
Systems Reference Library

IBM System/360 Operating System
Assembler (E) Programmer's Guide

This publication complements the IBM System/360
Operating System Assembler Language publication.
It provides a guide to program assembling, linkage
editing, executing, interpreting listings, and
assembler programming considerations.

File No. 8360-21
Form C28-6595- l OS

This publication is a guide to the use
of IBM provided cataloged procedures for
assembling; assembling and linkage editing;
assemnling, linkage editing, and executing
assembler language source programs. This
edition is oriented to the E level assem­
bler program (the assembler) functioning in
the IBM system/360 Operating System sequen­
tial scheduling environment.

Other system Reference Library publica­
tions in the IBM System/360 Operating Sys­
tem series provide fuller, more detailed
discussions of the topics introduced in
this publication: a careful reading of the
9ublication !BM System/360 Operating Sys­
tem: Cone~ and Facilities, Form
C28-6535, is recommended. Knowledge of the
assembler language is assumed. Where
appropriate, the reader is directed to the
following publications~

IBM System/360 Operating System: Job
Control Language, Form C28-6539

IBM System/360 Operating System: Linkage
Editor, Form C28-6538

Second Edition

This edition is a reprint of C28-6595-0 and incor­
porates changes released in Technical Newsletter
N28-2140, dated March 31, 1966.

Significant changes or additions to the specifica­
tions contained in this publication will be re­
ported in subsequent revisions or Technical
Newsletters.

IBM System/360 Operating System: Control
Program Services, Form C28-6541

IBM System/360 Operating System: Assem­
bler Language, Form C28-6514

IBM System/360 Operating System: Utili­
ties, Form C28-6586

IBM System/360 Operating System: Control
Program Messages and Completion Codes,
Form C28-6608

IBM System/360 Operating System: FORTRAN
IV (E), Library subprograms, Form
C28-6596

IBM System/360 Operating System: System
Programmers Guide, Form C28-6550

IBM Systern/360 Operating System: FORTRAN
IV (E) Programmer's Guide, Form C28-6603

IBM System/360 Operating System: COBOL
(E) Programmer's Guide, Form C24-5029

This publication was prepared for production using an IBM computer
to update the text and·to control the page and line format. Page
impressions for photo-offset printing were obtained from an IBM
1403 Printer using a special print chain.

Requests for copies of IBM publications should be made to your IBM
representative or to the IBM branch office serving your locality.

A form i·s provided at the back of this publication for reader's comments.
If the form has been removed, comments may be addressed to IBM Corporation,
Programming Publications, Department 452, San Jose, California 95114.

©> International Business Machines Corporation 1966

INTRODUCTION • • • •

Assembler Options. •
Default Entry • •

Assembler Data Set Requirements.
Ddname SYSLIB. • • • • • •
Ddnames SYSUTl, SYSUT2, SYSUT3
Ddnarne SYSPRINT.
Ddname SYSPUNCH. • •
Ddname SYSIN • • • • •

Return CodE~s

CATALOGED PROCEDURES •

Cataloged Procedure for Assembly

5

5
6

6
6
6
6
6
6

6

8

(ASMEC) • • • • • • • • • • • • 8

Cataloged Proce~dure for Assembly and
Linkage-Editing (ASMECL). • • • 9

Cataloged Procedure For Assembly,
Linkage-Editing, and Execution
(ASMECLG) • • • • • • • • • • • •

overriding Statements in Cataloged
Procedures ••••••

EXEC Statements.
DD Statements.
Examples • • • •

THE ASSEMBI~ER I.I STING.

• • • 11

• 11
• 11
• 11

•• 11

• • 13

External symbol Dictionary CESD) • • • • 15

source and Object Program. • • 15

Relocation Dictionary ••• • • 17

Cross-Reference •••• • • 17

CONTENTS

Diagnostics. • • • • • • • • 17

PROGRAMMING CONSIDERATIONS • 18

Saving and Restoring General Register
Contents. • • • • • 18

Program Termination. • • 18

PARM Field Access. • 18

Macro-Definition Library Additions • 19

Object Module Linkage ••• • • 19

Dictionary Size and Source Statement
Complexity ••••••••••••••• 21

Dictionaries Used in Conditional
Assembly and Macro-Instruction
Expansion. • • • • • • • • • • • • • 21

Global Dictionary at Collection
Time. • • • • • • • • • • • • • • 21

Local Dictionary at Collection
Time. • • • • • • • • • • • • • • 21

Global Dictionary at Generation
Time. • • • • • • • • • • • • 22

Local Dictionary at Generation
Time. • • • • • • • • • 22

Additional Dicti0nary
Requirements. • • • • •

Macro Mnemonic Table. • •
23

• • 23
23 Source Statement Complexity •

Macro-Generation and Conditional
Assembly Limitations ••••••• 24

Assembler Portion Limitations ••• 24

APPENDIX A: DIAGNOSTIC MESSAGES • • • • 27

APPENDIX B: PROGRAM LISTING •• • 35

INDEX •• • 45

ILLUSTRATIONS

FIGURJ2£

Figure 1. Cataloged Brocedure for
Assembly ••••••••••••••

Figure 2. Cataloged Procedure for
Assembling and Linkage Editing •••

Figure 3. Cataloged Procedure for

TABLES

9

10

Table 1. Return Codes. • • • • • • . 6
Table 2. Device Naming Conventions 8
Table 3. Types of ESD Entries. • • • 15
Table 4. Global Dictionary Entries at
Collection Time • • • • • • • • • • 21

Table 5. Local Dictionary Entries at
Collection Time • • • • • • • • • • 22

CHARTS

I. • • . • . . • . . . • • 4 5

Assembly, Linkage Editing, and
Execution • • • • • • • • •

~'igure 4. Assembler Listing.
Figure 5. Linkage Statements • •

Table 6. Global Dictionary Entries at

• • 12
• • 14
• • 2 0

Generation Time • • • • • • • • • • 22
Table 7. Local Dictionary Entries at
Generation Time • • • . • • • • 23

Table 8. Macro-Definition Local
Dictionary Parameter Table. • • • • 23

Through the medium of job control state­
ments, the programmer specifies job
requirements directly to the operating sys­
tem, thus eliminating many of the functions
previously performed by the machine opera­
tor or other installation personnel. The
job consists of one or more job steps. For
example, the job of assembling, linkage­
editing, and executing a source program
involves three job steps:

1.. Translating the source program, i .. e.,
executing the assembler component of
the operating system to produce an
object module.

2. Processing the output of the

3.

assembler, i .. e., executing the
linkagre-editor component of the oper­
ating system to produce a load module.

Executing the
editedl program,
load module.

assembled and linkage­
i.e., executing the

A procedlure is a sequence of job control
language statements specifying a job.
Procedures may enter the system via the
input stream or from a library of proce­
dures, which are previously defined and
contained in a procedure library. The
input stre·am is the- flow of job control
statements and, optionally, input data
entering the system from one input device.
At the se~quential scheduling system level
of the operating system, only one input
stream may exist at a time. (For a de­
scription of the operating system environ­
ment see 'IBM System/360 Operating system:
Concepts and Facilities.)

The job definition (JOB), execute
(EXEC), data definition (DD), and delimiter
C/*) job control statements are shown in
this publication as they are used to speci­
fy assembler processing. Detailed explana­
tions of these statements are given in IBM
System/360 Operating System: Job ControI
Languaqe.

Operating system factors influencing
program preparation, such as program termi­
nation, saving and restoring general reg­
isters, and linking of independently pro­
ciuced object modules are discussed in
"'Programming Considerations n as are guides
to determine whether assembler dictionary
sizes and sourc·e statement complexity limi­
tations will be exceeded.

INTRODUCTION

The balance of this introductory section
dis·cusses the assembler options, data sets,
and return codes.

ASSEMBLER OPTIONS

The programmer may specify the following
assembler options in the PARM= field of the
EXEC statement:

DECK LOAD LIST TEST XREF
PARM=(NODECK,NOLOAD,NOLIST,NOTEST,NOXREF,

LINECNT=nn)

These options are defined as follows:

DECK1 -- The object module is placed on the
device specified in the SYSPUNCH
DD statement.

LOAD1 -- The object module is placed on the
device specified in the SYSPUNCH
DD statement.

LIST
TEST

XREF

An assembler listing is produced.
The object module (if produced)
contains the special source symbol
table required by the test trans­
lator (TESTRAN) routines.
The assembler produces a cross­
ref erence table of symbols as part
of the listing.

The prefix NO is used with the above
options to indicate that the option is not
wanted. If contradictory options are
entered, e.g., LIST,NOLIST, the rightmost
option, e.g., NOLIST is used. DECK and
LOAD can be contradictory.

LINECNT=nn
specifies the number of lines to be
printed between headings in the list­
ing. The permissible range is 01 to
99 lines.

1 The assembler, during a single execution,
produces either an object module in punched
card form, or an object module in inter­
mediate storage. The UNIT= designation in
the SYSPUNCH DD statement determines where
the object module is placed. Because of
this the DECK and LOAD options are inter­
changeable. If both are specified the
rightmost entry is used: If DECK,NOLOAD is
specified, no object deck is produced.

Introduction 5

DEFAULT ENTRY

If no options are specified, the assem­
bler assumes the following default entry:

PARM=(NOLOAD,DECK,LIST,NOTEST,XREF,
LINECNT=56)

The cataloged procedures discussed in
this guide assume the default entry. How­
ever, the programmer may override any or
all of the default options (see noverriding
Cataloged Procedures">.

ASSEMBLER DATA SET REQUIREMENTS

Seven data sets must be defined for the
assembler; they are described in the fol­
lowing text. The ddname that must be used
in the DD statement describing the data set
appears as the heading for each descrip­
tion.

Ddname SYSLIB

From this data set, the assembler
obtains macro definitions and assembler
language statements to be called by the
COPY assembler instruction. It is a parti­
tioned data set and each macro definition
or sequence of assembler statements is a
separate member with the member name being
the macro-instruction nmemonic or COPY code
name. The data set may be defined as
SYSl.MACLIB or a user's private macro defi­
nition or COPY library. SYSl.MACLIB con­
tains macro definitions for the system
macro-instructions provided by IBM. A
user's private library may be concatenated
with SYSl.MACLIB. The Job Control Language
publication explains data set concatena­
tion.

Ddnames SYSUTl, SYSUT2, SYSUT3

These utility data sets are used by the
assembler when processing the source pro­
gram. The input/output device(s) assigned
to these data sets must be capable of
sequential access to records: the assembler
does not support multi-volume utility data
sets.

Ddname SYSPRINT

This data
to produce
directed to a
The assembler

6

set is used by the assembler
a listing. output may be
printer or magnetic tape.
uses the machine code

carriage-control characters for this data
set.

Ddname SYSPUNCH

The assembler uses this data set to
produce the object module. The
input/output unit assigned to this data set
may be either a card punch or an intermedi­
ate storage device (capable of sequential
access). In the same execution, the assem­
bler cannot produce a punched card object
module and an object module on intermediate
storage.

Ddname SYSIN

This data set contains the input to the
assembler the source statements to be
processed. The input/output device
assigned to this data set is either the
device transmitting the input stream, or a
device designated by the programmer. The
DD statement describing this data set usu­
ally appears in the input stream. The IBM
supplied procedures do not contain this
statement.

RETURN CODES

Table 1 shows the return codes issued by
the assembler for use with the COND=
parameter1 of JOB or EXEC statements.

Table 1. Return Codes
r------T----------------------------------1
I Return I I
I Code I Explanation I
~------+----------------------------------~
I 0 lno errors detected I
~------+----------------------------------~
I 4 !minor errors detected; successful I
I jprogram execution is probable I
~------+----------------------------------~
I 8 !errors detected; unsuccessful I
I !program execution is possible I
~------+----------------------------------~
I 12 !serious errors detected; I
I I unsuccessful program execution is I
I !probable I
~------+----------------------------------~
I 16 !critical errors detected; normal I
I !execution is impossible I
~------+----------------------------------~
I 20 !unrecoverable I/O error occurred I
I !during assembly; assembly I
I I terminated I
L------1.----------------------------------J

1 The COND parameter is explained in the Job
Control Language publication.

The return code issued by the assembler
is the highest severity code that is:

a. Associated with any error detected by
the as:sembler.1

1 See Appendix A for diagnostic messages and
severity codes.

b. Associated with MNOTE messages pro­
duced by macro-instructions.

c. Associated with an unrecoverable I/O
error occurring during the assembly.

The return code of 20 is used only for
condition code testing. It is not asso­
ciated with any diagnostic messages.

Introduction 7

CATALOGED PROCEDURES

This section describes three IBM provid­
ed cataloged procedures: a procedure for
assembling (ASMEC}; a procedure for assem­
bling and linkage editing CASMECL}: a pro­
cedure for assembling, linkage editing, and
executing CASMECLG} •. The procedures rely
on conventions regarding the naming of
device classes. These conventions, shown
in Table 2, must be incorporated into the
system at system generation time.

Table 2. Device Naming Conventions
r----------------T------------------------1
!Device ClassnamelDevices Assigned I
~----------------+------------------------~
ISYSSQ !Any devices allowing I
I !sequential access to I
I !records for reading and I
I I writing I
~----------------+---------------~--------~
ISYSDA !Direct-access devices I
~----------------+------------------------~
ISYSCP !Card punches I
L----------------~------------------------J

To use cataloged procedures, an EXEC
statement(s} naming the desired
procedure(s} is placed in the input stream
following the JOB statement. Subsequently,
the specified cataloged procedure is
brought from a procedure library and merged
into the input stream.

The System Programmer's Guide discusses
the placing of procedures in the procedure
library.

8

CATALOGED PROCEDURE FOR ASSEMBLY (ASMEC}

This procedure requests the operating
system to load and execute the assembler
CIETASM}. The name ASMEC must be used to
call this procedure. The result of execu­
tion is an object module in punched card
form, and an assembler listing.

In the following example, input enters
via the input stream. The statements
entered in the input stream to use this
procedure are:

//jobname JOB

//stepname EXEC PROC=ASMEC

//ASM.SYSIN DD *
I
I

source program statements
I
I

/* (delimiter statement}

The statements of the ASMEC procedure are
brought from the procedure library and
merged into the input stream.

Figure 1 shows the statements that make
up the ASMEC procedure.

r-------------·---·---1
I I
I 1 / / ASM EXEC PGM=IETASM f
I
12 //SYSLIB DD DSNAME=SYS1.MACLIB,DISP=OLD
I
13 //SYSUT:l DD UNIT=SYSSQ,SPACE=(400,(400,50))
i
I"' //SYSUT:2 DD UNIT=SYSSQ,SPACE=(400,(400,50))
i
i 5 //SYSUT3 DD
I //

UNIT=(SYSSQ,SEP=(SYSUT1,SYSUT2,SYSLIB)),
SPACE=(400,(400,50))

x

~
I 6 //SYSPRINT DD SYSOUT=A
I
i 7 //SYSPUNCH DD UNIT= SY SCP

1. PARM= or COND= parameters may be added to this statement by the EXEC statement that
calls the procedure (see "Overriding Cataloged Procedures"). The system name IETASM
identifies 1~ssembler E.

2 This statemEmt identifies the macro library data set. The data set name SYSl.MACLIB
is an IBM designation.

"' s These statements specify the assembler utility data sets. The device classname
used here, SYSSQ, may represent a collection of tape drives, or direct-access units.,
or both.. The I/O units assigned to this name are specified by the installation when
the system is generated. A unit name, e.g., 2311 may be substituted for SYSSQ.

The SEP== subparameter in statement 5 and the SPACE= parameter in statements 3, 4, and
5 are effective only if the device assigned is a direct-access device: otherwise
they are ignored. Tne space required is dependent on the make-up of the source
program .. the procedure provides an initial allocation of 160,000 bytes and
additional allocations <if needed) of 20,000 bytes.

6 This statement defines the standard system output class, SYSOUT=A, as the destina­
tion for the assembler listing.

17 This statement describes the data set that will contain the object module produced
I by the assembler.
L---J
Figure 1. Cataloged Procedure for Assembly

CATALOGED PROCE:DURE FOR ASSEMBLY AND
LINKAGE-EDITING (ASMECL)

This procedure consists of two job
steps: assembling and linkage editing. The
name ASMECL must be used to call this
procedure. Execution of this procedure
results in the production of an assembler
listing, a linkage editor listing, and a
load modulE~.

The following example assumes input to
the assembler v·ia the input job stream. It
also makes provision in the //LKED job step
for concatenating the input to the linkage
editor from the //ASM job step with any
additional linkage editor input in the
input job stream. This additional input
can be a previously produced object module
which is to be linked to the object module
produced by job step //ASM.

The statements entered in the input
stream to use this procedure are:

//jobname JOB

//stepname EXEC PROC=ASMECL

//ASM.SYSIN DD *
I
I

source program statements
I
I

/*

//LKED.SYSIN DD *
I necessary only if

linkage-editor is
to combine modules

/*

I
object module

I
I

Cataloged Procedures 9

The procedure is brought from the proce­
dure library and merged into the input
stream.

Figure 2 shows the statements that make
up the ASMECL procedure. Only those state­
ments not previously discussed are
explained.

r---1
//ASM EXEC PGM=IETASM

//SYSLIB DD

//SYSUT1 DD

//SYSUT2 DD

//SYSUT3 DD
//

//SYSPRINT DD

1 //SYSPUNCH DD
//

2 //LKED EXEC

3 //SYSLIN DD
4 // DD

s //SYSLMOD DD

6 //SYSUTl DD

7 //SYSPRINT DD

DSNAME=SYSl.MACLIB,DISP=OLD

UNIT=SYSSQ,SPACE=(400,C400,50))

UNIT=SYSSQ,SPACE=C400, (400,50))

UNIT=(SYSSQ,SEP=(SYSUT1,SYSUT2,SYSLIB)),
SPACE=(400,(400,50))

SYSOUT=A

DSNAME=&LOADSET,UNIT=SYSSQ,SPACE=(80,(200,50)),
DISP= (MOD,PASS)

PGM=IEWL,PARM=(XREF,LIST,NCAL)

DSNAME=&LOADSET,DISP=(OLD,DELETE)
DDNAME=SYSIN

DSNAME=&TEMP(PDS),UNIT=SYSDA,SPACE=(1024,(50,20,1))

UNIT=CSYSDA,SEP=(SYSLIN,SYSLMOD)),SPACE=(1024,(50,20))

SYSOUT=A

x

x

1 In this procedure the SYSPUNCH DD statement describes a temporary data set -- the
object module -- which is to be passed to the linkage editor.

2 This statement initiates linkage editor execution. The linkage editor options in
the PARM= field cause the linkage editor to produce a cross-reference table, module
map, and a list of all control statements processed by the linkage editor. The NCAL
option suppresses the automatic library call function of the linkage editor.

3 This statement identifies the linkage editor input data set as the same one produced
as output by the assembler.

4 This statement is used to concatenate any input to the linkage editor from the input
stream with the input from the assembler.

5 This statement specifies the linkage-editor output data set (the load module). As
specified, the data set will be deleted at the end of the job. If it is desired to
retain the load module, the DSNAME parameter must be respecified and a DISP
parameter added. See "Overriding Catalog Procedures". If the output of the linkage
editor is to be retained, the DSNAME parameter must specify a library name and
member name where the load module is to be placed. The DISP parameter must specify
either KEEP or CATLG.

6 This statement specifies the utility data set for the linkage editor.

17 This statement identifies the standard output class as the destination for the
I linkage editor listing.
L---
Figur e 2. Cataloged Procedure for Assembling and Linkage Editing

10

CATALOGED PROCEDURE FOR ASSEMBLY,
LINKAGE-EDITING~ND EXECUTION. (ASMECLG)

This procedure consists of three job
steps: assembling, linkage editing, and
executing. Thie name ASMECLG must be used
to call this procedure. Assembler and
linkage editor listings are produced.

The statemelrlts entered in the input
stream to use th.is procedure are:

//jobname JO:B

//stepn.ame EX:e:c PROC=ASMECLG

//ASM.SYSIN DD *

/*

I
I

source program statements
I
I

//LKED.SYSIN DD *
I
I

object module
I

necessary only if
linkage editor is
to combine modules

/*

//GO.ddname

//GO.ddname

//GO.ddname

problem

I*

I

DD

DD

DD
I
I

prog:ram
I
I

(parameters)

(parameters)

*

input

only if.
necessary

Figure 3 shows the statements that make
up the AS.MECLG procedure. Only those
statements not previously discussed are
explained in the figure.

OVERRIDING STATEMENTS IN CATALOGED
PROCEDURES

EXEC and DD statements appearing in
cataloged procedures can be overridden, in
full or part. Such overriding of state­
ments or fields :i.s effective only for the
duration of the job step in which the
statements app•=ar. The statements, as
stored in the procedure library of the
system, remain unchanged.

Overriding for the purposes of respeci­
fication., addition, or nullification is
accomplished by including in the input
stream statements containing the desired
changes and identifying the statements to
be overridden.

EXEC Statements

The PARM= and COND= parameters can be
added or, if present, modified by including
in the EXEC statement calling the procedure
the notation PARM.stepname=, or
COND.stepname=, followed by the desired
change. "Stepname" identifies the EXEC
statement within the procedure to which the
modification applies. Overriding the PGM=
parameter is not possible.

If the procedure consists of more than
one job step, a PARM.stepname= or
COND.stepname= parameter may be entered for
each step. The entries must be in order,
i.e., PARM.step!=, PARM.step2=, etc.

DD Statements

All parameters in the operand field of
DD statements may be overridden by includ­
ing in the input stream (following the EXEC
card calling the procedure) a DD statement
with the notation //stepname.ddname in the
name field. "Stepname" refers to the job
step in which the statement identified by
"ddname" appears.

Examples

In the assembly procedure ASMEC (Figure
1), the production of a punched object deck
could be suppressed and the UNIT= and
SPACE= parameters of data set SYSUTl re­
specified, by including the following
statements in the input stream:

//stepname
//

EXEC PROC=ASMEC,
PARM.ASM=NODECK

//ASM.SYSUTl DD
//

UNIT=2311,
SPACE=C200,(300,40))

x

x

In procedure ASMECLG (Figure 3) sup­
pressing production of an assembler listing
and adding the COND= parameter to the EXEC
statement which specifies execution of the
linkage editor might be desired. In this
case, the EXEC statement in the input
stream would appear as follows:

Cataloged Procedures 11

//stepname
/I

EXEC PROC=ASMECLG,
PARM.ASM=NOLIST,
COND.LKED=(4,LT,ASM)

x
x

if the return code issued by the assembler
<step ASM) was greater then 4.

II

For current execution of procedure
ASMECLG, no assembler listing would be
produced, and execution of the linkage
editor job step /ILKED would be suppressed

The Job Control Language and System
Programmer's Guide publications provide
additional description of overriding tech­
niques.

r---1
llASM EXEC PGM=IETASM

/ISYSLIB

/ISYSUTl

llSYSUT2

/ISYSUT3
II

DD

DD

DD

DD

//SYSPRINT DD

/ISYSPUNCH DD
//

DSNAME=SYSl.MACLIB,DISP=OLD

UNIT=SYSSQ,SPACE=(400,(400,50))

UNIT=SYSSQ,SPACE=C400,(400,50))

UNIT=(SYSSQ,SEP=(SYSUT1,SYSUT2,SYSLIB)),
SPACE=(400,(400,50))

SYSOUT=A

DSNAME=&LOADSET,UNIT=SYSSQ,SPACE=(80,(200,50)),
DISP=(MOD,PASS)

x

x

1 //LKED EXEC PGM=IEWL,PARM=(XREF,LET,LIST,NCAL)

//SYSLIN
//

DD
DD

DSNAME=&LOADSET,DISP=(OLD,DELETE)
DDNAME=SYSIN

2 /ISYSLMOD DD
/I

DSNAME=&GOSET(GO) I UNIT=SYSDA,SPACE=(1024, (50,20,1)), x
DISP=(NEW,PASS)

/ISYSUTl DD UNIT=(SYSDA,SEP=(SYSLIN,SYSLMOD)),SPACE=Cl024,C50,20))

l/SYSPRINT DD SYSOUT=A

3 //GO EXEC PGM=*.LKED.SYSLMOD

1

2

The LET linkage editor option specified in this statement causes the linkage editor
to mark the load module as executable even though errors were encountered during
processing.

The output of the linkage editor is specified as a member of a temporary data set,
residing on a direct-access device, and is to be passed to a succeeding job step.

13
I

This statement initiates execution of the assembled and linkage edited program.
notation *.LKED.SYSLMOD identifies the program to be executed as being in the
set described in job step LKED by the DD statement named SYSLMOD.

The
data

I
I
L---
Figure 3. Cataloged Procedure for Assembly, Linkage Editing, and Execution

12

The assembler listing, Figure 4 ., con­
sists of five sections, ordered as follows:
external symbol dictionary items; the
source and object program statements; relo­
cation dictionary items; symbol cross­
reference table; and diagnostic messages.

In addition two statistical messages may
appear in the listing. They are:

A message if one or more Y-type address
constants appear in the program.

THE ASSEMBLER LISTING

Message: AT LEAST ONE RELOCATABLE Y-TYPE
CONSTANT IN ASSEMBLY.

A message indicating the total number of
statements in error.

Message: nnn STATEMENTS FLAGGED IN THIS
ASSEMBLY.

If issued, the Y-type address constant
message appears before the diagnostic
message section; the statements-flagged
message appears after the diagnostics.

The Assembler Listing 13

CD 00 0 G) 0 EXTERNAL SYMBOL DICTIONARY PAGE 1
SYMBOL TYPE IO ADOR LENGTH LO ID

SAMPLR so 01 000000 000388

0 0 0
EXAM SAMPLE PROGRAM PAGF 3

@ ® @ @ @ @ @
LOC OBJECT CODE ADDRl AODR2 STHT SOURCE STATEMENT E 01FEB66 7128/66

000089 l06+1HB0007 EQU • @
OOOOBA 107+IHB0007A OS OH
OOOOBA OA23 108+ SVC 35 ISSUE SVC
ooooec 47FO C06E 0007E 109 B EXIT Sl\MPL07Q
ooooco 968Q 5008 OQQ08 110 NOTT HERE 01 LSWITCH,NONE TURN ON SWITCH IN LIST ENTRY SAMPL080

RELOCATION DICTIONARY PAGE l

® @ ® ®
POS. ID REL.10 FLAGS ADDRESS

01 01 oc QOOlFC
01 01 QC 00020C
Ql 01 oc 00021C
01 01 QC 000204
01 01 oc 000334
01 01 oc 00034C

@) ® @ @) @
CROSS-REFERENCE PAGE l

SYMBOL LEN VALUE DEFN REFERENCES

BEGIN QQ004 OOOOOQ 0057 0154 0156 0172 0182 0184 0218
EXIT OQ004 OOOC7E 0094 0109
HIGHER OQ002 OOOOF4 Ql28 Ql23
IHBQ005 00001 000078 0091 0088
IH80005A 00002 OOQ07C Q092 0087
IHBQ007 QOOOl OOOCB9 0106 0103
IHB0007A 00002 OOOOBA 0107 0102
LADORE SS 00004 OOOOQC 0209 0078

EXAM DIAGNOSTICS PAGE 1

® @ @) r...i
f'-J

STMT ERROR CODE MESSAGE
""' -- - - f'-J ---

Figure 4. Assembler Listing

14

EXTERNAL SYMBOI~ DICTIONARY (ESD)

This section of the listing contains the
external symbol dictionary information
passed to the linkage-editor in the object
module. ~~he entries described the control
sections, E~xternal references, and entry
points in the assembled program. There are
five types of E!ntries, shown in Table 3,
along with their associated fields. The
circled numbers ref er to the corresponding
heading in the sample listing (Figure 4).

Table 3. ~~ypes of ESD Entries

r::~r1-;:~T~r~:-1-:~::T~:1
·-------+------+----+------+--------+-----i
I x I SD I x I x I x I I

·-------+------+----+------+--------+-----i
I x I LD I - I x I I x I

·-------+------+----+------+--------+-----i
I x I ER I x I - I - I - I

·-------+------+----+------+--------+-----i
I I PC I x I x I x I I

·-------+------+----+------+--------+-----i
I I CM I x I x I x I I ·-------i ______ i ____ i ______ i ________ i _____ i
I The X indicates entries accompanying!
I each type designation. I
l---J
0This column contains symbols that

appeared in the name field of CSECT or
START statements, as operands of ENTRY
and EX'l~RN statements, or in the operand
field of V-type address constants.

0This column contains the type designator
for the entry, as shown in the table.
The typE~ designators are defined as:

SD -- names section definition. The
symbol appeared in the name
field of a CSECT or START state­
ment.

LD -- The symbol appeared as the oper­
and of an ENTRY statement.

ER -- external reference. The symbol
appeared as the operand of an
EXTRN statement, or was defined
as a V-type address constant.

PC -- unnamed control section def ini­
tion.

CM common control section def ini­
tion.

0This column contains the external symbol
dictionary identification number CID>.
The number is a unique two digit hexa­
decimal number identifying the entry.
It is used by the LD entry of the ESD

and by the relocation dictionary to
cross reference to the ESD.

8The column contains the address of the
symbol (hexadecimal notation) for SD and
LD type entries, and zeros for ER type
entries. For PC and CM type entries, it
indicates the beginning address of the
control section.

0This column contains the assembled
length, in bytes, of the control section
(hexadecimal notation).

0This column contains, for LD type
entries, the identification CID) number
assigned to the ESD entry that identi­
fies the control section in which the
symbol was defined.

SOURCE AND OBJECT PROGRAM

This section of the
the source statements
object program.

listing documents
and the resulting

0This is the deck identification. It is
the symbol that appears in the name
field of the first TITLE statement.

0This is the information taken from the
operand field of a TITLE statement.

©Listing page number.

@ This column contains
address (hexadecimal
object code.

the assembled
notation) of the

@ This column contains the object code
produced by the source statement. The
entries are always left-justified. The
notation is hexadecimal. Entries are
machine instructions or assembled con­
stants. Machine instructions are print­
ed in full with a blank inserted after
every four digits Ctwo bytes). Con­
stants may be only partially printed
(see the PRINT assembler instruction in
the Assembler Language publication).

§ These two columns contain effective
addresses (the result of adding together
a base register value and displacement
value):

1. The column headed ADDRl contains the
effective address for the first
operand of an SS instruction.

2. The column headed ADDR2 contains the
effective address of the second
operand of any instruction ref erenc­
ing storage.

The Assembler Listing 15

Both address fields contain six digits;
however, if the high order digit is a zero,
it is not printed.

eThis column contains the statement num­
ber. A plus sign (+) to the right of
the number indicates that the statement
was generated as the result of macro­
instruction processing.

8 This column contains the source program
statement. The following items apply to
this section of the listing:

16

a. Source statements are listed,
including those brought into the
program by the COPY assembler
instruction, and macro-definitions
submitted with the main program
for assembly. Listing control
instructions are not printed,
except for the following case:
PRINT is listed when PRINT ON is
in effect and a PRINT statement is
encountered.

b. Macro-definitions for system
macro-instructions are not listed.

c. The statements generated as the
result of a macro-instruction fol­
low the macro-instruction in the
listing.

d. Assembler or machine instructions
in the source program that contain
variable symbols are listed twice:
as they appear in the source
input, and with values substituted
for the variable symbols.

e. Diagnostic messages are not listed
in-line in the source and object
program section. An error indica­
tor, ***ERROR***, appears follow­
ing the statement in error. The
message appears in the diagnostic
section of the listing.

f.

g.

h.

MNOTE messages are listed in-line
in the source and object program
section. An MNOTE indicator
appears in the diagnostic section
of the listing. The MNOTE message
format is: severity code, message
text.

The MNOTE* form of the MNOTE
statement results in an in-line
message only. An MNOTE indicator
does not appear in the diagnostic
section of the listing.

When an
grammer
treated
error:
appears

error is found in a pro­
macro-def ini tion, it is
like any other assembly
the error indication
after the statement in

i.

j.

k.

1.

m.

n.

error, and a diagnostic is placed
in the list of diagnostics. How­
ever, when an error is encountered
during the expansion of a macro­
instruction <system or programmer
defined), the error indication
appears in place of the erroneous
statement, which is not listed.
The error indication appears fol­
lowing the last statement listed
before the erroneous statement was
encountered, and the associated
diagnostic message is placed in
the list of diagnostics.

Literals that have been assigned
locations by a LTORG statement
appear in the listing following
the END statement. Literals are
identified by the equals (=) sign
preceding them.

If the
operand,
appears
(LOC).

END statement contains an
the transfer address

in the location column

In the case of COM, CSECT, and
DSECT statements, the location
field contains the beginning
address of these control sections
i.e., the first occurrence.

For a USING statement, the loca­
tion field contains the value of
the first operand.

For LTORG and ORG statements, the
location field contains the loca­
tion assigned to the literal pool
or the value of the ORG operand.

For an EQU statement the location
field contains the value assigned.

o. Generated statements always print
in normal statement format.
Because of this, it is possible
for a generated statement to occu­
py three or more continuation
lines on the listing. This is
unlike source statements which are
restricted to two continuation
lines.

8 This field indicates the assembler level
and release number for the month it was
issued, eug., E01FEB66 reads as Assem­
bler E, first release of February 1966.

8 Current date (date run is made).

@ Identification-sequence field from the
source statement.

;RELOCATION DICTIONARY

This section of the listing contains the
relocation dictionary information passed to
the linkagre editor in the object module.
The entries: describe the address constants
in the assembled program that are affected
by relocation.

8 This column contains the external symbol
dictiona.ry ID number assigned to the ESD
entry that describes the control section
in which the address constant is used as
an opera.nd.

(f'This column contains the external symbol
dictiona.ry ID number assigned to the ESD
entry that describes the control s.ection
in which the referenced symbol is
defined.

@The two-digit hexadecimal number in this
column i.s interpreted as follows:

First Digit -- a zero indicates that the
entry describes an A-type
address constant.

Second Digit

a one indicates that the
entry describes a v-type
address constant.

the first three bits of
this digit indicate the
length and sign of the
address constant as fol­
lows:

Bits
00
01
10
11

0 and 1
1 byte
2 bytes
3 bytes
4 bytes

Bit 2
0-+
1 = -

@ This column contains the assembled
address of the field where the address
constant is stored.

CROSS-REFERENCE

This section of the listing information
concerns symbols -- where they are defined
and used in the program.

§ This column con ta ins the symbols.

§This column states the length (decimal
notation>, in bytes, of the field occu­
pied by the :symbol value.

8 This column contains either the address
the symbol represents, or a value to
which the symbol is equated.

8 This column contains the statement num-

ber of the statement in which the symbol
was defined.

e This column contains the statement num­
bers of statements in which the symbol
appears as an operand.

The following notes apply to the cross­
ref erencing section:

• Symbols appearing in V-type address
constants do not appear in the cross­
ref erence listing.

• A PRINT OFF listing control instruction
does not affect the production of the
cross-reference section of the listing.

• Undefined symbols appear in the cross­
reference section. However, only the
symbol column and the reference column
have entries.

DIAGNOSTICS

This section contains the diagnostic
messages issued as a result of error
conditions encountered in the program.
Explanatory notes and the severity code for
each message are contained in Appendix A.

{§ This column contains the number of the
statement in error.

8 This column contains the message iden­
tifier.

@This column contains the message.

Example:

STMT
101

ERROR CODE
IET035

MESSAGE
ADDRESSABILITY ERROR

The following notes apply to the diag­
nostics section:

• An MNOTE indicator of the form MNOTE
STATEMENT appears in the diagnostic
section, if an MNOTE statement is
issued by a macro-instruction. The
MNOTE statement itself is in-line in
the source and object program section
of the listing.

• A message identifier consists of six
characters and is of the form:

IET

xxx

IETxxx

identifies the issuing agent as assem­
bler E.

is a unique number assigned to the
message.

The Assembler Listing 17

PROGRAMMING CONSIDERATIONS

This section consists of a number of
discrete subjects about assembler language
programming.

SAVING AND RESTORING GENERAL REGISTER
CONTENTS

A problem program should save the values
contained in the general registers upon
commencing execution, and, upon completion,
restore to the general registers these same
values. Thus, as control is passed from
the operating system to a problem program
and in turn, to a subprogram, the status of
the registers used by each program is
preserved. This is done through use of the
SAVE and RETURN system macro-instructions.

The SAVE macro-instruction should be the
first statement in the program. It stores
the contents of registers 14 and 15, and 0
through 12 in an area provided by the
program passing control. When a problem
program is given control, register 13
points to an area in which the general
register contents should be saved.

If the program calls any subprograms, or
uses any operating system services other
than GETMAIN, FREEMAIN, ATTACH, and XCTL,
it must first save the contents of register
13, and then the address of an 18 full-word
save area must be loaded into register 13.
This save area is in the problem program
and is used by any subprograms or operating
system services called by the problem pro­
gram.

At completion, the problem program re­
stores the contents of general registers
14, 15, and 0-12 by use of the RETURN
system macro-instruction {which also indi­
cates program completion). The content of
register 13 must be restored before execu­
tion of the RETURN macro-instruction.

The coding sequence that follows illus­
trates the basic process of saving and
restoring the registers. A complete dis­
cussion of the SAVE and RETURN macro­
instructi ons and the saving and restoring
of registers is contained in IBM svstern/360
Operating System: Control Program Services.

18

r-------T----------T----------------------1
!Name !Operation !Operand I
~-------+----------+----------------------~
IBEGIN tSAVE I (14,12) I
I IST l13,SAVEBLK+4 I
I !LA 113,SAVEBLK I
I I · I I
I I • I I
I IL 113, SAVEBLK+4 I
I I RETURN I (14 I 12) I
ISAVEBLKIDC l18F'O' I
'-------~----------~----------------------J

PROGRAM TERMINATION

Completion of an assembler source
program is indicated by using the RETURN
system macro-instruction to pass control
from the terminating program to the program
that initiated it. The initiating program
may be the operating system, or, if a
subprogram issued the RETURN, the program
that called it.

In addition to indicating program com­
pletion and restoring registers, the RETURN
macro-instruction may also pass a return
code - a condition indicator that may be
used by the program receiving control. If
the return is to the operating system, the
return code is compared against the condi­
tion stated in the COND= parameter of JOB
or EXEC statements. If return is to anoth­
er problem program, the return code is
available in general register 15, and may
be used as desired. Register 13 should be
restored before issuing the RETURN macro­
instruction.

The RETURN system macro-instruction is
discussed in detail in the Control Program
Services publication.

PARM FIELD ACCESS

Access to information in the PARM field
of an EXEC statement is gained through
general register 1. When control is given
to the problem program, general register 1
contains the address of a full word which,
in turn, contains the address of the data
area containing the information.

The data area consists of a half word
containing the count Cin binary) of the
number of information characters, followed

by the information field. The information
field is aliqned to a full-word boundary.
The followinq diagram illustrates this
process.

General Register l

l
C Address of Full Wor-0

Points
to fol I W<,_>rd _____ __, ----c Address of Data Area

Points
to

MACRO-DEFINITION LIBRARY ADDITIONS

source :statement coding to be retrieved
by the COPY assembler instruction, and
macro-definitions may be added to the
macro-library. The IEBUPDAT utility pro­
gram is u:sed :Eor this purpose. Details of
this program and its control statements are
contained in IJBM Systern/360 Operating Sys­
tem: Utilities. The following sequence of
job control statements can be used to call
the utility program and identify the needed
data sets. It is assumed that the job
control statemcents, IEBUPDAT program con­
trol statements, and data are to enter the
system via the input stream.

//jobn.ame
//stepname
//SYSUT2
//SYSPRINT
//SYSIN

JOB
EXEC
DD
DD
DD

PGM=IEBUPDAT,PARM=NEW
DSNAME=SYSl.MACLIB,DISP=OLD
SYSOUT=A

*

IEBUPDAT control statements and source
statements or macro-definitions to be
added to the macro-library (SYSl.MACLIB)

/*(delimiter statement)

LOAD MODULE MODIFICATION-ENTRY POINT
RESTATEMENT

If the editing functions of the linkage
editor are to be used to modify a load

module, the entry point to the load module
must be restated when the load module is
reprocessed by the linkage editor. Other­
wise, the first byte of the first control
section processed by the linkage editor
will become the entry point. To enable
restatement of the original entry point, or
designation of a new entry point, the entry
point must have been identified originally
as an external symbol, i.e., appeared as an
entry in the external symbol dictionary.
External symbol identification is done
automatically by the assembler if the entry
point is the name of a control section or
START statement; otherwise an assembler
ENTRY statement must be used to identify
the entry point name as an external symbol.

When a new object module is added to or
replaces part of the load module, the entry
point is restated in either of three ways:

• By placing the entry point symbol in
the operand field of an EXTRN statement
and an END statement in the new object
module.

• By using an END statement in the new
object module to designate a new entry
point in the new object module.

• By using a linkage editor ENTRY state­
ment to designate either the original
entry point or a new entry point for
the load module.

Further discussion of load module entry
points is contained in the linkage editor
publication.

OBJECT MODULE LINKAGE

Object modules, whether Assembler, FOR­
TRAN or COBOL generated, may be combined by
the linkage editor to produce a composite
load module provided each object module
conforms to the data formats and Linkage
conventions required. This topic discusses
the use of the CALL system macro­
instruction to link an assembler language
"main" program to subprograms produced by
FORTRAN and COBOL.1

Figure 5 shows the statements used to
establish the linkage from the assembler
program to the called subprograms.

1 See the Control Program Services
publication for additional details concern­
ing linkage conventions and the CALL system
macro-instruction.

Programming Considerations 19

r---1
SAVE (14,12)
ST 13,SVAREA+4

1 LA 13,SVAREA

2 CALL name,(V1,V2,V3),VL

3 SVAREA
it Vl

L
RETURN
DC
DC

13,SVAREA+4
(14,12)
18F'0'
(data)
(data)
(data)

5 V2 DC
6 V3 DC

END

1 The address of this program's (the calling program) save area is placed in general
register 13 for use by the called subprogram.

2 The symbol used for "name" in this statement is:

1. The name of a subroutine or function, when linking to a FORTRAN written
subprogram.

2. The name defined by the following COBOL statements in the procedure division:

ENTER LINKAGE. ENTRY'name'.

3. The name of a CSECT or START statement, or a name used in the operand field of an
ENTRY statement in an assembler subprogram.

The order in which the parameter list is written must reflect the order in which the
called subprogram expects the argument. If the called routine is a FORTRAN written
function, the returned argument is not in the parameter list: a real or double
precision function returns the value in floating point register zero; an integer
function returns the value in general purpose register zero~

CAUTION: When linking to FORTRAN written subprograms, consideration must be given to
the storage requirements of IBCOM (FORTRAN execution-time I/O and interrupt handling
routines) which accompanies the compiled FORTRAN subprogram. In some instances the
call for IBCOM is not automatically generated during the FORTRAN compilation. The
FORTRAN IV Library publication provides information about IBCOM requirements and
assembler statements used to call IBCOM.

FORTRAN written subprograms and FORTRAN library subprograms allow variable length
parameter lists in linkages which call them; therefore all linkages to FORTRAN
subprograms are required to have the high-order bit in the last parameter in the
linkage set to 1. COBOL written subprograms have fixed length calling linkages;
therefore, for COBOL the high order bit in the last parameter need not be set to 1.

3 This statement reserves the save area needed by the called subprogram. When control
is passed to the subprogram, register 13 contains the address of this area.

lit 5 6 When linking to a FORTRAN or COBOL subprogram, the data formats declared in these
I statements are determined by the data formats required by the FORTRAN or COBOLI
I subprograms. I
l---J
Figure 5. Linkage Statements

20

If any input/output operations are per­
formed by called subprograms, appropriate
DD statements for the data sets used by the
subprogram:.::• must be supplied. See the
FORTRAN CE) Programmer's Guide for explana­
tion of the DD statements used to describe
data sets for FORTRAN programs and a de­
scription of the special FORTRAN data set
record formats. The COBOL (E) Programmer's
Guide provides DD statement information for
COBOL programs.

DICTIONARY SIZE AND SOURCE STATEMENT
COMPLEXITY

The following material: (1) describes
the composition of the assembler dictionar­
ies and their entry sizes, and (2) de­
scribes me~thods for determining if the
limits on source statement complexity will
be exceeded.

Dictionary entries e.g .• , sequence symbol
names or prototype symbolic parameters,
vary in length. Therefore, the number of
entries a dictionary can hold is determined
by the types of entries.

Sou,rce statement complexity -- the num­
ber of symbols, characters, operators,
delimiters, references to length attri­
butes, self-defining terms, literals, and
expressions appearing in a source statement

determines whether or not the source
statement can be successfully processed.

DICTIONARIES USED IN CONDITIONAL ASSEMBLY
AND MACRO-INSTRUCTION EXPANSION

For the macro generator portion of the
assembler to accomplish macro-instruction
expansion and conditional assembly, two or
more dictionaries must be constructed: a
global dictionary and one or more local
dictionaries.

These dictionaries take two forms: one
which is used at the time the dictionary
entries are collected, i.e., picked up from
the initial sca:n of the source program: and
one which is used during the actual condi­
tional assembly and macro generation pro­
cess. The next five topics describe the
global and local dictionaries at collection
and generation time.

Global Dictionary at Collection Time

One global dictionary is built for the
entire program. It contains macro­
instructi on mnemonics and global SET
variable symbols. One entry is made for
each unique global SET variable symbol.
One entry is made for each macro­
instruction mnemonic that is not defined in
the program; two identical entries are made
when the macro-instruction mnemonic is
ref erred to before it is defined; three
identical entries are made when the macro­
instruction mnemonic is defined before it
is referred to. The capacity of the global
dictionary is 64 blocks of 256 bytes each.
Each block contains complete entries. Any
entry not fitting into a block is placed in
the next block; the remaining bytes in the
current block are not used.

The size of each entry is shown in Table
4.

Table 4. Global Dictionary Entries at
Collection Time

r-------------------T---------------------1
I Entry I Size I
~-------------------+---------------------~
!Each macro mnemonicjlO bytes plus I
joperation code jmnemonic* I
~-------------------+---------------------~
!Each global SET 16 bytes plus name* I
jvariable symbol I I
~-------------------~---------------------~
l*One byte is used for each character inl
I the name or mnemonic. I
L---J

Fixed overhead for this dictionary is:

8 bytes for the first block
4 bytes for each succeeding block
5 bytes for the last block

There is a limit of 400 unique
symbols per assembly, regardless
amount of storage available.

Local Dictionary at Collection Time

global
of the

For the main portion of the program,
(those statements not within a macro
definition) one local dictionary is con­
structed in which ordinary symbols
(relevant to macro generation and condi­
tional assembly), sequence symbols, and
local SET variable symbols are entered.
Relevant ordinary symbols are those which
occur in macro-instructions or conditional
assembly statements. In addition, one
local dictionary is constructed for each

Programming considerations 21

different macro definition in the program.
These local dictionaries contain one entry
for each local SET variable symbol,
sequence symbol, and prototype symbolic
parameter declared within the macro def ini­
tion. 1 The capacity of each local dictiona­
ry is 64 blocks of 256 bytes each. Each
block contains complete entries. Any entry
not fitting into a block is placed in the
next block; the remaining bytes in the
current block are not used. Table 5 indi­
cates the size of each type of entry and
relates dictionary capacities to the struc­
ture of any given program.

Table 5. Local Dictionary Entries at Col-
lection Time

r-----.--------------T---------------------1
I Entry I Size I
~-------------------+---------------------~
!Each sequence I I
!symbol 110 bytes plus name* I
~-------------------+---------------------~
!Each local SET I I
!variable symbol 16 bytes plus name* I
~-------------------+---------------------i
!Each prototype I I
I symbolic parameter 15 bytes plus name* I
~-------------------+---------------------~
!Each relevant I I
!ordinary symbol I I
!appearing in the I I
!main portion I I
lof the program 110 bytes plus name* I
~-------------------i---------------------~
l*One byte is used for each character inl
I the name or mnemonic I
L---J
Fixed overhead for this dictionary is:

8 bytes for the first block (if in the
main program)

32 bytes for the first block (if in a
macro definition)

4 bytes ·tor each succeeding block

5 bytes for the last block

1 If a sequence symbol is defined before it
is referenced, an extra entry for the
symbol is made.

22

Global Dictionary at Generation Time

The structure of the global dictionary
at generation time is shown in Table 6.

Table 6. Global Dictionary Entries at Gen-
eration Time

r----------------------T------------------1
I Entry I Size I
~----------------------+------------------~
!Each macro mnemonic I I
!operation code 13 bytes I
~----------------------+------------------i
!Each global SETA I I
!symbol (dimensioned) 11 byte plus 4N* I
~----------------------+------------------~
!Each global SETA I I
I symbol Cundimensioned) 14 bytes I
~----------------------+------------------i
!Each global SETB 11 byte plus CN/8)*1
!symbol (dimensioned) I (N/8 is rounded tol
I lthe next highest I
I I integer) I
~----------------------+------------------~
!Each global SETB I I
!symbol (undimensioned) 11 byte I
~----------------------+------------------i
!Each global SETC I I
!symbol (dimensioned) 11 byte plus 9N* I
~----------------------+------------------~
!Each global SETC I I
I symbol Cundimensioned) 19 bytes I
~----------------------i------------------~
l*N=dimension I
L---J

Fixed overhead for this dictionary is 4
bytes plus word alignment.

Local Dictionary at Generation Time

The structure of the local dictionary at
generation time is shown in Table 7.

•rable 7. Local Dictionary Entries at Gen-
eration Time

r----------------------T------------------1
I Entry I Size I
~----------------------+------------------i
!Each sequence symbol 15 bytes I
~----------------------+------------------i
I Each local SET.~ I I
I symbol (dimensioned> I 1 byte plus 4N* I
~----------------------+------------------i
!Each local SETA I I
I symbol Cun.dimensioned) I 4 bytes I
~---------~------------+------------------i
!Each local SETB 11 byte plus (N/8)*1
I symbol (dimensioned> I (N/8 is rounded tol
I I the next highest I
I I integer> I
~----------------------+------------------i
!Each local SETB I I
!symbol (undimensioned)ll byte I
~----------------------+------------------i
!Each local SETC I I
!symbol (dimensioned) 11 byte plus 9N* I
~----------------------+------------------i
!Each local SETC I I
!symbol Cundime:nsioned>l9 bytes I
~----------------------+------------------i
!Each relevant ordinary! I
lsymbol 1 appearing in I I
I the ma.in portion of I I
lthe program 15 bytes I
~----------------------i------------------i
l 1 For the main program Local Dictionary!
I only those symbols which appear inl
I macro-instruction operands or whose!
I attributes ar·e referenced are included. I
I I
l*N=dimension I
L---J
Fixed overhead for this dictionary is 20
bytes plus word alignment.

Additional Dictionary Requirements

The generation time global dictionary
and the generation time local dictionary
for the main portion of the program must be
resident in main storage.

In addition, if the program contains any
macro-instructions, main storage is
required for the largest local dictionary
of the macro-definitions being processed.
1'""urthermore, during processing of macro­
def ini tions containing inner macro­
instructions, main storage is required for
the generation time local dictionaries for
the inner macro·-instructions contained
within the macro-definition.

MACRO-DEFINITION LOCAL DICTIONARY REQUIRE­
MENTS: In addition to those requirements
specified for the local dictionary of the
main portion of the program, each macro-

definition local dictionary requires space
for the entries shown in Table 8.

Table 8. Macro-Definition Local Dictionary
Parameter Table

r------------------------T----------------1
I Entry I Size I
~------------------------+----------------i
!Each character string(l)l3 bytes plus L I
~------------------------+----------------i
!Each hexadecimal,binary~I I
!decimal, and character I I
!self-defining term(2) 17 bytes plus L I
~------------------------+----------------i
!Each symbol(3) 19 bytes plus L I
~------------------------+----------------i
!Each sublist 110 bytes plus 2NI
I !bytes plus Y I
~------------------------~----------------i
IL= Length of entry in bytes I
IN = Number of entries in sublist I
IY = Total length of the table entries in I
I formats 1,2,and 3 I
L--J
Fixed overhead for the macro-definition
local dictionary parameter table is 22
bytes. Each nested macro-instruction also
requires space in its local dictionary for
the following:

Parameter pointer list

Pointers to list in the
parameter table

MACRO MNEMONIC TABLE

2 bytes plus 2N
CN = the number of
operands)
8 bytes plus word
alignment

As the source statements are scanned, a
table of macro-instruction mnemonics is
constructed in which there is an entry for
each macro-instruction used or defined in
the program. The entries are made under
the premise that every undefined operation
is a system macro-instruction mnemonic.
This table is then used to locate and edit
system macro-definitions from the library.

With 15,360 bytes of main storage
available to the assembler, approximately
430 distinct macro-instruction mnemonics
can be handled. An entry in this table
consists of nine bytes. In the event that
this table overflows, processing continues
with only those macro-instructions defined
to the point of overf lowG

SOURCE 'STATEMENT COMPLEXITY

The complexity of a source statement is
limited by both the macro-generator and
assembler portions of Assembler E. The

Programming Considerations 23

following topics provide the information
necessary to determine if statement com­
plexi ty limitations for either portion of
the assembler are being exceeded.

Macro-Generation and Conditional Assembly
Limitations

For any statement which:

1. Is a conditional assembly state-
ment

2. Is a DC or DS statement
3. Is an EXTRN statement
4. Contains a sequence symbol or a

variable symbol
5. Is not a macro-instruction or pro­

totype statement

the total number of literal occurrences of

6. Ordinary symbols (includes machine
mnemonics, assembler mnemonics,
conditional assembly mnemonics,
and macro-instruction mnemonics)

7. Variable symbols
8. Sequence symbols

must not exceed 35
or operand fields
number of literal
7, and 8 above must
entire statement.

in the name, operation,
respectively; and the
occurrences of items 6,
not exceed 36 for the

For macro-instructions and prototype
statements the number of occurrences of
ordinary symbols, variable symbols and
sequence symbols must not exceed 35 in the
name and operation fields combined, or in
each operand unless the operand is a sub­
list in which case the limit is applied to
each sublist operand.

Examples of counts:

&B2 SETB (T'NAME EQ 'W' OR '&C'.'A' EQ 'AA'
count=4

EXTRN A,B,C,6C
count=5

Assembler Portion Limitations

The space required to process a state­
ment must not exceed 730 bytes for DC and
D8 statements, and 746 bytes for all oth­
ers. Buffering considerations may allow
statements exceeding these requirements by
up to 30 bytes to be processed.

The following formulas (S1 and S 2) are
used to determine if statement complexity

2lt

will exceed the limitations stated above.
The statement must be tested against 81 and
82 and must satisfy both.

In general, all statements can be proc­
essed if they contain 50 or fewer terms.
If a statement contains more than 50 terms,
the formulas should be used to determine if
the statement can be processed, or if the
statement should be shortened using EQU
assembler instructions. In the first exam­
ple, if A+CB-C)*3 were equated to a symbol,
that symbol could be used as the displace­
ment field of the first operand in the
example.

Formula s, :

where
Nb

Nla

Nsa

NS

N1

Example:

total number of bytes in name,
operation, operand, and comment
entries (the maximum value of N
is 187)

= number of operators and delimi­
ters in the operand field,
except equal <=>, period (.),
and apostrophe(')

number of references to length
attribute CL' SYMBOL)

number of self-defining terms

number of symbols (including*)

number of literal operands
(maximum of 1'

NAME MVC A+(B-C)*3(L'D,5),=15CL5'ABCDEFG'

tb td tla tsd ts +1
S1=39 + 9 + 4(1 + 4) + 6(3 + 1)

Formula S.a:

where:
Nb

w

D

as defined in formula S1

a weight associated with each
expression in the statement. The
subscript represents the expres­
sion number; Wm is the last
expression.

the number of expression delimi­
ters

w may equal 1, 2, 3, 4, or 5 and is
a function of the number of
unpaired relocatable terms
appearing in each expression as
follows:

r----·----·---·---------------T---------1
I Number of Unpaired Terms I W I
~--------------------------+---------i
! O, 1 I 1 I
I 2, 3, 4, s I 2 I
I 6, 1., a, 9 I 3 I
I 10 I 11, 12 I 13 I 4 I
I 14 I 15 I 16 I 5 I L-------------------------i _________ J

The rules for counting expressions and
expression delimiters are as follows:

1. A conuna is always an expression delim­
iter, as is the terminating blank.

2. Left and right parentheses can be part
of am expression; or they can be
expression delimiters. A left paren­
thesis is an expression delimiter if
it is: not preceded by an arithmetic
operator or a blank. A right paren­
thesis is an expression delimiter if
its paired left parenthesis is an
exprE!SSion delimiter.

Example 1:

NAME L 6, 1H20*B (6)

In this example the comma, the
theses, and the terminating
expression delimiters. There
expressions in this example:

(1) 6
(2) A+20*B
(3) 6

two paren­
blank are
are three

Expressions 1 and 3 are absolute and there­
fore have a weight CW) of 1. Expression 2
may be absolute or simply relocatable and
therefore has a weight CW) of 1. CB must
be absolute or the expression is in error.)

Example 2:

MVC A+17*(C-D),CA+20)

In this example the comma and the terminat­
ing blank are the only expression delimi­
ters and D=2. There are two expressions:

Expression 1
weight CW) of 1

A+17*(C-D) with a

Expression 2 = (A+20) with a weight
(W) of 1

Example 3:

MVC 2 0 (5 ., 3) ,, 16 (5)

In this example there are 5 expressions (E)
and 7 expression delimiters CED).

ED1=C

Es=S EDs=<

Programming Considerations 25

This a.ppendix lists the diagnostic mes­
sages issued by the assembler. The messa­
ges are listed by their number C00.1-109).
Note: Explanations of the MNOTE messages
issued by system macro-instructions are
contained in the Messages and Completion
Codes publication.

IETOOl DUPLICA'rION FACTOR ERROR

Explanation: A duplication factor
is not a positive absolute expres­
sion, or is zero in a literal.

IET002 RELOCAT1\BLg DUPLICATION FACTOR

Explanation: A relocatable expres­
sion has been used to specify the
duplication factor.

IET003 LENGTH ERROR

Explanation: The length specif i­
cation is out of permissible range
or BpecifiE~d invalidly.

IETO 0 4 RELOCATA.BLE LENGTH

,J2~Lanation_.!..
sion has
len9th.

A relocatable expres­
been used to specify

IET005 S-TYPE CONSTANT IN LITERAL

IETOO 6 INVJl,LID ORIGIN

Explanation~ The location counter
has been reset to a value less than
the starting address of the control
section.

APPENDIX A: DIAGNOSTIC MESSAGES

IET007 LOCATION COUNTER ERROR

Explanation: The location counter
has exceeded 231.-1 .•

Severity Code: 12

IET008 INVALID DISPLACEMENT

Explanation: The displacement in an
explicit address does not fall with­
in the range of 0 to 4095.

severity Code: 8

IET009 MISSING OPERAND

Severity Code: 12

IETOlO INCORRECT REGISTER SPECIFICATION

Explanation: The value specifying
the register is greater than 15, or
an odd register is specified where
an even register is required.

Severity Code: 8

IETOll SCALE MODIFIER ERROR

Explanation: The scale modifier is
out of range.

Severity Code: 8

IET012 RELOCATABLE SCALE MODIFIER

Explanation: A relocatable expres­
sion has been used to specify the
scale modifier.

severity Code: 8

IET013 EXPONENT MODIFIER ERROR

Explanation: The exponent is not
specified as an absolute expression
or is out of range.

Severity Code: 8

IET001-IET013 27

IET014 RELOCATABLE EXPONENT MODIFIER

Explanation: A relocatable expres­
sion has been used to specify the
exponent modifier.

severity Code: 8

IET015 INVALID LITERAL USAGE

Explanation: A literal is used
illegally. For example, it speci­
fies a receiving field or a reg­
ister.

severity Code: 8

IET016 INVALID NAME

Explanation: A name entry is incor­
rectly specified. For example, it
contains more than 8 characters, it
does not begin with a letter, or has
a special character imbedded.

severity Code: 8

IET017 DATA ITEM TOO LARGE

Explanation: The constant is too
large for the data type or for the
explicit length.

Severity Code: 8

IET018 INVALID SYMBOL

Explanation: The symbol is speci­
fied invalidly. For example, it is
longer than 8 characters.

severity Code: 8

IET019 EXTERNAL NAME ERROR

Explanation: A CSECT and DSECT
statement have same name, or a sym­
bol used more than once in EXTRN.

Severity Code: 8

IET020 INVALID IMMEDIATE FIELD

28

Explanation: The value O·f the
immediate operand exceeds 255, or
the operand requires more than one
byte of storage.

Severity Code: 8

IET021 SYMBOL NOT PREVIOUSLY DEFINED

Severity Code: 8

IET022 ESDTABLE OVERFLOW

Explanation: The combined number of
control sections and dummy sections
plus the number of unique symbols in
EXTRN statements and V-type con­
stants exceeds 255. If overflow is
due to a V-type constant, message
IET025 will also be issued.

Severity Code: 12

IET023 PREVIOUSLY DEFINED NAME

Explanation: The symbol
appears in the name field
appeared in the name field
previous statement.

Severity Code: 8

IET024 UNDEFINED SYMBOL

which
has

of a

Explanation: A symbol being ref­
erenced has not been defined in the
program.

Severity Code: 8

IET025 RELOCATABILITY ERROR

Explanation: A relocatable or com­
plex relocatable expression is spec­
ified where an absolute expression
is required, or an absolute expres­
sion or complex relocatable expres­
sion is specified where a relocata­
ble expression is required.

Severity Code: 8

IET026 TOO MANY LEVELS OF PARENTHESES

Explanation: An expression contains
more than 5 levels of parentheses.

Severity Code: 12

IET027 TOO MANY TERMS

Explanation: More than 16 terms are
specified in an expression.

severity Code: 12

IET028 REGISTER NOT USED

Explanation: A register specified
in a DROP statement is not currently
in use.

IET029 CCW ERROR

Explanation: Bits 37-39 of the CCW
are set to nonzeroG

IET030 INVALID CNOP

Explanation: The operands are an
invalid pair.

IET031 UNKNOWN TYPE

Explanation: Incorrect type desig­
nation in a DC, DS or literal.

IET032 OP-CODE N01' ALLOWED TO BE GENERATED

IET033 ALIGNMENT E:RROR

ExplanationJ_ Referenced address is
not alig·ned to the proper boundary
for this instruction.

IET034 INVl~LID OP-CODE

Explanation~ .syntax
than 8 characters
field; not followed by
first card, etc.

IET035 ADDRESSABILITY ERROR

error: more
in operation

a blank on

Explanation~ The referenced address
does not fall within the range of a
USING instruction.

IET036 NO OPERAND ALLOWED

severity Code: 4

IET037 MNOTE STATEMENT

Explanation: This indicates that an
MNOTE statement has been generated
from a macro definition. The text
and severity code of the MNOTE
statement will be found in line in
the listing.

IET038 ENTRY ERROR

Explanation: A symbol in the oper­
and of an ENTRY statement appears in
more than one ENTRY statement, or is
undefined, or is defined in a dummy
section or in blank common, or is
equated to a symbol defined by an
EXTRN statement, or there are more
than 100 ENTRY operands in the pro­
gram.

Severity Code: 8

IET039 INVALID DELIMITER

Explanation:
caused by:

This message can be

1. Operands not separated by com­
mas in assembler or machine
instructions.

2. Last operand not followed by a
blank.

3. Invalid sequence of operations
and delimiters.

4. Incomplete exponent specifi­
cation in DC or DS statement.

5. No data item specified between
delimiters in a DC or DS state­
ment.

6. No right parenthesis after an
explicit base register expres­
sion in a s-type constant.

7. Absence of comma, blank, or
left or right parenthesis where
required in a machine instruc­
tion operand.

Severity Code: 12

IET040 STATEMENT TOO LONG

Severity Code: 12

IET014-IET040 29

IET041 UNDECLARED VARIABLE SYMBOL

Explanation: A variable symbol is
not declared in a SET symbol state­
ment or in a macro-instruction pro­
totype statement.

Severity Code: 8

IET042 SINGLE TERM LOGICAL EXPRESSION IS
NOT A SETB SYMBOL

Explanation: The single term logi­
cal expression has not been declared
as a SETB symbol.

severity Code: 8

IET043 SET SYMBOL PREVIOUSLY DEFINED

severity Code: 8

IET044 SET SYMBOL USAGE INCONSISTENT WITH
DECLARATION

Explanation: A set symbol has been
declared as undimensioned, but is
subscripted, or has been dimen­
sioned, but is unsubscripted.

Severity Code: 8

IET045 ILLEGAL SYMBOLIC PARAMETER

Explanation: The system variable
symbol is used in a macro­
instruction prototype statement.

Severity Code: 8

IET046 AT LEAST ONE RELOCATABLE Y-TYPE
CONSTANT IN ASSEMBLY

Severity Code: 4

IET047 SEQUENCE SYMBOL PREVIOUSLY DEFINED

severity Code: 12

IET048 SYMBOLIC PARA.METER PREVIOUSLY
DEFINED OR SYSTEM VARIABLE SYMBOL
DECLARED AS SYMBOLIC PARAMETER

Severity Code: 12

IET049 VARIABLE SYMBOL MATCHES A PARAMETER

severity Code: 12

30

IETOSO INCONSISTENT GLOBAL DECLARATIONS

Explanation: A global SET variable
symbol defined in more than one
macro-definition, or defined in a
macro-definition and in the source
program, is inconsistent in SET type
or dimension.

Severity Code: 8

IET051 MACRO DEFINITION PREVIOUSLY DEFINED

Explanation: Prototype operation
field is the same as a machine or
assembler instruction or a previous
prototype.

Severity Code: 12

IET052 NAME FIELD CONTAINS ILLEGAL SET SYM­
BOL

Explanation: SET symbol
field does not correspond
statement type.

Severity Code: 8

IET053 GLOBAL DICTIONARY FULL

in
to

name
SET

Explanation: The global dictionary
is fulL, assembly terminated. See
"Dictionary Size and source State­
ment Complexity."

Severity Code: 12

IET054 LOCAL DICTIONARY FULL

Explanation: The local dictionary
is full, assembly terminated. See
"Dictionary Size and Source State­
ment Complexity."

Severity Code: 12

IET055 INVALID ASSEMBLER OPTION(S} ON THE
EXECUTE CARD

Severity Code: 8

IET056 ARITHMETIC OVERFLOW

Explanation: The
final result of
exceeded 231-1.

Severity Code: 8

intermediate or
an expression has

IET057 SUBSCRIPT EXCEEDS MAXIMUM DIMENSION

Explanation: SYSLIST or symbolic
parameter subscript exceeds 200, or
is negative, or zero., or SET symbol
subscript exceeds dimension.

Sev·eri ty Code: 8

IET058 ILL,EGAL LTORG

Explanation: LTORG appears in a COM
or DSEC'!' control section.

IET059 UNDEFINED SEQUENCE SYMBOL

IET060 ILLEGAL ATTRIBUTE NOTATION

Explanation: L', S', or I' request­
ed for a parameter whose type attri­
bute dofes not allow these attributes
to be riequested.

IET061 ACTR COUNTER EXCEEDED

IET062 GENERATJ!:D STRING GREATER THAN 255
CHARACTl~RS

IET063 EXPRESSION 1 OF SUBSTRING IS ZERO OR
MINUS

IET064 EXPRESSION 2 OF SUBSTRING IS ZERO OR
MINUS

IET065 INVALID OR ILLEGAL TERM IN ARITHMET­
IC JE:XPRESSION

Exp.lana ti or!.!_ The value of
symbol used in an arithmetic
sion is not composed of
digits; or, the parameter is
self-defining term.

a SETC
expres­
decimal
not a

IET066 UNDEFINED OR DUPLICATE KEYWORD OPER­
AND OR EXCESSIVE POSITIONAL OPERANDS

Explanation: The same keyword oper­
and occurs more than once in a
macro-instruction, or a keyword is
not defined in a prototype state­
ment; or, in a mixed mode macro­
instruction, more positional
operands are specified than are
specified in the prototype.

severity Code: 12

IET067 EXPRESSION 1 OF SUBSTRING GREATER
THAN LENGTH OF CHARACTER EXPRESSION

Severity Code: 8

IET068 GENERATION
OVERFLOWED

TIME DICTIONARY AREA

Explanation: See "Dictionary Size
and Source Statement Complexity."

Severity Code: 12

IET069 EXPRESSION 2 OF SUBSTRING GREATER
THAN 8 CHARACTERS

Severity Code: 8

IET070 FLOATING POINT CHARACTERISTIC OUT OF
RANGE

severity Code: 12

IET071 ILLEGAL OCCURRENCE OF LCL, GBL OR
ACTR STATEMENT

Explanation: LCL,
statement not in
program.

Severity Code: 8

GBL,
proper

or ACTR
place in

IET072 ILLEGAL RANGE ON ISEQ STATEMENT

Severity Code: 4

IET073 ILLEGAL NAME FIELD

Explanation: Either a
which requires a name has
ten without a name, or a
has a name which is not
have a name.

Severity Code: 8

statement
been writ­
statement

allowed to

IET041-IET073 31

IET074 ILLEGAL STATEMENT IN COPY CODE OR
SYSTEM MACRO

Severity Code: 8

IET075 ILLEGAL STATEMENT OUTSIDE OF A MACRO
DEFINITION

Severity Code: 8

IET076 SEQUENCE ERROR

Severity Code: 12

IET077 ILLEGAL CONTINUATION CARD

Explanation: Either there are too
many continuation cards., or there
are nonblanks between the begin and
continue columns on the continu~tion
card.

Severity Code: 8

IET078 MACRO MNEMONIC OP-CODE TABLE OVER­
FLOW

Explanation: See •oictionary Size
and Source Statement Complexity.•

Severity Code: 12

IET079 ILLEGAL STATEMENT IN MACRO DEFINI­
TION

Explanation: This operation is not
allowed within a macro-definition.

severity Code: 8

IET080 ILLEGAL START CARD

Explanation: Statements affecting
or depending on the location counter
have been encountered before a START
statement.

Severity Code: 8

IET081 ILLEGAL FORMAT IN GBL OR LCL STATE­
MENTS

32

Explanation: An operand is not a
variable symbol.

severity Code: 8

IET082 ILLEGAL DIMENSION SPECIFICATION IN
GBL OR LCL STATEMENT

Explanation: Dimension is other
than 1 to 255.

Severity Code: 8

IET083 SET STATEMENT NAME FIELD NOT A VARI­
ABLE SYMBOL

Severity Code: 8

IET084 ILLEGAL OPERAND FIELD FORMAT

Explanation: Syntax invalid; e.g.,
AIF statement operand does not start
with a left parenthesis, or the
operand of an AGO statement is not a
sequence symbol, etc.

Severity Code: 8

IET085 INVALID SYNTAX IN EXPRESSION

Explanation: Invalid delimiter, too
many terms in expression, too many
levels of parentheses, or two opera­
tors in succession.

Severity Code: 8

IET086 ILLEGAL USAGE OF SYSTEM VARIABLE
SYMBOL

Explanation: A system variable sym­
bol appears in the naroe field of a
SET statement, or is used in a mixed
mode or keyword macro-definition~ or
is declared in a GBL or LCL state­
ment, or is an unsubscripted
&SYSLIST in a context other than
N'&SYSLIST.

Severity Code: 8

IET087 NO ENDING APOSTROPHE

Explanation: There is an unpaired
apostrophe in the statement.

Severity Code: 8

IET088 UNDEFINED OPERATION CODE

Severity Code: 12

IET089 INVALID ATTRIBUTE NOTATION

Explanation: Syntax error; e.g.,
the ar9umEmt of the attribute ref­
ereirice is not a symbolic parameter
inside a macro-definition.

Sev~~ri ty C<>de: 8

IET090 INVl~LID SUBSCRIPT

Explanatioru. Syntax error; e.g.,
double subscript where single sub­
script is required or vice versa, no
right panmthesis after subscript,
etc ..

Severity Code: 8

IET091 INV1\.LID SEiiF-DEFINING TERM

Explanation: Value is too large or
is inconsistent with the data type.

IET092 INVl~LID FORMAT FOR VARIABLE SYMBOL

Explanatioru_ The first character
aftE~r the ampersand is not alphabet­
ic or the variable symbol contains
more than 8 characters. (A single
ampE~rsand in a field or operand is
assumed to start a variable symbol.)

IET093 UNB1!~LANCED PARENTHESES OR EXCESSIVE
LEF'l~ PARENTHESES

SevE~ri ty Code: 8

IET09 4 INVJ~LID OR ILLEGAL NAME OR OPERATION
IN PROTOTYPE STATEMENT

IET095 MESSAGE NOT DEFINED FOR THIS ERROR
CODE:

IET096 MACFlO-INSTRUCTION OR PROTOTYPE OPER­
AND EXCEEDS 255 CHARACTERS IN LENGTH

IET097 INVALID FORMAT IN MACRO-INSTRUCTION
OPERAND OR PROTOTYPE PARAMETER

Explanation:
caused by:

This message can be

1. Illegal "="

2. A single "&" appears in the
standard value assigned to a
prototype keyword parameter.

3. First character of a prototype
parameter is not"&".

4. Prototype parameter is a sub­
scripted variable symbol.

5. Invalid usage of alternate for­
mat in prototype statement,
e.g •I

10 16 72

PROTO &A, &B,

or

PROTO &A, &B, x

&C

6. Unintelligible prototype param­
eter, e.g., "&A*" or "&A&&,"
etc.

7. Illegal (non-assembler) charac­
ter appears in prototype param­
eter.

Severity Code: 12

IET098 EXCESSIVE NUMBER OF OPERANDS OR PAR­
AMETERS

Explanation: Either the prototype
has more than 200 parameters or, the
macro-instruction has more than 200
operands.

Severity Code: 12

IET099 POSITIONAL MACRO-INSTRUCTION OPER­
AND, PROTOTYPE PARAMETER OR EXTRA
COMMA FOLLOWS KEYWORD

severity Code 12

IETlOO STATEMENT COMPLEXITY EXCEEDED

Explanation: See "Dictionary Size
and Source Statement Complexity."

Severity Code: 8

IET074-IET100 33

IET101 EOD ON SYSIN

Explanation: No END card before
delimiter (/*) statement.

Severity Code: 12

IET102 INVALID OR ILLEGAL ICTL

Explanation: The operands of the
ICTL are out of range, or the ICTL
is not the first statement in the
input deck.

severity Code: 16

IET103 ILLEGAL NAME IN OPERAND FIELD OF
COPY CARD

Explanation: Syntax error; e.g.,
symbol has more than 8 characters,
or has an illegal character.

Severity Code: 12

IET104 COPY CODE NOT FOUND

Explanation: The operand of a COPY
statement specified COPY text which
cannot be found in the library.

Severity Code: 12

IET105 EOD ON SYSTEM MACRO LIBRARY

34

Explanation: MEND statement not in
macro definition.

Severity Code: 12

IET106 MESSAGE NOT DEFINED FOR THIS ERROR
CODE

IET107 INVALID OPERAND

Explanation: Unrecogni·zable operand
in PRINT statement.

Severity Code: 4

IET108 PREMATURE EOD

Explanation: Indicates an internal
assembler error; should not occur.

Severity Code: 16

IET109 PRECISION LOST

Severity Code: 8

The listi:ng shown in this appendix
results from a:ssembling the source program
documented in Appendix H of the Assembler
Language publication. For easy reference
to the explanations that appear in the
section "The ABsembler Listing," the head­
ings on th1e listing are numbered.

APPENDIX B: PROGRAM LISTING

Since there were no errors in the assem-.
bly, a diagnostic list was not produced.
Each of the following pages represents one
printer-produced listing page.

Appendix B: Program Listing 35

G) © 0 © EXTERNAL SYMBOL DICTIONARY PAGE
SYMBOL TYPE ID ADDR LENGTH LO ID

SAMPLR SD Cl 000000 000388

36

c~ ©
HAM SllMPLE PROGRAM

® @ @
LOC ODJECT COOE AOORl AODR2

000000

000000 41'F 0 FOOA OOOOA

@ @
STMT SOURCE STATEMENT

2
3 •
4 •
5 •
6
7
8 ••
9 ••

10 ·*
11
12 ·*
13 • *
14 ·*
15
16 ••
17 ·*
18 • *

PRINT DATA

THIS IS THE MACRO DEFINITION

MACRO
MOVE &TO,&FROM

DEFINE SETC SYMBOL

LCLC &TYPE

CHECK NUMBER OF OPERANDS

AIF (N'&SYSLIST NE 21.ERRORl

CHECK TYPE ATTRIBUTES OF OPERANDS

19 AIF IT 1 &TO NE T1 &FROMl.ERROR2

@)
01HB66

20 AIF
21 AIF
22 AIF

(J•&TO EQ •c• OR T1 &TO EQ 1 G1 OR T'&TO EQ 'K'l.TYPECGK
{T'&TO EQ 1 D1 OR T1 &TO EQ 'E' OR T1 &TO EQ 'H'l.TYPEOEH
CT•&TO EQ 'F'l.MOVE

23 AGO .ERROR3
24 .TYPEOEH ANOP
25 ••
26 ·*
27 ••
28 &TYPE
29 .MOVE
30 •
31
32
33
34 ••
35 ··*
36 ••

ASSIGN TYPE ATTRIBUTE TO SETC SYMBOL

SETC T' &TO
ANOP
NEXT TWO STATEMENTS GENERATED FOR MOVE MACRO
l&TYPE 2, &FROM
ST&TYPE ;z,&TO
MEX IT

CHECK LENGTH ATTRIBUTES OF OPERANDS

37 .TYPECGK AIF (L'&TO NE L1 &FROM OR L'&TO GT 2561.ERROR4
38 * NEXT STATEMENT GENERATED FOR MOVE MACRO
39 MVC &TO, &FROM
40 MEX IT
41 ••
42 ••
43 ·*
44 .ERRORl
45
46 .ERROR2
47
48 .ERROR3
49
50 .ERROR4
51
52 *
53 *
54 *

ERROR MESSAGES FOR INVALID MOVE MACRO INSTRUCTIONS

MNOTE
MEX IT
MNOTE
MEX IT
MNOTE
MEX IT
MNOTE
MENO

l,'IMPROPER NUMBER OF OPERANDS, NO STATEMENTS GFNERATEO'

l,'OPERAND TYPES DIFFERENT, NO STATEMENTS GENERATED'

lo' IMPROPER OPERAND TYPES, NO STATEMENTS GENERATED'

l,'IMPROPER OPERAND LENGTHS, NO STATEMENTS GENERATFO•

MAIN ROUTINE

55 SAMPLR CSECT
56 BEGIN SAVE 114,121,,•
57•BEGIN B 10(0,151 BRANCK AROUND ID

®
PAGE

@
U2R/66

SAM'®07
SAMPLOO"I
SAMPLl)04
S AMPLf)Olj
SAMPL01)6
SAMPL007
SAMPLOOR
SAMPLOOQ
SAMPL'HO
SAMPLOl I
SAMPLOl 2
SAMPL013
SllMPL'114
SAMPL"ll5
SAMPL"ll6
SAMPLl'll 7
SAMPLOlA
SAMPLOlQ
SAMPLO?!"I
SAMPL'l?I
SllMPVP?
SAMPl'123
SAMPL024
SAMPL025
SAMPL0:?6
SAMPL0?7
SAMPL'l2A
SAMPL02<1
SAMPL'l30
SAMPL'l"H
SAMPL'l"I:?
SllMPlll33
SAMPLll34
SAMPlll"l5
SAMPL""l6
SAMPL'137
SAMPL'131'l
SAMPLll'IQ
SllMPlll4n
SAMPtn4J
SAMPL1"14?
SAMPL043
SAMPL044
SAMPL"l45
SAMPlll46
SAMPL047·
<;AMPL'l4R
SAMPL04Q
SAMPLn5'1
SAMPLl'l51
SAMPL"l52
SAMPlll5"1
<;AMPLn54
SAMPL055
<;AMPL'l'if,

Appendix B: Program Listing 37

38

0 ®
t.XAM

@
SAMPLE PROGRAM

® @
UC OBJECT CCiDE ADDRl AODll2

COOCC4 05
CCCCC5 C2C5C7CS05
COOOCA 9CEC OOOC
COCCCE C5CC
000010
COOOlC 5COC CCBE
OOOOl't 9651 C3H
cooooo
CCCCU 45E:O COBE
COOOlC 9180 CCBC
OCOC2C 4110 COBC
000000

ooocc

ooooc

oooca
003AO

OOOCE

oooco

C00021t D200 1003 5CC8 00003 00008

~0002A 02C2 lOCC 5CCS 00000 00-009

000C3C 5t2C 5CCC
000031t 502C 1CC4
00003t fl56 CCCli
00003C 05Ef C24C CCfO 00250
000042 41iC CC7C
000046 055f C33C ClEO 00340
OOOC4C 4110 C07C

00005C
000050 lt51C CC6C
000054 CC27
OOOC5t CCOO
000058 ClE2E:2C504C203C5
OOOO(IC 0940E2Cl040703C5
OCCOtli 4C070S06C709Cl04
000010 4CE2E4C3C3C5E2E2
CCOOH (.(lf't03
OOOC78
COOCiC
COOC7C OA23
COOC1E 5800 COBB

ci;oce2 seec occ:c
ccooa6 41FC cooc:
C:CCC8A 07FE

coocac
c;cocac 4510 ccAA
COQ.JSC OC29
OOOC92 CCCC
C00094 C.l.E2E2C5C4C203C5
OOCOSC 0940E2ClC40103C5
COOOA4 4C07DSC6C709ClD4
OOCOAC 4CE't05E2E4C3C3C5
C00084 E2E2C6E't03

ooooc
00004
00018
COlOO
0000c
OClfO
oooac

0001C

OOOC8

ooooc
ccooo

OOOBA

0
PAGE

@ @) @ @
SH41 SOuRCE STATEMU.T OlfEB66 2/28/66

5B+
59+
60+
61
62
63
64
65
66 MORE
o7
68
69
70
71+•
72+
73
74+•
75+
76
11+•
1B+
79+
BO USJUOP
Bl
82
83
84
85
86+
81+
88+
89+
90+

9l+IHB0005
92+lHB0005A
93·•
9't EXIT
95
96+
97+
96+
99 •

100 NOTRIGHT
101+
102H1DTRIGHT
103+
104+
105+

c;c
cc
STM
BAlR
USING
ST
LM
USING
fAl
TH
tlG
USING
MO\IE
NEXT
M\IC
"10\IE
NEXT
f',\IC
MO\IE
NEXT
L
ST
BXlE
cu:;
Bf-IE
CLC
BNE
11TO
CNOP
SAL
DC
cc
DC

Al1'51
Cl5 1 BEGIN' IOENTIFIER
l4rl2112,131 SAVE REGISTERS
Rl2o0 ESTABLISH ADDRESSABILITY Of PROGRAM
•oR12 AND TELL THE ASSEMBLER WHAT BASE TO USE
13oSA\IE13
R5 1 R7r=A(llSTAREAol61LISTENDI LOAD LIST AREA PARAMETERS
llSTrR5 REGISTER 5 POINTS TO THE LIST
Rl4 0 SEARCH FIND LIST ENTRY IN TABLE
SWITCH1NONE CHECK TO SEE IF NAME WAS FOUND
f'IOTTHERE BRANCH If NOT
TABLE,Rl REGISTER 1 NOW POINTS TO TABLE ENTRY
TSWITCH1LSWITCH MOVE FUNCTIONS

STATEMENT GENERATED FOR MOVE MACRO
TSlilTCHrLSWITCH
TNUMBERtlNUMBER FROM LIST ENTRY

STATEMENT GENERATED FOR HOVE MACRO
Tf'IUMBER,l.NUMBER
T ADDRESS, LAODRESS TO TABLE ENTRY

hO STATEMENTS GENERATED FOR MO\IE MACRO
2 1 lAOCRESS
21TADDRESS
R5 1 R6 0 MlJRE LOOP THROUGH THE LI ST
JESTTABLC2401oTABlAREA
NCTRIGliT
TESTLISTl961,LISTAREA
NOTRIGliT
'ASSEMBLER SAMPLE PROGRAM SUCCESSFUL'
0,4
l 1 lliB0005A BRANCH AROUND MESSAGE
AL2CIHB0005-•I MESSAGE LENGTH
AL2(01
c• ASSEMBLER SAMPLE PROGRAM SUCCESSFUL' MESSAGE

EQU *
CS Oh
SVC 35 ISSUE SVC
A. Rl3oSAVE13
REfURN (14ol211RCsO
A.M 14ol2rl2(131 RESTORE THE REGISTERS
A.A 1510(0,0J l.OAD RETURN CODE
BR 14 RETURN

wTO 1 ASS EMBLER SAMPLE PROGRAM UNSUCCESSFUL 1
CNOP 014
fAL lolhB0007A BRANCH AROUND MESSAGE
OC Al21 ·it;B0007-•J MESSAGE LENGTH
CC Al2(0J
DC C1 ASSEMBLER SAMPLE PROGRAM UNSUCCESSFUL' MESSAGE

@
SAMPL057
SAMPL058
SAMPL059
SAMPL060
SAMPL061
SAMPL062
SAMPL063
SAMPL064
SAMPL065
SAMPL066·

SAMPL067

SAMPL068

SAMPL069
SAMPL070
SAMPL071
SAMPL072
SAMPL073
SAMPL074

SAMPL075
SAMPL076

SAMPL077
SAMPL078

0
HAM S.AMPLE PROGRAM PAGE

® ® @ @ @ ® @
LOC OBJECT CODE ADDRl ADDR2 STMT SOURCE ST AT EM ENT OlFFB66 7/2f'i/66

OOOOB9 106+IHB0007 EQU •
OOOOBA 107+lHB0007A OS OH
OOOOBA Q,A23 lOS+ SVC 35 ISSUE SVC @
OOOOBC 47FO C06E 0007E 109 s EXIT SAMPL079
ooooco %SO 500S 00008 110 NOTT HERE OJ LSW ITCH, NONE TURN ON SWITCH IN ll ST ENTRY SAMPLPSO
OOOOC4 47FO C028 00038 111 B LISTLOOP GO BACK AND LOOP SAMPL'l81
oooocs 0•0000000 112 SAVE13 DC f'O' SAMPLOR2
oooocc OIJ 113 SWITCH DC x•oo• S A"'IPLOR3
000080 114 NONE EQU x•so• SAMPLOR4

115 • SAMPL085
116 • BINARY SEARCH ROUTINE SAMPL086
117 • SAMPLO!l7:

OOOOCD OIJ
OOOOCE 9<t7F COBC ooocc llS SEARCH NI SW ITCH, 255-NONE TURN OFF NOT FOUND SWITCH SAMPLOBR
000002 9;913 C39C 003AC 119 LM Rl,R3,=F 1 128t4tl2S' LOAD TABLE PARAMETERS SAMPLORq
000006 4111 COEO OOOFO 120 LA Rl, f ABLAREA-16(Rl I GET ADDRESS OF MIDDLE ENTRY SAMPLll90
OOOODA 81330 0001 00001 121 LOOP SRL R3tl DIVIDE INCREMENT RY 2 SAMPLOqt
OOOODE D~rn1 5000 lOCS 00000 oooos 122 CLC LNAME,TNAME COMPARE LIST ENTRY WITH TABLE ENTRY SAMPL092
OOOOE4 4720 COE4 OOOF4 123 BH HIGHER BRANCH IF SHOULD BE HIGHFR IN TABLE SAMPLnq1
OOOOES 0'78E 124 BCR S,Rl4 EX IT IF FOUND SAMPLQq4

125 SR Rl,R3 OTHERWISE IT IS LOWER f N Tl-IE TABLE XSAMPL095
OCIOOEA 1Ul3 SO SUBTRACT INCREMENT SAMPL')q6
OOOOEC 4620 COCA OOODA 126 BCT R2,LOOP LOOP 4 TIMES SAMPL097
OOOOFO 4·rFO COEA OOOFA 127 8 NOT FOUND ARGUMENT IS NOT IN THE TABLF SAMPLOqB
OCIOOF4 1Al3 128 HIGHER AR Rl,R3 ADD INCREMENT SAMPLM9
OOOOF6 4620 COCA OOODA 129 BCT R2,LOOP LOOP 4 TIMES SAMPUOn
OCIOOFA 96SO COBC ooocc UIO NOT FOUND 01 SWITCH,NONE TURN ON NOT FOUND SWITCH SAMPLl'Ol
OOOOFE 0·1FE 131 BR Rl4 EXIT SAMPLl07

132 • S AMPL 1 01
133 • THIS IS THE TABLE SAMPL104
134 • SA'4Pll05

000100 135 OS OD SAMPL 106
000100 01)00000000000000 136 TABLAREA DC XLS 1 0 1 ,CLS 1 ALPHA' SAMPL107
000108 C103D7C8Cl404040
0(10110 0000000000000000 137 DC XLS'0',CL8 1 BETA' SAMPL tnR
OOOilS C;ZC5E3Cl40404040
000120 01)00000000000000 13S DC XL8 1 0 1 ,CL8 1 DELTA 1 SAMPLlOq
OCI012S C•tC503E3C1404040
000130 01)00000000000000 139 DC XLS 1 0 1 , CL8 1 EPS ILON 1 SAMPlllO
000138 C!>D7E2C9D306D540
000140 01)00000000000000 140 DC XLS'O'rCLS'ETA' SAMPL Ill
00014S C5E3Cl4040404040
000150 01)00000000000000 141 DC XLS'O',CLS 1 GAMMA 1 SAMPi.117
000158 c·rclD404Cl404040
OCIO 160 0000000000000000 142 DC XLS 1 0 1 ,CLS' IOTA' SAMPll B
000168 C906E3Cl40404040
000170 0000000000000000 143 DC XLS 1 0 1 oCL8 1 KAPPA 1 SAMPlll4
000178 o;!ClD707Cl404040
OOOlSO 0000000000000000 144 DC XLS 1 0 1 ,CLS 1 LAMBOA 1 SAMPll l"i
OOOlSS OJC 104C2C4C 14040
000190 01)00000000000000 145 DC XLS 1 0 1 rCLS 1 MU' SAMPL l lfi
000198 04E4404040404040
OOOlAO 0000000000000000 146 DC XLS 1 0 1 ,CLS 1 NU 1 SAMPll 17
0001A8 D!iE4404040404040
OCIOlBO 0000000000000000 147 DC XL8'0'1Cl8 1 0MICRON 1 SAMPLtlB
000188 D604C9C30906D540

Appendix B: Program Listing 39

0 0 0
EXAM SAMPLE PROGRAM PAGE 4

@ ® ® @ @ @ @
LOC OBJECT CODE ADDRl AODR2 STMT SOURCE STATEMENT OlFEB66 ~12~66

OOOlCO 0000000000000000 l4S oc XLS 1 0 1 ,CLS 1 PHI I SAMPL1 l9
OOOlCS 0 7C SC 94 C40404040
000100 0000000000000000 149 DC XLS•o•,CLS'SIGMA' SAMPL120
OOOlDS E2C9C 7D4Cl404040
OOOlEO 0000000000000000 150 DC XLS• o• ~CLS 1 ZETA' SAMPll2t
OOOlES E9C 5E 3C 140404040

151 • SAMPL 122
152 • THIS IS THE LIST S AMPLl 23
Pi:! • SAMPll24

OOOlfO D3C 1D4C2C4C 14040 154 LIS TARE A DC CLS 8 LAMBDA 1 ,X 1 0A 8 ,FL3'29 1 ,A(8EGINI SAMPL125
000lf8 OAOOOOlOOOOOOOOO
000200 E9C5E3Cl40404040 155 oc CLS 1 ZETA' ,x•o5• wfl3'5' ,Al LOOP I SAMPll26
000208 050000050000000A
000210 E3C8C5E3Cl404040 156 DC CL8'THETA•,x•o2•,FL3'45',Al8EGINI SAMPL127
00021S 0200C02000000000
000220 E3ClE44040404040 157 DC CLS 1 TAU•,x•oo•,FLJ•o•,A(l) SAMPll 2S
000228 OOOOOOOCOOOOOOOl
000230 03C9E2E340404040 15S DC CLS 1 LIST 1 ,X 1 lf'1fl3 8 465 1 ,AIOI SAMPll29
000238 lFOOOlDlOOOOOOOO
·000240 Cl03D 7C 8Cl404040 159 LIS TEND oc Cl8' ALPHA•,x•oo•,FL3 1 l' ,A(1231 SAMPL 130
000248 0000000100000078

160 • SAMPll31
161 • THIS IS THE CONTROL TABLE SAMPL132
162 • <;AMPlt33

000250 163 OS OD <;AMPll 34
000250 0000010000000078 164 TESTTA8L DC FL3 1 1•,x•oo•,A(l231,CL8 1 ALPHA 1 SAMPL135
000258 Cl0307C 8Cl404040
000260 0000000000000000 165 DC XL8 8 0 1 1CL8 1 8ETA 1 <;AMPll36
000268 C2C5E3Cl40404040
000270 0000000000000000 166 DC XLS 1 0 1 , Cl8 1 DEL TA' SAMPL137
00027S C4C 5D3E3C 1404040
000280 oooooococooooooo 167 DC XL8 1 0 1 1CLB•EPSILON 1 SAMPLl38
000288 C507E2C903060540
000290 ooooooocoooooooo 168 DC XL8 1 0 1 ,CL8 1 ETA' SAMPL139
000298 i:5E3Cl4040404040
0002AO 0000000000000000 169 DC Xl8 8 0 1 ,Cl8'GAMMA 1 SAMPL140
0002A8 C7ClD404Cl404040
000280 0000000000000000 170 oc x1e•o•,c10 1 10TA 1 SAMPL14l
000288 C906E3Cl40404040
0002CO 0000000000000000 171 DC XL8 1 0 1 ,CL8 1 KAPPA 1 SAMPLl4~

cioo2c8 02Cl07D1C 1404040
0002DO OOOOlDOAOOOOOOOO 1 72 DC Fl31 29 1 ,x 1 0A 1 ,AIBEGINl,CL8'LAM8DA' <;AMPL143
000208 D3C l04C2C4C 14040
0002EC 0000000000000000 173 DC XLB 1 0 1 ,CL8 1 MU 1 SAMPL l.44
0002E8 D4E4404040404040
0002FO 0000000000000000 174 DC XL8 1 0 1 ,CL8 1 NU 1 SAMPLt45
0002F8 D 5E4404040404040
000300 0000000000000000 175 oc x18 1 0•,c1a 1 0MICRON' SAMPL 146
000308 0604C9C3D9D6D540
000310 ocooocoooooooooo 176 DC Xl8 1 0 1 ,CL8 1 PHI' SAMPL 147
000318 D7C8C94040404040
000320 0000000000000000 177. DC XL8 1 0 1 ,CL8'SIGMA 1 SAMPL 148
000328 E2C9C7D4Cl404040
000330 000005 05000000DA 178 DC FL3 1 5•' x I 05 1 'Al LOOP J ,CL8 1 ZETA I SAMPLl49
000338 E9C5E3Cl40404040

179 • <;AMPll50

40

(Z) © G)
EXAM SAMPLE PROGRAM PAGF

@ ® @ @ @ @ @
LOC OBJECT CODE ADDRl AODR2 STMT SOURCE STATEMENT E 01FF.R66 2/28/66

180 * THIS IS HtE CONTROL ll ST SAMPLl'H
181 • SAMPtt57

000340 03Cl04C2C4Cl4040 182 TESTllST DC CL8 1 LAM80A 1 ,X 1 0A 1 ,FL3 1 29',A(8EGINI SAMPLl53··
000348 OAOOOOlOCOOOOOOO
000350 E9C5E3Cl40404040 183 DC CL8 1 ZETA 1 ,x•o5•,FL3 1 5 1 ,A(LOOPI SAMPL154
000358 05000005000000DA
000360 E3C8C5f.3Cl404040 184 DC CL8 1 THETA',X'82 1 ,FL3 1 45 1 ,Al8EGINI SAMPL155
000368 8200002000000000
000370 E3C 1E4't040404040 185 DC CL8 1 TAU 1 ,X'80 1 ,FL3 1 0 1 ,AC11 SAMPL156
000378 8000000000000001
000380 03C9E2E34040401t0 186 DC CL8 1 LIST 1 ,X 1 9F 1 ,FL3'465 1 ,AIOI SAMPL157
000388 9F00010100000000
000390 Cl0307C8Cl404040 187 DC CL8. ALPHA' ,x• oo•. Fl3' 1' 'Al 123' SAM~l5B
000398 000000010000007B

188 * SAMPL159
189 • THESE ARE THE SYMBOLIC REGISTERS SAMPL160
190 • SAMPL161

000000 191 RO EQU 0 SAMPL 162
000001 192 Rl EQU 1 SAMPL\63
000002 193 R2 EQU 2 SAMPL 164
000003 194 R3 EQU 3 SAMPll65
000005 195 R5 EQU 5 SAMPL 166
000006 196 R6 EQU 6 SAMPL167
000007 197 R7 EQU 7 SAMPLl68
oooooc 198 Rl2 EQU 12 SAMPL169
000000 199 Rl3 EQU 13 SAMPLl 70
OOOOOE 200 Rl4 EQU 14 SAMPll 7t
OOOOOF 201 Rl5 EQU 15 SAMPL172

202 * SAMPll n
203 • THIS IS TttE FORMAT DEFINITION OF LIST ENTRYS SAMPll 74
204 * SAMPLl 75

000000 205 LIST OSECT SAMPL l 76
000000 206 LNAME OS CL8 SAMPL177
000008 207 LSWITCH OS c SAMPLt 7R
000009 208 LNUMBER OS fl3 SAMPll 79
oooooc 209 LAOORESS OS F SAMPL 181"1

210 • SAMPL181
211 • THIS IS THE FORMAT DEFINITION OF TABLE ENTRYS SAMPL182
212 • SAMPL183

000000 213 TABLE DSECT SAMPll84
000000 214 TNUMBER OS fl3 SAMPllB5
000003 215 TSWITCH OS c SAMPll86
000004 216 TAODRESS OS F SAMPL187
000008 217 TNAME OS Cl8 SAMPllRB
000000 218 END BEGIN SAMP3189
0003AO ooooou=ooooooo10 219 =AILISTAREA,16,LISTENDI
0003A8 000002'10
0003AC 0 c 0 00 08 000000004 220 =f 1 128t4t 128 1

0003B4 00000000

Appendix B: Program Listing 41

RELOCATION DICTION ARY PAGE

@ @ ® ®
Pos. IO REL. ID FLAGS ADDRESS

01 01 oc OOOlFC
01 01 oc 00020C
01 01 oc 00021C
01 01 oc 0002D4
01 01 oc 000334
01 01 oc 00034C
01 01 oc 00035C
01 01 oc 00036C
01 01 oc 0003AO
01 01 oc 0003A8

42

CROSS-REFERENCE PAGF

@ @ ® @) @
SYMBOL LEN VALUE DEFN REFERENCES

BEGlN 00004 000000 0057 0154 0156 0172 0182 0184 0218
EXIT 00004 00007E 0094 0109
HIGHER 00002 OOOCIF4 0128 0123
IHBOOOS 00001 00007B 0091 0088
IHB0005'1 00002 00007C 0092 0087
IHB0007 00001 OOOCIB9 0106 0103
IHB0007~, 00002 OCIOOBA 0107 0102
LADDRESS 00004 oooooc 0209 0078
LIST 00001 000000 0205 0065
LISTAREJ1 00008 OOOlFO 0154 0064 0083 0219
LI STENO 00008 000240 0159 0064 0219
LISTLOOF' 00004 000038 0080 0111
LNAME OOOOB 000000 0206 0122
LNUMBER 00003 000009 0208 0075
LOOP 00004 OOOOOA 0121 0126 0129 0155 0178 0183
LSWITCH 00001 OOOC08 0207 0072 0110
MORE 00004 000018 0066 0080
NONE 00001 000080 0114 0067 0110 0118 0130
NOTFOUNCI 00004 OOOCIFA 0130 0127
NOTRIGHl' 00004 00000c 0102 0082 0084
NOTT HERE 00004 ooooco 0110 0068
RO 00001 000000 0191
Rl 00001 000001 0192 0069 0119 0120 0120 0125 0128
Rl2 00001 oooooc 0198 0061 0062
Rl3 00001 000000 0199 0094
Rl4 00001 OOOOOE 0200 0066 0124 0131
Rl5 00001 OOOOOF 0201
R2 00001 000002 0193 0126 0129
R3 00001 000003 0194 0119 0121 0125 0128
R5 00001 000005 0195 0064 0065 0080
R6 00001 000006 0196 0080
R7 00001 000007 0197 0064
SAMPLR 00001 000000 0055
SAVE13 00004 OOOOC8 0112 0063 0094
SEARCH 00004 OOOOCE 0118 0066
SWITCH 00001 oooocc 0113 0067 0118 0130
TABLAREJ1 00008 000100 0136 0081 0120
TABLE 00001 000000 0213 0069
TADDRESS 00004 000004 0216 0079
TESTLISl" 00008 000340 0182 0083
TESTTABL. 00003 000250 0164 0081
TNAME 00008 000008 0217 0122
TNUM8ER 00003 000000 0214 0075
TS WITCH 00001 000003 0215 0072

NO STAT~MENTS FLAGGED IN THIS ASSEMBLY

Appendix B: Program Listing 43

Assembler cataloged procedures 8
for asseimbling 8
for asse!mbling and linkage editing 9
for asse!mbling, linkage editing and

execution 11
input stream statements (see cataloged

procedures)
overriding 11

Assembler data sets 6
ddname SYSIN 6
ddname S:YSLIB 6
ddname SYSPRINT 6
ddname SYSPUNCH 6
ddSYSUTl 6
ddname SYSUT2
ddname SYSUT3

Assembler listing
cross-reference
diagnostics 17

6
6

13
17

external symbol dictionary 15
relocation dictionary 17
source and olbject program 15
statistical messages 13

Assembler options 5,6
default entry 6

Cataloged procedures 8
ASMEC 8 ,9

input stream statements 8
ASMECL 9,10

input stream statements 9
ASMECLG 11,12

input :stream statements 11
device naming conventions 8
overriding 11,12

COND= param19ter 6 , 12 , 18

Data sets
(see assemble!r data sets)

Diagnostic messages 27
Dictionaries 21

additional requirements 23
global :21, 22
local 21,22

General register (13) 18
Global dictionary

(see dictionaries)
Global symbols (limit) 21

IEBUPDAT 19
Input stream 5

input stream statements
(see cataloged procedures)

sequential scheduling level 5

Job control statements 5
Job steps 5

Listing, assembler
(see assembler listing)

Local dictionary
(see dictionaries)

Macro-definition local dictionary
requirements 23

Macro library additions 19
Macro mnemonic table 23
Messages

diagnostic 29
statistical 13

Object module linkage 19,20
CALL macro-instruction 19,20
input/output operations 21
linkage statements 20
to COBOL 20
to FORTRAN 20

Options, assembler 5,6
default entry 6

Overriding cataloged procedures 11,12
EXEC statements 11
DD statements 11
examples 11,12

PARM field access 18
Procedure (definition) 5
Program termination 18

RETURN macro-instruction 18

Return Codes 6,7

Saving and restoring general register
contents 18

example of 18
Severity code

relation to return code 7
for diagnostic messages 27

Source statement complexity 23
assembler limitations 24
defined 21
macro-generation and conditional

assembly limitations 24

Index 45

C28-6595-1

International Business Machines Corporation
Data Processing Division
112 East Past Raad, White Plains, N.Y.10601
[USA Only]

IBM World Trade C::arparatian
821 United Nations Plaza, New Yark, New Yark 10017
[International]

KCl-\LICK ;> "'VIVUVIClit I rVKIVI

IBM System/360 Operating System
Assembler (E) Programmer's Guide

Form C28-6595-l

• Your comments, accompanied by answers to the following questions, help us produce better

publications for your use. If your answer to a question is "No" or requires qualification,

please explain in the space provided below. Comments and suggestions become the property of
IBM.

Yes

• Does this publication meet your needs? D
• Did you find the material:

Easy to read and understand? D
Organized for convenient use? D
Complete? D
Well illustrated? D
Written for your technical level? D

• \Vhat is your occupation?

• How do you use this publication?
As an introduction to the subject? D
For advanced knowledge of the subject? D
For information about operating procedures? D

No

D

D
D
D
D
D

As an instructor in a class? D
As a student in a class? D
As a reference manual? D

Other--------------------------------
• PJlease give specific page and line references with your comments when appropriate.

If you wish a reply, be sure to include your name and address.

COMMENTS

• Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

C28-6595-1

fold

\

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN U.S. A.

POSTAGE WILL BE PAID BY ...

IBM Corporation

Monterey & Cottle Rds.

San Jose, California

95114

Attention: Programming Publications, Dept. 452

FIRST CLASS

PERMIT NO. 2078

SAN JOSE, CALIF.

fold

---[
fold

®

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y.10601
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

fold

