File No. S360-21
Form Y26-3716-0

Program Logic

IBM System/360 Disk Operating System Assembler [F]

Program No. 360N-AS-466

This publication describes the internal logic of
the F (64K) Assembler for the IBM System/360
Disk Operating System. It is intended for use
by persons involved in program maintenance and
by system programmers who are altering the
program design. Since program logic information
is not necessary for the use and operation of
the Assembler, distribution of this publication
is limited to these people.

Restricted Distribution

PREFACE

This manual describes the internal logic of

the IBM System/360 Disk Operating System F

Assembler. The introduction gives the pur-

pose of the assembler and summarizes its

organization, theory of operation, and sys-

tem and I/O requirements. The bulk of the
manual is devoted to detailed descriptions
of the logical phases of the F Assembler.

Effective use of this document is based
on an understanding of the latest versions
of the following manuals:

IBM System/360 Disk and Tape Operating
Systems, Assembler Language (Form
C24-3414)

RESTRICTED DISTRIBUTION: This publication is intended for use by IBM

personnel only and may not be made available to others without the
approval of local IBM management.

First Edition March 1968

Specifications contained herein are subject to change from time to time.
Any such change will be reported in subsequent revisions or Technical
Newsletters.

Requests for copies of IBM publications should be made to your IBM
representative or to the IBM branch office serving your locality.

A form is provided at the back of this publication for reader’s comments.
If the form has been removed, comments may be addressed to IBM
Corporation, Programming Publications, Department 232, San Jose,
California 95114,

© International Business Machines Corporation 1968

IBM System/360 Operating System,
Principles of Operation (Form A22-6821)

IBM System/360 Disk Operating System,
System Control and System Service
Programs (Form C24-5036)

IBM System/360 Disk Operating System,
Data Management Concepts (Form
C24-3427)

IBM System/360 Disk Operating System,
Supervisor and Input/Qutput Macros
(Form C24-5037)

INTRODUCTION. e e e o o e
Purpose of the Assembler « e e e

System and I/O Requirements
Main Storagce

HAGail SLULQYT e s s 2 e e e e e

Data Sets. . . « + ¢« ¢« & o « o .
System Services.
Theory of Operation
Macro Generation Conditional
Assembly Phases. . . . « « . . .
Assembly Phases.
Assembler Physical Organization .
Macro Generator Phases .
Assembly Phases.
Dictionaries and Tables . .
Macro Generator Dictionar
Symbol Table
Intermediate Text Records
Source Record.
Edited Text Records. .
Error Records.

eaee o

ies

o o e e o

" e e s e

)

e o e o
.

PHASE Fl1 - INITIALIZATION AND
ASSIGNMENT«
Overall Operation (Flowchart 2) .

PHASE F2 - STATEMENT SCAN
Overall Operation (Flowcharts 3- 7)
Functions . . . « ¢ ¢ ¢ o« o « « o«
Text Stream Scan and Programmer
Macro Editing. . . e e e e e
System Macro Edltlng e v e e e
Subroutines

PHASE F3 - MACRO GENERATION AND
CONDITIONAL ASSEMBLY . .
Overall Operation (Flowcharts 8-11)
Phase F3E - Abort Condition
(Flowchart 12). . .
Functions « ¢ ¢« & o « &
Macro Generation
Conditional Assembly . . .
Functional Program Sections
Routines + ¢« ¢« ¢« ¢« o .« .

PHASE F7 - INITIAL ASSEMBLY . . .
Overall Operation (Flowcharts 13- 27)
I/O Functions . . . « « &« ¢ « « « &
Phase Organization.

F7C - Mainline Control (Flowcharts

13-18) . &
F7X - Phase F7 GET Statement Routlne
(Flowchart 19)
F7D - DC/DS Evaluation Routine
(Flowchart 20) . . . « . .« . .
F7E - External Symbol Dictionary
Processor (Flowcharts 21-23) .
F7N - F7 AUTOTEST Routine
F7S - Symbol Table Subroutine

(Flowchart 24)

NN =

WoOoONINIAN

24

24
24

24

CONTENTS

F7V <«
(Flowchart 25).

Error Logging for Phases F7
and F8 (Flowrhart 26)
Literal DC Generator
(Flowchart 27).
Phase F7 Initialization
I/0 v v v vt e e e e e e

F7L -

F7G -

F7I ~

PHASE FI - INTERLUDE
Overall Operation (Flowchart 28) .
I/O Functions. . . ¢« « « + « « . .
I/0 Subroutines. « e e .
FII - FI In1t1allzat10n . .
FICLS - FI Phase Close.
GETLBT - Get Literal Base Table
RDESD - Read External Symbol

Dictionary.

PUTLAT - Put Literal Ad]ustment
Table . ¢« . ¢« ¢« ¢« & « &
SYSL - System List.
Mainline Control « . . .

PHASE F8 - FINAL ASSEMBLY . . .
Overall Operation (Flowcharts 29- 36)
I/O FunctionS. .« « « « « « « o &« «
Phase Organization
F8I ~ Phase F8 Initialization and
I/0 v v vt e e e e e e e .
Subroutines
- Mainline Control
1
Subroutines
- Machine Operation Processor
(Flowchart 30).
Subroutines

F8I
F8C

F8C
F8M

e e e o e o

F8M

Expression Evaluation Routine

e o & s o s

(Flowchart

F8A - Assembler Operation Processor
(Flowchart 31).
F8A Subroutines
F8P - Output Routine (Flowcharts
32-33). . 0 e v e e e . .
F8D - DC Evaluation (Flowcharts
34-35). « e e .
F8N - Phase F8 Floatlng and leed
Point Conversion (Flowchart
36} ¢ v e e e e e e e e e
F8V - Expression Evaluation
Subroutine.
F8L ~ Log Error Subroutine.
F8S ~ Symbol Table Subroutine . . .

PHASE FPP - POST PROCESSOR . . .
Overall Operation (Flowchart 37)
FPP Functions (Flowchart 37)

* o & o s e

FPP Subroutines.« . .
FD Functions (Flowchart 38) . . .
FD Subroutines ¢« « .+ . . .

PHASE ABT (ASSEMBLER ABORT)

iii

FLOWCHARTS. « &« ¢ o o o o o o o o &
APPENDIX A. ASSEMBLER OPTIONS. . .
Options . v ¢ v 4 ¢ ¢ & & o o o &
Default Entry ¢« « « « .« .
APPENDIX B. DICTIONARY, TABLE, AND

RECORD FORMATS . . .

Macro Generation Phases (F2 and F3)
Macro Generator Dictionary Entries

Macro Generator Record Formats
Evaluation Routine Formats .

Phase F7. + ¢« &« ¢ o o o o« o o o «
Record Formats

Tables ¢ « ¢« ¢« ¢ « &
Phase FI.
Literal Adjustment Table . .
Phase F8.,
Relocation chtlonary Entrle

APPENDIX C.

CONTROL PROGRAM SERVICES

iv

APPENDIX D.

APPENDIX E.

Hash Table. .
Chaining.
Forward Chaining Technlques.

Backward Chaining Techniques

ASSEMBLER ORGANIZATION .

DICTIONARY AND TABLE
CONSTRUCTION TECHNIQUES.

Chaining Usage . . .

APPENDIX F.

APPENDIX G.
Phase F3 Switches . .
FI, F8 and FPP Sw1tches P

Phase F7,

APPENDIX H.

INDEX

INTERNAL ASSEMBLER
TABLE. . .

SWITCHES .

GLOSSARY .

« o e .
s e+ e o
e e

100

105
105
105

105
107

108
109
109
110
i1l

114

Figures
1. Assembler Data Sets + « « « « « .+ o 1
2., Program and I/O Flow =« - « « « - « 3
3. Dictionary Structure10
4, I/0 Flow for Phase F2 . .«13
5. I/0 Flow for Phase F3 - «17
6. I/O Flow for Phase F7 « « « « + o .22
7. I/0 Flow for Phase FI30
8. I/O Flow for Phase F8 . « « « « .« .32
9. Decomposition Routine Using Table .34
10. Instruction Building Area35
Tables
1. Logical Organization of the
Assembler ., « « . . 2
2. General Register Assignments . . . 9
3. Condition Switch Settings26
Bl. Type Indicators (Phases F2/F3). . .85
B2. Assembler Operation Codes88
B3. Flag Values + « « +« ¢« « « « o« « « .89
Flowcharts
1. MAC - Macro Generator I/O . « . . .42
2. Fl -~ Phase Fl e e e e o o & « .« W43
3. F2 - Phase F2 (1 of 5}« - « « . . .44
4., F2 - Phase F2 (2 of 5)« «45
5. F2 - Phase F2 (3 of 5)« -« « « . . .46
6. F2 - Phase F2 (4 of 5)« « « +'. . .47
7. F2 - Phase F2 (5 of 5). « « . « . .48
8. F3 - Phase F3 Mainline Control . .49
9. VALUAT -~ Phase F3 Evaluation
(Lof 3)e v v v o ¢ ¢« & « v « « « .50
10. VALUAT - Phase F3 Evaluation
(2 0f 3) ¢« ¢ ¢ & 4 &« « o« o & o » 251
11. VALUAT - Phase F3 Evaluation
(30f 3). ¢ ¢ ¢ & ¢« o« « + « & « o 452
12. F3E - Phase F3 Substitute53
13. F7C - Phase F7 Mainline Control
(L1 Of 6)e o« o o « o o « o o o « « 54
14, F7C - Phase F7 Mainline Control
(2 0f 6)e = o o o o o o« o« o« « « « 55
15. F7C - Phase F7 Mainline Control
(3 0f 6)e ¢« & ¢« ¢ « o « « « « « « <56
16. F7C - Phase F7 Mainline Control
(4 0f 6)e ¢ v ¢ « ¢« « o o « « o o« 57
17. F7C - Phase F7 Mainline Control
(5 0f 6)e « « ¢ o e o o o « o« « « <58
18. F7C - Phase F7 Mainline Control
(6 OfF 6)e ¢« &« 4 ¢« « o o« o « o o « 59
19. F7X - Phase F7 Get Statement. . . .60
20. F7D - pPhase F7 DC Evaluation - . .61
21, F7E - Phase F7 ESD Routine(l of 3).62

11.
Bl.

B2.
B3.
B4.
B5.

El.
E2.

B5.
D1.

D2.

22.
23.

24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.

38.
39.

ILLUSTRATIONS

I/0 Flow for Phase FPP.
Macro Generator Dictionary Entry
Formats « ¢ o ¢ o o o o o « &
Macro Dictionary Parameter Table
Entries . . « « « ¢ ¢ « o o . .
Macro Generator Record Formats
Types 1 and 2 Work Buckets . .
Type 3 Work Bucket. . . e e .
Hash Table and Forward Chalnlng
Hash Table and Backward Chaining.

Internal Values for Type
Attributes.
DC/DS Type Indlcator for Type 3
Work Buckets. . . . « e e
Annotated Linkage Edltor

MapPe v & o o o o o o o o o o o o
Storage Allocation Map.

e o o e

F7E - Phase
F7E - Phase F7 ESD Routine
(30f 3)e & o ¢« ¢« ¢« ¢ v o o . .
F7S - Phase F7 Symbol Table
Routine « « « o« o o « o o « o &
F7V - Phase F7 Expression

Evaluation. « « « « « « « « « .
F7L - Phase F7 Log Error
Routine . « « « « o o o o o s .o

F7G - Phase F7 DC Get Routine .
FI - Phase F Interlude.
F8C - Phase F8 Mainline
Control . . . e e e e e e e
F8M -~ Phase F8 Machlne
Operation Processor . . . « . .
F8A - Phase F8 Assembler
Operation Processor . . « . .« «
F8P - Phase F8 Print Routine

(L 0f 2)e ¢ ¢ o o o o o o o o &
F8P -Phase 8 Print Routine

(2 0f 2) e & ¢« o o« o o o & . .
F8D - Phase F8 DC Evaluatlon

(L Of 2)e & ¢« o o o o o o o o =«
F8D - Phase F8 DC Evaluation

(2 of 2). « . . e e e e e e e
F8N - Floating and Fixed Point
ConversSiONe « « « o o o o o o o
FPP - Phase FPP Post Processor.
FD - Phase FPP Diagnostic . . .
ABT - Phase ABORT . . « « « .+ =

-

F7 ESD Routine(2 of 3}

.101
.104

PURPOSE OF THE ASSEMBLER

The assembler translates a source program
coded in IBM System/360 Disk Operating
System Assembler Language into a relocatable
machine language object program. It per-
forms auxiliary assembler functions desig-
nated by the programmer.

Object programs are produced by the
assembler in the format required by the
linkage editor. The linkage editor pro-
duces core image modules which are execut-
able under the control of DOS.

Several output options are available for
the assembler. The programmer specifies
the device for the object modules, etc.
may request an assembly listing, a cross-
reference table of symbols as part of the
listing and the insertion of a special
source symbol table in the object module to
facilitate AUTOTEST. See Appendix A for
details.

The assembler is a language translator,
one of the processing programs of the IBM
System/360 Disk Operating System. It can
operate on IBM System/360 Models 30, 40,
50, 65, or 75 with at least 64K storage.

It requires only the standard instruction
set.

He

SYSTEM AND I/O REQUIREMENTS

These requirements are divided into three
categories: internal (or main) storage,
external storage devices (data sets), and
system services.

Main Storage

Main storage requirements include the mini-
mum requirement of the DOS Control Program.
In addition, at least 45,056 bytes of con-
tiguous core storage must be available for
the assembler. Additional core storage
will be used if available.

Data Sets

The required data sets include one (SYSRES)
containing the operating system components,
which includes the assembler; three utility
data sets (SYS00l1, SYSs002, and SYS003); one
input data set (SYSIPT); and a data set
(SYSSLB) containing system macro definitions
and source coding to be called for through

INTRODUCTION

COPY assembler instructions. SYSSLB is
kept on SYSRES. There are three optional
output data sets as follows:

1.
2.
3.

Print data set (SYSLST).
Compile and go data set (SYSLNK).
Punch data set (SYSPCH).

See Figure 1.

SYSRES. This is a Direct Access Storage

Device (DASD) resident data set which con-
tains the control program and other opera-
ting system components. The assembler is

kept in the Core Image Library on this data

set. SYSSLB and SYSLNK are also kept on
SYSRES.
SYS001, S¥YS002, SYS003. These three utility

data sets are used as intermediate external

storage. Three DASD logical extents,
three magnetic tape units, or any combina-
tion of the DASD and tape data sets may be
used. The use and format of these data
sets varies from phase to phase.

¥

SYSLNK

(optional)

.

45,056 bytes
minimum
Contiguous
Core
Storage
(Plus DOS
Confrol
Program)

5

Either one

r or both

SYSSLB SYSPCH

!

{on SYSRES)

UTILITY ! DATA SETS

SYS001 SYS002 SYS003

ol

Figure 1. Assembler Data Sets

Introduction

1

SYSIPT. This is a DASD, tape, or card
reader resident data set containing the
source text to be assembled. The source
text (also called the text stream) consists
of control text, programmer macro defini-
tions, and the main program (also called
open code). The format is assumed to be
80-byte record card images, unblocked.

SYSSLB. This is a SYSRES resident data
set containing system macro definitions
and source text which may be COPYed into
programmer macro definitions, into the main
text of the program, or into system macro
definitions. It consists of blocked com-
pressed 160-byte records.

SYSLST. This is a printer, DASD, or mag-
netic tape resident data set containing
output text for printing. It consists of
121-byte unblocked print images. The first
byte is an ASA control character.

SYSPCH. This data set contains the output
text for punching. It may be punch, DASD,
or magnetic tape resident. It consists of
unblocked 8l-byte card images. The first
byte is an ASA control character.

SYSLNK. This is a DASD resident data set
containing the same output text as SYSPCH,
but is used as input for the linkage editor.
It consists of blocked 330-byte records
with a 2 byte header.

System Services

Several system macro instructions are used
in conjunction with data and storage manipu-
lations and program control transfers dur-
ing the seven phases of the assembler.

These macros are briefly described in
Appendix C, and detailed information is
given in the DOS Supervisor and I/O Macros
publication.

THEORY OF OPERATION

The assembler has two major functions:
macro generation and assembly. See Figure

2 and Table 1 for a summary of program flow,
and program organization.

The generator portion expands macro
instructions to one-for-one statements
performs conditional assembly. Phases
F0, FCOM, FIN, F1l, F2, and F3 comprise
generator portion.

The assembly portion converts the ome-
for-one source statements and expanded
macro instructions into machine language

and

the

Table 1. Logical Organization of the

Assembler

PHASE FUNCTION

Master Root Segment ~ utility data set system
FO 1/O macros
Macro Generator |/O routines

FCOM Macro Generator Communication area

FIN System 1/O macros for SYSIPT and SYSSLB

Fl Program initialization

F2 Initial statement scan
System and programmer macro definition editing

F3 Macro instruction generation and merge
Conditional assembly

F3E Macro generation error bypass

Assembler control table
RTA System 1/O macros for SYSLNK and SYSPCH
Overflow file 1/0 routines

Address assignment
F7 Symbol processing
Literal processing

FI Extemal Symbol Dictionary output

Expression evaluation
F8 Program output
Relocation dictionary build

FPP Cross-reference, relocation dictionary, and
diagnostic processing and output

ABT Assembly error termination

instructions and constants and produces a
relocatable object program. These functions
are performed by Phases RTA, F7, FI, F8,
and FPP. (There are no F4, F5, or F6
phases.)

There are two other phases. Phase F3E
is called if an error condition requires
bypassing macro generation. Phase ABT is
called if an error condition requires
termination of the assembly.

Macro Generation and Conditional Assembly
Phases

The macro generation and conditional assem-
bly portion of the assembler requires two
passes over the source text.

The first pass (in Phase F2) scans. the
source text, determines the syntax of each
statement, and produces edited text records
suitable for actual macro generation and
conditional assembly.

Variable symbols, sequence symbols, one-
for-one statement names, macro instruction
names, and symbols appearing in. macro. in-
struction operands in the text stream are
collected and placed in either a global

NOTE: Figure 2 does not show all device types allowed

for each data set. See Figure 1.

< ENTRY ’

\

PHASE F1
(1) Check 1/O
Configuration
(2) Open data
Sets
(3) Initialize
Common and
dictionaries SYS001
{ First card
SYSIPT source text
Read 1st card ==
Source text If ICTL,
read 2nd card
\ 4
PHASE F2 SYs0o1
\
S;rree):'n /_ﬂSJL Sgume text [Toexf stream
N od tput
Input Source text First pass ::‘eir; :exi‘e v Fg °

CORE

Global dic-
tionary
Open code
local dictionary|

CORE

Global diction

(source stream)

ary (Macro
local diction-
aries)

SYSSLB

System
macro
definition

CORE

Subsetted global

System macro
lookup and scan

Y

and open code lg

local
dictionary

Figure 2. Program and I/0 Flow

Global and
open code local
dictionary
subsetting

)

Prog. macro
and open code
local dict.
segments

Programmer
macro edited
text and

dictionaries

SYS002

System macro

local diet

segments

edited text
and
dictionaries

SYS002
Open code

local dic-
tionary
segments

(Part 1 of 3)

Introduction 3

PHASE F3

SYS001
Source rec- Text st
Subsetted global ords, Open ei:p:fr;a:m
dictionary CORE code edited F3
Open code local s
dictionary (1) Macro editing
(Macro local) chdg}irgmlg
T : nditiona
dictionaries) cwsembly SYS$003
System and
programmer
macro edited
text and sub-
Output setted local
from dictionaries
F3
PHASE F7
SYS002* SYS003
S ross-reb ler-
ource ence taple
:?g:’ records Literal base
F3 Edited text table, ESD
records v overflow
~J (1) Symbol table
ond literal
table process- SYSPCH
CORE ing PUNCH
M| @) Storage REPRO
Symbol table assignment AUTOTEST
Literal table
SYSLNK
*|f symbol table F;é::lR%H
Text stream °Ve"“°,"ﬁ °°°”l';s' AUTOTEST
Output Edited text fext will pass be-
From records tween SYS001 and
E7 SYS002.
ASE F1
Literb?cse External
Table symbol
ESD ! dictionary
Overflow External
Symbol
Dictionary
Processing
SYSPCH
External
symbol
dictionary
If symbol table overflow SY5002
occurred in F7, the literal Literal
adjusfmenf table may be adjustment SYSLST
written on SYS001 table External
symbol
dictionary
B

Figure 2. Program and I/0 Flow (Part 2 of 3)

PHASE F8

SYS001*

Text Stream Source
Input from r.ecords
F7 Edited text
L \ records \
(1) Expression
Evaluation
CORE (2) Final symbol
Symbol table resolufion
Literal table g (3) Address conver=
Adjustment table] sion to base -
displacement
Assembled text
output

*|f symbol table overflow
occurred in F7, SYS001
and SYS002 may be reversed.

SYS003

Error records
Relocation
dictionary

SYSPCH

SYSLNK

XT
PUNCH
REPRO

SYSLST

Assembler
listing

PHASE FPP

SYS001

Cross refer=
.ence record
relocation

dictionary
rec:

CORE

Adjustment
Table

SYS002

Cross refer=
ence record
Relocation
dictionary
records

Figure 2.

SORT

Relocation
dictionary,
Cross refer
ence, Error
records

UTILITY

Relocation
Dictionary and
Cross Reference
production

Q1

=

2

~

Error Record
Processing

SYSPCH

o{ Relocation
dictionary
END

SORT
UTILITY

‘%
Normal EOJ

Program and I/0 Flow (Part 3 of 3)

SYSLNK

Relocation
dictionary

END

SYSLST

L Object
Output

Assembler
Listing

Introduction

dictionary or in one of several local
dictionaries, depending on the type of the
symbol and the context. Extraneous infor-
mation is removed from these dictionaries,
and subsetted dictionaries are produced
for the source text, for each system and
programmer macro used in the source text,
and for global information. Dictionaries
and edited text records are briefly des-
cribed in Dictionaries and Edited Text
which follows. Complete descriptions are
in Appendix B.

The second pass (in Phase F3) performs
the actual macro generation and conditional
assembly using the edited source text,
edited macro definitions, and subsetted
dictionaries created during the first pass.
One-for-one edited text is produced for in-
put to the subsequent assembly phases.

Phase F0 - Master Root Segment

Master Root Segment. This portion of Phase
F0 contains the system I/O macros (DTFs and
I/0 logic modules) for SYS001, SYsS002, and
SYS003. It also contains linkage to the

abort phase in case of EOF or data check on
the utility files. The master root segment
remains in core for the entire assembly.

Macro Generator I/0 routines. This portion
of Phase FO0 contain READ, WRITE, CHECK, NOTE,
POINT, POINTS, POINTR, and POINT W routines
for the utility files. They link to the I/O
logic modules and the DTFs.

Phase FCOM (Macro Generator Communication
Area)

Phase FCOM contains common constants, a
translate table, and a communications work
area for all macro generator phases.

Phase FIN (SYSIPT and SYSSLB I/0 Logic)

Phase FIN contains the I/0 logic modules and
the DTFs for SYSIPT and SYSSLB.

Phase F1 (Initialization and Assignment)

Phase Fl performs the primary initialization
for the macro generation and assembly
phases. The operating environment is
established by opening data sets for
utility, input, and library functions and
by initializing dictionaries and common
areas.

Phase F2 (Statement Scan)

Phase F2 scans the text stream for pro-

grammer macro definitions, the main pro-
gram, and system macro definitions. It
produces edited text for the main program
and for each macro definition for input to
Phase F3. Phase F2 creates the global and
local dictionaries and subsets them for
Phase F3. Some syntactic errors are
detected and flagged for subsequent error
processing. If a macro generation abort
condition arises, Phase F2 passes control
to Phase F3E, a substitute version of
Phase F3.

Phase F3 (Conditional Assembly and Macro
Generation)

Using the edited text and dictionaries
produced in Phase F2, Phase F3 generates
one-for-one edited text statements from the
macro definitions and performs conditional
assembly. This output serves as input to
Phase F7, the first of the assembly phases.

Assembly Phases

Phase RTA - Root Segment A

RTA is the root segment for the assembly
phases. It contains the Assembler Control
Table (a common communjcations area), the
DTFs for SYSLNK and SYSPCH, and the IOCS
logic module for SYSLNK, SYSPCH, and SYSLST.
RTA also contains a translate table and I/0
routines to read and write overflow files.

Phase F7 (Initial Assembly)

Phase F7 processes symbols and literals,
builds the symbol table and the external
symbol dictionary, and assigns relative
locations to all statements in the text.

The symbol table contains the definition
(name and attributes) of every declared
symbol. and literal. Only one symbol table
is constructed if the allocated core can
accommodate the entire table. If necessary,
the external symbol dictionary, except for
two segments, will be stored on SYS003 to
make room in core for the symbol table. If
there is still not enough core, construction
of the symbol table is suspended at the over-
flow point, and all input statements are
processed with data from the table (when
applicable). This symbol table is then dis-
carded and a new symbol table is built with
symbols and literals that were not included
in the eliminated table. This procedure is
repeated as long as overflow conditions
arise. Each completed symbol table is fully
utilized and eliminated before the next one
is built. Expressions appearing in all

statements which require previous defini-
tion are evaluated in the process of loca-
tion assignment, and a table of cross-
reference entries is built for all symbols
which are defined and/or referenced.

Phase FI (Interlude)

Phase FI writes the external symbol
dictionary on data sets SYSLST and SYSPCH
and/or SYSLNK, and constructs the literal
adjustment table for use in Phase F8. 1If
the external symbol dictionary was written
on SYS003 during Phase F7 because of ex-
cessive core occupancy by the symbol table,
the entire external symbol dictionary is
read back into main storage.

Phasé F8 (Final Assembly)

Phase F8 completes the symbol processing

on all operands using the last (or only)
symbol table created in Phase F7. USING
tables and the relocation dictionary are
built, all address expressions are evalua-
ted, and the operand addresses are con-
verted to base-displacement format. Finally,
the assembled text is written in relocats
able object program format on SYSPCH and/or
SYSLNK and in program listing format on
SYSLST.

Phase FPP (Post Processor)

Phase FPP formats and writes the relocation
dictionary table. If requested, the cross-
reference entries are sorted, and the
cross-reference list is prepared and
written. Assembly statistics and diagnostic
messages are also prepared and written.
Phase FPP also writes the END card.

ASSEMBLER PHYSICAL ORGANIZATION

The assembler is organized as Core Image
Library phases and as Relocatable Library

load modules. This organization -- includ-
ing overlay structure, typical load addres-
ses, and external symbols -- is illustrated

by the Linkage Editor map in Appendix D.
This map also correlates the logical organ-
ization of the assembler, described in

this manual, with its physical organization.
For more information on assembler organiza-
tion, see IBM System/360 DOS System Genera-
tion and Maintenance (Form C24-5033).

Macro Generator Phases

The F1, E2, and F3 routines link together
through address constants located in the

Macro Generator Common Area. They use
standard DOS/360 linkage conventions.

macro generator phases do not have any
overall register usage conventions. Regis-
ter usage and linkage are described in the

comments of each routine listing.

The

Assembly Phases

Program Levels

In order to establish a uniform method of
communication and to control flow between
the phases and phase routines, the assem-
bler phases are structured on three levels:

® Level 0 - Phase initialization, storage
allocation, mainline control,
phase call, and DOS interface.

e Level 1 - Functional routines.

@ Level 2 - Common subroutines and common
tables.

Functional routines are assembled as
independent control sections with a single
entry point and a return to mainline con-
trol. Functional routines do not call
other level 1 routines. Any communication
required between functional routines is
through mainline control and the common
table area. E

Common subroutines are also assembled as
independent control sections.

Assembler Control Table

Linkage between mainline control, function-
al routine, common subroutines, and common
tables is accomplished through the use of
the Assembler Control Table. The location
of the Assembler Control Table is always
available to all levels of routines and sub-
routines through the general purpose regis-
ter ACT.

The Assembler Control Table is divided
into five parts:

1. Mainline control/functional routine
linkage/return algorithms

Introduction 7

. Functional routine pointers
Common subroutine pointers
Common table pointers

. Switches

. e

O W N

Each of these five sections is in a fix-

ed location with respect to the ACT pointer,

and each element in a given section is in a
fixed location with respect to the start of
that section. A central dimensioning deck
of EQU cards is used by each control sec-

tion to symbolically reference the Assembler

Control Table.

General Register Assignments

General registers 3-15 are referenced sym-
bolically by all assembler subprograms.

The equate cards are described in Table 2
and in the paragraphs below. They are in-
cluded in all control section decks to pro-
vide the initial assignments for general
register symbols.

ACT (Assembler Control Table) Pointer. This
general register contains the absolute
starting location for the Assembler Control
Table. This register is set by the control
routine during phase initialization and re-
mains set for the duration of the phase.

ACT should be considered as a read-only
register for the use of all routines and
subroutines and as a base register for
Assembler Control Table references.

FRB (Functional Routine Base Register).
This general register contains the base ad-
dress for the current functional routine.
FRB is set by the control routine and is
used to link with functional routines. The
USING statement for each functional routine
uses FRB as the second operand and the name
of the functional routine's entry point as
the first operand.

FRB should not be used by common sub-
routines or by functional routines other
than in their USING statements. Functional
routines do not link directly with other
functional routines. Therefore, FRB re-
mains intact during the operation of a
functional routine.

SRB* (Subroutine Base Address). This gen-
eral register contains the base address
for the current common subroutine. SRB is
set by the calling routine and is used to
link with common subroutines. The USING
statement for each common subroutine uses
SRB as the second operand and the name of
the subroutine's entry point as the first
operand.

SRR* (Subroutine Return Address). This
general register contains the address
through which the current common subroutine
returns to the calling routine. SRR is

set by the calling routine with a BALR

SRR, SRB.

SP1*, SP2* (Subroutine Parameters). These
general registers are used to transfer
parameter(s) between the calling routine
and the called subroutine. SPl and SP2

are two contiguous® registers beginning
with an even register. If a parameter list
exceeds the combined length of SP1l and SP2,
SP1 is used as a pointer to the parameter
list storage location.

GRX, GRY, GRZ (General Purpose Registers).

There are no restrictions on the use of
these general registers. They may be used
by any level routine and are not saved/
restored by called subroutines and opera-
ting system functions.

GRA, GRB, GRC, GRD (Functional Routine
General Purpose Registers). These are four
contiguous registers beginning with an even
numbered register. Some subroutines could
use these registers and restore them to their
original value before returning to the cal-
ling routine. The control routine is
required to save and restore these registers
for its own use when transferring control

to a functional routine.

Linkage Conventions

All assembly phases routines link through
the Assembler Control Table using standard
DOS/360 linkage conventions. The exact
linkage and the entry and exit points for
each routine are in the routine listing
comments.

DICTIONARIES AND TABLES

The assembler builds dictionaries and tables
for its own use. Special facilities are
used to enter new records and to access
already stored records for adding or re-
trieving data in these designated areas.

*SRB, SRR, SPl, and SP2 may be used as gen-
eral purpose registers by level 0 and level
1 routines if care is taken not to conflict
with subroutine calls. If a subroutine
calls another subroutine, it is the respon-
sibility of the first subroutine to restore
SRB and SRR.

Table 2.

General Register Assignments

Tentative
Symbol EQU Purpose Restrictions Remarks
GRO
GR1, Absolute None
GR2
ACT 3 Assembler control Read only register
table pointer
SRB 8 Common subroutine Set by calling routine, Used by S/R in Four contiguaus regis-
base register USING statement ters beginning with an
even regist
SRR 9 Common subroutine Set by calling routine with BALR, SRR,
return register SRB
SP1 10 Common subroutine Used to transfer parameters between calling
parometer | routine and common subroutines
SP2 1 Common subroutine
parameter 2
GRX 14 General purpose No restrictions, GRX and GRY ore
registers X, Y, ond Completely volatile, two contiguous registers
GRY 15 Z, respectively beginning with an even
register. GRZ is un-
GRZ 13 predictable,
GRA 4 General purpose Used: by functional routines. Cannot be Four contiguous registers
register A, B, C, ond changed by common subroutines. beginning with ch even
GRB 5 D, respectively register
GRC [
GRD 7
FRB 12 Functional routine Set by control routine. Used by functional
base register routines in USING statement,
CRB* GRC Control routine base Saved/restored by control routine when (Somple applications)
register control is passed to functional routine
CRR* GRD Control routine
return address

*CRB and CRR are applications of the usage of general purpose registers for specific assignments,

Hash tables, hashing algorithm, and chaining
are the tools employed to accomplish the re-
quired data manipulations in the Macro Gen-
erator dictionaries and the Symbol Table.

The assembler builds other dictionaries
and tables in which the entries are not
hashed and chained together. These are the
External Symbol Dictionary, the Relocation
Dictionary, the Cross Reference Dictionary,
the Literal Base Table, and the Literal
Adjustment Table. Their entries are stored,
read, and written contiguously.

See Apperdix D fer a cemplete discussion
of dictionary construction methods and
Appendix B for a description of dictionary
and table formats.

Macro Generator Dictionaries

The macro generator phases use two types of
dictionaries: a global (permanent) diction-
ary and a local (transient) dictionary.

See Figure 3.

Introduction 9

Global Dictionary

Machine operation codes

Assembler operation codes

Macro names<+— (NOTE/POINTs)
Global SET symbols

Local Dictionary

Sequence symbols «=—=(NOTE/POINTs)
Ordinary symbols
Local SET symbols

Symbolic parameters

Figure 3. Dictionary Structure

There is only one global dictionary. It
is core resident, and it contains all
machine and assembler operation codes, all
macro names, and all global SET variables.

There are many local dictionaries, one
for each macro definition and one for open
code (main text). The local dictionaries
contain sequence symbols, ordinary symbols,
local SET symbols, and macro instruction
parameters. Local dictionaries contain
items needed for insertion into edited text
and for macro generation during Phase F3,
and can overflow onto a utility data set
during construction.

Each macro local dictionary is subsetted
at the end of the processing of the macro
definition (Phase F2). The subsetted dic-
tionary is written on the SYS002 immediately
following the edited text format of the
macro definition.

The global and the open code local dic-
tionaries are subsetted at the end of Phase
F2. Subsetting sorts the dictionaries on
the "a" pointer and removes flag bytes,
symbolic names, big "A" pointers, and little
"a" pointers. The global and main text
local dictionaries are placed in core and
remain there throughout Phase F3.

Symbol Table

The symbol table is a collection of the
attributes of symbols and literals. It is
actually composed of two tables, one for
symbols and one for literals; however, the
same physical storage area is used for both
and the two different types of entries are
intermingled in storage.

10

The symbol table is a compact means to
rapidly obtain the attributes of a given
symbol or literal. The techniques used to
store and retrieve symbol table information
are hashing and chaining.

The symbol table is in core during
Phases F7, FI, and F8. It consists of the
symbol table proper and two hash tables, one
for symbols and one for literals. The
external symbol dictionary occupies the
high-numbered portion of the alloted storage,
but is output on SYS003 if the space is
needed by the symbol table.

INTERMEDIATE TEXT RECORDS

The assembler creates several types of
intermediate text records from text stream
statements (SYSIPT) and from macro defini-
tion and COPY code statements (SYSSLB).
These records are of three.basic categories:
® Source records

e Edited text (logical) records

® Error records

The record formats are briefly described in

the following paragraphs. See Appendix B
for a complete description of them.

Source Record

Source records of statements from SYSIPT

are carried from phase to phase without
change. They are listed by Phase F8. No
source records exist for macro definition
statements and COPY code (from SYSSLB) until
F8. Then, if the PRINT GEN option is on,
they are generated from the edited text
records.

Edited Text Records

Edited text records consist of the source
statement fields to which work and code
areas have been appended to map and describe
the attributes of the fields. These records
are created during the initial scan of the
source text (in Phase F2). The edited text
records are modified during Phase F7 and are
converted to object code by Phase F8.

During processing, the edited text record
for each statement is written on the

utility data sets immediately following the
source record for that statement.

following the edited text record of the
statement for which the error is detected.
Up to 16 errors can be detected for each

Errors are detected by Phases F2, F3, F7, statement. Error records are processed by
and F8. A record for each error is written Phase FPP.

Error Records

Introduction 11

PHASE F1 - INITIALIZATION AND ASSIGNMENT

OVERALL OPERATION (FLOWCHART 2)

Phase Fl initializes the assembler. Fl
tests for a valid I/O configuration. If
the configuration is not valid, it fetches
the abort phase. It allocates core for

the dictionaries and determines an optimum
buffer size. Phase F1l generates a hash
table and associated global dictionary.
Machine operation codes and assembler oper-
ation codes are inserted into the global
dictionary at this time. The first five

12

data sets, SYSIPT, SYSSLB, SYS001, SYS002,
and SYS003, are opened. The assignments of
the three utility data sets within the
assembler are determined by means of the
ASSGN commands and job control statements.
(See IBM System/360 DOS, System Control and
System Services Programs).

Phase F1l reads the first card and, if it
is not an ICTL card, branches to Phase F2.
If the first card is an ICTL card, it is
processed. Another card is read, and Fl
then branches to F2.

OVERALL OPERATION (FLOWCHARTS 3-7)
This phase reads the input from SYSIPT and
performs a syntactical scan of all the
input. See Figure 4. Any undefined op-
eration codes are assumed to be system
macro instructions. A search of SYSSIB is
made and the system macros are edited just
as are programmer macros. In addition to
scanning, Phase F2 inserts various items
into appropriate dictionaries.

Items present in the dictionaries are
needed for insertion into edited text and
generation by Phase F3.

When a dictionary is complete, it is
subsetted and all items except those needed
by Phase F3 are deleted.

FUNCTIONS

Phase F2 performs the following three
logical functions:

® Programmer macro definition scan and
dictionary build.

® Open code (main) text scan and dictionary
build.
e System macro definition scan and

dictionary build.

Source Text
Open Code
Edited Text

Phase F2 Dictionary
Segments SY5002
System macro
definitions and Edited
COPY Code Macro
Definitions
SYS003

Figure 4. I/0 Flow for Phase F2

PHASE F2 - STATEMENT SCAN

Text Stream Scan and Programmer Macro
Editing

Phase F2 reads source text from SYSIPT or
from SYSSLB (if COPY instructions are
encountered). Programmer macro definitions
must precede all source statements except
ICTL, ISEQ, and listing control instructions.

F2 translates each source statement
character from EBCDIC to an internal code
(Appendix F). This internal code estab-
lishes a continuous collating sequence --
to simplify syntactic scans -- of all valid
assembler language characters. Self-de-
fining character strings and comments are
not limited to valid assembler characters.
Therefore, self-defining character strings
are re-translated into EBCDIC when they
need to be evaluated.

After translating the statement, F2
writes a copy if it is on SYS00l1 (See Macro
Generator Record Formats in Appendix B.
This copy will be retranslated to EBCDIC
by Phase F8 and put out on SYSLST.

F2 now builds edited text from the
source statement. (See Macro Generator
Record Formats in Appendix B.)

F2 scans the statement again. If the
statement has a name field, the name and
its attributes are entered in the open code
local dictionary or -- if the statement is
part of a programmer macro definition --
in the local dictionary being built for
that macro.

F2 scans the operation field. 1If the
statement is a prototype, F2 enters.the
operation code--which is the name of the
programmer macro defintion--in the global
dictionary. If the statement is not a
prototype, F2 looks up the operation code
in the global dictionary. If the operation
code is not in the dictionary, the
statement is assumed to be a system
macro instruction (located on SYSSLB)
name and is entered in the global dic-
tionary.

F2 scans the operand field. If the
statement is part of a programmer macro
definition, symbols in the operand field
(and their attributes) are placed in the
macro local dictionary. For open code one-
for-one statements, only sequence symbols
or local variable symbols in the operand
field are placed in the open code local
dictionary =-- ordinary symbols are not.

For open code macro instructions, all
symbols in the operand field are placed
in the open code local dictionary.

Phase F2 -~ Statement Scan 13

F2 also checks statement syntax as it
scans and it prepares an error record for
each error encountered.

The edited text record for open code
statements is written on SYS001 immediately
following the source record. If the
statement is part of a programmer macro
definition, the edited text record is
written on SYS003. Error records are
written after the edited text on both
SYS001 and SYS003.

After each complete programmer macro
definition is processed, its macro diction-
ary is subsetted -- the entries are sorted
on the little "a" pointer and the symbol,
big "A" and little "a" pointers are re-
moved. The dictionary is written on SYS003
following the macro definition and the
SYS003 NOTE/POINT location of the dictionary
is placed in the global dictionary entry of
that macro name. The dictionary in turn
points to the programmer macro definition
edited text.

If, during source statement processing,
a macro local dictionary or the open code
local dictionary cannot be contained in
core, segments of them are written on
SYS002. These segments are backward
chained.

System Macro Editing

After is has processed the text stream, F2
looks up each system macro instruction name
entered in the global dictionary. The macro
definition is located on SYSSLB, read in,
edited, and written on SYS003 in the same
manner as each programmer macro definition
was processed from the text stream. A
macro local dictionary is created during
editing and is subsetted and written on
SYS003 following the macro definition.

F2 places the SYS003 NOTE/POINT location
of each system macro definition local dict-
ionary in the global dictionary entry for
that macro instruction name. The dictionary
in turn points to the macro definition
edited text.

Any name in the global dictionary for
which F2 cannot find a corresponding .sys-
tem macro definition on SYSSLB is flagged
as an invalid operation code. An error
record is written for the statement in
which the name appears.

After it has looked up all macro names
in the global dictionary, F2 subsets the
global dictionary -~ removes all entries
except those for global variable symbols.
F2 also subsets the main local dictionary --
sorts the entries on the little "a" pointer
and removes the symbol, big "A" pointers,
and little "a" pointers.

The subsetted global and open code local
dictionaries remain in core. F2 then
FETCHes phase F3.

14

SUBROUTINES

DRIVER

One card is read and control is transferred
to DRVERI.

DRVER1

The name and operation field of each in-
struction is scanned. The name field is
indicated as defined if non-blank syntax
errors are noted and, at this point, may
abort this statement.

If a prototype is expected, the name
(if not already present) and SY¥S003 NOTE/
POINT address is entered in the global dic-
tionary, and each parameter (name field
included) is scanned and entered into the
local dictionary for this macro. Edited text
is built up during scanning. The program
goes to the output routine ENDOPR, and then
to DRIVER. If a prototype was not expected,
the operation field is searched for in the
global dictionary. If not found, statement
sequencing is checked and the operation
field is entered in the global dictionary.
The statement is treated as a macro instruc-
tion. The name field and all operands are
edited and edited text is produced. The
program goes to ENDOPR for each operand.
When all operands have been processed,
control goes to DRIVER.

If the operation code is found and is not
an assembler operation, the statement se-
quencing is checked. The operand field is
scanned and put into edited text format.
Control goes to ENDOPR.

If the operation code is a declaration
(GBLA, LCLA, etc.), the operand fields are
scanned and errors diagnosed. Each oper-
and is inserted into either the global
dictionary or the local dictionary. Con-
trol goes to DRIVER.

If the operation code is a SET state-
ment, it is checked for statement sequen-
€ing. If valid, the little "a" pointer of
the variable symbol is found in the dic-
tionary and inserted into the edited text.
Control then goes to ENDOPR.

If none of the above operation codes are
found, the program performs a computed GO
TO based upon the operation code.

AIF and AGO

The evaluation field, if present, is scan-
ned and put into edited text. The little
"a" pointer of the sequence symbol is in-
serted into the edited text formats.
Control then goes to ENDOPR.

ANOP, TITLE, MNOTE, MEXIT, EQU, CSD,.CNOP,
DROP, USING, ORG, PRINT, SPACE, PUNCH,
ENTRY, COM, EJECT, and LTORG

All these subroutines follow a procedure

similar to AIF and AGO.
control goes to ENDOPR.

In each case,

MACRO
Control returns to DRIVER with an in-
dication that the next statement is expect-

ed to be a prototype.

ICTL
This subroutine puts out an error message

and moves an END card image into the input
buffer. Control is returned to DRVERL.

COPY

If in a system macro, the address of the
library is NOTEd. In either case, the input
in GETSRC is set to the library. A FIND to
the library is then undertaken. Control
returns to DRIVER.

ISEQ

The operand field is scanned and new input
parameters in GETSRC are defined. Control
goes to DRIVER.

REPRO

The next card is read and put into an
edited text format. Control goes to ENDOPR.
EXTRN

The operands are scanned and indicated as

defined for the dictionary. Control goes
to ENDOPR.

START, DSECT, and CSECT

The type attribute is set, and control goes
to ENDOPR.

DC, DS

The operand fields are scanned, and, if in
open code, the attributes are defined. 1In
either case control goes to ENDOPR.

CCwW

length, and scale attributes are
The

Type,
moved into the edited text field.

operand field is scanned and control goes
to ENDOPR.

MEND

This subroutine goes to ENDCPR to write
edited text for the MEND card. It then
goes to DCLOSE.

END

The name, operation, operand, and comments
are written in an edited text format. Con-
trol is transferred to DCLOSE.

DCLOSE

DCLOSE is entered after scan of each pro-
grammer macro, each system macro, and open
code. It closes each macro Jlocal dic-
tionary, the open code local dictionary,
and the global dictionary after all text
has been scanned and all macros edited.

At entry, DRCTY (in macro generator
common) contains the note/point address (on
SYS002) of the last or only segment of
the current local dictionary. DCLOSE first
notes the position of 8¥YS002; then it
points to the next available position,
writes the final block of the current
dictionary, and notes its position. DCLOSE
then, one by one, reads back the segments of
the current dictionary from SYS002 and
subsets them, building a subsetted dic-
tionary in core. Subsetted macro local
dictionaries. are written out on SYS003
immediately following the edited text for
their respective macros. If the subsetted
dictionary is a programmer macro local
dictionary, control returns to DRIVER.

Otherwise, DCLOSE sets a switch in
GETSRC to indicate all future input will
be from SYSSLB. It then issues a FIND to
SYSSLB for each undefined opcode. If the
opcodes can be found in SYSSLB, control
goes to DRIVER. When no more opcodes can
be found in SYSSLB, those remaining are
flagged as undefined. The open code local
dictionary and the global dictionary are
then subsetted, the input stream (SYSIPT)
is flushed to /* or end-of-file, and the
next phase is FETCHed.

ENDOPR

The comments field is edited, and control

is transferred to NDSMT3.
NDSMT3

If in a macro, this subroutine writes on

Phase F2 -~ Statement Scan 15

SYS003; otherwise, it writes on SYS001l. If
lookups are not suppressed, it inserts a
little "a" pointer into the edited text
format where appropriate. In either case,
it writes edited text on the selected unit.
If an error record was written on SYS003,
it is also written on SYS00l. If a return
is expected because of a previously set
switch (SWTCH7, bit 0), it returns; other-
wise it goes to DRIVER.

GETSRC

This program reads a record from SYSIPT or
SYSSLB, depending upon which was selected.
The record is transIated to internal code
and immediately written on SYS001 if GETSRC
is not processing system macros. Continua-
tion cards and sequence numbers are noted
and appropriate action is taken. Control
returns to the caller.

16

BWRITE

This subroutine moves data to the buffer.
If the buffer is full, it is written to
the appropriate utility data set. In
either case, control returns to the caller.

BWFORC

If room exists for another record in the
buffer, control returns to the caller.
Otherwise, it goes to BWRITE.

BWNOTE

This program NOTEs the position of the
selected utility data set and returns
control to the caller.

PHASE F3 - MACRO GENERATION AND CONDITIONAL ASSEMBLY

OVERALL OPERATION (FLOWCHARTS 8-11)

Phase F3 reads text from SYS00l. See
Figure 5. This text includes source, error,
and edited records. Source and error
records are immediately written onto SYS002.
MEND and MEXIT statements are not processed.
The edited text for open code and for all
macro definitions, plus the subsetted
global and local dictionaries, is used to
generate one-for-one statements in edited
text form and to perform conditional
assembly. Assembler edited text records

are produced and written on SYS002. When

the end of text is reached, F3 FETCHes
Phase F7.

Text input Macro dictionaries,

from Phase macro definitions
F2
Qutput for use in
Phase F7
Figure 5. 1I/0 Flow for Phase F3

PHASE F3E - ABORT CONDITION (FLOWCHART 12)

Phase F3E will be substituted for Phase F3
if any of the following abort conditions
arise 1in Phase F2:

® The global dictionary fills up.

® A local dictionary exceeds 64K bytes on
the overflow file or in core.

® The subsetting area is too small.

All text is read from SYS001l. Only source
records with accompanying error records are
written on SYS002. All other records are by-
passed. When the end of text is encountered,
an edited text record for an END card is
generated and written on SYS002, and F3
FETCHes Phase F7.

FUNCTIONS

Phase F3:

® Generates a parameter table from a macro
instruction-macro prototype pair of
statements.

® Generates assembler edited text records
using macro definition edited text and
the information in the global and
associated local dictionaries.

® Evaluates conditional assembly expres-
sions.

e Performs conditional assembly.

Macro Generation

F3 reads text from SYS00l. When a macro
instruction is encountered, its exact
location is NOTEdA. The input file is
SYS001 for outer macro instructions and
SYS003 for inner macro instructions. A
complete pass over the macro instruction
text is made. Source and error records
associated with the macro instruction are
written on SYS002. When the end-of-macro
instruction field is encountered, the
position is NOTEd so that the input of
text can later be resumed at the correct
position. The input data set is then re-
positioned again to the beginning of the
macro instruction text.

The little "a" pointer of macro instruc-
tion points to the associated entry in the
global dictionary. This entry points to
the associated subsetted macro local dic-
tionary on SYS003. If the entry is zero,
this mnemonic represents an undefined
operation to the macro generator.

If the global dictionary entry is not
zero, the first segment of the subsetted
local dictionary is read in. This segment
contains the macro local dictionary header
record which indicates the size of this
local dictionary. If there is room in the
block of main storage allocated by Phase
F2, the complete local dictionary is
brought into main storage and the available
storage pointer is updated by the length of
this local dictionary.

The parameter table is constructed at
this location. This table indicates the
values to be substituted for macro proto-
type symbolic parameters when they are

Phase F3 - Macro Generation and Conditional Assembly 17

referenced in model statements or inner
macro instructions. &SYSNDX and &SYSECT
are treated as parameters, and their entries
are assigned the first two entries of this
parameter table. The third entry is
assigned to the name field.

Then the NOTEd location of the per-
tinent macro prototype edited text is
obtained from the local dictionary header
record, the prototype edited text is read
in, and the parameter table is completed.
For positional parameters, the values of
the inner macro instruction operands are
obtained from the appropriate dictionary,
and for outer macro instruction operands,
they are obtained from the operand itself.
Entries are made sequentially in the param-
eter table. As each prototype keyword is
encountered, it is compared against each
macro instruction keyword operand until a
match is found. The values are then entered
in the parameter table.

The cycle of comparisons to find the
matching macro instruction operand corre-
sponding to the next sequential prototype
keyword begins where the last cycle left
off. The operands are compared in a "wrap-
around” fashion. Because the entries in
the parameter table are variable length
entries in position number (parameter)
order, a separate length table with a two-
byte entry for each parameter table entry
is maintained. (This length table contains
the accumulated length of each parameter
entry. In effect, an entry in this table
is an increment that must be added to the
address of the beginning of the parameter
table to locate its associated parameter
entry.)

After the parameter table is completed,
the rest of the macro definition edited
text is read in. Conditional assembly
evaluation is performed as required, sub-
stitutions are made for references to
symbolic parameters and system variable
symbols, and the macro definition is ex-
panded, producing one-for-one edited text
records for input to the assembler phases.
If an inner macro instruction is encounter-
ed, the length table is placed behind the
parameter table, followed by the address.of
the length table and address of the begin-
ning of the parameter table, and the entire
cycle is repeated. Nesting of macro in-
structions can occur to any depth, provided
there is sufficient room left in storage to
enter the local dictionary associated with
the inner macro instruction. If there is
not sufficient room left, this information
is saved for diagnostic purposes, the con-
cerned local dictionary is not brought into
storage, further (deeper) nesting of macro

18

instructions is discontinued, and the
position of SYS003 is NOTEd. Processing
continues at the discontinued text of the
next outer level macro.

When the ACTR value is exceeded within
a macro expansion, the information is
saved for diagnostic purposes, control is
returned to the outermost macro instruction
expansion, and processing continues. If
the ACTR value is exceeded in open .code
processing, the information is saved for
diagnostic purposes, an END assembler in-
struction record is created and inserted
in the text stream on SYS002, and input is
ended.

Whenever the processing of a macro defi-
nition is completed, generation of output
text is resumed for .the next higher level
macro instruction;or, if the outermost
macro definition expansion has been com-
pleted, processing of open code edited
text is continued. After completely pro-
cessing the edited text input from SYS001,
F3 transfers control to Phase F7.

Conditional Assembly

Phase F3 evaluates conditional assembly
expressions. If the expression is in a
SETx statement, the "a" pointer associated
with the SET variable,symbol in the name
field is used to place the current SET
symbol value in its dictionary definition
entry. When an AGO or AIF instruction is
encountered and the evaluation, if one is
necessary, indicates that a branch must be
taken, the NOTEd position of the edited
text named by the sequence symbol is ob-
tained from the appropriate local dic-
tionary. The text on SYS001l or SYS003 is
repositioned and the appropriate text is
read in and processed.

FUNCTIONAL PROGRAM SECTIONS AND ROUTINES
ZACINA

This routine is the F3 entry point. It
relocates permanent and open code diction-
aries, initialized I/0 buffers, and ini-
tializes input pointer and macro base
pointer.

CGOTO

This is a computed GO TO on the various
statement types.

MACHOP

This routine processes edited text records,
evaluating fields which require substitu-
tion.

SOURCE

This routine puts out a source or error
record.

SETST

This routine determines the address of the
result field, evaluates the operand, and
stores the result.

CSECT

This routine stores the last CSECT name
and outputs the record.

AIFST

This routine evaluates the expression. 1If
expression is false, processing continues
with the next sequential record. If the
expression is true, the text file is re-
positioned to the sequence symbol.

AGOST

This routine repositions the text file to
the sequence symbol.

MENDST

If exit is from an outer macro, this routine
sets the text file to read from SYS001;
otherwise it continues reading from SYS003.
It positions the text file to read from
discontinued text.

MINSTR

This routine outputs the source, notes the
discontinued text, and repositions the
text file to the beginning of the macro
instruction.

ENDST

This routine dumps output buffers and re-
winds utility files.

BEGMAC

This routine reads the macro dictionary
and initializes the parameter table with
SYSNDX and SYSECT entries.

PROTO

This routine points to macro definition
prototype and reads it into the input
buffer.

PROTO1

This routine builds the parameter table,
evaluating operands as needed. A merge
of keywords is performed if keywords exist.

VALUAT

This routine sets the mode switch to
character expression. It initializes the
pointers, operator table, and result list
and it zeros-out length buckets of string
areas. In general, this routine is called
for the evaluation of an expression.
Evaluation may be required in the name,
operation, or operands fields. An expres-
sion may be a simple parameter reference
or a complicated arithmetic expression in
a SETA operand.

Any term that requires a retrieval from
some dictionary (parameter reference or
SET variable) will eventually pass through
the VALUAT routine.

The routine operates on the flags shown
in Appendix B.

SYMBL

This is an input pointer to an operator.

CHFORC

This routine tests for the type of operator.

ADVOP

There is no forcing in this routine. It
advances the operation pointer and the
emergency operation into the operation
table. If the operation is OR or AND, it
reinitializes the mode switch to character
expression.

Phase F3 - Macro Generation and Conditional Assembly 19

ADVINP

This routine advances the input pointer.

FORCE

This routine determines if the new opera-
tion forces the last operation entered in
the operation table.

TSTOP1

This routine tests for end of expression.
If it is the end of the expression, TSTOP1l
returns to DRIVER.

DOOPR

This routine fetches the address of the

two fields to be processed.

SUBSC

This routine processes subscripted variable
or parameter sublist or $SYSLIST.

RELINT

This routine initializes a string pointer
with the address of string area 2 and turns
off the PUTST switch.

META3

If character expression mode exists, this
routine fetches the binary word and con-
verts it to decimal. If arithmetic ex-
pression mode exists, it initializes for
entry of the result, then stores the result.
MEB4

If in the arithmetic expression mode, this
routine initializes for entry and stores
the result.

METC4

This routine fetches the length of a string,

initializes for the entry of the result,
and stores the result.

20

DOOPR1

This routine processes the relational
operator and stores the result.

RELAT

This routine processes the relational op-
erator and stores the result.

ARITOP

This routine processes the arithmetic op-
erator and stores the result.

NOTOPR

If outside range of valid flags, this
routine sets the end of expression flag in
the operation table; otherwise it performs
a computed GO TO on the flag.

CSD

This routine translates a character string
back to the original representation.
DECINT

This routine stores the value of a decimal

in the intermediate result list.

META

This routine initializes for a SET variable.

METB

This routine initializes for a SET variable.

METC

This routine initializes for a SET
variable.

CHARST

This routine puts a string in the string
area.

BEGSUB

This routine stores the length of a string
already present in the string area and
sets the substring mode.

SETARE

This routine sets the mode switch to the
arithmetic expression mode.

SBEND

This routine sets the substring comma or
the left parenthesis switch.

TATTBT

This routine checks for the type attribute

of a parameter.

LATTBT

This routine checks for the length attribute

of a parameter.

SATTBT

This routine checks for the scale attribute
of a parameter.

PACK3

This routine stores the address of a result
in the pointer list.

SYSLST

This routine stores a parameter flag to
simulate a parameter reference.

PARMTR

This routine stores a parameter flag and
number into the pointer 1list.
ATTPAR

This routine checks for the attribute of a
parameter.

Phase F3 - Macro Generation and Conditional Assembly 21

PHASE F7 - INITIAL ASSEMBLY

OVERALL OPERATION (FLOWCHARTS 13~27)
Phase F7 has three general functions:
® Processing symbols

® Processing literals

® Assigning storage locations

Symbols are processed by entering the
mnemonics and their relative storage ad-
dresses in a symbol table. Addresses are
assigned relative to the beginning of the
control section in which they are deter-
mined. (While the program performs this
function, it is working in the "assignment
mode.")

If more symbols are defined in the user's
program than will fit in the storage al-
located for the symbol table, the point in
the text that caused overflow is NOTEd and
the remainder of the program is processed
without making further symbol table entries.
However, symbols encountered are checked
for duplicate names, and symbols already
defined in the symbol table are substituted
into the text where applicable. (While per-
forming these functions, the program is in
the "substitution mode.")

When the end of the text data set is
reached, it is repositioned to the begin-
ning, and operand processing continues until
the previously noted overflow position is
reached. At this point, the old table is
discarded and processing reverts to assign-
ment mode and the next symbol table segment
is constructed.

Building symbol tables and processing
operands continue until the last symbol
defined has been placed in the symbol table.

As name fields are processed, Phase F7
collects appropriate symbols and creates
an external symbol dictionary (ESD) which
will be processed by Phase FI.

Phase F7 also processes literals and
self-defining terms in expressions affect-
ing the location counter. Literals are
entered in the symbol table. When an LTORG
or END assembler instruction is encountered,
the literals in the table are inserted in
the program stream.

All mnemonic operation codes created by
concatenation or parameter substitution
during macro generation are translated in
this phase.

Cross-reference records are generated in
Phase F7 during symbol processing and ex-
pression evaluation.

22

Phase F7 also creates an AUTOTEST sym-
bol table if requested by OPTION SYM, and
writes cards generated by PUNCH and REPRO
statements.

Source, error, and edited text is read
from SYS002, and.literal pools and text are
written on SYSO001.

Overflow of the external symbol diction-
ary table, the literal-pool base table, or
cross-reference table will result in
writing overflow segments on SYS003.

I/0 FUNCTIONS

Phase F7 may make several passes at the
source text. See Figure 6. On the initial
iteration, the text is read from SYS002 and
reblocked onto SYS001l. On subsequent
iterations, the text is passed between
SYS001 and SYS002.

The text is reformatted so that a
"broken" record always starts at the begin-
ning of a physical block. This ensures
that a logical record is contained within
a single physical block.

Edited text records are moved from the
input buffers to a work area where work
buckets are attached. The records are then
transferred to the output buffers for
output to a utility file.

Error records are generated and trans-
ferred to the output buffers as errors
are encountered.

SYSLNK

PUNCH,

REPRO,
AUTOTEST

PUNCH, REPRO,

Text input Wa AUTOTEST
from Phase F3
Phase
F7 Cross Reference Table
Literal Bose Table

External Symbol
Dictionary Overflow

Symbol
Table
Literal
Table

Main
Storage

Figure 6. I/0O Flow for Phase F7

As the cross-reference block and literal
base table overflow, they are written onto
the overflow file, SYS003. Each time the
external symbol dictionary overflows it is
written onto SYS003, and its position on
the file is NOTEd for future reference
within the phase. The external symbol
dicticnary blocks are identified and called
from the overflow file through the use of
the NOTEd record position.

PHASE ORGANIZATION
Phase F7 is organized as follows:
® Mainline control - F7C.

® Functional routines.

GET statement - F7X.

DC, DS evaluation - P¥7D.

External symbol dictionary pro-
cessor - F7E.

AUTOTEST processor - F7N.

® Common subroutines (common to routines
within Phase F7). ’

Symbol table function - F7S.

Expression evaluation - F7V.

Error logging function - F7L.

Literal DC generator - F7G.

I/0 subroutines and initialization -
F7I.

F7C - Mainline Control (Flowcharts 13-18)

Control is passed to F7C by the initializa-
tion routine, F7I.

Program modifications are made based on
the setting of the cross-reference and
AUTOTEST option bits. F7N is called by F7C
to generate AUTOTEST cards for all edited
statements if the option bit is set.

F7X is called to move the next edited
text record into the text work area after
putting the current (processed) text record
onto the output file.

'The mode is tested (program modifica-
tion). If substitution has been made, con-
trol is passed to substitution control.

If the type of operation is assembler
op, control is passed to assembler op con-
trol.

Machine operations are processed, and
the location counter incremented by the
operation length. If an external symbol
dictionary identification has been assigned,
control is passed to the external symbol
dictionary routine to initiate private code.

If a name is present, the symbol table
is tested for possible overflow. If the
symbol table is full, the mode is changed
to substitution, and control passed to
substitution control.

If a literal is referenced in the operand
field, control. is passed to F7D to make a
literal entry in the symbol table.

If the cross-reference bit is set, the
operand is examined for references to sym-
bols.

The operation length is then calculated
from the hex code.

Assembler operation codes are processed
by examining the assembler switch code for
the following:

® Uninitiated private code (if the
external symbol dictionary ID = 0).

® Possible symbol table overflow.
e Location counter reference.

® Special cross-reference scan to generate
cross-reference records.

The internal hex code for assembler
operation codes is used to compute a
branch address to the specialized assembler
operation routine.

In the substitution mode, F7C tests all
records for symbol references. If substi-
tution is required, a work bucket is at-
tached for each symbcl referenced in the
operand.

For machine operation codes, F7C tests
name fields for multiply defined symbols
and evaluates literals for duplicates.

For assembler operation codes, F7C
processes assembler operations in the sub-
stitution mode only when substitution is
required.

F7X - Phase F7 GET Statement Routine

(Flowchart 19)

F7X is used by 7C to move edited text
records into the text work area and put
them back into the text stream.

On all but the first time called, F7X
puts the current text record onto the text
file by calling PUTXT.

If an error record is in the build area,
F7X puts the error record onto the next
record following the text record and clears
the error record in core switch.

If the literal switch is set, the next
record will be moved into the text work
area from the literal entry in the symbol

Phase F7 - Initial Assembly 23

table. Otherwise, F7X calls GETPT for a
pointer to the next text record in the
input buffer.

If an end-of-file is detected, F7X moves
a QUIT record into the text work area if
the mode is assignment. If the mode is
substitution, the file is repositioned to
the first text record.

F7X tests each edited text record for a
record type. If the record is not edited
text, it is put out on the output text file,
and the next record is examined.

Edited text records are moved into the
text work area for processing by Phase F7.

Edited-generated records are converted
to suitable format for Phase F7 processing.
The hex code is set from the operation code
conversion table, and substituted fields
are adjusted for leading and trailing
blanks.

F7X sets absolute pointers to the operand

field and appends fixed fields and symbol
work buckets (if any exist).

The operand field on machine operations
is scanned for literals. If an equal sign
is found outside of quotes, the literal in
the operand indicator is set, and the
literal work bucket is appended to the text
record.

Fields are tested for legality as
follows:

e The name field is tested for legal char-
acters, too many characters, and leading
alpha character.

® Assembler operations are tested for
name field required or not allowed and
operand field required or not allowed.

F7D - DC/DS Evaluation Routine (Flow-
chart 20)

This routine is called by F7C to process
DCs, DSs, literals, and literal DCs. A
complete syntax check is done for all DC
types, and appropriate error messages are
logged when necessary. One 15-byte DC work
bucket is attached to the appended fixed
field of the text record for each DC, DS,
and literal DC operand for use by the Phase
F8 DC evaluation routine (F8D). 1In the
external symbol dictionary, a table entry
is made for each valid constant in a V-type
DC.

One complete statement is processed in
each pass, and control is returned to F7C.

F7E - External Symbol Dictionary Processor
(Flowcharts 21-23)

This processor is called whenever any of

24

the assembler operations COM, START, CSECT,
DSECT, ENTRY, EXTRN, or ORG or a V-type
address constant is encountered. It is
also called at the beginning and end of
assembled code. Three other entry points
are used for ENTRY, EXTRN, and control
sections in the substitution mode.

The functions performed are as follows:

® Generating external symbol dictionary
entries.

e Updating the location counter in exter-
nal symbol dictionary entries.

e Making symbol table entries for names in
the statements handled.

e Setting and maintaining the control
table switches CBDNO, CBDSW, CCMNO,
CESDID, CESDNO, CNOESD, CPCNO, CTPCSW,
CSTVAL, CSGCTR, CLASID, CTNDID, CTCMSW,
CTESDP, CTESRN, CTESRP, CTFSTN, CTLOC,
and CTYPE. (See Appendix G.)

® Issuing various error messages.

F7N - F7 AUTOTEST Routine

If the AUTOTEST option is exercised, con-
trol is passed from F7C to F7N after the
process of each statement that defines a
symbol or affects the location counter in
any way.

The output records (cards) of F7N are
written on SYSPCH and/or SYSLNK data sets.
Subsequent executions of the object pro-
gram in the AUTOTEST mode use this in-
formation.

F7S - Symbol Table Subroutine (Flowchart 24)

The symbol table processor has three entry
points in Phase F7: STPUTR, STGETR, and
STROOM. Their function is to put symbols
into the table, retrieve symbols from the
table, and test whether room exists for
another symbol.

The symbol table and the external symbol
dictionary share an area of main storage.
The symbol table starts at the low-numbered
end, and the external symbol dictionary
starts at the high-numbered end. Room
must be left by the symbol table for two
external symbol dictionary segments of 260
bytes each (16 items 16 bytes long, plus
4 bytes for overflow addressing). Apart
from this restriction, overflow does not
occur until the external symbol dictionary
and the symbol table are about to meet.

STPUTR tests to see whether a duplicate
exists and, if not, puts the given symbol

into the table with its attributes. A type
1l or 3 cross-reference is also made.

STGETR tests whether the requested sym-
bol is in the table and, if so, gives the
address of the first byte in the entry after
‘the name field. If not, zero is returned.

STROOM determines whether overflow can
occur on the next STPUT. If overflow can
occur and room can be made for the symbol
table, or if the ESD processor made the call,
the external symbol dictionary is put on the
overflow file. If not, the need to enter
substitution mode is signalled.

F7V - Expression Evaluation Routine (Flow-
chart 25)

SPl at entry contains a pointer to the first
character of the expression. SPl at exit
contains a pointer to the character which
caused F7V to terminate. The terminating
character is always a left or right paren-
thesis, blank, or comma, unless there was

a syntactical error, in which case SPl is

a zero.

SP2 at exit contains the result, if the
expression is absolute. If the expression
is relocatable, SP2 contains a pointer to a
full word value followed by the RLIST. If
the expression contains an error, SP2 is
zZero.

Upon exit from F7V, the condition code
has the following meaning:

Code Meaning
0 absolute expression
1 simple relocatable expression
2 complex relocatable expression
3 evaluation impossible (error)

Syntax errors cause immediate exit from
F7V; errors other than syntax are logged,
and normal processing is continued.

F7V has the following functions:

® Evaluate expressions.

® Log type 2 cross-references (XREF) -
(only F8V).

® Convert self-defining values (SDVCF).

® Detect the following errors and pass the
information to F7L:

Relocatability error
Self-defining value too large
Arithmetic overflow

Symbol not found - (F8V)

Symbol not previously defined = (F7V)
Two terms not separate

Illegal character

Too many terms

Two operators illegally coupled

Too many levels of parentheses
Expression end premature

Invalid symbol

Expression value too large

Algorithm Description

A term is a relocatable or absolute symbol,
a length attribute reference (L'sym), a
location counter reference (*), or a self-
defining value. When a term is encounter-
ed, its value is entered in the next avail-
able position in ‘the TERMS list. If it is
a relocatable term, the sign code and its
external symbol dictionary ID are entered
in the next available position in the

RLIST list. If it is an absolute term, the
RLIST pointer is lumped to the next half-
word, in effect putting zeros into that
position, since all the tables are zeroed
during F7V initialization.

Type 2 cross-references are made during
Phase F7 assignment mode.

When an operator is . encountered, its
code is entered in the next available posi-
tion in the OPRNS list, providing its
hierarchy is greater than the previous
operator. Hierarchy codes are as follows:

0, Db
+

*

/

The code 0 for a left parenthesis is
always entered in the OPRNS list. A right
parenthesis forces all operators in the
OPRNS list back to the preceding left
parenthesis. A blank, comma, or a left or
right parenthesis which legitimately ends
the expression forces all operators in
OPRNS to the top of the list. An operator
with a code less than .or equal to the pre-
vious code forces only the previous op-
erator.

When an operator is forced, the arithme-
tic is performed between the last two en-
tries in the TERMS list, and the result is
stored in the position of the first entry
involved in the arithmetic. Also, the sum
of the two corresponding NTRMS entries is
placed in the position of the first entry.

COND is intially set to 0 on entry to
F7V. It is then set to 1 each time a right
parenthesis, +, or - is encountered; to 2

B W o

Phase F7 - Initial Assembly 25

each time an * or / is encountered; to
3 each time an absolute term.or left paren-
thesis is encountered; and to 4 each time a
relocatable term is encountered. The COND
switch setting determines the validity of
an operation. See Table 3. For example,
/ is valid only when COND=3 (/ follows an
absolute term or left parenthesis.). If
COND=4, a relocatability error is logged
(/ follows a relocatable term). A syntax
error is logged if COND=0 (expression begins
with /) or if COND=l1l or 2 (/ follows +, ~-,
*, /, or right parenthesis).

Work tables used in F7V are as follows:

TERMS (16 full words) = Entry is made for
each term in the expression. At end of
evaluation, the first full word location
contains the final result; subsequent
table entries contain intermediate re-
sults.

OPRNS (20 bytes) - Entry made for each
operator in the expression.

NTRMS (16 bytes) - A 2 is entered for each
term. At end of evaluation, the first
byte contains a value equal to twice the
number of terms in the expression.

RLIST (16 halfwords) - Sign code (1 for +,
2 for -) and external symbol. dictionary
ID are entered for each relocatable term;
zeros appear for each absolute term and
undefined symbol. During addition and
subtraction, RLIST entries are zeroed
when the signs are opposite and the ex-
ternal symbol dictionary IDs are the
same.

Upon exit, a simple relocatable expres-
sion will have a + sign and the external
symbol dictionary ID of its unpaired posi-
tive term in the first halfword, and the
remaining 15 halfwords will contain zeros.
A complex relocatable expression at exit
will have a non-zero halfword for each un-
paired relative term. The non-zero half-
words will be scattered in the table. A
complex relocatable expression may also
be the result of a single unpaired negative
term. A minus sign (-) and the external
symbol dictionary ID of this term will ap-

Table 3. Condition Switch Settings pear in the RLIST.
Character Previous . Flowcha F7L - Error Logging for Phases F7 and F8
Encounterd Setting Action Re::r:nc: (Flowchart 26) gging
start .- set COND = 0
2 conD = 1 This routine is called to attach error mes-
¢ LAV4 set - sages to an edited text record.
a4 if PCNTR) 4, log error i F7L tests the error switch in the control
vozé table to determine if there is an error re-
) 0/1/2 log error 1JY085 cord for the current text record in'the
RPAR error record build area. If there is, the
/4 ;:',53#1"58 and of expression error count is compared with the maximum al-
lowable number of errors (16). If the count
*or- 4 set COND = 1 LTCOM is equal to the maximum, the current and
0/\/2 log error 1JY085 LOOP all subsequent error messages are ignoreq.
o conD - If there is no error record in the build
* set = n
. . area, F7L tests the "error record follows
* s | ref. . 4 . .
s location counter ref.) bit in the text record. If the bit is
2 log error 1JY085 LTCOM set, the error record is moved into the
3 56t COND = 2 build area from the text file. If not, the
(* is mult.) error record is initialized in the build
4 log error 1JY025 area, and the "error record follows" bit
(TXERI) is set in the text record. 1In
/ 3 set COND = 2 LTCOM either case, the error switch in the con-
0172 log error 1Y085 trol table is set for subsequent calls on
LooP the current text record.
4 log error 11025 The error message is added to the error
absolute term 3/4 log error 1JY085 record, and the error count is incremented
by one.
Y12 30t COND = 3 Term The relative column pointer is added to
relocatable 0/1 set COND = 4 Computing the error message. If no column pointer is
rorm 2 \ 1Y025 reguired, it is set to zero.
o8 o Control is then returned to the calling
3/4 log error 1JY085 routine.
, or blank o/ i 1JY03 .
oo /)2 =8 o z F7G - Literal DC Generator (Flowchart 27
3/4 if PCNTR) 0, log error BLCOM
1Yes9 F7G is a routine which builds a literal DC

26

edited text record for an outstanding
literal entry in the symbol table. F7X in-
vokes F7G once for each literal DC that is
to be built into the edited text. F7G then
moves in pertinent information such as the
record length, record type X'60' for edited
generation, cperation type X'R80Q' for as-
sembler, operation code X'25' for literal,
and operation and name field lengths of
zero. After the text has been generated,
control is returned to the caller.

F7I - Phase F7 Initialization and I/0

The I/O portion of phase initialization
OPENs the three utility data sets. READ,
WRITE, CHECK, and POINTS are employed for
all data sets. :‘The routine initiates a
READ of the first block of the text stream
and initializes text, literal base table,
and cross-reference pointers.

F7 1/0 functions for PHCLS, GETPT, GETXTM,

PUTXT, CLSTXT, CWRESD, CRDESD, PUTXRF, and
PUTLBT are described below.

PHCLS - Phase Close

The I/0 portion of the phase close function
repositions (POINTS) SYS001l and SYS002 and
inserts the following parameters into the

I/0 portion of the assembler control table.

CTRLBT (4 bytes) - Pointer to the first
literal base table block on the overflow
file, SYS003.

CTCLBT (2 bytes) - Count of the number of
literal base table physical blocks which
have been written onto SYS003.

CTRXRF (4 bytes) - Pointer to the first
cross-reference table block contained
on the overflow file, S¥S003.

CTCXRF (2 bytes) - Count of the number of
cross-reference physical blocks which
have been written onto S¥S003.

The literal base table pointers are
tested to determine if any literal base
table entries have been made. If so,
an end-of-file label is embedded into the
literal base table stream, and the partially
filled block is written onto the overflow
file, SYS003. If no literal base table
entries have been made, then CTCLBT is
cleared to zeros.

PHCLS may be called by an unconditional
branch to PHCLS. PHCLS FETCHes FI.

Method.

Method.

Method.

GETPT - Get Point

GETPT points to the next logical text
record within the input text stream.

GETPT double-buffers the text
stream. Logical buffers may be split be-
tween two physical blocks. The routine
points to each record in sequence. The
pointer is pointing to the most significant
byte of the record length indicator (RLI).

Restrictions and Assumptions. The "last
record bit" contained within FLAGA must be
set to terminate the input text stream. A
logical record must be contained within
two physical blocks.

GETXTM - Get Text and Move

GETXTM transfers a logical record from the
input text stream to an area specified by
the user.

Upon entering, GETXTM tests a
global switch which is set by the GETPT
subroutine. If the switch is set, GETXTM
clears the switch and transfers the record
that is currently being pointed. If the
switch is not set, GETXTM calls GETPT to
point to the next logical record in the
input text stream. GETXTM then transfers
that record to the user's work area. Thus,
if the user wishes the next logical record
moved to his work area, he can call GETXTM
without first calling GETPT.

If the text record is segmented, the
routine joins the two segments together to
produce a single continuous record. 1In so
doing, it drops the second record length
indicator and updates the first record
length indicator to the total record byte
count. In addition, the "break flag bit"
contained within FLAGA is cleared to zero.

PUTXT - Put Text

PUTXT retrieves a logical record from the
input buffers or from an area specified by
the user, and transfers the record to the
output buffers for eventual output to a
utility data set.

If SPl is zero, PUTXT sets a
global switch and calls GETXTM. GETXIM
tests the switch and, if set, transfers

the text record from the input buffer to
the output buffer. If the GETPT global
switch is not set, GETXTM will call GETPT
to point to the next logical record. Thus,

Phase F7 - Initial Assembly 27

the next logical record in the text stream
can- be transferred directly to the output
buffer by simply calling PUTXT without first
calling GETPT or GETXTM.

If SPl is non-zero, the record is trans-
ferred from the area specified by SP1l into
the output buffer.

Restrictions and Assumptions. A logical
record must not exceed in length one physi-
cal output block.

CLSTXT - Close Text

CLSTXT POINTS the input text file, embeds
an end-of-file label into the output text
stream, and POINTS the output text file.
In addition, it interchanges the utility
file designators so that the current input
text file becomes the future output text
file, and the current output text file be-
comes the future input text file.

Method. The output buffer management sub-
routine is called, an end-of-file label is
embedded into the output text stream, and
the output file is repositioned. The I/0
designators are interchanged, and the text
buffer pointers are initialized. This
routine is called by PHCLS. Hence, unless
the phase anticipates an iteration on the
text stream, this routine should not be
called by mainline control.

CWRESD - Write External Symbol Dictionary

CWRESD writes the external symbol diction-
ary (ESD) onto the overflow file, SYS003,
and NOTEs its position for future reference.

Method. The routine tests the write posi-
tioning required switch. If set, the file
is POINTed to the next write position. 1If
not set, the file is assumed positioned for
the next write. The external symbol dic-
tionary block is then written onto the over-
flow file and its position NOTEd. The note
label is passed on to the user for future
reference.

Restrictions and Assumptions. The routine
does not keep count of -the number of ex-
ternal symbol dictionary blocks read or
written. It assumes the user is requesting
a block which has been previously written.

CRDESD - Read External Symbol Dictionary

CRDESD POINTs the overflow file to the re-
quested external symbol dictionary and

28

reads it into an area specified by the
caller.

Method. 'Using SPl, the overflow file is
POINTed to the requested external symbol
dictionary, the external symbol dictionary
is read into the area specified by SP2,
and the write positioning required switch
is set.

Restrictions and Assumptions. The routine
does not keep count of the number of ex-
ternal symbol dictionary blocks read or
written. It assumes the user is requesting
a block which has been previously written.

PUTXRF - Put Cross-Reference

PUTXRF points to the next available area in
the cross-reference output area for building
a cross-reference logical record.

Method. The routine is called each time a
cross-reference record. is to be built. The
routine advances through the buffer at 17-
byte increments until the block is filled.
At this point, the buffer is written onto
the overflow file at the next available
write position. The first block written
onto the overflow file is NOTEd for future
reference.

Restrictions and Assumptions. The routine
assumes a record will be built at the
POINTed location since it merely advances
to the next 17-byte location each time it
is called.

PUTLBT - Put Literal Base Table

PUTLBT points to the next available area
in the literal base table output area for
building a literal base table logical
record.

Method. The routine is called each time a
literal base table record is to be built.

The routine advances through the buffer at
13-byte increments until the block is filled.
At this time the buffer is written onto the
overflow file at the next available write
position. The first block written onto the
overflow file is NOTEd for future reference.

Restrictions and Assumptions. The routine
assumes that a record will be built each
time it is called since it merely advances
to the next 13-byte location.

SYPUNH - System Output (Located in RTA)

SYPUNH outputs 80-character logical records
to either the SYSPCH or SYSLNK data sets or
to both. On entry, SPl points to the first
byte of an 8l-character buffer where the

first character is an internal control char-

acter. SYPUNH tests the SYSPCH and the
SYSLNK option bits. If either one is set,
the contents of the 8l-character buffer
(except for the control character) are
transferred accordingly to the SYSPCH or
SYSLNK data sets. If both are set, the
contents of the buffer are transferred to
both data sets.

Phase F7 - Initial Assembly 29

PHASE FI - INTERLUDE

OVERALL OPERATION (FLOWCHART 28)

The main function of Phase FI (F Interlude)
is to write the external symbol dictionary
on ‘the SYSLST, SYSPCH, and/or SYSLNK data
sets. External symbol dictionary segments
and literal pool bases are located either in
main storage or in an overflow segment on
SYS001.

I/0 FUNCTIONS

Phase FI processes literal base table and
external symbol dictionary entries genera-
ted in Phase F7.and outputs literal adjust-
ment table entries. See Figure 7. The
literal base table and literal adjustment
table are passed at the GET/PUT logical
record level, and the external symbol dic-
tionary input is called at the READ level.
The I/O subroutines perform their own block-
ing and deblocking functions for the logical
record entries. The system output routines
SYPUNH and SYSL are called to output
external symbol dictionary data.

SYSLST SYSLNK

External
Symbol
Dictionary

External
Symbol
Dictionary

Literal Base Table

External Symbol

Extemal Symbol Dicti
Dictionary Overflow Phase fetionary
Fl
Literal Adjustment
Table
Main E
Storage

*If symbol table overflow occurred in Phase F7,
SYS001 may be used instead of SYS002.

Figure 7. I/0 Flow for Phase FI

30

I/0 SUBROUTINES

FITI - FI Initialization

The I/O portion of phase initialization
determines if any literal base table entries
have been output from Phase F7. If so, the
first literal base table block is read
from the overflow file, SYS00l, and the
pointers to the first logical record entry
within the block are initialized. Control
is then transferred to the mainline control
driver.

Phase F71 (the Phase F7 I/O routine)
transfers control to FII which in turn
transfers to Phase FI mainline control.

FICLS - FI Phase Close

The I/0 portion of the phase close.function
embeds an end-of-file label into the literal
adjustment table output. stream and writes
the last literal adjustment table block

onto the alternate overflow file. SYS001
and the alternate overflow file. are re-
positioned, and the following entry is
placed into the assembler control table.

CTCLAT - Count of the number of physical
literal adjustment table blocks which
have been written onto the alternate
overflow file.

Control is then transferred to the next
phase.

FICLS should be called only after main-
line control has finished its phase. FICLS
may be called by an unconditional branch
to FICLS.

GETLBT - Get Literal Base Table

GETLBT points to the next logical record
entry contained within the literal base
table input area.

Method. The subroutine is called each
time a literal base table logical record
is required. The routine advances through
the buffer at 13-byte increments until the
entire block has been processed, at which
time the next literal base table physical
block is read from the overflow file. If
either an end-of-file label is detected or
the block count becomes zero (whichever
appears first), the end-of-file flag is

set, and control is passed to the caller.

RDESD - Read External Symbol Dictionary

RDESD POINTs the overflow file to the
requested external symbol dictionary and
reads the block into an area specified by
the caller. RDESD is embedded into the
section LPFI2. LPFI2 reads the entire
external symbol dictionary into core, seg-
ment by segment. Logic is identical with
Phase F7 RDESD.

PUTLAT - Put Literal Adjustment Table

PUTLAT points to the next available area

in the literal adjustment table output area

for building a literal adjustment table
logical record.

Method. The routine is called each time
a literal adjustment table logical record
is to be built. The routine advances
through the buffer at 1l6-byte increments
until the block is filled, at which time
the buffer is written onto the alternate
overflow file. The alternate overflow
file is designated as that file which is
neither the prime overflow file, SYS003,
nor the current text file. Which file is
designated is contingent on the number of
passes through the text stream which were
executed by the previous phase, Phase F7.

SYSL - System List

SYSL outputs a l2l-character line to the
system list data set, SYSLST.

Method. The SYSL option bit is tested.

If set, the line is written on SYSLST.
If not set, a return is executed.

MAINLINE CONTROL

If the external symbol dictionary is not
in core, it is fetched one segment at a
time using the segment residence table.
The adjustment table is constructed from
control sections on the external symbol
dictionary by accumulating their lengths
and aligning to the next higher double
word.

Another pass through the external
symbol dictionary outputs the listing and
cards item by item. These consist of
name, type, ID, address, length, and
LDID, as appropriate, on the listing; and
name, type, address alignment, and length
or LDID on the cards, with one ID per
card to identify its first SD, PC, ER;
or XD type.

The adjustment table built in FI3 and
the literal base table are used to build
the literal adjustment table.

Phase FI - Interlude 31

PHASE F8 - FINAL ASSEMBLY

OVERALL OPERATION (FLOWCHARTS 29-36)

Phase F8 makes the final pass through the
program text, which is read from SYS001
or SYS002, depending on the number of
iterations. During this pass, any oper-
ands which were not processed by Phase F7
are processed from the last symbol table
created during that phase.

Any self-defining values which were not
converted to their binary values are now
processed. All address expressions are
evaluated, and the results are substituted
for the expressions. Addresses are re-
structured into a base register and dis-
placement format.

At the same time, the completely
assembled text is written in relocatable
object program format on SYSPCH or SYSLNK,
and in program listing format on SYSLST.

Invalid statements are flagged on
SYSLST. Error records are created and
written on the overflow file, SYS003, to be
listed by the Post-Processor Phase.

The relocation dictionary 'is built
during Phase F8, and segments can overflow
onto SYS003.

1/0 FUNCTIONS

Phase F8 passes through the text stream
once scanning the logical text records
which were output from Phase F7. See
Figure 8. The phase inputs the literal
adjustment table blocks from the alternate
overflow file and outputs cross-reference,
relocation dictionary, and diagnostic rn:c-
ords onto the overflow file for subsequent
processing by FPP. The cross-reference and
relocation dictionary records are output at
the PUT level where the cross-reference
records are inserted into the cross-
reference output stream from where they
left off in Phase F7. In addition, records
are output to the SYSLST, SYSPCH, and SYSLNK
files via the output subroutines SYSL and
SYPUNH.

PHASE ORGANIZATION

The following control sections comprise
Phase F8: F8I, F8C, F8M, F8A, F8P, F8D,
F8V, FBL, F8N, and F8S. These are self-
contained routines which may be link-edited
separately. Communication between routines
is via registers and the ACT table. When

32

SYSLST

SYSLNK

TXTI ‘
PUNCH,

Main
Listing

Text input
from Phase 7
REPRO
Phase
F8
Literal Adjust
Heral 291 Error records

Table from Adjustment i

Table
Symbol Table
Literal Table

Relocation Dictionary

Main
Storage

*If symbol table overflow occurred in Phase F7,
SYS001 and SYS002 may be reversed.

Figure 8. I/0 Flow for Phase F8

FI passes control to Phase F8, the above
routines are loaded into core and remain
there until the completion of Phase F8
execution.

F8I - Phase F8 Initijialization and I/0

On entry to Phase F8, the overflow file,
SYS003, is positioned for writing the re-
location dictionary and diagnostic records.
If any literal adjustment table records
were written by Phase FI, the first literal
adjustment table block is read from the
alternate overflow file. The literal
adjustment table pointers are initialized
to point to the first logical record con-
tained within the literal adjustment table
input area. The relocation dictionary
type indicator is inserted into the first
byte of the relocation dictionary output
buffer (the cross-reference output buffer
was initialized in Phase F7), and control
is transferred to Phase F8 mainline
control, F8C.

F8I Subroutines

GETXTM - Get Text and Move

GETXTM retrieves the next logical record
from the input text stream and moves the
record to an area specified by the user.
Each time the routine is entered, a pointer
is advanced to the next logical record in
the input text stream. The record is moved
from the input buffers to an area specified
by SPl. The input stream is double-buf-
fered to increase input speed and process-
ing efficiency. If an end-of-file label is
encountered, the EOF flag is set and passed
to the caller. GETXTM sets a switch which
prevents any further processing of the text
stream.

GETLAT - Get Literal Adjustment Table

GETLAT points to the next literal adjust-
ment table logical record contained within
the literal adjustment table input area.
The routine is called each time a new lit-
eral adjustment table record is desired.

On exit, SPl contains the first byte ad-
dress of the next literal adjustment table
logical record. The routine advances
through the buffer at 16-byte increments
until the block is empty, at which time the
next block is read from the alternate over-
flow file. SP1l returns with 0 if there are
no more literal adjustment table entries.

PUTRLD - Put Relocation Dictionary

PUTRLD points to the next available area in
the relocation dictionary output area for
building a relocation dictionary logical
record. The routine is called each time a
relocation dictionary is to be built. SPl
returns with the first byte address of the
next available record location in the relo-
cation dictionary output buffer. The rou-
tine advances through the buffer at 6-byte
increments until the block is filled, at
which time the buffer is written onto the
overflow file, SYS003. The first block
written onto the overflow file is NOTEd for
future reference.

WTERR - Write Error Message

WTERR outputs a printer-formatted diagnostic
message onto the overflow file for eventual
listing by the Post Processor Phase, Phase
FPP. ’

WTERR is called with SP1l pointing to the
first byte of a 1l21-byte error message.

PHCLS - Phase F8 Close

The phase close subroutine POINTS the text
file, embeds end-of-file labels into the
relocation dictionary output stream, and
writes their buffers onto the overflow
file. The following nine parameters are
passed to the Post Processor Phase through
the assembler control table:

CTPCHI (1 byte) - Option bits for SYSPCH,
SYSLNK, LIST, XREF, and TEST.

CTCXRF (2 bytes) - Count of XREF blocks
contained on the overflow file.

CTCRLD (2 bytes) - Count of relocation
dictionary blocks contained on the
overflow file.

CTCERR (2 bytes) - Count of the number of
error messages contained on the overflow
file.

CTRXRF (4 bytes) - Location of the first
XREF block located on the overflow file.

CTRRLD (4 bytes) - Location of the first
relocation dictionary block located on
the overflow file.

CTRERR (4 bytes) - Location of the first
diagnostic message located on the over-
flow file.

CESDNO (2 bytes) - Deck number.

CTITLE (4 bytes) - Deck identification.

PHCLS transfers control to FPP, the Post

Processor Phase.

F8C - Mainline Control (Flowchart 29)

Control is passed to F8C for each record;
F8C in turn passes control to the various
routines necessary to process that partic-
ular record. Program sequences within the
mainline control that perform specific
functions are described below.

F8C Subroutines

ERLODS

Errors encountered in Phase F8 for.a rec-
ord are appended to thée corresponding Phase
F7 error record and are put in the record
work area F8WORK (ACT).

Phase F8 - Final Assembly 33

ENDOFF

ENDOFF processes any error encountered in
the final record and exits to the F8I
phase close routine.

SETWBP

CTXWBP (ACT) points at the first symbol work
bucket in the input record. If there are

no symbol work buckets, CTXWBP (ACT) will be
set to zero. CTXABP (ACT) is set to point
at the appended fixed field of the input
record.

SRLIGN

SRLIGN makes alignments as necessary on all
machine ops, literal DC, DC, DS, CCW, and
CNOP. TXALIN in F8WORK(ACT) is investigated.
If this 3-bit designator is non-zero, one

to seven alignment bytes are output.

F8M - Machine Operation Processor
(Flowchart 30)

F8M processes the operand field of all
machine ops. Decomposition, adjustment,
and formatting occur in this routine. The
decomposition routine using table is shown
in Figure 9. F8M is entered from the F8C
routine.

F8M Subroutines

RR1, RR2, RR3, RR4, RXl, RX2, RSl, RS2, SI3,
SI4, SS1, Ss2

These subroutines scan the operand fields
of machine operations. They do a syntax
check and format the instruction building
area, F8INST(ACT). See Figure 10. These
subroutines call on lower level subroutines
which do semantic checks, and call on
another set of subroutines which do ex-
pression evaluation and decomposition.

RR4 refers to extended mnemonic register-
to-register instructions. RX2 refers to
extended mnemonic register-to-indexed-
storage instructions.,

F8AREX does a complete syntactic scan on
each expression and sets a group of semantic
flags. The necessary flags are investigated
by the individual routines, and error proce-
dures are taken where necessary.

34

Using
Table Using Table
Pointer

0 i

| |

2 |

3 |

4 |

5 |

6 |

7 |

8 |

9 |

10 |

11 |

12 |

13 |

14 |

15 {

— — ~— —/
00 — Register not used External Valve
FFy4 — Register in use g);:‘:g:mry
D

The using table is used by the decomposition routine, The using
table pointer and the using table ofe paraliel tables, Every
decomposable value is checked against the complete table for
possible decomposition,

Figure 9. Decomposition Routine Using

Table

F8A - Assembler Operation Processor
(Flowchart 31)

F8A processes the following assembler ops:
MNOTE, PRINT, SPACE, EJECT, PUNCH, REPRO,
TITLE, ENTRY, EXTRN, START, CSECT, DSECT,
COM, EQU, ORG, END, LTORG, USING, DROP,
literal DC, DC, DS, CCW, and CNOP.

F8A is entered from the F8C routine.

F8A Subroutines

PRINTB

This routine investigates the operand field
of all print statements. A syntax check

is made, and from one to three conditions
are set per statement.

- Location > Operation Code
I 1
F8INST (ACT) +1 +2 +3
re——— LiloL
R1,L|| Ro,Rs, X2 L2 | BisBoa |4—— Dy,0A ———— B [D2s ‘—{
T T T
| | |
| | {
. 1 1
+4 +5 +% +7 +8
'[-‘ Absolute Operand 1 oddress > Absolute operand 2
+9 +10 +11 +12 +13
address —'——I Indicator bits l
L) LML)
[I I |
[
i L1
+14 +15 ;\/—J
Ll.engl'h
EA2
EAl
DC
Alignment
Figure 10. Instruction Building Area
ON sets F8PON (ACT) to 0 PUNCHB
OFF sets F8PON(ACT) to FFig
GEN sets F8PGEN (ACT) to 0 Sets a switch, REPSW(ACT), to 1.
NOGEN sets F8PGEN(ACT) to FFig
DATA sets F8PDAT (ACT) to 0
NODATA sets F8PDAT (ACT) to FF16 REPRO
Sets a switch, REPSW(ACT), to 3.
SPACE
The SPACE routine does a complete syntax TITLEB
check and, if necessary, checks semantics,
and does expression evaluation. A switch, Sets a switch, REPSW(ACT), to 7.

SPACSW(ACT), is set to FF14 on a valid
SPACE statement and to AAjg on an error
condition. SP2 is set to the number of MNOTST

lines to be spaced.
Sets a switch, REPSW(ACT), to 15.

EJECT ENTRYB

Sets a switch, EJCSTW(ACT), to FFig. The ENTRYB routine in Phase F8 is only

Phase F8 - Final Assembly

an

35

error checking routine. All actual
proc¢essing has been completed in Phase F7.

EXTRNB

The EXTRNB routine returns control to main-
line control. EXTRN processing is com~
pleted in Phase FI.

STARTB

The start routine checks the private code
switch, CTPCSW(ACT). If private code is
not initiated, the non-reentrant switch is
turned on. If private code has been ini-
tiated, the start statement is ignored,
and control is immediately returned to
Phase F8 mainline control.

CSECTB

The CSECTB routine checks if the new exter-
nal symbol dictionary ID is different

from the current external symbol dictionary
ID. If not, control is immediately re-
turned to Phase F8 mainline control. If
different, current type, external symbol
dictionary ID, and current adjustnient base
are set, and the non-reentrant switch is
turned on.

DSECTB

The DSECTB routine checks if the new exter-
nal symbol dictionary ID is different from
the current external symbol dictionary ID.
If not, control is immediately returned to
Phase F8 mainline control. If different,
current type and external symbol dictionary
ID are set. Current adjustment base is set
to zero, and the non-reentrant switch is
turned off.

COMB

The common routine is the same as the DSECTB
routine. The non-reentrant switch is turned
on.

NOTE: The reentrant error switch, CTRENT-
(ACT), is a one-byte cell set by an ini-
tialization routine to zero. A violation

of reentrant code is detected by F8M, and
the associated error routine sets

CTRENT (ACT) to FFi1g. The switch is in-
vestigated by Phase FPP, and, if the setting
FF1g has occurred, the appropriate error
message is logged. No message for possible
reentrant error occurs in line.

36

CCWB

The CCWB routine processes the operand field
of CCW statements. A complete syntax and
semantic check is made. The instruction
building area is formatted for output.
Through the F8D routine, relocation diction-
ary entries are made for the second operand:
of CCW statement.

CNOPB

This routine places as many BCR instruc-
tions as necessary in the instruction
stream.

EQUB

The equivalence routine puts the equated
value into the address location for printed
output.

ORGB

The ORGB routine returns control to mainline
control. Processing is done in Phase F7.

ENDB

The ENDB routine does a syntax check and
sets the end switch ENDSWH(ACT) for the
Post Processor to put out the correct end
card. It also formats the printout of the
end record.

LTORGB

This routine tests to see if literals are
to be put out. If they are, the literal
adjustment table is input, and the location
field is set to the address of the first
literal to be output.

USINGB

This routine does a complete syntax and
semantic check on the operand of a using
statement. A using table pointer is set to
FF for each register being used, and the
correct value and the external symbol dic~-
tionary ID are set in the corresponding
using table entry.

DROPB

This routine does a complete syntax and
semantic scan on the operand field of a

DROP statement. The using table pointer is
set to 0 for each register dropped.

LITERB, DSB, DCB
Switches are set for proper branching with-

in the F8D routine, and control is passed
to F8D.

F8P - Output Routine (Flowcharts 32-33)

At entry, the current text record at
FB8WORK(ACT) is moved into INPUT work area.
If this record is one of the edited types,
a partially formatted left side at F8INST-
(ACT) is moved into LFTHLF work area.

F8P has four entry points: F8P, BLDIMG,
COMMENT, and LOADRA. Text records are
passed to F8P as they are encountered in
the text stream.

® FB8P processes edited text records
(type 100).

e BLDIMG builds a source image from gen-
erated edited records (type 110 or 111).

® COMMENT loads the right side for source
records (type 000, 010, or 0l11l) and puts
an error line for error records (type
001).

® LOADRA prints an error line if the last
record is an error record (type 001).

As an example, if the PRINT ON, DATA
and GEN options have been requested, the
following action is taken (as applicable):

e F8P entry (type 100 records) - The
left side of the print line buffer is
loaded, and the entire buffer is dumped.

e BLDIMG entry (type 110 or 111 records) -
A source image is constructed and treated
like a source record (type 010 or 011},
which is then processed like an edited
record (type 100).

e COMMENT entry (type 000, 010, or 011
records) - The previous right side of
the print line buffer is printed (if
still loaded), and the information is
put in the punch buffer. The right side
of the print buffer is loaded with the
current record.

e COMMENT entry (type 001 record) - An
error line is printed if the error
indicator is on.

® LOADRA entry (type 001 record) = The
error record is reformatted to include
the statement number, and an error
indicator is turned on.

F8P has the following functions (acronyms
within parentheses refer to flowchart
terms) :

e Format left side (LOADLH) and right side

(LOADRH) of print line and print entire

line (CHKSWH).

® TFormat text output cards (GOTXT) and
punch them (DUMP).

e Build source image from generated edited
records (BLDIMG).

® Put title in page heading and put page
heading for each new page (PGEHED).

® Reformat error record to include the
statement number (WTERR) and print
error line (LOADRERR) .

® Space when SPACE is encountered and
eject to a new page for EJECT and TITLE.

e Format and print MNOTE message.

e Punch REPRO and PUNCH cards.

F8D - DC Evaluation (Flowcharts 34-35)

Phase F8 mainline control calls F8D each
time a DC, DS, or literal DC is encountered.
The low order byte of register 13, at entry,
is set as follows: 00 = DS, FF = DC,

mixed = literal DC.

F8D processes an entire DC statement
each pass. The print routine, F8P, is
called as many times as necessary. There
is one DC work bucket (15 bytes) in the
appended fixed field for each operand in a
statement, and each operand may contain
one or more constants. See Figure B5.
Exceptions are character, hexadecimal, and
binary type DCs which may contain only one
constant per operand.

Relocation dictionary entries are made
for A-, Y-, and V-type relocatable con-
stants which meet minimum length specifica-
tions. However, no relocation dictionary
entries are made for address constants
within a dummy section or common, nor for
address constants whose operand address
is within a dummy section.

Upon completion of a statement, F8D
returns to F8C.

Phase F8 - Final Assembly 37

F8N - Phase F8 Floating and Fixed-Point
Conversion (Flowchart 36)

This routine does all floating- and fixed-
point conversion in declarative (DC) state-
ments. It is called by the Phase. F8 DC
evaluation routine (F8D) once for each
constant in a floating-point or fixed-point
DC operand. At entry, Register No. 1 points
to the first byte of the constant to be
converted (the first byte past the left
delimiter), and Register No. 10 points to
the corresponding DC work bucket in the
edited text record. The DC work bucket
contains the DC type, length modifier,
scale factor, and external exponent modifier.
After the conversion has been completed,
program control is returned to F8D. evalua-
tion with three pointers: Register No. 1
points to the right delimiter, Register
No. 2 points to the converted value of the
constant (eight bytes), and Register No. 13
points to an error flag. If Register No. 13
is zero, no error has occurred.

38

F8V - Expression Evaluation Subroutine

This subroutine is the same as F7V with
the exception of XREF, but the two are
loaded separately in their respective
phases.

F8L - Log Error Subroutine

This subroutine is the same as F7L, but
the two are loaded separately in their
respective phases.

F8S - Symbol Table Subroutine

This subroutine has one entry point, STGETR.
This tests whether the requested symbol is
in the table and, if so, gives the address
of the first byte in the entry after the
name field. If not, zero is returned.

OVERALL OPERATION (FLOWCHARTS 37 ANR 38)

The Post Processocr Phase, Phase FPP, is
divided into two control sections which are
executed serially.

The first section, FPP, reads the RLD
and cross-reference records from the over-
flow file (SYS003), sorts them, writes RLD
on SYSPCH and/or SYSLNK and SYSLST and the
XREF records on SYSLST. FPP also writes
the END object card on SYSPCH and/or SYSLNK
after the RLD. See Figure 1l. 1In the event
there are too many cross-reference record
entries to be held in main storage at one
time, SYS001 and SYS002 are used for sort-
ing.

The second section, FD, reads error
records from the overflow file (S¥YS003) and
formats an error message by matching a code
in the error record against a message table
in main storage. FD also prints the sta-
tistical information (statements flagged),
and returns to the DOS control program.

FPP FUNCTIONS (FLOWCHART 37)

FPP produces the relocation dictionary and
the cross-reference list, if requested.

SYSLNK

SYSLST

Relocation

Dictionary
Relocation Dictionary END
Cross reference Phase
Error FPP
SORT SORT
UTILITY UTILITY
Adjustment
Table
Main
Storage

Figure 11. I/0 Flow for Phase FPP

PHASE FPP - POST PROCESSOR

FPP sorts the relocation dictionary
entries by address. The sorted dictionary
is written onto SYSLST and SYSPCH and/or
SYSLNK. The loader END record is construct-
ed and written onto SYSPCH.

If the EXEC statement did not specify
NOXREF, FPP sorts the cross-reference table
entries by symbol. The sorted table is
written on SYSLST.

FPP branches to Section FD.

FPP SUBROUTINES

GTOX - Cross-Reference List Checker

This routine checks for the cross-reference
list output option.

READR - Relocation Dictionary Reader

This routine reads the relocation dictionary
records from input tape and stores them.

READX - Cross-—-Reference Reader

This routine reads cross-reference records
from input tape and stores them.

SETOT]1 - Relocation Dictionary Writer

This routine writes all relocation dic-
tionary data from main storage on SYSLST,
SYSPCH, and/or SYSLNK.

SETOT2 - Cross Reference Writer

This routine writes all cross-reference
data from main storage.

WR1XRF - Cross-Reference Writer

This routine writes cross-reference on
SYS001 (or S¥S002) for sorting.

XRFLOD - Cross-Reference Starter

This routine starts the cross-reference
input pass.

Phase FPP - Post Processor 39

Other FPP Subroutines

® CHKSWH - Jump Table Sort

® FPP - Phase Initialization (FPP)
® EPRLZ - Merge Tape Writer

® EP2 - Merge Tape Writer

® ESORT - Input Data Sorter

® GTOR - Control Table Reader

e PPIN - Phase PP Initialization

® RD1XRF - Cross-Reference Record Merger

FD FUNCTIONS (FLOWCHART 38)

The Phase FPP diagnostic, FD, reads the
error records from the overflow file
(SYS003). Table lookup of error numbers
is performed to find the corresponding
error message. The statement number and
message number are converted to printable
format and listed with the error message on
SYSLST.

The functions of this phase are as
follows:

® Write diagnostic messages.

® Accumulate and print the total number
of error statements in the entire assem~
bly.

Before printing any error messages, a
check is made to determine if any relo-
catable Y-type constants have been used in
the program. If any have been used, mes-
sage 46 prints as a flag to the programmer.
The limited addressing capability of the
Y-type constant, due to it being only two
bytes long, could present problems if the
program is run on a system with over
65,536 bytes of storage.

Following the flagging of Y-type con-
stants, a check is made to determine if
there are any error records to be flagged;
if not, the word 'NO' is inserted into the
"STATEMENTS FLAGGED. . ." message, this
message is printed, and the phase returns
to the caller. If there are error records
to be flagged, each error statement number
is listed with an appropriate message
identifying the error. A total of the
number of statements flagged is accumulated
and printed. The phase exits to the DOS
control program.

40

FD SUBROUTINES
ED

FD locates the error block count, tests the
Y-type constant indicator, and if necessary,
points to message 46 in preparation for
printing the "AT LEAST ONE RELOCATABLE -Y
TYPE CONSTANT. . ." message. If there are
no relocatable Y-type constants in the pro-
gram, it branches to MLO0O.

GETERR - Error Record Reader

This routine reads error records.

ML00 - Error Record Tester

This routine tests if there are any error
records to be processed. If there are no
error records to be flagged, the "NO
STATEMENTS FLAGGED. . ." message is built,
then a branch to ML1l occurs to list the
message. If there are error records to
be listed, this routine exits to MLO1A.

MLOl - Error Record Getter

This routine gets the next error record. If
the last error record has been read, a
branch occurs to ML1O.

MLOlA - Error Statement Getter

This routine gets the error statement num-
ber and accumulates an error statement
total.

MLO1B ~- Error Statement Converter

This routine converts the error statement
number into decimal for listing and points
to the appropriate error message.

MLO3 - Error Message Converter

This routine converts the error message
for listing and lists it.

ML10 - Statement Printer

This routine prints the total number of
statements flagged.

ML1l - Error Message Lister

This routine lists the error messages.

This phase is entered when it is necessary
to abort an assembly. An appropriate mes-
sage is put out to SYSLST and SYSLOG and
the run is terminated via EOJ.

Two categories of problems force an
abort: uncorrectable I/O errors and im-
proper environment. The first entry is via
the ERROPT and EOFADDR exits of the DTFs.
It is recognized by the fact that General
Register 15 contains a value (the DTF
address). In this case the offending unit
is recognized by the unit code contained in

PHASE ABT (ASSEMBLER ABOQORT)

the DTF. If this code is unrecognizable or
is the code for SYSLST, the message is put
out on SYSLOG only.

If General Register 15 is zero on entry
to the abort phase the problem is assumed
to be improper environment. In all cases
the run is terminated by EOJ and the
remainder of the job is bypassed.

General Registers 2 and 3 are assumed
to contain up to 8 error codes of 1 byte
each. A message is prepared for each
code.

Phase ABT (Assembler Abort) 41

FLOWCHARTS

.
.

REERAL S0 RETER BEREA 2RFERREEEE SEEEAIISENERE RS ‘.“Ah“.“'.“ FEERASKERRRER R
* RALR FROM % ®« _ BALR FROM BALR FROM * BALR . .
* Fl, F2, OR F3 # * Fly F2¢ OR F3 & * Fl, F2, GR F3 & HETe S R $ Fly F2, OR F3 %
SERERERESES SRS EAREREIRERSEE RS BEEEBEERREERR RS R EERERLERRS FRREREEFRERRR RS
. . M .
: : . : .
.
. : : : N
: : : . .
. . . . :
TR i%e X CHECK X POINTR % POINTH X NOTE X
BERRSP] SBEEREEEER 2 5&
L *® b * SA® * L d L *
. SAVE . * SAVE s * 3 . . SAVE . . SAVE *
* REGISTERS * ¢ REGISTERS * * REGISTERS # t RECISTeRs & $ BeGIsTers ¢
« 16 THRO 1 * * 146 THRU 1 * * 14 THRU 1 * « I4f01 = 14 THRU *
- * * .*: * » » * . *
.
. . : . .
. . . . :
: . . : .
. . : . .
% X X % X
EONC 1 REEERRRE RS .."‘CZ“‘..“.“ EEEERCIRERRRBEREE SERSRCHREERREE SRR REEEECSEXBRREETEE
. I * . POINT . * POINT * * POINT .
* REGISTER ¢ : REGI e * REGISTERS % * REGISTERS * * REGISTERS *
* 1 T0DTF » * 1 IDDIF = s 1 AND IS # s 1 AND 15 = & 1 AND IS~ ¢
* VECTOR * « VECTOR * s Y0 DTF * s 10 OIF . ¢ 10 OIF .
. [* . s VECTOR . s VECTOR * * yECTOR *
SEEREE SRR RN RS FREEXRREEEE IR AR EEEEXRREREEFES RS &
N . . .
: . : :
. : : :
: : : :
: : . :
X % i i
'...‘0]‘...‘.‘ SEXFENISREE LSRRI S 2R ERDLERERAREERE SEESEDSHEESEEREED
% TEST AND SETe « . . *
* * POINT * . 0INT * . INT *
+ hvTes . * REG 1 * + fEgisten ¥ * REGISIER ¢
+ ol TVecTor « : € 10 OTF » * DTF * s 1 {0DIF =
® . * * . * * »
EESRER NS REEE - FREEEEEEERRESREES
.
. :
. : : : : N
: N . : : .
. . N . . .
. : : % X X
X : H ., . %
SRERSE] ¢BEERERERD . SEESEE2RREEKER €3 *, £4 *, ES *,
L d - - * . ., ¥ *, . .,
I .11 S Iof wpGRoER e A ves &7 LasT e, ves T LasT e
: ceca®l cese®l . ceeets .
* 10 DTF . T % VECTQR ¥ *. CHECKED .t : *, CHECKED .# : *, CHECKED .#
* * A 6 M . . o* . . .
CEEREENRER RN EE kRS . ERREER kR TERER *, .. . ¥y oF . *, L&
. N . " NO : *“No : *“No
. . : . : . . .
. . . . : . . :
N . : : : : M .
M N .
X N H . : . . .
. : X H : X : X
F1 L . F . BERHEF LREXRREE . EXFREF SEERENES
o® *, - * - - 251’ * - - (34 . -
YES .*° LAST T POINT * * HI CROER T % HIQRDER = % I ORDER *
ceeeri Im cnecxeo K T % REGISTER * . * BIT OF . .« BIT OF - T« BIT OF .
: * 1 T0DOTF * i % VECTGR # D% VECTOR _* T % VECTOR *
. e, K Doos . Doos T6.0 MY G 0 Dox] .
. X, ¥ - - . FEEEEEERREREEX . SRR ERAREERR RS
. «*ND : : .
: . : : :
. . . : ¥ . :
: : : : . . .
.
: . N . . . N . : :
: 1ok . H . X : i . X
. : : : :
© e _CHECK . % CHECK . CHECK . CHECK : CHECK
. - ChECK : : .
: OTF_POINTED eees _ DIF POINTED DIF POINTED DTF POINTED : DTF POINTED
. *TOBYREG 1 * T aTOBYREG L * * TO BY REG I . *TOBYREG1® . ®TOBYREGL *
. . :
- SEEERSRBAE SRS " ERXEEEREERRED HERROEREERER S : SEREEAESRRRRE . EBRE SR EEEETES
. . . . : . : .
: : : : : : H .
: . : vessassnseXe R 3 reeecuaseeaXe
. : . . . :
: : : . . .
. : : X . .
. X X X
M ..“.Hé"...‘.'.. - BXEEBH2EERE RN RS E H3 .,
. RESTORE Do Move . . ., . MOVE * NOTE
L & REGISTER 0 * L% PARAMEIER NO_ %" PARAM w, * PARAMETER ® —————— et
. s Yd ENTRY & T % TLIST IO #Xeeesease®l PTR =0 0% « LIST IO % DIF_POINTED
M VALUE . . ¢ ALIGNED. * . .- « ALIGNED = * 70 BY REG 1 *
T s - T % WDRK AREA .- * WORK AREA &
- SEFFRERERRERERERE . BARESRERF R RN KRR *, L% EEEERERE EERERERNERRERE
: . : . «"vES . .
. : . . . : .
ceccnesaacaXe M : . : :
. . . : : :
. : . . H .
. : : . . .
. X b X b
J1 H - J. J 4 “*t‘JSOa‘;""‘:
READZNRITE . POINTR POINTS POINTH * STOR
o Lo 3 NOTE VALues 3
DIP POINTED : * »
* TO BY REG 1 * T« por1/o0 s * 0C /G * + poI/0 = H Réggn‘:zeo :
PS8 RBRRRE R . REEERRERERE kR AEEAEERREREED PEEEEEFEE SRR ‘.tt*t‘*.‘."".i
.
.

Chart 1.

42

HEREK 2R RN KT EKER

*

RETURN

*
*Neo

EXEREREERRRRRER

*
. : REGISTER

nntx3-=un:tu
b RESTORE
: THRU 1
LR LET R I 2 2 id L0

LT YT

MAC - Macro Generator I/O

.
®seescsssecssesscerscscncsssssXoXesoeesvoanscavsvenoscevse

EERRK LR T REE kS
* RETURN
SRR ERERRER RS

*
*esoves

s *EeE Ll ol
* *

* * * *
* A3 ¥ * Ay * * A5 »
. * * * * *
et prers sexn
. . .
. . .
X
ot
SEERERLSSLERESRRE 23" e, A4 A
* ET _BASES * FEERA 28X K ERBE S % ALL ¥, OPEN OPEN
* 1=COMREG * * ASSEMBLER * o* DATBL *, YES bRtk & Eant oo ot onh aud o L J
* 12=ROUT INE X oosocccet T ENTRY * *, ENTRY LI CHECK SYSOO1 T
3=COMMON * * e USED o* . * NON-DA * * 003 READER =«
* FREREEREERERE S *, o* . UNITS
sesssssssRIIISS E LITE s 2 P20 T BEEESEREEEES
*"NO s . .
LS
* . * K3 * . .
. . .
. eee . .
X X .
o o*, X
83" ", - SEERIDSERRESLEEN
o¥ *, +%_ ANY ¥, * NT *
«* DATBL %, EQ o* ENTRIES *. NO PRI - srh et i et ik 4
* sae XS, . . A) oo * POINTS *
. . *, DEVTAR _.* . *, LIST o* * SYS00L TO *
- . . * . *, ¥ * $YS003
. . %, o . £, .t X ShrtREsEEEELENELS
- - * NE - * YES ‘.‘*‘ .
. -
- * A5 % .
- . . . * * .
. s . . Lhadd -
- X . - .
- %o . . X
. ARRXAC1EREERRESER c2" e, c3’ s, . X SERRECSERTRERRSES
. o . ¥ A%L * - SEEICHEERREREEE * MWRIT *
. | o g ot ot «% QUTPUT *, YES NO_.* DEVTAB . . * LINK * S e R B K i R
- * PRESET $ecee s, OPTIO! e¥eoee seaote ENTRIES . . (o] * * WRITE DUMMY *
- * MSG 114 * e *,SUPPORTED.* . *, USED o . * ASSEMABT * * REC _SYSOC1 TG *
P * . . o FEEEREETRREEREE * $¥S003 *
o sesssrsnssiseses X . .% . ®, o . SERRERERIREREE LK
- *REE * ND . * YES . .
.
- * B2 * - . - . .
. PP
ecececscccces
X % . 3 . %
- .
SEEEED2EEERRERELE SEXRECIERERRN0KS :nnosuu:nn:
* ABERR . * * .
*, bmhimnad et et ol St ol d . & SAVE TRIAL * . * [INITIALLIZE *
coet, TAPE o* sec¥® * . L SIZE = - * COMMON *
. . . JTUSPRESET MSG 114 * o . VALUES [* *
. . ot . * * * I i * *
X LI X . . *02 & FEREEEIELEEER SR
LS *+ NG ks . - . * E4¢ .
* * . s @ . . . * & .
* Hl * . K2 * . . . * -
. * * - X . . .
Rl 3 Laaad se0evesssrens =5 . . .
. . .
o¥e * A3 % « ABERR X X
El L2 . PEXEAE E
* o ExE . - * * HA;H QPCODES *
YES .* . * IDENT IFY * * N G&OB L *
- e VALID DA . * ERROR * * DICTIONARY *
. * TYPE * * AND CHAIN *
. ., ¥ . * * * SYNONYM *
- %o oF . ** *
. * NO . . -
.
.
.
.
.
- X X ot . X
o SESREF1EEBEREEEEE SEREEF 2R KRS REREER F3' s, . F4: 3
. * ABERR * * ABERR * ¥ . . * * * GETSRC *
P s o e e 2 TR S YES o* DEVTAB ¢, . *+ CALCULATE ¥ fm e e e B G e
. * Feoeo * ¥eees cove®e LIST GoTe o#Xewo * OFFEND ING * * READ FIRST *
- SPRESET MSG 113 * ¥PRESET MSG 115 * .. *, TRAIL .¢ * UNIT * * SQURCE
. * * s * . *e o* * * STATEMENT *
o SEREERESERSEEEREE X SEEEEBEETERREERES | ¥, . SEEEREXAEXXRRERE SREEER EREEREEREE
. LAl il - * NO - .
. * a2+ Rl
.
- * * G2 #,.. . - . .
vsescvesssces L adid *
3 : % % :
.
:snosluuntu: . FEERECIFXLEEREEES SEREAGLEFRENRREES
* . * *
* MOVE * * SAVE DEVTA8 ¢ & ABORT CODE *
coe® DEV!EE CODE * * LIST VALUE Poeen * N *
. ¥ TO DATBL * . . * » . * ABORT *
s ¥ * o o * * . * LISTY *
X SREREERRERREREEER . . REREESEREERRREERE X . FEREREEEERRRECEEE
.. L .
.. * * .
. * A ® .
* * .
wakE .
. M
. . X
.. 3 FEERRHLGTEEREIRERE
* .. * ABERR * * STEP *
.. —t—t : b bm e * ABORT *
o * ceoX® Y * LIST *
* :PRESET MSG 113 : . :PRESET MSG 112 b4 : POINTER :
.
. FEREEEREEREEEAESE
. . .
xxn . . .
* * . s .
* J2 *,.0 . X .
* * ., . hee -
LL . * * . .
X . ¥ A3 * . X
SRRE$I] SRXELREEES EREEE 20REIRERESE | * * X SRR SERERREREGE
ABERR * * . . xe atui{uunast * *
Rl et gt et 4 * ENTER_NON-OA * . * ETURN * * TABLE ICTL *
* PRESET * * UNITS IN * . * TO CALLER * * VALUES TN *
* MSG 113 * * QOPENC LIST * . * * COMMCN *
* * * * pTres FEESEERERREEEEE * *
P TIEE FEEESERELREREARER * * SEXESEIERESERR RS
. - . * K3 # -
] seee . * * .
* * * . . EITYY .
oo X¥* R2 ¥ * K2 %, . - .
* * . . .
exx pITs . . .
X
:uux‘};;:uuua x;"é:x . sreek : taats H usugg;;;éutu:
A * L . * K AN
* I:YESD WITH * - * SMALLEST OF » Fanat o ot St 2 S]
X* DTFMT - * . * ?SAVED - * READ *
® PUT UNIT IN = * TR * SIZES AS * * NEXT
* QOPENC LIST * *® FINAL SIZE * * STATEMENT M
SELERIFEAERRTEEAS wrnEe FEERESUTHER LR SRS SERETEEEERRERR SRS
- .
T Y . .
. . .
eoX& B2 & X X
* e seekE
Ll * * 03 *
A4 * Al®
* * %
ey -

Chart 2. Fl - Phase F1l

Flowcharts 43

£
FEERA | EROREERKSE
£ BFROMFL
BNERSSERRRSERES

wnar L
03 &
. f] &.X
' .

muvu
ttnaaqltamtttttta

INITIALIZE
STATEMENT
SREATR DR bR ERR R el

EE2 22)
XYY

R

e

ARG AR RRERE
* GSCAN _ *

A e B R K B R
®SCAN NAMF FIELD®
PUT INTN FoT.

AEERERASEEE

“upzuni
r N L4
el
AN 2? RI'IXUN *
*FLD e INTQ »
LY T

:

X
L
» [
* R3 &
reRE

Chart 3.

44

DRIVER
'--tt)\ztttttttt#t
*GETSRC 0653
et -t-t-t -
*PEAD F S!PY ‘X...
* JRIYF ﬁﬂURCE ‘ .
* sYsSNNn . LLld
:ttnts':t.t:satnt .
. aren * 83 &
- * * * *
. * 42 % sene
. * .
sxne .
X
¥,
Rr3" e, EREHERERRRE
o* * EN TD('T *
. 1S A “e, YvES [rndand -t-'t
%, PROTOTYPF o¥,cceesesX*ENTER f‘P CODE, *
*,EXPECTED . IF ABSENT, UT3#
. ¥ N/P ADDR YO GD
. ok EREREERAE SR
* NO .
. .
- .
. .
. .
X X
ttczttttttt tttttcan*ttttatnt
NT * ENTER SYSFCT,
"-'-‘-‘—‘ ‘—“ SYSNDX_INTO
* F]ND or FNTER L *TRAN DICTLCHECK®
* ne iN * FOR ILLEGAL
*GLCR, nlCY.‘ * NAME FIELD
ERRRR R kR wEREKE KRk Rk R
. .
. .
. .
. .
. .
X s
%o X
n3 t. FRDLEEERERS
* onKye *
VFS o WAS B e e K S €
. ﬂ" CMF FUUND- #PUT NAME FIELD *
® (S.P,.) INTO *
S .* *L.D, £ E.T,*
', .* SRERKERSE SR
*ND, MUST BE .
«MACRO INST. .
. .
X X
*RETERRERRE EERERE L SRS R R RRE
* SMTSQL * * SCAN *
Ll il *EACH PARAMETER *

CHECK STATEMENT
"SEQUENC ING :

'i‘i't*t##i

.
X
*
£
I
£
B
*
.

.

e

ERGIRRARERS

* NDS¥T3 *
K el B W R
*WRITE F.T. FOR &
* NAME FIELD %

ELE L Tt L]

. MERRRHIERRREREFOE
. * EDIT OPFRAND #
. * FIELNS, CHECK *
. *FOR PP, éFTER *
. L W, Pae 1 ANV.‘
& QUTPUT ERRNR
SIS
.
. .
. .
. .
. X
. hJIEERBREL
. * MOVE IN %
. * LITTLE *A* %
. * POINTFR_TO *
- * FDITED TFXT %
. * RFCORD *
. AR R RN
. .
. .
. .
. .
. .
. X
. o¥o
- *,
. ANY =,
¥ MORE
o PARAMETERS
*. .
*, .t
*, ok

*

F2 - Phase F2 (1 of 5)

*, NO
‘.*.--.--..X'UU?PUV EoTe FO%’..

* BUILD *Xooe
:ED!TED TEXT FOR®

T
t”lt.tll.t‘.‘l.‘
- .
. .
. .
. .
. .
. .
X
HRF ARk
* FNTDCT » .
O-l-?—q—t—t-;t .
#ENTR [N L.D. IF® -
KEYWORD PUT STD .
E IN E.T. -
SEETRRERERE .
.
- .
. .
X .
¥ .
*, .
ANY *,
*, YE
. PARAHETERS .
o
“w. ..
L
* NO
-
.
.
.
.
.
e
.
.
.
.
.
.
.
.
.
N
.
.
.
X
'iKﬁ‘l.i.i.
* NDSMT 3

UL

* STATEMENT = Py
RERBRRRSO S X
»

et id
04 *

* Al
* %
.
X
vALDOP -*.
AT T, READEEEREER EXATRAREERE
o *, * SMTSO1 * * SCA> bd
IS OP FIELD*. NO P e = ittt i
#, AN ASSEMBLER %, ,0000.X* CHECK 3........)(' SCAN CPERAND *,.c0000as
*, np * * ST&T‘MENT ' * FIFLD. PUT % X
*. ¥ * SEQUENCE * INTC F, T, % ek
., .x P4 EITE P EE P *07 *
vES * 1%
L33
¥
B t. SEBERREEES KERIAXEEREL
¥ ‘ GSCAN * * _Lookye *
. _.*is ap FIELDE. YES e R ot
'.é DECLARATION.*K‘ SCAN PPFRAND “.o......X‘ PUTooﬁFFANDS “......,i
*, ¥ t * * L,N.sRESP % ERKE
*, L% HEREERRELRE [T 33 SN *03 *
*« NO . ® A2%
. * %
*
.
H
[I N £HC PEELERRE FEEERCIREXERKEER L
o% o * METSCN * INSFRT *
+*IS 0P FIELD®, YES L o AVALUE INTD F.T.#
A_SET “¥seceres X SCAN NPERAND ‘........X‘T SeDeTay ELSE‘.---.-..
*,STATEMENT . * * FIELDS * L!TTLE A% INTO X
*, o * * b
®, % EEEEERE KSR tt‘tltttitttttttt *07 *
* NO * B1¥
. 5 %
- *
.
3
tttacnlttt.:ttttt
* GENFPAT.
BRANCH BASED '
* UPCN 0P CNDF *
* ANP RRANCH TO *
* 17T x
AEERFRRERCRORLIER
.
.
. HEE2RRESRES SERREEIHSREAEERR A
- * TSCN * * LOCK *
« AIF, AGO Fh—R—F k- ke kR * FOR S.S. !N '
esevessecesarenssX¥ SCAN OPERAND *....-.-.X* DICT. *eeeosoes
. * FIELDS *LITTLE 'A' (an* X
. t % et
. EERCEREESRE ttt'ttt‘t*ttttt#t #07 *
- * B1*
. %
EEREEE 2T RREXEEERE
SNEXT STATEMENT =
MACRO *IS EXPFCTED ¥O *
ccscsscssncseseX¥ g ¥eoeosves
* PROTOTYPE * X
* * Pt
FERRREEEHEKRERRRE 03 %
* A2¥%
x &
RECIERERIRR EREERGIERERTORETT
* WRMERR Ed t *
1CTL tt—t-t-t-t-t-tt CARD »
corceres eeeX® PUT OUT‘.xt mAr,E INTO %iceeeees
*ERRNR PESSAGE‘ INPUT RUFFEP * X
* ‘ * b i
PO R R e e T *03 *
* g1*
* %
*
srscesscsscssrasesssssessassnscsccrsacasnacsaranesens
NO 3
w2 e, SEERKHGIEERERERLE REEEEHOX TR ERERREE
.* . * * * *
coPY ARFE _WE * SET !NPUT * * FIND *
.............X* !N A SYSTEM A4S SY LB * o X% =
*, MACRD % % IN GFTSRC : :(UPERAND FIELD):
LI EREERERRKEEESEREE
.
X
HEEEE
*03 *
* Bl¥
ERKEJ2EERRRERERD * %
*

*
* DFF!NF ME W :
: PARA‘“ETERS IN *

sesecacX¥®

*
ERREELREEEEEERERE *03 =
* By
*z
*
EAK QEREREER
: GTSRCY *
REPRD Dt e
-..-...X‘(’FT NEXT CAPDs *.evseees
INTO F.T * X
t FOPMA'I’ Ebiiind
PR T *7 *
* Rl*
* %

LXY
L2
#*
nn

Y O R I R R R R R N N I N R R R

Y=

Chart 4. F2 - Phase F2 (2 of 5)

Flowcharts 45

sanns
$05 &
* Ale
%

LA 2EERAREE
* GSCAN *
B B K G e e R

t“t‘ljttt"#tt‘t

sess s »

FXTRN CICATE
..K‘ SCAN OPERAND ‘......-.X‘PU[NY CF DEFIN.........-
TELDS * FOR THE DICT. * X
. * bi-padd
SEEEREEEIEE RS REREERERE SRS 204
* &30
e
-
.
« START Pidhndd:Yac Lo 2
. CSEEY *
DSECT * SET *
e «X®TYPE ATTRIBUTE #evevonss
* - X
* - e
BERKERETOXERREEKE *07 &
* Ble
* *x
. .
.
.
- EQU
sesecccssratcoicatanirncarercanonacacacanny
. ekES
%04 *
* A3
* ¥
*
.
. ¥,
. t:oztt:.ttt 03 *, BEDGRERE DK
- ‘ GS(AN .# *, ASCA *
- DS ARE *, YFS R o auk S ke 4
.......-....-....X' SCAN DPERAND ‘.....-..X'. HE IN OPEN o%.ccscaeoX¥ SCAN THE *oeeenses
. * ‘. COnE & ATTRIBUTES * X
. *, . = itad
arEsnsnans L R ERRRES o7
" NO * Bl*
. * *
. *
X
. tibd
. 07 *
. * p1#
. SEERPEQERRRRAR RS . &
. . MOVE * .
et X3 LENSTH SEALE ¥
cecscscenssvccsen 't essssans
- * ATTRIBUTES * X
. - * i
SEEXEEXEEEERRERRE 04 »
* A3%
. x
*
.
« ANOP, TITLE., MNOTE, MEXIT, CNOP,
» DROPy USINGs URGe PRINV, SPACE.
© PUNCH. ENTRY. COM. EJECT, LTORG
eesecevcenescccctserssavrarasensanssesony
. X
. oLl
- *07 &
* BLe
%
.
E4G G
MEND *ENDOPR 0781% *BWFORC =~ 0685*
..--.-......-.-.X* NRIYE EDITED *....--..X‘FORCE outy EDH’D'.......-
FOR XT BLOCK X
SYS003 S
[LT g T T ORI 312 I *06 %
* Ble
-
*
.
-
« END
secccescscnncaaas
- X
. sehas
. *06 *
* Bl*
e
*
ot o¥a
43 e, Je %, MRS SERRREEREES
E.0.0. ON * *, i . *
SYSSLB AR *, YES «¥ ARE WE t. * POINT TC *
-.-.....---..-.........-.--..--.-.....--.'X‘. HE IN CDPV w¥eesnesaaX® IN A SYST e®eeansees X* PREVIDUSLY *
*, MOOE *. MACRO * NOTED ADDRESS :
- . . .
. *, .* EEERR R EREFERNER
* NC * .
. . -
. . .
- . X
. . ot
. . . *03 *
- WRNERR X X * A2%
. ERRERK 2 SEFEAK G SR REREREE * *
« E.0.D. ON * * * * *
« SYSIPT . * Ea0.D, * EST *
...----..-.......X‘ SIHULAI’ED END ‘ * ON SYSSLB * *PREVIOUS [NPUT #*
ARD IN BUFFER * * VICE *
* * GETSRC *
P T . .
. . .
X X X
it e ek
06_ 05 *03 &
. C2% * G2% * A2%
% .8 *x
* *
Chart 5. F2 - Phase F2 (3 of 5)

46

DCLSE

Chart 6.

B i P i exss
95,8 241 B
* Bl
2 % * &
. . *
. - .
. . .
SE X GETSRC X WRITE X
SEEERR] SRREXEERES *denp sseeep
* SAVE N/P OF * * * * *
* RECNRD ON * * READ INPUT * * MOVE *
* SYS002, WRITE * * FROM SYSIPT = * RECORD TN *
*OUT LAST BLOCK * OR svyssie e * BUFFFR L
*0F LOCAL DICT, * hEnE M . : H
AEELSEESEEERERERE *06_*
. * (2% .
. €% . raee
- * . *
. . seX¥® C2 *
- . * *
. X ek
X ., o*,
HEXEAC] TRERERR SRS c? =, CAEERCIEEERRARIR R Ce *.
* * +#ARE WF ¥, *BWFORC,y BWRITF * IS *,
= ZERD * +*PRCCESSING *. NO =R R kR Rk NO .* is *.
* THE T.A. HASH * *,SYSTEM MACROSe*sceescecs X¥WRITE BO RYTES 2 sese¥e BUFFER FULL .*
- TABLE . .. o* ® OF SCURCE DN * . .. o
* * *, o* * $YS001 * - *, ¥
ESELRERAEE R ERS *, % SEEESEREEE ERTEEER . ., %
. * YES . - YE
. . . .
.
. .
% p X
.
AREEAD] KREREEREEEK SEEKADIEEXRARLEES o EEEATEDLEEEEERLERER
* SUBSET THE * * * - WRIT
* * * F£CR CONT, * PR e o
*DICTIONARY JUST# *CARDSs SEQUENCE* - WRITE A BLOCK
* WRITTEN * *« NOS., ETC. * : 0N REQUESTED *
* s . - . UTILITY
AEERERREERRKRSRLE FEEIERREEREREESES . SEREEREERTREE
. . . .
. . ssseces
. .
. .
X .
¥ - .
El *. X X
. -, FSFREILSXERRRAR SEXXELFFEITREEE
«*% WFRE WE ®, YFS * . *
*.EDTTING PROGee*escconrs * BR RETURN * * BR RETURN *
*, MACROS % X - * * *
. . P iad L EEEEEEEREREATRE
*, % *03 *
* NO * Blx
. * ®
X
o¥e
«%* ANY ¥,
«*MACRD INS. *. ND
®, ENCOUNTERED o®cuveccccscsccsesacsasscscascncnse
o o .
-, o .
Fo o .
* YES .
X -
ARRRAG] REBRSEEELE .
* SET UP * .
* STANDARD ICTL * .
* PARAMS. SET =* .
:INPUT IN GTSRC : .
EEXEATERRERESREES .
. .
. .
eXecoossrsenvacscscscosnnan .
X « YES .
¥ o¥e .
‘Hl =, ‘HZ *. . : Slaséf ot 3 : H4 e
- . - - .) oL
«% IS MACRD *, NO ¥ ANY *, NO X * DICYJONARY, * * _ POINTS *
*. INS N/P e¥ecaasaveX®¥e MACRO TNSe o®isccecsoX® SUBSEYT GLOBAL *eceeeeeoX*SYS001, SYOOT2,*
*, ADDRESS .% X *, LEFT . * DICTIONARY * . % AND SYS003 =
.ZEROQ_. . *. 4 * * * *
*, o . ¥, ¥
* YES . ® .
. . .
. . .
. . .
X : i
REEE) | EREEEEESRE . EEEE) LR CEEEREXKE
* . * *
* FIND MACPN * . * CLOSE *
* DEFINITION * - * SYSIPT AND *
: ON SYSSLR : - : SYSSLB :
P L e . FRESKESREREERERER
. .
. .
: X
. FEREK LERREERDEE
- . £l
. * FETCH F3 %
* *
ARBAEREEREETREE

F2 - Phase F2 (4 of 5)

escese® IN B
. *

XX

8

WFNRC

*
NO_.*R00

)
.

x
e

S B QHTMM Hxe s #
»
.

*.

ST *,
FOR.#
ey
Do ¥

*
YES

., ™

*R

¢ DA
-

fory

SRBECSEELERRSES
* BR RETURN :
FTEERESE RS ERREEE

1€ x
XX RF GEEEEESEEEE

GET NOTE_OF
CURRENT
PCSITION

EEKESERKREELETEE

[ZY XT3

WND
*
*
*
*
*
P
*

X
EXEXGSEERKERESR
*
* B8R RETURN *
* *
EEEREFETEERERESE

Flowcharts

47

LSdtid
*07 =

* Bl*
* x
*
ENDOPR X
SR EEEEEES
* EDTCMT *
D e o

* ECIT COMMENT %
* FIELD *

EXTIZ 22T 28]

o
*
* 0
*FL
* 0
-
*

IR SRR
m

RAREERE
*

ND
EMENY #
PPRESS *

« LOOKUPS *
*

EEAS TR S 2Ll]

NDSMT 3

e er e

SARXRC I SRS CEXSEE
* *

* *
£ 001 INTO UX %y..
* *

* b i
FREEREFSERRRREANS %07 *
. * D1
:
-
:
1" e, FEEESE 2R RRERE XS
o* *. * *
o ARE *, YES * .
.WE IN A MACRO.%...caee.X 003 INTO UX =
. o . *
¥ * *
. .. T e
* NO .
: %
,.(x.....................-.............-.
.. .
£l %, FIF 28200 ERS .
«* ARE - . * LOOKuP * .
«* LOOKUPS *, NO BH e R B e R K .
*. SUPPRESSED ®eveoese s XFINSERT LITTLE A% -
*, ¥ 10 EoT. .
*, ¥ SOPRND LIST * -
.t ERETEEEERES :
* YES . .
: : :
- . .
eXesessessccsnsacssccscasce .
. .
X .
SEREAG | HRSKSEE KR M
*RAWFCRCy RWRITE * .
Pt AN .
* WRITE E.T. ON & .
* SYS001 OR » -
03 * -
SRATIEARERRLRRESR M
: .
. .
5 .
1 Ca, ERESH2SEERREREEE
+% IS AN », * * .
«* ERR REC *. YES * - -
#. PRES IN A o¥eceneuueX® 001 INTO UX #*....
#,MACRO TO .* * £ d
.UX=7 . * *
L FESERREERESEERRES
* NO
-
s
o*e
J1 *o
o .
¥ 1S A *. NO
*, RETURN e¥eesonsces
* EXPECTED .# X
. . Pecind
. ok 03 *
* YES * B2%
- * %
. *
M
X
FERIK AR EER SRS
»
: BR LINK *
P

Chart 7.

48

F2 - Phase F2 (5 of

5)

START6 F3

AitSasnrefensrernss SEEREADERERLREEEE
. x EEEEATSSELRRANR
. PHASE * .
25‘0 TEXT F“_E‘ ‘ooc.o..-:l“l’]ﬂlllﬁ"ﬂN :X.-- caeek FETCH F3 :
. * Teaeseareinrnes
PO prrrr— SREEREAB LR RERIRE
:
.
.
P
€6oT0 ®, ACHOP
A1 . EERRAB2ERAERBRERE
-* ., MACH,. * *
o* . Pe * PROCESS
#. STATEMENT o*..ceccseX® EDITED TEXT #*.eea
, TYPE o * RECORD = -
‘e, 2" SEssORSERERRRRDEE X
* xEeg
. . *
. « A1 %
. * H
. rone
. SOURCE
- FEEEERC 2R ERREARREE
: conn
« SOURCE, ERROR * HRIT TFX‘ * * *
.................,.x ceseX® Al ¥
. . * .
. ene
" EEEEREREERREE
:
.
:
.
- SETST
M FREEAD2EELE AR SEREADIRELRREERE
: : *VALUAT
« SET DETERMINE e E $e

*
.!*ADORESS CIF NAHE";.

MINSTR
SREFESJ2EXEFEEERASS

ENDMI
Pl s NELZ S22 2L 20d
*

WRITE * *« eNOTE® H
- SOURCE ON seesceeeX¥ DISCONTINUED #*
M * Svs602 * TExT s
: EEEEEEESEREES EAZ T2 22 222222 2]
:
:
.
: ENDST
- ""'Kzt“""‘.‘
. EBEBKI IV XL ERFS

END
I................xtcmse our musst........x: FETCH FT 3
."”‘."'3"“

t““"““ltt'tt

Chart 8. F3 - Phase F3 Mainline Control

X% E M. ATE
. : Sg ERA
: FEREEEEERELRERARSE RIS e
- sHax
. *
. AL S
: *
: ase
.
- CSECT
: EREESEEERTRERASES SEELIUAEIT RS ALRTTLS
. * * e
+ CSECTe DSECT * WRITE TEXT * *
esssssesasssccccc X¥ SAVE NAME *eeoessnaX ON SYS002 seaoX¥ Al *
: * * * *
: = * ean
: FELETEEREL LR EREES FERBEREERSSH
.
.
.
.
- AIFSY ¥
: FELRIF QEERLRERREE 3" e,
b * . *.
« AIF * EVALUATE * ¥ IS *, NO
esecccsesce «X$AIF EXPRESSION #*,,.40000X%, EXPRESSION .*
. * * *, TRUE ®
- * * - o#
s XX SR SRR FXERER TR %, ¥
- * YES
. .
. .
. .
. .
- .
. AGCSY X
- Lerescarirassrey
.
« AGO
.o..o...-....o---.-oo.-.---.o..o.ooo....o.-X: PUSIT[ON TEXT ‘o.-o
. .
: * O
: P S T T T I
: eee
. * *
. * AY *
. * *
. e
.
- MENDST ¥,
: u2 . P
. .t *, * * * POSITION
o MEND, MEXIT EXIT *, YES * SET TEXT * * TEXT FILE TO *
.................xt. FRUH OUTER ¥eceeesssX® FILE EQUAL $eeesscscX® READ %ieee
- CRO o* * TO SYSOO01 : X ‘ DlSCON’ INUED .
. . »
- . X
: . xee
. .
- . * Al *
: “rre
.
.
.

i *
FILE * *
INNING O *

MAC * *
INSTRUCTION =
FEEEEEEESECRRRERE P e
.
.
.
.
.
.
X

SHEERK, *

* * READ

* BUILD * * EDITED *

*PARAMETER TABLE*X<eeosoae PROTOTYPE

* * * STATEMENT *

* * $Yso003

SEEEERLEEESEFRECE SERELRECREERS

. nu
..X' Al ‘
Yeree’

Flowcharts

49

L ot
Ld L4

* A3®
* ®
*
.
.
:
- NATTST
. nnnto”c
SERSAL *2SESE RS Nt .- Y AQ :
L TP .. .ot S,
. . X* CHECK FOR &
 ENTER VALUAT ¢ FELCTITTSTURIRER . ":ggnﬂ cens
OSSR S LS SRS . .
- . utnnuu X
- - Ll
M . sCL e
- . *
- - shay
VALUAT X . SYSLS
:‘.'.Bl“.‘“...: - : ‘.ﬂ““....‘.:
.
» » SYSLIST * STORE PARAM. &
¢ INITIALIZE ¢ cevesessscscssaceXt AG P
. . : $ spaULdTea TN
. * : * CPARAMETER ¢ o
SE8082 4S8R RGO RS - SEREREESER LS EBEEE Pe
sone . : .
09 ¢ | . :
¢ Cl e XC . .
: . .
syt 5 : PARMTR .
e . T e
. mp P n .. YES < PARAMETER STNRE pavAn. ¢ .
u-ch Qutsio Mecreasns Mxt 1At NO N3 s & .
*.gPER ng o * INTO pom FR L
- L il add . Ll .
. ., . . '.Ct“ttt‘“t.'.l .
T I1) . “5. . . .
«Cl* : M Xeosessosaes
s . : M
» L]
C"Fminn"‘gnuuu: . nrnn"m“”“.
SR INBUT BTR. o L. xe m sllANETER .
S ON INBUT BTR : D s
2EOSASEBECRNE SO NE .‘.“"”.' 09
M . * Ese
- T . %]
- * ® .
- * Fa E oM, .
. ’ * . .
. ADVD e ADVIN® X
: ...‘!EQ..."“‘.: :O...E50i..i..'..
:
ADVANCE
: ao--o.--o...---..c--..o---....-..-.-.--.----..-.-.X.OPR. ’8!"$FR BV‘o......-X: IN’U; POINTER ‘
.
. L4 .
: PEREERE R RO R R RN RN !“..'l.‘.."."‘.
: ;
: ER S
. tere
- * »
L] _*RE
:
Y
. .
L ot
; I X
. : 8¢
. - -
. . .
. ”-u . 3
. .
. l] . 0 L]
. g .z FORCE cz' .. : TsToeL 53’ Y bt o::u.m_““”““ cs‘ .
: n?oen : xotasT OoEC NIl ES s X Xeo m ono': sr"t" xs nETSvEQYA’%ESS : xt" (gpgncsn ¥4l
eeserranelianges .g 3 1.0 Lis; N MRS T x Pececanes STTTTTR 0 wes?mt LA
. .
. ‘ ' ' CRERESS RN R REIRN RS *
M . '-'no 't‘ves "avES uoso
. sg e
. . . - - * El®
. . X . . e
. . [11 1] . .
. :] : .
. . ® E4 & - SURSCE X
- . - . x AREFAHSHERIERRERS
- . SR 2R HI SO ERE LS
. . - INCREMENT .
. . & RETURN . & INBUT POINTER #
. . s PAST { .
. . SRR SRERERS =
. . EEREREREREREEOREN
. . .
. P eeesaccescaans :
: . .
. : X
. RELINT : o,
. LONAL ut“uott.atnu SRR 3RS ESEEBRES . t'i'g m:..
: BEERAND x”.";‘iﬁ Nés g : . S JlNiriaize % : . ‘..i ;ggsg;iplc. YES
EITITPPOREPITIR LS reaseaos Tt vees '-.xnusts'.c‘ seus
nnn"nnut” PITTTTT TR 2R TV ‘. o X
* NN [l
. *10 ¢
. . ll‘
. *
. *
X
BEKGERERRSN
* GET VALUE #
* FROM DARAM, @
¥, TABLE s
REXCRSEREESR
:
:
‘t5$'
. g
Chart 9. VALUAT - Phase F3 Evaluation (1 of 3) BN

50

soeas
*10 *
* Al
%
*
.
.
.
X o,
seaeeA] SEESEEERES a3’ e,
. . R ST
s . ¥ 1T A *
BRANCH TO SET * sesecascmceenaaanXos CHARACTER cosasces
. TYPE * . *. EXPR. % X
* * . .. o® 2
SEEEEEEEERERRRELS - B, oF
. . «*NO * F2%
. . . 5
. . . *
: seass . M
: *10 * . .
. * 32. METCH X
. cuatsz#nttt:tn *SBIEEEREE SELELBLEREERELE £k
. ‘ * INCPTR L . *
« SETC . ETCH t D et ottt 0 * *
:o--..-n----ooo-x‘ LE#&}'“GUF : ‘3"'"%’&%55 FOR“.-‘oo...X: STORE RESULT :.....--i
» * L [* 2ERER
- SEEEE SR EEEERE LR REEEEEREEER EEEESARRERRRERE S :ﬁgl:
: ' %
. seees
- +10 *
. s (2% wETE3 o*.
: 4 . JGaeaes TeersConssananias
- % IS *, NCPTR t
- SETB . o ITA *, NO u—--s-t--g-t-n
cescscssccsccsecaXte CHARACfEl .'-...-.o.X‘lNITllLll' FOR ‘..---...X. STORE RESULT ‘...-.--.
- *, EXPR. ENTRY X
- - - ' ‘ . ks
. X, oF it a2 222724 .l‘t“.t.“'.‘t#t *09 *
. * YES * Cls
. . B¢
. .
. .
. Lt eeescscccssssccssvessensscascsscscscnnse
- *10 * .
. * D2¢ META3 %, . MNETAY
. D0 02" s, TearsDIasasanear | D4 SRERREE
- * ot IS *, . * *
« SETA X o IT A YES X Bt ot
.................xt. CHARACTER .‘o.oo..cox' FETCH BfNARY ‘...-....X'CONVERY BINM‘V %eeosvoes
EXPR. % NECIMAL X
:““ ‘s, o* c t t c sRENE
*10 * . e LERETEEIEISESESRS T e1] *
* El‘ = NO * F2%
. .
. *
. .
. .
DOOPR] X META2 X
EEEAEE] K ASREBREE CRE2e0REES SAAESEISRARLSERES
* ‘ * IN * * STORE_VALUE =
* PERFORM *
* OPERATOR TEST ‘
: AND BRANCH ‘ . . :
EEEEERREEEERRESER 2t 2222221) SR EXEREERRETERES S ‘0(9. *
4T
:]
- ¥
.
N SEEREF2RELETEERRS
© ARITHMETIC X3 ACCORDING T %
seresesectarecenaxd TUSPECIEIC :.................:
. SEEEERELRRRERAERE .
: . oD
: :"‘.623““““: : S EXGHLESEBRERREE
. .
LOGICAL . PROCESS ¢ PERFORM *
cestescsceccessssX® LOGICAL & . ADDITION %eeceae
. + OPERATOR : . : : H
. SEEERRTELARELERE . P ™ .
: : . :
. . . .
. . . .
. . . .
: b . SURTR :
M Py TPy Y T . :natm.tuztntt: .
. * * .
- *INITIALIZF REG.* « SUBTRACT PERF{IRM * :
. #6 WITH ADDRESS $uceeeses LA vveeroX® SURTRACTION %eeeoXs
. #0F STRING AREA * X . . * .
. Ty ITs . * * .
- EEEEERREEES XL RS *N9 & " EREREEREEEERREEER -
. * G2% - -
Ll * L] -
- * . .
. . .
. . .
. . .
. RELAT . MULTY .
. u:auztutttu-t . #tl#t,lb‘l‘#l‘tt‘# .
. . .
RELATIONAL SFETCH CONDITION‘ MULTIPLY -
:................x‘ RE00€ EOR ‘ E................xtnuuwucnwn a....x:
ERATOR . .
R4 1 2 TS . Crasersascrssrane M
. . .
. . .
: . .
CRE X . pIv leenTIN
EERRAC2PEESRELNES M K P : 5
‘ * o * * . * *
INCRE * « DIVIDE * PERFORM * X = sTa0F *
+ INFESRERTATE o ceesccecessacsscsX® DIVISION %eeeananskt eSULT IN_
'RESULY POINTER : : : * QFSIILT LIST :
."“t"""““l EEEREERERE SR ERE AR EEXERERAEREERERE X
: :
X %
2248 ERE RS
*09 & *0q *
* Cl* * 324
* % * ®
*

Chart 10. VALUAT - Phase F3 Evaluation (2 of 3)

Flowcharts 51

| o dibd il
I T
s : A2 :
* E2T TS
i -
NOTOPR -*e SETEND
0. ttt‘t‘zt.ttt‘i.*‘

o OUTSIDE "%, YE
‘.' RANGE OF s

* SET EN
* OF FXPRFSSXDN ‘

.'-......-X

FLAGS .. :anRATPR TABLE :
“. . EEABEREREREESEERS
* NO) -
. x
. rnen
M *09 #
X « GIe
SREERRLERRRRRRRES e
£ * L d
M *
*REDUCE FLAGS TN
* 3ASE N :
FRRESERRERREREAES
X
SrERACLRREREIRES
. .
* TEST *
* FLAGS AND b
: RBRANCH :
EEEEEREERERERERER
NuLL
eesccsessanssnes
*EkE S *hek
*09 * *
* ES* * €2 %
5 .
*EEE
EEERE :
%11 * .
* E2% CHARST X
%3 EEE2RERERER
* * uTS
CHAR. . ST T S

esccssccsesccnnoak

CHAR, SELF-
DEF. VALUE

escsescccessecsc X¥

DEC
HEX-BINARV-
DECIM,

'.--.-..--...-..X

vET

SETA

esssessscccaX

MET

SETE

sseeecrscsaccsseX

MET

SETC

eeescesccsceceacX

6000000 0.0 0000060000808 0800000000896 00000883008000 8000808808005 008 0008008080000 00s00008 00000000000

e

k'll
*
a A3 t

tlﬁ.

Chart 11.

52

n
*
* TRANSLATE

*x
* pUT STRING IN %, nenes

STRING AREA * X
RREe
SRR EREEES *09 *
* CL*
s
*

*
* CHARACTER *
RING TO *
t ORIGINAL SET :
"‘t.l'l.t"lt"'
INT
at--as;:t-a-tctat
* STORE ABDRESQ t
* OF DEC! AL Peennenas
ALUE * X
seare
P T e 09 &
* C1*
* x
*
A
EEH2EEERRRS
* METINT »
Dt e B e

*[NITIALIZE FPR #.000000s
*SEY VARTABLE *
‘.ttt

*®
FRERERERERD *10
* D)t

8 NPT
% MFTINT *
et i et add

SINITIALIZE FOR #,,,00000

*SEY VARIABLE * X
x Lidbdd
BERRRARERRE *10 *
*® C72%
* %
*
[
atx?:attt.g
® METINT
tt-t-t-t-t-.-an

.IN!TIAL!l“ FCR i...-....

iFT VARIABLE X
Liidi]
Tensnrnrsans €10 *
* 3%
.

*

sas
cossscsssssXt A2 &
s e
. e
.
.
.
.
- BEGSUB
. baatdilidideddinsd
« BEGIN *
« SUBSTRING STORE »
.ol‘ LENGTH OF Beaosvnns
- STRING *
. = aExs
. ESERERERREEEREE AR *09 =
. * ES*
. €+
.
.
SUBSTRING (
SETAR
tttttoattttatatto
ARITH.
EXPR. X SET
............--.-!‘ARITHNETIC NOOE‘.-...-.;
ISl d
tttt‘ttt.tt.“.i. %09 &
* ESH
3L
*
SUBSTRING)
ecescssesesass
.
«SBEND
- t.t"F‘.t.Q‘t‘t.#
N S

uRSTRI % % SET SUBSTRING 3 .
.f......??.:....xt EoNma N2 LEFT t....xc a2 *

-
-
.
-
.

.
.

.

-
-
-
-
-
-
-
.
-
-
-
-
-
-
-
-
.
-
-
.
.
-
-
-
.
-
-
-
.
-
.
-
-
-
-
-
-
.
.
-
-
-
-
-
-
-
.
-
-
.
.
.
-
.
-
.
-
.
-
.
.
.
.
.
-
.
.
-
-

PAREN, SWITCH
Tarae
T
LATYBY
FAG4EERRY
* ATTPAR ®
L [S Cap Sy
essssscsesssseneX¥ CHECK FNR ®ennnes
*® PARAMETER '. -
sersssanen .
.
IATTBY :
seHoeAEROSE .
* AVTPAR * -
5
esescssnccceX® CHECK LITYY
. PARANF‘ER .
- . . wharn
AR RRREEES . *11 »
. * J5e
: s
. *
SATTBT soack3 X
sejsranraey T sksEsjSeEasasese
* ATTPAR .
N 'Yy -t—.-t-.-.—t. X * STCRE RFSULT #
evesscsscce X CHECK £0R Pene eeX® ATORESS IN
t‘ PARAMETER .' : POINTER LIST :
erraestene P LT Y
.
X
asane
09 =
TATTRY * Cl*
SERQERERERE o
* ATTPAR - Ll »
T LT 2 Sl Y . *
esscccsccccccans Xt CHECK FOR ®enooX® E2 ¢
. * OCARAMETER ¢ . M
. . o
: ersseresnne
.
X
Pl
09 »
* A3
.
t 4

VALUAT - Phase F3 Evaluation (3 of 3)

F3E

EEEEA2E XXX RS

*
: ENTER F3E :
EEEEERESEEERRRS

STARTE X
AEEFREBIXEXEREEREER

* *
READ SYSO001
* *

FERRRRRRERER
X
STTYPE .
Cc2 *,
¥ *,
o *. YES
*,SOURCE RECORDe*evee -
. o .
SOURCE X .
AERRREDINETF SRR FLSSE
* s C
«eX WRITE SYSO02 -
. * * X
. .* .
. .* HEEEERESRERES :
* NO -
5 :
2" e, SEEEFEIFEREREIRE L
o¥ . * * .
o *. NO * BYPASS L
, YEND e¥eosenaceX¥ STATEMENT Fease
*, ¥ * *
*, ox * *
. .* FEERREERRIEREE LR
* YES
ENDST X

EEEERAF QXXX EREEE
* WRITE *
GENERATED END
* ON SYS002 *
EEREEREEXREES
.

.

SREAG2FERESERER

*
* FETCH F7 *
FREXEEEERREEEES

Chart 12. F3E - Phase F3 Substitute

Flowcharts 53

PEESALSEERE LRSS

eEs

*
: ENTER FTC *
FTT T PR PEs N PO
- *13 *
. * B2¢
. * x
. e
aco X X
SEKERBLERREEEE SEB2EEERERE
* INITIALIZE * * N *
% PROGRAM FOR ¥ —E— e e e e e
= XREF_AND * PUT AUTO *
. AUTOTEST * * TEST RECORD #*
* OPYIONS + {OPTION) ¢
SRERIASEEREERK EEEERRKERRE
. .
. :
: c2 X
. RREEEC 20RERRERRER
*F7X 19A1%

Chart 13.

54

_t—t—t-tlt * *
NEXT *Xeeao®* L2 ¥
EDITED * * *

* RECORD * sy
AEREREEETRRERERER
.
Pt .
*13 ¢ X
* D2% AC3 o¥e
* % 02 *,
* .+ -,
. * *. SUBSTITUTION MODE

ceseesoX®l TEST MODE

s¥satveene
*

o*
ASSIGNMENT MODE

*
.
%
.-
£2" s
*

" TEST
. TYPE OF
*.OPERATION. *

*,
ASSEMBLER OP

*
MACHINE OP.

MoP
SXF 2RER LR
* *
Rl ot okt et o ok £
* INITIATE PRI- «
ATE gon IF
EE P2 2222)

e s 00w

MoP1
REARKG I EEAER SR A
*

H2" s, SREEAHISARAERAAE S
20A1*

o *,
¢ LITERAL “#*. YES B e —t-t
] IN OPERANDX' MAKE LITER »
*ENTRY IN SVHBGL'
‘- .‘ * TA
. .* EREESES PR RSN RN
NO .

e s e e B

moP2
R J2RkBERREK
* XREF

*
e
‘GENERATE S—REF #Xesesssesananaane

t IOPTIDND *
RERERCEREE

srsersssas

MOP3
R JREEEERR SRR
*

COMPUTE *
* LENGTH FROM
:OPERATION CODE :
FEEEFEARERRERS TS

F7C -

ACPO

FREGEERERRE
* *

=1y ESD =
FEERERREESE
.

ADPL X
SEEFEFLERIRAAEREE
* *

Y
PO S
‘TESY POSS, SYM .
I.U Hl

\oP2
AREERGLAKESHRES XS
* *
* LOCATION *
COUNTER IN TEXT
*IF ASCLBIT 2) =%

* 1 L
REAREEEEERRERRE KK
:
AOP3 X
EHLE R KR EE
* XR L
SGENERATE X-REF *
*IF ASC(BIT 3)¢
=] [(OPTION)
FEEERXERREE
X
*EEXE ekkEE
14+ £13 &
* Ads * J5%
* % * &
*

Phase F7 Mainline Control (1 of 6)

peo XL

ACSO ¥
05 *,
¥ *.
* *
ITERATION
«_ PGINT '..'

ES5 *.
*

L+ ASSEMBLER *. VES
* OPERATION <*ee..
. . .

¥
o ¥
NO

*,

*,

e hs e ¥

*XF SEREARRK
* SUBWB *
e e e K e
* SUBSTITUTE *
* SYMBOL WORK *
* BUCKETS *
SEEEEEERERE

#co w0 u e

G5 x,

- *.
«% LITERAL *, NO
*, IN OPERAND o

L

e a s e

ARAKRH SRR R E R
F70 Al

D e et i 4
* EVALUATE *
* LTTERAL *

.
-
-
.

* *
AR ERR AR &
pS TP
:
.
Js
¥
NAME
. .
. M
. .
.
. .
LexkC2 x L
LI
P .
CRERRCSEEREERE R L
* *
* SET SYMBOL % .
(LI

* TABLE ENTRY
:ISYGEY) SHITCH
ARETEEKERNKRRRERE

L otand
*

14 ¢
* Al*
. % oad
* s ¢
- * A3 $...
. * .
. P o X -
ACS X ADPGO %,
S2RBA] SRERERESESE A3" e,
* * <XCOMPUTES,
* STEP * +* GO-TO FCR ¥, SUBSTITUTION MODE
»* LOCAT ION * * ASSEMBLER o%cacecscvscccccccccrsccscnocrnssnscsssnccsonne
* COUNTER * #,0PERATION. * -
* * *, ot *erE .
FEIAEREIRRRITENE *, ¥ * * .
. * ASSIGNMENT MODE * B4 * -
- . * * .
. . Py .
. . . .
X X X x
AC6 -*o ¥, o*. ¥,
81 .. 83 *, BS *
¥ ., ¥ s, ¥ N
» NO ¥ OC, ., . - *, YES
-, NAME e¥ceoeaves %, DSy OR LDC o%.... *. *. DC OR DS e¥esne
. * *, o* . . *, . -
*, o bbtasd *, -* . - - . *. -* .
o ¥ *13 . . ® X ¥, lf X Fo o ¥ X
* YES s B2¢ * NO P = NO s * NO i
. s . 16 * . 17 * . 16 *

- * . + Ale . * Al% . * Als

c. . s ¥ . - * %

- . - . *

- X X X
X ¥, ¥, e
HEREHC 1 $ERES$ RS c3” =, Ce =, cs =,
& SET LENGTH * . o¥ - *o ¥ *,
* ATTRIBUTE AND # ¥ *, YES o START, *, YES ¥ *,
* ESD-ID R * *, ECQU $oeae *,CSECT, DSECTse*euns *. EQU e¥osoe
® SYMBOL TABLE * *, .t . *. OR COM . . *o . -
* * * o* . . B . *. ¥ .
FEFRERSERRREREERS ., .* *, % X *, ¥
. * NG b *°NO i * NC P atad
. - 16 * . *18 * - *13 %
. . * A3% * Al® . * JS%
. - L . ** . %
. . * . * . *
- X X X
ACT X %, ¥, o¥o
SRS RN | SERE L EEE p3" "%, D4 #. DS~ %,
. * o* o* .,) =,

*VALUE ATTRIBUTES hd *, YES o* EXTRN *, YES o* *, YES
eoX® FOR SYMBOL * *. CNgP e¥eone *, OR ENTRY eFeeoe *, LTORG e®aana
« ® TaBLE ENTRY = . -* . s, . - . o .
- % * * - . *. ¥ - * o ¥ -
. FREREEERBRRREERES 8, .* s, .* X %, % X
* . * NO Petid * NO et nd = NO REEE
* * . . *16 ¥ . *18 % - *16 *

*14 & . - * AS* . * A3¥ * Gl
* D1e . . * * . * x . *
P2y - . . . *

. X X X
AC8 X ot o, o ¥
SESEEE | S RRREER €3 . E4 %, €5 =,
- -* o *o . .

SYMBOL * 4 *, YES ¥ *, o *. YES
eeoX® TABLE ENTRY ¢ *. LTORG e¥oeae *. ORG o¥eoes END ¥eene
- * TPUT) * - . *. - . *, o* -
- ¥ WITCH * o . *. ¥ - . ¥ .
. SsapsEREEERERE L X *, % X *, %

* . *+ NO sEEEE *'NO REEE * ND ankEe
* % - . *16 * - *18 * - 16 *
14 - . * Gl* . * ASS . * G3%
* Els . . * % . % . **
sseee - . * . * . *
. X . X
% . o*e
SEIEIF | SEREERREES F3~ =, . FS #,
* 19A1% . - . .
B ohgrsam o* *, YES . «* START, *. YES
* CALL _STPUT # . END L . *,CSECTy DSECTye®euas
STGE * *o - - - *, OR COM .x -
* - - - *, 4 .
FRIEEPRERREETRERE L . *, .* X
- * NO et i < * NO P iad
. . *16 . . *18 *
. . * G3% - - * Al¥
. . * * . . * &
. . * . - *
X X - X
¥, * o¥e
Gl ¥, G5 *.
% *. . ¥ -,
-* NAME *. NO ¥ ¥ EXTRN *, YES
*. PREVIQUSLY *. DR ENTRY e¥eoae
, DEFINED .# X . *, . .
. . o . *, o .
. % *13 & : * .* X
* YES * B2% . * NO Lt
. ** - - *18 *
. * . . * A3%
. . X * %
. . e *
. X *13 #
¥ * (2%
SEIREIHLEEETRREEES H4 *®
FTL 26A1% o
D ettt
* PUT ERROR * *, QuIT
* RECORD, SET # - .
* MON BIT * *. ¥
P S T e s . ¥
- * NO
. .
X X
D *xEEk
*13 * #13 #
* p2e * po*
. * *
*

. *,
¥ *, YES
*, TITLE e¥eess
*, o .
-, . .
*, . X
* Ne *EEEE
. *17_*
. * A3%
X **
a4
* *
+ 86 ¢
* *
pre s

Chart 14. F7C - Phase F7 Mainline Control (2

of 6)

Flowcharts

55

seEee sHeSR
*]15 *5 ¢
* Al® * Als
* % * #
* *
SYMF X X
SRR RAL ESERERREE S FESEFAIEIRRERE RS
s SUBROUTINE _ # . *
o e e e R e & * RESTCRE »
* TEST FOR PNS— #* * LOCATICN .
* STBLE SYM . SCOUNTER CHANGE #
* TABLE O°F * MODE
FAXEEIRERRSRERRRS SEREXSEESER SRR RN R
: :
N :
X
.. X
B1 *, S i L ET R ERELEL 2]
¥ *, EEEEA 2SR EREXRE *
.. * INITEALIZE #
*. OVERFLOW cscecss XS RETURN * * SYMBOL TABLE #
*, ¥ * * * *
*, . EE2 S22 222122 L 2] * *
e oF¥ EERREESRRFVESRDE S
*"YES .
. :
- X
. L liiz]
. 13 *
X * D2
SREERC L EERRREERES * ¥
SAVE *

* *
* LOCATION *
* COUNTER. SET _*
:ITERAYIUN PUINT:
SRIXMRSERREFAEREE

-
%
FREXID 1 XXX RRES S

*

* CHANGE
* MODE TO
* SUBSTTTUTION

LYY

RELESRRRLELRERERS

Chart 15. F7C - Phase F7 Mainline Control (3 of 6)

56

eXessecsssncvcsscccscssnasse

.n.ntAl:}nnstntt.
*FTD *
o e it L]
¢ EVALUATF DCo *
* DSe OR LOC *

-
LA AR AL ELIEE 22

axe s 0

81 #.
ot ,

—CON YES
. lN ASSIGNHENT ‘-...o...X'SUBST TUTE WORK*
e MOOE BUCKETS *

-
.
0
'

* NO

WML oL e et et e

N1 .,
«¥MODE = *,
* *

i -
* EVALUATE *
* EXPRESSION]

» *
SEERXEEEERNENRAES

axe s e e

‘tt'ta 0;8‘#‘3.‘3 83 *,
UBWE * o* .

t Ve Bk & ERRO! YES
*, IN EXPRESS!DN.O.....-..X‘

*°
SOOI, 4 " .t
NO

e o0 8

tt.“c]t‘.tttt".
#SET _ATTRIBUTES .
* FOR SYMBOL

* TABLE ENTRY t

.
EEREEREESRARHERRS

- - NO
. SUBSTITUTION o®cevacees
, - X

SEE L EIERERS
SUBWB _ *
F e B B e m S R
SUBSTITUTE WORK
*BUCKETS *

AELEEEERESE

»
(n)
=]
Z
=
m e
0=
s
z
O
<
m

LYY

¥
. ASSIGNHENT
MODE

SIK 1B RTES
* PUTLBT *
S8 b B G R R KR
* BUILD LITERAL *
* BASE TABLE =

ARSI ER
.
.

X
nden
4
* Elx
*

.

Chart 16. F7C

Lo aasd
%14 *
* El*
x &

ot *,

* *
*, LITERALS e%essccncs
*o ACTIVE .2
*, ¥
. .2 *13
YES * B2*
*

e oo s

2ESEH3IEEL IS
*

SET SWITCH «
TO GENERATE #
LYORG *

LYY

RS SRR RS

.‘........

saers
*13 &
* Jse
%

“”'Bk"“’...‘:
(e

*

B it
PUT ERROR ¥
RECORD

*

SEREEERE LR SRR R
.

.

.

X
Pt
*]3 %
* Js=

%

- Phase F7 Mainline Control (4 of 6)

SESESASKSELERAERS
SF7V SA3*
S e B S o B Bk
: EV&LUAVENIST :

D 2ND
ANDS *
Ll e 2

e s s

1] .,
Led L
«% ERROR IN #, NC

* R .
'-}sﬁvgnluo‘.t’ R

SR AESESEEERERES
b4 *

8900000000 0000 000 00torosttssorsssotsstnnnnse

SEFXECSE KR RRRER
* 16! »*

* LOCATION
: co A UNTER. SET

Flowcharts

57

ees
17
* AL%
**
*
.
.
MNOTF X
SERERA| R RELBAREES
o i

OPERAND *
*

*
FERE KR EKEREREERR K

FERREC] kXEKREE

* ERITY *
*casz ?EVGREATER'!
: THAN CURRENT *
BREEBRERREREER

.

X
SERRID] FEEIRRRERE
»*

* COMPRESS *
* AND TRANSLATE #*
* 2ND OPERAND *

EEERFEEAREERRROEE
.
.
X
Lt
*3 *
. B2
& %
»
Lol all]
®x]17 =
* Fl=
* "
*
N
PUNCH X
tt'ttﬁl#.‘!‘li'-'
* cumpRess %
% AN TRANSLATE *
* 7 OPERANG o
EEKENRREREAREERR Y

., lS ESO = 0

ERERREH | SKRERASARAE

LR S St S Y
* PUNCH CARD »
FERRAREREERER

Chart 17.

58

*
E= "%, NO
NG leeeeao.xx

SEEKNE 2 ARERE RS
*FTL 1%
Wk e B R Ko B &

.
* L0OG ERROR
* *

RERRCERXESRREEEES

ey
7
* Fox
.

ssvtevesnsnsssere B

.‘...lt'ct

L iisdd
7T
* A3
LR
-«
.
.
X
TITLE ...
3" e,
.. -
o . NO
0 NAME B A
. .
, o
, .
«“ves
.
.
.
H
X
83 e
.
.‘
R *._YESX
o2 FIRST TITLE R
t. .‘ .
*, .% .
" NO
.
.
. .
: .
% .
:
EERESCIFERERRETE R -
:
e e e B o B
®* LOG_ERROR #
P OINTILE 2
:
SEEERRRRRRERSEEES .
. :
. .
Xeceasessenn

.
.
%

:"“D;‘.“.‘O“'
H AND faAN ATE '
: OPERA g‘ﬁ T
tt't.t.'."'."t‘
.
X
L b
H
2%
.
Lasidd ek
*]17 ® tlz .
* Fas * FSe
¥ .
* .
. b4 3
. .
. .
X X
SF7D 20A1¢ . .
Bt e e e B . ‘N .
* EVALUATE . * LOCAYION .
. OPERAND - * COUNTER .
* . * .
. .
. X
. ot i
. €4
X s ALe
SEEERGASEEREEREEE LI
TEUFTE 21%%e .
e Lt
PKO%E;& ESD *
NTRY *
ERSERRENSRAT KR AR
:
.
L4 lld
i
3

F7C - Phase F7 Mainline Control (5 of 6)

X
LA S8R 2R EES
*

ork’ BUEKET For
ESD ENTRY :
Fresenssssnrreses

27 38

RIBRA I SERE SRS ER
*FTE 1

S bt b W B b
* PROCESS *
* ESD ENTRY ¥

*
2RISR S FRIESXRRERS

T
e oo TRE
“es

:‘.‘OFlC“t.tttﬁ:

D s = ot S SN
bd PUT LAST
STESTRAN RECORD
* {QPTION)
S9XESPINIREBANRESE

LastiIFE LR L]
1A1%
n-o-‘-gzs-g-t-t-:
ESD FiLES :
28400000 REIRRES

Keoss e

*
L
.
»

Xes s

BEEEEIHLSEREB SRS S

¢ ottt &
. CLOSE 7,

FEEFFEIEREREE

Mo oo esene

LRI CY FYRT ey

* EXIT TO Fl *
FEIFRFSEERE RS

Chart 18.

H
FEREEATRELEI R4
* SCAN *
*OPERAND. ATTACH®
*WORK BUCKET FOR®
* EACH LEGAL *
EEAND
SFEERAINN

SEEPECIIESRERAES
*F7, 1A1

:—.-';:az.;;.— o
: ESD EN%RIES

PEIRRERISIER 4T RES

e 0o

03 ..
" .
‘-ﬁ s;:gaé 3..YES
e OVEAEEEW %t Ttk
*, ¥

" .8 H
o o
* NO * Al®
. s
.
X
Pl
*13 8
* 82¢
K
.

F7C - Phase F7 Mainline Control (6 of 6)

EREERASKER RS RRS

*
* CURRENT »
* LO&AT ON *
:COUNT R TO TEXT*
FEEXXESEAESRRR S

* FCR ORG *
FEXSEERE AR SRRRRNSE

.
FHeaCSEIERELeLas
-*
* MOVE NEW
* LOCATION *
#COUNTER TO TEXT®
FEEESEEEIRASERRES
.
.
X
eaiad

HE Y
* ¥

N oo 000

Flowcharts

59

Chart 19.

60

%,
A3
SERRALNNREREREE - ..
: ENTER F7X : ...X'.EO!TED RECO&D-‘..-.
seeRR R ERIESS Te. .. .
. " . X
. * YES s
. . * *
- e« C)»
. *
. ren
X
SERIEERORRE
* GETXTM *
S G B b

MOVE TEXT Ta
* WORK AREA “

sRssERRERR
.
.
» . .
* C1 X0 . -
. sane .
E) X
%,
SACLERERRRE C3 %
t,PUIXT e . o* .
> .. .
PUT CURRENT TXT .. ‘. GENERATED
& RECORD ON .. RECCRI
*OUTPUT FILE® o o L
SHIFIINAESS‘
. * YES
e .
. .
. .
- .
X .
B Y X
o1’ e, 1reeen3essrereers
. . ‘*“ LOOK UP OPERA- *
ERROR NO * TION CONES IN *
‘RECORD IN .'.-..K‘ Gl ‘ ‘OPERlTICN CODE #
BUILD .* * * - CCNVERSICN *
«AREA . * R hidd .. TABLE *
. . o v SEEEREEERESSRNERS
* YES .. -
. .. -
. . .
- . .
. .. .
X . e X
JHFLEerane T L EEESREIIFEIEISENE
UTX DD .
tt—'—.—t-t-‘—.. .. * SEY FCINTER »
* PUT ERROR * . e * IN Cﬂ TRCI *
. RECORD * .. : ABLE :
.
sErtseEREt . SEREERPRRRSERANRD
. . .
. .. .
s .. .
X . %
-, -
F1 =, . SEEEEFISIERRRTENS
.. . * .
<% LITERAL *, YES - SCAN b
#, SWITCH SET _e®ceececcccnccsssonasccnsnssanne *® QOPERAND FOR #
., - * LITERAL *
.. o * »
", % FEEESRISRRISSERND
* NO -
S, . .
. .
' 61 *.xo - -
eens - . .
X . X
SGLERRRRIR o RRRREGIAARENNKNAN
» GETP * . * *
BB S B B e KR - * TEST FIELDS 3
*GEYT POINTER TN * - * FCR LEGAL *
“NEXT RECORH.‘ - : CHARACTERS :
SRRRERRERRS e EREERERERRAREENNS
. - .
- . .
. - o
. . .
. . .
X - .
¥, . .
H1 ., . -
¥ #. . .
o* - .
., END OF FILE ¥ecicnesecacancaassroancsasnanann .
. - .
o W% .
* YES .
. .
. .
- .
. .
. .
X ¥ .
O...'Jl.t‘..ttttt J2 =, X
- e . SERE 30IRR R0
- MDVE_QUIT 1‘ NO
.REtlJRD TU TEXT '-.-..---l' SUBSI[IUY!DN eciicaalXe EXIT
RK AREA MODE *
H - . LI T)
SRS EEREEERSIERES - .5
® YES
.

X
BEK 2ERREREE
* CLSTXT t
P
‘CLDSF ‘TEXT FH.E‘

.
..l.“i‘...
.
.

X

L1 2
L] L
* Gl *
Rl

F7X - Phase F7 Get Statement

.'--..

SEERRB LIRSS IRE
* *
* GENERATED
*CSECTy ORGy OR *
* LTGRE TO WORK *

* AREA
FEEREBEE KX REAE SRS

R R R R I S I S S e

.
.‘l.‘ﬂ‘tz',.‘.".
*FT6 27A2%
t-l—.—t—t—l—t—t—t

GET L -
: FROM SYHBU& :
FEEEEEBREERE KR RAS

R}

o

"‘l.JQli't.“‘l‘
DECREMENT l

»
‘X........'LlTEReL STRING .

* ’
FESXSEEERRBDIDREE

e¥reacvsscscccacecnse

oxs
* *

* C5 %,X
* *
xee

CS
)

YES .'L!TE{AL

eevsee* SYMBO
. 'Tf:l S ST
.

Mxese0 e ss s st st enssres

. . .

e e e

o
)

*
H
TA
R

-
N

¥ *
<% LITERALS
*.0N TAPE THIS
*, STRIN

8
1]
.*

',
IN®,
LE «
NG*

*

T®. YES
N

P * NG
p . Eaws
- . - *
P c.X® C5 %
p LT
SEEEIFSEFRRRRRESE

-
-
.

- * RESET . *
...X:LITERAL SWITCH :

bl *
FEECRFERNERNEEIRTE

sesee

-
.
.

SEREANFRELEEERT
b
* ENTER FID *
* =

RLEFIXAISBITEE

bbiibd 7 Sasadd Lo 24
. MO *

CURRENT *
* LOCATION *
*COUNTER YO TEXT:

FEREEEEREEERRERER

it L a Lol S
* MOVE *
* CURRENT *
* LOCATION *
:COUNTER 10 WORK*

FESRELXENERRERTES

.

%
SEEEACIREREREERES
. *
* INITIALIZE *
* POINTERS AND ¥
: SWHITCHES *
SEPELETRELRERTEER
saee o
+ = o
* H1 *.X.

* .
*22e X
o*.
H1 *,
ot ..
o
.+ LITERAL DC
ER S
. .

* YES

.

X
ABAREJLEESECEEESS
*

* STEP *
PAST EQUAL SIGN
. *
* *

.3. cee

*EER
*

badid SELELLEC 22 LS
*

ALUATE
CAT ION

TDR IF

ESENT

LX XX
nEm
>

RO,

XYY

-

X
rEeE
= *
* A2 %
* *
Ea 21

Chart 20.

Gt sssstsrt s ave

F7D

.
® A2 *
ey ene
e * * * *
. * AL *,,, * A5 *...
. rEEX X P .
X ¥ X
tttttAztststtsz:t ARRREATEEREIRRAES A4 el AXEEBASE SE R RE
* o *
‘FVALUATF LENGTH‘ * CHECK * B NO SET *
MODIFIER IF eeeX¥ FOR VALIDITY * *. V—-CON e¥ooan NTERS ANC *
' RESFNT AND ‘ - * * . . WITCHFS *
* ALLOWED * . * * . ¥ *
. . .¥ sxssdessd
. - . * YES .
.
.
- . X . X
X . ¥ X o ¥
SEREAB2ETRERIREAE 83 s, F T 85 .
* * ¥ JELITERAL®,
*EVALUATE SCALE * ¥ ITERAL * MAKE * «#PREVIOQUSLY %, YES
* MODIFIER IF % *,0R LITERAL *ESD TABLE ENTRY#* *,EVALUATED ANDe®esoa
* PRESENT AND * *. * . * . *,ASSIGNED .* -
* ALLONED * - *, * * - . -
FEEEERERARETRERRR - . ot . FETEXTUERDATRAERE * .t .
. . * NO - - . * NO .
. . . . ntt . . rax .
- . . - * .Xesessesssas . ¥ * -
- . - . ‘C#'X. se X® Hl * -
. - . - * . * .
. . X . rheE X see .
X - o¥e - oo .
FEEERC QHERKRRREEE . €3 T #, . C4 %, .
* EVALUATI * . o* . . o¥ *, FEEECSEREESEEESE -
* FRN * LENGTH *, YESX +* 1ST SCAN =, * .
* EXPONENT IF * *, MCCIFIER - *, V—-CON - * RETLRN *Xeoo
bd RESENT AND * o PRESENT . *. . * *
* ALLOWED * *, ¥ . o EREREIR LIRS TS
FEREREREREESEEREE ., % .
. * NC -
. - .
. . .
. . .
H % .
R SESELDIRRASIEEISE LRREADSERESREREER
o LEFT =*x, * * B * USE T, *
«*DELIMITER =% * ALIGN * YES * LCCKUP TCO *
*, QUOTE OR L. * LCCATION * +s X% ASSIGN AN *
, PAREN. . * CCUNTER * * EVALUATE *
- . * L LITERAL *
£, .* SEEEREREERRBERETS SEEEEEBERAREKE RS
* NO - . * NO -
. . - .
. eXeveosooscee . .
. . . .
X - - .
¥, X X X
£2° &, EEERREIESREFRRAED *E Stis
¥ * * * * * SETY *
YES .t LEF * DC SYNTAX * * MOVE DC WORK_ * * APPRUOPRIATE *
ceva¥e DELIH[TER * SCAN_BY DC/DS * *BUCKET TO TEXT = * SHITCHES, *
- * TYPE * * RECORD * * COUNTERS, ANC 2
. * * * INCICATCRS *
. * SEEERERERRREEEARE
* . - .
. . . -
. . . .
-
- X X X -
- ¥, %, ¥ .
. F4 z. .
- ¥ *. .
- o* *. YES -
. *, LITERAL OC .*.c.. -
- *. ¥ .
- *, ¥ . -
*, ok - .
* NO - -
. . -
. . .
. . .
- % % . -
-, v ERERAGIREELERERER AREEECLERRRREREEE . .
. *, . *SET APPROPRIATE® * * . -
< os *ad0L X:ERRE:DIgglgérca: IorATRedgeo ¥ C :
- eteeonnces . .
*, o DIAGKCSTIC * * LENGTH * - .
*, ¥ RCUTIN * * * . .
*, % TEREKRIREREEETARD FRETEERAREFEEEREE .
% YES . ° -
- . hxk . .
- * - -
: M * H4 *.X. .
X X ks X .
%, ¥, ¥, .
H2 *, H3 *, H4 * .
o* -, o* . S, .
¥ LENGTH *, YES -* *, YES NO .
*, MODIFIER e¥eoea *, LITERAL eteeas '. DF OPERAND .8....xt Kl # .
, PRESENT . - - . - FIE * .
. - - - o* - - *E0x -
¥ ¥ X *, ¥ X *, .
* NO shxx * NC EXEE) # YES .
- * * * * - TERE -
. *C4 ¥ * J5 % . * €,
- - * * - * 35 *.Xe
- Ladidd . EEES . * 0
. X . L .
X ¥ X .
FREEE 2ERRRETEREE 33" T, frassjarearaacene X
Ed * ¥ *, SET NEW XXX JSEIRLEREER
* ALIGN * ¥ *, NO LPCATIUN ' *
* LOCATION * t 151‘ DPERAND .‘........K‘ COUNTER ¥eeecnsasXE RETURN *
* OUNTER * -* * CENTRAL YABLE * *
* * s 4 REEEERE DR XREERE
_— AEEFERLEACEXCTRRE
. * YES X
P el . .
- ¥ x - .
ce Xk C4 ¥ - .
* * . -
prees X :
o %o
K3 *, :tttﬂ(lnttttxtttt
ot ., ust
+* MCRE THAN #, NG TI N
*. ONE CPERAND .'........X‘CUUNTFR lN I’EXY'
*, PRESENT .
* - ' ‘
. ¥ FERBEERRESRNREERE
* YES
- rE3¥
*
s X® C4 *
Ry
.
- Phase F7 DC Evaluation

Flowcharts

)

Chart 21.

62

ENTRY -,
a2 e, SEITATIER NSRS
SeneAleeeRRRERSE . =, .
<% IS NAME #*, NG
* ENTER FTE .. «eX®, IN_SYMBOL -
* *, TABLE .* .
SeseserarenenR . . . * s L
: . .* P T e S
- * YES .
. . .
. . .
: . .
. . .
- X -
3 * -
. SEERRRISARTRAEIRY L
. . . 2
. - * . .
- - cssecc X¥ LOG ERROR * .
- * * -
- * * -
- SESEFEEIEREIRE RS -
N - .
- . .
- eXeaeoosccsee
. .
M :
- X -
T ssseaC2ssessrsras .
- * * -
- * *
- * CREATE ESD ., . sessne
. : ENTRY :
P :
: :
. .
. .
; ;
T sEEsaD2eersEEeees 03" .
P * *.
. * GET *
.-.~: NEXT QPERAND :X..
. .
2222222 22 242 L 222]
* YES
.
.
:
EXTRN %
ey FeREEIRNRRRLNOS
* ENTER FTE * * RETURN b
SRR ESIT R RS SEBEATEREERIRYS
.
:
.
X
...
AEERERF 2e R RN REERRE
*® CREATE ESD *
«X% AND SYMBOL *
: TABLE [TEMS :
SeasEERETEEIEALSE
% YES -
. .
. .
. .
X .
SESROGTERRENERES :
. * .
- . M
. L0G ERROR *
. »
. .
LL LT T TRy
: :
. .
. .
% .
¥ .
H1 ., X
‘.o ‘.‘ tti.Hzt’ttttttt‘
‘:I‘IST nPERlND‘ 'X: RETURN *
“s. o ERETREEREN DTS
By oF
NO
.
.
;.(
19sasg1sesarsans
.
* GET *
«® NEXT OPERAND *
. .
. .
SESRESHERTTERIRE R

F7E ~ Phase F7 ESD Routine (1 of 3)

ENTRYS
FEESALEERASEERE
: ENTER F7E :
FERESERRERRERRE

85 %,
04 *,

o* *,
vesX¥®, oX#e ANY ERROR o%cene
. *, ¥ -
. *, o* -
. * ¥, 0¥ .
. * ND +* NC .
. - . .
. . . .
. . . .
. . . .
. X . -
. B x
: c4 . SERERCSERRERRRAERE |
. o *. . « o
o NO % *, * * -
eeee® LAST OPERAND o*Xeooeeeeso®*SET WORK BUCKET* -

*, ¥ x - * .
L o* - * * .
. . P S T
* YES . -
. . .
. . -
- - -
. . .
. . .
X - FEEEIDSESLRTRERER
sERANLEIESEIRES : H :
* RETURN * . ee® LOG ERRCR *Xeo
* * . *
SLEERSERRRERE RS * .
FREEESARSRRRREEES
EXTRNS
SRARFARRRAREE LS
L
* ENTER FTE *
SERFREAEEBEAE N
.
.
.
:
ce” e, SEERRGERREREREIRS
. . . .
W NAME * = .
«X#. IN_SYMBOL Eid LOG ERROR *
, TABLE _. * *
*, ¥ . *
, EESESEIEREIRE RN RS
. .
. . .
. . .
. sXeosaseancssccrancrcscsnnnn
- X
- ¥,
- H4 *,
: o ' FERBHSERRIERE N
- o *, YES L4
'.kls‘ OPERIND.o eesue X® RETURN *
: .. . FEEREER ISR
- , Lk
. *"NO
. .
M X
T AEERRRJAEEERRSREER
. * *
- * GET *
eeoe® NEXT OPERAND *
* .
* *
SRFEEEBEBEXERER RS

uec

REEFEA2SEESELERER
ETI2 TSR L2 22222 2] * * XS EAIRSEEESE RS
* * CREATE * *
ENTER F7E %ceesceesX® PC IVPE ESD %.eeesaeoX® RETURN »
. . . ENTRY . .
FERSEKRE R EIRES * EEEREESFREERRES
SEEEREELREERERES
START SESEE[IR ESEEREE
S$4RPISIEERIELE : *
+ENTER FTE %.......oX$ SET CSTVAL %
PR 2T 222 22 223 * *
FEREEEEEEEEEEERER
.
.
com .
832 | SLEE LR :
T ENTER F7E [PO
EERES 2L 2222222 2] :
:
CSECT .
ER I LRI SR 22 2 2] :
3 ENTER FTE %evvecscosscecsceXe
SESESEEEER LSS :
.
.
bsSEcT “"'Eztgtt“"“
SEESE L EIEEEERES * PD, *
* * LENG bd
* ENTER FIF %eceeec..X® PREVIOUS #
* * #CONTROL SECTION®
ELIET 2 2222222 2] *
EL 2 222222 EE2 222 2 3
:
. x
o¥o
F£2 *, EEERRFIHREFRRERES
¥ - * »
o%" IS THIS . YES * EETCH *
*.A RESUMPTION o%...uc.0.X¥ OLD ESD ENTRY *
** ¥ * »
*, ¥ * *
T, ¥ L2222 22 2234
* NO -
M M
3 X
2
* * * *
SCREATE_NEW ESD & * SET .
* AND SYMBOL %#........X* CIYPE AND #
* TABLE ENTRIES * * CESDID *
* * * *
.
:
.
5
FEREHIEISAIRERS
*
* RETURN b4
» *
EE2 2232212222 223
Chart 22. F7E - Phase F7 ESD (2 of 3)

ORG

QIT
BEEBALEEREETRES AEFEASEEEEEERRR
* ENTER FIE * * ENTER F7E *
* * * *
-
.
X
* * * .
*FETCH ESD ITEM * * FETCH £SD *
* F£OR CURRENT * * ITEM FOR LAST *
* SECTION ¥ * SECTION *
* * * *
.
.
; ;
SRRIECLEERREEEEER FEERE[SEAREERESRS
UPDATE * * *
* ICATION *

LO
* COUNTER AND *
SLENGTH _FOR ESD *
* ITEM *

* UPDATE *
* LENGTH OF ESD *
: ITEM :

-

.
X
SEFED4LEEFIEEERR

*
* RETURN *
* *
FEERERERELEERAE

SREIGLEEERTEEES
: RETURN
HEERESERREEEERE

seeans

xu

SEEIDSEEERERERS
*

* RETURN *

* *
FEEEEEE KX EXAREE

ESWBKR

NO

*
*Xeovsoooo¥e
*

FEESFSEFFRRKERE
*

* ENTER FTE *

* *

FEERSTERR SRR EE
.

G5 *,
o* 1 *.
% DUPLICATE =,
NAME OR -*
, SYMBOL .
,TABLE.

REAR73Y

W W e e

-

PO T I

BEEXEHSE KT REREHES
* *
* SET *
* TEXT WORK #
: BUCKET :
EEEEFEXERRSERERES

e so s e

SEXEJSEEXEETEES
* RETURN *
* *

SEEREEERR SIS REE

Flowcharts

63

Chart 23.

64

EREKATSIERRSEAS
x
* ENTER FTE *
* *
TEEREEEREREERER

X
EREERCISIRESBRBESR
* *
* CREATE *
* ESD ITEM *
* *
+ *
P L T T

.

5
SEREXDIN RS RSFEEED
* *
* SET *
* WORKBUCKET *Xoa
* +
* *
SESERERESREAREAES

X

BEFEEIN NI RENIE
= *
*- RETURN ¥

EEFERSIIFSRIENS

F7E - Phase F7 ESD Routine (3 of 3)

STGETR
SFEIAL SARSERESE
ENTER F7S

STPUTR
SEERA2EEEIXEERS
ENTER FTS

*
*
LES2 2 2222 220 22 AL TR NRER SRR S E
. .
: .
. :
. :
: :
: .
X H
“..'B[...“.‘tl‘ SEERER 208 SRR RER
‘ * *
* FIND &
ossr GET SWITCH .. ceeeX® LENGTH OF #
* SYMBOL *
. ‘ * *
.
:
.
:
.
X
N .
c2 . C3 *, “‘O‘C“.“.‘tt‘l
o test s oFF TEST _Tw. ON AKE b
. .
*0 GET SWITCH o¥eeansessX®s anF Swire .-........xt el tRoss ®
N o REFERENCE *
. o* ‘e, o’ t x
*, % 2, .® FEEREESEEREARBAES
+="on *"oFF .
. .

e

EEEERD24FEEE 2R EES
‘

® FIND LOCATION ¢
% FOR SYMBOL IN #*
*® SYMBOL TABLE =

EEERER TR RS ERTEXRS

e 00

¥
E2 .,
¥

*

o
‘-‘ DCCUPIED
. o*

. o#
NO

Hxe s oo B

F2 *,

* x,
. . ON .#° TEST %,
* *NOT FOUND! ax........c. GET SHITCH I+

SOBSF I SBkRSTRE

oFe
E3 *,

EST

“®. YES “». ON
..t........xt. *set SalTew JICLCTRES
.

N o
" .
OFF

oo s 00

SEEREFIRRRENRESES -
- BEEBFLEXEREREESE
*

* CHANGE +
*CROSS REFERENCE®*ccsesece o X¥RETURN (FOUND) *
* TO TYPE 3 *

ttttstctttttct* AEERRFEREEEREEE
EEEERRERFESERREES
PUTSCH X
EEERAG2TRERERERESE
* *
* MAKE *
* SYMBOL TABLE =
: ENTRY :
SEEEERERESEREE LR
.
.
.
X
STROOM ¥, % o¥o
H7 *, H3 2, H4 *,
l“.HllsstOtt‘t *, +* IS
* ENTER F7S ¥ H!LL ESD “%. YES *THERE RUOH o
* '........xt. QVERLAY -‘.....-..X‘.FOR 2 ESD
*, SYMBOL . *,AND SYM, -
SIESERESREELERE *,TABLE.* *, TABLE o *, o
. o¥ ¥ *. %
* NO "+ YES * YES
. . .
. . .
. - .
- eXeeessoeesecccscccccsncsane
M X
X BEEEEYIRRRESERILS
SR JOTERSETERR
* LOW
* NORMAL RETURN ¢ *EXTERNAL SYHBDL’I
* * * DICTIONARY
FEEEERRRESKERSR
ERERERRREEEPEEARE
-
.
.
.
X
*EREKIRRESTE RS
*
* NORMAL RETURN *
ERERIS LR RRRES

Chart 24.

F7S - Phase F7 Symbol Table Routine

SEEFHEXSTRESEEE

*,
NO IS NO :
SEG. 3........X‘..IT ESD CALL S¥eeceeess XEABNORMAL RETURNS

EEEEEEREREEREES

Flowcharts

65

Chart 25.

66

v

SEERATEEISEER NS
* ENTER F7v »

BEEFERRBE SRR AR

eseae

e

:tn..a;ottttnttt:

* REGISTER $P1
‘PDINTS T? FXRST‘

oo
Ce ¥,
o* .,

*,
S TN cnnvgten GO
*, o
t..,t

P R L R LR LR IR LRI LRI Y

s SYMROL s

. X X
*CSCAN . . SCAN .
Pl B § pllon
+ SYMEDL * * SYNBOL TABLE ¢
* >7F . * "FOR LENGTH __#
SEREBREE: & SEEENEIEFESEERRE R

:

PRSERELSSE SRS RES

ST TveE 2%
‘CRUSS-REFE&ENCE‘
SEEEESEEAEEEIR RS

:-tc.;s-{tttottt:
* POINTER TD ¢
b C%RRiCTER »
*FOLLOWING TERM :
SEEEBRRRNRESIR IR
X
Ll
-
*CI ¥
*
tn‘t LAl

Ll
L2 11

-
.
.
.
.
-
.
.
Py
»

‘
ERRRRRSIEANNENES
P Y .
* .
* £3 $.Xa
3 .
sere X
o, ot
£2 *, c3 ‘.
-' % 1S
, OPERATOR . CNARAC R *, TERM
ceae®l CDHPUgED GO .'X....-...‘.'09 RATOﬁ DR e¥seenes
. .
. -, o .
. . . ., .
- * *
.
.
.
. .
. + SELF-DEFINING
. X
.]
o 3 s BlCOM : : O¥CE et
.
esoX® OPERATION IS # * CONVERT SELF- #
. *BLANK DR COMMA * ‘DES[N NG VALUE *
P * . *
N
- . .
. . .
. . .
. . .
. . .
- . X
. X ot
- SERREE2LER AT S SRR €3 .,
- . . .,
D SRESULT IN sPZs s = oeniflﬁz-an'
- *Xesseevsede *
. sCoND. cODE SET & "% oN
. 10 EXP. TVPE ‘ . s, o?
. ‘..“'i'l“‘.l"‘ - B, o
- . . * NO
. . . .
. . . .
. . . .
. . .
. . .
. . .
. X .
- *SESF 26k 0N ERIE -
- L4 RE TURN * -
- ® TO CALLING * essescescccanae
. * ROUTINE * .
- SAERENEFREREE N -
. .
. .
. .
. .
. .
. .
. « YES
N oh,
. ‘aottczct;o:otont G3 ‘.
«*
M t—‘-‘h‘i—‘-.—t—». END NO ®
JeeX® OPERATOR IS %eesccnooX®n DF Exvnessmn.t....l- TH
. ¢ LEFT PAREN. * . .
.
- FASEERIFEREF USRS ‘.‘..
.
. x
. .
. .
. .
. .
M SEREAH AR EAR KRS HEEAHIE RS SR ER bR
T . AR : Lo
L Tt
X¥* $eaoennee Xeo
% RTERTATRRENS o EREORN
- L lTHHE t
. FERRERER RS REXRE N “‘t“‘.; L1222 2]
.
. .
. .
. .
. .
- « NO
. ¥
T 43
- LTCO o*
o B o B e B Is
X‘ UPERAT 15 .-c eeeX¥e BFERAT
poUE STaR. 'S, o STERISK .
o RS . o
SRR REE SRR oot

Phase F7 Expression Evaluation

eveccscececarse

ONLY IN
FIv

Chart 26.

SEERATE IS0 RS

*

: ENTER F7L :
FEEBAIRERISSERS

Xeooe e

AESSERISEREINEIES
* CALCULATE *
* RELATIVE PTR. *
* R N s
*0PRND (OR lERDl:

SReEeRIRESIIINILS

DTN @Xe o0 e
.

XXX EDI SIS VSR

*
¢« INITIALIZE .
®ERROR RECORD IN®
* CORE *

*
SESEERIRESRSE SRS

.
-
m
w
S
DTN @3 s 000
o »
.
-
.

noQ

-
.
.
<u -

ok
*,
*,

*xOm
*mZ

»-D
+ mm
PR ="}

m
“n

P B DMEXENG S0 e o &
PO | =
DeE
.
=
-

:“t‘G;"““"‘:
*ATTACH CURRENT ¢
* ERROR MESSAGE *
:TU ERROR RECOFO:

SESEBREFSEL RS A

F7L - Phase F7 Log Error Routine

€5 080000000 000000a800Xe800000000000bs0tstscntnses

Flowcharts

67

Chart 27.

68

CERRAEESSREEER
*
s ENTER F7G *
LTI g DL T

Xe s o000

.....BZ‘...‘.““
ZFRO
‘SIRING COUNTER. ‘
S. 70 *
A
3
-

R
7
L]

Wreh 00800 BMOI
*c

.

Q
<
~N

1s
‘.ZERO lgND OF .‘.-

u. '3
*NO

e s esn @

:.‘t.e?t.‘..tit‘:
s MOVE LITERAL

VE
QANS APO. F XED *
® FIELDS WITH *
‘LIYERAL

Rl AL g

Daddadcra 2 21 I L1
SET LAST
OPERAND
INDICATOR

SEESEEREREEIREEES

LXTTY)
[T T Y]

SEERNJ2NNSSESBERS
* b3
- MOVE IN .
& FIXED PART OF *
* RECORD -

.
SEEREFISEESNIESRE

)

!t.“KZ.‘.t."“‘
‘

POINT BACK
.IO BEG%NNING OF...

i
SEREEERS TN SRR RS

*,
PTR _#, YES

RSB EDIRI RGN IRY

L
»

e X®
»

ADD_1 TO STRING
U R

AEKIEPEORSRERE
RETURN
EEERBRIRIRRORRS

F7G - Phase F7 DC Get Routine

$eeense

*
»
*

coX®l CNAINS

*

Xeseososoosesecseasscosscsscassscscossescccccncacecsse
.

s NO

D4’ 'a.
VAVE FOUR®
*-PROCES 5" *

‘. .

BE
SE
‘.
* YES

I’
X
BESEELEREAIRE S
RETURN
SEABEIREDEXBEES

.

.
*

Chart 28.

FI

FI
SEEEA2REXABEEES
: ENTER FI :
SEXXRAFEEERRRRE

e s e e
v

*
o* *,

Fi3 X
SERRRC2RRXFEXEERE
* *

* BUILD
* ADJUSTMENT
* TABLE

LX)

*
FEEEEE XXX EERAEEES

»ete s

Fl4 X
SEREEAD2REREERERRES

* LIST ESD *
AND OgTPUT
* ESD CARDS #

o2 2222 222222)

Fis
FEESEAE 2FEREERRREEE

BUILD LITERAL
* ADJUSTMENT *

BLE
FEERHEEERRERS

SEREEF2HERRRER &KX
* EXIT TO F81 :

*
KEEXEEEEESRERER

- Phase F Interlude

LPFI2
baa e 2 - EL AL LSS Lot ad
GEY ESD

BES ISP XRTES

eecssscssscsssonssccsnses

Flowcharts

69

L bditd Yoiddvhmht s o d
* F8NTRY *

FEEBALSEERRREES
* . B o
b4 ENTER FBC ¥ eeaoes s XSINITIALIZE FOR *
* * EACH RECORD #
B REERRERER * *
SEEEEREEREIEIRAEE
.
5
B2 “#. SEESSEBIRSEIRTENESS
¥ *.
¥ ERROR *, YES L s o ot 2]
%, PROCESSING o¥cccceaseX GET _ERROR
*. NEEDED ¥ * RECCRD *
R AERIISREAEIES
* NO .
. .
. X
. Er e
M * *
X * E2 *
SERREEC QXX REREKREE * *
TXTM e
L e et I
INPUT
X *
RECORD
TERRRERESARES
.
3
02" EREASRDIRATERRCEFNS
¥ WA FRREDLESEXREREE
o THE! I e il *
, ANOT! eeX COMPLEYE RECORD esweseaseX® EXIT TO FPP @
*, RECOR * PROCESSING #* * *
. SIFIREALEIEEERE
*, SEaEBFIRERRTS
*
LU
* * o
* E2 *,X,
* .
eex X
BN
SENSIEL 4RRBSEESES €2° "=, SEAEREI SRR RS R BRR
L4 COl NT * «* IS *, * BLDIMG (F8P) *
B e B BB G b & NO_ .*RECORD FOR #, PARTLY #—f—8—S—t-F-¥_3¥—#
* SET *Xeo « PROCESSING . e X® PRINT ROUTINE #*
* IN PRINT LINE ¢ ‘-. ..' : BUILDS TMAGE :
P e T T “ke o4 EEATFSREIRRSESRES
. * YES .
. . .
wenr Xeterececsasiancnenaannees
* * .
A2 2 X
* - FEERRE QERRERRE SR
e * SETHAP *
D e e e i
*SET PTRS TO WRK¥
* BCKY AND APP, &
* FIXED FIELD *
EEREEERRERREERARE
X
¥,
G2 *, BEXXFGIFIRRESNARS
¥ S -, * L *
«* ALIGNMENT #. YES L e e e 4
®, NEEDED THIS . . X¥ DO_ANY *
¥ STATEMENT . * * ALIGNMENT *
*, o * ED *
. ¥ FEREEERERRERERNEY
* NO .
I .
Xeeesnanssennntsenccnanans
X

¥
H2 *,
«*IS THIS*,
o* *. NO
*, ASSEMBLER
,0PERATOR .

. . :
%, ¥ .
*"YES :
: :
5 3
AEEEE J2EERREREREE AEEERJIRRES IR NRD
142% sFaM 3082%
e P = e G e e RSl T ok oo ant ant 4
« PROCESS * * PROCESS *
* ASSEMBLER s MACH .
* INSTRUCTIONS * * INSTRUCTIONS #
: :
Xeeamsarensesancensnasenen
X

SEEEEEK DEFRESERS RS
*F 32A3%
D s et gt]

* DuTPuUT *
: ROUTINE :
ERERERREEREERRERE
.
X
krE
- *
A2
* *
rake

Chart 29. F8C - Phase F8 Mainline Control

70

SAERAISAAESSANE

»
: ENTER F8M b
EEERERBISEREEEE

X
SEXEECIEIRRIFESES
*
* ARRANGE BITS *
+ FOR COMPUTED ¢
+ ERANCH :
REEEREFS IR I RREEES
:
: FaM BRANCHES ARE TO
. THE FOLLGWING LABELS -
% RR1s RR2s RR3y RR&
FEREEDIRBEXEREDEE RX1s RX2
b N RS1, RS?
+ BRANCH PER # sia. si4
* INSTRUCTION ¢ 3515 ss2
@ FORMAT (SEE 3
*

NOTE)
SEEEEIREREFRRRREN

*
+
C T *
* BRANCH (SEE ;
AEAREIRFSERSIENES

X
EREREIEREEIRAER
*
: RETURN TQ F8C :
AERESEERTERERES

Chart 30. F8M - Phase F8 Machine Operation Processor

Flowcharts 71

EEERA QKRR EEKR SR

*
* ENTER F8A *
* *

ERREEREERERER L
X
EEERRB IR ERKREERE
*
*SET CONDITIONS *
* FOR COMPUTED =
* BRANCH :
EERRENRRREERRETES
X
.*
c2
¥ *FERCIETRFRSEAR
SHOU! *
*, PHASE ««X%® RFTURN TC FBC *
« PROC N *
* THIS EREREBR IR R ERRE
*,
*
- NOTE -
. FBA ASSEMBLER OPERATIONS AND
X PROCESSES TO BF PERFORMEC ARE
EERREN AR EKERRERK AS FGLLOWS -
* *
* BRANCH PER * BEERSRRESHES
* ASSEMBLER * * *
*CPERATION (SEE * * LABEL PROCESS =
* NOTE) * * *
EXkA Ak
. * *
- * MNOTST SET MNOTE FLAG *
. * PRINTR SET PRINT FLAGS *
. * SPACE SET SPACE FLAG *
. * EJECT SET EJECT FLAG *
- * PUNCHB SET PUNCHK BIT *
X * REPRO SET REPRO BITS *
fthhbd AL L L S L L] * TITLER SET TITLE BITS *
* * * ENTRYB PROCESS ENTRY OPERAND *
* PERFDRM * * EXTRNB RETURN CONTROL IO IEUFSC *
* INDICATED * * STARTB PROCESS START STATEMENT *
* PROCESS (SEE * * CSECTR PROCESS CSECT STATEMENT =
* NATE} * * DSECTB PROCESS DSECT *
BEREERRFERREEERE L * COMR PROCESS COM *
. * EQUB PROCESS EQU *
. * CRGA PRCCESS CRG *
. * ENDB PROCESS END *
. * LTORGB PKCCESS LTORC *
. * USINGB PROCESS USING *
X * DROPA PROCESS DROP *
% * CCWB PROCESS CChW *
F2 *, * LITERB SET LITERAL SWITCH ®
FEXFF] RERERRETE ¥ *, * DSB8 SET NS SWITCH *
* YES .*WAS BRANCH #+. * DCB SET OC SWITCH *
*® RETURN TD FBD *X.cesesee¥®. TC LITERB, % * *
* *.058s DCB _.# * *
EERFEIEEHEEREER *, % * *
*, . T L e e
* NO
.
X
EEERGOEEFRERERE
*
* RETURN TOQ FBC *
EREERBRERERRO RS

Flowchart 31. F8A - Phase F8 Assembler Operation Processor

72

‘t##‘lzt‘lttﬁttt

* ENTRY FOR EDITED
* ENTER F8P : RECORDS
EAEESIEERREOR RN
.
.
.
.
x
Fap ¥,
JCEN SEERRRLEERSRRE SR
. .
o* PUNCH, *. NO * MOVE LEFT *
REPRCy MNOTE,;c%eoesone sX¥SIDE FOR PRINT *4000voees
. TITLE _.= b AND PUNCH * X
'R o M * P
B, % FREEREEL L LR ERREER %33 %
* YES * B3
wngn . *
32 ¢ .
* C3 #.X.
* .
Eatld X
*
SEERACIRRRAREARKE c3” e, SERERCLHELRRRGERRE
* * o* ., * P
* MCVE MNOTE ¢ NCTE _o# ¢, TITLE ¢ Maye *
& MESSAGE TO *Xeoaoeeae®*e COMPUTED GO a®ecscecacX® TITLE TO %,0000000
* PRINT AREA * *, [s] ¥ * HEADING LINE = X
* * -,) * rrkas
SEERERLERERESRERE e % SREEER I SRR RREES 33 %
. * PUNCH, * B3x
. « REPRO x &
. .
X M
Ptatd .
433 » X
* Gox N
- n3° s, SERERDGRERES RERER
o* *. * CHK SwH .
o# PUNCH ~#. REPRC #—2—t—s—d—t—g_2_4
*, OR REPRD * PRINT *REPRD? *
-, o* & REPRD LINE %
*, ot » «
ot SRR
+* pUNCH .
. .
. .
. .
Keseessseosscncoscssrannns
X
SEERKETEARIEIRNRS
SRIIC [SHABERERS * DUM; *
* ENTRY FOR SOURCE P et et o Dl S S
* ENTER F8p & AND ERROR RECORNS * DUMP PUNCH 2
* * * BUFFER IF *
SsesTeRREIELER * NEESED *
. FEEEREERRFFSAERES
. .
. .
. .
. .
COMMENT X %
SESEAE LRERERSRAEE SEEFRREIARERNEE RS
* sy
* MOVE * PP CLR UL IV
SRIGHT SIDE FOR * PUNCH CARD FCR
* PRINT . * PUNCH/REPRD *
P T AERE AR EER IS
s .
X -
seaes :
*33 * .
* B3% .
** X
* EEEEGITIRSERRF SRS RGHEE KSR LARE
* ENTRY FOR GENERATED
: EXIT : : ENTER Fep & RECORDS
P ERSERARRTEREE RS
.
X
BLDING N
H4 .
¥ *, . .
oF TITLE, “%. YES o* *. YES
#.REPROy PUNCHye®ounaossa X¥o MNOTE Heea.
*. MNOTE % . o .
*, % o ¥ X
= ND *= NO **E S
. - *33 *
. : + 3
. N L]
- . *
X .
SERRBJGRER RS REEAR X
* SERE JSEREXREREE
* CONSTRUCT x x
#RIGHT SICE FOR * * EXIT *
* PRINT *
SEEFSFXTERRRLEY
FEXEREEXRRARXEEE L
X
LS atd
*33 +
* B3%
* ¥
*
. .
Chart 32. F8P - Phase F8 Print Routine (1 of 2)

Flowcharts

73

¥33 #
*+ B3s
» e
*
.
X
INLCPL %,
83 #, SEEREPLESERBRR RN
. ., * * FEEHRSEEIRENEED
" * SAVE *
*, SPACE eoX® ACCUMULATED ®,.eueseeX? EXIT *
*. . * SPACE COUNT =
*, o] * HEEEERR RN RERRSE
e o.* FEERRRERRERRRRNES
* NO
.
.
.
.
X
¥,
c3” T, utncuunnut
o* * PHEHED FRERCSHAREERERE
o* YES o .
'-‘ EJECT .‘...--...!‘ EJEC" YD NEW :........X: EXIT :
. -*
*, ot H x SEERR IR EESRRRNK
. ok P e T
* NO
.
.
.
.
5
¥, .
tltttnztt'tt.ttttt 03" "=, pesesDastirsarane
L LH t LEFT o *. C
sme o * D€ P A, t—t
‘NOVE LEFT SIDE *Xn-.-.- « RECORD TYPEXt PRINT LINE IF
TO PRINT LINF ‘ L . ¥ M * ONE IN BUFFER *
.
HEERRERAR SR EREREN SREEEREEASREREEEE
. .
. .
. .
. .
. . .
X X X
€3 nn;eqtuuatut
* CHKSWH * . . * OADRERR *
BB B e K B K B * [gsen . e t—a-o-.—.—t
* PRINT LINE * ® STATEMENT NO. ¢ # PRINT ERROR *
bd * *IN ERROR RECORD®* * LINE IF *
» * * * NEEDED
AEFRAEERERBERRKEE
. . .
. . .
. . .
. . .
. . .
. X
X ¥,
360k F4 *,
[GOTXT * WTERR lFBI) o* *,
B e B B e K B L e o » ¥ *, YES
* PUNCH DATA IN * PUT *, MNGTE e®evencens
* TXT CARD - * _RECO! D l b4 *, o*
* * TEST STREAM *, o [t
EEEERREREEHIRERES *, o% 32 &
- * NO * C3¢
. s . L3R
. *33 & *
. . "o w0
. . * .
. . Ly
.
% nnust,t--tuutn
ARG IRRR SRR R SERRGIENER R ENRE RE_
. » —oE 340 :
* EXIT - . EXIT . D VE_R l(:HT SIDE
‘ TO PRINT LINE #»
FRRAERERREEEEE LU R T T « -
CRRRER AR B ERREEEEE
.
.
.
.
RERRHLESEERERER
L4 EXIT L
. *
RERREREERRRRRER

Chart 33. F8P - Phase 8 Print Routine (2 of 2)

74

ssres wres
¥34 o . *
A3 * A4
% * *
* ene
. .
. .
X .
¥, X
3" s, SERRRALE SRS IREEE
SRR SEERERERS o* » *
o* “e. YES * *
. ENTER Fan * o X®l B!t LENGTH o%ia0s * PROCESS CC BY #
* . ¥ . * TYPE *
SEERERREREEIEES . e B . . .
. 3 o oo* . LEEEREES SRR RS
. e * . .
* * . p .
*® A3 * - . .
* . . .
- sene . . .
. X - . X
X ¥, - ¥
pererBLeNEREasRLY 83" s, : 84 .
. ‘- . 0 *.
SET_OUTPUT YES .% . DS
‘FOTNTER TO DATA‘ . .-‘ FlRST UPERANB * B ‘. INSTRUCTIUN o
. .
' ‘ - - .‘ . ‘o -‘ .
FEEEASIREESEIRINE - . .8 . o o* .
. . * NO - * NO .
. . . . N .
. -
.
.
. . X . . .
X - o¥e . X .
SEREAC [EEESERETES . c3 . SRREECLERRBESRESE |
* FETCH * . o . . * P
* CURRENTY . X NO *LAST CUTPUT®, . * DECREME! E * .
* LOQCATION * esea®e YTE NEED .¢ . * DUPLICATI N * -
L COUNTER * - *, FILLING .* - * FACTOR BY x .
. * . *, o* . * * .
SEERIEREREERERTAE . %, . . P L YT
. . * YES - . .
.
.
. . . . - .
. . . . M .
. . . . X .
- . X . o*e -
: P T T T E Y TR TP D4 “x. .
. * * . 2% *q -
- * FILL * . «*DUPL ICATION®, .
. * LAST UUTPUT * o seee® FACTOR = ZERQ.* -
. - » BYTE * P *, o* .
- - * * .. *, ¥ .
: T sEsssessssssreeer | o . o .
S . . .o * YES .
. . . seex . .
. 234 Xeoo .
X X
SEERAE [RFAER SRS TessrEsstesrerens
att. o* *.
* FETCH POINTER * sewrs CONVE «%" ANGTHER "%, N
* * €36 * ' E3 ‘..--X‘BVTE LENGTN T0 ‘ ¥, OPERAND TO W%,
% WORK BUCKET * F2% * BIT LENGTH * *, FOLL! o*
* * «F3 reer : * . .
e . FEEFSSERREROSRASS o o
. . * YES
. s . .
: [Xeosossonnen o :
. * F2 %,,¢ . . -
. LA . . .
X send . X . .
«*o X ¥ X
FL7 e SEREAE2RRERANELES F3° e, SEEEAEGERER RS KN
.' - BYT! o* Dg - *
€S * COUNY TO * YES .% FACTOR - * BUMP DC *
‘.ERROE BIT SET.‘..---. * ouTPUY * eso®, INITIALLY ¢ . 4 WORK_BUCKET ¥
. * BUFFER * . o 2ERO . . * POINTER BY 15 *
‘. -‘ . * * . L o* . *
. o T EERRRRERRER SRR R X o ot T ARSERRERKEERREEES
* NO - - o * NC -
. . €35 serss . .
. . * Bl*¥34 % . .
- - * % %53 X, . .
. . . « %k . .
. . . sune . . X
X - X . o*.
61 : 2 SERRAGINRS RO . G4” %,
* * . *TSBPRY 32R5% * . ¥ *,
* STORE * - D At s vttt * SET * ¥ ERRUR *, YES
* DC/OS/LIT * . * PRINT * * FIRST OPERAND *# *, IN NEXT o¥ee
* INDICATOR * . * ONE * * SWITCH * *, OPERAND o*
* * . * LINE * * . * s . -
: x4 B T M .
. : . . : +°NO
.
.
. . .
.
b : X X X
serey] : 2 T aekes
* T ox ¥e * * * N *
* L IGN DATA * - * CURRENT * * COMPUTE * - * ALIGN DATA *
‘ FRU" DC WORK * . * LOCATION * * NEW BIT * . * FROM DC_WORK *
KET * . ® COUNTER TO * * REMAINDER b . * BUCKET *
‘ * . * CENTRAL TABLE * * . * *
: eraex M N
.
.
.
.
. . . eXesesoosoeccen .
X . . . X
o¥*e - . X o¥,
Jl '. . X AEAXEYIEREERIRTES Ja *,
o . R 2RAEEEREEE * . o*
DS “e. YES - * RESTCRE : YES
I lNSTRUCTIﬂN o®eosee seeX® EXIT 7O FBC : :LENGTH HGDIF!ER: ‘. XNSTRUCTIUN .‘o.o.
.
. . . SRR RREREERERS * * T .
. X D T T T . * X
*"No sates . *"No e
. 35 * . *35
' Bl‘ . * 8
. . "
. .
: %
oo
k1" e EREBEK AR B S IENE FEREIKLEFEERRR SR
o* . * * *
% YES * OuUTPUT * * ENABLE *
-, ALIGN"ENY -‘-.-.-.--X'ALIGN"ENT BYTES* #* PRINT SWITCH =
®, NEEDED .* * * * *
o . * * * *
 .r P Y T
NO . .
sahn PO * T :
. * * . s . M
esX® A3 % esX® A3 & X
* * * M sher
P “es . *
* A5 ¥
* *
e
Chart 34. F8D - Phase F8 DC Evaluation (1 of 2)

:

:

:

:

:

:

% :

SEEERCSERREREE TS :

H FILL T

® LAST GUTPUT & ©

* BYTE : .
EICEREER SRR EKEE R

-
.
eXeoseosssnen
.
.
P

X
tttttbs‘t#ttt‘tt‘
ALIGNMENT
lsvrsguTOEOUIPUTt

EEREREXRARREEEEEE

.
.
.
X

Ll

E3

EE 2

LT Y
EX X

o ¥,
G5 t.
.* DS
X‘. INSTRUCTION
¥, Y

. .® X
NO RSESE

.
.
.
.
.
.
.
.
.
.
.
.
.
.
X

YES

.‘.--.

#ice o0 0 B

R

.

.

x

ren

n
~
-

EEEEBISESERERRERS
*

* FItL
eeeX® LAST QUTPUT
* BYTE

XYY Y

*
SREEEFRERRFRERERS
* .
* T kkee
* - * *®
eeX® F2 ¥
* *
L2322)

Flowcharts

75

0S ROUTINE

Lédadd
35 &
* Bl*
* ®
*
.
s
H
¥
R1 L
¥ *,
o* ¥,
®,FIRST OPERAND<e*eces
*, ¥ .
.. o .
*, ¥
* .
. .
. .
- .
. -
i .
FRARIC 1 RRRRRRE RS °
* ¥ b .
» AL IGNED .
- LOCATION *
: COUNTER : .
FEFEREBR SN RSN RER -
. -
. .
. .
.
$
SEEE RN FREEERRE KK
* =

* *

* OISABLE PRINT #

: SWITCH *

BEEHIEIREES AR RES
-

eXeosenoasana

..
*, NO

*
* NO * B4
. -
.
.
X
¥,
H1 *,
<% DUP ¥,
<% FACTOR L
%, INITIALLY o%*..ivcaees
*, ZERO ¥
e ¥ P bohnd
', ¥ *34 *
* YES * Al
. .
.

e

FEERR S| SREREARRRE
-

"RENE

SET
DUPL ICATION
FACTOR = 1

LE X2

PRI RV SRR ES SR E

Chart 35. F8D - Phase F8 DC Evaluation (2 of 2)

76

DS ROUTINE

X
el LT ETY TTT TR b
* .

- ENABLE
: PRINT SWITCH

»

.

»

* »

BERERFREARRNRKNES
.

o

SEEEEDIFREEIEAAES
* *

SET
DS FLAG FOR
F8p

LYY}

»
*
*
£
FHEBRRSE DRI RS

HEERASHERERERNY
*
* ENTER TSBPRT
EREE RS SRR

e s

TSBPRT ¥,
.85 =,

. .
" PRINT *. NC
*, ShIT1CH s¥oa0e

, ENABLED .
., o
o
YES

e oo B

BEHERCSAREFEERSAD
-

* SET

* DC FLAG FOR
: Fap

.
.
-
-
.
.
.
.
.
.
.
.
.
EEEEERIR IR ISRENEN .
.
.
.
-
-
.
.
.
.
-
.

RS an

e o000

AROSRDSESERRERRES
*Fap 32A3%
e e fe fe B e e hm B
* *
: CNE LINE :
BEREEERERRRRRR SR

.
eXesssoncoan

HEESESHIREESEES
*
* RETURN b
* *
PI 22 222 222 2222 22

FoTa

BEXIATEERERIRRE
*
: ENTER F8N *
EEEEFREFETEER AR

Xe oo 0 e

CNVYRT1
SEXRRRIXIRE SRS RS
* *

* PHASE *
:!NIT!!L[ZATION :

* »
EERESEIRBXIER RS

seee

w81 X
FXRSKCIHFRESRERES
* *

SCAN TEXT

CX YA
LYY

SEEXEXIEIX TS EE X

e oo e

EXEEBNISSBEBEE IR
* *

* CONVERT AND #
MODIFY EXPONENT
* IF ANY *

* .
FEEESEEEIRE LIRSS
.
X
£3° s FEEERRELETRREEERES
o* . *
ot “*. YES * DO FLOATING %
o FLOATING e¥evensneaX® *
*, POINT .2 * CONVERSION *
. o * *
. o.* FEEERE AR EEE AR
* NO .
. .
M :
X -
IWi4 ¥ -
SEFDEFEKEEE F3 . .
* MERROR * ¥ *, .
D i e e NC .* . .
* STORE ERROR *Xeesceees®s FIXED POINT .* -
* MESSAGE * *, - .
*. o .
EEEERERERES ', . .
- * YFS .
. N .
. . .
. . -
. . .
. < N
: BIEXEEGISFRSSEL %S :
. * * .
. * DO _FIXED * .
- * * -
. : CONVERSTON : -
. P P .
. . .
cerene :
X
EERRHIFBE RS SR RS
*
* RETURN *
FEEEESTHIINERS

Chart 36. F8N - Foating and Fixed Point Conversion

Flowcharts 77

Chart

78

LT LTS EL 2L 2222
ENTFR FPP
BERFERREEEREERE

*
* *

Xo e o b0

FPp
FEA] KRETREE
* BIPPIN
B e e = F e kK
INITIALTZF DTRS
*LIMITS & I/N *
*BLK COUNTS *
FERERBERREE

*

*sse
* *
* N1 . X
* *
)
FERREAN] KEXSEKERERE
LI e b vt
GFT INPUT
*RECOPD RELOC *
cicry RY
ARRBERREREREE

.
*,
.
o*
s
*“nO
:
READR X
REEERF | S RREE ek Rk

* nove *
*RECMRN TO SORT #
* ARER *

* *
FERSEREEEREEEDREN

e oo e

61
o

‘..
* Is *,
SORY ARFA %
. FULL o*

*EEE
L) ettt

SNR

INOUT

TEXT *
EERERRREERE

CHKSWH
EERXK |tt:tt KR

PICK UP
TTRSWH

LXE R

*
*
*
*
*
*

VEERRRERRER KRS

37. FPP

5.4 .
<+ TCOMPLETE T YES
. XREF LISTe
*.gneTED Th.s
CORE %
]
X

-
-
.
.
-
-
.
-
.
.
.
.

tctt*tc SHRUKEREERER

* .—‘-. L
uRlT SORTED
*#XREF RECDRDS *
0N TAPE
EEADEEEEREDRE
.
X
EHRTRD Sk RAREEERER
® *
* XV14¢ *
* INTN ITTRSWH =*
* *
e * *
* * AR RE KRR
* F& % .
* * .
*xEk .
. x
. *ERE
P * .
.x. * G2 *
£2" s, c.tttt;atttlttttttt * *
* EINT1 W
L3 N
PU'\(’H ANO LISY
READ nc [CT *
. . ey ae ns
®, .= exassireatens
* NO .
. X
XRFLOD X .
ERBERE 2ER R RRE RS JF4 BEEERFSEARRRTRERE
* FT * *®, = -
* REFFRFNCE * ND % *. YES * 1TRSHH= *
* RECNRD LENG * ene®, “LT‘ f‘UTPUY e¥evane X xvio* *
* X*10° IN ‘ . o* *
* TTRSWH . e, . * *
PR §..3:1.. .. ., .x EEREEE AT RRREEERER
. R * .
ek * rakkE .
. * * * .
* G2 *.X0 M * 6o *... X
. SRERx M *BEE
e, . * »
X X * Nl o*
SEERRRG 2E AR SRR R L T e 2 1
ToR IXR *EEE
L s et S S] L ot e ST ST I
eeeX EAD INPUT MERGE SNRTE
- *RFECORD CROSS * *XRFF REC WITH*
. FERENCE TAPE RECORNS
M R RERTES D L T]
. X X
- o, %, ¥,
. H2 ‘. . H4 *,
. .‘ WERE %, as‘c
- S +% ANY CRCSS *. YES o ALL CQOSS *. NO *
. = EN"! oF DECK Hielese.oX*] REFERENCES s#..u. *. REF PECORNS '....X* G2 *
. *. o* . Al . . « READ o* * *
. *, o *, o* - * . aex
. *, L% *, L X ., .*
- * NO * NC AR * YES
- . - * * .
. . . * Kl % .
- . . * * .
. . . EEE eXeoesoncervesaverecscesercnernnnsvsen
: X X X
. KRR DRNREEREREE EE T RET Y PR PP L N ikttt
. * * AlL
. % MOVF CRNSS * * * ot . A
. *REFFRENCE INPUT* PUNCH END CARD Xueenoeas PR!NT C"ﬂSS RFF
. * PFCORD TO * * * FPNM_CORE
. * SORT ARFA * TAPE
o ERREEEESEREENEEEE EEERRBREREERE FRBEREREREEER
. .
. .
X
SEEEKIEXRRRBEES
* EXIT TO #n *
L T]

FPP Post Processor

Phase

-
-
.
.
-
.
.

* *
* A3 %
. +
e
.
.
x
SR SR ERRRREEEE FEEEEEATIEEARREE RS
* .
: ENTER FD : * RRO:RIIIE‘ESAGE *
seseBIB R ERES & =
.
. FEAEAEERESREE
- .
-
X -
LS8R SR TEEEREEE .
* GET * -
ERROR BLOCK # e
: COUNT :
SREIXETRERRALREE
. .
. .
. .
. .
X X
¥, o¥s
17 e, . tt“tcuua:uua
ANY *, <% ALL &,

YES .‘ﬁELOCATABLE.. +¥MSGS. FROM *, NO * STEP TO NEXT
esce®. Y-CONS IN .* *,ERROR RECORO .'........X'ERRUR NUHBER lN'
- *, ASSEHBLV. 5 *, PRINTED .* ‘ RECOR
- . -

- ., ¢ . .* P e Y Y
- * NO * YES -

. . . .
. . . -
- - . .
. . . .
. s . .
oML X MLOL X -
. a0 SEERRS uu;ux:tu .
- * GETERR _ =* * GETERR .
. B e et PN LA S Y .
- * GET _ERROR . *GET NEXT ERROR # -
- * RECORD " “ RECCRD * -
. SteERRRRERN SErsssEEEEE :
- - . e
. - . .
. - . .
. . - -
- . . .
- X X -
- oo MLiL ¥ .
. . FEEFSEEIELERELALEEE €3° e, <
.. «*% ERROR #, RINT *NO «% ERROR L1 -
- «% RECORD *. YES * STATEMENT * <% RECCRD *. NO * * .
. *, POINTER = o%.seeeceoX FLAGGED® AND *. POINTER = . P....X% F1 * -
- ®, 2ERD o* ® LINE COUNT * *, ZERD ¥ * * -
. *, o . o* P M
. s L, FEEXTERERERESE . .
. «"NO . *"YES .
- sees . . .
- * * . . . -
- * Fl *,X, . . .
- * * . . . -
- 533 e - . .
<MLOLA X s »L10 X .
T EssssFleteessenes b REEREAFIEREEARRSENE .
P * EREPE 2EREEEERRE PRINT .
- * ATEMENT * * EXIT * * NUNBER *+ N
- * NUMBER ERROR ¥ * TO 00S * OF STATEMENTS .
- *MESSAGE APPLIES® * * FLAGGED * .
. % e FEEISIEETEIEESS .
T SERERRRREREEEERES SEXALRREERRRS .
- . . .
. . .
. . .
- . .
. ; . .
- N .

M s *, FaihiaTandddediidd b :
- NEW®, FERRGIEEREEIRRS .
- .' STATENENT *, NO STEP COUNT * EXIT * -
. MBER = OLD .%*. ...X‘ OF STAYEMENTS * TO0 DOS * -
- O.STQTEHENT * LAGGED * * .
- BER FAESEAIELEIERES .

o, ‘. o= SEXLEETEEELRSE RS .
o +"YES . :
- . . .
. - . .
. sXesssesessssccscscccccacasn -
. . .
+MLOLB X .
o AREERH | FEREEEEREE .
- *CCONVERT STATE- & .
. SMENT NO. & ERR.* .
- SMESSAGE NO. FﬂR' .
- * PRINTING WI -
- MESSAG -
T EsEssssREsEEReRRE M
. - .
. . -
. M .
. . -
- . -
‘ . .
. X -
. SErRsllRsEREEERRE :
PO *
< % GET COUNT # :
- * CF ERRORS IN # .
- : FRROR RECORD : .
. .
T SEEseRIRIREEREERSE .
- . .
. - .
eccccececsoXe -

. .

s .

MLO3 X .
«utx pu:tn:tt .

* LGOK * :

‘ ERROR HESS&GE * -

1 E AND #Xiecectesvsscecccosscccscesssoncccossnvecscsscocsesaccssesssesvscccssncse

N_TA!
'HOVE TO OUTPUT *
Ed *

FEINSRIEIEEBATNEE
-
-
Py

X
*EEE
* *

Chart 38. FD - Phase FPP Diagnostic

Flowcharts 79

SEEFAIRISIEINIS

*
* ENTRY »
* *
EEE 222222222 2220)
NOT1G x
NOLST %
P R T FE TR 83" %, IERIRBLEERRERREER
* * . . *
* DISABLE * YES - NO .*° ENTERED ~#. YES * LO0K Up *
* SYSLST *Xeeeseseo® e¥Xeonoanss ¥ FROM e¥eaccacacX® UNIT NAME *
: AT PUTLST . T ot : IN TABLE :
FEERAEREREETRR Ta, o6 SERREAES SRR RAE
. * .
. .
% .
ran .
* * X
* £2 = X ¥
* * FERRTEC2ERERATEETER ce’ ",
s o*
* OPEN
SYSLST *, FOUND
o .
EERARERTRERES x, %
. * YES
ssen L .
* . -
* D2 *.X. .
* - .
saee X .
IDENTIFY .%, MOVENAM X
- SERERXDGESEXR RS TR
o* *, + *
+* END OF ., * MOVE *
*, CODE LIST . * UNIT NAME *Xeo
*. ¥ * T0 MSG *
rEx *. . * *
* * . o SEREEEEELRRRRESRS
* E1 * * NO
. * .
ELE L] -
X %
PUTLST . o TYP114
El *, E2 FESEEEIRSHSIIRARS
* * *
*7 copE e, YES * BUILD *
LT 10-.X: ¥SG 114 : -
. - . . .
. * . -~ _.* P P P :
* YES - * - * .
- - . - e . .
- . - . * . .
- . - ce X2 E1 » . -
. . . * * . -
. - X a0 . .
. - ¥ TYP112 X -
: : FEEEAEIRRRRRARERS SEEARELRERRRAERESE |
- * - -
. * BUILD . # CHANGE 1
-, .o XX MSG 112 * *MSG TO MSG 111 =* .
* * . * o
* . * .
- SESEFSXI RS SRR EES PEEXEERE BRI ERREE -
- * - .
: . D e . .
. . P * eXesesacossee
- . <o X* E1 #* .
. . . * M
- x sere X
X N TYPE 115 TELL %,
P T e e T 62" “* FSEEIGIERRORIRRES ; *,
* * o .
* PUT * * BUILD * -*
MSG ON .o X® MSG 115 . *, SYSLST 0K
* SYSLST » * . .. o* :
. * * *. ¥ .
EALE LR L2 £ 213 - *, ¥ FEREEFREBERRERER S N, ¥ -
. . * NO - * YES .
.
. : . i . .
. . . xen . M
. . . * * . -
X - X % E1 * X -
1 - H * * SABEERHGEIRERRESEEE
. * xe .
PUT MSG * x BUILD * OPEN * -
ON SYSLOG Xeaeo * MSG 113 * SYSLST .
- * * .
* * .
a2 et 22 £2 2 222] FESERTRELRERINEE S FEBEBEHSREEE R -
. N : .
3 X - -
Ry xE8 K . -
* *
+ 02 * Fl * X .
* * * * SIRERRJ LR A RRERERRE |
e sern .
* PUT MSG b d -
ON SYSLST .
B M
PP I M
eXooessoonnes
* Ko x.X,
* L
o] .
OPENLOG
P
* PUT_MSG
. ON SYSLOG
EEBREERRRREER
un
» *
¥ FS *»
* *
FREE
Chart 39. ABT - Phase ABORT

80

coa X¥
*

svne®,

EEEHCSESRAREE

* OISABLE *

SYSLST *
AT TELL ‘0

FEEESRIRKE XS

e 00

* *.

YES .6°
LBAD SYSLST

. e
2, .

0
Eeil]

. *
e X¥ K& ®
* *
Eel i

shER

* *

* F5 *

* *

xxeh
.

GLO2ALL X
FEEEESE SESLBANNERES
* CLOSE ALL *
* PRESENT *

SRR ERRRERRRE
.

FEEEERG SR XN ERER SRR

b FLUSH *
SYSLST TO
- EOF *

SEEESRRRRERES

xe e 0800

ctttustuaottt:t.
* EOJ *
SERCEEEIERE AR RS

OPTIONS

The programmer may specify the following
assembler options in the // OPTION card.

DECK LIST SYM XREF
NODECK, LINK, CATAL, NOLIS T, NOSYM, NOXREF

These options are defined as follows:

DECK ~ The object module is placed on the
device specified in the SYSPCH state-
ment.

LINK or CATAL - The object module is placed
on the device specified in the SYSLNK
statement. In addition, CATAL causes
the core image module produced by
LNKEDT to be cataloged on the core image
library.

LIST - An assembler listing is produced.

APPENDIX A. ASSEMBLER OPTIONS

SYM - The object module (if produced)
contains the special symbol table
reguired by the test translator
(AUTOTEST) routines.

XREF - The assembler produces a cross-
reference table of symbols as part of
the listing.

The prefix NO is used with the above
options to indicate that the option is not
wanted. If contradictory options are
entered, e.g., LIST, NOLIST, the rightmost
option, e.g., NOLIST, is used.

DEFAULT ENTRY
If no options are specified, the assembler

assumes the default entry values supplied
at SYSGEN.

Appendix A. Assembler Options 81

APPENDIX B.

DICTIONARY, TABLE, AND RECORD FORMATS

The dictionary, table, and record formats
are grouped according to phase. The macro
generation phases create dictionaries
(global and local) and source, error, and
edited text records.

The assembly phases create other tables
and dictionaries (symbol table, relocation
dictionary, etc.,) and error records. They
also create source records for generated
statements and pass and/or modify the
edited text records which are not resolved
during macro generation and conditional
assembly.

This appendix is divided by phases.

The formats are then subdivided according
to dictionary, table, and record formats
within each phase.

MACRO GENERATION PHASES (F2 AND F3)

Phase F2 creates and subsets the global,
open code local, and macro local diction-
aries. The subsetted dictionaries are used
by Phase F3 for macro definition editing
and conditional assembly.

F2 creates source records for text
stream statements from SYSIPT. F2 also
creates edited text records for all input
statements from SYSIPT and SYSSLB =-- except
it creates no edited text records for ICTL,
ISEQ, MACRO, COPY, or comments (* and .*)
statements. Edited text records are either
Type I or Type II. Type I records include
machine instructions and all assembler
instructions except Type II. Type II
records have non-standard formats. They
include REPRO, SETx, AIF, AGO, MEND, MEXIT,
and End-of-Data-Set records. Type II
records (except REPRO) are resolved during
F3. Type I records and REPRO records are
modified by F3 for processing by the as-
sembly phases.

Macro Generator Dictionary Entries

The macro generator dictionaries -- il-
lustrated in Figure Bl =-- are summarized
below.

Global and Local Dictionaries
"A" Pointer (global big "A" pointer) -

Forward chaining address of the next
entry in a dictionary chain.

82

"A" Pointer (local big "A" pointer) -
Backward chaining address of the
preceding entry in a dictionary chain.

Flag - (Global Dictionaries)

Bit 0 0 - Normal global variables.

1 - Obsolete global variables
(global variables which have
been declared apart from the
current part of the source
deck being processed, such
as macro definition or main-
line program) .

NOTE: Bit zero is used for global
variables only.

Bits 1-4 0000 - Op codes

0001 - Internal assembler op
code

0010 - Extended mnemonics
0011 - Macro names
0100 - Global A variables
0101 - Global B variables
0110 - Global C variables

Bits 5-7 Length ©of BCD entry minus one
(L-1)

Flag - (Local Dictionaries)

Bit 0 0 - Synonym (part of a chain)
1 - End of the chain

Bits 1-4 1000 - Sequence symbols
1001 ~ Parameters
1010 - Ordinary Symbols
1100 - Local A variables
1101 - Local B variables
1110 - Local C variables
Bits 5-7 Length of BCD entry minus one

(L-1)

Rl Mask - Rl field for.extended mnemonics.
The extension of op codes field is
omitted for machine operation code
entries.

Mnemonic - The name in Internal Assembler
Code.

"a" Pointer - Little "a" pointer to a loca-
tion in the Phase F3 dictionary that

will contain the subsetted entry for
this mnemonic.

NOTE/POINT - NOTE/POINT Address. Before
the dictionary associated with this
mnemonic is subsetted, this entry will
contain the NOTE location of the begin-
ning of the edited text for the corres-
ponding macro definition. After the
local dictionary has been subsetted,
this field contains the NOTEd location
of the subset dictionary, which will in

Appendix B.

GLOBAL | LOCAL
Defined Operation Codes Open Code Ordinary Symbols
Bytes 2 1 Tto8 1 1 1 | Bytes 2 1 1t08 2 1 2 2
" AH . Machine or As- | upn ngn
pointer Flag Mnemonic :ie;béfdce)?ﬁ:-) ASC | R1 Mask l pointer Flag Mnemonic pointer Type | Length |Scale
Macro Name ‘ Sequence Symbols
Bytes 2 1 l1to8 2 3 2 ' Bytes 2 1 2t08 2 3 2
nAl . ngh NOTE/ AN . gt NOTE/
pointer Flag Mnemonic pointer POINT | MCP | pointer Flag Mnemonic pointer POINT b
Global SET Variable Symbol I Local SET Variable Symbols
Bytes 2 1 2t08 2 1 I Bytes 2 1 2to8 2 1
IIAII . Ilall I|All .]lall
pointer Flag Mnemonic pointer C pointer Flag Mnemonic pointer D
Macro Prototype Symbolic Parameters
Bytes 2 1 2t0 8 2
lIAlI | .
pointer Flag Mnemonic PN
SUBSETTED GLOBAL AND LOCAL
SETB Varicble
Symbols Dimensioned Undimensioned
Bytes i 2 2 Bytes 1 1 1 1
SETB SETB SETB
Type Length Scale n Variables Variables Variables
1 .
SETA Variable SETC Variable
Dimensioned Undimensicned Dimensioned Undimensioned
Bytes 1 4 4 4 4 Bytes 1 1 8 1 8 1 8
n Entry | Entry | Entry Entry n L |Date| L |Data L | Data
lﬂ- Entry —.I
Figure Bl. Macro Generator Dictionary Entry Formats

turn contain the NOTEd position of the
edited text of the macro definition.

MCP -~ Macro chain pointer. The backwards
chaining address of the preceding
macro name entry in the dictionary.

B - The position of the beginning of the
sequence symbol edited text.

C - Dimension, the declared SET variable

dimension. This will be zero if un-
dimensioned.

Dictionary, Table, and Record Formats 83

D - The declared dimension of the local
SET variable symbol. It will be zero if
the symbol is undimensioned.

PN - The operand position number assigned
to the symbolic parameter.

Type - Type attribute. See Table Bl.
Length - Length attribute.
Scale - Scale attribute:

Bit 0 0 - Positive
1 - Negative

Bits 1-15 Scale attribute

Subsetted Dictionaries
n - number of variables in entry
L - True length of character string (data)

T - Length of SETB dictionary entry
(n/8+1)

Type, Length, Scale - See above.

Macro Local Dictionary Header

Bytes 4 4 4 4 1 1 2
ACTR NOTE/ No. of | Size of
Dummy | oop | Pv™Y | pOINT | P¥™™Y | blocks | md.

The header is attached to the subsetted
dictionaries' output by Phase F2.

ACTR Loop - The ACTR loop limit, i.e.,
initial assumption made by processor.

NOTE/POINT - Location of block on SYS003
in which the macro definition edited

text begins (points to prototype record).

No. of blocks - The number of segments on
SYS003 in which the dictionary is
contained.

84

Size of MD - The size of the total macro
dictionary in bytes.

The header as modified during F3 processing
of the macro instruction is as follows:

Bytes 4 4 4 4 1 1 2

Dictionary | ACTR | ACTR | NOTE/
address loop |counter| POINT

lag | SYso01/3 | Delto

-n

Dict Addr - The location of the higher
level local dictionary. If the macro
being processed is not an inner macro,
this pointer points to the open code
local dictionary.

ACTR Loop - Same as macro dictionary
header.

ACTR CTR - The current loop count, i.e.,
the number of times the loop has been
passed.

NOTE/POINT - The location of the block in
which the end-of-macro instruction
record is located.

FLAG - A switch, used to signal whether
the length table has already been stored
following a parameter table.

SYS001l/3 - A switch to indicate:

8 - Input is from SYS003
0 - Input is from SYS001

Delta M~I - Position of discontinued text
(record following macro instruction)
relative to beginning of block.

Macro Dictionary Parameter Table Entries

A macro dictionary parameter table is built
from the macro instruction and macro
prototype parameters when the macro defi-
nition is edited. The parameter table is
written on SYS003 immediately following

the macro local dictionary. The parameter
formats are illustrated in Figure B2.

Macro Generator Record Formats

The fields which make up the macro generator
records —-- illustrated in Figure B3 -- are
explained below.

Type ID - Type of record. See Table Bl.
This byte is dropped after Phase F3.

R/L - Record Length

FLAGA - A two byte field of information
on how the record should be processed.
See Edited Text Record Fixed Field
Format in Phase F7. The source record
contains only the first FLAGA byte.

Code - Absolute (hexadecimal) operation
code for machine and assembler opera-
tions. See the DOS Assembler Language
manual for the machine operation codes
and Table B2 for assembler operation
codes.

Op

ASC - Assembler Switch Codes. (Inserted in
F2 but not used by the macro generator

Appendix B.

Entry Type
Param- | 4 bytes 4 bytes
SYSNDX eter NDX L Character | Binary
Numbe! Value Value
Not
SYSECT Used CSECT L BCD Name
Name field of K! Name or
1 Choroacfer string T |CHAR L Character String
perand
- 3 bytes K!
Self-defi T 4 !
2 (Hex, ;;:;3’ I;er:imol) T |H8D Binary < L Character Representation
—
3 Seif-defining T cSD 3.byfes ‘c! L Character Representation
character Binary
5 bytes K
4 | Symbol T SYM Attributes of 'c! L Symbol Name
symbol
2 bytes| 2 bytes| 2 bytes] Parameter Entry 2 bytes| Parameter Entry
Sublist TS (rom | kN | (L] Tyeel 2,3 L Teel,2,3 |) |
1 or 4 above ! 2 or 4 above
T = Type atiribute
L = Length of following field (For HBD, CSD, CHAR and SYM L = K')
'e' = character flag — a character string follows
Tot. L = Total length of sublist entry
K' (not sublist} = Number of characters in operand (excluding commas)
K' (sublist) = Number of characters between outer commas in a sublist
N' = Number of operands in a sublist
N' = 1 if the operand is a sublist
N' = 0 if the operand is omitted
Figure B2. Macro Dictionary Parameter Table Entries

Table Bl. Type Indicators (Phases F2/F3)

Description of Record Type Indicator

Source statement continuation record 08
Error record (warning message) 08
End of data set 0A
Error record (not warning message) oD
Edited text records (machine instructions, DC, DS,

etc.) 00
CSECT, DSECT, START edited text record 01
AGO edited text record 02
AlF edited text record 03
SETx and ACTR edited text record 04
Macro instruction edited text record 05
Macro definition prototype statement edited text

record 06
MEXIT and MEND edited text flog record 07
ANORP edited text flag record (0.4
Macro instruction or prototype operand value

record 08
End of macro instruction or prototype record oC

Dictionary, Table, and Record Formats 85

TYPE 1 EDITED TEXT

Bytes 1 2 2 1 1 3 1 1 Varigble 1 1 Voaricble 1 1 1 Varicble 1 i 1 Varicble 1
Tvee | /L] FLaca c?fe ASC | (Zeros) [flog | L | Name || flog | L |Operation|@| flog | L | Operand [(D 'glﬁ' L |Comments|(¥)
Y ~ Y ~ Y N D Y ~
Fixed Portion Name Entry Operation Field Operand Entry Comments Field
SOURCE RECORD | ERROR RECORD
Bytes 1 2 1 Variable Bytes 1 2 1 1 1 1
Number
Type FLAGA | Type Error
D R/L (1st byte) Source D R/LIFLAGA| of code X'00'
l errors
t& I L XloDlt7 txvlov
TYPE 2 EDITED TEXT
REPRO
Bytes | 2 2 11 31 1 5 1 1 1 Variable 1 80
el R/L [FLAGA| 98 | ASC |eroes)| L | L | Operation| L | Operand|L | Comments|L | Source
LX'OO' tX'()()' tREPRO
SET Statement (no name field) MEND OR MEXIT
Bytes 1 2 7 1 2 1 1 1 1 Bytes 1 3
T SETx | ng" Operand expression Type
{Se R/L | Dummy Flag | Pointer C |Blank (eval. routine format) Blank @ ID Dummy
X'04' |<@— Name Field—®»| t)('07'
End of Data Set AIF Statement
Bytes 1 2 1 Bytes 1 2 7 Variable 1 2 1
AIF expression "
Type R/L | FLAGA Type | g/L Dummy (see eval. routine Blank 9 Dummy
ID ID formats) pointer

tX'()A'

AGQ Statement

Lew

Bytes 1 2 7 1 2 1
T{Dpe R/L | Dummy | Dummy Pc;;::er Dummy
T—X'OZ'

Figure B3.

86

Macro Generator Record Formats (1 of 2)

MACRO INSTRUCTION AND MACRO PROTOTYPE

Bytes

[@—— Header (one logical) Record
2 5 1 2

1 2

1

1@ One logical record —#»

Variable 1 Variable Variable Variable

lg— One logical record —————»
Variable Variable Varidble Variable 1

2 1

R/L [FLAGA| dummy KNy"~

/
Tyge \\%//
I

poin ter/

o

N

I Name* | Blank | Source

Operand | Operand
1 2

Source

Operand | Operand | Operand
3 4 5

X'0C!

R/L| N

* A

I:X‘OS'
X'06*

-Prototype only

Y

.

L~ Macro Instruction only

TYPICAL OPERAND

End of Macro
Instruction/
Prototype Record

Bytes —\ ~
Type [g/L Dummy ® Value* | ,
1D or®
— '0B' NAME AND
SUBSTRING OPERAND OPERAND VALUE FORMATS
N Ya = = Y
Bytes {1 1 7 1 1 5 Varigble) 1 1 2 3 1 1 Variable
T{BE R/L| Dummy or® Dummy ;,';gl Dummy ;-Igg- Valuve* |, Symbol Type ;,I;.’i, poi:ter Dummy ;!;?, L | Symbol
L X'0B' First Record
1 1 1 Variable 1 1 Variable
Operand
Keyword Flog Keyword | _ pe
Operand Type X'FA! 1| “Name | = | Dummy f\é g:i;
11 7 1 Variable 1 L 3 1 1 Variable
Type _ Fla Self-Defini Bi Fl
{S R/L | Dummy X'F9g' Value* | , T:rm €TnNiNg 1 Type | Flog vl:lc:z X.;g, L | Value
L X'0B' Any Intermediate Record Lx, C,B,orD
1 1 1 Variable
Character Type ;!397. L Value
1 1 7 1 Varicble 1 1 1 1 1 1
Type Flag Omitted Type | Fl L
i |R/L| Dummy lyopg:| Valvex 1) | N Operand X100t |x'27'|x 00"
L xop Last Record Lcomma present
if not last
operand
2 Variable 1
Evaluation Evaluation E .
Required Flag Xpression 4
*The operand value of a typical or
substring operand is expressed in one
of the operand value formats.
Evaluation
Routine Formats|
See Evaluation Routine Formats
*
Figure B3. Macro Generator Record Formats (2 of 2)

Appendix B.

Dictionary, Table, and Record Formats 87

Table B2.

Assembler Operation Codes

Mnemonic

Hexadecimal
Value

GBLA
GBLB
GBLC
LCLA
LCLB
LCLC
SETA
SETB
SETC
AIF
AGO
ANULL
COPY

MACRO
MNOTE
MEXIT
MEND

ICTL
ISEQ
PRINT
SPACE
EJECT
PUNCH
REPRO
TITLE

ENTRY
EXTRN
START
CSECT
DSECT
COM

EQU
ORG
END
LTORG

USING
DROP
Literal DC
DC

DN

cCw
CNOP
DXD

CXD

OCTMMO NP> OONGUNAWN—O

—

88

phases. See Edited Text Record Fixed
Field Format (TXASC) in Phase F7.)

Flag - See Table B3. The flag byte in-
dicates such things as logical opera-
tors, self-defining term type, symbol
attribute type, macro parameter type,
etc. The flag bytes in the record
format illustrations are normally
identified by their actual hexadecimal
value or by a circle symbolic
representation (such as @).

L -~ The length of the field which follows
this byte. If L is zero, the field which
normally follows it is not present.

L preceeds the name, operation, operand,
and comments fields in edited text and
the value field in Operand Value Formats.

Type - Internal value for type attribute.
See Table B4.

N_ - Number of positional operands in a
macro prototype.

Nk - Number of keyword operands in a macro
instruction or prototype.
N_ - Number of elements in a sublist

operand.

Dummy - Unused bytes.

"a" pointer - Little "a" pointer to a
location in the subsetted dictionary of
the entry for this mnemonic.

C - Bit 0 Dictionary bit

0 - Local
1 - Global

5-7 SETB bits

Table B3.

Flag Values

Vaiuve
(Hex.)

Flag Description

00
0!

02
03
04
05
06
07
08
09
0A
0B
oC
o
OE
OF
10
22
23
24
25
26
27
28
2
2A
2
.o
20
2
¥

30

g8LeBREY

3A
FO

Period

Right Paren,

Left Paren,

Subscripted Left Paren,

Plus

Minus

Multiply (csterisk)

Divide (slash)

Equal

Not Equal

Less Thon

Greater Than

Less Than or Equal to
Greater Than or Equal to
Not

Or

And

Hexadecimal Self-Defining Term
Binary Self-Defining Term
Decimal Self-Defining Term
Character Self-Defining Term
Null Symbol & Evaluation Flag
Character String

SETA

SETB

SETC

Comma

Begin Substring

Begin Substring Operands
First Operand Completed
Second Operand Completed

Actual infernal Value Right Paren, Used Only on
Sublist

Arithmetic Expression mode.(Absence indicates
character expression)

Blank

Type Attribute Reference
Length " "
Integer *
Scale " "
Number " "

Count " "
Symbolic Parometer Reference
&SYSLIST

Sublist

Table B3.

Flag Values (Continued)

Value
(Hex.) Flog Description
F8 End of machine instruction field ®
F9 Continue sublist
FA Symbol
FB8 Positional ®
FC Keyword ®
FD PUT (No evaluation necessary)
FE End of block
FF End of evaluation @
Table B4. Internal Values for Type
Attributes
(o) Type (o) Tyee
00 P oD w
o1 z OE |
02 E OF C
03 D 10 Q
04 K 1 B
05 F 12 J
06 G 13 X
07 H 14 M
08 S 15 T
09 A 16 U
0A \ 17 o
08 Y 18 N
oC R 19 v

Appendix B.

Dictionary, Table, and Record Formats

89

Continuation and Segmenting

Macro instructions (and prototype) may be
segmented by adding a continuation flag
after the last operand record in the block.
An operand record must be fully contained
in one block.

Operand Reference

Reference in a macro definition model

statement or inner macro instruction to

a symbolic parameter is made by position.
Operands are numbered as follows:

0 $SYSNDX

1 $SYSECT

2 Symbolic parameter in name field
of prototype statement

3

H Operand field of prototype

202 statement

Keyword operands are given a position
number similar to positional operands. The
positions are assigned in the order that
they appear in the operand field of the
prototype statement.

Format of request for substitution of
macro instruction operand in place of
symbolic parameters

bytes 1 2 1

A B null

A - Operand reguest flag
B - Operand number

(X'39'")

Evaluation Routine Formats

These sub-records are used to describe
expressions that require substitution and/
or evaluation.

90

Attributes (L'I'S'T')

bytes 1 1 2 1

A B C D

A - Flag byte (type of attribute). See
Table B3.

B - Symbolic parameter (X'39') or symbol
flag (X'FA'). See Table B3.

C - 2-byte "a" pointer if the reference. is
to an attribute of a symbol, or param-
eter position number in low order byte
of C if the reference is to an attribute
of a symbolic parameter.

D - Dummy

Character String

bytes 1 1 varigble

A B C

A - Flag byte 'C' (X'27")

B - True length byte (if zero, C will not
exist)

C - Data bytes (variable bytes of char-
acters)

Decimal, Hexadecimal, Binary, or Character
Self-Defining Term

bytes 1 3
A B

A - Flag byte (hexadecimal = X'22', binary =
X'23', decimal = X'24', character =
X'25")

B - Data bytes.
binary.

Three bytes of data in

Variable Symbol

bytes 1 2 1

A B C

A - Flag byte (SETA = X'28'
SETC = X'2A')

SETB = X'29',

B - 2-byte "a" pointer

C - Bits 5-7 for subscripted SETB. In-
dicates in binary form the particular
bit (0-7) within the byte referenced
by B that contains the SETB evaulation;
bit 0 = 0 for local or 1 for global.

Substring
bytes
1 varicble 1 varicble 1 varicble 1
A B C D E F G

A - Begin substring 'BEGSUB' flag (X'2C')

w

- Character expression (variable bytes)

(@]

- Begin first operand 'SUBOPE' flag
(x'2D")

D - Expression 1 (variable bytes)

E - First operand completed 'SUBCOM' flag

(X'2E")
F - Expression 2 (variable bytes)
G - End of substring notation 'SUBCLS'

flag (X'2F'")

Subscripting. Left parenthesis is replaced
by a special subscript left paren flag
(x'03").

Remainder of the format is as previously
described.

Concatenation. Occurs automatically by
just eliminating the period. Two character
strings (or SET variables), one immediately

Appendix B.

following the other, will be concatenated,
and no concatenation flag is required.

PHASE F7

Record Formats

Error Record

Bytes 2 1 1 1 1

Error

Error
count
= type

Column

R/L FLAGA pointfer

R/L - Record length. R/L = 4 + 2N, where
16 2 N>0. (There may be as many as 16.)

Edited Text Records - General

Phase F7 receives edited text records in a
format prepared by the macro- generator.

Phase F7 processes these records and attaches
an "appended fixed field" and, when requir-
ed, "work buckets". The description of

the F7 edited text records that follows

gives the field names as they appear in

the listings.

¢~ Fixed Field — —_gulg—— Variable Field

I.__ Assembler Flags

Bytes 2 2 1 1 2 1

Variable 1

TXRL JFLAGA] TXHEX| TXASC| TXABP | TXNAML] TXNAME| TXOPL

[}
Appended
. . .
e Variable Field (Cont'd) ——a-ln— Fixed Field —h~1
Bytes Variable 1 Variable 1 Varicble 3 i 1
TXOP |TXOPNL| TXOPN TXCOML|TXCOMITXLOC | TXURS | Misc.
[}
l‘_Work Bucket(s) (where appended) _..1
Bytes variable

Type 1 and/or Type 2 and/or Type 3
Work Buckets

Dictionary, Table, and Record Formats 91

The fixed field and the variable field are
the input record to Phase F7. The appended
fixed field is attached to this record in
Phase F7.

Edited Text Record Fixed Field Format

TXRL - Record Length. This will be set to
the total number of bytes (including
appended fields) by the GET statement
routine in Phase F7.

FLAG A -

Bit 0 TXLRI. Last record in buffer
indicator. Correctly set by the GET
statement routine in Phase F7.

Bits 1-3 TXRT. Record type.

000 - Print as is. Source record
only. (These are assembly

records created from program source
input records in Phase F2.)

001 - Error record.
phase.)

(Created in any

010 - Print as is, but do not display
a statement number. Source record
only. (Created in Phase F3 from
edited text, type 110, for condi-
tional assembly substituted state-
ments outside of macro definitions.)

011 - Print as is if GEN option is on.
Steps statement number counter.
Source record only. (Can be
source record of comments for
generation within macro defini-
tion, e.g., "*" in Phase F2, or
may be source record created in
Phase F3 from edited text, type
111, generated by macro instruc-
tion expansions.)

100 - Process only. Edited text
records only. (Edited from
source in Phase F2.)

101 - Internal assembler control
record. (In Phase F7, CSECT, ORG,
and LTORG.) Edited text records
are generated for END statement
processing.

110 - Process this record and con-
struct source record for print.
(Edited text, but no source, e.g.,
Phase F7 literals, and Phase F3
conditional assembly substituted
statements outside of macro
definitions.

92

111 - Process this record and con-
struct source record for print if
GEN option is on. (Edited text
and MNOTE statements generated by
macro expansions, Phase F3.)

Bit 4 TXBF. Break flag. Indicates that
a logical record continues in the
next physical block. The Phase F7
GET routine arranges all edited
source and edited generated records
so that this condition does not exist.

Bit 5 TXERI. Error record follows in-
dicator. Used by the PUT ERROR
common subroutine in Phases F7 and F8
to determine whether to create a
new error record or to attach to an
existing error record.

Bit 6 TXESI. Equal sign indicator. Set
by the Phase F7 GET statement routine.

0 - There is no literal in the operand
of this statement.

1l - There is a literal in the operand
of this statement.

Bit 7 TXMARK.
flag.

Phase F7 iteration point

Bits 0-1 TXTO. Type of operation.

01 - Machine operation.
10 - Assembler operation.

00 - Unchecked. (Phase F7 GET state-
ment will set equal to 01 or 10 if
a 00 condition exists and a legal
operation code is converted.)

Bit 2 TXEMF. Extended mnemonic flag.

Bit 3 TXMDN. Multiply defined name
indicator. (Set by Phase F7 for
future passes.)

Bits 4-7 TXRIM. Rl mask for extended
mnemonics. Used for special switch
codes on assembler operations.

Bit 4 - Name required.

Bit 5 - Name not allowed.

Bit 6 Operand required.

Bit 7 - Operand not allowed.

TXHEX - Machine operation code or internal

assembler operation code.

TXASC - Assembler Switch Code for machine
operations.

Bit 0O 0 - No floating point register

required.
1 - Floating point register
required.
Bit 1 0 - No even register required.
1 - Even register required (0,
2, 4, 6); or register 0 or
4 required.
Bits 2-3 00 - No boundary alignment.
01 - Half word.
10 - Full word.
11 - Double word boundary
alignment.
Bits 4-5 Type of class within in-
struction (XX + 1).
Bit 6 1 - Literal permitted in 2nd
and 3rd operand.
Bit 7 1 - Literal permitted in 1st

operand.

TXASC - Assembler Switch Code for Assembler
Operation.

Bit 0 Uninitiated private code.

Bit 1 Possible symbol table entry.

Bit 2 Location counter reference.

Bit 3 Special Phase F7 cross-reference.

Bit 4 Substitution required.

Bit 5 Not Used

Bit 6 Not Used

Bit 7 Phase F8 uninitiated private
code.

TXABP - Appended fixed field pointer.

Edited Text Record Variable Field Format

TXNAML - Name field length. If zero, there
is no name field.

TXNAME - Name field.

TXOPL - Operation field length.

TXOP - Operation field.

TXOPNL - Operand field length. If zero,
there is no operand field.

TXOPN - Operand field.

TXCOML - Comments field length. If zero,
there is no comments field.

TXCOM - Comments field. This field will
contain comments and extraneous data.

Appendix B.

Edited Text Record Appended Fixed Field
Format

TXLOC - Location counter.
during assignment pass.

Set by Phase F7

TXURS - Unresolved symbol counter.
Misc. -

Bits 0-~3 Unused.

Bit 4 TXLES. End of string indica-
tor for literal DCs. Unused on all
other types.

Bits 5-7 TXSTG. String number for

literal DCs.
or

TXALIN.
operation codes.

Alignment for machine

Work Buckets

There are three primary types of work
buckets:

e Type 1 - Literal in operand.
e Type 2 - Symbol in operand.

e Type 3 - DC,
tion code.

literal DC, and DS opera-

These work buckets are appended to edited
text records by the Phase F7 GET statement
the first time through.

Literal in Operand. If the equal sign in-
dicator is set, a 6-byte Type 1 work bucket
will be appended immediately following the
appended fixed field. The format for the
Type 1 work bucket is given in Figure B4.

Byte 1 -

Bit 0 TXWTYP.
be zero; 0 =

Work bucket type (must
type 1).

Bit 1 TXWLEN.
(must be zero; 0 =

Work bucket length
6 bytes).

Bits 2-5 (Blank)

Bit 6 TXLEVI. Literal evaluated
indicated.

Bit 7 TXLASI. Literal assigned
indicator.

Dictionary, Table, and Record Formats 93

TYPE 1 WORK BUCKET — LITERAL IN OPERAND FIELD

Bytes 1 1 3 1

Bit ¢ ... 62 v v \

=)

TXLSTG | TXLDSP | TXLLEN

o < —E X
Zmr—ix—c

T
X
L
E
v
|

= w»n P X -

TYPE 2 WORK BUCKET
Bytes 1 1 1 3

Bit 01234567 v Y »
T E T
x| xpax|x|x| x
WIWISISISIS] S | TxsLen | TxsEsD TXSVAL 0]
TIcofufL]ef T
v|e|osja|x| P
pINfc]s|s|t] ¢
]
]

}
bytes | 1 1 .
1
1

NOTES:

@ Symbol work buckets ofter
substitytion

ITXSBLN TXSPTR| @

@ Symbol work buckets before
substitution bytes 1 1 1

® Symbol work buckets for
EXTRN and ENTRY

XSPTR| @

~umun X =

Figure B4. Types 1 and 2 Work Buckets

TXLSTG - Literal string number. Corres-
ponds to entry in literal base table.

TXLDSP - Literal string displacement. If
the value substituted indicator equals
zero, the third byte of TXLDSP will con-
tain a pointer to the symbol (relative
to the beginning of the operand field).
The second byte will contain the symbol
length.

TXLLEN - Literal length attribute.

Symbol in Operand. If symbol table over-
flow occurs, it is necessary to append one
Type 2 work bucket for each symbol in the
operand field, including symbols within
literal specification fields. See Figure
B4. The order of work buckets corresponds
to the order of the symbols in the operand
field. CSECT, DSECT, and COM records will
also be appended by a six-byte symbol work
bucket.

94

Byte 1 -

Bit 0 TXWTYP. Work bucket type (must
be one; 1 = type 2).

Bit 1 TXWLEN. Work bucket length (must
be zero; 0 = 6 bytes).

Bit 2 TXSDOC. Symbol defined in DSECT
or COM indicator.

Bit 3 TXSUBS. Value substituted

indicator.

Bit 4 TXLAS.
indicator.

Last symbol in operand

Bit 5 TXSEXI. "Implied length exceeds
256" indicator.

Bits 6-7 TXSTPC. Adjective code.

TXSLEN - Implied length.
TXSESD - External symbol dictionary ID.

TXSVAL - Value. If the value substituted
indicator equals zero, the third byte
of TXSVAL will contain a pointer to the
symbol (relative to the beginning of the
operand field). The second byte will
contain the symbol, length.

TXSBLN - Symbol byte length.

TXSPTR ~ Pointer to symbol in operand
field.

TXSESL - Last operand in EXTRN/ENTRY
indicator.

DC, Literal DC, and DS Operation Code. If
the operation code is one of these three
types, one 1l5-byte Type 3 work bucket will
be created for each operand. See Figure
B5. Each operand work bucket will be
followed by a six-byte work bucket for each
symbol in the operand.

Byte 1 -

Bit 0 TXWTYP. Work bucket type (must
be zero; 0 = type 3).

Bit 1 TXWLEN.
(must be one;

Work bucket length
1 = 15 bytes).

Bit 2 TXDPPI.
indicator.

DC previously processed

Bit 3 TXDLMP.
indicator.

Length modifier present

Bytes i 1 3 3 1
Bt 0 1 2 3 4
BB EBEE
x| x| x| x{x
w{w|D[D|D
tleiplLl | |TXDTYP [TXDLEN | TXDUPL|TXDCON
Y{E [PIM]A
PINJIL[P]S
Bytes 1 1 1 |
—~ NN NN —— ——
Bit 012 3 4 5 67
T[T T
X[x X
D{ D D
TXDPTR |TXDEXP [TXDSCM || o L [TxDLNM
Y L [m
M N D
Figure B5. Type 3 Work Bucket
Bit 4 TXDLAS. Last operand indicator.
Bits 5-7 (Blank).

TXDTYP - Type, translated.

See Table B5.

Table B5. DC/DS Type Indicators for Type 3
Work Buckets
:?::::::imd Meaning
00 Character
01 Hexadecimal
02 Binary
03 Packed
04 Zoned
05 Double precision floating point
06 Single precision floating point
07 Full-word fixed point
08 Half-word fixed point
09 A-CON
0A Y CON
0B V-CON Address Constants
oC S-CON

Appendix B.

Dictionary, Table, and Record Formats

TXDLEN - Total length.

TXDUPL - Duplication factor.

TXDCON - Number of constants.

TXDPTR - Pointer to first byte of operand

in text (relative to beginning of
operand field).

TXDEXP - Exponent.
TXDSCM - Scale modifier.
TXDSYM - Symbol work buckets flag.
TXDALN - Alignment
TXDLMD - Length modifier type.
0 - Byte
1 - Bit

TXDLNM - Length modifier value.

Special Work Bucket. A special work bucket
is used for TITLE, PUNCH, REPRO, and MNOTE
edited text records

[€~——— Fixed Field ————————nt@— Variable Field —

arighle

Bytes! 2 2 1 L2 1

TXRL |FLAGA [TXHEX |TXASC |TXABP |[TXNAML [TXNAME

Variable Field (Cont'd) ~———————teWork Buckeim

Bytes 1 Varigble 1 Varigble 1 grigbie! 1 arighle
Byte [Edited

TXOPL [TXOP {TXOPNL |TXOPN|TXCOML |TXCOM
count | operand

The eight-byte fixed field is the same as
that described under "Edited Text Record
Fixed Field Format." The variable field is
the same as that described under "Edited
Text Record Variable Field Format." How-
ever, in place of an appended fixed field
is a special work bucket, as follows:

Byte Count - The byte count of the edited
operand for punchinc or printing.

Edited Operand - The punch or print image
in external code constructed from normal
edited text in Phase F7. However, if
PUNCH or REPRO is output in Phase F7,
the byte count of this field is zero.

LTORG Statement Work Bucket.
Bytes 4 4 4 4 4 4 4 4

L8 L4 L2 L N8 N4 N2 N1

95

L8 - Total length of 8-byte chain.
L4 - Total length of 4-byte chain.
L2 - Total length of 2-byte chain.
L1 - Total length of l-byte chain.
N8 - Number of entries in 8-byte chain.
N4 - Number of entries in 4-byte chain.
N2 - Number of entries in 2-byte chain.

N1 - Number of entries in 1l-byte chain.

Tables

Symbol Table

The symbol table is a collection of symbols
and literals with their associated attri-
butes. It is built during Phase F7.

The symbol table remains in core storage

as long as the space allocated will hold it.

It is used by Phase F7, Phase FI, and
Phase F8.

There are two types of entries.in the
symbol table.

l. Name entries.
2. Literal entries.

Name Entries. EQU, CCW, DC, DS, machine
instructions, and LTORG, and external name
entries EXTRN, START, CSECT, and DSECT.

2
1 1-8 " 1
Bytes 9 bits 7 bits 8 2 3
ESD — i
Symbol | Symbol Item Adjective | ESD | Value Length Chain

Length Name Code 1D o Pointer

Pointer

Adjective code -

Bit 1 Not used.

Bit 2 1 - Pointer present.
Bit 3 1 - XD complete (external
definition)
Bit 4 1 - LD complete (label
definition)
Bit 5 1 - Defined in DSECT or COM.
Bits 6-7 External symbol dictionary
type
00 - CSECT
01 - EXTRN
10 - DSECT
1l - NAME

96

Value - present only in name entries.

Length -' present only in name entries.

Chain pointer - present only when a symbol
with the same hash has been previously

entered in the table. This pointer is
the address of the previous entry.

Literal Entries.

Bytes 3 1 Varidble 1 1 1 3
Chain Def. |{Text form| Length Fl Type |Displace-|
pointer | Length |of literal | Attribute %9 | trans. | ment
2
[- N
Bytes & 3 ! ! U Mibin 4bis 1bit 2
. Bit 1 Length
Dup. | No. of | Pointerto | Exp. Scale] e
factor |Constants | first byte | modifier | modifier nused :vlyfe "f:;:':’

Bytes 1]

Work
bucket
count

Work
bucket

External Symbol Dictionary

External symbol dictionary items are gen-
erated by START, CSECT, private code, COM,
DSECT, external dummy sections, ENTRY,
EXTRN, and V-type DC instructions. Formats
are described below.

Control Sections (CSECT) and External
References (EXTRN) .

Bytes 1 3 1 3 8
External Symbol Name, padded
Type | Address Dictionary ID Length translated
Entry Definitions.
Bytes 1 3 1 2 1 8
Label
Type | Address | Flag {(Zero) Definition ID Name

Flag - Set to 1 to indicate .completion of
the item.

Label definition ID - External symbol
dictionary ID of the containing control
section.

External Dummy References (ENTRY).

Bytes 1 2 1 1 3 8

Type ESDNO Alignment ESDID Length Name

ESDNO - Used to refer to the DSECT if this
item was generated by a Q-type address
reference to a DSECT. It is zero if the
item was generated by a DXD instruction.

Alignment - One less than the number of

bytes in the unit of alignment,. e.g.,
7 for double word alignment.

Literal Base Table Entries

1 3 3 3 3
. Length (8- Length (4- | Length (2-
ESDID Location byte string) byte string) | byte string)

ESD/ID - The external symbol dictionary ID
number of the control section where the
literal pool is located.

the relative address ob-
statement work bucket
associated LTORG

Location - This is
tained from the
attached to the
statement.

Cross Reference Dictionary Entries

Bytes 8 1 2 2 3 1
Symbol FLAGA Statement | Length Valve FLAGB
Y No, Attribute

FLAGA -
FO16 ~ Base symbol (type 1)
Fl16 - Reference to symbol (type 2)
F216 - Multiply defined symbol (type 3)
FLAGB -

0 - Absolute value

Not 0 - External symbol dictionary ID

Appendix B.

PHASE FI

Literal Adjustment Table

Bytes 1 3 1 3 1 3 1 3

ESD ESD ESD ESD
ID 1D ID ID

ESD/ID - External symbol dictionary identi-
fication of the 3 bytes that immediately
follow this byte.

A - The adjusted assembler address of the
beginning of the 8-byte string of
literals whose pool is described by
this table.

B - Same as A, except as applicable to the
4-byte string.

C - Same as A, except as applicable to the
2-byte string.

D - Same as A, except as applicable to the
1-byte string.

NO.r: There is one such table for each
LTORG statement or for the END assembler
instruction in the program.

Trailer - Indicates the end of the literal
adjustment table. This format is as
follows:

Bytes 1 1 1 1

7 F 7 F 7 F 7 F

PHASE F8

Relocation Dictionary Entries

Bytes 1 1 1 1 3
Table Position Relocation Fl Symbol
1D ESD/ID ESD/ID 9 address

Dictionary, Table, and Record Formats 97

Table ID - Each group of 20 RLD entries is
preceded by a l-byte table identifier
of '08'.

Position ESD/ID - Number of the control
section where the address constant is
located.

Relocation ESD/ID - Number of the control
section where the symbol is defined.

Flag -

Bits 0-1 00

Bits 2-3 00 - A-, Y-, and Q-type
address constants.,
01 - V-type address constant.
11 - CXD.
Bits 4-5 Length of address constant

minus one (L-1)

98

Bit 6 External symbol dictionary

(ESD) ID sign.

0 - plus (+)
1l - minus (=)

Bit 7 0 - next entry on the same card
has the same position ID

and the same relocation ID.

1 - next entry on the same card
has a different position
ID and/or relocation ID.

NOTE: There is no carry-over from card
to card. That is, the last entry on a
card always has a 1 in bit position 7
even if the first entry on the next card
has identical position ID and relocation
ID fields.

Symbol address - Assembler assigned address
of a symbol used in A-, Y-, or V-type
address constants, or of the second
operand of CCW.

Macro Instruction

GET

PUT

READ

WRITE

NOTE:

Reads logical records from files
organized by the file definition
macro instruction.

Writes logical records into files
organized by the file definition
macro instruction.

Reads the next sequential physical
record from a file organized by
the file definition macro DTFMT
(define the file for magnetic
tape) .

Writes a physical record or a
portion of a physical record onto
a file organized by the file
definition macro DTFMT.

DOS with TWFs uses DTFMT and DOS

with DWFs uses DTFSD.

CHECK

NOTE

Waits (if necessary) for the com-
pletion of a READ or WRITE opera-
tion and detects errors and
exceptional conditions.

Obtains the relative position of
the last physical record that was
read or written from a specified
file.

APPENDIX C.

CONTROL PROGRAM SERVICES

Macro Instruction

POINTR

POINTW

POINTS

OPEN

CLOSE

FETCH

LOAD

CNTRL

Appendix C.

Repositions a file so that the

next read operation involves a

record previously identified by
a NOTE macro instruction.

Repositions a file so that the
next write operation involves
a record previously identified
by a NOTE macro instruction.

Repositions a file to the first
record.

Makes a file available for use.

Makes a file unavailable for use.

Loads and transfers control to
another phase of the assembler.

Loads a phase or program segment
and returns control toc the caller.

Performs certain physical, non-
data operations on the device as-
sociated with the specified file,
e.g., rewind file.

Control Program Services 99

APPENDIX D. ASSEMBLER ORGANIZATION

The physical organization of the assembler
differs somewhat from the logical organi-
zation ‘described in this manual. This
appendix summarizes the physical organiza-
tion of the assembler and correlates it
with the logical organization.

The first eight bytes of each core image
phase is the phase identifier. It indicates
the phase, version number, and level number
of the assembler.

Table D1 is an annotated Linkage Editor
map. It was produced by a DOS system with
a 10K supervisor. Note that the term
"phase", as used throughout the manual,

100

means "lbgical phase". To DOS however,

a phase is a unit of code -- consisting

of one or more Relocatable Library modules
-~ which exists in the Core Image Library.
The Linkage Editor map shows the core
image phases and CSECTS which make up the
assembler, the overlay structure, and the
relationship of logical phases and physical
structure.

Table D2 is a storage allocation map
which shows the relative location of the
CSECTs, dictionaries and tables, and
buffers. It also illustrates the overlay
structure of the assembler.

Taple Dl1.

JOB LINK

ACTION TAKEN

LIST
LIST
LIST
LIST
LIST
LIsT
LIST
LIST
LIST
LIST
LIST
LIST
LIST
LIST
LIST
LIST
LIST
LIST
LIST
LIST
LIST
LIST
LIST
LIST
LIST
LIST
LIST
LIST
LIST
LIST
LIST
LIST
LIST
LIST
LIST
LIST
LISTY
LIST
LIST
LIST
LIST
LIST
LIST
LIST

INCLUDE

Annotated Linkage Editor Map

12/714/67

MAP

IJYASM
PHASE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
PHASE
INCLUDE
PHASE
INCLUDE
PHASE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
PHASE
INCLUDE
INCLUDE
PHASE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
INCLUDE
PHASE
INCLUDE
INCLUDE
PHASE
INCLUDE
ENTRY

DISK LINKAGE EDITOR DIAGNOSTIC OF INPUT

ASSEMBLY S, NOAUTO
IJYFO, {IJYFORTO, IJYFOMTM,IJYFOSDM, IJYFOGIO)
IJYCM

TJYIN

IJYF2

1JYF1

1JYFO, L1JYFOTOF)
ASSEM3, IJYCMORG,NOAUTO
1JYF3

ASSEM3E» IJYCMORG s NOAUTO
1JYF3E
ASSEM7,1JYFOGIO,NCAUTO
IJYRTA

1JYFTI

1JYFTE

1JYF7D

TJYF7X

TJYFIN

1JYFTY

IJYF7L

IJYFT6

IJYF7C

1JYF7S
ASSEMFI » I JYRTAO4,NOAUTO
1JYRTB

IJYFIO
ASSEMF8,IJYFI0,NOAUTO
1JYF8I

TJYF8C

1JYF8M

1JYF8A

1JYF8P

1JYF8D

1JYF8V

1JYF8S

1JYFS8L

IJYF8N
ASSEMFPP,1JYF10,NDAUTO
LJYFPP

IJYFD

ASSEMABT, IJYFI0,NOAUTO
1JYABT

IJYF1BGN

Appendix D.

Assembler Organization

101

Tabl

Logical
Phase

FO

FCOM

FIN

F2

F1

F3
F3E

RTA

F7

102

e D1. Annotated Linkage Editor Map

PHASE

Ve

~

(
{ assems

{ assemse

r ASSEM7

hld

XFR-AD LgCORE

(ASSEMBLY 0085E0 002800

003138 003130
003138 003130

004552 O0C2F88

HICORE pSK=-AD

009303

004F9F
00349F

008C4F

1C 7 2

1D 5 2
1D 81

1D 8 2

ESD TYPE

CSECT
ENTRY
ENTRY
ENTRY
ENTRY

* ENTRY

CSECT
CSECT

CSECT
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY

CSECT

CSECT
* ENTRY

CSECT
ENTRY

CSECT
ENTRY

CSECT

CSECT
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY

CSECT
* ENTRY

CSECT
CSECT
CSECT

CSECT
ENTRY
ENTRY

® ENTRY
ENTRY
ENTRY
ENTRY

*= ENTRY

CSECT

CSECT
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY

CSECT
CSECT
CSECT
CSECT
ENTRY
ENTRY

ENTRY
ENTRY

LABEL

IJYFORTO
1JYFOSO1
1JYFO0S02
[JYFOS03
IJYFOESW
TJYFOABT

IJYFOSDM
1JYFOMTM

IJYFOGIO
IJYFOCHK
1JYFONTE
IJYFOPTR
IJYFOPTW
IJYFORED
TJYFOWRT

IJYFQOTOF

IJYCMCOM
T1JYCMORG

IJYINIPT
[JYINBF1

1JJ4CPD2
1JJCPD3

IJYINLIB

IJYFZEDT
IJYF2GLD
1JYF2EDC
1JYF20CL
IJYF2EQF
1JYF2GSC

TJYFLINT
TIJYF18GN

IJYF300uv
IJYF3EQOO
[JYRTA

13JCPOV

IJYRTAOQL
IJYRTAQ2
1JJceovl

1JJCPDO
1JJCPOON

IJYRTAQ3
IJYRTAO4

IJYF?I

IJYFTE

IJYF7EQ2
IJYF7EO04
IJYFTEOS5
[JYFTEOT7
IJYFTEO8
IJYFTEQ6
IJYFTEQ9
IJYFTELO
IJYFTELL
IJYFT7EL2
IJYFT7EO3
IJYFTEOL
IJYF7EL13

IJYFTD
IJYF7X
IJYF7N
[JYFTS
IJYF7SND
1JYF7S501

1JYF7S02
IJYFT7S03

LOADED

002800
002820
0028868
002950
00281C
002808

002c08
0029€8

002F88
002FEQ
003092
003040
003004
002FB4
002F88

009320

003008

003130

003C18
003C94

003D38
003D38

003E38

004178
007908
006148
007200
0077€6
00757€

008508
0085E0

003130
003130
002F88

003090
0032A0
003388
003090
003090
003090

003420
004078

004078

004C80
004CAC
004D76
004£48
004F3A
004FCE
004FOE
005070
0050FA
005158
0051E8
004D04
004C80
005238

005628
006498
006EES8
008910
008C50
008910

008916
008AEC

REL-FR
002800

002800
002800
002800

008448

003008

003C18

003C18

003C18

004178

008508

003130
003130
002F88

002F88

004078

004C80

005628
006498
OO6EES

008910

CSECT Description

Master Root Segment -~ contains utility
DTF's (DTFSD) and linkage to phase ABT

Disk work file I/O logic module (SDMODW)
Tape work file 1/O logic module (MTMOD)

Macro Generator I/O interface routines

Alternate tape work file DTF's (DTFMT)
Macro Generator Common -~ contains
common constanfs and communications

work area
SYSIPT DTF (DTFCP)

SYSIPT 1/O logic module (CPMOD)

SYSSLB 1/O logic (DTFSL)

Input and macro editing

Initialization

Macro generation and conditional assembly

Macro Generator abort phase

ACT equates and translate table

SYSLNK, SYSLST, and SYSPCH logic
module (CPMOD); SYSPCH and SYSLNK

DTF's (DTFCP); utility file 1/O routines;
Assembler Control Table (ACT)

1/0 subroutines

External Symbol Dictionary (ESD)
processor

DC/DS evaluation routine
GET statement
AUTOTEST processor

Symbo! Table Processor

Table Dl. Annotated Linkage Editor Map

Logical
Phase PHASE XpR—Ap LOCORE HICORE DSK—AD

[

ASSEMFI 0047A8 004078 OO6ADF 1E 5 2

(ASSEMF8 004B94 0047A0 009393 1E 9 1

Fg <

-

ASSEMFPP 0047A8 0047A0 OO9AlF 1F 51
FPP

ASSEMABT 0047A8 004720 0040C6 201 2

ABORT

EgD TYPE
CSECT
CSECT
CSECT
CSECT
CSECT
ENTRY
ENTRY
CSECT
CSECT

CSECY
ENTRY

CSECT
ENTRY
ENTRY

CSECT
ENTRY

CSECT
ENTRY
ENTRY
ENTRY
ENTRY

CSECT
ENTRY
ENTRY

CSECT

CSECT

CSECT

CSECT

CSECT

CSECT

CSECT
ENTRY

CSECT
CSECT

CSECT

LABEL
IJYFTV
IJYFTL
IJYFTG
1JYF7C
IJYRTB
1JYRTBOL
1JYRTBO2
IJYFIO
IJYF8I

1JYF8C
IJYF8CO1

IJYF8M
IJYF8MO1
IJYF8MO2

IJYF8A
IJYFB8AOL

1JYF8P
IJYF8PO3
13YF8PO0O2
1JYF8PO4
1JYF8PO1
1JYF8D
1JYF8DO1
{JYF8DO2
T1JYF8S
1JYF8Y
IJYF8L
TJYF8N
1JYF8POS
1JYFPP

1JYFD
IJYFDEND

IJYABORT
1JZM0012

1JJCPDIN

Appendix D.

LOADED
007188

004078
004100
00435C
0047A0
0047A0

004D78
004FA4

005140
005748
005926

005DE8
006658

006978
007150
006FBE
0073AF
006C12
007758
00814E
00828BC
008CDO
008458
008090
008E6O
0075C8
0047A0

008270
009A20

004740
004C20

004C40

REL-fg
007188

00vAGS
007838
007C30

004078

0047A0
0047A0

004D78

005140

O0S5DESB

006978

007758

008CDO
008458
008D90
008E60
006978
0047A0

008270

004TAD
0047A0

0047A0

CSECT Description

Expression evaluation routine

Ertor logging routine

Literal DC generator

Mainline control routine

RTB -- contains SYSLST DTF (DTFCP)
and output routine

ESD writing routine

Initialization and' 1/O routines

Mainline control routine

Machine operation processor

Assembler operation processor

Listing and object deck output
routine

DC evaluation routine

Symbol Table subroutine

Expression evaluation subroutine

Log error subroutine

F loating/fixed-point conversion routine

Output routine constants

Cross—Referenice and RLD processor

Error record processor

Assembly abort routine and Syslog DTF
(DTFCN)

DTFCN logic portion

SYSLST 1/O logic module (CPMOD)

Assembler Organization

103

Table D2. Storage Allocation Map
DURING DURING DURING DURING DURING DURING DURING DURING
Fi F2 F3 £7 Fl F8 FPP ABORT
1JFORTO 1JYFORTO 1JYFORTO 1JYFORTO 1JYFORTO 1JYFORTO 1JYEQRTO 1JYFORTO
1JYFOSDM 1JYFOSDM 1JYFOSDM 1JYFOSDM 1JYFOSDM 1JYFOSDM 1JYFOSDM 1JYFOSDM
LIYFOMTM 1JYFOMTM 1JYFOMTM 1JYFOMTM 1JYFOMTM 1IYFOMTM 1JYFOMTM 1JYFOMTM
1IYRTA 1JYRTA 1JYRTA 1JYRTA
1JYFOGIO 1JYFOGIO JYFOGIO L TlHICPOV 11JCPDY 11ICPDV 11ICPOV
1IYemcom | 1vemcom M oM F7 1IYRTE LIYRTB LIYRTB
BYCMORG p— — — e] porti
1JYF3000 ADJUSTMENT F8 1JYFPP 1JYABORT
OR TABLE 1JZM001 2
1YINIPT 1IYINIPT 1JYFSECO LIYFIO 1YFD 1JJCPDIN
12JCPD2 1JJCPD2 GLOBAL
1JYINLIB 1YINLIB AND XREF
LOCAL SORT
DICTIONARY BUFFER
1JYF2EDT 1JYF2EDT WoRk
SPACE
ENTRY
POINT —= IJYFIINT | GLOBAL
(1JYFIBGN) AND LOCAL P
HYFODTF__ | DICTIONARY
WORK SPACE BUFFER |
%"-’\—_ﬂ_‘ﬁ T BUFFER 2 //
f“‘ﬂ-ﬂ,‘_‘w BUFFER 3 BUFFER 1
BUFFER 4 BUFFER 2
ERROR BUFFER
LBT LBT
[ESD SEG.RES.TBL ESDSEG.RES.TBU] smﬁ?
SYMBOL SYMBOL
TABLE TABLE
8.7 K
MIN.
L~
ot Lttt B o |
BUFFER 3
BUFFER 4
BUFFER 1 BUFFER 1 BUFFER 1
BUFFER 2 BUFFER 2 BUFFER 2
PPEND PPEND PPEND PPEND PPEND PPEND
NOTES:
3625 Bytes -- Mox. Buffer Size
64K

104

Bytes -- Mox. Dictionary and Table Sizes

PPEND -- Upper limit of core available to Assembler

APPENDIX E.

DICTIONARY AND TABLE CONSTRUCTION TECHNIQUES

HASH TABLE

A hash table is used by the assembler for
inserting or locating variable or fixed-
length record entries in dictionaries and
symbol tables. A hash table consists of
fixed-length address entries (called point-
ers) which point to locations in the dic-
tionaries/tables. The range of the hash
table is the number of such pointers that
can be placed in the space reserved for the
table. When it is desired to make an entry
in the dictionary/table, e.g., enter a
global symbol declaration, or to locate an
entry in the dictionary/table, e.g., to ob-
tain the relative address of a symbol, the
associated symbol or other datum must first
be randomized to produce an index number.
This is called hashing. (Operation codes
are included in the generation of index
numbers for the macro dictionaries.) The
randomizing algorithm is such that the re-
sulting index number will be a whole number
between zero and the hash table range,
minus one. This index is then used

to index into the hash table and inspect
the associated pointer (address entry) in
the hash table. This entry will be zero
until a record entry, randomizing to this
index number, has been entered in the
dictionary/table. Records are entered in
the dictionary/table sequentially, and a
dictionary/table pointer, containing the
next available address, is used for in-
serting new records. Several different
data (called synonyms) may randomize to the
same index number. Because this index num-
ber points to an associated entry in the
hash table where only one address can be
stored, chaining must be used to enter or
locate the synonym records.

CHAINING

Chaining is a technique whereby an entry
to one record points to the next record,
and so on. Forward chaining and backward
chaining are the two types of chaining
used by the assembler.

In forward chaining, a hash table pointer
entry points to the first entry of a chain.
The first field of each entry contains a
chaining address pointing to the next entry
in the chain. The last entry in each chain
has all zeros in the chaining address field.

In backward chaining, a hash table point-
er entry points to the last entry of a
chain., The first field of each entry con-
tains a chaining address pointing to the

Appendix E.

Dictionary and Table Construction Techniques

preceding entry in the chain. The first
entry in each chain has all zeros in the
chaining address field, or, in certain
applications, the pointer field is
eliminated in the first entry.

Forward Chaining Technigues

The symbol, literal, or other datum whose
record is to be entered is hashed to obtain
an index number. This number is used to
point to the associated address entry in
the hash table. The hash table entry will
be zero if no other item has yet hashed to
the same index number, i.e., this is the
first record entry for this index number.
If this is not the first entry to this
index number, the hash table will contain
the address of the first record entered in
this chain. The record at that address
will be checked for duplication. If there
is no duplication, the content of the chain
pointer field is checked in the record.
pointer will be either a chaining address
pointing to the location of the next record
in the chain, or zero. Zero indicates that
this is the last (or only) record in the
chain, If the pointer field contains a
chaining address, the next record is check-
ed for duplication. Again, if there is no
duplication, it is checked for a zero chain
pointer (zero = last record in the chain).
The scan is continued in this manner until
a duplication is found, when the procedure
is terminated without making a new entry,
or until a zero pointer is reached, in
which case the new record is entered in

the dictionary/table. In the latter case,
the zero pointer is replaced with the
address of the dictionary/table pointer,
i.e., the address of the next available
dictionary/table location, the new record
is entered at this location with a zero
pointer, and the dictionary/table pointer
is updated with the length of the current
entry.

The procedure used to locate records in
the dictionaries/tables is the same as
entering, except that when the compared
records are equal, the pertinent informa-
tion is extracted, or the value informa-
tion is inserted, as the case may be. See
Figure El.

Backward Chaining Techniques

The record to be entered is hashed to an
index number. This index number is used

105

This

hashed
SYMBOL = "IDENTIFY" -—TO—’INDEX NUMBER = 5 —————

DICTIONARY POINTER

Second Record

Third Record

sco—"|

DEF
HASH TABLE
AAA
ABC | First Record
aar—"
-/# BCD
ABC
_ DEF
Figure El. Hash Table and Forward Chaining

to point to an associated address in the
hash table. The hash table entry will be
zero if no other record has yet hashed to
this index number. If this is not the
first entry, the hash table will contain
the address of the last record entered,
i.e., the most current entry. The record
at this address will be checked for dupli-
cation, If there is no duplication, the
content of the record's chain pointer field
is checked. This chain pointer field con-
tains the address of the previous entry in
the chain, or zero, if it is the first (or
only) entry in the chain.

The chain is scanned starting with the
last entry and continuing through the
first entry, or until a duplicate record
is encountered. In the latter case, the

106

scan is terminated and the record is not
entered. If there is no duplication, the
address of the last record in the chain is
placed in the chaining address field of
the record entered. The address of the
dictionary/table pointer, i.e., the address
of the next available location in the
dictionary/table area, replaces the pointer
in the hash table, and the record is in-
serted at this address in the dictionary/
table.

The dictionary/table pointer is updated
by the length of the record just stored to
indicate the new available storage address.

The procedure to locate records in the
dictionaries/tables is the same as enter-
ing, except that when the compared records
are equal, the pertinent information is

extracted, or the value information is
inserted, as the case may be. See Figure
E2.

Chaining Usage

In Phase F2, forward chaining is used in
building the global dictionary. However,
in addition to the many forward chains
created, all macro name entries in the
global dictionary are linked together
by backward chaining. Therefore, each
macro entry has two pointer fields. The
first field points forward to the next
record in the chain, which originated

hashed

SYMBOL = "|DENTIFY" T INDEX NUMBER = 5 ——

DEF

from the same hash table pointer, and the
last field points backward to the preceding
macro entry in the macro chain. The first
macro entry in the macro chain has a zero
macro chain pointer.

Backward chaining is also used in Phase
F2 to built local dictionaries.

In Phases F7 and F8, the symbol table
area is shared by symbols and literals
in a random fashion. Symbol. entries are
reached through pointers located in the
symbol hash table and are chained backwards.
The first symbol entry has no pointer
field. Literal entries are reached throngh
the literal hash table and are chained
forward.

First Record

Second Record
ABC j

Third Record

BCD j

HASH TABLE
BCD
—
ﬁ\ DEF
Figure E2. Hash Table and Backward Chaining

Appendix E.

Dictionary and Table Construction Techniques

107

APPENDIX F. INTERNAL ASSEMBLER CODE TABLE

All characters in source statements are
translated to an internal hexadecimal
coding. Translation is done to facilitate
comparisons and some arithmetic operations
and to obtain a degree of character set
independence.

The internal language is translated
back to external code before output. Bit
configurations not representing DOS/360
Assembler Language characters, e.g., valid
overpunch characters in fields PUNCHed or
REPROed, are not affected by the transla-

Standard Machine Intemal Standard Machine Internal

Graphic Hexadecimal Graphic Hexadecimal

Symbol Code Symbol Code
0 00 Q 1A
1] R 18
2 02 S ic
3 03 T 1D
4 04 U 1€
5 05 v 13
6 06 w 20
7 07 X 21
8 08 Y 22
9 09 4 23
A 0A $ 24
] 08 4 25
C oC @ 2
D oD + 27
E OF - 28
F OF * Y4
G 10 / 2A
H 1 28
1 12 = 2C
J 13 & 20
K 14 . 2E
L 15 (2F
M 16) 30
N 17 ! 31
o 18 blank 32
P 19

108

tion. (They are translated into themselves.)
See Table, below.

Application of the translate table also
allows the user to assemble programs written
in other than DOS/360 Assembler Language
by providing a different translate table
for the conversion.

The collating sequence of the internal
language differs from the standard collating
sequence. In the standard collating sequence,
numeric values are higher than alphabetic
or special characters.

These switches are set in the code of the

X'o1’

~J

macro generator and assembler phases.
They do not appear in any dictionaries,

tables,

PHASE F3 SWITCHES

MISWIT
Bit No. Hex. Sw.
0 X'80"
1 X'40"
2 X'20"
3 X'1l0"
4 X'08"
5 X'04'
6 X'02"
7 X'ol’
SWITCH
Bit No. Hex. Sw.
2 X'20"
4 X'08"
7 X'01l'
NESTSW
Bit No. Hex. Sw.
6 X'02!

or records.

Not
0 -

o+
|

=
]

SUBSW

Bit No. Hex. Sw.

6 X'02'
used
Do another pass on
macro instruction
operands
2nd pass completed
on macro instruction
operands
Macro instruction
being processed
Entry is a sublist 7
Entry is to be made
from prototype
Entry to be made
from macro instrucion
Nest aborted; no
room to store
Macro aborted during
build of parameter
table
Max. record exceeded
(used by WRITE rou-

X'ol!

MODESW

Bit No. Hex. Sw.

tine)

0 X'80"

1 X'40'

NOTE in IOMAC Routine 2
No need to NOTE in

IOMAC routine

Use PNTR in IOMAC 3
routine

Do logical POINTW in

IOMAC routine

End of Expr. 1 or

Expr. 2 of substring 4
has been reached

X'20!

X'10'

X'08"

X'04'

~J o\

X'ol!
Set when a new block

has been read when

processing a macro

instruction.

Appendix G.

1 -

APPENDIX G. SWITCHES

Macro instruction
mode - set when a
macro instruction is
encountered so that
nesting may be
recognized.

Set when MODESW has
been saved. Char.

or arith. mode must
be saved when a sub-
scripted left paren-
theses is encountered
so that this mode may
be restored after the
subscript dimension
is computed.

This must always be
initialized to the
value of 1, used when
original MODESW is
restored.

SYSLST to provide
alternate to symbolic
parameters

2 expressions in
SYSLST
Concatenation has
occurred in string
area

Error switch in
substring routine -
signal to use

null string

later on

First time switch -
set after first
char. string

has been placed

in string area
Substring mode
available for use
arithmetic expr.
mode

character
expression

mode

Switches 109

PHASE F7, FI, F8 AND FPP SWITCHES
Name Comment Name Comment
CTLOC Current Location Counter CTPGLNCT Page Line Count
CTSEQN Current Statement Sequence Number CTMRSRTN MRS Return
CTLEN Current Statement Length CTZERO Two Full Words of Zeroes
CTITLE First Title Name, Opnd.Len, Opnd.Ptr. CTWORK 256 Byte Work Area
STVALU Value For STPUT Entries CTONWP Next Write Pointer On OVF 1
CPRIME Prime Divisor For Symbol Table CTRXF First XRF Block PTR On OVFI
CSTVAL Value From START card CTRLBT First LBT Block PTR On OVF1
CTXLEN Text Block Length CTRERR First Error Block (PH8)
CNOESD Number of ESDs CTCXRF XRF Block Count
CENTCT Number of Entries CTCLBT LBT Block Count
CLASID Last ID CTCRLB RLD Block Count
CTNDID Next DSECT ID CTCERR Error Block Count (PH8)
CESDNO Current ESD Number CTCLAT LAT Block Count On OVF2
CSGCTR ESD Resident Segment Counter CTLALN LAT Length Indicator
CPCNO Private Code ESD Number CTLITA Current Literal Pool String Lengths
CCMNO Common ESD Number CTLITB Current Literal Pool String Counts
STLONG Length Attribute For STPUT Entries CTXSAY
ESSGSZ ESD Segment Size CTFSTN ESD No. of First CSECT
CESDID Current ESD ID CTDATE Date For Listing
CTPCSW Private Code Switch CTLINECT Print-Line Count
CTCMSW Common Switch CADJTB Adjustment Table Base
CFSTID First CSECT ID RR2SWH RR2 Instruction Type Switch
CTYPE Current CSECT Type ERSWH ERROR Switch
CTLIT2 LTORG Or END Card Switch witc
ESDID Assigned ESD ID SPACSW SPACE Switch
ADJCOD Adjective Code EJCTSW EJECT Switch
CTALIN Alignment Code 0-8,1-H,3-F,7-D REPSW REPRO Switch
CTITSW Iteration Switch CCRDCT Card Count
CTPDSI Defined Symbols Req. For IEUF7V CTLATL Literal Adj. Tab.~ Last Byte + 1
CTCLSI First Pass Indicator ENDSWH END Switch
CTLITI Literal Pool Complete During Subst. FBOPRN Operand Pointer
CTERRI Error Record Indicator CTLATB
CTPH7C Phase F7 Complete Indicator F8CAD. Current Adjustment
CTSYMF Symbol Table Full Indicator ALIGN4 For Aligning
CTPCHI Punch Option Indicator FBALLB Full Word Of Bits
CTCGO! CGO Option Indicator F83BYT 3 Bytes Of Bits, Low Order
CTITLI First Title Processed Indicator F82BYT 2 Bytes Of Bits, Low Order
CTLSTI List Option Indicator F81BYT 1 Byte Of Bits, Low Order
CTGENI List Gen.Option Indicator F8PON Print Option ON-OFF Switch
CTERLI List Error Option Indicator F8PGEN Print Option GEN-NOGEN Switch
CTXRFI X-Ref. Option Indicator F8PDAT Print Option DATA-NODATA Switch
CTTST TESTRAN Option Indicator F8ZERO One Full Word Of Zero
CTSDVI Self Defining Value Indicator F8INST 16 Byte Instruction Bldg. Area
CTLCRI Location Counter Reference Indicator F8ZRO One Full Word Of Zero
CTMODE Mode Indicator PYRSW
CBDNO Blank DSECT ESD No F8YDC
CBDSW Blank DSECT ID No CTESRN ESD Seg.Count

110

The terms in this glossary are defined
relative to their use in this publication
only. These definiticns may differ from
those in other publications.

Assemble: To prepare an object language
program from a symbolic language pro-
gram by substituting machine operation
codes for symbolic operation codes and
absolute or relocatable addresses for
symbolic addresses.

Assembler Operation Code: A hexadecimal
one-byte code assigned to all assembler
instructions by programming systems
for internal use.

Attributes: Characteristics of certain
elements in statements processed by the
assembler. There are six attributes:
type, length, scaling, integer, count,
and number. The macro generator proces-
ses all of them; the assembler portion,
only the length attribute.

Concatenation: The process of linking to-
gether, or chaining, or joining.

Conditional Assembly: The selective as-
sembly of those source language state-
ments that satisfy predetermined con-
ditions, e.g., tests of values that may
be defined, set, or changed during the

course of the assembly procedure. The
conditional assembly precedes the
regular assembly procedure. Conditional

assembly allows a programmer to specify
assembler language statements which may
or may not be assembled depending on
conditions evaluated at assembly time.

Control Program: A collective term for the
operation and resource controlling rou-
tines of the operating system.

Control Section: The smallest separately
relocatable program unit, always loaded
into a contiguous main storage area. A
control section is an entity. Its name,
if there is one, is defined by a CSECT
or START statement.

Core Image Module: An executable logical
unit of coding. It is the output of the
linkage editor in a format suitable for
loading into main storage.

Data Set: A named collection of data.

Device Independence: The ability to request
input/output operations without regard

APPENDIX H. GLOSSARY

to the characteristics of the input/
output devices.,

Direct Access: Retrieval or storage of data
by a reference to its location on a vol-
ume, rather than relative to the prev-
iously retrieved or stored data.

DTF (Define The File) Table: A region in
storage used for communication between
the source program, the control program,
and the access routines. A control
block containing information for access
routines pertinent to data storage and
retrieval.

Edited Text: Source text with appended work
and code fields which map and describe its
attributes.

External Symbol Dictionary: Part of an
object or load module that identifies
external names (control sections, ENTRY
statements, common areas, and private
codes) and external references (EXTRN
statements and V-type address constants)
occurring in the module.

External Symbol Dictionary Identifier (ESD-
ID): A one-byte number identifying a
control section or other external symbol
dictionary entry.

Global Dictionary: A core storage resident
table containing machine and assembler
operation codes, macro mnemonics, and
global variable symbols.

Global Variable Symbols: Global SET sym-
bols (the only type of global variables)
that communicate values between state-
ments in one or more macro definitions
and statements outside macro definitions.

Hashing: Generating an address between two
limits by randomization.

Hash Table: A table, accessed through
generated numbers (i.e., randomization),
pointing to entries in a dictionary or
table.

Inner Macro Instruction: A macro instruc-
tion used as a model statement in a
macro definition.

Linkage Editor: A program that produces a
load module from object and/or load
modules. The output load module is in
a format suitable for loading and
execution under the control of the
control program of the operating system.

Appendix H. Glossary 111

Literal: A representation of a constant
which is entered into a program by
specifying the constant in the operand
of the instruction in which it is used.
The assembler stores the value specified
by the literal in a literal pool, and
places the address of the storage field
containing the value in the operand
field of the assembled source statement.

Literal Pool: A portion of the object pro-
gram containing literals processed by
the assembler.

Local Dictionary: A table containing
sequence symbols, ordinary symbols,
local SET symbols, and macro instruction
parameters.

Local Variable Symbols: Symbols that com-
municate values between statements in
the same macro definition, or between
statements outside macro definitions.

The following are local variable symbols:

1. Symbolic parameters
2. Local SET symbols
3. System variable symbols

Logical Record: A record from the stand-
point of its content, function, and use
rather than its physical attributes;
i.e., one that is defined in terms of
the information it contains (contrasted
with Physical Record).

Macro Definition: A set of statements that
provides the assembler with the mnemonic
operation code and the format of the
macro instruction, and the sequence of
statements the assembler generates when
the macro instruction appears in the
source program.

Macro Instruction: A source program state-
ment for which the assembler generates
a sequence of assembler language state-
ments. Three types of macro instruc-
tions may be written:

1. Positional - operands in fixed order.

2. [Keyword - operands in variable order.
3. Mixed-mode - combination of above.

112

Macro Instruction Prototype: The second
statement of every macro definition; it
specifies the mnemonic operation code and
the format of all macro instructions that
refer to the macro definition.

Main Storage: All addressable storage from
which instructions can be executed or
from which data can be loaded directly
into registers.

Model Statements: The macro definition
statements from which the desired se-
quences of assembler language statements
are generated.

Module: A logical unit of coding that per-
forms a function or several related
functions.

A source module is a set of source
language statements prepared for input
to a language translator.

An object module is the output of a
language translator (e.g., assembler).
It is a machine language program in re-
locatable format. A load module is the
output of the linkage editor. It is in
relocatable and executable format.

A module is composed of one or more
sections (see Control Section).

Object Program: A machine language pro-
gram which is the output after trans-
lation from the source program.

Open Code: All source statements except
those generated from macro definitions.
Open code is read from SYSIPT.

Ordinary Symbol: One alphabetic character
followed by zero through seven alpha-
meric characters.

Outer Macro Instruction: A macro instruc-
tion that is not used as a model state-
ment in a macro definition.

Overlay: A section of a program loaded into
main storage, replacing all or part of
a previously loaded section.

Physical Record: A record from the stand-
point of the manner or form in which it
is stored, retrieved, and moved; i.e.,
one that is defined in terms of physical
qualities or is meaningful with respect
to access (Contrasted with Logical
Record) .

Pointer: An address used to point to a
table, dictionary, or data set entry.

Position Identifier: A two-byte value
specifying the sign and external symbol
dictionary identifier (ESD-ID) of the
control
constant occurs.

Prototype Statement:
tion Prototype.

See Macro Instruc-

Record: A general term for any unit of
data that is distinct from all others
when considered in a particular context.

Relocation Dictionary (RLD): Part of an
object or load module produced by the
assembler that identifies address con-
stants in the module.

Relocation Identifier: A two-byte value
specifying the sign and external symbol
dictionary identifier (ESD-ID) of an

item referenced by a relocatable constant.

Source Program: A series of statements in a
source language that is input to the
translation process.

Subsetted Global Dictiocnary: The global
dictionary =-- passed to Phase F3 --
which contains only global variable
symbols. The machine and assembler
operation codes and the macro names are
no longer needed and have been removed.

Subsetted Local Dictionary: A local
dictionary -- passed to Phase F3 -- after
it has been sorted on the little "a"
pointer and the symbols, big "A" pointer,
and little "a" pointer have been re-
moved.

Synonyms: Two or more symbcls that result
in the same address when they are hashed

by a hashing routine.

System Macro Instructions: Macro instruc-
tions that correspond to macro defini-
tions prepared by IBM.

Test Translator (AUTOTEST): A facility
that allows various debugging procedures
co be specified in assembler language
programs.

Utility Data Set: A data set reserved for
intermediate results.

Variable Symbol: A type of symbol that is
assigned different values by either the
programmer or the assembler, thus allow-
ing different values to be assigned to
one symbol. There are three types of
variable symbols: symbolic parameters,
system variable symbols, and SET symbols.
Variable symbols consist of an ampersand
followed by an ordinary 1-7 character
symbol.

Work Bucket: Fields attached to certain
types of records for holding internal
information during processing.

Appendix H. Glossary 113

INDEX

"a" pointer 14, 82
"A" pointer 14, 82
Abort Phase (ABT) 41
Assembler
control table 7
data sets 1
internal code 108
options 81
physical organization
program and I/O flow 3
purpose 1
system and I/O requirements 1
Assembler Operation Processor 34
Assembly Phases Record Formats 91
Autotest Routine 24

7, 100

Chaining 105
Code, Internal Assembler 108
Conditional Assembly 18, 111
Control Program Services 929
Cross Reference Dictionary

97

22, 28, 39

DC/DS Evaluation Routine (F7) 24
DC Evaluation Routine (F8) 37
Dictionary Construction 105
Dictionaries 8, 82, 105

Edited Text Records 10, 13, 85, 91, 111

Error Logging Routine 26

Error Records 11, 13, 86, 91

ESD Processor 24

Expression Evaluation Routine (F7) 25

Expression Evaluation Routine (F8) 38

External Symbol Dictionary 22, 24, 28,
30, 96

FCoM 6, 101

FD 40

FI 7, 30, 101

FIN 6, 101

Final Assembly 32

Floating & Fixed Point Conversion Routine

FO 6, 101

Fl 6, 12, 101
F2 6, 13, 101
F3 6, 17, 101

114

F7V 25, 101
F7X 23, 101
F8 7, 32, 101
F8A 34, 101
F8C 33, 101
F8D 37, 101
F8I 32, 101
F8L 38, 101
F8M 34

F8N 38, 101
F8P 37, 101
F8S 38, 101
F8V 38, 101

GET Statement (F7) 23
Global Dictionary 13, 17, 82, 111, 113

Hash Table 105

Initial Assembly 22
Initialization 12
Initialization & I/O Routine (F7) 27
Initialization & I/0O Routine (F8) 32
Inner Macro Instructions 18, 90, 111
Interlude 30
Intermediate Text Records 10, 82
Introduction 1
I/0 Flow 3

Phase F2 13

Phase F3 17

Phase F7 22

Phase FI 30

Phase F8 32

FPP 39

Linkage Conventions 7, 8

Linkage Edit Map 101

Literal Adjustment Table 31, 33, 97
Literal Base Table 28, 30, 97

Literal DC Generator 26

Local Dictionary 13, 17, 82, 112, 113
Log Error Subroutine 38

Logical Record 112

Machine Operation Processor 34
Macro Editing 13
Macro Generation 2, 17
Macro Generator
abort phase 17
dictionaries 13, 17, 82
evaluation routine formats 90

record formats 13, 17, 85
subroutines 14, 18
Macro Instruction/Prototype 13, 87, 112
Mainline Control Routine (F7) 23
Mainline Control Routine (F8) 33

Open Code 13, 112

Options 81
Output Routine 37

Parameter Table, Macro Dictionary 84
Phase Identifiers 100

Physical Organization 7, 100
Physical Record 112

Post Processor 39

Program Flow 3

Program Levels 7

Programmer Macro Editing 13

Register Assignments 7, 8

Relocation Dictionary 33, 97
RTA 6, 101

Source Records 10, 86
Statement Scan 13

Storage Map 104

Subsetted Dictionary 13, 17,
Switches 109

Symbol Table 10, 22, 24, 32,
Symbol Table Subroutine (F7
Symbol Table Subroutine (F8)
System and I/0 Requirements
System Macro Editing 14

Tables 8, 82, 105
Table Construction 105
Text Stream Scan 13
Theory of Operation 2

Work buckets 93, 113

82, 113

96

24

38
1

Index

115

READER'S COMMENT FORM

IBM System/360 Disk Operating System Form Y26-3716-0
Assembler [F]

® Your comments, accompanied by answers to the following questions, help us produce better
publications for your use. If your answer to a question is “No” or requires qualification,
please explain in the space provided below. Comments and suggestions become the property of
IBM.

Yes No
® Does this publication meet your needs? O O
® Did you find the material:
Easy to read and understand? OJ O
Organized for convenient use? O O
Complete? O O
Well illustrated? O |
Written for your technical level? O [l
® What is your occupation?
® How do you use this publication?
As an introduction to the subject? O As an instructor in a class? []
For advanced knowledge of the subject? O As a student in a class? O
For information about operating procedures? [As a reference manual? O

Other

® Please give specific page and line references with your comments when appropriate.

COMMENTS

® Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

Y26 :716-0

YOUR COMMENTS, PLEASE...

This SRL bulletin is one of a series which serves as reference sources for systems analysts,
programmers and operators of IBM systems. Your answers to the questions on the back of
this form together with your comments, will help us produce better publications for your
use. Each reply will be carefully reviewed by the persons responsible for writing and pub-
lishing this material. All comments and suggestions become the property of IBM.

Please note: Requests for copies of publications and for assistance in utilizing your IBM
system should be directed to your IBM representative or to the IBM sales office serving
your locality.

FIRST CLASS
PERMIT NO. 2078
SAN JOSE, CALIF.

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN U. S. A,

POSTAGE WILL BE PAID BY . ..

IBM Corporation
Monterey & Cottle Rds.
San Jose, California
95114

Attention: Programming Publications, Dept. 232

B

International Business Machines Corporation
Data Processing Division

112 East Post Road, White Plains, N.Y. 10601
[USA Only]

IBM Warld Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

SN T PRI 09€/S WAI

0-9TLE-JRA

Y26-3716-0

B

International Business Machines Corporation
Data Processing Division

112 East Post Road, White Plains, N.Y. 10601
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

‘¥'s'nur paywiad 09¢/S WAl

0-91L£392X

	0001
	0002
	0003
	0004
	0005
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	replyA
	replyB
	xBack

