File No. S360-21
Form C28-6595-1 as

IBM Systems Reference Library

IBM System/360 Operating System
Assembler (E) Programmer's Guide

This publication complements the IBM System/360
Operating System Assembler Language publication.
It provides a guide to program assembling, linkage
editing, executing, interpreting listings, and
assembler programming considerations.

PREFACE

This publication is a guide to the wuse
of IBM provided cataloged procedures for
assembling; assembling and linkage editing;
assempling, linkage editing, and executing
assembler language source programs. This
edition is oriented to the E level assem-
bler program (the assembler) functioning in
the IBM System/360 Operating System sequen-
tial scheduling environment.

Other System Reference Library publica-
tions in the IBM System/360 Operating Sys-
tem series provide fuller, more detailed
discussions of the topics introduced in
this publication: a careful reading of the
nublication IBM System/360 Operating Sys-

tem: concepts and Facilities, Form
C28-6535, is recommended. Knowledge of the
assembler language is assumed. Where

appropriate, the reader is directed to the
following publications:

IBM System/360 Operating System: Job
Control Language, Form C28-6539

IBM System/360 Operating System: Linkage
Editoxr, Form C28-6538

Second Edition

This edition is a reprint of C28-6595-0 and incor-
porates changes released in Technical Newsletter
N28-2140, dated March 31, 1966.

Significant changes or additions to the specifica-
tions contained in this publication will be re-
ported in subsequent revisions or Technical
Newsletters.

IBM System/360 Operating System: Control
Program Services, Form C28-6541

IBM System/360 Operating System: Assem—
bler Langqguage, Form C28-6514

IBM System/360 Operating System: Utili-
ties, Form C28-6586

IBM System/360 Operating System: Control
Program Messages and Completion Codes,
Form C28-6608

IBM System/360 Operating System: FORTRAN
Iv._(E), Library Subprograms, Form
C28-6596

IBM System/360 Operating System: System

Programmers Guide, Form C28-6550

IBM System/360 Operating System: FORTRAN
IV (E) Programmer's Guide, Form C28-6603

IBM System/360 Operating System: COBOL
(E) Programmer's Guide, Form C24-5029

This publication was prepared for production using an IBM computer

to update the text and-to control the page and line format.

Page

impressions for photo-offset printing were obtained from an IBM

1403 Printer using a special print chain.

Requests for copies of IBM publications should be made to your IBM
representative or to the IBM branch office serving your locality.

A form is provided at the back of this publication for reader's comments.
If the form has been removed, comments may be addressed to IBM Corporation,
Programming Publications, Department 452, San Jose, California 95114.

© International Business Machines Corporation 1966

INTRODUCTION v o o o o o o o o @

Assembler Options. « « « « « « =«
Default ENtry « « « « o o o =«

Assembler Data Set Requirements.
Ddname SYSLIB. « « « «
Ddnames SYSUT1, SYSUT2,
Ddname SYSPRINT. « « . . .
Ddname SYSPUNCH. « « « « &
Ddname SYSIN . . <« « « « .

Return COAeS « « o o« o o o o o =
CATALOGED PROCEDURES « « « o o =

Cataloged Procedure for Assembly
(ASMEC) v 4 o v o o o o o o o =

Cataloged Procedure for Assembly
Linkage-Editing (ASMECL). . . .

Cataloged Procedure For Assembly,
Linkage-Editing, and Execution
(BSMECLG) & o« o o o s« o o o o &

Overriding Statements in
ProcedureSe o« o « o o o o o o
EXEC Statements. . « . . .

DD Statements.
Examples « v ¢ ¢« ¢« ¢ o o .

e @ o e o o

THE ASSEMBLER LISTING. « ¢« « « «
External Symbol Dictionary
Source and Object Program. . . .
Relocation Dictionary. « « « «

Cross—-Referencees « o« o« o « o « @

-

Cataloged

SYSUT3

(o0« W W W e N0) [N8}

[o)}

CONTENTS

DiagnosStiCS. « o o o o o o o « s o =

PROGRAMMING CONSIDERATIONS . « « . .

Saving and Restoring General Register

ContentsS. « ¢ ¢ ¢ ¢ ¢ o s o o o o =
Program Termination. . . « « « .+ .«
PARM Field ACCESSe o o« = « s o o o =
Macro-Definition Library Additions .
Object Module Linkage. . « « « « « «
Dictionary Size and Source Statement

CompPleXitye o o o o o « o o o o o @

Dictionaries Used in Conditional

Assembly and Macro-Instruction
EXpansSion. « « « o o o o o o o =

Global Dictionary at Collection

TiMEe o o o o o o o o o o o o
Local Dictionary at Collection
TiMEe o o o o o o « o o o o =

Global Dictionary at Generation

TIMEe o o o ¢ o o o o o o = »
Local Dictionary at Generation
TiMEe o o o o « o o o o o o &
Additional Dictionary
Requirements. . . « « « . « .
Macro Mnemonic Table. . « . « . .
Source Statement Complexity . . .

-

Macro-Generation and Conditional

Assembly Limitations.
Assembler Portion Limitations.
APPENDIX A: DIAGNOSTIC MESSAGES . .
APPENDIX B: PROGRAM LISTING

INDEXae o o o o o o o 2 o =« o o o o o

17

18

18

18

18

19

19

21

21

21

21

22

22

23

23

24
24

27

35

45

ILLUSTRATIONS

FIGURES

Figure 1. Cataloged Procedure for
Assembly. « « o 4« o o o o o . - o o
Figure 2. Cataloged Procedure for
Assembling and Linkage Editing. . . .

Figure 3. Cataloged Procedure for
TABLES

Table 1. Return CodeS. v« « « « & o o« »
Table 2. Device Naming Conventions . .
Table 3. Types of ESD Entries. . . .
Table 4. Global Dictionary Entries at

Collection Time « « « o « o o o o « =
Table 5. Local Dictionary Entries at
Collection TiMe « « « « « « « o = o =

CHARTS

Assembly, Linkage Editing, and

9 Execution . . e e e e e e o e o o o & 12
t'igure 4. ASbembler Listing. . .« . . . « 14
10 Figure 5. Linkage Statements 20
6 Table 6. Global Dictionary Entries at
8 Generation Time . « . « ¢« ¢ « & & & o o 22
15 Table 7. Local Dictionary Entries at
Generation Time . « . . ¢« ¢« « + ¢« « &+ o« 23
21 Table 8. Macro-Definition Local
Dictionary Parameter Table. 23
22

Through the medium of job control state-
ments, the programmer specifies job
requirements directly to the operating sys-
tem, thus eliminating many of the functions
previously performed by the machine opera-
tor or other installation personnel. The
job consists of one or more job steps. For
example, the Jjob of assembling, linkage-
editing, and executing a source program
involves three job steps:

1. Translating the source program, i.e.,
executing the assembler component of
the operating system to produce an
object module.

2. Processing the output of the
assembler, i.e., executing the
linkage-editor component of the oper-

ating system to produce a load module.

3. Executing the
edited program,
load module.

assembled and linkage-
i.e., executing the

A procedure is a sequence of job control
language statements specifying a job.
Procedures may enter the system via the
input stream or from a library of proce-
dures, which are previcusly defined and

contained in a procedure library. The
input stream is the flow of job control
statements and, optionally, input data

entering the system from one input device.
At the sequential scheduling system level
of the operating system, only one input
stream may exist at a time. (For a de-
scription of the operating system environ-
ment see IBM System/360 Operating System:
Concepts and Facilities.)

The job definition (JOB), execute
(EXEC), data definition (DD), and delimiter
(/%) job control statements are shown in
this publication as they are used to speci-
fy assembler processing. Detailed explana-

tions of these statements are given in IBM
System/360 Operating System: Job Control
Lanquage.

Operating system factors influencing

program preparation, such as program termi-
nation, saving and restoring general reg-
isters, and linking of independently pro-
duced object modules are discussed in
"Programming Considerations" as are guides
to determine whether assembler dictionary
sizes and source statement complexity limi-
tations will be exceeded.

INTRODUCTION

The balance of this introductory section
discusses the assembler options, data sets,
and return codes.

ASSEMBLER_OPTIONS

The programmer may specify the following
assembler options in the PARM= field of the
EXEC statement:

DECK LOAD LIST TEST XREF
PARM= (NODECK, NOLOAD, NOLIST, NOTEST, NOXREF,
LINECNT=nn)

These options are defined as follows:

DECK1* -- The object module is placed on the
device specified in the SYSPUNCH
DD statement.

LOAD® -- The object module is placed on the

device specified in the SYSPUNCH
DD statement.

LIST -- An assembler listing is produced.

TEST -- The object module (if produced)
contains the special source symbol
table required by the test trans-
lator (TESTRAN) routines.

XREF -- The assembler produces a cross-
reference table of symbols as part
of the listing.

The prefix NO is wused with the above
options to indicate that the option is not
wanted. If contradictory options are
entered, e.g., LIST,NOLIST, the rightmost
option, e.g., NOLIST is wused. DECK and
LOAD can be contradictory.

LINECNT=nn
specifies the number of lines to be
printed between headings in the 1list-
ing. The permissible range is 01 to
99 lines.

iThe assembler, during a single execution,
produces either an object module in punched
card form, or an object module in inter-
mediate storage. The UNIT= designation in
the SYSPUNCH DD statement determines where
the object module is placed. Because of

this +the DECK and LOAD options are inter-
changeable. If both are specified the
rightmost entry is used: If DECK,NOLOAD is

specified, no object deck is produced.

Introduction 5

DEFAULT ENTRY

If no options are specified, the assem-
bler assumes the following default entry:

PARM= (NOLOAD, DECK, LIST,NOTEST, XREF,
LINECNT=56)
The cataloged procedures discussed in
this guide assume the default entry. How-
ever, the programmer may override any or
all of the default options (see "Overriding
Cataloged Procedures™).

ASSEMBLER DATA SET REQUIREMENTS

Seven data sets must be defined for the
assembler; they are described in the fol-
lowing text. The ddname that must be used
in the DD statement describing the data set
appears as the heading for each descrip-
tion.

Ddname SYSLIB

From this data set, the assembler
obtains macro definitions and assembler
language statements +to be called by the

COPY assembler instruction. It is a parti-
tioned data set and each macro definition
or sequence of assembler statements is a
separate member with the member name being
the macro-instruction mnemonic or COPY code
name. The data set may be defined as
SYS1.MACLIB or a user's private macro defi-
nition or COPY library. SYS1.MACLIB con-
tains macro definitions for the system
macro-instructions provided by IBM. A
user's private library may be concatenated
with SYS1.MACLIB. The Job Control Language
publication explains data set concatena-
tion.

Ddnames SYSUT1, SYSUT2, SYSUT3

These utility data sets are used by the
assembler when processing the source pro-
gram. The input/output device(s) assigned
to these data sets must be capable of
sequential access to records: the assembler
does not support multi-volume utility data
sets.

Ddname SYSPRINT

This data set is used by the assembler
to produce a 1listing. Output may be
directed to a printer or magnetic tape.
The assembler uses the machine code

carriage-control characters for this data
set.
Ddname SYSPUNCH

The assembler uses this data set to
produce the object module. The

input/output unit assigned to this data set
may be either a card punch or an intermedi-
ate storage device (capable of sequential
access). In the same execution, the assem—
bler cannot produce a punched card object
module and an object module on intermediate
storage.

Ddname SYSIN

This data set contains the input to the
assembler -- the source statements to be
processed. The input/output device
assigned to this data set is either the
device transmitting the input stream, or a
device designated by the programmer. The
DD statement describing this data set usu-
ally appears in the input stream. The IBM
supplied procedures do not contain this
statement.

RETURN CODES

Table 1 shows the return codes issued by

the assembler for wuse with the COND=
parameter® of JOB or EXEC statements.

Table 1. Return Codes

r T 1
| Return| |
| Code | Explanation |
L 1 .'
r T

| 0 |no errors detected |
— - 1
| 4 |minor errors detected; successful |
| | program execution is probable |
f---———1 1
| 8 J|errors detected; unsuccessful |
| | program execution is possible |
L 1 .'
T T

12	serious errors detected;
	unsuccessful program execution is
	probable
¢ + 4	
16	critical errors detected; normal
	execution is impossible
t 4 4	
L} T 1	
20	unrecoverable I/0 error occurred
	during assembly; assembly
	terminated
L -4 4

1The COND parameter is explained in the Job
Control Language publication.

The return code issued by the assembler
is the highest severity code that is:

a. Associated with any error detected by
the assembler.?

15ee Appendix A for diagnostic messages and
severity codes.

b. Associated with MNOTE messages pro-
duced by macro-instructions.

c. Associated with an unrecoverable 1I/0
error occurring during the assembly.
The return code of 20 is used only for

condition code testing. It 1is not asso-
ciated with any diagnostic messages.

Introduction 7

CATALOGED PROCEDURES

This section describes three IBM provid-
ed cataloged procedures: a procedure for
assembling (ASMEC); a procedure for assem-
bling and linkage editing (ASMECL); a pro-
cedure for assembling, linkage editing, and

executing (ASMECLG). The procedures rely
on conventions regarding the naming of
device classes. These conventions, shown

in Table 2, must be incorporated into the
system at system generation time.

Table 2. Device Naming Conventions

r T |
|Device Classname|Devices Assigned |
[] J
T) 1
| SYSsQ |Any devices allowing |
] | sequential access to |
| |records for reading and |
| |writing |
p===mn ———t - - 1
| SYSDA | Direct-access devices
[R 1 J
r T L]
| sYSCPp |Card punches |
L — — J
To use cataloged procedures, an EXEC
statement(s) naming the desired
procedure(s) 1is placed in the input stream

following the JOB statement. Subsequently,
the specified cataloged procedure is
brought from a procedure library and merged
into the input stream.

The System Programmer's Guide discusses
the placing of procedures in the procedure
library.

CATALOGED PROCEDURE FOR ASSEMBLY (ASMEC)

requests the operating
system to load and execute the assembler
(IETASM). The name ASMEC must be used to
call this procedure. The result of execu-
tion is an object module in punched card
form, and an assembler listing.

This procedure

In the following example,
via the input stream. The
entered in the input
procedure are:

input enters
statements
stream to use this

//jobname JOB
//stepname EXEC PROC=ASMEC

//BSM.SYSIN DD *
|

source program statements

/7* (delimiter statement)

The statements of the ASMEC procedure are
brought from the procedure library and
merged into the input stream.

Figure 1 shows the statements that make
up the ASMEC procedure.

"

(M

W

&

(4]

-}

N

"

[8]

.

o

7

o e . . e S o S o . e . . e P e . . e e o S . e S S o e S S o, S S o S e e S e e e 2y

//ASM EXEC PGM=IETASM

//SYSLIB DD DSNAME=SYS1.MACLIB,DISP=OLD
//8YSUT1 DD UNIT=SYSSQ, SPACE=(400, (400,50))
//SYSUT2 DD UNIT=SY¥SSQ,SPACE=(400, (400,50))

//SYSUT3 DD UNIT=(SYSSQ,SEP=(SYSUT1,SYSUT2,SYSLIB)), X
Ved SPACE=(400, (400,50))

//SYSPRINT DD SYSOUT=A

//SYSPUNCH DD UNIT=SYSCP

PARM= or COND= parameters may be added to this statement by the EXEC statement that
calls the procedure (see "Overriding Cataloged Procedures"). The system name IETASM
identifies Assembler E.

This statement identifies the macro library data set. The data set name SYS1.MACLIB
is an IBM designation.

4 5 These statements specify the assembler utility data sets. The device classname
used here, SYSSQ, may represent a collection of tape drives, or direct-access units,
or both. The XI/0 units assigned to this name are specified by the installation when
the system is generated. A unit name, e.g., 2311 may be substituted for SYSSQ.

The SEP= subparameter in statement 5 and the SPACE= parameter in statements 3,4, and
5 are effective only if the device assigned is a direct-access dJdevice: otherwise
they are ignored. The space required is dependent on the make-up of the source
program. the procedure provides an initial allocation of 160,000 bytes and
additional allocations (if needed) of 20,000 bytes.

This statement defines the standard system output class, SYSOUT=A, as the destina-
tion for the assembler listing.

This statement describes the data set that will contain the object module produced
by the assembler.

Figure 1. Cataloged Procedure for Assembly

e v s S e ST — — — —— —— — — — — — ——— —— — — ——— — — — —— —— — — —— —— ———— — — ——— o]

CATALOGED PROCEDURE FOR ASSEMBLY AND The statements entered in the input
LINKAGE-EDITING (ASMECL) stream to use this procedure are:
/7 jobname JOB

This procedure consists of two job

steps: assembling and linkage editing. The //stepname EXEC PROC=ASMECL
name ASMECL must be used to call this

procedure. Execution of this procedure //ASM. SYSIN DD *

results 1in the production of an assembler |

listing, a linkage editor listing, and a]

load module. source program statements

The following example assumes input to |

the assembler via the input job stream. It /*
also makes provision in the //LKED job step
for concatenating the input to the - linkage //LKED.SYSIN DD *

editor from the //ASM job step with any | necessary only if
additional 1linkage editor input in the | linkage-editor is
input job stream. This additional input object module [to combine modules

can be a previcusly produced object module
which is to be linked to the object module |
produced by job step //ASM. /*

Cataloged Procedures

9

The procedure is brought from the proce-

dure 1library and merged into the input
stream.

Figure 2 shows the statements that make

up the ASMECL procedure. Only those state-

ments not previously discussed are

explained.

r———- - - 1
| //ASM EXEC PGM=IETASM |
| |
| //SYSLIB DD DSNAME=SYS1.MACLIB,DISP=0OLD |
| |
| /7 SYS5UTL DD UNIT=SYSSQ,SPACE=(400, (400,50)) |
| |
| /7 SYSUT2 DD UNIT=SYSSQ,SPACE=(400, (400,50)) |
| |
| //SYSUT3 DD UNIT=(SYSSQ,SEP=(SYSUT1,SYSUT2,SYSLIB)), X i
| 77 SPACE=(400, (400,50)) |
| |
| //SYSPRINT DD SYSOUT=A |
| |
|+ //SYSPUNCH DD DSNAME=¢ LOADSET, UNIT=SYSSQ, SPACE=(80, (200,50)), X |
| 77/ DISP=(MOD,PASS) |
| |
|2 //1KED EXEC PGM=IEWL,PARM=(XREF,LIST,NCAL) |
I |
|® //SYSLIN DD DSNAME=§¢LOADSET,DISP=(0OLD,DELETE) |
|4 77 DD DDNAME=SYSIN |
| |
|8 //SYSLMOD DD DSNAME=§TEMP (PDS) ,UNIT=SYSDA, SPACE=(1024,(50,20,1)) |
| |
| //SYSUT1 DD UNIT=(SYSDA,SEP=(SYSLIN, SYSLMOD)) ,SPACE=(1024, (50,20)) |
| I
|7 7//SYSPRINT DD SYSOUT=A |
S |
|* In this procedure the SYSPUNCH DD statement describes a temporary data set -- the |
| object module -- which is to be passed to the linkage editor. |
| |
|2 This statement dinitiates 1linkage editor execution. The linkage editor options in |
{ the PARM= field cause the linkage editor to produce a cross-reference table, module |
| map, and a list of all control statements processed by the linkage editor. The NCAL |
| option suppresses the automatic library call function of the linkage editor. |
| I
|3 This statement identifies the linkage editor input data set as the same one produced |
| as output by the assembler. |
| |
|4 This statement is used to concatenate any input to the linkage editor from the input |
| stream with the input from the assembler. |
| |
|® This statement specifies the linkage-editor output data set (the load module). As |
| specified, the data set will be deleted at the end of the job. If it is desired to |
| retain the 1load module, the DSNAME parameter must be respecified and a DISP |
| parameter added. See "Overriding Catalog Procedures". If the output of the linkage |
| editor is to be retained, the DSNAME parameter must specify a 1library name and |
| member name where the load module is to be placed. The DISP parameter must specify |
| either KEEP or CATLG. |
| [
| This statement specifies the utility data set for the linkage editor. |
| |
|7 This statement identifies the standard output class as the destination for the |
| 1linkage editor listing. |
L _ 1

Figure 2. Cataloged Procedure for Assembling and Linkage Editing

10

CATALOGED PROCEDURE FOR ASSEMBLY,
LINKAGE-EDITING, AND EXECUTION (ASMECLG)

This procedure consists of three job
steps: assembling, 1linkage editing, and
executing. The name ASMECLG must be used

to call this procedure. Assembler and
linkage editor listings are produced.

The statements entered in the
stream to use this procedure are:

input

//jobname JOB

//stepname EXEC PROC=ASMECLG

//ASM.SYSIN DD *

|
|

source program statements
|

|
e

//LKED.SYSIN DD *

|
necessary only if
object module linkage editor is
| to combine modules

/¥
//GO.ddname. DD (parameters)\
//G0O.ddname DD (parameters)
//GO.ddname DD * ! only if
[necessary

problem program input

|
/¥ /

Figure 3 shows the statements that make
up the ASMECLG procedure. Oonly those
statements not previously discussed are
explained in the figure.

OVERRIDING STATEMENTS IN CATALOGED
PROCEDURES

EXEC and DD statements appearing in
cataloged procedures can be overridden, in
full or part. Such overriding of state-
ments or fields is effective only for the

duration of the job step in which the
statements appear. The statements, as
stored 1in the procedure 1library of the

system, remain unchanged.

Overriding for the purposes of
fication, addition, or
accomplished by including in the input
stream statements containing the desired
changes and identifying the statements to
be overridden.

respeci-
nullification is

EXEC Statements

The PARM= and COND= parameters can be
added or, if present, modified by including
in the EXEC statement calling the procedure
the notation PARM.stepname=, or
COND.stepname=, followed by the desired
change. "Stepname" identifies the EXEC
statement within the procedure to which the
modification applies. Overriding the PGM=
parameter is not possible.

If the procedure consists of more than
one job step, a PARM. stepname= or
COND.stepname= parameter may be entered for
each step. The entries must be in order,
i.e., PARM.stepl=, PARM.step2=, etc.

DD_Statements

All parameters in the operand field of
DD statements may be overridden by includ-
ing in the input stream (following the EXEC
card calling the procedure) a DD statement
with the notation //stepname.ddname in the
name field. "Stepname" refers to the job
step in which the statement identified by
"ddname" appears.

Examples

In the assembly procedure ASMEC (Figure
1), the production of a punched object deck

could be suppressed and the UNIT= and
SPACE= parameters of data set SYSUT1 re-
specified, by including the following
statements in the input stream:

//stepname EXEC PROC=ASMEC, X
/7 PARM.ASM=NODECK

//ASM, SYSUT1 DD UNIT=2311, X
s/ SPACE=(200, (300,40))

In procedure ASMECLG (Figure 3) sup-
pressing production of an assembler listing
and adding the COND= parameter to the EXEC
statement which specifies execution of the
linkage editor might be desired. 1In this
case, the EXEC statement in the input
stream would appear as follows:

Cataloged Procedures 11

//stepname EXEC PROC=ASMECLG,

Ved
/7

Mo

if the return code issued by the assembler

PARM.ASM=NOLIST, (step ASM) was greater then 4.
COND. LKED= (4, LT, ASM)
For current execution of procedure The Job Control Language and System

ASMECLG, no assembler 1listing would be Programmer's Guide publications provide
produced, and execution of the linkage additional description of overriding tech-
editor job step //LKED would be suppressed niques.

P

N

[W

N

W

[e o e e i e o e i e e T e e et S e e . o . s S . et e At . e . e e e e e, . e sy

//BSM EXEC PGM=IETASM

//SYSLIB DD DSNAME=SYS1.MACLIB,DISP=0LD

//SYSUT1 DD UNIT=SYSSQ,SPACE=(400, (400,50))

//SYSUT2 DD UNIT=SYSSQ,SPACE=(400, (400,50))

//SYSUT3 DD UNIT=(SYSSQ,SEP=(SYSUT1,SYSUT2,SYSLIB)), X
7/ SPACE=(400, (400,50))

//SYSPRINT DD SYSOUT=A

//SYSPUNCH DD DSNAME=§LOADSET, UNIT=SYSSQ, SPACE=(80, (200,50)), X
77/ DISP=(MOD,PASS)

// LKED EXEC PGM=IEWL,PARM=(XREF,LET,LIST,NCAL)

//SYSLIN DD DSNAME=§LOADSET, DISP=(OLD, DELETE)
/7/ DD DDNAME=SYSIN

//SYSLMOD DD DSNAME=§GOSET (GO) , UNIT=SYSDA, SPACE=(1024, (50,20,1)), X
7/ DISP= (NEW, PASS)

//SYSUT1 DD UNIT=(SYSDA,SEP=(SYSLIN,SYSLMOD)),SPACE=(1024, (50,20))
/7/SYSPRINT DD SYSOUT=A

//GO EXEC PGM=*.LKED.SYSLMOD

The LET linkage editor option specified in this statement causes the linkage editor
to mark the load module as executable even though errors were encountered during
processing.

The output of the linkage editor is specified as a member of a temporary data set,
residing on a direct-access device, and is to be passed to a succeeding job step.

This statement initiates execution of the assembled and linkage edited program. The
notation *.LKED.SYSLMOD identifies the program to be executed as being in the data
set described in job step LKED by the DD statement named SYSLMOD.

Figure 3. Cataloged Procedure for Assembly, Linkage Editing, and Execution

12

L e s o . . — — ——— — — — — —— — — o " ottt F—— — — S — ——— it o, ot dmn . i, s, S S — S, SO s, W . e, S st

The assembler 1listing, Figure 4, con-
sists of five sections, ordered as follows:
external symbol dictionary items; the
source and object program statements; relo-
cation dictionary items; symbol cross-
reference table; and diagnostic messages.

In addition two statistical messages may
appear in the listing. They are:

A message if one or more Y-type address
constants appear in the program.

THE ASSEMBLER LISTING

Message: AT LEAST ONE RELOCATABLE Y-TYPE
CONSTANT IN ASSEMBLY.

A message indicating the total number of
statements in error.

nnn STATEMENTS FLAGGED IN THIS
ASSEMBLY.

Message:

If issued, the ¥Y-type address constant
message appears before the diagnostic
message section; the statements-flagged

message appears after the diagnostics.

The Assembler Listing 13

O @@ ® ©

SYMBOL TYPE ID ADDR LENGTH LD ID

SAMPLR sO Ol 000000 0003B8

EXTERNAL SYMBOL DICT IONARY

PAGE

1

O

EXAM

SAMPLE PROGRAM

® @

®

®

PAG

F‘I’ 3

@

STMT ERROR CODE MESSAGE

________________q\\",,,~f‘*"——~—__________________________

Figure 4.

Assembler Listing

14

LOC O0BJECT CODE ADDRL ADODR2 STMT SOURCE STATEMENT E OLFEB66 2/28/66
000089 L06+1HBO007 EQU * (:)
0000BA 107+IHBOOOTA DS OH
00008A 0A23 108+ SVC 35 ISSUE SVC
0000BC 47F0 CO6E 0007€ 109 8 EXIT SAMPLOTO
0000CO 9680 5008 00008 110 NOTTHERE OI LSWITCH,NONE TURN ON SWITCH IN LIST ENTRY SAMPLNAO

RELOCATION DICT IONARY PAGE 1

POS.ID REL.ID FLAGS ADDRESS

o1 o1 oc 0001FC

o1 a1 oc 00020C

o1 o1 oc 00021¢C

o1 o1 oc 000204

o1 o1 oc 000334

o1 ot oc 00034C

@ ® CROSS-REFERENCE PAGE 1
SYMBOL LEN YALUE DEFN REFERENCES
BEGIN 00004 000000 0057 0154 OL56 0172 0182 0184 0218
EXIT 00004 000CTE 0094 0109
HIGHER 00002 GO0CF4 0128 0123
IHBO0OO5 00001 COOQ07B 0091 0088
1HB0005A 00002 00007C 0092 0087
IHBOOO7 00001 000CB9 0106 0103
[HBOOO7A 00002 0000BA 0107 0102
LADDRESS 00004 00000C 0209 0078
EXAM DIAGNOSTICS PAGE 1

EXTERNAL SYMBOI, DICTIONARY (ESD)

This section of the listing contains the
external symbol dictionary information
passed to the linkage-editor in the object
module. The entries described the control
sections, external references, and entry
points in the assembled program. There are
five types of entries, shown in Table 3,
along with their associated fields. The
circled numbers refer to the corresponding
heading in the sample listing (Figure 4).

Table 3. Types of ESD Entries
r——— "_T_“___‘T_‘ ST A=~ T~ =X~ T-57<
@ | HO} | HOX
|SYM oL | TY E | 10 | ADDR | LENGTH | LDID|
—— f——1 $ i
I | sb | x | X | X -
ot f-———1t ¥ ==
| X | Lo |- | X | - I x|
I — 1 -t + . !
| x | BER | X | - | - P
 — -1 : -1
I - 1 P | X | X | X I -
p———-———t ===t $ $-——v !
I - | cM | X | X I X -
},_____ 1 A b L =|‘
| The X indicates entries accompanying|
| each type designation.
L ————d
This column contains symbols that
appeared in the name field of CSECT or

START statements, as operands of ENTRY
and EXTRN statements, or in the operand
field of V-type address constants.

This column contains the type designator
for the entry, as shown in the table.
The type designators are defined as:

SD -- names section definition. The
symbol appeared in the name
field of a CSECT or START state-
ment.

LD -- The symbol appeared as the oper-
and of an ENTRY statement.
external reference. The symbol
appeared as the operand of an
EXTRN statement, or was defined
as a V-type address constant.

ER --

unnamed control section defini-

tion.

PC --

CM -- common control section defini-

tion.

<:>This column contains the external symbol
dictionary identification number (ID).
The number is a unique two digit hexa-
decimal number identifying the entry.
It is used by the LD entry of the ESD

and by the relocation dictionary to
cross reference to the ESD.

<:>The column contains the address of the
symbol (hexadecimal notation) for SD and
LD type entries, and zeros for ER type
entries. For PC and CM type entries, it

indicates the beginning address of the
control section.
<:>This column contains the assembled

length, in bytes, of the control section
(hexadecimal notation).

<:>Thls column contains, for D type
entries, the identification (ID) number
assigned to the ESD entry that identi-
fies the control section in which the
symbol was defined.

SOURCE _AND OBJECT PROGRAM

This section of the
the source statements
object program.

listing documents
and the resulting

(:)This is the deck identification. It is
the symbol that appears in the name
field of the first TITLE statement.

‘I‘his is the information taken from the
operand field of a TITLE statement.

<:>Listing page number.

'I‘his column contains the assembled
address (hexadecimal notation) of the
object code.

<:> This column contains the object code

produced by the source statement. The
entries are always left-justified. The
notation is hexadecimal. Entries are
machine instructions or assembled con-

stants. Machine instructions are print-
ed in full with a blank inserted after
every four digits (two bytes). Con-
stants may be only partially printed

(see the PRINT assembler instruction in
the Assembler Language publication).

(:)These two columns contain effective
addresses (the result of adding together
a base register value and displacement
value):

1. The column headed ADDR1 contains the
effective address for the first
operand of an SS instruction.

2. The column headed ADDR2 contains the
effective address of the second
operand of any instruction referenc-
ing storage.

The Assembler Listing 15

however,

Both address fields contain six digits;

if the high order digit is a zero,

it is not printed.

(:>'This column contains the statement num-

16

ber.
the

was generated as the

A plus sign (+) to the right of

number indicates that the statement

result of macro-

instruction processing.

This
statement.

column contains the source program
The following items apply to

this section of the listing:

A

Source statements are listed,
including those brought into the
program by the COPY assembler

instruction, and macro-definitions
submitted with the main program

for assembly. Listing control
instructions are not printed,
except for the following case:

PRINT is 1listed when PRINT ON is
in effect and a PRINT statement is
encountered.

Macro-definitions for system
macro-instructions are not listed.

The statements generated as the
result of a macro-instruction fol-

low the macro-instruction in the
listing.
Assembler or machine instructions

in the source program that contain
variable symbols are listed twice:
as they appear in the source
input, and with values substituted
for the variable symbols.

Diagnostic messages are not listed
in-line in the source and object
program section. An error indica-
tor, ***ERROR***, appears follow-
ing the statement in error. The
message appears in the diagnostic
section of the listing.

MNOTE messages are listed in-line

in the source and object program
section. An MNOTE indicator
appears in the diagnostic section

of the listing. The MNOTE message
format 1is: severity code, message
text.

The MNOTE* form of +the MNOTE
statement results in an in-line
message only. An MNOTE indicator
does not appear in the diagnostic
section of the listing.

When an error is found in a pro-
grammer macro-definition, it is
treated 1like any other assembly
erroxr: the error indication
appears after the statement in

error, and a diagnostic is placed
in +the 1list of diagnostics. How-
ever, when an error is encountered
during the expansion of a macro-
instruction (system or programmer

defined), the error indication
appears in place of the erroneous
statement, which is not listed.

The error indication appears fol-
lowing the 1last statement listed
before the erroneous statement was
encountered, and the associated
diagnostic message is placed in
the l1list of diagnostics.

Literals that have been assigned
locations by a LTORG statement
appear in the 1listing following
the END statement. Literals are
identified by the equals (=) sign
preceding them.

If the END statement contains an

operand, the transfer address
appears in the location column
(LOC).

In the case of COM, CSECT, and

DSECT statements, the location
field contains the beginning
address of these control sections
i.e., the first occurrence.

For a USING statement, the loca-
tion field contains the value of
the first operand.

For LTORG and ORG statements, the
location field contains the loca-
tion assigned to the literal pool
or the value of the ORG operand.

For an EQU statement the location
field contains the value assigned.

Generated statements always print
in normal statement format.
Because of this, it is possible

for a generated statement to occu-
pY three or more continuation
lines on the 1listing. This 1is
unlike source statements which are
restricted to two continuation
lines.

This field indicates the assembler level
and
issued, e.g., EOLFEB66 reads - as
bler

release number for the month it was
Assem-
E, first release of February 1966.

Current date (date run is made).

(:)Identification—sequence field from the
source statement.

RELOCATION DICTIONARY

This section of the listing contains the
relocation dictionary information passed to
the 1linkage editor in the object module.
The entries describe the address constants
in the assembled program that are affected
by relocation.

18) This column contains the external symbol
dictionary ID number assigned to the ESD
entry that describes the control section
in which the address constant is used as
an operand.

GE)This column contains the external symbol
dictionary ID number assigned to the ESD
entry that describes the control section
in which the referenced symbol is
defined.

The two-digit hexadecimal number in this
column is interpreted as follows:

First Digit -- a zero indicates that the
entry describes an A-type
address constant.

-- a one indicates that the
entry describes a V-type
address constant.

Second Digit -- the first three bits of
this digit indicate the
length and sign of the
address constant as fol-

lows:

Bits 0 and 1 Bit 2
00 = 1 byte 0=+
01 = 2 bytes 1 =-
10 = 3 bytes

11 = 4 bytes

659 This column contains the assembled
address of the field where the address
constant is stored.

CROSS-REFERENCE

This section of the listing information
concerns symbols -- where they are defined
and used in the program.

C:)This column contains the symbols.

<:)This column states the length (decimal
notation), in bytes, of the field occu~
pied by the symbol value.

é})This column contains either the address
the symbol represents, or a value to
which the symbol is equated.

25) This column contains the statement num—

ber of the statement in which the symbol
was defined.

This column contains the statement num-
bers of statements in which the symbol
appears as an operand.

The following notes apply to the cross-
referencing section:

e Symbols appearing in V-type address

constants do not appear in the cross-

reference listing.

e A PRINT OFF listing control instruction
does not affect the production of the
cross-reference section of the listing.

e Undefined symbols appear in the cross-
reference section. However, only the
symbol column and the reference column
have entries.

DIAGNOSTICS

This section contains the diagnostic
messages issued as a result of error
conditions encountered in the program.

Explanatory notes and the severity code for
each message are contained in Appendix A.

<:>’rhis column contains the number of the
statement in error.

This column contains the message iden-
tifier.

This column contains the message.

Example:
STMT ERROR CODE MESSAGE
101 IET035 ADDRESSABILITY ERROR

The following notes apply to the diag-
nostics section:

e An MNOTE indicator of the form MNOTE
STATEMENT appears in the diagnostic
section, if an MNOTE statement is
issued by a macro-instruction. The
MNOTE statement itself is in-line in
the source and object program section
of the listing.

e A message identifier consists of six
characters and is of the form:

IETXXX

IET
identifies the issuing agent as assem-
bler E.

XXX
is a unique number
message.

assigned to the

The Assembler Listing 17

PROGRAMMING CONSIDERATIONS

This section consists of a number of
discrete subjects about assembler language
programming.

SAVING AND RESTORING GENERAL REGISTER
CONTENTS

A problem program should save the values
contained in the general registers upon
commencing execution, and, upon completion,
restore to the general registers these same
values. Thus, as control is passed from
the operating system to a problem program
and in turn, to a subprogram, the status of
the registers wused by each program is
preserved. This is done through use of the
SAVE and RETURN system macro-instructions.

The SAVE macro-instruction should be the
first statement in the program. It stores
the contents of registers 14 and 15, and 0

through 12 in an area provided by the
program passing control. When a problem
program is given control, register 13

points to an area in which the
register contents should be saved.

general

If the program calls any subprograms, or
uses any operating system services other
than GETMAIN, FREEMAIN, ATTACH, and XCTL,
it must first save the contents of register
13, and then the address of an 18 full-word
save area must be loaded into register 13.
This save area is in the problem program
and is used by any subprograms or operating
system services called by the problem pro-
gram.

At completion, the problem program re-
stores the contents of general registers
14, 15, and 0-12 by use of the RETURN
system macro-instruction (which also indi-
cates program completion). The content of
register 13 must be restored before execu-
tion of the RETURN macro-instruction.

The coding sequence that follows illus-
trates the basic process of saving and
restoring the registers. A complete dis-
cussion of the SAVE and RETURN macro-
instructions and the saving and restoring

of registers is contained in IBM System/360
Operating System: Control Program Services.

18

r L] t 3
| Name |Operation |Operand |
— : + 1
|BEGIN | SAVE | (14,12) |
f (ST |13, SAVEBLK+4 |
i | 1A |13, SAVEBLK |
I l - I [
[-		
	L	13,SAVEBLK+4
	RETURN	(14,12)
SAVEBLK	DC	18F' 0"
I i J		
PROGRAM TERMINATION

Completion of an assembler source
program is indicated by using the RETURN
system macro-instruction to pass control

from the terminating program to the program
that initiated it. The initiating program
may be the operating system, or, if a
subprogram issued the RETURN, the program
that called it.

In addition to indicating program com-
pletion and restoring registers, the RETURN
macro-instruction may also pass a return
code - a condition indicator that may be
used by the program receiving control. If
the return is to the operating system, the
return code is compared against the condi-
tion stated in the COND= parameter of JOB
or EXEC statements. If return is to anoth-
er problem program, the return code is
available in general register 15, and may
be used as desired. Register 13 should be
restored before issuing the RETURN macro-
instruction.

The RETURN system macro-instruction is

discussed in detail in the Control Program
Services publication.

PARM FIELD ACCESS

to information in the PARM field
of an EXEC statement is gained through
general register 1. When control is given
to the problem program, general register 1
contains the address of a full word which,
in turn, contains the address of the data
area containing the information.

Access

The data area consists of a half word
containing the count (in binary) of the
number of information characters, followed

by the information field. The information

field is aligned to a full-word boundary.
The following diagram illustrates this
process.
General Register 1
Address of Full Word
Points
to Full Word

Address of Data Area

Points
to

Data Area

Count in Binary |Information Field

MACRO-DEFINITION LIBRARY ADDITIONS

Source statement coding to be retrieved
by the COPY assembler instruction, and
macro-definitions may be added to the
macro-library. The IEBUPDAT utility pro-
gram is used for this purpose. Details of
this program and its control statements are
contained in IBM System/360 Operxrating Sys-
tem: Utilities. The following sequence of
job control statements can be used to call
the utility program and identify the needed
data sets. It is assumed that the job
control statements, IEBUPDAT program con-—
trol statements, and data are to enter the
system via the input stream.

//jobname JOB
//stepname EXEC PGM=IEBUPDAT, PARM=NEW
//SYSUT2 DD DSNAME=S5YS1.MACLIB,DISP=0LD
//SYSPRINT DD SYSOUT=A
//SYSIN DD *

IEBUPDAT control statements and source
statements or macro-definitions to be
added to the macro-library (SYS1.MACLIB)

/¥ (delimiter statement)

LOAD MODULE MODIFICATION-ENTRY POINT
RESTATEMENT

If the editing functions of the
editor are to be

linkage
used to modify a load

module, the entry point to the load module
must be restated when the load module is
reprocessed by the linkage editor. Other-
wise, the first byte of the first control
section processed by the 1linkage editor
will become the entry point. To enable
restatement of the original entry point, or
designation of a new entry point, the entry
point must have been identified originally
as an external symbol, i.e., appeared as an
entry in the external symbol dictionary.
External symbol identification is done
automatically by the assembler if the entry
point is the name of a control section or
START statement; otherwise an assembler
ENTRY statement must be used to identify
the entry point name as an external symbol.

When a new object module is added to or
replaces part of the load module, the entry
point is restated in either of three ways:

* By placing the entry point symbol in
the operand field of an EXTRN statement
and an END statement in the new object
module.

e By using an END statement in the new
object module to designate a new entry
point in the new object module.

e By using a linkage editor ENTRY state-
ment to designate either the origimnal
entry point or a new entry point for
the locad module.

Further discussion of load module entry
points is contained in the 1linkage editor
publication.

OBJECT MODULE LINKAGE

Object modules, whether Assembler, FOR-
TRAN or COBOL generated, may be combined by
the linkage editor to produce a composite
load module provided each object module
conforms to the data formats and Linkage
conventions required. This topic discusses
the use of the CALL system mnacro-
instruction to 1link an assembler language
"main" program to subprograms produced by
FORTRAN and COBOL.?*

Figure 5 shows the statements used to
establish the 1linkage from the assembler
program to the called subprograms.

igee the control Program Services
publication for additional details concern-
ing linkage conventions and the CALL system
macro-instruction.

Programming Considerations 19

X

3 P [\

-

[

W

&

[o e i e i ot S . i, . . o . i S i e B e T i . S ot = et e e S e e, A i, S i, S e, . S, st . et e . S . . A s, i i, e i S e e

SAVE (14,12)
ST 13, SVAREA+Y4
LA 13,SVAREA

CALL name, (V1,V2,V3) ,VL

L 13, SVAREA+4
RETURN (14,12)
SVAREA DC 18F'0"
Vi DC (data)
V2 DC (data)
v3 DC (data)
END

The address of this program's (the calling program) save area is placed in general
register 13 for use by the called subprogram.

The symbol used for "name" in this statement is:

1. The name of a subroutine or function, when 1linking to a FORTRAN written
subprogram.

2. The name defined by the following COBOL statements in the procedure division:
ENTER LINKAGE. ENTRY'name'.

3. The name of a CSECT or START statement, or a name used in the operand field of an
ENTRY statement in an assembler subprogram.

—— ——— . . s, T— et . S— — cp— — —— — — — ——— ——— T — — — —— — — — — o w—

The order in which the parameter list is written must reflect the order in which the|
called subprogram expects the argument. If the called routine is a FORTRAN written|
function, the returned argument 1is not in the parameter list: a real or double|
precision function returns the value in floating point register zero; an integer|
function returns the value in general purpose register zero. |
|
CAUTION: When linking to FORTRAN written subprograms, consideration must be given to|
the storage requirements of IBCOM (FORTRAN execution-time I/O and interrupt handling]|
routines) which accompanies the compiled FORTRAN subprogram. In some instances the|
call for IBCOM is not automatically generated during the FORTRAN compilation. The |
FORTRAN IV Library publication provides information about IBCOM requirements and|
assembler statements used to call IBCOM. |
[
FORTRAN written subprograms and FORTRAN library subprograms allow variable 1length]|
parameter lists in linkages which call them; therefore all linkages to FORTRAN|
subprograms are required to have the high-order bit in the last parameter in the|
linkage set to 1. COBOL written subprograms have fixed length calling linkages; |
therefore, for COBOL the high order bit in the last parameter need not be set to 1.

|
This statement reserves the save area needed by the called subprogram. When control|
is passed to the subprogram, register 13 contains the address of this area. |

[
5 6 When linking to a FORTRAN or COBOL subprogram, the data formats declared in these|
statements are determined by the data formats required by the FORTRAN or COBOL|

subprograms. |
J

Figure 5. Linkage Statements

20

If any input/output operations are per-
formed by called subprograms, appropriate
DD statements for the data sets used by the
subprograms must be supplied. See the
FORTRAN (E) Programmer's Guide for explana-
tion of the DD statements used to describe
data sets for FORTRAN programs and a de-
scription of the special FORTRAN data set
record formats. The COBOL (E) Programmer's
Guide provides DD statement information for
COBOL programs.

DICTIONARY SIZE AND SOURCE STATEMENT
COMPLEXITY

The following material: (1) describes
the composition of the assembler dictionar-

ies and their entry sizes, and (2) de-
scribes methods for determining if the
limits on source statement complexity will

be exceeded.

Dictionary entries e.g., sequence symbol
names or prototype symbolic parameters,
vary in length. Therefore, the number of
entries a dictionary can hold is determined
by the types of entries.

Source statement complexity -- the num-
ber of symbols, characters, operators,
delimiters, references to length attri-
butes, self-defining terms, literals, and
expressions appearing in a source statement
-- determines whether or not the source
statement can be successfully processed.

DICTIONARIES USED IN CONDITIONAL ASSEMBLY
AND MACRO-INSTRUCTION EXPANSION

For the macro generator portion of the
assembler to accomplish macro-instruction
expansion and conditional assembly, two or
more dictionaries must be constructed: a
global dictionary and one or more local
dictionaries.

These dictionaries take two forms: one
which is used at the time the dictionary
entries are collected, i.e., picked up from
the initial scan of the source program: and
one which is used during the actual condi-
tional assembly and macro generation pro-
cess. The next five topics describe the
global and local dictionaries at collection
and generation time.

Global Dictionary at Collection Time

One global dictionary is built for the
entire program. It contains macro-
instruction mnemonics and global SET

variable symbols. One entry is made for
each unique global SET variable symbol.
One entry is made for each macro-

instruction mnemonic that is not defined in
the program; two identical entries are made
when the macro-instruction mnemonic is
referred to before it is defined; three
identical entries are made when the macro-
instruction mnemonic is defined before it
is referred to. The capacity of the global
dictionary is 64 blocks of 256 bytes each.
Each block contains complete entries. Any
entry not fitting into a block is placed in
the next block; the remaining bytes in the
current block are not used.

The size of each entry is shown in Table
L.

Table 4. Global Dictionary Entries at

Collection Time

r

| Entry Size

fm —

1
|Each macro mnemonic|10 bytes plus
|operation code | mnemonic*
L

8
|Each global SET |6 bytes plus name¥*

|variable symbol |
L i

b
|*One byte is used for each character in

| the name or mnemonic.
Lee

e e e e e s b e s b e

Fixed overhead for this dictionary is:

8 bytes for the first block
4 bytes for each succeeding block
5 bytes for the last block

There is a 1limit of 400 wunique
symbols per assembly, regardless
amount of storage available.

global
of the

Local Dictionary at Collection Time

For the main portion of the program,
(those statements not within a macro
definition) one 1local dictionary is con-
structed in which ordinary symbols
(relevant to macro generation and condi-
tional assembly), sequence symbols, and
local SET variable symbols are entered.
Relevant ordinary symbols are those which
occur in macro-instructions or conditional
assembly statements. In addition, one
local dictionary is constructed for each

Programming Considerations 21

different macro definition in the program.

These local dictionaries contain one entry
for each 1local SET variable symbol,
sequence symbol, and prototype symbolic

parameter declared within the macro defini-
tion.* The capacity of each local dictiona-
ry is 64 blocks of 256 bytes each. Each
block contains complete entries. Any entry
not fitting into a block is placed in the
next block; the remaining bytes in the
current Dblock are not used. Table 5 indi-
cates the size of each type of entry and
relates dictionary capacities to the struc-
ture of any given program.

Table 5. Local Dictionary Entries at Col-
lection Time

[mm————

| Entry Size

! _

v

|Each sequence
| symbol

10 bytes plus name*

|Each local SET

|variable symbol 6 bytes plus namex*
L

b
|Each prototype

|symbolic parameter |5 bytes plus namex*
L

!
|Each relevant
|ordinary symbol
|appearing in the
|main portion

|of the program

———— e e e e

10 bytes plus name*
L

*One byte is used for each
the name or mnemonic

character in

T SRS SR SER S TS Sp———

[

Global Dictionary at Generation Time

The structure of the global dictionary
at generation time is shown in Table 6.

!
|Each global SETC
| symbol (undimensioned) |9 bytes
[R iy

Table 6. Global Dictionary Entries at Gen-
eration Time
r-— T - 1
| Entry | Size |
—- -4-- 4
| Each macro mnemonic | |
|operation code |3 bytes |
4 J
————— T 1
|Each global SETA | |
|symbol (dimensioned) |1 byte plus U4N* |
1 k|
- T 1
|Each global SETA | |
| symbol (undimensioned) |4 bytes |
i 4
¢ + 1
| Each global SETB |1 byte plus (N/8)*|
|symbol (dimensioned) |(N/8 is rounded to|
| |the next highest |
| | integex) |
-~ $ 1
|Each global SETB | |
| symbol (undimensioned) |1 byte |
I (R
¢ t 1
|Each global SETC] |
| symbol (dimensioned) |1 byte plus 9N#* |
: 4 y
| |
|
4
|
J

t
| *N=dimension
L

Fixed overhead for this dictionary is:

8 bytes for the first block (if in the
main program)

32 Dbytes for the first block (if in a
macro definition)

4 bytes for each succeeding block

5 bytes for the last block

1Tf a sequence symbol is defined before it
is referenced, an extra entry for the
symbol is made.

22

Fixed overhead for this
bytes plus word alignment.

dictionary is 4

Local Dictionary at Generation Time

The structure of the local dictionary at
generation time is shown in Table 7.

Table 7. Local Dictionary Entries at Gen-

eration Time

+
|1 byte plus (N/8)*
| (N/8 is rounded to

!
|Each local SETB
|symbol (dimensioned)

r T 1
| Entry | Size |
b Sy -
|Each sequence symbol |5 bytes |
[- 1 4
) T 1
|Each local SETA | |
|symbol (dimensioned) |1 byte plus 4N* |
L 1 _<l
r T
|Each local SETA | |
|symbol (undimensioned) |4 bytes |
L . 1 r
y
|
|

|the next highest

definition 1local dictionary requires space
for the entries shown in Table 8.

Table 8. Macro-Definition Local Dictionary
Parameter Table

r

| Entry Size

5

I

Each character string(l)|3 bytes plus L

T
|
1
T
I
%
|Each hexadecimal, binary, |
|decimal, and character |
|
L
+
|
1
T
|

|self-defining term(2)
b——
|Each symbol (3)
I

7 bytes plus L

9 bytes plus L

b o e e e e e s iy s e s . e ey e et e

[t
| | integer) |Each sublist 10 bytes plus 2N
t + | | bytes plus Y
|Each local SETB | b 1
|symbol (undimensioned) |1 byte |L = Length of entry in bytes
——— + —_— |N = Number of entries in sublist
|Each local SETC | |Y = Total length of the table entries in
| symbol (dimensioned) |1 byte plus 9N#* | formats 1,2,and 3
L 1 L.
T
[

}
|Each local SETC
| symbol (undimensioned) |9 bytes
I [

v T
|Each relevant ordinary|
|symboll appearing in |
|the main portion of |
| the program |5 bytes
L L

+
1For the main program Local Dictionary|

only those symbols which appear in|
macro-instruction operands or whose|
included. |

|

|

l ;

| attributes are referenced are
|

| *N=dimension

L

b e e

Fixed overhead for this dictionary is 20
bytes plus word alignment.

Additional Dictionary Requirements

The generation time global dictionary
and the generation time local dictionary
for the main portion of the program must be
resident in main storage.

In addition, if the program contains any
macro-instructions, main storage is
required for the largest local dictionary
of the macro-definitions being processed.

Furthermore, during processing of macro-
definitions containing inner macro-
instructions, main storage is required for

the generation time local dictionaries for
the inner macro-instructions contained
within the macro-definition.

MACRO-DEFINITION TLOCAL DICTIONARY REQUIRE-~
MENTS: In addition to those requirements
specified for the local dictionary of the
main portion of the program, each macro-

iy s s o s s . . it e, T ey w—— o, 2k e, —

Fixed overhead for the macro-definition
local dictionary parameter table is 22
bytes. Each nested macro-instruction also
requires space in its local dictionary for
the following:
Parameter pointer 1list 2 bytes plus 2N

(N = the number of

operands)
Pointers to list in the 8 bytes plus word
parameter table alignment

MACRO MNEMONIC TABLE

As the source statements are scanned, a
table of macro-instruction mnemonics is
constructed in which there is an entry for
each macro-instruction used or defined in
the program. The entries are made under
the premise that every undefined operation
is a system macro-instruction mnemonic.
This table is then used to locate and edit
system macro-definitions from the 1library.

With 15,360 bytes of main storage
available to the assembler, approximately
430 distinct macro-instruction mnemonics
can be handled. An entry in this table
consists of nine bytes. In the event that
this table overflows, processing continues
with only those macro-instructions defined
to the point of overflow.

SOURCE STATEMENT COMPLEXITY

The complexity of a source statement is
limited by both the macro-generator and
assembler portions of Assembler E. The

Programming Considerations 23

following topics provide the information
necessary to determine if statement com-
plexity limitations for either portion of
the assembler are being exceeded.

Macro-Generation and Conditional Assembly
Limitations

For any statement which:

1. Is a
ment

2. Is a DC or DS statement

3. 1Is an EXTRN statement

4. Contains a sequence
variable symbol

5. 1Is not a macro-instruction or pro-
totype statement

conditional assembly state-

symbol or a

the total number of literal occurrences of

6. Ordinary symbols (includes machine
mnemonics, assembler mnemonics,
conditional assembly mnemonics,
and macro-instruction mnemonics)

7. Variable symbols

8. Sequence symbols

must not exceed 35 in the name, operation,
or operand fields respectively; and the
number of 1literal occurrences of items 6,
7, and 8 above must not exceed 36 for the
entire statement.

For macro-instructions
statements the number of occurrences of
ordinary symbols, variable symbols and
sequence symbols must not exceed 35 in the
name and operation fields combined, or in
each operand unless the operand is a sub-
list in which case the limit is applied to
each sublist operand.

and prototype

Examples of counts:

£B2 SETB (T'NAME EQ 'W' OR '§&C'.'A' EQ
count=4

!AAI

EXTRN A,B,C, &C
count=5

Assembler Portion Limitations

The space required to process a state-
ment must not exceed 730 bytes for DC and
DS statements, and 746 bytes for all oth-
ers. Buffering considerations may allow
statements exceeding these requirements by
up to 30 bytes to be processed.

The following formulas (S; and S3;) are
used to determine if statement complexity

20

will exceed the limitations stated above.
The statement must be tested against S; and
S, and must satisfy both.

In general, all statements can be proc-
essed if they contain 50 or fewer terms.
If a statement contains more than 50 terms,
the formulas should be used to determine if
the statement can be processed, or if the
statement should be shortened using EQU
assembler instructions. In the first exam-
ple, if A+(B-C)*3 were equated to a symbol,
that symbol could be used as the displace-
ment field of the first operand in the
example.

Formula S;:
Sq=Np+Ng+4 (N1 5+Ngq) +6 (Ng+N1)

where
Nb = total number of bytes in name,
operation, operand, and comment
entries (the maximum value of N
is 187)

Ng = number of operators and delimi-
ters in the operand field,
except equal (=), period (.),
and apostrophe(")

N;, = number of references to length
attribute (L'SYMBOL)

Ngq = number of self-defining terms
N = number of symbols (including#*)

N, = number of literal

(maximum of 1)

operands

Example:
NAME MVC A+ (B-C)*3(L'D,5),=15CL5'ABCDEFG"

N N N N N N

b a la a s 1
¥ Y [vt

S,=39 + 9 + 4(1 + 4) + 6(3 + 1)
Sl=92

Formula S,

82=Nb+9 (W‘|+W2+. . -+Wm)+D

where:

Np = as defined in formula S,

W = a weight associated with each
expression in the statement. The
subscript represents the expres-
sion number; W, is the last
expression.

D = the number of expression delimi-
ters

W may equal 1, 2, 3, 4, or 5 and is
a function of +the number of

unpaired relocatable terms
appearing in each expression as
follows:

= T

| Number of Unpaired Terms | W

F +

| 0, 1 | 1

| 2, 3, 4, 5 [2 |
| 6, 7, 8, 9 | 3 |
| 10, 11, 12, 13 | 4 |
| 14, 15, 16 I 5 I
L. 1 i

The rules for counting expressions and
expression delimiters are as follows:

1. A comma is always an expression delim-
iter, as is the terminating blank.

2. Left and right parentheses can be part
of an expression; or they can be
expression delimiters. A left paren-
thesis is an expression delimiter if
it is not preceded by an arithmetic
operator or a blank. A right paren-
thesis is an expression delimiter if
its paired 1left parenthesis is an
expression delimiter.

Example 1:
NAME L 6,B+20%B(6)

Nb W:I. Wz W3

-0

¥ IR
S,=16 + 9(1 + 1 + 1) +
Sz——'u?

In this example the comma, the two paren-
theses, and the terminating blank are
expression delimiters. There are three
expressions in this example:

(1) 6 :
(2) A+20*B
(3) 6

Expressions 1 and 3 are absolute and there-
fore have a weight (W) of 1. Expression 2
may be absolute or simply relocatable and
therefore has a weight (W) of 1. (B must
be absolute or the expression is in error.)

Example 2:
MVC A+17*(C-D), (A+20)

Np Wy Wa D

1 Yot Y
$2=20 + 9(1 + 1) + 2

Sz=’40

In this example the comma and the terminat-
ing blank are the only expression delimi-
ters and D=2. There are two expressions:

A+17* (C-D)

Expression 1 = with a

weight (W) of 1
Expression 2 = (A+20) with a
(W) of 1

weight

Example 3:

Mvc 20(5,3),16(5)
Np Wy W, Way We Wg D
' AN DR TR B i
S2=16 + 9(1 + 1 + 1 + 1 + 1) + 7
S,=68

In this example there are 5 expressions (E)
and 7 expression delimiters (ED).

E4=20 ED, =(
Ex=5 ED,=,
E53=3 ED5=)
E4=16 ED4=,
Es=5 EDg=(
EDe=)
ED,=blank

Programming Considerations 25

This appendix lists the diagnostic mes-
sages issued by the assembler. The messa-
ges are 1listed by their number (001-109).
Note: Explanations of the MNOTE messages
issued by system macro-instructions are
contained in the Messages and Completion
Codes publication.

IET001 DUPLICATION FACTOR ERROR
Explanation: A duplication factor
is not a positive absolute expres-
sion, or is zero in a literal.

Severity Code: 12

IET002 RELOCATABLE DUPLICATION FACTOR
Explanation: A relocatable expres-
sion has been used to specify the

duplication factor.

Severity Code: 12

IET003 LENGTH ERROR

Explanation: The 1length specifi-
cation is out of permissible range
or specified invalidly.

Severity Code: 12

IETO04 RELOCATABLE LENGTH
Explanation: A relocatable expres-
sion has been used to specify
length.
Severity Code: 12

IET005 S-TYPE CONSTANT IN LITERAL
Severity Code: 8

IET006 INVALID ORIGIN
Explanation: The location counter
has been reset to a value less than
the starting address of the control
section.

Severity Code: 12

IET007

IETO008

IET009

IETO010

IETO011

IET012

IETO013

APPENDIX A: DIAGNOSTIC MESSAGES

LOCATION COUNTER ERROR

Explanation: The location counter

has exceeded 231-1,

Severity Code: 12

INVALID DISPLACEMENT

Explanation: The displacement in an
explicit address does not fall with-
in the range of 0 to 4095.

Severity Code: 8

MISSING OPERAND

Severity Code: 12

INCORRECT REGISTER SPECIFICATION

Explanation: The value specifying
the register is greater than 15, or
an odd register is specified where
an even register is required.

Severity Code: 8

SCALE MODIFIER ERROR

Explanation: The scale modifier is

out of range.

Severity Code: 8

RELOCATABLE SCALE MODIFIER
Explanation: A relocatable expres-
sion has been used to specify the
scale modifier.

Severity Code: 8

EXPONENT MODIFIER ERROR

Explanation: The exponent is not
specified as an absolute expression
or is out of range.

Severity Code: 8

IET001-IETO013 27

IETO14

IETO015

IETO016

IET017

IETO018

IET019

IET020

28

RELOCATABLE EXPONENT MODIFIER

Explanation: A relocatable expres-
sion has been used to specify the
exponent modifier.

Severity Code: 8

INVALID LITERAL USAGE

Explanation: A literal 1is used
illegally. For example, it speci-
fies a receiving field or a reg-
ister.

Severity Code: 8

INVALID NAME

Explanation: A name entry is incor-

rectly specified. For example, it
contains more than 8 characters, it
does not begin with a letter, or has
a special character imbedded.
Severity Code: 8

DATA ITEM TOO LARGE

Explanation: The constant is too

large for the data type or for the
explicit length.

Severity Code: 8

INVALID SYMBOL

Explanation: The symbol is speci-

fied invalidly. For example, it is
longer than 8 characters.,

Severity Code: 8

EXTERNAL NAME ERROR

Explanation: A CSECT and DSECT
statement have same name, or a sym-

bol used more than once in EXTRN.

Severity Code: 8

INVALID IMMEDIATE FIELD

Explanation: The value of the
immediate operand exceeds 255, or

the operand requires more than one

byte of storage.

Severity Code: 8

IETO021

IET022

IET023

IETO24

IET025

IET026

IET027

SYMBOL NOT PREVIOUSLY DEFINED

Severity Code: 8

ESDTABLE OVERFLOW

Explanation: The combined number of
control sections and dummy sections
plus the number of unique symbols in

EXTRN statements and V-type con-
stants exceeds 255. If overflow is
due to a V-type constant, message
IET025 will also be issued.

Severity Code: 12

PREVIOUSLY DEFINED NAME

Explanation: The symbol which
appears 1in the name field has
appeared in the name field of a

previous statement.

Severity Code: 8

UNDEFINED SYMBOL

Explanation: A symbol being ref-
erenced has not been defined in the
program.

Severity Code: 8

RELOCATABILITY ERROR

Explanation: A relocatable or com-
plex relocatable expression is spec-
ified where an absolute expression
is required, or an absolute expres-
sion or complex relocatable expres-
sion is specified where a relocata-
ble expression is required.

Severity Code: 8

TOO MANY LEVELS OF PARENTHESES

Explanation: An expression contains
more than 5 levels of parentheses.

Severity Code: 12

TOO MANY TERMS

Explanation: More than 16 terms are
specified in an expression.

Severity Code: 12

IET028

IET029

IETO030

IET031

IET032

IETO033

IETO034

IET035

REGISTER NOT USED

Explanation: A register specified
in a DROP statement is not currently
in use.

Severity Code: 4

CCW ERROR

Explanation: Bits 37-39 of the CCW
are set to nonzero.

Severity code: 8

INVALID CNOP

Explanation:
invalid pair.

The operands are an

Severity Code: 12

UNKNOWN TYPE

Explanation: Incorrect type desig-

nation in a DC, DS or literal.

Severity Code: 8

OP-CODE NOT ALLOWED TO BE GENERATED

Severity Code: 8

ALIGNMENT ERROR

Explanation: Referenced address is
not aligned to the proper boundary
for this instruction.

Severity Code: 4

INVALID OP-CODE

Explanation: .Syntax error: more
than 8 characters in operation
field; not followed by a blank on

first card, etc.

Severity Code: 8

ADDRESSABILITY ERROR

Explanation: The referenced address
does not fall within the range of a

USING instruction.

Severity Code: 8

IETO036

IETO037

IETO038

IET039

IETO40

NO OPERAND ALLOWED

Severity Code: 4

MNOTE STATEMENT

Explanation: This indicates that an
MNOTE statement has been generated

from a macro definition. The text
and severity code of the MNOTE
statement will be found in 1line in

the listing.

ENTRY ERROR

Explanation: A symbol in the oper-
and of an ENTRY statement appears in
more than one ENTRY statement, or is
undefined, or is defined in a dummy
section or in blank common, or is
equated to a symbol defined by an
EXTRN statement, or there are more
than 100 ENTRY operands in the pro-
gram.

Severity Code: 8

INVALID DELIMITER

Explanation: This message can be

caused by:

1. Operands not separated by com-
mas in assembler or machine
instructions.

2. Last operand not followed by a
blank.

3. 1Invalid sequence of operations
and delimiters.

4. Incomplete exponent specifi-
cation in DC or DS statement.

5. No data item specified between
delimiters in a DC or DS state-
ment.

6. No right parenthesis after an
explicit base register expres-
sion in a S—-type constant.

7. Absence of comma, blank, or
left or right parenthesis where
required in a machine instruc-
tion operand.

Severity Code: 12

STATEMENT TOO LONG

Severity Code: 12

IETO14-IETO40 29

IETO41

IETO42

IETOL43

IETO4L

IETO45

IETO46

IETOU7

IETOu48

IETO49

30

UNDECLARED VARIABLE SYMBOL

Explanation: A variable symbol is
not declared in a SET symbol state-
ment oOr in a macro-instruction pro-
totype statement.

Severity Code: 8

SINGLE TERM LOGICAL EXPRESSION 1IS
NOT A SETB SYMBOL

Explanation: The single term logi-
cal expression has not been declared
as a SETB symbol.

Severity Code: 8

SET SYMBOL PREVIOUSLY DEFINED

Severity Code: 8

SET SYMBOL USAGE INCONSISTENT WITH
DECLARATION

A set symbol has been
declared as undimensioned, but is
subscripted, or has been dimen-
sioned, but is unsubscripted.

Explanation:

Severity Code: 8

ILLEGAL SYMBOLIC PARAMETER

Explanation: The system variable
symbol is used in a macro-

instruction prototype statement.

Severity Code: 8

AT LEAST ONE RELOCATABLE Y-TYPE
CONSTANT IN ASSEMBLY

Severity Code: 4

SEQUENCE SYMBOL PREVIOUSLY DEFINED

Severity Code: 12

SYMBOLIC PARAMETER PREVIOUSLY
DEFINED OR SYSTEM VARIABLE SYMBOL
DECLARED AS SYMBOLIC PARAMETER

Severity Code: 12

VARIABLE SYMBOL MATCHES A PARAMETER

Severity Code: 12

IET050

IETO051

IET052

IET053

IETO54

IET055

IET056

INCONSISTENT GLOBAL DECLARATIONS

A global SET variable
symbol defined in more than one
macro-definition, or defined in a
macro-definition and in the source
program, is inconsistent in SET type
or dimension.

Explanation:

Severity Code: 8

MACRO DEFINITION PREVIOUSLY DEFINED

Explanation: Prototype operation
field is the same as a machine or

assembler instruction or a
prototype.

previous

Severity Code: 12

NAME FIELD CONTAINS ILLEGAL SET SYM-
BOL

SET symbol in name
correspond to SET

field does not

statement type.

Severity Code: 8

GLOBAL DICTIONARY FULL

Explanation: The global dictionary
is full, assembly terminated. See
"Dictionary Size and Source State-
ment Complexity."

Severity Code: 12

LOCAL DICTIONARY FULL

Explanation: The 1local dictionary
is full, assembly terminated. See
"Dictionary Size and Source State-
ment Complexity."

Severity Code: 12

INVALID ASSEMBLER OPTION(S) ON THE
EXECUTE CARD

Severity Code: 8

ARITHMETIC OVERFLOW

Explanation: The intermediate or
final result of an expression has

exceeded 231-1,

Severity Code: 8

IET057

IET058

IET059

IET060

IETO061

IET062

IETO063

IETO64

IETO065

SUBSCRIPT EXCEEDS MAXIMUM DIMENSION

Explanation: SYSLIST or symbolic
parameter subscript exceeds 200, or

is negative, or zero, or SET
subscript exceeds dimension.

symbol

Severity Code: 8

ILLEGAL LTORG

Explanation: LTORG appears in a COM
or DSECT control section.

Severity Code: 8

UNDEFINED SEQUENCE SYMBOL

Severity Code: 12

ILLEGAL ATTRIBUTE NOTATION

Explanation: L', S', or I' request-
ed for a parameter whose type attri-
bute does not allow these attributes
to be requested.

Severity Code: 8

ACTR COUNTER EXCEEDED

Severity Code: 12

GENERATED STRING GREATER THAN 255
CHARACTERS

Severity Code: 8

EXPRESSION 1 OF SUBSTRING IS ZERO OR
MINUS

Severity Code: 8

EXPRESSION 2 OF SUBSTRING IS ZERO OR
MINUS

Severity Code: 8

INVALID OR ILLEGAL TERM IN ARITHMET-
IC EXPRESSION

Explanation: The value of a SETC
symbol used in an arithmetic expres-
sion is not composed of decimal
digits; or, the parameter is not a
self-defining term.

Severity Code: 8

IET066

IET067

IET068

IETO069

IETO070

IETO071

IETO072

IET073

UNDEFINED OR DUPLICATE KEYWORD OPER-
AND OR EXCESSIVE POSITIONAL OPERANDS

Explanation: The same keyword oper-
and occurs more than once in a
macro-instruction, or a keyword 1is
not defined in a prototype state-

ment; or, in a mixed mode macro-
instruction, more positional
operands are specified than are

specified in the prototype.

Severity Code: 12

EXPRESSION 1 OF SUBSTRING GREATER
THAN LENGTH OF CHARACTER EXPRESSION

Severity Code: 8

GENERATION TIME DICTIONARY AREA
OVERF LOWED
Explanation: See "Dictionary Size

and Source Statement Complexity."

Severity Code: 12

EXPRESSION 2 OF SUBSTRING GREATER
THAN 8 CHARACTERS

Severity Code: 8

FLOATING POINT
RANGE

CHARACTERISTIC OUT OF

Severity Code: 12

ILLEGAL OCCURRENCE OF LCL, GBL OR
ACTR STATEMENT

Explanation: LCL, GBL, or ACTR
statement not in proper place in
program.

Severity Code: 8

ILLEGAL RANGE ON ISEQ STATEMENT

Severity Code: U4

ILLEGAL NAME FIELD

Explanation: Either a statement
which requires a name has been writ-
ten without a name, or a statement
has a name which is not allowed to
have a name.

Severity Code: 8

IETO41-IETO073 31

IETO74

IET075

IET076

IET077

IETO078

IET079

IET080

IET081

32

ILLEGAL STATEMENT IN COPY CODE OR
SYSTEM MACRO

Severity Code: 8

ILLEGAL STATEMENT OUTSIDE OF A MACRO
DEFINITION

Severity Code: 8

SEQUENCE ERROR

Severity Code: 12

ILLEGAL CONTINUATION CARD

Explanation: Either there are too
many continuation cards, or there
are nonblanks between the begin and
continue columns on the continuation
card.

Severity Code: 8

MACRO MNEMONIC OP-CODE TABLE OVER-
FLOW

Explanation: See "Dictionary Size
and Source Statement Complexity."”

Severity Code: 12

ILLEGAL STATEMENT IN MACRO DEFINI-
TION

Explanation: This operation is not
allowed within a macro-definition.

Severity Code: 8

ILLEGAL START CARD

Explanation: Statements affecting
or depending on the location counter
have been encountered before a START
statement.

Severity Code: 8

ILLEGAL FORMAT IN GBL OR LCL STATE-
MENTS
is

Explanation: An operand not a

variable symbol.

Severity Code: 8

IETO082

IET083

IETO84

IETO085

IET086

IETO087

IET088

ILLEGAL, DIMENSION SPECIFICATION IN
GBI, OR LCL STATEMENT
Explanation: Dimension is other

than 1 to 255.

Severity Code: 8

SET STATEMENT NAME FIELD NOT A VARI-
ABLE SYMBOL

Severity Code: 8

ILLEGAL OPERAND FIELD FORMAT

Explanation: Syntax invalid; e.g.,
AIF statement operand does not start
with a left parenthesis, or the
operand of an AGO statement is not a
sequence symbol, etc.

Severity Code: 8

INVALID SYNTAX IN EXPRESSION

Explanation: Invalid delimiter, too
many terms in expression, too many
levels of parentheses, or two opera-
tors in succession.

Severity Code: 8

ILLEGAL USAGE OF SYSTEM VARIABLE
SYMBOL

Explanation: A system variable sym-
bol appears in the name field of a
SET statement, or is used in a mixed
mode or keyword macro-definition, or
is declared in a GBL or LCL state-
ment, or is an unsubscripted
ESYSLIST in a context other than
N'§&SYSLIST.

Severity Code: 8

NO ENDING APOSTROPHE

Explanation: There is an unpaired
apostrophe in the statement.

Severity Code: 8

UNDEFINED OPERATION CODE

Severity Code: 12

XETO089

IET090

IET091

IET092

IET093

IET094

IET095

IETO096

INVALID ATTRIBUTE NOTATION

Explanation:
the argument

Syntax error; e.dg.,
of the attribute ref-

erence is not a symbolic parameter
inside a macro-definition.

Severity Code: 8

INVALID SUBSCRIPT

Explanation: Syntax error; e.g.,
double subscript where single sub-

script is required or vice versa, no
right parenthesis after subscript,
etc.

Severity Code: 8

INVALID SELF-DEFINING TERM

Explanation: Value is too large or
is inconsistent with the data type.

Severity Code: 8

INVALID FORMAT FOR VARIABLE SYMBOL

Explanation: The first character
after the ampersand is not alphabet-
ic or the variable symbol contains
more than 8 characters. (A single
ampersand in a field or operand is
assumed to start a variable symbol.)

Severity Code: 8

UNBALANCED PARENTHESES OR EXCESSIVE
LEFT PARENTHESES

Severity Code: 8

INVALID OR ILLEGAL NAME OR OPERATION
IN PROTOTYPE STATEMENT

Severity Code: 12

MESSAGE NOT DEFINED FOR THIS ERROR
CODE

MACRO-INSTRUCTION OR PROTOTYPE OPER-
AND EXCEEDS 255 CHARACTERS IN LENGTH

Severity Code: 12

IETO097

IET098

IET099

IET100

INVALID FORMAT IN MACRO-INSTRUCTION
OPERAND OR PROTOTYPE PARAMETER

Explanation: This message can be
caused by:

1. Illegal "="

2. A single "g&" appears in the

standard value assigned to a
prototype keyword parameter.

3. First character of a prototype
parameter is not "&".
4, Prototype parameter is a sub-

scripted variable symbol.

5. Invalid usage of alternate for-

mat in prototype statement,
€e.g.,
10 16 72
PROTO &A,6B,
or
PROTO &A,&B, X
&C
6. Unintelligible prototype param—
eter, e.g., "E&EA*X"™ or "EAEE,"
etc.

7. Illegal (non-assembler) charac-
ter appears in prototype param-—
eter.

Severity Code: 12

EXCESSIVE NUMBER OF OPERANDS OR PAR-
AMETERS

Explanation: Either the prototype
has more than 200 parameters or, the
macro-instruction has more than 200
operands.

Severity Code: 12

POSITIONAL, MACRO-INSTRUCTION OPER-
AND, PROTOTYPE PARAMETER OR EXTRA
COMMA FOLLOWS KEYWORD

Severity Code 12

STATEMENT COMPLEXITY EXCEEDED

Explanation: See "Dictionary Size
and Source Statement Complexity."

Severity Code: 8

TIETO74-IET100 33

IET101

IET102

IET103

IET104

IET105

34

EOD ON SYSIN

Explanation: No END card before
delimiter (/%) statement.

Severity Code: 12

INVALID OR ILLEGAL ICTL

Explanation: The operands of the
ICTL are out of range, or the ICTL
is not the first statement in the
input deck.

Severity Code: 16

ILLEGAL NAME 1IN OPERAND FIELD OF

COPY CARD
Explanation: Syntax error; e.g.,
symbol has more than 8 characters,

or has an illegal character.

Severity Code: 12

COPY CODE NOT FOUND

Explanation: The operand of a COPY
statement specified COPY text which
cannot be found in the library.

Severity Code: 12

EOD ON SYSTEM MACRO LIBRARY

IET106

IET107

IET108

IET109

Explanation: MEND statement not in

macro definition.

Severity Code: 12

MESSAGE NOT DEFINED FOR THIS
CODE

ERROR

INVALID OPERAND

Explanation: Unrecognizable operand
in PRINT statement.

Severity Code: U

PREMATURE EOD

Explanation: Indicates an internal
assembler error; should not occur.

Severity Code: 16

PRECISION LOST

Severity Code: 8

The listing shown in this appendix
results from assembling the source program
documented in Appendix H of the Assembler
Language publication. For easy reference
to the explanations that appear in the
section "The Assembler Listing," the head-
ings on the listing are numbered.

APPENDIX B: PROGRAM LISTING

Since there were no errors in the assem—
bly, a diagnostic 1list was not produced.
Each of the following pages represents one
printer-produced listing page.

Appendix B: Program Listing 35

O 006 6 O

SYMBOL TYPE ID ADDR LENGTH LD

SAMPLR SO 01 000000 000388

EXTERNAL SYMBOL DICTIONARY

PAGE

1

36

® ®
EXAM SAMPLE PROGRAM
)

LOC OBJECT CODE

ADDR1 ADDR2 STMT

000000 55

000000 4TF0 FOOA 0000A

SOURCE

* % %

¥
%
o%
oX
o ¥

¥

« TYPEDEH

-ERROR1
« ERROR2
«ERROR3
«ERROR4
*
*
*

SAMPLR
BEGIN

ST+BEGIN

STATEMENT E 01FEB66
PRINT DATA

THIS IS THE MACRO DEFINITION

MACRO

MOVE &TO, &FROM

DEFINE SETC SYMBOL

LCLC &TYPE

CHECK NUMBER OF OPERANDS

AIF (N?ESYSLIST NE 2).ERROR1

CHECK TYPE ATTRIBUTES OF OPERANDS

AlF {T*4TO NE T*S&FROM).ERROR2

AIF (T*ET0 EQ *C* OR T*&TO €Q 'G* OR T'E&Y0D EQ *'K*).TYPECGK
AIF {T*&TO EQ *D* OR T'&TO EQ *E® OR T'&TO EQ *H').TYPEDEH
AIF (T*&TO EQ *F*).MOVE

AGOD «ERROR3

ANOP

ASSIGN TYPE ATTRIBUTE TO SETC SYMBOL

SETC T*&T0

ANOP

NEXT TWO STATEMENTS GENERATED FOR MOVE MACRO

LETYPE 296FROM

STETYPE 2,870

MEXIT

CHECK LENGTH ATTRIBUTES OF OPERANDS

AlF {L*ETO NE L'&FROM OR L*'&TO GT 256) LERROR4

NEXT STATEMENT GENERATED FOR MOVE MACRO

MvC ETO, &FROM

MEXIT

ERROR MESSAGES FOR INVALID MOVE MACRD INSTRUCTIONS

MNOTE 1,*[MPROPER NUMBER OF OPERANDS, NO STATEMENTS GFNERATED?
MEXIT

MNOTE 1,*'OPERAND TYPES DIFFERENT, NO STATEMENTS GENERATED®
MEXIT

MNOTE 1,*IMPROPER OPERAND TYPES,
MEXIT

MNOTE 1,¢ [MPROPER OPERAND LENGTHS,
MEND

NO STATEMENTS GENERATED!
ND STATEMENTS GENFERATED!

MAIN ROUTINE

CSECT
SAVE (144912) 4%
8 10(0,+15) BRANCH ARDUND ID

©®

PAGE 1

2728766

SAMPLNO2
SAMPLNO?
SAMPLAOG
SAMPLODS
SAMPLNNG
SAMPLANT
SAMPLANSA
SAMPLONG
SAMPLN10
SAMPLOLY

SAMPLOY2
SAMPLN13
SAMPLO14
SAMPLN1S
SAMPLALS
SAMPLOLT7
SAMPLOLS
SAMPLN19
SAMPLN2O
SAMPLA?1
SAMPLN22
SAMPLN23
SAMPLO24
SAMPLN25
SAMPLN26
SAMPLN27
SAMPLN2R
SAMPLO2Q
SAMPLN30
SAMPLN3L
SAMPLN32
SAMPLN33
SAMPLO34
SAMPLN3S
SAMPLN36
SAMPLN3T
SAMPLN3A
SAMPLN29
SAMPLN&D
SAMPLN4Y

SAMPLNG2
SAMPLN&G3
SAMPLNGL
SAMPLN4S
SAMPLN4G

SAMPLNGT.

SAMPLN4R
SAMPLN&G9
SAMPLOSNH
SAMPLNS1
SAMPLNS2
SAMPLNSA
SAMPLNS G
SAMPLNSR
SAMPLNSA

Appendix B:

Program Listing

37

@

EXAM

Lec

€0C(CCs
€CCGCS
€ooocaA
CGGCCE
000010
€0001C
000014
C00aoo
(2 ¥
G00G1C
G6GGC2ZC
000000

coco24
L0002aA

€00C3¢
000034
00003¢

00003C

00G042
000046
GO0C4C

00C05C
000456G
000654

'G00Cs¢

000058
00006¢
GCCOeE
C0007¢G
CGGCTE
600C78
€0eG1c
C00C7C
GGOCE

GGGCe2
CGOGEe
€cccsa

€cocac
GCAGOL
COGESC
€00C92
€00094
00GGSC
C000A4
COCOAC
C00CB4

SANPLE PROGRAM

OBJECT CGDE ADDR1

G5

€2C5C7CS05

9CEC
(219

£CDC
96517

45E0
9186
4710

Da2oe

DzcC2

5&2C
5G62¢C
£156
DSEF
417C
D55F
4116

45160
Gca?
CCGC

DoOC

(472}
€3¢

COBE
[]-19
€0BC

1663

106¢

5CCC
1CC4
cccCe
€246
CCic

€33¢
CG7C

[17:19

000CC

5CC8 00003

5¢CS GOgao

CCFO 00250
C1EQ 0©0340

ClE2E2C504C203C5
0940E2C104D703C5
4C070506C709C104
4CE2E4C3C3C5E2€E2
C6E4D3

GA23
5800

SEEC
41FC
07FE

451C
GC29
CCCC

LoB8

0GCC
£GGC

CCAA

C1E2E2(504C0203C5
D940E2C104D703C5
4C005C6CTRSC104
4CE4D5EZE4C3CACS
EZEZC6E4D3

AGDR2

0ao0C
ooocs
00340
Q00CE
000Co

00008

00009

ocoac
00004
00018
GC100
0008C
OCLFO
0008C

0Go7C

0c0Cs

0000C
ccooo

0QoBA

STHT SCOURCE

66 MORE

80 LisTLCOP
81

82
83
84
85
a6+
a7+
88+
89+
90+

91+1KHBOOOS
92+1HBO005A
93¢

94 EXIT

95

96+

97+

98+

99 ¥
100 NOTRIGHT
101+
LOZ2#NGTRIGHT
103+

104+
105+

®

(:> PAGE‘I, 2
STATENENT E OLFEB66 2/28/66
cc ALL{S)
cc CL5*BEGIN® IDENTIFIER (:)
STM 14+12+12813) SAVE REGISTERS
BALR R12,0 ESTABLISH ADORESSABILITY OF PROGRAM SAMPLOS7
USING *,R12 AND TELL THE ASSEMBLER WHAT BASE TO USE SAMPLOS58
ST 134SAVEL3 SAMPLO59
RS5sR7y=ALLISTAREA, 164LISTEND) LOAD LIST AREA PARAMETERS SAMPLO60O
USlNG LISTR5 REGISTER 5 POINTS TO THE LIST SAMPLO61
EAL R149SEARCH FIND LIST ENTRY [N TABLE SAMPLO62
T™ SWITCHyNONE CHECK TO SEE IF NAME WAS FOUND SAMPLO63
17 NOTTHERE BRANCH IF NOT SAMPLO6S
USING TABLE.R1 REGISTER 1 NOW POINTS TO TABLE ENTRY SAMPLO6S
MOVE TSWITCHeLSWITCH MOVE FUNCTIONS SAMPLOGS
NEXT STATEMENT GENERATED FOR MUVE MACRO
MYC TSWITCHs LSWITCH
HOVE TNUMBERLNUMBER FROM LIST ENTRY SAMPLO67
NEXT STATEMENT GENERATED FOR MOVE MACRO
MV TNUMBER« LNUMBER
MOVE TADORESSsLADDRESS TO TABLE ENTRY SAMPLO6S
NEXT TwWO STATEMENTS GENERATED FOR MOVE MACRO
L 2+ LADDRESS
ST 2+ TADDRESS
BXLE R5¢R&y MORE LOOP THROUGH THE LIST SAMPLO69
cLC TESTTABL(240)TABLAREA SAMPLO70
BNE NCTRIGHT SAMPLOTL
cLe TESTLIST{96), LISTAREA SAMPLOT72
BNE NOTRIGHT SAMPLO73
WTO YASSEMBLER SAMPLE PROGRAM SUCCESSFUL' SAMPLO74
CNOP 0y
BAL 14 IFBO0O05A BRANCH AROUND MESSAGE
e AL2(IHBOOOS~*) MESSAGE LENGTH
cc AL2(0)
De C*ASSEMBLER SAMPLE PROGRAM SUCCESSFUL® MESSAGE
EQU *
[Ok
sve 35 ISSUE SvVC
L R134SAVEL3 SAMPLOTS
RETURN (144120 RC=0 SAMPLO76
LM 14912+12013) RESTORE THE REGISTERS
LA 15,0(0,0) LOAD RETURN CODE
BR 14 RETURN
SAMPLO?7
Wro *ASSEMBLER SAMPLE PROGRAM UNSUCCESSFUL*® SAMPLOTS

CNOP 044

BAL 1¢ IKBOOO7A BRANCH AROUND MESSAGE

oc AL2(1HBOOO7—#%) MESSAGE LENGTH

cC AL2(0)

oc C*ASSEMBLER SAMPLE PROGRAM UNSUCCESSFUL® MESSAGE

38

@

EXAM

Loc

0000B9
00008A
0000BA
00008C
0000CO
0000C4
0000C8

®

SAMPLE PROGRAM

DBJECY CODE ADDR1

0423

47F0 CO6E

9680 5008 00008
47FQ C028

00000000

6000CC 00

000080

0000CD
0000CE
000002
000006
0000DA
0000DE
0000E 4
0000E8

0000EA
0000EC
0000F0
0000F 4
0000F6
0000FA
0000FE

000100
000100
000108
000110
000118
00012C
000128
000130
000138
000140
000148
000150
000158
000160
000168
000170
000178
ocoiso
ooois8
00019C
000198
0001A0
0C01A8
000180
[LX:]

[o]4]

947F COBC 000CC
9313 €39C

4111 COEO

8830 0001

D507 5000 10C8 00000
4720 COE4

078E

1813

4620 COCA

4TF0 COEA

1A13

4%20 COCA

9680 COBC 000¢C
OTFE

6000000000000000
C1D3D7C8C 1404040
0000000000000000
C2C5€3C 140404040
0000000000000000
C4C5D3E3C1404040
0000000000000000
C5DTE20 903060540
€000C000C0000000
C5E3C14040404040
0000000000000000
C7C1D4D4C1404040
0000000000000000
C9D6E3C 140404040
0000000000000000
02C1D707C1404040
00000060€00000000
D3C1D4C2C4C 14040
0000000600000000
D4E4404040404040
0000000000000000
D5E44 04040404040
0000000000000000
D5D4CSC3D9D6D540

ADDR2

0007E
00038

003AC
000F0
00001
00008
0COF4

0000A
000FA

000DA

STMT

106+
107+
108+
109
110
111
112
113
114
115
116
117

118
119
120
121
122
123
124
125

126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146

147

SOURCE
IHBOOO7
1HBOOO7A
NOTTHERE
SAVEL3
SWITCH
NONE
¥
*
«

SEARCH

Loop

HIGHER
NOTFOUND
*
*
*

TABLAREA

STATEMENT

EQU *

DS OH

sve 35 ISSUE sSvC

8 EXIT

o1 LSWITCH,NONE TURN DN
8 LISTLOOP 60 BACK
DC FeQo*

lo} X*00*

EQU X*80¢

BINARY SEARCH ROUTINE

NI SWITCHy 255-NONE TURN

LM R1yR3y=F*128,4,128*

LA R1,TABLAREA-16(R1)
R3,1

cLe LNAME, TNAME

B8H HIGHER

BCR 8yR14

SR R1sR3

BCT R2,L00P

8 NOT FOUND

AR R1sR3

BCT R2,LO0P

ot SWITCH,NONE

BR R14

THIS IS THE TABLE

Ds 0D
D XLB*O®,CLB*ALPHA!

DC XL8'0',CLB"BETA"

DeC XLB*0*,CL8'DELTAY
oc XLB*0* ,CLB*EPSILON"
DC XL8*0*,CLB'ETA"

bcC XLB'O* ,CLB'GAMMA®"
DC XL8*0*,CLB*IOTA®

oc XL8'0*s»CLB'KAPPA®
oC XL8'0* yCLB*LAMBDA?
1] XL8*O*,CLB'MU?

oc XL8°'0*,CLB*NU"

DC XL8'0* yCLB*OMICRON®

E OLFEB6S

SWITCH IN LIST ENTRY
AND LODOP

OFF NOT FOUND SWITCH
LOAD TABLE PARAMETERS
GET ADDRESS OF MIDDLE ENTRY
DIVIDE INCREMENTY RY 2
COMPARE LIST ENTRY WITH TABLE ENTRY
BRANCH IF SHOULD BE HIGHFR IN TABLE
EXIT IF FOUND
OTHERWISE IT IS LOWER IN THE TABLE
SO SUBTRACT INCREMENTY
LOOP 4 TIMES
ARGUMENT IS NOT IN THE TABLF
ADD INCREMENT
LO0P 4 TIMES
TURN ON NOT FOUND SWITCH
EXIT

®

PAGE 3

2728766

SAMPLOT9
SAMPL(BO
SAMPLN81
SAMPLNR2
SAMPLNB3
SAMPLN84
SAMPLOAS
SAMPLOB6

SAMPLORT:

SAMPLOAS
SAMPLNBO
SAMPLNOO
SAMPLN9Y
SAMPLOO2
SAMPLN93
SAMPLO94
XSAMPLO9S
SAMPLN96
SAMPLOOT
SAMPLNYISB
SAMPLO99
SAMPL1IOO
SAMPLIDL
SAMPLLO?
SAMPL103
SAMPL104
SAMPL10S
SAMPL106
SAMPL10OT

SAMPL1O0R
SAMPLIN9
SAMPLI1O
SAMPLI1Y
SAMPL112
SAMPLI13
SAMPL114
SAMPL11S
SAMPLL1A
SAMPL117

SAMPL118

Appendix B:

Program Listing

39

@

EXAM

LOC

0001CO
0001C8
000100
000108
0001E0
00OC1ES8

0001FO0
0001F8
000200
000208
000210
000218
000220
000228
000230
000238

‘000240

000248

000250
600250
000258
000260
000268
000270
000278
000280
000288
000290
000298
000240
000248
000280
000288
0002C0
0002C8
000200
000208
0002EC
0002€8
0002F0
0002F8
000300
000308
000310
000318
000320
000328
000330
000338

SAMPLE PROGRAM

‘OBJECT CODE ADDR1 ADDR2

0000000000000000
D7C8C94C40404040
0000000000000000
E2C9C7D4C1404040
0000000000000000
ESC5E3C 140404040

D3C104C2C4C 14040
0A00001000000000
€9C5E3C140404040
050000050000000A
E3C8C5E3C1404040
0200C02D00000000
E3C1E44040404040
0000000€00000001
D3C9E2E340404040
1F0061D100000000
C103D7CBC1404040
0000000100000078

0000010000000078
€1D3D7C 8C1404040
0000000000000000
C2C5E3C 140404040
0000000000000000
C4C5D3E3C1404040
000000C0C0000000
C5D0TE2C 903060540
0000000C00000000
CSE3C 14040404040
00000000600000000
C7C1D04D4C1404040
0€00000000000000
C9D6E3C 140404040
6000000000000000
D2C1D707C1404040
00001D0A00000000
D3C104C2C4C14040
00060000000000000
D4E4404040404040
0000000000000000
D5E4404040404040
0000000600000000
D6D4C9C 309060540
00000C0000000000
DIC8C 94040404040
0000000000000000
E2C9C704C1404040
000005050000000A
E9C5E3C 140404040

®

STMT SOURCE

148
149
150
151 *
152 =
152 *
154 LISTAREA
155
156
157
158
159 LISTEND
160 *
161 *
162 *
163
164 TESTTABL
165
166
167
168
169
170
171
172
173
174
175
176
177
178

179 %

STATEMENT

oC XL8'0¢,CLB*PHI"
DC XL8¢0*yCLBYSIGMA®Y
nC XLB1O*, CLBYZETAY

THIS IS THE LIST

o CL8"LAMBDA* 4 X' 0A*,FL3'29',A(BEGIN)
oC CLBYZETA* X" 05" ¢FL3*5!,A(LOOP)

0 CLB*THETA® (X*02°,FL3"45',A(BEGIN}
D CLB*TAU' X'00*,FL3%0%A(1)

ocC CLB'LIST '\ X*1F*,FL3'465,A(0)

oc CLBYALPHA' yX*00*, FL3'1%,A(123)

THIS IS THE CONTROL TABLE

DS oD
DL FL3%1"9X"00%»A(123),CLBALPHA"

DC XL840"4CLB*BETA"

oC XL8*0*yCLB*DELTA"
oC XLB'0* ,CLBYEPSILON®
DC XLB*O*, CLB'ETA"

boC XL8*0*',CLB"GAMMA®
oc XL8tO*,CLB" [OTA"

DC XL8Y0* , CLB'KAPPAY
oc FL3¢29* , X "0A*, A(BEGIN) ,CLB'LAMBDA®
oC XL8*0*,CLB MU

nc XL8'O',CLB*NU"

oc XL8%0*,CLB*"OMICRON®
[s]9 XL8*O*,CLB'PHIY

DC XLB*0'yCLB*'SIGMA"

oc FL3%95%,X*05',A(LO0OP),CLB*ZETA"

E NIFEB66

PAGE 4

2128/66
SAMPL119
SAMPL12D
SAMPLI21
SAMPLL22
SAMPL123
SAMPL124
SAMPL12S
SAMPL126
SAMPL127
SAMPL128
SAMPLY29
SAMPL130
SAMPL131
SAMPL132
SAMPL133
SAMPL1 34
SAMPLL3S
SAMPLL36
SAMPL13Y
SAMPL138
SAMPL139
SAMPL140
SAMPL141L
SAMPL142
SAMPL143
SAMPL1 44
SAMPLL4S
SAMPLL46
SAMPL14T
SAMPL14R
SAMPL149

SAMPLISN

40

@

EXAM

Lcc

000340
000348
000350
000358
000360
000368
000370
000378
000380
000388
000390
000398

0000600
000001
000002
000003
000005
000006
000007
00000C
000000
0000CE
G0000F

000000
000000
000008
000009
6oo00C

000000
000000
000003
000004
000008
000000
0003A0
0003A8
0003AC
000384

SAMPLE_PROGRAM

@ @ @

08JECT CODE ADDR1 ADDR2 STMT

180

181
D3C1D4C2C4C 14040 182
0A00001D00000000
E9C5E3C140404040
05000005000000DA
E3CBC5E3C1404040
820000200€000000
E3CLE449040404040
80:000060000000001
D3CIE2E3 40404040
9F00010100000000
€1D3D7C 8C1404040
0000000100000078

183
184
185
186
187

188
189
190
191
192
193
194
195
196
197
198
199
200
201
202

203

204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
000001F000000010 219
00000240
0C€00008000000004
000000480

220

SOURCE STATEMENT

*
*
TESTLIST

LIST
LNAME
LSWITCH
LNUMBER
LADDRESS
*

*

*

TABLE
TNUMBER
TSWITCH
TADDRESS
TNAME

THIS IS THE CONTROL LIST

DC
bnC
[+
219
14
oc

THESE

EQU
EQU
EQU
EQU
EQu
EQU
EQu
EQU
EQU
EQU
EQu

CLB'LAMBDA® ¢ X*0A*, FL3'29*,A(BEGIN)
CLBY*ZETA',X*0S5'yFL3"S?,A{LODP)
CLB'THETA' ,X*82%,FL3'45%,A(BEGIN)
CLB'TAU', X80, FL3%0%,A(1)
CLBYLIST* 1 X*9F*, FL31465%,A(0)
CLB'ALPHA'.X'OO‘;FLS'I‘.A(123)

ARE THE SYMBOLIC REGISTERS

THIS IS THE FORMAT DEFINITION OF LIST ENTRYS

OSECT
Ds
DS
s
0s

CcLs
[
FL3
F

THIS [S THE FORMAT DEFINITION OF TABLE ENTRYS

DSECT
0s

DS

Ds

0s
END

FL3

c

£

cLs

BEGIN
=A(LISTAREA,16,LISTEND)

=F'12844¢128°

®

PAGF 5

2728766

®

E OLFERG6

SAMPL1S1
SAMPL1S?

SAMPLS3-

SAMPL1S4
SAMPL1SS
SAMPL156
SAMPL1S?
SAMPL158

SAMPL159
SAMPL16O
SAMPL161
SAMPL162
SAMPLLG3
SAMPL164
SAMPLL6S
SAMPL166
SAMPL16T
SAMPL168
SAMPL169
SAMPLLITO
SAMPL1T7Y
SAMPL172
SAMPL173
SAMPL174
SAMPL1TS
SAMPL1T6
SAMPL1T77
SAMPL17A
SAMPL179
SAMPL1BD
SAMPL1B1
SAMPL18B2
SAMPL183
SAMPL1 A4
SAMPL1BS
SAMPL1BS
SAMPL187
SAMPL1RS8
SAMP3189

Appendix B:

Program Listing

41

RELOCATION DICTIONARY

©®@ ® ® @

POS.ID

REL.ID

FLAGS

ADDRESS

0001FC
00020C
00021C
0002D4
000334
00034C
00035C
00036C
000340
000348

PAGE

1

42

@ @ & &

SYMBOL

BEGIN
EXIT
HIGHER
IHBOOOS
IHBOOOSA
IHBOQO7
IHBOOCTA
LADDRESS
LIST
LISTAREA
LESTEND
LISTLOOP
LNAME
LNUMBER
LooP
LSWITCH
MORE
NONE
NOTFOUND
NOTRIGHY
NOTTHERE
RO

R1

R12

R13

R14

SWITCH
TABLAREA
TABLE
TADDRESS
TESTLIST
TESTTABL
TNAME
TNUMBER
TSHITCH

LEN

00004
00004
00002
00041
00002
00001
00002
00004
00001
60008
00008
00004
00008
00003
00004
00001
00004
000901
00004
00004
00004
00001
00001
00001
00041
00001
00001
00001
00001
00001
00001
00001
00001
00004
00004
00001
00008
00001
00004
ooacs
00003
00008
00003
00001

VALUE

000¢00
00007E
Q00CF4
000078
00007C
000089
0000BA
€0000C
000000
0001LFQ
000240
000038
000000
000009
0000DA
000C08
ooccLe
00080
0000FA
00c08C
00g00Co
000000
€00001
00000C
a00goD
00000E
000Q00F
000002
000003
600005
000006
000007
€000G0
0o00Cs
000GCE
goocce
000100
600000
000004
000340
€00250
000008
000000
000003

NO STATEMENTS FLAGGED

DEFN

0057
0094
0128
0091
0092
0106
0107
0209
0205
0154
0159
0080
0206
0208
0121
0207
0066
Oli4
0130
0102
0110
0191
0192
0198
0199
0200
0201
193
0194
0195
0196
0197
0055
0112
o118
o113
0136
0213
0216
0182
0l64
0217
0214
0215

REFERENCES

0156

0083
0219

0129
0110

o110
0084
0119
0062
0124
0129

0121
0065

0094

o118
0120

IN THIS ASSEMBLY

CROSS—REFERENCE

0172

0219

0155

o118

0120

0131

0125
0080

0130

0182

0178

0130

0120

0128

0184 0218

o183

0125 0128

PAGF 1

Appendix B:

Program Listing

u3

Assembler cataloged procedures 8
for assembling 8
for assembling and linkage editing 9
for assembling, linkage editing and
execution 11
input stream statements (see cataloged
procedures)
overriding 11
Assembler clata sets 6
ddname SYSIN - 6
ddname SYSLIB 6
ddname SYSPRINT 6
ddname SYSPUNCH 6
ddsysuTl 6
ddname SYSUTZ 6
ddname SYSUT3 6
Assembler listing 13
cross-reference 17
diagnostics 17
external symbol dictionary 15
relocation dictionary 17
source and object program 15
statistical messages 13
Assembler options 5,6
default entry 6

Cataloged procedures 8

ASMEC 8,9
input stream statements 8
ASMECL 9,10

input stream statements 9
ASMECLG 11,12
input stream statements 11
device naming conventions 8
overriding 11,12
COND= parameter 6,12,18

Data sets

(see assembler data sets)
Diagnostic messages 27
Dictionaries 21

additional requirements 23

global 21,22

local 21,22

General register (13) 18
Global dictionary

(see dictionaries)
Global symbols (limit) 21

IEBUPDAT 19
Input stream 5

INDEX

input stream statements
(see cataloged procedures)
sequential scheduling level 5

Job control statements 5
Job steps 5

Listing, assembler

(see assembler listing)
Local dictionary

(see dictionaries)

Macro-definition local dictionary
requirements 23
Macro library additions 19
Macro mnemonic table 23
Messages
diagnostic 29
statistical 13

Object module linkage 19,20
CALL macro-instruction 19,20
input/output operations 21
linkage statements 20
to COBOL 20
to FORTRAN 20

Options, assembler 5,6
default entry 6

Overriding cataloged procedures
EXEC statements 11
DD statements 11
examples 11,12

11,12

PARM field access 18
Procedure (definition) 5
Program termination 18

RETURN macro-instruction 18

Return Codes 6,7

Baving and restoring general register
contents 18
example of 18
Beverity code
relation to return code 7
for diagnostic messages 27
Source statement complexity 23
assembler limitations 24
defined 21
macro-generation and conditional
assembly limitations 24

Index

45

C28-6595-1

TIBIM]

®

International Business Machines Corporation
Data Processing Division

112 East Post Road, White Plains, N.Y. 10601
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

KEAVER 9 WWVIVIIVIENT FVRIVI

IBM System/360 Operating System Form C28-6595-1
Assembler (E) Programmer's Guide

® Your comments, accompanied by answers to the following questions, help us produce better
publications for your use. If your answer to a question is “No” or requires qualification,
please explain in the space provided below. Comments and suggestions become the property of
IBM.

Yes No
® Does this publication meet your needs?] O
® Did you find the material:
Easy to read and understand? O O
Organized for convenient use?] N
Complete? O (]
Well illustrated? O]
Written for your technical level? | O
® What is your occupation?
® How do you use this publication?
As an introduction to the subject? O As an instructor in a class? []
For advanced knowledge of the subject? O As a student in a class?]
For information about operating procedures? [] As a reference manual? 1

Other
® Please give specific page and line references with your comments when appropriate.

If you wish a reply, be sure to include your name and address.

COMMENTS

® Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

C28-6595-1 \

FIRST CLASS
PERMIT NO. 2078
SAN JOSE, CALIF.

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY |IF MAILED IN U. S. A.

POSTAGE WILL BE PAID BY . ..

IBM Corporation
Monterey & Cottle Rds.
San Jose, California
95114

Attention: Programming Publications, Dept. 452

- e T S — —— T — — — — A —— ——_— t—— — —— —— So—— —— T ———— — ——— —— ——— —— — —— T—— —————————————

EN

International Business Machines Corporation
Data Processing Division

112 East Post Road, White Plains, N.Y. 10601
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

