
Student Text 

Introduction to 

IBM System/360 Architecture 



Preface 

This text is intended to introduce the student to the 
characteristics of System/360. It is expected that the 
student has some knowledge of computing systems. 

No attempt at completeness has been made and, 
therefore, it is expected that the student will refer to 
the appropriate Systems Reference Library (SRL) 
publications for additional detail. 

Minor Revision (April 1968) 

This edition, C20-1667-1, is a minor revision of, but does not obsolete, the 
preceding edition, C20-1667-0. Minor changes have been madt: on pages 18 and 19. 

Requests for copies of IBM publications should be made to your IBM representative 
or to the IBM branch office serving your locality. 

A form is provided at the back of this publication for readers' comments. If the 
form has been removed, comments may be addressed to IBM, Technical Publications 
Department, 112 East Post Road, White Plains, N. Y. 10601 

© International Business Machines Corporation 1967 



Contents 

Introduction ............................................................. . 
System Features for New Application Approaches 

Channel Concept ........................................... . 
Selector and Multiplexor Channels .,. 

Interrupts ............... , ....................................... . 
Program Status Words and their Control of 

Interrupts ...... . 
Data Representation ......................................... . 
Arithmetic Operations .......... . .............. . 

Sign Codes ........................................... . 
Boundary Alignment ........... . 
General Registers and Storage Addressing 
Instruction Formats ....................................... . 

RR Format ................................... . 
RX Format .............................................. . 
RS Format ............................................. . 
SI Format ................................................ . 
SS Format .................................... . 

Protection Features ...................................... . 
Floating-Point Arithmetic .......................... . 
Channel Organization ......................................... . 
Summary ............................................................. . 
Questions and Exercises .................... . ............... .. 
Answers to Questions and Exercises ................. . 

1 
2 
3 
3 
4 

6 
8 

10 
12 
13 
14 
16 
17 
17 
17 
17 
17 
18 
20 
21 
24 
25 
26 





Introduction 

This text introduces the student to the architecture of 
System/360. Such System/360 features as channels, 
automatic interrupts, and general purpose registers 
are presented. Storage addressing, instruction formats, 
data formats, and the various types of arithmetic opera­
tions are also discussed. 

Questions and exercises are provided at the end of 
this text to help the student review the material; 
answers follow the questions. 

1 



System Features for New Application Approaches 

The demands made upon a data processing system 
normally increase in the volume of processing to be 
done and in the scope of applications for which the 
system is utilized. To allow for growth in volume, 
System/360 was designed for implementation over a 
wide cost and performance range and to maintain pro­
gram compatibility among the various models. For 
growth in application scope, the logical structure is 
that of a general purpose system for commercial, sci­
entific, communication, and control applications. 

To the user, a concern more immediate than growth 
considerations is cost versus performance. Before se­
lecting higher-performance equipment, it is important 
to achieve maximum throughput from a lower-per­
formance (and lower-priced) system. Achieving maxi­
mum throughput means decreasing the time required 
to process a total number of jobs so that the backlog 
of jobs is reduced. There is often, however, an oppos­
ing objective of decreasing the turnaround, or re­
sponse, time for a given job. A report that takes three 
minutes of processor time is needed within an hour, 
but another four-hour run in progress requires two 
more hours for completion. Can we disrupt the pro­
gram in progress? The answer has depended on the 
system and the programmed facilities available for 
restarting an interrupted program. 

Because System/360 was designed to encompass 
solutions to such problems in all areas of data proc­
essing, it is helpful to further examine some of these 

2 

conventional problems and to consider recent appli­
cation approaches. 

The most basic concept of computing, with which 
we are all familiar, is a program of sequential in­
structions. The processing unit fetches an instruction, 
decodes and executes it, increments an instruction 
counter, and then repeats this sequence of operations. 
A branch causes the contents of the instruction counter 
to be replaced with another address, and processing is 
continued from this address. This machine instruction 
fetch-execute-increment cycle is still basic to digital 
computers. In programming, however, we have come 
a long way from routines that read a card, process the 
data from the card, and write the results with no con­
current or overlapped operation. 

The degree of concurrent operation that can be 
achieved depends not only on machine facilities but 
also on the programming employed. 

The processing unit may be used for some portion 
of time and encounters recurring delays while await­
ing input/output operations. Then the I/O equipment 
may be idled while processing takes place. Further, 
a system must often be configured for the largest job 
at the installation. That largest job may be run infre­
quently and the many smaller jobs that use the proc­
essing unit's time may utilize only a small portion of 
the total system's capacity. Lost time on the process­
ing unit, lost time on I/O equipment, and less-than­
maximum storage utilization are all wasteful. 



The designers of System/360 sought solutions to 
these problems with a design that allows and encour­
ages maximum utilization of available system re­
sources. First, this design philosophy recognizes that 
data processing systems and programming systems 
should be integrated and not developed independ­
ently. New and sophisticated control techniques in­
corporated into the equipment for maximum utiliza­
tion of resources take over many functions that pre­
viously were the concern of the problem programmer 
or of programming systems programmers. This last 
statement is not intended to imply that programming 
systems are not essential to utilize the system, but 
rather that there is a larger degree of interplay be­
tween equipment and program. In fact, the equipment 
was designed to run with a monitor program in con­
trol. System/360 and its control program are indis­
tinguishable to the problem programmer. 

Another consideration in the system's design was 
to facilitate the newer application approaches to com­
puting, such as communications and multiprogram­
ming. 

Communications applications include time sharing, 
message switching, and the whole area of tele­
processing. Time sharing or conversational mode is the 
use of a number of remote terminals where each ter­
minal has access to the computer. Here each terminal 
may be regarded as a personal computer, and all the 
independent users have access to a single computer 
virtually simultaneously because of ultra-high process­
ing and switching speeds. 

Message switching involves a telecommunications 
network where messages from remote points are sent 
to a central location for routing to their destination. 

A common teleprocessing application is the proc­
essing of inquiries from remote terminals. Each ter­
minal user introduces data to the system, and pro­
grams residing in the system perform whatever proc­
essing is required. The message may be simply a 
query for information stored within the system or it 
may be data to be entered and processed (with or 
without an answerback). 

The program that handles the messages is called the 
foreground program. Other processing may-take place 
between the servicing of messages. This "background" 
program is interrupted and the "foreground" program 
assumes control upon the receipt of a message. When 
the message is processed and no other messages are 
held pending, the foreground program -relinquishes 
control to the background program. 

Maximum utilization of system resources becomes 
particularly vital to a communication (or teleproc­
essing) system where input is unscheduled, where jobs 
are stacked (that is, where a series of jobs is run 

under the control of a supervisory program with a 
minimum of operator intervention), and in multipro­
gramming. 

In applications involving multiprogramming opti­
mum use is made of all facilities by having the system 
operate upon multiple programs or routines (tasks). 
While one task awaits data from an I/O device, an­
other task utilizes the processing unit, and still other 
tasks utilize other I/O devices. As soon as a task 
utilizing the processing unit must wait for an I/O 
operation, it relinquishes control of the processing 
unit, and a waiting task assumes control. (The size, 
speed, and configuration of the system determine 
whether multiprogramming is practicable.) 

Channel Concept 
One of the system features that facilitate the simul­
taneous operations necessary for maximum utilization 
of the system's resources is channel circuitry. The 
electronic circuitry of a channel may be regarded as 
a small, independent computer that responds to its 
own set of commands. Channels provide the ability 
to read, write, and compute concurrently. 

Each channel has its own program in main storage, 
and this program must be initiated by the supervisory 
program. A Start I/O instruction, for example, has 
the effect of selecting a specified I/O device and 
channel, and, if the device is available, starting the 
operation or operations specified by the channel pro­
gram. In addition to the Start I/O instruction, there 
are three other instructions for communication be­
tween the processing unit and the channel: Test 
I/O, Halt I/O, and Test Channel. 

These instructions are issued by the supervisory 
program, which contains an Input/Output Control 
System (IOCS). The address part of the instruction 
specifies the channel and the I/O device. When the 
channel and the device verify that the operation can 
be executed, the processing unit is released. The chan­
nel fetches its program from main storage and exe­
cutes it. The transfer of data to or from main storage 
and the initiation of new operations by the channel 
program do not prevent processing of instructions by 
the processing unit. 

Communications from the processing unit to the 
channels and I/O devices are discussed under "Chan­
neIOrganization". 

Selector and Multiplexor Channels 

There are two types of channels: selector and multi­
plexor. Selector channels are used for the attachment 
of high-speed devices such as magnetic tapes, files, 
and drums. Multiplexor channels are intended primar­
ily for low-speed devices. More than one device is 

3 



usually attached to either a multiplexor or selector 
channel through one or more control units. The con­
trol unit's functions arc indistinguishable to thc user 
from the functions of the I/O device, and in fact, 
some control units are physically housed within the 
I/O device. A control unit functions only with the 
type(s) of device(s) for which it is designed. Mu1tiple 
I/O devices can be attached to a single control unit. 
Multiple tape units, for example, may be attached to a 
single tape control unit (see Figure 1). 

When multiple slow-speed devices such as card 
readers are attached to a multiplexor channel, they 
can operate simultaneously through a time-sharing 
(interleaved) principle and processing can take place 
concurrently. When high-speed devices are attached 
to a multiplexor channel, only one dcvicc can operate 
at a time and the channel is said to be operating in 
burst mode. Operation of the Model 30 or 40 multi­
plexor channels in burst mode inhibits all other activ­
ity on the system. Selcctor channels always operate 
in burst mode and processing and I/O overlapping 
occur on all models. 

As many as six selector channels can be opcrating 
concurrently with processing on Models 65 and 75. 

Only one multiplexor channel can be connected to 
a processing unit. The number of selector channels that 
can be attached varies from two on a Model :30 to six 
on Models 65 and 75. The important thing to remember 
is that channels all appear to function identically to 
the user; it is only the degree of simultaneity of chan­
nel operations and overlapped processing that differs 
among the various models. 

4 

[

Main 
Storage 

Central 
Processing 

Unit 

Channels 

1---+-_-lMul tiplexor ~ __ '----

Selector 

Figure l. IBM System/360 basic logical struct ure 

Interrupts 

\Ve havc seen that the processing unit may initiate an 
input/output operation and resume processing while 
the channel proceeds independently. The processing 
unit must, howcver, maintain control over I/O opera­
tions. When an I/O operation is completed and a 
channel is frec, another operation in the channel 
should be begun, if possible, to gain maximum chan­
nel utilization. Instead of having the problem program 
repeatedly interrogating channels to see whether they 
are free, the channels themselves signa] the process­
ing unit whcn they become free - that is, upon com­
pletion of a channel program. The channel signals 
cause the supervisory program to take appropriate 
action such as starting another I/O operation. These 
signals belong to one class of interrupts that the 
processing unit must be prepared to handle. 

Here we bcgin to see how the circuitry takes over 
functions that were formerly the programmer's con­
cern. The automatic interrupt system may be con­
trasted with a programmed branch in which the con­
tents of the instruction counter are replaced rather 
than incremented. Thcse branches are the program­
mer's concern. With the automatic interrupt system, 
however, an application program is written to include 
conventional testing and branching, but ignores those 
hranches that will be handled as automatic interrupts. 
When an interrupt occurs, the contents of the equiva­
lent of an instruction counter are automatically re­
placed. This suspends the operation of the program 
in progress temporarily. In addition the control and 
status information necded to restart the program are 
automatically stored by the interrupt system itself. 

I/O Devices 

Control Units 

Control Units 

I/O Devices 



There are five classes of interrupts : input/output, 
program, supervisor call, external, and machine check. 
• Input/output interrupts. The signal to the process­

ing unit that a channel is free is typical of the class 
of interrupts called I/O interrupts. Special condi­
tions in the channel or in an I/O unit cause the 
processing unit to take appropriate action. 

• Program interrupts. Unusual conditions encountered 
in a problem program create program interrupts. 
Eight of the 15 possible conditions involve over­
flow, improper divides, lost significance, and ex­
ponent underflow. (Lost significance and exponent 
underflow may occur in floating-point arithmetic 
operations.) The remaining seven deal with im­
proper addresses, attempted execution of invalid 
instructions, and similar conditions. 

• Supervisor call interrupts. The significance of super­
visor call interrupts will become apparent when we 
examine in more detail the effects of interrupts. 
Suffice it to say that Supervisor Call is an in­
struction that the program uses to cause an in­
terrupt. 

• External interrupts. Through an external call inter­
rupt, the processing unit can respond to signals 
from the interrupt key on the system control panel, 
a built-in timer system, other processing units, or 
special devices. 

• Machine check interrupts. A machine check condi­
tion initiates an automatic recording of the status of 
the system into a special scan-out area of main stor­
age and then causes a machine check interrupt. A 
machine check can be caused only by a hardware 
malfunction and not by invalid data or instructions. 
Some classes of interrupts can be ignored or held 

pending under program control. This prevents the in­
terrupt from occurring and the interrupt is said to be 
"masked". An anticipated overflow is an example of 
an interrupt that the programmer would mask. 

When the system is executing instructions of a prob­
lem program, it operates in what is called the problem 
program state. Interrupts that occur while the system 
is operating in the problem program state cause the 
processing unit to switch to the supervisory state. To 
ensure that the system has control over I/O functions, 
the control program takes control when an I/O in­
struction is required by a problem program. The con­
trol program operates in the supervisory state and 
includes a resident 10CS. Instructions that are exe­
cutable only in the supervisory state are called "privi­
leged". 

A Supervisor Call instruction in a program is one 
method of causing a switch from the problem state 
to the supervisory state; that is, the problem pro­
gram passes control to the supervisory program. An 

interruption code within the instruction may be used 
to convey messages from the calling program to the 
supervisory program. Two messages that the super­
visory program would require are: (1) notification 
from the problem program that it is finished so that 
the supervisor can read in a new program, and (2) 
notification of requests to start I/O operations for the 
problem program. As soon as the I/O operation has 
begun, the supervisor program returns control to the 
problem program, which can continue processing 
while the I/O operation is taking place. Upon com­
pletion of the I/O operation, an I/O interrupt oc­
curs. The supervisor program now determines whether 
any abnormal conditions were detected during the op­
eration and takes appropriate action. The overall status 
of the processing unit is determined by alternatives 
other than the supervisor or problem state. These al­
ternatives provide control of system resources by pre­
venting a problem program from stopping the opera­
tion of the processing unit. There is no Halt instruc­
tion. In the problem state, processing instructions are 
valid but all I/O instructions and a group of control 
instructions are invalid. In the supervisory state, all 
instructions are valid. 

The other alternative states are: running versus 
waiting state, masked versus interruptible state, and 
stopped versus operating state (see Figure 2). 

In the running state, instruction fetching and exe­
cution proceeds in the normal manner. The wait state 
is typically entered by the program to await an inter­
rupt - for example, an I/O interrupt or operator in­
tervention from the console. In the wait state, no 
instructions are processed, the timer is updated, and 
I/O and external interrupts are accepted unless 
masked. 

The processing unit may be interruptible or masked 
for the system (I/O or external), program, and ma­
chine interruptions. When the processing unit is in­
terruptible for a class of interruptions, these interrup­
tions are accepted. When the processing unit is 
masked, the system interruptions remain pending, but 
the program and machine-check interruptions are ig­
nored. Instructions that alter the overall status of the 
processing unit are privileged. 

Masked OR Interruptible 

AND 

( Problem OR Supervisor) 

AND 

( Wait OR Running ) 

Figure 2. Alternative states of the processing unit in operation 

5 



Program Status Words and their 
Control of Interrupts 

Passing control between problem programs and the 
supervisory program and returning to the right place 
in a program following an interrupt is accomplished 
with program status words (PSW's). Traditionally 
when information was required at some later point in 
a program, it was the programmer's responsibility to 
store it. With System/360, since the problem pro­
grammer cannot anticipate many interrupts, they be­
come the responsibility of the system. Two storage 
locations are associated with each of the five classes 
of interrupts. One of the locations contains the ad­
dress of the :routine in the supervisory program that 
handles this class of interrupt. When an interrupt 
occurs, the system automatically replaces the current 
or active PSW, which contains an instruction counter 
plus other machine status information, with the PSW 
appropriate to this interrupt. This "new" PSW indi­
cates among other things that the system is operating 
in the supervisory state and specifies the address of 
the routine that handles this class of interrupt. The 
PSW of the interrupted program is automatically 
stored as the "old" PSW (see Figure 3). The routine 
in the supervisory program that handles this interrupt 
will be run. Its last processing step will be to restore 
the old PSW as the active or current PSW, and the 
interrupted program will resume processing at the 
point where it was interrupted. Unlike the automatic 
switching of PSW's when an interrupt occurs, the re­
placement of the current PSW with the old PSW is 
accomplished by an instruction in the supervisory 
program. This programmed, rather than automatic, 
function was a deliberate design choice. Why, we may 
ask, does the Load PSW instruction need to address 
storage, since the system could readily determine 
the cause of the last interrupt? The answer is that in 
multiprogramming we frequently do not wish to re­
turn to the "task" last interrupted, but prefer that the 
control program stack up and control a sequence of 
PSW's. 

InNain 
StolUge 

In Control 
Circuitry 

Figure 3. Interrupt program switching 

6 

Because the principle of the interrupt system is best 
understood in terms of the various PSW's, let us take 
a moment to examine their place and function. The old 
and new PSW's have permanent address assignments 
in main storage. The current PSW is contained in the 
control circuitry of the processing unit and, like an 
instruction counter, is updated as the program pro­
gresses. The new PSW locations contain the address 
of a routine to handle their particular class of inter­
rupts. The addresses of these routines are not normally 
changed, and for a particular interrupt the same ad­
dress will be read out each time this interrupt occurs. 
For each new PSW there is an old PSW that acts sim­
ply as temporary storage for the current PSW when 
an intcrrupt occurs. The interrupt causes the current 
PSW to be stored as the old PSW, and the new PSW 
becomes the current PSW. At the conclusion of the 
interrupted routine, the old PSW replaces the current 
PSW, restoring the system to its prior state and allow­
ing the continuation of the interrupted program. 

Old and new PSW's contained in storage are identi­
cal in format to the current PSW, since they are called 
upon and become "current". The location of old and 
new PSW's is shown in Figure 4. In the next topic, 
"Data Representation", we shall see that PSW's are 
doublewords with individual bits labeled 0-63. We 
can see now from the table that a machine check will 
cause the current PSW to be placed in storage loca­
tions beginning at 0048 and a new PSW will be 
brought out from locations beginning at 0112. 

Address Length Purpose 

0 0000 0000 double word Initial program Loading PSW 
8 0000 1000 double word Initial program Loading CCWI 

16 0001 0000 double word Initiql program Loading CCW2 
24 0001 1000 double word External old PSW 
32 0010 0000 double word Supervisor call old PSW 
40 0010 1000 double word Program 01 d PSW 
48 0011 0000 double word Machine check old PSW 
56 0011 1000 double word Input/output old PSW 
64 01000000 double word Channel status word 
72 0100 1000 word Channel address word 
76 0100 1100 word Unused 
80 0101 0000 word Timer 
84 0101 0100 word Unused 
88 0101 1000 double word External new PSW 
96 0110 0000 double word Supervisor call new PSW 

104 0110 1000 double word Program new PSW 
112 0111 0000 double word Machine check new PSW 
120 0111 1000 double word Input/output new PSW 
128 1000 0000 Diagnostic scan-out area* 

°The size of the diagnostiC scan-out area depends upon the 
particular system's CPU and 110 channels. 

Figure 4. Permanent storage assignments 



SUPERVISORY STATE .... EE-If---,3>~ PROBLEM PROGRAM STATE 

In Wain Storage .. In Main Storage 
A 

Old PSW - Wachine Check New PSW - Machine Check Active in 
Processing Unit 

~ T H ~~w'~'11--+-_O_I_d _Ps_w_-_prog_ra_m __ ---:;.;:..tl Co ... en' PSW 

Old PSW - SupelVlsor Call 

New PSW - Program 

New PSW - SupelVisor Call 

New PSW - External Old PSW - Extemal 

Old PSW - Input-Output New PSW - Input-Output 

Figure 5. Problem program PSW active in processing unit contrasted with input/output operations in supervisory state 

In a typical System/360 environment, more than 
one task is contending for time on the processing unit, 
and while one interrupt is ~eing serviced, perhaps an­
other interrupt occurs, while still another interrupt is 
held pending. 

In Figure 5, the current PSW would reflect the 
status of a task B, which is being executed in the prob­
lem state. 

In Figure 6, an interrupt has caused the processing 
unit to switch to the supervisory state. A new I/O 
PSW is replacing the active PSW and the active PSW 
is being stored as the old I/O PSW. Upon leaving the 
I/O routine (which is executed using the resident I/O 
supervisory program), the old I/O PSW will again be­
come the current PSW, unless other interrupts occur. 

We have seen that an interrupt causes a type of 
branch. What, we may ask, is the difference between 
a program branch and one caused by an interrupt? 
The portion of the PSW that has been compared with 
an instruction counter is called the instruction ad­
dress. When a branch occurs, only the contents of the 

instruction address within the PSW are changed. On 
an interrupt the entire PSW is replaced. The PSW 
contains other status and control information in addi­
tion to the instruction address, which the processing 
unit requires. This includes such information as pro­
gram status (supervisor versus problem state, masked 
versus interruptible state, stopped versus operating 
state, and running versus waiting state). 

When interrupts occur is not the concern of the 
problem programmer. With reference to machine 
cycle time, it is interesting to note that the machine 
designers chose an optimum economic "interruptible" 
point, since status information must be saved and re­
stored. This turns out to be after an instruction is 
finished and the next instruction is not yet started. 
In the case of I/O, external, or supervisor call inter­
rupts, then, the current instruction· will be completed 
before the interrupt is taken. However, in the case of 
program and machine errors, the end may be forced 
by suppressing or terminating the instruction's exe­
cution. 

Other aspects and details of the automatic interrupt 
system are found in the appropriate SRL publications. 

SUPERVISORY STATE :;.1 

Old psw - Machine New PSW - Machine 

Old PSW - Program New PSW - Program 

Supervisor Current PSW 

Old PSW - Supervisor Call New PSW - Supervisor Call 

Old PSW - External New PSW - External 

Old PSW - Input/Output -E--- New PSW - Input/Output 

Figure 6. Switching of PSW's during an input/output interrupt 

7 



Data Representation 

The most familiar method of data re.presentation in 
commercial applications of computers has been binary 
coded decimal in which six bits are used to represent 
64 alphameric and special characters. Records consist 
of many fields of widely different lengths. Scientific 
computers, on the other hand, generally operate upon 
fixed-word-Iength fields of binary data. 

Several data formats can be used for processing with 
the System/360 to accommodate commercial and sci­
entific applications. An eight-bit unit of information, 
called a byte, is fundamental to the formats. An initial 
byte may be addressed as an operand of an instruc­
tion, with the number of bytes used specified by the 
instruction. Because eight rather than six bits are used 
to represent a. character, up to 256 possible characters 
could be represented in the Extended Binary Coded 
Decimal Interchange Code (EBCDIC) shown in Fig­
ure 7. Except for certain teleprocessing equipment, 
the code that makes use of characters is either 
EBCDIC or an eight-bit extension of a seven-bit code 
proposed by the International Standards Organization. 

The chart shows bit positions, which determine bit 
patterns, at the top and to the left of each table. 

The hole pattern of punched cards is shown at the 
bottom and to the right of each table. 

The table at the upper left shows control characters. 
The explanation of their meaning is given in a sepa­
rate listing. The characters PF, for example, indicate 
"punch off". 

Exceptions to the tabular representation of hole pat­
terns to specify a binary bit pattern, a control char­
acter, or a graphic character are identified by numbers 
circled in the table, and the proper hole patterns are 

8 

shown in a separate listing below the tables. The 
examples given below the tables are self-explanatory 
and serve to ensure correct reading of the tables. To 
illustrate this, the last example in the list is an excep­
tion indicated by the number 4 circled in the table 
at the upper left. 

For further practice, translate the name John Doe 
into EBCDIC and use initial capitals and lowercase 
letters. The results should be: 

11010001 10010110 10001000 10010101 
J 0 h n 

11000100 10010110 10000101 
Doe 

Note that in the tables the digits 0-9 have these bit 
configura tions: 

o 11110000 5 11110101 
1 11110001 6 11110110 
2 11110010 7 11110111 
3 11110011 8 11111000 
4 11110100 9 11111001 

We may well ask what purpose the four leading Is 
serve. The answer is that they provide a collating se­
quence in which numbers are higher than alphabetics 
in alphameric fields, but they are not used in arithme­
tic operations. Instead, an instruction is provided that 
"packs" two decimal digits into a byte by eliminating 
the leading Is (see Figure 8). The decimal digits 0-9 
are represented in the four-bit binary coded decimal 
form by 0000 through 100l. The elimination of the 
leading Is (or zone portion) is accomplished with the 
Pack instruction. 



Bit Positions 0, 1 
01 -- Bit Positions 0, 1 

10 11 

001 01 110 I 11 
Bit Positions 2,3 -- Bit Positions2,3 

00 11 

;" 

CD ~ Q) ~ SP~ ~@ -~ (!; 
0000 NUL OS & 

,@ 
OOO~_ SOS / 1 

o ® C!J) -@r-
0000 o 8-1 

@ 
I--

0001 a i A J 1 1 
~ 

0010 FS 2 0010 b k s B K S 2 2 
I--

0011 TM 3 

-< 
0100 PF RES BYP PN 4 

j 
u c r.... 
~ -0' 

'0, IL)' 

15 "<t' 

0011 c I t C L T 3 ~ 

0100 d m u 0 M U 4 4 
I---

~ 
0101 HT NL LF RS 5 ~ .;;; 

.£ 
:§J 
o 

0101 e n v E N V 5 t-2-
0110 LC BS EOB UC 6 

- Cii 0110 f 0 w F 0 W 6 6 
I--

0111 DEL IL PRE EOT 7 - 0111 g p x G P X 7 7 
f---

1000 8 -\.. 
9 9 9 9 9 9 9 9 

1000 h q y H Q Y 8 8 
f--

12 12 12 12 1001 i r z I R Z 9 .~ 
11 11 11 11 

0 0 0 0 

1-1 __ ----- Zone Punches'-------.;IOIO--II 

12 12 12 

1 

12 

I" I I I 
11 11 11 

0 0 0 0 

1.01."------ Zone Punches -------1Jo~1 
00 01 Bit Positions 0,1 

10 11 Bit Positions 0,1 

00 11 
;" 

r----

Bit Positions 2,3 

00 I 01 I 10 I 11 00101 110 I 11 Iljt Positions 2 3 

1001 8-1 

@ 
I---

1010 CC SM ¢ ! : 8-2 

..----

1010 8-2 
I--- I--

1011 $ , # 8-3 
~ 

-< 
< 0/0 @ ~ 1100 * 

;; 
.c r.... u c -0' 
~ IL)' 

~ 
"<t' 

~ 
0 

1011 ~ 

1100 ~ 

1101 ( ) 
I 8-5 - I---

'';: 

~ 1101 8-5 
I---

Cii 
1110 + ; > = ~ 1110 8-6 

I---

1111 I ..., 
? " ~ 

9 9 9 9 

I I I I I 
12 12 

11 11 
0 0 

""1------- Zone Punches ------.... ..tt 

1111 8-7 
'---

9 9 9 9 
12 12 12 12 12 12 

11 11 11 11 11 11 
0 0 0 0 0 0 

""I ~------- Zone Punches ------..... _".,jl 

~ 12-0-9-8-1 ~ 11-0-9-8-1 ~ No Punches ~ 11 ~ 12-0 ~ 0-8-2 ~ 0-1 @ 12-11 
12-11-9-8-1 12-11-0-9-8-1 12 12-11-0 11-0 0 11-0-9-1 

Control ClKJl'Clcter SE!ciol Gra~hic Characters 

NUL Null BS Backspace EOB End of Block Cent Sign Asterisk > Greoter-than Sign 
PF Punch Off IL Idle PRE Prefix Period, Decimal Point Right Parenthesis ? Question Mark 
HT Horizontal Tab CC Cl,lrsar Control SM Set Mode < Less-than Sign Semicolon Colon 
LC Lower Case OS Digit Select PN Punch On ( Left Parenthesis -, Logical NOT N Number Sign DEL Delete SOS Start of Significance RS Reader Stop + Plus Sign Minus Sign, Hyphen @ At Sign TM Tape Mark FS Field Separator UC Upper Case I Vertical Bar, Logical OR / Slash Prime, Apastrophe RES Restore BYP Bypass EOT End of Transmission & Ampersand , Comma Equal Sign NL New Line LF Line Feed SP Space I Exclamation Point % Percent Quotation Mark 

$ uollar Sign Underscore 

Example Type Bit Pattern Hole Pattern 
Bit Positions 
01234567 Zone Punches IDlgit Punches 

PF Contral Chal'Clcter 00000100 12 -9 .! 4 
% Special Graphic 01 101100 0 1 8-4 
R Upper Case 11 01 JOOI 11 19 
a Lower Case 10000001 12 -0 ~ 1 

Control Character, 00 11 0000 12 - 11 - 0 -9 - 8 - 1 
I 

functlan not yet I 
I assigned I 

Figure 7. Extended Binary Coded Decimal Interchange Code 
9 



Byte I 
I 

[ffi9it I Digit I Digit [~~ 

Byte I Byte Byte 
I I I I 

~r--z-on-e Ir--D'-19i--rt l-z~I~~ ~~JDi9it Izone I Digit I Sign I Di9~ 

Figure 8. Packed and zoned decimal number formats 

Arithmetic Operations 

There are four classes of processing operations: fixed­
point arithmetic, floating-point arithmetic, logical 
operations, and decimal arithmetic. Fixed-point arith­
metic and logical operations are part of the standard 
instruction set. The decimal option is intended pri­
marily for commercial applications and the floating­
point arithmetic option is intended for engineering and 
scientific applications. 

Fields of two, four, and eight bytes are called half­
words, words, and doublewords respectively (see 
Figure 9). 

In fixed-point arithmetic the basic arithmetic 
operand is a signed value recorded as a binary integer, 
that is, a whole number (positive or negative) as con­
trasted with a fraction. It is called fixed-point because 
the machine interprets the number as a binary integer; 
that is, the point is to the right of the least signifieant 

r" 
Binory 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 
Address 

Byte Byte Byte Byte Byte Byte Byte Byte Byte Byte Byte 

------ --~ 

Halfword llaI fword Halfword Halfword Halfword 
-- --t 

Word Ward Word 

--i 
Double-Word Double-Word 

-t 

Figure 9. Halfwords, words, and doublewords as they appear in 
main storage 

10 

position. The programmer has the responsibility for 
keeping track of an assumed point within a field. 

Fixed-point numbers occupy a fixed-length format 
consisting of a one-bit sign followed by the 31-bit 
integer field; alternatively, some operations may be 
performed on halfwords, and some multiply, divide, 
and shift instructions use a doubleword. 

U ntH numeric data is ready for output on a device 
that uses characters, such as a printer or punch 
( character-set oriented), storage is most economically 
used by holding the data in binary or packed decimal 
digits. 

In the following example of fixed-point arithmetic 
we shall, for the sake of simplicity, ignore the sign and 
fixed-length requirement. 

Assume that a card reader has read the number 
4096. The number itself will be transferred to main 
storage as four bytes of EBCDIC: 

11110100 11110000 11111001 11110110 

If this number is to be processed using fixed-point 
arithmetic, the PACK instruction is first issued and 
the number takes the binary coded decimal form: 

0100 0000 1001 0110 
A Convert to Binary instruction is then issued and, 
after its execution, the number takes the pure binary 
form: 

1000000000000 
which is 212. 



Note that the decimal values of bit positions are: 

I 128 I 64 I 32 116 I 8 I 4 I 2 I 1 I 
76543210 

The number itself is now ready for processing in fixed­
pOint format. (Note that we have not illustrated the 
sign and length requirement.) After processing, a 
Convert to Decimal instruction and either an Unpack 
or an Edit instruction are used to prepare the output 
for a device using characters such as a printer or 
punch. If the results of processing are to be stored 
for further processing in binary form, the Convert 
to Decimal instruction and the Unpack or Edit in­
struction are omitted. If the results are to be stored 
as packed decimal digits, the Unpack instruction is 
omitted. Figure 10 shows this processing sequence. 

No conversion from packed decimal to binary is 
necessary if the decimal instruction set is used. In­
stead, addition, subtraction, multiplication, division, 
and comparison are performed on packed binary 
coded decimal digits (see Figure 11). While fixed­
point operations are pel'formed on fixed-length fields, 
all decimal operations are performed on variable­
length fields, the length of which is specified in the 
instruction. The address tells where the data is located, 
and the length specification tells how much data the 
instruction is to operate upon. From 0 to 15 bytes may 
be specified, so that, in effect, a 16-byte field may be 

EBCDIC 
output 

EBCDIC 
input 

Convert 
to 

Binary 

Process 
with 
Binary 

Convert 
to 

Packed 

Binary output 

Packed Decimal 
output 

EBCDIC 
output 

Figure 10. Fixed-point arithmetic processing sequence on 
EBCDIC input 

addressed in arithmetic operations. A length specifi­
cation of zero will address only the byte designated 
in the instruction address. 

Where numerical information such as a part number 
is not operated upon arithmetically, it may be proc­
essed in the zoned format - that is, without packing 
the digits. 

N ow consider the facts that lead the programmer to 
decide whether to use decimal or binary arithmetic 
operations. Decimal arithmetic can make the program­
mer and the system more productive when processing 
requires relatively few computational steps between 
input and output. When extensive processing is re­
quired, as in many scientific applications, storage and 
circuitry are more efficiently utilized with binary 
numbers. 

Note that the number 4096 requires 32 bit positions 
in EBCDIC, 16 bit positions in packed binary coded 
decimal, and 13 bit positions in pure binary. Does not 
the economy of the binary configuration suggest the 
efficiency of binary operations? Figure 12, however, 
demonstrates that the decimal instruction set is a more 
direct route from input to output. The criterion for 
selection is the amount of processing to be done in the 
blocks labeled "process with binary" and "process with 
decimal". 

As shown in Figure 12, the system will accept as in­
put any code that is eight bits or less. For these other 
codes, such as a teletype code, tables are set up in 
storage, and translate instructions permit conversion of 
entire records of up to 256 characters with a single in­
struction. The figure lists output as binary, packed 
decimal digits, or EBCDIC. Actually, as with input, 
the output could be in any code up to eight bits 
through the use of translation tables. 

EBCDIC 
input 

meDIC ,--f, 
w .. ~ 

Pack 

Packed Decimal 
output 

Unpack 
EBCDIC 
output 

Figure 11. Processing sequence using the decimal instruction 
set on EBCDIC input 

11 



Any Code Up 
to Eight Bits - - - ----

EBCDIC------ --

Packed Decimal 
Digits 

Packed Decimal ____ _ 
Digits 

- --> Binary 

____ > Packed Decimal 
Digits 

___ > Packed Decimal 
Digits 

- - - ->- EBCDIC 

- - - -> EBCDIC 

Figure 12. Various input processing sequences involving 
arithmetic 

5ign Codes 
When digits are read from cards, all unsigned digits 
are assigned the zone 1111 for EBCDIC. The sign 
patterns generated for EBCDIC are 1100 for plus and 
1101 for minus. The usual case is that the sign occupies 
the zone positions of the least significant digit of a 
field. A three-digit field, then, would have this format: 

12 

zone digit zone digit sign digit 
In EBCDIC a minus 123 would appear as: 

1111 0001 1111 0010 1101 0011 
123 

After a Pack instruction is issued, the four-bit sign 
pattern occupies the four least significant bit positions 
of the field, and other zone bits are eliminated. A 
packed three-digit signed field, then, has this format: 

digit digit digit sign 
The digits and the sign code occupy fout: .bit posi­

tions each. A minus 123, for example, has this bit 
configuration: 

0001 0010 
1 2 

0011 
3 

1101 

A binary number used as a fixed-point operand occu­
pies 31 bits of a word, or 15 bits of a halfword, in main 
storage. Another bit in the most significant position 
carries the sign, which is 0 for plus and 1 for minus 
(see Figure 13). Recall now that fixed-point operands 
are fixed in length. When the integer represented 
occupies less than a word or halfword, the sign bit 
is used to fill the unused high-order bit positions. 
The decimal number 4096, which we have seen is 
1000000000000 in binary, can be represented in a half­
word as 0001000000000000 if the sign is plus, or as 
1111000000000000 in two's complement notation if the 
sign is minus. For a further explanation of complement 
notation see Number Systems (C20-1618). 

Half Word 

IT___ In_t_eg_e_r_. ___ -' 

o 1 15 

Word 

Integer _J 
o 1 31 

Figure 13. Fixed-point number format 



We have seen that System/360 can be used as a fixed­
point binary computer with fixed-length operands and 
that it can perform decimal arithmetic on records 
characterized by many fields of varying length. A con­
secutive group of n bytes constitutes a field of length 
n. We need these variable- and fixed-length capabili­
ties for the most efficient handling of both commercial 
and scientific applications. It should be emphasized 
that storage is addressable to the byte. Some instruc­
tions that address a byte always operate upon that 
byte and the next three consecutive bytes, so that a 
four-byte word is the operand. Other instructions re­
quire that the programmer specify as part of the in­
struction the number of bytes that constitute the 
operand. 

Mention has been made of bytes, halfwords, and 
doublewords. Actually, as many as 256 bytes can be 
specified as operands in some instructions, such as data 
transfers. 

Storage addresses within the system are represented 
by binary integers starting at zero. The location of a 
stored field is specified by the address of the leftmost 
byte of the field. 

Boundary alignment is a programming restriction on. 
fixed-length operands that requires some explanation. 
A variable-length field of data may start at any byte 
location. A fixed-length field of two, four, or eight 
bytes must have an address whose decimal equivalent 
is a multiple of two, four, or eight bytes respectively. 
A word address, for example, must be divisible by 
four. These are called integral boundaries. In binary, 
it turns out that the address must have: 
• One low-order zero bit for a halfword 
• Two low-order zero bits for a word 
• Three low-order zero bits for a doubleword 

Because the operation code is examined to deter­
mine whether fixed-length data is a halfword, word, or 
doubleword, the system can check to see that data is 
aligned on proper boundaries. A violation will cause a 
program interrupt that can be identified by the inter­
ruption code of the program status word as being 
"specification". Figure 14 shows various alignment 
possibilities. 

Boundary Alignment 

The assembler language processor provides facilities 
that automatically position or allow us to force the re­
quired boundary alignments. 

Boundary alignment restrictions were designed to 
force us to place words at consecutive integral 
boundaries to guarantee efficient machine operation 
when a program written for one model of System/360 
is run on another model. 

To illustrate, suppose that we correctly stored a half­
word in location 512 and 513 and then incorrectly 
stored a series of fullwords beginning at location 514 
(which is not divisible by 4). When we reference this 
data on a Model 50, which accesses a fullword on a 
single storage fetch, here is what would have to 
happen without boundary restrictions. An instruction 
that references the halfword at location 512 would also 
access half of the fullword beginning at location 514. 
Another storage access would be necessary to refer­
ence the other half of the fullword, and each succes­
sive fullword access would then fetch only half of the 
word we are seeking. 

Thus, to guarantee efficiency and to maintain pro­
gram compatibility among the various models, bound­
aries are identical for each model. 

o 2 4 6 8 
Binary 0000 0001 0010 0011 0100 01Ql OliO 0111 1000 1001 1010 
Address 

Byte Byte Bytc Byte Byte Byte Byte Byte Byte Byte Byte 

Halfword Halfword Halfword Holfword Halfword 

Word Word Word 

Double-Word Double-Word 

( 

Figure 14. Integral boundaries for halfwords, words, and 
doublewords 

13 



General Registers and Storage Addressing 

A set of 16 general purpose registers is standard. 
General registers can be used as index registers, re­
location registers, accumulators for fixed-point arith­
metic, and for logical operations. 

Only four bits in an instruction are required to 
designate a register. Each register has a capacity of 
one 32-bit word. 

Before considering the details of how these registers 
are utilized, it is helpful to see why registers were 
designed as part of the system. 

Access time to storage increasingly limits perform­
ance as processor speeds improve. Using a single 
faster-access accumulator decreases overall processing 
time compared with the time required for storage-to­
storage arithmetic. To efficiently utilize the single 
faster accumulator, however, it is necessary that data 
be refetched whenever it is reused and that results be 
stored temporarily for later use. Many of these fetch 
and store operations can be eliminated when multiple 
accumulators are available as registers. 

Just as multiple registers improve the efficiency of 
arithmetic and logical operations, they can also provide 
a means of efficient address speciHcation and modiHca­
tion. 

Because the ability to address vast amounts of main 
storage is a desirable feature, an internal address of 24 
binary bits is used. This permits up to 16,'777,216 
unique bytes to be addressed (224 = 16,777,216). 

An instruction, then, that involves a storage address 
would appear to require 24 bits to address the 
operand. Instead, instructions that designate a main 
storage location specify a register. A four-bit field in 

R Field Reg. No. General Registers Floating-Point Registers 

0000 0 ~32 Bits:=i3 ~64Bits~ 
0001 1 
0010 ~~ L=: ::::J 
0011 3 
0100 II L=: ::::J 
0101 5 
0110 II L=: ____ ==:J 
0111 7 
1000 8 
1001 9 
1010 10 
1011 11 
1100 12 
1101 1~1 

1110 14 
1111 15 

Figure 15. General purpose registers 

14 

the instruction allows the speciHcation of one of the 
registers numbered 0-15 as shown in Figure 15. The 
low-order 24 bits of this register contain an address 
referred to as the base address (B). The instruction 
must also contain a twelve-bit number called the dis­
placement (D), which provides for relative addressing 
of up to 4095 bytes beyond the base address. The base 
and displacement are added together to produce an 
effective address. 

Recall now that four bits of the instruction specify 
a register and twelve bits specify a displacement. With 
16 bits we are able to specify a 24-bit address. 

In addition to the base register, many System/360 
instructions designate another general register called 
an index register. In these cases, the effective address 
is calculated by adding together the contents of the 
base register, the contents of the index register, and 
the displacement Held (see Figure 16). 

The contents of all general registers and storage lo­
cations participating in the addressing or execution 
part of an operation remain unchanged, except for the 
storing of the final result. This permits multiple in­
structions to reference a register containing the same 
base or index value. 

Economy in instruction length through the use of 
the base-displacement addressing approach is one ad­
vantage of register utilization in addressing. Another 
signiHcant advantage is the relocation facility pro­
vided. Since the instructions of a program reference 
registers, the contents of these registers can be speci­
fied at load time, so that programs and data can be 
located in main storage almost at will. When the pro-

Index Base Displacement 

XI I BI I 
( Plus 

~I 

2040 

5000 

1960 

~,----90_00 ----' 

EFFECTIVE 
ADDRESS 

Figure 16. Address generation 



gram is to be used at another time, other values can 
be specified in the base and. index registers, so that the 
program can be executed from another segment of 
storage. 

If, during the processing of a program, it is desirable 
to use these registers for other purposes, their contents 
can be stored in core storage. The registers would then 
be loaded with some other value, and processing con­
tinued. Note that the registers must be reloaded with 
their appropriate base values before executing a seg­
ment of the program that assumes the registers con­
tain these values. 

This approach of saving the contents of the registers 
and then restoring them as they are needed removes 
any limitation problem that might result from the fact 
that the system has only 15 registers usable for ad­
dressing. Register 0 cannot be used for address modifi­
cation. A specification of 0 in either the base or index 
of an instruction means no base or index reference. 
This approach was taken to avoid the waste of having 
a register permanently filled with Os when not index­
ing or when a base of 0 was desired. Certain instruc­
tions allow this register to be used as an accumulator, 
but when 0 is used in the base or index field, the sys­
tem interprets it as meaning no base or index register. 

There are multiple load and multiple store regis­
ter instructions that make saving and restoration rela­
tively simple operations. 

The time spent in storing and restoring registers is 
quite small when compared with the time saved by 
having each instruction that references core storage 
contain only a 16-bit address field rather than a 24-bit 
address field. Similarly, the space used to preserve the 
contents of the registers is small compared with the 
space saved by reducing the instruction length. 

Note that when we refer to a "base" or "index" we 
are referring to the use to which one of the 16 general 

2000 
Storage 

Locations 

t 
3000 

Storage 
Locations 

Storage 
Locations 

Program A 

Program 8 

unused 

Figure 17a. Consecutive ascending locations in storage when 
program B is run with program A 

purpose registers is being put, and not to a specialized 
register. 

General registers are an important aspect of Sys­
tem/360. However, it is not only possible, but normal 
practice, to delegate to the assembly program almost 
all the clerical work of assigning base registers and 
computing displacements. Registers are used for ad­
dressing in a variety of ways. Some of the methods 
used in connection with the assembler language are 
examined under "Programming with Base Registers 
and the USING Instruction" in C20-1646. 

Relocation has been mentioned as one of the ad­
vantages of base-displacement addressing. Let us con­
sider a simple situation in which we benefit from the 
ability to relocate programs. Assume that programs A 
and B are to be run together. Program A is located in 
2000 consecutive storage locations as shown in Figure 
17a. The next 3000 storage locations are occupied by 
program B. The following 2000 locations are unused, 
but, except for these locations, we shall consider that 
no other storage is available. 

The next day program C, which requires 4000 bytes 
of storage, is to be run with program B. After looking 
at yesterday's storage map, we see that we have only 
2000 consecutive locations available (either in the lo­
cations previously occupied by program A or in the 
unused area). 

The register used on the previous day to load pro­
gram B can have its contents modified by a load 
register instruction; so that today the base value is 
2000 bytes higher than yesterday. Upon reloading pro­
gram B, its starting address and all subsequent ad­
dresses will be 2000 positions higher. Thus we have 
relocated program B, and the last 2000 positions of 
program B will now occupy the storage segment previ­
ously unused. Four thousand consecutive locations are 
now available for program C, as shown in Figure 17b. 

4000 
Storage 

Locations 

t 
3000 

Storage 
Locations 

Program C 

Program 8 

Figure 17b. Consecutive ascending locations in storage after 
relocation of program B to run with program C 

15 



Instruction Formats 

We have seen that variable-length fields as well as 
words can be addressed. Instruction length is also vari­
able. Some instructions cause no reference to main 
storage; others cause one or more references to main 
storage. To conserve storage space and save time in 
instruction execution, instruction length is variable and 
can be one, two, or three halfwords. Instructions 
specify the operation to be done and the location of 
data. Data may be located in main storage, registers, 
or a combination of the two. Instruction length is re­
lated to the number of storage addresses necessary for 
the operation. As a result, instructions will be of dif­
ferent lengths depending on the location of data. In­
structions of different lengths can be arbitrarily com­
bined in the same program. 

When both operands are in registers, only eight 
binary bits are needed for register addresses. Since 
eight binary bits are used for the operation and eight 
bits for operands, the shortest instruction consists of 
one halfword and there is no reference to main 
storage. 

When both operands are in main storage, a total of 
32 bits are needed for the addresses (one four-bit 
base and one twelve-bit displacement for each of the 
two addresses) and, because the operation code and 
length specification ( s) will require additional bits, 
the longest instruction (three halfwords in length) is 
used. 

Figure 18 shows the five basic instruction formats. 
The format codes are RR, RX, RS, SI, and SS, which 
indicate the general locations of the operand or 
operands. RR denotes a register-to-register operation; 
RX, a register .. to-indexed storage operation; RS, a 
register-to-storage operation; SI, a storage and :im­
mediate operand operation; and SS, a storage-to-stor­
age operation. An "immediate operand" is a byte of 
data used as an operand that is carried in the instruc­
tion itself. 

In the formats shown in Figure 18, Rl specifies the 
address of the register containing the first operand. 
The second operand location, if any, is defined dif­
ferently for each format. 

In the RR format, the R2 field specifies the address 
of the general register containing the second operand. 

In the RX format, the contents of the general regis­
ters specified by the X2 and B2 fields are added to the 
contents of the D2 field to form an address designating 
the storage location of the second operand. 

16 

ONE HALFWORO 

4 4 

RR I OP Rl I R21 
TWO HALFWOROS 

4 4 4 12 

RX I OP Rl I X2 I B2 02 

4 4 12 

RS I OP Rl I R3 I B2 02 

12 

51 I OP I Bl 01 

THREE HALFWOROS 

4 12 4 12 

55 Li_~ I Bl 01 I B2 02 

4 4 4 12 4 12 

55 OP ul L2 I Bl 01 I B2 02 

Figure 18. Instruction fonnats 

The symbology employed in the RS format is ex­
plained with the example shown below. In shift opera­
tions employing the RS format, the designations of 
fields differ from the example shown, but this does not 
concern us here. 

In most cases the results replace the first operand 
except for the Store instruction, and the Convert to 
Decimal instruction, where the result replaces the sec­
ond operand. 

The contents of all registers and storage locations 
participating in the addressing or execution part of an 
operation remain unchanged, except for the storing of 
the final result. 

In the following examples of the instruction formats, 
the operands are expressed as decimal numbers, and 
the operation codes are expressed in the symbolic 
assembly language. 



RR Format 

OPCode Rl R2 

AR 7 9 

o 7 8 11 12 15 

Execution of this Add instruction adds the contents 
of general register 9 to the contents of general register 
7, and the sum is placed in general register 7. 

RX Format 

OP Code Rl X2 B2 D2 

ST 3 I 10 14 300 I 
0 7 8 11 12 15 16 19 20 31 

Execution of this Store instruction stores the con-
tents of general register 3 at a main storage location 
addressed by the sum of 300 and the low-order 24 
bits of general registers 14 and 10. 

R5 Format 

OPCode 

LM 

o 

B2 

3 9 11 300 

7 8 11 12 15 16 19 20 31 

This Load Multiple instruction causes the set of gen­
eral registers starting with the register specified by 
Rl and ending with the register specified by R3 to be 
loaded from the locations designated by the second 
operand address. 

The storage area from which the contents of the 
general registers are obtained starts at the location 
designated by the second operand address and con­
tinues through as many words as needed. The general 
registers are loaded in the ascending order of their ad­
dresses, starting with the register specified by Rl and 
continuing up to and including the register specified 
by R3 • 

It was pOinted out earlier that the storing and restor­
ation of registers is a relatively simple matter. There 
is also a multiple store instruction that provides for 
the storing of the registers, while this multiple load 
instruction provides for their restoration. 

51 Format 

OP Code h Bl 

I MVI $ 12 100 

o 7 8 15 16 19 20 31 

With this Move Immediate instruction in the example 
shown, a dollar sign ($) is to be placed in location 
2100, leaving locations 2101-2104 unchanged. Let Z 
represent a four-bit zone. Assume that: 
Register 12 contains 00 00 20 00 
Location 2100-2104 (before) ZO ZI Z2 Z3 ZO 
Locations 2100-2104 (after) $ ZI Z2 Z3 ZO 

55 Format 
OP Code Ll 

AP I 4 4 6 

o 7 8 11 12 15 16 19 20 

64 6 68 

31 32 35 36 47 

With this Add Decimal instruction, the second oper­
and is added to the first operand, and the sum is 
placed in the first operand location. If necessary, high­
order zeros are supplied for either operand. Note 
that in the register-to-register (RR) instruction ex­
ample, the addition is on fixed-length binary fields. 

The decimal arithmetic instruction in the SS format 
operates on data in the packed format with two deci­
mal digits placed in one eight-bit byte. The length of 
the fields is specified explicitly in the instruction 
rather than implied in the operation code. 

In each format (RR, RX, RS, SI, or SS) the first 
byte contains the operation code in the binary code, 
which is the actual machine language. In binary, the 
length and format of an instruction are specified by 
the first two bits of the operation code. 

BIT INSTRUCTION INSTRUCTION 
POSITION LENGTH FORMAT 

00 One halfwoid RR 
01 Two halfwords RX 
10 Two halfwords RS or SI 
11 Three halfwords SS 

During instruction decoding, the processing unit 
examines these first two bits of the operation code 
and determines how many bytes to fetch for this in­
struction. These bit configurations are part of the ma­
chine instruction, so that when, for example, we speci­
fy an Add register-to-register instruction, we are not 
concerned with specifying the instruction length. 

We have seen that for fixed-length instructions the 
length of the operand is implicit in the instruction, and 
for variable-length operands the length is specified in 
the instruction. We have also seen that the length of 
the instruction itself is part of the operation code. 

17 



Protection Features 

System/360 was designed for operation with a su­
pervisory program that schedules and governs the 
execution of multiple programs, handles exceptional 
conditions, and coordinates and issues input/output 
instructions. 

In addition, the computing system and the super­
visory programs are designed to prevent one program, 
such as a problem program, from modifying another 
program, such as the supervisor program. A means is 
provided by which the supervisor program can change 
any area of main storage, while the problem program 
can change only its own assigned areas. It is desirable 
for example, that the supervisor program be able to 
change the main storage locations containing the new 
program status words. However, we would not want 
the problem program to be able to modify this same 
area. It is undesirable to have any part of the super­
visor program changeable by the problem program. 
The feature that prevents data from being brought 
:into a protected area of core, and thus prevents one 
program from destroying another, is called store pro­
tection. 

Store protection is an optional feature on some 
models of the System/360 and is standard on others. 
It has been pointed out that medium-to-Iarge-scale 
:~ystems are utilized most efficiently in a multipro­
gramming environment and that the system is adept 
at handling more than one program concurrently. [n 
such cases the supervisor program, utilizing the store 
protection feature, assigns programs to particular areas 
of storage. 

For protection purposes, main storage is divided 
jinto blocks of 2048 bytes each. Each 2048-byte block 
of storage has a five-bit key associated with it, which 
may be used to establish the right of access. The su­
pervisory program may store any five-bit combination 
i~n these keys. (Note that the supervisory program and 
not the problem program has access to the storage 
keys.) The same key may be assigned to more than 
one block and these blocks of 2048 bytes need not be 
contiguous. 

The current PSW, as we have seen, acts as an in­
struction counter. Another of its functions is to keep 
track of the protection key of the program with which 
each instruction is associated. When an instruction 
attempts to store information in core, the protection 
key of the current PSW is compared with the high­
order four bits of the storage key of the aHected block. 

18 

(The fifth or low-order bit is used only when an addi­
tional feature called fetch protection is provided; this 
will be discussed on the next page.) When storing is 
specified not by a program instruction but by channel 
operation, a protection key supplied to the channel 
from the channel address word ( CAW) is similarly 
compared with the storage key of the area in which 
the data is to be stored. The CA W is explained later 
under "Channel Organization." It has already been 
pOinted out, however, that channels have their own 
programs, and to understand store protection, we 
should be aware that the protection key in the CAW 
provides protection on input operations from channels 
similar to that provided by the PSW on internal 
operations. 

Storage takes place only when the protection key 
and the storage key match or when the protection 
key is zero. This is shown in the example given in 
Figure 19. 

2048· 

BYTE 

BLOCKS 

STORAGE 

A 

B 

C 

o 

E 

When PSW or 
Program can store data in storage blocks 

channel pro-
tection key is A B C 0 E 

2 Yes No No Yes No 

0 Yes Yes Yes Yes Yes 

4 No No Yes No No 

15 No No No No Yes 

Figure 19. Example of store protection 



If the PSW, then, contains a nonzero protection 
key, a store operation will not occur in an area of 
storage with the zero key. If, on the other hand, the 
protection key is zero, a store operation can be exe­
cuted using any area of storage without regard for its 
storage key. The supervisory program will sometimes 
require this zero master key in its PSW. The protec­
tion key of the current PSW in the problem program 
cannot be changed by the problem programmer. Thus 
problem program interference with the supervisory 
program or with other programs is prevented. 

When an instruction causes a protection mismatch, 
execution of the instruction is suppressed or termi­
nated, and program execution is altered by an inter­
rupt. 

Fetch protection, in addition to store protection, is 
available on some models of the System/360. When 
store and fetch protection is installed, each 2048-byte 
block can be protected against the fetching of infor­
mation from the block as well as the storing of in­
formation in the block. The low-order bit of the block's 
five-bit storage key indicates whether store protection 
only or store and fetch protection applies to that block. 
A zero in that bit position indicates that only store 
protection applies. A one indicates that protection 
applies to both storing and fetching. The high-order 
four bits of the storage key are used to determine 
whether or not there is a protection mismatch. A pro­
tection mismatch due to a fetch violation causes the 
execution of the instruction to be terminated. 

19 



1:loati ng-Poi nt Arith metic 

In fixed-point computation the position of digits must 
be aligned for each operand to express their integral 
or fractional value. The separation of the integral and 
fractional portion of a number denoted by a point in 
written notation is the programmer's responsibility. 

Scientific and engineering computations often in­
volve multiplications and divisions where the magni­
tude of the quantities involved varies from very small 
fractions to large integers. 

To relieve the programmer of the responsibility of 
~:hifting to position intermediate and final results, 
floating-point notation and circuitry to operate upon 
it have been characteristics of scientific computers. 
Floating-point arithmetic is an optional feature on 
lVlodels 30 and 40 and is standard on the higher-per­
formance models. 

Four 64-bit floating-point registers identified by the 

R Field Reg. N,:>. General Registers Floating-Point Registers 
.------.-----.-.----.-- .. -------.-

0000 0 
0001 1 
0010 2 
0011 3 
0100 4 C:== ___ ::J 
0101 5 
0110 6 c== ____ :::J 
0111 7 
1000 8 
1001 9 
1010 10 
1011 11 
1100 12 
1101 13 
1110 14 
1111 15 

]F'igure 20. General and floating-point registers 

~:o 

numbers 0, 2, 4, and 6 are provided, as shown in 
Figure 20. The operation code determines whether a 
general purpose or floating"point register is to be used 
in an operation. An attempt to execute a floating-point 
instruction on a system not equipped with the feature 
will result in a program interrupt. 

The notation used for floating-point arithmetic can 
express decimal values ranging from about 5.4 x 10-79 

to about 7.2 x 1075 • It is basically a mathematical short­
hand that reduces a number to a fraction and an ex­
ponent (or characteristic). Either a short (32-bit) or 
long (64-bit) format operand may be specified. The 
short format permits a maxiIlUlm number of operands 
to be placed in storage and gives the shortest execu­
tion time. The long format is used when greater pre­
cision is desired. The formats differ only in the length 
of the fraction, as shown in Figure 21. 

Short Floating-Point Number 

IT Characteristic 

o 1 7 8 

Long Floating-Point Number 

Fraction 

I S I Characteristic ..... 1 ______ F_ra.ction 

o 1 7 8 

31 

JD 
63 

Figure 21. Short and long floating-point number formats 



In the section entitled "Channel Concept" mention was 
made of communications between the processing unit 
and the channel. We shall now examine in more de­
tail the ways in which the processing unit, the chan­
nels, the control units, and the I/O devices communi­
cate with each other. 

System/360 is designed for use in conjunction with 
a supervisor program that allocates equipment to mul­
tiple programs and also monitors the execution of 
each problem program. The supervisor program must 
also monitor I/O operations. To permit unrelated 
problem programs to execute I/O operations concur­
rently, the channel hardware together with the super­
visor program provides a means of assigning to each 
program the required I/O facilities. This assignment 
consists of establishing a path not only for transferring 
data between the I/O device and the designated area 
of main storage, but also for exchanging control and 
status information between the program and the I/O 
facility. 

Input/output control units are attached to the chan­
nel by a standard connection, called the I/O interface. 
This interface is common to all channels and control 
units. It provides an information and signal sequence 
that is common to all types of I/O control units. The 
interface has nine one-way lines for input and nine 
lines for output to accommodate one byte including 
parity. Other lines carry status and control informa­
tion. The important thing to remember is that identi­
cal lines are used for all control units including those 
for tape, disk, card, etc. The channel operates the con­
trol unit, and the control unit is designed to meet the 
interface requirements. 

The control unit operates the actual device. Exam­
ples of control units are tape control, communications 
control, card control, and printer control. The chan­
nel, in turn, operates the control unit. The processing 
unit controls channel activity by means of four in­
structions : 

Start I/O 
Test I/O 
Halt I/O 
Test Channel 

Commands constitute the channel program. The 
channel programs are held in main storage until an 
I/O operation is initiated by a Start I/O instruction. 
A channel address word ( CAW) is permanently as-

Channel Organization 

signed to contain the address of the initial channel 
command word (CCW) (see Figures 22, 23, and 24). 
CCW's are decoded by the channel, which issues 
orders to the I/O device. 

1 Key 10000 1 Command Address 

34 78 

Figure 22. Channel address word format 

32 

Command 
Code 

7 8 

Data Address 

Flags looo~ 
3637 39 40 4748 

Bits 0-7 specify the command code. 

Count 

Bits 8-31 specify the location of a byte in main storage. 
Bits 32-36 are flag bits. 

31 

31 

63 

Bit 32 causes the address portion of the next CCW to be used Q 

Bit 33 causes the command code and data address in the next 
CCW to be used. 

Bit 34 causes a possible incorrect length indication to be 
suppressed. 

Bit 35 suppresses the transfer of information to main storage. 
Bit 36 causes an interruption as Program Control Interrupt. 

Bits 37-39 must contain zeros. 
Bits 40-47 are ignored 
Bits 48-63 specify the number of bytes in the operation. 

Figure 23. Channel command word format 

CPU Channels Control Units 
and 

(Executes I/O Devices 

I/O (Executes 
Instructions) Commands) (Executes 

Orders) 

Figure 24. Relationship of I/O instructions, commands, and 
orders 

21 



The CCW contains the command to be executed, 
and for commands that initiate I/O operations it desig­
nates the storage area associated with the operation 
and the action to be taken whenever transfer to or 
from the area is completed. The CCW' s can be lo­
cated anywhere in main storage on doubleword boun­
daries, and more than one can be associated with a 
Start I/O instruction. The channel refers to a CCW 
in main storage only once, whereupon the pertinent 
information is stored in the channel. 

The first CCW is fetched during the execution of 
Start I/O. Each additional CCW in the chain is 
obtained when the operation has progressed to the 
point where the additional CCW is needed. 

The CCW has the format shown in Figure 23. 
Bits 0-7 specify the operation to be performed. 

There are six valid commands: 

Sense 
Transfer in Channel 
Read Backward 
Write 
Read 
Control 

The data address specifies the location of an eight­
bit byte in main storage. It is the first location re­
ferred to in the area designated in the CCW. 

The count specifies the number of eight-bit byte 
locations beyond the initial byte designated by the 
address. 

It has been mentioned that channels function much 
like small independent computers. As such they con­
tain registers. Bits 32 through 36 of the CCW are 
labeled "Hags" (see Figure 23). The channel registers 
include a Hag register that indicates command modes. 
These Hags serve to chain data or commands for this 
series of CC'V's, interrupt the processing unit, skip 
a portion of a record, suppress length indication, or 
terminate the operation. 

These flags may be set on or off in each of thc chan­
nel control words and the flag register is updated with 
each new CCW. Other registers within the channel 
circuitry are (1) a command counter, which tells the 
channel where to get the next command in a manner 
similar to that of an instruction counter in a process­
ing unit, ( 2 ) a command register, which tells the 
channel which command is to be performed, (3) an 
address register, which tells the channel where to get 
or put data into core storage, (4) a count register, 
which indicates how many characters are to be read 
or written, and (5) a key register, which contains 
the protection key for the current operation. 

The generalized CCW commands listed earlier ap­
ply to all devices. Read, Write, and Read Backward 

22 

are self-explanatory. The Sense command is a request 
to the I/O control unit for device-dependent status 
information, such as the position of magnetic tape, 
the condition of the card stacker and hopper, or the 
detailed conditions detected in the last operation. This 
status information is transferred to the channel as 
data and is placed in the main storage area designated 
bytheCCW. 

Normally the detailed information provided by the 
sense command is not required, and an eight-bit status 
byte is provided to the channel (upon completion of 
an I/O operation) indicating the general conditions 
detected during the operation. This status byte is 
common to all I/O devices and cannot convey the 
detail conditions of termination provided by the sense 
command. 

A control command causes the control unit to ini­
tiate at the I/O device an operation not involving the 
transfer of data - such as backspacing or rewinding 
magnetic tape, or positioning a disk access mechan­
ism. 

The Transfer in Channel command causes the next 
CCW to be fetched from the location designated by 
the data address field of this command instead of 
fetching the next sequential CCW. In effect, then, the 
Transfer in Channel command causes a branch from 
one sequence of CCW's to another. 

When command chaining is specified by a Hag bit 
in the CCW, the channel uses the new CCW to ini­
tiate a new operation at the device and permits the 
processor program to start with a single I/O instruc­
tion such sequences as printing multiple lines or read­
ing multiple tape blocks. With command chaining it 
is possible for the channel to execute I/O programs of 
any number of I/O operations. 

When data chaining is specified by a Hag bit in the 
CCW, the channel uses the new CCW to designate 
another data area for the original I/O operation and 
the device continues to execute this operation. Only 
the allocation of storage areas is affected. Data chain­
ing permits the reorganization of information as it is 
transferred between main storage and the I/O device. 

The proper use of the available channel command 
words permits the following types of I/O functions: 

Scatter-read - reading one physical record into 
multiple, noncontiguous areas of storage. 

Extraction - reading only selected portions of a 
record into storage. 

Control nondata I/O operations - for example, 
backspace, rewind, etc. 

Command chaining - for sequentially performing 
operations on the same device, for example, reading 
over an interrecord gap. 



Upon completion of the channel program, an I/O 
interrupt occurs; that is, the channel interrupts the 
processing unit. The channel makes available in main 
storage a channel status word (CSW). This double­
word contains an address that is eight bytes higher 
than the address of the last CCW used, and indicates 
in the count field the difference between the count 
in the last CCW and the amount of data transferred. 
The format of the channel status word is shown in 
Figure 25. The protection key is the key used in the 
operation. It is first supplied to the channel from the 
CA W as a result of a Start I/O instruction. 

Bits 32-47 of the channel status word contain an 
eight-bit I/O device-status byte and a channel status 
byte. These two bytes provide such information as 
data-check, chaining check, and control unit end. The 
channel status word has a permanent storage assign­
ment of locations 64 through 71 in main storage as 
shown in Figure 4. 

Command Address 

o 34 78 

32 

Status Count 
47 48 

Bits ()"3 contain the protection key used in the operation. 
Bits 4-7 contain zeros. 
Bits 8-31 specify the address plus 8 of the last CCW used. 
Bits 32-47 contain an I/O device-status byte and a channel-

status byte. The status bytes provide such information as data­
check, chaining check, control-unit end, etc. 

Bits 48-63 contain the residual count of the last CCW used. 

Figure 25. Channel status word format 

31 

63 

With the command address, status, and count fields 
of the CSW, the program can determine the status of 
an I/O device or the conditions under which an I/O 
operation has been terminated. 

The processing unit's program depends on I/O in­
terrupts for information concerning the progress of 
I/O operations. So that the processor program can 
tell in advance when conditions in the channel or in 
the device should alert the program, a mask bit is 
associated with each channel. A masked channel can­
not cause an I/O interrupt, and consequently the 
supervisor program can suppress I/O interrupts by 
masking the channels. The conditions in the channels 
and devices are preserved until accepted by the 
processor program. The program can determine 
whether an interrupt condition is pending in the 
channel by issuing the instruction Test Channel. 

Channel masking allows the processor program to 
accept I/O interrupts selectively by channel. How­
ever, on a given channel more than one I/O control 
unit can contain pending conditions that cause pro­
gram interruption. The instruction Test I/O allows 
a program to accept interrupts selectively by I/O 
device. This instruction gives the program the status 
of the designated device and clears any interrupt con­
dition pending in the device. Test I/O provides the 
same information as an I/O interrupt, since the chan­
nel status word is stored. Keeping the channels masked 
and interrogating devices by the Test I/O instruc­
tion prevents the program from being interfered with 
by conditions unrelated to the program being run. 

In a real-time or communications environment, on 
the other hand, the processor program would keep all 
channels unmasked and depend on I/O interrupts 
for information concerning the progress of I/O events 
as they occur. 

23 



Summary 

System/360 includes provisions for large storage capa­
city, simple program relocation, flexible protection, 
and general supervisory facilities. Provisions are also 
included for a variety of data formats, an extensive 
set of processing operations, and machine language 
compatibility among the various models. 

To compensate for higher computational speeds 
relative to human reaction time, and to adapt the 
system to online and real-time multiprogramming 
tasks, the system is more highly automated by having 
the system resources controlled by a supervisory pro-

24 

gram. Provision for this control is embodied in these 
concepts: 

• Supervisory mode with associated privileged 
instructions 

• Storage protection 

• Hardware monitoring 

• The ability to perform interrupts 
• A wait state available to the supervisor program, 

rather than a stop or halt instruction available to 
the problem programmer. 



l. Can a tape unit be attached to a multiplexor 
channel? 
2. If the problem program issues a Load PSW in­
struction to cause the new I/O PSW to be loaded, can 
the problem program cause an I/O operation to be 
executed? 
3. The instruction address contained in the New Su­
pervisor Call PSW addresses a routine to handle this 
class of interrupts. What action must this routine first 
t~ke? 
4. A program interrupt will occur if the Convert 
to Binary instruction attempts to operate upon data 
that contains invalid codes for packed decimal. What 
are the ten valid four-bit codes for packed decimal? 
5. Is data punched in an IBM card as Hollerith code 
acceptable as input to a System/360 equipped with a 
card reader? 
6. If floating-point arithmetic is intended for scien­
tific and engineering applications, while the decimal 
instruction set is primarily for commercial applica-

Questions and Exercises 

tions, by whom are fixed-point arithmetic instructions 
used? 
7. Where is the sign of a number in binary, EBCDIC, 
and packed decimal format located? 
8. What storage location is addressed by an instruc­
tion with zeros in the index and displacement fields 
and the number 5 in the base register field? 
9. Does the programmer select a particular instruc­
tion length? 
10. If loading into storage the following: 

Address Constant 
100 Fullword 
104 Halfword 

Fullword 

at what address would the last fullword be loaded? 
11. If the current PSW contains a protection key of 
zero and the instruction is to store data in Area A, 
which has a storage key of three, would a program 
interrupt occur? 

25 



Answers to Questions and Exercises 

l. Yes. Data from a tape unit may be transmitted 
over a multiplexor channel, in which case the channel 
operates in burst mode. Like other I/O devices, ta.pe 
units are attached to a control unit, which, in turn. is 
attached to a channel. 
2. No. The Load PSW instruction is a privileged in­
struction, and an attempt to execute this instruction by 
the problem p:rogram will cause a program interrupt. 
3. Because the Supervisor Call instruction contains 
an eight-bit code that is stored in the old supervisor 
call PSW in the course of interruption, the routine 
must first examine this code in the old I)SW. The code 
may be regarded as a message conveyed by the in­
struction to the supervisor. 

4. The valid packed decimal digit codes are: 
0000 0001 0010 0011 0100 
0101 0110 0111 1000 1001 

which represent the digits 0-9. 

5. Yes. Hollerith code is read by a card reader and 
transferred from the card reader's control unit as 
EBCDIC. 
6. Fixed-point arithmetic instructions are part of the 

26 

standard instruction set. Neither the optional decimal 
nor floating-point instruction set is sufficient in itself 
to perform processing. 
7. A binary quantity is represented internally by a 
32-bit binary number. The sign occupies the high­
order (leftmost) bit position. The sign of a number in 
EBCDIC occupies the zone position of the least signi­
ficant digit. The sign of a packed decimal number 
occupies the low-order four bits of the field. 
8. The effective address is specified by the 24 least 
Significant bits in register 5. 
9. No. Length is not a criterion for the selection of 
instructions. The programmer knows the location (in 
storage, registers, or both) of data to be operated 
upon and the operations to be performed. His selec­
tion is made accordingly, and halfword, word, and 
three-halfword instructions are mixed within a pro­
gram. 
10. The fullword would be loaded at location 108; 
locations 106 and 107 would contain slack bytes. 
11. No. When the protection key is zero, a store oper­
ation can be executed using any area of storage with­
out regard to its storage key. 



. . . ' 

READER'S COMMENT FORM 

Student Text - Introduction to 
IBM System/360 Architecture 

GC20-1667 -1 

Please comment on the usefulness and readability of this publication, suggest additions and 
deletions, and list specific errors and omissions (give page numbers). All comments and sugges­
tions become the property of IBM. 

COMMENTS 

fold fold 

fold fold 

• Thank you for your cooperation. No postage necessary if mailed in the U.S.A. 
FOLD ON TWO LINES, STAPLE AND MAIL. 



GC20-1667-1 

YC.UR COMMENTS PLEASE ••• 

Your comments on the other side of this form will help us improve future editions of this pub­
lication. Each reply will be carefully reviewed by the persons responsible for writing and pub­
lishing this material. 

Please note that requests for copies of publications and for assistance in utilizing your IBM 

system should be directed to your IBM representative or the IBM branch office serving your 
locality. 

fold fold 
...................... , ................................................................................................. . 

Attention: Technical Publications 

BUSINESS REPLY MAIL 
NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES 

POSTAGE WILL BE PAID BY ... 

IBM Corporation 

112 East Post Road 

White Plains, N. Y. 10601 

FIRST CLASS 

PERMIT NO. 1359 

WHITE PLAINS, N. Y. 

• II II II •••••••••• II II II ••••••••••••••••••••••• II •••• II ••••••••• II ••• II •••••••••••••••••• I_I' •••••• I_I II ••••••••••••• _ ••••• : 

fold 

Inte'rnational Business Machines Corporation 
Dahl Proc'essing Division 
112 East Post Road, White Plains, N.Y.I060t 
[USA Only] 

IBM: World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
[ International] 

fold 


	001
	002
	003
	004
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	replyA
	replyB

