
IBM Programmer's Guide to the
Server-Requester Programming Interface
for the IBM Personal Computer and the IBM 3270 PC

--------- - ---- ----- -. ---- - - -----_ .. ---_.-

First Edition (September 1986)

This edition applies to Release 1.0 of IBM System/370 to IBM Personal Computer
Enhanced Connectivity Facilities and to all subsequent releases and modifications
until otherwise indicated in new editions or Technical Newsletters. Changes are
made periodically to the information herein.

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM program product in this publication is not intended to
state or imply that only IBM's program product may be used. Any functionally
equivalent program may be used instead.

Publications are not stocked at the address given below. Requests for IBM
publications should be made to your IBM representative or to the IBM branch
office serving your locality.

Comments may be addressed to IBM Corporation, Department 95H, 11400 Burnet
Road, Austin, Texas 78758. IBM may use or distribute whatever information you
supply in any way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1986

Abbreviations

About This Book

The purpose of this book is to explain the concepts and procedures for
writing requesters. A requester is a program that requests a server to
perform a task, using the Server-Requester Programming Interface (SRPI).
See "Server-Requester Programming Interface" on page 1-5 for details of
the SRPI.

This book shows how to write requesters in the following languages for the
IBM Personal Computer:

• IBM Pascal

• IBM C

• IBM Macro Assembler.

This book also explains:

• Requesters

• Servers

• Routers

• Server-Requester Programming Interface (SRPI)

• The send...request function.

This book uses the following abbreviations:

• Pascal refers to IBM Pascal Compiler, Version 2.00

• C refers to IBM C Compiler, Version 1.00

• Macro Assembler refers to IBM Macro Assembler Version 1.00 or 2.00

• DOS refers to Release 3.10 or 3.20 of IBM PC Disk Operating System
(DOS)

• MVS refers to the IBM System/370 running Multiple Virtual
Storage/Extended Architecture (MVS/XA) with Time Sharing Option
(TSO)

• Personal Computer and PC refer to one of the following IBM Personal
Computers:

PC
PC/XT
PC/AT

About This Book 111

Audience

Portable PC
3270 PC
3270 PC/AT.

• The term IBM host computer refers to the IBM mainframe computers
(30xx series) and the IBM intermediate computers (43xx series) that
support the MVS/System Product (MVS/XA) and the VM/System
Product.

• VM refers to the IBM System/370 running Virtual Machine/System
Product (VM/SP) Release 4, with Conversational Monitor System
(CMS).

This book is intended primarily for:

• Application programmers

• Application/system designers.

It is intended secondarily for:

• System programmers

• IBM technical support personnel.

You should be familiar with one or more of the following programming
languages:

• IBM Personal Computer Pascal Language

• IBM Personal Computer C Language

• IBM Personal Computer Macro Assembler Language.

How to Use This Book

Organization

Chapter 1 provides an overview of the Server-Requester Programming
Interface and explains the sen<Lrequest function and semantics. Chapters 2
through 4 describe the language interface and syntax for Pascal, C, and
Macro Assembler.

This manual contains the following chapters:

Chapter 1, "The SRPI and The SemLRequest Function," defines the
Server-Requester Programming Interface (SRPI), routers, requesters, and
servers. It explains how the sen<Lrequest concept functions in the SRPI
and lists the senCLrequest parameters supplied by the requester. This
chapter describes the parameters returned from the server in a senCLreply

1 V IBM Programmer's Guide to the SRPI

operation. This chapter also describes the format of the Connectivity
Programming Request Block (CPRB).

Chapter 2, "Language Interface and Syntax for Pascal," discusses SRPI
record definitions, request record initialization, the Pascal sendrequest
function, and linking subroutines. This chapter is for programmers who are
writing a requester program in the Pascal language. This chapter also
provides a Pascal sample program.

Chapter 3, "Language Interface and Syntax for C," discusses the SRPI
structure definition, request record initialization, the C senuequest
function, and linking subroutines. This chapter provides language-specific
notes for C. This chapter is for programmers who are writing a requester
program in the C language. This chapter also provides a C language
sample program.

Chapter 4, "Language Interface and Syntax for Macro Assembler," discusses
macro definitions, macro parameters, and CPRB mapping. This chapter is
for programmers who are writing a requester program in the Macro
Assembler language. This chapter also provides a Macro Assembler sample
program.

Appendix A, "SRPI Return Codes," describes SRPI return codes for
successful and unsuccessful tasks.

Appendix B, "ASCII to EBCDIC Translation Table," provides a table that
the SRPI uses for translating the server name from ASCII to EBCDIC.

Appendix C, "Product Requirements," describes the product requirements
for the IBM Personal Computer, IBM Requesters/Servers, MVS/XA
environment, and VM environment.

The glossary defines key terms used in the book.

Prerequisite Publication

Introduction to IBM System/370 to IBM Personal Computer Enhanced
Connectivity Facilities, GC23-0957

This book provides a high-level overview of the services available through
IBM Enhanced Connectivity Facilities.

Related Publications

• TSO Extensions Programmer's Guide to the Server-Requester
Programming Interface for MVS/Extended Architecture, SC28-1309

This book explains how to write, install, test, and debug servers to use
with MVSSERV. It is intended for application designers and
programmers who design and write servers and server
initialization/termination programs and system programmers who
install MVS/XA servers.

About This Book V

• IBM Programmer's Guide to the Server-Requester Programming Interface
for VM/ System Product, SC24-5291

This book explains how to write and install servers in a VM/SP system.
Explanations also cover the use of the router and the
messages/MNOTES which it issues.

• IBM PC 3270 Emulation Program, Version 3.0, User's Guide

This book explains how to install, load, and use this emulation program
to communicate with an IBM System/370.

• IBM PC 3270 Emulation Program, Version 3.0, System Planner's and
User's Reference

This book describes network planning, problem determination
procedures, keyboard remapping and keyboard extensions.

• IBM 3270 PC Control Program, Version 3.0, User's Guide, 58X9968

This book explains how to install, load, and use this program to
communicate with an IBM System/370.

• IBM TSO/E Servers and CMS Servers Installation and Programmer's
Guide, SH20-9677

This book is a reference manual for the system programmer who installs
software and for the application programmer who writes special user
conversion routines (user exits) on VM or TSO/E.

• IBM PC Requesters User's Guide, 6316993

This book is for the personal computer user, included with the program,
and cannot be ordered separately. It describes how to install and use
the IBM PC Requesters product.

VI IBM Programmer's Guide to the SRPI

Compatibility

The supported languages are Pascal, C, and Macro Assembler.

Product requirements are one or more of the following:

IBM Personal Computer

• Pascal Compiler, Version 2.00

• C Compiler, Version 1.00

• Macro Assembler, Version 1.00

• Macro Assembler, Version 2.00.

See Appendix C, "Product Requirements" on page C-l for additional
information about product requirements.

About This Book Vll

VUl IBM Programmer's Guide to the SRPI

Contents

Chapter 1. The SRPI and the Send.-Request Function and
Semantics 1-1

About This Chapter 1-3
Summary of IBM System/370 to IBM Personal Computer Enhanced

Connectivity Facilities 1-4
Server-Requester Programming Interface 1-5
The SencLRequest Function 1-8
SencLRequest Parameters 1-9
Connectivity Programming Request Block 1-12

Chapter 2. Language Interface and Syntax for Pascal 2-1
About This Chapter 2-3
Pascal SendRequest Function 2-4
SRPI Record Definitions 2-5
SendRequest Function Definition 2-6
SRPI Return Codes 2-6
Request Record Initialization 2-7
Linking Subroutines 2-7
Writing a Requester 2-8
Pascal Sample Program 2-9

Chapter 3. Language Interface and Syntax for C 3-1
About This Chapter 3-3
C SencLRequest Function 3-4
SRPI Structure Definition 3-5
SRPI Return Codes 3-7
Request Record Initialization 3-8
Linking Subroutines 3-8
Language-Specific Notes 3-8
Writing a Requester 3-9
C Sample Program 3-10

Chapter 4. Language Interface and Syntax for Macro
Assembler 4-1

About This Chapter 4-3
Macro Definitions 4-4
SRPI Return Codes 4-5
Macro Parameters 4-6
CPRB Mapping 4-12
Writing a Requester 4-13
Macro Assembler Sample Program 4-14

Appendix A. SRPI Return Codes A-I
Error Handling A-I
Types of SRPI Return Codes A-2
Type 0 Return Code A-2
Type 1 Return Codes A-2
Type 2 and Type 3 Return Codes A-4
Server Return Codes A-7

Contents IX

Appendix B. ASCII to EBCDIC Translation Table B-1

Appendix C. Product Requirements C-1
IBM Personal Computer Environment Requirements C-1
IBM Requesters/Servers Environment Requirements C-1
MVS/XA Environment Requirements C-1
VM Environment Requirements C-2

Glossary X-I

Index X-7

x IBM Programmer's Guide to the SRPI

Figures

1-1. Example of a Requester and Server 1-5
1-2. IBM Personal Computer Requester and IBM Host Computer Server

Relationship 1-6
1-3. Example of a Requester and Server Flow 1-7
1-4. CPRB Register Address 1-8
1-5. Parameters Supplied by the Requester 1-9
1-6. Parameters Returned to the Requester 1-11
1-7. CPRB Format 1-12

Figures Xl

Xll IBM Programmer's Guide to the SRPI

CONTENTS

About This Chapter 1-3
Summary of IBM System/370 to IBM Personal Computer Enhanced Connectivity Facilities 1-4
Server-Requester Programming Interface 1-5
The Sen<LRequest Function 1-8
SencLRequest Parameters 1-9

Supplied Parameters 1-9
Returned Parameters 1-11

Connectivity Programming Request Block 1-12

1-2 IBM Programmer's Guide to the SRPI

About This Chapter

This chapter summarizes IBM System/370 to IBM Personal Computer
Enhanced Connectivity Facilities:

• Server-Requester Programming Interface (SRPI)

• Routers

• Requesters and servers.

This chapter also explains the semLrequest concept and its function in the
SRPI and:

• Shows how to use the Server-Requester Programming Interface (SRPI)

• Lists the supplied and returned parameters of the sen<Lrequest function

• Describes the format of the Connectivity Programming Request Block
(CPRB)

• Provides a sample SRPI program flow.

Chapter 1. The SRPI and SencLRequest 1-3

Summary of IBM System/370 to IBM Personal Computer
Enhanced Connectivity Facilities

IBM System/370 to IBM Personal Computer Enhanced Connectivity
Facilities provides a method for communicating and moving functions
between unlike systems. IBM Enhanced Connectivity Facilities are a set of
programs for interconnecting IBM Personal Computers and IBM System/370
host computers operating with the MVS/XA or VM/SP environment.

IBM Enhanced Connectivity Facilities is patterned after the call/return
function available in many high-level programming languages. Customers
can either write their own Requesters/Servers or use those available from
IBM. See Appendix C, "Product Requirements" on page C-l for
information about the IBM Requesters/Servers.

IBM Enhanced Connectivity Facilities provide a common structure for
sending and receiving functions on a connection between an IBM host
computerl and IBM Personal Computers2.

IBM Enhanced Connectivity Facilities is designed to shield end users and
application programs from the differences between two connected systems,
including details of the operating systems, the location of the systems, and
the communication protocols.

IBM Enhanced Connectivity Facilities help simplify the way unlike systems
use services over a connection. IBM Enhanced Connectivity Facilities
provide a single interface that allows application programmers to write
personal computer and host applications that run on a variety of
communication connections. This interface is used for the exchange of
such functions as reading, transferring, or printing.

IBM Enhanced Connectivity Facilities has the following characteristics:

• A consistent interface for application programs in a personal computer
to request services, data, or both from a host. The requesting program
is referred to as the requester.

• A consistent interface for programs in a host to reply to requests for
services, data, or both from personal computers. The program that
services the request is referred to as the server.

• A consistent interface for handling communications between requesters
and servers. The program, provided in personal computers and host

The term IBM host computer refers to the IBM mainframe computers (30xx
series) and the IBM intermediate computers (43xx series) that support the
MVSjSystem Product (MVSjXA) and the VMjSystem Product.

In this publication, the term Personal Computer refers to the
properly-configured members of the IBM Personal Computer family, including
the PC, the PCjXT, the Personal Computer AT, the Portable Personal
Computer, the IBM 3270 Personal Computer, and the 3270 Personal Computer
AT.

1-4 IBM Programmer's Guide to the SRPI

computers, is referred to as the router. The router provides a new
Server-Requester Programming Interface (SRPl). The SRPI is a request
interface for requesters, or a reply interface for servers. This interface
isolates requesters and servers from the underlying communication
environment. See "Server-Requester Programming Interface" for
details.

The requester and server programs operate in pairs, with the requester on
the personal computer and the server on the host computer.

IBM Persona I Computer IBM Host Computer

Request

Reply

i i
SRPI Interface
(Req u este r)

SRPI Interface
(Server)

Figure 1-1. Example of a Requester and Server

Server-Requester Programming Interface

The application programming interface between requesters from the IBM
Personal Computer and servers on the IBM host comput.er is the
Server-Requester Programming Interface (SRPI).

Note: For information about a corresponding interface for servers on the
IBM host computer, see one of the following:

• TSO Extensions Programmer's Guide to the Server-Requester
Programming Interface for MVS/Extended Architecture

• IBM Programmer's Guide to the Server-Requester Programming
Interface for VM/ System Product.

Chapter 1. The SRPI and SencLRequest 1-5

main:

The SRPI for the IBM Personal Computer is part of the IBM PC 3270
Emulation Program, Version 3.0, and part of the IBM 3270 PC Control
Program, Release 3.0, for the 3270 PC. The SRPI on the IBM Personal
Computer supports only requesters. It provides a call/return function for
application-to-application communications. Using the send_request
function, a program on an IBM Personal Computer calls (requests) for
service from a partner program on an IBM host computer, which returns
(services) the results.

IBM Host Computer
IBM Persona I Computer

c::=J

~~ D 0 ~

/ \
server_x

send_request (server_x~ func, data,
pormp) server return code} !

~-~---.-

end

Figure 1-2. IBM Personal Computer Requester and IBM Host Computer Server Relationship

Applications use the SRPI by issuing the senuequest function. See "The
Sen~equest Function" on page 1-8 for further information on this
operation.

1-6 IBM Programmer's Guide to the SRPI

Requester

SEND_REQUEST
SERVER =
FUNCTION =
REQUEST PARMS =
REQUEST DATA =

~

SRPI return code

- returned from
IBM PC router

When an IBM Personal Computer requester issues the sencLrequest
function using the SRPI:

1. The PC router converts the request into a structure that the IBM host
computer router recognizes.

2. The PC router passes the request to the IBM host computer router.

3. The IBM host computer router passes the request to the appropriate
IBM host computer server.

4. The IBM host computer server processes the request and passes a reply
to the IBM host computer router.

5. The IBM host computer router then passes the reply to the PC router.

6. The PC router returns the reply to the originating requester
application.

IBM Enhanced
Connectivity Facilities Server

.. ,

- validate request
- pass request to server

.. ,.

Perform service
SEND_REPLY

REPLY PARMS =
REPLY DATA =
SERVER RETURN CODE =

~

~

- return reply

Figure 1-3. Example of a Requester and Server Flow

Chapter 1. The SRPI and SemLRequest 1-7

The Send~equest Function

You may issue the semLrequest function to the SRPI interface in the
following ways:

• The C language support programs provided by IBM.

• The Pascal language support programs provided by IBM.

• The Macro Assembler support programs provided by IBM.

• Directly accessing the SRPI interface without the use of any of the
support programs listed above.

The language support programs provided by IBM generate the sencLrequest
function.

You must perform the following steps, if you are not using the language
support programs provided by IBM, to generate the sencLrequest function:

1. Initialize the appropriate Connectivity Programming Request Block
(CPRB) fields. This includes the CPRB length field, the CPRB version
ID and the CPRB verb type. Any unused fields should be set to the
appropriate default value. The following five CPRB fields should be
ini tialized to zero if un used:

• Function ID

• Request Parameters Length

• Request Data Length

• Reply Parameters Buffer Length

• Reply Data Buffer Length.

See "Connectivity Programming Request Block" on page 1-12 for details
of the CPRB.

2. Load register pair ES:DI with the address of the CPRB.

On Register
Entry Contents

ES:DI Address of the Connectivity
Programming Request Block
(CPRB)

Figure 1-4. CPRB Register Address

3. Set register AX to X'0103'.

4. Invoke software interrupt X'7F'.

1-8 IBM Programmer's Guide to the SRPI

5. Examine register AX after the interrupt. If register AX is set to zero,
the SRPI has processed the request and the SRPI return code may be
examined. If register AX is non-zero, SRPI is not loaded and has not
processed the request.

Note: The SRPI return code X'OI000404' (PC router is not loaded) is
returned in the CPRB only when the language support programs
provided by IBM are utilized.

Send_Request Parameters

The PC router sends the request to the IBM host computer router using the
necessary communication facility. The SRPI returns control to the
requester with an appropriate return code, optional parameters, and data.

The parameters and data associated with the sencLrequest function are
described on the following pages.

Supplied Parameters

Name of Required! Default
Parameter Optional Value Description

Server Required Blanks The name of the IBM host computer server must be 8
Name bytes long (PC/ASCII), left justified, and padded with

blanks (X'20'); leading spaces, embedded spaces, and
names consisting of all spaces are invalid. The name is
converted to EBCDIC before the request is sent to the
IBM host computer. See Appendix B, "ASCII to
EBCDIC Translation Table" on page B-I.

Function ID Optional 0 A 2-byte binary number that specifies the server function
being requested. Values of 0 to 65,535 are valid for
specification by a requester.

Request Optional 0 A 2-byte unsigned binary number that specifies the byte
Parameters length of the request parameters to be passed to the
Length server. Values of 0 to 32,763 are valid. A value of 0

indicates that there are no request parameters to be
passed.

Request Optional 0 The 4-byte address of the parameters, if any, to be passed
Parameters to the server. A non-zero value in the request

parameters length indicates that there are parameters to
be passed. See Note 3 on page I-II.

Request Optional 0 A 2-byte unsigned binary number that specifies the byte
Data Length length of the request data to be passed to the server.

Values of 0 to 65,535 are valid. A value of 0 indicates
that there is no request data to be passed.

Figure 1-5 (Part 1 of 2). Parameters Supplied by the Requester

Chapter 1. The SRPI and SencLRequest 1-9

Name of Required! Default
Parameter Optional Value Description

Request Optional 0 The 4-byte address of the data, if any to be passed to the
Data server. A non-zero value in the request data length

indicates that there is data to be passed. See Note 3 on
page 1-11.

Reply Optional 0 A 2-byte unsigned binary number that specifies the
Parameters length in bytes of the reply parameter buffer supplied by
Buffer the requester. Values of 0 to 32,763 are valid. A value of
Length o indicates that no reply parameters are expected.

Reply Optional 0 The 4-byte address of the reply parameter buffer. Its
Parameters presence is indicated by a non-zero reply parameters
Buffer buffer length. See Note 3 on page 1-11.

Reply Data Optional 0 A 2-byte unsigned binary number that specifies the
Buffer length in bytes of the reply data buffer supplied by the
Length requester. Values of 0 to 65,535 are valid. A value of 0

indicates that no reply data will be received.

Reply Data Optional 0 The 4-byte address of the reply data buffer. A non-zero
Buffer value in the reply data buffer length indicates that there

is reply data to be received. See Note 3 on page 1-11.

Figure 1-5 (Part 2 of 2). Parameters Supplied by the Requester

Notes:

1. The default values for each language interface are set during the request
record initialization function.

2. In the C language interface, the INIT _SENDJlEQJ ARMS function
initializes the server name pointer to zero. The SE.IVDJlEQUEST
function checks the server name pointer for the zero value. If the server
name pointer is set to zero, then the CPRB server name is set to blanks
(X'2(J). The server name pointer remains set to zero.

1-10 IBM Programmer's Guide to the SRPI

Returned Parameters

Name of
Parameter Description

SRPI Return Code A 4-byte value that specifies the results of the sencLrequest
execution. See Appendix A, "SRPI Return Codes" on page A-I for
a complete description of SRPI return codes.

Server Return Code A 4-byte value returned by the server. The content and meaning of
the return status are defined by the Requester/Server, but the length
of the field is always 32 bits.

Replied Parameter A 2-byte unsigned binary length that specifies the number in bytes
Length of the parameters returned by the server. Values of 0 to 32,763 are

valid. A value of 0 indicates that no reply parameters were received
from the server.

Replied Data Length A 2-byte unsigned binary length that specifies the number of bytes
of the data returned by the server. Values of 0 to 65,535 are valid.
A value of 0 indicates that no reply data was received from the
server.

Figure 1-6. Parameters Returned to the Requester

Notes:

1. The PC router is not re-entrant. If the PC router is re-entered with a
request while it is processing a request, the second request is rejected with
a return code of)('01000408' (PC router busy).

2. The server name is used by the remote IBM host computer to route the
request to the server.

3. The address supplied is made up of a segment address and an offset into
the segment. The PC router does not validate this field. The segment
address and offset must give full addressability of the buffer; that is, the
sum of the offset and the buffer length does not exceed 64K - 1 (65,535).

4. The Requesters/ Servers determine the contents and meaning of the buffers
defined by the CPRB.

Chapter 1. The SRPI and SemLRequest 1-11

Connectivity Programming Request Block

Field

CPRB length

PC router version ID

SRPI return code

SRPI verb type

Reserved

Function ID

Reserved

Request parameter
length

Request parameter

Request data length

Request data

Reply parameter buffer
length

Reply parameter buffer

Reply data buffer length

Reply data buffer

Reserved

Server return code

The Connectivity Programming Request Block (CPRB) is used to pass a
request to a server through the PC router. Requester applications written
in C and Pascal do not require knowledge of the CPRB. The format of the
CPRB is shown on the following pages.

Byte Byte
Offset Length Contents

0 2 The length in bytes of the CPRB.

2 2 PC router version number.

4 4 SRPI return code.

8 1 Type of SRPI request.

9 1 Reserved

10 2 Function ID; defined default of O.

12 2 Reserved

14 2 Request parameter length; defined default of O.

16 4 Request parameter pointer.

20 2 Request data length; defined default of O.

22 4 Request data pointer.

26 2 Reply parameter buffer length; defined default
value ofO.

28 4 Reply parameter buffer pointer.

32 2 Reply data buffer length; defined default value
ofO.

34 4 Reply data buffer pointer.

38 2 Reserved

40 4 Server return code.

Replied parameter length 44 2 Replied parameter length.

Replied data length 46 2 Replied data length.

Work area 48 46 The SRPI reserves this area; requesters should
not use it.

Server name length 94 2 Number of bytes reserved for the server name.

Server name 96 8 Server name value supplied by the requester;
the name is assumed to be left justified and
padded with blanks.

Figure 1-7. CPRB Format

Notes:

1. The PC router version ID is used to verify that the provided CPRB
format can be processed. If the version ID is not valid, an error code is
returned in the CPRB.

1-12 IBM Programmer's Guide to the SRPI

2. The following fields should be initialized to the values indicated:

• CPRB length = Length of the CPRB (X'68')
• PC router version id = Version number of the router (X'010(f)
• SRPI verb type = X'01'
• Server name length = X' 0008'

The IBM language support programs provided for Pascal, C, and Macro
Assembler automatically initialize these fields.

3. The IBM Personal Computer stores word (2-byte) values in memory in a
byte-reversed format. For example, X'0102' is stored in memory as
X'0201'. Doubleword (4-byte) values are stored in memory in a
word-reversed and byte-reversed format. For example, X'0102 0304' is
stored in memory as X'0403 0201'. The PC router does not alter this
format when these values are sent to the IBM host computer as request
data or request parameters. When a word value is sent to the IBM host
computer, the low order byte is sent first, followed by the high order byte.
The IBM host computer does not use the byte-reversed format. You must
ensure that data and parameters passed between the requester and the
server are in the proper format for the Requester/Server.

4. PC router pointers are stored using the doubleword format. See Note 3
on page 1-13. The first word in memory contains the offset value for the
field. The second word in memory contains the segment value for the
field. For example, a pointer with a segment value of X'lEOO' and an
offset value of X'0100' is stored in memory as X'0001 001E'.

5. The return code values are defined as double words by the provided IBM
language interface. For example, the SRPI return code X'0100 0402 is
stored in the CPRB memory as X'0204 0001'. See Note 3 on page 1-13.

Chapter 1. The SRPI and SemLRequest 1-13

1-14 IBM Programmer's Guide to the SRPI

CONTENTS

About This Chapter 2-3
Pascal SendRequest Function 2-4
SRPI Record Definitions 2-5
SendRequest Function Definition 2-6
SRPI Return Codes 2-6
Request Record Initialization 2-7
Linking Subroutines 2-7
Writing a Requester 2-8
Pascal Sample Program 2-9

2-2 IBM Programmer's Guide to the SRPI

About This Chapter

This chapter is for programmers who want to become familiar with writing
a requester in Pascal.

This chapter describes:

• Pascal sendrequest function

• SRPI record definitions

• SRPI return codes

• Request record initialization

• Linking subroutines

• A Pascal sample program.

Note: The function called sendJ"equest in other chapters is spelled as one
word (sendrequest) in this chapter.

Chapter 2. Language Interface and Syntax for Pascal 2-3

Pascal SendRequest Function

The sendrequest parameters are grouped in a single Pascal record structure
of type UERCPRB. The INITJ;END-REQJARMS procedure initializes
all the default sendrequest parameters. This allows the default values to be
set once for parameters not used by a requester. The sendrequest function
has a single parameter which is the 32-bit address (ADS) of a UERCPRB
record.

The mapping is not the same for the UERCPRB record and the CPRB.
Application programs should make no assumptions about the mapping of
the UERCPRB record to the CPRB.

The SRPI provides for sending a buffer of parameters and/or a buffer of
data to the server and receiving a buffer of parameters and/or a buffer of
data from the server. A generic type is used for these parameters of the
sendrequest function because any type of data can be sent using this
interface. For Pascal, the type ADSMEM is used for these buffer pointers.
This is the type predeclared to be ADS OF ARRAY [0 .. 32765] OF BYTE, so
it can point to data of whatever type is convenient. It uses the ADS
operator to get the segment and offset address of the data object. Array
indexing accesses specific offsets from the pointer. If the request
parameters and/or data consist of more than a single structure, such as
several records, the application must convert the data and/or parameters
into a single flat structure that can be used as a buffer. A single flat
structure is a contiguous sequence of bytes. You can use explicit field
offset extension that allows you to assign an exact byte offset to fields
within a record. This ensures that the fields within a record have
consistent offsets.

The requesting program is responsible for packaging the request parameters
and data in a format that can be recognized by the server.

The same memory area can be used for both request and reply parameters.
In addition, the same memory area can be used for both request and reply
data. The application program must ensure that reply data and parameters
are written into the request data and parameters buffers only when the
over-written data is no longer needed.

The object code for the Pascal procedures, the declaration files for the
procedures, the record type, and the SRPI return codes are provided on
diskette.

The Pascal object code linked with the requester program can push up to 12
words onto the application program stack. The PC router uses an
additional 5 words of application program stack. Seventeen words of
application program stack are required. Ensure that your application
program stack is large enough to meet this requirement.

2-4 IBM Programmer's Guide to the SRPI

SRPI Record Definitions

The UERCPRB record type defines a record being passed to the PC router
using the sendrequest function. The UERCPRB record type is defined in an
application program by using the $INCLUDE metacommand to include the
UUPCPRB.INC file. See "Supplied Parameters" on page 1-9 and "Returned
Parameters" on page 1-11 for the definition of the supplied and returned
parameters. The following is the SRPI record definition:

Type UERCPRBPTR = ADS of uercprb;

uercprb = RECORD

[Supplied Parameters

uerserver
uerfunct
uerqparml
uerqparmad
uerqdatal
uerqdataad
uerrparml
uerrparmad
uerrdatal
uerrdataad

string (8);
word;
word;
adsmem;
word;
adsmem;
word;
adsmem;
word;
adsmem;

[Returned Parameters}

uerretcode
uerservrc
uerrepldplen
uerreplddlen

END;

Notes:

integer4;
integer4;
word;
word;

Parameter Description}

[ASCII name of server}
[Function ID}
{Request Parameters Length}
[Request Parameters Address}
[Request Data Length}
[Request Data Address}
{Reply Parameters Buffer Length}
[Reply Parameters Buffer Address}
{Reply Data Buffer Length}
(Reply Data Buffer Address}

{SRPI Return Code}
(Server Return Code}
{Replied Parameters Length }
(Replied Data Length }

1. The name in the server name field must be left justified and padded with
blanks (X'2(J) to a length of 8 bytes.

2. The supplied parameters are not changed by the sendrequest function.

3. The following output fields are undefined unless the SRPI return code
value returned in uerretcode by the PC router is successful:

• Server Return Code (uerservrc)

• Replied Parameter Length (uerrepldplen)

• Replied Data Length (uerreplddlen).

These fields mayor may not have been altered by the PC router, and they
mayor may not have been initialized to zero by the PC router. The
calling application should not expect these fields to be either maintained
or altered across any unsuccessful call to the PC router.

4. The value returned from the sendrequest function is identical to the value
in the field uerretcode in the UERCPRB record.

Chapter 2. Language Interface and Syntax for Pascal 2-5

SendRequest Function Definition

The sendrequest function is defined in an application program by using the
$INCLUDE metacommand to include the UUPPROCS.INC file. The
sendrequest function declaration heading follows:

FUNCTION SendRequest
(vars cprbptr

where integer4 is a 4-byte field.

SRPI Return Codes

UERCPRBPTR) integer4; extern;

To incorporate SRPI return code definitions in an application program, use
the $INCLUDE metacommand to include the UUPCPRB.INC file. The
return code constants, their hexadecimal values, and their meanings are as
follows:

CONST
UERERROK

Type 1 Errors

UERERRT1START
UERRT1LOAD
UERERRT1BUSY
UERERRT1VER
UERERRT1EMU
UERERRT1QPLEN
UERERRT1RPLEN
UERERRT1VERB
UERERRT1SERV
UERERRT1QPAD
UERERRT1QDAD
UERERRT1RPAD
UERERRT1RDAD
UERERRT1TOPV
UERERRT1CNCL
UERERRT1CONV
UERERRT1ISE
UERERRT1PROT
UERERRT1SYTN

#00000000;

#01000402;
#01000404;
#01000408;
#0100040A;
#0100040C;
#01000602;
#01000604;
tf01000606;
#01000608;
#0100060C;
#0100060E;
#01000610;
#01000612;
#01000616;
#01000802;
#01000COO;
#01000C02;
#01000C04;
#OlOOOC06i

Type 2 and Type 3 Errors

UERERRT2
UERERRT3

#02;
#03;

(Successful

Not started
Not loaded
Busy
Unsupported version ID
PC 3270 Emulation, 3.0 not loaded
Request parameters length too large
Reply parameters length too large
Invalid verb type
Invalid server name
Invalid request parameters address
Invalid request data address
Invalid reply parameters address
Invalid reply data address
TOPVIEW not supported
Cancelled by the IBM host compu::.er
Unable to maintain conversatio~
Internal software error
Protocol violation
Syst.em inco~sist.ency

Acknowledge sent (Type 2 Error)
Acknowledge received (Type 3 E~~cr;

See Appendix A, "SRPI Return Codes" on page A-I for a complete
description of SRPI return codes.

2-6 IBM Programmer's Guide to the SRPI

Request Record Initialization

The INITJ;END~EQJ>ARMS function sets all sendrequest parameters in
the UERCPRB record that have a default value. An application program
that does not use all the sendrequest parameters may initialize them once.

The INIT~END~EQJ>ARMS function sets default values in the
UERCPRB record for the following sendrequest parameters:

• Request Parameters (pointer and length)
• Request Data (pointer and length)
• Reply Parameters Buffer (pointer and length)
• Reply Data Buffer (pointer and length)
• Function ID
• Server Name (set to blanks).

The request record initialization function is defined in an application
program by using the $INCLUDE metacommand to include the
UUPPROCS.INC file. The procedure declaration heading for the
INIT~END~E~ PARMS procedure is:

PROCEDURE init_send-req_parms(
vars cprbptr

Linking Subroutines

UERCPRBPTR); extern;

The INITJ;END~EQJ> ARMS routine initializes the Pascal UERCPRB
record. The object module for the INITJ;END~EQJ> ARMS routine is
UUPINIT.OBJ. The sendrequest routine calls the PC router. The object
module for the sendrequest routine is UUPSENDR.OBJ.

Each object module should be included in the list of object modules passed
to the LINK program.

Chapter 2. Language Interface and Syntax for Pascal 2-7

Writing a Requester

The following Pascal sample program invokes a server using the Pascal
interface routines. The program requests records from a customer records
data set on the IBM host computer. The IBM host computer sends the
customer records to the requester program for processing.

The requester examines the customer's balance returned from the server. If
the customer's balance is positive, the customer's balance is sent to the
server. The server puts the positive balance into an accounts receivable
data set on the IBM host computer.

Warning: This program is provided solely as an example of
how the Pascal interface routines can be used to invoke a
server. It is not intended to produce meaningful output for
your use or to provide a complete programming example that
accounts for all possible error situations. It is not a
programming tutorial.

The following books contain sample server programs:

• TSO Extensions Programmer's Guide to the Server-Requester
Programming Interface for MVSj Extended Architecture

• IBM Programmer's Guide to the Server-Requester Programming Interface
for VMjSystem Product.

2-8 IBM Programmer's Guide to the SRPI

Pascal Sample Program

(******************** PROLOGUE **
* *
* MODULE NAME = PSAMPL.PAS
*
* DESCRIPTIVE NAME = Pascal Sample Program
*
* COPYRIGHT = (C) COPYRIGHT IBM CORP. 1984, 1987
* LICENSED MATERIAL - PROGRAM PROPERTY OF IBM
* ALL RIGHTS RESERVED
*
*
* FUNCTION
*
*
*
*
*
*
*
*
* NOTES =

*

Invoke a hypothetical server via the Pascal
interface routines.

This sample program reads a customer record
from a host computer, examines the customer's
balance, and writes the customer record to
a file containing customer records if the
balance is greater than zero.

*
*
*
*

RESTRICTIONS This sample program is provided solely as
an example of how the Pascal interface
routines can be used to invoke a server.

* MODULE TYPE
*
*

IBM Personal Computer Pascal Compiler
Version 2.00

* CHANGE ACTIVITY =
*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

********************* END PROLOGUE ***********************************)
(******************** DEFINITIONS ************************************)
program psampl i

const

type

(*$SUBTITLE 'CPRB Record Definition'*)
(*$PAGE+*)
(*$INCLUDE: 'UUPCPRB.INC'*)
(*$SUBTITLE 'Definitions Section'*)
(*$INCLUDE: 'UUPPROCS.INC'*)

(* Miscellaneous consts
pfunc1 1; (* Get Record
pfunc2 2 ; (* Update AR file

pcrecsiz 109; (* Customer Record size

prcok #00000000; (* Server Return Code OK
plstr #00000004; (* Last Record

poper 'ADMIN ' . (* Default operator I

pserver ' IBMabase' ; (* Server Name

custrec = record (* Customer Record
cusname [00] : str ing (25) ; (* Customer Name
cusaddr [25] : string(25); (* Street Address
cuscity [50] : string(15); (* City
cusstat [65] : str ing (15) i (* State
cuszip [80] : string(9); (* Zip Code
cusacct [89] : string(16); (* Account Number
cusbal [105] : integer4; (* Balance

end;

*)
*)
*)

*)

*)
*)

*)
*)

*)
*)
*)
*)
*)
*)
*)
*)

Chapter 2. Language Interface and Syntax for Pascal 2-9

type qparms = record (* Request Parameters *)
qpaflags [00] : byte; (* Processing Flags *)
qpaoper [01] : string(8) ; (* Requesting Operator *)

end;
const (* Values for qpaflags *)

qpalog #01; (* Log the transaction *)
qpacom #02; (* Commit transaction *)

var pcprb uercprb; (* CPRB record *)
pcustrec custrec; (* Customer Record *)
pqparms qparms; (* Request Parameters *)
pretcod integer4; (* SRPI Return Code *)
pcprbads UERCPRBPTR; (* CPRB address *)

(****************** END DEFINITIONS **********************************)
(*$SUBTITLE: 'Main procedure'*)
(*$PAGE+*)

(********************* PSEUDOCODE ************************************)
(* PROC (MAIN) *)
(* 1. SET PROCESSING OPTION = COMMIT *)
(* TRANSACTION *)
(* 1. SET REQUESTING OPERATOR ID *)
(* 1. INITIALIZE SRPI RETURN CODE *)
(* 1. INITIALIZE SERVER RETURN CODE *)
(* 1. DO WHILE SERVER RETURN CODE IS NOT *)
(* LAST RECORD AND SRPI RETURN CODE *)
(* IS GOOD *)
(* 2 .. INITIALIZE THE CPRB RECORD *)
(* < IN I T_SEND-REQ-PARMS > *)
{* 2 .. MOVE SERVER NAME AND FUNCTION (GET *)
(* RECORD) INTO CPRB RECORD *)
(* 2 .. SET CPRB REQUEST PARAMETERS BUFFER *)
(* INFORMATION *)
(* 2 .. SET CPRB REPLY DATA BUFFER INFORMATION *)
(* 2 .. SEND THE REQUEST TO THE SERVER *)
(* <SEND REQUEST> *)
(* 2 .. IF THE SRPI RETURN CODE IS GOOD *)
(* 3 ... IF THE SERVER RETURN CODE IS GOOD *)
(* 4 IF THE ACCOUNT BALANCE IS POSITIVE *)
(* 5... SET CPRB FUNCTION = UPDATE *)
(* ACCOUNTS RECEIVABLE *)
(* 5.. . SET CPRB REQUEST DATA = CUSTOMER *)
(* RECORD *)
(* 5 UPDATE THE ACCOUNTS RECEIVABLE *)
(* FILE <SEND REQUEST> *)
(* 4. . . . ENDIF *)
(* 3. . . ENDIF *)
(* 2. . ENDIF *)
(* 1. ENDWHILE *)
(* END PROC (MAIN) *)
(******************** END PSEUDOCODE *********************************)
(************************* PROCEDURE *********************************)
begin (* PROC (MAIN) *)

pqparms.qpaflags .= qpacom;

pqparms.qpaoper .= poper;

pcprb.uerservrc .= UERERROK;

pretcod := prcok;

(* SET PROCESSING OPTION=
(* COMMIT TRANSACTION

(* SET REQUEST OPERATOR ID

(* INITIALIZE SERVER
(* RETURN CODE

*)
*)

*)

*)
*)

(* INITIALIZE SRPI RETURN CODE*)

while
begin

(pcprb.uerservrc <> plstr) and (pretcod = prcok) do
(* DO WHILE SERVER RETURN *)

2-10 IBM Programmer's Guide to the SRPI

pcprbads := ADS pcprb;
init_sen~eq_parms(pcprbads);

pcprb.uerserver
pcprb.uerfunct

pcprb.uerqparml
pcprb.uerqparrnad

pcprb.uerrdatal
pcprb.uerrdataad

.= pserver;

.= pfuncl;

.= sizeof (pqparms) i

.= ADS pqparms;

.= pcrecsiz;

.= ADS pcustrec;

pretcod .= sendrequest(pcprbads);

if pretcod UERERROK then

begin

if pcprb.uerservrc prcok then

begin

if pcustrec.cusbal > 0 then

begin

pcprb.uerfunct .= pfunc2;

(* CODE IS NOT LAST RECORD *)

(* INITIALIZE THE CPRB RECORD *)
(* <INIT_SEND-REQ-FARMS *)

(* MOVE SERVER NAME AND *)
(* FUNCTION INTO CPRB *)

(* SET CPRB REQUEST PARAMETERS*)
(* BUFFER INFORMATION

(* SET CPRB REPLY DATA
(* BUFFER INFORMATION

*)

*)
*)

(* SEND THE REQUEST TO SERVER *)
(* <SEND REQUEST> *)

(* IF THE SRPI RETURN
(* CODE IS GOOD

*)
*)

(* IF THE SERVER RETURN CODE *)
(* IS GOOD *)

(* IF THE ACCOUNT BALANCE
(* IS POSITIVE

*)
*)

(* SET CPRB FUNCTION = UPDATE *)
(* ACCOUNTS RECEIVABLE *)

pcprb.uerqdatal .= pcrecsiz;
pcprb.uerqdataad:= ADS pcustrec;

(* SET CPRB REQUEST DATA *)
(* = CUSTOMER RECORD *)

end;
end;

end;
end;
end.

pretcod := sendrequest(pcprbads); (* UPDATE THE ACCOUNTS
(* RECEIVABLE FILE
(* <SEND REQUEST>

(* ENDIF
(* ENDIF
(* ENDIF
(* ENDWHILE
(* ENDPROC (MAIN)

*)
*)
*)

*)
*)
*)
*)
*)

(*********************** END PROCEDURE *********************************)

Chapter 2. Language Interface and Syntax for Pascal 2-11

2-12 IBM Programmer's Guide to the SRPI

CONTENTS

About This Chapter 3-3
C Sen<LRequest Function 3-4
SRPI Structure Definition 3-5
SEND~EQUEST Function Definition 3-6

SRPI Return Codes 3-7
Request Record Initialization 3-8
Linking Subroutines 3-8
Language-Specific Notes 3-8
Writing a Requester 3-9
C Sample Program 3-10

3-2 IBM Programmer's Guide to the SRPI

About This Chapter

This chapter is for programmers who want to become familiar with writing
a requester in the C language.

This chapter describes:

• C sen<Lrequest function

• SRPI structure definition

• SRPI return codes

• Request record initialization

• Linking subroutines

• Language-specific notes

• A C sample program.

Chapter 3. Language Interface and Syntax for C 3-3

C Send_Request Function

The parameters of the SEND~EQUEST function are grouped in a single C
structure of type UERCPRB. The INIT ~END~E~ ARMS function
initializes the SEND~EQUEST parameters that have default values. This
allows default values to be set only once for parameters not used by a
requester. The SEND~EQUEST function has a single parameter that is a
pointer to a structure of type UERCPRB.

The parameters in the C UERCPRB structure are the same as the
parameters in the CPRB. The mapping is not necessarily the same.
Application programs should make no assumptions about the mapping of
the UERCPRB record to the CPRB.

The SRPI provides for sending a buffer of parameters and/or a buffer of
data to the server and receiving a buffer of parameters and/or a buffer of
data from the server. Any data can be sent using this interface. A generic
type is used for these parameters of the SEND~EQUEST function. C uses
the type pointer-to-character for these buffer pointers: for example, ~'.':,'

If the request parameters or data consist of several structures, the
application must convert the data or parameters into a single flat structure
that consists of a contiguous sequence of bytes which are used as a buffer.
The requesting program must package the request parameters and data in a
format recognizable by the server.

Structure members are stored sequentially in the same order in which they
are declared. The first member has the lowest memory address. The last
member has the highest memory address. The storage for each member
begins on a memory boundary appropriate to its type. Unnamed blanks can
occur between the members of a structure in memory.

You should compile your C application programs with the /ZP option.
When you use the /ZP option, each structure member after the first member
is stored beginning at the first available byte. This ensures a contiguous
sequence of bytes within a structure. See "Language-Specific Notes" on
page 3-8 for additional information about compiler options.

The same memory area can be used for both request and reply parameters.
In addition, the same memory area can also be used for both request and
reply data. The application program must ensure that the reply data and
parameters are written into the request data and parameters buffer when
the request data and parameters are no longer needed.

The object code for the C functions are on diskette. The declaration files
for the functions, the structure type, and the return codes are also on the
diskette.

The C object code linked with the requester program can push up to 16
words onto an application program stack. The PC router uses an additional
5 words of application program stack. Twenty-one words of application
program stack are required. Ensure that your application program stack is
large enough to meet this requirement.

3-4 IBM Programmer's Guide to the SRPI

SRPI Structure Definition

The UERCPRB structure type defines a structure passed to the PC router
using the sencLrequest function. The structure is defined in an application
program by using the #include preprocessor directive to include the
UUCCPRB.H file. See "Supplied Parameters" on page 1-9 and "Returned
Parameters" on page 1-11 for the definitions and value ranges of the
supplied and returned parameters.

The following is the SRPI structure definition:

typedef struct {

/* Supplied Parameters Parameter Description

/*

char far *uerserver;
unsigned int uerfunct;

/* Address of ASCII name of server
/* Function ID

/* Request Parameters and Data

int uerqparml;
char far *uerqparmad;
unsigned int uerqdatal;
char far *uerqdataad;

/* Reply Parameters and

int uerrparmli
char far *uerrparmad;
unsigned int uerrdatali
char far *uerrdataad;

Returned Parameters

/* Request Parameters Length
/* Request Parameters Address
/* Request Data Length
/* Request Data Address

Data

/* Reply Parameters Buffer Length
/* Reply Parameters Buffer Address
/* Reply Data Buffer Length
/* Reply Data Buffer Address

long int uerretcode; /* SRPI Return Code
long int uerservrCi /*
int uerrepldpleni /*
unsigned int uerreplddleni /*

} UERCPRBi

Server Return Code
Replied Parameters Length
Replied Data Length

Notes:

1. The pointer in uerserver must point to an 8-byte, left-justified,
blank-padded (X'2(f) server name.

2. The supplied parameters are not changed by the SEND~EQUEST
function.

3. All pointers in the UERCPRB structure are 32 bits.

4. When the return code value returned in uerretcode by the PC router is not
successful the following output fields are undefined:

• Server Return Code (uerservrc)

• Replied Parameter Length (uerrepldplen)

• Replied Data Length (uerreplddlen)

*/

*/
*/

*/

*/
*/
*/
*/

*/

*/
*/
*/
*/

*/

*/
*/
*/
*/

Chapter 3. Language Interface and Syntax for C 3-5

The PC router mayor may not have altered these fields. The PC router
mayor may not have initialized these fields to zero. The calling
application should not expect these fields to be maintained or altered
across any unsuccessful call to the PC router.

5. The value returned from the SEND-"REQUEST function is identical to
the value in the UERRETCODE field in the UERCPRB structure.

SEND~EQUEST Function Definition

The SEND~EQUEST function is defined in an application program by
using the #include pre-processor directive to include the UUCCPRB.H file.
Following is the function declaration:

extern long int send-request (UERCPRB far *);

3-6 IBM Programmer's Guide to the SRPI

SRPI Return Codes

To incorporate SRPI return code definitions in an application program, use the #include
preprocessor directive to include the UUCCPRB.H file. The return code constants, their
hexadecimal values, and their meanings are as follows:

#define UERERROK

/* Type 1 Errors

#define UERERRT1START
#define UERERRT1LOAD
#define UERERRT1BUSY
#define UERERRT1VER
#define UERERRT1EMU
#define UERERRT1QPLEN
#define UERERRT1RPLEN
#define UERERRT1VERB
#define UERERRT1SERV
#define UERERRT1QPAD
#define UERERRT1QDAD
#define UERERRT1RPAD
#define UERERRT1RDAD
#define UERERRT1TOPV
#define UERERRT1CNCL
#define UERERRT1CONV
#define UERERRT1ISE
#define UERERRT1PROT
#define UERERRT1SYIN

OxOOOOOOOO

Ox01000402
Ox01000404
Ox01000408
Ox0100040A
Ox0100040C
Ox01000602
Ox01000604
Ox01000606
Ox01000608
Ox0100060C
Ox0100060E
Ox01000610
Ox01000612
Ox01000616
Ox01000802
Ox01000COO
Ox01000C02
Ox01000C04
Ox01000C06

/* Type 2 and Type 3 Errors

#define UERERRT2
#define UERERRT3

Ox02
Ox03

/* Successful */

*/

/* Not started */
/* Not loaded */
/* Busy */
/* Unsupported version ID */
/* PC 3270 Emulation, 3.0 not loaded */
/* Request parameters length too large */
/* Reply parameters length too large */
/* Invalid verb type */
/* Invalid server name */
/* Invalid request parameters address */
/* Invalid request data address */
/* Invalid reply parameters address */
/* Invalid reply data address */
/* TOPVIEW not supported */
/* Cancelled by the IBM host computer */
/* Unable to maintain conversation */
/* Internal software error */
/* Protocol violation */
/* System inconsistency */

*/

/* Acknowledge sent (Type 2 Error) */
/* Acknowledge received (Type 3 Error) */

See Appendix A, "SRPI Return Codes" on page A-I for a complete description of SRPI return codes.

Chapter 3. Language Interface and Syntax for C 3-7

Request Record Initialization

The initialization routine is defined in an application program by using the
#include preprocessor directive to include the UUCCPRB.H file. The
initialization routine sets all parameters that have default values to their
corresponding default values.

The INIT -BEND~EQJ> ARMS function sets all SEND~EQUEST
parameters in the UERCPRB structure that have a default value. An
application program that does not use all of the SEND~EQUEST
parameters can initialize them once.

The INIT-BEND~EQJ> ARMS function sets default values in the
UERCPRB structure for the following sen<Lrequest parameters:

• Request Parameters (pointer and length)
• Request Data (pointer and length)
• Reply Parameters Buffer (pointer and length)
• Reply Data Buffer (pointer and length)
• Function ID
• Server Name (pointer).

The INIT-BEND~EQJ>ARMS function initializes the server name pointer
to zero. The SEND~EQUEST function checks the server name pointer for
the value zero. If the server name pointer is set to zero, then the CPRB
server name is set to blanks (X'20'). The server name pointer remains set to
zero.

The INIT -BEND~EQJ> ARMS function declaration follows:

extern void INIT_SEND-REQ-PARMS(UERCPRB far *);

Linking Subroutines

The INIT-BEND~EQJ>ARMS function initializes the C UERCPRB
structure. The object module for the INIT-BEND~EQJ>ARMS function
is UUCINIT.OBJ. The SEND~EQUEST function calls the PC router. The
object module for the SEND~EQUEST function is UUCSENDR.OBJ.

Each object module should be included in the list of object modules passed
to the linking program.

Language-Specific Notes

Compiler options and program statements must be chosen so that only long
pointers are passed to the PC router. The IBM C Compiler provides support
by way of certain memory models and the far keyword used in declarations.

Compile C application programs with the / AL, / ZE, and I ZP options.

3-8 IBM Programmer's Guide to the SRPI

Writing a Requester

The following C sample program invokes a server using the C interface
functions. The program requests records from a customer records data set
on the IBM host computer. The IBM host computer sends the customer
records to the requester program for processing.

The requester examines the customer's balance returned from the server. If
the customer's balance is positive, it is sent to the server. The server puts
the positive balance into an accounts receivable data set on the IBM host
computer.

Warning: This program is provided solely as an example of
how the C interface functions can be used to invoke a server.
It is not intended to produce meaningful output for your use
or to provide a complete programming example that accounts
for all possible error situations. It is not a programming
tutorial.

The following books contain sample server programs:

• TSO Extensions Programmer's Guide to the Server-Requester
Programming Interface for MVS/Extended Architecture

• IBM Programmer's Guide to the Server-Requester Programming Interface
for VM/ System Product.

Chapter 3. Language Interface and Syntax for C 3-9

C Sample Program

/********************* PROLOGUE **
* * * MODULE NAME = CSAMPL.C
*
*
*

DESCRIPTIVE NAME = C Sample Program

* COPYRIGHT = (C) COPYRIGHT IBM CORP. 1984, 1987
* LICENSED MATERIAL - PROGRAM PROPERTY OF IBM
* ALL RIGHTS RESERVED
*
*
* FUNCTION
*
*
*
*
*
*
*
*
* NOTES =

*

Invoke a hypothetical server via the C interface
routines.

This sample program reads a customer record
from a host computer, examines the customer's
balance and writes the customer record to
a file containing customer records if the balance
is greater than zero.

*
*
*
*
*
*

RESTRICTIONS This sample program is provided solely as
an example of how the C interface routines
can be used to invoke a server.

MODULE TYPE = IBM Personal Computer C Compiler Version 1.00

* CHANGE ACTIVITY =

*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

********************** END PROLOGUE ************************************
/********************* DEFINITIONS
#include <uuccprb.h>

************************************/

char cserver[9] = "IBMabase";

char

main ()
[

coper[9] = "ADMIN " ;

UERCPRB ccprb;
struct [

struct

char
char
char
char
char
char
long int

cusname [25] i

cusaddr[25];
cuscity[15]i
cusstat[15] ;
cuszip[9] ;
cusacct[16] ;
cusbal;

ccustreci

char qpaflagsi
#define QPALOG Ox01
#define QPACOM Ox02

char qpaoper[8];

/* Server Name

/* Default operator name

/* PROC (MAIN)

/* CPRB structure
/* Customer Record Structure

/* Customer Name
/* Street Address
/* City
/* State
/* Zip Code
/* Account Number
/* Balance

/* Request Parameters Structure

/* Processing Flags
/* Log the transaction
/* Commit the transaction
/* Requesting operator's
/* sign-on ID

3-10 IBM Programmer's Guide to the SRPI

*/

*/

*/

*/
*/

*/
*/
*/
*/
*/
*/
*/

*/

*/
*/
*/
*/
*/

} cqparms;
#define CFUNC1 1 /* Func Code: Get Record */
#define CFUNC2 2 /* Func Code: Update accounts */

/* receivable file */
#define CRCOK OxOOOOOOOO /* Server Return Code OK */
#define CLSTR OxOOOOOOO4 /* Last Record */

int cctr; /* general purpose counter */
long int cretcod; /* SRPI return code */

/******************* END DEFINITIONS **********************************/
/********************** PSEUDOCODE ************************************/
/* PROC (MAIN) */
/* 1. SET PROCESSING OPTION = COMMIT */
/* TRANSACTION */
/* 1. SET REQUESTING OPERATOR ID */
/* 1. INITIALIZE SERVER RETURN CODE */
/* 1. INITIALIZE SRPI RETURN CODE */
/* 1. DO WHILE SERVER RETURN CODE IS NOT LAST */
/* RECORD AND SRPI RETURN CODE IS GOOD */
/* 2 .. INITIALIZE THE CPRB STRUCTURE */
/* < IN I T_SEND-REQ-PARMS > */
/* 2 .. MOVE SERVER NAME ADDRESS AND FUNCTION */
/* (GET RECORD) INTO CPRB STRUCTURE */
/* 2 .. SET CPRB REQUEST PARAMETERS BUFFER */
/* INFORMATION */
/* 2 .. SET CPRB REPLY DATA BUFFER INFORMATION */
/* 2 .. SEND THE REQUEST TO THE SERVER * /
/* 2 .. IF THE SRPI RETURN CODE IS GOOD */
/* 3 ... IF THE SERVER RETURN CODE IS GOOD */
/* 4 IF THE ACCOUNT BALANCE IS POSITIVE */
/* 5.. . SET CPRB FUNCTION = UPDATE */
/* ACCOUNTS RECEIVABLE */
/* 5 SET CPRB REQUEST DATA = CUSTOMER */
/* RECORD */
/* 5 UPDATE THE ACCOUNTS RECEIVABLE */
/* FILE <SEND-REQUEST> */
/* 4. . ENDIF * /
/* 3. . . ENDIF * /
/* 2. . ENDIF * /
/* 1. ENDWHILE */
/* ENDPROC (MAIN) */
/******************** END PSEUDOCODE **********************************/
/************************* PROCEDURE***********************************/

ccprb.uerservrc = CRCOK; /* INITIALIZE SERVER */
/* RETURN CODE */

cretcod = UERERROK; /* INITIALIZE SRPI RETURN CODE */

cqparms.qpaflags QPACOM; /* SET PROCESSING OPTION */
/* COMMIT TRANSACTION */

for (cctr = 0; cctr <= (sizeof cqparms.qpaoper) - 1; cctr++)
cqparms.qpaoper[cctr] coper[cctr];

/* SET REQUESTING OPERATOR ID */

while
[

(ccprb.uerservrc != CLSTR && cretcod == UERERROK)

ccprb.uerserver = cserver;
ccprb.uerfunct = CFUNC1i

/* DO WHILE SERVER RETURN CODE */
/* IS NOT LAST RECORD */

/* INITIALIZE CPRB STRUCTURE */

/* MOVE SERVER NAME AND */
/* FUNCTION INTO CPRB STRUCTURE */

Chapter 3. Language Interface and Syntax for C 3-11

ccprb.uerqparml = sizeof cqparmSj
ccprb.uerqparmad = &cqparmsj

ccprb.uerrdatal = sizeof ccustrecj
ccprb.uerrdataad = &ccustrecj

cretcod = send-request(&ccprb);

if (cretcod == UERERROK)

if (ccprb.uerservrc CRCOK)

if (ccustrec.cusbal > 0)

{

ccprb.uerfunct CFUNC2j

/* SET CPRB REQUEST PARAMETER
/* BUFFER INFORMATION

/* SET CPRB REPLY DATA BUFFER
/* INFORMATION

/* SEND REQUEST TO SERVER

/* IF THE SRPI RETURN
/* CODE IS GOOD

/* IF THE SERVER RETURN CODE
/* IS GOOD

/* IF THE ACCOUNT BALANCE IS
/* POSITIVE

/* SET CPRB FUNCTION = UPDATE
/* ACCOUNTS RECEIVABLE

*/
*/

*/
*/

*/

*/
*/

*/
*/

*/
*/

*/
*/

ccprb.uerqdatal = sizeof ccustrecj /* SET CPRB REQUEST */
ccprb.uerqdataad = &ccustrecj /* DATA = CUSTOMER RECORD */

}

cretcod = send-request(&CCprb)i /* UPDATE ACCOUNTS
/* RECEIVABLE FILE
/* <SEND-REQUEST>

/* ENDIF

/* ENDIF

/* ENDIF

/* ENDWHILE

*/
*/
*/

*/

*/

*/

*/

} /* ENDPROC (MAIN) */
/*********************** END PROCEDURE ********************************/

3-12 IBM Programmer's Guide to the SRPI

CONTENTS

About This Chapter 4-3
Macro Definitions 4-4
SEND~EQUEST Macro Definitions 4-4

SRPI Return Codes 4-5
Macro Parameters 4-6
SEND~EQjNIT Macro 4-6
SET--REQJ> ARMS Macro 4-7
SET~EQJ3UFFERS Macro 4-8
SET~EPLY-BUFFERS Macro 4-9
SEND~EQUEST Macro 4-10
GET~EPLY Macro 4-11

CPRB Mapping 4-12
Writing a Requester 4-13
Macro Assembler Sample Program 4-14

4-2 IBM Programmer's Guide to the SRPI

About This Chapter

This chapter is for programmers who want to become familiar with writing
a requester in the Macro Assembler language.

This chapter describes:

• Macro definitions

• SRPI return codes

• Macro parameters

• CPRB mapping

• A Macro Assembler sample program.

Chapter 4. Language Interface and Syntax for Macro Assembler 4-3

Macro Definitions

Macro definitions:

• Provide CPRB mapping

• Initialize the CPRB with default values

• Set the required parameters in the CPRB

• Set the request buffers parameters which are optional in the CPRB

• Set the reply buffers parameters which are optional in the CPRB

• Execute the sencLrequest interrupt

• Move the returned fields from the CPRB to user-defined data fields.

The Macro Assembler INCLUDE pseudo-op includes the PC router macros
during assembly. The files to be included are:

• The UUMCPRB.INC file, which is the UERCPRB structure definition.

• The UUMINFAC.MAC file, which includes the interface macros used
during assembly.

The application program provides storage for the CPRB. The UUMCPRB
file defines the required size of the CPRB.

SEND.-REQUEST Macro Definitions

Invoking the macros does not cause changes to registers, except for the
SEND-REQUEST macro which modifies the AX and BX registers. To
maintain register contents, the application program must have a valid stack
pointer in the SS:SP registers. The stack pointer is required because the
instructions, which the macros generate, push register values onto the
stack prior to altering a register's contents. Up to 6 words may be pushed
on the stack. The PC router uses an additional 5 words of application
program stack. Eleven words of application program stack are required.

See "Supplied Parameters" on page 1-9 and "Returned Parameters" on
page 1-11 for the semantics and value ranges of the supplied and returned
parameters.

4-4 IBM Programmer's Guide to the SRPI

SRPI Return Codes

You can include SRPI return code definitions in an application program by
using the INCLUDE pseudo-op to include the UUMCPRB.INC file. The
return code constants, their hexadecimal values, and their meanings are as
follows:

i Error Types (High word of Type 0 and Type 1 Errors)
uererrokeq EQU OOOOH iSuccessfu.l
uererrtleq EQU OlOOH iRequest failed (Type 1 Error)

i Error Types (High byte of Type 2 and Type 3 Errors)
uererrt2eq EQU 02H iAcknowledge sent (Type 2 Error)
uererrt3eq EQU 03H iAcknowledge received (Type 3 Error)

iType 1 Errors (Low word of return code)

uererrtlstart
uererrtlloadt
uererrtlbusy
uererrtlver
uererrtlemu
uererrtlqplen
uererrtlrplen
uererrtlverb
uererrtlserv
uererrtlqpad
uererrtlqdad
uererrtlrpad
uererrtlrdad
uererrtltopv
uererrtlcncl
uererrtlconv
uererrtlise
uererrtlprot
uererrtlsyin

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

0402H
0404H
0408H
040AH
040CH
0602H
0604H
0606H
0608H
060CH
060EH
0610H
0612H
0616H
0802H
OCOOH
OC02H
OC04H
OC06H

iNot started
iNot loaded
iBusy
iUnsupported version ID
iPC 3270 Emulation, 3.0 not loaded
iRequest parameters length too large
iReply parameters length too large
ilnvalid verb type
i1nvalid server name
ilnvalid request parameters address
ilnvalid request data address
ilnvalid reply parameters address
ilnvalid reply data address
iTOPVIEW not supported
iCancelled by the host computer
iUnable to maintain conversation
ilnternal software error
iProtocol violation
iSystem inconsistency

See Appendix A, "SRPI Return Codes" on page A-I for a complete
description of SRPI return codes.

Chapter 4. Language Interface and Syntax for Macro Assembler 4-5

Macro Parameters

The ES:DI registers must point to the CPRB whenever invoking any of the
macros. Several of the parameters are specified as locations. A location
indicates that the actual parameter should be a variable name or register
designation giving a memory location, using Macro Assembler syntax. The
offset register designation may be [BX] or one of the index registers [SI] or
[DI]. It is assumed that DS is the data segment register. To override this
assumption, use the ES: segment override prefix.

The following examples are valid location parameters:

• my_variableJlame
• my_variableJlame [BX]
• my_variableJlame lSI]
• my_variableJlame [BX] [DI]
• ES:my_variableJlame
• ES:my_variableJlame [BX].

Vectors are doubleword address fields containing an offset followed by a
segment value, with the bytes within a word reversed. Vectors are used
where the parameter is a pointer (for example, to a buffer or to the CPRB).

The macros can be invoked with null parameters. When a parameter is
null, the corresponding field in the CPRB is not accessed. All parameters
are optional in terms of invoking macros. The requester application should
not issue the sencLrequest verb until all fields in the CPRB have been set
to their intended values. For an example of using positional parameters,
see <SET-REPLYYARMS> on page 4-17.

SENDj{EQJNIT Macro

The SEND-REQJNIT macro sets default values in the CPRB for the
following sencLrequest parameters:

• Request Parameters (pointer and length)
• Request Data (pointer and length)
• Reply Parameters Buffer (pointer and length)
• Reply Data Buffer (pointer and length)
• Function ID
• Server Name (set to blanks).

The SEND-REQJNIT macro syntax is as follows:

SEND-REQ_INIT

4-6 IBM Programmer's Guide to the SRPI

SET~EQ_PARMS Macro

The SET ~EQJ> ARMS macro sets all the sencLrequest parameters except the request and reply
buffer information. The SET~EQJ> ARMS macro syntax is as follows:

SET-REQ-PARMS SERV~AM,FUNCT

SERV~AM: The location of the server name which is assumed

FUNCT:

to be 8 bytes in length, left-justified and
padded with blanks. The SERV~AM value must be
reachable from the DS register and indicated in one of
the following ways:

1. The character string: DSSI.

The DS:SI register pair points to the left
character of the server name to be moved into
the CPRB.

2. Any valid source operand for the LEA SI,source
instruction.

The location of a word containing the Function ID
value, a literal value, or a label equated to the
Function ID. The location is indicated in one of the
following ways:

1. The character string: AX.

The AX register contains the function ID
to be moved into the CPRB.

2. Any valid source operand for the MOV AX,source
instruction.

Chapter 4. Language Interface and Syntax for Macro Assembler 4-7

SET--REQjJUFFERS Macro

The SETJ{E~UFFERS macro sets the values of the request data and request parameters buffers
and the corresponding lengths. The SETJ{E~UFFERS macro syntax is as follows:

SET-REQ-BUFFERS QPARM-BUF,QPARM-LEN,QDATA-BUF,QDATA-LEN

QPAR~UF:

QPARM-LEN:

QDATA-BUF:

QDATA-LEN:

The location of a vector that points to the request
parameter buffer; must be specified so as to be
a valid substitution for the source operand
in the MOV AX,source and MOV AX,source + 2
instructions.

The location of a word that contains the length of
the request parameters buffer or a label equated to the
length. The length is indicated in one of the
following ways:

1. The character string: CX.

The CX register contains the length to be
moved into the CPRB.

2. Any valid source operand for the MOV eX,source
instruction.

The location of a vector that points to the request data
buffer; must be specified so as to be a valid
substitution for the source operand in the MOV AX, source
and MOV AX,source + 2 instructions.

The location of a word that contains the length of the
request data buffer or a label equated to the length.
This is indicated in one of the following ways:

1. The character string: DX.

The DX register contains the length to be
moved into the CPRB.

2. Any valid source operand for the MOV DX,source instructions.

4-8 IBM Programmer's Guide to the SRPI

SET~EPLY_BUFFERS Macro

The SET-REPLY-BUFFERS macro sets the value of the reply data and reply parameters buffers and
the corresponding pointers. The SET-REPLY-BUFFERS macro syntax is as follows:

SET-REPLY-BUFFERS PARM-BUF,PARM-LEN,DATA-BUF,DATA-LEN

PARM-BUF:

PARM-LEN:

DATA-BUF:

DATA-LEN:

The location of the vector that points to the reply
parameters buffer; must be specified so as to be
a valid substitution for the source operand
in the MOV AX,source and MOV AX,source + 2
instructions.

The location of a word that contains the length of
the reply parameters buffer or a label equated to
the length. The location is indicated in one of the
following ways:

1. The character string: CX.

The CX register contains the length to be
moved into the CPRB.

2. Any valid source operand for the MOV CX,source
instruction.

The location of the vector that points to the reply
data buffer; must be specified so as to be a valid
substitution for the source operand in the
MOV AX,source and MOV AX,source + 2 instructions.

The location of a word that contains the length of the
reply data buffer or a label equated to the length.
This is indicated in the following ways:

1. The character string: DX.

The DX register contains the length
to be moved into the CPRB.

2. Any valid source operand for the MOV DX,source
instruction.

Chapter 4. Language Interface and Syntax for Macro Assembler 4-9

SENDJ{EQUEST Macro

The SEND~EQUEST macro executes the semLrequest verb by issuing an interrupt. The
SEND~EQUEST macro syntax is as follows:

SEND--REQUEST

ES:DI must contain the segment and offset of the CPRB when this macro is invoked.

Calling the PC router modifies the AX and BX registers. When the PC router processes a request
successfully, the AX register is set to zero upon return to the calling application and the BX register
is undefined. If the AX register is not zero, the PC router is not loaded and the request is not
processed. The CPRB fields are not updated.

Note: Application programs which use the SEND~EQUEST macro to invoke the PC router do not
need to examine the contents of the AX register to determine whether or not the PC router is loaded.
The instructions expanded by the SEND~EQUEST macro move the appropriate value into the
return code field in the CPRB when the PC router is not loaded.

4-10 IBM Programmer's Guide to the SRPI

GET_REPLY Macro

The GET-REPLY macro retrieves the parameters returned when a sencLrequest has been processed.
The GET-REPL Y syntax is as follows:

GET-REPLY RET_CODE,SERV-RC,REP-PARM-LEN,REP-DATA-LEN

SERV-RC:

Location of a doubleword to which the return code
should be moved; must be specified so as to be a
valid substitution for the target operand
in the MOV target,CX and MOV target + 2,CX
instructions.

Location of a doubleword to which the server return
code should be moved; must be specified so as to be
a valid substitution for the target operand in the
MOV target,Cx and MOV target + 2,CX instructions.

REP-PARM-LEN: The CPRB Replied Parameters Length are moved to this
location of a word. This is indicated in one of the
following ways:

1. The character string: BX.

The field is moved into register BX.

2. Any valid target operand for the MOV target,CX instruction.

REP-DATA-LEN: The CPRB Replied Data Length is moved to this location
of a word. This is indicated in one of the following
ways:

1. The character string: CX.

The field is moved into the CX register.

2. Any valid target operand for the MOV target,CX instruction.

Chapter 4. Language Interface and Syntax for Macro Assembler 4-11

CPRB Mapping

A pseudo-op called the Macro Assembler STRUC is used to define the CPRB. To define the CPRB in
an application program, use the INCLUDE pseudo-op to include the UUMCPRB.INC file. The
following is the CPRB structure definition:

uercprb STRUC
uerrbsiz dw ? iSize of CPRB in bytes
uerversion dw ? ;Version Number
uerretcode dd ? iReturn Code
uerverbtyp db ? iVerb Type

db ? iReserved

uerfunct dw ? ;Function 10
dw ? ;Reserved

uerqparml dw ? iRequest Parameters Length
uerqparmad dd ? ;Request Parameters Address
uerqdatal dw ? ;Request Data Length
uerqdataad dd ? ;Request Data Address
uerrparml dw ? ;Reply Parameters Length
uerrparmad dd ? ;Reply Parameters Address
uerrdatal dw ? ;Reply Data Length
uerrdataad dd ? iReply Data Address

dw ? ;Reserved
uerservrc dd ? iServer Return Code
uerrepldplen dw ? ;Replied Parameters Length
uerreplddlen dw ? ;Replied Data Length
uerwkarea db 46 dup (7) ;Work Area
uersrvnml dw ? ;Server Name fieid length
uerserver db 8 dup(?) ;Server Name
uercprb ENDS

The following two values are also defined in the UUMCPRB file:

uerversnum
uersendreq

equ
equ

OlOOH;
1

;Version number
;Send-Request

The UUMCPRB file does not allocate memory for the CPRB. The requester program allocates
memory for the CPRB by using the define byte. An example of the define byte follows:

uumcprbseg
uumcprb
;
uumcprbseg

SEGMENT 'data'
db SIZE uercprb dup (OFFH)

ENDS

;Allocate spa.ce
for CPRB

Note: The following CPRB output fields are undefined when the return code value in uerretcode
returned by the PC router is any value other than successful:

• Server Return Code (uerservrc)

• Replied Parameter Length (uerrepldplen)

• Replied Data Length (uerreplddlen).

The PC router mayor may not have altered or initialized these fields to zero. The calling application
should not expect these fields to be maintained or altered across any unsuccessful call to the PC
router.

4-12 IBM Programmer's Guide to the SRPI

Writing a Requester

The following Macro Assembler sample program invokes a server using the Macro Assembler
interface macros. The application program requests records from a customer records data set on the
IBM host computer. The IBM host computer sends the customer records to the requester program
for processing.

The requester examines the customer's balance returned from the server. If the customer's balance is
positive, it is sent to the server. The server puts the positive balance into an accounts receivable
data set on the IBM host computer.

Warning: This program is provided solely as an example of how the Macro
Assembler macros can be used to invoke a server. It is not intended to produce
meaningful output for your use or to provide a complete programming example that
accounts for all possible error situations. It is not a programming tutorial.

The following books contain sample server programs:

• TSO Extensions Programmer's Guide to the Server-Requester Programming Interface for
MVSj Extended Architecture

• IBM Programmer's Guide to the Server-Requester Programming Interface for VMjSystem Product.

Chapter 4. Language Interface and Syntax for Macro Assembler 4-13

Macro Assembler Sample Program

;******************** PROLOGUE *********************************
*

MODULE NAME = MSAMPL.ASM

DESCRIPTIVE NAME = Macro Assembler Sample Program

*
*
*
*

COPYRIGHT = (C) COPYRIGHT IBM CORP. 1984, 1987 *
LICENSED MATERIAL - PROGRAM PROPERTY OF IBM *
ALL RIGHTS RESERVED *

FUNCTION

NOTES =

Invoke a hypothetical server via the Macro
Assembler interface macros.

This sample program reads a customer record
from a host computer, examines the customer's
balance, and writes the customer record to
a file containing customer records if the
balance is greater than zero.

RESTRICTIONS This sample program is provided solely
as an example of how the Macro Assembler
macros can be used to invoke a server.

MODULE TYPE = Macro Assembler

CHANGE ACTIVITY =

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
* ;

.******************** I END PROLOGUE *****************************

.******************** I DEFINITIONS ******************************
INCLUDE uuminfac.mac
SUBTTL 'CPRB Mapping'
PAGE
INCLUDE uumcprb.inc

i--- -----------
SUB TTL 'Customer Record Mapping'
PAGE

mcustrec STRUC
mcusname db 25 dup (?) ;name
mcusaddr db 25 dup (?) istreet address
mcuscity db 15 dup (?) ;city
mcusstat db 15 dup (?) ;state
mcuszip db 9 dup (?) ; zip
mcusacct db 16 dup (?) ; account number
mcusbal dd ? ;balance
mcustrec ENDS
i--- -----------

SUBTTL 'Request Parameters Mapping'
PAGE

mqparms
mqpaflags
mqpaoper

mqparms

STRUC
db
db

ENDS

?
8 dup (?)

;Processing flags
;Requesting operator

;Equates for processing flags defined in STRUC mqparms
mqpalog equ 01H ;Log the transaction
mqpacom equ 02H ;Commit the transaction

i--- ----------

4-14 IBM Programmer's Guide to the SRPI

SUB TTL
PAGE

'MWORK - Work Area Segment'

mwork
mdabuf

mdabuf@
I

mdabufl

mqprmbuf

mqprmbuf@

mqprmbufl

mserver_l$

mserver
mserver_len$

mfunc1
mfunc2

mrcok
mlstrh
mlstrl

moper
moper_lenS

mretcode

mrclow
mrchigh

mservrc

msrvrclow
msrvrchigh

mwork

SEGMENT 'data'
db SIZE mcustrec dup (?) iAllocate

dd

equ

db

dd

equ

equ

db
equ

equ
equ

equ
equ
equ

equ

db
equ

dd
org
dw
dw

dd
org
dw
dw

ENDS

mdabuf

SIZE mcustrec

buffer for customer
records

iVector to customer
record buffer

iLength of a customer
record

SIZE mqparms dup (?) iAllocate a buffer
for request parms

mqprmbuf iVector to request
parameters buffer

SIZE mqparms iLength of a request

$

'IBMabase'
$-mserver_l$

1
2

OOOOH
OOH
04H

$

'ADMIN
$-moper_l$

?
mretcode-mwork
o
o

?
mservrc-mwork
o
o

parameters

iFirst character of
server name

iServer name
iLength of server name

iFunc code: Get Record
jFunc code: Update AR file

iServer Return Code: OK
iLast Record high byte
iLast Record low byte

iFirst byte - operator
name

iDefault operator name
jLength - operator name

iSRPI Return Code

;Low word of return code
iHigh word of return code

iServer Return Code

;Low word of return code
iHigh word of return code

---I

mcprbseg
mcprb

mcprbseg

SEGMENT 'data'
db SIZE uercprb dup (OFFH) ;Allocate space

for CPRB
ENDS

---I

mstack

mstaktop
mstack

SEGMENT stack 'stack'
dw 255 dup (OFFFFH)
dw OFFFFH
ENDS

iAllocate a stack
;First stack entry

i******************* END DEFINITIONS ****************************
SUBTTL 'Main procedure!
PAGE

;********************** PSEUDOCODE ******************************
PROC (MAIN)

1. ESTABLISH A STACK
1. SET DS TO POINT TO WORK AREA
1. GET ADDRESS OF REQUEST PARAMETERS
1. SET PROCESSING OPTION = COMMIT

TRANSACTION

Chapter 4. Language Interface and Syntax for Macro Assembler 4-15

1. SET REQUESTING OPERATOR ID
1. GET ADDRESS OF CPRB INTO ES:DI
1. DO WHILE SERVER RETURN CODE IS NOT LAST

RECORD AND SRPI RETURN CODE IS GOOD
2. INITIALIZE THE CPRB <SEND-REQ_INIT>
2. MOVE SERVER NAME AND FUNCTION (GET

RECORD) INTO CPRB <SET-REQ-PARMS>
2. SET CPRB REQUEST PARAMETERS BUFFER

INFORMATION <SET-REQ-BUFFERS>
2. SET CPRB REPLY DATA BUFFER INFORMATION

<SET-REPLY-PARMS>
2. SEND THE REQUEST TO THE SERVER

<SEND-REQUEST>
2. GET THE SRPI RETURN CODE AND SERVER RETURN

CODE <GET-REPLY>
2. IF THE SRPI RETURN CODE IS GOOD
3. IF THE SERVER RETURN CODE IS GOOD
4. IF THE ACCOUNT BALANCE IS POSITIVE
5 •.... SET CPRB FUNCTION = UPDATE

ACCOUNTS RECEIVABLE
< SET-REQ-PARMS >

5 SET CPRB REQUEST DATA = CUSTOMER
RECORD <SET-REQ-BUFFERS>

5. UPDATE THE ACCOUNTS RECEIVABLE
FILE <SEND-REQUEST>

4. ENDIF
3. ENDIF
2. ENDIF
1. ENDWHILE

f

.******************** ,

1. RETURN TO DOS
ENDPROC (MAIN)

END PSEUDOCODE ****************************
msamp1 segment 'code'

assume cs:msampl
;************************* PROCEDURE ****************************
.** ,

mentry:

rep

PROC (MAIN)

1. ESTABLISH A STACK
assume ss:mstack
mov aX,seg mstack
mov sS,ax
mov sp,offset mstaktop

1. SET DS TO POINT TO WORK AREA
assume ds:mwork
mov ax,seg mwork
mov ds,ax

1. GET ADDRESS OF REQUEST PARAMETERS
assume es:mwork
les di,mqprmbuf@ iES:DI -> request

parameters buffer

1. SET PROCESSING OPTION = COMMIT
TRANSACTION

mov BYTE PTR es:[di+mqpaflags] ,mqpacom

mov
add

mov
movsb

1. SET REQUESTING
cx,moper_len$
di,OFFSET mqpaoper

si,OFFSET moper_l$

OPERATOR ID
ilength of operator name
iES:DI -> operator name
field in req parms buf

iDS:SI -> operator name
;Move operator name to
request parms buffer

4-16 IBM Programmer's Guide to the SRPI

I

loop:

1. GET ADDRESS OF CPRB INTO ES:DI
assume es:mcprbseg
mov ax,SEG mcprbseg
mov es,ax
mov di,OFFSET mcprb iES:DI -> CPRB

1. DO WHILE SERVER RETURN CODE IS NOT LAST
RECORD AND SRPI RETURN CODE IS GOOD

cmp
jne
cmp
je
cmp
jne
jmp

msrvrchigh,mlstrh
nowhile
msrvrclow,mlstrl
nowhile
mrclow,uererrokeq
nowhile
while

nowhile:
jmp exit

while:

goodrc1:

SENDJEQ_INIT

SET-REQJARMS

2 .. INITIALIZE THE CPRB <SEND-REQ_INIT>

2 .. MOVE SERVER NAME AND FUNCTION (GET
RECORD) INTO CPRB <SET-REQJARMS>

mserver,mfunc1

2 .. SET CPRB REQUEST PARAMETERS BUFFER
INFORMATION <SET-REQ-BUFFERS>

SETJEQ-BUFFERS mqprmbuf@,mqprmbufl

2 .. SET CPRB REPLY DATA BUFFER INFORMATION
<SET-REPLYJARMS>

SETJEPLY-BUFFERS "mdabuf@,mdabufl

2. SEND THE REQUEST TO THE SERVER
<SEND-REQUEST>

SENDJEQUEST

2 .. GET THE SRPI RETURN CODE AND SERVER RETURN
CODE <GETJEPLY>

GET-REPLY mretcode,mservrc

cmp
je
jmp

cmp

2 .. IF THE SRPI RETURN CODE IS GOOD
mrchigh,uererrokeq
goodrc1
end

iexit label is >127
ibytes away

3 ... IF THE SERVER RETURN CODE IS GOOD
msrvrchigh,mrcok

je
jmp

goodrc2:
cmp

goodrc2
end

msrvrclow,mrcok

iCompare high word of
server return code

iexit label is >127
ibytes away

iCompare low word of
server return code

jne end
4 IF THE ACCOUNT BALANCE IS POSITIVE

mov si,WORD PTR mdabuf@ ;get offset of data buf,
DS:SI -> data buffer

mov ax,WORD PTR [si+mcusbal]iGet low word of
balance

mov dx,WORD PTR [si+mcusbal+2]iGet high word
of balance

Chapter 4. Language Interface and Syntax for Macro Assembler 4-17

!

update:

i
end:
i
exit:

sub

jl
jg

cmp
je

dx,O

end
update

ax,O
end

iSubtract zero from the
high word

iNegative balance, quit
iPositive balance, update
the AR file

iIs low word zero?
iYes-zero balance, quit

5 SET CPRB FUNCTION = UPDATE
ACCOUNTS RECEIVABLE
<SET_REQ-PARMS>

SET-REQ-PARMS ,mfunc2

5 SET CPRB REQUEST DATA = CUSTOMER
RECORD <SET-REQ-BUFFERS>

SET-REQ-BUFFERS "mdabuf@,mdabufl

SEND-REQUEST

jmp loop

5 UPDATE THE ACCOUNTS RECEIVABLE
FILE <SEND-REQUEST>

4. ENDIF
3. ENDIF
2. ENDIF

1. ENDWHILE

1. RETURN TO DOS
mov ax,4COOH iReturn to DOS with
int 21H ireturn code zero

i ENDPROC (MAIN)
j*********************** END PROCEDURE **************************
msampl ENDS

END mentry

4-18 IBM Programmer's Guide to the SRPI

Appendix A. SRPI Return Codes

Error Handling

Unsuccessful execution of a service request in the SRPI environment can
result from problems at any of the different layers. In keeping with its
function, the SRPI shields applications from transport layer errors as much
as possible. Errors within server processing are handled by the
applications. Other errors arise directly from the use of the SRPI and are
treated accordingly.

Transport Layer Errors

Application Errors

The SRPI tries to recover from transport layer errors if possible. When
recovery is not possible, the SRPI returns to the requester with a return
code indicating transport layer failure. Such failures should be handled
using the problem determination procedures of the transport mechanism.

The SRPI is responsible for routing requests to servers and returning
replies to requesters. Requesters and servers are responsible for handling
errors, except for abend, that servers encounter. When a server ends
abnormally, the SRPI returns to the requester with an abend notice in the
SRPI return code.

The server return code is set by the server on the IBM host computer
running under VM or MVS. The value and meaning of the server return
code is dependent on the Requester/Server.

Send~equest Processing Errors

SRPI return codes distinguish among a number of errors in processing the
Sen<LRequest function. Such errors include:

• Invalid function parameters

• Unidentified server

• Inability to contact the server.

There are also system error codes for internal SRPI errors.

Appendix A. SRPI Return Codes A-I

Types of SRPI Return Codes

SRPI return codes include types 0, 1,2, and 3.

Type 0 return code indicates successful completion of the semLrequest
function.

Type 1 return codes are errors detected by the PC router that prevent a
request from being processed.

Type 2 return codes are errors detected by the PC router and reported to
the remote computer by an acknowledge interchange unit.

Type 3 return codes are errors detected by the remote computer and
reported to the PC router by an acknowledge interchange unit.

The return code values are word-reversed and byte-reversed within each
word. For example, the SRPI return code X'0100 0402' is stored in the
CPRB memory as X'0204 0001'.

Type 0 Return Code

The type 0 return code has the following format: X I 0000 0000 I

This value indicates that the SRPI function completed successfully.

Type 0 Return Code Definition

Return Return
Codes Code Definitions

X'OOOO 0000' Successful completion.

Type 1 Return Codes

Type 1 return codes have the following format: X I a 100 nnnn I

The nnnn bytes are the hexadecimal value that indicates the specific error
detected.

A-2 IBM Programmer's Guide to the SRPI

Type 1 Return Code Definitions

Return Return Definition
Codes Code Definitions Descriptions

X'OIOO 0402' The SRPI is not started. After loading the SRPI, type STARTSR. Press Enter
before using the SRPI.

X'OIOO 0404' The PC router is not Pascal, C, or Macro Assembler language ·interface
loaded. programs return this return code to applications

when PSCAPLCOM is not loaded.

X'OIOO 0408' The PC router is busy. The PC router can only process one request at a
time. If the PC router is processing a request and a
subsequent request is made to the PC router, the
latter request is rejected.

X'OIOO 040A' Unsupported PC router The version ID in the CPRB passed to the PC router
version ID. is not supported by the resident portion of the PC

router. The version ID is automatically put into the
CPRB by the Macro, C, or Pascal interface facilities.

X'OIOO 040C' The IBM PC 3270
Emulation Program,
Version 3.0, is not loaded
or the SRPI option was
not chosen on the PC
3270 Emulation Program
Communication Setup
menu.

X'OIOO 0602' Request Parameters The maximum value allowed is 32763.
Length exceeds the
maXImum.

X'OIOO 0604' Reply Parameters Buffer The maximum value allowed is 32763.
Length exceeds
maximum.

X'OIOO 0606' Invalid or unsupported The verb type in the CPRB passed to the PC router
verb type. is not recognized. The verb type is put into the

CPRB automatically by the Pascal, C, or Macro
Assembler interface facilities.

X'OIOO 0608' Invalid server name. One or more characters in the server name could
not be converted to EBCDIC for sending to the host.
See Appendix B, "ASCII to EBCDIC Translation
Table" on page B-l.

X'OIOO 060C' Invalid request The request parameter address is zero, and the
parameter address. request parameter length is non-zero.

X'OIOO 060E' Invalid request data The request data address is zero, and the request
address. data length is non-zero.

Appendix A. SRPI Return Codes A-3

Return Return Definition
Codes Code Definitions Descriptions

X'OIOO 0610' Invalid Reply Parameter The reply parameter buffer address is zero, and the
Address. reply parameter buffer length is non-zero.

X'OIOO 0612' Invalid Reply Data The reply data buffer address is zero, and the reply
Address. data buffer length is non-zero.

X'OIOO 0616' The TopView The PC router does not process service requests
environment is not when Top View is running.
supported.

X'OIOO 0802' The host cancelled the The remote computer cancelled the communications
communications session. session while the request was being processed. You

can cause this to happen by stopping the remote
program with the PF3 key. However, use of this
value is not limited to user-initiated cancellation of
the session. It is used any time SRPI receives
notification from the host that the session is
cancelled while processing a request.

X'OIOO OCOO' A system error has Conversation with the host ended because of one of
occurred. Conversation the following reasons:
with the host has ended.

• The host communication session is not active.

• A link-level communication error has occurred.

• The system was unable to reliably transmit data
to or from the host. For example, a sequence
error has occurred.

X'OIOO OC02' A system error has This is a system software error in the PC router, the
occurred because of an IBM PC 3270 Emulation Program, Version 3.0, or
in ternal software error. the IBM 3270 PC Control Program, Version 3.0.

X'OIOO OC04' A system error has This is a system software error in the PC router or
occurred. This is a the host.
protocol violation error.

X'OIOO OC06' A system error has This is a system software error in the PC router.
occurred. The error is
caused by system
inconsistency.

Type 2 and Type 3 Return Codes

Type 2 return codes have the following format: X' 02xx yyzz'

The three error-specific bytes consist of the following exception conditions
from the acknowledge interchange unit:

• xx Exception Class

• yy Exception Code

• zz Exception Object

Type 3 return codes have the following format: X' 03xx yyzz I

A-4 IBM Programmer's Guide to the SRPI

The three error specific bytes consist of the following exception conditions
from the acknowledge interchange unit:

• xx Exception Class

• yy Exception Code

• zz Exception Object

Exception Class Definitions

The exception classes are syntax, semantic, and process.

The syntax exception class is used to report violations of the transmission
unit syntax rules. For example, omitting the server return code parameter:
X'0202 yyzz'

The semantic exception class is used to report conflicting parameters. For
example, an invalid correlation value: X' 0203 lEOO'

The process exception class is used to report exception conditions during
request processing. For example, server unknown: X' 0304 lEOO'

The exception class definitions are listed in the following table:

Value Description

X'OO' to X'OI' Reserved

X'02' Syntax

X'03' Semantic

X'04' Process

X'05' to X'FF' Reserved

Exception Code Values

The exception code defines the specific condition detected. An exception
code is required with all errors. The exception code values are listed in the
following table.

Value Description

X'OO' Reserved

X'08' Segmentation

X'OC' Invalid operand ID

X'OF' Invalid length

X'16' Invalid subfield type

X'18' Invalid subfield value

X'19' Required operand missing

Appendix A. SRPI Return Codes A-5

Value Description

X'IA' Required subfield missing

X'IB' Correlation error

X'IC' Data exceeds architected maximum

X'ID' Resource not available

X'IE' Server unknown

X'IF' Server not available

X'20' Parameter length

X'21' Data length

X'22' Normal termination

X'23' Abnormal termination (server abend)

X'24' Multiple occurrences of a subfield

X'25' Multiple occurrences of oper:and

Note: All exception code values not specified in this table are reserved.

Exception Object Values

The exception object defines the transmission unit object that was
incorrect. An exception object is required with syntax errors. The
exception object values are listed in the following table.

Value Description

X'OO' Not specified

X'OI' Prefix

X'07' Command operand

X'OS' Command subfields

X'IC' Parameters operand

X'ID' Data operand

X'13' Suffix

Note: All exception object values not specified in this table are reserved.

A -6 IBM Programmer's Guide to the SRPI

Server Return Codes

A server return code is a doubleword (4-byte) return code presented to the
server's IBM Enhanced Connectivity Facilities, which is routed to the
requester. The content and meaning of the return status are defined by the
Requester/Server. For information about server return codes, contact your
host personnel or see one of the following manuals:

• TSO Extensions Programmer's Guide to the Server-Requester
Programming Interface for MVS/Extended Architecture

• IBM Programmer's Guide to the Server-Requester Programming Interface
for VM/ System Product.

Appendix A. SRPI Return Codes A-7

A -8 IBM Programmer's Guide to the SRPI

Appendix B. ASCII to EBCDIC Translation Table

The SRPI translates the ASCII server name to EBCDIC. The following
table is used to convert server names from ASCII to EBCDIC when using an
English system:

ASCII ASCII EBCDIC EBCDIC
HEX CHAR HEX CHAR

20 ' , 40 ' ,

23 # 7B #
24 $ 5B $

30 0 FO 0

31 1 F1 1

32 2 F2 2

33 3 F3 3

34 4 F4 4

35 5 F5 5

36 6 F6 6

37 7 F7 7

38 8 F8 8

39 9 F9 9

40 @ 7C @

41 A Cl A

42 B C2 B

43 C C3 C

44 D C4 D

45 E C5 E

46 F C6 F

47 G C7 G

48 H C8 H

49 I C9 I

4A J D1 J

4B K D2 K

4C L D3 L

4D M D4 M

4E N D5 N

4F 0 D6 0

50 P D7 P

51 Q D8 Q
52 R D9 R

53 S E2 S

Appendix B. ASCII to EBCDIC Translation Table B-1

ASCII ASCII EBCDIC EBCDIC
HEX CHAR HEX CHAR
54 T E3 T

55 U E4 U

56 V E5 V

57 W E6 W

58 X E7 X

59 Y E8 Y

5A Z E9 Z

61 a C1 A

62 b C2 B

63 c C3 C

64 d C4 D

65 e C5 E

66 f C6 F

67 q C7 G

68 h C8 H

69 i C9 I

6A J D1 J

6B k D2 K

6C 1 D3 L

6D m D4 M

6E n D5 N

6F 0 D6 0

70 p D7 P

71 q D8 Q

72 r D9 R

73 s E2 S

74 t E3 T

75 u E4 U

76 v E5 V

77 w E6 W

78 x E7 X

79 y E8 y

7A z E9 Z

B-2 IBM Programmer's Guide to the SRPI

Appendix C. Product Requirements

The following software programs must be at a specified maintenance level
to provide IBM Enhanced Connectivity functions. Contact your IBM
representative for the most recent maintenance release information.

IBM Personal Computer Environment Requirements

• PC DOS 3.1 or 3.2

• IBM PC 3270 Emulation Program, Version 3.0 (for the PC, PC/XT,
PC/AT, Portable PC), includes IBM Enhanced Connectivity support

• IBM 3270 PC Control Program, Version 3.0 on the 3270 PC (except
models 24 and 26) and on the 3270 Personal Computer AT, includes IBM
Enhanced Connectivity support.

IBM Requesters/Servers Environment Requirements

• IBM PC Requesters (6316993)

• IBM TSO/E Servers (5665-396), or

• IBM CMS Servers (5664-327).

MVS/XA Environment Requirements

• MVS/System Product, Version 2, Release 1.2 (MVS/XA), JES2 or JES3
(5740-XYS or 5665-291)

• TSO/Extensions, Release 3 with MVS/XA feature (5665-285), includes
IBM Enhanced Connectivity support

• ACF/VTAM Version 2, (5735-RC5) or higher

• When using IBM TSO/E Servers, the Interactive System Productivity
Facility, (ISPF),Version 2, Release 2 (5665-319), is required

• When using DXT, or DB2, with IBM TSO/E Servers, one of the
following must be coresident:

- DXT, Version 2 (5668-788)
- DB2, Release 1 (5740-XYR).

Appendix C. Product Requirements C-l

VM Environment Requirements

• VM/System Product, Release 4.0 (5665-167), with or without the High
Performance Option (HPO) (5664-173), includes IBM Enhanced
Connectivity support

• ACF/VTAM, Version 3 (for SNA/SDLC connection)

• When using IBM CMS Servers, the Interactive System Productivity
Facility (ISPF), Version 2, Release 2 (5664-282), is required

• When using DXT or SQL/DS with IBM CMS Servers, one of the
following must be coresident:

- DXT, Version 2 (5668-973) (when using DXT)
- SQL/DS, Release 3.5 (5748-XXJ) (when using SQL/DS).

C-2 IBM Programmer's Guide to the SRPI

Glossary

This glossary defines terms used in this manual. If
a term is not defined here, refer to the Index or to
the IBM Vocabulary for Data Processing,
Telecommunications, and Office Systems, GC20-1699.

ABEND. Abnormal end of task.

address. A character or group of characters that
identify a location in storage, a device in a system
or network, or some other data source.

allocate. To assign a resource, such as a disk file
or a diskette.

American National Standard Code for
Information Interchange (ASCII). The code
developed by ANSI for information interchange
among data processing systems, data
communications systems, and associated equipment.
The ASCII character set consists of 7 -bit control
characters and symbolic characters.

application. See application program.

application program. The instructions to a
computer to accomplish processing tasks for a user.

application program interface (API). The
formally defined programming language interface
between an IBM system control program or program
product and its user.

ASCII. See American National Standard Code for
Information Interchange.

assembler language. A source language that
includes symbolic machine language statements in
which there is a one-to-one correspondence with
instruction formats and data formats of the
computer.

attribute. A characteristic that you can redefine.

buffer. An area of storage, temporarily reserved
for performing input or output, into which data is
read, or from which data is written.

character string. A sequence of consecutive
characters.

character variable. The name of a character data
item whose value may be assigned or changed while
the program is running.

CMS router. A program running under VM/SP
that uses the Server-Requester Programming
Interface (SRPI) to route requests from the PC to
the corresponding server on the host. The CMS
router is part of the CMSSERV command processor
in VM/SP Release 4.

communication subsystem. A program, or a set
of programs, specifically for managing the exchange
of information between remotely connected
computers and/or devices.

CMSSERV. (1) A program that provides the
Server-Requester Programming Interface (SRPI) and
a service request manager on an IBM Systemj370
using VM/CMS. (2) The implementation of
Enhanced Connectivity Facilities on a VMjSP
system with CMS installed.

compile. To translate a program written in a
high-level programming language into a machine
language program.

computer. A complete electronic data processing
system, with CPU, input and output devices, capable
of executing an application program.

constant. A value that does not change. Contrast
with variable.

Connectivity Programming Request Block
(CPRB). An interface control block used by
requesters and servers to communicate information.

CPRB. See Connectivity Programming Request
Block.

Glossary X-I

data communications. The transmission of data
between computers, remote devices, or both.

data processing. The systematic performance of
operations upon data, for example, merging, sorting,
computing; synonymous with information
processing.

data type. A category that identifies the internal
representation of data.

default. A value that is used when nothing is
specified by the user.

diskette. A thin, flexible magnetic plate that is
permanently sealed in a protective cover. It can be
used to store information.

DOS. Disk Operating System, a group of programs
that enables a personal computer to organize and
use information on diskettes or fixed disks,
including application programs.

EBCDIC. See extended binary-coded decimal
interchange code.

embedded blanks. Blank characters that are
surrounded by any other characters.

emulation. Imitation; for example, one computer
imitating the characteristics of another type of
computer.

end user. (1) The ultimate source or destination of
information flowing through a system. (2) A
person, process, program, device, or system that
employs a user application network for the purpose
of data processing and information exchange. See
also user.

Enhanced Connectivity Facilities. The strategy
for sharing services and resources in a
heterogeneous network.

Enhanced Connectivity Facilities verbs. The
operations that define the protocol boundary
between requesters and servers in an Enhanced
Connectivity Facilities network.

enter. To send information to the computer by
pressing the Enter key.

x -2 IBM Programmer's Guide to the SRPI

entry. A single input operation on a work station.

extended binary-coded decimal interchange
code (EBCDIC). A set of 256 characters, each
represented by 8 bits.

field. (1) An area in a record or panel used to
contain a particular category of data. (2) The
smallest component of a record that can be referred
to by a name. (3) An area in a structured file
defined in the form used to enter and display data.
Fields are defined using either text data paths or
tree data paths.

file. A collection of related data that is stored and
retrieved by an assigned name.

file name. The name used by a program to identify
a file.

format. (1) A defined arrangement of such things
as characters, fields, and lines, usually used for
displays, printouts, or files. (2) The pattern which
determines how data is recorded.

function keys. (1) Keys that request actions but
may not display or print characters. Included are
the keys that normally produce a printed character,
but when used with another key produce a function
instead. (2) On 3270 PC and System/370 keyboards,
these are program function keys.

hex. See hexadecimal.

hexadecimal. Pertaining to a system of numbers
to the base sixteen; hexadecimal digits range from 0
(zero) through 9 (nine) and A (ten) through F
(fifteen).

host computer. The primary and controlling
computer in a network; usually provides services
such as computation, data base access, and
advanced programming functions. Sometimes
referred to as a host processor or mainframe.

ID. Identification.

initialize. To set counters, switches, addresses, or
contents of storage to starting values.

interface. A shared boundary between two or
more entities. An interface might be a hardware or
software component that links two devices or
programs together.

invoke. To start a command, procedure, or
program.

keyboard. An input device consisting of various
keys that allow the user to input data, control
cursor and pointer locations, and to control the
dialog between the user and the work station.

keyword. One of the predefined words of a
programming language; a reserved word.

load. (1) To move data or programs into memory.
(2) To place a diskette into a diskette drive. (3) To
insert paper into a printer.

macro. (1) A single instruction representing a set
of instructions. (2) The name of a "pseudo
command" that performs the functions of many
commands, by combining those commands under the
common label described above.

memory. Main storage in a computer.

menu. A displayed list of items from which a user
can make a selection.

message. (1) A response from a program to inform
you of a condition that may affect further

processing of a current program. (2) Information
sent from one user in a multi-user operating system
to another user.

module. A discrete programming unit that usually
performs a specific task or set of tasks. Modules
are subroutines and calling programs that are
assembled separately, then linked to make a
complete program.

MVS router. A program running under TSO/E
that uses the Server-Requester Programming
Interface (SRPI) to route requests from the PC to
the corresponding server on the host. The MVS
router is part of the MVSSERV command processor
in TSOjE Release 3.

MVSSERV. (1) A program that provides the
Server-Requester Programming Interface (SRPI) and
a service request manager on an IBM System/370
using the TSO/E (time sharing option) on MVS/XA.
(2) A command processor in TSO/E Release 3. It
initializes, terminates, and provides recovery for an
Enhanced Connectivity Facilities session between a
PC and a host system. It also establishes
communication and routes requests from the PC
user to the corresponding server on the host.

object module. A set of instructions in machine
language. The object module is produced by a
compiler or assembler from a subroutine or source
module and can be input to the linking program.
The object module consists of object code. See
module.

operating environment. The operating
environment at the node, generally referred to as
the operating system. It provides services to the
Enhanced Connectivity Facilities inplementation,
requesters, and servers.

operating system. Software that controls the
running of programs; in addition, an operating
system can provide services such as resource
allocation, scheduling, input/output control, and
data management.

Glossary X-3

parameter. (1) Information that the user supplies
to a panel, command, or function. (2) In Enhanced
Connectivity Facilities, information that a requester
or server passes to a senuequest or senueply
function.

PC router. A program that is part of the IBM PC
3270 Emulation Program, Version 3.0 or the IBM
3270 PC Control Program, Version 3.0 that uses the
Server-Requester Programming Interface (SRPI) to
route requests from the IBM PC Requesters to the
corresponding router on the host.

personal computer. In this publication, the term
personal computer refers to the properly-configured
members of the IBM Personal Computer family,
including the PC, the PC/XT, the Personal
Computer AT, the Portable Personal Computer, the
IBM 3270 Personal Computer, and the 3270 Personal
Computer AT.

process. (1) A sequence of actions required to
produce a desired result. (2) An entity receiving a
portion of the processor's time for executing a
program. (3) An activity within the system begun
by entering a command, running a program, or
being started by another process.

program. A file containing a set of instructions
conforming to a particular programming language
syntax.

protocol. In data communications, the rules for
transferring data.

record. A collection of fields treated as a unit.

register. A storage area, in a computer, capable of
storing a specified amount of data such as a bit or
an address. Each register is 32 bits long.

reply. The answer to a service request that came
from the server.

request. The requirement for service that came
from the requester.

X -4 IBM Programmer's Guide to the SRPI

request to send. A mode that causes the modem
to activate the carrier signal.

requester. The program that relays a request to
another computer through the Server-Requester
Programming Interface (SRPI). Contrast with
server.

required parameter. A parameter that must have
a defined option. The user must provide a value if
no default is supplied.

reserved character. A character or symbol that
has a special (non-literal) meaning unless quoted.

reserved word. A word that is defined in a
programming language for a special purpose and
that must not appear as a user-declared identifier.

return code. A value that is returned by a
subroutine or function to indicate the results of an
operation of the program.

router. The router provides a new
Server-Requester Programming Interface (SRPI): a
request interface for requesters, or a reply interface
for servers. See also CMS router, MVS router, PC
router, SRP 1.

sequential access. An access method in which
records are read from, written to, or removed from a
file based on the order of the records in the file.

sequential processing. The processing of records
in the order in which they exist in a file.

server. The program that responds to a request
from another computer through the
Server-Requester Programming Interface (SRPI).
Contrast with requester.

server return code. A doubleword (4-byte) return
code presented to the server's Enhanced
Connectivity Facilities, which is routed to the
requester. The content and meaning of the return
status are defined by the Requester/Server.

server system. A data processing system
containing one or more servers providing services in
response to a request from another computer.

Server-Requester Programming Interface
(SRPI). (1) A protocol between requesters and
servers in an Enhanced Connectivity Facilities
network. (2) An application programming interface

used by requester and server programs to
communicate with the PC or host routers.

session. A connection between two stations that
allows them to communicate.

software. Programs, procedures, rules, and any
associated documentation pertaining to the
operation of a computer system. Contrast with
hardware.

SRPI. See Server-Requester Programming Interface.

SRPI return code. A doubleword (4-byte) return
code from the SRPI interface that indicates the
results of the send request execution. See also
Server-Requester Prograrnming Interface.

stack. An area in storage that stores temporary
register information and returns addresses of
subroutines.

stack buffer. A storage l=!l"ea that $tores
retrievable data in sequence. The last data stored is
the first data removed.

stack pointer. A register providing the current
location of the stack.

storage. (1) The location of saved information.
(2) In contrast to memory, the saving of information
on physical devices such as disk or tape. See
memory.

user. Anyone who requires the services of a
computer system. See also end user.

variable. A name used to represent a data item
with a. value that can change while the program is
running. Contrast with constant.

Glossary X-5

X-6 IBM Programmer's Guide to the SRPI

Index

ACF/VTAM C-1, C-2
ASCII to EBCDIC Translation Table B-1

C
language-specific notes 3-8

compiler options 3-8
linking subroutines 3-8
request record initialization 3-8
sencLrequest function 3-4
SRPI return codes 3-7
SRPI structure definition 3-5
writing a requester 3-9

C sample program 3-9
call/return model 1-4
Connectivity Programming Request Block 1-12
CPRB format 1-12
CPRB mapping in C 3-4
CPRB mapping in Macro Assembler 4-12
CPRB mapping in Pascal 2-4
CPRB register address 1-8

DB2 C-1
DXT C-1, C-2

GET-REPLY macro 4-11

IBM CMS Servers C-2
IBM Enhanced Connectivity Facilities systems

PC 1-4
PC/AT 1-4
PC/XT 1-4

Portable PC 1-4
3270 PC 1-4
3270 PC/AT 1-4

IBM TSO /E Servers C-1
Interactive System Productivity Facility

(ISPF) C-1, C-2
interface (SRPI) 1-5

Macro Assembler
CPRB 4-4, 4-6, 4-10, 4-12
CPRB mapping 4-4, 4-12
Macro definitions 4-4

SEND-REQUEST macro definitions 4-4
macro parameters 4-6, 4-7, 4-8, 4-9, 4-10, 4-11

GET -REPLY macro 4-11
SEND-REQJNIT macro 4-6
SEND-REQUEST macro 4-10
SET-REPLY--BUFFERS macro 4-9
SET-REQ-BUFFERS macro 4-8
SET-REQ-PARMS macro 4-7

SRPI return codes 4-5
writing a requester 4-13

Macro Assembler sample program 4-13
Macro definitions 4-4
macro parameters 4-6, 4-7, 4-8, 4-9, 4-10, 4-11
MVS/XA

environment requirements C-1

parameters 1-9
Pascal

linking subroutines 2-7
request record initialization 2-7
sendrequest function 2-4

offsets 2-4
sendrequest function definition 2-6
SRPI record definitions 2-6
SRPI return codes 2-6
writing a requester 2-8

Pascal sample program 2-8
product requirements

MVS/XA C-1
Personal Computer C-1
Requester/Server Products C-1
VM/System Product C-2

Index X-7

request record initialization in C 3-8
request record initialization in Pascal 2-7
requester 1-4
returned parameters

replied data length 1-11
replied parameter length 1-11
server return code 1-11
SRPI return code 1-11

routers 1-5

SEND-REQJNIT macro 4-6
sen<L.request function 1-8
sen<L.request function in C 3-4
SEND-REQUEST macro 4-10
SEND-REQUEST macro definitions 4-4
sen<L.request parameters 1-9, 1-11

returned parameters 1-11
supplied parameters 1-9

sendrequest function in Pascal 2-4
server 1-4
Server-Requester Programming Interface 1-5
server return codes A-7
SET-REPL Y --BUFFERS macro 4-9
SET-REQ--BUFFERS macro 4-8
SET-REQ-P ARMS macro 4-7
SQL/DS C-2
SRPI 1-5
SRPI record definition in Pascal 2-5
SRPI return codes

introduction A-2
type 0 A-2

definitions A-2
type 1 A-3, A-4

definitions A-3, A-4

X -8 IBM Programmer's Guide to the SRPI

type 2 A-4, A-5
exception class definitions A-5
exception code values A-5

type 3 A-4, A-5
exception class definitions A-5
exception object values A-5

SRPI structure definition in C 3-5
supplied parameters 1-9

function ID 1-9
reply data buffer 1-10
reply data buffer length 1-10
reply parameters buffer 1-10
reply parameters buffer length 1-10
request data 1-10
request data length 1-9
request parameters 1-9
request parameters length 1-9
server name 1-9

Translation Table B-1
TSO/E, Release 3 C-l

VM environment requirements C-2
VM/System Product (VM/SP), Release 4 C-2

writing a requester
C sample program 3-9
Macro Assembler sample program 4-13
Pascal sample program 2-8

I" 11m IIIIIII U ~ II ~IIII
9059X99700001

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	B-01
	B-02
	C-01
	C-02
	X-01
	X-02
	X-03
	X-04
	X-05
	X-06
	X-07
	X-08
	xBack

