
Systems Reference Library

IBM System/360 Operating System

ALGOL Language

This publication provides the programmer with the information

File No. S3\>0-26 OS
Form C28-6\i15-0

needed to use the IBM System/360 Operating System ALGOL compiler
for the solution of scientific and technical problems. ALGOL has been
introduced in a number of universities and technical institutes for
communication and education purposes. To assist that particular area,
the OS/360 ALGOL Compiler is intended to provide a bridge to System /360
for existing ALGOL users. A basic knowledge of the ALGOL language is
assumed.

This publication consists of two main parts. The first (section 1 to
5)describes the elements of the ALGOL language, the second
(section 6) describes the input/output procedures to be called when
using ALGOL.

PREFACE

This publication is based on:

1. the "Revised Report on the Algorithmic language ALGOL 6011 ,

published originally in the Communications of the Association
for Computing Machinery, volume 6 (1963), page 1, in the
Computer Journal, volume 5, number 4 (1963), page 349, and
in the Numerische Mathematik, volume 4 (1963), page 420,
(some comments in the paper "A list of the remaining trouble
spots in ALGOL 60" by D. E. Knuth, published in the ALGOL
Bulletin 19 (1965), page 29, were taken into consideration).

2. the "Report on Input-Output Procedures for ALGOL 60", published
originally in the Communications of the Association for Computing
Machinery, volume 7 (1964), page 628; in the ALGOL Bulletin ,
number 16, page 9, and in the Numerische Mathematik, volume 6
(1964), page 45 9.

A form for readers' comments appears at the back of this publication.

It may be mailed directly to IBM. Address any additional comments con­

cerning this publication to Programming Systems Publications, Department

DSB, PO Box 390, Poughkeepsie, NY 12602

© by International Business Machines Corporation, 1966

CONTENTS

INTRODUCTION

I.

2.

3.

4.

5.

6.

STRUCTURE OF THE LANGUAGE
I. I Formalism for syntactic descripUon

BASIC SYMBOLS, IDENTIFIERS, NUMBERS, AND STRINGS.
BASIC CONCEPTS.

2.1. Letters
2. 2. Digits. Logical values.
2. 3. Delimiters
2.4. Identifiers
2.5.
2.6.
2.7.
2.8.

Numbers
Strings
Quantities, kinds and scopes
Values and types

EXPRESSIONS
3.1. Variables
3.2.
3.3.
3.4.
3.5.

Function designators
Arithmetic expressions
Boolean expressions
Designational expressions

STATEMENTS
4.1. Compound statements and blocks
4. 2. Assignment statements
4. 3. Goto statements
4. 4. Dummy statements
4. 5. Conditional statements
4. 6. For statements
4. 7. Procedure statements

DECLARATIONS
5.1.
5.2.
5.3.
5.4.

Type declarations
Array declarations
Sw:itch declarations
Procedure declarations

INPUT /OUTPUT PROCEDURES
6. I. General characteristics
6. 2. Input procedures and output procedures
6. 3. Control procedure SYSACT
6. 4. Intermediate data storage

APPENDIX I: Relation between OS/360 ALGOL and ALGOL 60
Representation of ALGOL symbols APPENDIX 2:

APPENDIX 3:
LITERATURE
INDEX

Examples

5

7
8

10
10
10
10
12
13
14
15
16

17
17
18
22
27
30

32
32
35
37

38
38
41
46

55
56
58
59
61

68
68
71
81
90

92
94
95

104
105

INTRODUCTION

This publication describes the international algorithmic language ALGOL 60
as it is used to write programs to be executed with the System/360 Operating
System. ALGOL 60 is a higher level language suitable for expressing a large
class of numeric processes in a form sufficiently concise for automatic trans­
lation.

Programs written in ALGOL are translated into System/360 machine language
code by the System/360 Operating System ALGOL compiler. The compiler
analyzes the ALGOL source program and generates an object program that is
suitable for a linkage editor processing and subsequent execution. In addition
it writes appropriate messages when errors are detected in the source
program.

This publication contains a complete description of the language accepted by
the compiler. This language is the hardware representation of a proper sub­
set of the full ALGOL language, which is specified in the "Revised Report on
the Algorithmic Language ALGOL 60 1

{ I]. This subset fully contains the
ECMA Subset of ALGOL 60 [4], and the SUBSET ALGOL 60 of IFIP [5]. In
addition, a set of input/output procedures, which include the IFIP Input/
Output Procedures [2], has been provided.

In the first chapter, a survey of the basic constituents and features of the
language is given, and the formal notation, by which the syntactic structure
is defined, is explained.

The second chapter lists all the basic symbols, and the syntactic uni.ts known
as identifiers, numbers and strings are defined. Further, some important
notions such as quantity and value are defined.

The third chapter explains the rules for forming expressions and the meaning
of these expressions. Three different types of expressions exist: arithmetic,
Boolean (logical) and designational.

The fourth chapter describes the operational units of the language, known as
statements. The basic statements are: assignment statements (evaluation of
a formula) , goto statements (explicit break of the sequence of execution of
statements), dummy statements, and procedure statements (call for execution
o:f a closed process, defined by a procedure declaration). The formation of more
complex structures, having statement character, is explained. These include:
conditional statements, for statements (loops), compound statements, and
blocks.

5

6

In the fifth chapter, the units known as declarations, serving for defining perma­
nent properties of the uniti;; entering into a process described in the language,
are defined.

The sixth chapter describes input/output procedures, for the transmission of
data to and from an external medium.

There are three appendices which give further information. The first appendix
describes the restrictions imposed by the System/360 Operating System ALGOL
language on ALGOL 60 as described in the Revised ALGOL 60 Report [1] ,The
second appendix describes the representation of basic symbols of ALGOL 60 in
the 48- and 59-character sets accepted by the System/360 Operating System
ALGOL compiler. The third appendix gives detailed examples of the language.

1. STRUCTURE OF THE LANGUAGE

The Revised ALGOL 60 Report introduces three different kinds of representations
of the language. These are the reference language, the publication language
and the hardware language representations. The latter give the representations
of the language within the framework of the physical character sets available
in various installations. All objects defined within the reference language are
represented by a given set of symbols, and the hardware representations may
differ from this set only in the choice of symbols.

The System/360 Operating System ALGOL compiler allows for two different
sets of characters:

1. The ISO/DIN Proposal for the Representation of ALGOL Symbols on 80-
column punched cards [3] (48-character set, based on H-version of the
IBM card codes).

2. An extension of this proposal utilizing the syntactical characters of the
Extended BCD Interchange Code (59-character set).

The characters avai.lable in (1) are a proper subset of (2). Both representations
and the rules for transliterating them :from the reference language are given in
Appendix 2.

The description of the language in the following sections is given in terms of the
first level (48-character set) of these hardware representations.

The purpose of the algorithmic language is to describe computational processes.
The basic concept used for the description of calculating rules is the well-known
arithmetic expression containing as constituents numbers, variables, and
functions. From such expressions are compounded, by applying rules of arithmetic
composition, self-contained units of the language - explicit formulae - called
assignment statements.

To show the flow of computational processes, certain nonarithmetic statements
and statement clauses are added which may describe, e.g., alternatives, or
iterative repetitions of computing statements. Since it is necessary for the function
of these statements that one statement refer to another, statements may be provided
with labels. A sequence of statements may be enclosed between the statement brackets
'BEGIN' and 'END' to form a compound statement.

Statements are supported by declarations which are not themselves computing
instructions but inform the translator of the existence and certain properties of
objects appearing in statements, such as the class of numbers taken on as values
by a variable, the dimension of an array of numbers, or even the set of rules defining

7

8

a function. A sequence of declarations followed by a sequence of statements and enclosed
between 'BEGIN' and 'END' constitutes a block. Every declaration appears in a block in
this way and is valid only for that block.

A program is a block or compound statement which is not contained within another
statement and which makes no use of other statements not contained logically within
it.

Note: A program may contain declarations of procedures, called code procedures
(c f. 5.4.6.), whose procedure bodies consist of any kind of code not contained
physically within the program; however, this code is thought to be logically contained
within the program.

In the sequel the syntax and semantics of the language will be given. l)

1. 1 Formalism for Syntactic Description

The syntax will be described with the aid of metalinguistic formulae. Their interpretation
is best explained by an example:

<ab> :: =/!*!<ab>/! <ab> <d>

Sequences of characters enclosed in the brackets < > represent metalinguistic variables
whose values are sequences of symbols. The marks :: =and ! (the latter with the
meaning of 'OR') are metalinguistic connectives. Any mark in a formula, which is not
a variable or a connective, denotes itself (or the class of marks which are similar to
it). Juxtaposition of marks and/or variables in a formula signifies juxtaposition of the
sequence denoted. Thus the formula above gives a recursive rule for the formation of
values of the variable <ab>. It indicates that <ab> may have the value /or * or that
given some legitimate value of <ab>, another may be formed by following it with the
character I or by following it with some value of the variable <d>. If the values of
<d> are the decimal digits, some values of <ab> are:

* ///1/37 I
/12345/
Ill
*86

l) Whenever the outcome of a certain process is left undefined or said to be unde­
fined, this is to be interpreted in the sense that a program in which such a
process is executed does not fully define a computational process.

The example chosen demonstrates that a metalinguistic formula does not define any
meaning of a metalinguistic variable. In order to facilitate the study, however, the
symbols used for distinguishing the metalinguistic variables (i. e. the sequences
of characters appearing within the brackets < >as ab in the above example) have
been chosen to be words describing approximately the nature of the corresponding
variable. Where words which have appeared in this manner are used elsewhere
in the text they will refer to the corresponding syntactic definition. In additon,
some formulae have been given in more than one place. Within syntactic
descriptions the following definition will sometimes be used:

<empty>::=

{i. e. no symbol)

9

10

\

2. BASIC SYMBOLS, IDENTIFIERS, NUMBERS, and STRINGS.
BASIC CONCEPTS

The hardware representation of the language is built up from the following basic
symbols:

<basic symbol> ::= <letter> ! <digit> <logical value> ! <delimiter>

2.1. Letters

<letter> ::= A B C D ! E ! F G ! H

S T U V!W!X Y Z

J K!L M N 0 P Q R!

Letters do not have individual meaning. They are used to form identifiers and strings
(c f. sections 2. 4. and 2. 6.).

2. 2.1. Digits

<digit> : := 0 ! 1 ! 2 ! 3 ! 4 ! 5 ! 6 ! 7 ! 8 ! 9

Digits are used to form numbers, identifiers, and strings.

2. 2. 2. Logical Values

<logical value>::= 'TRUE' ! 'FALSE'

The logical values have a fixed obvious meaning.

2. 3. Delimiters

<delimiter> : : = <operator> ! <separator> <bracket < declarator> !

<specificator>

<operator> :: = <arithmetic operator> ! <relational operator>
<logical operator> ! <sequential operator>

<arithmetic operator> : : = + ! - ! * ! I ! 1
/

1 ! 'POWER'

<relational operator> :: ='LESS' ! 'NOTGREATER' ! 'EQUAL' 'NOT LESS'
'GREATER' ! 'NOT EQUAL'

<logical operator>::= 'EQUIV' ! 'IMPL' 'OR' ! 'AND' ! 'NOT' !

<sequential operator> :: ='GOTO' 'IF' 'THEN' ! 'ELSE' 'FOR' ! 'DO'

<separator> : : = , ! . ! ' ! . . ! . , ! 'STEP' ! 'UNTIL' 1 WHILE' ! 'COMMENT'

<bracket>::= (!) ! (I! /) ! '(' ! ')' ! 'BEGIN'! 'END'

<declarator>::= 'BOOLEAN' ! 'INTEGER' ! 'REAL' ! 'ARRAY' 'SWITCH'!
'PROCEDURE' ! 'CODE'

<specificator> :: ='STRING'! 'LABEL'! 'VALUE'

Delimiters have a fixed meaning which for the most part is obvious or else will be
given at the appropriate place in the sequel.

Typographical features such as blank space between characters outside of strings
(cf. 2 .. 6.) or change to a new line have no significance for the representation of the
numerical process itself (e.g., 'TRUE' and 1bTbRbUbEb1 denote the same thing,
hereby b denoting a blank space) .

For the purpose of including text among the symbols of a program the following
"comment" conventions hold:

The sequence of symbols: is equivalent to:

. , 'COMMENT'<any sequence not containing.,> . ,
'BEGIN' 'COMMENT' <any sequence not containing.,>., 'BEGIN'
'END' <any sequence not containing 'END' or . , or 1 ELSE 1> 'END'

Equivalence is here meant that any of the three structures shown in the left-hand
column may be. replaced, in any occurrence outside of strings, by the basic symbol
shown on the same line in the right-hand column without any effect on the action of the
program. It is further understood that the comment structure encountered first in the
text when reading from left to right has precedence in being replaced over later
structures contained in the sequence.

11

12

Note: The sequence of symbols constituting the text of the comment may consist of
any available symbols and is not restricted to only the basic symbols described
above (c f. symbols allowed in strings, section 2. 6 .. 3.). Blank spaces interspersed
in the delimiting basic symbol . , or 'END' or 'ELSE' are ignored: e. g., the
sequence . b, as well as the sequence . , is considered a delimiting basic symbol.

Example

The sequence

. , 'COMMENT'bTHEbLASTbSTATEMENTbISbEXECUTEDbONLY, b
IFbANbERRORbOCCURS!b. b, b'END'OFbINNERbLOOP'END'OFb
OUTERbLOOP. ,

is equivalent to the sequence

. , 'END' 'END'.,

2. 4 Identifiers

2. 4.1. Syntax

<identifier> : : = <letter> <identifier> <letter> <identifier> <digit>

2.4.2 Examples

Q
SOUP
Vl7 A

A34KTbMNS
MARILYN

The following examples demonstrate sequences of symbols that are not correct
identifiers:

2.4.3

IA
A. L. ROBERTS
INPUT /OUTPUT
NON-STOP

Semantics

(starting digit)
(. not allowed)
(/not allowed)
(- not allowed)

Identifiers have no inherent meaning but serve for the identification of simple
variables, arrays, labels, switches, and procedures. They may be chosen freely;
but there is no effective distinction between two different identifiers, when the
first six basic symbols are common.

Apart from thi.s rule, two different identifiers cannot be used to denote the same
quantity. The same identifier cannot be used to denote two different quantities
except when these quantities have disjoint scopes as defined by the declarations
of the program (c f. section 2. 7. Quantities, Kinds and Scopes, and section 5.
Declarations).

Not~ According to the rule stated above, the identifiers

PROGRAM
PROGRAMMER
PROGRAM 15
PROGRA

are considered identical. Consequently only one of these identifiers denoting
the same quantitity may be declared.

2. 5. Numbers

2.5.l Syntax

<unsigned integer> : : = <digit> ! <unsigned integer> <digit>

<integer> :: == <unsigned integer> ! +<unsigned integer>
- <unsigned integer>

<decimal fraction> : : = • <unsigned integer>

<exponent part> : : = '<integer>

<decimal number> :: = <unsigned integer> ! <decimal fraction>
<unsigned integer> <decimal fraction>

<unsigned number> : : = <decimal number> ! <exponent part>
<decimal number> <exponent part>

<number> : : = <unsigned number> ! + <unsigned number> !
-<unsigned number>

2.5.2 Examples

0 -200.084
0177 +07. 431 8

.5384 9. 341+10
+o. 7300 21 -4

Examples of invalid numbers are:

-.083 1 -02
-'7
'-4

+'+5

13

14

-0.
23+5
+7. 14
825. 78E-5
-7.4 1 (5-3)

2.5.3 Semantics

(decimal point not followed by a digit)
(delimiter ' is missing)
(decimal point not followed by a digit)
(E instead of ')
(Exponent part is an expression)

Decimal numbers have their conventional meaning. The exponent part is a scale
factor expressed as an integral power of IO. It is denoted by the separator'.

Notes: 2' -4 has the value +O. 0002 and -'7 the value -10 000 000. Non-significant
zeros, as in some of the examples of section 2. 5. 2, are allowed.

2.5.4 Types

Integers are of type 'INTEGER'. All other numbers are of type 'REAL' (c f. section
5. I. Type Declarations).

2.5.5 Range of Numbers

The numbers must be confined to the ranges described in section 2. 8.

2.6. Strings

2.6.l Syntax

<proper string> :: =<any sequence of symbols not containing the
triplets '('or')'> ! <empty>

<open string> :: =<proper string> ! '(' < open string>')'
<open string> <open string>

<string> :: = '(' <open string>')'

2.6.2 Examples

I(' • • b TH Is b IS b Ab I (I s TR ING')' I) I
I(' 5 k ' ' - I (I % % % I (I & = I: I) I T t I) I I) I

2.6.3 Semantics

In order to enable the language to handle arbitrary sequences of symbols the
string quotes '('and')' are introduced. There are 256 different symbols allowed
within strings, includi.ng upper and lower case alphabetic characters, numerical

and syntactical characters, a blank space and other available characters, depending
on the particular character set provided for use by the respective input/output devices.
The symbol b denotes a blank space. It has no significance outside strings.

Strings are only used as a actual parameters of procedures (cf. sections 3. 2.
Function Designators, 4. 7. Procedure Statements, and 6. Input/Output Procedures).

Notes: String quotes are exactly the sequences of symbols '(' or ')' and may not
contain interspersed blank space.,
A proper string may contain any sequence of symbols, except the sequences
'('and')' without interspersed blanks. The sequences'(' and')' with interspersed
blanks, e.g., 1'b)b', can be used in a proper string.

Example:

The sequence

I (1b1b(b1b1) I

is a complete string, since the open string b'b(b'b does not contain a string quote,
while the sequence

I (lbl ('b') I

is not a complete string since it contains two left, but only one right string quote.

Each symbol ' belongs to only one string quote and the string quotes are
recognized from left to right.

Examples: The sequence'(')' represents a left string quote followed by the two
symbols)'. The sequence 1(1 (1) 1 is a complete string consisting of a left and a right
string quote enclosing the open string(.

2. 7. Quantities, Kinds, and Scopes

The following kinds of quantities are distinguished: simple variables, arrays, labels,
switches, and procedures.

The scope of a quantity is the set of statements and expressions in which the
declaration of the identifier associated with that quantity is valid (c f. 4.1. 3.).

15

16

2. 8 Values and Types

A value is an ordered set of numbers (special case: a single number), an ordered
set of logical values (special case: a single logical value), or a label.

Certain of the syntactic units are said to possess values. These values will in
general change during the execution of the program. The values of expressions
and their constituents are defined in section 3. The value of an array identifier
is the ordered set of values of the corresponding array of subscripted variables
(cf. section 3.1.4.1.).

The various "types" ('INTEGER', 'REAL', 'BOOLEAN') basically denote
properties of values. The types associated with syntactic units refer to the
values of these units.

A syntactic unit of type 'INTEGER' may have as its value an integer, I, within
the following range:

31 31
-2 =-2 147 483 648 ~I~+ 2 147 483 647 = +2 -1.

A syntactic unit of type 'REAL' may have as its value a real number, the
modulus (absolute value) R of which lies within the following range:

16-65 ~ 2. 4*10-78 ~ R ~ 7. 2*10 7!; (1 -16-
14

)*16
63

or R = 0.

A syntactic unit of type 'BOOLEAN' may have one of the two values:

'TRUE' or 'FALSE'.

Syntactic units of type 'REAL' are calculated with up to 17 (long form) or 8 (short
form) significant decimal digits. 2) They are to be interpreted in the sense of
numerical analysis,i.e., as entities defined inherently with only a finite accuracy.
Therefore, the possibility of the occurence of a finite deviation from the
mathematically defined result in any calculation involving syntactic units of type
'REAL' is explicitly understood. The control of the possible consequences of
such deviations must be carried out by the methods of numerical analysis. This
control must be considered a part of the process to be described, and will there­
fore be expressed in terms of the language itself.

2
> The programmer may specify before translating an ALGOL program whether the

precision of type 'REAL' calculations throughout the program is 7 to 8 or 16 to 17
significant decimal digits.

3. EXPRESSIONS

In the language, the primary constituents of the programs describing algorithmic
processes are arithmetic, Boolean, and designational expressions. Constituents
of these expressions, except for certain delimiters, are logical values, numbers,
variables, function designators, labels, switch designators, and elementary
arithmetic, relational, logical, and sequential operators. Since the syntactic
definition of both variables and function designators contains expressions, the
definition of expressions, and their constituents, is necessarily recursive.

<expression> :: =<arithmetic expression> ! <Boolean expression>
<designational expression>

3.1. Variables

3.1.1. Syntax

<variable identifier> :: = <identifier>

<simple variable> :: = <variable identifier>

<subscript expression> :: = <arithmetic expression>

<subscript list> :: =<subscript expression> !
<subscript list>, <subscript expression>

<array identifier> :: = <identifier>

<subscripted variable> :: = <array identifier> (/ <subscript list> I)

<variable> :.: = <simple variable> ! <subscripted variable>

3.1. 2.

3.1. 3.

Examples

EPSILON
DETA
A 17
Q (/7' 2/)
X(/SIN(N*PI/2), Q(/3, N, 4/)/)

Semantics

A variable is a designation given to a single value. This value may be used
in expressions for forming other values and may be changed at will by means
of assignment statements (section 4. 2.). The type of the value of a particluar
variable is defined in the declaration for the variable itself (cf. section 5 .1.
Type declarations) or for the corresponding array identifier (cf. section 5. 2

17

18

Array Declarations).

3.1. 4. Subscripts

3.1. 4.1. Subscripted variables designate values which are components of multi­
dimensional arrays (cf. section 5. 2. Array Declarations). Each arithmetic
expression of the subscript list occupies one subscript position of the subscripted
variable, and is. called a subscript. A subscript list may consist of up to 16 sub­
scripts. The complete list of subscripts is enclosed in the subscript brackets
(/ and /). The array component referred to by a subscripted variable is specified
by the actual numerical value of its subscripts (cf. section 3. 3. Arithmetic
Expressions).

3.1. 4. 2. Each subscript position acts like a variable of type 'INTEGER' and the
evaluation of the subscript is understood to be equivalent to an assignment to this
fictitious variable (cf. section 4. 2. 4,). The value of the subscripted variable is
defined only if the value of the subscript expression is within the subscript bounds
of the array (cf. section 5. 2. Array Declarations).

Notes: Subscripts within a subscript list are evaluated from left to right. The
subscript expressions may, of course, be nested, as demonstrated by the last
example in section 3.1. 2.

Examples: The fourth example in section 3.1. 2. is a variable in a two-dimensional
array Q. Its location in the array is specified by the first subscript 7 and the
second subscript 2.

The fifth example is a variable in a two-dimensional array X. Its location in the
array is determined in the following way: The current values of N and PI are
used to evalute SIN (N*PI/2). The value of this expression, transferred to type
'INTEGER' (c f. 4. 2. 4.), yields the first subscript of X. Then the value of the
variable in three-dimensional array Q identified by the subscripts 3, current
value of N (transferred to type 'INTEGER'), yields the second subscript of X. If,
for example, at the time the subscripted variable X (/SIN(N*Pl/2), Q(/3, N, 4/)/)
is used, N = 1, PI= 3.14 •.. , and Q(/3, l, 4/)= O. 2, then the variable X(/l, O/) in
array X is to be taken.

3. 2. Function Designators

3. 2.1. Syntax

<procedure identifier> :: = <identifier>

<actual parameter> :: = <string> ! <expression> ! <array identifier>
<switch identifier> ! <procedure identifier>

<letter string> :: =<letter> ! <letter string> <letter>

<parameter delimiter> :: =, !) <letter string> .. (

<actual parameter list> :: = <actual parameter> !
<actual parameter list> <parameter delimiter>

<actual parameter>

<actual parameter part> :: ·= <empty> ! (<actual parameter list>)

<function designator> :: = <procedure identifier> <actual parameter part>

3. 2. 2.

3.2.3.

Examples

SIN (A-· B)
J (V + S, N)
R
S(X - 5) TEMPERATURE .• (T) PRESSURE .. (P)
COMPILE('('.=')') STACK .. (Q)

Semantics

A function des~gnator defines a single numerical or logical value, which results
through the application of a given set of rules defined by a procedure declaration
(cf. 5..4 Procedure Declaration, especially 5.4.4.) to fixed sets of actual para­
meters. The rµles governing specification of actual parameters are given in
section 4. 7. Procedure Statements. Not every procedure declaration defines
the value of a function designator.

3.2.4. Standard Functions

Certain identifiers are used for standard functions that are expressed as
procedures. These functions are available without explicit declaration. They
are considered as declared in a block surrounding the whole program. If an
identifier representing a ·standard function is explicitly declared in any block,
this declaration is to be regarded as a redeclaration of the identifier: within
this block the identifier assumes the significance implied by the nature of the
declaration given and the standard function represented by the identifier is
inaccessible (cf. 4.1. 3. and 5.). The list of standard functions consist of ten
identifiers.

3. 2. 4.1. Standard Functions of Analysis

ABS (E) for the modulus (absolute value) of the value of the
expression E

SIGN (E)

SQRT (E)

SIN (E)

for the sign of the value of E (+l for E>O, 0 for E =
0, - 1 for E < 0)

for the square root of the value of E

for the sine of the value E

19

20

COS (E)

ARCTAN (E)

for the cosine of the value of E

for the principal value of the arctangent of the
value of E

LN (E)

EXP (E)

for the natural logarithm of the value of E

for the exponential function of the value of E (eE).

These functions are all understood to operate indifferently on arguments both
of type 'REAL' and 'INTEGER'. They will all yield values of type 'REAL', except
for SIGN (E) which will have values of type 'INTEGER'.

Notes: Each of the standard functions is defined only if the values of both argument
and function designator lie within the ranges described in section 2. 8., e_ g., E ::s O
for SQRT (E) or E ::s LN (MAX).=l 7 4 for EXP (E), where MAX = (1 -16 -14) * 16 63 is
the maximum 'REAL' type value. Beyond that the argument E of SIN and COS is
restricted by the condition

15 50 50 15
-3.6*10 ~ -rc'*2 <E<+1l'*2 ~+3.6*10

in case of long form of 'REAL' type values and by the condition

5 18 18 5
-8.2 *10 ::::: -1(*2 < E < +rr*2 ::::::+ 8.2*10

in case of short form of 'REAL' type values (c f. footnote 2) of 2. 8.).

The assumed implicit declarations of the above standard functions might be
(cf. 5.4.):

'REAL' 'PROCEDURE' ABS (E)., 'VALUE' E., 'REAL' E.,
ABS.= 'IF'E'NOTLESS'O'THEN'E'ELSE 1 -E.,

1INTEGER11 PROCEDURE 1SIGN(E)., 1VALUE 1E., 'REAL'E.,
SIGN. ='IF'E' GREATER'O'THEN'+l

etc.

I ELSE' 'IF' E 1 EQUAL' O'THEN' 0
'ELSE' -1.,

1 REAL" PROCEDURE' SQRT(E). , 'VALUE' E. , REAL' E. ,
<procedure body>. ,

'REAL"PROCEDURE'SIN(E)., 'VALUE'E., 'REAL'E.,
<procedure body>. ,

3. 2. 4. 2. Transfer Function

A further standard function is the transfer function

ENTIER (E),

which "transfers" an expression of real type to one of integer type, and assigns
to it the value which is the largest integer not greater than the value of E.

Notes: The assumed implicit declaration of ENTIER might be:

'INTEGER"PROCEDURE'ENTIER(E)., 'VALUE'E., 'REAL'E., 'CODE'

Examples

ENTIER (2. 9) 2
ENTIER (- 2. 9) -3
ENTIER (5. 0) 5
ENTIER (0. 0) 0

3.2.4.3. Length of a String

Finally there exists the standard function

LENGTH(S)

which operates on a string argument S and yields an 'INTEGER' type value,
namely the number of symbols of the open string enclosed between the outer­
most string quotes of S.

Notes: If the open string is empty, LENGTH yields the value O.
The assumed implicit declaration of LENGTH might be

1INTEGER' 1 PROCEDURE' LENGTH(S)., 1 STRING'S., 1 CODE'

Examples

LENGTH(' (1bABCb1) 1)=5
LENGTH('(' 1 BEGIN' 1) 1)=7
LENGTH(' ('PRICE=5$ 1) 1)=8
LENGTH('(") ')=O
LENGTH('(" ('bb1) 11) 1)=8

21

22

3. 3. Arithmetic Express ions

3.3.l. Syntax

<adding operator> : : = + !· -
<multiplying operator> ::= * ! / ! '/'
<primary> ::=<unsigned number> ! <variable> !

<function designator> ! {<arithmetic expression>)
<factor> ::= <primary> ! <factor> 'POWER' <primary>
<term> ::= <factor> ! <term> >multiplying operator> <factor>
<simple arithmetic expression> :: =<term> !

<adding operator> <term>!
<simple arithmetic expression>
<adding operator> <term>

<if clause> :: ='IF' <Boolean expression>'THEN'
<arithmetic expression> ::=<simple arithmetic expression> !

3.3.2 Examples

<if clause> <simple arithmetic expression> 'ELSE'
<arithmetic expression>

Primaries:

Factors:

Terms:

u
OMEGA
SUM
COS{Y+Z*3)
7. 394 1-8
W(/1+2, 8/)
(A-3/Y+VU'POWER' 8)

u
OMEGA
SUM' POWER' COS{Y +Z*3)
7. 394' -8 1POWER1.W(/I+2, 8/) 'POWER' (A-3/Y+VU' POWER' 8)

u
OMEGA*SUM'POWER' COS(Y+Z*3) /7. 394' -8'POWER1W(/I+2, 8/)

'POWER' {A-3/Y+VU'PO WER' 8)

Simple arithmetic expressions:

U+OMEGA*SUM'POWER'COS(Y+Z*3)/7. 3941-8 1POWER1

W(/1+2, 8/) 'POWER' (A-3/Y+VU' POWER' 8)
-5.0

Arithmetic expressions:

W*U-Q(s+CU) I POWER' 2
'IF~Q' GREATER'O'THEN'S+3*P /A' ELSE' 2*S+3*Q
'IF'A 'LESS'O' THEN1U+V 1ELSE 11 IF 1A*B 1GREATER117

'THEN'U/V'ELSE''IF'K'NOT EQUAL'Y'THEN'V /U'ELSE'O
A*SIN(OMEGA*T)
0. 57'12* A(/N*(N-1) /2, O/)
(A* ARCTAN(Y)+Z)' POWER' (7+Q)
'IF'Q'THEN'N-l'ELSE'N
'IF'A'LESS'O'THEN'A/B'ELSE''IF'B'EQUAL'O

1THEN1 B/A1ELSE 1 Z
Note: The examples of primaries, factors, terms are the constituents of the
first example of a simple arithmetic expression and demonstrate the successive
construction of simple arithmetic expressions.

Examples of incorrect arithmetic expressions:

(A+3' 5' POWER' (N+ 1)

-3*-5

(A+B)'POWER'-0.5

X+ Y +('IF' A' EQUAL' 01 THEN'1)

X+'IF'A'EQUAL'O'THEN'l'ELSE'O

3.3.3. Semantics

(right parenthesis missing)

(-5 is not a factor)

(exponent is not a primary)

(alternative missing)

(second summand is not a
term, parentheses missing)

An arithmetic expression is a rule for computing a numerical value (cf. 2. 8.). In
case of simple arithmetic expressions this value is obtained by executrng the indicated
arithmetic operations on the actual numerical values of the primaries of the expression,
as explained in detail in section 3. 3. 4. below. The actual numerical value of a primary
is obvious in the case of numbers (cf. 2. 5.). For variables it is the current value
(assigned last in the dynamic sense (cf 4. 2.)), and for function rlesignators it is the
value arising from the computing rules defining the procedure (cf. 5 . 4. 4. Values of
Function Designators) when applied to the current values of the procedure para-
meters given in the expression. Finally, for arithmetic expressions enclosed in
parentheses the value must through a recursive analysis be expressed in terms of
the values of primaries of the other three kinds.

23

24

In the more general arithmetic expressions, which include if clauses, one out of
several simple arithmetic expressions is selected on the basis of the actual
values of Boolean expressions (cf. 3. 4.). In this case, according to the syntax,
the form of the arithmetic expression is

'IF'B'THEN'Al 'ELSE'A2

where Bis a Boolean expression, Al a simple arithmetic expression and A2
an arithmetic expression. The selection of a simple arithmetic expression is
made as follows: The Boolean expression B is evaluated; if it has the value
'TRUE' then the value of the whole expression (i.e. of 'IF'B'THEN'Al'ELSE'
A2) is the vah~e of the first (simple) arithmetic expression Al; if B has the value
'FALSE' then the value of the whole expression is the value of the second arithmetic
expression A2, which has to be evaluated by a recursive analysis in the same way
if it is not a simple arithmetic expression.

Example. The last correct example of section 3. 3. 2 is an arithmetic expression
whose value is the value of one of the three simple arithmetic expressions
A/B, B/ A, Z depending on the current values of the Boolean expressions A' LESS'
0, B' LESS' Or namely:

3.3.4.

if A < 0, then the value of A/B is selected,
if A .2:_ 0 and B = 0, then the value B/ A is selected,
if A .2:_ 0 and B ~o. then the value of Z is selected.

Operators and Types

Apart from the Boolean expressions of if clauses, the constituents of simple
arithmetic expressions must be of types 'REAL' or 'INTEGER' (cf. section 5.1.
Type Declarations). The meaning of the basic operators and the types of the
expressions to which they lead, are given by a set of rules, given in sections
3.3.4.J to 3.3.4.3. below. However, if the type of an arithmetic expression
according to the rules cannot be determined without evaluating an expre~sion or
ascertaining the type or value of an actual parameter, it is 'REAL'.

Examples. Assume I and J of type 'INTEGER' and A of type 'REAL'. Then the
values of the expressions

l' POWER' J (without regard to the sign of J),
1IF1 B'THEN1J 1ELSE 1A (without regard to the value of B)

are of type ' REAL'.

3. 3. 4.1. The operators+ , - , and * have the conventional meaning (addition,
subtraction, and multiplication). The type of the expression will be 'INTEGER'
if both of the operands are of 'INTEGER' type, otherwise 'REAL'.

3. 3. 4. 2. The operations <terms> I <factor> and <term> '/' <factor> both
denote division, to be understood as a multiplication of the term by the
reciprocal of the factor with due regard to the rules of precedence (cf.. section
3. 3. 5.).

Thus for example

a/b*7 /(p-q)*v /s

means

-1 -1 -1
((((a*(b))*7)*((p-q)))*v)*(s)

The operator I is defined for all four combinations of types 'REAL' and 'INTEGER'
and wi.11 yield results of 1 REAL' type in any case. The operator 1 /' is defined only
for two operands both of type 'INTEGER' and will yield a result of type 'INTEGER'
mathematically defined as follows:

A'/' B=SIGN(A/B) *ENTIER(ABS(A/B))

(cf.. section 3. 2. 4.).

Examples

101 / 15 = 2,
9'/'5 = 1,
(-9) 1 / 15 = -1,
91 /' (-5) = - 1.

3. 3. 4. 3 The operation <factor> 'POWER' <primary> denotes exponentiation,
where the factor is the base and the primary is the exponent. Thus, for example,

while

21 POWER1N1 POWER'K
NK

means (2)

2'POWER1 (N1POWER'M) means 2(NM).

The resulting value is of type 'INTEGER' if the base is of type 'INTEGER' and the
exponent is an unsigend integer (c: f. 2.5.) (e.g.3'POWER'7, I'POWER'O, (I+J) 'POWER'5

25

26

but not l'POWE~'J or I' POWER' (3+0), where I, J are variables of type 'INTEGER').
In all other cases i.t is of type 'REAL'. Besides this rule concerning the type, the
numerical value of

B'POWER'E

is given by the rules stated in the following tables:

3.3.5.

E of type 'INTEGER':

conditions

E>O
E=O, B~O
E::_O, B=O
E<O, B~O

E of type 1 REAL':

conditions

B>O
B=O,E>O
B=O, E::_O
B<O

Precedence of Operators

result

B*B* ••• *B (E times)
1
undefined
l/(B*B* ••• *B) (the denominator has

-E factors)

result

EXP(E*LN(B))
0
undefined
undefined

The sequence of operations within one expression is generally from left to right, with
the following additional rules:

3.3.5.l. According to the syntax given in section 3.3.l. the following rules of
precedence hold:

first:
second:
third:

'POWER'
*, /, '/'
+,-

3. 3. 5. 2. The expression between a left parenthesis and the matching right para­
thesis is evaluated by itself and this value is used in subsequent calculations. Con­
sequently the desired order of execution of operations within an expression can
always be arranged by appropriate positioning of parentheses.

Examples.

A/B*C means
-X'POWER'Y means
-3'POWER1 0. 5 means
-9 1 / 1 5 means
(-9) 1 / 15 means

3. 4. Boolean Expressions

3. 4.1. Syntax

(A/B)*C
-(X'POWER'Y)
-(3 1 POWER' O. 5)
-(9 1

/
1 5)

(-9) 1 / 1 5

<relational operator> ::= 1 LESS' ! 1NOTGREATER' ! 'EQUAL' !
'NOTLESS' L 'GREATER' L 'NOTEQUAL'

<relation> ::= <simple arithmetic expression>
<relational operator> <simple arithmetic expression>

<Boolean primary> : := <logical value> ! <variable> l
<function designator> ! <relation> L {<Boolean expression>)

<Boolean secondary> ::= <Boolean primary> ! 'NOT' <Boolean primary>
<Boolean factor> ::=<Boolean secondary>!

<Boolean factor> 1 AND' <Boolean secondary>
<Boolean term> ::= <Boolean factor> ! <Boolean term>

'OR' <Boolean factor>
<implication> ::= <Boolean term> ! <implication> 'IMPL' <Boolean term>
<simple Boolean> ::=<implication> !

<simple Boolean> 'EQUIV' <implication>
<Boolean expression> ::= <simple Boolean> !

3.4. 2. Examples

x'EQUAL'-2

<if clause> <simple Boolean> 'ELSE'
<Boolean expression>

Y'GREATER'V'OR' Z1 LESS'Q
A+B1G:REATER1 -51AND1 Z-D'GREATER'Q'POWER12
P' AND'Q' OR' X' NOTEQUAL'Y
Q1EQUIV''NOT1 A'AND' B' AND11 NOT1 C'OR'D'OR' E 1IMPL11 NOT'F
'IF'K' LESS1l'THEN1 S' GREATER'W'ELSE 1H1NOTGREATER1 C
'IF11 1F11 IF1A'THEN'B'ELSE1 C'THEN1D1 ELSE'F'THEN1G1ELSE1H1 LESS1K

27

28

The following example of a Boolean expression is incorrect because a relation may
contain only simple arithmetic expressions:

'IF' B'THEN' O'ELSE'l' LESS'N

To be correct it has to be written:

('IF' B' THEN' 01ELSE'11) 1 LESS' N

3.4.3. Semantics

A Boolean expression is a rule for computing a logical value (cf. 2. 8.). The
principles of evaluation are entirely analogous to those given for arithmetic
expressions in section 3. 3. 3.

3.4.4. Types

Variables and function designators entered as Boolean primaries must be declared
'BOOLEAN' (cf. section 5.1. Type Declarations and section 5.4.4. Values of Function
Designators) .

3.4.5. The Op er ato rs

Relations take on the value 'TRUE' whenever the corresponding relation is
satisfied for the actual values of the expressions involved (cf. 3. 3. 3.), otherwise
'FALSE'.

Examples. The value of

5'EQUAL'3
41EQUAL'4. 01 0
N+l 'LESS' 0

is
is
is

'FALSE'
'TRUE'
'TRUE', if, for example, the current

value of N is - 5. 25.

Note: If the values of the two arithmetic expressions involved are of different type,
they are both converted to type 'REAL' before evaluating the relation.

The meaning of the logical operators 'NOT', 1 AND', 'OR', '·IMPL' (implies) and
'EQUIV' (equivalent) is given by the following function table.

Bl 'FALSE'
B2 'FALSE'

'NOT'Bl 'TRUE'
Bl 1AND'B2 'FALSE'
Bl'OR'B2 'FALSE'
Bl1IMPL'B2 'TRUE'
Bl' EQUIV' B2 'TRUE'

Examples

31 LESS'0'0R'4GREATER1 0

X' LESS'l' AND'X'NOTLESS'l

X' LESS' 11 OR'X' NOT LESS' 1

1TRUE''0R'B

'FALSE''AND'B

A'AND''NOT'A

A' OR" NOT' A

'FALSE'
'TRUE'

'TRUE'
'FALSE'
'TRUE'
'TRUE'
'FALSE'

3.4.6. Precedence of Operators

'TRUE' 'TRUE'
'FALSE' 'TRUE'

'FALSE' 'FALSE'
'FALSE' 'TRUE'
'TRUE' 'TRUE'
'FALSE' 'TRUE'
'FALSE' 'TRUE'

has the value 'TRUE'

has always the value 'FALSE'

has always the value 'TRUE'

has always the value 'TRUE'

has always the value 'FALSE'

has always the value 'FALSE'

has always the value 'TRUE'

The sequence of operations within one expression is generally from left to
right, with the following additional rules:

3. 4. 6.1. According to the syntax given in section 3. 4.1. the following rules
of precedence hold:

first:
second:

third:
fourth:
fifth:
sixth:
seventh:

arithmetic expression according to section 3. 3. 5.
'LESS', 1NOTGREATER', 'EQUAL', 1NOTLESS1 , 'GREATER',
'NOTEQUAL'
'NOT'
'AND'
'OR'
'IMPL'
'EQUIV'

29

30

3.4.6. 2. The use of parentheses will be interpreted in the sense given in
section 3. 3. 5. 2.

Examples. The second, third, fourth and seventh example of section 3. 4. 2 are
to be interpreted as follows:

(Y 1GREATER'V)'OR1(Z'LESS'Q),

((A+B)'GREATER'(-5)) 1AND'((Z-D) 1GREATER'(Q1 POWER '2)).

(P1AND1Q)'OR1(X'NOTEQUAL'Y),

'IF'('IF'('IF' A1THEN1B1 ELSE 1 C) 1THEN'D'ELSE'F)
I THEN' G'E LSE I (H' LESS' K).

Assuming that in the fourth example, the variables have the values:

P='TRUE', Q=1FALSE1 , X=-5. 71+4, Y=O,

then P' AND'Q has the value 'FALSE', the relationX' NOTEQU AL' Y has the
value 'TRUE' and the whole expression has the value of 1FALSE"0R"TRUE1 ,

i.e. the valile 'TRUE'.

3. 5, Designational Expressions

3, 5.1. Syntax

<label> : := <identifier>
<switch identifier> : := <identifier>
<switch designator> ::=<switch identifier> (/<subscript expression>,1
<simple designational expression> : := <label> ! <switch designator>

(<designational express ion>)
<designational expression>::= <simple designational expression> !

3. 5, 2. Examples

P9
CHOOSE (/N-1,1

<if clause> <simple designational expression>
1 ELSE' <designational expression>

TOWN(/'IF'Y' LESS'O' THEN'N'ELSE'N+l,1
'IF 1 AB' LESS' C'THEN' P' E LSE1Q(/1 IF'W'NOTGREATER' O'THEN'

21ELSE1N,1

3.5.3. Semantics

A designational expression is a rule for obtaining a label of a statement (cf. section
4. Statements). Again the principle of the evaluation is entirely analogous to that
of arithmetic expressions (section 3. 3. 3). In the general case the Boolean expressions
of the if clauses will select a simple designational expression. If this is a label the
desired result is already found. A switch designator refers to the corresponding switch
declaration (cf. section 5. 3. Switch Declarations) and by the actual numerical value
of its subscript expression selects one of the designational expressions listed in
the switch declarat.ion by counting these from left to right. Since the designational
expressions thus selected may again be a switch designator this evaluation is
obviously a recursive process.

3.5.4. The Subscript Expression

The evaluation of the subscript expression is analogous to that of subscripted
variables (cf. section 3.1. 4. 2). The value of a switch designator is defined only
if the subscript expression assumes one of the positive values 1, 2, 3 .•. , n, where
n is the number of entries in the switch list (cf. 5. 3.).

Examples. The value of the first example of section 3. 5. 2. simply is the label P9.

The value of the second example is the value of the (N-l)st designational expression
of the switch list in the declaration of the switch CHOOSE. If, for example, at the
time the designational expression is to be evaluated, N has the value 2. 2, then N-1
has to be transferred to the 'INTEGER' type value 1 and therefore the value of the
designational expression is the value of the first designational expression within
the switch list of CHOOSE.

The last example is to be interpreted as

'IF1(AB'LESS'C)'THEN'P1ELSE'Q(/1IF'(W1NOTGREATER1 0) 1THEN1 2
1ELSE 1N/)

Assuming AB=O, C=l, then the value of this expression is the label P: but, asswning
AB=O, C=O, then the value of the expression depends on the values of W and N. If
W=4, N=5. 2, then the fifth designational expression of the switch list of Q is to be
evaluated.

31

32

4. STATEMENTS

The units of operation within the language are called statements. They will normally
be executed consecutively as written. However, this sequence of operations may
be broken by goto statements, which define their successor explicitely, and
shortened by conditional statements, which may cause certain statements to be
skipped.

In order to make it possible to define a specific dynamic succession, statements
may be provided with labels.

Since sequences of statements may be grouped together into compound
statements and blocks, the definition of statement must necessarily be recursive.
Also since declarations, described in section 5, enter fundamentally into the
syntactic structure, the syntactic definition of statements must suppose declarations
to be already defined.

4.1. Compound Statements and Blocks

4.1.1. Syntax

<unlabelled basic statement> ::= <assignment statement> !
<goto statement> ! <dummy statement>
<procedure statement>

<basic statement> ::=<unlabelled basic statement> !
<label> • • <basic statement>

<unconditional statement> ::= <basic statement> !
<compound statement> ! <block>

<statement> ::=<unconditional statement> !
<conditional statement> ! <for statement>

<compound tail> ::=<statement> 'END' !
<statement>., <compound tail>

<block head> ::='BEGIN' <declaration> !
<block head> • , <declaration>

<unlabelled compound> ::='BEGIN' <compound tail>
<unlabelled blocK..> ::= <blocK head>., <compound tail>
<compound statement> ::=<unlabelled compound> !

<label> • • >compound statement>
<block> ::= <unlabelled block> ! <label> •• <block>
<program> ::= <block> ! <compound statement>

This syntax may be illustrated as follows: Denoting arbitrary statements,
declarations, and labels, by the letters S, D, and L, respectively, the basic
syntactic units take the forms:

Compound statement:

L •• L •••• •'BEGIN'S., S., ••• S., S1END'

Block:

L •• L •••.•• 1BEGIN'D., D., ••• D., S., S., ••• S., S1END'

It should be kept in mind that each of the statements Smay again be compound
statement or block.

4.1.2 Examples

Basic statements:

A.=P+Q
1 GOTO' NAP LES
ST ART •• CONTINUE •• W. =7. 993

Compound statement:

Block:

4 BEGIN1X. =O., 'FOR'Y. = l'STEP1l'UNTIL'N1D01

X. =X+A(/Y/).,
1IF1X1GREATER1Q1THEN11 GOTO' STOP
1ELSE''IF1X1GREATER'W-21THEN' 1GOTO!S.,
AW •• ST •• W. = X + BOB1 END1

Q •• 1BEGIN' 1INTEGER11, K., 'REAL'W.,
I FOR'I. = l'STEP1l'UNTIL'M1D01

'FOR'K. =l+l'STEP111 UNTIL'M 1D0'
1 BEGIN'W. = A(/I, K/).,

A(/I, K/). = A(/K, I/). ,
A(/K, I/). = W1END1 FOR I AND K

1 END' BLOCKQ

33

34

4.1.3. Semantics

The definitions of compound statement and block allow a sequence of statements
to be grouped within the statement brackets 'BEGIN' and 'END' and handled as
one statement. A compound statement or a block may appear in any syntactical context
where a statement is permitted. Thus, by means of a compound statement or
block, any actions to be executed on a statement (e. g. by for statements or
conditional statements) can also be executed on sequences of statements.

Additionally, every block automatically introduces a new level of nomenclature.
This is realized as follows: Any identifier occurring within the block may through
a suitable declaration (c. f. section 5. Declarations) be specified to be local to the
block in question. This means (a) that the entity represented by this identifier in­
side the block has no existence outside it , and (b) that any entity .represented by
this identifier outside the block is completely inaccessible inside the block.

Identifiers (except those representing labels) occurring within a block and not being
declared to this block will be nonlocal to it, i. e., will represent the same entity
inside the block and in the level immediately outside it. A label separated by .
from a statement, i. e., labelling that statement, behaves as though declared
in the head of the smallest embracing block, i. e., the smallest block whose
brackets 1 BEGIN' and 'END' enclose that statement. In this context, a procedure
body or a program must be considered as if it were enclosed by 'BEGIN' and
'END' and treated as a block.

Since a statement of a block may again itself be a block the concepts local and
nonlocal to a block must be understood recursively. Thus an identifier, which is
nonlocal to a block A, may or may not be nonlocal to the block B in which A is one
statement.

Examples. The following example

'BEGIN' 1 REAL' A, B, C.,

D ••

1BEGIN''INTEGER1A, E.,

'BEGIN' A. =B.,

c ..
'END'

'END'
'END'

consists of two nested blocks, the inner one containing a compound statement.
There are declared, explicitly or by occurrence as labels, the following
seven identifiers: two 'REAL' type variables A and C whose scope is the outer
block except the inner block, a 'REAE type variable B and a label D whose
scope is the whole outer block including the inner one, two 'INTEGER' type
variables A and E and a label C whose scope is only the inner block. It should
be noted that the scope of the label C, which occurs within the compound state­
ment included by the innermost statement brackets 'BE GIN' and 'END', is not
restricted to this compound statement, but 1.s the whole inner block.

In the example

'PROCEDURE'P(X)., 1REAL'X.,
L .. 'IF'X'GREATER'l

'THEN"BEGIN'X. =X-1., 'GOT01L'END1

1ELSE11 1F'X' LESS1 0
1THEN11 BEGIN'X.=X+l., 'GOTO 1 L'END1

the scope of the label L is the procedure body, though there is no explicit block.
A similar rule concerns a label labelling a whole program.

4. 2. Assignment Statements

4. 2.1. Syntax

<left part> ::= <variable> • = ! <procedure identifier> . =
<left part list> : := <left part> ! <left part list> <left part>
<assignment statement> ::= <left part list> <arithmetic expression>

4. 2. 2.

<left part list> <Boolean expression>

Examples

S. = P(/O/). = N. = N+l+S
N. =N+l
A. = B/C-V-Q*S
S(/V, K+2/)~3-ARCTAN(S*ZETA)
V. =Q'GREATER'Y'AND'Z

The following are incorrect assignment statements:

35

36

A+B.=C
'TRUE'. =U'OR'V
F(X).=X+l
X(/5/). =A+U'OR'V

4.2.3. Semantics

(left part is an expression)
(left part is not a variable)
(left part is a function designator)
(right part is neither arithmetic nor Boolean)

Assignment statements serve for assigning the value of an expression to one or
several variables or procedure identifiers. Assignment to a procedure identifier
may only occur within the body of the procedure defining the value of a function
designator (cf. section 5. 4. 4.) . The process will in the general case be under­
stood to take place in three steps as follows:

4. 2. 3.1. Any subscript expressions occurring in the left part variables are
evaluated in sequence from left to right (cf. 3 .1. 4.).

4.2.3.2. The expression of the statement is evaluated.

4. 2. 3. 3. The value of the expression is assigned to all the left part variables,
with any subscript expressions having values as evaluated in step 4. 2. 3.1.

4.2.4 Types

The type associated with all variables and procedure identifiers of a left part
list must be the same. If this type is 'BOOLEAN', the expression must likewise
be 'BOOLEAN'. If the type is 'REAL' or 'INTEGER', the expression must be
arithmetic. If the type of the arithmetic expression differs from that associated
with the variables and procedure identifiers, appropriate transfer functions are
automatically invoked. For transfer from 'REAL' to 'INTEGE.R' type, the transfer
function is understood to yield a result equivalent to

ENTIER (E+O. 5)

where E is the value of the expression. The type associated with a procedure
identifier is given by the declarator which appears as the first symbol of the
corresponding procedure declaration (c f. section 5. 4. 4.).

Examples. Assume Bis declared 'BOOLEAN', l,J,K, L,M are declared 'INTEGER',
X, Y are declared 'REAL' and A is declared to be an 'INTEGER' type array. Then the
following assignment statements are incorrect:

B.=X+J
X.=B
X. =I. =Y+J

(wrong type of left part)
(wrong type of left part)
(different types of left parts).

The assignment statements

I. =l. 8., J. =-1. 8., K. =I. 5., L. =-1. fi., M. =I. 2.,

assign the values 2, -2, 2, -1, 1 to the variables I, J, K, L, M. If I has the value 2
then either of the following statements

or
I. =A(/I/). =l+l. 5

A(/I/). =I. =I+ 1. 5

assigns the value 4 both to I and A(/2/), but does not influence the value of A(/4/).

4. 3. Goto Statements

4. 3.1. Syntax

<goto statement> ::= 'GOTO' <designational expression>

4.3. 2. Examples

1 GOT01 P9
1 GOTO' CHOOSE(/N -1/)
1 GOT01TOWN(/'IF'Y' LESS1 01THEN'N'ELSE 1N+l/)
1GOT011 1F1AB1 LESS'C'THEN1B1 ELSE 1Q(/'IF'W'LESS1 0

1THEN'21 ELSE' N /)

4.3.3. Semantics

A goto statement interrupts the normal sequence of operations, defined by the
write-up of statements, by defining its successor explicitly by the value of
a designational expression (cf. 3. 5.). Thus the next statement to be executed
will be the one having this value as its label. The action· of a goto statement
is defined only if the value of the designational expression is defined by the rules
of section 3. 5.

37

38

4. 3. 4. Restriction

Since labels are inherently local, no goto statement can lead from outside into
a block or a procedure body. A goto statement may, however, lead from out­
side into a compound statement (cf. 4.1. 3.).

Note: Concerning the additional action of a goto statement leaving a block
see section 5.

Examples. The four statements of section 4. 3. 2. define the statements
labelled by the values determined by the examples of section 3. 5. 2. to be
their successors.

4. 4. Dummy Statements

4. 4.1. Syntax

<dummy statement> ::= <empty>

4. 4. 2. Examples

L ••
I BEGIN' •••• ' JOHN •• I END'

4. 4. 3. Semantics

A dummy statement executes no operation. It may serve to place a label (especially
before the delimiter 'END').

4.5. Conditional Statements

4. 5.1. Syntax

<if clause> ::='IF' <Boolean expression> 'THEN'
<unconditional statement> ::=<basic statement> !

<compound statement> ! <block>
<if statement> ::=<if clause> <unconditional statement>
<conditional statement> ::=<if statement> ! <if statement> 'ELSE'

<statement> ! <if clause> <for statement>
<label> •• <conditional statement>

4. 5. 2. Examples

'IF1X 1GREATER' O'THEN'N. =N+l

'IF1V1GREATER'U1THEN1A .• Q.=N+M'ELSE 11 GOT01R

'IF'S' LESS1010R1P 1NOTGREATER1Q1THEN1

AA •• 1 BEGIN' 'IF'Ql' LESS1V1 THEN' A. =V /S
1ELSE'Y.=2*A' END'

1ELSE"IF1V'GREATER1S1THEN' A. =V-Ql
1ELSE''IF'V'GREATER1S-11THEN''G0T01Sl

Note: The following example is incorrect because the first 'THEN' is followed
by a conditional statement:

1IF1A1 LESS1B1THEN11 IF1A1 LESS'C'THEN1A. =B-C 1ELSE 1A, = C-B

The restriction that the statement following 'THEN' must be an unconditional
statement, while the statement following 'ELSE' may be an arbitrary state-
ment is necessary in order to avoid ambiguity. If a conditional statement follows
the delimiter 'THEN' it cannot be detr:~rmined to which of the nested if clauses

the delimiter 'ELSE' corresponds. (In the above example, the delimiter 'ELSE'
could correspond to the•first or to the second 'THEN'). This ambiguity is avoided
by enclosing the statement following the first 'THEN' by the brackets 'BEGIN' and
'END' and so forming an unconditional statement.
A similar ambiguity arises by the following example (cf. 4. 6.):

1IF1 Bl1THEN''FOR'I. =l'STEP'l'UNTIL'N1D01

'IF'B2 1THEN.1 A {/I/). =B(/I/)'ELSE'A(/I/). =O

To avoid the ambiguity as to which if clause the delimiter 'ELSE' corresponds,
a for statement following 'THEN' must not be followed by an 'ELSE'r therefore
a delimiter 'ELSE' corresponds always to an if clause within the for statement.
If the for statement is to be followed by 'ELSE', the for statement must be en­
closed in the brackets 'BEGIN' and 'END'.

4. 5. 3. Semantics

Conditional statements cause certain statements to be executed or skipped de­
pendin{~ on the running values of specified Boolean expressions.

According to the syntax, three different forms of conditional statements are possible
(regarding a labelled conditional statement as belonging to one of the three other
cases). These forms may be illustrated as follows:

39

40

(1) 'IF'B'THEN'SU., SN

(2) 'IF'B'THEN1SF., SN

(3) 'IF'B'THEN'SU'ELSE1S., SN

Here Bis a Boolean expression, SU an unconditional statement, SF a for
statement, S an arbitrary statement and SN the next statement following the
complete conditional statement.

In all three forms, the Boolean expression B is evaluated. If its value is 'TRUE'
the statement following the 'THEN' (i.e. SU or SF) is executed. Unless this
statement explicitly defines its successor (i. e. by a goto statement, cf. 4.3.), the
next statement executed will be SN (thus skipping the statement S following the
'ELSE' in form 3).

If the value of the Boolean expression is 'FALSE', then in the first two forms
the statement SU or SF following the 1 THEN' is skipped, and SN is the
next statement executed. In form 3, if the value of the Boolean expression is
'FALSE' the statement SU following the 'THEN' is skipped and the statement
S following the 'ELSE' is executed instead. Since this statement again may be
a conditional statement, this process might be applied recursively.

For further explanation the following diagram might be useful:

~rue---i yue~ 1
1IF'Bl'THEN'Sl'ELSE11 IF1 B21THEN'S21ELSE'S3., S4

I l
false false------.....

Note: Effectively, in any case the delimiter 'ELSE' defines that the successor
of the statement, to which the delimiter 1 ELSE' follows, is the statement following
the complete conditional statement.

Example. The third example of section 4. 5. 2. has the following effect:

S' LESS' 0'0R' P'NOTGREATER'Q

is evaluated according to the rules of section 3.4. If the value is 'TRUE' then the
compound statement

'BEGIN' 'IF1Ql' LESS1V1 THEN' A.= V /S
'ELSE'Y. =2*A'END'

is executed; i. e., the relation Ql' LESS'V is evaluated; and, if its value is 'TRUE',
the assignment statement A. =V /S is executed; if its value is 'FALSE', the assign­
ment statement Y. =2* A is ez:ecuted. After that the rest of the complete conditional

statement is skipped.

If the value of the first Boolean expression is 'FALSE', then the compound state­
ment is skipped and the statement following the first 'ELSE', i. e.

'IF'V'GREATER'S'THEN' A. =V-Ql
'ELSE''IF'V'GREATER'S-l'THEN''GOTO'Sl

is executed. This means that if the value of V1 GREATER1S is 'TRUE', the assign­
ment statement A. =V -QI is executed and the rest of the conditional statement is
skipped. If the value of V'GREATER'S is 'FALSE', the assignment statement
A. =V-Ql is skipped and the statement 'IF'V'GREATER'S-l'THEN"GOTO'Sl is
executed, i. e. the relation V'GREATER'S-1 evaluated and then the statement
GOTO'S! executed if the value is 'TRUE' or skipped if it is 'FALSE'.

4.5.4. Goto into a Conditional Statement

The effect of a goto statement leading into a conditional statement follows direct­
ly from the effect of 'ELSE' as explained in the note in section 4. 5. 3. The state-

, ment designated by the goto statement and its successors are executed until meeting
an 'ELSE'. This 'ELSE' then effects the skipping of the rest of the conditional
statement to which it belongs.

Example. If a goto statement leads to the label AA in the third example of
section 4. 5. 2., the compound statement labelled by AA will be executed. The
'ELSE' following that compound statement causes the rest of the complete
conditional statement to be skipped, and its successor to be executed next, just
as if the compound statement had been entered because the preceding condition,
S1 LESS 1 010R'P'NOTGREATER'Q, was 'TRUE'.

4. 6. For Statements

4. 6.1. Syntax

<for list element> ::= <arithmetic expression> !
<arithmetix expression> 'STEP' <arithmetic expression>

'UNTIL' <arithmetic expression> .
<arithmetic expression> 'WHILE' <Boolean expression>

<for list> ::= <for list element> ! <for list>, <for list element>
<for clause> ::= 1 FOR' <variable> . =<for list> 'DO'
<for statement> ::= <for clause> <statement> !

<lab el> .. <for statement>

41

42

4. 6. 2. Examples

1 FOR1I.=O, 1, -l'D01A(/I/).=2*I
I FOR1Q. =l'STEP' S1UNTIL1 N1D01 A(/Q/. =B(/Q)
I FOR'K. =l, K*21WHILE 1K1 LESS1 N'D01

1 FOR1J. =I+G, L, l'STEP• 'UNTIL'N, 2*K'D01

A(/K, J /). =B(/K, J /)

4. 6. 3. Semantics

A for clause causes the statement S which it precedes to be repeatedly executed. In
addition it performs a sequence of assignments to its controlled variable, i." e. the
variable following the delimiter 1 FOR'. The process may be visualized by means of
the following diagram:

Initialize; test statement S advance successor

L_
for the list exhausted

1'

In this picture the word initialize means: perform the first assignment of the for
clause. Advance means: perform the next assignment of the for clause. Test
determines if the last assignment has been done. If so, the execution continues
with the successor of the for statement. If not, the statement following the for
clause is executed.

Note: The case may occur, too, that the first test, immediately following
initialize, determines that the last assignment has already been done and the
execution is to continue with the successor of the for statement. In this case
the statement S is not executed at all.

4.6.4. The For List Elements

The for list gives a rule for obtaining the values which are consecutively assigned
to the controlled variable. This sequence of values is obtained from the for list
elements by taldng these one by one in the order in which they are written. The
sequence of values generated by each of the three species of for list elements
and the corresponding execution of the statement S are given by the following
rules:

4. 6. 4.1. Arithmetic Expression. A for list element which is an arithmetic
expression E gives rise to one value to be assigned. The execution may be des­
cribed in terms of additional ALGOL statements as follows:

V.=E.,
statement S.,
1GOT01 ELEMENT EXHAUSTED.,

where Vis the controlled variable of the for clause and ELEMENT EXHAUSTED
points to the action according to the next element in the for list, or, if the ele­
ment just handled is the last of the for list, to the next statement in the pro­
gram.

Example. The first example of section 4. 6. 2. is equivalent to the following
sequence of statements:

I. = 0 .. A(/ I/) . = 2 *I. ,
I. = 1., A(/I/). = 2*I. ,
I. == 1., A(/I/). = 2*I

4. 6. 4. 2. Step-until-element. An element of the form A'STEP'B'UNTIL'C
where A, B, and C are arithmetic expressions, gives rise to an execution which
may be described most concisely in terms of additional ALGOL statements as
follows:

'BEGIN' 'REAL' STEP, TESTVALUE.,
V.=A.,
STEP. =B., TESTVALUE. =C.,

L2 •• 1IF1(V-TESTVALUE)*SIGN (STEP) 'GREATER' 0
1THEN1 1GOT01 ELEMENT EXHAUSTED.,

statement S. ,

1END1

STEP. =B., TESTVALUE. =C.,
V. =V+STEP.,
1GOTO'L2

where the notation of V and ELEMENT EXHAUSTED is the same as in section
4. 6. 4.1. above; STEP and TESTV ALUE are auxiliary introduced variables
whose names have to be changed suitably if there is any conflict with another
identifier STEP or TESTVALUE occurtng in the for statement.

Examples. Assumtng that S=2 and N=5 when entering the for statement of the
second example of section 4. 6. 2, this statement is equivalent to:

43

44

Q. :o 1., A(/Q/)=B(/Q/).,
Q. =3., A(/Q/). =B(/Q/).,
Q. =5., A(/Q/). =B(/Q/)

If S=-1 and N=-1. 5, then the statement is equivalent to:

Q. =l., A(/Q/). =B(/Q/).,
Q. =O., A(/Q/). =B(/Q/).,
Q. =-1., A(/Q/). =B(/Q/).,

Finally, if S=l and N=O, the whole for statement would be skipped.

4. 6. 4. 3. While-element. The execution governed by a for list element of the
form E'WHILE' F, where E is an arithmetic and F a Boolean expression, is
most concisely described in terms of additional ALGOL statements as follows:

L3., V.=E.,
1IF11 NOT'F'THEN11 GOT0 1ELEMENT EXHAUSTED.,
statement S. ,

1GOT01 L3.,

where the notation is the same as in 4. 6. 4. 1. above.

Example. Assuming N=4. l when entering the for statement of the third example
of section 4. 6. 2., this statement is equivalent to:

K.=l.'
'FOR'J. =I+G, L, l'STEP111UNTIL'4. l, 2*K1D01

A(/K, J /). =B(/K, J /). ,

K.=2.,
'FOR1J. =I+G, L, l'STEP1 l 1UNTIL'4. l, 2*K1D01

A(/K, J /). =B(/K, J /).,

K.=4.,
1 FOR1J. =I+G, L, l'STEP111UNTIL'4. l, 2*K'D0'

A(/K, J /). =B(/K, J /)

Each of these three "inner" for statements is equivalent to:

J. =I+G., A(/K, J /). =B(/K, J /).,

J. =L., A(/K, J/).=B(/K, J/).,

J. =l., A(/K, J /). =B(/K, J/).,

J. =2., A(/K, J /). =B(/K, J/).,

J. =3. , A(/K, J /). =B(/K, J /). ,

J. =4., A(/K, J/). =B(/K, J/).,

J. =2*K., A(/K, J /). =B(/K, J /)

The meaning of the term "controlled variable" in the previous sections is obvious if the
delimiter 1 FOR' is followed by a simple variable: then it is this variable. If, on the
other hand, the delimiter 1 FOR' is followed by a subscripted variable, the identity of
this var:iable is determined by evaluating the subscripts (c f. 3.1.4.) once when
entering the for statement. The variable ~o determined is taken as the controlled
variable throughout the for statement, even if the value of a variable in the sub-
script expressions is altered.

This might be explained by introducing in the following way auxiliary variables as the
subscripts of the controlled variable:
The statement

'FOR' V(/I/). =<for list> 1D01 statement S.,

where I is an arithmetic expression, is to be executed as

'BEGIN' 'INTEGER' SUBSCRIPT.,
SUBSCRIPT. =I. ,
'FOR' V(/SUBSCRIPT/).i::: <for list> 1D01 statement S

1END1

In this connection, the latter for statement is to be executed as explained above in section
4. 6. 4.1 through 4. 6. 4. 3 with the exceptiom. that in these explanations V is to be replaced
by V(/SUBSCRIPT /). If the controlled variable possesses more than one subscript, an
analogous rule is valid. Of course, the id¢ntifiers of the auxiliary variables (SUBSCRIPT)
have to be chosen so that no conflicts with other j.dentifiers arise.

Example. The statements

I. =O
1 FOR1V(/I/). =l' STEP1l'UNTIL' 31001

1BEGIN1I. =1+2., V(/I/). =I'END1

are to be interpreted as:

45

46

4.6.5.

I. =O.,
V(/O/). =l., I. =2., V(/2/). =2.,
vUo/). =2.' I. =4. 'V(/4/). =4.'
V(/O/;. =3., I. =6., V(/6/). =6

The Value of the Controlled Variable upon Exit

Upon exit out of the statement S (supposed to be compound) through a goto statement
the value of the controlled variable will be the same as it was immediately preceding
the execution of the goto statement.

If on the other hand, the exit is due to exhaustion of the for list as described above,
i. e. by one of the above statements 'GOTO' ELEMENT EXHAUSTED, the vaL ue of
the controlled variable is undefined after the exit.

4.6.6. Goto Leading into a For Statement

The effect of a goto statement, outside a for statement, which refers to a label with­
in the for statement, is undefined.

Note: This rule applies even if the goto statement occurs in a procedure body
(cf. 5. 4.) outside the for statement and the procedure is activated inside the
for statement. So, in the following example the effect of the goto statement
during the activation of P within the for statement is undefined:

'BEGIN''PROCEDURE'P., 'BEGIN' ••• 1GOTO'L ••• 'END'.,
1FOR11. =l'STEP111UNTIL'N'D0'

L •• I BEGIN'. • • p ••• I END'
'END'

4. 7. Procq~~ Statements

4. 7. 1. Syntax

<actual parameter> ::= <string> ! <expression> ! <array identifier>
<switch identifier> ! <procedure identifier>

<letter string> : := <letter> ! <letter string > <letter>
<parameter delimiter> ::= , !) <letter string> • • (
<actual parameter list> : := <actual parameter> !

<actual parameter list> <parameter delimiter>
<actual parameter>

<actual parameter part> ::=<empty> !
(<actual parameter list>)

<procedure statement> ::=<procedure identifier>
<actual parameter part>

4. 7. 2. Examples

SPUR(A)ORDER •• (7)RESULT TO •• (V)
TRANSPOSE(W, V+l)
ABSMAX(A, N, M, YY, I, K)
INNEHPRODUCT (A(/T, P, U/), B(/P/), 10, P, Y)

These examples correspond to examples given in section 5.4. 2.

4. 7. 3. Semantics

A procedure statement serves to invoke (can for) the execution of a procedure body
(cf. section 5. 4. Procedure Declarations). An actual parameter part may be
empty or consist of up to 15 actual parameters. Where the procedure body is a state­
ment written in ALGOL the effect of this execution will be equivalent to the effect of
performing the following operations on the program at the time of execution of the
procedure statement:

4. 7. 3.1. Value Assignment (Call by Value)

All formal parameters quoted in the value part of the procedure declaration heading
are assigned the values (cf. section 2. 8. Values and Types) of the corresponding
actual parameters, these assignments being considered as being performed ex­
plicitly before entering the procedure body. The effect is as though an additional
block embracing the procedure body were created in which these quasi-assignments
(cf. following Note) were made to variables, arrays or labels local to the
fictitious block with types as given in the corresponding specifications (cf. section
5. 4. 5.). As a consequence, variables, arrays or labels called by value are to be
considered as nonlocal to the body of the procedure, but local to the fictitious block
(.cf. section 5. 4. 3.).

Note: If the formal parameter called by value is specified as a variable, the
assignment is done as described in section 4. 2. If it is specified as an array, the
assignment is done for each subscripted var:iable of that array as described in
section 4. 2 •• (cf. 4. 7. 5. 3). If it is specified as a label, the formal parameter
is replaced throughout the procedure body by the label resulting as the value of
the actual parameter (cf. 3. 5.) . Possible conflicts between the identifier of this
label and identifiers occurring within the procedure body are handled as described
in section 4. 7. 3. 2.

4. 7. 3. 2. Name Replacement (Call by Name)

Any formal parameter not quoted in the value part is replaced, throughout the
procedure body, by the corresponding actual parameter, after enclosing this
latter in parentheses wherever syntactically possible. Possible conflicts be­
tween identifiers inserted through this process and other identifiers already
present within the procedure body will be avoided by suitable systematic
changes of the formal or local identifiers involved.

47

48

4.7.3.3. Body Replacement and Execution

Finally, the procedure body, modified as above, is inserted in place of the procedure
statement and executed. If the procedure is called from a place outside the scope of
any nonlocal quantity of the procedure body the conflicts between the identifiers in­
serted through this process of body replacement and the identifiers whose declarations
are valid at the place of the procedure statement or function designator will be avoided
through suitable systematic changes of the latter identifiers.

Note: The following five examples demonstrate the application of the rules given in
4.7.3.l. to 4.7.3.3.

'BEGIN11 COMMENT1EXAMPLE1.,
'REAL' A, B.,

1PROCEDURE 1P(X, Y, Z).,'VALUE'Y., 'REAL'Z, Y,X.,
'BEGIN1Z.=X+Y., Y.=X+Z., Z.=X+Y1END1.,

A.=B.=l.,
P(A+B, A, B).,
OUTREAL(l, A)., OUTREAL(l, B).,
P(A+B, A+B, A).,
OUTREAL(l, A)., OUTREAL(l, B)

1END'

This example contains the declarations of a procedure P with three formal para­
meters X, Y, Z specified to correspond to 'REAL' type actual parameters, the
second actual parameter (corresponding to Y) to be called by value. The body of this
procedure declaration is the compound statement

'BEGIN'Z.=X+Y., Y.=X+Y., Z.=X+Y1END1

This procedure is activated twice by the procedure statements

P(A+B, A, B) and P(A+B, A+B, A).

The first of these statements results in the execution of a block consisting of (1) an
assignment statement assigning the value of the second actual parameter A to a lo­
cal variable Y and (2) the procedure body of P in which X is replaced by the first
actual parameter A+ B and Z by the third actual parameter Bo The second procedure
statement results in a similar block. So, this program is executed as:

1BEGIN11 REAL' A, B.,
A.=B. =I.,
'BEGIN"REAL'Y., Y. =A.,

'BEGIN' B. =(A+ B)+ Y., Y. =(A+ B)+ Y., B. =(A+ B)+ Y' END'
'END.,
OUTREALll, A). , OUTREAL(l, B).,
1BEGIN''REAL'Y., Y. =A+B.,

BEGIN' A. =(A+ B)+ Y., Y. =(A+ B)+ y., A. =(A+ B)+ Y' END'
'END'.,
OUTREAL(l, A)., OUTREAL(l, B)

'END'

It writes (cf. 6. 2. 2 . 2) after the first execution of the procedure body the values A=l,
B=9 and after the second execution of the procedure body the values A=68, B=9. If the
second parameter Y of the procedure P had not been specified to be called by value,
then the first activation of P would yield other results (as the following example
demonstrates), while the second activation would be impossible, as Y appears as a
left part variable within the procedure body (cf. 4. 7. 5. 2.) and the actual parameter
A+ B is an expression (not a variable).

'BEGIN"COMMENT1EXAMPLE2.,
'REAL'A, B.,

1PROCEDURE1P(X, Y, Z)., 1REAL'X, Y, Z.,
'BEGIN'Z. =X+Y., Y. =X+Y., Z. =X+Y1END1.,

A. =B. =l.,
P(A+B, A, B).,
OUTREAL(l, A)., OUTREAL(l, B)

1 END1

This program is executed as

1BEGIN''REAL'A, B.,
A.=B. =l.,
1BEGIN1B. =(A+B)+A., A.=· (A+B)+A., B. =(A+B)+A'END1.,

OUTREAL(l, A)., OUTREAL(l, B)
1END1

and writes the values A=5, B=l3.

The following two examples demonstrate the meaning of "suitable systematic changes"
in section 4. 7. 3. 2. and 4. 7. 3. 3.

1BEGIN"COMMEN'.f 1EXAMPLE3.,
1REAL'A .. ,
1PROCEDURE 1B(C)., 'REAL'C.,

'BEGIN11 REAL'A.,

A.=2o,
B(A)

'END'

A.=l.,
C. =A+C1END'.,

This program is executed as

'BEGIN'
1R EAL' Ao,
A.=2.,
'BEGIN''REAV ACHANGED.,
ACHANGED. = 1. ,

A.= ACHANGED+A'END'
'END'

49

50

In the following example a procedure is called within an inner block:

1BEGIN11 COMMENT'EXAMPLE 4.,
'REAL'A.,
'PROCEDURE'G(B)., REAL B.,

B.=A.,

A.=l.,
1BEGIN11 REAL'A, C.,
A.=2.,
G(C)
'END'

'END'

This program is executed as

1BEGIN11 REAL' A.,
A.=l.'
'BEGIN" REAL' ACHANGE D, C.,
ACHANGED. =2
C.=A
'END'

'END'

The last example demonstrates the different actions of a formal parameter specified
as a label if oalled by name or by value.

1 BEGIN11 COMMENT 1EXAMPLE5.,
1INTEGER'N.,

'END'

'SWITCH'S. =Sl, S2, S3, S4, S5.,
1 PROCEDURE1 P(Ll, L2)., 'VALUE'Ll., 1 LABEL'Ll, L2.,

1BEGIN'N;=N+l.,
1IF1N1GREATER'5'THEN11 GOT0' Ll

1ELSE 11 GOT01 L2
'END'.,

N. ==l.,
P(S(/N/), S(/N/)).,

This program is executed as:

4.7.4.

1BEGIN11 INTEGER1N.,

'END'

'SWITCH'S. =Sl, S2, S3, S4, S5.,
N.=l.'

'BEGIN'N.=N+l.,
1IF1N1GREATER151THEN11 GOT01Sl

1 ELSE"GOT0 1S(/N/).,
'END' .,

Actual-Formal Correspondence

The correspondence between the actual parameters of the procedure statement and the
formal parameters of the procedure heading is established as follows: The actual para­
meter list of the procedure statement must have the same number of entries as the
formal parameter list of the procedure declaration heading. The correspondence is
obtained by taking the entries of these two lists in the same order.

4.7.5. Restrictions

For a procedure statement to be defined it is evidently necessary that the operations
on the procedure body defined in sections 4. 7. 3. 1. and 4. 7. 3. 2. lead to a correct
ALGOL statement.

51

52

This imposes the restriction on any procedure statement that the kind and type of each
actual parameter be compatible with the kind and type specified for the corresponding
formal parameter if called by value (cf. 5.4.5). Additionally, the kind and type of
each actual parameter must be the same as that specified for the corresponding for­
mal parameter, if called by name. This correspondence of kind and type of actual
and formal parameters may be illustrated by the following table:

Specification of
Formal Parameter

'STRING'

'REAL'

'INTEGER'

'BOOLEAN'

1ARRAY' or
I REAL' I ARRAY'

1INTEGER11 ARRAY1

I BOOLEAN II ARRAY'

'LABEL'

'SWITCH'

1 PROCEDURE'

I REAL' I PROCEDURE'

1INTEGER11 PROCEDURE 1

'BOOLEAN" PROCEDURE'

Allowed Actual Parameter
If Called by Name If Called by Value

string not allowed

aritlunetic express- any aritlunetic expression
ion of type 'REAL'

arithmetic express- any arithmetic expression
ion of type 'INTEGER

Boolean expression

array identifier
of type 'REAL'

array identifier of
type 'INTEGER'

array identifier of
type 'BOOLEAN'

designational ex­
pression

switch identifier

any procedure
identifier

function procedure
identifier of type
'REAL'

function procedure
identifier of type
'INTEGER'

function procedure
identifier of type
'BOOLEAN'

Boolean expression

array identifier of type
'REAL' or 'INTEGER'

array identifier of type
'REAL' or 'INTEGER'

array identifier of type
'BOOLEAN'

designational expression

not allowed

not allowed

function procedure identifier
of type 'REAL' or 'INTEGER'
(only a procedure with an
empty parameter part)

same as for 'REAL PROCE­
DURE'

function procedure identifier
of type 'BOOLEAN' (only a
procedure with an empty pa­
rameter part)

Some important particular cases of the general rules are the following:

4. 7. 5.1. If a string is supplied as an actual parameter in a procedure statement or
function designator, whose defining procedure body is an ALGOL 60 statement (as
opposed to non-ALGOL code, cf. section 5. 4. 6.), then this string can only be
used within the procedure body as an actual parameter in further procedure calls.
Ultimately it can only be used by a procedure body expressed in non-ALGOL-
code, e. g. an input/output procedure (cf.. section 6).

4. '7. 5. 2 A formal parameter which occurs as a left part variable in an assign-
ment statement within the procedure body and which is not called by value can
only correspond to an actual parameter which is a variable (special case' of
expression).

4. 7. 5. 3. A formal parameter which is used within the procedure body as an
array identifie:r can only correspond to an actual parameter which is an array
identifier of an array of the same dimensions (cf. 5. 2. 3. 2.). In addition if the
formal parameter is called by value the local array created during the call will
have the same subscript bounds as the actual array.

4. 7. 5. 4. A formal parameter which is used within the procedure body as a
procedure identifier can only correspond to an actual parameter which is a proce­
dure identifier of a procedure which has the same number of parameters, each of
which is of the same type and kind.

4. 7. 5. 5. A formal parameter which is called by value cannot in general corres-
pond to a switch identifier or a procedure identifier or a string, because these
latter do not possess values (cf. 2. 8.).

Note_: The exception is the procedure identifier of a procedure declaration which
has an empty formal parameter part (c f. 5. 4. 1.) and which defines the value of
a function designator (cf. 5. 4. 4.). This procedure identifier is in itself a complete
express ion.

Example.

I BEGIN' 'REAL' I PROCEDURE' PI. '
1 COMMENT 1THIS PROCEDURE CALCULATES THE VALUE

OF THE CIRCLE CONSTANT PI.,
<procedure body>.,

' PROCEDURE'POWER(X) EXPONENT .. (N) RESULT .. (Y).,
'V ALUE 1X, N.,
'REAL'Y., 'INTEGER'N., 'REAL11 PROCEDURE 1X.,
Y. ==X'POWER1N.,

'REAL'A, N.,
'FOR'N. ==O'STEP'O. 51UNTIL'5 1D0'

'BEGIN'POWER(PI, N, A)., OUTREAL(l, A)'END'
'END'

53

54

This example demonstrates that it is possible to call a formal parameter corres­
ponding to a procedure identifier by value. The effect, however, would be the same
if the formal parameter were specified 'REAL' instead of' REAL" PROCEDURE'.

4.7.6. Parameter Delimiters

All parameter delimiters are understood to be equivalent. No correspondence
between the parameter delimiters used in a procedure statement and those used
in the procedure heading is expected beyond their number being the same.· Thus
the information conveyed by using the elaborate ones is entirely optional and is
handled like a comment (cf. 2. 3) .

5. DECLARATIONS

Declarations serve to define certain properties of the quantities used in the program,
and to associate them with identifiers. A declaration of an identifier is valid for
one block. Outside this block the particular identifier may be used for other pur­
poses (cf. section 4. 1. 3.).

Dynamically this implies the following: at the time of an entry into a block
(through the 'BEGIN', since the labels inside are local and therefore in-
accessible from outside) all identifiers declared for the block assume the significance
implied by the nature of the declarations given. If these identifiers had already been
defined by other declarations outside they are for the time being given a new signifi­
cance, Identifiers which are not declared for the block, on the other hand, retain
their old meaning.

At the time of an exit from a block (through 'END', or by a goto statement) all identi­
fiers which are declared for the block lose their local significance and retain the
significance they had before entering the block.

Apart from labels (cf. 4. 1. 3.) and formal parameters of procedure declarations
(cf. 5. 4. 5.) and with the exception of those for standard functions (cf. 3. 2. 4.)
and input/output procedures (cf. .1. 2.), all identifiers of a program must be
declared. No identifier may be declared more than once in any one block head, and
no identifier occurring as a label within a block may be declared in the head of
that block.

Notes: The order of the declarations within a block head is arbitrary.

Example. The block heads

'BEGIN"REAL'A., 'PROCEDURE'P(X)., 'BOOLEAN'X., <procedure body>.,
'INTEGER'!., 'PROCEDURE' Pl., <procedure body>.,

and 'BEGIN"INTEGER'I., 'REAL'A., 'PROCEDURE' Pl., <procedure body>.,
'PROCEDURE' P(X)., 'BOOLEAN'X., <procedure body>.,

are equivalent, even if, for example, the variable I occurs within the procedure body
of P(X).

The value of a variable or an array is lost after exit from the block in which it is de­
clared. If the block will be entered anew, the variable or array has no value until it
is assigned a value again. If, on the other hand, the identifier of a·variable or array
gets a new significance on entering an inner block, the variable or array does not
lose its value in the outer block, but is only inaccessible for the time being; it may
be used with its old value after leaving the l.nner block.

55

56

Example.

1BEGIN11 BOOLEAN'B.,
B.='TRUE'.,

K •. 1BEGIN"INTEGER'M.,

'END'

L .. 'IF'B'THEN"BEGIN'M. =l., B. ='FALSE" END'
'ELSE'M .. =M+l.,

'BEGIN"INTEGER'M.,

'END'

1GOT01 L.,

B. ='TRUE'. ,
1GOT01K.,

'END'

In this example M becomes a variable of type 'INTEGER', when entering the block
labelled by the label K. This variable is then assigned the value 1. Since in the inner­
most block a new variable is declared by the identifier M, the former variable M is
inaccessible during execution of that block. But on leaving the innermost block, M
gets back the significance of the orignial variable with the value 1. When executing the
statement 'GOTO' L, the block labelled K is not left and therefore M retains its value
and the assignment M. =M+l of the conditional statement may be executed. When, on
the other hand, executing the statement 1GOT01K, though the same sequence of state­
ments will be executed, the block labelled K is left temporarily and therefore the
variable M loses its value until the new assignment M. =l is made.

Syntax

<declaration> ::= <type declaration> ! <array declaration> !
<switch declaration> l <procedure declaration>

5.1. Type Declarations

5.1.1. Syntax

<type list> ::= <simple variable> ! <simple variable>, <type list>
<type> ::='REAL' ! 'INTEGER' ! 'BOOLEAN'
<type declaration> : := <type> >type list>

5.1. 2.

5.1. 3.

Examples

'INTEGER'P, Q, S
1BOOLEAN1ACRYL, N

Semantics

Type declarations serve to declare certain identifiers to represent simple variables
of a given type. Real declared variables may only assume positive and negative
values including zero. Integer declared variables may only assume positive and
negative integral values including zero. Boolean declared variables may only
assume the values 'TRUE' and 'FALSE', (cf. also section 2. 8.).

In arithmetic expressions any position which can be occupied by a real declared
variable may be occupied by an integer declared variable. Cf. , however, the
restrictions on actual parameters corresponding to formal parameters called by
name (cf. 4. 7. 5 .) .

Examples. The examples of section 5.1. 2. when used in the head of a block declare
the identifiers P, Q, S to denote variables of type 'INTEGER' and the identifiers
ACRYL, N to denote variables of type 'BOOLEAN' throughout the block.

The block heads

'BEGIN"REAL'A., 'INTEGER'B., 1INTEGER1C., 'REAL'D

and 'BEGIN"REAL'A, D., 'INTEGER'C, B

are equivalent, i. e. the declarations of variables of the same type may be arbitrari­
ly grouped together.

5. 2. Array Declarations

5. 2.1. Syntax

<lower bound> : :== <arithmetic expression>
<upper bound> : := <arithmetic expression>
<bound pair> ::= <lower bound> .. <upper bound>
<bound pair list> ::=<bound pair> ! <bound pair list>, <bound pair>
<array segment> ::=<array identifier> (/<bound pair list>/)!

<array identifier> , <array segment>
<array list> : := <array segment> ! <array list> , <array segment>
<array declaration> ::= 'ARRAY' <array list> !

<type> 'ARRAY' <array list>

57

58

5. 2. 2.

5. 2. 3.

Examples

'ARRAY' A, B, C(/7 .. N, 2 .. Ml), S(/-2 .. lo/)
'INTEGER" ARRAY' A(/ 1IF'C'LESS101THEN'2'ELSE'l •• 20/)
'REAL"ARRAY'Q(/-7 .. -1/)

Semantics

An array declaration declares one or several identifiers to represent multidimen­
sional arrays of subscripted variables (cf. 3. 1. 4.) and gives the dimensions of the
arrays, the bounds of the subscripts and the types of the variables.

5. 2. 3.1. Subscript Bounds. The subscript bounds for any array are given in the
first subscript bracket following the identifier of this array in the form of a bound
pair list. Each item of this list gives the lower anci. upper bound of a subscript in the
form of two arithmetic expressions separated by the delimiter. . • The bound
pair list gives the bounds of all sub scripts taken in order from left to right.

5. 2. 3. 2. Dimensions. The dimensions are given as the number of entries in
the bound pair lists. An array may have up to 16 dimensions.

5. 2. 3. 3. Types. All arrays declared in one declaration are of the same quoted
type. If no type declarator is given, the type 'REAL' is understood.

5.3.4. Lower and Upper Bound Expressions

5. 2. 4.1. The expressions will be evaluated in the same way as subscript ex-
pressions (c f. section 3.1. 4. 2.).

5. 2. 4. 2. The expression can only depend on variables and procedures which
are nonlocal to the block for which the array declaration is valid because local
variables do not have values before entering the statements of the block, and
for example, the activation of a local procedure could make use of subscripted
variables of the array before it is declared. Consequently, in the outermost
block of a program only array declarations with constant bounds may be declared.

5. 2. 4. 3. An array is defined only when the values of all upper subscript hounds
are not smaller than those of the corresponding lower bounds.

5.2.4.4. The expressions will be evaluated once at each entrance into the block.

Examples. The first example of section 5. 2. 2. declares the identifiers A, B, C,
to denote three two-dimensional arrays of type 'REAL' with identical subscript
bounds and the identifier S to de11ote a one-dimensional array, also of type
'REAL', whose subscript may have values ranging from -2 to 10. The subscript
bounds of A, B, C depend on the actual values of N and M when entering the block
in the heading of which the declaration occurs. The values of the first sub­
script may range from 7 to N, the values of the second subscript from 2 to M.
The subscript bounds do not change if Nor M is assigned a new value during
the execution of the b~ock. But they will be evaluated anew if the block is left
and entered again (cf. the notes in section 5.).

The second example of section 5. 2. 2. declares the identifier A to denote
a one-dimensional array of type 'INTEGER'. The subscript values range either
from 2 to 20 or from 1 to 20 depending on the sign of the value of C when entering
the block in the heading of which the declaration occurs.

5. 3. Switch Declarations

5.3.1. Syntax

<switch list> : :== <designational expression>
<switch list> , <designational expression>

<switch declaration > ::='SWITCH' <switch identifier> . =<switch list>

5.3.2. Examples

1SWITCH'Q. =P, W
'SWITCH'S.o::Sl, S2, Q(/.M/), 11F'V'GREATER'-51THEN'S31ELSE'S4

5.3.3. Semantics

A switch declaration defines the set of values of the corresponding switch
designators. These values are given one by one as the values of the designational
expressions entered in the switch list. With each of these designational expressions
there is associated a positive integer, 1, 2, ... , obtained by counting the items
in the list froin left to right. The value of the switch designator corresponding
to a given value of the subscript expression (cf. section 3. 5. Designational
Expressions) is the value of the designational expression in the switch list
having this given value as its associated integer. A switch list may not consist
of more than 16 designational expressions.

59

60

5.3.4. Evaluation of Expressions in the Switch List

An expression in the switch list will be evaluated every time the item of the list
in which the expression occurs is referred to, using the current values of all
variables involved.

Examples. The first example of section 5. 3. 2. defines the value of the switch
designator Q(/l/) to be the label P and the value of Q(/2/) the label W. The
value of, e.g., Q(/3/) or Q(/-5/) is undefined. The second example defines the
values of the switch designators S(/l/), S(/2/) to be the labels Sl, 82; the value
of S(/3/) to be the value of Q(/M/), i.e., one of the labels P or W depending on
the value of M at the time S(/3/) is referred to in any statement; and, finally,
the value of S(/4/) to be one of the labels 83 or 84 depending on the value of V at
the time S(/4/) is referred to. Thus, in the following sequence of statements:

Sl.,
82 ..

N. =O. , M. =5. , V. =3. ,

P .. N.=N+2.,

W .• M.=M-1.,

83 .. V.=V-1.,

'GOTO'S(/N/2/).,

84 .. : ...
(assuming that they are preceded by the two switch declarations described in
section 5. 3. 2. and that the variables N, M, V do not change their values by other
statements than those explicitly stated), the statement 'GOTO'S(/N/2/) refers
sequentially to the labels Sl, 82, W, P, 83, 83, 83, 84.

5.3.5. Influence of Scopes

If a switch designator occurs outside the scope of a quantity entering into a
designational expression in the switch list, and an evaluation of this switch
designator selects this designational expression, then the conflicts between the
identifiers whose declarations are valid at the place of the switch designator will
be avoided through suitable systematic changes of the latter identifiers.

Example. The program

'BEGIN11 SWIT.CH'A. =L.,

L .. 'BEGIN"INTEGER'B.,

L .. B. =l.,
I GOTO' A(/B/)

'END'

'END'

is equivalent to the program

'BEGIN11 SWITCH 1A. =L.,

'END'

5.4.
5.4.l.

L .• 'BEGIN' 'INTEGER'B.,

LCHANGED .. B. =l.,
'GOTO'L

'END'

Procedure Declarations
Syntax

<formal parameter> : := <identifier>
<formal parameter list> ::= <formal parameter> !

<formal parameter list> <parameter delimiter> <formal parameter>
<formal parameter part> : := <empty> !(<formal parameter list>)
<identifier list> : :=<identifier> ! <identifier list> , <identifier>
<value part> ::='VALUE' <identifier list> . , ! <empty>
<specifier>::= 'STRING' ! <type>! 'ARRAY' ! <type> 'ARRAY' 'LABEL'

'SWITCH' ! 'PROCEDURE' ! <type> ' PROCEDURE'
<specification part> ::= <empty> ! <specifier> <identifier list> . ,

<specification part> ::= <specifier> <identifier list> . ,
<procedure heading> : := <procedure identifier>

<formal parameter part> . , <value part> <specification part>
<procedure body> : := <statement> ! 'CODE'
<procedure declaration> : :=

'PROCEDURE' <procedure heading> <procedure body> !
<type> 'PROCEDURE' <procedure heading> <procedure body>

61

62

5.4. 2. Example (see also the examples in APPRENDIX 3)

'PROCEDURE'SPUR(A)ORDER .. (N)RESULT .. (S).,
'VALUE'N., 1ARRAY1A., 'INTEGER'N., 'REAL'S.,
'BEGIN"INTEGER'K.,
S.=O.,
'FOR'K. =l'STEP'l'UNTIL'N'DO'S. =S+A(/K, K/)
'END'

'PROCEDURE'TRANSPOSE(A)ORDER .• (N).,
'VALUE'N., 'ARRAY' A., 'INTEGER'N.,
'BEGIN"REAL'W., 'INTEGER'!, K.,
'FOR'I. =l'STEP111UNTIL'N'D0'

'FOR'K. =l+l'STEP'l'UNTIL'N'DO'
'BEGIN'W. =A(/I, K/).,

'END'

A(/I, K/). =A(/K, I/). ,
A(/K, I/). =W

1 END' TRANSPOSE

'INTEGER"PROCEDURE'STEP(U)., 'REAL'U.,
STEP. ='IF'O'NOTGREATER'U'AND'U'NOTGREATER'l

'THEN'l'ELSE'O

'PROCEDURE'ABSMAX(A)SIZE .. (N, M)RESULT .. (Y)SUBSCRIPTS
.. (I, K).,

'COMMENT'THE ABSOLUTE GREATEST ELEMENT OF THE
MATRIX A OF SIZE N BY M IS TRANSFERRED TO Y, AND
THE SUBSCRIPTS OF THIS ELEMENT TO I AND K.,
I ARRAY' A.' 'INTEGER'N, M, I, K.' 'REAL'Y.'
'BEGIN"INTEGER'P, Q.,
Y. =O., I. =K. =l.,

'FOR'P. =l 1STEP 1 l 1UNTIL'N'DO'
'FOR'Q. =l'STEP1l'UNTIL'M'D0'
'IF'ABS(A(/P, Q/))'GREATER'Y'THEN'

'BEGIN'Y. =ABS(A(/P, Q/)., I. =P., K. =K. =Q'END'
'END' ABSMAX

'PROCEDURE'INNERPRODUCT(A, B)ORDER .. (K, P)RESULT .• (Y).,
'VALUE'K., 'INTEGER'K, P., 'REAL'Y, A, B.,
'BEGIN"REAL'S.,
S. =O.,
'FOR'P. =l'STEP'l'UNTIL'K'DO'S. =S+A*B.,
Y.=S
'END'INNER .PRODUCT

5.4. 3. Semantics

A procedure declaration serves to define the procedure associated with a proce-
dure identifier. The principal constituent of a procedure declaration is a state-
ment or a piece of code logically represented by the delimiter 'CODE' (cf. 5. 4. 6.),
the procedure body, which through the use of procedure statements and/ or function
designators may be activated from other parts of the block in the head of which the
procedure declaration appears. Associated with the body is a heading, which speci­
fies certain identifiers occuring within the body to represent formal parameters.
Formal parameters in the procedure body will, whenever the procedure is acti-
vated (c f. section 3. 2. Function Designators and section 4. 7. Procedure State­
ments) be assigned the values of or replaced by actual parameters. Identifiers in
the procedure body which are not formal parameters will be either local or nonlocal
to the body depending on whether they are declared within the body or not. Those of
them which are nonlocal to the body may well be local to the block in the head of
which the procedure declaration appears (however, they may not be local to. the
block or procedure body nested within that block, even if the procedure is activated
only in the nested block or procedure body). The procedure body always acts like
a block, whether it has the form of one or not. Consequently the scope of any label
labelling a statement within the body or the body itself can never extend beyond the
procedure body. In addition, if the identifier of a formal parameter is declared anew
within the procedure body (including the case of its use as a label as in section 4.1. 3.),
it is thereby given a local significance and actual parameters which correspond to
it are inaccessible throughout the scope of this inner local quantity.

Note: According to section 2.4. 3. all formal parameters of a procedure declaration
have to be distinct, i. c. , no identifier may occur twice in a formal parameter part.
In the case of a function procedure (cf. 5. 4. 4.), the procedure identifier also has to
be different from all formal parameters.
A procedure may be declared without any formal parameters.

Example. If division by the same variable, called DENOMINATOR, occurs frequent­
ly in a program, it might be useful to precede each statement in which such division
is executed by the following procedure (cf. 6. 2. 2. 5.):

'PROCEDURE'ERRORPRINT.,
1IF'DENOMINATOR1EQUAL'01THEN1

'END'

I BEGIN' OUTSTRING(l, I(' ZERODIVIDE') ')
'GOTO' END

Cf. also the example of section 4. 7. 5.4.

63

64

5.4.3.1. Recursive Procedures

As in a procedure body, identifiers may be used which are local to the block in
the head of which the procedure declaration occurs, especially a procedure may
activate itself within its procedure body. In this case, when activating the proce­
dure the actions described in sections 4. 7. 3.1. to 4. 7. 3. 3, are performed repeated­
ly. If the procedure body is a block, this results in forming a series of nested blocks.
A similar situation exists if, for example, two procedures activate each other with­
in their procedure bodies.

Example.

'PROCEDURE'P(X, Y).,
'VALUE'X., 'INTEGER'X, Y.,
'BEGIN''INTEGER'N.,

'IF'X'EQUAL'l' THEN'Y.=l
'ELSE"BEGIN'P(X-1, N).,

Y. =X*N
'END'

'END'

This procedure assigns the factorial of the first parameter to the second parameter
(though it is not a good program for this problem). The procedure statement

P(3, F)

will result in the following execution of three nested copies of the procedure body
of P:

1BEGIN"INTEGER'Xl., Xl. =3.,
1BEGIN"INTEGER'Nl.,

11F'Xl1EQUAL'l'THEN1F. =l'ELSE'
'BEGIN"BEGIN"INTEGER'X2., X2. =Xl-1.,

1BEGIN"INTEGER'N2.,
'IF'X21 EQUAL1l 1THEN1 Nl. =l'ELSE'

1 BEGIN" BEGIN"INTEGER'X3., X3. =X2-l.,
'BEGIN"INTEGER'N3.,
1IF'X31 EQUAL'l'THEN'N2. =l'E LSE'
'BEGIN'P(X3-l, N3).,
N2. =X3*N3 1 END'

1 END11 END'P(X2-l, N2).,
Nl. =X2*N2

'END'
1END11 END'P(Xl-l, Nl).,
F. =Xl*Nl

'END'
1END11 END'P(3, F)

Note_: If a program is meaningful, the recursive activation of a procedure
within its body has to be executed in a conditional form, otherwise, there would
be an infinite number of activations performed. The body replacement as described
in section 4. 7. 3. 3. has to be performed for each recursive step only if the proce­
dure is really activated in that step.

5.4.4. Values of Function Designators

For a procedure declaration to define the value of a function designator (cf. 3. 2.)
there must, within the procedure body, occur one or more explicit assignment
statements with the procedure identifier in a left part; at least one of these must be
executed, and the type associated with the procedure identifier must be declared
through the appearance of a type declarator as the very first symbol of the proce­
dure declaration. The last value so assigned is used to continue the evaluation of the
expression in which the function designator occurs. Any occurence of the procedure
identifier within the body of the procedure other than in a left part in an assignment
statement denotes activation of the procedure.

Note~ A procedure declared to define the value of a function designator may be
activated both in defining a function designator occurring in an expression or in the
form of a procedure statement. In the latter case the value assigned to the proce­
dure identifier .is lost.

Examples. The third example of section fi. 4. 2. is a procedure declaration defining
a function designator. If E is an arithmetic express.ion of type 'REAL' then the value
of STEP(E) is 1 if 0 ~ E~ 1 and 0 if E<O or E> 1.

The following example is incorrect:

'INTEGER' 1 PROCEDURE' F ACTORIAL(N).,
'VALUE'N., 'INTEGER'N.,

'BEGIN" INTEGER 'l., FACTORIAL. =l.,
1 FOR1I. =11STEP'l'UNTIL'N1D0'
FACTORIAL. =F ACTORIAL*I

'END'

In the procedure body of this declaration the procedure identifier occurs in another
position than in a left part list. It cannot be activated in that position, since the actual
parameter part is missing. A correct form of that procedure declaration is (cf. also

65

66

the example in the note of section 5. 4. 3.):

'INTEGER'' PROCEDURE' F ACTORIAL(N).,
1VALUE1N., 'INTEGER'N.,
'BEGIN"INTEGER'I, F.,

FACTORIAL. =F. =I. ,
'FOR'!. =l'STEP'l'UNTIL'N'DO'

FACTORIAL. =F. =F*I
'END'

5. 4. 4.1 Side effects

Within the body of a procedure declaration, an assignment of a value to a variable,
which is neither local to the procedure body nor a formal parameter of that proce­
dure to be called by value, or a goto statement referring finally to a label, which is
not local to the procedure body, is called a "side effect" of the procedure. Side
effects of a procedure are generally undefined in the ALGOL language if this proce­
dure is used to define the value of a function designator.

Notes: This rule applies to "implicit" side effects, too, i. e., such ones which
are caused within the procedure body by activation of another procedure, e.g. an
input/output procedure.

The rule does not apply if a procedure is activated in the form of a procedure state­
ment, even if it is declared to define the value of a function designator.

5.4. 5. Specifications

In the heading a specification part, giving information about the kinds and types
of all formal parameters by means of an obvious notation, is to be included, if the
formal parameter part is not empty. In this part no formal parameter may occur
more than once. Within the procedure body a formal parameter specified in the
heading of the procedure declaration may occur in any syntactic context, where
an identifier declared by the corresponding declaration might ocpur.

Notes: Here, the specification 'LABEL' corresponds, of course, to the implicit
declaration of labels (cf.4.1.3.), The specification 'STRING' does not correspond
to any declaration of an identifier; regarding the occurrence of formal parameters
specified 'STRING' cf. section 4. 7. 5.1. Cf., also, the correspondence tables for
formal and actual parameters in section 4. 7. 5.

5.4.6. Precompiled Procedures

It is possible to translate a procedure declaration by a separate process of the
System/360 Operating System ALGOL Compiler. Such a "precompiled" ALGOL
procedure may be used by one or more ALGOL programs. In this case, within
these programs the corresponding procedure declaration consists of the
declarator 'PROCEDURE' or <type>' PROCEDURE', the normal procedure
heading, and the delimiter 'CODE', which represents the precompiled procedure
body.

Parameters of such procedures may not be specified 1 PROCEDURE', <type>
'PROCEDURE', or 1 SWITCH'. No different precompiled procedures used by an
ALGOL program may be denoted by the same identifier, even if their scopes
are disjoint.

67

68

INPUT /OUTPUT PROCEDURES

The transmission of data to and from an external medium that is not directly
accessible by the ALGOL program is achieved by calls to input/output procedures.

6. 1. General Characteristics

6 .1.1. Characters, Data Sets, Records

6 .1. 1.1. For each external medium there exists a representation of a set of at
most 256 characters. Within this character set there are available at least the
26 letters, 10 digits, a blank space and those special characters, which constitute
the basic symbols, e.g., +and '· Further characters corresponding to symbols
allowed in strings may be available (cf. strings 2. 6. 3.). The characters compose
data on the external medium according to the formats in the sections describing
the different input/output procedures (cf. 6. 2. 2.) .

6. 1. 1. 2. Externally, the data to be transmitted is combined into "data sets". A
data set is a named collection of logically related data which to the user appears
to be in a continuous string. The external organization of the data is maintained au­
tomatically and need not concern the user of the ALGOL Language. Within an
ALGOL program each data set is uniquely identified by an integer, the "data set
number" 4) . Only the numbers O to 15 are allowed. 5) ·

4)
Each "data set number" of this publication corresponds uniquely to a "data

definition name" of the Job Control Language (cf. IBM Operating System/360
Concepts and Facilities, Form C28-6536). Although one data definition name may
represent different data sets (for different executions of a program, or even for one
execution of a program in the case of concatenated data sets), within a single exe­
cution of a single ALGOL program the correspondence between a data definiton
name and data set can be considered unique. Therefore, in this publication the terms
"data set" and "data set number" are used instead of the term "data definiton name".
Also the phrase "opening a data set" instead of "opening a data control block" is
used unambiguously (c f. Concepts and Facilities) .

5) The data set number 0 is reserved for the system input data set (with data
definition name SYSIN, cf. IBM Operating System/360, Job Control Language.
Form C28-6539). Only sequential input from this data set is possibler any output or
backwards repositioning requests specifying data set number O are undefined.
The data set number 1 is reserved for the system output data set (with data definition
name SYS PRINT), which will contain object program diagnostic messages. It is
assumed that this data set will be printed. Only sequential output to this data set is
possible; any input or backwards repositioning requests specifying data set number
l are undefined.

6. 1. 1. 3. In general, the continuous string data composing a data set is logically
split into records. A record contains the information processed as a unit by the
program. The intended :ise of a record often influences its length; there are of
course certain relations to the characteristics of the external device of the data
set (details will be stated in a later publication). For example, an 80 column card
image may be a record. If a record may be printed, it should be restricted in
length to a print line. If a record is used simply to transmit data from one program
to another, its length is governed by the maximum number of items of data it may
contain. The mechanics of transferring records to and from the external medium
is maintained automatically and needs not concern the user of the ALGOL language.
The number of characters within a record is fixed for all records of data set; this
number is called the record length P; it may in no case exceed 32.160. The pro­
grammer may specify the value of P (within the physical limits of the external
medium) by executing the standard procedure SYSACT with FUNCTION=6 (cf.
6. 3. 2. 6.) before creating a data set. Otherwise, a standard record length of 80
characters is chosen when the data set is created by the first transfer of data to it.
If the data· set was created by another program, the value of P was specified by
the creating program and is valid for the current ALGOL program. 6)

6. 1. 1. 4. Additionally, the programmer can split a data set into "sections" by
specifying a fixed number Q of records to be in one section. This is done by
executing the standard procedure SYSACT with FUNCTION=8 (cf. 6. 3. 2. 8.) before
creating the data set. This specification is most meaningful if the data set is intended
to be printed; the contents of one section normally will appear on one page.
Any repositioning backwards within the current ALGOL program is undefined for a
data set split into sections. Therefore (according to section 6. 2.1. 3.) only output
procedures may process such data sets.

6)
The specification of the record length by the ALGOL program is not possible

if it is determined by the data set label of an already existing data set or by the
corresponding data definiton control statement (cf. IBM Operating System/360
Concepts and Facilities, Form C28-6535).

69

70

6.1.1. 5. Each data set is in one of three states, "open", "close" or "exhausted.
As long as a data set is open, it is logically connected with the ALGOL program, i.e.
data can be transferred to or from it. As long as a data set is closed, it is logically
disconnected, i. e. no transfer of data can be made. As long as a data set is
exhausted, it is logically connected with the ALGOL program as explained above,
but there are no more data available for input from the data set to the ALGOL
program; then any input procedure statement is undefined.

A data set becomes open either by a call to the procedure SYSACT with
FUNCTION=l2 (cf. 6. 3. 2.12) or, if it is not yet open, automatically by execution
of any procedure requesting transfer of data with that data set.

A data set becomes closed either by a call to the procedure SYSACT with FUNCTION=l2
(cf. 6. 3. 2.12) or, if it is still open, automatically at the end of the ALGOL program.

A data set that has been closed can be opened again either within the current ALGOL
program or within a later program.

A data set becomes exhausted by execution of an input procedure transferring the last
data in the data set to the ALGOL program. It becomes normally open again by any
repositioning backwards.

6.1. 2. Standard Procedure Identifiers

Certain identifiers are used for standard procedures. These procedures are
available without explicit declaration. They are considered as declared in a block
surrounding the whole program. If the identifier is declared in any block head as
something different (e. g. an array) the standard function it represents is unavail­
able throughout that block.

There are four classes of standard procedures:

input procedures: IN5YMBOL, INREAL, ININTEGER, INBOOLEAN, INARRAY,
INT ARRAY, INBARRAY

output procedures: OUTSYMBOL, OUTREAL, OUTINTEGER, OUTBOOLEAN,
OUTSTRING, OUTARRAY, OUTTARRAY, OUTBARRAY

control procedure: SYSACT

procedures for
intermediate
storage: PUT, GET

6. 2. Input Procedures and Output Procedures

6. 2. 1. General Characteristics

6. 2. 1.1. The input and output procedures transfer data from or to a data set,
which is specified by the data set number used as the first actual parameter
in the procedure statement. The data set is handled by these procedures
sequentially as explained in the following paragraph:

For each data set that is open (cf. 6. 1.1. 4.), a record pointer S and a character
pointer R are maintained. When the data set is opened, the record pointer points
to the first record of the data set (S=l), and the character pointer to the first
character within that record (R=l). Each time a character is transmitted to or
from the data set, R is increased by 1, until it equals the record length P. When
R=P and a chracter is transmitted, S is increased by 1 and R is reset to 1.

Note: The transfer of data to or from the external device is related to any
change of S; i. e. any record is actually transferred as a whole at this time.

These two pointers uniquely denote the location of a character within the data set.
Each input or output procedure transfers a sequence of one or more characters,
starting at the location denoted by the current position of the two pointers.

This sequential order of handling a data set can be changed by altering one of the
two pointers R and S through the execution of the control procedure SYSACT (cf. 6. 3.).

If a data set has been split into sections of Q records each (cf. 6.1.1. 4), the record
pointer S is set back to 1 if a section has been filled, i. e., S counts the records
within the sections only and never exceeds the specified value of Q. Since in
this case the value of S does not uniquely denote the record within a data set (only
within a section), altering of the record pointer by SYSACT with FUNCTION=4 is
undefined and no repositioning backwards is possible (cf., however, 6. 3. 2.14
and 6. 3 .2.15).

6. 2.1. 2. If a data set is suitable both for input and output (e.g. on tape), all
data transferred to that data set by an output procedure can be transferred back
by an input procedure, provided that an appropriate repositioning of the data set
has been performed by execution of the control procedure SYSACT (cf. 6. 3.). If
in this case, output and input are performed by a pair of corresponding procedures,
the value of the data transferred remain unchanged throughout the process
(cf. 2. 8. for 'REAL' quantities).

71

72

Corresponding input and output procedures are:

OUT SYMBOL
OUTREAL
OUTINTEGER
OUT BOOLEAN

IN SYMBOL
INREAL
ININTEGER
IN BOOLEAN

6. 2.1. 3. Each transfer of data to a data set by means of an output proce-
dure (after repositioning the data set by SYSACT, cf. 6. 3.) destroys all
data in the data set located beyond the data just transferred, i. e. the data,
whose location is represented by values Sl, Rl of the record and character pointer
for which the relations Sl > S or Sl = S, Rl > R hold, where S and R are
the current values of the two pointers.

6. 2.1. 4. For several input and output procedures, described in the
following sections, a sequence of Kor more blank spaces contained in the
data set serves as a delimiter of the data to be transferred, while less than
K blank spaces are ignored. In this connection, for each data set, K is a
positive integer assumed to be two unless specified differently by execution
of the procedure SYSACT with FUNCTION= 10 (cf. 6. 3. 2.10). The end of a
record also serves as delimiter of the data to be transferred. (For details,
cf. the sections 6. 2. 2. 2., 6. 2. 2. 3., 6. 2. 2. 4. describing the individual
procedures).

6. 2. 2. Description of the Input Procedures and Output Procedures.

6. 2. 2.1. Procedures INSYMBOL and OUTSYMBOL

6. 2. 2.1.1. Assumed Procedure Declarations

'PROCEDURE' INSYMBOL (DATA SET NUMBER, STRING,
DESTINATION).,

'VALUE' DATA SET NUMBER.,
'INTEGER' DATA SET NUMBER, DESTINATION.,
'STRING' STRING.,

<procedure body>. ,

'PROCEDURE' OUTSYMBOL (DATA SET NUMBER, STRING, SOURCE).,
'VALUE' DATA SET NUMBER, SOURCE.,
'INTEGER' DATA SET NUMBER, SOURCE.,
'STRING' STRING.,
<procedure body.::: ,

6.2.2.1.2. Semantics

The two procedures INSYMBOL and OUTSYMBOL provide the means of
communication between an external data set and a variable of the program,
or more generally an expression in case of OUTSYMBOL, in terms of single
symbols. The first actual parameter of either procedure specifies the data
set by its data set number; the second actual parameter is a string denoting
the conversion between the symbols of the external medium and the program
as explained below; the third actual parameter is the variable or expression.
In either procedure the correspondence between the characters of the speci­
fied data set and the values of the expression is established by mapping one­
to-one the sequence of symbols of the string between the outermost string
quotes, taken from left to right, into the sequence of positive integers 1, 2, 3, ...
Using this correspondence~ the procedure INSYMBOL assigns to the third
actual parameter the value corresponding to the current character within
the specified data set (denoted by the current position of the record and
character pointers). If the symbol corresponding to this character does not appear
in the string given as the second actual parameter, the value zero is assigned.
Similarly the procedure OUTSYMBOL transfers the symbol corresponding to
the value of the third actual parameter to the current character position with-
in the specified data set (denoted by the record and character pointers>. In
this case the value zero corresponds to the blank space; negative values or
values greater than the length of the specified string yield undefined results.
Finally, either procedure sets· the record and character pointer to the
next character position within the data set.

6.2.2.1.3. Example.

The statement:

1 FOR'I. = l'STEP'l'UNTIL'l5'D0'
'BEGIN' INSYMBOL (0, '('ABCDEFGHIJKL')', V).,
OUTSYMBOL (1, '('1234567890+1) 1 , V)'END'.,

transfers the following character sequence, which appears on the data set
with the data set number 0:

... AXBIDA+4EFMJ5FK ...

to the following character sequence on the data set with the data set number 1:

73

74

... lb294lbb56b0b6+ ...

(where b denotes a blank space) .

6. 2. 2. 2. Procedures INREAL and OUTREAL

6. 2. 2. 2. 1. Assumed Procedure Declarations

'PROCEDURE' INREAL (DATASETNUMBER, DESTINATION).,
'VALUE' DATASETNUMBER.,
'INTEGER' DAT ASETNUMBER.,
'REAL' DESTINATION.,
<procedure body>. ,

'PROCEDURE' OUTREAL (DATASETNUMBER, SOURCE).,
'VALUE' DATASETNUMBER, SOURCE.,
'INTEGER' DATASETNUMBER.,
'REAL' SOURCE.,
<procedure body>.,

6. 2. 2. 2. 2. Semantics

The two procedures INREAL and OUTREAL transfer values of type 'REAL'
between the external data set specified by the first actual parameter and the
variable of the program, or more generally the expression in case of OUTREAL,
appearing as the second actual parameter.

The procedure INREAL scans the specified data set sequentially, beginning at the
current position of the record and character pointers, until it finds the first
characters written according to the syntax of number (cf. 2. 5. 1.) . This number
can be as large as the syntax permits; the first character not allowed syntacti­
cally serves as a delimiter. In addition either of the the two delimiters described
in section 6. 2. 1. 4 (Le .. either K or more blank spaces or the record end) are
considered to delimit the number. If no syntactically correct number is found in
front of one of these delimiters, the scanning resumes with the characters after
the delimiter. The number found by this process is converted to type 'REAL' and
its value assigned to the second actual parameter. Then, the delimiter of the
number in the data set is skipped so that the record and character pointers after
execution of INREAL point to the character following the delimiter.

The procedure OUTREAL converts the value of the second actual parameter to
a 'REAL' type number written in an external standard format. A number written

in this format occupies a field of 13 {short form) or 22 {long form) consecutive
character positions 7) and consists of the sign, the first significant digit, the
decimal point, either 6 or 15 following digits, the separator ',the sign and the
two digits of the decimal exponent (scale factor), written in this order. If the
value of the number is zero, the digit 0 is written in the second character
position of this field and the rest of the field is filled by blank spaces. The number
written in this format is transferred to the field starting at the current position
of the record and character pointers within the specified data set. If there is not
enough room in the current record, {i.e. if the difference between the record
length P {c f. 6 .1.1. 3.) and the current value of the character pointer R minus one,
P - (R-1), is less than the field length of the standard format described), the
remaining character positions within the current record are filled by blank spaces
and the number to be transferred is written starting at the first position of the next
record. Finally, if K character positions are left in the current record following
the field of the number transferred they are filled by blank spaces, that serve as
delimiter of the number (cf. 6. 2. 1. 4) . If less than K character positions are left,
they are filled by blank spaces and the record end is the delimiter. Then the
record and character pointers are set to the character position following the de­
limiter.

6.2.2.2.3. Example

The statement:

'FOR'I. =l'STEP'l'UNTIL'6'D0'
'BEGIN'INREAL{ 0, V)., OUTREAL{l, V)'END'.,
transfers the following character sequence, which appears on the data set with
the data set number 0:
..• 1, -bb034. 5b 15ABC+-7. 17 AOb-'l+X ..•
to the following character sequence on the data set with the data set number 1
{assuming K = 2 for both data sets and the short form of 'REAL' type numbers is
used:
... +l. 000000 1+00bb+3. 450000'+06bb

-7. 0000001+00bb+l. 0000001+07bb
bObbbbbbbbbbbbb+l. OOOOOO'+Olbb ...

In the input string the first number, 1, is delimited by the comma. The following
minus sign is eliminated by two blank spaces so that the sign of the following
number, 34. 515, is plus; this number is interspersed by a non-significant blank

7
> The programmer may specify when i.nvoking the System/360 Operating System

ALGOL compiler if calculations involving 'REAL' type numbers shall be executed
with a precision of '7 or 16 significant decimal digits.

75

76

space and delimited by the character A. The following number, -7, is delimited by
the decimal point since syntactically a decimal point without following digits is
not allowed (cf. 2. 5. 1.) . The next number, '7, is delimited by the character A.
The next number, 0, is followed by a non-significant blank space and delimited
by the following minus sign. Since this delimiter - is skipped the sign of the last
number, 'l, is plus.

6. 2. 2. 3. Procedures ININTEGER and OUTINTEUER

6. 2. 2. 3. I. Assumed Procedure Declarations

'PROCEDURE'ININTEGER(DATASETNUMBER, DESTINATION).,
'V ALUE'DATASETNUMBER.,
'INTEGER'DATASETNUMBER, DESTINATION.,
<procedure body>. ,

'PROCEDURE'OUTINTEGER(DATASETNUMBER, SOURCE).,
1VALUE11 DATASETNUMBER, SOURCE.,
'INTEGER'DATASETNUMBER, SOURCE.,
<procedure body>.,

6.2.2.3.2. Semantics

The two procedures ININTEGER and OUTINTEGER transfer values of type 'INTE­
GER' between the external data set specified by the first actual parameter and the
variable of the program, or more generally the expression in case of OUTINTEGER,
appearing as the second actual parameter.

The actions of the procedures ININTEGER and OUTINTEGER are exactly the same as
those of the procedures INREAL and OUTREAL, respectively, (cf. 6. 2. 2. 2. 2.),
except that the number found by the scanning process or the value to be transferred,
respectively, is converted to type 'INTEGER' instead of 'REAL' and that the value
written by OUTINTEGER is in another external standard format that occupies a field
of 11 consecutive characters (instead of 13 or 22). It starts with a sign followed by
at most 10 significant digits written into the last character positions of the field;
the initial positions are filled with blank spaces if necessary. If the value of the
number is zero, the digit 0 is written in the last character position of this field,
and the leading nine positions are filled with blank spaces.

6.2.2.3.3. Example

The statement:

'FOR'I. =11STEP'l'UNTIL'5 1D01

'BEGIN'ININTEGER(O, V)., OUTINTEGER(l, V)'END'.,
transfers the following character sequence, which appears on the data set with
the data set number 0:

.•. 54bb-b3.7, .bb19-65.414bb0, ...
to the following character sequence on the data set with the data set number 1
(assuming K=2 for both data sets):
.•. bbbbbbbb+54bbbbbbbbbbb-4bb

+lQ)OOOOOOObbbbbb+654000bb
bbbbbbbbbbObb ...

6.2.2.4. Procedures INBOOLEAN and OUTBOOLEAN

6. 2. 2. 4.1. Assumed Procedure Declarations

'PROCEDURE'INBOOLEAN(DATASETNUMBER, DESTINATION).,
'VALUE' DATA SET NUMBER.,
'INTEGER' DATA SET NUMBER.,
'BOOLEAN' DESTINATION.,
<procedure body>

'PROCEDURE' OUTBOOLEAN (DATA SET NUMBER, SOURCE).,
'VALUE' DATA SET NUMBER, SOURCE.,
'INTEGER' DATA SET NUMBER.,
'BOOLEAN' SOURCE.,
<procedure body>.,

6. 2. 2. 4. 2. Semantics

The two procedures INBOOLEAN and OUTBOOLEAN transfer values of type
'BOOLEAN' between the external data set specified by the first actual parameter
and the variable of the program, or more generally the expression in case of
OUTBOOLEAN, appearing as the second actual parameter.

The action of the procedure INBOOLEAN is the same as that of the procedure
INREAL, except that it scans for characters written according to the syntax of
logical value (cf. 2. 2. 2.) and the information so found is converted to type
'BOOLEAN' before assigning it to the se:cond actual parameter.

The procedure OUTBOOLEAN converts the value of the second actual parameter
to its representation written in an external standard format. A value written in this
format occupies a field of seven consecutive characters instead of 13 or 22 and
consists of the characters 'TRUE'b or 'FALSE'. The further action of OUTBOOLE­
AN is exactly the same as that of OUTREAL.
Note: Blank spaces are handled by the procedure INBOOLEAN and OUTBOOLEAN
in the same way as by the procedures INREAL and OUTREAL: For INBOOLEAN,
K more blank spaces serve as delimiter and cause a new start of scanning if no
complete logical value had been found before. For OUTBOOLEAN, K blank
spaces are transferred following the logical value, if there is enough space left in
the current record.

77

78

6.2.2.4.3. Example.

The statement :

1 FOR1I.=l1STEP' l'UNTIL'3'D01

1BEGIN'INBOOLEAN(O, V)., OUTBOOLEAN(l, V)'END'.,
transfers the following character sequence, which appears on the data set with
the .data set number 0:

... 'TRUE1ABC'FbAbLbSbE1 , 'TRbbUE'FALSE' ...

to the following sequence on the data set with the data set number 1 (assuming
K=2 for both data sets):

••• 1TRUE 1bbb1 FALSE1bb 1 FALSE 1bb ...

6. 2. 2. 5. Procedure OUT STRING

6. 2. 2. 5 .1. Assumed Procedure Declaration

'PROCEDURE'OUTSTRING (DATA SET NUMBER, STRING).,
'VALUE' DATA SET NUMBER.,
'INTEGER' DATA SET NUMBER.,
Is TRING' STRING. '
<procedure body>.,

6. 2. 2. 5. Semantics

The procedure OUTSTRING transfers the symbols between the outermost string
quotes of the string appearing as the second actual parameter to the data set
specified by the first actual parameter,· starting at the position currently denoted by
the record and character pointers.

Each symbol of the string is transmitted to one character position. The string
may span one or more consecutive records. Finally, the record and character
pointers are set to the character position following the last character trans­
mitted.

6.2.2.5.3. Example

The statements OUTSTRING (1, '('ALGOLb')').,
OUTSTRING (1, '('REPORT')').,

transfer the following character sequence to the data set with the data set number 1:

.•. ALGOLbREPORT ...

6.2.2.6.

6.2.2.6.1.

Procedures for Array Transmission

Assumed Procedure Declarations

'PROCEDURE' INARRAY (DATA SET NUMBER, DESTINATION).,
'VALUE' DATA SET NUMBER.,
'INTEGER' DATA SET NUMBER.,
'ARRAY' DESTINATION.,
<procedure body> • ,

'PROCEDURE' OUTARRAY (DATA SET NUMBER, SOURCE).,
'VALUE' DATA SET NUMBER, SOURCE.,
'INTEGER' DAT A SET NUMBER.,
1 ARRAY' SOURCE.,
<procedure body>.,

'PROCEDURE' INT ARRAY (DATA SET NUMBER, DESTINATION).,
'VALUE' DATA SET NUMBER.,
'INTEGER' DATA SET NUMBER.,
'INTEGER' 'ARRAY' DESTINATION.,
<procedure body>.,

'PROCEDURE'OUTTARRAY(DATA SET NUMBER, SOURCE).,
'VALUE' DATA SET NUMBER, SOURCE.,
'INTEGER' DATA SET NUMBER.,
'INTEGER' 'ARRAY' SOURCE.,
<procedure body>.,

'PROCEDURE' INBARRAY (DATA SET NUMBER, DESTINATION).,
'V ALUEI DAT A SET NUMBER.,
'INTEGER' DATA SET NUMBER.,
'BOOLEAN' 'ARRAY' DESTINATION.,
<procedure body>.,

'PROCEDURE' OUTBARRAY (DATA SET NUMBER, SOURCE).,
'VALUE' DATA SET NUMBER, SOURCE.,
'INTEGER' DATA SET NUMBER.,
'BOOLEAN' 'ARRAY' SOURCE.,
<procedure body>.,

79

80

6.2. 2. 6. 2. Semantics

The procedures INARRAY, OUTARRAY, INTARRAY, OUTTARRAY, INBARRAY,
OUTBARRAY transfer values between the external data set specified by the first
actual parameter and the array of the program appearing as the second actual
parameter.

Assuming the array ARRAY has been declared to have the lower bounds Ll, L2,
~ LN, in this order, 8) and the upper bounds Ul, U2, .!...!..!..' UN, in this order,
the procedure statement:

INARRAY (DATASETNUMBER, ARRAY).,

is equivalent to the block:

'BEGIN' 'INTEGER' 11, 12, .!...!..!..' IN.,
1FOR1Il. =Ll'STEP1l'UNTIL'Ul'D01

I FOR'l2. =L21STEP'l'UNTIL'U2'D0'

1FOR'IN.=LN1STEP'l'UNTIL'UN1D01

INREAL(DATASETNUMBER, ARRAY(/11, 12, .! .. ! .. ! .. 2_IN/))
'END'.,

The same relation as between the procedures

INREAL and INARRAY

exists between the procedures:

8)

OUTREAL and OUTARRAY,
ININTEGER and INTARRAY,
OUTINTEGER and OUTTARRAY,
INBOOLEAN and INBARRAY,
OUTBOOLEAN and OUTBARRAY.

For descriptive purpose three underscored points are used here,
these points do not have the syntactical meaning of points, but are used as an
ellipsis, i.e. "etc".

Note!_ The possibly multidimensional structure of the array within the ALGOL
program is not reflected in the corresponding data in the external data set, where
it appears only in a linear sequence.

6.2.2.6.3. Example:

The following program:

1 BEGIN"INTEGER1I, N, R, S.,
1INTEGER"ARRAY' A(/1 .. 5/), B(/0 .• 1, -1..+l/).,
'FOR' I. =l'STEP'l'UNTIL'5'D0'

A(/I/). =I.,
N.=o.,
SYSACT (2, 1, R)., SYSACT (2, 13, S).,
OUTTARRAY(2,A)., OUTINTEGER (2,N).,
SYSACT (2, 4, S)., SYSACT (2, 2, R).,
INTARRAY (2, B)

1END'

transfers first the following sequence of characters to the data set with the data
set number 2 (assuming K=2):

bbbbbbbbb+lbbbbbbbbbbb+2bb
bbbbbbbbb+3bbbbbbbbbbb+4bb
bbbbbbbbb+5bbbbbbbbbbb+Obb •.•

and transfers secondly, after repositioning (c.f. SYSACT, 6.3.), the correspor.d­
ing values back, as signing the following values to the array B:

B(/O, -1/). =l, B(/O, O/). =2, B(/O, 1/). =3,
B(/1,-1/), =4, B(/l, 0/). =-11,B(/1, 1/) .=O.

6. 3. Control Procedure SYSACT

In order to obtain finer control over the input/output processes, the control
procedure SYSACT can be used to gain access to certain "system parameters",
to influence the status of a data set and, especially, to alter the sequential order
of data transfer with a data set. These system parameters, which are maintained

81

82

internally for each data set, are:
9
>

the character pointer R
the record pointer S
the record length P
the number of records per section Q
the number of blanks serving as delimiter K
the state (open or closed) of a data set C

(cf. 6.2.1.1)
(cf. 6.2.1.1)
(cf. 6 . 1. 1. 3)
(cf. 6. 1. 1. 4)
(cf. 6. 2.1. 4)
(cf. 6. 1. 1. 5)

(C =l means "open", C=10 means "close"
C=-1 means "exhausted")

6. 3.1.

6.3.2.

Assumed Procedure Declaration

'PROCEDURE' SYSACT (DATA SET NUMBER, FUNCTION, QUANTITY).,
'VALUErDATA SET NUMBER, FUNCTION.,
'INTEGER' DATA SET NUMBER, FUNCTION, QUANTITY.,
<procedure body>

Semantics

The first parameter DATA SET NUMBER specifies the effected data set. The
second parameter FUNCTION specifies the special action of a SYSACT procedure
statement. The third parameter QUANTITY is a variable of the program, or in
special cases more generally an expression, which sets or records the values of
the system parameters R, S, P, Q, K, and C (cf. footnote 9).

The following table summarizes the actions of SYSACT depending on the value of
FUNCTION. For detailed definitions, see sections 6. 3. 2.1. to 6. 3. 2.15.

9)
The letters R, S, P, Q, K, C used for the system parameters are not identifiers

in the syntactic sense of 2. 4. and not variables in the syntactic sense of 3.1. They
do not have a predescribed meaning in any ALGOL program, but serve onl:v for des­
criptive purposes within this publication. In the following sections ALGOL-like
statements containing these letters are used, such a statement as S. = QUANTITY. ,
is not a valid ALGOL statement and does not mean an assignment to a declared
variable S, but serves only to indicate that the record pointer is set to the posi-
tion denoted by the value of quantity (and that the corresponding internal action,
i. e. repositioning of the data set, is executed).

Value of
FUNCTION

2
3
4
5
6
7
8
9

10
11
12
13
14
15

6.3.2.1. Value of FUNCTION=!.
QUANTITY.=H.,

Action of SYSACT

QUANTITY. =R
R. =QUANTITY

QUANTITY. =S
S. =QUANTITY

QUANTITY. =P
P. =QUANTITY

QUANTITY. =Q
Q. =QUANTITY

QUANTITY. =K
K. =QUANTITY

QUANTITY. =C
C. =QUANTITY

QUANTITY. =S and internal action
skip records
skip to next section

A SYSACT procedure statement with FUNCTION=! is defined only if the specified
data set is open and the third actual parameter QUANTITY is a variable. The
procedure statement assigns the value denoted by the current position of the
character pointer R to QUANTITY.

6. 3. 2. 2. Value of FUNCTION=2.

A SYSACT procedure statement with FUNCTION=2 is defined only if the speci­
fied data set is open and QUANTITY has a positive 'INTEGER' type value not
exceeding the record length P for the specified data set. The action of the
statement depends on whether the last input/output procedure statement
(not SYSACT) for the specified data set was input or output. (If input or output
has not occurred since opening, i.e., since a SYSACT procedure statement
with FUNCTION=l2, QUANTITY=! (cf. section 6. 3, 2.12), input is assumed.)

6.3.2.2.1. Action after Input.

'IF'QUANTITY'NOTGREATER'R'THEN'S. =S+l.,
R. =QUANTITY.,

The character pointer R is set to the position denoted by the value of
QUANTITY (1 ~QUANTITY~ P). The record pointer S is left unchanged or
increased by 1 depending on the relation between the old and new position of
the character pointer R. The contents of the data set itself is not changed. A

83

84

following input or output procedure statement will start by handling that
character denoted by character pointer position QUANTITY, which follows
next to the old position of the data set. '

6.3.2.2.2. Action after Output.

'FOR'I. =R'STEP'l'UNTIL'QUANTITY-1+
('IF' QUANTITY'GREATER'R'THEN1 0 1ELSE 1l) 1D0 1

OUTSYMBOL (DATA SET NUMBER, '('b')',I).,

The action of SYSACT with FUNCTION=2 after an output procedure is the same
as that after an input procedure as described above; additionally the skipped
character positions are filled with blank spaces. A following output procedure
statement will start by handling that character denoted by character pointer
position QUANTITY, which follows next to the old position of the data set.

6. 3. 2.3. Value of FUNCTION=3.
QUANTITY. =S. ,

A SYSACT procedure statement with FUNCTION=3 is defined only if the
specified data set is .open and the third actual parameter QUANTITY is a variable.
The procedure statement assigns the value denoted by the current position of
the record pointer S to QUANTITY.

6.3.2.4. Value of FUNCTION=4.

A SYSACT procedure statement with FUNCTION=4 is defined only if the
specified data set is open. In case the value of QUANTITY is less than the
current position of the record pointer S, this procedure statement is defined
only if QUANTITY has a value corresponding to a record pointer which has
been entered and is still maintained in the internal index described in
section 6. 3. 2.13. The action of SYSACT with FUNCTION=4 is undefined if the
specified data set has been split into sections (cf. 6 .1.1. 4) by SYSACT with
FUNCTION=8(cf. 6. 3, 2. 8) or if the data set number is 0 or 1 (cf. 6.1.1. 2, Foot­
note 5). In these cases SYSACT with FUNCTION= 14 provides similar actions.

The action of SYS.ACT with FUNCTION=4 depends on whether the last input/out­
put procedure statement (not SYSACT) for the specified data set was input or
output. (If input or output has not occurred since opening, i. e. since a SYS­
ACT procedure statement with FUNCTION=l2 (cf. section 6. 3, 2.12), input
is assumed.)

6.3.2.4.1. Action After Input

S. =QUANTITY., R. =I.,

The record pointer S is set to the value of QUANTITY (l.::.QUANTITY) and the
character pointer R is set to 1. The data set itself is not changed. A following
input or output procedure statement will start by handling the character at the
first position within the record denoted by the value of QUANTITY.

Note: If the value of QUANTITY is greater than the number of records existing
within the data set, the action is undefined.

6.3.2.4.2. Action After Output

I FOR'I. = R1STEP1l'UNTIL'P'D0'
OUTSYMBOL (DATASETNUMBER, '('b')', 1).,

1IF 1QUANTITY' GREATER'S
'THEN' I FOR'J. =S+l' STEP'l'UNTIL'QUANTITY-l'DO'

1FOR'I. =l'STEP'l'UNTIL'P1D01

OUTSYMBOL (DATASETNUMBER, '('b'H 1)
'ELSE'S. =QUANTITY., R. =I.,

The part of the current record following the item written by the last output
statement is filled with blank spaces. The record pointer S is set to the value
of QUANTITY (1 .::. QUANTITY) and the character pointer R is set to 1. In
case of forward skipping, i.e., if QUANTITY is greater than the current
position of the record pointer S, the skipped records are filled with blank
spaces. A following input or output procedure statement will start by handling
the character at the first position within the record denoted by the value of
QUANTITY.

Notes: After executing a SYSACT with FUNCTION=4 the programmer has to
consider section 6. 2.1.3.

If QUANTITY= S, i. e. if QUANTITY denotes the current record, the following
oceurs:

After output the free positions within the current record beyond the item written
by the last ouput are filled with blank spaces. In any case the character pointer
is set to the first character within the current record.

85

86

6.3.2.5. Value of FUNCTION=5
QUANTITY. =P.,

A SYSACT procedure statement with FUNCTION=5 is defined only if the
specified data set is open and the third actual parameter QUANTITY is a
variable. The procedure statement assigns the record length P for the specified
data set to QUANTITY.

6.3.2.6. Value of FUNCTION=6
P. =QUANTITY.,

A SYSACT procedure statement with FUNCTION=6 is defined only if (1) the
specified data set is closed and (2) there is not yet any data contained in it,
i. e. , the data set is to be created by later output procedure statements. The
procedure statement specifies the record length P for that data set to be the
value of QUANTITY (cf. 6 .1.1. 3. , especially Footnote 6).

6.3.2.7. Value of FUNCTION=7
QUANTITY.=Q.,

A SYSACT procedure statement with FUNCTION=7 is defined only if the third
actual parameter QUANTITY is a variable. This statement determines whether
the specified data set is split into sections and sets QUANTITY to the value of
Q (number of records per section) if the data set is split and to the value 0 other­
wise.

6. 3. 2. 8. Value of FUNCTION=8
Q. =QUANTITY.,

A SYSACT procedure statement with FUNCTION=8 is defined only if (1) the speci­
fied data set is closed, (2) there is not yet any data contained in it, i.e., the
data set is to be created by later output procedure statements, and (3) QUANTITY
has a positive 'INTEGER' type value. The procedure statement specifies that
the data set to be created is to be split into sections of QUANTITY records
each (cf. 6 . I. 1. 4.) .

6. 3. 2. 9. Value of FUNCTION=9
QUANTITY. =K. ,

A SYSACT procedure statement with FUNCTION=9 is defined only if the third
actual parameter QUANTITY is a variable. This statement assigns the para­
meter K (number of blank spaces serving as a delimiter for data for the
specified data set, cf, 6. 2.1. 4.) to QUANTITY.

6. 3. 2.10. Value of FUNCTION=lO
K. =QUANTITY.,

A SYSACT procedure statement with FUNCTION=lO specifies that the para­
meter K (number of blank spaces serving as a delimiter for data, cf. 6. 2.1. 4.)
will be the value of QUANTITY for future input or output procedure statements
on the specified data set.

~ote: This specification is valid orly during the current execution of the

ALGOL program.

6. 3. 2.11. Value of FUNCTION=ll
QUANTITY. =C. ,,

A SYSACT procedure statement with FUNCTION=ll is defined only if the third
actual parameter QUANTITY is a variable. This procedure statement sets
QUANTITY to 1 if the specified data set is open, to 0 if it is closed and to -1
if it is exhausted (cf. 6.1.1. 5.), thereby determining the state of the data set.

6. 3. 2.12. Value of FUNCTION=l2
C. =QUANTITY.,

A SYSACT procedure statement with FUNCTION=l2 is defined only if the value
of the third actual parameter QUANTITY is 1 or 0. This procedure statement
opens the specified data set if QUANTITY=! and the data set is close, and
closes it if QUANTITY=O and if it is not close. Otherwise the statement has no
effect.

6. 3. 2.13. Value of FUNCTION=l3

A SYSACT procedure statement with FUNCTION=l3 is defined only if the
specified data set is open, not split into sections (cf. 6 .1. 1. 4.) and the third
actual parameter QUANTITY is a variable. This procedure statement has two
actions, an external one and an internal. one.

The external action is the same as that of SYSACT with FUNCTION=3, i.e., the
value denoted by the current position of the record pointer S is assigned to
QUANTITY.

87

88

The internal action is to put S into an internal index which can be used by a
later SYSACT procedure statement with FUNCTION=4 (cf. 6. 3. 2. 4.) to
the current record. The pointer S of any record to be retrieved through SYSACT
with FUNCTION=4 by skipping backward must have been entered into this
index by SYSACT with FUNCTION=l3. Although it is not necessary, a record
to be retrieved by skipping forward will be found more easily if it has been
entered into the index.

The information entered into this index is maintained as long as the data set
is open and the current record is valid, i.e., closing the data set by SYSACT
with FUNCTION=l2, QUANTITY=O, or a later output to any record with a
record pointer position less than that of the current record destroys the entry
in the index (cf. 6. 2.1. 3.).

6.3.2.14. Value of FUNCTION=l4

A SYSACT procedure statement with FUNCTION=l4 is defined only if QUANTITY>O.
If the specified data set is not split into sections; the p-rocedure statement:

SYSACT (DATASETNUMBER, 14, QUANTITY).,

is equivalent to the following sequence of statements:

'BEGIN' 'INTEGER'V.,
SYSACT (DATASETNUMBER, 3, V).,
SYSACT (DATASETNUMBER, 4, V+QUANTITY)'END'.,

The record pointer is increased by the value of QUANTITY. Therefore the
remaining characters within the current record and the following QUANTITY-I
records are skipped or filled with blank spaces, depending on whether the last
input/output procedure for that data set was input or output. A following trans­
fer of data starts at the first character location of the record following those
QUANTITY-I records.

If the specified data set is split into sections of Q records each and S+QUANTITY ..:::_Q,
where S is the current value of the record pointer, the action of SYSACT with
FUNCTION=l4 is the same as above1 i.e., if there are QUANTITY-I records
left within the current section, these records are filled with blank spaces.
Otherwise, if S+QUANTITY > Q, the action is equivalent to that of:

SYSACT (DAT ASETNUMBER, 15, l). ,

a skip is made to the first character of the next section of the data set (cf. 6. 3. 2.15).

6. 3. 2 .• 5. Value of FUNCTION=l5

If the specified data set is split into sections of Q :records each, the action
of a SYSACT procedure statement with FUNCTION=l5 is the following: Skip to
the next section of the data set, set the record pointer the value of QUANTITY,
set the character pointer to l, and fill all character positions so skipped with
blank spaces.

If the data set is not split into sections, the following two statements are
equivalent:

SYSACT (DAT ASETNUMBER, 15, QUANTITY}.,
SYSACT (DATASETNUMBER, 14, QUANTITY).,

Note: For a data set split into sections the following statement means "skip
to next section (page on printer)":

SYSACT (DATASETNUMBER, 15, 1).,

6. 4. Intermediate Data Storage

The pair of procedures PUT and GET permits data both to be stored
temporarily on an external medium without any conversion into external formats
and to be retrieved during the current execution of the ALGOL program. The
data is given by "list procedures".

6. 4.1. List Procedures

A procedure declaration used as list procedure must have one formal parameter
specified to be a procedure which itself has one parameter; data items to be
transmitted appear in the body of the list procedure as the parameter of the proce­
dure given as the parameter of the list procedure. For example assume LIST
is a list procedure, with TRANSMIT as the formal parameter. In the body of
LIST, each item to be transmitted occurs as the parameter of TRANSMIT.
When LIST is called by PUT or GET, internal transmission procedures will
be actually substituted for TRANSMIT. The data items will be called by name
and their values will be transmitted. The sequence of statements in the body
of LIST determines the sequence of items in the list to be transmitted.

A simple form of a list procedure might be written as follows:

1 PROCEDURE' LIST (TRANSMIT).,
'PROCEDURE' TRANSMIT.,

'BEGIN' TRANSMIT (A)., TRANSMIT (B)., TRANSMIT (C)
'END'

89

90

which says that the values of A, B and C are to be transmitted. A more typical
list procedure might be:

'PROCEDURE' PAIRS (ELT)., 'PROCEDURE' ELT.,
'FOR' I. =l 1STEP1l1UNTIL'N'DO"BEGIN'

ELT (A(/I/))., ELT(B(/I/))'END'

This procedure says that the values of the list of items A(/l/), B(/l/), A(/2/),
..• , B(/N/) are to be transmitted, in that order. Note that if N~O no items are
transmitted at all.

The parameter of the "transmit" procedure (i.e. the parameter of TRANSMIT
or ELT in the above examples) may be an arithmetic identifier (for PUT an
arithmetic expression) or a Boolean identifier (for PUT a Boolean expression),
but it must be of the same type for all calls within one list procedure since
identical kind and type of parameters are required. A list procedure may not
execute, directly or indirectly, PUT or GET; i.e. the procedures PUT and
GET may not be activated recursively. Besides, any of the features of
ALGOL may be used in a list procedure.

6.4. 2. Description of the Procedures PUT and GET

6. 4. 2.1. Assumed Procedure Declarations

6.4.2.2.

'PROCEDURE' PUT (N, LIST).,
'VALUE'N.,
'INTEGER' N.,
'PROCEDURE' LIST.,
<procedure body>. ,

'PROCEDURE' GET (N, LIST).,
'VALUE' N.,
'INTEGER' N.,
'PROCEDURE' LIST.,
<procedure body>.,

Semantics

The procedure PUT stores the list of values specified by the list procedure
appearing as second actual parameter to an external medium and supplies the
value of the first actual parameter as an identification number. Anything
else previously stored with the same identification number is destroyed.

The procedure GET retrieves the list of values stored by a previous PUT, using
the value of the first actual parameter as identification number. The values are
assigned to the variables specified by the list procedure that appears as the
second parameter. They are retrieved in the same order as they were stored
and must agree in type with the variables specified by the list procedure. If
fewer variables are specified than values associated with the identification number,
only the first values are retrieved; if too many variables are specified, the situation
is undefined.

The PUT and GET must occur within the same execution of the ALGOL
program.

91

92

APPENDIX 1. RELATION BETWEEN OS/360 ALGOL and ALGOL 60

In the following the restrictions of the System/360 Operating System ALGOL
language with regard to ALGOL 60 as defined in the Revised Report on ALGOL
60 [l] are listed. The definitions are in terms of the ALGOL 60 report [l]

1. The own concept is not implemented:

2.3.
5.
5 .1.1.

5.J.. 3.
5. 2.1.

5.2.2.
5.2.5.

Delete from definition of <declarator>: "own".
Delete first two sentences of fourth paragraph.
Delete definition of <local or own type>:
replace definition of <type declaration> by:
"<type declaration> ::= <type> <type list>".
Delete last sentence.
Replace in definition of <array declaration> "<local or
own type>"by"<type>".
Delete second example.
Delete this paragraph.

2. Integer labels are not allowed

3. 5.1.
3.5.5.

Delete from definition of <label> :"<unsigned integer>'!.
Delete this paragraph.

3. Complete specification parts and equivalence of types between corresponding
formal and actual parameters called by name are required.

5.4.5.

4.7.5.5.

Replace third sentence by:
"Specifications of all formal parameters if any must be
supplied".
Replace by:
"Kind and type of actual parameters must be the same as those
of the corresponding formal parameters, if called by name".

4. Only one case of letters is provided for.

2.1. Delete from definition of <letter>:
"a ! ••. !z ! ";
Delete''restricted, or " in the first sentence.

5. Identifiers will be differentiated only by up to six leading characters.

2.4.3. Replace "They may be chosen freely" by:
"Identifiers may be chosen freely, but there is no effective
distinction between two different identifiers the first six
basic symbols of which are common".

6. The type of an arithmetic expression will be determined in dubious cases
to be real.

3.3.4. Replace the words "the following rules" of the last sentence
by
"a set of rules. However, if the type of an arithmetic
expression according to the rules cannot be determined
without evaluating an expression or ascertaining the type
or value of an actual parameter, it is real. These rules are:".

7. A goto-statement involving an undefined switch designator need not have the
effect of a dummy statement.

4.3.5. Replace "equivalent to a dummy statement" by "undefined".

93

94

APPENDIX 2.

ALGOL symbol
(as defined in [I]

a ... z
o ••• 9
+

X (multiplication sign)
I

t
<

~

~
>
;C

)

v
/\ ..,
, (comma)
• (decimal point)

10 (scale factor)

[
]

'
' LJ

REPRESENTATION OF ALGOL 60 SYMBOLS IN THE
48 AND 59 CHARACTER SETS.

48 character set

A ••• Z
o •.• 9
+

*
I
'/'
'POWER' or **
'LESS'
I NOTGREATER'
'EQUAL' or=
'NOT LESS'
'GREATER'
'NOT EQUAL'
'EQUIV'
'IMPL'
'OR'
'AND'
'NOT'

' (apostrophe)

. '

.=or •. =
(
)
(/
/)
I('
I) I

blank

59 character set
(additional represen­

tations

<
< =

>=
>

--, =

&

: =

All other basic symbols which are represented in the ALGOL report by under­
lining or by boldface type as a word are punched for the System/360 Operating
System ALGOL compiler as the word enclosed in apostrophes, e.g. 'TRUE',
'FALSE', 'GOTO', 'IF' and so on.

APPENDIX 3. EXAMPLES

The first two examples are complex procedure declarations. They might
be separately transl~ted and used within different ALGOL programs in
the form of code procedures (cf. 5.4.6.). The third example demonstrates
a program using the input/output procedures described in section 6. The further
examples are possible declarations of the input/output procedures OUTREAL,
ININTEGER. OUTINTEGER, INBOOLEAN, OUTBOOLEAN, OUTSTRING,
reducing the definitions of these procedures to those of the procedures INSYMBOL,
OUTSYMBOL, INREAL, SYSACT (cf., however, 6.1. 2.).

95

96

Example 1.

'PROCEDURE'EULER(FCT, SUM, EPS, TIM)., 'VALUE'EPS, TIM.,
'INTEGER' TIM., 'REAL' 'PROCEDURE' FCT., 'REAL' SUM, EPS.,
'COMMENT' EULER COMPUTES THE SUM OF FCT (I) FOR I

FROM ZERO UP TO INFINITY BY MEANS OF A SUITABLY
REFINED EULER '.I'RANSFORMATION. THE SUMMATION IS
STOPPED AS SOON AS TIM TIMES IN SUCCESSION THE ABSOLUTE
VALUE OF THE TERMS OF THE TRANSFORMED SERIES IS
FOUND TO BE LESS THAN EPS. HENCE ONE SHOULD PROVIDE
A FUNCTION FCT WITH ONE INTEGER ARGUMENT, AN UPPER
BOUND EPS, AND AN INTEGER TllVI. THE OUTPUT IS THE SUM SUM.
EULER IS PARTICULARLY EFFICIENT IN THE CASE OF A SLOWLY
CONVERGENT OR DIVERGENT ALTERNATING SERIES.,
'BEGIN" INTEGER' I, K, N, T.' I ARRAY' M(/O .. 15/).'
'REAL' MN, MP, DS.,
I. =N. =T. =O., M(/O/). =FCT(O)., SUM. =M(/0/)/2.,
NEXTTERM .• I. l+l., MN. =FCT(l).,

Example 2.

I FOR' K. =01STEP111UNTIL'N'D01

'BEGIN' MP. =(MN+M(/K/))/2., M(/K/). =MN.,
MN. =MP'END'MEANS.,

'IF' (ABS(MN) 1 LESS1 ABS (M(/N/)))'AND1(N'LESS'l5) 1THEN1

'BEGIN'DS.=MN/2., N. =N+l.,
M(/N /).=MN' END' ACCEPT

'ELSE' DS. =MN.,
SUM.=SUM+DS.,

'IF' ABS(DS)' LESS' EPS1THEN'T. =T+l'ELSE'T. =O.,
'IF'T' LESS' TIM' THEN' I GOT01NEXTTERM
'END' EULER

'PROCEDURE'RK(X, Y, N, FKT, EPS, ETA, XE, YE, Fl).,
'VALUE'X, Y., 'INTEGER'N., 'BOOLEAN'FI.,
'REAL'X, EPS, ETA, XE., 'ARRAY'Y, YE., 'PROCEDURE'FKT.,
'COMMENT' .. HKINTEGRATES THE SYSTEM Y' (/K/)=
F(/K/)(X, Yl, Y2,, YN) (K=l, 2,, , N) OF DIFFERENTIAL
EQUATIONS WITH THE METHOD OF RUNGE-KUTTA WITH
AUTOMATIC SEARCH FOR APPROPRIATE LENGTH OF INTEGRATION
STEP. PARAMETERS ARE •• THE INITIAL VALUES X AND
Y(/K/) FOR X AND THE UNKNOWN FUNCTIONS Y(/K/) (X).
THE ORDER N OF THE SYSTEM. THE PROCEDURE FKT (X,
Y, N, Z) WHICH REPRESENTS THE SYSTEM TO BE INTEGRATED.

I.E. THE SET OF FUNCTIONS F (/K/). THE TOLERANCE
VALUES EPS AND ET A WHICH GOVERN THE ACCURACY
OF THE NUMERICAL INTEGRATION. THE END OF THE
INTEGRATION INTERVAL XE. THE OUTPUT PARAMETER
YE WHICH REPRESENTS THE SOLUTION AT X=XE. THE
BOOLEAN VARIABLE FI, WHICH MUST ALWAYS BE GIVEN
THE VALUE 'TRUE' FOR AN ISOLATED OR FIRST ENTRY
INTO RK. IF HOWEVER THE FUNCTIONS Y MUST BE
AVAILABLE AT SEVERAL MESH POINTS X(/O/), X(/l/),
, , , , X(/N/), THEN THE PROCEDURE MUST BE CALLED
REPEATEDLY (WITH X=X(/K/), XE=X(/K+l/), FOR
K==O, 1,, , N-1) AND THEN THE LATER CALLS MAY
OCCUR WITH FI=' FALSE' WHICH SAVES COMPUTING TIME.
THE INPUT PARAMETERS OF FKT MUST BEX, Y, N.
THE OUTPUT PARAMETER Z REPRESENTS THE SET OF
DERIVATIVES Z{/K/)=F(/K/) {X, Y{/l/), Y(/2/),,,
Y(/N/))FOR X AND THE ACTUAL Y'S. A PHOCEDURE
COMP ENTERS AS A NONLOCAL IDENTIFIER. THE NON­
LOCAL IDENTIFIERS S AND HS ARE ASSUMED TO BE
DECLARED 'REAL' IN A BLOCK EMBRACING ALL CALLS
OF RK.,

'BEGIN'
'ARRAY'Z. Yl, Y2, Y3(/l .. N/)., 'REAL'Xl, X2, X3, H.,
'BOOLEAN' OUT., 'INTEGER' K,J.,
1PROCEDURE'RK1ST {X, Y, H,XE, YE)., 'REAL' X, H, XE.,
I ARRAY'Y ' YE.'
'COMMENT' .• RKlST INTEGRATES ONE SINGLE RUNGE­
KUTTA WITH INITIAL VALUES X, Y (/K/) WHICH YIELDS
THE OUTPUT PARAMETERS XE=X+H AND YE (/K/), THE
LATTER BEING THE SOLUTION AT XE. IMPORTANT ..
THE PARAMETERS N, FKT, Z ENT EH RKlST AS NONLOCAL
ENTITIES.,

'BEGIN'
'ARRAY' W (/1 .. N/), A(/1 .. 5/)., 'INTEGER' K,J.,
A(/l/). =A(/2/). =A(/5/). =H/2., A(/3/). =A(/4/). =H.,
XE.=X.,
'FOR'K. =l'STEP'l'UNTIL'N'DO'YE(/K/~. =W(/K/). =Y(/K/).,
'FOR'J. =l'STEP'l'UNTIL'4'D01

'BEGIN'
FKT(XE, W, N, Z),,
XE. =X+A(/J/).,
'FOR'K. =l'STEP1l'UNTIL'N'D01

97

98

'BEGIN'
W(/K/). =Y(/K/)+A(/J /)*Z(/K/\
YE(/K/). =YE(/K/)+A(/J+l/) *(K/K/)/3
1END1K

'END'J

'END'RKlST.,
BEGIN OF PROGRAM •.

'IF'Fl'THEN"BEGIN'H. =XE-X., S. =O'END'
'ELSE'H =HS.,
OUT. ='FALSE'.,

AA .. 'IF'(X+2. Ol*H-XE'GREATER'O)'EQUIV'(H'GREATER'0) 1THEN'
'BEGIN'HS. =H., OUT. ='TRUE'., H. =(XE-X)/2
'END'IF.,
RKIST (X, Y, 2 *H, Xl, Yl).,

BB .. RKlST (X, Y, H, X2, Y2)., .RKlST (X2, Y2, H, X3, Y3). ,
'FOR'K. =l'STEP'l'UNTIL'N'DO'

'IF'COMP(Yl(/K/), Y3(/K/), ETA)'GREATER' EPS'THEN'
"GOTO' CC.,

1 COMMENT' .. COMP(A, B, C) IS A FUNCTION
DESIGNATOR, THE VALUE OF WHICH IS THE
ABSOLUTE VALUE OF THE DIFFERENCE OF THE
MANTISSAE OF A AND B, AFTER THE EXPONENTS
OF THESE QUANTITIES HAVE BEEN MADE EQUAL TO
THE LARGEST OF THE EXPONENTS OF THE
ORIGINALLY GIVEN PARAMETERS A, B, C.,
X. =X3., 'IF'OUT'THEN"GOTO'DD.,
1FOR'K. =l'STEP'l'UNTIL'N'DO'Y(/K/). =Y3(/K/).,
'IF'S'EQUAL'5'THEN11 BEGIN'S. =O. ~ H. =2*H'END'IF.,
S.=S+l., 1GOT01AA.,

CC •. H. =O. 5*H., OUT.=' FALSE'., Xl. =X2.,
'FOR'K. =l'STEP'l'UNTIL'N'DO'Yl(/K/). =Y2(/K/).,
1 GOT01BB.,

DD .. 'FOR'K. =l'STEP1l'UNTIL'N1D01YE(/K/). =Y3(/K/)
1END'RK

Example 3,

'BEGIN'

'COMMENT' THIS PROGRAM GENERATES THE FIRSTTWENTY LINES OF
PASCALS TRIANGLE AND WRITES THEM TO A DATASET DENOTED BY THE
DAT ASETNUMBER 1. ,

'INTEGER' L, K, N, I, M, POWERTEN.,
'INTEGER' 'ARRAY' A(/O •. 19/).,
'BOOLEAN' C.,
SYSACT (1, 6, 120)., SYSACT(l, 12, 1).,
SYSACT (1, 4, 2). , SYSACT (1, 2, 40). ,
OUTSTRING (1, '('PASCALSbTRIANGLE')').,
'FOR'L. =01STEP'l'UNTIL'l9'D01

'BEGIN'
SYSACT(l, 4, 2*L+5)., SYSACT (1, 2, 58-3*L).,
A(/L/). =l. ,
'FOR'K. =L-l'STEP'-l'UNTIL'l'DO'
A(/K/). =A(/K-1/)+A(/K/).,
'FOR1K. =O'STEP'l'UNTIL'L'DO'
'BEGIN'

C. ='TRUE'. ,
M. =A(/K/).,
'FOR'I.=5'' 3TEP'-l'UNTIL'O'D01

'BEGIN'
POWER TEN. =101 POWER'I.,
N. =M'/'POWERTEN.,
M. =M-N*POWERTEN.,
I IF' N' EQUAL' 01 THEN I

'BEGIN''
'IF'C'THEN' OUTSYMBOL (1, '('b')', 1).,
'ELSE' OUTSYMBOL (1, '('0')', 1).,

'END'
'ELSE'
'BEGIN'

C.='FALSE'.,
OUTSYMBOL(l, I ('123456789') 1 , N).'

'END'
'END'

'END'
'END'

'END'

99

100

Example 4.

'PROCEDURE' OUTREAL (DSN, SOURCE).,
'VALUE' DSN, SOURCE.,
'INTEGER' DSN., 'REAL' SOURCE.,
1BEGIN11 1NTEGER' I, N, R, P, K, EXP.,

SYSACT (DSN, 12, 1)., SYSACT (DSN, 1, R).,
SYSACT (DSN, 5, P)., SYSACT (DSN, 9, K).,
'IF'P-R+l'LESS'22'THEN"BEGIN'SYSACT (DSN, 14, 1)., R.=l'END'.,
'IF1SOURCE 1 EQUAL'01THEN11 BEGIN"FOR'I. =l'STEP'l'UNTIL'22'D0 1

OUTSYMBOL(DSN, '('bObbbbbbbbbbbbbbbbbbbb')', 1).,
'GOTO' END

1END1
.,

OUTSYMBOL(DSN, '('+-1)
1

, 'IF' SOURCE 1 GREATER'0'THEN'l'ELSE'2).,
SOURCE. =ABS(SOURCE). ,
EXP. =O.,
'FOR'I. =l'WHILE 1SOURCE1NOT LESS1l01D01

'BEGIN'SOURCE.=SOURCE/10., EXP.=EXP+l 'END'.,
'FOR' I. =l'WHILE' SOURCE 'LESS'l'D01

'BEGIN' SOURCE.=SOURCE*lO., EXP.=EXP-1 'END'.,
N. =ENTIER (SOURCE).,
SOURCE. =lO*(SOURCE-N).,
OUTSYMBOL(DSN, 1 (11234567891)', N).,
OUTSYMBOL (DSN, '(' .. ') 1,1).,
'FOR'I. =14 1STEP'-l'UNTIL'0'D0'

'BEGIN'N. =ENTIER(SOURCE).,
SOURCE. =lO*(SOURCE-N).,
OUTSYMBOL(DSN, '('0123456789')', N+l)

'END'.,

OUTSYMBOL (DSN, 1(11 ')', 1).,
OUTSYMBOL(DSN, '('+-')', 'IF1EXP1NOT LESS1 01THEN'l'ELSE'2).,
EXP. =ABS(EXP). ,
N. =EXP'/'10.,
EXP. =EXP-N*lO.,
OUTSYMBOL(DSN, I (10123456789 1) 1 , N+l).'
OUTSYMBOL(DSN, 1 ('0123456789')', EXP+l).,

END •• 'FOR'R. =R+22 1STEP1l 1UNTIL'R+2l+K'D0'
'IF'R'NOT GREATER1P 1THEN10UTSYMBOL(DSN, '('b')', 1)

'END'OUTREAL.,

Example 5.

1 PHOCEDURE 1ININTEGER(DSN, DESTINATION).,
'VALUE'DSN.,
1INTEGER1DSN, DESTINATION.,
'BEGIN"REAL'R.,

INREAL(DSN, R).,
DESTINATION. =R

'END'lNINTEGER.,

Example 6.

'PROCEDURE'OUTINTEGER(DSN, SOURCE).,
1VALUE'DSN, SOURCE.,
'INTEGER' DSN, SOURCE, POWERTEN.,
1BEGIN111NTEG:t:R' I, N, K, P, R., 1BOOLEAN'SIGN, STARTED.,

SYSACT (DSN, 12, 1).,
SYSACT(DSN, 5,P)., SYSACT(DSN, 1, R)., SYSACT(DSN, 9, K).,
'IF'P-R+l'LESS'll'THEN"BEGIN'SYSACT(DSN, 14, 1)., R. =l'END'.,
1 IF'SOURCE'EQUAL'01THEN1

'FOR'. 1.::.- l'STEP'l'UNTIL'll'DO'
1 BEGIN10UTSYMBOL(DSN, '('bbbbbbbbbbO')', I)., 'GOTO' END 1END 1

.,

SIGN. =SOURCE 1GREATER'O.,
SOURCE. =ABS(SOURCE).,
STARTED. ='FALSE'.,
I FOR'I. =9 1STEP1 -l'UNTIL' O'DO'
'BEGIN'POWERTEN. =101POWER1I.,

N. =SOURCE' /'POWERTEN.,
SOURCE. =SOURCE-N*POWERTEN.,
'IF'N'EQUAL'O
1THEN10UTSYMBOL(DSN,1('0b')', 1IF'STARTED'THEN'l1ELSE'2)

1 ELSE 11 BEGIN11 IF 11 NOT 1STARTED'THEN''BEGIN1STARTED.='TRUE'
. ,OUTSYMBOL(DSN, '('+-')', 'IF'SIGN11 THEN'l

I ELSE'2) 'END'.'

OUTSYMBOL(DSN, 1
(

1123456789')', N)
'END'

'END'.,
END .. 1FOR1R. =R+ll'STEP1l 1UNTIL'R+lo+K1D01

'IF'R'NOTGREATER'P'THEN'OUTSYMBOL(DSN, '('b')', 1)
'END' OUTINTEGER.,

101

102

Example 7.

1PROCEDURE'INBOOLEAN (DSN, DESTINATION).,
1VALUE'DSN.,
1INTEGER1DSN., 'BOOLEAN'DESTINATION.,
1BEGIN11 1NTEGER11, N, M, K, P, R.,

SYSACT(DSN, 12, 1).,
SY8ACT(DSN, 5, P). , SYSACT(DSN, 9, K). ,
LL • SYSACT(DSN, 1, R). ,

M.=O.,
1FOR'R. =R'STEP'l'UNTIL'P'DO'

'BEGIN"INSYMBOL (DSN, 'e")', N).,
I IF' N' EQU AL'l' THEN' I GOTO' L2

'END'.,
1GOTO'Ll.,

L2 •. 'IF'R'EQUAL'P1THEN"GOT0' Ll.,
R. =R+l.,
INSYMBOL(DSN, '('TFb')', N).,
'IF'N'EQUAL'l'THEN"BEGIN'M. =O., 'GOTO'TRUE'END'.,
'IF'N'EQUAL'21THEN"BEGIN1M. =O., 'GOTO' FALSE' END.,
'IF'N'EQUAL'3'THEN"BEGIN'M. =M+l.,

'IF'M' LESS'K'THEN"GOTO' L2
'END'.,

'GOTO'Ll.,
TRUE .• 'FOR'I. =l'STEP'l'UNTIL'4'D0'

1 BEGIN''IF'R'EQUAL'P1THEN11 GOTO'Ll.,
R. =R+l.,
INSYMBOL(DSN, '('RUE'b')', N).,
I IF' N' EQUAL' 5
'THEN11 BEGIN1M. =M+l., I. =I-1.,

11F1M'EQUAL'K'THEN''GOT0' Ll
'END'

'ELSE11 BEGIN'M. =O.,
'IF' N' NOTEQU AL' I' THEN'

'END'
'END'.,

DESTINATION. =1 TRUE'.,
1GOT01END.,

'G0T011 1F'N'EQUAL'4'THEN'L2'ELSE'Ll

FALSE .. 'FOR'I. =l'STEP'l'UNTIL'5 1D0'
'BEGIN"IF 1R1EQUAL'P1THEN11 GOTO'Ll.,

R. =R+l.,
INSYMBOL(DSN, '(' ALSE'b')', N).,
11F'N'EQUAL'6
'THEN"BEGIN'M. =M+L, I. =I-1.,

I IF' M' EQUAL'K' THEN' I GOTO' Ll
'END'

1ELSE11 BEGIN'M. =O.,
I IF 'N' N,OTEQU AL'I' THEN'

I GOTO'' IF' N' EQUAL' 5 I THEN' L2' ELSE I Ll
'END'

'END'.,
DESTINATION. ='FALSE'.,

END •• N.=O.,
'FOR'I. =R+l'WHILE'N'NOTEQUAL'l'DO'
'BEGIN' I. =l+l.,

INSYMBOL(DSN, '('b')', N).,
'IF'l'EQUAL'P'THEN''G0TO'L3

'END'.,
'IF'l'NOTLESS'R+K'THEN'SYSACT ~DSN, 2, I).,

L3 .. 'END'INBOOLEAN.,

Example 8.

'PROCEDURE 10UTBOOLEAN{DSN, SOUHCE).,
'VALUE'DSN, SOURCE.,
1 INTEGER1DSN., 1BOOLEAN'SOURCE.,
'BEGIN "INTEGER'I, P, R, K.,

SYSACT{DSN, 12, 1)., SYSACT (DSN, 5, P).,
SYSACT(DSN, 1, R) •. , SYSACT(DSN, 9, K).,
'IF'P·-R+l' LESS'7 1THEN11 BEGIN1SYSACT(DSN , 14, 1)., R. =l 'END'.,

1IF 1SOURCE'FQUAL 11 TRUE 11 THEN''BEGIN''FOR'I. =l'STEP'l'UNTIL'7 1D01

'END'

OUTSYMBOL(DSN,
'("TRUE'b')', I)

1ELSE 11 FOR11. =11STEP1l'UNTIL'7 1D0'
OUTSYMBO L(DSN' I (II FALSE") I' I). '

1 FOR1R. =R+7 1STEP111UNTIL'R+6+K1D01

'IF'R'NOTGREATER1 P 1THEN'OUTSYMBOL(DSN, '('b')', 1)
1 END10UTBOOLEAN.,

Example 9.

1PROCEDURE'OUTSTRING(DSN, SOURCE).,
1VALUE 1DSN.,
'INTEGER'DSN., 'STRING' SOURCE.,
'BEGIN' 'INTEGER' I.,

I FOR'l. =11STEP11UNTIL' LENGTH(SOURCE) 'DO'
OUTSYMBOL(DSN, SOURCE, 1)

'END10UTSTRING.,

103

104

LITERATURE

[l] "Revised Report on the Algorithmic Language ALGOL 60."
Communications of the Association for Computing Machinery,
volume 6 (1963), page 1.

[2] "Report on Input/Output Procedures for ALGOL 60 11 •

Communications of the Association for Computing Machinery,
volume 7 (1964), page 628.

[3] "ISO Draft Proposal on the Algorithmic Language ALGOL."
ISO/rC 97 /SC 5 (Secr-24) 102, March 1, 1965.
Appendix 1, German Proposal for representation of ALGOL
symbols

(4] "ECMA Subset of ALGOL 60", Communications of the
Association for Computing Machinery, volwne 6 (1963),
page 595.

[5] "Report on SUBSET ALGOL 60 (IFIP)," Communications
of the Association for Computing Machinery , volume 7 (1964),
page 626.

C6] D. E. Knuth, "A list of the remaining trouble spots in ALGOL 60",
ALGOL Bulletin 19 (1965), page 19.

INDEX

(The numbers denote the sections of this paper and the corresponding pages)

+

*
I'/'

. '
b
()
(/ /)
I (I I) I

ABS

see:
see:
see:
see:
see:
see:
see:
see:
see:
see:
see:
see:
see:
see:

3.2.4.1

plus
minus
multiply
divide
comma
decimal point
ten
colon
semicolon
colon equal
space
parentheses
subscript brackets
string quotes

actual parameter 3. 2.1,4. 7
alphabet 2. 1
1AND1 3.4.1
AR.CTAN 3.2.4.1
arithmetic expression 3. 3
arithmetic operator 2. 31' 3. 3
'AH.RAY' 5.2.1
array 3.1. 4, I. 5. 2
array declaration 5. 2
assignment statement 4. 2
b see: space
basic statement 4. 1. 1
basic symbol 2
'BEGIN' 4.1.1
block 4.1, 5
'BOOLEAN' 5.1, 2. 8
Boolean expression 3. 4
bound pair 5. 2
bracket 2. 3

character 6 .1. I. 1
character pointer 6. 2. 1.1
character position 6. 2.1.1
close 6.1.1. 5
'CODE' 5.4.6
colon .. 2. 3
colon equal.= 4. 2. 1

19
18, 46
10
27

19
22
10, 22
57
18, 57
57
35

32
10
32
32, 55
56, 16
27
57
10

68
71
71
70
67
10
35

105

106

comma, 2.3
I COMMENT' 2. 3
compound statement 4.1
conditional statement 4. 5
controlled variable 4. 6. 3, 4. 6. 4
control procedure 6. I. 2, 6. 3
cos 3. 2.4.1

data set 6.1.1. 2
decimal point • 2. 5. I
declaration 5
declarator 2. 3
designational expression 3. 5
digit 2. 2.1
dimension 5. 2. 3. 2
divide /, '/' 3. 3.1, 3. 3. 4. 2
'DO' 4. 6.1
dummy statement 4. 4

'ELSE' 3. 3.1, 3. 4.1, 3. 5.1, 4. 5
empty I. I
1END1 4.1.1
ENTIER 3.2.4.2
'EQUAL' 3.4.1
1EQUIV1 3.4.l
EXP 3. 2.4.1
exponentiation 3. 3. 4. 3
expression 3

'FALSE' 2. 2. 2
'FOR' 4.6
function designator 3. 2, 5. 4. 4
function procedure 5. 4. 4
functions of SYSACT 6. 3. 2

GET 6.4.2
1GOT01 4.3
'GREATER' 3.4.1

INDEX (cont'd)

10
10
32
38
42, 42
70, 81
19

68
13
55
10
30
10
58
22, 25
41
38

22, 27, 30, 38
8

32
21
27
27
19
25
17

10
41
18
65
82

90
37
27

identifier 2. 4.
'IF' 3.3.l, 4.5.l
if statement 4. 5
'IMPL' 3. 4.1
IN ARRAY 6. 2. 2. 6
INBARRAY 6. 2. 2. 6
INBOOLEAN 6. 2. 2. 4
ININTEGER 6. 2. 2.3
input procedure 6. I. 2
INREAL 6. 2. 2. 2
INSYMBOL 6. 2. 2.1
INTARRAY 6. 2. 2.6
'INTEGER' 2. 8
integer 2. 5

'LABEL' 5.4. l
label 3. 5, 4. I. 3
LENGTH 3. 2. 4. 3
'LESS' 3.4.1
letter 2.1
list procedure 6. 4.1
LN 3.2.4.1
local 4.1. 3, 5
logical operator 2. 3, 3. 4
logical value 2. 2. 2, 2. 8
lower bound 5. 2

minus - 3. 3.1
multiply * 3. 3.1

name replacement 4. 7. 3. 2
nonlocal 4. I. 3.
'NOT' 3.4.1
'NOTEQUAL' 3. 4.1
'NOTGREATER' 3. 4.1
'NOT LESS' 3. 4.1
number 2. 5

open 6.1.1. 5
operator 2. 3
'OR' 3.4.1
OUT ARRAY 6.2. 2.6
OUTBARRAY 6. 2. 2.6
OUT BOOLEAN 6. 2. 2. 4
OUTINTEGER 6. 2. 2. 3
output procedure 6. I. 2

INDEX (cont'd)

12
22, 38
38
27
79
79
77
76
70
74
72
79
16
13

61
30, 34
21
27
IO
89
19
34, 55
10, 27
10, 16
57

22
22

47
34
27
27
27
27
13

70
10
27
79
79
77
76
70

107

108.

OUTREAL 6. 2. 2. 2
OUTSTRING 6. 2. 2. 5
OUTSYMBOL 6. 2. 2.1
OUTTARRAY 6. 2. 2. 6

INDEX (cont'd)

parameter delimiter 4. 7. I, 4. 7. 6
parentheses (,) 2. 3, 3. 3. 5. 2
'POWER' 3. 3.1
precedence 3.3.5.1., 3.4.6.l
precision 2. 8
'PROCEDURE' 5.4.1
procedure body 5.4.
procedure declaration 5. 4
proecdure heading 5. 4
procedure statement 4. 7•
program I, 4.1.1
PUT 6.4.2

quantity 2. 7

'REAL' 2. 8, 5.1
record 6. I. I. 3
record length 6.1.1. 3
record pointer 6. 2. I. I
recursive procedure 5. 3.1
relation 3. 4
relational operation 2 . 3, 3. 4

scope 2.7, 4.1.3, 5
section 6. I. I. 4
semicolon., 2. 3
separator 2. 3
sequential operator 2. 3
side effect 5.4.4.1
SIGN 3. 2. 4.1
simple arithmetic expression 3. 3
simple Boolean 3. 4
simple designational expression 3. 5
simple variable 3. I
SIN 3. 2. 4.1
spaceb 2.6.3, 6.1.1.1, 6.2.1.4
specification 5. 4. 5

74
78
72
79

46, 54
I 0, 26
26, 29
16
61
61
61
61
46

7, 32
90

15

16, 56
69
69
71
59
27
10, 27

15, 34, 55
69
10
10
10
66
19
22
27
30
17
19
14, 68, 72
66

specificator 2. 3
SQRT 3. 2.4.1
standard function 3. 2. 4
standard procedure 6. I. 2
statement 4

INDEX (cont'd)

statement bracket, see 1 BEGIN', 'END'
'STEP' 4. 6. 4. 2
'S'I'RING' 2.3
string quotes '(', 1) 1 2. 6
subscript bound 5. 2. 3.1
subscript brackets (/, I) 2. 3
subscript variable 3.1. 4.1
successor 4
'SWITCH' 5. 3
switch declaration 5. 3
switch designator 3. 5
symbol 2. 6. 3
syntax I.I
SYSACT 6.3
system parameter 6. 3

ten' 3. 5.1
then 3.3.l, 4.5.l
transfer function 3. 2.4. 2.
'THUE' 2. 2. 2
type 2. 8
type declaration 5.1

unconditional statement 4.1.1
undefined I (note)
unsigned number 2. 5.1
'UNTIL' 4.6.4. 2
upper bound 5. 2

value 2. 8
'VALUE' 5.4.1, 4. 7. 3.1
variable 3. I
'WHILE' 4. 6. 4. 3

10
19
19
70
32

43
10
14
58
10
18
32
59
59
30
14

8
81
81

30
22, 38
21
10
16
56

32
8

13
43
57

16
61, 47
17
44

109

(28-6615-0

International Business Machines Corporation
Data Processing Division
112 East Past Raad, White Plains, N. Y. 10601

r' I

I

I
Ill" I

\tle: IBM System/ 360 Operating System

ALGOL Language

f\\
... .,.-·/he nuterial:

. i:asy to Read?
I · Well organized?

Complete?
Well illustrated?
Accurate?

READER'S COMMENTS

Yes No

Suitable for its intended audience?

low did you use this publication?

Form: C28-6615-0

~As an introduction to the subject For additional knowledge Other _______________________________ __

Please check the items that describe your position:
_Customer personnel _Operator
_ IBM personnel _Programmer
_Manager _customer Engineer
_ Systems Analyst _Instructor

fold

_Sales Representative
_systems Engineer
_Trainee

Other ____________ ~

Please check specific criticism(s), give page number(s) ,and explain below:
___ Clarification on page (s)
_Addition on page (s)
__ Deletion on page (s)
_Error on page (s)

Explanation:

.,.

.-: \

-
FOLD ON TWO LINES , STAPLE AND W,_

j

No Postage Necessary if Mailed ~
"'~-.,,ttl,.

fold

c2S-6615-0

fold

told

r--1
I BUSINESS REPLY MAIL I
I NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A. I
L--J

POSTAGE WILL BE PAID BY

IBM CORPORATION
P.O. BOX 390
POUGHKEEPSIE, N. Y. 12602

ATTN: PROGRAMMING SYSTEMS PUBLICATIONS
DEPT. D58

Tirn~ -~
9 .' - ------ -P: _.,

International Business Machiaps Corporation ~-
- ·- Processing Division -~ i

"SI I l ,?~1~· -~ .., Y. 10601 r "

r--------------------
1 FIRST CLASS
I PERMIT NO. 81
I
I POUGHKEEPSIE, N.Y.
L--------------------

111111

I II I II

111111

111111

111111

111111

II I II I

