become impulsed simultaneously.

A rllore frequent problem in utilizing the character selector is that of using
a card code to select a program routine. In a typical application, card codes
1, 2, 3, 4, and 5 are used to transfer to five different steps. All other card
codes are used to transfer to a "wrong card code" routine at step 134. The
character selector is wired as in Figure 36.

This method is effective only if a numerical card code is used exclusively. If
an alphabetic character should be used in the card code: the machine will
attempt to transfer to two different program steps simultaneously and a machine
stop will occur.

In those applications where numerical characters are not used exclusively in
the card code, the alphamerical section of the character selector can be
utilized or the cycle delay device can be used as a logical element (see
305 RAMAC Bulletin 52, Form 328-0659).

PROGRAM EXIT CHAR. SEL.

A

BL

To Step 115

oi-o----- To Step 120

To Step 064

To Step 072

To Step 097 To Step 134

Figure 36

55

56

Another solution to this problem is found in the following method. In this
method two additional program steps are required (60 milliseconds) and also
a section each on the compare selector and on the accumulator sign section.
Figure 37 illustrates the panel wiring and the program steps.

This method is based on the fact that the numerical digits, 1-9, are the only
nine RAMAC characters that both appear positive when read into the
accumulator and remain unchanged after passing through an accumulator units
digit. Any character other than 1-9 will cause the impulse from Program
Exit A to be diverted directly to step 134.

FROM TO
Prog.

Step
Trod Position Track Position

XXX W 0 0 - 9

xxx W 0 0 L 9

xxx L 9 9 W 0

A

~
ROGRAM EXIT

Accum. 9
IN

+

To Step 134

Figure 37

9

9

0

No.

Char- Control Description

acters

0 1 Store card code in character selector.

0 1 5 Reset-Add card code in accumulator 9

0 1 A 1 Compare accumul ator wi th card code.

Compare CHAR. SEL.

IN IN

12
0-0

11
0--0

o
0-0

To Step 064~

2
To Step 072~

3
To Step 097....0-=-0

~
~ To Step 115

5
~ To Step 120

6

The economical use of control panel features implies minimizing the number of
control panel components needed to initiate each function. The programmer
should strive to obtain as much use as possible from each panel feature used
with an aim toward eliminating redundant wiring. Usually, the over-all
problem is subdivided into parts by considering each Exit as an individual
problem. For example, Cycle Delay 8 Out, though closely related logically to the
circuit that impulses the In hub, is considered along with its functions as a
separate problem.

The most important technique in minimizing the number of control panel
components is the assignment of step numbers that favor control-panel wiring
(Figure 38). The best time to apply this technique is after the control panel
function chart (page 81) has been drawn. This chart presents the logical
branching requirements of the program in clear;; compact form.

In Figure 38, Program Exit A is used to test accumulator 1 e Each status hub
of the accumulator is used to enter the program at different steps. If steps
048, 055, and 060 are used as entry points the wiring would require three double
distributors. If, however, steps 042, 046, and 049 were selected as in Figure 38,
two double distributors would be saved. Program Entries 059, 069, and 079
would have worked equally well.

PROGRAM EXIT

A

-4- --9

Figure 38

Ace. 1
In

\
;

--6 --2

57

58

When two or more exit hubs are required to initiate similar functions, they
should be considered as one wiring problem. In such cases, distributors
and logical device sections may frequently be shared. This is illustrated in
Figures 39 and 40.

In Figure 39, Program Exit B is used to test the compare selector. On an
equal compare, a program advance occurs, and on an unequal compare the
program transfers to step 092. Program Exit C is used to test the blank
transmission. A "yes" on this selector causes a transfer to step 092 and a
"no" causes a transfer to step 057 . Each program exit can be wired separately
using three double distributors. However, combining the program exits
(Figure 39) saves one double distributor.

Figure 39

B

Compare
IN

-9-

PROGRAM EXITS

--2

Blank
Transmission

'N

-5- --7

In Figure 40, Program Exits X and Yare to perform the functions diagrammed
in the flow chart at the left. In the diagram showing the solution, both Program
Exits were wired to the same section of Selector 1 rather than two separate
sections.

Figures 39 and 40 illustrate two other considerations that are frequently dis­
regarded in process panel wiring:

1. When an exit hub, under some set of circumstances, impulses only one
type of function hub, a single distributor is not required in the path
(Figure 39).

2. In wiring logical device sections, it is not mandatory that the Exit impulse
enter at the In (or C) hub and leave by the status hubs. Wiring in the
other direction can frequently save sections or distributors (Figure 40).

Figure 40

Prog.
Adv.

PROGRAM EXITS

Prog. Adv.

The programmer should be careful not to use one logical device when another
would be preferable. In particular, the character selector is often used to
excess. For example, if a program is to transfer to a subroutine, when the
character in W99 is an asterisk, and to a program advance if it is any other
character, perhaps the first instinct is to use the alphanumeric section of the
character selector. Rather than connect the asterisk to the firs,t step of the
subroutine and all other status hubs to program advance, it is clearly preferable
to store an asterisk in some constant area, X99 for instance, and use the
compare selector to transfer the program. On the compare instruction,
W99 X99 01 AI, Program Exit A tests the comparison and on the equal
compare transfers to the subroutine. An unequal compare transfers to program
advance.

59

60

It is usually better to wire logical sections in "series" rather than "parallel. "
This practice will reduce the possibility of back circuits. For example,
Program Exit A is to transfer the program to step 040 if either Selector 1 or
Selector 2 is transferred; otherwise to step 080 (Figure 41).

Figure 41 is incorrect, as is evident when one considers what happens when
one selector is normal and the other is transferred. Figure 41B shows the
correct solution.

It is characteristic of complex board wiring problems that many alternate
solutions will obtain the same results. Many of these will be clearly
uneconomical; of those that prove economical, it will be hard to choose the proper
one. Of these solutions that are feasible to attempt, there will usually be two
extremes.

The first solution requires many distributors, but few sections of the logical
devices are involved. Frequently only one section of the device is necessary.
The second solution requires many logical device sections, but few distributors.

There is, of course, the possibility of intermediate or "compromise" solutions
existing. The programmer's choice must depend upon the panel components
available. To arrive at the best solution, it is best to diagram the several
possible solutions and, by comparison, select the best one.

PROGRAM PROGRAM
EXIT Selector Selector EXIT Selector Selector

1 2 1 2

T
~ToStep A A To Step

N
~

040 040
To Step To Step

080 080

INCORRECT CORRECT
A B

Figure 41

The first solution using many distributors but few logical device sections, can
generally be obtained directly from the function flow chart by merely placing
distributors in the wires that are connected to the function hubs (Figure 42).

As can be seen from Figure 42, the reqUirements are: one section of
accumulator 1, three double distributors, and two single distributors.

The second solution, using few distributors but many logical device sections,
is not obtained as naturally as the first solution. The results, however, can
be obtained with ease by the use of an auxiliary diagram and a series of four
steps. The notes enclosed in parentheses in the following list of the four
steps, apply to the example explained in Figure 42.

1. Distribute the exit impulse into a number of branches equal to the
maximum number of functions that must be impulsed (3).

2. Label the branches (Tens, Units, Selector Set),

3. In each branch enter a symbol for the logical devices that must control
that branch (accumulator 1 in each branch).

4. With reference to the logical requirements, label the output levels and
connect the logical devices back to the distributors, working from right
to left.

To
Step
056

Figure 42

To
Step
092

PROGRAM EXIT

A h Accu]ulato,

IN

+

o

-7- --3 -9- --2 --6 -5-

Sell
PU

61

62

The auxiliary diagram and the resultant wiring diagram are shown in Figure 43.

The requirements for solution two are: three sections of accumulator 1, one
double and one single distributor.

The auxiliary diagram can often be used to obtain the intermediate solutions
for inspection. These solutions are obtained by combining two of the branches
and replacing the logical element section(s) so saved with the required
distributors. In Figure 43 this is done by combining the two right sections of
accumulator 1, using a distributor to impulse Units 6 and the Pick Up of
selector 1 with the impulse from Plus. The impulse from Zero is wired through
through a distributor to Units 2 and Drop Out of selector 7. The impulse
from Minus is wired through a single distributor to Units 3.

PROGRAM EXIT

11.-_+_5

9

"'1..1----7

/I-~-6

A 2

'"r----3

/I----PU Sel.

DO Sel. 7

Figure 43

Ace.

IN

+ t 5el I

9~PU
o

Sel 7
DO

A more complex example is shown in Figure 44A. The first solution is not
drawn because it can be immediately derived from Figure 44A. The require­
ments for solution one are: one section of accumulator 2, one section of accu­
mulator 5, one section of selector 2, one section of selector 3 and six double
distributors. Figure 44B is the auxiliary diagram for the second solution
shown in Figure 45.

The requirements for the second solution are: two sections of accumulator 2,
one section of accumulator 5, two sections of selector 2, one section of
selector 3 and one double distributor. A close examination of Figure 45
reveals that the sections enclosed within the dotted lines are unnecessary,
because Program Entry Tens 9 is to be impulsed in every case. Thus, if these
diagrams can be drawn before step numbers are finally assigned, considerable
econom.ies m.ay accrue.

There is a final consideration concerning the process panel, as well as the other
RAMAC panels. An exit hub or distributor may be inadvertently subjected to
an electrical overload by wiring too many function hubs to it. Although the
ratings of these hubs are usually adequate, it is well to be aware of their limits.
These are available in the form of rating charts for each machine panel (see
Appendix C, Section 4) .

To
Step
092

Figure 44

A

I
083

63

64

PROGRAM EXIT

+

o

-9-

Figure 45

-5-

Selector
2

-8-

PROGRAMMED CHECKING

Accumulator
5

IN

--3 --2 --7

Selector
3

001 --0

As outlined previously, accounting controls must be established to assure the
proper functioning of the machine system and its related procedures. This is
a major type of check, and it is advisable to incorporate certain other checks of
a minor nature. The automatic checking performed in certain areas of the
machine accomplishes a considerable check on data transfers; however, pro­
grammed checks are suggested to place a reasonable check on other areas of
operation.

A check on the file access operation is one of the best over-all performance
checks for the machine. This is particularly true if indirect addressing is
used. A compare check between a file item identification number and the
input item control data proves all machine operations performed during the
process of locating a file item. This can be accomplished through one pro­
gram step and 50 milliseconds of time.

It may be wise to include the access position check at the very beginning of
operation. When the machine is received and placed in operation, a utility
program can be used to record the file addresses in all 50,000 record locations.
Then, on the initial file load, these addresses can be used for access compare­
check. Whenever a record location is vacated, the address of that location
should be retained in the record. Once this type of check is placed in use as
a standard operation, there is no problem of processing an incorrect record.

Some type of accuracy check can be used on program load routines; there are
several approaches to this check. A "hash" total check can be done by adding
the ten instructions on a program track into the ten accumulators (on one step),
and by then going through a series of accumulator folding operations to develop
a ten-digit total. Each program track is likewise added to develop a ten-digit
hash total that is compared for accuracy. The second method of using the hash
total principle is to develop a total in one accumulator using several selected
positions from one instruction per track. One such check uses track locations
60-63. Because position 63 includes the To address, the Alpha zone supplements
the check as sign control on the accumulator.

A less comprehensive check merely compares a single character position on
each program track against a corresponding check character.

There are three types of arithmetic checks that can be incorporated in any
program. They are:

1. Proof-factor type. This is a common type of check used in some warehousing
operations:

Cost + Weight + Selling Price = Proof Factor

Total Cost + Total Weight + Total Selling Price = (Proof Factor x Quantity)

The proof-factor value is carried in the item record.

65

66

2. Multiplying by complement of multiplier and balancing.

Example:

Actual Value Multiplication

8. 25 (Hours)
x .78 (Rate)
6.4350 (Earnings)

Complement Multiplication

8.25
x .22
1.8150

3. The reverse--arithmetic method.

Sum

6.4350
1.8150
8.2500

When a card is punched, plans should be made to punch out as much variable
record data in the card as card capacity permits. If opening and closing balances
are punched, these can be related to the transaction value for the purposes
of "off-line" checking, or for audit and record reconstruction purposes.

Control totals should be developed on all input data values wherever possible. The
305-developed totals are compared to external control totals in much the same
manner as with standard punched-card machines.

A method of document control is to serial number each document and add the
numbers to develop a control total. The total developed should equal:

(opening number + closing number)
Number of Documents x;....;;;...--~-------~---~

2

If the totals do not balance, either some items are missing or some extras
have found their way into the system. If only one item is missing, the difference
of the totals is the actual serial number of the missing item.

SYSTEM SPEED

To obtain the desired processing speed of a machine installation, certain
factors should be kept in mind. Perhaps the most common fault of programming
is the attempt to create a program that is designed to handle all types of input.

A program that is written to expedite the transaction (or input card) that occurs
most frequently should be favored. The shortest and fastest program possible
should be developed for this "main-line" item. This program should include
only those test points, data transfers, etc., that are essential to processing this
item, even if this approach tends to slow down the minor transaction routines.

The minor transactions generally account for only a small percentage of the
total input, but may create many extra programming problems. There is a
point beyond 'which it is not desirable to burden the entire program with a
few exception items. When this condition exists, a study should be made to
deterrnine if the iten1s should be processed separately to perlnit rI1axirI1urI1
program efficiency on the volume transactions.

Increasing the stored program speed by the use of block transfers and multiple
transfers cannot be overemphasized. These effective types of instructions are
the result of careful format design.

An important speed-increasing technique, with respect to the process control
panel, is to design each program exit to perform as much work as possible.
Where feasible, logical elements should be set up in groups, perhaps by
several instructions; then they can all be tested with a single program exit.
The time saved by eliminating a single program exit from a program can result
in significant speed increases. For example, in a program that will produce
60 output cards per minute, one less program exit can increase the program
speed by 2 percent.

Planning input, output, and file-seeking operations, so that the other units of
the RAMAC are kept in use during the time these mechanical units are in
operation is extremely important. Although various machine units such as
card reader, punch, printer, access mechanism, etc., can be operated
simultaneously, they cannot operate completely parallel because information
must flow from one unit to the next. However, the program should be planned
to have all units operating as independently and continuously as possible. The
printer and punch may be producing output for card 1, while the processing
and file areas are processing card 2, and the reader is reading card 3. It can
now be seen that, to keep all units in operation and to develop maximum system
speed, the time cycle for each area must be approximately equal.

The K, S, and Q tracks act as buffers for the reader. punch/printer, and
typewriter, respectively. Processing can proceed independently of these units
as long as processing reference is not made to one of these three tracks, at a
time when the associated unit is in operation. When this does occur,
processing will be interlocked (i. e., the instruction will not be executed)
until the input (or output) cycle terminates.

One other very important speed-limiting condition is the use of the typewriter
for more than an occasional exception type-out. The typewriter presents no
Significant delay except on successive programmed type-outs. Then the entire

67

68

machine system is held up until the first type-out is completed so that the
second message can be transferred to the Q track for typing. Therefore,
if programmed type-out is being considered, it should be determined how
often the type-outs will occur and what effect this will have on the over-all
system speed. If programmed type-outs are used, another point to keep in
mind is the addition of the addre ss keying time on manual inquiry.

OPERATING THE 305

MANUAL INQUIRY

The console typewriter is intended primarily for inquiry print-out and for
operator communication with the machine. It may also be used for a
programmed exception print-out. Frequent exception print-outs are not
recommended because this reduces the speed of the entire machine system to
that of the typewriter.

When an inquiry is made with the ITI hubs not wired, the 305 processing
program is not affected until the complete five-digit file address is keyed in.
The file address is also typed on the keying operation. The 305 is interlocked
on a manual inquiry for approximately 150 milliseconds, plus the file access
time to locate the desired record.

A small control panel is provided for typing format control. Three basic
formats are provided for inquiry print-out. Additional format variations may
be programmed on the control panel by analysis of control characters on the
Q track.

A cross-reference index is required for manual inquiry when an indirect
address system is used. At the time the file is loaded, cards should be punched
containing the control data and the internal machine address. These can be used
to produce the index.

An inquiry operation can be performed from punched input cards. A card code
is assigned and a short, processing routine developed to process an inquiry.
Because the standard programs for address conversion are used, the cross­
reference index is not required for card inquiry. The machine is programmed
to create whatever type of output reply is desired. If the typewriter is used for
print-out, the format is controlled in the same way as any other programmed
print-out.

When the typewriter is used for any programmed print-out, the ITI hub on the
305 panel must be plugged if manual inquiry also will be used. This prevents
a conflict of use between the program and a manual inquiry. Otherwise, the
operator could be keying-in (and typing) a manual inquiry address at the same
time the machine found the need for a programmed print-out. With the ITI
plugged, the operator depresses one of the three format keys to signal a request
for inquiry. Then, the operator must wait until the inquiry light signals that

69

70

the machine has reached the inquiry point provided in the program. Now
the machine is interlocked while the five-digit file address is keyed and the
file record located. Thus, keying time is added to manual inquiry time
if the ITI interlock is plugged. An incomplete keying operation will interlock
the machine indefinitely when ITI is plugged.

TEST DATA

Plans should be made to run test transactions through the machine each time
after the power is first turned on, and whenever it is set up to run a different
program. The test situation should use all areas of the machine and test as
many conditions in the program as possible. Pre-calculated values should
be established to check arithmetic results, card reading, punching, printing,
and so forth. The test should be designed to use at least one instruction from
each program track and refer to all other drum tracks. The end of the test
should clear all areas ready for actual processing.

CONSOLE OPERATION

The console manipulation of the 305 allows the operator to alter source data.
Also, it is possible to modify program instructions or, in some other manner,
change the result of the program. This type of operation is necessary for an
in-line data processing machine. However, a problem could develop if these
operations are not executed in the proper manner. Therefore, it is imperative
that console procedures be developed and program information be provided
that will reduce the operator's function to a series of planned operations.

No program condition that can properly be done by internal programming should
stop the machine and require operator attention. The program should be designed
with a series of planned re-start points. If some program difficulty is encountered
along the way, it should only be necessary for the operator to return the program
to the last-passed re-start point to resume operations.

Situations probably will develop where human decision is required. It would
be advisable to have the programmer or supervisor take care of these conditions.
Even so, the person who handles these will need a thorough knowledge of the
machine operation and complete program information, as well as a clear
understanding of the console controls.

The program data must be complete and kept up to date. The following documents
shOUld be available to the console operator:

1. A complete detailed listing of the program instructions; IBM Form
X26-6328 or X26-6343.

2. .I.fl.1o. complete set of track layout diagranls; IBM Form X26-6269.

3. A wiring diagram for each 305 control panel program exit; IBM Form
X26-6343.

4. A listing of all selectors, their purpose, pickup and drop points and
where used; IBM Form X26-7502.

5. A 305 control panel function chart.

6. Detailed wiring diagrams of the 323, 370, and 380 control panels;
IBM Form X26-6329.

7 . A detailed block diagram of the program.

8. A 370 planning and spacing chart; IBM Form X26-0636.

71

72

MISCELLANEOUS

COMMON MISTAKES

The following are some of the most common mistakes made during the course
of programming or operating the 305 RAMAC:

1. Wasting machine time by processing on tracks K, S, and Q, or by not
properly overlapping the performance of the mechanical units.

2. Failing to initialize machine components before use; i. e., not blanking
the drum tracks when initially necessary, not resetting a selector before
testing or not dropping out the accumulator overflow selector before
testing, etc.

3. Using an R or L in the To portion of a compare instruction.

4. Comparing with data on track K, during the processing of the last card
or single cards.

5. Failing to reset accumulators 0 and 1 before multiplying.

6. Planning inquiry for the wrong place in the program.

7. Making changes in the machine program, without updating data sheets,
program cards, etc.

8. Not identifying modified and modifying instructions to enable easy manual
reference and alteration.

9. Taking constant data out of instruction. If instructions change relative
pOSition, wrong constant data will be used.

10. Using machine components through communication channels without due
regard.

11. Using other than (b)99 to blank a track.

12. Reading into other than position 99 of track V.

13. Debugging program with file interlock plugged. This allows data to be
written in the file.

14. Not setting alteration switches correctly.

15. Leaving the test lock on inadvertently.

DOCU:NiENTATION

The following pages Hiustrate the documents mentioned in the section,
Programming Practice, page 27:

Pages

1. Detailed Flow Chart 74-80
2. Control Panel Function Chart 81
3. Example of Record Layout 84
4. RAMAC Program Instruction Sheet 85-86
5~ 305 RAMAC Selector Assignment Chart 87
6. Example of Format Design and Multiple Transfers 88

73

74

Note: Cards out of
sequence or
impropf~r start.

Note:

Cord
Codes

fo,
Entry

Note: Wire "copy out" to pick
up selector 4. Program
199 is executed in
each goup
co~tained in set-up
cord.

Detailed Flow Chart
{Pages 74 through 80}

Continued
Page 75

Continued
Poge 76

Cords out
or sequence

Continued
Page 76

AIIOthe,
Codes Invalic

From
Page 74

NOTE: Processi ng out
of sequence

From
Page 74

From
Page 74

75

76

NOTE: Invalid item number

item number not in file
(innif)

NOTE,
On This Step.

PARTIAL
SHIPMENT

& BACK
ORDER ROUTINE

NOTE: 1st Unequal Compare: Re-randomize
and Re-address

2nd Unequal Compare: Access Error
(Acerr). Write Signal on
Typewriter and stop.

Should Not Be Normal
On This Step.

~~~t~~~--------------------------------------~ 
~ 

77 



78 

From 

Page 76 



NOTE: Non Compere 
on Store to 
the File. 

Continued 
Poge 80 

Accumulators 
08 09 

83 96 

79 



80 



THE CONTROL PANEL 
FUNCTION CHART 

Figure 46 

81 



82 

THE CONTROL PANEL FUNCTION CHART (Figure 46) 

yl 
~33 - 0381 

The chart is usually made by reference to 
the detailed block diagram, as follows: 

One block is used for a series of program 
steps leading to a control exit. In this 
example, program steps 008 through 011 
are simple transfers without control-exit 
codes. Step 012 contains a "C" control exit. 

Lines entering a block indicate re-entry at 
the lowest numbered step--in this example, 
step number 033. 

This symbol is used for function-entry hubs 
on the 305 control panel. 

The circles indicate control-panel function 
exits. 

This example would be interpreted as 
follows: 

step 025 through 028 are data transfers with 
normal sequential advancement. 

Step 029 contains a control exit code "H" 
which stops the program advancement and 
shifts control to the 305 control panel. 

Exit "H"is wired to test the upper set of 
points on selector 5; if transferred, re-enter 
to step 039; if normal, program advance to 
step 030. 

Step 030 is a simple data transfer. 

Step 031 contains control exit I, which is 
wired to test Blank Trans. ; if "no" pick up 
selector 6 and re-enter at step 033; if "yes" 
program advance to step 032. 



Step 032 contains control exit J, which is wired to drop out selector 6, feed card, 
and program advance to step 033. 

Steps 033-038 are data transfers. 

Step 039 is a data transfer with a control exit A. 

An arbitrary step number assignment is made initially, and the control panel 
function chart is made using these numbers. The following rules should be 
followed when making the chart: 

1. Keep chart small and on one piece of paper, if possible, so entire 
program can be visualized easily. 

2. Segregate major routines so they are clearly separate. 

3. Build sequence of blocks in a straight line down the paper. 

4. Keep lines straight and cross-overs to a minimum. 

5. Use standard symbols so others can interpret the meaning of the chart. 

Several re-arrangements and re-drawings may be necessary to develop the 
most useful and clear chart. 

After the chart is completed, it can be used: 

1. As a check to see that all programs follow the correct path and that there 
are no "loose ends. " 

2. To present a clearer picture of the over-all logic of the program. This 
may show possibilities for improvement. 

3. To enable others to develop quicker understanding of programs when 
assistance is required, especially the Customer Engineer and Sales 
Assistance personnel when debugging programs. 

4. To develop best wiring conditions on 305 control panel to: 
a. make best use of control panel features. 
b. determine distributor requirements. 
c. re-assign program steps for minimum wiring. 
d. eliminate control exits used only to connect a broken series of 

program steps (by program step re-assignment). 

83 



IB~ 305 RECORD LAYOUT FORM 
APPLICATION _________ D_IS_K_F_IL_E_ST_O_R_E_D_R_E_C_O_R_D_S ______________ DATL ____ _ 

Printed in U.S.A. 

INPUT/OUTPUT LAY OUT (CD. COLS. OR PRo POS. ) 
-----

ACCUMULATOR, MU LTiPLICAND OR PROG. SECTORS 

o 
Ill: o 
~ 
Ill: o 
o 
~ 
:::> 
,; 
:::> 
u 
u 
< 
'><I!-
U 
< 
Ill: 
I-

~-
< u 

--- ----------

CUSTOM ER RECORD 

... -

ITEM RE CORD 

--.-

TERRITO RY RECORD 

SALESM AN RECORD 

-- ---

- --

ADDRESS INDEX RECORD 

--.~ 

- --r ACCUMULATOR, MU 

L I~PUT/OUTPUT LAY 

LTiPLICAND OR PROG. SECTO~S 
--

... 

OUT (CD. COLS. OR PRo POS. ) 
----- ----

Figure 47 

U 111111Ll~11 I ! I I I ! I~ 
I I I ! U III~IIIIIII I I I~I I I I I II I II~I II I I I I I I I~ I I I I I I I I I I~I I I I II I I I I~I I ! I 

0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I B I 9 -~ 
I 

~ Fc 
!LasL 

s::l t!:.rans . 
Cust. 0 ~ Credi Current 

~ No. Name Address City and State ~~ !: 
rn 

LimitP: AIR 
'"' ~ ~ ~ Balance 

I d i I d I i I I I I I ~J+- I 
I I 

I I I I II, I I II I I I I III I II I I I I I I I I I 
I 

~.-LJ I I I I I I I , , I I I I I I I I I I I I : I I I I 

i' i ' 5 6 rn ~ ~ · ':' 

~ 
o 0 

~ 
0 , 

Item Unit Unit Unit Prices On ~ 0 Sales This Period 

Number Description Unit wgt. Cost Zone ZO""I ZOM f.J Hand a ~ If Units Cost Price 
1 ci [E :> ..... 2 3 Balance ~ .!:llr~ 

j~~~:: IIJII I II I I I II I I I I 
~ 

II IJI I I II II I I I II I I I I I I I I I, I I I I I I I ! II I I I I ILJ. I I I ..ll 
I J-1 

'~ , 3 1:1 5 ;1 7 · , 
0 0 0 0 0 

Sales Last Year Sales This Year Terr. Total Sales 
No. Territory Last Year Period Y-T-D Period Y-T-D 

I II I I II I I I I I II I I I I II I I I I I II I I I II I i I II I I I I II I I I I I II I I I II IIIUIIi I II I I I I I II_LI I I I I I 

~ 
; , 3 Id 5 ;1 1;1 :1 ;' , 

0 

I~ 
0 Com£nissions 0 

Total Sales Last Year Sales This Year 
, 

Slsmn. Salesman I Ea~d I Paid 
Sales 

No. Name Earned this this Last Year Period Y-T-D Period Y-T-D 

II I I I I 
"f§< IY- T- D perird Period 

I I II II II I II II I I I I I I I I I II I I I I I I I I I I II, I I I I I I I , II I I I I I I I I l...l 
~ I ; , J I ~ I , 6 ;1 · , , 

0 0 0 0 0 0 , 

~I:::+'" II", II I I I I I II II I I! ! I I I I I 
I I 

I I I I I 1111 II! 111111 I I I I I U I I II I I I II I i I I I ~ I II I I I I I I I , 
~ I ~ I 5 ;1 · , , 

0 0 0 0 0 , 

Inow Item 
Addr. No.1 2 3 4 5 6 7 8 9 

'.Jill III IIJI..lI UI I I I II I I I II II I I I I I I I I I 
I 

I I I I I I III I I II I I I I I I I I I II I I I I I I II I I I I I I I I 
0 ; ~ , i ' :1 i ' ;1 ~ I :1 :1 ; 0 

I 
I I I I I II I I I II I I I II I I II I I ~ I II I I I I II 1:1 I I I II, I I I I I I I II I I 1111111 :if I I I I 

I 
I I ,1...l' I dlll' 1,1 I II II I_U; I I I I I I 

01 ; , 
i' 6 · 0 0 0 0 0 0 

~..l I I II I I I I II I I II I I I I II I I II I I I I II I I II I I I I II I II I I I I 1" 
I II , 

I I I" 
I! I I I I I" 

I II I I , I I' , I II , I I I I" ,: I ,_Ll.... 

! I I I I I I I I ... ~ 0 1 2 3 4 5 6 7 B 9 
I 

~I I I I I I I I I~ I 111llll~ III 11 II~ II I 11111 I 1:1 I I II I I I I I~I I I I I I I I I I~I II I I I I I I I~I I I I I ! I I ! I~ I I 
I 



IB~ 305 RAMAC PROGRAM INSTRUCTION SHEET 
® 

Printed in U.S.A. 

Application: ___ E_X...:.AM~...:.P-=L:.=E~ _______________ _ Date: _____ Page ___ of __ _ 

Routine: ________________________ Written by: ____________ _ 

PROGRAM LOADING INSTRUCTIONS 

FROM TO TO 
PROG. NO. CONTROL DESCRIPTION PROG. 
STEP TR. POS. TR. POS. CHAR. STEP 

Compare customer number on track W with that on 
001 W 0!5 S 0:4 o j5 1 

Track S i 
Restart: Reset and Restart on Step 001 

I I 

~;~~~~:SSt~trt 0 

Seek customer record 
002 W o i5 J 9i 9 o i 5 

Restart: Reset and Restart on Step 002 

~;Oegc:!e;~;rt D 

Transfer contents of Track W to Track Y 
003 W 9 :9 y 9:8 9 !9 

I 

Restart: Reset and Restart on Step 003 

~rho~~~!es't~rt D 

004 9 : 9 L 9;9 OJ 0 5 Reset all Accumulators 

I 

Restart: 

~r~~~~!es't~rt D 
I 

005 K 9 19 9 :9 0: 0 1 
Transfer Data on inout track tn Trn,..k W 

W 
(1 ) Drop-out Selectors 8 and 9 I I 

I I I 

Restart: Reset and Restart on Step 005 (2) Test Compare - Eoual - Stoo * 

* Indi cates cards out of seouence Unequal - Test Selector 1 

Correct and Restart on Step 000 Normal ---- 006 

~~Oegcr~!es':~rt 0 Transferred ---- 007 

Figure 48 

85 



1+1111+111 
: 11 0 1 I I 10 1 I IoI: ~ IoI 

: I::: 0 0 

a./ 0' 0 

Figure 49 

86 

PROCESS CONTROL PANEL 
(IBM 305 RAMAC ) 

y Z 0 I 2 ~ ~ ~ ~ ~, ~ ~I,1 I~I , I I Y ':' i ' i I l'N- OHflT'lFiLE 
6 col, 6 , 6 6.0 0' 0 9 

o 0 (:leo: 

P::::;=:=:;Z~:r-=~ , 0--0--0---0----<) ~~T ! : t ! 
6-__ 7 ___ 8_'_9_ 

I ! o 0 
+ ' 

6 6 6 

cINe GINo 

OTOoooooo 

o 0 c 0 

a 0 0 Col 

9 '1 r I : r c 
~~30--'N--O -6

4

0

0",01 
o :J I) 0 Cl 

Ii 
o cI 

'; 9 9 Y ? 12~1 

I 6 d 1 I> I 1 "I OuT 
o 0 0 .) -.) 0 n 

o 0 0 0 a 0 " 



IBM PrintedinU.S.A. 
305 RAMAC SELECTOR ASS IGNMENT CHART 

Application: __________________________ Page: ____ of ___ _ 

Written by: ___________________________ Date: _______ _ 

I SEt 
PROG. PROG. 

FUNCTION PURPOSE OF SELECTOR NO. NO. EXIT 

II 
1"''1 A Digit 1 through NIT of Sel. 4 Transferred whenever a Type 1 vv pU: 

00 A DO: Digit 4 through NIT of Sel. 3 {Drop Ship Address} card has been 

II T: To SteP 06 present 

N: To Step 07 
1 05 1 c: 

T: To Step 23 

N: To Step 01 

22 6 c: 

00 A pU: nioit 2 throlloh NIT of <:;el 4 Transferred whenever a Type 2 
00 A DO: Digit 4 throu~h NIT of Sel. 3 (Mi sc. Data) card has been present. 

I 
T: PU $-:z, DO SA; go to $teD 25 I Controls printing when a Type 1 

Stop (cards out of sequence) card has not been i ncl uded . 
I 

N: 

I 2 00 A c: Digit 3 Checks card sequence that a No. 2 

T: To Step 17 card precedes a No. 3 card. 

N: To Step 000 
16 5 c: 

00 A pU: Digit 3 through NIT of Sel. 2 Controls sequence of input cards. 
00 A DO: Digit 2 through NIT of Sel. 4 No. 4 card must precede a No. 3 

T: PU 54, DO 1 and 2, Go to Step 101 card. 

N: Stop (cards out of sequence) 

3 00 A c: Digit 4 

T: 

N: (Unused) 

c: 

00 A pU: Digit 4 throuah NIT of Sel. 3 Controls sequence of input cards. 
00 A DO: Digit 3 through NIT of Sel. 2 No. 4 card must precede a No. 1 

T: PU S 1. To Step 01 or No. 2 card. 

N: Stop (cards out of sequence) 

4 00 A C: Digit 1 

T: D03 PU 52. Go to Step 18 

N: Stop (cards out of seauence) 
00 A c: Digit 2 

46 I pu: Controls automatic re-randomize and re-49
52 ~ T DO: 2 conditions both thrnllnh <;",,1 17 Nil seek when file record fails to compare with 

T: Go to Step 37 input card. 

5 N: Go to Step 30 

29 B c: 

T: Go to Step 47 

N: Go to Step 45 
44 H c: From I compare 

Figure 50 

87 



IBJt1 305 RECORD LAYOUT FORM Printed in U.S.A. 

APPLICATION 
~ ___________________ DATE: ____________________ __ 

lINPUT!OUTPUT lAYOUT (CD. COlS. OR PRo pas. ) 0 
1 ! 

1 I ',2 
I ;0 0 I 0 

I ACCUMULATOR, MULTIPLICAND OR PROG. SECTORS 0 1 

Track W 
(Contains data from 

input card) 
I, I J 

Ii I , 
c 

Track W 
(After instructions 

OJI and 012 are 
executed) I I I 0!019003 

I; 0 
~ 

Track V 
0 (After Instruction 
0:: 013 is executed) 0 
~ I I , ' I, 0,091 003 
0:: 

Track B 
0 ~ 

0:: 
0 

0 (Contains data from 
0:: file record -8 instruction 014) 
~ I ,_It Ii i I I ::E I 

:::l 0 , 
V 

0 0 0 

V 
Accumulator Track -< 

8 

Accum~ators 

~- (After instruction 
V 015 is executed) -< 
0:: I I I i I I l- I I 

0' ~ ) 
0 " 

0:: 
-< Accumulator Track 
V (After instruction 

016 is executed) 

I I I I I i I I 
0' ~ 

I) 

Track B 
0 0 

(Now contains up-
dated data to be 
returned to the File) 

I, I i i 

I, c I; 

508 

(See Instructions on next page.) 

I I I I 
I ACCUMULATOR, MULTIPLICAND OR PROG. SECTORS 0 

\ 

1 ! 

lINPUT!OUTPUT lAYOUT (CD. ,COLS. OR PRo POS. ) 0 I 
I 

I 
i I! I 121 

i Ii 
I 

I I :0 1 I I I I 101 

FROM TO 
Prog. No. 

Step Char- Control 

Trod Position Trod Position 
octers 

011 W 6 9 W 8 9 0 3 

012 W 6 6 W 8 5 0 3 

013 W 8 9 V 9 9 0 7 

014 R 9 9 B 9 9 0 0 

015 B 9 9 L 9 9 3 0 5 

016 V 9 9 L 9 9 3 0 

Figure 51 017 L 9 9 B 9 9 3 0 

88 



'SPECIAL FEATURES 

The following are special features that are available for the 305 RAMAC. 

Additional Disk Storage 

One additional IBM 350 Disk Storage Unit may be attached to the IBM 305 RAMAC 
to increase storage capacity from 50,000 to 100,000 (100-character) records. 
The 50 additional disks, which are housed in a separate frame similar to the 
present 350 Disk Storage Unit, use addresses from 50000 to 99999. One common 
address register is used for both files. Programming remains the same as with 
a single disk storage unit (see 305 RAMAC M Bulletin, Form 328-0768). 

Dual Access 

One additional access mechanism is available for each IDM 350 Disk Storage 
Unit attached to the 305 RAMAC system. With the addition of the second access 
arm it is possible to have one access unit in position for reading or writing on a 
record while the other unit is moving to the next record. Dual access is 
particularly advantageous in applications where processing has not been 
continuous because access time for an item exceeds the amount of processing 
time required (see 305 RAMAC M Bulletin, Form 22-7505). 

Processing Drum Tracks 

Four additional processing drum tracks are available for the 305 RAMAC. These 
four additional tracks: U, /, ., #, function in the same manner as the standard 
working storage tracks W, X, Y, and Z. See 305 RAMAC M Bulletin, Form 
22-7506. 

Program Exit Spl it 

The double program exit hubs can be split and placed under selector control 
so that either the upper hub or the lower hub (but not both) will emit the 
corresponding program exit impulse. This, in effect, doubles the number of 
program exits available on the process control panel. See 305 RAMAC M 
Bulletin, Form 22-7506. 

89 



90 

Automati c Division 

With automatic division the 305 Processing Unit can divide much more rapidly 
than when programmed division is used. Maximum length of the divisor is nine 
digits, of the dividend 19 digits, and a quotient of up to 19 digits may be 
calculated. However, the sum of the number of digits in the divisor and quotient 
must not exceed twenty digits. See 305 Reference Manual, Form A26-3502-0. 

Dual Process 

Two IDM 305 RAMAC systems may be attached to the same 350 Disk Storage 
Unit(s) to form a completely new system configuration. A RAMAC with dual 
system control is essentially two complete RAMAC systems, except that both 
systems share the same disk storage unit rather than each operating with its 
own individual file. The two systems are independently controlled and their only 
connection is through the shared 350 Disk Storage Unit. See 305 RAMAC M 
Bulletin, Form G26-3500. 

IBM 382 Paper Tape Reader 

The IDM 382 Paper Tape Reader is available as an alternate input unit for the 
RAMAC system. Tape is read at the rate of 20 characters per second and is 
written on the tape input track in the same sequence in which it is read. How­
ever, rearranging the order of data on the input track can be accomplished 
with a special skip control feature. Paper tape input can be used separately 
or in conjunction with card input. See 305 RAMAC M Bulletin, Form G26-3501. 

IBM 381 Remote Printing Station 

As many as four remote printing stations may be attached to each IBM 305 RAMAC 
to provide typing facilities. Each station may be located as far as 40 feet 
from the 305 system; however, a customer may install and maintain cable 2, 500 
feet in length to extend the location of the station(s). See 305 RAMAC M Bulletin, 
Form G26-3503. 

Input Rearrangement and Input Analysis Features 

Input rearrangement and input analysis are companion features available for 
the IBM 305 RAMAC. The purpose of these features is to save program steps 



formerly required to organize data after entry into the system and to analyze 
card codes. See 305 RAMAC M Bulletin, Form G26-3504. 

IBM 407, Model R 1 and R2 

An IBM 407 Accounting Machine may be attached to the IBM 305 RAMAC. 
Ability to use the 407 on-line with the RAMAC not only increases the printing 
ability of the RAMAC system but also provides additional accounting and 
document accuracy controls through on-line use of 407 counter capacity. 

The 305-407 may be used either on-line as a RAMAC printer-accounting machine 
or off-line as a normal 407. With a minimum of selection, the same control 
panels may function either on- or off-line. The 305-407 is available as a 
M:odel Rl or :M:odel R2, equivalents of the 407 Al and A2 in capacity. See 
305 RAMAC M Bulletin, Form G26-3505. 

91 



92 

APPENDIX 

1. Assembly Programs and Symbolic Programming 

The process of converting the English language instructions, as described on 
pages 27 to 29, to the coded language useful to the 305 RAMAC, may occasionally 
become somewhat involved. It necessitates reference to all documents 
prepared by the programmer, including the detailed flow charts, track layouts, 
and record layouts. This method of coding may sometimes produce clerical 
errors. Usually, the manually-coded program is not relocatable; that is, it 
cannot be executed from a different section of the processing unit without 
being manually changed. Another difficulty arises when instructions are 
inserted or deleted after a program has been coded. In that case, all 
instructions that refer to other instructions must be changed appropriately. 

Symbolic programming is the writing of program steps in a language similar 
to that used in the flow chart. Instead of using the low-order character position 
and number of characters to designate a field, a name or symbol is used. The 
only difference is that the wording used is somewhat restrictive. Program 
steps can be assigned names and referred to as such. There is usually a 
mnemonic relationship between the name given the information and its use. 
Thus, it is easy to tell what data is being acted upon. Because there is only a 
relative relationship among symbolic instructions, routines may be relocated 
and program steps inserted or deleted. 

The assembly program enables the system to translate a symbolic program into 
machine language, and may reduce the clerical effort associated with coding a 
program manually. If, after a program is coded, it is modified in any way 
(steps modified, relocated, inserted or deleted), it can be recoded by 
reassembling. The input consists of cards containing symbolic program steps. 
The output consists of a listing of the symbolic program steps and their trans­
lation. The programmer may also have a description of the program exits 
appear on the output sheet. This document, prepared by the RAMAC, contains 
all of the information normally exhibited in the detail flow chart (see pages 74-80). 
A deck of self-loading, one-instruction-per-card load cards is punched out. 

2. 305 Trace Programs 

There are several methods by which a stored program and its associated 
process control panel can be tested to determine whether they are correct. 
One is to let the program run at normal operating speed and check to see that 
final results are correct for the input data. A second method is to step the 
machine through the program one instruction at a time and check the results at 
various points in the program. A third method combines the advantages of the 



first two. That is, it allows the same amount of detail to be obtained as with 
the single-step hand checkout method, and still allows the program to be 
traced at normal ope rating speeds. This third method is known as "tracing. " 
Its purpose is to interpret the program being debugged, one instruction at a 
time, and then to record the results in a readable form. 

For the 305 RAMAC, two trace programs have been prepared. One program 
traces the stored program portion. The logic is artifically imposed by the 
programmer when he indicates the program steps that are to be performed as 
one block of instructions and those which are to belong to the next block of 
instructions. For example, if the data being considered would normally cause 
program steps 010 - 015 to be performed, and then steps 041 - 053, etc., the 
programmer would supply these step numbers to the trace program. These 
steps would then be traced in the order indicated at the rate of 650 instructions 
per hour. Thus, the logic has been supplied without being performed through 
the program's control panel. This means that the stored program portion of 
the machine program can be traced and checked without ever wiring the control 
panel that would normally go with the program. 

The second program allows the control panel to be traced by the RAMAC, 
independent of the stored program. This is accomplished by preparing a 
list of the program exits that are to be wired. For each program exit, the 
conditions of the logical elements are indicated. For example, accumulator 1 
may be minus, a Z in the character selector, and the compare unit at "equal." 
These would be recorded on a form with the program exit and the condition of 
all other logical elements. This is done for every set of conditions for every 
program exit to be traced. The board trace uses this data to set up the 
conditions and actually performs the program exit. The program step number 
to which control is sent by the control panel is recorded by the trace program. 
When all program exits have been tested; the program exit, its setup conditions, 
the return point, and other pertinent information are printed by the RAMAC. 
Thus, an entire control panel can be checked out at the rate of three to four 
program conditions per minute. 

3. Address Conversion Techniques 

The following are a few of the simpler techniques used in indirect addressing: 

a. Divide the control data by the range of record locations assigned, and 
use the remainder as the disk file address. 

Example: To form a random address for file item 967588993 where 5, 000 
records are assigned to locations 35000 - 39999: 

93 



94 

Modify range to 5001 (The range must be modified to an odd number.) 
Divide: 9675889993';' 5001 = 1934791 
Remainder: 00202 
Add: 35000 
Disk Address: 35202 

Using this method, item 9675889993 would be assigned file address 
35202. The advantage of the above method lies in the fact that every 
digit in the control data contributes to the remainder and the remainder 
is properly scaled. In cases where this method has been employed, the 
resulting addresses have been randomly distributed. 

b. Cross Indexin-g 
This is done by punching the RAMAC address directly into the transaction 
file from a central index. 

c. Fold the Control Data 
Split the identification number, and add the two parts. Repeat this 
operation until the sum is a four-digit number that can be used as a 
disk file address. 

Example: To derive a random address for file item 351134186, split 
the number into two parts: 

351134186 = 35113 4186 

Add the parts: 

35113 + 4186 = 39299 

Repeat the operation: 

39299 = 3 + 9299 
3 + 9299 = 9302 

- 5 
4302 

Thus, 4302 becomes the file address for item 351134186. 

d. Fold the end digits into the middle digits of the control data. Select 
the first 1/4 of the digits of the identification number and the last 1/4 
of the digits. Add the first 1/4 of the digits and the last 1/4 of the digits 
to the middle half of the identification number. If necessary, this operation, 
also, may be repeated to give a number suitable for use as an address. 



Example: To derive a random address for file item 21642186, select the 
first 1/4 and the last 1/4 of the digits: 

21642186 = 21 + 6421 + 86 

Add these selected digits to the middle of the identification number in 
this manner: 

6421 
86 

21 
8607 

e. Compute the product of the halves of the control data. 
Split the identification number, and select the middle digits from the 
product of the two parts to form a random addre ss . 

Example: To derive a random address for file item 31745902, split the 
number: 

31745902 - 3174 = 5902 

Compute the products of the parts: 

5902 
x 3174 

23608 
41314 
5902 

17706 
18732948 
- 5 

2329 

Using this method of assigning random addresses, file item 31745902 
would be assigned address 2329. 

f. Multiply the control data by a relatively large prime number. 
Multiply the identification code by a prime number; for example, 31, 
41, 43. Select the high-order digits of the product to form a random 
address. 

Example: To derive a random address for file item 317415, multiply 
the number by 43: 

95 



96 

317415 
x 43 

952245 
1269660 
13648845 

Select the high-order digits in the product to form a random address. 
When this method of assigned random addresses is used, file item 
317415 would be assigned address 1364. 

g. Multiply the control data by 1991991991. Select digits of the product 
to form a random address. 

Example: To derive a random address for file item 317415, multiply 
by 1991991991: 

317415 
x 1991991991 

633288140523265 

Select a segment of the product to form a random address. Using this 
method, file item 317415 will be assigned address 4052. 

h. Add the odd-order digits in the control data to the even-order digits. 
Add the odd digits to the even digits. Repeat the operation on the 
resulting sum, if necessary, to form a random address. 

31745902 

Add these to the odd-order digits: 

1492 
+ 3750 

5242 
- 5 

0242 

When this method of assigning random address is used, file item 31745902 
would be assigned address 0242. 

i. Split control data into groups and add the groups. 

Example: To derive a random address for file item 902645813, split the 
number into groups of three digits: 



902 

902 
645 

+ 813 
2360 

645 813 

When this method is used, file item 902645813 would be assigned address 
2360. 

j. Split the control data into groups and multiply the groups. Select 
digits of the product to form a random address. 

Example: To derive a random address for file item 902645813, split 
the number into groups of three digits: 

902 645 813 

Compute the product of these groups: 

902 
x 645 

4510 
3608 

5412 
581790 

581790 
x 813 

1745370 
581790 

4654320 
472995270 

Using this method, file item 902645813 would be assigned address 2995. 

4. Load Rating Chart . 

All control panel exits and distributors are designed to withstand a specific 
amount of electrical load which, if exceeded, may cause damage and improper 
operation of the machine. Therefore, when a control panel exit or distributor 
exit is wired to more than one control panel function, it must be determined 
that the electrical load is within established limits. 

All control panel exits may be loaded to a maximum rating of 60 with the 
following exceptions: 

a. 305--Distributors--30 max. 
--Inquiry Out --30 max. 
--Start --30 max. 

97 



98 

b. 370--Distributors--30 max. 
--MLP I Exit --30 max. 

c. 380--Distributors--30 max. 

To insure that electrical limits are not being exceeded, reference can be made 
to the Load Rating Table shown in Figure 53. Add the individual load ratings 
for each function associated with an exit to be sure the maximum allowable load 
is not exceeded. Also, be sure that each distributor exit is not overloaded. 
Figure 52 illustrates both correct and incorrect wiring. 

CORRECT 

TAt~°'lITq 
CI RESET 
~ ~ ~ 

OTO 0 0 0 0 0 0 OTO OTa 0 0 0 0 0 0 oTO 

ONO 0 0 0 0 0 0 ONO ONO 0 0 0 0 0 0 ONO 

000 0 0 0 0 0 0 oeo oco 0 0 0 0 0 0 oCo 

OTO 0 0 0 0 0 0 OTOl010 0 0 0 0 0 0 OTO 

ONO 0 0 0 0 0 0 oNo ONO 0 0 0 0 0 0 ONo 

000 0 0 0 0 0 0 000 oCo 0 0 0 0 0 0 oCo 

By using a Cycle Delay, the Start 
impulse is supplemented in order 
to pi ckup ten additional selectors 
and Program Advance. 

Start . . . . . . . . . . . .. 30 
Cycle Delay OUT. . . .. 32 
Maximum Load for any 

Distributor Exit . . . .. 30 

Figure 52 

INCORRECT 

't~o~q 
CI RESET 
~ ~ JI. 

oro 0 0 0 0 0 0 OTO OTO 0 0 0 0 0 0 OTO 

ONO 0 0 0 0 0 0 ONo ONO 0 0 0 0 0 0 ONO 

aco 0 0 0 0 0 0 000 oeo 0 0 0 0 0 0 OCo 

oro 0 0 0 0 0 0 010 oTO 0 0 0 0 0 0 OTo 

ONO 0 0 0 0 0 0 oNO ONO 0 0 0 0 0 0 aNO 

OCo 0 0 0 0 0 0 oeo oeo 0 0 0 0 0 0 000 

Although the loading for each 
distributor exit is within limits 
(5 selectors at a rating of 3 = 15), 
the total load for the Start hub 
(maximum 30) is 62. 



CONTROL PANEL 
ENTRY HUB 

-305-

LOAD 
RATING 

Accumulator Drop Out 
Accumulator Overflow IN 

IAccumulator Sign IN 

Blank Transmission IN 

Char Sel Alpha IN 

Char Sel Numeric IN 

Comm Channel (Print) 
Comm Channel (Punch) 
Compare IN 

Cycle Delay 
Distributors 
Feed Card 
Field Compare IN 

Hundreds Program Entry 

3 
0+ 
0+ 
0+ 
u+ 
0+ 
0+ 
0+ 
0+ 
6 
0+ 
3 
0+ 

Inquire IN 5 
Last Card IN 0 + 
Print 5 
Program Advance 2 
Punch 3 
Record Advance IN 5 
Reset 3 
Reset Stop 3 
Selector PU 3 
Selector DO 3 
Ski p to Record 6 
Stop 
Tens Program Entry 1 
Type 5 
Units Program Entry 2 

Figure 53 

CONTROL PANEL 
ENTRY HUB 
-370-

LOAD 
RATING 

CONTROL PANEL 
ENTRY HUB 

-380-

LOAD 
RATING 

Comm Channels 
Co-Selector PU 
Distributors 
Line End 
Line Prog Set PU 
Line Space 
MLP Start 1 
MLP Start 2 
MLP Start 3 
MLP Start 4 
Output Track 
Print Space 
Print Start 
Print Stop 
Skip to Hubs 
Symbols 
X Eliminate 
NX Eliminate 
Zero Supp Stare 
Zero Supp Stop 

0+ 
2 

0+ 
8 

.3 
8 
2 

3 
4 
6 

2 
12 

3 
12 
2 
2 

3 
3 

Carriage Return 
Clear 
Col Ctr!' Entry 
Col Ctr!' Delay 
Col Ctri. On 
Column Split 
Digit Selector PU 
Distributors 
Program Entry 
Program On 
Ribbon Shift B 
Ribbon Shift R 
Selector PU 
Seiector DO 
Space 
Tab 
Type 100 
Type only 
Zero Suppress Off 
Zero Suppress On 

NOTES: 

1. When a load rating of 0+ is shown, the load is 
determined by the final use of the function. For 
example, assume a panel impulse is wired to ac­
cumulator overflow IN, overflow NO is wired to 
Program Advance, and YES is wired to Type and 
Units and Tens Entry. The load rating for the NO 

condition is 0+2=2. For YES, 0+5+2+1 =8. 

2 
2 
2 
2 
2 
4 
2 

0+ 
2 
2 
2 
2 
3 
3 
8 
2 
2 
4 
2 
3 

99 



(12/58: 15M) 


	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78
	79
	80
	81
	82
	83
	84
	85
	86
	87
	88
	89
	90
	91
	92
	93
	94
	95
	96
	97
	98
	99
	xBack

