File No. 5360-26
Form C33-4000-0

IM Systems Reference Library

IBM Systemn/360 Operating System

ALGOL Programmer's Guide

Program Number 360S-AL-531....Compiler
3605-LM-532. .., Library Routines

This publication describes how to compile, linkage edit and
execute a program written in the System/360 Operating System
Algorithmic Language (ALGOL), It includes an introduction

to the operating system and a desecription of the information
listings that can be produced, the job control language, and
the subroutine library.

PREFACE

This publication is intended for use by Application
Programmers, Systems Programmers and IBM
Systems Engineers. A knowledge of ALGOL is
assumed, and the reader is expected to be familiar
with the prerequisite publication:

IBM System/360 Operating System: ALGOL Lan-
guage. Form C28-6615.

In Section 2, the description "IBM -Supplied
Cataloged Procedures' provides sufficient informa-
tion to process and execute an ALGOL program
that can use the IBM-supplied cataloged procedures
without modification.

The rest of Section 2, together with information
in Section 1 and the Appendices, will be required
for programs that cannot use the IBM-supplied
cataloged procedures without modification.

The description of information listings in Section
3 and the list of diagnostic messages given in
Appendix F will be helpful in interpreting system
output, especially for debugging.

An extensive index has been provided to assist
the reader in using the manual for reference pur-

poses.

This publication contains most of the infor-
mation required by the Applications Programmer.

First Edition (April 1967)

The following publications are referred to within
the text for information beyond the scope of this
publication.

IBM System/360 Operating System; Assembler
Language. Form C28-6514,

IBM System/360 Operating System: Data Management.
Form C28-6537.

IBM System/360 Operating System: Linkage Editor.
Form C28-6538,

1BM System/360 Operating System: Job Control
Language. Form C28-6539,

IBM System/360 Operating System: Operator s
Guide. Form C28-6540,

IBM System/360 Operating System: Control Program
Services. Form C28-6541,

IBM System/360 Operating System: Utilities., Form
C28-6586. ’

IBM System/360 Operating System: FORTRAN IV
Library Subprograms. Form C28-6596,

IBM System/360 Operating System: Messages, Com-
pletion Codes, and Storage Dumps. Form C28-6631,

Significant changes or additions to the specifications contained in this publication will be reported in sub-

sequent revisions or Technical Newsletters,

Requests for copies of IBM publications should be made to your IBM representative or to the IBM branch

office serving your locality.

A form is provided at the back of this publication for reader’s comments. If the form has been removed,
comments may be addressed to IBM Corporation, Department 813, 112 East Post Road, White Plains, N.Y.
10601, or IBM Nordic Laboratory, Technical Communications, Vessleviigen 3, Liding, Sweden.

@International Business Machines Corporation 1967

SECTION 1: INTRODUCTION .,..... vesesse o B
Source Program .. .cveveevesssesssssossssves o D
Operating System ...veeeeveerrorteraonennns . 5
Job Controlvcvvuverinnes Ceeeaaes 5
Control Program
Job Scheduling ..,civiviiiinnnnann, . 6
SUPETrVISOT seeeersecscananss teaseans cees 6
Data Management .ceeeeseocaanss cessanes 6
Processing Programs +esseessssssosssessas, 8
ALGOL Compiler veecevrenssseossneannas . 8
Linkage EAitor covsvnsvressnnnsns veseere o 9
Load Module Execution.eceeseeeessnseensas 9
Machine Configuration «eeeveeeveoas teeennsaas 9
SECTION 2: SOURCE PROGRAM HANDLING .. 10
IBM -Supplied Cataloged Procedures10
Compilation v.vivreerreerenscnnans veeasss o 10
Compilation and Linkage Editing...veaveane . 10
Compilation, Linkage Editing and Execution . . 12
Over-riding Cataloged Procedures......... .12
Over-riding EXEC StatementS ccveeeseanes .12
Over-~riding DD Statements ...ceveveens o 013
Adding DD Statements ...vvevssaveessssse o 13
User-Written Procedures «.veeevsessnnvsess o 13
Compilation..evserensosans D 8-
Invoking Statement ceereenans ee. <13
Data Sets Used teeesereersenransans . 14
Linkage EAiting +ovvvrierervaronsens vereaes o 14
Invoking Statement00u00n R)
Data Sets Used teeesavsvena . .15
Load Module Execution..ss.veeeseansn. veese o 15
Invoking Statement Ceeersenenes . .15
Data Sets Used cvvvuservrersesssereesess o 16
SECTION 3: INFORMATION LISTINGS18
Control Program Listings P
Compilation Listings Cesaeeeaa vees 018
Source Program Ceeterseerceraeraneas .18
Identifier Table svvevvensesn. B
Diagnostic Messages oo Ceerasass .20
Storage Requirements veenees <20
Linkage Editing Listings...oceeeeereeeass . 20
Diagnostic MessSagesS seeevevsearernssasnas .. 21
Module Map +vvevune [ceveee W 21
Cross-Reference Table00u.. vevee s 21
Execution Time Listingsvvveevenenss oo 21
Diagnostic Messages seseserse veses 21
Data Storage Areas et ireanaans L. 21
ALGOL Program Tracec.eeeeeeeesns vee s 22

CONTENTS

SECTION 4: PROGRAMMING
CONSIDERATIONS sevevoeesas Cereacncarsenaas
Capacity Limitations «v.oeeeeeeessns e
Invoking a Program Within a Job Step .
Precompiled Procedurese.u.

sessene s s

Pessevecsns o

APPENDIX A: ALGOL LIBRARY ROUTINES. ..
Fixed Storage Area..seeeessas

R N R N Y

APPENDIX B: IBM-SUPPLIED
CATALOGED PROCEDURES
Compilationseesevsssereenanns teereessesaans .
Compilation and Linkage Editing..ceceveeass o s
Compilation, Linkage Editing and Execution

APPENDIX C: CARD CODES e
APPENDIX D: OBJECT MODULE...... ceveee o

APPENDIX E: USING JOB CONTROL
LANGUAGE......
Coding Format
ConventionS .eevevevensensensn
Control Statement Coding........ e
JOB Statement00..
EXEC Statementcvvevenen
DD Statement ...
Command Statement Ceeenrsraes .
Data Set Concatenation «vvovveveennss seeasene o
Job Control Language ExampleS . vveeesveseeees o
Example 1: Executing a Single
Load Module
Example 2: Compiling, Linkage Editing
and Executing Three Load Modules ...
Example 3: Executing Two Load Modules

P N I R A R R X I
seeseeans o
DR I A A A A)
seseseass o
sereeetss e

seevere o

R I R R R I R N N N A IR Y

ts e et s s e s e e e o

APPENDIX F: DIAGNOSTIC MESSAGES
Compiler Messages
Linkage Editor MesSSagesS cvsuivssseorasssonns o
Execution Time Messages ..

..... sesssss s e s sev s o

D I N N N I I I

INDEX

D I A A

25
26
27

31
31

Mathematical Routines «vvveeeevsssesresenens o 31
Input/Output Routines «vvveesesnss B 3 |
Exrror Routine....... T 1 §

. 34

34
32
35

. 36

37

38
38
38
38
40

. 41

43
47
47
47

47
48
50

52
52
59
60

64

FIGURES

Figure 1. Basic flowchart for handling an

ALGOL program ceeee

esses e

Figure 2, Sample deck for using ALGOFC
cataloged procedure with a single source

PrOSTAM .. .iveeeveosossvconens

Figure 3. Sample deck for using the
ALGOFCL cataloged procedure with two

SOUrcCe pProgramsS..ceeeesees

eeess e

sse s

Figure 4. Flowchart showing data sets
used by the compilerccceveuienns oo

Figure 5. Table of data sets used by

the compiler0000

sseccreses s

Figure 6. Effect on compiler if more than

44K bytes of main storage is available

Figure 7. Flowchart showing data sets
used by the linkage editorccveveeeens

Figure 8, Table of data sets used by the

linkage editorc... .

Figure 9. Flowchart showing data sets used

at execution time

eesseencens

Figure 10. Table of data sets used at

execution time ,......00000.

sessacse

esv s

Figure 11, Example of source program

listing heereenanns

vecracee

Figure 12, Example of identifier table

listing Cheseesancannaa

eseesess e o

Figure 13. Example of storage requirements

Lsting ..vuveieernorncnsoen oo

seer e v

o

s e

11

14

14

15

15

15

17

17

. 23

23

23

Figure 14, Example of cross-reference table

TiStiNg .veuvevevercrsrnsovsosrsrcassasnsaas o 24
Figure 15. Example of data storage area
listing...eu0us essesssenns vesssssseransess o 24
Figure 16, Example of program trace listing . 24
Figure 17, Table of parameter characteristics
for an. Assembler language pre-compiled

ProcedUreeoeerveeseesvsssconscssosacsss 30
Figure 18, Table of ALGOL library modules . 32
Figure 19. Source program card codes....... 36
Figure 20, Object module card deck ...vve0es, 37
Figure 21. Control statement formats 38
Figure 22, Data set cataloging using

qualified namescvvvvvervecssnsesees s 39
Figure 23, JOB statement parameters .,..... 40
Figure 24, EXEC statement parameters 41
Figure 25, DD statement parameters oo 43
Figure 26, 1/0 flow for Example 1e0.. . 47
Figure 27. Job control statements for

Example 1 ccivvvvucnrssvesnanssnseesosnsnses 48
Figure 28, 1/0 flow for Example 2 ...0vvsee . 49
Figure 29. Job control statements for

Example 2 ...iuiviiriiiersencenrrocnnessos s 49
Figure 30. I/0 flow for Example 3 50
Figure 31. Job control statements for

EXxample 3 .viveevereccroncesossoscssesecanes DL

The primary constituent of a System/360 data pro-
cessing operation is a job, This, basically, is

the work that the user requires the computer to
do., To carry out a job, a computer needs two
types of information -- a program and data.

© A program (known in this context as a source
program) is a sequence of instructions which
specify the actions to be performed by the ma-
chine, These instructions are written in a
symbolic language and are translated into
machine language by a processing program
contained in the operating system before they
are performed,

@ Data is the information to be processed by the
program, The source program is regarded as
data while it is being processed by operating
system programs to make it suitable for exe-
cution,

From this brief introduction it can be seen that
a job is affected by three separate factors -- the
source program, the operating system and the
machine configuration,

SOURCE PROGRAM

For jobs discussed in this publication, the source
program will be written primarily in System/360
Operating System ALGOL (Algorithmic Language).
This is defined in IBM System/360 Operating
System: ALGOL Language. In addition the pro-
grammer must observe the restrictions, caused

by internal capacity limitations, listed in Section 4,

An ALGOL source program may be written in
freeform on any 80 column coding sheet, The pro-
gram text is contained in columns 1 to 72, Columns
73 to 80 can be used by the programmer for pro-
gram identification. To avoid confusion with job
control statements (see ""Operating System'"), the
character sequences // and /* must not be used
in columns 1 and 2. It is possible to do this since
these sequences are syntactically incorrect out-
side strings, and when they occur within strings,
they may be shifted into non-critical columns by
inserting a blank space before the opening string
quotes (% Two character sets are available for
punching the source program into a card deck
(see Appendix C).

For operations that require more precise con~
trol over the machine than can be provided by

SECTION 1; INTRODUCTION

ALGOL, subprograms written in Assembler lan-
guage can be included in the source program (see
Section 4), Assembler language subprograms can
also be used as a link to other languages, such as
PL/I, COBOL and FORTRAN, The Assembler
language is defined in IBM System/360 Operating
System: Assembler Language,

OPERATING SYSTEM

The System/360 Operating System is a set of IBM-
supplied, control and processing programs (sup-
plemented if necessary by user-written programs)
that assist the programmer to use the computer
efficiently, The operating system selected for a
particular installation is generated during the ini-
tial setting-up of the computer, by a process known
as system generation,

Job Control

Operating system instructions (known as job con-
trol statements) must be added to the source pro-
gram to control its handling within the operating
system and to specify the data management faci-
lities required,

These statements do not need to be specified
until the program is ready to be executed. This
means that the program can be prepared indepen-
dent of installation considerations,

Six types of statements are available, which,
in conjunction with associated parameters, can
supply all information required by the operating
system for job control, To save programming
effort, commonly used sequences of control state~-
ments can be stored by the system for subsequent
recall by identifying names, These sequences are
known as cataloged procedures.

JOB is the first statement of each job, It indi-
cates that a new job is beginning and, consequently,
that the previous job has ended, A job can be di-
vided into a number of job steps, which can be
inter~related to improve processing efficiency.
For example, the execution of one job step can be
made dependent on the result of a previous one,
This is an important feature of the operating sys-
tem and users are recommended to exploit it as
fully as possible,

EXEC (Execution) is the first statement in each
job step, It specifies the program or cataloged

Introduction 5

procedure to be executed, and must be included
even if the job consists of only one job step.

DD (Data Definition) is the statement used to
describe a data set and to specify associated data
control block information, It also specifies input/
output (I/0) device agssignment, One or more DD
statements are usually required for each job step.

In addition the command statement is used to
place operator commands into the input stream,
the null statement indicates the end of the last job
in the input stream, and the delimiter statement
separates data from subsequent control statements
when sequential scheduling is used. The command
statement, when used, must immediately precede
a JOB, EXEC or null statement,

The job control statements required for an
ALGOL source program are described in Section 2,

Control Program

The control program is the primary program
within the operating system and must be included
with all ingtallations, It is divided into a number
of functions. Those affecting the applications pro-
grammer are described in the following text,

Job Scheduling

A job scheduler is included as part of the control
program to control the flow of jobs and allocate

the 1/0 devices required. Two forms of job sched-
uling are available.

With sequential scheduling the jobs are carried
out in the order they are presented in the input
stream to the computer,

With priority scheduling a summary of the input
job stream is stored on a direct access device and
jobs are carried out in order of priority (as spec-
ified in the JOB control statement), Any hold-up
in the execution of a program, due, for example,
to a delay in mounting a volume, will cauge the
job scheduler to select the next job available, in
order of priority, and the revert back to the higher
priority job when it is ready.

Supervisor

The supervisor is a set of subroutines, included
in the control program, for transferring control
of the central processing unit of the computer from
one program to another and co-ordinating I/0 oper-
ations. Initialization and termination of all pro-

grams described in this publication are achieved
using the standard method given in IBM System/360
Operating System: Control Program Services.

Data Management

This sub-section is a summary of data manage-
ment facilities, Full details are given in IBM
System/360 Operating System: Data Management,

Data Sets: Data is usually stored on 1/0 devices
and is only brought into main storage for process-
ing. It is organized into data sets, These are
collections of records that are logically related
(for example, a set of test readings).

System/360 Operating System allows a data set
to be identified and accessed by symbolic name
only, without any reference to its location on the
storage device. To do this the operating system
builds a catalog of data set location against name,
This catalog resides on one or more direct access
volumes. A volume is one complete physical unit
of storage such as a tape reel or a disk pack, It
may contain a number of data sets, or alternative-
ly one data set may stretch over a number of vol-
umes, Data sets are created using DD statements.

Data Control Blocks: The operating system must
be provided with information describing the charac-
teristics of a data set before the data set can be
processed, This information is assembled in the
data control block associated with each data set,
Data control blocks are automatically created for
each data set that is to be processed by the pro-
gram, and are completed from two sources:

1, Any information provided in the »~ogram is
included first.

2. Information provided by the DD statement is
then included, but this cannot over-ride any
information stated in the program,

In the case of an existing data set, further in-
formation is taken from the data set label. Again,
this cannot over-ride previously inserted informa-
tion, Any DCB information provided by the pro-
grammer is checked by an appropriate routine to
ensure its validity and to assign default values.

Data Set Labels: Data set labels, if requested by
the programmer in the DD statement, are created
by the operating system to store information rel-
evant to the data set such as name and retention
period. They can supplement information in the
data control block and serve as identifiers during

accessing. They are positioned at the beginning
and end of the data set,

Records and Blocks: Records are the smallest
items of data which can be read or written sepa-
rately, Their length can be specified as fixed,
variable or undefined, The unit of length is known
as a byte, which is normally equivalent to one
character. For mechanical reasons it is neces-
sary to have a fixed length gap between each re-
cord, This means that the smaller the average
length of the records so the smaller the amount
of information that can be stored in a given area
of storage. To conserve space a number of re-~
cords can be grouped together to form a block,
which is treated as a single record for I/O oper=-
ations, The complete block is read into main
storage and then unblocked for the required re-
cord to be processed, Record format and block-
size are defined in the data control block., For
fixed length records blocksize must be a multiple
of record length, This multiplication factor is

known as the blocking factor.

A control character can be specified for inclu-
sion in each record of a data set, This selects
carriage control when the data set is printed, or
stacker when the data set is punched.

Data Set Organization: According to how they are
going to be used, records can be organized within
the data set in a number of ways.

Sequential organization is a feature of 1/0 de~
vices such as magnetic tapes. To access a par-
ticular record the data set must be read sequen-
tially until the record is found., This is satisfac-
tory for many applications where a large propor-
tion of the records will be required on each run
but could be time-consuming where data is being
accessed randomly,

To avoid reading each record in turn the indexed

sequential method is often employed, in which the
location of the required record is found from an
index at the beginning of its data set, On a disk
pack the specification of a record location is bro-
ken down into two levels - cylinder and track,
Each level has its own index, With large data sets
up to three levels of master index can also be used.
Overflow areas are provided for the primary stor-
age area so that ingertions can be made,

Alternatively, a data set can be partitioned into
blocks of identical format called members, A di-
rectory is built up at the beginning of the data set
so that each member can be accessed independent-

ly by specifying its name as a suffix to the data
set name, This form of data set is described as
a library.

Access Language: Two access languages are avail-
able to store and retrieve records. The queued
access language provides a full range of buffering
and blocking facilities to improve processing effi-
ciency. It can only be used with sequential and
indexed sequential data sets.

The basic access language gives the program-
mer more direct control over the I/0O device but
does not provide buffering and blocking facilities.
These must be constructed by the user (see IBM
System/360 Operating System: Control Program
Services).

Access Methodg: The data set organization and
access language used are combined to fully de-
scribe the method of handling a data set, for ex-
ample, Queued Sequential Access Method, Basic
Partitioned Access Method, ete, The access
method is specified in the data control block.

Input/Output Devices: Data can be stored on a
number of input/output devices depending, among
other things, on the method of data set organiza-
tion required, The devices most commonly used
in scientific and engineering installations are:

Card readers
and punches

Printers (out- | All data handled by these

put only) devices is sequentially
Paper tape organized.

devices
Magnetic tape

devices

These are known as direct
access devices and can be
used for sequential, indexed
sequential or partitioned
organization,

Disk storage
devices

Data cell stor-
age devices

Drum storage
devices

A console typewriter is used for direct two-
way communication between the operator and the
operating system,

Areas of main storage known as buffers are
used to provide overlapping of reading, writing
and processing operations, The transfer of data
between main storage and I/0 devices is controlled
through units known as channels,

Introduction 7

Processing Programs

In addition to the control program, a number of
processing programs may be included in the oper-
ating system depending on the requirements of

the installation, To carry out a job that contains
a source program written in ALGOL the following
processing programs are required:

1., ALGOL compiler
2, Linkage editor

The ALGOL compiler processes the source
program to translate it into machine language,
The translated source program (known as the ob-
ject module) is then processed by a linkage editor
to combine any routines required from the ALGOL
library (see Appendix A), The result of these two
operations (known as the load module) is then load-
ed into main storage and contrel is passed to the
load module so that it can be executed. The basic
flowchart for handling an ALGOL source program
is shown in Figure 1,

ALGOL Compiler

This processing program is available for the F
level of main storage size, and requires a mini-
mum of 44K bytes., If extra storage capacity is
provided it is used to increase compiler capacity
(see Figure 6),

Initialization and Termination: The standard meth-
od is used for initialization and termination of the
compiler (see "Supervisor'), At the end of the
compilation one of the following return codes is
generated:

0 meaning normal conclusion, Object module
has been generated unless both the NODECK
and NOLOAD options (see Appendix E) are
specified in the invuking statement, No diag-
nostic messages have been listed,

4 meaning object module has been generated
unless both the NODECK and NOLOAD op-
tions are specified, Only warning diagnos-
tic messages (severity code W) have been
listed,

12 meaning process has been completed but a
complete object module could not be gener-
ated due to a serious error, Diagnostic
messages (severity codes S and possibly W)
have been listed.

Source
Program

ALGOL

Compiler

Object
Module

Linkage ALGOL
Editor Library

Load
Module

Load Module

Execution

Figure 1. Basic flowchart for handling an ALGOL
program,

16 meaning process has been terminated ab-
normally due to a terminating error. A
complete object module could therefore not
be generated, Diagnostic messages (sever-
ity codes T and possibly W and S) have been
listed, The severity ccdes are described
in Appendix F.

Output: A successful compilation of an ALGOL
source program produces the following output:

® An object module (described in Appendix D)
which can be:

¢ Included in a data set for use as input to
the linkage editor (optional),

¢ TIncluded in another data set to give some
other form of output, such as a card deck
(optional).

e Information listings (described in Section 3).
Linkage Editor

The linkage editor is a standard processing pro-
gram used for all languages accepted by the Sys-
tem/360, For ALGOL, it is used to include rou-
tines from the ALGOL library. It also has a wide
range of optional functions, and is available for
two levels of main storage size ~ E level (where
it requires 15K or 18K bytes) and F level (where
it requires 44K or 88K bytes)., A full description
is contained in IBM System/360 Operating System:

Linkage Editor.

Initialization and Termination; The standard meth~
od is used for initialization and termination of the
linkage editor (see "Supervisor™), At the end of
the linkage editing one of the following return codes
is generated:

0 meaning normal conclusion, A load module
has been produced,

4 meaning a load module has been produced
but a severity 1 error, which may cause an
error at execution time has been detected
and listed,

8 meaning a load module has been produced
but a severity 2 error, which may cause an
abnormal termination at execution time, has
been detected and listed,

12 meaning a load module has been produced
but a severity 3 error, which will cause an
abnormal termination at execution time, has
been detected and listed.

16 meaning process has been terminate ab-

normally. A severity 4 error has been listed.

Output: The following output can be produced by
the linkage editor:

® A load module data set, stored on the output
library SYSLMOD,

o Information listings (described in Section 3),

Load Module Execution

The load module produced by the linkage editor

is loaded into main storage by the supervisor,
When the loading operation is complete, the su-
pervisor passes control to the load module, which
is then executed.

Initialization and Termination: The standard meth-
od is used for initialization and termination of the
load module (see "Supervisor'), At the end of the
execution, one of the following return codes is gen-
erated:

0 meaning normal execution has been per-
formed,

4 meaning execution has been abnormally ter-
minated due to an error, A diagnostic mes-
sage has been listed.

Output: The following output is produced by a
successful execution of a load module:

¢ Results, etc., as specified by the programmer,

® Information listings (described in Section 38).
MACHINE CONFIGURATION

To successfully carry out a job containing a source
program written in ALGOL, a certain minimum
machine configuration must be available, This is:

® A System/360 Model 30, 40, 50, 65, 75 or 91
with the scientific instruction set, Main storage
size depends on the program being executed.

e TFor compilation, at least 64K bytes.
e TFor linkage editing, at least 32K bytes,

® Tor load module execution, variable, de-
pending on the size and arrangement of the
source program,

These figures include the space used by the
control program of the operating system.

e In a minimum configuration, all data sets may
use a single direct access I/0 device, provided
that the total size of the data sets which exist
at any one time does not exceed the capacity
of the device. A card reader and printer will
also be needed, but these do not have to be part
of the System/360 configuration,

® A console typewriter may be required for diag-
nostic messages if there is an error on the data
set used for output listings, and also to allow
direct two-way communication between the oper-
ator and the operating system.

Introduction 9

SECTION 2: SOURCE PROGRAM HANDLING

This section explains the job control statements
which must be provided with each source program,
These statements can either be written for each
job, or a standard job control procedure can be
written and cataloged in the operating system for
use with a range of jobs.

Using such a cataloged procedure minimizes
the number of job control statements that must be
supplied by the programmer with each job., There-
fore IBM provides:

e Three basic cataloged procedures for use with
ALGOL.

e The means to temporarily over-ride these pro-
cedures if the user requires different or addi-
tional system support to that provided.

@ The means for the user to modify permanently
the IBM -supplied cataloged procedures or to
write his own procedures and catalog them for
permanent reference,

In the statement formats used in this section
upper-case words must be coded exactly as they
appear; lower-case words are used to indicate
where the programmer must supply information
according to his own requirements.,

IBM-SUPPLIED CATALOGED PROCEDURES

The three cataloged procedures for ALGOL which
are supplied by IBM are:

ALGOFC compilation only
ALGOFCL compilation and linkage
editing.

ALGOFCLG compilation, linkage

editing and execution,
To invoke these cataloged procedures, the
programmer must supply the following job con-

trol statements:

1. A JOB statement to indicate the start of the
job.

2. An EXEC statement indicating the name of the
cataloged procedure to be used.

3. DD statements indicating the location of the

10

source program and, for execution time, the
data sets used or created by the load module.

The following text indicates the minimum con-
tents of these statements, For requirements be-
yond this, reference should be made to Appendix E.

Compilation

The cataloged procedure to compile a source pro-
gram is ALGOT'C, The job control statements
used in this cataloged procedure are shown in Ap-
pendix B, The following statements can be used
to invoke the ALGOFC cataloged procedure:

//jobname JOB

// EXEC ALGOFC

//SYSIN DD {* or parameters defining an
input data set containing
the source program }

where "jobname'' is the name of the job. If DD *
is used then the source program must follow im-
mediately afterwards in the input stream. For
sequential scheduling, the source program must
then be followed by a delimiter statement (/%),

If more than one source program is to be com-
piled in the same job, all job control statements
except the JOB statement must be repeated for
each source program,

A sample deck of job control statements to com-

pile an ALGOL source program is shown in Figure 2,

Compilation and Linkage Editing

The cataloged procedure to compile an ALGOL
source program and linkage edit the resulting ob- -
ject module is ALGOFCL. The job control state-
ments used in this cataloged procedure are shown
in Appendix B. The following statements can be
used to invoke the ALGOFCL cataloged procedure:

//jobname JOB

// EXEC ALGOFCL

//SYSIN DD {* or parameters defining an
input data set containing
the source program }

where "jobname'" is the name assigned to the job.
If DD *is used then the source program must fol-
low immediately afterwards in the input stream,
For sequential scheduling, the source program
must then be followed by a delimiter statement (/*%).

(-
= 74

p4
(Source program (MATINV)

ﬁ/svsm DD *
ﬁ/ EXEC: ALGOFC

//MATINV JOB 537, JOHNSMITH, MSGLEVEI=1

Figure 2. Sample deck for using ALGOFC cataloged procedure with a single source program. This job
compiles the MATINV source program used in Example 1 of Appendix E.

If more than one source program is to be pro- the job step to which it applies, and has the form:
cessed in the same job, then all job control state-
ments except the JOB statement must be repeated //LKED,SYSLMOD DD DSNAME=dsname(member),
for each source program, DISP=(MOD,KEEP)

If it is required to keep a load module for use where ""dsname' is the name of a partitioned data
in a later job (as in the case when the load module set and "member" is the member name assigned
is a precompiled procedure), then the SYSLMOD to the load module on the partitioned data set,
DD statement in the cataloged procedure must be
over-ridden to specify a permanent data set, This A sample deck of job control statements to com-
has to be done for each load module that is kept. pile and linkage edit two source programs is shown
The over-riding statement is placed at the end of in Figure 3.

(//LKED.SYSLMOD DD DSNAME=WTHRPR(FORCST),
DISP=(MOD, KEEP)

///SYSIN DD DSNAME=FORCST, DISP=OLD

///smz EXEC ALGOFCL

//LKED.SYSLMOD DD DSNAME=WTHRPR(FILECR),
DISP=(MOD, KEEP)

(//SYSIN DD DSNAME=FILECR, DISP=OLD

(//STEP] EXEC ALGOFCL

//WEATHER JOB

Figure 3. Sample deck for using ALGOFCL cataloged procedure with two source programs. These two job
steps compile and linkage edit the two source programs used in Example 3 of Appendix E, Both source pro-
grams have been previously stored on intermediate I/0 devices.

Source Program Handling 11

Compilation, Linkage Editing and Execution

The cataloged procedure used to compile an ALGOL
source program, linkage edit the resulting object
module, and execute the load module produced by
the linkage editor is ALGOFCLG.

The statements used in this cataloged procedure
are shown in Appendix B, The following state-
ments can be used to invoke the ALGOFCLG cata-
loged procedure:

//jobname JOB

//JOBLIB DD DSNAME=dsnamel, DISP=0OLD

// EXEC ALGOFCLG

//SYSIN DD {* or parameters defining an
input data set containing
the source program }

//GO.ALGLDD02 DD DSNAME=dsname2

//GO.,ALGLDD15 DD DSNAME=dsnamel5

where ''jobname'" is the name assigned to the job,
""dsnamel' is the name of a data set that contains
a precompiled procedure (see Section 4) which is
called by the load module being executed. The DD
statement containing dsnamel need not be used if
no precompiled procedure is used.

For a description of the correct use of the
JOBLIB DD statement when more than one pre-
compiled procedure is used in a job, or when a
precompiled procedure resides on more than one
data set, see '""Data Set Concatenation' in Appen-
dix E.

"dsname?2", .. ""dsnamel5'" are the names of input
data sets required by the load module at execution
time and output data sets to be created at execu-
tion time. In addition, a data set for printed out-
put (ddname SYSPRINT) is supplied by the cata-
loged procedure, and a data set for input only can
be specified by using the following statement after
the invoking sequence just given,

//GO.SYSIN DD {* or parameters defining an
input data set }

If DD * is used then the source program must fol-
low immediately afterwards in the input stream.
For sequential scheduling, the source program
must be followed by a delimiter statement (/%).

If more than one source program is to be pro-
cessed and executed in the same job, then all job

12

control statements except the JOB statement and
the JOBLIB DD statement must be repeated for
each source program,

A sample deck of job control statements re-
quired to compile, linkage edit and execute three

source programs is shown in Figure 29,

Over-riding Cataloged Procedures

The programmer can change any of the statements
in a cataloged procedure, except the name of the
program in an EXEC statement,

These over-riding conditions are temporary,
and will be in effect only until the next job step is
started. The following text describes methods of
temporarily modifying existing parameters and
adding new parameters to the EXEC and DD state -
ments used in the cataloged procedures. The full
list of parameters available to the AL.GOL pro-
grammer for these statements, and detailed expla-
nations of the parameters, is given in Appendix E.
The EXEC and DD statements used in the IBM -~
supplied cataloged procedures are shown in Appen-
dix B,

Over-riding EXEC Statements

In the EXEC statement, the programmer can change
or add any of the keyword parameters by using the
following format:

keyword. procstep=option
where:

"keyword" is the parameter to be changed in,
or added to, the specified procedure job step:
either TIME, COND, PARM or ACCT.

""procstep' is the procedure job step in which
the change or addition is to occur: either
ALGOL, LKED or GC.

"option' is the new option required.

For example, if the EXEC statement used to in~
voke the ALGOFCLG cataloged procedure was writ-
ten as:

// EXEC ALGOFCLG,PARM. ALGOL=DECK,
// PARM. LKED=XREF,
// COND. GO=(3, LT,ALGOL)

then the following changes would be made to the
ALGOFCLG cataloged procedure:

1, In the PARM parameter of the job step ALGOL,
the option DECK would be used instead of the
default option NODECK (assuming that the stan~
dard default NODECK was not changed at sys-
tem generation). Over-riding this option will
not affect the other default options assumed
for this parameter,

2. In the job step LKED, the option XREF is spec~
ified for the PARM parameter. Since the op-
tions specified in the cataloged procedure were
XREF, LIST and LET, this statement has the
effect of deleting the options LIST and LET
since they were not default options.

3. In the job step GO, the COND parameter code
is changed from 5, as it appears in the cata-
loged procedure, to 3. In this example, the
code 3 causes the job step GO to be bypassed
if a warning message is generated during the
job step ALGOL. Note that although the other
options (LT and ALGOL) are not to be altered,
the entire parameter being modified must be
respecified, ’

If "procstep' is not specified when over-
riding a multi-step cataloged procedure, the
operating system makes the following assump-
tions:

® COND and ACCT parameters apply to all
procedure job steps.

o A PARM parameter applies to the first pro-
cedure job step and any options already spec-
ified in the PARM parameters for the remain-
ing procedure job steps are cancelled.

e A TIME parameter specifies the computing
time for the entire job and any options already
specified in the TIME parameters for individ-
ual procedure job steps are cancelled.

Over-riding DD Statements

An additional DD statement is used in the invoking
sequence for each DD statement in the cataloged
procedure that is to be over-ridden, The following
format is used:

//procstep. ddname DD parameter-list
where:

"procstep' is the procedure job step containing

the DD statement to be over-ridden: either ALGOL,
LKED or GO, If "procstep' is omitted then the
first procedure job step is assumed.

""ddname!" is the name of the DD statement to be
over-ridden.

"parameter-list'" is the list of parameters that are
being added or changed. In both cases the whole
parameter must be specified, Unchanged param-
eters in the original statement need not be spec-
ified. For example, the statement:

//ALGOL, SYSLIN DD SPACE=(400, (80,10))

will change the SPACE parameter of the SYSLIN
DD statement in the ALGOL job step so that space
will be allocated for 80 physical records instead
of 40,

DD statements that are used to over-ride other
DD statements in the cataloged procedures must
be placed immediately after the EXEC statement
invoking the cataloged procedure, and must be in
the same order as their corresponding DD state-
ments in the cataloged procedures.

Adding DD Statements

Complete, new DD statements that are to be added
to the cataloged procedure use the same format

as over-riding DD statements. The "ddname!
specified must not exist in the job step specified
by '"procstep'. These new DD statements must
follow immediately after the over-riding DD state-
ments which apply to the same procedure job step.

USER~-WRITTEN PROCEDURES

The information required by the programmer to
write his own job control procedures is given in
the following text, and in Appendix E, Cataloging
user-written procedures, or permanently modi-
fying the IBM -supplied cataloged procedures, is
accomplished using the IEBUPDAT utility program,
described in IBM System/360 Operating System:
Utilities. The statements required in user-writ-
ten procedures are:

® An EXEC statement to invoke the program.

e DD statements to define the data sets used by
the program.

Compilation
Invoking Statement
The ALGOL compiler consigsts of ten load modules

contained in the link library, SYS1, LINKLIB, of
the operating system, The compiler is activated

Source Program Handling 13

by invoking its first load module, named ALGOL,
which then internally invokes the other load mod-
ules of the compiler.

The usual method of invoking the compiler is
by means of an EXEC statement of the form:

//stepname EXEC PGM=ALGOL

where "stepname' is the name assigned to the job
step (optional),

Other EXEC statement parameters may be in-
cluded if required (see Appendix E),

(A method of dynamically invoking the compiler
within a job step, by means of the CALL, LINK,
XCTL or ATTACH macro-instructions, is described
in Section 4.,)

Data Sets Used

The data sets used in the compilation process are
illustrated in Figure 4, and described in Figure 5.
These data sets must be specified by the program-
mer with suitable DD statements,

Blocksize DCB information may be specified
by the user for SYSIN, SYSLIN, SYSPRINT and
SYSPUNCH. The maximum blocking factor de-
pends on the main storage size available (see
Figure 6). Record length is fixed at 80 bytes for
SYSIN, SYSLIN and SYSPUNCH, and 91 bytes for
SYSPRINT,

SYSIN
Source |
Intermediate Work Program
SYSUT!
SYSPRINT &
SYYSABEND
Information
SYSUT2 COMPILER Listings
SYSUT3
Object
Module
Object (optional)
Module SYSPUNCH
(optional)
SYSLIN

Figure 4. Flowchart showing data sets used by
the compiler.

14

The space required for the compiler data sets
depends on the size and structure of the source
program, however it can be assumed that only in
rare cases will the object module exceed four
times the source program and usually much less
will be required.

P Standard Devices
urpose ddname required
For ALGOL source SYSIN Card reader#
program
For object module to SYSLIN Direct access or

be used by linkage editor
For compilation listings | SYSPRINT

magnetic tape

Printer*

For object module SYSPUNCH Card punch#*
(copied from SYSLIN)

For the control SYSABEND Printer*
program dump

For intermediate SYSUT1 Direct access or
compiler working magnetic tape
For intermediate SYSUT2 Direct access or
compiler working magnetic tape
For intermediate SYSUT3 Direct access

compiler working

* Some form of intermediate storage, such as magnetic tape,
may be used to reduce I/O delay for the central proces-
sing unit.

Figure 5. Data sets used by the ALGOL compiler,

Also, as a rough estimate, SYSUT1, 2 and 3
must each be large enough to contain the number
of valid characters in the source program,

SYSABEND is used for control program list-
ings (see Section 3).

Processing of all data sets by the compiler is
independent of the I/0 device used except for the

intermediate work data sets. These require mag-
netic tape or direct access devices.

Linkage Editing

Invoking Statement

The linkage editor is usually invoked with an
EXEC statement of the form:

//stepname EXEC PGM=IEWL

where '"stepname" ig the name assigned to the job
step (optional), :

Other EXEC statement parameters may be in-
cluded if required (see Appendix E). IEWL spec-
ifies the highest-level linkage editor in the instal-
lations operating system.

(A method of dynamically invoking the linkage
editor within a job step, by means of the CALL,

LINK, XCTL or ATTACH instructions, is described

in Section 4.,)

Main storage size Maximum blocking factor

in bytes at which

changes occur SYSIN SYSPRINT SYSLIN SYSPUNCH
45056 (44K) 5 5 5 1
51200 (50K) 5 5 5 5
59392 (58K) 5 5 5 5
67584 (66K) 5 5 5 5
77824 (76K) 5 5 5 5
90112 (88K) 20 20 40 20
104448 (102K) 20 20 40 20
120832 (118K) 20 20 40 20

i39264 (1386K) 20 20 40 20
159744 (156K) 20 20 40 20
184320 (180K) 40 40 40 40
212992 (208K) 40 40 40 40

Figure 6. Effect on compiler data sets if more
than 44K bytes of main storage is available.
The capacity of internal tables in the compiler
is increased at each of the main storage sizes
listed in this table, allowing, for example, a
larger number of identifiers to be included in
the source program, Therefore to get optimum
performance, the user is recommended to use
this list when specifying main storage size
available to the compiler.

Data Seis Used

The data sets used by the linkage editor (see Fig-
ures 7 and 8) must be defined by the programmer
with suitable DD statements.

Blocksize DCB information may be specified
by the user for SYSLIN and SYSPRINT if the F
level linkage editor is being used. Maximum
blocking factor is 5 when 44K bytes of main stor-
age size is available, and 40 when 88K bytes is
available. Record length is fixed at 80 bytes for
SYSLIN and 120 bytes for SYSPRINT.

SYSLIN

Object
Module
SYSLIB
ALGOL
[
i SYSPRINT &
SYSABEND

LINKAGE Information
Listings
EDITOR
SYSUT1
Intermedi~
ate Work
Load
Module

SYSLMOD

Figure 7. Flowchart showing data sets used by
the linkage editor.

SYSABEND is used for control program list-
ings (see Section 3).

Load Module Execution

Invoking Statement

The usual method of invoking the load module gen-
erated by the linkage editor is with an EXEC state-
ment of the form:

//stepname EXEC PGM=member-name

Standard Devices
Purpose ddname used

For object module SYSLIN Direct access or
input magnetic tape

For load module SYSLMOD Direct access
output, stored as a
member of a parti-

tioned data set

For ALGOL library, | SYSLIB
S8YS1,ALGLIB, A~
partitioned data set
containing routines
in load module form

Direct access

For linkage editing SYSPRINT Printer*

listings

For intermediate SYSUT1 Direct access or
linkage editor magnetic tape
working

For the control SYSABEND | Printer®

program dump

#* Some form of intermediate storage, such as magnetic
tape, may be used to reduce output delay for the cen-
tral processing unit,

Figure 8. Data sets used by the linkage editor.

Source Program Handling 15

where "stepname' is the name assigned to the job
step (optional),

"member-name' indicates the name of the parti-
tioned data set member which contains the load

module. This name is specified by the programmer

in the SYSLMOD DD statement for the linkage edi-
tor, Other EXEC statement parameters may be
included if required (see Appendix E).

(A method of dynamically invoking the load mod-

ule within a job step, by means of the CALL, LINK,

XCTL or ATTACH macro-instructions is described
in Section 4.)

Data Sets Used

Up to 16 data sets for use at execution time may
be specified by the programmer in the ALGOL
source program by using the appropriate data set
number., The numbers used and the corresponding
names of their DD statements are listed below.

Data set number Corresponding
used in ALGOL ddname
source program
0 SYSIN
1 SYSPRINT
2 ALGLDDO02
3 ALGLDDO03
4 ALGLDDO04
5 ALGLDDO05
6 ALGLDDO06
7 ALGLDDO7
8 ALGLDDO08
9 ALGLDDO09
10 ALGLDD10
11 ALGLDD11
12 ALGLDD12
13 ALGLDD13
14 ALGLDD14
15 ALGLDD15

Any reference to a data set number by an I/0O
procedure within an ALGOL source program is
translated into a reference to a data control block
using the corresponding ddname, It is the respon-
sibility of the programmer to supply the DD state-
ments which correspond to the data set numbers
used in the ALGOL source program,

The execution time data sets are illustrated
in Figure 9 and described in Figure 10. For
ALGLDDO02 to ALGLDD15, case 1 in the column
showing device used, applies if the source pro-
gram contains any of the following:

15

e A backward repositioning specification by the
procedures SYSACT4 or SYSACT13 for this
data set.

o Both input and output procedure statements
for this data set,

® Procedure statements which prevent the com-
piler from recognizing whether either of these
applies; for example, if the data set number
or SYSACT function number is not an integer
constant or if a precompiled procedure is used,

If the source program has already been com-
piled and linkage edited in a previous job, then
the data set on which it has been stored (in load

module form) must be concatenated to SYSL, LINKLIB

Data sets containing precompiled procedures called
by the source program (see Section 4) must also be
concatenated to SYS1, LINKLIB.

If the programmer specifies a TRACE, TRBEG
or TREND option in the EXEC statement of the
execution job step, the semicolon count (see Sec-
tion 3) is stored intermediately on a data set with
the ddname SYSUT1. The programmer must sup-
ply a corresponding DD statement if he uses this
option. The semicolon count is converted to ex-
ternal form and transferred to the SYSPRINT data
set as soon as the execution ends either by reach-
ing the logical end of the source program or due
to an error,

The space required for the semicolon count is:

For the main heading 6 bytes

For each semicolon 2 bytes
For each call of a
precompiled procedure 12 bytes

For each physical
record on SYSUT1 4 - 6 bytes
System/360 ALGOL permits data to be tempo-
rarily stored on and retrieved from external de-
vices without conversion, using the ALGOL I/0O
procedures PUT and GET. If the programmer
uses this facility in his source program, then he
must supply a DD statement with the ddname
SYSUT2. The device specified by this statement
for storing such intermediate data should be a
direct access device to guarantee reasonable per-
formance, though programming is performed in-
dependently between magnetic tape and direct ac-~
cess devices, All data passed by a single PUT is

SYS 1,
LINKLIB

Intermediate Work —

SYSUT 2 LOAD
MODULE
EXECUTION

Data Input

SYSIN &
ALGLDDO02

Load Module for Source
Program, Precompiled
Procedures, and Error

Routine

Data Output

Information
Listings

0~

Any of

——-‘ ALGLDDO02-15

not used for
input

Figure 9, Flowchart showing data sets used at load mocule executlon. The data input and output require-
ments are variable,

sfdred as one record. This record will be as
long as the data passed, plus 8 bytes.
maximum record length accepted is 2048 bytes.

The

The DCB information which may be specified

by the user for execution time data sets is
blocksize, record format and record length,
except for the trace and PUT/GET data sets

(ddnames SYSUT1 and SYSUT2) for which only
blocksize may be specified (up to a maximum

of 2048 bytes).

For information not provided, default values
will be inserted by a routine in the: ALGOL

library. In particular, blocksize is assumed

as 2048 bytes for SYSUTL and SYSUT2 if none -

is specified,

SYSABEND is used for control program list--
ings (see Section 3).

Standard Device
ddname Used
For data input SYSIN Any input de-
to load module vice
For execution time | SYSPRINT Printer®
ligtings and data
output
For data input ALGLDDO02 1, Direct
or output M access or
ALGLDD15 magnetic
tape
2. Any
For intermediate | SYSUT1 Direct access
storage of semi- or magnetio
colon counter when tape
TRACE is spec-
ifted :
For temporary SYSUT2 Direct access
storage when PUT ..| or magnetic
is specified . tape .
For the control * | SYSABEND | Printer*
program dump

* Some form of intermediate storage, such as
magnetic tape, may be used to reduce I/0
* delay for the central processing unit,

TFigure 10, Data sets used at execution time,

Source Program Handling

17

SECTION 3: INFORMATION LISTINGS

To assist the programmer to find the cause of any
faults in the processing or execution of his pro-
gram, various forms of information listings are
produced for the compilation, linkage editing and
execution operations. Some of these listings are
optional. Examples are illustrated in Figures 11
to 16.

CONTROL PROGRAM LISTINGS

All three operations may produce listings gener-
ated by the control program. These are described
in IBM System/360 Operating System: Messages,
Completion Codes, and Storage Dumps. The
ABEND macro-instruction for specifying the main
storage dump is described in IBM System/360
Operating System: Control Program Services.

COMPILATION LISTINGS

A successful compilation of an ALGOL source pro-
gram produces the following information listings:

e Job control statement information according
to which MSGLEVEL option was specified in
the JOB statement.

e The source program supplemented by a count
of the semicolons occurring in the program
(optional).

e A table giving details of all identifiers used in
the program (optional).

e Any warning diagnostic messages.

e Information on main storage requirements at
execution time,

If a serious diagnostic message is produced
(meaning that object module generation has ended)
then the source program and identifier table list-
ings will be printed in full if they have been re-
quested, but the information on main storage re-
quirements will not be printed. If a terminating
diagnostic message is produced then the source
program and identifier table listings can be printed
only as far as they have been produced.

18

Source Program

If the SOURCE option has been specified, the
source program is transferred by the compiler

to an output data set in order to be listed by a
printer, Unless NOTEST has been specified, this
source program is supplemented by a semicolon
count, which is referred to in the diagnostic mes-
sages to help localize errors.

The compiler generates this semicolon count
when scanning the source program, by counting
all semicolons occurring in the source program
outside strings, except those following the de-
limiter “"COMMENT “. The value of this semicolon
count at the beginning of each record of the source
program is printed at the left of that record. It is
assigned by the compiler in order to have a clear,
problem-oriented reference. Any reference to a
particular semicolon number refers to the segment
of source program following the specified semi-
colon, for example, the semicolon number 5 re-
fers to the program segment between the fifth and
sixth semicolons.

Identifier Table

If the SOURCE option has been specified, a list of
all identifiers declared or specified within the
source program is transferred by the compiler to
the output data set for printing after the source
program listing, This identifier table gives in-
formation about the characteristics and internal
representation of all identifiers. The identifiers
are grouped together within the identifier table
according to their scopes.

All blocks and procedure declarations within
the source program are numbered according to
the order of occurrence of their opening delimiters
“BEGIN” or “PROCEDURE ", Therefore, if the body
of a procedure declaration is a block, then usually
this block has the same number as the procedure
declaration itself, These numbers are called
program block numbers (even if they belong to a
procedure declaration and not to a block).

Each line in the table contains entries for up
to three identifiers and the line begins with the
number of the prograrm block in which the identi-
fiers were declared or specified, the value of the
semicolon count at the commencement of the pro-
gram block, and the number of the immediately
surrounding program block., Each identifier entry
contains:

1. The external name of the identifier as appear-
ing in the source program. Space for six char-
acters is provided and, if necessary, the iden-
tifier is truncated,

2. The type key, as described below,

3. The number of dimensions (for array identi-
fiers), components (for switch identifiers) or
parameters (for procedure identifiers), This
position is blank for all other types of identi~
fiers,

4, The displacemert for the quantity denoted by
the identifier, as explained below.

The type key consists of five characters de-
noting the type characteristics of the identifier,
These characters are as follows (b represents
blank):

R when real

I when integer

B when Boolean

b when anything else

In first position:

L when label

S when switch

T when string (text)
b when anything else

In second position:

A when array
P when procedure
b when anything else

In third position:

N when formal parameter
called by name

V when formal parameter
called by value

b when declared identifier
(not formal parameter)

In fourth position:

C when precompiled (code)
procedure
b when anything else

In fifth position:

Examples of these are:
TFor a real variable Rbbbb
TFor a Boolean array BbAbb
For a formal param-
eter specified inte -
ger procedure

called by name IbPNb

For a precompiled
procedure bbPbC

The displacement is in hexadecimal form and
has the following meaning:

e TFor all identifiers denoting simple variables,
arrays and formal parameters, it is the rela-
tive position of their values in the data storage
area, as described below.

e For all identifiers denoting labels, procedures
and switches (if not specified as formal param-
eters), it is the relative position of the corre-
sponding entry in the label address table, as
described below, This position is known as the
label number (LN).

The space allocated to each identifier is as
follows:

For formal parameters: 8 bytes
For Boolean identifiers: 1 byte
For integer identifiers: 4 bytes

For real identifiers: 4 bytes when SHORT is
specified; 8 bytes when LONG is specified.

For arrays: see storage mapping function below.

At execution time, for each program block, a
data storage area (DSA) is created dynamically
at each entry of the program block and is released
when leaving it. The lengths of the data storage
area and the relative positions of all data contained
in them are determined by the compiler., These
relative positions, together with the program block
numbers, uniquely identify the quantities of an
ALGOL program. Two forms are used according
to whether the SHORT or L.ONG option was spec-
ified in the invoking statement,

The data storage area of a program block con-
tains locations for:

1. The values of simple variables

2. The storage mapping tunctions of arrays (see
below)

3. In the case of formal parameters, the type char-
acteristics and addresses of the actual param-

eters

4, Intermediate results, addresses, etc,

Information Listings 19

A label address table is created by the compiler
and transferred to the object module, In general
it is used at execution time to load a branch register
before any branch is performed. It contains ad-
dresses corresponding to:

1. Library modules required

2. Labels

3. Procedure declarations

4, Switch declarations

5. Internal branches (1F”, “FOR’, etc.)

The storage mapping function (SMF) describes
the storage layout of an array. The storage that
the SMF requires in the DSA can be calculated
from:

s=4(d+5) +X

where, s = number of bytes in storage
mapping function

d = number of dimensions in array

X:{4 if LONG is specified and d
is an even number, 0 otherwise

Diagnostic Messages

During the compilation as many programming
errors as possible are detected and appropriate
diagnostic messages are produced to help the pro-
grammer to identify them, Diagnostic messages
are caused by:

1. Programming errors, These are detected and
reported by the compiler as far as they do not
depend on the dynamic flow of the program.
Programming errors depending on the dynamic
flow of the program are detected and reported
by the load module.

2, Violations of capacity limitations, Such viola-
tions are detected and reported by the compiler,
where possible., Those which cannot be detected
at compile time are detected and reported by the
load module at execution time,

3. 1/0 errors caused by malfunction of channels
or external devices, are reported when they

occur,

4. Control card errors not detected by the job
scheduler,

5. Program interrupts

20

The diagnostic messages are transferred to the
output data set to be listed by a printer, Appendix
F contains a list of the messages that may be pro-
duced by the ALGOL compiler,

Storage Requirements

Following the diagnostic messages, the compiler
transfers information about the execution time
storage requirements to the output data set if the
compilation finished successfully. This informa-
tion gives no exact storage estimate of the object
module execution because the storage allocation
for data is performed dynamically at execution
time and depends on the flow of control through
the object module and on the amount of data at
execution time,

*or example, the data storage area belonging
to a program block is allocated only as long as
that program block is active, In the case of re-
cursive procedures more than one generation of
the corresponding data storage area may be re-
quired. The storage needed for the array is not
contained in a data storage area and depends on
the execution time values of the bounds of the
array.

Nevertheless, a programmer knowing the struc-
ture of his program may gain rough storage esti-
mates from the following information given by the
compiler,

1. Main storage required by the object module,
including tables and constant pool.

2. A list of the main storage requirements of all
data storage areas. This list consists of one
entry for each program block, containing the
program block number, and the number of bytes
required for the corresponding data storage area,

LINKAGE EDITING LISTINGS

A successful linkage editing can produce the fol-
lowing information listings:

e Job control statement information according to
which MSGLEVEL option was specified in the
JOB statement,

e Disposition data, listing the options specified
and the status of the load module in the outout
library.

e Diagnostic messages (severity code 1).

e A cross-reference table of the load module, or
alternatively, a module map (both optional).

If a diagnostic message of severity code 2 or 3
is produced then the other information listings
might not be produced. If a diagnostic message
of severity code 4 is produced then the other in-
formation listings will not be produced.

Diagnostic Messages

A description of the diagnostic messages that may
be produced by the linkage editor is contained in
Appendix F,

Module Map

If MAP is specified in the invoking statement for
the linkage editor, then a module map is trans-
ferred to the output data set to be listed by a print-
er, The module map shows all control sections
(the smallest separately relocatable units of a pro-
gram) in the load module and all entry names (to
routines in the ALGOL library) in each control sec-
tion. The control sections are arranged in ascend-
ing order according to their origins (which are
temporary addresses assigned by the linkage editor
prior to loading for execution), The entry names
are listed below the control section in which they
are defined. The origins and lengthks (in bytes) of
the control sections, and the location of the entry
names are listed in hexadecimal form. Unnamed
control sections are identified by SPRIVATE in

the list.

At the end of the module map is the entry ad-
dress of the instructions with which processing
of the module begins, It is followed by the total
length of the module, in bytes. Both values are
in hexadecimal form.

Cross-Reference Table

1f XRETF is specified in the invoking statement for
the linkage editor, the cross-reference table is
transferred to the output data set to be listed by a
printer,

The cross-reference table consists of a module
map and a list of cross-references for each con-
trol section. In the list of cross-references, each
address constant that refers to a symbol defined
in another control section is listed with its assigned
location (in hexadecimal form), the symbol referred
to, and the name of the control section in which the
symbol is defined.

If a symbol is unresolved after processing by
the linkage editor, it is identified by $ UNRESOLVED
in the list. However, if an unresolved symbol is
marked by the never call function, it is identified
by $NEVER-CALL,

The entry address and total length are listed
after the list of cross-references.

EXECUTION TIME LISTINGS

A successful execution of the load module produces
the following information listings:

e Job control statement information according
to which MSGLEVEL option was specified in
the JOB statement,

o The ALGOL program trace, which is a list of
the semicolon numbers assigned by the com-
piler (optional),

If an error is detected during execution of the

load module, additional information listings are
printed before the trace: these are;

© A diagnostic message

e The contents of the data storage areas
(optional)

Diagnostic Messages

Any error detected at execution time causes ab-
normal termination, A diagnostic message is
produced which is transferred to an output data
set to be listed by a printer, The diagnostic mes-
sages which may be produced during load module
execution are listed in Appendix F.

Data Storage Areas

If DUMP is specified in the invoking statement for
the execution operation, the data storage areas
(DSA) in main storage are transferred to the out-
put data set to be listed by a printer. They are
listed in the reverse order to which they were
created,

A DSA is created for each call of a program
block (see "Compilation Listings'') and exists in
main storage as long as the call is effective., The
DSA contains:

Information Listings 21

1. All execution time values of variables declared
or specified in the program block except for
arrays. The array values are stored separate-
1y but are included in the listing because they
are referenced by the SMF which is contained
within the DSA,

2, Intermediate results (known as the object time
stack).

The information listed for each DSA consists

e Name of load module
® Program block number

e Description of program block; either
BLOCK, PROCEDURE or TYPE PROCEDURE

® The values in the DSA, in batches according
to their category, that is, formal parameters,
declared identifiers and object time stack,
arrays called by value, and declared arrays.

The values are those which exist at the time
the error was detected (in hexadecimal form).
The displacement in the DSA of the first value in
each line is printed at the beginning of each line,
This is a six digit hexadecimal number,

For formal parameters, each entry has 16
digits, and in the case of parameters called by
name the entry contains an address constant
pointing indirectly to the value.

For declared identifiers and the object time
stack, the identifier entries are listed first and
they can be located using the identifier table if it
was listed by the compiler. In the case of a type
procedure, the function value is stored at the lo-
cation of the procedure identifier within the pro-
gram block defined by the procedure, The object

22

time stack contains various intermediate results
and addresses which are not directly related to
the identifiers in the source program,

For arrays the length depends on the SMF.
The displacement of the SMF in the DSA is given
for each array.

In the listings, real values have a length of 8
hexadecimal digits when SHORT is specified and
16 digits when LONG is specified. They are in
standard floating point representation, Integer
values have a length of 8 hexadecimal digits and
are in standard fixed point representation. Boolean
values have a length of 2 hexadecimal digits which
appear as 00 for “FALSE“and 01 for TRUE",

An editing routine ingerts blanks between each
set of 8 digits to improve readability.

ALGOL Program Trace

A program trace, listing the semicolon numbers
assigned by the compiler (see "Compilation List-
ings') in the order the corregponding semicolons
were encountered during execution, is transferred
to an output data set to be listed by a printer if
TRACE, TRBEG or TREND is specified in the in-
voking statement for the execution, The complete-
ness of the trace depends on the option or options
specified (see Appendix E), Only the semicolons
actually passed through at executiorn time are in-
cluded in the trace.

If a precompiled procedure is used in the pro-
gram and TRACE is specified, then the semicolon
numbers for the procedure are included in the
correct position within the program, The appro-
priate load module name (first four characters
only) is inserted at the beginning of thé listings
and each time a change occurs in the first four
characters of the module name,

SC

00000
00004
00006
00008
00012
00016
00017
00019
00020
00021
00022
00023
00025
00026
00027
00028

SOURCE PROGRAM
SOURCE STATEMENT

'BEGIN' 'INTEGER' I; 'REAL' A; 'BOOLEAN' B;'INTEGER'

'INTEGER' 'PROCEDURE' IP; IP:= I+5;

'ARRAY' IA(/1:5/)3
'ARRAY' AR(/0:3,2:8/); 'BOOLEAN' 'ARRAY' BA(/0:1,1:3,3:7/);

'REAL' 'PROCEDURE' RP(A); 'VALUE' A; 'INTEGER' A; RP:=Axdj;
'PROCEDURE' P(A,B,C); 'BOOLEAN' A; 'REAL' B; 'INTEGER' C;

A:=B«C

I:=1; A:=2,6;
AR(/1,1/):=1IP;
AR(/1,2/):=RP(AR(/1,1/));
P(BA(/0,1,3/),A,1);
P(B,AR(/1,2/),IP);
sysacT(1,8,50); OUTREAL(Ll,AR(/1,1/));
OUTBOOLEAN(1,BA(/0,1,3/));
OUTBOOLEAN(1,B) ;

A:=A/0;

'END'

Figure 11, Example of Source Program Listing.

IDENTIFIER TABLE

PBN SC PBN NAME ‘TYPE DM DSP NAME TYPE
SURR PR LN
001 00000 000 A R 0lC AR RA
BA B A 03 058 I I
Ip IpP 00 070 P
002 00006 001 Ip IP 00 070
003 00008 001 A IV 020 RP RP
004 00012 001 A B N 018 B RN

Figure 12, Example of Identifier Table Listing.

DM
PR

02
03

0l

STORAGE REQUIREMENTS (DECIMAL)

OBJECT MODULE SIZE 1840 BYTES.

DATA STORAGE AREA SIZES

PBN

001

DSP
LN

03C
018
078

074
020

BYTES PBN BYTES PBN BYTES PBN BYTES

136 002 32 003 40 004

60

NAME TYPE DM DSP

PR LN
B B 020
IA IA 01 024
RP RP 01 074
c I N 028

This corresponds to the program in Figure 11.

PBN BYTES

Figure 13. Example of Storage Requirements Listing, This corresponds to the program in Figure 11.

Information Listings

23

==== CROSS REFERENCE TABLE ====

CONTROL SECTION ENTRY
NAME ORIGIN LENGTH NAME LOCATION NAME LOCATION NAME LOCATION NAME LOCATION
00 730
IHIDSTAB 6D8 IHIENTIF 724
IHISYSCT# 730 5EC
IHISOREA%* D20 328
IHISORAR D20 IHISOREL D30
IHIIORTN# 2580 B58
IHIIOROQ 2580 IHITIOROP 25AC IHIIORNX 28C4 IHIIORCL 2BOC
IHIIORCP 2C72 IHITIORGP 2D38 IHIIORCN 2D3C IHIIOREN 2D76
IHIIOREV 2DCE IHITORED 2E40 IHIIORCI 2r44 THIIORER 2FCC

LOCATION REFERS TO SYMBOL 1IN CONTROL SECTION

61C IHISYSCT IHISYSCT
658 IHISOREL IHISOREA
660 IHIOBOOL IHIOBOOL
Dos IHIIORCL IHIIORTN
-_________‘__~__—¥7 _____————"'-—__————__-__"““-—————_________ e
1F48 IHIFSARB IHIFSARB
1F5C IHIIORCP IHIIORTN
1F8l INIFSARA IHIESARA
ENTRY ADDRESS IF24
TOTAL LENGTH 30D8

Figure 14. Example of Cross-Reference Table Listing, This is part of the table produced from the program
in Figure 11. A Module Map Listing would contain only the list of Control Sections and Entry Names, plus
the Entry Address and Total Length Information. Control Sections marked with an asterisk were included
from a library during automatic library call,

IHI031I SC=00027 PSW= FF05000F 48005EK22 DIVISION BY ZERO, FLOATING POINT

MODULE = GO PROGRAM BLOCK NUMBER = 001 (BLOCK)

DECLARED IDENTIFIERS AND OBJECT TIME STACK
000018 00000001 4129999A 000lFF2C 01000000 0001E49C 0001F4A0 0001E4B4 00000014
000038 00000004 02000024 0001E428 0001E430 0001LE4A0 00000070 0000001C 00000004
000058 0300003C 0001E408 0001E410 O000lE42E 0000001E 0000000F 00000005 00000001
000078 000LE44C 0000581lC 000lF560 400058C

SMF DISPLACEMENT IN DSA = 000058 DECLARED ARRAY
000000 00000000 0QQO00000 00000000 00000000 00000000 00000000 00000000 00000000

SMF DISPLACEMENT IN DSA = 00003C DECLARED ARRAY
000000 00000000 00000000 00000000 00000000 00000000 00000000 41600000 42240000
000020 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
000040 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
000060 00000000 00000000 00000000 00000000

SMF DISPLACEMENT IN DSA = 000024 DECLARED ARRAY
000000 00000000 00000000 00000000 00000000 00000000

Figure 15, Example of Error Message and Data Storage Area Listing, This is the listing produced from
the program in Figure 11 when the division by zero was encountered,

ALGOL PROGRAM TRACE
MODULE SEMICOLON NUMBERS
GO 00001 00002 00003 00004 00005 00006 00008 00012 00017 00018 00019 00007 00020
00009 00010 00011 00021 00013 00014 00015 00016 00022 00013 00014 00015 00016

00007 00023 00024 00025 00026 00027
END OF ALGOL PROGRAM EXECUTION

Figure 16, Example of Program Trace Listing, This was produced from the program in Figure 11.

24

CAPACITY LIMITATIONS

In addition to those given in IBM System/360
Operating System: ALGOL Language, the follow-

ing restrictions must be observed when writing
an ALGOL source program:

Number of blocks and
procedure declarations
(NPB)

Number of for statements

Number of identifiers de-
clared or specified in one
block or procedure, T is
at most twice the number
of for statements occur-

ring in that block

Length of letter string
serving as parameter
delimiter

Length of label identifer

Number of valid
characters

Number of semicolons in

the whole program

Number of nested blocks,
compound statements, for
statements and procedure

declarations

Number of labels declared
or additionally generated

by the compiler

<255

<255

<179-F for type
procedures
<180-F otherwise

<1024 letters when main
storage size available is

less thar 50K, <2000
letters otherwise

<1024 characters

when main storage size
available is less than
50K, =2000 characters
otherwise

<2556K

<65535

<999

<1024

The compiler generates the following

additional labels:

SECTION 4: PROGRAMMING CONSIDERATIONS

For each switch declaration 2
For each procedure declaration 2

For each procedure activation
(including function designators) 1

For each THEN” and each ‘ELSE” 1

at most L + 3
where L is the
number of for
list elements

For each for statement

Length of constant
pool <(256 - NPB) x 4096 bytes

The requirements of components within the pool
are

Integer constant 4 bytes
Real constant
(SHORT) 4 bytes.
Real constant
(LONG) 8 bytes

2 + number of
symbols of open
string between
the outermost
string quotes

String (in bytes)

The constant pool is divided into blocks of 4096
bytes each. The first block contains the integer
constants 0 to 15 (64 bytes). All strings together
are restricted to fill not more than the rest of
this block (4096 - 64 - 2S bytes, where S =
number of strings).

No constant occurring more than once in the source

program is stored twice in the same block; however,
it may possibly be stored more than once in differ-

ent blocks, Up to seven bytes may be left unused,

Length of data storage area
for each block or procedure

declaration <4096 bytes

Number of blank spaces
serving as delimiters on
I/0 data sets <255

Programming Considerations 25

Number of records per
section <255

Number of entries in the
Note Table <127

(The Note Table stores information to retrieve
records which may be required again later. An
entry for a record is made each time the ALGOL I/0
procedures PUT and SYSACT13 are executed, and
each time an input operation, with backward repo-
sitioning, follows an output operation on the same
data set.)

Identification number (N)used

by PUT or GET 0<N<65535

INVOKING A PROGRAM WITHIN A JOB STEP

Any one of the four macro-instructions, CALL,
LINK, XCTL or ATTACH, may be used to dynam-
ically invoke the compiler, linkage editor and load
module within a job step, This is an alternative
to the more usual method of invoking a program
by starting a job step with an EXEC statement.
Full details of the four macro-instructions are
given in IBM System/360 Operating System:
Control Program Services.

To invoke a program with the CALL macro-
instruction, the program must first be loaded into
main storage, using the LOAD macro-instruction,
This returns, in general register 15, the entry
address which is used by the CALL macro-instruc-
tion. The instructions used could be:

LOAD EP-=member-name
LR 15,0
CALL (15), (option-address), VL

To invoke a program with one of the LINK,
XCTL or ATTACH macro-instructions would need
instructions such as:

LINK EP=member-name,
PARAM=(option-address), VL=1

XCTL EP=member-name

ATTACH EP=member-name,

PARAM-=(option-address), VL=1

"member-name' specifies the name of the mem-
ber of a partitioned data set which contains the pro-
gram required.

For the compiler, member-name=ALGOL
For the linkage editor, member-name=IEWL

For the load module, memhber-name is speci-
fied by the programmer in the SYSLMOD DD state-~
ment for the linkage editor.

"option-address' specifies the address of a
list containing the options required by the user.
An address must be given even if no options are
specified. The list must begin on a half-word
boundary. The first two bytes contain a number
giving the number of bytes in the remainder of
the st. (If no options are specified this number
must be zero), The list itself containg any of the
options available to the PARM parameter in an
EXEC statement (see Appendix E),

When using CALL, LINK or ATTACH to invoke
the compiler, other ddnames may be used in place
of the standard ddnames given in Section 2 for the
data sets (except for SYSABEND), and an alterna-
tive page number (instead of the normal 001) may
be specified for the start of output listings.

If alternative ddnames are used, then in the
statement invoking the compiler, "option-address
must be followed by '"ddname-address' giving the
address of a list containing the alternative ddnames.
If alternative page numbers are used, then "page-
address'' giving the address of a location contain-
ing the alternative page number must be placed
after ""ddname-address'; though if alternative
ddnames are not required "ddname-address' may
be replaced by a comma.

The ddname list must begin on a half-word
boundary. The first two bytes contain a number
giving the number of bytes in the remainder of
the list. The list itself contains up to ten 8-byte
fields, separated by commas, for specifying al-
ternative ddnames for the data sets. As only seven
data sets are used by the compiler, three of the
fields are left blank, The alternative ddnames
must be listed in the following order:

Purpose of data set Standard ddname

Output of object module SYSLIN

for linkage editor

-- Three blank fields -~

Source program input SYSIN
Information listings SYSPRINT
Output of object module SYSPUNCH
for card deck

Intermediate work SYsuUT1
Intermediate work SYSUT2
Intermediate work SYSUT3

The field for a data set which does not use an
alternative ddname must be left blank if there is
an alternative ddname following, Otherwise the
field is omitted,

The location containing the page number must
begin on a half-word boundary. The first two
bytes contain a number giving the number of bytes
in the remainder of the location (namely, four).
These four bytes contain the number for the first
page of the output listings, and on return to the
invoking program they will contain the number of
the last page.

An example of an invoking statement and the
associated lists, for the compiler, is:

COMPILE LINK EP=ALGOL,PARAM-=
(OPTIONS, DDNAMES, PAGE),
VL=1

OPTIONS DC H"257,CPROCEDURE,DECK,

SIZE=90112"

DDNAMES DC H%35% C°OUTPUTbb,3CLS D",

CINPUTbbb’, CL8 ",

C CARDDECK~
PAGE DC H04%,F62°
b = blank

In this case, the PROCEDURE and DECK op-
tions are specified and 88K bytes of main storage
are made available, Alternative ddnames are
specified for SYSLIN, SYSIN and SYSPUNCH, and
62 is specified as the first page number for the
output listings.

PRECOMPILED PROCEDURES

Subprograms, written in either ALGOL or Assem-
bler language, may be compiled or assembled,
linkage edited, and stored in load module form on
a partitioned data set for subsequent call by a

load module produced from an ALGOL source
program when this latter module is being executed.
The compiler will recognize a subprogram if the
PROCEDURE option is specified in the invoking
statement. A subprogram of this type when stored
in load module form is known as a precompiled
procedure and is specified in the calling ALGOL
program by using the ‘CODE “ delimiter as the
body of a procedure.

A precompiled procedure is loaded into main
storage when control passes to the program block
in which the precompiled procedure is declared,
and is deleted when control leaves that block.
Thus, precompiled procedures declared in dis-
joint program blocks will overlay each other.

The REUS option (see Appendix E) must not be
specified for the precompiled procedure load mod-
ule, in the statement invoking the linkage editor,
if the installation allows multiprogramming.

The module name specified to the linkage editor
for a precompiled procedure must be the procedure
name used in the declaration of the procedure in
the calling ALGOL program. The precision of
real values must be the same, SHORT or LONG,
in the calling ALGOL program and the precompiled
procedure, If this rule is not observed then un-
defined results may occur.

ALGOL Procedures

The requirements for a precompiled procedure
written in ALGOL are given in IBM System/360
Operating System: ALGOL Language,

Assembler Language Procedures

The following requirements must be observed
when writing a precompiled procedure in Assem-
bler language,

In the instructions given below, the programmer
may specify any valid names in the name fields,
provided that any cross-referencing of names is
observed. To avoid erroneous results, other in-
structions should not be included in the following
sequences,

Programming Considerations 27

Initialization Instructions

ASSTART DC XL2-°

“ Characteristic of
first formal param-
eter (see Figure 17)

DC XL2- “ Characteristic of
second formal pa-
rameter

DC XL2° ’ Characteristic of

last formal param-
eter

First instruction
executed

Termination Instructions

Reset CDSA, PBT and FSA registers for a type
procedure, store value of type procedure at dis-
placement 24 in the data storage area (DSA)

B EPILOGP (FSA)

Return to calling
program

Definition Instructions

The following storage and constants must be de-

fined:

PBTAB

Entry Point

DS F Space
DC CIl4” ~ Name of procedure
(first 4 characters)

DS F Address of DSA (set
by FSA routine)

DC H~ “ Length of DSA, At
least 24 (+8 if type
procedure)
+8 x number of formal
parameters

DC - X108 If type procedure

'X04" If procedure
DC X0p~ where p is number of

formal parameters in

one hexadecimal digit.

At the entry point of the module there must be an
address constant:

28

DC A(PBTAB,DUMMY, ASSTART)

Register Definitions

The following registers must be defined if used in
the program:

ADR EQU 8 Used in communications
with calling ALGOL pro-

gram,

Used in communications
with calling ALGOL pro-
gram,

GDSA EQU 9

Address of DSA, Must be
reset before communica-
tion with calling ALGOL
program,

CDSA EQU 10

Address of PBTAB, Must
be reset before communi-
cation with calling ALGOL
program,

PBT EQU 11

Must be reset before
communication with
calling ALGOL program,

FSA EQU 13

Used in communications
with calling ALGOL pro-
gram,

STH EQU 14

Used in communications
with calling ALGOL pro-
gram,

BRR EQU 15

Fixed Storage Area Displacements

The following displacements must be specified
for routines in the fixed storage area which are
used in the program.

CAP1 EQU X0D4~
CAP2 EQU X0D8”
PROLOGFP EQU X0DC”
RETPROG EQU X0E4~
EPILOGP EQU XE8”
CSWE1 EQU X0F4-
VALUCALL EQU X118°

Parameter Handling

In the following instructions DISPL is the displace-
ment of the formal parameter in the DSA., For
example, the displacement of the nth formal param-
eter is:

24 + 8(n-1), except in the case of type
procedures where it is 32 + 8(n-1)

Formal Parameters Called by Name: -

1,

If the formal parameter is a string, an array,
or of type real, integer or Boolean, the follow-
ing method can be used to call the actual pa-
rameter,

Save all registers.

Reset CDSA, PBT and FSA registers

BAL BRR,CAP1(FSA)
DC H8’

DS H

L ADR, DISPL(CDSA)

If the formal parameter is a procedure (con-
taining j formal parameters), the following
method can be used to call the actual procedure.
Save all registers,

Reset CDSA, PBT and FSA registers

BAL BRR, CAP1(FSA)

DC H8”

DS H

L ADR, DISPL(CDSA)

BAL BRR,PROLOGFP(FSA)

DC A(THUNK1)

DC X1.2” “ Characteristic of
first parameter
(see Figure 17)

DC H” ” Number of param-
eters, j

DC A(THUNK?2)

bC XL2" * Characteristic of
second parameter

DS H

DC A(THUNKj)

DC X12-° * Characteristic of
last parameter

DS H

Return after call

A "thunk" is a sequence of instructions that
loads register ADR with the address of the actual

parameter, The following instructions must there-
fore be included in the precompiled procedure when

the above sequence is used.

THUNK1 LA ADR,ACTPR1 Address of first
actual parameter #
B CAP2(FSA)

THUNKj LA ADR,ACTPRj Address of last

actual parameter
B CAP2(FSA)

#In the case of a string the first 2 bytes should
contain the length of the string.
If the formal parameter is a label, the follow-
ing method can be used to call the actual param-
eter,

Save all registers.

Reset CDSA, PBT and FSA registers

BAL BRR,CAPI(FSA)
DC H8"

DS H

L ADR, DISPL(CDSA)
B RETPROG(FSA)

If the formal parameter is a switch, the follow-
ing method can be used to call the actual param-
eter,

Save all registers.

Reset CDSA, PBT and FSA registers

BAL BRR,CAP1(FSA)

DC H8~

DS H

L ADR, DISPL(CDSA)

LA BRR, i i=element number
BAL STH,CSWE1(FSA)

B RETPROG(FSA)

Formal Parameters Called by Value: -

If the formal parameter is an array, or of
type real, integer or Boolean, the following
method can be used to call the actual param-
eter,

Save all registers.

Reset CDSA, PBT and FSA registers

BAL BRR,CAP1(FSA)

DC H8”

DS H

L ADR, DISPL(CDSA)

BAL BRR,VALUCALL(FSA)

DC HDISPL~

DC XL2” * Characteristic of

formal parameter
(see Figure 17)

Programming Considerations 29

Tyvpe of Characteristic Halfword

Parameter (in hexadecimal form)
Result after call of actual parameter

When called When called
by name by value

STRING CB10 ADR contains address of string

REAL Cc212 ADR contains address of real value

REAL Cc222 DISPL in CDSA contains real value

INTEGER C211 ADR contains address of integer value

INTEGER C221 DISPL in CDSA contains integer value

BOOLEAN C213 ADR contains address of Boolean value

BOOLEAN c223 DISPL in CDSA contains Boolean value

ARRAY or REAL} CA1l6 ADR contains address of SMF (see below)

ARRAY CA26 DISPL in CDSA contains address of SMF

INTEGER ARRAY CA1l5 ADR contains address of SMF

INTEGER ARRAY CA25 DISPL in CDSA contains address of SMF

BOOLEAN ARRAY CAl7 ADR contains address of SMF

BOOLEAN ARRAY CA27 DISPL in CDSA contains address of SMF

LABEL CA18 ADR contains address of label

LLABEL CA28 ADR contains address of label

SWITCH CAlC ADR contains address of switch

PROCEDURE CADO If the actual procedure is parameter-less then
procedure is called, otherwise ADR contains
address of procedure

REAL PROCEDURE | CAD2 If the actual procedure is parameter-less then
procedure is called, and ADR contains address
of real value, otherwise ADR contains address
of procedure

REAL PROCEDURE C2E2 DISPL in CDSA contains real value

INTEGER PRO- CAD1 If the actual procedure is parameter-less then

CEDURE procedure is called, and ADR contains address
of integer value, otherwise ADR contains address
of procedure

INTEGER PRO- C2E1 DISPL in CDSA contains integer value

CEDURE

BOOLEAN PRO- CAD3 If the actual procedure is parameter-less then

CEDURE procedure is called, and ADR contains address
of Boolean value, otherwise ADR conttins address
of procedure

BOOLEAN PRO- C2E3 DISPL in CDSA contains Boolean value

CEDURE

Figure 17, Table of parameter characteristics for an Assembler language precompiled procedure, The

SMT describes the storage layout of an array. Byte 0 contains a value denoting the number of subscripts
in the array. Bytes 8 to 11 contain the address of the first element in the array. Bytes 16 to 19 contain

a value denoting the size of the array.

When processing the source program, the com-
piler detects and specifies any routines that need
to be combined with the generated object module
before it can be executed. These routines are
contained in the System/360 Operating System
ALGOL library - a partitioned data set with the
external name SYS1, ALGLIB., The routines are
in load module form and the linkage editor com-
bines them with the object module to produce an
executable load module, There are three types
of routines - fixed storage area routines, mathe-
matical routines and input/output routines, Addi-
tionally, an error routine, stored on the operating
gystem link library, SYS1, LINKLIB, is called

at execution time if an error occurs,

Initialization and termination of the library
routines is performed using the standard method
(see "Supervisor' in Section 1).

FIXED STORAGE AREA

General routines required to some degree by all
object modules are combined into a single load
module known as the fixed storage area (IHIFSA),
These routines are used to initialize and termi-
nate execution of the ALGOL program, to handle
the DSA when entering or leaving a program block
or procedure, to produce the program trace, to
load precompiled procedures, to get main storage
for arrays, to convert values from real to integer
and integer to real, to call actual parameters, to
handle branches in the program, to handle pro-
gram interrupts, ete....

MATHEMATICAL ROUTINES

Standard mathematical functions contained in
ALGOL have corresponding mathematical routines

APPENDIX A: ALGOL LIBRARY ROUTINES

in the library, except for ABS, SIGN and LENGTH
which are handled by the compiler, and ENTIER
which is contained in the fixed storage area. Rout-
ines exist in each case for both long and short pre-
cision of real numbers.

These mathematical routines are taken from
the System/360 Operating System FORTRAN IV
library and modified to conform to the ALGOL
language requirements without affecting the mathe-
matical methods used. TFull details of these rou-~
tines are contained in IBM System/360 Operating
System: FORTRAN IV Library Sub-programs,

INPUT/OUTPUT ROUTINES

Data transfer between the load module and exter-
nal data sets is performed by input/output rou-
tines, These routines correspond to the ALGOL
I/0 procedures and are mostly contained on sep-
arate load modules (see Figure 18), In addition
there is a single load module, IHIIOR, which
contains a number of commonly-used subroutines.

ERROR ROUTINE

If an error is detected during execution of the
load module, an error routine (in SYS1. LINKLIB)
is invoked. Its main purpose is to construct the
error message and produce the data storage area
listing before passing to the termination routine
in the FSA. If a second error occurs while the
first is being handled (due, for example, to an
I/0 error or because the object module has over-
written part of the ALGOL library or control pro-
gram), then termination takes place immediately
and incomplete informnation listings may be pro-
duced.

ALGOL Library Routines 31

Module Name

Storage

When used estimate
(bytes

ALGOL FORTRAN 1V
IHIERR When an error is detected at execution time 4270
IHIFDD IHCFDXPD For an exponentiation (**or POWER" using

long precision base and long precision exponent 200
IHIFDI IHC FDXPI For an exponentiation (**or POWER") using

long precision base and integer exponent 140
ITHIFII IHCFIXPI For an exponentiation (**or POWERY) using

integer base and integer exponent 170
THIFRI THCFRXPI For an exponentiation (**or 'POWER) using

short precision base and integer exponent 140
IHIFRR IHCFRXPR For an exponentiation (**or POWER") using

short precision base and short precision

exponent 200
THIFSA For every object module (except those for

precompiled procedures) 5030
IHIGPR For either GET or PUT 2420
IHITAR For INARRAY or INTARRAY 120
THIIBA For INBARRAY 70
IHIIBO For INBOOLEAN 530
IHIIDE For either INREAL or ININTEGER 1560
IHIIOR For every object module 2910
THIISY For INSYMBOL 270
IHILAT ITHCLATAN For a long precision arctangent

operation (ARCTAN) 320
IHILEX IHCLEXP For a long precision exponential operation (EXP) 450
THILLO THCLLOG For a long precision logarithmic operation (LN) 310
THILOR For a long precision OUTREAL operaticn 730
THILSC THCLSCN For a long precision sine or cosine operation

(SIN or COS) 370
ITHILSQ THCLSQRT For a long precision square root operation

(SQRT) 140
IHIOAR For OUTARRAY 120

32

THIOBA

For OUTBARRAY 70
IHIOBO For OUTBOOLEAN 400
THIOIN For OUTINTEGER 410
THIOST For OUTSTRING 300
THIOSY For OUTSYMBOL 290
IHIOTA For OUTTARRAY 120
IHIPTT For a long precision INREAL or OUTREAL
operation 270
IHISAT THCSATAN For a short precision arctangent
operation (ARCTAN) 200
THISEX THCSEXP For a short precision exponential operation (EXP) 280
THISLO THCSLOG For a short precision logarithmic operation (LN) 210
IHISOR For a short precision OUTREAL operation 810
THISSC THCSSCN For a short precision sine or cosine operation
(SIN or COS) 260
THISSQ THCSSQRT For a short precision square root operation
(SQORT) 170
THISYS For SYSACT 1520
Figure 18, Table of ALGOL library modules, All are contained in SYS1. ALGLIB except IHIERR

which is in SYS1. LINKLIB., For mathematical routines, the corresponding name in the FORTRAN IV

library is also given.

ALGOL Library Routines

33

APPENDIX B: IBM-SUPPLIED CATALOGED PROCEDURES

The three cataloged procedures for ALGOL that optimum job, and can be over-ridden by the user
were introduced in Section 2 are contained in the if he requires different or additional system sup-
procedure library, SYS1, PROCLIB, of the oper~ port to that provided (see Section 2). In particular
ating system. They consist of the job control state- it should be noted that in these procedures the ob-
ments listed below. ject or load module produced is stored on a tempo-
rary data set and will therefore be deleted at the
These procedures have been designed for an end of the job.

Compilation, ALGOFC

EXEC PEM=ALGQOL , e
yLLALLAgngDS\'SOUTAA‘..,A. e et et e
/SY SPUNCH, DD UNIT=SYSCP oo o e e e e
M.YS.L.'.N, 0.D _DSNAME=¢& LO MMMW A_é.l.;.._,_‘_.&_._._
LMLM‘4M AAAAAAAAAAAA Ak A A 4 i
44;3:5;; DD_UNLT:S5YSSQ,SEA~ P SP).)
UNIT.:SY P AT
S.PAC S5a,18)). s \ . et
gsxs.g;r; gg UNI,I'SYS,DA,SPAC;-(QQQ,Q,.(QQ, .),)., T R e o X
o SEP=(,SYSUTI,SYSU .W\SYSPUNQ e
//SYSABEND. DD SYSOUT=A . . e s
Compilation and Linkage Editing, ALGOFCL
[/7ALGOL EXEC PEM*ALGOL . . . o o o oot e e

'/SYSPRINT DD SYSOUT=A \ e .
/;svspuncuApr UNLY " SY S P o i et e e e s

SYSLIN. DD DSNAME=2 LOADSET ,gu;p YS. ;g,seana,sx, PUNC g,g;;,p (Mg\

7R SPACE=(400,(48,18)). L*

s MOD. DD DSNAME=2LGOSET. UN 2 SYSDA ,DISP= MO,EAS;,), e . X

.L_/_A_A_A_L .- o ’ ¢) ! "‘- l T e T SR Sy WAV W TR W WY W VU RORY W WS S

. DD UNIT= 5S4 SEP2SYSPRI SPACE® 62 5. 1.8)). e
//SYSUT2 DD UNIT= SUT, ...S.Y.S.kILK.S.YSPuMCH) NN SN
77 YN e e et
JJ&SMMLW PN S
|//SYSABEND DD SYSOUTZA . . o 00 oo oo e i e
WMMMMMM]

/ /SYSPRINT. DD ‘S.Y.S.O.U:ttA R e
//SYSLIN DD DSN LIN.D 'oLD DELETE). . et
/15ysL1B DD QSUA.H.§=S,Y§I -A gg, - .D.tAs.p;ou_b e e , as
[zsvs.n,_.ngo DD _DSNAHE =£G0SET(60)., UNIT=5Y4D, 1;54_%3,&;5».), s . X

s SPACE=(1824 l e i et aa

zgx,s,ur |, DD UNI.:[-SY;DA,SE,P: SYSLIB,SYSLMOBY g ooy g
L .“.SPAcAa-(l@zA,(o‘q,g?i;f: A
usmgwoJA@;mL;LAL_ et e

34

Compilation, Linkage Editing and Execution, ALGOFCLG

ob DD DSNAME=2GOSET
7 SPACE=(1024

/74160, EXEC_PSM=AL&OL e e
//SYSPRINT DD SYSQUT=A s e
;%A_AMQ___D UNIT=SYSCP o\ oo it oo ok

YSLIN_DD ADS, 5 P- AAX AL §,§)’ . x
L*u.....:fﬁgiﬁigaéﬂ .l¢5§

//SYSUTI_DD UNIT=SY35Q ,.§§EM&A&W

AAAAAAAA

//SYSUT2 DD _UNLT=SYSSQsSEP=(SYSUT, Hgvs v.x.u..sx&aum.u.) i

,& sms.a.asu.a_mm;m e
%gm&gas.c PaM=TEWL ,PARH: [XREF LLIST COND® 0 . i
/SYSPRINT. DD SYSOUTFA o oiso i o A . e
/7. SYSLIN DD DSNAME= Lﬁ_ggt..__xs Ps ETE). e
/sysz.'a DD DSNA 18P=0LD. , . . e
ggsxs.z.uog DD ps:anE-f?ggeL T=SYSDA. ,Q1§P-(SQ,PASQ), , .

YSUT.I. DD UNIT _§x ggise.xé% é; % ;:svs .
//§st3 END. DD svsour AL o “T;_‘_
;/ézﬁ“:a AL b o510 *% i

LMA_A_A_ P U S G W U S
Ysu'rv DD _UNI r=svssms§_ .; .:ggg m.,. PA. .e. 0 —
/7SYSAREND DD_SYSOLT=A .

r—y A4 2 A 1., P A A b 4o a2

Aok A

IBM -Supplied Cataloged Procedures

35

36

APPENDIX C: CARD CODES

The card deck of the source program is punched
line for line from the text written on the coding
sheets. The card code used can be either a 53
character set in Extended Binary Coded Decimal
Interchange Code (EBCDIC), or a 46 character
set in Binary Coded Decimal (BCD), This latter
character set has been established as standard
for ALGOL by the International Standards Organ-
ization (ISO) and Deutsche Industrie Normen
(DIN). Figure 19 shows these two codes.,

Characters Card Codes
EBCDIC 1SO/DIN
Ato Z 12-1 to 0-9 | 12-1 to 0-9
0to9 0to9 0to9
+ 12-8-6 12
- 11 11
#* 11-8-4 11-84
/ 0-1 0-1
= 8-6 8-3
, 0-8-3 0-8-3
. 12-8-3 12-8-3
’ 8-5 84
(12-8-5 0-8-4
) 11-8-5 12-84
blank no punch no punch
< 12-8-4
> 0-8-6
12-8-7
& 12
- 11-8-7
: 8-2
H 11-8-6

Figure 19. Source program card codes.

APPENDIX D: OBJECT MODULE

The object module is in a form acceptable as input

to the linkage editor, that is, its records are card 3. The generated instructions,

images having the format of ESD, RLD, TXT and

END cards (see Figure 20), It is stored either on 4. The Label Address Table (see Section 3) for

a data set (ddname SYSLIN) in the linkage editor addressing branch instructions in the module.

library, or on an output data set (ddname SYSPUNCH), v

or on both. The parameters LOAD and DECK, used 5. The Program Block Table containing an

to specify these storage options are described in entry for every program block. This table

Appendix E, indicates the active generation of data stor-
age areas (see Section 3) and length of each

The object module consists of: data storage area,

1. An initial ESD card defining the control sec- 6. The Data Set Table containing information
tion. For a precompiled procedure, the on the current status of all data sets used.
procedure name (up to 6 characters) is as- This table is not produced for precompiled
signed to the control section and entered into procedures,

this record.
7. Program start information,

2., The Constant Pool containing all constants
and strings in the module, 8. An END card.

(END card
yd
Program start informa-
tion (ESD, RLD and TXT
cards)

yd
Data set table (RLD and
TXT cards)

ya

(Program block table (RLD /

and TXT cards)

4

Label address table (ESD,
RLD and TXT cards)
y4an
Generated instructions
(RLD and TXT cards)

y4
Constant pool
(TXT cards)

Definition of control
section (ESD cord)

Figure 20. The object module card deck. The ESD (External Symbol Dictionary) cards contain the external
symbols that are defined or referred to in the module, The RLD (Relocation Dictionary) cards contain

addresses used in the module, The TXT (Text) cards contain the constants and instructions used in the
module. The END card indicates the end of the module.

Object Module 37

APPENDIX E: USING JOB CONTROL LANGUAGE

This appendix describes the method of writing job
control statements, and explains the options most
frequently used by the ALGOL programmer. A
full description of Job Control Language is given
in IBM System/360 Operating System: Job Control

Language.

CODING FORMAT

Control statements are identified by the initial
characters // or /* and are written in columns
1 to 72 of standard 80 column punched cards.
Each field is separated by one or more blanks.
Column 72 must be left blank unless the state-
ment is to be continued on another card.

If the length of a statement exceeds 71 charac-
ters, it must be continued on another card, This
is done by interrupting the statement at the end of
a positional or keyword parameter, following this
parameter with a comma, and placing any non-
blank character in column 72, The continuation
card commences with the initial characters //
and the statement restarts on column 16, Com-
mand statements may not be continued on another
card.

Comments must be separated from the last
parameter by one or more blanks. If the com-
ment is to be continued on another card it may be
interrupted at any convenient point and a non-
blank character is put in column 72, The conti-
nuation card commences with the initial charac-
ters // and the comment restarts on any column
from 16 to 71 inclusive.

The four possible formats for control state-
ments are shown in Figure 21. The null and de-
limiter statements are blank except for the first
two columns.

NAME containg the symbolic identification of the
control statements. It is always placed imme-

Applicable Con-
Format trol Statements
//NAME OPERATION OPERAND | JOB,EXEC,
DD
//OPERATION OPERAND EXEC,DD,
Command
// Null
/* Delimiter

Figure 21, Control statements formats.

38

diately after the initial characters //. A name
must contain between one and eight alphameric
characters, the first of which must be alphabetic.
If name is omitted, then at least one blank must
separate the initial characters // and the operation
field.

OPERATION identifies the type of control state-
ment being specified,

OPERAND contains the statement parameters,
separated by commas.

CONVENTIONS

The conventions used in this manual for describing
control statements are as follows:

Upper case letters and punctuation marks (except
those listed below) represent information to be coded
exactly as shown.,

Lower case letters are general terms requiring
substitution of specific information by the program-
mer.

These punctuation marks have a special meaning:

- (hyphen) links lower case words to form a
single term for substitution

(underscore) indicates the option that will
be assumed if none is specified

{ } (braces) mean only one of the options con-
tained must be selected

L] (brackets) mean information contained may
be omitted

... (ellipsis) means that preceding item can be
repeated successively a number of times.

CONTROL STATEMENT CODING

In the following description, certain terms are
used to indicate external names which are to be
specified by the programmer. These terms and
their meanings are:

Term Meaning
jobname name of job
progname name of program

stepname name of job step
ddname name of DD statement
(the standard ddnames
which may be specified
are described in Section 2)
procname name of cataloged proce-
dure
procstep name of job step within
a cataloged procedure
dsname name of data set

It is often convenient to use two or more quali-
fication levels to specify a data set name. The
highest level reference is stated first. Thus in
Figure 22, data set D.M. H is found by searching
the index of each volume in turn, starting with the
system residence volume (the primary volume in
the operating system), to find the location of data
set D. This, when searched, will contain the lo-
cation of data set D.M, which in turn will contain
the location of data set D.M, H.

volume index A D Z
data set D A M Z
data set D. M. A H Z
TFigure 22, Data set cataloging using qualified
names,

A maximum of 44 characters can be used for a
qualified name. Thus, as a simple name can con-
sist of between one and eight characters, and each
name must be separated by the character period
(.), a maximum of 22 qualification levels is possible,

Data set names can also be qualified by a suffix,
that is, "dsname (element)'", to indicate the rela-
tive generation number. Ior example, WEATHER
(0) is the current generation of the data set named
WEATHER. The preceding generation would be
WEATHER (-1). A new generation during creation
is known as WEATHER (+1), at the end of the job
it becomes WEATHER (0). A suffix is also used
to indicate the name of a member of a partitioned
data set, or the area of an indexed sequential data
set.

There are four types of job control parameters
for inclusion in the operand fields: positional pa-
rameters, keyword parameters, positional sub-
parameters and keyword subparameters.

Positional parameters must be stated first,
and where more than one can be included they must
be listed in the order given in the following descrip-
tions. A comma must be substituted in place of
any positional parameter omitted, if it is to he
followed by another positional parameter, for ex-
ample,

//name operation posl,,pos3......

Keyword parameters can be listed in any order,
They contain a keyword followed by an equal sign
(=) and some specific information, All keyword
parameters are optional since a default option will
exist for any which must be specified.

One or more subparameters can be substituted
for a positional parameter and also for the informa-
tion to the right of the equal sign in the keyword
parameter,

Positional subparameters have the same confi-
guration and restrictions as positional parameters.

Keyword subparameters have the same confi-
guration and restrictions as keyword parameters.

When more than one subparameters are used,
they must be separated by commas and the list
enclosed in parentheses, for example,

// name operation posl,pos2,keyl=value,
// key2=(subl, sub2)

Since some special characters, such as the
comma, parenthesis, blank and equal sign, have
a special significance when used in control state-
ments, no special characters can usually be used
in job control information provided by the user.
There are, however, some exceptions to this rule,
The special characters @, $ and # can be repre-
sented normally, All other special characters,
except the apostrophe, can be represented normally
in the programmer s-name in the JOB statement,
the accounting-information in the JOB and EXEC
statements, and the PARM parameter options in
the EXEC statement, provided that the information
is enclosed in apostrophes (replacing the parenthe-
ses for a list of more than one subparameter). An
apostrophe within this information is represented
by two consecutive apostrophes.

Using Job Control Language 39

JOB Statement

The name field of the JOB statement must contain
the external name for the job (jobname).

The operation field must contain the characters
JOB

The parameters available for the operand field
are listed in Figure 23, where:

accounting-information
identifies the installation account number to
which the computer time for this job is to be
charged. If the installation has an appropriate
accounting routine, the account number can be
followed by other subparameters, which are
fixed by the user for his own installation, If the
account number is omitted then its absence must
be indicated with a comma.

programmer ‘s-name
identifies the person responsible for the job.
It must not exceed 20 characters.

TYPRUN=SETUP
indicates that the operator must mount a volume
before the job can be done.

TYPRUN=NONSETUP
indicates that a volume does not have to be
mounted before the job can be done.

PRTY=job-priority
indicates the relative priority of the job. A num-
ber from 0 to 14 is specified, with 14 being the

Positional [accounting-information]
parameters [programmer ‘s -name]
Keyword

parameters TYPRUN { SETUP }
(all optional) NONSETUP

PRTY=job-priority
COND=((code, operator),...)

MSGLEVE Lag-g-}

MSGCLASS=classname

Figure 23. JOB statement parameters

40

highest priority, This parameter can be used
only with priority scheduling.

COND=((code, operator),...)
allows conditions for the termination of the job
to be specified. Up to eight (code,operator)
specifications may be included in a COND param-
eter. Any number between 0 and 4095 is sub-
stituted for ""code'" and one of the following six
relationships is substituted for "operator'.

Operator Meaning
GT greater than
GE greater than or equal to
EQ equal to
NE not equal to
LE less than or equal to
LT less than

At the completion of each job step, unless a
system error occurs, the operating system will
generate a return code between 0 and 4095 (see
Section 1) to indicate if the program was executed
successfully or not. If any of the code numbers
stated in the COND parameter is related to the re-
turn code in the way specified by the associated
operator then the job is terminated. For example,
if

COND=((50, LT), (40,GT))

then, the job will be terminated if either 50 is
less than the return code, or 40 greater than the
return code.

MSGLEVEL=0
indicates that the job scheduler is to write out
control statement information only when an
error occurs, The information required is a
diagnostic message and the control statement
in which the error occurred.

MSGLEVEL=1
indicates that, whether an error occurs or not,
the job scheduler is to write out all control
statements, plus a diagnostic message if an
error does occur,

MSGCLASS=classname

allows job scheduler messages to be written

in a system output class other than the one nor-
mally used by the installation. The user can
fix up to 36 different classes (A to Z and 0 to

9), depending on device type, priority, desti-
nation, etc., for these messages. This param-
eter is not necessary if the normal class (A)

is required. For sequential scheduling only
class A may be used.

EXEC Statement

The name field contains the external name of the
job step (stepname), It may be omitted if no refe-
rence is to be made to the EXEC statement in
another statement.

The operation field must contain the characters
EXEC

The parameters available for the operand field
are listed in Figure 24, where:

PGM=progname
indicates that the job step executes the program
named "'progname', The program must reside
on a partitioned data set,

PGM=%¥*, stepname, ddname
indicates that the job step executes the program
named by the DSNAME parameter of a DD state-
ment named "ddname'" that was included in a
previous job step named "stepname' in the same
job. If "stepname" refers to a job step invoking
a cataloged procedure then a job step within the
procedure can be specified by putting its name
after '"stepname'; that is, "stepname, procstep'.
The program must reside on a partitioned data
set,

PROC=procname
indicates that the job step executes the cataloged
procedure named ''procname’,

prochame
has the same effect as PROC=prochame

TIME=(minutes, seconds)
limits the computing time for the job step. If
"'seconds' only is specified then a comma must
be substituted for "minutes'. If "minutes' only
is specified then the parentheses can be deleted.
This parameter can be only used with supervisor
configurations incorporating the timing facility.

COND=((code, operator, stepname).,...)
allows conditions to be specified for bypassing
a job step whose execution depends on the re-
turn code issued by a preceding job step. '"Code"
and "operator' are governed by the same stipu-
lations that applied for the JOB statement, '"Step-
name' indicates the previous job step which
issued the return code to be used for comparison,
If "stepname'" is not specified then the return
code issued by all previous job steps are com-

pared. If "stepname'" refers to a job step in-
voking a cataloged procedure then a job step
within the procedure can be specified by putting
its name after '"stepname'’; that is "stepname,
procstep'.

Positional parameters
PGM=*, gtepname. ddname
PROC=procname
procname

PGM=progname ‘

TIME
TIME. procstep

Keyword parameters P
(all optional) }~ (minutes, seconds)
COND

COND. procstep}: ((code, operator, stepname),...)

PARM. procstep}t subparameter-list

ACCT
ACCT. procstep

{
{
{PARM
{

}= accounting-information

Figure 24, EXEC statement parameters.

PARM=subparameter list
indicates any special conditions which apply
to the job step., All the subparameters in the
"'subparameter-list' are optional., They can
be specified in any order, and a comma does
not have to be substituted for any omitted. A
maximum of 40 characters may be used. For
the rule to be observed when an equal sign is
included in the subparameter-list (that is, with
SIZE, TRBEG and TREND), see ""Control State-
ment Coding'.

For the ALGOL compiler job step, the ''sub-
parameter-list' is given below. For each of
the alternatives, the compiler assumes that the
option underscored applies, unless the other
is specified either at this stage or during system
generation. The default options PROGRAM and
TEST cannot be changed at system generation,
If a large number of options need to be specified
for a particular job then the 40 character limi-
tation may be exceeded. To avoid this, abbre-
viated forms, given at the end of the descrip-
tion of each option, may be used.

PROGRAM or PROCEDURE: which specifies
that the source program is either an ALGOL
program in the sense of the ALGOL syntax
(PROGRAM), or is an ALGOL procedure to be
compiled separately and used with other pro-
grams or procedures (PROCEDURE), Abbre-
viated forms PG or PC,

SHORT or LONG: which specifies that the in-
ternal representation of real values is in full

Using Job Control Language 41

42

words (SHORT); or double words (LONG).
Abbreviated forms SP or LP,

NODECK or DECK: which specifies that an
object module, stored on the data set specified
in the SYSPUNCH DD statement, either is not
to be generated (NODECK); or is to be gener-
ated (DECK). Abbreviated forms ND or D,

LOAD or NOLOAD: which specifies that the
compiler is to either generate an object module
for use as input to the linkage editor, using the
data set specified in the SYSLIN DD statement
(LLOAD); or not generate this object module
(NOLOAD), Abbreviated forms L or NL.

SOURCE or NOSOURCE: which specifies that
the source program and identifier table listings
are either to be printed (SOURCE); or not to be
printed (NOSOURCE). Abbreviated forms S or
NS.

EBCDIC or ISO: which specifies that the card
code used to write and keypunch the source pro-
gram is either a 53 character set in EBCDIC
(EBCDIC); or the 46 character set in BCD
which has been established as standard for
ALGOL by ISO and DIN (ISO). Abbreviated
forms EB or L.

TEST or NOTEST: which specifies that the
generated object module is to include informa-
tion which is normally used only for testing
(TEST); or is not to include this information
(NOTEST)., The information consists of instruc-
tions to produce the semicolon count, and in-
structions checking the values of subscript ex-
pressions against array bounds. Abbreviated
forms T or NT,

SIZE=45056 or SIZE=number: which specifies
the main storage size, in bytes, that is available
to the compiler. "Number' must not be less
than 45056 and must not exceed 999999,

For the linkage editing job step the "subpa-
rameter-list" consists of two types of options,
those which specify the output listings required,
and those specifying attributes for the load mod-
ule,

The options to control output listings are:
LIST which specifies that all job control state-

ments processed by the linkage editor are to be
listed on the diagnostic output data set.

MAP or XREF which specifies that either a map
of the load module is to be produced (MAP); or
a cross-reference table of the load module is to
be produced (XREF) comprising a load module
map and a list of all address constants that re-
fer to other control sections.

The options specifying load module attributes
which can be used with ALGOL programs are:

REUS which produces a load module that is se-
rially reusable, that is, it can be used by more
than one task, but only one task at a time,

DC which produces a load module that is down-
ward compatible, that is, if the load module is
produced by an F level linkage editor then it
can be reprocessed by an E level linkage editor.

LET or XCAL which specifies that either the
load module is to be marked as executable even
when a severity 2 error is detected (LET); or
the load module is to be marked as executable
even though invalid external references between
the segments have been made (XCAL). A se-
verity 2 error could make execution impossible
and would normally lead to the load module be-
ing marked as not executable, It includes the
situation over-ridden by XCAIL.

NCAL which specifies that the linkage editor
automatic library cail mechanism is not to call
library members to resolve external references
within the object module. The load module is
marked as executable even thcugh unresolved
external references have been recognized.

All the linkage editor subparameters are
optional,

For the execution job step of an ALGOL pro-
gram the "subparameter-list' is:

TRACE which specifies that the semicolon count
produced during the compilation process is to
be printed as a list. This gives information on
the dynamic flow of the program and is known
as a program trace.

TRBEG=number which specifies that a limited
program trace is to be produced beginning at
the semicolon specified by "number'" and ending
at the physical end of the program.

TREND=number which specifies that a limited
program trace is to be produced beginning at
the physical beginning of the program and ending
at the semicolon specified by '"number!.

The last two options may be specified together
to define the beginning and end of the trace, When
either is specified, TRACE may be omitted, but
in that case precompiled procedures would not
be included, If TRACE is specified with TRBEG
or TREND, then only a limited program trace
is produced, but it will include precompiled
procedures executed in that part of the program.,

DUMP which specifies that a partial main storage
dump is to be produced if an error occurs., The
dump contains the contents of the data storage
areas and arrays.

All of the execution time subparameters are
optional,

ACCT=accounting-information
allows accounting information associated with
the job step to be passed to the installation’s
accounting routines, using subparameters which
are fixed by the user for his own installation.

keyword. procstep
is used with the last four parameters when a
cataloged procedure is being executed, It in-
dicates that the parameter applies to the job
step named '"procstep' within the procedure,
and may be repeated for each keyword and with
different, or the same, information to the right
of the equal sign, for each job step in the pro-
cedure.

DD Statement

The name field contains an identifying name
(ddname) for the DD statement,

The operation field must contain the characters
DD

The parameters available for the operand field
are listed in Figure 25, where:

% indicates, when used as a positional parameter,
that the required data follows immediately after
this DD statement. The asterisk must be the
only non-blank character in the operand field.
For sequential scheduling it can be used only
once in each job step, and the data must be fol-
lowed by a delimiter statement.

DUMMY
indicates that the user’s problem program is
to be executed without any I/O operations on

the data set.

This can be used for debugging,

and also for bypassing data set references in
a regularly -used program, for example, the
first run of an updating program when there is
no old master to be processed.

DSNAME=dsname (element)
specifies the name of a newly defined data set,
or refers to one that has been defined previous-
ly. "Element" is used only if it is necessary
to specify the generation number of the data
set, the name of a member of a partitioned data
set, or the area of an indexed sequential data
set (using the options PRIME, OVFLOW or

INDEX).

DSNAME=&name (element)
specifies that the data set is temporary and will
be deleted before the end of the job. The name
allocated by the operating system is "name,
jobname', ""Element' has the same meaning as
when used with DSNAME=dsname,

DSNAME=%*, stepname. ddname
indicates that the data set is the one specified
in a preceding DD statement named "ddname"
occurring in the job step named "stepname!,
If the data set was specified in the current job
step then '"stepname' must be omitted., If "step-
name'" refers to a job step invoking a cataloged
procedure then a job step within the procedure
can be specified by putting its name after '"step-
name'; that is "¥, stepname, procstep. ddname",

Note. If the DSNAME parameter is omitted then
the operating system will assign a unique name
to any data set created by the job step.

Positional parameters
(all optional)

{:)UMMY}

Keyword parameters
(all optional, though
DSNAME can be omitted
only when the asterisk
positional parameter is
used).

dsname(element)
DSNAME= 3 &name(element) f
*, stepname, ddname

DCB= [{“ . stepname, ddmme}] [subparameter-list]
dsname

{AFF:ddname }
SEP=subparameter-list

UNIT=subparameter-list

SPLIT=subparameter-list
SUBALLOC=subparameter-list

g SPACE=subparameter-list $
VOLUME=gubparameter-list
LABE L=subparameter-list

{DISP=subparameter-llst }
SYSOUT=subparameter-list

Figure 25. DD statement parameters.

Using Job Control Language 43

DCB= { #, stepname, ddname} [subparameter-list]

dsname

indicates that the data control block for the data
set specified in the DD statement named "ddname"
in the job step named "stepname', or alterna-
tively the cataloged data set named "dsname',
is to be repeated for the current DD statement,
"'Stepname' must be omitted if it refers to the
current job step, or may be qualified in the
same way as the DSNAME parameter if it re-
fers to a job step in a cataloged procedure. If
additional information is substituted for "sub-
parameter-list" then this over-rides the cor-
responding subparameters in the repeated in-
formation, Alternatively "subparameter-list"
can be used alone to specify data control block
information.

The "subparameter-list" for the data sets used

when processing and executing an ALGOL program
contains the following keyword subparameters:

BLKSIZE=number, is used to specify blocksize.
"Number" is blocksize in bytes, and for fixed
length records must be a multiple of record
length.

RECFM=F [B] [A], is used to specify record
format, F = fixed length, B = blocked, A = con-
trol character incorporated to control printed
output format.

LRECL=value, is used to specify record length,
"Value'" is actual or maximum length in bytes.

All other valid DCB options are fixed.

AFF=ddname

indicates that the data set has affinity with the
data set specified by the DD statement named
"ddname' and is to use the same channel,

SEP=list-of-ddnames

indicates that the data set is to use a separate
channel to the ones used by the data sets speci-
fied by the DD statements named in the '"list-
of-ddnames".,

UNIT=subparameter-list

44

specifies the class and quantity of I/O devices
to be allocated for use by a data set. The "sub-
parameter-list' has three forms, any one of
which may be used in an individual statement,
The three forms are:

Positional 1
subparameters classname {nurlr)lber} [DEFER]

Keyword

subparameter [SEP=list-of-ddnames]

2| Positional

subparameters POOL,ddname {%}

Keyword

subparameter AFF=ddname

"classname' indicates the device class. These

names are divided into two categories.

¢ Those automatically incorporated in the op-
erating system when it is generated. These
are of two types - specific unit names, such
as 2400 (for a magnetic tape drive) and 1403
(for a printer); and general classnames,
that is,

SYSCP for any card punch

SYSSQ for any magnetic tape or
direct access device

SYSDA for any direct access device.

® Additional names fixed by the user for his
installation when the operating system is
generated.

"number" indicates the number of devices to be
allocated. Tf the data set is cataloged but the
number of devices used is unknown, then '"P"
substituted for "number' will ensure that the
correct number is assigned.

DEFER indicates that the volume need not be
mounted on the I/0 device until the data set is
called in the program. This subparameter must
not be used with an indexed sequential data set
or a new output data set on a direct access de-
vice,

SEP=list-of-ddnames indicates for direct access
devices that, if possible, the data set is not to
use the same access arm as the data sets spec-
ified by the DD statements, given in the '"list-
of-ddnames"'.,

POOL,ddname, indicates that the data set is to
use the pool of tape units previously established
by the DD statement named ""ddname' in the
same job step. A pool could be established to
conserve 1I/0 devices if a number of output data
sets, that might exceed one tape reel each, are
being produced by the job step. The pool would
consist of one tape unit for each data set, plus
one or more additional units, When a data set

reached the end of its tape reel, output would be
automatically continued on one of the additional
units, and the first tape reel would be rewound
and then replaced by the operator with a new
reel so that the unit would be available for other
data sets. The pool would be established by
using the first form of the UNIT ''subparameter-
list'" in a DD statement. Only the AFF or SEP
parameters may be used with the UNIT param-
eter in this statement,

1 or 0 indicates that an extra tape unit is
either to be added to the pool, or not to be added
to the pool,

AFF=ddname indicates that the data set is
to use the same I/O devices as the data set spec-
ified in the DD statement named "ddname' in
the same job step.

PACE:=subparameter-list
indicates the space required when a direct ac-
cess device is specified in the UNIT parameter,
The "subparameter-list' contains only posi-
tional subparameters, The list is:

CYL

{ TRK
average-record-length

} primary-quantity

[secondary-quantity J[directory-or-index-quantity]

MXIG
[RLSE][{ALX }][ROUND]
CONTIG

The first subparameter specifies the units
in which the space requirements are expressed,
that is, tracks, cylinders or records (with length
given in bytes),

The next subparameter specifies the space
required, It has three parts (of which the se-
cond and third are optional) and is enclosed in
parentheses if more than one part is specified.
If the second part is omitted, then it must be
substituted by a comma if the third part is in-
cluded. The initial space to be allocated is given
by "primary-quantity'. Each time this initial
space is filled, additional space is to be pro-
vided as specified by ""secondary-quantity'.

The number of 256 byte records to be allocated
for the directory of a new partitioned data set,
or the number of cylinders, taken from the ini-
tial space reserved, to be allocated for the in-
dex of an indexed sequential data set, is given
by "directory-or-index-quantity",

RLSE indicates that any unused space assigned
to the data set is to be released,

MXIG requests that the largest single block of
storage available is to be allocated to the data
set,

ALX requests that extra blocks of storage (in
track units) are to be allocated to the data set.
As many available blocks that are equal to or
greater than "primary-quantity', up to a max-
imum of five, will be allocated.

CONTIG specifies that the space specified by
"primary-quantity' is to be in a single block,

ROUND requests that when records are used

to express the space required on the direct ac~
cess device, the space is to begin and end on
cylinder boundaries,

DISP=subparameter-list
indicates the status of the data set and speci-
fies its disposition at the end of the job step,
The "subparameter-list" consists of the fol~
lowing positional sabparameters:

DELETE
NEW KEEP
{ OLD } [{ PASS]
MOD CATLG
UNCATLG

NEW specifies that the data set is to be gene-
rated in this job step, anc would be deleted at
the end of the job step unless KEEP, PASS or
CATLG is specified.

OLD specifies that the data set already exists,
and would be kept at the end of the job step un-
less PASS or DELETE ig specified,

MOD specifies that the data set already exists
and is to be modified in this job step. If the
data set cannot be found by the operating system
then this parameter is equivalent to NEW,

DELETE specifies that the space used by the
data set (including that in the data set catalog,
etc.) is to be released at the end of the job
step.

KEEP specifies that the data set is to be kept
at the end of the job step.

PASS specifies that the data set is to be re-
ferred to in a later step of this job, at which

Using Job Control Language 45

time its final disposition, or a further pass,
will be specified.

CATLG specifies that the data set is to be ca-
taloged at the end of the job step., Thus KEEP
is implied. The catalog structure must already
exist,

UNCATLG specifies that the data set is to be
deleted from the catalog at the end of the job
step. KEEP is implied.

SYSOUT=subparameter-list

specifies the printing or punching operation to
be used for the data set. The "subparameter-
list" is:

classname [progname J{number])

""classname specifies the system output class
to be used. Up to 36 different classes (A to Z,
0 to 9) may be fixed by the user for his instal-
lation, according to device type, priority, des-
tination, etc. The standard classname is A,

"progname' can be used to specify the name of
a user-written output routine,

"number' can be used to specify an installation
form number to be assigned to the output.

For sequential scheduling, the "subparame-
ter-list" consists of only the standard class-
name A,

VOLUME=subparameter-list

indicates the volume or volumes assigned to the

data set. If the data set is cataloged this param-
eter is not necessary. The "subparameter-list"

is:
Positional
subparameters [RETAIN][number][value)
Keyword SER=list-of-serial -numbers
subparameters
dsnatue
#*, ddname
REF= ¥, stepname. ddname
*, stepname. procstep.
ddname

46

RETAIN specifies that, if possible, the volume
is to remain mounted until referred to in a later

DD statement, or until the end of the job, which-
ever is first. '"number'" is any number between

2 and 9999, and is used if an input or output oper-
ation, on a cataloged data set residing on more
than one volume, does not start on the first vo-
lume of the data set, The rumber specifies the
position of the volume on which input or output
does start (for example, 3 indicates the third
volume of the data set).

"value' specifies the number of volumes re-
quired by an output data set, It is not required
if SER or REF is used.

SER~list-of-serial-numbers, specifies the se-
rial numbers allocated by the user to the volumes
required by the data set. These serial numbers
can consist of between one and six alphameric
characters.

dsname
#*, ddname
REF=).°
*, stepname, ddname

*, stepname, procstep. ddname

specifies that this data set is to use the same
volume or volumes as the data set specified by
one of the alternative sub-subparameter forms.
If the latter data set resides on more than one
tape volume, then only the last volume (as spec-
ified in the SER subparameter) can be used.

LABEL=subparameter-list

indicates the type of label or labels associated
with the data set. If the data set is cataloged
this parameter is not necessary. The "sub-
parameter-list" is:

NL.
Positional SL
b g -
subparameters [number] NSL
SUL
Keyword {EXPDT=yyddd}
subparameters RETPD=dddd

"number" is any number between 2 and 9999,
and specifies the position of the data set on the
volume (for example, 3 would indicate the third
data set on the volume).

NL, SL, NSL, and SUL specify the type of label
or labels to be used, that is, no labels, stan-
dard labels, non-standard labels, and standard

and user labels, respectively. The routines to
produce non-standard labels must be written
and incorporated into the operating system by
the user,

EXPDT=yyddd specifies that the data set cannot
be deleted or opened, without operator inter-
vention, until the date given by yy (year) and
ddd (day).

RETPD=dddd specifies that the data set is to be
retained for the number of days given by dddd.

Command Statement

The options available for the operation and operand
fields of the command statement are described in
IBM System/360 Operating System: Operator’s
Guide,

DATA SET CONTATENATION

Unless it has been created in the same job, a load
module specified for execution in an EXEC control
statement must be contained in the SYS1. LINKLIB
library of the operating system. If the load module
is not a permanent member of this library then it
is temporarily combined by using a DD statement
with the name JOBLIB,

If the load module is a member of another li-
brary then this whole library is combined with the
SYS1, LINKLIB library. This temporary combin-
ing is termed concatenation and lasts only for the
duration of the job;, A statement of this kind would
have the form:

//JOBLIB DD DSNAME=dsname, DISP=0LD

where "dsname'" is the name of the data set or li-
brary containing the load module to be executed,

Only one JOBLIB DD statement can be used in
each job and it must immediately follow the JOB
statement, If more than one load module contained
in a library being concatenated is required in the
same job then the parameter DISP=(OLD, PASS)
placed immediately after the DSNAME parameter,
will extend the effect of the concatenation through
each step of the job.

If the job requires load modules from a number
of data sets which are not created in the job or not

permanent members of the SYS1, LINKLIB library
then one data set is concatenated to this library,

as described above, and the others are concate-
nated to this first data set by listing their DD state-
ments immediately after the JOBLIB DD statement
and leaving the name fields blank, This has the
effect of concatenating all the data sets to the -
SYS1, LINKLIB library,

JOB CONTROL LANGUAGE EXAMPLES

Three different types of jobs are described here

to illustrate the use of job control language, Some
of the subparameters used, such as I/0O device
classnames and voiume serial numbers, may change
for different installations.

Example 1: Executing a Single Load Module

Statement of problem: A set of 80 matrices are
contained in data set SCIENCE, MATH, MATRICES,
Each matrix is an array containing real variables,
The size of the matrices vary from 2x2 to 25x25;
the average size is 10x10., The matrices are to be
inverted using a program MATINV contained in a
partitioned data set MATPROGS, Each inverted
matrix is to be written as a single record on the
data set SCIENCE, MATH, INVMATRS, The first
variable in each record is to denote the size of the
matrix, Each matrix is to be printed.

*SCIENCE,
MATH,
MATRICES

Printed

MATINV
output

]
SCIENCE,
MATH.,
INVMATRS

Figure 26. I/0 flow for Example 1, .

Using Job Control Language 47

/ZINVERT J.0B 537,]QHNSMITH,HSGLEVEL?!,

2.

V/Z308LIB DD _DSNAME:NAT PRO&S,DI1SP~0 -MMMMMMMMM

.......

Z/JMVEgT EXEC PGM=MATINY.
SIN
//SYSPRINT, DD SYSOUT:A .

//8YSIN DD DSNAME: CLEA'Q&NATH HATR‘CE&-..D.ISP aLD. ...

........

oA Ao

[/ALGLDDES, DD DSNAME: SC.IENCE . MATH..INVMATRS ‘D'I's'pé(NEW, CATLG) 5 . X
// VOLUME = SER'I SEP=SYSIN e X
o, (8 I,[ﬁ ROUND e X

14 . .Dga:.ngq‘F‘.M. M&Jmu .3.@«6)

Py P ..

- PP G R

PUY S S U S S S Y

Figure 27, Job control statements for Example 1,

Explanation of coding: The job control statements
used in Figure 27 specify that:

1. The job is

® to be charged to the installation’s account
number 537

® the responsibility of John Smith
e to have all control statements (plus control
statement diaghostic messages if an error
occurs) printed on the normal system output
device,
2. The partitioned data set MATPROGS is concate-
nated with the operating system library, SYS1.
LINKLIB.
The program to be executed is MATINV,
4, The input data set is SCIENCE, MATH, MATRICES
5. The printed output is to use the standard output
format class for the installation,
6. The output data set is
® to be called SCIENCE,. MATH, INVMATRS.
® to be cataloged
® to use the device class DACLASS
® to use volume 1089W
® to use a separate channel to the input data set

® to have space reserved for 80 records, each
1500 bytes long. This space is to be incre-

48

mented in 9-record units each time more

is required and any unused space is to be re-
leased. The space is contiguous and aligned
on cylinder boundaries.

® to have fixed length blocked records, 300
bytes long, and a maximum block size of
1500 bytes.

Example 2: Compiling, Linkage Editing and
Executing Three Sourcs Programs

Statement of problem: Raw data from a rocket
test firing is contained in a data set RAWDATA.,
The forecasted results for this firing are contained
in a data set PROJDATA. A program PROGRD is
to be used to produce refined data from these two
data sets.

The refined data is to be stored in a temporary
data set and used by a program ANALYZ, contain-
ing a series of equations, to develop values from
which graphs and reports can be generated. Pa-
rameters needed by ANALYZ are contained on a
cataloged data set PARAMS,

The values are to be stored on a temporary data
set and used by a program REPORT to print graphs
and reports. The programs PROGRD, ANALYZ
and REPORT are written in ALGOL., They are
still in source program form, and therefore must
be compiled and linkage edited before execution,

Explanation of coding: 'The job control state-
ments used in Figure 29 specify that:

1. The job is
® the responsibility of John Smith

® to have all control statements (plus control
statement diagnostic messages if an error

STEP 1 - STEP STEP 3 °

PROGRD NALYZ . EPORT
|source program) source program source program |

‘Compiler . Compiler Compiler

Object : Object ’ Object

module . module module

Linkage » Linkage ‘Linkage

Editor Editor _ ‘ Editor

O J- PROGRD efined ANALYZ REPORT Graphs ond
DATA =" executicn I data ™1 execution | execution Reports
RAWDATA ' PARAMS ‘

Figure 28. Basic I/0 flow for Example 2, The data sets for information listings, ALGOL library routines
intermediate work and the execution time error routine are not shown,

an;ga. OHNSHIT ,Lﬁé&.ﬁ..ﬁ\.ﬁl — e e, AR IR
/)STEPI, _EXEC ALGOFC e, D
1§z§,IMQD* - et e e

OURCE PRO U L U PP

PV S S S deddo b hod ot A A Aod s e [N S R i

Zlg ,ﬂ QL‘AD“, ,Q gggﬁg 'P, ,Q,LDQ, A,.QI.§P.'QLD.
%MAMLAMM&D QMWMV PASS), UNIT=TAPECLS J_._._A_H_
o .. NOLUME=(RETAIN,SER"

..... e

/ %5 (gecggg_mm,.w) e e

ILM Y G S W WU WS Wy W S S S— -

__I.N.BQI_QAL VDATA i i e s
&sumgmgsg e
//8YSIN DD X .., T e

OURCE. PEQéRAH(ANALYz) e
X . L N S S S N T ST fd b s aan P
/ Db, D, »2GOSET (ANALYZY. . e e s .
ZLQQ¢A&QAD@Mé_Eﬁliﬁﬂﬁuﬁﬁﬁhiﬂﬁ&ﬂgAkéthL&$QL§R'QLDLl e , e
//80. ALGL SMAME=PARA ¢ I1Se=aLD e i
//G0.ALGL SNAME = MAAygg,ngp-(Nﬁw P UNIT=T ecu
V7 0CA=(RECFM>F IBLKSI 262284 . qs¢L voeu 2!

W ISTEP. LMH_A‘L-&.Q.EQLLJ_‘.H_L]
/7SYSIN QD X e
SOu, PRO EPORYY. . . . R

‘74_4___1
A V- s PO O S 1 PUIE U T Sy VW Sy T S hamal [V I S S | Y T WIS T N W S WY el Sredemdsenderredhe e,

Lngﬁhgdst&an__a_nsﬂagjggggﬁgnﬂAﬁzggw) s
/ /GO - ALGLDD 14 DD DSNAMEsW.STEP g.AQQQM;QWMw%M

Figure 29. Job control statements for Example 2, -

Using Job Control Language

49

occurs) printed on the normal system output
device for information listings

. The first job step invokes the ALGOFCLG cata-

loged procedure (see Appendix B) to process
and execute the ALGOL source program
(PROGRD) entered in the input stream

The other input data sets are RAWDATA and
PROJDATA. RAWDATA is also entered in the
input stream

The temporary output data set is

® to be called REFDATA, TESTFIRE and to be
passed for use in a later job step

® to use the device class TAPECLS

e to be written on volume 2107, which is to
remain mounted for use later

e to have fixed length records, 80 bytes long,
and a maximum block size of 400 bytes

The second job step invokes the ALGOFCLG
cataloged procedure to process and execute

the ALGOL source program (ANALYZ) entered
in the input stream

The SYSLMOD DD statement in the LKED step
of the cataloged procedure is overridden to

specify that the load module produced by the
linkage editor is

¢ to be a new member, PROGRD, of the tem-
porary partitioned data set FIRING

The other input data sets are REFDATA,
TESTFIRE and PARAMS, Both will be kept
at the end of the job step

. The temporary output data set is

@ to be called VALUES, TESTFIRE and is to
be passed for use in a later job step

® to use the device class TAPECLS
® to be written on volume 2108

e to have fixed length records, 68 bytes long,
and a maximum block size of 204 bytes

The third job step invokes the ALGOFCLG ca-
taloged procedure to process and execute the
ALGOL source program (REPORT) entered in

the input stream, The output data will be listed

on the printer specified in the cataloged proce-
dure

10. The SYSLMOD DD statement in the LKED step
of the cataloged procedure is over-ridden to
specify that the load module produced by the
linkage editor is

® to be a new member, REPORT, of the tem-
porary partitioned data set FIRING

11. The other input data set is VALUES, TESTFIRE

which will be kept at the end of the job step

Example 3: Executing Two Load Modules

Statement of problem: Data on current weather
conditions is to be read from cards and used by
the program FILECR to create a new generation
of a data set WEATHER, and also to print a re-
port,

Then the new generation and the three imme-
diately preceding generations of the WEATHER
data set are to be used by the program FORCST
to produce a printed weather forecast, The pro-

Weather
data

FILECR

WEATHER
(+1)

—

FORCST

Weather
forecast

\-

Figure 30. I/0 flow for Example 3,

RP JOB MSGLEVEL= @

ORLI an,g E m;gggg,,mp-(om PA§§.)

(3 =F ECR
§ D

ALGL NARE.>)‘Drsbsom
/ Y SNAME=WEAT f {) o S EP=ALGLD DG4 DISP-OLD . P .

.A._AMMMK(23.DLSP=0OLD |
QAMJEMHR(2.) DISP=0LD
PR UNIT=PRIN, S LGLD

Figure 31, Job control statements for Example 3.

grams FILECR and FORCST are contained in a
partitioned data set WTHRPR.

Explanation of coding: The job control statements
used in Figure 31 specify that:

1.

The job is to have control statement messages
plus the relevant control statement printed on
the normal system output device only if an error
ocecurs

The partitioned data set WTHRPR is concatenated
to the operating system library, SYS1, LINKLIB

The first job step executes the program FILECR

The output data set is

e a new generation of the data set WEATHER

e to use the device class HYPERT

e to be written on volume 0012 which need not
be mounted until the data set is opened, and

is then to remain mounted for later use

e to be cataloged and have standard labels

® to be retained for 30 days

e to have fixed length records, 80 bytes long,
and a maximum block size of 400 bytes

The printed output 1s
e to use the device class PRINTER

® to use a separate channel fo the output data
set

The input data is included in the input stream

The second job step executes the program
FORCST

The input data sets are the last four generations

of WEATHER, all of which are to be kept at the
end of the job step

The output data set is
e to use the device class PRINTER

e to use a separate channel to the last two ge~
nerations of WEATHER

Using Job Control Language

51

APPENDIX F: DIAGNOSTIC MESSAGES

Each of the three operations-compilation, linkage
editing and execution - may produce diagnostic
nessages,

COMPILER MESSAGES

The diagnostic messages that may be produced by
the ALGOL compiler are given helow, Each diag-
nostic message occupies one or more printed lines
and contains:

e The message key, consisting of the letters IEX,
a three digit decimal number identifying the
message, and the letter I to indicate an infor-
mative message requiring no action from the
operator,

e The severity code W, S or T (see below)

® The semicolon number (see Section 3), This
number is sometimes omitted if the error can-
not be directly related to a point in the program,
The semicolon number is indicated in the list
below by the sequence NNNNN

® The message text describing the error and, in
the case of some W or S type errors, the mo-
dification performed on the program by the
compiler. In the message text listed below the
words in parentheses, together with the paren-
theses themselves, will be replaced in the actual
message that is printed, by specific information
taken trom the program, The word "operator"
usually refers to all delimiters defined in IBM_
System/360 Operating System: ALGOL Language,
but an internal compiler operator may some-~
times be listed. The word "operand" refers to
an identifier or an expression,

The three severity codes for errors and their
corresponding compiler action are as follows:

W (Warning): The program is modified inter-
nally and the compilation is continued. The mo-
dification may not make the program correct but
it allows object module generation to continue, A
diagnostic message is produced,

S (Serious): An attempt is made to modify the
program internally, including skipping or changing
parts of it, Generation of the object module is
stopped, but syntax checking continues, A diagnos-
tic message is produced.

22

T (Terminating): A diagnostic message is pro-

duced and the compilation is terminated.

IEX001I W NNNNN INVALID CHARACTER

DELETED.

Explanation: A character not recognized
by the compiler has been deleted from the
program,

IEX002] W NNNNN ILLEGAL PERIOD.

PERIOD DELETED.

Explanation: The character period has
been used wrongly and deleted from the
program, It can be used only as a deci-
mal point, or as part of a colon or semi-
colon,

IEX003I W NNNNN INVALID COLON AFTER

(six characters), COLON DELETED.

Explanation: The character colon has been
used wrongly and has been deleted from
the program, It can be used only after a
label, between subscript bounds, within

a parameter delimiter or as part of an
assign symbol,

IEX004I T NNNNN LETTER STRING TOO

LONG,

Explanation: A letter string used to supply
explanatory information exceeds capacity
limitations (see Section 4).

IEX005I S NNNNN IDENTIFIER BEGINS WITH

INVALID CHARACTER. IDENTIFIER
DELETED.

Explanation: An identifier has been de-
leted because it does not begin with an
alphabetic character.

IEX0061 T NNNNN LABEL CONTAINS TOO

MANY CHARACTERS,

Explanation: A label identifier has been
used whose length exceeds capacity limi-
tations (see Section 4).

IEX0071

TEX008I

TEX010I

IEX011I

JEX0121I

JTEXO013I

TEX014I

W NNNNN LABEL BEGINNING WITH
(up to six characters) CONTAINS
INVALID CHARACTER., COLON
DELETED.

‘Explanation: A label has been deleted
because it contains a character of other
than alphameric type,

W NNNNN LABEL BEGINS WITH
INVALID CHARACTER, COLON
DELETED,

Explanation: A label has been deleted
because it does not begin with an alpha-
betic character,

S NNNNN SPECIFICATION PART OF
PROCEDURE (identifier) INCOMPLETE,

Explanation: Not all of the formal pa-
rameters used in a procedure have been
specified.

S NNNNN PROGRAM STARTS WITH
ILLEGAL DELIMITER.

Explanation: A program has been written
not starting with ‘BEGIN’, "PROCEDURE ",
‘REAL", INTEGER” or BOOLEAN",

W NNNNN TWO APOSTROPHES AFTER
(six characters), FIRST APOSTROPHE
DELETED,

Explanation; In this context, two apos-
trophes cannot be used together so one
has been deleted.

W NNNNN APOSTROPHE ASSUMED
AFTER DELIMITER BEGINNING WITH
(up to six characters).

Explanation: All delimiters involving
words must begin and end with apostrophes.
One has been left out of the program and
has been inserted by the compiler,

S NNNNN DELIMITER BEGINNING
WITH (up to six characters) INVALID,
FIRST APOSTROPHE DELETED.

Explanation: An invalid sequence of char-
acters has been used after an apostrophe

which apparently started a delimiter. The
apostrophe is therefore deleted to remove

IEX0151

TEX016I

IEX0171

IEX018I

TEX020I

TEX0211

TEX0221

the delimiter status from the characters
but still include them in the program,

W NNNNN MISSING SEMICOLON
AFTER ‘CODE", SEMICOLON INSERTED.,

Explanation: Self-explanatory,

S NNNNN IDENTIFIER BEGINNING
WITH (up to six characters) CONTAINS
INVALID CHARACTER, IDENTIFIER
DELETED.

Explanation: A character other than an
alphameric type has been used in an iden-
tifier and so the identifier has been de-
leted,

S NNNNN MORE THAN 65535
SEMICOLONS, SEMICOLON COUNTER
RESET TO ZERO.

Explanation: Number of semicolons used
exceeds capacity limitations. Duplicate
numbers are allocated.

W NNNNN DELIMITER ‘COMMENT ”
IN ILLEGAL POSITION,

Explanations ‘COMMENT “has not been
placed after a BEGIN” or a semicolon.
Compilation continues normally,

T NNNNN BLOCKS, COMPOUND
STATEMENTS, FOR STATEMENTS,
AND PROCEDURE DECLARATIONS
NESTED TO TOO MANY LEVELS,

Explanation: Structure of program causes
it to exceed capacity limitations (see Sec-
tion 4).

S NNNNN DECLARATOR (declarator)
IN ILLEGAL POSITION,

Explanation: A declarator must come
between either BEGIN“ and the first
statement of a block, or ‘PROCEDURE "~
and the procedure body.

T NNNNN MORE THAN 255 PROGRAM
BLOCKS,

Explanation: Number of program blocks
used exceeds capacity limitations,

Diagnostic Messages 53

IEX0231

TEX0241

IEX0251

TEX0261

TIEX0271

TEX028I

TEX0291

IEX0301

S NNNNN STRING POOL OVERFLOW,

Explanation: Total length of strings used
exceeds capacity limitations (see Sec-
tion 4),

S NNNNN DELIMITER ‘CODE”IN
ILLEGAL POSITION.

Explanation: ‘CODE “has not been placed
immediately after a procedure heading
so it has been deleted.

S NNNNN SPECIFIER SBSTRING®OR
‘LABEL”IN ILLEGAL POSITION,
SPECIFICATION DELETED.

Explanation: STRING and ‘LABEL~
have been used outside a procedure
heading, so they have been deleted.

S NNNNN PARAMETER (identifier)
MULTIPLY SPECIFIED, FIRST
SPECIFICATION USED,

Explanation: Self-explanatory,

W NNNNN PARAMETER (identifier)
MISSING FROM FORMAL PARAMETER
LIST. SPECIFICATION IGNORED.

Explanation: A parameter has been spec-
ified in a procedure heading which does
not exist in the formal parameter list, so
it has been ignored.

S NNNNN DELIMITER VALUE "IN
ILLEGAL POSITION. VALUE PART
DELETED,

Explanation: “VALUE “has been placed
outside a procedure heading so the value
part has been deleted,

W NNNNN SPECIFICATION PART
PRECEDES VALUE PART,

Explanation: The specification part in a
procedure heading has been incorrectly
placed before the value part.,

W NNNNN PARAMETER (identifier)
REPEATED IN VALUE PART.

‘CODE’ DELETED.

TEX0311

TEX032I

TEX0331

TEX0341

TEX0351

TEX0361

Explanation: A parameter has been in-
cluded in the value part of a procedure
heading more than once,

W NNNNN LEFT PARENTHESIS NOT
FOLLOWED BY / AFTER ARRAY
IDENTIFIER (identifier), SUBSCRIPT
BRACKET ASSUMED,

Explanation: The subscript bounds after
an array identifier have been preceded

by a left parenthesis instead of a subscript
bracket.

S NNNNN MISSING RIGHT PARENTHESIS
IN BOUND PAIR LIST OF ARRAY (identi-
fier), DECLARATION DELETED,

Explanation: A right parenthesis has been
omitted in the list of subscript bounds for
an array identifier, so the declaration is
deleted.

T NNNNN MORE THAN 16 DIMENSIONS
OR COMPONENTS IN DECLARATION OF
(identifier).

Explanation: The number of dimensions
or components used with an array or switch
identifier exceeds the maximum allowed.

S NNNNN ARRAY SEGMENT (identifier)
NOT FOLLOWED BY SEMICOLON OR
COMMA, CHARACTERS TO NEXT
SEMICOLON DELETED,

Explanation: An array segment must be
followed by a semicolon if it is the ouly
or last segment of an array declaration;
or a comma if it is followed by another

segment,

W NNNNN ILLEGAL PERIOD IN ARRAY
OR SWITCH LIST. PERIOD DELETED,

Explanation: A period has been used
wrongly in an array or switch list and de-
leted from the program, A period can be
used only as a decimal point, or as part
of a colon or semicolon,

T NNNNN MORE THAN 15 PARAMETERS
N DECLARATION OF (identifier),

Explanation: The number of formal param-
eters specified for a procedure exceeds
the maximum allowed.

IEX037I

TEX038I

TEX0391

TEX041I

IEX0421

IEX0431

IEX0441

S NNNNN SEMICOLON MISSING
AFTER FORMAL PARAMETER LIST
OF (identifier), CHARACTERS TO
NEXT SEMICOLON DELETED,

Explanation: The formal parameter list
of a procedure must be followed by a semi-
colon,

T NNNNN TOO MANY IDENTIFIERS
DECLARED IN A BLOCK.

Explanation: Number of identifiers de-
clared in a block exceeds capacity limi-~
tations (see Section 4).

S NNNNN NNN MISSING ‘END
BRACKETS. OPEN BLOCKS,
COMPOUND STATEMENTS, FOR
STATEMENTS, AND PROCEDURE
DECLARATIONS CLOSED.

Explanation: Syntax of ALGOL requires
that a program contains the same number
of BEGIN’s and "END“s. The number of
END s specified by NNN have been omit-
ted in this case so any open blocks and
statements are closed.

T NNNNN MORE THAN 255 FOR
STATEMENTS,

Explanation: Number of for statements
used in a program exceeds capacity limi-
tations,

W NNNNN ‘BEGIN”PRECEDES
PRECOMPILED PROCEDURE,
‘BEGIN" DELETED.

Explanation: A precompiled procedure
has been specified so a BEGIN” is not
required,

S NNNNN EQUAL NUMBER OF
‘BEGIN” AND "END” BRACKETS FOUND,
REMAINING PART OF PROGRAM
IGNORED,

Explanation: The compiler assumes it
has reached the end of the program when
the number of 'END” brackets equals the
number of BEGIN” brackets,

T NNNNN NO SOURCE PROGRAM
FOUND,

TEX045T

IEX0471

IEX080I

IEX081I

IEX0821

IEX083I

IEX084I

Explanation: For example, there has
been an incorrect card code specification,

S IDENTIFIER (identifier) MULTIPLY
DECLARED. LAST DECLARATION USED,

Explanation: An identifier has been de-
clared more than once in a program block
heading, The last declaration is taken to
be the one required,

S ILLEGAL CALL BY VALUE OF
IDENTIFIER (identifier),

Explanation: A procedure, switch or
string has been wrongly called by value.

S NNNNN OPERAND BEGINNING
WITH (up to six characters) IS
SYNTACTICALLY INCORRECT,

Explanation: Invalid characters have
been used in the operand. If the six char-
acters are all periods, this may indicate
the internal representation of a string or
logical value.

S NNNNN IDENTIFIER (identifier)
NOT DECLARED.

Explanation: An identifier has been used
which is not declared in a block or proce-
dure heading,

S NNNNN REAL CONSTANT BEGINNING
WITH (up to twelve characters) OUT OF
RANGE.

Explanation: A real constant has been
assigned a value which is outside capacity
limitations,

W NNNNN INTEGER BEGINNING WITH
(up to twelve characters) OUT OF RANGE.
INTEGER CONSTANT CONVERTED TO
REAL,

Explanation: An integer constant has been
assigned a value which is outside storage
capacity limitations, so it has been con-
verted to a real constant,

W NNNNN PRECISION OF REAL
CONSTANT BEGINNING WITH (up to

twelve characters) EXCEEDS INTERNALLY
HANDLED PRECISION, CONSTANT
TRUNCATED,

Diagnhostic Messages 55

IEX0851

TEX0861

IEX0871

TEX088I

IEX089I

TEX160I

IEX1611

Explanation: A real constant has exceeded
capacity limitations regarding precision
and has been truncated,

S NNNNN
(label),

ILLEGAL USE OF LABEL

Explanation: A label defined in a for state-
ment has been used in a goto statement
outside the for statement, or the label oc-
curs in a syntactically illegal position,

S NNNNN TOO MANY CONSTANTS
Explanation: Number of constants used
exceeds capacity limitations (see Sec-

tion 4),

W NNNNN FULL OPTIMIZATION NOT

POSSIBLE DUE TO INTERNAL OVERFLOW,

Explanation: Main storage capacity avail-
able prevents for statement optimization
by the compiler after the overflow occurs,

W NNNNN IDENTIFIER (identifier) IN
BOUND EXPRESSION DECLARED IN
SAME PROGRAM BLOCK AS ARRAY,
DECLARATION IN SURROUNDING
BLOCK SEARCHED FOR.

Explanation: A bound expression can de-
pend only on variables and procedures
which are non-local to the block for which
the array declaration is valid, because
local variables do not have values before
entering the statements of the block,

W NNNNN ‘GOTO (identifier)
INVALID OUTSIDE FOR STATEMENT
CONTAINING THIS LABEL.

Explanation: A switch may have been mis-
used, since a label has been found in a
switch declaration outside a for statement
containing a definition of the same label.

S NNNNN SEQUENCE (operator)
(operator) NOT ALLOWED,

Explanation: In this context, this se-~
quence is not allowed.

S NNNNN SEQUENCE (operator)
OPERAND (operator) NOT ALLOWED,

IEX1621

IEX163I

TEX1641

IEX1651

TEX1661

IEX168I

IEX1691

TEX1721

Explanation: In this context, this se-
quence is not allowed,

S NNNNN OPERAND MISSING BETWEEN
(operator) AND (operator).

Explanation:- In this context, there must
be an operand between the two operators.,

S NNNNN OPERAND FOLLOWING
(operator) MUST BE OF ARITHMETICAL
TYPE,

Explanation: An arithmetical operand
must follow an arithinetical operator.

S NNNNN NO OPERAND ALLOWED
BETWEEN (operator) AND (operator).

Explanation: In this context, no operand
is allowed between the two operators.

S NNNNN EXPRESSIONS BEFORE AND
AFTER ‘ELSE “NOT COMPATIBLE,

Explanation: For example, if an arith-
metical expression is specified before
‘ELSE ", then an arithmetical expression
must be specified after,

S NNNNN DECLARATOR IN ILLEGAL
POSITION,

Explanation: A declaration has occurred
outside the block heading, or, for instance,
a label precedes the declaration.

S NNNNN OPERAND PRECEDING
(operator) CANNOT POSSESS VALUE.

Explanation: Only quantities that can
possess a value can be used in expression,
For example, not standard I/0 or non-
type procedure identifier.

S NNNNN LABEL FOLLOWING
(operator) ILLEGAL.

Explanation: In this context, a label is
not allowed due, for example, to a semi-
colon being missing,

S NNNNN DIFFERENT TYPES IN LEFT
PART LIST.

Explanation: The identifiers in a left part
list must be of similar type.

IEX1731

IEX1741

IEX1751

IEX1761

IEX1771

IEX178I

IEX1791

IEX1801

T NNNNN COMPILATION
UNSUCCESSFUL DUE TO COMPILER
OR MACHINE ERROR.

Explanation: Self-explanatory.

S NNNNN PARAMETERS NOT
ALLOWED FOR TYPE PROCEDURE
CALLED BY VALUE,

Explanations A type procedure called
by value must have an empty parameter
part.

S NNNNN OPERAND FOLLOWING
(operator) MUST BE LABEL OR
SWITCH.

Explanation: For example, ‘GOTO”
must be followed by a designational
expression.

S NNNNN OPERAND MISSING BEFORE
(operator).

Explanation: In this context, the operator
must be preceded by an operand.

S NNNNN OPERAND NOT ALLOWED
BEFORE (operator).

Explanation: In this context, no operand
is allowed before the operator,

S NNNNN ILLEGAL OPERAND IN
EXPRESSION BEFORE OR AFTER
‘ELSE",

Explanation: For example, only arith-
metical operands may be used in an arith-
metical expression,

S NNNNN NUMBER OF SUBSCRIPT
EXPRESSIONS DIFFERS FROM
DIMENSION IN ARRAY DECLARATION
FOR VARIABLE,

Explanation: A subscript list must con-
tain the same number of subscript expres-
sions as the dimension in the correspond-
ing array declaration,

S NNNNN INVALID SWITCH
DESIGNATOR.

Explanation: More than one subscript
expression in switch designator,

TEX1811

TEX1821

IEX1831

IEX1841

IEX1851

IEX1861

TEX1871

S NNNNN SWITCH DESIGNATOR IN
ILLEGAL POSITION,

Explanation: A switch designator must
follow only THEN”, '‘ELSE“, ‘GOTO",:=
or,.

S NNNNN OPERAND FOLLOWING
(operator) MUST BE BOOLEAN,

Explanation: A non-Boolean operand has
been specified where a Boolean one was
required,

S NNNNN' OPERAND PRECEDING
(operator) MUST BE A PROCEDURE
IDENTIFIER.

Explanation: A non-procedure identifier
has been specified where a procedure one
was required,

S NNNNN OPERAND PRECEDING
(operator) MUST BE AN ARRAY OR
SWITCH IDENTIFIER,

Explanation: A non-array or non-switch
identifier has been specified where an
array or switch one was required.

S NNNNN REAL OPERAND
PRECEDING (operator) NOT ALLOWED
FOR INTEGER DIVISION,

Explanation: A real operand has been
specified for an integer division,

T NNNNN SYNTACTICAL STRUCTURE
TOO COMPLICATED, INTERNAL
OVERFLOW,

Explanation: The syntactical structure
of the program has caused an internal
overflow in the compiler, A larger main
storage size is required,

S NNNNN INCORRECT NUMBER OF
ACTUAL PARAMETERS,

Explanation: The number of actual pa-

rameters does not correspond to the num-
ber of formal parameters in a procedure,

Diagnostic Messages 57

TEX188%

TEX1891

TEX1901

IEX1911

TEX1921

TEX1931

TEX1941

1£X1951

S NNNNN INVALID ACTUAL
PARAMETER FOR STANDARD
PROCEDURE. DSN= (number).

Explanation: An actual parameter has
been specified incorrectly in a standard
procedure, Either semicolon number or
data set number is given. In the case
where the data set number is given instead
of the semicolon number, the error is due
to SYSACTS8 having been specified for the
data set when SYSACT4, SYSACT13 or an
input operation has been specified also.
Such a combination is invalid,

S NNNNN DATA SET NUMRBRER OR
FUNCTION OF SYSACT OUT OF
ALLOWED RANGE,

Explanation: Data set numbers are 0-15,
SYSACT functions are 1-15,

S NNNNN ASSIGNMENT NOT POSSIBLE.

Explanation: Only variable allowed in for
clause, Only variable or type procedure
identifier allowed in left part list,

S NNNNN NO OPERAND ALLOWED
BETWEEN) AND (operator).

Explanations When a right parenthesis is
used it must be followed by an apostrophe,
a semicolon, an arithmetical operator, a
comma, or another right parenthesis.

S NNNNN INVALID RIGHT PART IN
ASSIGNMENT STATEMENT.

Explanation: The right part must be either
an arithmetic or a Boolean expression,

S NNNNN INCOMPATIBLE TYPES IN
ASSIGNMENT STATEMENT,

Explanation: Value assigned to right part
does not correspond to type of left part
list in assignment statement,

S NNNNN (operator) NOT ALLOWED,

Explanation: In this context, the operator
is not allowed.

S NNNNN SEQUENCE OPERAND
(operator) NOT ALLOWED,

IEX1961

TEX2001

TEX2011

TIEX2021

TIEX203I

TEX2041

IEX2051

Explanation: In this context, this sequence
is not allowed.

S NNNNN ARRAY IDENTIFIER
PRECEDING (operator) NOT ALLOWED,

Explanation: In this context, an array
identifier is not allowed,

W NNNNN OPTION PARAMETER
(parameter) INVALID, PARAMETER
TGNORED.

Explanation: An invalid option has been
specified in the PARM parameter and ig-
nored by the compiler,

T NNNNN DD CARD FOR (ddname)
INCORRECT OR MISSING,

Explanation: One of the SYSIN, SYSPRINT,
or SYSUT1, 2, 3 data sets used by the com-
piler has been specified incorrectly or not
specified at all, This message is typed

on the console typewriter when it concerns
SYSPRINT,

W NNNNN DD CARD FOR SYSLIN
INCORRECT OR MISSING, OPTION
NOLOAD ASSUMED.

Explanation: The SYSLIN data set has been
specified incorrectly or not at all when the
LOAD option is specified, so an object
module is not generated.

W NNNNN DD CARD FOR SYSPUNCH
INCORRECT OR MISSING, OPTION
NODECK ASSUMED.

Explanation: The SYSPUNCH data set has
been specified incorrectly or not at all
when the DECK option is specified, so an
object deck is not punched,

T NNNNN BLOCKSIZE SPECIFIED
FOR SYSIN INCORRECT,

Explanation: The blocksize specified for
SYSIN does not correspond to the actual
blocksize.

W NNNNN BLOCKSIZE SPECIFIED
FOR (ddname) INCORRECT,
UNBLOCKED OUTPUT ASSUMED.

Explanation: One of the output data sets
has had an incorrect blocksize specified
so unblocked output is generated (see
Figure 6),

JEX206I W NNNNN TOO MANY OPTION
PARAMETER ERRORS. SUBSEQUENT
PARAMETERS IGNORED,

Explanation: Too many incorrect parame-
ters have been specified in the PARM pa-
rameter so the rest are ignored.

IEX2071 W NNNNN POSSIBLE ERROR IN DD
NAMES PARAMETER.,

Explanation: An incorrect ddname may
have been specified in the DD statement,

IEX208I W NNNNN SIZE PARAMETER INVALID,
SIZE 45056 ASSUMED,

Explanation: The main storage size spec-
ified as being available to the compiler is
less than the minimum required, so the
minimum value is assumed,

IEX209I T NNNNN COMPILATION
UNSUCCESSFUL DUE TO PROGRAM
INTERRUPT, PSW (hexadecimal digits).

Explanation: A program interrupt has
occurred causing termination of the job
step. The program status word when the
error occurred is given,

IEX210I T NNNNN UNRECOVERABLE I/O
ERROR ON DATA SET (ddname),

Explanation: An I/O error has occurred

on the data set specified causing termi-
nation of the job., This message is typed
on the console typewriter when it concerns
SYSPRINT, This is most likely to be a
random error, so the user is recommended
to rerun the program,

IEX2111 T NNNNN PROGRAM INTERRUPT IN
ERROR MESSAGE EDITING ROUTINE,
PSW (hexadecimal digits).

Explanation: A program interrupt has
occurred in the error message editing
routine, ending the job,

IEX212I T NNNNN TOO MANY ERRORS.,
Explanation: The total length of the error

message patterns produced exceeds capac-
ity limitations.

IEX2131 T NNNNN INTERNAL OVERFLOW OF
IDENTIFIER TABLE,

Explanation: The number of identifiers
declared exceeds capacity limitations,

IEX2141 S NNNNN DATA STORAGE AREA
EXCEEDED. PROGRAM BLOCK NO.
(number),

Explanation: The data storage area re-
quired by the program hlock specified
exceeds 4096 bytes,

IEX2151 T NNNNN SOURCE PROGRAM TOO
LONG,

Explanation: The capacity limitations
(see

Explanation: The source program exceeds
capacity limitations (see Section 4).

IEX216I S NNNNN TOO MANY LABELS,
LABEL NUMBER RESET,

Explanation: The total number of labels
used exceeds capacity limitations, so
duplicated numbers are allocated (see
Section 4).

LINKAGE EDITOR MESSAGES

Each message occupies one or more printed lines
and contains:

® The message key, consisting of the letters IEW,
a three digit decimal number identifying the
message, and a final digit, either 1, 2, 3 or 4,
indicating the severity code.

® The message text describing the error., For
severity code 1 the message is preceded by
‘WARNING", For all other severity codes the
message is preceded by 'ERROR",

The severity codes have the following meaning:

1 indicates a condition that may cause an error
during execution of the load module, A mod-
ule map or cross-reference table is produced
if it was required by the programmer, The
output load module is marked as executable,

2 indicates an error that could make execution
of the load module impossible, Processing
continues, When possible, a module map or
cross-reference table is produced if it was
required., The load module is marked as not
executable unless the LET option has been
specified,

Diagnostic Messages 59

3 indicates an error that will make execution
of the load module impossible. Processing
continues, If possible a module map or
cross-reference table is produced if it was
required, The load module is marked as not
executable,

4 indicates an error condition from which no
recovery is possible, Processing terminates.
The only output is diagnostic messages.

A full list of the linkage editor diagnostic messages
is contained in IBM System/360 Operating System:

Linkage Editor.

EXECUTION TIME MESSAGES

The list of diagnostic messages that may be pro-
duced by the load module is given below. Each
message occupies one or more printed lines and
contains:

e The message key, consisting of the letters IHI,
a three digit decimal number identifying the
message, and the letter I to indicate an infor-
mative message requiring no action from the
operator.

e The characters SC = followed by the semicolon
number (see Section 3), This number does not
always indicate the statement in which the error
occurred. For example, after a branch ('GOTO
or ‘FORY, if no semicolon has occurred before
the error is detected, then the semicolon num-
ber preceding the branching instruction will be
listed. For I/O errors, the semicolon number
indicates the statement being executed when the
error was detected, not the statement calling
the I/0 procedure,

»

o The message text describing the error. Where
appropriate this begins by indicating the number
of the data set (DSN) on which the error occurred,
or the ddname if the data set dces not have a
number (that is, SYSUT1 and SYSUT?2), or the
program status word (PSW) held by the operating
system when the error occurred, The PSW con-
tains 16 hexadecimal digits. Message texts pre-
ceded by ** indicate that the program does not
correspond with parameters specified in the job
control cards,

ITHIO00I SC=NNNNN DATA SET NUMBER OUT
OF RANGE

Explanation: A data set number must be
in the range 0 to 15,

60

THIOO1I

THIOO02I

THI003I

THI004I

IHI0051

THIO061

THIOO07I

THI008I

SC=NNNNN DSN=NN, REAL NUMBER
TO BE CONVERTED OUT OF INTEGER
RANGE

Explanation: A real number has been
included which exceeds capacity limita-
tions when converted to integer. This
message applies for input/output opera-
tions.

SC=NNNNN DSN=NN, INCOMPATIBLE
ACTIONS ON DATA SET

Explanation: The I/0O operation requested
is allowed only for an unblocked data set,

SC=NNNNN DSN=NN, INPUT BEYOND
LAST OUTPUT

Explanation: Before reading data which
has just been written on the same data

set, backward repositioning must be spec-
ified.

SC=NNNNN TOO MANY REPOSITIONINGS
IN DATA SETS. INTERNAL OVERFLOW

Explanation: Too many repositionings
have caused an internal overflow of the
Note Table (see Section 4).

SC=NNNNN DSN=NN, INPUT REQUEST
BEYOND END OF DATA SET

Explanation: Input has been requested
to start beyond the end of the data set,

SC=NNNNN DSN=NN, EXPONENT PART
OF INPUT NUMBER CONSISTS OF MORE
THAN TWO SIGNIFICANT DIGITS

Explanation: The length of the exponent
part of an input number exceeds capacity
limitations,

SC=NNNNN DSN=NN, **NO CONTROL
CHARACTER SPECIFIED IN RECORD
FORMAT OF DATA SET, SPLITTING
INTO SECTIONS IMPOSSIBLE

Explanation: A control character is re-
quired to define printing format.

SC=NNNNN DSN=NN, SOURCE IN
PROCEDURE OUTSYMBOL DOES NOT
MATCH STRING

THI0091

TI1101.01

110111

THI0L2I

THIO13I

THI01 41

THI0151

THIO161

Explanation: The symbol specified by the
third parameter of the OUTSYMBOL pro-
cedure does not correspond to any symbol
in the string specified by the second param-
eter,

SC=NNNNN DSN=NN., UNDEFINED
FUNCTION NUMBER IN SYSACT
PROCEDURE

Explanation: A function number has not
been defined for a SYSACT procedure,
The function number range is 1 to 15,

SC=NNNNN
CLOSED

DSN=NN, DATA SET

Explanation: The data set is closed but
a SYSACT procedure has been specified
which requires it to be open.

SC=NNNNN DSN=NN. DATA SET
OPEN

Explanation: The data set is open but a
SYSACT procedure has been specified
which requires it to be closed,

SC=NNNNN DSN=NN, QUANTITY IN
SYSACT PROCEDURE MUST BE

" VARIABLE

Explanation: The third parameter of the
SYSACT procedure must be a variable,

SC=NNNNN DSN=NN, QUANTITY IN
SYSACT PROCEDURE OUT OF RANGE

Explanation; The variable specified in
the third parameter of the SYSACT pro-
cedure exceeds capacity limitations,

SC=NNNNN DSN=NN, BACKWARD
REPOSITIONING NOT DEFINED

Explanation: Backward repositioning is
defined using SYSACT 13.

SC=NNNNN UPPER BOUND LESS THAN
LOWER BOUND IN ARRAY DECLARATION

Explanation: The upper subscript bound
specified in an array declaration must not
be less than the lower subscript bound,

SC=NNNNN VALUE OF SUBSCRIPT
EXPRESSION NOT WITHIN DECLARED
BOUNDS

THIO171

THIO018I

THIO0191

THI0201

THIO21I

THI022T

THI0231

Explanation: This error is detected only
when the subscripted variable address
falls outside the area reserved by the
compiler for the array identifier.

SC=NNNNN ENDLESS LOOP IN FOR
STATEMENT

Explanation: The expressions used in the
for statement result in an endless loop.

SC=NNNNN MAIN STORAGE REQUESTED
NOT AVAILABLE

Explanation: The storage space required
by an array exceeds capacity available.

SC=NNNNN UNEQUAL NUMBER OF
DIMENSIONS FOR ACTUAL AND FORMAL
PARAMETER

Explanation: An array identifier being
used as a parameter in a procedure has
had a different number of dimensions as-
signed in the formal and actual positions.

SC=NNNNN ACTUAL AND
CORRESPONDING FORMAL
PARAMETER OF DIFFERENT
TYPE OR KIND

Explanation: An actual parameter has
been assigned which does not have the
type or kind declared for the correspond-
ing formal parameter.

SC=NNNNN UNEQUAL NUMBER OF
PARAMETERS IN PROCEDURE
DECLARATION AND PROCEDURE
STATEMENT/FUNCTION DESIGNATOR

Explanation: Either not all, or more than,
the formal parameters used in a proce-
dure have been assigned in a procedure
call,

SC=NNNNN ASSIGNMENT TO A FORMAL
PARAMETER NOT POSSIBLE

Explanation: A value cannot be assigned
to an expression used in a standard input
procedure, assignment statement, or for
clause.

SC=NNNNN ARGUMENT OF SQRT LESS
THAN ZERO

Explanation: The ALGOL library SQRT

routine cannot handle arguments with a
value less than zero.

Diagnostic Messages 61

THI0241

THI025I

THI0261

THIO271

THI0281

THI0291

THIO30I

THI031I

62

SC=NNNNN ARGUMENT OF EXP
GREATER THAN 174,673

Explanation: The argument of EXP
exceeds capacity limitations.

SC=NNNNN ARGUMENT OF LN NOT
GREATER THAN ZERO

Explanation: A number not greater than
zero cannot have a natural logarithm,

SC=NNNNN ABS VALUE OF ARGUMENT
OF SIN OR COS NOT LESS THAN
PI*2%*#18

Explanation: The argument exceeds ca-
pacity limitations for a short precision
real value.

SC=NNNNN ABS VALUE OF ARGUMENT

OF SIN OR COS NOT LESS THAN
PI*g #¥#50

Explanation: The argument exceeds ca-
pacity limitations for a long precision
real value,

SC=NNNNN PSW=XXXXXXXX
XXXXXXXX, FIXED POINT
OVERFLOW INTERRUPT

Explanation: An interrupt has occurred

due to an overflow of a fixed point number,

SC=NNNNN PSW=XXXXXXXX
KXXXXXXX, FLOATING POINT
EXPONENT OVERFLOW INTERRUPT

Explanation: An interrupt has occurred
due to an overflow of a floating point ex-
ponent,

SC=NNNNN PSW=XXXXXXXX
XXXXXXXX, DIVISION BY ZERO,
FIXED POINT

Explanation: An attempt has been made
to divide a fixed point number by zero.

SC=NNNNN PSW=XXXXXXXX
XXXXXXXX, DIVISION BY ZERO,
FLOATING POINT

Explanation: An attempt has been made
to divide a floating point number by zero.

IHI032I

THI033I

THIO0341

THI035I

THI0361

THIO371

THIO038I

THIO039I

SC=NNNNN DSN=NN, UNRECOVERABLE
1I/0 ERROR

Explanation: An error has occurred on
an input/output device, This message

is printed on the console typewriter when
the error occurs on SYSPRINT.

SC=NNNNN PSW=XXXXXXXX
XXXXXXXX, PROGRAM INTERRUPT

Explanation: A program interrupt has
occurred,

SC=NNNNN VALUE OF SWITCH
DESIGNATOR NOT DEFINED IN
DECLARATION OF SWITCH

Explanation: The designational expres-
sions in the switch list of a switch decla-
ration must define the values of all the
corresponding switch designators,

SC=NNNNN BASE NOT GREATER THAN
ZERO

Explanation: Exponentiation is not defined
in this case, because the base is zero or
negative,

SC=NNNNN TOO MANY NESTED
BLOCKS AND CALLS OF PROCEDURES,
SWITCHES, AND PARAMETERS.
INTERNAL OVERFLOW

Explanation: Structure of program causes
it to exceed the internal capacity limitations.

SC=NNNNN DSN=NN, **BLOCKSIZE
NOT A MULTIPLE OF LOGICAL RECORD
LENGTH

Explanation: Blocksize must be an exact
multiple of logical record length.

SC=NNNNN DSN=NN TOO LONG
RECORD

Explanation: Record is longer than spec-
ified,

SC=NNNNN GET/PUT IDENTIFICATION
OUT OF RANGE

Explanation: The identification number
specified for a GET/PUT operation is out
of range.

IHI040I SC=NNNNN REAL NUMBER TO BE

THI041I

CONVERTED OUT OF INTEGER RANGE

Explanation: A real number has been
included which exceeds capacity limita-
tions when converted to integer., This
message applies to internal operations,

SC=NNNNN DSN=NN, DD CARD
INCORRECT OR MISSING

Explanation: One of the data sets used by
the load module has been specified incor-
rectly or not at all, This message is printed

THI0421

THI0431

on the console typewriter when the error
occurs on SYSPRINT,

SC=NNNNN INVALID OPTION
PARAMETER

Explanation: An invalid option parameter
has been specified in the PARM parame-
ter,

SC=NNNNN ILLEGAL CALL OF
GET/PUT OR LIST PROCEDURE

Explanation: Recursive calls of GET/PUT
or list procedures are not allowed,

Diagnostic Messages 63

INDEX

Access language 7
Access method 7
ACCT 12, 43
AFF 44
ALGLDDO02-15 16
ALGOFC 10, 34
ALGOFCL 10, 34
ALGOFCLG 10, 12, 35
ALGOL compiler
description 8
listings 18
ALGOL library 31
Array handling: see SMF
Assembler language 5, 27
ATTACH 26

Basic access 7
BLKSIZE 44
Block 7
Blocksize
for compiler data sets 14
for linkage editor data sets 15
for execution time data sets 17
Blocking factor 7, 15

Buffer 7
Byte 7
CALL 26

Capacity limitations 25
Card codes 36
Cataloged procedure
definition 5
supplied by IBM for ALGOL 10, 34
over-riding 12
user-written 13
Channel 7
Character set 36
Command statement 6,47
COND 12, 40, 41

Console messages 7, 9, 40, 58, 59, 62, 63

Constant pool 25, 37
Contro) character 7
Control program
functions 6
listings 18
Control section 21, 37
Cross-reference table 21, 24

Data control block

definition 6

for compiler data sets 14, 44

for linkage editor data sets 15, 44

for execution time data sets 17, 44
Data definition: see DD statement
Data management 6

Data set
definition 6
concatenation 47
for compiler 14
for linkage editor 15
for execution time 16
label 6
name 39
number 16
organization 7
table 37
Data storage area 19, 20, 21, 24, 25
DC 42
DCB: see Data control block
DD statement 6, 10, 13, 43
ddname
definition 39
standard 14, 15, 17
specifying alternatives 26
DECK 42
Default option 39
Delimiter statement 6, 10
Diagnostic messages
for compiler 20, 52
for linkage editor 59
for execution time 21, 60
Direct access device 7
Directory 7
DISP 45
Disposition data 20
DSN: see Data set number
DSNAME 43
dsname 39
DUMMY 43
DUMP 21, 43

EBCDIC 36

Error detection, by compiler 20
Error routine 31

EXEC statement 5, 10, 12, 14, 41
Execution time listings 20

Fixed storage area 31

GET 16
GO. ALGLDD02-15: see ALGLDD02-15

Identifier table 18, 23

Indexed sequential data set 7
Initialization: see Supervisor
Input/output device 7

Input/output routines 31

1/0 device: see Input/output device
ISO 36, 42

Job 5
Job control information
accounting details 40, 43
cataloged procedure executed 41
computing time 41
1/0 device details 44
message format 40
name or location of data set 43
output format 46
priority 40
program executed 41
programmer”s name 40
record details 44
special options
card code used 42
listings required 42, 43
load module attributes 42
main storage available 42
object module form 42
precision used 41
purpose of program 41
status of data set 45
terminating conditions 40, 41
volumes and labels used 46
Job control statement
description 5, 10, 38
coding 38
examples 47
JOBLIB 12, 47
jobname 38
Job scheduler 6
JOB statement 5, 10, 40
Job step 5

Keyword parameter 39
Keyword subparameter 39

LABEL 46
Label address table 19, 37
LET 42
Library: see Partitioned data set
LINK 26
Linkage editor 9
Linkage editing listings 20
LIST 42
Load module
definition 8
execution 9, 15
LOAD 42
LONG 41
LRECL 44

Machine configuration 9
Mathematical routines 31
Main storage requirements 9
MAP 21, 42

Module Map 21, 24

MSGLEVEL 40
MSGCLASS 40

NCAL 42
NODECK 42
NOLOAD 42
NOSOURCE 42
NOTEST 42
Note Table 26
Null statement 6

Object module
definition 8
storage requirements 20, 23
structure 37

Object time stack 22

Operating system 5

Operator commands 6

Output 8, 9

Page numbers, specifying alternative
Parameters
for JOB 40
for EXEC 41
for DD 43
Partitioned data set 7
PARM 12, 41
PGM 41
Positional parameter 39
Positional subparameter 39
Precompiled procedure
description 27
inclusion in trace 22
specifying data set for - 12
to use at execution time 16
Priority scheduling 6
PROC 41
PROCEDURE 27, 41
Processing program 8
prochame 39
procstep 39
PROGRAM 41
Program block 18, 20
Program block table 37
progname 38
Program trace 16, 22, 24, 42
PRTY 40
PUT 16

Queued access 7

RECFM 44
Record
definition 7
specification 14, 15, 26, 44
Return codes 8, 9, 40
REUS 27, 42

26

SC: see semicolon count
Semicolon count 16, 18
SEP 44
Sequential data set 7
Sequential scheduling 6
Severity codes

for compiler 52

for linkage editor 59
SHORT 41
SIZE 42
Source program 5, 10, 18, 23
SOURCE 18, 42
SMF: see storage mapping function
SPACE 45
stepname 39
Storage estimates for library routines 32
Storage mapping function 19, 20, 22
Subprograms 27
Supervisor 6
SYSABEND 14, 15, 17
SYSCP 44
SYSDA 44
SYSLIB 15
SYSLIN 14, 37
SYSLMOD 16
SYSOUT 46
SYSPRINT 12, 14, 15, 16
SYSPUNCH 14, 37

SYSSQ 44

System generation 5
SYSUT1 14, 15, 16
SYSUT2 14, 16

SYSUT3 14
SYS1.ALGLIB 31

SYS1, LINKLIB 13, 16, 31
SYS1. PROCLIB 34

Termination

of compiler 8

of linkage editor 9

of load module 9
TEST 42
TIME 12, 41
TRACE 16, 22, 42
TRBEG 16, 22, 42
TREND 16, 22, 42
TYPRUN 40

UNIT 44
Unit names 44

Volume 6
VOLUME 46

XCAL 42
XCTL 26
XREF 21, 42

IBM Technical Newsletter File Number $360-26

Re: Form No. C33-4000-0

This Newsletter No. N33-8000

Date October 31, 1967

Previous Newsletter Nos. None

IBM System/360 Operating System
ALGOL Programmer s Guide

This technical newsletter amends the publication IBM System/360 Operating
System: ALGOL Programmer s Guide, Form C33-4000-0, The attached pages re-
place pages in the publication, Corrections and additions to the text are noted by
vertical bars to the left of the affected text., Revised figures are marked by the
symbol e to the left of the caption,

Pages to be Pages to be
Inserted Removed
1-2 1-2

5-8 5-8
11-18 11-18
21-22 21-22
25-26 _ 25-26
33-34 33-34
37-50 37-50
53-54 53-54
59-60 59-60

In addition the following changes should be made.

Page Amendment
28 In the left column, under "Termination Instructions',

change '"Reset' to "Restore!'',

29 Change '"Reset' to '"Restore' in all five positions
that it appears.

Summary of Amendments

This newsletter corrects minor errors and omissions throughout the manual,
primarily on the subject of Job Control Language.

It also includes estimates for specifying space on a direct access device for
the SYSUT1, SYSUT2 and SYSUT3 data sets.

Note: DPlease file this cover letter at the back of the publication, Cover letters

provide a quick reference to changes, and a means of checking receipt of all amend-
ments. ‘

PRINTED IN U.S.A.

File No. S360-26 Us
Form C33-4000-0

IBM Systems Reference Library

IBM System/360 Operating System

ALGOL Programmer's Guide

Program Number 3605-AL-531,...Compiler
3605-LM=-532. . . . Library Routines

This publication describes how to compile, linkage edit and
execute a program written in the System/360 Operating System
Algorithmic Language (ALGOL), It includes an introduction

to the operating system and a description of the information
listings that can be produced, the job control language, and
the subroutine library.

Form C33-4000-0, Page Revised by TNL N33-8000,

PREFACE

This publication is intended for use by Application
Programmers, Systems Programmers and IBM
Systems Engineers. A knowledge of ALGOL is
assumed, and the reader is expected to be familiar
with the prerequisite publication;

IBM System/360 Operating System: ALGOL Lan-
guage, Form C28-6615,

In Section 2, the description "IBM -Supplied
Cataloged Procedures' provides sufficient informa-
tion to process and execute an ALGOL program
that can use the IBM -supplied cataloged procedures
without modification.

The rest of Section 2, together with information
in Section 1 and the Appendices, will be required
for programs that cannot use the IBM-supplied
cataloged procedures without modification.

The description of information listings in Section
3 and the list of diagnostic messages given in
Appendix F will be helpful in interpreting system
output, especially for debugging.

An extensive index has been provided to assist

the reader in using the manual for reference pur-
poses.

First Edition (April 1967)

10/30/67

This publication contains most of the infor-
mation required by the Applications Programmer,
The following publications are referred to within
the text for information beyond the scope of this
publication.

IBM System/360 Operating System:

Agsembler Language, Form C28-6514

Linkage Editor, Form C28-6538

Job Control Language, Form C28-6539

Operator!s Guide, Form C28-6540

Utilities, Form C28-6586

FORTRAN IV Library Subprograms,
Form C28-6596

Message Completion Codes, and Storage
Dumps, Form C28-6631

Supervisor and Data Management Services,
Form C28-6646

Supervisor and Data Management Macro-
Instructions, Form C28-6647

Significant changes or additions to the specifications contained in this publication will be reported in sub-

sequent revisions or Technical Newsletters.

Requests for copies of IBM publications should be made to your IBM representative or to the IBM branch

office serving your locality.

A form is provided at the back of this publication for reader’s comments., If the form has been removed,
comments may be addressed to IBM Corporation, Department 813, 112 East Post Road, White Plains, N. Y,
10601, or IBM Nordic Laboratory, Technical Communications, Vesslevigen 3, Lidingd, Sweden.

©International Business Machines Corporation 1967

The primary constituent of a System/360 data pro-
cessing operation is a job, This, basically, is

the work that the user requires the computer to
do., To carry out a job, a computer needs two
types of information -- a program and data,

© A program (known in this context as a source
program) is a sequence of instructions which
specify the actions to be performed by the ma-
chine., These instructions are written in a
symbolic language and are translated into
machine language by a processing program
contained in the operating system before they
are performed,

@ Data is the information to be processed by the
program, The source program is regarded as
data while it is being processed by operating
gystem programs to make it suitable for exe-
cution, '

From this brief introduction it can be seen that
a job is affected by three separate factors ~- the
source program, the operating system and the
machine configuration,

SOURCE PROGRAM

For jobs discussed in this publication, the source
program will be written primarily in System/360
Operating System ALGOL (Algorithmic Language).
This is defined in IBM System/360 Operating
System: ALGOL Language. In addition the pro-
grammer must observe the restrictions, caused
by internal capacity limitations, listed in Section 4.

An ALGOL source program may be written in
freeform on any 80 column coding sheet, The pro-

gram text is contained in columns 1 to 72, Columns

73 to 80 can be used by the programmer for pro-
gram identification, To avoid confusion with job
control statements (see "Operating System'), the
character sequences // and /* must not be used
in columns 1 and 2, It is possible to do this since
these sequences are syntactically incorrect out-
side strings, and when they occur within strings,
they may be shifted into non-critical columns by
inserting a blank space before the opening string
quotes (% Two character sets are available for
punching the socurce program into a card deck
(see Appendix C).

¥or cperations that require more precise con-
trol over the machine than can be provided by

SECTION 1: INTRODUCTION

ALGOL, subprograms written in Assembler lan-
guage can be included in the source program (see
Section 4). Assembler language subprograms can
also be used as a link to other languages, such as
PL/I, COBOL and FORTRAN, The Assembler
language is defined in IBM System/360 Operating
System: Assembler Language,

OPERATING SYSTEM

The System/360 Operating System is a set of IBM-
supplied, control and processing programs (sup-
plemented if necessary by user-written programs)
that assist the programmer to use the computer
efficiently. The operating system selected for a
particular installation is generated during the ini-
tial setting-up of the computer, by a process known
as system generation,

Job Control

Operating system instructions (known as job con-
trol statements) must be added to the source pro-
gram to control its handling within the operating
system and to specify the data management faci-
lities required.

These statements do not need to be specified
until the program is ready to be executed. This
means that the program can be prepared indepen-
dent of installation considerations.

Six types of statements are available, which,
in conjunction with associated parameters, can
supply all information required by the operating
system for job control, To save programming
effort, commonly used sequences of control state-
ments can be stored by the system for subsequent
recall by identifying names, These sequences are
known as cataloged procedures.

JOB is the first statement of each job, It indi-
cates that a new job is beginning and, consequently,
that the previous job has ended. A job can be di-
vided into a number of job steps, which can be
inter~related to improve processing efficiency.
For example, the execution of one job step can be
made dependent on the result of a previous one.
This is an important feature of the operating sys-
tem and users are recommended to exploit it as
fully as possible.

EXEC (Execution) is the first statement in each
job step, It specifies the program or cataloged

Introduction 5

Form C33-4000-0, Page Revised by TNL N33-8000,

procedure to be executed, and must be included
even if the job consists of only one job step,

DD (Data Definition) is the statement used to
describe a data set and to specify associated data
control block information, It also specifies input/
output (I/0) device assignment, One or more DD
statements are usually required for each job step.

In addition the command statement is used to
place operator commands into the input stream,
the null statement indicates the end of the last job
in the input stream, and the delimiter statement
separates data from subsequent control statements
when sequential scheduling is used. The command
statement, when used, must immediately precede
a JOB, EXEC or null statement,

The job control statements required for an
ALGOL source program are described in Section 2.,

Control Program

The control program is the primary program
within the operating system and must be included
with all installations, It is divided into a number
of functions. Those affecting the applications pro-
grammer are described in the following text,

Job Scheduling

A job scheduler is included as part of the control
program to control the flow of jobs and allocate

the I/0 devices, required., Two forms of job sched-
uling are available,

With sequential scheduling the jobs are carried
out in the order they are presented in the input
stream to the computer,

With priority scheduling a summary of the input
job stream is stored on a direct access device and
jobs are carried out in order of priority (as spec-
ified in the JOB control statement). Any hold-up
in the execution of a program, due, for example,
to a delay in mounting a volume, will cause the
job scheduler to select the next job available, in
order of priority, and the revert back to the higher
priority job when it is ready.

Supervisor

The supervisor is a set of subroutines, included
in the control program, for transferring control
of the central processing unit of the computer from
one program to another and co-ordinating I/0 oper-
ations. Initialization and termination of all pro-

10/30/67

grams described in this publication are achieved
using the standard method given in IBM System/360
Operating System: Supervisor and Data Manage-
ment Services.

Data Management

This sub-section is a summary of data manage-
ment facilities, Full details are given in IBM
System/360 Operating System: Supervisor and
Data Management Services.

Data Sets: Data is usually stored on I/0 devices
and is only brought into main storage for process-
ing. It is organized into data sets, These are
collections of records that are logically related
(for example, a set of test readings).

System/360 Operating System allows a data set
to be identified and accessed by symbolic name
only, without any reference to its location on the
storage device, To do this the operating system
builds a catalog of data set location against name,
This catalog resides on one or more direct access
volumes. A volume is one complete physical unit
of storage such as a tape reel or a disk pack., It
may contain a number of data sets, or alternative-
ly one data set may stretch over a number of vol-
umes, Data sets are created using DD statements,

Data Control Blocks: The operating system must
be provided with information describing the charac-
teristics of a data set before the data set can be
processed, This information is assembled in the
data control block associated with each data set,
Data control blocks are automatically created for
each data set that is to be processed by the pro-
gram, and are completed from two sources:

1. Any information provided in the program is
included first,

2, Information provided by the DD statement is
then included, but this cannot over-ride any
information stated in the program,

In the case of an existing data set, further in-
formation is taken from the data set label. Again,
this cannot over-ride previously inserted informa-
tion. Any DCB information provided by the pro-
grammer is checked by an appropriate routine to
ensure its validity and to assign default values.

Data Set Labels; Data set labels, if requested by
the programmer in the DD statement, are created
by the operating system to store information rel-
evant to the data set such as name and retention
period. Tapes must have been previously ini-
tialized. The labels can supplement information

Form C33-4000-0, Page Revised by TNL N33-8000, 10/30/67

in the data control block and serve as identifiers
during accessing, They are positioned at the
beginning and end of the data set,

Records and Blocks: Records are the smallest
items of data which can be read or written sepa-
rately. Their length can be specified as fixed,
variable or undefined, The unit of length is known
as a byte, which is normally equivalent to one
character, For mechanical reasons it is neces~-
sary to have a fixed length gap between each re-
cord, This means that the smaller the average
length of the records so the smaller the amount
of information that can be stored in a given area
of storage. To conserve space a humber of re-
cords can be grouped together to form a block,
which is treated as a single record for I/0O oper-
ations, The complete block is read into main
storage and then unblocked for the required re-
cord to be processed. Record format and block-
size are defined in the data control block, For
fixed length records blocksize must be a multiple
of record length, This multiplication factor is
known as the blocking factor,

A control character can be specified for inclu-
sion in each record of a data set, This selects
carriage control when the data set is printed, or
stacker when the data set is punched,

Data Set Organization: According to how they are
going to be used, records can be organized within
the data set in a number of ways, as described
below, Only sequential organization can be used
with ALGOL,

Sequential organization is a feature of I/O de-
vices such as magnetic tapes. To access a par-
ticular record the data set must be read sequen-
tially until the record is found, This is satisfac-
tory for many applications where a large propor-
tion of the records will be required on each run
but could be time-consuming where data is being
accessed randomly,

To avoid reading each record in turn the indexed
sequential method is often employed, in which the
location of the required record is found from an
index at the beginning of its data set, On a disk
pack the specification of a record location is bro-
ken down into two levels - cylinder and track,
Each level has its own index, With large data sets
up to three levels of master index can also be used,
Overflow areas are provided for the primary stor-
age area so that insertions can be made,

Alternatively, a data set can be partitioned into
blocks of identical format called members, A di-
rectory is built up at the beginning of the data set
so that each member can be accessed independent-

ly by specifying its name as a suffix to the data
set name, This form of data set is described as
a library.

Direct organization allows records to be stored
and retrieved using an absolute or relative address
(cylinder, head, track), For example, an algo-
rithm could be used to determine the address from
data in the record,

| Access Language: When using assembler language,

two access languages are available to store and
retrieve records. The queued access language
provides a full range of buffering and blocking fa-
cilities to improve processing efficiency, It can
only be used with sequential and indexed sequential
data sets.

The basic access language gives the program-
mer more direct control over the I/0O device but
does not provide buffering and blocking facilities,
These must be constructed by the user (see IBM
System/360 Operating System: Supervisor and
Data Management Services.

Access Methods: The data set organization and
access language used are combined to fully de-
scribe the method of handling a data set, for ex-
ample, Queued Sequential Access Method, Basic
Partitioned Access Method, etc, The access
method is specified in the data control block.
Input/Output Devices: Data can be stored on a
number of input/output devices depending, among
other things, on the method of data set organiza-~
tion required. The devices most commonly used
in scientific and engineering ingtallations are:
Card readers

and punches
Printers (out-] All data handled by these

put only) devices is sequentially
Paper tape organized.
devices
Magnetic tape
devices
Disk storage These are known as direct
devices access devices and can be

Data cell stor- | used for sequential, indexed
age devices | sequential or partitioned
Drum storage organization,

devices

A console typewriter is used for direct two-
way communication between the operator and the
operating system,

Areas of main storage known as buffers are
used to provide overlapping of reading, writing
and processing operations, The transfer of data
between main storage and I/0 devices is controlled
through units known as channels,

Introduction

Processing Programs

In addition to the control program, a number of
processing programs may be included in the oper-
ating system depending on the requirements of

the installation, To carry out a job that contains
a source program written in ALGOL the following
processing programs are required:

1, ALGOL compiler
2, Linkage editor

The ALGOL compiler processes the source
program to translate it into machine language,
The translated source program (known as the ob-
ject module) is then processed by a linkage editor
to combine any routines required from the ALGOL
library (see Appendix A). The result of these two
operations (known as the load module) is then load-
ed into main storage and control is passed to the
load module so that it can be executed, The basic
flowchart for handling an ALGOL source program
is shown in Figure 1,

ALGOL Compiler

This processing program is available for the F
level of main storage size, and requires a mini-
mum of 44K bytes. If extra storage capacity is
provided it is used to increase compiler capacity
(see Figure 6),

Initialization and Terminations The standard meth-
od is used for initialization and termination of the
compiler (see '"Supervisor'), At the end of the
compilation one of the following return codes is
generated:

0 meaning normal conclusion, Object module
has been generated unless both the NODECK
and NOLOAD options (see Appendix E) are
specified in the invoking statement, No diag-
nostic messages have been listed,

4 meaning object module has been generated
unless both the NODECK and NOLOAD op-
tions are specified, Only warning diagnos-
tic messages (severity code W) have been
listed,

12 meaning process has been completed but a
complete object module could not be gener-
ated due to a serious error, Diagnostic
messages (severity codes S and possibly W)
have been listed.

Source
Program

ALGOL
Compiler

Object
Module

Linkage ALGOL
Editor Library

Load
Module

Load Module

Execution

Figure 1. Basic flowchart for handling an ALGOL
program,

16 meaning process has been terminated ab-
normally due to a terminating error, A
complete object module could therefore not
be generated, Diagnostic messages (sever-
ity codes T and possibly W and S) have been
listed, The severity codes are described
in Appendix F.

Output: A successful compilation of an ALGOL
source program produces the following output:

® An object module (described in Appendix D)
which can be:

® Included in a data set for use as input to
the linkage editor (optional),

e Included in another data set to give some
other form of output, such as a card deck
(optional),

z
<

yh
y4
(Source program (MATINV)

r'//svsm DD ¥
V/ EXEC- ALGOFC

//MATINV JOB 537, JOHNSMITH, MSGLEVEL=1

TFigure 2. Sample deck for using ALGOFC cataloged procedure with a single source program. This job
compiles the MATINV source program used in Example 1 of Appendix E.

If more than one source program is to be pro- the job step to which it applies, and has the form:
cessged in the same job, then all job control state-
ments except the JOB statement must be repeated //1LKED,SYSLMOD DD DSNAME=dsnhame(member),
for each source program, DISP=(MOD,KEEP)

If it is required to keep a load module for use where "dsname' is the name of a partitioned data
in a later job (as in the case when the load module set and "member'" is the member name assigned
is a precompiled procedure), then the SYSLMOD to the load module on the partitioned data set,
DD statement in the cataloged procedure must be
over-ridden to specify a permanent data set. This A sample deck of job control statements to com-
has to be done for each load module that is kept. pile and linkage edit two source programs is shown

The over-riding statement is placed at the end of in Figure 3.

W/LKED.SYSLMOD DD DSNAME=WTHRPR (FORCST),
DISP=(MOD, KEEP)

r//SYSIN DD DSNAME=FORCST,DISP=OLD

///snzpz EXEC ALGOFCL

//LKED.SYSLMOD DD DSNAME=WTHRPR(FILECR),
DISP=(MOD, KEEP)

f//SYSIN DD DSNAME=FILECR, DISP=OLD

(//STEPI EXEC ALGOFCL

//WEATHER JOB

Figure 3. Sample deck for using ALGOFCL cataloged procedure with two source programs. These two job
steps compile and linkage edit the two source programs used in Example 3 of Appendix E. Both source pro-
grams have been previously stored on intermediate I/0 devices.

Source Program Handling 11

Form C33-4000-0, Page Revised by TNL N33-8000,

Compilation, Linkage Editing and Execution

The cataloged procedure used to compile an ALGOL
source program, linkage edit the resulting object
module, and execute the load module produced by
the linkage editor is ALGOFCLG,

The statements used in this cataloged procedure
are shown in Appendix B. The following state-
ments can be used to invoke the ALGOFCLG cata-
loged procedure:

//jobname JOB

//JOBLIB DD DSNAME=dsnamel, DISP=OLD

// EXEC ALGOFCLG

//SYSIN DD {* or parameters defining an
input data set containing
the source program }

//GO.ALGLDD02 DD DSNAME=dsname2

//GO.ALGLDD15 DD DSNAME=dsnamel5

where "jobname'" is the name assigned to the job.
"dsnamel' is the name of a data set that contains
a precompiled procedure (see Section 4) which is
called by the load module being executed. The DD
statement containing dsnamel need not be used if
no precompiled procedure is used.

For a description of the correct use of the
JOBLIB DD statement when more than one pre-
compiled procedure is used in a job, or when a
precompiled procedure resides on more than one
data set, see '"Data Set Concatenation' in Appen-
dix E,

"dsname?2'". .. "dsnamel5'" are the names of input
data sets required by the load module at execution
time and output data sets to be created at execu-
tion time. In addition, a data set for printed out-
put (ddname SYSPRINT) is supplied by the cata-
loged procedure, and a data set for input only can
be specified by using the following statement after
the invoking sequence just given.

//GO.SYSIN DD {* or parameters defining an
input data set }

| If DD* is used then the data must follow imme-
diately afterwards in the input stream, For se-

| quential scheduling, the data must be followed by
a delimiter statement (/*).

If more than one source program is to be pro-
cessed and executed in the same job, then all job

12

10/30/67

control statements except the JOB statement and
the JOBLIB DD statement must be repeated for
each source program,

A sample deck of job control statements re-
quired to compile, linkage edit and execute three

source programs is shown in Figure 29,

Over-riding Cataloged Procedures

The programmer can change any of the statements
in a cataloged procedure, except the name of the
program in an EXEC statement,

These over-riding conditions are temporary,
and will be in effect only until the next job step is
started. The following text describes methods of
temporarily modifying existing parameters and
adding new parameters to the EXEC and DD state-
ments used in the cataloged procedures, The full
list of parameters available to the ALGOL pro-
grammer for these statements, and detailed expla-
nations of the parameters, is given in Appendix E.
The EXEC and DD statements used in the IBM -
supplied cataloged procedures are shown in Appen-
dix B,

Over-riding EXEC Statements

In the EXEC statement, the programmer can change
or add any of the keyword parameters by using the
following format:

keyword, procstep=option
where:

tkeyword' is the parameter to be changed in,

or added to, the specified procedure job step:
either COND, PARM, ACCT, TIME or REGION,
TIME and REGION are valid only for priority
scheduling,

"'"procstep' is the procedure job step in which
the change or addition is to occur: either
ALGOL, LKED or GO.

"option" is the new option required.

For example, if the EXEC statement used to in-
voke the ALGOFCLG cataloged procedure was writ-
ten as:

// EXEC ALGOFCLG,PARM.ALGOL=DECK,
// PARM, LKED=XREF,
// COND. GO=(3, LT,ALGOL)

then the following changes would be made to the
ALGOFCLG cataloged procedure:

Form (33-4000-0, Page Revised by TNL N33-8000, 10/30/67

1. In the PARM parameter of the job step ALGOL,
the option DECK would be used instead of the
default option NODECK (assuming that the stan-
dard default NODECK was not changed at sys-
tem generation). Over-riding this option will
not affect the other default options assumed
for this parameter.

2, In the job step LKED, the option XREF is spec-
ified for the PARM parameter, Since the op-
tions specified in the cataloged procedure were
XREF, LIST and LET, this statement has the
effect of deleting the options LIST and LET
since they were not default options.

3. In the job step GO, the COND parameter code
is changed from 5, as it appears in the cata-
loged procedure, to 3. In this example, the
code 3 causes the job step GO to be bypassed
if a warning message is generated during the
job step ALGOL. Note that although the other
options (LT and ALGOL) are not to be altered,
the entire parameter being modified must be
respecified,

If "procstep' is not specified when over-
riding a multi-step cataloged procedure, the
operating system makes the following assump-
tions:

¢ COND, ACCT and REGION parameters apply
to all procedure job steps.

¢ A PARM parameter applies to the first pro-
cedure job step and any options already spec-
ified in the PARM parameters for the remain-
ing procedure job steps are cancelled.

e A TIME parameter specifies the computing
time for the entire job and any options already
specified in the TIME parameters for individ-
ual procedure job steps are cancelled.

Over-riding DD Statements

An additional DD statement is used in the invoking
sequence for each DD statement in the cataloged
procedure that is to be over-ridden., The following
format is used:

//procstep. ddname DD parameter-list
where:

"procstep’ is the procedure job step containing

the DD statement to be over-ridden: either ALGOL,

LKED or GO. If '"procstep' is omitted then the
first procedure job step is assumed.

"ddname!' is the name of the DD statement to be
over-ridden.

"parameter-list" is the list of parameters that are
being added or changed. In both cases the whole
parameter must be specified. Unchanged param-
eters in the original statement need not be spec-
ified, For example, the statement:

//ALGOL, SYSLIN DD SPACE=(400,(80,10))

will change the SPACE parameter of the SYSLIN
DD statement in the ALGOL job step so that space
will be allocated for 80 physical records instead
of 40,

DD statements that are used to over-ride other
DD statements in the cataloged procedures must
be placed immediately after the EXEC statement
invoking the cataloged procedure, and must be in
the same order as their corresponding DD state-
ments in the cataloged procedures.

Adding DD Statements

Complete, new DD statements that are to be added
to the cataloged procedure use the same format

as over-riding DD statements. The ""ddname"
specified must not exist in the job step specified
by '"procstep". These new DD statements must
follow immediately after the over-riding DD state-
ments which apply to the same procedure job step.

USER-WRITTEN PROCEDURES

The information required by the programmer to
write his own job control procedures is given in
the following text, and in Appendix E. Cataloging
user-written procedures, or permanently modi~
fying the IBM -supplied cataloged procedures, is
accomplished using the IEBUPDAT utility program,
described in IBM System/360 Operating System:
Utilities. The statements required in user-writ-
ten procedures are:

e An EXEC statement to invoke the program,

e DD statements to define the data sets used by
the program,

Compilation
Invoking Statement
The ALGOL compilér consists of ten load modules

contained in the link library, SYS1, LINKLIB, of
the operating system. The compiler is activated

Source Program Handling 13

Form C33-4000-0, Page Revised by TNL N33-8000,

by invoking its first load module, named ALGOL,
which then internally invokes the other load mod-
ules of the compiler.

The usual method of invoking the compiler is
by means of an EXEC statement of the form:

//stepname EXEC PGM=ALGOL

where "stepname' is the name assigned to the job
step (optional).

Other EXEC statement parameters may be in-
cluded if required (see Appendix E).

(A method of dynamically invoking the compiler
within a job step, by means of the CALL, LINK,
XCTL or ATTACH macro-instructions, is described
in Section 4.)

Data Sets Used

The data sets used in the compilation process are
illustrated in Figure 4, and described in Figure 5.
These data sets must be specified by the program-
mer with suitable DD statements,

Blocksize DCB information may be specified
by the user for SYSIN, SYSLIN, SYSPRINT and
SYSPUNCH, The maximum blocking factor de-
pends on the main storage size available (see
Figure 6). Record length is fixed at 80 bytes for
SYSIN, SYSLIN and SYSPUNCH, and 91 bytes for
SYSPRINT.

SYSIN
Source
Intermediate Work Program
SYSUT1
SYSPRINT &
SYSABEND
\ Information
SYSUT2 | COMPILER Listings
/
SYSUT3
Object
Module

ject (optional)
Module SYSPUNCH
(optional)

SYSLIN

Figure 4. Flowchart showing data sets used by
the compiler,

The space required for the compiler data sets
depends on the size and structure of the source
program, however it can be assumed that only in
rare cases will the object module exceed four
times the source program and usually much less
will be required.

14

10/30/67

P Standard Devices
urpose ddname required
For ALGOL source SYSIN Card reader®
program
For object module to SYSLIN Direct access or

be used by linkage editor magnetic tape

For compilation listings | SYSPRINT Printer*

For object module SYSPUNCH Card punch¥*
(copled from SYSLIN)

For the control SYSABEND Printer#*
program dump

For intermediate SYSUT1 Direct access or
compiler working magnetic tape
For intermediate SYSUT?2 Direct access or
compller working magnetic tape
For intermediate SYSUTS3 Direct access

compiler working

* Some form of intermediate storage, such as magnetic tape,
may be used to reduce I/O delay for the central proces-
sing unit.

Figure 5. Data sets used by the ALGOL compiler.

The primary quantity specified in the SPACE
parameter of the DD statements for SYSUT1,
SYSUT2 and SYSUT3 must be large enough to
contain the entire data set. The use of a secon-
dary quantity for any of these data sets will
increase the need for main storage by 40%, The
following estimates can be used to allocate space
on a 2311 direct access device:

SYSUT1 -~ 1 track per 100 source cards
SYSUT2 - 1 track per 100 source cards
SYSUT3 - 1 track per 200 source cards,

SYSABEND is used for control program list-
ings (see Section 3).

Processing of all data sets by the compiler is
independent of the I/0O device used except for the

intermediate work data sets. These require mag-
netic tape or direct access devices.

Linkage Editing
Invoking Statement

The linkage editor is usually invoked with an
EXEC statement of the form:

//stepname EXEC PGM=IEWL

Form C33-4000-0, Page Revised by TNL N33-8000,

where '"stepname' is the name assigned to the job
step (optional),

Other EXEC statement parameters may be in-
cluded if required (see Appendix E), IEWL spec-
ifies the highest-level linkage editor in the instal-
lation’s operating system.

(A method of dynamically invoking the linkage
editor within a job step, by means of the CALL,

LINK, XCTL or ATTACH instructions, is described

in Section 4.)

Main storage size Maximum blocking factor

in bytes at which

changes occur SYSIN SYSPRINT SYSLIN SYSPUNCH
45056 (44K) 5 5 5 1
51200 (50K) 5 5 5 5
59392 (58K) 5 5 5 5
67584 (66K) 5 5 5 5
77824 (76K) 5 5 5 5
90112 (88K) 20 20 40 20
104448 (102K) 20 20 40 20
120832 (118K) 20 20 40 20
139264 (136K) 20 20 40 20
159744 (156K) 20 20 40 20
184320 (180K) 40 40 40 40
212992 (208K) 40 40 40 40

Figure 6. Effect on compiler data sets if more
than 44K bytes of main storage is available.
The capacity of internal tables in the compiler
is increased at each of the main storage sizes
listed in this table, allowing, for example, a
larger number of identifiers to be included in
the source program. Therefore to get optimum
performance, the user is recommended to use
this list when specifying main storage size
available to the compiler.

Data Sets Used

The data sets used by the linkage editor (see Fig-
ures 7 and 8) must be defined by the programmer
with suitable DD statements.

Blocksize DCB information may be specified
by the user for SYSLIN and SYSPRINT if the F
level linkage editor is being used. Maximum
blocking factor is 5 when 44K bytes of main stor-
age size is available, and 40 when 88K bytes is
available. Record length is fixed at 80 bytes for
| SYSLIN and 121 bytes for SYSPRINT,

10/30/67

SYSLIN
Object
Module
SYSLIB
AlI;GOL
oo SYSPRINT &
_SYSABEND
LINKAGE :-nfo‘rmﬂon
Istings
EDITOR
SYSUT)
[Intermedi-
ate Work
Load
Module
SYSLMOD

Figure 7. Flowchart showing data sets used by
the linkage editor,

SYSABEND is used for control program list-
ings (see Section 3).

Load Module Execution

Invoking Statement

The usual method of invoking the load module gen-
erated by the linkage editor is with an EXEC state-
ment of the form:

//stepname EXEC PGM=member-name

Standard Devices
Purpose ddname used

For object module SYSLIN Direct access or
input magnetic tape

For load module SYSLMOD Direct access
output, stored as a
member of a parti~

tioned data set

For ALGOL library, { SYSLIB
SYS1,ALGLIB, A
partitioned data set
containing routines
in load module form

Direct access

For linkage editing SYSPRINT Printer#*
listings

For intermediate SYSUT1 Direct access or
linkage editor magnetic tape
working

For the control SYSABEND | Printer¥*

program dump

* Some form of intermediate storage, such as magnetic
tape, may be used to reduce output delay for the cen-
tral processing unit.

Figure 8. Data sets used by the linkage editor.

Source Program Handling 15

where "stepname' is the name assigned to the job
step (optional).

'"'member-name' indicates the name of the parti-
tioned data set member which contains the load
module. This name is specified by the programmer
in the SYSLMOD DD statement for the linkage edi-
tor. Other EXEC statement parameters may be
included if required (see Appendix E).

(A method of dynamically invoking the load mod-
ule within a job step, by means of the CALL, LINK,
XCTL or ATTACH macro-instructions is described
in Section 4.)

Data Sets Used

Up to 16 data sets for use at execution time may
be specified by the programmer in the ALGOL
source program by using the appropriate data set
number, The numbers used and the corresponding
names of their DD statements are listed below,

Data set number Corresponding
used in ALGOL ddname
source program

0 SYSIN
1 SYSPRINT
2 ALGLDDO2
3 ALGLDDO03
4 ALGLDDO04
5 ALGLDDO05
6 ALGLDDO06
7 ALGLDDO7
8 ALGLDDO08
9 ALGLDDO09
10 ALGLDD10
11 ALGLDD11
12 ALGLDD12
13 ALGLDD13
14 ALGLDD14
15 ALGLDD15

Any reference to a data set number by an I/O
procedure within an ALGOL source program is
translated into a reference to a data control block
using the corresponding ddname. It is the respon-
sibility of the programmer to supply the DD state-
ments which correspond to the data set numbers
used in the ALGOL source program.,

The execution time data sets are illustrated
in Figure 9 and described in Figure 10, For
ALGLDDO2 to ALGLDD15, case 1 in the column
showing device used, applies if the source pro-
gram contains any of the following;:

16

e A backward repositioning specification by the
procedures SYSACT4 or SYSACT13 for this
data set.

o Both input and output procedure statements
for this data set.

® Procedure statements which prevent the com-
piler from recognizing whether either of these
applies; for example, if the data set number
or SYSACT function number is not an integer
constant or if a precompiled procedure is used.,

If the source program has already been com-
piled and linkage edited in a previous job, then
the data set on which it has been stored (in load
module form) must be concatenated to SYS1. LINKLIB,
Data sets containing precompiled procedures called
by the source program (see Section 4) must also be
concatenated to SYS1, LINKLIB,

If the programmer specifies a TRACE, TRBEG
or TREND option in the EXEC statement of the
execution job step, the semicolon count (see Sec-
tion 3) is stored intermediately on a data set with
the ddname SYSUT1. The programmer must sup-
ply a corresponding DD statement if he uses this
option, The semicolon count is converted to ex-
ternal form and transferred to the SYSPRINT data
set as soon as the execution ends either by reach-
ing the logical end of the source program or due
to an error,

The space required for the semicolon count is:
For the main heading 6 bytes
For each semicolon 2 bytes

For each call of a
precompiled procedure 12 bytes

For each physical
record on SYSUT1 4 - 6 bytes

System/360 ALGOL permits data to be tempo-
rarily stored on and retrieved from external de-
vices without conversion, using the ALGOL I/O
procedures PUT and GET. If the programmer
uses this facility in his source program, then he
must supply a DD statement with the ddname
SYSUT2. The device specified by this statement
for storing such intermediate data should be a
direct access device to guarantee reasonable per-
formance, though programming is performed in-
dependently between magnetic tape and direct ac-
cess devices, All data passed by a single PUT is

Form C33-4000-0, Page Revised by TNL N33-8000,

Load Module for Source

SYS 1. Program, Precompiled
LINKLIB Procedures, and Error
Intermediate Work — Routine
SYSUT 1 Q\ Data Output
SYSUT 2 LOAD :-r?rfo.t'mgfion YSPRINT &
MODULE istings YSABEND
EXECUTION L

E
Data Input
SYSIN &
ALGLDDO02-15

Figure 9. Flowchart showing data sets used at load module execution.

ments are variable,

stored as one record. This record will be as
long as the data passed, plus 8 bytes. The
maximum record length accepted is 2048 bytes.

The DCB information which may be specified
by the user for execution time data sets is block-
size, record format and record length (see page
44 for details), except for the trace and PUT/GET
data sets (ddnames SYSUT1 and SYSUT?2) for
which only blocksize may be specified (up to a
maximum of 2048 bytes).

For information not provided, default values
will be inserted by a routine in the ALGOL
library. In particular, blocksize is assumed
as 2048 bytes for SYSUTL1 and SYSUT2 if none
is specified,

SYSABEND is used for control program list-
ings (see Section 3).

—(

Any of
ALGLDD02-15
not used for
input

The data input and output require -

Standard Device
ddname Used
For data input SYSIN Any input de-
to load module vice
For execution time | SYSPRINT Printer#*
listings and data
output
For data input ALGLDDO02 1, Direct
or output . access or
ALGLDD15 magnetle
tape
2, Any
For intermediate | SYSUT1 Direct access
storage of semi- or magnetic
colon counter when tape
TRACE is spec-
ified
For temporary SYSUT2 Direct access
storage when PUT or magnetic
is specified tape
For the control SYSABEND | Printer*
program dump
* Some form of intermediate storage, such as
| magnetic tape, may be used to reduce I/O
delay for the central processing unit,

Figure 10, Data sets used at execution time,

Source Program Handling

10/380/67

17

Form C33-4000-0, Page Revised by TNL N33-8000,

SECTION 3: INFORMATION LISTINGS

To assist the programmer to find the cause of any
faults in the processing or execution of his pro-
gram, various forms of information listings are
produced for the compilation, linkage editing and
execution operations, Some of these listings are
optional, Examples are illustrated in Figures 11
to 16,

CONTROL PROGRAM LISTINGS

All three operations may produce listings gener-
ated by the control program, These are described
in IBM System/360 Operating System: Messages,
Completion Codes, and Storage Dumps. The
ABEND macro-instruction for specifying the main
storage dump is described in IBM System/360
Operating System: Control Program Services.

COMPILATION LISTINGS

A successful compilation of an ALGOL source pro-
gram produces the following information listings:

e Job control statement information according
to which MSGLEVEL option was specified in
the JOB statement.

e The source program supplemented by a count
of the semicolons occurring in the program
(optional).

e A table giving details of all identifiers used in
the program (optional).

e Any warning diagnostic messages.

e Information on main storage requirements at
execution time,

If a serious diagnostic message is produced
(meaning that object module generation has ended)
then the source program and identifier table list-
ings will be printed in full if they have been re-
quested, but the information on main storage re-
quirements will not be printed, If a terminating
diagnostic message is produced then the source
program and identifier table listings can be printed
only as far as they have been produced.

18

10/30/67

Source Program

If the SOURCE option has been specified, the
source program is transferred by the compiler
to an output data set in order to be listed by a
printer. This source program is supplemented
by a semicolon count, which ig referred to in the
diagnostic messages to help localize errors,

The compiler generates this semicolon count
when scanning the source program, by counting
all semicolons occurring in the source program
outside strings, except those following the de-
limiter “"COMMENT “., The value of this semicolon
count at the beginning of each record of the source
program is printed at the left of that record. It is
assigned by the compiler in order to have a clear,
problem-oriented reference. Any reference to a
particular semicolon number refers to the segment
of source program following the specified semi-
colon, for example, the semicolon number 5 re-
fers to the program segment between the fifth and
sixth semicolons.

Identifier Table

If the SOURCE option has been specified, a list of
all identifiers declared or specified within the
source program is transferred by the compiler to
the output data set for printing after the source
program listing, This identifier table gives in-
formation about the characteristics and internal
representation of all identifiers. The identifiers
are grouped together within the identifier table
according to their scopes.

All blocks and procedure declarations: within
the source program are numbered according to
the order of occurrence of their opening delimiters
“BEGIN” or “"PROCEDURE". Therefore, if the body
of a procedure declaration is a block, then usually
this block has the same number as the procedure
declaration itself. These numbers are called
program block numbers (even if they belong to a
procedure declaration and not to a block).

Each line in the table contains entries for up
to three identifiers and the line begins with the
number of the program block in which the identi~
fiers were declared or specified, the value of the
semicolon count at the commencement of the pro-
gram block, and the number of the immediately
surrounding program block. Each identifier entry
contains:

Form (€".,-4000-0, Page Revised by TNL N33-8000, 10/30/67

e A cross-reference table of the load module, or
alternatively, a module map (both optional).

If a diagnostic message of severity code 2 or 3
is produced then the other information listings
might not be produced, If a diagnostic message
of severity code 4 is produced then the other in-
formation listings will not be produced.

Diagnostic Messages

A description of the diagnostic messages that may
be produced by the linkage editor is contained in
Appendix F,

Module Map

If MAP is specified in the invoking statement for
the linkage editor, then a module map is trans-
ferred to the output data set to be listed by a print-
er. The module map shows all control sections
(the smallest separately relocatable units of a pro-
gram) in the load module and all entry names (to
routines in the ALGOL library) in each control sec-
tion. The control sections are arranged in ascend-
ing order according to their origins (which are
temporary addresses assigned by the linkage editor
prior to loading for execution), The entry names
are listed below the control section in which they
are defined, The origing and lengths (in bytes) of
the control sections, and the location of the entry
names are listed in hexadecimal form. Unnamed
control sections are identified by $ in the list,

At the end of the module map is the entry ad-
dress of the instructions with which processing
of the module begins, It is followed by the total
length of the module, in bytes. Both values are
in hexadecimal form,

Cross -Reference Table

If XREF is specified in the invoking statement for
the linkage editor, the cross-reference table is
transferred to the output data set to be listed by a
printer,

The cross-reference table consists of a module
map and a list of cross-references for each con-
trol section. In the list of cross-references, each
address constant that refers to a symbol defined
in another control section is listed with its assigned
location (in hexadecimal form), the symbol referred
to, and the name of the control section in which the
symbol is defined,

If a symbol is unresolved after processing by
the linkage editor, it is identified by $ UNRESOLVED
in the list. However, if an unresolved symbol is
marked by the never call function, it is identified
by $NEVER-CALL,

The entry address and total length are listed
after the list of cross-references,

EXECUTION TIME LISTINGS

A successful execution of the load module produces
the following information listings:

® Job control statement information according
to which MSGLEVEL option was specified in
the JOB statement,

e The ALGOL program trace, which is a list of
the semicolon numbers assigned by the com-
piler (optional),

If an error is detected during execution of the

load module, additional information listings are
printed before the trace: these are;

¢ A diagnostic message

¢ The contents of the data storage areas
(optional)

Diagnostic Messages

Any error detected at execution time causes ab-
normal termination, A diagnostic message is
produced which is transferred to an output data
set to be listed by a printer, The diagnostic mes-
sages which may be produced during load module
execution are listed in Appendix F.

Data Storage Areas

If DUMP is specified in the invoking statement for
the execution operation, the data storage areas
(DSA) in main storage are transferred to the out-
put data set to be listed by a printer, They are
listed in the reverse order to which they were
created.

A DSA is created for each call of a program
block (see ""Compilation Listings') and exists in
main storage as long as the call is effective. The
DSA contains:

Information Listings 21

Form C33-4000-0, Page Revised by TNL N33-8000, 10/30/67

1, All execution time values of variables declared

or specified in the program block except for

arrays, The array values are stored separate-

ly but are included in the listing because they
are referenced by the SMF which is contained
within the DSA.

2. Intermediate results (known as the object time
stack).

The information listed for each DSA consists
of:

e Name of load module
® Program block number

® Description of program block; either
BLOCK, PROCEDURE or TYPE PROCEDURE

® The values in the DSA, in batches according
to their category, that is, formal parameters,
declared identifiers and object time stack,
arrays called by value, and declared arrays.

The values are those which exist at the time
the error was detected (in hexadecimal form),
The displacement in the DSA of the first value in
each line is printed at the beginning of each line.
This is a six digit hexadecimal number.

For formal parameters, each entry has 16
digits, and in the case of parameters called by
name the entry contains an address constant
pointing indirectly to the value,

For declared identifiers and the object time
stack, the identifier entries are listed first and
they can be located using the identifier table if it
was listed by the compiler, The object time
stack contains various intermediate results and

29

addresses which are not directly related to the
identifiers in the source program.

For arrays the length depends on the SMF,
The displacement of the SMF in the DSA is given
for each array.

In the listings, real values have a length of 8
hexadecimal digits when SHORT is specified and
16 digits when LONG is specified. They are in
standard floating point representation. Integer
values have a length of 8 hexadecimal digits and
are in standard fixed point representation. Boolean
values have a length of 2 hexadecimal digits which
appear as 00 for ‘FALSE “and 01 for “TRUE",

An editing routine inserts blanks between each
set of 8 digits to improve readability.

ALGOL Program Trace

A program trace, listing the semicolon numbers
assigned by the compiler (see "Compilation List-
ings") in the order the corresponding semicolons
were encountered during execution, is transferred
to an output data set to be listed by a printer if
TRACE, TRBEG or TREND is specified in the in-
voking statement for the execution. The complete-
ness of the trace depends on the option or options
specified (see Appendix E), Only the semicolons
actually passed through at execution time are in-
cluded in the trace.

If a precompiled procedure is used in the pro-
gram and TRACE is specified, then the semicolon
numbers for the procedure are irnicluded in the
correct position within the program. The appro-
priate load module name (first four characters
only) is inserted at the beginning of the listings
and each time a change occurs in the first four
characters of the module name.

CAPACITY LIMITATIONS

Form C33-4000-0, Page Revised by TNL N33-8000,

In addition to those given in IBM System/360
Operating System; ALGOL Language, the follow-

ing restrictions must be observed when writing
an ALGOL source programs:

Number of blocks and
procedure declarations
(NPB)

Number of for statements

Number of identifiers de-~
clared or specified in one
block or procedure, F is
at most twice the number
of for statements occur-
ring in that block

Length of letter string
gserving as parameter
delimiter

Length of label identifer

Length of source
program

Number of semicolons in
the whole program

Number of nested blocks,

compound statements, for

statements and procedure
declarations

Number of labels declared

or additionally generated
by the compiler

<255

<255

<179-F for type
procedures
<180-F otherwise

<1024 letters when main
storage size available is
less than 50K, <2000
letters otherwise

<1024 characters

when main storage size
available is less than
50K, <2000 characters
otherwise

<255K

<65535

<999

<1024

The compiler generates the following

additional labels:

10/30/67

SECTION 4;: PROGRAMMING CONSIDERATIONS

For each switch declaration 2
For each procedure declaration 2

For each procedure activation
(including function designators) 1

For each THEN" and each ‘ELSE~ 1

at most L + 3
where L is the
number of for
list elements

For each for statement

Length of constant

pool <(256 - NPB) x 4096 bytes

The requirements of components within the pool
are

Integer constant 4 bytes
Real constant
(SHORT) 4 bytes
Real constant
(LONG) 8 bytes

2 + number of
symbols of open
string between
the outermost
string quotes

String (in bytes)

The constant pool is divided into blocks of 4096
bytes each, The first block contains the integer
constants 0 to 15 (64 bytes). All strings together
are restricted to fill not more than the rest of

this block (4096 - 64 - 28 bytes, where S =

number of strings).

No constant occurring more than once in the source
program is stored twice in the same block; however,
it may possibly be stored more than once in differ-
ent blocks, Up to seven bytes may be left unused.

Length of data storage area
for each block or procedure

declaration <4096 bytes
Number of blank spaces

serving as delimiters on

1/0 data sets <255
Number of records in a

data set =32760

Programming Considerations 25

Number of records per
section <255

Number of entries in the
Note Table <127

(The Note Table stores information to retrieve
records which may be required again later., An
entry for a record is made each time the ALGOL 1/0
procedures PUT and SYSACT13 are executed, and
each time an input operation, with backward repo-
sitioning, follows an output operation on the same
data set.)

Identification number (N) used

by PUT or GET 0<N<65535

INVOKING A PROGRAM WITHIN A JOB STEP

Any one of the four macro-instructions, CALL,
LINK, XCTL or ATT~CH, may be used to dynam-
ically invoke the compiler, linkage editor and load
module within a job step. This is an alternative
to the more usual method of invoking a program
by starting a job step with an EXEC statement.
Full details of the four macro-instructions are
given in IBM System/360 Operating System:
Control Program Services.

To invoke a program with the CALL macro-
instruction, the program must first be loaded into
main storage, using the LOAD macro-instruction.
This returns, in general register 15, the entry
address which is used by the CALL macro-instruc-
tion. The instructions used could be:

LOAD EP=member-name
LR 15,0
CALL (15), (option-address), VL

To invoke a program with one of the LINK,
XCTL or ATTACH macro-instructions would need
instructions such as:

LINK EP=member-name,
PARAM=(option-address), VL=1

XCTL EP=member-name

ATTACH EP=member-name,

PARAM=(option-address), VL=1

26

-Output of object module

"member-name"' specifies the name of the mem-
ber of a partitioned data set which containg the pro-
gram required.

For the compiler, member-hame=ALGOL
For the linkage editor, mermber-name=IEWL

For the load module, member-name is speci-
fied by the programmer in the SYSLMOD DD state-
ment for the linkage editor,

"'option-address' specifies the address of a
list containing the options required by the user.
An address must be given even if no options are
specified. The list must begin on a half-word
borndary. The first two bytes contain a number
givi..z the number of bytes in the remainder of
the list. (If no options are specified this number
must be zero), The list itself contains any of the
options available to the PARM parameter in an
EXEC statement (see Appendix E),

When using CALL, LINK or ATTACH to invoke
the compiler, other ddnames may be used in place
of the standard ddnames given in Section 2 for the
data sets (except for SYSABEND), and an alterna-
tive page number (instead of the normal 001) may
be specified for the start of output listings,

If alternative ddnames are used, then in the
statement invoking the compiler, 'option-address'
must be followed by '"ddname-address' giving the
address of a list containing the alternative ddnames,
If alternative page numbers are used, then "page-
address'' giving the address of a location contain-
ing the alternative page number must be placed
after "ddname-address'; though if alternative
ddnames are not required '"ddname-address' may
be replaced by a comma,

The ddname list must begin on a half-word
boundary. The first two bytes contain a number
giving the number of bytes in the remainder of
the list, The list itself contains up to ten 8-byte
fields, separated by commas, for specifying al-
ternative ddnames for the data sets. As only seven
data sets are used by the compiler, three of the
fields are left blank. The alternative ddnames
must be listed in the following order:

Purpose of data set Standard ddname
SYSLIN
for linkage editor

IHIOBA. For OUTBARRAY 70
IHIOBO For OUTBOOLEAN 400
THIOIN For OUTINTEGER 410
THIOST For OUTSTRING 300
THIOSY For OUTSYMBOL 290
IHIOTA For OUTTARRAY 120
IHIPTT For a long precision INREAL or OUTREAL
operation 270
THISAT IHCSATAN For a short precision arctangent
operation (ARCTAN) 200
IHISEX THCSEXP For a short precision exponential operation (EXP) 280
THISLO THCSLOG For a short precision logarithmic operation (LN) 210
IHISOR For a short precision OUTREAL operation 810
THISSC THCSSCN For a short precision sine or cosine operation
(SIN or COS) 260
THISSQ THCSSQRT For a short precision square root operation
(SORT) 170
THISYS For SYSACT 1520
Figure 18, Table of ALGOL library modules. All are contained in SYS1. ALGLIB except IHIERR

which is in SYS1, LINKLIB, For mathematical routines, the corresponding name in the FORTRAN IV

library is also given.,

ALGOL Library Routines

33

Form C33-4000-0, Page Revised by TNL N33-8000, 10/30/67

APPENDIX B: IBM-SUPPLIED CATALOGED PROCEDURES

The three cataloged procedures for ALGOL that optimum job, and can be over-ridden by the user
were introduced in Section 2 are contained in the if he requires different or additional system sup-
procedure library, SYS1, PROCLIB, of the oper- port to that provided (see Section 2), In particular
ating system. They consist of the job control state- it should be noted that in these procedures the ob-
ments listed below. ject or load module produced is stored on a tempo-
rary data set and will therefore be deleted at the
These procedures have been designed for an end of the job.

Compilation, ALGOFC

EXEC PeM=ALGOL, R T
//SYSPRINT, D.D. SHoun:A e e bkt a4 R e .
[//SY.SPUNCH, DD UNIT= m&L

[,L;YS,UM, OD.D DSNAME=E LOADSET., UN,II §x§§g, g §x§PuNg,H;DI§P “LO,D,P
102 S PACEE (odly (AN » “‘*é"’“*"‘**
TI UNIT=3SYS
N

u
- SPACEF 0

45;5,1_1,7;@ umrsvsog,wu&m,,(_,g)y TS S
(/1 SEP=(SYSUT.L,, ;5 z,S.xs; u,.sn;auucu) i
//SYSABEND DD SYSOUT=A =, e

Compilation and Linkage Editing, ALGOFCL

mm;nagdu_m#_“u e o
//SYSPRINT DD SYSOUT=A N A A e
//SYSP .uc.u. .A% UNLT. Js.fgm . e

.5):4, QD SNAHE=& LOADSEY s UNIT*= _‘{, ,§9,S,EP=§L§ M ,g,g;&&(ugu A§,§), X ‘
9‘ . SP&QE_LJA, SRS .
N. OSET, U, DISP:=(MOD., PAss)... X
/7R SP !] AR e
LLMAL..ALUNIT‘ S PMWMM
/sxs.u-rz DD UNIT= sEfg,sgps e e X
SPACES= . . NP
Mér&qw ACE.= B S
700 ERelarkar W
/ END_DD._SYSOUT: A e

/7 YEC. PGM=1EWL,PARH=(XREFLIST L I,),COND=(5,,_.,T,,AL,G) , ‘

/ISYS.PRINT. DD, _SYSOUT=A et e .
Llsxs,t. DD DSNAME = 3% ALGOL.. x;,l.;N,D,ISP-(.OLD,DELETE.)

/1SysLlB DD DSNAME=SYSI .ALGLI 8,DISP=0LD
[SY,S.L.M D. DD _DSNAME =£G _,;gj[(ao),uurr, S,YSD,A,Q,ISP g,PAs,s.), N : x
" .SpAc EA“(‘_M [W IO TSN TN W WSS SN0 NORN TS0 U WY T G S S W W S S S

Z .Ls.U‘Tl Db N‘[.1=SY§,DA SEP SL SYSLI,g,SYS.LIj,o,D}., e et \ g .
. .. SPACE=(»@;4 (m,,m,)f R
LL;LQABENMQuTA . . e e e A

I WOV W S S RS ' et A oaa Ao 4 412 PR A s e PP Y

T ’ [ESSPIED S R ST U S W W

34

The object module is in a form acceptable as input

to the linkage editor, that is, its records are card
images having the format of ESD, RLD, TXT and
END cards (see Figure 20), It is stored either on

a data set (ddname SYSLIN) in the linkage editor
library, or on an output data set (ddname SYSPUNCH),
or on both. The parameters LOAD and DECK, used
to specify these storage options are described in
Appendix E.

The object module consists of:

1. An initial ESD card defining the control sec-
tion. For a precompiled procedure, the
procedure name (up to 6 characters) is as-
signed to the control section and entered into
this record.

2. The Constant Pool containing all constants
and strings in the module,

3.

4.

7.

8.

APPENDIX D: OBJECT MODULE

The generated instructions.

The Label Address Table (see Section 3) for
addressing branch instructions in the module,

. The Program Block Table containing an

entry for every program block. This table
indicates the active generation of data stor-
age areas (see Section 3) and length of each
data storage area.

The Data Set Table containing information
on the current status of all data sets used.
This table is not produced for precompiled
procedures,

Program start information.

An END card.

ﬁND card

yd

tion (ESD, RLD and TXT

Program start informa-
cards)

/
Data set table (RLD and
TXT cards)

ya

Program block table (RLD
and TXT cards)

/

Label address table (ESD,
RLD and TXT cards)

yd
Generated instructions
(RLD and TXT cards)
Vs
Constant pool
(TXT cards)

Definition of control
section (ESD card)

Figure 20,
symbols that are defined or referred to in the module.

The object module card deck. The ESD (External Symbol Dictionary) cards contain the external
The RLD (Relocation Dictionary) cards contain

addresses used in the module, The TXT (Text) cards contain the constants and instructions used in the

module,

The END card indicates the end of the module.

Object Module 37

TForm C33-4000-0, Page Revised by TNL N33-8000, 10/30/67

APPENDIX E: USING JOB CONTROL LANGUAGE

This appendix describes the method of writing job
control statements, and explains the options most
frequently used by the ALGOL programmer, A
full description of Job Control Language is given
in IBM System/360 Operating System: Job Control

Language.
Three types of operating system are available:

1. Primary Control Program (PCP), using
a sequential scheduler,

2. Multiprogramming with a Fixed number
of Tasks (MFT), using a sequential
scheduler,

3, Multiprogramming with a Variable num-
ber of Tasks (MVT), using a priority
scheduler,

CODING FORMAT

Control statements are identified by the initial
characters // or /¥ and are written in columns
1 to 72 of standard 80 column punched cards.
Each field is separated by one or more blanks,
Column 72 must be left blank unless the state-
ment is to be continued on another card.

If the length of a statement exceeds 71 charac-
ters, it must be continued on another card. This
is done by interrupting the statement at the end of
a positional or keyword parameter, following this
parameter with a comma, and placing any non-
blank character in column 72, The continuation
card commences with the initial characters //
and the statement restarts on column 16, Com-
mand statements may not be continued on another
card.

Comments must be separated from the last
parameter by one or more blanks. If the com-
ment is to be continued on another card it may be
interrupted at any convenient point and a non-
blank character is put in column 72. The conti-

Applicable Con-
Format trol Statements

//NAME OPERATION OPERAND | JOB,EXEC,

DD
// OPERATION OPERAND EXEC,DD,
Command
// Null
/% Delimiter

® Figure 21. Control statements formats,

38

nuation card commences with the initial charac-
ters // and the comment restarts on any column
from 16 to 71 inclusive.

The four possible formats for control state-
ments are shown in Figure 21, The null and de-
limiter statements are blank except for the first
two columns,

NAME contains the symbolic identification of the
control statements, It is always placed imme-
diately after the initial characters //. A name
must contain between one and eight alphameric
characters, the first of which must be alphabetic.
If name is omitted, then at least one blank must
separate the initial characters // and the operation
field.

OPERATION identifies the type of control statement
being specified.

OPERAND contains the statement parameters,
separated by commas.

CONVENTIONS

The conventions used in this manual for describing
control statements are as follows:

Upper case letters and punctuation marks (except
those listed below) represent information to be coded
exactly as shown.

Lower case letters are general terms requiring
substitution of specific information by the programmer.

These punctuation marks have a special meaning:

- (hyphen) links lower case words to form a
single term for substitution

(underscore) indicates the option that will
be assumed if none is specified

{ } (braces) mean only one of the options contained
must be selected

[] (brackets) mean information contained may be
omitted

... (ellipsis) means that preceding item can be
repeated successively a number of times.

CONTROL STATEMENT CODING

In the following description, certain terms are
used to indicate external names which are to be
specified by the programmer. These terms and
their meanings are:

Term Meaning
jobname name of job
proghame name of program

stepname name of job step
ddname name of DD statement
(the standard ddnames
which may be specified
are described in Section 2)
procname name of cataloged proce-
dure
procstep name of job step within
a cataloged procedure
dsname name of data set

It is often convenient to use two or more quali-
fication levels to specify a data set name. The
highest level reference is stated first. Thus in
TFigure 22, data set D, M. H is found by searching
the index of each volume in turn, starting with the
system residence volume (the primary volume in
the operating system), to find the location of data
set D. This, when searched, will contain the lo-
cation of data set D, M, which in turn will contain
the location of data set D.M.H,

volume index A D Z
data set D A M Z
data set D, M. A H 4

Figure 22. Data set cataloging using qualified
names,.

A maximum of 44 characters can be used for a
qualified name. Thus, as a simple name can con-
sist of between one and eight characters, and each
name must be separated by the character period
(.), a maximum of 22 qualification levels is possible.

Data set names can also be qualified by a suffix,
that is, "dsname (element)'", to indicate the rela-
tive generation number. For example, WEATHER
(0) is the current generation of the data set named
WEATHER. The preceding generation would be
WEATHER (-1). A new generation during creation
is known as WEATHER (+1), at the end of the job
it becomes WEATHER (0). A suffix is also used
to indicate the name of a member of a partitioned
data set, or the area of an indexed sequential data
set.

There are four types of job control parameters
for inclusion in the operand fields: positional pa-
rameters, keyword parameters, positional sub-
parameters and keyword subparameters,

Positional parameters must be stated first,
and where more than one can be included they must
be listed in the order given in the following descrip~-
tions. A comma must be substituted in place of
any positional parameter omitted, if it is to be
followed by another positional parameter, for ex-
ample,

//name operation posl,,pos3......

Keyword parameters can be listed in any order.
They contain a keyword followed by an equal sign
(=) and some specific information, All keyword
parameters are optional since a default option will
exist for any which must be specified.

One or more subparameters can be substituted
for a positional parameter and also for the informa-
tion to the right of the equal sign in the keyword
parameter,

Positional subparameters have the same confi-
guration and restrictions as positional parameters.

Keyword subparameters have the same confi-
guration and restrictions as keyword parameters.

When more than one subparameters are used,
they must be separated by commas and the list
enclosed in parentheses, for example,

// name operation posl,pos2,keyl=value,
// key2=(subl, sub2)

Since some special characters, such as the
comma, parenthesis, blank and equal sign, have
a special significance when used in control state-
ments, no special characters can usually be used
in job control information provided by the user.
There are, however, some exceptions to this rule,
The special characters @ $ and # can be repre-
sented normally, All other special characters,
except the apostrophe, can be represented normally
in the programmer ‘s-name in the JOB statement,
the accounting-information in the JOB and EXEC
statements, and the PARM parameter options in
the EXEC statement, provided that the information
is enclosed in apostrophes (replacing the parenthe-
ses for a list of more than one subparameter). An
apostrophe within this information is represented
by two consecutive apostrophes.

Using Job Control Language 39

Form (33-4000-0, Page Revised by TNL N33-8000, 10/30/67

JOB Statement

The name field of the JOB statement must contain
the external name for the job (jobname).

The operation field must contain the characters
JOB

The parameters available for the operand field
are listed in Figure 23, where:

accounting-information
identifies the installation account number to
which the computer time for this job is to be
charged. If the installation has an appropriate
accounting routine, the account number can be
followed by other subparameters, which are
fixed by the user for his own installation. If the
account number is omitted then its absence must
be indicated with a comma,

programmer s -name
identifies the person responsible for the job.
It must not exceed 20 characters.

TYPRUN=HOLD
indicates that the job is not to be processed
until a RELEASE command is issued by the
operator, For priority scheduling only.

PRTY=job-priority
indicates the relative priority of the job, A num-
I ber from 0 to 13 is specified, with 13 being the

Positional [accounting-information]
parameters [programmer s-name]
Keyword CLASS=jobclass
parameters

TYPRUN=HOLD
PRTY=job-priority
COND=((code, operator),...)

(all optional)

MSGLEVEL= { % }

MSGCLASS=classname
REGION=nnnnnK

ROLL=({%§} {ES })

eTigure 23, JOB statement parameters.

40

highest priority, This parameter can be used
only with MFT or MVT systems.

COND=((code, operator),...)
allows conditions for the termination of the job
to be specified. Up to eight (code,operator)
specifications may be included in a COND param-
eter. Any number between 0 and 4095 is sub-
stituted for '""code' and one of the following six
relationships is substituted for "operator'.

Operator Meaning
GT greater than
GE greater than or equal to
EQ equal to
NE not equal to
LE less than or equal to
LT less than

At the completion of each job step, unless a
system error occurs, the operating system will
generate a return code between 0 and 4095 (see
Section 1) to indicate if the program was executed
successfully or not. If any of the code numbers
stated in the COND parameter is related to the re-
turn code in the way specified by the associated
operator then the job is terminated. Tor example,
if

COND=((50,LT), (40,GT))

then, the job will be terminated if either 50 is
less than the return code, or 40 greater than the
return code.

MSGLEVEL=0
indicates that the job scheduler is to write out
control statement information only when an
error occurs. The information required is a
diagnostic message and the control statement
in which the error occurred.

MSGLEVEL=1
indicates that, whether an error occurs or not,
the job scheduler is to write out all control
statements, plus a diagnostic message if an
error does occur.

MSGCLASS=classname

allows job scheduler messages to be written

in a system output class other than the one nor-
mally used by the installation, The user can
fix up to 36 different classes (A to Z and 0 to
9), depending on device type, priority, desti-
nation, etc., for these messages., This param-
eter is not necessary if the normal class (A)

Form C33-4000-0, Page Revised by TNL N33-8000, 10/30/67

is required. For PCP systems only class A may
be used.

REGION=nnnnnK
indicates the main storage size that is to be
allocated to the job (including system compo-
nents) instead of the default value established
in the input reader procedure, nnnnn is re-
placed by a value between 0 and 16384; thus
32 would represent 32 x 1024 = 32768 bytes,
This parameter can be used only with priority
scheduling,

CLASS=jobclass
indicates the relative class of a job in systems
with M¥T, "jobclass' is replaced by an alpha-
betic character, A through O,

rouan{ X2}, (127

indicates the rolltﬂc/ rollin attributes associated
with a job in MVT systems, The first subparam-
eter gpecifies if the job steps in this job can be
rolled out to provide main storage space for job
steps in other jobs. The second parameter
specifies if the job steps in other jobs may be
rolled out to provide main storage space for

job steps in this job., The ROLL parameter can
be specified in EXEC statements to control
rollout/rollin for individual job steps.

EXEC Statement

The name field contains the external name of the
job step (stepname). It may be omitted if no refe-
rence is to be made to the EXEC statement in
another statement.

The operation field must contain the characters
EXEC

The parameters available for the operand field
are listed in Figure 24, where:

PGM=progname
indicates that the job step executes the program
named "progname'. The program must reside
on a partitioned data set.

PGM=%, stepname, ddname
indicates that the job step executes the program
named by the DSNAME parameter of a DD state-
ment named "ddname' that was included in a
previous job step named "stepname' in the same
job. If "stepname'' refers to a job step invoking
a cataloged procedure then a job step within the
procedure can be specified by putting its name

after "stepname'; that is, '"stepname, procstep".
The program must reside on a partitioned data
set,

PROC=procname
indicates that the job step executes the cataloged
procedure named '""procname',

prochame
has the same effect as PROC=procname

TIME=(minutes, seconds)
limits the computing time for the job step. If
"seconds' only is specified then a comma must
be substituted for "minutes'. If "minutes' only
is specified then the parentheses can be deleted,
This parameter can be used only with priority
scheduling,

COND=((code, operator, stepname)....)
allows conditions to be specified for bypassing
a job step whose execution depends on the re-
turn code issued by a preceding job step. ""Code"
and "operator' are governed by the same stipu-
lations that applied for the JOB statement. 'Step-
name'" indicates the previous job step which
issued the return code to be used for comparison,

If "stepname' is not specified then the return
code issued by all previous job steps are com-
pared. If "stepname' refers to a job step in-
voking a cataloged procedure then a job step

Positional PGM=progname
parameters | |PGM=*, stepname. ddname
PROC=procname
procname
Keyword {TIME } . .
=(minut econd
parameters | \TIME. procstep (minutes, seconds)

(all optional) { COND }

COND. proestep =((code, operator,

stepname),...)

}=subparameter—list

=accounting-

{PARM
PARM. procstep
{ information

ACCT }
ACCT. procstep

{REGION
REGION., procstep

ROLL=({¥\%—S},{§£S})

}:nnnnnK

eTigure 24. EXEC statement parameters.

Using Job Control Language 41

within the procedure can be specified by putting option underscored applies, unless the other

its name after "stepname'; that is "stepname. is specified either at this stage or during system
procstep''. generation, The default options PROGRAM and
TEST cannot be changed at system generation,
PARM=subparameter list If a large number of options need to be specified
indicates any special conditions which apply for a particular job then the 40 character limi-
to the job step. All the subparameters in the tation may be exceeded. To avoid this, abbre-
"subparameter-list't are optional. They can viated forms, given at the end of the descrip-
be specified in any order, and a comma does tion of each option, may be used.
not have to be substituted for any omitted. A PROGRAM or PROCEDURE: which specifies
maximum of 40 characters may be used, For that the source program is either an ALGOL
the rule to be observed when an equal sign is program in the sense of the ALGOL syntax
included in the subparameter-list (that is, with (PROGRAM), or is an ALGOL procedure to be
SIZE, TRBEG and TREND), see "Control State- compiled separately and used with other pro-
ment Coding". grams or procedures (PROCEDURE). Abbre-
For the ALGOL compiler job step, the "sub- viated forms PG or PC,
parameter-list" is given below. For each of SHORT or LONG: which specifies that the in-
the alternatives, the compiler assumes that the ternal representation of real values is in full

Using Job Control Language 41,1

Form C33-4000-0, Page Revised by TNL N33-8000, 10/30/67

42

words (SHORT); or double words (LONG).
Abbreviated forms SP or LP,

NODECK or DECK: which specifies that an
object module, stored on the data set specified
in the SYSPUNCH DD statement, either is not
to be generated (NODECK); or is to be gener-
ated (DECK). Abbreviated forms ND or D,

LOAD or NOLOAD: which specifies that the
compiler is to either generate an object module
for use as input to the linkage editor, using the
data set specified in the SYSLIN DD statement
(LOAD); or not generate this object module
(NOLOAD). Abbreviated forms L or NL,

SOURCE or NOSOURCE: which specifies that
the source program and identifier table listings
are either to be printed (SOURCE); or not to be
printed (NOSOURCE). Abbreviated forms S or
NS.

EBCDIC or ISO: which specifies that the card
code used to write and keypunch the source pro-
gram is either a 53 character set in EBCDIC
(EBCDIC); or the 46 character set in BCD
which has been established as standard for
ALGOL by ISO and DIN (ISO), Abbreviated
forms EB or 1.

TEST or NOTEST: which specifies that the
generated object module is to include informa-
tion which is normally used only for testing
(TEST); or is not to include this information
(NOTEST)., The information consists of instruc-
tions to produce the semicolon count, and in-
structions checking the values of subscript ex-
pressions against array bounds. Abbreviated
forms T or NT,

SIZE=45056 or SIZE=number: which specifies
the main storage size, in bytes, that is available
to the compiler. "Number" must not be less
than 45056 and must not exceed 999999,

For the linkage editing job step the "subpa-
rameter-list' consists of two types of options,
those which specify the outputi listings required,
and those specifying attributes for the load mod-
ule.

The options to control output listings are:
LIST which specifies that all job control state-

ments processed by the linkage editor are to be
listed on the diagnostic output data set,

MAP or XRET which specifies that either a map
of the load module is to be produced (MAP); or
a cross-reference table of the load module is to
be produced (XREF) comprising a load module
map and a list of all address constants that re-
fer to other control sections.

The options specifying load module attributes
which can be used with ALGOL programs are:

REUS which produces a load module that is se-
rially reusable, that is, it can be used by more
than one task, but only one task at a time,

DC which produces a load module that is down-
ward compatible, that is, if the load module is
produced by an F level linkage editor then it
can be reprocessed by an E level linkage editor,

LET or XCAL which specifies that either the
load module is to be marked as executable even
when a severity 2 error is detected (LET); or
the load module is to be marked as executable

I even though valid exclusive references between
the segments have been made (XCAL), A se-
verity 2 error could make execution impossible
and would normally lead to the load module be-
ing marked as not executable. It includes the
situation over-ridden by XCAL,

NCAL which specifies that the linkage editor
automatic library call mechanism is not to call
library members to resolve external references
within the object module. The load module is
marked as executable even though unresolved
external references have been recognized.

All the linkage editor subparameters are
optional.

For the execution job step of an ALGOL pro-
gram the '"'subparameter-list'" is:

TRACE which specifies that the semicolon count
produced during the compilation process is to
be printed as a list. This gives information on
the dynamic flow of the program and is known
as a program trace.

TRBEG=number which specifies that a limited
program trace is to be produced beginning at
the semicolon specified by "number" and ending
at the physical end of the program.

TREND=number which specifies that a limited
program trace is to be produced beginning at
the physical beginning of the program and ending
at the semicolon specified by "number",

Form C33-4000-0, Page Revised by TNL N33-8000, 10/30/67

The last two options may be specified together
to define the beginning and end of the trace. When
either is specified, TRACE may be omitted, but
in that case precompiled procedures would not
be included. If TRACE is specified with TRBEG
or TREND, then only a limited program trace
is produced, but it will include precompiled
procedures executed in that part of the program.
No program trace is possible if NOTEST has been
specified for the compilation process.

DUMP which specifies that a partial main storage
dump is to be produced if an error occurs, The
dump contains the contents of the data storage
areas and arrays.

All of the execution time subparameters are
optional,

ACCT=accounting-information
allows accounting information associated with
the job step to be passed to the installations
accounting routines, using subparameters which
are fixed by the user for his own installation.

REGION=nnnnnK
indicates the main storage size for the job step
if it has not already been specified in the JOB
statement (see page 41).

keyword, procstep
is used with the last five parameters when a
cataloged procedure is being executed. It in-
dicates that the parameter applies to the job
step named "procstep' within the procedure,
and may be repeated for each keyword and with
different, or the same, information to the right
of the equal sign, for each job step in the pro-
cedure.

DD Statement

The name field containg an identifying name
(ddname) for the DD statement,

The operation field must contain the characters
DD

The parameters available for the operand field
are listed in Figure 25, where:

* indicates, when used as a positional parameter,
that the required data follows immediately after
this DD statement. The asterisk must be the
only non-blank character in the operand field.
For sequential scheduling it can be used only
once in each job step, and the data must be fol-
lowed by a delimiter statement.

DUMMY
indicates that the user’s problem program is
to be executed without any 1I/O operations on

the data set. This can be used for debugging,
and also for bypassing data set references in
a regularly-used program, for example, the
first run of an updating program when there is
no old master to be processed.

DSNAME=dsname (element)
specifies the name of a newly defined data set,
or refers to one that has been defined previous-
ly. "Element" is used only if it is necessary
to specify the generation number of the data
set, the name of a member of a partitioned data
set, or the area of an indexed sequential data
gset (using the options PRIME, OVFLOW or
INDEX).

DSNAME=&name (element)
specifies that the data set is temporary and will
be deleted before the end of the job. The name
allocated by the operating system is 'name.
jobname', "Element' has the same meaning as
when used with DSNAME=dsname.

DSNAME=*, stepname. ddname
indicates that the data set is the one specified
in a preceding DD statement named '""ddname""
occurring in the job step named "stepname',
If the data set was specified in the current job
step then "stepname' must be omitted. If "step-
name' refers to a job step invoking a cataloged
procedure then a job step within the procedure
can be specified by putting its name after ''step-
name'; that is "*, stepname, procstep, ddname.

Note, If the DSNAME parameter is omitted then
the operating system will assign a unique name
to any data set created by the job step.

Positional parameters {* }
(all optional) DUMMY

Keyword parameters
(a1l optional, though DSNAME=
DSNAME can be omitted
only when the asterisk
positional parameter is DCB= [{” . stepname. ddname}] [subparameter-list]
usged). dsname

dsname(element) l
&name(element)
*, stepname, ddname {

{AF F=ddname }
SEP=subparameter-list

UNIT=subparameter-list
SPACE=gubparameter-ligt

3 SPLIT=subparameter-list %
SUBALILOC=subparameter-list
VOLUME-=subparameter-list

LABEL=subparameter-list

{DISstubparameter-list }
SYSOUT=sgubparameter-list

Figure 25, DD statement parameters.

Using Job Control Language 43

Form C33-4000-0, Page Revised by TNL N33-8000,

DCB= { ¥, stepname. ddname} [subparameter-list]
dsname

indicates that the data control block for the data

set specified in the DD statement named '""ddname"

in the job step named "'stepname', or alterna-
tively the cataloged data set named ""dsname',
is to be repeated for the current DD statement.
"Stepname' must be omitted if it refers to the
current job step, or may be qualified in the
same way as the DSNAME parameter if it re-
fers to a job step in a cataloged procedure, If
additional information is substituted for "sub-
parameter-list" then this over-rides the cor-
responding subparameters in the repeated in-
formation. Alternatively "subparameter-list"
can be used alone to specify data control block
information,

The '"subparameter-list'" for the data sets used
when processing and executing an ALGOL program
contains the following keyword subparameters:

BLKSIZE=number, is used to specify blocksize.
"Number' is blocksize in bytes, and for fixed
length records must be a multiple of record
length.

RECFM=F [B] [A], is used to specify record
format. F = fixed length, B = blocked, A = con~
trol character incorporated to control printed
output format.

LRECL=value, is used to specify record length.
| '"Value" is actual length in bytes.

All other valid DCB options are fixed.

AFF=ddname
indicates that the data set has affinity with the
data set specified by the DD statement named
"ddname' and is to use the same channel,

SEP=list-of-ddnames
indicates that the data set is to use a separate
channel to the ones used by the data sets speci-
fied by the DD statements named in the "list-
of-ddnames"',

UNIT=subparameter-list
specifies the class and quantity of I/0O devices
to be allocated for use by a data set, The "sub-
| parameter-list" has two forms, either one of

44

10/30/67

which may be used in an individual statement,
The two forms are:

Positional 1
subparameters| classname {nuﬁiber}[DEFER]
1 P
Keyword
subparameter | [SEP=list-of-ddnames]
2| Keyword
subparameter | AFF=ddname

"classname' indicates the device class. These
names are divided into two categories.

e Those automatically incorporated in the op-
erating system when it ig generated. These
are of two types - specific unit names, such
as 2400 (for a magnetic tape drive) and 1403
(for a printer); and general classnames,
that is,

SYSCP for any card punch

SYSSQ for any magnetic tape or
direct access device

SYSDA for any direct access device.

¢ Additional names fixed by the user for his
installation when the operating system is
generated.

"number" indicates the number of devices to be
allocated. If the data set is cataloged but the
number of devices used is unknown, then "P"
substituted for '"number' will ensure that the
correct number is assigned.

DEFER indicates that the volume need not be
mounted on the I/0 device until the data set is
called in the program. This subparameter must
not be used with an indexed sequential data set
or a new output data set on a direct access de-
vice.

SEP=list-of-ddnames indicates for direct access
devices that, if possible, the data set is not to
use the same access arm as the data sets spec-
ified by the DD statements, given in the 'list-
of-ddnames",

Form C33-4000-0, Page Revised by TNL N33-8000, 10/30/67

AFF=ddname indicates that the data set is
to use the same I/0 devices as the data set spec-
ified in the DD statement named "ddname' in
the same job step.

SPACE=gubparameter-list

indicates the space required when a direct ac-
cess device is specified in the UNIT parameter,
The "subparameter-list" containg only posi-
tional subparameters. The list is:

TRK
CYL primary-quantity
average-record-length

[secondary-quantity J{directory -or-index-quantity]

MXIG
[RLSE]L { AIX

}][ROUND]
CONTIG

The first subparameter specifies the units
in which the space requirements are expressed,
that is, tracks, cylinders or records (with length
given in bytes),

The next subparameter specifies the space
required. It has three parts (of which the se-
cond and third are optional) and is enclosed in
parentheses if more than one part is specified.
If the second part is omitted, then it must be
substituted by a comma if the third part is in-
cluded. The initial space to be allocated is given
by "primary-quantity", Each time this initial
space is filled, additional space is to be pro-
vided as specified by "'secondary~quantity".
The number of 256 byte records to be allocated
for the directory of a new partitioned data set,
or the number of cylinders, taken from the ini-
tial space reserved, to be allocated for the in-
dex of an indexed sequential data set, is given
by "directory~or-index-quantity',

RLSE indicates that any unused space assigned
to the data set is to be released,

MXIG requests that the largest single block of
storage available is to be allocated to the data
set,

ALX requests that extra blocks of storage (in
track units) are to be allocated to the data set.
As many available blocks that are equal to or

greater than "primary~quantity', up to a max-
imum of five, will be allocated.

CONTIG specifies that the space specified by
"primary-quantity' is to be in a single block,

ROUND requests that when records are used
to express the space required on the direct ac-
cess device, the space is to begin and end on
cylinder boundaries.

DISP=subparameter-list

indicates the status of the data set and speci-
fies its disposition at the end of the job step.,

The "subparameter-list' congists of the fol~

lowing positional subparameters:

DELETE
NEW KEEP
131611)) [{ pass]
CATLG
SHR UNCATLG

NEW specifies that the data set is to be gene-
rated in this job step, and would be deleted at
the end of the job step unless KEEP, PASS or
CATLG is specified,

OLD specifies that the data set already exists,
and would be kept at the end of the job step un-
less PASS or DELETE is specified,

MOD specifies that the data set already exists
and is to be modified in this job step. If the
data set cannot be found by the operating system
then this parameter is equivalent to NEW,

SHR specifies that, in a multiprogramming en-
vironment, an existing data set may be used
simultaneously by more than one job,

DELETE specifies that the space used by the
data set (including that in the data set catalog,
etc.) is to be released at the end of the job
step.

KEEP specifies that the data set is to be kept
at the end of the job step.

PASS specifies that the data set is to be re~
ferred to in a later step of this job, at which

Using Job Control Language 45

Form C33-4000-0, Page Revised by TNL N33-8000,

time its final disposition, or a further pass,
will be specified.

CATLG specifies that the data set is to be ca-
taloged at the end of the job step. Thus KEEP
is implied, The catalog structure must already
exist,

UNCATLG specifies that the data set is to be
deleted from the catalog at the end of the job
step., KEEP is implied,

SYSOUT=subparameter-list
specifies the printing or punching operation to
be used for the data set. The "subparameter-
list" is:

classname [progname J[number]

"'classname specifies the system output class
to be used. Up to 36 different classes (A to Z,
0 to 9) may be fixed by the user for his instal-
lation, according to device type, priority, des-
tination, etc, The standard classname is A.

"progname' can be used to specify the name of
a user-written output routine,

"number" can be used to specify an installation
form number to be assigned to the output.

For sequential scheduling, the "subparame-
ter-list" consists of only the standard class-~
name A,

VOLUME=subparameter-list
indicates the volume or volumes assigned to the

data set. If the data set is cataloged this param-
eter is not necessary. The "subparameter-list'

is:

Positional -
subparameters [RETAIN][number [value]
Keyword SER=list-of-serial-numbers
subparameters
dsname
_)*. ddname

REF=1, stepname. ddname

#, stepname, procstep.
ddname

RETAIN specifies that, if possible, the volume
is to remain mounted until referred to in a later

46

10/30/67

DD statement, or until the end of the job, which-
ever is first. 'number" is any number between

2 and 9999, and is used if an input or output oper-
ation, on a cataloged data set residing on more
than one volume, does not start on the first vo-
lume of the data set, The number specifies the
position of the volume on which input or output
does start (for example, 3 indicates the third
volume of the data set).

"'value' specifies the number of volumes re-
quired by an output data set, It is not required
if SER or REF is used,

SER=list-of-gerial-numbers, specifies the se-
rial numbers allocated by the user to the volumes
required by the data set, These serial numbers
can consist of between one and six alphameric
characters.

dsname
#*_ ddname
EF=).°
REF *, stepname, ddname

*, stepname, procstep. ddname

specifies that this data set is to use the same
volume or volumes as the data set specified by
one of the alternative sub-subparameter forms.
If the latter data set resides on more than one
tape volume, then only the last volume (as spec-
ified in the SER subparameter) can be used.

LABEL~=subparameter-list

indicates the type of label or labels associated
with the data set. If the data set is cataloged
this parameter is not necessary. The "sub-
parameter-list' is:

NL
. 8L
Pogitional [number] { NSL
subparameters SUL
BLP
Keyword J EXPDT=yyddd}
subparameters \RETPD=dddd

"number' is any number between 2 and 9999,
and specifies the position of the data set on the
volume (for example, 3 would indicate the third
data set on the volume).

NL, SL, NSL, and SUL specify the type of label
or labels to be used, that is, no labels, stan-
dard labels, non-standard labels, and standard

Form C33-4000-0, Page Revised by TNL N33-8000, 10/30/67

and user labels, respectively., The routines to
produce non-standard labels must be written
and incorporated into the operating system by
the user. BLP indicates that label processing
is to be bypassed,

EXPDT=yyddd specifies that the data set cannot
be deleted or opened, without operator inter-
vention, until the date given by yy (year) and
ddd (day).

RETPD=dddd specifies that the data set is to be
retained for the number of days given by dddd.

Command Statement

The options available for the operation and operand
fields of the command statement are described in
IBM System/360 Operating System: Operator’s
Guide,

| DATA SET CONCATENATION

Unless it has been created in the same job, a load
module specified for execution in an EXEC control
statement must be contained in the SYS1, LINKLIB
library of the operating system, If the load module
is not a permanent member of this library then it
is temporarily combined by using a DD statement
with the name JOBLIB,

If the load module is a member of another li-
brary then this whole library is combined with the
SYS1, LINKLIB library. This temporary combin-
ing is termed concatenation and lasts only for the
duration of the job. A statement of this kind would
have the form:

//JOBLIB DD DSNAME=dsname, DISP=0OLD

where "dsname" is the name of the data set or li-
brary containing the load module to be executed.

Only one JOBLIB DD statement can be used in
each job and it must immediately follow the JOB
statement, If more than one load module contained
in a library being concatenated is required in the
same job then the parameter DISP=(OLD, PASS)
placed immediately after the DSNAME parameter,
will extend the effect of the concatenation through
each step of the job,

If the job requires load modules from a number
of data sets which are not created in the job.or not

permanent members of the SYS1, LINKLIB library
then one data set is concatenated to thig library,

as described above, and the others are concate-
nated to this first data set by listing their DD state-
ments immediately after the JOBLIB DD statement
and leaving the name fields blank. This has the
effect of concatenating all the data sets to the

SYS1. LINKLIB library,

JOB CONTROL LANGUAGE EXAMPLES

Three different types of jobs are described here

to illustrate the use of job control language. Some
of the subparameters used, such as I/0 device
classnames and volume serial numbers, may change
for different installations.

Example 1: Executing a Single Load Module

Statement of problem: A set of 80 matrices are
contained in data set SCIENCE, MATH, MATRICES,
Each matrix is an array containing real variables.
The size of the matrices vary from 2x2 to 25x25;
the average size is 10x10, The matrices are to be
inverted using a program MATINV contained in.a
partitioned data set MATPROGS, Each inverted
matrix is to be written as a single record on the
data set SCIENCE, MATH, INVMATRS, The first
variable in each record is to denote the size of the
matrix, Each matrix is to be printed.

SCIENCE.
MATH.
MATRICES

Printed

MATINV
output

SCIENCE,
MATH,
INVMATRS

Figure 26, I/0 flow for Example 1.

Using Job Control Language 47

/.ZINVERT JOB S537,]QHNS mel

//JORLIB A.Mﬁgs.nl SP=OLD ..

.....

/ rJv 'r E N R

SNA. -sc' BAILL‘AL&LQES;;LDL&&;QL.D S
/JAY,SPRF NT. DD AaY‘sAoAu:r.:A » . RN N
7 u. NIT<=DACLASS v N
A . SPACE=(!5

M S DY

........

Figure 27. Job control statements for Example 1,

Explanation of coding: The job control statements
used in Figure 27 specify that:

1.

48

The job is

e to be charged to the installation’s account
number 537

e the responsibility of John Smith

e to have all control statements (plus control
statement diagnostic messages if an error
occurs) printed on the normal system output
device.

The partitioned data set MATPROGS is concate~-

nated with the operating system library, SYS1.

LINKLIB,

The program to be executed is MATINV,

The input data set is SCIENCE. MATH. MATRICES

The printed output is to use the standard output

format class for the installation.

The output data set is

® to be called SCIENCE, MATH, INVMATRS,

® {0 be cataloged

e to use the device class DACLASS

® {0 use volume 1089W

® {0 use a separate channel to the input data set

® to have space reserved for 80 records, each
1500 bytes long. This space is to be incre-

mented in 9-record units each time more

is required and any unused space is to be re-
leased. The space is contiguous and aligned
on cylinder boundaries.

® to have fixed length blocked records, 300
bytes long, and a maximum block size of
1500 bytes.

Example 2: Compiling, Linkage Editing and
Executing Three Source Programs

Statement of problem: Raw data from a rocket
test firing is contained in a data set RAWDATA,
The forecasted results for this firing are contained
in a data set PROJDATA,. A program PROGRD is
to be used to produce refined data from these two
data sets.

The refined data is to be stored in a temporary
data set and used by a program ANALYZ, contain-
ing a series of equations, to develop values from
which graphs and reports can be generated. Pa-
rameters needed by ANALYZ are contained on a
cataloged data set PARAMS.

The values are to be stored on a temporary data
set and used by a program REPORT to print graphs
and reports. The programs PROGRD, ANALYZ
and REPORT are written in ALGOL., They are
still in source program form, and therefore must
be compiled and linkage edited before execution,

Explanation of coding: The job control state-
ments used in Figure 29 specify that:

1. The job is
® the responsibility of John Smith

e to have all control statements (plus control
statement diagnostic messages if an error

STEP 1

PROGRD
source program

i

Compiler

Linkage
Editor

STEP 2

ANALYZ
source program

1

Compiler

Linkage
Editor

STEP 3

EPORT
source program

!

Compiler

Linkage
Editor

FIRING
partitioned
data set

FIRING
partitioned
data set

OJ- ?' PROGRD ANALYZ m REPORT
@A _’J execution execution \ Values ' execution
RAWDATA PARAMS ‘

Figure 28. Basic I/0 flow for Example 2, The data sets for information listings, ALGOL library routines
intermediate work and the execution time error routine are not shown,

//TESTFIRE, ;onuéuz'ru,ﬁﬁgggveuel AT . — e
/1STEPI, EXEC ALGOFC , e s
//SYSIN DD x . ., . . s e e e
:;gge PROGRAM(P gggem e
ALL_A L N MG=P .QJ._,_._A;M.E.:QAQ T T S
/ DI w PASSS U”I)_LAE.EEA-.@M . S
7.7 . 187y X
7 M.ﬁ,.,mwa) e e
// G QSYS.LA!DD‘.* S
75 INPUT DATA(RAWDATAY e e
ZLMT P2 ENEC ALGOFCLG s e s e
2/ SYSIN. DD ¥ o oo e i L e
ﬁ%&ﬁe&%kmurw_n) e e .
//LKED.. SYSLMOD. DD _DSNAME gGOSETCM/A.LY.ﬂ) e
//60. A DD DSNAME=X.STEP DISP= B
Mmﬁgsw PARAMSLLDISP-GLD e
/1 GO . ALGLD, O PSNAME=£VALUES OISR * - (NEW,) PASS),,uu.J;T =TAPECLS,, X ..
.544#__4H CY-E ecm-ﬁmxwuggggg 68),.VOLUME SER™2108|
ISTEP3 EYEL ALGOFCLS s e b e e e Ak A et
/7 SYSIN DD, % . . e . R
¥:>ou&re PROSRAM(LEPORTY . e e
ALQKQLSJ.SAM.Q. D n;nguga.cggg_n. AgegeT) s et
//G0 - ALGLDD 14 DD _DSWAME=*..STEPA-ALGLDDAA ,DISPOLD.]

Figure 29, Job control statements for Example 2.

Using Job Control Language 49

Form C33-4000-0, Page Revised by TNL N33-8000, 10/30/67

2.

occurs) printed on the normal system output
device for information listings

The first job step invokes the ALGOFCLG cata-
loged procedure (see Appendix B) to process
and execute the ALGOL source program
(PROGRD) entered in the input stream

The other input data sets are RAWDATA and
PROJDATA. RAWDATA is also entered in the
input stream

The temporary output data set is

® to be called REFDATA. TESTFIRE and to be
passed for use in a later job step

e to use the device class TAPECLS

© to be written on volume 2107, which is to
remain mounted for use later

® to have fixed length records, 80 bytes long,
and a block size of 400 bytes

The second job step invokes the ALGOFCLG
cataloged procedure to process and execute

the ALGOL source program (ANALYZ) entered
in the input stream

The SYSLMOD DD statement in the LKED step
of the cataloged procedure is overridden to

specify that the load module produced by the
linkage editor is

© to be a new member, ANALYZ, of tempo-
rary partitioned data set GOSET. TESTFIRE

The other input data sets are REFDATA,
TESTFIRE and PARAMS, Both will be kept
at the end of the job step

The temporary output data set is

e to be called VALUES, TESTFIRE and is to
be passed for use in a later job step

® to use the device class TAPECLS
® to be written on volume 2108

® to have fixed length records, 68 bytes long,
and a maximum block size of 204 bytes

The third job step invokes the ALGOFCLG ca-
taloged procedure to process and execute the
ALGOL source program (REPORT) entered in

the input stream,
dure

10, The SYSLMOD DD statement in the LKED step
of the cataloged procedure is over-ridden to
specify that the load module produced by the
linkage editor is

® tobe a new member, REPORT, of temporary

partitioned data set GOSET, TESTFIRE

11. The other input data set is VALUES, TESTFIRE

which will be kept at the end of the job step

Example 3: Executing Two Load Modules

Statement of prohlem: Data on current weather
conditions is to be read from cards and used by
the program FILECR to create a new generation
of a data set WEATHER, and also to print a re-
port,

Then the new generation and the three imme-
diately preceding generations of the WEATHER
data set are to be used by the program FORCST
to produce a printed weather forecast. The pro-

Weather
data

FILECR

WEATHER WEATHER
(0) +1)

FORCST

Weather
forecast

Figure 30, I/0 flow for Example 3,

The output data will be listed
on the printer specified in the cataloged proce-

IEX007I

TEX008I

IEX0101

TEX0111I

IEX012I

TEX013I

Form C33-4000-0, Page Revised by TNL N33-8000,

W NNNNN LABEL BEGINNING WITH
(up to six characters) CONTAINS
INVALID CHARACTER, COLON
DELETED,

Explanation: A label has been deleted
because it contains a character of other
than alphameric type,

W NNNNN LABEL BEGINS WITH
INVALID CHARACTER, COLON
DELETED,

Explanation: A label has been deleted
because it does not begin with an alpha-
betic character,

S NNNNN SPECIFICATION PART OF
PROCEDURE (identifier) INCOMPLETE,
Explanation: Not all of the formal pa-
rameters used in a procedure have been
specified,

S NNNNN PROGRAM STARTS WITH
ILLEGAL DELIMITER,

Explanation: A program has been written
not starting with one of the following:

. BEGIN~

. "PROCEDURE”

REAL” PROCEDURE”
INTEGER” PROCEDURE”
. BOOLEAN“ PROCEDURE”

SR

W NNNNN TWO APOSTROPHES AFTER
(six characters)., FIRST APOSTROPHE
DELETED.

Explanation: In this context, two apos-
trophes cannot be used together so one
has been deleted,

W NNNNN APOSTROPHE ASSUMED
AFTER DELIMITER BEGINNING WITH
(up to six characters),

Explanation: All delimiters involving

words must begin and end with apostrophes.

One has been left out of the program and
has been inserted by the compiler,

IEX014I 8 NNNNN DELIMITER BEGINNING

WITH (up to six characters) INVALID,
FIRST APOSTROPHE DELETED,

Explanation: An invalid sequence of char-
acters has been used after an apostrophe

which apparently started a delimiter. The
apostrophe is therefore deleted to remove

TEX015I

TEX016I

IEX0171

IEX018I

TEX0201

IEX0211

IEX0221

10/30/67

the delimiter status from the characters
but still include them in the program.

W NNNNN MISSING SEMICOLON
AFTER ‘CODE-, SEMICOLON INSERTED.

Explanation: Self-explanatory,

S NNNNN IDENTIFIER BEGINNING
WITH (up to six characters) CONTAINS
INVALID CHARACTER, IDENTIFIER
DELETED,

Explanation: A character other than an
alphameric type has been used in an iden-
tifier and so the identifier has been de-
leted.

S NNNNN MORE THAN 65535
SEMICOLONS, SEMICOLON COUNTER
RESET TO ZERO.

Explanations Number of semicolons used
exceeds capacity limitations. Duplicate
numbers are allocated.

W NNNNN DELIMITER ‘COMMENT”
IN ILLEGAL POSITION,

Explanation: ‘COMMENT “ has not been
placed after a 'BEGIN” or a semicolon,
Compilation continues normally.

T NNNNN BLOCKS, COMPOUND
STATEMENTS, FOR STATEMENTS,
AND PROCEDURE DECLARATIONS
NESTED TO TOO MANY LEVELS,

Explanation: Structure of program causes
it to exceed capacity limitations (see Sec-
tion 4).

S NNNNN DECLARATOR (declarator)
IN ILLEGAL POSITION,

Explanation: A declarator must come
between either ‘BEGIN“ and the first
statement of a block, or PROCEDURE”
and the procedure body.

T NNNNN MORE THAN 255 PROGRAM
BLOCKS,

Explanation: Number of program blocks
used exceeds capacity limitations.

Diagnostic Messages 53

TEX0231

TEX0241

TEX0251

TEX0261

TEX0271

IEX028I

TEX0291

TEX030I

S NNNNN STRING POOL OVERFLOW,

Explanation: Total length of strings used
exceeds capacity limitations (see Sec-
tion 4),

S NNNNN DELIMITER “CODE”IN
ILLEGAL POSITION.

Explanation: ‘CODE “has not been placed
immediately after a procedure heading
so it has been deleted.

S NNNNN SPECIFIER STRING” OR
‘LABEL”IN ILLEGAL POSITION.
SPECIFICATION DELETED.

Explanation: ‘STRING”and LABEL"
have been used outside a procedure
heading, so they have been deleted.

S NNNNN PARAMETER (identifier)
MULTIPLY SPECIFIED, FIRST
SPECIFICATION USED,

Explanation: Self-explanatory,

W NNNNN PARAMETER (identifier)
MISSING FROM FORMAL PARAMETER
LIST. SPECIFICATION IGNORED.

Explanation: A parameter has been spec-
ified in a procedure heading which does
not exist in the formal parameter list, so
it has been ignored.

S NNNNN DELIMITER "VALUE“IN
ILLEGAL POSITION. VALUE PART
DELETED.

Explanation: “VALUE “has been placed
outside a procedure heading so the value
part has been deleted.

W NNNNN SPECIFICATION PART
PRECEDES VALUE PART,

Explanation: The specification part in a
procedure heading has been incorrectly
placed before the value part.

W NNNNN PARAMETER (identifier)
REPEATED IN VALUE PART.

‘CODE " DELETED.

IEX0311

TEX032I

TEX033I

TEX0341I

TEX035I

TEX0361

Explanation: A parameter has been in-
cluded in the value part of a procedure
heading more than once,

W NNNNN LEFT PARENTHESIS NOT
FOLLOWED BY / AFTER ARRAY
IDENTIFIER (identifier), SUBSCRIPT
BRACKET ASSUMED,

Explanation: The subscript bounds after
an array identifier have been preceded

by a left parenthesis instead of a subscript
bracket.

S NNNNN MISSING RIGHT PARENTHESIS
IN BOUND PAIR LIST OF ARRAY (identi-
fier), DECLARATION DELETED.,

Explanation: A right parenthesis has been
omitted in the list of subscript bounds for
an array identifier, so the declaration is
deleted,

T NNNNN MORE THAN 16 DIMENSIONS
OR COMPONENTS IN DECLARATION OF
(identifier).

Explanation: The number of dimensions
or components used with an array or switch
identifier exceeds the maximum allowed,

S NNNNN ARRAY SEGMENT (identifier)
NOT FOLLOWED BY SEMICOLON OR
COMMA, CHARACTERS TO NEXT
SEMICOLON DELETED,

Explanation: An array segment must be
followed by a semicolon if it is the only

or last segment of an array declaration;
or a comma if it is followed by another

segment,

W NNNNN
OR SWITCH LIST.

ILLEGAL PERIOD IN ARRAY
PERIOD DELETED,

Explanation: A period has been used
wrongly in an array or switch list and de-
leted from the program, A period can be
used only as a decimal point, or as part
of a colon or semicolon,

T NNNNN MORE THAN 15 PARAMETERS
IN DECLARATION OF (identifier).

Explanation: The number of formal param-
eters specified for a procedure exceeds
the maximum allowed.

Form C38-4000-0, Page Revised by TNL N33-8000, 10/30/67

IEX206I W NNNNN TOO MANY OPTION
PARAMETER ERRORS, SUBSEQUENT
PARAMETERS IGNORED,

Explanation: Too many incorrect parame-
ters have been specified in the PARM pa~
rameter so the rest are ignored.

IEX207I W NNNNN POSSIBLE ERROR IN DD
"NAMES PARAMETER,

Explanation: An incorrect ddname may
have been specified in the DD statement,

IEX208] W NNNNN SIZE PARAMETER INVALID,
SIZE 45056 ASSUMED.,

Explanation: The main storage size spec~
ified as being available to the compiler is
less than the minimum required, so the
minimum value is assumed,

IEX209I T NNNNN COMPILATION
UNSUCCESSFUL DUE TO PROGRAM
INTERRUPT, PSW (hexadecimal digits),

Explanation: A program interrupt has
occurred causing termination of the job
step. The program status word when the
error occurred is given,

IEX210I T NNNNN UNRECOVERABLE I/O
ERROR ON DATA SET (ddname),

Explanation: An I/O error has occurred

on the data set specified causing termi-
nation of the job. This message is typed
on the console typewriter when it concerns
SYSPRINT. This is most likely to be a
random error, so the user is recommended
to rerun the program,

JIEX211I T NNNNN PROGRAM INTERRUPT IN
ERROR MESSAGE EDITING ROUTINE,
PSW (hexadecimal digits),

Explanation: A program interrupt has
occurred in the error message editing
routine, ending the job.

IEX212I T NNNNN TOO MANY ERRORS,

Explanation: The total length of the error
message patterns produced exceeds capac-
ity limitations.

IEX2131 T NNNNN INTERNAL OVERFLOW OF
IDENTIFIER TABLE,

Explanation: The number of identifiers
declared exceeds capacity limitations,

IEX2141 S NNNNN DATA STORAGE AREA
EXCEEDED., PROGRAM BLOCK NO,
(number),

Explanation: The data storage area re-
quired by the program block specified
exceeds 4096 bytes,

IEX215I T NNNNN SOURCE PROGRAM TOO
LONG,

Explanation: The source program exceeds
capacity limitations (see Section 4).

IEX216I 8 NNNNN TOO MANY LABELS,
LABEL NUMBER RESET,

Explanation: The total number of labels
used exceeds capacity limitations, so
duplicated numbers are allocated (see
Section 4).

LINKAGE EDITOR MESSAGES

Each message occupies one or more printed lines
and contains:

® The message key, consisting of the letters IEW,
a three digit decimal number identifying the
message, and a final digit, either 1, 2, 3 or 4,
indicating the severity code.

e The message text describing the error, For
severity code 1 the message is preceded by
‘WARNING”, For all other severity codes the
mesgsage is preceded by 'ERROR ",

The severity codes have the following meaning:

1 indicates a condition that may cause an error
during execution of the load module, A mod-
ule map or cross-reference table is produced
if it was required by the programmer, The
output load module is marked as executable,

2 indicates an error that could make execution
of the load module impossible, Processing
continues, When possible, a module map or
cross-reference table is produced if it was
required. The load module is marked as not
executable unless the LET option has been
specified,

Diagnostic Messages 59

Form C33-4000-0, Page Revised by TNL N33-8000,

3 indicates an error that will make execution
of the load module impossible, Processing
continues, If possible a module map or
cross-reference table is produced if it was
required, The load module is marked as not
executable.

4 indicates an error condition from which no
recovery is possible. Processing terminates.
The only output is diagnostic messages.

A full list of the linkage editor diagnostic messages
is contained in IBM System/360 Operating System:

Linkage Editor.

EXECUTION TIME MESSAGES

The list of diagnostic messages that may be pro-
duced by the load module is given below. Each
message occupies one or more printed lines and
contains:

e The message key, consisting of the letters IHI,
a three digit decimal number identifying the
message, and the letter I to indicate an infor-
mative message requiring no action from the
operator.

® The characters SC = followed by the semicolon
number (see Section 3). This number does not
always indicate the statement in which the error
occurred. For example, after a branch ('GOTO
or 'FOR", if no semicolon has occurred before
the error is detected, then the semicolon num~
ber preceding the branching instruction will be
listed. For I/O errors, the semicolon number
indicates the statement being executed when the
error was detected, not the statement calling
the I/0 procedure,

,

® The message text describing the error, Where
appropriate this begins by indicating the number
of the data set (DSN) on which the error occurred,
or the ddname if the data set does not have a
number (that is, SYSUT1 and SYSUTZ2), or the
program status word (PSW) held by the operating
system when the error occurred, The PSW con-
tains 16 hexadecimal digits. Message texts pre-
ceded by *¥* indicate that the program does not
correspond with parameters specified in the job
control cards,

THI000I SC=NNNNN DATA SET NUMBER OUT
OF RANGE

Explanation: A data set number must be
in the range 0 to 15,

60

10/30/67

THI0O01I

THI002I

THI003I

THI0041

THI0051

THIOO06I

THIOO07I

THI0O08I

SC=NNNNN DSN=NN, REAL NUMBER
TO BE CONVERTED OUT OF INTEGER
RANGE

Explanation: A real number has been
included which exceeds capacity limita-
tions when converted to integer, This
message applies for input/output opera-
tions,

SC=NNNNN DSN=NN, INCOMPATIBLE
ACTIONS ON DATA SET

Explanation: The 1/0O procedure requested
is not defined for this data set, For ex-
ample, procedure SYSACTS8 specifying data
set number 0 is not allowed,

SC=NNNNN DSN=NN, INPUT BEYOND
LAST OUTPUT

Explanation: Before reading data which
has just been written on the same data

set, backward repositioning must be spec-
ified,

SC=NNNNN TOO MANY REPOSITIONINGS
IN DATA SETS, INTERNAL OVERFLOW

Explanation: Too many repositionings
have caused an internal overflow of the
Note Table (see Section 4).

SC=NNNNN DSN=NN, INPUT REQUEST
BEYOND END OF DATA SET

Explanation: Input has been requested
to start beyond the end of the data set,

SC=NNNNN DSN=NN, EXPONENT PART
OF INPUT NUMBER CONSISTS OF MORE
THAN TWO SIGNIFICANT DIGITS

Explanation: The length of the exponent
part of an input number exceeds capacity
limitations,

SC=NNNNN DSN=NN, #*¥*NO CONTROL
CHARACTER SPECIFIED IN RECORD
FORMAT OF DATA SET, SPLITTING
INTO SECTIONS IMPOSSIBLE

Explanation: A control character is re-
quired to define printing format,

SC=NNNNN DSN=NN, SOURCE IN
PROCEDURE OUTSYMBOL DOES NOT
MATCH STRING

IBM / Technical Newsletter File Number 586026

Re: Form No. C33-4000-0
This Newsletter No. N33-8002
Date January 16, 1968
Previous Newsletter Nos. N33-8000

IBM System/360 Operating System
ALGOL Programmer s Guide

This Technical Newsletter relates to Release 15 and contains amendments to the
IBM System/360 Operating System: ALGOL Programmer’s Guide, Form C33-4000-0.
The attached pages are replacements to be inserted in the publication, as indicated
below. Corrections and additions to the text and/or illustrations are indicated by a
vertical bar to the left of the affected text and by a bullet (o) to the left of the figure

caption,

Pages to be Pages to be
Inserted Removed
11-12 11-12
13-14 13-14
15-16 15-16
17-18 17-18
25-26 25-26
31-32 31-32
33-34 33-34
35-36 35-36
45-46 45-46
49-50 49-50
51-52 51-52

Summary of Amendments

The amendments in this Newsletter primarily reflect the division of the execution
time data set SYSPRINT into two data sets, namely ALGLDDO01 and SYSPRINT, in order
to provide MI¥T-II support for ALGOL under Release 15. This modification necessitates
changes in certain cataloged procedures. The amendments also include various corrections
and program maintenance adjustments,

Note: Please file this cover letter at the back of the publication, for use as a reference
list.

IBM Nordic Laboratory, Technical Communications, Box 962, Lidingd 9, Sweden

PRINTED IN U.S.A

(/-
= =

{Source program (MATINV)

(//SYSIN DD *
ﬁ/ EXEC. ALGOFC

//MATINV JOB 537, JOHNSMITH, MSGLEVEL=1

Figure 2. Sample deck for using ALGOFC cataloged procedure with a single source program. This job
compiles the MATINV source program used in Example 1 of Appendix E.

If more than one source program is to be pro- the job step to which it appli'es , and has the form:
cessed in the same job, then all job control state-
ments except the JOB statement must be repeated //LKED,SYSLMOD DD DSNAME=dsname(member),
for each source program, DISP=(MOD,KEEP)

If it is required to keep a load module for use where '"dsname' is the name of a partitioned data
in a later job (as in the case when the load module set and "member" is the member name assigned
is a precompiled procedure), then the SYSLMOD to the load module on the partitioned data set.
DD statement in the cataloged procedure must be
over-ridden to specify a permanent data set, This A sample deck of job control statements to com-~
has to be done for each load module that is kept. pile and linkage edit two source programs is shown
The over-riding statement is placed at the end of in Figure 3.

W/LKED.SYSLMOD DD DSNAME=WTHRPR(FORCST),
DISP=(MOD, KEEP)

r//SYS!N DD DSNAME=FORCST,DISP=OLD

///STEPQ EXEC ALGOFCL
(/_/LKED.SYSLMOD DD DSNAME=WTHRPR(FILECR),

DISP=(MOD, KEEP)
(//SYSIN DD DSNAME=FILECR, DISP=OLD

(//snzm EXEC ALGOFCL

//WEATHER JOB

Figure 3. Sample deck for using ALGOFCL cataloged procedure with two source programs. These two job
steps compile and linkage edit the two source programs used in Example 3 of Appendix E, Both source pro-
grams have been previously stored on intermediate I/O devices.

Source Program Handling 11

Compilation, Linkage Editing and Execution

The cataloged procedure used to compile an ALGOL
source program, linkage edit the resulting object
module, and execute the load module produced by
the linkage editor is ALGOFCLG.

The statements used in this cataloged procedure
are shown in Appendix B. The following state-
ments can be used to invoke the ALGOFCLG cata-
loged procedure:

//iobname JOB

//JOBLIB DD DSNAME=dsnamel, DISP=0OLD
// EXEC ALGOFCLG

//SYSIN DD {* or parameters defining an

input data set containing
the source program }
//GO.ALGLDD02 DD DSNAME=dsname2

//GO.ALGLDD15 DD DSNAME=dsnamel5

where ""jobname'" is the name assigned to the job,
"dsnamel'" is the name of a data set that contains
a precompiled procedure (see Section 4) which is
called by the load module being executed. The DD
statement containing dsnamel need not be used if
no precompiled procedure is used.

For a description of the correct use of the
JOBLIB DD statement when more than one pre-
compiled procedure is used in a job, or when a
precompiled procedure resides on more than one
data set, see "Data Set Concatenation' in Appen-
dix E,

"dsname2'". .. "dsnamel5" are the names of input
data sets required by the load module at execution
time and output data sets to be created at execu-
tion time. In addition, two data sets for printed
output (ddnames SYSPRINT and ALGLDDO1) are
supplied by the cataloged procedure, and a data set
for input only can be specified by using the following
statement after the invoking sequence iust given,

//GO.SYSIN DD {* or parameters defining an
input data set }

If DD* is used then the data must follow imme-
diately afterwards in the input stream, For se-
quential scheduling, the data must be followed by
a delimiter statement (/*),

If more than one source program is to be pro-
cessed and executed in the same job, then all job

12

control statements except the JOB statement and
the JOBLIB DD statement must be repeated for
each source program,

A sample deck of job control statements re-
quired to compile, linkage edit and execute three

source programs is shown in Figure 29,

Over-riding Cataloged Procedures

The programmer can change any of the statements
in a cataloged procedure, except the name of the
program in an EXEC statement,

These over-riding conditions are temporary,
and will be in effect only until the next job step is
started. The following text describes methods of
temporarily modifying existing parameters and
adding new parameters to the EXEC and DD state-
ments used in the cataloged procedures, The full
list of parameters available to the ALGOL pro-
grammer for these statements, and detailed expla-
nations of the parameters, is given in Appendix E.
The EXEC and DD statements used in the IBM -
supplied cataloged procedures are shown in Appen-
dix B.

Over-riding EXEC Statements

In the EXEC statement, the programmer can change
or add any of the keyword parameters by using the
following format:

keyword, procstep=option
where:

"keyword" is the parameter to be changed in,

or added to, the specified procedure job step:
either COND, PARM, ACCT, TIME or REGION,
TIME and REGION are valid only for priority
scheduling,

"procstep" is the procedure job step in which

the change or addition is to occur: either
ALGOL, LKED or GO,

"option' is the new option required.
For example, if the EXEC statement used to in-

voke the ALGOFCLG cataloged procedure was writ-
ten as:

// EXEC ALGOFCLG,PARM, ALGOL=DECK,
// PARM, LKED=XRET,
// COND. GO=(3, LT, ALGOL)

then the following changes would be made to the

"ALGOFCLG cataloged procedure:

1. In the PARM parameter of the job step ALGOL,
the option DECK would be used instead of the
default option NODECK (assuming that the stan-

~ dard default NODECK was not changed at sys-
tem generation). Over-riding this option will
not. affect the other default options assumed
for this parameter.

2. In the job step LKED, the option XREF is spec-
ified for the PARM parameter. Since the op-
tions specified in the cataloged procedure were
XREF, LIST and LET, this statement has the
effect of deleting the options LIST and LET
since they were not default options.

3. In the job step GO, the COND parameter code
is changed from 5, as it appears in the cata-
loged procedure, to 3. In this example, the
code 3 causes the job step GO to be bypassed
if a warning message is generated during the
job step ALGOL, Note that although the other
options (LT and ALGOL) are not to be altered,
the entire parameter being modified must be
respecified,

If "procstep' is not specified when over-
riding a multi-step cataloged procedure, the
operating system makes the following assump-
tions:

® COND, ACCT and REGION parameters apply
to all procedure job steps.

e A PARM parameter applies to the first pro-
cedure job step and any options already spec-
ified in the PARM parameters for the remain-
ing procedure job steps are cancelled.

® A TIME parameter specifies the computing
time for the entire job and any options already
specified in the TIME parameters for individ-
ual procedure job steps are cancelled,

Over-riding DD Statements

An additional DD statement is used in the invoking
sequence for each DD statement in the cataloged
procedure that is to be over-ridden., The following
format is used:

//procstep. ddname DD parameter-list
where:

tprocstep' is the procedure job step containing

the DD statement to be over-ridden: either ALGOL,
LKED or GO, If "procstep' is omitted then the
first procedure job step is assumed.

r'ddname' is the name of the DD statement to be
over-ridden.

"parameter-list' is the list of parameters that are
being added or changed, In both cases the whole
parameter must be specified. Unchanged param-
eters in the original statement need not be spec-
ified. For example, the statement:

//ALGOL, SYSLIN DD SPACE=(400, (80,10))

will change the SPACE parameter of the SYSTLIN
DD statement in the ALGOL job step so that space
will be allocated for 80 physical records instead
of 40,

DD statements that are used to over-ride other
DD statements in the cataloged procedures must
be placed immediately after the EXEC statement
invoking the cataloged procedure, and must be in
the same order as their corresponding DD state-
ments in the cataloged procedures.

Adding DD Statements

Complete, new DD statements that are to be added
to the cataloged procedure use the same format

as over-riding DD statements. The "ddname"
specified must not exist in the job step specified
by '"procstep'. These new DD statements must
follow immediately after the over-riding DD state-
ments which apply to the same procedure job step.

USER-WRITTEN PROCEDURES

The information required by the programmer to
write his own job control procedures is given in
the following text, and in Appendix E, Cataloging
user-written procedures, or permanently modi~
fying the IBM -supplied cataloged procedures, is
accomplished using the IEBUPDTE utility program,
described in IBM System/360 Operating System:
Utilities. The statements required in user-written
procedures are:

® An EXEC statement to invoke the program,

® DD statements to define the data sets used by
the program,

Compilation
Invoking Statement
The ALGOL compiler consists of ten load modules

contained in the link library, SYS1, LINKLIB, of
the operating system. The compiler is activated

Source Program Handling 13

by invoking its first load module, named ALGOL,
which then internally invokes the other load mod-
ules of the compiler,

The usual method of invoking the compiler is
by means of an EXEC statement of the form:

//stepname EXEC PGM=ALGOL

where '"stepname’' is the name assigned to the job
step (optional),

Other EXEC gtatement parameters may be in-
cluded if required (see Appendix E).

(A method of dynamically invoking the compiler
within a job step, by means of the CALL, LINK,
XCTL or ATTACH macro-instructions, is described
in Section 4.)

Data Sets Used

The data sets used in the compilation process are
illustrated in Figure 4, and described in Figure 5.
These data sets must be specified by the program-
mer with suitable DD gtatements,

Blocksize DCB information may be specified
by the user for SYSIN, SYSLIN, SYSPRINT and
SYSPUNCH. The maximum blocking factor de-
pends on the main storage size available (see
Iigure 6). Record length is fixed at 80 bytes for
SYSIN, SYSLIN and SYSPUNCH, and 91 bytes for
SYSPRINT,

SYSIN

Source
Intermediate Work Program

SYSUT1

SYSPRINT &
SYSABEND

Information
SYSUT2 | compiLER Listings
J
SYSUT3
bject
Module
(optional)

SYSLIN

Object
Module
(optional)

SYSPUNCH

Figure 4. Flowchart showing data sets used by
the compiler.

14

The space required for the compiler data sets
depends on the size and structure of the source
program, however it can be assumed that only in
rare cases will the object module exceed four
times the source program and usually much less
will be required.

P Standard Devices
urpose ddname required
For ALGOL source SYSIN Card reader*
program
For object module to SYSLIN Direct access or

be used by linkage editor| magnetic tape

For compilation listings | SYSPRINT Printer#*

For object module SYSPUNCH Card punch#*
(copied from SYSLIN)

For the control SYSABEND Printer*
program dump

For intermediate SYSUT1 Direct access or
compiler working magnetic tape
For intermediate SYSUT2 Direct access or
compiler working magnetic tape
For intermediate SYsuT3 Direct access

compiler working

* Some form of intermediate storage, such as magnetic tape,
may be used to reduce I/0O delay for the central proces-
sing unit,

Figure 5. Data sets used by the ALGOL compiler,

Algo, as a rough estimate, SYSUT1, 2 and 3
must each be large enough to contain the number
of valid characters in the source program,

SYSABEND is used for control program list-
ings (see Section 3).

Processing of all data sets by the compiler is
independent of the I/0 device used except for the
intermediate work data sets. These require mag-
netic tape or direct access devices.

Linkage Editing

Invoking Statement

The linkage editor is usually invoked with an

. EXEC statement of the form:

//stepname EXEC PGM=IEWL

where '"stepname' is the name assigned to the job
step (optional),

Other EXEC statement parameters may be in-
cluded if required (see Appendix E), IEWL spec-
ifies the highest-level linkage editor in the instal-
lation’s operating system,

(A method of dynamically invoking the linkage
editor within a job step, by means of the CALL,

LINK, XCTL or ATTACH instructions, is described

in Section 4,)

Main storage size Maximum blocking factor

in bytes at which

changes occur SYSIN SYSPRINT SYSLIN SYSPUNCH
45056 (44K) 5 5 5 1
51200 (50K) 3 5 5 5
59392 (58K) 5 5 5 5
67584 (66K) 5 5 5 5
77824 (76K) 5 5 5 5
90112 (88K) 20 - 20 40 20
104448 (102K) 20 20 40 20
120832 (118K) 20 20 40 20
139264 (136K) 20 20 40 20
159744 (156K) 20 20 40 20
184320 (180K) 40 40 40 40
212992 (208K) 40 40 40 40

Figure 6, Effect on compiler data sets if more
than 44K bytes of main storage is available,
The capacity of internal tables in the compiler
is increased at each of the main storage sizes
listed in this table, allowing, for example, a
larger number of identifiers to be included in
the source program, Therefore to get optimum
performance, the user is recommended to use
this list when specifying main storage size
available to the compiler,

Data Sets Used

The data sets used by the linkage editor (see Fig-
ures 7 and 8) must be defined by the programmer
with suitable DD statements,

Blocksize DCB information may be =pecified
by the user for SYSLIN and SYSPRINT if the F
level linkage editor is being used. Maximum
blocking factor is 5 when 44K bytes of main stor-
age size is available, and 40 when 88K bytes is
available, Record length is fixed at 80 bytes for
SYSLIN and 120 bytes for SYSPRINT,

SYSLIN

Oblect
Module
SYSLIB
ALGoL
i
et SYSPRINT &
SYSABEND

. LINKAGE :-nformaflon
Istings
EDITOR
SYSUTI
Intermedi-
ate Work
Load
Module

SYSLMOD

Figure 7. Flowchart showing data sets used by
the linkage editor,

SYSABEND is used for control program list-
ings (see Section 3),

Load Module Execution

Invoking Statement

The usual method of invoking the load module gen-
erated by the linkage editor is with an EXEC state-
ment of the form:

//stepname EXEC PGM=member-name

Standard Devices
Purpose ddname used

For oﬁject module SYSLIN Direct access or
input magnetic tape

For load module SYSLMOD Direct access
output, stored as a
member of a parti-

tioned data set

For ALGOL library, | SYSLIB
SYS1, ALGLIB. A
partitioned data set
containing routines
in load module form

Direct access

For linkage editing SYSPRINT Printer#
listings

For intermediate SYSUT1 Direct access or
linkage editor magnetic tape
working

For the control SYSABEND | Printer#*

program dump

* Some form of intermediate storage, such as magnetic
tape, may be used to reduce output delay for the cen-
tral procegsing unit, '

TFigure 8. Data sets used by the linkage editor.

Source Program Handling 15

where '"stepname' is the name assigned to the job
step (optional),

"member-name'" indicates the name of the parti-
tioned data set member which contains the load

module., This name is specified by the programmer

in the SYSLMOD DD statement for the linkage edi-
tor., Other EXEC statement parameters may be
included if required (see Appendix E),

(A method of dynamically invoking the load mod-
ule within a job step, by means of the CALL, LINK,
XCTL or ATTACH macro-instructions is described
in Section 4.)

Data Sets Used

Up to 16 data sets for use at execution time may
be specified by the programmer in the ALGOL
source program by using the appropriate data set
number, The numbers used and the corresponding
names of their DD statements are listed below,

Data set number Corresponding
used in ALGOL ddname
source program
0 SYSIN
1 ALGLDDO1
2 ALGLDDO2
3 ALGLDDO03
4 ALGLDDO04
5 ALGLDDO05
6 ALGLDDO06
7 ALGLDDO07
8 ALGLDDO8
9 ALGLDD09
10 ALGLDD10
11 ALGLDD11
12 ALGLDD12
13 ALGLDD13
14 ALGLDD14
15 ALGLDD15

Any reference to a data set number by an I/0
procedure within an ALGOL source program is
translated into a reference to a data control block
using the corresponding ddname, It is the respon-
sibility of the programmer to supply the DD state-
ments which correspond to the data set numbers
used in the ALGOL source program,

The execution time data sets are illustrated
in Figure 9 and described in Figure 10. For
ALGLDDO2 to ALGLDD15, case 1 in the column
showing device used, applies if the source pro-
gram contains any of the following:

e A backward repositioning specification by the
procedures SYSACT4 or SYSACT13 for this
data set,

e Both input and output procedure statements
for this data set.

® Procedure statements which prevent the com-
piler from recognizing whether either of these
applies; for example, if the data set number
or SYSACT function number is not an integer
constant or if a precompiled procedure is used,

If the source program has already been com-
piled and linkage edited in a previous job, then
the data set on which it has been stored (in load

module form) must be concatenated to SYS1, LINKLIB.

Data sets containing precompiled procedures called
by the source program (see Section 4) must also be
concatenated to SYS1, LINKLIB,

If the programmer specifies a TRACE, TRBEG
or TREND option in the EXEC statement of the
execution job step, the semicolon count (see Sec-
tion 3) is stored intermediately on a data set with
the ddname SYSUT1, The nrogrammer must sup-
ply a corresponding DD statement if he uses this
option. The semicolon count is converted to ex-
ternal form and transferred to the SYSPRINT data
set as soon as the execution ends either by reach-
ing the logical end of the source program or due
to an error,

The space required for the semicolon count is:

For the main heading 6 bytes

For each semicolon 2 bytes
For each call of a
precompiled procedure 12 bytes

For each physical :
record on SYSUT1 4 - 6 bytes
System/360 ALGOL permits data to be tempo-
rarily stored on and retrieved from external de-
vices without conversion, using the ALGOL 1/0
procedures PUT and GET. If the programmer
uses thig facility in his source program, then he
must supply a DD statement with the ddname
SYSUT2. The device specified by this statement
for storing such intermediate data should be a
direct access device to guarantee reasonable per-
formance, though programming is performed in-
dependently between magnetic tape and direct ac-
cess devices. All data passed by a single PUT is

Load Module for Source
SYS 1. Program, Precompiled

LINKLIB

Intermediate Work —

Information
Listings

SYSUT 1
SYSUT 2 LOAD
MODULE
EXECUTION
Data Input

SYSIN &
ALGLDDO02-15

Procedures, and Error
Routine

Data Output

Any of

ALGLDDOT1,
SYSPRINT &
SYSABEND

ALGLDDO02-15
not used for

input

oFigure 9. Flowchart showing data sets used at load module execution.

ments are variable,

stored as one record. This record will be as
long as the data passed, plus 8 bytes., The
maximum record length accepted is 2048 bytes,

The DCB information which may be specified
by the user for execution time data sets is block-
size, record format and record length (see page
44 for details), except for the trace and PUT/GET
data sets (ddnames SYSUT1 and SYSUT2) for
which only blocksize may be specified (up to a
maximum of 2048 bytes).

For information not provided, default values
will be inserted by a routine in the ALGOL
library. In particular, blocksize is assumed
as 2048 bytes for SYSUT1 and SYSUTZ2 if none
is specified,

SYSABEND is used for control program list-
ings (see Section 3).

The data input and output require -

program dump

Standard Device
ddname Used
TFor data input SYSIN Any input de-
to load module vice
For execution time | SYSPRINT Printer#
listings
For data output ALGLDDO1 | Printer#*
For data input ALGLDDO02 1, Direct
or output . access or
ALGLDD15 magnetlo
tape
2, Any
For intermediate SYSUT1 Direct access
storage of semi- or magnetic
colon counter when tape
TRACE is spec-
ified
For temporary SYSUT2 Direct access
storage when PUT or magnetic
is specified tape
For the control SYSABEND | Printer*

#* Some form of intermediate storage, such as
magnetic tape, may be used to reduce 1/0
delay for the central processing unit,

eFigure 10, Data sets used at execution time,

Source Program Handling

17

SECTION 3: INFORMATION LISTINGS

To assist the programmer to find the cause of any
faults in the processing or execution of his pro-
gram, various forms of information listings are
produced for the compilation, linkage editing and
execution operations. Some of these listings are
optional. Examples are illustrated in Figures 11
to 16,

CONTROL PROGRAM LISTINGS

All three operations may produce listings gener-
ated by the control program. These are described
in IBM System/360 Operating System: Messages,
Completion Codes, and Storage Dumps. The
ABEND macro-instruction for specifying the main
storage dump is described in IBM System/360
Operating System: Supervisor and Data Manage-
ment Macro-Instructions,

COMPILATION LISTINGS

A successful compilation of an ALGOL source pro-
gram produces the following information listings:

e Job control statement information according
to which MSGLEVEL option was specified in
the JOB statement.

e The source program supplemented by a count
of the semicolons occurring in the program
(optional).

e A table giving details of all identifiers used in
the program (optional).

& Any warning diagnostic messages,

e Information on main storage requirements at
execution time.

If a serious diagnostic message is produced
(meaning that object module generation has ended)
then the source program and identifier table list-
ings will be printed in full if they have been re-
quested, but the information on main storage re-
quirements will not be printed. If a terminating
diagnostic message is produced then the source
program and identifier table listings can be printed
only as far as they have been produced.

18

Source Program

If the SOURCE option has been specified, the
source program is transferred by the compiler
to an output data set in order to be listed by a
printer. This source program is supplemented
by a semicolon count, which is referred to in the
diagnostic messages to help localize errors.

The compiler generates this semicolon count
when scanning the source program, by counting
all semicolons occurring in the source program
outside strings, except those following the de-
limiter "COMMENT “, The value of this semicolon
count at the beginning of each record of the source
program is printed at the left of that record. It is
assigned by the compiler in order to have a clear,
problem-oriented reference. Any reference to a
particular semicolon number refers to the segment
of source program following the specified semi-
colon, for example, the semicolon number 5 re-
fers to the program segment between the fifth and
sixth semicolons. ’

Identifier Table

If the SOURCE option has been specified, a list of
all identifiers declared or specified within the
source program is transferred by the compiler to
the output data set for printing after the source
program listing, This identifier table gives in-
formation about the characteristics and internal
representation of all identifiers. The identifiers
are grouped together within the identifier table
according to their scopes.

All blocks and procedure declarations within
the source program are numbered according to
the order of occurrence of their opening delimiters
“BEGIN“or "“PROCEDURE ", Therefore, if the body
of a procedure declaration is a block, then usually
this block has the same number as the procedure
declaration itself, These numbers are called
program block numbers (even if they belong to a
procedure declaration and not to a block).

Each line in the table contains entries for up
to three identifiers and the line begins with the
number of the program block in which the identi-
fiers were declared or specified, the value of the
semicolon count at the commencement of the pro-
gram block, and the number of the immediately
surrounding program block. Each identifier entry
contains:

SECTION 4: PROGRAMMING CONSIDERATIONS

CAPACITY LIMITATIONS For each switch declaration 2

In addition to those given in IBM System/360 For each procedure declaration 2
Operating System: ALGOL Language, the follow-
ing restrictions must be observed when writing
an ALGOL source program:

For each procedure activation

(including function designators) 1
Number of blocks and For each "THEN” and each ‘ELSE~ 1
procedure declarations .
(NPB) <255 For each for statement at most L + 3

where L is the
Number of for statements <255 number of for
' list elements

Number of identifiers de~

clared or specified in one Length of constant
block or procedure., F is pool

at most twice the number

of for statements occur-

<(256 - NPB) x 4096 bytes

The requirements of components within the pool

ring in that block <179-F for type are
procedures
<180-F otherwise Integer constant 4 bytes
Length of letter string Real constant
serving as parameter (SHORT) 4 bytes
delimiter <1024 letters when main
storage size available is Real constant :
less than 50K, <2000 (LONG) 8 bytes

letters otherwise

Length of label identifer

<1024 characters
when main storage size

String (in bytes)

2 + number of
symbols of open
string between

Number of valid
characters

Number of semicolons in
the whole program

Number of nested blocks,
compound statements, for
statements and procedure
declarations

Number of labels declared

or additionally generated
by the compiler

available is less than
50K, <2000 characters
otherwise

<255K

<65535

<999

<1024

The compiler generates the following

additional labels:

the outermost
string quotes

The constant pool is divided into blocks of 4096
bytes each. The first block contains the integer
constants 0 to 15 (64 bytes). All strings together
are restricted to fill not more than the rest of
this block (4096 - 64 - 28 bytes, where S =
number of strings).

No constant occurring more than once in the source

program is stored twice in the same block; however,
it may possibly be stored more than once in differ-

ent blocks. Up to seven bytes may be left unused.

Length of data storage area
for each block or procedure

declaration <4096 bytes
Number of blank spaces

serving as delimiters on

I/0 data sets <255

Programming Considerations 25

Number of records per
section <255

Number of entries in the
Note Table

A
i
DD
~1

(The Note Table stores information to retrieve
records which may be required again later, An
entry for a record is made each time the ALGOL I/0
procedures PUT and SYSACT13 are executed, and
each time an input operation, with backward repo-
sitioning, follows an output operation on the same
data set.)

Identification number (N)used

by PUT or GET 0=N<65535

INVOKING A PROGRAM WITHIN A JOB STEP

Any one of the four macro-instructions, CALL,
LINK, XCTL or ATTACH, may be used to dynam-
ically invoke the compiler, linkage editor and load
module within a job step. This is an alternative

to the more usual method of invoking a program

by starting a job step with an EXEC statement.

TFull details of the four macro-instructions are
given in IBM System/360 Operating System: Super-
lvisor and Data Management Macro-Instructions,

To invoke a program with the CALL macro-
instruction, the program must first be loaded into
main storage, using the LOAD macro-instruction.
This returns, in general register 15, the entry
address which is used by the CALL macro-instruc-
tion, The instructions used could be:

LOAD EP=member-name
LR 15,0
CALL (15), (option-address), VL

To invoke a program with one of the LINK,
XCTL or ATTACH macro-instructions would need
instructions such as:

LINK EP=member-name,
PARAM=(option-address), VL=1

XCTL EP=member-name

ATTACH EP=member-name,

PARAM=(option-address), VL=1

26

"member-name'" specifies the name of the mem-
ber of a partitioned data set which contains the pro-
gram required.

For the compiler, member-name=ALGOL
For the linkage editor, member-hame=IEWL

Tor the load module, member-name is speci~
fied by the programmer in the SYSLMOD DD state-
ment for the linkage editor.

"option-address' specifies the address of a
list containing the options required by the user,
An address must be given even if no options are
specified. The list must begin on a half-word
boundary. The first two bytes contain a number
giving the number of bytes in the remainder of
the list. (If no options are specified this number
must be zero), The list itself contains any of the
options available to the PARM parameter in an
EXEC statement (see Appendix E).

When using CALL, LINK or ATTACH to invoke
the compiler, other ddnames may be used in place
of the standard ddnames given in Section 2 for the
data sets (except for SYSABEND), and an alterna-
tive page number (instead of the normal 001) may
be specified for the start of output listings.

If alternative ddnames are used, then in the
statement invoking the compiler, "option-address"
must be followed by ""ddname-address' giving the
address of a list containing the alternative ddnames.
If alternative page numbers are used, then "page-
address' giving the address of & location contain-
ing the alternative page number must be placed
after "ddname-address'; though if alternative
ddnames are not required ""ddname-address' may
be replaced by a comma,

The ddname list must begin cn a half-word
boundary. The first two bytes contain a number
giving the number of bytes in the remainder of
the list, The list itself contains up to ten 8-byte
fields, separated by commas, for specifying al-
ternative ddnames for the data sets. As only seven
data sets are used by the compiler, three of the
fields are left blank, The alternative ddnames
must be listed in the following order:

Purpose of data set Standard ddname

Output of object module SYSLIN

for linkage editor

When processing the source program, the com-
piler detects and specifies any routines that need
to be combined with the generated object module
before it can be executed. These routines are
contained in the System/360 Operating System
ALGOL library - a partitioned data set with the
external name SYS1. ALGLIB, The routines are
in load module form and the linkage editor com-
bines them with the object module to produce an
executable load module, There are three types
of routines - fixed storage area routines, mathe-
matical routines and input/output routines, Addi-
tionally, an error routine, stored on the operating
gystem link library, SYS1. LINKLIB, is called

at execution time if an error occurs.

Initialization and termination of the library
routines is performed using the standard method
(see "Supervisor'" in Section 1),

FIXED STORAGE AREA

General routines required to some degree by all
object modules are combined into a single load
module known as the fixed storage area (IHIFSA),
These routines are used to initialize and termi-
nate execution of the ALGOL program, -to handle
the DSA when entering or leaving a program block
or procedure, to produce the program trace, to
load precompiled procedures, to get main storage
for arrays, to convert values from real to integer
and integer to real, to call actual parameters, to
handle branches in the program, to handle pro-
gram interrupts, etc....

MATHEMATICAL ROUTINES

Standard mathematical functions contained in
ALGOL have corresponding mathematical routines

APPENDIX A: ALGOL LIBRARY ROUTINES

in the library, except for ABS, SIGN and LENGTH
which are handled by the compiler, and ENTIER
which is contained in the fixed storage area, Rout-
ines exist in each case for both long and short pre-
cision of real numbers.

These mathematical routines are taken from
the System/360 Operating System FORTRAN IV
library and modified to conform to the ALGOL
language requirements without affecting the mathe-
matical methods used. Full details of these rou-
tines are contained in IBM System/360 Operating
System: FORTRAN IV Library Sub-programs,

INPUT/OUTPUT ROUTINES

Data transfer between the load module and exter-
nal data sets is performed by input/output rou-
tines, These routines correspond to the ALGOL
I/0 procedures and are mostly contained on sep-
arate load modules (see Figure 18), In addition
there is a single load module, THIIOR, which
contains a number of commonly-used subroutines.

ERROR ROUTINE

If an error is detected during execution of the
load module, an error routine (in SYS1, LINKLIB)
is invoked, Its main purpose is to construct the
error message and produce the data storage area
listing before passing to the termination routine
in the FSA., If a second error occurs while the
first is being handled (due, for example, to an
I/O error or because the object module has over-
written part of the ALGOL library or control pro-
gram), then termination takes place immediately
and incomplete information listings may be pro-
duced.

ALGOL Library Routines 31

Module Name

Storage

When used estimate
(bytes)

ALGOL FORTRAN IV
THIERR When an error is detected at execution time 4290
IHIFDD IHCFDXPD For an exponentiation (**or POWER") using

long precision base and long precision exponent 200
IHIFDI IHCFDXPI For an exponentiation (¥*or POWER?) using

long precision base and integer exponent 140
IHIFII THCFIXPI For an exponentiation (3#*or POWER") using

integer base and integer exponent 170
IHIFRI IHCFRXPI For an exponentiation (#*or POWER) using

hort precision base and integer exponent 140

IHIFRR IHCFRXPR For an exponentiation (¥*or POWER" using

short precision base and short precision

exponent 200
IHIFSA For every object module (except those for

precompiled procedures) 5210
THIGPR For either GET or PUT 2430
IHITAR For INARRAY or INTARRAY 120
THITBA For INBARRAY 70
THIIBO For INBOOLEAN 560
THIIDE For either INREAL or ININTEGER 1610
THIIOR For every object module 2980
IHIISY For INSYMBOL 320
IHILAT IHCLATAN For a long precision arctangent

operation (ARCTAN) 320
THILEX THCLEXP For a long precision exponential operation (EXP) 450
THILLO IHCLLOG For a long precision logarithmic operation (LN) 310
THILOR For a long precision OUTREAL operation 730
THILSC IHCLSCN For a long precision sine or cosine operation

(SIN or COS) 370
THILSQ ITHCLSQRT For a long precision square root operation

(SQRT) 140
IHIOAR For OUTARRAY 120

32

THIOBA For OUTBARRAY 70
THIOBO TFor OUTBOOLEAN 400
THIOIN For OUTINTEGER 420
THIOST For OUTSTRING 300
THIOSY For OUTSYMBOL 290
THIOTA For OUTTARRAY 120
IHIPTT For INREAL, OUTREAL, ININTEGER or
OUTINTEGER 270
THISAT IHCSATAN For a short precision arctangent
operation (ARCTAN) 200
THISEX IHCSEXP For a short precision exponential operation (EXP) 280
THISLO THCSLOG For a short precision logarithmic operation (LN) 210
THISOR For a short precision OUTREAL operation 810
THISSC IHéSSCN For a short precision sine or cosine operation
(SIN or COS) 260
THISSQ THCSSQRT For a short precision square root operation
(SORT) 170
THISYS For SYSACT 1890
e Figure 18, Table of ALGOL library modules, All are contained in SYS1, ALGLIB except IHIERR

which is in SYS1, LINKLIB, For mathematical routines, the corresponding name in the FORTRAN IV

library is also given,

ALGOL Library Routines

33

APPENDIX B: IBM-SUPPLIED CATALOGED PROCEDURES

The three cataloged procedures for ALGOL that optimum job, and can be over-ridden by the user
were introduced in Section 2 are contained in the if he requires different or additional system sup-
procedure library, SYS1, PROCLIB, of the oper- port to that provided (see Section 2), In particular
ating system, They consist of the job control state- it should be noted that in these procedures the ob-
ments listed below. ject or load module produced is stored on a tempo-
rary data set and will therefore be deleted at the
These procedures have been designed for an end of the job.

Compilation, ALGOFC

//ALGOL EXEC PERZALGOL (. it n e R .
ALSYSPRINT, DD SYSOUY=A | . i b s - P
//SX.5PUNCH, DD SYSOULT=B. T LR Ty s .
//SYSLIN DD DSNAME=g LOADSET, UNIT= LSSQ;SEP sr.stu_Ncu-.DIsp (HoD PAss)% B
7 . oracks(4dgy (4850 8) . N
//SYSUT] DD UNLT: SYS$SQ,5ER" =S YSPRINTY.SPACET (1624 (w\;m_),“” .
//5YSuT2 DD J.LNIT 5Y5.5Q3.S.EP7(SYSUT] baysuu,ﬁ\:s‘au»/cu)*p R e K
T SPACE (1024 (5GBS . . e]
//5YSUT3 DD UNIT=SYSDAs SPACE=(20665.(20,5)),y . .. e X
/L. ei ... SEP= (‘svsuﬂ_)‘s;!smzqsvs«.w,ysv,;auwcu) s et e]
//SYSABEND, DD SYSOUT:=A . R
Compilation and Linkage Editing, ALGOFCL
//7ALGOL EXEC PGM=ALGOL . .. o .\ ot oo e e o et e A e b ek
[SYSPRINT, DD S SOUT A o\ et e e o e e X
|1/ /SYSPUNCH. DD SYSOUT.2B.o . e
//SYSLIN. DD DSNAME=&LOADSET , UNIT=S5Y.55Q,S.EP= mPUNLQH,DLSP—A(N‘E_M}PA s),_ux o]
Ll SPACE=(408,(%8,18)). oo e .
[/SYSLMOD_ DD, DSNAME=&GOSET, UN..J SYSDA,DISP (Mob., PAss,),,H,‘_ et e e X
/! . H“,_saAcalwszsq 2¢,1).). .
//SYSUTL DD _UNIT=5YSS5Q, SEP=S syspgrm SPACE= (1824, (Sczs m)) et a
//5YSUT2 DD UNLT=SYSSQ, SEP SY.SUTI SYSLIA&,LSYSPQNCHLL,‘ R S
i L SPACE=(dak, (58,105]
//3YSUT3 DD _UNLT=SYSDA SPA_M#szm;Lm) RS S
sSEP= (ﬁjsyl WSYSUT2, SYSLIM@MA&QH) e
k/,‘!«SYsﬂsEMQDD; ‘_AYSOUL-_;A._JJ_. PRI GUF I DINUR S SR S B T et et
i/ /LKED EXEC PGM=1EWL4PARH=(XREF L, xs:rs wE, JA,Jcp‘@u(;,.LTL,‘ALeo T
. /SYIPRINT, DD _SYSOUT=A ., ., ... e e
S /EYSLIN, DD _DSNAME = %+ ALGOL.. svsuxn,Drsp (oLn,DEL) e e bkt b
//SYS«..IB DD DSNAME:=SYSI . ALGLIB,, DISP=OLD ., a1 .
//5YSLM0D. DD DSNAME = LGO;EJLO)L UNIT=5YSDADISP= (Mo 04 PA5§.) R S
/... SPACE® (Iﬁ&é,‘ﬁéz‘*&ﬁ,‘! D)o e e
!//syslum DD _UNTIT=SYSDA,SEP=(SY.ELT NL,Asvs LI B,Lsxs LMODJ RO S
x// . SPACE=(1024,(56,20))..
//RYSABEND DD SYSOUTEA o e e e

Compilation, Linkage Editing and Execution, ALGOFCLG

//ALGOL EXEC PGM=AL&OL o oooooon o . et . . NS
//SYSPRINT, DD SYSQuT=A e e e

/SYSPUNCH DD sNSOLTsB .

;75‘rs+t,z_aaadz§mu§_goﬁsﬂ#mg;§gp SY.SPUNCH .D,lsp (Alew PASS). X

........ SPACEs (408 i]
/./5YSLMAD DD DSNAME=280SET UNTT: QYSD D1§P= _(.u.gp,PA.s;)q o e R
A . SPACE= (I<a24 (5. u) e e Ao it eaa |
//SYSUTL. DD UNIT=5Y55G,SEP=S sx; PRINT., SPACE=(1 824, (50, LQ)LL e e
JMMWPWM*WSPMCH) M X
LAV SN .LA.A._L_L_L_A—-J. CE' L " R et P
//5YSuT3 DD UNIT=SYSDA,SPALE=(dada, e . ..x_u,ﬂ

“m.d_u_égf__(étég.m vm,smguuc@ e e e A

féﬂsﬁgemo 5D ;x;om,-gp E (s =
A&ELD EXEC QLIEWQ, ARM:3 QEF,LISJJ;LL,ET 3. ON,DLL ;‘ATWL@OL. s s -

[l SYSPRINT. DD _SYSOUT Ao e

/7. SYSLIN DD DSNAKME =X.ALGAL .SYSLIN ®:(OLD,DELETEY o
/1S¥SLIB DD DSNAME=SY.S) ALGLIB,DI&P=0LD , . .o o ..., el
|//5YSLMOD DD DSNAME=gGQSET 60@%&% DISF=(0LD ,UA;Q N “xw__._
. SPACES(1224, (58] e .
W&suw DP _UNIT=SYSDA, SEP:(SY3L A%;avsum svswool, o u““xw
e SPACE: 1 la;z@,(:»‘@,*zes TR R DR
//srsusuo muvsou'rm e
/)60 EXEC. PGM=X. WKED. SYSLMOD ,COND* ji&,LT.,ALG-QL:)A(i,LT LKEDY), . T
/_L/ALGA.':‘D‘_D.QJJ. LDLD;_L_&LS_.Q_;Q_AIJ_.AL,J.J_L.J, B S WS T S [U VA WO SRS Wy QU QT NS BUUS SUUT SN AP UR GH SN S U SO GS SHUNNY DU GRS SIS S LD S TN VY Y W SN SR S N SN SO SR S
J/SYSPRINT, DD SYSOUT=A . . e
// SYSUT) DD UNIT>5YSSQ.SER= SY,S,PRINTA\SPACF (TRKL (5,200) K o
Azér;&&emeAmOL A_“ e e

S A " P O PR P " i an N PPN A

IBM -Supplied Cataloged Procedures

3

5

36

APPENDIX C: CARD CODES

The card deck of the source program is punched
line for line from the text written on the coding
sheets. The card code used can be either a 53
character set in Extended Binary Coded Decimal
Interchange Code (EBCDIC), or a 46 character
set in Binary Coded Decimal (BCD), This latter
character set has been established as standard
for ALGOL by the International Standards Organ-
ization (ISO) and Deutsche Industrie Normen
(DIN). Figure 19 shows these two codes.

Characters Card Codes

EBCDIC 1SO/DIN
Ato Z 12-1 to 0-9 12-1 to 0-9
0to9 0to9 0to9
+ 12-8-6 12
- 11 11
* 11-8-4 11-8-4
/ 0-1 0-1
= 8-6 8-3
, 0-8-3 0-8-3
. 12-8-3 12-8-3
‘ 8-5 8-4
(12-8-5 0-8-4
) 11-8-5 12-8-4
blank no punch no punch
< 12-8-4
> 0-8~6

12-8-7
& 12
- 11-8-7
: 8-2
; 11-8-6

J

Figure 19. Source program card codes,

reached the end of its tape reel, output would be
automatically continued on one of the additional
units, and the first tape reel would be rewound
and then replaced by the operator with a new
reel so that the unit would be available for other
data sets. The pool would be established by

using the first form of the UNIT "subparameter-

list" in a DD statement. Only the AFF or SEP
parameters may be used with the UNIT param-
eter in this statement.

1 or 0 indicates that an extra tape unit is

either to be added to the pool, or not to be added

to the pool.

AFF=ddname indicates that the data set is

to use the same I/0O devices as the data set spec-

ified in the DD statement named "ddname!' in
the same job step.

SPACE=subparameter-list
indicates the space required when a direct ac-
cess device is specified in the UNIT parameter,
The "subparameter-list' contains only posi-
tional subparameters, The list is:

{ TRK

CYL primary-quantity
average-record-length

(secondary-quantity J{directory -or-index-quantity]

MXIG
[RILSE][{ ALX J[rROUND]
CONTIG
The first subparameter specifies the units
in which the space requirements are expressed,

that is, tracks, cylinders or records (with length

given in bytes),

The next subparameter specifies the space
required. It has three parts (of which the se-
cond and third are optional) and is enclosed in
parentheses if more than one part is specified.
If the second part is omitted, then it must be
substituted by a comma if the third part is in-

cluded. The initial space to be allocated is given

by "primary-quantity". Each time this initial
space is filled, additional space is to be pro-
vided as specified by ""secondary-quantity'.
The number of 256 byte records to be allocated
for the directory of a new partitioned data set,
or the number of cylinders, taken from the ini-
tial space reserved, to be allocated for the in-
dex of an indexed sequential data set, is given
by "directory-or-index-quantity'.

RLSE indicates that any unused space assigned
to the data set is to be released,

MXIG requests that the largest single block of
storage available is to be allocated to the data
set,

ALX requests that extra blocks of storage (in
track units) are to be allocated to the data set,
As many available blocks that are equal to or
greater than "primary-quantity", up to a max-~
imum of five, will be allocated.

CONTIG specifies that the space specified by
"primary-quantity' is to be in a single block.

ROUND requests that when records are used

to express the space required on the direct ac~
cess device, the space is to begin and end on
cylinder boundaries.

DISP=subparameter-list

indicates the status of the data set and speci-
fies its disposition at the end of the job step.

The "'subparameter-list' consists of the fol-

lowing positional cubparameters:

DELETE
{ NEW KEEP
OLD } [{pAss]
MOD CATLG
UNCATLG

NEW specifies that the data set is to be gene-
rated in this job step, and would be deleted at
the end of the job step unless KEEP, PASS or
CATLG is specified.

OLD specifies that the data set already exists,
and would be kept at the end of the job step un-
less PASS or DELETE is specified,

MOD specifies that the data set already exists
and is to be modified in this job step. If the
data set cannot be found by the operating system
then this parameter is equivalent to NEW,

DELETE specifies that the space used by the
data set (including that in the data set catalog,
ete.) is to be released at the end of the job
step.

KEEP specifies that the data set is to be kept
at the end of the job step.

PASS specifies that the data set is to be re-
ferred to in a later step of this job, at which

Using Job Control Language 45

time its final disposition, or a further pass,
will be specified,

CATLG specifies that the data set is to be ca-
taloged at the end of the job step, Thus KEEP
is implied, The catalog structure must already
exist.

UNCATLG specifies that the data set is to be
deleted from the catalog at the end of the job
step. KEEP is implied.

SYSOUT=subparameter-list
specifies the printing or punching operation to
be used for the data set, The ''subparameter-
list" iss

classname [progname][number]

""'classname specifies the system output class
to be used. Up to 36 different classes (A to Z,
0 to 9) may be fixed by the user for his instal-
lation, according to device type, priority, des-
tination, etc, The standard classname is A.

"progname'' can be used to specify the name of
a user-written output routine,

"number' can be used to specify an installation
form number to be assigned to the output,

For sequential scheduling, the ""'subparame-
ter-list'' consists of only the standard class-names

A and B. SYSOUT=B is interpreted as UNIT=SYSCP,.

VOLUME-=subparameter-list
indicates the volume or volumes assigned to the
data set, If the data set is cataloged this param-
eter is not necessary. The "subparameter-list"
is:

Positional
subparameters [RETAIN][number]{value]
Keyword SER=list-of-serial-numbers
subparameters

dsname

#*, ddname

REF= *, stepname, ddname

#, stepname, procstep.
ddname

RETAIN specifies that, if possible, the volume
is to remain mounted until referred to in a later

46

DD statement, or until the end of the job, which-
ever is first, 'mumber" is any number between

2 and 9999, and is used if an input or output oper-
ation, on a cataloged data set residing on more
than one volume, does not start on the first vo-
lume of the data set, The number specifies the
position of the volume on which input or output
does start (for example, 3 indicates the third
volume of the data set).

"'value' specifies the number of volumes re-
quired by an output data set, It is not required
if SER or REF is used.

SER=list-of-serial-numbers, specifies the se-
rial numbers allocated by the user to the volumes
required by the data set, These serial numbers
can consist of between one and six alphameric
characters.

dsname
#, ddname
¥, stepname, ddname
*, stepname, procstep. ddname

REF=

specifies that this data set ig to use the same
volume or volumes as the data set specified by
one of the alternative sub-subparameter forms.
If the latter data set resides on more than one
tape volume, then only the last volume (as spec-
ified in the SER subparameter) can be used.

LABE L=gubparameter-list
indicates the type of label or labels associated
with the data set, If the data set is cataloged
this parameter is not necessary, The "sub-
parameter-list" is:

NL
. SL
Positional [number) { NSL
subparameters SUL
BLP
Keyword {EXP DT==yyddd }
subparameters RETPD=dddd

"number' is any number between 2 and 9999,
and specifies the position of the data set on the
volume (for example, 3 would indicate the third
data set on the volume).

NL, SL, NSL, and SUL specify the type of label
or labels to be used, that is, no labels, stan-
dard labels, non-standard labels, and standard

STEP 3
EPORT

source program

I

Compiler

Linkage Linkage Linkage
Editor Editor Editor

Temporary
partitioned
dota set
PROJ- PROGRD Refined ANALYZ Valves REPORT Graphs and
DATA ——" execution data = execution . | execution Reports

I RAWDATA > PARAMS ‘

eFigure 28. Basic I/O flow for Example 2, The data sets for information listings, ALGOL library routines
intermediate work and the execution time error routine are not shown.

Temporary
partitioned

Temporary
partitioned
data set

data set

//TESTEIRE. JOB ., JO0HNSH u,uﬁg \=,V£\..=| e s NN
/)STEPLI, EXEC ALGOFCLG e e e
//SYSIN DD x s . P e

— 1

5u§_hu&£‘§4_§ R QQ&AM._&QSRD_L

/1GO ALGLDD L. .gxgguane PROIDATA . DISP.=OLD. . . N
/H/aAo @AMAM@@F br P= _.gw., ; .s*s_.i,hu.w.I.T. TA‘PEC.ss., ...& .

/ NOLUME=(RETAI N SER=2 V@) o o o o e e

72 M.ﬁy&&é&ﬂ;&%

//60.SYSIN_ DD * i e e
INDUT DATA(RA.\JDATA) s e e

Zzg‘rcpg EXEC ALGOFCLG . ,;L;'i‘;ifﬁ11‘iiiﬁij;ifki‘.‘iii;iiiIfi““

JISYSIN. DD X0 o oo v oo) e e e

- SOURCE. PROGRAMCANALYZ). . e

//LKED. SYSLMOD. ,D,Q Ds,/vggg gaoss.'r(wgav.;) . . , . . el]
/ /R0, ALGLDDPS, DD DSNAME=X.ST. &MML N
/LéQ_AQGM_A/A&MMQMAQg

/16O . ALGLDD®3 DD DSV, vALu;,s,org,P-(NEU;Pzg S).U NIT.= JECL.,.‘_;, X
/i, . DCAT, CF 'EM&MM&Q 68).5,VOLUME® S__&‘&L@;é+uhk ek
/1 STEPS EXEC ALGOECLE o o\t i oottt e et e

//SYSIN DD, *._. T R
f;ggg,ce PROSRAMBERPORTY.

¥ n PN WO I OO Y Sy S APRT U W ST W WY W Y G S SY e Do hd i NN Y B | _L_‘__.All.l P N U G S G B S ¥ e U S S U W ¢
/7 LKED - SXSLMOD DD DINARE: GO SET(REPORT). . . o -

Y /GO ALGLDD ! 4 DD DSMAMEa*LoéM&_M@BMQM

Figure 29. Job control statements for Example 2,

Using Job Control Language 49

occurs) printed on the normal system output
device for information listings

The first job step invokes the ALGOFCLG cata-
loged procedure (see Appendix B) to process
and execute the ALGOL source program
(PROGRD) entered in the input stream

The other input data sets are RAWDATA and
PROJDATA. RAWDATA is also entered in the
input stream

The temporary output data set is

© to be called REFDATA, TESTFIRE and to be
passed for use in a later job step

® to use the device class TAPECLS

@ to be written on volume 2107, which is to
remain mounted for use later

e tc have fixed length records, 80 bytes long,
and a maximum block size of 400 bytes

The second job step invokes the ALGOFCLG
cataloged procedure to process and execute
the ALGOL source program (ANALYZ) entered
in the input stream

The SYSLMOD DD statement in the LKED step
of the cataloged procedure is overridden to

specify that the load module produced by the
linkage editor is

© to be a new member, PROGRD, of the tem-
porary partitioned data set FIRING

The other input data sets are REFDATA,
TESTFIRE and PARAMS. Both will be kept
at the end of the job step

The temporary output data set is

@ to be called VALUES, TESTFIRE and is to
be passed for use in a later job step

® to use the device class TAPECLS
® to be written on volume 2108

e to have fixed length records, 68 bytes long,
and a maximum block size of 204 bytes

The third job step invokes the ALGOFCLG ca-
taloged procedure to process and execute the
ALGOL source program (REPORT) entered in

the input stream, The output data will be listed

on the printer specified in the cataloged proce-
dure

10

.

The SYSLMOD DD statement in the LKED step
of the cataloged procedure is over-ridden to
specify that the load module produced by the
linkage editor is

e to be a new member, REPORT, of the tem-~
porary partitioned data set FIRING

11, The other input data set is VALUES, TESTFIRE

which will be kept at the end of the job step

Example 3: Executing Two Load Modules

Statement of problem: Data on current weather
conditions is to be read from cards and used by
the program FILECR to create a new generation
of a data set WEATHER, and also to print a re-
port,

Then the new generation and the three imme-
diately preceding generations of the WEATHER
data set are to be used by the program FORCST
to produce a printed weather forecast. The pro-

FWeafher

data

FILECR

WEATHER
(+1)

e

FORCST

Weather
forecast

"

Figure 30, 1/0 flow for Example 3.

Form C338-

8000-0, Page Hevised by T'NL N33-8002, 1/16/68

//WEATHRP JOB. MSALEV]

a

14 PR P

L=g, .
ALQQE&LQ_QﬁagéMﬂﬁgiwIﬂ&_ggDKSPt(QA&‘RASS)
//CREATE EXEC PGMU=FLLECR . . L

4
LA
PEEY Ak

/ /SYSPRINT. DD um:c-pzwm EP=ALQLJ_>.'_>.QZ

ﬁLﬂ_QQQ_@&,QQ;DéMA&ELMﬁALBEE HYPERT,,. e:e&),.A..A. %
ALJAA 4qiaggugTi£@IAI ER 3 DISP=lNEW, CATLG) S oo %]
.......... LABEL=(,SL,RETPD=60838), . .. e LR
[AAL EC cmﬁwﬁ&&u =86 e
||//ALGLODS). DD UNIT.<F PRINT N e

//sYsIN DD * WEATHER DATA FOLLOWS .

EATHER DATA .
/% INDICATES END_OF DATA

//.E.Q&ESASE ELX,QQ._.B&MﬂFOR(SJ e

......

M[AL@QQ,QQA_DD DSNAKE sWEATHE.
/7ALGLDDG?. DD DSNAME=WEATHER(
//ALaLDDGS DD DSNAME= WEATHA‘R(-L 3.DISP=COLD

EP=ALGLD Q¢£(: ,.DI SPFOLD e

I WS NV W S VO SO DI ISULD WS S W WD SO S EUUN SR SRS O S S50 WY

e L d a_a 4 Add 11

[/ ALGLD P DSNAMG. WEAI.U DISP:=C . NN
||/7ALGLDDG). LGLDDOA. . AqugQJ') A e
//SYSPRI, MT DD U.N.I,TA PEIMTEE .S‘E‘P.‘. ALGLDDES, , ALQADDG"?) A . L A o
OFlgure 31. Job control statements for Example 3,

grams FILECR and FORCST are contained in a
partitioned data set WTHRPR,

Explanation of coding: The job control statements
used in Figure 31 specify that:

1, The job is to have control statement messages

plus the relevant control statement printed on
the normal system output device only if an error
occurs

The partitioned data set WI'HRPR is concatenated
to the operating system library, SYS1, LINKLIB

The first job step executes the program FILECR
The output data set is

® a new generation of the data set WEATHER
to use the device class HYPERT

to be written on volume 0012 which need not
be mounted until the data set is opened, and

is then to remain mounted for later use

to be cataloged and have standard labels

® to be retained for 30 days

® to have fixed length records, 80 bytes long,
and a maximum block size of 400 bytes

The printed output is
® to use the device class PRINTER

® to use a separate channel to the output data
set

The input data is included in the input stream

The second job step executes the program
FORCST

The input data sets are the last four generations
of WEATHER, all of which are to be kept at the
end of the job step

The output data set is

® to use the device class PRINTER

® to use a separate channel to the last two ge-
nerations of WEATHER

Using Job Control Language 51

APPENDIX F: DIAGNOSTIC MESSAGES

Each of the three operations-compilation, linkage
editing and execution - may produce diagnostic
messages.

COMPILER MESSAGES

The diagnostic messages that may be produced by
the ALGOL compiler are given below. Each diag-
nostic message occupies one or more printed lines
and contains:

» The message key, consisting of the letters IEX,
a three digit decimal number identifying the
message, and the letter I to indicate an infor-
mative message requiring no action from the
operator,

e The severity code W, S or T (see below)

o The semicolon number (see Section 3), This
number is sometimes omitted if the error can-
not be directly related to a point in the program,
The semicolon number is indicated in the list
below by the sequence NNNNN

® The message text describing the error and, in
the case of some W or S type errors, the mo-
dification performed on the program by the
compiler, In the message text listed below the
words in parentheses, together with the paren-
theses themselves, will be replaced in the actual
message that is printed, by specific information
taken from the program, The word "operator"
usually refers to all delimiters defined in IBM_
System/360 Operating System: ALGOL Language,
but an internal compiler operator may some-
times be listed, The word '"operand' refers to
an identifier or an expression,

The three severity codes for errors and their
corresponding compiler action are as follows:

W (Warning): The program is modified inter-
nally and the compilation is continued, The mo-
dification may not make the program correct but
it allows object module generation to continue, A
diagnostic message is produced.

S (Serious): An attempt is made to modify the
program internally, including skipping or changing
parts of it. Generation of the object module is
stopped, but syntax checking continues, A diagnos-
tic message is produced.

32

T (Terminating): A diagnostic message is pro-
duced and the compilation is terminated,

IEX0011 W NNNNN INVALID CHARACTER
DELETED.

Explanation: A character not recognized
by the compiler has been deleted from the
program,

IEX002I W NNNNN ILLEGAL PERIOD.
PERIOD DELETED.

Explanation: The character period has
been used wrongly and deleted from the
program, It can be used only as a deci-
mal point, or as part of a colon or semi-
colon,

IEX003I W NNNNN INVALID COLON AFTER
(six characters). COLON DELETED.

Explanation: The character colon has been
used wrongly and has been deleted from
the program, It can be used only after a
label, between subscript bounds, within

a parameter delimiter or as part of an
assign symbol,

IEX004I T NNNNN LETTER STRING TOO
LONG.

Explanation: A letter string used to supply
explanatory information exceeds capacity
limitations (see Section 4),

IEX0051 S NNNNN IDENTIFIER BEGINS WITH
INVALID CHARACTER, IDENTIFIER
DELETED.

Explanation: An identifier has been de-
leted because it does not begin with an
alphabetic character.

IEX006I T NNNNN LABEL CONTAINS TOO
MANY CHARACTERS,

Explanation: A label identifier has been
used whose length exceeds capacity limi-
tations (see Section 4).

IBM Technical Newsletter File Number $360-26

Re: Form No. C33-4000-0
This Newsletter No. N33-8013
Date June 26, 1968
Previous Newsletter Nos. N33-8000,
N33-8002,
N33-8012

IBM System/360 Operating System
ALGOL Programmers Guide

This Technical Newsletter relates to Release 16 of the Operating System and contains
amendments to the IBM System/360 Operating System: ALGOL Programmer s Guide,
Form C33-4000-0. The attached pages are replacements to be inserted in the publica-
tion, as indicated below. Corrections and additions to the text and/or illustrations are
indicated by a vertical bar to the left of the affected text and by a bullet (?) to the left of
the figure caption,

Pages to be Pages to be
Removed Inserted
1-4 1-4
11-18 11-18
25-30 25-28
29-29.1
29.2-30
30.1-30,2
33-36 33-36
45-46 45-46
51-52 51-51,1
51, 2-52

Summary of Amendments

The amendments in this newsletter reflect changes in IBM-supplied cataloged
procedures in order to provide MVT support for the ALGOL compiler under Release
16, The text relating to precompiled procedures is also amended and examples have
been added to illustrate an Assembler language procedure and the use of job control
statements.

File this cover letter at the back of the publication, It will serve as a record of
the changes received and incorporated.

IBM Nordic Laboratory, Technical Communications, Box 962, Lidingo 9, Sweden

Systems Reference Library

IBM System/360 Operating System

ALGOL Programmer's Guide

Program Number 360S~-AL-531....Compiler
3605-LM-532. .. . Library Routines

This publication describes how to compile, linkage edit and
execute a program written in the System/360 Operating System
Algorithmic Language (ALGOL). It includes an introduction

to the operating system and a description of the information
listings that can be produced, the job control language, and
the subroutine library.

File No, $360-26
Form C33-4000-0

0S

Form C33-4000-0, Page Revised by TNIL N33-8013,

PREFACE

This publication is intended for use by Application
Programmers, Systems Programmers and IBM
Systems Engineers. A knowledge of ALGOL is
assumed, and the reader is expected to be familiar
with the prerequisife publication:

IBM System/360 Operating System: ALGOL Lan-
guage. Form C28-6615.

In Section 2, the description "IBM -Supplied
Cataloged Procedures' provides sufficient informa-
tion to process and execute an ALGOL program
that can use the IBM-supplied cataloged procedures
without modification.

The rest of Section 2, together with information
in Section 1 and the Appendices, will be required
for programs that cannot use the IBM-supplied
cataloged procedures without modification.

The description of information listings in Section
3 and the list of diagnostic messages given in
Appendix F will be helpful in interpreting system
output, especially for debugging.

An extensive index has been provided to assist
the reader in using the manual for reference pur-
poses.

This publication contains most of the infor-
mation required by the Applications Programmer,.

First Edition (April 1967)

6/26/68

The following publications are referred to within
the text for information beyond the scope of this
publication.

IBM System/360 Operating System:
Assembler Language, Form C28-6514

Linkage Editor, Form C28-6538

Job Control Language, Form C28-6539

Operator's Guide, Form C28-6540

“tilities, Form C28-6586

FORTRAN IV Library Subprograms,
Form C28-6596

Message Completion Codes, and Storage
Dumps, Form C28-6631

Supervisor and Data Management Services,
Form C28-6646

Supervisor and Data Management Macro-
Instructions, Form C28-6647

System Programmer’s Guide,
Form C28-6550

Significant changes or additions to the specifications contained in this publication will be reported in sub-

sequent revisions or Technical Newsletters.

Requests for copies of IBM publications should be made to your IBM representative or to the IBM branch

office serving your locality.

A form is provided at the back of this publication for reader’s comments.

If the form has been removed,

comments may be addressed to IBM Corporation, Department 813, 112 East Post Road, White Plains, N.Y,
10601, or IBM Nordic Laboratory, Technical Communications, Vessleviigen 3, Lidingd, Sweden.

©Internationa1 Business Machines Corporation 1967

Form C33-4000-0, Page Revised by TNL N33-8013,

SECTION 1: INTRODUCTION t.vaveveannans 5
Source Program . visesesescesssosesescassne o D
Operating System ,...ieeveeeeseeeossossscese O
Job Control cieees eeeriiasa . 5
Control Program eersieeraeans s 6

Job Scheduling .. ,............. ceeeresn. 6

SUPETVISOT seseeesrsassctcsassssssscsosnse . B

DataManagément................... "o 6
Processing Programs «sseecssesssossssssss, 8

ALGOL Compiler coeesesnesnecesaccoanas . 8

Linkage Editor covuenssvsensseenansnenns 9
Load Module Execution..ceeeeeeesenscecsnew 9
Machine Configuration «veveivesesasssenssnses 9
SECTION 2: SOURCE PROGRAM HANDLING . . 10
IBM-Supplied Cataloged Procedures10
Compilation +.e.eveeen.. teesesaersessanss o 10
‘Compilation and Linkage Edmng tiesesasss 10
Compilation, Linkage Editing and Execution . , 12
Over-riding Cataloged Procedures12

Over-riding EXEC Statementsooesvseae o 12

Over-riding DD Statements .v.veeeveoeess .13

Adding DD Statements ...cevvseveeseansss o 13
User-Written Procedures covesonees . .13
Compilation.....eeuu.s eseeeaaarasenes . .13

Invoking Statementv0vieviensnse. o 13

Data Sets Used cvvvevreerrersseroesncnne o 14
Linkage EAiting «veveee.n. PP

Invoking Statement ...icivevisiiiiiiinen 14

Data Sets Used svevvvensvensnssssensescs o 16
Load Module Execution.cvvseeeiervsrennens .15

Invoking Statementcoveveieners senn .15

Data Sets UsSed v.vuiersnsseeesssssresense o 16
SECTION 3: INFORMATION LISTINGS - 18
Control Program Listings ...eeevesvevsneess o 18
Compilation Listings P . .18
Source Progralm s.veeeseessssseacscsssans o 18
Identifier Table seveeesvseossorssnsoasses o 18
Diagnostic Messages veess o 20
Storage Requirements vveeesessoesseorssss « 20
Linkage Editing Listings.....veveoesceessass » 20
Diagnostic MeSSages ccveerssrevrrsrsersssas 2l
Module Map cvvesevesnsorasssssansaanes o 21
Cross-Reference Table «uveivuisnensvaneesss 21
Execution Time LiStingsevevevueeeren . 21
Diagnostic MeSSages «ouvivseivsessnes bee 21
Data Storage ATeas cvveveservereanssssness s 21
ALGOL Program Trace .v.eeeesvsesesssoses s 22

6/26/68

CONTENTS

SECTION 4: PROGRAMMING

CONSIDERATIONS .vvecavssnonsararesnaanaans 25
Capacity Limitations «.eeeeeveeiiveressearaess 25
Invoking a Program Within a Job Step «vvvvvse. . 26
Precompiled Procedures sevssesveesassesssas o 27
APPENDIX A: ALGOL LIBRARY ROUTINES. .. 31
Fixed Storage Area.coieseserscenes T 3 §
Mathematical Routines « v..eves.. ceeenieesees . 31
Input/Output ROUtINES +svevevasnnssnersansees o 31
Error Routine .veievesseeotsasseocssssasssee o 31
APPENDIX B: IBM-SUPPLIED
CATALOGED PROCEDURES ..vvvevvevenenss o 34
Compilation.seeeerernnnnens ceernan teessenes . 34
Compilation and Linkage Editing...ecoeveeeves . 32
Compilation, Linkage Editing and Execution 35
APPENDIX C: CARD CODES .+¢svtvenvnceenes o 36
APPENDIX D: OBJECT MODULE ..eueesoessn o 37
APPENDIX E: USING JOB CONTROL
LANGUAGE v veevssancssssassasssansanssnse o 38
Coding FOrmat «vvesvsvsocecoessosssasssases o 38
Conventions Ceteessesesanenas eesaeses . 38
Control Statement Coding........ P 1
JOB Statementvviiiiiiiienan ceeseeaes o 40
EXEC Statementcocvuanen cevoee e o 41
DD Statement . vvvvreerensoessssensensnsss o 43
Command Statement [X4
Data Set Concatenation ...eeveevieveeevnoaees o 47
Job Control Language ExamplesS ...vvevsesssaes o 47
° Example 1: Executing a Single
Load Module +.vivssevsensncesenessaannsns . 47
Example 2: Compiling, Linkage Edltmg
and Executing Three Load Modules 48
Example 3: Executing Two Load Modules 50
Example 4: Compiling and Linkage Editing
an ALGOL Precompiled Procedure ., 51,1
‘Example 5: Compiling, Linkage Editing and
Executing an ALGOL Program which Invokes
a Precompiled Procedure . . + . « « v+ « . . . 51,1
APPENDIX F: DIAGNOSTIC MESSAGES .. 52
Compiler MeSSAZES sisssesrsssssonnssansns o o B2
Linkage Editor Messages .ceeieseserseasenas . . 59
Execution Time Messages seeeas é . 60
INDEX tuvivsnrenssonsncoansssnse B 74

Form C33-4000-0, Page Revised by TNL N33-8013, 6/26/68

FIGURES
Figure 1. Basic flowchart for handling an Figure 15, Example of data storage area
ALGOL programceessessossarssescee o 8 Hstingesessaueanernnronnsnrsonsaansnnanens o 24

Figure 16, Example of program trace listing . 24
Figure 2. Sample deck for using ALGOFC

cataloged procedure with a single source

Figure 17, Table of parameter characteristics
PYOZTAIM .4 uensesivssscrssesossssscssnae o L1

for an Assembler language pre-compiled

ProCedUTe +uveesestooarvoansone trsensreaes s 30
Figure 3. Sample deck for using the .
ALGOFCL cataloged procedure with two Figure 17.1, Example of an Assembler language
SOUTCE PLrOZraAIMS . vv e ssvreorsossnsaasssanns 11 procedure and an invoking ALGOL program . . . 30,1

Figure 4. Flowchart showing data sets Figure 18, Table of ALGOL library modules . 32

sed by the compiler0c0vuuus creee o 14
used by complier Figure 19. Source program card codes....... 36
Figure 5. Table of data sets used by

£he COTPIIET v vvsesnnnerannesssnnesesonness 14 Figure 20. Object module card deck 37

Figure 6. Effect on compiler if more than Figure 21. Control statement formats 38

44K bytes of main storage is available..,...,.. . 15 . . .
Figure 22. Data set cataloging using

Figure 7. Flowchart showing data sets qualified NAMES . 4vievieresrrensarsroenaans . 39
used by the linkage editore0vveveeeass. 15 Figure 23, JOB statement parameters 40
Figure 8. Table of data sets used by the Figure 24. EXEC statement parameters 41

linkage editorcovveevinvaronneransesss 15
g Figure 25. DD statement parameters ,....... 43

Figure 9. Flowchart showing data sets used Figure 26. 1/0 flow for Example 1 47
at execution time ,,.....cveveeireeresnonnse s 17

Figure 27, Job control statements for
Figure 10, Table of data sets used at Example 1 soiviererinrocnonssoncssnssonssss 48
execution time eereeanaes ceeeee . 17 Figure 28, 1/0 flow for Example 2, 49

Figure 29, Job control statements for

Figure 11. Example of source program
5 P Prog 23 Example 2 verenans cerrraerneeeiaees s 49

liSting vuuvueereevrosrssrosooroosesoanosns

Figure 12, Example of identifier table Figure 30, 1/0 flow for Example 3 50

listing .. iivuiivierienennenass crersaseas cees 23
& Figure 31. Job control statements for
Figure 13, Example of storage requirements Example 3 ...ivernirecrearorenrsssssnsanas e DL
HSHNG tuivvvrerrenrererant sevnneonnas vevees 23 Figure 32, Job control statements and source
module for Example 4 . ., . . . « ¢ o v o4+ .. 5L

Figure 14, Example of cross-reference table Figure 33. Job control statements and source
lsting vovvvvvnernenenenereeennnns e esnen s . 24 module for Example 5. . « « « v v v 4 « « o+ « « 51,1

Form C33-4000-0, Page Revised by TNL N33-8013, 6/26/6&

[/
L =

y 4
(Source program (MATINYV)

r///SYSIN DD *

ﬁ/ EXEC. ALGOFC
//MATINV JOB 537, JOHNSMITH, MSGLEVEL=1

- —

Figure 2. Sample deck for using ALGOTFC cataloged procedure with a single source program. This job
compiles the MATINV source program used in Example 1 of Appendix E.

If more than one source program is to be pro- //LKED,SYSLMOD DD DSNAME=dsname(member),
cessed in the same job, then all job control state- DISP=(MOD,KEEP)
ments except the JOB statement must be repeated
for each source program, where "dsname' is the name of a partitioned data
set and "member" is the member name assigned
If it is required to keep a load module for use to the load module on the partitioned data set.

in a later job (as in the case when the load module
is a precompiled procedure), then the SYSLMOD
DD statement in the cataloged procedure must be
over-ridden to specify a permanent data set, This

Figure 32 shows the job control statements needed
to compile and linkage edit a precompiled procedure.

has to be done for each load module that is kept. A sample deck of job control statements to com-
‘The over-riding statement is placed at the end of pile and linkage edit two source programs is shown
the job stép to which it applies, and has the form;: in Figure 3.

W/LKED.SYSLMOD DD DSNAME=WTHRPR(FORCST),
DISP=(MOD, KFEP)

///SYSIN DD DSNAME=FORCST, DISP=OLD

ﬁsmz EXEC ALGOFCL

//LKED.SYSLMOD DD DSNAME=WTHRPR(FILECR),
D1SP=(MOD, KEEP)

///svsn\x DD DSNAME=FILECR, DISP=OLD

_ (//STEP] EXEC ALGOFCL

//WEATHER JOB

Figure 3. Sample deck for using ALGOTCL cataloged procedure with two source programs. These two job
steps compile and linkage edit the two source programs used in Example 3 of Appendix E. Both source pro-
grams have been previously stored on intermediate 1/0 devices.

‘Source Program Handling 11

Compilation, Linkage Editing and Execution

The cataloged procedure used to compile an ALGOL
source program, linkage edit the resulting object
module, and execute the load module produced by
the linkage editor is ALGOFCLG.

The statements used in this cataloged procedure
are shown in Appendix B, The following state-
ments can be used to invoke the ALGOFCLG cata-
loged procedure:

//jobname JOB

//JOBLIB DD DSNAME=dsnamel, DISP=OLD

// EXEC ALGOFCLG

//SYSIN DD {* or parameters defining an
input data set containing
the source program }

//GO. ALGLDD02 DD DSNAME=dsname2

//GO.ALGLDD15 DD DSNAME=dsnamel5

.where "jobname' is the name assigned to the job,
"dsnamel' is the name of a data set that containg
a'precompiled procedure (see Section 4) which is
called by the load module being executed, The DD
statement containing dsnamel need not be used if
no precompiled procedure is used.

For a description of the correct use of the
JOBLIB DD statement when more than one pre-
compiled procedure is used in a job, or when a
precompiled procedure resides on more than one
data set, see '"Data Set Concatenation" in-Appen-
dix E,

"dsname?2'., .. "dsnamel5' are the names of input
data sets required by the load module at execution
time and output data sets to be created at execu-
tion time. In addition, two data sets for printed
output (ddnames SYSPRINT and ALGLDDO1) are
supplied by the cataloged procedure, and a data set
for input only can be specified by using the following
statement after the invoking sequence just given.

//GO.SYSIN DD {* or parameters defining an
input data set }

If DD* is used then the data must follow imme-
diately afterwards in the input stream, For se-
quential scheduling, the data must be followed by
a delimiter statement (/).

If more than one source program is to be pro-
cessed and executed in the same job, then all job

12

control statements except the JOB statement and
the JOBLIB DD statement must be repeated for
each source program,

A sample deck of job control statements re-
quired to compile, linkage edit and execute three

source programs is shown in Figure 29.

Over-riding Cataloged Procedures

The programmer can change any of the statements
in a cataloged procedure, except the name of the
program in an EXEC statement,

These over-riding conditions are temporary,
and will be in effect only until the next job step is
started. The following text describes methods of
temporarily modifying existing parameters and
adding new parameters to the EXEC and DD state-
ments used in the cataloged prccedures. The full
list of parameters available to the ALGOL pro-
grammer for these statements, and detailed expla-
nations of the parameters, is given in Appendix E,
The EXEC and DD statements used in the IBM -
supplied cataloged procedures are shown in Appen-
dix B.

Over-riding EXEC Statements

In the EXEC statement, the programmer can change
or add any of the keyword parameters by using the
following format:

keyword. procstep=option
where:

""keyword! is the parameter to be changed in,

or added to, the specified procedure job step:
either COND, PARM, ACCT, TIME or REGION,
TIME and REGION are valid only for priority
scheduling.

""procstep' is the procedure job step in which
the change or addition is to occur: either
ALGOL, LKED or GO.

""option" is the new option required.

For example, if the EXEC statement used to in-
voke the ALGOFCLG cataloged procedure was writ-
ten as:

// EXEC ALGOFCLG,PARM.ALGOL-DECK,
// PARM. LKED=XREF,
// COND. GO=(3, LT, ALGOL)

then the following changes would be made to the
ALGOFCLG cataloged procedure:

1. In the PARM parameter of the job step ALGOL,
the option DECK would be used instead of the
default option NODECK (assuming that the stan-
dard default NODECK was not changed at sys-
tem generation). Over-riding this option will
not affect the other default options assumed
for this parameter.

2. In the job step LKED, the option XREF is spec~-
ified for the PARM parameter. Since the op-
tions specified in the cataloged procedure were
XREF, LIST and LET, this statement has the
effect of deleting the options LIST and LET
since they were not default options,

3. In the job step GO, the COND parameter code
is changed from 5, as it.appears in the cata-
loged procedure, to 3. In this example, the
code 3 causes the job step GO to be bypassed
if a warning message is generated during the
job step ALGOL. Note that although the other.
options (LT and ALGOL) are not to be altered,
the entire parameter being modified must be
respecified,

If "procstep' is not specified when over-
riding a multi-step cataloged procedure, the
operating system makes the following assump-
tions:

® COND, ACCT and REGION parameters apply
to all procedure job steps.

e A PARM parameter applies to the first pro-
cedure job step and any options already spec-
ified in the PARM parameters for the remain-
ing procedure job steps are cancelled,

e A TIME parameter specifies the computing
time for the entire job and any options already
specified in the TIME parameters for individ-
ual procedure job steps are cancelled,

Over-riding DD Statements

An additional DD statement is used in the invoking

sequence for each DD statement in the cataloged

procedure that is to be over-ridden. The following

format is used:
//procstep, ddname DD parameter-list
where:

"procstep' is the procedure job step containing

the DD statement to be over-ridden: either ALGOL,

LKED or GO. If "procstep' is omitted then the
first procedure job step is assumed.

"ddname' is the name of the DD statement to be
over-ridden,

"parameter-list" is the list of parameters that are
being added or changed. In both cases the whole
parameter must be specified. Unchanged param-
eters in the original statement need not be spec-
ified. For example, the statement:

//ALGOL, SYSLIN DD SPACE=(400, (80,10))

will change the SPACE parameter of the SYSLIN
DD statement in the ALGOL job step so that space
will be allocated for 80 physical records instead
of 40,

DD statements that are used to over-ride other
DD statements in the cataloged procedures must
be placed immediately after the EXEC statement
invoking the cataloged procedure, and must be in
the same order as their corresponding DD state -
ments in the cataloged procedures.

Adding DD Statements

Complete, new DD statements that are to be added
to the cataloged procedure use the same format

as over-riding DD statements. The "ddname"
specified must not exist in the job step specified
by '"procstep". These new DD statements must
follow immediately after the over-riding DD state-
ments which apply to the same procedure job step.

USER-WRITTEN PROCEDURES

The information required by the programmer to
write his own job control procedures is given in
the following text, and in Appendix E, Cataloging
user-written procedures, or permanently modi-
fying the IBM -supplied cataloged procedures, is
accomplished using the IEBUPDTE utility program,
described in IBM System/360 Operating System:
Utilities. The statements required in user-written
procedures are:

® An EXEC statement to invoke the program.,

o DD statements to define the data sets used by
the program.

Compilation
Invoking Statement
The ALGOL compiler consists of ten load modules

contained in the link library, SYS1, LINKLIB, of
the operating system, The compiler is activated

Source Program Handling 13

Form C33-4000-0, Page Revised by TNL N33-8013,

by invoking its first load module, named ALGOL,
which then internally invokes the other load mod-
ules of the compiler.

The usual method of invoking the compiler is
by means of an EXEC statement of the form:

//stepname EXEC PGM=ALGOL
where "stepname' is the name assigned to the job
step (optional),

Other EXEC statement parameters may be in-
cluded if required (see Appendix E).

(A method of dynamically invoking the compiler
within a job step, by means of the CALL, LINK,

XCTL or ATTACH macro-instructions, is described

in Section 4.)

Data Sets Used

The data sets used in the compilation process are
illustrated in Figure 4, and described in Figure 5.

These data sets must be specified by the program-

mer with suitable DD statements.

Blocksize DCB information may be specified
by the user for SYSIN, SYSLIN, SYSPRINT and
SYSPUNCH. The maximum blocking factor de-
pends. on the main storage size available (see
Figure 6). Record length is fixed at.80 bytes for
SYSIN, SYSLIN and SYSPUNCH, and 91 bytes for
SYSPRINT.

SYSIN

Source
Program

Q——* COMPILER
Object
Module
(optional}

SYSLIN

Intermediate Work

SYSUT1

SYSPRINT |

Information
Listings

e

SYSUT2

SYSUT3

Obiject
Module
(optional)

SYSPUNCH

®TFigure 4. Flowchart showing data sets used by
the compiler,

The space required for the compiler data sets
depends on the size and structure of the source
program, however it can be assumed that only in
rare cases will the object module exceed four
times the source program and usually much less
will be required.

14

6/26/68

compiler working

sing unit.

P Standard Devices

urpose ddname required
For ALGOL source SYSIN Card reader#
program
For object module to SYSLIN Direct access or
be used by linkage editor| magnetic tape
For compilation listings | SYSPRINT Printer®*
For object module SYSPUNCH Card punch*
(copied from SYSLIN)
For intermediate SYSUT1 Direct access or
compiler working magnetic tape
For intermediate SYSUT2 Direct access or
|compiler working magnetic tape
lFor intermediate SYSUTS3 Direct access

* Some form of intermediate storage, such as magnetic tape,
may be used to reduce I/0O delay for the central proces-

®Figure 5.

Data sets used by the ALGOL compiler.,

The primary quantity specified in the SPACE
parameter of the DD statements for SYSUT1,
SYSUT2 and SYSUT3 must be large enough to

contain the entire data set,

The use of a secon-

dary quantity for any of these data sets will

increase the need for main storage by 40%.

The

following estimates can be used to allocate space
on a 2311 direct access device:

SYSUT1 - 1 track per 100 source cards
SYSUT2 - 1track per 100 source cards
SYSUT3 -~ 1 track per 200 source cards.

Processing of all data sets by the compiler is
independent of the I/0 device used except for the

intermediate work data sets.
netic tape or direct access devices.

Linkage Editing

Invoking.Statement

These require mag-

The linkage editor is usually invoked with an
EXEC statement of the form:

//stepname EXEC PGM=IEWL

Form C33-4000-0, Page Revised by TNL N33-8013,

where "'stepname' is the name assigned to the job
step (optional).

Other EXEC statement parameters may be in-
cluded if required (see Appendix E), IEWL spec-
ifies the highest-level linkage editor in the instal-
lation’s operating system,

(A method of dynamically invoking the linkage
editor within a job step, by means of the CALL,

LINK, XCTL or ATTACH instructions, is described

* in Section 4.)

Main storage size Maximum blocking factor
in bytes at which

changes occur SYSIN
45056 (44K) 5 5 5 1

SYSPRINT SYSLIN SYSPUNCH

51200 (50K) 5 5 5 5
59392 (58K) 5 5 5 5
67584 (66K) 5 5 5 5
77824 (76K) 5 5 5 5
90112 (88K) 20 20 40 20
104448 (102K) 20 20 40 20
120832 (118K) 20 20 40 20
. 139264 (136K) 20 20 40 20
159744 (156K) 20 20 40 20
184320 (180K) 40 40 40 40
212992 (208K) 40 40 40 40

Figure 6, Effect on compiler data sets if more
than 44K bytes of main storage is available.
The capacity of internal tables in the compiler
is increased at each of the main storage sizes
ligted in this table, allowing, for example, a
larger number of identifiers to be included in

the source program, Therefore to get optimum

performance, the user is recommended to use
this list when specifying main storage size
available to the compiler.

Data Sets Used

The data sets used by the linkage editor (see Fig-
ures 7 and 8) must be defined by the programmer
with suitable DD statements,

Blocksize DCB information may be specified
by the user for SYSLIN and SYSPRINT if the F
level linkage editor is being used, Maximum
blocking factor is 5 when 44K bytes of main stor-
age size is available, and 40 when 88K bytes is
available. Record length is fixed at 80 bytes for
SYSLIN and 121 bytes for SYSPRINT.

_SYSPRINT.

Information
Listings

SYSLIN
Object
Module
SYSLIB
ALGOL
Library
LINKAGE
EDITOR
SYSUTI
Intermedi-
ate Work
Loud
Module
SYSLMOD

oTigure 7,
the linkage editor.

Load Module Execution

Invoking Statement

Flowchart showing data sets used by

6/26/68

The usual method of invoking the load module gen-
erated by the linkage editor is with an EXEC state-

ment of the form:

//stepname EXEC PGM=member-name

Standard . Devices

Purpose ddname used
For object module SYSLIN Direct access or
input magnetic tape
For load module SYSLMOD Direct access
output, stored as a
member of a parti-
tioned data set
For ALGOL library, | SYSLIB Direct access
SYS1, ALGLIB, A
partitioned data set
-containing routines
in load module form
For linkage editing SYSPRINT Printer#
listings
For intermediate SYSUT1 Direct access or
linkage editor magnetic tape
working
* Some form of intermediate storage, such as magnetic

tape, may be used to reduce output delay for the cen-

tral processing unit,

eFigure 8.

Data sets used by the linkage editor.

Source Program Handling

15

where "stepname is the name assigned to the job
step (optional).

"member-name' indicates the name of the parti-
tioned data set member which contains the load
module., This name is specified by the programmer
in the SYSLMOD DD statement for the linkage edi-
tor. Other EXEC statement parameters may be
included if required (see Appendix E).

(A method of dynamically invoking the load mod-
ule within a job step, by means of the CALL, LINK,
XCTL or ATTACH macro-instructions is described
in Section 4.)

Data Sets Used

Up to 16 data sets for use at execution time may
be specified by the programmer in the ALGOL
source program by using the appropriate data set
number, The numbers used and the corresponding
names of their DD statements are listed below,

Data set number Corresponding
used in ALGOL ddname
source program
0 SYSIN
1 ALGLDDO1
2 ALGLDDO02
3 ALGLDDO03
4 ALGLDD04
5 ALGLDDO05
6 ALGLDD06
7 ALGLDDO0O7
8 ALGLDDO08
9 ALGLDDO09
10 ALGLDD10
11 ALGLDD11
12 ALGLDD12
13 ALGLDD13
14 ALGLDD14
15 ALGLDD15

Any reference to a data set number by an I/0
procedure within an ALGOL source program is
translated into a reference to a data control block
using the corresponding ddname., It is the respon-
sibility of the programmer to supply the DD state-
ments which correspond to the data set numbers
used in the ALGOL source program,

The execution time data sets are illustrated
in Figure 9 and described in Figure 10, For
ALGLDDO2 to ALGLDD15, case 1 in the column
showing device used, applies if the source pro-
gram contains any of the following:

16

e A backward repositioning specification by the
procedures SYSACT4 or SYSACT13 for this
data set.

e Both input and output procedure statements
for this data set.

® Procedure statements which prevent the com-
piler from recognizing whether either of these
applies; for example, if the data set number
or SYSACT function number is not an integer
constant or if a precompiled procedure is used.

If the source program has already been com-
piled and linkage edited in a previous job, then
the data set on which it has been stored (in load
module form) must be concatenated to SYS1, LINKLIB,
Data sets containing precompiled procedures called
by the source program (see Section 4) must also be
concatenated to SYS1. LINKLIE,

If the programmer specifies a TRACE, TRBEG
or TREND option in the EXEC statement of the
execution job step, the semicolon count (see Sec-
tion 3) is stored intermediately on a data set with
the ddname SYSUT1. The programmer must sup-
ply a corresponding DD statement if he uses this
option, The semicolon count is converted to ex-
ternal form and transferred to the SYSPRINT data
set as soon as the execution ends either by reach-
ing the logical end of the source program or due
to an error,

The space required for the semicolon count is:

For the main heading 6 bytes
For each semicolon 2 bytes
For each call of a
precompiled procedure 12 bytes
For each physical
record on SYSUT1 4 - 6 bytes

System/360 ALGOL permits data to be tempo-
rarily stored on and retrieved from external de-
vices without conversion, using the ALGOL I/0O
procedures PUT and GET. If the programmer
uses this facility in his source program, then he
must supply a DD statement with the ddname
SYSUT2. The device specified by this statement
for storing such intermediate data should be a
direct access device to guarantee reasonable per-
formance, though programming is performed in-
dependently between magnetic tape and direct ac-
cess devices. All data passed by a single PUT is

Form C33-4000-0, Page Revised by TNL N33-8013, 6/26/68

Load Module for Source

SYs 1. Program, Precompiled
LINKLIB Procedures, and Error
Intermediate Work — Routine
SYSUT 1 Q\ Data Output
[information | ALGLDDO1 &
SYSUT 2 LOAD Listings SYSPRINT
MODULE i
@/ EXECUTION
Any of
ALGLDDO02-15

1

Data [nput

SYSIN &
ALGLDDO2-15

®Figure 9,
ments are variable,

stored as one record. ~ This record will be as
long as the data passed, plus 8 bytes. The
maximum record length accepted is 2048 ‘bytes.

The DCB information which may be specified
by the user for execution time data sets is.block~-
size, record format and record length (see page
44 for details), except for the trace and PUT/GET
data sets (ddnames SYSUT1 and SYSUTZ2) for
which only blocksize may be specified (up to a
maximum of 2048 bytes).

For information not provided, default values
will be inserted by a routine in the ALGOL
library. In particular, blocksize is assumed
as 2048 bytes for SYSUT1 and SYSUT2 if none
is specified,

not used for

input

Flowchart showing data sets used at load module execution.

The data input and output require-

For data input

to load module
For execution time
listings

For data output
For data input

or output

For intermediate
storage of semi-
colon counter when
TRACE is spec-
ified

For temporary
storage when PUT
is specified

* Some form of intermediate storage, such as
magnetic tape, may be used to reduce I/0
delay for the central processing unit.

Standard Device
ddname Used
SYSIN Any input de-
vice
SYSPRINT Printer#*
ALGLDDO1 | Printer#*
ALGLDDO02 1, Direct
. access or
LDD£5 magnetic
ALG tape
2, Any
SYSUT1 Direct access
or magnetic
tape
SYSUT2 Direct access
or magnetic
tape

®Figure 10, Data sets used at execution time,

Source Program Handling

17

SECTION 3: INFORMATION LISTINGS

To assist the programmer to find the cause of any
faults in the processing or execution of his pro-
gram, various forms of information listings are
produced for the compilation, linkage editing and
execution operations. Some-of these listings are
optional. Examples are illustrated in Figures 11
to 16,

CONTROL PROGRAM LISTINGS

All three operations may produce listings gener-
ated by the control program. These are described
in IBM System/360 Operating System: Messages,
Completion Codes, and Storage Dumps. The
ABEND macro-instruction for specifying the main
storage dump is described in IBM System/360
Operating System: Supervisor and Data Manage-
ment Macro-Instructions.

COMPILATION LISTINGS

A successful compilation of an ALGOL source pro-
gram produces the following information listings:

e Job control statement information according
to which MSGLEVEL option was specified in
the JOB statement.,

e The source program supplemented by a count
of the semicolons occurring in the program
(optional),

e A table giving details of all identifiers used in
the program (optional),

e Any warning diagnostic messages.

o Information on main storage requirements at
execution time,

If a serious diagnostic message is produced
(meaning that object module generation has ended)
then the source program and identifier table list-
ings will be printed in full if they have been re-
quested, but the information on main storage re-
quirements will not be printed. If a terminating
diagnostic message is produced then the source
program and identifier table listings can be printed
only as far as they have been produced.

18

Source Program

If the SOURCE option has been specified, the
source program is transferred by the compiler
to an output data set in order to be listed by a
printer, This source program is supplemented
by a semicolon count, which is referred to in the
diagnostic messages to help localize errors.

The compiler.generates this semicolon count
when scanning the source program, by counting
all semicolons occurring in the source program
outside strings, except those following the de-
limiter "COMMENT “, The value of this semicolon
count at the beginning of each record of the source
program is printed at the léft of that record.. It is
assigned by the compiler in order to have a clear,
problem-oriented reference. Any reference to a
particular semicolon number refers to the segment
of source program following the specified semi-
colon, for example, the semicolon number 5 re-
fers to the program segment between the fifth and
sixth semicolons.

Identifier Table

If the SOURCE option has been specified, a list of
all identifiers declared or specified within the
source program is transferred by the compiler to
the output data set for printing after the source
program listing. This identifier table gives in=
formation about the characteristics and internal
representation of all identifiers. The identifiers
are grouped together within the identifier table
according to their scopes.

All blocks and procedure declarations within
the source program are numbered according to
the order of occurrence of their opening delimiters
“BEGIN“or “PROCEDURE ", Therefore, if the body
of a procedure declaration is a block, then usually
this block has the same number as the procedure
declaration itself, These numbers are called
program block numbers (even if they belong to a
procedure declaration and not to a block).

Each line in the table contains entries for up
to three identifiers and the line begins with the
number of the program block in which the identi-
fiers were declared or specified, the value of the
semicolon count at the commencement of the pro-
gram block, and the number of the immediately
surrounding program block. Each identifier entry
containg:

CAPACITY LIMITATIONS

In addition to those given in IBM System/360
Operating System: ALGOL Language, the follow-
ing restrictions must be observed when writing
an ALGOL source program:

Number of blocks and
procedure declarations
(NPB)

Number of for statements

Number of identifiers de-
clared or specified in one
block or procedure, F is
at most twice the number
of for statements occur-
ring in that block

Length of letter string
serving as parameter
delimiter

Length of label identifer

Length of source
program

Number of semicolons in
the whole program

Number of nested blocks,
compound statements, for
statements and procedure
declarations

Number of labels declared

or additionally generated
by the compiler

<255

<255

<179-F for type
procedures
<180-F otherwise

<1024 letters when main
storage size available is
less than 50K, <2000
letters otherwise

<1024 characters

when main storage size
available is less than
50K, <2000 characters
otherwise

<255K

<65535

<999

<1024

The compiler generates the following

additional labels:

SECTION 4: PROGRAMMING CONSIDERATIONS

For each switch declaration 2
For each procedure declaration 2

For each procedure activation
(including function designators) 1

For each “THEN” and each ‘ELSE” 1

at most L + 3
where L is the
number of for
list elements

For each for statement

Length of constant

pool <(256 - NPB) x 4096 bytes

The requirements of components within the pool
are

Integer constant 4 bytes
Real constant
(SHORT) 4 bytes
Real constant
(LONG) 8 bytes

2 + number of
symbols of open
string between
the outermost
string quotes

The constant pool is divided into blocks of 4096
bytes each, The first block contains the integer
constants 0 to 15 (64 bytes). All strings together
are restricted to fill not more than the rest of

this block (4096 - 64 - 28 bytes, where S =

number of strings).

No constant occurring more than once in the source
program is stored twice in the same block; however,
it may possibly be stored more than once in differ-
ent blocks. Up to seven bytes may be left unused,

String (in bytes)

Length of data storage area
for each block or procedure

declaration <4096 bytes

Number of blank spaces
serving as delimiters on

1/0 data sets <255
Number of records in a
data set =32760

Programming Considerations 25

Form C33-4000-0, Page Revised by TNL N33-8013,

Number of records per
section <255

Number of entries in the
Note Table <127

(The Note Table stores information to retrieve
records which may be required again later. An
entry for a record is made each time the ALGOL I/0O
procedures PUT and SYSACT13 are executed, and
each time an input operation, with backward repo-
sitioning, follows an output operation on the same
data set.)

Identification number (N)used

by PUT or GET 0<N<65535

INVOKING A PROGRAM WITHIN A JOB STEP

Any one of the four macro-instructions, CALL,
LINK, XCTL or ATTACH, may be used to dynam-
ically invoke the compiler, linkage editor and load
module within a job step. This is an alternative

to the more usual method of invoking a program

by starting a job step with an EXEC statement.

Full details of the four macro-instructions are
given in IBM System/360 Operating System: Super-
visor and Data Management Macro-Instructions.

To invoke a program with the CALL macro-
instruction, the program must first be loaded into
main storage, using the LOAD macro-instruction.
This returns, in general register 15, the entry
address which is used by the CALL macro-instruc-
tion, The instructions used could be:

LOAD EP=member-name
LR 15,0
CALL (15), (option-address), VL

To invoke a program with one of the LINK,
XCTL or ATTACH macro-instructions would need
instructions such as:

LINK EP=member-name,
PARAM=(option-address), VL=1

XCTL EP=member-name

ATTACH EP=member-name,

PARAM=(option-address), VL=1

26

6/26/68

"member-name' specifies the name of the mem-
ber of a partitioned data set which contains the pro-
gram required.

For the compiler, member-name=ALGOL
For the linkage editor, member-name=IEWL

For the load module, member-name is speci-
fied by the programmer in the SYSLMOD DD state-
ment for the linkage editor,

“option-address' specifies the address of a
list containing the options required by the user.
An address must be given even if no options are
specified. The list must begin on a half-word
boundary. The first two bytes contain a number
giving the number of bytes in the remainder of
the list. (If no options are specified this number
must be zero). The list itself contains any of the
options available to the PARM parameter in an
EXEC statement (see Appendix E).

When using CALL, LINK or ATTACH to invoke
the compiler, other ddnames may be used in place
of the standard ddnames given in Section 2 for the
data sets and an alternative page number (instead of
the normal 001) may be specified for the start of
output listings.

If alternative ddnames are used, then in the
statement invoking the compiler, "option-address"
must be followed by '"ddname-address' giving the
address of a list containing the alternative ddnames,
If alternative page numbers are used, then "page-
address' giving the address of a location contain-
ing the alternative page number must be placed
after "ddname-address'; though if alternative
ddnames are not required ""ddname-address' may
be replaced by a comma,

The ddname list must begin on a half-word
boundary. The first two bytes contain a number
giving the number of bytes in the remainder of
the list. The list itself contains up to ten 8-byte
fields, separated by commas, for specifying al-
ternative ddnames for the data sets, As only seven
data sets are used by the compiler, three of the
fields are left blank, The alternative ddnames
must be listed in the following order:

Purpose of data set Standard ddname

Output of object module SYSLIN

for linkage editor

Form C33-4000-0, Page Revised by TNL N33-8013, 6/26/68

~- Three blank fields --

Source program input SYSIN
Information listings SYSPRINT
Output of object module SYSPUNCH
for card deck B
Intermediate work SYSUT1
Intermediate work SYSUTZ2
Intermediate work SYSUT3

The field for a data set which does not use an
alternative ddname must be left blank if there is
an alternative ddname following., Otherwise the
field is omitted.

The location containing the page number must
begin on a half-word boundary. The first two
bytes contain a number giving the number of bytes
in the remainder of the location (namely, four),
These four bytes contain the number for the first
page of the output listings, and on return to the
invoking program they will contain the number of
the last page.

An example of an invoking statement and the
associated lists, for the compiler, is:

COMPILE LINK EP=ALGOL,PARAM=
(OPTIONS, DDNAMES, PAGE),
VI=1

OPTIONS DC H%5%CPROCEDURE, DECK,

SIZE=90112"

DDNAMES DC H'35” C‘OUTPUThb,3CL8"",

CINPUTbbb”, CL8 D",

C ‘CARDDECK*
PAGE DC H04%,F62°
b = blank

In this case, the PROCEDURE and DECK op-
tions are specified and 88K bytes of main storage
are made available, Alternative ddnames are
specified for SYSLIN, SYSIN and SYSPUNCH, and
62 is specified as the first page number for the
output listings.

PRECOMPILED PROCEDURES

An ALGOL program may invoke one or more sub-
programs, written in the ALGOL language or in the
Agsembler language and stored on a partitioned data
set in load module form. Subprograms of this type
are known as precompiled procedures.

A precompiled procedure to be invoked by an AL-
GOL program must be nominally declared in the calling
program. The declaration consists of a normal pro-
cedure heading, followed by the delimiter “CODE”
representing the procedure body. " The name of the
precompiled procedure declared in the calling pro-
gram must be the load module name of the precom-
piled procedure.

A precompiled procedure is loaded into main stor-
age when control passes to the program block in which
the precompiled procedure is declared, and is deleted
when control leaves that block, Where possible, a
precompiled procedure should be nominally declared
in the outermost block of the calling ALGOL program,
The declaration of a precompiled procedure in another
precompiled procedure which is frequently invoked,
should be avoided. This saves execution time by re-
ducing the number of loadings of the precompiled pro-
cedure,

The precision of real values must be the same,
SHORT or LONG, in the calling ALGOL program and
the precompiled procedure, If the installation allows
multiprogramming, the REUS option (Appendix E) may
not be specified for the precompiled procedure load
module, in the statement invoking the linkage editor.

ALGOL Language Procedures

A precompiled procedure written in the ALGOL lan-
guage must satisfy the rules, as stated in IBM System/
360 Operating System: ALGOL Language, governing
any normal procedure declaration, That is to say,

the source module should comprise a procedure heading
and a procedure body. The source module should not
be enclosed by the delimiters “BEGIN” and ‘END",

An ALGOL procedure to be invoked in'a later pro-
gram must be compiled, linkage edited and stored on
a partitioned data set. In the invoking statement, the
source module. must be identified as a precompiled
procedure by specifying the option PROCEDURE,

An example of the job control statements needed to
compile and linkage edit a. precompiled procedure is
provided in Figure 32, Figure 33 illustrates the job
control statements needed to compile, linkage edit
and execute an ALGOL program in which a precom-
piled procedure is called.

Programming Considerations 27

Form C33-4000-0, Page Revised by TNL N33-8013,

Assembler Language Procedures

A sample Assembler language procedure, and an
ALGOL program in which the procedure is nominally
declared and called, are shown in Figure 17.1,

Figure 33 contains an example of the job control state-
ments needed to compile, linkage edit and execute an
ALGOL program in which a precompiled procedure

is called.

In writing an Assembler language procedure, cer-
tain rules must be observed. These rules are out-
lined below under the headings Entry and Start, Defi-
nitions, Register Use, Parameter Handling, and Ter-
mination.

In the instructions given below the programmer
may specify any valid names in the name fields, pro-
vided the appropriate name is used in all references.

The entry point of the module must be defined as
follows (the names shown are examples only):

ENTRY DC A(PBTAB, 0, PARMDEF)
where 'ENTRY" is the location specified in the END
statement; "PBTAB? references a Program Block
Table (see '"Definitions", item 1); 0 represents a
dummy label; and PARMDEF references a list of
two-byte parameter definition constants or charac-
teristics (Figure 17), as follows:

X1L2%characteristic 1~
XL2“characteristic 27

PARMDEF DC
DC

DC X1L2“characteristic n”
(First instruction executed)

The list must include a characteristic for each
formal parameter and must be followed by the first
instruction to be executed in the module. If the pro-
cedure has no parameters, PARMDEF must refer-
ence the initial instruction.

Definitions
The following data must be defined in the Assembler
language procedure,

28

6/26/68

1. A 16-byte table, called the Program Block
Table, must be defined:

PBTAB DS F

DC CI4 “(proc. name)”

DS F

DC H “(DSA length)”

DC X 04~ [08" if type-
procedure]

DC X 0p“p = no, of formal
parameters

"proc, name' represents the first four charac-
ters of the module name, "DSA length' repre-
sents the length of the procedure’s data storage
area, The length is 24 (+8 if the pi‘ocedure is
tvpe-qualified), + 8 x number of formal param-

« rs., The Program Block Table must be
addressed by an address constant at the procedure
entry point (see "Entry and Start™). and should
preferably be defined at the base address of the
procedure (see '"Register Use'', item 4),

2. Certain registers used in communicating with
Fixed Storage Area routines must be symbolically
named (see "Register Use', item 1).

3. The following symbolic displacement values must
be defined for those Fixed Storage Area routines
which are invoked in the procedure:

CAP1 EQU X0D4~
CAP2 EQU X0D8*
PROLOGFP EQU X0DC’
RETPROG EQU X0E4°
EPILOGP EQU XYVE8”
CSWEL EQU XF4~
VALUCALL EQU X"118°

See "Parameter Handling'" and "Termination',

4, A list of parameter definition constants, identi-
fying the character of the formal parameters, if
any, must be defined. See "Entry and Start" and
Figure 17,

5¢ An address constant containing the address of the
Program Block Table (item 1 above) and a param-
eter definition list, must be defined at the load
module entry point,

Form C33-4000-0, Page Revised by TNL N33-8013,

The standard IBM linkage conventions are not
implemented in any code generated by the compiler
involving a transfer of control between an ALGOL
load module and a submodule. For this reason,
provision must be made in a submodule to insure
that externally used registers to be used internally
are, at entry, saved in a local save area (and re-
loaded before exit), and that, where necessary,
internally used registers are saved in advance of
every parameter call,

All general purpose and floating point registers
may he freely used in an Assembler language pro-
cedure, subject to the restrictions itemized below.

1. In the code sequences for calling actual param-
eters (see '"Parameter Handling'), registers 8,
10, 11, 18, 14 and 15 are symbolically referenced,
Every register so referenced in a calling sequence
within the precompiled procedure must be defined
as follows:

ADR EQU 8
CDSA EQU 10
PBT EQU 11
FSA EQU 13
STH EQU 14
BRR EQU 15

2. During every call for an actual parameter and
before final exit from the precompiled procedure,
registers CDSA (10), PBT (11) and FSA (13) must
contain their values at entry to the procedure,

At entry, CDSA addresses the Assembler language
procedure’s data storage area; PBT addresses

the Program Block Table (see '"Definitions',

item 1)y and FSA addresses the Fixed Storage Area,
If any of these registers are used internally, other
than in actual parameter calls, their contents

must be saved in a local save area at entry to the
procedure, and must be reloaded before all param-
eter calls and before final exit,

3, Before every call for an actual parameter, the
contents of all internally used registers, required
after the parameter call, should be saved in a
local save area and reloaded on return,

4, All registers except registers 10, 11 and 13 are
subject to varying use during a parameter call.
The programmer is advised to use register 11 as
base register and to specify the Program Block
Table ("'Definitions', item 1) in the USING state-
ment, as illustrated in Figure 17,1, This:insures
that the base register is always correctly loaded
before return to the procedure.

6/26/68

A call for an actual parameter must be implemented
by means of an appropriate calling sequence, which
depends on the character of the parameter and on
whether it is called by name or by value.

In the instructions given below, the notation "displ"

represents the displacement of a field reserved for the .

formal parameter in the precompiled procedure’s
data storage area. The displacement of the storage
field of the nth formal parameter is

24 + 8 (n-1), except in the case of a
type procedure where it is 32 + 8 (n-1).

Important Note: Before every call for an actual para-
meter, all locally used registers should be saved and
registers CDSA, PBT and FSA should contain their
original values at entry to the precompiled procedure
(see '"Register Use'). On return from a parameter
call, locally used registers should be reloaded.

Call by Name

1. Formal parameter specified ARRAY", STRING "
or type REAL’, INTEGER”or BOOLEAN*

BAL BRR, CAP1 (FSA)
DC H 8*

DS H

L ADR, displ (CDSA)

On return, register ADR addresses the actual
parameter value or string or the actual array’s
storage mapping function, The storage mapping
function describes the storage layout of the array.
Bytes 8 to 11 contain the address of the first ele-
ment in the array, The array elements are
arranged in ascending order, a given subscript
being regarded as a unit of the subscript position
immediately to the left, For example, if an
array is declared A(/1:2, 1:2), the elements are
arranged as follows: A(/1,1/), A(/1,2/),
A(/2,1/), A(/2,2/).

2, Formal parameter specified "LABEL"%

BAL BRR, CAP1 (FSA)
DC H 8~°

DS H

L ADR, displ (CDSA)
B RETPROG (FSA)

The sequence causes an unconditional branch to
the labelled statement in the calling ALGOL pro-
gram,

Programming Considerations 29

Form C33-4000-0, Page Revised by TNL N33-8013,

3, Formal parameter specified “SWITCH %

BAL BRR, CAPL (FSA)

DC H 8°

DS H

L ADR, displ (CDSA)

LA BRR, i [i = component
number]

BAL STH, CSWEL (FSA)

B RETPROG (FSA)

The sequence causes an unconditional branch to
the labelled statement in the calling ALGOL pro-
gram,

4, Formal parameter specified PROCEDURE” or
<type”” ‘PROCEDURE “ with j formal parameters:

BAL BRR, CAPI1 (FSA)

DC H B’
DS H
L ADR, displ (CDSA)

BAL BRR, PROLOGFP (FSA)
DC A (CODESEQ. 1)

DC XL2 “‘characteristic 1~
DC H 5

DC A (CODESEQ. 2)

DC XL2 ‘characteristic 2~
DS H

DC A (CODESEQ.j)
DC XL2 éharacteristic j°
DS H

"Characteristic 1" represents the two-byte
constant (Figure 17) which identifies the charac«
ter of the first actual parameter,

"CODESEQ. 1" represents the symbolic address
of an actual parameter code sequence correspond-
ing to the first parameter, as follows:

CODESEQ.1 LA ADR, par.add, 1
B CAP2 (FSA)

where "'par. add. 1" represents the address of the
actual parameter, (If the parameter is a string,
the first two bytes of the actual parameter should
contain the string length +2), A similar code
sequence must be included in the procedure for
each of the j parameters of the procedure, and
each code sequénce must be addressed by an
address constant, as shown above.

29,1

6/26/68

Execution of the calling sequence causes an actual
procedure to be called,

Call by value

Formal parameter specified "ARRAY " or type
“REAL , "INTEGER” or “BOOLEAN":

BAL BRR, CAPI1 (FSA)

DC H 8~

DS H

L ADR, displ (CDSA)

BAL BRR, VALUCALL (FSA)
DC H “displ”

DC CL2 “characteristic”

"displ' represents the displacement of the formal

parameter’s storage field in the data storage area:
""characteristic' represents the two-byte charac-
teristic (Figure 17) of the formal parameter.

In the case of a type specification, the calling
sequence causes the value of the actual parameter
to be moved into the 8-byte field of the formal para-
meter. In the case of an array, the address of the
array’s storage mapping function is stored in the
first four bytes of the formal parameter”s storage
field. Bytes 8 to 11 of the storage mapping func-
tion contain the address of the first element of the
array.

Termination

At the close of a precompiled procedure, the follow-
ing must be observed.

1. Registers CDSA, PBT and F'SA must, where
necessary, be reloaded with their original con-
tents at entry to the precompiled procedure,

2, If the precompiled procedure is type—qualified,
the value of the procedure must be stored at dis-

placement 24 in the data storage area, The
latter is addressed by CDSA.

3. The terminal instruction must be
B EPILOGP (FSA)

This returns control to the calling ALGOL pro-
gram,

Type of Characteristic Halfword
Parameter (in hexadecimal form) Result after call of actual parameter
When called When called
by name by value

STRING CB10 ADR contains address of string

REAL Cc212 ADR contains address of real value

REAL Cc222 DISPL in CDSA contains real value

INTEGER c211 ADR contains address of integer value

INTEGER c221 DISPL in CDSA contains integer value

BOOLEAN C213 ADR contains address of Boolean value

BOOLEAN Cc223 DISPL in CDSA contains Boolean value

ARRAY or REAL} CAl6 ADR contains address of SMF (see below)

ARRAY CA26 DISPL in CDSA containg addreéss of SMF

INTEGER ARRAY CA1l5 ADR contains address of SMF

INTEGER ARRAY CA25 DISPL in CDSA contains address of SMF

BOOLEAN ARRAY CA17 ADR contains address of SMF

BOOLEAN ARRAY CA27 DISPL in CDSA contains address of SMF

LABEL CA18 ADR contains address of label

LABEL CA28 ADR contains address of label

SWITCH CA1lC ADR contains address of switch

PROCEDURE CADO If the actual procedure is parameter-less then
procedure is called, otherwise ADR contains
address of procedure

REAL PROCEDURE | CAD2 If the actual procedure is parameter-less then
procedure is called, and ADR contains address
of real value, otherwise ADR contains address
of procedure

REAL PROCEDURE C2E2 DISPL in CDSA contains real value

INTEGER PRO- CAD1 If the actual procedure is parameter-less then

CEDURE procedure is called, and ADR contains address
of integer value, otherwise ADR contains address
of procedure

INTEGER PRO- C2E1 DISPL in CDSA contains integer value

CEDURE

BOOLEAN PRO- CAD3 If the actual procedure is parameter-less then

CEDURE procedure is called, and ADR contains address
of Boolean value, otherwise ADR contains address
of procedure

BOOLEAN PRO- C2E3 DISPL in CDSA contains Boolean value

CEDURE

Figure 17, Table of parameter characteristics for an Assembler language precompiled procedure. The
SMF describes the storage layout of an array. Byte 0 contains a value denoting the number of subscripts
in the array. Bytes 8 to 11 contain the address of the first element in the array. Bytes 16 to 19 contain

a value denoting the size of the array.

30

Form C33-4000-0, Page Revised by TNL N33-8013, 6/26/68

The following is an Assembler language procedure. It is declared under the name COMP (in the ALGOL program below)
with the formal parameters V1, V2 and L. V1 and V2 are integers, while L is a label. COMP is called by the ALGOL
program and compares V1 to V2. If V1 < V2, the constant 1 is added to V1, and control is returned to the next instruc-
tion in the calling program. f V1 > V2, control is returned to the calling program at the address specified for label L.

START
*
ADR EQU 8
COSA EQU 10 MANDAT ORY
PBT EOU 11 REGIST ER
FSA EQU 13 DEFENIT ICNS
BRR EQU 15
..
REGVI EQU CDSA LocaL
PEGADVI EQU FSA REGISTER
REGV2 EQU 12 DEFINITICAS (OPT IONAL)
*
CAP1 EOU X'0D4* MANCAT CRY
VALUCALL EQU X'118° FIXED'
EPILOGP EQU X'CER? STGRAGE AREA
RETPROG EQU X'0E4* DEFINIT ICNS
*

USING PBTABP8T
PBTAB DS F ‘

DC CL4'COMP® PROGRAM

DS F BLCCK

DC Hv48¢ TABLE

oc X*C4C3*

*
ENTRY ° nc A(PBTAB ¢ C+PARMDEF)
*

ALSAVE DS %F SAVE AREA FCR CDSA AND FSA
USSAVE DS 15F AND FOR LOCAL REGISTERS
ONE oc HiLe CONST ANT
PARMDEF DS oH

ocC XL2%C 211" CHARACTERIST IC GF V1

oc XL24C221 ¢ v2

oC XL2'CALB? L
&«

ST CDSAJALSAVE SAVE C0SA

ST FSAL.ALSAVE+S AND FSA

BAL BRR,CAPL(F SA) CcALL

oc Hige vi

DS H BY

L ADR 24(CD SA) NAME

LR REGAD V1 ,ADR

L REG V1 0(ADR) LOAD V1

STM 12,10,USSAVE SAVE LOCAL REGISTERS

L CDSA,ALSAVE RELCAD COS A

L FSAALSAVES4 AND FSA

BAL BRR,CAPL{F SA) CALL

oc Hegs v2

DS M BY

L ADR 432(CD SA) VALWE

BAL BRR,VALUCALLIFSA) V2 IS CCNVERTED TO INTEGER ANC
* STORED IN CSA

DC Ht320

nc XL2°C 2211

MVC USSAVE{4) 432(CDSA) MOVE V2 TC SAVE AREA

LM 1241C,USSAVE RELGAD LCCAL REGISTERS
* REGV2 CONTAINS V2

CR REG VL ,REG V2 CCMPARE V1 TC V2

BH LEXIT Vi > v2

AH REGVL,ONE VL ~> V2: ADD 1 TO V1

ST REGVL,C(REGADVL} STORE V1
*

L CD SA JALSAVE RELCAC CCSA

L FSA,ALSAVE+G ANC FSA

8 EPILOGP(F SA) RETURN TC CALLING PRUGRAM
*
LEXIT EQU %

L CDSA yAL SA VE RELOAD COSA

L FSAJALSAVE+4 AND FSA

BAL BRR,CAPL(F SA) cALL

0C Htar L

ns M BY

L ADR 4 CLCD SA) NANE

8 RE TPROG (F SA) RETURN TC CALLING PROGRAM

FND ENTRY

The following ALGOL program reads a number from Data Set Number 0, assigns the number to the variable I, and invokes
the Assembler language procedure COMP. The call to COMP includes three actual parameters: the variable |, the constant
200.5 and the label OUT. COMP compares | to 201 (200.5 converted to integer). If 1 << 201, COMP adds 1 to | and returns
control to the next statement in the ALGOL program. COMP is then called again. The call is repeated until | > 201, at
which time COMP passes control to the statement labelled QUT.

TREGIN
CINTEGER® I3
*PROCEDURE * COMP{VL V24L) 3 *VALUE® V2; *INTEGER®' V.1,V2; 'LABEL' L;
CNDE* 3
'COMMENT® THIS NOMINALLY DECLARES THE ASSEMBLER PRCCEDURE COMP;
ININTEGER (0,1}

CONT: COMP(I,42C0.5,0UT) 3
'GNTOY CONTS

nuT:

TEND?

oTigure 17.1, Example of an Assembler language procedure and an invoking ALGOL program,

ALGOL Library Routines 30.1

IHIOBA

THIOBO
THIOIN
THIOST
IHIOSY
IHIOTA

IHIPTT

IHISAT

THISEX
IHISL.O
ITHISOR

THISSC

THISSQ

THISYS

IHCSATAN

THCSEXP

. IHCSLOG

IHCSSCN

IHCSSQRT

For OUTBARRAY

For OUTBOCLEAN
For OUTINTEGER
For OUTSTRING
For OUTSYMBOL
For OUTTARRAY

For INREAL, OUTREAL, ININTEGER or
OUTINTEGER

For a short precision arctangent
operation (ARCTAN)

For a short precision exponential operation (EXP)
For a short precision logarithmic operation (L.N)
For a short precision OUTREAL operation

For a short precision sine or cosine operation
(SIN or COS)

For a short precision square root operation
(SQRT)

For SYSACT

70

400

420

300

290

120

270

200

280

210

810

260

170

1890

Figure 18. Table of ALGOL library modules. All are contained in SYS1. ALGLIB except IHIERR

which is in SYS1. LINKLIB. For mathematical routines, the corresponding name in the FORTRAN IV

library is also given.

ALGOL Library Routines

33

Form C33-4000-0, Page Revised by TNL N33-8013,

6/26/68

APPENDIX B: IBM-SUPPLIED CATALOGED PROCEDURES

The three cataloged procedures for ALGOL that
were introduced in Section 2 are contained in the
procedure library, SYS1, PROCLIB, of the oper-
ating system. They consist of the job control state-
ments listed below.

The procedures may be used with any of the
08/360 job schedulers. When parameters required
by a particular scheduler are encountered by another
scheduler not requiring those parameters, either
they are ignored or alternative parameters are sub-
stituted automatically., For example, if these pro-
cedures are used with a sequential scheduler the
following parameters, which are required for the
multiprogramming option with variable number of
tasks (MVT), are treated as follows:

REGION=xxxxK is ignored
SYSOUT=B is interpreted as UNIT=SYSCP
DISP=SHR is interpreted as DISP=(OLD,KEEP)

Before use, these procedures should be studied
with a view to modifying them for greater efficiency
within the particular environment of the installation.

In installations using the MVT option of OS/360,
the REGION specifications for the compilation and
linkage editing steps must be altered where neces-
sary to suit the available storage. The REGION
specification for the compilation step must be at least
4K bytes greater than the storage specified in the
compiler SIZE option. In the three procedures in
which the Linkage Editor is invoked, a REGION of
96K has been specified for the linkage editing step.

If necessary, this REGION specification may be
reduced to conserve storage. The minimum REGION
specifications for the various design levels of the
Linkage Editor are:

@ Compilation, ALGOFC

Linkage Editor REGION Specification

E1l5 24K
E18 26K
E44 54K

Installations using the MVT option must also insert
a REGION specification for the execution step in
procedure ALGOFCLG, unless the default inter-
pretation is acceptable., The default interpretation
is the size required by the system task initiator
(i.e., 50K).

Installations not using the MVT option of 0S/360
should remove the superfluous parameters.

In addition, the following general recommenda-
tions should be considered:

When the MVT option is used, a SPACE
parameter may be required for SYSPRINT
if the deviceis other than a printer

the PARM fields for compilation and
linkage editing steps should follow
installation conventions

the SPACE and UNIT parameters for tem-
porary data sets should be modified
according to installation configuration

and conventions

blocking factors should be specified
for output data sets

For further information on writing installation
cataloged procedures, see the publication
IBM System/360 Operating System, System Program-
mer s Guide.

|/ /ALGOL. A_L_E;XLE.QWPACLELBJ‘.GQL.,&E@L.QN_&&&_“AAA et s s . N U
LISY.SPRINT, DD, SYSQUT =R e PP R TS -

LISYSPUNCH DD, . .. SYSOUT8& ., .. s e NP N N . N N
mmmm&m&m&zm@m&&% L X

.

S S "

......

AAAAA

34

Torm C33-4000-0, Page Revised by TNL N33-8013,

e Compilation and Linkage Editing, ALGOFCL

6/26/68

LIRLGOL, . EXEC . PGM=AL GOl REGION 48K . s R . —s ——a

[LSY.SPRANT. OD . o SYSOUT.=R o o oo , R O S A
LLSY.SPUNCH, DD, .SYSOUT B, e - . .
1/, L5Y.SLIN . DD L, DSNAM MM@@L&M&LM b X

Q, SEP.= 5. SPRANTy SPACE.® (1024 (58yd @)) s st v

#LA_LM_E,_MW ODGPASSY L didbs s b s et

n n

n
i

L/_éiéul&.u DD BNITESXS

LLLRED . FXEC . PGM=LEWL,PARM= XREF. L] S, LET.'.oC.OND.= /’-3 LT oALGOLY g oo X,

W@M@4LLMF@%1MA b
2/ SYSUT3, DD UNIT=SYS0R, SPACE= (1828, (40, 10N o v S e

L1 PR REGION>9OK, + ot vv v e v v a i ey PR PSRN N S S R

/L SYSPRINT, DD U.SYC»OUTH N e a s i

/L (SYSLAN. o Mmmmwmmm} bbb ks s

/v DD DDNBAMESSYSIEN

SN W U WD WIS WEEPUNS W W S | 1 Abod A i A 4 4 i
[SXSIAB L. DD DONAME: SY S ALGL Ry DISPOESHR 1y fd i ks e
L4SYSLMOD , DD . DONAME =EGOSET (GO) .UNLIT=.5YSDH..D\.SJP AMOJLPBS&\,. e)(

Ll ou . LL4‘S.PACE=(1Q)2H (5¢\4L¢.1)\ NP s

eCompilation, Linkage Editing and Execution, ALGOFCLG

IMQLHLX&A_PM&M&Q&_&&&M+- et e A
LISY.SPRYNT. DD, L OYS0UT =B s P S S U S S S R D S S SR G S SRR
IJ.SL.WL%M.& . . .
LSYSLIN . QD ... DONAMES: £l OBDSE T UN.LT " 5Y¢s‘>0 5.Ep‘ mspumm.“ R . SO
Leoat SPACE.- (360 ABustt)) 2D SP(MODGPASS e oo o iat i
zwwmmmmma)
//SYSUT2, . DD ., UNIT=8Y55Q, SERPSY ST, SPACE.-. (1.024, .A(.§AQ..J.¢ ! e e aaaa
/. /Sy £ : B, SPACE. {14 B dBY) . o
[ALRED o EXEC . PGS LEMLL, PARM = XREF., LIST,LET. , COND.= (8., LT..HLGOL\.,. e X
(le o oisinin .. REGION=IEK oot . R \
LISYSPRINT. DD, .. SYSOUT=A , e e e]
.[LLﬁLY_&LLHﬂ._L e M&Bﬁm&lﬁ&m %JDEIL\AEIEL)A._A_LA_A.J—I—A—AJ-A—L—A—I—LJ_LJ_J a1
eroe DD .. DDNAMESSYSIN o 40 o R
/sY.su B ., DD. ... DSNAME.= 5.Y5.1..R,LGLIB..D.I.S.P.‘.S)HR i e i
LLSYSLMOD. , DD o DONAME * EGOSET (GO) 4 LN T=5Y.SDR, DLSP,* (MOD, pnss\ NN LXL .
VAR SPHCE-(1®&44/5¢72@AM).L....... et

(8, LT, LKED\\

/. /DY .S LMWW'WLMZ&*@@M}W
1 LGO 4 . At

o EXEG L PGMEAG LKED SYS)E MON, COMND (5., LTy RLGDL,,\
LLBALGIDDGY, DD o SYSOUT B o e b T

[/ /SYSPRAINT, DD L, SXSOUT A N S

/ /SYSUT . MMY&MBHM&MWHM_J N S

IBM -Supplied Cataloged Procedures 35

APPENDIX C: CARD CODES

The card deck of the source program is punched
line for line from the text written on the coding
sheets, The card code used can be either a 53
character set in Extended Binary Coded Decimal
Interchange Code (EBCDIC), or a 46 character
set in Binary Coded Decimal (BCD), This latter
character set has been established as standard
for ALGOL by the International Standards Organ-
ization (ISO) and Deutsche Industrie Normen

(DIN)., Figure 19 shows these two codes.
Characters EBcgiéd COdeSISO/DIN
Ato Z 12-1 to 0-9 12-1 to 0-9
0to9 0to9 0to9
+ 12-8-6 12
- 11 11
* 11-8-4 11-8-4
/ 0-1 0-1
= 8-6 8-3
, 0-8-3 0-8-3

12-8-3 12-8-3
‘ 8-5 8-4
(12-8-5 0-8-4
) 11-8-5 12-8-4
blank no punch no punch
< 12-8-4
> 0-8-6

12-8-7
& 12
- 11-8-7

8-2
: 11-8-6

Figure 19. Source program card codes.

36

AFF=ddname indicates that the data set is
to use the same I/O devices as the data set spec-
ified in the DD statement named ""ddname' in
the same job step.

SPACE=subparameter-list

indicates the space required when a direct ac-
cess device is specified in the UNIT parameter,
The "subparameter-list" contains only posi-
tional subparameters, The list is:

TRK
CYL primary-quantity
average-record-length)

[secondary-quantity J[directory -or-index~quantity]

MXIG
[RLSE]L { ALX

} J[ROUND]
CONTIG

The first subparameter specifies the units
in which the space requirements are expressed,
that is, tracks, cylinders or records (with length
given in bytes).

The next subparameter specifies the space
required, It has three parts (of which the se~
cond and third are optional) and is enclosed in
parentheses if more than one part is specified.
If the second part is omitted, then it must be
substituted by a comma if the third part is in-
cluded. The initial space to be allocated is given
by "primary-quantity', Each time this initial
space is filled, additional space is to be pro-
vided as specified by ''secondary-quantity",
The number of 256 byte records to be allocated
for the directory of a new partitioned data set,
or the number of cylinders, taken from the ini-
tial space reserved, to be allocated for the in-
dex of an indexed sequential data set, is given
by "directory-or-index~-quantity,

RLSE indicates that any unused space assigned
to the data set is to be released.

MXIG requests that the largest single block of
storage available is to be allocated to the data
set,

ALX requests that extra blocks of storage (in
track units) are to be allocated to the data set.
As many available blocks that are equal to or

greater than "primary—quantity', up to a max-
imum of five, will be allocated.

CONTIG specifies that the space specified by
"primary -quantity' is to be in a single block.

ROUND requests that when records are used

to express the space required on the direct ac~
cess device, the space is to begin and end on
cylinder boundaries,

DISP=subparameter-list

indicates the status of the data set and speci-
fies its disposition at the end of the job step.

The "subparameter-list' consists of the fol-

lowing positional subparameters:

S
OLD

MOD [{ PASS]
SHR | CATLG

UNCATLG

NEW specifies that the data set is to be gene-
rated in this job step, and would be deleted at
the end of the job step unless KEEP, PASS or
CATLG is specified,

OLD specifies that the data set already exists,
and would be kept at the end of the job step un-
less PASS or DELETE is specified,

MOD specifies that the data set already exists
and is to be modified in this job step. If the
data set cannot be found by the operating system
then this parameter is equivalent to NEW,

SHR specifies that, in a multiprogramming en~
vironment, an existing data set may be used
simultaneously by more than one job,

DELETE specifies that the space used by the
data set (including that in the data set catalog,
etc.) is to be released at the end of the job
step.

KEEP specifies that the data set is to be kept
at the end of the job step.

PASS specifies that the data set is to be re-
ferred to in a later step of this job, at which

Using Job Control Language 45

Form C33-4000-0, Page Revised by TNL N33-8013,

time its final disposition, or a further pass,
will be specified.

CATLG specifies that the data set is to be ca-
taloged at the end of the joh step, Thus KEEP
is implied, The catalog structure must already
exist,

UNCATLG specifies that the data set is to be
deleted from the catalog at the end of the job
step. KEEP is implied.

SYSOUT=subparameter-list
specifies the printing or punching operation to
be used for the data set, The "subparameter-
list" is:

classname [progname [number]

""classname specifies the system output class
to be used. Up to 36 different classes (A to Z,
0 to 9) may be fixed by the user for his instal-
lation, according to device type, priority, des-
tination, etc. The standard classname is A.
Classes 0-9 should only be used when the other
classes are insufficient,

"number'" can be used to specify an installation
form number to be assigned to the output.
""progname" can be used to specify the name of
a user-written output routine,

For sequential scheduling, the '"subparame-

ter-list' consists of only the standard class-names
A and B. SYSOUT=B is interpreted as UNIT=SYSCP.

VOLUME=subparameter-list
indicates the volume or volumes assigned to the
data set. If the data set is cataloged this param-
eter is not necessary. The "subparameter-list"
is:

Positional
subparameters tPRIVATE] ER ETAIN :I [ilumber] fvalue]
Keyword SER=list-of-serial-numbers
subparameters

dsname

¥, ddname

RET= *, stepname. ddname
*, stepname. procstep.
ddname

PRIVATE specifies that the volume is to be dis-
mounted after the job step and that other data sets
will not be assigned to the volume unless a specific
request is made,

46

6/26/68

RETAIN specifies that, if possible, the volume
is to remain mounted until referred to in a later
DD statement, or until the end of the job, which-
ever is first,

"mumber' is any number between 2 and 9999, and is
used if an input or output operation, on a cataloged
data set residing on more than one volume, does not
start on the first volume of the data set. The num-
ber specifies the volume on which input or output is
to start (for example, 3 indicates the third volume
of the data seft).

"value' specifies the number of volumes re-
quired by an output data set. It is not required
if SER or REF is used.

SER=list-of-serial-rnumbers, specifies the se-
rial numbers allocated by the user to the volumes
required by the data set. These serial numbers
can congist of between one and six alphameric
characters.

dsname
*, ddname
REF= *, stepname. ddname

¥, stepname, procstep. ddname

specifies that this data set is to use the same
volume or volumes as the data set specified by
one of the alternative sub-subparameter forms,
If the latter data set resides on more than one
tape volume, then only the last volume (as spec-
ified in the SER subparameter) can be used,

LABEL=subparameter-list
indicates the type of label or labels associated
with the data set. If the data set is cataloged
this parameter is not necessary. The "sub-
parameter-list'" is:

NL

" 5L
Positional [number | { NSL
subparameters SUL
BLP
Keyword {EXPDdedd}

subparameters RETPD=dddd

"number'" is any number between 2 and 9999,
and specifies the position of the data set on the
volume (for example, 3 would indicate the third
data set on the volume).

NL, SL, NSL, and SUL specify the type of label
or labels to be used, that is, no labels, stan-
dard labels, non-standard labels, and standard

Form C33-4000-0, Page Revised by TNL N33-8013, 6/26/68

//WEATHRP JOB MSGLEVEL= 0 . . .

Y SN S 2 i -

//JORLIB,_DD DSN, AM&MML&;MAQ&L;_H_L

SIS TR DY IV UMY WY Y U S T VU W VS W WP S SO SO

//CREATE EXEC PGM=FILECR .

IIAJ;QD_@;_anggdgﬁg-M_ATﬂagL+\ U T (HYPERT. . oDEFER), ..o o X
. NOLUME= (RETAIN,SE 12).,D1SP= EMQLCA_*QQ). T A

4 1 P S e PP WY 4 PP S

// ALGLDD®S, .DD_DSNAME=WEATHER(-1) ,DISP=0OLD
/zﬁg,g) 9, op DSuAme. WEATHER(.g)gbrsv oL .., e

) s LGLD %Au.@loom“ut,A.u”...m‘...‘
//%5 RINT, D,g U.NIT Pngee seP=.(AL LDM&ML&ADDW) e

// T LABEL® (S\.,,.RET t>=,¢¢.3.¢m R . S
72 DCB*= (.R.e.c.l:mntsucsxzs 4¢¢1L&ECL. 80 e et]
//ALGL LMJ:L:SKI T SEP: T .
_Lsxspgm-r DD uMII-pergLa,gwALgn__,bbgz e e

//8YSIN DD * L WEATHER DATA FOLLOWS . . o o e e e e
L MEATHER DATA o o e e
/% INDICATES END .OF DATA R
// FoRECAST. a&gs_ﬁamﬂ&ggT s e e e
J&L%MM@&LH DISP=Q_.Q4_“,W e
|//ALGLDODY, SNAME ZWEATHER(, EPUA,_MM OLD s

TS U W UV WY WU U DU SO U S SRR W S

AAAAAAAAAAAAAAA Y SN SRR UL I S U U S PN S ST SR

Flgure 31. Job control statements for Example 3.

grams FILECR and FORCST are contained in a
partitioned data set WIHRPR,

Explanation of coding: The job control statements
used in Figure 31 specify that:

1. The job is to have control statement messages
plus the relevant control statement printed on
the normal system output device only if an error
occurs

2. The partitioned data set WTHRPR is concatenated
to the operating system library, SYS1, LINKLIB

3. The first job step executes the program FILECR
4, The output data set is
® g new generation of the data set WEATHER
o to use the device class HYPERT
o to be written on volume 0012 which need not
be mounted until the data set is opened, and

is then to remain mounted for later use

o to be cataloged and have standard labels

® {0 be retained for 30 days

® to have fixed length records, 80 bytes long,
and a maximum block size of 400 bytes

The printed output is
® to use the device class PRINTER

® to use a separate channel to the output data
set

The input data is included in the input stream

The second job step executes the program
FORCST

The input data sets are the last four generations
of WEATHER, all of which are to be kept at the
end of the job step

The output data set is

® to use the device class PRINTER

® to use a separate channel to the last two ge-
nerations of WEATHER

Using Job Control Language 51

Form C33-4000-0, Page Revised by TNL N33-8013,

Example 4: Compiling and Linkage Editing an
ALGOL Precompiled Procedure

Statement of problem: The ALGOL language pro-
cedure ADD is to be compiled, linkage edited and
stored in load module form as a member on the
partitioned data set PREPROC, for use in subse-
quent programs. An.illustration of a program in
which ADD is invoked is provided in Example 5,

1, The job is to have all control statements (plus
control statement diagnostic messages if an
error occurs) printed on the normal system out-

6/26/68

Example 5¢ Compiling, Linkage Editing and
Executing an ALGOL Program which Invokes a
Precompiled Procedure

Statement of problem: An ALGOL program in which
the precompiled procedure ADD (Example 4) is in-
voked, is to be compiled, linkage edited and executed,

I’he job control statements in Figure 33 specify:

1, The job is to have all control statements (plus
control statement diagnostic messages if an

put device error occurs) printed on the normal system out-
2. The job step is to invoke the ALGOF CL cataloged put device
" procedure to compile and linkage edit the source

module, which is identified as an ALGOL pre- " ‘ .

compiled procedure 2. The partitioned data set PREPROC, containing

the precompiled procedure ADD, is to be con-

3. A new partitioned data set named PREPROC is catenated to the operating system library,

to be allocated and cataloged; the procedure ADD SYS1, LINKLIB

is to be stored on the data set as a member; and

a primary allocation of 30 tracks (plus a secondary

allocation of 10 tracks, if needed) and a directory 3. The job step is to invoke the ALGOFCLG cata-

of ten 256-byte records is to be assigned to the loged procedure to compile, linkage edit and

data set. execute the ALGOL source program

1/ /CODEPC, OB . MSGLEVEVL =1, e . R s . N

LISTEP EXEC . ALGOFCL.,PRRM. nLGm_ PROCEDURE i i N N . P

L 15Y.SAN. DD LA s e . , - s e

o ‘PROCEDUREH.D.D/H.B Q... NP U w4 e a ey

R MM%MMMAAM e
NP 2K NN I . N L R e .
4* A a4 1 & 2 A oo A A A e A2 A A 4 4 Fue 1 A4 A BN S § A a P SO W S S T U W S WU
/.LKED SYSLMOD .Da qunme-.musprv.oc/nnn\. e N s . N . SN
[/ = “ﬁ.I.S.D‘E‘,n N e
[R _VOLUME=SER=222222, . ., s R PN RN
® Figure 32. Job control statements and source module for Example 4.
|/ /MAINPG OB, . MSGLEVEL N N . N
LLLOBLEE DD . . . DSNAME.=P.REPROC, mSP OLD, s R - i N i
LLS.IJ:_’.L_#.*_.E.lﬂ.lih_._bABJ,‘GAQE.LLﬁhu N s P R e e e
dslsﬁN D!x “.*nl 1 U1 U T W TR U B U W U D Y R Y I e T e i e U SR
1. R PsEGIN.' e . R
s PN REHLEFG.. e i N L R ,

N JAAJPROCFNJREJ.FLDD(R B c\...“““ i L N NN
%AMM@@% CODE g it iiaaas . . e
N T T SR WY =8 : 'W%M#w

N N P .HDD(EFG\... ek tuaa L P N N NP

R . .AOUTRERL(I.G\ R PN .

I A VA O s R SN ia RN —
X . N RN R NP , R i
® TFigure 33. Job control statements and source module for Example 5,

51.1

APPENDIX F: DIAGNOSTIC MESSAGES

Each of the three operations-compilation, linkage
editing and execution -~ may produce diagnostic
messages,

COMPILER MESSAGES

The diagnostic messages that may be produced by
the ALGOL compiler are given below, FEach diag-
nostic message occupies one or more printed lines
and contains:

® The message key, consisting of the letters IEX,
a three digit decimal number identifying the
message, and the letter I to indicate an infor-
mative message requiring no action from the
operator.

® The severity code W, S or T (see below)

® The semicolon number (see Section 3), This
number is sometimes omitted if the error can-
not be directly related to a point in the program,
The semicolon number is indicated in the list
below by the sequence NNNNN

® The message text describing the error and, in
the case of some W or S type errors, the mo-
dification performed on the program by the
compiler., In the message text listed below the
words in parentheses, together with the paren-
theses themselves, will be replaced in the actual
message that is printed, by specific information
taken from the program. The word "operator"
usually refers to all delimiters defined in IBM
System/360 Operating System: ALGOL Language,
but an internal compiler operator may some-
times be listed. The word "operand' refers to
an identifier or an expression,

The three severity codes for errors and their
corresponding compiler action are as follows:

W (Warning): The program is modified inter-
nally and the compilation is continued. The mo-
dification may not make the program correct but
it allows object module generation to continue, A
diagnostic message is produced.

S (Serious): An attempt is made to modify the
program internally, including skipping or changing
parts of it, Generation of the object module is
stopped, but syntax checking continues, A diagnos-
tic message is produced,

52

T (Terminating): A diagnostic message is pro-
duced and the compilation is terminated.

IEX001I W NNNNN INVALID CHARACTER
DELETED.

Explanation: A character not recognized
by the compiler has been deleted from the
program,

IEX002I W NNNNN ILLEGAL PERIOD,
PERIOD DELETED,

Explanation: The character period has
been used wrongly and deleted from the
program. It can be used only as a deci-
mal point, or as part of a colon or semi-
colon,

IEX003I W NNNNN INVALID COLON AFTER
(six characters), COLON DELETED,

Explanation: The character colon has been
used wrongly and has been deleted from
the program. Tt can be used only after a
label, between subscript bounds, within

a parameter delimiter or as part of an
assign symbol,

IEX004I T NNNNN LETTER STRING TOO
LONG,

Explanation: A letter string used to supply
explanatory information exceeds capacity
limitations (see Section 4),

IEX005I S NNNNN IDENTIFIER BEGINS WITH
INVALID CHARACTER. IDENTIFIER
DELETED.

Explanation: An identifier has been de-
leted because it does not begin with an
alphabetic character.

IEX006I T NNNNN LABEL CONTAINS TOO
MANY CHARACTERS,

Explanation: A label identifier has been
used whose length exceeds capacity limi-
tations (see Section 4),

READER’S COMMENT FORM

IBM System/360 Operating System
ALGOL Programmer’s Guide

¢ How did you use this publication?

As a reference source ...
As a classroom text ...
As a self-study text ...

¢ Based on your own experience, rate this publication . .

As a reference source: ...

As a text:

Good

Fair

Fotrm: C33-4000-0

© What is your 0CCUPAtIONT ... s

¢ We would appreciate your other comments; please give specific page and line references
where appropriate. If you wish a reply, be sure to include your name and address.

e Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

I
I
T
BUSINESS REPLY MAIL
STATES
NO POSTAGE NECESSARY IF MAILED IN THE UNITED e —
I
POSTAGE WILL BE PAID BY
]
IBM Corporation]
112 East Post Road e ——
. . I
White Plains, N. Y. 10601
]
Attention: Department 813 I
]
Fold Fold

C33-4000-0

YOUR COMMENTS PLEASE . ..

This SRL bulletin is one of a series which serves as reference sources for systems analysts,
programmers and operators of IBM systems. Your answers to the questions on the back of this
form, together with your comments, will help us produce better publications for your use. Each
reply will be carefully reviewed by the persons responsible for writing and publishing this
material. All comments and suggestions become the property of IBM.

Please note: Requests for copies of publications and for assistance in utilizing your IBM sys-
tem should be directed to your IBM representative or to the IBM sales office serving your
locality.

FIRST CLASS
PERMIT NO. 1359
WHITE PLAINS, N. Y.

B

International Business Machines Corporation
Data Processing Division

112 East Post Road, White Plains, N.Y. 10601
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

VSN ur pequtaid

0-000%—€€D

C33-4000-0

TBM

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y. 10601

0-000F-€€D "V"S'N ul peiulid

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	_1_00_Oct67
	_1_01
	_1_02
	_1_05
	_1_06
	_1_07
	_1_08
	_1_11
	_1_12
	_1_13
	_1_14
	_1_15
	_1_16
	_1_17
	_1_18
	_1_21
	_1_22
	_1_25
	_1_26
	_1_33
	_1_34
	_1_37
	_1_38
	_1_39
	_1_40
	_1_41.0
	_1_41.1
	_1_42
	_1_43
	_1_44
	_1_45
	_1_46
	_1_47
	_1_48
	_1_49
	_1_50
	_1_53
	_1_54
	_1_59
	_1_60
	_2_00_Jan68
	_2_11
	_2_12
	_2_13
	_2_14
	_2_15
	_2_16
	_2_17
	_2_18
	_2_25
	_2_26
	_2_31
	_2_32
	_2_33
	_2_34
	_2_35
	_2_36
	_2_45
	_2_46
	_2_49
	_2_50
	_2_51
	_2_52
	_3_00_Jun68
	_3_01
	_3_02
	_3_03
	_3_04
	_3_11
	_3_12
	_3_13
	_3_14
	_3_15
	_3_16
	_3_17
	_3_18
	_3_25
	_3_26
	_3_27
	_3_28
	_3_29.0
	_3_29.1
	_3_30.0
	_3_30.1
	_3_33
	_3_34
	_3_35
	_3_36
	_3_45
	_3_46
	_3_51.0
	_3_51.1
	_3_52
	replyA
	replyB
	xBack

