File No.
Order No.

0S Assembler (F) Programmer’s Guide
Program Number 3605-AS-037

0S.Release 21

This publication complements the IBM System/360
Operating System Assembler Language publication.
It provides a guide to program assembling, linkage
editing, executing, interpreting listings, assem-
bler programming considerations, diagnostic
messages, and object output cards.

$360-21 (0Os)
GC26-3756-6

0S

Seventh Edition (January, 1972)

This is a major revision of, and obsoletes, GC26-3756-5 and
Technical Newsletter GN33-8100. This edition reflects the
changes in the assembler listed in the "Summary of
Amendments®.

This edition applies tc release 21 of CS and to all
subsequent releases until otherwise indicated in new
editions or Technical Newsletters. Changes are periodically
made to specifications herein; before using this puklication
in connection with the oreration of IBM systems, consult the
latest SRL Newsletter, Order No. GN20-0360, for the
editions that are applicable and current. Changes to the
text and to an illustration are indicated by a vertical line
to the left of the change.

Requests for copies of IBM publications should be made to
your IBM representative cr to the IBM branch office serving
your locality.

A form is provided at the back of this publication for
reader's comments. If the form has been removed, comments
may be addressed to IBM Nordic Laboratory, Puklications
Development, Box 962, S-181 09 Lidingo 9, Sweden.

© Copyright International Business Machines Corporation 1966, 1968, 1969, 1970, 1972

This publication is oriented to the F level
assembler program (the assembler)
functioning in the IBM Systen/360 Orerating
System (MFT and MVT).

This publication is divided intc an
introduction and four sections which
describe the following:

1. Assembler options and data set
requirements.

2. Use of IBM-provided catalogeil
procedures for assembling; assembling
and linkage editing; assembling,
linkage editing, and executing
assembler language source prcgrams.

3. Use and interpretation of the
assembler listing.

4. Programming considerations.

In addition, the appendixes prcvide a
procedure for dynamic invocation cf the
assembler, a list and explanation of object
output cards, and a sample program listing.

Other System Reference Likrary
publications in the IBM System/360
Orerating System series provide fuller,
more detailed discussions of the topics
introduced in this publication: a careful
reading of the publication 0S Introduction,
Order No. GC28-6534, is recommended.
Knowledge of the assembler language is
assumed. Where appropriate, the reader is
directed to the following publications.

0S Job Control Ianguage Reference, Order
No. GC28-6704

0S Storage Estimates, Order
No. GC28-6551

Preface

0S Loader and Linkage Editor, Order
No. GC28-6538

0S Supervisor Services and Macro
Instructions, Order No. GC28-6646

0S Data Management Macro Instructions,
Oxdexr No. GC26-3794 :

OS_TESTRAN, Order No. GC28-66u8

0S Messaqges and Codes, Order
No. GC28-6631

0S Assembler Lanquage, Order
No. GC28-6514

O0S Utilities, Crder No. GC28-6586

OS FORTRAN 1V Library, Order
No. GC28-6596

CS MVT Guide, Crder No. GC28-6720
0S MFT Guide, Order No. GC27-6939

0S Data Management for System
Programmers, Order No. GC28-6550

CS Data Management Services Guide, Order
No. GC26-3746

0OS FORTRAN 1V (E) Programmer's Guide,
Order No. GC28-6603

0S FORTRAN IV (G and H) Programmer's
Guide, Crder No. GC28-6817

0S COBOL (E) Programmer's Guide, Order
No. GC24-5029

CS USA Standard COEBOL Programmer's
Guide, Crder No. GC28-6399

Contents

INTRODUCTION . o & v« =« « o o =« o « o « « 9 Cictionaries Used in Conditional
Assembly and Macro Instruction
ASSEMBLER OPTIONS AND DATA SET Expansion B B
REQUIREMENTS © v« & o o o o =« = o« « o « « 10 Global Dictionary at Collectlon
Assembler Options . « « « « « « « « - 10 TiME « & o o o o o o o« = « o o o « o 31
Assembler Data Set Requirements . . . 11 Local Dictionaries at Collection
CCnames SYSUT1, SYSUT2, SYSUI3 . . . 11 TiME o o o o o o o o o « o o« o « « o 31
DDname SYSIN . . . « ¢« &« ¢ « « « - « N Glokal Dictionary at Generation
Chnames SYSLIB o « o =« « = « « « « - 11 TiME o « o o o o o o « o o o « « « o 32
DDname SYSPRINT . o« « o« « « « « - o 11 Local Dictionaries at Generaticn
Chname SYSPUNCH . . . « . « 1N TiMe o & & & o o o 2 o o o o o « o o 32
DDname SYSGO « v o o « o « o « « « - 12 Additional Dictionary Requirements . 32
CDname SYSTERM . . 4 & o o « o« « « o 12 Correction of LCictionary Overflow . 33
Defining Data Set Characteristics . . 12 Symbol Takle Cverflow 33
RETURN COLCES « v « v ¢ o o « = o« « « « 12 Source Statement Complexity 33
Macro Generation and Conditional
CATALOGEL PROCEDURES . « « « ¢« « « « . < 15 Assembly Limitation 33
Cataloged Procedure for Assembly Assembler Fortion Limitations . . . 34
(ASMFC)« e . . 15 System/360 Model 91 Programming
Cataloged Procedure for Assembly and Considerations . . . « 34
Linkage Editing (ASMFCL) 16 Controlling Instructicn Execution
Cataloged Procedure for Assembly, SEQUENCE . « ¢ « « « « = o « « « o+ o 34
Linkage Editing, and Execution System/360 Model 85 Programming
(ASMFCLG) « = « o « o o = . . - 17 Considerations « « « « « « o« « = « . . 34
Cataloged Procedure for Assembly and Extended-Precision Machine
Loader-Execution (ASMFCG) 18 Instructions . . ¢« . « « « « « « « o 35
Overriding Statements in Catalcged The Extended-Precision
ProcedUres « « « o« o o « o o o o « o o 19 Floating-Point Simulator 35
EXEC Statements . . « « « « « « . « 19 Approximating Extended-Precision
DD Statements . . « « « « o o & - - 19 Floating Point Instructions 35
EXampPleS « « « o « « o o o « o « = o 19 Support of Unaligned Tata 35
Type L Data Constant 36
ASSEMBLER LISTING .« o« « « « « « = o « o« 22 Model 195 and System/370 Programmlng
External Symkol Cictionary (ESD) . . . 22 Considerations . . o o o o« o o o o - . 36
Source and Object Program « 25
Relocation Cictionary 26 APPENLIX A. DIAGNOSTIC MESSAGES 37
Crcss Reference . . . « « « « - . . - 26 Message Format . . . « « o« « « .« o o 37
Ciagnostics . . « « ¢« ¢« ¢« ¢ o« « o . o 27 Severity Codes . « « « « « o « -« o o 37
PROGRAMMING CONSIDERATIONS 28 APPENLCIX B. CBJECT DECK OUTPUT 55
Saving and Restoring General Register TXT Card FOXrmat .« « « « « « o « « « « & 55
ContentS + « « « « « « « « « « « « « - 28 |RLD Card Format . . « « -« « « « &« « « . 55
Prcgram Termination 28 |ESC Card Format .« . « .« « « « « « « o . 55
PARM Field Access . . -« « « - « « - - 28 |END Card Format . . . « « « « « « o o . 56

Macro LCefinition Likrary Additicns . . 29 |SYM Card FOrmat . . o o o o « o« o «
Load Mcdule Modification - Entry

Point Restatement 29 APPENDIX C. ASSEMBLER F PROGRAM LISTING 58
Object Module Linkage 29

Cictionary Size and Source Statement APPENCIX D. DYNAMIC INVOCATION OF THE
CompleXity « « o« ¢ « « =« « « « « « « « 30 ASSEMBLER =+ &2 « « « o« « « = « o« o« « & o« 65

APEENDIX E. THE SYSTERM LISTING 66

INDEX « + + o« o o o o s o o o s o s o 69

Figures

Figure 1. Assembler Options . . .
Figure 2. Return Codes « e e e .
Figure 3. Data Set Characteristics
Figure 4. Device Naming
Conventions . « « « « « « o =« -
Figure 5. Cataloged Procedure for
Assembly (ASMFC) e e e e s e e s
Figure 6. Cataloged Procedure for
Assembling and Linkage Editing
(ASMFCL)
Figure 7. Cataloged Procedure fcr
Assembly, Linkage Editing and
Execution (ASMFCILG) . . . « « .
Figure 8. Cataloged Procedure fcr
Assembly and loader-Execution
(ASMFCG)
Figure 9. Types of ESD Entries . .
Figure 10. Assembler Listing .« .

11
13
14

15
16

17

18

20

24 -

Figure 11. Linkage Statements . .
Figure 12. Global Dictionary
Entries at Collection Time .« . .
Figure 13. Local Dictionary
Entries at Collection Time - o e
Figure 14. Glokal Dictiocnary
Entries at Generation Time o o
Figure 15. Local Dictionary
Entries at Generation Time « . e
Figure 16. Macro Definition Lccal
Dictionary Parameter Table e e
Figure 17. Extended-Precision
Floating Point Format
Figure 18. Extended-Precision and
Rounding Instructions
Figure 19. SYM Card Format o« o .
Figure 20. SYSERINT Source
Statement Iisting
Figure 21. SYSTERM Assembly Output
Listing .« « o & o o o« o o ¢ «

30
31
31

32
32
33
35

35
57

67
68

RELEASE 21 LISTINGS

Maintenance
The sample program listings have been
replaced ky Release 21 Assemblexr F
listings.

NUM_ANC STMT OPTIONS

New Programming Feature
The NUM and STMT options are now the
default values assumed when the TERM
cption is specified.

SUMMARY OF AMENCMENTS
FOR GC26-3756-6
OS_RELEASE 21

COMPATIBIL ITY WITH 1BM SYSTEM/370 MODELS

Maintenance
The assembler can operate on 1BM
System/370 Models 135 and up.

MESSAGES

Maintehance
Certain explanations of messages have
been rewritten for clarity.

TITLE CHANGFES

Maintenance
References to CS publications have keen
altered to reflect their current
titles.

Through the medium of job control
statements, the programmer specifies job
requirements directly to the operating
system, thus eliminating many of the
functions previously performed by the
operating personnel. The job consists of
one or more jok steps. For examgle, the
job of assembling, linkage-editing, and
executing a source program involves three
job steps:

1. Translating the source program. i.e.,
executing the assembler compcnent of
the operating system to produce an
object module.

2. Processing the output of the
assembler, i.e., executing the
linkage-editor component of the
operating system to produce a load
module.

3. Executing the assembled and
linkage-edited program, i.e.,
executing the load module.

A procedure is a sequence of job control
language statements specifying a jcb.

Introduction

Procedures may enter the system via the
input stream or from a library of
prccedures, which are previously defined
and contained in a procedure likrary. The
input stream is the flow cf job control
statements and, optionally, input data
entering the system from one input device.
At the sequential scheduling system level
of the operating system, only one input
stream may exist at a time.

The job definition (JOE), execute
(EXEC) , data definition (D), and delimiter
(/*) job control statements are shown in
this publication as they are used to
specify assembler processing. TCetailed
exrlanations of these statements are given
in CS Job Control Lanquage Reference.

Operating system factors influencing
program preparation, such as terminating
the program, saving and restoring general
registers, and linking of independently
produced object modules, are discussed in
"Programming Considerations", as are gquides
to determine whether assembler dictionary
sizes and complexity limitations of source
statements will be exceeded.

Intrcduction 9

Assembler Options and Data Set Requirements

Assembler Options

The programmer may specify the assembler
options listed in Figure 1 in the PARM
field of the EXEC statement. The crtions
can be coded in any order. They must be
separated by commas with no embedded
blanks. The entire field must be contained
between apostrophes or parentheses.
Parentheses allow the PARM field to be
continued onto another card, when
necessary. If an entry is omitted, a
standard setting is assumed by the
assembler. The standard default values are
underlined in Figure 1.

The options in Figure 1 are defined as
follows:

CECK -- The object module is placed on the
device specified in the SYSPUNCH DD
statement.

LOAD -- The object module is placed on the
device specified in the SYSGO DD
statement.

Note: Specification of the rarameter LOAD
causes object ocutput to be written on a
data set with ddname SYSGO. This action
occurs independently of the ocutput on
SYSPUNCH caused by the parameter CECK. The
output on SYSGO and SYSPUNCH is identical
except that SYSPUNCH is closed with a
disposition of LEAVE, and SYSGO is closed
with a disposition of REREAD.

LIST -- An assembler listing is produced.

TEST -- The object module contains the
special source symbol table required by
the test translator (TESTRAN) rcutine and
the TSO Test command processor.

XREF -- The assemkler produces a
cross-reference table of symbols as part
of the listing.

RENT -- The assembler checks for a possible
coding violation of program
reenterability.

The prefix NO is used with the abcve
options to indicate which options are not
wanted.

LINECNT=nn This parameter specifies the
number of lines to be printed ketween
headings in the listing. The permissible
range is 01 to 99 lines.

NOALGN -- The assemkbler suppresses -the
diagnostic message IEU033 ALIGNMENT ERROR
if fixed point, floating point, or
logical data referenced by an instruction
operand is not aligned on the proper
boundary. The message will be prcduced,

hntowvar Ay vAFAvArmmnen dA S e S A o
J0WevVeD, XX JCICICHNCCT OO NS CIGICiITns

10

(e.g., by a branch) which are not aligned
on the proper (halfword) boundary. See
the "Model 85 Programming Considerations”
section for information on alignment
requirements.

ALGN -- The assembler does not supgress the
alignment error diagnostic message.

0S -- The assembler will have complete
Operating System Assembler F Capabkility.

[0S -- The assembler will behave like Disk
Cperating System (COS) Assemblers L and
F. Anything defined in either of these
assemblers with the exception cf §SYSPARM
will be accepted. CXrC, CXLC, and OPSYN
will be treated as undefined Q-type LC
and DS statements and RLDs will appear in
the Relocation Cictionary in order of
their occurrence (unsorted). The DOS
option is incompatible with the LORAL,
TEST, RENT, NOALGN, or TERM options. 1f
any of these options are specified along
with DOS, the assenmbler generates a
diagnostic message (IEU078).

TERM -- The assembler writes diagnostic
information on the SYSTERM data set.
Refer to Appendix E for a description of
SYSTERM output. Cptions NUM and STMT can
be specified only if TERM is used.

NUM -- The line number field (columns
73-80) or TSO, through the EDIT command,
supplied numbers are written on SYSTERM
in the beginning of each statement line
for which diagnostic information is
given. This option is valid only in
connection with TERM.

STMT -- Statement number will be written on
SYSTERM for statements for which
diagnostic information is given. This
option is valid only in ‘connection with
TERM.

Note 1: It is recommended to use the NUM
option when using the TERM option, to avoid
unnecessary spacing on a terminal listing.
When the TERN option is specified, the NUM
and STMT options are taken as the default
values.

Note 2: If option NOTERM is used for an
assembly, NCNUM and NOSTMT will not ke
listed after #OPTIONS IN EFFECT* in the
diagnostic section of the SYSPRINT listing.

1f contradictory options are entered,
e.g., LIST, NCL1IST, the rightmost option,
NOLIST, is used.

The following is an example of
specifying assembler opticns:

™ ~ » .

TN TN A TTATIR f TRATIIE_ ST AR RTAWII VY mroen
Lals D\AITALUALULL p D ANNIT LUAL gINUVDGCVI g L0 L

PPRF“{ DECK LOAD LIST TEST XREF
.. L=

NODECK,NOLOAD,NOLIST,NOTEST,NOXREF,LINECNT=

nn,
55, NOALGN, DOS,NORENT, NOTERM, NONUM, NOSTMT

ALGN 0S RENT TERM NUM STMT}

Figure 1. Assembler Options

Assembler Data Set Requirements

The assembler requires the following four
data sets:

e SYSUT1, SYSUT2, SYSUT3 -- utility data
‘ sets used as intermediate external
storage.

e 'SYSIN -- an input data set containing
the source statements to be prccessed.

In addition to the above, four additional
data sets may be required:

e SYSLIE -- a data set containing macro
definitions (for macro definitions not
defined in the source program) and/or
source coding to ke called for through
COPY assembler instructions.

e SYSPRINT -- a data set containing
ocutput text for printing (unless NOLIST
option is specified).

e SYSPUNCH -- a data set containing
object module output usually for
punching (unless NODECK opticn is
specified).

- e SYSGO -- a data set containing cbject
module output usually for the linkage
editor (only if LOAD option is
specified).

e SYSTERM -- data set containing
diagnostic information (if the TERM
option is specified).

The above data sets are described in the
following text. The ddname that must be
used in the DD statement describing the
data set appears as the heading fcr each
descrigption.

DDnames SYSUT1, SYSUT2, SYSUT3

These utility data sets are used by the
assembler as intermediate external storage
devices when processing the source program.
The input/output device(s) assigned to
these data sets must be capable of
sequential access to records. The
assenbler does not support multi-volume
utility data sets. Refer to the OS Storage
Estimates manual for the space required.

DDname SYSIN

This data set contains the input to the
assembler -- the source statements to be
processed. The input/output device
assigned to this data set may be either the
device transmitting the input stream, or
another sequential input device designated
by the programmer. The LCL statement
describing this data set appears in the
input stream. The I1BM-supplied procedures
do not contain this statement.

CCnames SYSLIRE

From this data set, the assemkler obtains
macro definitions and assembler language
statements to be called by the COPY
assembler instruction. It is a partitioned
data set and each macro definition or
sequence of assembler statements is a
serarate member, with the member name Leing
the macro instruction mnemonic or COPY code
name. The data set may be defined as
SYS1.MACLIB or a user's private macro
definition or COPY library. SYS1.MACLIB
contains macro definitions for the system
macro instruction provided by IBM. A
user's private library may be concatenated
with SYS1.MACL1IB. The two libraries should
have the same attributes, i.e., the same
blecking factors, block sizes, and record
formats. 1If different block sizes are used
the data sets with the largest block size
must be specified first. The 0S Job
Control lLangquage Reference publication
explains the concatenation of the data
sets.

CDname SYSPRINT

This data set is used by the assemkler to
produce a listing. Output may be directed
to a printer, magnetic tape, LASL, or a
remote terminal (TSO). The assembler uses
the machine code carriage-control
characters for this data set.

DDname SYSPUNCH

The assembler uses this data set to produce
the object module. The input/output unit
assigned to this data set may be either a
card punch or an intermediate stcrage
device (capable of sequential access).

Assembler Options and LCata Set Requirements 11

CDname_SYSGO

This is a LCASLC, magnetic tape, or card
punch data set used by the assembler. It
contains the same output text as SYSPUNCH.
It is used as input for the linkage editor
and may also be used as a punch device (see
Note under "Assembler Options").

CCname SYSTERM

This data set is used by the assembler to
write diagnostic information. The output
unit assigned to this data set must be a
remote terminal (TSO).

Defining Data Set Characteristics

Pefore a data set can be made available to
a prcblem program, descriptive information
defining the data set must be placed into a
data control block for the access routines.
Sources of information for the data control
block are keyword operands in the DCB macro
instruction or, in some cases, the DD
statement, data set label, or user's
problem program. General information
concerning data set definition is ccntained
in the 0S Data Management Services Guide
‘manual. Characteristics of data sets
supplied by the DCB macro instructicn are
described in the 0OS Data Management Macro
Instructions manual.

The specific information that rust be
supplied depends upon the data set
organization and access method. The
fecllowing access methods are used to
process the assemkler data sets:

Access Method Lata Sets
QSAM (Queued Sequential) SYSPRINT, SYS-
PUNCH, SYSGO,
SYSIN, SYSTERM
BSAM (Basic Sequential) SysuTr1, SYSUT2,
SYSUT3
BPAM (Basic Partitioned) SYSLIB

Figure 3 summarizes the assembler
capabilities and restrictions on record
length and format, as well as the blocksize
buffering facilities available to the user.
The values shown in Figure 3 are based ugon
the minimum OS MFT main storage
requirements of Assembler F (44K), which
will allow a symbol table length of
approximately 7000 kytes. If more than the
minimum main storage is available, the
block sizes and buffer numbers can be
increased. However, if the user specifies
a combination of blocking and buffering
which does not leave room for the symbcl
table. either message IEU996 will be issued

12

or abnormal termination of the task will
occur (ABEND 804).

In addition to the
characteristics shown
following options are available to the user
(refer to the 0S Data Management Macro
Instructions publication) . Opticns not
shown below are fixed by the assembler and
cannot be specified.

data set
in Figure 3, the

Data Sets Options
[DEVD (device type)
SYSIN, SYSFUNCH,]BFALN (buffer Lkoundary
SYSPRINT, SYSGQO <{alignment)
BUFL (buffer length)
|EROPT (error option)

[DEVD (device tyge)
OPTCLC (optional ser-
vice for validity

J checking and chained
scheduling)

TRTCH (if 7-track tapes
are used, TRTCH=C must
(\be specified)

sysut1it, 2, 3

Return Codes

Figure 2 shows the return codes issued Ly
the assembler for use with the
COND=parametexr of JCE or EXFEC statements.

| The COND= parameter is explained in 0S Jcb
Contrxol Language Reference.

The return code issued by the assembler
is the highest severity code that is:

1. Associated with any error detected Ly
the assembler (see Appendix A for
diagnostic messages and severity
codes) .

2. Associated with MNOTE messages
produced by macro instructions.

3. Associated with an unrecoverakle 1/0
error occurring during the assembly.

1f a permanent I/0 errcr occurs on any
of the assembler files or a LLC card for a
required data set is missing, or there is
insufficient main storage availakle, a
message is printed on SYSFRINT (or on the
operator's console if the SYSPRINT DD card
is missing or if the I,/0 error is on
SYSPRINT) and a return with a user return
code of 20 is given by the assemkler. This
terminates the assemhlv.

—————-

|Return
|Code

Explanation

Minor errors detected;
successful program execution is
probable

Figure 2.

Errors detected; unsuccessful
program execution is possible
Serious errors detected:
unsuccessful program execution
is probable
Critical errors detected;
normal execution is impossible
Unrecoverable 1,/0 error
occurred during assembly or
missing data sets; assembly
terminated

Return Codes

Assembler Options and LCata Set Requirements

e e s e e ket e e s G e e i e s . e s e e i e e e ad

13

SYSUTI1

0

F, FS, FBS, FB,
FBST, FBT, FT,
FST

F, FB, FBT, FT

in label or DD card
FM, FMB, FMT, FMBT

label or DD card
F, FB, FT, FBT

SYSIN SYSLIB SYSTERM SYSPUNCH SYSGO SYSUT2
SYSPRINT SYSUT3
LRECL Fixed at 80 Fixed at 80 Fixed at 121 Fixed at 80 Fixed at 80 N/A
User must specify User must specify F and M set by F set by assemb- F set by assemb- Fixed for U
in LABEL or DD card | in LABEL or DD card | assembler, user may ler, user may spec- ler, user may spec-
RECFM specify B and/or T ify B and/or T in ify B and/or T in

label or DD card
F, FB, FT, FBT

I BLKSIZE

®

User must specify
in LABEL or DD card,
must be a multiple of
LRECL

User must specify
in LABEL or DD cord,
must be a multiple of
LRECL

Optional,
if omitted
BLKSIZE=LRECL

Optional, but must
be a multiple of
LRECL; if omitted
BLKSIZE=LRECL

Optional , but must
be a multiple of
LRECL; if omitted
BLKSIZE=LRECL

Optional, but must be ||
in the range of 550-
3624; the value speci-
fied on the SYSUTI DD
card is chosen for all
three work files; if
omitted an adequate
value is chosen by

the assembler, @

BUFNO

Optional; if
omitted 2 is used

Set by assembler
to 1

/4—/\‘

Optional; if
omitted 2 is used

Optional; if
omitted 3 is used for
unit record and 1 for
other devices

Optional; if
omitted 3 is used for
unit record and 1 for
other devices

User can not specify;
either 1 or 2

For
44K
availability

BLKSIZE times
BUFNO can not be
greater than 3600

BLKSIZE can not
be greater than 3600

BLKSIZE times
BUFNO can not be
greater than 1210

BLKSIZE times
BUFNO can not be
greater than 400

BLKSIZE times
BUFNO can not be
greater than 400

BLKSIZE should be the
value calculated by the
assembler algorithm,

®

For
caleulating

] |main storage
requirements

L1 = BLKSIZE
times BUFNO

L2 = BLKSIZE

L3 = BLKSIZE
times BUFNO

L4 = BLKSIZE
times BUFNO

L5 = BLKSIZE
times BUFNO

1 ®

Minimum amount of main storage required for the assembler is the largest of the following:

(1) 45056

(2) LI tl,+ 41000

(3) Ly + L, + L+ 41000

Maximum amount of main storage that the assembler can effectively use is approximately 500,000 bytes

®e 6 6

For MVT environment add 5,000 for core required

U = undefined, F = fixed length records, B = blocked records, S = standard blocks,
T = track overflow, M = machine code carrioge control

A smaller blocksize may have to be specified for SYSLIB and/or SYSUT 1,2, and 3

if global or local dictionaries overflow, See item 4 under
"Correction of Dictionary Overflow."

Figure 3.

14

Data Set Characteristics

Blocking is not allowed on unit records devices. Blocking on other direct access can not
be greater than the track size unless T is specified on RECFM, If BLKSIZE is not a multiple
of LRECL, BLKSIZE is truncated.

This section describes four IBM-provided
cataloged procedures: a procedure fcr
assembling (ASMFC), a procedure for
assembling and linkage editing (ASMFCL),
and a procedure for assembling, linkage
editing, and executing (ASMFCLG), and a
procedure for assemkling and

loader-executing (ASMFCG) . The procedures
rely on conventions regarding the naming of

device classes. These conventions, shown

in Figure 4, must be incorporated into the

system at system generation time.

Device Classname Devices Assigned

SYSSQ Any devices allowing
sequential access to records
for reading and writing

SYSDA Direct-access devices

SYSCP Card punches

Figure 4. Cevice Naming Conventicns

To use cataloged procedures, EXEC
statements naming the desired procedures
are placed in the input stream fcllcwing
the JOB statement. Subsequently, the
specified cataloged procedure is brcught
from a procedure library and merged into
the input stream.

Cataloged Procedures

Cataloged Procedure for Assembly (ASMFC)

This procedure requests the operating
system to load and execute the assemkbler.
The name ASMFC must be used to call this
prccedure. The result of execution is an
object module, in punched card form, and an
assembler listing.

In the following example, input enters
via the input stream. The statements
entered in the input stream tc use this
procedure are:

//iobname JOB
//stepname EXEC PROC= ASMFC:
J/ASM.SYSIN DD *

|

source program statements
|

|
/* (delimiter statement)

The statements of the ASMFC procedure are
brought from the procedure library and
merged into the input stream.

Figure 5 shows the statements that make
up the ASMFC procedure.

Cataloged Procedures 15

-

//ASM EXEC PGM=IEUASM,REGION=60K

//SYSLIB DD DSNAME=SYS1.MACLIB,DISP=SHR
3 /ISYSUT1 DD DSNAME=&SYSUT1,UNIT=SYSSQ,SPACE=(1700,(400,50)},
/" SEP=(SYSLIB)
4 JsYsuT2 DD DSNAME=&SYSUT2,UNIT=SYSSQ,SPACE=(1700,(400,50}}
5 //1SYSUT3 oD DSNAME=&SYSUT3,SPACE={1700,(400,50)),
) UNIT=(SYSSQ,SEP=(SYSUT2,SYSUT1,SYSLIB))
6 //ISYSPRINT DD SYSOUT=A
7 J/SYSPUNCH DD SYSOUT=B

Cataloged Procedures). The system name IEUASM identifies Assembler F.

3458 These specify the

part of the Scheduler.

The OS Job Control L Reference publicati lains space all

PARM= or COND=parameters may be added to this statement by the EXEC statement that calls the procedure (see Overriding Statements in

2 This statement identifies the macro library data set. The data set name SYS1.MACLIB is an IBM designation.

utility data sets. The device classname used here, SYSSQ, may represent a collection of tape
drives, or direct-access units, or both. The I/O units assigned to this name are specified by the installation when the system is generated.
A unit name, e.g., 2311 may be substituted for SYSSQ. The DSNAME parameters guarantee use of Dedicated Workfiles if this feature is

The SEP=subparameter in statement 5 and the SPACE=parameter in statements 3, 4, and 5 are effective only if the device assigned is a
direct-access device: otherwise they are ignored. The space required is dependent on the make-up of the source program.

6 This statement defines the standard system output class, SYSOUT=A, as the destination for the assembler listing.

7 :
This statement describes the data set that will contain the object module produced by the assembler.

Figure 5.

Cataloged Procedure for Assembly and
Linkage Editing (ASMFCL)

This procedure consists of two job steps:
assembling and linkage editing. The name
ASMFCL must be used to call this procedure.
Execution of this procedure results in the
production of an assembler listing, a
linkage editor listing, and a lcad mcdule.

The following example assumes input to
the assembler via the input job stream. It
also makes provision in the //LKEL job step
for concatenating the input to the linkage
editor from the //ASM job step with any
additional linkage editor input in the
input job stream. This additional input
can be a previously produced object wrodule
which is to be linked to the object module
produced by jok step //ASM.

An example of the statements entered in
the input stream to use this procedure is:

Cataloged Procedure fcr Assembly (ASMFC)

//jobname JOB
//stepname EXEC PROC=ASMFCL
//ASM,SYSIN DID *

I
|
source program statements

|
!
1
/* I
//IKED.SYSIN DD *
|
: necessary only if linkage
object module or editor is to combine modules
linkage editor or read linkage editor control
control statements information from the job stream
/*

The procedure is brought from the
procedure library and merged into the input
stream.

Figure 6 shows the statements that make
up the ASMFCL procedure. Only those
statements not previously discussed are
explained.

//ASM EXEC PGM=IEUASM,PARM=LOAD,REGION=50K

//SYSLIB DD DSNAME=SYS1.MACLIB,DISP=SHR

//SYSUT1 DD DSNAME=&SYSUT1,UNIT=SYSSQ,SPACE=(1700,(400,50)), X
/! SEP=(SYSLIB)

//SYSUT2 DD DSNAME=&SYSUT2,UNIT=SYSSQ,SPACE=(1700,(400,50))

//SYSUT3 DD DSNAME=&SYSUT3,SPACE=(1700,(400,50)), X
1 UNIT=(SYSSQ,SEP=(SYSUT2,SYSUT1,SYSLIB))

//SYSPRINT DD SYSOUT=A

//[SYSPUNCH DD SYSOUT=B

' svsco DD DSNAME=&LOADSET,UNIT=SYSSQ,SPACE=(80,(200,50)), X
1 DISP=(MOD,PASS)

2 //LKED EXEC PGM=IEWL,PARM=(XREF,LIST/NCAL),REGION=96K, X
/I COND=(8,LT,ASM)

3

4 //SYSLIN DD DSNAME=&LOADSET,DISP=(OLD,DELETE)

" DD DDNAME=SYSIN

5 //SYSLMOD DD DSNAME=&GOSET(GO),UNIT=SYSDA,SPACE=(1024,(50,20,1)), X
1/ DISP=(MOD,PASS)

6 //SYSUT1 DD DSNAME=&SYSUT1,UNIT=(SYSDA,SEP=(SYSLIN,SYSLMOD)), X
/I SPACE=(1024,(50,20))

7 //SYSPRINT DD SYSOUT=A

! In this procedure the SYSGO DD statement describes a temporary data set -- the object module -- which is to be passed to the linkage editor.

2 This statement initiates linkage editor execution. The linkage editor options in the PARM=field cause the linkage editor to produce a
cross-reference table, module map, and a list of all control statements processed by the Ilnkage editor. The NCAL option suppresses the
automatic library call function of the linkage editor.

3
This statement identifies the linkage editor input data set on the same one produced as output by the assembler.

4
This statement is used to concatenate any input to the linkage editor from the input stream with the input from the assembler.

5 This statement specifies the linkage-editor output data set (the load module). As specified, the data set will be deleted at the end of the job. Ifitis
deesired to retain the load module, the DSNAME parameter must be respecified and a DISP parameter added. See *’Overriding Statements in Cataloged
Procedures”. If the output of the linkage editor is to be retained, the DSNAME parameter must specify a library name and member name where the
load module is to be placed. The DISP parameter must specify either KEEP or CATLG.

6 . .

This statement specifies the utility data set for the linkage editor.

7 . . .

This statement identifies the standard output class as the destination for the linkage editor listing.

Figure 6.

Cataloged Procedure for Assembly, Linkage

Editing, and Execution (ASMFCLG)

This procedure consists of three job steps:
assembling, linkage editing, and executing.

Figure 7 shows the statements that make
up the ASMFCLG procedure. Only those
statements not previously discussed are
explained in the figure.

The name ASMFCIG must be used to call
this procedure. Assembler and linkage
editor listings are produced.

The statements entered in the input
stream to use this procedure are:

Cataloged Procedure fcr Assembling and Linkage Editing (ASMFCL)

//jobname JOoB
//stepname EXEC PROC=ASMFCLG
//ASM.SYSIN D‘D *
source program statements
1

/* !
//LKED.SYSIN DD * . .

H . necessary only if linkage editor
object module or is to combine modules or read
linkage editor linkage editor control information
control staten;uents from job stream

/* i

//GO.ddname DD (parameters)

//GO.ddname DD (parameters)

//GO.ddname D.D * only if necessary

1

problem program input
1
/* !

Cataloged Procedures 17

//ASM
//SYSLIB

//SYSUT1
i

//1SYSUT2

//SYSUT3
/"

//SYSPRINT
//SYSPUNCH
//SYSGO

/"

//LKED

1/

//SYSLIN
"

//SYSLMOD
"

//ISYSUT1
/"

/ISYSPRINT
//GO

EXEC
DD
DD

DD
DD

DD
DD
DD

EXEC

DD
DD

DD

DD

DD

EXEC

PGM=IEUASM,PARM=LOAD,REGION=50K
DSNAME=SYS1.MACLIB,DISP=SHR

DSNAME=&SYSUT1,UNIT=8YSSQ,SPACE=(1700,(400,50)),
SEP=(SYSLIB)

DSNAME=&SYSUT2,UNIT=SYSSQ,SPACE=(1700,(400,50))

DSNAME=&SYSUT3,SPACE=(1700,(400,50)),
UNIT=(SYSSQ,SEP=(SYSUT2,SYSUT1,SYSLIB))

SYSOUT=A

SYSOUT=8
DSNAME=&LOADSET,UNIT=SYSSQ,SPACE=(80,(200,50}),
DISP=(MOD,PASS)

PGM=IEWL ,PARM=(XREF,LET,LIST,NCAL),REGION=96K,
COND=(8,LT,ASM)

DSNAME=&LOADSET,DISP=(OLD,DELETE)
DDNAME=SYSIN

DSNAME=&GOSET(GO),UNIT=SYSDA,SPACE=(1024,(50,20,1)),
DISP=(MOD,PASS)

DSNAME=&SYSUT1,UNIT=(SYSDA,SEP=(SYSLIN,SYSLMOD)),
SPACE=(1024,(50,20))

SYSOUT=A

PGM=*.LKED.SYSLMOD,COND=({8,LT,ASM),(4,LT,LKED))

The LET linkage-editor option specified in this statement causes the linkage editor to mark the load module as executable even though errors were
encountered during processing.

The output of the linkage editor is specified as a member of a temporary data set, residing on a direct-access device, and is to be passed to a
succeeding job step. ’

This statement initiates execution of the assembled and linkage edited program. The notation *.LKED.SYSLMOD identifies the program to be
executed as being in the data set described in job step LKED by the DD statement named SYSLMOD. When running with MVT the REGION
parameter can be calculated with the help of the OS Storage Estimates publication.

Figure 7. Cataloged Procedure for Assembly, Linkage Editing and Execution (ASMEFCLG)

Cataloged Procedure for Assembly and //jobname JOB

Loader Execution (ASMFCG) I/stepname EXEC PROC=ASMFCG
//ASM.SYSIN DD *

This procedure consists of two job steps I

assembling and loader-executing. The l

result of loader-execution is a combination source program

of linkage-editing and loading the rrogram :

for execution. Load modules for program J* 1

libraries are not produced. //GO.ddname DD (parameters)
//GO.ddname DD {parameters) only
//GO.ddname DD * if

Figure 8 shows the statements that make ! necessary
up the ASMFCG procedure. Only those -
statements not previously discussed are problem program input

explained in the figure.

/{-

The name ASMFCG must be used tc call
this procedure.
listings are produced.

Assembler and loader

The statements entered in the input stream
TO use this procedure are:

18

Overriding Statements in Cataloged
Procedures

Any rarameter in a cataloged procedure can
be overridden except the PGM= paramxeter in
the EXEC statement. Such overriding of
statements or fields is effective only for
the duration of the job step in which the
statements appear. The statements, as
stored in the procedure library of the
system, remain unchanged.

Overriding for the purposes of
respecification, addition, or nullification
is accomplished by including in the input
stream statements containing the desired
changes and identifying the statements tc
be overridden.

EXEC_ Statements

The PARM= and COND= parameters can be added
or, if present, re-specified by including
in the EXEC statement calling the procedure
the notation PARM.stepname=, or

COND. stepname=, followed by the desired
parameters. "Stepname" identifies the EXEC
statement within the procedure to which the
modification applies. Overriding the PGM=
parameter is not possible.

If the procedure consists of ncre than
one job step, a PARM.stepname= oOr
COND.stepname= parameter may be entered for
each step. The entries must be in order,
i.e., PARM.stepl1=, PARM.step2=, etc.

LCL Statements

All parameters in the operand field of LLC
statements may be overridden by including
in the input stream (following the EXEC
card calling the procedure) a DD statement
with the notation //stepname.ddname in the
name field. "Stepname" refers tc the jcb
step in which the statement identified by
"ddname" appears.

Examgples

In the assemkly procedure ASMFC (Figure 5,
the production of a punched object deck
could be suppressed and the UNIT= and

SPACE= parameters of data set SYSUT1
re-specified, by including the fcllowing
statements in the input stream:

//stepname EXEC PROC=ASMFC,

// PARM.ASM=NODECK
//ASM.SYSUTI DD UNIT=2311,

// SPACE=(200, (300, 40))
//ASM.SYSIN DD *

In procedure ASMFCLG (Figure 7),
suppressing production of an assembler
listing and adding the COND= parameter to
the EXEC statement, which specifies
execution of the linkage editor, may be
desired. 1In this case, the EXEC statement
in the input stream would appear as
follows:

//stepname EXEC PROC=ASMFCLG, . X
// PARM, ASM=(NOLIST,LOAD), X
// COND,LKED=(8, LT,stepname . ASM)
Note: Overriding the LIST parameter

effectively deletes the PARM=LOAL so this
must ke repeated in the override statement.

For current execution of procedure
ASMFCLG, no assembler listing wculd be
produced, and execution of the linkage
editor job step //LKELC would be suppressed
if the return code issued by the assemkler
(step ASMN) was greater than 8. ‘

Using the procedure ASMFCL (Figure 6)
to:

1. Read input from a non-labeled 9-track
tape on unit 282 that has a standard
blocking factor of 10.

2. Put the output listing on a labkeled
tape TAPE10, with a data set name of
PROG1 and a blocking factor of 5.

3. Block the SYSGO output of the
assembler and use it as input to the
linkage editor witbh a blocking factor
of 5.

Cataloged Procedures 19

/IASM EXEC PGM=IEUASM,PARM="LOAD’,REGION=50K

//SYSLIB DD DSNAME=SYS1.MACLIB,DISP=SHR

//SYSUT1 DD DSNAME=&SYSUT1,UNIT=SYSSQ,SPACE=(1700,(400,50)),

Vi SEP=(SYSLIB)

//SYSUT2 DD DSNAME=&SYSUT2,UNIT=SYSSQ,SPACE=(1700,(400,50})

//SYSUT3 DD DSNAME=&SYSUT3,SPACE=(1700,(400,50)),

" UNIT=(SYSSQ,SEP=(SYSUT2,SYSUT1,SYSLIB))

/ISYSPRINT DD SYSOUT=A '

//SYSPUNCH DD SYSOUT=B

//SYSGO DD DSNAME=&LOADSET,UNIT=SYSSQ,SPACE=(80,(200,50)),
DISP=(MOD,PASS)

//GO EXEC PGM=LOADER PARM='MAP,PRINT,NOCALL,LET'

//SYSLIN DD DSNAME=&LOADSET,DISP=(OLD,DELETE)

//SYSLOUT DD SYSOUT=A

This statement initiates loader-execution. The loader options in the PARM=field cause the loader to produce a map, print the map and diagnostics.
The NOCALL option is the same as NCAL for linkage editor and the LET option is the same as for linkage editor.

This statement defines the loader input data set as the same one produced as output by the assembler.

This statement identifies the standard output class as the destination for the loader listing.

Figure 8.

4

. Linkage edit the module only if there
are no errors in the assembly, i.e.,

CONL=0.

. Linkage edit on to a previously
allocated and cataloged data set
USER.LIBRARY with a member name of

PROG.

Cataloged Procedure for Assembly and Loader-Execution

Note:

Freserved.
within step ASM.

(ASMFCG)

The order of appearance of ddnames
within job steps ASM and LKED has been

Thus, SYSPRINT precedes SYSGO
The ddname ASM.SYSIN was
rlaced last since SYSIN does not occur at
all within step ASM.
covered in "Appendix BA.
In-stream Procedures"

These pcints are
Using Cataloged and
in the 0S Job Control

Lanquage Reference manual.

The input stream appears as fcllcws:

To assemble two programs, linkage edit

// jobname Jos
//stepname EXEC PROC=ASMFCL,
/ COND .LKED=(0, NE,stepname . ASM)

//ASM.SYSPRINT DD

/

//ASM.SYSGO DD
//ASM.SYSIN DD

V4

//LKED.SYSIN DD
//LKED.SYSLMOD DD

/%

DSNAME=PROG1, UNIT=TAPE,
VOLUME=SER=TAPE10,DCB=(BLKSIZE=405)
DCB=(BLKSIZE=400)

UNIT=282, LABEL=(,NL),
DCB=(RECFM=FSB, BLKSIZE=800)
DCB=stepname .ASM.SYSGO
DSNAME=USER . LIBRARY(PROG),DISP=OLD

20

the two assemblies into one load module and
execute the load module, using the
cataloged procedures described above, the
input stream appears as follows:

//stepnamel
//ASM.SYSGO
//

/"
//ASM,SYSIN

/n

//stepname2
//ASM.SYSGO
//ASM.SYSIN

/a
//LKED.SYSLIN
//LKED.SYSIN

/.
//GO .ddname

EXEC
DD

DD

EXEC
DD
oD

DD
ENTRY

PROC=ASMFC, PARM,ASM='LOAD'
DSNAME=&LOADSET,UNIT=SYSSQ,
SPACE=(80, (200, 50)),

DISP=(MOD, PASS), DCB=(BLKSIZE=400)
-

]
source program | statements
'
L)
1

PROC=ASMFCLG
DCB=(BLKSIZE=400), DISP=(MOD, PASS)

*
1
1
)
source program 2 statements
1

]
)
1
DCB=BLK SIZE=400

*

PROG

dd cards for GO step

x

The 0S Job Control Lanquage Reference

publication provides an additional
description of overriding technigues.

21

Cataloged Procedures

Assembler Listing

The assembler listing (Figure 10) consists
of five sections, ordered as. follcws:
external symkol dictionary items, the
source and object program statements,
relocation dictionary items, symbol cross
reference table, and diagnostic messages.
In addition, three statistical messages may
appear in the listing:

1. After the diagnostics, a
statements-flagged message indicates
the total numker of statements in
error. It appears as follows: nnn
STATEMENTS FLAGGED IN THIS ASSEMBLY.

2. After the statements-flagged message,
the assembler prints the highest
severity code encountered (if
non-zero). This is equal tc the
assembler return code. The message
appears as follows: nn WAS HIGHES1T
SEVERITY CODE.

3. After the severity code, the assembler
prints a count of the number cf
records read from SYSIN and from
SYSLIB. It also prints the cptions
for the assembly. (See the section
"Assembler Options".) These messages
appear as follows:

STATISTICS# SOURCE RECORDS (SYSIN) =
nnnnn SOURCE RECORDS (SYSLIB)= nnnnn
OPTIONS IN EFFFECT XXXX,XXXXXX, etc.

4. After the options in effect, the
assembler prints a count of lines
printed, which appears as follows:
nnn PRINTED LINES. This is a ccunt of
the actual number of 121-byte records
generated by the assembler; it may be
less than the total number cf rprinted
and blank lines appearing on the
listing if the SPACE n assenbler
instruction is used. For a SPACE n
that does not cause an eject, the
assembler inserts n blank lines in the
listing by generating n/3 blank
121-byte records -- rounded tc the
next lower integer if a fraction
results; e.g., for a SPACE 2, nc blank
records are generated. The assembler
does not generate a blank reccrd to
force a page eject.

In addition to the above items, the
assembler prints the deck identification
| (as specified in the TITLE statement) and
current date on every page of the listing.
If the timer is available, the assembler
prints the time of day to the left of the
date on page 1 of the ESD listinag. This is

22

the time when printing starts, rather than
the start of the assembly, and is intended
only to provide unique identification for

assemblies made on the same day. The time
is printed as hh.mm, where hh is the hour

of the day (midnight beginning at 00) , and
mm is the number of minutes past the hour.

External Symbol Dictionary (ESD)

This section of the listing contains the
external symbol dictionary information
passed to the linkage-editor or loader in
the object module. The entries describe
the control sections, external references,
and entry points in the assembled program.
There are six types of entries, shown in
Figure 9, along with their associated
fields. The circled numbers refer to the
corresponding heading in the sample listing
(Figure 10) . The X's indicate entries
accompanying each type designation.

® 0 ©6 0/ 6 0
SYMBOL| TYPE ID - ADDR |LENGTH{ LD ID

X SD X X X -

X LD - X - X

X ER X - - -

- PC X X X -

- CM X X X -

XD X X X -

WX X - - -

Figure 9. Types of EST Entries

0 This column contains the name of every
external dummy section, controcl
section, entry point, and external

symbol.

e This column contains the type
designator for the entry, as shown in
the figure. The type designators are
defined as:

SD--Names section definition. The
symbol appeared in the name field
of a CSECT or START statement.

ILD--The symbol appeared as the operand
of the ENTRY statement.

ER--External reference. The symbol

appeared as the operand of an EYTRN

statement, or was defined as a
V-type address constant.

PC--Unnamed control section (private
code) definition.

CM--Common control section definition.
XD--External dummy section (same as PR,
Pseudo Register in the Linkage

Editor manual).

WX--Weak external reference. The
symbol appeared as the operand of a
WXTRN statement.

This column contains the external
symbol dictionary identification
number (ESDILC). The number is a
unique two-digit hexadecimal number
identifying the entry. It is used by
the LD entry of the ESD and by the
relocation dictionary for
cross-referencing the ESD.

o This column contains the address of

the symbol (hexadecimal notation) for
SD- and ID-type entries, and zeros for
ER- and WX-type entries. For PC- and
CM-type entries, it indicates the
beginning address of the control
section. For XD-type entries, it
indicates the alignment by printing a
number one less than the number of
bytes in the unit of alignment, e.qg.,
7 indicates double word alignment.

This column contains the assembled
length, in bytes, of the ccntrol
section (hexadecimal notation).

o This column contains, for LD-type

entries, the identification (IL)
number assigned to the ESC entry that
identifies the control section in
which the symbol was defined.

Assembler Listing 23

STMT ERROR CODE MESSAGE

83 IEUO24 NEAR OPERAND COLUMN 1--UNDEFINEC SYMEOL

1 STATEMENT FLAGGEL IN THIS ASSEMBLY
8 WAS HIGHEST SEVERITY CCDE
STATISTICS SOURCE RECORDS (SYSIN)
#*OPTIONS IN EFFECT* LIST, DECK, NOLOAD,
359 PRINTELC LINES

191

Figure 10. Assemkcler Listing

24

SOURCE RECCRDS (SYSIIB)
NORENT, XREF, NOTEST, ALGN, OS, NOTERM, LINECNT

O

9/09/71

833

70

{
EXAM o EXTERNAL SYMEOL LICTIONARY PAGE
SYMBOL TYPE 1D ALCR LENGTE LD ID 17.10 9/¢
SAMPLR SD 01 000000 0003C8
EXAM SAMPLE PROGRAM PAGE
LCC OBJECT COLCE ACCR1 ACLR2 STMT SOURCE STATEMENT FO10CT71l 9,09/
000024 D200 1003 5008 00003 00008 72+ MVC TSWIICH,LSWITCH
73 MOVE TNUMBER,LNUMBER FROM LIST ENTRY 335000
Tue NEXT STATEMENT GENERATED FOR MOVE MACRC
00002A D202 1000 5009 00000 00009 75+ MVC TNUMBER,LNUMBER
76 MOVE TADDRESS,LADDRESS 10 TABIE ENIRY 340000
77+% NEXT TWO STATEMENTS GENERATED FCR MOVE MACRO
000030 5820 500C 0000C 78+ L 2,LACCRESS
000034 5020 1004 00004 79+ ST 2, TADDRESS
000038 8756 €008 00018 80 LISTLOOP BXLE R5,R6,MORE LCCF THRCUGH THE LIST 345000
00003C DSEF C248 COF8 00258 00108 81 CLC TESTTABL (240) , TARLAREA 350000
000042 4770 C080 00090 82 BNE NOTRIGHT 355000
000046 0000 0000 00000 83 EL NOLABEL
*%%¥ ERROR **%*
00004A DS5F C33C C1E8 0034C 001F8 84 CLC TESTLIST (96) ,LISTAREA 360000
000050 4770 €080 00090 85 BNE NOTRIGHT 365000
EXAM RELOCATION CICTIONARY PAGE 1
POS.ID REL.IDC - FLAGS ACDRESS 9/09/71
01 01 oc 000204
01 01 ocC 000214
EXAM CROSS~REF ERENCE FAGE 1
SYMBOL LEN VALUE DEFN REFERENCES 8/09/71
BEGIN 00004 000000 00057 0155 0157 0173 0184 0186 0220
EXIT 00004 000082 00095 0110
HIGHER 00002 0000F8 00129 0124
IHB0005 00001 00007F 00092 0089
IHBOOOSA 00002 000080 00093 0088
IHB0007 00001 0000BLC 00107 0104
IHBO007A 00002 0000BE 00108 0103
IADDRESS 00004 00000C 00211 0078
LIST 00001 000000 00207 0065
LISTAREA 00008 0001F8 00155 0064 0084 0221
LISTEND 00008 000248 00160 0064 0221
LISTLCOP 00004 000038 00080 0112
LNAME 00008 000000 00208 0123
LNUMBER 00003 000009 00210 0075
LOOP 00004 0000DE 00122 0127 0130 0156 0180 0185
LSWITCH 00001 000008 00209 0072 0111
MORE 00004 000018 00066 0080
NOLABEL ##*#*UNDCEFINEC*#+#% 0083
NONE 00001 000080 00115 0067 0111 0119 0131
EX M CIAGNOSTICS EARGE 1

Source and Object Program

This section of the listing documents the
source statements and the resulting object
program.

0 This is the four-character deck

identification. 1t is the symbol that
appears in the name field of the first
TITLE statement. The assembler prints
the deck identification and date (item
16) on every page of the listing.

This is the information taken from the
operand field of a TITLE statement.

Note: TITLE, SPACE and EJECT
statements will not appear in the
source listing unless the statement is
continued onto another card. Then the
first card of the statement is
printed. However, any of these three
types of statements, if generated as
macro instruction expansion, will
never be listed regardless cf
continuation.

Listing page number. Each section of
the listing starts with page 1.

This column contains the assembled
address (hexadecimal notation) of the
object code.

This column contains the object code
produced by the source statement. The
entries are always left-justified.
The notation is hexadecimal. Entries
are machine instructions or assembled
constants. Machine instructions are
printed in full with a blank inserted
after every four digits (twc bytes).
Constants may be only partially
printed (see the PRINT assenbler
instruction in the 0S_Assembler
Language publication).

These two columns contain effective
addresses (the result of adding
together a base register value and
displacement value):

a. The column headed ADDR1 contains
the effective address for the first
operand of an SS instruction.

b. The column headed ADDR2 ccntains
the effective address of the second
operand of any instructicn
referencing storage.

Both address fields contain six
digits; however, if the high-order
digit is a zero, it is not grinted.

This column contains the statement
number. A plus sign (+) to the right
of the number indicates that the

statement was generated as the result
of macro instruction processing.

This column contains the source
program statement. The following
items apply to this section of the
listing:

a. Source statements are listed,

including those brought into the
program by the COPY assembler
instruction, and including macro
definitions submitted with the main
program for assembly. Listing
control instructions are not
printed, except for the following
case: PRINT is listed when PRINT
ON is in effect and a PRINT
statement is encountered.

b. Macro definitions obtained from

SYSLIB are not listed.

c. The statements generated as the

result of a macro instruction
follow the macro instruction in the
listing.

d. Assembler or machine instructions

in the source program that contain

variable symbols are listed twice:

as they appear in the source input,
and with values substituted for the
variable symbols.

e. Diagnostic messages are not listed

inline in the source and object
program section. BAn error
indicator, ***ERRCR***, follows the
statement in error. The message
appears in the diagnostic section
of the listing.

f. MNCTE messages are listed inline in

the source object program section.
An MNCTE indicator appears in the
diagnostic section of the listing
for MNCTE statements other than
MNOTE#. The MNOTE message format
is serverity code, message text.

g. The MNOTE#* form of the MNOTE

statements results in an inline
message only. Bn MNOTE indicator
does not appear in the diagnostic
section of the listing.

h. When an error is found in a

programmer macro definition, it is
treated the same as any other
assemkly error: the errcr
indication appears after the
statement in error, and a
diagnostic is placed in the list of
diagnostics. However, when an
error is encountered during the
expansion of a macro instruction
(system- or programmer-defined) the
error indication appears in place
of the erroneous statement which is
not listed. The error indication
follows the last statement listed
before the erronecus statement was
encountered, and the associated
diagnostic message is placed in the

Assembler Listing 25

list of diagnostics.

i. Literals that have not been
assigned locations by an LTORG
statement appear in the listing
following the END statement.
Literals are identified by the
equal (=) sign preceding thermr.

j. 1f the END statement contains an
operand, the transfer address
appears in the location cclumn
(LOC) .

k. In the case of COM, CSECT, and
DSECT statements, the location
field contains the beginning
address of these control sections,
i.e., the first occurrence.

1. 1In the case of EXTRN, WXTRN, ENTRY,
and [LXC instructions, the location
field and object code field are
blank.

m. For a USING statement, the lccation
field contains the value of the
first operand.

n. For LTORG and ORG statements, the
location field contains the
location assigned to the literal
pool or the value of the ORG
oper and.

0. For an EQU statement, the location
field contains the value assigned.

p. Generated statements always print
in normal statement format.

Because of this, it is pcssible for
a generated statement to occupy
three or more continuaticn lines on
the listing. This is unlike source
statements, which are restricted to
two continuvation lines.

Note: When the listing is directed to a
terminal under TSO, the following items
apply to ICTL, EJECT, and SPACE:

ICTL - the end column, operand e, must be
within 41-71.

EJECT- only one blank line is created on
the terminal listing.

SPACE- the decimal value specified in the
operand is divided by three, and the
integer result indicates the number
of blank lines created.

qE’ This column contains the identifier of
the assemkler (F) and the date when
this version was released by System
Levelopment LCivision to DPD Program
Information Department.

‘E’ Current date (date run is made) .

m Identification-sequence field from the
source statement.

Relocation Dictionary

This section of the listing contains the

T o~

relocation Jictionary infourmation passed to

26

© © © 006

the linkage editor in the object module.
The entries describe the address constants
in the assembled program that are affected
by relocation.

‘I’ This column contains the external
symbol dictionary ILC number assigned
to the ESD entry that describes the
control section in which the address
constant is used as an operand.

‘E’ This column contains the external
symbol dictionary ILC number assigned
to the ESD entry that describes the
control section in which the
referenced symbol is defined.

‘z’ The two-digit hexadecimal numker in
this column is interpreted as follow:

First Digit. A zero indicates that
the entry describes an A-type or
Y-type address constant. A one
indicates that the entry descrikes
a V-type address constant . A two
indicates that the entry descriktes
a O0-type address constant. A three
describes a CXC entry.

Second The first three bits
of this digit indicate the length
of the constant and whether the
base should be addel or subtracted:

Bits 0 _and 1 Bit 2
00 = 1 byte 0=+
01 = 2 bytes 1= -
10 = 3 Lytes
11 = U4 bytes

@ This column contains the assembled
address of the field where the address
constant is stored.

Cross Reference

This section of the listing information
concerns symbols which are defined and used
in the program.

This column contains the symkols.

This column states the length (decimal
notation) , in bytes, of the field
occupied by the symbol wvalue.

This column contains either the
address the symbol represents, or a
value to which the symbol is equated.

This column contains the statement
number of the statement in which the
symbol was defined.

This column contains the statement
numbers of statements in which the
symbol appears as an operand. In the

case of a duplicate symbol, the
assembler fills this column with the
message:

**** CUPL ICATE****

The following notes apply to the
cross-reference section:

e Symbols appearing in V-type address
constants do not appear in the
cross-reference listing.

e A PRINT OFF listing control instruction
does not affect the production of the
cross-reference section of the listing.

e 1In the case of an undefined synbcl, the
assembler fills columns 23, 24, and 25
with the message:

¥ ¥ ¥UNDEFINED****_

Diagnostics

This section contains the diagnostic
messages issued as a result of error
conditions encountered in the prcgram. The
text, severity code, and explanatcry notes
for each message are contained in "Appendix
AY.

@ This column contains the nurber of the
statement in error.

@ This column contains the message
identifier.

@ This column contains the message, and,
in most cases, an operand cclumn
pointer that indicates the vicinity of
the error. 1In the following example,
the approximate location of the
addressability error occurred in the
9th column of the operand field:

Example:
STMT ERROR CODE MESSAGE

21 IEU035 NEAR OPERAND COLUMN 9 -- ADDRESSABILITY ERROR

The following notes apgly to the
diagnostic section:

e An MNOTE indicator of the form NMOTE
STATEMENT appears in the diagnostic
section if an MNOTE statement other
than MNCTE #* is issued by a macro
instruction. The MNOTIE statement
itself is inline in the source and
object program section of the listing.
The operand field of an MNOTE * is
printed as a comment, but doces not
appear in the diagnostic section.

e A message identifier consists of six
characters and is of the form:
I1EUxxx

IEU identifies the issuing agent as
Assemkler F, and xxx is a unique
number assigned to the message.

Note: Editing errors in system macro
definitions (macro definitions included in
a macro library) are disccvered when the
macro definitions are read from the macro
likrary. This occurs after the END
statement has been read. They will
therefore be flagged after the END
statement. 1f the programmer does not know
which of his system macros caused an error
it is necessary to punch all system macro
definitions used in the program, including
inner macro definitions, and insert them in
the program as programmer macro
definitions, since the prcgrammer macro
definitions are flagged inline. To aid in
debugging it is advisable to test all macro
definitions as programmer macro definitions
before incorporating ther in a library as
system macro definitions.

Assembler Listing 27

Programming Considerations

This section consists of a number of
discrete subjects about assembler language
programming.

Saving and Restoring General Register
Contents

A problem program should save the values
contained in the general register upon
commencing execution and, upon completion,
restore to the general registers these same
values. Thus, as control is passed from
the operating system to a problem program
and, in turn, to a subprogram, the status
of the registers used by each program is
preserved. This is done through use of the
SAVE and RETURN system macro instructions.

The SAVE macro instruction shculd be the
first statement in the program. 1t stores
the contents of register 14, 15, and 0
through 12 in an area provided by the
program that passes control. When a
problem program is given control, register
13 points to an area in which the general
register contents should be saved.

If the program calls any subprcgrams, or
uses any operating system services other
than GFTMAIN, FREEMAIN, ATTACH, and XCIL,
it must first save the contents of register
13 and then load the address of an 18
fullword save area into register 13. This
save area is in the proklem program and is
used by any sukprograms or operating system
services called by the problem program.

At comgpletion, the problem program
restores the contents of general registers
14, 15 and 0-12 by use of the RETURN system
macro instruction (which also indicates

_program completion). The contents cf
register 13 must be restored before
execution of the RETURN macrc instruction.
The coding sequence that follows
illustrates the basic process of saving and
restoring the register. A complete
discussion of the SAVE and RETURN macro
instructions and the saving and restoring
of registers is contained in the O0S Data
Management Services Guide and OS Cata
Management Macro Instructions publications.

28

e — T - T it |
{fame J Operation 1 Operand _}
T u v - -

| BEGIN | SAVE | (14,12) |
] | -] |
| | - | set up base register
[- I |
| | ST | 13,SAVEBLK+4 |
[| LA | 13,SAVEBLK |
i		
	L	13,SAVEBLK+#4
	RETURN	(14,12)
SAVEBLK	DC	18F'0°
L 4 e -4

Program Termination

Completion of an assembler source gprogram
is indicated by using the RETURN system
macro instruction to pass control from the
terminating program to the program that
initiated it. The initiating prcgram may
be the operating system or, if a subprogram
issued the RETURN, the program that called
it.

In addition to indicating program
completion and restoring registers, the
RETURN macro instruction may also pass a
return code -- a condition indicator that
may be used by the program receiving
control. If the return is to the operating
system, the return code is compared against
the condition stated in the COND= parameter
of the JCB or EXEC statements. If return
is to another problem program, the return
code is available in general register 15,
and may be used as desired. Register 13
should be restored before issuing the
RETURN macro instruction.

The RETURN system macro instruction is
discussed in detail in the 0S Sugervisor
Services and Macro Instructions
puklication.

PARM Field Access

Access to information in the PARM field of
an EXEC statement is gained through general
register 1. When control is given to the
problem program, general register 1
contains the address of a full word which,
in turn, contains the address of the data
area containing the information.

The data area consists of a halfword
containing the count (in binary) of the
number of information characters, tollowed

by the information field. The inferration
field is aligned to a half-word boundary.
The following diagram illustrates this
process.

General Register 1

Address of Full Word

Points
to Full Word

Address of Data Area

|]

Points
to

Dota Area

Count in Binary | Information Field

Macro Definition Library Additions

Source statement coding, to be retrieved by
the COPY assemkler instruction, and racro
definitions may be added to the rmacrc
library. The IEBUPDTE utility program is
used for this purpose. Details cf this
program and its control statements are
contained in the 0S Utilities publication.
The following sequence of job control
statements can be used to call the utility
program and identify the needed data sets.
It is assumed that the job contrcl
statements, 1EBUPDTE program control
statements, and data are to enter the
system via the input stream.

//jobname JOB

/stepname ~ EXEC PGM=IEBUPDTE, PARM=MOD

//SYSUTI DD DSNAME=SYS1.MACLIB, DISP=OLD
SYSUT2 DD DSNAME=SYS1.MACLIB,DISP=OLD
SYSPRINT DD SYSOUT=A

/SYSIN *

DD

|IEBUPDTE contrc.Jl statements and source statements or
macro-definitions to be added to the macro-library
(SYS1.MACLIB)

/* (delimiter statement)

Load Module Modification - Entry Point
Restatement

I1f the editing functions of the linkage
editor are to ke used to modify a lcad
module, the entry point to the load module
must be restated when the load module is
reprocessed by the linkage editor.
Otherwise, the first byte of the first
control section processed by the linkage

| formats.

editor will become the entry point. To
enable restatement of the original entry
point, or designation of a new entry point,
the entry point must have been identified
originally as an external symbol, i.e.,
apreared as an entry in the external symkol
dictionary. External symbol identification
is done automatically by the assemkler if
the entry point is the name of a control
section or START statement; otherwise, an
assembler ENTRY statement must be used to
identify the entry point name as an
external symkol.

When a new object module is added to or
replaces part of the load module, the entry
point is restated in one of three ways:

point symbol in
an EXTRN statement
in the new object

e By placing the entry
the operand field of
and an END statement
module.

e By using an END statement in the new
object module to designate a new okject
module.

e By using a linkage editor ENTRY
statement to designate either the
original entry point or a new entry
point for the load module.

Further discussion of load module entry
points is contained in the 0S Loader and
Linkage Editor publication.

Object Module Linkage

Object modules, whether Assembler-,
FORIRAN-, or CCROL-generated, may ke
combined by the linkage editor to produce a
composite load module, provided each object
module conforms to the data formats and
linkage conventions required. This togic
discusses the use of the CALL system macro
instruction to link an assembler language
"main® program to subprograms produced Ly
FORTRAN and COBOL. The 0OS Supervisor
Services and Macro Instructions publication
contains additional details concerning
linkage conventions and the CALL system
macro instruction.

Figure 11 shows the statements used to
establish the assembler program linkage to
the called subprograms.

1f any input/output operations are
rerformed by called subprograms,
aprropriate DD statements for the data sets
used by the subprograms must be sugplied.
See the appropriate FCRTRAN IV Programmer's
Guide publications for explanaticn of the
LD statements used to describe data sets
for FORTRAN programs and a description of
the special FORTRAN data set reccrd
The COBOL Programmer's Guide

Programmring Considerations 29

publications provide DD statement
information for COBOL programs.

Dictionary Size and Source Statement
Complexity

This section descrikes the ccmpositicn of
the assembler dictionaries and their entry
sizes, and describes methods for
determining if the limits on source
statement complexity will be exceeded.

Dictionary entries, e.g., sequence
symbol names, prototype symbolic ‘ :
rarameters, vary in length. Therefore, the
number of entries a dictionary can hold is
determined by the types of entries.

Source statement complexity -- the
number of symkols, characters, cperators,
delimiters, references to length
attributes, self-defining terms, literals,
and expressions appearing in a source
statement -- determines whether cx not the
source statement can be successfully
processed. :

SAVE (14,12)

. set up base register
] ST 13, SVAREA+4

LA 15,SVAREA

ST 15.8(13)

LR 13,15

2 CALL name, (V1,V2,V3),VL
L 13, SVAREA+4

3 RETURN (14,12)

4 SVAREA DC 18F'0"

5 Vi DC (data)

) A\ DC (data)

K DC (data)

END

This is an example of OS linkage convention. See the publication OS Supervisor Services and Macro Instructions for details,

The symbol used for "name" in this statement is:

ENTER LINKAGE, ENTRY'name',

a. The name of a subroutine or function, when the linkage is to @ FORTRAN-written subprogram.

b. The name defined by the following COBOL statements in the procedure division:

c. The name of a CSECT or START statement, or a name used in the operand field of an ENTRY statement in an assembler subprogram,

The order in which the parameter list is written must reflect the order in which the called subp rogram expects the argument. If the called routine is a
FORTRAN-written function, the returned argument is not in the parameter list: a real or double precision function returns the value in floating point
register zero; an integer function returns the value in general purpose register zero,

statements used to call IBCOM.

area,

the FORTRAN or COBOL subprograms.

CAUTION: When linking to FORTRAN-written subprograms, consideration must be given to the storage requirements of IBCOM (FORTRAN execution-time
1/0 and interrupt handling routines) which accompanies the compiled FORTRAN subprogram. In some instances the call for IBCOM is not automatically
generated during the FORTRAN compilation. The OS FORTRAN IV Library publication provides information about IBCOM requirements and assembler

FORTRAN - written subprograms and FORTRAN library subprograms allow variable-length parameter lists in linkages which call them; therefore all linkages
to FORTRAN subprograms are required to have the high-order bit in the lost parameter in the linkage set to 1, COBOL-written subprograms have fixed-
length calling linkages; therefore, for COBOL the high-order bit in the last parameter need not be set to 1.,

3. :
This statement reserves the save area needed by the called subprogram, When control is passed to the subprogram, register 13 contains the address of this

456 When linking to a FORTRAN or COBOL subprogram, the data formats declared in these statements are determined by the data formats required by '

Figure i1i. Linkage Statemeinis

30

Dictionaries Used in Conditional Assembly
and Macro Instruction Expansion

To accomplish macro instruction expansion
and conditional assembly, the assembler
constructs a general dictionary consisting
of two parts: one global dictionary for
the entire program, and an area for all of
the local dictionaries.

The global dictionary contains one entry
for each machine operation code, extended
mnemonic operation code, assembler
operation code, macro instruction, and
global SET variakle symkol.

The local dictionary area consists of
one local dictionary for each different
macro definition in the program, and one
local dictionary for the main portion of
the program (those statements not within a
macro definition, also called "open code").
The contents of the local dictionaries are
described in subsequent paragraphs.

The capacity of the general dictionary
(global dictionary and all local
dictionaries) is up to 64 blocks of 1024
bytes each. The division of the dictionary
into glcbal and local sections is done
dynamically: as the glokal dicticnary
becomes larger, it occupies Lklocks taken
from the local dictionary area. Thus, the
global dictionary is always core resident.
As it expands into the logical dicticnary
area, the local dictionaries may overflow
onto a utility file. The size of the
dictionaries in core depends upon core
availability. The minimum core allocation
is three blocks for the global dicticnary
and two blocks for each local dictionary.

Each block in the global and local
dictionaries contains complete entries.
Any entry not fitting into a block is
placed in the next klock; the rermaining
bytes in the current block are not used.

The global and local dictionaries take
two forms: one when the dictionary entries
are collected, i.e., picked up during the
initial scan of the source program, and one
during the actual conditional asserbly and
macro generation, i.e., generation time.
The following text describes the global and
local dictionaries at both collection time
amd generation time.

Global Dictionary at Collection Time

One global dictionary is built for the
entire program. It contains machine
operation codes, extended mnemonic
operation codes, assembler operation codes,
OPSYN defined operation codes, macro
instruction mnemonics, and glokal SET
variable symbols. One entry is rade as
shown in Figure 12.

Entry Size

*

*
Each machine operation code 5 bytes plus mnemonic*

Each extended mnemonic operation

. *k .
code or assembler operation 6 bytes plus mnemonic*

Each macro mnemonic operation code | 10 bytes plus mnemonic*

Each global SET variable symbol 7 bytes plus name*

*One byte is used for each character in the name or mnemonic.

**For the first two types of entries, a total of
0780]6 (192010) bytes of core is required.

Global Dictionary Entries at
Collection Time

Figure 12.

Fixed overhead for this dictionary is:
8 bytes for the first block
4 bytes for each succeeding blcck
5 bytes for the last block

Local Dictionaries at Collection Time

For the main portion of the program (those
statements not within a macro definition),
one local dictionary is constructed in
which ordinary symbols, sequence symktols,
and local SET variable synbols are entered.
In addition, one local dictionary is
constructed for each different macro
definition in the program. These local
dictionaries contain one entry for each
local SET variable symbol, sequence symkol,
and prototype symbolic parameter declared
within the macro definition. If a sequence
symbol is defined before it is referenced,
an extra entry for the symbol is made.
Figure 13 shows the size cf each type of
entry. .

Entry Size

Each sequence symbol 10 bytes plus name*

Each local SET variable symbol - 7 bytes plus name*

Each prototype symbolic parameter 5 bytes plus name *

Each ordinary symbol
appearing in the main portion

f th .
er The program 10 bytes plus name*

*One byte is used for each character in the name or mnemonic.

Local TCictionary Entries at
Collection Time

Figure 13.

Fixed overhead for this dictionary is:

8 bytes for the first block (if in the

main program)

Frogramming Considerations 31

32 bytes for the first klock (if in a
macro definition)
4 bytes for each succeeding block
5 bytes for the last block

Global Dictionary at Generation Time

The sizes of the global dictionary entries
at generation time are shown in Figure 14.

Entry Size

Entry Size

Each sequence symbol 5 bytes

Each local SETA symbol (dimensioned) | 2 bytes plus 4N"

Each local SETA symbol

(undimensioned)

4 bytes

Each local SETB symbol (dimensioned) | 2 bytes plus (N/8)* (N/8 is
rounded to the next highest

integer)

Each local SETB symbol 1 bit
(undimensioned)

Each macro mnemonic operation code {3 bytes

Each local SETC symbol(dimensioneé) 2 bytes plus 9N*

Each global SETA symbol (dimensioned)| 2 bytes plus 4N*

Each global SETA symbol

(undimensioned) 4 bytes

Each global SETB symbol (dimensioned) | 2 bytes plus (N/8)* (N/8 is
rounded to the next highest
integer)

Each global SETB symbol 1 bit
(undimensioned)

Each global SETC symbol

(dimensioned) 2 bytes plus oN*

Each global SETC symbol

(undimensioned) 9 bytes

*N = dimension

Figure 14. Global Dictionary Entries at

Generation Time
Fixed overhead for this dictionary is:
4 bytes plus word alignment.

Local Dictionaries at Generation Time

Figure 15 shows the sizes of the various
entries appearing in the local dictionaries
at generation time.

32

Each local SETC symbol

(undimensioned) 9 bytes
Each ordinary symbol
appearing in the main portion 5 bytes

of the program.**

*N=dimension
**These entries appear only in the main
program local dictionary.

Figure 15. local LCictionary Entries at

Generation Time
Fixed overhead for this dictionary is
20 bytes plus word alignment.

Additional Dictionary Requirements

The generation time global dicticnary and
the generation time local dictionary for
the main portion of the program must be
resident in main storage.

In addition, if the prcgram ccntains any
macro instructions, main storage is
required for the largest local dictionary
of the macro definitions being processed.
Furthermore, during processing of macro
definitions containing inner macro
instructions, main storage is required for
the generation time local dictionaries for
the inner macro instructicns contained
within the macro definition.

In addition to those requirements
specified for the local dictionary of the
main portion of the program, each macro
definition local dictionary requires sgace
for entries shown in Figure 16.

Entry Size

Each character string (1) 3 bytes plus L

Each hexadecimal, binary, decimal,

and character self-defining tem (2) 7 bytes plus L
Each symbol (3) 9 bytes plus L
Each sublist 9 bytes plus 3N bytes plus Y
L = Length of entry in bytes

N" = Number of entries in sublist

Y = Ey+Ex+Eg+ ... E,

where E =size of an entry (formats 1,2, and 3 above)

Figure 16. Macro Cefinition Local

Dictionary Parameter Table

Fixed overhead for the macro definition
local dictionary parameter table is 22
bytes. Each nested macro instruction also
requires space in its local dicticnary for
the following:

8 bytes rlus 2N
(N = the number
of operands)

Parameter pointer list

8 bytes plus
word alignment

Pointers to parameter
pointer list and
parameter table

Correction of LCictionary Overflow

1f an assembly is terminated at ccllection
time with either a GLOBAL DICTIONARY FULL
message (IEU053) or a LOCAL DICTIONARY FULL
message (LEUO54), the programmer can take
one or more of the following stegs:

1. Split the assemkly into two cr more
parts and assemkle each separately.
2. Allocate more main storage fcr the
assembler (the global and 1lccal
dictionaries together can occupy up
64K) .

to

Specify a smaller SYSLIB blccksize.
Thus, if BLKSIZE=3600, try EBLKSIZE=
1800 or BLKSIZE=1200, reblock the
library to the size chosen, and try
the assemkly again.

Specify a smaller Lklocksize fcr the
utility files SYSUT1, 2, and 3. The
minimum blocksize normally used by the
assembler is 1700 bytes. Reduce this
by specifying DCB=BLKSIZE=n cn the
SYSUT1 DD card. SYSUT2 and 3 use the
same klocksize as SYSUT1.

If the assembly is terminated at
generation time with a GENERATION TIME
CICTIONARY AREA OVERFLOWED message

(IEU068) , the programmer should allocate

| more main storage to the assembler and

re-assemble his program. If he cannot
allocate more main storage to the
assembler, the programmer should sglit the
assembly into two or more parts and
assemkle each separately.

Symbol Table Overflow

Assembler performance can degrade when the
source text plus macro-generated statements
contains many ordinary symbols. If there
are more ordinary symbols than will fit in
the symbol table, the assembler will make
one or more additional passes over the
text. No symbols will be lost, fkut
assembly time will increase.

In general, the assembler can handle 400
ordinary symbols without overflow in its
minimum main storage (see Figure 3).
Because of input and/or output klocking
differences, the minimum amount of main
storage varies. 1t is approximately 49,00
bytes for MFT, and 51,000 bytes for MVT.
The assembler can process one additional
symbol for each 18 bytes above the minimum
amount of main storage.

Source Statement Complexity

The complexity of a source statement is
limited both by the macro generator and the
assembler portions of the assembler. The
following topics provide the information
necessary to determine if
statement-complexity limitations for either
portion of the assembler are Lbeing
exceeded.

Macro Generation and Conditional Assembly

For any statement which

1. Is a conditional assembly statement,

2. Is a DC or DS statement,

3. 1Is an EXTRN or WXTRN statement,

4. Contains a sequence symbol>cr a
variable symbol,

5. 1Is not a macro instruction cr

prototype statement,
the total number of explicit occurrences of

1. Ordinary symbols (includes machine
mnemonics, assembler mnemonics,
conditional assembly mnemonics, and

macro instruction mnemonics),

Programming Considerations 33

2. Variable symbols,
3. Sequence symbols,

must not exceed 50 for the entire
statement.

For macro instructions and prctctyre
statements the number of occurrences of
ordinary symkols, variakle symbols, and
sequence symbols must not exceed 50 in the
name and operation fields combined; or in
each orerand unless the operand is a
sublist, in which case the limit is argplied
to each sublist operand. 1In any operand if
a character string has the same forrm as a
symbol, it is counted as a symbol.

Examples of Counts:

&B2 SETB (T'NAME EQ 'W') count=3 (&B2, SETB, NAME)
EXTRN A, B,C,&C count=5 (EXTRN,A, B, C, &C)

Assembler Portion Limitations

1. Generated statements may nct exceed
236 characters. Statement length
includes name, operation, orerand, and
comments. If a comments field exists,
the blank separating the operand and
comments field is included in the
statement length. The statement is
truncated if it exceeds 236
characters.

2. DC, DS, DXD, and literal DCs cannot
contain more than 32 operands per
statement.

System /360 Model 91 Programming
Considerations

The assembly lanquage prograrmer shculd be
aware of the operational differences
between the Model 91 and other Systen/360
models. The Model 91 requires a simulation
routine to execute most deciral
instructions and it yields different
floating-point instructions executicn
results. The Model 91 also decodes and
executes instructions concurrently.

These and other coding and tiring
considerations are discussed in detail in
IBM System/360 Model 91 Functional
Characteristics, Order No. GA22-6907.
Additional information on how to control
sequential and nonsequential instruction
execution is given below.

Controlling Instruction Execution Sequence

The CPU maintains a logical consistency

PRl o N e T =T 4
Wiclii YE3pelT

LA S Aren AvAmadd An
LU Lo VU Ut aU Ll viaio g

34

including the beginning and ending of 1/0
operations, but it does not assume
responsibility for such consistency in the
operations performed by asynchronous units.
Consequently, for any asynchronous unit
that depends upon a strict adherence to
sequential (or serial) execution, a proklem
program must set up its own procedures to
ensure the proper instructions sequence.

For a program section that requires the
serial or sequential execution of
instructions, the following 'no-cperation’
instruction:

BCR M,0 where M # 0
causes the instruction decoder tc halt, and
the instructions that have already been
decoded to be executed. (This action is
called a pipe-line drain.) On the Model
91, this instruction ensures that all the
instructions preceding it are executed
before the instruction succeeding it is
decoded. Use of this instruction should te
minimized since it may affect the
rerformance of the Model 91.

Isolating an instruction by preceding it
and succeeding it with a BCR instruction
eliminates multiple imprecise interruptions
from more than one instruction by virtue of
the pipe-line drain effect. However, since
multiple exceptions may occur in'one
instruction, this technique dces not
eliminate a multiple imprecise interruption
nor does it change an imprecise
interruption into a precise interruption.
The use of the BCR instruction dces not
assure a programmer that he can fix up an
error situation. 1In general, the only
information available will be the address
of the BCR instruction. The length of the
instruction preceding the BCR instruction
is not recorded, and generally there is no
way to determine what that instruction is.

System /360 Model 85 Programming
Considerations

The Model 85 has two special features
available to the assembler language
programmer. They are extended-rrecision
(two doubleword) floating point
instructions and byte-oriented (unaligned)
operands. Detailed information on these
features is in the 1BM System/360
Principles of Operation manual, Order No.
GA22-6821.

Assembler F supports these features with
mnemonic operation codes for the
extended-precision instructions, a two
doubleword data constant (CC), an option
for suppressing the alignment error
message, and an assembler instruction for

Ariiabtvnee AnAa Anaryadinn ~A~ndoe +n annther
CEUaTing TN Ccporaticen coce -C anoeIiner.

EXTENDED FLOATING POINT NUMBER (L)

7 BIT HIGH ORDER HALF OF
CHARAC 112 BIT FRACTION
TERISTIC
1] 78 63
\
\\ Lo opoen HaLE oF
N
o 78 63
Figure 17. Extended-Precision Floating

Point Format

These assemkbler features are explained in
the following paragraphs.

Extended-Precision Machine Instructions

The extended-precision arithmetic
instructions and the rounding instructions
of the Model 85 are shown in Figure 18.

The data format for extended operands of
the AXR, SXR, MXR, and LRDR instructions
and for extended results of the AXR, SXR,
MXR, MXLCR, and MXLC instructions is shown in
Figure 17. A complete description of these
instructions is in the Principles cf
Operation manual.

The Extended-Precision Floating-Point
Simulator

A program containing extended-precision
arithmetic and rounding instructicns can be
executed on a model that does not have
these instructions using the
extended-precision floating-point simulator
routine of the supervisor. The rcutine

is accessed through the user's prcgram
interrupt handler. The user must supply a
SPIE macro instruction and a routine to
transfer control to the simulator routine.
This is explained in detail under “Extended
Precision Floating-Point Simulaticn® in 0S
Supervisor Services and Macro Instructions.

There are two versions of the simulator.
For machines that support the instructions
listed in Figure 18, a simulation routine
for ‘an extended-precision divide cperation
is available. The other version is
intended for other System/360 models. It
simulates the instructions listed in Figure
18 as well as the divide operation.

Because the assembler does not recognize
any operation code for an -
extended-precision divide instruction, a
supervisor macro instruction has been
provided to produce the proper machine
language for the simulator. The fcrmat of
that macro is described under "DXR" in 0OS
Supervisor Services and Macro Instructions.

Name Mnemonic | Type [{Op Code

ADD NORMALIZED (extended operands,

extended result) AXR RR 36
SUBTRACT NORMALIZED (extended

operands, extended result) SXR RR 37
MULTIPLY (extended operands, ’

extended result) MXR RR 26

MULTIPLY (long operands,
extended result)
MULTIPLY (long operands,
extended result)
LOAD ROUNDED (extended to long)
LOAD ROUNDED (long to short)

MXDR | RR 27

MXD RX 67
LRDR RR| ‘25
LRER RR 35

Figure 18. Extended-Precision and Rounding

Instructions

Approximating Extended-Precision Floating
Point Instructions

An easier way to debug a program containing
extended-precision floating-point
instructions on a machine that dces not
contain these instructions, is to
aprroximate them to long floating-point
instructions. This is done with the OFSYN
assembler instruction.

For example, to "equate®" MXR in a source
program to MDR, the following instruction
is rlaced at the beginning of the grogram:

MXR OPSYN MDR REPLACE ALL MXR OPERATIONS
WITH MCR

The MDR instruction is then assemkled for
each occurrence of the MXR instruction in
the source module. The program can be run
and debugged on a model. that does not have
the MXR instruction. Later, the programmer
can remove the OPSYN statement and run his
program on a machine that supports MXR.

Support of Unaligned Data

The Module 85 will execute unprivileged RX-
and RS- format instructions with fixed
point, floating-point, or logical cperands
that are not on integral boundaries.

Programming Considerations 35

Assembly of such instructions norrally
produces the diagnostic message "1EU033
Alignment Error®". A new PARM option in the
EXEC statement for the Assemkler F, ALGN or
NOALGN, makes it possible to supgress the
message and thereby obtain a "clean"
assembly listing. The object code is not
affected.

Note that an assemkled progranm that
requires use of the Lkyte-oriented crerand
feature must be run on a Model 85 or 195
machine. Further, it cannot run
successfully under the Operating System if
it violates any alignment restrictions
imposed by OS.

Type L Data_ Constant

A Define Constant (DC) operand type, L, has
been added to provide extended-precision
floating-point constants for the
programmer. It can be used as a Define
Storage (LS) operand or in a literal.
Unless changed by a length modifier, the
type L constant is 16 bytes long and is
aligned on a doubleword boundary. Its
format is that of two contiguous type D
constants, as shown in Figure 17, excert

36

that it is assembled with the sign of the
second doubleword equal to that of the
first, and the characteristic of the second
equal to that of the first minus 14, modulo
128.

Model 195 and System/ 370 Programming
Considerations

The NModel 195 and the System/370 machines
have the following special features:
extended-precision (two doubleword)
flcating-point instructions and
byte-oriented (unaligned) operands. The
previous descriptions of these features
under "System/360 Model 91 Programming
Considerations" and "System/360 Model 85
Programming Considerations" also apply to
the Model 195 and to System/370 machines.
Detailed information can be found in 1BN
System/360 Model 195 Functional
Characteristics, Order No. GA22-6943 and
in IBM System/370 Principles of Operation,
Order No. GA22-7000.

Note: The Nodel 195 does not need the
decimal simulator routine used Ly the Model
91.

Appendix A. Diagnostic Messages

This section explains the messages issued by the assembler. They are written on SYSPRINT (if option
LIST is in effect) and on SYSTERM (if option TERM is in effect). Messages with serial numbers over
900 are also produced on the operator ccnscle.

Message Format

On SYSPRINT: XX I1EUnnn text (See Figure 10.)
On SYSTERM: IEUnnn text (See Appendix E.)
On operator conscle: IEUnnnl text
XX Statement number for statement in error
nnn Message serial number. For messages with serial number over 900, the number is followed by
the character I.
text Message text

Severity Codes

The severity code indicates the effect cf an errcr on the execution of a program being assemkled:

* Informational message; no effect on execution

0 Informational message; normal execution is expected

4 Warning message; successful execution is prcbable

8 Error; execution may fail

12 Serious error; successful executicn is improbable

16 Critical error; successful execution is impossible

20 Assembler program terminated abncrmally

1EU001 LCUPLICATION FACTOR ERROR copy of the PLS member specified in the

COPY statement.
Explanation: A duplication factcr is not
an absclute expression, or is zerxc in a
literal; * in duplication factor IFU003 LENGTH ERROR
expression; invalid syntax in expressicn.
Explanation: The length specification is

Severity Code: 12 out of permissible range cr specified

invalidly; * in length expression; invalid

Programmer Response: Probable user error. syntax in expression; no left-parenthesis

Make sure the source code is correct and delimiter for expressicn.

reassemble if necessary. 1f the prcbler

recurs, do the following before calling Severity Code: 12

IBM:

e Have the user source program, USer macro Programmer Response: Make sure the source
definitions, and associated listing code is correct and reassemble if
available. necessary. If the proklem recurs, do the

e If the COPY statement was used, execute following before calling IEM:
the IEBPTPCH utility program to obtain a e Have the user source prcgram, user macro
copy of the PDS member specified in the definitions and associated listing
COPY statement. availaktle.

e If the CCEY statement was used, execute
the IEEPTFCH utility program to oktain a
IEU002 RELOCATABLE DUPLICATION FACTOR copy of the PDS member specified in the
CCPY statement.
Explanation: A relocatable expression has
been used to specify the duplication

factor. IEU004 RELCCATABLE LENGTH
Severity Code: 12) Explanation: A relocatakle expression has

been used to specify length.
Programmer Response: Make sure the source

code is correct and reassemble if Severity Code: 12

necessary. If the problem recurs, dc the

following before calling IBM: Frogrammexr Response: Make sure the source

e Have the user source program, user macro code is correct and reassemkle if
definitions and associated listing necessary. If the proklem recurs, do the
available. following before calling IBNM:

e If the COPY statement was used, execute e Have the user source program, User macro
the IEBPTPCH utility program tc cbtain a definitions and associated listing

Appendix A. Diagnostic Messages 37

IEU005

IEU006

IEU007

38

available.

o If the COPY statement was used, execute
the IFBPTPCH utility program tc obtain a
copy of the PDS memker specified in the
COPY statement.

S-TYPE CONSTANT IN LITERAL
Explanation: An S-type address constant

may not be specified in a literal.

Severity Code: 8

Programmer Response: Make sure the sourxce
code is correct and reassemble if
necessary. 1f the problem recurs, do the
follow1ng before calling IBM:

e Have the user source program, user macro
definitions and associated listing
available.

¢ If the COPY statement was used, execute
the IEBPTPCH utility program tc cbtain a
copy of the PDS member specified in the
COPY statement.

INVALID ORIGIN

Explanation: The location counter has been
reset to a value less than the starting

address of the control section;
is not a simply relocatable expression or
specifies an address outside the ccntrol

~section.

Severity Code: 12

Programmer Response: Make sure the source

code is correct and reassemble if

necessary. 1f the problem recurs,
following before calling IBM:

e Have the user source program, user macro
definitions and associated listing
available.

e If the COPY statement was used, execute
the IEBPTPCH utility program tc obtain a
copy of the PDS member specified in the
COPY statement.

dc the

LOCATION COUNTER ERROR

Explanation: Either the location ccunter
has exceeded 224-1, or passed out cf
control section in negative direction (3
byte arithmetic).

Severity Code: 12

Prcqrammer Response: Make sure the source

code is correct and reassemble if

necessary. 1f the problem recurs, do the
following before calling IBM:

e Have the user source program, user macro
definitions and associated listing
available.)

e If the COPY statement was used, " execute
the IEBPTPCH utility program to obtain a
copy of the PDS memker specified in the
COPY sStatement.

ORG cperand

1EU008

1EU009

IEU010

1EUO0 11

INVALID DISPLACEMENT

______ The displacement in an
exp11C1t address is not an absolute value
within the range of 0 to 4095.

Severity Code: 8

Programmer Response: Make sure the source

code is correct and reassemble if

necessary. 1f the proktlem recurs, do the
following before calling IEM:

e Have the user source prcgram, user macro
definitions and associated listing
available.

e If the COPY statement was used, execute
the IEBPTFCH utility program to oktain a
copy of the FPLS member specified in the
COPY statement.

MISSING OPERAND

Explanation:
entry and none is present.
Severity Code: 12

Programmer Response: Make sure the source

code is correct and reassemkle if

necessary. 1f the problem recurs, do the
following before calling IEM:

e Have the user source prcgram, user macro
definitions and associated listing
available.

e If the COPY statement was used, execute
the IEBPTECH utility program to oktain a
copy of the PDS member specified in the
CCPY statement.

Statement requires an operand

INCCRRECT SEECIFICATION OF REGISTER OR MASK

______ One of the following:

. The reglster or mask field specification
is not an absolute value.

e The register or mask field specified is

. not in the range 0.- 15,

e An odd register is specified where an
even register is required (applies to
multiply, divide and shift instructions)

e The register specified is not a floating

point register (applies to floating point

instructions) .

e The reglster specified is not an extended

precision floating point register
(applies to extended precision floating
point instructions).

Severity Code: 8

Programmer Response: Make sure the source
code is correct and reassemble if
necessary. 1f the problem recurs, do the
following before calling IEM:

s Have the user source prcgram, user macro
definitions and associated listing
available.

e If the CCEY statement was used execute
the IEBPTPCH utility prcgram to obtain a
copy of the PLS member specified in the
CCFY statement.

SCALE MODIFIER ERROR

Explanation: The scale mcdifier is not an
absolute expression or is tco large,

-~1 I€I Ay LA FlAaabIin~ rn
negative sScalc medificr for flcgotin
o r

cint

-y

1EU012

IEU013

IEUO14

* in scale modifier expression; invalid
syntax or illegally specified scale
modifier,

Severity Code: 8

Programmer Response: Make sure the source
code is correct and reassemble if
necessary. If the problem recurs,
following before calling IBM:

e Have the user source program, user macro
definitions and associated listing
available.

e If the COPY statement was used, execute
the IEBPTPCH utility program to obtain a
copy of the PDS member specified in the
COPY statement.

do the

RELOCATABLE SCALE MODIFIER

Explanation: A relocatable expression has
been used to specify the scale modifier.

Severity Code: 8

Programmer Response: Make sure the source
code is correct and reassemble if
necessary. If the problem recurs, do the
following before calling 1IBM:

e Have the user source program, user macro
definitions and associated listing
available.

e If the COPY statement was used, execute
the IEBPTPCH utility program to obtain a
copy of the PDS member specified in the
COPY statement.

EXPONENT MODIFIER ERROR

Explanation: The exponent is not specified
as an absolute expression or is out of
range; * in exponent modifier expression;
invalid syntax; illegally specified
exponent modifier.

Severity Code: 8

Programmer Response: Make sure the source
code is correct and reassemble if
necessary. If the problem recurs, do the
following before calling IBM:

e Have the user source program, user macro
definitions and associated listing
available.

e If the COPY statement was used, execute
the IEBPTPCH utility program to obtain a
copy of the PDS member specified in the
COPY statement.

RELOCATABLE EXPONENT MODIFIER

Explanation: A relocatable expression has
been used to specify the exponent modifier.

Severity Code: 8

Programmer Response: Make sure the source

code is correct and reassemble if

necessary. 1f the problem recurs,

following before calling IBM:

e Have the user source program, user macro
definitions and associated listing

do the

IEU015

IEUO016

IEU017

available. :

e 1f the COPY statement was used, execute
the IEBPTPCH utility program to oktain a
copy of the PDS member specified in the
COPY statement. .

INVALID LITERAL USAGE

Explanation: A valid literal is used
illegally, e.g., it specifies a receiving
field or a register, or it is a Q-type
constant.

Severity Code: 8

Yrogrammer Response: Make sure the source
code is correct and reassemble if
necessary. If the problem recurs, do the
following before calling IBM:

e Have the user source program, user macro
definitions and associated listing
available.

e If the COPY statement was used, execute
the IEBPTPCH utility program to obtain a
copy of the PDS member specified in the
COPY statement.

INVALID NAME

Explanation: A name entry is incorrectly
specified, e.g., it contains more than 8
characters, it does not begin with a
letter, it has a special character
embedded, or -- if the statement is OPSYN
-- the name entry is not an ordinary symbol
or is an assembler operation mnemonic.

Severity Code: 8

Programmer Response: Make sure the source
code is correct and reassemble if
necessary. If the problem recurs, do the
following before calling IBM:

e Have the user source program, user macro
definitions and associated listing
available.

e If the COPY statement was used, execute
the IEBPTPCH utility program to oktain a
copy of the PDS member specified in the
COPY statement.

DATA ITEM TOO LARGE

Explanation: The constant is too large for
the data type or for the explicit length;
operand field for packed LC exceeds 31
characters and for zoned DC exceeds 16
characters (excluding decimal points).

Severity Code: 8

Programmer Response: Make sure the source
code is correct and reassemble if
necessary. I1f the problem recurs, do the
following before calling IBM:

e Have the user source program, user macro
definitions and associated listing
available.

e If the COPY statement was used, execute
the IEBPTPCH utility program to oktain a
copy of the PDS member specified in the
COPY statement.

Appendix A. Diagnostic Messages 39

1EUO0 18

1EU019

1EUO0 20

40

INVALILC SYMEBOL

Explanation: The symbol is specified
invalidly, e.g., it is longer than 8
characters, or -- if the statement is OPSYN
-- the name entry is not an ordinary symbol
cr is an assembler operation mnemonic.

Severity Code: 8

Programmer Response: Make sure the source
code is correct and reassemble if
necessary. 1f the problem recurs, do the
following kefore calling 1BM:

e Have the user source program, user macro
definitions and associated listing
available.

e 1f the COPY statement was used, execute
the IEBPTPCH utility program to obtain a
copy of the PDS memker specified in the
COPY statement.

EXTERNAL SYMEOL ERROR

Explanation: One of the following:

¢ A symbol appears in the name field of
both a CSECT and a DSECT statement.

¢ A symbol appearing the name field cf a
DXD instruction also appears in the name
field of another LCXD instructicn, in the
operand field of an EXTRN of WXIRN
instruction, or in the name field cf a
CSECT or LSECT statement.

e A symbol appearing the operand field of
an EXTRN or WXTRN instruction alsc
appears in the operand field of the same
or another EXTRN or WXTRN instruction, or
in the name field of a DXD, CSECT, or
LSECT instruction.

e A symbol previously encountered in the
name field of a statement cther than
those mentioned akove, arpears in the
operand field of an EXTRN or WXTRN
instruction or in the name field of a
DXD, CSECT, or DSECT instruction.

Severity Code: 8

Programmer Response: Make sure the source
code is correct and reassemble if
necessary. If the problem recurs,
fcllowing before calling IBM:

¢ Have the user source program, usSer macro
definitions and associated listing
available.

e If the COPY statement was used, execute
the IEBPTPCH utility program tc obtain a
copy of the PDS memker specified in the
COPY statement.

dc the

INVALIC IMMELCIATE FIELD

Explanation: The value of the inmediate
operand exceeds 255 (or 9 for SRF) or the
operand is not of an acceptakle tyge.

Severity Code: 8

Programmer Response: Make sure the source

code is correct and reassemble if

necessary. 1f the problem recurs, do the

following before calling IBM:

e Have the user source program, user macro
definitions and assaciated listing

available.

IEU021

IEU022

IEU023

1EU024

e If the COPY statement was used, execute
the IEBPTECH utility program to oktain a
copy of the PDS member specified in the
COPY statement.

SYMBOL NOT PREVIOUSLY DEFINED

Explanation: B2An expression requiring that
all symbols be previously defined contains
at least one symbol not sc defined.

Severity Code: 8

Programmer Response: Make sure the source
code is correct and reassemkle if
necessary. 1f the problem recurs, do the
following before calling IEM:

» Have the user source prcgram, user macro
definitions and associated listing
available.

e 1f the CCEY statement was used, execute
the IEBPTECH utility program to oktain a
copy of the PDS nember specified in the
CCFY statement.

ESDTABLE OVERFLOW

Explanation: The combined numker of
control sections and dummy sections plus
the number of unique symbcls in EXTRN and
WXTRN statements and V-type constants
exceeds 255. (A LCSECT which appears as XD
makes two entries).

Severity Code: 12

Programmer Response: Make sure the source
code is correct and reassemkle if
necessary. 1f the probler recurs, do the
following before calling IEM:

e Have the user source prcgram, user macro
definitions and associsted listing
availakble.

e If the COPY statement was used, execute
the IEBPTFCH utility program to oktain a
copy of the FLS member specified in the
COPY statement.

PREVIOUSLY DEFINED NAME

_____ The symbol which appears in
the name field has appeared in the name
field of a previous statement.

Severity Code: 8

Programmer Response: Make sure the source
code is correct and reassemble if
necessary. 1f the problem recurs, do the
following before calling IBM:

e Have the user source prcgram, user macro
definitions and associated listing
availarle.

s If the CCPY statement was used, execute
the IEBPTPCH utility prcgram to obtain a
copy of the PLS member specified in the
CCPY statement.

UNDEFINED SYMEOL

Explanation: A symbol being referenced has
not been defined in the program.

IEU025

1EU026

1EU027

Severity Code: 8

Programmer Response: Make sure the source
code is correct and reassemble if
necessary. If the problem recurs, do the
follow1ng before calling IBM:
Have the user source program, user macro
definitions and associated listing
available.

e If the COPY statement was used, execute
the IEBPTPCH utility program tc obtain a
copy of the PDS member specified in the
COPY statement.

RELOCATABILITY ERROR

Explanation: A relocatable or complex
relocatable expression is specified where
an absolute expression is required, an
absolute expression or complex relocatable
expression is specified where a relocatable
expression is required, or a relccatable
term is involved in multiplication or
division.

Severity Code: 8

Programmer Response: Make sure the source
code is correct and reassemble if
necessary. If the problem recurs, do the
following before calling 1BM:

e Have the user source program, user macro
definitions and associated listing
available.

e If the COPY statement was used, execute
the IEBPTPCH utility program tc obtain a
copy of the PDS member specified in the
COPY statement.

TOO MANY LEVELS OF PARENTHESES

Fxplanation: An expression specifies more
than 5 levels of parentheses.

Severity code: 12

Programmer Response: Make sure the source
code is correct and reassemble if
necessary. If the problem recurs, do the
follow1ng before calling 1BM:
Have the user source program, user macro
definitions and associated listing
available.

e If the COPY statement was used, execute
the IEBPTPCH utility program tc obtain a
copy of the PDS member specified in the
COPY statement.

TOO MANY TERMS

Explanation: More than 16 terms are
specified in an expression.

Severity Code: 12

Programmer Response: Make sure the source
code is correct and reassemble if
necessary. ILf the problem recurs, do the
following before calling 1IBM:

e Have the user source program, user macro
definitions and associated listing
available.

e If the COPY statement was used, execute
the IEBPTPCH utility program to obtain a

IEU028

IEU029

IEU030

IEU031

Page of GC26-3756-6
Revised July 15, 1972
By TNL GN33-8144

copy of the PDS member specified in the
COPY statement.

REGISTER NOT USED

Explanation: A register specified in a
DROP statement is not currently in use.

Severity Code: U

Programmer Response: Make sure the source
code is correct and reassemble if
necessary. I1f the problem recurs, do the
following before calling IBM:

e Have the user source program, user macro
definitions and associated listing
available.

e If the COPY statement was used, execute
the IEBPTPCH utility program to obtain a
copy of the PDS member specified in the
COPY statement.

CCW ERROR

Explanation: Bits 37-39 of the CCW are set

to non-zero.

Severity Code: 8

Programmer Response: Make sure the source
code is correct and reassemble if
necessary. 1f the problem recurs, do the
following before calling IEM:

e Have the user source program, user macro
definitions and associated listing
available.

e If the COPY statement was used, execute
the IEBPTPCH utility program to oktain a
copy of the PDS member specified in the
COPY statement.

INVALID CNOP

Explanation: An invalid combination of
operands is specified in a CNOP
instruction.

Severity Code: 12

Programmer Response: Make sure the source
code is correct and reassemble if
necessary. 1f the problem recurs, do the
following before calling IBM:

e Have the user source program, user macro
definitions and associated listing
available.

e If the COPY statement was used, execute
the IEBPTPCH utility program to oktain a
copy of the PDS member specified in the
COPY statement.

UNKNOWN TYPE

Explanation: Incorrect type designation is
specified in a DC, BS, or literal. 1f the
DOS option is specified, type Q will be
flagged as unknown.

Severity Code: 8

Programmer Response: Make sure the source
code is correct and reassemble if
necessary. 1f the problem recurs, do the
following before calling IBM:

e Have the user source program, user macro

BAppendix A. Diagnostic Messages 41

IEU032

IEUO033

IEU034

42

definitions and associated listing
available.

e If the COPY statement was used, execute
the IEBPTPCH utility program to obtain a
copy of the PDS member specified in the
COPY statement.

OP-CODE NOT ALLOWED TO BE GENERATED

Explanation: Operation code not allowed if
source statement has been obtained through
substitution of a value for a variable
symbol.

Severity Code: 8

Programmer Response: Make sure the source
code is correct and reassemble if
necessary. If the problem recurs, do the
following before calling IBM:

e Have the user source program, uUSer macro
definitions and associated listing
available.

e If the COPY statement was used, execute
the IEBPTPCH utility program to obtain a
copy of the PDS member specified in the
COPY statement.

ALIGNMENT ERROR

Explanation: Referenced address is not
aligned to the proper boundary for this
instruction, e.g., the location of the
START operand is not a multiple of 8.
Note: If a register is explicitly
specified in the reference, e.g., as in
L 3,3 (REGY), no message is issued.

Severity Code:‘ 4

Programmer Response: Make sure the source
code is correct and reassemble if
necessary. 1f the problem recurs, do the
following before calling IBM:

e Have the user source program, user macro
definitions and associated listing
available.

e If the COPY statement was used, execute
the IEBPTPCH utility program to obtain a
copy of the PDS member specified in the
COPY statement.

INVALID OP-CODE

Explanation: Syntax error, e.g., more than
8 characters in operation field, not
followed by blank on first card image, op
code missing.

Severity Code: 8

Programmer Response: Make sure the source
code is correct and reassemble if
necessary. 1f the problem recurs, do the
following before calling 1IBM:

e Have the user source program, user macro
definitions and associated listing
available.

e If the COPY statement was used, execute
the IEBPTPCH utility program to obtain a
copy of the PDS member specified in the
COPY statement.

1EU035

IEU036

IEUO037

IEU038

IEUO039

Programmer Response:

ADDRESSABILITY ERROR

Explanation: The referenced address does
not fall within the range of a USING
instruction.

Severity Code: 8

Programmer Response: Prokakle user error.
Make sure the source code is correct and
reassemble if necessary. If the problem
recurs, do the following kefore calling
IBM:

e Have the user source program, user macro
definitions, and associated listings
available.

e If the COPY statement was used, execute
the IEBPTPCH utility program to obtain a
copy of the PDS member specified in the
COPY statement.

(No message is assigned to this numker)
MNOTE STATEMENT

Explanation: This indicates that an MNOTE
statement has been generated from a macro
definition. The text and severity code of
the MNOTE statement will be found in line
in the listing.
Severity Code: Variable

Programmer Response: Probalkle user error.

Make sure the source code is correct and

reassemble if necessary. If the problem

recurs, do the following kefore calling
1BM:

e Have the user source program, user macro
definitions, and associated listings
available.

e If the COPY statement was used, execute
the IEBPTPCH utility program to obtain a
copy of the PLS member specified in the
COPY statement.

ENTRY ERROR

Explanation: A symbol in the operand of an
ENTRY statement appears in more than one
ENTRY statement, it is undefined, it is
defined in a dummy section or in a blank
common control section, or it is equated to
a symbol defined by an EXTRN or WXTRN
statement.

Severity Code: 8

Make sure the source
code is correct and reassemble if
necessary. If the problem recurs, do the
following before calling IBM:

e Have the user source program, user macro
definitions and associated listing
available.

e If the COPY statement was used, execute
the IEBPTPCH utility program to obtain a
copy of the PLS member specified in the
COPY statement.

INVALID DELIMITER

Explanation: This message can be caused oy
any syntax error, e.g., missing delimiter,
special character used which is not a

IEUO40

IEUO41

IEUQ42

valid delimiter, delimiter used illegally,
operand missing, i.e., nothing between
delimiters, unpaired parentheses, embedded
blank in expression.

Severity Code: 12

Programmer Response: Make sure the source
code is correct and reassemble if
necessary. 1f the problem recurs, do the
follow1ng before calling 1BM:
Have the user source program, user macro
definitions and associated listing
available.

e If the COPY statement was used, execute
the IEBPTPCH utility program tc obtain a
copy of the PDS member specified in the
COPY statement.

STATEMENT 1S TOO LONG

Explanation: There are more than 236
characters in a generated statement.

Severity Code: 12

Programmer Response: Make sure the source

code is correct and reassemble if

necessary. If the problem recurs,
following before calling 1IBM:

e Have the user source program, user macro
definitions and associated listing
available.

e 1f the COPY statement was used, execute
the IEBPTPCH utility program to cobtain a
copy of the PDS member specified in the
COPY statement.

do the

UNCECLARED VARIABLE SYMBOL

Explanation: Variable symbol is not
declared in a define SET symbol statement
or in a macro prototype.

Severity Code: 8

Programmer Response: Make sure the source
code is correct and reassemble if
necessary. 1f the problem recurs, do the
followlng before calling 1BM:
Have the user source program, user macro
definitions and associated listing
available.

e If the COPY statement was used, execute
the IEBPTPCH utility program to obtain a
copy of the PDS member specified in the
COPY statement.

SINGLE TERM LOGICAL EXPRESSION IS NOT A
SETB SYMBOL

Explanation: The single term logical
expression has not been declared as a SETB
symbol.

Severity Code: 8

Programmer Response: Make sure the source

code is correct and reassemble if

necessary. If the problem recurs,

following before calling IBM:

* Have the user source program, user macro
definitions and associated listing
available.

do the

IEU043

IEU04Y .

IEU0U4S

IEUOUG

Page of GC26-3756-6
Revised July 15, 1972
By TNL GN33-3144

e If the COPY statement was used, execute
the IEBPTPCH utility program to obtain a
copy of the PDS member specified in the
COPY statement.

SET SYMBOL PREVIOUSLY DEFINED

Severity Code: 8

Programmer Response: Make sure the source
code is correct and reassemble if
necessary. If the problem recurs, do the
following before calling IBM:

e Have the user source program, user macro
definitions and associated listing
available.

e If the COPY statement was used, execute
the IEBPTPCH utility program to oktain a
copy of the PDS member specified in the
COPY statement.

SET SYMBOL USAGE INCONSISTENT WITH
DECLARATION

Explanation: A SET symbol has been
declared as undimensioned, but is
subscripted, or has been declared

.dimensioned, but is unsubscripted.

Severity Code: 8

Programmer Response: Make sure the source
code is correct and reassemble if
necessary. If the problem recurs, do the
following before calling IBM:

‘e Have the user source program, user macro

definitions and associated listing
available.

e If the COPY statement was used, execute
the IEBPTPCH utility program to oktain a
copy of the PDS member specified in the
COPY statement.

ILLEGAL SYMBOLIC PARAMETER
Explanation: BAn attribute has been

requested for a variable symbol which is
not a legal symbolic parameter.

Severity Code: 8

Programmer Response: Make sure the source

code is correct and reassembkle if
necessary. I1f the problem recurs, do the

.follow1ng before calling IBM:

Have the user source program, user macro
definitions and associated listing
available.

e If the COPY statement was used, execute
the IEBPTPCH utility program to oktain a
copy of the PDS member specified in the
COPY statement.

AT LEAST ONE RELOCATABLE Y TYPE CONSTANT IN
ASSEMBLY

Explanation: One or more relocatakle
Y-type constants in assemkly; relocation
may result in address greater than 2 bytes
in length.

Severity Code: 4

Programmer Response: Make sure the source
code is correct and reassemble if

Appendix A. Diagnostic Messages 43

Page of GC26-3756-6
Revised July 15, 1972
By TNL GN33-8144

IEU047

IEUO48

IEU049

IEUO050

4y

necessary.

1f the problem recurs, do the

following before calling IBM:

e Have the user source program, user macro
.definitions and associated listing
available.

e 1f the COPY statement was used, execute
" the IEBPTPCH utility program to obtain a
copy of the PDS member specified in the

COPY statement.

SEQUENCE SYMBOL PREVIOUSLY DEFINED

Severity Code: 12

Programmer Response: Make sure the source
code is correct and reassemble if
necessary. ILf the problem recurs, do the
follow1ng before calling IBM:
Have the user source program, user macro
definitions and associated listing
available.

e If the COPY statement was used, execute
the IEBPTPCH utility program tc obtain a
copy of the PDS member specified in the
COPY statement.

SYMBOLIC PARAMETER PREVIOUSLY DEFINED OR
SYSTEM VARIABLE SYMBOL DECLARED AS SYMBOLIC
PARAMETER

Severity Code: 12

Programmer Response: Make sure the source
code is correct and reassemble if
necessary. If the problem recurs, 4o the
follow1ng before calling 1BM:
Have the user source program, user macro
definitions and associated listing
available.

e If the COPY statement was used, execute
the IEBPTPCH utility program tc cbtain a
copy of the PDS member specified in the
COPY statement.

VARIABLE SYMBOL MATCHES A PARAMETER

-

Programmer Response: Make sure the source
code is correct and reassemble if
necessary. If the problem recurs,
follow1ng before calling 1IBM:
Have the user source program, user macro
definitions and associated listing
available.

e If the COPY statement was used, execute
the IEBPTPCH utility program tc obtain a
copy of the PDS member specified in the
COPY statement.

do the

INCONSISTENT GLOBAL DECLARAT IONS

Explanation: A global ‘SET variable symbol,
defined in more than one macro definition
or defined in a macro definition and in the
source program, is inconsistent in SET type
or dimension.

Severity Code: 8

Programmer Response: Make sure the source
code is correct and reassemble if
necessary. If the problem recurs, do the
following before calling IBM:

e Have the user source program, usSer mMacro

IEU051

IEU052

IEU0S3

definitions and associated listing
available.

e If the COPY statement was used, execute
the IEBPTPCH utility program to obtain a
copy of the PDS member specified in the
COPY statement.

MACRO DEFINITION PREVIOUSLY DEFINED

Explanation: Prototype operation field is
the same as a machine or assembler
instruction or a previous prototype. This
message is not produced when a programmer
macro matches a system macro. The
programmer macro will be assembled with no
indication of the corresponding system
macro. .

Severity Code: 12

Programmer Response: Make sure the source
code is correct and reassemble if
necessary. If the problem recurs, do the
following before calling I1BEM:

e Have the user source program, user macro
definitions and associated listing
available.

e If the COPY statement was used, execute
the 1IEBPTPCH utility program to obtain a
copy of the PDS member specified in the
COPY statement.

NAME FIELD CONTAINS ILLEGAL SET SYMBOL

Explanation: SET symbol in name field does
not correspond to SET statement type.

Severity Code: 8

Programmer Response: Prokakle user error.

Make sure the source code is correct and

reassemble if necessary. If the problem

recurs, do the following before calling

IBM:

e Have the user source program, user macro.
definitions, and and associated listings
available.

e If the COPY statement was used, execute
the IEBPTPCH utility program to obtain a
copy of the PDS member specified in the
COPY statement.

GLOBAL DICTIONARY FULL

Explanation: The global dicticnary is
full, assembly terminated.

Severity Code: 12

Programmer Response: Probable user error.
Take one or more of the following steps and
then rerun the job:

e Split the assembly into two or more parts
and assemble each separately.

e Allocate more core for the assembler (the
global and local dictionaries together
can occupy up to 64K).

e Run the assembly under Assembler E,
unless it includes features not allowed
by Assembler E. (Pue to its dictionary
building algorithm, Assemkler E can
handle more symbols with a given size
dictionary than can Assemkler F.)

e Specify a smaller SYSLIB blocksize.

1EU054

IEU055

1EU056

Thus, if BLKSIZE=1800 or BLKSIZE=1200,
reblock the library to the size chosen,
and try the assemkly again.

1f the problem recurs, do the following

before calling 1BM for programming support:

e Have the user source program, usexr macrc
definitions, and associated listings
available.

e If the COPY statement was used, execute
the IEBPTPCH utility program tc cbtain a
copy of the PDS member specified in the
COPY statement.

LOCAL DICTIONARY FULL

Explanation: The local dictionary is full,
current macro aborted and the macro
instruction is flagged as undefined.
cpen cocde, assembly terminated.

I1f in

Severity Code: 12

Programmexr Response: Probable user error.
Take one or more of the following steps and
then rerun the joks.

e Split the assembly into two or more parts
and assemble each separately.

e Allocate more core for the asserbler (the
global and local dictionaries tcgether
can occupy up to 64K).

e Run the assembly under Assembler E,
unless it includes features not allowed
by Assembler E. (Due to its dictionary
building algorithm, Assembler E can
handle more symbols with a given size
dictionary than can Assembler F.)

e Specify a smaller SYSIIB blocksize.

Thus, if BLKSIZE=1800 or BLKSI1ZE=1200,
reblock the library to the size chosen,
and try the assemkly again.

e Specify smaller SYSUT1 blocksize.

If the problem recurs, do the follcwing

before calling IBM for programming support:

e Have the user source program, user macro
definitions, and associated 1listings
available.

e 1f the COPY statement was used, execute
the IEBPTPCH utility program tc chbtain a
copy of the PDS member specified in the
COPY statement.

INVALILC ASSEMELER OPTION(S) ON THE EXECUTE

CARLC

Severity Code: 8

Programmer Response: Probable user error.

Make sure all assemkler options sgecified

are correct and reassemble if necessary.

1f problem recurs, do the following before

calling 1IBM:

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

e Have the user source program, user macrc
definitions, and associated listings
available.

ARITHMETIC OVERFLOW

Explanation: The intermediate or final
result of an expression is not within the
range of -23% to 231-1.

1EU057

IEUO58

IEU059

Severity Code: 8

Programmer Response: Prokakle user error.
Make sure the source code is correct and
reassemble if necessary. If the problem
recurs, do the following kefore calling
IBM:

e Have the user source program, user mracro
definitions, and associated listings
available.

e If the COPY statement was used, execute
the IEBRPTECH utility program to oktain a
copy of the PDS member specified in the
CCFY statement.

SUBSCRIET. NCT WITHIN CIMENSIONS

Explanation: (1) Supscript of &SYSIIST or
symkolic parameter exceeds 200 or is
negative. (2) Subscript of symkolic
parameter is zero. (3) Subscript of SET
symbol exceeds dimension specified in
GBLx/LCLx statement.

Severity Code: 8

Programmer Response: Make sure the source
code is correct and reassemkle if
necessary. 1f the problem recurs, do the
following before calling IEM:

e Have the user source prcgram, user macro
definitions and associated listing
available.

e If the COPY statement was used, execute
the IEBPTECH utility program to oktain a
copy of the PDS member specified in the
CCFY statement.

RE-ENTRANT CHECK FAILED
Explanation: An instruction has been
detected, which, when executed, might store
data into a control section or a common
area. This message is generated only when
requested via control cards and merely
indicates a possible re-entrant error.
statement number is not given in the
message.

The

Severity Code: 4

Programmer Response: Make sure the source
code is correct and reassemble if
necessary. I1f the problem recurs, do the
following before calling IEM:

e Have the user source prcgram, user macro
definitions and associated listing
available.

e If the CCEY statement was used, execute
the IEBPTPCH utility prcgram to obtain a
copy of the PLS member specified in the
COPY statement.

UNDEFINELC SECUENCE SYMEOL

Severity Code: 12

Programmer Response: Make sure the source
code is correct and reassemkle if
necessary. I1f the problem recurs, do the
following before calling IBN:

e Have the user source program, user macro

Appendix A. Dia‘,nostic Messages U5

IEUO060

1EU061

1EU062

IEU063

46

definitions and associated listing
available.

e If the COPY statement was used, execute
the 1IEBPTPCH utility program to obtain a
copy of the PDS memkber specified in the
COPY statement.

ILLEGAL ATTRIBUTE NOTATION

Explanation: L', S', or 1' requested for a
parameter whose type attribute dces not
allow these attributes to be requested.

Severity Code: 8

Programmer Response: Make sure the souzrxce
code is correct and reassemble if
necessary. 1f the problem recurs, do the
follow1ng before calling IBM:
Have the user source program, user macro
definitions and associated listing
available.

e If the COPY statement was used, execute
the IEBPTPCH utility program to obtain a
copy of the PLS memker specified in the
COPY statement.

ACTR COUNTER EXCEELCED

Explanation: Conditional assembly loop
counter exceeded; conditional assembly
terminated.

Severity Code: 12

Programmer Response: Make sure the source

code is correct and reassemble if

necessary. I1f the problem recurs,
following before calling IBM:

e Have the user source program, usexr macro
definitions and associated listing
available.

e 1f the COPY statement was used, execute
the IEBPTPCH utility programr tc cbtain a
copy of the PDS member specified in the
COPY statement.

dc the

GENERATED STRING GREATER THAN 255
CHARACTERS

Severity Code: 8

Programmer Response: Make sure the source
code is correct and reassemble if
necessary. 1f the problem recurs, do the
following before calling IBM:

e Have the user source program, user macro
definitions and associated listing
available.

e I1f the COPY statement was used, execute
the IEBPTPCH utility program tc cbtain a
copy of the PDS member specified in the
COPY statement.

EXPRESSION 1 OF SUBSTRING IS ZERO OR MINUS

Severity Code: 8

Programmer Response: Make sure the source
code is correct and reassemble if
necessary. I1f the problem recurs,
following before calling IBM:)
e Have the user source program, user macro
definitions and associated listing

dc the

IEU06Y

IEU065

| 1EU066

IEU067

available.

e I1f the CCFY statement was used, execute
the IEEPTECH utility program to oktain a
copy of the PDS member specified in the
CCFY statement.

EXPRESSICN 2 CF SUESTRING IS ZFERO OR MINUS

Severity Code: 8

Frogrammer Response: Make sure the source
code is correct and reassemkle if
necessary. I1f the problem recurs, do the
following before calling IEM:

e Have the user source prcgram, user macro
definitions and associated listing
available.

e If the CCEY statement was used, execute
the IEBPTPCH utility prcgram to obtain a
copy of the PLS member specified in the
CCFY statement.

INVALID OR ILLEGAL TERM IN ARITHMETIC
EXFRESSICN

Explanation: The value of a SEIC symkcl
used in the arithmetic expression is not
composed of decimal digits, or the
parameter is not a self-defining term.

Severity Code: 8

Programmer Response: Make sure the source
code is correct and reassemble if
necessary. If the proklem recurs,
follow1ng before calling IEM:
Have the user source prcgram, user macro
definitions and associated listing
available.

e If the COPY statement was used, execute
the IEBPTECH utility program to oktain a
copy of the PDS nember specified in the
CCFY statement.

do the

UNDEFINEC CR LCUPLICATE KEYWORL OPERAND

Explanation: The same keyword operand
occurs more than once in the macro
instruction; a keyword is not defined in a
prototype statement.

Severity Code: 12

Programmer Response: Make sure the source

code is correct and reassemkle if

necessary. If the prcblem recurs, do the
following before calling IEN:

e Have the user source Frcgram, user macro
definitions and associated listing
available.

e If the COPY statement was used, execute
the IEBPTECH utility program to oktain a
copy of the FDS member specified in the
COPY statement.

EXPRESSION 1 OF SUBSTRING GREATER THAN
LENGTH CF CHARACTER EXPRESSION

Severity Code: 8

Programmer Response: Probable user error.
Make sure the source code is correct and
reassemble if necessary. If the prokler
recurs, do the following before calling

IEU068

IEU069

IEU070

IEM:

Have the user source program, user macro
definitions, and associated listings
available.

1f the COPY statement was used, execute
the IEBPTPCH utility program tc cbtain a
copy of the PDS memker specified in the
COPY statement.

GENERATION TIME CICTIONARY AREA CVERFLOWED

Severity Code: 12

Programmex Response: Probable user error.

Take one or more of the following steps and
then rerun the job:

Split the assemkly into two or mcre rarts
and assemble each separately.

Allocate more core the assembler (the
global and local dictionaries together
can occupy up to 6UK) .

Run the assembly under Assembler E,
unless it includes features not allowed
by Assembler E. (Due to its dicticnary
building algotithm, Assembler F can
handle more symkols with a given size
dictionary then can Assembler F.)
Specify a smaller SYSLIB blocksize.
Thus, if BLKSIZE=1800 or BLKSIZE=1200,
reblock the library to the size chosen,
and try the assemkly again.

Specify smaller SYSUT1 blocksi ze.

1f the problem recurs, do the follcwing
before calling IBM for programming support:

Have the user source program, user macro
definitions, and associated listings
available.

1f the COPY statement was used, execute
the IEBPTPCH utility program tc cbtain a
copy of the PDS member specified in the
COPY statement.

VALUE OF EXPRESSION 2 OF SUBSTRING GREATER
THAN 8

Severity Code: 8

Programmexr Response: Probable user error.

Make sure the source code is correct and
reassemble if necessary. If the prcblem
recurs, do the following before calling
IEM:

Have the user source program, user macrrc
definitions, and associated listings
available.

If the COPY statement was used, execute
the IEBPTPCH utility program tc obtain a
copy of the PDS member specified in the
COPY statement.

FLOATING POINT CHARACTERISTIC OUT OF RANGE

Explanation: Exponent too large for length
of defining field, exponent modifier has
caused loss of all significant digits.

Severity Code: 12

Programmer Response: Make sure the source

code is correct and reassemble if
necessary. If the problem recurs, dc the
following before calling IBM:

L]

Have the user source program, user macro
definitions and associated listing

IEU071

1EU072

1IEU073

IEUO074

available.

¢ If the COPY statement was used, execute
the IEEPTPCH utility program to oktain a
copy of the PDS member specified in the
CCFY statement.

ILLEGAL CCCURRENCE OF LCL, CGEL, OR ACTR
STATEMENT

Explanation: LCL, GBL, or ACTR statement
not in proper place in the program.

Severity Code: 8

Frogrammer Response: Make sure the source
code is correct and reassemkle if
necessary. I1f the problem recurs, do the
following before calling IEM:

e Have the user source prcgram, user macro
definitions and associated listing
availaktle.

« If the CCEY statement was used, execute
the IEBPTECH utility program to oktain a
copy of the PDS rember specified in the
CCFEY statement.

ILLEGAL RANGE ON ISEQ STATEMENT

Explanation: One or more columns to ke
sequence checked are between the "kegin®
and "end" columns cf the statement.

Severity Code: 4

Programmer Response: Make sure the source
code is correct and reassemble if
necessary. 1f the problem recurs, do the
following before calling IBM:

¢ Have the user source prcgram, user macrc
definitions and associated listing
available.

e If the COPY statement was used, execute
the IEBPTECH utility program to oktain a
copy of the PDS member specified in the
CCPY statement.

ILLEGAL NANME FIELD

Explanation: (1) The name field is blank
in a statement where a name is required.

(2) A name is present where no name is
allowed. (3) The wrong type of symbol is
in the name field (e.g., an ordinary symbol

in a conditional assembly statement).
Severity Code: 8

Frogrammer Response: Make sure the source
code is correct and reassemkle if
necessary. 1f the problenr recurs, do the
following before calling IEM:

e Have the user source prcgram, user macro
definitions and associated listing
available.

e If the COPY statement was used, execute
the IEBPTPCH utility program to obtain a
copy of the FLS member specified in the
COPY statement.

ILLEGAL STATEMENT IN COPY COLCE OR SYSTEM
NACRC

Explanation: A statement keing copied was
a CCFY, ENC, ICTL, ISEQ, MACRO, MENL,

Appendix A. Diagnostic Messages U7

OPSYN, or a model statement in a macro
containing an END, PRINT, COPY, ISEQ,
OPSYN.

1crL,

Severity Code: 8

Programmer Response: Make sure the source

‘- code- is correct and reassemble if

IEU075

IEU076

IEU077

48

necessary. 1f the problem recurs, do the

following before calling IBM:

e Have the user source program, user macro
definitions and associated listing
available.

e If the COPY statement was used, execute
the IEBPTPCH utility program to obtain a
copy of the PDS member specified in the
COPY statement.

ILLEGAL STATEMENT OUTSIDE OF A MACRO
DEFINITION '

Egglahatlon- ‘Statement allowed only in a
macro definition encountered outside macro
definitions (in open code), e.g., period

~asterisk (.*), MNOTE statement.

Severity Code: 8

Programmer Response: Make sure the source
¢code is correct and reassemble if
necessary. If the problem recurs, do the
following before calling IBM:

e Have the user source program, user macro
definitions and associated listing
available.

e If the COPY statement was used, execute
the IEBPTPCH utility program to obtain a
copy of the PDS member specified in the
COPY statement.

SEQUENCE ERROR

Explanation: Sequence error discovered by
the sequence checking mechanism initiated
by an ISEQ instruction.

Severity Code: 12

Programmer Response: Make sure the source
code is correct and reassemble if
necessary. I1f the problem recurs,
follow1ng before calling IBM:
Have the user source program, user macro
definitions and associated listing
available.

e If the COPY statement was used, execute
the IEBPTPCH utility program to. obtain a
copy of the PDS member specified in the
COPY statement.

do the

ILLEGAL CONTINUATION CARD

Explanation: Either there are tco many
continuation cards, or there are non-blanks
between the begin and continue columns on
the continuation card.

Severity Code: 8

Programmer Response: Probable user error.

Make sure source is correct and reassemble

if necessary. If the problem recurs, do

the following before calling IBM:

e Have the user source program, user macro
definitions, and associated listings

IEU078

1EU079

IEU080

available.

e If the COPY statement was used, execute

the IEBPTPCH utility program to obtain a
copy of the PDS member specified in the
COPY statement.

INCOMPATIBLE ASSEMELER OPTIONS ON THE
EXECUTE CARD

Exglanatlon. One of the following:
The DOS assembler option has been
specified along with LOAD, TEST, RENT,
TERM, or NOALGN. The assembler has used
the options specified.)

e The NUM or STMT option has been specified
along with NOTERM. The assemkler has not
produced any SYSTERM output.

Severity Code: 0

Programmer Response: Make sure all

assembler options specified are correct and

reassemble if necessary. If problem

recurs, do the following before calling

IBM:

e Make sure that MSGLEVEL= (1,1) was
specified in the JOB statement.

e Have the user source program, user macro
definitions, and assoc1ated listings
available.

ILLEGAL STATEMENT IN MACRO DEFINITION

Explanation: This operation is not allowed
within a macro definition.

Severity Code: 8

Programmer Response: Probable user error.

Make sure the source code is correct and

reassemble if necessary. If the problem

recurs, do the following before calling
1LDie

e Have the user source program, user macro
definitions, and associated listings
available.

e If the COPY statement was used, execute
the IEBPTPCH utility program to oktain a
copy of the PDS member specified in the
COPY statement.

ILLEGAL START CARD

Explanation: Statements affecting or
depending upon the location counter have
been encountered before a START statement.

Severity Code: 8

Programmer Response: Make sure the source
code is correct and reassemble if
necessary. 1f the problem recurs, do the
following before calling IBM:

e Have the user source program, user macro
definitions and associated listing
available.

e If the COPY statement was used, execute
the IEBPTPCH utility program to oktain a
copy of the PDS member specified in the
COPY statement.

1EU081

1EU082

1IEU083

IEUO8Y

ILLEGAL FORMAT IN GBL OR LCL STATEMENTS

Explanation: B2an operand is not a variable

symbol.

Severity Code: 8

Programmer Response: Make sure the source

code is correct and reassemble if

necessary. If the problem recurs,
following before calling IBM:

e Have the user source program, user macro
definitions and associated listing
available.

e If the COPY statement was used, execute
the IEBPTPCH utility program tc obtain a
copy of the PDS member specified in the
COPY statement.

dc the

ILLEGAL DIMENSION SPECIFICATION IN GBL OR
LCL STATEMENT

FExplanation: Dimension is other than 1 to

2500.

Severity Code: 8

Programmer Response: Make sure the source

code is correct and reassemble if

necessary. I1f the problem. recurs, do the

following before calling 1IBM:

e Have the user source program, user macro
definitions and associated listing
available.

e If the COPY statement was used, execute
the IEBPTPCH utility program tc cbtain a
copy of the PDS member specified in the
COPY statement.

SET STATEMENT NAME FIELD NOT A VARIAELE
SYMBOL

Severity Code: 8

Programmer Response: Make sure the source
code is correct and reassemble if
necessary. 1f the problem recurs, do the
following before calling IBM:

e Have the user source program, user macro
definitions and associated listing
available.

e If the COPY statement was used, execute
the IEBPTPCH utility program tc cbtain a
cory of the PDS member specified in the
COPY statement.

ILLEGAL OPERAND FIELID FORMAT

Explanation: Syntax invalid, e.g., AIF
statement operand does not start with a
left parenthesis; operand of AGO is not a
sequence symbol; operand of PUNCH, TITLE,
MNOTE not enclosed in quotes.

Severity Code: 8

Programmer Response: Make sure the source
code is correct and reassemble if
necessary. 1f the problem recurs,
following before calling IBM:

e Have the user source program, USer macxo
definitions and associated listing
available.

e 1f the COPY statement was used, execute
the IEEPTPCH utility program tc cbtain a

dc the

IEU085

IEU086

1EU087

copy of the ELS member specified in the
COPY statement.

INVALID SYNTAX IN EXPRESSION

Explanation: Invalid delimiter, too many
terms in expression, tco many levels of
parentheses, two operators in succession,
two terms in succession, or illegal
character.

Severity Code: 8

Programmer Response: Make sure the source
code is correct and reassemkle if
necessary. If the problem recurs, do the
following before calling IEM:

e Have the user source prcgram, user macro
definitions and associated listing
available.’

e If the COPY statement was used execute
the IEBPTPECH utility program to oktain a
copy of the PDS member specified in the
COPY statement.

ILLEGAL USAGE OF SYSTEM VARIABLE SYMBOL

Explanation: R system variable symkol
appears in the name field of a SET
statement, is declared in a GBL or ICL
statement, or is an unsukscripted &§SYSIIST
in a context other than N'§SYSLI1ST.

Severity Code: 8

Programmer Response: Make sure the source
code is correct and reassemkle if
necessary. 1f the problem recurs,.do the
followlng before calling I1EM:
Have the user source program, user macro
definitions and associated listing
available. '

e 1f the COPY statement was used, execute
the IEEPTPCH utility program to obtain a
copy of the PLS member sgecified in the
COPY statement.

NO ENDING APOSTROPHE

Explanation: There is an unpaired
apostrophe or ampersand in the statement.

Severity Code: 8

Programmer Response: Make sure the source
code is correct and reassemble if
necessary. 1f the problem recurs, do the
follow1ng before calling IEM:
Have the user source prcgram, usexr macro
definitions and associated listing
available.

e If the COPY statement was used, execute
the IEBPTFCH utility program to oktain a
copy of the PDS member sgpecified in the
CCEY statement.

Appendix A. Diagnostic Messages 49

IFU088

IEU089

IEU090

50

UNDEF INED OPERATION CODE

Explanation: Symkol in operation ccde
field does not correspond to a valid
machine or assembler operation code or to
any operation code in a macrc prctctyge
statement, or a SYSLIB data set has not
been provided. If the statement is OPSYN,
the operand entry is not a defined machine
or extended operation code, or the operand
entry is omitted and the name entry is nct
a defined machine or extended operation
code. If the DOS option is in effect, DXD
and CXT operation codes will ke flagged as
undefined.

Severity Code: 12

Programmer Response: Probable user error.

Make sure the source code is correct and
reassemble if necessary. If problem
recurs, do the following before calling
I1BM:

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB staterent.

e Have the user source program, user macro
definitions, and associated listings
available.

e If the COPY statement was used, execute
the IEBPTPCH utility program to obtain a
copy of the PLS memker specified in the
COPY STATEMENT.

INVALIC ATTRIEBUTE NOTATION

Explanation: Syntax error inside a macro
definition, e.g., the argument of the
attribute reference is not a symkclic
rarameter.

Severity Code: 8

Programmer Response: Probable user error.

Make sure the source code is correct and

reassemble if necessary. 1f the rrcblem

recurs, do the following before calling

IEM.

e Have the user source program, user macro
definitions, and associated listings
available.

e If the COPY statement was used, execute
the IEBPTPCH utility program to obtain a
copy of the PDS member specified in the
COPY statement.

INVALID SUBSCRIPT

Explanation: Syntax error, e.g., dcuble
subscript where single subscript is
required or vice versa; not right
parenthesis after subscript.

Severity Code: 8

Programmer Response: Make sure the source
code is correct and reassemble if
necessary. If the problem recurs, do the
following before calling IBM:

e Have the user source program, user macro
definitions and associated listing
available.

e If the COPY statement was used, execute
the IEBPTPCH utility program tc obtain a
copy of the PDS member specified in the
COPY statement.

IEU091 INVALID SELF-DEFINING TERM

IEU092

IEU093

IEUO9U

_____ Value is tcc large or is
inconsistent with the data tyge, i.e.,
severity code of MNOTE statement greater
than 255.

Severity Code: 8

Programmer Response: Make sure the source
code is correct and reassemble if
necessary. If the proklem recurs, do the
following before calling IEM:

e Have the user source rrcgram, user macro
definitions and associated listing
available.

e If the COPY statement was used, execute
the IEBPTECH utility program to oktain a
copy of the FLS member specified in the
COPY statement.

INVALID FORMAT FOR VARIABLE SYMBOL

Explanation: The first character after the
ampersand is not alphabetic, or the
variakle symbol contains more than 8
characters, or failure to use double
ampersand in TITLE card or character
self-defining term.

Severity Code: 8

Programmer Response: Make sure the source
code is correct and reassenble if
necessary. If the proklem recurs, do the
following before calling IBM:

e Have the user source prcgram, user macro
definitions and associated listing
available.

e I1f the COPY statement was used, execute
the IEBPTECH utility program to oktain a
copy of the FLS member specified in the
COPY statement.

UNBALANCED FARENTHESIS OR EXCESSIVE LEFT
PARENTHESES

Explanation: End cf statement or card
encountered before all parenthesis levels
are satisfied. May be caused by embedded
blank or other unexpected terminator, or
failure to have a punch in continuation
column.

Severity Code: 8

Programmer Response: Make sure the source
code is correct and reassemble if
necessary. If the problem recurs, do the
following before calling IEM:

e Have the user source prcgram, user macro
definitions and associated listing
availakle.

e If the COPY statement was used, execute
the IEBPTECH utility program to oktain a
copy of the PLS member specified in the
COPY statement.

INVALID OR ILLEGAL NAME OR OPERATION IN
PROTOTYPE STATEMENT

_____ Name not blank or variable
symkol, or variable symbol in name field is
subscripted, or violation of rules for
forming variable symbol (must kegin with

IEU095

IEU096

IEU097

ampersand (&) followed by 1-7 letters
and/or numbers first of which must be a
letter), or statement following 'MACRO' is
not a valid prototype statement.

Severity Code: 12

Programmer Response: Make sure the source
code is correct and reassemble if
necessary. If the problem recurs, do the
following before calling 1BM:

e Have the user source program, .user macro
definitions and associated listing
available.

e If the COPY statement was used, execute
the IEBPTPCH utility program tc obtain a
copy of the PDS member specified in the
COPY statement.

ENTRY TABLE OVERFLOW

Explanation: Number of ENTRY symbols,
i.e., ENTRY instruction operands, exceeds
100.

Severity Code: 8

Programmer Response: Make sure the source
code is correct and reassemble if
necessary. I1f the problem recurs, do the
following before calling IEM:

e Have the user source program, user macro
definitions and associated listing
available.

e If the COPY statement was used, execute
the IEBPTPCH utility program tc obtain a
copy of the PDS member specified in the
COPY statement.

MACRO INSTRUCTION OR PROTOTYPE OPERAND
EXCEEDS 255 CHARACTERS IN LENGTH

Severity Code: 12

Programmer Response: Make sure the source
code is correct and reassemble if
necessary. I1f the problem recurs, dc the
following before calling IBM:

e Have the user source program, user macro
definitions and associated listing
available.

e If the COPY statement was used, execute
the IEBPTPCH utility program tc obtain a
copy of the PDS member specified in the
COPY statement.

INVALID FORMAT IN MACRO INSTRUCTION OPERAND
OR PROTOTYPE PARAMETER

Explanation: This message can be caused

by:

1. Illegal "=".

2. A single "§&" appears somewhere in the
standard value assigned toc a fprototype
keyword parameter.

3. First character of a prototype parameter
is not "g".

4. Prototype parameter is a subscripted
variable symbol.

IEU098

IEU099

IEU100

Page of GC26-3756-6
Revised July 15, 1972
By TNL GN33-8144

5. Invalid use of alternate format in
prototype statement, e.q.,

10 16 72
PROTO €A ,EB,
or
PROTO &7 ,EB, X
§C

6. Unintelligible prototype parameter,
e.g., “GA*"™ or "EA&E."

7. Illegal (non-assembler) character
appears in prototype parameter or macro
instruction operand.

Severity Code: 12

Programmer Response: Make sure the source
code is correct and reassemkle if
necessary. 1f the problem recurs, do the
following before calling IBM:

e Have the user source program, user macro
definitions and associated listing
available.

e If the COPY statement was used, execute
the IEBPTPCH utility program to obtain a
copy of the PDS member specified in the
COPY statement.

EXCESSIVE NUMBER OF OPERANDS OR PARAMETERS

Explanation: Either the prototype has more
than 200 parameters, or the macro
instruction has more than 200 operands.

Severity Code: 12

Programmer Response: Make sure the source
code is correct and reassemble if
necessary. If the problem recurs,
following before calling IBM:

e Have the user source program, user macxo
definitions and associated listing
available.

e If the COPY statement was used, execute
the IEBPTPCH utility program to obtain a
copy of the PDS member specified in the
COPY statement.

do the

POSITIONAL MACRO INSTRUCTION OPERANL,
PROTOTYPE PARAMETER OR EXTRA COMMA FOLLOWS
KEYWORD

Severity Code: 12

Programmer Response: Make sure the source
code is correct and reassemkle if
necessary. ILf the problem recurs, do the
fOllOWlng before calling IBM:
Have the user source program, user macro
definitions and associated listing
available.

o If the COPY statement was used, execute
the IEBPTPCH utility program to obtain a
copy of the PDS member specified in the
COPY statement.

STATEMENT COMPLEXITY EXCEEDED
Explanation: More than 32 operands in a

DC, DS, DXD, or literal DC, or more than 50
terms in a statement.

Severity Code: 8

Appendix A. Diagnostic Messages 51

IEU101

IEU102

IEU103

52

Programmer Response: Make sure the source
code is correct and reassemble if
necessary. I1f the problem recurs, do the
follow1ng before calling IBM:
Have the user source program, user macro
definitions and associated llstlng
available.

e If the COPY statement was used, execute
the IEBPTPCH utility program to obtain a
copy of the PDS member specified in the
COPY statement.

EOD ON SYSIN

Explanation: EOD before END card.

Severity Code: 12

Programmer Response: Make sure the source
code is correct and reassemble if
necessary. 1f the problem recurs, do the
following before calling IBM: ‘

» Have the user source program, user macro
definitions and associated listing
available.

e If the COPY statement was used, execute
the IEBPTPCH utility program tc obtain a
copy of the PDS member specified in the
COPY statement.

INVALID OR ILLEGAL ICTL

Explanation: The operands of the ICIL are
out of range, or the ICTL is not the first
statement in the input deck. (Assembly is
terminated and further input is ignored.)

Severity Code: 16

Programmer Response: Make sure the source
code is correct and reassemble if
necessary. If the problem recurs, do the
following before calling IBM:

e Have the user source program, USer macro
definitions and associated listing
available.

e If the COPY statement was used, execute
the IEBPTPCH utility program tc obtain a
copy of the PDS member specified in the
COPY statement.

ILLEGAL NAME IN OPERAND FIELD OF COPY CARD

Explanation: Syntax error, e.g., symbol
has more than 8 characters or has an
illegal character.

Severity Code: -12

Programmer Response: Probable user error.
Make sure the source code is correct and
reassemble if necessary. 1f the problem
recurs, do the follow1ng before calling
1BM:

e Have the user source program, user macro
definitions, and associated llstlngs
available.

e If the COPY statement was used, execute
the IEBPTPCH utility program tc obtain a
copy of the PDS member specified in the
COPY statement.

IEU104

IEU105

IEU106

IEU107

COPY CODE NOT FOUNLC

Explanation: The operand of a COPY
statement specified COPY text which cannot
be found in the library.

Severity Code: 12

Programmer Response: Prokable user error.
Make sure the source code is correct and
reassemble if necessary. If problem
recurs, do the following kefore calling
1BM:

e Make sure the SYSLIB LL statement is
included.

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

e Have the user source program, user macro
definitions, and associated listings
available.

e 1f the COPY statement was used, execute
the IEBPTPCH utility program to obtain a
copy of the PDS member specified in the
COPY statement.

EOD ON SYSTEM MACRO LIBRARY

Explanation: EOD before MEND card.

Severity Code: 12

Programmer Response: Probakle user error.
Make sure the source code is correct and
reassemble if necessary. If the problem
recurs, do the following before calling
IBM:

e Have the user source program, user macro
definitions, and associated listings
available.

e 1f the COPY statement was used, execute
the IEBPTPCH utility program to obtain a
copy of the PDS member specified in the
COPY statement.

NOT NAME OF LSECT OR LXD

Referenced symbol expected to
but it is not.

Explanation:
be DSECT name,

Severity Code: 8

Programmer Response: Make sure the source
code is correct and reassemble if
necessary. If the problem recurs,
follow1ng before calling IBM:
Have the user source program, user macro
definitions and associated listing
available.

e If the COPY statement was used, execute
the IEBPTPCH utility program to obtain a
copy of the PLCS member specified in the
COPY statement.

do the

INVALID OPERAND
Explanation: 1Invalid syntax in DC operand,
e.g., invalid hexadecimal character in

hexadecimal CC; operand string too long for
X, B, C, DC's; operand unrecognizakle,
contains invalid value, or incorrectly
specified.

IEU108

IEU109

IEU110

Severity Code: 8

Programmer Response: Probable user error.
Make sure the source code is correct and
reassemble if necessary. If the problem
recurs, do the following before calling
IBM:

e Have the user source program, use€r macro
definitions, and associated listings
available.

e I1f the COPY statement was used, execute
the IEBPTPCH utility program to obtain a
copy of the PDS member specified in the
COPY statement.

PREMATURE EOD

Explanation: Indicates an internal
assembler erroxr; should not occur.

Severity Code: 16

Programmer Response: Reassemble; if the

problem recurs, do the following before

calling IBM:

e Have the user source program, user macro
definitions, and associated listings
available.

e If the COPY statement was used, execute
the IEBPTPCH utility program to obtain a
copy of the PDS member specified in the
COPY statement.

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

PRECISION LOST

Severity Code: 8

Programmer Response: Probable user error.
Make sure the source code is correct and
reassemble if necessary. 1f the prcblem
recurs, do the following before calling
IBM:

e Have the user source program, user macro
definitions, and associated listings
available.

e If the COPY statement was used, execute
the IEBPTPCH utility program to obtain a
copy of the PDS member specified in the
COPY statement.

EXPRESSION VALUE TOO LARGE

Explanation: Value of expression not in
range than -16777216 to +16777215.
Expressions in EQU and ORG statements are
flagged if (1) they include terms
previously defined as negative values, or
(2) positive terms give a result of more
than three bytes in magnitude. The error
indication may be erroneous due to (1) the
treatment of negative values as three-byte
positive values, or (2) the effect of large
positive values on the location counter if
a control section begins with a START
statement having an operand greater than
zero, or a control section is divided into
subsections.

Severity Code: 8

IEU111

IEU112

Page of GC26-3756-6
Revised July 15, 1972
By TNL GN33-8144

Programmer Response: Prokable user error.

Make sure the source code is correct and
reassemble if necessary. If the problem
recurs, do the following kefore calling
1BM:

e Have the user source program, user macro
definitions, and associated listings
available. ’

e If the COPY statement was used, execute
the IEBPTPCH utility program to oktain a
copy of the PDS member specified in the
COPY statement.

OPEN FAILED FOR SYSGO, NOLOAD OPTION USED
DD statement incorrect or

Explanation:
missing.

Severity Code: 16

Programmer Response: Probable user error.
If necessary supply missing DD statement or
make sure that information on LC statement
is correct and reassemble. If proklem
recurs, do the following before calling
I1BM:

e Have the user source program, user macro
definitions, and associated listings
available.

e If the COPY statement was used, execute
the IEBPTPCH utility program to oktain a
copy of the PDS member specified in the
COPY statement.

e Make sure that MSGLEVEL= (1,1) was
specified in the JOB statement.

OPEN FAILED FOR SYSPUNCH, NODECK OPTION
USED

Explanation: [U statement incorrect or

missing.
Severity Code: 16

Programmer Response: Probable user error.
If necessary supply missing LCL statement or
make sure that information on DD statement
is correct and reassemble. 1f proklem
recurs, do the following before calling
1BM:

e Have the user source program, user macro
definitions, and associated listings
available.

e If the COPY statement was used, execute
the IEBPTPCH utility program to oktain a
copy of the PDS member specified in the
COPY statement.

e Make sure that MSGLEVEL= (1, 1) was
specified in the JOB statement.

IEU113 OPEN FAILED FOR SYSTERM, NOTERM OPTION USED

Explanation: DD statement incorrect or

missing.

Severity Code: 0

Programmer Response: Prokakle user error.
1f necessary supply missing DD statement or
make sure that information on DD statement
is correct and reassemble. I1f problem
recurs, do the following kefore calling
IBM:

Aprendix A. Diagnostic Messages 53

Page of GC26-3756-6
Revised July 15, 1972
By TNL GN33-8144

IEU116

IEU117

Have the user source program, user macro
definitions, and associated listings
available.

1f the COPY statement was used, execute
the IEBPTPCH utility program to obtain a
copy of the PDS member specified in the
COPY statement.

Make sure that MSGLEVEL= (1,1) was
specified in the JOB statement.

System Action: Processing continues.

Severity Code: 0

Programmer Response: Probable user error.
If necessary supply the missing DD
statement or make sure that information on
the DD statement is correct; reassemble.
If problem recurs, do the following before
calling IBM:

e Have the user source program, user macro

ILLEGAL OPSYN

Explanation: An OPSYN statement may be
preceded only by an ICTL instruction or
another OPSYN statement.

Severity Code: 8

Programmer Response: Probable user error.

Make sure the source code is correct and

reassemble if necessary. I1f the rroblem

recurs, do the following before calling

IBM:

e Have the user source program, user macro
definitions, and associated listings
available.

e If the COPY statement was used, execute
the IEBPTPCH utility program to obtain a
copy of the PDS member specified in the
COPY statement.

OPSYN TABLE OVERFLOW

Explanation: No room exists in symbol
table for this and following OPSYN
definitions; generated operation codes may
not be processed correctly.

Severity Code: 8

Programmer Response: Probable user error.
Make sure the source code is correct and
reassemble if necessary. 1f the rroblem
recurs, do the following before calling
IBM:

e Have the user source program, user macro
definitions, and associated listings
available.

e If the COPY statement was used, execute
the IEBPTPCH utility program tc obtain a
copy of the PDS member specified in the
COPY statement.

IEU9961 ASSEMBLY TERMINATED INSUFFICIENT STORAGE

IEU9971 OPEN FAILED

54

Explanation: One of the following:

e The partition or region size is less than

the mimimum required by the assembler.

e The blocksize specified for the utility
data sets is too large for available main
storage. |

System Action: Assembly is terminated.

Severity Code: 20
FOR SYSPRINT, NOLIST OPTION
USED

Explanation: DD statement incorrect or

missing.

definitions, and associated listings
available.

I1f the COPY statement statement was used,
execute the IEBPTPCH utility program to.
obtain a copy of the PLS member specified
in the COPY statement.

Make sure that MSGLEVEL= (1,1) was
specified in the JOB statement.

IEU9981 ASSEMBLY TERMINATEL, OPEN FAILED FOR DATA
SET (ddname)

Explanation:

DD statement (s) for data

set’'(s) SYSIN, SYSUT1, SYSUT2, SYSUT3,
and/or SYSPRINT incorrect or missing.

System_ Action:

Assembly is terminated.

Severity Code: 20

Programmer Response:

Probable user error.

Supply missing DD statement (s) or make sure
that information on LD statement (s) is

correct;

reassemble. If problem recurs, do

the following before calling IBM:

Have the user source program, usSer macro
definitions, and associated listings
available.

If the COPY statement was used, execute
the IEBPTPCH utility program to obtain a
copy of the PLS member specified in the
COPY statement.

Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

IEU9991 ASSEMBLY TERMINATED, jobname, stepname,
unit address, device type, ddname,
operation attempted, error description
(bytes 107 through 128 of the SYNATCAF
message buffer; this area is described in
0S Data Management Macro lnstructions.

Explanation:
error.

Indicates a permanent 1/0
This message is produced Ly the

SYNADAF macro instruction.

System_Action:

Assembly is terminated.

Severity Code: 20

Programmer Response:

Reassemble. 1f the

problem recurs, do the following kefore
calling IBM:

Have the user source program, user macro
definitions, and associated listings
available.

1f the COPY statement was used, execute
the IEBPTPCH utility program to oktain a
copy of the PDS member specified in the
COFY statement.

Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

Appendix B. Object Deck Output

TXT Card Format Pos. Rel.

ESDID ESDID Flagq Address

The format of the TXT cards is as follows:

Entry 1 02 () 0cC 000100
Entry 2 02 o4 oC 000104
Columns Contents Entry 3 03 01 oc 000800

1 12-2-9 punch Columns 17-36 of the RILD card would

2-4 TXT appear as follows:

5 Blank

6-8 Relative address of first

instruction on card
9_ 10 Blank Entry 1 Enhy 2 Enhy 3
11-12 Byte count -- number of Column: | 17 18 19 20 21 22 23 24|25 26 27 28(29 30 31 32 33 34 35 36|37 —e= 72

bytes in information

field (cc 17-72) 00]Jo4JooJo2JonJ ooJoreofocT en] o1 04 oo 0100 f03]oc] 0o fos oo |

13-14 Blank ESD ID% [Address] Addiess | ESD ID% Address | blanks
15-16 ESD1D
17-72 56-byte information field e fres s
73-76 Deck ID (from first TITLE et) set)
card)
77-80 Card sequence number
ESD Card Format
RLD Card Format The format of the ESD card is as follows:
The format of the RLD card is as follows: Columns Contents
Columns Contents 1 12-2-9 punch
. 2-4 ESD
1 12-2-9 punch 5-10 Blank
2-4 RLD 11-12 Variable field count --
5-10 Blank number of bytes of information in
11-12 Data field count -- number variable field (cc 17-64)
of bytes of information in 13-14 Blank
data field (cc 17-72) 15-16 ESDID of first SD, XD, CM, WX,
13-16 Blank PC, or ER in variable field
17-72 Data field: 17-64 Variable field. One to
17-18 Relocation ESDID three 16-byte items of the
19-20 Position ESDID following format:
21 Flag byte 8 bytes -- Name, padded
22-24 Absolute address to be with blanks
relocated 1 byte -- ESD type code
25-72 Remaining RLD entries The hex value is:
73-76 Deck ID (from first TITLE 00 sb
card) 01 LD
77-80 Card sequence number 02 ER
: 04 pC*
If the rightmost bit of the flag byte is 0s M
set, the following RLD entxy has the same 06 XD (PR)
Relocation ESDID and Position ESDID, and oA WX
this information will not be repeated; if 3 bytes -- Address
the rightmost bit of the flag byte is not 1 byte -- Alignment if XC;
set, the next RLD entry has a different otherwise blank
Relocation ESDID and/or Position ESCID, and 3 bytes -- Length, LDID, or
both ESDIDs will be recorded. blank
65-72 Blank
For example, if the RLD Entries 1, 2, 73-76 Deck ID (from first TITLE
and 3 of the program listing (Aprendix C) card)
contain the following information: 77-80 Card sequence number

Appendix B. Object LCeck Output 55

Page of GC26-3756-6
Revised July 15, 1972
By TNL GN33-8144

END Card Format

The format of the END card is as follows:

Columns Contents
1 12-2-9 punch
2-4 END
5 Blank
6-8 Entry address from operand
of END card in source deck
(blank if no operand)
9-14 Blank
15-16 ESDID of entry point (blank
if no operand)
17-32 Blank
33 1
34-43 Order number of the assembler:
S360AS037.
44-45 Version level of the assembler.
46-47 Modification level of the
assembler.
48-49 Last two digits of the year in
which the assembly was run.
50-52 Julian day of the year in which
the assembly was run.
53-72 Normally not used.
73-80 Deck ID and/or sequence number.

The deck 1D is the name field from
the first named TITLE statement.
The name can be one to eight
alphameric characters long. If
there is no name or the name is
less than eight characters long,
the remaining columns contain a
card sequence number. (Columns
73-80 of cards produced by PUNCH
or REPRO statements do not contain
a deck ID or a sequence nhumber.)

SYM Card Format

If requested by the user, the assembler
punches out SYM cards with symbolic
information concerning the assembled
program. These cards can be used by the
TESTRAN routine or the TSO Test command
processor. The cards are located between
the ESD and TXT cards. The format of SYM
cards is as follows:

Columns Contents
1 12-2-9 punch
2-4 SYM
5-10 Blank
11-12 Variable field count --

number of Lkytes of text in
variable field (cc 17-72)

13-16 Blank

17-72 Variable field (see belcw)

73-76 Deck ID (from first TITLE
card)

77-80 Card sequence number

The variable field (columns 17-72)
contains up to 56 bytes of TESTRAN text.

56

The items making the text are packed
together, consequently only the last card
may contain less than 56 bytes of text in
the variable field. The formats of a text
card and an individual text item are shown
in Figure 19. The contents of the fields
within an individual entry are as follows:

1. Ofganization (1 byte)
0 = non-data type

1 data type
Bits 1-3 (if non-data type):
000 = space
001 = control section
010 = qummy control section
011 = common
100 = machine instruction
101 = CCW
Bit 1 (if data type):
0 = no multiplicity
1 = multiplicity (indicates
presence of M field)
Bit 2 (1f data type):

0 = independent (not a
packed or zoned decimal
constant)
cluster (packed or
. zoned decimal constant)
Bit 3 (if data type):

0 = no scaling

1 scaling (indicates pres-

ence of S field)

1

Bit U4:
0
1
Bits 5-7:
Length of name minus one

name present
name not present

2. Address (3 bytes) - displacement from
beginning of control section

3. Symbol Name (0-8 bytes) - symbolic

name of particular item

Note: The following fields are only
present for data-type items.

4. Data Type (1 byte) - contents in

hexadecimal

00 = character
04 = hexadecimal, L-type data
08 = binary
10 = fixed point, full
14 = fixed point, half
18 = floating point, short
1C = floating point, long
20 = A-type or Q-type data
24 = Y-type data
28 = S-type data
2C = V-type data
30 = packed decimal
34 = zoned decimal

5. Length (2 bytes for character,

hexadecimal, or binary items; 1 byte

Page of GC26-3756-6
Revised July 15, 1972
By TNL GN33-8144

for other types) - length of data item 7. Scale -signed integer - S field (2

minus 1 bytes) - present only for ¥, H, E, D,
L, P and Z type data, and only if
Multiplicity - M field (3 bytes) - scale is non-zero.

equals 1 if not present

Appendix B. Object Deck Output 56.1

73 7677 . 80

1 2 45 10 111213 16 17
No.
12 of Deck S)
2 SYM blank bytes blank SYM text - packed entries ec| equence
9 of iD Number
text
1 3 6 2 4 56 4 4
Entry Entry

(complete or
end portion)

N complete entries

N 21

(complete or
head portion)

Variable size entries

Data |
. Mult. fo) Symbol
Org. | Address Symbol Name fype Length factor Scale rg. Name
1 3 0-8 1 1-2 3 2

Figure 19. SYM Card Format

Appendix B. Object Deck Output .57

Appendix C. Assembler F Program Listing

The Assembler F listing shown in this
appendix results from assembling the scurce
program documented in an appendix tc the 0S
Assembler Language publication. For easy
reference to the explanations that appear
in the section "The Assembler Listing", the
headings on the listing are numbered.

Since there were no errors in the
assembly, a diagnostic list was not
produced. Each of the following pages
represents one printer-produced listing

rage.

SYMBOL TYPE ID ADDR LENGTH LD ID

SAMPLR SD 01 000000 0003B8

EXAM e e o e e EXTERNAL SYMBOL DICTIONARY E’AGEe

1

14.56 10/13/71

58

EXAM SAMPLE PROGRAM PAGE 1

o ©0 2] O 4] | ['s) 16

LOC OBJECT CODE ACDR1 ADCR2 STMT SOURCE STATEMENT FO10CT71 10/13/71
2 PRINT DATA 01000019
3 * 01500019
4 = THIS IS THE MACRO DEFINITION 02000019
5 # 02500019
6 MACRO 03000019
7 MOVE &TO, § FROM 03500019
8 .* 04000019
9 .+ DEFINE SETC SYMBOL 04500019
10 .* 05000019
1M LCLC §TYPE 05500019
12 .* 06000019
13 .# CHECK NUMBER OF OPERANLDS 06500019
14 .* 07000019
15 AIF (N'6SYSLIST NE 2) .ERROR1 07500019
16 .+ - 08000019
17 .+ CHECK TYPE ATIRIBUTES OF OPERANDS 08500019
. 18 .* 09000019
19 AIF . (T'6TO NE T'GFROM .ERROR2 09500019
20 AIF (T'STO EQ 'C' OR T'ETO EQ 'G' OR T'E€TO EQ °*K').TYPECGK 10000019
21 AIF (T*'6TO EQ 'D' OR T'ETO EQ 'E' OR T'ETC FQ 'H').TYPELEH 10500019
22 AIF (T'STO EQ 'F') .MOVE 11000019
23 AGO .ER OR3 11500019
24 .TYPEDEH ANOP ! 12000019
25 .+ 12500019
26 .+ ASSIGN TYPE ATTRIBUTE 70 SETC SYMBOL 13000019
27 .* 13500019
28 §TYPE SETIC T'6TO 14000019
29 .MOVE ANOP 14500019
30 # NEXT TWO STATEMENTS GENERATED FOR MOVE MACRC 15000019
31 LSTYPE 2,8FROM 15500019
32 ST6TYPE 2,6T0 16000019
33 MEXIT 16500019
34 Lk 17000019
35 .»* CHECK LENGTH ATTRIBUIES OF OPERANDS 17500019
36 . ¢ . 18000019
37 .TYPECGK AIF (L'§TO NE L*§FROM OR L*ETO GT 256) . ERRORY 18500019
38 * NEXT STATEMENT GENERATED FOR MOVE MACRO 19000019
39 MVC §TO, §FROM 19500019
40 MEXIT 20000019
41 .* 20500019
42 »* ERROR MESSAGES FOR INVALID MOVE MACRO INSTRUCTIONS 21000019
43 21500019.
44 .ERROR1 MNOTE 1,*IMPROPER NUMBER OF OPERANDS, NO STATEMENTS GENERATED®' 22000019
45 MEXIT 22500019
46 .ERROR2 MNOTE 1,'OPERANC TYPES DIFFERENT, NO STATEMENTS GENERATED® 23000019
47 MEXIT 23500019
48 .ERROR3 MNOTE 1,'IMPROPER OPERAND TYPES, NO STATEMENTS GENERATED® 24000019
49 MEXI1T 24500019
S0 .ERROR4 MNOTE 1,' IMPROPER OPERAND LENGTHS, NO STATEMENTS GENERATED® 25000019
51 MEND 25500019
52 * 26000019
53 * MAIN ROUTINE 26500019
Sy * 27000019
000000 55 SAMPLR CSECT 27500019
56 BEGIN SAVE (14,12),,* 28000019
000000 47F0 FOOA 0000A 57+BEGIN B 10(0,15) BRANCH AROUND 1D
000004 05 58+ DC AL1 (5)
000005 C2C5C7C9DS 59+ nC CL5 BEGIN' IDENTIFIER
00000A 90EC DOOC 0000C 60+ ~ STM 14,12,12(13) SAVE REGISTERS
00000E 05CO 61 BALR R12,0 ESTABLISH ADDRESSABILITY OF PROGRAM 28500019
000010 62 USING *,R12 AND TELL THE ASSEMBLER WHAT BASE TO USE 29000019
000010 50D0 COBS 000C8 63 ST 13, SAVE13 29500019
000014 -9857 C390 0030 64 LM R5,R7,=A (LISTAREA, 16,LISTEND) LOAD LIST AREA PARAMETERS 30000019
000000 . 65 USING LIST,R5 REGISTER 5 POINTS TC THE LIST 30500019
000018 45E0 COBE 000CE 66 MORE BAL R14,SEARCH FIND LIST ENTRY IN TABLE 31000019
00001C 9180 COBC 000CC 67 ™ SWITCH,NONE CHECK TO SEE IF NAME WAS FOUND 31500019
000020 4710 COBO 000C0 68 BO NOTTHERE BRANCH IF NOT 32000019
000000 69 USING TABLE,R1 REGISTER 1 NOW POINTS TO TABLE ENTRY 32500019
70 MOVE TSWITCH,LSWITCH MOVE FUNCTIONS 33000019

T1+# NEXT STATEMENT GENERATED FOR MOVE MACRO

Appendix C. Assembler F Program Listing 59

Page of GC26-3756-6
Revised July 15, 1972
By TNL GN33-8144

EXAM

[10]

Loc
000024

00002a

000030
000034
000038
00003C
000042
000046
00004C

000050
000050
000054
000056
000058
000060
000068
000070
000078
000078
00007C
00007¢C
00007E

000082
000086
00008A

00008C
00008C
000090
000092
000094
00009C
0000AY
0000AC
0000BY
0000B9
0000BA
0000BA
0000BC
0000CO
0000CH
0000C8
0000CC
000080

0000CD
0000CE
0ooor2
0000D6
0000DA
0000DE
0000E4
0000E8

0000EA
0000EC
0000F0
0000F4
0000F6
0000FA
0000FE

SAMPLE PROGRAM

OBJECT CODE

D200 1003 5008

D202 1000 5009

5820 500C
5020 1004
8756 €008
DSEF C240
4770 Co07C
D55F C330
4770 CO7C

COFO0

C1E0

4510 CO6C

0027

0000
C1E2E2C5D4C2D3C5
DI940E2CI1DUD7D3C5
40D7D9D6CTDIC1DY
4OE2EUC3C3CS5E2E2
C6EUL3

0A23
58D0 COBS8

98EC DOOC
41F0 0000
07FE

4510 COAA

0029

0000
C1E2E2C5D4C2D3C5
DYUO0E2C1D4D7D3C5
40D7D9D6CTDIC 1DY

4OEU4DSE2EUC3C3CS -

E2E2C6E4D3

0A23

47F0 CO6E
9680 5008
47F0 C028
00000000
00

00

947F
9813
4111
8830
D507
4720
078E

COBC
€39C
COEOQ
0001
5000
COEY

1B13
4620
47F0
1A13
4620
9680
07FE

coca
COEA

coca
COBC

00000

00250
00340

00008

000CC

1008 00000

0oocc

ACDR1 ACLCR2 STMT

00003 00008

00009

0000C
00004
00018
00100
0008C
001F0
0008C

0007C

ooocs

0000C
00000

0008A

0007E
00038

003AC
000F0
00001
00008
000F4

000DA
00QFA

oooca

72+

73

Tl+*

75+

76

77+#

78+

79+

80 LISTLOOP

91+IHB000S
92+IHB000SA
93+

94 EXIT

95

96+

97+

98+

99 *

100 NOTRIGHT
101+

10 2+NOTR IGHT
103+

104+

105+

106+IHBO007
10 7+IHB0007A
108+
109
110
11
112

NOTTHERE

SAVE13
113 SWITCH
114 NONE
115 *

116 =*

117 *

118
119
120 -
121 LOOP
122
123
124
125

SEARCH

126
127
128
129
130
131

HIGHER

NOTFOUND

SOURCE STATEMENT

o
PAGE 2
o

FO10CT71 10/13/71
MvVC TSWITCH,LSWIICH
MOVE TNUMBER,LNUMBER FROM LIST ENTRY 33500019
NEXT STATEMENT GENERATED FOR MOVE MACRO
MVC TNUMBER, LNUMBER
MOVE TADDRESS,LADDRESS TO TABLE ENTRY 34000019
NEXT TWO STATEMENTS GENERATED FOR MOVE MACRC
L 2,LACCRESS
ST 2 ,TADDRESS
BXLE RS,R6,MORE LCOP THROUGH THE LIST 34500019
CLC TESTTABL (240) , TABLAREA 35000019
BNE NOTRIGHT 35500019
CLC TESTLIST (96) ,LISTAREA 36000019
BNE NOTRIGHT 36500019
WTO * ASSEMBLER SAMPLE PROGRAM SUCCESSFUL"* 37000019
CNOP 0,4
BAL 1,1HB000SA BRANCH AROUND MESSAGE
DC AL2 (IHB(0005-#%) MESSAGE LENGTH
pC B'0000000000000000* MCSFLAGS FIELL
DC C'ASSEMBLER SAMPLFE PROGRAM SUCCESSFUL' MESSAGE
EQU *
DS OH
SVC 35 ISSUE SVC
L R13, SAVE13 37500019
RETURN (1%,12) ,RC=0 38000019
LM 14,12,12 (13) RESTORE THE REGISTERS
LA 15,0(0,0) LOAD RETURN CODE
BR 14 RETURN
38500019
WIO *ASSEMBLER SAMPLE PROGRAM UNSUCCESSFUL' 39000019
CNOP 0,4
BAL 1,IHB0007A BRANCH AROUND MESSAGE
DC AL2 (IHB0O007-%) MESSAGE LENGTH
nC B'0000000000000000* MCSFLAGS FIELD
DC C'ASSEMBLER SAMPLE PROGRAM UNSUCCESSFUL' MESSAGE
EQU #
DS oH
SVC 35 ISSUE SVC
B EXIT 39500019
o1 LSWITCH,NONE TURN ON SWITCH IN LIST ENTRY 40000019
B LISTLOOP GO BACK AND LOOP 40500019
DC F'0* 41000019
DC X*00° 41500019
EQU X'80°* 42000019
42500019
BINARY SEARCH ROUTINE 43000019
43500019
NI SWITCH, 255-NONE TURN OFF NOT FOUND SWITCH 44000019
LM R1,R3,=F'128,4,128' LOAD TABLE PARAMETERS 44500019
LA R1, TABLAREA- 16 (R1) GET ADDRESS OF MILDLE ENTRY 45000019
SRL R3,1 DIVIDE INCREMENT EY 2 45500019
CLC LNAME, INAME COMPARE LIST ENTRY WITH TAELE ENTRY 46000019
BH HIGHER BRANCH IF SHOULC BE HIGHER IN TABLE 46500019
BCR 8,R14 EXIT IF FOUND 47000019
SR R1,R3 OTHERWISE IT IS LOWER IN THE TABLE X47500019
SC SUBTRACT INCREMENT 48000019
BCT R2,LOOP LOOP 4 TIMES 48500019
B NOTFOUND ARGUMENT IS NOT IN THE TABLE 49000019
AR R1,R3 ADD INCREMENT . 49500019
BCT R2,LOOP LOOP 4 TIMES 50000019
01 SWITCH, NONE TURN ON NOT FOUND SWITCH 50500019
BR R14 EXIT 51000019

60

Page of GC26-3756-6
Revised July 15, 1972

By TNL GN33-8144
EXAM SAMPLE PROGRAM PAGE 3
LOC OBJECT CODE ACDR1 ADDR2 STMT SOURCE STATEMENT FO010CT71 10/13/71
132 * 51500019
133 #* THIS IS THE TABLE 52000019
134 * 52500019
000100 135 DS 0D 53000019
000100 0000000000000000 136 TABLAREA DC XL8'0',CL8'ALPHA" 53500019
000108 C1D3D7C8C1404040
000110 0000000000000000 137 DC XL8'0*,CL8'BETA" 54000019
000118 C2CSE3C140404040
000120 0000000000000000 138 DC XL8'0*,CL8'DELIA" 54500019
000128 C4C5D3E3C1404040
000130 0000000000000000 139 jolo] XL8'0',CL8 *EPSILON® 55000019
000138 CSD7E2C9D3D6DS40
000140 0000000000000000 140 DC XL8'0',CLB'ETA" 55500019
000148 CSE3C14040404040
000150 0000000000000000 101 DC XL8'0*,CLB'GAMMA" 56000019
000158 C7C1D4DUCIU04OUO
000160 0000000000000000 142 DC XL8'0',CL8*I0TA" 56500019
000168 C9D6E3C140404040
000170 0000000000000000 143 DC XL8'0",CL8 "KAPPA' 57000019
000178 D2C1D7D7C1404040
000180 0000000000000000 144 DC XL8*0',CL8 *LAMBDA" 57500019
000188 D3C1DUC2CUC14040
000190 0000000000000000 145 oled XL8'0',CL8*MU"* 58000019
000198 DUELLOLOHO4OLOUO
000120 0000000000000000 146 DC XL8'0',CL8*NU"* 58500019
0001A8 DSEL4040404O404L0
0001B0 0000000000000000 147 DC XL8'0*,CL8 *OMICRON" 59000019
0001B8 D6D4CIC3DIDEDSLO
0001C0 0000000000000000 148 DC XL8'0*,CL8°*PHI* 59500019
0001C8 D7C8CI4040404040
0001p0 0000000000000000 149 DC XL8'0',CL8*SIGMA" 60000019
0001D8 E2C9CTDUCT404040
0001E0 0000000000000000 150 DC XL8'0',CL8*ZETA" 60500019
0001E8 E9CSE3C140404040
151 * 61000019
152 * THIS 1S THE LIST 61500019
153 * 62000019
0001F0 D3C1D4 C2CHC14040 154 LISTAREA DC CL8'LAMBDA® ,X"0A*,FL3'29',A (BEGIN) 62500019
0001F8 0A00001D00000000
000200 ESCSE3C140404040 155 DC CL8'ZETA',X'05',FL3'5",A (LOOP) 63000019
000208 05000005000000CA
000210 E3C8CSE3C1404040 156 DC CL8*THETA',X'02',FL3'45",A (BEGIN) 63500019
000218 0200002D00000000
000220 E3C1E44040404040 157 DC CL8*'TAU',X'00*,FL3'0*,A (1) 64000019
000228 0000000000000001
000230 D3C9E2E340404040 158 DC CL8'LIST®,X" 1F' ,FL3'465",A (0) 64500019
000238 1F0001D100000000
000240 C1D3D7C8C1404040 159 LISTEND DC CL8*ALPHA' ,X'00*,FL3'1',A (123) 65000019
000248 000000010000007R
160 * 65500019
161 * THIS IS THE CONTROL TABLE 66000019
162 * 66500019
000250 163 DS op 67000019
000250 00000100000000 7B 164 TESTTABL DC FL3'1',X*00*,A(123) ,CL8'ALPHA" 67500019
000258 C1D3D7C8C1404040
000260 0000000000000000 165 " DC X1L8'0*,CL8® BETA' 68000019
000268 C2C5E3C140404040
000270 0000000000000000 166 DC X1L8'0*, CL8" DELTA" 68500019
000278 C4CSD3E3C1404040
000280 0000000000000000 167 DC XL8'0*,CL8" EPS ILON® 69000019
000288 C5D7E2C9D3D6CS40
000290 0000000000000000 168 DC XL8'0*',CL8" ETA* 69500019
000298 CSE3C14040404040
000240 0000000000000000 169 DC X18'0*,CL8° GAMMA® 70000019
0002A8 C7C1DUDUCI404040
000280 0000000000000000 170 cc XL8*0',CL8® IOTA* 70500019
0002B8 CID6E3C140404040
0002C0 0000000000000000 171 DC XL8'0*,CL8"KAPPA' 71000019
0002C8 D2C1D7D7C1404040
000200 00001DOA00000000 172 ol FL3'29',X'0A*,A (BEGIN) ,CL8'LAMBDA" 71500019

Appendix C. Assembler F Program Listing 61

Page of GC26-3756-6
Revised July 15, 1972
By TNL GN33-8144

EXAM

o

LocC

0002D8
0002E0
0002E8
0002F0
0002F8
000300
000308
000310
000318
000320
000328
000330
000338

000340
000348
000350
000358
000360
000368
000370
000378
000380
000388
000390
000398

000000
| | 000001

000002
000003
000005
000006
000007
00000C
00000D
00000E
00000F

000000
000000
000008
000009
00000C

000000
000000
000003
000004
000008
000000

0003A0
0003A8
0003AC
0003B4

SANPLE PROGRAM

OBJECT CODE

D3C1D4C2C4C14040
0000000000000000
DUELLOL0L40404040
0000000000000000
DSE4404040404040
0000000000000000
D6D4CIC3DIL6LS5U0
0000000000000000
D7C8CI4040404040
0000000000000000
E2C9C7DUC1404040
00000505000000DA
E9CSE3C140404040

D3C1CHC2CHC14040
0A00001D00000000
E9CSE3C140404040
05000005000000CA
E3C8CSE3C 1404040
8200002D00000000
E3C1E44040404040
8000000000000001
D3C9E2E340404040
9F0001D100000000
C1D3D7C8C 1404040
000000010000007R

000001F000000010
00000240
0000008000000004
00000080

ADDR1 ADDR2 STMT

173
174
175
176

177

178

179
180
181
182

183
184
185
186
187

188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218

219
220

o

SOURCE

*
*
*
TESTLIST

LIST
LNAME
LSWITCH
LNUMBER
LADDRESS
*

*
*

TABLE
TNUMBER
TSWITCH
TADDRESS
TNAME

STATEMENT

DC XL8'0',CL8'MU’

DC XL8'0',CL8°'NU’

DC XL8'0°,CL8'OMICRON'
DC XL8'0',CLB'PHI®

DC XL8'0',CL8'SIGMA®

DC FL3'5',X'05',A (LOOP) ,CL8°'ZETA'

THIS 1S THE CONTROL LIST

DC CL8'LAMBDA' ,X'0A* ,FL3'29' ,A (BEGIN)
DC CL8'ZETA',X'05",FL3'S5",A (LOOP)

DC CL8'THETA',X'82",FL3'45"',A (BEGIN)
DC CL8'TAU',X*80*,FL3°0',A (1)

DC CL8'LIST' ,X'9F*,FL3'465',A (0)

DC CL8'ALPHA' ,X'00°,FL3"1',A (123)

THESE ARE THE SYMBOLIC REGISTERS

EQU 0
EQU 1
EQU 2
EQU 3
EQU 5
EQU 6
EQU 7
EQU 12
EQU 13
EQU 14
EQU 15
T IS IS THE FORMAT DEFINITION OF LIST ENTRYS
DSECT

DS cL8
ps ¢
DS FL3
DS F

THIS IS THE FORMAT DEFINITION OF TABLE ENTRYS

DSECT

DS FL3
DS C
DS F
DS CL8

END BEGIN

=A (LISTAREA, 16,LISTEND)
=F'128,4,128"'

15}

FO10CT71

PAGE 4

10/13/71

o

72000019
72500019
73000019
73500019
74000019
74500019

75000019
75500019
76000019
76500019

77000019
77500019
78000019
78500019
79000019

79500019
80000019
80500019
81000019
81500019
82000019
82500019
83000019
83500019
84000019
84500019
85000019
85500019
86000019
86500019
87000019
87500019
88000019
88500019
89000019
89500019
90000019
90500019
91000019
91500019
92000019
92500019
93000019
93500019
94000019
94500019

62

EX AM RELOCATION LICTIONARY PAGE 1
POS.1D REL.1ID FLAGS ACDRESS 10/13/71

01 01 0cC 000 1FC

01 01 oc 00020C

01 01 ocC 00021C

01 01 0oc 0002Du4

01 01 0ocC 000334

01 01 oc 00034C

01 01 ocC 00035C

01 01 oc 00036C

01 01 (] 0003A0

01 01 oc 0003a8

Appendix C. Assembler F Program Listing 63

o 0 0 O

SYMBOL LEN VALUE [CEFN REFERENCES

CROSS-REFERENCE

BEGIN - 00004 000000 00057 0154 0156 0172 0182 0184 0218
EXIT - 00004 00007E 00094 0109

HIGHER 00002 0000F4.00128 0123

IHB000S5 00001 00007B 00091 0088

IHB0005A 00002:00007C 00092 0087

- IHB0007 ; 00001 0000B9 00106 0103

IHB0007A 00002 0000BA 00107 0102

LADDRESS 00004 00000C 00209 0078

LIST 00001 000000 00205 0065

LISTAREA 00008 0001F0.00154 0064 0083 0219
LISTEND 00008 000240 00159 0064 0219
LISTLOOP 00004 000038 00080 o111

LNAME 00008 000000 00206 0122

LNUMBER 00003 000009 00208 0075

LOOP 00004.0000DA 00121 0126 0129 0155 0178 0183
LSWITCH 00001 000008 00207 0072 0110

MORE 00004 000018 00066 0080

NONE 00001 000080 00114 - 0067 0110 0118 0130

NOTFOUND 00004 0000FA 00130 0127
NOTRIGHT 00004, ,00008C 00102 0082 0084
NOTTHERE 00004 -0000C0 00110 0068

RO 00001 00000000191

R1 00001 000001 00192 0069 0119 0120 0120 0125 0128
R12 00001 00000C 00198 0061 0062

R13 00001 00000D 00199 0094

R14 00001 00000E 00200 0066 0124 0131

R15 0000t 00000F 00201

R2 00001 000002 00193 0126 0129

R3 00001 000003 00194 0119 0121 0125 0128
RS 00001-000005 00195 0064 0065 0080

R6 00001 000006 00196 0080

R7 00001 000007 00197 0064

SAMPLR 00001 000000 00055

SAVE13 00004 0000C8 00112 0063 0094
SEARCH 00004 0000OCE 00118 0066
SWITCH 00001 0000CC . 00113 0067 0118 0130
TABLAREA 00008 000100 00136 0081 0120
TABLE 00001 .000000 00213 0069
TACDRESS 00004 000004 00216 0079
TESTLIST 00008 000340 00182 0083
TESTTABL 00003 000250 00164 0081

TNAME 00008 000008 00217 0122
TNUMBER 00003 000000 00214 0075
TSWITCH 00001 000003 00215 0072

NO STATEMENTS FLAGGED IN THIS ASSEMBLY
*STATISTICS# SOURCE RECORDS (SYSIN) = 189 SOURCE RECORDS (SYSLIB) = 833

350 PRINTED LINES

OPTIONS IN EFFECT LIST, DECK, NOLOAD, NORENT, XREF, NOTEST, ALGN, 0S, NOTERM, LINECNT = 70

PAGE 1

10/13/71

Appendix D. Dynamic Invocation of the Assembler

The Assembler can be invoked by a problem
program at execution time through the use
cf the CALL, LINK, XCTL, or ATTACH macro
instructions. If the XCTL macro
instruction is used to invoke the
Assembler, then no user opticns may be
stated. The Assemkler will use the
standard default, as set during system
generation, for each aoption.

1f the Assembler is invoked by CALL,
LINK, or ATTACH, the user may surgly:

1) The Assemkler options
2) The ddnames of the data sets to be used
during processing

Name Operation Operand
[symbol] CALL IEUASM, (optionlist
[, ddnamelis]), VL
LINK EP=[EUASM,
ATTACH l PARAM=(optionlist
[.ddnamelist]), VL=1

EP - specifies the symbolic name of the
Assembler. The entry point at which
execution is to begin is determined by
the control program (from the library
directory entry).

PARAM - specifies, as a sublist, address
parameters to ke passed from the
problem program to the Assembler. The
first word in the address rarameter
list contains the address of the
option list. The second word contains
the address of the ddname list.

opticnlist - specifies the address of a
variable length list containing the
options. This address must be written
even if no option list is prcvided.

The option list must begin on a
halfword boundary. The first two
kytes contain a count of the number of
bytes in the remainder of the list.

I1f no options are specified,; the count
must be zero. The option list is free
form with each field separated by a
comma. No blanks or zeros should
appear in the list.

ddnamelist - specifies the address of a
variable length list containing
alternate ddnames for the data sets.
used during compiler processing. If
standard ddnames are used, then this
operand may be omitted. -

The ddname list must begin on a halfword
boundary. The first two bytes ccntain a
count of the number of bytes in the
remainder of the list. Each name of less
than eight bytes must be left-justified and
padded with klanks. If an alternate ddname
is omitted, the standard name will ke
assumed. If the name is omitted within the
list, the 8-byte entry must contain kinary
zeros. Names can be omitted ' fror the end
merely by shortening the list. The
sequence of the 8-byte entries in the
ddname list is as follows:

Entry Alternate Name

not applicable
not applicable
not applicable
SYSL1IB

SYSIN

SYSPRINT
SYSFUNCH
SYSUT1

SYSUT2

SYSUT3

11 SYSGC

12 SYSTERM

pay
QWO NOAUVTEWN =

VL - specifies that the sign kit is to ke
set to 1 in the last word of the
address parameter list.

Appendix D. Dynamic Invocation of the Assembler .65

‘an errcr message,

Appendix E. The SYSTERM Listing

The SYSTERM data set is designed to give
the user of a remote terminal under the
Time Sharing Option (TSO) gquick access to
the assembler diagnostics. 1t lists the
diagnosed statement immediately fcllcwed by
which tells the
programmer what is wrong with the statement
that has been flagged. To help identify
the position of the statement in the
program, SYSTFRM also has facilities for
printing the line number field (NUM option)
and the statement number assigned by the

-assenmbler in front of the flagged

statement. (STMT option).

The Assembler option TERM specifies that
the assembler will write diagnostic
information on the SYSTERM data set.
the programmer does not want the line
number to be written, he should alsc
specify the NONUM option. To prevent the
statement number on the listing from being
printed, he should specify the NOSIMI
option in the PARM field of the EXEC card.

If

The format of the flagged statement on
SYSTERM is: i

Source record(s)
{columns 1-72 of

the source statement
lines)

Statement No
(option STMT)

Line No(s)
{option NUM)

66

If a statement contains continuation
lines it will occupy several lines on the
listing, each identified by a line numker
(if option NUM is in effect). 1If a
statement in error is discovered during the
expansion of a macro, or cf any inner macro
called by the outer macro, the first line
of the outer macro is listed before the
flagged statement. 1If a statement is
flagged during open code conditional
assembly, the first line of the model
statement will be listed before the
statement in error.

Figures 20 and 21 illustrate the content
and format of SYSTERM outrut. Figure 20
shows the source statement section of a
SYSPRINT listing, and Figure 21 shows the
SYSTERM listing produced during the same
assembkly. This example exemplifies the
rules given above. Cptions TERM, NUM, and
STMT have been in effect during this
assemkly.

The SYSTERM listing starts with the
statement ASSEMBELER (F) LCCNE. 2t the end
of the listing some diagnostic information
is given: nnn STATEMENTS FLAGGED IN THIS
ASSEMBLY, which indicates the total numker
of source statements in error, and nn WAS
HIGHEST SEVERITY CCLCE, which specifies the
maximum severity code encountered. This
figure is equal to the return ccde passed
by the assembler to the supervisor.

toc

000000

coccecc
cocccc
000004
€cccce

000006

00Go0A

00000E
000012
coccle
00001A
00001¢C

cocozc

€0C022
00C02¢

000028

00002C

€accoz
000003
000004
coccce

Figure 20.

OBJECT CODE

SCEC DCCC
05C0

0000 0CO0
k% ERRCR *%%

C€CCC ocoo
%% ERROR *¥¥
5840 C02z
5043 0000
413C 3C04
1923
4770 COOC

ccce
#3% ERROR *#%

98EC DGOC
C7FE
00000000

000C000EA
#*%% ERRQR *%%

ADDR1 ADDR2

cceec

cccecc

00000
ccces
00000
CCCOo4

00012

0000C

STMT

PAGE 1

SOURCE STATEMENT FO10CT71 9/21/171
1 MACRO
2 GENF &Py&EL
3 LCLA &K
4 .LOOP ANOP
5 &K SETA EK+1
€ GPELIEK) CC FYEL(EK)®
1 AlF (6K LT N'gL).LCCP
8 .CCNE MEND
9 CELC &C
LC sAMPL2 CSECT :
11 SAVE (14,412) ALL REGS ARE SAVEC IN SULPERVISCR SAVEARE!?
12+ Cs ot
13+ STV 14512412(13) SAVE REGISTERS
14 BALR R12,40
15 USING *yR12 SET LP BASE REGISTER
16 &C SETC ‘'g*
17 L R24END ENC CF AREA
18 LA R348 THIS IS A CUMMY COMMENT *
TC SHCW A *
STATEMENT CCNTAINING TOC *
MANY CONTINLATICN CARDS
15 L R44FO ZERC CONSTANT FOR RESETTING AREA
20 Loop ST R4, C(R2)
21 LA R344(4R3) RESET AREA A
22 CR R2 ¢R3
23 BNE Loge
24 AIF {*A' EQ 'Q'}.GO
25 SR 6Cy6C OPEN COCE MODEL STATEMENT *
WITH A CCNTINUATICN CARC)
SR ByB OPEN CODE MODEL STATEMENT X
WITHF A CONTINUATION CARD
2€ GO RETWRN (14412} EXIT FRCV RCLTINE
27+ LM 14412,12(13) RESTORE THE REGISTERS
28+ ER 14 RETURN
29 *
30 * CONSTANTS AND AREAS HAVE BEEN CMITTED CAN FURPCSE
31 *
32 GENF F+0 GENERATION OF CONSTANTS
33+F0 o]0 F*C!
34 GENF 1,234 EXAMPLE OF MORE THAN CNE CARD *
IN A MACRO INSTRUCTION
35+1234 oc Ft234¢
36 R2 EQU 2
37 R3 EQU 3
38 R4 £QU 4
39 R12 ECU 12
40 ENC

SYSPRINT Source Statement Listing

Appendix E. The SYSTERM Listing

67

ASSEVMBLER (F) CONE
17

L R2END END OF AREA
IEUOZ24 NEAR OPERAND COLUMN 4--UNDEFINED SYMBOL
8 LA R3., A THIS IS A DUMMY CONMMENT *
TO SHOW A *
STATEMENT CCNTAININCG TOO *
MANY CONTINUATION CARDS
TEVU077 TLLEGAL CONTINUATION CARD
TELO24 NEAR OPERAND CCLUMN 4--UNCEFINEC SYMBOL
25 SR £Q,&Q OPEN CCDE MCCEL STATENENT *
SR B8+8 OPEN CODE MODEL STATEMENT X
WITH A CONT INUATION CARD
IEV024 NEAR QPERAND COLUMN 1--UNDEFINED SYMBGL
IEU024 NEAR OPERAND COLUMN 3-~UNDEFINED SYMBOL
34 GENF 1,234 EXAMPLE OF MORE THAN ONE CARD *

35 +1234 [+]9 F1234"
IEUOL16 INVALID NAME
4 STATEMENTS FLAGGED IN THIS ASSEMBLY
8 WAS HIGHEST SEVERITY CCDE
0PTIONS IN EFFECT LIST, NODECK, NOLOAD, NORENT, XREF, NOTESTs ALGNs 0S, TERM, NUM, STMT, LINECNT = 70

Figure 21. SYSTERM Assembly Output Listing
(Produced for the source statements shown in Figure 20.)

68

Index

Indexes to system reference library manuals are consolidated in the publication OS Master Index to Reference Manuals, Order No, GC28-6644.
For additional information about any subject listed below, refer to other publications listed for the same subject in the Master Index.

Access methods 12
BPAM (basic partitioned) 12
BSAM (basic sequential) 12
QSAM (queued sequential) 12
ALGN option 10
ASMFC, cataloged procedure for
assembly 15-16
ASMFCG, cataloged procedure for assembly
and loader-execution 18,20
ASMFCL, cataloged procedure for ‘assembly
and linkage-editing 16-17

'ASMFCLG, cataloged procedure for assembly,

17-18
15-21

linkage-editing, and execution

Assembler cataloged procedures

Assembler data sets 11-12,14

Assembler dynamic invocation 65

Assembler listing 22-27,58-64
cross reference 26-27
diagnostics 27
external symbol dictionary
relocation dictionary 26
source and object program
statistical messages 22

Assembler options 10-11
defaults 11

Assembler portion limitations 34

22-23

25-26

Blocking and buffering information 12,14
BPAM (Basic Partitioned Access Method) 12
BSAM (Basic Sequential Access Method) 12

Cataloged procedures 15-21
for assembling (ASMFC) 15-16
for assembling and linkage-editing
(ASMFCL) 1l6-17
for assembling, linkage-editing, and
execution (ASMFCLG) 17-18
for assembling and loader-execution
(ASMFCG) 18,20
overriding 19
COND= parameter 12-13,19
Cross reference listing 26-27
Data, support of unaligned 35-36
Data constants, type L 36
Data sets 11-12,14
blocksizes 12,14
buffers 12,14
characteristics 14
extended-precision floating-point
instructions 35
extended-precision floating-point
simulator 35
NUM option 10,66,68
options 12
STMT option 10,66,68
sy¥ysco 10,11,12,65
SYSIN 11,12,65

Data sets (con'd)
SYSLIB 11,12,65
SYSPRINT 11,12,65
SYSPUNCH 10,11,12,65
SYSTERM 11,12,65,66,68
SYSTERM listing 66,68
SYSUT1l, SYSUT2, SYSUT3
TERM option 10,11,66,68
Time Sharing Option (TSO) 66

11,12,14,65

DCB macro instruction 12
DD statements 14,19
ddnames 11-12
DECK option 10
Defining data set characteristics 12
Device naming conventions 15
Diagnostics
listing 27
messages 37-54
Dictionaries 30-33
additional requirements
global 31,32
local 31-32,33
overflow errors 33
Dictionary size and source statement
complexity 30-34
Dynamic invocation of the assembler 65
DOS option 10

32-33

END card format 56

Entry point restatement 29

ESD card format 55

EXEC statements 19

External Symbol Dictionary (ESD)
listing 22-23

Global dictionary
at collection time 31
at generation time -32

TEBUPDTE utility program 29

Job control statements 9
Job steps 9

LINECNT option 10
Linkage statements 30
LIST option 10
Listing, assembler
LOAD option 10
Load module modification - entry point
restatement 29
Loader-execution, ASMFCG cataloged
procedure 18,20
Local dictionary

at collection time 31-32

at generation time 32

22-27,58-64

Index 69

Macro-definition library additions 29

Macro-definition local definition
parameter table 33

Macro generation and conditional assembly

limitations 33-34
Messages
diagnostic 37-54
statistical 22
MNOTE 12

Model 85 Programming Considerations 34-36
extended precision machine
instructions 35
OPSYN instruction 35
type L constant 36
unaligned data 35-36
. Model 91 Programming Considerations 34
Model 195 Programming Considerations 36

NOALGN option 10
NUM option 10

Object deck output 55-57

END card 56

ESD card 55

RLD card 55

SYM card 56-57

TXT card 55)
Object module linkage 29~30
Options, assembler 10-11

defaults 11
0S option 10
Overflow
dictionary 33
symbol table 33
Overriding statements in cataloged
procedures 19-21

PARM field access
PARM parameter 19
Procedure (definition) 9

28-29

Program listing, assembler F 58-64
Program termination 28
Programming considerations 28-36

70

QSAM (Queued Sequential Access Method) 12
Relocation Dictionary 26,55
RENT option 10
Return codes 12-13
RLD card format 55
Sample program listing 24,58-64
Saving and restoring general register
contents 28
Severity code
for diagnostic messages 37
relation to return code 12-13
Source and object program listing 25-26
Source statement complexity 33-34
SPACE assembler instruction 22
Statistical messages 22
SYM card format 56-57
STMT option 10
Symbol table, overflow 33
sysco 10,11,12,14
SYSIN 11,12,14
SYSLIB 11,12,14
SYSPRINT 11,12,14,67
SYSPUNCH 10,11,12,14
| System/370 Programming Considerations 36

SYSTERM 10,11,12,14,65,66,68
| SYsuTl, SysuT2, SysuT3 11,12,14

| TERM 10,11,66,68
TEST option 10
TXT card format 55
Type designators 22-23
Type L data constants 36
Types of ESD entries 22-23
Unaligned data, support of 35-36
Utility data sets 11

XREF option 10

GC26-3756 -6

JIBIM

International Business Machines Corporation

Data Processing Division

1133 Westchester Avenue, White Plains, New York 10604
[U.S.A. only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

aprnn) s rPwweidoly (J) Id[quiassy SO

'V 'S ' ur paiutyg

9-9G4€-9209

++ 3NIT Q31100 SN0V LND -

0S Assembler (F) READER'S
Programmer's Guide COMMENT

FORM
GC26-3756-6

Your views about this publication may help improve its usefulness,; this form
will be sent to the author’s department for appropriate action. Using this

form to request system assistance or additional publications will delay response,
however. For more direct handling of such request, please contact your

IBM representative or the IBM Branch Office serving your locality.

Reply requested: Name:
;es % Job Title:
° Address:

Zip

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM office
or representative will be happy to forward your comments.)

GC26-3756-6

Your comments, please . . .

This manual is part of a library that serves as a reference source for systems analysts,
programmers, and operators of IBM systems. Your comments on the other side of this
form will be carefully reviewed by the persons responsible for writing and publishing
this material. All comments and suggestions become the property of IBM.

Fold Fold
First Class
Permit 40
Armonk
New York
L]
]
Business Reply Mail —
No postage stamp necessary if mailed in the U.S.A. r———
I
. . |
Postage will be paid by: ae—
International Business Machines Corporation [—
Department 813 L I
1133 Westchester Avenue I
White Plains, New York 10604
Fold Fold

BN

international Business Machines Corporation

Data Processing Division

1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only) ‘

1BM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(international)

* 3NIT ONOTV @104 HO LnD °

et o e e

9-9SLE-9T0D

aping s rowwrerdord (J) W[quassy SO

VSN w pajund

0

BiV]

Technical Newsletter This Newsletter No. GN33-8144
Date July 15,

1972

Base Publication No. GC26-3756-6
File No. S360-21 (0S)

Previous Newsletters None

0OS ASSEMBLER (F) PROGRAMMER'S GUIDE

©IBM Corp, 1972

This Technical Newsletter, a part of version 21 of IBM System/360

Operating System provides replacement pages for the subject
publication. These replacement pages remain in effect for sub-
sequent versions and modifications unless specifically altered.
Pages to be inserted and/or removed are listed below.

41-44 59-62

51-56 Reader's Comment Form
56.1 (added) Reader's Comment Reply

A change to the text or to an illustration is indicated by a
vertical line to the left of the change.

Summary of Amendments

Minor technical corrections.

Note: Please file this cover letter at the back of the manual
to provide a record of changes.

IBM Nordic Laboratory, Publications Development, Box 962, S-181 09 Lidingo 9, Sweden

Printed in U.S.A,

1EU09S

IEU096

LEU097

ampersand (€) followed by 1-7 letters
and/or numbers first of which must be a
letter), or statement following °'MACRO"* is
not a valid prototype statement.

Severity Code: 12

Programmer Response: Make sure the source
code is correct and reassemble if
necessary. If the problem recurs, do the
following before calling IBM:

e Have the user source program, user macro
definitions and associated listing
available.

e If the COPY statement was used, execute
the IEBPTPCH utility program to obtain a
copy of the PDS member specified in the
COPY statement.

ENTRY TABLE OVERFLOW

Explanation: Number of ENTRY symbols,
i.e., ENTRY instruction operands, exceeds
100.

Severity Code: 8

Programmer Response: Make sure the source
code is correct and reassemble if
necessary. I1f the problem recurs, do the
following before calling IBM:

e Have the user source program, user macro
definitions and associated listing
available.

e If the COPY statement was used, execute
the IEBPTPCH utility program to obtain a
copy of the PDS member specified in the
COPY statement.

MACRO INSTRUCTION OR PROTOTYPE OPERAND
EXCEEDS 255 CHARACTERS IN LENGTH

Severity Code: 12

Programmer Response: Make sure the source
code is correct and reassemble if
necessary. If the problem recurs,
follow1ng before calling IBM:
Have the user source program, user macro
definitions and associated listing
available.

e If the COPY statement was used, execute
the IEBPTPCH utility program to obtain a
copy of the PDS member specified in the
COPY statement.

do the

INVALID FORMAT IN MACRO INSTRUCTION OPERAND
OR PROTOTYPE PARAMETER

Explanation: This message can be caused

by:

1. Illegal "=".

1. A single "&" appears somewhere in the
standard value assigned to a prototype
keyword parameter.

3. First character of a prototype parameter
is not "g".

4. Prototype parameter is a subscripted
variable symbol.

IEU098

IEU099

IEU100

5. Invalid use of alternate format in
prototype statement, e.g.,

10 16 71
PROTO &n, B,
or
PROTO €A, EB, X
&C

6. Unintelligible prototype parameter,
e.g., "EA*" or "EAEE."

7. Illegal (non-assembler) character
appears in prototype parameter or macro
instruction operand.

Severity Code: 12

Programmexr Response: Make sure the source

code is correct and reassemble if

necessary. 1f the problem recurs, do the
followlng before calling IBM:
Have the user source program, user macxro
definitions and associated listing
available.

e If the COPY statement was used, execute
the IEBPTPCH utility program to obtain a
copy of the PDS member specified in the
COPY statement.

EXCESSIVE NUMBER OF OPERANDS OR PARAMETERS

Explanation: Either the prototype has more
than 200 parameters, or the macro
instruction has more than 100 operands.

Severity Code: 11

Programmer Response: Make sure the source
code is correct and reassemble if
necessary. If the problem recurs, do the
following before calling IBM:

e Have the user source program, user macro
definitions and associated listing
available.

e If the COPY statement was used, execute
the IEBPTPCH utility program to cbtain a
copy of the PDS member specified in the
COPY statement.

POSITIONAL MACRO INSTRUCTION OPERANL,
PROTOTYPE PARAMETER OR EXTRA COMMA FOLLOWS
KEYWORD

Severity Code: 12

Programmer Response: Make sure the source

code is correct and reassemble if

necessary. If the problem recurs, do the
following before calling IEM:

e Have the user source program, user macro
definitions and associated listing
available.

e If the COPY statement was used, execute
the IEBPTPCH utility program to obtain a
copy of the PDS member specified in the
COPY statement.

STATEMENT COMPLEXITY EXCEEDED
Explanation: More than 32 operands in a

DC, DS, DXD, or literal DC, or more than 50
terms in a statement.

Severity Code: 8

Appendix A. Diagnostic Messages 51

1IEU101

IEU102

"1EU103

52

Programmer Response: Make sure the source
ccde is correct and reassemble if
necessary. 1f the problem recurs, do the
following before calling IBM:

e Have the user source program, use€r macro
definitions and associated listing
available.

e If the COPY statement was used, execute
the IEBPTPCH utility program tc cbtain a
copy of the PDS member specified in the
COPY statement.

EOD ON SYSIN

Explanation: EOD before END card.

Severity Code: 12

Programmer Response: Make sure the source
code is correct and reassemble if
necessary. 1f the problem recurs,
following before calling IBM:

e Have the user source program, user macro
definitions and associated listing
available.

e If the COPY statement was used, execute
the IEBPTPCH utility progranm tc cbtain a
cory of the PDS member specified in the
COPY statement.

dc the

INVALIC OR ILLEGAL ICTL

Explanation: The operands of the ICIL are
out of range, or the ICTL is not the first
statement in the input deck. (Asserbly is
terminated and further input is igncred.)

Severity Code: 16

Programmer Response: Make sure the source

code is correct and reassemble if

necessary. If the problem recurs,
following before calling IBM:

e Have the user source programr, user macro
definitions and associated listing
available.

e If the COPY statement was used, execute
the IEBPTPCH utility program tc cbtain a
copy of the PDS member specified in the
COPY statement.

dc the

JLLEGAL NAME IN OPERAND FIELD OF COPY CARD

Explanation: Syntax error, e.g., Symbol
has more than 8 characters or has an
illegal character.

Severity Code: 12

Programmer Response: Probable user error.
Make sure the source code is correct and
reassemble if necessary. If the problem
recurs, do the following before calling
I1BM:

e Have the user source program, user macro
definitions, and associated listings
available.

e If the COPY statement was used, execute
the IEEBPTPCH utility program tc obtain a
copy of the PDS memker specified in the
COPY statement. :

IEU104

IEU105

IEU106

IEU107

COPY CODE NOT FOUND

Explanation: The operand of a COFY
statement specified COPY text which cannot
ke found in the library.

Severity Code: 12

Programmer Response: Prcbable user error.
Make sure the source code is correct and
reassemble if necessary. If proklem
recurs, do the following before calling
IBN:

e Make sure
included.

e NMake sure that MSGLEVEL= (1,1) was
specified in the JOB statement.

e Have the user source prcgram, user macro
definitions, and associated listings
availakle.

e If the CCEY statement was used, execute
the IEBPTECH utility program to oktain a
copy of the PDS member specified in the
CCFY statement.

the SYSLIB DD statement is

EOD CN SYSTEM MACRO LIERARY

Explanation: EOL before MENLC card.

Severity Code: 12

ProgrammeXr Response: Prokakle user error.
Make sure the source code is correct and
reassemkle if necessary. I1f the prcblem
recurs, do the following before calling
1BNM:

e Have the user source prcgram, user macro
definitions, and associated listings
available.

e If the CCEFY statement was used, execute
the IEBPTPCH utility prcgram to obtain a
copy of the PDS member specified in the
CCFY statement.

NOT NAME OF LSECT CR LXLC

Explanation: Referenced symkol expected tc
ke DSECT name, but it is not.

Severity Code: 8

Programmer Response: Make sure the source
code is correct and reassemble if
necessary. 1f the proklem recurs, do the
following before calling IBNM:

e Have the user source prcgram, user macro
definitions and associated listing
available.

e If the CCEFY statement was used, execute
the IEBPTPCH utility prcgram to obtain a
copy of the FLS member specified in the
CCEFY statement.

INVALID OPERAND

Explanation: Invalid syntax in DC operand,
e.g., invalid hexadecimal character in
hexadecimal CC; operand string too long for
X, B, C, DC's; operand unrecognizakle,
contains invalid value, or incorrectly
specified.

IEU108

IEU109

TEU110

Severity Code: 8

Programmer Response: Probable user error.

Make sure the source code is correct and

reassemble if necessary. If the problem

recurs, do the following before calling

IBM:

e Have the user source program, USer macro
definitions, and associated listings
available.

e If the COPY statement was used, execute
the IEBPTPCH utility program to obtain a
copy of the PDS member specified in the
COPY statement.

PREMATURE EOD

Explanation: 1Indicates an internal
assembler error; should not occur.

Severity Code: 16

Programmer Response: Reassemble; if the
problem recurs, do the following before
calling IBM:

e Have the user source program, user macro
definitions, and associated listings
available.

e If the COPY statement was used, execute
the IEBPTPCH utility program to obtain a
copy of the PDS member specified in the
COPY statement.

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

PRECISION LOST

Severity Code: 8

Programmer Response: Probable user error.
Make sure the source code is correct and
reassemble if necessary. If the problem
recurs, do the following before calling
IBM:

e Have the user source program, user macro
definitions, and associated listings
available.

e If the COPY statement was used, execute
the IEBPTPCH utility program to obtain a
copy of the PDS member specified in the
COPY statement.

EXPRESSION VALUE TOO LARGE

Explanation: Value of expression not in
range than -16777216 to +16777215.
Expressions in EQU and ORG statements are
flagged if (1) they include terms
previously defined as negative values, or
(2) positive terms give a result of more
than three bytes in magnitude. The error
indication may be erroneous due to (1) the
treatment of negative values as three-byte
positive values, or (1) the effect of large
positive values on the location counter if
a control section begins with a START
statement having an operand greater than
zero, or a control section is divided into
subsections.

Severity Code: 8

IEU111

IEU112

IEU113

Programmer Response: Probable user error.

Make sure the source code is correct and

reassemble if necessary. If the problem

recurs, do the following before calling

IBM:

e Have the user source program, user macro
definitions, and associated listings
available.

e If the COPY statement was used, execute
the IEBPTPCH utility program to obtain a
copy of the PDS member specified in the
COPY statement.

OPEN FAILED FOR SYSGO, NOLOAD OPTION USED

Explanation: DD statement incorrect or

missing.

Severity Code: 16

Programmer Response: Probable user error.

If necessary supply missing DD statement or

make sure that information on LL statement

is correct and reassemble. If proklem
recurs, do the following before calling

IBM:

e Have the user source program, user macro
definitions, and associated listings
available.

e If the COPY statement was used, execute
the IEBPTPCH utility program to oktain a
copy of the PDS member specified in the
COPY statement.

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

OPEN FAILED FOR SYSPUNCH, NODECK OPTION
USED

Explanation: DD statement incorrect or

missing.

Severity Code: 16

Programmer Response: ‘Probable user error.
I1f necessary supply missing DD statement or
make sure that information on DD statement
is correct and reassemble. If proklem
recurs, do the following before calling
IBM:

e Have the user source program, user macro
definitions, and associated listings
available.

e If the COPY statement was used, execute
the IEBPTPCH utility program to oktain a
copy of the PDS member specified in the
COPY statement.

e Make sure that MSGLEVEL= (1,1) was
specified in the JOB statement.

OPEN FAILED FOR SYSTERM, NOTERM OPTION USED

Explanation: DD statement incorrect or

missing.

Severity Code: O

Programmer Response: Probable user error.
If necessary supply missing ED statement or
make sure that information on DD statement
is correct and reassemble. I1f problem
recurs, do the following before calling
IBM:

Appendix A. Diagnostic Messages 53

1EU116

IEU117

e Have the usexr source program, user macro
definitions, and associated listings
available.

e If the COPY statement was used, execute
the IEBPTPCH utility program to obtain a
copy of the PDS memker specified in the
COPY statement.

e Make sure that MSGLEVEL~ (1,1) was
specified in the JOB statement.

ILLEGAL OPSYN

Severity Code: 8

Explanation: An OPSYN statement may be
preceded only by an ICTL instruction or
another OPSYN statement.

Programmer Response: Probable user error.

Make sure the source code is correct and

reassemble if necessary. 1f the rrcblem

recurs, do the following before calling
iBM:

e Have the user source program, user macrc
definitions, and associated listings
available.

e If the COPY statement was used, execute
the IFBPTPCH utility program tc cbtain a
copy of the PDS member specified in the
COPY statement.

OPSYN TABLE OVERFLOW

Explanation: No room exists in syrbcl
table for this and following OPSYN
definitions; generated operation codes may
not be processed correctly.

Programmer Response: Probable user error.
Make sure the source code is correct and
reassernble if necessary. I1f the problem
recurs, do the following before calling
I1EM:

e Have the user source program, user macro
definitions, and associated listings
available.

e I1f the COPY statement was used, execute
the IEBPTPCH utility program tc cbtain a
copy of the PDS member specified in the
COPY statement.

1EU996I ASSEMBLY TERMINATED INSUFFICIENT STORAGE

Exglanatlon. One of the following:
The partltlon or region size is less than
the mimimum required by the asserbler.

e The blocksize specified for the utility
data sets is too large for available main
stcrage.

System Action: Assemkly is terminated.

Severity Code: 20

1EU9971 OPEN FAILED FOR SYSPRINT, NOLIST OPTION

54

USEL

Explanation: DD statement incorrect or
missing.

System Action: Processing continues.

Severity Code: 0

Programmer Response: Prcbable user error.
If necessary supply the missing LT
statement or make sure that information on
the DD statement is correct; reassemkle.

1f problem recurs, do the fcllowing before

calling IBEM:

e Have the user source prcgram, usexr macro
definitions, and associated listings
available.

e If the COPY statement statement was used,
execute the IERFTPCH utility program to
obtain a copy of the PLS memker specified
in the COPY statement.

e Make sure that MSGLEVEL=(1,1) was
specified in the JOE statement.

1EU9981 ASSENMBLY TERMINATELC, OPEN FAILEL FOR LCATA

SET (ddname)

Explanation: DD statement(s) for data
set (s) SYSIN, SYSUT1, SYSUT2, SYSUT3,
and/or SYSPRINT incorrect or missing.

System Action: Assembly is terminated.

Severity Code: 20

Programmer Response: Probable user error.
Supply missing DD statement (s) or make sure
that information on LCL statement (s) is
correct; reassemble. If problem recurs, do
the following before calling IEM:

e Have the user source program, use€r macro
definitions, and associated listings
available.

e I1f the COPY statement was used, execute
the IEBPTPCH utility program to obtain a
copy of the FLS member specified in the
COPY statement.

e Make sure that MSGLEVEL= (1,1) was
specified in the JOR statement.

IEU9991 ASSENMBLY TERMINATEL, jokname, stepname,

unit address, device type, ddname,
operation attempted, error description
(bytes 107 through 128 of the SYNALAF
message buffer; this area is described in
0S_Data Management Macro_Instructions.

Explanation: Indicates a permanent 1/C
error. This message is produced by the
SYNADAF macro instruction.

System Action: Assembly is terminated.

Severity Code: 20

Programmer Response: Reassemble. If the
proklem recurs, do the fcllowing before
calllng 1BM:
Have the user source program, user macro
definitions, and associated listings
available.

e If the COPY statement was used, execute
the IEBPTECH utility program to oktain a
copy of the PDS member specified in the
COPY statement.

e Make sure that MSGLEVEL=(1,1) was
specified in the JOB statement.

TXT Card Format

The format of the TXT cards is as fcllows:

Columns

13-14
15-16
17-72
73-76

77-80

Contents

12-2-9 punch

TXT

Blank

Relative address of first
instruction on card

BElank

Byte count -- number of
bytes in information
field (cc 17-72)

Blank

ESDID

56-kyte information field
Deck ID (from first TITLE
card)

Card sequence number

RLD Card Format

The format of the RLD card is as follows:

Columns Contents
1 12-2-9 punch
2-4 RLLC
5-10 Blank
11-12 Data field count -- number
of bytes of information in
data field (cc 17-72)
13-16 Blank
17-72 Cata field:
17-18 Relocation ESDID
19-20 Position ESDID
21 Flag byte
22-24 Aksolute address to ke
relocated
25-72 Remaining RLD entries
73-76 Deck ID (from first TITLE
card)
77-80 Card sequence number

Appendix B. Object Deck Output

Pos. Rel.

ESDID E3DID Flag Address
Entry 1 02 04 (e 000100
Entry 2 02 ou oC 000104
Entry 3 03 01 0c 000800

Columns 17-36 of the RID card wculd
arrear as follows:

Column:

Entry 1 Entry 2 Entry 3

17 18 19 20 21 22 23 24§25 26 27 2829 30 31 32 33 34 35 36

37— 72

0004 JooJo2]op] ooJor] 0o oc] coa1 o4 oo 0r] 00 o3[oc] oo fos o

]

— e
Address ESD ID's Address

—

ESD ID's Address

Flag
{not
set)

Flag
{not
set)

Flag
(set)

ESD Card Format

The format of the ESD card is as fcllows:

If the rightmost bit of the flag byte is

set, the following RLD entry has the same
Relocation ESLCIC and Position ESDID,
this information will not be repeated;
the rightmost kit of the flag byte is not

and

set, the next RLLC entry has a different
Relocation ESDID and/or Position ESLCID, and
both ESLCILCs will ke recorded.

For example, if the RLD Entries 1,

2,

and 3 of the program listing (Aprendix C)
contain the following information:

if

blanks

Columns Contents
1 12-2-9 punch
2-4 ESD
5-10 Blank
11-12 Variable field ccunt --
number of bytes of information in
variable field (cc 17-6U4)
13-14 Blank
15-16 ESDID of first SD, XD, CM, WX,
FC, or ER in variable field
17-64 Variable field. Cne to
three 16-byte items of the
following format:
8 kytes -- Name, padded
with blanks
1 kyte -- ESD type code
The hex value is:
00 Sp
01 LC
02 ER
o4 pC
05 CM
06 XD (PR)
0A WX
3 bytes -- Address
1 byte -- BAlignment if XC;
otherwise blank
3 kytes -- Length, LDID, cr
blank
65-72 Blank
73-76 Deck 1rC (from first TITIE
card)
77-80 Card sequence number

Appendix B. Object Deck Output

55

END Card Fprmat

‘The format of the END card is as fcllows:

.Colunns Contents
1 12-2-9 punch
2-4 ENC '
5 Blank
6-8 Entry address from operand

of ENL card in source deck
(blank if no operand)
9-14 Blank

15-16 ESCIC of entry point (blank
if no operand)

17-39 Blank .

40-62 Version of the assenblerx

(e.g., F 14FEB66, time

of the assembly (hh.mm),

and date of the assembly
(mm/dd/yy) . (See

"Assemblexr Listing™ section.)

| SYM Card Format

1f requested by the user, the assembler
punches out SYM cards with symbclic
information concerning the assembled
program. These cards can be used by the
TESTRAN routine or the TSO Test ccrmrand
processor. The cards are located between
the ESC and TXT cards. The forrat of SYM
cards is as follows:

Columns Contents
1 12-2-9 punch
2-4 SYM

5-10 Elank

11-12 Variable field count --
number of kytes of text in
variable field (cc 17-72)

13-16 Blank

17-72 Variakle field (see belcw)

73-76 Ceck ID (from first TITLE
carxd)

77-80 Card sequence number

The variakle field (columns 17-72)
contains up to 56 kytes of TESTRAN text.
The items making the text are packed
together, consequently only the last card
may contain less than 56 bytes of text in
the variable field. The formats cf a text
card and an individual text iter are shown
in Figure 19. The contents of the fields
within an individual entry are as fcllows:

1. Organization (1 byte)

0 = non-data type

1 = data type

Bits 1-3 (if non-data type) :
000 = space

001 = control section

010 = dummy contrcl section
011 = common

100 = machine instruction
101 = CCwW

Bit 1 (if data type):
0 = no multiplicity

1 = multiplicity (indicates
presence of M field)

Bit 2 (if data type):

0 = independent (not a
packed or zoned decimal
constant)

1 = cluster (packed or
zoned decimal constant)

Bit 3 (if data type):

0 = no scaling

1 scaling (indicates pres-
ence of S field)

Bit 4:
name present
name not present

1
Bits 5-7:
Length of name minus one

2. Address (3 bytes) - displacement from
beginning of control section

3. Symbol Name (0-8 bytes) - symkolic
name of particular item

Note: The following fields are only
present for data-type items.

4. ©Data Type (1 byte) - contents in

hexadecimal
00 = character
04 = hexadecimal, L-type data
08 = binary
10 = fixed point, full
14 = fixed point, half
18 = floating point, short
1C = floating point, long
20 = A-type or Q-type data
24 = Y-type data
28 = S-type data
2C = V-type data
30 = packed decimal
34 = zoned decimal

5. Ilength (2 bytes for character,
hexadecimal, or binary items; 1 kyte
for other types) - length of data item
minus 1

6. Multiplicity - M field (3 Lytes) -
equals 1 if not present

7. Scale -signed integer - S field (2
bytes) - present only for ¥, H, E, L,
L, P and Z type data, and only if
scale is non-zero.

