
••

•

• IBM 3090 VECT R FACILITY

TECHNICA REFERENCE
GG24-3058-0

(

(

IBM 3090 Vector Facility
Technical Reference

Document Number 6624-3058

July 30th, 1986

International Technical Support Center
Poughkeepsie, N.Y. 12603

First Edition (July 1986>

This edition applies the IBM 3090 Vector Facility and its operating
system support in MYS/SP Version 2 Release 1.3 Vector Facility En­
hancement.

References in this publication to IBM products, programs, or services
do not imply that IBM intends to make these available in all countries
in which IBM operates. Any reference to an IBM program product in
this document is not intended to state or imply that only IBM's pro­
gram product may be used. Any functionally equivalent program may
be used instead.

The information contained in this document has not been submitted to
any formal IBM test and is distributed on an 'As ls' basis without
any warranty either express or implied. The use of this information
or the implementation of any of these techniques is a customer re­
sponsibility and depends on the customer's ability to evaluate and
integrate them into the customer's operational environment. While
each item may have been reviewed by IBM for accuracy in a specific
situation, there is no guarantee that the same or similar results will
be obtained elsewhere. Customers attempting to adapt these tech­
niques to their own environments do so at their own risk.

Publications are not stocked at the address given below. Requests
for IBM publications should be made to your IBM representative or to
the IBM branch office serving your locality,

A form for reader's comments is provided at the back of this publi­
cation. If the form has been removed, comments may be addressed to
IBM World Trade Corporation, International Technical Support Center
Department 466/HS2 Building 930, P.O.Box 390, Poughkeepsie, N.Y.
12602 U.S.A. IBM may use or distribute whatever information you
supply in any way it believes appropriate without incurring any ob­
ligation to you.

c Copyright International Business Machines Corporation 1986

ii IBM 3090 Vector FacilityJ Technical Reference

(

AISTBACT

This document describes the IBM 3090 Vector Facility and the software
support provided by the MVS/SP Version 2 Release 1.3 Vector Facility En­
hancement and related software products.

This document provides SEs and IBM personnel involved in installing VF
with an overview of the principles of the Facility, and how it fits into
a large systems installation.

The information presented is based mainly on early hardware and program­
ming specifications. Other sources of infor~ation are the installation
of VF at ITSC Poughkeepsie in September 1985, and the center's experience
using the facility.
LSYS ESSYS (68 pages)

Abstract iii

iv IBM 3090 Vector Facility; Technical Reference

(

1(··.' •''

(

PREFACE

This Bulletin provides information on installing the Vactor Facility CVF>
and discusselS the items that have to be taken into consideration to ensure
that the engineering and scientific workloads on a large systems processor
can use VF.

HOW THIS BULLETIN IS ORGANIZED

This bulletin has three parts1

1. Vector Facility Architecture -
A technical description of the Vector Facility and its functions,

including instructions, registers, and operation principles. This
part also highlights the physical installation requirements and
hardware and software dependencies.

2. MVS/XA Support -
A discussion of enhancements made in the MVS/XA system in order to

make VF an integral part of a large system computing facility.

3. Implementation and Migration -
How to actually install VF, and what to look out for in this process.

HQW TO USE THIS BULLETIN

This bulletin is a reference text for planning a VF installation, and
provides some detailed information on the impact VF would have on a run­
ning installation.

It also provides reference material for people who are involved in ap­
plication migration, and gives some understanding of the vector code
generated in a FORTRAN compile, so that it can be modified to enhance
performance.

RELATED PUBLICATIONS

The following documents provide additional informations

• IBM 3090 Processor Complex - A New Dimension in Versatility, 6520-6063

• IBM Sxstem Summary1 Processors, GA22-7001

Preface v

• IBM System/370 3090 Processor Complex Installation Manual - Physical
Planning, GC22-7074 with TNL GN22-2329

• IBM 3090 Model 200 Processor Complex Physical Planning Templates,
GX22-7107

• IBM 3090 Model 200 and Model 400 Functional Characteristics,
SA22-7121

• IBM 3090 Model 200 and Model 400 Channel Characteristics and Channel
Configuration Guide, SA22-7120

• IBM System/370 Vector Operations, SA22-7125

vi IBM 3090 Vector Facility; Technical Reference

(

(

TABLE OF CONTENTS

Introduction .
Vector Facility Architecture
1.0 overview .
2.0 Vector control .
2.1 Vector
2.2 Vector
2.3 Vector
2.4 Vector

Status Register
Mask Register
Activity Count
Parameters

3.0 Instructions ••••••••••
3.1 Instruction Formats
3.2 Interruptability
3.3 Sectioning
3.4 Storage Access Modes
3.5 Sparse Vectors
3.6 Compound Instructions
3.7 Conditional Execution
3.8 Save/Restore Vector Registers

3.8.l Save/Restore Instructions
3.8.2 VIU and VCH Bits •••••

. • • •

4.0 Program Exceptions .
s.o Programming Examples .
6.0 Configurability •

7.0 Installation •••
7.1 Physical Installation

7.1.l Power •....

. • • • • • • • • •

7.1.2 Cooling Capacity
7.1.3 Microcode

7.2 Software Support
7.2.1 MVS/XA Support

Requirements

7.2.2 VM/HPO Support .••..
7.2.3 Other Software Support

• • • • • Ip • • • •

MVS/XA Support .
a.o
8.1
8.2

Operator commands
CONFIG Command
DISPLAY Command

•

9.0 Physical and Logical Reconfiguration

10.0
10.1

Program Check Interrupt Handling
Vector Operation Exception

• • • • • • • • • •

. • • • •

1

3

s

7
7
8
8
9

11
13
15
17
19
21
22
22
25
25
25

27

29

33

35
35
36
36
36
36
37
37
37

39

41
41
42

45

47
47

Table of Contents vii

10.2 Vector SLIH

11.0
11.1
11.2
11.3
11.4

Task Management •
Vector Affinity Management
Vector Status Saving
Vector Status Restoration
Program Linkage

12.0 Resource Management and Measurement •• • • • • • • • • • •
12.1 SRM Support •••••••••

12.1.1 I/O Enablement Order •••••
12.1.2 Vector Wait • • • , •••

12.2 Changes to SMF Record Types • • • • ••
12 . 3 RMF Support • • • • • •

13.0
13.1
13.2
13.3
13.4

RAS Characteristics
Abend Code OED
Dumping Services
Checkpoint/Restart
Operating Environment

•

.•
Jmplementat:Lon and Migration • • • • • • • • • • • • • • • • • • •

14.0 Jmplementation •

15.0 Migration considerations • • • • • • • • • • • • • • • • • •
lS.l Changes to the Operating System •
1s.2 Billing Routines •
lS.3 JES3 Incompatibility
15.4 Backup Strategy • •

viii IBM 3090 Vactor Facility1 Technical Reference

47

' /

49
49
49
so
50

53
S3
53
SS
SS
S7

59
S9
60
61
62

65

67
67
68
68
68

(

(

(

(

. Figure
figure
figure
Figure
Figure
Figura
Figure
figure
Figure
Figure
Figure
Figure
figure
Figure
figure
Figure
figure
figure
figure
Figure
Figure
Figure
Figure
Figure
figure
Figure
figure
Figure

LIST OF ILLVSIRATIONS

1. Vector Registers
2. Vector Status Register
3. Vector Mask Register ••••.
4. Vector Activity Count Register
5. Partial Sum Accumulation
6.
7.
8.
9.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.

Format of the Most Common Instructions
Examples of Instructions
Example of Interrupt Control
Role of the VLVCU Instructiun
Sectioning Loop Example • • • • • • • • •
Indirect Access using the Load Indirect Instruction
Matched Access using the LOAD MATCHED Instruction
Matched Access using the LOAD EXPANDED Instruction
VECTOR COMPARE Instruction • • • • • •
Modifier Bit Settings
Multiplication of Two Vectors
Using MULTIPLY AND ADD
Partial Sum Method
Vector Compare and Conditional Execution
Reconfiguration by CF CPU,ONLINE Command
Examples of CF CPU,ONLINE processing
Selective Enablemant by SRM
Vactor Hait •••••.••••
New Fields in SMF Record Type 30
Relationship Among Vector Times
Interval Start Fields in SMF Record Type 30
VF Affinity Time Reported by RMF
Presentation of New Program Exceptions

. . . .

5
7
8
8

13
14
15
16
18
18
20
20
21
24
24
29
30
31
32
42
46
54
SS
56
56
57
58
59

list of Illustrations ix

x IBM 3090 Vector Facility; Technical Reference

(

(

(

(

(

INTRQDVCJION

The IBM 3090 Vactor Facility <VF> was introduced to enhance the
Engineerina/Sciantific CE/S) computation capabilities of the 3090
processors, and at the same time maintain the single system image that
characterizes large system installations.

Along with the VF hardware facility, software was provided to enable El'S
applications to utilize the new instructions. The software consists of1

• Enhancements to MVSIXA to allow it to manage the VF tasks along with
currant workloads.

• Enhancements to VM/SP HPO to enable CMS virtual machines to use VF •

• VS FORTRAN Version 2 to generate vector code from FORTRAN source
statements.

• Other programs with El'S application oriented subroutines, and basic
mathematical functions for vector processing.

• VPSSIVF to emulate 3838 Array Processor functions on VF.

The following discussion concentrates on the basic principles of VF itself
and the MVSIXA operating aystem support, and addresses the implementation
process from this viewpoint.

Introduction l

2 IBM 3090 Vector Facility; Technical Reference

(

(

(

(

VECTOR fACILIIV ARCHITECTURE

The Vector Facility <VF) is an extension to the execution facilities of
a 3090 Central Processor. This extension enables the 3090 to execute
vector instructions, which operate on strings of arithmetic data, called
vectors.

This extension of the execution capabilities includess

• 16 vector registers

• three new control registers

• 171 new vector instructions

The VF hardware is an option that may be attached to one or more of the
CPs in a 3090 complex. The 3090 model 200 can have up to two VFs and the
model 400 up to four.

The following chapters discuss in some detail the architecture of VF and
the new functions introduced, along with examples of how the new in­
structions can be utilized. They also discuss installation consider­
ations and requirements, configurability, and give an overview of the
available software support.

Vector Facility Architecture 3

/

4 IBM 3090 Vector Facilitys Technical Reference

(

(

1.0 OVER.VIEW

The Vector Facility introduces the following functional elements as an
extension to the 370 architecture1

• 16 vector registers

These registers have a length of 32 bits, and a depth of 128, which
is the 3090 VF section size. (See Figure l) Therefore a vector reg­
ister can hold an array (vector) of 32-bit numbers with a maximum
length of 128. It can be used for a vector of fixed point numbers
or a vector of single precision (short) floating point numbers.

Vector registers may also be combined into pairs (even/odd pairs) and
then carry 128-element vectors of long floating point numbers.

Most vector instructions have one or more vector registers or vector
register pairs as operands, and the format of the particular in­
struction determines the type of data contained in the vector regis­
ter.

64 bit
<------>

32 bit
<->

0

0

1

2

l

0

l

2

2 3

0 0

l l

2 2

/ / / / / /

BB
Figure l. Vector Registers

14 15

0 0

l l

2 2

/ / /

B v

128
elements

Overview 5

• Three vector control registers

These registers are provided to control the execution of vector op­
erations and to record usage of the vector facility. These registers
ares

Vector Status Register CVSR>

Vector Mask Register CVMR)

Vector Activity Count CVAC> Register

These registers are discussed in C'~pter 2.

• 171 new instructions

Most of these instructions operate on vectors in storage or in vector
registers. These instructions are discussed in Chapter 3.

In addition, the VF makes use of a new bit in control register O, the
Vector Control Bit CVCB>. The VCB must be on for the VF to execute vector
instructions.

Also, there are two new program exception codes:

1. Vector Operation Exception CVOP>

This exception is encountered when a vector instruction is executed
on a CP that has the VF installed but the VCB is not set on.

It is also taken when the VF is not installed on that CP, but it is
installed on another CP in the complex, and also if the VF is con­
figured offline on the CP.

This mechanism is utilized, as described later, by the operating
system to create an environment for execution of vector tasks, such
as save areas and affinity to a CP, if needed.

2. Unnormalized Operand Exception

Unlike the S/370 floating point arithmetic, some vector instructions
(for example MULTIPLY and DIVIDE> require source operands that are
normalized floating point numbers, and this exception is introduced
to notify software so that appropriate action may be taken.

For recovery purposes, two new bits are provided in the Machine Check
Interruption Code1

Bit 6 - Vector Facility Failure

Bit 13 - Vector Facility Source

Bit 13 always accompanies the Instruction Processor CIP> Damage Bit, and,
when set, indicates that the VF is the probable cause of IP damage.

6 IBM 3090 Vector Facility; Technical Reference

•

(

(

(

(

2.0 VECTOR CONTROL

Control of execution of vector instructions is provided through the bits
of the Vector Status Register CVSR) and the Vector Mask Register CVMR).
The Vector Activity Count CVAC> provides a timing facility that can be
used to monitor the VF activity.

2.1 VECTOR STATUS REGISTER

The VSR consists of 64 bits, and the format is shown in Figure 2.

VIX VIU VCH

M Vector Mask Mode Bit
VCT Vector Count
VIX Vector Interruption Index
VIU Vector In Use Bits
VCH Vector Change Bits

Figure 2. Vector Status Register

The Vector Mask Mode Bit, when set on, indicates that the operation on
vectors by certain vector instructions is controlled by the Vector Mask
Register. The VF is then running in Vector Mask Mode. How Vector Mask
Mode is used is discussed in the section "Conditional Execution" on page
22.

The Vector Count indicates to vector instruction the length of the vector
participating in an operation.

The Vector Interruption Index CVIX) is incremented during execution of
certain vector instructions so as to serve as an index to the starting
point when control is returned after an interrupt, The VIX is further
discussed in the section "Interruptability" on page 15.

The VIU and VCH bits are sets of bits that indicate which vector register
pair is in use CVIU), or have been changed CVCH). These bits, which are
used to minimize saving and restoring of vector registers, are discussed
in the section "Save/Restore Vector Registers" on page 25.

Vector Control 7

2.2 YECTQB MA8K REGISTER

The Vector Mask Register <VMR> has one bit position per vector element,
and the number of bits is equal to the section size <see figure 3 on page
8).

The VMR has a dual role• It serves a target of vector compare operations,
in much the same way as the PSN condition code is the target of scalar
compare operations; and it controls which vector elements are to be part
of vector operations when running under mask control.

The actiye bits are the bit positions lower than the current VCT setting
in the VSR. For example, if VCT=SO, bit positions 0 through 49 are the
active bits. Only the active bits contribute to mask control.

VMR

0 127

figure 3. Vector Mask Register

2.3 VECTOR ACTIVITY COUNT

The Vector Activity Count <VACJ register (figure 4> works much the same
way as the Time of Day clock; it is an unsigned binary integer that is
incremented by one every microsecond when vector instructions are being
executed, and therefore accumulates time when the VF is in use.

As part of the new instruction set, privileged instructions are provided
so that the software can modify and store the contents of the VAC regis­
ter, and use it to record usage time.

VAC

0 64

figure 4. Vector Activity Count Register

8 IBM 3090 Vector Facility; Technical Reference

/

•

""· /

(

(

(

(

2.4 VECTOR PABAMETERS

There are two vector parameters

• Section Size

• Partial Sum Number

Since these are constants that are not fixed by the architecture, there
is an instruction provided that will store them in a fullword.

Vector Control 9

10 IBM 3090 Vector Facility; Technical Reference

(

(

(-

(

(

3!0 INSTRUCTIONS

All the 171 new instructions have mnemonics that begin with a V, and since
no other instructions begin with this letter, it uniquely identifies the
vector instructions. Most pf them are proper yector instructions; that
is instructions that operate on entire vectors. The others work on the
control fields in the VSR, the VMR, and the VAC, or on single vector el­
ements.

The 144 proper instructions can be classified as followss

•

•

•

•

Simple Arithmetic Instructions; namely, ADD, SUBTRACT, MULTIPLY, and
DIVIDE

These instructions always have three operands, two input and one
output. The output operand is always a vector register (or register
pair for long floating point), and the input operand values are not
destroyed by the operation. The input operands may be one of the
followings

A scalar in a floating point register or a general purpose reg­
ister

A vector in a vector register

A vector in storage.

DIVIDE operates only on floating point data. MULTIPLY and DIVIDE
require normalized input data.

logical InstructionsJ AND, OR, and Exclusive OR •

Operands for these instructions are the same as for the simple
arithmetic instructions, except that only 32-bit vector elements are
possible and the instructions do not distinguish between fixed and
floating point data.

Compare Instructions

Operand properties are the same as for simple arithmetic in­
structions, except that the output vector register operand is re­
placed by a mask. The mask is used to specify what the two input
operands are compared for; for example, equal, high, low, not high,
and so on. Unlike the scalar compare instructions, the vector compare
instructions do not set a condition code, rather they set bits in the
Vector Mask Register CVMR> corresponding to the elements where the
compare is successful.

Load and Store Instructions

These instructions transfer vectors from storage to vector registers,
or vice versa, or from one vector register to another.

Instructions 11

• Shift Left/Right Instructions

In these instructions, one scalar operand specifies the number of bi ts
all elements in a vector register are to be shifted left or right,
and then placed in another vector register.

• Maximum/Minimum Absolute/Signed Instructions

These instructions compare a scalar value with elements of a vector
to determine minimum or maximum, and replace the scalar operand with
the result.

• Save/Restore Vector Registers

These instructions act on vector register pairs, and are controlled
by the VIU and VCH bits in the VSR.

• Compound Instructions; MULTIPLY AND ADD, MULTIPLY AND SUBTRACT

These instructions perform two arithmetic operations, with input op­
erands having the same characteristics as for simple MULTIPLY, except
that fixed point operation is not permitted. The product of the two
input operand values is then simply added to or subtracted from the
contents of the output vector register.

• Partial Sum Instructions; ACCUMULATE, and MULTIPLY AND ACCUMULATE

The ACCUMULATE instruction calculates the sum of all elements in a
vector, and the MULTIPLY AND ACCUMULATE multiplies all corresponding
elements in two vectors and takes the sum of the products (inner
product>.

In both instructions, the sum is calculated by partial sums. The
target operand is a vector register that receives a vector of partial
sums. The number of elements in the partial sum is a hardware de­
pendant constant and is the length of this vector. A special in­
struction, SUM PARTIAL SUMS, converts the partial sum vector into a
scalar sum.

In Figure S, the values in Vector Register 1 CVRl> is accumulated into
partial sums in Vector Register 0 CVRO).

The partial sum instructions can also operate on vectors in storage.

Instructions operating on vectors in storage requires operands to be on
an integral boundary. This means that operations on fixed point or short
floating point vectors require the storage vector to start on a word
boundary. For long floating point vectors, the starting point must be a
double word boundary. Violation of these requirements results in a
specification exception.

12 IBM 3090 Vector Facility; Technical Reference

(

(

(

(

ACCUMULATE WITH PARTIAL SUMS

VRl I I I

I
- - =1J
I I I

vv vv vv vv

VRO

Figure s. Partial Sum Accumulation

3.1 INSTRUCTION FORMATS

The most common proper vector instructions have certain operand proper­
ties. Among these ares

• There are three operands, two source operands and one target operand.

• One of the source operands is either a vector register or a scalar
register.

• The other source operand is either a vector register or a vector in
storage.

• The target operand is a vector register.

• Source operands are never destroyed by the operation.

Figure 6
shows the format of this type of instructions. The operands can be

considered in the following classes•

QST Scalar register - storage

QV Scalar register - vector register

VST Vector register - storage

VY Vector register - vector register

Instructions 13

MNEM Vl, [:: 1 , [::<TZ> 1
V - Vector Register
Q - Scalar Register
ST- Storage
S Storage Address <General Purpose Register)
T - Stride (General Purpose Register)

Operand l Operand 2 Operand3 Format

v ST Q QST
v v Q QV
v ST v VST
v v v vv

Figure 6. Format of the Most Common Instructions

The QST and VST instructions refer to storage vectors, and can have stride
specification. The stride is a 32-bit signed integer. It determines the
number of element locations by which the operation advances when
procedding from one element to the next.

Both the storage address of the vector and the stride are contained in
general purpose registers C31-bit addressing),

At the completion of the operation, the address register is updated to
point beyond the storage vector. The length of the vector, as counted
by the number of elements, is determined by the value of the VCT.

The stride determines which storage positions should be taken as vector
elements. For example, stride=! with a long floating point operation means
that every double word should be taken; for stride=2 every other; and so
on. The stride may be negative or zero. If negative, the address of the
next element will be decremented, and if zero, the same element will be
taken every time.

If the stride is not specified, or if 0 is specified in the T2 operand,
the default of stride=l is the assumed.

The instructions belonging to this class ares

• The Simple Arithmetic and the Compound instructions

• The Logical instructions

• The Partial Sum instructions

14 IBM 3090 Vector Facility; Technical Reference

(

(

(

(~

• The Load/Store instructions, axcept LOAD INDIRECT and STORE INDIRECT

This case differs in that Loads and Stores have only two operands,
and therefore the Q3/V3 operand does not occur.

• The Compare instructions, except that the Vl operand is replaced by
a mask.

Examples of this instruction format are shown in figure 7.

Note that multiplication of floating point data always results in long
floating point products.

QST1 VMES vo,FO,R2CR3)

QV1

Multiply the contents of floating point reg 0 by every
element of the vector starting at the address in R2 and
with the stride in R3, and place the product in VRO and VRl

VMQ VO,R3,V2

Multiply the contents of general register 3 by every element
of the vector in VR2 and place the product in VRO.

VST1 VME VO,V3,R2CR3)

Multiply every element of V3 by every element
of the vector starting at address in R2 and with
the stride in R3, and place product in VRO and VRl.

VV1 VMER VO,V3,V2

Multiply every element of V3 by every element
of V2, and place the product in VR 0 and VRl.

figure 7. Examples of Instructions

3.2 INTERBUPTAIILITY

Vector instructions operating on multiple vector elements, earlier re­
ferred to as propec vector instructions, are all interruptible. This
means that the operation may be interrupted between elements, and there
is a mechanism allowing execution to continue from that point when the
task regains control.

For most of these instructions, the VIX field in the VSR is used to mon­
itor the operation. When the instruction starts executing, the VIX has

Instructions 15

the value zero, and is incremented by one for every element done. As the
VCT determines the number of elements in the vector, the operation is
finished when VIX=VCT. At this point, the PSW instruction address is
updated to point to the next instruction.

Whenever execution is resumed following an interrupt, the VIX will have
the current element number, and after restart, the instruction will con­
tinue from that point.

For QST and VST format instructions, the storage address register, RS2,
is also incremented so as to point to the current element at any given
time.

This interrupt mechanism is illustrated by an example in Figure a where
two vector registers, VR2 and VR3, are added to VRl.

Mnemonics VAER VRl,VR3,VR2

VIX'= O, VCT ,1

v

----->I VIX= VCT
yes >I L r:::l

. 0 ~>VIX .-->~

v no

FETCH ELEMENT NO. VIX OF VR2

v

FETCH ELEMENT NO. VIX OF VR3

v

ADD TO ELEMENT NO. VIX OF VRl

v

INCREMENT VIX BY l

Figure a. Example of Interrupt Control

The interruptible instructions that use this type of control are called
class IM and I.e.

16 IBM 3090 Vector Facility; Technical Reference

(

(

(

(_

(

3.3 SECTIONING

The section size limits the size of vectors that can be held in vector
registers or operated on by vector instructions. If a vector has a length
of more than 128 elements, it must be divided into sections of 128 ele­
ments or less. For example, a vector of length 300 would be divided into
two sections of length 128, and one of length 44.

This process is referred to as sectioning, and is done by software loops
called sectioning loops. In a section loop it is necessary to update
storage addresses, although storage vector operands usually are updated
by the instruction execution itself.

For loop control purposes, the VF has a special instructions

LOAD VCT AND UPDATE CVLVCU>
\

The VLVCU instruction has only one operand, a general purpose register
CGR) that initially contains the vector length. The instruction operates
as follows•

1. Inserts the smaller of the section size <SS) or the content of the
GR into the VCT in the VSR.

2. Subtracts the new value of the VCT from the contents of the GR.

3. Sets condition codes corresponding to the result of the two updates.

The condition codes set by the VLVCU may then be used to control the
sectioning loop. Four different condition codes can be sets

cc VCT GR

0 0 0
1 0 negative
2 SS positive
3 positive 0

Condition codes 2 and 3 are the ones usually utilized in sectioning loops.

figure 9 shows an example of events in a loop sectioning a vector of
length 330 with a VLVCU instruction, and Figure 10 gives a possible as­
sembler coded sectioning loop for handling the sum of two long vectors.

Instructions 17

With vector length equal to 330,
the VLVCU executes four times
to give the following outputs

1. Load VCT MINU28,330> = 128 -> VCT
update GR 330 -128 = 202 -> GRO

2. Load YCT MINU28,202) = 128 -> YCT
update GR 202 - 128 = 74 -> GRO

3. Load VCT MINCl28, 74> = 74 -> VCT
update GR 74 - 74 = 0 -> GRO

4. Load YCT MINCl28,0> = 0 -> VCT
update GR 0 - 0 = 0 -> GRO

figure 9. Role of the VLVCU Instruction

To do the sum C = A + B,
where A,B, and C are short
floating point vectors•

L RO,N
LA Rl,A
LA R2,B
LA R3,C
VLYCU RO

Load Vector Length to RO
Address of A to Rl
Address of B to R2
Address of C to R3
Load And Update RO

CC=2

CC=2

CC=3

cc=o

LP
BNP ERROR
VLE Vl,Rl
VAE Vl,Vl,R2
VSTE Vl,R3
VLVCU RO

Vector Length must be positive
Load Section of A to Vl
Add Section of B
Store Section into C
Load VCT and Update RO

BNZ LP Branch on CC not zero

Figure 10. Sectioning Loop Example

In Figure 10, storage addre$Ses Rl, R2, and R3 in the YST instructions
VLE, VAE, and VSTE, respectively, are updated to point to the next section
by execution of the instruction.

18 IBM 3090 Vector Facility; Technical Reference

',

/

' /

(

(

(

(

The initial VLVCU sets the VCR and updates RO to 128 less than initial
length, and the CC here is not used for loop test. The second VLVCU causes
a CC=O after the last section is handled, and the branch is not taken.

3.4 STOBAGE ACCESS MODES

Data in storage can be accessed by vector instructions in two ways1

1.

2.

Sequential Access

Most vector instructions access storage sequentially. Vector ele­
ments are full words or double words adjacent to each other or uni­
formly spaced throughout a storage area. Storage vectors are said
to have a stride of more than one if the elements are not adjacent.
A stride of more than one can be specified in the instruction in terms
of the number of words or double words between every element.

All the arithmetic instructions (including the compound instructions
that address storage vectors), loads and stores, compares, and log­
ical instructions access storage as described above, with or without
a stride.

Indirect Access

Indirect access refers to the access of vectors in storage when the
elements are not equally spaced. There are two ways of accessing
storage indirectly: by the load and Store Indirect instructions; or
by using masked addressing to vector elements.

The load and Store Indirect instructions are available for long
floating point, fixed point, or short floating point operations. They
all have a source operand that is a vector register holding a vector
of element numbers providing the offset into the storage area.

The use of the LOAD INDIRECT instruction is shown in Figure 11.
Masked accessing is controlled by the Vector Mask Register. Only those
elements corresponding to one-bits in the VMR are affected.

There are two ways of loading and storing vectors under the control
of VMR1

a. Using LOAD MATCHED and STORE MATCHED Instructions

These instructions work the same way as a load and store with
sequential access, including a possible stride, with the excep­
tion that only elements corresponding to VMR one-bits are ac­
cessed. With a LOAD MATCHED instruction, elements corresponding
to 1he one-bits are brought into the Vector Register in corre­
sponding element locations. (Figure 12). Those locations in the
Vector Register corresponding to zero-bits in the VMR are left
unchanged.

Instructions 19

l 3 7 8 11 'INDEX' VECTOR REGISTER

v v v v

STORAGE

A

v v v v

I I I TARGET REGISTER

Figure 11. Indirect Access using the Load Indirect Instruction

STORAGE
[I I I ; I

v v v v

VECTOR I * * I * I • Vector elements
REGISTER remain unchanged

VMR l 0 0 l l 0 l

Figure 12. Matched Access using the LOAD MATCHED Instruction

b. Using LOAD EXPANDED and STORE COMPRESSED Instructions

These instructions work similarly; however, as the names indi­
cate, a LOAD EXPANDED takes elements from storage by sequential
access, possibly with a stride, and bring them into locations in

20 IBM 3090 Vector Facility; Technical Reference

c

·((

(

(

(

the VR according to bit settings in VMR (figure 13). STORE COM­
PRESSED works in the opposite way.

Unevenly spaced storage vectors have to be loaded into vector regis­
ters in order to perform arithmetic and other operations on them.

STORAGE

VECTOR
REGISTER

VMR

v

l

v

0 l 0

v

• I
0 l

v

l

* vector elements
remain unchanged

figure 13. Matched Access using the LOAD EXPANDED Instruction

3.5 SPARSE VECTORS

Sparse vectors are vectors in which most elements are zero, and it is
useful to have a representation of such items so that the zero elements
do not take up any storage.

A sparse vector can be represented by a dense vector and a bit mask where
one-bits represent non-zero elements.

To convert to this scheme, we might use the following steps1

l. Do a VECTOR COMPARE CVCDQ) with scalar zero to create a mask in VMR.

2. Store VMR as a bit mask.

3. Do a STORE COMPRESSED into a dense vector in storage.

Alternatively, if the sparse vector is in storage, the bit mask created
by a VECTOR COMPARE can be used by the LOAD BIT INDEX CVLBIX> to create
an Index Vector that can be used in a LOAD INDIRECT to place the dense
vector in a vector register.

Instructions 21

3.6 COMPOUND INSTRUCTIONS

Compound instructions are the most efficient of the arithmetic in­
structions provided by the VF. They combine two arithmetic operations
in one instruction. There are two sets of compound instructions which
act only on floating point data.

• MULTIPLY AND ADD instructions

• MULTIPLY AND SUBTRACT instructions

These instructions have the QST, QV, VST, or VV format and operate on
short or long floating point data CFigure 6 on page 14), Since three
source operands are required, the target operand is also a source operand.
Since these two instructions produce a long floating point result, the
target operand must be a vector register pair. The MULTIPLY AND ADD in­
struction multiplies the second operand vector by the third operand vector
or scalar and adds the product to the first operand target vector register
pair. Similarly, the MULTIPLY AND SUBTRACT instruction subtracts the
product from the target.

Thus, the compound instructions, when in the pipeline, can produce two
floating point operations per CPU cycle, whereas the other arithmetic
instructions produce only one.

3.7 CONDITIONAL EXECUTION

Conditional execution
control of the active
ical instructions may

• ACCUMULATE

• ADD

• AND

• DIVIDE

• EXCLUSIVE OR

• LOAD COMPLEMENT

• LOAD NEGATIVE

• LOAD POSITIVE

• MAXIMUM ABSOLUTE

• MAXIMUM SIGNED

Calso called yector mask mode) is execution under
bits in the VMR. The following arithmetic or log­
execute under vector mask mode:

22 IBM 3090 Vector Facility; Technical Reference

(

(

(

(

(

• MINIMUM SIGNED

• MULTIPLY

• MULTIPLY AND ACCUMULATE

• MULTIPLY AND ADD

• MULTIPLY AND SUBTRACT

• OR

• SHIFT LEFT SINGLE LOGICAL

• SHIFT RIGHT SINGLE LOGICAL

• SUBTRACT

The execution is under mask mode when the vector mask mode bit in the VSR
is set to one. This bit is set on or off using the SET VECTOR MASK MODE
CVSVMM> instruction.

When executing in mask mode, operation takes place on all vector elements
involved, but only the target operand is updated for those elements that
have corresponding bits set to one in the VMR.

The purpose of mask mode is to have operations on individual vector ele­
ments depend on results of compare operations on vectors. A vector com­
pare sets VMR bits and the subsequent execution takes place accordingly.

For example, the following FORTRAN construct would safeguard against di­
vision by zero by presenting the quotient only for those elements where
B<I> is nonzero1

DO 1 I=l,N

IF<B<I> .NE. 0.0) C<I>=ACI)/B(I)

1 CONTINUE

This may be done with a VECTOR COMPARE, a VECTOR LOAD, a VECTOR DIVIDE
and a VECTOR STORE, all under mask mode.

The VECTOR COMPARE instruction is used to set up the vector mask mode
environment. The instruction appears in the same four formats as the
arithmetic instructions1 QST, QV, VST, and VV; and can compare vectors
and scalars in the three data formats; fixed point, long floating point,
and short floating point. Operand 3 is compared algebraically element­
by-element with operand 2.

VECTOR COMPARE differs from these formats only because the first operand
vector register is replaced by a 4-bit mask, the modifier. This mask
indicates the intention of the compares equal, second operand high, or
some other relationship. The compare does not set a condition code, but

Instructions 23

sets VMR bits to one corresponding to those elements of the vector for
which the compare is successful, based on what is set in the mask. The
layout of the VECTOR COMPARE is shown in Figure 14.

Figure 14. VECTOR COMPARE Instruction

The first three bits in Ml are used as modifiers, and, as shown in
Figure 15, they are the same as the condition codes resulting from ordi­
nary (scalar) compare operations. The fourth bit is set to zero.

MASK OPERATION

Modifier Bits VMR bit sat to one
if the element of op3
or scalar in op3,
as compared to the

MO Ml M2 M3 element of op2, isa

0 0 1 0 high
0 1 0 0 low
0 1 1 0 not equal
1 0 0 0 equal
1 0 1 0 not low
-1 l 0 0 not high
1 l l 0 any

Figure 15. Modifier Bit Settings

For example, to compare two long floating point vectors residing in vector
register pairs V2 and V4 for equal elements, we could use the instructions

VCDR 8,V2,V4

24 IBM 3090 Vector Facility; Technical Reference

/ '
\,__ ,,/

/ '

(

(

:(

(

3.8 SAVE/RESTORE YECTOR REGISTERS

To save and restore a vector register involves transfer of considerably
more data than with scalar registers - 512 bytes per register or 8K bytes
if all registers are saved or restored.

In order to minimize the overhead involved in status saving <when vector
tasks are interrupted) and status restoring <when they regain control),
the VF includes special instructions and the Vector in Use <VIU> and
Vector Change CVCH> bits in the VSR.

Saving and restoring vector registers is also necessary when switching
between programs.

3.8.1 Saye/R1stor1 Instructions

Nine instructions are used for saving and restoring vector registers and
the control registers; among them are the only three privileged in­
structions in the entire sat of vector instructions. The nine in­
structions area

1. VRRS - Restore Vector Register

2. VRSV - Save Vector Register

3. VRSVC - Save Changed Vector Register (privileged)

4. VSRRS - Restore Vector Status Register

S. VSRSV - Save Vector Status Register

6. VMRRS - Restore Vector Mask Register

7. VMRSV - Save Vector Mask Register

8. VACRS - Restore Vector Activity Count (privileged>

9. VACSV - Save Vector Activity Count (privileged>

The first three of these instructions work on a vector register pair, and
execute under control of the VIU and VCH bits.

3.8.2 YIU and VCH Bits

There are eight VIU bits, one for each vector register pair. A VIU bit
on means the VR is in use, so it should be saved. It indicates which VR

Instructions 25

pairs should be saved by VRSV and restored by VRRS. The VIU bit is set
to one when1

• One of the VRs in the VR pair has been modified, either as a target
operand or any other way.

• The corresponding VCH bit is set on.

A VIU bit is set off by a Clear VR CVRCL>.

The VIU bits ensure that only VR pairs that are used are saved by the VRSV
instruction and restored by the VRRS instruction. The bits may be used
by programs running in problem program mode branching to other programs,
such as subroutines.

There are also eight VCH bits, one for each vector register pair. A VCH
bit on means the VR has been changed. It indicates that the pair should
be saved by the VRSVC instruction. The VCH bit is set to one when a VR
in the pair is modified by any means, and is set to zero when1

• A VRSVC instruction is issued

• The corresponding VIU bit is set to zero.

The VCH bits are provided for a control program running in supervisor
state and using the same save area repeatedly, when switching takes place
between tasks using the VF. The necessary processing time is further
minimized by avoiding subsequent saves of VRs that have not been changed
since the last save. The following scenario should illustrate the use
of these bits1

1. A task switch occurs, and a VRSVC saves the VR pairs with VCH bits
on.

2. The VRSVC sets the VCH to zero.

3. The task regains control, and the VR with VIU bits on is restored by
VRRS.

4. At the next status save, only VCH indicated VR pairs are saved which
avoids saving VRs that were not changed since the last save.

VSR, VMR, and VAC will also be saved and restored.

26 IBM 3090 Vector Facility; Technical Reference

(

(

(

4,0 PROGRAM EXCEPTIONS

Program interruptions or program exceptions for vector instructions gen­
erally follow the same rules as for scalar instructions. There are,
however, a few differences. Unnormalized Operand Exception is introduced
with the VF. The arithmetic exceptions that can be caused by the inter­
ruptible instructions are

• Exponent Overflow

• Exponent Underflow

• Fixed Point Overflow

• Floating Point Divide

• Significance

• Unnormalized Operand

Also, a few new circumstances cause specification exceptions, as dis­
cussed below.

When a compound instruction results in an exponent overflow, only the
multiplication part of the operation is completed. The overflowed prod­
uct, as in the scalar case, is then placed in the result vector register
location.

When a compound operation results in an exponent underflow, no inter­
ruption occurs, regardless of the PSW mask, and a true zero takes the
place of the product.

Specification exceptions can be encountered with vector instructions in
the following cases1

• An invalid VR number is specified when a pair is implied.

• Storage vectors not on integral boundaries.

• Stride is in the same GPR as the address in a VST or QST instruction.

• The third operand is the same GPR as the address in a QST instruction.

• The VSRRS attempts to load into VSR values that have1

1. Other than all zeroes in bits lower than the Mask Mode Bit

2. The VCT part exceeds the section size

3. The VIX part exceeds the section size

Program Exceptions 27

• An odd register number is specified with a VRRS, VRSV, or a VRSVC
instruction.

• A LOAD ELEMENT CVLEL> or EXTRACT ELEMENT CVXEL> instruction refers
to an element number higher than the section size.

2a IBM 3090 Vector Facility; Technical Reference

(

(

(

(

(

5,0 PROGRAMMING EXAMPLES

The following four programming examples illustrate how a few elementary
operations involving vectors can be coded in Assembler Language. FORTRAN
notation is used to outline the problem to be solved.

In the example shown in Figure 16, we multiply two vectors, A and B,
element-by-element, to form vector C.

The addresses of the storage vectors A, B, and Care initially loaded into
registers Rl, R2, and R3, respectively. The vector length is loaded into
RO and the stride into R4. Inside the sectioning loop, the VLE loads A
into VRl, the VME multiplies that by B, and VSTE stores the result into
C. These three instructions each update the storage address register
involved, so that for every section done, Rl, R2, and R3 are updated to
point to the next section.

The VLVCU instruction can be placed on the top of the sectioning loop,
since none of the following instructions modify the condition code, and
the branch CBC 2) is taken as long as the VCT reflects a full section.

LP

Fortran codes

DO 1 J=l,N
1 CCJ)=ACJ)*BCJ)

Assembler Code;

L RO,N
LA Rl,A
LA R2,B
LA R3,C
L R4,T
VLVCU RO
VLE Vl,RlCR4)
VME V2,Vl,R2CR4)
VSTE V2,R3CR4)
BC 2,LP

Load Vector Length in GRO
Address of A to GRl
Address of B to GR2
Address of C to GR3
Stride of A,B,C to GR4
Load and update GRO
Load section of A in Vl
Multiply section of A by B
Store section in C
Branch on CC if not last section

Figure 16. Multiplication of Two Vectors

Programming Examples 29

In the next example, shown in Figure 17, the MULTIPLY AND ADD instruction
is employed to compute the sum1

D=AJEB+C

where A, B, C, and D are long floating point vectors, so they all have
to be aligned on double-word boundaries.

The addresses of the vectors A, B, C, and D are loaded into registers Rl,
R2, R3, and R4, respectively. The vector length is loaded into RO. The
stride here is assumed to be 1, so CRT> is left out. Inside the sectioning
loop, the VLVCU updates VCT and sets a condition code, the VLD loads A
into VR2 and VR3, the other VLD loads VR4 and VR5 with C. The VMAD
multiplies A (in VR2 and VR3) by B and adds the product to VR4 and VR5,
which previously contained C. The resulting VR4 and VR5 is then stored
into D by the VSTD. The four storage operands are updated to address the
next section, and the branch is taken if there are more sections.

The same computation could have been done with a separate VMD and VAD
instruction, and with a similar performance since the second VLD would
not have been necessary, so the vector instruction count would be the
same.

LP

Fortran code1

REALJE8 A,B,C,D
DO l I=l,N

l DCI) = ACI)JEB(I) + CCI)

Assembler Code1

L RO,N Load Vector Length in GRO
LA Rl,A Address of A to GRl
LA R2,B Address of B to GR2
LA R3,C Address of c to GR3
LA R4,D Address of D to GR4
VLVCU RO Load and update GRO
VLD V2,Rl Load section of A in V2 and V3
VLD V4,R3 Load section of C in V4 and vs
VMAD V4,V2,R2 Multiply section A*B and

add to V4 and VS that initially was
VSTD V4,R4 Store D section from V4 and VS
BC 2,LP Branch on CC if not last section

Figure 17. Using MULTIPLY AND ADD

c

The example in Figure 18 shows a computation of the inner product S of
two vectors A and B using the partial sum method.

30 IBM 3090 Vector Facility; Technical Reference

(

•

(

(

In the assembler code, after initializing the address and length regis­
ters, a VZPSD is issued to zero VO for the partial sum. In the sectioning
loop, after issuing the VLVCU, a vector A is loaded into the V8,V9 pair,
and the MULTIPLY AND ACCUMULATE CVMCD> with B is issued to cause partial
sums to be placed in VO and Vl. When all sections are finished, a SUM
PARTIAL SUMS instruction CVSPSD) places the scalar product S in a floating
point register, to be subsequently stored into S .

LP

Fortran codes

REAUE8 A, B, S
s = 0.
DO 1 I=l,N

1 S = S + ACI>•BCI)

Assembler Code1

L RO,N
LA Rl,A
LA R2,B
VZPSD VO
VLVCU RO
VLD V8,Rl
VMCD VO,V8,R2

BC
SDR
VSPSD
STD

2,LP
FO,FO
VO,FO
FO,S

Load Vector Length in GRO
Address of A to GRl
Address of B to GR2
Zero partial sums
Load And Update GRO
Load Section of A in VR8,VR9
Multiply section of B, and place
partial sums in VRO and VRl
Branch on CC if not last section
Clear FPRO to zero
Sum partial sums to scalar FPRO
Store scalar sum

Figure 18. Partial Sum Method

Programming Examples 31

The last example, shown in Figure 19
describes a conditional execution based on a compare. The computation

is to sum two vectors CC = A + B> only for the elements of A that are
positive; otherwise, the value of element of C remains unchanged. After
the initialization of length and address registers, a floating point
register is set to zero for use by the compare instruction and the vector
mask mode is set on.

In the loop, A is loaded into the VO pair, and the VECTOR COMPARE CVLCQ)
is specified so as to compare every element of VO to scalar zero for high;
or, in other words to set VMR bits for elements of VO that are positive.
The VAD adds A to B in the V2,V3 pair. Since the program is now running
under mask mode, this takes place only for those elements corresponding
to VMR bits set to one. In order not to modify other elements of C, we
now do a STORE MATCHED CVSTMD> of the V2 pair. When all sections are
processed, mask mode is suspended by the VSVMM.

LP

3E
j(

j(

Fortran code•

REAL3E8 A,B,C
DO 1 I=l,N

l IF< ACI> .GT. 0.0) CCI>= AU)+ BU>

Assembler Coder

L RO,N Load Vector Length in GRO
LA Rl,A Address of A to GRl
LA R2,B Address of B to GR2
LA R3,C Address of C to GR3
SDR FO,FO Clear FPRO to Zero
VSVMM 1 Vector-mask mode on
VLVCU RO Load And Update GRO
VLD VO,Rl Load Section of A to VRO and VRl
VCDQ 4,Fo,vo Compare section of A

greater than content of
FPRO, which is zero

VAD V2,VO,R2 Conditionally add section of A
to B into VR2 and VR3

VSTMD V2,R3 Store Matched Section in c
BC 2,LP Branch on CC if not last section
VSVMM 0 Vector-mask mode off

Figure 19. Vector Compare and Conditional Execution

32 IBM 3090 Vector Facility; Technical Reference

•

(

l

6.0 CONFIGURABILITV

When a VF is installed, it can be configured online or offline to the CP
by the service processor.

Changes to the service processor to allow VF configurability include three
new Service Processor Commands:

• READ SCP INFO

• CONNECT VECTOR

• DISCONNECT VECTOR

The operating system uses these commands when physically configuring the
VFs on or off,

Configurability 33

•

•

34 IBM 3090 Vector Facility; Technical Reference

(7.0 INSTALLATION

This section discusses the physical installation of the Vector Facility,
highlights the schedules, and outlines the software packages required to
utilize the VF.

7.1 PHVSICAL INSTALLATION REQUIREMENTS

The VF represents an extension to the computing facilities of the CP, and
it also represents a physical add-on to the central processor. Therefore
VF will add to power, floor space, and cooling capacity requirements.

The VF is optional in the sense that it can be installed on only one CP
of the 3090-200, or on both. On the 3090-400, it may be installed on one,
two, three, or all four of the CPs. However, only one VF can be installed
on a CP.

The .fi.ai.1 VF may be installed only ons

• CPl on a model 200

• CPl on either side of a Model 400 •

Vector facilities can be installed in two ways1

1. VF<s> can be shipped already installed on the 3090. In this case,
no additional install time is required.

2. VF<s> can be installed in the field <MES> on an already installed
3090. In this case, the following system hours apply for Model 2001

(7 hours for installing the first VF <or both at the same time).

5.5 hours to install the second VF (if the first one is already
installed).

,-

The VF requires additional floor space, and at least one additional frame.
The 3090 Model 200 requires one additional frame, which can house up to
two VFs. This frame represents 20" additional floor space.

The 3090 Model 400 needs only one additional frame if VFs are installed
on only one side. If VFs are to be installed on both sides, two additional
frames are required.

Installation 35

1.1.1 Power

Each VF adds to the power load•

• 0.1 kVA to the 50/60 Hz circuits, and

• 6.82 kVA to the 400 Hz circuits.

Two VFs on the Model 200 are configured on a single power boundary. The
same applies to either side of the Model 400.

7.1.2 cooling Capacity

Each VF represents the following additional
requirement to the cooling capacity1

• 1330 BTU/Hour for air conditioning

• 15390 BTU/Hour for chilled water

7.1.3 Micrqcqde

As the 3090 can run either in 370 or XA mode, different microcode levels
are required for supporting the VF in these two modes.

7.2 SOFTWARE SUPPORT

The software support consists of operating svstem support as well as
compilers and application oriented packages.

The VF operates in the following modes•

1. In XA mode under MVS/XA

2. In 370 mode under VM/HPO

The support provided by these two operating systems does not remove any
existing capability, so downward compatibility is maintained.

36 IBM 3090 Vector Facilitys Technical Reference

..

(

f f.1,,
0
~

7.2.1 MlfS/XA Support

The MVS support is an upgrade to MYS/SP 2.1.3, referred to as Vector Fa­
cility Enhancement <VFE>, and service updates <PTFs> to related products,
as listed belows

• MYS/SP 2.1.3 VFE CJES2 or JES3>

• Either of the followings

DFP/XA 1.2 with PTF UZ40733

DFP/XA 2.1 with PTF UZ40795

• Either of the followings

EREP 3.2 with PTF UR90065

• Either of the followings

RMF 3.3 with PTFs UZ90402, UZ44925, and UZ44554

RMF 3.4. <VF Support is standard>

These PTFs are applied to PUT level 8505 or later, and should be installed
prior to VF installation. The chapter •MVS/XA Support• on page 39
discusses the MVS support in more detail.

7.2.2 Vf1/HPO SUPPPrt

This support is provided as an upgrade to VMl'HPO 4.2 and enables CMS
virtual machines to execute programs with vector instructions.

VM supports the VF in 370 mode, and therefore, the 3090 Model 400 will
run only in partitioned mode under VM.

7.2.3 Qtber Sp~ware Suppprt

In order for applications to exploit the VF, some additional software is
enhanced or provided. These items fall in two categories•

1. Programs used for preparation of code running on VF. These programs
includes

• Assembler H 2.1.0, which needs PTF UP90225 to assemble the new
vector mnemonics.

Installation 37

• VS FORTRAN V2 Compiler. Library and Interactive Debug is capable
of vectorization; that is. to create object code containing vec­
tor instructions from FORTRAN source code. Vectorization is op­
tional. and can be selected at various levels through parameters.

• FORTRAN Language Conversion program is provided for conversion
of IBM FORTRAN IV source code to VS FORTRAN level 77 syntax.

These programs run on any S/370 supported by MYS or VM. and on any
level of these operating systems. but vector code generated by As­
sembler or FORTRAN requires a VF to execute.

2. Subroutines and packages executing vector instructions.

The Engineering and Scientific Subroutine Library <ESSL> consists of
very efficient programs for solving numerical problems by linkage
from routines written in FORTRAN or other languages.

VPSS/VS simulates 3838 operation on the VF.

38 IBM 3090 Vector Facility; Technical Reference

(

MVS.IXA SUPPORT

IBM Vector Facility for the IBM 3090 Central Processing Complex is sup­
ported by MVS.ISystem Product Version 2 Release 1.3 Vector Facility En­
hancement. Modifications have been made to the MVS.ISP 2.1.3 Base Control
Program to effectively manage the jobs using vector instructions by dy­
namically recognizing a vector user and by setting up the proper vector
environment for the task.

The following discussion summarizes some of the typical characteristics
of the Vector Facility use and the jobs that make use of the facility.
Vector jobs typically have the following characteristics•

• High Problem Program State < > 90 ~>

• High CPU Utilization (> 80 ~)

• Long Running

The Vector Facility architecture introducesa

• Large vector registers CSK bytes>

• Several new vector instructions

• Vector control and status registers

• New program check interruptions

• New machine check interruption codes

When managing vector tasks, the following two factors are the most im­
portant ones in the multi-tasking environments

1. Vector status saving.1Restoring

The vector tasks use vector registers that contain a large amount of
data. Saving/restoring the status for those tasks involves a sig­
nificant amount of data transfer to.lfrom the main storage, which could
result in a system performance degradation in multi-tasking environ­
ment.

2. Vector Affinity

The vector tasks have to run on VF-capable processors when they issue
vector instructions. When they do not issue vector instructions, they
can run on any processors in the complex.

The Dispatcher has been modified to manage these characteristics of vector
tasks, along with other related components of MVS. The primary goals are1

MVS.IXA Support 39

• Single system image for a mixed vector and non-vector environment

• No measureable overhead increase for non-vector jobs

• Minimize MVS interaction with vector jobs

Note that the support provided by MVS/SP 2.1.3 Vector Facility Enhancement
is limited to programs running in task mode. No support has been provided
for non-task mode code. For example, if SRB routines were to issue vector
instructions, they would have to manage their own vector environment en­
tirely.

40 IBM 3090 Vector Facility; Technical Reference

l

(

(

8,Q OPEBATOR COMMANDS

Since the Vector Facility can be online or offline separately from its
associated CPU, some extensions have been made to the CONFIG and DISPLAY
commands, as discussed below.

8.1 CONFIG COMMAND

CONFIG CPU command has been extended with the parameters VFON and VFOFF.
These parameters are used with CONFIG CPU ONLINE. VFON is used to cause
the VF to go online with the CPU, and VFOFF to cause it to be left offline.

The sYntax is as followss

[
ONLINE

CONFIG CPUCn> ,
, OFFLINE

[' VFON]]
VFOFF .

The CONFIG command also accepts a new operand, Vf(n), to independently
reconfigure the Vector Facility of the online CPU to which it is attacheds

CONFIG VF<n> [, ONLINE]
, OFFLINE

Note that the CONFIGxx PARMLIB member allows the same syntax commands
without 'CONFIG' or 'Cf'.

The reconfiguration process due to these commands varies depending on the
current status of the CPU and the VF. Figure 20 shows how it works in
each case.

Operator Commands 41

CON FIG CPUCn),

ONLINE

ONLINE, VFOFF

ONLINE,VFON

OFFLINE

Note1 1
2

CP
0

0

0

0

x

Status before CF CPU(n)

VF CP VF CP VF CP VF
0 0 x x Xl x X2

0 0 x 0 0 0 x

x 0 x 0 x 0 x

0 0 0 0 0 0 0

x x x x x x x

01 Online X: Offline

VF went offline with CP
VF was offline prior to CP

Figure 20. Reconfiguration by CF CPU,ONLINE Command

The CONFIG ONLINE/OFFLINE command has also been enhanced to display in­
formation about the Vector Facilities.

8.2 DISPLAY COMMAND

The following commands now include VF related information on the console
display:

• D A,A

'*VF•' is displayed in the AFF field on message IEElOSI if VF affinity
is required but no VF processor is available. This information can
be used to check any users who require the VF but cannot be dispatched
due to VF unavailability.

• D M=CPU

Message IEE490I now includes the VF status as follows1

42 IBM 3090 Vector Facility; Technical Reference

IEE490I hh.mm.ss MATRIX DISPLAY
ID STATUS

CPU 1 ONLINE VFON
CPU 2 ONLINE VFOFF
CPU 3 OFFLINE VFOFF
CPU 4 ONLINE

• D M=CONFIG<xx>

id
SERIAL
170999
270999
370999
470999 <No VF installed)

The deviation information displayed by this command now includes VF
sta-tus as follows•

IEE097I hh.mm.ss
CPU
1
VF
1
VF
2

DEVIATION STATUS id
DESIRED ACTUAL
ONLINE OFFLINE
DESIRED ACTUAL
ONLINE OFFLINE
DESIRED ACTUAL
OFFLINE ONLINE

Operator Commands 43

44 IBM 3090 Vactor Facility; Technical Reference

(

9.0 PHYSICAL AND LOGICAL RECONFIGURATION

As discussed earlier, the Vector Facility can be separately reconfigured
from its related CPU. This reconfiguration may be either physical or
logical.

When the physical reconfiguration of the Vector Facility is implied by
the CONFIG command, the CONNECT VECTOR or DISCONNECT VECTOR command is
issued to the service processor.

1. The VF is loaicallv and physically reconfigured by one of the fol­
lowing commands1

• CONFIG VF<n>

• CONFIG CPU<n>,ONLINE,VFON

• CONFIG CPU<n>,ONLINE,VFOFF

2. The VF is loqically reconfigured by one of the following commands1

• CONFIG CPU<n>,ONLINE

• CONFIG CPU<n>,OFFLINE

These commands do not change the physical status of the associated
VF. However, the VF is made logically offline if the CPU is brought
logically offline, since the VF cannot be used without its associated
CPU.

Therefore, CONFIG CPU<n>,ONLINE results in the associated VF having
the same online or offline status to MVS as it had prior to the pre­
ceding CONFIG CPU<n>,OFFLINE processing.

figure 21 shows two examples of the command processing.

Physical and Logical Reconfiguration 45

Logical Status Physical Status

Operating steps CPU VF CPU VF

1. Initial ONLINE ONLINE ONLINE ONLINE
2. CF CPU, OFFLINE OFFLINE OFFLINE OFFLINE ONLINE
3. CF CPU,ONLINE ONLINE ONLINE ONLINE ONLINE

1. Initial ONLINE ONLINE ONLINE ONLINE
2. CF VF,OFFLINE ONLINE OFFLINE ONLINE OFFLINE
3. CF CPU,OFFLINE OFFLINE OFFLINE OFFLINE OFFLINE
4. CF CPU,ONLINE ONLINE OFFLINE ONLINE! OFFLINE

Figure 21. Examples of CF CPU,ONLINE processing

46 IBM 3090 Vector Facility; Technical Reference ..

(

~ :i

'··· ~

(

10.0 PROGRAM CHECK INTERRUPT HANDLING

Two new program check interruptions have been introduced by the Vector
Architectures

• Unnormalized Operand Exception CUOE>

• Vector Operation Exception CVOP>

The UOE is treated as a regular program check, and no special processing
has been added to MVS.

10.1 VECTOR OPEBATION EXCEPTION

The VOP interrupt is used to recognize a vector task, in conjunction with
the Vector Control Bit in one of the control registers. If a vector in­
struction is issued while the Vector Control Bit is off, a VOP program
check is generated and the Program Check First Level Interrupt Handler
CFLIH> gets control. It then passes control to the new Vector Second
Level Interrupt Handler CSLIH>, which does the necessary environment­
setup for the interrupted vector task.

This setup consists of1

• Creating a save area for the vector registers

• Establishing vector affinity

10.2 VECTOR SLIH

The general functions of the vector SLIH are to1

• Validate the environment at the time of the VOP.

• Do a GETMAIN for the required save areas.

• Set indication that the task has vector affinity.

• Set the Vector Control Bit on.

• Return control to program FLIH, which passes control to the task.

Note that there is no difference between a vector task and non-vector
tasks when a task is first created. It is when a task issues its first
vector instruction that MYS recognizes the task as a vector task. MVS

Program Check Interrupt Handling 47

then assigns the task a dynamic vector affinity, which directs the dis­
patcher to run the task only on a VF capable processor.

However, a vector task loses its vector affinity if it does not use vector
instructions for a certain period of time. The task is then returned to
its original CPU affinity Cif specified), and is no longer restricted to
running on a vector capable processor. This dynamic vector affinity al­
lows a vector task to have a greater access to system resources, and also
reduces the dispatching overhead associated with affinity dispatching.
The detection of a vector task not using the VF for a certain time is
performed by the Job Step Timing routine.

When the task that has lost its vector affinity due to •non-use' issues
a vector instruction again, the VOP is generated again. The task is again
recognized as a vector task and is assigned a vector aff~nity. The pre­
vious vector status is restored from its save area, and is eventually
dispatched on a vector capable processor.

48 IBM 3090 Vector Facility; Technical Reference

(

/{. ~

(

11.0 TASK MANAQEMENT

The Dispatcher is responsible for saving and restoring VF status and also
for affinity dispatching the VF task. The vector affinity is dynamically
assigned by the Vector SLIH, and dynamically removed by the Job Step
Timing routine.

11.1 VECTOR AFFINITY MANAGEMENT

The Vector affinity management has two primary functionss

l. Dynamically assign/unassign vector affinity to a task

2. Affinity dispatch a vector task on a VF capable processor

The first function is performed by the Vector SLIH and the Job Step Timing
routine. When a task issues a vector instruction for the first time or
after a period of vector non-use, the Vactor SLIH is invoked, and it as­
signs a vector affinity to the task. When the vector task has not used
the Vector Facility for a certain period of time, the Job Step Timing
routine removes the vector affinity from the task, and turns off the
Vector Control Bit. This allows the task to run on a non-VF capable
processor. Whan this task issues a vector instruction again, the vector
affinity is re-assigned by the Vector SLIH.

The second function is performed by the Dispatcher, in a manner similar
to the existing processor affinity dispatch. At each dispatch, the task
is eligible to run on any processor that meets its affinity requirements.
The affinity of a VF task is computed at each dispatch to take advantage
of a possible change in the status of available VF hardware features in
the complex. That is, a VF capable processor may have come online after
the last task preemption.

11.2 VECTOR STATUS SAVING

If a task is switched, the status of the current task has to be saved
first. The vector status should be saved only when the last task was
using the Vector Facility. The task's Vector status is saved as follows•

•
•

Use SAVE CHANGED VECTOR REGISTER instruction to save status

Record the Vector Activity Count •

This value is later used by the Job Step Timing routine for utiliza­
tion analysis.

Task Management 49

The dispatcher then calls the Job Step Timing routine for utilization
analysis, which removes the vector affinity if the task has not used the
Vector Facility for more than a pre-set period of time.

11.3 VECTOR STATUS RESTORATION

When dispatching a vector task, the previous contents of the vector reg­
isters have to be restored.

• Non-VF task dispatching

Since the task was not using the Vector Facility, the vector status
is not restored. Additionally, the Vector Control Bit is uncondi­
tionally reset to zero when a non-VF task is dispatched.

• VF task dispatching

The vector status is restored as follows•

1. Restore Vector Status Register.

2. Restore Vector Mask Register.

3. Restore Vector Registers.

4. Record the Vector Activity Count.

This value is later used by the Job Step Timing routine for
utilization analysis.

The task is then ready to be dispatched.

11.4 PROGRAM LINKAGE

Program linkages are handled as follows•

• ATTACH/DETACH

Since the vector environment is controlled a on task basis, the status
saving/restoring of a vector environment is taken care of by MVS if
the linkage utilizes an ATTACH/DETACH macro.

• Other Supervisor Assisted Linkages

The vector environment is ~ot saved and restored across supervisor
assisted linkages. That is, if program A links to program B and
program B wishes to modify vector registers, it must first save its

50 IBM 3090 Vector Facility; Technical Reference

(caller's registers and restore them on exit. The vector environment
is managed in the same manner as floating point registers.

Task Management 51

52 IBM 3090 Vector Facility; Technical Reference

(

(

12.0 RESOURCE MANAGEMENT AND MEASUREMENT

This chapter describes the Vector Facility support provided by the System
Resource Manager CSRM), System Management Facility CSMF>, and Resource
Measurement Facility CRMF>.

12.1 SBM SUPPORT

The SRM control over a unit of work applies to vector tasks. However,
the following modifications have been made to assist the basic charac­
teristics of vector tasks•

1. I/O enablement order

2. Vector Wait

12.1.1 l/O Enablement Order

The vector tasks place a high demand on the processor cache when the
vector elements
·are placed close together in storage; that is, when the stride value is

small.

In order to increase the cache hit ratio, a mechanism called 'Selective
Enablement• has been introduced by MVS/XA. Since the I/O interruptions
are the primary cause of the cache discard, this mechanism keeps the
number of processors accepting I/O interrupts to a minimum, thus allowing
the other processors to keep running without I/O interruptions. Refer
to Figure 22.

Resource Management and Measurement 53

I/O Interruptions

Selective Enablament <SRM>

-· ___ I I ~
v v

VF Tasks ----1
Interruptions may causes

Status Save/Restore
Cache Invalidation

v
I
v

Figure 22. Selective Enablemant by SRM

If the number of interruptions detected by TPI exceeds its high threshold
value, SRM tries to increase the number of processors accepting l/O in­
terruptions. When selecting the processor to be enabled for l/O inter­
ruptions, it should avoid the processor with VF. Therefore, in order to
sustain the cache hit ratio of the VF capable processors, the selection
order has been changed to1

1. CP without the VF

2. CP with the VF

Keeping the VF capable processors free from I/O interruptions has another
advantage. When a vector task is interrupted and the dispatcher eventu­
ally gets control, instead of resuming the task, another task of higher
priority (if any) could be dispatched. The dispatcher than has to save
the status of the vector task. If the next task is a vector task, the
status has to be restored. Because the vector registers have large
amounts of data, this results in significant overhead in the dispatcher
path. The selective enablement priority of non-VF processors reduces the
chances that the dispatcher will get control of the VF capable processor,
and reduces the status save/restore overhead of the dispatcher.

54 IBM 3090 Vector Facility; Technical Reference

G' ~!

"'

~.

(

12.l.2 vector wait

In order to avoid abending a vector task that cannot keep running because
no VFs are currently online, another swapout, called 'Vector Hait', has
been introduced. Refer to Figure 23.

SRM has been changed to detect a vector wait situation in an address space
and to place the address space in vector wait bys

•

•

Initiating a swapout •

Isauing a new message CIRA700I> in·•orming the operator that the ad­
dress space is in vector wait.

The operator can then cancel the job if the VF will not be available
within reasonable time.

When a VF is brought back online, SRM makes any address spaces that were
in vector wait eligible to run again.

••••••••• Complex with VF Installed •••••••••

<Operator Commands) <Program X>

CF VFCn),OFFLINE <-Last VF I Scalar

I Vector Wait <-

I >
v Resume Vector

CF VFCn),ONLINE

I I Scalar

-> Program X ABENDs if no VFs are installed.

Figure 23. Vector Wait

12.2 CHANGES TO SMF RECORD TYPES

Some new fields have been defined in Type 30 and Type 22 SMF records to
provide information on a vector jobs

1. Type 30 SMF record

Resource Management and Measurement 55

The SMF type 30 record contains six subtypes. All the subtypes except
subtype 1 (job start) contain VF usage and VF affinity time.

The added fields are shown in Figure 24.

Name OffsetCHex> Type Len Description

SMF30JVU 20 (14) Signed 4 Job/Step VF usage time

SMF30IVU 24 (18) Signed 4 Initiator VF usage time

SMF30JVA 28 UC> Signed 4 Job/Step VF affinity time

SMF30IVA 32 (20) Signed 4 Initiator VF affinity time

Figure 24. New Fields in SMF Record Type 30

VF Usage Time The TCB time spent for the VF instructions issued
by the job.

VF Affinity Time The TCB time spent for the job while it has a
vector affinity. Remember that a task loses its
vector affinity because of •non-use•.

Figure 25 illustrates the relationship among these values.

SMF30CPT -> Total TCB

SMF30JVA
-> VF Affinity

SMF30JVU
-> VF Usage

Figure 25. Relationship Among Vector Times

56 IBM 3090 Vector Facility1 Technical Reference

Although not directly related to the Vector Facility, two additional
fields have been added to subtypes 2 and 3 of the Type 30 SMF record,
as described in figure 26.

Name OffsetCHex) Type Len Description

SMF30IST 36 (24) Char. 4 Interval start time

SMF30IDT 40 (28) Char. 4 Interval start date

Figure 26. Interval Start Fields in SMF Record Type 30

The post-processing program can now extract the interval start values
from the subtype 2 and 3 records, and can produce statistical data
with greater accuracy. Without this information in the records,
post-processing would have to rely upon the specified amount on the
SMF interval option. The actual SMF intervals can vary somewhat from
this specified value; for example, records expected at 10-minute in­
tervals are sometimes produced at 11- or 12-minute intervals.

2. Type 22 SMF record

The online/offline status of the VF hardware is reported in the Type
22 SMF record. SMF22VFI bit (offset O, bit 0) indicates that the VF
was online if set to l.

12.3 BMF SUPPORT

VF affinity time has been added to the RMF Monitor I CPU Activity Report.
This data is obtained by RMF by sampling the Vector Control Bit on each
processor. The general format of the CPU Activity Report is changed as
shown in Figure 27.

Resource Management and Measurement 57

.CPU VFON VF AFFINITY WAIT TIME WAIT TIME CPU SERIAL
NUMBER HH.MM.SS HH.MM.SS.TTT PERCENTAGE NUMBER

1 VF 00.01.41 00.00.11.100 80.40 170115

2 --------- 00.01.31.999 9.70 270115

TOT ALI' AVERAGE 4.5.0.5

Figure 27. VF Affinity Time Reported by RMF

No change has bean made to the Monitor II or Monitor III reports.
Standard work flow analysis of Monitor III also applies to vector jobs.

.58 IBM 3090 Vactor Facility; Technical Reference

/

/

13.0 BAS CHARACTERISTICS

The most important extentions to the Reliablilty, Availability, and
Servicability features introduced with the VFE are

• A new abend code COEOl for the new program interrupts.

• Presentation of vector related data in dumps and to IPCS/XA.

• Extension to Checkpoint/Restart in DFP/XA.

These items are discussed briefly in the following sections.

13.1 AIEND COPE OEO

A new system abend code uniquely defines new program exceptions. The
current program exceptions, code 0-f, are presented as they have been up
to now; that is, as a OCx. With the OEO abend, the program exception code
appears in the reason code CFigure 28).

The VF presents two new exceptions; The VOP, with code X'l9' and the UOE,
with code X'lD'. The VOP is a normal condition that is processed by the
vector SLIH, whereas UOE results in an OEO abend with a reason code of
X'lD'.

PIC=X'nn'

Examples

ABEND X'OEO'

Reason
code=X'nn'

PIC=X'04' ===> ABEND X'OC4' RC=X'04'
PIC=X'lE' ===> ABEND X'OEO' RC=X'lE'

Figure 28. Presentation of New Program Exceptions

RAS Characteristics 59

13.2 DVMPING SERVICES

Vector-related data is provided in dumps as follows•

1. SNAP/ABDUMP

No new options have been added. The VF status is dumped as part of
the current REG option for any task that uses the VF. Dumping of VF
status involves 16 vector registers, the Vector Status Register, and
the Vector Mask Register.

2. Stand-Alone Dump CSADMP>

• Low-speed (formatted) SADMP

The low-speed SADMP will not dump VF status. When the low-speed
SADMP is used to dump virtual storage, the dump is of a single
address space that is likely to be a system address space rather
than a user address space. Thus, the VF status dumping capability
has been omitted for low-speed SADMP.

• High-speed (unformatted> SADMP

The high-speed SADMP runs on each CPU in a multiprocessing con­
figuration, and dumps the following VF status for each processor•

Vector Status Register

Vector Mask Register

Vector Activity Count

Vector Registers marked as in-use by the in-use bits in the
vector status register.

No console messages are provided to indicate the progress of VF
status dumping.

SADMP dumps VF status data, one set for each CPU, in a format
similar to the one representing an MYS address space. In VF dump
output records, SADMP sets the ASID and virtual address fields
as though the record were mapping a page of virtual storage in
an MVS address space.

The fields are set as follows•

ASID - X'FFF8 1

Virtual Address - CPU id followed by three bytes of zeros

The dump can be formatted by one of the usual dump formatting
utilities CIPCS or PRDMP>. The dump access routines under PRDMP

60 IBM 3090 Vector facility; Technical Reference

3.

and IPCS access the VF data as though it occupied a range of
virtual addresses in an MVS address space.

IPCS/XA

The VF data is included in Stand-Alone and SVC DUMP dumps in two new
forms1

• Vector Register Save Area

• Actual VF content dump as a pseudo ASID produced by SADMP.

IPCS/XA has been enhanced to provides

• Access to the VF data in these new formats.

• Two-dimensional formatting of VF data •

Additional output of VF data is now created whenever data for a TCB
or CPU that is associated with a VF is requested. Also, user-written
exit routines access VF data saved by SADMP by requesting storage from
pseudo ASID X1 FFF8'.

4. Print Dump CPRDMP>

5.

VF data is automatically printed in two circumstances•

• When CPUDATA is requested. If there is VF data associated with
that CPU, it will be printed.

• When a TCB is requested. If there is VF data associated with that
TCB, it will be printed.

Note that printing the VF data is not optional, and no function such
as 'VF-data-only printing• is provided.

Also, user-written exit routines access the VF data saved by SADMP
by requesting storage from pseudo ASID X1 FFF8'.

SP ZAP
'

The DUMPT function has been extended to interpret the 171 new Vector
Facility operation codes.

13.3 CHECKPOINT/RESTART

Checkpoint/Restart has been enhanced to handle vector tasks by including
the vector status save areas with the checkpointed data. The necessary
updates to DPF/XA are included in a PTF.

RAS Characteristics 61

13.4 OPERATING INYlRQNMENT

The MVS/System Product 2.1.3 Vector Facility Enhancement requires that
the processor be executing in IBM 370-XA mode.

The Vector Facility has to be installed in the complex in order to run
the jobs that issue vector instructions. MVS/SP 2.1.3 Vector Facility
Enhancement can operate without the Vector Facility hardware, but the
vector jobs will be abended when they first issue a vector instruction.

62 IBM 3090 Vector Facility; Technical Reference

(

(

IMPLEMENTATION AND MIGRATION

Implementation of the VF in a Large Systems Computing environment is a
complex process that requires planning and strategy decisions in addition
to the physical installation steps. This section concentrates mainly on
the installation tasks and highlights some recommendations based on early
experience.

Implementation and Migration 63

64 IBM 3090 Vector Facility1 Technical Reference

14.0 IHPLEHENTATION

The introduction of the VF com.puting facilities into a system requires a
series of installation steps, which should be taken in a certain sequence
to ensure that hardware and software installation do not overlap.

A recommended sequence is1

1. Install the necessary software packages

2. Install the MVS/XA support

3. Install the VF

Software such as FORTRAN V2 and LCP runs on the current level of MYS, and
can therefore be tested and put into production before the MVS/XA VFE is
installed.

MVS/XA VFE can be installed, tested, and put into production prior to
installation of the hardware. This is recommended in order to identify
any problems caused by changes in software and not hardware.

By installing the VF last, the support is immediately in place for the
verification tests.

In the following sections we will discuss the installation of MVS/SP 2.1.3
VFE and its related software upgrades.

MYS/System Product 2.1.3 Vector Facility Enhancement requires1

• A processor executing in 370-XA mode.

• The Vector Facility installed in the complex (required only to run
the jobs that issue vector instructions).

MVS/SP 2.1.3 is a prerequisite for MVS/SP 2.1.3 Vector Facility Enhance­
ment, and MVS/SP 2.1.3 VFE operates with the same level of the JES2 or
JES3 components as the MVS/SP 2.1.3 Base Control Program.

MVS/SP 2.1.3 VFE is mutually exclusive with .MVS/SP 2.1.3 Availability
Enhancement CAE), and therefore cannot be installed with AE as a base.

The installation process use either1

• System Modification Program Extended CSMP/E) - 5668-949

• System Modification Program Release 4 with PTF UR03129

For the MVS/SP 2.1.3 base, the ACCEPT processing must be done before VFE
RECEIVE processing.

Implementation 65

An installation scenario based on PUT 8505 as a starting point is shown
below. The steps of the SMP processing ares

• ACCEPT

• STAGE 1 Sysgen

• JCLIN

• APPLY

• ACCEPT REDO

Required PTFs for the 2.1.3 base were UZ80022, UZ80023, and UZ8G024.

Additional installation stePS upgrade related software products and con­
sist of 1

• Generate new Stand-Alone Dump program.

This is necessary in order to have the SA Dump format vector registers
and other VF related data in a dump.

• Install PTFs on1

DFP

EREP

RMF

• There is no need to re-generate IPL records and no clean-up ;jobs are
required.

66 IBM 3090 Vector Facility; Technical Reference

(
15.0 MIGRATION CONSIDERATIONS

Hhen migrating a Large Systems Computing environment to utilize the vector
facility for E/S applications, various rework is necessary in addition
to the actual installation of the hardware and software. This includesr

• Changes to application programming practices

• Rework of applications in order to exploit the VF

• Retuning of the operating system

• Changes in backup strategies

• Changes in billing routines

He will restrict ourselves here to consider the system oriented changes,
since application migration is beyond the scope of this document.

15,1 CHANGES TO THE OPERATING SYSTEM

Th~ workload using the VF is similar to a CPU-bound floating point work­
load. The most important differences ares

• The VF enhances the performance of f/S programs so you can run ap­
plications that make greater demands on storage, and that will have
more frequent storage references, such as larger matrix computations.
Consequently, there is an increased demand on real storage.

• Task switches between VF tasks require saving and restoring vector
registers, which means more work for the dispatcher.

• The MVS Vector Affinity function ensures that, in systems with only
one VF, the vector workload is dispatched on that CP and therefore
introduces a workload imbalance.

When migrating to VF, one should plan additional central storage or ex­
panded storage. In a normal workload environment, the effect of VR save
and restore appears to be minimal. First of all, MVS tries to minimize
the rate of task switches by letting only one of the CPs handle I/O in­
terrupts. With only one VF, I/O interrupts are taken by the non-VF CP.
Secondly, the VR save/restore mechanism in the VF helps to minimize the
data transfer to and from storage.

It does not seem to be necessary to re-evaluate performance or tuning
parameters.

Migration Considerations 61

15.2 BILLING ROUTINES

Along with other resource usage data, SMF records now contains

• Vector usage time

• Vactor affinity time

This data is valuable for capacity planning purposes, and might also be
used for charging for the use of the VF.

The current billing algorithms might have to be reviewed for the impact
of VF on the currant method, or to determine whether charges for VF usage
should be distributed to the users.

It might also be appropriate to modify the current IEFACTRT to present
this data to the users on output listings. This information might help
in application migration projects.

15.3 JES3 INCOMPA'UBILITY

Along with the changes made to MYS/SP 2 .1 . 3 to support the VF, changes
were made to the Type 6 SMF record layout. The Type 6 record is used by
JES3 to report data on printer usage. <JES2 uses its own layout and is
therefore not impacted by this change.)

JES3 installations that are using accounting routines that depend on the
Type 6 record must plan to incorporate changes in these routines when
migrating to a VF system.

15.4 BACKUP STRATEGY

The VF workload is incompatible across processors in the sense that it
is locked to a system with VF installed. It can run only on a 3090 with
VF. This may introduce a change to the current backup strategy.

If the current backup arrangement implies use of a non-VF backup
processor, the following two alternatives exist for f;tacking up the vector
workload a

1. Arrange for a 3090 with VF as a backup processor.

2. Amend development and operation procedures so as to be able to use a
non-VF processor.

68 IBM 3090 Vector Facility; Technical Reference

The first alternative needs no further comment. whereas the second al­
ternative needs parallel maintenance of vector and scalar versions of the
workload. Whenever applications are changed. the applications would also
have to be compiled with the non-vector option, and with possible linkage
to non-vector versions of ESSL routines or other subroutines.

The additional maintenance introduced by this method is in addition to
the performance impact that comes when applications have to be run in
scalar mode.

Migration Considerations 69

READER'S COMMENTS

Title: IBM 3090 Vector Facility
Technical Bulletin GG24-3058

You may use this form to co111DUnicate your coanents about this
publication, its organization or subject matter with the understanding
that IBM may use or distribute whatever information you supply in
any way it believes appropriate without incurring any obligation ta you.

Coanents:

Reply requested Name :

Yes / No Jab Title :

Address :

Reader's Comment Form

Fold and tape

Fold and tape

==-=.::® - ----- - -- -. ---- -----------~-·-

Please Do Not Staple

I II II I

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE:

IBM International Technical Support Center
Department H52, Building 930
P.O. Box 390
Poughkeepsie, New York 12602
U.S.A.

Pl- Do Not Staple

Fold and tape

NO POSTAGE
NECESSARY

IF MAILED
INTHE

UNITED STATES

Fold and tape

I

I

~
~

i
J
i

6624-3058-0

--..-. ----- --~~ - _. --- ~ ---- -----------~- · - GG24-3058-0

,,, :.:
n
::r~
~o

no
QI
-'< ,,,
:::on ,,, "' 0 ,,, ~
~
,,, "Tl
~ QI
nn ,,,

.....
"' '<

0
U'I
CX>
I

0

""O
:::0
::z
-f ,..,,
0

.....
::z

n--1
::c ,..,,
<=
V>

