
Systems Reference Library

IBM System/360 Operating System

ALGOL Programme:r's Guide

Program Number 360S-AL-531 •••• Compi ler
360S-LM-532 ••• 0 Library Routines

This publication describes how to compile, linkage edit and
execute a program written in the System/360 Operating System
Algorithmic Language (ALGOL). It includes an introduction
to the operating system and a description of the information
listings that can be produced p the job control language, and
the subroutine library.

File No. S360-26
Form C33 -4000-0

OS

PREFACE

This publication is intended for use by Application
Programmers, Systems Programmers and IBM
Systems Engineers. A knowledge of ALGOL is
assumed, and the reader is expected to be familiar
with the prerequisite publication:

IBM System/360 9perating System: ALGOL Lan­
~. Form C28-6615.

In Section 2, the description "IBM -Supplied
Cataloged Procedures" provides sufficient informa­
tion to process and execute an ALGOL program
that can use the IBM-supplied cataloged procedures
without modification.

The rest of Section 2, together with information
in Section 1 and the Appendices, will be required
for programs that cannot use the IBM -supplied
cataloged procedures without modification.

The description of information listings in Section
3 and the list of diagnostic messages given in
Appendix F will be helpful in interpreting system
output, especially for debugging.

An extensive index has been provided to assist
the reader in using the manual for reference pur­
poses.

This publication contains most of the infor­
mation required by the Applications Programmer.

First Edition (April 1967)

The following publications are referred to within
the text for information beyond the scope of this
publica tion.

IBM System/360 ~ting System: Assembler
Language. Form C28-6514.

IBM System/360 Operating System: Data Management.
Form C28-6537.

IBM System/360 Operating System: Linkage Editor.
Form C28-6538.

IBM System/360 Operating System: Job Control
Language. Form C28-6539.

IBM System/360 Operating System: Operator "'s
Guide. Form C28-6540.

IBM System/360 Operating System: Control Program
Services. Form C28-6!541.

IBM System/360 Operating System: Utilities. Form
C28-6586.

IBM System/360 Operating System: FORTRAN IV
Library Subprograms. Form C28-6596.

IBM System/360 Operating System: Messages, Com­
pletion Codes, and Storage Dumps. Form C28-6631.

Significant changes or additions to the specifications contained in this publication will be reported in sub­
sequent revisions or Technical Newsletters.

Requests for copies of IBM publications should be made to your IBM representative or to the IBM branch
office serving your locality.

A form is provided at the back of this publication for reader's comments. If the form has been removed,
comments may be addressed to IBM Corporation, Department 813, 112 East Post Road, White Plains, N. Y.
1060 I, or IBM Nordic Laboratory, Technical Communications, Vesslevagen 3, Liding(), Sweden.

©International Business Machines Corporation 1967

SECTION 1: INTRODUCTION ••..••.•••..•• .. 5
Source Program. • . • • • • • • • • . • • • • • • • • • • • • • .•• 5
Operating System............... •.•••• •. ..•• 5

Job Control .•.•••••••••..••.••..•....••. • 5
Control Progranl . • • • • • . • • • • . • . . • • • • • • •• •• 6

Job Scheduling ..••...•... , . . • • . .• 6
Supervisor . • • • • • • • • . • • . • . • . • • • . • • . . • . ••. 6
Data Management .•.•.•..•..••••••••••••• 6

Processing Programs •.•••••••.•••••.•..• " 8
ALGOL, Compiler •••••••••••••••••••..•.• 8
Linkage Editor. • • • • • • . • • • • • • . • • . • . . • • .• • 9

Load Module Execution. • • • • • • • • • • • • • . • • • ... 9
Machine Configuration. • • . • • • • . . . • • • • • • . • • • .. 9

SECTION 2: SOURCE PROGRAM HANDLING •• 10
IBM-Supplied Cataloged Procedures ••••• • •• • 10

Compilation •....•........••.••.••••••••.• 10
Compilation and Linkage Editing. • • • .• • 10
Compilation, Linkage Editing and Execution •• 12
Over-riding Cataloged Procedures. • • • • • • •• • 12

Over-riding EXEC Statements .••••••••••.• 12
Over-riding DD Statements ...••••.••.••. . 13
Adding DD Statements ..••.••••••••••••••• 13

User-Written Procedures. • • . • • • • • • • • . • • • •• • 13
Compilation. . . . • • . . • . • . • . . • • • . • • • • • • • . •• • 13

Invoking Statement ..•...•.••..•..•..••. • 13
Data Sets Used •.••.••.•.••••••••••••••• • 14

Linkage Editing. • • . • • • • • • • • • • • • • • • • • • • . •• • 14
Invoking Statement 14
Data Sets Used ••••••••••••.••.•.•••••..• 15

Load Module Execution •••••••••••••..•••..• 15
Invoking Statement. . . • • • • • . • • • • • • •• 15
Data Sets Used .•••.•••••..•...•••.•..•.. 16

SECTION 3: INFORMATION LISTINGS ..•..•• 18
Control Program Listings ...••....•••••••.•• 18
Compilation Listings ..••.••••..•......••.•• 18

Source Program. • . . . • • • • . • . • . • • • . • . . • • 18
Identifier Table ••••.•...•...•.•..••••.•. • 18
Diagnostic Messages. • • • • • . • • • • • • • •. • 20
Storage Requirements .•...••••..•.•..•..• • 20

Linkage Editing Listings ..•••.•.•••••..••...• 20
Diagnostic Messages ••••••••...•....•..•••• 21
Module Map. . • • . • . . • • • • • • • • • • 21
Cross-Reference Table .••.•.•••...•••.••• 21

Execution Time Listings ••..••••.•••••••• '. 21
Diagnostic Messages •....••••.••••••.•.••• 21
Data Storage Areas. • • . • . . • . . • • • . • . • . • • . •• . 21
ALGOL Program Trace 22

CONTENTS

SECTION 4: PROGRAMMING
CONSIDERATIONS •••••••••..•••••••••••••••• 25
Capacity Limitations ••••••••••••.••••••••••• • 25
Invoking a Program Within a Job Step .•• • • • • •• • 26
Precompiled Procedures ••••••••••.••••••••• • 27

APPENDlX A: ALGOL LIBRARY ROUTINES ••• 31
Fixed Storage Area. •• • 31
Mathematical Routines. • . • • • • • . • • . • • • • • • • • •• • 31
Input/Output Routines •••••••••••••.•••••••••• 31
Error Routine ••••••••••••••••••••••••••••••• 31

APPENDIX B: IBM -SUPPLIED
CATALOGED PROCEDURES ••••••••••••••••• 34
Compilati.on. • • • • • • • • • • . • • • . • • • • • • • • • • • • • • •. • 34
Compilati.on and Linkage Editing •..•.••.••••••• 32
Compilation, Linkage Editing and Execution •••. 35

APPENDIX C: CARD CODES 36

APPENDIX D: OBJECT MODULE ••••••••••••• 37

APPENDIX E: USING JOB CONTROL
LANGUAG·E .•••..••••••••••••••••••••••••••• 38
Coding Format. • . • .• • 38
Conventions. • • • • • • • • • • • . • • • • • • • • • • • • • • • • • •• • 38
Control Statement Coding ••.••••.••••••••••••• 38

JOB Statement .•.••.••••••••••••••••••••••• 40
EXEC Statement ••••••••.••.••••••••••••••• 41
DD Statement . . • • • • • • . • . • . • • • . • • • • • . • • . • •• • 43
Command Statement ••••••••••.••••••.••••• 47

Data Set Concatenation ••••••.•.•••.•••••••••• 47
Job Control Language Examples. • • • • • • • • • • • •• • 47

Example 1: Executing a Single
Load Module ..••.•••...•••.••••.•..••••••• 47
Example 2: Compiling, Linkage Editing
and Executing Three Load Modules •••••••••• 48
Example 3: Executing Two Load Modules .••• • 50

APPENDIX F: DIAGNOSTIC MESSAGES •.•••.• 52
Compiler Messages •..••••.•••.•••••••••••• • 52
Linkage Editor Messages. • • • • • • • • • • • • • • • • • •• • 59
Execution Time Messages ••••••.•••••••••••• 60

INDEX ..••••••••••••••••••••••••.•••••••••• 64

FIGURES

Figure 1. Basic flowchart for handling an
ALGOL progranl ..•...••••..•••.•.••....• . 8

Figure 2. Sample deck for using ALGOFC
cataloged procedure with a single source
program•••.••.••••••..•.•••.•.••.• 11

Figure 3. Sample deck for using the
ALGOFCL cataloged procedure with two
source programs. . • • • • . • • . • . • . . • • . . . • • •. 11

Figure 4. Flowchart showing data sets
used by the compiler ••.•..•..••......•.•.•• 14

Figure 5. Table of data sets used by
the compiler .••••.•. ,...................... • 14

Figure 6. Effect on compiler if more than
44K bytes of main storage is available. • 15

Figure 7. Flowchart showing data sets
used by the linkage editor•..•..••. " 15

Figure 8. Table of data sets used by the
linkage editor 15

Figure 9. Flowchart showing data sets used
at execution time ••..••••••.•.••••.••.•••.•• 17

Figure 10. Table of data sets used at
execution time •.••...•••••.•••••..•••.•.• • 17

Figure 11. Example of source program
listing .••.•• ~. • . • • • • • . . • • • • . . . • • . • • . . • • . .• . 23

Figure 12. Example of identifier table
listing ..••..•...•.••••.••••••...•••....••• , 23

Figure 13. Example of storage requirements
listing .••.•..•.••••.•.•••....•••••..•....•• 23

Figure 14. Example of cross -reference table
listing .••••. ~ ••••••• ~ •••••••••••• ~. • . • • • • • •• • 24

Figure 15. Example of data storage area
listing. • • . • . • • •• • 24

Figure 16. Example of program trace listing. 24

Figure 17. Table of parameter characteristics
for an Assembler language pre-compiled
procedure •••••••.••••••.•••••••••••••••••• 30

Figure 18. Table of ALGOL library modules • 32

Figure 19. Source program card codes ••••••• 36

Figure 20. Object module card deck ••••••••• 37

Figure 21. Control statement formats 38

Figure 22. Data set cataloging using
qualified names .••.••..••••.•••••••..•••••. 39

Figure 23. JOB statement parameters. • • • ••. 40

Figure 24. EXEC statement parameters 41

Figure 25. DD statement parameters .••.•••• 43

Figure 26. I/O flow for Example 1 • •••••••• e 47

Figure 27. Job control statements for
Example 1 - - 48

Figure 28. I/O flow for Example 2 49

Figure 29. Job control statements for
Example 2 49

Figure 30. I/O flow for Example 3 50

Figure 31. Job control statements for
Example 3 ...••••••••••••••.•••.••••••.•••• 51

The primary constituent of a System/360 data pro­
cessing operation is a 122. This, basically, is
the work that the user requires the computer to
do. To carry out a job, a computer needs two
types of information -- a program and data.

• A program (known in this context as a ~~
E'ogra~) is a sequence of instructions which
specify the actions to be performed by the ~­
chine. These instructions are written in a
symbolic language and are translated into
machine language by a processing program
contained in the operating system before they
are performed.

• Data is the information to be processed by the
program. The source program is regarded as
data while it is being processed by operating
system programs to make it suitable for exe­
cution.

From this brief introduction it can be seen that
a job is affected by three separate factors -- the
source program, the operating system and the
machine configuration.

somlCE PROGRAM

For jobs discussed in this publication, the source
program will be written primarily in System/360
Operating System ALGOL (Algorithmic Language).
This is defined in IBM System/360 Operat~
System: ALGOL Language. In addition the pro­
grammer must observe the restrictions, caused
by internal capacity limitations, listed in Section 4 ..

An ALGOL source program may be written in
freeform on any 80 column coding sheet. The pro­
gram text is contained in columns 1 to 72. Columns
70 to 80 can be used by the programmer for pro­
gram identification. To avoid confusion with job
control statements (see "Operating Systenl "), the
character sequences / / and /~~ must not be used
in columns 1 and 2. It is possible to do this since
these sequences are syntactically incorrect out­
side strings, and when they occur within strings,
they may be shifted into non-critical columns by
inserting a blank space before the opening string
quotes "("~ Two character sets are available for
punching the source program into a card deck
(see Appendix C).

For operations that require mora precise con­
trol over the machine than can be provided by

SECTION 1: INTRODUCTION

ALGOL, subprograms written in Assembler lan­
guage can be included in the source program (see
Section 4). Assembler language subprograms can
also be used as a link to other languages, such as
PL/I, COBOL and FORTRAN. The Assembler
language is defined in IBM System/360 Operating
System: Assembler Language.

OPERATING SYSTEM

The System/360 Operating System is a set of IBM­
supplied, control and processing programs (sup­
plemented if necessary by user-written programs)
that assist the programmer to use the computer
efficiently. The operating system selected for a
particular installation is generated during the ini­
tial setting-up of the computer, by a process known
as system generation.

Job Control

Operating system instructions (known as job con­
trol statements) must be added to the source pro­
gram to control its handling within the operating
system and to specify the data management faci­
lities required.

These statements do not need to be specified
until the program is ready to be executed. This
nleans that the program can be prepared indepen­
dent of installation considerations.

Six types of statements are available, which,
in conjunction with associated parameters, can
supply all information required by the operating
system for job control. To save programming
effort, commonly used sequences of control state­
nlents can be stored by the system for subsequent
recall by identifying names. These sequences are
known as cataloged procedures.

JOB is the first statement of each job. It indi­
cates that a new job is beginning and, consequently,
that the previous job has ended. A job can be di­
vided into a number of job steps, which can be
inter-related to improve processing efficiency.
For example, the execution of one job step can be
nlade dependent on the result of a previous one.
This is an important feature of the operating sys­
tem and users are recommended to exploit it as
fully as possible.

EXEC (Execution) is the first statement in each
job step. It specifies the program or cataloged

Introduction 5

procedure to be executed, and rnust be included
even if the job consists of only one job step.

DD (Data Definition) is the statement used to
describe a data set and to specify associated data
control block information. It also specifies input/
output (I/O) device assignment. One or more DD
statements are usually required for each job step.

In addition the command statement is used to
place operator commands into the input stream,
the null statement indicates the end of the last job
in the input stream, and the delimiter statement
separates data from subsequent control statements
when sequential scheduling is used. The command
statement, when used, must immediately precede
a JOB, EXEC or null statement.

The job control statements required for an
ALGOL source program are described in Section 2.

Control Program

The control program is the primary program
within the operating system and must be included
with all installations. It is divided into a number
of functions. Those affecting the applications pro­
grammer are described in the following text.

Job Scheduling

A job scheduler is included as part of the control
program to control the flow of jobs and allocate
the I/O devices required. Two forms of job sched­
uling are available.

With sequential scheduling the jobs are carried
out in the order they are presented in the input
stream to the computer.

With priority scheduling a summary of the input
job stream is stored on a direct access device and
jobs are carried out in order of priority (as spec­
ified in the JOB control statement). Any hold-up
in the execution of a program, due, for example,
to a delay in mounting a volume, will cause the
job scheduler to select the next job available, in
order of priority, and the revert back to the higher
priority job when it is ready.

Supervisor

The supervisor is a set of subroutines, included
in the control program, for transferring control
of the central proceSSing unit of the computer from
one program to another and co-ordinating I/O oper­
ations. Initialization and termination of all pro-

6

grams described in this publieation are achieved
using the standard method given in IBM System/360
Operating System: Control P:rogram Services.

Data Management

This sub-section is a summary of data manage­
ment facilities. Full details :are given in IBM
System/360 Operating System.: Data Management.

Data Sets: Data is usually stored on I/O devices
and is only brought into main storage for process­
ing. It is organized into data sets. These are
collections of records that are logically related
(for example, a set of test readings).

System/360 Operating System allows a data set
to be identified and accessed by symbolic name
only, without any reference to its location on the
storage device. To do this the operating system
builds a catalog of data set location against name.
This catalog resides on one or more direct access
volumes. A volume is one complete physical unit
of storage such as a tape reel or a disk pack. It
may contain a number of data sets, or alternative­
ly one data set may stretch over a number of vol­
umes. Data sets are created. using DD statements.

Data Control Blocks: The operating system must
be provided with information describing the charac­
teristics of a data set before the data set can be
processed. This informatiol1l is assembled in the
data control block associated with each data set.
Data control blocks are autornatically created for
each data set that is to be processed by the pro­
gram, and are completed from two sources:

1. Any information provided in the Y\'-Jgram is
included first.

2. Inforrnation provided by the DD statement is
then included, but this cannot over-ride any
information stated in the program.

In the case of an existing data set, further in­
formation is taken from the data set label. Again,
this cannot over-ride previously inserted informa­
tion. Any DCB information p:rovided by the pro­
grammer is checked by an appropriate routine to
ensure its validity and to assign default values.

Data Set Labels: Data set labels, if requested by
the programmer in the DD statement, are created
by the operating system to store information rel­
evant to the data set such as name and retention
period. They can supplement information in the
data control block and serve as identifiers during

accessing. They are positioned at the beginning
and end of the data set.

Records and Blocks: Records are the smallest
items of data which can be read or written sepa­
rately. Their length can be specified as fixed,
variable or undefined. The unit of length is known
as a '!?'y'!e, which is normally equivalent to one
character. For mechanical reasons it is neces­
sary to have a fixed length gap between each re­
cord. This means that the smaller the average
length of the records so the smaller the amount
of information that can be stored in a glLven area
of storage. To conserve space a number of re­
cords ean be grouped together to form a block,
which is treated as a single record for I/o oper­
ations. The complete block is read into main
storage and then unblocked for the required re­
cord to be processed. Record format and block­
slze are defined in the data control block. For
fixed length records blocksize must be a multiple
of record length. This multiplication factor is
known as the blocking factor.

A control character can be specified for inclu­
sion in each record of a data set. This selects
carriage control when the data set is printed, or
stacker when the data set is punched.

Data Set Organization: According to how they are
going to be used, records can be organized within
the data set in a number of ways.

Sequential organization is a feature of I/O de­
vices such as magnetic tapes. To access a par­
ticular record the data set must be read sequen­
tially until the record is found. This is satisfac­
tory for many applications where a lar~~e propor­
tion of the records will be required on each run
but could be time-consuming where data is being
accessed randomly.

To avoid reading each record in turn the indexed
sequential method is often employed, in which the
location of the required record is found from an
index at the beginning of its data set. On a disk
pack the specification of a record location is bro­
ken down into two levels - cylinder and track.
Each level has its own index. With large data sets
up to three levels of master index can also be used.
Overflow areas are provided for the primary stor­
age area so that insertions can be made.

Alternatively, a data set can be parti~ into
blocks of identical format called members. A di­
rectory is built up at the beginning of the data set
so that each member can be accessed independent-

ly by specifying its name as a suffix to the data
set name. This form of data set is described as
a library.

Access Language: Two access languages are avail­
able to store and retrieve records. The queued
access language provides a full range of buffering
and blocking facilities to improve processing effi­
ciency. It can only be used with sequential and
indexed sequential data sets.

The basic access language gives the program­
mer more direct control over the I/O device but
does not provide buffering and blocking facilities.
These must be constructed by the user (see IBM
System/360 Operating System: Control Pro~
Servic~).

Access Methods: The data set organization and
access language used are combined to fully de­
scribe the method of handling a data set, for ex­
ample, Queued Sequential Access Method, Basic
Partitioned Access Method, etc. The access
method 1s specified in the data control block.

Input/Output Devices: Data can be stored on a
number of input/output devices depending, aDlOng
other things, on the method of data set organiza­
tion required. The devices most commonly used
in scientific and engineering installations are:

Card readers
and punches

Printers (out­
put only)

Paper tape
devices

Magnetic tape
devices

Disk storage
devices

Data cell stor­
age devices

Drum storage
devices

All data handled by these
devices is sequentially
organized.

These are known as direct
access devices and can be
used for sequential, indexed
sequential or partitioned
organization.

A console typewriter is used for direct two­
way communication between the operator and the
operating system.

Areas of main storage known as buffers are
used to provide overlapping of reading, writing
and proceSSing operations. The transfer of data
between main storage and I/O devices is controlled
through units known as channels.

Introduction 7

Processing Programs

In addition to the control program, a number of
processing programs may be included in the oper­
ating system depending on the requirements of
the installation. To carry out a job that contains
a source program written in ALGOL the following
processing programs are required:

1. ALGOL compiler

2. Linkage editor

The ALGOL compiler processes the source
program. to translate it into machine language.
The translated source program (known as the ob­
ject module) is then processed by a linkage editor
to combine any routines required from the ALGOL
library (see Appendix A). The result of these two
operations (known as the load module) is then load­
ed into main storage and control is passed to the
load module so that it can be executed. The basic
flowchart for handling an ALGOL source program
is shown in Figure 1.

ALGOL Compiler

This processing program is available for the F
level of main storage size, and requires a mini­
mum of 44K bytes. If extra storage capacity is
provided it is used to increase compiler capacity
(see Figure 6).

Initialization and Termination: The standard meth­
od is used for initialization and termination of the
compiler (see "Supervisor"). At the end of the
compilation one of the following return codes is
generated:

8

o meaning normal conclusion. Object module
has been generated unless both the NODECK
and NOLOAD options (see Appendix E) are
specified in the invuking statement. No diag­
nostic messages have been listed.

4 meaning object module has been generated
unless both the NODECK and NOLOAD op­
tions are specified. Only warning diagnos­
tic messages (severity code W) have been
listed.

12 meaning process has been completed but a
complete object module could not be gener­
ated due to a serious error. Diagnostic
messages (severity codes S and possibly W)
have been listed.

ALGOL
Compiler

Load Module
Execution

ALGOL]
Library

Figure 1. Basic flowchart for handling an ALGOL
program.

16 meaning process has been terminated ab­
normally due to a termtnating error. A
complete object module could therefore not
be generated. Diagnostic messages (sever­
ity codes T and possibly Wand S) have been
listed. The severity codes are described
in Appendix F.

Output: A successful compilation of an ALGOL
source program produces the following output:

• An object module (describEld in Appendix D)
which can be:

• Included in a data set for use as input to
the linkage editor (optional).

• Included in another data set to give some
other form of output, sUlch as a card deck
(optional) •

• Information listings (described in Section 3).

Linkage Editor

The linkage editor is a standard processing pro­
gram used for all languages accepted by the Sys­
tem/360. For ALGOL, it is used to include rou­
tines from the ALGOL library. It a1so has a wide
range of optional functions, and is available for
two levels of main storage size - E level (where
it requires 15K or 18K bytes) and F level (where
it requires 44K or 88K bytes). A full description
is contained in IBM System/360 Operating System:
Linkage Editor.

Initialization and Termination: The standard meth-
0d is used for initialization and termination of the
linkage editor (see "Supervisor"). At the end of
the linkage editing one of the following return codes
is generated:

o meaning nonnal conclusion. A load module
has been produced.

4 meaning a load module has been produced
but a severity 1 error, which may cause an
error at execution time has been detected
and listed.

8 meaning a load module has been produced
but a severity 2 error, which may cause an
abnormal termination at execution time, has
been detected and listed.

12 meaning a load module has been produced
but a severity 3 error, which will cause an
abnormal termination at execution time, has
been detected and listed.

16 meaning process has been terminate ab­
normally. A severity 4 error has been listed.

Output: The following output can be produced by
the linkage editor:

• A load module data set, stored on the output
library SYSLMOD.

• Information listings (described in Section 3).

Load Module Execution

The load module produced by the linkage editor
is loaded into main storage by the supervisor.
When the loading operation is complete, the su­
pervisor passes control to the load module, which
is then executed.

Initialization and Termination: The standard meth­
od is used for initialization and termination of the
load module (see "Supervisor"). At the end of the
execution, one of the following return codes is gen­
erated:

o meaning normal execution has been per­
formed.

4 meaning execution has been abnormally ter­
minated due to an error. A diagnostic mes­
sage has been listed.

Output: The following output is produced by a
successful execution of a load module:

• Results, etc. , as specified by the program.mer.

• Information listings (described in Section 3).

MACHINE CONFIGURATION

To successfully carry out a job containing a source
program written in ALGOL, a certain minimum
machine configuration must be available. This is:

• A System/360 Model 30, 40, 50, 65, 75 or 91
with the scientific instruction set. Main storage
size depends on the program being executed.

• For compilation, at least 64K bytes.

• For linkage editing, at least 32K bytes.

• For load module execution, variable, de­
pending on the size and arrangement of the
source program.

These figures include the space used by the
control program of the operating system.

• In a minimum configuration, all data sets may
use a single direct access I/O device, provided
that the total size of the data sets which exist
at anyone time does not exceed the capacity
of the device. A card reader and printer will
also be needed, but these do not have to be part
of the System/360 configuration.

• A console typewriter may be required for diag­
nostic messages if there is an error on the data
set used for output listings, and also to allow
direct two-way communication between the oper­
ator and the operating system.

Introduction 9

SECTION 2: SOURCE PROGRAM HANDLING

This section explains the job control statements
which must be provided with each source program.
These statements can either be written for each
job, or a standard job control procedure can be
written and cataloged in the operating system for
use with a range of jobs.

Using such a cataloged procedure minimizes
the number of job control statements that must be
supplied by the programmer with each job. There­
fore IBM provides:

.. Three basic cataloged procedures for use with
ALGOL.

• The means to temporarily over-ride these pro­
cedures if the user requires different or addi­
tional system support to that provided.

• The means for the user to modifY permanently
the IBM -supplied cataloged procedures or to
write his own procedures and catalog them for
permanent reference.

In the statement formats used in this section
upper-case words must be coded exactly as they
appear; lower-case words are used to indicate
where the programmer must supply information
according to hj,3 n",rn requirements.

IBM -SUPPLIED CATALOGED PROCEDURES

The three cataloged procedures for ALGOL which
are supplied by IBM are:

ALGOFC compilation only

ALGOFCL compilation and linkage
editing.

ALGOFCLG compilation, linkage
editing and execution.

To invoke these cataloged procedures, the
programmer must supply the following job con­
trol statements:

1. A JOB statement to indicate the start of the
job.

2. An EXEC statement indicating the name of the
cataloged procedu re to be used.

3. DD statements indicating the location of the

10

source program and, for execution time, the
data sets used or created by the load module.

The following text indicates the minimum con­
tents of these statements. For requirements be­
yond this, reference should be made to Appendix E.

Compilation

The cataloged procedure to compile a source pro­
gram is ALGOFC. The job control statements
used in this cataloged procedure are shown in Ap­
pendix B. The following statements can be used
to invoke the ALGOFC cataloged procedure:

l/jobname
II
IISYSIN

JOB
EXEC ALGOFC
DD [-l~ or parameters defining an

input data set containing
the source program}

where "jobname" is the name of the job. If DD -l~

is used then the source program must follow im­
mediately afterwards in the input: stream. For
sequential scheduling, the source program must
then be followed by a delimiter statement (/-l~.

If more than one source program is to be com­
piled in the same job, all job control statements
except the JOB statement must be repeated for
each source program.

A sample deck of job control statements to com­
pile an ALGOL source program is shown in Figure 2.

Corr~pilation and Linkage Editing

The cataloged procedure to compile an ALGOL
source program and linkage edit the resulting ob­
ject module is ALGOFCL. The job control state­
ments used in this cataloged proeedure are shown
in Appendix B. The following statements can be
used to invoke the ALGOFCL cataloged procedure:

l/jobname
II
IISYSIN

JOB
EXEC ALGOFCL
DD [-l~ or parameters defining an

input data set containing
the source program}

where "jobname" is the name assigned to the job.
If DD -l\-js used then the source program must fol­
low immediately afterwards in the input stream.
For sequential scheduling, the source program
must then be followed by a delimiter statement (/~.

(Source program (MATI NV)

-(IISYSIN DD i~
__ L------------------------------------.-------VI EXEC· ALGOFC

llMATINV JOB 537, JOHNSMITH, MSGLEVEL=l

1---

Figure 2. Sample deck for using ALGOFC cataloged procedure with a single source program. This job
compiles the MATINV source program used in Example 1 of Appendix E.

If more than one source program is to be pro­
cessed in the same job, then all job control state­
ments except the JOB statement must be repeated
for each source program.

If it is requi.red to keep a load module for use
in a later job (as in the case when the load module
is a precompiled procedure), then the SYSLMOD
DD statement in the cataloged procedure must be
over-ridden to specify a permanent data set. This
has to be done for each load module that is kept.
The over-riding statement is placed at the end of

the job step to which it applies, and has the form:

.I /LKED. SYSLMOD DD DSNAME=dsname(member) ,
DISP=(MOD,KEEP)

where "dsname" is the name of a partitioned data
set and "member" is the member name assigned
to the load module on the partitioned data set.

A sample deck of job control statements to com­
pile and linkage edit two source programs is shown
in Figure 3.

I ILKED. SYSLMOD DD DSNAME=WTHRPR(FORCST),
DIS =

/ISYSIN DD DSNAME=FORCST, DISP=OLD

/ /LKED. SYSLMOD DD DSNAME=WTHRPR(FILECR),
DISP= MOD, KEEP)

/ /SYSIN DD DSNAME==FILECR, DISP=OLD

ALGOFCL

/ /WEATH ER JOB

Figure 3. Sample deck for using AI. .. GOFCL cataloged procedure with two source programs. These two job
steps compile and linkage edit the t~vo source programs used in Example 3 of Appendix E. Both source pro­
grams have been previously stored on intermediate I/O devices.

Source Program Handling 11

Compilation, Linkage Editing and Execution

The cataloged procedure used to compile an ALGOL
source program, linkage edit the resulting object
module, and execute the load m0dule produced by
the linkage editor is ALGOFCLG.

The statements used in this cataloged procedure
are shown in Appendix B. The following state­
ments can be used to invoke the ALGOFCLG cata­
loged procedure:

Iljobname
IIJOBLIB
II
IISYSIN

JOB
DD DSNAME=dsnamel, DISP=OLD
EXEC ALGOFCLG
DD [~~ or parameters defining an

input data set containing
the source program }

IIGo. ALGLDD02 DD DSNAME=:dsname2

IIGo. ALG LDD15 DD DSNAME=:dsname15

where "jobname" is the name assigned to the job.
"dsnamel" is the name of a data set that contains
a precompiled procedure (see Section 4) w~lich is
called by the load module being executed. The DD
statement containing dsnamel need not be used if
no precompiled procedu re is used.

For a description of the correct use of the
JOBLIB DD statement when more than one pre­
compiled procedure is used in a job, or when a
precompiled procedure resides on more than one
data set, see "Data Set Concatenation" in Appen­
dix E.

"dsname2" ... "dsname15" are the names of input
data sets required by the load module at execution
time and output data sets to be created at execu­
tion time. In addition, a data set for printed out­
put (ddname SYSPRINT) is supplied by the cata­
loged procedure, and a data set for input only can
be specified by using the following statement after
the invoking sequence just given.

IIGo. SYSIN DD [ir or parameters defining an
input data set }

If DD ~~ is used then the source program must fol­
low immediately afterwards in the input stream.
For sequential scheduling, the source program
must be followed by a delimiter statement (/~~.

If more than one source program is to be pro­
cessed and executed in the same job, then all job

12

control statements except the JOB statement and
the JOBLIB DD statement must be repeated for
each source program.

A sample deck of job control statements re­
quired to compile, linkage edit and execute three
source programs is shown in Figure 29.

Over-riding Cataloged Procedures

The programmer can change any of the statements
in a cataloged procedure, except the name of the
program in an EXEC statement.

These over-riding conditions are temporary,
and will be in effect only until the next job step is
started. The following text describes methods of
temporarily modifying existing parameters and
adding new parameters to the EXEC and DD state­
ments used in the cataloged procedures. The full
list of parameters available to the ALGOL pro­
grammer for these statements, and detailed expla­
nations of the parameters, is given in Appendix E.
The EXEC and DD statements used in the IBM­
supplied cataloged procedures are shown in Appen­
dix B.

Over-riding EXEC Statements

In the EXEC statement, the programmer can change
or add any of the keyword parameters by using the
following format:

keyworc'l, procstep=option

where:

"keyword" is the parameter to be changed in,
or added to, the specified procedurp job step:
either TIME, COND, PARM or ACCT.

"procstep" is the procedure job step in which
the change or addition is to occur: either
ALGOL, LKED or GO.

"option" is the new option required.

For example, if the EXEC statement used to in­
voke the ALGOFCLG cataloged procedure was writ­
ten as:

II EXEC ALGOFCLG,PARM.ALGOL=DECK,
I I PARM. LKED=XREF,
I I CONDo GO=(3, LT ,ALGOL)

then the following changes would be made to the
ALGOFCLG cataloged procedure:

1. In the PARM parameter of the job st(~P ALGOL,
the option DECK would be used instead of the
default option NODECK (assuming that the stan­
dard default NODECK was not changed at sys­
tem generation). Over-riding this option will
not affect the other default options assumed
for this parameter.

2. In the job step LKED, the option XREF is spec­
ified for the PARM parameter. Since the op­
tions specified in the cataloged procedure were
XREF, LIST and LET, this statement has the
effect of deleting the options LIST and LET
since they were not default options.

3. In the job step GO, the COND parameter code
is changed from 5, as it appears in the cata­
loged procedure, to 3. In this example, the
code 3 causes the job step GO to be bypassed
if a warning message is generated during the
job step ALGOL. Note that although 1he other
options (LT and ALGOL) are not to be altered,
the entire parameter being modified rnust be
respecified.

If "procstep" is not specified when over­
riding a multi-step cataloged procedure ~ the
operating system makes the following assump­
tions:

• COND and ACCT parameters apply to all
procedure job steps.

• A PARM parameter applies to the first pro­
cedure job step and any options already spec­
ified in the PARM parameters for the'remain­
ing procedure job steps are cancelled.

• A TIME parameter specifies the computing
time for the entire job and any options already
specified in the TIME parameters for individ­
ual procedure job steps are cancelled.

Over-riding DD Statements

An additional DD statement is used in the invoking
sequence for each DD statement in the cataloged
procedure that is to be over-ridden. The following
format is used:

/ /procstep. ddname DD parameter-list

where:

"procstep" is the procedure job step containing
the DD statement to be over-ridden: either ALGOL,
LKED or GO. If "procstep" is omitted then the
first procedure job step is assumed.

"ddname" is the name of the DD statement to be
over-ridden.

"parameter-list" is the list of parameters that are
being added or changed. In both cases the whole
parameter must be specified. Unchanged param­
eters in the original statement need not be spec­
ified. For example, the statement:

//ALGOL.SYSLIN DD SPACE=(400,(80,10»

will change the SPACE parameter of the SYSLIN
DD statement in the ALGOL job step so that space
will be allocated for 80 physical records instead
of 40.

DD statements that are used to over-ride other
DD statements in the cataloged procedures must
be placed immediately after the EXEC statement
invoking the cataloged procedure, and must be in
the same order as their corresponding DD state­
ments in the cataloged procedures.

Adding DD Statements

Complete, new DD statements that are to be added
to the cataloged procedure use the same format
as over-riding DD statements. The "ddname"
specified must not exist in the job step specified
by "procstep". These new DD statements must
follow immediately after the over-riding DD state­
ments which apply to the same procedure job step.

USER-WRITTEN PROCEDURES

The information required by the programmer to
write his own job control procedures is given in
the following text, and in Appendix E. Cataloging
user-written procedures, or permanently modi­
fying the IBM -supplied cataloged procedures, is
accomplished using the IEBUPDAT utility program,
described in IBM System/360 Operating System:
Utilities. The statements required in user-writ­
ten procedures are:

• An EXEC statement to invoke the program.

• DD statements to define the data sets used by
the program.

,Compilation

Invoking Statement

The ALGOL compiler consists of ten load modules
!Contained in the link library, SYSl. LINK LIB , of
the operating system. The compiler is activated

Source Program Handling 13

by invoking its first load module, named ALGOL,
which then internally invokes the other load mod­
ules of the compiler.

The usual method of invoking the compiler is
by means of an EXEC statement of the form:

Iistepname EXEC PGM=ALGOL

where "stepname" is the name assigned to the job
step (optional).

Other EXEC statement parameters may be in­
cluded if required (see Appendix E).

(A method of dynamically invoking the compiler
within a job step, by means of the CALL, LINK,
XCTL or ATTACH macro-instructions, is described
in Section 4.)

Data Sets Used

The data sets used in the compilation process are
illustrated in Figure 4, and described in Figure 5.
These data sets must be specified by the program­
mer with suitable DD statements.

Blocksize DCB information may be specified
by the user for SYSIN, SYSLIN, SYSPRINT and
SYSPUNCH. The maximum blocking factor de­
pends on the main storage size available (see
Figure 6). Record length is fixed at 80 bytes for
SYSIN, SYSLIN and SYSPUNCH, and 91 bytes for
SYSPRINT.

SYSLIN

Figure 4. Flowchart showing data sets used by
the compiler.

]4

The space required for the compiler data sets
depends on the size and structu.re of the source
program, however it can be assumed that only in
rare cases will the object module exceed four
times the source program and usually much less
will be required.

Purpose
Standard Devices
ddname required

For ALGOL source SYSIN Card reader*
program

For object module to SYSLIN Direct access or
be used by linkage editor magnetic tape

For compilation listings SYSPRINT Printer*

For object module SYSPUNCH Card punch*
(copied from SYSLIN)

For the control SYSABEND Printer~~

program dump

For intermediate SYSUTl Direct access or
compiler working magnetic tape

For intermediate SYSUT2 Direct access or
compiler working magnetic tape

For intermediate SYSUT3 Direct access
compiler working

* Some form of intermediate stora~~e, such as magnetic tape,
may be used to reduce I/O delay for the central proces-
sing unit.

Figure 5. Data sets used by the ALGOL compiler.

Also, as a rough estimate, SYSUT1, 2 and 3
must each be large enough to contain the number
of valid characters in the source program.

SYSABEND is used for control program list­
ings (see Section 3).

Processing of all data sets by the compiler is
independent of the 110 device used except for the
intermediate work data sets. These require mag­
netic tape or direct access devices.

Linkage Editing

Invoking Statement

The linkage editor is usually invoked with an
EXEC statement of the form:

Iistepname EXEC PGM=IEWL

where "stepname" is the name assigned to the job
step (optional).

Other EXEC statement parameters may be in­
cluded if required (see Appendix E). IEWL spec­
ifies the highest-level linkage editor in the instal­
lation ~s operating system.

(A method of dynamically invoking the linkage
editor within a job step, by means of the CALL,
LINK, XCTL or ATTACH instructions, is described
in Section 4.)

r---"
Main storage size Maximum blocking factor
in bytes at which

~~nges occur SYSIN SYSPRINT SYSLIN SYSPUNCH

45056 (44K) 5 5 5

51200 (50K) 5 5 5 5

59392 (58K) 5 5 5 5

67584 (66K) 5 5 5 5

77824 (76K) 5 5 5 5

90112 (88K) 20 20 40 20

104448 (l02K) 20 20 40 20

120832 (118K) 20 20 40 20

139264 (136K) 20 20 40 20

159744 (156K) 20 20 40 20

184320 (180K) 40 40 40 40

212992 (208K) 40 40 40 40

Figure H. Effect on compiler data sets if more
than 44K bytes of main storage is available.
The capacity of internal tables in the compiler
is increased at each of the main storage sizes
listed in this table, allowing, for example, a
larger number of identifiers to be induded in
the source program. Therefore to get optimum
performance, the user is recommended to use
this list when specifying main storage size
available to the compiler.

Data Sets Used

The data sets used by the linkage editor (see Fig­
ures 7 and 8) must be defined by the programmer
with ~uitable DD statements.

Blocksize DCB information may be specified
by the user for SYSLIN and SYSPRINT if the F
level linkage editor is being used. Maximum
blocking factor is 5 when 44K bytes of main stor­
age size is available, and 40 when 88K bytes is
available~ Record length is fixed at 80 bytes for
SYSLIN and 120 bytes for SYSPRINT~

SYSLIB

LINKAGE

EDITOR

SVSLMOD

Figure 7. Flowchart showing data sets used by
the linkage editor.

I

i

SYSABEND is used for control program list­
ings (see Section 3).

Load Module Execution

Invoking Statement

The usual method of invoking the load module gen­
erated by the linkage editor is with an EXEC state­
ment of the form:

/ /stepname EXEC PGM=member-name

Standard Devices
Purpose ddname used

For object module SYSLIN Direct access or
input magnetic tape

For load module SYSLMOD Direct access
output, stored as a
member of a parti-
tioned data set

For ALGOL library, SYSLIB Direct access
SYS1.ALGLIB. A
partitioned data set
containing routines
in load module form

For linkage editing SYSPRINT Printer*
listings

For intermediate SYSUTl Direct access or
linkage editor magnetic tape
working

For the control SYSABEND Printer*
program dump

* Some form of intermediate storage, such as magnetic
tape, may be used to reduce output delay for the cen-
tral processing unit.

:Figure 8. Data sets used by the linkage editor.

Source Program Handling 15

where "stepname" is the name assigned to the job
step (optional).

"member-name" indicates the name of the parti­
tioned data set member which contains the load
module. This name is specified by the progrannner
in the SYSLMOD DD statement for the linkage edi­
tor. Other EXEC statement parameters may be
included if required (see Appendix E).

(A method of dynamically invoking the load mod­
ule within a job step, by means of the CALL, LINK,
XCTL or ATTACH macro-instructions is described
in Section 4.)

Data Sets Used

Up to 16 data sets for use at execution time may
be specified by the programmer in the ALGOL
source program by using the appropriate data set
number. The numbers used and the corresponding
names of their DD statements are listed below.

Data set number Corresponding
used in ALGOL ddname
source program

0 SYSIN
1 SYSPRINT
2 ALGLDD02
3 ALGLDD03
4 ALGLDD04
5 ALGLDD05
6 ALGLDD06
7 ALGLDD07
8 ALGLDD08
9 ALGLDD09

10 ALGLDD10
11 ALGLDD11
12 ALGLDD12
13 ALGLDD13
14 ALGLDD14
15 ALGLDD15

Any reference to a data set number by an I/o
procedure within an ALGOL source program is
translated into a reference to a data control block
using the corresponding ddname. It is the respon­
sibility of the programmer to supply the DD state­
ments which correspond to the data set numbers
used in the ALGOL source program.

The execution time data sets are illustrated
in Figure 9 and described in Figure 10. For
ALGLDD02 to ALGLDD15, case 1 in the column
showing device used, applies if the source pro­
gram contains any of the following:

15

• A backward repositioning specification by the
procedures SYSACT4 or SYSACT13 for this
data set.

• Both input and output procedure statements
for this data set.

• Procedure statements which prevent the com­
piler from recognizing whether either of these
applies; for example, if the data set number
or SYSACT function numbe r is not an integer
constant or if a precompiled procedure is used.

If the source program has already been com­
piled and linkage edited in a previous job, then
the data set on which it has been stored (in load
module form) must be concatenated to SYSl. LINKLIB
Data sets containing precompiled procedures called
by the source program (see Section 4) must also be
concatenated to SYSl. LINK LIB.

If the programmer specifies a TRACE, TRBEG
or TREND option in the EXEC statement of the
execution job step., the semic.olon count (see Sec­
tion 3) is stored intermediately on a data set with
the ddname SYSUTl. The programmer must sup­
ply a corresponding DD state1nent if he uses this
option. The semicolon count is converted to ex­
ternal form and transferred t.o the SYSPRINT data
set as soon as the execution ends either by reach­
ing the logical end of the source program or due
to an error.

The space required for the semicolon count is:

For the main heading 6 bytes

For each semicolon 2 bytes

For each call of a
precompiled proeedure 12 bytes

For each physical
record on SYSUT1 4 - 6 bytes

System/360 ALGOL permits data to be tempo­
rarily stored on and retrieved from external de­
vices without conversion, usl.ng the ALGOL I/o
procedures PUT and GET. If the programmer
uses this facility in his source program, then he
must supply a DD statement with the ddname
SYSUT2. The device specified by this statement
for storing such intermediate: data should be a
direct access device to guarantee reasonable per­
formance, though programmi.ng is performed in­
dependently between magnetic tape and direct ac­
cess devices. All data passed by a single PUT is

Intermediate Work

SYS1.]
L1NKLIB ----

Load Modulle for Source
Program, Precompiled
Procedures, and Error
Routine

SYSUT 1

LOAD
MODULE
EXECUTION

D(Jta Output

Information YSPRINT &
Listings YSABEND

..... _ Q ~~~~~D02-15
not used for
input

Data Input

SYSIN &
AI.GLDD02-15

Figure 9. Flowchart showing data sets used at load module execution. The data input and output require­
ments are variable.

stored as one record. This record will be as
long as the data passed, plus 8 bytes. The
maximum record length accepted is 2048 bytes.

The DCB information which may be specified
by the user for execution time data SE~tS is
blocksize, record format and record length,
except for the trace and PUT/GET data sets
(ddnames SYSUT1 and SYSUT2) for which only
blocksize may be specified (up to a m.aximum
of 2048 bytes).

For information not provided, default values
will be inserted by a routine in the ALGOL
library. In particular, blocksize is assumed
as 2048 bytes for SYSUTl and SYSUT2. if none
is specified.

SYSABEND is used for contl'ol prob.-ra.m list-·
ings (see Section 3).

Standard Device
ddname Used

For data input SYSIN Any input de-
to load module vice
For execution time SYSPRINT Printer*
listings and data
output
For data input ALGLDD02 1. Direct
or output access or

ALGLDD15
magnetic
tape

2. Any

For intermediate SYSUT1 Direct access
storage of seml- or magnetic
colon counter when tape
TRACE is spec-
ified
;For temporary SYSUT2 Direct access
storage when PUT or magnetic
is specified tape
For the control • SYSABEND . Printer*
program. dump

* Some form of intermediate storage. such as
magnetic tape, may be used to reduce I/o
delay for the central processing Wrlt.

Figure 10. Data sets used a~execution time.

Source Program Handling 17

SECTION 3: INFORMATION LISTINGS

To assist the programmer to find the cause of any
faultFl in the processing or execution of his pro­
gram, various forms of information listings are
produced for the compilation, linkage editing and
execution operations. Some of these listings are
optional. Examples are illustrated in Figures 11
to 16.

CONTROL PROGRAM LISTINGS

All three operations may produ.ce listings gener­
ated by the control program. These are described
in IBM System/360 Operating System: Messages,
Completion Codes! and Storage Dumps. The
ABEND macro-instruction for specifying the main
storage dump is described in IBM System/360
Operating System: Control Program Services.

COMPILA TION LISTINGS

A successful compilation of an ALGOL source pro­
gram produces the following information listings:

• Job control statement information according
to which MSGLEVEL option was specified in
the JOB statement.

• The source program supplemented by a count
of the semicolons occurring in the program
(optional) .

• A table giving details of all identifiers used in
the program (optional).

• Any warning diagnostic messages.

• Information on main storage requirements at
execution time.

If a serious diagnostic message is produced
(meaning that object module generation has ended)
then the source program and identifier table list­
ings will be printed in full if they have been re­
quested, but the information on main storage re­
quirements will not be printed. If a terminating
diagnostic message is produced then the source
program and identifier table listings can be printed
unlyas far as they have been produced.

18

Source Program

If the SOURCE option has been specified, the
sourC<:l program is transferred by the compiler
to an output data set in order to be listed by a
printer. Unless NOTEST has been specified, this
source program is supplemented by a semicolon
count, which is referred to in the diagnostic mes­
sages to help localize errors.

The compiler generates this semicolon count
when scanning the source program, by counting
all semicolons occurrIng in the source program
outside strings, except those following the de-­
limiter "COMMENT". The value of this semicolon
count at the beginning of each record of the source
program is printed at the left of that record. It is
assigned by the compiler in order to have a clear,
problem-oriented reference. Any reference to a
particular semicolon number refers to the segment
of source program following the specified semi­
colon, for example, the semilcolon number 5 re­
fers to the program segment between the fifth and
sixth semicolons.

Identifier Table

If the SOURCE option has been specified, a list of
all identifiers declared or specified within the
source program is transferred by the compiler to
the output data set for printing after the source
program listing. This identifier table gives in­
formation about the characte:ristics and internal
representation of all identifiers. The identifiers
are grouped together within the identifier table
according to their scopes.

All blocks and procedure declarations within
the source program are numbered according to
the order of occurrence of their opening delimiters
"BEGIN" or "PROCEDURE". Therefore, if the body
of a procedure declaration is a block., then usually
this block has the sam.e number as the procedure
declaration itself. These numbers are called
program block numbers (even if they belong to a
procedure declaration and not to a block).

Each line in the table contains entries for up
to three identifiers and the line begins with the
number of the program block in which the identi­
fiers were declared or specified, the value of the
semicolon count at the commencement of the pro­
gram block, and the number of the immediately
surrounding program block. Each identifier entry
contains:

1. The external name of the identifier as appear­
ing in the source program. Space for six char­
acters is provided and, if necessary, the iden­
tifier is truncated.

2. The type key, as described below.

3. The number of dimensions (for array identi­
fiers), components (for switch identifiers) or
parameters (for procedure identifiers)" This
position is blank for all other types of Jldenti­
fiers.

4. The displacemert for the quantity denoted by
the identifier, as explained below.

The .!Ype key consists of five characters de­
noting the type characteristics of the identifier.
These characters are as follows (b represents
blank):

In first position:

In second position:

In third position:

In fourth position:

In fifth position:

R when real
I when integer
B when Boolean
b when anything else

L when label
S when switch
T when string (text)
b when anything else

A when array
P when procedure
b when anything else

N when formal parameter
called by name

V when formal parameter
called by value

b when declared identifier
(not formal parameter)

C when precompiled (code)
procedure

b when anything else

Examples of these are:

For a real variable

For a Boolean array

For a formal param­
eter specified inte­
ger procedure

Rbbbb

BbAbb

called by name IbPNb

For a precompiled
procedure bbPbC

The displacement is in hexadecimal form and
has the following meaning:

• For all identifiers denoting simple variables,
arrays and formal parameters, it is the rela­
tive position of their values in the data storage
area, as described below.

o For all identifiers denoting labels, procedures
and switches (if not specified as formal param­
eters), it is the relative position of the corre­
sponding entry in the label address table, as
described below. This position is known as the
label number (LN).

The space allocated to each identifier is as
follows:

For formal parameters: 8 bytes

For Boolean identifiers: 1 byte

For integer identifiers: 4 bytes

For real identifiers: 4 bytes when SHORT is
specified; 8 bytes when LONG is specified.

For arrays: see storage mapping function below.

At execution time, for each program block, a
data storage area (DSA) is created dynamically
a t each entry of the program block and is released
when leaving it. The lengths of the data storage
area and the relative positions of all data contained
in them are determined by the compiler. These
relative positions, together with the program block
numbers, uniquely identify the quantities of an
ALGOL program. Two forms are used according
to whether the SHORT or LONG option was spec­
Hied in the invoking statement.

The data storage area of a program block con­
tains locations for:

1" The values of simple variables

2" The storage mapping tunctions of arrays (see
below)

3., In the case of formal parameters, the type char­
acteristics and addresses of the actual param­
eters

4. Intermediate results, addresses, etc.

Information Listings 19

A label address table is created by the compiler
and transferred to the object module. In general
it is used at execution time to load a branch register
before any branch is performed. It contains ad­
dresses corresponding to:

1. Library modules required
2. Labels
3. Procedure declarations
4. Switch declarations
5. Internal branches (1F", 'FOR", etc.)

The storage mapping function (SMF) describes
the storage layout of an array. The storage that
the SMF requires in the DSA can be calculated
from:

s == 4(d + 5) + X

where, s == number of bytes in storage
mapping function

d == number of dimensions in array

X ={4 if LONG is specified and d
is an even number, 0 otherwise

Diagnostic Messages

During the compilation as many programming
errors as possibh~ are detected and appropriate
diagnostic messages are produced to help the pro­
grammer to identify them. Diagnostic messages
are caused by:

1. Programming errors. These are detected and
reported by the compiler as far as they do not
depend on the dynamic flow of the program.
Programming errors depending on the dynamic
flow of the program are detected and reported
by the load module.

2. Violations of capacity limitations. Such viola­
tions are detected and reported by the compiler,
where possible. Those which cannot be detected
at compile time are detected and reported by the
load module at execution time.

J. I/O errors caused by malfunction of channel~
or external devices, are reported when they
occur.

4. Control card errors not detected by the job
scheduler.

5. Program interrupts

20

The diagnostic messages are transferred to the
output data set to be listed by a printer. Appendix
F contains a list of the messages that may be pro­
duced by the ALGOL compiler.

Storage Requirements

Following the diagnostic messages, the compiler
transfers information about tile execution time
storage requirements to the output data set if the
compilation finished successfully. This informa­
tion gives no exact storage estimate of the object
module execution because the storage allocation
for data is performed dynamieally at execution
time and depends on the flow of control through
the object module and on the amount of data at
execution time.

Vor example, the data storage area belonging
to a program block is allocated only as long aa
that program block is active. In the case of re­
cursive procedures more than one generation of
the corresponding data storage area may be re­
quired. The storage needed for the array is not
contained in a data storage area and depends on
the execution time values of the bounds of the
array.

Nevertheless, a programmer knowing the struc­
ture of his program may gain rough storage esti­
mates from the followi.ng information given by the
compiler.

1. Main storage required by the object module,
including tables and constant pool.

2. A list of the main storage requirements of all
data storage areas. This list consists of one
entry for each program block, containing the
program block number, and the number of bytes
required for the corresponding data storage area.

LINKAGE EDITING LISTINGS

A successful linkage editing can produce the fol­
lowing information listings:

• Job control statement information according to
which MSG LEVE L option was specified in the
JOB statement.

e Disposition data, listing the options specified
and the status of the load module in the output
library.

• Diagnostic messages (sev(~rity code 1).

• A cross -reference table of the load module, or
alternatively, a module map (both optional).

If a diagnostic message of severity code 2 or 3
is produced then the other information listings
might not be produced. If a diagnostic message
of severity code 4 is produced then the other in­
formation listings will not be produced.

Diagnostic Messages

A description of the diagnostic messages that may
be produced by the linkage editor is contai:ned in
Appendix F.

Module M~

If MAP is specified in the invoking statement for
the linkage editor, then a module map is trans­
ferred to the output data set to be listed by a print­
er. The module map shows all control sections
(the smallest separately relocatable units of a pro­
gram) in the load module and all entry names (to
routines in the ALGOL library) in each control sec­
tion. The control sections are arranged in ascend­
ing order according to their origins (which are
temporary addresses assigned by the linkage editor
prior to loading for execution). The entry names
are listed below the control section in which they
are defined. The origins and lengtr.s (in bytes) of
the control sections, and the location of the entry
names are listed in hexadecimal form. Unnamed
control sections are identified by $ PRIV A TE in
the list.

At the end of the module map is the entry ad­
dress of the instructions with which processing
of the module begins. It is followed by the total
length of the module, in bytes. Both values are
in hexadecimal form.

Cross-Reference Table

If XRE F is specified in the invoking statement for
the linkage editor, the cross -reference table is
transferred to the output data set to be listed by a
printer.

The cross -reference table consists of a module
map and a list of cross -references for each con­
trol section. In the list of cross -references, each
address constant that refers to a symbol defined
:in another control section is listed with its assigned
location (in hexadecimal form), the symbol referred
to, and the name of the control section in which the
symbol is defined.

If a symbol is unresolved after processing by
the linkage editor, it is identified by $ UNRESOLVED
in the list. However, if an unresolved symbol is
marked by the never call function, it is identified
by $NEVER-CALL.

The entry address and total length are listed
after the list of cross-references.

EXECUTION TIME LISTINGS

A successful execution of the load module produces
the following information listings:

• Job control statement information according
to which MSGLEVEL option was specified in
the JOB statement.

• The ALGOL program trace, which is a list of
the semicolon numbers assigned by the com­
piler (optional).

If an error is detected during execution of the
load module, additional information listings are
printed before the trace: these are;

o A diagnostic message

o The contents of the data storage areas
(optional)

Diagnostic Messages

Any error detected at execution time causes ab­
normal termination. A diagnostic message is
produced which is transferred to an output data
set to be listed by a printer. The diagnostic mes­
sages which may be produced during load module
execution are listed in Appendix F.

Data Storage Areas

If DUMP is specified in the invoking statement for
the execution operation, the data storage areas
(DSA) in main storage are transferred to the out­
put data set to be listed by a printer. They are
listed in the reverse order to which they were
created.

A DSA is created for each call of a program
block (see "Compilation Listings") and exists in
main storage as long as the call is effective. The
DSA contains:

Information Listings 21

1. All execution time values of variables declared
or specified in the program block except for
arrays. The array values are stored separate­
ly but are included in the listing because they
are referenced by the SMF which is contained
within the DSA.

2. Intermediate results (known as the object time
stack).

The information listed for each DSA consists
of:

• Name of load module

• Program block number

• Description of program block; either
BLOCK, PROCEDURE or TYPE PROCEDURE

• The values in the DSA, in batches according
to their category, that is, formal parameters,
declared identifiers and object time stack,
arrays called by value, and declared arrays.

The values are those which exist at the time
the error was detected (in hexadecimal form).
The displacement in the DSA of the first value in
each line is printed at the beginning of each line.
This is a six digit hexadecimal number.

For- formal parameters, each entry has 16
digits, and in the case of parameters called by
name the entry contains an address constant
pointing indirectly to the value.

For declared identifiers and the object time
stack, the identifier entries are listed first and
they can be located using the identifier table if it
was listed by the compiler. In the case of a type
procedure, the function value is stored at the lo­
cation of the procedure identifier within the pro­
gram block defined by the procedure. The object

22

time stack contains various intermediate results
and addresses which are not directly related to
the identifiers in the source program.

For arrays the length depends on the SMF.
The displacement of the SMF in the DSA is given
for each array.

In the listings, real values have a length of 8
hexadecimal digits when SHOR.T is specified and
16 digits when LONG is specified. They are in
standard floating point representation. Integer
values have a length of 8 hexadecimal digits and
are in standard fixed point representation. Boolean
values have a length of 2 hexadecimal digits which
appear as 00 for "FALSE' and 01 for ~RUE'.

An editing routine inserts blanks between each
set of 8 digits to improve readability.

ALGOL Program Trac~

A program trace, listing the semicolon numbers
assigned by the compiler (see "Compilation List­
ings ") in the order the corresponding semicolons
were encountered during execution, is transferred
to an output data set to be listed by a printer if
TRACE, TRBEG or TREND is specified in the in­
voking statement for the execution. The complete­
ness of the trace depends on the option or options
specified (see Appendix E). Only the semicolons
actually passed through at executioq time are in­
cluded in the trace.

If a precompiled procedure is used in the pro­
gram and TRACE is specified., then the semicolon
numbers for the procedure are included in the
correct position within the program. The appro­
priate load module name (firs.t four characters
only) is inserted at the beginning of the listings
and each time a change occurs in the first four
characters of the module narrle.

SOURCE PROGRAM

SC SOURCE STATEMENT

00000
00004
00006
00008
00012
00016
00017
00019
00020
00021
00022
00023
00025
00026
00027
00028

'BEGIN' 'INTEGER' I, 'REAL' A, 'BOOLEAN' B,'INTEGER' 'ARRAY' IA(/1:S/),
'ARRAY' AR (/0: 3, 2: 8/); 'BOOLEAN' 'ARRAY' BA (/0: 1, 1: 3,3: 7/) ,
'INTEGER' 'PROCEDURE' IP; IP:= I+5;
'REAL' 'PROCEDURE' RP(A); 'VALUE' A; 'INTEGER' A; RP:=A*A;
'PROCEDURE' P(A,B,C), 'BOOLEAN' A; 'REAL' B; 'INTEGE:R' C;
A:=B<C
I:=l; A:=2.6,
AR(/l,l/) :=IP,
AR(/l,2/):=RP(AR(/l,1/»,
P(BA(/0,1,3/),A,I);
P(B,AR(/1,2/),IP),
SYSACT(1,8,SO); OUTREAL(l,AR(/l,l/»,
OUTBOOLEAN(1,BA(/0,1,3/»,
OUTBOOLEAN(l,B) ,
A:=A/O,
'END'

Figure 11. Example of Source Program Listing.

IDENTIFIER TABLE

PBN SC PBN NAME TYPE DM DSP NAME
SURR PR LN

001 00000 000 A R OlC AR
BA B A 03 058 I
IP I P 00 070 P

002 00006 001 IP I P 00 070

003 00008 001 A I v 020 RP

004 00012 001 A B N 018 B

TYPE OM DSP
PR LN

RA 02 03C
I 018

P 03 078

R P 01 074

R N 020

NAME

B
IA
RP

C

TYPE DM DSP
PR LN

B 020
I A 01 024
R P 01 074

I N 028

Figure 12. Example of Identifier Table Listing. This corrl~sponds to the program in Figure 11.

STORAGE REQUIREMENTS (DECIMAL)

OBJECT MODULE SIZE 1840 BYTES.

DATA STORAGE AREA SIZES

PBN BYTES PBN BYTES PBN BYTES PBN BYTES PBN BYTES

001 1.36 002 32 003 40 004 60

Figure 13. Example of Storage Requirements Listing. This corresponds to th~ program in Figure 11.

Information Listings 23

CROSS REFERENCE TABLE ----
CONTROL SECTION ENTRY

NAME ORIGIN LENGTH NAME LOCATION NAME LOCATION NAME LOCATION NAME LOCATION

00 730
IHIDSTAB 608 :j:HIENTIF 724

IIIISYSCT* 730 SEC
IHISOREA* 020 328

IHISORAR 020 IHISOREL 030
---... ------ -

IHIIORTN* 2580 B58

IHIIOROQ 2580 IHIIOROP 25AC IHIIORNX 28C4 IHIIORCL 2BOC
IHIIORCP 2C72 IHIIORGP 1038 IHIIORCN 2D3C IHlIOREN 2076
IHIIOREV 2DCE IHIIORED 2E40 IHIIORCI 2F44 IHIIORER 2FCC

LOCATION REFERS TO SYMBOL IN CONTROL SECTION

61C IHISYSCT IHISYSCT
658 IHISOREL IHISOREA
660 IHIOBOOL IHIOBOOL
008 IHIIORCL IHIIORTN ---- ----- -

lF48 IIIIFSARB IHIFSARB
lF5C IHIIORCP IHIIORTN
lF81 IIlIFSARA IHIFSARA

ENTRY ADDRESS IF24
TOTAL LENGTH 3008

Figure 14. Example of Cross -Reference Table Listing. This is part of the tablE~ produced from the program
in Figure 11. A Module Map Listing would contain only the list of Control Sections and Entry Names, plus
the Entry Address and Total Length Information. Control Sections marked with an asterisk were included
from a library during automatic library call.

11110311 SC=00027 PSW= FF05000F 48005E22 DIVISION BY ZERO, FLOATING POINT

l10DULE = GO PROGRAM BLOCK NUMBER = 001 (BLOCK)

000018
000038
000058
000078

000000

000000
000020
000040
000060

000000

DECLARED IDENTIFIERS AND OBJECT TIME STACK
00000001 4129999A 0001FF2C 01000000 0001E49C
00000004 02000024 0001E428 0001E430 0001E4AO
0300003C 0001E408 0001E4l0 0001E42E 0000001E
0001E44C 0000581C 0001F560 400058C

0001F4AO
00000070
OOOOOOOF

SMF DISPLACEl1ENT IN DSA =: 000058 DECLARED ARRAY
00000000 00000000 00000000 00000000 00000000 00000000

SMF DISPLACEMENT IN DSA :: 00003C DECLARED ARRAY
00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000

SMF DISPLACEHENT IN DSA = 000024 DECLARED ARRAY
00000000 00000000 00000000 00000000 00000000

0001E4B4
OOOOOOlC
00000005

00000000

41600000
00000000
00000000

00000014
00000004
00000001

00000000

42240000
00000000
00000000

Figure 15. Example of Error Message and Data Storage Area Listing. This is the listing produced from
the program in Figure 11 when the division by zero was encountered.

ALGOL PROGRAM TRACE

HODULE SEHICOLON NUMBERS

GO 00001 00002 00003 00004 00005 00006 00008 00012 00017 00018 00019 00007 00020
00009 00010 Q0011 00021 00013 00014 00015 00016 00022 00013 00014 00015 00016
00007 00023 00024 00025 000!6 00027

END OF ALGOL PROGRAH EXECUTION

Figure 16. Example of Program Trace Listing. This was produced from the p"rograml in Figure 11.

24

CAPACITY LThUTATIONS

III addition to those given in IBM System/36(t
Operating System: ALGOL Language, the follow­
ing restrictions must be observed when writing
a:n ALGOL source program:

Number of blocks and
procedure declarations
(NPB) ~255

Number of for statements ~255

Number of identifiers de­
clared or specified in one
block or procedure. F is
at most twice the number
of for statements occur­
ring in that block

l.ength of letter string
serving as parameter
delimiter

~179-F for type
procedures
~180-F otherwise

~1024 letters when main
storage size available is
less than 50K, ~2000
letters otherwise

l.ength of label identifer ~1024 characters

Number of valid

when main storage size
available is less than
50K, ~2000 characters
otherwise

characters ~255K

Number of semicolons in
the whole program ~65535

Number of nested blocks,
compound statements, for
statements and procedure
declarations ~999

Number of labels declared
or additionally generated
by the compiler ~1024

The compiler generates the following
additional labels:

SECTION 4: PROGRAMMING CONSIDERATIONS

For each switch declaration 2

For each procedure declaration 2

For each procedure activation
(inc:luding function designators) 1

For each "THE N" and each "E LSE ,. 1

For each for statement

Length of constant

at most L + 3
where L is the
number of for
list elements

pool ~(256 - NPB) x 4096 bytes

ThE~ requirements of components within the pool
are

Integer constant

Real constant
(SHORT)

Real constant
(LONG)

String (in bytes)

4 bytes

4 bytes.

8 bytes

2 + number of
symbols of open
string between
the outermost
string quotes

The constant pool is divided into blocks of 4096
bytes each. The first block contains the integer
constants 0 to 15 (64 bytes). All strings together
arE~ restricted to fill not more than the rest of
this block (4096 - 64 - 2S bytes, where S =
nurnber of strings).

No constant occurring more than once in the source
program is stored twice in the same block; however,
it rnay possibly be stored more than once in differ­
ent: blocks. Up to seven bytes may be left unused.

Length of data storage area
for each block or procedure
deelaration ~4096 bytes

Number of blank spaces
serving as delimiters on
I/O data sets s:255

Programming Considerations 25

Number of records per
section

Number of entries in the
Note Table

'5:.255

~127

(The Note Table stores information to retrieve
records which may be required again later. An
entry for a record is made each time the ALGOL I/O
procedures PUT and SYSACT13 are executed, and
each time an input operation, with backward repo­
sitioning, follows ail output operation on the same
data set.)

Identification number (N) used
by PUT or GET 0~'5:65535

INVOKING A PROGRAM WITHIN A JOB STEP

Anyone of the four macro-instructions, CALL,
LINK, XCTL or ATTACH, may be used to dynam­
ically invoke the compiler, linkage editor and load
module within a job step. This is an alternative
to the more usual method of invoking a program
by starting a job step with an EXEC statement.
Full details of the four macro-instructions are
given in IBM System/360 Operating System:
Control Program Services.

To invoke a program with the CALL macro­
instruction, the program must first be loaded into
main storage, using the LOAD macro-instruction.
This returns, in general register 15, the entry
address which is used by the CALL macro-instruc­
tion. The instructions used could be:

LOAD EP:-:::menlber-name

LR 15,0

CALL (15), (option-address), VL

To invoke a program with one of the LINK,
XCTL or ATTACH macro-instructions would need
instructions such as:

LINK EP=member-name,

PARAM=(option-address), VL=1

XCTL EP=member-namc

ATTACH EP=member-name,

PARAM=(option-address), VL=1

"member-name" specifies the name of the mem­
ber of a partitioned data set which contains the pro­
gram required.

For the compiler, member -name=ALGOL

For the linkage editor, member-name=IEWL

For the load module, member-name is speci­
fied by the programmer in the SYSLMOD DD state­
ment for the linkage editor.

"option-address" specifies the address of a
list containing the options required by the user.
An address must be given even if no options are
specified. The list must begin on a half-word
boundary. The first two bytes contain a number
giving the number of bytes in the remainder of
thE: <;jt. (If no options are specified this number
must be zero). The list itself contains any of the
options available to the P ARM parameter in an
EXEC statement (see Appendix E).

When using CALL, LINK or ATTACH to invoke
the compiler, other ddnames n~ay be used in place
of the standard ddnames given in Section 2 for the
data sets (except for SYSABEND), and an alterna­
tive page number (instead of the normal 001) may
be specified for the start of output listings.

If alternative ddnanles are used, then in the
statement invoking the compiler, "option-address"
must be followed by "ddname -address" giving the
address of a list containing the alternative ddnames.
If alternative page numbers arle used, then "page­
address" giving the address of a location contain­
ing the alternative page number must be placed
after "ddname-address li; thoul~h if alternative
ddnames are not required "ddname -address" may
be replaced by a comma.

The ddname list must begin on a half-word
boundary. The first two bytes contain a number
giving the number of bytes in the remainder of
the list. The list itself contains up to ten 8-byte
fields, separated by commas, for specifying al­
ternative ddnames for the data sets. As only seven
data sets are used by the compiler, three of the
fields are left blank. The alte:rnative ddnames
must be listed in the following order:

Purpose of data set

Output of object module
for linkage editor

Standard ddname

SYSLIN

-- Three blank fields --

Source program input

Information listings

Output of object module
for card deck

Intermediate work

Intermediate work

Intermediate work

SYSIN

SYSPRINT

SYSPUNCH

SYSUTI

SYSUT2

SYSUT3

The field for a data set which does not use an
alternative ddname must be left blank if there is
an. alternative ddname following. Otherwise the
field is omitted.

The location containing the page number must
begin on a half-word boundary. The first two
bytes contain a number giving the number of bytes
in the remainder of the location (namely, four).
These four bytes contain the number for the first
page of the output listings, and on return to the
invoking program they will contain the number of
the last page.

An example of an invoking statement and the
associated lists, for the compiler, is:

COMPILE LINK EP=ALGOL, PARAM=
(OPTIONS, DDNAMES , PAGE) ,
VL=l

OPTIONS DC

DDNAMES DC

PAGE

H "25 ", C 'PROCEDURE, DECK,
SIZE=90112 "

H'35 ", C "OUTPUTbb, 3CL8 b",
C 1NPUTbbb", CL8 b",
C "CARDDE CK "

b = blank

In this case, the PROCEDURE and DECK op­
tions are specified and 88K bytes of main storage
are made available. Alternative ddnames are
sp1ecified for SYSLIN, SYSIN and SYSPUNCH, and
62 is specified as the first page number for the
ou tpu t lis tings.

PRECOMPILED PROCEDURES

Subprograms, written in either ALGOL or Assem­
bler language, may be compiled or assembled,
linkage edited, and stored in load module form on
a partitioned data set for subsequent call by a
load module produced from an ALGOL source
program when this latter module is being executed.
The compiler will recognize a subprogram if the
PROCEDURE option is specified in the invoking
statement. A subprogram of this type when stored
in load module form is known as a precompiled
proeedure and is specified in the calling ALGOL
program by using the "CODE" delimiter as the
body of a procedure.

A precompiled procedure is loaded into main
storage when control passes to the program block
in which the precompiled procedure is declared,
and is deleted when control leaves that block.
Thus, precompiled procedures declared in dis­
joint program blocks will overlay each other.

The REUS option (see Appendix E) must not be
specified for the precompiled procedure load mod­
ule, in the statement invoking the linkage editor,
if the installation allows multiprogramming.

The module name specified to the linkage editor
for a precompiled procedure must be the procedure
name used in the declaration of the procedure in
the calling ALGOL program. The precision of
real values must be the same, SHORT or LONG,
in the calling ALGOL program and the precompiled
procedure. If this rule is not observed then un­
defined results may occur.

ALGOL Procedures

The requirements for a precompiled procedure
written in ALGOL are given in IBM System/360
Operating System: ALGOL Language.

Assembler Language Procedures

The following requirements must be observed
when writing a precompiled procedure in Assem­
bler language.

In the instructions given below, the programmer
may specify any valid names in the name fields,
provided that any cross-referencing of names is
observed. To avoid erroneous results, other in­
structions should not be included in the following
sequences.

Programming Considerations 27

Initialization Instructions

ASS TART DC XL2 '"

DC XL2'

'" Characteristic of
first formal param­
eter (see Figure 1 7)

, Characteristic of
second formal pa­
rameter

DC XL2 '" '" Characteristic of

Termination Instructions

last formal param­
eter

First instruction
executed

Reset CDSA, PBT and FSA registers for a type
procedure, store value of type procedure at dis­
placement 24 in the data storage area (DSA)

B EPILOGP (FSA)

Definition Instructions

Return to calling
program

The following storage and constants must be de­
fined:

PBTAB DS F Space
DC CL4'" '" Name of procedure

(first 4 characters)
DS F Address of DSA (set

by FSA routine)
DC H" ,.

Length of DSA. At
least 24 (+S if type
procedure)
+8 x number of formal
parameters

X"'OS'" If type procedure
DC ·t X"04'" If procedure
DC X"'Op '" where p is number of

formal parameters in
one hexadecimal digit.

Entry Point

At the entry point of the module there must be an
address constant:

DC A(PBTAB, DUMMY, ASSTART)

28

Register Definitions

The following registers must be defined if used in
the program:

ADR EQU S Used i:n communications
with calling ALGOL pro-
gram.

GDSA EQU 9 Used in communications
with calling ALGOL pro-
gram.

CDSA EQU 10 Address of DSA. Must be
reset before communica-
tion with calling ALGOL
program.

PBT EQU 11 Address of PBTAB. Must
be reset before communi-
cation with calling ALGOL
program.

FSA EQU 13 Must be reset before
communication with
calling ALGOL program.

STH EQU 14 Used in communications
with calling ALGOL pro-
gram.

BRR EQU 15 Used in communications
with calling ALGO~ pro-
gram.

Fixed Storage Area Displacements

The following displacements lnust be specified
for routines in the fixed storage area which are
used in the program.

CAPI EQU X"'OD4'"
CAP2 EQU X"'ODS'"
PROLOGFP EQU X"'ODC'"
RETPROG EQU X"'OE4'"
EPILOGP EQU X"'OES'"
CSWEI EQU X"OF4"
VALUCALL EQU X1.1S '"

Parameter Handling

In the following instruetions DISPL is the displace­
ment of the formal parameter in the DSA. For
example, the displacelnent of the nth formal param­
eter is:

24 + S(n-l), except in the ease of type
procedures where it is 32 + S(n-l)

Formal Parameters Called by Name:-

1. If the formal parameter is a string, an array,
or of type real, integer or Boolean, the follow­
ing method can be used to call the actual pa­
rameter.

Save all registers.

Reset CDSA, PBT and FSA registers
BAL BRR, CAPI (FSA)
DC H"S'

H DS
L ADR, DISPL(CDSA)

2. If the formal parameter is a procedure (con­
taining j formal parameters), the following
method can be used to call the actual procedure.

Save all registers.

Reset CDSA, PBT and FSA registers
BAL BRR, CAPl(FSA)
DC H'S'
DS H
L ADR, DISPL(CDSA)
BAL BRR,PROLOGFP(FSA)
DC A(THUNKl)
DC XL2' , Characteristic of

first parameter
(see Figure 1 7)

DC H' '" Number of param-
eters, j

DC A(THUNK2)
DC XL2' , Characteristic of

DS H

DC
DC

DS

A(THUNKj)
XL2'

H

second parameter

, Characteristilc of
last parameter

Return after call

A "thunk" is a sequence of instructions that
loads register ADR with the address of the :actual
parameter. The following instructions must there­
fore be included in the precompiled procedure when
the above sequence is used.

'fHUNKl LA ADR, ACTPRI Address of first
actual parameter *

B CAP2(FSA)

THUNKj LA ADR, ACTPRj Address of last
actual parameter

B CAP2(FSA)

-It- In the case of a string the first 2 bytes should
contain the length of the string.

3. If the formal parameter is a label, the follow­
ing method can be used to call the actual param­
eter.

Save all registers.

RElset CDSA, PBT and FSA registers
BAL BRR,CAPl(FSA)
DC H'S'
DS H
L ADR, DISPL(CDSA)
B RETPROG(FSA)

4. If the formal parameter is a switch, the follow­
in~~ method can be used to call the actual param­
etElr.

Save all registers.

Reset CDSA, PBT and FSA registers
BAL BRR, CAPl(FSA)
DC H'S'
DS H
L ADR, DISPL(CDSA)
LA BRR, i i=element number
BAL STH,CSWEl(FSA)
B RETPROG(FSA)

Formal Parameters Called by Value:-

If the formal parameter is an array, or of
type real, integer or Boolean, the following
method can be used to call the actual param­
eter.

Save all registers.

RElset CDSA, PBT and FSA registers
BAL BRR,CAPl(FSA)
DC H'S'
DS
L
BAL
DC
DC

H
ADR, DISPL(CDSA)
BRR, VALUCALL(FSA)
H'DISPL'
XL2' , Characteristic of

formal parameter
(see Figure 17)

Programming Considerations 29

Type of Characteristic Halfword
Parameter (in hexadecimal form)

Result after call of actual parameter
\Vhen called When called
by name by value

-
STRING CBIO ADR contains address of string
REAL C212 ADR contains address of real value
REAL C222 DISPL in CDSA contains real value
INTEGER C211 ADR contains address of integer value
INTEGER C221 DISPL in CDSA contains integer value
BOOLEAN C213 ADR contains address of B'oolean value
BOOLEAN C223 DISPL in CDSA contains Boolean value
ARRA Y or REAL} CA16 ADR contains address of SMF' (see below)
ARRAY CA26 DISPL in CDSA contains address of SMF
INTEGER ARRA Y CA15 ADR contains address of SM F
INTEGER ARRAY CA25 DISPL in CDSA contains address of SMF
BOOLEAN ARRAY CAli ADR cont.'tins address of SM F
BOOLEAN ARRAY CA27 DISPL in CDSA contains address of SMF
LABEL CA18 ADR contains address of label
LABEL

I
CA28 ADR contains address of label

SWITCH CAlC ADR contains address of switch
PROCEDlllE CADO If the actual procedure is parameter-less then

procedure is called, otherwise ADR contains
address of procedure

REAL PROCEDlffiE CAD2 If the actual procedure is parameter-less then
procedure is called, and ADR contains address
of real value, otherwise ADR contains address
of procedure

REA L PROCEDURE C2E2 DISPL in CDSA contains real value
INTEGER PRO- CADI If the actual procedure is parameter-less then
CEDURE procedure is called, and ADR contains address

of integer value. otherwise ADR contains address
of procedure

INTEGER PRO- C2E1 DISPL in CDSA contains integer value
CEDURE
BOOLEAN PRO- CAD3 If the actual procedure is parameter-less then
CEDURE procedure is called, and ADR contains address

of Boolean value, otherwise ADR contn.ins address
of procedure

BOOLEAN PRO- C2E3 DISPL in CDSA contains Boolean value
CEDlffiE

Figure 17. Table of parameter characteristics for an Assembler language precompiled procedure. The
SIVIF describes the storage layout of an array. Byte 0 contains a value denoting the number of subscripts
in the array. Bytes 8 to 11 contain the address of the first element in the array. Bytes 16 to 19 contain
a value denoting the size of the array.

:;0

When processing the source program, the com­
piler detects and specifies any routines that need
to be combined with the generated object module
before it can be executed. These routines are
contained in the System/360 Operating System
ALGOL library - a partitioned data set with the
external name SYS1. ALGLIB. The routines are
i,n load module form and the linkage editor com­
bines them with the object module to produce an
executable load module. There are three types
of routines - fixed storage area routines, nlathe­
matical routines and input/output routines. Addi­
tionally, an error routine, stored on the operating
system link library, SYS1. LINK LIB , is called
at execution time if an error occurs.

Initialization and termination of the library
routines is performed using the standard method
(see "Supervisor" in Section 1).

FIXED STORAGE AREA

General routines required to some degree by all
object modules are combined into a single load
module known as the fixed storage area (IHIFSA).
These routines are used to initialize and termi­
nate execution of the ALGOL program, to handle
1he DSA when entering or leaving a progranl block
or procedure, to produce the program trace, to
load precompiled procedures, to get main Eltorage
for arrays D to convert values from real to integer
and integer to real, to call actual parameters, to
handle branches in the program, to handle pro­
~~ram interrupts, etc ••••

MATHEMATICAL ROUTINES

Standard mathematical functions contained in
ALGOL have corresponding mathematical routines

APPENDIX A: ALGOL LIBRARY ROUTINES

in the lil?rary, except for ABS, SIGN and LENGTH
which are handled by the compiler, and ENTlER
which is contained in the fixed storage area. Rout­
ines exist in each case for both long and short pre­
cision of real numbers.

These mathematical routines are taken from
the System/360 Operating System FORTRAN IV
library and modified to conform to the ALGOL
language requirements without affecting the mathe­
matical methods used. Full details of these rou­
tines are contained in IBM System/360 Operating
§ystem: FORTRAN IV Library Sub-programs.

INPUT/OUTPUT ROUTINES

Data transfer between the load module and exter­
nal data sets is performed by input/output rou­
tines. These routines correspond to the ALGOL
I/O procedures and are mostly contained on sep­
arate load modules (see Figure 18). In addition
there is a single load module, IHIIOR, which
contains a number of commonly-used subroutines.

ERROR ROUTINE

If an error is detected during execution of the
load module, an error routine (in SYSl. LINK LIB)
is invoked. Its main purpose is to construct the
error message and produce the data storage area
listing before passing to the termination routine
in the FSA. If a second error occurs while the
first is being handled (due, for example, to an
I/O error or because the object module has over­
written part of the ALGOL library or control pro­
gram), then termination takes place immediately
and incomplete inforlnatiun listings may be pro­
dueed.

ALGOL Library Routines 31

Module Name Storage
When used estimate

(bytes
ALGOL FORTRAN IV

IHIERR When an error is detected at execution time 4270

IHIFDD IHCFDXPD For an exponentiation (-lH!-or 'POWER,) using
long precision base and long precision exponent 200

IHIFDI IHCFDXPI For an exponentiation (-lH!- or 'POWER,) using
long precision base and integer exponent 140

IHIFII IHCFIXPI For an exponentiation (iH!-or POWER,) using
integer base and integer exponent 170

IHIFRI IHCFRXPI For an exponentiation (?H~or 'POWER,) using
short precision base and integer exponent 140

IHIFRR IHCFRXPR For an exponentiation (-lH~ or 'POWER,) using
short precision base and short precision
exponent 200

IHIFSA For every object module (except those for
precompiled procedures) 5030

IHIGPR For either GET or PUT 2420

IHIIAR For INARRAY or INTARRAY 120

IHIIBA For INBARRAY 70

IHIIBO For INBOOLEAN 530

IHIIDE For either INREAL or ININTEGER 1560

IHIIOR For every object module 2910

IHIISY For INSYMBOL 270

IHILAT IHCLATAN For a long precision arctangent
operation (ARCT AN) 320

IHILEX IHCLEXP For a long precision exponential operation (EXP) 450

IHILLO IHCLLOG For a long precision logarithmic operati.on (LN) 310

IHILOR For a long precision OUTREAL operation 730

IHILSC IHCLSCN For a long precision sine or cosine operation
(SIN or COS) 370

IHILSQ IHCLSQRT For a long precision square root operation
(SQRT) 140

IHIOAR For OUT ARRA Y 120

32

IHIOBA For OUTBARItA Y 70

IHIOBO For OUTBOOLEAN 400

IHIOIN For OUTINTEGER 410

IHIOST For OUTSTRING 300

II-nOSy For OUTSYMBOL 290

II-nOTA For OUTTARRAY 120

IHIPTT For a long precision INREAL or OUTREAL
operation 270

II-nSAT IHCSATAN For a short precision arctangent
operation (ARCTAN) 200

IHISEX IHCSEXP For a short preciSion exponential operation (EXP) 280

IHISLO IHCSLOG For a short preciSion logarithmic operation (LN) 210

IHISOR For a short preciSion OUTREAL operation 810

IHISSC IHCSSCN For a short preciSion sine or cosine operation
(SIN or COS) 260

IHISSQ IHCSSQRT For a short preciSion square root operation
(SQRT) 170

IHISYS For SYSACT 1520

Figure 18. Table of ALGOL library modules. All are eontained in SYSl. ALGLIB except IHIERR
which is in SYSl. LINK LIB. For mathematical routines, the corresponding name in the FORTRAN IV
library is also given.

ALGOL Library Routines 33

APPENDIX B: IBM-SUPPLIED CATALOGED PROCEDURES

The three cataloged procedures for ALGOL that
were introduced in Section 2 are contained in the
procedure library, SYSl. PROCLIB, of the oper­
ating system. They consist of the job control state­
ments listed below.

These procedures have been designed for an

Compilation, ALGOFC

optimum job, and can be over-ridden by the user
if he requires different or additional system sup­
port to that provided (see Section 2). In particular
it should be noted that in these procedures the ob­
ject or load module produced is stored on a tempo­
rary data set and will therefore be deleted at the
end of the job.

• , I I !,. ! ,

,,"" I X,

If ,.1, •• ,., •• "", II le'.'II'I!".i...I!!"....L...~_-L-..A..-..I--L......J..-.&..~_

! I , I , ! I I , e I I , , , " , t to It' , ' t " , ,t t I I I , , t
t ,

Compilation and Linkage Editing, ALGOFCL

34

Compilation, Linkage Editing and Execution, ALGOFCLG

, f"'" ,)(.

! • , , , " ".x,
I !., " fl ••

• ! !

• I I !

IBM-Supplied Cataloged Procedures 35

36

APPENDIX C: CARD CODES

The card deck of the source program is punched
line for line from the text written on the coding
sheets. The card code used can be either a 53
character set in Extended Binary Coded Decimal
Interchange Code (EBCDIC), or a 46 character
set in Binary Coded Decimal (BCD). This latter
character set has been established as standard
for ALGOL by the International Standards Organ­
ization (ISO) and Deutsche Industrie Normen
(DIN). Figure 19 shows these two codes.

Characters
Card Codes

EBCDIC ISO/DIN

A to Z 12-1 to 0-9 12-1 to 0-9

o to 9 o to 9 o to 9

+ 12-8-6 12

- 11 11

* 11-8-4 11-8-4

/ 0-1 0-1

= 8-6 8-3

, 0-8-3 0-8-3

. 12-8-3 12-8-3

~ 8-5 8-4

(12-8-5 0-8-4

) 11-8-5 12-8-4

blank no punch no punch

< 12-8-4

> 0-8-6

I 12-8-7

& 12

-;? 11-8-7

: 8-2

. 11-8-6 .,

Figure 19. Source program card codes.

The object module is in a form acceptable as input
to the linkage editor, that is, its records are card
images having the format of ESD, RLD, TXT and
END cards (see Figure 20). It is stored either on
a data set (ddname SYSLIN) in the linkage editor
library, or on an output data set (ddname SYSPUNCH),
or on both. The parameters LOAD and DECK, used
to specify these storage options are described in
Appendix E.

The object module consists of:

1. An initial ESD card defining the control sec­
tion. For a precompiled procedure, the
procedure name (up to 6 characters) i.s as­
signec1 to the control section and entered into
this record.

2. The Constant Pool containing all constants
and strings in the module.

APPENDIX D: OBJECT MODULE

3. The generated instructions.

4. The Label Address Table (see Section 3) for
addressing branch instructions in the module.

5. The Program Block Table containing an
entry for every program block. This table
indicates the active generation of data stor­
age areas (see Section 3) and length of each
data storage area.

6. The Data Set Table containing information
on the current status of all data sets used.
This table is not produced for precompiled
procedures.

7. Program start information.

8. An END card.

(END card

~/------~~------~/

~
program start i'nforma-

tion (ESD, RLD and TXT
cards)

/ /

(

Data set table (RLD and I--_-'V
TXT cards)

~/---------------1/

(
Program block table (RLD I--__ --'V
and TXT cards)

~/-----------.--~/
(Label address table (ESD, I-----Y/ I RLD and TXT cards)

~/_---------~/

(

Generated instructions I-__ --'V
(R LD and TXT cards)

~n'tant pool /1---__ /
~xTCard,)

r ~efinition of control
LecHon (ESD cord)

I---...Y/

Figure 20. The object module card deck. The ESD (External Symbol Dictionary) cards contain the external
symbols that are defined or referred to in the module. The RLD (Relocation Dictionary) cards contain
addresses used in the module. The TXT (Text) cards contain the constants and instructions used in the
module. The END card indicates the end of the module.

Object Module 37

APPENDIX E: USING JOB CONTROL LANGUAGE

This appendix describes the method of writing job
control statements, and explains the options most
frequently used by the ALGOL programmer. A
full description of Job Control Language is given
in IBM System/360 Operating System: Job Control
Language.

CODING FORMAT

Control statements are identified by the initial
characters / / or / ~~ and are written in columns
1 to 72 of standard 80 column punched cards.
Each field is separated by one or more blanks.
Column 72 must be left blank unless the state­
ment is to be continued on another card.

If the length of a statement exceeds 71 charac­
ters, it must be continued on another card. This
is done by interrupting the statement at the end of
a positional or keyword parameter, following this
parameter with a comma, and placing any non­
blank character in column 72. The continuation
card commences with the initial characters / /
and the statement restarts on column 16. Com­
mand statements may not be continued on another
card.

Comments must be separated from the last
parameter by one or more blanks. If the com­
ment is to be continued on another card it may be
interrupted at any convenient point and a non­
blank character is put in column 72. The conti­
nuation card commences with the initial charac­
ters / / and the comlnent restarts on any column
from 16 to 71 inclusive.

The four possible formats for control state­
ments are shown in Figure 21. The null and de­
limiter statements are blank except for the first
two columns.

NAME contains the symbolic identification of the
control statements. It is always placed imme-

Applicable Con-
Format trol Statements

/ /NAME OPERATION OPEHAND JOB, EXEC,
DD

//OPERATION OPERAND EXEC,DD,

//

/*

Command

Null

Delimiter
L-___________________ --------l'----_______ ----'

Figure 21. Control statements formats.

38

diately after the initial characters / /. A name
must contain between one and eight alphameric
characters, the first of which must be alphabetic.
If name is omitted, then at least one blank must
separate the initial characters / / and the operation
field.

OPERATION identifies the type of control state­
ment being specified.

OPERAND contains the statement parameters,
separated by commas.

CONVENTIONS

The conventions used in this manual for describing
control statements are as follows:

Upper case letters and punctuation marks (except
those listed below) represent information to be coded
exactly as shown.

Lower case letters are general terms requiring
substitution of specific information by the program­
mer.

These punctuation marks have a special meaning:

- (hyphen) links lower case words to form a
single term for substitution

(underscore) indicates the option that will
be assumed if none is specified

[} (braces) mean only one of the options con­
tained must be selected

[] (brackets) mean inforlnation contained may
be omitted

(ellipsis) means that preceding item can be
repeated successively a number of times.

CONTROL STATEMENT CODING

In the following description, certain terms are
used to indicate external names which are to be
specified by the programmer. These terms and
their meanings are:

Term Meaning

jobname name of job

progname name of program

stepname

ddname

procname

procstep

dsname

name of job step

name of DD statement
(the standard ddnames
which may be specified
are described in Section 2)

name of cataloged proce­
dure

name of job step within
a cataloged procedure

name of data set

It is often convenient to use two or more quali­
fication levels to specify a data set name. The
highest level reference is stated first. Thus in
Figure 22, data set D. M. H is found by searching
the index of each volume in turn, starting with the
system residence volume (the primary volume in
the operating system), to find the location of data
set D. This, when searched, will contain the lo­
cation of data set D. M, which in turn will contain
the location of data set D.l\I. H.

volume index A D z

data set D A M z

data set D. M. A H z

Figure 22. Data set cataloging using qualified
names.

A maximum of 44 characters can be used for a
qualified name. Thus, as a simple name can con­
sist of between one and eight characters, and each
name must be separated by the character period
(.), a maximum of 22 qualification levels is possible.

Data set names can also be qualified by a suffix,
that is, "dsname (element)", to indicate the rela­
tive generation number. For example, WEATHER
(0) is the current generation of the data set named
WEATHER. The preceding generation would be
WEATHER (-1). A new generation during creation
is known as WEATHER (+1), at the end of the job
it becomes WEATHER (0). A suffix is also used
to indicate the name of a member of a partitioned
data set, or the area of an indexed sequential data
set.

There are four types of job control parameters
for inclusion in the operand fields: positional pa­
rameters, keyword parameters, pOSitional sub­
parameters and keyword subparameters.

Positional parameters must be stated first,
and where more than one can be included they must
be listed in the order given in the following descrip­
tions. A comma must be substituted in place of
any positional parameter omitted, if it is to be
followed by another positional panimeter, for ex­
ample,

Iiname operation pos1, ,pos3

Keyword parameters can be listed in any order.
They contain a keyword followed by an equal sign
(=) and some specific information. All keyword
parameters are optional since a default option will
exist for any which must be specified.

One or more subparameters can be substituted
for a pOSitional parameter and also for the informa­
tion to the right of the equal sign in the keyword
parameter.

Positional subparameters have the same confi­
guration and restrictions as positional parameters.

Keyword subparameters have the same confi­
guration and restrictions as keyword parameters.

When more than one subparameters are used,
they must be separated by commas and the list
enclosed in parentheses, for example,

I I name operation
II

posl,pos2,key1=value,
key2=(subl , sub2)

Since some special characters, such as the
comma, parenthesis, blank and equal sign, have
a special significance when used in control state­
ments, no special characters can usually be used
in job control information provided hy the user.
There are, however, some exceptions to this rule.
The special characters @, $ and # can be repre­
sented normally. All other special chn racters,
except the apostrophe, can be represented normally
in the programmer "s-name in the JOB stntement,
the accounting-information in the JOB and EXEC
statements, and the P ARM parameter options in
the EXEC statement, provided that the information
is enclosed in apostrophes (replacing the parenthe­
ses for a list of more than one subparameter). An
apostrophe within this information is represented
by two consecutive apostrophes.

Using Job Control Language 39

JOB Statement

The name field of the JOB statement must contain
the external name for the job (jobname).

The operation field must contain the characters
JOB

The parameters available for the operand field
are listed in Figure 23, where:

accounting-information
identifies the installation account number to
which the computer time for this job is to be
charged. If the installation has an appropriate
accounting routine, the account number can be
followed by other subparameters, which are
fixed by the user for his own installation. If the
account number is omitted then its absence must
be indicated with a comma.

programmer"'s -name
identifies the person responsible for the job.
It must not exceed 20 characters.

TYPRUN=SETUP
indicates that the operator must mount a volume
before the job can be done.

TYPRUN=NONSETUP
indicates that a volume does not have to be
mounted before the job can be done.

PRTY=job-priority
indicates the relative priority of the job. A num­
ber from 0 to 14 is specified, with 14 being the

Positional [acc ounting -information]
parameters [programmer "'s -name]

Keyword
parameters

{SETUP }
(all optional) TYPRUN= NONSETUP

PRTY =job -priori ty

COND=«code, operator) , ...)

MSGLEVEL~~}

MSGC LASS=classname

Figure 23. JOB statement parameters

40

highest priority. This parameter can be used
only with priority scheduling.

COND=«code, operator) , .••)
allows conditions for the termination of the job
to be specified. Up to eight (code, operator)
specifications may be included :in a COND param­
eter. Any number between 0 and 4095 is sub­
stituted for "code" and one of the follOWing six
relationships is substituted for "operator".

Operator

GT
GE
EQ
NE
LE
LT

Meaning

greater than
greater than or equal to
equal to
not equal to
less than or €!qual to
less than

At the completion of each job step, unless a
system error occurs, the operating system will
generate a return code between 0 and 4095 (see
Section 1) to indicate if the program was executed
successfully or not. If any of the code numbers
stated in the COND parameter is related to the re­
turn code in the way specified by the associated
operator then the job is terminated. For example,
if

COND=«50, LT), (40, GT»

then, the job will be terminated if either 50 is
less than the return code, or 40 greater than the
return code.

MSGLEVEL=O
indicates that the job scheduler is to write out
control statement inforrnation only when an
error occurs. The information required is a
diagnostic message and the control statement
in which the error occurred.

MSGLEVEL=l
indicates that, whether an error occurs or not,
the job scheduler is to write out all control
statements, plus a diagnostic lnessage if an
error does occur.

MSGC LASS=c lassname
allows job scheduler messages to be written
in a system output class other than the one nor­
mally used by the installation. The user can
fix up to 36 different classes (A to z and 0 to
9), depending on device type, priority, desti­
nation, etc., for these messa~~es. This param­
eter is not necessary if the normal class (A)

is required. For sequential scheduling only
class A may be used.

EXEC Statement

The name field contains the external name of the
job step (stepname). It may be omitted if no refe­
rence is to be made to the EXEC statem.ent in
another statement.

The operati.on field must contai.n the characters
EXEC

The parameters available for the operand field
are listed in Figure 24, where:

PGM=prognam.e
indicates that the job step executes the program
named "progname". The program must reside
on a partitioned data set.

PGM=?~. stepname. ddname
indicates that the job step executes the program
named by the DSNAME parameter of a DD state­
ment named "ddname" that was included in a
previous job step named "stepname" in the same
job. If "stepname" refers, to a job step invoking
a cataloged procedure then a job step within the
procedure can be specified by putting its name
after "stepname"; that is, "stepname. procstep".
The program must reside on a partitioned data
set.

PROC=procname
indicates that the job step executes the cataloged
procedure named "procname".

procname
has the same effect as PROC=procname

TIME=(minutes, seconds)
limits the computing time for the job step. If
"seconds" only is specified then a comma must
be substituted for "minutes". If "minutes" only
is specified then the parentheses can be deleted.
This parameter can be only used with supervisor
configurations incorporating the timing facility.

COND=«code, operator, stepname) ••••)
allows conditions to be specified for bypassing
a job step whose execution depends on the re­
turn code issued by a preceding job step. "Code"
and "'operator" are governed by the same stipu­
lations that applied for the JOB statelnent. "Step­
name" indicates the previous job step which
issued the return eode to be used for comparison.
If "stepname" is not specified then the return
code issued by all previous job steps are com-

pared. If "stepname" refers to a job step in­
voking a cataloged procedure then a job step
within the procedure can be specified by putting
its name after "stepname"; that is "stepname.
procstep".

Positional parameters !PGM~'O_m' I PGM~"". stepname. ddname
PROC~-procname

procname

Keyword parameters {TIME }
(all optional) TIME. procstep = (minutes. seconds)

rOND } CONDo procstep = «code. operator. stepname) ••..)

{PARM } PARM. procstep ~ subparameter-list

(CCT } ACCT t = accounting-information .procs ep

Figure 24. EXEC statement parameters.

P ARM=subparameter list
indicates any special conditions which apply
to the job step. All the subparameters in the
"subparameter-list" are optional. They can
be specified in any order, and a comma does
not have to be substituted for any omitted. A
maximum of 40 characters may be used. For
the rule to be observed when an equal sign is
included in the subparameter-list (that is, with
SIZE, TRBEG and TREND), see "Control State­
ment Coding".

For the ALGOL compiler job step, the "sub­
parameter-list" is given below. For each of
the alternatives, the compiler assumes that the
option underscored applies, unless the other
is specified either at this stage or during system
generation. The default options PROGRAM and
TEST cannot be changed at system generation.
If a large number of options need to be specified
for a particular job then the 40 character limi­
tation may be exceeded. To avoid this, abbre­
viated forms, given at the end of the descrip­
tion of each option, may be used.

PROGRAM or PROCEDURE: which specifies
that the source program is either an ALGOL
program in the sense of the ALGOL syntax
(PROGRAM), or is an ALGOL procedure to be
compiled separately and used with other pro­
grams or procedures (PROCEDURE). Abbre­
viated forms PG or PC.

SHORT or LONG: which specifies that the in­
ternal representation of real values is in full

Using Job Control Language 41

42

words (SHORT); or double words (LONG).
Abbreviated forms SP or LP.

NODECK or DECK: which specifies that an
object module, stored on the data set specified
in the SYSPUNCH DD statement, either is not
to be generated (NODECK); or is to be gener­
ated (DECK). Abbreviated forms ND or D.

LOAD or NOLOAD: which specifies that the
compiler is to either generate an object module
for use as input to the linkage editor, using the
data set specified in the SYSLIN DD statement
(LOAD); or not generate this object module
(NOLOAD). Abbreviated forms L or NL.

SOURCE or NOSOURCE: which specifies that
the source program. and identifier table listings
are either to be printed (SOURCE); or not to be
printed (NOSOURCE). Abbreviated forms S or
NS.

EBCDIC or ISO: which specifies that the card
code used to write and keypunch the source pro­
gram is either a 53 character set in EBCDIC
(EBCDIC); or the 46 character set in BCD
which has been established as standard for
ALGOL by ISO and DIN (ISO). Abbreviated
forms EB or I.

TEST or NOTEST: which specifies that the
generated object module is to include informa­
tion which is normally used only for testing
(TEST); or is not to include this information
(NOTEST). The information consists of instruc­
tions to produce the semicolon count, and in­
structions checking the values of subscript ex­
pressions against array bounds. Abbreviated
forms T or NT.

SIZE=45056 or SIZE=number: which specifies
the main storage size, in bytes, that is available
to the compiler. "Number" must not be less
than 45056 and must not exceed 999999.

For the linkage editing job step the "subpa­
rameter-list" consists of two types of options,
those which specify the output listings required,
and those specifying attributes for the load mod­
ule.

The options to control output listings are:

LIST which specifies that all job control state­
ments processed by the linkage editor are to be
listed on the diagnostic output data set.

MAP or XRE F which specifies that either a map
of the load module is to be produced (MAP); or
a cross-reference table of the load module is to
be produced (XRE F) conlprisil1l?; a load module
map and a list of all address constants that re­
fer to other control sections.

The options specifying load module attributes
which can be used with ALGOL programs are:

REUS which produces a load module that is se­
rially reusable, that is, it can be used by more
than one task, but only one task at a time.

DC which produces a load module that is down­
ward compatible, that is, if the load module is
produced by an F level linkage editor then it
can be reprocessed by an E level linkage editor.

LET or XCAL which specifies that either the
load module is to be marked as executable even
when a severity 2 error is detected (LET); or
the load module is to be marked as executable
even though invalid external references between
the segments have been made (XCAL). A se­
verity 2 error could make execution impossible
and would normally lead to the load module be­
ing marked as not executable. It includes the
situation over-ridden by XCAL.

NCAL which specifies that the linkage editor
automatic library call mechanism is not to call
library members to resolve external references
within the object module. The load module is
marked as executable even though unresolved
external references have been recognized.

All the linkage editor subparameters are
optional.

For the execution job step of an ALGOL pro­
gram the "subparameter-list" is:

TRACE which specifies that the semicolon count
produced during the compilation process is to
be printed as a list. This gives information on
the dynamic flow of the program and is known
as a program trace.

TRBEG=number which specifies that a limited
program trace is to be produced beginning at
the semicolon specified by "number" and ending
at the physical end of the prog:ram.

TREND=number which specifies that a limited
program trace is to be produced beginning at
the physical beginning of the program and ending
at the semicolon specified by "number".

The last two options may be specified together
to define the beginning and end of the trace. When
either is specified, TRACE may be omitted, but
in that case precompiled procedures would not
be included. If TRACE is specified with TRBEG
or TREND, then only a limited program trace
is produced, but it will include precompiled
procedures executed in that part of the program.

DUMP which specifies that a partial nlain storage
dump is to be produced if an error occurs. The
dump contains the contents of the data storage
areas and arrays.

All of the execution time subparameters are
optional.

ACCT=accounting-information
allows accounting information associated with
the job step to be passed to the installation"s
accounting routines, using sUbparameters which
are fixed by the user for his own installation.

keyword. procstep
is used with the last four parameters when a
cataloged procedure is being executed. It in­
dicates that the parameter applies to the job
step named "procstep" within the procedure,
and may be repeated for each keyword and with
different, or the same, information to the right
of the equal sign, for each job step in the pro­
cedure.

DD Statement

The name field contains an identifying name
(ddname) for the DD statement.

The operation field must contain the characters
DD

The parameters available for the operand field
are listed in Figure 25, where:

?(indicates, when used as a positional parameter,
that the required data follows immediately after
this DD statement. The asterisk must be the
only non-blank character in the operand field.
For sequential scheduling it can be used only
once in each job step, and the data must be fol­
lowed by a delimiter statement.

DUMMY
indicates that the user"s problem program is
to be executed without any I/O operations on

the data set. Ttis can be used for debugging,
and also for bypassing data set references in
a regularly-used program, for example, the
first run of an updating program when there is
no old master to be processed.

DSNAME=dsname (element)
specifies the name of a newly defined data set,
or refers to one that has been defined previous­
ly. "Element" is used only if it is necessary
to specify the generation number of the data
set, the name of a member of a partitioned data
set, or the area of an indElxed sequential data
set (using the options PRIME, OVFLOW or
INDEX).

DSNAME=&name (element)
specifies that the data set is temporary and will
be deleted before the end of the job. The name
allocated by the operating system is "name.
jobname". "Element" has the same meaning as
when used with DSNAME=dsname.

DSNAME=-Il-. stepname. ddname
indicates that the data set is the one specified
in a preceding DD statement named "ddnanle"
occurring in the job step named "stepname".
If the data set was specified in the current job
step then "stepname" must be omitted. If "step­
name" refers to a job step invoking a cataloged
procedure then a job step within the procedure
can be specified by putting its name after "step­
name"; that is "-I~. stepname. procstep. ddname".

Note. If the DSNAME parameter is omitted then
the operating system will assign a unique name
to any data set created by the job step.

Positional parameters {~UMMY } (all optional)

Keyword parameters ~ dsname(element) l
(all optional, though DSNAME= &name(element) \
DSNAME can be omitted *. stepname. ddname
only when the asterisk
positional parameter Is DCB~ [r . stepname. ddname}] [subparameter-lIst]
used). dsname

{AFF=ddname }
SEP=subparameter-list

UNlT=subparameter-list

1 SPACE~subparameter-list f
SPLIT=subparameter-list
SUBALLOC=subparameter-list

VOLUME=subparameter-list

LABE L=subparameter-llst

{DISP~SUbparameter-lIst }
SYSOUT=subparameter-list

Figure 25. DD statement parameters.

Using Job Control Language 43

DCB= {*. stepname. ddname} [subparameter-list]
dsname

indicates that the data control block for the data
set specified in the DD statement named "ddname"
in the job step named "stepname", or alterna­
tively the cataloged data set named "dsname",
is to be repeated for the current DD statement.
"Stepname" must be omitted if it refers to the
current job step, or may he qualified in the
same way as the DSNAME parameter if it .re-
fers to a job step in a cataloged procedure. If
additional information is substituted for "sub­
parameter-list" then this over-rides the cor­
responding subparameters in the repeated in­
formation. Alternatively "subparameter-list"
can be used alone to specify data control block
information.

The "subparameter-list" for the data sets used
when processing and executing an ALGOL program
contains the following keyword subparameters:

BLKSIZE=number, is used to specify blocksize.
"Number" is blocksize in bytes, and for fixed
length records must be a multiple of record
length.

RECFM=F [B] [A], is used to specify record
format. F = fixed length, B = blocked, A = con­
trol character incorporated to control printed
output format.

LRECL=value, is used to specify record length.
"Value" is actual or maximum length in bytes.

All other valid DCB options are fixed.

AFF=ddname
indicates that the data set has affinity with the
data set specified by the DD statement named
"ddname" and is to use the sanIe channel.

SEP=1ist-of -ddnames
indicates that the data set is to use a separate
channel to the ones used by the data sets speci­
fied by the DD statements named in the "list­
of-ddnames".

UNIT=subparameter-list

44

specifies the class and quantity of I/O devices
to be allocated for use by a data set. The "sub­
parameter-list" has three forms, anyone of
which may be used in an individual statement.
The three forms are:

1

2

:3

Positional 1
subparameters classname {nu~ber} [DEFER]

Keyword
subparameter [SEP=1ist-of-ddnames]

Positional
POOL,ddname{~} subparameters

Keyword
subparameter AFF=ddname

"classname" indicates the device class. These
names are divided into two categories.

• Those automatically incorporated in the op­
erating system when it is generated. These
are of two types - specific unit names, such
as 2400 (for a magnetic tape drive) and 1403
(for a printer); and general classnames,
that is,

SYSCP for any card punch
SYSSQ for any magnetic tape or
direct access device
SYSDA for any direct access device.

• Additional names fixed by the user for his
installation when the operating system is
generated.

"number" indicates the number of devices to be
allocated. U the data Iset is cataloged but the
number of devices used is unknown, then "P"
substituted for "number" will ensure that the
correct number is ass igned.

DEFER indicates that the volume need not be
mounted on the I/O device until the data set is
called in the program. This subparameter must
not be used with an indexed sequential data set
or a new output data set on a direct access de­
vice.

SEP=list-of-ddnames indicatl3s for direct access
devices that, if possible, the data set is not to
use the same access arm as the data sets spec­
ified by the DD statements, given in the "list-
of -ddnames I I •

POOL, ddname, indicates that the data set is to
use the pool of tape units previously established
by the DD statement named "Iddname" in the
same job step. A pool could be established to
conserve I/O devices if a number of output data
sets, that might exceed one tape reel each, are
being produced by the job StElp. The pool would
consist of one tape unit for each data set, plus
one or more additional units,. When a data set

reached the end of its tape reel, output would be
automatically continued on one of the additional
units, and the first tape reel would be rewound
and then replaced by the operator with a new
reel so that the unit would be available for other
data sets. The pool would be established by
using the first form of the UNIT "subparameter-,
list" in a DD statement. Only the AFF or SEP
parameters may be used with the UNIT param­
eter in this statement.

1 or 0 indicates that an extra tape unit is
either to be added to the pool, or not to be added
to the pool.

AFF=ddname indicates that the data set is
to use the same I/O devices as the data set spec­
ified in the DD statement named "ddname" in
the same job step.

P ACE==subparameter-list
indicates the space required when a direct ac­
cess device is specified in the UNIT parameter.
The "subparameter-list" contains only posi­
tional subparameters. The list is:

{

TRK
CYL primary-quantity
average -record -length }

[secondary-quantity] [directory-or-index-quantity]

{
MXIG }

[RLSE][ALX] [ROUND]
CONTIG

The first subparameter specifies the units
in which the space requirements are expressed,
that is, tracks, cylinders or records (with length
given in bytes).

The next subparameter specifies the space
required. It has three parts (of which the se­
cond and third are optional) and is enclosed in
parentheses if more than one part is specified.
If the second part is omitted, then it must be
substituted by a comma if the third part is in­
cluded. The initial space to be allocated is given
by "primary-quantity". Each time this initial
space is filled, additional space is to be pro­
vided as specified by "secondary-quantity".
The number of 256 byte records to be allocated
for the directory of a new partitioned data set,
or the number of cylinders, taken from the ini­
tial space reserved, to be allocated for the in­
dex of an indexed sequential data set, is given
by "directory-or-index-quantity".

RLSE indicates that any unused space assigned
to the data set is to be released.

MXIG requests that the largest single block of
storage available is to be allocated to the data
set.

ALX requests that extra blocks of storage (in
track units) are to be allocated to the data set.
As many available blocks that are equal to or
greater than "primary-quantity", up to a max­
imum of five, will be allocated.

CONTIG specifies that the space specified by
"primary-quantity" is to be in a single block.

ROUND requests that when records are used
to express the space required on the direct ac­
cess device, the space is to begin and end on
cylinder boundaries.

DISP=subparameter-list
indicates the status of the data set and speci­
fies its disposition at the end of the job step.
The "subparameter-list" consists of the fol­
lowing positional E"ubparameters:

{
NEW}
OLD [
MOD

DELETE
KEEP
PASS]
CATLG
UNCATLG

NEW specifies that the data set is to be gene­
rated in this job step, anc would be deleted at
the end of the job step unless KEEP , PASS or
CATLG is specified.

OLD specifies that the data set already exists,
and would be kept at the end of the job step un­
less PASS or DELETE i~f specified.

MOD specifies that the data set already exists
and is to be modified in this job step. If the
data set cannot be found by the operating system
then this parameter is equivalent to NEW.

DELETE specifies that the space used by the
data set (including that in the data set catalog,
etc.) is to be released at the end of the job
step.

KEEP specifies that the data set is to be kept
at the end of the job step.

PASS specifies that the data set is to be re­
ferred to in a later step of this job, at which

Using Job Control Language 45

time its final disposition, or a further pass,
will be specified.

CATLG specifies that the data set is to be ca­
taloged at the end of the job step. Thus KEEP
is implied. The catalog structure must already
exist.

UNCATLG specifies that the data set is to be
deleted from the catalog at the end of the job
step. KEEP is implied.

SYSOUT=subparameter-list
specifies the printing or punching operation to
be used for the data set. The "subparameter­
list" is:

classname [progname] [number]

"c1assname specifies the system output class
to be used. Up to 36 different classes (A to Z,
o to 9) may be fixed by the user for his instal­
lation, according to device type, priority, des­
tination, etc. The standard classname is A.

"progname" can be used to specify the name of
a user-written output routine.

"number" can be used to specify an installation
form number to be assigned to the output.

For sequential scheduling, the "subparame­
ter-list" consists of only the standard class­
name A.

VOLUME=subparameter-list
indicates the volume or volumes assigned to thp.
data set. If the data set is cataloged this param­
eter is not necessary. The "subparameter-list"
is:

-

Positional
[RETAIN] [number][value]

subparameters
--

Keyword SER=list-of-serial-numbers
subparameters

dsnarlle
J

REF=
-I~. ddname
*.stepname.ddname
*.stepname.procstep.

ddname

RETAIN specifies that, if possible, the volume
is to remain mounted until referred to in a later

46

DD statement, or until the end of the job, which­
ever is first. "number" is any number between
2 and 9999, and is used if an input or output oper­
ation, on a cataloged data set residing on more
than one volume, does not start on the first vo­
lume of the data set. The number specifies the
position of the volume on which input or output
does start (for example, 3 indicates the third
volume of the data set).

"value" specifies the number of volumes re­
quired by an output data set. It is not required
if SER or RE F is used.

SER:::list-of-serial-numbers, specifies the se­
rial numbers allocated by the user to the volumes
required by the data set. These serial numbers
can consist of between one and six alphameric
characters.

1

dsname I
RE F= ~~. ddname

~~. stepname. ddname
-l~. stepname. procstep. ddname

specifies that this data set is to use the same
volume or volumes as the data set specified by
one of the alternative sub-subparameter forms.
If the latter data set: resides on more than one
tape volume, then only the last volume (as spec­
ified in the SER subparameter) can be used.

LAB E L=subparamete r --lis t
indicates the type of label or labels associated
with the data set. If the data set is cataloged
this parameter is not necessary. The "sub­
parameter-list" is:

Positional
subparameters

Keyword
subparameters

[number]
NLol SL
NSL
SUL

{
EXPDT=yyddd}
RETPD=dddd

"number" is any number between 2 and 9999,
and specifies the position of the data set on the
volume (for example, 3 would indicate the third
data set on the volume).

NL, SL, NSL, and SUL specify the type of label
or labels to be used, that is, no labels, stan­
dard labels, non-standard labels, and standard

and user labels, respectively. The routines to
produce non-standard labels must be written
and incorporated into the operating systeln by
the user.

EXPDT=yyddd specifies that the data set cannot
be deleted or opened, without operator inter­
vention, until the date given by yy (year) and
ddd (day)'.

RETPD=dddd specifies that the data set is to be
retained for the number of days given by dddd.

Command Statement

The options available for the operation and operand
fields of the command statement are described in
IBM System/360 Operating System: Operator"'s

9:uide•

DATA SET CONTATENATION

Unless it has been created in the same job, a load
Inodule specified for execution in an EXEC control
Btatement must be contained in the SYS1. LINK LIB
library of the operating system. If the load module
is not a permanent member of this library then it
is temporarily combined by using a DD statement
with the name JOB LIB.

If the load module is a member of another li­
brary then this whole library is combined with the
SYS1. LINKLIB library. This temporary combin­
ing is termed concatenation and lasts only for the
duration of the job. A statement of this kind would
have the form:

//JOBLIB DD DSNAME=dsname,DISP=OLD

where "dsname" is the name of the data set or li­
brary containing the load module to be executed.

Only one JOB LIB DD statement can be used in
each job and it must immediately follow the JOB
statement. If more than one load module eontained
in a library being concatenated is required in the
same job then the parameter DISP=(OLD, PASS)
placed im:mediately after the DSNAME parameter,
will extend the effect of the concatenation through
each step of the job.

If the job requires load modules from a number
of data sets which are not created in the job or not

permanent members of the SYS1. LINK LIB library
then one data set is concatenated to this library,
as described above, and the others are concate­
nated to this first data set by listing their DD state­
ments immediately after the JOBLIB DD statement
and leaving the name fields blank. This has the
effect of concatenating all the data sets to the
SYS1. LINKLIB library.

JOB CONTROL LANGUAGE EXAMPLES

Three different types of jobs are described here
to :illustrate the use of job control language. Some
of the subparameters used, such as I/O device
classnames and vo:ume serial numbers, may change
for different installations.

Example 1: Executing a Single Load Module

Statement of problem: A set of 80 matrices are
contained in data set SCIENCE. MATH. MATRICES.
Each matrix is an array containing real variables.
The size of the matrices vary from 2x2 to 25x25;
the average size is 10x10. The matrices are to be
inverted using a program MA TINV contained in a
partitioned data set MATPROGS. Each inverted
matrix is to be written as a single record on the
data set SCIENCE. MATH. INVMATRS. The first
variable in each record is to denote the size of the
matrix. Each matrix is to be printed.

[MATI NY

SCIENCE.
MATti.
I NVMATRS

Printed
output

Figure 26. I/O flow for Example 1. .

Using Job Control Language 47

\

Figure 27. Job control statements for Example 1.

Explanation of coding: The job control statements
used in Figure 27 specify that:

1. The job is

• to be charged to the installation"s account
number 537

• the responsibility of John Smith

• to have all control statements (plus control
statement diagnostic messages if an error
occurs) printed on the normal system output
device.

2. The partitioned data set MATPROGS is concate­
nated with the operating system library, SYS1.
LINK LIB.

3. The program to be executed is MATINV.

4. The input data set is SCIENCE. MATH. MATRICES

5. The printed output is to use the standard output
format class for the installation.

6. The output data set is

48

• to be called SCIENCE. MATH. INVMATRS.

• to be cataloged

• to use the device class DACLASS

• to use volume 1089W

• to use a separate channel to the input data set

• to have space reserved for 80 records, each
1500 bytes long. This space is to be jncre-

mented in 9 -record units each time more
is required and any unused space is to be re­
leased. The space is contiguous and aligned
on cylinder boundaries.

• to have fixed length blocked records, 300
bytes long, and a maximum block size of
1500 bytes.

Example 2: Compiling, Linkage Editing and
Executing Three Source Programs

Statement of problem: Raw data from a rocket
test firing is contained in a data set RA WDATA.
The forecasted results for this firing are contained
in a data set PROJDATA. A program PROGRD is
to be used to produce refined data from these two
data sets.

The refined data is to be stored in a temporary
data. set and used by a program ANALYZ, contain­
ing a series of equations, to develop values from
which graphs and reports can be generated. Pa­
rameters needed by ANALYZ are contained on a
cataloged data set PARAMS.

The values are to be stored on a temporary data
set and used by a program REPORT to print graphs
and reports. The programs PROGRD, ANALYZ
and REPORT are written in ALGOL. They are
still in source program form, and therefore must
be compiled and linkage edited before execution.

Explanation of coding: The job control state­
ments used in Figure 29 specify that:

1. The job is

• the responsibility of John Smith

• to have all control statements (plus control
statement diagnostic messages if an error

® OJ-
DATA

Graphs and
Reports

Figure 28. Basic I/O flow for Example 2. The data sets for information listings, ALGOL library routines
intermediate work and the execution time error routine are not shown •

• , I I I I !.

Figure' 29. Job control statements for Example 2 •.

Using Job Control Language 49

occurs) printed on the normal system output
device for information listings

2. The first job step invokes the ALGOFCLG cata­
loged procedure (see Appendix B) to process
and execute the ALGOL source program
(PROGRD) entered in the input stream

3. The other input data sets are RAWDATA and
PROJDATA. RAWDATA is also entered in the
input stream

4. The temporary output data set is

({) to be called REFDATA. TESTFIRE and to be
passed for use in a later job step

III to use the device class TAPE C LS

@ to be written on volume 2107, which is to
remain mounted for use later

• to have fixed length records, 80 bytes long,
and a maximum block size of 400 bytes

5. The second job step invokes the ALGOFCLG
cataloged procedure to process and execute
the ALGOL source program (ANALYZ) entered
in the input stream

6. The SYSLMOD DD statement in the LKED step
of the cataloged procedure is overridden to

specify that the load module produced by the
linkage editor is

o to be a new member, PROGRD, of the tem­
porary partitioned data set FIRING

7. The other input data sets are REFDATA.
TESTFIRE and PARAMS. Both will be kept
at the end of the job step

8. The temporary output data set is

tit to be called VALUES. TESTFIRE and is to
be passed for use in a later job step

~ to use the device class TAPECLS

• to be written on volume 2108

• to have fixed length records, 68 bytes long,
and a maximum block size of ~04 bytes

9. The third job step invokes the ALGOFCLG ca­
taloged procedure to process and execute the
ALGOL source program (REPORT) entered in

;")0

the input stream.. The output data will be listed
on the printer specified in the cataloged proce­
dure

10. The SYSLMOD DD statement in the LKED step
of the cataloged procedure is over-ridden to
specify that the load module produced by the
linkage editor is

• to be a new lllember, REPORT, of the tem­
porary partit:ioned data set FIRING

11. The other input data set is VALUES. TEST FIRE
which will be kept at the end of the job step

Example 3: Executing Two Load Modules

Statement of problern: Data on current weather
conditions is to be read from cards and used by
the program FILECR to create a new generation
of a data set WEATHER, and also to print a re­
port.

Then the new generation and the three imme­
diately preceding generations of the WEATHER
data set are to be used by the program FORCST
to produce a printed weather forecast. The pro-

~e(]ther
dahJ

-r---"'

Figure 30. I/o flow for Example 3.

Figure 31. Job control statements for Example 3.

grams FILE CR and FOReST are contained in a
partitioned data set WTHRPR.

Explanation of coding: The job control statements
used in Figure 31 specify that:

1. The job is to have control statement messages
plus the relevant control statement printed on
the normal system output device only if an error
occurs

2. The partitioned data set WTHRPR is co:ncatenated
to the operating system library, SYS1. LINKLIB

3. The first job step executes the program. FILECR

4. The output data set is

• a new generation of the data set WEATHER

• to use the device class HYPERT

• to be written on volume 0012 which need not
be mounted until the data set is opened, and
is then to remain mounted for later use

• to be cataloged and have standard labels

• to be retained for 30 days

• to have fixed length records, 80 bytes long,
and a maximum block size of 400 bytes

5. The printed output IS

• to use the device class PRINTER

• to use a separate channel iothe output data
set

6. The input data is included in the input stream

7. The second job step executes the program
FORCST

8. The input data sets are the last four generations
of WEATHER, all of which are to be kept at the
end of the job step

9. The output data set is

• to use the device class PRINTER

• to use a separate channel to the last two ge­
nerations of WEATHER

Using Job Control Language 51

I.\PPENDIX F: DIAGNOSTIC MESSAGES

Each of the three operations-compilation, linkage
editing and execution - may produce diagnostic
messages.

COMPILER MESSAGES

The diagnostic messages that may be produced by
the ALGOL compiler are given below. Each diag­
nostic message occupies one or more printed lines
and contains:

~ The message key, consisting of the letters lEX,
a three digit decimal number identifying the
message, and the letter I to indicate an infor­
mative message requiring no action from the
operator.

'"' The severity code W, S or T (see below)

Q The semicolon number (see Section 3). This
number is sometimes omitted if the error can­
not be directly related to a point in the program.
The semicolon number is indicated in the list
below by the sequence NNNNN

II!) The message text describing the error and, in
the case of some \V or S type errors, the mo­
dification performed on the program by the
compiler. In the message text listed belovv the
words in parentheses, together with the paren­
theses themselves, will be replaced in the actual
message that is printed, by specific information
taken from the program. The word "operator"
usually refers to all delimiters defined in IB1\/[_
System/360 Operating System: ALGOL Language,
but an internal compiler operator may some­
times be listed. The word "operand" refers to
an identifier or an expression.

The three severitv· codes for errors and their
corresponding compiler action are as follows:

W (Warning): The program is modified inter­
nally and the compilation is continued. The mo­
dification may not make the program correct but
it allows object module generation to continue. A
diagnostic message is produced.

S (Serious): An attempt is made to modify the
program internally, including skipping or changing
parts of it. Generation of the object module is
stopped, but syntax checking continues. A diagnos­
tic message is produced.

. ")2

T (Terminating): A diagnostic message is pro­
duced and the compilation is terminated.

IEXOOlI W NNNNN INVALID CHARACTER
DELETED.

Explanation: A character not recognized
by the compiler has been deleted from the
program.

IEX002I \V NNNNN ILLEGAL PERIOD.
PERIOD DELETED.

Explanation: The character period has
been used wrongly and deleted from the
program. It can be used only as a deci­
mal p;>int, or as part of a colon or semi­
colon.

IEX0031 W NNNNN INVALID COLON AFTER
(six characters). COLON DELETED.

Explanation: The character colon has been
used wrongly and has been deleted from
the program. It can be used only after a
label, between subscript bounds, within
a parameter delimiter or as part of an
assign symbol.

IEX004I T NNNNN LETTEH STRING TOO
LONG.

Explanation: A letter string used to supply
explanatory information exceeds capacity
limitations (see Section 4).

IEX005I S NNNNN IDENTIFIER BEGINS WITH
INVALID CHARACTER. IDENTIFIER
DELETED.

Explanation: An identifier has been de-
1eted because it does not begin with an
alphabetic character.

IEX006I T NNNNN LABEL CONTAINS TOO
MANY CHARACTERS.

Explanation: A label identifier has been
used whose length exceeds capacity limi­
tations (see SE!ction 4) •

IEXOO7I W NNNNN LABEL BEGINNING WITH
(up to six characters) CONTAINS
INVALID CHARACTER. COLON
DELETED.

Explanation: A label has been deleted
because it contains a character of other
than alphameric type.

IEX008I W NNNNN LABEL BEGINS WITH
INVALID CHARACTER. COLON
DELETED.

Explanation: A label has been deleted
because it does not begin with an alpha­
betic character.

IEXOIOI S NNNNN SPECIFICATION PART OF
PROCEDURE (identifier) INCOMPLETE.

Explanation: Not all of the formal pa­
rameters used in a procedure have been
specified.

IEXOIlI S NNNNN PROGRAM STARTS WITH
ILLEGAL DELIMITER.

Explanation: A program has been written
not starting with 'BEGIN', 'PROCEDURE',
'REAL', 1NTEGER' or 'BOOLEAN'.

IEX012I W NNNNN TWO APOSTROPHES AFTER
(six characters). FIRST APOSTROPHE
DELETED.

Explanation: In this context, two apos­
trophes cannot be used together so one
has been deleted.

IEX013I W NNNNN APOSTROPHE ASSUMED
AFTER DE LIMITER BEGINNING WITH
(up to six characters).

Explanation: All delimiters involving
words must begin and end with apostrophes.
One has been left out of the progra.m and
has been inserted by the compiler.

IEX014I S NNNNN DE LIMITER BEGINNING
WITH (up to six characters) INVALID.
FIRST APOSTROPHE DE LETED.

Explanation: An invalid sequence of char­
acters has been used after an apostrophe
which apparently started a delimiter. The
apostrophe is therefore deleted to remove

the delimiter status from the characters
but still include them in the program.

IEX015I W NNNNN MISSING SEMICOLON
AFTER "CODE'. SEMICOLON INSERTED.

Explanation: Self-explana.tory.

IEX016I S NNNNN IDENTIFIER BEGINNING
WITH (up to six characters) CONTAINS
INVALID CHARACTER. IDENTIFIER
DELETED.

Explanation: A character other than an
alphameric type has been used in an iden­
tifier and so the identifier has been de­
leted.

IEXOl7I S NNNNN MORE THAN 65535
SEMICOLONS. SEMICOLON COUNTER
RESET TO ZERO.

Explanation: Number of semicolons used
exceeds capacity limitations. Duplicate
numbers are allocated.

IEX018I W NNNNN DELIMITER "COMMENT"
IN ILLEGAL POSITION.

Explanation: 'COMMENT' has not been
placed after a 'BEGIN" or a semicolon.
Compilation continues normally.

IEX020I T NNNNN BLOCKS, COMPOUND
STATEMENTS, FOR STATEMENTS,
AND PROCEDURE DECLARATIONS
NESTED TO TOO MANY LEVELS.

Explanation: Structure of program causes
it to exceed capacity limitations (see Sec­
tion 4).

IEX021I S NNNNN DECLARATOR (declarator)
IN ILLEGAL POSITION.

Explanation: A declarator must come
between either "BEGIN" and the first
statement of a block, or 'PROCEDURE'
and the procedure body.

IEX022I T NNNNN MORE THAN 255 PROGRAM
BLOCKS.

Explanation: Number of program blocks
used exceeds capacity limitations.

Diagnostic Messages 53

IEX023I S NNNNN STRING POOL OVERFLOW.

Explanation: Total length of strings used
exceeds capacity limitations (see Sec­
tion 4).

IEX024I S NNNNN DE LIMITER 'CODE' IN
ILLEGAL POSITION. "CODE" DELETED.

Explanation: "CODE ' has not been placed
immediately after a procedure heading
so it has been deleted.

IEX025I S NNNNN SPECIFIER 'STRING' OR
"LABEL' IN ILLEGAL POSITION.
SPECIFICATION DELETED.

Explanation: 'STRING' and "LABE L'
have been used outside a procedure
heading, so they have been deleted.

IEX026I S NNNNN PARAMETER (identifier)
MULTIPLY SPECIFIED. FIRST
SPECIFICATION USED.

Explanation: Self-explanatory.

IEX027I W NNNNN PARAMETER (identifier)
MISSING FROM FORMAL PARAMETER
LIST. SPECIFICATION IGNORED.

Explanation: A parameter has been spec­
ified in a procedure heading which does
not exist in the formal parameter list, so
it has been ignored.

IEX028I S NNNNN DELIMITER \TALUE'IN
ILLEGAL POSITION. VALUE PART
DELETED.

Explanation: \T ALUE ,. has been placed
outside a procedure heading so the value
part has been deleted.

IEX029I W NNNNN SPECIFICATION PART
PRECEDES VALUE PART.

Explanation: The specification part in a
procedure heading has been incorrectly
placed before the value part.

IEX0301 W NNNNN PARAMETER (identifier)
REPEATED IN VALUE PART.

54

Explanation: A parameter has been in­
cluded in the value part of a procedure
heading more than once.

IEX031I W NNNNN LEFT PARENTHESIS NOT
FOLLOWED BY / AFTEH ARRAY
IDENTIFIER (identifier). SUBSCRIPT
BRACKET ASSUMED.

Explanation: The subscript bounds after
an array identifier have been preceded
by a left parenthesis instead of a subscript
bracket.

IEX032I S NNNNN MISSING RIGHT PARENTHESIS
IN BOUND PAIR LIST OF ARRAY (identi­
fier). DECLARATION DELETED.

Explanation: A right parenthesis has been
omitted in the list of subscript bounds for
an array identifier, so the declaration is
deleted.

IEX033I T NNNNN MORE THAN 16 DIMENSIONS
OR COMPONENTS IN DECLARATION OF
(identifier) •

Explanation: The number of dimensions
or components used with. an array or switch
identifier exceeds the maximum allowed.

IEX034I S NNNNN ARRAY SEGMENT (identifier)
NOT FOLLOWED BY SEMICOLON OR
COMMA. CHARACTERS TO NEXT
SEMICOLON DELETED"

Explanation: An array segment must be
followed by a semicolon if it is the only
or last segment of an array declaration;
or a comma if it is followed by another
segment.

IEX0351 W NNNNN ILLEGAL PERIOD IN ARRAY
OR SWITCH LIST. PEnIOD DELETED.

Explanation: A period has been used
wrongly in an array or switch list and de­
leted from the program.. A period can be
used only as a decimal point, or as part
of a colon or semicolon.,

IEX036I T NNNNN MOHE THAN 15 PARAMETERS
1N DECLARATION OF (identifier).

Explanation: The number of formal param­
eters specified for a procedure exceeds
the maximum allowed.

IEX037I S NNNNN SEMICOLON MISSING
AFTER FORMAL PARAMETER LIST
OF (identifier). CHARACTERS TO
NE:XT SEMICOLON DELETED.

Explanation: The formal parameter list
of a procedure must be followed by a semi­
colon.

IEX038I T NNNNN TOO MANY'IDENTIFIERS
DECLARED IN A BLOCK.

Explanation: Number of identifiers de­
clared in a block exceeds capacity limi­
tations (see Section 4).

IEX039I S NNNNN NNN MISSING 'END
BRACKETS. OPEN BLOCKS,
COMPOUND STATEMENTS, FOR
STATEMENTS, AND PROCEDURE
DECLARATIONS CLOSED.

Explanation: Syntax of ALGOL requires
that a program contains the same number
of 'BEGIN"'s and ~ND"'s. The number of
'END "'s specified by NNN have been omit­
ted in this case so any open blocks and
statements are closed.

IEX041I T NNNNN l'vIORE THAN 255 FOR
STATEMENTS.

Explanation: Number of for statements
used in a program exceeds capacity limi­
tations.

IEX042I W NNNNN 'BEGIN'" PRECEDES
PRECOMPILED PROCEDURE.
'BEGIN'" DELETED.

Explanation: A precompiled procedure
has been specified so a 'BEGIN'" is not
required.

IEX043I S NNNNN EQUAL NUMBER OF
'BEGIN'" AND 'END'" BRACKETS FOUND.
REMAINING PART OF PROGRAM
IGNORED.

Explanation: The compiler assumes it
has reached the end of the program when
the number of 'END'" brackets equals the
number of 'BEGIN'" brackets.

IEX0441 T NNNNN NO SOURCE PROGRAM
FOUND.

Explanation: For example, there has
been an incorrect card code specification.

IEX045I S IDENTIFIER (identifier) MULTIPLY
DECLARED. LAST DECLARATION USED.

Explanation: An identifier has been de­
clared more than once in a program block
heading. The last declaration is taken to
be the one required.

IEX047I S ILLEGAL CALL BY VALUE OF
IDENTIFIER (identifier).

Explanation: A procedure, switch or
string has been wrongly called by value.

IEX080I S NNNNN OPERAND BEGINNING
WITH (up to six characters) IS
SYNTACTICALLY INCORRECT.

Explanation: Invalid characters have
been used ill the operand. If the six char­
acters are all periods, this may indicate
the internal representation of a string or
logical value.

IEX081I S NNNNN IDENTIFIER (identifier)
NOT DECLARED.

Explanation: An identifier has been used
which is not declared in a block or proce­
dure heading.

IEX082I S NNNNN REAL CONSTANT BEGINNING
WITH (up to twelve characters) OUT OF
RANGE.

Explanation: A real constant has been
assigned a value which is outside capacity
limitations.

IEX083I W NNNNN INTEGER BEGINNING WITH
(up to twelve characters) OUT OF RANGE.
INTEGER CONSTANT CONVERTED TO
REAL.

Explanation: An integer constant has been
assigned a value which is outside storage
capacity limitations, so it has been con­
verted to a real constant.

IEX084I W NNNNN PRECISION OF REAL
CONSTANT BEGINNING WITH (up to
twelve characters) EXCEEDS INTERNALLY
HANDLED PRECISION. CONSTANT
TRUNCATED.

Diagnostic Messages 55

Explanation: A real constant has exceeded
capacity limitations regarding precision
and has been truncated.

IEX0851 S NNNNN ILLEGAL USE OF LABE L
(label).

Explanation: A label defined in a for state­
ment has been used in a goto statement
outside the for statement, or the label oc­
curs in a syntactically illegal position.

IEX0861 S NNNNN TOO MANY CONSTANTS

Explanation: Number of constants used
exceeds capacity limitations (see Sec­
tion 4).

IEX087I W NNNNN FULL OPTIMIZATION NOT
POSSIBLE DUE TO INTERNAL OVERFLOW.

Explanation: Main storage capacity avail­
able prevents for statement optimization
by the compiler after the overflow occurs.

IEX0881 W NNNNN IDENTIFIER (identifier) IN
BOUND EXPRESSION DECLARED IN
SAME PROGRAM BLOCK AS ARRAY.
DE C LARA TION IN SURROUNDING
BLOCK SEARCHED FOR.

Explanation: A bound expression can de­
pend only on variables and procedures
which are non-local to the block for which
the array declaration is valid, because
local variables do not have values before
entering the statements of the block.

IEX089I W NNNNN 'GOTO' (identifier)
INVALID OUTSIDE FOR STATEMENT
CONTAINING THIS LABE L.

Explanation: A switch may have been mis­
used, since a label has been found in a
switch declaration outside a for statement
containing a definition of the same label.

IEX160I S NNNNN SEQUENCE (operator)
(operator) NOT ALLOWED.

Explanation: In this context, this se­
quence is not allowed.

IEX1611 S NNNNN SEQUENCE (operator)
OPERAND (operator) NOT ALLOWED.

56

Explanation: In this eontext, this se­
quence is not allowed.

IEX1621 S NNNNN OPERAND MISSING BETWEEN
(operator) AND (operator).

Explanation:- In this eontext, there must
be an operand between the two operators.

IEX1631 S NNNNN OPERAND FOLLOWING
(operator) MUST BE OF ARITHMETICAL
TYPE.

Explanation: An arithmetical operand
must follow an arithrnetical operator.

IEX164I S NNNNN NO OPERAND ALLOWED
BETWEEN (operator) AND (operator).

Explanation: In this context, no operand
is allowed between the two operators.

IEX1651 S NNNNN EXPRESSIONS BE FORE AND
AFTER "ELSE' NOT COMPATIBLE.

Explanation: For example, if an arith­
metical expression i:9 specified before
"ELSE', then an arithmetical expression
must be specified after.

IEX166I S NNNNN DECLAHATOR IN ILLEGAL
POSITION.

Explanation: A declaration has occurred
outside the block heading, or, for instance,
a label precedes the declaration.

IEX1681 S NNNNN OPERAND PRECEDING
(operator) CANNOT POSSESS VALUE.

Explanation: Only quantities that can
possess a value can be used in expression.
For example, not standard I/O or non­
type procedure identifier.

IEX1691 S NNNNN LABEL FOLLOWING
(operator) ILLEGAL.

Explanation: In this context, a label is
not allowed due, for example, to a semi­
colon being missing.

IEX1721 S NNNNN DIFFERENT TYPES IN LEFT
PART LIST.

Explanation: The identifiers in a left part
list must be of simiJlar type.

IE~Xl 731 T NNNNN COMPILATION
UNSUCCESSFUL DUE TO COMPILER
OR MACHINE ERROR.

Explanation: Self-explanatory.

IEXl 741 S NNNNN PARAMETERS NOT
ALLOWED FOR TYPE PROCEDURE
CALLED BY VALUE.

Explanation: A type procedure called
by value must have an empty param.eter
part.

IEXl75I S NNNNN OPERAND FOLLOWING
(operator) MUST BE LABEL OR
SWITCH.

Explanation: For example, "GOTO"
must be followed by a designational
expression.

IEXl76I S NNNNN OPERAND MISSING BEFORE
(opera tor).

Explanation: In this context, the operator
must be preceded by an operand.

IEXl771 S NNNNN OPERAND NOr:r ALLOWED
BEFORE (operator).

Explanation: In this context, no operand
is allowed before the operator.

IEX178I S NNNNN ILLEGAL OPERAND IN
EXPRESSION BE FORE OR AFTER
~LSE".

Explanation: For example, only arith­
metical operands may be used in an arith­
metical expression.

IEX179I S NNNNN NU1\1BER OF SUBSCRIPT
EXPRESSIONS DIFFERS FROM
DIMENSION IN ARRAY DECLARATION
FOR VARIABLE.

Explanation: A subscript list must con­
tain the same number of subscript expres­
sions as the dimension in the correspond­
ing array declaration.

IEX180I S NNNNN INVALID SWITCH
DESIGNATOR.

Explanation: More than one subscript
expression in switch designator.

IEXl81I S NNNNN SWITCH DESIGNATOR IN
ILLEGAL POSITION.

Explanation: A switch designator must
follow only "THEN', ~LSE", 'GOTO"',:=
or, •

IEXl82I S NNNNN OPERAND FOLLOWING
(operator) MUST BE BOOLEAN.

Explanation: A non-Boolean operand has
been specified where a Boolean one was
required.

IEX183I S NNNNN' OPERAND PRECEDING
(operator) MUST BE A PROCEDURE
IDENTIFIER.

Explanation: A non-procedure identifier
has been specified where a procedure one
was required.

IEX184I S NNNNN OPERAND PRECEDING
(operator) MUST BE AN ARRAY OR
SWITCH IDENTIFIER.

Explanation: A non-array or non-switch
identifier has been specified where an
array or switch one was required.

IEX185I S NNNNN REAL OPERAND
PRECEDING (operator) NOT ALLOWED
FOR INTEGER DIVISION.

Explanation: A real operand has been
specified for an integer division.

IEX186I T NNNNN SYNTACTICAL STRUCTURE
TOO COMPLICATED. INTERNAL
OVERFLOW.

Explanation: The syntactical structure
of the program has caused an internal
overflow in the com.piler. A larger main
storage size is required.

IEX187I S NNNNN INCORRECT NUMBER OF
ACTUAL PARAMETERS.

Explanation: The number of actual.pa­
rameters does not correspond to the num­
ber of formal parameters in a procedure.

Diagnostic Messages 57

TEX188I S NNNNN INVALID ACTUAL
PARAMETER FOR STANDARD
PROCEDURE. DSN= (number).

Explanation: An actual parameter has
been specified incorrectly in a standard
procedure. Either semicolon number or
data set number is given. In the case
where the data set number is given instead
of the semicolon number, the error is due
to SYSACT8 having been specified for the
data set when SYSACT4, SYSACT13 or an
input operation has been specified also.
Such a combination is invalid.

IEX189I S NNNNN DATA SET NUMBER OR
FUNCTION OF SYSACT OUT OF
ALLOWED RANGE.

Explanation: Data set numbers are 0-15.
SYSACT functions are 1-15.

IEX190I S NNNNN ASSIGNMENT NOT POSSIBLE.

Explanation: Only variable allowed in for
clause. Only variable or type procedure
identifier allowed in left part list.

IEX191I S NNNNN NO OPERAND ALLOWED
BETWEEN) AND (operator).

Explanation: When a right parenthesis is
used it must be followed by an apostrophe,
a semicolon, an arithmetical operator, a
comma, or another right parenthesis.

IEX192I S NNNNN INVALID RIGHT PART IN
ASSIGNMENT STATEMENT.

Explanation: The right part must be either
an arithmetic or a Boolean expression.

IEX193I S NNNNN INCOMPATIBLE TYPES IN
ASSIGNMENT STATEMENT.

Explanation: Value assigned to right part
does not correspond to type of left part
list in assignment statement.

IEX194I S NNNNN (operator) NOT ALLOWED.

Explanation: In this context, the operator
is not allowed.

lEX195I S NNNNN SEQUENCE OPERAND
(operator) NOT ALLOWED.

58

Explanation: In this context, this sequence
is not allowed.

IEX1961 S NNNNN ARRAY IDENTIFIER
PRECEDING (operator) NOT ALLOWED.

Explanation: In this context, an array
identifier is not allowed.

IEX200I W NNNNN OPTION PARAMETER
(parameter) INVALID. PARAMETER
IGNORED.

Explanation: An invalid option has been
specified in the PARM parameter and ig­
nored by the cOlnpiler.

IEX201I T NNNNN DD CARD FOR (ddname)
INCORRECT OR MISSING..

Explanation: One of the SYSIN, SYSPRINT,
or SYSUT1, 2, :3 data /3ets used by the com­
piler has been specified incorrectly or not
specified at all. This message is typed
on the console typewriter when it concerns
SYSPRINT.

IEX202I W NNNNN DD CARD FOR SYSLIN
INCORRE CT OR MISSING. OPTION
NOLOAD ASSUMED.

Explanation: The SYSLIN data set has been
specified incorrectly or not at all when the
LOAD option is specified, so an object
module is not generated.

IEX203I W NNNNN DD CARD FOR SYSPUNCH
INCORRECT OR MISSING. OPTION
NODECK ASSUMED.

Explanation: The SYSPUNCH data set has
been specified incorreetly or not at all
when the DECK option is specified, so an
object deck is not punched.

IEX204I T NNNNN BLOCKSIZE SPECIFIED
FOR SYSIN INCORRE CT.

Explanation: The blocksize specified for
SYSIN does not correspond to the actual
blocksize.

IEX205I W NNNNN BLOCKSIZE SPECIFIED
FOR (ddname) INCORHECT.
UNBLOCKED OUTPUT ASSUMED.

Explanation: One of the output data sets
has had an incorrect blocksize specified
so unblocked output is generated (see
Figure 6).

IEX2061 W NNNNN TOO MANY OPTION
PAHAMETER ERRORS. SUBSEQUENT
PARAMETERS IGNORED.

Explanation: Too many incorrect parame­
ters have been specified in the P ARM pa­
ram.eter so the rest are ignored.

IEX207I W NNNNN POSSIBLE ERROR IN DD
NAMES PARAMETER.

Explanation: An incorrect ddname nlay
have been specified in the DD statement.

IEX2081 W NNNNN SIZE PARAMETER INVALID.
SIZE 45056 ASSUMED.

Explanation: The main storage size spec­
ified as being available to the compiler is
less than the minimum required, so the
minimum value is assumed.

IEX209I T NNNNN COMPILATION
UNSUCCESSFUL DUE TO PROGRAM
INTERRUPT. PSW (hexadecimal digits).

Explanation: A program interrupt has
occurred causing termination of the job
step. The program status word when the
error occurred is given.

IEX210I T NNNNN UNRECOVERABLE I/O
ERROR ON DATA SET (ddname).

Explanation: An I/O error has occurred
on the data set specified causing termi­
nation of the job. This message is typed
on the console typewriter when it concerns
SYSPRINT. This is most likely to be a
random error, so the user is recommended
to rerun the program.

IEX211I T NNNNN PROGRAM, INTERRUPT IN
ERROR MESSAGE EDITING ROUTINE.
PSW (hexadecimal digits).

Explanation: A program interrupt has
occurred in the error message editing
routine, ending the job.

IEX212I T NNNNN TOO MANY ERRORS.

Explanation: The total length of the error
message patterns produced exceeds capac­
ity limitations.

IEX2131 T NNNNN INTERNAL OVERFLOW OF
IDENTIFIER TABLE.

Explanation: The number of identifiers
declared exceeds capacity limitations.

IEx~n4I S NNNNN DATA STORAGE AREA
EXCEEDED. PROGRAM BLOCK NO.
(number).

Explanation: The data storage area re­
quired by the program block specified
exceeds 4096 bytes.

IEX215I T NNNNN SOURCE PROGRAM TOO
LONG.

Explanation: The capacity limitations
(see

Explanation: The source program exceeds
capacity limitations (see Section 4).

IEX2:16I S NNNNN TOO MANY LABE LS.
LABEL NUMBER RESET.

Explanation: The total number of labels
used exceeds capacity limitations, so
duplicated numbers are allocated (see
Section 4).

LINKAGE EDITOR MESSAGES

Each message occupies one or more printed lines
and contains:

• The message key, consisting of the letters lEW,
a three digit decimal number identifying the
message, and a final digit, either 1, 2, 3 or 4,
indicating the severity code.

• The message text describing the error. For
severity code 1 the message is preceded by
vVARNING'". For all other severity codes the
message is preceded by "ERROR '".

The severity codes have the following meaning:

1 indicates a condition that may cause an error
during execution of the load module. A mod­
ule map or cross -reference table is produced
if it was required by the programmer. The
output load module is marked as executable.

2 indicates an error that could make execution
of the load module impossible. Processing
continues. When possible, a module map or
cross -reference table is produced if it was
required. The load module is marked as not
executable unless the LET option has been
specified.

Diagnostic Messages 59

3 indicates an error that will make execution
of the load module impossible. Processing
continues. If possible a module map or
cross -reference table is produced if it was
required. The load module is marked as not
executable.

4 indicates an error condition from which no
recovery is possible. Processing terminates.
The only output is diagnostic messages.

A full list of the linkage editor diagnostic messages
is contained in IBM System/360 Operating System:
Linkage Editor.

EXECUTION TIME MESSAGES

The list of diagnostic messages that may be pro­
duced by the load module is given below. Each
message occupies one or more printed lines and
contains:

• The message key, conSisting of the letters IHI,
a three digit decimal number identifying the
message, and the letter I to indicate an infor­
mative message requiring no action from the
operator.

• The characters SC = followed by the semicolon
number (see Section 3). This number does not
always indicate the statement in which the error
occurred. For example, after a branch ("GOTO"
or 'FOR 1, if no semicolon has occurred before
the error is detected, then the semicolon num­
ber preceding the branching instruction will be
listed. For I/O errors, the semicolon number
indicates the statement being executed when the
error was detected, not the statement calling
the I/O procedure,

• The message text describing the error. Where
appropriate this begins by indicating the number
of the data set (DSN) on which the error occurred,
or the ddname if the data set does not have a
number (that is, SYSUTl and SYSUT2), or the
program status word (PSW) held by the operating
system when the error occurred. The PSW con­
tains 16 hexadecimal digits. Message texts pre­
ceded by ?H~ indicate that the program does not
correspond with parameters specified in the job
control cards.

IHIOOOI SC=NNNNN DATA SET NUMBER OUT
OF RANGE

60

Explanation: A data set number must be
in the range 0 to 15.

IHIOOlI SC=NNNNN DSN=NN. REAL NUMBER
TO BE CONVERTED OUT OF INTEGER
RANGE

Explanation: A real number has been
included which exceeds capacity limita­
tions when converted to integer. This
message applies for input/output opera­
tions.

IHI0021 SC=NNNNN DSN=NN. INCOMPATIBLE
ACTIONS ON DATA SET

Explanation: The I/O operation requested
is allowed only for an unblocked data set.

IHI0031 SC=NNNNN DSN=NN. INPUT BEYOND
LAST OUTPUT

Explanation: Before reading data which
has just been written on the same data
set, backward repositioning must be spec­
ified.

IHI0041 SC=NNNNN TOO MANY REPOSITIONINGS
IN DATA SETS. INTERNAL OVERFLOW

Explanation: Too many repositionings
have caused an internal overflow of the
Note Table (see Section 4).

IHI0051 SC=NNNNN DSN=NN. INPUT REQUEST
BEYOND END OF DATA SET

Explanation: Input has been requested
to start beyond the end of the data set.

IHI006I SC=NNNNN DSN=NN.. EXPONENT PART
OF INPUT NUMBER CONSISTS OF MORE
THAN TWO SIGNIFICANT DIGITS

Explanation: The length of the exponent
part of an input number exceeds capacity
limi tations.

IHIOO7I SC=NNNNN DSN=NN. ~H~NO CONTROL
CHARACTER SPECIFIED IN RECORD
FORMAT OF DATA SET. SPLITTING
INTO SECTIONS IMPOSSIBLE

Explana tion: A control character is re­
quired to define printing format.

IHI008I SC=NNNNN DSN=NN. SOURCE IN
PROCEDURE OUTSYMBOL DOES NOT
MATCH STRING

Explanation:: The symbol specified by the
third parameter of the OUTSYMBOL pro­
cedure does not correspond to any symbol
in the string specified by the second param­
eter.

IHro09I SC=NNNNN DSN~~NN. UNDEFINED
FUNCTION NlThTBER IN SYSACT
PROCEDURE

Explanation: A function number has not
been defined for a SYSACT procedure.
The function number range is 1 to 15.

un010I SC=NNNNN DSN=NN. DATA SET
CLOSED

Explanation: The data set is closed but
a SYSACT procedure has been specified
which requires it to be open.

lI-II011I SC=NNNNN DSN=NN. DATA SET
OPEN

Explanation: The data set is open but a
SYSACT procedure has been specified
which requires it to be closed.

IHI012I SC=NNNNN DSN=NN. QUANTITY IN
SYSACT PROCEDURE MUST BE
VARIABLE

Explanation: The third parameter of the
SYSACT procedure must be a variable.

IHW13I SC=NNNNN DSN=NN. QUANTITY IN
SYSACT PROCEDURE OUT OF RANGE

Explanation: The variable specified in
the third parameter of the SYSACT pro­
cedure exceeds capacity limitations.

IHI014I SC=~~NNN DSN=NN. BACKWARD
REPOSITIONING NOT DEFINED

Explanation: Backward repositioning is
defined using SYSACT 13.

IHI0151 SC=NNNNN UPPER BOUND LESS THAN
LOWER BOUND IN ARRAY DECLARATION

Explanation: The upper subscript bound
specified in an array declaration must not
be less than the lower subscript bound.

IHI016I SC=NNNNN VALUE OF SUBSCRIPT
EXPRESSION NOT WITHIN DECLARED
BOUNDS

Explanation: This error is detected only
:when the subscripted variable address
falls outside the area reserved by the
compiler for the array identifier.

IHIO! '7I SC=NNNNN ENDLESS LOOP IN FOR
STATEMENT

Explanation: The expressions used in the
for statement result in an endless loop.

IHI018I SC=NNNNN MAIN STORAGE REQUESTED
NOT AVAILABLE

Explanation: The storage space required
by an array exceeds capacity available.

IHI01~3I SC=NNNNN UNEQUAL NUMBER OF
DIMENSIONS FOR ACTUAL AND FORMAL
PARAMETER

Explanation: An array identifier being
used as a parameter in a procedure has
had a different number of dimensions as­
signed in the formal and actual positions.

IHI020I SC=NNNNN ACTUAL AND
CORRESPONDING FORMAL
PARAMETER OF DIFFERENT
TYPE OR KIND

Explanation: An actual parameter has
been assigned which does not have the
type or kind declared for the correspond­
ing formal parameter.

IHI021I SC=NNNNN UNEQUAL NUMBER OF
PARAMETERS IN PROCEDURE
DECLARATION AND PROCEDURE
STATEMENT/FUNCTION DESIGNATOR

Explanation: Either not all, or more than,
the formal parameters used in a proce­
dure have been assigned in a procedure
call.

IHI02;~I SC=NNNNN ASSIGNMENT TO A FORMAL
PARAMETER NOT POSSIBLE

Explanation: A value cannot be assigned
to an expression used in a standard input
procedure, assignment statement, or for
clause.

IHI028I SC=NNNNN ARGlThlENT OF SQRT LESS
THAN ZERO

Explanation: The ALGOL library SQRT
routine cannot handle arguments with a
value less than zero.

Diagnostic Messages 61

IHI024I SC=NNNNN ARGUMENT OF EXP
GREATER THAN 174,673

Explanation: The argument of EXP
exceeds capacity limitations.

IHI025I SC=NNNNN ARGUMENT OF LN NOT
GREATER THAN ZERO

Explanation: A number not greater than
zero cannot have a natural logarithm.

IHI026I SC=NNNNN ABS VALUE OF ARGUMENT
OF SIN OR COS NOT LESS THAN
PJ-l~?H~18

Explanation: The argument exceeds ca­
pacity limitations for a short precision
real value.

IHI027I SC=NNNNN ABS VALUE OF ARGUMENT
OF SIN OR COS NOT LESS THAN
PI~~2 ?H~50

Explanation: The argument exceeds ca­
pacity limitations for a long precision
real value.

IHI028I SC=NNNNN PSW=XXXXXXXX
XXXXXXXX. FIXED POINT
OVERFLOW INTERRUPT

Explanation: An interrupt has occurred
due to an overflow of a fixed point number.

IHI029I SC=NNNNN PSW=XXXXXXXX
XXXXXXXX. FLOATING POINT
EXPONENT OVERFLOW INTERRUPT

Explanation: An: interrupt has occurred
due to an overflow of a floating point ex­
ponent.

IHI030I SC=NNNNN PSW=XXXXXXXX
XXXXXXXX. DIVISION BY ZERO.
FIXED POINT

Explanation: An attempt has been made
to divide a fixed point number by zero.

IHI031I SC=NNNNN PSW=XXXXXXXX
XXXXXXXX. DIVISION BY ZERO.
FLOATING POINT

62

Explanation: An attempt has been made
to divide a floating point number by zero.

IHI032I SC=NNNNN DBN=NN. UNRECOVERABLE
I/O ERROR

Explanation: An error has occurred on
an input/output device.. This message
is printed on the console typewriter when
the error occurs on SYSPRINT.

IHI033I SC=NNNNN PSW=XXXXXXXX
XXXXXXXX. PROGRAM INTERRUPT

Expianation: A program interrupt has
occurred.

IHI034I SC=NNNNN VALUE OF SWITCH
DE SIGNA TOR NOT DE FINED IN
DECLARATION OF SWITCH

Explanation: The designational expres­
sions in the switch list of a switch decla­
ration must define the values of all the
corresponding switch deSignators.

IHI035I SC=NNNNN BASE NOT GREATER THAN
ZERO

Explanation: Exponentiation is not defined
in this case, because the base is zero or
negative.

IHI036I SC=NNNNN TOO MANY NESTED
BLOCKS AND CALLS OF PROCEDURES,
SWITCHES I AND P AHAMETERS.
INTERNAL OVERFLOW

Explanation: Structure of program causes
it to exceed the internal capacity limitations.

IHI037I SC=NNNNN DSN=NN,. ?H~BLOCKSIZE

NOT A MULTIPLE OF LOGICAL RECORD
LENGTH

Explanation: Blocksize must be an exact
multiple of logical record length.

IHI038I SC=NNNNN DSN=NN TOO LONG
RECORD

Explanation: Record :ls longer than spec­
ified.

IHI039I SC=NNNNN GET/PUT IDENTIFICATION
OUT OF RANGE

Explanation: The identification number
specified for a GET/PUT operation is out
of range.

IHI0401 SC==NNNNN REAL NUMBER TO BE
CONVERTED OUT OF INTEGER RANGE

Explanation: A real number has been
included which exceeds capacity limita­
tions when converted to integer. This
message applies to internal operations.

IHI041I SC==NNNNN DSN=NN. DD CARD
INCORRECT OR MISSING

Explanation: One of the data sets used by
the load module has been specified incor­
rectly or not at all. This message is printed

on the console typewriter when the error
occurs on SYSPRINT.

IHI042I SC=NNNNN INVALID OPTION
PARAMETER

Explanatiom An invalid option parameter
has been specified in the PARM parame­
ter.

IHI043I SC=NNNNN ILLEGAL CALL OF
GET/PUT OR LIST PROCEDURE

Explanation: Recursive calls of GET/PUT
or list procedures are not allowed.

Diagnostic Messages 63

INDEX

Access language 7
Access method 7
ACCT 12, 43
AFF 44
ALGLDD02-15 16
ALGOFC 10, 34
ALGOFCL 10, 34
ALGOFCLG 10, 12, 35
ALGOL compiler

desc ription 8
listings 18

ALGOL library 31
Array handling: see SMF
Assembler langua.ge 5, 27
ATTACH 26

Basic access 7
BLKSIZE 44
Block 7
Blocksize

for compiler data sets 14
for linkage editor data sets 15
for execution time data sets 17

Blocking factor 7, 15
Buffer 7
Byte 7

CALL 26
Capacity limitations 25
Card codes 36
Cataloged procedure

definition 5
supplied by IBM for ALGOL 10, 34
over-riding 12
user-written 13

Channel 7
Character set 36
Command statement 6,47
COND 12, 40, 41
Console messages 7. 9, 40, 58, 59, 62, 63
Constant pool 25, 37
ControJ C'haracter 7
Control program

functions 6
listings 18

Control section 21, 37
Cross-reference table 21, 24

Data control block
definition 6
for compiler data sets 14, 44
for linkage editor data sets 15, 44
for execution time data sets 17, 44

Data definition: see DD statement
Data management 6

Data set
definition 6
concatenation 47
for compiler 14
for linkage editor :L 5
for execution time 16
label 6
name 39
number 16
organization 7
table 37

Data storage area 19, 20, 21, 24, 25
DC 42
DCB: see Data control block
DD statement 6, 10, :L3, 43
ddname

definition 39
standard 14,15,17
specifying alternatives 26

DECK 42
Default option 39
Delimiter statement (3;, 10
Diagnostic messages

for compiler 20, 52
for linkage editor 1i9
for execution time 21, 60

Direct access device 7
Directory 7
DISP 45
Disposition data 20
DSN: see Data set number
DSNAME 43
dsname 39
DUMMY 43
DUMP 21, 43

EBCDIC 36
Error detection, by compiler 20
Error routine 31
EXEC statement 5, 10, 12, 14, 41
Execution time listings 20

Fixed storage area 31

GET 16
GO. ALGLDD02-15: see ALGLDD02-15

Identifier table 18, 23
Indexed sequential data set 7
Initialization: see Supervisor
Input/output device 7
Input/ output routines :31
I/O device: see Input/output device
ISO 36, 42

Job 5
Job control information

accounting details 40, 43
cataloged procedure executed 41
computing time 41
I/O device details 44
message forn:iat 40
name or location of data set 43
output format 46
priority 40
program executed 41
programmer~s name 40
record details 44
special options

card code used 42
listings required 42, 43
load module attributes 42
main storage available 42
object module form 42
precision used 41
purpose of program 41

status of data set 45
terminating conditions 40, 41
volumes and labels used 46

Job control statement
description 5, 10, 38
coding 38
examples 47

JOBLIB 12, 47
jobname 38
Job scheduler 6
JOB statement 5, 10, 40
Job step 5

Keyword parameter 39
Keyword subparameter 39

LABEL 46
Label address table 19, 37
LET 42
Library: see Partitioned data set
LINK 26
Linkage editor 9
Linkage editing listings 20
LIST 42
Load module

definition 8
execution 9, 15

LOAD 42
LONG 41
LRECL 44

Machine configuration 9
Mathematical routines 31
Main storage requirements 9
MAP 21, 42
Module Map 21, 24

MSGLEVEL 40
MSGCLASS 40

NCAL 42
NODECK 42
NOLOAD 42
NOSOURCE 42
NOTEST 42
Note Table 26
Null statement 6

Object module
definition 8
storage requirements 20, 23
structure 37

Object time stack 22
Operating system 5
Operator commands 6
Output 8, 9

Page numbers, specifying alternative 26
Parameters

for JOB 40
for EXEC 41
for DD 43

Partitioned data set 7
PARM 12,41
PGM 41
Positional parameter 39
Positional subparameter 39
Precompiled procedure

description 27
inclusion in trace 22
specifying data set for 12
to use at execution time 16

Priority scheduling 6
PROC 41
PROCEDURE 27, 41
Processing program 8
procname 39
procstep 39
PROGRAM 41
Program block 18, 20
Program block table 37
progname 38
Program trace 16, 22, 24, 42
PRTY 40
PUT 16

Queued access 7

RECFM 44
Record

definition 7
specification 14, 15, 26, 44

Return codes 8, 9, 40
REUS 27, 42

SC: see semicolon count
Semicolon count 16, 18
SEP 44
Sequential data set 7
Sequential scheduling 6
Severity codes

for compiler 52
for linkage editor 59

SHORT 41
SIZE 42
Source program 5, 10, 18, 23
SOURCE 18, 42
SMF: see storage mapping function
SPACE 45
stepname 39
Storage estimates for library routines
Storage mapping function 19, 20, 22
Subprograms 27
Supervisor 6
SYSABEND 14, 15, 17
SYSCP 44
SYSDA 44
SYSLIB 15
SYSLIN 14, 37
SYSLMOD 16
SYSOUT 46
SYSPRINT 12, 14, 15, 16
SYSPUNCH 14, 37

32

SYSSQ 44
System generation 5
SYSUT1 14, 15, 16
SYSUT2 14, 16
SYSUT3 14
SYSl. ALGLIB 31
SYSl. LINKLIB 13, 16, 31
SYSl. PROC LIB 34

Termjnation
of compiler 8
of linkage editor 9
of load module 9

TEST 42
TIME 12, 41
TRACE 16, 22, 42
TRBEG 16, 22, 42
TREND 16, 22, 42
TYPRUN 40

UNIT 44
Unit names ·t4

Volume 6
VOLUME 46

XCAL 42
XCTL 26
XREF 21, 42

Technical Newsletter File Number

Re: Form No.

This Newsletter No.

Date

Previous Newsletter Nos.

IBM System/360 Operating Systen~
ALGO L Programmer"'s Guide

This technical newsletter amends the publication IBM System/360 Operating
System: ALGOL Programmer"'s Guide, Form C33-4000-0. The attached pages re­
place pages in the publication. Corrections and additions to the text are noted by
vertical bars to the left of the affected text. Revised figures are marked by the
symbol. to the left of the caption.

Pages to be
Inserted

1-2
5-8
11-18
21-22
25-26
33-34
37-50
53-54
59-60

Pages to be
Removed

1-2
5-8
11-18
21-22
25-26
33-34
37-50
53-54
59-60

In addition the following changes should be made.

Page

28

29

Summary of Amendments

Amendment

In the left column, under "Termination Instructions",
change "Reset" to "Restore".

Change "Reset" to "Restore" in all five positions
that it appears.

This newsletter corrects minor errors and omissions throughout the manual,
primarily on the subject of Job Control Language.

It also includes estimates for specifying space on a direct access device for
the SYSUT1, SYSUT2 and SYSUT3 data sets.

Note: Please file this cover letter at the back of the publication. Cover letters
provide a qUick reference to changes, and a means of checking receipt of all amend-
ments. I

PRINTED IN U. S. A.

S360-26

C33-4000-0

N33-8000

October 31, 1967

None

Systems Reference Library

IBM System/360 Operating System

ALGOL Programmer's Guide

Program Number 360S-AL-531 •••• Compiler
360S-LM-532 ••• 0 Library ~outines

This pUblication describes how to compile, linkage edit and
execute a program written in the System/36,O Operating System
Algorithmic Language (ALGOL). It includes an introduction
to the operating system and a description of the information
listings that can be produced, the job control language, and
the subroutine library.

File No. S360-26 OS
Form C33 -4000-0

Form C33-4000-0, Page Revised by TNL N33-8000, 10/30/67

PREFACE

This publication is intended for use by Application
Programmers, Systems Programmers and IBM
Systems Engineers. A knowledge of ALGOL is
assumed, and the reader is expected to be familiar
with the prerequisite pUblication:

IBM System/360 Operating System: ALGOL Lan­
~. Form C28-6615.

In Section 2, the description "IBM -Supplied
Cataloged Procedures" provides sufficient informa­
tion to process and execute an ALGOL program
that can use the IBM -supplied cataloged procedures
without modification.

The rest of Section 2, together with information
in Section 1 and the Appendices, will be required
for programs that cannot use the IBM -supplied
cataloged procedures without modification.

The description of information listings in Section
3 and the list of diagnostic messages given in
Appendix F will be helpful in interpreting system
output, especially for debugging.

An extensive index has been provided to assist
the reader in using the manual for reference pur­
poses.

First Edition (April 1967)

This publication contains rnost of the infor­
mation required by the Applications Programmer.
The following publications are referred to within
the text for information beyond the scope of this
publication.

IBM System/360 Operating System:

Assembler Language, Forrn C28-6514

Linkage Editor, Form C28-6538

Job Control Language, Form C28-6539

Operator's GUide, Form C28-6540

Utilities, Form C28-6586

FORTRAN IV Library Subprograms,
Form C28-6596

Message Completion Codes, and Storage
Dumps, Form C28-6631

Supervisor and Data Manag'ement Services,
Form C28-6646

Supervisor and Data Manag'ement Macro­
Instructions, Form C28-66·i7

Significant changes or additions to the specifications contained in this publication will be reported in sub­
sequent revisions or Technical Newsletters.

Requests for copies of IBM publications should be made to your IBM representative or to the IBM branch
office serving your locality.

A form is provided at the back of this publication for reader"'s comments. If the form has been removed,
comments may be addressed to IBM Corporation, Department 813, 112 East Post Road, White Plains, N. Y.
10601, or IBM Nordic Laboratory, Technical Communications, Vesslevagen 3, Lidingo, Sweden.

©International Business Machines Corporation 1967

The primary constituent of a System/360 data pro­
cessing operation is a:i.2Q. This, basically, is
the work that the user requires the computer to
do. To carry out a job, a computer needs two
types of information -- a program and data.

• A program (known in this context as a source
progr~) is a sequence of instructions which
specify the actions to be performed by the ~­
chinee These instructions are written in a
symbolic language and are translated :into
machlne language by a processing program
contained in the operating system before they
are performed.

• Data is the information to be processed by the
program. The source program is regarded as
data while it is being processed by operating
system programs to make it suitable for exe­
cution.

From this brief introduction it can be seen that
a job is affected by three separate factors -- the
source program, the operating system and the
machine configuration.

SOURCE PROGRAM

For jobs discussed in this publication, the source
program will be written primarily in System/360
Operating System ALGOL (Algorithmic Language).
This is defined in IBM System/360 Operating
System: ALGOL Language. In addition the pro­
grammer must observe the restrictions, caused
by internal capacity limitations, listed in Section 4.

An ALGOL source program may be written in
freeforrn. on any 80 column coding sheet. The pro­
gram text is contained in columns 1 to 72. Columns
73 to 80 can be used by the programmer for pro­
gram identification. To avoid confusion with job
control statements (see "Operating System"), the
character sequences I I and I"'''' must not be used
in columns 1 and 2. It is possible to do this since
these sequences are syntactically incorrect out­
side strings, and when they occur within strings,
they may be shifted into non-critical columns by
inserting a blank space before the opening string
quotes "'(-: Two character sets are available for
punching the source program into a card deck
(see Appendix C).

For operations that require more precise con­
trol over the machine than can be provided by

SECTION 1: INTRODUCTION

ALGOL, subprograms written in Assembler lan­
guage can be included in the source program (see
Section 4). Assembler language subprograms can
also be used as a link to other languages, such as
PL/I, COBOL and FORTRAN. The Assembler
language is defined in IBM System/360 Operating
~,ystem: Assembler Language.

OPERATING SYSTEM

'The System/360 Operating System is a set of IBM­
supplied, control and processing programs (sup­
plemented if necessary by user-written programs)
that assist the programmer to use the computer
efficiently. The operating system selected for a
particular installation is generated during the ini­
tial setting-up of the computer, by a process known
as system generation.

,J ob Control

Operating system instructions (known as job con­
trol statements) must be added to the source pro­
gram to control its handling within the operating
system and to specify the data management faci­
lities required.

These statements do not need to be specified
until the program is ready to be executed. This
:means that the program can be prepared indepen­
dent of installation considerations.

Six types of statements are available, which,
:in conjunction with associated parameters, can
supply all information required by the operating
system for job control. To save programming
effort, commonly used sequences of control state­
:ments can be stored by the system for subsequent
recall by identifying names. These sequences are
known as cataloged procedures.

JOB is the first statement of each job. It indi­
eates that a new job is beginning and, consequently,
that the previous job has ended. A job can be di­
vided into a number of job steps, which can be
inter-related to improve processing efficiency.
For example, the execution of one job step can be
made dependent on the result of a previous one.
'This is an important feature of the operating sys­
tem and users are recommended to exploit it as
:fully as possible.

EXEC (Execution) is the first statement in each
job step. It specifies the program or cataloged

Introduction 5

Form C33-4000-0, Page Revised by TNL N33-8000, 10/30/67

procedure to be executed, and must be included
even if the job consists of only one job step.

DD (Data Definition) is the statement used to
describe a data set and to specify associated data
control block information. It also specifies input/
output (I/O) device assignment. One or more DD
statements are usually required for each job step.

In addition the comm.and statement is used to
place operator commands into the input stream,
the null statement indicates the end of the last job
in the input stream, and the delimiter statement
separates data from subsequent control statements
when sequential scheduling is used. The command
statement, when used, must immediately precede
a JOB, EXEC or null statement.

The job control statements required for an
ALGOL source program are described in Section 2.

Control Program

The control program is the primary program
within the operating system and must be included
with all installations. It is divided into a number
of functions. Those affecting the applications pro­
grammer are described in the following text.

Job Scheduling

A job scheduler is included as part of the control
program to control the flow of jobs and allocate
the I/O devices. required. Two forms of job sched­
uling are available.

With sequential scheduling the jobs are carried
out in the order they are presented in the input
stream to the computer.

With priority scheduling a summary of the input
job stream is stored on a direct access device and
jobs are carried out in order of priority (as spec­
ified in the JOB control statement). Any hold-up
in the execution of a program, due, for example,
to a delay in mounting a volume, will cause the
job scheduler to select the next job available, in
order of priority, and the revert back to the higher
priority job when it is ready.

Supervisor

The supervisor is a set of subroutines, included
in the control program, for transferring control
of the central processing unit of the computer from
one program to another and co-ordinating I/O oper­
ations. Initialization and termination of all pro-

6

grams described in this publieation are achieved
using the standard method giv,en in IBM System/360

I
Operating System: Supervisor and Data Manage­
ment Services.

Data Management

This sub-section is a summary of data manage­
ment facilities. Full details are given in IBM

I
System/360 Operating System: Supervisor and
Data Management Services.

Data Sets: Data is usually stored on I/O devices
and is only brought into main storage for process­
ing. It is organized into data sets. These are
collections of records that are logically related
(for example, a set of test readings).

System/360 Operating System allows a data set
to be identified and accessed by symbolic name
only, without any reference to its location on the
storage device. To do this the operating system
builds a catalog of data set location against name.
This catalog resides on one or more direct access
volumes. A volume is one cOlnplete physical unit
of storage such as a tape reel or a disk pack. It
may contain a number of data sets, or alternative­
ly one data set may stretch oVler a number of vol­
umes. Data sets are created 1llsing DD statements.

Data Control Blocks: The operating system must
be provided with information describing the charac­
teristics of a data set before the data set can be
processed. This information :Ls assembled in the
data control block associated with each data set.
Data control blocks are automatically created for
each data set that is to be proeessed by the pro­
gram, and are completed front two sources:

1. Any information provided in the program is
included first.

2. Information provided by thEl DD statement is
then included, but this cannot over-ride any
information stated in the program.

In the case of an existing da.ta set, further in­
formation is taken front the data set label. Again,
this cannot over-ride previous:ly inserted informa­
tion. Any DCB information provided by the pro­
grammer is checked by an appropriate routine to
ensure its validity and to assign default values.

Data Set Labels: Data set labels, if requested by
the programmer in the DD statement, are created
by the operating system to store information rel­
evant to the data set such as name and retention

I period. Tapes must have been previously ini­
tialized. The labels can supplement information

Form C38-4000-0, Page Revised by TNL N33-8000, 10/30/67

in the data control block and serve as identifiers
during accessing. They are positioned at the
beginning and end of the data set.

"Records and Blocks: Records are the smallest
items of data which can be read or written sepa­
rately. Their length can be specified as fixed,
variable or undefined. The unit of length is known
as a ~~, which is normally equivalent to one
character. For mechanical reasons it is neces­
sary to have a fixed length gap between each re­
cord. This means that the smaller the average
length of the records so the smaller the amount
of information that can be stored in a given area
of storage. To conserve space a number of re­
cords can be grouped together to form a block,
which is treated as a single record for I/O oper­
ations. The complete block is read into main
storage and then unblocked for the required re­
cord to be processed. Record format and block­
size are defined in the data control block. For
fixed length records blocksize must be a multiple
of record length. This multiplication faetor is
known as the blocking factor.

A control character can be specified for inclu­
sion in each record of a data set. This selects
carriage control when the data set is printed, or
stacker when the data set is punched.

Data Set Organization: According to how they are
going to be used, records can be organized within

I
the data set in a number of ways, as described
below. Only sequential organization can be used
with ALGOL.

Sequential organization is a feature of I/O de­
vices such as magnetic tapes. To access a par­
ticular record the data set must be read sequen­
tially until the record is found. This is satisfac­
tory for many applications where a large propor­
tion of the records will be required on each run
but could be time-consuming where data is being
accessed randomly.

To avoid reading each record in turn 1he indexed
sequential method is often employed, in which the
location of the required record is found from an
index at the beginning of its data set. On a disk
pack the specification of a record location is bro­
ken down into two levels - cylinder and track.
Each level has its own index. With large data sets
up to three levels of master index can also be used.
Overflow areas are provided for the prinlary stor­
age area so that insertions can be made.

Alternatively, a data set can be partit~ into
blocks of identical format called members. A di­
rectory is built up at the beginning of the data set
so that each member can be accessed independent-

ly by specifying its name as a suffix to the data
set name. This form of data set is described as
a library.

Direct organization allows records to be stored
and retrieved using an absolute or relative address
(cylinder, head, track). For example, an algo­
rithm could be used to determine the address from
data in the record.

I Access Language: When using assembler language,
two access languages are available to store and
retrieve records. The queued access language
provides a full range of buffering and blocking fa­
cilities to improve processing efficiency. It can
only be used with sequential and indexed sequential
data sets.

Th~ basic access language gives the program­
:mer more direct control over the I/O device but
does not provide buffering and blocking facilities.
These must be constructed by the user (see IBM

I
,System/36 0 Operating System: Supervisor a;r­
Data Management Services.

Access Methods: The data set organization and
access language used are combined to fully de­
scribe the method of handling a data set, for ex­
ample, Queued Sequential Access Method, Basic
Partitioned Access Method, etc. The access
Inethod is specified in the data control block.
;£nput/Output Devices: Data can be stored on a
number of input/output devices depending, among
other things, on the method of data set organiza­
tion required. The devices most commonly used
:In scientific and engineering installations are:
Card readers

and punches
Printers (out­

put only)
Paper tape

devices
Magnetic tape

devices

Disk storage
devices

Data cell stor­
age devices

Drum storage
devices

All data handled by these
devices is sequentially
organized.

These are known as direct
access devices and can be
used for sequential, indexed
sequential or partitioned
organization.

A console typewriter is used for direct two­
way communication between the operator and the
operating system.

Areas of main storage known as buffers are
used to provide overlapping of reading, writing
and processing operations. The transfer of data
between main storage and I/O devices is controlled
through units known as channels.

Introduction 7

Processing Programs

In addition to the control program, a number of
processing programs may be included in the oper­
ating system depending on the requirements of
the installation. To carry out a job that contains
a source program written in ALGOL the following
processing programs are required:

1. ALGOL compiler

2. Linkage editor

The ALGOL compiler processes the source
program to translate it into machine language.
The translated source program (known as the ob­
ject module) is then processed by a linkage editor
to combine any routines required from the ALGOL
library (see Appendix A). The result of these two
operations (known as the load module) is then load­
ed into main storage and control is passed to the
load module so that it can be executed. The basic
flowchart for handling an ALGOL source program
is shown in Figure 1.

ALGOL Compiler

This processing program is available for the F
level of main storage size, and requires a mini­
mum of 44K bytes. If extra storage capacity is
provided it is used to increase compiler capacity
(see Figure 6).

Initialization and Termination: The standard meth­
od is used for initialization and termination of the
compiler (see "Supervisor"). At the end of the
compilation one of the following return codes is
generated:

8

o meaning normal conclusion. Object module
has been generated unless both the NODECK
and NOLOAD options (see Appendix E) are
specified in the invoking statement. No diag­
nostic messages have been listed.

4 meaning object module has been generated
unless both the NODECK and NOLOAD op­
tions are specified. Only warning diagnos­
tic messages (severity code W) have been
listed.

12 meaning process has bee:n completed but a
complete object module could not be gener­
ated due to a serious error. Diagnostic
messages (severity codes S and possibly W)
have been listed.

ALGOL
Compiler

Load Module
Execution

ALGOL D
Library

--

Figure 1. Basic flowchart for handling an ALGOL
program.

16 meaning process has be,en terminated ab­
normally due to a terminating error. A
complete object module could therefore not
be generated. Diagnostic messages (sever­
ity codes T and possibly Wand S) have been
listed. The severity codes are described
in Appendix F.

Output: A successful compilation of an ALGOL
source program produces the following output:

• An object module (described in Appendix D)
which can be:

• Included in a data set fm: use as input to
the linkage editor (optional).

• Included in another data set to give some
other form of output, such as a card deck
(optional) •

(/~~

L

(Source program (MATI NV)

(//SYSIN DD i~ -

('i/ EXEC· ALGOFC _V
//MATINV JOB 537, JOHNSMITH, MSGLEVEL=l

~

-

Figure 2. Sample deck for using ALGOFC cataloged procedure with a single source program. This job
compiles the MA TINV source program used in Example 1 ()f Appendix E.

If more than one source program is to be pro­
cessed in the same job, then all job control state­
ments except the JOB statement must be repeated
for each source program.

If it is required to keep a load module for use
in a later job (as in the case when the load module
is a precompiled procedure), then the SYSLMOD
DD statement in the cataloged procedure must be
over-ridden to specify a permanent data set. This
has to be done for each load module that is kept.
The over~riding statement is placed at the end of

the job step to which it applies, and has the form:

//LKED. SYSLMOD DD DSNAME=dsname(member) ,
DISP=(MOD,KEEP)

where "dsname" is the name of a partitioned data
set and "member" is the member name assigned
to the load module on the partitioned data set.

A sample deck of job control statements to com­
p:ile and linkage edit two source programs is shown
in Figure 3.

//LKED. SYSLMOD DD DSNAME=WTHRPR(FORCST),
PISP:=

//LKED. SYSLMOD DD DSNAME=WTHRPR(FILECR),
DISP= MOD, KEEP)

/ /SYSIN DD DSNAME=FILECR, DISP=OLD

ALGOFCL

Figure 3. Sample deck for using AI.JGOFCL cataloged procedure with two source programs. These two job
steps compile and linkage edit the t~vo source programs used in Example 3 of Appendix E. Both source pro­
grams have been previously stored on intermediate I/O devices.

Source Program Handling 11

Form C33-4000-0, Page Revised by TNL N33-8000, 10/30/67

Compilation, Linkage Editing and Execution

The catalog~d procedure used to compile an ALGOL
source program, linkage edit the resulting object
module, and execute the load module produced by
the linkage editor is ALGOFCLG.

The statements used in this cataloged procedure
are shown in Appendix B. The following state­
ments can be used to invoke the ALGOFCLG cata­
loged procedure:

JOB
DD DSNAME=dsnamel, DISP=OLD
EXEC ALGOFCLG

l/jobnanle
IIJOBLIB
II
IISYSIN DD [oll- or parameters defining an

input data set containing
the source program }

IIGo. ALG LDD02 DD DSNAME=dsname2

IIGo. ALG LDD15 DD DSNAME=dsname15

where "jobname" is the name assigned to the job.
"dsnamel" is the name of a data set that contains
a precompiled procedure (see Section 4) which is
called by the load module being executed. The DD
statement containing dsnamel need not be used if
no precompiled procedure is used.

For a description of the correct use of the
JOB LIB DD statement when more than one pre­
compiled procedure is used in a job, or when a
precompiled procedure resides on more than one
data set, see "Data Set Concatenation" in Appen­
dix E.

"dsname2" ... "dsname15" are the names of input
data sets required by the load module at execution
time and output data sets to be created at execu­
tion time. In addition, a data set for printed out­
put (ddname SYSPRINT) is supplied by the cata­
loged procedure, and a data set for input only can
be specified by using the following statement after
the invoking sequence just given.

IIGo. SYSIN DD [oll- or parameters defining an
input data set }

I If DD* is used then the data must follow imme­
diately afterwards in the input stream. For se-

I quential s_cheduling, the data must be followed by
a de limite r statement (l:~).

If more than one source program is to be pro­
cessed and executed in the same job, then all job

12

control statements except the JOB statement and
the JOBLIB DD statenlent must be repeated for
each source program.

A sample deck of job control statements re­
quired to compile, linkage edit and execute three
source programs is shown in :!!"igure 29.

Over-riding Cataloged Procedures

The programmer can change any of the statements
in a cataloged procedure, excf;~pt the name of the
program in an EXEC statement.

These over-riding conditions are temporary,
and will be in effect only until the next job step is
started. The following text describes methods of
temporarily modifying existin~~ parameters and
adding new parameters to the EXEC and DD state­
ments used in the cataloged procedures. The full
list of parameters available to the ALGOL pro­
grammer for these statements, and detailed expla­
nations of the parameters, is lPven in Appendix E.
The EXEC and DD statements used in the IBM­
supplied cataloged procedures are shown in Appen­
dix B.

Over-riding EXEC Statements

In the EXEC statement, the programmer can change
or add any of the keyword parameters by using the
following format:

keyword. procstep=option

where:

"keyword" is the parameter to be changed in,
or added to, the specified procedure job step:
either COND, PARM, ACCT, TllVIE or REGION.
TIME and REGION are valid only for priority
scheduling.

"procstep" is the procedure job step in which
the change or addition is to occur: either
ALGOL, LKED or GO.

"option" is the new option required.

For example, if the EXEC statement used to in­
voke the ALGOFCLG cataloged procedure was writ­
ten as:

II EXEC ALGOFCLG,PARM.ALGOL=DECK,
II PAHM. LKED=XREF,
I I CONDo GO==(3, LT, ALGOL)

then the following chang;es would be made to the
ALGOFCLG cataloged procedure:

Form Cj3-4000-0, Page Revised by TNL N33-8000, 10/30/67

1. In the PARM parameter of the job step ALGOL,
the option DECK would be used instead of the
default option NODECK (assuming that the stan­
dard default NODECK was not changed at sys­
tem generation). Over-riding this option will
not affect the other default options assumed
for this parameter.

2. In the job step LKED, the option XREF is spec­
ified for the PARM parameter. Since the op­
tions specified in the cataloged procedure were
XREF, LIST and LET, this statement has the
effect of deleting the options LIST and LET
since they were not default options.

3. In the job step GO, the COND parameter code
is changed from 5, as it appears in the cata­
loged procedure, to 3. In this example, the
code 3 causes the job step GO to be bypassed
if a warning message is generated during the
job step ALGOL. Note that although the other
options (LT and ALGOL) are not to be altered,
the entire parameter being modified must be
respecified.

If "procstep" is not specified when over­
riding a multi-step cataloged procedure, the
operating system makes the following assump­
tions:

I
• COND, ACCT and REGION parameters apply

to all procedure job steps.

• A PARM parameter applies to the first pro­
cedure job step and any options already spec­
ified in the PARM parameters for the remain­
ing procedure job steps are cancelled.

• A TIME parameter specifies the computing
time for the entire job and any options already
specified in the TIME parameters for individ­
ual procedure job steps are cancelled.

Over-riding DD Statements

An additional DD statement is used in the invoking
sequence for each DD statement in the cataloged
procedure that is to be over-ridden. The following
format is used:

/ /procstep. ddname DD parameter-list

where:

"procstep" is the procedure job step containing
the DD statement to be over-ridden: either ALGOL,
LKED or GO. If "procstep" is omitted then the
first procedure job step is assumed.

"ddname" is the name of the DD statement to be
over-ridden.

"parameter-list" is the list of parameters that are
being added or changed. In both cases the whole
parameter must be specified. Unchanged param­
eters in the original statement need not be spec­
ifi.ed. For example, the statement:

/ /ALGOL. SYSLIN DD SPACE=(400, (80,10»

win change the SPACE parameter of the SYSLIN
DD statement in the ALGOL job step so that space
win be allocated for 80 physical records instead
of 40.

DD statements that are used to over-ride other
DD statements in the cataloged procedures must
be placed immediately after the EXEC statement
invoking the cataloged procedure, and must be in
thIS same order as their corresponding DD state­
ments in the cataloged procedures.

Adding DD Statements

Complete, new DD statements that are to be added
to the cataloged procedure use the same format
as over-riding DD statements. The "ddname"
specified must not exist in the job step specified
by "procsteprl. These new DD statements must
follow immediately after the over-riding DD state­
ments which apply to the same procedure job step .

USER-WRITTEN PROCEDURES

The information required by the programmer to
write his own job control procedures is given in
the following text, and in Appendix E. Cataloging
user-written procedures, or permanently modi­
fying the IBM -supplied cataloged procedures, is
aecomplished using the IEBUPDAT utility program,
described in IBM System/360 Operating System:
Qtilities. The statements required in user-writ­
ten procedures are:

• An EXEC statement to invoke the program.

• DD statements to define the data sets used by
the program.

Compilation

Invoking Statement

The ALGOL compiler consists of ten load modules
contained in the link library, SYS1. LINK LIB , of
the operating system. The compiler is activated

Source Program Handling 13

Form C33-4000-0, Page Revised by TNL N33-8000, 10/30/67

by invoking its first load module, named ALGOL,
which then internally invokes the other load mod­
ules of the compiler.

The usual method of invoking the compiler is
by means of an EXEC statement of the form:

/ /stepname EXEC PGM=ALGOL

where "stepname" is the name assigned to the job
step (optional).

Other EXEC statement parameters may be in­
cluded if required (see Appendix E).

(A method of dynamically invoking the compiler
within a job step, by means of the CALL, LINK,
XCTL or ATTACH macro-instructions, is described
in Section 4.)

Data Sets Used

The data sets used in the compilation process are
illustrated in Figure 4, and described in Figure 5.
These data sets must be specified by the program­
mer with suitable DD statements.

Blocksize DCB information may be specified
by the user .for SYSIN, SYSLIN, SYSPRINT and
SYSPUNCH. The maximum blocking factor de­
pends on the main storage size available (see
Figure 6). Record length is fixed at 80 bytes for
SYSIN, SYSLIN and SYSPUNCH, and 91 bytes for
SYSPRINT.

SYSLIN

Figure 4. Flowchart showing data sets used by
the compiler.

The space required for the compiler data sets
depends on the size and structure of the source
program, however it can be assumed that only in
rare cases will the object module exceed four
times the source program and usually much less
will be required.

14

Standard Devices
Purpose

ddname required

For ALGOL source SYSIN Card reader*
program

For object module to SYSLIN Direct access or
be used by linkage editor magnetic tape

For compilation listings SYSPRINT Printer*

For object module SYSPUNCH Cardpunch*
(copied from SYSLIN)

For the control SYSABE:ND Printer-l~

program dump

For intermediate SYSUTl Direct access or
compiler working magnetic tape

For intermediate SYSUT2 Direct access or
compiler working magnetic tape

For intermediate SYSUT3 Direct access
compiler working

* Some form of intermediate storage, such as magnetic tape,
may be used to reduce I/O delay for the central proces-
sing unit.

Figure 5. Data sets used by the ALGOL compiler.

The primary quantity specified in the SPACE
parameter of the DD statements for SYSUT 1,
SYSUT2 and SYSUT3 must be large enough to
contain the entire data set. The use of a secon­
dary quantity for any of these data sets will
increase the need for main storage by 40%. The
following estimates can be used to allocate space
on a 2311 direct access device:

SYSUTI - 1 track per 100 source cards
SYSUT2 - 1 track per 100 source cards
SYSUT3 - 1 track per 200 source cards.

SYSABEND is used for control program list­
ings (see Section 3).

Processing of all data sets by the compiler is
independent of the I/O device used except for the
intermediate work data sets. These require mag­
netic tape or direct access dE~vices.

Linkage Editing

Invoking Statement

The linkage editor is u~ual1y invoked with an
EXEC statement of the form:

/ /stepname EXEC PGM=IEVV'L

Form C33-4000-0, Page Revised by TNL N33-8000, 10/30/67

where "stepname" is the name assigned to the job
step (optional).

Other EXEC statement parameters may be in­
cluded if required (see Appendix E). IEWL spec­
ifies the highest-level linkage editor in thle instal­
lation "s operating syste:gl.

(A method of dynamically invoking the linkage
editor within a job step, by means of the CALL,
LINK, XCTL or ATTACH instructions, is described
in Section 4.)

Main stora.ge size Maximum blocking factor
in bytes at which
changes occur SYSIN SYSPRINT SYSLIN SYSPUNCH

45056 (44K) 5 5 5

51200 (50K) 5 5 5 5

59392 (58K) 5 5 5

6'7584 (66K) 5 5 5 5

77824 (76K) 5 5 5 5

90112 (8SK) 20 20 40 20

104448 (102K) 20 20 40 20

120832 (1l8K) 20 20 40 20

139264 (136K) 20 20 40 20

159744 (156K) 20 20 40 20

184320 (180K) 40 40 40 40

212992 (208K) 40 40 40 40

Figure 6. Effect on compiler data sets if more
than 44K bytes of main storage is available.
The eapacity of internal tables in the compiler.
is inereased at each of the main storage sizes
listed in this table, allowing, for example, a
larger number of identifiers to be included in
the source program. Therefore to get optimum
performance, the user is recommended to use
this list when specifying main storage size
available to the compiler.

Data Sets Used

The data sets used by the linkage editor (see Fig­
ures 7 and 8) must be defined by the programmer
with suitable DD statements.

Blocksize DCB information may be specified
by the UBer for SYSLIN and SYSPRINT if the F
level linkage editor is being used. Maximum
blocking factor is 5 when 44K bytes of main stor­
age size is ava:i1able, and 40 when 88K bytes is
available. Record length is fixed at 80 bytes for

I SYSLIN and 121 bytes for SYSPRINT.

SYSLIN

SYSLIB

SYSLMOD

Figure 7. Flowchart showing data sets used by
the linkage editor.

SYSABEND is used for control program list­
ings (see Section 3).

.Load Module Execution

Invoking Statement

The usual method of invoking the load module gen­
erated by the linkage editor is with an EXEC state­
ment of the form:

/ /stepname EXEC PGM=member-name

Standard Devices
Purpose ddname used

For object module SYSLIN Direct access or
input magnetic tape

For load module SYSLMOD Direct access
output, stored as a
member of a parti-
tioned data set

For ALGOL library, SYSLIB Direct access
SYS1. ALGLIB. A
partitioned data set
containing routines
in load module form

For linkage editing SYSPRINT Printer-l~

listings

For intermediate SYSUTl Direct access or
linkage editor magnetic tape
working

For the control SYSABEND Printer*
program dump

i~ Some form of intermediate storage, such as magnetic
tape, may be used to reduce output delay for the cen-
tral processing unit.

Figure 8. Data sets used by the linkage editor.

Source Program Handling 15

where "stepname" is the name assigned to the job
step (optional).

"member-name" indicates the name of the parti­
tioned data set member which contains the load
module. This name is specified by the programmer
in the SYSLMOD DD statement f.or the linkage edi­
tor. Other EXEC statement parameters may be
included if required (see Appendix E).

(A method of dynamically invoking the load mod­
ule within a job step, by means of the CALL, LINK,
XCTL or ATTACH macro-instnwtions is described
in Section 4.)

Data Sets Used

Up to 16 data sets for use at execution time may
be specified by the programmer in the ALGOL
source program by using the appropriate data set
number. The numbers used and the corresponding
names of their DD statements are listed below.

Data set number Corresponding
used in ALGOL ddname
source program

0 SYSIN
1 SYSPRINT
2 ALGLDD02
3 ALGLDD03
4 ALGLDD04
5 ALGLDD05
6 ALGLDD06
7 ALGLDD07
8 ALGLDD08
9 ALGLDD09

10 ALGLDD10
11 ALGLDD11
12 ALGLDD12
13 ALGLDD13
14 ALGLDD14
15 ALGLDD15

Any reference to a data set number by an I/O
procedure within an ALGOL source program is
translated into a reference to a data control block
using the corresponding ddname. It is the respon­
sibility of the programmer to supply the DD state­
ments which correspond to the data set numbers
used in the ALGOL source program.

The execution time data sets are illustrated
in Figure 9 and described in Figure 10. For
ALGLDD02 to ALGLDD15, case 1 in the column
showing device used, applies if the source pro­
gram contains any of the following:

16

• A backward repositioning specification by the
procedures SYSACT4 or SYSACT13 for this
data set.

• Both input and output procedure statements
for this data set.

• Procedure statements which prevent the com­
piler from recognizing whether either of these
applies; for example, if the data set number
or SYSACT function number is not an integer
constant or if a precompiled procedure is used.

If the source program has already been com-
piled and linkage edited in a previous job, then
the data set on which it has belen stored (in load
module form) must be concatenated to SYSl. LINKLIB.
Data sets containing precompiled procedures called
by the source program (see Section 4) must also be
concatenated to SYSl. LINKLIB.

If the programmer specifieB a TRACE, TRBEG
or TREND option in the EXEC statement of the
execution job step. the semicolon count (see Sec­
tion 3) is stored intermediately on a data set with
the ddname SYSUTl. The programmer must sup­
ply a corresponding DD statement if he uses this
option. The semicolon count is converted to ex­
ternal form and transferred to the SYSPRINT data
set as soon as the execution ends either by reach­
ing the logical end of the source program or due
to an error.

The space required for the Bemicolon count is:

For the main heading 6 bytes

For each semicolon 2 bytes

For each call of a
precompiled procedure 12 bytes

For each physical
record on SYSUT1 4 - 6 bytes

System/360 ALGOL permitB data to be tempo­
rarily stored on and retrieved from external de­
vices without conversion, using the ALGOL I/O
procedures PUT and GET. If the programmer
uses this facility in his source program, then he
must supply a DD statement with the ddname
SYSUT2. The device specified by this statement
for storing such intermediate data should be a
direct access device to guarantee reasonable per­
formance, though programming is performed in­
dependently between magnetic tape and direct ac­
cess devices. All data passed by a single PUT is

Form C33-4000-0, Page Revised by TNL N33-8000, 10/30/67

Intermediate Work

SYS 1. 1)
LlNKLIB

~

Load ModulE! for Source
Program, PrE!compi led
Proced ures, a nd Error
Routine

SYSUT 1

LOAD
MODULE
EXECUTION

Daf'a Output

Information
Ustings

YSPRINT &
YSABEND

100---__ ... :) ~~~~6D02-15
not used for
input

Data Input

SYSIN &
ALGLDD02-15

Figure 9. Flowchart showing data sets used at load module execution. The data input and output require­
ments are variable.

stored as one record. This record will be as
long as the data passed, plus 8 bytes. The
maximum record length accepted is 2048 bytes.

The DCB information which may be specified
by the user for execution time data sets :1s block-

I
size, record format and record length (see page
44 for details), except for the trace and PUT/GET
data sets (ddnames SYSUT 1 and SYSUT 2) for
which only blocksize may be specified (up to a
maximum of 2048 bytes).

For i.nformation not provided, default values
will be inserted by a routine in the ALGOL
library. In particular, blocksize is assumed
as 2048 bytes for SYSUTl and SYSUT2 if none
is specified.

SYSABEND is used for control program list­
ings (see Section 3).

Standard Device
ddname Used

For data input SYSIN Any input de-
to load module vice
For execution time SYSPRINT Printer~r

listings and data
output
For data input ALGLDD02 1. Direct
or output access or

ALGLDD15
magnetic
tape

2. Any

For intermediate SYSUTl Direct access
storage of semi- or magnetic
colon counter when tape
TRACE is spec-
ified
For temporary SYSUT2 Direct access
storage when PUT or magnetic
is specified tape
For the control SYSABEND Printerir

program dump

,* Some form of intermediate storage, such as

t
magnetic tape, may be used to reduce I/o
delay for the central processing unit.

Figure 10. Data sets used at execution time.

Source Program Handling 1 7

Form C33-4000-0, Page Revised by TNL N33-8000, 10/30/67

SECTION 3: INFORMATION LISTINGS

To assist the programmer to find the cause of any
faults in the processing or execution of his pro­
gram, various forms of information listings are
produced for the compilation, linkage editing and
execution operations. Some of these listings are
optional. Examples are illustrated in Figures 11
to 16.

CONTROL PROGRAM LISTINGS

All three operations may produce listings gener­
ated by the control program. These are described
in IBM System/360 Operating System: Messages,
Completion Codes z and Storage Dumps. The
ABEND macro-instruction for specifying the main
storage dump is described in IBM System/360
Operating System: Control Program Services.

COMPILATION LISTINGS

A successful compilation of an ALGOL source pro­
gram produces the following information listings:

• Job control statement information according
to which MSGLEVEL option was specified in
the JOB statement.

• The source program supplemented by a count
of the semicolons occurring in the program
(optional) .

• A table giving details of all identifiers used in
the program (optional).

• Any warning diagnostic messages.

• Information on main storage requirements at
execution time.

If a serious diagnostic message is produced
(meaning that object module generation has ended)
then the source program and identifier table list­
ings will be printed in full if they have been re­
quested, but the information on main storage re­
quirements will not be printed. If a terlninating
diagnostic message is produced then the source
program and identifier table listings can be printed
only as far as they have been produced.

18

Source Program

If the SOURCE option has been specified, the
source program is transferred by the compiler
to an output data set in order to be listed by a
printer. This source program is supplemented
by a semicolon count, which is referred to in the
diagnostic messages to help localize errors.

The compiler generates this semicolon count
when scanning the source program, by counting
all semicolons occurring in the source program
outside strings, except those following the de­
limiter ... COMMENT.... The value of this semicolon
count at the beginning of each record of the source
program is printed at the left of that record. It is
assigned by the compiler in order to have a clear,
problem-oriented reference. Any reference to a
particular semicolon number refers to the segment
of source program following the specified semi­
colon, for example, the semicolon number 5 re­
fers to the program segment between the fifth and
sixth semicolons.

Identifier Table

If the SOURCE option has been specified, a list of
all identifiers declared or specified within the
source program is transferred by the compiler to
the output data set for printing after the source
program listing. This identifi(3r table gives in­
formation about the characteristics and internal
representation of all identifiers. The identifiers
are grouped together within the identifier table
according to their scopes.

All blocks and procedure declarations within
the source program are numbered according to
the order of occurrence of their opening delimiters
"BEGIN" or "PROCEDURE". Therefore, if the body
of a procedure declaration is a block, then usually
this block has the same number as the procedure
declaration itself. These numbers are called
program block numbers (even if they belong to a
procedure declaration and not to a block).

Each line in the table contains entries for up
to three identifiers and the line, begins with the
number of the program block in which the identi­
fiers were declared or specified, the value of the
semicolon count at the commencement of the pro­
gram block, and the number of the immediately
surrounding program block. Each identifier entry
contains:

Form (,'...;-4:000-0, Page Revised by TNL N33-8000, 10/30/67

• A cross -reference table of the load module, or
alterna tively, a module map (both optional).

If a diagnostic message of severity code 2 or 3
is produced then the other information listings
might not be produced. If a diagnostic message
of severity code 4 is produced then the other in­
formation listings will not be produced.

Diagnostic Messages

A description of the diagnostic messages that may
be produced by the linkage editor is contained in
Appendix F.

If MAP is specified in the invoking statement for
the linkage editor, then a module map is trans­
ferred to the output data set to be listed by a print­
er. The module map shows all control sections
(the smallest separately relocatable units of a pro­
gram) in the load module and all entry names (to
routines in the ALGOL library) in each control sec­
tion. The control sections are arranged i:n ascend­
ing order according to their origins (which are
temporary addresses assigned by the linkage editor
prior to loading for execution). The entry names
are listed below the control section in which they
are defined. The origins and lengths (in bytes) of
the eontrol sections, and the location of the entry
names are listed in hexadecimal form. Unnamed
control sections are identified by $ in the list.

At the end of the module map is the entry ad­
dress of the instructions with which processing
of the module begins. It is followed by the total
length of the module, in bytes. Both values are
in hexadecimal form.

Cross -Reference Table

If XRE F is specified in the invoking staternent for
the linkage editor, the cross-reference table is
transferred to the output data set to be listed by a
printer.

The cross -reference table consists of a module
map and a list of cross -references for each con­
trol section. In the list of cross -referenees, each
address eonstant that refers to a symbol defined
in a:nother control section is listed with its assigned
location (in hexadecimal form), the symbol referred
to, and the name of the control section in which the
symbol is defined.

If a symbol is unresolved after proceSSing by
the linkage editor, it is identified by $ UNRESOLVED
in the list. However, if an unresolved symbol is
IILarked by the never call function, it is identified
by $NEVER-CALL.

The entry address and total length are listed
after the list of cross-references.

EXECUTION TIME LISTINGS

A successful execution of the load module produces
the following information listings:

• Job control statement information according
to which MSGLEVEL option was specified in
the JOB statement.

• The ALGOL program trace, which is a list of
the semicolon numbers assigned by the com­
piler (optional).

If an error is detected during execution of the
load module, additional information listings are
printed before the trace: these are;

CD A diagnostic message

.' The contents of the data storage areas
(optional)

Diagnostic Messages

Any error detected at execution time causes ab­
normal termination. A diagnostic message is
produced which is transferred to an output data
set to be listed by a printer. The diagnostic mes­
sages which may be produced during load module
execution are listed in Appendix F.

pata Storage Areas

If DUMP is specified in the invoking statement for
the execution operation, the data storage areas
(DSA) in main storage are transferred to the out­
put data set to be listed by a printer. They are
listed in the reverse order to which they were
created.

A DSA is created for each call of a program
block (see "Compilation Listings ") and exists in
m.ain storage as long as the call is effective. The
DSA contains:

Information Listings 21

Form C33-4000-0, Page Revised by TNL N33-8000, 10/30/67

1. All execution time values of variables declared
or specified in the program block except for
arrays. The array values are stored separate­
ly but are included in the listing because they
are referenced by the SMF which is contained
within the DSA.

2. Intermediate results (known as the object time
stack).

The information listed for each DSA consists
of:

• Name of load module

• Program block number

• Description of program block; either
BLOCK, PROCEDURE or TYPE PROCEDURE

• The values in the DSA, in batches according
to their category, that is, formal parameters,
declared identifiers and object time stack,
arrays called by value, and declared arrays.

The values are those which exist at the time
the error was detected (in hexadecimal form).
The displacement in the DSA of the first value in
each line is printed at the beginning of each line.
This is a six digit hexadecimal number.

For formal parameters, each entry has 16
digits, and in the case of parameters called by
name the entry contains an address constant
pointing indirectly to the value.

For declared identifiers and the object time
stack, the identifier entries are listed first and
they can be located using the identifier table if it
was listed by the compiler. The object time
stack contains various intermediate results and

')')

addresses which are not directly related to the
identifiers in the source program.

For arrays the length depends on the SM F.
The displacement of the SMF in the DSA is given
for each array.

In the listings, real values: have a length of 8
hexadecimal digits when SHOH T is specified and
16 digits when LONG is specified. They are in
standard floating point representation. Integer
values have a length of 8 hexadecimal digits and
are in standard fixed point representation. Boolean
values have a length of 2 hexadecimal digits which
appear as 00 for 'FALSE" and 01 for "TRUE ".

An editing routine inserts blanks between each
set of 8 digits to improve readability.

ALGOL Program Trac~

A program trace, listing the semicolon numbers
assigned by the compiler (see "Compilation List­
ings ") in the order the correBponding semicolons
were encountered during execution, is transferred
to an output data set to be listed by a printer if
TRACE, TRBEG or THEND is specified in the in­
voking statement for the execution. The complete­
ness of the trace depends on the option or options
specified (see Appendix E). Only the semicolons
actually passed through at executioq time are in­
cluded in the trace.

If a precompiled procedure is used in the pro­
gram and TRACE is specified, then the semicolon
numbers for the procedure are included in the
correct position within the program. The appro­
priate load module name (first four characters
only) is inserted at the beginning of the listings
and each time a change occur:3 in the first four
characters of the module name.

Form C33·-4000-0, Page Revised by TNL N33-8000, 10/30/67

CAPACITY LIMITATIONS
1

In addition to those given in IBM System/360
QE.erating System: ALGOL Language, the follow­
ing restrictions must be observed when writing
an ALGOL source program:

Number of blocks and
procedure declarations
(NPB) ~255

Number of for statements ~255

Number of identifiers de­
clared or specified in one
block or procedure. F is
at most twice the number
of for statements occur­
ring in that block

Length of letter string
serving as parameter
delimiter

~1 79 - F for type
procedures
~180-F otherwise

~1024 letters when main
storage size available is
less than 50K, ~2000
letters otherwise

Length of label identifer ~1024 characters
when main storage size
available is less than
50K, ~2000 characters
otherwise

I
Length of source
program ~255K

Number of semicolons in
the whole program ~65535

Number of nested blocks,
compound statements, for
statements and procedure
declarations ~999

Number of labels declared
or additionally generated
by the compiler :::;;1024

The compiler generates the following
additional labels:

SECTION 4: PROGRAMMING CONSIDERATIONS

For each switch declaration 2

For each procedure declaration 2

For each procedure activation
(including function designators) 1

For each 'THEN'" and each 'ELSE '" 1

For each for statement

Length of constant

at most L + 3
where L is the
number of for
list elements

pool ~(256 - NPB) x 4096 bytes

The requirements of components within the pool
are

Integer constant

Heal constant
(SHORT)

Heal constant
{LONG)

String (in bytes)

4 bytes

4 bytes

8 bytes

2 + number of
symbols of open
string between
the outermost
string quotes

The constant pool is divided into blocks of 4096
bytes each. The first block contains the integer
!Constants 0 to 15 (64 bytes). All strings together
are restricted to fill not more than the rest of
this block (4096 - 64 - 2S bytes, where S =
number of strings).
No constant occurring more than once in the source
program is stored twice in the same block; however,
it may possibly be stored more than once in differ­
ent blocks. Up to seven bytes may be left unused.

Length of data storage area
for each block or procedure
declaration

Number of blank spaces
serving as delimiters on
I/O data sets

I
Number of records in a
data set

~4096 bytes

:::;;255

:$32760

Programming Considerations 25

Number of records per
section :5:255

Number of entries in the
Note Table :5:127

(The Note Table stores information to retrieve
records which may be required again later. An
entry for a record is made each time the ALGOL I/O
procedures PUT and SYSACT13 are executed, and
each time an input operation, with backward repo­
sitioning, follows an output operation on the same
data set.)

Identification number (N) used
by PUT or GET 0~:5:65535

INVOKING A PROGRAM WITHIN A JOB STEP

Anyone of the four macro-instructions, CALL,
LINK, XCTL or ATTp~CH, may be used to dynam­
ically invoke the compiler, linkage editor and load
module within a job step. This is an alternative
to the more usual method of invoking a program
by starting a job step with an EXEC statement.
Full details of the four macro-instructions are
given in IBM System/360 Operating System:
Control Program Services.

To invoke a program with the CALL macro­
instruction, the program must first be loaded into
main storage, using the LOAD macro-instruction.
This returns, in general register 15, the entry
address which is used by the CALL macro-instruc­
tion. The instructions used could be:

LOAD EP=member-name

LR 15,0

CALL (15), (option-address), VL

To invoke a program with one of the LINK,
XCTL or ATTACH macro-instructions would need
instructions such as:

LINK EP=member-name,

P ARAM= (option-addres s) , VL=1

XCTL EP=member-naD1e

ATTACH EP=member-name,

P ARAM= (option-addres s) , VL=1

26

"member-name" specifies the name of the mem­
ber of a partitioned data set which contains the pro­
gram required.

For the compiler, member--name=ALGOL

For the linkage editor, mel1Clber-name=IEWL

For the load module, member-name is speci­
fied by the programmer in the SYSLMOD DD state­
ment for the linkage editor.

"option-address" specifies the address of' a
list containing the options required by the user.
An address must be given even if no options are
specified. The list must begin on a half-word
b011T\dary. The first two bytes contain a number
giv.l~~g the number of bytes in the remainder of
the list. (If no options are specified this number
must be zero). The list itself contains any of the
options available to the PARM parameter in an
EXEC statement (see Appendix E).

When using CALL, LINK or ATTACH to invoke
the compiler, other ddnames Dlay be used in place
of the standard ddnames given in Section 2 for the
data sets (except for SYSABEND), and an alterna­
tive page number (instead of the normal 001) may
be specified for the start of output listings.

If alternative ddnames are used, then in the
statement invoking the compiler, "option-address"
must be followed by "ddname-address" giving the
address of a list containing the alternative ddnames.
If alternative page numbers arls used, then "page­
address" giving the address of a location contain­
ing the alternative page number must be placed
after "ddname-address!f; thoulgh if alternative
ddnames are not required "ddname -address" may
be replaced by a comma.

The ddname list must begin on a half-word
boundary. The first two bytes contain a number
giving the number of bytes in the remainder of
the list. The list itself contains up to ten 8-byte
fields, separated by commas, for specifying al­
ternative ddnames for the data sets. As only seven
data sets are used by the compiler, three of the
fields are left blank. The alternative ddnames
must be listed in the following order:

Purpose of data set

-Output of object module
for linkage editor

Standard ddname

SYSLIN

IHIOBA For OUT BARRA Y 70

IHIOBO For OUTBOOLEAN 400

IRIOIN For OUTINTEGER 410

IHIOST For OUTSTHING 300

IHIOSY For OUTSYMBOL 290

IHIOTA For OUTTAHRAY 120

IHIPTT For a long precision INREAL or OUTREAL
operation 270

IHISAT IHCSATAN For a short precision arctangent
operation (ARCTAN) 200

IHISEX IHCSEXP For a short precision exponential operation (EXP) 280

IHISLO IHCSLOG For a short precision logarithmic operation (LN) 210

IHISOH For a short precision OUTREAL operation 810

IHISSC IHCSSCN For a short precision sine or cosine operation
(SIN or COS) 260

IHISSQ IHCSSQRT For a short precision square root operation
(SQRT) 170

IHISYS For SYSACT 1520

Figure 18. Table of ALGOL library modules. All are contained in SYSl. ALGLIB except IHIERR
which is in SYSl. LINKLIB. For mathematical routines, the corresponding name in the FORTRAN IV
library is also given.

ALGOL Library Routines 33

Form C33-4000-0, Page Revised by TNL N33-8000, 10/30/67

APPENDIX B: IBM-SUPPLIED CATALOGED PROCEDURES

The three cataloged procedures for ALGOL that
were introduced in Section 2 are contained in the
procedure library, SYSl. PROC LIB, of the oper­
ating system. They consist of the job control state­
ments listed below.

These procedures have been designed for an

Compilation, ALGOFC

optimum job, and can be over-ridden by the user
if he requires different or additional system sup­
port to that provided (see Section 2). In particular
it should be noted that in these procedures the ob­
ject or load module produced is stored on a tempo­
rary data set and will therefore be deleted at the
end of the job.

~~~~'~'~~~ I I • I! •••• I .! I I I •• I' 'I I •• I 'I' '! I' , ! ! I~~~~~'~'~!~~~_ 

, t , , , , • , , " , I eft Ie! " ,t , I I , , " f 1 ! " 

Compilation and Linkage Editing, ALGOFCL 

!'--"--~'!"f •• 

&.-L-"-,--~' "-, &-' '--' 1-" '""" , ' I " " I "" " ~---,--,-I .&-' ....... ,. -'-, ..... , .Io..-L-..I.......I.-.......... ~ ............. -I 

I" .1.' , '~.1...-.L.........tr......,' " , .1 , " Ie' ,I .......I.... __ ..J. __ J.... 

34 



The object module is in a form acceptable as input 
to the linkage editor, that is, its records are card 
images having the format of ESD, RLD, TXT and 
END cards (see Figure 20). It is stored either on 
a data set (ddname SYSLIN) in the linkage editor 
library, or on an output data set (ddname SYSPUNCH), 
or on both. The parameters LOAD and DECK, used 
to specify these storage options are described in 
Appendix E. 

The object module consists of: 

1. An initial ESD card defining the control sec­
tion. For a precompiled procedure, the 
proeedure name (up to 6 characters) is as­
signed to the control section and entered into 
this record. 

2. The Constant Pool containing all constants 
and strings in the module. 

~;nH;on of cont,ol 
CHon (ESD co,d) 

Lobe I address tab Ie (ESD, 
RLD and TXT cards) 

Generated instructions 
(RLD and TXT cards) 

APPENDIX D: OBJECT MODULE 

3. The generated instructions. 

4. The Label Address Table (see Section 3) for 
addressing branch instructions in the module. 

5. The Program Block Table containing an 
entry for every program block. This table 
indicates the active generation of data stor­
age areas (see Section 3) and length of each 
data storage area. 

6. The Data Set Table containing information 
on the current status of all data sets used. 
This table is not produced for precompiled 
procedures. 

7. Program start information. 

8. An END card. 

END card 

Figure 20. The object module card deck. The ESD (External Symbol Dictionary) cards contain the external 
symbols that are defined or referred to in the module. The RLD (Relocation Dictionary) cards contain 
addresses used in the module. The TXT (Text) cards contain the constants and instructions used in the 
module. The END card indicates the end of the module. 

Object Module 37 



Form C33-4000-0, Page Revised by TNL N33-8000, 10/30/67 

APPENDIX E: USING JOB CONTROL LANGUAGE 

This appendix describes the method of writing job 
control statements, and explains the options most 
frequently used by the ALGOL program.mer. A 
full description of Job Control Language is given 
in IBM System/360 Operating System: Job Control 
Language. 

Three types of operating system are available: 

1. Primary Control Program (PCP), using 
a sequential scheduler, 

2. Multiprogramming with a Fixed number 
of Tasks (MFT), using a sequential 
scheduler, 

3. Multiprogramming with a Variable num­
ber of Tasks (lVIVT), using a priority 
scheduler. 

CODING FORMAT 

Control statements are identified by the initial 
characters / / or / -i~ and are written in columns 
1 to 72 of standard 80 column punched cards. 
Each field is separated by one or more blanks. 
Column 72 must be left blank unless the state­
ment is to be continued on another card. 

If the length of a statement exceeds 71 charac­
ters, it must be continued on another card. This 
is done by interrupting the statement at the end of 
a positional or keyword parameter, following this 
parameter with a comma, and placing any non­
blank character in colunln 72. The continuation 
card commences with the initial characters / / 
and the statement restarts on column 16. Com­
mand statements may not be continued on another 
card. 

Comments must be separated from the last 
parameter by one or more blanks. If the com­
ment is to be continued on another card it may be 
interrupted at any convenient point and a non­
blank character is put in column 72. The conti-

Applicable Con-
Format tr01 Statements 

//NAME OPERATION OPERAND JOB,EXEC, 
DD 

// OPERATION OPERAND EXEC,DD, 
Command 

// Null 

Delimiter 

• Figure 21. Control statements formats. 

38 

nuation card commences with the initial charac­
ters / / and the comment restarts on any column 
from 16 to 71 inclusive. 

The four possible formats for control state­
ments are shown in Figure 21. The null and de­
limiter statements are blank except for the first 
two columns ~ 

NAME contains the symbolic identification of the 
control statements. It is always placed imme­
diately after the initial characters / /. A name 
must contain between one and ,eight alphameric 
characters, the first of which must be alphabetic. 
If name is omitted, then at least one blank must 
separate the initial characters / / and the operation 
field. 

OPERATION identifies the type of control statement 
being specified. 

OPERAND contains the statement parameters, 
separated by commas. 

CONVENTIONS 

The conventions used in this manual for describing 
control statements are as follows: 

Upper case letters and punetuation marks (except 
those listed below) represent information to be coded 
exactly as shown. 

Lower case letters are general terms requiring 
substitution of specific information by the programmer. 

These punctuation marks have a special meaning: 

(hyphen) links lower case words to form a 
single term for substitution 

(underscore) indicates the option that will 
be assumed if none is speeified 

[ } (braces) mean only one of the options contained 
must be selected 

[ ] (brackets) mean information contained may be 
omitted 

(ellipsis) means that preceding item can be 
repeated successively a number of times. 

CONTROL STATEMENT CODING 

In the following description, certain terms are 
used to indicate external names which are to be 
specified by the programmer. These terms and 
their meanings are: 

Term 

jobname 

progname 

Meaning 

name of job 

name of program 



stepname 

ddname 

procname 

procstep 

dsname 

name of job step 

name of DD statement 
(the standard ddnames 
which may be specified 
are described in Section 2) 

name of cataloged proce­
dure 

name of job step within 
a cataloged procedure 

name of data set 

It is often convenient to use two or more quali­
fication levels to specify a data set name. The 
highest level reference is stated first. Thus in 
Figure 22, data set D.M.H is found by searching 
the index of each volume in turn, starting with the 
system residence volume (the primary volume in 
the operating system), to find the location of data 
set D. This, when searched, will contain the lo­
cation of data set D. M, which in turn will contain 
the location of data set D. M. H. 

volume index A D z 

data set D A M z 

data set D. M. A H z 

Figure 22. Data set cataloging using qualified 
names. 

A maximum of 44 characters can be used for a 
qualified name. Thus, as a simple name can con­
sist of between one and eight characters, and each 
name must be separated by the character period 
(.), a maximum of 22 qualification levels is possible. 

Data set names can also be qualified by a suffix, 
that is, "dsname (element)", to indicate the rela­
tive generation number. For example, WEATHER 
(0) :is the current generation of the data set named 
WEATHER. The preceding generation would be 
WEATHER (-1). A new generation during creation 
is known as WEATHER (+1), at the end of the job 
it becomes WEATHER (0). A suffix is also used 
to indicate the name of a member of a partitioned 
data set, or the area of an indexed sequential data 
set. 

There are four types of job control parameters 
for inclusion in the operand fields: positional pa­
rameters, keyword parameters, positional sub­
parameters and keyword subparameters. 

Positional parameters must be stated first, 
and where more than one can be included they must 
be listed in the order given in the following descrip­
tions. A comma must be substituted in plaee of 
any positional parameter omitted, if it is to be 
followed by another positional parameter, for ex­
ample, 

Iiname operation pos1, ,pos3 ..... . 

Keyword parameters can be listed in any order. 
They contain a keyword followed by an equal sign 
(:=) and some specific information. All keyword 
parameters are optional since a default option will 
exist for any which must be specified. 

One or more subparameters can be substituted 
for a positional parameter and also for the informa­
tion to the right of the equal sign in the keyword 
parameter. 

Positional subparameters have the same confi­
guration and restrictions as positional parameters. 

Keyword subparameters have the same confi­
guration and restrictions as keyword parameters. 

When more than one subparameters are used, 
they must be separated by commas and the list 
enclosed in parentheses, for example, 

/1 name operation 
/1 

pos1,pos2,key1=value, 
key2=(sub1 , sub2) 

Since some special characters, such as the 
comma, parenthesis, blank and equal sign, have 
a special significance when used in control state­
ments, no special characters can usually be used 
in job control information provided by the user. 
There are, however, some exceptions to this rule. 
The special characters @, $ and # can be repre­
sented normally. All other special characters, 
except the apostrophe, can be represented normally 
in the programmer"s-name in the JOB statement, 
the accounting-information in the JOB and EXEC 
statements, and the P ARM parameter options in 
the EXEC statement, provided that the information 
is enclosed in apostrophes (replacing the parenthe­
ses for a list of more than one subparameter). An 
apostrophe within this information is represented 
by two consecutive apostrophes. 

Using Job Control Language 39 



Form C33-4000-0, Page Revised by TNL N33-8000, 10/30/67 

JOB Statement 

The name field of the JOB statement must contain 
the external name for the job (jobname). 

The operation field must contain the characters 
JOB 

The parameters available for the operand field 
are listed in Figure 23, where: 

accounting-information 
identifies the installation account number to 
which the computer time for this job is to be 
charged. If the installation has an appropriate 
accounting routine, the account number can be 
followed by other subparameter.3, which are 
fixed by the user for his own installation. If the 
account number is omitted then its absence must 
be indicated with a comma. 

programmer"s -nanle 
identifies the person responsible for the job. 
It must not exceed 20 characters. 

TYPRUN=HOLD 
indicates that the job is not to be processed 
until a RELEASE command is issued by the 
operator. For priority scheduling only. 

PRTY=job-priority 
indicates the relative priority of the job. A num­
ber from 0 to 13 is specified, with 13 being the 

Positional [accounting-information] 
parameters [programmer "'s-name J 

Keyword CLASS=jobclass 
parameters 

TYPRUN=HOLD 
(all optional) 

PRTY=job-priority 

COND=«code, operator), ••• ) 

MSGLEVEL=-~ { I } 
MS GCLASS=classname 

REGION=nnnnnK 

ROLL=( {YES} {YES}) 
NO ' NO 

-Figure 23. JOB statement parameters. 

40 

I 
highest priority. This parameter can be used 
only with M FT or MVT systems. 

COND=«code, operator), ... ) 
allows conditions for the termination of the job 
to be specified. Up to eight (code, operator) 
specifications may be included in a COND param­
eter. Any number between 0 and 4095 is sub­
stituted for "code" and one of the following six 
relationships is substituted for "operator". 

Operator 

GT 
GE 
EQ 
NE 
LE 
LT 

Meaning 

greater than 
greater than or equal to 
equal to 
not equal to 
less than or equal to 
less than 

At the completion of each job step, unless a 
system error occurs, the operating system will 
generate a return code between 0 and 4095 (see 
Section 1) to indicate if the program was executed 
successfully or not. If any of the code numbers 
stated in the COND parameter is related to the re­
turn code in the way specified by the associated 
operator then the job is terminated. For example, 
if 

COND=«50, LT), (40, GT» 

then, the job will be terminated if either 50 is 
less than the return code, or 40 greater than the 
return code. 

MSGLEVEL=O 
indicates that the job scheduler is to write out 
control statement information only when an 
error occurs. The information required is a 
diagnostic message and the control statement 
in which the error occurred. 

MSGLEVEL=l 
indicates that, whether an error occurs or not, 
the job scheduler is to write out all control 
statements, plus a diagnostic message if an 
error does occur. 

MSGC LASS=clas sname 
allows job scheduler messages to be written 
in a system output class other than the one nor­
mally used by the installation. The user can 
fix up to 36 different classes (A to Z and 0 to 
9), depending on device type, priority, desti­
nation, etc. , for these messages. This param­
eter is not necessary if the normal class (A) 



Form C33-4000-0, Page Revised by TNL N33-8000, 10/30/67 

I 
is required. For PCP systems only class A may 
be used. 

REGION=nnnnnK 
indicates the main storage size that is to be 
allocated to the job (including system compo­
nents) instead of the default value established 
in the input reader procedure. nnnnn is re­
placed by a value between 0 and 16384; thus 
32 would represent 32 x 1024 = 32768 bytes. 
This parameter can be used only with priority 
scheduling. 

CLASS=jobclass 
indicates the relative class of a job in systems 
with MFT. "jobclass" is replaced by an alpha­
betic character, A through O. 

ROLL=( {YES} {YES}) 
NO ' NO 

indicates the rollout/rollin attributes associated 
with a job in MVT systems. The first subparam­
eter specifies if the job steps in this job can be 
rolled out to provide main storage space for job 
steps in other jobs. The second parameter 
specifies if the job steps in other jobs may be 
rolled out to provide main storage space for 
job steps in this job. The ROLL parameter can 
be specified in EXEC statements to control 
rollout/rollin for individual job steps. 

EXEC Statement 

The name field contains the external name of the 
job step (stepname). It may be omitted if no refe­
rence is to be made to the EXE C statement in 
another statement. 

The operation field must contain the characters 
EXEC 

The parameters available for the operand field 
are listed in Figure 24, where: 

PGM=progname 
indicates that the job step executes the program 
named "progname". The program must reside 
on a partitioned data set. 

PGM:=-l~. stepname. ddnarne 
indicates that the job step executes the program 
named by the DSNAME parameter of a DD state­
ment named "ddname" that was included in a 
previous job step named "stepname" in the same 
job. If "stepname" refers to a job step invoking 
a cataloged procedure then a job step within the 
procedure can be specified by putting its name 

after "stepname"; that is, "stepname. procstep". 
The program must reside on a partitioned data 
set. 

PUO C=procname 
indicates that the job step executes the cataloged 
procedure named "procname". 

procname 
has the same effect as PROC=procname 

TIME=(minutes, seconds) 
limits the computing time for the job step. If 
"seconds" only is specified then a comma must 
be substituted for "minutes". If "minutes" only 
is specified then the parentheses can be deleted. 
This parameter can be used only with priority 
scheduling. 

COND=«code, operator, stepname) •.•• ) 
allows conditions to be specified for bypassing 
a job step whose execution depends on the re­
turn code issued by a preceding job step. "Code" 
and "operator" are governed by the same stipu­
lations that applied for the JOB statement. "Step­
name" indicates the previous job step which 
issued the return code to be used for comparison. 

If "stepname" is not specified then the return 
code issued by all previous job steps are com­
pared. If "stepname" refers to a job step in­
voking a cataloged procedure then a job step 

Positional 
parameters 

Keyword 
parameters 
(all optional) 

PGM=progname 
PGM= *. stepname. ddname 
PRO C=procname 
procname 

{T
TIMIME

E 
t }=(minutes, seconds) 

.procs ep 

{
COND } 
COND t 

=«code, operator, 
. procs ep 

stepname), ... ) 

{PARARMM }=subParameter-list 
P . procstep 

{
ACCT } . =accountIng-
ACCT. procstep . f t· In orma lOn 

{
REGION } K =nnnnn 
REGION. procstep 

ROLL=({YES} {YES}) 
NO ' NO 

• Figure 24. EXE C statement parameters. 

Using Job Control Language 41 



within the procedure can be specified by putting 
its name after "stepname"; that is "stepname. 
procstep". 

P ARM=subparameter list 
indicates any special conditions which apply 
to the job step. All the subparameters in the 
"subparameter -list" are optional. They can 
be specified in any order, and a comma does 
not have to be substituted for any omitted. A 
maximUln of 40 characters may be used. For 
the rule to be observed when an equal sign is 
included in the subparameter-list (that is, with 
SIZE, TRBEG and TREND), see "Control State­
ment Coding". 

For the ALGOL compiler job step, the "sub­
parameter-list" is given below. For each of 
the alternatives, the compiler assumes that the 

op~ion underscored applies, unless the other 
is specified either at this stage or during system 
generation. The default options PROGRAM and 
TEST cannot be changed at system generation. 
If a large number of options need to be specified 
for a particular job then the 40 character limi­
tation may be exceeded. To avoid this, abbre­
viated forms, given at the end of the descrip­
tion of each option, may be used. 

PROGRAM or PROCEDURE: which specifies 
that the source program is either an ALGOL 
program in the sense of the ALGOL syntax 
(PROGRAM), or is an ALGOL procedure to be 
compiled separately and used with other pro­
grams or procedures (PROCEDURE). Abbre­
viated forms PG or PC. 

~HORT or LONG: which specifies that the in­
ternal representation of real values is in full 

Using Job Control Language 41. 1 



Form C33-4000-0, Page Revised by TNL N33-8000, 10/30/67 

42 

words (SHORT); or double words (LONG). 
Abbreviated forms SP or LP. 

NODECK or DECK: which specifies that an 
object module, stored on the data set specified 
in the SYSPUNCH DD statement, either is not 
to be generated (NODECK); or is to be gener­
ated (DECK). Abbreviated forms ND or D. 

LOAD or NOLOAD: which specifies that the 
compiler is to either generate an object module 
for use as input to the linkage editor, using the 
data set specified in the SYSLIN DD statement 
(LOAD); or not generate this object module 
(NOLOAD). Abbreviated forms L or NL. 

SOURCE or NOSOURCE: which specifies that 
the source program and identifier table listings 
are either to be printed (SO'URCE); or not to be 
printed (NOSOURCE). Abbreviated forms S or 
NS. 

EBCDIC or ISO: which specifies that the card 
code used to write and keypunch the source pro­
gram is either a 53 character set in EBCDIC 
(EBCDIC); or the 46 character set in BCD 
which has been established as standard for 
ALGOL by ISO and DIN (ISO). Abbreviated 
forms EB or I. 

TEST or NOTEST: which specifies that the 
generated object module is to include informa­
tion which is normally used only for testing 
(TEST); or is not to include this information 
(NOT EST) • The information consists of instruc­
tions to produce the semicolon count, and in­
structions checking the values of subscript ex­
preSSions against array bounds. Abbreviated 
forms T or NT. 

SIZE=45056 or SIZE=number: which specifies 
the main storage size, in bytes, that is available 
to the compiler. "Number" must not be less 
than 45056 and Inust not exceed 999999. 

For the linkage editing job step the "subpa­
rameter-list" consists of two types of options, 
those which specify the output listings required, 
and those specifying attributes for the load mod­
ule. 

The options to control output listings are: 

LIST which specifies that all job control state­
ments processed by the linkage editor are to be 
listed on the diagnostic output data set. 

MAP or XREF which specifies that either a map 
of the load module is to be produced (MAP); or 
a cross -reference table of the load module is to 
be produced (XRE F) comprising a load module 
map and a list of all address constants that re­
fer to other control sections. 

The options specifying load module attributes 
which can be used with ALGOL programs are: 

REUS which produces a load module that is se­
rially reusable, that is, it can be used by more 
than one task, but only one task at a time. 

DC which produces a load module that is down­
ward compatible, that is, if the load module is 
produced by an F level linkage editor then it 
can be reprocessed by an E level linkage editor. 

LET or XCAL which specifies that either the 
load module is to be marked as executable even 
when a severity 2 error is detected (LET); or 
the load module is to be marked as executable 
I even though valid exclusive references between 
the segments have been made (XCAL). A se­
verity 2 error could make execution impossible 
and would normally lead to the load module be­
ing marked as not executable. It includes the 
situation over-ridden by XCAL. 

NCAL which specifies that the linkage editor 
automatic library call mechanism is not to call 
library members to resolve external references 
within the object module. The load module is 
marked as executable even though unresolved 
external references have been recognized. 

All the linkage editor subparameters are 
optional. 

For the execution job step of an ALGOL pro­
gram the "subparameter-list" is: 

TRACE which specifies that the semicolon count 
produced during the compilation process is to 
be printed as a list. This !~ives information on 
the dynamic flow of the program and is known 
as a program trace. 

TRBEG=number which speeifies that a limited 
program trace is to be produced beginning at 
the semicolon specified by "number" and ending 
at the physical end of the program. 

TREND=number which specifies that a limited 
program trace is to be produced beginning at 
the physical beginning of the: program and ending 
at the semicolon specified by "number". 



Form C33-4000-0, Page Revised by TNL N33-8000, 10/30/67 

The last two options may be specified together 
to define the beginning and end of the trace. When 
either is specified, TRACE may be omitted, but 
in that case precompiled procedures would not 
be included. If TRACE is specified with TRBEG 
or TREND, then only a limited progranl trace 
is produced, but it will include precompiled 
procedures executed in that part of the program. 
No program trace is possible if NOTEST has been 
specified for the compilation process. 

DUMP which specifies that a partial main storage 
dump is to be produced if an error occurs. The 
dump contains the contents of the data storage 
areas and arrays. 

All of the execution time subparameters are 
optional. 

ACCT=accounting-information 
allows accounting information associated with 
the job step to be passed to the installation"'s 
accounting routines, using subparameters which 
are fixed by the user for his own installation. 

REGION=nnnnnK 
indicates the main storage size for the job step 
if it has not already been specified in the JOB 
statement (see page 41). 

keyword. procstep 
I is used with the last five parameters when a 

cataloged procedure is being executed. It in­
dicates that the parameter applies to the job 
step named "procstep" within the procedure, 
and may be repeated for each keyword and with 
different, or the same, information to the right 
of the equal sign, for each job step in the pro­
cedure. 

DD Statement ------
The name field contains an identifying name 
(ddname) for the DD statement. 

The operation field must contain the characters 
DD 

The parameters available for the operand field 
are listed in Figure 25. where: 
~c- indicates, when used as a positional parameter, 

that the required data follows immediately after 
this DD statement. The asterisk must be the 
only non-blank character in the operand field. 
For sequential scheduling it can be used only 
once in each job step, and the data must be fol­
lowed by a delimiter statement. 

DUMMY 
indicates that the user "'s p'!'oblem program is 
to be executed without any I/O operations on 

the data set. This can be used for debugging, 
and also for bypassing data set references in 
a regularly-used program, for example, the 
first run of an updating program when there is 
no old master to be processed. 

DSNAME=dsname (element) 
specifies the name of a newly defined data set, 
or refers to one that has been defined previous­
ly. "Element" is used only if it is necessary 
to specify the generation number of the data 
set, the name of a member of a partitione~ data 
set, or the area of an indexed sequential data 
set (using the options PRIME, OVFLOW or 
INDEX). 

DSNAME=&name (element) 
specifies that the data set is temporary and will 
be deleted before the end of the job. The name 
allocated by the operating system is "name. 
jobname". "Element" has the same meaning as 
when used with DSNAME=dsname. 

DSNAME=i!-. stepname. ddname 
indicates that the data set is the one specified 
in a preceding DD statement named "ddname" 
occurring in the job step named "stepname". 
If the data set was specified in the current job 
step then "stepname" must be omitted. If "step­
name" refers to a job step invoking a cataloged 
procedure then a job step within the procedure 
can be specified by putting its name after "step­
name"; that is "~I-. stepname. procstep. ddname". 

~ote. If the DSNAME parameter is omitted then 
the operating system will assign a unique name 
to any data set created by the job step. 

Positional parameters {~UMMY} (all optional) 

Keyword parameters 1 dsname(element) ~ 
(all optional, though DSNAME= &name(element) \ 
DSNAME can be omitted *. stepname. ddname 
only when the asterisk 
pOSitional parameter is DCB= [r . stepname. ddname}] [subparameter-listJ 
llsed). dsname 

{AFF=ddname } 
SEP=subparameter-list 

UNIT=subparameter-list 

1 SPACE=subparameter-list f 
SPLIT=subparameter-list 
SUBALLOC=subparameter-list 

VOLUME=subparameter-list 

LABE L=subparameter -list 

{DISP=SUbParameter-list } 
SYSOUT=subparameter-list 

Figure 25. DD statement parameters. 

Using Job Control Language 43 



Form C33-4000-0, Page Revised by TNL N33-8000, 10/30/67 

DCB= {*. stepname. ddname} [subparameter-list] 
dsname 

indicates that the data control block for the data 
set specified in the DD statelnent named "ddname" 
in the job step named "s tepname", or alterna­
tively the cataloged data set named "dsname", 
is to be repeated for the current DD statement. 
"Stepname" must be omitted if it refers to the 
current job step, or may be qualified in the 
same way as the DSNAME parameter if it re-
fers to a job step in a cataloged procedure. If 
additional information is substituted for "sub­
parameter-list" then this over-rides the cor­
responding subparameters in the repeated in­
formation. Alternatively "subparameter-list" 
can be used alone to specify data control block 
information. 

The "subparameter-list" for the data sets used 
when processing and executing an ALGOL program 
contains the following keyword sUbparameters: 

BLKSIZE=number, is used to specify blocksize. 
"Number" is blocksize in bytes, and for fixed 
length records must be a multiple of record 
length. 

RECFM=F [B] [A], is used to specify record 
format. F = fixed length, B = blocked, A = con­
trol character incorporated to control printed 
output format. 

LRECL=value, is used to specify record length. 
"Value" is actual length in bytes. 

All other valid DCB options are fixed. 

AFF=ddname 
indicates that the data set has affinity with the 
data set specified by the DD statement named 
"ddname" and is to use the same channel. 

SEP=list-of-ddnames 
indicates that the data set is to use a separate 
channel to the ones used by the data sets speci­
fied by the DD statements named in the "list­
of-ddnames". 

UNIT=subparameter-list 

44 

specifies the class and quantity of I/O devices 
to be allocated for use by a data set. The "sub­
parameter-list" has two forms, either one of 

1 

2 

which may be used in an individual statement. 
The two forms are: 

Positional 1 
subparameters classname {number}[DEFER] 

P 
Keyword 
subparameter [SEP=list-of-ddnames] 

Keyword 
subparameter AFF=ddname 

"classname" indicates the device class. These 
names are divided into two categories. 

• Those automatically incorporated in the op­
erating system when it is generated. These 
are of two types - specific unit names, such 
as 2400 (for a magnetic tape drive) and 1403 
(for a printer); and general classnames, 
that is, 

SYSCP for any card puneh 
SYSSQ for any magnetic tape or 
direct access device 
SYSDA for any direct aceess device. 

• Additional names fixed by the user for his 
installation when the operating system is 
generated. 

"number" indicates the nmnber of devices to be 
allocated. If the data set is cataloged but the 
number of devices used is unknown, then "P" 
substituted for "number" will ensure that the 
correct number is assigned. 

DE FER indicates that the volume need not be 
mounted on the I/o device until the data set is 
called in the program. This subparameter must 
not be used with an indexed sequential data set 
or a new output data set on a direct access de­
vice. 

SEP=list-of-ddnames indicates for direct access 
devices that, if possible, the data set is not to 
use the same access arm as the data sets spec­
ified by the DD statements, g:lven in the "list­
of -ddnames " • 



Form C33-4000-0, Page Revised by TNL N33-8000, 1q/30/67 

AF:F=ddname indicates that the data set is 
to use the same I/O devices as the data set spec­
ified in the DD statement named "ddnarne" in 
the same job step. 

SP ACE =subparamete r-list 
indicates the space required when a direct ac­
cess device is specified in the UNIT parameter. 
The "subparameter-list" contains only posi­
tional subparameters. The list is: 

{
TRK } CYL primary-quantity 
average-record-length 

[secondary-quantity ] [directory-or-index--quantity ] 

{ 
MXIG } 

[RLSE][ ALX ] [ROUND] 
CONTIG 

The first subparameter specifies the units 
in which the space requirements are expressed, 
that is, tracks, cylinders or records (with length 
given in bytes). 

The next sUbparameter specifies the space 
required. It has three parts (of which the se­
cond and third are optional) and is enclosed in 
parentheses if more than one part is specified. 
If the second part is omitted, then it must be 
substituted by a comma if the third part is in­
cluded. The initial space to be allocated is given 
by "primary-quantity". Each time this initial 
space is filled, additional space is to be pro­
vided as specified by "secondary-quantity". 
The number of 256 byte records to be allocated 
for the directory of a new partitioned data set, 
or the number of cylinders, taken from the ini­
tial space reserved, to be allocated for the in­
dex of an indexed sequential data set, is given 
by "directory-or-index-quantity". 

RLSE indicates that any unused space assigned 
to the data set is to be released. 

MXIG requests that the largest single block of 
storage available is to be allocated to the data 
set. 

ALX requests that extra blocks of storage (in 
track units) are to be allocated to the data set. 
As many available blocks that are equal to or 

greater than "primary-quantity", up to a max­
imum of five, will be allocated. 

CONTIG specifies that the space specified by 
"primary-quantity" is to be in a single block. 

ROUND requests that when records are used 
to express the space required on the direct ac­
cess device, the space is to begin and end on 
cylinder boundaries. 

DISP=subparameter-list 
indicates the status of the data set and speci­
fies its disposition at the end of the job step. 
The "subparameter-list" consists of the fol­
lowing positional subparameters: 

NEW 
OLD 
MOD 
SHR 

DELETE 
KEEP 

[PASS ] 
CATLG 
UNCATLG 

NEW specifies that the data set is to be gene­
rated in this job step, and would be deleted at 
the end of the job step unless KEEP, PASS or 
CATLG is specified. 

OLD specifies that the data set already exists, 
and would be kept at the end of the job step un­
less PASS or DE LETE is specified. 

MOD specifies that the data set already exists 
and is to be modified in this job step. If the 
data set cannot be found by the operating system 
then this parameter is equivalent to NEW. 

SHR specifies that, in a multiprogramming en­
vironment, an existing data set may be used 
simultaneously by more than one job. 

DELETE specifies that the space used by the 
data set (including that in the data set catalog, 
etc.) is to be released at the end of the job 
step. 

KEEP specifies that the data set is to be kept 
at the end of the job step. 

PASS specifies that the data set is to be re­
ferred to in a later step of this job, at which 

Using Job Control Language 45 



Form C33-4000-0, Page Revised by TNL N33-8000, 10/30/67 

time its final disposition, or a further pass. 
will be specified. 

CATLG specifies that the data set is to be ca­
taloged at the end of the job step. Thus KEEP 
is implied. The catalog structure must already 
exist. 

UNCATLG specifies that the data set is to be 
deleted from the catalog at the end of the job 
step. KEEP is implied. 

SYSOUT=subparameter-list 
specifies the printing or punching operation to 
be used for the data set. The "subparameter­
list" is: 

classname [progname] [number] 

"class name specifies the system output class 
to be used. Up to 36 different classes (A to Z, 
o to 9) may be fixed by the user for his instal­
lation, according to device type, priority, des­
tination, etc. The standard classname is A. 

"progname" can be used to specify the name of 
a user-written output routine. 

"number" can be used to specify an installation 
form number to be assigned to the output. 

For sequential scheduling, the "subparame­
ter-list" consists of only the standard class­
name A. 

VOLUME=subparameter-list 
indicates the volume or volumes assigned to the 
data set. If the data set is cataloged this param­
eter is not necessary. The "subparameter-list" 
is: 

Positional 
[RETAIN] [number ][ value} 

subparameters 

Keyword SER=list-of -serial-numbers 
sUbparameters 

dsname 
J 

REF= 
*.ddname 
*.stepname.ddname 
*. stepname. procstep. 

ddname 

RETAIN specifies that, if pOSSible, the volume 
is to remain mounted until referred to in a later 

46 

DD statement, or until the end of the job, which­
ever is first. "number" is any number between 
2 and 9999, and is used if an input or output oper­
ation, on a cataloged data Bet residing on more 
than one volume, does not start on the first vo­
lume of the data set.. The number specifies the 
position of the volume on which input or output 
does start (for exarrlple, 3 indicates the third 
volume of the data set). 

"value" speCifies the numher of volumes re­
quired by an output data set. It is not required 
if SER or REF is used. 

SER=list-of-serial-numbers, specifies the se­
rial numbers allocated by the user to the volumes 
required by the data set. These serial numbers 
can consist of between one and six alphameric 
characters. 

I dsname j 
RE F= *. ddname 

i~. stepname. ddname 
i~. stepname. procstep. ddname 

specifies that this data set is to use the same 
volume or volumes as the data set specified by 
one of the alternative sub-.subparameter forms. 
If the latter data set resides on more than one 
tape volume, then only the last volume (as spec­
ified in the SER subparameter) can be used. 

LABE L=subparameter·-list 
indicates the type of label or labels associated 
with the data set. If the data set is cataloged 
this parameter is not necessary. The "sub­
parameter-list" is: 

Positional 
subparameters 

Keyword 
subparameters 

NL 
SL 

[number J NSL 
SUL 
BLP 

j EXPDT=YYddd} 
lRETP D=dddd 

"number" is any nurnber between 2 and 9999, 
and specifies the position of the data set on the 
volume (for example, 3 would indicate the third 
data set on the volume). 

NL, SL, NSL, and SUL specify the type of label 
or labels to be used:) that is, no labels, stan­
dard labels, non-standard labels, and standard 



Form C33-4000-0, Page Revised by TNL N33-8000, 10/30/67 

and user labels, respectively. The routines to 
produce non-standard labels must be written 
and incorporated into the operating system by 
the user. BLP indicates that label processing 
is to be bypassed. 

~XPDT=yyddd specifies that the data set cannot 
be delet~d or opened, without operator inter­
vention, until the date given by yy (year) and 
ddd (day). 

RETPD=dddd specifies that the data set is to be 
retained for the number of days given by dddd. 

Command Statement 

The options available for the operation and operand 
fields of the command statement are described in 
IBM System/360 Operating System: Operator"'s 
Guide. 

I DATA SET CONCATENATION 

Unless it has been created in the same job, a load 
module speCified for execution in an EXEC control 
statement must be contained in the SYS1. LINKLIB 
library of the operating system. If the load module 
is not a permanent member of this library then it 
is temporarily combined by using a DD statement 
with the name JOB LIB. 

If the load module is a member of another li­
brary then this whole library is combined with the 
SYSl. LINK LIB library. This temporary combin­
ing is termed concatenation and lasts only for the 
duration of the job. A statement of this kind would 
have the form: 

/ / JOB LIB DD DSNAME=dsname, DISP=OLD 

where "dsname" is the name of the data set or li­
bra:ry containing the load module to be executed. 

Only one JOB LIB DD statement can be used in 
each job and it must immediately follow the JOB 
statement. If more than one load module contained 
in a library being concatenated is required in the 
same job then the parameter DISP=(OLD, PASS) 
placed immediately after the DSNAME parameter, 
will extend the effect of the concatenation through 
each step of the job. 

If the job requires load modules from a number 
of data sets which are not created in the job or nut 

permanent members of the SYS1. LINK LIB library 
then one data set is concatenated to this library, 
as described above, and the others are concate­
nated to this first data set by listing their DD state­
ments immediately after the JOBLIB DD statement 
and leaving the name fields blank. This has the 
effect of concatenating all the data sets to the 
SYS1. LINK LIB library. 

~rOB CONTROL LANGUAGE EXAMPLES 

Three different types of jobs are described here 
to illustrate the use of job control language. Some 
of the subparameters used, such as I/O device 
classnames and volume serial numbers, may change 
for different installations. 

Example 1: Executing a Single Load Module 

Statement of problem: A set of 80 matrices are 
contained in data set SCIENCE. MATH. MATRICES. 
Each matrix is an array containing real variables. 
The size of the matrices vary from 2x2 to 25x25; 
the average size is 10x10. The matrices are to be 
inverted using a program MATINV contained in.a 
partitioned data set MATPROGS. Each inverted 
rnatrix is to be written as a single record on the 
data set SCIENCE. MATH. INVMATRS. The first 
variable in each record is to denote the size of the 
rnatrix. Each matrix is to be printed. 

MATiNV 

SCIENCE. 
MATH. 
I NVMATRS 

Printed 
output 

Figure 26. I/O flow for Example 1. 

Using Job Control Language 47 



t , t 

Figure 27. Job control statements for Example 1. 

Explanation of coding: The job control statements 
used in Figure 27 specify that: 

L The job is 

• to be charged to the installation"s account 
number 537 

• the responsibility of John Smith 

• to have all control statements (plus control 
statement diagnostic messages if an error 
occurs) printed on the normal system output 
device. 

2. The partitioned data set MATPROGS is concate­
nated with the operating system library, SYS1. 
LINK LIB. 

3. The program to be executed is MATINV. 

4. The input data set is SCIENCE. MATH. MATRICES 

5. The printed output is to use the standard output 
format class for the installat:ion. 

6. The output data set is 

48 

• to be called SCIENCE. MATH. INVMATRS. 

• to be cataloged 

• to use the device class DAC LASS 

• to use volume 1089W 

• to use a separate channel to the input data set 

• to have space reserved for 80 records, each 
1500 bytes long. This space is to be incre-

mented in 9-record units each time more 
is required and any unused space is to be re­
leased. The space is contiguous and aligned 
on cylinder boundaries. 

• to have fixed length blocked records, 300 
bytes long, and a maximum block size of 
1500 bytes. 

Example 2: Compiling, Linkage Editing and 
Executing Three Source Programs 

Statement of problem: H.aw data from a rocket 
test firing is contained in a data set RAWDATA. 
The forecasted results for this firing are contained 
in a data set PROJDATA. A program PROGRD is 
to be used to produce refined data from these two 
data sets. 

The refined data is to be stored in a temporary 
data set and used by a program ANALYZ, contain­
ing a series of equations, to develop values from 
which graphs and reports can be generated. Pa­
rameters needed by ANALYZ are contained on a 
cataloged data set P ARAMS. 

The values are to be stored on a temporary data 
set and used by a program REPORT to print graphs 
and reports. The programs PHOGRD, ANALYZ 
and REPORT are written in ALGOL. They are 
still in source program form, and therefore must 
be compiled and linkage edited before execution. 

Explanation of coding: The :job control state­
ments used in Figure 29 specify that: 

1. The job is 

• the responsibility of John Smith 

• to have all control staterrlents (plus control 
statement diagnostic messages if an error 



Figure 28. Basic I/O flow for Example 2. The data sets for information listings, ALGOL library routines 
intermediate work and the execution time error routine are not shown. 

Figure 29. Job control statements for Example 2. 

Using Job Control Language 49 



Form C33-4000-0, Page Revised by TNL N33-8000, 10/30/67 

occurs) printed on the normal system output 
device for information listings 

2. The first job step invokes the ALGOFCLG cata­
loged procedure (see Appendix B) to process 
and execute the ALGOL source program 
(PROGRD) entered in the input stream 

3. The other input data sets are RA WDATA and 
PROJDATA. RAWDATA is also entered in the 
input stream 

4. The temporary output data set is 

• to be called REFDATA. TESTFIRE and to be 
passed for use in a later job step 

• to use the device class TAPECLS 

• to be written on volume 2107, which is to 
remain mounted for use later 

• to have fixed length records, 80 bytes long, 
and a block size of 400 bytes 

5. The second job step invokes the ALGOFCLG 
cataloged procedure to process and execute 
the ALGOL source program (ANALYZ) entered 
in the input stream 

6. The SYSLMOD DD statement in the LKED step 
of the cataloged procedure is overridden to 

specify that the load module produced by the 
linkage editor is 

o to be a new member, ANALYZ, of tempo­
rary partitioned data set GOSET. TESTFffiE 

7. The other input data sets are REFDATA. 
TESTFIRE and PARAMS. Both will be kept 
at the end of the job step 

8. The temporary output data set is 

• to be called VALUES. TESTFIRE and is to 
be passed for use in a later job step 

• to use the device class TAPECLS 

• to be written on volume 2108 

• to have fixed length records, 68 bytes long, 
and a maximum block size of 204 bytes 

9. The third job step invokes the ALGOFCLG ca­
taloged procedure to process and execute the 
ALGOL source program (REPORT) entered in 

50 

the input stream. The output data will be listed 
on the printer specified in the cataloged proce­
dure 

10. The SYSLMOD DD statement in the LKED step 
of the cataloged procedure is over-ridden to 
specify that the load module produced by the 
linkage editor is 

• to be a new member, REPORT, of temporary 
partitioned data set GOSET. TESTFffiE 

11. The other input data set is VALUES. TESTFIRE 
which will be kept at the end of the job step 

Example 3: Executing Two Load Modules 

Statement of prohlem: Data on current weather 
conditions is to be read from eards and used by 
the program FILECR to create a new generation 
of a data set WEATHER, and also to print a re­
port. 

Then the new generation and the three imme­
diately preceding generations of the WEATHER 
data set are to be used by the program FORCST 
to produce a printed weather forecast. The pro-

Weathel] 
data 

~ 
[ FILECRJ 

FORCS] 

=r 
[ 

weatheJ 
~t 

Figure 30. I/O flow for Example 3. 



Form, C33-·4000-0, Page Revised by TNL N33-8000, 10/30/67 

IEX007I W NNNNN LABEL BEGINNING WITH 
(up to six characters) CONTAINS 
INVALID CHARACTER. COLON 
DELETED. 

Explanation: A label has been deleted 
because it contains a character of other 
than alphameric type. 

IEX008I W NNNNN LABEL BEGINS WITH 
INVALID CHARACTER. COLON 
DELETED. 

Explanation: A label has been deleted 
because it does not begin with an alpha­
betic character. 

IEXOlOI S NNNNN SPECIFICATION PART OF 
PROCEDURE (identifier) INCOMPLETE. 
Explanation: Not all of the formal pa­
rameters used in a procedure have been 
specified. 

IEXOllI S NNNNN PROGRAM STARTS WITH 
ILLEGAL DELIMITER. 

Explanation: A program has been written 
not starting with one of the following: 

1. 'BEGIN" 
2. 'PRO CEDURE " 
3. 'REAL" 'PROCEDURE" 
4. 1NTEGER" 'PROCEDURE" 
5. 'BOOLEAN" 'PROCEDURE" 

IEX012I W NNNNN TWO APOSTROPHES AFTER 
(six characters). FIRST APOSTROPHE 
DELETED. 
Explanation: In this context, two apos­
trophes cannot be used together so one 
has been deleted. 

IEX013I W NNNNN APOSTROPHE ASSUMED 
AFTER DELIMITER BEGINNING WITH 
(up to six characters). 

Explanation: All delimiters involving 
words must begin and end with apostrophes. 
One has been left out of the program and 
has been inserted by the compiler. 

IEX014I S NNNNN DE LIMITER BEGINNING 
WITH (up to six characters) INVALID. 
FIRST APOSTROPHE DE LETED. 

Explanation: An invalid sequence of char­
acters has been used after an apostrophe 
which apparently started a delimiter. Th.e 
apostrophe is therefore deleted to remove 

the delimiter status from the characters 
but still include them in the program. 

IEX015I W NNNNN MISSING SEMICOLON 
AFTER ... CODE.... SEMICOLON INSERTED. 

Explanation: Self-explanatory. 

IEX016I S NNNNN IDENTIFIER BEGINNING 
WITH (up to six characters) CONTAINS 
INVALID CHARACTER. IDENTIFIER 
DELETED. 

Explanation: A character other than an 
alphameric type has been used in an iden­
tifier and so the identifier has been de-
1eted. 

IEXOl71 S NNNNN MORE THAN 65535 
SEMICOLONS. SEMICOLON COUNTER 
RESET TO ZERO. 

Explanation: Number of semicolons used 
exceeds capacity limitations. Duplicate 
numbers are allocated. 

IEX018I W NNNNN DELIMITER "COMMENT" 
IN ILLEGAL POSITION. 

Explanation: "'COMMENT "has not been 
placed after a 'BEGIN" or a semicolon. 
Compilation continues normally. 

IEX020I T NNNNN BLOCKS, COMPOUND 
STATEMENTS, FOR STATEMENTS, 
AND PROCEDURE DECLARATIONS 
NESTED TO TOO MANY LEVELS. 

Explanation: Structure of program causes 
it to exceed capacity limitations (see Sec­
tion 4). 

IEX0211 S NNNNN DECLARATOR (declarator) 
IN ILLEGAL POSITION. 

Explanation: A declarator must come 
between either 'BEGIN" and the first 
statement of a block, or 'PROCEDURE'" 
and the procedure body. 

IEX022I T NNNNN MORE THAN 255 PROGRAM 
BLOCKS. 

Explanation: Number of program blocks 
used exceeds capacity limitations. 

Diagnostic Messages 53 



IEX0231 S NNNNN STRING POOL OVERFLOW. 

Explanation: Total length of strings used 
exceeds capacity limitations (see Sec­
tion 4). 

IEX0241 S NNNNN DE LIMITER "'CODE' IN 
ILLEGAL POSITION. "CODE' DELETED. 

Explanation: "'CODE' has not been placed 
immediately after a procedure heading 
so it has been deleted. 

IEX0251 S NNNNN SPECIFIER 'STRING' OR 
'LABEL' IN ILLEGAL POSITION. 
SPECIFICATION DELETED. 

Explanation: 'STRING' and 'LABE L' 
have been used outside a procedure 
heading, so they have been deleted. 

IEX0261 S NNNNN PARAMETER (identifier) 
MULTIPLY SPECIFIED. FIRST 
SPECIFICATION USED. 

Explanation: Self -explana tory. 

IEX027I W NNNNN PARAMETER (identifier) 
MISSING FROM FORMAL PARAMETER 
LIST. SPECIFICATION IGNORED. 

Explanation: A parameter has been spec­
ified in a procedure heading which does 
not exist in the formal parameter list, so 
it has been ignored. 

IEX0281 S NNNNN DELIMITER 'VALUE' IN 
ILLEGAL POSITION. VALUE PART 
DELETED. 

Explanation: 'VALUE" has been placed 
outside a procedure heading so the value 
part has been deleted. 

IEX0291 W NNNNN SPECIFICATION PART 
PRECEDES VALUE PART. 

Explanation: The specification part in a 
procedure heading has been incorrectly 
placed before the value part. 

IEX0301 W NNNNN PARAMETER (identifier) 
REPEATED IN VALUE PART. 

54 

Explanation: A pararneter has been in­
cluded in the value part of a procedure 
heading more than once. 

IEX031I W NNNNN LE FT PARENTHESIS NOT 
FOLLOWED BY / AFTER ARRAY 
IDENTIFIER (identifi.er). SUBSCRIPT 
BRACKET ASSUMED. 

Explanation: The subscript bounds after 
an array identifier have been preceded 
by a left parenthesis instead of a subscript 
bracket. 

IEX0321 S NNNNN MISSING RIGHT PARENTHESIS 
IN BOUND PAIR LIST OF ARRAY (identi­
fier). DECLARATION DELETED. 

Explanation: A right parenthesis has been 
omitted in the list of subscript bounds for 
an array identifier, 80 the declaration is 
deleted. 

IEX0331 T NNNNN MORE THAN 16 DIMENSIONS 
OR COMPONENTS IN DECLARATION OF 
(identifier) • 

Explanation: The nUJnber of dimensions 
or components used with an array or switch 
identifier exceeds the maximum allowed. 

IEX0341 S NNNNN ARRAY SEGMENT (identifier) 
NOT FOLLOWED BY SEMICOLON OR 
COMMA. CHARACTERS TO NEXT 
SEMICOLON DELETED. 

Explanation: An array segment must be 
followed by a semicolon if it is the only 
or last segment of an array declaration; 
or a comma if it is followed by another 
segment. 

IEX0351 W NNNNN I LLEGAL PERIOD IN ARRAY 
OR SWITCH LIST. PERIOD DELETED. 

Explanation: A period has been used 
wrongly in an array or switch list and de­
leted from the program. A period can be 
used only as a decimal point, or as part 
of a colon or semicolon. 

IEX0361 T NNNNN MORE THAN 15 PARAMETERS 
IN DECLARATION OF (identifier). 

Explanation: The nUJnber of formal param­
eters specified for a procedure exceeds 
the maximum allowed. 



Form C33-4000-0, Page Revised by TNL N33-8000, 10/30/67 

IEX206I W NNNNN TOO MANY OPTION 
PARAMETER ERRORS. SUBSEQUENT 
PARAMETERS IGNORED. 

Explanation: Too many incorrect parame­
ters have been specified in the PARM pa­
rameter so the rest are ignored. 

IE:X207I W NNNNN POSSIBLE ERROH IN DD 
NAMES PARAMETER. 

Explanation: An incorrect ddname may 
have been specified in the DD statement. 

IEX208I W NNNNN SIZE PARAMETER INVALID. 
SIZE 45056 ASSUMED. 

Explanation: The main storage size spec­
ified as being available to the compiler is 
less than the minimum required, so the 
minimum value is assumed. 

IEX209I T NNNNN COMPILATION 
UNSUCCESSFUL DUE TO PROGMM 
INTERRUPT. PSW (hexadecimal digits). 

Explanation: A program interrupt has 
occurred causing termination of the job 
step. The program status word when the 
error occurred is given. 

IEX2101 T NNNNN UNRECOVERABLE: I/O 
ERROR ON DATA SET (ddname). 

Explanation: An I/O error has occurred 
on the data set specified causin~~ termi­
nation of the job. This message is typed 
on the console typewriter when it concerns 
SYSPRINT. This is most likely to be a 
random error, so the user is recommended 
to rerun the program. 

IEX211I T NNNNN PROGRAM INTERRUPT IN 
ERROR MESSAGE EDITING ROUTINE. 
PSW (hexadecimal digits). 

Explanation: A program interrupt has 
occurred in the error message c~diting 
routine, ending the job. 

IEX2121 T NNNNN TOO MANY ERRORS. 

Explanation: The total length of the error 
message patterns produced exceeds capac­
ity limitations. 

IEX2131 T NNNNN INTERNAL OVERFLOW OF 
IDENTIFIER TABLE. 

Explanation: The number of identifiers 
declared exceeds capacity limitations. 

IEX214I S NNNNN DATA STORAGE AREA 
EXCEEDED. PROGRAM BLOCK NO. 
(number). 

Explanation: The data storage area re­
quired by the program block specified 
exceeds 4096 bytes. 

IEX2151 T NNNNN SOURCE PROGRAM TOO 
LONG. 

Explanation: The source program exceeds 
capacity limitations (see Section 4). 

IEX216I S NNNNN TOO MANY LABELS. 
LABEL NUMBER RESET. 

Explanation: The total number of labels 
used exceeds capacity limitations, so 
duplicated numbers are allocated (see 
Section 4). 

LINKAGE EDITOR MESSAGES 

Each message occupies one or more printed lines 
and contains: 

• The message key, consisting of the letters lEW, 
a three digit decimal number identifying the 
message, and a final digit, either 1, 2, 3 or 4, 
indicating the severity code. 

• The message text describing the error. For 
severity code 1 the message is preceded by 
WARNING.... For all other severity codes the 
message is preceded by 'ERROR". 

The severity codes have the following meaning: 

1 indicates a condition that may cause an error 
during execution of the load module. A mod­
ule map or cross -reference table is produced 
if it was required by the programmer. The 
output load module is marked as executable. 

2 indicates an error that could make execution 
of the load module impossible. Processing 
continues. When possible, a module map or 
cross -reference table is produced if it was 
required. The load module is marked as not 
executable unless the LET option has been 
specified. 

Diagnostic Messages 59 



Form C33-4000-0, Page Revised by TNL N33-8000, 10/30/67 

3 indicates an error that will make execution 
of the load module impossible. Processing 
continues. If possible a module map or 
cross -reference table is produced if it was 
required. The load module is marked as not 
executable. 

4: indicates an error condition from which no 
recovery is possible. Processing terminates. 
The only output is diagnostic messages. 

A full list of the linkage editor diagnostic messages 
is contained in IBM System/360 Operating System: 
Linkage Editor. 

EXECUTION TIME MESSAGES 

The list of diagnostic messages that may be pro­
duced by the load nlodule is given below. Each 
message occupies one or more printed lines and 
contains: 

• The message key, consisting of the letters IHI, 
a three digit decimal number identifying the 
message, and the letter I to indicate an infor­
mative message requiring no action from the 
operator. 

• The characters SC = followed by the semicolon 
number (see Section 3). This number does not 
always indicate the statement in which the error 
occurred. For example, after a branch {"'GOTO '" 
or "'FOR 1, if no semicolon has occurred before 
the error is detected, then the semicolon num ... 
ber preceding the branching instruction will be 
listed. For I/O errors, the semicolon number 
indicates the statement being executed when the 
error was detected, not the statement calling 
the I/O procedure. 

• The message text describing the error. Where 
appropriate this begins by indicating the number 
of the data set (DSN) on which the error occurred, 
or the ddname if the data set does not have a 
number (that is, SYSUTI and SYSUT2), or the 
program status word (PSW) held by the operating 
system when the error occurred. The PSW con­
tains 16 hexadecimal digits. Message texts pre­
ceded by ~H!- indicate that the program does not 
correspond with parameters specified in the job 
control cards. 

IHIOOOI SC=NNNNN DATA SET NUMBER OUT 
OF RANGE 

60 

Explanation: A data set number must be 
in the range 0 to 15. 

IHIOOlI SC=NNNNN DSN=NN. REAL NUMBER 
TO BE CONVERTED OUT OF INTEGER 
RANGE 

Explanation: A real number has been 
included which exceeds capacity limita­
tions when converted to integer. This 
message applies for input/output opera­
tions. 

IHI002I SC=NNNNN DSN=NN., INCOMPATIBLE 
ACTIONS ON DATA SET 

Explanation: The I/O procedure requested 
is not defined for this data set. For ex­
ample, procedure SYSACT8 specifying data 
set number 0 is not allowed. 

IHI0031 SC=NNNNN DSN=NN., INPUT BEYOND 
LAST OUTPUT 

Explanation: Before reading data which 
has just been written on the same data 
set, backward repositioning must be spec­
ified. 

IHI004I SC=NNNNN TOO MANY REPOSITIONINGS 
IN DATA SETS. INTERNAL OVERFLOW 

Explanation: Too many repositionings 
have caused an internal overflow of the 
Note Table (see Section 4). 

IHI005I SC=NNNNN DSN=NN.. INPUT REQUEST 
BEYOND END OF DATA SET 

Explanation: Input has been requested 
to start beyond the end of the data set. 

IHI006I SC=NNNNN DSN=NN. EXPONENT PART 
OF INPUT NUMBER CONSISTS OF MORE 
THAN TWO SIGNIFICANT DIGITS 

Explanatiom The leng~ of the exponent 
part of ,an input numbElr exceeds capacity 
limitations. 

IHIOO7I SC=NNNNN DSN=NN" *iI'NO CONTROL 
CHARACTER SPECIFIED IN RECORD 
FORMAT OF DATA S:E:T. SPLITTING 
INTO SECTIONS IMPOSSIBLE 

Explanation: A control character is re­
quired to define printing format. 

IHI0081 SC=NNNNN DSN=NN.. SOURCE IN 
PROCEDURE OUTSYNIBOL DOES NOT 
MATCH STRING 



Irechnical Newsletter File Number 

Re: Form No. 

This Newsletter No. 

S360-26 

C33-4000-0 

N33-8002 

Date January 16, 1968 

IBM System/360 Operating System 
ALGOL Programmer "s Guide 

Previous Newsletter Nos. 

This Technical Newsletter relates to Release 15 and contains amendments to the 
IBM System/360 Operating System: ALGOL Programmer"s Guide, Form C33-4000-0. 
The attached pages are replacements to be inserted in the publication, as indicated 
below. Corrections and additions to the text and/or iUustrations are indicated by a 
vertical bar to the left of the affected text and by a buUet (.) to the left of the figure 
caption. 

Pages to be 
Inserted 

11-12 
13-14 
15-16 
17-18 
25-26 
31-32 
33-34 
35-36 
45-46 
49-50 
51-52 

Summarx of Amendments 

Pages to be 
Removed 

11-12 
13-14 
15-16 
17-18 
25-26 
31-32 
33-34 
35-36 
45-46 
49-50 
51-52 

The amendments in this Newsletter primarily reflect the division of the execution 
time data set SYSPRINT into two data sets, namely ALGLDDOI and SYSPRINT, in order 
to provide MFT-II support for ALGOL under Release 15. This modification necessitates 
changes in certain cataloged procedures. The amendrnents also include various corrections 
and program maintenance ad,iustments. 

Note: Please file this cover letter at the back of the publication, for use as a reference 
list. 

IBM Nordic LaboratorJ'. Technical Conl1luozicafir:J11J. Box 9C2. Lidi12go 9, Sweden 

PRINTED IN U. S. i\, 

N33-8000 



{/* 
L 

(Source program (MATI NV) 

(//SYSIN DD ~~ t--

(1/ EXEC· ALGOFC 

~V //MATINV JOB 537, JOHNSMITH, MSGLEVEL=l 

I--

--

Figure 2. Sample deck for using ALGOFC cataloged procedure with a single source program. This job 
compiles the MATINV source program used in Example 1 of Appendix E. 

If more than one source program is to be pro­
cessed in the same job, then all job control state­
ments except the JOB statement must be repeated 
for each source program. 

If it is required to keep a load module for use 
in a later job (as in the case when the load module 
is a precompiled procedure), then the SYSLMOD 
DD statement in the cataloged procedure must be 
over-ridden to specify' a permanent data set. This 
has to be done for each load module that is kept. 
The over-riding statement is placed at the end of 

the job step to which it appli'es, and has the form: 

/ /LKED. SYSLMOD DD DSNAME=dsname(member) , 
DISP=(MOD,KEEP) 

where "dsname" is the name of a partitioned data 
set and "member" is the member name assigned 
to the load module on the partitioned data set. 

A sample deck of job control statements to com­
pile and linkage edit two source programs is shown 
in Figure 3. 

/ /LKED. SYSLMOD DD DSNAME=WTHRPR(FORCST), 
D! = 

//SYSIN DD DSNAME=FORCST,DISP=OLD 

/ /STEP2 EXEC ALGO,FCL 

/ /LKED. SYSLMOD DD DSNAME=WTHRPR(FILECR), 
DISP= MOD, KEEP) 

/ /SYSIN DD DSNAME::::FI LECR, DISP=OLD 

ALGOFCL 

//WEATHER JOB 

Figure a. Sample deck for using AI,GOFCL cataloged procedure with two source programs. These two job 
steps compile and linkage edit the t~vo source programs used in Example 3 of Appendix E. Both source pro­
grams have been previously stored on intermediate I/O devices. 

Source Program Handling 11 



Compilati<;>n, Linkage Editing and Execution 

The cataloged procedure used to compile an ALGOL 
source program, linkage edit the resulting object 
module, and execute the load module produced by 
the linkage editor is ALGOFCLG. 

The statements used in this cataloged procedure 
are shown in Appendix B. The following state­
ments can be used to invoke the ALGOFCLG cata­
loged procedure: 

//jobname 
I/,JOBLIB 
II 
/ISYSIN 

JOB 
DD DSNAME=dsnamel, DISP=OLD 
EXEC ALGOFCLG 
DD f -l~ or parameters defining an 

input data set containing 
the source program } 

IIGo. ALGLDD02 DD DSNAME=dsname2 

I/Go. ALGLDD15 DD DSNAME=dsname15 

where "jobname" is the name assigned to the job. 
ildsnamel" is the name of a data set that contains 
a precompiled procedure (see Section 4) which is 
called by the load module being executed. The DD 
Htatement containing dsnamel need not be used if 
no precompiled procedure is used. 

For a description of the correct use of the 
,JOBLIB DD statement when more than one pre­
compiled procedure is used in a job, or when a 
precompiled procedure resides on more than one 
data set, see "Data Set Concatenation" in Appen­
dix E. 

"dsname2" ... "dsnalne15" are the names of input 
data sets required by the load module at execution 
time and output data sets to be created at execu­
tion time. In addition, two data sets for printed 

I 
output (ddmlmes SYSPRINT and ALGLDDOl) are 
supplied by the catalog'ed procedure, and a data set 

I 
for input only can be specified by using the following 
statement after the invoking sequence iust given. 

/ I GO. SYSIN DD f ~( or parameters defining an 
input data set } 

If DD':< is used then the data must follow imme­
diately afterwards in the input stream. For se­
quential scheduling, the data must be followed by 
a delimiter statement (/:<). 

If more than one source program is to be pro­
cessed and executed in the same job, then all job 

12 

control statements except the JOB statement and 
the JOBLIB DD statement must be repeated for 
each source program. 

A sample deck of job control statements re­
quired to compile, linkage edit and. execute three 
source programs is shown in Figure 29. 

Over-riding Cataloged ProeedureE~ 

The programmer can change any of the statements 
in a cataloged procedure, except the name of the 
program in an EXEC statement. 

These over-riding conditions are temporary, 
and will be in effect only until the next job step is 
started. The following text describes methods of 
temporarily modifying existing parameters and 
adding new parameters to the EXEC and DD state­
ments used in the cataloged procedures. The full 
list of parameters available to the ALGOL pro­
grammer for these statements, and detailed expla­
nations of the parameters, is given in Appendix E. 
The EXEC and DD statements used in the IBM-­
supplied cataloged procedures are shown in Appen­
dix B. 

Over-riding EXEC Statements 

In the EXEC statement, the programmer can change 
or add any of the keyword parameters by using the 
following format: 

keyword. procstep=option 

where: 

"keyword" is the parameter to be changed in, 
or added to, the specified procedure job step: 
either COND, PARM, ACCT, TIME or REGION. 
TIME and REGION are valid only for priority 
scheduling. 

"procsteplt is the procedure job step in which 
the change or addition is to ocour: either 
ALGOL, LKED or GO. 

"option" is the new option required. 

For example, if the EXEC statement used to in­
voke the ALGOFCLG cataloged procedure was writ­
ten as: 

II EXEC ALGOFCLG,PARM.ALGOL=DECK, 
I I PARM. LKED=XREF, 
II CONDo GO=(3!. LT ,ALGOL) 

then the following changes would be made to the 
ALGOFCLG cataloged procedure: 



1. In the PARM parameter of the job step ALGOL, 
the option DECK would be used instead of the 
default option NODECK (assuming that the stan­
dard default NODECK was not changed at sys­
tem generation). Over-riding this option will 
not. affect the other default options assumed 
for this parameter. 

2. In the job step LKED, the option XREF is spec­
ified for the PARM parameter. Since the op­
tions specified in the cataloged procedure were 
XREF, LIST and LET, this statement has the 
effect of deleting the options LIST and LET 
since they were not default options. 

3. In the job step GO, the COND parameter code 
is changed from 5, as it appears in the cata­
loged procedure, to 3. In this example, the 
code 3 causes the job step GO to be bypassed 
if a warning message is generated during the 
job step ALGOL. Note that although the other 
options (LT and ALGOL) are not to be altered, 
the entire parameter being modified must be 
"Y'especified. 

If "procstep" is not specified when over­
riding a multi-step cataloged procedure, the 
operating system makes the following assump­
tions: 

• COND, ACCT and REGION parameters apply 
to all procedure job steps. 

• A PARM parameter applies to the first pro­
cedure job step and any options already spec­
ified in the P ARM parameters for the remain-· 
ing procedure job steps are cancelled. 

• A TIME parameter specifies the computing 
time for the entire job and any options already 
specified in the TIME parameters for individ­
ual procedure job steps are cancelled. 

Over-·riding DD Statements 

An additional DD statement is used in the invoking 
sequence for each DD statement in the cataloged 
procedure that is to be over-ridden. The following 
format is used: 

/ /procstep. ddname DD parameter-list 

where: 

"procstep" is the procedure job step containing 
the DD statement to be over-ridden: either ALGOL, 
LKED or GO. If "procstep" is omitted then the 
first procedure job step is assumed. 

"ddname" is the name of the DD statement to be 
over-ridden. 

"parameter-list" is the list of parameters that are 
being added or changed. In both cases the whole 
parameter must be specified. Unchanged param­
eters in the original statement need not be spec­
ified. For example, the statement: 

//ALGOL.SYSLIN DD SPACE==(400,(80,10» 

will change the SPACE parameter of the SYSLIN 
DD statement in the ALGOL job step so that space 
will be allocated for 80 physical records instead 
of 40. 

DD statements that are used to over-ride other 
DD statements in the cataloged procedures must 
be placed immediately after the EXEC statement 
invoking the cataloged procedure, and must be in 
the same order as their corresponding DD state­
ments in the cataloged procedures. 

Adding DD Statements 

Complete, new DD statements that are to be added 
to the cataloged procedure use the same format 
as over-riding DD statements. The "ddname" 
specified must not exist in the job step specified 
by "procstep". These new DD statements must 
follow immediately after the over-riding DD state­
ments which apply to the same procedure job step. 

USER-WRITTEN PROCEDURES 

The information required by the programmer to 
write his own job control procedures is given in 
the following text, and in Appendix E. Cataloging 
user-written procedures, or permanently modi­
fying the IBM-supplied cataloged procedures, is 
accomplished using the IEBUPDTE utility program, 
described in IBM System/360 Operating System: 
Utilities. The statements required in user-written 
procedures are: 

• An EXEC statement to invoke the program. 

• DD statements to define the data sets used by 
the program. 

Compilation 

Invoking Statement 

The ALGOL compiler consists of ten load modules 
contained in the link library, SYS1. LINK LIB , of 
the operating system. The compiler is activated 

Source Program Handling 13 



by invoking its first load module, named ALGOL, 
which then internally invokes the other load mod­
ules of the compiler. 

The usual method of invoking the compiler is 
by means of an EXEC statement of the form: 

Iistepname EXEC PGM=ALGOL 

where "stepname" is the name assigned to the job 
step (optional). 

Other EXEC statement parameters may be in­
cluded if required (see Appendix E). 

(A method of dynamically invoking the compiler 
within a job step, by means of the CALL, LINK, 
XCTL or ATTACH macro-instructions, is described 
in Section 4. ) 

Data Sets Used 

The data sets used in the compilation process are 
illustrated in Figure 4, and described in Figure 5. 
These data sets must be specified by the program­
mer with suitable DD statements. 

Blocksize DCB information may be specified 
by the user for SYSIN, SYSLIN, SYSPRINT and 
SYSPUNCH. The maximum blocking factor de­
pends on the main storage size available (see 
Figure 6). Record length is fixed at 80 bytes for 
SYSIN, SYSLIN and SYSPUNCH, and 91 bytes for 
SYSPRINT. 

Intermediate Wark 

SYSUTI 

SYSUT2 

SYSLIN 

SYSPRINT & 
SYSABEND 

Figure 4. Flowchart showing data sets used by 
the compiler. 

14 

The space required for the compiler data sets 
depends on the size and structur,e of the source 
program, however it can be assumed that only in 
rare cases will the object module exceed four 
times the source prograrrl and mmally much less 
will be required. 

Standard Devices 
Purpose 

ddname required 

For ALGOL source SYSIN Card reader* 
program 

For object module to SYSLIN Direct access or 
be used by linkage editor magnetic tape 

For compilation listings SYSPRINT Printer* 

For object module SYSPUNCH Card punch* 
(copied from SYSLIN) 

For the control SYSABEND Printer* 
program dump 

For intermediate S\'SUTl Direct access or 
compiler working magnetic tape 

For intermediate SYSUT2 Direct access or 
compiler working magnetic tape 

For intermediate SYSUT3 Direct access 
compiler working 

* Some form of intermediate storage, such as magnetic tape, 
may be used to reduce I/O delay Eor the central proces-
Sing unit. 

Figure 5. Data sets used by the ALGOL compiler. 

Also, as a rough estiInate, SYSUT1, 2 and 3 
must each be large enough to contain the number 
of valid characters in the source program. 

SYSABEND is used for control program list­
ings (see Section 3). 

Processing of all data sets by the compiler is 
independent of the 110 device used except for the 
intermediate work data sets. These require mag­
netic tape or direct access devices. 

Linkage Editing 

Invoking Statement 

The linkage editor is usually invoked with an 
EXEC statement of the form: 

! Istepname EXEC PGM=IEWL 



where "stepname" is the name assigned to the job 
step (optional). 

Other EXEC statement parameters may be in­
cluded if required (see Appendix E). IEW'L spec­
ifies the highest-level linkage editor in the instal­
lation"s operating system. 

(A method of dynamically invoking the linkage 
editor within a job step, by means of the CALL, 
LINK, XCTL or ATTACH instructions, is described 
in Section 4.) 

Main storage size Maximum blocking factor 
in bytes at which 

~~nges occur SYSIN SYSPRINT SYSLIN SYSPUNCH 

45056 (44K) 5 5 5 

51200 (50K) 5 5 5 

59392 (58K) 5 5 5 5 

67584 (66K) 5 5 5 5 

77824 (76K) 5 5 5 5 

90112 (88K) 20 20 40 20 

104448 (102K) 20 20 40 20 

120832 (118K) 20 20 40 20 

139264 (136K), 20 20 40 20 

159744 (156K) 20 20 40 20 

184320 (180K) 40 40 40 40 

212992 (208K) 40 40 40 40 
'--. 

Figure 6. Effect on compiler data· sets if more 
than 44K bytes of main storage is available. 
The capacity of internal tables in the compiler 
is increased at each of the main storage sizes 
listed in this table, allowing; for example, a 
larger number of identifiers to be included in 
the source program. Therefore to get optimum 
performance, the user is recommended to use 
this list when specifying main storage size 
available to the compiler. 

Data Sets Used 

The data sets used by the linkage editor (see Fig­
ures 7 and 8) must be defined by the programmer 
with suitable DD statements. 

Blocksize DCB information may be Qpecified 
by the user for SYSLIN and SYSPRINT if the F 
level linkage editor is being used. Maximum 
blocking factor is 5 when 44K bytes of main stor­
age size is available, and 40 when 88K bytes is 
available. Record length is fixed at 80 bytes for 
SYSLIN and 120 bytes for SYSPRINT. 

SVSLIB 

SVSLMOD 

Figure 7. Flowchart showing data sets used by 
the linkage editor. 

SYSABEND is used for control program list­
ings (see Section 3). 

Load Module Execution 

Invoking Statement 

The usual method of invoking the load module gen­
erated by the linkage editor is with an EXEC state­
ment of the form: 

/ /stepname EXEC PGM=member-name 

Standard Devices 
Purpose ddname used 

For object module SYSLIN Direct access or 
input magnetic tape 

For load module SYSLMOD Direct access 
output, stored as a 
member of a parti-
tioned data set 

For ALGOL library, SYSLIB Direct access 
SYS1~ALGLIB. A 
partitioned data set 
containing routines 
in load module form 

For linkage editing SYSPRINT Printer* 
listings 

For intermediate SYSUTl Direct access or 
linkage editor magnetic tape 
working 

For the control SYSABEND Printer* 
program dump 

* Some form of intermediate storage I such as magnetic 
tape I may be used to reduce output dela.y for the cen-
tral processing unit. 

Figure 8. Data sets used by the linkage editor. 

Source Program Handling 15 



where "stepname" is the name assigned to the job 
step (optional). 

"member-name" indicates the name of the parti­
tioned data set member which contains the load 
module. This name is specified by the progralnlner 
in the SYSLMOD DD statement for the linkage edi­
tor. Other EXEC statement parameters may be 
included if required (see Appendix E). 

(A method of dynamically invoking the load mod­
ule within a job step, by means of the CALL, LINK, 
XCTL or ATTACH macro-instructions is described 
in Section 4. ) 

Data Sets Used 

Up to 16 data sets for use at execution time may 
be specified by the programmer in the ALGOL 
source program by using the appropriate data set 
number. The numbers used and the corresponding 
names of their DD statements are listed below. 

Data set number Corresponding 
used in ALGOL ddname 
source program 

0 SYSIN 
1 ALGLDDOI 
2 ALGLDD02 
3 ALGLDD03 
4 ALGLDD04 
5 ALGLDD05 
6 ALGLDD06 
7 ALGLDD07 
8 ALGLDD08 
9 ALGLDD09 

10 ALGLDD10 
11 ALGLDDl1 
12 ALGLDD12 
13 ALGLDD13 
14 ALGLDD14 
15 ALGLDD15 

Any reference to a data set number by an I/o 
procedure within an ALGOL source program is 
translated into a reference to a data control block 
using the corresponding ddname. It is the respon­
sibility of the programmer to supply the DD state­
ments which correspond to the data set numbers 
used in the ALGOL source program. 

The execution time data sets are illustrated 
in Figure 9 and described in Figure 10. For 
ALGLDD02 to ALGLDDI5, case 1 in the column 
showing device used, applies if the source pro­
gram contains any of the following: 

16 

• A backward repositioning specification by the 
procedures SYSACT4 or SYSACT13 for this 
data set. 

• Both input and output procedure statements 
for this data set. 

• Procedure statements which prevent the com­
piler from recognizing whether either of these 
applies; for example, if the data set number 
or SYSACT function number is not an integer 
constant or if a precompiled procedure is used. 

If the source program has already been com-
piled and linkage edited in a previous job, then 
the data set on which it has been stored (in load 
module form) must be concatenated to SYSl. LINK LIB. 
Data sets containing precompiled procedures called 
by the source program (see Seetion 4) must also be 
concatenated to SYSl. LINK LIB., 

If the programmer specifies a TRACE, TRBEG 
or TREND option in the EXEC statement of the 
execution job step. the semicolon count (see Sec­
tion 3) is stored intermediately on a data set with 
the ddname SYSUTl. The 1')fogrammer must sup­
ply a corresponding DD statement if he uses this 
option. The semicolon count is converted to ex­
ternal form and transferred to the SYSPRINT data 
set as soon as the execution ends either by reach­
ing the logical end of the source program or due 
to an error. 

The space required for the semicolon count is: 

For the main headi.ng 6 bytes 

For each semicolon 2 bytes 

For each call of a 
precompiled procedure 12 bytes 

For each physical 
record on SYSUT1 4 _. 6 bytes 

System/360 ALGOL permits data to be tempo­
rarily stored on and retrieved from external de­
vices without conversion, using~ the ALGOL I/O 
procedures PUT and GET. If the programmer 
uses this facility in his source program, then he 
must supply a DD statement with the ddname 
SYSUT2. The device specified by this statement 
for storing such intermediate data should be a 
direct access device to guarantee reasonable per­
fo:rmance, though programming is performed in­
dependently between magnetic tape and direct ac­
cess devices. All data passed by a single PUT is 



Intermediate Work 

SYS 1. --r\ 
LlNKLI[~ 

Load Module for Source 
Program, Precompiled 
Proced ures, a nd Error 
Routine 

SYSUT 1 

Data Input 

SYSIN & 
ALGLDD02-1S 

LOAD 
MODULE 
EXECUTION 

!)ata Output 

ALGLDD01, 
SYSPRINT & 
SYSABEND 

Any of 
ALGLDD02-1S 
not used for 
input 

-Figure 9. Flowchart showing data sets used at load module execution. The data input and output require­
ments are variable. 

stored as one record. This record will be as 
long as the data passed, plus 8 bytes. The 
maximum record length accepted is 2048 bytes. 

The DCB information which may bE~ specified 
by the user for execution time data sets is block-

I 
size, record format and record length (see page 
44 for details), except for the trace and PUT/GET 
data sets (ddnames SYSUT 1 and SYSUT 2) for 
which only blocksize may be specified (up to a 
maximum of 2048 bytes). 

For information not provided, default values 
will be inserted by a routine in the ALGOL 
library. In particular, blocksize is assumed 
as 2048 bytes for SYSUTl and SYSUT2 if none 
is specified. 

SYSABEND is used for control program list­
ings (see Section 3). 

Standard Device 
ddname Used 

For data input SYSIN Any input de-
to load module vice 
For execution time SYSPRINT Printerif 

listings 
For data output ALGLDDOI Printerif 

For data input ALGLDD02 1. Direct 
or output access or 

ALGLDD15 
magnetic 
tape 

2. Any 

For intermediate SYSUTI Direct access 
storage of semi- or magnetic 
colon counter when tape 
TRACE is spec-
ified 
For temporary SYSUT2 Direct access 
storage when PUT or magnetic 
is specified tape 
For the control SYSABEND Printerif 

program dump 

if Some form of intermediate storage, such as 
magnetic tape, may be used to reduce I/O 
delay for the central processing unit. 

-Figure 10. Data sets used at execution time. 

Source Program Handling 17 



SECTION 3: INFORMATION LISTINGS 

To assist the programmer to find the cause of any 
faults in the processing or execution of his pro­
gram, various forms of information listings are 
produced for the compilation, linkage editing and 
execution operations. Some of these listings are 
optional. Examples are illustrated in Figures 11 
to 16. 

CONTROL PROGRAM LISTINGS 

All three operations may produce listings gener­
ated by the control program. These are described 
in IBM System/360 Operating System: Messages, 
Completion Codes, and Storage Dumps. The 
ABEND macro-instruction for specifying the main 
storage dump is described in IBM System/360 

I 
Operating System: Supervisor and Data Manage­
ment Macro-Instructions. 

COMPILA TION LISTINGS 

A successful compilation of an ALGOL source pro­
gram produces the following information listings: 

• Job control statement information according 
to which MSGLEVEL option was specified in 
the JOB statement. 

• The source program supplemented by a count 
of the semicolons occurring in the program 
(optional) . 

• A table giving details of all identifiers used in 
the program (optional). 

• Any warning diagnostic messages. 

• Information on main storage requirements at 
execution time. 

If a serious diagnostic message is produced 
(meaning·t)1at object module generation has ended) 
then the source program and identifier table list­
ings will be printed in full if they have been re­
quested, but the information on main storage re­
quirements will not be printed. If a terminating 
diagnostic message is produced then the source 
program and identifier table listings can be printed 
only as far as they have been produced. 

18 

Source Program 

If the SOURCE option has been specified, the 
source program is transferred by the compiler 
to an output data set in order to be listed by a 
printer. This source program is supplemented 
by a semicolon count, which is referred to in the 
diagnostic messages to help localize errors. 

The compiler generates this semicolon count 
when scanning the source program, by counting 
all semicolons occurring i.n the source program 
outside strings, except those following the de­
limiter "COMMENT". The value of this semicolon 
count at the beginning of each record of the source 
program is printed at the left of that record. It is 
assigned by the compiler in ordeT to have a clear, 
problem-oriented referenee. Any reference to a 
particular semicolon number refers to the segment 
of source program following the specified semi­
colon, for example, the semicolon number 5 re­
fers to the program segment between the fifth and 
sixth semicolons. 

Identifier Table 

If the SOURCE option has been specified, a list of 
all identifiers declared or specifI.ed within the 
source program is transferred by the compiler to 
the output data set for printing after the source 
program listing. This identifier table gives in­
formation about the characteristics and internal 
representation of all identifiers. The identifiers 
are grouped together within the identifier table 
according to their scopes. 

All blocks and procedure declarations within 
the source program are numbered according to 
the order of occurrence of their opening delimiters 
"BEGIN ". or "PROCEDURE". Therefore, if the body 
of a procedure declaration is a block., then usually 
this block has the same number as the procedure 
declaration itself. These numbers are called 
program block numbers (even if they belong to a 
procedure declaration and not to a block). 

Each line in the table contains entries for up 
to three identifiers and the line begins with the 
number of the program block in which the identi­
fiers were declared or specified, the value of the 
semicolon count at the commencement of the pro­
gram block, and the number of the immediately 
surrounding program block. Eaeh identifier entry 
contains: 



CAPACITY LIMITATIONS 

In addition to those given in IBM System/360 
0Eerating System: ALGOL Language, the follow­
ing restrictions must be observed when writing 
an ALGOL source program: 

Number of blocks and 
procedure declarations 
(NPB) s:255 

Number of f()r statements s:255 

Number of identifiers de­
clared or specified in one 
block or procedure. F is 
at most twice the number 
of for statements occur­
ring in that block 

Length of letter string 
serving as parameter 
delimiter 

s:179-F for type 
procedures 
s:180-F otherwise 

s:1024 letters when main 
storage size available is 
less than 50K ~ s:2000 
letters otherwise 

Length of label identifer s:1024 characters 

Number of valid 

when main storage size 
available is less than 
50K, s:2000 characters 
otherwise 

characters s:255K 

Number of semicolons in 
the whole program S:65535 

Number of nested blocks, 
compound statements, for 
statements and procedure 
declarations s:999 

Number of labels declared 
or addit:ionally generated 
by the compiler s:1024 

The compiler generates the following 
additional labels: 

SECTION 4: PROGRAMMING CONSIDERATIONS 

For each switch declaration 2 

For each procedure declaration 2 

For each procedure activation 
(including function designators) 1 

For each "THE N ~ and each 'E LSE " 1 

For each for statement 

Length of constant 

at most L + 3 
where L is the 
number of for 
list elements 

pool S:(256 - NPB) x 4096 bytes 

The requirements of components within the pool 
are 

Integer constant 

Real constant 
(SHORT) 

Real constant 
(LONG) 

String (in bytes) 

4 bytes 

4 bytes 

8 bytes 

2 + number of 
symbols of open 
string between 
the outermost 
string quotes 

The constant pool is divided into blocks of 4096 
bytes each. The first block contains the integer 
constants 0 to 15 (64 bytes). All strings together 
are restricted to fill not more than the rest of 
this block (4096 - 64 - 2S bytes, where S = 
number of strings). 

No constant occurring more than once in the source 
program is stored twice in the same block; however, 
it may possibly be stored more than once in differ­
ent blocks. Up to seven bytes may be left unused. 

Length of data storage area 
for each block or procedure 
declaration s:4096 bytes 

Number of blank spaces 
serving as delimiters on 
I/O data sets s:255 

Programming Considerations 25 



Number of records per 
section 

Number of entries in the 
Note Table s127 

(The Note Table stores information to retrieve 
records which may be required again later. An 
entry for a record is made each time the ALGOL I/O 
procedures PUT and SYSACT13 are executed, and 
each time an input operation, with backward repo­
sitioning, follows an output operation on the same 
data set.) 

Identification number (N) used 
by PUT or GET OsN~65535 

INVOKING A PROGRAM WITHIN A JOB STEP 

Anyone of the four macro-instructions, CALL, 
LINK, XCTL or ATTACH, may be used to dynam­
ically invoke the compiler, linkage editor and load 
module within a job step. This is an alternative 
to the more usual method of invoking a program 
by starting a job step with an EXEC statement. 
Full details of the four macro-instructions are 
given in IBM System/360 Operating System: Super-
I visor and Data Management Macro-Instructions. 

To invoke a program with the CALL macro­
instruction, the program must first be loaded into 
main storage, using the LOAD macro-instruction. 
This returns, in general register 15, the entry 
address which is used by the CALL macro-instruc­
tion. The instructions used could be: 

LOAD EP=member-name 

LR 15,0 

CALL (15), (option-address), VL 

To invoke a program with one of the LINK, 
XCTL or ATTACH macro-instructions would need 
instructions such as: 

LINK EP=member-name, 

PARAM=(option-ac1dress), VL=1 

XCTL EP=member-name 

ATTACH EP=member-name, 

PARAM=(option-address) , VL=1 

26 

"member-name" specifies the name of the mem­
ber of a partitioned data set which contains the pro­
gram required. 

For the compiler, member-name=ALGOL 

For the linkage editor, member-name=IEWL 

For the load module, member-name is speci­
fied by the programmer in the SYSLMOD DD state­
ment for the linkage editor. 

"option-address" speeifies the address of a 
list containing the options required by the user. 
An address must be given even if no options are 
specified. The list must begin on a half-word 
boundary. The first two bytes eontain a number 
giving the number of bytes in the remainder of 
the list. (If no options are specified this number 
must be zero). The list itself contains any of the 
options available to the PARM parameter in an 
EXEC statement (see Appendix E). 

When using CALL, LINK or ATTACH to invoke 
the compiler, other ddnames may be used in place 
of the standard ddnames given in Section 2 for the 
data sets (except for SYSABEND), and an alterna­
tive page number (instead of the normal 001) may 
be specified for the start of output listings. 

If alternative ddnames are used, then in the 
statement invoking the compiler, "option-address" 
must be followed by "ddname -address" giving the 
address of a list containing the alternative ddnames. 
If alternative page numbers are used, then "page­
address" giving the address of a location contain­
ing the alternative page number must be placed 
after "ddname -address "; though if alternative 
ddnames are not required "ddname -address" may 
be replaced by a comma. 

The ddname list must begin on a half-word 
boundary. The first two bytes contain a number 
giving the number of bytes in the remainder of 
the list. The list itself contains up to ten 8-byte 
fields, separated by commas, for specifying al­
ternative ddnames for the data sets. As only seven 
data sets are used by the compiler, three of the 
fields are left blank. The alternative ddnames 
must be listed in the following order: 

Purpose of data set 

.Output of object module 
for linkage editor 

Standard ddname 

SYSLIN 



When processing the source program, the com­
piler detects and specifies any routines that need 
to be combined with the generated object module 
before it can be executed. These routines are 
contained in the System/360 Operating System 
ALGOL library - a partitioned data set with the 
external name SYSl. ALGLIB. The routines are 
in load module form and the linkage editor com­
bines them with the object module to produce an 
executable load module. There are three types 
of routines - fixed storage area routines, mathe­
matical routines and input/output routines. Addi­
tionally, an error routine, stored on the operating 
system link library, SYSl. LINK LIB , is called 
at execution time if an error occurs. 

Initialization and termination of the library 
routines is performed using the standard method 
(see "Supervisor" in Section 1). 

FIXED STORAGE AREA 

General routines required to some degree by all 
object modules are combined into a single load 
module known as the fixed storage area (IHIFSA). 
These routines are used to initialize and termi­
nate execution of the ALGOL program, to handle 
the DSA when entering or leaving a program block 
or procedure, to produce the program trace, to 
load precompiled procedures, to get main storage 
for arrays, to convert values from real to integer 
and integer to real, to call actual parameters, to 
handle branches in the program, to handle pro­
gram interrupts, etc •••. 

MATHEMATICAL ROUTINES 

Standard mathematical functions contained in 
ALGOL have corresponding mathematical routines 

APPENDIX A: ALGOL LIBRARY ROUTINES 

in the library, except for ABS, SIGN and LENGTH 
which are handled by the compiler, and ENTlER 
which is contained in the fixed storage area. Rout­
:Lnes exist in each case for both long and short pre­
eision of real numbers. 

These mathematical routines are taken from 
the System/360 Operating System FORTRAN IV 
library and modified to conform to the ALGOL 
language requirements without affecting the mathe­
"matical methods used. Full details of these rou­
tines are contained in IBM System/360 Operating 
iSystem: FORTRAN IV Library Sub-programs. 

INPUT/OUTPUT ROUTINES 

Data transfer between the load module and exter­
nal data sets is performed by input/output rou­
tines. These routines correspond to the ALGOL 
I/o procedures and are mostly contained on sep­
arate load modules (see Figure 18). In addition 
there is a single load module, IHIIOR, which 
contains a number of commonly-used subroutines. 

ERROR ROUTINE 

If an error is detected during execution of the 
load module, an error routine (in SYSI. LINKLIB) 
is invoked. Its main purpose is to construct the 
error message and produce the data storage area 
listing before passing to the termination routine 
:in the FSA. If a second error occurs while the 
first is being handled (due, for example, to an 
I/O error or because the object module has over­
written part of the ALGOL library or control pro­
igram), then termination takes place immediately 
and incomplete information listings may be pro­
duced. 

ALGOL Library Routines 31 



Module Name Storage 
When used estimate 

(bytes) 
ALGOL FORTRAN IV 

IHIERR When an error is detected at execution time 4290 

IHIFDD IHCFDXPD For an exponentiation ( iH~ or -POWER') using: 
long precision base and long precision exponent 200 

IHIFDI IHCFDXPI For an exponentiation ( 1H~ or -POWER') using 
long precision base and integer exponent 140 

IHIFII IHCFIXPI For an exponentiation (iH~or -POWER') using 
integer base and integer exponent 170 

IHIFRI IHCFRXPI For an exponentiation (iH~or -POWER') using 
hart precision base and integer exponent 140 

IHIFRR IHCFRXPR For an exponentiation (7H~ or -POWER) using 
short precision base and short precision 
exponent 200 

IHIFSA For every object module (except those for 
precompiled procedures) 5210 

IHIGPR For either GET or PUT 2430 

IHIIAR For INARRA Y or INT ARRAY 120 

IHIIBA For INBARRAY 70 

IHIIBO For INBOOLEAN 360 

IHIIDE For either INREAL or ININTEGER 1610 

IHIIOR For every object module 2980 

IHIISY For INSYMBOL 320 

IHILAT IHCLATAN For a long precision arctangent 
operation (.ARCT AN) 320 

IHILEX IHCLEXP For a long precision exponential operation (E XP) 450 

IHILLO IHCLLOG For a long precision logarithmic operation (LN) ~no 

IHILOR For a long precision OUTREAL operation 730 

IHILSC IHCLSCN For a long precision sine or cosine operation 
(SIN or COS) 370 

IHILSQ IHCLSQRT For a long precision square root operation 
(SQRT) 140 

IHIOAR For OUTARRAY 120 

32 



IHIOBA For OUTBARRA Y 70 

IHIOBO For OUTBOOLEAN 400 

IHIOIN For OUTINTEGER 420 

IHIOST For OUT STRING 300 

IHIOSY For OUTSYMBOL 290 

IHIOTA For OUTTARRAY 120 

IHIPTT For INREAL, OUTREAL, ININTEGER or 
OUTINTEGER 270 

IHISAT IHCSATAN For a short precision arctangent 
operation (ARCTAN) 200 

IHISEX IHCSEXP For a short precision exponential operation (EXP) 280 

IHISLO IHCSLOG For a short precision logarithmic operation (LN) 210 

IHISOR For a short precision OUTREAL operation 810 

IHISSC IHCSSCN For a short precision sine or cosine operation 
(SIN or COS) 260 

IHISSQ IHCSSQRT For a short precision square root operation 
(SQRT) 170 

IHISYS For SYSACT 1890 

• Figure 18. Table of ALGOL library modules. All are contained in SYSl. ALGLIB except IHIERR 
which is in SYSl. LINKLIB. For mathematical routines, the corresponding name in the FORTRAN IV 
library is also given. 

ALGOL Library Routines 33 



APPENDIX B: IBM-SUPPLIED CATALOGED PROCEDURES 

The three cataloged procedures for ALGOL that 
were introduced in Section 2 are contained in the 
procedure library, SYSl. PROC LIB, of the oper­
ating system. They consist of the job control state­
ments listed below. 

These procedures have been designed for an 

Compilation, ALGOFC 

optimum job, and can be over-ridden by the user 
if he requires different or additional system sup­
port to that provided (see Section ~~). In particular 
it should be noted that in these procedures the ob­
ject or load module produced is stored on a tempo­
rary data set and will therefore be deleted at the 
end of the job. 

tL.AJ.~6~1,.,. ~~1.~E_C, J>_~J..I1. :_A~~6.0~L.._ ~. _> ~---' ____ , L~ ~_>-. _~ ._>~ __ ~ .• _.L_~~_L~_.L._ ... __ -,---_~~~_,----,-------,.~~_ .. ~ .. _J._._-' .. ~_. __ 

. I /:~t~~~-L~i~:=~:~-:~~~j:~:~~t;~t~. ~-: ~_=~~-=:=: .. :-~ : __ ~:-~~~~-~:=:~=~~~=_.::.=:~=-===.:~~=:-.-
11.5. '( S.~, I ~t{_.O.J>. JL~~E.~= ~~ .. L...D .A.D~.s.1£J~.},J£N.lL :~~~S~~. SJ~.p. = .S_._'t.S.E.._Y.NL',H • .)_QJ_S~ ~JiQ.J)~~A~~j + ___ , __ L~ 
/./_ , '. L. __ -'------ ..L_~. ~_ L ~"_~~4.C.~J.~ (.4~.,.Lti~~ _. ~. L. ~_ ... __ •. _~ ..... ~ .• -' __ .L.J.~~ .L ._. _, --'---' . __ i._. __ ~_._.L_L.J-.~---'~ L.J..~_..L....i...-L.~ 
/L.AYAJ.lT.LJ>.D. )L~Jj ... T'=-L~Y.S~~.~e, .. S YS,P RI N-r:}.~.J~.A~~..1J.~,l...4.}~}J ~),), , ~L_._~_~~_L--'n~_-'_~ 
1/. S, Y.~,-LJL~ ,L>,D. ~LLN.r..t :.15-,-,(S ... ~.Q }<S.f~ P c-,.Cs. 'CS~l.,t~s"'(.SJ.,l.L&).L S~'r~s"P".UJ.'J~I,t;,.... ... -,.J. .L....~._L..L -'-- .,. _____ L- .•. _._ .J- .•.. .J.. 1C~~1 
/L. ~-"_---'_, __ -"-- ~..L_. ~.~~1:~J.~_~L·:.L_L(l~4~0~~~..LL.-J..L-' .. __ ~.~ ....... ---'----'_~ ___ '--~. _~ ... -L~ __ '-.• _'. _ _'. __ ~~ _____ L _ _'_._~.!..._~ .. ~_~ 
fl,S,'cS.)J.T:, __ J>.L~ _Jd.ltlJ.I~::~~,--Y~~J?,A_}.§ ~~~~:J.~~~4S~,..L2.~~>-o~,t" ._~ ~_. __ ... .L_L _.~-_L .L.~--<...-..L .. '~_. __ ",--,._L.J_--'--. ___ C_.L.~x._.-,-,-.. 

I
I.L--------" , . . ~'--L"~__<_L.S~£}~:-J. ~X~ 1"..' +-~~ 'tSLY J_e.~" s~X,S.".L~}-~~'f~f,JLN C "(1 __ '_L_~-'-~_~ -----'--L ~_-"-~.L~_~ _~ _ . .1..--'--..1. -'-_-L.~. 
/j.5_'($JjJj£NJ~L .Q~Q_~_~,(S O~U.T~A" ~. ~ • L' .,L • ... -'--. ~._~_~_L_~-"-.~. __ ._ •.•• ~---,~_J._~ .•. _.~_L~_~_._J __ •. _ .• _ .•.. -,--,--_.L_. ~.-'-

J. _ .... 1 J ..I.. J. .L_l • --'--_~-'-~....L.._I..-~~~.J __ .. -----L-.......L..--L._ . ...J. . ..I._~ __ ...I-_ """,,.J.. 1. _-S.-.J- ~_.!..- ..L...........-._L.-L .l. __ ", ....L._ .. _--"--_L ___ ....... _~.....L....~"""""-- __ .l.. '"-_'- ____ .1.. __ ..... .1. ...L J . ....i.._.L_L __ L...-L~.A. 

Compilation and Linkage Editing, ALGOFCL 

--- --.--
~/AL AO~t. .U.£ C: .p.~/'i = Al,.c;,.O.L .. , . ~ , . . .. ..•. . . . " .. :-::=-.. 'n'. C • " L •.••.• _~.~~ ~~ •• n' ~. u. 

I.L5_Y.S.1~R. .. .l.N,T, .oj:> .. ~SL'(~$..LO-,-UI"'=:LA..-,- .. , , L--'-. _L-'-. "'_~_~~."'.--'-_,. L_';' .. L.. '--__ • __ • ___ J.. __ ~~ .. _~_. _J. _ . .L~ ____ ~.I.........L_.~ __ • -,-'-__ ._ .. _~-'_-'-~_~_ '-.-

I V_t.S.Y.SJ=~LLN_'.t1.J)J).~~ ... V S.OJ)T =-.B. J • ~ '-~ ~~~_~~L~_ •• ___ ... L..' •. _~~-"-. _ •. ~_.~~ ... -'.~ . _______ . .L . __ . ___ ...... , ___ '--'~ ____ -'--~_J. __ . ~.-'--__ L_-'-•. L._ 

~/J_S.Y_S,L.1~_.b.lD ~Q§Jvlif!_E._:: .~. L,O_t\D~S--,c,wLl,IJilJJ. ~.Sy-,~.s.<i}.~. E_ p.~~.J>,-Ufl~I{).D.t.S.P. ;; J.-ti-~rP. ~-~~}J~ . ..L. ~'i_ -'--~­
i/lJ. L~ .... __ ~_.-'-_J~'~L~,-e~~.e..:-.(4jt~>_l4~,.1Jt).)'1 '_~ .. '_J.J_.~ ~~_~~---' ~.> _-'_., L. __ L,e, .~_. __ L--'---'-.~_-'----'-_.L.--'-'-

i LI..S~Y.~~~.Hll.D_~/:)"D~ J>MAc~E.=.L~~S~r:!:(N' U~,-~.~~~~,t.,..}_~I1S p _:LJ.tQ..Q+P_A$_.S.1.r~~_J_' ___ '---' ____ ~_'_~.'-4_~_~ 
,l.t ". c._.L" ~ __ ~._~_~-,R~".#:.~~/~~J~.4 ~~.)....~.).I.),).~_ ... _.--,-.. ,_.,-_ .. _ ..... _---,_J._~~_ •. _~_..J. '-~ __ ,_.L , __ , .. " __ ,. __ '---_, __ ,_--'-_ .. .!. .• '"_-'- ••. ~~_ 
!lI~ Y$.L~.lL. _DJ>'--,-LLNI.T2.~YS-,-~~~.t;.P~.~s.P)~1.,~L~,S.P.A~lE;~~Ji L~~J4-,-}L~~.}_L0jJ_, ______ .L-._ .. _ •• _J_L-L_d_~-'-._. -'-~-
1!.I..S.Y.-.S,U.t 2.- J)_ClD. .. , --'-. LLN .. -~I--L"[:.~S.Y. "~~.s.~~}~.E.P.=L: .. ~Y.~! .. I.IJ.>.S.Y.S,h.Lt{."..~'r:S..P..~N,c;;"tlJ.+ __ . L.._ ..•.. ~_~.L.~o_'----'L'._ .. __ L_.L ,X'_L 
iiI" ... ~-'- j -'- _ ._~.PAc~~::LUJ,~In.JLs...¢,,)/-0.1,L-. ___ . --' ~~~-'---'---'"-----'---'_~-'--'_.-'-- ___ ~--'_~ .~~-,-~_,--_ ..... _'-----. ___ .-'---'--. .L~_...l--,-
; // ~ tS,(J,T.3.i)..D . .JJ}/JL-:..S.'(.S~A.~.e~:..C2~,~~~,.i)J~ -,-_~.J.~ __ '-- '-. ~_ •. _. __ --L ., • __ •• L -'- __________ .'--'-~ .. _~~_'__X --.. ~ 
i/l_ L ' , •• LL , ,--,--~-,--5J.~g=.Ls:r$.Ll!T.LL}>-~_,:r-,-~U512¥Y,~.L...!}J4-<--S_y,S'pJj}{c..Tt)L~_ . J-'-~~ _. __ , LL_~~_'---.-'- .L .. u._L~-'- 1. 

~/.I S.Y;!).-AB.E-NA .j) .. D •. .L~tS~QbLL:--,A... ~_J_-" __ ._~-'- , 1...J. 1 L_~ --' .•• ••. .L .. ...L._~_~_._--'---'-_~-' _-'-..L..L_-'-___ -'- .• _._-'- __ ." J.. ___ L~_-'-~-'-_"--~---' __ •. -'--' .• ~~-
V.l.t,t€.D. .£.'(£..C--'~.1.M..~J~J.w.~}>e.A.~J·t;~RgL""~.Ll>S • .TiJ,L..J(:rJ.L~C.Q..N~.~J"L.T'J,~.l>."'--o~l.L~.J--L_".'_'--__ ~_J--L-'--__ ~_J.. 
~~j_?'( .. ';.!. P.~ IltT..L .-,.!).J).J-J.~ '(,5,0 U i, -::. A ~--'-----'---~_.'- _~~_-'---~~--'--~.~._-'---'-~ _~~--'---'-~ .. ~~ ___ .... u •• '--_L •. _...L_J._~._ ,. __ ._ .• ~._ L • .L .-'--_L_. ___ _'. ~~.L--'-~ ___ • . -.--

l/J,~.Y-'S,Lr.I .. L.O-"-T) • ...Q~S}·U~.~:Jt.~AJ,,,.~_~.I ... s '(,S...ht.I{.1~D--,-L~P'_= (,O,LI?~~LL.~E-,:L~). . __ , ... J. -'-- ---'-_._.~.~_.~~_~"-_._.'.~_._~ • ..L.--L--o. .. c .... _{ 

tlI$.,!"S.l.,lLe .. D,c. ....D.~l-lAttLE~:~~Y~~J~s~JJ~A.~.t.~.J:~l..~p .... .L. _' __ ~""-'- .. ~_. ____ .L~ __ ~_~~~_--'--_""""'_~"'_.L._l __ '--"._" ___ -'-.---------.L.-'- .. j 
t/fS'Y-'-~Jl.!'LQ.D_.J)J:L.P,--§ .. N...~~~b..<i9.~,EJ'~,Q1,-,.JJ.....JJ.~-,T .. ;:;>5,'(~.D.L~}12j_5PJ..:_(_~~.P...,P.-A __ S~l)'-' ... -.-~ .-'_-'-_L~ ____ ~ __ '-.~_'-
ilJ , " ___ . . _~._-,-5P,~,C.E-,:,~C/..¢L44~~+~~.-,JJ.t . 0 .. 0.. __ ••• ~ . .1_. '- ~- ' - --- • , • ~ -.-'- ••••• " ,--, , '-~l~-~-'-i 
'.11.5LY,S.U,T-I- .D.D_ ~~N.J._.L. :,~,(.S.1.DA. L).5JEP, ::,L~_"~LlR'AS.JY'~'~-!)~ ,.SY SlL..M.9,OJ .1· - .. 1 __ - -•• 1 .• A ~~'-•• ~-_.-,_K---'-i 
!/ I ... , . __ ,., .S.P __ A1C,E..::j,I.~.2A .. ),(~0L).2.~JJ,-. ,., . --'-' ".. ,.. l ,-' ., , -- ••• -- , •••.•. -- I 
[115.Y5,A..8.E}4 OJ .~D __ .5,\(S.C),u.T,=A. l .... d -' •. __ , • ~.' -' -~~:~ ~- ~ ~:~:=~_.! 

... -l. A ~ '" ~_ i. ......... _-'- .1_ L~_, .. 



Compilation, Linkage Editing and Execution, ALGOFCLG 

IBM-Supplied Cataloged Procedures 35 



36 

APPENDIX C: CARD CODES 

The card deck of the source program is punched 
line for line from the text written on the coding 
sheets. The card code used can be either a 53 
character set in Extended Binary Coded Decimal 
Interchange Code (EBCDIC), or a 46 character 
set in Binary Coded Decimal (BCD). This latter 
character set has been established as standard 
for ALGOL by the International Standards Organ­
ization (ISO) and Deutsche Industrie Normen 
(DIN). Figure 19 shows these two codes. 

Characters 
Card Codes 

EBCDIC ISO/DIN 

A to Z 12-1 to 0-9 12-1 to 0-9 

o to 9 o to 9 o to 9 

+ 12-8-6 12 

- 11 11 

* 11-8-4 11-8-4 

/ 0-1 0-1 

= 8-6 8-3 

, 0-8-3 0-8-3 

. 12-8-3 12-8-3 
,. 8-5 8-4 

( 12-8-5 0-8-4 

) 11-8-5 12-8-4 

blank no punch no punch 

< 12-8-4 

> 0-8-6 

I 12-8-7 

& 12 

--;? 11-8-7 

: 8-2 

. 11-8-6 
~ 

Figure 19. Source program card codes. 



reached the end of its tape reel, output would be 
automatically continued on one of the additional 
units, and the first tape reel would be rewound 
and then replaced by the operator with a new 
reel so that the unit would be available for other 
data sets. The pool would be established by 
using the first form of the UNIT "subparameter­
list" in a DD statement. Only the AFF or SEP 
parameters may be used with the UNIT param­
eter in this statement. 

1 or 0 indicates that an extra tape unit is 
either to be added to the pool, or not to b.e added 
to the pool. 

AFF=ddname indicates that the data set is 
to use the same I/O devices as the data set spec­
ified in the DD statement named "ddname" in 
the same job step. 

SPACE=subparameter-list 
indicates the space required when a direct ac­
cess device is specified in the UNIT parameter. 
The "subparameter-list" contains only posi­
tional subparameters. The list is: 

{

TRK 
CYL primary-quantity 
average - record -length } 

[secondary;..quantity ] [directory-or-index-quantity ] 

{ 
MXIG } 

[RLSE][ ALX ][ROUND] 
CONTIG 

The first subparameter specifies the units 
in which the space requirements are expressed, 
that is, tracks, cylinders or records (with length 
given in bytes). 

The next subparameter specifies the space 
required. It has three parts (of which the se­
cond and thi.rd are optional) and is enclosed in 
parentheses if more than one part is specified. 
If the second part is omitted, then it :must be 
substituted by a comma if the third part is in­
cluded. The initial space to be allocated is given 
by "primary-quantity". Each time this initial 
space is filled, additional space is to be pro­
vided as specified by "secondary-quantity". 
The number of 256 byte records to be allocated 
for the directory of a new partitioned data set, 
or the number of cylinders, taken from the ini­
tial space reserved, to be allocated for the in­
dex of an indexed sequential data set, is given 
by "directory-or-index-quantity". 

RLSE indicates that any unused space assigned 
to the data set is to be released. 

MXIG requests that the largest single block of 
storage available is to be allocated to the data 
set. 

ALX requests that extra blocks of storage (in 
track units) are to be allocated to the data set. 
As many available blocks that are equal to or 
greater than "primary-quantity", up to a max­
imum of five, will be allocated. 

CONTIG specifies that the space specified by 
"primary-quantity" is to be in a single block. 

ROUND requests that when records are used 
to express the space required on the direct ac­
cess device, the space is to begin and end on 
cylinder boundaries. 

DISP=subparameter -list 
indicates the status of the data set and speci­
fies its disposition at the end of the job step. 
The "subparameter-list" consists of the fol­
lowing positional [ubparameters: 

{
NEW} 
OLD [ 
MOD 

DELETE 
KEEP 
PASS ] 
CATLG 
UNCATLG 

NEW specifies that the data set is to be gene­
rated in this job step, and would be deleted at 
the end of the job step unless KEEP, PASS or 
CATLG is specified. 

OLD specifies that the data set already exists, 
and would be kept at the end of the job step un­
less PASS or DE LETE is" specified. 

MOD specifies that the data set already exists 
and is to be modified in this job step. If the 
data set cannot be found by the operating system 
then this parameter is equivalent to NEW. 

DELETE specifies that the space us'ed by the 
data set (including that in the data set catalog, 
etc.) is to be released at the end of the job 
step. 

KEEP specifies that the data set is to be kept 
at the end of the job step. 

PASS specifies that the data set is to be re­
ferred to in a later step of this job, at which 

Using Job Control Language 45 



time its final disposition, or a further pass, 
will be specified. 

CATLG specifies that the data set is to be ca­
taloged at the end of the job step. Thus KEEP 
is implied. The catalog structure must already 
exist. 

UNCATLG specifies that the data set is to be 
deleted from the catalog at the end of the job 
step. KEEP is implied. 

SYSOUT=subparameter-list 
specifies the printing or punching operation to 
be used for the data set. The "subparameter­
list" is: 

classname [progname][numberJ 

"classname specifies the system output class 
to be used. Up to 36 different classes (A to Z, 
o to 9) may be fixed by the user for his instal­
lation, according to device type, priority, des­
tination' etc. The standard classname is A. 

"progname" can be used to specify the name of 
a user-written output routine. 

"number" can be used to specify an installation 
form number to be assigned to the output. 

For sequential scheduling, the "subparame­
ter-list" consists of only the standard class-names 
A and B. SYSOUT=B is interpreted as UNIT:::SYSCP. 

VOLUME=subparameter-list 
indicates the volume or volumes assigned to th.e 
data set. If the data set is cataloged this param­
eter is not necessary. The "subparameter-list" 
is: 

Positional 
[RETAIN] [number] [value] 

subparameters 

Keyword SER=list-of-serial-numbers 
subparameters 

dsname 

REF= 
il-. ddname 
*.stepname.ddname 
*. stepname. procstep. 

ddname 

RETAIN specifies that, if possible, the volume 
is to remain mounted until referred to in a later 

46 

DD statement, or until the end of the job, which­
ever is first. "number" is any number between 
2 and 9999, and is used if an input or output oper­
ation, on a cataloged data set residing on more 
than one volume, does not start on the first vo­
lume of the data set. The number specifies the 
position of the volume on which input or output 
does start (for example, 3 indicates the third 
volume of the data set). 

"value" specifies the number of volumes re­
quired by an output data set. It is not required 
if SER or REF is used. 

SER==list-of-serial-numbers, specifies the se­
rial numbers allocated by the user to the volumes 
required by the data set. These serial numbers 
can consist of between one and six alphameric 
characters. 

I dsname I 
RE F= -110. ddname 

-II-. stepname. ddname 
il-. stepname. procstep. ddname 

specifies that this data set iEl to use the same 
volume or volumes as the data set specified by 
one of the alternative sub-subparameter forms. 
If the latter data set resides on more than one 
tape volume, then only the last volume (as spec­
ified in the SER subparameter) can be uSE\d. 

LABEL=subparameter-list 
indicates the type of label or labels associated 
with the data set. If the data set is cataloged 
this parameter is not necessary_ The "sub­
parameter-list" is: 

Positional 
subparamete rs 

Keyword 
subparameters 

NL 
SL 

[number J NSL 
SUL 
BLP 

{
EXPDT=:.yyddd} 
RETPD==dddd 

"number" is any number between 2 and 9999, 
and specifies the position of the data set on the 
volume (for example, 3 would indicate the third 
data set on the volume). 

NL, SL, NSL, and SUL spec:lfy t:\1e type of label 
or labels to be used, that is, no labels, stan­
dard labels, non-standard labels, and standard 



~ v 

-Figure 28. Basic I/o flow for Example 2. The data sets for information listings, ALGOL library routines 
intermediate work and the execution time error routine are not shown. 

Figure 29. Job control statements for Example 2. 

Using Job Control Language 49 



occurs) printed on the normal system output 
device for information listings 

2. The first job step invokes the ALGOFCLG cata­
loged procedure (see Appendix B) to process 
and execute the ALGOL source program 
(PROGRD) entered in the input stream 

3. The other input data sets are RAWDATA and 
PROJDATA. RAWDATA is also entered in the 
input stream 

4. The temporary output data set is 

fl> to be called REFDATA. TESTFIRE and to be 
passed for use in a later job step 

f) to use the device class TAPECLS 

@ to be written on volume 2107, which is to 
remain mounted for use later 

• to have fixed length records, 80 bytes long, 
and a maximum block size of 400 bytes 

5. The second job step invokes the ALGOFCLG 
cataloged procedure to process and execute 
the ALGOL source program (ANALYZ) entered 
in the input stream 

6. The SYSLMOD DD statement in the LKED step 
of the cataloged procedure is overridden to 

specify that the load module produced by the 
linkage editor is 

o to be a new member, PROGRD, of the tem­
porary partitioned data set FIRING 

7. The other input data sets are REFDATA. 
TESTFIRE and PARAMS. Both will be kept 
at the end of the job step 

8. The temporary output data set is 

II to be called VALUES. TESTFIRE and is to 
be passed for use in a later job step 

e to use the device class TAPECLS 

• to be written on volume 2108 

• to have fixed length records, 68 bytes long, 
and a maximum block size of 204 bytes 

9. The third job step invokes the AI.JGOFCLG ca­
taloged procedure to process and execute the 
ALGOL source program (REPORT) entered in 

50 

the input stream. The output data will be listed 
on the printer specified in the cataloged proce­
dure 

10. The SYSLMOD DD statement in the LKED step 
of the cataloged procedure is over-ridden to 
specify that the load module produced by the 
linkage editor is 

• to be a new member, RE PORT, of the tem­
porary partitioned data set FIRING 

11. The other input data set is VALUES. TESTFIRE 
which will be kept at the end of the job step 

Example 3: Executing Two Load Modules 

Statement of problem: Data on current weather 
conditions is to be read from cards and used by 
the program FILECR to create a new generation 
of a data set WEATHER, and also to print a re­
port. 

Then the new generation and the three imme­
diately preceding generations of the WEATHER 
data set are to be used by the program FOReST 
to produce a printed weather forecast. The pro-

Weather] 

~ 

] 

FOReST ] 

w~J 
forecast 

Figure 30. I/o flow for Example 3. 



YOI'm c::s::s-tmuu-u, page .Kevised by TNL N33-8002, 1/16/68 

-Figure 31. Job control statements for Example 3. 

grams FILE CR and FORCST are contained in a 
partitioned data set WTHRPR. 

,Explanation of coding: The job control statements 
used in Figure 31 specify that: 

1. The job is to have control statement messages 
plus the relevant control statement printed on 
the normal system output device only if an error 
occurs 

2. The partitioned data set WTHRPR is concatenated 
to the operating system library, SYS1. LINKLIB 

3. The first job step executes the program FILECR 

4. The output data set is 

• a new generation of the data set WEATHER 

• to use the device class HYPERT 

• to be written on volume 0012 which need not 
be mounted until the data set is opened, and 
is then to remain mounted for later use 

• to be cataloged and have standard labels 

• to be retained for 30 days 

• to have fixed length records, 80 bytes long, 
and a maximum block size of 400 bytes 

5. The printed output is 

• to use the device class PRINTER 

• to use a separate channel to the output data 
set 

6. The input data is included in the input stream 

7. The second job step executes the program 
FORCST 

8. The input data sets are the last four generations 
of WEATHER, all of which are to be kept at the 
end of the job step 

9. The output data set is 

• to use the device class PRINTER 

• to use a separate channel to the last two ge­
nerations of WEATHER 

Using Job Control Language 51 



APPENDIX F: DIAGNOSTIC MESSAGES 

Each of the three operations-compilation, linkage 
editing and execution - may produce diagnostic 
messages. 

COMPILER MESSAGES 

The diagnostic messages that may be produced by 
the ALGOL compiler are given below. Each diag­
nostic message occupies one or more printed lines 
and contains: 

., The message key, consisting of the letters lEX, 
a three digit decimal number identifying the 
message, and the letter I to indicate an infor­
mative mesbage requiring no action from the 
operator. 

~ The severity code W, S or T (see below) 

o The semicolon number (see Section 3). This 
number is sometimes omitted if the error can­
not be directly related to a point in the program. 
The semicolon number is indicated in the list 
below by the sequence NNNNN 

" The message text describing the error and, in 
the case of some vV or S type errors, the mo­
dification performed on the program by the 
compiler. In the message text listed belo\v the 
words in parentheses, together with the paren­
theses themselves, will be replaced in the actual 
message that is printed, by specific information 
taken from the program. The word "operator" 
usually refers to all delimiters defined in IBM 
System/360 Operattng System: ALGOL Language, 
but an internal compiler operator may some­
times be listed. The word "operand" refers to 
an identifier or an expression. 

The three severit'[ codes for errors and their 
corresponding compiler action are as follows: 

W (Warning): The program is modified inter­
nally and the compilation is continued. The mo­
dification may not make the program correct but 
it allows object module generation to continue. A 
diagnostic message is produced. 

S (Serious): An attempt is made to modify the 
program internally, including skipping or changing 
parts of it. Generation of the object module is 
stopped, but syntax checking continues. A diagnos­
tic message is produced. 

52 

T (Terminating): A diagnostie message is pro­
duced and the compilation is terlninated. 

IEXOOlI W NNNNN INVALID CHARACTER 
DELETED. 

Explanation: A character not recognized 
by the compiler has been deleted from the 
program. 

IEX0021 W NNNNN ILLEGAL PERIOD. 
PERIOD DELETED. 

Explanation: The character period has 
been used wrongly and deleted from the 
program. It can be used only as a deci­
mal paint, or as part of a colon or semi­
colon. 

IEX0031 W NNNNN INVALID COLON AFTER 
(six characters). COLON DELETED. 

Explanation: The character colon has been 
used wrongly and has been deleted from 
the program. It can be used only after a 
label, between subscript bounds, within 
a parameter delimiter or as part of an 
assign symbol. 

IEX0041 T NNNNN LETTER STRING TOO 
LONG. 

Explanation: A letter string used to supply 
explanatory information exceeds capacity 
limitations (see Section 4). 

IEX0051 S NNNNN IDENTIFIER BEGINS WITH 
INVALID CHARACTER. IDENTIFIER 
DELETED. 

Explanation: An identifier has been de­
leted because it does not begin with an 
alphabetic character. 

IEX0061 T NNNNN LABEL CONTAINS TOO 
MANY CHARACTERS. 

Explanation: A label identifier has been 
used whose length exce,eds capacity limi­
tations (see Section 4). 



Technical Newsletter 

IBM System/360 Operating System 
ALGOL Programmer'"s Guide 

File Number S360-26 

Re: FormNo. C33-4000-0 

This Newsletter No. N33 -80 13 

Date June 26, 1968 

Previous Newsletter Nos. N33 -8000, 
N33-8002, 
N33-8012 

This Technical Newsletter relates to Release 16 of the Operating System and contains 
amendments to the IBM System/3BO Operating System: ALGOL Programmer '"s Guide, 
Form C33-4000-0. The attached pages are replac:ements to be inserted in the publica­
tion, as indicated below. Corrections and additions to the text and/or illustrations are 
indicated by a vertical bar to the left of the affected text and by a bullet (e) to the left of 
the figure caption. 

Pages to be 
Removed 

1-4 
11-18 
25-30 

33-36 
45-46 
51-52 

Surnmary of Amendments 

Pages to l;>e 
Inserted 

1-4 
11-18 
25-28 
29-29.1 
29.2-30 
30.1-30.2 
33-36 
45-46 
51-51.1 
51. 2-52 

The amendments in this newsletter reflect changes in IBM-supplied cataloged 
procedures in order to provide MVT support for the ALGOL compiler under Release 
16. The text relating to precompiled procedures is also amended and examples have 
been added to illustrate an Assembler language procedure and the use of job control 
statements. 

File this cover letter at the back of the publication. It will serve as a record of 
the changes received and incorporated. 

IBM Nordic Laboratory, Technical Communications, Box 962, Lidingo 9, Sweden 



Systems ReferenCE! Library 

IBM System/360 Operating System 

ALGOL Programmer's Guide 

Program Number 360S-AL-531 •••• Compiler 
360S-LM-532 ••• 0 Library Routines 

This publication describes how to compile, linkage edit and 
execute a program written in the System/360 Operating System 
Algorithmic Language (ALGOL). It includes an introduction 
to the operating system and a description of the information 
listings that can be produced ~ the job control language, and 
the subroutine library. 

File No. S360-26 OS 
Form C33-4000-0 



Form C33-4000-0, Page Revised by TNL N33-8013, 6/26/68 

PREFACE 

This publication is intended for use by Application 
Programmers, Systems Programmers and IBM 
Systems Engineers. A knowledge of ALGOL is 
assumed, and the reader is expected to be familiar 
with the prerequisite pUblication: 

IBM System/360 Operating System: ALGOL Lan­
~. Form C28-6615. 

In Section 2, the description "IBM -Supplied 
Cataloged Procedures" provides sufficient informa­
tion to process and execute an ALGOL program 
that can use the IBM -supplied cataloged procedures 
without modification. 

The rest of Section 2, together with information 
in Section 1 and the Appendices, will be required 
for programs that cannot use the IBM -supplied 
cataloged procedures without modification. 

The description of information listings in Section 
3 and the list of diagnostic messages given in 
Appendix F will be helpful in interpreting system 
output, especially for debugging. 

An extensive index has been provided to assist 
the reader in using the manual for reference pur­
poses. 

This publication contains most of the infor­
mation required by the Applications Programmer. 

First Edition (April 1967) 

The following pUblications are referred to within 
the text for information beyond the scope of this 
pUblication. 

IBM System/360 Operating System: 

Assembler Language, Form C28-6514 

Linkage Editor, Form C28-6538 

Job Control Language, Form C28-6539 

Operator I s GUide, Form C28-6540 

FORTRAN IV Libra.ry Subprograms, 
Form C28-6596 

Message Completion Codes, and Storage 
Dumps, Form C28-6631 

Supervisor and Data Management Services, 
Form C28-6646 

Supervisor and Data Management Macro­
Instructions, Form C28-6t347 

System Programmer"'s Gui de, 
Form C28-6550 

Significant changes or additions to the specifications contained in this publication will be reported in sub­
sequent revisions or Technical Newsletters. 

Requests for copies of IBM publications should be made to your IBM representative or to the IBM branch 
office serving your locality. 

A form is provided at the back of this publication for reader"'s comments. If the form has been removed, 
comments may be addressed to IBM Corporation, Department 813, 112 East Post Road, White Plains, N. Y. 
10601, or IBM Nordic Laboratory, Technical Communications, Vesslevagen 3, Lidingo, Sweden. 

©International Business Machines Corporation 1967 



Form C33-400Q-0, Page Revised by TNL N33-8013, 6/26/68 

SECTION 1: INTRODUCTION ••.•••••••••.• '. 
Source Program. . . • • . . • • • • • • • • • • • . • • • • . • .. • 
Operating System •.••••••••••••.••••••••.••• 

Job Control ••••••••.••••••••••.••••.••.• • 
Control Program ••.•••.••••.••••••••••••• 

Job Scheduling •.•••......•..•.•••••.••.•• 
Supervisor .•••••••••••••••••••••••• , . •• . 
Data Management ••••.••••.••••••••••••• '. 

Processing Programs •••••••.•••• '.' •••.•.•• 
ALGOL Compiler •••••••••••••••••.••.••• 
Linkage Editor •••.•••...••.•• ~ • • • • • • . • • .• • 

Load Module Execution •.•••••••••••••.•••.•.• 
Machine Configuration ••••••••••••••••••••••• 

5 
5 
5 
5 
6 
6 
6 
6 
8 
8 
9 
9 
9 

SECTION 2: SOURCE PROGRAM HANDLING •• 10 
IBM-Supplied Cataloged Procedures ••••• . •• • 10 

Cofupilation •.••.••••.••••••.••••.••••••. • 10 
C~mpilation and Linkage Editing. • • • • • . • • .• ..10 
Compilation, Linkage Editing and Execution •• 12 
Over-riding Cataloged Procedures. • • • . • • •• • 12 

Over-riding EXEC Statements. . • • • • • • • . •. • 12 
Over-riding DD Statements .••.•••.•••.•. • 13 
Adding DD Statements ...•••••••••••••••• • 13 

User-Written Procedures •••••••••••.•••••• • 13 
Compilation. . • • • • . • • . • • • • • • . • • • • • • • • • . .• • 13 

Invoking Statement ....••..•..••.••..••. • 13 
Data Sets 'Used ••..••••.•••••••••.••••.• • 14 

Linkage Editing • • • • • • • • • . • • • . • . . • • • • • • • •• • 14 
Invoking Statement .••.•••••.••••••.••.•••• 14 
Data Sets lTsed •••••..•.•••.••••••••••.. • 15 

Load Module Execution •••••.••.••..••••••.• 15 
Invoking Statement. • • • . . • . • • . • • . • • . •• .. • 15 
Data Sets Used ..•••••.••.•••..••••••.•.• 16 

SECTION 3: INFORMATION LISTINGS ..•.•• -. 18 
Control Program Listings ••••••..••••.••••• 
Compilation Listings •.•.••••••••••••.•••.• 

Source Program ..••.••.••.•••••.•.••..•• 
Identifier Table •••••..•••••.•••••••••••• 

• 18 
• 18 
• 18 
• 18 

Diagnostic Messages .•...••••••.••.•••••• . 20 
Storage Requirements ••••••••.••••..• • . •. • 20 

Linkage Editing Listings ..••..•.• n • • • • • • • • •• • 20 
Diagnostic Messages .•••.••.•.•.•••.••••••. 21 
Module Map. • . • . • • . . • . • . . • • • • • . • • • • • • . • 21 
Cross-Reference Table •••.•.••••...••..•• 21 

Execution Time Listings ••.••.•....•.•.. " '. 21 
Diagnostic Messages .•..•••••.••••••.••••• 21 
Data Storage Areas •••••...••.•••.•.•... ' • • • 21 
ALGOL Program Trace. . . • . • • • • • . • . . . • • .. • 22 

CONTENTS 

SECTION 4: PROGRAMMING 
CONSIDERA TIONS ••••••••••••••••••••..••••• 25 
Capacity Limitations ••••••••••••.••••••••••• • 25 
Invoking a Program Within a Job Step ••••••••.• 26 
Precompiled Procedures ••••••••••••••••••.•• 27 

APPENDIX A: ALGOL LIBRARY ROUTINES. • • 31 
Fixed Storage Area. • • • • • • • • . • • . • • • • • • • • • • •• • 31 
Mathematical Routines. • • • • • . • . • • • • • • • • • • • •• • 31 
Input/Output Routines ••.•••.•••••.•.••••••••. 31 
Error Routine .•.••••••••• ' .••••••••••••.••••• 31 

APPENDIX B: IBM-SUPPLIED 
CATALOGED PROCEDURES ••••••..••.•••••• 34 
Compilation. • • • . • • • • • • • • . • • • • • • • • • • • • • • • • .. . 34 
Compilation and Linkage Editing •••••••.•••.••. 32 
Compilation, Linkage Editing and Execution .••• 35 

APPENDIX C: CARD CODES .••.•.••.••••••.. 36 

APPENDIX D: OBJECT MODULE ............. 37 

APPENDIX E: USING JOB CONTROL 
LANG·UAGE • • • • . • • . • • . • • • • • • . • • • • • • • • • • . • •• • 38 
Coding' Format ••••••.•••.•••••••••.•••.••.• 
Conventions •••.•••.•...•.••.••••.•••••••••• 
Control Statement Coding ••..•...•..••.••••.• 

JOB Statement ..•••.•.••••••••••••••••.••• 
EXEC Statement ..••.••..••..•••.•••...••• 

• 38 
• 38 
• 38 
• 40 
• 41 

DD Statement . . • • • • • • • • . • . • • • • • • • • . . . • . • •• • 43 
Command Statement •.•.•••••••.••••••••••• 47 

Data Set Concatenation. . . • • • • • . • . . • • . . . . • . •. • 47 
Job Control Language Examples. . • • • • . • • • • • •. • 47 

Example 1: Executing a Single 
Load Module •.•.•••••••.••••••..••.••••..• 47 
Example 2: Compiling, Linkage Editing 
and Executing Three Load Modules •••••••.. • 48 
Example 3: Executing Two Load Modules .••.. 50 
Example 4: Compiling and Linkage Editing 
an ALGOL Precompiled Procedure. • • . • . • 51. 1 
·Example 5: Compiling, Linkage Editing and 
Executing an ALGOL Program which Invokes 
a Pnlcompiled Procedure. • • • • • • . . • • . 51. 1 

APPENDIX F: DIAGNOSTIC MESSAGES. • . • •. . 52 
Compiler Messages •.••.••..•••••••..•.•••. • 52 
Linkage Editor Messages. . • • • • • • . • • • . • • • . . •• . 59 
Execution Time Messages ••.•••••••••••••.• • 60 

INDEX' •••.••.•.••.••••.••••.••.••••••..••• • 64 



Form C33-4000-0, Page Revised by TNL N33-8013, 6/26/68 

FIGURES 

Figure 1. Basic flowchart for handling an 
ALGOL program •...•••..••.••..•.....•.• . 8 

Figure 2. Sample deck for using ALGOFC 
cataloged procedure with a single source 
program ....••..•• ~ ••..•...•.••..•.••..••• 11 

Figure 3. Sample deck for using the 
ALGOFCL cataloged procedure with two 
source programs •••.•••....•...•...•..••..•. 11 

Figure 4. Flowchart showing data sets 
used by the compiler .•...•.........•.•.... . 14 

Figure 5. Table of data sets used by 
the compiler .•.•••..••..•.....•...•..••... • 14 

Figure 6. Effect on compiler if more than 
44K bytes of main storage is available. . . . . .. . 15 

Figure 7. Flowchart showing data sets 
used by the linkage editor .......•.......•.• " 15 

Figure 8. Table of data sets used by the 
linkage editor .............................. 15 

Figure 9. Flowchart showing data sets used 
at execution time ...........•....•.•..•...• . 17 

Figure 10. Table of data sets used at 
execution time ..•.....•.•.••.......••.•.• . 17 

Figure 11. Example of source program 
listing ...••..•.•..•...•••.••••...••..•..• . 23 

Figure 12. Example of identifier table 
listing .........•...•••..•..•.•..••..•..•... 23 

Figure 13. Example of storage requirements 
listing ••..•......•..•..•.....•••........••• 23 

Figure 14. Example of cross -reference table 
lis ting ..•...•..•...•...•..•..•... ~ .••.••. ~. . 24 

Figure 15. Example of data stoTage area 
listing •.••••....•..•••....• " . • • • . • • • • . . . .• • 24 

Figure 16. Example of program trace listing. 24 

Figure 17. Table of parameter characteristics 
for an Assembler language pre-compiled 
procedure •..••..•.•.•.••...•..•...•..••.•. 30 

I Figure 17.1. Example of an Assembler language 
procedure and an invoking ALGOL program ••. 30.1 

Figure 18. Table of ALGOL library modules . 32 

Figure 19. Source program card codes .••..•• 36 

Figure 20. Object module card deck ......••. 37 

Figure 21. Control statement formats 38 

Figure 22. Data set cataloging using 
qualified names .••••.....•..••..•• '. . • . . . ... 39 

Figure 23. JOB statement parameters ••.•••. 40 

Figure 24. EXEC statement paTameters . ... , 41 

Figure 25. DD statement parameters .•..••.• 43 

Figure 26. I/o flow for Example 1 . ........ " 47 

Figure 27. Job control statements for 
Example 1 .. - ....... - ........................ 48 

Figure 28. I/O flow for Example 2 . ......... 49 

Figure 29. Job control statements for 
Example 2 •••••••••• e •••••••••••••••••••••• 49 

Figure 30. I/O flow for Example 3 .......... 50 

Figure 31. Job control statements for 
Example 3 ....••......••.•••....••......•.• 51 

Figure 32. Job control statements and source 
module for Example 4 • . . • • . • • • • • . . • . 51. 1 

Figure 33. Job control statements and source 
module for Example 5 . • • . . • • • . . . • • • . 51. 1 



Form C33·-4000-0, Page Revised by TNL N33-8013, 6/26/68 

" 

L 

(Source program (MATlNV) 

(;/5YSIN DD i. 
(II EXEC· ALGOFC 

llMATINV JOB 537, JOHNSMITH, MSGLEVEL::1 

--
1----' 

---.---------------------------------.----------~ 

FigUre 2. Sample deck for using ALGOFC cataloged procedure with a single source program. This job 
compiles the MATINV source program used in Example 1 of Appendix E. 

If more than one source program is to be pro­
cessed in the same job, then all job control state­
ments except the JOB statement must be repeated 
for each source program. 

If it is required to keep a load module for use 
in a later job (as in the case when the load module 
is' a precompiled procedure), then the SYSLMOD 
DD state:ment in the cataloged procedure must be 
over-ridden to specify a permanent data set. This 
has to be done for each load module that is kept. 
.The over-riding statement is placed at the end of 
the job step to which it applies, and has the form: 

/ /IKED. SYSLMOD DD DSNAME=dsname(member) , 
DISP=(MOD, KEEP) 

where "dsname" is the name of a partitioned data 
set and "member" is the member name assigned 
to the load module on the partitioned data set. 

I 
Figure 32 shows the job control statements needed 

to compile and linkage edit a precompiled procedure. 

A sample deck of job control statements to com­
pile and linkage edit two source programs is shown 
in Figure 3. 

I ILKED. SYSLMOD DD DSNAME=WTHRP~(FORCST), 
PISP= 

I/LKED. SYSLMOD DD DSNAME=WTHRPR(FILECR), 
DISP= MOD KEEP 

//SYSIN DD DSNAME::::FILECR, DISp::-:OLD 

/ /STEPl EXEC ALGOFCL 

//WEATHER JOB 

Figure 3. Sample deck for using ALGOFCL cataloged procedure with two source programs. These t~o job 
steps compile and linkage edit the two source programs used in Example 3 of Appendix E. Both source pro­
grams have been previously stored on intermediate I/O devices. 

. Source Program Handling '11 



Compilation, Linkage Editing and Execution 

The cataloged procedure used to compile an ALGOL 
source program, linkage edit the resulting object 
module, and execute the load module produced by 
the linkage editor is ALGOFCLG. 

The statements used in this cataloged procedure 
are shown in Appendix ,B. The following state­
ments can be used to invoke the ALGOFCLG cata­
loged procedure: 

JOB 
DD DSNAME=dsname1, DISP=OLD 
EXEC ALGOFCLG 

l/jobname 
IIJOBLIB 
II 
IISYSIN DD [7~ or parameters defining an 

input data set containing 
the source program } 

/IGo. ALG LDD02 DD DSNAME=dsname2 

IIGo.ALGLDDl5 DD DSNAME=dsnamel5 

,where "jobname" is the name assigned to the job. 
"dsnamel" is the name of a data set that contains 
a 'precompiled procedure (see Section 4) which is 
called by the load module being executed. The DD 
statement containing dsnamel need not be used if 
no precompiled procedure is used. 

For a description of the correct use of the 
JOBLIB DD statement when more than one pre­
compiled procedure is used in a job, or when a 
precompiled procedure resides on more than one 
data set, see "Data Set Concatenation" in.Appen­
dix E. 

"dsname2" .•• "dsname15" are the names of input 
data sets required by the load module at execution 
time and output data sets to be created at execu­
tio-!l time. In addition, two data sets for printed 
output (ddnames SYSPRINT and ALGLDDOl) are 
supplied by the cataloged procedure, and a data set 
for input only can be specified by using the following 
statement after the invoking sequence Just given. 

IIGo. SYSIN DD [7~ or parameters defining an 
input data set } 

If DD~:~ is used then the data must follow imme­
diately afterwards in the input stream. For se­
quential s...cheduling, the data must be followed by 
a delimiter statement (/>:~). 

If more than one source program is to be pro­
cessed and executed in the same job, then all job 

12 

control statements except the JOB statement and 
the JOB LIB DD statement must be repeated for 
each source program. 

A sample deck of job control statements re­
quired to compile, linkage edit and execute three 
source programs is shown in Figure 29. 

Over-riding Cataloged Procedures 

The programmer can change any of the statements 
in a cataloged procedure, except the name of the 
program in an EXEC statement. 

These over-riding conditiom; are temporary, 
and will be in effect only until the next job step is 
started. The following text describes methods of 
temporarily modifying existing parameters and 
adding new parameters to the EXEC and DD state­
ments used in the cataloged prooedures. The full 
list of parameters available to the ALGOL pro­
grammer for these statements, and detailed expla­
nations of the parameters, is given in Appendix E. 
The EXEC and DD staternents used in the IBM­
supplied cataloged procedures are shown in Appen­
dix B. 

Over-riding EXEC Statements 

In the EXEC statement, the programmer can change 
or add any of the keyword paralneters by using the 
following format: 

keyword. procstep=option 

where: 

"keyword" is the parameter to be changed in, 
or added to, the specified procedure job step: 
either COND, PARM, ACCT, TIME or REGION. 
TIME and REGION are valid only for priority 
scheduling. 

"procstep" is the procedure job step in which 
the change or addition is to occur: either 
ALGOL, LKED or GO. 

"option" is the new option required. 

For example, if the EXEC statement used to in­
voke the ALGOFCLG cataloged procedure was writ­
ten as: 

II EXEC ALGOFCLG,PARM.ALGOL=DECK, 
II PARM. LKED=XREF, 
I I CONDo GO=(3, LT, ALGOL) 

then the following changes would' be made to the 
ALGOFCLG cataloged procedure: 



1. In the PARM parameter of the job step ALGOL, 
the option DECK would be used instead of the 
default option NODECK (assuming that the stan­
dard default NODECK was not changed at sys­
tem generation). Over-riding this option will 
not affect the other default options assumed 
for this parameter. 

2. In the job step LKED, the option XREF is spec­
ified for the PARM parameter. Since the op­
tions specified in the cataloged procedure were 
XREF, LIST and LET, this statement has the 
effect of deleting the optIons LIST and LET 
since they were not default options. 

3. In the job step GO, the COND parameter code 
is changed from 5, as it appears in the cata­
loged procedure, to 3. In this example, the 
code 3 causes the job step GO to be bypassed 
if a warning message is generated during the 
job step ALGOL. Note that although the other. 
options (LT and ALGOL) are not to be altered, 
the entire parameter being modified must b~ 
respecified. 

If "procstepl?, is not specified when over­
riding a multi -step cataloged procedure, the 
operating system makes the following assump­
tions: 

• COND, ACCT and REGION parameters apply 
to an procedure job steps. 

• A PARM parameter applies to the first pro­
cedure job step and any options already spec­
ified in the PARM parameters for the remain­
ing procedure job steps are cancelled" 

• A TIME parameter specifies the computing 
time for the entire job and any options already 
specified in the TIME parameters for individ­
ual procedure job steps are cancelled. 

Over-riding DD Statements 

An additional DD statement is used in the invoking 
sequence for each DD statement in the cataloged 
procedure that is to be over-;ridden. The following 
format is used: 

/ /procstep. ddname DD parameter-list 

where: 

"procstep" is the procedure job step containing 
the DD statement to be over-ridden: either ALGOL, 
LKED or GO. If "procstep" is omitted then the 
first procedure job step is assumed. 

"ddname" is the name of the DD statement to be 
over-ridden. 

"parameter-list" is the list of parameters that are 
being added or changed. In both cases the whole 
parameter must be specified. Unchanged param­
eters in the original statement need not be spec­
ified. For example, the statement: 

/ / ALGOL. SYSLIN DD SPACE=(400, (80,10» 

will change the SPACE parameter of the SYSLIN 
DD statement in the ALGOL job step so that space 
will be allocated for 80 physical records instead 
of 40. 

DD statements that are used to over-ride other 
DD statements in the cataloged procedures must 
be placed immediately after the EXEC statement 
invoking the cataloged procedure, and must be in 
the same order as their corresponding DD state­
ments in the cataloged procedures. 

Adding DD Statements 

Complete, new DD statements that are to be added' 
to the cataloged procedure use the same format 
as over-riding DD statements. The "ddname" 
specified must not exist in the job step speCified 
by "procstep". These new DD statements must 
follow immediately after the over-riding DD state­
ments which apply to the same procedure job step. 

USER-WRITTEN PROCEDURES 

The information required by the programmer to 
write his own job control procedures is given in 
the following text, and in Appendix E. Cataloging 
user-written procedures, or permanently modi­
fying the IBM-supplied cataloged procedures, is 
accomplished using the IEBUPDTE utility program, 
described in IBM System/360 Operating System: 
:Utilities. The statements required in user-written 
procedures are: 

• An EXEC statement to invoke the program. 

• DD statements to define the data sets used by 
the program. 

~:; ompila tion 

Invoking Statement 

The ALGOL compiler consists of ten load modules 
contained in the link ljbrary, SYS1. LINK LIB , of 
the operating system. The compiler is activated 

Source Program Handling 13 



Form C33-4000-0, Page Revised by TNL N33-8013, 6/26/68 

by invoking its first load module, named ALGOL, 
which then internally invokes the other load mod­
ules of the compiler. 

The usual method of invoking the compiler is 
by means of an EXEC statement of the form: 

/ /stepname EXEC PGM=ALGOL 

where "stepname" is the name assigned to the job 
step (optional). 

Other EXEC statement parameters may be in­
cluded if required (see Appendix E). 

(A method of dynamically invoking the compiler 
within a job step, by means of the CALL, LINK, 
XCTL or ATTACH macro-instructions, is described 
in Section 4. ) 

Data Sets Used 

The data sets used in the compilation process are 
illustrated in Figure 4, and described in Figure 5. 
These data sets must be specified by the program­
mer with suitable DD statements. 

Blocksize DCB information may be specified 
by the user for SYSIN, SYSLIN, SYSPRINT and 
SYSPUNCH. The maximum blocking factor de­
pends on the main storage size available (see 
Figure 6). Record length is fixed at. 80 bytes for 
SYSIN, SYSLIN and SYSPUNCH, and 91 bytes for 
SYSPRINT. 

SYSIN 

SYSLIN 

• Figure 4. Flowchart showing data: sets used by 
the com pile r . 

The space required for the compiler data sets 
depends on the size and structure of the source 
program, however it can be assumed that only in 
rare cases will the object module exceed four 
times the source program and usually much less 
will be required. 

14 

Standard Devices 
Purpose 

ddname required 

For ALGOL source SYSIN Card reader* 
program 

For object module to SYSLIN Direct access or 
be used by linkage editor magnetic tape 

For compilation listings SYSPRINT Printer* 

For object module SYSPUNCH Card punch* 
(copied from SYSLIN) 

For intermediate SYSUTl Direct access or 
compiler working magnetic tape 

I For intermediate SYSUT2 Direct access or 
lcompiler working magnetic tape 

iFor intermediate SYSUT3 Direct access 
compiler working 

i~ Some form of intermediate storage, such as magnetic tape, 
may be used to reduce I/O delay for the central proces-
sing unit. 

eFigure 5. Data sets used by the ALGOL compiler. 

The primary quantity specined in the SPACE 
parameter of the DD statements for SYSUT1, 
SYSUT2 and SYSUT3 must be large enough to 
contain the entire data set. The use of a secon­
dary quantity for any of these data sets will 
increase the need for main storage by 40%. The 
following estimates can be used to allocate space 
on a 2311 direct access device: 

SYSUT1 - 1 track per 100 source cards 
SYSUT2 - 1 track per 100 source cards 
SYSUT3 - 1 track per 200 source cards. 

Processing of all data sets by the compiler is 
independent of the I/O device used except for the 
intermediate work data sets. These require mag­
netic tape or direct access devices. 

Linkage Editing 

Invoking. Statement 

The linkage editor is usually invoked with an 
EXEC statement of the form: 

//stepname EXEC PGM=IEWL 



Form C3:3-4000-0, Page Revised by TNL N33-8013, 6/26/68 

where "stepname" is the name assigned to the job 
step (optional). 

Other EXEC statement parameters may be in­
cluded if required (see Appendix E). IEWL spec­
ifies the highest-level linkage editor in the instal­
lation"'s operating system. 

(A method of dyna,mically invoking the linkage 
editor within a job step, by means of the CALL, 
LINK, XCTL or ATTACH instructions, is described 
in Section 4.) 

Main storage size Maximum blocking factor 
in bytes at which 
changes occur SYSIN SYSPRINT SYSLIN SYSPUNCH 

45056 (44K) 5 5 5 

51200 (50K) 5 5 

59392 (58K) 5 5 5 

67584 (66K) 5 5 5 5 

77824 (76K) 5 5 5 

90112 (88K) 20 20 40 20 

104448 (102K) 20 20 40 20 

120832 (118K) 20 20 40 20 

. 139264 (136K) 20 20 40 20 

'159744 (156K) 20 20 40 20 

184320 (180K) 40 40 40 40 

212992 (208K) 40 40 40 40 

Figure 6. Effect on compiler data sets if more 
than 44K bytes of main storage is available. 
The capacity of internal tables in the compiler 
is increased at each of the main storage sizes 
listed in this table, allowing, for example, a 
larger number of identifiers to be induded in 
the source program. Therefore to gef optimum 
performance, the user is recommended to use 
this list when specifying'main storage size 
available to the compiler. 

Data Sets Used 

The data sets used by the iinkage editor (see Fig­
ures 7 and 8) must be ~efined by the programmer 
with suitable DD statements. 

Blocksize DCB information may be specified 
by the user for SYSLIN and SYSPRINT if the F 
level linkage editor is being used. Maximum 
blocking factor is 5 when 44K bytes of main stor­
age size is available, and 40 when 88K bytes is 
available. Record length is fixed at 80 bytes for 
SYSLIN and 121 bytes for SYSPRINT. 

SVSLlB 

SYSLMOD 

.. Figure 7. Flowchart showing data sets used by 
the linkage editor. 

I 

Load Module Execution 

Invoking Statement 

The usual method of invoking the load module gen­
erated by the linkage editor is with an EXEC state­
ment of the form: 

/ /stepname EXEC PGM:::member-name 

Standard Devices 
Purpose ddname used 

'For object module SYSLIN Direct access or 
input magnetic tape 

For load module SYSLMOD Direct access 
outpqt, stored as a 
member of a parti-
tioned data set 

For ALGOL library, SYSLIB Direct access 
SYSI. ALGLIB. A 
partitioned data set 
containing routines 
in load module form 

For linkage editing SYSPRINT Printer~~ 

listings 

For intermediate SYSUTI Direct access or 
linkage editor magnetic tape 
working 

{~ Some form of intermediate storage, such as magnetic 
tape, may be used to reduce output delay for the cen-
tral processing unit. 

.Figure 8. Data sets used by the linkage editor. 

Source Program Handling 15 



where "stepname" is the name assigned to the job 
step (optional). 

"member-name" indicates the name of the parti­
tioned data set member which contains the load 
module. This name is specified by the progralmner 
in the SYSLMOD DD statement for the linkage edi­
tor. Other EXEC statement parameters may be 
included if required (see Appendix E). 

(A method of dynamically invoking the load mod­
ule within a job step, by means of the CALL, LINK, 
XCTL or ATTACH macro-instructions is described 
in Section 4. ) 

Data Sets Used 

Up to 16 data sets for use at execution time may 
be specified by the programmer in the ALGOL 
source program by using the appropriate data set 
number. The numbers used and the corresponding 
names of their DD statements are listed below. 

Data set number Corresponding 
used in ALGOL ddname 
source program 

0 SYSIN 
1 ALGLDDOl 
2 ALGLDD02 
3 ALGLDD03 
4 ALGLDD04 
5 ALGLDD05 
6 ALGLDD06 
7 ALGLDD07 
8 ALGLDD08 
9 ALGLDD09 

10 ALGLDD10 
11 ALGLDD11 
12 ALGLDD12 
13 ALGLDD13 
14 ALGLDD14 
15 ALGLDD15 

Any reference to a data set number by an I/O 
procedure within an ALGOL source program is 
translated into a reference to a data control block 
using the corresponding ddname. It is the respon­
sibility of the programmer to supply the DD state­
ments which correspond to the data set numbers 
used in the ALGOL source program. 

The execution time data sets are illustrated 
in Figure 9 and described in Figure 10. For 
ALGLDD02 to ALGLDD15, case 1 in the column 
showing device used, applies if the source pro­
gram contains any of the following: 

16 

• A backward repositioning specification by the 
procedures SYSACT4 or SYSACT13 for this 
data set. 

• Both input and output procedure statements 
for this data set. 

• Procedure statements which prevent the com­
piler from recognizing whether either of these 
applies; for example, if the data set number 
or SYSACT function number is not an integer 
constant or if a precompiled procedure is used. 

If the source progralu has already been com-
piled and linkage edited in a previous job, then 
the data set on which it has been stored (in load 
module form) must be concatenated to SYS1. LINKLIR 
Data sets containing precompiled procedures called 
by the source program (see Section 4) must also be 
concatenated to SYSl. LINKLIB. 

If the programmer specifies a TRACE, TRBEG 
or TREND option in the EXEC statement of the 
execution job step, the semicolon count (see Sec­
tion 3) is stored intermediately on a data set with 
the ddname SYSUTl. The programmer must sup­
ply a corresponding DD statement if he uses this 
option. The semicolon count is converted to ex­
ternal form and transferred to the SYSPRINT data 
set as soon as the execution ends either by reach­
ing the logical end of the source program or due 
to an error. 

The space required for the semicolon count is: 

For the main heading 6 bytes 

For each semicolon 2 bytes 

For each call of a 
precompiled procedure 12 bytes 

For each physical 
record on SYSUT1 4 - 6 bytes 

System/360 ALGOL permits data to be tempo­
rarily stored on and retrieved from external de­
vices without conversion, using the ALGOL I/O 
procedures PUT and GET. If the programmer 
uses this facility in his source program, then he 
must supply a DD stateluent with the ddname 
SYSUT2. The device specified by this statement 
for storing such intermediate data should be a 
direct access device to guarantee reasonable per­
formance, though programming is performed in­
dependently between magnetic tape and direct ac­
cess devices. All data passed by a single PUT is 



Form C3~:-4000-0, Page Revised by TNL N33-8013, 6/26/68 

Intermed iate Work 

SYS1. D 
L1NKLIB 

~ 

Load Module for Source 
Program, Precomp i led 
Proced ures, a nd Error 
Routine 

SYSUT 1 

Dat~ 

SYSIN & 
A LG LDD02-15 

LOAD 
MODULE 
EXECUTION 

~~ 

Information ALGLDDOl & 
Listings SYSPRINT 

] Any of 
ALGLDD02-15 
not used for 
input 

-Figure H. Flowchart showing data s~ts used at load module execution. The data input and output require­
ments are variable. 

stored as one record. This record will be as 
long as the data passed, plus 8 bytes. The 
maximum record length accepted is 2048 bytes. 

The DCB information which ,may be specified 
by the user for execution time data sets -is .block­
size, record format and record length (see page 
44 for details), except for the trace and PUT/GET 
data sets (ddnames SYSUT 1 and SYSUT 2) for 
which only blocksize may be specified (up to a 
maximum of 2048 bytes). 

For information not provided, default values 
will be inserted bya routine in the ALGOL 
library. In particular, blocksize is assumed 
as 2048 bytes for SYSUTl and SYSUT2 if none 
is specified. 

Standard Device 
ddname Used 

For data input SYSIN Any input de-
to load module vice 
For execution time SYSPRINT Printerif 

listings 
For data output ALGLDDOI Printerif 

For data input ALGLDD02 1. Direct 
or output access or 

ALGLDD15 
magnetic 
tape 

2. Any 

For intermediate SYSUTI Direct access 
storage of semi- or magnetic 
colon counter when tape 
TRACE is spec-
ified 
For temporary SYSUT2 Direct access 
storage when PUT or magnetic 
is specified tape 

if Some form of intermediate storage, such as 
magnetic tape, may be used to reduce I/o 
delay for the central processing unit. 

-Figure 10. Data sets used at execution time. 

Source Program Handling 1 7 



SECTION 3: INFORMATION LISTINGS 

To assist the programmer to find the cause of any 
faults in the processing or execution of his pro­
gram, various forms of information listings are 
produced for the compilation, linkage editi.ng and 
execution operations. Some-of these listings are 
optional. Examples are illustrated in Figures 11 
to 16. 

CONTROL PROGRAM LISTINGS 

All three operations may produce listings gener­
ated by the control program. These are described 
in IBM System/360 Operating System: Messages, 
Completion Codes. and Storage Dumps. The 
ABEND macro-instruction for specifying the main 
storage dump is described in IBM System/360 
Operating System: Supervisor and Data Manage­
ment Macro-Instructions. 

COMPILA TION LISTINGS 

A successful compilation of an ALGOL source pro­
gram produces the following information listings: 

• Job control statement information according 
to which MSGLEVEL option was specified in 
the JOB statement. 

• The source program supplemented by a count 
of the semicolons occurring in the program 
(optional) • 

• A table giving details of all identifiers used in 
the program (optional). 

• Any warning diagnostic messages. 

• Information on main storage requirements at 
execution time. 

If a serious diagnostic message is produced 
(meaning that object module generation has ended) 
then the source program and identifier table list­
ings will be printed in full if they have been re­
quested, but the information on main storage re­
quirements will not be printed. If a terminating 
diagnostic message is produced then the source 
program and identifier table listings can be printed 
only as far as they have been produced. 

18 

Source Program 

If the SOURCE option has been specified, the 
source program is transferred by the compiler 
to an output data set in order to be listed by a 
printer. This source program is supplemented 
by a semicolon coUnt, which is referred to in the 
diagnostic messages to help localize errors. 

The compiler , generates this semicolon count 
when scanning the source program, by counting 
all semicolons occurring in the source program 
outside strings, except those following the de­
limiter "'COMMENT"'. The value of this semicolon 
count at the beginning of each record of the SOllrce 
program is printed at the left of that record. It is 
assigned by the compiler in order to have a clear, 
problem-oriented reference. Any reference to a 
particular semicolon number r,efers to the segment 
of source program following the specified semi­
colon, for example, the semicolon number 5 re­
fers to the program segment between the fifth and 
sixth semicolons. 

Identifier Table 

If the SOURCE option has been specified, a list of 
all identifiers declared or speeified within the 
source program is transferred by the compiler to 
the output data set for printing after the source 
program listing. This identifier table gives in~ 
formation about the characteristics and internal 
representation of all identifiers. The identifiers 
are grouped together within the identifier table 
according to their scopes. 

All blocks and procedure declarations within 
the source program are numbered according to 
the order of occurrence of their opening delimiters 
"'BEGIN ~ or "'PROCEDURE"'. Therefore, if the body 
of a procedure declaration is a block., then usually 
this block has the same number as the procedure 
declaration itself. These numbers are called 
program block numbers (even if they belong to a 
procedure declaration and not to a block). 

Each line in the table contains entries for up 
to three identifiers and the line begins with the 
number of the program block in which the' identi­
fiers were declared or specified, the value of the 
semicolon count at the commencement of the pro­
gram block, and the number of the immediately 
surrounding program block. Each identifier entry 
contains: 



CAPACITY LIMITATIONS 

In addition to those given in IBM System/360 
QQ.erating System: ALGOL Language, the follow­
ing restrictions must be observed when writing 
an ALGOL source program: 

Number of blocks and 
procedure declarations 
(NPB) ~255 

Number of for statements ~255' 

NUlnber of identifiers de­
Glared or specified in one 
block or procedure. F is 
at lnost twice the number 
of for statements occur­
ring in that block 

Length of letter string 
serving as parameter 
delimiter 

~179-F for type 
procedures 
~180-F otherwise 

~1024 letters when main 
storage size available is 
less than 50K, ~2000 
letters otherwise 

Length of label identifer ~1024 characters 

Length of source 

when main storage size 
available is less than 
50K, ~2000 characters 
otherwise 

program ~255K 

Number of semicolons in 
the whole program ~65535 

Number of nested blocks, 
compound statements, for 
statements and procedure 
declarations ~999 

Number of labels declared 
or additionally generated 
by the compiler ~1024 

The compiler generates the following 
additional labels: 

SECTION 4: PROGRAMMING CONSIDERATIONS 

For each switch declaration 2 

For each procedure declaration 2 

For each procedure activation 
(including function designators) 1 

For each 'THE N ~ and each "E LSE ~ 1 

For each for statement 

Length of constant 

at most L + 3 
where L is the 
number of for 
list elements 

pool ~(256 - NPB) x 4096 bytes 

The requirements of components within the pool 
are 

Integer constant 

Heal constant 
(SHORT) 

Heal constant 
(LONG) 

String (in bytes) 

4 bytes 

4 bytes 

8 bytes 

2 + number of 
symbols of open 
string between 
the outermost 
string quotes 

The constant pool is divided into blocks of 4096 
bytes each. The first block contains the integer 
constants 0 to 15 (64 bytes). All strings together 
are restricted to fill not more than the rest of 
this block (4096 - 64 - 2S bytes, where S = 

number of strings). 
No constant occurring more than once in the source 
program is stored twice in the same block; however, 
it may possibly be stored more than once in differ­
ent blocks. Up to seven bytes may be left unused. 

Length of data storage area 
for each block or procedure 
declaration 

Number of blank spaces 
serving as delimiters on 
I/O data sets 

Number of records in a 
data set 

~4096 bytes 

s;255 

~32760 

Programming Considerations 25 



Form C33-4000-0, Page Revised by TNL N33-8013, 6/26/68 

Number of records per 
section ~255 

Number of entries in the 
Note Table ~127 

(The Note Table stores information to retrieve 
records which may be required again later. An 
entry for a record is made each time the ALGOL I/O 
procedures PUT and SYSACT13 are executed, and 
each time an input operation, with backward repo­
sitioning, follows an output operation on the same 
data set.) 

Identification number (N) used 
by PUT or GET 0~~65535 

INVOKING A PROGRAM WITHIN A JOB STEP 

Anyone of the four macro-instructions, CALL, 
LINK, XCTL or ATTACH, may be used to dynam­
ically invoke the compiler, linkage editor and load 
module within a job step. This is an alternative 
to the more usual method of invoking a program 
by starting a job step with an EXEC statement. 
Full details of the four macro-instructions are 
given in IBM System/360 Operating System: Super­
visor and Data Management Macro-Instructions. 

To invoke a program with the CALL macro­
instruction, the program must first be loaded into 
main storage, using the LOAD macro-instruction. 
This returns, in general register 15, the entry 
address which is used by the CALL macro-instruc­
tion. The instructions used could be: 

LOAD EP=member-name 

LR 15,0 

CALL (15), (option-address), VL 

To invoke a program with one of the LINK, 
XCTL or ATTACH macro-instructions would need 
instructions such as: 

LINK EP=member-name, 

PARAM=(option-address), VL=l 

XCTL EP=member-name 

ATTACH EP=member-name, 

P ARAM=(option-address), VL=l 

26 

"member-name" specifies the name of the mem­
ber of a partitioned data set which contains the pro­
gram required. 

For the compiler, member-·name=ALGOL 

For the linkage editor, menlber-name=IEWL 

For the load module, member-name is speci­
fied by the programmeJ;' in the SYSLMOD DD state­
ment for the linkage editor. 

"option-address" speCifies the address of a 
list containing the options required by the user. 
An address must be gjven even if no options are 
specified. The list must begin on a half-word 
boundary. The first two bytes contain a number 
giving the number of bytes in the remainder of 
the list. (If no options are speeified this number 
must be zero). The list itself IJontains any of the 
options available to the P ARM parameter in an 
EXEC statement (see Appendix E). 

When using CALL, LINK or ATTACH to invoke 
the compiler, other ddnames may be used in place 
of the standard ddnames given in Section 2 for the 
data sets and an alternative page number (instead of 
the normal 001) may be specified for the start of 
output listings. 

If alternative ddnames are used, then in the 
statement invoking the compiler, "option-address" 
must be followed by "ddname -address" giving the 
address of a list containing the alternative ddnames. 
If alternative page numbers are used, then "page­
address" giving the address of a location contain­
ing the alternative page numher must be placed 
after "ddname -address 'I; thou~~h if alternative 
ddnames are not required "ddname -address" may 
be replaced by a comma. 

The ddname list must begin on a half-word 
boundary. The first two bytes contain a number 
giving the number of bytes :in the remainder of 
the list. The list itself contains up to ten 8-byte 
fields, separated by commas, for specifying al­
ternative ddnames for the data sets. As only seven 
data sets are used by the compiler, three of the 
fields· are left blank. The alternative ddnames 
must be listed in the following order: 

Purpose of data set 

Output of object module 
for linkage editor 

Standard ddname 

SYSLIN 



Form C33-4000-0, Page Revised by TNL N33-8013, 6/26/68 

-- Three blank fields --

Source program input 

Information listings 

Output of object module 
for card deck 

Intermediate work 

Intermediate work 

Intermediate work 

SYSIN 

SYSPRINT 

SYSPUNCH 

SYSUTI 

SYSUT2' 

SYSUT3 

~rhefield for a data set which does not use an 
alternative ddname must be left blank if there is 
an alternative ddname following. Otherwise the 
field is omitted. 

The location containing the page number must 
begin on a half-word boundary. The first two 
bytes contain a number giving the number of bytes 
in the remainder of the location (namely, four). 
These four bytes contain the number for the first 
page of the output listings, and on return to the 
invoking program they will contain the nu:mber of 
the last page. 

An example of an invoking statement and the 
associated lists, for the compiler, is: 

COMPILE LINK EP=ALGOL,PARAM= 
(OPTIONS, DDNAMES IJ~AGE) , 
VL=l . 

OPTIONS DC H "25 ", C "PROCEDURE, D:ECK, 
SIZE=90112 " 

DDNAMES DC H"J5",C"OUTPUTbb,3CL81,)", 
C 1NPUTbbb ", CL81,) ", 
C "CARDDECK" 

PAGE DC H "04 ", F"62" 

b = blank 

In this case~ the PROCEDURE and DECK op­
tions are specified and 88K bytes of main storage 
are made available. Alternative ddnames are 
specified for SYSLIN, SYSIN and SYSPUNCH, and 
62 :is specified' as the first page number for the 
output listings. 

PRECOMPILED PROCEDURES 

An ALGOL program may invoke one or more sub­
programs, written in the ALGOL language or in the 
Assembler language and stored on a partitioned data 
set in load module form. Subprograms of this type 
are ktnown as precompiled procedures. 

A precompiled procedure to be invoked by an AL­
GOL program must be nominally declared in the calling 
program. The declaration consists of a normal pro­
cedure heading, followed by the delimiter "'CODE'" 
representing the procedure 'body. ' The name of the 
precompiled procedure declared in the calling pro­
gram must be the load module name of the precom­
piled procedure. 

A precompiled procedure is loaded into main stor­
age when control passes to the program block in which 
the precompiled procedure is declared, and is deleted 
when control leaves that block. Where possible, a 
precompiled procedure should be nominally declared 
in the outermost block of the calling ALGOL program. 
The declaration of a precompiled procedure in another 
precompiled procedure which is frequently invoked, 
should be avoided. This saves execution time by.re­
ducing the number of loadings of the precompiled pro­
cedure. 

The precision of real values must be the same, 
SHORT or LONG, in the calling ALGOL program and 
the precompiled procedure. If the installation allows 
nlultiprogramming, the REUS option (Appendix E) may 
not be specified for the precompiled procedure load 
module, in the, statement invoking the linkage editor. 

ALGOL Language Procedures 

A p"recompiled procedure, written in the ALGOL lan­
guage must satisfy the ri.lles, as stated in IBM System/ 
360 Operating System: ALGOL Language, governing 
any normal procedure declaration. That is to say, 
the source module should comprise a procedure heading 
and a procedure body. The source module should not 
be enclosed by the delimiters 'BEGIN" and "END". 

An ALGOL procedure to be invoked in 'a later pro­
gTam must be compiled, linkage edited and stor,ed on 
a partitioned data set. In the invoking statement, the 
source module mu'St be identified as a precompiled 
procedure by specifying the option PROCEDURE. 

An example of the job control statements needed to 
compile and linkage edit a, precompiled procedure is 
provided in Figure 32. Figure 33 illustrates the job 
control statements needed to compile; linkage edit 
and execute an ALGOL program in which a precom­
piled procedure is called. 

Programming Considerations 27 



Form C33-4000-0, Page Revised by TNL N33-S013, 6/26/68 

Assembler Language Procedures 

A sample Assembler language procedure, and an 
ALGOL program in which the procedure is nominally 
declared and called, are shown in Figure 17 .. 1. 
Figure 33 contains an example of the job control state­
ments needed to compile, linkage edit and execute an 
ALGOL program in which a precompiled procedure 
is called. 

In writing an Assembler language procedure, cer­
tain rules must be observed. These rules are out­
lined below under the headings Entry and Start, Defi­
nitions, Register Use, Paramet'er Handling, and Ter­
mination. 

In the instructions given below the programmer 
may specify any valid names in the name fields, pro­
vided the appropriate name is used in all references. 

The entry point of the module mllS t be defined as 
follows (the names shown are examples only): 

ENTRY DC A(PBTAB, 0, PARMDEF) 

where '''ENTRY''' is the location specified in the END 
stat~ment; 'PBTAB~-references a Program Block 
Table (see "Definitions", item 1)~ 0 represents a 
dummy label; and P ARMDEF references a list of 
two-byte parameter definition constants or charac­
teristics (Figure 17), as follows: 

PARMDEF DC XL2 "'characteristic 1'" 
DC XL2 "'characteristic- 2' 

DC XL2 'characteristic n'" 
(First instruction execufed) 

The list must include a characteristic for each 
formal parameter and must be followed by the first 
instruction to be execl'lted in the module. If the pro­
cedure has no parameters, P ARMDEF must refer­
ence the initial. instruction. 

Definitions ------

The following data must be defined in the Assembler 
language procedure. 

2S 

'I. A 16-byte table, called the Program Block 
Table, must be defined: 

PBTAB DS F 
DC CIA "(p:roc. name)'" 
DS F 
DC H '(DSA length) , 
DC X '04' [ 'OS' if type-

procedure] 
DC X 'Op'" Ii = no. of formal 

parameters 

"proc. name" represents th(~ first four charac­
ters of the module name. "DSA length" repre­
sents the length of the procedure "s data storage 
area. The length is 24 (+S if the procedure is 
tvpe-qualified), + S x number of fprmal param-
\... rs. The Program Block Table must be 
addressed by an address constant at the procedure 
entry point (see "Entry and Start"), and should 
preferably be defined at the base, address of the 
procedure (see ''Register Us.e", item 4). 

2. Certain registers used in communicating with 
Fixed Storage Area routines must be symbolically 
named (see ''Register Use", item 1). 

3. The following symbolic displacement values must 
be defined for those Fixed Storage Area routines 
which are invoked in the procedure: 

CAPI EQU X"'OD4" 
CAP2 EQU X"'ODS'" 
PROLOGFP EQU X'UDC" 
RETPROG EQU X"OE4' 
EPILOGP EQU X'UES" 
CSWEI EQU X'UF4'" 
VALUCALL EQU X1.1S" 

See "Parameter Handling" and "Termination". 

4. A list of parameter definition constants, identi­
fying the character of the fOJl'mal parameters, if 
any, must be defined. See "Entry and Start" and 
Figure 17. 

5, An address constant containing the address of the 
Program Block Table (item 1 above) and a param­
eter definition list, must be defined at the load 
module entry point. 



Form C33-4000-0. P~ge Revised by TNL N33-8013, 6/26/68 

The standard IBM linkage conventions are not 
implemented in any code generated by the compiler 
involving a transfer of control between an ALGOL 
load module and a submodule. For this reason, 
provision must be made in a submodule to insure 
that externally used registers to be used internally 
are, at entry, saved in a local save area (and re­
loaded before exit), and that, where necessary, 
internally used registers are saved in advance of 
every parameter call. 

All general purpose and floating point registers 
may be freely used in an Assembler language pro­
cedure, subject to the restrictions itemi.zed below. 

1. In the code sequences for calling actual param­
eters (see "Parameter Handling"). registers 8, 
10, 11, 13, 14 and 15 are symbolically referenced. 
Every register so referenced in a caning sequence 
within the precompiled procedure must be defined 
as follows: 

ADR EQU 8 
CDSA EQU 10 
PBT EQU 11 
FSA EQU 13 
STH EQU 14 
BRR EQU 15 

2. During every call for an actual parameter and 
before final exit from the precompiled procedure, 
registers CDSA (10), PBT (11) and FSA (13) must 
contain their values at entry to the procedure. 
At entry, CnSA addresses the Assembler language 
procedure ~s data storage area; PBT addresses 
the Program Block Table (see "Definitions", 
item 1); and FSA addresses the Fixed storage Area. 
If any of these registers are used internally, other 
than in actual parameter calls, their con~ents 
must be saved in a local save area at entry to the 
procedure, and must be reloaded before all param­
eter calls and before final exit. 

3. Before every call for an actual parameter, the 
contents of all internally used registers, reqUired 
after the parameter call, should be saved in a 
local save area and reloaded on return. 

4. All registers except registers 10, 11 and 13 are 
subject to varying use during a parameter call. 
The programmer is advised to use register 11 as 
base register and to specify the Program Block 
Table ("Definitions", item 1) in the USING state­
ment p as illustrated in Figure 17.1. This insures 
that the base register is always correctly loaded 
before return to the procedure. 

A call for an actual parameter must be implemented 
by means of an appropriate calling sequence, which 
depends on the character of the parameter and on 
whether it is called by name or by value. 

In the instructions given below, the notation "displ" 
represents the displacement of a field reserved for the 
formal parameter in the precompiled procedure ~s 
data storage area. The displacement of the storage 
field of the nth formal parameter is 

24 + 8 (n-l), except in the case of a 
type procedure where it is 32 + 8 (n-l). 

Important Note: Before every call for an actual para­
meter, all locally used registers should be saved and 
registers CDSA, PBT and FSA should contain their 
original values at entry to the precompiled procedure 
(see "Register Use"). On return from a parameter 
call, locally used registers should be reloaded. 

Call by Name 

1. Formal parameter specified ~ARRAY~, 'STRING ~ 
or type 'REAL~, 1NTEGER~ or '"BOOLEAN'": 

BAL BRR, CAPI (FSA) 
DC H ~8'" 

DS H 
L ADR, displ (CDSA) 

On return, register ADR addresses the actual 
parameter value or string or the actual array"s 
storage mapping function. The storage mapping 
function describes the storage layout of the array. 
Bytes 8 to 11 contain the address of the first ele­
ment in the array. The array elements are 
arranged in ascending order, a given subscript 
being regarded as a unit of the subscript position 
immediately to the left. For example, if an 
array is declared A(/1:2, 1:2), the elements are 
arranged as follows: A(/I,I/), A(/1,2/), 
A(/2, 1/), A(/2,2/). 

2. Formal parameter specified '"LABEL": 

BAL BRR, CAPI (FSA) 
DC H "8" 
DS H 
L ADR, displ (CDSA) 
B RETPROG (FSA) 

The sequence causes an unconditional branch to 
the labelled statement in the calling ALGOL pro­
gram. 

Programming Considerations 29 



Form C33-4000-0, Page Revised by TNL N33-80l3, 6/26/68 

3. Formal parameter specified "'SWITCH": 

BAL BRR, CAPI (FSA) 
DC H "8" 
DS H 
L ADR, displ (CDSA) 
LA BRR, i [i:= component 

number] 
BAL STH, CSWEI (FSA) 
B RETPROG (FSA) 

The sequence causes an unconditional branch to 
the labelled statement in the calling ALGOL pro­
gram. 

4. Formal parameter specified "PROCEDURE" or 
"<type >" "PROCEDURE" with j formal parameters: 

BAL 
DC 
DS 
L 
BAL 
DC 
DC 
DC 
DC 
DC 
DS 

DC 
DC 
DS 

BRR, CAPl (FSA) 
H "8" 
H 
ADR, displ (CDSA) 
BRR, PROLOGFP (FSA) 
A (CODESEQ.l) 
XL2 "characteristic I" 
H j" 
A (CODESEQ. 2) 
XL2 "characteristic 2" 
H 

A (CODESEQ. j) 
XL2 characteristic j" 
H 

"Characteristic 1" represents the two-byte 
constant (Figure 17) which identifies the'charac ... 
ter of the first actual parameter. 

"CODESEQ. 1" represents the symbolic address 
of an actual parameter code sequence correspond­
ing to the first parameter, as follows: 

CODESEQ. 1 LA 
B 

ADR, par. add. 1 
CAP2 (FSA) 

where "par. add. 1" represents the address of the 
actual parameter. (If the parameter is a string, 
the first two bytes of the actual parameter should 
contain the string length +2). A similar code 
sequence must be included in the procedure for 
each of the j parameters of the procedure, and 
each code sequence must be addressed by an 
address constant,< as shown above. 

29.1 

Execution of the calling sequence causes an actual 
procedure to be called. 

Call by value 

Formal parameter specified'" ARRA Y'" or type 
"'REAL , "'INTEGER'" or "BOOLEAN"': 

BAL 
DC 
DS 
L 
BAL 
DC 
DC 

BRR, CAPl (FSA) 
H "'8'" 

H 
ADR, displ (CDSA) 
BRR, VALUCALL (FSA) 
H "'displ'" 
C L2 "'characteristic" 

"displ" represents the displacement of the formal 
parameter"s storage field in the data storage area: 
"characteristic" represents the two -byte charac­
teristic (Figure 17) of the formal parameter. 

In the case of a type specifieation, the calling 
sequence causes the value of the actual parameter 
to be moved into the 8-byte field of the formal para­
meter. In the case of an array, the address of the 
array'" s storage mapping function is stored in the 
first four bytes of the formal parameter'" s storage 
field. Bytes 8 to 11 of the storage mapping func­
tion contain the address of the first element of the 
array. 

Termination -------

At the' close of a precompiled procedure, the follow­
ing must be observed. 

1. Registers CDSA, PBT and F'SA must, where 
necessary, be reloaded with their original con­
tents at entry to the precompiled procedure. 

2. If the precompiled procedure is type-qualified, 
the value of the procedure must be stored at dis­
placement 24 in the data storage area. The 
latter is addressed by CDSA. 

3. The terminal instruction must be 

B EPILOGP (FSA) 

This returns control to the calling ALGOL pro­
gram. 



Type of Characteristic Halfword 
Parameter (in hexadecimal form) 

Result after call of actual parameter 
When called When called 
by name by value 

STRING CB10 ADR contains address of string: 
REAL C212 ADR contains address of real value 
REAL C222 DISPL in CDSA contains real value 
INTEGER C211 ADR contains addre.ss of integer value 
INTEGER C221 DISPL in CDSA contains integer value 
BOOLEAN C213 ADR contains address of Boolean value 
BOOLEAN C223 DISPL in CDSA contains Boolean value 
ARRA Y or REAL} CA16 ADR contains address of 8M F (see below) 
ARRAY CA26 DISPL in CDSA contains address of SMF 
INTEGER ARRAY CA15 ADR contains address of SMF 
INTEGER ARRAY CA25 DISPL in CDSA contains address of SMF 
BOOLEAN ARRAY CA17 ADR contains address of SMF 
BOOLEAN ARRAY CA27 DISPL in CDSA contains address of SMF 
LABEL CA18 ADR contains address of label 
LABEL CA28 ADR contains address of label 
SWITCH CAlC ADR contains address of switch 
PROCEDURE CADO If the actual procedure is parameter-less then 

procedure is called, otherwise ADR contains 
address of procedure 

REAL PROCEDURE CAD2 If the actual procedure is paraIneter-less then 
procedure is called, and ADR eontains address 
of real value, otherwise ADR contains address 
of procedure 

REAL PROCEDURE C2E2 DISPL in CDSA contains real value 
INTEGER PRO- CADI If the actual procedure is parameter-less then 
CEDURE procedure is called, and ADR contains address 

of integer value, otherwise ADR contains address 
of procedure 

INTEGER PRO- C2E1 DISPL in CDSA contains integeT value 
CEDURE 
BOOLEAN PRO- CAD3 If the actual procedure is parameter-less then 
CEDURE procedure is called, and ADR contains address 

of Boolean value, otherwise ADR contains address 
of procedure 

BOOLEAN PRO- C2E3 DISPL in CDSA contains Boolean value 
CEDURE 

Figure 17. Table of parameter characteristics for an Assembler language precompiled procedure. The 
SMF describes the storage layout of an array. Byte 0 contains a value denoting the nunlber of subscripts 
in the array. Bytes 8 to 11 contain the address of the first element in the array. Bytes 16 to 19 contain 
a value denoting the size of the array. 

30 



Form C33-4000-0, Page Revised by TNL N33-8013, 6/26/68 

The following is an Assembler language procedure. It is declared under the name CaMP (in the ALGOL program below) 
with the formal parameters V1, V2 and L. V1 and V2 are integers, while L is a label. CaMP is called by the ALGOL 
program and compares V 1 to V2. If V 1 ~ V2. the constant 1 is Gldded to V 1, and control' is' returned to the next instruc-
tion in the calling program. If V1 > V2, control is returned to thE! calling program at the address specified for label L. 

STAR T 

* AOR EOU S 
CGSA EQU 10 MANO~,TORY 
PBT EOU 11 REGJST ER 
F SA EQU 13 IlEF I f\1T ICNS 
BRR EOU 15 

* R EGVl EOU CD SA LOCAl. 
~ EGAOV 1 EOU F SA REG 1ST ER 
REGV2 EO U 12 OEFltdT ICf\S (OPT ION AI.. I 

* CAP 1 EOU X'004' MAf\GAT CRY 
VAL UCAi..L EOU X'lUl' FIX ED' 
EP !LO GP EOU X 'CE P' STORAGE AREA 
RETPROG EOU X'DE 4' OEFlf\1T ICNS 

lJSING PB TAB ,PB T 
PBTAB DS F 

DC CL4'COMP' PROG'RAM 
OS F BLOCK 
DC H'4S' TABLE 
DC X'C4C3' 

* EN TR Y , DC AI PBTAS ,C,PAR"DEFI 

* AL SA VE DS 2F SAVE AREA FCR CDSA AND fSA 
USSAVE OS 15F AND FOR LOCAL REGISTERS 
ONE DC H'l' CONST ANT 
PARMDEF OS OH 

DC XL 2 'C 211 ' CHARACTERIST IC OF VI 
DC XL2'C221' V2 
DC XL2 'CAlS' L 

ST CDSA,ALSAVE SAVE CDS A 
ST F SA ,A L SA VE + 4 AND fS A 
RAL BRR,OAPIIF SAl CALL 
DC H'S' Vl 
OS H BY 
L ADR ,24100 SAl f\AME 
LQ, REGAO Vl ,AD R 
L REG VI, 01 AORI LOAD V 1 
STM 12,1 C , US SA VE SAVE LOCAL REGIST ERS 
L CDSA,ALSAVE RELCAD CGSA 
L F SA ,ALSAVE+4 Af\D fS A 
BAL BRR,CAPl(F SAl CALL 
DC H' 8' V2 
OS H BY 
L ADR ,32(CO SAl VALU E 
BAL BRR ,VALLCALLIF SAl V2 IS CCf\V ERT ED TO !NT EGER ANC 

STORED 11\ GSA 
DC H'32' 
DC XL2'C221' 
MV:: USSAVEI4I,32(C05AI MOVE V2 TO SAVE AREA 
LM 1 2 , 1 C , US SA VE RELOAD LCCAL REGISTERS 

REGV2 COf\TAII\$ V2 
CR REGV1,REG V2 CCMPARE Vl TC V2 
BH LE XI T Vl > V2 
AH REG Vl ,ONE VI .. > V2: ADO 1 T a II 1 
ST REG Vl • (I( REGAD 1111 STORE VI 

* CO SA ,A LSAVE RELOAC COS A 
F SA ,A LSAVE+4 AI\C FS A 
EPILOGPIFSAI RETURN TO CALLING PROGRAM 

* L F X IT EQU * L CD SA ,ALSA VE RELOAD COSA 
L FSA,ALSAVE+4 AND fS A 
BAL BRR,CAPIIFSAI CALL 
DC H'S' L 
OS H B'( 
L AOR,4C«CDSAI f\A,. E 
B RE TPRDG IF SAl RETURf\ TC CALLING PROGRAM 

FWl E NTR Y 

The following ALGOL program reads a number from Data Set Number 0, assigns the number to the variable I, and invokes 
the Assembler language procedure CaMP. The call to CaMP includes three actual parameters: the variable I, the constant 
200.5 and the label OUT. CaMP compares I to 201 (200.5 converted to integer). If I ~ 201, CaMP adds 1 to I and returns 
control to the next statement in the ALGOL program. CaMP is then called again. The call is repeated until I > 201, at 
which time CaMP passes control to the statement labelled OUT. 

'R EG 1'1 ' 
, IN TfGER.' I; 
'i>ROCEOURE' COMi>IV1,V2,LI; 'VALUE' \12; 'INTEGER' V,l,V2; 'LABa' L. 
'CODE' ; 
'COMMENT' THI S NOMI NALLV DECLARES THE A5SEMBLER PRCCEDURE COMi>; 
IN INTEGER «0,1); 

CO"lT: COMP(I,2CO.~,OUTl; 
'GO Tn' CONTi 

r) UT: 
, EN D' 

-Figure 17. 1. Example of an Assembler language procedure and an invoking ALGOL program. 

ALGOL Library Routines 30.1 



IHIOBA For OUTBARJRA Y 70 

IHIOBO For OUTBOOLEAN 400 

IHIOIN For OUTINTEGER 420 

IHIOST For OUTSTRING 300 

IHIOSY For OUTSYlV.(BOL 290 

IHIOTA For OUTTAHRAY 120 

IHIPTT For INREAL; OUTREAL, ININTEGER or 
OUTINTEGER 270 

IHISAT IHCSATAN For a short precision arctangent 
operation (ARCTAN) 200 

UnSEX IHCSEXP For a short precision exponential operation (EXP) 280 

IHISLO IHCSLOG For a short precision logarithmic operation (LN) 210 

IHISOR For a short precision OUTREAL operation 810 

IHISSC IHCSSCN For a short precision sine or cosine operation 
(SIN or COS) 260 

IHISSQ IHCSSQRT For a short precision square root operation 
(SQRT) 170 

IHISYS For SYSACT 1890 

Figure 18. Table o.f ALGOL library modules. All are eontained in SYSl. ALGLIB except IHIERR 
which is in SYSl. LINK LIB. For mathematical routines:. the corresponding name in the FORTRAN IV 
library is also given. 

ALGOL Library Routines 33 



Form C33-4000-0, Page Revised by TNL N33-8013, 6/26/68 

APPENDIX B: IBM-SUPPLIED CATALOGED PROCEDURES 

The three cataloged procedures for ALGOL that 
were introduced in Section 2 are contained in the 
procedure library, SYSl. PROCLIB, of the oper­
ating system. They consist of the job control state­
ments listed below. 

The procedures may be used with any of the 
OS/360 job schedulers. When parameters required 
by a particular scheduler are encountered by another 
scheduler not requiring those parameters, either 
they are ignored or alternative parameters are sub­
stituted automatically. For example, if these pro­
cedures are used with a sequential scheduler the 
following parameters, which are required for the 
multiprogramming option with variable number of 
tasks (MVT), are treated as follows: 

REGION=xx.xxK is ignored 
SYSOUT=B is interpreted as UNIT=SYSCP 
DISP=Slffi is interpreted as DISP={OLD, KEEP) 

Before use, thes e procedures should be studied 
with a view to modifying them for greater efficiency 
within the particular environment of the installation. 

In installations using the MVT option of OS/360, 
the REGION specifications for the compilation and 
linkage editing steps must be altered where neces­
sary to suit the available storage. The REGION 
specification for the compilation step must be at least 
4K bytes greater than the storage specified in the 
compiler SIZE option. In the three procedures in 
which the Linkage Editor is invoked, a REGION of 
96K has been specified for the linkage editing step. 
If necessary, this REGION specification may be 
reduced to conserve storage. The minimum REGION 
specifications for the various design levels of the 
Linkage Editor are: 

• Compilation, ALGOFC 

Linkage Editor 

E15 
E18 
E44 

REGION Specification 

:24K 
:26K 
54K 

Installations using the MVT option must also insert 
a REGION specification for the execution step in 
procedure ALGOFCLG, unless the default inter­
pretation is acceptable. The default interpretation 
is the size required by the system task initiator 
(i. e. , 50K). 

Installations not using the MVT option of OS/360 
should remove the superfluous parameters. 

In addition, the following general recommenda­
tions should be considered: 

When the MVT option is used, a SPACE 
parameter may be required for SYSPRINT 
if the device Is other than a printer 
the P ARM fields for compilation and 
linkage editing steps should follow 
installation conventions 

the SPACE and UNIT parameters for tem­
porary data sets should be modified 
according to installation configuration 
and conventions 

blocking factors should be specified 
for output data sets 

For further information on writing installation 
cataloged procedures, see the pUblication 
IBM System/360 Operating System, System Program­
mer" s Guide . 

........... ~~ ..... ~--.L~~_l?~BLG.Q.L..,R£G.LOAL~_.~AH .. _. __ --<-,~~ ~_~.L-L--'---'- __ ~ __ ~ ___ L-' ~~-,,-,,-~-,---,-_,---,-~----.L_~ 
JL..L.L--...,-,"",-,,---IUo.I-LJ1 IIULN--.LI-,--, --..0 .... 0",,--_-,-. 5'( S.OIIL· 8..._1-' ~, -'-, ........... -----.!---L--'--'---'--'---'--'--'---'--'---'---'---L-...'--'--'--'---'---..---'-'---'---'--, ,~_.L.L-.L~~-'---~ 
~--"' __ --"J.J.'-"-'-!L-"--.!Inlo.I..L.._~5.::C5.QllI..·~a-, , . _~_"""""~~'--'-' --'---"-----'---'----L-~~_~--'-'-~'-'---~-'--L_'--'-----'_..L_~~ 
......... .-LI __ .......... ~. Dn . , D5hlBtlE...=.EJ .aRDSE,." \IN.I;r.~5)'.5SQ~· 5,)"5p,UN('H.,, ,. ~~---'-.L-l-.LJ.X~ ........... 

~~~J-...s;p~~,,{,1,rp.,.J±.) y".D,1 s,p,:., H,OD "PASS)-LJ __ L_ ~-.--'--<-~'--'--'~--'------"--'--'--'-'~I.....J.....I 

~t·;;' t~i~:E:~tEE:ii;~E:;iifr~;;S!~~~=~~

34

Form C33,-4000-0, Page Revised by TNL N33-8013, 6/26/68

-Compilation and Linkage Editing, ALGOFCL

I-'-'-L~"",,-~--------..\..£XE.C...~-~= 8 I (10 L, R E (j,J 0 N," It.81L.~~L.~~---'-~---',~~ '--"-~ _'-'-~
,BR.1 ,NT; ,D D 's,Y 5'O.uL.:..Bu_~_,_....!......J. ' I I ~'-' -'--, ...t-.i-'--'--'--............. --"-L-L-J.......J._-'--'-........... --'--........... ~---'--~..A-L~'--'--t
,p lJ N tHo DO, 5 Y~~.B.._~ , -"--"-~~~~--'-.L..i..-'---"-----t.....J~-'--'-....!.......!.-'o.....J'-'-.t.......J...-L-.J,. --'-........

..L.S.Y..SLI.N, .D D. ,. ,DS N,ELi'1,E." EJL.OA.DS.EI., I 1,N, I :r,~,a, S,E,P,:.'s,Y,s.P,LJ hoi c.H.+.LJ.._..L .. u.~-'--....J... . ..LJ.~L....J-.L....IIC~........-..
/ L-'--..J , . I , • ,S PIA,CE."~..L~,,4)) ,.D,I I~,QD "p,A,SS~ l....J.......J..uLL.J.. . ",. I L-L~_~ ,

/:r '" . ~:,P"'.s,Y,5.P,R~~~,(.1,a>,2'-t",(SJ.~.J.1b4'~.-'-~J-.....J..~~~
LS.:LS..U~.DD, .LHJ lL=~,SQI.f-.S,F.P" S.Y S,\[r.L..,...5J?1i~~-'-L~,.+.5~L.~,f1_LL-L LJ .L-'-.~~...J....~~

. DO. lJ.l\11X·SY5.D~,ACE,'" (,1.m.~(b,.1.oJ.).) , ~--'--'--'-~.L.' .. _~~~.~-'--'-~
.L~E,X,Ec.. P.GM,~~£A&M= I XRE.F".LLSJ:.,.LE1,1 ,.COtJ.D:::(5,..LT ,ALGOL)" .
L~~-,---,--L.J.. ' ,R E G, I O,IV,"'" 9 0k .l..-.o!-.J....' ',., I --'---'---'--'- • , I , ---'--'--'-_ -'---'----'-'--'-,""'O'---'-..l.-.L.~__L_JL-L..i-L.~

.ISY5,P,R I NI.... .. OD SYSOlJ:r:=.8, ~, , I .~ I -'--~""""""'~J.....J....-'-L'-.-'----'-....J. ' •

. L5..:'L5L\.HLJL ,DD. DS~.I,A,ME..= f.J. OO,DBEI" ,D l.s,p,~, .DE,\, E I.E.}.J. . .1-' '- ' .. ~ LJ. U~.I....~ . .L..J..L."~ • .L'--l.~_
DD, ,DD,I\I,B M,E. = 5'y~, , ' , , , , '--'--'-......L." ' '.....L....L ... L ... L_.L.~ _L_L.L I , , """'-"---'--'-'--

~~~~~~~~~~~,Du,~S~N~B~Mhl'E~.·~S~y~~~~,H~R~,~,~,...J........J..~ 

T, (G 0.) " ! tN, I I, "5Y 
,$,PAC E,= ( 1 rpM.,., Sc'j>.,z.¢, 1J.) '~'----'----"--'..4.-L-~' ...J....' ...J....' ~, ....JI • ....J...'~'....J...I -'-'-'-'-'-'~'-'-'_L-!..-'--'-~-'-"'-L-L"""""""'~ 

~""""""''''''''''''~---L--J----'-'-AIo.L-.!~-'''-'''L>IJ...L..J..l...L.......io= ....4..l..Joo ................... ,-.... ,p--'-.. ..£...i(r-S ...... Y ..... .s...-.....L , LB..,...S.rSLM,QO)., s.P.A CE,', f 1 (/).2..4., (S,(/)., ,2,dl)) , 

-Compilation, Linkage Editing and Execution, ALGOFCLG 

.P~BL G OL J ,R,EGJ.O N,R 4 8 K,~~~~~_..L"""""'~ ~'~~......J.....''-'-'''''''''''-L-.!I......!.......!........o....---.J.. 
.......... .>.U....!'-"'--'-L.....Uo~'---'--.L......J.., ....... S"a,..Ly_S""",O..u..L...:...8. ... L..1.......J... ' , , '......L....J.....!....' ....... ,-L....J'-'--'-'---'-''-'--'--'---'-' ........................ --'-''''''''O'''''''.L-'-....J........I--'--'---'-............ ......L.~~ 
~~~~~'---'--.L......J..,~S~y~S~O~\~!T~~.~ , ~~~~'---'---'--'---'-'~~--'-''''''''O'''''''~--'-''''''''O'''''''~....J........I--'--'--~--'--~-'-1 

DD "DSN.RtlE..."'.£..L'OA.D,~1 N, 1,T,~ill,....5£P..L= .s;y.s,p,\ 11\J..CJ.-l.~.!........o....
, , I , ' , ,SP,ACE,o (3bCPa>~ ",D,I s,P,"',GHOD",P,ASS,), , , , ,....L.....J.... , " ,

tL"" ___ ~cIolI....!..l...l..L..~L.--'I.o.IJoI..Lo........L.....L' -'--..I.1u..i J..lolNw..I.u:t..o...." S.b.yLS,.,b,.,!s.Q...,...5.E.P ~ S,Y ,$.PR.~~, ~ (, 1,(il,2. 4" ,(.s ,0" ' 10m,) l' ,
, ,I JJJ I ;r: .. ,5,YS~.Ep .,sJ' 5J rr,~I.c.E -, (,1 l/;2 4", (S,at. ,1 ,m) j , , '...L~J......l...~

,DD, , lJ,t,J IT= SYS.Da,.,se.A:CE.: =:{:l,0.:~Hzj, 1.0'H ' ~ " '
f'-'-L.........:~.I.l~---"-'--, L_£'X,E C. .P,GM,·! I E WL, EBB...& ~X R E E ,usr:.~CO.N,D " (.5" ,L.L, 8LG OL) , L~~x...-,-~

,R,EGIO",),"Q,bK,~", "" " '" "" ,--'--'-_-'---'----'-'--'-, " ",~
........... L-L....L....I.... ,s""-y 5004,o""UL..:...8.....'--'--'--' ' , , ,~~--'---'--J..~ . .L...~~._L . ..L!. .'-_I.....L... L~-"~.t-L....L......o.......o.

"-O..L11.>U--L-' L,Do, DShl.BME, ",t,L O,SD,5.E:C, n \ .sp,~l,_nE..b..E.:CE.4-.LL...L-'--'--...L......!....-'-_L.L-L~....L...L~..J. ' __ L'---L~_
0,0, DDt.,I.8,ME,=-SY.5..i...M. • , ' I , • , '......L.....O..' I , , • , It......L-l.......!...J...'o....J.--'--L-.L-"---'-....J.......J.~L.....J.....--'-"-....J.......J._~
DO D.5N.RME, "'5.YS,1 Ie B.L G,L, I B., .o.LSB .. ~J5.H R, I , , , L~J..._L.J._ .. .L-'--."--' -'--,J..'I.'......J.-L-...L-..L...L....J.......<

.D.O, ., ,DSN.8ME ~,e..G~:r~ (.G,O) 't H~.~' SD,A.,n 15,e,·,0M,oD."PBSS,) "
~~_L-..!..--'--'-~.L.. ~-=.so.L.--"P.A C"",-"-",,,,E---,--(\:::-'-1'-'-'l¢1'=.2J+~(/2, J 2 ~",1 Y ~ ,--'---'--'-'-~--'--'--'--~,-"--".......!.'.......!. . .-I........J.'....L., ~.L..'L....!-..L....-'-'-~_!.......I..-!......L-j

.uN,I:r ~ 5,Y 500" S.E,P.~.(SJ'.s.L ,I 'B"S),
P,GM=,",. L ,K.E.~Y,5.L ,MO D,.c ~I(,5,. LT" ,8,UjO,L ,)," (.511 LT" ILK..E.D,) .)

Uo.d.."'-"-'iU_u ~-'-5 y..Joo,S.....,O""',U T..l...t........· oLIB ~ I '" , ~ • I , ,~-,---,-,----,-, • , ' , .-'--'---'---'--'--'-'-!-, --'-'L....!.......~.....L..-t
............ ___ ~U-...OJ..:>L.l...J.!.>U..1.,L....t.Ao"'"-<L-'--L......L... 5"""Y.L..I, S.~O"'-1 LL!.T'-'----"J;= Hl...IL.....J......J....... ' , ' , ' • • ,~ I , .. I , I '. I • , L_~ .. , . ..J.....o........L.L............. , • , I ,

L).N, \ :r: Q 5 Y..ss.G..,.SP.aCE " (.1 dJ 2..4" ,(,'~0.,.J .. at}4.L.L.1._-.!. '_.~~..L....L..J...~-L.~-'---'--J..... L

IBM-Supplied Cataloged Procedures 35

APPENDIX C: CARD CODES

The card deck of the source program is punched
line for line from the text written on the coding
sheets. The card code used can be either a 53
character set in Extended Binary Coded Decimal
Interchange Code (EBCDIC), or a 46 character
set in Binary Coded Decimal (BCD). This latter
character set has been established as standard
for ALGOL by the International Standards Organ­
ization (ISO) and Deutsche Industrie Normen
(DIN). Figure 19 shows these two codes.

---..

Characters
Card Codes

EBCDIC ISO/DIN

A to Z 12-1 to 0-9 12-1 to 0-9

o to 9 o to 9 o to 9

+ 12-8-6 12

- 11 11

* 11-8-4 11-8-4

/ 0-1 0-1

= 8-6 8-3

, 0-8-3 0-8-3

12-8-3 12-8-3
, 8-5 8-4

(12-8-5 0-8-4

) 11-8-5 12-8-4

blank no punch no punch

< 12-8-4

> 0-8-6

I 12-8-7

& 12

--;>' 11-8-7

: 8-2

; 11-8-6
--'------

Figure 19. Source program card codes.

36

AFF=ddname indicates that the data set is
to use the same I/O devices as the data set spec­
ified in the DD statement named "ddname" in
the same job step.

SPACE=subparameter-list
indicates the space required when a direct ac­
cess device is specified in the UNIT parameter.
The "subparameter-list" contains only posi­
tional subparameters. The list is:

{
TRK }
CYL primary-quantity
average-record-length .

[secondary-quantity] [directory-or-index-quantity]

{
MXIG }

[RLSE][ALX] [ROUND]
CONTIG

The first sUbparameter specifies the units
in which the space requirements are expressed,
that is, tracks, cylinders or records (with length
given in bytes).

The next subparameter specifies the space
required. It has three parts (of which the se­
cond and third are optional) and is enclosed in
parentheses if more than one part is specified.
If the second part is omitted, then it must be
substituted by a comma if the third part is in­
cluded. The initial space to be allocated is given
by "primary-quantity". Each time this initial
space is filled, additional space is to be pro­
vided as specified by "secondary-quantity".
The number of 256 byte records to be allocated
for the directory of a new partitioned data set,
or the number of cylinders, tak~n from the ini­
tial space reserved, to be allocated for the in­
dex of an indexed sequential data set, is given
by "directory-or-index-quantity".

RLSE indicates that any unused space assigned
to the data set is to be released.

MXIG requests that the largest single block of
storage available is to be allocated to the data
set.

ALX requests that extra blocks of storage (in
track units) are to be allocated to the data set.
As many available blocks that are equal to or

greater than "primary-quantity", up to a max­
imum of five, will be allocated.

CONTIG specifies that the space specified by
"primary-quantity" is to be in a single block.

ROUND requests that when records are used
to express the space required on the direct ac­
cess device, the space is to begin and end on
cylinder, boundaries.

DISP=subparameter-list
indicates the status of the data set and speci­
fies its disposition at the end of the job step.
The "subparameter-list" consists of the fol­
lowing positional subparameters:

NEW
OLD
MOD
SHR

DELETE
KEEP

[PASS]
CATLG

. UNCATLG

NEW specifies that the data set is to be gene­
rated in this job step, and would be deleted at
the end of the job step unless KEEP, PASS or
CATLG is specified.

OLD specifies that the data set already exists I
and would be kept at the end of the job step un­
less PASS or DELETE is specified.

MOD specifies that the data set already exists
and is to be modified in this job step. If the
data set cannot be found by the operating system
then this parameter is equivalent to NEW.

SHR specifies that, in a multiprogramming en­
vironment, an existing data set may be used
simultaneously by more than one job.

DELETE specifies that the space used by the
data set (including that in the data set catalog I
etc.) is to be released at the end of the job
step.

KEEP specifies that the data set is to be kept
at the end of the job step.

PASS specifies that the data set is to be re­
ferred to in a later step of this job, at which

Using Job Control Language 45

Form C33-4000-0 J Page Revised by TNL N33-8013 J 6/26/68

time its fInal disposition, or a further pass,
will be specified.

CATLG specifies that the data set is to be ca­
taloged at the end of the job step. Thus KEEP
is implied. The catalog strt..lcture must already
exist.

UNCATLG specifies that the data set is to be
deleted frOln the catalog at the end of the job
step. KEEP is implied.

SYSOUT=subparameter-l:ist
specifies the printing or punching operation to
be used for the data set. The "subparameter­
list" is:

classname [progname] [number]

"classname specifies the system output class
to be used. Up to 36 different classes (A to Z,
o to 9) may be fixed by the user for his instal­
lation, according to device type, priority, des­
tination, etc. The standard classname is A.
Classes 0 -9 should only be used when the other
classes are insufficient.

"number" can be used to specify an installation
form number to be aSSigned to the output.

"progname" can be used to specify the name of
a user-written output routine.
For sequential scheduling, the "subparame­

ter-list" consists of only the standard class-names
A and B. SYSOUT =B is interpreted as UNIT=SYSCP.

VOL UME=subparameter-list
indicates the volume or volumes assigned to the
data set. If the data set is cataloged this param­
eter is not necessary. The "subparameter-list"
is:

Positional
subparameters ~RIV ATE J LR ETAIN J [flumberJ &ralueJ

-.-----r--.--------.---------------I

Keyword
subparameters

SER=list-of-serial-numbers

dsname
i~. ddname

REF=
*.stepname.ddname
*.stepname.procstep.

ddname

PRIVATE specifies that the volume is to be dis­
mounted after the job step and that other data sets
will not be assigned to the volume unless a specific
request is made.

46

RETAIN specifies that, if possible, the volume
is to remain mounted until referred to in a later
DD statement, or until the end of the job, which­
ever is first.

"number" is any number between 2 and 9999, and is
used if an input or output operation, on a cataloged
data set residing on more than one volume, does not
start on the first volume of the data set. The num­
ber specifies the volume on which input or output is
to start (for example, 3 indicates the third volume
of the data set).

"value" specifies the number of volumes re­
quired by an output data set. It is not required
if SER or REF is used.

SER=list-of-serial-number:3, specifies the se­
rial numbers allocated by the user to the volumes
required by the data set. These serial numbers
can consist of between one and six alphameric
characters.

l
dsname

RE F= ?~. ddname
?~. stepname. ddname
?~. stepname. procstep. ddname

specifies that this data set is to use the same
volume or volumes as the data set specified by
one of the alternative sub-subparameter forms.
If the latter data set resides on more than one
tape volume, then only the last volume (as spec­
ified in the SER subparameter) can be used.

LABE L=subparameter-list
indicates the type of label or labels associated
with the data set. If the data set is cataloged
this parameter is not necessary. The "sub­
parameter-list" is:

Positional
subparameters

Keyword
subparameters

NL
SL

[number J NSL
SUL
BLP

{
EXPDT=yyddd}
RETPD=dddd

"number" is any number between 2 and 9999,
and specifies the position of the data set on the
volume (for example, 3 would indicate the third
data set on the volume).

NL, SL, NSL, and SUL specify the type of label
or labels to be used, that is, no labels, stan­
dard labels, non-standaTd labels, and standard

Form C33··4000-0, Page Revised by TNL N33-8013, 6/26/68

Figure 31. Job control statements for Example 3.

gra:ms FILE CR and FORCST are contained in a
partitioned data set WTHRPR.

Explanation of coding: The job control st'ltements
used in Figure 31 specify that:

1. The job is to have control statement messages
plus the relevant control statement printed on
the normal system output device only if an error
occurs

2. The partitioned data set WTHRPR is concatenated
to the operating system library, SYS1. LINKLIB

3. The first job step executes the pro graIn FILECR

4. The output data set is

• a new generation of the data set WEATHER

• to use the device class HYPERT

.. to be written on volume 0012 which need not
be mounted until the data set is opened, and
is then to remain mounted for later use

.. to be cataloged and have standard labels

• to be retained for 30 days

• to have fixed length records, 80 bytes long,
and a maximum block size of 400 bytes

5. The printed output is

• to use the device class PRINTER

• to use a separate channel to the output data
set

6. The input data is included in the input stream

7. The second job step executes the program
FORCST

8. The input data sets are the last four generations
of WEATHER, all of which are to be kept at the
end of the job step

9. The output data set is

• to use the device class PRINTER

• to use a separate channel to the last two ge­
nerations of WEATHER

Using Job Control Language 51

Form C33-4000-0, Page Revised by T~L N33-8013, 6/26/68

Example 4: Compiling and Linkage Editing an
ALGOL Precompiled Procedure .

Statement of problem: The ALGOL language pro­
cedure ADD is to be compiled, linkage edited and
stored in load modul,~ form as a member on the
partitioned data set PREPROC, for use in subse­
quent programs. A:t~.illustration of a program in
which ADD is invoked is provided in Example 5.

1. The job is to have all control statements (Plus
control statement diagnostic messages If an
error occurs) printed on the normal system out­
put device

2. The job step is to invoke the ALGOFCL cataloged
procedure to compile and linkage edit the source
module, which is identified as an ALGOL pre­
compiled procedure

3. A new partitioned data set named PREPROC is
to be allocated and cataloged; the procedure ADD
is to be stored on the data set as a member; and
a primary allocation of 30 tracks (plus a secondary
allocation of 10 tracks, if needed) and a directory
of ten 256-byte records is to be assigned to the
data set.

Example 5: Compiling,) Linkage Editing and
Executing an ALGOL Program which Invokes a
Precompiled Procedure

Statement of problem: An ALGOL program in which
the precompiled procedure ADD (Example 4) is in­
voked, is to be compiled, linkage edited and executed.

rl'he job control statements in Figure 33 specify:

1. The job is to have all control statements (Plus
control statement diagnostic messages if an
error occurs) printed on the normal system out­
put device

2. The partitioned data set PREPROC, containing
the precompiled procedure ADD, is to be con­
catenated to the operating system library,
SYSI. LINK LIB

3. The job step is to invoke the ALGOFCLG cata­
loged procedure to compile, linkage edit and
execute the ALGOL source program

ill..E.Rc.~--L.Q& -'-"-l1s.GLL\LE..L-"~_~-,,--,--~_.~~---,-,~.~~--.J.~~.~-'--'-~
I !..S.I~~ E,x'e c ,8 L G,O F,CJ •.• +E.B.R,M • ,8 L,G 0 L : P,R OLE D,ll,R,E.

~~_~~..!.....~---.i-~~~ . ..L.L '-'--'--'- , ' " ,

·,P,R.O c E,D.u~.BI1D{ A , B,. (,),.,' ' ~d-'-_~-'--'--':--'-'~-'--'----.L.L--'-~~ . .L-"'-"L..J''--'-.L-J-~--'-'''-''--t
-L-J.~L-I-~-'-'-'J,RLJ.J., E.LJ..A L~'.ILJ,A~.,.~~~~~J.~ I--J--'--.L.-'--1.-L-L.-L--L '" '_~-LI-'-'-L'--'--'--'--'--'-_-'-J.-I

~~_-'--'--'-'C = 8 + B, "'t-'--'--'--'-' , ' , I , '-'---'-"---'--J--'-' -'-'-L'-"--'--.~~-,--,~,,-,--,,--.~

• Figure 32. Job control statements and source module for Example 4.

~.oL-ULlA..LIL"",-,G...JJ..QB..-,-~J1.5~GJ.....E:y'£L~ ,1-< .'--'-' ~-'-_~_~-'-~---'_~. ~~---'--'---.J.~~ ,

JL-U-........... ~.u.~.l1D.. ' .0 S,N,A M,E ~,R.Q,C , ,D I 5 P &,0 LD, -'--"--'--'--'--'---'-'---"-<--J..-'-L-'---'-..1. . .i--.~-L-.o.-!~-'-~~~~

tL-U-............ ...u::..o.Jw-.~~~.£.C..LG... .• -'-., -'---'-~-~~-'--'--'---'-~'--'--'--'--'---'-L--'--'---'--'-~--'---'--'--'-~-'--'--'-..L.-L-t
I/SY.S,I,~~ . ..l1O.. , Ill<-, , -'--'-_L.~ .•. L." , I , i. ,--,-__ •. -'--'-_L_L-'-'--'--~'--'-----'---'--"-'--'--'--~-' __ --'-J---'--.L-J-~~~

',BEG I N,' L-'---'-_L-'-_~_--'---""'-'-~_---'--'-' , , , , " -,.-'--'-_~'--'-L-L.-'--'-_'-'--L-I~~_'--'--'--'--"--'-"""""-'--'-"'"
~~-"-'-~ .. -'--'--'--'-'- ',R E 8 L ' ,E ~I, I I , ' , I I .. -'--"--'-'~-'---'-"-~L-' .1-.' ..&-, -'--'--'--"-'--'--'--"--'-..I..-L~~
.-.-L-o--"----'--IL.~.L~R..QC.E.J1U~ . .8,0, D (A" B, ,e) I ti.J-'---'-__ L_'_L.L~_.L."L_-'---L_"--'.-L~_'--'-----'--'--L-~L-'-...L-'--'-~.---,---,---,-,--,--,-~-,--,~

-L-L.-'--'-~-,- 'IRE A.L' ,8 A~c....,+,-'LQ.Q£~_L_U __ ~-'---'---'-.L-'-_""'--'--'-~_~~_."_-,--,-"",,-,--,--~--,-"~_-,,-,-~~--,-,--
~~.J-L"-'--~.' " IE: =,0 1.,6,", F~.-7. 8, • t' , , ,~'--'---', ,'-'---'-'

I----.L.-~.---..LI........-J,.--'-.L...L._~~~~~~....L-.--.L-I...-~ -1-~--L.....l..-... __ L __ .-'-'---L._""--.~---L----'--''--'--~-'--'-~..-L-O..'"''
-'"-'---'-'--'-.~.~ . .QlJT REA ~) I • , , • , , L-L-L~---e.-JL-I-~-"--'-""""""'-A-L-I
--.....~~---L_.L __ ...I...-...L __ .L... . .L,." 'tE,ND' I! , I!! ,e ,! .!! '!~L....J...._~~L-L....JL...L.....'--'---"

• Figure 33. Job control statements and source module for Example 5.

51.1

APPENDIX F: DIAGNOSTIC MESSAGES

Each of the three operations-compilation, linkage
editing and execution - may produce diagnostic
messages.

COMPILER MESSAGES

The diagnostic messages that may be produced by
the ALGOL compiler are given below. Each diag­
nostic message occupies one or more printed lines
and contains:

• The message key, consisting of the letters lEX,
a three digit decimal number identifying the
message, and the letter I to indicate an infor­
mative message requiring no action from the
operator.

• The severity code W, S or T (see below)

• The semicolon number (see Section 3). This
number is sometimes omitted if the error can­
not be directly related to a point in the program.
The semicolon number is indicated in the list
below by the sequence NNNNN

• The message text describing the error and, in
the case of some W or S type errors, the mo­
dification performed on the program by the
compiler. In the message text listed below the
words in parentheses, together with the paren­
theses themselves, will be replaced in the actual
message that is printed, by specific information
taken from the program. The word "operator"
usually refers to all delimiters defined in IBM
System/360 Operating System: ALGOL Language,
but an internal compiler operator may some­
times be listed. The word "operand" refers to
an identifier or an expression.

The three severity codes for errors and their
corresponding compiler action are as follows:

W (Warning): The program is modified inter­
nally and the compilation is continued. The mo­
dification may not Inake the program correct but
it allows object module generation to continue. A
diagnostic message is produced.

S (Serious): An atte~mpt is made to modify the
program internally, including skipping or changing
parts of it. Generation of the object module is
stopped, but syntax checking continues. A diagnos­
tic message is produced.

52

T (Terminating): A diagnostic message is pro­
duced and the compilation is terminated.

IEXOOlI W NNNNN INVALID CHARACTEH
DELETED.

Explanation: A charaeter not recognized
by the compiler has been deleted from the
program.

IEX0021 W NNNNN ILLEGAL PERIOD.
PERIOD DELETED.

Explanation: The character period has
been used wrongly and deleted from the
program. It can be used only as a deci­
mal point, or as part of a colon or semi­
colon.

IEX0031 W NNNNN INVALID COLON AFTER
(six characters). COLON DELETED.

Explanation: The character colon has been
used wrongly and has been deleted from
the program. It can be used only after a
label, between subscript bounds, within
a parameter delimiter or as part of an
assign symbol.

IEX0041 T NNNNN LETTER STRING TOO
LONG.

Explanation: A letter string used to supply
explanatory information exceeds capacity
limitations (see Section 4).

IEX0051 S NNNNN IDENTIFIER BEGINS WITH
INVALID CHARACTER. IDENTIFIER
DELETED.

Explanation: An identifier has been de-
1eted because it does not begin with an
alphabetic character.

IEX006I T NNNNN LABEL CONTAINS TOO
MANY CHARACTERS.,

Explanation: A label identifier has been
used whose length exceeds capacity limi­
tations (see Section 4).

READER'S COMMENT FORM

IBM System/360 Operating System
ALGOL Programmer"s Guide

• How did you use this publication?

As a reference source 0
As a classroom text 0
As a self-study text 0

• Based on your own experience, rate this publication

As a reference source:

As a text:

• What is your occupation?

Very
Good

Very
Good

Good

Good

Fair

Fair

Poor

Poor

Very
Poor

Very
Poor

Fetnl: C33..fOOO';'()

• We would appreciate your other comments; please give specific page and line references
where appropriate. If you wish a reply, be sure to include your name and address .

• Thank you for your cooperation. No postage necessary if mailed in the U;S.A.

C33-4000-O

YOUR COMMENTS PLEASE It ••

This SRL bulletin is one of a series which serves as reference sources for systems analysts,
programmers and operators of IBM systems. Your answers to the questions on the back of this
form, together with your comments, will help us produce better publications for your use. Each
reply will be carefully reviewed by the persons responsible for writing and publishing this
material. All comments and suggestions become the property of IBM.

Please note: Requests for copies of publications and for assistance in utilizing your IBM sys­
tem should be directed to your IBM representative or to the IBM sales office serving your
locality.

Fold Fold

••• 'I •••••• '1 •••••••••••••••••••• :

Attention: Department 813

BUSINESS REPLY MAIL
NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY ...

IBM Corporation

112 East Post Road

White Plains, N. Y. 10601

~
FIRST CLASS

PE:RMIT NO. 1359

WHITE PLAINS, N. Y.

.. " .. .

Fold

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y.I06ot
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

Fold

o
~
~

1
o
o
o
I o

C33-4000-0

Jrrn~
<!>

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N. Y. 10601

-0 ..,
:j" -..
CD a..
::J

C
Vl

»

()
W
W
I
~
o
8
I
o

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	_1_00_Oct67
	_1_01
	_1_02
	_1_05
	_1_06
	_1_07
	_1_08
	_1_11
	_1_12
	_1_13
	_1_14
	_1_15
	_1_16
	_1_17
	_1_18
	_1_21
	_1_22
	_1_25
	_1_26
	_1_33
	_1_34
	_1_37
	_1_38
	_1_39
	_1_40
	_1_41.0
	_1_41.1
	_1_42
	_1_43
	_1_44
	_1_45
	_1_46
	_1_47
	_1_48
	_1_49
	_1_50
	_1_53
	_1_54
	_1_59
	_1_60
	_2_00_Jan68
	_2_11
	_2_12
	_2_13
	_2_14
	_2_15
	_2_16
	_2_17
	_2_18
	_2_25
	_2_26
	_2_31
	_2_32
	_2_33
	_2_34
	_2_35
	_2_36
	_2_45
	_2_46
	_2_49
	_2_50
	_2_51
	_2_52
	_3_00_Jun68
	_3_01
	_3_02
	_3_03
	_3_04
	_3_11
	_3_12
	_3_13
	_3_14
	_3_15
	_3_16
	_3_17
	_3_18
	_3_25
	_3_26
	_3_27
	_3_28
	_3_29.0
	_3_29.1
	_3_30.0
	_3_30.1
	_3_33
	_3_34
	_3_35
	_3_36
	_3_45
	_3_46
	_3_51.0
	_3_51.1
	_3_52
	replyA
	replyB
	xBack

