
Systems Reference Library

IBM System/360 Operating System

Assembler [P] Programmer's Guide

Program Number 3605-AS-037

This publication complements the IBM System/360
Operating System Assembler Language publications.
It provides a guide to program assembling, linkage
editing, executing, interpreting listings, assem­
bler programming considerations, diagnostic
messages, and object output cards.

File No. 5360-21
Form C26-3756-3 OS

PREFACE

This publication is oriented to the F level
assembler program (the assembler) £unction­
ing in the IBM System/360 Operating System
(Primary Control Program, MFT, and MVT).

This publication is divided into an
introduction and four sections which de­
scribe the following:

1. Assembler options and data set re­
quirements.

2. Use of IBM-provided cataloged procedures
for assembling; assembling and linkage
editing; assembling, linkage editing,
and executing assembler language source
programs.

3. Use and interpretation of the assembler
listing.

4. Programming considerations.

'

In addition, the appendixes provide a pro­
cedure for dynamic invocation of the assem­
bly, a list and explanation of object out­
put cards, and a sample program listing.

Other System Reference Library publica-
tions in the IBM System/360 Operating
System series provide fuller, more detailed
discussions of the topics introduced in this
publication: a careful reading of the
publication IBM System/360 Operating
System: Concepts and Facilities, Form
C28-6535, is recommended. Knowledge of
the assembler language is assumed. Where
appropriate, the reader is directed to the
following publications:

IBM System/360 Operating System:
Control Language (Form C28-6539)

IBM System/360 Operating System:
Estimates (Form C28-6551)

Fourth Edition (November, 1968}

Job

Storage

IBM System/360 Operating System: Linkage
Editor (Form C28-6538)

IBM System/360 Operating System:
Supervisor and Data Management Services
(Form C28-6646)

IBM System/360 Operating System:
Supervisor and Data Management Macro
Instructions (Form C28-6647)

IBM System/360 Operating System: TESTRAN
(Form C28-6648)

IBM System/360 0perating System:
Messages, Completion Codes, and Storage
Dumps (Fo:.rm C28-6631)

IBM System/360 Operating System:
Assembler Language (Form C28-6514)

IBM System/360 Operating System:
Utilities (Form C28-6586)

IBM System/360 Operating System: FORTRAN
IV (E) , Library Subprograms (Form
C28-6596)

IBM System/360 Operating System: System
Programmer's Guide (Form C28-6550)

IBM System/360 Operating System: FORTRAN
IV (E) Programmer's Guide (Form C28-6603)

IBM System/360 Operating System: COBOL
(E) Programmer's Guide (Form C24-5029)

References to these publications are
usually by a short title, e.g., Linkage
Editor or Data Management Services.

This is a major revision of, and obsoletes, C26-3756-2 and Technical Newsletter N26-0567.
The major changes are addition of Model 91 programming information, improvement in

several error message descriptions, and corrections of illustration errors. Changes to the text,
and small changes to illustrations, are indicated by a vertical line to the left of the change;
changed or added illustrations are denoted by the symbol• to the left of the caption.

Specifications contained herein are subject to change from time to time. Any such changes will be
reported in subsequent revisions or Technical Newsletters.

Requests for copies of IBM publications should be made to your !BlYi representative or to the IBM

branch office serving your locality.

Address comments concerning the contents of the publication to IBM Corporation, Programming

Publications Dept. 232, San Jose, California 95114

© Copyright International Business Machines Corporation 1966, 1968

INTRODUCTION • •

ASSEMBLER OPTIONS AND DATA SET
REQUIREMENTS

Assembler Options I Default Entry
Assembler Data Set Requirements

Ddname SYSUTl, SYSUT2, SYSUT3
Ddname SYSIN •
Ddname SYSLIB
Ddname SYSPRINT
Ddname SYSPUNCH •
Ddname SYSGO

Defining Data Set Characteristics
Return Codes • •

CATALOGED PROCEDURES
Cataloged Procedure for Assembly

(ASMFC) • • .
Cataloged Procedure for Assembly and

Linkage Editing (ASMFCL). •
Cataloged Procedure for Assembly,

Linkage Editing, and Execution
(ASMFCLG) • • • • .

Overriding Statements in Cataloged
Procedures

EXEC Statements
DD Statements
Examples

ASSEMBLER LISTING • • • .
External Symbol Dictionary (ESD)
Source and Object Program
Relocation Dictionary
Cross Reference . • . •
Diagnostics

PROGRAMMING CONSIDERATIONS •
Saving and Restoring General

. . . .

1

2
2
2
2
3
3
3
3
3
3
3
5

6

6

7

8

9
9
9
9

11
11
13
14
14
15

16

iii

CONTENTS

Register Contents
Program Termination .
PARM Field Access . .
Macro Definition Library Additions
Load Module Modification - Entry
Point Restatement • . . .

Object Module Linkage •
Dictionary Size and Source Statement

Complexity ..•.....•.•
Dictionaries Used in Conditional
Assembly and Macro Instruction

.. 16
.16
.16
.16

.17

.17

. .17

Expansion ..•..•..•..•••. 18
Global Dictiona~y at Collection

Time • . • . • •19
Local Dictionaries at Collection

Time19
Global Dictionary at Generation

Time•.... .19
Local Dictionaries at Generation

Time • . • . . . 20
Additional Dictionary Requirements •. 20

I Correction of Dictionary Overflow ••• 20
Source Statement Complexity ••..... 21

Macro Generation and Conditional
Assembly Limitation ••

Assembler Portion Limitations
.21
.21

lsystem/360 Model 91 Programming
Considerations•..... 21

Controlling Instruction Execution
Sequence•....•... 21

APPENDIX A. DIAGNOSTIC MESSAGES. . .23

APPENDIX B. OBJECT DECK OUTPUT .31

APPENDIX c. ASSEMBLER F PROGRAM LISTING.34

APPENDIX D. DYNAMIC INVOCATION OF THE
ASSEMBLER . .43

INDEX . . .45

ILLUSTRATIONS

Figures

1. Cataloged Procedures for Assembly
(ASMFC) • • • • • • • • • • • • • . • 6

2. Cataloged Procedure for Assembling
and Linkage Editing (ASMFCL) .••. 7

3. Cataloged Procedure for Assembly,

Tables

1. Data Set Characteristics . . . 4
2. Return Codes 5
3. Device Naming Conventions 6
4. Types of ESD Entries 11
5. Global Dictionary Entries at

Collection Time . . 19
6. Local Dictionary Entries at

Linkage Editing, and Execution
(ASMFCLG) . . • . .

4. Assembler Listing •.
5. Linkage Statements •
6. TESTRAN SYM Card Format

Collection Time
7. Global Dictionary Entries at

Generation Time . . .
8. Local Dictionary Entries at

Generation Time
9. Macro Definition Local Diet-

ionary Parameter Table

iv

8
12
18
33

19

20

20

20

Through the medium of job control state­
ments, the programmer specifies job
requirements directly to the operating
system, thus eliminating many of the
functions previously performed by the
operating personnel. The job consists
of one or more job steps. For example,
the job of assembling, linkage-editing,
and executing a source program involves
three job steps:

1. Translating the source program,
i.e., executing the assembler com­
ponent of the operating system to
produce an object module.

2. Processing the output of the as­
sembler, i.e., executing the
linkage-editor component of the
operating system to produce a load
module.

3. Executing the assembled and linkage­
edited program, i.e., executing the
load module.

A procedure is a sequence of job control
language statements specifying a job. Pro­
cedures may enter the system via the input
stream or from a library of procedures,

INTRODUCTION

which are previously defined and contained
in a procedure library. The input stream
is the flow of job control statements
and, optionally, input data entering the
system from one input device. At the
sequential scheduling system level of the
operating system, only one input stream
may exist at a time. (For a description
of the operating system environment see
IBM S stem 360 O eratin S stem: Con­
cepts and Facilities.

The job definition (JOB), execute
(EXEC), data definition (DD), and delimiter
(/*) job control statements are shown in
this publication as they are used to
specify assembler processing. Detailed
explanations of these statements are
given in IBM System/360 Operating System:
Job Control Language.

Operating system factors influencing
program preparation, such as terminating
the program, saving and restoring general
registers, and linking of independently
produced object modules, are discussed in
Programming Considerations, as are guides
to determine whether assembler dictionary
sizes and complexity limitations of source
statements will be exceeded.

Introduction 1

ASSEMBLER OPTIONS AND DATA SET REQUIREMENTS

ASSEMBLER OPTIONS

The programmer may specify the following
assembler options in the PARM= field of
the EXEC statement. They must appear
between two apostrophes, separated by commas
with no irnbedded blanks. They can appear
in any order and, if an entry is omrnitted, a
standard setting will be assumed as shown
below under Default Entry.

'DECK LOAD I LIST TEST I XREF I RENT'
PARM= or or or or or LINECNT=nn, or

'NODECK ,NOLOAD,NOLIST,NOTEST ,NOXREF I NORENT'

These options are defined ·as follows:
DECK -- The object module is placed on

the device specified in the SYSPUNCH DD
statement.

LOAD -- The object module is placed on
the device specifi.ed in the SYSGO DD
statement.

NOTE: Specification of the parameter
LOAD causes object output to be written
on a data set with ddname SYSGO. This
action occurs independently of the output
on SYSPUNCH caused by the parameter DECK.
The output on SYSGO and SYSPUNCH is iden­
tical except that SYSPUNCH is closed with
a disposition of LEAVE, and SYSGO is
closed with a disposition of REREAD.

LIST -- An assembler listing is produced.
TEST -- The object module contains the

special source symbol table required
by the test translator (TESTRAN)
routine.

XREF -- The assembler produces a cross­
reference table of symbols as part of
the listing.

RENT -- The assembler checks for a possible
coding violation of program re­
enterability.

The prefix NO is used with the above
options to indicate which options are not
wanted. If contradictory options are
entered (e.g., LIST, NOLIST), the right­
most option, NOLIST, is used.

LINECNT=nn This parameter specifies the
number of lines to be printed between
headings in the listing. The permis­
sible range is 01 to 99 lines.

2

The following is an example of specify­
ing assembler options:

EXEC PGM=IEUASM, PARM=' LOAD, NODE CK, TEST'

DEFAULT ENTRY

If no options are specified, the assembler
assumes the following default entry.

PARM=' NO LOAD ,DECK ,LIST ,NOTEST ,XREF ,LINECNT=55, NORE NT'

The cataloged procedures discussed in
this guide assume the default entry. How­
ever, the programmer may override any or
all of the default options (see Overriding
Statements in Cataloged Procedures).

ASSEMBLER DATA SET REQUIREMENTS

The assembler requires the following four
data sets:

e SYSUTl, SYSUT2, SYSUT3 utility data
sets used as intermediate external
storage.

• SYSIN -- an input data set containing
the source statements to be processed.

In addition to the above, four additional
data sets may be required:

• SYSLIB -- a data set containing macro
definitions (for macro definitions not
defined in the source program) and/or
source coding to be called for through
COPY assembler instructions.

• SYSPRINT -- a data set containing output
text for printing (unless NOLIST option
is specified) .

• SYSPUNCH _..: a data set containing object
module output usually for punching (un­
less NODECK option is specified) .

• SYSGO -- a data set containing object
module output usually for the linkage
editor (only if LOAD option is specified).

The above data sets are described in the
following text. The ddname that must be
used in t~e DD statement describing the
data set appears as the heading for each
description.

Ddnames SYSUTl, SYSUT2, SYSUT3

These utility data sets are used by the
assembler as intermediate external storage
devices when processing the source pro­
gram. The input/output device(s) assigned
to these data sets must be capable of
sequential access to records. The as­
sembler does not support multi-volume
uti~ity data sets. Refer to the Storage
Estimate manual for the space required.

Ddname SYSIN

This data set contains the input to the
assembler -- the source statements to be
processed. The input/output device as­
signed to this data set may be either the
device transmitting the input stream, or
another sequential input device designated
by the programmer. The DD statement
describing this data set appears in the
input stream. The IBM-supplied procedures
do not contain this statement.

Ddname SYSLIB

From this data set, the assembler obtains
macro definitions and assembler language
statements to be called by the COPY as­
sembler instruction. It is a partitioned
data set and each macro definition or
sequence of assembler statements is a
separate member, with the member name being
the macro instruction mnemonic or COPY
code name. The data set may be defined as
SYSl.MACLIB or a user's private macro
definition or COPY library. SYSl.MACLIB
contains macro definitions for the system
macro instructions provided by IBM. A
user's private library may be concatenated
with SYSl.MACLIB. The two libraries must
have the same attributes, i.e., the same
blocking factors, block sizes, and record
f~rmats. ~he Job Control Language publica­
tion explains the concatenation of data
sets.

Ddname SYSPRINT

This data set is used by the assembler to
produce a listing. Output may be directed
to a printer, magnetic tape, or DASD. The
assembler uses the machine code carriage­
control characters for this data set.

Ddname SYSPUNCH

The assembler uses this data set to produce
the object module. The input/output unit
assigned to this data set may be either a
card punch or an intermediate storage de­
vice (capable of sequential access).

Ddname SYSGO

This is a DASD, magnetic tape, or card
punch data set used by the assembler. It
contains the same output text as SYSPUNCH.
It is used as input for the linkage editor
and may also be used as a punch device (see
NOTE under Assembler Options).

DEFINING DATA SET CHARACTERISTICS

Before a data set can be made available
to a problem program, descriptive infor­
mation defining the data set must be
placed into a data control block for the
access routines. Sources of information
for the data control block are keyword
~perands in the DCB macro instruction or,
in some cases, the DD statement, data set
label, or user's problem program. General
information concerning data set definition
is contained in the Data Management Services
manual (see Preface). Characteristics of
data sets supplied by the DCB macro instruc­
tion are described in the Data Management
Macro-Instructions manual (see Preface} .

The specific information that must be
supplied depends upon the data set organi­
zation and access method. The following
access methods are used to process the
assembler data sets:

Access Method
QSAM (Queued Sequential)

BSAM (Basic Sequential}

BPAM (Basic Partitioned)

Data Sets
SYSPRINT, SYS­
PUNCH, SYSGO,
SYS IN
SYSUTl, SYSUT2,
SYSUT3
SYS LIB

Table 1 summarizes the assembler capa­
bilities and restrictions on record length

Assembler Options and Data Set Requirements 3

eTable 1. Data Set Characteristics

SYSIN SYSLIB SYSPRINT SYSPUNCH SVSGO

LRECL Fixed at 80 Fixed at 80 Fixed at 121 Fixed at 80 Fixed at 80

User must specify User must specify Set by assembler: Set by assembler: Set by assembler:
in LABEL or DD card in LABEL or DO cord if BLKSIZE=LRECL, if BLKSIZE=LRECL, If BLKSIZE=LRECL,

RECFM RECFM=FSM· RECFM=FS; RECFM=FS;

(j) FI FS, FBS, FB, FI FS, FBS, FB, if BLKSIZE>LRECL, if BLKSIZE>LRECL, if BLKSIZE>LRECL,
FBST, FBT FBST, FBT RECFM=FBSM RECFM=FBS RECFM=FBS

User must specify User must specify Optional, but must Optional; but must Optional , but must
BLKSIZE in LABEL or DD cord, in LABEL or OD cord, be a multiple of be a multiple of be o multiple of

@ must be a multiple of must be a multiple of LRECL; if omitted LRECL; if omitted LRECL; If omitted
LRECL LRECL BLKSIZE=LRECL BLKSIZE=LRECL BLKSIZE=LRECL

Opti ona I; if Set by assembler Optional; if Optional; if Optional; if
BUFNO omitted 2 is used to 1 omitted 2 is used omitted 3 Is used for omitted 3 is used for

unit record and 1 for unit record and 1 for
other devices other devices

For BLKSIZE times BLKSIZE can not BLKSIZE times BLKSIZE times BLKSIZE times
44K BUFNO con not be be greater than 3600 BUFNO con not be BUFNO can not be BUFNO con not be
availability greater than 3600 greater than 1210 greater than 400 greater than 400

For LI = BLKSIZE L2 = BLKSIZE L3 = BLKSIZE L4 = BLKSIZE LS= BLKSIZE
calculating times BUFNO times BUFNO times BUFNO times BUFNO
core
requirements

-,

@ Minimum core required for the assembler is the lorgest of the following: (1) 45056

(2) L1 + L2 + 37000

(3) L3 + L4 + Ls + 37000

4

@

<D
@

@

Maximum core that the assembler can effectively use = L4 + L5 + 535,000

U = undefined, F =fixed length records, B =blocked records, S =standard blockJ,
T = track overflow, M = machine code carriage control

Blocking is not allowed on unit record devices. Blocking on other direct access con not
be greater thon the track size unless Tis specified on RECFM

For MVT environment add S,000 for core required

SYSUTl
SYSUT2
SYSUT3

N/A

Fixed for U

User can not specify;
maximum of 4000,
minimum of 1739

User can not specify;
either 1 or 2

and format, as well as the blocksize buff­
ering facilities available to the user. The
values shown in Table 1 are based upon the
minimum core requirements of Assembler F
(44K), which will allow a symbol table
length of approximately 7000 bytes. If
more than 44K is available, the block sizes
and buffer numbers can be increased. How­
ever, if the user specifies a combination
of blocking and buffering which does not
leave room for the symbol table, abnormal
termination of the task may occur (ABEND
804) when the assembler attempts to issue
a GETMAIN macro instruction.

In addition to the data set character­
istics shown in Table 1, the following
options are available to the user (refer to
the Supervisor and Data Management Macro­
Instructions publication) • Options not
shown below are fixed by the assembler and
cannot be specified.

Data Sets

SYSIN, SYSPU?l::H,
SYSPRINT, SYSGO

SYSUTl, 2, 3

RETURN CODES

Options

l
DEVD (device type)
BFALN (buffer boundary

alignment)
BUFL (buffer length)
EROPT (error option}

l
DEVD (device type}
OPTCD (optional ser­

vice for validity
checking and
chaine4 sclted"Cllinq)

Table 2 shows the return codes issued by
the assembler for use with the COND= para­
meter of JOB or EXEC statements. The
COND= parameter is explained in the Job
Control Language publication.

The return code issued by the assembler
is the highest severity code that is:

l. Associated with any error detected
by the assembler (see Appendix A for
diagnostic messages and severity
codes).

2. Associated with MNOTE messages pro­
duced by macro instructions.

3. Associated with an unrecoverable I/O
error occurring during the assembly.

If a permanent I/O error occurs on any of
the assembler files or a DD card for a
required data set is missing, a message is
printed on the operator's console and a

lreturn with a user return code of 20 is
given by the assembler. This terminates
the assembly.

Table 2. Return Codes

Return
Code Explanation

0 No errors detected

4 Minor errors detected; successful program execution is
probable

8 Errors detected; unsuccessful program execution is possible

12 Serious errors detected; unsuccessfu I program execution is
probable

16 Critical errors detected; nonnal execution is impossible

20 Unrecoverable 1/0 error occurred during assembly or
missing data sets; assembly terminated

Assembler Options and Data Set Requirements 5

CATALOGED PROCEDURES

This section describes three IBM-provided
cataloged procedures: a procedure for as­
sembling (ASMFC), a procedure for assembling
and linkage editing (ASMFCL), and a pro­
cedure for assembling, ·linkage editing,
and executing (ASMFCLG) . The procedures
rely on conventions regarding the naming of
device classes. These conventions, shown
in Table 3, must be incorporated into the
system at system generation time.

Table 3. Device Naming Conventions

Device Classname Devices Assigned

SYS SQ Any devices allowing
sequentia I access to records
for reading and writing

SYS DA Direct-access devices

SYSCP Card punches

To use cataloged procedures, EXEC state­
ments naming the desired procedures are
placed in the input stream following the
JOB statement. Subsequently, the specified
cataloged procedure is brought from a
procedure library and merged into the in­
put stream.

The S¥stem Programmer's Guide discusses
the placing of procedures in the procedure
library.

l llASM EXEC PGM=I EUASM ,RE GION=50K

2
llSYSLIB DD DSNAME=SYSl .MACLIB,DISP=SHR

3
llSYSUTl DD UNIT=SYSSQ,SPACE={l 700, (400,50))

4
llSYSUT2 DD UNIT=SYSSQ,SPACE={l 700, (400,50))

5
llSYSUT3 DD UNIT=(SYSSQ ,SEP=(SYSUT2, SYSUTl I SYSLIB)) I

II SPACE={l 700, (400,50))

6
llSYSPRINT DD SYSOUT=A

7
llSYSPUNCH DD SYSOUT=B

CATALOGED PROCEDURE FOR ASSEMBLY (ASMFC)

This procedure requests the operating
system to load and execute the assembler.
The name ASMFC must be used to call this
procedure. The result of execution is an
object module, in punched card form, and
an assembler listing.

In the following example, input enters
via the input stream. The statements
entered in the input stream to use this
procedure are:

//jobname

//stepname

JOB

EXEC PROC= ASMFC

//ASM. SYSIN DD *
I
I

source program statements
I
I

/* (delimiter statement)

The statements of the ASMFC procedure
are brought from the procedure library and
merged into the input stream.

Figure 1 shows the statements that make
up the ASMFC procedure.

x

PARM= or COND= parameters may be added to this statement by the EXEC statement that calls the procedure {see Overriding Statements in
Cataloged Procedures). The system name IEUASM identifies Assembler F.

2
This statement identifies the macro lib;ary data set. The data set name SYSl .MACLIB is an IBM designation.

3 4 5 These statements specify the assembler utility data sets. The device classname used here, SYSSQ, may represent a collection of tape
drives, or direct-access units, or both. The 1/0 units assigned to this name are specified by the installation when the system is generated.
A unit name, e.g., 2311 may be substituted for SYSSQ.

The SEP= subparameter in statement 5 and the SPACE= parameter in statements 3, 4, and 5 are effective only if the device assigned is a
direct-access device: otherwise they are ignored •. The space required is dependent on the make-up of the source program.
The Job Control Language publication explains space allocation.

6
This statement defines the standard system output class, SYSOUT= A, as the destination for the assembler listing.

7
This statement describes the data set that will contain the object module produced by the assembl~r.

Figure 1. Cataloged Procedure for Assembly (ASMFC)

6

CATALOGED PROCEDURE FOR ASSEMBLY AND
LINKAGE EDITING (ASMFCL)

This procedure consists of two job steps:
assembling and linkage editing. The name
ASMFCL must be used to call this procedure.
Execution of this procedure results in the
production of an assembler listing, a
linkage editor listing, and a load module.

The following example assumes input to
the assembler via the input job stream. It
also makes provision in the //LKED job step
for concatenating the input to the linkage
editor from the //ASM job step with any
additional linkage editor input in the in­
put job stream. This additional input can
be a previously produced object module
which is to be linked to the object module
produced by job step //ASM.

An example of the statements entered in
the input stream to use this procedure is:

llASM EXEC PGM=IEUASM ,PARM=LOAD ,REGION=50K

llSYSLIB DD DSNAME=SYSl .MACLIB,DISP=SHR

llSYSUTl DD u NIT =S YSSQ, SPACE=(1700 I (400 I 50))

llSYSUT2 DD UN IT =SYS SQ, SPACE=(1700, (400, 50))

llSYSUT3 DD UNIT=(SYSSQ,SEP=(SYSUT2, SYSUTl ,SYSLIB)),
II SPACE=(l700, (400,50))

llSYSPRINT DD SYSOUT=A

llSYSPUNCH DD SYSOUT=B

JOB lljobname
I lstepname EXEC PROC=ASMFCL
I IASM.SYSIN DD *

I
I
I

source program
1
statements

I*
l/LKED,SYSIN

I
I

I
DD
I
I
I

object module or
I inkage editor
control statements

*

necessary only if linkage
editor is to combine modules
or read linkage editor control
information from the job stream

I*
The procedure is brought from the pro-

cedure library and merged into the input
stream.

Figure 2 shows the statements that make
up the ASMFCL procedure. Only those state­
ments not previously discussed are
explained.

x

llSYSGO DD DSNAME=&LOADSET ,UNIT=SYSSQ ,SPACE=(80, (100,50)),
II DISP=(MOD ,PASS)

x

2
llLKED EXEC PGM=IEWL,PARM=(XREF ,LIST ,NCAL),REGION=96K,

II COND=(8, LT ,ASM)
x

~ llSYSLIN DD DSNAME=&LOADSET, DISP=(OLD, DELETE)
II DD DDNAME=SYSIN

5
llSYSLMOD DD DSNAME=& TEMP(PDS) ,UNIT=SYSDA,SPACE=(l024, (50,20, 1)),

II DISP=(MOD ,PASS)
x

6
llSYSUTl DD UNIT=(SYSDA,SEP=(SYSLIN ,SYSLMOD)) ,SPACE=(! 024, (50,20))

7
llSYSPRINT DD SYSOUT=A,DCB=(, BLKSIZE=l 21)

In this procedure the SYSGO DD statement describes a temporary data set -- the object module -- which is to be passed to the linkage editor.

2
This statement initiates linkage editor execution, The linkage editor options in the PARM= field cause the linkage editor to produce a cross-reference
table, module map, and a list of all control statements processed by the linkage editor, The NCAL option suppresses the automatic library call function
of the linkage editor.

3
This statement identifies the linkage editor input data set as the same one produced as output by the assembler.

4
This statement is used to concatenate any input to the linkage editor from the input stream with the input from the assembler.

5
This statement specifies the linkage-editor output data set (the load module). As specified, the data set will be deleted at the end of the job, If it is
desired to retain the load module, the DSNAME parameter must be respecified and a DISP parameter added. See Overriding Statements in Cataloged
Procedures. If the output of the linkage editor is to be retained, the DSNAME parameter must specify a library name arid member name where the load
module is to be placed, The DISP parameter must specify either KEEP or CATLG.

6
This statement specifies the utility data set for the linkage editor.

7
This statement identifies the standard output class as the destination for the linkage editor listing.

•Figure 2. Cataloged Procedure for Assembling and Linkage Editing(ASMFCL)

Cataloged Procedures 7

CATALOGED PROCEDURE FOR ASSEMBLY,
LINKAGE EDITING, AND EXECUTION
(ASMFCLG)

This procedure consists of three job
steps: assembling, linkage editing, and
executing.

Figure 3 shows the statements that make
up the ASMFCLG procedure. Only those
statements not previously discussed are
explained in the figure.

JOB //jobname
//stepname
//ASM.SYSIN

EXEC PROC=ASMFCLG
DD *
I
I
I

source program statements
I
I

/* :
//LKED.SYSIN DD *

/*

I
I
I

object module or
linkage ~itor
control statements

I
I

necessary only if lir*age
editor is to combine modules
or reod linkage editor control
information from the job stream

The name ASMFCLG must be used to call
this procedure. Assembler and linkage
editor listings are produced.

//GO .ddname
//GO.ddname
//GO.ddname

DD (parameters)

}

only if
DD (parameters)

The statements entered in the input
stream to use this procedure are:

DD *
I
I
I

problem program input

necessary

//ASM EXEC

//SYSLIB DD

//SYSUTl DD

//SYSUT2 DD

//SYSUT3 DD
11.

//SYSPRINT DD

//SYSPUNCH DD

//SYSGO DD
II

l //LKED EXEC
II

//SYSLIN DD
II DD

..

PGM=IEUAS/v\ ,PARM=LOAD ,REGION=50K

DSNAME=SYSl .MACLIB,DISP=SHR

UNIT=SYSSQ,SPACE=(1700, (400,50))

UNIT=SYSSQ,SPACE=(1700, (400,50))

UNIT=(SYSSQ ,SEP=(SYSUT2,SYSUT1 ,SYSLIB)) I
SPACE=(l 700, (400,50))

SYSOUT =A

SYSOUT=B

/*

DSNAME=&LOADSET,UNIT=SYSSQ,SPACE=(80,(100,50}},
DISP=(MOD, PASS)

PGM=IEWL.PARM=(XREF ,LET ,LIST ,NCAL),REGION=96K,
COND=(S, LT ,.ASM)

DSNAME=&LOADSET ,DISP=(OLD ,DELETE)
DDNAME=SYSIN

I
I

x

x

x

•
2

//S;¥SLMOD DD DSNAME=&GOSET(GO),UNH=SYSDA,SPACE=(1024,(50,20, 1)),
DISP=(MOD ,PASS)

x
I/

//SYSUTl OD

//SYSPRINT DD

3
//GO EXEC

UNIT=(SYSDA,SEP=(SYSLIN ,SYSLMOD)) ,SPACE=(l 024 I (50,20))

SYSOUT=A,DCB=(, BLKSIZE= 121)

PGM=*.LKED.SYSLMOD,COND=((8,LT,ASM) I (4,LT,LKED))

2

The LET linkage-editor option specified in this statement causes the linkage editor to mark the load module as executable even though errors were
encountered during processing.

The.output of the linkage editor is specified as a member of a temporary data set, residing on a direct-access device, and is to be passed to a
succeeding job step.

3
This statement initiates execution of the assembled and linkage edited program. The notation* .LKED. SYSLMOD identifies the program to be
executed as being in the data set described in job step LKED by the DD statement named SYSLMOD. When running with MVT (Option 4) the
R£GJON parameter can be calculated with the help of the Storage Estimates publication (see preface).

Piqure 3. Cataloged Procedure for Assembly, Linkage Editing and Execution (ASMFCLG)

8

OVERRIDING STATEMENTS IN CATALOGED
PROCEDURES

Any parameter in a cataloged procedure can
be overridden except the PGM• parameter in
the EXEC statement. Such overriding of
statements or fields is effective only
for the duration of the job step in which
the statements appear. The statements,
as stored in the procedure library of the
system, remain unchanged.

Overriding for the purposes of re­
specif ication, addition, or nullification
is accomplished by including in the input
stream statements containing the desired
changes and identifying the statements
to be overridden.

EXEC Statements

The PARM= and COND= parameters can be added
or, if present, re-specified by including
in the EXEC statement calling the pro­
cedure the notation PARM.stepname=, or
COND.stepname=, followed by the desired
parameters. "Stepname" identifies the
EXEC statement within the procedure to
which the modification applies. Overriding
the PGM= parameter is not possible.

If the procedure consists of more than
one job step, a PARM.stepname= or COND.
stepname= parameter may be entered for
each step. The entries must be in order,
i.e., PARM.step!=, PARM.step2=, etc.

DD Statements

All parameters in the operand field of DD
statements may be overridden by including
in the input stream {following the EXEC
card calling the procedure) a DD statement
with the notation //stepname.ddname in the
name field. "Stepname" refers to the job
step in which the statement identified by
"ddname" appears.

Examples

+n the assembly procedure ASMFC (Figure 1) ,
the production of a punched object deck
could be suppressed and the UNIT= and SPACE=
parameters of data set SYSUTl re-specified,
by including the following statements in
the input stream:

I lstepname EXEC PROC=ASMFC, x
II PARM. ASM=NODECK

llASM.SYSUTl DD UNIT=23l l, x
II SPACE=(200, (300,40))

//ASM.SYSIN DD

In procedure ASMFCLG (Figure 3) , suppress­
ing production of an assembler listing and
adding the COND= parameter to the EXEC
statement, which specifies execution o~ the
linkage editor, may be desired. In this
case, the EXEC statement in the input
stream would appear as follows:

I lstepname
II

EXEC PROC=ASMFCLG,
PARM.ASM=(NOLIST,LOAD),
CO ND. LK ED"'(8. LT, step name. ASM)

x
x

NOTE: Overriding the LIST parameter ef­
fectively deletes the PARM=LOAD so this
must be repeated in the override statement.

For current execution of procedure
ASMFCLG, no assembler listing would be
produced, and execution of the linkage
editor job step //LKED would be suppressed
if the return code issued by the assembler
(step ASM) was greater than 8. Using the
procedure ASMFCL (Figure 2) to:

1. Read input from a non-labeled 9-track
tape on unit 282 that has a standard
blocking factor of 10.

2. Put the output listing on a labeled tape
VOLID=TAPElO, with a data set name of
PROGl and a blocking factor of 5.

3. Block the SYSGO output of the assembler
and use it as input to the linkage edi­
tor with a blocking factor of 5.

4. Link edit the module only if there are
no errors in the assembler,i.e.,COND•O.

5. Link edit on to a previously alloc~ted
and cataloged data set USER.LIBRARY
with a member name of PROG, the input
stream appears as follows:

lljobname JOB

llstepname EXEC PROC=ASMFCL, x

II COND. LKED=(O,NE,stepnome.ASM)

llASM.SYSPRINT DD DSNAME=PROG 1, UNIT=TAPE, x

II VOLUME=SER=TAPE 10 I DCB=(BLKSIZE=605)

llASM.SYSGO DD DCB=(BLKSIZE=400)

llASM.SYSIN DD UN.IT=282, LABEL=(, NL), x

II DCB=(RECFM=FSB, BLKSIZE=800)

I ILKED .SYSIN DD DCB=stepnome .ASM. SYS GO

llLKED.SYSLMOD DD DSNAME=USER. LI BRARY(PROG),DISP=OLD

I*

NOTE: The order of appearance of ddnames
within job steps ASM and LKED has been pre.;..
served. Thus, SYSPRINT precedes SYS GO with-
in step ASM. The ddname ASM.SYSIN was
placed last since SYSIN does not occur at

Cataloged Procedures 9

all within step ASM. These points are
covered in the section Using Cataloged
Procedures in the Job Control Language
manual.

To assemble two programs, link edit the two
assemblies into one load module and execute
the load module. Entering at PROC, the
input stream appears as follows:

//stepname l EXEC

//ASM. SYSGO DD

II
II
//ASM.SYSIN DD

/*
//stepname2 EXEC

I //ASM.SYSGO DD

//ASM.SYSIN DD

/*
//LKED.SYSLIN DD

//LKED .SYSIN DD

ENTRY

/*
//GO .ddname

10

PROC=ASMFC,PARM.ASM='LOAD'

DSNAME=&LOADSET, UN IT=SYSSQ, x
SPACE=(80, (100,50)), x
DISP=(MOD, PASS) ,DCB=(BLKSIZE=400)

I

source program l statements

PROC=ASMFCLG

DCB=(BLKSIZE=400), DISP=(MOD, PASS)

source program 2 statements

DCB=(RECFM=FB, BLKSIZE=400)

PROG

dd cards for GO step

The overriding step with ddname =LKED.SYSLIN
is necessary whenever output from an
assembler and output from. at least one or
more processors(including the assembler) is
placed on SYSLIN. The DCB=(RECFM=FB, ...)
allows the linkage editor to process all
the blocked input. Otherwise it will stop
reading SYSLIN whenever it encounters a
partial block. Such a situation arises if,
say, the first assembly produces 22 cards.
These 22 cards result in 4 full blocks of
400 bytes (5 times 80) plus 1 partial block
of 160 bytes (2 times 80).

The Job Control Language and System
Programmer's Guide publications provide
additional description of overriding
techniques.

The assembler listing (Figure 4) consists
of five sections, ordered as follows: ex­
ternal symbol dictionary items, the source
and object program statements, relocation
dictionary items, symbol cross reference
table, and diagnostic messages. In addi­
tion, three statistical messages may
appear in the listing:

1.

2.

3.

After the diagnostics, a statements­
flagged message indicates the total
number of statements in error. It
appears as follows: nnn STATEMENTS
FLAGGED IN THIS ASSEMBLY.
After the statements-flagged message,
the assembler prints the highest sever­
ity code encountered (if non-zero).
This is equal to the assembler return
code. The message appears as follows:
nn WAS HIGHEST SEVERITY CODE.
After the severity code, the assembler
prints a count of lines printed, which
appears as follows: nnn PRINTED LINES.
This is a count of the actual number
of 121-byte records generated by the
assembler; it may be less than the
total number of printed and blank
lines appearing on the listing if the
SPACE n assembler instruction is used.
For a SPACE n that does not cause an
eject, the assembler inserts n blank
lines in the listing by generating
n/3 blank 121-byte records -- rounded
to the next lower integer if a f rac­
tion results; e.g., for a SPACE 2, no
blank records are generated. The as­
sembler does not generate a blank
record to force a page eject.

In addition to the above items, the
assembler prints the deck identification
and current date on every page of the
listing. If the timer is available, the
assembler prints the time of day to the
left of the date on page 1 of the ESD
listing. This is the time when printing
starts, rather than the start of the assem­
bly, and is intended only to provide unique
identification for assemblies made on the
same day. The time is printed as hh.mm,
where hh is the hour of the day (midnight
beginning at 00), and mm is the number of
minutes past the hour.

EXTERNAL SYMBOL DICTIONARY (ESD)

This section of the listing contains the
external symbol dictionary information
passed to the linkage-editor in the object
module. The entries describe the control
sections, external references, and.entry
points in the assembled program. There
are six types of entries, shown in Table 4,

ASSEMBLER LISTING

along with their associated fields. The
circled numbers refer ~o the corresponding
heading in the sample ~isting (Figure 4).
The Xs indicate entries accompanying each
type designation.

Table 4. Types of ESD Entries

<D a> ® © @ @

SYMBOL TYPE ID ADDR LENGTH LO ID

x SD x x x -
x LO - x - x
x ER x - - -
- PC x x x -
- CM x x x -
x XO x x x -

1. This column contains the name of every
external dummy section, control sec­
tion, entry point, and external syrribol.

2. This column contains the type desig­
nator for the entry, as shown in the
table. The type designators are defined
as:

SD--Names section definition. The sym~
bol appeared in the name field of
a CSECT or START statement.

LD--The symbol appeared as the operand
of the ENTRY statement.

ER--External reference. The symbol
appeared as the operand of an EXTRN
statement, or was defined as a V­
type address constant.

PC--Unnamed control section definition.
CM--Common control section definition.
XD--External dummy section.

3. This column contains the external sym­
bol dictionary identification number
(ESDID). The number is a unique twq­
digit hexadecimal number identifyi'ng
the entry. It is used by the LD entry
of the ESD and by the relocation .. ,
dictionary for cross-referencing the
ESD.

4. This column contains the address of the
symbol (hexadecimal notation) for SD­
and LD-type entries, and zeros for ER­
type entries. For PC- and CM-type
entries, it indicates the beginning
address of the control section. For

Assembler Listing 11

EXTERNAL SYMBOL DICTIONARY

@ @ © ® ©
EXAM Page 1
SYMBOL TYPE ID ADDR LENGTH LO ID 00.16 4/11/66

<D
SAMPLR SD 01 000000 000388

0 © ©
EXAM SAMPLE PROGRAM Page 3

@ @ @ ®
LOC OBJECT CODE ADDRl ADDR2 STMT SOURCE STATEMENT F 14FEB66 4/11/66

000000
000004
000005
OOOOOA
OOOOOE
000010

47FO FOOA
05
C2C5C7C9D5
90EC DOOC
OSCO

OOOOA

ooooc

59+8EGIN
60+
61+
62+
63
64

B 10(0, 15) BRANCH AROUND ID
DC AL1(5)
DC CL5'BEGIN' IDENTIFIER
STM 14, 12, 12(13) SAVE REGISTERS
BALR R12,0 ESTABLISH ADDRESSABILITY OF PROGRAM
USING *,R12 AND TELL THEASSEMBLERWHATBASETOUSE

@
SAMPL057
SAMPL058

0 RELOCATION DICTIONARY
EXAM

@)
POS.ID

01
01
01
01
01

®
REL.ID

01
01
01
01
01

@
FLAGS

oc
oc
oc
oc
oc

Page 1

@ ®
ADDRESS 4/11/66

OOOlFC
00020C
00021C
0002D4
000334

0 CROSS-REFERENCE ©
EXAM

@
SYMBOL LEN VALUE DEFN REFERENCES

BEGIN 00004 000000 0059 0156 0158 0174 0184 0186 0220
EXIT 00004 00007E 0096 0111
HIGHER 00002 OOOOF4 0130 0125
IHB0005 00001 000078 0093 0090
IHBOOOSA 00002 00007C 0094 0089

0 DIAGNOSTICS
EXAM

@ @ @
STMT ERROR CODE MESSAGE

19
21

IEU025
IEU035

NEAR OPERAND COLUMN 7--RELOCATABILITY ERROR
NEAR OPERAND COLUMN 9--ADDRESSABILITY ERROR

2 STATEMENTS FLAGGED IN THIS ASSEMBLY
8 WAS HIGHEST SEVERITY CODE

261 PRINTED LINES

Figure 4. Assembler Listing

XO-type entries, it indicates the
alignment by printing a number one
less than the number of bytes in the
unit of alignment, e.g., 7 indicates
double word alignment.

5. This column contains the assembled
le~gth, in bytes, of the control

12

Page 1

®
4/11/66

©
Page 1

@
. 4/11/66

section (hexadecimal notation).
6. This column contains, for LO-type

entries, the identification (ID)
number assigned to the ESD entry that
identifies the control section in
which the symbol was defined.

SOURCE AND OBJECT PROGRAM

This section of the listing documents
the source statements and the resulting
object program.

7. This is the four-character deck iden­
tification. It is the symbol that
appears in the name field of the first
TITLE statement. The assembler
prints the deck identification and
date (item 16) on every page of the
listing.

8. This is the information taken from the
operand field of a TITLE statement.

NOTE: TITLE, SPACE and EJECT state­
ments will not appear in the source
listing unless the statement is con­
tinued onto another card. Then the
first card of the statement is printed.
However, any of these three types of
statements, if generated as macro in­
struction expansion, will never be
listed regardless of continuation.

9. Listing page number. Each section of
the listing starts with page 1.

10. This column contains the assembled
address (hexadecimal notation) of the
object code.

11. This column contains the object code
produced by the source statement. The
entries are always left-justified.
The notation is hexadecim? l_w Entries
are machine instructions or assembled
constants. Machine instructions
are printed in full with a blank
inserted after every four digits
(two bytes). Constants may be only
partially printed (see the PRINT
assembler instruction in the As­
sembler Language publication)-.--

12. These two columns contain effective
addresses (the result of adding to­
gether a base register value and dis­
placement value):

a. The column headed ADDRl contains
the effective address for the
first operand of an SS in­
struction.

b. The column headed ADDR2 contains
the effective address of the
second operand of any instruc­
tion referencing storage.

Both address fields contain six
digits: however, if the high-order
digit is a zero, it is not printed.

13. This column contains the statement
number. A plus sign (+) to the right
of the number indicates that the state­
ment was generated as the result· of
macro instruction processing.

14. This column contains the source pro­
gram statement. The following items
apply to this section of the listing:

a.

b.

c.

d.

e.

f.

g.

h.

Source statements are listed,
including those brought into the
program by the COPY assembler
instruction, and including macro
definitions submitted with the
main program for assembly.
Listing control instructions are
not printed, except for the
following case: PRINT is listed
when PRINT ON is in effect and a
PRINT statement is encountered.
Macro definitions obtained from
SYSLIB are not listed.
The statements generated as the
result of a macro instruction
follow the macro instruction in
the listing.
Assembler or machine instructions
in the source program that con­
tain variable symbols are listed
twice: as they appear in the
source input, and with values
substituted for the variable
symbols.
Diagnostic messages are not list­
ed inline in the source and
object program section. An error
indicator, ***ERROR***, follows
the statement in error. The
message appears in the diagnostic
section of the listing.
MNOTE messages are listed inline
in the source and object program
section. An MNOTE indicator
appears in the diagnostic section
of the listing for MNOTE state­
ments other than MNOTE*. The
MNOTE message format is severity
code, message text.
The MNOTE* form of the MNOTE
statements results in an inline
message only. An MNOTE indicator
does not appear in the diagnostic
section of the listing.
When an error is found in a
programmer macro definition, it
is treated the same as any other
assembly error: the error
indication appears after the
statement in error,' and a diag­
nostic is placed in the list of
diagnostics. However, when
an error is encountered during the
expansion of a macro instruction
(system- or programmer-defined) ,
the error indication appears in
place of the erroneous statement,
which is not listed. The error
indication follows the last
statement listed before the

Assembler Listing 13

i.

j.

k.

1.

erroneous statement was en­
countered, and the associated
diagnostic message is placed in
the list of diagnostics.
Literals that have not been
assigned locations by an LTORG
statement appear in the listing
following the END statement.
Literals are identified by the
equal (=) sign preceding them.
If the END statement contains an
operand, the transfer address
appears in the location column
(LOC) •
In the case of COM, CSECT, and
DSECT statements, the location
field contains the beginning ad­
dress of these control sections,
i.e., the first occurrence.
In the case of EXTRN, ENTRY, and
DXD instructions, the location
field and object code field are
blank.

m. For a USING statement, the loca­
tion field contains the value of
the first operand.

n. For LTORG and ORG statements, the
location field contains the loca­
tion assigned to the literal pool
or the value of the ORG operand.·

o. For an EQU statement, the loca­
tion field contains the value
assigned.

p. Generated statements always
print in normal statement for­
mat. Because of this, it is
possible for a generated state­
ment to occupy three or more con­
tinuation lines on the listing.
This is unlike source statements,
which are restricted to two con-

, tinuation lines.
15 ., \this column contains the identifier

at the assembler (F} and the date
. "when this version was released by

:;y:$tems Development Division to DPD
l;>.rogram Information Department.

16. Current date (date run is made).
17. 'Identification-sequence field from

the source statement.

RELOCATION DICTIONARY

This section of the listing contains the
relocation dictionary information passed
to the linkage editor in the object module.
The entries describe the address constapts
in the assembled program that are affected
by relocation.

14

18. This column contains the external
symbol dictionary ID number assigned
to the ESD entry that describes the
control section in which the address
constant is used as an operand.

19. This column contains the external sym­
bol dictionary ID number assigned to
the ESD entry that describes the con­
trol section in which the referenced
symbol is defined.

20. The two-digit hexadecimal number in
this column is interpreted as follows:

First Digit. A zero indicates that
the entry describes an A-type or
Q-type address constant. A one in­
dicates that the entry describes a
V-type address constant. A three
describes a CXD entry.
Second Digit. The first three bits
of this digit indicate the length
of the constant and whether the
base should be added or subtracted:

Bits 0 and 1 Bit 2
00 1 byte a-+
01 2 bytes 1 = -
10 3 bytes
11 4 bytes

21. This column contains the assembled ad­
dress of the field where the address
constant is stored.

CROSS REFERENCE

This section of the listing information
concerns symbols which are defined and
used in the program.

22. This column contains the symbols.
23. This column states the length (deci­

mal notation), in bytes, of the field
occupied by the symbol value.

24. This column contains either the ad­
dress the symbol represents, or a
value to which the symbol is equated •

25. This column contains the statement
number of the statement in which the
symbol was defined.

26. This column contains the statement
numbers of statements in which the
symbol appears as an operand. In the
case of a duplicate symbol, the assem­
bler fills this column with the mes­
sage:

****DUPLICATE****

The following notes apply to the
cross-reference section:

e Symbols appearing in V-type ad­
dress constants do not appear in
the cross-reference listing.

• A PRINT OFF listing control in­
struction does not affect the
production of the cross-reference
section of the listing.

• In the case of an undefined symbol,
the assembler fills columns 23, 24,
and 25 with the message:

****UNDEFINED****•

DIAGNOSTICS

This section contains the diagnostic mes­
sages issued as a result of error condi­
tions encountered in the program. The
text, severity code, and explanatory notes
for each message are contained in Appendix
A.

27. This column contains the number of the
statement in error.

28. This column contains the message iden­
tifier.

29. This column contains the message, and,
in most cases, an operand column point­
er that indicates the vicinity of the
error. In the following example, the
approximate location of the addressa­
bility error occurred in the 9th col­
umn of the operand field:

Example:

STMT ERROR CODE MESSAGE

21 IEU035 NEAR OPERAND COLUMN 9 -- ADDRESSABILITY ERROR

·The following notes apply to the diag­
nostic section:

• An MNOTE indicator of the form MNOTE
STATEMENT appears in the diagnostic
section if an MNOTE statement other
than MNOTE* is issued by a macro in­
struction. The MNOTE statement itself
is inline in the source and object
program section of the listing. The
operand field of an MNOTE* is printed
as a comment, but does not appear in
the diagnostic section.

• A message identifier consists of six
characters and is of the form:
IEUxxx

IEU identifies the issuing agent
as Assembler F, and xxx is a
unique number assigned to the
message.

NOTE: Editing errors in system macro in­
structions are discovered at the time the
macro instruction is read from the library,
i.e., after the END statement. To determine
the location of these errors it is necessary
to punch all system macro instructions, in- '
eluding inner macro instructions, and in­
sert them in the source program as program­
mer macro instructions. To aid in debugging,
it is advisable to run all _macro instruc­
tions as programmer macro instructions before
incorporating them as system macro instruc­
tions.

Assembler Listing 15

PROGRAMMING CONSIDERATIONS

This section consists of a number of dis­
crete subjects about assembler language
prograrcuning.

SAVING AND RESTORING GENERAL REGISTER
CONTENTS

A problem program should save the values
contained in the general registers upon com­
mencing execution and, upon completion, re­
store to the general registers these same
values. Thus, as control is passed from ,the
operating system to a problem program and,
in turn, to a subprogram, the status of the
registers used by each program is preserved.
This is done through use of the SAVE and
RETURN system macro instructions.

The SAVE macro instruction should be the
first statement in the program. It stores
the contents of registers 14, 15, and 0
through 12 in an area provided by the pro­
gram that passes control. When a problem
program is given control, register 13
points to an area in which the general
register contents should be saved.

If the program calls any subprograms,
or uses any operating system services other
than GETMAIN, FREEMAIN, ATTACH, and XCTL,
it must first save the contents of register
13 and then load the address of an 18 full­
word save area into register 13. This save
area is in the problem program and is used
by any subprograms or operating system
services called by the problem program.

At completion, the problem program re­
stores the contents of general registers
14, 15 and 0-12 by use of the RETURN system
macro instruction (which also indicates
program completion). The contents of regis­
ter 13 must be restored before execution of
the RETURN macro instruction.

The coding sequence that follows illus­
trates the basic process of saving and re­
storing the registers. A complete discus­
sion of the SAVE and RETURN macro instruc­
tions and the saving and restoring of
registers is contained in the Data Manage­
ment Services and Data Management Macro­
Instructions publications (see Preface) •

Name Operation Operand

BEGIN SAVE (14, 12)

set up base register

ST l3,SAVEBLK+4
LA 13,SAVEBLK

L l3,SAVEBLK+4
RETURN (14, 12)

SAVEBLK DC 18F'O'

16

PROGRAM TERMINATION

Completion of an assembler source program
is indicated by using the RETURN system
macro instruction to pass control from the
terminating program to the program that in­
itiated it. The initiating program may be
the operating system or, if a subprogram is­
sued the RETURN, the program that called it.

In addition to indicating program com­
pletion and restoring registers, the RE­
TURN macro instruction may also pass a re­
turn code -- a condition indicator that
may be used by the program receiving control.
If the return is to the operating system,
the return code is compared against the
condition stated in the COND= parameter of
the JOB or EXEC statements. If return is
to another problem program, the return
code is available in general register 15,
and may be used as desired. Register 13
should be restored before issuing the RE­
TURN macro instruction.

The RETURN system macro instruction is
discussed in detail in the Supervisor and
Data Management Macro Instructions pub­
lication.

PARM FIELD ACCESS

Access to information in the PARM field of
an EXEC statement is gained through general
register 1. When control is given to the
problem program, general register 1 con­
tains the address of a full word which, in
turn, contains the address of the data area
containing the information.

The data area consists of a halfword con­
taining the count (in binary) of the number
-0f information characters, followed by the
information field. The in~ormation field is
aligned to a full-word boundary. The follow­
ing diagram illustrates this process.

Points
to

General Register 1

Address of Full Word

Full Word

Address of Data Area

Data Area

----- Count in Binary Information Fie.Id

MACRO DEFINITION LIBRARY ADDITIONS

Points
to

Source statement coding, to be retrieved
by the COPY assembler instruction, and

macro definitions may be added to the macro
library. The IEBUPDTE utility program is
used for this purpose. Details 6f this
program and its control statements are con­
tained in the Utilities publication. The
following sequence of job control state­
ments can be used to call the utility pro­
gram and identify the needed data sets.
It is assumed that the job control state-

1 ments, IEBUPDTE program control statements,
and data are to enter the system via the
input stream.

//jobname
//stepname
//SYSUTl
//SYSUT2
//SYSPRINT
//SYSIN

JOB
EXEC
DD
DD
DD
DD

PGM=IEBUPDTE, PARM=MOD
DSNAME=SYSl. MACLI B, DISP=OLD
DSNAME=SYS l. MACLIB, DISP=OLD
SYSOUT=A

I I EBUPDTE contr~I statements and source statements or
macro-definitions to be added to the macro-library
(SYSl .MACLIB)

/* (delimiter statement)

LOAD MODULE MODIFICATION - ENTRY POINT
RESTATEMENT

If the editing functions of the linkage
editor are to be used to modify a load
module, the entry point to the load module
must be restated when the load module is
reprocessed by the linkage editor. Other­
wise, the first byte of the first control
section processed by the linkage editor
will become the entry point. To enable
restatement of the original entry point,
or designation of a new entry point, the
entry point must have been identified
originally as an external symbol, i.e.,
appeared as an entry in the external
symbol dictionary. External symbol
identification is done automatically by
the assembler if the entry point is the
name of a control section or START state­
ment; otherwise, an assembler ENTRY state­
ment must be used to identify the entry
point name as an external symbol.

When a new object module is added to or
replaces part of the load module, the
entry point is restated in one of three
ways:

• By placing the entry point symbol in the
operand field of an EXTRN statement
and an END statement in the new object
module.

• By using an END statement in the new
object module to designate a new entry
point in the new object module.

• By using a linkage editor ENTRY state­
ment to designate either the original
entry point or a new entry point for
the load module.

Further discussion of load module entry
points is contained in the Linkage Editor
publication.

OBJECT MODULE LINKAGE

Object modules, whether Assembler-, FOR­
TRAN-, or COBOL-generated, may be combined
by the linkage editor to produce a compo­
site load module, provided each object
module conforms to the data formats and
linkage conventions required. This topic
discusses the use of the CALL system macro
instruction to link an assembler language
'!main" program to subprograms produced by
FORTRAN and COBOL. The Supervisor and Data
Management Macro Instructions publication
contains additional details concerning
linkage conventions and the CALL system

'macro instruction.
Figure 5 shows the statements used to

establish the assembler program linkage
to the called subprograms.

If any input/output operations are per­
formed by called subprograms, appropriate
DD statements for the data sets used by the
subprograms must be supplied. See the
FORTRAN IV (E) Programmer's Guide publica­
tion for explanation of the DD statements
used to describe data sets for FORTRAN pro­
grams and a description of the special FOR­
TRAN data set record formats. The COBOL
(E) Programmer's Guide publication provides

DD statement information for COBOL programs.

DICTIONARY SIZE AND SOURCE STATEMENT COM­
PLEXITY

This section describes the composition of
the assembler dictionaries and their entry
sizes, and describes methods.for determin­
ing if the limits on source statement com­
plexity will be exceeded.

Dictionary entries, e.g., sequence sym­
bol names, prototype symbolic parameters,
vary in length. Therefore, the number of
entries a dictionary can hold is determined
by the types of entries.

Source statement complexity -- the num­
ber of symbols, characters, operators, de­
limiters, references to length attributes,
self-defining terms, literals, and expres­
sions appearing in a source statement -­
determines whether or not the source state­
ment can be successfully processed.

Programming Considerations 17

2

! SVAREA

5
Vl

6 V2
V3

SAVE

ST
LA
ST
LR

CALL

L
RETURN
DC
DC
DC
DC
END

(14, 12)

set up base register

13,SVAREA+4
15,SVAREA
15,8(13)
13, 15

name, (VJ, V2, V3), VL

·J3,SVAREA+4
(14, 12)
18F'O'
(data)
(data)
{data)

This is an example of OS linkage convention. See the publication Supervisor and Data Management Services for details.

2
The symbol used for "name" in this statement is:

a. The name of a subroutine or function, when the linkage is to a FORTRAN-written subprogram.

b. The name defined by the following COBOL statements in the procedure division:

ENTER LINKAGE, ENTRY'name •

c. The name of a CSECT or START statement, or a name used in the operand field of an ENTRY statement in an ossembler subprogram.

The order in which the parameter list is written must reflect the order in which the called subprogram expects the argument. If the coiled routine is a
FORTRAN-written function, the returned argument is not in the parameter list: a real or double precision function returns the value in floating point
register zero; an integer function returns the value in general purpose register zero,

CAUTION: When linking to FORTRAN-written subprograms, consideration must be given to the storage requirements of IBCOM (FORTRAN execution-time
1/0 and interrupt handling routines) which accompanies the compiled FORTRAN subprogram. In some instances the call for IBCOM is not automatically
generated during the FORTRAN compilation, The FORTRAN IV Library publication provides information about IBCOM requirements and assembler state­
ments used to call IBCOM,

FORTRAN - written subprograms and FORTRAN library subprograms allow variable-length parameter lists in linkages which call them; therefore all linkages
to FORTRAN subprograms are required to have the high-order bit in the lost parameter in the linkage set to l, COBOL-written subprograms have fixed­
length calling linkages; therefore, for COBOL the high-order bit in the lost parameter need not be set to 1,

3
This statement reserves the save area needed by the called subprogram. When control is passed to the subprogram, register 13 contains the address of this
area.

4 5 6 When linking to a FORTRAN or COBOL subprogram, the data formats declared in these statements are determined by the data formats required by
the FORTRAN or COBOL subprograms.

Figure 5. Linkage Statements

DICTIONARIES USED IN CONDITIONAL ASSEMBLY
AND MACRO INSTRUCTION EXPANSION

To accomplish macro instruction expansion
and conditional assembly, the assembler
constructs a general dictionary consisting
of two parts: one global dictionary for
the entire program, and an area for all of
the local dictionaries.

The global dictionary contains one en­
try for each machine operation code, ex­
tended mnemonic operation code, assembler
operation code, macro instruction, and
global SET variable symbol.

The local dictionary area consists of
one local dictionary for each different

18

macro definition in the program, and one
local dictionary for the main portion of
the program (those statements not within
a macro definition, also called 11 open
code."). The contents of the local dic­
tionaries are described in subsequent
paragraphs.

The capacity of the general dictionary
(global dictionary and all local diction­
aries) is up to 64 blocks of 1024 bytes
each. The division of the dictionary into
global and local sections is done dynami­
cally: as the global dictionary becomes
larger, it occupies blocks taken from the
local dictionary area. Thus, the global
dictionary is always core resident. As it

expands into the local dictionary area,
the local dictionaries may overflow onto
a utility file. The size of the diction­
aries in core depends upon core avail­
ability. The minimum core allocation is
three blocks for the global dictionary and
two blocks for each local dictionary.

Each block in the global and local
dictionaries contains complete entries.
Any entry not fitting into a block is
placed in the next block~ the remaining
bytes in the current block are not used.

The global and local dictionaries take
two forms: one when the dictionary entries
are collected, i.e., picked up during the
initial scan of the source program, and
one during the actual conditional assembly
and macro generation, i.e., generation
time. The following text describes the
global and local dictionaries at both
collection tim'e and generation time.

Global Dictionary at.Collection Time

One global dictionary is built for the
entire program. It contains machine
operation codes, extended mnemonic opera­
tion codes, assembler operation codes,
macro instruction mnemonics, and global
SET variable symbols. One entry is made
for each. The size of each type of entry
is shown in Table 5.

Table 5. Global Dictionary Entries at
Collection Time

Entry Size

** Each machine operation code 5 bytes plus mnemonic*

Each extended mnemonic operation
code or assembler operation** 6 bytes plus mnemonic*

Each macro mnemonic operation code 10 bytes plus mnemonic*

Each globe I SET variable symbol 6 bytes plus name*

*One byte is used for each character in the name or mnemonic.

**For the first two types of entries, a total of
06FE16 (179010) bytes of core is required.

Fixed overhead for this dictionary is:
8 bytes for the first block
4 bytes for each succeeding block
5 bytes for the last block

Local Dictionaries at Collection Time

For the main portion of the program (those
statements not within a macro definition),
one local dictionary is constructed in
which ordinary symbols, sequence symbols,
and local SET variable symbols are entered.
In addition, one local dictionary is con­
structed for each different macro defini­
tion in the program. These local diction­
aries contain one entry for each local SET
variable symbol, sequence symbol, and
prototype symbolic parameter declared
within the macro definition. If a sequence
symbol is defined before it is referenced,
an extra entry for the symbol is made.
Table 6 shows the size of each type of
entry.

Table 6. Local Dictionary Entries at
Collection Time

Entry Size

Each sequence symbol 10 bytes plus name*

Each local SET variable symbol 6 bytes plus name*

Each prototype symbolic parameter 5 bytes plus name*

Each ordinary symbol
appearing in the main portion
of the program.

10 bytes plus name*

*One byte is used for each character in the name or mnemonic.

Fixed overhead for this dictionary is:
8 bytes for the first block (if in the

main program)
32 bytes for the first block (if' in a

macro definition)
4 bytes for each succeeding block
5 bytes for the last block

Global Dictionary at Generation Time

The sizes of the global dictionary entries
at generation time are shown in Table 7.

Programming Considerations 19

Table 7. Global Dictionary Entries at
Generation Time

Entry Size

Each macro mnemonic operation code 3 bytes

Each global SETA symbol (dimensioned) 1 byte plus 4N*

Each globa I SE TA symbol
(undimensioned) 4 bytes

Each global SETB symbol (dimensioned) 1 byte plus (N/8)* (N/8 is
rounded to the next highest
integer)

Each global SETB symbol 1 bit
{undimensioned)

Each global SETC symbol
(dimensioned) 1 byte plus 9N*

Each global SETC symbol
(undimensioned) 9 bytes

*N = dimension

Fixed overhead for this dictionary is
4 bytes plus word alignment.

Local Dictionaries at Generation Time

Table 8 shows the sizes of the various
entries appearing in the local dictionaries
at generation time.

Table 8. Local Dictionary Entries at
Generation Time-

Entry

Each sequence symbol

Each loco I SETA symbol (dimensioned)

Each local SETA symbol
(undimens ioned)

Each local SETB symbol (dimensioned)

Each loco I SETB symbol
(undimensioned)

Each loco I SETC symbol(dimensioned)

Each loca I SETC symbol
(undimens ioned)

Each ordinary symbol
appearing in the main portion
of the program.**

*N=dimension
**These entries appear only in the main

pre>gram local dictionary.

20

Size

5 bytes

1 byte plus 4N *

4 bytes

1 byte plus (N/8)* (N/8 is
rounded to the next highest
integer)

1 bit

1 byte plus 9N *

9 bytes

5 bytes

Fixed overhead for this dictionary is
20 bytes plus word alignment.

Additional Dictionary Requirements

The generation time global dictionary and
the generation time local dictionary for
the main portion of the program must be
resident in main storage.

In addition, if the program contains any
macro instructions, main storage is re­
quired for the largest local dictionary of
the macro definitions being processed.
Furthermore, during processing of macro
definitions containing inner macro instruc­
tions, main storage is required for the
generation time local dictionaries for the
inner macro instructions contained within
the macro definition.

In addition to those requirements speci­
fied for the local dictionary of the main
portion Qf the program, each macro def ini­
tion local dictionary requires space for
entries shown in Table 9.

Table 9. Macro Definition Local
Dictionary Parameter Table

Entry Size

Each character string (1) 3 bytes plus L

Each hexadecimal, binary, decimal,
and character self-defining term (2) 7 bytes plus L

Each symbol (3) 9 bytes plus L

Each sub(ist 9 bytes plus 3N bytes plus Y

L Length of BCD entry in bytes
N Number of entries in sublist
y E 1 + E2 + E3 + .•. En

where E =size of on entry (formats 1,2, and 3 above)

Fixed overhead for the macro definition
local dictionary parameter table is 22
bytes. Each nested macro instruction also
requires space in its local dictionary for
the following:

Parameter pointer list

Pointers to parameter
pointer list and
parameter table

8 bytes plus 2N
(N = the number
of operands)
8 bytes plus
word alignment

Correction of Dictionary Overflow

If an assembly is terminated at collection
time with either a GLOBAL DICTIONARY FULL
message (IEU053) or a LOCAL DICTIONARY FULL

message (IEU054), the programmer can take
one or more of the following steps:

1. Split the assembly into two or more
parts and assemble each separately.

2. Allocate more core for the assembler
(the global and local dictionaries
together can occupy up to 64K).

3. Run the assembly under Assembler E.
Due to its dictionary building
algorithm, Assembler E can handle more
symbols with a given size dictionary
than can Assembler F.)

If the assembly is terminated at genera­
tion time with a GENERATION TIME DICTIONARY
AREA OVERFLOWED message (IEU068), the pro­
grammer should allocate more core to the
assembler and re-assemble his program. If
he cannot allocate more core to the assem­
bler, the programmer should split the
assembly into two or more parts and assem­
ble each separately.

SOURCE STATEMENT COMPLEXITY

The complexity of a source statement is
limited both by the macro generator and the
assembler portions of the assembler. The
following topics provide the information
necessary to determine if statement­
complexi ty limitations for either portion
of the assembler are being exceeded.

Macro Generation and Conditional Assembly
Limitation

For any statement which

1. Is a conditional assembly statement,
2. Is a DC or DS statement,
3. Is an EXTRN statement,
4. Contains a sequence symbol or a

variable symbol,
5. Is not a macro instruction or proto­

type statement,

the total number of explicit occurrences of

1. Ordinary symbols (includes machine
mnemonics, assembler mnemonics, con­
ditional assembly mnemonics, and macro
instruction mnemonics),

2. Variable symbols,
3. Sequence symbols,

must not exceed 50 for the entire state­
ment.

For macro instructions and prototype
statements the number of occurrences of
ordinary symbols, variable symbols, and
sequence symbols must not exceed 50 in the
name and operation fields combined; or in
each operand unless the operand is a sub-

list, in which case the limit is applied
to each sublist operand. In any operand if
a character string has the same form as a
symbol, it is counted as a symbol.

Examples of Counts:

&82 SETB (T'NAME EQ 'W')' count=3 (&82,SET8,NAME)

EXTRN A,8,C,&C count=5 (EXTRN,A, 8, C, &C)

Assembler Portion Limitations

1. Generated statements may not exceed 236
characters. Statement length includes
name, operation, operand, and comments.
If a comments field exists, the blank
separating the operand and comments
field is included in the statement
length. The statement is truncated if
it exceeds 236 characters.

2. DC, DS, DXD, and literal DCs cannot
contain more than 32 operands per
statement.

SYSTEM/360 MODEL 91 PROGRAMMING CONSIDERA­
TIONS

The assembly language programmer should be
aware of the operational differences
between the Model 91 and other System/360
models. The Model 91 requires a simulation
routine to execute most decimal instructions
and it yields different floating-point in­
structions execution results. The Model 91
also decodes and executes instructions con­
currently and nonsequentially.

These and other coding and timing con­
siderations are discussed in detail in IBM
System/360 Model 91 Functional Character­
istics, Form A22-6907. Additional informa­
tion on how to control sequential and non­
sequential instruction execution is given
below.

Controlling Instruction Execution Sequence

The CPU maintains a logical consistency
with respect to its own operations, includ­
ing the beginning and ending of I/O opera­
tions, but it does not assume responsibility
for such consistency in the operations per­
formed by asynchronous units. Consequently,
for any asynchronous unit that depends upon
a strict adherence to sequential (or serial)
execution, a problem program must set up
its own procedures to ensure the proper
instruction sequence.

Programming Considerations 21

For a program section that requires the
serial or sequential execution of instruc­
tions, the following 'no-operation' in­
struction:

BCR M,0 where M = 0

causes the instruction decoder to halt,
and the instructions that have already been
decoded to be executed. (This action is
called a pipe-line drain.) On the Model 91,
this instruction ensures that all the in­
structions preceding it are executed before
the instruction suceeding it is decoded.
Use of this instruction should be minimized
since it may affect the performance of the
Model 91.

•22

Isolating an instruction by preceding it
and succeeding it with a BCR instruction
eliminates multiple imprecise interruptions
from more than one instruction by virtue of
the pipe-line drain effect. However, since
multiple exceptions may occur in one in­
struction, this technique does not eliminate
a multiple imprecise interruption nor does it
change an imprecise interruption into a pre­
cise interruption. The use of the BCR in­
struction does not assure a programmer that
he can fix up an error situation. In general,
the only information available will be the
address of the BCR instruction. The length of
the instruction preceding the BCR instruction
is not recorded, and generally there is no
way to determine what that instruction is.

IEUOOl

IEU002

IEU003

IEU004

IEU005

IEU006

IEU007

IEU008

IEU009

IEUOlO

IEUOll

IEU012

IEU013

IEU014

Message

DUPLICATION FACTOR
ERROR

RELOCATABLE DUPLI­
CATION FACTOR

LENGTH ERROR

RELOCATABLE LENGTH

S-TYPE CONSTANT IN
LITERAL

INVALID ORIGIN

LOCATION COUNTER
ERROR

INVALID DISPLACEMENT

MISSING OPERAND

INCORRECT REGISTER
SPECIFICATION

SCALE MODIFIER ERROR

RELOCATABLE SCALE
MODIFIER

EXPONENT MODIFIER
ERROR

RELOCATABLE EXPONENT
MODIFIER

APPENDIX A. DIAGNOSTIC MESSAGES

Severity
Explanation Code

A duplication factor is not an absolute 12
expression, or is zero in a literal~ * in
duplication factor expression; invalid syntax
in expression.

A relocatable expression has been used to 12
specify the duplication factor.

The length specification is out of permissible 12
range or specified invalidly: * in length
expression: invalid syntax in expression; no
left-parenthesis delimiter for expression.

A relocatable expression has been used to 12
specify length.

Self-explanatory. 8

The location counter has been reset to a value 12
less than the starting address of the control
section; ORG operand is not a simply relocatable
expression or specifies an address outside the
control section.

The location counter has exceeded 224 -1, or 12
passed out of control section in negative
direction (3 byte arithmetic}.

The displacement in an explicit address is not 8
an absolute value within the range of 0 to 4095.

Self-explanatory 12

The value specifying the register is not an 8
absolute value within the range 0-15, an odd
register is specified where an even register
is required, or a register was used where none
can be specified.

The scale modifier is not an absolute express- 8
ion or is too large, negative scale modifier for
floating point, * in scale modifier expression;
invalid syntax or illegally specified scale
modifier.

A relocatable expression has been used to 8
specify the scale modifier.

The exponent is not spec~f ied as an absolute 8
expression or is out of range; * in exponent
modifier expression; invalid syntax; illegally
specified exponent modifier.

A relocatable expression has been used to 8
specify the exponent modifier.

Appendix A. Diagnostic Messages 23

Code

IEU015

IEU016

IEUOl 7

IEU018

IEU019

IEU020

IEU021

IEU022

IEU023

IEU024

IEU025

IEU026

IEU027

IEU028

24

Message Explanation

INVALID LITERAL USAGE A valid literal is used illegally, e.g., it
specifies a receiving field or a register,
or it is a Q-type constant.

INVALID NAME A name entry is incorrectly specified, e.g.,
it contains more than 8 characters, it does
not begin with a letter, or has a special
character imbedded.

DATA ITEM TOO LARGE The constant is too large for the data type
or for the explicit length; operand field
for packed DC exceeds 32 characters and for
zoned DC exceeds 16 characters (excluding
decimal points).

INVALID SYMBOL The symbol is specified invalidly, e.g., it
is longer than 8 characters.

EXTERNAL NAME ERROR A CSECT and DSECT statement have the same
name, or a symbol is used more than once in
an EXTRN or the name field of DXD statements.

Severity
Code

8

8

8

8

8

INVALID IMMEDIATE
FIELD

The value of the immediate operand exceeds 255, 8

SYMBOL NOT
PREVIOUSLY DEFINED

ESDTABLE OVERFLOW

PREVIOUSLY DEFINED
NAME

UNDEFINED SYMBOL

RELOCATABILITY
ERROR

TOO MANY LEVELS
PARENTHESES

TOO MANY TERMS

OF

REGISTER NOT USED

or the operand requires more than one byte of
storage, or the operand is not an acceptable type.

Self-explanatory. 8

The combined number of control sections and 12
dummy sections plus the number of unique
symbols in EXTRN statements and V-type con-
stants exceeds 255. (A DSECT which appears
as XD makes two entries).

The symbol which appears in the name field has 8
appeared in the name field of a previous
statement.

A symbol being referenced has not been defined 8
in the program.

A relocatable or complex relocatable expression 8
is specified where an absolute expression is
required, an absolute expression or complex
relocatable expression is specified where a
relocatable expression is required, or a reloca-
table term is involved in multiplication or
division.

An expression specifies more than 5 levels of
parentheses.

More than 16 terms are specified in an
expression.

A register specified in a DROP statement is not
currently in use.

12

12

4

IEU029

IEU030

IEU031

IIEU032

IEU033

IEU034

IEU035

IEU036

IEU037

IEU038

IEU039

IEU040

IEU041

IEU042

IEU043

IEU044

Message

CCW ERROR

INVALID CNOP

UNKNOWN TYPE

OP-CODE NOT ALLOWED
TO BE GENERATED

ALIGNMENT ERROR

INVALID OP-CODE

ADDRESSABILITY ERROR

(No message is
assigned to
this number)

MNOTE STATEMENT

ENTRY ERROR

INVALID DELIMITER

GENERATED RECORD
TOO LONG

UNDECLARED VARIABLE
SYMBOL

SINGLE TERM LOGICAL
EXPRESSION IS NOT
A SETB SYMBOL

SET SYMBOL
PREVIOUSLY DEFINED

SET SYMBOL USAGE
INCONSISTENT WITH
DECLARATION

Explanation

Bits 37-39 of the CCW are set to non-zero.

An invalid combination of operands is
specified.

Incorrect type designation is specified in a
DC, DS, or literal.

Severity
Code

8

12

8

Operation code allowed only in source statement has
been obtained through substitution of a value for a
variq.ble symbol.

8

Referenced address is not aligned to the proper
boundary for this instruction, e.g., START
operand not a multiple of 8.

Syntax error, e.g., more than 5 characters in
operation field, not followed by blank on first
card, missing.

The referenced address does not fall within the
range of a USING instruction.

This indicates that an MNOTE statement has been
generated from a macro definition. The text and
severity code of the MNOTE statement will be
found in line in the listing.

A symbol in the operand of an ENTRY statement
appears in more than one ENTRY statement, it is
undefined, it is defined in a dummy section or
in blank common, or it is equated to a symbol
defined by an EXTRN statement.

This message can be caused by any syntax error,
e.g., missing delimiter, special character used
which is not a valid delimiter, delimiter used
illegally, operand missing, i.e., nothing
between delimiters, unpaired parentheses,
imbedded blank in expression.

There are more than 236 characters in a
generated statement.

Variable symbol is not declared in a defined SET
symbol statement or in a macro prototype.

The single term logical expression has not been
declared as a SETB symbol.

Self-explanatory.

A SET symbol has been declared as undimensioned,
but is subscripted, or has been declared
dimensioned, but is unsubscripted.

4

8

8

Variable

8

12

12

8

8

8

8

~ppendix A. Diagnostic Messages 25

Code

IEU045

IIEU046

IEU047

IEU048

IEU049

IEU050

IEU051

IEU052

IEU053

I
IEU054

IEU055

IEU056

IEU057

IEU058

IEU059

IEU060

26

Message

ILLEGAL SYMBOLIC
PARAMETER

AT LEAST ONE RELOCAT­
ABLE Y TYPE CONSTANT
IN ASSEMBLY

SEQUENCE SYMBOL
PREVIOUSLY DEFINED

SYMBOLIC PARAMETER
PREVIOUSLY DEFINED OR
SYSTEM VARIABLE SYMBOL
DECLARED AS SYMBOLIC
PARAMETER

VARIABLE SYMBOL
MATCHES A PARAMETER

INCONSISTENT GLOBAL
DECLARATIONS

MACRO DEFINITION
PREVIOUSLY 'DEFINED

NAME FIELD CONTAINS
ILLEGAL SET SYMBOL

GLOBAL DICTIONARY
FULL

LOCAL DICTIONARY FULL

INVALID ASSEMBLER
OPTION(S) ON THE
EXECUTE CARD

ARITHMETIC OVERFLOW

SUBSCRIPT EXCEEDS
MAXIMUM DIMENSION

RE-ENTRANT CHECK
FAILED

UNDEFINED SEQUENCE
SYMBOL

ILLEGAL ATTRIBUTE
NOTATION

Severity
Explanation Code

An attribute has been requested for a variable
symbol which is not a legal symbolic parameter. 8

One or more relocatable Y-type constants in
assembly; relocation may result in address·
greater than 2 bytes in length.

Self-explanatory.

Self-explanatory.

Self~explanatory.

A global SET variable symbol, defined in more
than one macro definition or defined in a
macro definition and in the source program, is
inconsistent in SET type or dimension.

Prototype operation field is the same as a
machine or assembler instruction or a previous
prototype. This message is not produced when
a programmer macro matches a system macro. The
programmer macro will be assembled with no in­
dication of the corresponding system macro.

SET symbol ~n name field does not correspond
to SET statement type.

The global dictionary is full, assembly ter­
minated. See Correction of Dictionary Over­
flow.

The local dictionary ~s full, current macro
aborted, If in open code, assembly terminated.
See Correction of Dictionary Overflow.

Self-explanatory.

The intermediate or final result of an exrress­
ion is not within the range of -231 to 23 -1.

&SYSLIST or symbolic parameter subscript exceeds
200, or is negative, or zero, or SET symbol
subscript exceeds dimension.

An instruction has been detected, which, when
executed, might store data into a control section
or a common area. This message is generated only
when requested via control cards and merely
indicates a possible reentrant error.

Self-explanatory.

L', S', or I' requested for a parameter whose
type attribute does not allow these attributes
to be requested.

12

12

12

8

12

8

12

12

8

8

8

4

12

8

Code

IIEU061

IEU062

IEU063

IEU064

IEU065

IEU066

IEU067

IIEU068

IEU069

rEU070

IEU071

IEU072

rEU073

IEU074

Message

ACTR COUNTER EXCEEDED

GENERATED STRING
GREATER THAN 255
CHARACTERS

EXPRESSION 1 OF SUB­
STRING IS ZERO OR
MINUS

EXPRESSION 2 OF SUB­
STRING IS ZERO OR
MINUS

INVALID OR ILLEGAL
TERM IN ARITHMETIC
EXPRESSION

UNDEFINED OR DUP­
LICATE KEYWORD
OPERAND OR EXCESSIVE
POSITIONAL OPERANDS

EXPRESSION 1 OF SUB­
STRING GREATER THAN
LENGTH OF CHARACTER
EXPRESSION

GENERATION TIME
DICTIONARY AREA
OVERFLOWED

VALUE OF EXPRESSION
2 OF SUBSTRING
GREATER THAN 8

FLOATING POINT
CHARACTERISTIC OUT
OF RANGE

ILLEGAL OCCURRENCE
OF LCL, GBL, OR
ACTR STATEMENT

ILLEGAL RANGE ON
ISEQ STATEMENT

ILLEGAL NAME FIELD

ILLEGAL STATEMENT
IN COPY CODE OR
SYSTEM MACRO

Explanation
Severity

Code

Self-explanatory, conditional assemblyterminated. 12

Self-explanatory.

Self-explanatory.

Self-explanatory.

The value of a SETC symbol used in the arith­
metic expression is not composed of decimal
digits, or the parameter is not a self-defining
term.

The same keyword operand occurs more than once
in the macro instruction; a keyword is not
defined in a prototype statement; in a mixed
mode macro instruction, more positional
operands are specified than are specified in
the prototype.

Self-explanatory.

See Correction of Dictionary Overflow and
Dictionary Size and Source Statement Complexity.

Self-explanatory.

Exponent too large for length of defining
field, exponent modifier has caused loss
of all significant digits.

LCL, GBL, or ACTR statement is not in proper
place in the program.

Self-explanatory.

Either a statement which requires a name is
blank, or a statement has a name which should be
blank, or a name entry required to be a sequence
symbol is not a sequence symbol.

Self-explanatory.

8

8

8

8

12

8

12

8

12

8

4

8

8

Appendix A. Diagnostic Messages 27

Code

rEU075

IEU076

IEU077

IEU078

IEU079

IEU080

IEU081

IEU082

IEU083

IEU084

IEU085

IEU086

IEU087

rEU088

IEU089

28

Message

ILLEGAL STATEMENT
OUTSIDE OF A MACRO
DEFINITION

SEQUENCE ERROR

ILLEGAL CONTINUATION
CARD

(No message is
assigned to this
number)

ILLEGAL STATEMENT
IN MACRO DEFINITION

ILLEGAL START CARD

ILLEGAL FORMAT IN
GBL OR LCL STATE­
MENTS

ILLEGAL DIMENSION
SPECIFICATION IN GBL
OR LCL STATEMENT

SET STATEMENT NAME
FIELD NOT A VARIABLE
SYMBOL

ILLEGAL OPERAND FIELD
FORMAT

INVALID SYNTAX IN
EXPRESSION

ILLEGAL USAGE OF
SY:STEM VARIABLE
SYMBOL

NO ENDING APOSTROPHE

UNDEFINED OPERATION
CODE

INVALID ATTRIBUTE
NOTATION

Severity
Explanation Code

Statement allowed only in a macro definition 8
encountered in OPEN code, e.g., period asterisk
(.*), mnote statement.

Self-explanatory. 12

Either there are too many continuation cards, 8
or there are non~blanks between the begin and
continue columns on the continuation card, or
a card not intended as continuation was treated
as such because of punch in continue column
of preceding card.

This operation is not allowed within a macro
definition.

Statements affecting or depending upon the
location counter have been encountered before
a START statement.

An operand is not a variable symbol.

Dimension is other than 1 to 255.

Self-explanatory.

Syntax invalid, e.g., AIF statement operand
does not start with a left parenthesis; operand
of AGO is not a sequence symbol; operand of
PUNCH, TITLE, MNOTE not enclosed in quotes.

Invalid delimiter, too many terms in expression,
too many levels of parentheses, two operators
in succession, two terms in succession, or
illegal character.

A system variable symbol appears in the name
field of a SET statement, is used in a mixed
mode or keyword macro definition, is declared
in a GBL or LCL statement, or is an unsubscripted
&SYSLIST in a context other than N'&SYSLIST.

There is an unpaired apostrophe or ampersand in
the statement.

Symbol in operation code field does not
correspond to a valid machine or assembler
operation code or to any operation code in a
macro prototype statement.

Syntax error inside a macro definition, e.g.,
the argument of the attribute reference is not
a symbolic parameter.

8

8

8

8

8

8

8

8

8

12

8

Code

IEU090

IEU091

IEU092

IEU093

IEU094

IEU095

IEU096

IEU097

IEU098

IEU099

Message

INVALID SUBSCRIPT

INVALID SELF-DEFINING
TERM

INVALID FORMAT FOR
VARIABLE SYMBOL

UNBALANCED PAREN..­
THESIS OR EXCESSIVE
LEFT PARENTHESES

INVALID OR ILLEGAL
NAME OR OPERATION IN
PROTOTYPE STATEMENT

ENTRY TABLE OVERFLOW

MACRO INSTRUCTION OR
PROTOTYPE OPERAND
EXCEEDS 255 CHARAC­
TERS IN LENGTH

INVALID FORMAT IN
MACRO INSTRUCTION
OPERAND OR PROTOTYPE
PARAMETER

EXCESSIVE NUMBER OF
OPERANDS OR PARAM~
ETERS

POSITIONAL MACRO
INSTRUCTION OPERAND,
PROTOTYPE PARAMETER
OR EXTRA COMMA
FOLLOWS KEYWORD

Severity
Explanation Code

Syntax error, e.g., double subscript where 8
single subscript is required or vice versa;
not right parenthesis after subscript.

Value is too large or is inconsistent with the 8
data type, e.g., severity code greater than 255.

The first character after the ampersand is not 8
alphabetic, or the variable symbol contains
more than 8 characters, or failure to use
double ampersand in TITLE card or character
self-defining term.

End of statement or card encountered before all 8
parenthesis levels are satisfied. May be caused
by embedded blank or other unexpected terminator,
or failure to have a punch in continuation
column.

Name not blank or variable symbol, or variable 12
symbol in name field is subscripted, or violation
of rules for forming variable symbol (must be-
gin with ampersand (&) followed by 1-7 letters
and/or numbers first of which must be a letter) ,
or statement fOllowing 'MACRO' is not a valid
prototype statement.

Number of ENTRY symbols, i.e., ENTRY instruc- 8
tion operands, exceeds 100.

Self-explanatory. 12

This message can be caused by: 12
1. Illegal "= ...
2. A single "&., appears somewhere in the

standard value assigned to a prototype
keyword parameter.

3. First character of a prototype parameter
is not "&".

4. Prototype parameter is a subscripted
variable symbol.

5. Invalid use of alternate format in proto­
type statement, e.g.,

10
PROTO

or

16 72
&A, &B,

PROTO &A,&B, X
&C

6. Unintelligible prototype parameter, e.g.,
"&A*'' or ~·&A& & . "

7. Illegal (non-assembler) character appears
in prototype parameter or macro instruction
operand.

Either the prototype has more than 200 param­
eters, or the macro instruction has more than
200 operands.

Self-explanatory.

12

12

Appendix A. Diagnostic Messages 29

Code

IEUlOO

IEU101

IEU102

IEU103

IEU104

IEU105

'IEU106

IEU107

IEU108

IEU109

IEUllO

IEUlll

IEU112

IEU997

IEU998

30

Severity
Message Explanation Code

STATEMENT COMPLEXITY
EXCEEDED

More than 32 operands in a DC, DS, DXD, or 8
literal DC, or more than 50 terms in a statement.

EOD ON SYSIN EOD before END card. 12

INVALID OR ILLEGAL
ICTL

ILLEGAL NAME IN
OPERAND FIELD OF
COPY CARD

COPY CODE NOT FOUND

EOD ON SYSTEM MACRO
LIBRARY

NOT NAME OF DCECT
OR DXD

INVALID OPERAND

PREMATURE EOD

PRECISION LOST

EXPRESSION VALUE
TOO LARGE

The operands of the ICTL are out of range, or
the ICTL is not the first statement in the
input deck.

Syntax error, e.g., symbol has more than 8
characters or has an illegal character.

The operand of a COPY statement specified
COPY text which cannot be found in the library.

EOD before MEND card.

Referenced symbol expected to be DSECT name,
but it is not.

Invalid syntax in DC operand, e.g., invalid
hexadecimal character in hexadecimal DC;
operand string too long for X, B, C, DC's;
operand un·recognizable, contains invalid value,
or incorrectly specified.

Indicates an internal assembler error; should
not occur.

Self-explanatory.

Value of expression greater than -16777216 to
+16777215.

Expressions in EQU and ORG statements are
flagged if (1) they include terms previously
defined as negative values, or (2) positive
terms give a result of more than three bytes
in magnitude. The error indication may be
erroneous due to (1) the treatment of neqative
values as three-byte positive values, or- (2)
the effect of large positive values on the
location counter if a control section begins
with a START statement having an operand gre~ter
than zero, or a control section is divided
into subsections.

SYSGO DD CARD MISSING Self-explanatory.
NOLOAD OPTION USED

SYSPUNCH DD CARD Self-explanatory.
MISSING NODECK OPTION
USED

SYSPRINT DD CARD Self~explanatory. Printed on console typewriter.
MISSING NOLIST OPTION
USED

ASSEMBLY TERMINATED. Self-explanatory. Printed on console typewriter.
MISSING DATA SET FOR
(ddname)

ASSEMBLY TERMINATED,
jobname, stepname,
unit address, device
type, ddname, opera­
tion attempted,
error description

Indicates a permanent I/O error. This message
is produced by a SYNADAF macro instruction and
printed on the console typewriter.

16

12

12

12

8

4

16

8

8

16

16

0

20

20

TEXT (TXT) CARD FORMAT

The format of the TXT cards is as follows:

Columns Contents

1 12-2-9 punch
2-4 TXT
5 Blank
6-8 Relative address of first

instruction on card
9-10 Blank
11-12 Byte count -- number of

bytes in information
field (cc 17-72)

13-14 Blank
15-16 ESDID
17-72 5'6-byte information field
73-76 Deck ID (from first TITLE

card)
77-80 Card sequence number

RLD CARD FORMAT

The format of the RLD card is as follows:

Columns

1
2-4
5-10
11-12

13-16
17-72

17-18
19-20
21
22-24

25-72
73-76

77-80

Contents

12-2-9 punch
RLD
Blank
Data field count -- number
of bytes of information in
data field (cc 17-72)
Blank
Data field:

Relocation ESDID
Position ESDID
Flag byte
Absolute address to be
relocated
Remaining RLD entries

Deck ID (from first TITLE
card)
Card sequence number

If the rightmost bit of the flag byte is
set, the following RLD entry has the
same Relocation ESDID and Position ESDID,
and this information will not be repeated;
if the rightmost bit of the flag byte is
not set, the next RLD entry has a different
Relocation ESDID and/or Position ESDID,
and both ESDIDs will be recorded.

For example, if the RLD Entries 1, 2,
and 3 of the program listing (Appendix C)
contain the following information:

Pos. Rel.
ES DID ES DID Flag Address

Entry 1 02 04 oc 000100
Entry 2 02 04 oc 000104
Entry 3 03 01 QC 000800

APPENDIX B. OBJECT DECK OUTPUT

Columns 17-36 of the RLD card would ap­
pear as follows:

Entry 1 Entry 2 Entry 3

Column: 1 7 1 8 1 9 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37-72

00 04 00 02 OD 00 01 00 oc 00 01 04 00 01 00 03 oc 00 08 00

r~ l~ l~
'----y--J

ESD ID's ESD ID's blanks

Flag Flag Flag
(set) (~ct (not

set) set)

ESD CARD FORMAT

The format of the ESD card is as follows:

Columns Contents

1
2-4
5-10
11-12

13-14
15-16

17-64

65-72
73-76

77~80

12-2-9 punch
ESD
Blank
Variable field count -­
number of bytes of informa­
tion in variable field
(cc 17-64)
Blank
ESDID of first SD, XD, CM,
PC, or ER in variable field
Variable field. One to
three 16-byte items of the
following format:
8 bytes Name, padded

1 byte
3 bytes
1 byte

3 bytes

Blank

with blanks
ESD type code
Address
Alignment if XD~
otherwise blank
Length, LDID, or
blank

Deck ID (from first TITLE
card)
Card sequence number

END CARD FORMAT

The format of the END card is as follows:

Columns

1
2-4
5
6-8

Contents

12-2-9 punch
END
Blank
Entry address from operand
of END card in source deck
(blank if no operand)

Appendix B. Object Deck Output 31

9-14 Blank
15-16 ESDID of entry point (blank

if no operand)
17-72 Blank
73-76 Deck ID (from first TITLE

card)
77-80 Card sequence number

TESTRAN (SYM) CARD FORMAT

If requested by the user, the assembler
punches out symbolic information for TES­
TRAN concerning the assembled program.
This output appears ahead of all loader
text. The format of the card images for
TESTRAN output is as follows:

Columns

1
2-4
5-10
11-12

13-16
17-72
73-76

Contents

12-2-9 punch
SYM
Blank
Variable field count -­
number of bytes of text in
variable field (cc 17-72)
Blank
Variable field (see below)
Deck ID (from first TITLE
card)

77-80 Card sequence number
The variable field (columns 17-72) con­

tains up to 56 bytes of TESTRAN text. The
items making the text are packed together,
consequently only the last card may con­
tain less than 56 bytes of text in the
variable field. The formats of a text
card and an individual text item are shown
in Figure 6. The contents of the fields
within an individual entry are as follows:

1. Organization (1 byte)
Bit 0:

32

0 = non-data type
1 = data type

Bits 1-3 (if non-data type):
000 = space
001 control section
010 dummy control section
011 common
100 = instruction
101 ccw

Bit 1 (if

Bit 2 (if

Bit 3 (if

Bit 4:

Bits 5-7:

data type):
0 = no multiplicity
1 = multiplicity (indicates

presence of M field)
data type):
0 = independent (not a

packed or zoned decimal
constant)

1 = cluster (packed or
zoned decimal constant)

data type):
0 no scaling
1 = scaling (indicates pres­

ence of S field)

0 name present
1 name not present

Length of name minus one
2. Address (3 bytes) - displacement from

base of control section
3. Symbol Name (0-8 bytes) - symbolic

name of particular item

NOTE: The following fields are only pres­
ent for data-type items.

4. Data Type (1 byte) - contents in hex­
adecimal

00 character
04 hexadecimal
08 binary
10 fixed point, full
14 fixed point, half
18 floating point, short
lC floating point, long
20 A-type or Q-type data
24 Y-type data
28 s-type data
2C V-type data
30 packed decimal
34 zoned decimal

5. Length (2 bytes for character, hexa­
decimal, or binary items~ 1 byte for
other types) - length of data item
minus 1

6. Multiplicity - M field (3 bytes) -
equals 1 if not present

7. Scale - signed integer - S field (2
bytes) - present only for F, H, E, D,
P and Z type data, and only if scale
is non-zero.

2

12
2
9

4 5 10 11 12 13 16 17

No.
of

SYM blank bytes

Entry
(complete or
end portion)

Org. Address

3

of
text

blank

N complete entries
N ~ 1

Variable size entries

Symbol Name

0-8

Figure 6. TESTRAN SYM Card Format

TESTRAN text - packed entries

Data

Entry
(complete or
head portion)

type Length
Mult.
factor

1-2 3

Scale Org.

2

Symbol
Name

72 73 76 77

Deck
ID

4

Sequence
Number

4

80

Appendix B. Object Deck Output 33

APPENDIX C. ASSEMBLER F PROGRAM LISTING

The Assembler F listing shown in
this appendix results from assembling
the source program documented in an
appendix to the Assembler Language publi­
cation. For easy reference to the
explanations that appear in the section

The Assembler Listing, the headings
on the listing are numbered.

Since there were no errors in the
assembly, a diagnostic list was not pro­
duced. Each of the following pages repre­
sents one printer-produced listing page.

EXAM
SYM6CJL

00 0 0 0 EXTERNAL SYMBOL DICTIONARY PAGE 1
TYPt ID AOOR LENGTH LO 10 oo. 16 4111/66

CD
SAMPLR SU Ol 000000 0003d8

34

G
EXAM

@) @
L(J(. OtJECT ClJuf:

@
AUIJRl ACWR2

@
SHIT

1 **
2 **

PAGE

® @ @
SOURCE STATEMtNT F 14FEB66 4/11/66

THIS I~ THE EXECUTABLE SAMPLE PROGRAM SHOWN IN THE SRL -
ASSEMBLEK LANGUAGE MANUAL.

•
*

Appendix c. Assembler F Program Listing 35

0
EXAM SAMPLE PROGKAM

@) @ @
lUC OBJ6CT COOc AODRl A00R2

000000

36

PAGE

® @ @) ®
STMT SOURCE STATEMENT F 14FER66 4/11/66

4
5 *
6 *
7 *
8
9

10 •*
11 ·*
12 ·*
13
14 •*
15 ·*
16 ·*
17
18 ·*
19 ·*
20 •*

PRINT DATA

THIS IS THE MACRO DEFINITION

MACRO
MOVE &TOr&FROM

DEFINE SETC SYMBOL

LClC &TYPE

CHECK NUMBER Of OPERANDS

Alf CN 1 &SYSLIST NE 21.ERRORl

CHECK TYPE ATTRIBUTES Of OPERANDS

21 AIF lT'&TO NE T1 &FROM).EKROR2
22 Alf CT 1 &TO EQ •c• OR T•&JO EQ 'G' OR T1 &TO EQ 1 K1 1.TYPECGK

(T 1 &TO EQ •o• OR T1 &TO EQ 1 E1 OR T'&TO EQ 1 H1).TYPEDEH
lT 1 &TO EQ 1 f 1).MOVE

23 Alf
24 Alf
25 AGO .ERROR3
26 .TYPEDEH ANOP
27 •*
28 ·*
29 ·*
30 &TYPE
31 .MOVE
32 *
33
34
35
36 ·*
37 ·*
38 •*

ASSIGN TYPE ATTRIBUTE TO SETC SYMBOL

SETC T' &TO
ANOP
N~XT T~O STATEMENTS GENERATED FOR MOVE MACRO
L&TYPE 2 1&FROM
S T&TYPE 2, &TO
ME:XIT

CHECK LENGTH ATTRIBUTES Of OPERANDS

39 .TYPECGK AIF CL'&TO NE L1 &FROM OR l 1 &TO GT 256J.ERROR4
40 * NEXT STATEMENT GENERATED FOR MOVE MACRO
41 MVC &TOr&FROM
42 MEXIT
43 •*
44 ·*
45 ·*

ERROR MESSAGES FOR INVALID MOVE MACRO INSTRUCTIONS

@sAMPl002
SAMPLO'l3
SAMPL004
SAMPL005
SAMPL006
SAMPL007
SAMPLOOS
SAMPL009
SAMPLOlO
SAMPLO 11
SAMPL012
SAMPL013
SAMPL014
SAMPL015
SAMPL016
SAMPL017
SAl4Pl018
SAMPL019
SAMPL020
SAMPL021
SAMPL022
SAMPL023
SAMPL024
SAMPL025
SAMPL026
SAMPL027
SAMPL028
SAMPL029
SAMPL030
SAMPL031
SAMPL032
SAMPL033
SAMPL034
SAMPL035
SAMPL036
SAMPL037
SAMPL038
SAMPL039
SAMPL040
SAMPL041
SAMPL042

46 .ERROR!
47

MNOTE
MEX IT
MNOTE
MEX IT
MNOTE
MEXIT
MNOTE
MENO

11'IMPROPER NUMBER Of OPERANDS, NO STATEMENTS GENERATED'
SAMPL043
SAMPL044
SAMPL045
SAMPL046
SAMPLO't7
SAMPLO't8
SAMPL049
SAMPL050
SAMPL051

48 .ERROR2
49
50 .ERROR3
51
52 .ERROR4
53
54 *
55 *
56 *
51 SAMPU
58 BEGIN

l1'0PERAND TYPES DIFFERENT, NO STATEMENTS &ENERATED 1

l1 1 1MPROPER OPERAND TYPES, NO STATEMENTS GENERATED'

11'1MPROPER OPERAND LENGTHS, NO STATEMENTS GENERATED'

MAIN ROUTINE

CSECT
SAVE (14rl21rr*

SAMPL052
SAMPL053
SAMPL054
SAMPL055
SAHPl056

0 ©
t:XAM SAMPLE: PtUJGtlAM

@ @ @)
LuC UBJECT COOE AODRl ADDR2

OuOOOO 47FO FOOA
000004 05
000005 C2L5C7C9D5
OOuOOA 90t:C DOOC
000001:: OSCO
000010
000010 50u0 COBS
000014 9657 C390
000000
000011:1 45t:O cost
0000 lC 9Hl0 C06C
OOOU20 4710 COBO
000000

oooc:c

OOOOA

ooooc

OOOC8
003AO

-OOOCE:

oooco

0000£4 0200 100~ 5008 00003 00008

00002A D202 !000 5009 00000 00009

OOOCl30 5S20 500C
000034 5020 1004
000038 &7So cooa
00003C D5tF C240 COFO 00250
000042 't770 C07C
000046 D55F C330 C:lEO 00340
00004C 't170 C07C

000050
000050 't!:llO C06C
000054 0027
000056 0000
000058 C:lc2f2C5D4C203C5
000060 D940E2ClD407D3C5
000068 40D7D9D6C:7D9ClD4
000070 40t:2f4C3C3C5E2t2
00007& L.ot4D3
000078
00007C
00007C OA23
00007E 5800 COBS

000082 98tC DOOC
000086 41FO 0000
00008A Oll'E

ooooac
ooooac 4510 coAA
000090 0029
000092 0000
000094 Clf2t2C5D4C2D3C5
00009C D940E2ClD407D3C5
OOOOA4 4007D906C709Cl04

aoooc
00004
00018
00100
oooac
OOlfO
oooac

0007C

OOOC8

ooooc
00000

OOOBA

@ @ @
STHT SOURCE STATEMENT F 14FEB66

59+6EGIN
60+
61+
62+
63
64
65
66
67
68 HORE
69
70
71
72
73+•
74+
75
76+•
77+
78
79+•
80+
81+
82 LISTLOOP
83
84
85
86
87
88+
89+
90+
91+
92+

93+lHB0005
94+1Htl0005A
95+
96 EXIT
91
98+
99+

100+
101 •
102 NOTRIGHT
103+
104+NOTRIGHT
105+
106+
107+

B
DC
DC
STM
BALR
USING
ST
LM
USING
BAL
TM
BO
USING
MOVE
NEXT
MVC
HOVE
NEXT
MVC
MOVE
NEXT
L
ST
BXLE
CLC
BNE
CLC
BNE
if TO
CNOP
BAL
oc
DC
oc

10(0,15) BRANCH AROUND ID
All(5)
CL5 1 BEGIN 1 IDENTIFIER
14tl2tl2(131 SAVE REGISTERS
Rl2 9 0 ESTABLISH ADDRESSABILITY OF PROGRAM
•,Rl2 AND TELL THE ASSEMBLER WHAT BASE TO USE
13tSAYE13
R51R71=A(LISTAREA,l61LISTENDI LOAD LIST AREA PARAMETERS
LIST,R5 RfGISTER 5 POINTS TO THE LIST
Rl4tSEARCH FIND LIST ENTRY IN TABLE
SWITCH,NONE CHECK TO SEE IF NAME WAS FOUND
NOTTHERE BRANCH IF NOT
TASLE,Rl REGISTER l NOW POINTS TO TABLE ENTRY
TSWITCH,LSWITCH MOVE FUNCTIONS

STATEMENT GENERATED FOR MOVE MACRO
TSWITCH,LSWITCH
TNUMBER,LNUMBER FROM LIST ENTRY

STATEMENT GENERATED FOR MOVE MACRO
TNUHBER,LNUHBER
TADORESS,LADDRESS TO TABLE ENTRY

TWO STATEMENTS GENERATED FOR HOYE MACRO
2,LADDRESS
2,TADDRESS
R5,R6 1 MORE LOUP THROUGH THE LIST
TESTTABL(240),TABLAREA
NOTRIGHT
TESTLIST(96),LISTAREA
NOT RIGHT
'ASSEMBLER SAMPLE PROGRAM SUCCfSSFUL'
0,4
l,IHB0005A BRANCH AROUND MESSAGE
AL2CIHB0005-•) MESSAGE LENGTH
AL2(0)
C1 ASSEMBLER SAMPLE PROGRAM SUCCESSFUL' MESSAGE

EQU *
OS OH
SVC 35 ISSUE SVC
L Rl3tSAVE13
RETURN 114 9 12),RC=O
LM 14tl2tl2(13) RESTORE THE REGISTERS
LA 15,0tO,O) LOAD RETURN CODE
BR 14 RETURN

WTO •ASSEMBLER SAMPLE PROGRAM UNSUCCESSFUL'
CNOP 0 9 4
BAL 111HB0007A BRANCH AROUND MESSAGE
DC AL2CIHB0007-•I MESSAGE LENGTH
DC AL2COl
DC C1 ASSEM8LER SAMPLE PROGRAM UNSUCCESSFUL' MESSAGE

©
PAGE 3

@
4111/66

@
SAMPL057
SAMPL058
SAMPL059
SA14PL060
SAMPL061
SAMPL062
SAMPL063
SAMPL064
SAHPL065
SAMPL066

SAMPL067

SAHPL068

SAMPL069
SAMPL070
SAMPL071
SAMPL072
SAMPL073
SAMPL074

SAMPL075
SAHPL07b

SAMPL077
SAMPL078

Appendix C. Assembler F Program Listing 37

38

®
EXAM SAMPUi PROGRAM

@ ® @
LUC UBJE:Cl C.OUE ADDRl ADOR2

OOOOAC 40t4D5t:2E4C3C.3C5
0000b4 E2t2CbE4D~
000069
OOOObA
OOOOdA
oooosc
ooooco
0000(.4
0000(.tl
oooocc.
OOOObO

0000(.[)
OOOOCE
000002
000006
OOOOOA
OOOODE
OOOOE4
0000t:8

OOOOEA
OOOOt(.
OOOOFO
OOOOF4
OOOOf 6
OOOOFA
OOOOf t:

000100
000100
000108
000110
000118
000120
000128

OA23
47'-0 C06E
9680 5008 00008
47f0 C02d
00000000
00

00
941.f- COdC ooocc
9813 C39C.
4111 COEO
8030 0001
0507 5000 lOOb 00000
4720 COE4
07bE

Ull3
4b20 COCA
47f0 COEA
1A13
4b2C COCA
9680 C06C ooocc
07fE

0000000000000000
Cl0307C8C1404040
000-0000000000000
C2C5E3Cl40404040
tlOOOOCOOOOOOOOOO
C4C503E3C1404040

000130 0000000000000000
000138 C5D7E2C9D3U60540
000140 ~000000000000000
000148 C5E3Cl4040404040
0001)0 0000000000000000
000158 C7C1U4D4Cl404040
000160 0000000000000000
000168 C9D6E3Cl40404040
000170 000-0000000000000
000178 D2Cl07D7C1404040
000180 0000000000000000
000188 D3ClD4C2C4Cl4040
000190 0~00000000000000
000198 D4Elt404040404040
OOOlAO 0000000000000000

0007E

00038

003AC
OOOFO
00001
00008
OOOF4

OOODA
OOOfA

OOODA

0
PAGE 4

@ @ @ @
STMT SOURCE STATEMENT F 14FE666 4/11/66

108+1H80007 EQU * 109+1H80007A OS OH
110+ SVC 35 ISSUE SVC ®
111 b E:XIT SA11PL079
112 NOTT HERE 01 LSWITCH1NONE TURN ON SWITCH IN LIST ENTRY SAMPL080
113 8 USTLOOP GO SACK AND LOOP SAMPL081
114 SAVE13 DC F 1 0 1 SAMPL082
115 SWITCH DC x•oo• SAMPL063
116 NONE EQU x•ao• SAMPL084
117 * SAHPL085
116 * BINARY SEARCH ROUTINE SAMPL086
119 * SAMPL067

120 SEARCH NI SWITCH,255-NONE TURN Off NOT FOUND SWITCH SAMPL068
121 LM Rl1R3,=F 1 128141128' LOAD TABLE PARAMETERS SAMPL089
122 LA RltTABLAREA-16CR1) GET ADDRESS OF MIDDLE ENTRY SAMPL090
123 LOOP SRL R31l DIVIDE INCREMENT BY 2 SAMPL091
124 CLC LNAME,TNAME COMPARE LIST ENTRY WITH TABLE ENTRY SAMPL092
125 BH HIGHER BRANCH IF SHOULD BE HIGHER IN TABLE: SAMPL093
126 BCR 8,Rl4 EX IT IF FOUND SAMPL094
127 SR R1 1 R3 OTHERWISE IT IS LOWER IN THE TABLE XSAMPL095

SO SUBTRACT INCREMENT SAMPL096
128 BCT R2tLOOP LOOP 4 TIMES SAMPL097
129 B NUT FOUND ARGUMENT IS NOT IN THE TABLE SAMPL098
130 HIGHER AR Rl,R3 ADD INCREMENT SAMPL099
131 BCT R21LOOP LOOP 4 TIMES SAMPLlOO
132 NOTFOUND 01 SWITCH, NONE TURN ON NOT FOUND SWITCH SAMPllOl
133 BR Rl4 EXIT SAMPL102
134 * SAMPL103
135 * THIS IS THE TABLE SAMPL104
136 * SAMPL105
137 OS OD SAMPL106
13B TABLAREA DC XL8 1 0 1 ,CL6 1 ALPHA 1 SAMPL107

139 DC XL8 1 0',CL8 1 BETA 1 S'AMPL108

140 DC XL8 1 0 1 ,CL8 1 DELTA 1 SAMPL109

141 DC XL8'0'1CL8 1 EPSILON 1 SAMPL110

142 DC XL6'0 1 ,CL8 1 ETA 1 SAHPLlll

143 oc XL8'0'1Cl8 1 GAMMA 1 SAMPL112

llt4 DC XL8 1 0 1 1Cl8 1 IOTA1 SAHPLl 13

145 DC Xl8 1 0 1 1CL8 1 KAPPA 1 SAMPL114

1'46 tit XL8 1 01 ,CL8 1 LAM80A' SAMPll 15

147 DC XL8'0 1 ,Cl8 1 MU 1 SAMPL116

148 DC XL8 1 0 1 ,CL8'NU' SAMPL117

0 ® ®
EXAM SAMPLE PkUbkAM PAGE 5

@) @ @ @ @ @ @
LGC Ut:JECT Cuut AUORl AOUR2 STMT SOURCE: STATEMENT F 14FEB66 4/11/66

0001A8 LJSt4404040404040 @
OOOltHJ ooooooooooouoooo 149 DC Xl8 1 0 1 ,CL8 1 0MICRON 1 SAMPLl 18
OOOliHl U~U4C9C3U9UoU540
OOO!C.O coocooooooooocoo 150 DC XL8•o•,cL8 1 PHl 1 SAMPL119
OOOH.ti D 1l.8C 94040404040
OUOlLIO iJCOl.iOOOOOOOOOOOO 15,1 oc XL8 10 1 1CL8 1 SIGHA 1 SAMPL120
OOOlDb t2C9C7D4C:1404040
OO(JltO 0000000000000000 152 DC XL8 1 0 1 ,Cl8 1 ZETA 1 SAMPL121
OOOHo tYC5t3C.1404C4040

153 * SAHPL122
154 * THIS IS THE LIST SAMPL123
155 * SAMPL124

OOOlf O 03LlD4C2C4C:l4040 156 llSTAREA DC Cl8 1 LAH8DA 1 1X1 0A 1 ,Fl3 1 29 1 1AIBEGIN) SAMPL125
OOOlfo OAOOOOliJOOOuOOOO
~0(;200 t9L5E3Cl404l.i4040 157 DC CL8 1 ZETA 1 1X 1 05 1 1fl31 5 1 1AILOOP) SAMPL126
000208 C:>v000050000000A
oou2io t3L8CSE3Cl404040 158 DC CL8 1 THETA 1 1X 1 02 1 1Fl3 1 45 1 1Al8EGIN) SAMPL127
000.ll& 0.tOQC02UOOOOOOOO
000220 E.:1Clt44040404040 159 DC CL8 1 TAU 1 ,x 1 00 1 ,FL3 1 0 1 1All) SAHPL128
ooo.;at1 OCOOOCOOOOOOOOOl
000230 llJC.'irE2t340404040 160 DC ~L8 1 LIST 1 ,X 1 lf' 1 fL3 1 465 1 ,A(0) SAMPL129
000231! lfOOCl[;lOllOOOOOO
0Y0240 ClWU7CtiC14C4040 161 LI STENO oc CL8 1 ALPHA•,x•oo•,fL3 1 l 1 1A(l23) SAMPL130
000,48 ocooooo10000001d

162 * SAMPL131
163 * THIS IS THt CONTROL TABLE SAMPL132
164 * SAMPL133

000251.) 165 OS 00 SAHPL134
000.250 0000010000000078 166 TESTTABL DC. fl3 1 1 1 ,X 1 00 1 ,All2J),CL8 1 ALPHA 1 SAMPL135
000258 C 11)30 7Cl:IC: l 4040't0
000260 0000000000000000 167 DC XL8 1 0 1 1CL8 1 8ETA 1 SAMPL136
000268 C2C.5E3C1404C4040
000270 0000000000000000 168 DC XL8 1 0 1 ,CL8 1 0ELTA' SAHPL137
000"7b C'tC,03t::3C.1404040
000280 ocooocoooooooooo 169 oc Xl8 1 0 1 ,CL8 1 EPSILON 1 SAMPL138
0002dti L5D7t2C9u3U60540
000290 0~00000000000000 170 oc XL8 1 0 1 ,CL8 1 ETA 1 SAMPL139
000298 C~t3Cl4040404040
0002AO 0000000000000000 171 DC XL8 1 0 1 ,CL8 1 GAMMA 1 SAMPL140
0002Ab C7C.10404Cl404040
000280 ocooocoooooooooo 172 DC XL8 1 0 1 1CL8 1 IOTA 1 SAMPL141
000,Bb C'JU6E3Cl40404040
0002{.0 0000000000000000 173 DC XL8 1 0 1 1Cl8 1 KAPPA1 SAMPL142
0002Cd 02C.10107Cl404040
000200 OOOOlOOAOOOOOOOO 174 DC FL3 1 291 ,X 1 0A 1 1AIBEGIN),Cl8 1 LAM8DA 1 SAMPL143
00020b 03C l04C2C4C 14040
00021:0 0000000000000000 175 DC Xl8 1 0 1 1Cl81 MU 1 SAHPL144
0002t:8 04b4404040404040
0002f0 0000000000000000 176 oc Xl8 1 0 1 ,CL8 1 NU 1 SAMPL145
0002fl:I DSt:.4404040404040
000300 0000000000000000 177 DC Xl8 1 0 1 1CL8 1 0MICRON 1 SAMPL146
000308 DoO't.C.9C3D9DoD540
000310 0000000000000000 178 oc xLa• o• ,cLa• PHI• SAMPL147
000318 07C.8C94040404040
000320 ooooocoooooooooo 179 DC XL8 1 0 1 1CL8 1 SIGMA 1 SAMPL148

Appendix c. Assembler F Program Listing 39

0 ® 0
EXAM SAMP&..E PRLIGl\AM PAGE 6

@) ® @ ® @ @ @
UiC u6JECT cuot AODRl ADDRl SHH SOURCE STATEMENT f 14FEB6b 4/11/66

000328 t2C9C704Cl404040 @
000330 00000505000000DA lCW DC FL3'5'tX 105 11A(LOOPl1CL81ZETA' SAMPll49
0003~ti E9C5E3CJ.40404040

181 * SAMPL150
182 * THIS IS THE CONTROL LIST SAMPll 51
183 * SAMPL152

000340 IHC104C.~C4'14040 184 TESTllST DC Cl8'LAMBDA1,x•oA1 ,FL3 1 29'1AfBEGINI SA"1PL153
00034b OAOOOOlOOOOOOOOO
0003!>0 E9l.5t:3Cl40404040 185 DC CL8 1ZETA•,x•05 1 tfl3 15 1 ,A(LOOPI SAMPLl 54
000358 05000005vOOOOODA
000360 t:3C8C5E3Cl404040 l8b DC CL8 1 THETA 1 ,x 1 82 1 1fl3 1 4~·.Al6EGINI SAMPL155
000368 ill00002DOOOOOOOO
000370 t3CH:4404C404040 187 DC CL8 1 TAU 1 1X1 80 1 ,FL3 1 0 1 1Alll SAMPL156
00037& 8()0-0000000000001
000380 D3C9t:lt:340404040 188 DC Cl8'LIST 1 1X 1 9f 11FL3'465 1 1AIOI SA"1Pl 157
000388 9f0-0010100000000
000390 Cl0.3D1C8Cl404040 189 oc Cl8 1ALPHA•,x•oo•,FL3'1 1 1Afl231 SAMPL158
0003% ooooaoo1oooouv7B

190 * SAMPL159
191 * THESE ARE THE SYMBOLIC REGISTERS SAMPL160
192 * SAMPL161

000000 193 RO EQU 0 SAMPL162
000001 194 Rl EQU 1 SAMPllb3
000002 195 R2 EQU 2 SAMPL164
000003 196 R3 EQU 3 SAMPL165
000005 197 RS EQU 5 SAMPL166
OOOOOb 198 Rb EQU 6 SAMPL167
000007 199 R7 EQU 7 SAMPL168
oooooc 200 Rl2 EQU 12 SAMPL169
000000 201 Rl3 EQU 13 SAMPll 70
OOOOOt 202 IU4 EQU 14 SAMPLl 71
OOOOOf 203 Rl5 EQU 15 SAMPll 72

204 * SAMPll 73
205 * THIS IS THE: FORMAT Of:FINITION OF LIST ENTRYS SAMPll 74
206 * SAMPL175

000000 207 LIST OSECT SAMPL176
000000 208 LNAHE OS Cl8 SAMPL177
oooooa 209 LSWITCH OS c SAMPLl 78
000009 210 LNUMBER OS Fl3 SAMPL179
oooooc 211 LAOOIU:ss OS f SAMPL180

21~ * SAMPL181
213 * THIS IS THE FORMAT DEFINITION OF TABLE ENTRYS SAMPL182
214 * SAMPL183

oouooo 215 TABLE OSECT SAMPL184
000000 216 TNUMSEK OS Fl3 SAMPL185
000003 217 TSWITCH OS c SAMPL186
000004 218 TAODRf:SS OS f SAHPL187
000008 219 TNAME OS CL8 SAMPL188
000000 220 ENO BEGIN SAHPL189
000000
0003AO
0003AO
0003AO OOOOOlfO 221 =AILISTAREA1161llSTENOI
0003A4 0000008000000004 222 =F 112a,4,12a•
0003AC 00000080

40

G CV
CXAM RELOCATION DICTIONARY PAGE

@ ® @ @ @
PuS. lU kEL.lD FLAGS AODRt:SS 4/11/66

01 01 oc OOOlFC
vl 01 oc 00020C
01 Cl oc 00021C
01 01 oc 000204
01 01 OC 000334
01 01 oc 00034(.
01 01 oc 00035C
01 01 oc 00036C
01 01 oc; 0003AO

Appendix c. Assembler F Program Listing 41

G 0
EXAl'I CROSS-Rl:FERENCE PAGE

@ @ @ @ @ @
SYMbLl U:N VALUt UEfN REFERENCES 4/11/66

BEGIN 00004 000000 0059 0156 0158 0174 0184 0186 0220
EXIT 0-0004 00007t 0096 0111
HIGHEk 00002 000Cf4 0130 0125
IH&0005 00001 000()76 0093 0090
1t160005A OOOC2 00007C 0094 0089
IH&-0007 00001 000069 0108 0105
1Htl0007A 00002 OOOObA 0109 0104
LADORE SS 00004 oocooc 0211 0080
UST 00001 000000 0207 0067
llSTARtA 00008 OOOlfO 0156 0066 0085 0221
USTENlJ OOOC8 000240 0161 0066 0221
USTUiOP 00004 000038 0082 0113
lNAMf 00608 000000 0208 0124
lJllUMt>t:R 00003 000009 0210 0077
LOOP 00004 OOOODA 0123 0128 0131 0157 0180 0185
LSWITCH 0-0001 000008 0209 0074 0112
MORE 00004 000018 0068 0082
NONt: 00001 000080 0116 0069 0112 0120 0132
NOTf UUNO 00004 OOOOfA 0132 0129
Nl.JTKlGHJ 00004 OOOOBC 0104 0084 0086
NllTTHEKE OOOC4 ooooco 0112 0070
RO 00001 000000 -0193
Kl 0-0001 000001 0194 0071 0121 0122 0122 0127 0130
RlL 00001 oooooc 0200 0063 0064
iU3 00001 000000 0201 0096
Rl4 00001 OOOOOE 0202 0068 0126 0133
Rl5 00001 OOOOOf 0203
R2 00001 000002 -0195 0128 0131
R3 00001 000003 0196 0121 0123 0127 0130
R5 00001 000005 0197 0066 0067 0082
R6 00001 000006 0198 0082
R7 00001 000007 0199 0066
SAMPLR 00001 000000 0057 0220
SAVEl.3 OOOC4 ooooca 0114 Ov65 0096
St:AkCH 00004 OOOOCE 0120 0068
SWITCH 00001 oooocc 0115 0069 0120 0132
TABLAREA 00008 000100 0138 0083 0122
TAblE 00001 000000 0215 0071
TAOORESS OOOO't 000004 0218 0081
TESTllSJ 00008 000340 0184 0085
Tl::~TTA&l 00003 000250 0166 0083
TNAMI:: 00()08 000008 0219 0124
TNUMbER 00003 000000 0216 0077
JS-..lTCH 00001 000003 0217 0074

1'0 STATEHt:NTS f-lAGGt:U .lN THIS ASSEMBLY
3~1 PJUNTEll llr-.ES

42

APPENDIX D. DYNAMIC INVOCATION OF THE ASSEMBLER

The Assembler can be invoked by a problem
program at execution time through the use
of the CALL, LINK, XCTL, or ATTACH macro
instructions. If the XCTL macro instruction
is used to invoke the Assembler, then no
user options may be stated. The Assembler
will use the standard default, as set during
system generation, for each option.

If the Assembler is invoked by CALL, LINK,
or ATTACH, the user may supply:

1) The Assembler options
2) The ddnames of the data sets to be used

during processing

Name Operation Operand

[symbol] CALL IEUASM, (optionlist

[,ddnamelist]), VL

{LINK }
EP=IEUASM,

ATTACH PARAM=(optionlist

[,ddnamelist J), VL=l

EP - specifies the symbolic name of the
Assembler. The entry point at which
execution is to begin is determined by
the control program (from the library
directory entry) .

PARAM - specifies, as a sublist, address
parameters to be passed from the prob­
lem program to the Assembler. The
first word in the address parameter
list contains the address of the option
list. The second word contains the
address of the ddname list.

optionlist - specifies the address of a
variable length list containing the
options. This address must be written
even if no option list is provided.

The option list must begin on a
halfword boundary. The first two
bytes contain a count of the number of
bytes in the remainder of the list.
If no options are specified, the count
must be zero. The option list is free
form with each field separated by a
comma. No blanks or zeros should
appear in the list.

ddnamelist - specifies the address of a
variable length list containing al­
ternate ddnames for the data sets used
during compiler processing. If stand­
ard ddnames are used then this operand
may be omitted.

The ddname list must begin on a
halfword boundary. The first two
bytes contain a count of the number of
bytes in the remainder of the list.
Each name of less than eight bytes
must be left-justified and padded with
blanks. If an alternate ddname is
omitted, the standard name will be
assumed. If the name is omitted
within the list, the 8-byte entry must
contain binary zeros. Names can be
omitted from the end merely by shorten­
ing the list. The sequence of the 8-
byte entries in the ddname list is as
follows:

Entry Alternate Name

1 not applicable
2 not applicable
3 not applicable
4 SYS LIB
5 SYS IN
6 SYS PRINT
7 SYS PUNCH
8 SYSUTl
9 SYSUT2

10 SYSUT3
11 SYS GO

VL - specifies that the sign bit is to be
set to 1 in the last word of the
address parameter list.

Appendix D. Dynamic Invocation of the Assembler 43

Access methods 3
BPAM (basic partitioned) 3
BSAM (basic sequential) 3
QSAM (queued sequential) 3

ASMFC, cataloged procedure for assembly 6
ASMFCL, cataloged procedure for assembly

and linkage editing 7
ASMFCLG, cataloged procedure for assembly,

linkage editing, and execution 8
Assembler cataloged procedures 6
Assembler data sets 2
Assembler listing 11

cross reference 14
diagnostics 15
external symbol dictionary 11
relocation dictionary 14
source and object program 13
statistical messages 11

Assembler options 2
default entry 2

Assembler portion limitations 21

Blocking and buffering information 15
BPAM (Basic Partitioned Access Method)
BSAM (Basic Sequential Access Method)

Cataloged procedures 6
for assembling (ASMFC) 6
for assembling and linkage editing

(ASMFCL) 7
for assembling, linkage editing, and
execution (ASMFCLG) 8

overriding 9
COND= parameter 5, 7-9
Cross reference lising 14

Data sets 2-5
SYSGO 2,3
SYSIN 2,3
SYSLIB 2,3
SYSPRINT 2,3
SYSPUNCH 2,3
SYSUTl, SYSUT2, SYSUT3 2,3

DCB macro instruction 3
DD statements 9
ddnames 3
Default entry 2
Defining data set characteristics 3
Device naming conventions (Table 3) 6
Diagnostics

listing 15
messages 23

Dictionaries 18
additional requirements 20
global 18
local 18
overflow errors 21

Dictionary size and source statement
complexity 17

Dynamic invocation of the assembler
(Appendix D) 43

3
3

END card format 31
ESD card format 31
EXEC statements 9
External Symbol Dictionary (ESD)
listing 11

Global dictionary
at collection time 19
at generation time 19

IEBUPDAT utility program 17

Job control statements 1
Job steps 1

Linkage statements (Figure 5) 18
Listing, assembler 11
Load module modification - entry point
restatement 17

Local dictionary
at collection time 19
at generation time 20

Macro-definition library additions 16
Macro-definition local definition para­
meter table (Table 9) 20

Macro generation and conditional assembly
limitations 21

Messages
diagnostic 23
statistical 11

Model 91 Programming Considerations 21

Object deck output 31
END card 31
ESD card 31
RLD card 31
TESTRAN SYM card 32
TEXT (TXT) card 31

Object module linkage 17
Options, assembler 2

default entry 2
Overflow, dictionary 20
overriding statements in cataloged pro­

cedures 9

PARM field access 16
PARM parameter 2,9
Procedure (definition} 1
Program listing 34
Program termination 16

QSAM (Queued Sequential Access Method)

Relocation Dictionary listing 14
Return codes 5
RLD card format 31

Sample program listing 34
Saving and restoring general register
contents 16

3

Index 45

Severity code
for diagnostic messages
relation to return code

Source and object program
listing 13

Source statement complexity
SPACE assembler instruction
Statistical messages 11
SYS GO 3
SYSIN 2,3

46

23-30
5

20
11

2,3 SYSLIB
SYSPRINT
SYSPUNCH
SYSUTl,2,3

2,3
2,3

2,3

TESTRAN (SYM) card format 32
TEXT (TXT} card format 31
Type designators 11
Types of ESD entries (Table 4}
Utility data sets 2,3

11

C26-3756-3

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y.10601
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

