Systems Reference Library

File No. S360-21
Form C28-6503-3

IBM System/360 Basic Programming Support

Basic Assembler Language

This publication contains information
required for writing programs in the Basic
Assembler language, a symbolic programming
language for the IBM System/360. The Basic
Assembler 1language provides programmers
with a convenient way to make full use of
the operating capabilities of the .IBM
System/360. Source programs written in the
Basic Assembler 1language are translated
into object programs by a program called
the Basic Assembler.

The Basic Assembler and its language are
both described in this publication. The
description of the language includes the
rules for writing source programs, a list
of the machine instructions that can be
represented symbolically, and explanations
of the instructions used to control the
Basic Assembler. The description of the
Basic Assembler consists primarily of dis-
cussions of those features that affect the
planning and writing of source programs.

H:BHHEEEEE B

PREFACE

This publication describes a symbolic pro-
gramming language for the IBM System/360.
All the information required for writing
IBM System/360 programs is provided. This
includes the rules for writing source
statements, a description of the assembler
"instructions,"™ and a list of the machine
instructions that can be represented in the
language. There is also a section
describing the Basic Assembler, the program
that translates source programs into
machine-language programs. The information
in this section will be helpful in planning
for the IBM System/360 and in writing
programs to permit the most efficient oper-
ation of the Basic Assembler. This section
describes the input to the Basic Assembler,
the type of output that will be generated,
and those operations of the Basic Assembler
that have direct programming significance.

Completion of a basic course in computer
systems and programming concepts, or the
equivalent, is a prerequisite to using this
publication. Readers should also be fam—
iliar with the IBM System/360 and have an
understanding of the storage-addressing
scheme, data formats, and machine instruc-
tion formats and functions. This informa-
tion can be found in the publication IBM
System/360 Principles of Operation, Form
A22-6821.

Reference is made in this manual to the
relocating loader and the absolute loader.
A detailed description of these programs is
contained in the publication IBM System/360
Basic . Programming Support Basic Utilities,
Form C28-6505.

MAJOR REVISION (February 1965)

This publication is a major zrevision of the previous edition, Form
C28-6503-2, which is now obsolete. Significant changes have been made
throughout this publication, and the present edition should be reviewed in its
entirety.

This publication was prepared for production using an IBM computer to update
the text and to control the page and 1line format. Page impressions for
photo-offset printing were obtained from an IBM 1403 Printer using a special
print chain.

Copies of this and other IBM publications can be obtained through IBM Branch
Offices.

A form for readers' comments appears at the back of this publication. It
may be mailed directly to IBM. Address any additional comments concerning this
publication to the IBM Corporation, Programming Systems Publications, Depart-
nent D58, PO Box 390, Poughkeepsie, N. Y. 12602

© 1964 by International Business Machines Corporation

CONTENTS

INTRODUCTION . . . - e o e o o o o 5 Half-Word Constants (H) . « « « « 34
Features of the IBM System/360 Basic Short-Precision Floating-point
Assembler « . o« o < . . 5 Constants (E) e o o o o o o « « 34
Compatibility with Other System/360 Long-Precision Floating-Point
AsSsemblers o« o« o o o o o o o o o = 6 Constants (D) « o o e« o « =« « 35
Machine Requirements « « o« « o « « o« 6 Expression Constants (A) « -« s o 35
Card and Tape Options . « « « « « 6 Base Register Instructions 36

USING - Use Base Address Register 36

BASIC ASSEMBLER CARD FORMATS < o « o & 7 DROP - Drop Register . . . « « 36
Statement FieldS « o « o« o o o o o & 7 Programming with the USING and
Name Field « ¢ o« o o o o o o o & 9 DROP Instructions . . . « . . . 37
Operation Field « « ¢« ¢« ¢ o o o & 9 Loading Registers - 37
Operand Field « « o« o« o o o o « o 9 Branch and Link (BALR or BAL)
Comments Field . « « ¢« o« « « « « 10 Instruction . e o o o o o « o 37
Identification-Sequence Field . . . 10 Load Full-Word (L) Instruction . 38
Base Register Zero . . « « . . . 38
WRITING BASIC ASSEMBLER STATEMENTS . . 11 Program Linking Instructions 38
Character Set .« « o o« o o o = =« « « 11 ENTRY - Identify Entry-Point
SYmbols &« ¢ o« o o o o o o o o o « =« 11 Symbol « « < < e o o o @ . 39
Defining .Symbols . « « « « « « o« 11 EXTRN - Identify External Symbol 39
Previously Defined Symbols . . . 12 Linking Conventions . « « « « « « « 39
External and Entry-Point Symbols 12 Limjitations on Program Linking . U0
General Restrictions on Symbols . 12 Program Relocation and Linking . 40
The Location Counter . « « o « « « « 12
Self-Defining Values « « =« « « « « « 13 Assembler Instruction Summary . « « « . U1
Decimal « o« « o« o o« o o = o =« « « 13
Hexadecimal ¢ « ¢ o« ¢ o o o o o @ 13 THE BASIC ASSEMBLER PROGRAM . « « « « « U3
Character « o« o« o« o« o« o o o « « - 13 Assembler Processing« - e o 43
EXPreSSiONnS .« « o o o o = « « o « « 14 Phase 1 o« ¢ ¢ o o o o o o o « « o« U3
Relative Addressing « « « « « « - 14 PhaSe 2 o o o« o o o o o =« « o« « « U3
Attributes of Expressions « . . . 14 Program Listing . « « ¢ ¢ « « « o . 44
Absolute and Relocatable Error Notification . « « -« « « < o « 44
EXPressions .« « « o« o « o « o « 15 Object Program OQutput . e o « o o U5
Restrictions « « « o « =« o« « « « 15 External Symbol chtlonary (ESD)
Card « o o o« o o o« o o« o « « « » U5
MACHINE INSTRUCTION STATEMENTS 17 Text (TXT) Card -« =« « « « o« « « « U5
Instruction format « o« o o « « « « « 17 Relocation List Dictionary (RLD)
Implied Base Registers and Card . . e e o s e« o o s e - U5
Displacements « « « « « o e o o 17 Load End Card e« o e s o e o o« o« o U5
Implied and Explicit Lengths e o o o 19 Patching Object Programs . . « . . . U6
Machine Instruction Mnemonics . . . 20 Reassembly Procedure . . . « « . « . U6
Machine Instruction Examples 24 Symbol Table . . « . e o o o o o« U6
Symbol Table Overflow e o o « - « U6
ASSEMBLER INSTRUCTIONS =« o « « 25
Assembler Control Instructions 25 APPENDIX A. CHARACTER CODES . « . « « . 48

ICTL - Input Control . . .
START - Start Program . . .
ORG - Reset Location Counter
CNOP - Conditional No Operation
END - End Program « « « « « -«
EJECT - Start New Page
SPACE - Space Listing . -
Definition Instructions . .
EQU - Equate Symbol . . .
DS - Define Storage . « .
CCW - Define Channel Command W

25 APPENDIX B. HEXADECIMAL-TO-DECIMAL
26 CONVERSION « ¢ o« o « o o « o« « « =« « « 53

-
-
-
-
-

27 APPENDIX C. PROGRAMMING EXAMPLE 58

28 APPENDIX D. SYSTEM/360
ASSEMBLERS-LANGUAGE FEATURES
29 COMPARISON CHART o o « o « o o = « « « 59

¢« 9 0o
¢ o 2 0 0

Qo o s & o

L o T R T O NI I B S
N
o

r 30 APPENDIX E. HEXADECIMAL TO MNEMONIC
DC - Define Constant . . . o 31 OPERATION CODE TRABLE « « o « « o « « « 62
Character Constants (C) . . e 32
Hexadecimal Constants (X) e« oo 33 INDEX 2 o o« o o « o o o« o o a o o« o« o« « 63
Full-Word Constants (F) . e o o 33

FIGURES

Figure
Figure

Figure
Figure

Figure

Figure
Figure

Figure
Figure

Figure

IBM System/360 Long Coding

Form « e e w e e e
IBM System/360 Short Coding
Form . . et e e e

Example of the Name Field .
Example of the Operation
Field
Example of No Operand Fleld
with Comments . ., . .
Example of the Operand Fleld
Example of the Comments
Field .« v &« ¢« & v & & « o &
Example of Coding with
Previously Defined Symbols .
Example of Relative
AddresSsSing « o« o« &« & s s+ e
Machine Instruction State-
ment Formats « « . .

10
10
12
14

18

Figure
Figure

Figure
Figure
Figure
Figure

Figure

Figure
Figure

Figure

11,
12.

13.
4.
15.
16.
17.

18.
19.

20.

Operand Field Summary . . .
Implied Operand Field
SUMmMary .« « « o o o « o o« &
Boundary Alignment with a
CNOP Instruction . « « « « o
Channel Command Word
DC Statement Summary . .
Example of Coding with USING
and DROP Instructions ., . .
Example of Coding Using Base
Register Zero . . “ e e
Example of Program Llnklng .
Assembler Instruction
Summary . . . o « 4 e e
Phase 2 Input for Use with
IBM 1442-2 Card Read-Punch .

19

20

28

33

37

38
41

42

44

The Basic Assembler language is a sym—
bolic programming language for use with the
IBM System/360. This language provides
programmers with a convenient means of
writing machine instructions, designating
registers and input/output devices, and
specifying the format and addresses of
storage areas, data, and constants. All
the operational capabilities of +the IBM
System/360 can be expressed in Basic Assem-
bler language programs.

The language features
greatly simplify the writing of programs
for the IBM System/360. By avoiding unne-
cessary complexity, the language features
reduce program errors and, consequently,
the time required to produce a program that
is suitable for execution. They also make
it easier to learn the language.

are designed to

Source programs written in this language

are translated into IBM System/360 machine
language object programs by the Basic
Assembler (that is, "the assembler"). 1In

the process of translating programs, the
assembler performs certain auxiliary func-
tions. Some of these functions are automa-
tically performed; others must be requested
by special assembler instructions that the
programmer writes in his source program.

The
stored on cards.

assembler is a two-phase program
It has a special operat-
ing procedure for use with the IBM 1442
Card Read-Punch. When this procedure is
used, the assembler punches information
into the source-program deck during the
first phase. Using this information in the
second phase, the assembler produces an
object program. For systems with tape or a
1402-2 Card Read-Punch, this intermediate
information is stored in a tape or card
file rather than in the source-program
deck. The temporary file then serves as
input for the second phase.

FEATURES OF THE IBM SYSTEM/360 BASIC
ASSEMBLER

The most significant features provided
by the assembler and its language are
summarized below. This summary does not
include all the features nor does it con-
tain complete explanations of the features
listed. For more detailed descriptions,
the reader is referred to subsequent sec-
tions.

INTRODUCTION

Mnemonic Operation Codes: Mnemonic opera-
tion codes are provided for all machine
instructions. These codes are used instead
of the more cumbersome internal operation
codes of the machine. For example, the
Branch-on-Condition instruction can be rep-
resented by the mnemonic BC instead of the
machine operation code, 01000111. The var-
ious machine mnemonic operation codes are
presented under the topic "Machine Instruc-
tion Mnemonics."

Symbolic Referencing of Storage Addresses:

Instructions, data area, register numbers,
and other program elements can be referred
to by symbolic names, instead of actual
machine addresses and designations. See
the topic "Symbols."

Automatic Storage Assignment: The assem-
bler assigns consecutive addresses to pro-
gram elements as it encounters them. After
processing each element, the assembler
increments a counter by the number of bytes
assigned to that element. This counter
indicates the storage location available to
the next element. See the topic "Location
Counter."

Convenient Data Representation: Constants

can be specified as decimal digits, alpha-
betic characters, hexadecimal digits, and
storage addresses. Conversion of the data
into the appropriate machine format of the
IBM Systemn/360 1is performed by the assem-
bler. Data can be in a form suitable for
use 1in fixed-point and floating-point
arithmetic operations. See the topic "DC -
Define Constant.”

Renaming Symbols: A symbolic name can be
equated to another symbol so that both
refer to the same storage location, general
register, etc. This makes it possible for
the same program item to be referred to by

different names in different parts of the
programe. See the topic "EQU - Equate
Symbol."

Program Linking: Independently assembled
programs that will be loaded and executed
together may make symbolic references to
instructions and data in one another. See
the discussion of "Program Link Instruc-
tions."

Relocatable Programs: The assembler produ-
ces object programs 1in a relocatable
format; that is, a format that enables
programs to be loaded and executed at
storage locations different from those
assigned when the programs were assembled.

Introduction 5

Assembler Instructions: A set of special
instructions to the assembler is included
in the 1language. Some of the features
described in this section are implemented
by these instructions. See the topic

"Assembler Instructions.”

Base Register and Displacement Assignment:
The programmer can instruct the assembler
to assign base registers and to compute
displacements for symbolic machine address-
es. See the discussion of "Base Register
Instructions."

Program Listings: For every assembly, the
assembler can provide a listing of both the
source program and the resulting object
program. A description of the 1listing
format can be found wunder the topic
"Program Listing."

Error Checking: Source programs are exam-
ined by the assembler for possible errors
arising from incorrect usage of the lan-
guage. Wherever an error is detected, a
coded warning message (called a flag) will
be printed in the program listing. For
card systems without printers, 1limited
error notification is provided. See the
topic "Error Notification."

A special reassembly
programs assem-
Card Read-Punch

Program Reassembly:
procedure is provided for
bled by the IBM 1442-2
card-operating procedure. This will permit
partially or completely assembled source
programs, that have been modified, to be
reassembled in less time than required for
a new assembly. See the topic "Reassembly
Procedure."

COMPATIBILITY WITH OTHER SYSTEM/360
ASSEMBLERS

Programs written in the Basic Assembler
Language as described in this publication
are acceptable to the other Basic Program-—
ming Support, Basic Operating System, and

Operating System Assemblers, and the
7090/7094 Support Package Assembler. Simi-
larly, source programs written in these

other assembly languages are acceptable to
the Basic Assembler if they do not embody
any of the features of these assemblers
which are unacceptable to the Basic Assen—
bler. Appendix D contains a list of fea-
tures supported by the System/360 Assem—
blers and may be used as a guide for the
interchangeability of source programs.

The Basic Assembler
programs written for the IBM System/360
Model 20 Basic Assembler, except where
differences in machine design have made it
necessary to include some instructions in

will also accept

the Model 20 Basic Assembler Language that
are not contained in the Basic Assembler
Language. These instructions are:

BAS BASR CIO HPR SPSW TIOB XIO
Y-type Expression Constants

Note also that the pseudo-registers zero
through three on the Model 20 are handled
differently from the corresponding actual
registers on other models of the
System/360.

MACHINE REQUIREMENTS

The assembler will operate on an IBM
System/360 with the following minimum con-
figuration:

8,192 bytes of storage

Standard Instruction Set

One IBM 1442 Model 2
Read-Punch

or 1402 Card

The above configuration is for the card-
operating procedure for the assembler,
hereinafter called the card option.

if, in addition
required for the card option, IBM
2400-Series Magnetic Tape Units are
available, the tape-operating procedure may
be used. This procedure will be henceforth

termed the tape option.

If an IBM 1443 Model 2 or 1403 Printer,
or an IBM 1052 Printer-Keyboard is
provided, the assembler will provide a
program listing, complete with error messa-

to the eqguipment

ges, for each assembly. An option is
available to 1list only those statements
containing errors. FPor information con-

cerning this option, refer

"Program Listing."

to the topic

CARD AND TAPE OPTIONS

The Basic Assembler is a two-phase pro-
gram. The first phase produces data for
use by the second phase. The intermediate

data produced by phase 1 must be passed on
to the second phase via some external
storage medium. The storage mediums used

are punched cards or magnetic tape. If
punched cards are used for the intermediate
data, the system is known as a "Card Option

System." If tape 1is used, the system is
termed a "Tape Option System." The machine
configuration determines which option

applies at a particular installation.

An assembler language source program
consists of a sequence of source statements
punched into cards, one statement per card.

The card columns available for punching
source statements vary with the machine
configuration (that is, input device, card
or tape option) and the programmer's dis-
cretion. See the following list.
Input Unit Option Columns Available

1402 tape 1-71 or 25-71

1402 card 1-47 (see note) or 25-71

1442 tape 1-71 or 25-71

1442 card 25-71
Note: Columns 1-71 may be used for the

1402 card option rather than only columns
1-47. The assembler scans all 71 columns
of the statement field when obtaining the
information required to generate the
appropriate object code; however, only the
contents of columns 1-47 are included in
the program listing produced by the assem-
bler.

In addition to a source statement, each
card may contain an identification sequence
number in columns 73-80.

In this section, the discussion of card
formats assumes that all statements begin
in column 1. When card column assignments
differ because of statements beginning in
column 25, the column numbers associated
with the statements beginning in column 25
are placed in parentheses. Example: 1(25).

written on the
IBM provides.
a "long" fornm,

The statements may be
standard coding forms that
Two forms are available:
Form X28-6507 (Figure 1), and a “short"
form, Form X28-6506, for IBM Card Read-
Punch card-option assemblies (Figure 2) .

Each line of the coding form is used to
write a single statement and/or comments.
The information on each line is punched
into one card. If a card is completely

BASIC ASSEMBLER CARD FORMATS

blank, it will be ignored by the assembler.
The position numbers shown in the forms
correspond to the card columns.

Space is provided at the top of both
coding forms to identify the program and
give instructions to the keypunch operator.
None of this information is punched into
the statement cards.

STATEMENT FIELDS

An assembler statement 1is composed of
one to four fields, from left to right:
name field, operation field, operand field,
and comments field. The
identification-sequence field is not part
of the statement. The statement fields can

be written on the coding form in what
basically is a free form. As a
convenience, however, the name and

operation fields are marked on the coding
forms by heavy 1lines that indicate the
maximum length of these fields. Program-—
mers may wish to align the fields at these
lines to create a neat and orderly appear-
ance in the program listing.

Some general rules that must be observed
when writing statements are:

1. The only required field in a statement
is the operation field. The other
fields are optional, depending on the
operation and the programmer's wishes.

2. The fields in a statement must be in
order and separated from one another
by at least one blank.

3. The name, operation, and operand
fields must not contain embedded
blanks. A blank may, however, occur

in the operand field as a character
self-defining value or character con-
stant.

4, Only one statement is allowed to a
line; a statement cannot be continued
on additjonal lines.

5. Column 72 must be blank.

Basic Assembler Card Formats 7

IBM IBM Systam/360 Assembler ’ X28-6507
Long Coding Porm Printed n U.S.A.

PROGRAM PUNCHING INSTRUCTIONS PAGE OF
GRAPHIC CARD ELECTRO NUMBER
PROGRAMMER DATE PUNCH
STATEMENT \dentifi
Name Operation Operand Comments Sequenca
) ARE) 12 he 20 2 30 3 4 45 50 55 60 65 bd| M 72} 80
- . - L T -
Figure 1. IBM System/360 Long Coding Form
IB IBM System/380 Assembler Printed ffff;‘;“}ﬁ
M Shart Coding Form B
PROGRAM PUNCHING INSTRUCTIONS PAGE OF
CARD FORM #
GRAPHIC
PROGRAMMER]VDATE PUNCH
STATEMENT
(dentification-
Name Operation Operand Comments Sequence
25 30| |s2 36| |38 45 0 55 65 7| |73 0

Figure 2. IBM System/360 Short Coding Form

Name Field

The name field 1is wused to assign a
symbolic name to a statement. A name
enables other statements to refer to the
statement by that name. If a name is
given, it must begin in column 1 (25) and
must not extend beyond column 6 (30). A

name is always a symbol and must conform to
the rules for symbols (see section,
"Symbols") . Figure 3 shows the symbol
FIELD2 used as a name.

If column 1 (25) is blank, the assembler
will assume that the statement has no name.
Column 1 (25) is also used to indicate that
the card is a comments card (see discussion
of the "Comments Field") .

Operand

Name Operation
8 1 20 25 30

FII|E|L|D|2

O
N

Figure 3. Example of the Name Field

Operation Field

The operation field is used to specify
the mnemonic operation code of a machine or
assembler instruction. This field may
begin in any column to the right of column
1 (25) if the name field is blank. If the
name field is not blank, at least one blank
must separate +the name and operation
fields. The operation field may contain
any valid mnemonic operation code. The
valid machine-instruction mnemonics are
listed in the section "Machine Instruction
Statements; " the valid assembler-
instruction mnemonics are 1listed in the
section "Assembler Instructions.™ A valid
mnemonic will never exceed five characters.
If an invalid mnemonic is specified, the
assembler will treat the statement as a
comments statement and flag an error.

Figure 4 shows the mnemonic for the
compare instruction (RR format) used in a
statement named TEST. - Note that this

mnemonic could have been placed in columns
6-7, since +this would have satisfied the
requirement that at least one blank space
separate the fields.

Operand

Name Operation
8 1 14 20 25 30

)
aranAva C IR

Figure 4. Example of the Operation Field

Operand Field

The contents of the operand field pro-
vide the assembler with additional informa-
tion about the instruction specified in the
operation field. If a machine instruction
has been specified, the operand field con-
tains information required by the assembler
to generate the machine instruction. That
is, the operand field specifies registers,

storage addresses, input/output devices,
immediate data, masks, and storage-area
lengths. For an assembler instruction, the

operand field conveys whatever information
the assembler requires for the particular
instruction.

The operand field may begin in any
column to the right of the operation field,
provided at least one blank space separates
it from the last character of the mnemonic.

Certain assembler instructions do not
require the operand field to be specified.
If there is no operand field but there is a
comments field, the absence of the operand
field must be indicated by a comma, preced-
ed and followed by one or more blanks.
Figure 5 illustrates this rule.

)
Name SOperuﬁon12 i 2 Operand 25 " Z
EWD[[| [-] [rrlz]s] JZ[s] | cIoIM!MF-.jﬁZB
LLT T [T 11 HEEREEEEN L1 ,
Example of No Operand Field with
Comments

A

[]
[1

Figure 5.

Depending on the instruction, the oper-
and field may be composed of one or more
subfields, called operands. Operands must
be separated by commas. It must be remem-
bered that a blank delimits the field;
thus, a blank must not intervene between
operands and commas. Figure 6 is an exam-
ple of the same compare instruction shown
in Figure 4, with its two operands specify-
ing general registers 5 and 6. In Figure
6, as in Figure 4, the fields are separated
by more than the minimum number of blank
spaces.

Basic Assembler Card Formats 9

Name Operand

ElS (T C (R 57> |6

Operation
8 12

Figure 6. Example of the Operand Field

Comments Field

Comments are strictly for the conven-
ience of the programmer. They permit lines
or paragraphs of descriptive information
about the program to be inserted into the
program listing. Comments appear only in
the program listing; they have no effect on
the assembled object program. Any valid
characters (including blanks) may be used
as comments.

field, the absence of the operand field
must be indicated by a comma, preceded and
followed by one or more blanks. The entire
statement field can be used for comments by

placing an asterisk in column 1 (25); the
entire statement will be treated as com=-
ments. Column 72, however, must remain
blank.

If it is necessary to continue full-card
comments on additional 1lines, each such
line must have an asterisk in column 1
(25) , as illustrated in Figure 7.

IDENTIFICATION~SEQUENCE FIELD

The identification-sequence field may be
used for program identification and state-
ment sequence numbers. This field can
occupy columns 73-80 only. The information
in this field normally is punched in every

The comments field must (1) appear to statement card. The assembler, however,
the right of the operand field and (2) be will not check this field. It will merely
preceded by at least one blank. If there reproduce the information in the field on
is no operand field but there is a comments the output listing of the program.

STATEMENT (

Name Operation Operand Comments {
1 6 8 12 14 20 30 35 40 45 50 55
| TIH|e] [als|TiERIZ]s|k] [2IN] Tclole]ulmn] T2] IMATkIe]s] [TIHIZ]S] [A] [clolmimle|M7IS] [Ll/ {
%AV |AIS|ITIEIRIZIS|K] |Z|S]| IRIEQIVIIIRIEID| |IIN| |ElAlC L|IIN|E| |OIF COMﬂENTS {

£s|T clr sole| [TiWlels|e| |clolmuleln|TIS| [DlO] |nlo|T| [VE|ED] |AlN] [AlS|TIEIR|Z]S f?
Figure 7. Example of the Comments Field

10

Language statements will be accepted by
the assembler only if they conform to the
established grammatical rules and vocabula-
ry restrictions that are presented in this
section, The reader can expect that many
of the points not fully explained when they
are first mentioned in this section will be
described in detail subsequently.

CHARACTER SET

Basically, statements may be written

using the following characters:

A through 2
0 through 9

¥ + - , () * . blank

The card column punch-combinations that
the assembler will accept for these charac-
ters are 1listed below. This 1list also
contains the punches assumed for additional

printer graphics, which may be used in
comments.
I L3 1
|Character | Punch Combination |
} 4
T 1
A-1I |12 punch and a 1 - 9 punch,
| respectively
|13 - R |11 punch and a 1 - 9 punch,
| | respectively
S -2 0 (zero) punch and a 2 - 9
punch, respectively
0 -9 0 (zero) - 9, respectively
| blank | No punches
| & |12
|/ 0-1 |
|- 1 |
|. (period) 12-3-8 |
| $ 11-3-8 |
I |0-3-8 |
| # 3-8 |
1< |12-4-8 |
*	11-4-8
%	0-4-8
a	u-8
(112-5-8	
1	11-5-8
* (single	5-8
quotation)	
+	12-6-8 (
1= j6-8 |
L 'R J

WRITING BASIC ASSEMBLER STATEMENTS

SYMBOLS

Symbols are created by the programmer
and used by him for symbolic referencing of
storage areas, instructions, input/output
units, and registers.

A symbol may contain from one to six
characters; the characters may be any com-
bination of alphabetic (A through 2) and
numerical (0 through 9) characters. The
first character must be alphabetic. Spe-
cial characters and embedded blanks must
not be wused in symbols. Any violation of
these rules will be noted with an error
flag in the program listing and the symbol
will not be used.

The following are valid symbols:

READER
A23456
LOOP2
N

S

These symbols are invalid:

2568 First character is not
alphabetic

AREATWO More than six characters

RCD*34 Contains a special character

Defining Symbols

Symbols are meaningful in statements
when used as operands and names. When a
symbol is used as an operand, the assembler
will normally assign certain attributes to
it. These "attributes"™ are assigned to the
symbol by the assembler when the symbol is
defined. 1In order for a symbol to be used
as an operand, it must be defined somewhere
in the program.

A symbol is defined when the programmer
uses it as the name of a statement. When
the assembler finds a symbol in the name
field, it will assign an address-value
attribute and a length attribute to the
symbol. The address value is the storage
address of the leftmost byte of the field
allotted to the statement; the length is
the number of bytes in the storage field
named by the symbol. This length is called
the implied 1length associated with the
symbol. The convenience of having implied

Writing Basic Assembler Statements 1"

lengths will become apparent in the discus-
sion of the symbolic format of machine
instructions in the SS format.

A symbol defined in +this manner is
normally called a relocatable symbol. That
is, the address value of the symbol will
change 1if the program is loaded at a
location other than its assembled location.

Symbols can be assigned arbitrary abso-
lute values by use of the EQU assembler
instruction. These values may designate
registers, input/output units, immediate
data, etc. They can also specify actual
storage addresses such as permanently allo-
cated interrupt locations. Symbols so
defined are termed absolute symbols since
their values are fixed and will not change
because of program location.

Previously Defined Symbols

Sometimes the programmer will desire to
give an alternate name to a previously
defined symbol. "Previously defined" means
that the symbol has appeared as the name of
some statement prior to being used in the
operand field of another statement. Figure
8 shows how the symbol TEST, defined in the

first statement, is given an alternate
name.

Name Operation Operand T
1 s |8 12 N4 20 30

EIS|T C|R o€
N (-
{

Llololp F Qv TIES|T |
Figure 8. Example of Coding with Previous-

ly Defined Symbols

External and Entry-Point Symbols

Symbols are normally defined in the same
program in which they are used as operands.
It is possible, however, to define a symbol
in one program, use it in another program
assembled independently of the first, and
then execute both programs together. Such
a symbol is called an "external symbol"
when it is used as an operand. The symbol
is termed an "entry-point symbol™ in the
program in which it is defined. The
address value of the entry-point symbol
will be assigned to the external symbol
when both programs are loaded by the relo-
cating loader.

12

Before using an external symbol or
defining an entry-point symbol, the pro-
grammer must indicate to the assembler

which of the symbols are external and which
are entry points. The ENTRY and EXTRN
assembler instructions are provided for
this purpose. Both instructions are
described in the section "Assembler
Instructions."

External symbols are always relocatable.
They are subject <o certain usage restric-
tions that are discussed at pertinent plac-
es elsewhere in this publication.

General Restrictions on Symbols

The following restrictions are in addi-

tion to those imposed elsewhere in the
discussion of symbols:
1. A symbol may appear only once in a

program as the name of a statement.
If a symbol is used as a name more
than once, only the first usage will
be recognized. Each subsequent usage
of the symbol as a name will be
ignored and noted with an error flag
in the program listing.

2. The number of symbols that may be
defined in a program is restricted,

depending on the machine's storage
size. These restrictions are
explained in detail in the section

"The Symbol Table."

3. A symbol must always be defined as
having a positive value not exceeding
65,535. Any symbol whose definition
is contrary to this rule will not be
used and the statement in which it
appears will be flagged as an error.

THE LOCATION COUNTER

The assembler maintains a counter that
it uses to assign consecutive storage
addresses to program statements. This

counter is called the Location Counter. It
always points to the current address.
After each machine instruction is
processed, the Location Counter is incre-
mented by the number of bytes assigned to
that instruction. Certain assembler
instructions also cause the Location Coun-
ter to be incremented, whereas others do
not affect it.

The programmer can set and change the
Location Counter by using the START and ORG
assembler instructions described in the
section "Assembler Instructions."™

Location Counter Overflow: The maximum
value of the Location Counter is 65,535, a
16-bit value. If a program being assembled
causes the Location Counter to be incre-
mented beyond 65,535, the assembler will
retain only the rightmost 16 bits in the
counter and continue the assembly, checking

for any other source program errors. No
object program will be produced. The
assembler can, however, provide a listing

of the entire source program. The state-
ment causing the overflow will be flagged
in the listing.

Program References: The programmer may
refer to the current value of the Location
Counter at any place in a program by using
an asterisk as an operand. The asterisk
represents the location of the first byte
currently available., The use of an aster-
isk in a machine-instruction statement is
the same as giving the statement a name and
then wusing that name as an operand in the
same statement. Note that the asterisk
will have a different address value each
time it is used. The asterisk will have
the same length attribute that a symbol
placed in the name field would have. An
asterisk used as an operand is considered a
relocatable symbol.

SELF-DEFINING VALUES

The ability +to represent an absolute
value symbolically is an advantage in cases
where the value will be referred to repeat-
edly. However, it is equally necessary to
have a convenient means of specifying an
actual machine value or a bit configuration
without having to go through the procedure
of equating it to a symbol and using the
symbol. The assembler language provides
this facility through the self-defining
value, which can be a decimal, hexadecimal,
or character representation.

Self-defining values may be used to
specify such program elements as immediate
data, masks, registers, addresses, and
address increments. The type of represen-
tation selected (decimal, hexadecimal, or
character) will depend on what 1is being
specified. The use of a self-defining
value is quite distinct from the wuse of
data constants specified by the DC assem-
bler instruction and by 1literal operands.
When a self-defining value 1is used in a
machine—-instruction statement, its value is
assembled into the instruction. When a
data constant is specified in a machine
instruction, its address is assembled into
the instruction.

Decimal

A decimal self-defining value is an
unsigned number of from one to six decimal
digits. A decimal self-defining value of
more than six digits is not valid. The
acceptable decimal digits are 0 through 9.
Some examples are:

7 4092 0007
147 128 199860
The assembler imposes additional res-

trictions on decimal self-defining values,
depending on their use. For example, a
decimal self-defining value designating a
general register should be from 0 through
15; one designating a core storage address
should not exceed the size of available
storage.

Hexadecimal

A hexadecimal self-defining value is an
unsigned number of from one to six hexade-
cimal digits, enclosed in single quotation
marks and preceded by the letter X. Hexa-
decimal self-defining values of more than
six digits are not valid.

Each hexadecimal digit converts to a
four-bit value. The hexadecimal digits,
and their bit patterns are:

0 0000 4 0100 8 1000 c 1100
1 0001 5 0101 9 1001 D 1101
2 0010 6 0110 A 1010 E 1110
3 0011 7 0111 B 1011 F 111

The following are examples of hexadeci-
mal self-defining values:
X'B'
X'00CD*

X' 12FA1E’
X'00EO"

X' 25"
X'FUF*

A table for converting decimal to hexa-
decimal is provided in Appendix B.

Character

A character self-defining value is a
single character, enclosed in single quota-
tion marks and preceded by the letter C. A
character self-defining value may be a
blank or any combination of punches in a
single card column that translates into the
8-bit IBM Extended BCD Interchange Code.
There are 256 such combinations. Appendix
A 1is a table of these combinations, their
interchange codes, and, where applicable,
their printer graphics. A single quotation

Writing Basic Assembler Statements 13

mark used as a character self-defining
value, or an ampersand, is represented as
two single quotation marks, or two amper-

sands, enclosed in single quotation marks,
thus: C'''' or C'¢¢g"’
Examples of character self-defining
values are:
Cl/l Cl#l Cl.l
C'B" cr2 C' ' (blank)

The same value can frequently be rep-
resented by any one of the three types of
self-defining values. Thus, the decimal
self-defining value 196 can be expressed in
hexadecimal as X'C4' and as a character,
C'p'. The selection of a particular type
of value is left to the programmer. Deci-
mal self-defining values, for example,
might be used for actual addresses or
register and input/output unit numbers;
hexadecimal self-defining values for masks;
and character self-defining values for
immediate data.

EXPRESSIONS

The term "expression" refers to symbols
or self-defining values used as operands,
either singly or in some arithmetic combi-
nation. Expressions are used to specify
the various fields of machine instructions.
They also are used as the operands of
assembler instruction statements.

Expressions are classified as either
simple or compound and either relocatable
or absolute. Unless otherwise qualified,
the term "expression" as used hereinafter
implies any expression, simple or compound,
absolute or relocatable.

A simple expression is a single unsigned
symbol (including the asterisk used as the

Location Counter value) or a single
unsigned self-defining value used as an
operand. The following are simple expres-
sions:
FIELD2 2 C'R"
X'BF"* * ALPHA
A compound expression is a combination

of two or, at most, three simple expres-
sions, connected to each other by arithmet-
ic operators. The recognized operators are
+ (plus), - (minus), and * (asterisk),
denoting, respectively, addition, subtrac-
tion, and multiplication. The following
are compound expressions:

N+14%256
FIELD+X'2D"'

ENTRY-OVER
*+GAMMA-200

14

Note that an asterisk is used above both
for +the Location Counter (¥+GAMMA-200) and
as an operator (N+14#*256), but cannot be
used in succession to denote the two in the
same expression. The following example is
invalid:

*%5

A compound expression must not contain
either two simple expressions or two opera-
tors in succession, nor may it begin with
an operator. The following examples vio-
late these rules and, therefore, are inval-
id:

~-DELTA+256
+FIELD-10

AREAX'C'
FIELD+-10

Relative Addressing

Using compound expressions, the program-
mer can address instructions and data areas
relative to the Location Counter or to some
symbolic storage location. This is called
relative addressing. In the sequence of
instructions shown in Figure 9, the loca-
tion of the CR instruction can be expressed
as ALPHA+2 or BETA-U4. Note that relative
addressing 1is always in bytes, never in
words or instructions. All of the mnemon-
ics in Figure 9 are for two-byte instruc-
tions in the RR format.

Name Operation Operand
6 12 20

30

Q> WA~
[MY
X
NS
TUS (v v v

7
é
Fakd
3
s |AILIP[HIAI+|2

Figure 9. Example of Relative Addressing

Attributes of Expressions

The assembler separately evaluates each
expression in the operand field. An
expression is considered terminated by a
comma, a left or right parenthesis, or a
blank, depending on what the expression
specifies (see section "Machine Instruction
Statements") . The evaluation procedure is
as follows:

1. Each simple expression is given its
numerical value.

2. Moving from left to right, the arith-
metic operations are performed, multi-
plication before addition and subtrac-

tion. Thus, A+B*¥C 1is evaluated as
A+ (B*C) and not (A+B) *C.
3. The arithmetic result becomes the

value attribute of the expression.

In addition to computing the value
attribute of an expreéssion, the assembler
also determines its length attribute. For
a compound expression, the length attribute
is the same as the implied length attribute
of its leftmost simple expression. If the
leftmost simple expression in an expression
is a self-defining wvalue or an asterisk,
the implied length attribute of that
expression is one byte.

Absolute and Relocatable Expressions

An expression is absolute if it (1)
contains only absolute symbols or self-
defining values, or (2) is of the following

forms (where R is a relocatable symbol and
A 1is an absolute symbol or self-defining
value) :

R-R R-R+A R-R-A A+R-R

R-A-R A-R+R R+A-R
Although the address values of both

relocatable symbols are subject to change
when the program is loaded, the difference
between their values will be constant; that
is, absolute.

A relocatable expression is one whose
value would change by N if the program was
loaded N bytes away from its assembled
location. Relocatable expressions must
therefore conform to these rules:

1. A
either one or three
bols. If there are three relocatable
symbols, one (and only one) must be
preceded by the minus (-) operator.
If only one relocatable symbol is
present, it must not be preceded by

, the minus operator. -

2. A relocatable symbol may not be multi-
plied. That is, it must not be
preceded or followed by the asterisk
(*) operator.

relocatable expression must contain
relocatable sym—

The following examples illustrate abso-
lute and relocatable expressions. R rep-
resents relocatable symbols; A, absolute
symbols.

Absolute Expressions:
R-R+5

A+14*C'H"

2048

A*A

Relocatable Expressions:

R+2
R-8%*A
R-R+R
*-X'FB2"
R-A
The following expressions are invalid
for the reasons listed:
R+R Contain two relocatable
R+R-A symbols.
R*A Relocatable symbol is
multiplied.
R+R+R No minus operator.
A-R Single relocatable symbol is
preceded by a minus operator.
R-R-R Two minus operators.
Restrictions

The following restrictions apply to all

expressions. Additional 1limitations are
imposed where pertinent in this
publication.

1. An expression can have a negative

value only when it is an absolute
expression specifying an address con-
stant using the DC assembler instruc-
tion.

2. An expression containing an external
symbol may not contain any other relo-
catable symbols. For the purpose of
evaluating such an expression, the
value of the external symbol at assem-
bly time will be zero; the symbol will
be revalued when the program is
loaded.

3. If an expression is used as the oper-
and of a machine instruction
statement, any self-defining values
within it must not exceed U4,095.
Instructions containing self-defining
values exceeding 4,095 will be set to
zero. The operation code will remain
unchanged.

4, The maximum value of an expression is
65,535, If an expression exceeding
this maximum is wused in a machine
instruction statement, the entire
instruction except for +the operation
code will be set to zero; if used in

Writing Basic Assembler Statements 15

Note:
term

END, EQU, CCW (second operand), and DC

16

operation
if used in
statement,

on the

instruction except for the
code will be set to zero;
an assembler instruction
the action taken depends
instruction.

The maximum value of each individual
in the operand field of USING, ORG,
(2)

assembler instructions must not exceed
16,777,215. The maximum value of an entire
expression in an operand field of a USING,

ORG, END, or EQU instruction 1is, however,
65,535. The maximum value of an entire
expression in the operand field of a DC (A)
or CCW (second operand) instruction is
16,777,215.

The assembler language provides for the
symbolic representation of all machine
instructions. The symbolic format of these
instructions varies with the machine
format. There are five basic machine for-
mats: RR, RX, RS, SI, and SS. Within each
basic format, further variations are possi-
ble.

Machine instructions are automatically
aligned by the assembler on half-word boun-

daries. Any byte skipped because of align-
ment will be set to zero. Such situations
arise when data is inserted into the
instruction string, as in a calling
sequence.

Any machine instruction statement may be
given a name, which other language state-
ments can use. The value attribute of such
a name is the address of the leftmost byte
assigned to the assembled instruction. The
length attribute of the name depends on the
basic machine format:

Basic Machine Implied Length

Format (in_ Bytes)
RR 2
RX 4
RS]
SI 4y
SS 6

INSTRUCTION FORMAT

Figure 10 shows each basic machine for-
mat, followed by its corresponding symbolic
operand field formats and mnemonic opera-

tion codes. The numbers in the basic
machine formats are the bit sizes of the
field.

Figure 11 identifies the field codes

used in Figure 10. Figure 11 also contains
other pertinent information for specifying
the fields in machine instruction state-
ments. The following are additional points
that must be considered:

1. If no indexing is used in an RX
instruction and the base register (B2)
is present, the X2 field must be
written as a =zero. If indexing is

MACHINE INSTRUCTION STATEMENTS

used, and 1if the
implied, the
be omitted.

2. If the field or fields enclosed in
parentheses are omitted, the parenth-
eses (and the comma between them) may
also be omitted.

3. If the value of an absolute expression
exceeds the maximum (stated in Figure
11) for a field, the entire instruc-
tion will be set to zero except for
the operation code; the statement will
be flagged in the program 1listing.
The preceding does not apply to the
displacement field.

4., If the value of a displacement field
exceeds 4,095, only the rightmost 12
bits will be used; the listing will be
flagged.

5. If the programmer writes an absolute
expression specifying a displacement
and does not specify a base register,
the assembler will place zero in the
base-register field. The same applies
to the index register.

6. If any invalidity in the operand field
(other than those listed above) pre-
vents correct evaluation of an expres-
sion, the entire instruction, except
for the operation code, will be set to
Zero and the statement will be
flagged. Such invalidities would
include undefined symbols, wuse of
relocatable expressions where absolute
expressions are called for, etc.

base register is
base register field may

IMPLIED BASE REGISTERS AND DISPLACEMENTS

The assembler has the facility for
assigning base registers and computing dis-
placements for symbolic storage addresses.
If this facility is used, the programmer
simply specifies a symbolic address, by
using a relocatable symbol, thus implying
that the assembler is to select +the Dbase
register and displacement. Before this can
be done, however, the programmer must indi-
cate to the assembler the contents and
number of the general registers available
for base registers. This information is
conveyed with the USING and DROP instruc-
tions described in the section "Base Reg-
ister Instructions."

Machine Instruction Statement 17

T T T 1
| Basic Machine Format . | |
| ¥ T T T T T T | Assembler Operand | Applicable |
|Bits| 8 | 4 | 4| 4] 12 | 4 | 12 | Field Format | Instructions
[l + _I_____l l_+ 1 1 [1 4
r T T =7 71 1 T R 1
| | | | | | | | I) | Al1 RR instruc- |
O ode|R R N/A v ion
| | p Cod | 1 | 2 { / | N/A :N/A: N/A { R1,R2 I ECE gpﬁxgsgt :
’ 14
I T i i i |
|
{ jop Code{M1 =R2 IN/A{ N/A }N/A{ N/A : M1,R2 : BCR
| I
R R I I i |
| |
| [Op Code|R1 |0 |N/A]| N/A | N/A]| N/A | R1 | sPM I
I I | | I | [I | I
Lo koo pot -t~ t ¥ |
| | I | [| I I | I
I |op Codel I [N/A| N/A |N/A| N/A | I | svcC |
N T T] | | I
13 T T T T T T T T T 1
| | I | | I | I | | . I
I |Op Code|R1 |X2 |B2 | D2 |N/Aa| N/A | R1,D2 (X2,B2) | A1l RX instruc- |
I | | | | | I | | | tions except BC |
| RX | +—4—+—+ +——1 + + |
I | I | | | | | | | |
| |Op Code|M1 |X2 |B2 | D2 {N/A| N/A | M1,D2(X2,B2) | BC |
| | I I | | I | | | I
R [| i I
| |Op Code|R1 |R3 |B2 | D2 IN/A} N/A , R1,R3,D2 (B2) I BXH,BXLE, LM, STM :
I I | | | |
F S I i i i |
| | | I
| |Op Code|R1 |R3 |B2 | D2 IN/A| N/A | R1,D2 (B2) | All shift
l ! { ! ! l l l ! ! instructions J
) T T T T T 77 T T 1
| | | | | | | | | All SI instruc- |
| |Op Codej| I2 |B1 | D1 | N/A| N/A | D1(B1) ,I2 | tions except
| i | | | | | | | LPSW,SSM,HIO, i
| ST | | | | | | | | S1I0,TIO,TCH |
T A A o i i |
| {Op Code}0 |0 |B1 | D1 |N/A| N/A | D1(@®B1) | LPSW,SSM,HIO, |
| I I | | | | | | | s10,TIO,TCH,TS |
b1 p——t——t-—-1 " t + | J.
| | l | I | I I | | PACK,UNPK,MVO,
| |Op Code|L1 |L2 |B1 | D1 {B2 | D2 | p1(1,B1),D2(L2,B2) | AP,CP,DP,MP,SP, |
| I | I | | | I | | zAP |
Iss | L S -t t $ |
| | | | | I | I | NC,0c,Xc,CLC, I
| |{Op Code| L |[B1 | D1 (B2 | D2 | p1(L,B1) ,D2 (B2) | MVC,MVN,MVZ,TR, |
| | | | | | I | | TRT,ED, EDMK [
L L 4 1 L 4___1 L L J

Figure 10.

Base registers and displacements can be
implied for RX, RS, SI, and SS
instructions. For example, the operands of

an RS instruction can be specified as

R1, R3, S2
where S2 represents a symbolic address
(i.e., a relocatable symbol) that the

assembler will separate into a displacement
(D2) and base register (B2) .

18

Machine Instruction Statement Formats

To specify-addresses in this manner, the

programmer must obsexrve these rules:

The Dbase register instructions (USING
and DROP) must be used as described
subsequently in this publication.

The symbolic address must be rep-
resented by a simple or compound relo-
catable expression.

r - 1
) Reference Summary for Operand Fields |
If 1 1 T '=
| | | Expression l
Field	Code	Field	T	
Code	Represents	Bit Size	Allowable	Maximum
			Types	Values
1 1 } 1] 4				
) T T T T 1				
I	! I I			
R1,R2,R3	General or	4	Simple	15

| | floating- | | absolute | |
| | point | | |]
	register			
I				
M1	Mask	4	Simple	15
			absolute	
[_ [
D1,D2	Displace-	12	Simple or	4095
	ment		compound	
			absolute	
			,	
B1,B2	Base	b	Simple	15
	register		absolute	
X2	Index	4	Simple	15
	register] i absolute			
L1,L2	Length	4	Simple	16%*
			absolute	
L	Length	8	Simple	256%*
			absolute	
[,				
12,1	Immediate	8	Simple	255
			absolate	
L L [L L %				
* These are maximum values for length fields allowed in assembler statements; the				
values assembled for the instruction length fields are one less than these values.				
L J

Figure 11. Operand Field Summary

3. A base register must not be written.
An explicit base register will cause
the assembler to treat the storage
address as a displacement and an error
will result because a displacement
must always be an absolute expression.
An explicit index register may be
used, however, in the usual manner.

In the following example, the relocata-
ble expression FIELD, with an address value
of 7400, is used in a machine instruction;
assume that the assembler has been told
that general register 12 contains 4096 and
is available as a base register.

ST 4,FIELD
The assembled machine instruction (in
decimal) would be as follows, the value of
D2 being the difference between 7400 and

4096.

Operation

Code R1 X2 B2 D2

50 12 3304

frm o o oo o
e S
o o o o e o
o st e s e
o ——
R e

Had the instruction been ST 4,FIELD(2),
the assembled machine instruction would
differ from the previous example only in
that the content of the X2 field would be 2
rather than zero.

IMPLIED AND EXPLICIT LENGTHS

The length field in SS instructions can
be implied or explicit. An implied length
is the 1length attribute of either the
absolute expression specifying the dis-
placement or +the relocatable expression
specifying the symbolic address, whichever

Machine Instruction Statement 19

Reference Summary for Implied Operands

The S1 and S2 fields are relocatable expressions or absolute expressions representing
values up to 4095; all other fields are absolute expressions.
fields are absolute expressions, base register zero is implied.

r 1
| |
If T 1 {
| | Explicit Base Registers | Implied Base Registers

| Basic | and Displacement | and Displacement |
| Machine | T + T

Format	Explicit	Implied	Explicit	Implied
	Length	Length	Length	Length
)	(2	(3)	(4
L 1 1 1 l N}				
LB T T T T 1				
RX	D2 (2,B2) i N/A I S2 (X2)	N/A		
RS I D2 (B2)	N/A	S2	N/A [
SI	D1 (B1)	N/A i s1	N/A [
SSs	D1 (L1,B1)	D1(,B1)	S1(L1)	S1
SS	D2 (L2,B2)	D2 (,B2)	S2 (L2)	S2
SS	D1 (L,B1)	D1 (,B1)	S1 (L)	51
ss I D2 (B2)	N/A	s2	N/A	
L L i L i 1				
) 1				
[
{				
L J

Where the S1 and S2

Figure 12. Implied Operand Field Summary

is written in the
attribute of

statement. The length
a compound expression is the

implied length of its leftmost simple
expression.

An explicit 1length, by contrast, is
written by the programmer in the statement
as a simple absolute expression. If a
length is explicit, it overrides the

implied 1length associated with the dis-
placement or symbolic address.

Regardless of how the length is speci-
fied (implied or explicit), if it exceeds
the values indicated in Figure 11 for the
L, L1, and L2 fields, the entire assembled
instruction, except the operation code,
will be set to zero.

Note that the length, whether implied or
explicit, 1is always an effective length.
That is, it is one more than the value
inserted into the 1length field of the
assembled machine instruction. In the case
where an explicit length of zero is speci-
fied, the assembler assumes an effective
length of one. Thus, a zero is inserted in

the length field of the assembled instruc-
tion.
The reference summary in Figure 12 is

for use with the figure showing the machine
instruction formats (Figure 10). For each
explicit operand format in column 1, any of
the corresponding implied operand formats

20

in columns 2, 3, or 4 can be substituted in
order to specify an implied length or an
implied base register and displacement, or
both.

MACHINE INSTRUCTION MNEMONICS

This section contains an alphabetical
listing of the mnemonics of all the machine
instructions and their operand field for-
mats. The column headings in the list are:

column contains
code for the

1. Mnemonic Code: This
the mnemonic operation
machine instruction.

2. Instruction: This column contains the
name of the instruction associated
with the mnemonic.

3. Operation Code: This column contains
the hexadecimal equivalent of the
actual machine operation code.

4. Basic Machine Format: This column con-
tains the basic machine format of the
instruction:

RR, RS, RX, SI, or SS.

5. Operand Field Format: This column
shows the explicit symbolic format of
the operand and field for the particu-
lar mnemonic.

Appendix E provides a table for easy
conversion of hexadecimal operation codes
to their associated mnemonic codes.

r T T T T H
| | | Oper- | Basic | Operand

| Mnemonic | | ation | Machine | Field |
| Code | Instruction | Code | Format | Format |
t t + } t {
	-	I		
A	Add	5A	RX	R1,D2 (X2,B2)
AD	Add Normalized, Long	oA	RX	R1,D2 (X2,B2)
ADR	Add Normalized, Long	2A	RR	R1,R2
AE	Add Normalized, Short	7A	RX	R1,D2 (X2,B2)
AER	Add Normalized, Short	3a	RR	R1,R2
AH	Add Half-Word	4A	RX	R1,D2(X2,B2)
AL	Add Logical	B5E	RX	R1,D2(X2,B2)
ALR	Add Logical	1E	RR	R1,R2
AP	Add Decimal	FA	SS	b1(L1,B1) ,D2(1L2,B2)
AR	Add	1A	RR	R1,R2
AU	Add Unnormalized, Short	TE	RX	R1,D2 (X2,B2)
AUR	Add Unnormalized, Short	3E	RR	R1,R2
AW	Add Unnormalized, Long	6E	RX	R1,D2 (X2,B2)
AWR	Add Unnormalized, Long	2E	RR	R1,R2
		I		
BAL	Branch and Link	45	RX { R1,D2(X2,B2)	
BALR } Branch and Link	05	RR	R1,R2	
BC	Branch on Condition	47	RX	™M1,D2(X2,B2)
BCR	Branch on Condition	07	RR	M1,R2
BCT	Branch on Count	46	RX	R1,D2(X2,B2)
BCTR	Branch on Count	06	RR	R1,R2
BXH	Branch on Index High	86	RS	R1,R3,D2 (B2)
BXLE	Branch on Index Low or Equal	87	RS	R1,R3,D2 (B2)
I I	!			
C	Compare Algebraic	59	RX	R1,D2(X2,B2)
CD	Compare, Long	69	RX	R1,D2 (X2,B2)
CDR	Compare, Long	29	RR	R1,R2
CE	Compare, Short	79	RX	R1,D2(X2,B2)
CER	Compare, Short ,	39	RR	R1,R2
CH	Compare Half-Word	49	RX	R1,D2(X2,B2)
CL	Compare Logical	55	RX	R1,D2(X2,B2)
CLC	Compare Logical	D5	SS	D»b1(,B1) ,D2 (B2)
CLI	Compare Logical Immediate	95	SI	D1(®B1) ,I2
CLR	Compare Logical	15	RR	R1,R2
Cp	Compare Decimal	¥9	SS	bt1(1,B1) ,D2(L2,B2)
CR	Compare Algebraic	19	RR	R1,R2
CVB { Convert to Binary	4Fr	RX	R1,D2(X2,B2)	
CVD	Convert to Decimal	4E	RX	R1,D2 (X2,B2)
	I	[
D	Divide	5D	RX	R1,D2(X2,B2) [
DD	Divide, Long	oD	RX	R1,D2 (X2,B2)
DDR	Divide, Long	2D	RR	R1,R2
DE	Divide, Short	7D	RX	R1,D2(X2,B2) l
DER	Divide, Short] 3D	RR	R1,R2	
DP	Divide Decimal	FD	SS	bt1@1,B1),D2(L2,B2)
DR	Divide	1D	RR	R1,R2
ED	Edit	DE	SS	D1(L,B1),D2(B2)
EDMK	Edit and Mark	DF	SS	} D1(%,B1) ,D2(B2)
EX	Execute	44	RX	R1,D2(X2,B2)
HDR	Halve, Long	24	RR	R1,R2
HER	Halve, Short	34	RR	R1,R2
HIO	Halt I/O	9E	ST	D1(B1)
	[

Machine Instruction Statement

21

r 1 T T T L]
| I | Oper- | Basic | Operand |
| Mnemonic | | ation | Machine | Field
| Code | Instruction | Code | Format | Format |
k t t + + 1
| | | | | |
| IcC | Insert Character | 43 | RX | R1,D2(X2,B2)
| ISK | Insert Storage Key | 09 | RR | R1,R2 |
| | | I | |
| L | Load | 58 | RX | R1,D2(X2,B2) i
LA	Load Address	41	RX	R1,D2(X2,B2)
LCDR	Load Complement, Long	23	RR	R1,R2
LCER	Load Complement, Short	33	RR	R1,R2
LCR	Load Complement	13	RR	R1,R2
i LD	Load, Long	68	RX	R1,D2(X2,B2)
LDR	Load, Long	28	RR	R1,R2
LE	Load, Short	178	RX	R1,D2(X2,B2)
LER	Load, Short	38	RR	R1,R2
LH	Load Half-Word	us8	RX	R1,D2(X2,B2)
LM	Load Multiple	98	RS	R1,R3,D2 (B2)
LNDR	Load Negative, Long	21	RR	R1,R2
LNER	Load Negative, Short	31	RR	R1,R2
LNR	Load Negative	11	RR	R1,R2
LPDR	Load Positive, Long	20	RR	R1,R2
LPER	Load Positive, Short	30	RR	R1,R2 [
LPR	Load Positive	10 { RR	R1,R2	
LPSW	Load PSW	82	SI	D1@®B1)
LR	Load	18	RR	R1,R2
LTDR	Load and Test, Long	22	RR	R1,R2
LTER	Load and Test, Short	32	RR	R1,R2
LTR	Load and Test	12	RR	R1,R2
I I		I		
M	Multiply	5C	RX	R1,D2(X2,B2)
MD	Multiply, Long	6cC	RX	R1,D2(X2,B2)
MDR	Multiply, Long	2C	RR	R1,R2
ME	Multiply, Short	17¢C	RX	R1,D2 (X2,B2)
MER	Multiply, Short	3cC	RR	R1,R2
MH	Multiply Half-Word	uc	RX	R1,D2(X2,B2)
MP	Multiply Decimal	FC	SS	D1(1,B1) ,D2(L2,B2)
MR] Multiply	1cC	RR	R1,R2	
MvVC	Move Characters	D2	SS	bD1(,B1) ,D2(B2)
MvI { Move Immediate	92	ST	D11 ,I2	
MVN	Move Numerics	D1	SS	bDt1(L,B1) ,D2 (B2)
MvO	Move with Offset	[Ss	D1(1,B1),D2(L2,B2)	
MVZ	Move Zones	D3	SS	Db1(L,B1) ,D2(B2)
N	AND Logical	54	RX] R1,D2(X2,B2) :
NC	AND Logical	D4	sS	D1(,B1),D2 (B2)
NI	AND Logical Immediate	9u	SI	D1@®B1) ,I2
NR	AND Logical	14 I RR	R1,R2	
I				
(]	OR Logical	56	RX	R1,D2(X2,B2)
ocC	OR Logical	D6	SS	b1(,B1) ,D2(B2)
oI	OR Logical Immediate	96	SI	D1(B1) ,I2
OR	OR Logical	16	RR	R1,R2
: PACK	Pack	F2 i ss { bDt(@1,B1),D2(L2,B2)		
	I			
RDD	Read Direct	85	SI1	D1(®B1) ,I2
! ! ! | ! |

22

o e e

r L) T T

| | | Oper- | Basic | Operand

| Mnemonic | | ation | Machine | Field

| Code | Instruction | Code | Format | Format

b 1 + 1 1

| | | i |

| S | Subtract | 5B | RX | R1,D2(X2,B2)

| SD | Subtract Normalized, Long | 6B | RX | R1,D2 (X2,B2)

| SDR | Subtract Normalized, Long | 2B | RR | R1,R2

| SE | Subtract Normalized, Short | 7B | RX | R1,D2(X2,B2)

| SER | Subtract Normalized, Short 3B | RR | R1,R2

| SH | Subtract Half-Word 4B | RX | R1,D2(X2,B2)

| SIO i Start I/0 9c | ST | D1 (@B

| SL | Subtract Logical | SF | RX | R1,D2 (X2,B2)

| SLA | Shift Left Single Algebraic | 8B | RS | R1,D2(B2)

| SLDA | Shift Left Double Algebraic 8F | RS] R1,D2(B2)

| SLDL | Shift Left Double Logical 8D | RS | R1,D2(B2)

| SLL | Shift Left Single Logical 89 | RS | R1,D2(B2)

| SIR | Subtract Logical | 1F | RR | R1,R2

| SP | Subtract Decimal FB | SS |\ b1(w1,B1) ,D2(L2,B2)
| SPM | Set Program Mask ou | RR | R1

| SR | Subtract 1B | RR | R1,R2

| SRA | Shift Right Single Algebraic | 8a | RS | R1,D2(B2)

| SRDA | Shift Right Single Algebraic | 8E | RS | R1,D2(B2)

| SRDL | Shift Right Double Logical | 8c | RS | R1,D2(B2)

| SRL | Shift Right Single Logical 88 | RS | R1,D2(B2)

| SSK | Set Storage Key 08 | RR | R1,R2

| SSM | Set System Mask 80 | ST | D1(B1)

| ST | Store 50 | RX | R1,D2(X2,B2)

| STC | Store Character | u2 | RX | R1,D2(X2,B2)

| STD | Store Long | 60 | RX | R1,D2(X2,B2)

| STE | Store Short | 70 | RX | R1,D2(X2,B2)

| STH { Store Half-Word | 4o | RX | R1,D2(X2,B2)

| STM | Store Multiple | 90 | RS | R1,R3,D2 (B2)

| SU | Subtract Unnormalized, Short | 7F | RX | R1,D2(X2,B2)

| SUR | Subtract Unnormalized, Short | 3F | RR | R1,R2

| svcC | Supervisor Call | oA | RR | I

| SW | Subtract Unnormalized, Long | 6oF | RX | R1,D2(X2,B2)

| SWR | Subtract Unnormalized, Long | 2F | RR | R1,R2

| | | | |

| TCH | Test Channel | 9F | SI | D1(B1)

| TIO | Test 1/0 | 9D | SI | D1(B1)

| ™™ | Test Under Mask | o1 | SI | D1(®B1) ,I2

| TR | Translate | DC | Ss | b1(L,B1),D2 (B2)
| TRT | Translate and Test { op | ss | D1(L,B1) ,D2 (B2)
| mTs | Test and Set | 93 | SI | D1(@BY

| I I | |

| UNPK Unpack | F3 | ss | Dp1@1,B1),D2(L2,B2)
| I ! |

| WRD Write Direct | 84 | SI | D1(B1,I2

| | | | |

| X | Exclusive OR | 57 | RX | R1,D2(X2,B2)

| XC Exclusive OR | D7 | Ss | D1(L,B1) ,D2 (B2)
| XTI Exclusive OR, Immediate | 97 | ST | D1(B1) ,I2

| XR Exclusive Logical OR | 17 | RR | R1,R2

I | | I

| ZAP Zero and Add Decimal" | F8 | SS | b1(1,B1) ,D2(L2,B2)
| | | I

L L] L

b s e —— v S — . — — - S — — — A — S ———— —— —— — — — — — — —— ———— —— — ——— — —— —— ——————— ———— ———]

Machine Instruction Statement

23

MACHINE INSTRUCTION EXAMPLES

The examples that follow are grouped
according to machine instruction format.
They illustrate the various symbolic oper-
and formats. All symbols employed in the

examples must be assumed to be defined
elsewhere in the same assembly. All sym-
bols that specify register numbers and
lengths must be assumed to be equated

elsewhere to absolute values.

Implied addressing (shown in the follow-
ing examples) requires the use of the USING
assembler instruction described 1later in
the publication.

RR Format

r ¥ A T 1
| Name | Operation|Operand |
t [1 (]
)] T 1
|ALPHA1 |LR 11,2

|ALPHA2 |[LR | REG1,REG2 |
| BETA | sPM |15 |
|GAMMA1 | SVC | 250 l
|GAMMA2 | SVC | TEN [
L [L J

The operands of ALPHA1, BETA, and GAMMA1
are decimal self-defining values, which are

RS Format

T T . T 1
| Name |Operation|Operand |
L (X i 4
r 1 T 1
|ALPHA1 |BXH 11,2,20 (14) |
|ALPHA2 |BXH | REG1,REG2,20 (REGE) |
|ALPHA3 |BXH | REG1,REG2, ZETA i
BETA1	SLL 11,20 (9)	
BETA2	SLL	REG1,20 (9)
BETA3	SLL	REG1,ZETA
L L L]

Whereas ALPHA1 and ALPHA2 specify expli-
cit addresses, ALPHA3 specifies an implicit

address. Similarly, the BETA instructions
illustrate both explicit and implicit
addresses.
SI Format
] L] T 1
| Name | Operation|Operand |
L L i 4
]] T 1
ALPHA1	CLI	40 (9) ,X*4O"
ALPHA2	CLI	40 (REGY) ,TEN
BETA1	CLI	ZETA, TEN
BETA2	CLI	ZETA,C*'A"
GAMMA1	SIO	40 (9)
GAMMA2	SIO	0 (9)
GAMMA3	SIO	40 (0)
GAMMAL	SIO	ZETA
L 1 1 J
The ALPHA instructions and GAMMA1

through GAMMA3 specify explicit addresses,
whereas the BETA instructions and GAMMAU
specify implicit addresses. GAMMA2 speci-

categorized as absolute expressions. The fies a displacement of zero. GAMMA3 does
operands of ALPHA2 and GAMMA2 are symbols not specify a base register.
that are equated elsewhere to absolute
values.
S5S Format
r T T 1
|Name |Operation|Operand |
RX Format F + + 4
T T T 1 |ALPHA1|AP |40 (9,8) ,30(6,7) |
| Name | Operation |Operand | | ALPHA2 | AP |40 (NINE,REGS8) ,30 (REG6,7) |
X } } 4 |ALPHA3 |AP | FIELD2,FIELD1 [
|ALPHA1 |L 11,39 (4,10) | | ALPHAU AP | FIELD2 (9) ,FIELD1 (6)
|[ALPHA2 |L |REG1,39 (4, TEN) | |BETA |AP |FIELD2 (9) ,FIELD1 i
| BETA1 L |2,ZETA (4) | | GAMMA 1| MVC |40 (9,8) ,30(7) I
| BETA2 L |REG2, ZETA (REGH) | [GAMMA2 | MVC |40 (NINE,REGS8) ,DEC (7)
jeaMMA1 |L |2,ZETA | |GAMMA3 | MVC {FIELD2,FIELD1
|GaMMA2 | L | REG2, ZETA] | GAMMAY | MVC | FIELD2 (9) ,FIELD1 |
L L i J L 1 L "]
ALPHA1, ALPHA2, GAMMA1, and GAMMA2 spe-
Both ALPHA instructions specify explicit cify explicit lengths and addresses.
addresses; REG1 and TEN are absolute sym— ALPHA3 and GAMMA3 specify both implied
bols. Both BETA instructions specify length and implied addresses. ALPHAL4 and
implicit addresses, and both use index GAMMAL4 specify explicit length and implied
registers. Indexing is omitted from the addresses. BETA specifies an explicit

GAMMA instructions. GAMMA1 and GAMMA2 spe-
cify implicit addresses.

24

length for FIELD2 and an implicit length
for FIELD1; both addresses are implied.

Just as machine instructions are used to
request the machine to perform a sequence
of operations, so assembler instructions
are requests to the assembler to perform
certain operations. There are 15 such
assembler instructions. Some already have
been briefly mentioned in the preceding
sections. All the assembler instructions
are listed below by mnemonic operation code
and name. They are fully described in the
subsequent text. Figure 19 at the end of
this section contains a summary description
of all assembler instructions.

Assembler Control Instructions
ICTL Input Control

START Start Program

ORG Reset Location Counter

CNOP Conditional No Operation
END End Program

EJECT Start New Page

SPACE Space Listing

Definition Instructions

EQU Equate Symbol

DS Define Storage

CCw Define Channel Command Word
DC Define Constant

Base Register Instructions
USING Use Base Address Register
DROP Drop Register

Program Linking Instructions

ENTRY Identify Entry-Point Symbol
EXTRN Identify External Symbol
Assembler instruction statements, in

contrast to machine instruction statements,
do not always cause actual machine instruc-
tions to be included in the object program.
Some (for example, DS, DC) generate no
instructions but cause storage areas to be
set aside for constants and other data.
Others (for example, EQU, SPACE) are effec-
tive only at assembly time; they generate
nothing in the object program and have no
effect on the Location Counter.

ASSEMBLER CONTROL INSTRUCTIONS

The assembler control instructions are
used to specify the beginning and end of an
assembly, set the Location Counter to a
value or word boundary, control the program
listing, and indicate the statement format.
Except for the CNOP instruction, none of

ASSEMBLER INSTRUCTIONS

these assembler instructions generate
instructions or constants in the object
program.

ICTL - Input Control

The ICTL instruction tells the assembler
in which card column the statement portion
of the source-program cards begin. The
mnemonic operation code of the ICTL state-
ment must start in column 26 or higher.
The format of the ICTL instruction state-
ment is:

r T T
Name Operation|Operand
1 4 p

+
| The decimal value

)
Not used|ICTL
| |1 or 25
1

e o s el . al

oo e e

L

If the statements are to begin in column
25, the format is:

ICTL 25

If the statements begin in column 1, the
format is:

ICTL 1

If (1) the ICTL statement is not used or
(2) the operand field does not contain a 1
or 25, column 1 will be assumed for the
tape option and column 25 will be assumed
for the card option. When the ICTL state-
ment is used, it must be the first state-
ment in the source program. If it appears
anywhere else, it will not be used. If a
name is present, the name will not be used.

START - Start Program

The START instruction may be used to
indicate the beginning of an assembly, to
give a name to the program, and to set the
Location Counter to an initial wvalue. The
format of the START instruction statement
is:

Assembler Instructions 25

r T 1 1
| Name | Operation|Operand |
L 4 PR 4
r T 1
|A symbol |START |A self-defining |
| (optional) | |value or blank |
L 1 i J

The symbol in the name field becomes the
name of the program. The symbol is
assigned the address corresponding to the
self-defining value 1in the operand field.
This symbol can be specified as an external
symbol (using the EXTRN instruction) in
other programs, without wusing the ENTRY
instruction to identify it as an entry

point in this program. If there is no
symbol in the name field, the assembler
will assign a name consisting of six
blanks.

A self-defining value that specifies the
initial setting of the Location Counter is
written in the operand field. If the value
of the operand is not a multiple of eight,
the Location Counter will be set at the
next double-word boundary. The self-
defining value must not exceed the maximum
allowable setting of the Location Counter.
If the operand field is invalid or blank,
the Location Counter will be set to zero.

The initial setting of the Location
Counter becomes the starting 1location of
the program. This location is the initial
loading location if the program is loaded

by the absolute 1loader. It can also be
used as the temporary starting location for
loading the program while it is being
tested. This enables the programmer to
match the locations shown in the 1listing
produced by the assembler with the
locations in storage print listings. When

the program has been checked out, it can
then be relocated elsewhere by the relocat-
ing loader.

If both the START and ICTL instructions
are used, the START instruction must
immediately follow the ICTL instruction.
If it appears anywhere else or if it is not
used, the assembler will set the Location
Counter to zero and give the program a name
of six blanks. Any invalid occurrences of
a START instruction will not be used. It
should be noted that if the ICTL instruc-
tion is not wused, +the START instruction
should be the first in the program.

Either of the START statements below
could be used to assign the name PROG2 to
the program and to set the Location Counter
to a value of 2040:

2040
X'7F8"

PROG2
PROG2

START
START

26

ORG - Reset Location Counter

The ORG instruction resets the Location
Counter to a relative value. This instruc-
tion may be used anywhere in the program,
as often as desired. The format of the ORG
instruction statement is:

r L) T 1
| Name | Operation|Operand |
[R 4 4]
r T T 1
|Not used|ORG |A relocatable |
| | | expression |
L R L]

The Location Counter is reset to the
value of the relocatable expression. An
ORG instruction that resets the Location
Counter below its initial value as speci-
fied in the START instruction will not be

used; it will, however, be printed in the
listing with an error flag. Any symbol (s)
in the expression must be previously

defined. If the operand field is blank or
invalid, the ORG instruction will not be
used. If a name is specified, the name
will not be used.

The statement:

ORG *+500

increases the Location Counter by 500 above
its current setting. Nothing is assembled
for the 500 bytes skipped. That is, these
bytes are not cleared by the assembler.

The ORG instruction provides an alter-
nate way of reserving storage areas; the
preferred way usually is with the DS
(Define Storage) assembler instruction.
However, where a storage area cannot be
conveniently defined with the DS instruc-
tion, the ORG instruction can be used. For
example, to reserve two storage areas of

equal size, the following coding might be
used:
TABLE1 DS 50F
DS 100H
TABLE2 EQU *
ORG *+TABLE2-TABLE1

Note that the EQU assembler instruction
permits TABLE2 to be used in the ORG
statement as a previously defined symbol.

CNOP - Conditional No Operation

The CNOP instruction allows the program-
mer to align an instruction at a specific
word boundary without breaking the instruc-

tion flow should any bytes be skipped for
alignment. This facility is wuseful in
creating calling sequences consisting of a

linkage to a subroutine followed by parame-
ters such as Channel Command Words (CCW)
which require proper word boundaries.

The CNOP instruction aligns the Location

Counter setting to a half-word, word, or
doubl e-word boundary. If the Location
Counter is already aligned, the CNOP
instruction has no effect. If the align-
ment specified requires the Location Coun-
ter to be incremented, a no-operation
instruction (an RR branch-on-condition

instruction with a zero R1 and R2 field)
will be generated for each pair of bytes
(half-words) skipped. If an odd number of
bytes are skipped, the first byte will be
set to zero.

The format of the CNOP instruction
statement is:
r L] T 1
| Name |Operation}Operand |
L 4 (R 4
r T T 1
| Not used|CNOP | Two decimal values |
| | |]of the form:s b, w |
L i L]

Operand b specifies at which byte in a
word or double-word the Location Counter is
to be set; b can be 0, 2, 4, or 6. Operand
w specifies whether the byte b is in a word
(4) or double-word (8).

The following pairs
are valid:

of b and w values

b,w Explanation

0,4 Beginning of a word

2,4 Middle of a word

0,8 Beginning of a double-word

2,8 Second half-word of a double-word

4,8 Middle (third half-word) of a
double-word

6,8 Fourth half-word of a double-word

Figure 13 shows the position in a
double-word that each of these pairs speci-
fies. ©Note that 0,4 and 2,4 specify two
locations in a double-word.

If the operand field is blank or
invalid, the CNOP instruction will not be
used. A name, if ©present, will not be
used.

Assume that the Location Counter is
currently aligned at a double-word
boundary. Then the CNOP instruction in

this sequence:

CNOP 0,8
BALR 2,14

will have no effect; it will be printed in
the program listing. This sequence, howev-
er:

CNOP 6,8

BALR 2,14
will cause three branch-on-condition
instructions (no operations) to be generat-

ed, thus aligning the BALR instruction at
the last half-word in a double-word:

BCR 0,0
BCR 0,0
BCR 0,0
BALR 2,14

After the BALR instruction is generated,
the Location Counter will be at a double-
word boundary so that a Channel Command
Word (CCW) can be correctly positioned.

END - End Program

The END instruction terminates the
assembly of a program. It may also supply
a point in the program to which control is
transferred after the program is loaded.

The END instruction must always be the
last statement in the source program. When
the assembler detects this statement, it
produces a Load End card in the user's
object program for use by the load program.

Assembler Instructions 27

Figure 13.

The format of the END instruction state-
ment is:

[} L} |
| Name | Operation|Operand
L 4 1

|' i
| Double-Word |
| |
] I
L 4
1} L 1
| Word | Word |
| | |
[l I]
r 1 T T . 1
| Half-word | Half-word | Half-word | Half-word

% T 1 . t T t T 4
| Byte | Byte | Byte | Byte | Byte | Byte | Byte | Byte |
L L 1 L L i] L 4
0,4 2,4 0,4 2,4

0,8 2,8 4,8 6,8

Boundary Alignment with a CNOP Instruction

a new page. This instruction provides a
convenient way to separate routines in the
program listing. The format of the EJECT
instruction statement is:

r T T
| Not used|END |A relocatable ex-

| | |pression or blank
L L (]

b e et e e

The expression in the operand field
specifies the point to which control is
transferred when loading is complete. The
value of the expression will be punched in
the Load End card. If the operand field is
blank or invalid, nothing will be punched
in the Load End card. In this case,
control will be passed to the first storage
location (above decimal location 128) occu-
pied by the user's program when the program
is loaded. If the operand field is
invalid, the statement will be flagged as a
possible error. If a name is present, it
will not be used.

The point +to which control usually is
transferred is the first machine instruc-
tion in the program, as shown in this
sequence:

START 2000

AREA DS 50F

BEGIN SR 3,3

END BEGIN

EJECT - Start New Page

The EJECT instruction causes the next
line of the listing to appear at the top of

28

) L}]
| Name | Operation|Operand
i L L

b e i e ed

v T T
| Not used|EJECT | Not used
L L L

Normally, the EJECT statement 1is not
included 1in the program listing; however,
anything appearing in the name or operand

fields will result in including the state-
ment in the listing. In this case, the
EJECT statement is printed prior to skip-

ping to the new page.

SPACE - Space Listing

The SPACE instruction is used to insert
one or more blank 1lines in the listing.
The format of the SPACE instruction state-
ment is:

] T T
| Name | Operation|Operand
]

A decimal value

R

+
Not used|SPACE
L

A decimal value is used to specify the
number of blank lines to be inserted in the
program listing. If this value exceeds the

number of lines remaining on the 1listing
page, the statement will have the same
effect as an EJECT statement. A blank

operand field will cause one line to be

skipped. Normally, the SPACE statement is
not included in the program listing. There
are, however, some exceptions. Anything in
the name field of a SPACE statement results
in including the statement in the listing.
In this case, the statement is printed
prior to spacing. If the operand field is
invalid (that is, not a decimal value or
one greater than 4095), the statement is
flagged and listed. No space operation
occurs.

DEFINITION INSTRUCTIONS

The definition assembler instructions
are used to define and enter constant data
into a program, =specify the contents of
Channel Command Words, and reserve areas of
core storage. The fields generated by
these instructions can be referred to by
symbolic names. The EQU instruction is
included with the definition instructions
because it is used for defining symbols.

EQU - Equate Symbol

The EQU instruction is used to define a
symbol by assigning to it the value and
length attributes of an expression in the
operand field. The format of the EQU
instruction statement is:

The EQU instruction is the usual way of
equating symbols to register numbers,
input/output unit numbers, immediate data,
actual addresses, and other arbitrary
values. The examples below illustrate how
this might be done:

REG2 EQU 2 General register
10125 EQU 125 Input/output unit
TEST EQU X*'3F! Immediate data
TIMER EQU 80 Actual address

To reduce programming time, the program-
mer can equate symbols to frequently used
compound expressions and then use the sym-
bols as operands in place of the expres-
sions. Thus, in the statement

FIELD EQU ALPHA-BETA+GAMMA
FIELD will be defined as ALPHA-BETA+GAMMA
and may be used in place of it. DNote,
however, that ALPHA, BETA, and GAMMA must
all be previously defined.

DS - Define Storage

The DS instruction is used to reserve
storage areas and to assign names to the
areas. This instruction is the preferred
way of symbolically defining storage for
work areas, input/output areas, etc. The
format of the DS instruction statement is:

I] T
| Name | Operation|Operand
L [}

¥ L] [|
| Name | Operation|Operand
(]

+
A symbol | EQU |An expression
1

The symbol in the name field is given
the same value attribute as the expression.
The 1length attribute of the symbol will be
that of the leftmost term of the
expression. If the term is an asterisk
(the Location Counter) or a self-defining
value, the implied length of the symbol is
one. The expression in the operand field
can be relocatable or absolute, and the
symbol will be similarly defined. Any
symbols in the expression must be previous-
ly defined and have a positive value.
Symbols not conforming to these rules will
not be used. The associated EQU statements
will be flagged.

If the expression in the operand field
or the symbol in the name field, or both,
are invalid or not present, the EQU state-
ment will be flagged in the listing and
will not be used.

¥ T
|A symbol |DS
| (optional) |

|

I

L

|An operand describ-
|ing the area to be
| reserved, in the
|form shown below

1

b it s st stvtrets i e wd

The single operand specifies the number,
type, and, if desired, the 1length of the
fields to be reserved. The general form of
the operand is:

atin

Where:

4a
is a decimal self-defining value that
specifies the number of fields (from
zexro to 65,535) to be reserved. It is
called the duplication factor. If it is
omitted, one field will be reserved.

t

is the type code specifying the type of
field to be reserved and can be one of
the following letters:

Assembler Instructions 29

Implied Length
(in_Bytes)

Code Field Type
Character (byte)
Half-word
Full-word
Double-word

omza
WEN =

can be used only if the field code is C.
Ln is the length code written as the
letter L immediately followed by n,
which is the length (in bytes) of each
field. n can be a decimal value that is

not zero or greater than 256.

Half-word, full-word, and double-word
fields will be aligned to their proper
boundaries. With a duplication factor (d)

of zero, the DS instruction can be used to
cause boundary alignment. Thus, the state-
ment:

DS 0D

will set the Location Counter at the next
doubl e-word boundary.

If there is a symbol in the name field,
it will be assigned the current value of
the Location Counter after any alignment.
The length attribute of the symbol will be
the implied 1length associated with the
field code, unless a length code (Ln) is
specified, in which case the length attri-
bute will be the same as the length n.

For example, to define four 10-byte
fields and one 100-byte field, the respec-
tive DS statements might be:

FIELD DS 4CL10

AREA DS CL100
Then, to move the first 10 bytes at AREA
into FIELD, the coding is as follows,
assuming implied base registers and dis-
placements:

MVC FIELD,AREA

Note that the length attribute of' FIELD,
which is 10, is implied. Explicit length
specification can be used to move the first
20 bytes at AREA into FIELD. The following
instruction illustrates this:

MVC FIELD (20) ,AREA

Additional examples of DS statements are
shown below. The implied length - attribute
of each symbol appears in parentheses
before the symbol:

30

(80) DONE DS CL80
(1) DTWO DS 80C
(4) DTHREE DS 6F
(8) DFOUR DS D

(2) DFIVE DS U4H

One 80-byte field
80 one-byte fields
Six full-words

One double-word
Four half-words

If the operand is incorrectly specified,
the statement will not be used. An error
flag will appear in the listing.

A DS statement causes the reserved area
to be skipped but not cleared. Therefore,
the programmer should not assume that the
area contains all zeros when the program is
loaded. Whenever the assembler processes a
DS statement, it will terminate the current
output card (called a Text card) in the
object deck and start the next card at the
location following the reserved areas, thus
skipping them. To minimize the number of
Text cards punched, DS statements should be
kept together as much as possible. Note,
however, that Text cards are not terminated
if no bytes are skipped by DS statements
used only for boundary alignment.

CCW - Define Channel Command Word

The CCW instruction provides a conven-
ient way to define and generate an eight-
byte Channel Command Word aligned at a
double-word boundary. The internal machine
format of a Channel Command Word is shown
in Figure 14. The format of a CCW
instruction statement is:

L)
Name Operation|Operand
4

4
CcCw | Four operands,
| separated by commas,
| specifying the
|contents of the
|Channel Command
|Word in the form
|described below
L

T

|

L

+

A symbol |
(optional) |
|

|

|

|

|

1

[et e e e o S e 7y
b e —— —— o — i ——]

The four operands, from left to
are:

right,

1. A simple absolute expression specify-
ing the command code. The value of

this expression will be right-
justified in byte 1.
2. A relocatable expression specifying

the data address. The value of this
expression will be right-justified in
bytes 2-4.

3. A simple absolute expression
specifying the flags in bits 32-36 and
zeros in bits 37-39. The value of

this expression is right-justified in
byte 5. Byte 6 is set automatically
to all zeros.

4. A simple absolute expression specify-
ing the count. The value of this
expression is right-justified in bytes
7-8.

The following 1is an example of a CCW
statement:
ccw X'OF',READIN,X'A8',80

Note that the form of the third operand

sets - bits 37-39 to zero, as required. The
bit pattern of this operand is:
32 36 40 4y
1010 1000 0000 0000
No operand field may be omitted. Oper-

ands not used must be written as zeros. An
error in the operand field will cause eight
bytes of zeros, aligned at a double-word
boundary, to be assembled.

If there is a symbol in the name field,
it will be assigned the value of the
leftmost byte of the Channel Command Word

after any boundary alignment. The length
attribute of the symbol will be eight.
Bytes - skipped because of alignment will be

assembled as zeros.

T T T 1
| Byte | Bits | Usage |
F + + {
1	0-7	Command code
	I	
2-u	8-31	Data address
I		
	32-36	Flags
5	I I	
	37-39	Must be zero
6	40-47	Assembled automati-
i		cally as all zeros
I	I	
7-8	u48-63	Count i
L L L 4
Figure 14. Channel Command Word

DC - Define Constant

The DC instruction is for generating
constant data in main storage. Data can be
specified as characters, hexadecimal num-
bers, decimal numbers, and storage address-
es. Decimal numbers may be in the form
suitable for both fixed-point and floating-
point arithmetic operations. The format of
the DC instruction statement is:

[} T T 1
| Name | Operation|Operand |
] 4 4 4
T T T 1
A symbol	DC [A single operand	
(optional)		describing the
		constant, written in
		the form shown below
L L i]

The operand specifies the type of
constant and the constant itself. It may
also specify an explicit storage length for
the constant and indicate how many times

the constant 1is to be duplicated in
storage. The format of this operand varies
with the constant type. The basic format

is either
dtIn'c' or ALn (c)
where:

d
is a decimal self-defining value (from 1
to 65,535) that specifies the number of
identical constants to be generated. It
is called the duplication factor. If it

is omitted, one constant will be pro-

dQuced. A duplication factor cannot be
specified for an expression (type A)
constant.

Note: A print line is produced for each

constant generated. Thus, assembler speed
can be increased by keeping duplication
factors small and length codes large.

t
is the type code, specifying the type of
constant. It can be one of the follow-
ing letters:
Constant
Code Type Machine Format
C character 8-bit BCD code.
X hexadecimal Fixed-point binary.
F decimal Full-word fixed-
point binary.
E decimal Short-precision
floating-point binary.
H decimal Half-word fixed-
point binary.
D decimal Long-precision
floating-point binary.
A relocatable Fixed-point binary.
or absolute
expression

Assembler Instructions 31

1

is the length code written as the letter
L followed by n, a decimal value, which
is the explicit length (in bytes) of the
constant. A length code is not applica-
ble with constant types H, E, and D. If
a length code is not given, the implied
lengths shown in Figure 15 will be used.
An explicit length must not exceed those
values shown in Figure 15.

is the constant itself enclosed in
single quotation marks. Note that for
constant type A, the expression specify-
ing the constant is enclosed in parenth-
eses () .

If the operand is invalid, the statement
will not be used and will be flagged in the
listing.

All constant types except character (C)
and hexadecimal (X) will be aligned at
appropriate boundaries. Constants are not
aligned if an explicit 1length 1is given.
The boundaries for the various constant
types are summarized in Figure 15. Any
bytes skipped for alignment will be set to
Zero.

A symbol in the name field will be given
the address value of the first byte
assigned after any alignment. The length
attribute of the symbol will be the implied
(or explicit) length of the constant before
the duplication factor is applied.

The implied or explicit 1length of a
constant defined by a single DC statement
must not exceed 16 bytes before the dupli-
cation factor is applied. If 1longer con-
stants are required, successive DC state-
ments should be used. The total storage
alloted to a constant defined by one DC
statement will be the duplication factor
times the length of the constant.

The subsequent text, with examples,
describes each of the constant types. This
material 1is summarized in Figure 15. Note

that the definition of character, hexadeci-
mal, and decimal constants is not 1limited
by the rules pertaining to self-defining
values.

Character Constants (C)

A character constant may
more than 16 valid characters.

comprise not
A valid

32

character is a blank or any combination of
punches in a card column that translates
into the 8-bit IBM Extended BCD Interchange
Code. There are 256 such combinations; the
table in Appendix A lists the combinations,
their eight-bit codes, and, where applica-
ble, their printer graphics.

character in the constant is tran-
slated into one byte. Boundary alignment
is not performed. The number of bytes
required for the constant becomes its
implied length unless an explicit length is
stated. In the following example, the
length attribute of FIELD is 12:

Each

FIELD DC C'TOTAL IS 10"

A single quotation mark used as a char-
acter is represented in the constant by two

single quotation marks. The same rule
applies to ampersands. Thus:

DC C'DON""T"

DC C'A,B§6C"

Five bytes will be used for each con-

stant.

If more than 16 characters are specified
or a length code is given and the size of
the constant exceeds the explicit length,
the excess rightmost characters will be
truncated before applying the duplication
factor. The statement will be flagged.
For example, the statement:

DC 3CL4 *ABCDE'

will generate:

ABCDABCDABCD

If the number of characters is fewer
than the explicit length, the constant will
be padded by adding the necessary right-
hand blanks. The statement:

DC 4CL3* NO*

will generate in storage:

NObNObNObNOb

r 1
| Reference Summary for DC Statements |
L 4
¥ L Ll T T 1
	Boundary	Length (in Bytes)			
Constant-type	Alignment	T	Duplication	Truncation/	
Code	(If length	Implied	Maximum	Allowed	Padding
	is implied)		Explicit		Side
I { + + + ¢ {					
C	none	wvariable*	16	yes	right
X	none	variable*	16	yes	left i
F	worxrd	4	4	yes	left
H	half-word	2	invalid	yes	left
E	worxrd	4	invalid i yes	none	
i D	double-word	8	invalid	yes	none
A	word	4	L)	no	left
Ir L 1 L L i {					
* But not exceeding 16 bytes					
L 4
Figure 15. DC Statement Summary

Hexadecimal Constants (X) ALPHA DC 3XL2'A6FULE"

A hexadecimal constant may comprise up
to 32 hexadecimal digits. The valid
hexadecimal digits are:

0123456789 ABCDETF

A table for converting hexadecimal to

decimal is included in Appendix B. The
reader also is referred to the section
"Self-Defining Values." Each hexadecimal
digit represents four bits; hence, every

pair of digits will be translated into one
byte. Boundary alignment will not be per-
formed. If an odd number of hexadecimal
digits is present, the four leftmost bits
of the leftmost byte will be set to zero.
Unless an explicit length is specified, the
number of bytes required for the constant
will become its implied length.

An eight-digit hexadecimal constant pro-
vides a convenient way to set the bit
pattern of a full binary word. The con-
stant in the following example would set
the first and third bytes of a word to
ones. Note that the preceding DS statement
is used to align the constant at a full-
word boundary:

DS OF
TEST DC X'FFOOFFO00"

If (1) more than 32 hexadecimal digits
are present or (2) a 1length code is
specified and the byte size of the constant
exceeds the explicit 1length, the excess
leftmost digits will be truncated before
the duplication factor is applied. The
statement will be flagged in the 1listing.
In the following statement, the A will be
truncated and 6F4E will be used as the
constant:

The resulting constant will be generated
three times:

6FUEGFUEGFUE

If the pairs of digits are fewer than
explicit length, the constant will be

left Dbefore

Thus:

the

padded by adding zeros to the

applying the duplication factor.
DC 2XL3'2DDA"

will generate two 3-byte constants:

002DDA002DDA

Full-Word Constants (F)

The signed decimal constant in the oper-
and is converted into a binary number. An
unsigned number will be assumed to be
positive. Negative numbers will be con-
verted to two's complement notation.

If there is no explicit 1length, the
binary number is placed in a full-word
aligned at the proper boundary. An implied
length of four is assigned. If a 1length
code is present, alignment will not occur;
the binary number will be right-justified
in the specified number of bytes. An
explicit length must not exceed four bytes.

Given the following statement:
CONWRD DC 3F'+658474"

three full-word positive constants will be
produced. The address value of CONWRD will

correspond to the 1leftmost byte of the
first word; the length attribute will be

Assembler Instructions 33

four. Thus, the expression CONWRD+l4 can be
used to address the second word symbolical-
lye.

The maximum permissible value of a full-

word constant depends on the length, as

follows:

Length Highest Value Lowest Value
4 2,147,483,647 -2,147,483,648
3 8,388,607 -8,388,608
2 32,767 -32,768
1 127 -128

Note: All 1lengths can be explicit. A

length of 4, however, can also be implied.

If a value exceeds the limits associated
with the length, a constant of zero will be
generated before applying the duplication
factor. The statement will be flagged in
the 1listing. For exanmple, the following
statement would generate 12 bytes of zeros:

DC 4FL3'-9500250"

Half-Word Constants (H)

The signed decimal constant in the
operand is converted into a binary number
placed in a properly aligned half-word. A
length code is not allowed. The implied
length of the constant is two bytes.

If the number is unsigned, a positive
value is assumed. Negative numbers will be
converted to two's complement notation.

The largest number permitted is 32,767;
the smallest is -32,768. If a number
exceeds these limits, the constant will be
set to zero before the duplication factor
is applied. The statement will be flagged.

The following statement will generate
two identical half-word positive constants,
right-justified within two bytes:

DC 2H'256"

Short-Precision Floating-point
Constants (E)

A short-precision floating-point con-
stant is specified as a decimal fraction
(mantissa) and an optional decimal
exponent. The maximum allowable range for
a floating-point constant is from approxi-
mately (5.4)x10-79 to (7.2)x107%, The con-
stant will be aligned at a full-word bound-

34

ary in the proper machine format for use in
floating-point operations. A duplication
factor may be applied to the constant. A
length code, however, may not be used.

The format of the constant portion of

the operand is described in the following
text.
Fraction: The fraction is a signed decimal

number (up to 8 digits) with or without a
decimal point. The decimal point can
appear before, within, or after the number.
If the point is at the right-hand end of
the number, it may be omitted. If the sign
is omitted, a positive fraction is assumed.
A negative fraction is carried in the
machine in true form. The fraction, irres-
pective of its decimal point or sign, must
not exceed 2 to the 24th power minus 1
(i.e., 16,777,215) . The fraction part of a
number converted to the short format will
differ by no more than 1 from the exact
value rounded to 24 places.

Exponent: The exponent 1is optional. It
may be omitted if the decimal point appears
in the fraction at the desired position.
If the exponent 1is specified, it must
immediately follow the fraction. It con-
sists of the letter E followed by a signed
decimal number denoting the exponent. to the
base ten. A positive exponent is assumed
if the sign is omitted.

A negative exponent indicates that the
true decimal point is to the 1left of the
point written (or assumed) in the fraction.
A positive exponent indicates that the true
decimal point is to the right. The value
of the exponent determines how many places
to the left or right the true decimal point
is located.

For example, to convert the number
46.415 to a floating-point format, any of
the following statements could be used.
They will all have the same effect:

DC E'46.415"
DC E'46415E-3"
DC E'+46415.E-3"
DC E'.46415E2"
DC E'4.6415E+1"
If either the fraction or the exponent

is outside the permissible range, the full
word (or words, if a duplication factor is
specified) will be set to zero and a flag
will appear in the listing. The statement:

DC 4E*3.45E76"

would generate four full-words of zeros.

Long-Precision Floating-Point Constants (D)

A long-precision floating-point constant

is specified as a decimal fraction
(mantissa) and an optional decimal
exponent., The maximum allowable range for

a floating-point constant is from approxi-
mately (5.4)x10-79 to (7.2)x107%, The con-
stant will be aligned at a double-word
boundary in the proper machine format for
use in floating-point operations. A dupli-
cation factor may be applied to the con-
stant. A length code, however, may not be
used.

The format of the constant portion of

the operand is described in the following
text.
Fraction: The fraction is a signed decimal

number (up to 17 digits) with or without a
decimal point. The decimal point can
appear before, within, or after the number.
If the point is the right-hand end of the
number, it may be omitted. If the sign is

omitted, a positive fraction is assumed. A

negative fraction is carried in the machine
in true form. The fraction, irrespective
of its decimal point or sign must not
exceed 2 to the 56th power minus 1 (that
is, 72,057,594,037,927,935) . The fraction
part of a number converted to the long
format will differ by no more than 11 from
the exact wvalue rounded to 56 places.

Exponent: The exponent 1is optional. It
may be omitted if the decimal point appears
in the fraction at the desired position.
If the exponent is specified, it must
immediately follow the fraction. It con-
sists of the letter E followed by a signed
decimal number denoting the exponent to the
base ten. A positive exponent is assumed
if the sign is omitted.

A negative exponent indicates that the
true decimal point is to the 1left of the
point written (or assumed) in the fraction.
A positive exponent indicates that the true
decimal point is to the right. The value
of the exponent determines how many places
to the 1left or right the true point is
located.

If either the fraction or exponent is
outside the permissible range, the double
word (or words, if a duplication factor is
specified) will be set to zero. The state-
ment will be flagged.

The following statements illustrate dif-
ferent ways of converting the same number
to a long-precision floating-point number:

DC D'-72957"

DC D'-729.57E+2"
DC D'-729.57E2"

DC D'-.72957E5"

DC D*-7295700.E-2"

Expression Constants (A)

An expression constant consists of a
relocatable or absolute expression enclosed
in_ parentheses instead of single quotation
marks. The value of the expression is
generated as a 32-bit value constant.
Since the expression frequently represents
a storage address, the constant generated
from it is commonly called an address
constant, Hence, the letter A is used as
the type code. Note that if the program is
relocated, all address constants generated
from relocatable expressions will be
changed by the relocating program loader.

An explicit length not exceeding four
bytes may be specified for expression con-
stants. However, a duplication factor is
not allowed.

Unless a 1length code is present, the
32-bit constant will be aligned at a full-
word boundary and given an implied length
of four. Thus, in the following statement,
the value of AREA+2, as a 32-bit value,
will be placed in the next available full
word. ADCON1 will be given a 1length
attribute of four:

ADCON1 DC A (AREA+2)

If a length code is given, the constant
will not be aligned. The constant will be
right-justified in the specified number of
bytes. Any excess bits to the left will be
truncated. For example, in the statement:

ADCON2 DC AL2 (FIELD-256)
the rightmost 16 bits of the value of
FIELD-256 will be right-justified in the
next +two bytes. The length attribute of
ADCON2 will be two. In this case, FIELD
must be equivalent to an absolute symbol.
(see below.)

The following considerations govern type
A constants:

1. A relocatable expression may be used
only if the length is implied (that
is, it is four) or if the explicit
length is three or four.

2. An expression may have a negative
value only if it is an absolute
expression. A negative value will be
stored in two's complement notation.

3. An expression may not begin with an
arithmetic operator.

Assembler Instructions 35

BASE REGISTER INSTRUCTIONS

The USING and DROP base register assem-
bler instructions enable programmers to use
expressions representing core storage loca-
tions as operands of machine instruction
statements, leaving the assignment of base
registers and the calculation of displace-
ments to the assembler.

This feature of the assembler, besides
simplifying programming, also will elimi-
nate a likely source of programming errors,
thus reducing the time required to check
out programs. To take advantage of this

feature, the programmer must use the USING
and DROP instructions described in this
section.

USING - Use Base Address Register

The USING instruction indicates that the
general register specified in the operand
is available for use as a base register.
This instruction also states the base-
address value that the assembler must
assume is 1in the register at object time.
Note that a USING instruction does not load
the register specified. It is the
programmer's responsibility to see that the
specified base—-address value is placed into
the register. Suggested 1loading methods
are described in the section "Programming
with the USING and DROP Instructions.®™ The
format of the USING instruction statement
is:

r T 1
| Name | Operation|Operand
IR (R 1
¥ T

| Not used|USING

}
|A relocatable expres-
| sion and a simple
|absolute expression,
| separated by a comma
i

Y e b e

o e — —
o e . e

The relocatable expression specifies a
value that the assembler can use as a base
address. The second operand is a simple
absolute expression specifying the general
register that can be assumed to contain the
base address represented by the first oper-
and. The value of the second operand must
be from 1 to 15. For example, the state-
ment:

USING *,12
tells the assembler it may assume that the
current value of the Location Counter will
be in general register 12 at object time.

36

If the programmer changes the value in a
base register currently being used, the
assembler must be told the new value by

means of another USING statement. In the
following sequence, ALPHA is a relocatable
expression:

USING ALPHA,9

USING ALPHA+1000,9

The assembler will first assume that the
value of ALPHA is in register 9. The
second statement causes the assembler to
assume ALPHA+1000 as the value in register
9.

If the value of the second operand is
zero, implying no base addressing, the
first operand should also have a value of
ZEero. If it does not, zero will be used
instead of the actual wvalue and the state-
ment will be flagged in the listing. The
implications of using register =zero as a
base register are discussed later in "Base
Register Zero."

A USING statement will not be used if
either of its operands are incorrect. A
flag will appear in the 1listing. Any
symbol in the name field will not be used.

DROP - Drop Register

The DROP instruction specifies a pre-
viously available register +that wmay no
longer be used as a base register.

r T N T L}
| Name | Operation|Operand |
i [}

T T 1

Not used|DROP |A simple absolute |
| | expression |

I} 1 (]

The expression indicates a general reg-

ister that previously had been named in a
USING statement and now is unavailable for
base addressing. The following statement,
for example, removes register 11 from the
list of available registers:

DROP 11

The DROP statement is ignored if the
register it designates had never appeared
in a USING statement. If the value of the
expression exceeds 15, the statement will
not be used and will be flagged in the
listing. Any symbol in the name field will
not be used.

It is not necessary to use a DROP
statement when the base address in a reg-
ister changes as a result of a USING
statement; nor are DROP statements needed
at the end of the source program.

A register made unavailable by a DROP
instruction can be restored to the list of
available registers by a subsequent USING
instruction.

Programming with the USING and DROP
Instructions

The USING and DROP instructions may be
used anywhere in a program, as often as
needed. They provide the assembler with
the information it needs +to construct a
"register table.”™ Entries in the table are
added, deleted, and changed by the assem-
bler as each USING and DROP instruction is
processed.

Whenever an effective address is speci-
fied in a machine instruction statement,
the assembler consults this table to deter-
mine whether there is an available register
containing a suitable base address. If
more than one register will produce a valid
displacement (that is, a displacement not
exceeding U4095), the register whose con-
tents produce the smallest displacement
will be used. If two or more registers
will produce the same displacement, the
highest numbered register will be used. If
there 1is no register that will produce a
valid displacement, the corresponding base
register and displacement fields will be
set to zero; the statement will be flagged.

The sequence of instructions in Figure
16 illustrates the assignment of base reg-
isters. Instructions that 1load the reg-
isters are not shown.

LOADING REGISTERS

Several methods exist for loading gener-
al registers that will be used for base
addressing. However, for a program to be
relocated when it is loaded, at least one
of the base registers must be loaded with a
relocatable address, using either of the
instructions described below. The exact
method of wusing these instructions can
differ from the examples shown.

0000 PGMNME START 0
USING *,11
USING *+4096,12
USING #+8192,13
USING *+4500, 14
2000 ALPHA MR 1,2
5500 BETA SR 1,2
B1 BC 15,ALPHA
B2 BC 15, BETA
B3 BC 15, GAMMA
9750 GAMMA AR 1,2
DROP 1

B1--Although the effective address rep-
resented by ALPHA can be wholly
contained in the displacement field
without a base address, base reg-
ister 11 1is nonetheless assigned
since to use base register 0 would
make the program nonrelocatable
(see below). Because the value in

register 11 is zero, the displace-
ment will be 2000.
B2--Either register 12 or 14 would

produce valid displacements; reg-
ister 14 is used, however, because
it produces the smaller displace-
ment, which is 1000.

B3--Only register 13 can be used as the
base register; the calculated dis-
placenent is 1558.

1
|
|
|
I
|
|
|
I
I
|
|
|
I
|
|
|
|
|
|
|
|
|
|
|
|
|
I
|
|
!
I
|
|
|
!
|
|
|
|
|
|
|
|
|
I
J

[e . . o S e S— ———— — . — — — - — —— — T S_— — o—— —— — ———— S8 S S— — T S ——— — — —, . Fatinn et — o

Example of Coding with USING
and DROP Instructions

Figure 16.

Branch and Link (BALR or BAIL) Instruction

In the sequence below, the BALR instruc-
tion loads into register 5 the address of
the first storage location after the BALR
instruction. The USING instruction indi-
cates to the assembler that register 5
contains this location:

BALR 5,0
USING *,5

When using this method, the USING

instruction must immediately follow the
BALR instruction.

Assembler Instructions 37

Load Full-Word (L) Instruction

In the following coding, the value of
RGLOAD 1is generated as a constant. RGLOAD
is some symbol defined elsewhere in the
program. This value, which is also speci-

fied in the USING instruction, is inserted

into register 6 with the Load (L) instruc-
tion.
CNSTNT DC A (RGLOAD)
L 6 ,CNSTNT
USING RGLOAD, 6

Note that if the symbol RGLOAD was used
in the load instruction, register 6 would
contain the full-word 1located at RGLOAD
rather than the value of RGLOAD itself.

The Load instruction should precede the
USING instruction to insure that the
assumed contents of the register are, in
fact, in the register when the program is
executed. Otherwise, the assembler would
use the specified register as a base reg-
ister in machine instructions before the
load instruction was encountered. This
could lead to undesirable results when the
program is executed. Observe, however,
that the USING instruction need not immedi-
ately follow the load instruction, although
it is recommended that the two instructions
be consecutive.

If one register has been initialized by
the Branch-and-Link or Load instruction,
other registers may be loaded from it by
other instructions. Thus, in the following
example, the Load Address (LA) instruction
causes 4,080 to be added to the contents of
register 4 and the resulting total to be
placed in register 3:

BALR 4,0

USING HERE,U4
HERE LA 3,4080 (0,4)
USING HERE+4080,3

Note that the LA instruction could have
been written alternately as La 3,4080 (4).

Base Register Zerxo

The specification of general register 0
as a base register indicates that a quanti-
ty of =zero is to be used as the base

38

of the contents of
general register 0. Therefore, if general
register 0 is made available by a USING
instruction for base addressing, the pro-
gram will not be relocatable when there is
no other general register available for
referencing locations below location 4096.
Figure 17 illustrates a program that would
not be relocatable; any reference to AREA1
will require the use of register 0, since
register 2 cannot produce a valid displace-
ment. References to AREA2, however, will
make use of register 2.

address, regardless

This restriction does not prevent a
relocatable program from referring to
actual storage locations by means of abso-
lute expressions. For example, to refer-
ence a permanently allocated interrupt
location at storage address 24, the follow-
ing statement is perfectly correct:

LPSW 24
r |
| 0000 START 0 |
i USING *,0 |
I USING *+2048,2 |
| . |
| : |
| 2000 AREA1 DS 20H |
| . |
| : |
| 4000 AREA2 DS 10F |
L J

Figure 17. Example of Coding Using Base

Register Zero

PROGRAM LINKING INSTRUCTIONS

The program 1linking assembler instruc-
tions allow the programmer to symbolically
link independently assembled programs that
will be loaded and executed together. Sym-
bolic linkages between programs are created
by means of symbols that are defined in one
program and used as operands in another
program. Such symbols are termed 1linkage
symbols. A linkage symbol is called an
"entry-point symbol®™ in the program in
which it 1is defined; it is an "external
symbol®™ in the program in which it is used
as an operand. External and entry-point
symbols are also described in the section
"Symbols."

Every linkage symbol must be properly
identified as such in the source program.
A linkage symbol used as an external symbol
is identified in each using program by the
EXTRN instruction. A linkage symbol used

as an entry point must be identified in the
defining program by the ENTRY instruction.

A program name (defined in the name
field of a START statement) is also consid-
ered an entry point. A program name,
however, does not have to be identified as
an entry point by the ENTRY instruction.

ENTRY - Identify Entry-Point Symbol

The ENTRY instruction identifies an
entry-point symbol to the program. Each
such entry-point symbol (except a program
name) must be identified by a separate
ENTRY instruction. The format of the ENTRY
instruction statement is:

r T T
| Name |Operation|Operand
L IR i

b o e e o

¥ T T
| Not used|ENTRY |A relocatable symbol
L L L

The relocatable symbol in the operand
field is a symbol defined elsewhere in the
program, which may be used as an entry
point by other programs. A symbol that is
not defined in the program will be flagged
in the 1listing as an undefined symbol. Any
symbol in the name field will not be used.

An ENTRY statement must be immediately
preceded by either the START statement, an
EXTRN statement, oxr another ENTRY
statement. It cannot appear in a program
unless the START statement has been used.

If an ENTRY statement
placed or if the operand is
statement will not be used.
will appear in the listing.

is incorrectly
invalid, the
An error flag

In the following sequence, SQRT is iden-
tified as an entry-point symbol. Note that
the ENTRY statement appears immediately
after the START statement:

SUBRO START O
ENTRY SQRT
SORT STM 1,10,SAVE

EXTRN - Identify External Symbol

The EXTRN instruction identifies a lin-
kage symbol as an external symbol that will
be referred to in this program. Each such

external symbol must be identified by a
separate EXTRN instruction. The format of
the EXTRN instruction statement is:

r T F
| Name | Operation| Operand
L i L

R g ——

v T T
| Not used|EXTRN |A relocatable symbol
L L 41

The relocatable symbol in the operand
field must be defined in another program,
and identified in that program as an entry-
point symbol by either the START or ENTRY
instruction. Any symbol in the name field
will not be used.

An EXTRN statement must be immediately
preceded by either the START statement, an
ENTRY statement, or another EXTRN
statement. An EXTRN statement cannot
appear in a program unless the START state-
ment has been used. Not more than 14 EXTRN
statements may appear in a program. If
there are more than 14 statements, the
symbol in each excess statement will be
flagged as undefined.

If an EXTRN statement
placed or if the operand is
statement will not be used.
will appear in the listing.

is incorrectly
invalid, the
An error flag

As an example, if MTPLY is an entry-
point symbol in another program, the using
program identifies it as an external
symbol, thus:

EXTRN MTPLY

The correct use of an external symbol
elsewhere 1in a program is described below.

LINKING CONVENTIONS

The only way that an external symbol may
be referenced is to (1) identify it with
the EXTRN instruction, (2) create an
address constant from the external symbol,
(3) load the constant into a general reg-
ister, and (4) Dbranch to the address via
the register or use the register for base
addressing.

For example, to link to a program named
SINE, the following coding might be used:

Assembler Instructions 39

PROGA START 1000
EXTRN SINE
L 4 ,ADSINE
BALR 15,4
ADSINE DC A (SINE)

In this example, SINE would be given a
value of zero at assembly time; four bytes
of zeros would be reserved at the symbolic
location ADSINE. When the programs are
loaded, the relocating loader will add to
the four bytes of zeros the effective
address assigned to SINE.

If the programmer wished to link, say,
to a 1location 12 bytes past SINE, the
constant could be created as follows:

ADSINE DC A (SINE+12)

The relocating program loader will add
12 to the effective address of SINE and
place the sum in the four bytes at ADSINE.
The expression in which the external symbol
is used must be a relocatable expression.

Another method of linking to SINE+12 is:

START 1000
EXTRN SINE
USING SINE, U4
L 4,ADSINE
{ BAL 15,SINE+12 }
{ BAL 15,12 (0,4) 1}
{ BAL 15,12 (4) }
ADSINE DC A (SINE)
In the above sequence, either BAL

instruction can be used; if BAL 15,12 (0,4)
or BAL 15,12(4) is used, the USING state-
ment may be omitted, since implicit base
addressing is not involved.

A return branch from the program named
SINE may be made via the registers without
making any reference to a linkage symbol.
Thus, if the branch to SINE was:

40

BALR 10,4
the return branch may be:

BCR 15,10

Limitations on Program Linking

The order in which independently assem-—
bled programs are loaded generally deter-
mines the extent to which they can link to
one another. The program(s) containing the
entry point(s) must be loaded before the
program(s) that will reference these points
as external symbols. Note, however, that
program names are not affected by this
restriction. A program loaded first may
refer to programs loaded after it by their
names, using the facilities of the relocat-
ing loader. In addition, the use of relo-
cating loader control cards can remove all
restrictions on linking.

In the following situation, two indepen-
dently assembled programs, Program A and
Program B, are to be executed together.
Each program contains the coding shown in
Figure 18.

If Program A is 1loaded first, it can
refer to Program B only by its name, PROGB.
Program B however, can refer to Program A

by its name, PROGA, and its entry points,
LOOP and LINK. If the loading order is
reversed, then Program B can refer to

Program A only by its name, whereas Program
A can refer to Program B by its name and by
its entry points, SINE and COSINE.

Thus, if a common data area 1is to be
used by two independently assembled pro-
grams, the data area should be assembled
separately and then loaded first to enable
both programs to refer freely to it.

Program Relocation and Linking

Programs that will be linked together at
object time must be relocatable. To be
relocatable, a program must:

1. Contain all the information required
by the relocating loader.

2. Not use absolute expressions to refer
to any area that can be relocated.

T 1

Program A | Program B |

| i ‘i
PROGA START 0	PROGB START 0
ENTRY LOOP	ENTRY SINE
ENTRY LINK	ENTRY COSINE
i EXTRN SINE	EXTRN LOOP
EXTRN COSINE	EXTRN LINK
EXTRN PROGB	EXTRN PROGA
{ .	.
.	-
.	.
i L.OOP -—- -— SINE - -—-	
. .	
. .	
. .	
LINK —— —— COSINE —-— -	
[.	.
l) !) i	
ADSINE DC A (SINE) ADLOOP DC A (LOOP)	
ADCOSN DC A (COSINE) ADLINK DC A (LINK)	
ADPRGB DC A (PROGB) ADPRGA DC A (PROGR)	
L L J

Figure 18. Example of Program Linking

3. Identify all entry-point and external ASSEMBLER INSTRUCTION SUMMARY
symbols that will be used by the ENTRY
and EXTRN instructions, respectively.

4. Specify all address constants (type A Figure 19 contains all of the assembler
constants) that represent relocatable instructions and the contents of their name
expressions with a length of three ox and the operand fields.
four.

5. Not use general register =zero as a
base register.

Assembler Instructions 41

Reference Summary for Assembler Instructions

L

r]
| |
5 Y T i
| Name Field | Mnemonic | Operand Field |
b { + {
[| [_ |
| Not used | ICTL | The decimal value 1 or 25

| | | I
| An optional | START | A self-defining value, a comma, or blank |
e | |
Not used	ENTRY	A relocatable symbol
Not used	EXTRN	A relocatable symbol
Not used	CNOP	Two decimal values separated by a comma
I		
An optional	CCw	Four operands separated by commas
e		
An optional	DC	A single operand describing the constant
o T : :		
Not used	DROP	A simple absolute expression
An optional	DS	A single operand describing the area to be reserved
symbol		
I	{ I	
Not used	EJECT	Not used
A required	EQU	An expression

| symbol | | |
I | | |
| Not used | ORG | A relocatable expression

I | I I
Not used	SPACE	A decimal value not exceeding 63
Not used	USING	A relocatable expression and a simple absolute
		expression, separated by a comma
Not used	END	A relocatable expression, a comma, or blank

L L d

Figure 19. Assembler Instruction Summary

42

This section describes those operations
of the assembler program that have a direct
bearing on preparing programs for assembly.
Note that the use of the Basic Assembler is
described in detail in the publication IBM
System/360 Basic Programming Support Oper-—
ating Guide, Form C28-6557.

ASSEMBLER PROCESSING

The assembler is a two-phase program.
It is provided as two decks of cards, one
for each phase.

Phase -1

During the first phase, the assembler
produces a symbol +table (subsequently
described) and intermediate text for use in
the second phase. When the tape option is
used, the intermediate text (but not the
symbol table) is placed on tape. When the
IBM 1442-2 Card Read-Punch is used in a
card .option system, this intermediate text
is punched into the first 24 columns of
each source program card. Because the
intermediate +text punched into the source
card is still symbolic and pertains to the
statement portion of the particular card
only, the source program can be reassembled
without being repunched. When the IBM 1402
Card Read-Punch is used in a card option
system, this intermediate text is punched
into the first 24 columns of a new card
along with the first 47 columns of the
source statement, column 72, and the
Identification-Sequence Field (columns
73-80) . If Phase 1 1is successful, a 12
punch will appear in the first column of
every card containing intermediate text.

The input to the first phase consists of
the Phase 1 deck of the assembler followed
by the source program. If the card option
is used, blank cards must be available in
the punch unit, for the symbol table.

One card will be punched for every six
symbols defined in the program. The
maximum number of symbols that can be

defined is determined by main storage size,
as explained in the section "Symbol Table."
If the assembler is operating on a machine
with 8,192 storage bytes, approximately 50
blank cards will be sufficient +to handle

THE BASIC_ASSEMBLER PROGRAM

the maximum number of symbols allowed; for
16,384 bytes, 230 blank cards; for 32,768
bytes, 570 cards; and for 65,536 bytes, 690
cardse.

Phase 2

The assembler produces the program list-
ing and object program during the second
phase. The format of Phase 2 input varies
with the option used.

For the tape option, input is on cards
and tape. The card input consists of the
Phase 2 deck of the assembler. The tape
input is the tape created in Phase 1. If
the object program is +to be produced on
cards, blank cards should be provided at
the approximate ratio of 10 blank cards for
every 100 original source program cards.
If the object program is to be placed on
tape, blank cards are not required.

For card option, the second deck of the

assembler is loaded followed by the
repunched source program when the IBM
1442-2 Card Read-Punch is used, and by the

newly punched intermediate deck when the
IBM 1402 Card Read-Punch is used. If the
second phase does not immediately follow
the first phase, the symbol table will not
be in storage. Consequently, it will be
necessary to load the symbol table deck
produced by Phase 1. It is placed between
the assembler and source program decks.
(See Figure 20.)

When the IBM 1442-2 Card Read-Punch is
used, the assembler will accumulate the
assembled object program in storage. When
the storage area 1is full, and the next
input card is not blank, the operator will
be notified to insert blank cards in the
1442-2 Card Read-Punch for punching the
object program. As each blank card is
punched, it will be directed to the stacker
reserved for the object deck. If a blank
card is encountered when none is needed,
the card will be directed to the other
stacker, which is for the input cards. The
remaining source cards will then be read,
and the cycle repeated.

Operator intervention may be avoided, in
a 1442 card system, by interleaving blank
cards with the source program before start-
ing Phase 2 (see Figure 20) at approximate-
ly the following ratios:

The Basic Assembler Program 43

Approximate

Main Storage Ratio of Blank Cards to

Size Source Program Cards

8,192 15 blanks every 150
source cards

16,384 80 blanks every 800
source cards

32,384 200 blanks every 2000
source cards

65,536 450 blanks every 4500

source cards

Blank Cards

Source Program
{continued)

Blank Cards

s
Source Program
Table *

*Only required when Phase 2 does not immediately follow Phase 1.

Symbol

Assembler
Deck 2

Figure 20. Phase 2 Input for Use with IBM

1442-2 Card Read-Punch

If +these ratios are observed, it should
not be necessary for the operator to inter-
vene and the time required to assemble the
program will be reduced.

Blank cards may also be interleaved for
Phase 1; their presence will not affect
this phase of the assembly, except for time
required to read the blank cards.

When +the IBM 1402 Card Read-Punch is
used, the assembler will punch an object
program card as soon as one is assembled in
storage.

PROGRAM LISTING

A program listing (if requested) will be
produced for every assembly, provided an
IBM 1443 Model 2 Printer, IBM 1403 Printer,
or an IBM 1052 Printer-Keyboard is availa-
ble. Each statement in the source program
will appear on a separate 1line of the
listing unless the suppress option is used.
If the suppress option is used, only those

statements containing errors will be
listed. The programmer avails himself of
the suppress option by indicating to the

machine operator that he does not wish a
listing. More detailed information on the
suppress option is contained in the des-
cription of "Configuration Cards"™ in the
publication IBM System/360 Basic Program-
ming Support Operating Guide for Basic
Assembler and Utilities, Form C28-6557.

44

The program listing will consist of five
fields, arranged from 1left to right, as
follows.

Flags: This field (print positions 1-10)
will contain, left-justified, a flag(s) to
signal possible errors in the statement.
Each flag will be represented by a single
alphabetic character. See the topic "Error
Notification.”

Location Counter: This field (print posi-
tions 12-17) will contain the Location
Counter value (in hexadecimal) assigned to
the statement.

Assembled Output: This field (print posi-
tions 20-39) will contain the hexadecimal
representation of the binary digits gener-
ated from the statement.

Source Statement: This field (print posi-
tions 40-111) will contain a column-for-
column reproduction of the contents of the

source statement. For the 1402
card-option, where statements begin in
column 1, only columns 1-47 will be repro-
duced.

Identification-Sequence Field: This field
(print positions 113-119) will be a repro-
duction of columns 73-80 of the source
card.

ERROR NOTIFICATION

The flags produced on the program list-
ing for various source program errors are
shown in the following 1list. Any error
that causes the assembler to either a)
ignore the instruction or b) assemble zeros
in the operand field of the instruction
will halt further evaluation of the
instruction for other errors. Therefore,
when correcting such an error, the user is
advised to check for any other errors in
the instruction.

Cause

Expression not simply relocatable.
START, EXTRN, ENTRY or ICTL out of
order.

Location counter overflow.

More than 14 EXTRNs.

Operand field format error or self-
defining value in operand field too
large.

DC, D, or E range error.

Expression can not be mapped into
base and displacement.

Symbol table full.

Relocation 1list dictionary buffer
table full.

Name field error.

Multiple defined symbol.

Flag
*

*

*

HEQ o

Rt ®NQG H®

*

* N Statement not used. This £flag .is
normally accompanied by other flags
which define the reason the
statement was not used. If it
appears alone, it indicates that the
statement was completely extraneous.
If the flag (N) appears by itself
when using a 1442 card option
system, it indicates that the source
statement has been modified since a
previous assembly but the intermedi-
ate text field (columns 1-24) has
not been left blank. See section
"Reassembly Procedure.”

Invalid OP code.

Expression not absolute.
Specification error.

Value too large.

Undefined symbol.

ORG or EQU symbol not previously
defined.

Unused mask bits (37-39) in CCW not
Zexo.

Duplicate entry statement.

Negative expression.

Column 72 not blank.

*
*

*
NKX = <ScHWwHO

Note: The #* indicates those flags which
may be punched in the intermediate text
cards produced by Phase 1 in card-option
systems. For systems without <the ability
to produce program 1listings, these flags
provide a limited form of error notifica-
tion. It should be noted that the interxr-
mediate text cards produced by Phase 1
contain an A, B, or C in column 1 if they
are error free. Cards in error have a J,
K, L, or M in column 1. Error flags are
located in columns 23-24 on cards with a J
or K in column 1. The error flags appear
in columns 21-24 on cards beginning with L
or M.

OBJECT PROGRAM OUTPUT

The object program is generated by the
assembler as a deck of cards or card images
on tape acceptable as input to the loaders.
It is the programmer's responsibility. to
inform the operator about the medium (cards
or tape) on which the object deck is to be
placed. Detailed information on this
option can be found in the publication IBM
System/360 Basic Programming Support Oper-

External Symbol Dictionary (ESD) Card

An ESD card is generated for each START,
ENTRY, and EXTRN statement. The ESD card
contains coded information that is used by
the relocating loader.

Text (TXT) Card

The Text cards contain the output assem—
bled from the source program. Up to 56
contiguous bytes of output are punched into
each Text card. Each Text card also con-
tains the storage address at which the
first byte in the card is to be loaded.

Relocation List Dictionary (RLD) Card

The purpose of RLD cards is to indicate
to the relocating loader those address
constants that will have to be changed if
the program is loaded at a location differ-
ent from its assembled location. Address
constants of this type are defined in the
souxrce program by (1) relocatable expres-

sions in type A DC statements and (2)
relocatable expressions specifying data
addresses in CCW statements; that is, the

second operands of CCW statements. Up to
13 address constants are punched into each
RID card.

The maximum number of address constants
(that is, the type described above) that
can be defined in a program is determined
by the size of main storage thus:

Main Storage Size Maximum Number of

(in_Bytes) Address Constants
8,192 30
16,384 60
32,768 120
65,536 240

Load End Card

ating Guide, Form C28-6557. Four types of
cards constitute the object program deck.
It should be noted that detailed descrip-
tions of each of the four types of cards
may be found in the publication IBM
Systen/360 Basic .Programming Support Basic
Utilities, Form C28-6505. General descrip-
tions of each follow.

This card is produced when the assembler
encounters the END statement. The Load End
card also contains the address to which
control is to be transferred when the
program has been loaded, if one was speci-
fied in the END statement.

The Basic Assembler Program 45

PATCHING OBJECT PROGRAMS

The programmer may modify his object
program at execution time through the use
of a Replace card. This card is completely

The maximum size of the symbol table
and, hence, the maximum number of symbols
that can be defined in a program is deter-
mined by the size of main storage, thus:

described in the publication IBM System/360 Approximate
Basic Programming Support Basic Utilities, Main Storage Size Approximate Number of
Form C28-6505. (in Bytes) Symbols in Table
8,192 275
16,384 1299
32,768 3347
REASSEMBLY PROCEDURE 65,536 4094y

A special reassembly procedure is pro-
vided for assemblies using the IBM 1442-2
Card Read-Punch without tape. This proce-
dure will enable a partially or completely
assembled program to be reassembled in less
time than a new assembly would require.

The program that is to use the reassem-
bly procedure may be changed in any manner.
New symbols can be added and existing ones
redefined, provided that the symbol table
is not full. New statements also can be
included in the program.

The reassembly procedure is faster than
the new assembly procedure because the
assembler does not have to repunch the

first 24 columns of those source program
cards whose statements have not been
changed. Hence, the fewer the changes, the

faster the assembly.

The input to the first phase of a
reassembly consists of the first deck of
the assembler, followed in oxder by the
previously punched symbol table decks, the
source program with any changes, and the
necessary number of blank cards into which
a new symbol table will be punched. Note
that any changed source program cards must
be repunched, leaving columns 1-24 blank.
This also applies to source program cards
that did not have a 12-punch in column 1 as
the result of the previous assembly.

The Phase 2
reassembly is
phase of a new assembly (see topic
2") .

input and output of a
identical with the second
"Phase

SYMBOL TABLE

For every program assembled, a table is
created of the symbols in that program.
This is the symbol table; each entry in the
table records the attributes and other
pertinent information about a particular
symbol.

46

All symbols defined in a program
(including the program name and external
symbols) are entered in the symbol table

providing the following conditions are met:

1. The symbol table is not full.

2. The symbol conforms to the rules gov-
erning symbol specifications (see the
topic "Symbols") .

3. The symbol does not appear in the name
field of an assembler instruction that
does not allow the specification of a
name. See Figure 19 for a list of
these instructions.

4. The symbol is not already contained in
the symbol table. For multiple
defined symbols, only the first defi-
nition of +the symbol results in an
entry in the symbol table. Additional
definitions of the same symbol are
simply flagged.

Any reference in the operand field to a
symbol not in +the symbol table will be
considered undefined; the statement will be
flagged. An undefined symbol in a machine
instruction statement will cause the entire
instruction (except the operation code) to
be set to zero.

Symbol Table Overflow

If there are undefined symbols because
the symbol table is full, three corrective
procedures are available:

1. The assembled object deck produced by
the assembler can be corrected with
Replace (REP) cards before loading the
program. Replace cards, a feature of
the loaders, are used to alter an
object deck on a byte-for-byte basis.

2. Reduce the number of symbols and then
reassemble or run a new assembly.

3. Divide the program into segments and
assemble each program segment separ-
ately.

Relative addressing may be used to
reduce the number of symbols defined in a
program. For example, the following
sequence:
BEGIN LA 3,10
LA 1,0

LOOP L 2,AUGEND (1)
A 2,ADDEND (1)
ST 2,SUM (1)
1A 1,4(1)
BCT 3,LO0P
BC 15,00T

AUGEND DS 10F

ADDEND DS 10F

SUM DS 10F

out LR 3,1

could also be written:

BEGIN

AUGEND
outT

LA
LA
L
A
ST
La
BCT
BC
DS
LR

3,10

1,0
2,AUGEND (1)
2,AUGEND+40 (1)
2, AUGEND+80 (1)
1,4 (1)

3,*-16

15,0UT

30F

3,1

thus eliminating four symbols. Note that
the branch address of the BC instruction is
given relative to AUGEND rather than the
Location Counter, since any boundary align-
ment caused by the DS statement would
change the number of bytes between the BC
and LR instruction.

Note: Using the IBM 1442-2 Card Read-—-Punch
reassembly procedure, the programmer must
eliminate all undefined symbols from those
cards that refer +to such symbols in the
operand field. The cards in which the

undefined symbols appear in the name field
can be left as they are. Since the symbol
table is full, no new symbols may be

defined for the reassembly.

If, in addition to reducing the number
of symbols, the programmer wants to replace
defined symbols (that is, symbols in the
symbol table) with new symbols, the entire
source program deck, with changes, must
(for the IBM 1442-2 Card Read-Punch card
option) be reproduced with columns 1-24
blank prior to assembling the program. For
the tape option or the IBM 1402 Card
Read-Punch card option, the source deck
with the desired changes can be used as is.

The Basic Assembler Program 47

APPENDIX A.

CHARACTER CODES

] T L] v T 1
| 8-Bit | Character Set | | | |
] BCD | Punch | | Hexa- | Printer

| Code | Combination | Decimal | Decimal | Graphics |
; ¢ + + t {
| 00000000 | 12,0,9,8,1 | 0 | 00 |

00000001	12,9,1	1 { 01		
00000010	12,9,2	2	02	
oo0o000O11	12,9,3	3	03	

00000100	12,9,4	b	ou	
00000101	12,9,5	5	05	
00000110	12,9,6	6 } 06		

{ 00000111 | 12,9,7 | 7 | 07 | |
[00001000 | 12,9,8] 8 i 08 |

| o©o0o001001 | 12,9,8,1 | 9 | 09 |

| 00001010 | 12,9,8,2 | 10 | 0A | |
| oo0o001011 | 12,9,8,3 I 11 | OB] {
| 00001100 | 12,9,8,4] 12 | ocC |

| 00001101 | 12,9,8,5 | 13 | 0D | |
| o©o0o001110 | 12,9,8,6 14 | OE |

oo0o001111	12,9,8,7 15	oF		
00010000	12,11,9,8,1 16	10		
00010001	11,9,1	17	1	
oo0o010010	11,9,2	18	12	
oo0o010011	} 11,9,3	19	13	

00010100	11,9,4 20	14		
o0o0o010101	11,9,5 21	15		
oo0010110	11,9,6 22	16 I		
00010111	11,9,7	23	17	
00011000	11,9,8	24	18	

| 00011001 | 11,9,8,1 | 25 | 19 | |
| 00011010 | 11,9,8,2] 26 | 1A | [
| oo0011011 | 11,9,8,3 | 27 | 1B [|
| oo0o011100 | 11,9,8,4] 28 | 1C |

00011101	11,9,8,5	29	1D I	
oc0t1110	11,9,8,6	30	1E	
oo0o011111	} 11,9,8,7	31	1F	
00100000	11,0,9,8,1	32	20]
00100001	0,9,1	33	21	

| o0o0100010 | 0,9,2 | 34 | 22 | |
| oo01t100011 | 0,9,3 | 35 | 23 |

| o00100t00 | 0,9,4 | 36 | 24 | |
| 00100101 | 10,9,5 | 37 | 25 | |
{ 00100110 | 0,9,6 | 38 | 26 | |
| oo100t11 | 0,9,7 | 39 | 27 | [
| 00101000 | 0,9,8 | 40 | 28 |

| o0o0101001 | 0,9,8,1 | 41 | 29 |

o00101010	0,9,8,2	42	22	
o0101011	0,9,8,3	43	2B	
oo101100	0,9,8,4	44	2C I	
{ 00101101	0,9,8,5] 45	2D []		
oo0101110	0,9,8,6	46	2E	
00101111	0,9,8,7	47	2F (
00110000	12,11,0,9,8,1	48	30	[
001100017	9,1	49	31	

| 00110010 | 9,2 | 50 | 32 | |
L L L L L J

48

¥ T T T
| 8-Bit | Character Set | |

| BCD | Punch | Hexa- | Printer

| Code | Combination Decimal | Decimal | Graphics

b } : ¢ +

| 00110011 | 9,3 | 59 | 33 i I
{ 00110100 | 9,4 52 | 34 I

| 00110101 | 9,5 53 | 35 I

| 00110110 | 9,6 54 | 36 i

| 00110111 | 9,7 55 | 37 | |
| 00111000 | 9,8 | 56 | 38 | I
| 00111001 | 9,8,1 [57 | 39 I I
00111010	9,8,2	58	3a]
00111011	9,8,3 I 59	3B	
00111100	9,8,4 i 60	3C	
oo111101	9,8,5 i 61 3D]		
00111110	9,8,6	62 3E 1	
00111111	9,8,7	63 3F I	
I 01000000 | I 64 40 blank

| 01000001 | 12,0,9,1 | 65 41 I
| 01000010 | 12,0,9,2 | 66 42 |
| o100001Y | 12,0,9,3 | 67 43 |
| 01000100 | 12,0,9,4 | 68 4y I 1
| 01000101 | 12,0,9,5 1 69 | 45 |
| 01000110 | 12,0,9,6 | 70 | 46 I
| 01000111 | 12,0,9,7 | 71 | 47 I
01001000	12,0,9,8 72	u8	
01001001	12,8,1 73	49 I	
01001010	12,8,2 7%	4A I	
01001011	12,8,3 1 75	uB	- (period)
01001100	12,8,4 I 76	4cC	<

| 01001101 | 12,8,5 77 | 4D | [
| 01001110 | 12,8,6 78 | 4E | + |
[01001111 | 12,8,7 79 | u4F | |
| 01010000 | 12 80 50 3 |
| 01010001 | 12,11,9,1 81 51 |
| 01010010 | 12,11,9,2 82 52

| 01010011 | 12,11%,9,3 83 53

| 01010100 | 12,11,9,4 84 54

| o01010101 | 12,11,9,5 | 85 55

| 01010110 | 12,11,9,6 | 86 56 1 i
| o01010111 | 12,11,9,7 i 87 57

| 01011000 | 12,11,9,8 88 58

| 01011001 | 11,8,1 89 59

| 01011010 | 11,8,2 20 5A

| 01011011 | 11,8,3 91 5B $

| 01011100 | 11,8,4 I 92 5C * 1
| 01011101 | 11,8,5 | 93 5D) |
| otot11110 | 11,8,6 | 94 SE |
| 01011111 | 11,8,7 | 95 | 5F 1 i
| 01100000 | 11 1 96 | 60 | - I
| 01100001 | 0,1 | 97 61 | 7

| 01100010 | 11,0,9,2 | 98 62 |

| 01100011 | 11,0,9,3 I 99 63 I

| ot1100100 | 11,0,9,4 | 100 | 64 |

| ©1100101 | 11,0,9,5 | 101 65 1 I
| 01100110 | 11,0,9,6 | 102 66 | |
| ot11001t1 | 11,0,9,7 | 103 67 | |
} 01101000 |} 11,0,9,8 { 104 68 |

| 01101001 | 0,8,1 | 105 69 I

| 01101010 | 12,11 | 106 6A |

| 01101011 | 0,8,3 | 107 | 6B | + (comma)

L L 1 1

Appendix A

49

8-Bit

Character Set

| | i | I I
| BCD | Punch | | Hexa- | Printer

| Code | Combination | Decimal | Decimal | Graphics |
b $ ¢ t t {
| 01101100 | 0,8,4 | 108 | 6C | % I
01101101	0,8,5	109	6D	
01101110	0,8,6	110	6E I	
01101111t	0,8,7	111	6F]	
01110000	12,11,0	112	70	
{ 01110001	12,11,0,9,1	113	71	
ot110010	12,11,0,9,2	114 i 72		
o0111001%t	12,11,0,9,3	115	73	
01110100	12,11,0,9,4	116	74	
o1t10101	12,11,0,9,5	117	75	
©o11101t0	12,11,0,9,6	118 I 76		
{ 01110111 | 12,11,0,9,7 | 119 | 77 |

| o1111000 | 12,11,0,9,8 | 120 | 78 | |
| ott11001 | 8,1 I 121 | 79 | [
| 01111010 | 8,2 | 122 | 1A i I
| o111101t | 8,3 | 123 | 7B | # i
{ 01111100 | 8,4 | 128 | 7C | a |
| 01111101 | 8,5 | 125 i 7D | * (quote) |
| 01111110 | 8,6 | 126 | 7TE | =

| o1111111 | 8,7 | 127 | TF | |
| 10000000 | 12,0,8,1 | 128 | 80 |

| 10000001 | 12,0,1 | 129 | 81 | [
| 10000010 | 12,0,2 i 130 | 82 |

{ 10000011 | 12,0,3 | 131 | 83 | |
| 10000100 | 12,0,4 | 132 84 | |
| 10000101 | 12,0,5 | 133 85 |

| 10000110 | 12,0,6 | 134 86 |

| 10000111 | 12,0,7 | 135 | 87 [|
| 10001000 | 12,0,8 | 136 | 88 |

| 10001001 | 12,0,9 | 137 | 89 | |
| 10001010 | 12,0,8,2 | 138 8A |]
| 10001011 | 12,0,8,3 | 139 8B |

| 10001100 | 12,0,8,4 | 140 8C | |
| 10001101 | 12,0,8,5 | 141 | 8D | |
{ 100011710 | 12,0,8,6 | 142 | 8E | |
| 10001111 | 12,0,8,7 | 143 | S8F | [
| 10010000 | 12,11,8,1 | 144 | 90 | |
| 10010001 | 12,11,1 | 145 | 91 | I
10010010	12,11,2	146	92	
10010011	12,11,3	147	93	
10010100	12,11,4	148] 94		
10010101	12,11,5	149	95	
{ 10010110 | 12,11,6 | 150 | 96 |

| 10010111 | 12,11,7 | 151 | 97 | |
| 10011000 | 12,11,8 | 152 | 98 |

{ 10011001 | 12,11,9 | 153 | 99 | |
| 10011010 | 12,11,8,2 | 154 | 9A | |
| 100t1011 | 12,11,8,3 | 155 | 9B |]
{ 10011100 | 12,11,8,4 | 156 | 9C | |
| 10011101 | 12,11,8,5 | 157 | 9D | |
{ 10011110 | 12,11,8,6 | 158 | 9E | |
10011111	12,11,8,7	159	9F	
10100000	11,0,8,1	160	A0	
10100001	11,0,1	161	A1	
10100010	11,0,2 I 162	A2		
{ 10100011t	11,0,3	163	A3	
10100100	11,0,4	164	A4	
L L L L i J

50

8-Bit

Character Set

| | I I i

| BCD } Punch | | Hexa- | Printer
| Code | Combination | Decimal | Decimal | Graphics
b + f ¥ }

| 10100101 | 11,0,5 | 165 | A5 |

| 10100110 | 11,0,6 | 166 | A6 |

| 10100111 | 11,0,7 | 167 | A7 |

| 10101000 | t1,0,8 | 168 | A8 |

| 10101001 | 11,0,9 | 169 | A9 |

| 10101010 | 11,0,8,2 | 170 | AA |

| 10101011 | 11,0,8,3 | 171 | AB [

| 10101100 | 11,0,8,4 | 172 | AC |

| 101011017 | 11,0,8,5 | 173 | AD |

| 10101110 | 11,0,8,6 | 174 | AE |

{ 101011117 | 11,0,8,7 | 175 | AF |

| 10110000 | 12,11,0,8,1 | 176 | BO |

| 10110001 | 12,11,0,1 | 177 | B1 |

| 10110070 | 12,11,0,2 | 178] B2 |

| 10110011 | 12,11,0,3] 179 | B3 |

| 10110100 |} 12,11,0,4 | 180 | B4 |

{ 10110101 | 12,11,0,5 | 181 | BS |

| 10110110 | 12,11,0,6 | 182 | B6 |

| 10110111 | 12,11,0,7 | 183 | B7 |

| 10111000 | 12,11,0,8 | 184 | B8 |

| 10111001 | 12,11,0,9 | 185 | B9 |

| 10111010 | 12,11,0,8,2 | 186 | BA |

| 1011101t | 12,11,0,8,3 | 187 | BB |

{ 10111100 | 12,11,0,8,4 | 188 { BC |

| 10111107 | 12,11,0,8,5 | 189 | BD |

{ 10111110 | 12,11,0,8,6 | 190 | BE

| 1011119t | 12,11,0,8,7 | 191 | BF |

| 11000000 | 12,0 | 192 | Cco |

| 11000001 | 12,1 | 193 | Cc1 | A
| 11000010 | 12,2 | 194 | Cc2 | B
{ 11000011 | 12,3 | 195] c3 | C
| 11000100 | 12,4 | 196 | Cch | D
{ 11000101 | 12,5 | 197 | Cc5 | E
| 11000110 | 12,6 | 198 | Cé | F
| 1100011t | 12,7 | 199 | Cc7 | G
| 11001000 | 12,8 | 200 | Cc8 | H
| 11001001 | 12,9 | 201 | Cc9 | T
| 11001010 | 12,0,9,8,2 i 202 | CA |

{ 11001011 | 12,0,9,8,3 | 203 | CB |

| 11001100 | 12,0,9,8,4 | 204 | cc |

| 11001101 | 12,0,9,8,5 i 205 | CD |

{ 11001110 | 12,0,9,8,6 | 206 | CE |

{ 11001191 | 12,0,9,8,7 | 207 | CF |

| 11010000 | 11,0 | 208 | DO |

| 11010001 | 11,1 | 209 | D1 | J
| 11010010 | 11,2 | 210 | D2 | K
| 11010011 | 11,3 | 211 | D3 | L
| 11010100 | 11,4 | 212 | D44 | M
| tto10101 | 11,5 | 213 { D5 | N
{ 11010110 | 11,6] 214 | D6 | O
| t1010111 | 11,7 | 215 | D7 | P
| 11011000 | 11,8 | 216 | D8 |
| 11011001 | 11,9 | 217 | D9 | R
| 11011010 | 12,11,9,8,2 | 218 | DA |

| 110t1011 | 12,11,9,8,3 | 219 | DB |

| 11011100 | 12,11,9,8,4 | 220 | DC |

| 11011101 | 12,11,9,8,5 | 221 | DD |

L L L 1 1

b e s e S —— —— ———— — — —— ———— — ——— — — ———— ——————— ———— — — " S— — — — ——— — — ———— —— — — —— — ., —— i w——— —

Appendix A

51

8-Bit

Character Set

| i | I i i
{ BCD | Punch | | Hexa- | Printex |
[Code | Combination | Decimal | Decimal | Graphics |
F { { t t {
{ 11011110 | 12,11,9,8,6 | 222 | DE |
o111	12,11,9,8,7	223	DF	
11100000	0,8,2	224	EO	
11100001	11,0,9,1	225	E1	
11100010	0,2	226	E2	S
11100017	0,3	227	E3	T
11100100	0,4	228	EY4	U
11100101t	0,5	229 (ES	v	
{ 11100110	0,6	230	E6	W
11100117	0,7	231	E7	X
{ 11101000	0,8	232	E8	¥
{ 11101001	0,9	233	E9	2z
{ 11101010	11,0,9,8,2	234	EA	
11101017	} 11,0,9,8,3	235	EB	
11101100	11,0,9,8,4	236	EC	
{ 11101101t	11,0,9,8,5	237	ED	i
1110t170	11,0,9,8,6	238	EE	i
11101111	11,0,9,8,7	239	EF	I
11110000	©	260	FO	0 1
11110001	1	241	F1	1
11110010	2	282	F2	2
11110011	3	243	F3	3
11110100	&4	244	Fu	4
11110101 { 5	245	F5	5	
11110110	6 246	F6	6	
11110111	7 247	F17	7	
11111000	8 248	F8	8	
11111001	9	249	F9	9
11111010	12,11,0,9,8,2 250	FA		
11111011	12,11,0,9,8,3 251	FB		
11111100	12,11,0,9,8,4 252	FC]		
11111101} 12,1%,0,9,8,5 253	FD	i		
! 11111110	12,11,0,9,8,6 254	FE		
1111111	12,11,0,9,8,7 255	FF	l	
L L A4 L]

52

APPENDIX B.

HEXADECIMAL-TO-DECIMAL CONVERSION

The table in this appendix provides for
direct conversion of decimal and hexadeci-
mal numbers in these ranges:

Hexadecimal Decimal

000 to FFF 0000 to 4095

For numbers outside the range of the
table, add the following values to the
table figures:

0 1 2 3 4 5 [} 7

000 0000 0001 0002 0003 0004 0005 0006 0007
010 0016 0017 0018 0019 0020 0021 0022 0023
020 0032 0033 0034 0035 0036 0037 0038 0039
030 0048 0049 0050 0051 0052 0053 0054 0055

040 0064 0065 0066 0067 0068 0069 0070 0071
050 0080 0081 0082 0083 0084 0085 0086 0087
060 0096 0097 0098 0099 0100 0101 0102 0103
070 0112 0113 0114 0115 0116 0117 0118 0119

080 0128 0129 0130 0131 0132 0133 0134 0135
090 0144 0145 0146 0147 0148 0149 0150 0151
0A0Q 0160 0161 0162 0163 0164 0165 0166 0167
0BO 0176 0177 0178 0179 0180 0181 0182 0183

ocCo 0192 0193 0194 0195 0196 0197 0198 0199
oDo 0208 0209 0210 0211 0212 0213 0214 0215
0EO 0224 0225 0226 0227 0228 0229 0230 0231
OF0 0240 0241 0242 0243 0244 0245 0246 0247

100 0256 0257 0258 0259 0260 0261 0262 0263
110 0272 0273 0274 0275 0276 0277 0278 0279
120 0288 0289 0290 0291 0292 0293 0294 0295
130 0304 0305 0306 0307 0308 0309 0310 0311

140 0320 0321 0322 0323 0324 0325 0326 0327
150 0336 0337 0338 0339 0340 0341 0342 0343
160 03562 0353 0354 0355 0356 0357 0358 0359
170 0368 0369 0370 0371 0372 0373 0374 0375

180 0384 0385 0386 0387 0388 0389 0390 0391
190 0400 0401 0402 0403 0404 0405 0406 0407
1A0 0416 0417 0418 0419 0420 0421 0422 0423
1B0 0432 0433 0434 0435 0436 0437 0438 0439

1Co 0448 0449 0450 0451 0452 0463 0454 0455
1Do 0464 0465 0466 0467 0468 0469 0470 0471
1E0 0480 0481 0482 0483 0484 0485 0486 0487
1F0 0496 0497 0498 0499 0500 0501 0502 0503

8

0008
0024
0040
0056

0072
0088
0104
0120

0136
0152
0168
0184

0200
0216
0232
0248

0264
0280
0296
0312

0328
0344
0360
0376

0392
0408
0424
0440

0456
0472
0488
0504

1000
2000
3000
4000
5000
6000
7000
8000
9000
A000
B00O
Cc000
D000
E000
F000

9 A

0009 0010
0025 0026
0041 0042
0057 0058

0073 0074
0089 0090
0105 0106

0121 0l22
0137 0138
0153 0154
0169 0170
0185 0186
0201 0202
0217 0218
0233 0234

0249 0250

0265 0266
0281 0282
0297 0298

0313 0314
0329 0330
0345 0346
0361 0362
0377 0378

0393 0394
0409 0410
0425 0426
0441 0442

0457 0458
0473 0474
0489 0490
0505 0506

Hexadecimal

B

0011
0027
0043
0059

0075
0091
0107
0123

0139
0155
0171
0187

0203
0219
0235
0251

0267
0283
0299
0315

0331
0347
0363
0379

0395
0411
0427
0443

0459
0475
0491
0507

Decimal

4096

8192
12288
16384
20480
24576
28672
32768
36864
40960
45056
49152
53248
57344
61440

C D

0012 0013
0028 0029
0044 0045
0060 0061

0076 0077
0092 0093
0108 0109
0124 0125

0140 0141
0156 0157

0172 0173
0188 0189
0204 0205
0220 0221
0236 0237

0252 0253

0268 0269
0284 0285
0300 0301
0316 0317

0332 0333

0348 0349
0364 0365
0380 0381
0396 0397
0412 0413
0428 0429

0444 0445

0460 0461
0476 0477
0492 0493
0508 0509

Appendix B

E

0014
0030
0046
0062

0078
0094
0110
0126

0142
0158
0174
0190

0206
0222
0238
0254

0270
0286
0302
0318

0334
0350
0366
0382

0398
0414
0430
0446

0462
0478
0494
0510

F

0015
0031
0047
0063

0079
0095
0111
0127

0143
0159
0175
0191

0207
0223
0239
0255

0271
0287
0303
0319

0335
0351
0367
0583

0399
0415
0431
0447

0463
0479
0495
0511

53

200
210
220
230

240
250
260
270

280
290
2A0
2B0

2Co
2Dh0
2E0
2F0

300
310
320
330

340
350
360
370

380
390
3A0
3B0O

3co
3D0
3E0
3F0

400
410
420
430

440
450
460
470

480
490
4A0
4B0

4C0
4D0
4E0
4F0

500
510
520
530

540
550
560
570

580
580
5A0
5BO

5Co
5D0
SE0
SFo0

54

0512
0528
0544
0560

0576
0592
0608
0624

0640
0656
0672
0688

0704
0720
0736
0752

0768
0784
0800
0816

0832
0848
0864
0880

0896
0912
0928
0944

0960
0976
0882
1008

1024
1040
1056
1072

1088
1104
1120
1136

1152
1168
1184
1200

1216
1232
1248
1264

1280
1296
1312
1328

1344
1360
1376
1392

1408
1424
1440
1456

1472
1488
1504
1520

0513
0529
0545
0561

0577
0593
0609
0625

0641
0657
0673
0689

0705
0721
0737
0753

0769
0785
0801
0817

0833
0849
0865
0881

0897
0913
0929
0945

0961
0977
0993
1009

1025
1041
1057
1073

1089
1105
1121
1137

1153
1169
1185
1201

1217
1233
1249
1265

1281
1297
1313
1329

1345
1361
1377
1393

1409
1425
1441
1457

1473
1489
1505
1521

0514
0530
0546
0562

0578
0594
0610
0626

0642
0658
0674
0690

0706
0722
0738
0754

0770
0786
0802
0818

0834
0850
0866
0882

0898
0914
0930
0946

0962
0978
0994
1010

1026
1042
1058
1074

1090
1106
1122
1138

1154
1170
1186
1202

1218
1234
1250
1266

1282
1298
1314
1330

1346
1362
1378
1394

1410
1426
1442
1468

1474
1490
1506
1522

0519
0531
0547
0563

0579
0595
0611
0627

0643
0659
0675
0691

0707
0723
0739
0755

0771
0787
0803
0819

0835
0851
0867
0883

0899
0915
0931
0947

0963
0979
0995
1011

1027
1043
1059
1075

1091
1107
1123
1139

1155
1171
1187
1203

1219
1235
1251
1267

1283
1299
13156
1331

1347
1363
1379
1395

1411
1427
1443
1459

1475
1491
1507
1523

4

0516
0532
0548
0564

0580
0596
0612
0628

0644
0660
0676
0692

0708
0724
0740
0756

0772
0788
0804
0820

0836
0852
0868
0884

0900
0916
0932
0948

0964
0980
0996
1012

1028
1044
1060
1076

1092
1108
1124
1140

1156
1172
1188
1204

1220
1236
1252
1268

1284
1300
1316
1332

1348
1364
1380
1396

1412
1428
1444
1460

1476
1492
1508
1524

5

0517
0533
0549
0565

0581
0597
0613
0629

0645
0661
0677
0693

0709
0725
0741
0767

0773
0789
0805
0821

0837
0853
0869
0885

0901
0917
0933
0949

0965
0981
0997
1013

1029
1045
1061
1077

1093
1109
1128
1141

1157
1173
1189
1205

1221
1237
1253
1269

1285
1301
1317
1333

1349
1365
1381
1397

1413
1429
1445
1461

1477
1493
1509
1525

6

0518
0634
0550
0566

0682
0598
0614
0630

0646
0662
0678
0694

0710
0726
0742
07568

0774
0790
0806
0822

0838
0854
0870
0886

0902
0918
0934
0950

0966
0982
0998
1014

1030
1046
1062
1078

1094
1110
1126
1142

1158
1174
1190
1206

1222
1238
1254
1270

1286
1302
1318
1334

1350
1366
1382
1398

1414
1430
1446
1462

1478
1494
1510
1526

7

0519
0535
0551
0567

0583
0599
0615
0631

0647
0663
0679
0695

0711
0727
0743
0759

0775
0791
0807
0823

0839
0855
0871
0887

0903
0919
0935
0951

0967
0983
0999
1015

1031
1047
1063
1079

1095
1111
1127
1143

1159
1175
1191
1207

1223
1239
1256
1271

1287
1303
1319
1335

1351
1367
1383
1399

1415
1431
1447
1463

1479
1495
1511
1527

8

0520
0536
0552
0568

0584
0600
0616
0632

0648
0664
0680
0696

0712
0728
0744
0760

0776
0792
osos
0824

0840
0856
0872
0888

0904
0920
0936
0952

0968
0984
1000
1016

1032
1048
1064
1080

1096
1112
1128
1144

1160
1176
1192
1208

1224
1240
1256
1272

1288
1304
1320
1336

1352
1368
1384
1400

1416
1432
1448
1464

1480
1496
1612
1528

0521
0537
0553
0569

0585
0601
0617
0633

0649
0665
0681
0697

0713
07289
0745
0761

0777
0793
0809
0825

0841
0857
0873
0889

0905
0921
0937
0953

0969
0985
1001
1017

1033
1049
1065
1081

1097
1113
1129
1145

1161
1177
1193
1209

12256
1241
12567
1273

1289
1305
1321
1337

1353
1369
1385
1401

1417
1433
1449
1465

1481
1497
1513
1629

0522
0538
0554
0570

0586
0602
0618
0634

0650
0666
0682
0698

0714
0730
0746
0762

0778
0794
0810
0826

0842
0858
0874
0890

0906
0922
0938
0954

0970
0986
1002
1018

1034
1050
1066
1082

1098
1114
1130
1146

1162
1178
1194
1210

1226
1242
1258
1274

1290
1306
1322
1338

1354
1370
1386
1402

1418
1434
1450
1466

1482
1498
1514
1530

0523
0539
0555
0571

0587
0603
0619
0635

0651
0667
0683
0699

0715

0731

0747
0763

0779
0795
0811
0827

0843
0859
0875
0891

0907
0923
0939
09565

0971
0987
1003
1019

1035
1051
1067
1083

1099
1115
1131
1147

1163
1179
1195
1211

1227
1243
1259
1275

1291
1307
1323
1339

1366
1371
1387
1403

1419
1435
1451
1467

1483
1499
1515
1531

(o}

0524
0540
0556
0572

0588
0604
0620
0636

0652
0668
0684
0700

0716
0732
0748
0764

0780
0796
o812
0828

0844
0860
0876
0892

0908
0924
0940
0956

0972
0988
1004
1020

1036
1052
1068
1084

1100
1116
1132
1148

1164
1180
1196
1212

1228
1244
1260
1276

1292
1308
1324
1340

1356
1372
1388
1404

1420
1436
1452
1468

1484
1500
1516
1532

D

0525
0541
05657
0573

0589
0605
0621
0637

0653
0669
0685
0701

0717
0733
0749
0765

0781
0797
0813
0829

0845
0861
0877
0893

0909
0925
0941
0957

0973
0989
1005
1021

1037
1053
1069
1085

1101
1117
1133
1149

1165
1181
1197
1213

1229
1245
1261
1277

1293
1309
1325
1341

1357
1373
1389
1405

1421
1437
1453
1469

1485
1501
1617
15633

E

0526
0542
0558
0574

0599
0606
0622
0638

0654
0670
0686
0702

0718
0734
0750
0766

0782
0798
0814
0830

0846

‘0862

0878
0894

0910
0926
0942
0958

0974
09390
1006
1022

1038
1054
107¢
1086

1102
1118
1134
1150

1166
1182
1198
1214

123¢
1246
1262
1278

1294
1310
1326
1342

1358
1374
1390
1406

1422
1438
1454
1470

1486
1502
1518
1534

0527
0543
0559
0575

0591
0607
0623
0639

0655
0671
0687
0703

0719
0735
0751
0767

0783
0799
0815
0831

0847
0863
0879
0895

0911
0927
0943
0959

0975
0991
1007
1023

1039
1055
1071
1087

1103
1119
1135
1151

1167
1183
1199
1216

1231
1247
1263
1279

1295
1311
1327
1343

1359
1375
1391
1407

1423
1439
1455
1471

1487
1503
1519
1535

600
610
620
630

640
650
660
670

680
690
6A0
6B0

6C0O
6D0
6EQ
6F0

700
710
720
730

740
750
760
770

780
790
7A0
780

7Co
700
7E0
7F0

800
810
820
830

840
850
860
870

880
890
8A0
8B0

8cCo
8D0
8E0Q
8F0

900
910
920
930

940
950
960
970

980
990
9A0
9B0O

9Co
9Do
9E0
9F0

1536
1682
1568
1584

1600
1616
1632
1648

1664
1680
1696
1712

1728
1744
1760
1776

1792
1808
1824
1840

1856
1872
1888
1904

1920
1936
1952
1968

1984
2000
2016
2032

2048
2064
2080
2096

2112
2128
2144
2160

2176
2192
2208
2224

2240
2256
2272
2288

2304
2320
2336
2352

2368
2384
2400
2416

2432
2448
2464
2480

2496
2512
2528
2544

1537
1553
1569
1585

1601
1617
1633
1649

1665
1681
1697
1713

1729
1745
1761
1777

1793
1809
1825
1841

1857
1873
1889
1905

1921
1937
1953
1969

1985
2001
2017
2033

2049
2065
2081
2097

2113
2129
2145
2161

2177
2193
2209
2225

2241
2257
2273
2289

2305
2321
2337
2353

2369
2385
2401
2417

2433
2449
2465
2481

2497
2513
2529
2545

1538
1554
1570
1586

1602
1618
1634
1650

1666
1682
1698
1714

1730
1746
1762
1778

1794
1810
1826
1842

1858
1874
1890
1906

1922
1938
1954
1970

1986
2002
2018
2034

2050
2066
2082
2098

2114
2130
2146
2162

2178
2194
2210
2226

2242
2258
2274
2290

2306
2322
2338
2354

2370
2386
2402
2418

2434
2450
2466
2482

2498
2514
2530
2546

1539
15556
1571
1587

1603
1619
1635
1651

1667
1683
1699
1715

1731
1747
1763
1779

1795
1811
1827
1843

1859
1875
1891
1907

1923
1939
1965
1971

1987
2003
2019
2035

2051
2067
2083
2099

2115
2131
2147
2163

2179
2195
2211
2227

2243
2259
2275
2291

2307
2323
2339
2355

2371
2387
2403
2419

2435
2451
2467
2483

2499
2515
2531
2547

1540
1556
1572
1588

1604
1620
1636
1652

1668
1684
1700
1716

1732
1748
1764
1780

1796
1812
1828
1844

1860
1876
1892
1908

1924
1940
1956
1972

1988
2004
2020
2036

2052
2068
2084
2100

2116
2132
2148
2164

2180
2196
2212
2228

2244
2260
2276
2292

2308
2324
2340
2356

2372
2388
2404
2420

2436
2452
2468
2484

2500
2516
2532
2548

1541
1557
1573
1589

1605
1621
1637
1653

1669
1685
1701
1717

1733
1749
1765
1781

1797
1813
1829
1845

1861
1877
1893
1909

1925
1941
1957
1973

1989
2005
2021
2037

2053
2069
2085
2101

2117
2133
2149
2165

2181
2197
2213
2229

2245
2261
2277
2293

2309
2325
2341
2357

2373
2389
2405
2421

2437
2453
2469
2485

2501
2517
2533
2549

1542
1558
1574
1590

1606
1622
1638
1654

1670
1686
1702
1718

1734
1750
1766
1782

1798
1814
1830
1846

1862
1878
1894
1910

1926
1942
1958
1974

1990
2006
2022
2038

2054
2070
2086
2102

2118
2134
2150
2166

2182
2198
2214
2230

2246
2262
2278
2294

2310
2326
2342
2358

2374
2390
2406
2422

2438
2454
2470
2486

2502
2518
2534
2550

1543
1559
1575
1591

1607
1623
1639
1655

1671
1687
1703
1719

1735
1751
1767
1783

1799
1815
1831
1847

1863
1879
1895
1911

1927
1943
1959
1975

1991
2007
2023
2039

2055
2071
2087
2103

2119
2135
2151
2167

2183
2199
2215
2231

2247
2263
2279
2295

2311
2327
2343
2359

2375
2391
2407
2423

2439
2455
2471
2487

2503
2519
2535
2551

1544
1560
1576
1692

1608
1624
1640
1656

1672
1688
1704
1720

1736
1752
1768
1784

1800
1816
1832
1848

1864
1880
1896
1912

1928
1944
1960
1976

1992
2008
2024
2040

20566
2072
2088
2104

2120
2136
2152
2168

2184
2200
2216
2232

2248
2264
2280
2296

2312
2328
2344
2360

2376
2392
2408
2424

2440
2456
2472
2488

2504
2520
2536
2652

1645
1561
1577
1593

1609
1625
1641
1657

1673
1689
1705
1721

1737
1763
1769
1785

1801
1817
1833
1849

1865
1881
1897
1913

1929
1945
1961
1977

1993
2009
2025
2041

2057
2073
2089
2105

2121
2137
2153
2169

2185
2201
2217
2233

2249
2265
2281
2297

2313
2329
2345
2361

2377
2393
2409
2425

2441
2457
2473
2489

2505
2521
2537
2553

1546
1562
1578
1594

1610
1626
1642
1658

1674
1690
1706
1722

1738
1754
1770
1786

1802
1818
1834
1850

1866
1882
1898
1914

1930
1946
1962
1978

1994
2010
2026
2042

2058
2074
2090
2106

2122
2138
2154
2170

2186
2202
2218
2234

2250
2266
2282
2298

2314
2330
2346
2362

2378
2394
2410
2426

2442
2458
2474
2490

2506
2522
2538
2554

1547
1563
1579
1595

1611
1627
1643
1659

1675
1691
1707
1723

1739
1755
1771
1787

1803
1819
1835
1851

1867
1883
1899
1915

1931
1947
1963
1979

1995
2011
2027
2043

2059
2075
2091
2107

2123
2139
2155
2171

2187
2203
2219
2235

2251
2267
2283
2299

2315
2331
2347
2363

2379
2395
2411
2427

2443
2459
2475
2491

2507
25623
2539
2555

1548
1564
1580
1596

1612
1628
1644
1660

1676
1692
1708
1724

1740
1756
1772
1788

1804
1820
1836
1852

1868
1884
1900
1916

1932
1948
1964
1980

1996
2012
2028
2044

2060
2076
2092
2108

2124
2140
2156
2172

2188
2204
2220
2236

2252
2268
2284
2300

2316
2332
2348
2364

2380
2396
2412
2428

2444
2460
2476
2492

2508
2524
2540
2556

D

1549
1665
1681
1597

1613
1629
1645
1661

1677
1693
1709
1725

1741
1757
1773
1789

1805
1821
1837
1853

+ 1869
1885
1901
1917

1933
1949
1965
1981

1997
2013
2029
2045

2061
2077
2093
2109

2125
2141
2157
2173

2189
2205
2221
2237

2253
2269
2285
2301

2317
2333
2349
2365

2381
2397
2413
2429

2445
2461
2477
2493

2509
2525
2541
28657

Appendix B

E

1550
1566
1582
1598

1614
1630
1646
1662

1678
1694
1710
1726

1742
1758
1774
1790

1806
i822
1838
1854

1870
1886
1902
1918

1934
1950
1966
1982

1998
2014
2030
2046

2062
2078
2094
2110

2126
2142
21568
2174

2190
2206
2222
2238

2254
2270
2286
2302

2318
2334
2350
2366

2382
2398
2414
2430

2446
2462
2478
2494

2510
2526
2542
2558

F

1551
1567
1583
1599

1615
1631
1647
1663

1679
1695
1711
1727

1743
1759
1775
1791

1807
1823
1839
1855

1871
1887
1903
1919

1935
1951
1967
1983

1999
2015
2031
2047

2063
2079
2095
2111

2127
2143
2159
2175

2191
2207
2223
2239

2255
2271
2287
2303

2319
2335
2351
2367

2383
2399
2415
2431

2447
2463
2479
2495

2511
2627
2543
2559

55

A00
Al0
A20
A30

A40
AS0
A60
A70

A80
AS0
AAO
ABO

ACO
ADO
AEO
AFO

BOO
B10O
B20
B30

B40
BSO
B60
B70

B8O
B90O
BAO
BBO

BCO
BDO
BEO
BFO

coo
C10
czo
c30

C40
Cc50
c60
Cc70

c80
(¢f+11]
CAO
CBO

cco
cho
CEO
CFo0

DOO
Dlo
D20
D30

D40
D50
D60
D70

D8o
D90
DAO
DBO

DCo
DDO
DEO
DFO

56

2560
2576
2592
2608

2624
2640
2656
2672

2688
2704
2720
2736

2752
2768
2784
2800

2816
2832
2848
2864

2880
2896
2912
2928

2944
2960
2976
2992

3008
3024
3040
3056

3072
3088
3104
3120

3136
3152
3168
3184

3200
3216
3232
3248

3264
3280
3296
3312

3328
3344
3360
3376

3392
3408
3424
3440

3456
3472
3488
3504

3520
3536
3552
3568

2561
2577
2593
2609

2625
2641
2657
2673

2689
2705
2721
2737

2763
2769
2785
2801

2817
2833
2849
2865

2881
2897
2913
2929

2945
2961
2977
2993

3009
3025
3041
3057

3073
3088
3105
3121

3137
3163
3169
3185

3201
3217
3233
3249

3265
3281
3297
3313

3329
3345
3361
3377

3393
3409
3425
3441

3457
3473
3489
3505

3521
3537
3563
3569

2562
2578
2594
2610

2626
2642
2658
2674

2690
2706
2722
2738

-2754

2770
2786
2802

2818
2834
2850
2866

2882
2898
2914
2930

2946
2962
2978
2994

3010
3026
3042
3058

3074
3090
3106
3122

3138
3154
3170
3186

3202
3218
3234
3250

3266
3282
3298
3314

3330
3346
3362
3378

3394
3410
3426
3442

3458
3474
3490
35606

3622
3538
3554
3570

2563
2579
2595
2611

2627
2643
2659
2675

2691
2707
2723
2739

27565
2771
2787
2803

2819
2835
2851
2867

2883
2899
2915
2931

2947
2963
2979
2995

3011
3027
3043
3059

3075
3091
3107
3123

3139
3158
3171
3187

3203
3219
3235
3261

3267
3283
3299
3315

3331
3347
3363
3379

3395
3411
3427
3443

3459
3475
3491
3507

3523
3539
36565
3571

2564
2580
2596
2612

2628
2644
2660
2676

2692
2708
2724
2740

2756
2772
2788
2804

2820
2836
2852
2868

2884
2900
2916
2932

2948
2964
2980
2996

3012
3028
3044
3060

3076
3092
3108
3124

3140
3156
3172
3188

3204
3220
3236
3252

3268
3284
3300
3316

3332
3348
3364
3380

3396
3412
3428
3444

3460
3476
3492
3508

3524
3540
3556
3572

2565
2581
2597
2613

2629
2645
2661
2677

2693
2709
2725
2741

2757
2773
2789
2805

2821
2837
2853
2869

2885
2901
2917
2933

2949
2965
2981
2997

3013
3029
3045
3061

3077
3093
3109
3125

3141
3157
3173
3189

3205
3221
3237
3253

3269
3285
3301
3317

3333
3349
3365
3381

3397
3413
3429
3445

3461
3477
3493
3509

3525
3541
3557
3573

2566
2582
2598
2614

2630
2646
2662
2678

2694
2710
2726
2742

2758
2774
2790
2806

2822
2838
2854
2870

2886
2902
2918
2934

2950
2966
2982
2998

3014
3030
3046
3062

3078
3094
3110
3126

3142
3158
3174
3190

3206
3222
3238
3254

3270
3286
3302
3318

3334
3350
3366
3382

3398
3414
3430
3446

3462
3478
3494
3510

3526
3542
35568
3574

2567
2583
2599
2615

2631
2647
2663
2679

2695
2711
2727
2743

2759
2775
2791
2807

2823
2839
2855
2871

2887
2903
2919
2935

2951
2967
2983
2999

3015
3031
3047
3063

3079
3095
3111
3127

3143
3169
3175
3191

3207
3223
3239
3256

3271
3287
3303
3319

3335
3361
3367
3383

3399
3415
3431
3447

3463
3479
3495
3511

3527
3543
3559
3575

2568
2584
2600
2616

2632
2648
2664
2680

2696
2712
2728
2744

2760
2776
2792
2808

2824
2840
2856
2872

2888
2904
2920
2936

2962
2968
2984
3000

3016
3032
3048
3064

3080
3096
3112
3128

3144
3160
3176
3192

3208
3224
3240
3256

3272
3288
3304
3320

3336
3352
3368
3384

3400
3416
3432
3448

3464
3480
3496
3512

3528
3544
3560
3576

2569
2585
2601
2617

2633
2649
2665
2681

2697
2713
2729
2745

2761
2777
2793
2809

2825
2841
2857
2873

2889
2905
2921
2937

2953
2969
2985
3001

3017
3033
3049
3065

3081
3097
3113
3129

3145
3161
3177
3193

3209
3225
3241
3257

3273
3289
3305
3321

3337
3353
3369
3385

3401
3417
3433
3449

3465
3481
3497
3513

3529
3545
3561
3577

A

2570
2586
2602
2618

2634
2650
2666
2682

2698
2714
2730
2746

2762
2778
2794
2810

2826
2842
2858
2874

2890
2906
2922
2938

2954
2970
2986
3002

3018
3034
3050
3066

3082
3098
3114
3130

3146
3162
3178
3194

3210
3226
3242
3258

3274
3290
3306
3322

3338
3354
3370
3386

3402
3418
3434
3450

3466
3482
3498
3514

3530
3546
3562
3678

B

2571
2587
2603
2619

2635
2651
2667
2683

2699
2715
2731
2747

2763
2779
2795
2811

2827
2843
2859
2875

2891
2907
2923
2939

2965
2971
2987
3003

3019
3035
3051
3067

3083
3099
3115
3131

3147
3163
3179
3195

3211
3227
3243
3259

3275
3291
3307
3323

3339
3355
3371
3387

3403
3419
3435
3451

3467
3483
3499
3515

3531
3547
3563
3579

C

2572
2588
2604
2620

2636
2652
2668
2684

2700
2716
2732
2748

2764
2780
2796
2812

2828
2844
2860
2876

2892
2908
2924
2940

2956
2972
2988
3004

3020
3036
3052
3068

3084
3100
3116
3132

3148
3164
3180
3196

3212
3228
3244
3260

3276
3292
3308
3324

3340
3356
3372
3388

3404
3420
3436
3452

3468
3484
3500
3516

3532
3548
3564
3580

D

2573
2589
2605
2621

2637
2653
2669
2685

2701
2717
2733
2749

2765
2781
2797
2813

2829
2845
2861
2877

2893
2909
2925
2941

2957
2973
2989
3005

3021
3037
3053
3069

3085
3101
3117
3133

3149
3165
3181
3197

3213
3229
3245
3261

3277
3293
3309
3325

3341
3357
3373
3389

3405
3421
3437
3453

3469
3485
3501
3517

3533
3549
3565
3581

E

2574
2590
2606
2622

263¢&
2654
2670
2686

2702
2718
2734
2750

2766
2782
2798
2814

2830
2846
2862
2878

2894
2910
2926
2942

2968
2974
2990
3006

3022
3038
3054
3070

3086
3102
3118
3134

3150
3166
3182
3198

3214
3230
3246
3262

3278
3294
3310
3326

3342
3368
3374
3390

3406
3422
3438
3454

3470
3486
3502
3518

3534
35560
3566
3582

F

2575
2591
2607
2623

2639
2655
2671
2687

2703
2719
2735
2751

2767
2783
2799
2815

2831
2847
2863
2879

2895
2911
2927
2943

2959
2975
2991
3007

3023
3039
3065
3071

3087
3103
3119
3135

3151
3167
3183
3199

3215
3231
3247
3263

3279
3295
3311
3327

3343
3359
3375
3391

3407
3423
3439
3455

3471
3487
3503
3519

3535
3551
3567
3583

E00
E10
E20
E30

E40
E50
E60
E70

E80
E90
EAO
EBO

ECO
EDO
EEO
EF0

Fo0O
Fl0
F20
F30

F40
F50
F60
F70

F80
F90
FAO
FBO

FCoO
FDO
FEO
FFO

3584
3600
3616
3632

3648
3664
3680
3696

3712
3728
3744
3760

3776
3792
3808
3824

3840
3856
3872
3888

3904
3920
3936
3952

3968
3984
4000
4016

4032
4048
4064
4080

3585
3601
3617
3633

3649
3665
3681
3697

3713
3729
3745
3761

3777
3793
3809
3825

3841
3857
3873
3889

0905
0921
0937
0953

0969
0985
4001
4017

4033
4049
4065
4081

2

3586
3602
3618
3634

3650
3666
3682
3698

3714
3730
3746
3762

3778
3794
3810
3826

3842
3858
3874
3890

0906
0922
0938
0954

0970
0986
4002
4018

4034
4050
4066
4082

3

3587
3603
3619
3635

3651
3667
3683
3699

3715
3731
3747
3763

3779
3795
3811
3827

3843
3859
3875
3891

0907
0923
0939
0955

0971
0987
4003
4019

4035
4051
4067
4083

4

3588
3604
3620
3636

3652
3668
3684
3700

3716
3732
3748
3764

3780
3796
3812
3828

3844
3860
3876
3892

3908
3924
3940
3956

3972
3988
4004
4020

4036
4052
4068
4084

5

3589
3605
3621
3637

3653
3669
3685
3701

3717
3733
3749
3765

3781
3797
3813
3829

3845
3861
3877
3893

3909
3925
3941
39567

3973
3989
4005
4021

4037
4053
4069
4085

6

3590
3606
3622
3638

3654
3670
3686
3702

3718
3734
3750
3766

3782
3798
3814
3830

3846
3862
3878
3894

3910
3926
3942
3968

3974
3990
4006
4022

4038
4054
4070
4086

7

3591
3607
3623
3639

3655
3671
3687
3703

3719
3736
3751
3767

3783
3799
3815
3831

3847
3863
3879
3895

3911
3927
3943
39569

3975
3991
4007
4023

4039
4055
4071
4087

8

3592
3608
3624
3640

3656
3672
3688
3704

3720
3736
3752
3768

3784
3800
3816
3832

3848
3864
3880
3896

3912
3928
3944
3960

3976
3992
4008
4024

4040
4056
4072
4088

9

3593
3609
3625
3641

3657
3673
3689
3705

3721
3737
3753
3769

3785
3801
3817
3833

3849
3865
3881
3897

3913
3929
3945
3961

3977
3993
4009
4025

4041
4057
4073
4089

A

3594
3610
3626
3642

3658
3674
3690
3706

3722
3738
3754
3770

3786
3802
3818
3834

3850
3866
3882
3898

3914
3930
3946
3962

3978
3994
4010
4026

4042
4058
4074
4090

3695
3611
3627
3643

3659
3675
3691
3707

3723
3739
3755
3771

3787
3803
3819
3835

3851
3867
3883
3899

3915
3931
3947
3963

3979
3995
4011
4027

4043
4059
4075
4091

3596
3612
3628
3644

3660
3676
3692
3708

3724
3740
3756
3772

3788
3804
3820
3836

3852
3868
3884
3900

3916
3932
3948
3964

3980
3996
4012
4028

4044
4060
4076
4092

D

3697
3613
3629
3645

3661
3677
3693
3709

3725
3741
3757
3773

3789
3805
3821
3837

3853
3869
3885
3901

3917
3933
3949
3965

3981
3997
4013
4029

4045
4061
4077
4093

Appendix B

3598
3614
3630
3646

3662
3678
3694
3710

3726
3742
3758
3774

3790
3806
3822
3838

3854
3870
3886
3902

3918
3934
3950
3966

3982
3998
4014
4030

4046
4062
4078
4094

3599
3615
3631
3647

3663
3679
3695
3711

3727
3743
3759
3775

3791
3807
3823
3839

3855
3871
3887
3903

3919
3935
3951
3967

3983
3999
4015
4031

4047
4063
4079
4095

57

APPENDIX C.

PROGRAMMING EXAMPLE

[e e i e S S S o S o . S SO — . o ST T S A, i S S — — — — — — f———— — —"—— — — —— — S . — ——— — . T— —— — ot S S

FLAGS

This test program sorts, in ascending sequence, the 16 hexadecimal char-

acters located at

'IN

' and stores them at

'ouT'.

(The following example

is used to demonstrate instruction mix rather than model coding.)

LOC.CTR.

000000
000000

000002
000008
00000C
000010
000014
000018
00001C
00001E
000022
000024
000026
000028
00002C
000030
000034
000038
00003C
000040
000044
000048
oooouc
000050
000054
000058
00005C
000060
000064
000068
00006C
000070
000074
000078
00007C
000080
000084
000088
00008C
000090
000094
000098
00009C
000020

0000E0
000000

OBJECT

<
o
aconooud

0
o
o

~
=)
ouDoUguUbopooon

47 FO

00000001
00000004
00000005
0000000a
00000001
00000007
00000003
0000000C
0000000F
00000009
0000000B
00000004
00000000
0000000E
00000006
0000000D
00000002
00000008

00020000

V1LO0

000002
09E D O5E
09E
00F
038
000
004

02a

004
0sa
016
000
056
042
ODE
004
010
05a
010
00E

00000000

SOURCE STATEMENT

SAMPLE
GO

SET

LOAD

510}

LOOP

CON1
CONU4
IN

our

ENDRUN

ICTL 25

START 0 STARTING ADDR

BALR 13,0 SET UP BASE REGISTER
USING *,13

MVC OUT (64) ,IN MOVE DATA TO OUT

LA 6,0UT POINT TO TABLE TOP
1A 7,15 SET FOR 15 PASSES
1A 4,56 SET INDEX REGISTER
L 2,0(0,6) LOAD FROM TABLE TOP
L 3,4 (4,6) LOAD FROM TABLE

CLR 2,3 COMPARE VALUES

BC 12,SUB TOP = OR LESS BRANCH
XR 2,3 EXCHANGE VALUES

XR 3,2 EXCHANGE VALUES

XR 2,3 EXCHANGE VALUES

ST 3,4 (4,6) STORE LARGER BACK

S 4 ,CONU REDUCE INDEX

BC 10, LOAD LOOP IF MORE TO SORT
ST 2,0(0,6) STORE IN TABLE TOP
S 7,CON1 REDUCE PASS COUNTER
BC 7,LOOP

LPSW ENDRUN END OF RUN

LA 6,4 (6)

LH 2,SET+2 MODIFY

s 2,CONU4 INDEX

STH 2,SET+2 INSTRUCTION

BC 15, SET RETURN

DC Fr1° CONSTANT OF 1

DC Py CONSTANT OF U4

DC X'00000005"

DC X'0000000A"

DC X'00000001"

DC X'00000007"*

DC X'00000003"

DC X'0000000C"

DC X*0000000F*

DC X'00000009"

DC X'0000000B"

DC X'00000004 "

DC X'00000000"

DC X'0000000E"

DC X'00000006"

DC X'0000000D"*

DC X'00000002"

DC X'00000008"

DS 16F OUTPUT AND WORK AREA
CNOP 0,8 ENSURE BOUNDARY ALIGNMENT
DC X'0002000000000000°" PSW

END GO

b e s . ——— " —— —— —— — —— —— T———— — — —— ——— —— S w— T ——— — — —d— N T——" — — —— — —— — — —— — —— —— — t———— o— ——)

58

APPENDIX D. SYSTEM/360 ASSEMBLERS-LANGUAGE FEATURES COMPARISON CHART

Features not shown below are common to all assemblers. In the chart:

Dash = Not allowed.
X = as defined in Operating System/360 Assembler Language Manual,
T . T L] T 1
|Basic] | | |
|Programming |7090/7094 | | |
Feature | Support/360: |Support | Other | |
|Basic | Package |System/360 |0OS/360 |
|Assembler |Assembler |Assemblers? |Assembler |
L [} 4 1 4
T T T T il
|No. of Continuation Cards/Statement | 0 | 0 | 1 | 2 |
| (exclusive of macro-instructions) | | | | |
L 1 (] i [N 1
] T T 1 T 1
|Input Character Code | | BCD or |] |
i | EBCDIC | EBCDIC | EBCDIC | EBCDIC |
L 4 R (! 1 4
r | T [T 1
| ELEMENTS 2 | | | | |
b 4 {
| Maximum Characters per symbol 6 6 8 | 8 |
[} 4
L] T L]
| Character self-defining terms | 1 Char. | | | |
| | only | X | X I X |
; + ; H
| Binary self-defining terms | - - X | X
[4 1
r T T
| Length attribute reference | -- - | X | X |
I 4 [] { 3 J
¥ T T 1 T 1
| Literals | -- | -- X | X |
I [l I 1]
L . 1 T _ T 1
|Extended mnemonics | - | X X | X |
= t ¢ ¢ $ {
|Maximum Location Counter value | 216-1 | 2241 | 22471 [224-1 |
|8 4 [i L ¥ |
T T T T T 1
|Multiple Control Sections per assembly| -- | - | X | X |
b » —t t ¢ {
| EXPRESSIONS: |
Operators +-*% +-%/ =%/ +-*/
[
T
Number of terms | 3 16 3 16 |
\ 4
T 1
Number of parentheses | -- - 1 Level 5 Levels |
(] (] A [l]
T T [} T 1
Complex relocatability | -- - | X | X |
5 + + + {
| ASSEMBLER INSTRUCTIONS: | | | |
L 1 L 1 4
L] T 1 T 1
| DC and DS | | | | |
'8 IR [+ | |
1 . . . T T T] 1
| Expressions allowed as modifiers| - | -- | - | X |
L i L | 4 d
1 3 T T 1 1
| Multiple operands | - | -- - | X |
. -) [J
v T T T 1
_ _	[Except		
Multiple constants in an operand	--	- Address	X
		Consts.	
L L L [} L J
(Continued)

Appendix D 59

Appendix D:

Assembler Languages--Features Comparison Chart (Continued)

60

r T . T T 1
| [Basic | | | |
i |Programming |7090/7094 | | |
Feature	Support/360:	Support	Other	
	Basic	Package	System/360	0S/360
	Assembler	Assembler	Assemblers?!	Assembler
= , . + + + ! Y				
Bit length specifications	-	--	-	X
i L 1 [l 4 J				
[} . . T T T T 1				
Scale modifier	--	--	X	X
% —— ¢ + + 4				
Exponent Modifier	--	-	X	X
! + + t : {				
	Except	Except		
DC types	B, P, Z,	B, ¥, V	X	X
	v, ¥, S [
L { L	(] J			
r T T T T 1				
	Except	Except	Except	
DC duplication factor	A	A, S	S	X
I L (] [1 J				
¥ T] T] 1				
,			Except	
DC duplication factor of zero	--	-	S] X	
t $ ¥ $ $ 1				
	Except	Except		
DC length modifier	H, E, D	S	X	X
F 4 + ¥ 4 {				
	Only C,	Only C,		
DS types	H, F, D	H, F, D	X	X
¢ —- t t } t				
DS length modifier] Only C	Only C	X i X	
i ¥ } 4 [
L	T T T T			
DS maximum length modifier	256	256	256 165,535	
1 L 4 I 1 4				
r T T 1 T I				
DS constant subfield permitted	--	-	X	X i
% $ { + ¢ {				
copy	- I -	-= I X		
I L] [l				
¥ T T T				
CSECT	-	-	X X	
L 4	4L			
L} T T T				
DSECT	--	-	X X	
i (]] ((] 4			
r T T T T 1)				
ISEQ	==	==	X I X I	
L 4 } 4 + 4				
v T T T T !				
LTORG	--	--	X	X
L X1 1 1 } J				
L] T T T T h				
PRINT	-	-	X I X	
L 4 [4 i 4				
) T T r T 1				
TITLE	--	X	X	X
¢ ¥ t 4				
com	-~ I - --	X		
[N + [J				
r T T T				
	1 oprnd			
i ICTL	1 or 25	1 oprnd	X	X
[only I i I			
[N 1]] (4			
) T T T T 1				
	2 oprnds	2 oprnds		
USING	oprnd 1	oprnd 1	6 oprnds	X
	reloc	reloc		
	only	only		
L 4 J	4 4			
r T T T T 1				
	1 oprnd	1 oprnd		
DROP	only	only	5 oprnds	X
L L 1 L L J
(Continued)

Appendix D: Assembler Languages--Features Comparison Chart (Continued)

r T .) T T]
{ |Basic | | | |
	Programming	7090/7094		
Feature	Support/360:	Support	Other	
	Basic	Package	System/360	0S/360
	Assembler	Assembler	Assemblers?	Assembler
t + + + + .				
	oprnd 2	opxrnd 2		
CCW	reloc	reloc	X	X
	only	only		
t + + t {				
no blank	no blank			
ORG oprnd	oprnd	X	X	
5 t t 1 b 4				
	1 oprnd	1 oprnd	1 oprnd	
ENTRY	only	only	only	X
b t + + 1				
(max 14				
EXTRN 1 oprnd	1 oprnd	1 oprnd	X	
only	only	only		
k t t t t {				
	2 dec	2 dec	2 dec	
CNOP	digits	digits	digits	X
I + % + t 1				
PUNCH	-	-	-	X i
t + } +— + 1				
REPRO				
! e N S SN				
T T T T 1 R				
[Macro Instructions	-	-	X	X
[L 1 L L J

Appendix D 61

HEXADECIMAL TO MNEMONIC OPERATION CODE TABLE

APPENDIX E.

| 24 4 0 M- 93]
=] "4 x % own 1]
Q A A T —~ N/~ A —\/ A ~
m _I'IMIII“.III1.|J1|'INI|II1!||‘__III“IMI'I — T — i — T ——— ——— — -
o | 16 Il 1m | =T =] M -
=] By I I2IHDI>IrAiz21Ioralo o
|l | iniOlnnlninln|B- 55}
a TI.“||.T|Lrnllrl.lnullrll....l.".unlnul|T|Lr.llr||T||||lr|L
3 (51E18181ai=12]818 2
g =1 | M < | < w Il | R I | @ %S|
M_o., T.Inull...,..lan|1T||Tl-|_r||_T||TH_..|T|LT.I|T|I —_————f—
7] | =4 24 alo H
[[a] g1l A [I A] 24 o}
(=] A a a Al A w0 EH BH [a)
w o e e e e e e e ||T.T.._..|T|1r|. B A s S
.% &) & & j<3] M m [24 =9
- 1212181218 181810 AL
w [e
(73] [1 m
n o o2} ~ [=] || m a 3] Ay
T3 nitminjin ninlnlw 15}
" m e e e e e e e e e e e e e e e e e e e]
o Q o |
= <> IXKIAQAIH M By
£ 0 ES} nid << M [M m 5] <
A ol pr e e — e
o O IO R Do | |
PN A o w0 ~ a 3] Jas] [= | M =N
Q = | Q @] QIO |1V L1100 (%] @]
n Q& ~ o e e — = —— e b e e e e e e e e e e e e e e e b e e e e
[)e}] | 1
Bo P oo Bl B E MR a
O [¢] 92} m = E = -1 m [] [0 I N
[J] e o
Le] <3
] 24 el
N g X~ Q 21 Q - = Q
[oC. e Y] m < m > (=<] =
[e} e e e e e e e e e e e e e e e e e e e —
o' [24
2%f % olBlg 3 gl
U=~ 0 Q 4] O M o mjo W
Lol e 3] b e e e e e e e e e e e e e
TEC A 5 QiH “ Q
oV n | m M I (=] =
YT] Mmoo MmO NS 4}
PM m e e e e e e e e e b e b e e e e e e e e e e e e e e e e o
XX O = =4 [:1 [}
- O 0 = [o7] m a = b W) Q
go g 1] S 2=} 3} =z z =4
[] o e o e e e e e e s e e e e e e e e e e e e e i e e e e e s e e
5.2 518 5| 1B
R e [ae] QIIQ IV 9] > Z
[Al - B = =]
ES e e b e o -
©n oW - 1 = 14
287 ~| IE1E1E18 518 SR
+ =] = (=] = W = [N
=] o v e e s e s s e . o o o o T— v ——— — — ——— —] — - v— . e - c—]
00 24 »1
e gl1812 1« = g S
-
QM =] - = = 3 W W
- O e D v A R S S e T TSP S SN St SY S
8% il S8l Qimisls
PO (=) Al TN IHITHIERIBH WY B
4} HliHA|H]l i it |nin
Q S e e iy e b e b — ke —— — i — e — b ——— o aalr mew i S b b -l —— b =
Ko =]
3] Wh © = N M T N W N~ O £ MU A ®E Rk
L]
o> e M 0 40 MOXOTVOOAE®~ [a R - RS

62

Absolute symbols, 12,29
Address attributes, 11
Addressing relative, 14,46-47
Assembler instruction

(see specific assembler instructions)
Assembler processing

Phase 1, M43

Phase 2, 43
Arithmetic operators, 14
Asterisk as an operand, 14
Attributes defined, 11

address, 11

expression, 14

length, 11

symbol, 11
Assembler language statements

defined, 7

rules for writing, 7

writing of, 11

Basic registers and displacements, 18,19

(see also DROP and USING assembler
instructions)

base register zero, 38

example of, 19

implied, 19

instruction formats used with, 19

loading registers for use as, 37

rules for, 18

use of, 18,19

Boundary alignment as a result of

(see also specific assembler
instructions)

character constant, 32

expression constant, 35

full-word constant, 33,34

half-word constant, 34

hexadecimal constant, 33

long—-precision floating-point
constant, 35

machine instructions, 17

short-precision floating-point
constant, 34

Card Option, 6
CCW assembler instruction
examples of, 31
format of, 31
operand field, 31
use of, 31
Channel Command Word
(see CCW)
Character constant
(see also Self-defining values)
boundary alignment with, 32
examples of, 32
less than specified length, 32
Character self-defining value, 13,14
Compatibility, 5
Compound expression, 14
CNOP assembler instruction
boundary alignment, 27

INDEX

examples of, 27
format of, 27
operand field of, 27
use of, 27
Constants
(see also Self-defining values)
character, 32
expression, 35
full-word, 33,34
half-word, 34
hexadecimal, 33
long-precision floating-point, 35
short-precision floating-point, 34
Constant data, 31
Comments field defined, 10
example of, 10
limits of, 10

Data
constant, 31
immediate, 12,30

DC assembler instruction
boundary alignment as a result
of, 31
format of, 31,32
maximum size of, 32
operand field, 31,32
type of constants used with, 31
use of, 31
Decimal self-defining value, 13
Definition instructions, 29
Displacement (see Base registers and
displacement)
DROP assembler instruction
example of, 37
format for, 36
invalid operand, 36
operand of, 36
use of, 36
DS assembler instruction
area reserved by, 29
boundary alignment with, 29
examples of, 30
format of, 29
operand field,
use of, 29
Duplication factor used in
character constant, 32
DC assembler instruction, 31
DS assembler instruction, 29
full-word constant, 34
half-word constant, 34
hexadecimal constant, 32
long-precision floating-point, 35

29,30

EJECT assembler instruction
format of, 28
use of, 28

END assembler instruction
example of, 28
format of, 28
invalid use of, 28

Index

63

operand field of, 28
use of, 28
ENTRY assembler instruction
example of, 39
format of, 39
operand field, 39
restrictions on, 39
use of, 39
Entry point, 12
(see also ENTRY assembler
instruction)
EQU assembler instruction
examples of, 29
format of, 29
name field of, 29
operand field of, 29
use of, 29
Exrror Notification, 44
ESD
(see External Symbol Dictionary
card)
Explicit length, 19
(see also specific assembler
instructions)
Exponent defined, 34
Expressions
absolute, 15
attributes of, 14
compound, 13
defined, 13
relative addressing with, 14
relocatable, 15
restrictions on, 15
simple, 14
terminators of, 14
Expression constant
(see also Self-defining values)
boundary alignment of, 35
examples of, 35
how specified, 35
length codes of, 35
rules for, 35
EXTERN assembler instruction
example of, 40
format of, 39
operand field, 39
restrictions on, 40
use of, 40
External Symbol
(see also Symbols), 12,39
External Symbol Dictionary card, 45

Flags, program listing, list of, 44,45
Floating-point constants, long-precision
(see Long-precision floating-point
constants)
Floating-point constants,
short-precision
(see Short-precision floating-point
constants)
Formats machine instruction
(see Machine instruction statements)
Fraction defined, 34
Full-word constants
boundary alignment with, 33,34
examples of, 33

Half-word constants

64

boundary alignment, 34
example of, 34
length code of, 34
Hexadecimal constant
(see also Self-defining value)
boundary alignment with, 33
examples of, 33
valid digits, 33
Hexadecimal self-defining value, 13

ICTL assembler instruction
format of, 25
required for, 25
use of, 25 .
Immediate data, 12,30
Implied base register, 19
(see also DROP and USING assembler
instructions)
Implied length, 19
Instructions
assembler
(see specific assembler
instructions)
base register
(see DROP and USING assembler
instructions)
definition, 29
machine, 17
Invalid fields
(see specific fields)

Length attributes, 11,19,20
(see also specific instructions)
explicit, 19
implied, 19
invalid, 19
Load end card, 28,45
Loading base registers, 37
Location counter
(see also specific assembler
instructions)
contents of, 12
defined, 12
maximum value of, 13
overflow of, 13
program listing, 44
programmer use of, 13
Long-precision floating-point constant
boundary alignment, 35
example of, 35
how specified, 35
invalid fraction or exponent, 35
operand format of, 35
exponent of, 35
fraction of, 35

Machine instruction mnemonics, 20
list of, 21-24

Machine instruction statements, 17
example, 24
writing considerations, 17

Name field
(see also Symbols)
defined, 9
example of, 9
limits of, 9

Object program output, U5
External Symbol Dictionary card, U5
Load End card, 28,45
Relocation List Dictionary card, 45
Text card, U5
Operand field defined, 9
examples of, 9,10
limits of, 9
subfields in, 9
Operation field

(see also Machine instruction statements

and specific assembler instructions)
defined, 9
example of, 9
invalid mnemonic in, 9
limits of, 9
valid mnemonic limit of, 9
list of, 21-23
ORG assembler instruction
example of, 26
format of, 26
operand field of, 26
use of, 26
Origin, program
(see ORG and START assembler
instructions)
Phase 1, assembler program, U3
Phase 2, assembler program, U3
Program end
(see END assembler instruction)

Patching, U6
Program linking, 39,40
conventions of, 39
ENTRY assembler instructions, 39
EXTERN, 40
limitations on, 40
use of, 40
Program listing, U4
assembled output, U4
flags, Uu,45
location counter, U4
source statement, U4
Program origin
(see ORG and START assembler
instructions)

Reassembly procedure, U6
Relative addressing, 14,46-47
Relocatable expression, 15
Relocation List Dictionary card, 45
Relocatable symbol, 12
RLD
(see Relocation List Dictionary card)
RR machine instruction format
(see Machine instruction statements)
RS machine instruction format
(see Machine instruction statements
and Implied base register)
RX machine instruction format
(see Machine instruction statements
and Implied base register)

Self-defining values
defined, 13
types of, 13
character, 13,14

decimal, 13
hexadecimal, 13
use of, 13,14,26
SI machine instruction format
(see Machine instruction statements
and Implied base register)
Simple expression, 14
Short-precision floating-point
constant, 34
boundary alignment with, 34
example of, 34
invalid fraction or exponent, 34
operand format of, 34
SPACE assembler instruction
format of, 28
operand field of, 28
use of, 28,29
SS machine instruction format
(see Machine instruction statements
and Implied base register)
START assembler instruction
examples of, 26
format of, 26
invalid use of, 26
name field of, 26
operand field of, 26
use of, 25
Statement fields, 7
comments field, 10
name field, 9
operand field, 9
operation field, 9
Storage areas reserved by
DS assembler instruction, 29
ORG assembler instruction, 26
Symbols (see also Symbol table)
absolute, 12
attributes of, 12
defined, 12
entry, 12,39
external, 12,39
previously defined, 12
relocatable, 12
restrictions, 12
undefined, U4
used in name field, 9
Symbol table
defined, U6
maximum size allowable, 46
new assembly, 45
overflow, U6
reassembly, 47
reducing the number of symbols, U6
several assemblies, 47

Tape Option, 6
Text card, 30,45
TXT (see Text card)

Undefined symbols, 44

USING assembler instructions
example of, 36
format for, 36
invalid operand, 36
operand of, 36
use of, 36,37

Index

65

2/65:20M-~-£0-68

CUT ALONG LINE

READER'S COMMENTS

IBM System/360 Basic Programming Support

ritle; Basic Assembler Language Form: C28-6503-3
Is the material: Yes No
Easy to Read? - -
Well organized? . I
Complete? — —_—
Well illustrated? - -
Accurate? —_ —_
Suitable for its intended audience? —_ R
How did you use this publication?
—_As an introduction to the subject . For additional knowledge
Other : fold
Please check the items that describe your position:
—— Customer personnel — _Operator —__Sales Representative
—— IBM personnel —— Programmer ——Systems Engineer
— Manager —Customer Engineer —Trainee
— Systems Analyst —Instructor Other.

Please check specific criticism(s), give page number(s),and explain below:
—— Clarification on page(s)
—— Addition on page(s)
—Deletion on page(s)
—— Error on page(s)

Explanation:

fold

Name

Address

FOLD ON TWO LINES,STAPLE AND MAIL
No Postage Necessary if Mailed in U.S.A.

C28-6503-3 staple

fold . fold
r 1
| FIRST CLASS {
{ PERMIT NO. 81 |
| |
| |
| POUGHKEEPSIE, N. Y. |
| . 8 4
r 1
| BUSINESS REPLY MAIL |
| NO POSTAGE STAMP NECESSARY IF MAILED IN U. S. A. | LLEL
L J
i
NENRE]
POSTAGE WILL BE PAID BY
IBM CORPORATION [T
P. O. BOX 390
POUGHKEEPSIE, N. Y. 12602 e
FELEEL
AERRY
L
ATTN: PROGRAMMING SYSTEMS PUBLICATIONS
DEPT. D58 NERRA
FEELn
it
fold - o fold

BRI

International Business Machines Corporation
Data Processing Division tapl
112 East Post Road, White Plains, N.Y. 10601 staple

CUT ALONG LINE

*¥°S*N Ut pajutad

€-€059-82D

- -

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68

