
Systems Reference Library

OS Assembler (F) Programmer's Guide

Program Number 360S-AS-037

OS: Release 21

File No. S360-21 (OS} as
Order No. GC26-3756-6

This publication complements the IBM System/360
Operating System Assembler Language publication.
It provides a guide to program assembling, linkage
editing, executing, interpreting listings, assem­
bler programming considerations, diagnostic
messages, and object output cards.

Seventh Edi ti on (January, 1972)

This is a major revision of, and obsoletes, GC26-3756-5 and
Technical Newsletter GN33-8100. This edition reflects the
changes in the assanbler listed in the "Summary of
Amendments n.

This edition applies tc release 21 of CS and to all
subsequent releases until otherwise indicated in new
editions or Technical Newsletters. Changes are periodically
made to specifications herein; before using this publication
in connection with the o~eration cf IB~ systems, consult the
latest SRL Newsletter, Order No. GN20-0360, for the
editions that are applicable and current. Changes to the
text and to an illustration are indicated by a vertical line
to the left of the change.

Requests for copies of IBM publications should be made to
your IBM representative er to the IBM branch office serving
your locality.

A form is provided at the back of this publication for
reader's comments. If the form has been removed, comments
may be addressed to IBM Nordic Laboratory, Publications
Development, Box 962, S-181 09 Lidingo 9, Sweden.

©Copyright International Business ~achines Corporation 1966, 1968,1969, 1970, 1972

2

This publication is oriented to the F level
assembler program (the assembler)
functioning in the IBM Systerr/360 Operating
System (MFT and MVT) •

This publication is divided into an
introduction and four sections which
describe the following:

1. Assembler options and data set
requirements.

2. Use of IBM-provided catalogel
procedures for assembling; asse~bling
and linkage editing; assembling,
linkage editing, and executing
assembler language source prcgrams.

3. Use and interpretation of the
assembler listing.

4. Programming considerations.

In addition, the appendixes prcvide a
procedure for dynamic invocation cf the
assembler, a list and explanation of object
output cards, and a sample prograrr listing.

Other System Reference Library
publications in the IBM System/360
O~erating System series provide fuller,
more detailed discussions of .the topics
introduced in this publication: a careful
reading of the publication OS Introduction,
Order No. GC28-6534, is recommended.
Knowledge of the assembler language is
assumed. Where appropriate, the reader is
directed to the following publications.

OS Job Control Language Reference, Order
No. GC28-6704

OS Storage Estimates, Order
No. GC 2 8- 6 5 5 1

Preface

OS Loader ~B9-~~n~age Editor, Order
No. GC28-6538

OS Data ~ana~ment Macro Instructions,
Order No. GC26-3J94-------~

OS TESTRAN, Order No. GC28-6648

OS Message§__an9_£2£es, Order
No. GC28-6631

OS Utilities, Order No. GC28-6586

OS FORTRAN IV Library, Order
No. GC28-6596

CS MVT Guide, Order No. GC28-6720

OS MFT Guide, Order No. GC27-6939

CS Data ~anagement Services Guide, Order
No. GC26-3746

OS FDRTRAN_!'SL.J~L-~rogrammer's Guide,
Order No. GC28-6603

OS FORTRAN IV J§_~n9._ff~2grammer's
Guide, Order No. GC28-6817

OS_a:>.BO~Jill___!:~Qgrarnmer's Guide, Order
No. GC24- 5029

OS USA Standard COEOL Programmer's
Guide, Crder No. GC28-6399

3

lN'IROD UC TI ON • • • • • • • 9

ASSEMBLER OPTIONS AND DATA SET
REQUIREMENTS • • • • • • •

Assembler Options
Assembler Data Set Requirements

CDnames SYSUT1, SYSUT2, SYSU'I3

. 10
10

. • • 11
• 11

DD name SYSI N • • • • • •
CDnames SYSL IB • • • • •
DDname SYSPRINT ••••

• 11
. • • • 11

11
CDname SYSPUNCH • • • • • • 11
DDname SYSGO • • •
CDname SYSTERM •

Defining Data Set Characteristics
RETURN COCES • • • • • • • • • •

CATALOGED PROCEDURES • • • • • • •
Cataloged Procedure for Assembly
(ASMFC) • • • • • • • • • • • •

Cataloged Procedure for Assembly and
Linkage Editing (ASMFCL) • • • • •
Cataloged Procedure for Assembly,
Linkage Editing, and Execution

• 12
• 12

12
• 12

• 15

15

16

(ASMFCLG) •••••••••••••• 17
Cataloged Procedure for Assembly and
Loader-Execution (ASMFCG) • 18
overriding Statements in Catalcged
Procedures • • • •

EXEC Statements • • • •
DD Statements • • • .
Examples • • • • •

• • 19
• 19
• 19

• • 19

ASSEMBLER LIS'IING • • • • • • 22
External Syml:ol J:iictionary (ESD) • 22
Source and Object Program • • • • 25
Relocation Dictionary • • • • • • • • 26
Cress Reference • • • • • • • 26
Ciagnostics • • • • • • • 27

PROGRAMMING CONSIDERATIONS • • • 28
Saving and Restoring General Register
Contents • • • • • • • • . ••• 28
Program Termination 28
PARM Field Access • • 28
Macro Definition Library Additicns 29
Load Module Modification - Entry

Contents

Dictionaries Used in Conditional
Assembly and ~aero Instruction
Expansion • • • • • • • • • • • • 31

Global Dictionary at Collection
'lime • • • • • • • • • • • • • • 31
Local Dictionaries at Collection
'lime • • • • • • • • • • • • • • 31
Global Dictionary at Generation
'lime • • • • • • • • • • • • • • 32
Local Dictionaries at Generation
'lime • • • • • • • • • • • • • • 32
Additional Dictionary Requirements • 32
Correction of Cictionary Overflow 33

Symbol Tal:le CVerf low • • • • • • 33
Source Statement Complexity 33

Macro Generation and Conditional
Assembly Limitation • • • • • • 33
Assembler Fortion Limitations 34

System/360 Model 91 Programming
Considerations • • • • • • • • • • 34

Controlling Instruction Execution
Sequence • • • • • • • • • • • • 34

System/360 Model 85 Prograrrrr-ing
Considerations • • • • • • • • 34

Extended-Precision Machine
Instructions • • • • • • • • 35
The Extended-Precision
Floating-Point Simulator 35
Approximating Extended-Precision
Floating Point Instructions 35
support of Unaligned Cata 35
Type L Data Constant • • • • • • 36

Model 195 and System/370 Programming
Cons id er at ions • • • • • • • • 3 6

APPENDIX A. DIAGNOSTIC MESSAGES
Message Format •
Severity Codes

APPENDIX B. CBJECT DECK OUTPUT
TXT Card Format
RLD Card Format
ESD Card Format
END Card Format
SYM Card Format

• • 37
• • 37
• • 37

. . 55
. ~ 55

. 55
. 55

. 56
. 56

Point Restatement ••••••• 29 APPENDIX C. ASSEMBLER F PROGRAM LISTING 58
Object Module Linkage • • • • • • 29
Cictionary Size and Source Staterrent APPENDIX D. DYNAMIC INVOCATION OF THE
Complexity •••••••••••••• 30 ASSEMBLER . • • • • • • • • • • • 65

APPENDIX E. THE SYSTERM LISTING • • 66

INDEX · · · 69

5

Figures

Figure 1. Assembler Options .•.• 11
Figure 2. Return Codes • 13
Figure 3. Data Set Characteristics 14
Figure 4. Device Naming
Conventions •••••••••••• 15
Figure 5. Cataloged Procedure for
Assembly (ASMFC) • • • • • • • • • 16
Figure 6. Cataloged Procedure for
Assembling and Linkage Editing
(A SMFC L) • • • • • • • • • • • • • 17
Figure 7. Cataloged Procedure fer
Assembly, Linkage Editing and
Execution (ASMFCLG) • • • • • • • • 18
Figure 8. Cataloged Procedure fer
Assembly and Loader-Execution
(ASMFCG) • • • • • • • • • • • • • 2 0

Figure 9. Types of ESD Entries ••• 22
Figure 10. Assembler Listing • 24

6

Figure 11 • Linkage Statements • 3 O
Figure 12. Global Dictionary
Entries at Collection Time 31
Figure 13. Local Dictionary
Entries at Collection Time 31
Figure 14. Global Dictionary
Entries at Generation Time •• 32
Figure 15. Local Dictionary
Entries at Generation Time • • 32
Figure 16. Macro Definition Local
Dictionary Parameter ~able 33
Figure 17. Extended-Precision
Floating Point Format • • • • • 35
Figure 18. Extended-Precision and
Rounding Instructions 35
Figure 19. SYM Card Format • 57
Figure 20. SYSFRINT Source
Statement Listing • • • • • 67
Figure 21. SYS~ERM Assembly Output
Listing • • • • • • • • • • • • • • 68

RELEASE 21 LISTINGS

Maintenance
The sample program listings have been
replaced ty Release 21 Assembler F
listings.

NUM ANC S'IMT OPTIQNS

New Programming Feature
The NUM and STMT options are now the
default values assumed when the TERM
option is specified.

SUM~ARY OF AMENCMENTS
FOR GC26- 3756-6

OS RELEASE 21

COMPATIBILITY WITH IBM SYSTEML.110 MODELS

Maintenance
The assembler can operate on IBM
System/370 ~odels 135 and up.

~aintenance
Certain explanations of messages have
been rewritten for clarity.

'II 'ILE CHANGES

~aintenance
References to CS publications have been
altered to reflect their current
titles.

7

Through the medium of job control
statements, the programmer specifies job
requirements directly to the operating
system, thus eliminating many of the
functions previously perfonned by the
operating personnel. The job consists of
one or more job steps. For exam~le, the
job of assembling, linkage-editing, and
executing a source program involves three
job steps:

1 . Translating the source program. i.e.,
executing the assembler com~cnent of
the operating system to produce an
object module.

2. Processing the output of the
assembler, i.e., executing the
linkage-editor component of the
operating system to produce a load
module.

3. Executing the assembled and
linkage-edited program, i.e.,
executing the load module.

A procedure is a sequence of job control
language statements specifying a job.

Introduction

Procedures may enter the system via the
input stream or from a library of
procedures, which are previously defined
and contained in a procedure library. The
input stream is the flow cf job control
statements and, optionally, input data
entering the system from one input device.
At the sequential scheduling system level
of the operating system, only one input
stream may exist at a time.

~he job definition (JOE) , execute
(EXEq , data definition (DD) , and delimiter
(/*) job control statements are shown in
this publication as they are used to
specify assembler processing. retailed
explanations of these statements are given
in CS Job Control Language Reference.

Operating system factors influencing
program preparation, such as terminating
the program, saving and restoring general
registers, and linking of independently
produced object modules, are discussed in
"Programming Considerations", as are guides
to determine whether assembler dictionary
sizes and complexity limitations of source
statements will be exceeded.

Intrcduction 9

Assembler Options and Data Set Requirements

Assembler Options

The programmer may specify the assembler
options listed in Figure 1 in the PARr!.
field of the EXEC statement. 'Ihe options
can be coded in any order. They must be
separated by commas with no embedded
blanks. The entire field must be contained
between apostrophes or parentheses.
Parentheses allow the PARM field to be
continued onto another card, when
necessary. If an entry is o~itted, a
standard setting is assumed by the
assembler. 'I'he standard default values are
underlined in Figure 1.

The options in Figure 1 are defined as
follows:
CECK -- The object module is placed on the

device specified in the SYSPUNCH DD
statement.

LOAD -- The object module is placed on the
device specified in the SYSGO DD
statement.

Note: Specification of the pararreter LOAD
causes object output to be written on a
data set with ddname SYSGO. This action
occurs independently of the output on
SYSPUNCH caused by the parameter CECK. The
output on SYSGO and SYSPUNCH is identical
except that SYSPUNCH is closed with a
disposition of LEAVE, and SYSGO is closed
with a disposition of REREAD.

LIST -- An assembler listing is produced.
TEST -- The object module contains the

special source symbol table required by
the test translator (TES'IRAN) routine and
the TSO Test command processor.

XREF -- The assembler produces a
cross-reference table of symbols as part
of the listing.

RENT -- The assembler checks for a possible
coding violation of program
reenterability.

The pref ix NO is used with the above
options to indicate which options are not
wanted.

LINECNT=nn This parameter specifies the
number of lines to be printed between
headings in the listing. The permissible
range is 01 to 99 lines.

NOALGN -- The assembler suppresses·the
diagnostic message IEU033 ALIGNMEN'I ERROR
if fixed point, floating point, or
logical data referenced by an instruction
operand is not aligned on the proper
boundary. The message will be produced,
hnT.10,70,.... .f: ,....,... ,...,.....~" ,...,......,,..._,...,.....,.. ._,.... .: - -.a-- -.a....: -- -
••-••- .. --, ..--.-. .-.._.-...__..._.&.&"""'--..J,, -L..&.1.V\,,..&..\A.'-''-..L.V.&..&.~

10

(e.g., by a branch) which are not aligned
on the proper (halfword) boundary. See
the "Model 85 Programming Considerations"
section for information on alignment
requirements.

ALGN -- The assembler does not supi;:res·s the
alignment error diagnostic message.

OS -- The assembler will have complete
Operating System Assembler F Capability.

r;os -- The assembler will behave like Disk
Operating System (COS) Assemblers r and
F. Anything defined in either of these
assemblers with the exception cf &SYSPARM
will be accepted. cxr, rxr, and OPSYN
will be treated as undefined Q-type re
and DS statements and RLDs will appear in
the Relocation rictionary in order of
their occurrence (unsorte:l). '!he DOS
option is incompatible with the LOAr,
'!EST, RENT, NOALGN, or TERM options. If
any of these options are specified along
with r::os, the assembler generates a
diagnostic message (IEU078).

'!ERM -- The assembler writes diagnostic
information on the SYSTERM data set.
Refer to Appendix E for a description of
SYSTERM output. Options NUM and STM'I' can
be specified only if TERM is used.

NUM -- The line number fiel~ (columns
73-80) or TSO, through the EDI'! command,
supplied numbers are written on SYS'IERM
in the beginning of each staterr.ent line
for which diagnostic information is
given. This option is valid only in
connection with TERM.

STMT -- Statement number will be written on
SYSTERM for statements for which
diagnostic information is given. This
option is valid only in connection with
TERM.

Note 1: It is recommended to use the NUM
option when using the TERM option, to avoid
unnecessary spacing on a terminal listing.
When the TERM option is specified, the NUM
and STMT options are taken as the default
values.

Note 2: If option NOTERM is used for an
assembly, NCNUM and NOSTMT will not be
listed after *OPTIONS IN EFFECT* in the
diagnostic section of the SYSPRINT listing.

If contradictory options are entered,
e.g., LIST, NCLIST, the rightmost option,
NOLI S'I, is used.

The following is an example of
specifying assembler options:

•1.- ·f DECK LOAD -14.§1 TEST .K.Bfil: _nn I ALGN OS RENT TERM NUM STMT),
PAR!·- lNODEC KI NO LOAD I NOLIST I ~I NOXREF I LINECNT-5 5 I NOALGN I DOS I NO RENT I NOTE RM I NONUM I NOSTMTJ

Figure 1. Assembler Options

Assembler Data Set Requirements

The assembler requires the following four
data sets:

• SYSUT1, SYSUT2, SYSUT3 -- utility data
sets used as intennediate external
storage.

• SYSIN -- an input data set containing
the source statements to be ~recessed.

In addition to the above, four additional
data sets may be required:

• SYSLIB -- a data set containing macro
definitions (for macro definitions not
defined in the source prograrr) and/or
source coding to be called fer through
COPY assembler instructions.

• SYSPRINT -- a data set containing
output text for printing (unless NOLIST
option is specified) •

• SYSPUNCH -- a data set containing
object module output usually for
punching (unless NODECK option is
specified).

• SYSGO -- a data set containing ebject
module output usually for the linkage
editor (only if LOAD option is
specified) •

• SYSTERM -- data set containing
diagnostic information (if the TERM
option is specified) •

The above data sets are described in the
foldowing text. The ddname that rrust be
used in the DD statement describing the
data set appears as the heading f cr each
description.

DDnames SYSUT1, SYSUT2, SYSUT3

These utility data sets are used by the
assembler as intermediate external storage
devices when processing the source program.
The input/output device(s) assigned to
these data sets must be capable of
sequential access to records. 'Ihe
assembler does not support multi-volume
utility data sets. Refer to the OS Storage
Estimates manual for the space required.

DDname SYSIN

~his data set contains the input to the
assembler -- the source statements to be
processed. The input/output device
assigned to this data set may be either the
device transmitting the input stream, or
another sequential input device designated
by the programmer. The CL statement
describing this data set appears in the
input stream. The !EM-supplied procedures
do not contain this staterr.ent.

:CDnames SYSI.IE

From this data set, the assembler obtains
macro definitions and assembler language
statements to be called by the COPY
assembler instruction. It is a partitioned
data set and each macro definition or
sequence of assembler statements is a
separate member, with the member name teing
the macro instruction mnemonic or COPY code
name. The data set may be defined as
SYS1.~ACLIB or a user's private macro
definition or COPY library. SYS1.~ACLIB
contains macro definitions for the system
macro instruction provided by IBM. A
user's private library may be concatenated
with SYS1.MACLIB. The two libraries should
have the same attributes, i.e., the same
blocking factors, block sizes, and record
formats. If different block sizes are used
the data sets with the largest block size
must be specified first. The OS Job
Control Language Reference publication
explains the concatenation of the data
sets.

:CDname SYSPR INT

~his data set is used by the assembler to
produce a listing. Output may be directed
to a printer, magnetic tape, LASr, or a
remote terminal (TSO). The assembler uses
the machine code carriage-control
characters for this data set.

DDname SYSPUNCH

~he assembler uses this data set to produce
the object module. The input/output unit
assigned to this data set may be either a
card punch or an intermediate storage
device (capable of sequential access).

Assembler Options and Cata Set Requirements 11

I::Dname SYSGO

This is a CASr:, magnetic tape, or card
punch data set used by the assembler. It
contains the same output text as SYSPUNCH.
It is used as input for the linkage editor
and may also be used as a punch device (see
Note under "Assembler Options") •

r:r:name SYSTERM

This data set is used by the asserrbler to
write diagnostic information. The output
unit assigned to this data set rr.ust be a
remote terminal (TSO) •

Defining Data Set Characteristics

Eefore a data set c~n be made available to
a problem program, descriptive information
defining the data set must be placed into a
data control block for the access routines.
Sources of information for the data control
block are keyword operands in the DCB macro
instruction or, in some cases, the DD
statement, data set label, or user's
problem program. General information
concerning data set definition is contained
in the OS Data Management Services Guide
manual. Characteristics of data sets
supplied by the DCB macro instruction are
described in the OS Data Management Macro
Instructions manual.

The specific information that rrust be
supplied depends upon the data set
organization and access method. '!he
following access methods are used to
process the assembler data sets:

Access Method

QSAM (Queued Sequential)

BSAM (Ba sic Sequential)

EPAM (Basic Partitioned)

Data Sets

SYSPRIN'I, SYS­
PUNCH, SYSGO,
SYSIN, SYSTERM

SYSUT 1, SYSUT 2,
SYSUT3

SYSLIB

Figure 3 summarizes the assembler
capabilities and restrictions on record
length and format, as well as the blocksize
buffering facilities available to the user.
The values shown in Figure 3 are based upon
the minimum OS MFT main storage
requirements of Assembler F (44K), which
will allow a symbol table length of
approximately 7000 bytes. If more than the
minimum main storage is available, the
block sizes and buffer numbers can be
increased. However, if the user specifies
a combination of blocking and buffering
which does not leave room for the symbol
table. either message IEU996 will hP i RRnPfJ

12

or abnormal termination of the task will
occur (ABEND 804) •

In addition to the data set
characteristics shown in Figure 3, the
following options are available to the user
(refer to the OS Da!:_!! Ma!!~gen:ent Macro
Instructions publication) • Options not
shown below are fixed by the assembler and
cannot be specified.

Data Sets

SYSIN, SYSFUNCH,
SYSPRINT, SYSGO

SYSUT1, 2, 3

Return Codes

Options

{

DEVD (device type)
'EFALN (buffer l:oundary
alignment)
EUFL (buffer length)
EROPI' (error option)

DEVD (device type)
OPTCr: (optional ser­
vice for validity
checking and chained
scheduling)
TRTCH (if 7-track tapes
are used, TRTCH=C must
be specified)

Figure 2 shows the return codes issued l:y
the assembler for use with the
COND=parameter of JCE or EXEC statements.

I The COND= parameter is explained in OS Job
Control Langu2~-R~!~~~£~·

The return code issued by the assembler
is the highest severity code that is:

1. Associated with any error detected ty
the assembler (see Appendix A for
diagnostic messages and severity
codes) •

2. Associated with MNOTE messages
produced by macro instructions.

3. Associated with an unrecoveral:le I/0
error occurring during the assembly.

If a permanent 1/0 errcr occurs on any
of the assembler files or a rr card for a
required data set is missing, or there is
insufficient main storage availal:le, a
message is printed on SYSFRINT (or on the
operator's console if the SYSPRIN'I DD card
is missing or if the 1/0 error is on
SYSPRINT} and a return with a user return
code of 20 is given by the assembler. This
+Prmin~+P~ +hP ~~~Pmhly-

r-------,----------------------------------1
!Return I I
I Code I Explanation I
~-------t---------------------------------1
I 0 I No errors detected I
~-------t---------------------------------1
I 4 I Minor errors detected; I
I I successful program execution isl
I I probable I
~-------t---------------------------------1
I 8 I Errors detected; unsuccessful I
I I program execution is possible I
~-------t---------------------------------1
I 12 I Serious errors detected: I
I I unsuccessful program execution I
I I is probable I
~-------t---------------------------------1
I 16 I Critical errors detected; I
I I normal execution is impossible I
~-------t---------------------------------1
I 20 I Unrecoverable 1/0 error I
I I occurred during assembly or I
I I missing data sets; assembly I
I I terminated I
L-------L---------------------------------J

Figure 2. Return Codes

Assembler Options and Cata Set Requirements 13

SYSTERM
SYSUTl

SYSIN SYSLIB SYSPUNCH SYS GO SYSUT2
SYSPRINT SYSUT3

LRECL Fixed at 80 Fixed at 80 Fixed at 121 Fixed at 80 Fixed at 80 N/A

User must specify User must specify F and M set by F set by assemb- F set by assemb- Fixed for U
in LABEL or DD card In LABEL or DD card assembler, user may ler, user may spec- ler, user may spec-

RECFM spec.ify Band/or T ify B and/or T in ify B and/or T in

CD F, FS, FBS, FB, F, FB, FBT, FT in label or DD card label or DD card label or DD card
FBST, FBT, FT,

FST FM, FMB, FMT, FMBT F, FB, FT, FBT F, FB, FT, FBT

User must specify User must specify Optional, Optional, but must Optional, but must Optional, but must be ,
BLKSIZE in LABEL or DD card, in LABEL or DD card, if omitted be a multiple of be a multiple of in the range of 550-

0 must be a multiple of must be a multiple of BLKSIZE=LRECL LRECL; if omitted LRECL; if omitted 3624; the value speci-
LRECL LRECL BLKSIZE=LRECL BLKSIZE=LRECL fled on the SYSUTl DD

card is chosen for a 11
three work files; if
omitted an adequate
value is chosen by
the assembler,

©
Optional; if Set by assembler Optional; if Optional; if Optional; if User can not specify;

BUFNO omitted 2 is used to 1 omitted 2 is used omitted 3 is used for omitted 3 is used for either 1 or 2
unit record and 1 for unit record and 1 for

~ other devices other devices
I

For BLKSIZE times BLKSIZE can not BLKSIZE times BLKSIZE times BLKSIZE times BLKSIZE should be the
44K BUFN 0 can not be be greater than 3600 BUF N 0 can not be BUF N 0 can not be BUF N 0 can not be value calculated by the
availability greater than 3600 0 greater than 1210 greater than 400 greater than 400 assembler algorithm,

©
For Ll = BLKSIZE L2 = BLKSIZE L3 = BLKSIZE L4 = BLKSIZE L5 = BLKSIZE
calculating times BUFNO times BUFNO times BUFNO times BUFNO
main storage
requ i rem en ts

@ Minimum amount of main storage required for the assembler is the largest of the fol lowing: (1) 45056

(2) L1 + L2 + 41000

(3) L3 + L4 + L5 + 41000

Maximum amount of main storage that the assembler can effectively use is approximately 500,000 bytes

<D
®

@

©

U =undefined, F =fixed length records, B =blocked records, S =standard blocks,
T = track overflow 1 M = machine code carriage control

Blocking is not allowed on unit records devices. Blocking on other direct access can not
be greater than the track size unless Tis specified on RECFM. If BLKSIZE is not a multiple
of LRECL, BLKSIZE is truncated.

For MVT environment add 5,000 for core required

A smaller blocksize may have to be specified for SYSLIB and/or SYSUT 1,2, and 3
if global or local dictionaries overflow. See item 4 under
"Correction of Dictionary Overflow."

Figure 3. Data Set Characteristics

14

This section describes four IBM-provided
cataloged procedures: a procedure fer
assembling (ASMFC), a procedure for
assembling and linkage editing (ASMFCL) ,
and a procedure for assembling, linkage
editing, and executing (ASMFCLG), and a
procedure for assembling and
loader-executing (ASMFCG) • The procedures
rel¥ on conventions regarding the naming of
device classes. These conventions, shown
in Figure 4, must be incorporated into the
system at system generation time.

Device Cla~sname Devices Assigned

SYS SQ Any devices allowing
sequential access to records
for reading and writing

SYS DA Direct-access devices

SYSCP Card punches

Figure 4. :Cevice Naming Conventions

To use cataloged procedures, EXEC
statements naming the desired procedures
are placed in the input stream fellowing
the JOB statement. Subsequently, the
specified cataloged procedure is brcught
from a procedure library and merged into
the input stream.

Cataloged Procedures

Cataloged Procedure for Assembly (ASMFC}
This procedure requests the operating
system to load and execute the assembler.
'I'he name A~FC must be used to call this
procedure. The result of execution is an
object module, in punched card form, and an
assembler listing.

In the following example, input enters
via the input stream. 'I'he statements
entered in the input stream to use this
procedure are:

//jobname

//stepname

JOB

EXEC PROC= ASMFC

//ASM.SYSIN DD *
I
I

source program statements
I
I

/* (delimiter statement)

~he statements of the ASMFC procedure are
brought from the procedure library and
merged into the input stream.

Figure 5 shows the statements that make
up the ASMFC procedure.

Cataloged Procedures 15

1
llASM EXEC PGM=IEUASM,REGION=50K

2
llSYSLIB DD DSNAME=SYS1.MACLIB,DISP=SHR

3 //SYSUT1 DD DSNAME~&SYSUT1,UNIT=SYSSO,SPACE=(1700.(400,50)), x
II SEP=(SYSLIB)

4
llSYSUT2 DD DSNAM E=&SYSUT2,UN IT =SYSSO,SPACE=(1700.(400,50) I

5
llSYSUT3 DD DSNAME•&SYSUT3,SPACE=(1700,(400,50)), x
II UN IT=(SYSSO,SEP=(SYSUT2,SYSUT1 ,SYSLI BI I

6
llSYSPRINT DD SYSOUT=A

llSYSPUNCH DD SYSOUT=B

PARM= or COND=parameters may be added to this statement by the EXEC statement that calls the procedure (see Overriding Statements in
Cataloged Procedures). The system name IEUASM identifies Assembler F.

2
This statement identifies the macro library data set. The data set name SYS1.MACLIB is an IBM designation.

3 4 5
These statements specify the assembler utility data sets. The device classname used here, SYSSO, may represent a collection of tape

drives, or direct-access units, or both. The 1/0 units assigned to this name are specified by the installation when the system is generated.
A unit name, e.g., 2311 may be substituted for SYSSO. The DSNAME parameters guarantee use of Dedicated Workfiles if this feature is
part of the Scheduler.

The SEP=subparameter in statement 5 and the SPACE=parameter in statements 3, 4, and 5 are effective only if the device assigned is a
direct-access device: otherwise they are ignored. The space required is dependent on the make-up of the source program.
The OS Job Control Language Reference publication explains space allocation.

6
This statement defines the standard system output class, SYSOUT=A, as the destination for the assembler listing.

7
This statement describes the data set that will contain the object module produced by the assembler.

Figure 5. Cataloged Procedure fer Assembly (ASMFC)

JOB
Cataloged Procedure for Assembly and
Linkage Editing (ASMFCL) //jobnome

//stepnome
//ASM.SYSIN

EXEC PROC=ASMFCL

~his procedure consists of two job steps:
assembling and linkage editing. 'Ihe name
ASMFCL must be used to call this procedure.
Execution of this procedure results in the
production of an assembler listing, a
linkage editor listing, and a load rr:cdule.

The following example assumes input to
the assembler via the input job stream. It
also makes provision in the //LKEC job step
for concatenating the input to the linkage
editor from the //ASM job step with any
additional linkage editor input in the
input job stream. This additional input
can be a previously produced object rrodule
which is to be linked to the object module
produced by jot step //ASM.

An example of the statements entered in
the input stream to use this procedure is:

16

DD *
I
I
I

source program
1
statements

I
I

/*
//LKED.SYSIN

I
DD
I

/*

I
I

object module or
linkage editor
control statements

*

necessary only if linkage
editor is to combine modules
or read linkage editor control
information from the job stream

The procedure is brought from the
procedure library and merged into the input
stream.

Figure 6 shows the statements that make
up the ASMFCL procedure. Only those
statements not previously discussed are
explained.

//ASM EXEC PGM=IEUASM,PARM=LOAD,REGION=50K

llSYSLIB DD DSNAME=SYS 1.MACLI B,DISP=SH H

llSYSUTl DD DSNAME=&SYSUT1,UNIT=SYSSO,SPACE=(1700,(400,50)), x
II SEP=(SYSLIB)

llSYSUT2 DD DSNAME=&SYSUT2,UN IT=SYSSO,SPACE=(1700,(400,50))

llSYSUT3 DD DSNAME=&SYSUT3,SPACE=(1700,(400,50)), x
II UNIT=(SYSSO,SEP=(SYSUT2,SYSUT1,SYSLIB))

llSYSPRINT DD SYSOUT=A

llSYSPUNCH DD SYSOUT=B

llSYSGO DD DSNAME=&LOADSET,UN IT=SYSSO,SPACE=(B0,(200,50)), x
II DISP=(MOD,PASS)

2
llLKED EXEC PGM=IEWL,PARM=(XREF,LIST,NCAL),REGION=96K, x
II COND=(8,L T,ASM)

3
llSYSLIN DD DSNAME=&LOADSET,DISP=(OLD,DELETE) 4
II DD DDNAME=SYSIN

5
//SYSLMOD DD DSNAME=BiGOSET(GO),UNIT=SYSDA,SPACE=(1024,(50,20, 1)), x
II DISP=(MOD,PASS)

6
llSYSUT1 DD DSNAME=&SYSUTl,UNIT=(SYSDA,SEP=(SYSLIN,SYSLMOD)), x
II SPACE=(1024,(50,20))

7
llSYSPRINT DD SYSOUT=A

In this procedure the SYSGO DD statement describes a temporary data set -- the object module·· which is to be passed to the linkage editor.

2
This statement initiates linkage editor execution. The linkage editor options in the PARM=field cause the linkage editor to produce a
cross-reference table, module map, and a list of all control statements processed by the linkage editor. The NCAL option suppresses the
automatic library call function of the linkage editor.

3
This statement identifies the linkage editor input data set on the same one produced as output by the assembler.

4
This statement is used to concatenate any input to the linkage editor from the input stream with the input from the assembler.

5
This statement specifies the linkage-editor output data set (the load module). As specified, the data set will be deleted at the end of the job. If it is
d.esired to retain the load module, the DSNAME parameter must be respecified and a DISP parameter added. See "Overriding Statements in Cataloged
Procedures". If the output of the linkage editor is to be retained, the DSNAME parameter must specify a library name and member name where the
load module is to be placed. The DISP parameter must specify either KEEP or CATLG.

6
This statement specifies the utility data set for the linkage editor.

7
This statement identifies the standard output class as the destination for the linkage editor listing.

F'igure 6. Cataloged Procedure fer Assembli~g and Linkage Editing (ASMFCL)

Cataloged Procedure for Assembly, Linkage
Editing, and Execution (ASMFCLG)
This procedure consists of three job steps:
assembling, linkage editing, and executing.

Figure 7 shows the statements that make
up the ASMFCLG procedure. Only those
statements not previously discussed are
explained in the figure.

The name ASMFCLG must be used to call
~his procedure. Assembler and linkage
editor listings are produced.

~he statements entered in the input
stream to use this procedure are:

JOB //jobname
//stepname
//ASM.SYSIN

EXEC PROC=ASMFCLG
DD *
I

source program statements
I

/*
//LKED.SYSIN

+ ·i
/*

object module or
linkage editor
control statements

I

necessary only if linkage editor
is to combine modules or read
linkage editor control information
from job stream

//GO.ddname DD (parameters)}
//GO.ddname DD (parameters)
//GO.ddname DD * only if necessary

I

problem progra~ input
I

/* I

Cataloged Procedures 17

//ASM EXEC PGM=I EUASM,PARM=LOAD ,R EGION=50K

//SYSLIB DD DSNAM E=SYS1 .MACLI B,D ISP=SH R

//SYSUT1 DD DSNAM E=&SYSUT1 ,UN IT=SYSSQ,SPACE=(1700, (400,50)), x
II SEP=(SYSLIB)

//SYSUT2 DD DSNAME=&SYSUT2,UNIT=SYSSQ,SPACE=(1700,(400,50))

//SYSUT3 DD DSNAME=&SYSUT3,SPACE=(1700,(400,50)), x
II UNIT=(SYSSO,SEP=(SYSUT2,SYSUT1,SYSLIB))

//SYSPRINT DD SYSOUT=A

//SYSPUNCH DD SYSOUT=B

//SYSGO DD DSNAM E=&LOADSET,UN IT=SYSSQ,SPACE=(80,(200,50)) I x
II DISP=(MOD,PASS)

//LKED EXEC PGM=IEWL,PARM=(XREF,LET,LIST,NCAL),REGION=96K, x
II COND=(8,L T,ASM)

//SYSLIN DD DSNAME=&LOADSET,DISP=(OLD,DELETE)
II DD DDNAME=SYSIN

2
//SYSLMOD DD DSNAME=&GOSET(GO),UNIT=SYSDA,SPACE=(1024,(50,20, 1)), x
II DISP=(MOD,PASS)

//SYSUT1 DD DSNAME=&SYSUT1,UNIT=(SYSDA,SEP=(SYSLIN,SYSLMOD)), x
II SPACE=(1024,(50,20))

//SYSPRINT DD SYSOUT=A

3
//GO EXEC PGM=* .LKED.SYSLMOD,COND=((8,L T,ASM),(4,LT,LKED))

The LET linkage-editor option specified in this statement causes the linkage editor to mark the load module as executable even though errors were
encountered during processing.

2
The output of the linkage editor is specified as a member of a temporary data set, residing on a direct-access device, and is to be passed to a
succeeding job step.

3
This statement initiates execution of the assembled and linkage edited program. The notation *.LKED.SYSLMOD identifies the program to be
executed as being in the data set described in job step LKED by the DD statement named SYSLMOD. When running with MVT the REGION
parameter can be calculated with the help of the OS Storage Estimates publication.

Figure 7. Cataloged Procedure for Assembly, Linkage Editing and Execution (ASMFCLG)

Cataloged Procedure for Assembly and
Loader Execution (ASMFCG)
This procedure consists of two job steps
assembling and loader-executing. The
result of loader-execution is a combination
of linkage-editing and loading the frogram
for execution. Load modules for program
libraries are not produced.

Figure 8 shows the statements that make
up the ASMFCG procedure. Only those
statements not previously discussed are
exflained in the figure.

The name ASMFCG must be used tc call
this procedure. Assembler and loader
listings are produced.

The statements entered in the input stream
~o use ~his procedure are:

18

//jobname
//step name

//ASM.SYSIN

/*
//GO.ddname
//GO.ddname
//GO.ddname

/*

JOB
EXEC

DD
I
I
I

sourfe program

I
I

DD
DD
DD

I
I

. I

PROC=ASMFCG
*

(parameters)
*

(parameters) l
problem program input

I
I

only
if
necessary

Overriding Statements in Cataloged
Procedures
Any rarameter in a cataloged procedure can
be overridden except the PGM= pararreter in
the EXEC statement. Such overriding of
statements or fields is effective only for
the duration of the job step in which the
statements appear. The statements, as
stored in the procedure library of the
system, remain unchanged.

Overriding for the purposes of
respecification, addition, or nullification
is accomplished by including in the input
stream statements containing the desired
changes and identifying the staterrents to
be overridden.

EXEC Statements

~he PARM= and COND= parameters can be added
or, if present, re-specified by including
in the EXEC statement calling the procedure
the notation PARM.stepname=, or
COND.stepname=, followed by the desired
parameters. "Stepname" identifies the EXEC
statement within the procedure to which the
modification applies. Overriding the PGM=
parameter is not possible.

If the procedure consists of rrcre than
one job step, a PARM.stepname= or
COND.stepname= parameter may be entered for
each step. The entries must be in order,
i.e., PARM.step1=, PARM.step2=, etc.

u: Statements

All parameters in the operand field of DL
statements may be overridden by including
in the input stream (following the EXEC
card calling the procedure) a DD statement
with the notation //stepname.ddnarne in the
name field. "Stepname" refers tc the job
step in which the statement identified by
"ddname" appears.

Examples

In the assembly procedure ASMFC (Figure ~ ,
the production of a punched object deck
could be suppressed and the UNI~= and

SPACE= parameters of data set SYSUT1
re-$pecified, by including the fellowing
statements in the input stream:

//stepname EXEC PROC=ASMFC, x
II PARM.ASM=NODECK

I IASM.SYSUTl DD UNIT=2311, x
II SPACE=(200, (300,40))

//ASM.SYSIN DD *

In procedure AS~FCLG (Figure 7) ,
su~~ressing production of an assembler
listing and adding the COND= parameter to
the EXEC statement, which specifies
execution of the linkage editor, may be
desired. In this case, the EXEC statement
in the input stream would appear as
follows:

I lstepname
II
II

EXEC PROC=ASMFCLG, .
PARM. ASM= (NO LIST I LOAD) I
COND .LKED=(8, LT ,stepname .ASM)

x
x

Note: overriding the LIS'I' parameter
effectively deletes the PARM=LOAr so this
must be repeated in the override statement.

For current execution of procedure
ASMFCLG, no assembler listing would be
produced, and execution of the linkage
editor job step //LKEC would be suppressed
if the return code issued by the assemtler
(step ASM) was greater than 8. ·

Using the procedure ASMFCL (Figure 6)
to:

1. Read input from a non-labeled 9-track
tape on unit 282 that has a standard
blocking factor of 10.

2. Put the output listing on a labeled
tape TAPE10, with a data set name of
PROG1 and a blocking factor of 5.

3. Block the SYSGO output of the
assembler and use it as input to the
linkage editor with a blocking factor
of 5.

Cataloged Procedures 19

//ASM EXEC PGM=I EUASM,PARM=' LOAD' ,REG I ON=50K

//SYSLIB DD DSNAME=SYS1.MACLIB,DISP=SHR

//SYSUT1 DD DSNAME=&SYSUT1,UNIT=SYSSO,SPACE=(1700,(400,50)), x
II SEP=(SYSLIB)

//SYSUT2 DD DSNAM E=&SYSUT2,UN IT=SYSSQ,SPACE=(1700,(400,50))

//SYSUT3 DD DSNAM E=&SYSUT3,SPACE=(1700,(400,50)), x
II UNIT=(SYSSO,SEP=(SYSUT2,SYSUT1,SYSLIB))

//SYSPRINT DD SYSOUT=A

//SYSPUNCH DD SYSOUT=B

//SYSGO DD DSNAM E=&LOADSET,UN IT=SYSSQ,SPACE=(80,(200,50)), x
DISP=(MOD,PASS)

//GO EXEC PGM=LOADER,PARM='MAP,PRINT,NOCALL,LET'

2
//SYSLIN DD DSNAM E=&LOADSET ,D ISP=(OLD ,DELETE)

3
//SYS LOUT DD SYSOUT=A

This statement initiates loader-execution. The loader options in the PARM=field cause the loader to produce a map, print the map and diagnostics.
The NOCALL option is the same as NCAL for linkage editor and the LET option is the same as for linkage editor.

2 This statement defines the loader input data set as the same one produced as output by the assembler.

3 This statement identifies the standard output class as the destination for the loader listing.

Figure 8. Cataloged Procedure fer Assembly and Loader-E.xecution (ASMFCG)

4. Linkage edit the module only if there
are no errors in the assembly, i.e.,
CON.c=O.

5. Linkage edit on to a previously
allocated and cataloged data set
USER.LIBRARY with a member narre of
PROG.

The input stream appears as fellows:

lljobnome JOB

llstepnome EXEC PROC=ASMFCL,

II COND .LKED=(O,NE,stepname.ASM)

llASM.SYSPRINT DD DSNAME=PROG 1, UN IT=TAPE,

II VOLUME=SER=TAPE 10, DCB=(BLKS I ZE=605)

llASM.SYSGO DD DCB=(BLKSIZE=400)

llASM.SYSIN DD UNIT=282, LABEL=(, NL),

II DCB=(RECFM=FSB, BLKSIZE=SOO)

llLKED.SYSIN DD DCB=stepname.ASM.SYSGO

I ILKED. SYS LMO D DD DSNAME=USER. LI BRARY(PROG) ,DISP=OLD

I*

20

x

x

x

Note: The order of appearance of ddnames
within job steps ASM and LKED has been
preserved. Thus, SYSPRINT precedes SYSGO
within step ASM. The ddname ASM.SYSIN was
placed last since SYSIN does not occur at
all within step ASM. These points are

I
covered in "Appendix A. Using Cataloged and
In-stream Procedures" in the OS Job Control
Language Reference manual.

~o assemble two programs, linkage edit
the two assemblies into one load module and
execute the load module, using the
cataloged procedures described above, the
inFut stream appears as follows:

//stepname 1 EXEC

//ASM.SYSGO DD

II
II
//ASM,SYSIN DD

/*
//stepname2 EXEC

//ASM.SYSGO DD

//ASM.SYSIN DD

/*
//LKED.SYSLIN DD

//LKED.SYSIN DD

ENTRY

/*
//GO ,ddname

PROC=ASMFC, PARM.ASM='LOAD'

DSNAME=&LOADSET ,UNIT=SYSSQ,

SPACE=(BO, (200, 50)),

DISP=(MOD, PASS), DCB=(BLKSIZE=400)

I

source program 1 statements
I

PROC=ASMFCLG

DCB=(BLKSIZE=400), D ISP=(MOD, PASS)

source program 2 statements

DCB=B LK SI ZE=400

PROG

dd cards for GO step

x
x

~he OS Job Control Language Reference
publication provides an additional
description of overriding techniques.

21 Cataloged Procedures

Assembler Listing

The assembler listing (Figure 10) consists
of five sections, ordered as follows:
external symbol dictionary items, the
source and object program statements,
relocation dictionary items, symbol cross
reference table, and diagnostic rressages.
In addition,. three statistical messages may
appear in the listing:

1. After the diagnostics, a
statements-flagged message indicates
the total number of statements in
error. It appears as follows: nnn
STATEMENTS FLAGGED IN THIS ASSEMBLY.

2. After the statements-flagged message,
the assembler prints the highest
severity code encountered (if
non-zero) • This is equal tc the
assembler return code. The message
appears as follows: nn WAS HIGHES'I
SEVERI TY CODE.

3. After the severity code, the assembler
prints a count of the number cf
records read from SYSIN and from
SYSLIE. It also prints the Cftions
for the assembly. (See the section
"Assembler Options".) 'Ihese messages
appear as follows:

STATISTICS SOURCE RECORDS (SYSIN) =
nnnnn SOURCE RECORDS (SYSLIB)= nnnnn
OPI'IONS IN EFFECT xxxx,xxxxxx, etc.

4. After the options in effect, the
assembler prints a count of lines
printed, which appears as follows:
nnn PRINTED LINES. This is a count of
the actual number of 121-byte records
generated by the assembler; it rray be
less than the total number cf frinted
and blank lines appearing on the
listing if the SPACE n asserrbler
instruction is used. For a SPACE n
that does not cause an eject, the
assembler inserts n blank lines in the
listing by generating n/3 blank
121-byte records -- rounded to the
next lower integer if a fraction
results; e.g., for a SPACE 2, no blank
records are generated. The assembler
does not generate a blank record to
force a page eject.

In addition to the above items, the
assembler prints the deck identification
(as specified in the TITLE statement) and
current date on every page of the listing.
If the timer is available, the assembler
prints the time of day to the left of the
date on page 1 of the ESD listing. '!his is

22

the time when printing starts, rather than
the start of the assembly, and is intended
only to provide unique identification for
assemblies made on the same day. '!he time
is printed as hh.mm, where hh is the hour
of the day (midnight beginning at 00) , and
mm is the number of minutes past the hour.

External Symbol Dictionary (ESD)

'!his section of the listing contains the
external symbol dictionary inforrration
passed to the linkage-editor or loader in
the object module. '!he entries describe
the control sections, external references,
and entry points in the assembled program.
'!here are six types of entries, shown in
Figure 9, along with their associated
fields. The circled numbers refer to the
corresponding heading in the sample listing
(Figure 10). The X's indicate entries

accompanying each type designation.

• • • • • G
SYMBOL TYPE ID ADDR LENGTH LD ID

x SD x x x -
x LD - x - x

x ER x - - -
- PC x x x -
- CM x x x -
x XD x x x -
x wx x - - -

Figure 9. Types of ESL Entries

•
•

'!his column contains the name of every
external dummy section, control
section, entry point, and external
symbol.

This column contains the type
designator for the entry, as shown in
the figure. The type designators are
defined as:

SD--Names section definition. The
symbol appeared in the name field
of a CSECT or START statement.

LD--The symbol appeared as the operand
of the ENTRY statement.

ER--External reference. '!he symbol
;:ipp:>-:ired ~s the 0~e:!'."=!!d 0f a~ E.~'l'P.N

•

statement, or was defined as a
V-type address constant.

PC--Unnamed control section (~rivate
code) definition.

CM--Common control section definition.
XD--External dummy section (sa~e as PR,

Pseudo Register in the Linkage
Editor manual).

wx--weak external reference. The
symbol appeared as the o~erand of a
WXTRN statement.

This column contains the external
symbol dictionary identification
number (ESDIC). The number is a
unique two-digit hexadecimal number
identifying the entry. It is used by
the LD entry of the ESD and by the
relocation dictionary for
cross-referencing the ESD.

•

•

This column contains the address of
the symbol (hexadecimal notation) for
SD- and LD-type entries, and zeros for
ER- and WX-type entries. For PC- and
CM-type entries, it indicates the
beginning address of the control
section. For XD-type entries, it
indicates the alignment by printing a
number one less than the number of
bytes in the unit of alignment, e.g.,
7 indicates double word alignment.

this column contains the assembled
length, in bytes, of the control
section (hexadecimal notation).

This column contains, for LD-type
entries, the identification (IL)
number assigned to the ESD entry that
identifies the control section in
which the symbol was defined.

Assembler Listing 23

0
EXAM
SYMBOL

0
SAMPLR

0

•••• 0
TYPE ID AI:rR LENGTH LD ID

SD 01 000000 0003C8

0
EXAM SAMPLE PROGRAM

CD • • G)
LOC OEJECI' COCE ACCRl ACI:R2 STMT

00002q D200 1003 5008 00003 00008

00002A D202 1000 5009 00000 00009

EXTERNAL SYMEOL CICTIONARY

• SOURCE STATEMENT

'ISWI'ICH, lSWI '!CH
TNUMBER,LNUMBER FROM LIST ENTRY

S'IA'IEMEN'I GENERA'IED FOR ~OVE MACRO
TNUMEER,LN U'1BER

e

~
PAGE

17 .10 9/(

0
PAGE

0
FOlOC T71 9/09/"

• 335000
72+
73
74+*
75+
76
77+•
78+
79+

MVC
MOVE
NEX'I
MVC
MOVE
NEX'I
L

TADDRESS,LADDRESS 'IO TABLE EN'IRY 340000

000030 5820 500C ooooc
00003q 5020 10oq 00004
000038 8756 coos 00018
00003C DSEF C248 COF8 00258 00108
000042 4770 co8o 00090
000046 0000 0000 00000

*** ERROR ***
00004A D55F C33C C1E8 0034C 001F8
000050 4770 co8o 00090

0
EXAM

e G> • G
PCS.ID REL.IC FLAGS .ACDRESS

01 01 oc 0002 04
01 01 oc 000214

0
EX.AM

• • • • • SYMBOL LEN VALUE DEFN REFERENCES

BEGIN 00004 000000 00057 0155 0157
EXIT 00004 000082 00095 0110
HIGHER 00002 OOOOF8 00129 0124
IHB0005 00001 00007F 00092 0089
IHB0005A 00002 000080 00093 0088
IHB0007 00001 OOOOEC 00107 0104
IHB0007A 00002 OOOOBE 00108 0103
LADD RESS 00004 oooooc 00211 0078
LIST 00001 000000 00207 0065
LIST AREA 00008 0001F8 00155 0064 ooaq
LIST END 00008 000248 00160 0064 0221
LISTLCOP 00004 000038 00080 0112
LNAME 00008 000000 00208 0123
LNUMBER 00003 000009 00210 0075
LOOP 00004 OOOODE 00122 0127 0130
LS WITCH 00001 000008 00209 0072 0111
MORE 00004 000018 00066 0080
NOLA EEL ****UNCEFINEC***** 0083
NONE 00001 000080 00115 0067 0111

0
EXAM

• e e
STMT ERROR CODE MESSAGE

80 LISTLOOP
81
82
83

84
85

ST
BXLE
CLC
BNE
EL

'!WO S'IA'IEMENTS GENERATED FCR MOVE ~ACRO
2,LACCRESS
2,TADDRESS
R5,R6,MORE LCCF THROUGH THE LIST
'IES'I'IABl (240) , 'IAELAREA
NO'IRIGH'I
NOLA EEL

CLC TESTLIST(96) ,LISTAREA
BNE NO'IRIGH'I

RELOCATION CICI'IONARY

CROSS-REFERENCE

0173 0184 0186 0220

0221

0156 0180 0185

0119 0131

DIAGNOSTICS

83 IEU024 NEAR OPERAND COLUMN 1 --UNDEFINEC SYMEOL

1 STATEMENT FLAGGEC IN THIS ASSEMBLY
8 WAS HIGHEST SEVERITY CODE

STATISTICS SOURCE RECORDS (SYSIN) = 191 SOURCE RECORDS (SYSLIE) = 833
OPTIONS IN EFFEC'I LIST, DECK, NOLOAD, NORENT, XREF, NOTEST, ALGN, OS, NOTERM, LINECN'I = 70

359 PRINTED LINES

Figure 10. Assembler Listing

24

345000
350000
355000

360000.
365000.

0
PAGE 1

0
9/09/71

0
FAGE 1

0
9/09/71

0
FAGE 1

0
9/09/71

Source and Object Program

'Ihis section of the listing documents the
source statements and the resulting object
program.

•
0

•

This is the four-character deck
identification. It is the symbol that
appears in the name field of the first
TITLE statement. The assembler prints
the deck identification and date (item
16) on every page of the listing.

This is the information taken from the
operand field of a TITLE statement.

Note: TITLE, SPACE and EJECT'
statements will not appear in the
source listing unless the state~ent is
continued onto another card. Then the
first card of the statement is
printed. However, any of these three
types of statements, if generated as
macro instruction expansion, will
never be listed regardless cf
continuation.

Listing page number. Each section of
the listing starts with page ~-

This column contains the assembled
address (hexadecimal notation) of the
object code.

This column contains the object code
produced by the source statement. ~he
entries are always left-justified.
The notation is hexadecimal. Entries
are machine instructions or assembled
constants. Machine instructions are
printed in full with a blank inserted
after every four digits (twc byte~ •
Constants may be only partially
printed (see the PRINT asserrbler
instruction in the OS Assembler
Language publication).

These two columns contain effective
addresses (the result of adding
together a base register value and
displacement value):

a. The column headed ADDR1 contains
the effective address for the first
operand of an SS instruction.

b. The column headed ADDR2 contains
the effective address of the second
operand of any instruction
referencing storage.

Both address fields contain six
digits; however, if the high-order
digit is a zero, it is not ~rinted.

This column contains the statement
number. A plus sign (+) to the right
of the number indicates that the

statement was generated as the result
of macro instruction processing.

This column contains the source
program statement. ~he following
items apply to this section of the
listing:

a. Source statements are listed,
including those brought into the
program by the COPY assembler
instruction, and including macro
definitions submitted with the main
program for assembly. Listing
control instructions are· not
printed, except for the following
case: FRINT is listed when PRINT
ON is in effect and a PRINT
statement is encountered.

b. Macro definitions obtained from
SYSLIB are not listed.

c. The statements generated as the
result of a macro instruction
follow the macro instruction in the
listing.

d. Assembler or machine instructions
in the source program that contain
variable symbols are listed twice:
as they appear in the source input,
and with values substituted for the
variable symbols.

e. Diagnostic messages are not listed
inline in the source and object
program section. An error
indicator, ***ERROR***, follows the
statement in error. The message
appears in the diagnostic section
of the listing.

f. MNCTE messages are listed inline in
the source object program section.
An ~NCTE indicator appears in the
diagnostic section of the listing
for ~NOTE statements other than
MNOTE*. The MNOTE message format
is serverity code, message text.

g. The ~NOTE* form of the MNOTE
statements results in an inline
message only. An MNOTE indicator
does not appear in the diagnostic
section of the listing.

h. When an error is found in a
programmer macro definition, it is
treated the same as any other
assembly error: the errcr
indication appears after the
statement in error, and a
diagnostic is placed in the list of
diagnostics. However, when an
error is encountered during the
expansion of a macro instruction
(system- or programmer-defined) the

error indication appears in place
of the erroneous statement which is
not listed. The error indication
follows the last statement listed
before the erroneous statement was
encountered, and the associated
diagnostic message is placed in the

Assembler Listing 25

list of diagnostics.
i. Literals that have not been

assigned locations by an LTORG
statement appear in the listing
following the END statement.
Literals are identified by the
equal (=) sign preceding therr.

j. If the END statement contains an
operand, the transfer address
appears in the location ccluron
(LOC) •

k. In the case of COM, CSECT, and
DSECT statements, the location
field contains the beginning
address of these control sections,
i.e., the first occurrence.

1. In the case of EXTRN, WXTRN, ENTRY,
and DXC instructions, the location
field and object code field are
blank.

m. For a USING statement, the location
field contains the value of the
first operand.

n. For LTORG and ORG statements, the
location field contains the
location assigned to the literal
pool or the value of the ORG
operand.

o. For an EQU statement, the location
field contains the value assigned.

p. Generated statements always print
in normal statement format.
Because of this, it is pcssible for
a generated statement to occupy
three or more continuaticn lines on
the listing. This is unlike source
statements, which are restricted to
two continuation lines.

~ote: When the listing is directed to a
terminal under TSO, the following items
apply to ICI'L, EJECT, and SPACE:

ICTL - the end column, operand e, must be
within 41- 71 •

EJECT- only one blank line is created on
the terminal listing.

SPACE- the decimal value specified in the
operand is divided by three, and the
integer result indicates the number
of blank lines created.

This column contains the identifier of
the assembler (F) and the date when
this version was released by System
Development Division to DPD Program
Inf orma ti on De pa rtmen t.

8 Current date (date run is made) •

• Identification-sequence field from the
source statement.

Relocation Dictionary

This section of the listing contains the
z2l0cati0.r-1 dictiv1id.Ly .i.ufuLmdtiun i:;asseci to

26

the linkage editor in the object module.
The entries describe the address constants
in the assembled program that are affected
by relocation.

This column contains the external
symbol dictionary IC number assigned
to the ESD entry that describes the
control section in which the address
constant is used as an operand.

This column contains the external
symbol dictionary IC number assigned
to the ESD entry that describes the
control section in which the
referenced symbol is defined.

The two-digit hexadecimal numter in
this column is interpreted as follow:

First Digit. A zero indicates that
the entry describes an A-type or
Y-type address constant. A one
indicates that the entry descrites
a V-type address constant • A two
indicates that the entry descrites
a Q-type address constant. A three
describes a CXC entry.
Seco~g Digi~· The first three bits
of this digit indicate the length
of the constant and whether the
base should be addei or subtracted:

Bits_Q_an9_.1 Bit 2

00 1 byte 0 +
01 2 bytes 1 = -
10 3 bytes
11 4 bytes

This column contains the assembled
address of the field where the address
constant is stored.

Cross Reference

This section of the listing information
concerns symbols which are defined and used
in the program.

This column contains the symbols.

This column states the length (decimal
notation), in bytes, of the field
occupied by the symbol value.

This column contains either the
address the symbol represents, or a
value to which the symbol is equated.

This column contains the statement
number of the statement in which the
symbol was defined.

This column contains the statement
numbers of statements in which the
symbol appears as an operand. In the

case of a duplicate symbol, the
assembler fills this column with the
message:

****CUPLICATE****

The following notes apply to the
cross- reference section:

• Symbols appearing in V-type address
constants do not appear in the
cross-reference listing.

• A PRINT OFF listing control instruction
does not affect the production of the
cross-reference section of the listing.

• In the case of an undefined syrrbcl, the
assembler fills columns 23, 24, anj 25
with the message:

****UNDEFINED****·

Diagnostics

This section contains the diagnostic
messages issued as a result of error
conditions encountered in the prcgraro. The
text, severity code, and explanatcry notes
for each message are contained in "Appendix
A"•

• •
This column contains the nurrber of the
statement in error.

This column contains the message
identifier.

This column contains the message, and,
in most cases, an operand cclumn
pointer that indicates the vicinity of
the error. In the following example,
the approximate location of the
addressability error occurred in the
9th column of the operand field:

Example:

STMT ERROR CODE MESSAGE

21 IEU035 NEAR OPERAND COLUMN 9 -- ADDRESSABILITY ERROR

The following notes ap~ly to the
diagnostic section:

• An MNOTE indicator of the form NMO'IE
S'IATE~ENT appears in the diagnostic
section if an MNOTE statement other
than ~NOTE * is issued by a macro
instruction. The MNO'IE statement
itself is inline in the source and
object program section of the listing.
'!he operand field of an MNOI'E * is
printed as a comment, but does not
appear in the diagnostic section.

• A message identifier consists of six
characters and is of the form:
IEUxxx

IEU identifies the issuing agent as
Assembler F, and xxx is a unique
number assigned to the message.

Note: Editing errors in system macro
definitions (macro definitions included in
a macro library) are discovered when the
macro definitions are read from the macro
library. This occurs after the END
statement has been read. They will
therefore be flagged after the END
statement. If the programmer does not know
which of his system macros caused an error
it is necessary to punch all system macro
definitions used in the program, including
inner macro definitions, and insert them in
the program as programmer macro
definitions, since the programmer rracro
definitions are flagged inline. To aid in
debugging it is advisable to test all macro
definitions as programmer macro definitions
before incorporating therr in a library as
system macro definitions.

Assembler Listing 27

Programming Considerations

'Ihis section consists of a number of
discrete subjects about assembler language
programming •

Saving and Restoring General Register
Contents

A problem program should save the values
contained in the general register upon
commencing execution and, upon completion,
restore to the general registers these same
values. 'Ihus, as control is passed from
the operating system to a problem program
and, in turn, to a subprogram, the status
of the registers used by each program is
preserved. This is done through use of the
SAVE and RETURN system macro instructions.

The SAVE macro instruction shculd be the
first statement in the program. It stores
the contents of register 14, 15, and 0
through 12 in an area provided by the
program that passes control. When a
problem program is given control, register
13 points to an area in which the general
register contents should be saved.

If the program calls any subprcgrams, or
uses any opera ting system services other
than GETMAIN, FREEMAIN, ATTACH, and XCTL,
it must first save the contents of register
13 and then load the address of an 18
fullword save area into register 13. This
save area is in the protlem program and is
used by any sutprograms or operating system
services called by the problem program.

At completion, the problem program
restores the contents of general registers
14, 15 and 0-12 by use of the RETURN system
macro instruction (which also indicates
program completion) • The contents cf
register 13 must be restored before
execution of the RETURN macro instruction.
The coding sequence that follows
illustrates the basic process of saving and
restoring the register. A complete
discussion of the SAVE and RETURN reacro
instructions and the saving and restoring
of registers is contained in the OS Data
Management Services Guide and OS ~ata
Management Macro Instructions publications.

28

1-------~-----------T--------------------1

!Name I Operation I Operand I
t--------i-----------+--------------------1
I BEGIN I SAVE I (14, 12) I
I I · I I
I I . I set up base register
I I • I I
I I ST I 13 ,SAVEBLK+4 I
I I LA I 13,SAVEBLK I
I I · I I
I I · I I
I I L I 13 ,SAVEBLK+4 I
I I RETURN I (1 4 , 1 2) I
ISAVEBLK I DC I 18F'0' I
L--------...L----------i--------------------l

Program Termination

Completion of an assembler source program
is indicated by using the RETURN system
macro instruction to pass control from the
terminating program to the program that
initiated it. The initiating prcgram may
be the operating system or, if a subprogram
issued the RETURN, the program that called
it.

In addition to i'ndicating program
completion and restoring registers, the
RElURN macro instruction may also pass a
return code -- a condition indicator that
may be used by the program receiving
control. If the return is to the operating
system, the return code is compared against
the condition stated in the COND= parameter
of the JCB or EXEC statements. If return
is to another problem program, the return
code is available in general register 15,
and may be used as desired. Register 13
should be restored before issuing the
RElURN macro instruction.

lhe RETURN system macro instruction is

I discussed in detail in the OS_§g_fervisor
Services and Macro Instructions
putlication.

PARM Field Access

Access to information in the PARM field of
an EXEC statement is gained through general
register 1. When control is given to the
problem program, general register 1
contains the address of a full word which,
in turn, contains the address of the data
area containing the inforrration.

The data area consists of a halfword
containing the count (in binary) of the
number of information characters, tallowed

by the information field. The inforrration
field is aligned to a half-word boundary.
The following diagram illustrates this
process.

Points
to

General Register 1

Address of Full Word

Full Word

Address of Data Area

Data Area

..._---11~ Count in Binary Information Field

Macro Definition Library Additions

Points
to

Source statement coding, to be retrieved by
the COPY assemtler instruction, and rracro
definitions may be added to the rracro
library. The IEBUPDTE utility program is
used for this purpose. Details cf this
program and its control statements are
contained in the OS Utilities publication.
The following sequence of job control
statements can be used to call the utility
program and identify the needed data sets.
It is assumed that the job contrcl
statements, IEBUPDTE program control
statements, and data are to enter the
system via the input stream.

//jobname
//stepname
//SYSUTI
//SYSUT2
//SYSPRINT
//SYSIN

JOB
EXEC
DD
DD
DD
DD

PGM=IEBUPDTE, PARM=MOD
DSNAME=SYSl .MACLIB,DISP=OLD
DSNAME=SYS 1.MACLIB, DISP=OLD
SYSOUT=A

IEBUPDTE control statements and source statements or
macro-definitions to be added to the macro-library
(SYS 1. MACLI B)

/* (delimiter statement)

Load Module Modification - Entry Point
Restatement

If the editing functions of the linkage
editor are to te used to modify a lead
module, the entry point to the load module
must be restated when the load module is
reprocessed by the linkage editor.
Otherwise, the first byte of the first
control section processed by the linkage

editor will become the entry point. To
enable restatement of the original entry
point, or designation of a new entry point,
the entry point must have been identified
originally as an external symbol, i.e.,
appeared as an entry in the external symtol
dictionary. External symbol identification
is done automatically by the assemtler if
the entry point is the narre of a control
section or START statement; otherwise, an
assembler ENTRY statement must be used to
identify the entry point name as an
external symbol.

When a new object module is added to or
replaces part of the load module, the entry
point is restated in one of three ways:

• By placing the entry point symbol in
the operand field of an EXTRN statement
and an END statement in the new object
module.

• By using an END staterrent in the new
object module to designate a new otject
module.

• By using a linkage editor EN~RY
statement to designate either the
original entry point or a new entry
point for the load module.

Further discussion of load module entry

I points is contained in the OS Loader and
Linkage Editor publication.

Object Module Linkage

Object modules, whether Assembler-,
FOR~RAN-, or CCEOL-generated, may l:e
combined by the linkage editor to produce a
composite load module, provided each object
module conforms to the data formats and
linkage conventions required. ~his topic
discusses the use of the CALL system macro
instruction to link an assembler language
"main" program to subprograms produced l:y
FORTRAN and COBOL. The OS Supervisor
Services and Macro Instructions publication
contains additional details concerning
linkage conventions and the CALL system
macro instruction.

Figure 11 shows the statements used to
establish the assembler program linkage to
the called subprograms.

If any input/output operations are
performed by called subprograms,
appropriate DD statements for the data sets
used by the subprograms must be supplied.
See the appropriate FORTRAN IV Programmer's
Guide publications for exr;lanaticn of the
CD statements used to describe data sets
for FORTRAN programs and a description of
the special FORTRAN data set reccrd
formats. The COBOL ~Eograrnmer's Guide

Programroing Considerations 29

publications provide DD statement
information for COBOL programs.

Dictionary Size and Source Statement
Complexity
This section describes the compositicn of
the assembler dictionaries and their entry
sizes, and describes methods for
determining if the limits on source
statement complexity will be exceeded.

2

! SVAREA

5 Vl

6 V2
V'j

SAVE (14, 12)

set up base register

ST 13,SVAREA+4
LA 15,SVAREA
ST 15,8(13)
LR 13, 15

CALL

L
RETURN
DC
DC
DC
DC
END

name, (Vl, V2, V3), VL

13,SVAREA+4
(14, 12)
18F'O'
(data)
(data)
(data)

Dictionary entries, e.g., sequence
symbol names, prototype symbolic
parameters, vary in length. ~herefore, the
number of entries a dictionary can hold is
determined by the types of entries.

Source statement complexity -- the
number of symbols, characters, Cferators,
delimiters, references to length
attributes, self-defining terms, literals,
and expressions appearing in a source
statement -- determines whether er not the
source statement can be successfully
processed.

This is an example of OS linkage convention. See the publication OS Supervisor Services and Macro Instructions for details.

2
The symbol used for" name" in this statement is:

a. The name of a subroutine or function, when the linkage is to a FORTRAN-written subprogram,

b. The name defined by the following COBOL statements in the procedure division:

ENTER LINKAGE. ENTRY' name'.

c. The name of a CSECT or START statement, or a name used in the operand field of an ENTRY statement in an assembler subprogram.

The order in which the parameter list is written must reflect the order in which the called subprogram expects the argument. If the called routine is a
FORTRAN-written function, the returned argument is not in the parameter list: a real or double precision function returns the value in floating point
register zero; an integer function returns the value in general purpose register zero.

CAUTION: When linking to FORTRAN-written subprograms, consideration must be given to the storage requirements of IBCOM (FORTRAN execution-time
1/0 and interrupt handling routines) which accompanies the compiled FORTRAN subprogram. In some instances the call for IBCOM is not automatically
generated during the FORTRAN compilation. The OS FORTRAN IV Library publication provides information about IBCOM requirements and assembler
statements used to coll IBCOM.

FORTRAN - written subprograms and FORTRAN library subprograms allow variable-length parameter lists in linkages which call them; therefore all linkages
to FORTRAN subprograms ore required to have the high-order bit in the lost parameter in the linkage set to 1. COBOL-written subprograms have fixed­
length calling linkages; therefore, for COBOL the high-order bit in the lost parameter need not be set to 1.

3 .
This statement reserves the save area needed by the called subprogram. When control is passed to the subprogram, register 13 contains the address of this
area.

4 5 6 When linking to a FORTRAN or COBOL subprogram, the data formats declared in these statements are determined by the data formats required by
the FORTRAN or COBOL subprograms.

Figure i i. i.inkage Statt:.tut:11 Ls

30

Dictionaries Used in Conditional Assembly
and Macro Instruction Expansion

~o accomplish rmcro instruction expansion
and conditional assembly, the asserrbler
constructs a general dictionary consisting
of two parts: one global dictionary for
the entire program, and an area for all of
the local dictionaries.

The global dictionary contains one entry
for each machine operation code, extended
mnemonic operation code, assembler
operation code, macro instruction, and
global SEI' variable symtol.

The local dictionary area consists of
one local dictionary for each different
macro definition in the prograro, and one
local dictionary for the main portion of
the program (those statements not within a
macro definition, also called "open code") •
The contents of the local dictionaries are
described in subsequent paragraphs.

The car.acity of the general dictionary
(global dictionary and all local
dictionaries) is up to 64 blocks of 1024
bytes each. The division of the dictionary
into global and local sections is done
dynamically: as the global dictionary
becomes larger, it occupies blocks taken
from the local dictionary area. Thus, the
global dictionary is always core resident.
As it expands into the logical dictionary
area, the local dictionaries may overflow
onto a utility file. The size of the
dictionaries in core depends upon core
availability. The minimum core allocation
is three blocks for the global dictionary
and two blocks for each local dictionary.

Each block in the global and local
dictionaries contains complete entries.
Any entry not fitting into a block is
placed in the next tlock; the rerraining
bytes in the current block are not used.

The global and local dictionaries take
two forms: one when the dictionary entries
are collected, i.e., picked up during the
initial scan of the source program, and one
during the actual conditional asserrbly and
macro generation, i.e., generation time.
The following text describes the global and
local dictionaries at both collection time
amd generation time.

Global Dictionary at Collection ~ime

One global dictionary is built for the
entire program. It contains machine
operation codes, extended mnemonic
operation codes, assembler operation codes,
OPSYN defined operation codes, macro
instruction mnemonics, and global SE~
variable symbols. One entry is rrade as
shown in Figure 12.

Entry Size

Each machine operation code **
5 bytes plus mnemonic*

Each extended mnemonic operation
code or assembler operation** 6 bytes plus mnemonic*

Each macro mnemonic operation code 10 bytes plus mnemonic*

Each global SET variable symbol 7 bytes pl us name*

*One byte is used for each character in the name or mnemonic.

**For the first two types of entries, a total of
078016 (1920

10
) bytes of core is required,

Figure 12. Global Dictionary Entries at
Collection Time

Fixed overhead for this dictionary is:

8 bytes for the first block
4 bytes for each succeeiing block
5 bytes for the last block

Local Dictionaries at Collection Time

For the main portion of the program (those
statements not within a macro definition),
one local dictionary is constructed in
which ordinary symbols, sequence symbols,
and local SET variable syrrbols are entered.
In addition, one local dictionary is
constructed for each different macro
definition in the program. These local
dictionaries contain one entry for each
local SET variable symbol, sequence symbol,
and prototype symbolic parameter declared
within the macro definition. If a sequence
symbol is defined before it is referenced,
an extra entry for the symbol is made.
Figure 13 shows the size cf each type of
entry.

Entry Size

Each sequence symbol 10 bytes plus name*

Each local SET variable symbol 7 bytes pl us name*

Each prototype symbolic parameter 5 bytes plus name*

Each ordinary symbol
appearing in the main portion
of the program,

10 bytes plus name*

*One byte is used for each character in the name or mnemonic.

Figure 13. Local Lictionary Entries at
Collection Tirre

Fixed overhead for this dictionary is:

8 bytes for the first block (if in the
main program)

Frogramming Considerations 31

32 bytes for the first block (if in a
nacre definition)

4 bytes for each succeeding block
5 bytes for the last block

Global Dictionary at Generation 'I'ime

The sizes of the global dictionary entries
at generation time are shown in F' igure 14.

Entry Size

Each macro mnemonic operation code 3 bytes

Each global SETA symbol (dimensioned) 2 bytes plus 4N*

Each global SETA symbol
(undimensioned) 4 bytes

Each global SETB symbol (dimensioned) 2 bytes plus (N/8)* (N/8 is
rounded to the next highest
integer}

Each globe I SE TB symbol 1 bit
(undimensioned)

Each globe I SETC symbol
2 bytes plus 9N* (dimensioned}

Each global SETC symbol
(undimensioned) 9 bytes

*N = dimension

Figure 14. Global Dictionary Entries at
Generation Time

Fixed overhead for this dictionary is:

4 bytes plus word alignment.

Local Dictionaries at Generation Time

Figure 15 shows the sizes of the various
entries appearing in the local dictionaries
at genera ti on time.

32

Entry

Each sequence symbol

Each local SETA symbol (dimensioned}

Each local SETA symbol
(undimensioned)

Each loca I SETS symbol (dimensioned)

Each local SETB symbol
(undimensioned)

Each local SETC symbol(dimensioned)

Each loca I SE TC symbol
(undimensioned)

Each ordinary symbol
appearing in the main portion
of the program.**

*N=dimension
**These entries appear only in the main

program local dictionary.

Size

5 bytes

*
2 bytes plus 4N

4 bytes

2 bytes plus (N/8)* (N/8 is

rounded to the next highest
integer}

1 bit

2 bytes plus 9N*

9 bytes

5 bytes

Figure 15. Local Lictionary Entries at
Generation Tirre

Fixed overhead for this dictionary is

20 bytes plus word alignment.

Addi ti ona 1 _!2ic ti O!!§!!:.Y_ Reg~!_r e~~~

The generation time global dicticnary and
the generation time local dictionary for
the main portion of the program rr.ust be
resident in main storage.

In addition, if the prcgram ccntains any
macro instructions, main storage is
required for the largest local dictionary
of the macro definitions being processed.
Furthermore, during processing of macro
definitions containing inner macro
instructions, main storage is required for
the generation time local dictionaries for
the inner macro instructions contained
within the macro definition.

In addition to those requirements
specified for the local dictionary of the
main portion of the program, each macro
definition local dictionary requires space
for entries shown in Figure 16.

Entry Size

Each character string (1) 3 bytes plus L

Each hexadecimal, binary, decimal,
and character self-defining tenn (2) 7 bytes plus L

Each symbol (3) 9 bytes plus L

Each sublist 9 bytes plus 3N bytes plus Y

L = Length of entry in bytes
N. = Number of entries in sublist

y = E 1 + E2 + E3 + .•. En
where E = size of an entry (formats 1 1 2, and 3 above)

Figure 16. Macro Cefinition Local
Dictionary Parameter Table

Fixed overhead for the macro definition
local dictionary parameter table is 22
bytes. Each nested macro instruction also
requires space in it~ local dictionary for
the following:

Parameter pointer list

Pointers to parameter
pointer list and
parameter table

8 bytes flus 2N
(N = the number
of operands)

8 bytes plus
word alignment

Correction of Cictionary OVerf low

If an assembly is terminated at collection
time with either a GLOBAL DICTIONARY FULL
message (IEU053) or a LOCAL DICTIONARY FULL
message (IEU054), the programmer can take
one or more of the following stefs:

1. Split the assembly into two er rriore
parts and assemble each separately.

2. Allocate more main storage fer the
assembler (the global and lccal
dictionaries together can occupy up to
64K) •

3. Specify a smaller SYSLIB blccksize.
Thus, if BLKSIZE=3600, try ELKSIZE=
1800 or BLKSIZE=1200, reblock the
library to the size chosen, and try
the assembly again.

4. Specify a smaller blocksize fer the
utility files SYSUT1, 2, and 3. '!he
minimum blocksize normally used by the
assembler is 1700 bytes. Reduce this
by specifying DCB=BLKSIZE=n en the
SYSU'I'1 DD card. SYSUT2 and 3 use the
same blocksize as SYSUT1.

If the assembly is terminated at
generation time with a GENERATION 'IIME
CICI'IONARY AREA OVERFLOWED message

(IEU068) , the programmer should allocate
more main storage to the assembler and
re-assemble his program. If he cannot
allocate more main storage to the
assembler, the programmer should split the
assembly into two or more parts and
assemble each separately.

Symbol Table Overflow

Assembler performance can degrade when the
source text plus macro-generated statements
contains many ordinary symbols. If there
are more ordinary symbols than will fit in
the symbol table, the assembler will make
one or more additional passes over the
text. No symbols will be lost, tut
assembly time will increase.

In general, the assembler can handle 400
ordinary symbols without overflow in its

I minimum main storage (see Figure 3) •
Because of input and/or output blocking
differences, the minimum amount cf main
storage varies. It is approximately 49,00
bytes for ~FT, and 51,000 bytes for MVT.
'!he assembler can process one additional
symbol for each 18 bytes above the minimum
amount of main storage.

Source Statement Complexity

The complexity of a source staterrient is
limited both by the macro generator and the
assembler portions of the assembler. The
following topics provide the information
necessary to determine if
statement-complexity limitations for either
portion of the assembler are being
exceeded.

Macro Generation and Conditional Assembly
Limitation

For any statement which

1. Is a conditional assembly statement,

2. Is a DC or DS statement,

3. Is an EXTRN or WXTRN statement,

4. Contains a sequence symbol er a
variable symbol,

5. Is not a macro instruction er
prototype statement,

the total number of explicit occurrences of

1. Ordinary symbols (includes rrachine
mnemonics, assembler mnemonics,
conditional assembly mnemonics, and
macro instruction mnemonics),

Programming Considerations 33

2. Variable symbols,

3. Sequence symbols,

must not exceed 50 for the entire
statement.

For macro instructions and prctotype
statements the number of occurrences of
ordinary symbols, variable symbols, and
sequence symbols must not exceed 50 in the
name and operation fields combined; or in
each operand unless the operand is a
sublist, in which case the limit is applied
to each sublist operand. In any operand if
a character string has the same forrr as a
symbol, it is counted as a symbol.

Exam pl es of ColJnts:

&82 SET8 (T'NAME EQ 'W')' count=3 (&82,SET8,NAME)

EXTRN A,8,C,&C count=5 (EXTRN,A,8,C,&C)

Assembler Portion Limitations

1. Generated statements may not exceed
2 36 characters. Statement length
includes name, operation, Oferand, and
comments. If a comments field exists,
the blank separating the operand and
comments field is included in the
statement length. The statement is
truncated if it exceeds 236
cha ra c te rs.

2. DC, DS, DXD, and literal DCs cannot
contain more than 32 operands per
statement.

System/360 Model 91 Programming
Considerations
The assembly language prograrrmer shculd be
aware of the operational differences
between the Model 91 and other Syste~/360
models. ~he Model 91 requires a simulation
routine to execute most decirral
instructions and it yields different
floating-point instructions execution
results. The Model 91 also decodes and
executes instructions concurrently.

These and other coding and tirring
considerations are discussed in detail in
!EM System/360 Model 91 FUnctional
Characteristics, Order No. GA22-6907.
Additional information on how to control
sequential and nonsequential instruction
execution is given below.

Controlling Instruction Execution Sequence

The CPU maintains a logical consistency
.... !~'\.... ______ .._ ..__ .: ..__ -·- _____ ~ ---

W-L'-.1.L .a...~u.l:"~'-" '- '-"-' .a.'-~ vn.&.a. """l:"'-"""""4'-..&."".a.a.v 1

34

including the beginning and ending of I/O
operations, but it does not assume
responsibility for such consistency in the
operations performed by asynchronous units.
Consequently, for any asynchronous unit
that depends upon a strict adherence to
sequential (or serial) execution, a problem
program must set up its own procedures to
ensure the proper instructions sequence.

For a program section that requires the
serial or sequential execution of
instructions, the following 'no-operation'
instruction:

BCR M,O where M :f. 0

causes the instruction decoder tc halt, and
the instructions that have already been
decoded to be executed. (This action is
called a pipe-line drain.) On the Model
91, this instruction ensures that all the
instructions preceding it are executed
before the instruction succeeding it is
decoded. Use of this instruction should te
minimized since it may affect the
performance of the Model 91.

Isolating an instruction by preceding it
and succeeding it with a BC~ instruction
eliminates multiple imprecise interruptions
from more than one instruction by virtue of
the pipe-line drain effect. However, since
multiple exceptions may occur in'one
instruction, this technique does not
eliminate a multiple imprecise interruption
nor does it change an imprecise
interruption into a precise interruption.
The use of the BCR instruction dces not
assure a programmer that he can fix up an
error situation. In general, the only
information available will be the address
of the BCR instruction. The length of the
instruction preceding the BCR instruction
is not recorded, and generally there is no
way to determine what that instruction is.

System/360 Model 88 Programming
Considerations

The Model 85 has two special features
available to the assembler language
programmer. They are extended-precision
(two doubleword) floating point
instructions and byte-oriented (unaligned)
operands. Detailed information on these
features is in the !BM_~y~tero/36g
Principles of O~E~!~on manual, rder No.
GA22-68 21.

Assembler F supports these features with
mnemonic operation codes for the
extended-precision instructions, a two
doubleword data constant (LC} , an option
for suppressing the alignrrent error
message, and an assembler instruction for
"',....,,~.a-~""",.. ""'"""' ,....r\r"'lo....-~+--;n.,... ,,...i""\Ao .f-n =iT"ln+.'hor
"--"":l'""' "!:j -··- -1:""-4"'"""_ _ •• ---- -- -··- -··-- -

EXTENDED FLOATING POINT NUMBER (L)

S CHA RAC 7 BIT I HIGH ORDER HALF OF
112 BIT FRACTION

TERISTIC

0 78 63

~~~~~~~~---------------------------------L-o_w_o_R_D_E_R_H_A_L_F_o_F __________________________________ I . ~ 112 BIT FRACTION . 

0 7 8 63 

Figure 17. Extended-Precision Floating 
Po int Format 

!hese assembler features are explained in 
the following paragraphs. 

Extended-Precision Machine Instructions 

The extended-precision arithmetic 
instructions and the rounding instructions 
of the Model 85 are shown in Figure 18. 
The data format for extended operands of 
the AXR, SXR, MXR, and LRDR instructions 
and for extended results of the AXR, SXR, 
MXR, MXCR, and MXC instructions is shown in 
Figure 17. A complete description of these 
instructions is in the Principles cf 
Opera ti on manual. 

'l'he Extended-Precision Floatinq_::fQin:£ 
Simula tor 

A program containing extended-precision 
arithmetic and rounding instructicns can be 
executed on a model that does not have 
these instructions using the 
extended-precision floating-point simulator 
routine of the supervisor. !he rcutine 
is accessed through the user's prcgram 
interrupt handler. The user must supply a 
SPIE macro instruction and a routine to 
transfer control to the simulator routine. 
This is explained in detail under "Extended 
Precision Floating-Point Simulaticn" in OS 
Supervisor Services and Macro Instructions. 

There are two versions of the simulator. 
For machines that support the instructions 
listed ·in Figure 18, a simulation routine 
for ·an extended-precision divide cperation 
is available. The other version is 
intended for other System/360 models. It 
simulates the instructions listed in Figure 
18 as well as the divide operation. 

Because the assembler does not recognize 
any operation code for an 
extended-precision divide instruction, a 
supervisor macro instruction has been 
provided to produce the proper machine 
language for the simulator. ~he fcrrrat of 
that macro is described under "DXR" in OS 
Supervisor Services and Macro Instructions. 

Name Mnemonic ifype 1Qp Code 

ADD NORMALIZED (extended operands, 
extended result) AXR RR 36 

SUBTRACT NORMALIZED (extended 
operands, extended result) SXR RR 37 

MULTIPLY (extended operands, 
extended result) MXR RR 26 

MULTIPLY (long operands, 
extended result) MXDR RR 27 

MULTIPLY (long operands, 
extended result) MXD RX 67 

LOAD ROUNDED (extended to long) LRDR RR '25 
LOAD ROUNDED (long to short) LRER RR 35 

Figure 18. Extended-Precision and Rounding 
Instructions 

Approximating Extended-Precision Floating 
Point Instructions 

An easier way to debug a program containing 
extended-precision floating-point 
instructions on a machine that dces not 
contain these instructions, is to 
approximate them to long floating-point 
instructions. This is done with the OFSYN 
assembler instruction. 

For example, to "equate" MXR in a source 
program to ~DR, the following instruction 
is placed at the beginning of the program: 

MXR OPSYN MDR REPLACE ALL ~XR OPERATIONS 
WITH ?l:I:R 

The MDR instruction is then assembled for 
each occurrence of the MXR instruction in 
the source module. The program can be run 
and debugged on a model that does not have 
the MXR instruction. Later, the programmer 
can remove the CPSYN statement and run his 
program on a machine that supports MXR. 

~ort of Unal!gne~L~~ta 

The Module 85 will execute unprivileged RX­
and RS- format instructions with fixed 
point, floating-point, or logical operands 
that are not on integral boundaries. 

Programming Considerations 35 



Assembly of such instructions norrrally 
produces the diagnostic message "IEU033 
Alignment Error". A new PARM option in the 
EXEC statement for the Assembler F, ALGN or 
NOALGN, makes it possible to sup~ress the 
message and thereby obtain a "clean" 
assembly listing. The object code is not 
affected. 

Note that an assembled progran that 
requires use of the byte-oriented CFerand 
feature must be run on a Model 85 or 195 
machine. Further, it cannot run 
successfully under the Operating System if 
it violates any alignment restrictions 
imposed by OS. 

Type L Data Constant 

A Define Constant (DC) operand type, L, has 
been added to provide extended-precision 
floating-point constants for the 
programmer. It can be used as a Define 
Storage (~S) operand or in a literal. 
Unless changed by a length modifier, the 
type L constant is 16 bytes long and is 
aligned on a doubleword boundary. Its 
format is that of two contiguous type D 
constants, as shown in Figure 17, except 

36 

that it is assembled with the sign of the 
second doubleword equal to that of the 
first, and the characteristic of the second 
equal to that of the first minus 14, modulo 
128. 

I Model 196 and System/ 370 Programming 
Considerations 

I 'Ihe V.odel 195 and the System/370 machines 
have the following special features: 
extended-precision (two doubleword) 
floating-point instructions and 
byte-oriented (unaligned) operands. The 
previous descriptions of these features 
under "System/360 Model 91 Programming 
Considerations" and "System/360 Model 85 
Programming Considerations" also apply to 
the Model 195 and to System/370 rrachines. 
Detailed information can be found in IBV. 
System/360 Model 195 Functional ~­
Characteristics, Order No. GA22-6943 and 
in IBM SystemL370 Principles of Operation, 
Order No. GA22-7000. 

Note: 'Ihe V.odel 195 does not need the 
decimal simulator routine used by the Model 
91. 



Appendix A. Diagnostic Messages 

This section explains the messages issued by the assembler. They are written on SYSPRINT (if option 
LIST is in effect) and on SYSTERM (if option TERM is in effect) • Messages with serial numbers over 
900 are also produced on the operator ccnscle. 

xx 
nnn 

text 

On SYSPRINT: 
On SYSTERM: 

On operator console: 

xx IEUnnn 
IEUnnn 

IEUnnnl 

Statement number for statement in error 

text 

text 

text (See Figure 10.) 
(See Appendix E.) 

Message serial number. For messages with serial number over 900, the number is followed by 
the character I. 
Message text 

Severity Codes 

The severity code indicates the effect cf an error on the execution of a program being assemtled: 

* 0 
4 
8 
12 
16 
20 

Informational message; no effect on execution 
Informational message; normal execution is expected 
Warning message; successful execution is probable 
Error; execution may fail 
Serious error; successful execution is improbable 
Critical error; successful execution is irrpossible 
Assembler program terminated abnormally 

IEU001 [UPLICATION FACTOR ERROR copy of the P[S member specified in the 
COPY statement. 

Explanation: A duplication factcr is not 
an absolute expression, or is zerc in a 
literal; * in duplication factor 
expression; invalid syntax in expression. 

Severity Code: 12 

Programmer Response: Probable user error. 
Make sure the source code is correct and 
reassemble if necessary. If the prcblerr 
recurs, do the following before calling 
IBM: 
• Have the user source program, user macro 

definitions, and associated listing 
available. 

• If the COPY statement was used, execute 
the IEBPTPCH utility program to obtain a 
copy of the PDS member specified in the 
COPY statement. 

IEU002 RELOCATABLE DUPLICATION FACTOR 

Explanation: A relocatable expression has 
been used to specify the duplication 
factor. 

Severity Code: 12 

Programmer Response: Make sure the source 
code is correct and reassemble if 
necessary. If the problem recurs, de the 
following before calling IBM: 
• Have the user source program, user macro 

definitions and associated listing 
available. 

• If the COPY statement was used, execute 
the IEEPTPCH utility program tc cbtain a 

IEU003 LENGTH ERROR 

~.!illlaB~!ioB: The length specification is 
out of permissible range er specified 
invalidly; * in length expression; invalid 
syntax in expression; no left-parenthesis 
delimiter for expressicn. 

Ero9_E~!Tifilg£_Rg~pQ~~~= Make sure the source 
code is correct and reassemble if 
necessary. If the problem recurs, do the 
following before calling !EM: 
• Have the user source prcgram, user macro 

definitions and associated listing 
available. 

• If the CCFY statement was used, execute 
the IEEPTFCH utility program to attain a 
copy of the PDS member specified in the 
COPY statement. 

IEU004 RELCCATAELE LENGTH 

Explanation: A relocatable expression has 
been used to specify length. 

Programmer Response: Make sure the source 
code is correct and reassemble if 
necessary. If the problem recurs, do the 
following before calling IB~: 
• Have the user source program, user macro 

definitions and associated listing 

Appendix A. Diagnostic ~essages 37 



available. 
• If the COPY statement was used~ execute 

the IEBPTPCH utility program tc obtain a 
copy of the PDS memter specified in the 
COPY statement. 

IEU005 S-~YPE CONSTANT IN LITERAL 

~~anation: An S-type address constant 
may not be specified in a literal. 

Severity Code: 8 

Programmer Response: Make sure the source 
code is correct and reassemble if 
necessary. If the problem recurs, do the 
following before calling IBM: 
• Have the user source program, user macro 

definitions and associated listing 
available. 

• If the COPY statement was used, execute 
the IEBPTPCH utility program tc cbtain a 
copy of the PDS member specified in the 
COPY statement. 

IEU006 INVALID ORIGIN 

Explanation: The location counter has been 
reset to a value less than the starting 
address of the control section; ORG cperand 
is not a simply relocatable expression or 
specifies an address outside the ccntrol 
section. 

Severity Code: 12 

~~rammer Response: Make sure the source 
code is correct and reassemble if 
necessary. If the problem recurs, de the 
following before calling IBM: 
• Have the user source program, user macro 

definitions and associated listing 
available. 

• If the COPY statement was used, execute 
the IEEPTPCH utility program tc obtain a 
copy of the PDS member specified in the 
COPY statement. 

IEU007 LOCATION COUNTER ERROR 

38 

Explanation: Either the location ccunter 
has exceeded 2 24-1, or passed out cf 
control section in negative direction (3 
byte arithmetic) • 

Severity Code: 12 

Programmer Response: Make sure the source 
code is correct and reassemble if 
necessary. If the problem recurs, do the 
following before calling IBM: 
• Have the user source program, user macro 

definitions and associated listing 
available. 

• If the COPY statement was used, execute 
the IEBPTPCH utility program to obtain a 
copy of the PDS memter specified in the 
CuF·i ;st_ cti..t=rnt=ui... 

IEU008 INVALID DISPLACEMENT 

~~lan~~!2n: The displacement in an 
explicit address is not an absolute value 
within the range of 0 to 4095. 
Sever~_£QQ§: 8 

ErogE~~~er_R§~EQD~§: Make sure the source 
code is correct and reassemble if 
necessary. If the protlem recurs, do the 
following before calling IEM: 
• Have the user source prcgram, user macro 

definitions and associated listing 
available. 

• If the COPY statement was used, execute 
the IEEPTFCH utility program to ottain a 
copy of the PCS member specified in the 
COPY statement. 

IEU009 MISSING OPERAND 

~~lan~~ion: Statement requires an operand 
entry and none is present. 

Pro~mmer Response: Make sure the source 
code is correct and reassemtle if 
necessary. If the problem recurs, do the 
following before calling IEM: 
• Have the user source prcgram, user macro 

definitions and associated listing 
available. 

• If the COPY statement was used, execute 
the IEEPTFCH utility program to ottain a 
copy of the PDS reember specified in the 
CCPY statement. 

IEU010 INCORRECT SPECIFICATION OF REGISTER OR MASK 

~lag~~!Qg: One of the following: 
• The register or rrask field specification 

is not an absolute value. 
• The register or rrask field specified is 

not in the range 0 - 15. 
• An odd register is specified where an 

even, register is required (applies to 
multiply, divide and shift instructions). 

• The register specified is not a floating 
point register (applies to floating point 
instructions). 

• The register specified is not an extended 
precision floating point register 
(applies to extended precision floating 
point instructions). 

Ero9:!:~!!!!!!~E-R~~2on~~= Make sure the source 
code is correct and reassemble if 
necessary. If the problem recurs, do the 
following before calling IEM: 
• Have the user source prcgram, user macro 

definitions and associated listing 
available. 

• If the CCPY statement was used, execute 
the IEBPTPCH utility prcgram to obtain a 
copy of the PCS member specified in the 
CCPY statement. 

IEU011 SCALE MODIFIER ERROR 

Explagation: The scale mcdifier is not an 
absolute expression or is tco large, 
ucgu.t.i -v~ .:;cul2 rnGdific::- f~::: fl~.:ti~s p~i!!t, 



* in scale modifier expression; invalid 
syntax or illegally specified scale 
modifier. 

Severity Code: 8 

Programmer Response: Make sure the source 
code is correct and reassemble if 
necessary. If the problem recurs, do the 
following before calling IBM: 
• Have the user source program, user macro 

definitions and associated listing 
available. 

• If the COPY statement was used, execute 
the IEBPTPCH utility program to obtain a 
copy of the PDS member specified in the 
COPY statement. 

IEU012 RELOCATABLE SCALE MODIFIER 

Explanation: A relocatable expression has 
been used to specify the scale modifier. 

Severity Code: 8 

Programmer Response: Make sure the source 
code is correct and reassemble if 
necessary. If the problem recurs, do the 
following before calling IBM: 
• Have the user source program, user macro 

definitions and associated listing 
available. 

• If the COPY statement was used, execute 
the IEBPTPCH utility program to obtain a 
copy of the PDS member specified in the 
COPY statement. 

IEU013 EXPONENl' MODIFIER ERROR 

Explanation: The exponent is not specified 
as an absolute expression or is out of 
range; * in exponent modifier expression; 
invalid syntax; illegally specified 
exponent modifier. 

Severity Code: 8 

Programmer Response: Make sure the source 
code is correct and reassemble if 
necessary. If the problem recurs, do the 
following before calling IBM: 
• Have the user source program, user macro 

definitions and associated listing 
available. 

• If the COPY statement was used, execute 
the IEBPTPCH utility program to obtain a 
copy of the PDS member specified in the 
COPY statement. 

IEU014 RELOCATABLE EXPONENT MODIFIER 

Explanation: A relocatable expression has 
been used to specify the exponent modifier. 

Severity Code: 8 

Programmer Response: Make sure the source 
code is correct and reassemble if 
necessary. If the problem recurs, do the 
following before calling IBM: 
• Have the user source program, user macro 

definitions and associated listing 

available. 
• If the COPY statement was used, execute 

the IEBPTPCH utility program to obtain a 
copy of the PDS member specified in the 
COPY statement. 

IEU015 INVALID LITERAL USAGE 

Explanation: A valid literal is used 
illegally, e.g., it specifies a receiving 
field or a register, or it is a Q-type 
constant. 

Severity Code: 8 

j_'rogrammer Response: Make sure the source 
code is correct and reassemble if 
necessary. If the problem recurs, do the 
following before calling IBM: 
• Have the user source program, user macro 

definitions and associated listing 
available. 

• If the COPY statement was used, execute 
the IEBPTPCH utility program to obtain a 
copy of the PDS member specified in the 
COPY statement. 

IEU016 INVALID NAME 

Explanation: A name entry is incorrectly 
specified, e.g., it contains more than 8 
characters, it does not begin with a 
letter, it has a special character 
embedded, or -- if the statement is OPSYN 

the name entry is not an ordinary symbol 
or is an assembler operation mnemonic. 

Severity Code: 8 

Programmer Response: Make sure the source 
code is correct and reassemble if 
necessary. If the problem recurs, do the 
following before calling IBM: 
• Have the user source program, user macro 

definitions and associated listing 
available. 

• If the COPY statement was used, execute 
the IEBPTPCH utility program to obtain a 
copy of the PDS member specified in the 
COPY statement. 

IEUO 17 DATA ITEM '100 LARGE 

Explanation: The constant is too large for 
the data type or for the explicit length; 
operand field for packed cc exceeds 31 
characters and for zoned DC exceeds 16 
characters ~xcluding decimal points). 

Severity Code: 8 

Programmer Response: Make sure the source 
code is correct and reassemble if 
necessary. If the problem recurs, do the 
following before calling IBM: 
• Have the user source program, user macro 

definitions and associated listing 
available. 

• If the COPY statement was used, execute 
the IEBPTPCH utility program to obtain a 
copy of the PDS m~mber specified in the 
COPY statement. 

Appendix A. Diagnostic Messages 39 



IEU018 INVALIC SYMBOL 

Explanation: The symbol is specified 
invalidly, e.g., it is longer than 8 
characters, or -- if the statement is OPSYN 

the name entry is not an ordinary symbol 
er is an assembler operation mnemonic. 

Severity Code: 8 

Programmer Response: Make sure the source 
code is correct and reassemble if 
necessary. If the problem recurs, do the 
following before calling IBM: 
• Have the user source program, user macro 

definitions and associated listing 
available. 

• If the COPY statement was used, execute 
the IEBPTPCH utility program to obtain a 
copy of the PDS memter specified in the 
COPY Statement. 

IEU019 EXTERNAL SYMBOL ERROR 

Extlanation: One of the following: 
• A symbol appears in the name field of 

both a CSECT and a DSECT statement. 
• A symbol appearing the name field cf a 

DXD instruction also appears in the name 
field of another CXD instruction, in the 
operand field of an EXTRN of WX~RN 
instruction, or in the name field cf a 
CSECT or CSECT statement. 

• A symbol appearing the operand field of 
an EX~RN or WXTRN instruction alsc 
appears in the operand field of the same 
or another EXTRN or WXTRN instruction, or 
in the name field of a DXD, CSECT, or 
CSECT instruction. 

• A symbol previously encountered in the 
name field of a statement ether than 
those mentioned above, appears in the 
operand field of an EXTRN or WXTRN 
instruction or in the name field of a 
DXD, CSECT, or DSECT instruction. 

Severity Code: 8 

Programmer Response: Make sure the source 
code is correct and reassemble if 
necessary. If the problem recurs, de the 
fellowing before calling IBM: 
• Have the user source program, user macro 

definitions and associated listing 
available. 

• If the COPY statement was used, execute 
the IEBPTPCH utility program tc obtain a 
copy of the PDS member specified in the 
COPY Statement. 

IEU020 INVALIC IMMECIATE FIELD 

40 

Explanation: The value of the irrrrediate 
operand exceeds 255 (or 9 for SRF) or the 
operand is not of an acceptable type. 

Severity Code: 8 

Programmer Response: Make sure the source 
code is correct and reassemble if 
necessary. If the problem recurs, do the 
following before calling IBM: 
• Have the user source program, user macro 

definitions and ?sqn~i~~P~ lis~ing 
available. 

• If the COPY statement was used, execute 
the IEBPTFCH utility program to ottain a 
copy of the PDS rrerober specified in the 
COPY statement. 

IEU021 SYMBOL NOT PREVIOUSLY DEFINED 

Explanation: An expression requiring that 
all symbols be previously defined contains 
at least one symbol not sc defined. 

Programmer Response: Make sure the source 
code is correct and reassemtle if 
necessary. If the problem recurs, do the 
following before calling IEM: 
• Have the user source program, user macro 

definitions and associated listing 
available. 

• If the CCFY statement was used, execute 
the IEEPTFCH utility program to ottain a 
copy of the PDS rrember specified in the 
CCFY statement. 

IEU022 ESDTABLE OVERFLOW 

Explanation: The combined numter of 
control sections and dummy sections plus 
the number of unique symbols in EXTRN and 
WXTRN statements and V-type constants 
exceeds 255. (A CSECT which appears as XD 
makes two entries). 

Programmer Response: Make sure the source 
code is correct and reassemtle if 
necessary. If the problerr. recurs, do the 
following before calling IEM: 
• Have the user source program, user macro 

definitions and associated listing 
available. 

• If the COPY statement was used, execute 
the IEEPTFCH utility program to ol:tain a 
copy of the PCS member specified in the 
COPY statement. 

IEU023 PREVIOUSLY DEFINED NAME 

IDf.Elan~!ion: The symbol which appears in 
the name field has appeared in the name 
field of a previous statement. 

Severity Code: 8 

Programmer RespQ~~~= Make sure the source 
code is correct and reassemble if 
necessary. If the problem recurs, do the 
following before calling IBM: 
• Have the user source prcgram, user macro 

definitions and associated listing 
availal:::le. 

• If the CCPY statement was used, execute 
the IEBPTPCH utility program to obtain a 
copy of the PLS member specified in the 
CCFY statement. 

IEU024 UNDEFINED SYMEOL 

Explanation: A symbol being referenced bas 
not been defined in the program. 



Severity Code: 8 

Programmer Response: Make sure the source 
code is correct and reassemble if 
necessary. If the problem recurs, do the 
following before calling IBM: 
• Have the user source program, user macro 

definitions and associated listing 
available. 

• If the COPY statement was used, execute 
the IEBPTPCH utility program to obtain a 
copy of the PDS member specified in the 
COPY statement. 

IEU025 RELOCATABILITY ERROR 

Explanation: A relocatable or complex 
relocatable expression is specified where 
an absolute expression is required, an 
absolute expression or complex relocatable 
expression is specified where a relocatable 
expression is required, or a relocatable 
term is involved in multiplication or 
division. 

Severity Code: 8 

Programmer Response: Make sure the source 
code is correct and reassemble if 
necessary. If the problem recurs, do the 
following before calling IBM: 
• Have the user source program, user macro 

definitions and associated listing 
available. 

• If the COPY statement was used, execute 
the IEBPTPCH utility program tc obtain a 
copy of the PDS member specified in the 
COPY Statement. 

IEU026 TOO MANY LEVELS OF PARENI'HESES 

Explanation: An expression specifies more 
than 5 levels of parentheses. 

Severity code: 12 

Programmer Response: Make sure the source 
code is correct and reassemble if 
necessary. If the problem recurs, do the 
following before calling IBM: 
• Have the user source program, user macro 

definitions and associated listing 
available. 

• If the COPY statement was used, execute 
the IEBPTPCH utility program tc obtain a 
copy of the PDS member specified in the 
COPY statement. 

IEU027 TOO MANY TERMS 

Explanation: More than 16 terms are 
specified in an expression. 

Severity Code: 12 

Programmer Response: Make sure the source 
code is correct and reassemble if 
necessary. If the problem recurs, do the 
following before calling IBM: 
• Have the user source program, user macro 

definitions and associated listing 
available. 

• If the COPY statement was used, execute 
the IEBPTPCH utility program to obtain a 

Page of GC26-3756-6 
Revised July 15, 1972 
By TNL GN33-8144 

copy of the PDS member specified in the 
COPY statement. 

IEU028 REGISTER NOT USED 

Explanation: A register specified in a 
DROP statement is not currently in use. 

Severity Code: 4 

Programmer Response: Make sure the source 
code is correct and reassemble if 
necessary. If the problem recurs, do the 
following before calling IBM: 
• Have the user source program, user macro 

definitions and associated listing 
available. 

• If the COPY statement was used, execute 
the IEBPTPCH utility program to obtain a 
copy of the PDS member specified in the 
COPY statement. 

IEU029 CCW ERROR 

Explanation: Eits 37-39 of the CCW are set 
to non-zero. 

Severity Code: 8 

Programmer Response: Make sure the source 
code is correct and reassemble if 
necessary. If the problem recurs, do the 
following before calling IBM: 
• Have the user source program, user macro 

definitions and associated listing 
available. 

• If the COPY statement was used, execute 
the IEBPTPCH utility program to obtain a 
copy of the PDS member specified in the 
COPY statement. 

IEU030 INVALID CNOP 

Explanation: An invalid combination of 
operands is specified in a CNOP 
instruction. 

Severity Code: 12 

Programmer Response: Make sure the source 
code is correct and reassemble if 
necessary. If the problem recurs, do the 
following before calling IBM: 
• Have the user source program, user macro 

definitions and associated listing 
available. 

• If the COPY statement was used, execute 
the IEEPTPCH utility program to obtain a 
copy of the PDS member specified in the 
COPY statement. 

IEU031 UNKNOWN TYPE 

Explanation: Incorrect type designation is 
specified in a DC, DS, or literal. If the 
DOS option is specified, type Q will be 
flagged as unknown. 

Severity Code: 8 

Programmer Response: Make sure the source 
code is correct and reassemble if 
necessary. If the problem recurs, do the 
following before calling I~: 
• Have the user source program, user macro 

Appendix A. Diagnostic .Messages 41 



definitions and associated listing 
available. 

• If the COPY statement was used, execute 
the IEBPTPCH utility program to obtain a 
copy of the PDS member specified in the 
COPY Statement. 

IEU032 OP-CODE NOT ALLOWED TO BE GENERATED 

Explanation: Operation code not allowed if 
source statement has been obtained through 
substitution of a value for a variable 
symbol. 

Severity Code: 8 

Programmer Response: Make sure the source 
code is correct and reassemble if 
necessary. If the problem recurs, do the 
following before calling IBM: 
• Have the user source program, user macro 

definitions and associated listing 
available. 

• If the COPY statement was used, execute 
the IEBPTPCH utility program to obtain a 
copy of the PDS member specified in the 
COPY Statement. 

IEU033 ALIGNMENT ERROR 

Explanation: Referenced address is not 
aligned to the proper boundary for this 
instruction, e.g., the location of the 
START operand is not a multiple of 8. 
Note: If a register is explicitly 
specified in the reference, e.g., as in 
L 3,3(REG4), no message is issued. 

Severity Code: 4 

Programmer Response: Make sure the source 
code is correct and reassemble if 
necessary. If the problem recurs, do the 
following before calling IBM: 
• Have the user source program, user macro 

definitions and associated listing 
available. 

• If the COPY statement was used, execute 
the IEBPTPCH utility program to obtain a 
copy of the PDS member specified in the 
COPY Statement. 

IEU034 INVALID OP-CODE 

42 

Explanation: Syntax error, e.g., more than 
8 characters in operation field, not 
followed by blank on first card image, op 
code missing. 

Severity Code: 8 

Programmer Response: Make sure the source 
code is correct and reassemble if 
necessary. If the problem recurs, do the 
following before calling IBM: 
• Have the user source program, user macro 

definitions and associated listing 
available. 

• If the COPY statement was used, execute 
the IEBPTPCH utility program to obtain a 
copy of the PDS member specified in the 
COPY statement. 

IEU035 ADDRESSABILITY ERROR 

Explanation: The referenced address does 
not fall within the range of a USING 
instruction. 

Severity Code: 8 

Programmer Response: Probable user error. 
Make sure the source code is correct and 
reassemble if necessary. If the problem 
recurs, do the following before calling 
IBM: 
• Have the user source program, user macro 

definitions, and associated listings 
available. 

• If the COPY statement was used, execute 
the IEBPTPCH utility program to obtain a 
copy of the PDS member specified in the 
COPY statement. 

IEU036 (No message is assigned to this numter) 

IEU037 MNOTE STATEMENT 

Explanation: This indicates that an MNOTE 
statement has been generated from a macro 
definition. The text and severity code of 
the ~NOTE statement will be found in line 
in the listing. 

Severity Code: Variable 

Programmer Response: Probable user error. 
Make sure the source code is correct and 
reassemble if necessary. If the problem 
recurs, do the following before calling 
IBM: 
• Have the user source program, user macro 

definitions, and associated listings 
available. 

• If the COPY statement was used, execute 
the IEBPTPCH utility program to obtain a 
copy of the PCS member specified in the 
COPY statement. 

IEU038 ENTRY ERROR 

Explanation: A symbol in the operand of an 
ENTRY statement appears in more than one 
ENTRY statement, it is undefined, it is 
defined in a dummy section or in a blank 
common control section, or it is equated to 
a symbol defined by an EXTRN or WXTRN 
statement. 

Severity Code: 8 

·Programmer Response: Make sure the source 
code is correct and reassemble if 
necessary. If the problem recurs, do the 
following before calling IBM: 
• Have the user source program, user macro 

definitions and associated listing 
available. 

• If the COPY statement was used, execute 
the IEBPTPCH utility program to obtain a 
copy of the PDS member specified in the 
COPY statement. 

IEU039 INVALID DELI~ITER 

Explanation: This message ca~ be causeJ by 
any syntax error, e.g., missing delimiter, 
special character used which is not a 



valid delimiter, delimiter used illegally, 
operand missing, i.e., nothing between 
delimiters, unpaired parentheses, embedded 
blank in expression. 

Severity Code: 12 

Programmer Response: Make sure the source 
code is correct and reassemble if 
necessary. If the problem recurs, do the 
following before callinq IBM: 
• Have the user source program, user macro 

definitions and associated listing 
available. 

• If the COPY statement was used, execute 
the IEBPTPCH utility program tc obtain a 
copy of the PDS member specified in the 
COPY statement. 

I
IEU040 STATEMENT IS TOO LONG 

Explanation: There are more than 236 
characters in a generated statement. 

Severity Code: 12 

Programmer Response: Make sure the source 
code is correct and reassemble if 
necessary. If the problem recurs, do the 
following before calling IBM: 
• Have the user source program, user macro 

definitions and associated listing 
available. 

• If the COPY statement was used, execute 
the IEBPTPCH utility program to obtain a 
copy of the PDS member specified in the 
COPY statement. 

IEU041 UNCECLARED VARIABLE SYMBOL 

Explanation: Variable symbol is not 
declared in a define SET symbol statement 
or in a macro prototype. 

Severity Code: 8 

Programmer Response: Make sure the source 
code is correct and reassemble if 
necessary. If the problem recurs, do the 
following before calling IBM: 
• Have the user source program, user macro 

definitions and associated listing 
available. 

• If the COPY statement was used, execute 
the IEBPTPCH utility program to obtain a 
copy of the PDS member specified in the 
COPY Statement. 

IEU042 SINGLE TERM LOGICAL EXPRESSION IS NOi A 
SETB SYMBOL 

Explanation: The single term logical 
expression has not been declared as a SETB 
symbol. 

Severity Code: 8 

Programmer Response: Make sure the source 
code is correct and reassemble if 
necessary. If the problem recurs, do the 
following before calling IBM: 
• Have the user source program, user macro 

definitions and associated listing 
available. 

Page of GC26-3756-6 
Revised July 15, 1972 
By TNL GN33-8144 

• If the COPY statement was used, execute 
the IEBPTPCH utility program to obtain a 
copy of the PDS member specified in the 
COPY statement. 

IEU043 SET SYMBOL PREVIOUSLY DEFINED 

Severity Code: 8 

Programmer Response: Make sure the source 
code is correct and reassemble if 
necessary. If the problem recurs, do the 
following before calling IBM: 
• Have the user source program, user macro 

definitions and associated listing 
available. 

• If the COPY statement was used, execute 
the IEBPTPCH utility program to obtain a 
copy of the PDS member specified in the 
COPY statement. 

IEU044 SET SYMBOL USAGE INCONSISTENT WITH 
DECLARATION 

Explanation: A SET symbol has been 
declared as undimensioned, but is 
subscripted, or has been declared 
dimensioned, but is unsubscripted. 

severity Code: 8 

Programmer Response: Make sure the source 
code is correct and reassemble if 
necessary. If the problem recurs, do the 
following before calling IBM: 
• Have the user source program, user macro 

definitions and associated listing 
available. 

• If the COPY statement was used, execute 
the IEBPTPCH utility program to obtain a 
copy of the PDS member specified in the 
COPY statement. 

IEU045 ILLEGAL SYMBOLIC PARAMETER 

Explanation: An attribute has been 
requested for a variable symbol which is 
not a legal symbolic parameter. 

Severity Code: 8 

Programmer Response: Make sure the source 
code is correct and reassemble if 
necessary. If the problem recurs, do the 
following before calling IBM: 
• Have the user source program, user macro 

definitions and associated listing 
available. 

• If the COPY statement was used, execute 
the IEBPTPCH utility program to obtain a 
copy of the PDS member specified in the 
COPY statement. 

IEU046 AT LEAST ONE RELOCATABLE Y TYPE CONSTANT IN 
ASSEMBLY 

Explanation: One or more relocatable 
Y-type constants in assembly; relocation 
may result in address greater than 2 bytes 
in length. 

Severity Code: 4 

Programmer Response: Make sure the source 
code is correct and reassemble if 

Appendix A. Diagnostic Messages 43 



Page of GC26·3756-6 
Revised July 15, 1972 
By TNL GN33-8144 

necessary. If the problem recurs, do the 
following before calling IBM: 
• Have the user source program, user macro 

definitions and associated listing 
available. 

• If the COPY statement was used, execute 
the IEBPTPCH utility program to obtain a 
copy of the PDS member specified in the 
COPY statement. 

IEU047 SEQUENCE SYMBOL PREVIOUSLY DEFINED 

Severity Code: 12 

Programmer Response: Make sure the source 
code is correct and reassemble if 
necessary. If the problem recurs, do the 
following before calling IBM: 
• Have the user source program, user macro 

definitions and associated listing 
available. 

• If the COPY statement was used, execute 
the IEBPTPCH utility program tc obtain a 
copy of the PDS member specified in the 
COPY Statement. 

IEU048 SYMBOLIC PARAMETER PREVIOUSLY DEFINED OR 
SYSTEM VARIABLE SYMBOL DECLARED AS SYMBOLIC 
PARAMETER 

Severity Code: 12 

Programmer Response: Make sure the source 
code is correct and reassemble if 
necessary. If the problem recurs, do the 
following before calling IBM: 
• Have the user source program, user macro 

definitions and associated listing 
available. 

• If the COPY statement was used, execute 
the IEBPTPCH utility program tc obtain a 
copy of the PDS member specified in the 
COPY statement. 

IEU049 VARIABLE SYMBOL MATCHES A PARAMETER 

Severity Code: 12 

Programmer Response: Make sure the source 
code is correct and reassemble if 
necessary. If the problem recurs, do the 
following before calling IBM: 
• Have the user source program, user macro 

definitions and associated listing 
available. 

• If the COPY statement was used, execute 
the IEBPTPCH utility program tc obtain a 
copy of the PDS member specified in the 
COPY Statement. 

IEU050 INCONSISTENT GLOBAL DECLARATIONS 

44 

Explanation: A global ·SET variable symbol, 
defined in more than one macro definition 
or defined in a macro definition and in the 
source program, is inconsistent in SE!' type 
or dimension. 

Severity Code: 8 

Programmer Response: Make sure the source 
code is correct and reassemble if 
necessary. If the problem recurs, do the 
following before calling IBM: 
• Have the user source program, user macro 

definitions and associated listing 
available. 

• If the COPY statement was used, execute 
the IEBPTPCH utility program to obtain a 
copy of the PDS member specified in the 
COPY statement. 

IEU051 MACRO DEFINITION PREVIOUSLY DEFINED 

Explanation: Prototype operation field is 
the same as a machine or assembler 
instruction or a previous prototype. This 
message is not produced when a programmer 
macro matches a system macro. The 
programmer macro will be assembled with no 
indication of the corresponding system 
macro. 

Severity Code: 12 

Programmer Response: Make sure the source 
code is correct and reassemble if 
necessary. If the problem recurs, do the 
following before calling IBM: 
• Have the user source program, user macro 

definitions and associated listing 
available. 

• If the COPY statement was used, execute 
the IEBPTPCH utility program to obtain a 
copy of the PDS member specified in the 
COPY statement. 

IEU052 NAME FIELD CONTAINS ILLEGAL SET SYMBOL 

Explanation: SEI' symbol in name field does 
not correspond to SEI' statement type. 

Severity Code: 8 

Programmer Response: Prot:at:le user error. 
Make sure the source code is correct and 
reassemble if necessary. If the problem 
recurs, do the following before calling 
IBM: 
• Have the user source program, user macro 

definitions, and and associated listings 
available. 

• If the COPY statement was used, execute 
the IEBPTPCH utility program to obtain a 
copy of the PDS member specified in the 
COPY statement. 

IEU053 GLOBAL DICTIONARY FULL 

Explanation: The global dictionary is 
full, assembly terminated. 

Severity Code: 12 

Programmer Response: Probable user error. 
Take one or more of the following steps and 
then rerun the job: 
• Split the assembly into two or more parts 

and assemble each separately. 
• Allocate more core for the assembler (the 

global and local dictionaries together 
can occupy up to 64K) • 

• Run the assembly under Assembler E, 
unless it includes features not allowed 
by Assembler E. (Due to its dictionary 
building algorithm, Assembler E can 
handle more symbols with a given size 
dictionary than can Assembler F.) 

• Specify a smaller SYSLIB blocksize. 



Thus, if ELKSIZE=1800 or BLKSIZE=1200, 
reblock the library to the size chosen, 
and try the assemtly again. 

If the problem recurs, do the following 
before calling IB~ for programming support: 
• Have the user source program, user macro 

definitions, and associated listings 
available. 

• If the COPY statement was used, execute 
the IEEPTPCH utility program tc obtain a 
copy of the PDS member specified in the 
COPY statement. 

IEU054 LOCAL DICTIONARY FULL 

Explanation: The local dictionary is full, 
current macro aborted and the macro 
instruction is flagged as undefined. If in 
cpen code, assembly terminated. 

Severity Code: 12 

Programmer Response: Probable user error. 
Take one or more of the following steps and 
then rerun the jots. 
• Split the assembly into two or more parts 

and assemble each separately. 
• Allocate more core for the asserrbler (the 

global and local dictionaries tcgether 
can occupy up to 64K) • 

• Run the assembly under Assembler E, 
unless it includes features not allowed 
by Assembler E. (Due to its dictionary 
building algorithm, Assembler E can 
handle more symbols with a given size 
dictionary than can Assembler F.) 

• Specify a smaller SYSLIB blocksi ze. 
Thus, if BLKSIZE=1800 or BLKSIZE=1200, 
reblcck the library to the size chosen, 
and try the assemtly again. 

• Specify smaller SYSUT1 blocksize. 
If the problem recurs, do the following 
before calling IBM for programming support: 
• Have the user source program, user macro 

definitions, and associated listings 
available. 

• If the COPY statement was used, execute 
the IEEPTPCH utility prograrr. tc obtain a 
copy of the PDS member specified in the 
COPY statement. 

IEUO 55 INVALII: ASS EM EL ER OPT ION (S) ON THE EXECUTE 
CARC 

Severity Code: 8 

Programmer Response: Probable user error. 
Make sure all assembler options s~ecif ied 
are correct and reassemble if necessary. 
If problem recurs, do the following before 
calling IBM: 
• Make sure that MSGLEVEL= ( 1, 1) was 

specified in the JOB statement. 
• Have the user source prograw, user macro 

definitions, and associated listings 
available. 

IEU056 ARITHMETIC OVERFLOW 

Explanation: The intermediate or final 
result of an expression is not within the 
range of -231 to 231-1. 

Programmer Response: Protatle user error. 
~ake sure the source code is correct and 
reassemble if necessary. If the problem 
recurs, do the following tefore calling 
IBM: 
• Have the user source program, user wacro 

definitions, and associated listings· 
available. 

• If the COPY statement was used, execute 
the IEEPTFCH utility program to ottain a 
copy of the PDS rrember specified in the 
CCFY statement. 

IEU057 SUBSCRIFT.NCT WITHIN CIMENSIONS 

~lanatig!}: (1) Supscrif:t of &SYSUST or 
symtolic parameter exceeds 200 or is 
negative. (2) Subscript of symtolic 
parameter is zero. (3) Subscript of SET 
symbol exceeds dimension specified in 
GBLx/LCLx statement. 

Programmer Response: Make sure the source 
code is correct and reassemtle if 
necessary. If the problem recurs, do the 
following before calling !EM: 
• Have the user source prcgram, user macro 

definitions and associated listing 
available. 

• If the COPY statement was used, execute 
the IEBPTFCH utility program to ottain a 
copy of the PDS rrember specified in the 
CCFY statement. 

IEU058 RE-ENTRANT CHECK FAILED 

~la!}2tio!}: An instruction has been 
detected, which, when executed, might store 
data into a control section or a common 
area. This message is generated only when 
requested via control cards and merely 
indicates a possible re-entrant error. The 
statement number is not given in the 
message. 

Prog;:~!!!er_B.§§E2!}§.§: ~ake sure the source 
code is correct and reassemble if 
necessary. If the problem recurs, do the 
following before calling IEM: 
• Have the user source prcgram, user macro 

definitions and associated listing 
available. 

• If the CCFY statement was used, execute 
the IEBPTPCH utility prcgram to obtain a 
copy of the FI:S member specified in the 
COPY statement. 

IEU059 UNDEFINEC SE~UENCE SYMEOL 

Severity Code: 12 

Programmer Response: Make sure the source 
code is correct and reassemtle if 
necessary. If the problerr. recurs, do the 
following before calling IBV.: 
• Have the user source program, user macro 

Appendix A. Dia·Jnostic Messages 45 



definitions and associated listing 
available. 

• If the COPY statement was used, execute 
the IEBPTPCH utility program to obtain a 
copy of the PDS member specified in the 
COPY statement. 

IEU060 ILLEGAL ATTRIBUTE NOTATION 

ExFlanation: L', S', or I' requested for a 
parameter whose type attribute dces not 
allow these attributes to be requested. 

Severity Code: 8 

Programmer Response: Make sure the source 
code is correct and reassemble if 
necessary. If the problem recurs, do the 
following before calling IBM: 
• Have the user source program, user macro 

definitions and associated listing 
available. 

• If the COPY statement was used, execute 
the IEBPTPCH utility program to obtain a 
copy of the PDS member specified in the 
COPY statement. 

IEU061 ACTR COUNTER EXCEECED 

~~anation: Conditional assembly loop 
counter exceeded; conditional assembly 
terminated. 

Severity Code: 12 

Programmer Response: Make sure the source 
code is correct and reassemble if 
necessary. If the problem recurs, de the 
following before calling IBM: 
• Have the user source program, user macro 

definitions and associated listing 
available. 

• If the COPY statement was used, execute 
the IEBPTPCH utility prograrr tc obtain a 
copy of the PDS member specified in the 
COPY statement. 

IEU062 GENERATED STRING GREATER THAN 255 
CHARAC'IERS 

Severity Code: 8 

Programmer Response: Make sure the source 
code is correct and reassemble if 
necessary. If the problem recurs, do the 
following before calling IBM: 
• Have the user source program, user macro 

definitions and associated listing 
available. 

• If the COPY statement was used, execute 
the IEBPTPCH utility program tc obtain a 
copy of the PDS member specified in the 
COPY statement. 

IEU063 EXPRESSION 1 OF SUBSTRING IS ZERO OR ~!NUS 

46 

Severity Code: 8 

Programmer Response: Make sure the source 
code is correct and reassemble if 
necessary. If the problem recurs, de the 
following before calling IBM: 
• Have the user source program, user macro 

definitions and associated listing 

available. 
• If the CCFY statement was used, execute 

the IEEPTFCH utility program to ottain a 
copy of the PDS rrerober specified in the 
CCFY statement. 

IEU064 EXPRESSICN 2 CF SUESTRING IS ZERO OR MINUS 

Severity Code: 8 

Programmer Response: Make sure the source 
code is correct and rea$semble if 
necessary. If the problem recurs, do the 
following before calling IEM: 
• Have the user source prcgram, user macro 

definitions and associated listing 
available. 

• If the CCFY statement was used, execute 
the IEBPTPCH utility program to obtain a 
copy of the PCS member specified in the 
CCFY statement. 

IEU065 INVALID OR ILLEGAL TERM IN ARI'IHME'IIC 
EXPRESSICN 

Explanation: The value of a SE'IC symbol 
used in the arithmetic expression is not 
composed of decimal digits, or the 
parameter is not a self-defining term. 

Proqraffi!!!£E_R£~EQrr~£= Make sure the source 
code is correct and reassemble if 
necessary. If the problem recurs, do the 
following before calling IEM: 
• Have the user source prcgram, user macro 

definitions and associated listing 
available. 

• If the COPY statement was used, execute 
the IEEPTFCH utility program to ottain a 
copy of the PDS rrember specified in the 
CCFY statement. 

I IEU066 UNDEFINEC CR CUPLICATE KEYWORC OPERAND 

Explan~_!:iorr: The same keyword operand 
occurs more than once in the macro 
instruction; a keyword is not defined in a 
prototype statement. 

Severity Code: 12 

Programmer Response: Make sure the source 
code is correct and reassemble if 
necessary. If the problerr. recurs, do the 
following before calling IEP;: 
• Have the user source prcgram, user macro 

definitions and associated listing 
available. 

• If the COPY statement was used, execute 
the IEEPTFCH utility program to obtain a 
copy of the FDS member specified in the 
COPY statement. 

IEU067 EXPRESSION 1 OF SUBSTRING GREA'IER 'IHAN 
LENGTH CF CHARACTER EXPRESSION 

ProgE~~~-R~2.E2~2~= Probable user error. 
Make sure the source code is correct and 
reassemble if necessary. If the problerr 
recurs, do the following before calling 



IEM: 
• Have the user source program, user macro 

definitions, and associated listings 
available. 

• If the COPY statement was used, execute 
the IEBPTPCH utility program tc obtain a 
copy of the PDS member specified in the 
COPY statement. 

IEUO 68 GENERATION TIME DICTIONARY AREA OVERFLOWED 

Severity Code: 12 

Programmer Response: Probable user error. 
Take one or more of the following steps and 
then rerun the job: 
• Split. the assemtly into two or rrcre parts 

and assemble each separately. 
• Allocate more core the assembler (the 

global and local dictionaries together 
can occupy up to 64K) • 

• Run the assembly under Assembler E, 
unless it includes features not allowed 
by Assembler E. (Due to its dictionary 
building algotithm, Assembler E can 
handle more symtols with a given size 
dictionary then can Assembler F.) 

• Specify a smaller SYSLIB blocksize. 
Thus, if BLKSIZE=1800 or BLKSIZE=1200, 
reblock the library to the size chosen, 
and try the assemtly again. 

• Specify smaller SYSUT1 blocksize. 
If the problem recurs, do the following 
before calling IBM for programming support: 
• Have the user source program, user macro 

definitions, and associated listings 
available. 

• If the COPY statement was used, execute 
the IEEPTPCH utility program tc obtain a 
copy of the PDS member specified in the 
COPY statement. 

IEU069 VALUE OF EXPRESSION 2 OF SUBSTRING GREATER 
THAN 8 

Severity Code: 8 

Programmer Response: Probable user error. 
Make sure the source code is correct and 
reassemble if necessary. If the prcblem 
recurs, do the following before calling 
!EM: 
• Have the user source program, user macro 

definitions, and associated listings 
available. 

• If the COPY statement was used, execute 
the IEEPTPCH utility program tc obtain a 
copy of the PDS member specified in the 
COPY statement. 

IEU070 FLOA'IING POINT CHARACTERIS'I'IC OUT OF RANGE 

Explanation: Exponent too large for length 
of defining field, exponent modifier has 
caused loss of all significant digits. 

Severity Code: 12 

Programmer Response: Make sure the source 
code is correct and reassemble if 
necessary. If the problem recurs, de the 
following before calling IBM: 
• Have the user source prograrr., user macro 

definitions and associated listing 

available. 
• If the COPY statement was used, execute 

the IEEPTPCH utility program to attain a 
copy of the PDS member specified in the 
CCFY statement. 

IEU071 ILLEGAL OCCURRENCE OF LCL, GEL, OR ACTR 
STATEMENT 

Ex£lag~~iQg: LCL, GBL, or ACTR staterr.ent 
not in proper place in the program. 

Severity Code: 8 

Programmer Response: Make sure the source 
code is correct and reassemtle if 
necessary. If the problem recurs, do the 
following before calling !EM: 
• Have the user source program, user macro 

definitions and associated listing 
available. 

• If the CCFY statement was used, execute 
the IEEFTFCH utility program to attain a 
copy of the PDS rrember specified in the 
CCFY statement. 

IEU072 ILLEGAL RANGE ON !SEQ STA'IErl:EN'I 

Explanation: One or more columns to te 
sequence checked are between the "tegin" 
and "end" columns cf the statement. 

Programmer RespQg~~: Make sure the source 
code is correct and reassemble if 
necessary. If the problem recurs, do the 
following before calling IBM: 
• Have the user source prcgram, user wacrc 

definitions and associated listing 
available. 

• If the COPY statement was used, execute 
the IEEPTFCH utility program to attain a 
copy of the PDS member specified in the 
CCPY statement. 

IEU073 ILLEGAL NAf.'E FIELD 

~lan~~ion: (1) The name field is blank 
in a statement where a narre is required. 
(2) A name is present where no name is 
allowed. (3) The wrong type of symbol is 
in the name field (e.g., an ordinary symbol 
in a conditional assembly statement). 

Programmer Response: Make sure the source 
code is correct and reassemtle if 
necessary. If the proble~ recurs, do the 
following before calling !EM: 
• Have the user source program, user macro 

definitions and associated listing 
available. 

• If the COPY statement was used, execute 
the IEEPTPCH utility program to obtain a 
copy of the FCS rrember specified in the 
COPY statement. 

IEU074 ILLEGAL STATEMENT IN COPY COCE OR SYSTEM 
fv'.ACRC 

Explanation: A statement being copied was 
a CCFY, ENC, ICTL, !SEQ, MACRO, MENC, 

Appendix A. Diagnostic Messages 47 



OPSYN, or a model statement in a macro 
containing an END, PRINT, COPY, !SEQ, IcrL, 
OPSYN. 

Severity Code: 8 

Programmer Response: Make sure the source 
code· is correct and reassemble if 
necessary. ·1f the problem recurs, do the 
following before calling IBM: 
• Have the user source program, user macro 

definitions and associated listing 
available. 

• If the COPY statement was used, execute 
the IEBPTPCH utility program to obtain a 
copy of the PDS member specified in the 
COPY statement. · 

IEU075 ILLEGAL STATEMENT OUTSIDE OF A MACRO 
DEFINITION 

Explanation: ·statement allowed only in a 
macrg definition encountered outside macro 
definitions (in open code), e.g., period 
asterisk· (.*), MNOTE statement. 

Severity Code: 8 

Programmer Response: Make sure the source 
code is correct and reassemble if 
necessary. If the problem recurs, do the 
following before calling IBM: 
• Have the user source program, user macro 

definitions and associated listing 
available. 

• If the COPY statement was used, execute 
the IEBPTPCH utility program to obtain a 
copy of the PDS member specified in the 
COPY Statement. 

IEU076 SEQUENCE ERROR 

Explanation: Sequence error discovered by 
the sequence checking mechanism initiated 
by an !SEQ instruction. 

Severity Code: 12 

Programmer Response: Make sure the source 
code is correct and reassemble if 
necessary. If the problem recurs, do the 
following before calling IBM: 
• Have the user source program, user macro 

definitions and associated listing 
available. 

• If the COPY statement was used, execute 
the IEBPTPCH utility program to obtain a 
copy of the PDS member specified in the 
COPY statement. 

IEU077 ILLEGAL CONTINUATION CARD 

48 

Explanation: Either there are too many 
continuation cards, or there are non-blanks 
between the begin and continue columns on 
the continuation card. 

Severity Code: 8 

Programmer Response: Probable user error. 
Make sure source is correct and reassemble 
if necessary. If the problem recurs, do 
the following before calling IBM: 
• Have the user source program, user macro 

definitions, and associated listings 

available~ 
• If the COPY statement was used, execute 

the IEBPTPCH utility program to obtain a 
copy of the PDS member specified in the 
COPY statement. 

IEU078 INCOMPATIBLE ASSEMELER OPTIONS ON THE 
EXECUTE CARD 

Explanation: One of the following: 
• The t'OS assembler option has been 

specified along with LOAD, TEST, RENT, 
TERM, or NOALGN. The assembler has used 
the options specified. 

• The NUM or STMT option has been specified 
along with NOTER~. The assembler has not 
produced any SYSTERM output. 

Severity Code: 0 

Programmer Response: Make sure all 
assembler options specified are correct and 
reassemble if necessary. If problem 
recurs, do the following before calling 
IBM: 
•Make sure that MSGLEVEL=(1,1) was 

specified in the JOB statement. 
• Have the user source program, user macro 

definitions, and associated listings 
available. 

IEU079 ILLEGAL STATEMENT IN MACRO DEFINITION 

Explanation: This operation is not allowed 
within a macro definition. 

Severity Code: 8 

Programmer Response: Probable user error. 
Make sure the source code is correct and 
reassemble if necessary. If the problem 
recurs, do the following before calling 
IBM: 
• Have the user source program, user macro 

definitions, and associated listings 
available. 

• If the COPY statement was used, execute 
the IEBPTPCH utility program to obtain a 
copy of the PDS member specified in the 
COPY statement. 

IEU080 ILLEGAL START CARD 

Explanation: Statements affecting or 
depending upon the location counter have 
been encountered before a START statement. 

Severity Code: 8 

Proc;rrammer Response: Make sure the source 
code is correct and reassemble if 
necessary. If the problem recurs, do the 
following before calling IBM: 
• Have the user source program, user macro 

definitions and associated listing 
available. 

• If the COPY statement was used, execute 
the IEBPTPCH utility program to obtain a 
copy of the PDS member specified in the 
COPY statement. 



IEU081 ILLEGAL FORMAT IN GBL OR LCL STA~EMENTS 

Explanation: An operand is not a variable 
symbol. 

Severity Code: 8 

Programmer Response: Make sure the source 
code is correct and reassemble if 
necessary. If the problem recurs, de the 
following before calling IBM: 
• Have the user source program, user macro 

definitions and associated listing 
available. 

• If the COPY statement was used, ·execute 
the IEBPTPCH utility program tc obtain a 
copy of the PDS member specified in the 
COPY statement. 

IEU082 ILLEGAL DIMENSION SPECIFICATION IN GBL OR 
LCL STATEMENT 

Explanation: Dimension is other than 1 to 
2500. 

Severity Code: 8 

Programmer Response: Make sure the source 
code is correct and reassemble if 
necessary. If the problem recurs, do the 
following before calling IBM: 
• Have the user source program, user macro 

definitions and associated listing 
available. 

• If the COPY statement was used, execute 
the IEBPTPCH utility program tc obtain a 
copy of the PDS member specified in the 
COPY statement. 

IEU083 SET STATEMENT NAME FIELD NOT A VARIAELE 
SYMBOL 

Severity Code: 8 

Programmer Response: Make sure the source 
code is correct and reassemble if 
necessary. If the problem recurs, do the 
following before calling IBM: 
• Have the user source program, user macro 

definitions and associated listing 
available. 

• If the COPY statement was used, execute 
the IEBPTPCH utility prograrr. tc obtain a 
copy of the PDS member specified in the 
COPY statement. 

IEU084 ILLEGAL OPERAND FIELD FORMAT 

Explanation: Syntax invalid, e.g., AIF 
statement operand does not start with a 
left parenthesis; operand of AGO is not a 
sequence symbol; operand of PUNCH, TITLE, 
MNOTE not enclosed in quotes. 

Severity Code: 8 

Pro9rammer Response: Make sure the source 
code is correct and reassemble if 
necessary. If the problem recurs, de the 
following before calling IBM: 
• Have the user source program, user macro 

definitions and associated listing 
available. 

• If the COPY statement was used, execute 
the IEBPTPCH utility program tc cbtain a 

copy of the FCS member specified in the 
COPY statement. 

IEU085 INVALID SYNTAX IN EXPRESSION 

~lan~~ion: Invalid de~imiter, too many 
terms in expression, too rrany levels of 
parentheses, two operators in succession, 
two terms in succession, or illegal 
character. 

Programmer Response: Make sure the source 
code is correct and reassemtle if 
necessary. If the problem recurs, do the 
following before calling IEM: 
• Have the user source program, user macro 

definitions and associated listing 
available.· ·. . ; . · .. · 

• If the COPY statement was used, execute 
the IEEPTFCH utility program to ottain a 
copy of the PDS roember specified in the 
COPY statement. 

IEU086 ILLEGAL USAGE OF SYSTEM VARIABLE SY~BOl 

Explanation: A system variable symtol 
appears in the name field of a SET 
statement, is declared in a GBL or lCL 
statement, or is an unsutscripted &SYSLIST 
in a context other than N'&SYSLIST. 

Severity Code: 8 

Programmer Response: Make sure the source 
code is correct and reassemtle if 
necessary. If the problerr. recurs,.do the 
following before calling IEM: 
• Have the user source program, user macro 

definitions and associated listing 
available. · 

• If the COPY statement was used, execute 
the IEEPTPCH utility program to obtain a 
copy of the PCS rrember specified in the 
COPY statement. 

IEU087 NO ENDING APOSTROPHE 

Explanation: There is an unpaired 
apostrophe or ampersand in the statement. 

Severity Code: 8 

Pro.9_E~er_g~~E2n~~= Make sure the source 
code is correct and reassemble if 
necessary. If the problem recurs, do the 
following before calling IEM: 
• Have the user source prcgram, user macro 

definitions and associated listing 
available. 

• If the COPY statement was used, execute 
the IEEPTFCH utility program to ottain a 
copy of the PDS rrember specified in the 
CCPY statement. 

Appendix A. Diagnostic Messages 49 



IEU088 UNDEFINED OPERATION CODE 

Explanation: Symbol in operation cede 
field does not correspond to a valid 
machine or assembler operation code or to 
any operation code in a macro prctetype 
statement, or a SYSLIB data set has not 
been provided. If the statement is OPSYN, 
the operand entry is not a defined rrachine 
or extended operation code, or the operand 
entry is omitted and the name entry is not 
a defined machine or extended operation 
code. If the r::os option is in effect, DXD 
and CXD operation codes will be flagged as 
undefined. 

Severity Code: 12 

Programmer Response: Probable user error. 
Make sure the source code is correct and 
reassemble if necessary. If problem 
recurs, do the following before calling 
IBM: 
• Make sure that MSGLEVEL= ( 1, 1) was 

specified in the JOB staterrent. 
• Have the user source program, user macro 

definitions, and associated listings 
available. 

• If the COPY statement was used, execute 
the IEBPTPCH utility program to obtain a 
copy of the PDS member specified in the 
COPY S'IATEMENT. 

IEU089 INVALIC A'I'IRIEUTE NOTATION 

Explanation: Syntax error inside a macro 
definition, e.g., the argument of the 
attribute reference is not a symbelic 
parameter. 

Severity Code: 8 

Programmer Response: Probable user error. 
Make sure the source code is correct and 
reassemble if necessary. If the preblem 
recurs, do the following before calling 
IEM. 
• Have the user source program, user macro 

definitions, and associated listings 
available. 

• If the COPY statement was used, execute 
the IEBPTPCH utility program to obtain a 
copy of the PDS member specified in the 
COPY Sta ternent. 

IEU090 INVALID SUBSCRIPT 

50 

Explanation: Syntax error, e.g., deuble 
subscript where single subscript is 
required or vice versa; not right 
parenthesis after subsc:r:ipt. 

Severity Code: 8 

Programmer Response: Make sure the source 
code is correct and reassemble if 
necessary. If the problem recurs, do the 
following before calling IBM: 
• Have the user source program, user macro 

definitions and associated listing 
available. 

• If the COPY statement was used, execute 
the IEBPTPCH utility program te obtain a 
copy of the PDS member specified in the 
COPY statement. 

IEU091 INVALID SELF-DEFINING 'IER~ 

~lan~!ion: Value is tee large or is 
inconsistent with the data type, i.e., 
severity code of MNOfE statement greater 
than 255. 

PrQ.9!:~mmer_R~~E2n~~= Make sure the source 
code is correct and reassemble if 
necessary. If the problem recurs, do the 
following before calling IEM: 
• Have the user source prcgram, user macro 

definitions and associated listing 
available. 

• If the COPY statement was used, execute 
the IEEPTFCH utility program to ottain a 
copy of the FDS member specified in the 
COPY statement. 

IEU092 INVALID FORMA'I FOR VARIABLE SYMBOL 

Explanation: 'Ihe first character after the 
ampersand is not alphabetic, or the 
variable symbol contains more than 8 
characters, or failure to use double 
ampersand in TITLE card or character 
self-defining term. 

~ro_9!:amm~E-R~~Eon~~= Make sure the source 
code is correct and reassemble if 
necessary. If the problem recurs, do the 
following before calling IBM: 
• Have the user source program, user macro 

definitions and associated listing 
available. 

• If the COPY statement was used, execute 
the IEEPTFCH utility program to attain a 
copy of the PDS member specified in the 
COPY statement. 

IEU093 UNBALANCED FARENTHESIS OR EXCESSIVE LEF'I 
PARENTHESES 

Explanation: End cf statement or card 
encountered before all parenthesis levels 
are satisfied. May be caused by embedded 
blank or other unexpected terminator, or 
failure to have a punch in continuation 
column. 

Severity Code: 8 

Pro.9!:2mm~E-R~~E2ns~: Make sure the source 
code is correct and reassemble if 
necessary. If the problem recurs, do the 
following before calling IEM: 
• Have the user source prcgram, user macro 

definitions and associated listing 
available. 

• If the COPY statement was used, execute 
the IEBPTFCH utility program to attain a 
copy of the PDS member specified in the 
COPY statement. 

IEU094 INVALID OR ILLEGAL NAME OR OPERATION IN 
PROTOTYPE S'IATEMEN'I 

Explan~~ion: Name not blank or variable 
symbol, or variable symbol in name field is 
subscripted, or violation of rules for 
forming variable symbol (must begin with 



ampersand (&) followed by 1-7 letters 
and/or numbers first of which must be a 
letter), or statement following 'MACRO' is 
not a valid prototype statement. 

Severity Code: 12 

Programmer Response: Make sure the source 
code is correct and reassemble if 
necessary. If the problem recurs, do the 
following before calling IBM: 
• Have the user source program, .user macro 

definitions and associated listing 
available. 

• If the COPY statement was used, execute 
the IEBPTPCH utility program tc obtain a 
copy of the PDS member specified in the 
COPY statement. 

IEU095 ENTRY TABLE OVERFLOW 

Explanation: Number of ENTRY symbols, 
i.e., ENTRY instruction operands, exceeds 
100. 

Severity Code: 8 

Programmer Response: Make sure the source 
code is correct and reassemble if 
necessary. If the problem recurs, do the 
following before calling IBM: 
• Have the user source program, user macro 

definitions and associated listing 
available. 

• If the COPY statement was used, execute 
the IEBPTPCH utility program tc obtain a 
copy of the PDS member specified in the 
COPY statement. 

IEU096 MACRO INSTRUCTION OR PROI'Ol'YPE OPERAND 
EXCEEDS 255 CHARACTERS IN LENGTH 

Severity Code: 12 

Programmer Response: Make sure the source 
code is correct and reassemble if 
necessary. If the problem recurs, de the 
following before calling IBM: 
• Have the user source program, user macro 

definitions and associated listing 
available. 

• If the COPY statement was used, execute 
the IEBPTPCH utility program tc obtain a 
copy of the PDS member specified in the 
COPY statement. 

IEU097 INVALID FORMAT IN MACRO INSTRUC'IION OPERAND 
OR PROTOTYPE PARAMETER 

Explanation: This message can be caused 
by: 

1. Illegal "=" 
2. A single "&" appears somewhere in the 

standard value assigned to a ~rototype 
keyword parameter. 

3. First character of a prototype parameter 
is not "&". 

4. Prototype parameter is a subscripted 
variable symbol. 

Page of GC26-3756-6 
Revised July 15, 1972 
By TNL GNJJ-8144 

5. Invalid use of alternate format in 
prototype statement, e.g.,. 
10 16 72 
PROTO &A I &B , 

PROTO &A I &B, 
&C 

or 
x 

6. Unintelligible prototype parameter, 
e.g., •&A*• or •&A&&." 

7. Illegal (non-assembler) character 
appears in prototype parameter or macro 
instruction operand. 

Severity Code: 12 

Programmer Response: Make sure the source 
code is correct and reassemble if 
necessary. If the problem recurs, do the 
following before calling IBM: 
• Have the user source program, user macro 

definitions and associated listing 
available. 

• If the COPY statement was used, execute 
the IEBPTPCH utility program to obtain a 
copy of the PDS member specified in the 
COPY statement. 

IEU098 EXCESSIVE NUMBER OF OPERANDS OR PARAMETERS 

Explanation: Either the prototype has more 
than 200 parameters, or the macro 
instruction has more than 200 operands. 

Severity Code: 12 

Programmer Response: Make sure the source 
code is correct and reassemble if 
necessary. If the problem recurs, do the 
following before calling IBM: 
• Have the user source program, user macro 

definitions and associated listing 
available. 

• If the COPY statement was used, execute 
the IEBPTPCH utility program to obtain a 
copy of the PDS member specified in the 
COPY statement. 

IEU099 POSITIONAL MACRO INSTRUCTION OPERAND, 
PROTOTYPE PARA~ETER OR EXTRA COMMA FOLLOWS 
KEYWORD 

Severity Code: 12 

Programmer Response: Make sure the source 
code is correct and reassemble if 
necessary. If the problem recurs, do the 
following before calling IBM: 
• Have the user source program, user macro 

definitions and associated listing 
available. 

• If the COPY statement was used, execute 
the IEBPTPCH utility program to obtain a 
copy of the PDS member specified in the 
COPY statement. 

IEU100 STATEMENT COMPLEXITY EXCEEDED 

Explanation: More than 32 operands in a 
DC, DS, DXD, or literal DC, or more than 50 
terms in a statement. 

Severity Code: 8 

Appendix A. Diagnostic Messages 51 



Programmer Response: Make sure the source 
code is correct and reassemble if 
necessary. If the problem recurs, do the 
following before calling IBM: 
• Have the user source program, user macro 

definitions and associated listing 
available. 

• If the COPY statement was used, execute 
the IEBPTPCH utility program to obtain a 
copy of the PDS member specified in the 
COPY statement. 

IEU101 EOD ON SYSIN 

Explanation: EOD before END card. 

Severity Code: 12 

Programmer Response: Make sure the source 
code is correct and reassemble if 
necessary. If the problem recurs, do the 
following before calling IBM: 
• Have the user source program, user macro 

definitions and associated listing 
available. 

• If the COPY statement was used, execute 
the IEBPTPCH utility program tc obtain a 
copy of the PDS member specified in the 
COPY statement. 

IEU102 INVALID OR ILLEGAL ICTL 

Explanation: The operands of the ICiL are 
out of range, or the ICTL is not the first 
statement in the input deck. (Assembly is 
terminated and further input is ignored.) 

Severity Code: 16 

Programmer Response: Make sure the source 
code is correct and reassemble if 
necessary. If the problem recurs, do the 
following before calling IBM: 
• Have the user source program, user macro 

definitions and associated listing 
available. 

• If the COPY statement was used, execute 
the IEBPTPCH utility program tc obtain a 
copy of the PDS member specified in the 
COPY Statement. 

IEU103 ILLEGAL NAME IN OPERAND FIELD OF COPY CARD 

52 

Explanation: Syntax error, e.g., symbol 
has more than 8 characters or has an 
illegal character. 

Severity Code: 12 

Programmer Response: Probable user error. 
Make sure the source code is correct and 
reassemble if necessary. If the problem 
recurs, do the following before calling 
IBM: 
• Have the user source program, user macro 

definitions, and associated listings 
available. 

• If the COPY statement was used, execute 
the IEBPTPCH utility program tc obtain a 
copy of the PDS member specified in the 
COPY statement. 

IEU104 COPY CODE NOT FOUN[ 

Explanation: The operand of a COPY 
statement specified COPY text which cannot 
be found in the library. 

Severity Code: 12 

Programmer Response: Probable user error. 
Make sure the source code is correct and 
reassemble if necessary. If problem 
recurs, do the following before calling 
IBM: 
• Make sure the SYSLIB DD statement is 

included. 
•Make sure that MS3LEVEL=(1,1) was 

specified in the JOB statement. 
• Have the user source program, user macro 

definitions, and associated listings 
available. 

• If the COPY statement was used, execute 
the IEBPTPCH utility program to obtain a 
copy of the PDS member specified in the 
COPY statement. 

IEU105 EOD ON SYSTEM MACRO LIBRARY 

Explanation: EOD before MEND card. 

severity Code: 12 

Programmer Response: Probable user error. 
Make sure the source code is correct and 
reassemble if necessary. If the problem 
recurs, do the following before calling 
IBM: 
• Have the user source program, user macro 

definitions, and associated listings 
available. 

• If the COPY statement was used, execute 
the IEBPTPCH utility program to obtain a 
copy of the PDS member specified in the 
COPY statement. 

IEU106 NOT NAME OF DSECI' OR DXD 

Explanation: Referenced symbol expected to 
be DSECT name, but it is not. 

Severity Code: 8 

Programmer Response: Make sure the source 
code is correct and reassemble if 
necessary. If the problem recurs, do the 
following before calling IBM: 
• Have the user source program, user macro 

definitions and associated listing 
available. 

• If the COPY statement was used, execute 
the IEBPTPCH utility program _to obtain a 
copy of the PDS member specified in the 
COPY statement. 

IEU107 INVALID OPERAND 

~lanation: Invalid syntax in DC operand, 
e.g., invalid hexadecimal character in 
hexadecimal CC; operand string too long for 
X, B, C, DC's; operand unrecognizable, 
contains invalid value, or incorrectly 
specified. 



Severity Code: 8 

Programmer Response: Probable user error. 
Make sure the source code is correct and 
reassemble if necessary. If the problem 
recurs, do the following before calling 
IBM: 
• Have the user source program, user macro 

definitions, and associated listings 
available. 

• If the COPY statement was used, execute 
the IEBPTPCH utility program to obtain a 
copy of the PDS member specified in the 
COPY statement. 

IEU108 PREMATURE EOD 

Explanation: Indicates an internal 
assembler error; should not occur. 

Severity Code: 16 

Programmer Response: Reassemble; if the 
problem recurs, do the following before 
calling IBM: 
• Have the user source program, user macro 

definitions, and associated listings 
available. 

• If the COPY statement was used, execute 
the IEBPTPCH utility program to obtain a 
copy of the PDS member specified in the 
COPY statement. 

• Make sure that MSGLEVEL= (1, 1) was 
specified in the JOB statement. 

IEU109 PRECISION LOST 

Severity Code: 8 

Programmer Response: Probable user error. 
Make sure the source code is correct and 
reassemble if necessary. If the problem 
recurs, do the following before calling 
IBM: 
• Have the user source program, user macro 

definitions, and associated listings 
available. 

• If the COPY statement was used, execute 
the IEBPTPCH utility program to obtain a 
copy of the PDS member specified in the 
COPY statement. 

IEU110 EXPRESSION VALUE TOO LARGE 

Explanation: Value of expression not in 
range than -16777216 to +16777215. 
Expressions in EQU and ORG statements are 
flagged if (1) they include terms 
previously defined as negative values, or 
(2) positive terms give a result of more 
than three bytes in magnitude. The error 
indication may be erroneous due to (1) the 
treatment of negative values as three-byte 
positive values, or (2) the effect of large 
positive values on the location counter if 
a control section begins with a S~AR~ 
statement having an operand greater than 
zero, or a control section is divided into 
subsections. 

Severity Code: 8 

Page of GC26-3756-6 
Revised July 15, 1972 
By TNL GNJJ-8144 

Programmer Response: Probable user error. 
Make sure the source code is correct and 
reassemble if necessary. If the problem 
recurs, do the following before calling 
IBM: 
• Have the user source program, user macro 

definitions, and associated listings 
available. · 

• If the COPY statement was used, execute 
the IEBPTPCH utility program to obtain a 
copy of the PDS member specified in the 
COPY statement. 

IEU111 OPEN FAILED FOR SYSGO, NOLOAD OPTION USED 

Explanation: DD statement incorrect or 
missing. 

Severity Code: 16 

Programmer Response: Probable user error. 
If necessary supply missing DD statement or 
make sure that information on DC statement 
is correct and reassemble. If problem 
recurs, do the following before calling 
IBM: 
• Have the user source program, user macro 

definitions, and associated listings 
available. 

• If the COPY statement was used, execute 
the IEBPTPCH utility program to obtain a 
copy of the PDS member specified in the 
COPY statement. 

• Make sure that MSGLEVEL= ( 1, 1) was 
specified in the JOB statement. 

IEU112 OPEN FAILED FOR SYSPUNCH, NODECK OPTION 
USED 

Explanation: CD statement incorrect or 
missing. 

Severity Code: 16 

Programmer Response: Probable user error. 
If necessary supply missing DC statement or 
make sure that information on DD statement 
is correct and reassemble. If problem 
recurs, do the following before calling 
IBM: 
• Have the user source program, user macro 

definitions, and associated listings 
available. 

• If the COPY statement was used, execute 
the IEBPTPCH utility program to obtain a 
copy of the PDS member specified in the 
COPY statement. 

• l~ake sure that MSGLEVEL= ( 1, 1) was 
specified in the JOB statement. 

IEU113 OPEN FAILED FOR SYSTERM, NOTERM OPTION USED 

Explanation: DD statement incorrect or 
missing. 

Severity Code: 0 

Programmer Response: Probable user error. 
If necessary supply missing DD statement or 
make sure that information on DD statement 
is correct and reassemble. If problem 
recurs, do the following before calling 
IBM: 

Appendix A. Diagnostic Messages 53 



Page of GC26·3756-6 
Revised July 15, 1972 
By TNL GN33-8144 

• Have the user source program, user macro 
definitions, and associated listings 
available. 

• If the COPY statement was used, execute 
the IEBPTPCH utility program to obtain a 
copy of the PDS member specified in the 
COPY Statement. 

•Make sure that MSGLEVEL=(1,1) was 
specified in the JOB statement. 

IEU116 ILLEGAL OPSYN 

Explanation: An OPSYN statement may be 
preceded only by an ICTL instruction or 
another OPSYN statement. 

Severity Code: 8 

Proqrammer Response: Probable user error. 
Make sure the source code is correct and 
reassemble if necessary. If the problem 
recurs, do the following before calling 
IBM: 
• Have the user source program, user macro 

definitions, and associated listings 
available. 

• If the COPY statement was used, execute 
the IEBPTPCH utility program to obtain a 
copy of the PDS member specified in the 
COPY statement. 

IEU117 OPSYN TABLE OVERFLOW 

Explanation: No room exi.sts in symbol 
table for this and following OPSYN 
definitions; generated operation codes may 
not be processed correctly. 

Severity Code: 8 

Programmer Response: Probable user error. 
Make sure the source code is correct and 
reassemble if necessary. If the problem 
recurs, do the following before calling 
IBM: 
• Have the user source program, user macro 

definitions, and associated listings 
available. 

• If the COPY statement was used, execute 
the IEBPTPCH utility program to obtain a 
copy of the PDS member specified in the 
COPY statement. 

IEU996I ASSEMBLY TERMINATED INSUFFICIENT STORAGE 

Explanation: One of the following: 
• The partition or region size is less than. 

the mimimum required by the assembler. 
• The blocksize specified for the utility 

data sets is too large for available main 
storage •. 

System Action: Assembly is terminated. 

Severity Code: 20 

IEU997I OPEN FAILED FOR SYSPRINT, NOLIS1 OP'IION 
US.ED 

54 

Explanation: DD statement incorrect or 
missing. 

system Action: Processing continues. 

Severity Code: 0 

Programmer Response: Probable user error. 
If necessary supply the missing DD 
statement or make sure that information on 
the DD statement is correct; reassemble. 
If problem recurs, do the following before 
calling IBM: 
• Have the user source program, user macro 

definitions, and associated listings 
available. 

• If the COPY statement statement was used, 
execute the IEBP'IPCH utility program to. 
obtain a copy of the PCS member specified 
in the COPY statement. 

•Make sure that MSGLEVEL=(1,1) was 
specified in the JOB statement. 

IEU998I ASSEMBLY TERMINATED, OPEN FAILED FOR DATA 
SET (ddname) 

Explanation: DD statement(s) for data 
set (s) SYSIN, SYSU'I1, SYSUT2, SYSUT3, 
and/or SYSPRINT incorrect or missing. 

System Action: Assembly is terminated. 

Severity Code: 20 

Programmer Response: Probable user error. 
Supply missing DD statement(s) or make sure 
that information on DD statement(s) is 
correct; reassemble. If problem recurs, do 
the following before calling IBM: 
• Have the user source program, user macro 

definitions, and associated listings 
available. 

• If the COPY statement was used, execute 
the IEBPTPCH utility program to obtain a 
copy of the PI:S member specified in the 
COPY statement. 

•Make sure that MSGLEVEL=(1,1) was 
specified in the JOB statement. 

IEU999I ASSEMBLY TERMINATED, jobname, stepname, 
unit address, device type, ddname, 
operation attempted, error description 
(bytes 107 through 128 of the SYNACAF 

message buffer; this area is described in 
OS Data Management Macro Instructions. 

Explanation: Indicates a permanent I/O 
error. This message is produced by the 
SYNADAF macro instruction. 

system Action: Assembly is terminated. 

Severity Code: 20 

Programmer Response: Reassemble. If the 
problem recurs, do the following before 
calling IBM: 
• Have the user source program, user macro 

definitions, and associated listings 
available. 

• If the COPY statement was used, execute 
the IEBPTPCH utility program to ottain a 
copy of the PDS member specified in the 
COPY statement. 

•Make sure that MSGLEVEL=(1,1) was 
specified in the JOB statement. 



TXT Card Format 

The format of the TXT cards is as follows: 

Columns Contents 

1 12-2-9 punch 
2-4 TXT 
5 Blank 
6-8 Relative address of first 

instruction on card 
9-10 Blank 
11-12 Byte count -- number of 

bytes in information 
field (cc 17-72) 

13-14 Blank 
15-16 ESDID 
17-72 56-byte information field 
73-76 Deck ID (from first TITLE 

card) 
77-80 Ca rd sequence number 

RLD Card Format 
The format of the RLD card is as follows: 

Columns 

1 
2-4 
5-10 
11-12 

Contents 

1 2- 2-9 punch 
RLD 
Blank 
Data field count -- number 
of bytes of information in 
data field (cc 17-7 2) 

13-16 Blank 
17-72 Data field: 

17-18 Relocation ESDID 
19-20 Position ESDID 
21 Flag byte 
22-24 Absolute address to be 

relocated 
25-72 Remaining RLD entries 

73-76 Deck ID (from first TITLE 
card) 

77-80 Card sequence number 

If the rightmost bit of the f-lag byte is 
set, the following RLD entry has the same 
Relocation ESDID and Position ESDID, and 
this information will not be repeated; if 
the rightmost bit of the flag byte is not 
set, the next RLD entry has a different 
Relocation ESDID and/or Position ESDID, and 
both ESDIDs will be recorded. 

For example, if the RLD Entries 1, 2, 
and 3 of the program listing (Ap~endix C) 
contain the following information: 

Appendix B. Object Deck Output 

Pos. Rel. 
ESDID ESDID Flag Address 

Entry 1 02 04 oc 000100 
Entry 2 02 04 oc 000104 
Entry 3 03 01 oc 000800 

Columns 17-36 of the RLD card would 
appear as follows: 

E.,try 1 Entoy 2 

Column: 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37- 72 

oo 04 oo 02 oo oo 01 oo oc on :>1 04 oo 01 oo 03 oc oo oa oo 

ESD ID's t~t~ ESD ID's t
l--,--1~ 

Address blanks 

Flag Flag Flag 
(set) (not (not 

cot) set) 

ESD Card Format 
The format of the ESD card is as follows: 

Columns 

1 
2-4 
5-10 
11-12 

13-14 
15-16 

17-64 

65-72 
73-76 

77-80 

Contents 

12- 2- 9 punch 
ESD 
Blank 
Variable field count --
number of bytes of information in 
variable field (cc 17-64) 
Blank 
ESDID of first SD, XO, CM, WX, 
PC, or ER in variable field 
Variable field. One to 
three 16-byte items of the 
following format: 
8 bytes Name, padded 

1 byte 

3 bytes 
1 byte 

3 bytes 

Blank 

with blanks 
ESD type code 
The hex value is: 

00 SD 
01 LD 
02 ER 
04 PC• 
05 CM 
06 XD (PR) 
OA WX 

Address 
Alignment if XC; 
otherwise blank 
Length, LDID, or 
blank 

Deck ID (from first TITLE 
card) 
Card sequence number 

Appendix B. Object Ceck Output 55 



Page of GC26-3756-6 
Revised July 15, 1972 
By TNL GN33-8144 

END Card Format 
The format of the END card is as follows: 

Columns 

1 
2-4 
5 
6-8 

9-14 
15-16 

17-32 
33 
34-43 

44-45 
46-47 

48-49 

50-52 

53-72 
73-80 

Contents 

12-2...;9 punch 
END 
Blank 
Entry address from operand 
of END card in source deck 
(blank if no operand) 

Blank 
ESDID of entry point (blank 
if no operand) 
Blank 
1 
Order number of the assembler: 
S360AS037. 
Version level of the assembler. 
Modification level of the 
assembler. 
Last two digits of the year in 
which the assembly was run. 
Julian day of the year in which 
the assembly was run. 
Normally not used. 
Deck ID and/or sequence number. 
The deck ID is the name field from 
the first named TITLE statement. 
The name can be one to eight 
alphameric characters long. If 
there is no name or the name is 
less than eight characters long, 
the remaining columns contain a 
card sequence number. (Columns 
73-80 of cards produced by PUNCH 
or REPRO statements do not contain 
a deck ID or a sequence number.) 

SYM Card Format 
If requested by the user, the assembler 
punches out SYM cards with symbolic 
information concerning the assembled 
program. These cards can be used by the 
TESTRAN routine or the TSO Test command 
processor. The cards are located between 
the ESD and TXT cards. The format of SYM 
cards is as follows: 

Columns 

1 
2-4 
5-10 
11-12 

13-16 
17-72 
73-76 

77-80 

Contents 

12- 2-9 punch 
SYM 
Blank 
Variable field count -­
number of bytes of text in 
variable field (cc 17-7~ 
Blank 
Variable field (see below) 
Deck ID (from first TITLE 
card) 
Card sequence number 

The variable field (columns 17-72) 
contains up to 56 bytes of TESTRAN text. 

56 

The items making the text are packed 
together, consequently only the last card 
may contain less than 56 bytes of text in 
the variable field. The formats of a text 
card and an individual text item are shown 
in Figure 19. The contents of the fields 
within an individual entry are as follows: 

1. Organization (1 byte) 
0 = non-data type 
1 = data type 

Bits 1-3 ~f non-data type): 
000 = space 
001 = control section 
010 = dummy control section 
011 =common 
100 = machine instruction 
101 = ccw 

Bit 1 (if data type): 
0 = no multiplicity 
1 = multiplicity (indicates 

presence of M field) 
Bit 2 (if data type): 

0 = independent (not a 
packed or zoned decimal 
constant) 

= cluster (packed or 
zoned decimal constant) 

Bit 3 (if data type): 

Bit 4: 

Bits 5-7: 

0 = no scaling 
1 = scaling (indicates pres­

ence of S field) 

0 name present 
1 = name not present 

Length of name minus one 

2. Address (3 bytes) - displacement from 
beginning of control section 

3. Symbol Name (0-8 bytes) ·- symbolic 
name of particular item 

Note: The following fields are only 
present for data-type items. 

4. Data Type (1 byte) - contents in 
hexadecimal 

00 = character 
04 = hexadecima 1, L-type data 
08 = binary 
10 = fixed point, full 
14 = fixed point, half 
18 = floating point, short 
1C = floating point, long 
20 = A-type or Q-type data 
24 = Y-type data 
28 = S-type data 
2C = V-type data 
30 = packed decimal 
34 = zoned decimal 

5. Length (2 bytes for character, 
hexadecimal, or binary items; 1 byte 



for other types) - length of data item 
minus 1 

6. Multiplicity - M field (3 bytes) -
equals 1 if not present 

Page of GC26-3756-6 
Revised July 15, 1972 
By TNL GN33-8144 

7. Scale -signed integer - S field (2 
bytes) - present only for F, H, E, D, 
L, P and z type data, and only if 
scale is non-zero. 

Appendix B. Object Deck Output 56.1 





2 

12 
2 
9 

4 5 10 11 12 13 16 17 

No. 
of 

SYM blank bytes 

Entry 
{complete or 
end portion) 

Org. Address 

3 

of 
text 

blank 

N complete entries 
N ~ 1 

Variable size entries 

Symbol Name 

0-8 

E'igure 19. SYM Card Format 

SYM text - packed entries 

Data 

56 

Entry 
(complete or 
head portion) 

type Length 
Mult. 
factor 

1-2 3 

Scale Org. 

2 

Symbol 
Name 

72 73 76 77 . 80 

Deck 
ID 

·4 

Sequence 
Number 

4 

Appendix B. Object Deck Output .57 



Appendix C. Assembler F Program Listing 

The Assembler F listing shown in this 
appendix results from assembling the source 
program documented in an appendix to the OS 
Assembler Language publication. For easy 
reference to the explanations that appear 
in the section "The Assembler Listing", the 
headings on the listing are numbered. 

0 

Since there were no errors in the 
assembly, a diagnostic list was not 
produced. Each of the following pages 
represents one printer-produced listing 
:r;:age. 

0 
EXAM 
SYMBOL 

0 0 G 0 0 EXTERNAL SYMBOL DICI'IONARY PAGE 1 
TYPE ID ADDR LENGTH LD ID 14.56 10/13/71 

SAMPLR SD 01 000000 0003B8 

58 



0 0 
EXAM SAMPLE PROGRAM 

0 4D 
LOC OBJECT CODE 

000000 

000000 47FO FOOA 
000004 05 
000005 C2CSC7C9D5 
OOOOOA 90EC DOOC 
OOOOOE OSCO 
000010 
000010 SODO COBS 
000014 9857 C390 
000000 
000018 45EO COBE 
00001C 9180 COBC 
000020 4710 COBO 
000000 

e 
ACDR1 ADCR2 

ooocc 

OOOOA 

ooooc 

OOOC8 
003AO 

OOOCE 

oooco 

G) CD 
STMT SOURCE STATEMENT 

2 
3 • 
4 • 
5 • 
6 
1 
8 .• 
9 •• 

10 •• 
11 
12 .• 
13 •• 
14 .• 
15 
16 •• 
17 •• 
18 .• 

PRIN'I DA'IA 

'IHIS IS THE MACRO DEFI~ITION 

MACRO 
MOVE &TO,&FROM 

DEFINE SETC SYMBOL 

LCLC &TYPE 

CHECK NUMBER OF OPERANDS 

AIF (N'&SYSLIS'I NE ~ .ERROR1 

CHECK TYPE A'I'IRIBU'IES OF OPERANDS 

19 AIF (T'&TO NE 'I'&FROM) .ERROR2 

G) 
FO 10CT71 

20 AIF 
21 AIF 
22 AIF 

(T'&TO EQ 'C' OR T'&TO EQ 'G' OR T'&TO EQ 'K').TYPECGK 
(T'&TO EQ 'D' OR T'&TO EQ 'E' OR T'&TC FQ 'H').TYPEtEH 
(T'&TO EQ 'F') .MOVE 

23 AGO .ER OR3 
24 .TYPEDEH ANOP 
25 .• 
26 •• 
21 .• 
28 &TYPE 
29 .MOVE 
30 • 
31 
32 
33 
34 •• 
35 •• 
36 •• 

ASSIGN TYPE A'ITRIBUTE 'IO SETC SYMBOL 

SETC T'&TO 
ANOP 
NEXT TWO STA'IEMENTS GENERATED FOR MOVE ~ACRC 
L&TYPE 2,&FROM 
ST&TYPE 2,no 
MEXI'I 

CHECK LENGTH A'ITRIBU'IES OF OPERANDS 

31 .TYPECGK AIF (L'&TO NE L'&FROM OR L'&TO GT 256) .ERROR4 
38 • NEXT STATEMEN'I GENERA'IED FOR ~OVE MACRO 
39 MVC &TO,&FROM 
40 MEXIT 
41 •• 
42 •• 
43 .• 
44 • ERROR1 
45 
46 .ERROR2 
47 
48 .ERROR3 
49 
50 .ERROR4 
51 
52 • 
53 • 
54 • 
55 SAMPLR 
56 BEGIN 
57+BEGIN 
58+ 
59+ 
60+ 
61 
62 
63 

ERROR MESSAGES FOR INVALID MOVE MACRO INSTRUCTIONS 

MNOTE 
MEX IT 
MNOTE 
MEXI'I 
MNOTE 
MEXI'I 
MNOTE 
MEND 

1,' IMPROPER NUMBER OF OPERANDS, NO STATEMENTS GENERA'IED' 

1,'0PERAND TYPES DIFFERENT, NO STATEMENTS GENERATED' 

1,'IMPROPER OPERAND TYPES, NO STATEMENTS GENERATED' 

1,'IMPROPER OPERAND LENGTHS, NO STATE~ENTS GENERATED' 

MAIN ROU'IINE 

CSEC'I 
SAVE (14 , 12) , , • 
B 10(0,15) BRANCH AROUND ID 
DC AL1 (5) 
DC CL5 BEGIN' IDENTIFIER 
STM 14, 12, 12 (13) SAVE REGISTERS 
BALR R12,0 ESTABLISH ADDRESSABILITY OF PROGRAM 
USING •,R12 AND TELL THE ASSE~BLER WHAT BASE TO USE 
ST 13 , SAVE 13 

0 
PAGE 1 

0 
10/13/71 • 01000019 
01500019 
02000019 
02500019 
03000019 
03500019 
04000019 
04500019 
05000019 
05500019 
06000019 
06500019 
07000019 
07500019 
08000019 
08500019 
09000019 
09500019 
10000019 
10500019 
11000019 
11500019 
12000019 
12500019 
13000019 
13500019 
14000019 
14500019 
15000019 
15500019 
16000019 
16500019 
17000019 
17500019 
18000019 
18500019 
19000019 
19500019 
20000019 
20500019 
21000019 
21500019. 
22000019 
22500019 
23000019 
23500019 
24000019 
24500019 
25000019 
25500019 
26000019 
26500019 
27000019 
27500019 
28000019 

64 LM R5,R7,=A(LISTAREA,16,LISTEND) LOAD LIST AREA PARAME'IERS 

28500019 
29000019 
29500019 
30000019 
30500019 
31000019 
31500019 
32000019 
32500019 
33000019 

65 
66 MORE 
67 
68 
69 
70 
71 .. 

USING LIST,R5 REGISTER 5 POINTS TC THE LIST 
BAL R14,SEARCH FIND LIST ENTRY IN TABLE 
TM SWI'ICH,NONE CHECK TO SEE IF NAME WAS FOUND 
BO NO'I'IHERE BRANCH IF NOT 
USING TABLE,R1 REGISTER 1 NOW POINTS TO TABLE ENTRY 
MOVE TSWITCH,LSWITCH MOVE FUNCTIONS 
NEXT STA'IEMEN'I GENERA'IED FOR MOVE MACRO 

Appendix C. Assembler F Program Listing 59 



Page of GC26-3756-6 
Revised July 15, 1972 
By TNL GN33-8144 

0 0 
EXAM SAMPLE PROGRAM 

0 G 8 
LOC 

000024 

00002A 

000030 
000034 
00003S 
00003C 
000042 
000046 
00004C 

000050 
000050 
000054 
000056 
00005S 
000060 
00006S 
000070 
00007S 
00007B 
00007C 
00007<.:: 
00007E 

OOOOS2 
OOOOS6 
OOOOSA 

oooosc 
oooosc 
000090 
000092 
000094 
00009C 
OOOOA4 
OOOOAC 
OOOOB4 
OOOOB9 
OOOOBA 
OOOOBA 
OOOOBC 
ooooco 
OOOOC4 
oooocs 
oooocc 
ooooso 

OOOOCD 
OOOOCE 
OOOOD2 
OOOOD6 
OOOODA 
OOOODE 
OOOOE4 
OOOOES 

OOOOEA 
OOOOEC 
OOOOFO 
OOOOF4 
OOOOF6 
OOOOFA 
OOOOFE 

60 

OBJECT CODE ACDR1 ACCR2 

D200 1003 500S 00003 

D202 1000 5009 00000 

5S20 500C 
5020 1004 
S756 coos 
D5EF C240 COFO 00250 
4770 C07C 
D55F C330 C1EO 00340 
4770 C07C 

4510 C06C 
0027 
0000 
C1E2E2C5D4C2D3C5 
D940E2C~D4D7D3C5 
40D7D9D6C7D9C1D4 
40E2E4C3C3C5E2E2 
C6E4D3 

0A23 
5SDO COBS 

9SEC DOOC 
41FO 0000 
07FE 

4510 COAA 
0029 
0000 
C1E2E2C5D4C2D3C5 
D940E2C1D4D7D3C5 
40D7D9D6C7D9C 104 
40E4D5E2E4C3C3C5 
E2E2C6E4D3 

0A23 
47FO C06E 
9680 5008 
47FO C02S 
00000000 
00 

00 
947F COBC 
9S13 C39C 
4111 COEO 
SS30 0001 
D507 5000 
4720 COE4 
07SE 

1B13 
4620 COCA 
47FO COEA 
1A13 
4620 COCA 
96SO COBC 
07FE 

oooos 

ooocc 

100S 00000 

ooocc 

oooos 

00009 

ooooc 
00004 
0001S 
00100 
ooosc 
001FO 
OOOSC 

0007C 

ooocs 

ooooc 
00000 

OOOBA 

0007E 

0003S 

003AC 
OOOFO 
00001 
oooos 
000F4 

OOODA 
OOOFA 

OOOCA 

0 
PAGE 2 

0 • G) 0 
STMT SOURCE STATEMENT F010C'I71 10/13/71 

72+ 
73 
74+* 
75+ 
76 
77+• 
7S+ 
79+ 
SO LISTLOOP 
S 1 
S2 
S3 
S4 
S5 
S6+ 
S7+ 
SS+ 
S9+ 
90+ 

91+IHB0005 
9 2+ IHB0005A 
93+ 
94 EXIT 
95 
96+ 
97+ 
9S+ 
99 * 

100 NOTRIGHT 
101+ 
10 2+ NOTR IGHT 
103+ 
104+ 
105+ 

106+1HB0007 
107+IHB0007A 
10S+ 
109 
110 NOTTHERE 
111 
112 SAVE13 
113 SWITCH 
114 NONE 
115 * 
116 * 
117 * 

11S SEARCH 
119 
120 
121 LOOP 
122 
123 
124 
125 

126 
127 
12S HIGHER 
129 

MVC TSWITCH,LSWI'ICH 
MOVE TNUMBER,LNUMBER FROM LIST ENTRY 
NEXT 
MVC 

STA'IEMEN'I GENERATED FOR ~OVE MACRO 
TNUMBER,LNUMBER 

MOVE TADDRESS,LADDRESS TO TABLE EN'IRY 
NEX'I 
L 
ST 
BXLE 
CLC 
BNE 
CLC 
BNE 
WTO 
CNOP 
BAL 
DC 
DC 

TWO S'IA'IEl1EN'IS GENERA'IED FOR MOVE f>'ACRC 
2,LACDRESS 
2,TADDRESS 
R5,R6,MORE LOOP THROUGH THE LIST 
'IES'I'IABL(240) ,'IABLAREA 
NO'IRIGH'I 
TESTLIST (96) ,LISTAREA 
i~O'IRIGH'I 
1 ASSEMBLER SAMPLE PROGRAM SUCCESSFUL' 
0,4 
1,IHB0005A BRANCH AROUND MESSAGE 
AL2(IHB0005-*) t'ESSAGE LENGTH 
B'0000000000000000' MCSFLAGS FIELC 

DC C'ASSEMELER SAMPLE PROGRAM SUCCESSFUL' ~ESSAGE 

EQU * 
DS OH 
SVC 35 ISSUE SVC 
L R13,SAVE13 
RETURN (14, 12) , RC=O 
LM 14,12,12(13) RESTORE THE REGISTERS 
LA 15,0(0,0) LOAD RETURN CODE 
BR 14 RE'IURN 

WTO 'ASSEMBLER SAMPLE PROGRAM UNSUCCESSFUL' 
CNOP 0,4 
BAL 1,IHB0007A BRANCH AROUND MESSAGE 
DC AL2(IHB0007-*) MESSAGE LENGTH 
DC B'0000000000000000' MCSFLAGS FIELD 
DC C'ASSEMBLER SAMPLE PROGRAM UNSUCCESSFUL' 

EQU * 
DS OH 
SVC 35 ISSUE SVC 
B EXI'I 
OI LSWITCH,NONE TURN ON SWITCH IN LIST ENTRY 
B LISTLOOP GO BACK AND LOOP 
DC F'O' 
DC x•oo• 
EQU X' so~ 

BINARY SEARCH ROUTINE 

NI SWITCH,255-NONE '!URN OFF NO'I FOUND SWITCH 
LM R1,R3,=F'12S,4,128' LOAD TABLE PARAMETERS 
LA R 1 , TABLAREA- 16 (R 1) GET ADDRESS CF MICDLE 
SRL R3,1 DIVIDE INCREMENT EY 2 

MESSAGE 

EN'IRY 

CLC LNAME,'INAME COMPARE LIST ENTRY WI'IH 'IAELE 
BH HIGHER BRANCH IF SHOULD EE HIGHER IN 
BCR S,R14 EXIT IF FOUND 
SR R1 ,R3 OTHERWISE IT IS LOWER IN THE 

SC SUBTRACT INCREMENT 
BCT R2,LOOP LOOP 4 TIMES 
B NOT FOUND ARGUMENT IS NOT IN THE TABLE 
AR R 1,R3 ADD INCREMENT 
BCT R2,LOOP LOOP 4 TIMES 

• 33500019 

34000019 

34500019 
35000019 
35500019 
36000019 
36500019 
37000019 

37500019 
38000019 

3S500019 
39000019 

39500019 
40000019 
40500019 
41000019 
41500019 
42000019 
42500019 
43000019 
43500019 

44000019 
44500019 
45000019 
45500019 

EN'IRY 46000019 
'IAELE 46500019 

47000019 

130 NOTFOUND OI SWI'ICH,NONE TURN ON NOT FOUND SWITCH 

TABLE X47500019 
4S000019 
4S500019 
49000019 
49500019 
50000019 
50500019 
51000019 131 BR R14 EXIT 



0 0 
EXAM SAMPLE PROGRAM 

CD G e 
LOC OBJECT CODE AI:DR1 ADDR2 

000100 
000100 0000000000000000 
00010S C1D3D7CSC1404040 
000110 0000000000000000 
00011S C2C5E3C140404040 
000120 0000000000000000 
000128 C4C5D3E3C1404040 
000130 0000000000000000 
000138 C5D7E2C9D3D6D540 
000140 0000000000000000 
00014S C5E3C14040404040 
000150 0000000000000000 
000158 C7C1D4D4C1404040 
000160 0000000000000000 
000168 C9D6E3C140404040 
000170 0000000000000000 
000178 D2C1D7D7C1404040 
000180 0000000000000000 
000188 D3C1D4C2C4C14040 
000190 0000000000000000 
000198 D4E4404040404040 
0001AO 0000000000000000 
0001A8 D5E4404040404040 
0001BO 0000000000000000 
0001B8 D6D4C9C3D9D6D540 
0001CO 0000000000000000 
0001C8 D7CSC94040404040 
0001DO 0000000000000000 
000108 E2C9C7D4C1404040 
0001EO 0000000000000000 
0001E8 E9C5E3C140404040 

0001FO D3C1D4C2C4C14040 
0001F8 0A00001DOOOOOOOO 
000200 E9C5E3C140404040 
000208 05000005000000CA 
000210 E3CSC5E3C1404040 
00 0218 0200002D00000000 
000220 E3C1E44040404040 
000228 0000000000000001 
000230 D3C9E2E340404040 
000238 1F0001D100000000 
000240 C1D3D7C8C1404040 
000248 000000010000007E 

000250 
000250 000001000000007E 
000258 C1D3D7C8C1404040 
000260 0000000000000000 
000268 C2C5E3C140404040 
000270 0000000000000000 
000278 C4C5D3E3C1404040 
0002SO 0000000000000000 
000288 C5D7E2C9D3D6C540 
000290 0000000000000000 
000298 C5E3C14040404040 
0002AO 0000000000000000 
0002A8 C7C1D4D4C1404040 
0002BO 0000000000000000 
0002B8 C9D6E3C140404040 
0002CO 0000000000000000 
0002C8 D2C1D7D7C1404040 
0002DO 00001DOA00000000 

G) • 

Page of GC26-37S6-6 
Revised July IS, 1972 
By TNL GN33-8144 

0 
PAGE 3 

G) 0 
STMT SOURCE STATEMENT F010CT71 10/13/71 

132 • 
133 • THIS 
134 • 
135 DS 
136 TABLAREA DC 

137 DC 

13S DC 

139 DC 

140 DC 

141 DC 

142 DC 

143 DC 

144 DC 

145 DC 

146 DC 

147 DC 

148 DC 

149 DC 

150 DC 

151 • 
152 • THIS 
153 • 
154 LISTAREA DC 

155 DC 

156 DC 

157 DC 

15S DC 

159 LISTEND DC 

160 • 
161 • THIS 
162 • 
163 DS 
164 TESTTABL DC 

165 DC 

166 DC 

167 DC 

168 DC 

169 DC 

170 DC 

171 DC 

172 DC 

IS THE TABLE 

OD 
XLS'O',CLS'ALPHA' 

XLS' 0' ,CLS 'BETA' 

XLS'O',CLS'DEL'IA' 

XLS'O',CLS'EPSILON' 

XLS' 0' ,CLS 'E'IA I 

XLS'O',CL8'GAMMA' 

XLS' 0' ,CLS 'IO'IA' 

XLS'O',CLS'KAPPA' 

XLS' 0' ,CLS 'LAMBDA I 

XLS I 0' ,CL8 'MU' 

XL8'0',CL8'NU' 

XLS'O',CLS'OMICRON' 

XL s ' 0 I , CL s I PHI I 

XLS'O',CLS'SIGMA' 

XLS' 0' ,CL8 'ZE'IA' 

IS THE LIST 

CLS'LAMBDA',X'OA',FL3'29',A(BEGIN) 

CLS •ZETA' ,x• 05 •, FL3' 5' ,A (LOOP) 

CL8'THETA',X'02',FL3'45',A(BEGIN) 

CLS'TAU' ,x•oo• ,FL3'0' ,A (1) 

CLS •LIST' ,x• 1F', FL3' 465' ,A (O) 

CLS •ALPHA' ,x• oo • ,FL3' 1 •,A (123) 

IS '!HE CON'IROL TABLE 

OD 
FL3' 1' ,x•oo• ,A (123) ,CLS'ALPHA' 

XLS I 0 I , CLS I BET A I 

XL8'0',CLS'DELTA' 

XL8'0',CL8'EPSILON' 

XLS ' 0 I I CLS I ET A I 

XL8'0',CLS'GAMMA' 

XLS I 0', CL8' IOTA' 

XLS'O',CLB'KAPPA' 

FL3'29',X'0A',A(BEGIN) ,CLS'LAMBDA' 

• 51500019 
52000019 
52500019 
53000019 
53500019 

54000019 

54500019 

55000019 

55500019 

56000019 

56500019 

57000019 

57500019 

5S000019 

5S500019 

59000019 

59500019 

60000019 

60500019 

61000019 
61500019 
62000019 
62500019 

63000019 

63500019 

640000 19 

64500019 

65000019 

65500019 
66000019 
66500019 
67000019 
67500019 

6SOOOO 19 

6S500019 

69000019 

695000 19 

70000019 

70500019 

710000 19 

71500019 

Appendix C. Assembler F Program Listing 61 



Page of GC26·3756·6 
Revised July 15, 1972 
By TNL GN33-8144 

0 0 0 
EXAM SAz.!PLE PROGRAM PAGE 4 

0 CD e G) • G) 0 
LOC OBJECT CODE ADDR1 ADDR2 STMT SOURCE STATEMENT FO 10CT71 10/13/71 

0002DS D3C1D4C2C4C14040 4D 
0002EO 0000000000000000 173 DC XLS' 0 ',CLS 'MU' 72000019 
0002ES D4E4404040404040 
0002FO 0000000000000000 174 DC XLS' 0° ,CLS 'NU' 72500019 
0002FS D5E4404040404040 
000300 0000000000000000 175 DC XLS'O',CLS'OMICRON' 73000019 
00030S D6D4C9C3D9D6C540 
000310 0000000000000000 176 DC XLS '0 ',CLS 'PHI I 73500019 
00031S D7CSC94040404040 
000320 0000000000000000 177 DC XLS'O',CL~'SIGMA' 74000019 
00032S E2C9C7D4C1404040 
000330 00000505000000DA 17S DC FL3'5',X'05',A (LOOP) ,CLS'ZETA' 74500019 
00033S E9C5E3C140404040 

179 * 75000019 
1SO * THIS IS THE CONTROL LIST 75500019 
1S 1 * 76000019 

000340 D3C1D4C2C4C14040 1 S2 TESTLIST DC CLS •LAMEDA' ,x• OA' ,FL3' 29' ,A (BEGIN) 76500019 
00034S OA00001D00000000 
000350 E9C5E3C140404040 1S3 DC CLS' ZETA' ,X' 05', FL3' 5' ,A (LOOP) 77000019 
00035S 05000005000000CA 
000360 E3CSCSE3C1404040 1S4 DC CLS'THETA',X'S2',FL3'45',A(BEGIN) 77500019 
00036S S200002D00000000 
000370 E3C1E44040404040 1S5 DC CLS 'TAU' ,x• so•, FL3' o •,A ( 1) 7SOOOO 19 
00037S S000000000000001 
0003SO D3C9E2E340404040 1S6 DC CLS'LIST' ,X'9F' ,FL3'465' ,A (0) 7S500019 
0003SS 9F0001D100000000 
000390 C1D3D7CSC1404040 1S7 DC CLS' ALPHA' ,x•oo• ,FL3' 1' ,A (123) 79000019 
00039S OOOQ00010000007E 

1SS * 79500019 
1S9 * THESE ARE '!HE SYMBOLIC REGISTERS S0000019 
190 * S0500019 

000000 191 RO EQU 0 S1000019 
000001 192 R1 EQU 1 S1500019 
000002 193 R2 EQU 2 S2000019 
000003 194 R3 EQU 3 S2500019 
000005 195 RS EQU 5 S3000019 
000006 196 R6 EQU 6 S3500019 
000007 197 R7 EQU 7 S4000019 
oooooc 19S R12 EQU 12 84500019 
OOOOOD 199 R 13 EQU 13 S5000019 
OOOOOE 200 R1°4 EQU 14 S5500019 
OOOOOF 201 R 15 EQU 15 S6000019 

202 * S6500019 
203 * 'I IS IS '!HE FORMAT DEFINITION OF LIST ENI'RYS S7000019 
204 * S7500019 

000000 205 LIST DSEC'I SS000019 
000000 206 LNAME DS CLS SS500019 
ooooos 207 LSWITCH DS c S9000019 
000009 20S LNUMBER DS FL3 S9500019 
oooooc 209 LADDRESS DS F 90000019 

210 * 90500019 
211 * THIS IS '!HE FORMAT DEFINITION OF TABLE ENI'RYS 91000019 
212 * 91500019 

000000 213 TABLE DSEC'I 92000019 
000000 214 TNUMBER DS FL3 92500019 
000003 215 TSWITCH DS c 93000019 
000004 216 TADDRESS OS F 93500019 
ooooos 217 TNAME OS CLS 94000019 
000000 21S END BEGIN 94500019 

0003AO 000001F000000010 219 =A (LIST.AREA, 16,LISTEND) 
0003AS 00000240 
0003AC OOOOOOS000000004 220 =F' 12S,4, 12S' 
0003B4 ooooooso 

62 



0 0 
EXAM RELOCATION DicrIONARY PAGE 1 

0 G) f) e 0 
POS.ID REL.ID J'.LAGS AC DRESS 10/13/71 

0 1 01 oc 0001FC 
01 01 oc 00020C 
01 01 oc 00021C 
01 01 oc 000204 
01 01 oc 000 334 
01 01 oc 00034C 
01 01 oc 00035C 
01 01 oc 00036C 
01 01 oc 0003AO 
0 1 01 oc 0003A8 

Appendix C. Assembler F Program Listing 63 



8 • EXAM CROSS-REFERENCE PJ\GE 

• e e • • 0 
SYMBOL LEN VALUE CEFN REFERENCES 10/13/71 

BEGIN 00004 000000 00057 0154 0156 0172 0182 0184 0218 
EXIT. 00004 00007E 00094 0109 
HIGHER 00002 OOOOF4 00128 0123 
IHB0005 00001 00007B 00091 0088 
IHB0005A 00002·00007C 00092 0087 
IHB0007 ; 00001 OOOOB9 00106 0103 
IHB0007A 00002 OOOOBA 00107 0102 
LADDRESS 00004 oooooc 00209 0078 
LIST 00001 000000 00205 0065 
LIST AREA 00008 000 lFO 00154 0064 0083 0219 
LI STENO 00008 000240 00159 0064 0219 
LISTLOOP 00004 000038 00080 0111 
LNAME 00008 000000 00206 0122 
LNUMBER 00003 000009 00208 0075 
LOOP 00004 OOOODA 00121 0126 0129 0155 0178 0183 
I.SWITCH 00001 000008 00207 0072 0110 
MORE 00004 000018 00066 0080 
NONE 00001 000080 00114 0067 0110 0118 0130 
NOTFOUND 00004 OOOOFA 00130 0127 
NOTRIGHT 00004,00008C 00102 0082 0084 
NOTT HERE 00004' ooooco 00110 0068 
RO 00001 000000~00191· 
R1 00001 000001 00192 0069 0119 0120 0120 0125 0128 
R12 00001 oooooc 00198 0061 0062 
R13 00001 OOOOOD 00199 0094 
R14 00001 OOOOOE 00200 0066 0124 0131 
R15 00001 OOOOOF 00201 
R2 00001 000002 00193 0126 0129 
R3 00001 000003 00194 0119 0121 0125 0128 
RS 00001·ooooos 00195 0064 0065 0080 
R6 00001 000006 00196 0080 
R7 00001 000007 00197 00611 
SAMPLR 00001 000000 00055 
SAVE13 00004 OOOOC8 00112 0063 0094 
SEARCH 00004 OOOOCE 00118 0066 
SWITCH 00001 oooocc 00113 0067 0118 0130 
TABLAREA 00008 000100 00136 0081 0120 
TABLE 00001 000000 00213 0069 
TADDRESS 00004 000004 00216 0079 
TESTLIST 00008 000340 00182 0083 
TESTTABL 00003 000250 00164 0081 
TNAME 00008 000008 00217 0122 
TN UMBER 00003 000000 00214 0075 
TSWITCH 00001 000003 00215 0072 

NO STATEMENTS FLAGGED IN THIS ASSEMBLY 
*STATISTICS• SOURCE RECORDS (SYS IN) 189 SOURCE RECORDS (SYSLIB) = 833 
•OPTIONS IN EFFECT• LIST, DECK, NOLOAD, NOREN'!', XREF, NOTEST, ALGN, OS, N0TERM, LINECNT = 70 

350 PRINTED LINES 

64 



Appendix D. Dynamic Invocation of the Assembler 

The Assembler can be invoked by a problem 
program at execution time through the use 
of the CALL, LINK, XCTL, or ATTACH macro 
instructions. If the XCTL macro 
instruction is used to invoke the 
Assembler, then no user options rray be 
stated. The Assembler will use the 
standard default, as set during system 
generation, for each option. 

If the Assembler is invoked by CALL, 
LINK, or ATTACH, the user may su~~ly: 

1) The Assembler options 
2) ~he ddnames of the data sets to be used 

during processing 

Name Operation Operand 

[symbol] CALL IEUASM, (optionlist 

[,ddnamelist] ), VL 

rNK } 
EP=IEUASM, 

ATTACH PARAM=(optionlist 

[,ddnamelist] ), VL=l 

EP - specifies the symbolic name of the 
Assembler. The entry point at which 
execution is to begin is determined by 
the control program (from the library 
directory entry) • 

PARAM - specifies, as a sublist, address 
parameters to be passed frorr the 
problem program to the Assembler. ~e 

first word in the address para~eter 
list contains the address of the 
option list. The second word contains 
the address of the ddname list. 

opticnlist - specifies the address of a 
variable length list containing the 
options. This address must be written 
even if no option list is prcvided. 

The option list must begin on a 
halfword boundary. 'l'he first two 
bytes contain a count of the number 9f 
bytes in the remainder 0,f the list. 
If no options are specifi~d, the count 
must be zero. The option list is free 
form with each field separated by a 
comma. No blanks or zeros should 
appear in the list. 

ddnamelist - specifies the address of a 
variable length list containing 
alternate ddnames for the data sets 
used during compiler processing. If 
standard ddnames are used~ then this 
operand may be omitted. · 

~he ddname list must begin on a halfword 
boundary. The first two bytes ccntain a 
count of the number of bytes.in the 
remainder of the list. Each· name of less 
than eight bytes must be left-justified and 
padded with blanks. If an alternate ddname 
is omitted, the standard name will be 
assumed. If the name is omitted within the 
list, the 8-byte entry must contain binary 
zeros. Names can be omitted frcrr the end 
merely by shortening the list. The 
sequence of the 8-byte entrtes in the 
ddname list is as follows: 

Entry Alternate Name 

1 not applicable 
2 not applicable 
3 not applicable 
4 SYSLIB 
5 SYSIN 
6 SYSPRINT 
7 SYS FU NCH 
8 SYSUT1 
9 SYSUT2 

10 SYSUT3 
11 SYSGC 
12 SYSTERM 

VL specifies that the sign bit is to be 
set to 1 in the last word of the 
address parameter list. 

Appendix D. Dynamic Invocation of the Assembler :65 



Appendix E. The SYSTERM Listing 

The SYSTERM data set is designed to give 
the user of a remote terminal under the 
Tiroe Sharing Option (TSO) quick access to 
the assembler diagnostics. It lists the 
diagnosed statement immediately fcllcwed by 

·an errcr message, which tells the 
programmer what is wrong with the statement 
that has been flagged. To help identify 
the position of the statement in the 
program, SYSTERM also has facilities for 
printing the line number field (NUM option) 
and the statement number assigned by the 
asserrbler in front of the flagged 
statement. (STMT option) • 

The Assembler option TERM specifies that 
the assembler will write diagnostic 
information on the SYSTERM data set. If 
the programmer does not want the line 
number to be written, he should alsc 
specify the NONUM option. To prevent the 
statement number on the listing from being 
printed, he should specify the NOSTMT 
option in the PARM field of the EXEC card. 

The format of the flagged staterrent on 
SYSTERM is: 

Line No(s) Statement No Source record(s) 

(option NUM) (option STMT) (columns 1-72 of 
the source statement 
lines) 

66 

If a statement contains continuation 
lines it will occupy several lines on the 
listing, each identified by a line numter 
(if option NUM is in effect). If a 
statement in error is discovered during the 
expansion of a macro, or of any inner macro 
called by the outer macro, the first line 
of the outer macro is listed before the 
flagged statement. If a statement is 
flagged during open code conditional 
assembly, the first line of the model 
statement will be listed before the 
statement in error. 

Figures 20 and 21 illustrate the content 
and format of SYSTERM output. Figure 20 
shows the source statement section of a 
SYSPRINT listing, and Figure 21 shows the 
SYSTERM listing produced during the same 
assembly. This example ex,emplifies the 
rules given above. Cptions TERM, NUM, and 
STMT have been in effect during this 
assembly. 

The SYSTERM listing starts with the 
statement ASSEMBLER (F) rCNE. At the end 
of the listing some diagnostic information 
is given: nnn STATEMENTS FLAGGED IN THIS 
ASSEMBLY, which indicates the total numter 
of source statements in error, and nn WAS 
HIGHEST SEVERITY CCCE, which specifies the 
maximum severity code encountered. This 
figure is equal to the return code passed 
by the assembler to the supervisor. 



PAGE 

LOC OBJECT CODE AODR l ADDR2 STMT SOURCE STATEMENT FOlOCT7l 9/27/7 l 

l MACRO 
2 G El\F &P,&L 
3 LCLA &I< 
4 .LOOP ANOP 
5 &K SETA tK + l 
t &P&Ll&l<l c:c F'&Ll&Kl' 
7 AIF l&K LT N'&Ll.LC:CP 
8 .DCNE MEND 
9 GELC &C 

000000 lC SAMPL2 C SECT 
ll SAVE I 14 ol2l ALL REGS ARE SA \/EC IN SLPER\llSCR SAVEAREt 

cocccc 12+ cs 01-. 
co cc cc <;CEC DCCC CC CCC 13+ S Tl' l4,l2ol21l3) S~VE REGISTERS 
000004 OSCO 14 BALR Rl2o0 
CCCCCo 15 USING •,1u.: SET lP BASE REGISTER 

16 &I: SETC ' E' 
000000 0000 ocoo CCC CC 17 L R21END El\C CF AREA 

••• ERRCR • •• 
18 LA R3, .a HIS IS A CUMMY COMMENT 

TC SHCW A 
STATEl'ENT CCNTAINING TDC 

00000.a cccc ocoo 00000 MANY CONTINlATICI\ CARDS 
*** ERROR ••• 

OOOOOE 5840 C02.l OCC28 1 c; L R41FO ZERC CONSTANT FOR RESETTING AREA 
000012 5043 0000 00000 20 LOOP ST R41 CIR3l 
COCClt 413C 3004 CCC04 21 LA R31411R3) RESET AREA A 
0000 lA 1923 22 CR R2 ,R3 
00001( 4770 cooc 00012 23 BNE LOOP 

24 Alf I 'A' EQ 'Q 'I .GO 
25 SR &C,&C OPEN COCE MODEL STATEMENT 

WITH A CCNTINUATICN CARC: 
SR B,B OPEN CODE MODEL STATEl'ENT 

COC02C cc cc WIT I- A CONTINUATION CARO 
••• ERROR ••• 

2t .GO REH.RN I 141121 E~IT FROI' RCLTINE 
COC022 98EC ococ ooooc 27+ LM l4,l2ol2113 l RESTORE THE REGISTERS 
00002t C7FE 2e+ ER 14 RETURN 

29 • 
30 • CONS TAN TS ANO AREAS HA\IE BEEi\ Cl'ITTEO Cl\ FUR PCS E 
31 • 
32 GENF FoO GENERATION OF CONSTANTS 

000028 00000000 33+FO DC F' c• 
34 GENF 11234 EXAMPLE OF MORE THAI\ Cl\E CARD 

IN A MACRO INSTRUCTION 
00002C OOOOOOEA 35+1234 DC F'234 1 

••• ERROR • •• 
COCCO~ 36 R2 El:U 2 
OOOOOj 37 R3 EQU 3 
000004 38 R4 EQU 4 
co cc cc 39 Rl2 E<:U 12 

40 ENC 

Figure 20. SYSPRINT Source Statement Listing 

Appendix E. The SYSTERM Listing 67 



ASSEflBLER IF! CONE 
17 L 

IEU024 NEAR OPERAND COLUMN 
18 LA 

R2 ,END 
4--UNDEFINED 

R3, A 

IEU077 ILLEGAL CONTINUATION CARD 

END OF AREA 
SYMBOL 

THIS IS A D~MMY CO.,.,ENT 
TO SHOW A 
STATEMENT CCNTAINING TOO 
MANY CONTINUATION CARDS 

IE L024 NEAR OPERAND CCLU.,,N 4--UNCEFINEC SYMBOL 

* 

25 SR &Q,&Q OPEN CCDE MGCEL STATE.,ENT * 
SR B, B OPEN CODE MODEL STATEMENT X 

WITH A CONTINUATION CARD 
IEU02~ NEAR OPERAND COLUMN 1--UNDEFlhED SYMBGL 
IEU024 NEAR OPERAND COLUMN 3--UNDEFINED SYMBOL 

34 GENF 1,234 EXAMPLE OF MORE THAN ONE CARD * 
35 +1234 DC F'234' 

IEUO 16 INVALID NAME 
4 STATE .. ENTS FLAGGED IN THIS ASSEMBLY 
8 WAS HIGHEST SEVERITY CCDE 

*OPTIONS IN EFFECT* LIST, NODECK, NOLOAD, NORENT, XREF, NOTEST, ALGN, OS, TERM, NUM, STMT, LINECNT 70 

Figure 21. SYSTERM Assembly Output Listing 
(Produced for the source statements shown in Figure 20.) 

68 



Index 

Indexes to system reference library manuals are consolidated in the publication OS Master Index to Reference Manuals, Order No. GC28-6644. 

For additional information about any subject listed below, refer to other publications listed for the same subject in the Master Index. 

Access methods 12 
BPAM (basic partitioned) 12 
BSAM (basic sequential) 12 
QSAM (queued sequential) 12 

ALGN option 10 
ASMFC, cataloged procedure for 

assembly 15-16 
ASMFCG, cataloged procedure for assembly 

and loader-execution 18,20 
ASMFCL, cataloged procedure for assembly 

and linkage-editing 16-17 
·ASMFCLG, cataloged procedure for assembly, 

linkage-editing, and execution 17-18 
Assembler cataloged procedures 15-21 
Assembler data sets 11-12,14 
Assembler dynamic invocation 65 
Assembler listing 22-27,58-64 

cross reference 26-27 
diagnostics 27 
external symbol dictionary 22-23 
relocation dictionary 26 
source and object program 25-26 
statistical messages 22 

Assembler options 10-11 
defaults 11 

Assembler portion limitations 34 

Blocking and buffering information 12,14 
BPAM (Basic Partitioned Access Method) 12 
BSAM (Basic Sequential Access Method) 12 

Cataloged procedures 15-21 
for assembling (ASMFC) 15-16 
for assembling and linkage-editing 

(ASMFCL) 16-17 
for assembling, linkage-editing, and 
execution (ASMFCLG) 17-18 

for assembling and loader-execution 
(ASMFCG) 18, 20 

overriding 19 
COND= parameter 12-13,19 
Cross reference listing 26-27 

Data, support of unaligned 35-36 
Data constants, type L 36 
Data sets 11-12,14 

blocksizes 12,14 
buffers 12,14 
characteristics 14 
extended-precision floating-point 
instructions 35 

extended-precision floating-point 
simulator 35 

NUM option 10,66,68 
options 12 
STMT option 10,66,68 
SYSGO 10,11,12,65 
SYSIN 11,12,65 

Data sets (con'd} 
SYSLIB 11,12,65 
SYSPRINT 11,12,65 
SYSPUNCH 10,11,12,65 
SYSTERM 11,12,65,66,68 
SYSTERM listing 66,68 
SYSUTl, SYSUT2, SYSUT3 11,12,14,65 
TERM option 10,11,66,68 
Time Sharing Option (TSO) 66 

DCB macro instruction 12 
DD statements 14,19 
ddnames 11-12 
DECK option 10 
Defining data set characteristics 12 
Device naming conventions 15 
Diagnostics 

listing 27 
messages 37-54 

Dictionaries 30-33 
additional requirements 32-33 
global 31,32 
local 31-32,33 
overflow errors 33 

Dictionary size and source statement 
complexity 30-34 

Dynamic invocation of the assembler 65 
DOS option 10 

END card format 56 
Entry point restatement 29 
ESD card format 55 
EXEC statements 19 
External Symbol Dictionary (ESD) 
listing 22-23 

Global dictionary 
at collection time 31 
at generation time .32 

~EBUPDTE utility program 29 

Job control statements 9 
Job steps 9 

LINECNT option 10 
Linkage statements 30 
LIST option 10 
Listing, assembler 22-27,58-64 
LOAD option 10 
Load module modification - entry point 
restatement 29 

Loader-execution, ASMFCG cataloged 
procedure 18,20 

Local dictionary 
at collection time 31-32 
at generation time 32 

Index 69 



Macro-definition library additions 29 
Macro-definition local definition 

parameter table 33 
Macro generation and conditional assembly 

limitations 33-34 
Messages 

diagnostic 37-54 
statistical 22 

MNOTE 12 
Model 85 Programming Considerations 34-36 

extended precision machine 
instructions 35 

OPSYN instruction 35 
type L constant 36 
unaligned data 35-36 

Model 91 Programming Considerations 34 
Model 195 Programming Considerations 36 

NOALGN option 10 
NUM option 10 

Object deck output 55-57 
END card 56 
ESD card 55 
RLD card 55 
SYM card 56-57 
TXT card 55 

Object module linkage 29-30 
Options, assembler 10-11 

defaults 11 
OS option 10 
Overflow 

dictionary 33 
symbol table 33 

Overriding statements in cataloged 
procedures 19-21 

PARM field access 28-29 
PARM parameter 19 
Procedure (definition} 9 
Program listing, assembler F 58-64 
Program termination 28 
Programming considerations 28-36 

70 

QSAM (Queued Sequential Access Method) 12 

Relocation Dictionary 26,55 
RENT option 10 
Return codes 12-13 
RLD card format 55 

Sample program listing 24,58-64 
Saving and restoring general register 
contents 28 

Severity code 
for diagnostic messages 37 
relation to return code 12-13 

Source and object program listing 25-26 
Source statement complexity 33-34 
SPACE assembler instruction 22 
Statistical messages 22 
SYM card format 56-57 
STMT option 10 
Symbol table, overflow 33 
SYSGO 10,11~12,14 
SYSIN 11,12,14 
SYSLIB 11,12,14 
SYSPRINT 11,12,14,67 
SYSPUNCH 10,11,12,14 
System/370 Programming Considerations 36 
SYSTERM 10,ll,12,14,65,66,68 
SYSUTl, SYSUT2, SYSUT3 11,12,14 

TERM 10,11,66,68 
TEST option 10 
TXT card format 55 
Type designators 22-23 
Type L data constants 36 
Types of ESD entries 22-23 

Unaligned data, support of 35-36 
Utility data sets 11 

XREF option 10 





GC26-3756-6 

International Business Machines Corporation 
Data Processing Division 
1133 Westchester Avenue, White Plains, New York 10604 
[U.S.A. only] 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
[International] 

() 
() 
l\J 
0\ 
I 
w 
'-l 
tn 
0\ 

~ 



(") 
c 
-I 
l> 
r 
0 z 
G) 

0 
0 

=1 
m 
0 

c 
z 
m 

OS Assembler (F) 
Programmer's Guide 

GC26-3756-6 

Your views about this publication may help improve its usefulness; this fonn 
will be sent to the author's department for appropriate action. Using this 
form to request system assistance or additional publications will delay response, 
however. For more direct handling of such request, please contact your 
IBM representative or the IBM Branch Office serving your locality. 

Reply requested: Name: 

READER'S 
COMMENT 
FORM 

Yes D 
No D Job Title:-------------------­

Address: ---------------------

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM office 
or representative will be happy to forward your comments.) 



GC26-3756-6 

Your comments, please ... 

This manual is part of a library that serves as a reference source for systems analysts, 
programmers, and operators of IBM systems. Your comments on the other side of this 
form will be carefully reviewed by the persons responsible for writing and publishing 
this material. All comments and suggestions become the property of IBM. 

Fold Fold 

() 
c 
-t 
0 
:%J 
'Tl 
0 
r-
0 
)> 
r-
0 

..................................................... ·················································· z 

Business Reply Mail 
No postage stamp necessary if mailed in the U.S.A. 

Postage will be paid by: 

International Business Machines Corporation 
Department 813 L 
1133 Westchester Avenue 
White Plains, New York 10604 

First Class 
Permit 40 
Armonk 
New York 

....................................................................................................... 

Fold 

11rnoo 
® 

International Business Machines Corporation 
Data Proce11lng Division 
1133 Westchester Avenue, White Plains, New York 10604 
(U.S.A. only) 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
(lntematlonal) 

Fold 

G> 

c 
z 
m 

·o 
: tn 

·> 
• i;,, . ~ . s 
: 8: 
• !!l 

-~ . '-' 
• "tj ..... 
• 0 
-~ 
: El . s . ~ 
: :~ 

• "'d 
• =:!. . a . ~ 
• (lo 

: s· 
:c:: 
• VJ 
: ?> 

: C') .n 
:~ . (.;.) 
• .....:i 

:~ 
• O"I 



]5J}·~1 f echnical Newsletter This Newsletter No. GN33-8144 

D~e July 15, 1972 

~· 

Base Publication No. GC26-3756-6 

File No. S360-21 (OS) 

Previous Newsletters None 

OS ASSEMBLER (F) PROGRAMMER'S GUIDE 

©IBM Corp. 1972 

This Technical Newsletter, a part of version 21 of IBM System/360 
Operating System provides replacement pages for the subject 
publication. These replacement pages remain in effect for sub­
sequent versions and modifications unless specifically altered. 
Pages to be inserted and/or removed are listed below. 

41-44 
51-56 
56.1 (added) 

59-62 
Reader's Comment Form 
Reader's Comment Reply 

A change to the text or to an illustration is indicated by a 
vertical line to the left of the change. 

Summary of Amendments 

Minor technical corrections. 

Note: Please file this cover letter at the back of the manual 
to provide a record of changes. 

IBM Nordic Laboratory, Publications Development, Box 962, S-181 09 Lidingo 9, Sweden 

Printed in U.S.A. 





ampersand (&) followed by 1-7 letters 
and/or numbers first of which must be a 
letter), or statement following 'MACRO' is 
not a valid prototype statement. 

Severity Code: 12 

Programmer Response: Make sure the source 
code is correct and reassemble if 
necessary. If the problem recurs, do the 
following before calling IBM: 
• Have the user source program, user macro 

definitions and associated listing 
available. 

• If the COPY statement was used, execute 
the IEBPTPCH utility program to obtain a 
copy of the PDS member specified in the 
COPY statement. 

IEU095 ENTRY TABLE OVERFLOW 

Explanation: Number of ENTRY symbols, 
i.e., ENTRY instruction operands, exceeds 
100. 

Severity Code: 8 

Programmer Response: Make sure the source 
code is correct and reassemble if 
necessary. If the problem recurs, do the 
following before calling IBM: 
• Have the user source program, user macro 

definitions and associated listing 
available. 

• If the COPY statement was used, execute 
the IEBPTPCH utility program to obtain a 
copy of the PDS member specified in the 
COPY statement. 

IEU096 MACRO INSTRUCTION OR PROTOTYPE OPERAND 
EXCEEDS 255 CHARACTERS IN LENGTH 

Severity Code: 12 

Programmer Response: Make sure the source 
code is correct and reassemble if 
necessary. If the problem recurs, do the 
following before calling IBM: 
• Have the user source program, user macro 

definitions and associated listing 
available. 

• If the COPY statement was used, execute 
the IEBPTPCH utility program to obtain a 
copy of the PDS member specified in the 
COPY statement. 

[EU097 INVALID FORMAT IN MACRO INSTRUCTION OPERAND 
OR PROTOTYPE PARAMETER 

Explanation: This message can be caused 
by: 

1. Illegal 11 =". 
1. A single "&" appears somewhere in the 

standard value assigned to a prototype 
keyword parameter. 

3. First character of a prototype parameter 
is not "&". 

4. Prototype parameter is a subscripted 
variable symbol. 

5. Invalid use of alternate format in 
prototype statement, e.g., 
10 16 71 
PROTO &A, &B , 

PROTO &A I &BI 
&C 

or 
x 

6. Unintelligible prototyi:e parameter, 
e.g., •&A*• or "&A&&.• 

7. Illegal (non-assembler) character 
appears in prototype parameter or macro 
instruction operand. 

Severity Code: 12 

Programmer Response: Make sure the source 
code is correct and reassemble if 
necessary. If the problem recurs, do the 
following before calling IBM: 
• Have the user source program, user macro 

definitions and associated listing 
available. 

• If the COPY statement was used, execute 
the IEBPTPCH utility program to obtain a 
copy of the PDS member specified in the 
COPY statement. 

IEU098 EXCESSIVE NUMBER OF OPERANDS OR PARAMETERS 

Explanation: Either the prototype has more 
than 200 parameters, or the macro 
instruction has more than 100 operands. 

Severity Code: 11 

Programmer Response: Make sure the source 
code is correct and reassemble if 
necessary. If the problem recurs, do the 
following before calling IBM: 
• Have the user source program, user macro 

definitions and associated listing 
available. 

• If the COPY statement was used, execute 
the IEBPTPCH utility program to obtain a 
copy of the PDS member specified in the 
COPY statement. 

IEU099 POSITIONAL MACRO INSTRUCI'ION OPERAN[, 
PROTOTYPE PARAMETER OR EXTRA COMMA FOLLOWS 
KEYWORD 

Severity Code: 12 

Programmer Response: Make sure the source 
code is correct and reassemble if 
necessary. If the problem recurs, do the 
following before calling IEM: 
• Have the user source program, user macro 

definitions and associated listing 
available. 

• If the COPY statement was used, execute 
the IEBPTPCH utility program to obtain a 
copy of the PDS member specified in the 
COPY statement. 

IEU100 STATEMENT COMPLEXITY EXCEEDED 

Explanation: More than 32 operands in a 
DC, DS, DXD, or literal DC, or more than 50 
terms in a statement. 

Severity Code: 8 

Appendix A. Diagnostic Messages 51 



Programmer Response: Make sure the source 
code is correct and reassemble if 
necessary. If the problem recurs, do the 
following before calling IBM: 
• Have the user source program, user macro 

definitions and associated listing 
available. 

• If the COPY statement was used, execute 
the IEEPTPCH utility program tc obtain a 
copy of the PDS member specified in the 
COPY statement. 

IEU101 EOD ON SYSIN 

~~anation: EOD before END card. 

Severity Code: 12 

Programmer Response: Make sure the source 
code is correct and reassemble if 
necessary. If the problem recurs, de the 
following before calling IBM: 
• Have the user source program, user macro 

definitions and associated listing 
available. 

• If the COPY statement was used, execute 
the IEEPTPCH utility program tc cbtain a 
copy of the PDS member specified in the 
COPY statement. 

IEU102 INVALII: OR ILLEGAL ICTL 

Explanation: The operands of the IClL are 
out of range, or the ICTL is not the first 
statement in the input deck. (Asserrbly is 
terminated and further input is ignored.) 

Severity Code: 16 

Programmer Response: Make sure the source 
code is correct and reassemble if 
necessary. If the problem recurs, de the 
following before calling IBM: 
• Have the user source prograir., user macro 

definitions and associated listing 
available. 

• If the COPY statement was used, execute 
the IEEPTPCH utility program tc obtain a 
copy of the PDS member specified in the 
COPY statement. 

!EU 10 3 ILLEGAL NAME IN OPERAND FIELD OF COPY CARD 

52 

Explanation: Syntax error, e.g., symbol 
has more than 8 characters or has an 
illegal character. 

Severity Code: 12 

Programmer Response: Probable user error. 
Make sure the source code is correct and 
reassemble if necessary. If the problem 
recurs, do the following before calling 
IBM: 
• Have the user source program, user macro 

definitions, and associated listings 
available. 

• If the COPY statement was used, execute 
the IEEPTPCH utility program tc obtain a 
copy of the PDS member specified in the 
COPY statement. 

IEU104 COPY CODE NOT FOUND 

Explanation: The operand of a COPY 
statement specified COPY text which cannot 
be found in the library. 

Severity Code: 12 

Erogr,!!!!!!!!er_B,~§E2!!§~: Probable user error. 
Make sure the source code is correct and 
reassemble if necessary. If problem 
recurs, do the following before calling 
!Bl-'.: 
• Make sure the SYSLIB DD statement is 

included. 
• V.ake sure that MSGLEVEL=(1,1) was 

specified in the JOB statement. 
• Have the user source program, user macro 

definitions, and associated listings 
available. 

• If the CCFY statement was used, execute 
the IEEPTFCH utility program to attain a 
copy of the PDS rrember specified in the 
CCFY statement. 

IEU105 EOD CN SYSTEM MACRO LIERARY 

Explanation: EOr: before MENI: card. 

Severity Code: 12 

Frograrnmer Response: Probable user error. 
P.ake sure the source code is correct and 
reassemble if necessary. If the problem 
recurs, do the following before calling 
IB~: 
• Have the user source program, user macro 

definitions, and associated listings 
available. 

• If the CCFY statement was used, execute 
the IEBPTPCH utility program to obtain a 
copy of the PDS member specified in the 
CCFY statement. 

IEU106 NOT NAI-'.E OF I:SECI' CR r:xr: 

Explanation: Referenced symbol expected to 
be DSECT name, but it is not. 

Severity Code: 8 

Progr~rnmer_B,~§P2~2~= Make sure the source 
code is correct and reassemble if 
necessary. If the problem recurs, do the 
following before calling IBP.: 
• Have the user source program, user macro 

definitions and associated listing 
available. 

• If the CCFY statement was used, execute 
the IEBPTPCH utility program to obtain a 
copy of the Fr:S member specified in the 
CCFY statement. 

!EU 107 INVALID OPERAND 

Explanation: Invalid syntax in DC operand, 
e.g., invalid hexadeciiral character in 
hexadecimal r:C; operand string too long for 
x, B, C, DC's; operand unrecognizable, 
contains invalid value, or incorrectly 
specified. 



Severity Code: 8 

Programmer Response: Probable user error. 
Make sure the source code is correct and 
reassemble if necessary. If the problem 
recurs, do the following before calling 
IBM: 
• Have the user source program, user macro 

definitions, and associated listings 
available. 

• If the COPY statement was used, execute 
the IEBPTPCH utility program to obtain a 
copy of the PDS member specified in the 
COPY statement. 

IEU108 PREMATURE EOD 

Explanation: Indicates an internal 
assembler error; should not occur. 

Severity Code: 16 

Programmer Response: Reassemble; if the 
problem recurs, do the following before 
calling IBM: 
• Have the user source program, user macro 

definitions, and associated listings 
available. 

• If the COPY statement was used, execute 
the IEBPTPCH utility program to obtain a 
copy of the PDS member specified in the 
COPY Statement. 

•Make sure that MSGLEVEL=(1,1) was 
specified in the JOB statement. 

IEU109 PRECISION LOST 

Severity Code: 8 

Programmer Response: Probable user error. 
Make sure the source code is correct and 
reassemble if necessary. If the problem 
recurs, do the following before calling 
IBM: 
• Have the user source program, user macro 

definitions, and associated listings 
available. 

• If the COPY statement was used, execute 
the IEBPTPCH utility program to obtain a 
copy of the PDS member specified in the 
COPY statement. 

IEU110 EXPRESSION VALUE TOO LARGE 

Explanation: Value of expression not in 
range than -16777216 to +16777215. 
Expressions in EQU and ORG statements are 
flagged if (1) they include terms 
previously defined as negative values, or 
(2) positive terms give a result of more 

than three bytes in magnitude. The error 
indication may be erroneous due to (1) the 
treatment of negative values as three-byte 
positive values, or (1) the effect of large 
positive values on the location counter if 
a control section begins with a START 
statement having an operand greater than 
zero, or a control section is divided into 
subsections. 

Severity Code: 8 

Programmer Response: Probable user error. 
Make sure the source code is correct and 
reassemble if necessary. If the problem 
recurs, do the following before calling 
IEM: 
• Have the user source program, user macro 

definitions, and associated listings 
available. 

• If the COPY statement was used, execute 
the IEBPTPCH utility program to obtain a 
copy of the PDS member specified in the 
COPY statement. 

!EU 111 OPEN FAILED FOR SYSGO, NOLOAD OPTION USED 

Explanation: DD statement incorrect or 
missing. 

Severity Code: 16 

Programmer Response: Probable user error. 
If necessary supply missing DD statement or 
make sure that information on D[ statement 
is correct and reassemble. If problem 
recurs, do the following before calling 
IBM: 
• Have the user source program, user macro 

definitions, and associated listings 
available. 

• If the COPY statement was used, execute 
the IEBPTPCH utility program to obtain a 
copy of the PDS member specified in the 
COPY Statement. 

• Make sure that MSGLEVEL= ( 1, 1) was 
specified in the JOB statement. 

IEU112 OPEN FAILED FOR SYSPUNCH, NODECK OPTION 
USED 

Explanation: DD statement incorrect or 
missing. 

Severity Code: 16 

Programmer Response: Probable user error. 
If necessary supply missing DD statement or 
make sure that information on DD statement 
is correct and reassemble. If problem 
recurs, do the following before calling 
IBM: 
• Have the user source program, user macro 

definitions, and associated listings 
available. 

• If the COPY statement was used, execute 
the IEBPTPCH utility program to obtain a 
copy of the PDS member specified in the 
COPY statement. 

•Make sure that MSGLEVEL=(1,1) was 
specified in the JOB statement. 

IEU113 OPEN FAILED FOR SYSTERM, NOTERM OPTION USED 

Explanation: DD statement incorrect or 
missing. 

Severity Code: 0 

Programmer Response: Probable user error. 
If necessary supply missing CD statement or 
make sure that information on DD statement 
is correct and reassemble. If problem 
recurs, do the following before calling 
IBM: 

Appendix A. Diagnostic Messages 53 



• Have the user source program, user macro 
definitions, and associated listings 
available. 

• If the COPY statement was used, execute 
the IEBPTPCH utility program to obtain a 
copy of the PDS member specified in the 
COPY statement. 

•Make sure that MSGLEVEL=(1,1) was 
specified in the JOB staterrent. 

IEU116 ILLEGAL OPSYN 

Severity Code: 8 

Explanation: An OPSYN statement may be 
preceded only by an ICTL instruction or 
another OPSYN statement. 

Programmer Response: Probable user error. 
Make sure the source code is correct and 
reassemble if necessary. If the prcblem 
recurs, do the following before calling 
IBM: 
• Have the user source program, user macrc 

definitions, and associated listings 
available. 

• If the COPY statement was used, execute 
the IEEPTPCH utility program tc obtain a 
copy of the PDS member specified in the 
COPY statement. 

IEU117 OPSYN TABLE OVERFLOW 

Explanation: No room exists in syrrbcl 
table for this and following OPSYN 
definitions; generated opera ti on codes may 
not be processed correctly. 

Programmer Response: Probable user error. 
Make sure the source code is correct and 
reasserr:ble if necessary. If the problem 
recurs, do the following before calling 
IEM: 
• Have the user source program, user macro 

definitions, and associated listings 
available. 

• If the COPY statement was used, execute 
the IEBPTPCH utility program tc obtain a 
copy of the PDS member specified in the 
COPY statement. 

IEU996I ASSEMBLY TERMINATED INSUFFICIENT STORAGE 

Explanation: One of the following: 
• The partition or region size is less than 

the mimimum required by the asserr:bler. 
• The blocksize specified for the utility 

data sets is too large for available main 
stcrage. 

System Action: Assembly is terrrinated. 

Severity Code: 20 

IEU997I OPEN FAILED FOR SYSPRINI', NOLIST OPTION 
USE[ 

54 

Explanation: DD statement incorrect or 
missing. 

System Action: Processing continues. 

Severity Code: 0 

Programmer Response: Probable user error. 
If necessary supply the missing [[ 
statement or make sure that information on 
the DD statement is correct; reassemble. 
If problem recurs, do the fellowing before 
calling !EM: 
• Have the user source prcgram, user ma·cro 

definitions, and associated listings 
available. 

• If the COPY statement statement was used, 
execute the IEEFTPCH utility program to 
obtain a copy of the P[S member specified 
in the COPY statement. 

•Make sure that MSGLEVEL=(1,1) was 
specified in the JOE statement. 

IEU998I ASSE~BLY TERMINATEC, OPEN FAILEJ: FOR [ATA 
SET (ddname) 

Explana~ion: DD statement (s) for data 
set(s) SYSIN, SYSUT1, SYSUT2, SYSUT3, 
and/or SYSPRINT incorrect or missing. 

~tern Action: Assembly is terminated. 

Severity Code: 20 

Progra!!!~-R~§E2!1§~: Probable user error. 
Supply missing DD statement (s) or make sure 
that information on 'CJ: stat.ement(s) is 
correct; reassemble. If problem recurs, do 
the following before calling !EM: 
• Have the user source program, user macro 

definitions, and associated listings 
available. 

• If the COPY statement was used, execute 
the IEEPTPCH utility program to obtain a 
copy of the PCS member specified in the 
COPY statement. 

• ~ake sure that MSGLEVEL=(1,1) was 
specified in the JOE statement. 

IEU999I ASSE~BLY TERMINATE[, jobname, stepname, 
unit address, device type, ddname, 
operation attempted, error description 
(bytes 107 through 128 Of the SYNA[AF 

message buffer; this area is described in 
OS Data Management Macro Instructions. 

Expla~atio~: Indicates a permanent I/C 
error. This message is produced by the 
SYNADAF macro instruction. 

System Action: Assembly is terminated. 

Severity Code: 20 

Proqra~_Res:EQ!!~~: Reassemble. If the 
problem recurs, do the fcllcwing before 
calling IBM: 
• Have the user source program, user macro 

definitions, and associated listings 
available. 

• If the COPY statement was used, execute 
the IEBPTFCH utility program to obtain a 
copy of the PDS rrember specified in the 
COPY statement. 

• ~ake sure that MSGLEVEL=(1,1) was 
specified in the JOB statement. 



Appendix B. Object Deck Output 

TXT Card Format 

The format of the TXT cards is as fellows: 

Columns 

1 
2-4 
5 
6-8 

9-1Q 
11-12 

13-14 
15-16 
17-72 
73-76 

77-80 

Contents 

12-2-9 punch 
TXT 
Blank 
Relative address of first 
instruction on card 
Elank 
Byte count -- number of 
bytes in information 
field (cc 17-72) 
Elank 
ESDID 
56-byte information field 
Deck ID (from first TITLE 
card) 
Card sequence number 

RLD Card Format 

The format of the RLD card is as follows: 

Columns 

1 
2-4 
5-10 
11-12 

Contents 

12- 2- 9 punch 
RLC 
Elank 
Data field count -- number 
of bytes of information in 
data field (cc 17-72) 

13-16 Blank 
17-72 r:ata field: 

17-18 Relocation ESDID 
19-2Q Position ESDID 
21 Flag byte 
22-24 Absolute address to be 

relocated 
25-72 Remaining RLD entries 

73-76 Deck ID (from first TITLE 
card) 

77-80 Card sequence number 

If the rightmost bit of the flag byte is 
set, the following RLD entry has the same 
Relocation ESCID and Position ESDID, and 
this information will not be repeated; if 
the rightmost bit of the flag byte is not 
set, the next RLC entry has a different 
Relocation ESDID and/or Position ESDID, and 
both ESCII:s will te recorded. 

For example, if the RLD Entries 1, 2, 
and 3 of the program listing (Apfendix C) 
contain the following information: 

Pos. Rel. 
~SDID ~;m.!.Q ~1~9 ~ddfgSS 

Entry 1 02 04 QC OQQ1QQ 
Entry 2 02 04 QC Q00104 
Entry 3 Q3 01 QC OOQ8QQ 

Columns 17-36 of the RID card wculd 
apr:ear as follows: 

Entry 1 Entry 2 Entry 3 

Column: 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37- 72 

00 04 00 02 OD 00 01 00 OC 00 01 04 00 01 00 03 OC 00 08 00 

ESDID's t~ 1~ ESDID's 1~~ 
Flag 
(set) 

Flag 
(not 
set) 

Flag 
(not 
set) 

ESD Card Format 

The format of the ESD.card is as fellows: 

1 
2-4 
5-1Q 
11-12 

13-14 
15-16 

17-64 

65-72 
73-76 

77-80 

12- 2-9 punch 
ESD 
Blank 
Variable field count --
number of bytes of information in 
variable field (cc 17-64) 
Blank 
ESDID of first SD, XD, CM, WX, 
FC, or ER in variable field 
Variable field. Cne to 
three 16-byte items of the 
following format: 
8 tytes Name, padded 

with blanks 
tyte ESD type code 

3 bytes 
1 byte 

3 tytes 

Blank 

The hex value is: 
QO SD 
Q1 LI: 
Q2 ER 
Q4 PC 
Q5 CM 
06 XD (PR) 
OA WX 

.Address 
Alignment if XI:; 
otherwise blank 
Length, LDID, er 
blank 

Deck ID (from first 'II'ILE 
card) 
Card sequence number 

Appendix B. Object Deck Output 55 



END Card Format 

· 'I'he format of the END card is as fellows: 

Columns 

1 
2-4 
5 
6-8 

9-14 
15-16 

17-39 
40-62 

Contents 

12-2-9 punch 
ENI: 
Blank 
Entry address from operand 
of ENI: card in source deck 
(blank if no operand) 

Blank 
ESI:II: of entry point (blank 
if no operand) 
Blank 
Version of the asserrbler 
(e.g., F 14FEB66, time 
of the assembly (hh.mrn) , 
and date of the assembly 
(mrn/dd/yy) • (See 
"Assembler Listing" section.) 

SYM Card Format 

If requested by the user, the assembler 
punches out SYM cards with symbolic 
infornation concerning the assembled 
program. These cards can be used by the 
TESTRAN routine or the TSO Test ccrrrrand 
processor. The cards are located between 
the ESI: and TXT cards. The forrrat of SYM 
cards is as follows: 

Columns 

1 
2-4 
5-10 
11-12 

13-16 
17-72 
73-76 

77-80 

Contents 

12- 2- 9 punch 
SYM 
Elank 
Variable field count -­
number of tytes of text in 
variable field (cc 17-72) 
Blank 
Variatle field (see belcw) 
r:eck ID (from first TITLE 
card) 
Card sequence number 

The variable field (columns 17-72) 
contains up to 56 tytes of TESTRAN text. 
The items naking the text are packed 
together, consequently only the last card 
may contain less than 56 bytes of text in 
the variable field. The formats cf a text 
card and an individual text iterr are shown 
in Figure 19. The contents of the fields 
within an individual entry are as fellows: 

1. Organization (1 byte) 

56 

0 = non-data type 
1 = data type 

Bits 1-3 (if non-data type) : 
000 = space 

:-· \ 

001 
010 
011 
100 
101 = 

control section 
dummy contrcl section 
common 
rrachine instruction 
ccw 

Bit 1 (if data type): 
0 = no multiplicity 
1 = multiplicity (indicates 

presence of M field) 
Bit 2 (if data type): 

0 = independent (not a 
packed or zoned decimal 
constant) 

1 = cluster (packed or 
zoned decimal constant) 

Bit 3 (if data type): 

Bit 4: 

Bits 5-7: 

0 = no scaling 
1 = scaling (indicates pres­

ence of S field) 

0 = name present 
1 name not present 

Length of name minus one 

2. Address (3 bytes) - displacement from 
beginning of control section 

3. Symbol Name (0-8 bytes) - symtolic 
name of particular item 

Note: The following fields are only 
present for data-type items. 

4. Data Type (1 byte) - contents in 
hexadecimal 

00 character 
04 hexadecimal , L-type data 
08 = binary 
10 = fixed point, full 
14 fixed point, half 
18 floating point, short 
1C floating point, long 
20 = A-type or Q-type data 
24 = Y-type data 
28 S-type data 
2C V-type data 
30 = packed decimal 
34 = zoned decimal 

5. I.ength (2 bytes for char act er, 
hexadecimal, or binary items; 1 tyte 
for other types) - length of data iterr. 
minus 1 

6. ~ultiplicity - ~ field (3 tytes) -
equals 1 if not present 

7. Scale -signed integer - S field (2 
bytes) - present only for F, E, E, r:, 
L, P and z type data, and only if 
scale is non-zero. 


