
Systems Reference Library

IBM System/360
Basic Programminlg Support

File Number 8360-20 BPS
Form C28-6503-6

Basic Assembler and Basic Utility Programs (Card)
Specifications and Operating Guide

This reference publication is arranged in six major
sections to describe these programs:

Basic Assembler
Absolute Loader
Input/Output Support Package
Dump Program
Relocating Loader

Program Number

360P-AS-021
360P-UT-017
360P-UT-018
360P-UT-019
360P-UT-020

,The first section provides a description of the
Basic Assembler language and the Basic Assembler
program. Features concerned with the planning and
writing of source programs are emphasized. The
functions and possible modifications of each of the
basic utility programs are described in the next major
section. Also included is a discussion of program
segment relocation and linkage. The input to and
output from the Basic Assembler program and procedures
for running assembly jobs are described in the third
major section. rhe operating procedures for the
utility programs are presented in the fourth major
section. Program waits and operator messages appear in
the fifth major section, followed by a sample problem
in the last major sect.ion.

Th~reader should be familiar with the material in
the IBM System/36 0 Principles of Operation, Form
A22-6821.

The titles and abstracts of related publications are
listed in the IBM Sys1:em/360 Bibliography, Form
A22-6822.

Some functions described in this manual require the
use of an absolute address. Users of these programs
can obtain the appropriate absolute address by
referring to the writeup, supplied with the Program
Material List,. entitled "Attachment 1 - Special
Information. "

PREFACE

Basic Assembler Language is a symbolic
programming language for the IBM
Systern/360. Basic Assembler Program
translates source programs (symbolic
language) into machine-language programs.
The first section of this manual contains
all information required for writing IBM
Systern/360 programs. This includes the
rules for writing source statements, a
description of assembler instructions, and
a list of machine instructions represented
in the language.

Basic utility QE29rams (described in the
second section) load assembled programs
into main storage, provide listings of the
contents of storage, and provide routines
for accessing input/output devices. The
relocating loader relocates other
programmers' subroutines, and establishes
linkage among them. The Loader Generator
Program (LDRGEN) regenerates loader program
decks into a form suitable for direct
loading into storage.

Oper?ting information and technigues for
the Basic Assembler appear in the third
section. The Assembler has two phases.
Phase 1 partially processes source
programs, which are read from punched cards
or magnetic tape. Phase 2 completes the
processing to produce object programs in
punched cards or on magnetic tape.

ooerating information and techniques for
the basic utility programs are provided in
the fourth section. The Single-Phase Dump
program produces a listing of the contents
of the registers and/or storage areas
defined by the user's program. The
Two-Phase Dump program produces card or
tape records (Pnase 1) and listings (Phase

Seventh Edition, August 1967

2) of the contents of the registers and/or
storage areas defined by the user's
program. The Absolute and Relocating
Loaders load assembled programs (from cards
or tape) into storage for execution.

A program wait (fifth section) occurs
whenever the Basic Assembler or basic
utility programs must communicate with the
operator. A program wait is indicated by
the wait light on the system control panel.
The coded message can be displayed on the
system control panel or can be printed on
the output device. The message indicates
the program being executed when the wait
occurred, the reason for the wait, and the
operator action reqUired.

A Card Assembler and Utilities Sample
Problem is provided (sixth section) to test
the Basic Assembler and Basic Utility
Programs (Card) supplied by IBM to the
user.

The I/O subroutines are supplied by IBM
in symbolic deck form. The other utility
programs and the Assembler Program are
supplied in assembled deck form but can
also be obtained in symbolic form as
optional material. The LDRGEN is available
only in symbolic form as optional material.
This is indicated in the corresponding
sections of the manual.

Readers should be familiar with the IBM
System/360 and have an understanding of the
storage-addressing scheme, data formats,
and machine-instruction formats and
fUnctions. This information can be found
in the puolication IBM System/360
Principles of Operation, Form A22-6821.

This edition, Form C28-6503-6, is a major reV1Slon of, and obsoletes
C28-6503-5 and Technical Newsletters N2ij-517ij and N2ij-5210. This manual
also incorporates the information from and obsoletes these publications:

IBM System/360 Basic Programming Support, Basic Utility Programs
specifications, C28-6505-3 and Technical Newsletters N2ij-5135 and
N2ij-5183

IBM System/360 Basic Programming support, Basic Assembler and Basic
Utility Programs (Card) Operating Guide, C28-6557-3 and Technical
Newsletter N2ij-5198.

This edition contains support for an intermediate storage size (2ijK) for
System/360 Model 30. Notations have also been made to indicate whether
programs are available in symbolic or assembled form and whether they
are optional material. Changes are indicated by a vertical line to the
left of affected text.

Specifications contained herein are subject to change from time to time.
Any such change will be reported in subsequent revisions or Technical
N ewsl et ters •

Requests for copies of IBM publications should be made to your IBM
representative or to the IBM branch office serving your locality. A
form is provided at the back of this publication for reader's comments.
If the form has been removed, comments may be addressed to IBM
corporation, Programming publications, Endicott, New York 13760.

© International Business Machines corporation 196ij, 1965

BASIC ASSEMBLER LANGUAGE AND BASIC
ASSEMBLER PROGRAM. 5

Features of the IBM System/360
Basic Assembler •••••••••

Compatibility with Other System/360
5

Assemblers •••• ' •••••••
Machine Requirements •••••••
Card or Tape Intermediate Text. .

6
6
7

Basic Assembler Language • • • • • • 7
Basic Assembler Card Formats. • • 7
writing Basic Assembler Statements •• 11
Machine Instruction Statements •••• 15
Assembler Instructions. • • 25

The Basic Assembler Program. •
Assembler Processing. •
Program Listing • • • • • • • • •
Error Notification. • • • • • • •
Object Program output ••••
Patching Object Programs ••
Reassembly Procedure. • • • • • •
Symbol Table. 0 • • • • • • • • •

BASIC UTILI'I'Y PHOGRAMS.
Machine Requirements ••
Main Storage Requirements

43
43
44

• • 45
45

• • 46
• • 46

46

48
• • 49
• • 49

Absolute Loader. .. • • • • • • • • • • • 49
Absolute Loader Functions • • 50
Program Segment Sequence. • • • 50
Card Formats. .. • • • • • • • • 50
Loader Use of I/O Support Package • • 52
Resident Loader Considerations. • • • 53

Relocating Loader. • • • • • • • • • • • 53
Loading Capacity. • • • . • • •• 53
unique Relocating Loader Functions •• 54
Card Formats. • • ••• • •• 54
Other Features of the Relocating

Loader • • • • • • • • • • • •• 62
Loader Use Of I/O Support Package • • 65
Resident Loader Considerations. • • • 65

Dump Program • ••• • • • • • •
Features.. • • • • • • •
Versions of the Dump Program. • •
Request Numbers • • • • •
Dump Program Requirements •
calling Sequence ••
Control List Format
output Forroats.
Two-Phase Dump •••

Input/Output Support Package •
Required Subroutine Modules •
Optional Subroutine Modules •
Summary of I/O Entry Modules.
organization of the Subroutine

Modules •••••••••••••
Calling the Entry Modules •
Direct Linkage ••••••

66
• . 66
• • 67

67
68
69

• • 71
• • 73
• • 74

• • 78
80
82
87

• • 90
93

• • 93

Indirect Linkage. • • •
Sense Entry Example •
Control Entry Example •
Card-only Installation. •
Card-Tape Package • _ •

CONTENTS

• 9'::>
• 97

Flowcharts of Module Relationships.

• 9<)
.100
.100
.100

Relocation and Linkage • • .108

Loader Generator Program (LDRGEN1 •..• 109
Requirements For Using LDRGEN • .109
Providing Addresses. • • .110
Sequence of Operations. • .111

BASIC ASSEMBLER
PROCEDURES • •

OPERATING

Assembler Initialization •
Phase 1 Configuration Card.
Phase 2 Configuration Card.

.112

••• 113
.113
.115

Running an Assembly Job. • .115
A. Assembling on a Card System

Using the 2540 or 2501 Card Reader
with a 2540-B2 or B3 • • • •• .11S

B. Assembling on a Card System
Using the 1442-Nl or 2520-Bl • .116

C. Copying The Assembler On Tape ••• 117
D. Assembling With Card And Tape
Configuration. • • • • • .118

Special Procedures •

BASIC UTILITY
PROCEDURES •

PROGRAMS

.118

OPERATING
. .120

The Single-Phase Dump Program. .120
Initialization Of The Single-Phase

Dump Program ••••.•••••.• 120
Using The Single-Phase Dump Program .120

The Two-Phase Dump Program. • • •• 122
Initialization of the Two-Phase

Dump Program ••••••••.••• 122
Using the Two-Phase Dump Program .•• 123

The Absolute and Relocating Loaders ••• 124
Preparing the Loaders for Use •••• 124
Loader Options and Modifications ••• 125
Loading Capacity. • • •• 125
Using the Loaders. • • .126

Loader Generator Program •
Preparing the LDRGEN Deck for
Assembly • • • •

Running a Job •••••

Input/Output Support Package •

.126

.126

.126

.128

PROGRAM WAITS AND OPERA'rOR MESSAGES ••• 129

Two Phase Dump Program • . .130

Contents 3

DEA End of Dump-Phase 2 •
DRA Mt Next Input Reel.

• .130
• .130

DTA Mt New Output Reel. . • • • • • .130

Self-loading Dump Program.
DEA End of Dump • •

The Basic Assembler ••
lEI

• .130
• .130

• .130
• .131

2EI .
2HA
2SA .

• • • • • • • . • .131
. • • • • • .131
• • • • • • .131

The Absolute
LAA wait.
LDA Wait.
LED Wait.
LOA Wait.
LUA Wait.

and Relocating Loaders ••• 131
• .132
• .132
• .132
• .132

• • • • • .132

Input/Output Support Package •
IOD IOOPSW CSW SBYTES • .

4 BPS Basic Assmb. & Utile Progs.

• .132
• • . 133

lOS IOOPSW CSW SBYTES •
I1D IOOPSW CSW SBYTES •
I1S IOOPSW CSW SBYTES •
13S IOOPSW CSW SBYTES •

Loader Generator Program •

CARD ASSEMBLER AND UTILITIES SAMPLE

• •• 133
.133
.133
.134

• •• 134

PROBLEM • • • • • • . •• 135

APPENDIX A. CHARACTER CODES ••••••• 141

APPENDIX B. HEXADECIMAL-TO-DEClMAL
CONVERSION. . • • • • • • • • • •

APPENDIX C. SYSTEM/360
ASSEMBLERS-LANGUAGE FEATURES
COMPARISON CHART. • • • •

APPENDIX D. HEXADECIMAL TO MNEMONIC
OPERATION CODE TABLE. • •

INDEX. • •

• •• 146

•• 151

.154

.155

BASIC ASSEMBLER LANGUAGE AND BASIC ASSEMBLER PROGRAM

The Basic Assembler language is a symbolic
programming language for use with the IBM
Systeml360. This language provides
programmers with a convenient means of
writing machine instructions, designating
registers and input/output devices, and
specifying the format and addresses of
storage areas, data, and constants. All
operational capabilities of the IBM
Systeml360 can be expressed in Basic
Assembler language programs.

The language features are designed to
simplify writing programs for the IBM
Systeml360 by avoiding unnecessary
complexity. This reduces program errors
and, consequently, the time required to
produce a program that is suitable for
execution. The language is therefore
easier to learn.

Basic Assembler source programs are
translated into IBM System/360 machine
language object programs by the Basic
Assembler (that is, the assembler). In the
process of translating programs, the
assembler performs certain auxiliary
functions, some automatically, others
requested by special assembler instructions
the programmer writes in his source
program.

The assembler i's a two-phase program
available as non-relocatable assembled

I

self-loading card decks. It is available
as optional material in symbolic form for
both phases. The assembler has a special
operating procedure for use with the IBM
1442~Nl or 2520-Bl Card Read-Punch. During
the first phase, the assembler punches
inf ormation into -the source-program deck.
Using this information in the second phase,
the assembler produces an object program.
For systems with -tape, a 2540 Card
Read-Punch, or a 2501 Card Reader with a
2520 Model B2 or B3 Card Punch, this
intermediate information is stored in a
tape or card file, rather than the
source-program deck. The temporary file
then serves as input for the second phase.

FEATURES OF THE IBM SYSTEW360 BASIC
ASSEMBLER

The most significant features prov'ided by
the assembler and its language are
summarized in the following paragraphs.
This summary does not include all features,
nor complete explanations of the features

listed. For more detailed descriptions,
the reader is referred to subsequent
sections.

Mnemonic Operation Codes: Mnemonic
operation codes, provided for all machine
instructions, are used instead of the more
cumbersome internal operation codes of the
machine. For example, the
Branch-on-Condition instruction can be
represented by the mnemonic BC, instead of
the machine operation code 01000111. The
various machine mnemonic operation codes
are presented under the topic Machine
Instruction Mnemonics.

Symbolic Referencing of storagg Addresses:
Instructions., data areas., register nwnbers"
and other program elements can be referred
to by symbolic names instead of actual
machine addresses and designations. See
the topic Symbols.

Automatic Storage Assignment: The
assembler assigns consecutive addresses to
program elements as it encounters them.
After processing each element, the
assembler increments a counter by the
number of bytes assigned to that element.
This counter indicates the storage location
available to the next element. See the
topic Location Counter.

Convenient Data Representation: Constants
can be specified as decimal digits,
alphabetic characters, hexadecimal digits,
and storage addresses. The assembler
converts the data into a machine format
compatible with IBM System/360. This data
can be in a form suitable for use in
fixed-point and floating-point arithmetic
operations. See the topic DC - Define
Constant.

Renaming Symbols: A symbolic name can be
equated to another symbol so that both
refer to the same storage location, general
register, etc. This enables the same
program item to be referred to by different~
names in different parts of the program.
See EQU - Equate Symbol.

Program Linking: Independently assembled
programs to be loaded and executed together
may make symbolic references to
instructions and data in each other. See
the discussion of program link
instructions.

Relocatable Programs: The assembler
produces object programs in a relocatable
format; that is, a format that enables

Basic Assembler Language and Basic Assembler Program 5

programs to be loaded and executed at
storage locations different from those
assigned when the programs were assembled.

Assembler Instructions: A set of special
instructions for the assembler is included
in the language. Some features described
in this section are implemented by these
instructions. See the topic Assembler
Instructions.

Base Register and Displacement Assignment:
The programmer can instruct the assembler
to assign base registers and compute
displacements for symbolic machine
addresses. See the discussion of Base
Register Instructions. ----

Program Listings: For every assembly, the
assembler can provide a listing of the
source program and the resulting object
program. A description of the listing
format can be found under the topic Program
Listing.

Error Checking: Source programs are
examined by the assembler for possible
errors arising from incorrect usage of the
language. Wherever an error is detected, a
coded error message (a flag) is printed in
the program listing. For card systems
without printers, limited error
notification is provided. See the topic
Error Notification.

Program Reassembl~ A special reassembly
procedure is provided for programs
assembled by the IBM 1442 Model N1 or 2520
Model B1 Card Read-Punch card-operating
procedure. This permits partially or
completely assembled (and modified) source
programs to be reassembled in less time
than required for a new assembly. See the
topic Reassembly Procedure.

Device Assignment: The assembler has five
types of input/output. Four (the
assembler, sou~ce program, intermediate
text, and object code) can use card read
punch or tape; the fifth (the listing) can
use printer, printer-keyboard, or tape.

Note: If tape is used for listing, it
must be 800 BPI or less. Also, tape
may be used for listing only with a
Model 40 or larger system because the
speed of these systems is sufficient to
handle "chain data."

If series 2400 tape drives are available
(either seven- or nine-track), one to five
drives may be used in the assembly at the
user's option. If one tape unit is
available, it may be used for any of the
five input/output types enumerated above.
If two tape units are available, they may
be used for any two of the five
input/output types, and so on. The ·user

6 BPS Basic Assmb. & Utile Progs.

indicates the input/output types by means
of "Configuration Cards.~ Details
concerning these cards are found in the
section Basic Assembler Operating
Procedures.

COMPATIBILITY WITH OTHER SYSTEM/360
ASSEMBLERS

Programs written in the Basic Assembler
language as described in this publication
are acceptable to the othe~ Basic
Programming Support, Basic Operating
System, and Operating System Assemblers,
and the 7090/7094 Support Package
Assembler. Similarly, any source programs
written in these other assembly languages
are acceptable to the Basic Assembler if
they are compatible to the Basic Assembler.
Appendix C, the System/360
Assemblers-Language .Features Comparison
Chart may be used as a guide for the
exchange of source programs between
assemblers.

The assembler also accepts programs
written for the IBM System/360 Model 20
Basic Assembler, except where differences
in machine design have made it necessary to
include some instructions in the Model 20
Basic Assembler language that are not
contained in the Basic Assembler Language.
These instructions are:

BAS BASR CIO HPR SPSW TIOB XIO
y-type Expression Constants

Note also that the pseudo-registers,
zero through three, on the Model 20 are
handled differently from the corresponding
actual registers on other models of the
System/360.

MACHINE REQUIREMENTS

The assembler operates on an IBM System/360
with the following minimum configuration:

8,192 bytes of storage
Standard Instruction Set
An IBM 1442 Model N1, 2540, or 2520

Model B1 Card Read-Punch; or
An IBM 2501 Card Reader with a 2520

Model B2 or B3 Card Punch

This configuration is for the
card-operating procedure for the assembler,
providing card intermediate text.

If IBM 2400-series Magnetic Tape Units
are available in addition to the equipment
required for card intermediate text, the

tape-operating procedure may be used to
provide tape intermediate text, if desired.

If an IBM 1443 Model Nl or 1403 Printer,
or an IBM 1052 printer-Keyboard is
provided, the assembler provides a program
listing, complete with error flags, for
each assembly. An option is available to
list only those statements containing
errors. For information concerning this
option, refer to Rrogram Listing. -

CARD OR TAPE INTERMEDIATE TEXT

The assembler is a two-phase program. The
first phase produces data for use by the
second phase. The intermediate data
produced by the first phase must bE! passed
on to the second phase via some external
storage medium. The storage mediums used
are punched cards or magnetic tape. The
machine configuration determines which
option applies at a particular
installation.

BASIC ASSEMBLER LANGUAGE

BASIC ASSEMBLER CARD FORMATS

An assembler language source program
consists of a sequence of source statements
punched into cards.. one statement per card.
Source programs may also be loaded from
tape, in unblocked card-image records. The
card columns available for punching source
statements vary wit:h the machine
configuration (that: is, input device, card
or tape option) and at the programmer's
discretion. (See Figure 1.)

r-------T---------------T-----------------,
ISource I I I
I Input I Intermediate 1 Columns I
I Unit I Text I Available I
~-------+---------------+-----------------~
12540 1 tape I 1-71 or 25-71 I
12540 1 card I 1-47 or 25-71 I
12501 1 tape 1 1-71 or 25-71 I
12501 1 card J 1-47 or 25-71 I
11442-Nll tape I 1-71 or 25-71 I
11442-N11 card 1 25-71 I
12520-Bll tape I 1-71 or 25-71 I
12520-Bll card I 25-71 I
1 tape 1 tape I 1-71 or 25-71 I
Itape 1 card 1 1-47 or 25-71 I L _______ ~ _______________ L _________________ J

Figure 1. Source Program Column Assignment

1. Columns 1-71 (rather than only columns
1-47) may be used with a 2540 alone,
or with a 2501 and a 2520-B2 or B3
input and card intermediate text. The
assembler scans all 71 columns of the
statement field when obtaining the
information required to generate the
appropriate object code. However,
only the contents of columns 1-47 and
73-80 are included in the program
listing produced by the assembler.
Columns 1-24 must be blank when using
a 1442-N1 or 2520-B1 input and card
intermediate text.

2. The use of tape source input and card
intermediate text is not recommended
for a 1442-Nl or 2520-B1 system. If
this option is selected, the assembly
proceeds normally, and the source
statement does not appear on the
listing .•

(When tape is used for input,ll' its format is
that of 80-byte unblocked records. Each
record is equivalent to a card, each byte
representing one card column.)

In addition to a source statement, each
card may contain an identification sequence
number in columns 73-80.

The discussion of card formats assumes
that card input and inter,mediate text are
used, and all statements begin in column 1.
When card column assignments differ because
of statements beginning in column 25, the
column numbers associated with the
statements beginning in column 25 are
placed in parentheses, e.g., 1(25).

The statements may be written on one of
two standard coding forms provided by IBM:
a "long" form, Form X28-6507 (Figure 2),
and a "short n form, Form X28-6506, for IBM
Card Read-Punch card-option assemblies
(Figure 3).

Basic Assembler Language and Basic Assembler Program 7

Each line of the coding form is used for
a single statement and/or comments. The
information on each line is punched into
one card. If a card is completely blank,
it is ignored by the assembler. The
position numbers on the forms correspond to
the card columns.

Space is provided at the top of both
coding forms to identify the program and
provide instructions for the keypunch
operator. None of this information is
punched into the statement cards.

Statement Fields

An assembler statement is composed of one
to four fields, from left to right: name
field, operation field, operand field, and
comments field. The identification­
sequence field is not part of the
statement. The statement fields can be
written on the coding form in what
basically is a free form. As a
convenience, however, the name and
operation fields are marked on the coding
forms by heavy lines to indicate the

maximum length of these fields.
Programmers may wish to align the fields at
these lines to create a neat and orderly
appearance in the program listing.

General rules that must be observed when
writing statements are:

1. The only required field in a statement
is the operation field. The other
fields are optional, depending on the
operation and the programmer's wishes.

2. The fields in a statement must be in
order and separated from one another
by at least one blank.

3. The name, operation, and operand
fields must not contain embedded
blanks. A blank may, however, occur
in the operand field as a character
self-defining value or character
constant.

4. Only one statement is allowed to a
line; a statement cannot be continued
on additional lines.

5. Column 72 must be blank.

IBM; IBM Systsm/360 Ass.mbl.r
Lang Coding Farm

PROGRAM PUNCHING INSTRUCTIONS PAGE OF

GRAPHIC I j 1 J -' I I CARD ELECTRO NUMBER
!------ I DATE I I I I I I I PROGRAMMER PUNCH

STATEMENT
Identificotlon-

35 71 73 40 45
Comment!

55 60
Operand

20 25
Name Operation

6 8 12 14 30
Sequence

~o 65

I-+}--I--i---+--+-+--+
rr-T-r~~rr++~r+1-r+~r++4__+_i---t--+-+~-++- --I-~f---~~4-~~--+-~__+_~+-~+-j-4-+4~-+4--+-+4--+-~--+-~+-~+~-+-~--+-4~--+-W

+-+--I-++-t-t-I--+-+ -J- +-+--jf--t-+--+----f-f- -1---­
t-t-+-t--+--l-+~+-+-+-+~+- --f-

-c-- -- - -I-- -1--+_+-+-1--+-+--1-+--1-1-+-++- i-I- ~-

-+--1-+-+-1--1--+ -+-+-+-+-+ f--f--t--- -+--+-t---t--I-+-+-i--if-+--
-- 1- --- 1--1- -- - -+++-r-+-+-+-I-++-+--I--+-+~-++__+-H

-+-+-+-+-II--I--+-1I--1-+-~-++-+__+_+--- ~ -1---1--1--1- - f_
f--- ~t-__+_~+-f-++_I-++--t-+-~+-~_+_t+44- - 1 -- -- ~I-- c ___ ' __ + ___ -H'-++-+--+-+--I- t- - f- -
1- -- -- - --H_+_+-+~c-+-+__+_1--H- +

- ~I--- -- -f- - --I--II-+-+--+-+--+--+-
1-

- t-- -- -- -'-- - -+--I-+--t--~-iI--I_+_f_l---I-+-+_+_+__+-+-+-

I
-- -I-- - - - -- - - t--- - ~ 1- +-t~I_+-t--+-+-+__+_++_I_+_+-+-+-+-~_1

1-- --- --f-- --I-
1-- - -- - -+-++--+-+-+ +-+-+-+-~+-~+4_+-+-+-++ +-+~+-+-+--1f--I-++~+-++-+- -1-- I--

- --- -1-+-+-+---1-+ -+-+-+--+-+-+-+-1-++- - --- - -r-- - -++-I-++-I-+~-+-+-+--+-~--+-"I-+-f-j~-j-j

- -----t--- - - -+-+-+-+-r+-+--I---I-+-I-+.+ -f----- - -l-+-I--+-+--HI--t--l-+~
1-+-+4--+-+__+-+-+-+-1--+-++- ----- 1-- -- f--- - '-1--1----- --++-I_+_+-+~t-+-~_+-l--++-+--1--

f--------­
r--~----­

--I--

-j--,-t- ~-l-++-+ ,- ----1-- --I- ----1--- - ---- 4---+--+-+--I--+-~+- ~--~ --1-- - -- ~-- - -'---- '_c __ I--_+-+__+-I-+-+_+_+-+~++-+-+-+---/--I---I-+--I---1-+-+-j

---- .- -- --+--+_+_t-}-f--t--l-- I--
1---- -~~--I-- - -~

H-·+-"f--++~'--+-+- --- - '-- - I--~f--- -- - L__ L __ L_._I---L ___ -- - -~ f_
t-- - --- ---. .--- - --~rl--- ~rr - - 1-- - ---

f---I-~

1-- --j--++-+-+-+4-+-}-1-+-I~l-l- 1---- --f_I-
I-t--t--t- -t--t-t- ------ -- ~

1--- - ------ -- ~f_---- -- ~f_ --H--+-+-+-+--!--I--I--- ,-- - l++-+-+-t-+--+--f-++-f- I-- -- - e· 1-- -1- - -1--+-+-+-I_+_+-+-+--++-+--+-+--+-j--1--+-1_1
I- - - r-- -+--I-I-++·-4--t--t- 1---1-+-++ +--1--1- -- -1-- - -- -I- +- +-t-l~-+-l---I--r- -+-++__+_++~+--+-+-+-+-+--I-++--t ---
~ ~ - 1--+++--t'--t-++~-++-jI__++_1_+_+_+_+-~f-+-+-+- t-+- ----- ---- ----~---- - --- ----------

1--+-+-+--+-+-+- - -- - -~ ---- - -- -1----- -- -1
1-+-+-+--+-+-+- - - ---- -- - -- .- -- ------ --- -- -- -- -1--- - ~ -- - - -- - _.J -t-~__+_H-_+_t__++-I-++_H_+_I_+-+4-+-f-- +-++-+-+-+-+-<
1---1---1---11-+-+-+-+-++-+--11--1--+--11-+++ +-+_+_-I-++-I-++-+-l- 1------ - -.----.. -
1-+-+_1-++-+-+-+-+-+-tf--++-~--++ +-++---1--11--1-++--+-+- ~ -- - ~ -~~ --

1+-+-1-I--I-+--+-1~ --- -- -- H-++-t-r+-+--t--+-+- r-- ~ --~ -+-+-+~-++__+-H

-- ------- -H--+--+-1-+-+-+_+_++--+-++-+-++-+-1-1
-~-- -- ,----1-- - --- -- - i---- --- --1-- --tl·-I-1-+-+--I-+-+-+-I-+-+--+-++-+-+-+-+-1-1

-- ----I-_+__+_+-++-+-I-+-+--+-+-+--+--I--+-+-1I---1-4-<-I--+--j-- -- -- - --- -++-~ -+- - -- ---~--- - .. ----f--- - -- -1--~ -

Figure 2. IBM System/360 Long Coding Form

8 BPS Basic Assmb. & utile Progs.

IB'4
PROGRAM

GRAPHIC

IBM SystBm/360 Asssmblor
Short Coding Form

PUNCHING INSTRUCTIONS

r I I I I I I I CARD FORM H

X28-6S06
Printed in U,S.A.

PAGE OF

~ROGRAMMER I DATE PUNCH I I I I I I T l
STATEMENT

Identificotion-
Comments Sequence

50 55 60 65 71 73 80

Name Operation Op~rond
25 30 32 36 38 45

1- -- - 1----- -I- -c- -- -- - -1-----1---- f- I- -- - 1-1-1--
---- -- -- ---- 1--1----1-.. - -- -- -- -1-- ---

1-- - ------
_.-

---1---- - -- I--
!-- ----- -- --

1--- I- -+-- - --- -- 1
._- -- ---

._- -- --- -- --- ._- -- ---

-- -
-_. - 1

t--t---t--l--+-+-+ I-- ---- -- - 1--
-- - 1-- ~- 1- _._--

-------- -- I--
t--t-~r+_I_11_11_++~~+~-+- -- - .- I- - --c--

-- --I- - 1-- 1--1-- - - ----

t--t-~r+~I_11_++~~+_~- 1-- -1-- .. ~-_l___l__I___I____I__I___I____l--l-_I__I___I___j----- - --- -- f-

- -- I--
---------- --- - _. -+-- - ---I--

- -

--

- -- - - - +--1--+1-'---+-
- -- -- -- --

-- -- .._-- -- ._- --- - -- -- - - -- - -- - -- --- --- ---
-- - - _ .. -

-- -----

---- -
- -

Figure 3. IBM System/360 Short Coding Form

Name Field: The name field is used to
assign a symbolic name to a statement. A
name enables other statements to refer to
the statement by 1:hat name. If a name is
given, it must be9in in column 1 (25) and
must not extend beyond column 6 (30). A
name is always a symbol and must conform to
the rules for symbols (see the sec,tion.
Symbols). Figure 4 shows the symbol FIELD2
used as a name. The number of symbols in
an assembly is limited. The limit varies
with main storage size. For specific
information see Symbol Table ..

If column 1 (25) is blank, the assembler
will assume that the statement has no name.
Column 1 (25) is also used to indicate that
the card is a comments card (see Comments
Field).

Name Operation ~OP"roOd 1 6 8 12 " lOrn FIIIEIL IDlz I I I I
I I I I I I I I I

Figure 4. Example of the Name Field

Operation Field: The operation field is
used to specify the mnemonic operation code
of a machine or assembler instruction.
This field may beqin in any column to the

---- -­
_.

right of column 1 (25) if the name field is
blank. If the name field is not blank, at
least one blank must separate the name and
operation fields. The operation field may
contain any valid mnemonic operation code.
The valid machine-instruction mnemonics are
listed in Machine Instruction Statements.
The valid assembler-instruction mnemonics
are listed in the section Assembler
Instructions. A valid mnemonic must never
exceed five characters. If an invalid
mnemonic is specified. the assembler treats
the statement as a comments statement and
flags an error.

Figure 5 shows the mnemonic for the
compare instruction (RR format) used in a
statement named TEST. Note that this
mnemonic could have been placed in columns
6-7, since this would have satisfied the
requirement that at least one blank space
separate the fields.

Figure 5. Example of the Operation Field

Basic Assembler Language and Basic Assembler Program 9

Operand Field: The operand field provides
tbe assembler with additional information
about the instruction specified in the
operation field. If a machine instruction
has been specified, the operand field
contains information required by the
assembler to generate the machine
instruction. The operand field specifies
registers, storage addresses, input/output
devices, immediate data, masks, and
storage-area lengths. For an assembler
instruction, the operand field conveys
whatever information the assembler requires
for the particular instruction.

The operand field may begin in any
column to the right of the operation field,
provided at least one blank space separates
it from the last character of the mnemonic.

Certain assembler instructions do not
reqUire the operand field to be specified.
If there is no operand field but there is a
comments field, the absence of the operand
field must be indicated by a comma,
preceded and followed by one or more
blanks. Figure 6 illustrates this rule.

Figure 6. Example of No Operand Field with
Comments

Depending on the instruction, the
operand field may be composed of one or
more· subfields, called operands. Operands
must be separated by commas. It must be
remembered that a blank delimits the field~
thus, a blank must not intervene between
operands and commas. Figure 7 is an
example of the same compare instruction
shown in Figure 5, with its two operands
specifying general registers 5 and 6. In
Figure 7, as in Figure 5, the fields are
separated by more than the minimum number
of blank spaces.

Nome Operation Operond
1 6 8 12 14 20 25 30

*T /-IE. A S T £R. IS K IN ~ flb UM N 1 ~ ~ I{~ ~+--
*A N AS T£ RI 51< ___ I S RE QU Ill. §1! \--- II! gA CH
17E ST C R S , 6 T HE S,f _ C 0 MM £' I-!i S - -

Figure 8. Example of the Comments Field

10 BPS Basic Assmb. & Utile Progs.

Nome Operand

Figure 7. Example of the Operand Field

Comments Field: Comments, provided for the
convenience of the programmer, permit lines
or paragraphs of descriptive information
about the program to be inserted into the
program listing. Comments appear only in
the program listing~ they have no effect on
the assembled object program. Any valid
characters (including blanks) may be used
as comments.

The comments field must (1) appear to
the right of the operand field, and (2) be
preceded by at least one blank. If there
is no operand field but there is a comments
field, the absence of the operand field
must be indicated by a comma, preceded and
followed by one or more blanks. The entire
statement field can be used for comments by
placing an asterisk in colUmn 1 (25)~ the
entire statement will be treated as
comments. Column 72, however, must remain
blank.

If it is necessary to continue full-card
comments on additional lines, each such
line must have an asterisk in column 1
(25), as illustrated in Figure 8.

Identification-Sequence Field

The identification-sequence field may be
used for program identification and
statement sequence numbers. This field can
occupy columns 73-80 only. The information
normally is punched in every statement
card. The assembler, however, will not
check this field. It will merely reproduce
the information in the field on the output
listing of the program.

STATEMENT

35 40 45 50
55 Comments <

TH I § A -f-~ ~. ~~ ~ ~I-Z:- S L I N E' I----1----- --t-- 1--

-'--- It! g~- QF \---- gQ. .M ~E: tj TS _J~

~~ __ If OT _Ii §. g~ 1---- AN -I-- AS TE ~J. §.15 -- ._- ,

WRITING BASIC ASSEMBLER STATEMENTS

Language statements are accepted by the
assembler only if they conform to the
established grammatical rules and
vocabulary restrictions presented in this
section. The reader can expect that many
points not fully explained when first
mentioned in this section are subsequently
described in detail.

Character Set

Basically, statements may be writ"ten using
the following characters:

A through Z
o through 9
*+-, ()' blank

The card column punch-combinations that
the assembler accepts for these characters
are listed below. This list also contains
the punches assumed for additional printer
graphics, which may be used in comments.
The punch combinations accepted by the
assembler are those of the Extended Binary
Coded Decimal Interchange Code (EBCDIC).
Note that the punch combinations for +,
(,), =, and' are different from those of
Binary Coded Decimal (BCD).

r------------T----------------------------,
I Character I Punch Combination I
~------------+----------------------------~
IA - I 12 punch and a 1 - 9 punch,
I respectively
IJ - R 11 punch and a 1 - 9 punch,
I respectively
IS - Z 0 (zero) punch and a 2 - 9
I punch, respectively
o - 9 0 (zero) - 9, respectively
blank No punches
& 12
/ 0-1

• (period)
$
,

<
* %
Q)

(
)

\' (single
1 quotation)
1+
1=

11
12- 3-8
11- 3-8
0-3-8
3-8
12- 4-8
11-4-8
0-4-8
4-8
12-5-8
11- 5-8
5-8

12-6-8
6-8 L ____________ ~ ____________________________ J

Symbols

Symbols are created and used by the
programmer for symbolic referencing of
storage areas~ instructions, input/output
units, and registers.

A symbol may contain from one to six
characters, in any combination of
alphabetic (A through Z) and numeric (0
through 9) characters. The first character
must be alphabetic. Special characters and
embedded blanks must not be used in
symbols. Any violation of these rules is
noted by an error flag in the program
listing. The symbol will not be used.

The following are valid symbols:

READER
A23456
LOOP2
N
S4

These symbols are invalid:

256B

AREATWO
RCD*34

First character is not
alphabetic
More than six characters
Contains a special character

Defining Symbols: Symbols are meaningful
in statements when used as operands and
names. In order for a symbol to be used as
an operand, it must be defined somewhere in
the program. When a symbol is used as an
operand, and therefore defined, the
assembler will normally assign certain
attributes to it.

A symbol is defined when used as the
name of a statement. When the assembler
finds a symbol in the name field, it will
assign an address-value attribute and a
length attribute to the symbol. The
address value is the storage address of the
leftmost byte of the field allotted to the
statement; the length is the number of
bytes in the storage field named by the
symbol. This length is called the implied
length associated with the symbol. The
convenience of having implied lengths
becomes apparent in the discussion of the
symbolic format of machine instructions in
the SS format.

A symbol defined in this manner is
normally called a relocatable symbol. That
is, the address value of the symbol changes
if the program is loaded at a location
other than its assembled location.

Symbols can be assigned arbitrary
absolute values by use of the EQU assembler
instruction.. These values may designate

Basic Assembler Language and Basic Assembler Program 11

registers, input/output units, immediate
data, etc. They can also specify actual
storage addresses such as permanently
allocated interrupt locations. Symbols so
defined are termed absolute symbols since
their values are fixed and will not change
because of program location.

previously Defined Symbols: Sometimes the
programmer will desire to give an alternate
name to a previously defined symbol.
"Previously defined" means that the symbol
has appeared as the name of some statement
prior to being used in the operand field of
another statement. Figure 9 shows how the
symbol TEST, defined in the first
statement, is given an alternate name.

Name Operation Operand
1 6 8 12 14 20 25 30 rg ~;L CR i5" , (,

(
"- - , ,- --

-- '-- f
1-- " -

----- f~f-- - c-- --- - ","-

bQ Qt £QV TE 5T 1--- ,-,~,- ",·f-

----'--~, ~'-- ~'--,-~- - '-- --'"- ,----

Figure 9. Example of Coding with
Previously Defined Symbols

"

-

External and Entry-Point Symbols: Symbols
are normally defined in the same program in
which they are us ed as operands.. It is
possible, however, to define a symbol in
one program, use it in another program
assembled independently of the first, and
then execute both programs together. Such
a symbol is called an "external symbol"
when it is used as an operand. The symbol
is termed an "entry-point symbol" in the
program in which it is defined. The
address value of the entry-point symbol is
assigned to the external symbol when both
programs are loaded by the relocating
loader.

Before using an external symbol or
defining an entry-point symbol, the
programmer must indicate to the assembler
which symbols are external and which are
entry points. The ENTRY and EXTRN
assembler instructions are provided for
this purpose. Both instructions are
described in Assembler Instructions.

External symbols are always relocatable.
They are subject to certain usage
restrictions that are discussed later in
this publication.

General Restrictions on Symbols: The
following restrictions are in addition to
those imposed els,ewhere in the discussion
of symbols:

1. A symbol may appear only once in a

12 BPS Basic Assmb. & Utile Progs.

program as the name of a statement.
If a symbol is used as a name more
than once, only the first usage will
be recognized. Each subsequent usage
of the symbol as a name will be
ignored and noted with an error flag
in the program listing.

2. The number of symbols that may be
defined in a program is restricted"
depending on the machine's storage
size. These restrictions are
explained in detail in the section The
Symbol Table.

3. A symbol must always be defined as
having a positive value not exceeding
65,535. Any symbol whose definition
is contrary to this rule will not be
used, and the statement in which it
appears will be flagged as an error.

The Location Counter

The assembler maintains a counter (the
Location Counter> used to assign
consecutive storage addresses to program
statements. It always points to the
current address. After each machine
instruction is processed, the Location
Counter is incremented by the number of
bytes assigned to that instruction.
Certain assembler instructions also cause
the Location Counter to be incremented,
others do not affect it.

The programmer can set and'change the
Location Counter by using the START and ORG
assembler instructions described in
Assembler Instructions.

Location Counter Overflow: The maximum
value of the Location Counter is 65,535, a
16-bit value. If a program being assembled
causes the Location Counter to be
incremented beyond 65,535, the assembler
will retain only the rightmost 16 bits in
the counter and continue the assembly,
checking for any other source program
errors. No object program is produced.
The assembler can, however, provide a
listing of the entire source program. The
statement causing the overflow is flagged
in the listing.

Program References: The programmer may
refer to the current value of the Location
counter at any place in a program by using
an asterisk as an operand. The asterisk
represents the location of the first byte
currently available. The use of an
asterisk in a machine-instruction statement
is the same as giving the statement a name
and then using that name as an operand in
the same statement. Note that the asterisk

has a different address value each time it
is used. The asterisk has a length
attribute of 6, except in an EQU statement
where the length attribute is 1. An
asterisk used as an operand is considered a
relocatable symbol,.

Self-Defining Val~es

The ability to represent an absolute value
symbolically is an advantage in cases where
the value will be referred to repeatedly.
However, it is equally necessary to have a
convenient means of specifying an actual
machine value or a bit configuration
without having to go through the procedure
of equating it to a symbol and usilOg the
symbol. The assembler language p~ovides
this facility through the self-defining
value, which can be a decimal, hex,adecimal,
or character representation.

Self-defining values may be used to
specify such program elements as immediate
data, masks, registers, addresses, and
address increments. The type of
representation selected (decimal,
hexadecimal, or character> will depend on
what is being specified. The use of a
self-defining value is quite distinct from
the use of data constants specified by the
DC assembler instruction and by literal
operands. When a self-defining vailue is
used in a machine-instruction statement,
its value is assembled into the
instruction. When a data constant is
specified in a machine instruction, its
address is assembled into the inst:ruction.

Decimal: A decimal self-defining value is
an unsigned number from one through six
decimal digits. A decimal self-defining
value of more than six digits is not valid.
The acceptable decimal digits are 0 through
9. Some examples are:

7
147

4092
128

0007
199860

The assembler imposes additiona,l
restrictions on decimal self-defining
values, depending on their use. For
example, a decimal self-defining value
designating a general register should be
from 0 through 15: one designating a core
storage address should not exceed the size
of available storage.

Hexdecimal: A hexadecimal self-deifining
value is an unsigned number of from one to
six hexadecimal digits, enclosed in single
quotation marks, and preceded by the letter
X. Hexadecimal self-defining values of
more than six digits are not valid .•

Each hexadecimal digit converts to a
four-bit value. The hexadecimal digits,
and their bit patterns are:

o 0000
1 0001
2 0010
3 0011

4 0100
5 0101
6 0110
7 0111

8 1000
9 1001
A 1010
B 1011

The following are examples of
hexadecimal self-defining values:

X'2S'
X'F4F'

X'B'
X'OOCD'

X'12FA1E'
X'OOEO'

C 1100
D 1101
E 1110
F 1111

A table for converting decimal values to
hexadecimal is provided in Appendix B.

Character: A character self-defining value
is a single character, enclosed in single
quotation marks, and preceded by the letter
C. A character self-defining value may be
a blank or any combination of punches in a
single card column that translates into the
8-bit IBM Extended Binary Coded Decimal
Interchange Code (EBCDIC>. There are 256
such combinations. Appendix A is a table
of these combinations, their interchange
codes, and, where applicable, their printer
graphics. A single quotation mark used as
a character self-defining value, or an
ampersand, is represented as two single
quotation marks, or two ampersands,
enclosed in single quotation marks, thus:
C' , " or C· ~ & '

Examples of character self-defining
values are:

C'/'
C'B'

C' #'
C' 2'

C' • '
C' , (blank>

The same value can frequently be
represented by anyone of the three types
of self-defining values. Thus. the decimal
self-defining value 196 can be expressed in
hexadecimal as X'C4' and as a character
C'D'. The selection of a particular type
of value is left to the programmer.
Decimal self-defining values, for example,
might be used for actual addresses or
register and input/output unit numbers,
hexadecimal self-defining values for masks,
and character self-defining values for
immediate data.

Expressions

The term "expression" refers to symbols or
self-defining values used as operands,
either alone or in some arithmetic
combination. Expressions are used to
specify the various fields of machine
instructions and as the operands of
assembler instruction statements.

Basic Assembler Language and Basic Assembler Program 13

Expressions are classified as either
simple or compound, relocatable or
absolute. Unless otherwise qualified, the
term "expression" hereinafter implies any
expression, simple or compound, relocatable
or absolute.

A simple expression is a single unsigned
symbol (including the asterisk used as the
Location Counter value) or a single
unsigned self-defining value used as an
operand. The following are simple
expressions:

FIELD2
X'BF'

2

*
C'R'
ALPHA

A compound expression is a combination
of two or, at most, three simple
expressions, connected to each other by
arithmetic operators. The recognized
operators are + (plus), - (minus), and *
(asterisk), denoting, respectively,
addition, subtraction, and multiplication.
The following are compound expressions:

N+14*256
FIELD+X'2D'

ENTRY-OVER
*+GAMMA- 200

Note that an asterisk is used for the
Location Counter (*+G~~-200) and as an
operator (N+14*256), but cannot be used in
succession to denote the two in the same
expression. The following example is
invalid:

**5

A compound expression must not contain
either two simple expressions or two
operators in succession, nor may it begin
with an operator. The following examples
violate these rules and, therefore, are
invalid:

AREAX'C'
FIELD+-l0

-DELTA+256
+FIELD-l0

Relative Fddressi~ Relative addressing
is a technique of addressing instructions
and data areas by designating their
location in relation to the Location
counter or to some symbolic location. This
type of addressing is always in bytes,
never in words or instructions. In the
sequence of instructions shown in Figure
10, the location of the CR machine
instruction can be expressed as ALPHA+2 or
BETA-4, because all mnemonics in this
example are for 2-byte instructions in the
RR format except the last, which is in the
RX format. The expression *+3 specifies an
address that is three bytes greater than
the current value of the Location Counter.

14 BPS Basic Assmb. & Utile Progs.

Name Operation Operond
1 6 8 12 14 20 25 30

Al- PHA LR J , ~
CR. 'I , 6

-!~" C"~ ""

BCR
+-~

1, , 1 J/
+ f"""""" """

BE 11 A A f3."" 2 J 3
2r~ "- C""" --I--f--

_8 C _1 5[1 AL PH A+
" 0" f"" t-- t

L_

Figure 10. Example of Relative Addressing

Attributes of Expressions: The assembler
separately evaluates each expression in the
operand field. An expression is terminated
by a comma, a left or right parenthesis, or
a blank, depending on what the expression
specifies (see section Machine Instruction
Statements). The evaluation procedure is
as follows:

1. Each simple expression is given its
numerical value.

2. Arithmetic operations are performed
from left to right, with
multiplication before addition and
subtraction. Thus, A+B*C is evaluated
as A+(B*C) and not (A+B)*C.

3. The arithmetic result becomes the
value attribute of the expression.

In addition to computing the value
attribute of an expression, the assembler
also determines its length attribute. For
a compound expression, the length attribute
is the same as the implied length attribute
of its leftmost simple expression. If the
leftmost simple expression in an expression
is a self-defining value, the implied
length attribute of that expression is one
byte. If it is an asterisk, the implied
length attribute is six bytes.

Absolute and Relocatable Expressions: An
expression is absolute if its value is
unaffected by program relocation. An
absolute expression either:

1. Contains only absolute symbols or
self-defining values.

2. Is of the following forms (where R is
a relocatable symbol, and A is an
absolute symbol or self-defining
value):

R-R
R-A-R

R-R+A
A-R+R

R-R-A
R+A-R

A+R-R

Although the address values of both
relocatable symbols are subject to change
when the program is loaded, the difference
between their values is constant; that is,
absolute.

An expression is relocatable if its
value changes upon program relocation, for
example, when the value of an expression
changes by N if the program was loaded N
bytes away from its assembled loc,ation.
Relocatable expressions must conform to the
following rules:

1. A relocatable expression mus·t contain
either one or three relocatable
symbols. If there are three
relocatable symbols, one (and only
one) must be preceded by the minus (-)
operator. If only one relocatable
symbol is present, it must not be
preceded by the minus operator.

2. A relocatable symbol may not be
multiplied. That is, it mus 1t not be
preceded or followed by the asterisk
(*) operator.

The following examples illustrate
absolute and relocatable expressions. R
represents relocatable symbols; A, absolute
symbols.

Absolute Expressions:
R-R+5
A+14*C'H'
2048
A*A

Relocatable.Expressions:
R+2
R-8*A
R-R+R
*-X'FB2'
R-A

The following expressions are invalid
for the reasons listed:

R+R
R+R-A

R*A

R+R+R

A-R

R-R-R

contain two relocatable
symbols.

Relocatable symbol is
multiplied.

No minus operator.

Single relocatable symbol is
preceded by a minus operator.

Two minus operators.

Restrictions: The following restrictions
apply to all expressions. Additional
limitations are imposed where per1:.inent in
this publication.

1. An expression can have a negative
value only w'hen it is an absolute
expression specifying an address
constant using the DC assembler
instruction.

2. An expression containing an external
symbol may not contain any other
relocatable symbols. For the purpose
of evaluating such an expression, the
value of the external symbol at
assembly time is zero; the symbol is
revalued when the program is loaded.

3. If an expression is used as the
operand of a machine instruction
statement, any self-defining values
within it must not exceed 4095.
Instructions containing self-defining
values exceeding 4095 are set to zero.
The operation code remains unchanged.

4. The maximum value of an expression is
65,535. If an expression exceeding
this maximum value is used in a
machine instruction statement, the
entire instruction except for the
operation code is set to zero. If
that expression is used in an
assembler instruction statement, the
action taken depends on the
instruction.

Note: The maximum value of each individual
term in the operand field of USING, ORG,
END, EQU, CCW (second operand), and DC (A)
assembler instructions must not exceed
16,777,215. The maximum value of an entire
expression in an operand field of a USING,
ORG, END, or EQU instruction is, however,
65,535. The maximum value of an entire
expression in the operand field of a DC (A)

or CCw (second operand) instruction is
16,777,215.

MACHINE INSTRUCTION STATEMENTS

The assembler language provides for the
symbolic representation of all machine
instructions. The symbolic format of these
instructions varies with the machine
format. There are five basic machine
formats: RR, RX, RS, SI, and SSe Within
each basic format, further variations are
possible.

Machine instructions are automatically
aligned by the assembler on half-word
boundaries. Any byte skipped because of
alignment is set to zero. Such situations
arise when data is inserted into the
instruction string, as in a calling
sequence.

Any machine instruction statement may be
given a name which other assembler
statements can use. The value attribute of
such a name is the address of the leftmost
byte assigned to the assembled instruction.
The length attribute of the name depends on
the basic machine format as follows:

Basic Assembler Language and Basic Assembler Program 15

Basic Machine
Format

RR
RX
RS
SI
SS

Instruction Format

Implied Length
Attribute (in Bytes)

2
4
4
4
6

Figure 11 shows each basic machine format
followed by its corresponding symbolic
operand field formats and mnemonic
operation codes. The numbers in the basic
machine formats are the bit sizes of the
field.

Figure 12 identifies the field codes
used in Figure 11 and contains pertinent
information for specifying the fields in
machine instruction statements. The
following are additional points that must
be considered:

1. If no indexing is used in an RX
instruction and the base register (B2)
is present, the X2 field must be
written as a zero. If not written as
a zero, the base register is assembled
as an index register (X2). If
indexing is used, and the base
register is implied, the base register
field may be omitted.

16 BPS Basic Assmb. & Utile Progs.

2. If the field or fields enclosed in
parentheses are omitted, the
parentheses (and the comma between
them) may also be omitted.

3. If the value of an absolute expression
exceeds the maximum value (stated in
Figure 12) for a field, the entire
instruction is set to zero except for
the operation code; the statement is
then flagged in the program listing.
This does not apply to the
displacement field.

4. If the value of a displacement field
exceeds 4095, only the rightmost 12
bits are used; the listing is then
flagged.

5. If the programmer writes an absolute
expression specifying a displacement
and does not specify a base register,
the assembler places zero in the
base-register field. The same applies
to the index register.

6. If any invalidity in the operand field
(other than those listed above)
prevents correct evaluation of an
expression, the entire instruction
except for the operation code is set
to zero, and the statement is flagged.
Such invalidities would include
undefined symbols, use of relocatable
expressions when absolute expressions
are called, etc.

r---T---------------------T-----------------,
I Basic Machine Format I I I
I----T-------T---T---T---T---------T---T--------I Assembler Operand I Applicable I
I Bits I 8 I 4 I 4 I 4 I 12 I 4 I 12 I Field Format I Instructions I
~----+-------+---+---+---+---------+---+--------+---------------------+-----------------~

I I I I I I I I I All RR instruc- I
lOp CodelRl IR2 IN/AI N/A IN/AI N/A I Rl,R2 I tions except I
I I I I I I I I I BCR,SPM,SVC I
~-------+---+---+---+-------,--+---+--------+---------------------+-----------------~
I I I I I I I I I I
lOp CodelMl IR2 IN/AI N/A IN/AI N/A I M1,R2 I BCR I
I I I I I I I I I I

RR ~-------+---+---+---+---------+---+--------+---------------------+-----------------~
I I I I I I I I I I
lOp CodelRl 10 IN/AI N/A IN/AI N/A I Rl I SPM I
I I I I I I I I I I
~-------+--_L---+---+---------+---+_-------+----------___________ +-----------------~
I I I I I I I I I
lOp Codel I IN/AI N/A IN/AI N/A I I I SVC I
I I I I I I I I I

~----+-------+---T---+---+---------+---+--------+---------------------+-----------------~
I I I I I I I I I I I
I lOp CodelRl IX2 IB2 I 02 IN/AI N/A I R1,D2(X2,B2) I All RX instruc- I
I I I I I I I I I I tions except BC I
I RX ~-------+---+---+---+---------+---+--------+---------------------+-----------------~
I I I I I I I I I I I
I lOp CodelM1 IX2 IB2 I 02 IN/AI N/A I Ml,D2(X2,B2) I BC I
I I I I I I I I I I I
~----+-------+---"+---+---+---------+---+--------+---------------------+-----------------~
I I I I I I I I I I I
I lOp CodelR1 IR3 IB2 I D2 IN/AI N/A I Rl,R3,D2(B2) I BXH,BXLE,LM,STM I
I I I I I I I I I I I
I RS ~-------+---+---+---+---------+---+--------+---------------------+-----------------~
I I I I I I I I I I I
I lOp CodelR1 10 IB2 I 02 IN/AI N/A I Rl,D2(B2) I All shift I
I I I I I I I I I I instructions I
~----+-------+---L---+---+---------+---+--------+-----________________ +-----------------~
I I I I I I I I I All SI instruc- I
I lOp Codel 12 IBl I 01 IN/AI N/A I 01(Bl),I2 I tions except I
I I I I I I I I I LPSW, SSM, HIO, I
I SI I I I I I I I I SIO,TIO,TCH I
I ~-------+---T---+---+---------+---+--------+---------------------+-----------------~

I I I I I I I I I I
I lOp CodelO 10 IBl I 01 IN/AI N/A I 01(Bl) I LPSW,SSM,HIO, I
I I I I I I I I I I SIO,TIO,TCH,TS I
~----+-------+---+---+---+-------.--+---+--------+---------------------+-----------------~
I I I I I I I I I I PACK, UNPK, MVO, I
I lOp CodelLl IL2 IB1 I Dl IB2 I 02 I Dl(Ll,Bl) ,D2(L2,B2) I AP,CP,OP,MP,SP, I
I I I I I I I I I I ZAP I
I SS ~-------+--_L---+---+---------+---+--------+---------------------+-----------------~
I I I I I I I I I NC, OC , XC, CLC, I
I lOp Codel L IB1 I D1 IB2 I 02 I 01(L,B1) ,02(B2) I MVC,MVN,MVZ,TR, I
I I I I I I I I I TRT, ED, EDMK I L ____ L _______ L _______ L ___ L _________ L ___ L ________ L _____________________ L _________________ J

Figure 11_ Machine Instruct.ion S"tatement Formats

Basic Assembler Language and Basic Assembler Program 17

Implied Base Registers and Displacements

The assembler has the facility for
assigning base registers and computing
displacements for symbolic storage
addresses. This is accomplished by
programmer specification of a symbolic
address through the use of a relocatable
symbol. This implies that the assembler is
to select the base register and
displacement. Before this can be done,
however, the programmer must indicate to
the assembler the contents and number of
the general registers available for base
registers. The USING and DROP instructions
described in the section Base Register
Instructions, convey this information.

Base registers and displacements can be
implied for RX, RS, SI, and SS
instructions. For example, the operands of
an RS instruction can be specified as

R1, R3, S2

where S2 represents a symbolic address
(i.e., a relocatable symbol) that the
assembler will separate into a displacement
(02) and base register (B2).

To specify addresses in this manner, the
programmer must observe these rules:

1. The base register instructions (USING
and DROP) must be used as described in
this publication (see Base Register
Instructions).

2. The symbolic address must be
represented by a simple or compound
relocatable expression.

18 BPS Basic Assmb. & Utile Progs.

3. A base register must not be written.
An explicit base register will cause
the assembler to treat the storage
address as a displacement, and an
error will result because a
displacement must always be an
absolute expression. An explicit
index register may be used, however,
in the usual manner.

In the following example, the
relocatable expression FIELD, with an
address value of 7400 (decimal), is used in
a machine instruction; assume that the
assembler has been told that general
register 12 contains 4096 (decimal) and is
available as a base register.

ST 4,FIELD

The assembled machine instruction (in
hexadecimal) would be as follows, the value
of D2 being the difference between 7400 and
4096.

r-------------T------T------T------T------,
I Operation I I I I I

I Code I R1 I X2 I B2 I D2 I

~-------------+------+------+------+------~
I 50 I 4 I 0 I C I CE8 I L _____________ ~ ______ ~ ______ ~ ______ ~ ______ J

If the instruction was ST 4,FIELD(2),
the assembled machine instruction would
differ from the previous example only in
that the content of the X2 field would be 2
rather than zero.

r---, I Reference Summary for Operand Fields I
~----------------T------------------T----------------T----------------------------------~
I I I I Expression I

I Field I Code I Field I------------------T---------------I
I Code I Represents I Bit Size I Allowable I Maximum I

I I I I Types I Values I
~----------------+------------------+----------------+------------------+---------------~

Rl,R2,R3

Ml

01,02

Bl,B2

X2

Ll,L2

L

General or
floating­
point
register

Mask

Displace-
ment

Base
register

Index
register

Length

Length

4

4

12

4

4

4

8

Simple
absolute

Simple
absolute

Simple or
compound
absolute

Simple
absolute

Simple
absolute

Simple
absolute

Simple
absolute

15

15

4095

15

15

16*

256*

I
I
I
I
I

I2,I Immediate 8 Simple 255
absolute

~----------------L------------------L----------------L __________________ L _______________ ~
I * These are maximum values for length fields allowed in assembler statements; the I
I values assembled for the instruction length fields are one less than these values. I L _________________ , __ J

Figure 12. Operand Field Summary

Implied and Explicit Lengths

The length field in SS instructions can be
implied or explici,t. An implied length is
the len~th attribute of either the absolute
express10n specifying the displacement or
the relocatable expression specifying the
symbolic address, whichever is written in
the statement. rhe length attribute of a
compound expression is the implied length
of its leftmost simple expression.

An explicit length, by contrast, is
written by the programmer in the statement
as a simple absolute expression. If a
length is explicit, it overrides the
implied length associated with the
displacement or symbolic address.

Regardless of how the length is
specified <implied or explicit), if it
exceeds the values indicated in Figure 12
for the LI Ll, and L2 fields, the entire
assembled instruction, except the operat10n
code, will be set to zero.

Note that the length, whether implied or
explicit, is always an effective length.
That is, it is one more than the value
inserted into the length field of the
assembled machine instruction. In the case
where an explicit length of zero is
specified, the assembler assumes an
effective length of one. Thus, a zero is
inserted in the length field of the
assembled instruction.

The reference summary in Figure 12 is
for use with the figure showing the machine
instruction formats (Figure 11). For each
explicit operand format in column 1, any of
the corresponding implied operand formats
in columns 2, 3, or 4 can be substituted in
order to specify an implied length or an
implied base register and displacement, or
both.

Basic Assembler Language and Basic Assembler Program 19

r---,
1 Reference Summary for Implied Operands 1
~----------------T----------------------------------T-----------------------------------~ 1 1 Explicit Base Registers 1 Implied Base Registers 1
1 Basic I and Displacement 1 and Displacement 1
1 Machine I-----------------T----------------+-----------------T-----------------1 1 Format 1 Explicit 1 Implied 1 Explicit I Implied 1
1 1 Length 1 Length 1 Length I Length I
I I (1) 1 (2) 1 (3) I (4) I
~----------------+-----------------+----------------+-----------------+-----------------~
1 RX I D2(X2,B2) I N/A 1 S2(X2) I N/A I
1 RS 1 D2 (B2) I N/A 1 S2 I N/A 1
I SI I Dl (B1) I N/A I Sl I N/A I
I ss I Dl(Ll,Bl) I D1(,Bl) I Sl(Ll) I Sl 1
I ss I D2(L2,B2) I D2(,B2) I S2(L2) I S2 I
I ss I Dl(L,B1) I Dl(,Bl) I Sl(L) I Sl I
I ss I D2 (B2) I N/A I S2 I N/A I
~----------------~-----------------~----------------~---_____________ ~L-----------------~
I The Sl and S2 fields a·re relocatable expressions or absolute expressions representing I
I values up to 4095; all other fields are absolute expressions. Where the 81 and 82 I
I fields are absolute expressions, base register zero is implied. I L ________________________ -----__ J

Figure 13. Implied Operand Field Summary

Machine Instruction Mnemonics

Figure 14 contains an alphabetical listing
of the mnemonics of all the machine
instructions and their operand field
formats. The column headings in the list
are:

1. Mnemonic Code: This column contains
the mnemonic operation code for the
machine instruction.

2. Instruction: This column contains the
name of the instruction associated
with the mnemonic.

3. Operation Code: This column contains
the hexadecimal equivalent of the
actual machine operation code.

20 BPS Basic Assmb. & Utile Progs.

4. Basic Machine Format: This column
contains the basic machine format of
the instruction:

RR, RS, RX, SI, or SSe

5. operand Field Format: This column
shows the explicit symbolic format of
the operand field for the particular
mnemonic.

Appendix D provides a table for
conversion of hexadecimal operation codes
to their associated mnemonic codes.

r----------T----------------------------------T-------T----------T----------------------,
I I I Oper- I Basic I operand I

I Mnemonic I I ation I Machine I Field !
I Code I Instruction I Code I Format I Format I

~----------+----------------------------------+-------+----------+----------------------~

A Add 5A RX R1.D2(X2.B2)
AD Add Normalized, Long 6A RX R1.D2(X2,B2)
ADR Add Normalized, Long 2A RR R1,R2
AE Add Normalized, Short 7A RX R1.D2(X2,B2)
AER Add Normalized, Short 3A RR R1,R2
AH Add Half-Word 4A RX R1.D2(X2,B2)
AL Add Logical 5E RX R1,D2(X2.B2)
ALR Add Logical lE RR R1,R2
AP Add Decimal FA SS D1(L1.B1) .D2CL2,B2)
AR Add 1A RR R1,R2
AU Add Unnormalized, Short 7E RX R1,D2(X2,B2)
AUR Add Unnormalized, Short 3E RR R1,R2
AW Add Unnormalized, l,ong 6E RX R1,D2(X2,B2)
AWR Add Unnormalized, Long 2E RR R1,R2

BAL Branch and Link 45 RX R1,D2(X2,B2)
EALR Branch and Link 05 RR R1,R2
BC Branch on Condition 47 RX M1,D2(X2,B2)
BCR Branch on Condition 07 RR M1,R2
BCT Branch on Count 46 RX R1,D2CX2,B2)
BCTR Branch on Count 06 RR R1"R2
BXH Branch on Index i1igh 86 RS R1" R3, D2 (B2)
BXLE Branch on Index Low or Equal 87 RS R1,R3,D2(B2)

C Compare Algebraic 59 RX R1,D2(X2,B2)
CD Compare, Long 69 RX R1,D2(X2,B2)
CDR Compare, Long 29 RR R1,R2
CE Compare, Short 79 RX R1,D2(X2.B2)
CER Compare, Short 39 RR R1,R2
CH Compare Half-Word 49 RX R1,D2(X2.B2)
CL Compare Logical 55 RX R1,D2(X2,B2)
CLC Compare Logical D5 SS D1(L,B1).D2(B2)
CLI Compare Logical Immediate 95 SI D1(B1),I2
CLR Compare Logical 15 RR R1,R2
CP Compare Decimal F9 SS D1CL1,B1),D2(L2,B2)
CR Compare Algebraic 19 RR R1,R2
CVB Convert to Binary 4F RX R1,D2(X2.B2)
CVD Convert to Decimal 4E RX R1,D2CX2,B2)

D Divide 5D RX R1,D2CX2,B2)
DD Divide. Long 6D RX R1,.D2CX2,B2)
DDR Divide, Long 2D RR Rl,R2
DE Divide, Short 7D RX R1,D2CX2,B2)
DER Divide, Short 3D RR R1,R2
DP Divide Decimal FD S8 D1CL1,B1),D2CL2,B2)
DR Divide 1D RR Rl,R2

ED Edit DE 88 D1CL,Bl),D2(B2)
EDlVIK Edit and Mark DF 8S D1(L,Bl),D2CB2)
EX Execute 44 RX R1,D2CX2,B2)

HDR Halve, Long 24 RR R1,R2
HER Halve, Short 34 RR R1,R2
HIO Halt I/O 9E 81 D1CB1)

__________ L __________________________________ ~ _______ ~----------~----------------------

Figure 14. Machine Instruction Mnemonics (Part 1 of 3)

Basic Assembler Language and Basic Assembler Program 21

r----------T----------------------------------T-------T----------T----------------------,
I I I Oper- I Basic I Operand I

I Mnemonic I I ation I Machine I Field I

I Code I Instruction I Code I Format I Format I

~----------+----------------------------------+-------+----------+----------------------~

IC Insert Character 43 RX R1.D2(X2,B2)
ISK Insert Storage Key 09 RR R1,R2

L Load 58 RX R1.D2(X2,B2)
LA Load Address 41 RX R1,D2(X2,B2)
LCDR Load Complement, Long 23 RR R1.R2
LCER Load Complement, Short 33 RR R1,R2
LCR Load Complement 13 RR R1,R2
LD Load, Long 68 RX R1,D2(X2.B2)
LDR Load, Long 28 RR Rl,R2
LE Load, Short 78 RX R1.D2(X2,B2)
LER Load, Short 38 RR R1,R2
LH Load Half-Word 48 RX R1,D2(X2.B2)
LM Load Multiple 98 RS R1,R3,D2(B2)
LNDR Load Negative, Long 21 RR R1,R2
LNER Load Negative, Short 31 RR Rl,R2
LNR Load Negative 11 RR R1,R2
LPDR Load Positive, Long 20 RR Rl.R2
LPER Load Positive, Short 30 RR R1,R2
LPR Load Positive 10 RR R1,R2
LPSW Load PSW 82 SI D1(B1)
LR Load 18 RR R1.R2
LTDR Load and Test, Long 22 RR R1.R2
LTER Load and Test, Short 32 RR R1,R2
LTR Load and Test 12 RR Rl.R2

M Multiply 5C RX Rl,D2(X2,B2)
MD Multiply, Long 6C RX R1,D2(X2,B2)
~DR Multiply, Long 2C RR R1,R2
ME Multiply, Short 7C RX Rl, D2 (X2.'B2)
MER Multiply, Short 3C RR R1.R2
MH Multiply Half-Word 4C RX R1.D2(X2,B2)
MP Multiply Decimal FC 5S D1(L1,B1),D2(L2,B2)
MR Multiply lC RR R1,R2
MVC Move Characters D2 55 D1(L,Bl) ,D2(B2)
MVI Move Immediate 92 SI D1(B1),I2
MVN Move Numerics D1 S5 D1(L,B1),D2(B2)
rviVO Move with Offset Fl SS D1(Ll,Bl),D2(L2,B2)
£VIVZ Move Zones D3 55 D1(L,B1),D2(B2)

N AND Logical 54 RX R1,D2(X2,B2)
NC AND Logical D4 5S D1 (L, B1) , D2 (B2)
NI AND Logical Immediate 94 SI D1(B1),I2
NR AND Logical 14 RR R1.R2

0 OR Logical 56 RX Rl,D2(X2,B2)
OC OR Logical D6 SS Dl(L,Bl).D2(B2)
01 OR Logical Inunediate 96 51 D1(B1),I2
OR OR Logical 16 RR Rl,R2

PACK Pack F2 SS D1(L1,B1),D2(L2,B2)

RDD Read Direct 85 SI D1(B1),I2

__________ ~ _____________________________ -----~-------~-_________ ~ ______________________ J

Figure 14. Machine Instruction Mnemonics (Part 2 of 3)

22 BPS Basic Assmb. & Utile Progs.

r----------T----------------------------------T-------T----------T----------------------l
I I I Oper- I Basic I Operand !
I Mnemonic I I ation I Machine I Field
I Code I Instruction I Code I Format I Format I
~----------+----------------------------------+-------+----------+----------------------1

S
SD
SDR
SE
SER
SH
SIO
SL
SLA
SLDA
SLDL
SLL
SLR
SP
SPM
SR
SRA
SRDA
SRDL
SRL
SSK
SSM
ST
STC
STD
STE
STH
STM
SU
SUR
SVC
SW
SWR

TCH
TIO
TM
TR
TRT
TS

UNPK

wRD

x
XC
XI
XR

ZAP

Subtract
Subtract
Subtract
Subtract
Subtract
Subtract
Start I/O

Normalized,
Normalized,
Normalized,
Normalized,
Half-Word

Long
Long
Short
Short

Subtract Logical
Shift Left Single
Shift Left Double
Shift Left Double
Shift Left Single
Subtract Logical
Subtract Decimal

l>.lgebraic
Algebraic
Logical
Logical

Set Program Mask
Subtract
Shift Right Single Algebraic
Shift Right Double Algebraic
Shift Right Double Logical
Shift Right Single Logical
Set Storage Key
Se"t System Mask
Store
Store Character
Store Long
Store Short
Store Half-Word
Store Multiple
Subtract Unnormaliz.ed,
Subtract Unnormaliz.ed,
Supervisor Call
Subtract Unnormalized,
Subtract Unnormalized,

Test Channel
Test I/O
Test Under Mask
Translate
Translate and Test
Test and Set

Unpack

Write Direct

Exclusive OR
Exclusive OR
Exclusive OR, Irrmediate
Exclusive Logical OR

Zero and Add Decimal

Short
Short

Long
Long

5B
6B
2B
7B
3B
4B
9C
5F
8B
8F
8D
89
iF
FB
04
1B
8A
8E
8C
88
08
80
50
42
60
70
40
90
7F
3F
OA
6F
2F

9F
9D
91
DC
DD
93

F3

84

57
D7
97
17

F8

RX
RX
RR
RX
RR
RX
SI
RX
RS
RS
RS
RS
RR
SS
RR
RR
RS
RS
RS
RS
RR
SI
RX
ax
RX
RX
RX
RS
RX
RR
RR
RX
RR

SI
SI
SI
SS
SS
31

SS

SI

RX
SS
SI
RR

SS

R1,D2(X2,B2)
R1,D2(X2,B2)
R1,R2
R1.D2(X2,B2)
R1,R2
R1.D2(X2,B2)
D1(Bl)
R1.D2(X2,B2)
R1.D2(B2)
Ri.D2(B2)
Ri.D2(B2)
R1,D2(B2)
R1,R2
Dl(Ll,B1),D2(L2,D2)
R1
R1,R2
R1,D2(B2)
R1, D2 (B2)
R1,D2(B2)
R1,D2(B2)
R1,R2
D1(D1)
Rl,D2(X2,B2)
R1,D2(X2,B2)
Rl.D2(X2,B2)
Rl.D2(X2,B2)
R1,D2(X2,B2)
Ri,R3,D2(B2)
Rl,D2(X2,B2)
Rl,R2
I
R1,D2(X2,B2)
R1,R2

Dl(I31)
Di(B1)
Dl(B1),I2
D1(L,B1),D2(B2)
D 1 (L, B1) , D 2 (B 2)
D1CB1)

I
I
!
I
I
!
I
I
i
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Di(Li,Bi),D2(L2,B2) I

Di(Bl),I2

Ri,lJ2(X2,B2)
D1(L,Bl),D2(B2)
Di(Bi),I2
iU, R2

!
I
I
I
I
I
I
I

Di(Li,Bi),D2(L2,B2) I
I I __________ ~ __________________________________ ~ _______ ~ __________ ~ ______________________ J

Figure 14. Machine Instruction Mnemonics (Part 3 of 3)

Basic Assembler Language and Basic Assembler Program 23

Machine Instruction Examples

The following examples are grouped
according to machine instruction format.
They illustrate the various symbolic
operand formats. All symbols employed in
the examples must be assumed to be defined
elsewhere in the same assembly. All
symbols that specify register numbers and
lengths must be assumed to be equated
elsewhere to absolute values.

Implied addressing (shown in the
following examples) requires the use of the
USING assembler instruction described later
in the publication.

RR Format
r--------T---------T----------------------,
I Name I Operation I Operand I
~--------+---------+----------------------~
I ALPHA1 I LR 11 , 2 I
IALPHA2 ILR IREG1,REG2 I
I BETA ISPM 115 I
IGA~1Al ISVC 1250 I
IGAMMA2 ISVC ITEN I l ________ ~ _________ ~ ______________________ J

The operands of ALPHA1, BETA, and GA~1Al
are decimal self-defining values, which are
categorized as absolute expressions. The
operands of ALPHA2 and GA~~2 are symbols
that are equated elsewhere to absolute
values.

RX Format
r--------T---------T----------------------,
I Name I Operation I Operand I
~--------+---------+----------------------~
IALPHA! IL 11,39(4,10) I
IALPHA2 IL IREG1,39{4,TEN) I
I BETA1 I L 12, ZETA(4) I
IBETA2 IL IREG2,ZETA{REG4) I
I GAtJiMAl 1 L 12, ZETA 1
IGAMMA2 IL IREG2,ZETA I l ________ ~ _________ ~ ______________________ J

Both ALPHA instructions specify explicit
addresses; REGl and TEN are absolute
symbols. Both BETA instructions specify
implicit addresses and use index registers.
Indexing is omitted from the GAMMA
instructions. GA~ and GAMMA2 specify
implicit addresses.

24 BPS Basic Assmb. & Util. Progs.

RS Format
r--------T---------T----------------------,
I Name I Operation I Operand I
~--------+---------+----------------------~
IALPHAl IBXH 11,2,20(14) I
IALPHA2 IBXH IREG1,REG2,20CREGE) I
IALPHA3 IBXH I REG1, REG2,ZETA \
IBETAl ISLL 11,20(9) I
IBETA2 ISLL IREG1,20(9) I
IBETA3 ISLL IREG1,ZETA I l ________ ~ _________ ~ ______________________ J

ALPHA1 and ALPHA2 specify explicit
addresses, and ALPHA3 specifies an implicit
address. Similarly, the BETA instructions
illustrate both explicit and implicit
addresses.

SI Format
r--------T---------T----------------------,
I Name I Operation I Operand 1
~--------+---------+----------------------~
I ALP HAl ICLI 140(9),X'40' I
IALPHA2 ICLl 140{REG9),TEN I
IBETAl ICLI I ZETA, TEN I
IBETA2 ICLI IZETA,C'A' I
I GAMMA1 I S 10 I 4 0 (9) I
I GAMMA2 I S10 10(9) I
I GAMMA3 I S10 1'40 (0) \
\ GAMMA 4 ISI0 I ZETA I l ________ ~ _________ ~ ______________________ J

The ALPHA instructions and GAMMAl
through GAMMA3 specify explicit addresses;
the BETA instructions and GAMMA4 specify
implicit addresses. GAMMA2 specifies a
displacement of zero. GAMMA3 does not
specify a base register.

SS Format
r------T---------T------------------------,
I Name I Operation I Operand I
~------+---------+------------------------~
IALPHA11AP 140(9,S),30(6~7) I
IALPHA21AP 140CNINE,REGS)~30(REG6~7)1
IALPHA31AP IFIELD2,FIELDl I
IALPHA41 AP IFIELD2(9),FIELD1(6) I
IBETA lAP IFIELD2(9),FIELD1 I
I GAMMAl I MVC 140(9,S),30(7} I
I GAMMA 2 I MVC 140(NlNE,REGS},DEC(7} I
IGAMMA31MVC IFIELD2,FIELDl I
IGAMMA41MVC IFIELD2(9),FIELDl I l ______ ~ _________ ~ ________________________ J

ALPHA1, ALPHA2, GAMMA1, and GAMMA2
specify explicit lengths and addresses.
ALPHA3 and GAMMA3 specify both implied
length and implied addresses. ALPHA4 and
G~~4 specify explicit length and implied
addresses. BETA specifies an explicit
length for FIELD2 and an implicit length
for FIELD1; both addresses are implied.

ASSEMBLER INSTRUCTIONS

Just as machine instructions are used to
request the machine to perform a sequence
of operations, assembler instructions are
requests to the assembler to perform
certain operations. There are 15 such
assembler instructions. Some have been
briefly mentioned in the preceding
sections. All the assembler instructions
are listed below by mnemonic operation code
and name and are fully described in the
subsequent text. Figure 21 at the end of
this section cont,ains a summary description
of all assembler instructions.

~A=s=s~e~m~b=l~e=r~C~o~n~t~r~o~1 Instructions
ICTL Input Control
START Start Program
ORG Reset Location Counter
CNOP Conditional No Operation
END End Program
EJECT Start New Page
SPACE Space Listing

Definition
EQU
DS
CCW
DC

Instructions
Equate Symbol
Define Storage
Define Channel Command word
Define Constant

Base Register Instructions
USING Use Base Address Register
DROP Drop Register

Program Linking Instructions
ENTRY Identify Entry-Point Symbol
EXTRN Identify External Symbol

Assembler instruction statements, in
contrast to machine instruction statements,
do not always cause actual machine
instructions to be included in the object
program. Some (e.g., DS, DC) generate no
instructions but cause storage areas to be
set aside for constants and other data.
Others (e.g., EQU, SPACE) are effective
only at assembly time; they generate
nothing in the object program and have no
effect on the Location Counter.

Assembler Control Instructions

The assembler control instructions are used
to specify the beginning and. end of an
assembly, set the Location Counter to a
value or word boundary, control the program
listing, and indicate the statement format.
Except for the CNOP instruction, none of

tnese assembler instructions generate
instructions or constants in the object
program.

ICTL - Input Control: The ICTL instruction
tells the assembler in which card column
the statement portion of the source-program
cards begin. The mnemonic operation code
of the ICTL statement must start in colUmn
26 or higher. The format of the ICTL
instruction statement is:

r--------T---------T----------------------,
I Name I Operation I Operand. I
~--------+---------+----------------------~
INot usedlICTL IThe decimal value I
I I 11 or 25 I l ________ ~ _________ ~ ______________________ J

If the statements are to begin in colUmn
25, the format is:

ICTL 25

If the statements begin in column 1, the
format is:

ICTL 1

If the ICTL statement is not used, or
the operand field does not contain a 1 or
25, column 1 is used for the tape option
and column 25 for the card option. when
the ICTL statement is used, it must be the
first statement in the source program. If
it appears anywhere else, it will not be
used. If a name is present, the name will
not be used.

START - Start Program: The START
instruction may be used to indicate the
beginning of an assembly, give a name to
the program, and set the Location Counter
to an initial value. The format of the
START instruction statement is:

r----------T---------T--------------------l
I Name I Operation I Operand I
~----------+---------+--------------------~
IA symbol I START IA self-defining I
I (optional) I Ivalue or blank I l __________ ~ _________ ~ ____________________ j

The symbol in the name field becomes the
name of the program. The symbol is
assigned the address corresponding to the
self-defining value in the operand field.
This symbol can be specified as an external
symbol (using the EXTRN instruction) in
other programs, without using the ENTRY
instruction to identify it as an entry
point in this program. If there is no
symbol in the name field. the assembler
assigns a name consisting of six blanks.

Basic Assembler Language and Basic Assembler Program 2r)

A self-defining value that specifies the
initial setting of the Location counter is
written in the operand field. If the value
of the operand is not a multiple of eight,
the Location counter is set at the next
double-word boundary. The self-defining
value must not exceed the maximum allowable
setting of the Location Counter. If the
operand field is invalid or blank, the
Location Counter is set to zero.

The initial setting of the Location
Counter becomes the starting location of
the program. This location is the initial
loading location if the program is loaded
by the absolute loader. It can also be
used as the temporary starting location for
loading the program while it is being
tested. This enables the programmer to
match the locations shown in the listing
produced by the assembler with the
locations in storage print listings. When
the program has been checked out, it can
then be relocated elsewhere by the
relocating loader.

If both the START and ICTL instructions
arE used, the START instruction must
iITJ1lediately follow the lCTL instruction.
If the START instruction appears anywhere
else, or if it is not used, the assembler
sets the Location counter initially to zero
and gives the program a name of six blanks.
lny invalid occurrences of a START
instruction will not be used. It should be
noted that if the ICTL instruction is not
used, the START instruction should be the
first in tne program.

Either of the START statements below
could be used to assign the name PROG2 to
the prograrr and set the Location counter to
a value of 71"8:

PROG2
PROG2

START
START

2040
X'7F8'

ORG - Reset Location Counter: The ORG
instruction resets the Location Counter to
a relative Value. This instruction may be
used anywhere in the program, as often as
desired. The forma.t of the ORG instruction
statewent is:

r--------T---------T----------------------,
I Naffie I Operation I Operand I
~--------+---------+----------------------~
\Not used\ORG \A relocatable \
I I \ expression \ l ________ ~ _________ ~ ______________________ J

The Location counter is reset to the
value of the relocatable expression. An
ORG instruction that resets the Location
Counter below its initial value as
specified in the START instruction will not

26 BPS Basic Ass,mb. & Utile Progs.

be used; it will, however, be printed in
the listing with an error flag. Any
symbol(s) in the expression must be
previously defined. If the operand field
is blank or invalid, the ORG instruction
will not be used. If a name is specified,
the name will not be used.

The statement:

ORG *+500

increases the Location Counter by 500 above
its current setting. Nothing is assembled
for the 500 bytes skipped. That is, these
oytes are not cleared by the assemoler.
(These bytes should, therefore, not be
assumed to be set to zero.)

The ORG instruction provides an
alternate way of reserving storage areas;
the preferred way is with the DS (Define
Storage) assembler instruction. However,
where a storage area cannot be conveniently
defined with the DS instruction, the ORG
instruction can be used. For example, to
reserve two storage areas of equal size,
the following coding might be used:

TABLEl

TABLE 2

DS
DS

EQU
ORG

50F
lOOH

*
*+TABLE2-TABLEl

Note that the EQU assembler instruction
permits TABLE2 to be used in the ORG
statement as a previously defined symbol.

CNOP - Conditional No Operation: The CNOP
instruction allows the programmer to align
an instruction at a specific word boundary.
If any bytes must be skipped to properly
align the instruction, the assembler
ensures an unbroken flow by generating a
CNOP instruction. This facility is useful
in creating calling sequences consisting of
a linkage to a subroutine followed by
parameters such as Channel Command Words
(Cc~·n which require proper word boundaries.

The CNOP instruction aligns the Location
Counter setting to half-word, full-word, or
double-word boundary. If the Location
Counter is already aligned, the CNOP
instruction has no effect. If the
specified alignment requires the Location
Counter to be incremented, a no-operation
instruction (an RR branch-on-condition
instruction with a zero Rl and R2 field) is
generated for each pair of bytes
(half-words) skipped. If an odd number of
bytes is skipped, the first byte is set to
zero.

The format of the CNOP instruction
statement is:

r--------T---------T----------------------,
I Name I Operation I Operand I
~--------+---------+----------------------~
INot usedlcNOP ITwo decimal values I
I I lof the form: E, ~ I l ________ L _________ L ______________________ J

Operand E specifies the byte in a word
or double-word at which the Location
counter is to be set; b can be 0, 2, 4, or
6. Operand y!!. specifies whether the byte E
is in a word (4) or double-word (8).

The following pairs of E and ~ values
are valid:

E,Y!!. Explanation

0,4 Beginning of a word
2,4 Middle of a word
0,8 Beginning of a double-word
2,8 Second half-word of a double-word
4,8 Middle (third half-word) of a

double-word
6,8 Fourth half-word of a double-word

Figure 15 shows the position in a
double-word that each of these pairs
specifies. Note that 0,4 and 2,4 specify
two locations in a double-word.

If the operand field is blank or
invalid, the CNOP instruction will not be
used. A name, if present, will not be
used.

Assume that the Location Counter is
currently aligned at a double-word
boundary. Then the CNOP instruction in
this sequence:

CNOP
BALR

0,8
2,14

has no effect; it is printed in the program
listing. This sequence, however:

CNOP
BALR

6,8
2,14

causes three branch-on-condition
instructions (no operations) to be
generated, thus aligning the BALR
instruction at the last half-word in a
double-word:

BCR
BCR
BCR
BALR

0,0
0,0
0,0
2,14

After the BALR instruction is generated,
the Location Counter is at a double-word
boundary.

END - End Program: The END instruction
terminates the assembly of a program. It
may also supply a point in the program to
which control is transferred after the
program is loaded.

The END instruction must always be the
last statement in the source program. When
the assembler detects this statement, it
produces a Load End card in the
programmer's object program for use by the
load program.

The format of the END instruction
statement is:

r--------T---------T----------------------l
I Name I Operation I Operand I
~--------+---------+----------------------~
INot usedlEND IA relocatable ex- I
I I Ipression or blank I L ________ L _________ L ______________________ J

The expression in the operand field
specifies the point to which control is
transferred when loading is complete. The

r---,
I
I Double-Word
I
I i
~---T---1
I Word I Word I
I I
~---------------------T---------------------+---------------------T---------------------1
I Half-word I Half-word I Half-word I Half-word I
~----------T----------+----------T----------+----------T----------+----------T----------~
I Byte I Byte I Byte I Byte I Byte I Byte I Byte I Byte I l __________ L __________ L __________ L __________ L __________ L __________ L __________ L __________ J

0,4 2,4 0,4 2,4
0,8 2,8 4,8 6,8

Figure 15. Boundary Alignment with a CNOP Instruction

Basic Assembler Language and Basic Assembler Program 2."

value of the expression will be punched in
the Load End card. If the operand field is
blank or invalid, nothing will be punched
in the Load End card. In this case,
control will be passed to the first storage
location (above decimal location 128)
occupie~ by the user's program when the
program is loaded. If the operand field is
invalid, the statement will be flagged as a
possible error. If a name is present, it
will not be used.

The point to which control usually is
transferred is the first machine
instruction in the program, as shown in
this sequence:

]\..REA
BEGIN

START
DS
SR

2000
50F
3,3

END BEGIN

EJECT - Start New Page: The EJECT
instruction causes the next line of the
listing to appear at the top of a new page.
This instruction provides a convenient way
to separate routines in the program
listing. The format of the EJECT
instruction statement is:

r--------T---------T----------------------,
I Name I Operation I Operand I
~--------+---------+----------------------~
INot usedlEJECT INot used I L ________ ~ _________ ~ ______________________ J

Normally, the EJECT statement is not
included in the program listing; however,
anything appearing in the name or operand
fields will result in including the
statement in the listing. In this case,
the EJECT statement is printed prior to
skipping to the new page.

SPACE - Space Listinq: The SPACE
instruction is used to insert one or more
blank lines in the listing. The format of
the SPACE instruction statement is:

r--------T---------T----------------------,
I Name I Operation I Operand I
~--------+---------+----------------------~
INot usedlSPACE IA decimal value I L ________ ~ _________ ~ ______________________ J

A decimal value is used to specify the
number of blank lines to be inserted in the
program listing. If this value exceeds the
number of lines remaining on the listing
page, the statement will have the same
effect as an EJECT statement. A blank

28 BPS Basic Assmb. & Utile Progs.

operand field will cause one line to be
skipped. Normally, the SPACE statement is
not included in the program listing. There
are, however, some exceptions. Anything in
the name field of a SPACE statement results
in including the statement in the listing.
In this case, the statement is printed
prior to spacing. If the operand field is
invalid (that is, not a decimal value or
one greater than 4095), the statement is
flagged and listed. No space operation
occurs.

Definition Instructions

The definition assembler instructions are
used to define and enter constant data into
a program, specify the contents of Channel
Command Words, and reserve areas of core
st.orage. The fields generated by these
instructions can be referred to by symbolic
names. The EQU instruction is included
with the definition instructions because it
is used for defining symbols.

EQU - Equate Symbol: The EQU instruction
is used to define a symbol by assigning to
it the value and length attributes of an
expression in the operand field. The
format of the EQU instruction statement is:

r--------T---------T----------------------,
I Name I Operation I Operand I
~--------+---------+----------------------~
IA symbollEQU IAn expression I L ________ ~ _________ ~ ______________________ J

The symbol in the name field is given
the same value attribute as the expression.
The length attribute of the symbol will be
that of the leftmost term of the
expression. If the term is an asterisk
(the Location counter) or a self-defining
value, the implied length of the symbol is
one. The expression in the operand field
can be relocatable or absolute, and the
symbol will be similarly defined. Any
symbols in the expression must be
previously defined and have a positive
value. Symbols not conforming to these
rules will not be used. The associated EQU
statements will be flagged.

If the expression in the operand field
or the symbol in the name field, or both,
are invalid or not present, the EQU
statement will be flagged in the listing
and will not be used.

The EQU instruction is the usual way of
equating symbols to register numbers,
input/output unit numbers, immediate data,
actual addresses, and other arbitrary

values. The examples below illustrate how
this wight be done:

REG2
10125
TEST
TIMER

EQU
EQU
EQU
EQU

2
125
X'3F'
80

General register
Input/output unit
Immediate data
Actual address

Note: Any time the value 2 is needed
in any operand, REG2 may be used. It
is not restricted to use in defining
register 2.

To reduce programming time, the
programmer can equate symbols to frequently
used compound expressions and then use the
symbols as operands in place of the
expressions. Thus, in the statement

FIELD EQU ALPHA-BETA+GAMMA

FIELD will be def ined as ALPHA-BETA+GAMIIilA
and may be used in place of it. Note,
however, that ALPHA, BETA, and GAMMA IT.ust
all be previously defined.

DS - Define Stora~ The DS instruction is
used to reserve storage areas and to assign
names to the areas. This instruction is
the preferred way of symbolically defining
storage for work areas, input/output areas,
etc. The format of the DS instruction
statement is:

r----------T---------T--------------------,
I Name I Operation I Operand I
r----------+---------+------------.--------~
IA symbol IDS IAn operand describ- I
I (optional) I I ing the area to be I
I I I reserved, in the I
I I Iform shown below I L __________ L _________ L ____________________ J

The single operand specifies the number,
type, and, if desired, the length of the
fields to be reserved. The general form of
the operand is:

dtLn

Where:

d
is a decimal number that specifies the
number of fields (from a to 65,535) to
be reserved. It is called the
duplication factor. If it is omitted,
one field will be reserved.

is the type code specifying the type of
field to be reserved and can be one of
the following letters:

Ln

C
H
F
D

Field Type

Character (byte)
Half-word
Full-word
Double-word

I~pJ:..i-_~g _" .. ~.§' 1)-.9: t q
(in Bytes)

1
2
4
8

can be used only if the field code 'is C.
L~ is the length code written as the
letter L immediately followed by n,
which is the length (in bytes) of-each
field. n can be a decimal value that is
not a or greater than 256.

Half-word, full-word, and double-word
fields will be aligned to their proper
boundaries. With a duplication factor (d)
of zero, the DS instruction can be used to
cause boundary alignment. Thus, the
statement:

DS aD

sets the Location Counter at the next
double-word boundary.

If there is a symbol in the name field,
it is assigned the current value of the
Location Counter after any word alignment.
The length attribute of the symbol is the
implied length associated with the field
code. If a length code (Ln) is specified,
the length attribute is the same as the
length Q.

For example, to define four la-byte
fields and one lOa-byte field, the
respective DS statements might be:

FIELD
AREA

DS
DS

4CL10
CL100

Then, to move the first 10 bytes at AREA
into FIELD, the coding is as follows,
assuming implied base registers and
displacements:

MVC FIELD, AREA

Note that the length attribute of FIELD,
which is la, is implied. Explicit length
specification can be used to move the first
20 bytes at AREA into FIELD. The followinq
instruction illustrates this:

MVC FIELD(20) ,AREA

Additional examples of DS statements are
shown below. The implied length attribute
of each symbol appears in parentheses
before the symbol:

Basic Assembler Language and Basic Assembler Program 29

(SO)
(1)
(4')
(S)
(2)

DONE
OTWO
DTHREE
OFOUR
DFIVE

OS
OS
OS
OS
DS

CLSO
SOC
6F
o
4H

One SO-byte field
SO one-byte fields
Six full-words
One double-word
Four half-words

If the operand is incorrectly specified,
the statement is not used, and an error
flag appears in the listing.

A OS statement causes the reserved area
to be skipped but not cleared. Therefore,
the programmer should not assume that the
area contains all zeros when the program is
loaded. Whenever the assembler processes a
OS statement, it terminates the current
output card (called a text card) in the
object deck and starts the next card at the
location following the reserved areas, thus
skipping them. To mini~ize the number of
text cards punched, OS statements should be
kept together as much as possible. Note
however, that text cards are not terminated
if no bytes are skipped by OS statements
used only for boundary alignment.

CCw - Define Channel Cowmand Word: The CCW
instruction provides a convenient way to
define and generate an eight-byte Channel
Command word aligned at a double-word
boundary. The internal rrachine format of a
Channel Command Word is shown in Figure 16.
The forruat of a CCW instruction statement
is:

r----------T---------T--------------------,
I Name I Operation I Operand I
~----------+---------+--------------------~
IA syrobol ICCW IFour operands, I
I (optional) I I separated by commas, I
I I Ispecifying the I
I I Icontents of the I
I I IChannel Command I
I I IWord in the form I
I I Idescribed below I L __________ L _________ ~ ____________________ J

The four operands, from left to right,
are:

1. A simple absolute expression
specifying the channel command code.
The value of this expression is
right-justified in byte 1.

2. A relocatable expression specifying
the data address. The value of this
expression is right-justified in bytes
2-4.

3. A simple absolute expression
specifying the flags in bits 32-36 and
zeros in bits 37-39. The value of
this expression is right-justified in

30 BPS Basic Assrnb. & Utile Progs.

byte 5. Byte 6 is set automatically
to all zeros.

4. A simple absolute expression
specifying the count. The value of
this expression is right-justified in
bytes 7-S.

The following is an example of a CCW
statement:

CCW X'OF',READIN,X'AS',SO

Note that the form of the third operand
sets bits 37-39 to zero, as required. The
bit pattern of this operand is:

32
1010

36
1000

40
0000

44
0000

No operand field may be omitted.
Operands not used must be written as zeros.
An error in the operand field causes eight
bytes of zeros, aligned at a double-word
boundary, to be assembled.

If there is a symbol in the name field,
it is assigned the value of the leftmost
byte of the Channel Command Word after any
boundary alignment. The length attribute
of the symbol is eight. Bytes skipped
because of alignment are assembled as
zeros.

r--------T---------T----------------------,
I Byte I Bits I Usage I
~--------+---------+----------------------~

1 0-7 Command code

2-4 S-31 Data address

32-36 Flags
5

37-39 Must be zero

6 40-47 Assembled automati-
cally as all zeros

7-S 4S-63 Count ________ L __ -------L----------------------J
Figure 16. Channel Command Word

DC - Define Constant: The DC instruction
is used to generate constant data in main
storage. Data can be specified as
characters, hexadecimal numbers, decimal
numbers, and storage addresses. Decimal
numbers may be in the form suitable for
both fixed-point and floating-point
arithmetic operations. The format of the
DC instruction statement is:

r----------T---------T--------------------,
I Name \ Operation I Operand I
~----------+---------+--------------------~
IA symbol IDC IA single operand I
I (optional) I I describing 1:he I
I I I constant, written inl
I I Ithe form shown belowl L __________ .L _________ .L _____________________ J

The operand specifies the type of
constant and the constant itself. It may
also specify an explicit storage length for
the constant and indicate how many times
the constant is to be duplicated in
storage. The format of this operand varies
with the constant type. The basic format
is either

where:

d
is a decimal number (from 1 to 65,535)
that specifies the number of identical
constants to be generated. It is called
the duplication factor. If it is
omitted, one constant is produced. A
duplication factor cannot be specified
for an expression (type A) constant.

Note: A print line is produced for each
constant generated. Thus, assembler speed
can be increased by keeping duplication
factors small and length codes large.

is the type code, specifying the type of
constant. It can be one of the
following letters:

r----T----------'T------------------------,
I I Constant I I
ICodel Type \ Machine Format I
~----+-----------+------------------------~

C character 8-bit BCD code.

x hexadecimal Fixed-point binary.

F decimal Full-word fixed-point
binary.

E decimal Short-precision
floating-point binary.

H decimal Half-word fixed-point
binary.

D decimal Long-precision
floating-point binary.

A relocatable Fixed-point binary.
or absolute
expression ____ .L ___________ .L ________________________ J

Ln

I C '

is the length code written as the
letter L followed by Q, a decimal
value, which is the explicit length
(in bytes) of the constant. A length
code is not applicable with constant
types H, E, and D. If a length code
is not given, the implied lengths
shown in Figure 17 will be used. An
explicit length must not exceed those
values shown in Figure 17.

is the constant itself enclosed in
single quotation marks. Note that for
constant type A, the expression
specifying the constant is enclosed in
parentheses (.£).

If the operand is invalid, the statement
is not used but is flagged in the listing.

All constant types except character (C)
and hexadecimal (X) are aligned at
appropriate boundaries. Constants are not
aligned if an explicit length is given.
The boundaries for the various constant
types are summarized in Figure 17. Any
bytes skipped for alignment are set to
zero ..

A symbol in the name field is given the
address value of the first byte assigned
after any alignment. The length attribute
of the symbol is the implied (or explicit)
length of the constant before the
duplication factor is applied.

The implied or explicit length of a
constant defined by a single DC statement
must not exceed 16 bytes before the
duplication factor is applied. If longer
constants are required, successive DC
statements should be used. The total
storage alloted to a constant defined by
one DC statement is the duplication factor
times the length of the constant.

The subsequent text, with examples,
describes each of the constant types. Thh;
material is summarized in Figure 17. Note
that the definition of character,
hexadecimal, and decimal constants is not
limited by the rules pertaining to
self-defining values.

Character Constants (C) A character
constant may not be more than 16 valid
characters. A valid character is a blank
or any combination of punches in a card
column that translates into the IBM 8-bit
EBCDIC. There are 256 such combinations~
the table in Appendix A lists the
combinations, their eight-bit codes, and,
where applicable, their printer graphics.

Each character in the constant is
translated into one byte. Boundary

Basic Assembler Language and Basic Assembler Program 31

r--~--------1
I Reference Summary for DC Statements I
t---------------T---------------T---------------------------T-------------T-------------~
I I Boundary I Length (in Bytes) I I I
I Constant-type I Alignment t-------------T-------------~ Duplication I Truncation! I
I Code I (If length I Implied I Maximum I Allowed I Padding I

I I is implied) I I Explicit I I Side I

t---------------t---------------t-------------t-------------t-------------+-------------~
I C I none I variable* I 16 I yes I right I

I X I none I variable* I 16 I yes I left I

I F I word I 4 I 4 I yes I left I
I H I half-word I 2 I invalid I yes I left I
I E I word I 4 I invalid I yes I none I

I D I double-word I 8 I invalid I yes I none I

I A I word I 4 I 4 I no I left I

t---------------L---------------L-------------~-------------~-------------~-------------~
I * But not exceeding 16 bytes I L ___ J

Figure 17. DC Statement Summary

alignment is not perforn,ed. The number of
bytes required for the constant becomes its
implied length unless an explicit length is
stated. In the following example~ the
length attribute of FIELD is 11:

FIELD DC C'TOTAL IS 11'

A single quotation mark used as a
character is represented in the constant by
two single quotation marks. The same rule
applies to ampersands. Thus:

DC C'DON"T'
DC C'A,B&&C'

Five bytes are used for each constant.

If the size of the constant exceeds the
explicit length, the excess rightmost
characters are truncated before applying
the duplication factor when either more
than 16 characters are specified or a
length code is given. The statement is
then flagged. For example, the statement:

DC 3CL4'ABCDE'

generates:

ABCDABCDABCD

If the number of characters is fewer
than the explicit length, the constant is
padded by adding the necessary right-hand
blanks. The statement:

DC 4CL3'NO'

generates in storage:

NObNObNObNOb

Hexadecimal Constants (X): A hexadecimal
constant may be up to 32 hexadecimal
digits. The valid hexadecimal digits are:

32 BPS Basic Assmb. & Utile Progs.

012 3 4 5 6 7 8 9 ABC D E F

A table for converting hexadecimal to
decimal is included in Appendix B. The
reader also is referred to the section
Self-Defining Values. Each hexadecimal
digit represents four bits; hence, every
pair of digits will be translated into one
byte. Boundary alignment will not be
performed. If an odd number of hexadecimal
digits is present, the four leftmost bits
of the leftmost byte are set to zero.
Unless an explicit length is specified, the
number of bytes required for the constant
becomes its implied length.

An eight-digit hexadecimal constant
provides a convenient way to set the bit
pattern of a full binary word. The
constant in the following example would set
the first and third bytes of a word to
ones. Note that the preceding DS statement
is used to align the constant at a
full-word boundary:

TEST
DS
DC

OF
X'FFOOFFOO'

If more than 32 hexadecimal digits are
present or a length code is specified and
the byte size of the constant exceeds the
explicit length, the excess leftmost digits
will be truncated before the duplication
factor is applied. The statement will be
flagged in the listing. In the following
statement, the A will be truncated and 6F4E
will be used as the constant:

ALPHA DC 3XL2'A6F4E'

The resulting constant will be generated
three times:

6F4E6F4E6F4E

If the pairs of digits are fewer than
the explicit length, the constant will be

padded by adding zeros to the left before
applying the duplication factor. Thus:

DC 2XL3'2DDA'

generates two 3-byte constants:

002DDA002DDA

Full-Word Constants (F): The signed
decimal constant in the operand is
converted into a binary number. An
unsigned number is assumed to be positive.
Negative numbers are converted to two's
complement notation.

If there is no explicit length, the
binary number is placed in a full-word
aligned at the proper boundary. An implied
length of four is assigned. If a length
code is present, alignment does not occur;
the binary number is right-justified in the
specified number of bytes. An explicit
length must not exceed four bytes.

Given the following statement:

CONWRD DC 3F'+658474'

three full-word positive constants will be
produced. The address value of CONWRD
corresponds to the leftroost byte of the
first word; the length attribute will be
four. Thus, the expression CONWRD+4 can be
used to address the second word
symtolically.

The maximum permissible value of a
full-word constant depends on the length,
as follows:

Length

4
3
2
1

Highest Value

2,147,483,647
8,388,607

32,767
127

Low,est Value

-2,147,483,648
-8,388,608

-32,768
-128

Note: All lengths can be explicit. A
length of 4, however, can also be implied.

If a value exceeds the limits associated
with the length, a constant of zero will be
generated before applying the duplication
factor. The statement will be flagged in
the listing. For example, the following
statement would generate 12 bytes of zeros:

DC 4FL3'-9500250'

Half-Word Constants (H): The signed
decimal constant in the operand is
converted into a binary number placed in a
properly aligned half-word. A length code
is not allowed. The implied length of the
constant is two bytes.

If the number is unsigned, a positive
value is assumed. Negative numbers will be
converted to two's complement notation.

The allowable range of numbers is 32,767
through -32,768. If a number exceeds these
limits, the constant is set to zero before
the duplication factor is applied. The
statement is then flagged.

The following statement generates two
identical half-word positive constants~
right-justified within two bytes:

DC 2H'256'

Short-Precision Floating-Point Constants
(E): A short-precision floating-point
constant is specified as a decimal fractio~
(mantissa) and an optional decimal
exponent. The maximum allowable range for
a floating-point constant is from
approximately (S.4)x10- 79 to (7.2)x10 75 •

The constant will be aligned at a full-word
boundary in the proper machine format for
use in floating-point operations. A
duplication factor may be applied to the
constant. A length code, however, may not
be used.

The format of the constant portion of
the operand is described in the following
text.

Fraction: The fraction is a signed decimal
number (up to eight digits) with or without
a decimal point. The decimal point can
appear before, within, or after the number.
If the point is at the rightmost end of thE:'
number, it may be omitted. If the sign is
omitted, a positive fraction is assumed. A
negative fraction is carried in the machine
in true form. The fraction, irrespective
of its decimal point or sign, must not
exceed 22q-1 (i.e., 16,777,215). The
fraction part of a number converted to the
short format will differ by no more than
one from the exact value rounded to 24
places.

Exponent: The exponent is optional and may
be omitted if the decimal point appears in
the fraction at the desired position. If
the exponent is specified, it must
immediately follow the fraction. It
consists of the letter E followed by a
signed decimal number denoting the exponent
to the base ten. A positive exponent is
assumed if the sign is omitted.

A negative exponent indicates that the
true decimal point is to the left of the
point written (or assumed) in the fraction.
A positive exponent indicates that the truE'
decimal point is to the right. The value
of the exponent determines how many places
to the left or right the true decimal point
is located.

Basic Assembler Language and Basic Assembler Program 33

For example, to convert the number
46.-415 to a floating-point format, any of
the following statements could be used;
they all have the same effect:

OC
OC
OC
DC
DC

E'46.415'
E'46415E-3'
E'+46415.E-3'
E'.46415E2'
E'4.6415E+l'

If either the fraction or the exponent
is outside the permissible range, the full
word (or words, if a duplication factor is
specified) will be set to zero and a flag
will appear in the listing. The statement:

DC 4E'3.45E76'

would generate four full-words of zeros.

Lonq-Precision Floating-Point Constants
(D): A long-precision floating-point
constant is specified as a decimal fraction
(mantissa) and an optional decimal
exponent. The maximum allowable range for
a floating-point constant is from
approxirrately (5.4)xl0- 79 to (7.2)xl0 75 •

The constant will be aligned at a
double-word boundary in the proper machine
for~at for use in floating-point
operations. A duplication factor may be
applied to the constant. A length code,
however, may not be used.

The format of the constant portion of
the operand is described in the following
text.

Fraction: The fraction is a signed decimal
number (up to 17 digits) with or without a
decimal point. The decimal point can
appear before, within, or after the numner.
If the point is the rightmost end of the
number, it may be omitted. If the sign is
omitted, a positive fraction is assumed. A
negative fraction is carr~ej in the machine
in true form. The fraction, irrespective
of its decimal point or sign must not
exceed 2 56-1 (that is,
72,057,594,037,927,935). Tne fraction part
of a number converted to the long format
will differ by no more than 11 from the
exact value rounded to 56 places.

Exponent: The exponent is optional and may
be omitted if the decimal point appears in
the fraction at the desired position. If
the exponent is specified, it must
immediately follow the fraction. It
consists of the letter E followed by a
signed decimal number denoting the exponent
to the base ten. A positive exponent is
assumed if the sign is omitted.

A negative exponent indicates that the
true decimal point is to the left of the
point written (or assumed) in the fraction.

34 BPS Basic Assmb. & Utile Progs.

A positive exponent indicates that the true
decimal point is to the right. The value
of the exponent determines how many places
to the left or right the true point is
located.

If either the fraction or exponent is
outside the permissible range, the double
word (or words, if a duplication factor is
specified) will be set to zero. The
statement will be flagged.

The following statements illustrate
different ways of converting the same
number to a long-precision floating-point
number:

DC D'-72957'
oc D'-729.57E+2'
oc D'-729.57E2'
oc 0'-.72957E5'
DC 0'-7295700.E-2'

Expression Constants (A): An expression
constant consists of a relocatable or
absolute expression enclosed in parentheses
instead of single quotation marks. The
value of the expression is generated as a
32-bit value constant. Since the
expression frequently represents a storage
address, the constant generated from it is
commonly called an addres constant.
Hence, the letter A is us' as the type
code. Note that if the program is
relocated, all address constants generated
from relocatable expressions will be
changed by the relocating program loader.

An explicit length not exceedir~ four
bytes may be specified for express~cl
constants. However, a duplication factor
is not allowed.

Unless a length code is present, the
32-bit constant will be aligned at a
full-word boundary and given an implied
length of four. Thus, in the following
statement, the value of AREA+2 will be
placed in the next available full word as a
32-oit value. ADCONl will be given a
length attribute of four:

ADCON1 DC A(AREA+2)

If a length code is given, the constant
will be right-justified in the specified
number of bytes; it will not be aligned.
Any excess bits to the left will be
truncated. For example, in the statement:

ADCON2 DC AL2(FIELD-256)

the rightmost 16 bits of the value of
FIELD-256 will be right-justified in the
next two bytes. The length attribute of
ADCON2 will be two. In this case, FIELD
must be equivalent to an absolute symbol
(see below).

The following considerations govern type
A constants:

1. A relocatable expression may be used
only if the length is implied (that
is, it is four), or if the explicit
length is three or four.

2. An expression may have a negative
value only if it is an absolute
expression. A negative value is
stored in two's complement notation.

3. An expression may not begin with an
arithmetic operator.

Base Register Instructions

The USING and DROP base register a.ssembler
instructions enable programmers to use
expressions representing core storage
locations as operands of machine
instruction statements, leaving the
assignment of base registers and the
calculation of displacements to the
assembler.

This feature of the assembler simplifies
programming and eliminates a likely source
of programming er:rors, thus reducing the
time required to check out programs. To
take advantage of this feature, the
programmer must use the USING and DROP
instructions desc:ribed in this section.

USING - Use Base Address Register: The
USING instruction indicates "that the
general register specified in the operand
is available for use as a base register.
This instruction also states the
base-address value the assembler must
assume is in the register at object time.
Note that a USING instruction does not load
the register specified. It is the --­
programmer' s responsibility "to see that the
specified base-address value is placed into
the register. Suggested loading methods
are described in ~rogramming with the USING
and DROP Instructions. The format of the
USING instruction statement is:

r--------T---------T----------------------,
I Name /OperationlOperand /
~--------+---------+----------------------~
INot used/USING IA relocatable expres- I
/ / /sion and a simple /
/ I I absolute expression, /
I I /separated by a comma I L ________ ~ _________ ~ ______________________ J

The relocatable expression specifies a
value that the assembler can use as a base
address. The second operand is a simple

absolute expression specifying the general
register that can be assumed to contain the
base address represented by the first
operand. The value of the second operand
must be from 1 to 15. For example, the
statement:

USING *,12

tells the assembler it may assume that the
current value of the Location Counter will
be in general register 12 at object time.

If the programmer changes the value in a
base register currently being used, the
assembler must be told the new value by
means of another USING statement. In the
following sequence, ALPHA is a relocatable
expression:

USING ALPHA, 9

USING ALPHA+1000,9

The assembler first assumes the value of
ALPHA is in register 9. The second
statement causes the assembler to assume
ALPHA+1000 as the value in register 9.

If the value of the second operand is
zero, implying no base addressing, the
first operand should also have a value of
zero. If it does not, zero is used instead
of the actual value. The implications of
using register zero as a base register are
discussed later in Base Register Zero.

A USING statement is not used if either
of its operands are incorrect. A flag will
appear in the listing. Any symbol in the
name field will not be used.

DROP - Drop Register: The DROP instruction
specifies a previously available register
that may no longer be used as a base
register. The format of a DROP instruction
statement is:

r--------T---------T----------------------,
/Name /Operation/Operand I
~--------+---------+----------------------~
/Not used/DROP IA simple absolute I
/ / /expression I L ________ ~ _________ ~ ______________________ J

The expression indicates a general
register that previously had been named in
a USING statement and is now unavailable
for base addressing. The following
statement, for example, removes register 11
from the list of available registers:

DROP 11

Basic Assembler Language and Basic Assembler Program 35

The DROP statement is ignored if the
register it designates had never appeared
in a USING statement. If the value of the
expression exceeds 15, the statement is not
used and is flagged in the listing. Any
symbol in the name field may not be used.

A register made unavailable by a DROP
instruction can be restored to the list of
available registers by a subsequent USING
instruction.

Programming with the USING and DROP
Instructions: The USING and DROP
instructions may be used anywhere in a
program, as often as needed. They provide
the assembler with the necessary
information for construction of a "register
table." Entries in the table are added,
deleted, and changed by the assembler as
each USING and DROP instruction is
processed.

Whenever an effective address is
specified in a machine instruction
statement, the assembler consults this
table to determine whether there is an
available register containing a suitable
base address. If more than one register
produces a valid displacement (that is, a
displacement not exceeding 4095), the
register whose contents produce the
smallest displacement is used. If two or
more registers produce the same
displacement, the highest numbered register
is used. If no register produces a valid
displacement, the statement is flagged, and
the instruction, except the op code, is set
to zero.

The sequence of instructions in Figure
18 illustrates the assignment of base
registers. Instructions that load the
registers are not shown.

Loading Registers

Several methods exist for loading general
registers that will be used for base
addressing. However, for a program to be
relocated when it is loaded, at least one
of the base registers must be loaded with a
relocatable address using either of the
instructions described below. The exact
method of using these instructions can
differ from the examples shown.

36 BPS Basic Assmb. & Utile Progs.

r---,
0000 PGMNME START 0

9750

Bl
B2
B3

GAMMA

USING *,11
USING *+4096,12
USING *+8192,13
USING *+4500,14

BC
BC
BC

AR
DROP

15,ALPHA
15,BETA
15,GAMMA

1,2
11

Bl--Although the effective address
represented by ALPHA can be wholly
contained in the displacement field
without a base address, base
register 11 is. nonetheless assigned
since to use base register 0 would
make the program nonrelocatable
(see Base Register Zero). Because
the value in register 11 is zero,
the displacement will be 2000.

B2--Either register 12 or 14 would
produce valid displacements;
register 14 is used, however,
because it produces the smaller
displacement, which is 1000.

B3--0nly register 13 can be used as the
base register; the calculated
displacement is 1558.

Figure 18. Example of Coding with USING
and DROP Instructions

Branch and Link (BALR or BAL) Instruction:
In the following sequence, the BALR
instruction loads into register 5 the
address of the first storage location after
the BALR instruction. The USING
instruction indicates to the assembler that
register 5 contains this location:

BALR 5,0
USING *,5

When using this method, the USING
instruction must immediately follow the
BALR instruction.

Load Full-Word (L) Instruction: rn the
following coding, the value of RGLOAD is
generated as a constant. RGLOAD is a

symbol defined elsewhere in ·the program.
This value, which is also specified in the
USING instruction, is inserted into
register 6 with the Load (L) instruction.

CNSTNT DC A (RGLOAD)

L 6,CNSTNT

USING RGLOAD,6

Note that if the symbol RGLOAD was used
in the load instruction, register 6 would
contain the full-word located at RGLOAD
rather than the value of RGLOAD itself.

The Load instruction should precede the
USING instruction to insure that the
assumed contents of the register are, in
fact, in the register when the program is
executed. otherwise, the assembler would
use the specified register as a base
register in machine instructions before the
load instruction was encountered. This
could lead to undesirable results when the
program is executE~d. Observe, however,
that the USING instruction need not
immediately follow the load instruction,
although it is recommended that the two
instructions be consecutive.

If one register has been initialized by
the Branch-and-Link or Load instruction,
other registers may be loaded from it by
other instructions. Thus, in the following
example, the Load Address (LA) instruction
causes 4,080 to be added to the contents of
register 4 and the resulting total to be
placed in register 3:

HERE

BALR
USING
LA

USING

4,0
HERE, 4
3,4080(0,4)

HERE+4080,3

Note that the LA instruction could have
been written alternately as LA 3,4080(4).

Base Register Zero: The specification of
general register 0 as a base register
indicates that a quantity of zero is to be
used as the base address, regardless of the
contents of general register o. Therefore,
if general register 0 is made available by
a USING instruction for base addressing,
the program will not be relocatable when
there is no other general register
available for referencing locations below
location 4096. Figure 19 illustrates a
program that would not be relocatable; any
reference to AREAl will require the use of
register 0, since register 2 cannot produce

a valid displacement. References to AREA2,
however, will make use of register 2.

This restriction does not prevent a
relocatable program from referring to
actual storage locations by means of
absolute expressions. For example, to
reference a permanently allocated interrupt
location at storage address 24, the
following statement is perfectly correct:

LPSW 24

r---,
0000 START 0 I

USING *,0 I
USING *+2048,2 I

I
I
I

2000 AREAl OS 20H I
I
I
I

4000 AREA2 OS 10F I ___ J

Figure 19. Example of Coding Using Base
Register, Zero

Program Linking Instructions

The program linking assembler instructions
allow the programmer to symbolically link
independently assembled programs that are
loaded and executed together. Symbolic
linkages between programs are created by
means of symbols defined in one program and
used as operands in another program. Such
symbols are termed linkage symbols. A
linkage symbol is called an "entry-point
symbol" in the program in which it is
defined; it is an "external symbol" in the
program in which it is used as an operand.
External and entry-point symbols are also
described in the section Symbols.

Every linkage symbol must be properly
identified as such in the source program.
A linkage symbol used as an external symbol
is identified in each using program by the
EXTRN instruction. A linkage symbol used
as an entry point must be identified in the
defining program by the ENTRY instruction.

A program name (defined in the name
field of a START statement) is also
considered an entry point. A program name,
however, does not have to be identified as
an entry pOint by the ENTRY instruction.

ENTRY - Identify Entry-Point Symbol: The
ENTRY instruction identifies an entry-point
symbol to the program. Each such

Basic Assembler Language and Basic Assembler Program 37

entry-point symbol (except a program name)
must be identified by a separate ENTRY
instruction. The format of the ENTRY
instruction statement is:

r--------T---------T----------------------,
I Name I Operation \ Operand I
~--------+---------+----------------------~
INot usedlENTRY IA relocatable symbol I L ________ ~ _________ ~ ______________________ J

The relocatable symbol in the operand
field is a symbol which is defined
elsewhere in the prograrr and may be used as
an entry point by other programs. A symbol
that is not defined in the program is
flagged in the listing as an undefined
symbol. Any symbol in the name field is
not used.

An ENTRY statement must be immediately
preceded by either the START statement or
another ENTRY statement. EXTRN statements
should follow ENTRY statements (if any).
An ENTRY statement cannot appear in a
program unless the START statement has been
used.

If an ENTRY statement is incorrectly
placed, or if the operand is invalid, the
statement is not used. An error flag
appears in the listing. Up to 100 ENTRY
statements may be used. If over 100 are
used, the first 100 encountered are
assembled. The remainder are not
assembled, but appear in the listing with
error flags.

In the following sequence, SQRT is
identified as an entry-point symbol. Note
that the ENTRY statement appears
immediately after the START statement:

SUBRO

SQRT

START
ENTRY

STM

o
SQRT

1,10,SAVE

EXTRN - Identify External Symbol: The
EXTRN instruction identifies a linkage
symbol as an external symbol that is
referenced in thIs program. Each such
external symbol must be identified by a
separate EXTRN instruction. The format of
the EXTRN instruction statement is:

r--------T---------T----------------------,
I Name I Operation I Operand I
~--------+---------+----------------------~
INot usedlEXTRN IA relocatable symbol I L ________ ~ _________ L ______________________ J

38 BPS Basic Assmb. & Utile Progs.

The relocatable symbol in the operand
field must be defined in another program
and identified in that program as an
entry-point symbol by either the START or
ENTRY instruction. Any symbol in the name
field is not used.

An EXTRN statement must be immediately
preceded by either the START statement, an
ENTRY statement, or another EXTRN
statement. An EXTRN statement cannot
appear in a program unless the START
statement has been used. Not more than 14
EXTRN statements may appear in a program.
If there are more than 14 statements, the
symbol in each excess statement is flagged
as undefined.

If an EXTRN statement is incorrectly
placed, or if the operand is invalid, the
statement is not used. An error flag
appears in the listing.

As an example, if MTPLY is an
entry-point symbol in another program, the
using program identifies it as an external
symbol, thus:

EXTRN MTPLY

The correct use of an external symbol
elsewhere in a program is described below.

Linking Conventions

The only wayan external symbol may be
referenced is to:

1. Identify it with the EXTRN
instruction.

2. Create an address constant from the
external symbol.

3. Load the constant into a general
register~

4. Branch to the address via the register
or use the register for base
addressing.

For example, to link to a program named
SINE, the following coding might be used:

PROGA

ADSINE

START
EXTRN

L
BALR

DC

1000
SINE

4,ADSINE
15,4

A(SINE)

In this example, SINE would be given a
value of zero at assembly time; four bytes
of zeros would be reserved at the symbolic
location ADSINE. When the programs are
loaded, the relocating loader adds the
effective address assigned to SINE to the
four bytes of zeros.

If the programmer wished to link to a
location 12 bytes past SINB, the 90nstant
could be created as follows:

ADSINE DC A(SINE+12)

The relocating program loader adds 12 to
the effective address of SINh and places
the sum in'the four bytes at ADSINE. The
expression in which the external symbol is
used must be a relocatable expression.

Another method of linking to SINE+12 is:

{
{
{

ADSINE

START
EXTRN

USING
L

BAL
BAL
BAL

DC

1000
SINE

SINE,4
4,ADSINE

15,SINE+12
15,12(0,4)
15,12(4)

A(SINE)

}
}

}

In the above sequence, either BAL
instruction can be used; if BAL 15,12(0,4)
or BAL 15,12(4) is used, the USING
statement may be omitted, since implicit
base addressing is not involved.

A return branch from the program named
SINE may be made via the registers without
making any reference to a linkage symbol.
Thus, if the branch to SINE was:

BALR 10,4

the return branch may be:

BCR 15,10

Limitations on Program Linking: The order
in which independently assembled programs
are loaded generally determines the extent
to which they can link to one another. The
program(s) containing the entry point(s)
must be loaded before the program(s) that
will reference these points as external
symbols. Note, however, that program name:3
are not affected by this restriction. A
program loaded first may refer to programs
loaded after it by their names, using an
Include Segment (ICS) card and the
facilities of the relocating loader.
(Refer to Include Segment Card.) Also, the
use of relocating loader control cards can
remove all restrictions on linking.

In the following situation, two
independently assembled programs, Program A
and Program B, are to be executed together.
Each program contains the coding shown in
Figure 20.

Basic Assembler Language and Basic Assembler Program 39

r--T--, I Program A I Program B I
~--+--4

PROGA START 0 PROGB START 0
ENTRY LOOP ENTRY SINE
ENTRY LINK ENTRY COSINE
EXTRN SINE EXTRN LOOP
EXTRN COSINE EXTRN LINK
EXTRN PROGB EXTRN PROGA

LOOP

LINK

ADSINE
ADCOSN
ADPRGB

DC
DC
DC

A(SINE)
A (COSINE)
A (PROGB)

SINE

COSINE

ADLOOP
ADLINK
ADPRGA

DC
DC
DC

A(LOOP)
A(LINK)
A (PROGA)

--~--
Figure 20. Example of Program Linking

If Program A is loaded first, it can
refer to Program B only by its name, PROGB.
Program B however, can refer to Program A
by its name, PROGA, and its entry points,
LOOP and LINK. If the loading order is
reversed, then Program B can refer to
Program A only by its name, whereas Program
A can refer to Program B by its name and by
its entry points, SINE and COSINE.

Thus, if a common data area is to be
used by two independently assembled
programs, the data area should be assembled
separately and then loaded first to enable
both programs to refer freely to it.

Program Relocation and Linking: Programs
that are linked together at object time
must be relocatable. To be relocatable, a
program must:

1. contain all information required by
the relocating loader.

2. Not use absolute expressions to refer
to any area that can be relocated.

40 BPS Basic Assmb. & Utile Progs.

3. Identify all entry-point and external
symbols to be used by the ENTRY and
EXTRN instructions, respectively.

4. Specify all address constants (type A
constants) that represent relocatable
expressions with a length of three or
four.

5. Not use general register zero as a
base register.

Assembler Instruction Summary

Figure 21 contains all of the assembler
instructions and the contents of their name
and operand fields. Figure 22 is a Basic
Assembler language programming example.

r-------------------~---, I Reference Summary for Assembler Instructions I
·~--------------T-------------T-·---~
I Name Field I Mnemonic I Operand Field I
~----------------+-------------+-.---~

Not used ICTL I The decimal value 1 or 25

An optional
symbol

Not used

Not used

Not used

An optional
symbol

1m optional
symbol

Not used

An optional
symbol

Not used

A required
symbol

Not used

Not used

Not used

START

:eNTRY

EXTRN

CNOP

CCW

DC

DROP

DS

EJECT

EQU

ORG

SPACE

USING

I
I
I
I

A self-defining value, a comma, or blank

I A relocatable symbol
I
I A relocatable symbol
I
I
I

Two decimal values separated by a comma

Four operands separated by commas

A single operand describing the constant

A simple absolute expression

A single operand describing the area to be reserved

Not used

An expression

A relocatable expression

A decimal value not exceeding 63

A relocatable expression and a simple absolute
expression, separated by a comma

I
I
I
I
I
I
I
I
I
I
I
I
I
I

Not used END A relocatable expression, a comma, or blank I ________________ L _____________ L __ J

Figure 21. Assembler Instruction Sumr(lary

Basic Assembler Language and Basic Assembler Program 41

r---,

FLAGS

This test program sorts, in ascending sequence, the 16 hexadecimal char­
acters located at 'IN' and stores them at 'OUT'. (The following example
is used to demonstrate instruction mix rather than model coding.)

LOC.CTR.

000000
000000

000002
000008
OOOOOC
000010
000014
000018
00001C
00001E
000022
000024
000026
000028
00002C
000030
000034
000038
00003C
000040
000044
000048
00004C
000050
000054
000058
00005C
000060
000064
000068
00006C
000070
000074
000078
00007C
000080
000084
000088
00008C
000090
000094
000098
00009C
OOOOAO

OOOOEO
000000

OBJECT V1LO

05 DO
000002

02 3F 0 09E D 05E
41 60 D 09E
41 70 0 OOF
41 40 0 038
58 20 6 000
58 34 6 004
15 23
47 CO D 02A
17 23
17 32
17 23
50 34 6 004
5B 40 D 05A
47 AO D 016
50 20 6 000
5B 70 !) 056
47 70 D 042
82 00 D ODE
41 66 0 004
48 20 DOlO
5B 20 D 05A
40 20 DOlO
47 FO 0 OOE
00000001
00000004
00000005
OOOOOOOA
00000001
00000007
00000003
OOOOOOOC
OOOOOOOF
00000009
OOOOOOOB
00000004
00000000
OOOOOOOE
00000006
OOOOOOOD
00000002
00000008

0002000000000000

SOURCE STATEMENT
ICTL 25

SAMPLE START 0
GO BALR 13,0

USING *,13

SET

LOAD

SUB

LOOP

CONl
CON4
IN

MVC OUT(64),IN
LA 6,OUT
LA 7,15
LA 4,56
L 2,0(0,6)
L 3,4(4,6)
CLR 2,3
BC 12,SUB
XR 2,3
XR 3,2
XR 2,3
ST 3,4(4,6)
S 4,CON4
BC 10,LOAD
ST 2,0(0,6)
S 7,CONl
BC 7,LOOP
LPSW ENDRUN
LA 6,4(6)
LH 2,SET+2
S 2,CON4
STH 2,SET+2
BC 15,SET
DC F'l'
DC F'4'
DC X'00000005'
DC X'OOOOOOOA'
DC X'OOOOOOOl'
DC X'00000007'
DC X'00000003'
DC X'OOOOOOOC'
DC X'OOOOOOOF'
DC X'00000009'
DC X'OOOOOOOB'
DC X'00000004'
DC X'OOOOOOOO'
DC X'OOOOOOOE'
DC X'00000006'
DC X'OOOOOOOD'
DC X'00000002'
DC X'00000008'

STARTING ADDR
SET UP BASE REGISTER

MOVE DATA TO OUT
POINT TO TABLE TOP
SET FOR 15 PASSES
SET INDEX REGISTER
LOAD FROM TABLE TOP
LOAD FROM TABLE
COMPARE VALUES
TOP = OR LESS BRANCH
EXCHANGE VALUES
EXCHANGE VALUES
EXCHANGE VALUES
STORE LARGER BACK
REDUCE INDEX
LOOP IF MORE TO SORT
STORE IN TABLE TOP
REDUCE PASS COUNTER

END OF RUN

MODIFY
INDEX

INSTRUCTION
RETURN
CONSTANT OF 1
CONSTANT OF 4

OUT DS 16F OUTPUT AND WORK AREA
CNOP 0,8 ENSURE BOUNDARY ALIGNMENT

ENDRUN DC X'0002000000000000' PSW
END GO

Figure 22. Basic Assembler Language Programming Example

42 BPS Basic Ass~b. & Util. Progs.

THE BASIC ASSEMBLER PROGRAM

This section describes those operations of
the assembler program that have a direct
bearing on preparing programs for assembly.
Note that the use of the Basic Ass,embler is
des cribed in detail in the Basic A:ssembler
Operating Procedures section of this
manual.

ASSEMBLER PROCESSING

The assembler is a two-phase program. It
is provided as two non-relocatable
assembled self-loading decks of cairds, one
for each phase. It is also available as
optional material in symbolic form for both
phases. If the programmer plans to use
tape for assembler residence, he must first
create a tape containing the assembler in
card-image form. Because of the many
possible configurations, it should be
understood that the descriptions in this
section require the appropriate
input/output devices in all cases.

Phase 1

During the first phase, the assembler
produces a symbol table (containing symbols
contained in the program) and inte;rmediate
text for use in the second phase.. When
tape intermediate text is used, the symbol
table remains in storage and there'fore is
not placed on tape. When the IBM 1442-Nl
or 2520-Bl Card Read-Punch is used for card
intermediate text, this intermediate text
is punched into the first 24 columns of
each source program card. The symbol table
is punched in blank cards which follow the
source cards. Because the intermediate
text punched into the source card is still
symbolic and pertains to the statement
portion of the particular card only, the
source program can be reassembled without
being repunched. When the IBM 2540 Card
Read-Punch, or 2501 Card Reader with a
2520-B2 or B3 Card Punch is used, this
intermediate text is punched into the first
24 columns of a new card along with the
first 47 columns of the source statement,
column 72, and columns 73-80 (the
Identification-Sequence Field) (columns
73-80). The symbol table is punched in
blank cards. If no errors are detected in
Phase 1, a 12 punch will appear in the
first column of every card containing
intermediate text.

The input to the first phase consists of
the Phase 1 deck of the assembler followed

by the source program. If card
intermediate text is used, blank cards must
be available in the punch unit for the
symbol table.

One card is pu~ched for every six
symbols defined in the program. The
maximum number of symbols that can be
defined is determined by main storage size,
as explained in the section Symbol Table.
If the assembler is operating on a machine
with 8,192 storage bytes, approximately 50
blank cards will be sufficient to handle
the maximum number of symbols allowed; for
16,384 bytes, 230 blank cards; for 24,576
bytes, 380 blank cards; for 32,768 or more
bytes, 570 cards.

If tape intermediate text is used, no
cards are required.

Phase 2

The assembler produces the program listing.
and object program during the second phase.
The format of Phase 2 input varies with the
input/output units used.

For tape intermediate text, source input
is on cards and tape, or on tape entirely
if the assembler residence is tape. One
input consists of the Phase 2 deck of the
assembler from cards or tape. The other
input is the intermediate text tape created
in Phase 1. If the object program is to be
produced on cards, blank cards should be
provided at the approximate ratio of 10
blank cards for every 100 original source
program cards. If the object program is to
be placed on tape, blank cards are not
required.

For card intermediate text, the second
deck of the assembler is loaded followed by
the repunched source program when the IBM
1442-Nl or 2520-Bl Card Read-Punch is used,
and by the newly punched intermediate deck
when the IBM 2540 Card Read-Punch or the
2501 Card Reader with a 2520-B2 or B3 Card
Punch is used. If the second phase does
not immediately follow the first phase, the
symbol table will not be in storage.
consequently, it is necessary to load the
symbol table deck produced by Phase 1. It
is placed between the assembler and source
program decks. (See Figure 23.)

When the IBM 1442-Nl or 2520-Bl Card
Read-PUnch is used, the assem~ler
accumulates the assembled object program in
storage. When the storage area is full,
and the next input card is not blank, the
operator is notified to insert blank cards
in the 1442-Nl or 2520-Bl Card Read-PUnch
for punching the object program. As each

Basic Assembler Language and Basic Assembler Program 4J

blank card is punched, it is directed to
the stacker reserved for the object deck.
If a blank card is encountered when none is
needed, the card is directed to the stacker
for the input cards. The remaining source
cards are then read, and the cycle
repeated.

Operator intervention may be avoided, in
a 1442-N1 or 2520-B1 card system, by
interleaving blank cards with the source
program before starting Phase 2 (see Figure
23) at approximately the following ratios:

AEEroximate
Main Storage Ratio of Blank Cards to

Size Source Program Cards

0,192 15 blanks every 150
source cards

16,384 80 blanks every 800
source cards

24,576 140 blanks every 1400
source cards

32,384 200 blanks every 2000
source cards

65,536 450 blanks every 4500
source cards

*Only required when Phase 2 does not immediately follow Phase 1.

Figure 23. Phase 2 Input for, Use with IBM
1442-N1 and 2520-B1 Card
Read-Punch

If these ratios are observed, it should
not be necessary for the operator to
intervene; the time required to assemble
the program will be reduced.

Blank cards may also be interleaved for
Phase~; their presence affects only the
required time to read the blank cards, not
this phase of the assembly.

When the IBM 2540 Card Read-Punch or
2501 Card Reader with a 2520-B2 or B3 Card
PUnch is used, the assembler punches an

44 BPS Basic Assmb. & Utile Progs.

object program card as soon as one is
assembled in storage.

PROGRAM LISTING

A program listing (if requested) is
produced for every assembly, provided an
IBM 1443 Model N1 Printer, IBM 1403
Printer, IBM 1052 Printer-Keyboard, or IBM
series 2400 tape unit is available on a
Model 40 or larger system. Each statement
in the source program appears on a separate
line of the listing unless the suppress
option is used. If the suppress option is
used, only those statements containing
errors are listed. The programmer obtains
the suppress option by indicating to the
machine operator that he does not wish a
listing. More detailed information on the
suppress option is contained in the
description of the configuration cards in
the Basic Assembler Operating Procedures
section.

The program listing consists of five
fields, arranged from left to right, as
follows.

Flags: This field (print positions 1-10)
contains, left-justified, a flag(s) to
signal possible errors in the statement.
Each flag is represented by a single
alphabetic character. See the topic Error
Notification.

Location counter: This field (print
positions 12-17) contains the Location
Counter value (in hexadecimal) assigned to
the statement.

Assembled OutEut: This field (print
positions 20-39) contains the hexadecimal
representation of the binary digits
generated from the statement.

Source Statement: This field (print
positions 40-111) contains a
column-for-column reproduction of the
contents of the source statement. For the
card-option (using a 2540 alone or a 2501
with a 2520-B2 or B3), where statements
begin in column 1, only columns 1-47 will
be reproduced.

Identification-Sequence Field: This field
<print positions 113-120) is a reproduction
of columns 73-80 of·the source card.

ERROR NOTIFICATION

The flags ·produced on the program listing
for various source program errors are shown
in the following list. Only thoSE! errors
for which flags are indicated are detected,
for example, an instruction which
references a storage location on an
incorrect boundary is not flagged, such as:

ST 4,A

where A is not on a word boundary. Any
error that causes the assembler to either
ignore the instruction or assemble zeros in
the operand field of the instruction will
halt further evaluation of the instruction
for other errors. Therefore, when
correcting such an error, the programmer is
advised to check for any other errors in
the instruction.

* A
* B

* C
* E

* F

* G
I

* J
K

* L
* M
* N

* 0
R

* S
* T

U

* V

w

x
* Y
* Z

Expression not simply relocatable.
START, EXTRN, ENTRY or ICTI. out of
order.
Location counter overflow.
More than 14 EXTRNs or more than 100
ENTRYs.
Operand field format error or
self-defining value in operand field
too large.
DC, D, or E range error.
Expression can not be mapped into
base and displacement.
Symbol table full.
Relocation list dictionary buffer
table full.
Name field error.
~ultiple defined symbol.
Statement not used. This flag is
normally accompanied by other flags
which define the reason the
statement was not used. If it
appears alone, it indicates that the
statement was completely extraneous.
If the flag (N) appears by itself
when using a 1442-N1 or 2520-B1 card
option system, it indicates that the
source statement has been modified
since a previous assembly ~)Ut the
intermediate text field (columns
1-24) has not been left blank. See
section Reassembly Procedure.
Invalid OP code.
Expression not absolute.
Specification error.
Value too large.
Undefined symbol.
ORG or EQU symbol not previously
defined.
Unused mask bits (37-39) in CCW not
zero.
Duplicate entry statement.
Negative expression.
Column 72 not blank.

Note: The * indicates those flags which
may be punched in the intermediate text
cards produced by Phase 1 in card-option
systems. For systems unable to produce
program listings, these flags provide a
limited form of error notification. It
should be noted that the intermediate text
cards produced by Phase 1 contain an A, B,
or C in column 1 if they are error free.
Cards in error have a J, K, L, or M in
column 1. Error flags are located in
columns 23-24 on cards with a J or K in
column 1. The error flags appear in
columns 21-24 on cards beginning with L or
M.

OBJECT PROGRAM OUTPUT

The object program is generated by the
assembler as a deck of cards or card images
on tape acceptable as input to the loaders.
If the object program is placed on tape, an
LDT record follows the last program. It is
the programmer's responsibility to inform
the operator about the medium (cards or
tape) on which the object deck is to be
placed. Detailed information on this
option can be found in the Basic Assembler
Operating Procedures section of this
manual. Four types of cards constitute the
object program deck. It should be noted
that detailed descriptions of each of the
four types of cards may be found in the
Basic Utility Programs section. General
descriptions of each follow.

External Symbol Dictionary (ESD) Card

An ESD card is generated for each START,
ENTRY, and EXTRN statement. The ESD card
contains coded information that is used by
the relocating loader.

Text (TXT) Card

The Text cards contain the output assembled
from the source program. Up to 56
contiguous bytes of output are punched into
each Text card. Each Text card also
contains the storage address at which the
first byte in the card is to be loaded.

Basic Assembler Language and Basic Assembler Program 45

Relocation List Dictionary (RLD) Card

The purpose of RLD cards is to indicate to
the relocating loader those address
constants that have to be changed if the
program is loaded at a location different
from its assembled location. Address
constants of this type are defined in the
source program by (1) relocatable
expressions in type A DC statements and (2)
relocatable expressions specifying data
addresses in CCW statements; that is, the
second operands of CCW statements. Up to
13 address constants are punched into each
RLD card.

The maximum number of address constants
as described above, that can be defined in
a program is determined by the size of main
storage thus:

Main Storage Size
(in Bytes)

8,192
16,384
24,576
32,768
65,536

Load End Card

Maximum Number of
Address Constants

30
60
90

120
240

This card is produced when the assembler
encounters the END statement. The Load End
card also contains the address to which
control is to be transferred when the
program has been loaded, if one was
specified in the END statement.

PATCHING OBJECT PROGRAMS

The programmer may modify his object
program at execution tiIne through the use
of a Replace card. This card is completely
described in the Basic Utility Programs
section.

REASSEMBLY PROCEDURE

A special reassembly procedure is provided
for assemblies using the IBM 1442-N1 Card
Read-punch without tape. This procedure
enables a partially or completely assembled
program to be reassembled in less time than
a new assembly would require. (Refer to
the Special Procedures section of this
manual.)

46 BPS Basic Assmb. & Utile Progs.

The program that is to use the
reassembly procedure may be changed in any
manner. New symbols can be added and
existing ones redefined, provided that the
symbol table is not full. New statements
also can be included in the program.

The reassembly procedure is faster than
the new assembly procedure because the
assembler does not have to repunch the
first 24 columns of those source program
cards whose statements have not been
changed. Hence, the fewer the changes, the
faster the assembly.

The input to the first phase of a
reassembly consists of the first deck of
the assembler, followed in order by the
previously punched symbol table decks, the
source program with any changes, and the
necessary number of blank cards into which
a new symbol table is punched. Note that
any changed source program cards must be
repunched, leaving columns 1-24 blank.
This also applies to source program cards
that did not have a 12-punch in column 1 as
the result of the previous assembly.

The Phase 2 input and output of a
reassembly is identical with the second
phase of a new assembly (see Phase 2).

SYMBOL TABLE

For every program assembled, a symbol table
composed of the symbols in that program is
created. Each entry in the table records
the attributes and other pertinent
information about a particular symbol.

The maximum size of the symbol table
and, hence, the maximum number of symbols
that can be defined in a program is
determined by the size of main storage,
thus:

Main Storage Size
(in Bytes)

8,192
16,384
24,576
32,768
65,536

Maximum Number of
Symbols in Table

200
1224
2240
3272
4094

All symbols defined in a program
(including the program name and external
symbols) are entered in the symbol table
providing the following conditions are met:

1. The symbol table is not full.

2. The symbol conforms to the rules

governing symbol specifications (see
the topic ..§ymbols) •

3. The symbol does not appear in the name
field of an assembler instruction that
does not allow the specificat.ion of a
name. See Figure 21 for a list of
these instructions.

4. The symbol is not already contained in
the symbol table. For multiple
defined symbols, only the first
definition of the symbol results in an
entry in the symbol table. Additional
definitions of the same symbol are
simply flagged.

Any reference in the operand field to a
symbol not in the symbol table is
considered undefined; the statement is
flagged. An undefined symbol in a machine
instruction statement causes the entire
instruction (except the operation code) to
be set to zero.

Symbol Table Overflow

If there are undefined symbols because the
symbol table is full, three corrective
procedures are available:

1. The assembled object deck produced by
the assembler can be corrected with
Replace (REP) cards before loading the
program. Replace cards, a feature of
the loaders, are used to alte'r an
object deck on a byte-for-byt.e basis.

2. Reduce the number of symbols and then
reassemble or run a new assembly.

3. Divide the program into segments and
assemble each program segment
separately.

Relative addressing may be used to
reduce the number of symbols defined in a
program. For example, the following
sequence:

BEGIN

LOOP

AUGEND
ADDEND
SUM
OUT

LA
LA
L
A
ST
LA
BCT
BC
DS
DS
DS
LR

3,10
1,0
2,AUGEND(1)
2,ADDEND(1)
2,SUM(1)
1,4(1)
3,LOOP
15,OUT
10F
10F
10F
3,1

could also be written:

BEGIN

AUGEND

LA
LA
L
A
ST
LA
BCT
BC
DS
LR

3,10
1,0
2,AUGEND(1)
2, AUGEND+40 (1)
2,AUGEND+80(1)
1,4(1)
3,*-16
15,AUGEND+120
30F
3,1

thus eliminating four symbols. Note that
the branch address of the BC instruction is
given relative to AUGEND rather than the
Location Counter, since any boundary
alignment caused by the DS statement would
change the number of bytes between the BC
and LR instruction.

Note: Using the IBM 1442-Nl or 2520-Bl
Card Read-Punch reassembly procedure, the
programmer must eliminate all undefined
symbols from those cards that refer to such
symbols in the operand field. The cards in
which the undefined symbols appear in the
name field can be left as they are. Since
the symbol table is full, no new symbols
may be defined for the reassembly.

If, in addition to reducing the number
of symbols, the programmer wants to replace
defined symbols (that is, symbols in the
symbol table) with new symbols, the entire
source program deck, with changes, must
(for the IBM 1442-Nl or 2520-Bl Card
Read-Punch card option) be reproduced with
columns 1-24 blank prior to assembling the
program. For the tape option or card
option (using the IBM 2540 Card Read-Punch
alone or the IBM 2501 Card Reader with a
2520-B2 or B3 Card Punch), the source deck
with the desired changes can be used as is.

Basic Assembler Language and Basic Assembler Program 47

BASIC UTILITY PROGRAMS

Every installation requires programs to
perform such common functions as loading an
assembled program into storage or providing
a listing of the contents of storage. To
save the programmer the time and effort
required to write and modify this type of
program as job requirements change, IBM'
makes utility programs available to its
customers.

The four utility programs provided are:

• the absolute loader,

• the relocating loader,

• the dump program,

• the input/output support package.

Absolute Loader

The absolute loader loads program segments
(the output-of an assembly is called a
program segment; a program may be composed
of one or more segments) into storage at
the addresses assigned to them by the
assembler and transfers control to a
program segment for execution; it also
allows the user to make corrections or
additions to the program segments at load
time. The absolute loader is available in
a non-relocatable assembled low and high
self-loading deck. It is available as
optional material in symbolic form.

Relocating Loader

The relocating loader can load program
segments into storage at locations other
than those assigned by the assembler; it
completes linkage among the segments so
that one program segment may refer to
another; it allows corrections or additions
to be made to the program segments at load
time; and it transfers control to one of
the loaded segments for execution. The
relocating loader is available as a
non-relocatable assembled low self-loading
deck. It is available as optional material
in symbolic form.

48 BPS Basic Assmb. & Utile Progs.

Dump Program

The dump program provides a listing of the
contents of all or part of storage, the
general registers, and floating-point
registers (or any combination of these).
The program edits the listing to fit any of
eight basic formats, which are described in
Output Formats. The dump program is
available in a single-phase relocatable
assembled version. It is also available in
a two-phase version with a relocatable
assembled deck for phase 1 and a
non-relocatable assembled self-loading deck
for phase 2. The program is available as
optional material in symbolic form for the
single-phase version and for both phases of
the two-phase version.

Input/Output Support Package

The input/output support package consists
of a modular set of subroutines that enable
the user to utilize input/output devices.
(A module in the input/output support
package is a logical sequence of coding
which either sets up or executes one I/O
function.) These are routines to read or
punch a card, write on the message or
printer device, sense information from a
device, single space on the message or
printer device, skip to channel one on the
printer, read or write tape, write a
tapemark, rewind tape, backspace tape a
record or file, forward-space tape a record
or file, and to read tape backward. The
input/output support package is available
in symbolic form only.

Loader Generator Program (LDRGEN) -
(optional)

The Loader Generator Program (LDRGEN)
regenerates loader program decks into a
form suitable for direct loading into
storage. It is available only as optional
material in symbolic form.

MACHINE REQUIREMENTS

The IBM System/360 Basic Programming
Support Basic Utility programs require the
following minimum machine configuration:

1. IBM System/360 with 8,192 bytes of
storage,

2. An IBM 2540, 1442-N1 or 2520-B1 Card
Read-Punch;

or a 2501 Card Reader with a 2520-B2
or B3 Card Punch.

3. Standard instruction set,

4. IBM 1403 or 1443 Printer;
or the IBM 1052 Printer-Keyboard
if the dump program is being used.

The user's input/output configuration
determines what routines he can use from
the input/output support package.

MAIN STORAGE REQUIREMENTS

The following is an approximation of how
much storage each of the utility programs
will occupy. (The user should also take in
to account that locations 0-143 should be
added when figuring available storage.)

Program
Bytes of

Storage Space

Absolute Loader
Relocating Loader
Dump (Phase 1 of 2)
Dump (Phase 2 of 2)
Dump (single phase)
I/O subroutine

2,580*
3,800*
3,100*
6,350**
4,460

800-2,720***

* In the versions of the absolute and
relocating loaders supplied by IBM,
there is a 250-byte sequence of coding
(Initial Entry Routine) that the
loaders use to determine the system's
configuration.. Since this 250-byte
area may be overlaid by a program
segment at execution time, it is not
included in these approximations.

** Needs minimum of 8K to operate. Uses
remainder of 8K as buffer.

*** The bytes of storage occupied by the
I/O subroutines depend on the
installation's requirements.

If the user selects the modules
necessary for his installation from the I/O
support package and keeps them resident in
storage, the I/O modules can be removed

from the program and the programs modified
by reassembly to link with the I/O of the
installation. If this is done, these
approximations would be greatly reduced.

The maximum length program which can be
loaded by the relocating loader on an 8K
configuration is 4,250 bytes, decreased by
12 bytes for each ESD card in the deck to
be loaded. Therefore, the use of the
relocating loader is recommended only for
users with greater than 8K bytes of
storage.

ABSOLUTE LOADER

The absolute loader loads program segments
into the storage locations assigned by the
assembler. (The absolute loader will not
overlay itself: any attempt to do so will
result in an error wait.) This loader
recognizes as input three types of load
cards. Two of these, the Text (TXT) and
Load End (END) cards, are generated by the
assembler; the Replace (REP) card, if
needed, must be supplied by the programmer.
The absolute loader will also accept
program segments intended for use by the
relocating loader, with the following
exceptions:

1. All other cards, including the load
cards recognized only by the
relocating loader -- the Set Location
Counter (SLC), Include Segment (ICS),
External Symbol Dictionary (ESD),
Relocation List Dictionary (RLD), and
Load Terminate (LDT) cards - are
ignored. Information meaningful only
to the relocating loader in the Text,
Replace, and Load End cards is also
ignored.

2. Linkage with another program segment
is not supplied. If one program
segment must refer to instructions or
data in a separate program segment,
absolute addresses must be used.

3. Two or more program segments can be
loaded one after the other if all END
cards are removed except the END card
after the last program segment.

Basic Utility Programs 49

r--T--,
I Function I Card I
r--+--~

Loading: Places the instructions and/or One or more Text cards containing
constants of a program segment into the instructions and/or constants of
the storage locations assigned by the the user's program segment, and
assembler. their assigned starting address.

Correcting: Allows changes or additions
to the instructions and/or constants within
the program segment at load time.

One or more Replace cards containing
corrections altering the program
segment.

Transferring Control: Ends loading of the Load End card containing an address
program segment and transfers control within the program segment to
to some location within the program segment. which control will be transferred.

--~--

Figure 24. Absolute Loader Functions

The absolute loader is available as
follows:

1. a self-loading, nonrelocatable deck
(assembled in lower storage).

2. a self-loading, nonrelocatable deck
(assembled in high storage for an 8K
configuration).

3. a symbolic deck that is optional
material.

If the user wants to employ the
self-loading deck, he should assemble the
Absolute Loader source deck and generate a
new loader by using the LDRGEN program.
Also, he may have to make the following
changes to the END card in the self-loading
deck:

1. He must punch (in hexadecimal
notation) the address of the input
device into card columns 17-20, if the
address of the input device is
different from the address that the
loader is to be loaded from. If it is
not different, he may leave it blank.

2. If he desires to use a message or
printer device for error indications,
he must punch (in hexadecimal
notation) the address of his
typewriting device into card columns
21-24. If there is no typewriter, he
must punch the address of the printer.
If he leaves these columns blank, the
error indications will only be
displayed on the console.

ABSOLUTE LOADER FUNCTIONS

The fUnctions of the absolute loader and
the cards associated with each function are
listed in Figure 24.

50 BPS Basic Assmb. & Utile Progs.

PROGRAM SEGMENT SEQUENCE

A program segment ready to be loaded
includes at least two types of cards: Text
cards and a Load End card. A Replace card
is inserted by the programmer only if he
desires to change and/or add to the program
segment at load time.

Figure 25 shows a program segment with a
Replace card inserted by the programmer,
ready for loading by the absolute loader.
(The figure is read from the bottom up.)

r---,
--Causes the loading process

to end and control to be
transferred to the user's
program segment.

--Makes additions and/or
changes to the internal
format in storage.

--User's program segment:
Assembled instructions
and/or constants.

___ J

Figure 25. The Sequence of a Program
Segment Ready to Be Loaded by
the Absolute Loader

CARD FORMATS

The three types of load cards recognized by
the absolute loader are defined in detail
in the following sections. The function of
each card is stated briefly, with any other
information pertinent to its use. The card
formats are shown in tabular form, with
each field of the card explained.

In most cases, values in load cards
produced by the assembler are represented
in IBM extended card code; for example, the
decimal value 20 -- represented in one byte
as 0001 0100 -- becomes an 11-9-4 punch in
one card column. In contrast, the
programmer uses the more convenient
hexadecimal code if Replace cards are used.
The hexadecimal equivalent of decimal 20 is
14; this is a 1 punch and a 4 punch in two
successive card columns, representing the
contents of one byte. (Tables for
conversion from decimal to hexadecimal are
in Appendix B.)

Text Card

The Text card contains, in extended card
code, the following:

1. The starting address in storage where
the assembled instructions and
constants of the user's program
segment are to be inserted.

2. The number of bytes of information
contained in the card.

3. The text itself; that is, the
assembled instructions and/or
constants contained in the card.

Each Text card may contain a maximum of 56
bytes of text. Figure 26 defines the
contents of the Text card fi.elds.

r-------T---------------------------------l
1 Column 1 Contents I
~-------+----.-----------------------------_l

1 Load card identification I
(12-2-9 punch). Identifies I
this as a card acceptable to I
the loader. I

2-4

5

9-10

11-12

13-14

15-16

17-72

TXT. Identifies the type of
load card.

Blank.

The starting address, in
extended card code, where the
information on the card is to
be loaded into storage.

Blank.

Number, in extended card code,
of bytes of text to be loaded
from the card.

Blank.

Information for the relocating
loader. The content of these
columns is ignored by the
absolute loader.

From 1 to 56 bytes of text -­
instructions and/or constants
assembled in extended card
code.

1
I
I
l
I
1

I
I
I

i
I
I
I
I
I
1

I
I
I
I
I
I
i
I
I
I
I

'I I
73-80 1 Not used by the loader. The I

1 programmer may leave blank or I
1 punch in program identification I
1 for his own convenience. I _______ ~ _________________________________ J

Figure 26. Text Card

Replace Card

The Replace card is supplied by the
programmer, and must be placed in the
program segment following the Text cards
(or preceding the RLD cards). Both
assembled instructions and constants may be
changed or additions made. However, all
changes and additions must be punched in
hexadecimal code.

The programmer cannot replace a
two-byte instruction with a four-byte
instruction through the load program.
In order to replace a two-byte
instruction with a four-byte
instruction, he must either reassemble
his source program or patch; that is,
replace the incorrect or old entry with
a branch instruction to some storage

Basic Utility Programs 51

location into which the replacement will
be loaded. Replacement must be made
byte for byte.

Figure 27 defines the contents of the
Replace card fields.

r-------T---------------------------------,
I Column I contents I
~-------+---------------------------------~

1 Load card identification

2-4

5-6

7-12

13-16

17-70

71-72

(12-2-9 punch). Identifies
this as a card acceptable to
the loader.

REP. Identifies the type of
load card.

Blank.

Address, in hexadecimal, of the
area to be replaced. It must
be right-justified in these
columns, and unused leading
columns filled in with zeros.
The address must specify a
half-word boundary.

Blank.

A maximum of 11 four-digit
hexadecimal fields, separated
by commas, each replacing one
previously loaded half-word
(two bytes). The last field
must not be followed by a
comma.

Blank.

73-80 Not used by the loader. The
programmer may leave blank or
punch in program identification

t for his own convenience. L _______ ~ ________________________________ _

Figure 27. Replace Card

Load End Card

The Load End card ends the loading process
and causes control to be transferred to
some location within the program segment.
If a location is not specified in the END
card, control is transferred to the first
location in storage loaded into from a TXT
card (or REP card, if there are no TXT
cards) above 143 decimal, or 8F
hexadecimal. After control is transferred,
the system operates in the Supervisor
state, disabled for all interruptions,
except a machine check interrupt; see
Input/Output Support Package for a
discussion of interruptions. Figure 28

52 BPS Basic Assmb. & Utile Progs.

defines the contents of the Load End card
fields.

r-------T---------------------------------,
I Column I Contents I
~-------+---------------------------------~

1 Load card identification
(12-2-9 punch). Identifies
this as a card acceptable to
the loader.

2-4 END. Identifies the type of
load card.

5 Blank.

6-8

9-14

15-16

17-72

Address, in extended card code,
of a point in the program
segment to which control is to
be transferred at load end. If
the END card did not specify a
point in the program segment to
which control is to be
transferred, this field will
contain blanks and control will
be transferred to the first
location in storage above
location 143 decimal, or 8F
hexadecimal, into which data is
loaded from a TXT card (or REP
card, if one precedes the TXT
cards).

Blank.

Information for the relocating
loader. The content of these
columns is ignored by the
absolute loader.

Blank.

73-80 Not used by the loader. The
programmer may leave blank or
punch in program identification
for his own convenience. _______ ~ _________________________________ J

Figure 28. Load End Card

LOADER USE OF I/O SUPPORT PACKAGE

The absolute loader uses selected modules
of the I/O support package to read cards or
card images from tape. These routines can
be used by the programmer by employing the
coding sequence (with absolute addresses)
discussed in Input/Output Support Package.

RESIDENT LOADER CONSIDERATIONS

The name of the first instruction in the
absolute loader is: LOAD1. If this
location is branched to (either from the
console or directly from a program segment
in storage), another program segment can be
loaded without preceding it by another
absolute loader. The user may obtain the
absolute address of LOADl by referring to
"Attachment 1" as listed on the front cover
of this manual.

RELOCATING LOADER

The distinguishing feature of the
relocating loader is its ability to
relocate program segments and to complete
linkage between the segments. (For a
detailed discussion on how the relocating
loader accomplishes this, see Reloc~tion
and Linkage.) It also has a storagie mapping
facility which will provide, on the message
device indicated on the END card, the name
of each segment and entry point and its
assigned locationo The relocating loader
recognizes eight types of load cards. Four
of these are generated by the assembler:
the External Symbol Dictionary card (ESD),
Text card (TXT), Relocation List Dictionary
card (RLD), and the Load End card (END).
The other four cards are supplied by the
programmer: the Set Location Counter card
(SLC) Include Segment card (rCS), Replace
card (REP), and Load Terminate card (LDT).

The relocating loader protects itself
and the Reference Table (REFTBL) from being
overlaid when input is in relocatable form.
The Reference Table is a list of 12-byte
entries (a maximum of 253 entries) built by
the loader; it contains the names and entry
points of a program segment along with
their present internal location and the
relocation factor. When an attempt is made
to overlay the loader or the Reference
Table an error wait results. (For a
discussion of codes and operator actions on
any error waits see Program Waits and
Operator Messagesu When the relocating
loader is requested to function as an
absolute loader, it does not protect the
Reference Table, and the Reference Table
can be overlaid.

LOADING CAPACITY

The Relocating Loader available from IBM is
set for a maximum storage size of SK. To
modify the Relocating Loader source deck,
designed for residence in lower storage,
for a storage size greater than SK it is
necessary to alter the constant TOP as
described prior to the constant in the
listing (or to 131071 for 12SK). The
source deck should then be assembled and a
new loader generated using the LDRGEN
program. For further information about
loader options and modifications and how to
use the Loader Generator Program, refer to
the Loader Generator Program section.

The relocating loader is available as
follows:

1. a self-loading, nonrelocatable deck
(assembled in lower storage) for an SK
configuration

2. a symbolic deck that is optional
material

If the user wants to employ the
self-loading deck, he may have to modify
the END card in the self-loading deck as
follows:

1. Punch (in hexadecimal notation) the
address of the input device into card
columns 17-20, if the address of the
input device is different from the
address that the loader is to be
loaded from. If it is not different,
he may leave it blank.

2. If he desires to use a message or
printer device for error indications,
he must punch (in hexadecimal
notation) the address of his
typewriting or printing device into
card columns 21-24. If there is no
typewriter or printer, he must punch
the address of the printer. If he
leaves these columns blank, the error
indications will only be displayed on
the console.

Finally, the relocating loader contains
its own location counter (LOCCT); LOCCT
determines where program segments will be
loaded. LOCCT is set to a constant value
during an initial program-loading
procedure. Once LOCCT is set, it is
subsequently incremented by the number of
bytes indicated on an ESD Type 0 card (see
ESD Type 0 (program Name). It may also be
incremented by the length indicated on an
ICS card (see Include Segment Card) or set
by an SLC card (see Set Location Counter
Card).

Basic Utility Programs 53

UNIQUE RELOCATING LOADER FUNCTIONS

The relocating loader has not only the
three functions of the absolute loader
(that is, loading, correcting, and
transferring control), but also the unique
capabilities described in Figure 29, by
fUnction and the associated control cards.

CARD FORMATS

The eight types of load cards recognized by
the relocating loader are described in
detail in the following sections. The
function of each card is stated briefly,
with any special considerations in its use.
The card format is shown in tabular form,
and each field of the card is explained.

Particular attention has been given to
those cards that the programmer supplies
(the Set Location Counter, Include Segment,
Replace, and Load Terminate cards) and to
those cards whose fUnction is closely
related to other cards.

Set Location Counter Card

The Set Location Counter card sets the
loader location counter in one of three
ways:

1. Any absolute address, specified as a
hexadecimal number punched in card
columns 7-12.

54 BPS Basic Assmb. & Util. Progs.

2. Any symbolic address already defined
as a program name or entry point.
This is specified by a symbolic name
punched in card columns 17-22.

3. If there is both a hexadecimal address
and a symbolic name, the absolute
address (converted to binary) will be
added to the internal address assigned
to the symbolic name, and the
resulting sum will be the address to
which the loader's location counter is
set. To illustrate this, we will
assume that in card columns 7-12 of
the Set Location Counter card, 00008F
was punched; also that there is a
symbolic address called GAMMA and that
GAMMA is at storage location 000100
(hexadecimal). The absolute address
in card columns 7-12 will be added to
the internal address assigned to
GAMMA, giving a sum of 00018F. It is
at this location in storage that the
loader's location counter will be set.
(See note under Include Segment Card.)

If there are blanks in both card columns
7-12 and 17-22, there will be an error
wait. If the programmer wishes to use only
the symbolic address, he must leave the
absolute field blank (or all zeros); if he
wishes to use only the absolute address, he
must leave the symbolic field blank.

In the absence of an initial SLC card,
LOCCT is set to the first location
available for loading above 143 decimal or
8F hexadecimal.

Figure 30 defines the contents of the
Set Location counter card.

r--T--------------------------------------,
I Functions I Cards I
~--+--------------------------------------~
I Relocating. Can place the instructions and Set Location Counter (SLC), I
I constants of a program segment into storage Include Segment (ICS), I
I locations other -than those assigned by the External Symbol Dictionary I
I assembler; that is, relocate them. (ESD, type 0), Text (TXT), I
I Replace (REP). I
I I
I Linkage. Loads two or more program segments External Symbol Dictionary I
lone after the other, and completes linkage (ESD types 1 and 2), Relocation List I
1 among them, so that one program segment may Dictionary (RLD), Replace (REP). I

,I refer to constan-ts and/or instructions within I
1 another program segment. (Makes any changes I
1 necessary in evaluating address constants which I
1 are used by the program segment. I

1 I
I Transferring Control. Ends loading and causes Load Terminate (LDT) and Load I
1 control to be transferred according to the End (END). I
1 priority noted in the discussion of the Load I
1 Terminate card. I

~--~--------------------------------------~
I Note: The function of the Replace card is essentially the same as in the absolute I
1 loader. The Load End card remains an essential part of each program segment, but is I
1 subordinate in function to the Load Terminate card. I L ___ J

Figure 29. Unique Relocating Loader Functions

r-------T---------------------------------,
1 Column 1 contents 1
~-------+--------<------------------------~

1 Load card identification
(12-2-9). Identifies this as a
card acceptable to the loader.

2-4 SLC. Identifies the type of
load card.

5-6 Blank.

7-12

13-16

17-22

23-72

73-80

Address in hexadecimal (to be
added to the value of the
symbol, if any, in colun-Ins
17-22). The address must be
right-justified in these
columns, and unused leading
columns filled in with zeros.

Blank.

Symbolic name, whose internal
assigned location will be used
by the loader. The symbol must
be left-justified in these
columns. If left blank, the
address in the absolute field
is used.

Blank.

Not used by the loader. The
programmer may leave blank or
punch in program identification
for his own convenience. _______ ~ _________________________________ J

Figure 30. Set Location Counter Card

Include Segment Card

If program segment A is to be loaded, and
it makes reference to a program segment
named B, the relocating loader requires
that the location of segment B must be
already established. This requirement may
be satisfied in one of two ways:

1. Load segment B first, or

2. If segment B has not been loaded, the
programmer must precede segment A with
an Include Segment (ICS) card. This
card will define segment B by name and
length.

Assuming that segment B has not been
loaded but has been defined by name and
length, the loader then includes segment B
in its Control Dictionary and reserves an
area of storage for it. (The Control
Dictionary is comprised of the Reference
Table and the External Symbol
Identification (ESID) Table. The ESID
Table contains pointers to the entries in
the Reference Table that refer to the
current program segment.) When the loader
subsequently encounters reference to
segment B, the actual location of B is
already known.

When segment B is loaded, it is placed
into the storage area reserved for it. The
programmer must specify in the ICS card a
value not less than the actual length of
segment B {the length of segment B is not

Basic Utility Programs 55

retained by the loader and so overlay
checks are neither made nor verified).
However, if another segment to be loaded,
C, makes reference to another entry point
within program segment B, then the
assembled instructions and constants of B
must either be loaded before segment C, or
defined for C through an ICS card.

Entry points other than those already
established (by an ENTRY assembler
instruction) can be established in the same
manner. To establish this type of entry
point, the programmer takes the following
steps:

1. He provides an SLC card that sets the
location counter to the desired
address. See item 3 under Set
Location counter Card.

2. He provides an ICS card that indicates
a program segment with a length of
zero.

Note: Program segments are loaded only on
double-word boundaries. The loader
automatically makes this adjustment before
loading any given segment according to the
following criteria:

1. If the ICS card denotes a symbol of
length 0, no adjustment is made to
LOCCT, and the symbol is placed in
REFTBL with the current value of LOCCT
assigned to it.

2. If the ICS card denotes a symbol with
a length greater than 0, then the
following operations occur:

a. LOCCT is adjusted to the next
double-word boundary (if
necessary).

b. the symbol goes into REFTBL with
the value of LOCCT.

c. the length of the symbol is added
to the value of LOCCT, and LOCCT
is set to the resulting sum.

Figure 31 defines the contents of the
Include Segment card fields.

56 BPS Basic Assmb. & Utile Progs.

r-------T---------------------------------,
I Column I contents I
~-------+---------------------------------~

1 Load card identification
(12-2-9). Identifies this as a
card acceptable to the loader.

2-4 ICS~ Identifies the type of
load card.

5-16

17-22

23-24

25-28

I

Blank.

Name of segment, left-justified
in these columns.

Blank.

Length (in bytes) in
hexadecimal notation of the
program segment. This must not
be less than the actual length
of the segment. (This may be 0
if the ICS card is used to add
entry points other than for
defining program segments.)
The number must be
right-justified in these
columns, and unused leading
columns filled in with zeros.

29-72 I Blank.
I

73-80 I Not used by the loader. The
I programmer may leave blank or
I punch in program identification
I for his own convenience. - ______ ~ _________________________________ J

Figure 31. Include Segment Card

External Symbol Dictionary Card (ESD)

ESD Type 0 (Program Name): The External
Symbol Dictionary card, Type 0, defines the
name of the program segment. The program
name is also an entry point to the segment.
It is produced by the assembler when it
encounters a START instruction. If the
START instruction does not specify a
program name or if there was no START card,
BLANKS will be placed in the loader's
Control Dictionary and will define the
"name" of that program segment.

The assembler assigns an External Symbol
Identification number of 01 (ESID 01) to
the program segment. This number is used
by the loader as a control (in the Control
Dictionary) to the Reference Table. It is
at this time, that is, when the loader is
processing the ESD (Type O) card, that the
loader computes the segment's relocation
factor. The relocation factor is the
difference between the address where the

program segment is loaded and the address
where it was assembled. The loader saves
the relocation factor in the Reference
Table. The ESID 01 appears in the ESD
Type 0, all ESDs Type 1, TEXT, RLD, and the
Load End (END) cards produced by tIle
assembler.

The starting address at which the
program segment will be loaded is
determined by the following conditions:

1. If the name of the segment defined by
the ESD Type 0 card is contained in
REFTBL, then the segment is loaded
beginning at the location specified in
REFTBL and no adjustment of LOCCT is
made.

2. If the name of the segment specified
in the BSD Type 0 card is not in
REFTBL, then the following occur:

a. LOCCT is adjusted to the next
double-word boundary (if neces­
sary).

b. the segment name is placed in
REFTBL with the adjusted value of
LOCCT.

c. the length of the segment is added
to the adjusted value of LOCCT,
and LOCCT is set to the resulting
sum.

d. the segment is loaded starting at
the location specified in REFTBL.

The loader loads only one program
segment at a time and does not save the
identifying number from one program segment
to another. Therefore, there is no
conflict in the table when the next. segment
is assigned the same identifying number;
that is, the next program segment loaded
may be assigned an identifying number of 01
(ESID 01).

This routine maps the segment's name and
its assigned location.

Figure 32 defines the contents of the
Type 0 External Symbol Dictionary card
fields.

r-------T---------------------------------,
I Column I Contents I
~-------+---------------------------------~

1 I Load card identification I

2-4

5-10

11-12

13-14

15-16

17-22

23-24

25

26-28

29

30-32

33-72

I (12-2-9). Identifies this as a I
I card acceptable to the loader. I
I I

ESD. Identifies the type of
load card.

Blank.

The number of bytes in the
card. Extended card code
12-0-1-8-9 and 12-11-1-8-9
(hexadecimal value of 0010).

Blank.

External Symbol Identification
(ESID). Number, in extended
card code, assigned to the
program segment.

Program name.

Blank.

Extended card code 12-0-1-8-9
(hexadecimal value of 00),
identifying this as a program
name card.

Address, in extended card code,
of the first byte of the
program segment as assigned by
the assembler.

Blank.

Number, in extended card code,
of bytes in the program
segment.

Blank.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

73-80 Not used by the loader. The
programmer may leave blank or
punch in program identification
for his own convenience. I L _______ ~ _________________________________ J

Figure 32. ESD Card Type 0 (Program Name)

ESD Type 1 (Entry Point): The Type 1
External Symbol Dictionary card defines an
entry point within the program segment to
which another segment may refer. This card
is produced by the assembler when it
encounters an ENTRY assembler instruction,
one card being produced for each entry
point so defined. All ESD Type 1 cards are
assigned the same ESID as that of the ESD
Type 0 of the same program segment.
Duplicate entries will cause a loader error
wait. {See Program Waits and Operator

Basic Utility Programs 57

Messages. There may not be more than 100
ENTRYs for a given program segment.

To enable reference to an entry point in
one program segment, another segment must
define it within its own assembly as an
external symbol. However, entry points
need not be predefined if they are not
referenced during the load. This routine
maps each entry point and its assigned
location.

Figure 33 defines the contents of the
Type 1 External Symbol Dictionary card.

r-------T---------------------------------,
I Column I Contents I
~-------+---------------------------------~

1 I Load card identification
I (12-2-9). Identifies this as a
I card acceptable to the loader.
I

2-4 I ESD. Identifies the type of

5-10

11-12

13-16

17-22

23-24

25

26-28

29-30

31-32

33-72

load card.

Blank.

The number of bytes in the
card. Extended card code
12-0-1-8-9 and 12-11-1-8-9
(hexadecimal value of 0010).

Blank.

Name of entry point.

Blank.

Extended card code 12-1-9
(hexadecimal value of 01),
identifying this as an entry
point card.

Address, in extended card code,
of the entry point as assigned
by the assembler.

Blank.

External Symbol Identification
(ESID). Number, in extended
card code, assigned to program
segment in which entry points
occur.

Blank.

73-80 Not used by the loader. The
programmer may leave blank or
punch in program identification
for his own convenience. _______ i ________________________________ _

Figure 33. ESD Card Type 1 (Entry Point)

ESD Type 2 (External Symbol): The Type 2
External Symbol Dictionary card points to a
name within another program segment, to

58 BPS Basic Assmb. & Utile Progs.

which this segment may refer. The card is
produced by the assembler when it
encounters an EXTRN instruction, one card
being produced for each external symbol so
defined. The assembler assigns each
External Symbol a unique ESID. The ESIDs
range from 2 through 15 and so there may
not be more than 14 in any given program
segment.

The ESID is used as a pointer to the
Reference Table which includes:

1. The external program segment name or
entry point.

2. Its actual internal address.

The same ESID number appears in the RLD
card associated with the external symbol.

The loader loads only one program
segment at a time. It saves names from one
segment to the next, but not identifying
numbers. Therefore, there is no conflict
in the tables when the sequence of ESIDs
reappears. To reference an external
symbol, that symbol must be declared an
entry point in some other segment (unless
it is the name of tae program segment).

Figure 34 defines the contents of the
Type 2 External Symbol Dictionary card
fields.

SUMMARY OF EXTERNAL SYMBOL DICTIONARY
CARDS: The External Symbol Dictionary
cards are generated by the assembler.
There are three types of ESD cards:

1. ESD Type 0 defines the name, starting
address, and length of a program
segment. It is produced by the
assembler when the assembler encounters
a START assembler instruction. There
is only one ESD Type 0 card produced
per program segment; it is assigned an
ESID of 01 by the Basic Assembler.

2. ESD Type 1 defines an entry point
within the program segment to which
another segment may refer. It is
produced by the assembler when the
assembler encounters an ENTRY assembler
instruction. One card is produced for
each entry point so defined.

3. ESD Type 2 points to a name within
another program segment to which this
program segment may refer. It is
produced by the assembler when the
assembler encounters an EXTRN assembler
instruction.

The assembler assigns the external
symbol an identifying number of from 2
through 15 (according to the order in which

it is encountered among the segment's
external symbols).

r-------T---------------------------------,
I Columnl Contents I
~-------+---------------------------------~

1

2-4

5-10

11-12

13-14

15-16

17-22

23-24

25

26-28

29-72

Load card identification
(12-2-9). Identifies this as a
card acceptable to the loader.

ESD.Identifies the type of
load card.

Blank.

The number of bytes in the
card. Extended card code
12-0-1-8-9 and 12-11-1-8-9
(hexadecimal value of 0010).

Blank.

External Symbol Identification
(ESID). Sequential number, in
extended card code, assigned to
external symbol.

Name of external symbol.

Blank.

Extended card code 12-2-9
(hexadecimal value of 02)
identifying this as an external
symbol card.

Extended card code 12-0-1-8-9,
12-0-1-8-9, and 12-0-1-8-9
(hexadecimal value of 000000).
An address of 0 is always
assigned to External Symbols by
the Basic Assembler.

Blank.

73-80 Not used by t~e loader. The
programmer may leave blank or
punch in program identification
for his own convenience~ _______ L ________________________________ _

Figure 34. ESD Card Type 2 (External
Symbol)

byte of text is to be loaded from the card.,
Each card contains a maximum of 56 bytes ot
text, in extended card code.

Figure 35 defines the contents of the
Text card fields.

Relocation List Dictionary Card

The Relocation List Dictionary card (RLD)
is produced by the assembler when it
encounters a DC instruction or the second
operand of a CCW instruction which define~j
an address as a relocatable symbol or
expression. This may be the address of
either an internal symbol, which occurs
only within the program segment, or of an
external symbol belonging to another
segment (ESID with an identifying number of
from 2 through 15; see ESD Type 2 (Extern~.~
Symbol).

For example, in program segment A, the
programmer wishes to refer to a subroutine I
SQRT, in segment B. He defines it as an
external symbol:

EXTRN SQRT

Now he may branch to it within his program
segment in the following manner:

L
BALR

15,ADSQRT
14,15

Because he does not know what its address
will be at load time, he uses a symbolic
address:

ADSQRT DC A(SQRT)

In this example, SQRT is an external,
relocatable symbol, whose value will change
as a result of segment B being relocated.
The assembler assigns ADSQRT a value of
zero, and when the address for SQRT is
defined at load time, this value is added

Text Card to zero. A segment may contain more than
one symbol or expression definable in term!;;
of one relocatable symbol. For example:

The Text card contains instructioI;lS and/or
constants of the user's program segment and
the starting address at which the first

Basic Utility Programs 59

r-------T---------------------------------,
I columnl contents I
~-------+---------------------------------~

1 Load card identification

2-4

5

6-8

9-10

11-12

13-14

15-16

(12-2-9). Identifies this as a
card acceptable to the loader.

TXT. Identifies the type of
load card.

Blank.

24-bit starting address (in
extended card code) in storage
where the information from the
card is to be loaded.

Blank.

Number of bytes (in extended
card code) of text to be loaded
from the card.

Blank.

External Symbol Identification
(ESID). Number, in extended
card code, assigned to the
program segment in which the
text occurs.

17-72 A maximum of 56 bytes of
I instructions and/or constants
I assembled in extended card
I code.
I

73-80 I Not used by the loader. The
I programmer may leave blank or
I punch in program identification
I for his own convenience.

-------~---------------------------------

Figure 35. Text Card

ADSQRT
ADSQRl
ADSQR2

DC A(SQRT)
DC A(SQRT+l0)
DC A(SQRT+20)

The RLD card lists addresses for as many
as 13 expressions so defined. If there are
more than 13 such expressions, other RLD
cards associated with the symbol are
produced.

Figure 36 defines the control of the
Relocation List Dictionary card fields.

60 BPS Basic Assmb. & Utile Progs.

r-------T---------------------------------,
I Column I contents I
~-------+---------------------------------~-

1

2-4

5-10

11-12

13-16

17-72

Load card identification
(12-2-9). Identifies this as a
card acceptable to the ~oader.

RLD. Identifies the type of
load card.

Blank.

Number, in extended card code,
of bytes of information in the
variable field (card columns
17-72) of this card. The range
is from 8 to a maximum of 56.

Blank.

Variable field (in extended card
code). Consists of the
following subfields:

Relocation Header. (Two bytes.)
An ESID with a value of from 01
through 15. Whether or not the
value is 01 or from 02 through
15 depends on whether the symbol
it points to is internal or
external to the particular
program segment.

Position Header. (Two bytes.)
The ESID assigned to this
program segment.

Flag Byte (bits 0 through 3 are
not used). This byte contains
three items:

1. Size. (Bits 4 and 5.) Two
bits which indicate the
length (in bytes) of the
adjusted address (AA Cell)

a. 00 - one-byte cell
b. 01 - two-byte cell
c. 10 - three-byte cell
d. 11 - four-byte cell _______ ~ _____ . ____________________________ J

Figure 36. Relocation List Dictionary Card
(Part 1 of 2)

r-------T---------------------------------,
I Column I Contents I
~-------+---------------------------------~

73-80

2. Complement Flag. (Bit 6.)
When this bit is a one, it
means that the value (or
address) of the symbol is to
be subtracted from the
contents of the AA Cell.
When this bit is a zero, the
value of the symbol is to be
added to the contents of the
AA Cell.

3. Continuation Flag. (Bit 7.)
When this bit is a one, it
means that this is one of a
series of addresses to be
adjusted. When this bit is
a zero, this is the only AA
Cell to be adjusted or the
last in a series using the
same Relocation and Position
headers.

Address. The three-byte
address of the location of the
AA Cell.

The Flag Byte and Address
may be repeated for AA Cells as
long as the continuation flag
bit is on in the current
four-byte entry.

Not used by the loader. The
programmer may leave blank or
punch in program identification
for his own convenience.

I
I
I
I
I _______ L _________________________________ J

Figure 36. Relocation List Dictionary Card
(Part 2 of 2)

Replace Card

The Replace card is supplied by the
programmer, and should be placed in the
program segment immediately following the
Text cards. Both instructions and
constants may be changed and/or additions
made. The Replace card must be punched in
hexadecimal code.

If additions made by Replace cards
increase the length of a program slegment,
the programmer must place an Include
Segment card (which defines the total

length of that program segment) at the
front of the program segment.

Figure 37 defines the contents of the
Replace card fields.

r-------T---------------------------------,
I Column I Contents i
~-------+---------------------------------~

1 Load card identification I

2-4

5-6

7-12

13-14

15-16

17-70

71-72

73-80

(12-2-9). Identifies this as a I
card acceptable to the loader. I

REP. Identifies the type of
load card.

Blank.

I
I
I
I
I
I
I Starting address, in

hexadecimal, of the area to be I
the I ,replaced, as assigned by

assembler. It must be
right-justified in these
columns, and unused leading
columns filleg in with zeros.

Blank.

External
(ESID).
assigned
in which
made.

Symbol Identification
Hexadecimal number
to the program segment
replacement is to be

A maximum of 11 four-digit
hexadecimal fields, separated
by commas, each replacing one
previously loaded half-word
(two bytes). The last field
must not be followed by a
comma.

Blank.

!
I
I
I
I
!
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Not used by the loader. The I
programmer may leave blank or I
punch in program identification I
for his own convenience. I _______ L _________________________________ J

Figure 37. Replace Card

Load End Card

The Load End card (END) is produced by the
assembler when it encounters the END
instruction. This card ends loading of a
program segment and may specify a location
within the segment to which control is to
be transferred.

Figure 38 defines the contents of the
Load End card fields.

Basic Utility Programs 61

r-------T---------------------------------,
I Column I contents I
~-------+---------------------------------~

1 Load card identification
(12-2-9). Identifies this as a
card acceptable to the loader.

2-4 END. Identifies the type of
load card.

5 Blank.

6-8 Address (may be blank), in
extended card code, of the
point in the program segment to
which control may be
transferred at the end of the
loading process. See the
conditions and priority
discussed under Load Terminate
card.

I
9-14 Blank. I

I
15-16 External Symbol Identification I

(ESID). I
I

17-72 Blank. I
I

73-80 Not used by the loader. The I
programmer may leave blank or I
punch in program identification I
for his own convenience. I _______ L _________________________________ J

Figure 38. Load End Card

Load Terminate Card

The Load Terminate card (LDT) must be
placed at the end of the program segment.
It has two uses:

1. It is needed to end the loading
process.

2. It causes control to be transferred to
some location within the segments
loaded.

The specific location to which control
is transferred is determined through the
following order of priority:

1. Control is always transferred to a
location specified in a Load Terminate
card.

2. If the Load Terminate card does not
specify a location, control is
transferred to the location specified
by the last Load End card encountered
during the current loading process.

62 BPS Basic Assmb. & Utile Progs.

3. If neither the Load Terminate card nor
any of the Load End cards specifies a
location, control is transferred to
the first location loaded into from a
TXT card (or REP card, if there are no
Text cards), above 143 decimal or 8F
hexadecimal, of the first program
segment loaded.

When control is transferred to the program
segment(s) loaded, the system operates in
the supervisor state, disabled for all
interruptions except a machine check
interrupt; see Input/Output Support Package
for a discussion of interruptions.

Figure 40 shows a possible sequence of
cards, in a series of program segments,
ready to be loaded by the relocating
loader; it does not show all permissible
combinations of load cards. (The figure
reads from the bottom.)

OTHER FEATURES OF THE RELOCATING LOADER

In addition to the relocating loader's
basic functions, it can be used for two
other operations:

1. To implement a technique that allows
execution of programs larger than
available storage, that is, an
overlaying load procedure.

2. To operate in the same way as the
absolute loader.

A description of these operations follows.

Figure 39 defines the contents of the
Load Terminate card fields.

r-------T---------------------------------,
! Column! Contents !
~-------+-------,----------,---------------~

1 Load card identification
(12-2-9). Identifies this as a
card acceptable to the loader.

2-4 LDT. Identifies the type of
load card.

5-16

17-22

23-72

Blank.

Name of entry point to the
program segment, left-justified
in these columns. Use of this
field is optional.

Blank.

73-80 Not used by the loader. The
programmer may leave blank or
punch in program identification
for his own convenience. _______ ~ _________________________________ J

Figure 39. Load Terminate Card

Overlaying Load Procedure

The overlaying load procedure allows the
programmer to execute programs larger than
available storage. The general principle
is that once a loaded program segment is no
longer needed, another program segment may
be loaded over it. The process of
overlaying the segments no longer needed
with another program segment is continued
until all the program segments are
executed.

More specifically, the first segments
are loaded in the usual manner. The
loading procedure would then be interrupted
by an LDT card which would transfer control
to one of the loaded segments. When the
loaded segment has completed its
operations, the program segment would
transfer control back to the loadler to load
the next program segment. The
considerations for doing this are described
in the next paragraph.

The relocating loader defines, as a
built-in entry point, a location named
RESUME. If the loader is entered at this
location, loading will resume at the
location specified in LOCCT, which has not
been reset or changed after loading the
previous segment; the programmer can reset
LOCCT by an SLC card.

The relocating loader may be entered at
RESUME by the following coding sequence in
the program segment:

EXTRN RESUME

L 1,RESADD

BCR 15,1

Define RESUME to
the segment

Load address of
RESUME
Branch to RESUME

RESADD DC A (RESUME) Define address of
RESUME

If the first card the loader encounters
is an SLC card which sets LOCCT to the same
starting address the previous program
segment had occupied, the previous segment
will be overlaid. Consider the following
example:

A user has a 16K machine. He has inventory
records that show:

1. Quantity on hand at the beginning of
the month.

2. The number of items sold during the
month.

3. The number of items purchased during
the month.

4. The minimum re-order figure.

These inventory records occupy 4000 bytes
of storage.

Basic Utility Programs ~3

r---,

(LDT

(END

(RLD

(TXT

(ESD (Type 2)

(ESD (Type 0)

(END

(RLD

(REP

(=
(ESD (Type 2)

(. ESD (Type 1)

(ESD (Type 0)

(ICS

(SLC

--If the overlaying load procedure is used, other program
segments may be loaded after the preceding program segments
are executed.

--Causes loading process to end. If this card specifies an
address for transfer of control, this overrules any address
saved or specified by an END card.

--If program segment A's END card does not specify an address to
which control is transferred, this card may do so. (LDT also
can overrule here.)

--Provides information to loader for evaluating relocatable
addresses in Segment B.

--Segment B's instructions and constants.

--Defines external symbol in Segment A to which Segment B
refers.

--Defines name and length of Segment B.

--May list an address within Segment A to which control will be
transferred after loading (conditional; LDT card can
overrule).

--Provides information to loader for evaluating relocatable
addresses in Segment A.

--Causes changes or additions to be made to Segment A's internal
format.

--Segment A's instructions and constants.

--Defines the name of Segment B as a symbol to which Segment A
refers.

--Defines entry point in Segment A to which other segments may
refer.

--Defines name and length of Segment A.

--Defines program Segment B as a segment to be loaded and
specifies length to be reserved for it.

--Sets location counter at an absolute or symbolic address.
L ___ J

Figure 40. Two Program Segments Ready for Loading by Relocating Loader
(This figure reads from bottom to top.)

He has a program segment to perform each
of the following operations:

1. Subtract the number of items sold from
the quantity on hand at the beginning
of the month; program segment J.

64 BPS Basic Assmb. & Utile Progs.

2. Add the number of items purchased;
program segment K.

3. Compare the items on hand to the
minimum re-order figure and move those
items which must be re-ordered to an
output buffer area; program segment L.

4. Print a list. of the current inventory
on hand; program segment M.

5. Print a list of the items to be
re-ordered; program segment N.

Each of these five program segments
occupies 1500 bytes of storage and the
output buffer occupies 250 bytes of
storage. Finally, the relocating loader
occupies 3800 byt.es of storage and the
user's I/O routines occupy 1000 bytes of
storage.

Because the entire program is larger
than available storage, the programmer uses
the overlaying load procedure as follows:

1. He loads the loader, the list of his
inventory, and the first pro9rarn
segment. He then interrupts the
loading procedure with a Load
Terminate card, which transfers
control to one of the loaded segments;
in this case, program segment J, and
execution proceeds until all the
inventory categories have been
processed by this program segment.

2. Program segment J then transfers
control to location RESUME, and the
next program segment -- program
segment K -- is loaded. The first
card in program segment K is an SLC
card which uses the name of program
segment J as the address to which the
location counter is to be set. Thus,
program segment K would overlay
program segment J. In this
illustration, the second program
segment would overlay the first, which
is no longer needed.

3. Control is again transferred to one of
the program segments by interrupting
the loading procedure with a Load
Terminate card, and execution
proceeds.

4. The programmer continues to overlay
the program segments he no longer
needs with another program segment
until the lists of inventory on hand
and items to be re-ordered are printed
(always making sure that he does not
attempt to overlay the loader or the
other segments).

Loading in Absolute Form

The relocating loader operates in a manner
similar to the absolute loader, if the
External Symbol Dictionary card (ESD type
0) is removed from the program segment
before load time.

Note: The loader will not record in the
Reference Table the presence of a program
segment loaded in absolute form. The
loader loads one or more segments in
absolute form until it encounters a Load
Terminate card. (Load End card will not
terminate loading.) It also loads program
segments in both absolute form (without ESD
type 0 cards) and in relocatable form.
However, the following limitations apply to
this situation:

1. No linkage is provided with any
program segment loaded in absolute
form. If the programmer wishes to
load at the locations assigned by the
assembler with linkage to another
segment, he must specify the starting
address with a Set Location Counter
card and must not remove the ESD type
o card.

2. If two or more program segments are
loaded in absolute form, one will
overlay the other at all common
addresses.

LOADER USE OF I/O SUPPORT PACKAGE

The relocating loader uses selected module~
of the I/O Support Package to read cards or
card images from tape and, if a writing
device (typewriter or printer) is indicated
to the loader, storage mapping and error
messages will also be written. These
routines can be used by the programmer by
employing the coding sequence (with
absolute addresses) discussed in
Input/Output Support Package.

RESIDENT LOADER CONSIDERATIONS

The name of the first instruction in the
relocating loader is: LOAD2. If this
location is branched to (either from the
console or from a program segment in
storage that defines LOAD2 as an EXTRN),
another program segment can be loaded
without preceding it with another
relocating loader.

CAUTION:

Basic Utility Programs 6')

1. The user cannot use LOAD2 for an
overlaying load procedure, since the
Reference Table is destroyed whenever
LOAD2 is branched to.

2. The program to be loaded by the
relocating loader cannot have as entry
points the symbols LOAD2 or RESUME.
These symbols are entry points in the
relocating loader itself.

See Relocation and Linkage and Loader
Generator Program (LDRGEN) for more
information.

DUMP PROGRAM

The dump program is designed to provide a
listing of the contents of all or part of
storage, the general registers, and the
floating-point registers (or any
combination of these). To be more
specific, at the option of the user, the
dump program can produce a listing of any
or all of the following:

1. Console listing; that is, a listing of
storage locations from zero through
127. This listing includes:

a. Initial Program Loading PSW:
locations 0-7

b. Initial Program Loading CCW1:
locations 8-15

c. Initial Program Loading CCW2:
locations 16-23

d. External Old PSW: locations 24-31

e. Supervisor Call Old PSW:
locations 32-39

f. Program Old PSW: locations 40-47

g. Machine check old PSW:
locations 48-55

h. Input/Output Old PSW
locations 56-63

i. CSW: locations 64-71

66 BPS Basic Assmb. & Utile Progs.

j. CAW: locations 72-75

k. Unused word: locations 76-79

1. Timer: locations 80-83

m. Unused word: locations 84-87

n. External New PSW: locations 88-95

o. Supervisor call new
PSW: locations 96-103

p. Program New PSW: 104-111

q. Machine Check New PSW:
locations 112-119

r. Input/Output New PSW:
locations 120-127

2. The sixteen general registers.

3. The four floating-point registers. 1

4. Allor part of storage.

The listing is printed on the IBM 1403
or 1443 Printer or on the IBM 1052
Printer-Keyboard.

FEATURES

The dump program has the following
features:

1. Listings may be taken at any pOint
during execution of the user's
program.

2. The user may choose any of eight basic
formats for the listing and may
include several storage areas in
different formats within the same
listing.

3. Lengths of the areas to be listed,
and, with two of the output formats,
the length of the items within the
area, may be specified.

4. Request numbering allows the user to
provide for several listings in his
source program, but to call for only
those listings needed during a
particular run.

5. Each storage area listed may be

1If the floating-point registers are
requested on a machine without the
floating-point feature, a program error
wait will occur and the program will not
continue.

assigned an identifying label of eight
characters, which will immediately
precede the listing of the storage
area.

VERSIONS OF THE DUMP PROGRAM

There are two versions of the dump program:
the single-phase version and a two-phase
version. (See Main Storage Requirements
under the primary heading Basic Utility
Programs for an approximation of the
storage required for each of.the versions
of the dump program.) The single-'phase
version is available as follows:

1. a relocatable assembled deck that may
be loaded by either the absolute or
relocating loader; this version
provides all the facilities listed in
Features.

2. a symbolic deck (optional material)
that may be assembled by the user at
the locations he desires and loaded by
either the absolute or reloca.ting
loader; this deck provides all the
facilities listed in Features.

The two-phase version is supplied as
follows:

1. Phase 1 of the Two Phase Dump is
available as (a) a relocatable
assembled deck that may be loaded by
either the absolute or relocating
loader and (b) a symbolic deck
(optional material) that must be
assembled.

2. Phase 2 is available as (a) a
self-loading, non-relocatable
assembled deck and (b) a symbolic deck
(optional material) tha·t must be
assembled.

Each of the phases is loaded and
executed separately.

Thus, this version provides the
advantage of conserving storage, since only
Phase 1 is resident during execution of the
user's program.

The single-phase version program is
discussed in the body of this section. The
two-phase version is discussed in Jwo-Phase
Dump.

REQUEST NUMBERS

Two bytes of storage, beginning at symbolic
location RTBL, are used by the dump program
as binary switches indicating the status of
request numbers. The 16 bit positions,
beginning with zero in the high-order
position, correspond to the 16 possible
request numbers -- 0 through F. The
presence of a bit indicates that a storage
print is to be executed if the user's call
parameter includes a request number
corresponding to the position of that bit.
After assembly, the programmer inserts the
desired mask into RTBL by a Replace card. i

Prior to assembly, he may set the mask in
the symbolic deck.

These two bytes are originally defined
as DC X'SOOO'. This indicates that a
request specification of zero will result
in the execution of a storage print, while
the specification of any other request
number will cause immediate return to the
user's program.

Figure 41 defines the fields of a
Replace card used for request numbers.

Example

Symbolic locations RTBL and RTBL+l, as
originally assembled by DC X'SOOO', may be
illustrated as follows:

Bit

Request
Number

Symbolic
Location
RTBL

Symbolic
Location
RTBL+l

r-------------------------------,
11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01
~-------------------------------~
10 1 2 3 4 5 6 7 S 9 ABC D E FI L _______________________________ J

i The programmer must place the absolute
address assigned to symbolic location RTBL
in card columns 7-12 of the Replace card.
He will find this location in "Attachment
1" as listed on the front cover of this
publication.

Basic Utility Programs 67

r-------T---------------------------------,
1 Column 1 contents 1
~-------+---------------------------------~

1 Load card identification

2-4

5-6

7-12

13-14

15-16

17-20

21-72

(12-2-9 punch). Identifies
this as a card acceptable to
the loader.

REP. Identifies the type of
load card.

Blank.

Starting absolute address in
hexadecimal as assigned by the
assembler to symbolic location
RTBL. It must be
right-justified in these
columns, and unused leading
columns filled in with zeros.

Blank.

External Symbol Identiflcation
(ESID 01). Hexadecimal number
assigned to the program segment
in which the replacement is to
be made.

One four-digit hexadecimal
field indicating which of the
bit positions in symbolic
location RTBL and RTBL plus 1
are to be set to a binary one.

Blank.

73-80 Not used by t'he loader. The
programmer may leave blank or
punch in program identification
for his own convenience.

-------~---------------------------------

Figure 41. Format of Replace Card for
Request Numbers

Assume that the programmer finds the
absolute address, as assigned by the
assembler to symbolic location RTBL, to be
a hexadecimal 1388 (5000 decimal); also
assume that the request numbers that he
wishes are 3,6,9, and C.

The programmer punches a hexadecimal
001388 in card columns 7-12 of the Replace
Card. In columns 17-20, he punches a
hexadecimal 1248. After the Replace Card
has been loaded, the bit positions in
hexadecimal locations 1388 and 1389 are:

68 BPS Basic Assrnb. & Utile Progs.

Bit

Request
Number

1388
t

1389

r-------------------------------,
10 0 0 1 0 0 1 0 0 1 0 0 1 0 0 01
~-------------------------------~
10 1 2 3 4 5 6 7 8 9 ABC D E FI L _______________________________ J

Now if the user's call parameter
includes a request number corresponding to
a bit that is on (i.e., 3, 6, 9, or C), a
storage print will be taken.

DUMP PROGRAM REQUIREMENTS

Single-Phase

If the single-phase dump program is being
used, the user supplies (by symbolic cards
prior to assembly or by a Replace card at
object time) the following information to
the dump program. (The addresses required
are supplied in "Attachment 1" as listed on
the front cover of this manual.)

1. The storage capacity of the user's
machine.

2. The type of output device to be used.

3. The address of the output device.

4. The address of the IBM 1052
Printer-Keyboard (if one is available
for operator messages).

The storage capacity of the user's
machine is supplied to the dump program by
locating the following card in the dump
source program1:

DSTOPL DC AL3(8192)

The user takes this card out, and if the
operand field does not specify his storage
capacity, he must punch a copy of this card
(in decimal notation) with the storage
capacity of his machine in the operand
field, and put it back into the dump source
program.

The type of output device that is to be
used and its address are supplied to the
dump program by locating the following card
in the dump source program:

OUTDEV DC X'zzzzzzzz'

1Note: This and subsequent cards come
immediately before the END card in the dump
source program. Their relative order
cannot be altered.

In the low-order two bytes of the
operand field, he must punch the address of
the output device; in the high-order two
bytes, if the output device is to be the
IBM 1403 or 1443 Printer, he punches 0000.
For example:

OUTDEV DC X'OOOOAddr'

If it is the IBM 1052 Printer-Keyboard, he
punches 0001. For example:

OUTDEV DC X'OOOlAddr'

The user then locates the following card
in the dump sourCE~ program:

TYPWTR DC X'zzzz'

If there is an IBM 1052 Printer-Keyboard
available for operator messages, he punches
its addre~s in the operand field; if there
is none, he should punch in the address of
another printer. If th€re is neither, he
punches this card as follows:

TYPWTR DC X'FFFF'

The user then puts the card back into the
dump source program.

Placing hexadecimal F's in TYPWTR only
disables Dump Program operator messages,
not those of the I/O routines. There are
two methods to disable I/O messages. They
are as follows:

1. Prior to assembly remove the "Write
Error Message Base Routine," fron l the
I/O portion of the program.

2. At object time, use a Replace card to
change the instruction at SAGINw+4 (in
the I/O Base Routine - Group 1,
Interrogate I/O Interrupt or eCl) back
to the same format it had on the
assembly listing.

Example: A user has a n1achine with a
storage capacity of 65,536 bytes. He is
going to make his listings on the IBM 1403
Printer, which is unit 9 on selector
channell. He wants his messages ~V'ri tten
on the IBM 1052 PI'inter-Keyboard, which is
unit 5 on multiplexor channel O. He would
punch the cards as follows:

DSTOPL DC
OUTDEV DC
TYPWTR DC

AL3(65536)
X'00000109'
X'0005'

CALLING SEQUENCE

When the dump program and the user's
program are assembled together, the user
calls the dump program with the following
sequence of coding:

LA
BALR

15,DUMP
14,15

and follows these instructions with the
appropriate DC assembler instructions
setting up the call parameter for the
listing.

Note: When the dump program and the user's
program are assembled separately and the
relocating loader is being used, the
programmer must define the dump program as
an external symnol:

EXTRN DU~P

and he can call it by:

L
BALR

15, ADDur~lP
14,15

after having generated an address:

ADDUMP DC A(DU~P)

The rest of the discussion on the calling
sequence applies to both loaders.

Control returns to the user's program at
the location immediately following the call
parameter. The call parameter is one
half-word if a print of storage is not
desired, and three half-words, if a print
of storage is desired. The call para~eter
specifies the following basic conditions
for the listing:

1. The request number of the listing.

2. The options (see the beginning of this
section for a list of options) which
the listing will include.

If the listing is to include storage,
the number of Control List (see Control
List Format) entries and the address of the
first entry must be specified. If all of
storage is to be listed in 32-bit
hexadecimal, the Count field of the call
parameter may contain zero, and the Address
field will then be ignored (but must not be
omitted).

Note: Except for symbolic references, the
variable fields of the DC instructions
which set up the Call Parameter and Control
List are usually coded in hexadecimal.

Figure 42 shows the format of the call
parameter.

Basic Utility Programs 69

1 2 3 8 9 12 13 16 17 24 25 48
r-----------T------------T----------T-----------T-------------T-------------------------,
I Length of I I I Request I I I
I Parameter I Not Used I Option I Number I Count I Address I
~-----------+------------+----------+-----------+-------------+-------------------------~
I 00 I I 0000 I (0-15) I (OO-FF) I Address of first entry I
I or I I 0001 I 1.0 I 1.6 I in the control list I
I 11 I I 0010 I I I I
I I I 0011 I I I I
I I I 0100 I (O-F) I I I
I I I 0101 I 1.6 I I I
I I I 0110 I I I I
I I I 0111 I I I I l ___________ L ____________ L __________ ~ ___________ L _____________ L _________________________ J

r---------T-----------------T---T-------------,
I Bit I I I Hexadecimal I
I Positions I Field Name I Significance I Coding I
~---------+-----------------+---+-------------~

1-2 Length of 00 indicates a half-word parameter and 00

3-8

9-12

13-16

17-24

25-48

parameter that no storage is to be dumped. or

Option

Request Number

Count

Address

11 indicates a three half-word parameter
and that at least one area of storage is
to be dumped.

Not used.

0000 indicates no options are exercised.
0001 print general registers.
0010 print floating-point registers.
0011 print floating-point and general

registers.
0100 print console listing.

0101 print console listing and general
registers.

0110 print console listing and floating­
point registers.

0111 print all options.

A four-bit hexadecimal number from 0
through F. If the corresponding RTBL bit
is a one, the listing is provided; other­
wise, control returns immediately to the
user's program.

An eight-bit number (when symbolic address
constants are used to designate addresses,
this number is limited by the maximum
number of address constants allowed by the
Basic Assembler) which is the total number
of entries in the Control List. If this
number is 0, all of storage is printed in
32-bit hexadecimal format and the Address
field of the call parameter is ignored (but
it may not be omitted).

CO

o
1
2
3

4

5

6

7

o
through

F

00
through

FF

I
I
I
I
I
I
I
I

The 24-bit address of the first entry in If absolute I
the Control List. If symbolic, it is coded a 1 to 6 I
separately as: DC AL3 (symbol). digit number I _________ L _________________ L ___ L _____________ J

Figure 42. Call Parameter Format

70 BPS Basic Assmb. & Utile Progs.

Examples of the required call-parameter
coding follow. (Each example assumes that
the corresponding request number has been
specified.)

Example 1

DUMP1

where:

LA
BALR
DC

15,DUMP
14,15
X'0034'

00 indicates a half-word call parameter
and that no storage is to be dumped.

3 indicates that the floating-point and
general registers are to be dumped.

4 is the request number.

In this example, the general and
floating-point registers are listed, and
control returns to DUMP1 + 2.

Example 2

DUMP2

where:

LA
BALR
DC

15,DUMP
14,15
X'COOOOOOOOOOO'

co indicates a three half-word call
parameter and that at least one area of
storage is to be dumped.

o since the count field is zero, no
options are to be exercised.

o is the request number.

00 is the control list entry, so all of
storage will be listed in 32-bit
hexadecimal format. Control ~eturns to
location DUMP2 + 6.

000000 is the address field. Since the
count field is 0, this field is ignored
but may not be omitted.

Exarople 3

LA
BALR

DUMP 3 DC
DC

15,DUMP
14,15
X'C01A04'
AL3(LIST)

where:

co indicates a three half-word call
parameter and that at least one area of
storage is to be dumped.

1 indicates that the general registers
are to be printed.

A is the request number.

04 is the number of Control List entries.

LIST is the address of the first Control
List entry.

The general storage registers and the
four storage areas specified by the Control
List entries beginning at location LIST are
to be dumped. Control returns to location
DUMP3 + 6.

CONTROL LIST FOR~AT

The Control List consists of a maximum of
255 entries. Each entry specifies the
following:

1. An area of storage to be listed.

2. How it is to be listed: in what
format it is to be listed and the
length in bytes of each item to be
listed (where not implied by the
format).

3. The address of the first byte of the
area to be listed.

4. Whether the End Flag field specifies
an end address plus 1 location or a
count of bytes.

5. Whether or not there is a dump
identification label.

6. The size of the area is defined in the
End/Count field of the Control List
entry either by the address of the
last byte plus 1 or by the number of
bytes in the area.

If the programmer assigns an identifying
eight-byte label to an area, he places the
label as the second double-word of the
Control List entry. When printed, the
label precedes the listed area.

Figure 43 shows the format of the
Control List Entry.

Basic Utility Programs 71

1 2 3 4 5 8 9 32 33 40 41 64 65 128
r-----T-----T----T-------T----------------T--------T--------------------T---------------,
I Labell End INot IFormat I I I I I
IFlag IFlag IUsedl Code IStarting Address I Length I End/Count I Label I
~-----+-----+----+-------+----------------+--------+--------------------+---------------~
I 0 I 0 I I (O-A) IAddress of firstl (01-10) IEither an End IOptional eight-I
I or I or I I 1tilbyte of the areal 1tiiAddress +1 Location, I byte label I
I 1 I 1 I I Ito be listed I lor a count in bytes I (2 words) I
I I I I I I lof the area to be I I
I I I I I I Ilisted (see End I I
I I I I I I I Flag below). I I L _____ ~ _____ ~ ____ ~ _______ ~ ________________ ~ ________ ~ ____________________ ~ _______________ J

r-----------T------------------T--,
I Bit I I I
I Positions I Field Name I Significance I
~-----------+------------------+--~

1 Label flag 0 indicates that no label is associated with the

2 End flag

3-4

5-8 Format code

9-32 Starting Address

33-40 Length

41-64 End/Count

area.

1 indicates that there is a label associated with
the area.

o indicates that the End/Count field is interpreted
as a Count.

1 indicates the End/Count field is interpreted as an
end address plus 1.

Not used.

A four-bit hexadecimal number, zero through A,
specifying the list format (see Output Formats).

The 24-bit address of the first byte of the area to
be listed. The area must be properly aligned on a
half-word, full-word, or double-word boundary,
according to the format requested. If symbolic, it
is coded separately as: AL3(symbol).

An eight-bit number -- 1 through 16 -- specifying
the length in bytes of each item. Used only with
items of variable length having format codes of
0, 1, 2, or 3. If not used, it may be coded as: 00.

If the End flag is zero, this is the number of bytes
to be listed, right-justified.

If the End flag is one, this is a 24-bit address of
the end of the area plus 1 that is to be listed. If
symbolic, it is coded separately as: AL3 (symbol).

65-128 Label An optional eight-byte label (if less than eight
characters, blanks must be included), present only
when the Label flag is one.

-----------~------------------~--

Figure 43. Control List Entry Format

72 BPS Basic Assmb. & Util. Progs.

Examples of the required coding follow.

List DC X' C8'

DC AL3(START)
DC X'OO'

DC AL3(END+l)
DC C'COREDUMP'

DC X' 88'

DC AL3 (SINE)
DC X'00000200'

DC C'SINEDUMP'

DC X'42'

DC AL3 (DATA)
DC X'10'
DC AL3(DATA+400)

label flag; end
flag; format 8
Starting address
Length field is
ignored (because
format 8
is specified)
End address + 1
Label field

Label flag;
Count; format 8
Starting address
Length field is
ignored (because
format 8 is
specified); Count
Label field

No label flag;
end flag;
format 2
Starting address
Length field of 16
End address + 1

The three list~ entries above would
produce listings of the following:

1. The label COREDUMP, followed by the
area from START through END, in
hexadecimal half-words with mnemonics.

2. The label SINEDUMP, followed by the
512 bytes starting at SINE, in
hexadecimal half-words with mnemonics.

3. The area from DATA through DATA+399,
in hexadecimal, each item 16 bytes
long.

OUTPUT FORMATS

Listings produced by the dump program
contain as many complete items per line as
the length of the item permits. In the
case of format types 0, 1, 2, and 3 (shown
in Figure 44), the length of an item is
defined by the Length field (bit positions
33-40) of the Control List Entry; in the
case of types 4 through A, it is implied by
the format.

The dump program has one error message
intended for the use of the programmer.
This error message, which may be produced
by either the single-phase dump or Phase 2
of the two-phase dump, will appear on the
listing as follows:

DCI Control List Errore ••
This Request Skipped

r-------T---------------------------------,
I Code I Format 1
~-------+---------------------------------~

o or 21 Hexadecimal. Each byte is
1 decoded to two hexadecimal
1 digits. Length is as
1 specified in the Length field.
1

1 or 31 Each byte is printed as an
alphabetic or zoned decimal
character. Length is as
specified in the Length field.

4 or 8

5

6

7

9

A

1
I
1
1

Hexadecimal half-word with
mnemonics. Each half-word is
decoded to four hexadecimal
digits, and interpreted
mnemonic operation codes
appear beneath each
instruction.

NOTE: Data whose bit
configuration coincides with
that of an operation code is
also accompanied by a
mnemonic. If a bit
combination which does not
represent a valid mnemonic is
encountered, an X will appear
below the high-order digit of
the address in the left-hand
margin.

Hexadecimal full-words without
mnemonics. Length of each
item is four bytes.

Short-precision floating-point
decimal. Each full-word of
binary data is converted to
eight decimal digits, with
sign and exponent. Negative
numbers appear in true form.

Long-precision floating-point
decimal. Each double-word of
binary data is converted to 17
decimal digits, with sign and
exponent. Negative numbers
appear in true form.

Half-word fixed-point decimal.
Each half-word of binary data
is converted to decimal with a
sign. Negative numbers appear
in true form.

Full-word fixed-point decimal.
Each word of data is converted
to decimal with a sign.
Negative numbers appear in

I
I
I
I
I

true form. I _______ i _________________________________ J

Figure 44. Output Formats

Basic Utility Programs 73

This message will occur whenever an invalid
condition is encountered in the Control
List Entry. The error may be caused by a
Call Parameter which does not contain a
valid Control List Address.

Finally, when the floating-point formats
are used, the printed fraction will not
differ by more than one in the low-order
position from the exact decimal
representation rounded to eight
(short-precision) or 17 (long-precision)
places.

Figure 44 shows the output formats of
the dump program. See Figure 45 for a
sample listing of each of the output
formats. (Note: When a format that prints
mnemonics is being used, the user may find
the character ~ beneath the high-order
digit of the location specifier and on the
same line as the mnemonics. If this
occurs, it means that at least one invalid
operation code was encountered on that
line.)

TWO-PHASE DUMP

As mentioned in Vers10ns of the Dump
Program, the dump program is also available
in a two-phase version. These phases are
loaded and executed separately to conserve
main storage; the first phase produces
nonedited data which is used by the second
phase to produce listings in the same
formats that the Single-phase operation
does; calling sequence and parameter
formats are the same as in the single-phase
operation. The addresses required to use
Replace cards are supplied in "Attachment
1" as listed on the front cover of this
manual.

The user supplies certain information to
the two-phase dump program as he had to do
in the single phase dump program.
Therefore the user supplies Phase 1 (in the
source program or by a Replace card at
object time) with the following
information:

1. The storage capacity of his machine.

2. The type of device to be used for
output.

3. The address of the output device.

4. The address of the IBM 1052
Printer-Keyboard (if one is available
for operator messages).

The storage capacity is provided to
Phase 1 source program by locating the

74 BPS Basic Assmb. & Utile Progs.

following card1 :

DSTOPL DC AL3(8192)

The user takes this card out, and if the
operand field does not specify his storage
capacity, he must punch a copy of this card
(in decimal notation) with the storage
capacity of his machine in the operand
field, and put it back into the Phase 1
source deck.

The type of output device that is to be
used and its address are supplied to the
Phase 1 source program by locating the
following card:

OUTDEV DC X'zzzzzzzz'

In the low-order two bytes of the
operand field, he must punch the address of
the output device; in the high-order two
bytes, if the output device is to be tape
unit, the user punches 0000. For example:

OUTDEV DC X'OOOOAddr'

If the output device is to be a tape
unit with the 7-track or dual density
feature 2 , the mode set desired may be
punched in the first byte. Otherwise, 0000
is punched. For a mode set of 1600 BPI,
the user punches COOO. For example:

OUTDEV DC X'COOOAddr'

If the output device is to be the IBM
2540 Card Read-Punch, or 2520-B2 or -B3
Card punch, the user punches 0001. For
example:

OUTDEV DC X'OOOlAddr'

If the output device is to be the IBM
1442 Card Read-punch, the user punches
0002. For example:

OUTDEV DC X'0002Addr'

If the output device is to be the IBM
2520-B1 Card-Read Punch, the user punches
0003. For example:

OUTDEV DC X'0003Addr'

1Note: The cards to be punched for Phase 1
come immediately before the END card in the
Phase 1 source deck. Their relative order
cannot be altered.

2 For a discussion of the 7-track feature
and dual density feature, see IBM 2400
and 2816 Model 1 Component Description,
Form A22-6866.

LOC 0 0004000A00000600 0200060060000050 LOC 16
OLD PSWS 0106004000F12345

LOC 8
000000035001EF84

CMI 0001 EEEO
000<';·00000001 ED 50

0000000000000000 0000000000000000
0200046020000050
e006000AOOOOOOOF
00000054
000000000001EE6C

Console Listirog
CSW 000lEEE80COOOOOO 00000000 TIME~ 00000000
NEW PSWS 00000000000lED92 000400000001EUDC 000400000001EDOC

FPR 0 .12345678901234567 E 01 .12345678901234567 E-Ol .12345678901234567 E 15 .12345678901234567 E-77 Floating-Poin,
Registers

GPR 0 00000000 11111111 22222222 33333333

GPR 88888888 99999999 AAAAAAAA BBBBBBBB

COOOLOOl

44444444 55555555

eccecccc ODOOOUUO

66666666

EEEEEtEE

77777777

FFFFF-fFF

General
Registers

000000 00 01 02 03 04 05 06 07 08 09 OA DB OC 00 J[OF 10 11 12 13 14 15 Hexadecimal,
one-byte len~lth

000016 16 17 18 19 lA HI lC 10 at: IF 20 21 22 23 24 25 26 27 28 29 2A 20

000032

000052

000072

000096

000110

000138

000160

000188

000100

000216

00025C

ooonc
x

OC029C

0002Be

00020C

0002F2

000304

OC031C

000.330

000350

eOOOl002

oeOl 0002 0003 0004 0005 0006 0007 0008

0011 0012 0013 0014 0015 0016 0017 0018

COOOl003

000001 000002 000003 000004 000005 000006

000000 OOOOOE OOOOOF 000010 OOOOK 1 000012

C005

00000001 00000002

OOOOOOOB Oooooooe

COOIlOOl

e c

c o G H

eOOll005

ABCDE FGHIJ t<lMNO

STUVW XYlAB

C004

0580 4890
BAlR lH

14FE
t'<R

COLO

43EE
Ie

eOEFG

8046

00000003

00000000

G H

PQRST

HIJKl

lA98
AR

42EC
STe

48AO
lH

803E

2147483647 21'.7483648-

OOOOOOO't 00000005

0000000f: OOOOOOOF

N

K N o P

UVWXY lAseD t:FGHl

MNOPQ

8046

88FO
SRl

I{STUV

LA89
AR

0004

WXYlA

48BO
LA

46CO
Be T

1234567890

0000000001 0000000002 0000000003 0000000004

e009

32767 32768- 12345 12345 12345 L2345 12345

12345 12345- 12345 12345 12345 l2345 12345

CC06

0009 OOOA OOOB oooe 0000 OOOE

0019 OOlA 001B 001e 0010 001t:

000007 000008 000009 OOOOOA 000008

000013 000014 000015 000016 000017

00000006 00000007 00000008 00000009

00000010 00000011 OOO()0012 00000013

o p

Q

JKlMN

BCOI:F

8046

80lA

Q R

UflQRS

GHIJK

lAIiA
AR

58FO
L

1234567890

0000000005

12345 12345

12345 12345

U

TUVWX

lMNOP

47fO
Be

8042

W x

YlABe

QRSTU

805A

58EO
l

48eo
lH

803E

Y

OEFGH

VWXYl

8058

07Fl
Be,""

1234567890 1234567890

0000000006 0000000007

12345 12345 12345

12345 12345 12345

.12345678 01 .12345678 E-Ol .12345"678 75 .12345678 E-77 .12345618 E 10 .12345618

.00000000 00 .00000000 E 00 .00000000 00 .00000000 E 00 .00000000 00 .00000000

C007

.12345678901234567 E 75 .12345678901234567 E 00 .12345678901234567 E-77 .12345678901234567

.00000000000000000 00 .12345678901234561 E 26 .12345678901234567 ~ 00 .12345678901234567

Note: Main storage addresses are in left-hand marginj format of each· I isting is preceded by a label.
Farmats are identified by inserts in right-hand margin.

Figure 45. Example of Storage Print Listing

Y

A

OOUl-

OOIF

oooooe

000018

0010 Hexadecimal,
two-byte lenrth

0020

Hexadecimal,
three-byte
length

OOOOOOOA Full-word
unsigned
hexadecimal 00000014

A [j Characters,
o one-byte len~,th

IJI<.LM NOPQR Characters,
five-byte

fGHIJ length ABCOE

48~0

LH

OOOf

803A Hexadecima!,
with
mnemonics

OOOu

0000000000 Full-word
fixed-point

0000000008 decimal

12345

12345

10

00

00

OU

12545- Half-word
fixed-point

12345- decimal

Short-precisio I

floating-point
decimal

Lang-precisior,
fioating-point
decimal

Basic Utility Programs 7~

The user then locates the following card
in the Phase 1 dump source prograw:

TYPWTR DC X'zzzz'

If there is an IB~ 1052 Printer-Keyboard
available for operator messages, he punches
its address in the operand field; if there
is none available, he should punch in the
address of another printer. If neither are
available, he punches it as follows:

TYPwTR DC X'FFFF'

The user then puts the cards back into the
Phase 1 source deck.

Placing hexadecimal F's in TyPwTR only
disables Dump Program operator messages,
not those of the I/O routines. There are
two methods to disable I/O messages. They
are as follows:

1. Prior to assembly, remove the Write
Error f-1essage Base Routine from the
I/O portion of the program.

2. At object time, use a Replace card to
change the instruction at SAGINW+4 (in
the I/O Base Routine - Group 1,
Interrogate I/O Interrupt or CC 1)
back to the same format it had on the
assembly listing.

If using the Phase 2 source program, the
user must supply (by symbolic changes to
the source program or by a Replace card to
the assembled relocatable deck at object
time) the following:

1. The type of output device to be used
and its address.

2. The type of input device to be used
and its address.

3. The address of the typewriter (if one
is available).

The type of output device that is to be
used and its address are supplied to Phase
2 by locating the following card in the
Phase 2 source program1:

OUTDEV DC X'zzzzzzzz'

In the low-order two bytes of the
operand field, he must punch the address
the output device; in the high-order two
bytes, if the output is to be printed on
the IBM 1403 or 1443 Printer, the user
punches 0000. For example:

of

1Note: The cards to be punched for Phase 2
come immediately before the END card in the
Phase 2 source program. Their relative
order cannot be altered.

76 BPS Basic Assmb. & Utile Progs.

OUTDEV DC X'OOOOAddr'

If the output is to be written on the
IBM 1052 Printer-Keyboard, the user punches
0001. For example:

OUTDEV DC X'OOOlAddr'

The input device to be used and its
address are supplied to Phase 2 by locating
the following card in the Phase 2 source
program:

INDEV DC X'zzzzzzzz'

In the low-order two bytes, he must
punch the address of the input device; in
the high-order two bytes, if the input is
to come from tape, the user punches 0000.
For exaIllple:

INDEV DC X'OOOOAddr'

If the input device is to be a tape unit
with the 7-track feature 2 , the mode set
used to create the tape must be punched in
the first byte. Otherwise, 0000 is
punched. For the 7-track feature with a
mode set of odd parity, 800 BPI, and data
convert on, the user punches 8100. For
example:

INDEV DC X'8100Addr'

If the input is to come from cards, the
user punches 0001. For example:

INDEV DC X'OOOlAddr'

The user then locates the following card in
the Phase 2 dump source program:

TYPWTR DC X'zzzz'

If there is an IBM 1052 printer-Keyboard
available for operator messages, he punches
its address in the operand field; if there
is none available, he should punch in the
address of another available printer. If
neither are available, he punches it as
follows:

TYPWTR DC X'FFFF'

Placing hexadecimal F's in TYPWTR only
disables Dump Program operator messages,
not those of the I/O routines. There are
two methods to disable I/O messages. They
are as follows:

1. Prior to assembly, remove the Write

2 For a discussion of the 7-track feature
and dual density feature, see IBM 2400
and 2816 Model 1 Component Description,
Form A22-6866.

Error Message Base Routine from the
I/O portion of the program.

2. At object time use a Replace card to
change the instruction at SAGINW+4 (in
the I/O Base Routine - Group 1,
Interrogate I/O Interrupt or CC 1)
back to the same format it had on the
assembly listing.

If the user wishes to use the
self-loading version of Phase 2. (A Phase
2 relocatable assembled deck can not be
loaded by either the absolute or the
relocating loader on an 8K machine) the
following information must be supplied:

1. The type of output device and its
address.

2. The type of input device and its
address.

3. The address of the IBM 1052
Printer-Keyboard (if one is available
for operator messages).

The user supplies this information by
taking out the END card from the
self-loading deck of Phase 2 of the
Two-Phase Dump and punching this card as
follows:

Columns 17-20

Column 21

columns 22-25

Column 26

Columns 27-30

columns 31-32

The address of the output
device, printer, or IBM
1052 printer-Keyboard, that
is to be used.

o if a printer is to be
used, or

1 if an IBM 1052
Printer-Keyboard is to be
used.

The address of the input
device that is to be used.

0 if the input is to come
from tape, or

1 if the input is to come
from cards.

The address of the IBM 1052
Printer-Keyboard, if one is
available for operator
messages. If none is
available, he must punch it
as: FFFF.

If the input device is a
tape unit with the 7-track
feature and a mode set was
used to create the tape,
the same mode set must be
punched in columns 31 and

32. Otherwise, leave
blank.

I/O error messages are only displayed on
the console during error waits when the
self-loading deck supplied by IBM is used.

A user with a machine larger than 8K can
make more efficient use of Phase 2 of the
Two-Phase Dump by altering the source
program for residence in higher storage and
increasing the buffer size. (Both of the
preceding are noted on the assembly
listing.) The assembled deck can then be
loaded by either the absolute or relocating
loader.

Phase 1 is resident in storage during
execution of the user's program. It
occupies much less storage than the
single-phase dump program and it may be
called as often as necessary during the
execution of the user's program.

The output of Phase 1 is in Text (TXT)
card format (formats of Text cards are
discussed in the sections on both the
absolute and relocating loaders); when
Phase 2 is loaded at the termination of the
job (or at the end of the day), all of
storage is available for its use.

1. Sequence

a. Phase 1 dumps the contents of
storage and/or registers,
according to the options listed
under Dump Program, onto DMP and
TXT cards, or as card images on
tape. Storage is dumped on load(~r
TXT cards or as card images on
tape. (The TXT cards produced by
Phase 1 can be loaded by either
the Absolute or Relocating
Loaders; thus, if the user
programs a routine to reset the
general registers and locations
0-127, and the I/O devices are
repositioned, a checkpoint
procedure can be facilitated.)
Phase 1 does not rewind tape.

b. At the conclusion of the user's
program or at the end of the daYf
Phase 2 is loaded. Phase 2
initially rewinds tape. It read::;
the output of Phase 1, and
produces listings identical with
those of the single-phase program.

Basic Utility Programs 77

2. Phase 1 output

a. DUMP (DMP) cards (or card images
on tape) identified by a 12-3-9
punch in card column one. These
cards contain the call parameter,
locations 0-127, and the contents
of the general registers (and
floating-point registers, if
requested) •

b. DUMP (DMP) cards for each entry in
the Control List.

c. TEXT (TXT) cards containing the
data in all storage areas
specified in the Control List.
These cards are identified by a
12-2-9 punch in card column one.

Note: Output from Phase 1 will go into
stacker one on the 1442~N1 or 2520-B1 Card
Read-Punch and into the zero stacker on the
punch side if the 2540 Card Read-Punch is
being used. These cards must be loaded in
the same order that they were produced by
Phase 1.

INPUT/OUTPUT SUPPORT PACKAGE

The Input/Output Support Package consists
of a modular set of subroutines which
enable the user to operate input/output
devices. (A module in the Input/Output
Support Package is a logical sequence of
coding which either sets up or executes one
I/O function.) There are three types of
modules in the I/O Support Package; they
are:

1. Required modules. These modules must
always be present when the I/O Support
Package is used.

2. Optional Modules. These modules need
not be present to perform the basic
functions of the I/O Support Package,
but can be included to expand the
facilities of the basic functions.
(Note: the user physically selects the
modules that are required and the
others that he desires from the decks
supplied by IBM; see How the I/O
Support Package is Supplied.)

78 BPS Basic Assmb. & Utile Progs.

3. Entry modules. These modules support
certain functions of a given I/O
device, for example, to read a card or
write tape.

Format of Presentation

Each of the three types of modules that
constitute the I/O Support Package is
discussed separately in the following
order:

1. Required modules.

2. Optional modules.

3. Entry modules.

The discussions under these three headings
provide the following information:

• The listing group heading for each
module is noted in the discussions.
The listing of the I/O Support Package
provided by IBM groups all the modules
under headings which correspond to the
function of that module; for example,
the entry modules are grouped under the
heading I/O Call Entry Group •

• A set of flowcharts (Figures 59-64) is
provided at the end of the I/O Support
Packa~ that illustrates the
relationships of all the modules. The
discussions point out Which flowchart
the reader should go to for a graphic
illustration of module relationships.
When selecting the modules to be used
for a given application, the user is
strongly urged to make frequent
reference to these flowcharts and to
the listing of the I/O Support Package
proviJed by IBM. (When using the
flowcharts, the user should find the
name of the module that he desires and
then follow the arrow that leads from
that module, taking all branches, and
include every other module that the
flow line intersects.)

After the entry modules have been
described, their functions explained, and
requirements for their use defined, the
following sections are presented:

1. Calling the entry modules. This
section tells what information the
user's program must supply to call the
entry modules.

2. Direct Linkage. This section explains
a method of coding to call the entry
modules when the I/O Support Package

and user's program are assembled
together.

3. Indirect Linkage. This section
explains a method of coding to call
the entry modules when the I/O Support
Package and user's program are
assembled separately.

The remainder of this section shows how
to organize the selected modules and
presents considerations for card-only and
limited card-tape installations, followed
by the flowcharts which show the
relationships of the entir~ package.

Because of the modularity of the I/O
Support Package, the reader will find many
relationships and dependencies among the
routines. Therefore, he is urged to first
read through the entire section and become
familiar with the general principles that
govern the use of the I/O Support Package.

How the I/O Support Package is Supplied

The I/O Support Package is supplied as a
symbolic deck only that contains the entire
I/O Support Package. The user may select
those modules that suit his particular
needs.

prerequisite Considerations

To understand the following discussions,
the reader must be familiar with the
following information:

1. The symbolic names of the entry
modules and a brief description of
their functions and limitations.

2. The symbolic names assigned by the I/O
Support Package to the general
registers. (These names may be used
in place of actual register numbers).

The following is a list of the
subroutine entry modules. These modules
support certain functions of a given device
and are subject to the limitations of the
device involved. The user is cautioned
that no check is made to ensure that the
calling sequence (see Callinq the Entry
Modules and Direct Linkage) for the entry
modules conforms to the specifications for
the particular device. For -this reason,
the user should be thoroughly familiar with
these specifications as they are explained

in the reference manuals for the various
I/O devices.

The subroutine entry modules are as
follows:

SRDCW

SWMSW

SPRTW

SPUC

SRTPW

SPCR

SSNSW

SCTLW

SPCMW

SPCPW

SKIPW

SPCRW

SPUCW

SWTPW

SRWD

SWTMW

SBSRW

Read a card; wait. 1

Write a message; wait.

Print a line; wait.

Punch n columns; no wait; this
entry Is only for a device whose
punch address differs from the
reader address (IBM 2540 Card
Read-Punch) .

Read tape; wait.

Punch n columns; no wait; this
entry Is only for a device whose
punch address is identical with the
reader address (IBM 1442-N1 or
2520-B1 Card Read-Punch).

Sense information from the
designated device; wait.

Issue sp~cified control command;
wait.

Single-space the message unit;
wait.

Single-space the printer unit;
wait.

Printer skip to channel one; wait.

Punch n columns; wait; this entry
is only for a device whose punch
address is identical with the
reader address (IBM 1442-N1 or
2520-B1 Card Read-Punch).

Punch n columns; wait; this entry
is only for a device whose punch
address differs from the reader
address (IBM 2540 Card Read-Punch
or 2520-B2 or B3 Card Punch).

Write tape; wait.

Rewind tape; no wait.

Write a tapemark; wait.

Backspace one physical record;
wait.

1 Wherever "wait" occurs, it indicates that
control does not return to the user's
program until the device reaches the end of
the operation, including all mechanical
motion.

Basic Utility Programs 79

SBSF

SFSRW

SFSF

SBRTW

Backspace file; no wait.

Forward-space one physical record;
wait.

Forward-space file; no wait.

Backward read tape record; wait.

Note~ These subroutine entry modules may
be used in any combination; however, since
they are oriented to function and not to
device, it is possible that some function
of a given device may not be supported.
For example, no combination of the entry
modules will enable the user to read from
the IBM 1052 Printer-Keyboard.

The general registers are referred to by
symbolic names in the I/O Support Package.
(Note: the user's program may use the
actual register numbers if it is so
desired.) The following is a list of the
symbolic names used in this section equated
to their corresponding actual register
assignments:

SREGR EQU 0
SREGZ EQU 1
SREGA EQU 2
SREGN EQU 3
SREGL EQU 4
SREGE EQU 5
SLUBRG EQU 6
SREGC EQU 7
SREGS l:.QU 8
SREGP EQU 9

If these symbolic names are used by the
user's program, they must be defined at
assembly time; if the I/O Support Package
is assembled with the user's program, the
I/O Support Package supplies equivalence
statements (see Direct Linkage); if the
user's program is assembled separately,
these names must be defined within the
user's program (see Indirect Linkage). The
I/O Support Package saves and restores
these registers. All discussions in this

section use the symbolic names of the
general registers.

REQUIRED SUBROUTINE MODULES

The discussion of the required subroutine
modules will deal with the following
points:

1. The significance of the required
modules.

2. The names and the group under which
they can be found on the listing
provided by IBM.

3. Considerations about the individual
module.

4. Use of the required modules.

The reader should refer to the
flowcharts (Figures 59-64) at the end of
the I/O section for the relationship of the
other parts of the I/O Support Package to
the required modules. The relationship of
the required modules is illustrated in
Figure 59.

The required modules are the foundation
of the I/O Support Package; they must
always be included whenever the I/O Support
Package is used, regardless of what entry
or optional modules are selected by the
user.

Names and Listing Group

Figure 46 gives the names of the required
modules and their associated modules; it
also gives the group name under which they
can be found on the listing provided by
IBM.

r--T--------------------------------------,
I Names I Listing Group I
~--+--------------------------------------~
I I I
I Primary Call Entry Table I I/O Call Entry Group I
I Secondary Call Entry Table I I/O Call Entry Group I
I I/O Base Routine Part 1 I I/O Base Routine - Group 1 I
I I/O Base Routine Part 2 I I/O Base Routine - Group 2 I
I Multiple Unit Device-Address Routine I I/O Base Routine - Group 2 I
I Command Operation Modifiers Routine I I/O Base Routine - Group 2 I
I Initial New PSW Set Up Routine I I/O Base Routine - Group 2 I L __ ~ ______________________________________ J

Figure 46. Names and Listing Group of Required Modules and Their Associated Modules

80 BPS Basic Assmb. & Utile Progs.

preliminary Considerations

1. Each entry module must have such
information as device address; this
type of information is not supplied
from within the entry module. To
point out where an entry module
obtains this information, we may
divide all the entry modules into two
types: "primary" and "secondary."
(This is only an illustrative
distinction; such a distinction will
not be found in a listing of -the entry
modules.)

Figure 47 shows which entry modules may
be considered primary and which secondary.

The main difference between the primary
and secondary entry modules is tha-t the
secondary entry modules are dependent on
the primary call modules. The paragraph
following Figure 47 explains this
dependence.

r--------------------T--------------------,
I Primary I Secondary I
I Entry Modules I Entry Modules I
~--------------------+--------------------~

SRDCw SPCR I
SWMSW SSNSW I
SPRTw SCTLW I
SPUC SPCMW I
SRTPw SPCPW I

SKIPW I
SPCRW I
SPUCW I
SWTPW I
SRWD I
SWTMW I
SBSRW I
SBSF I
SFSRW I
SFSF I
SBRTW I ___________________ .L _____________________ J

Figure 47. Primary and Secondary Entry
Modules

The primary entry modules are provided
with the information they need to address
an I/O device' by the Primary Call Entry
Table module. This module contains the
address of the primary entry module, the
device unit address (Note: The user must
initially supply the addresses of his
devices to the Primary Call Entry Table),
and a space for an exceptional condition
return address. The secondary entry
modules have a similar table, the Secondary
Call Entry Table; however, this table only
provides the address of the secondary entry
module. The unit device address and the
space for an exceptional condition return

address are obtained from the Primary Call
Entry Table.

2. The reader will find, by referring to
his listing, that what has been called
I/O Base Routine - Part 1 in Figure 46
consists of four modules. The names
of these four modules are:

• I/O Interrupt Entry

• Set Up Return

• Initiate I/O Action

• Interrogate I/O Interrupt or
Condition Code 1

Because of their functions, they will
be referred to as if there were only
two modules: I/O Initiator and
Interrupt Analyzer.

3. The reader will also find that what
has been referred to in Figure 46 as
I/O Base Routine Part 2, consists of 2
modules. Their names are:

• Save Entry Registers and
Initialize CCW and CAW

• I/O Operations Control Constants

They are referred to as: Housekeeping
and Constants area.

4. The following three routines are
special cases:

• Multiple Unit Address-Device
Routine

• Command Operation Modifiers
Routine

• New PSW Set Up Base Routine

They are special cases since, under
certain conditions, the I/O Support
Package could be used without them.
These conditions are explained in the
section immediately following .•

Use of the Required Modules

The following discussion explains each of
the required modules and considerations for
their use.

Primary Call Entry Table: This table
consists of primary entry module addresses,
device addresses, and a space for the
exceptional condition return address. This

Basic Utility Programs 81

module must always be included. For
example, if a primary entry module is used,
the user must include:

1. The primary entry module itself, for
example, SRDCW.

2. The Primary Call Entry Table.

In organizing the I/O Support Package, the
Primary Call Entry Table <SINTRY) is placed
first.

Secondary Call Entry Table: This table
consists of the addresses of the secondary
entry modules. If a secondary entry module
is used, the user must include the
following:

1. The secondary entry module itself, for
example, SKIPW.

2. The associated primary entry module
(if any): although the secondary
module performs its own specific
set-up functions, it branches to its
associated primary entry module for
all common functions. For example,
the SKIPW module sets up the command
parameters and the skip command. then
branches to the SPRTW module which
sets the printer reference and
branches to the Initiate I/O portion
of the I/O Base Routine. Figure 49,
which appears later in the text, lists
these associations.)

The Secondary Call Entry Table, <SNTRY2)
follows SINTRY when organizing the I/O
Support Package.

I/O Base Routine - Part 1: This part of
the I/O Base Routine consists of the
following:

• The I/O initiator

• The interrupt analyzer

The I/O Base Routine - Part 1 follows the
SNTRY2 in organizing the I/O Supporr.
Package.

Note: All other selected modules should
follow the I/O Base Routine - Part 1 and
precede the I/O Base Routine - Part 2 when
organizing the I/O Support Package.

I/O Base Routine - Part 2: This part of
the I/O Base Routine consists of the
following:

1. Housekeeping - This module must follow
all other modules added after the I/O
Base Routine - Part 1 and precede the
constants area.

2. Constants - This area of constants

82 BPS Basic AssmQ. & Utile Progs.

must follow the housekeeping and
precede all other I/O Base Routine -
Group 2 modules.

Multiple Unit Device-Address Routine: When
the user is employing a class of device for
which the unit address changes from call to
call, the Multiple Unit Address-Device
Routine is required. Each time there is a
new device address, this address must be
loaded right-justified into the high-order
16 bits of register SREGN. When this
module is present, these bits are always
interpreted as a new device address.
Therefore, if this module is present and a
new device address is not being used, these
bits should be set to zero. See Direct
Linkage for the procedures and precautions
that must be taken. This routine follows
I/O Base - Part 2 when organizing the I/O
support Package.

Command Operation Modifiers Routine: When
the user wishes to employ any command
operation modifiers, he must use the
Command Operation Modifiers Routine. He
must also place the 5-bit modifier pattern
in the high-order bits of register SREGA.
Any such bits will be inserted in the CCW
for the current call. If this module is
present but modifiers are not desired,
these bits must be set to zero. See Direct
Linkage for procedures and precautions that
must be taken.

This routine follows the Multiple Unit
Address-Device Routine, when organizing the
I/O Support Package.

New PSW Set Up Routine: When the user does
not have his own routine to set up new
PSWs, this routine is required. It follows
the Command Operation Modifiers Routine
when organizing the I/O Support Package.

OPTIONAL SUBROUTINE MODULES

The next group of modules to be discussed
are the optional subroutines. These
modules are not required for the basic uses
of the I/O Support Package; they enable the
user to expand the basic capabilities of
the package.

The reader will note that if he wishes
to select a module to perform a particular
function, the module he selects may require
the presence of one or more other modules.
For this reason, the flowcharts (Figures
59-64) should be used along with the verbal
descriptions. The following is the format
of presentation in this section:

1. The names and functions of all of the
optional subroutine modules will be

presented, grouped according to the
heading under which they appear on the
listing provided by IBM. If., within
any group, the name of a module is
indented, this signifies that the
module requires the presence of the
last module whose name is not
indented. For example, the format:

UE BASE Routine
UE Printer Routine

signifies that the UE Printer Routine
requires the presence of the UE Base
Routine. other first level
requirements will be noted in the
discussion of individual routines.
However, the reader is cautioned that
these discussions are intended only as
an aid to understand the routines, not
to point out all dependencies.
Dependencies are illustrated on the
flowcharts (Figures 59-64) at the end
of the I/O section: the figure
reference for each group is noted next
to the name of the group.

2. This part also presents some practical
functions that a user might select and
lists the modules that are required
for this function. Here also the
reader should refer to the flowcharts
for second-level dependencies.

Listing Group, Names, and Functions

The following pages provide the user with a
brief explanation of the functions of the
optional modules and their first- level
requirements.

Unit Exceptional Condition (UEC) Group
(Figure 62)

UE Base Routine: This routine is entered
when an exceptional condition indication
occurs. It directs control to the UE
Specific Unit Base Routine: if that module
is not present, it directs control to Set
Up Unit Exception Return Address routine.
If only the UE Base Routine is present, an
error wait will ensue.

UE Specific Unit Base Routine: This
routine enables the attachment of other
routines that provide for speci.fic
reactions to a UEC on a given device.
If the UE Printer Routine is present,
control passes to that routine: if not,
control returns to the UE Base Routine
to check for the exit to the Set Up UE
Return Address Routine.

Set Up Unit Exception Return Address:
This routine will return control to the
address specified in register SREGL.
(See Direct Linkage.)

UE Printer Routine: This routine
determines if the UEC originated from
the printer: if not, control returns
directly to the UE Base Routine: if it
did, this routine issues a
Skip-To-Channel 1 instruction to the
printer. (This is used to restore the
printer to a line 1 position on the next
page.) Control then returns to the UE
Base Routine to check for the exit to
the Set Up UE Return Address Routine.

I/O Base Routine - Group 1

Condition Code 1 Unit Identity Display:
This routine places the current device
address and device identification in the
I/O Old PSW. (Figure 59)

Minor Interrupt Conditions Base Routine:
This routine makes it possible to check for
incorrect record length, program control
interrupt, and/or attention bits. For any
one of these indications, it branches to
the appropriate routine, namely, Incorrect
Length Record Indication Base Routine,
Program Control Interrupt Base Routine,
Attention Base Routine (each of these three
routines requires the presence of the Minor
Interrupt Conditions Base Routine). If
these indications are not found, or if the
appropriate module is not present, control
is directed to the Interrupt Analyzer
portion of the I/O Base Routine. (Figure
60)

Incorrect Length Record Indication Base
Routine: This routine checks for an
incorrect length record: if there is
one, it branches to the Interrupt
Analyzer portion of the I/O Base
Routine; if not, it branches back to the
Minor Interrupt Conditions Base Routine
to check for a PCI indication.

Program Control Interrupt Base Routine:
This routine checks for a program
control interrupt: if there is one, it
branches to the Interrupt Analyzer
portion of the I/O Base Routine: if not.
it branches back to the Minor Interrupt
Conditions Base Routine to check for an
Attention indication.

Attention Base Routine: This routine
checks for an attention bit: if there h;
one, it branches to the Interrupt
Analyzer portion of the I/O Base
Routine: if not, it branches back to thE'
Minor Interrupt Conditions Base Routine.

Basic Utility Programs 83

Issue Internal Call Routine: This routine
is required for the operation of the
following four optional modules: Internal
Unit Sense Routine, write Error Message
Base Routine, Tape Retry Routine, UE
Printer Routine. Each of these routines
uses the Issue Internal Call Routine to
save the current registers, set the
internal call switch on, save the current
I/O Old PSW and CSW, branch to the internal
call entry, and restore, after the internal
call, all the locations saved. (Figure 60)

Required Subroutine Modules to which it
returns control. (Figure 61)

External Interrupt Base Routine: This
routine determines if the interrupt is a
console, timer, or external signal
interrupt. If it is a console interrupt,
it branches to the Initiate I/O Action
portion of the I/O Base Routine; otherwise,
it branches to the Interrupt Analyzer
portion of the I/O Base Routine. Note:

1. The function of this routine is to
provide exits for user-supplied
routines that handle timer and external
signal interrupts. (Figure 59)

Internal Unit Sense Routine: This
routine also requires the presence of
the SSNSw entry module. It saves the
current general registers and branches
to the Issue Internal Call Routine. I 2.
When the internally called sense routine
is completed, it restores the registers

The user may not use the functions of
the I.O.S.P. in his external interrupt
routine.

and I/O Old PSW and returns control to
the calling routine.

write Error Message Base Routine: This
routine also requires the presence of
the SWMSW entry module and the Condition
Code 1 Unit Identity Display Routine.
If the interrupt device is the message
unit, this routine loads a wait-state
psw. If it is not, an error message
will be written on the appropriate unit
and the routine will then load a
wait-state PSW.

write Error Routine - Expansion 1: This
routine also requires the presence of
the Write Error Message Base Routine and
the Binary-to-Hex Conversion into Image
Routine. This routine causes the I/O
Old PSW and the CSW to be written, in
addition to the information provided by
the Write Error Message Base Routine.

Binary-to-Hex Conversion into Image
Routine: This routine converts binary
bytes into two hexadecimal characters
each and sets the characters in the
indicated field.

write Error Routine - Expansion 2: This
routine also requires the presence of
the Write Error Message Routine -
Expansion 1, and the Internal Unit Sense
Routine. This routine Gauses the six
sense bytes transmitted by the device to
be written, in addition to the
information provided by the Write Error
Message Base Routine and Write Error
Message Routine - Expansion 1.

Save and Restore External New PSW: This
routine saves the current External New PSW
and replaces it with an External New PSW to
repeat the I/O operation with channel,
external, and machine check interrupts
disabled. This routine requires the
presence of the New PSW Set Up Base Routine
(see the discussion of this module under

84 BPS Basic Assmb. & Utile Progs.

Unit Check Group (Figure 61)

Unit Check Base Routine: This routine will
branch to the Unit Check Tape Routine when
a unit check has occurred. If the Unit
Check Tape Routine is not present, an error
wait will ensue, unless the unit check was
due to sensing a channel 9 on the printer.
In this case, the unit check will be
ignored, unless the user inserts his own
routine.

Unit Check Tape Routine: This routine
also requires the presence of the
Internal Unit Sense Routine, Internal
Call Routine, Tape Entry Base Routine,
Tape Backspace Record Entry Routine, and
Tape Forward Space Record Routine. This
routine checks the device address of the
source of the unit check against that of
the tape device. If the source was not
a tape unit, control returns to the Unit
Check Base Routine; if it was, a sense
command is issued to the tape unit and
the sense bits are interrogated. If the
sense bits indicate that the operation
may be retried (and is not a data
check), another attempt is made. If the
new attempt is successful, processing
continues. If the new attempt is
unsuccessful, and the maximum number of
retries have been made, control is
transferred to the Interrupt Analyzer
portion of the I/O Base Routine. If the
sense bits indicate that a data check is
present, control is transferred to the
Tape Retry Base Routine; if not, or if
the Tape Retry Base Routine is not
present, it branches to the Interrupt
Analyzer. If the sense bits indicate
that the attempt may not be retried,
control is transferred to the Interrupt
Analyzer.

Tape Retry Routine: This routine also
requires the presence of the Unit Check
Tape Routine and the Control Entry
module (SCTLW). This routine tries to
perform the original I/O call until it
is successful or until the maximum
number (as specified by IBM standards)
of retries has occurred. If the maximum
number of retries has occurred I' it
branches to the Tape Read Retry Routine
or the Tape 'Write Retry Routine or, if
the proper routine is not present, to
the Interrupt Analyzer portion of the
I/O Base Routine.

Tape Read Retry Routine - Backspace
Cleaner: This routine requires the
presence of the Unit Check Tape Routine,
the Tape Retry Base Routine, and the
Internal Unit Sense Routine. This
routine performs the backspace cleaner
operation by backspacing four records
(or to load point, if fewer than four
records have been previously read), then
forward spacing to the position of the
tape at the entrance to the routine.
The routine then branches to re-issue
the original call, if the maximum number
of backspace cleaner operations has not
been performed. If the maximum number
of backspace cleaner operations has been
performed, the routine branches to the
Interrupt Analyzer portion of the I/O
Base Routine.

Tape write Retry Routine - Erase
Forward: This routine requires the
presence of the unit Check Tape! Routine,
the Tape Retry Routine, and the! Rewind
Entry Routine (SRWD) '. This routine
performs the erase forward operation and
branches to re-issue the original call,
if the maximum number of operations has
not been performed. If the maximum
number of operations has been'performed,
the routine branches to the Interrupt
Analyzer portion of the I/O Base
Routine.

I/O Call Entry Group (Figure 63)

Locate SINTRY Table Unit Block: This
routine sets symbolic register SLUBRG with
the proper device unit block address.

Sense Entry Locate SINTRY Table Block
Exit: This routine also requires the
presence of the SSNSW entry module. It
will effect a branch from the SSNSW
routine to the Locate SINTRY Table Unit
Block routine.

control Entry Locate SINTRY Table Block
Exit: This routine also requires the
presence of the SCTLW entry module. It

will effect a branch from the SCTLW
routine to the Locate SINTRY Table Unit
Block routine.

Practical Uses of the Optional Routines

This section describes some situations in
which the user would select optional
routines. The situations are ordered so
that the routines required follow the same
order in which they were described under
Listing Group, Names., and Functions.

The discussions in this section provide
more details about the optional routines,
but should be supplemented by referring to
the flowcharts, (Figures 59-64) since the
discussions do not reflect all module
requirements that a routine might have.

If the user wishes to note and take any
action in his own program on an exceptional
condition indication, the following modules
(Figure 62) must be included:

• UE Base Routine

• Set Up Exception Return Address

The return address to the routine in his
program which is concerned with the
exceptional condition indication must be
loaded into register SREGL, as explained in
Direct Linkage. Whatever is in register
SREGL is used as the return address.

If the user wishes to note and take
action on the printer for an exceptional
condition when an automatic Skip-to-Channel
1 has occurred, the following modules
(Figure 62) must be included:

• UE Base Routine

• UE Specific Unit Base Routine

• UE Printer Routine

• Issue Internal Call Routine

• Set Up Exception Return Address

If, after an error wait resulting from a
condition code 1, the user would like to
provide for displaying the address of the
I/O unit responsible, the following module
(Figure 59) must be included:

• Condition Code 1 unit Identity Display

If the user wishes to provide to check
for an incorrect length record, a program
control interrupt, or attention bits, the
following modules (Figure 60) must be
included:

Basic Utility Programs 85

• Minor Interrupt Conditions Base Routine

• Incorrect Length Record Indication Base
Routine

• Program Control Interrupt Base Routine

• Attention Base Routine

If information is to be sensed by one of
the selected modules, the following modules
(Figure 60) must be included:

• Issue Internal Call Routine

• The SSNSW entry module

The set of sense bytes transmitted by the
device will be stored in the symbolic
locations in the SSNSW routine, starting at
SNSA. (SNSA is the symbolic name of a
six-byte area which is defined by an ENTRY
instruction in the I/O Support Package. If
the user defines SNSA as an EXTRN in his
program, the information stored there can
be made available to his program.) The
user must refer to the reference manuals of
the particular I/O device for information
about sense bytes.

If, before an error wait occurs, the
user would like to have the three
identifying characters from the address
portion of the current PSW written on the
message device, the following modules
(Figure 60) must be included:

• write Error Message Base Routine

• Issue Internal Call Routine

• SWMSw Entry Module

• Condition Code 1 Unit Identity Display

If the user would like to further amplify
this and also have the I/O Old PSW and CSW
written on the message unit, he must
include the four modules listed irr~ediately
above, plus the following:

• Write Error Routine - Expansion 1

• Binary-to-Hex Conversion into Image
Routine

The user can expand the scope of this
option to write sense information from the
device that was being operated when the
interrupt occurred by including the modules
listed immediately above and the following:

• Write Error Routine - Expansion 2

• Internal Unit Sense Routine

86 BPS Basic Assmb. & Util. Progs.

If the user wishes to save the current
External New PSW to repeat the I/O
operation with channel, external, and
machine check interrupts disabled, the
following modules (Figure 59) must be
included:

• New PSW Set Up Base Routine

• Save and Restore External New PSW

If the user wishes to provide for
servicing console interrupts under the
control of an I/O subroutine and still
permit the attachment of other routines to
service timer and/or external signal caused
interrupts, the following module (Figure
61) must be included:

• External Interrupt Base Routine

If the user wishes to provide for tape
error retries, the following modules
(Figure 61) must be included:

• Unit Check Base Routine

• Unit Check Tape Routine

• Tape Retry Base Routine

• Tape Read Retry Routine (if reading
tape)

• Tape Write Retry Routine (if writing
tape)

If the user is employing either the
control (SCTLW) or the sense (SSNSw) entry
and he does not want to load the location
of the device address into register SLUBRG,
the following module (Figure 63) must be
included:

• Locate SINTRY Table Unit Block

(The device address must appear in the
high-order 16 bits of register SREGN.) If
the user is employing the Locate SINTRY
Table Unit Block with the SSNSW entry, he
must include the following module:

• Sense Entry Locate SINTRY Table Block
Exit

If the user is employing the Locate SINTRY
Table Unit Block with the SCTLW entry, he
must include the following module:

• Control Entry Locate SINTRY Table Block
Exit

If the user wishes to interface properly
with SEREP (System's Environment Recording
Edit and_Print), he must include the
following modules:

• Issue Internal Call Routine

• Internal Unit Sense Routine

• New PSW Set Up Base Routine

• Unit Check Base Routine

SUMMARY OF I/O ENTRY MODULES

(See Figures 63 and 64.)

The functions of each of the I/O entry
modules are summarized in this section. If
any entry module requires the presence of a
module other than the ones previously
defined, it will be pointed out in the
discussion of that module. Finally, to
avoid repetition while describing the entry
modules, error halts and checking for a
busy device are discussed in the following
two paragraphs.

Detection of Error Conditions

The detection of an error condition may
follow execution of an I/O subroutine.
Some subroutines provide. for a number of
retries, if an error prevents successful
completion of the subroutine. In all
cases, if a subroutine cannot be completed
successfully because of an error condition,
processing halts and informa·tion pertaining
to the error will appear on the operator's
system console. The operator may then
choose to retry through Console Interrupts,
and thereby retry the routine, or he may
wish to load SEREP to obtain diagnostic
information. (For a complete discussion of

error messages and operator actions, see
Program waits and Operator Messages.)

Check for Busy Device

Every device has a busy bit (the busy bit
is located in bit position 7 in the word in
SINTRY that contains the device address),
which is set after initiation of any
operation on that device; when the
operation is completed, this bit is set
back to zero. The programmer may want to
test this bit before issuing another I/O
call to the same device. Figure 48 shows it

coding sequence for an object program by
which the programmer can locate and test
the busy bit.

In using the entry modules which have no
wait for the completion of the I/O
operation, testing this bit is especially
important before moving new information
into the output area.

When operations that do not wait for
device end have been accepted by the
channel, control returns to the user's
program at the instruction following the
calling sequence. When it is completed, an
interrupt occurs and the busy bit is set to
zero. If no error was detected, control
then returns to the user's program at the
point where the interrupt occurred.

r--------------------------------------~--,

PITBAD
QPUC

EXTRN

L
TM
BC

DC
EQU

SINTRY

SREGZ,PITBJAD
QPUC+4(SREGZ),1
1,xxx

A(SINTRY)
36

Define Primary Call Entry Table

Load address of SINTRY
Test to see if busy bit is on
Branch if busy

Define address of SINTRY
Specify the displacement of the punch
entry module from SINTRY

~---~
I Note: The displacement of device addresses from SINTRY is obtained by adding 4 I
I to the displacement of the associated primary entry module from SINTRY: thus, to I
I obtain the displacement from SINTRY of the punch device, 4 is added to the I
I displacement from SINTRY of the SPUC entry module. I L ___ J

Figure 48. Coding in User's Program to Test Busy Bit

Basic Utility Programs 87

Functions of the I/O Entry Modules

In the following discussions, it is
understood that control returns to the
user's program at the instruction following
the calling sequence, that is, the byte
following the BALR instruction. In the
entry modules that wait for completion of
the I/O operation Call entries whose
symbolic names end in W), control does not
return until completion; in the others,
control returns after successful initiation
of the I/O operation. If the user wants to
provide for an exceptional condition return
address, register SREGL must be loaded as
described in Direct Linkage and the modules
specified in Optional Subroutine Modules
must be included. Finally, the number of
bytes to be transmitted (that is, the
number of bytes the programmer loads into
register SREGN) must not exceed the
capacity of that device, nor can it be
zero, since this is an invalid byte count
to the channel.

Read a Card (SRDCW): The number of columns
specified in register SREGN are read into
the area specified by register SREGA.

Write a Message (SWMSW): The number of
bytes specified in register SREGN are typed
by the IBM 1052 printer-Keyboard.

Print n Columns (SPRTW): The number of
columns specified in register SREGN are
written on one line.

Punch n Columns (SPUC): The number of
columns specified in register SREGN are
punched. This punch entry is for use only
with units which have individual punch
addresses, such as the IBM 2540 or 2520-B1
Card Read-Punch.

Read Tape n Bytes (SRTPW): The number of
bytes specified in register SREGN are read
into the area specified by register SREGA.
(Minimum record length is 12 bytes.)

Note: The use of this entry requires the
presence of the Tape Entry Base Routine
module.

Punch n Columns (SPCR): The number of
columns specified in register SREGN are
punched. This entry is for use only with
dual service units whose read and punch
addresses are identical (IBM 1442-N1 or
2520-B1 Card Read-Punch).

Note: The IBM 1442 Card Read-Punch does
not advance cards automatically from the
punch station; therefore, whenever it is
necessary to move a card from the punch
station, the user must include a dummy
read-a-card calling sequence to eject the
card when punching is completed, or use the

88 BPS Basic Assmb. & Util. Progs.

Command Operation Modifier Routine.
If the IBM 2520-B1 Card Read-Punch is

used and a read operation is to be followed
by a punch operation, an extra feed cycle
is required in order to move the last card
read beyond the punch station; otherwise,
the last card read will be punched.

Sense (SSNSW): To determine the status of
an I/O device, a sense instruction is
issued to the unit designated by symbolic
register SLUBRG (General Register 6), which
must contain the location of the device
address cell in the Primary Call Entry
Table. The set of sense bytes transmitted
by the device is stored in symbolic
location SNSA. The number of bytes
transmitted is determined by the device,
the maximum being six. The user is
referred to the reference manuals of the
particular I/O devices for interpretations
of sense bytes. See Sense Entry Example.

Issue Specified Control Command <SCTLW): A
control command for the operation specified
through the Command Operation Modifier
Routine is issued to the control device
whose address is specified in register
SLUBRG. See Control Entry Example.

This entry requires the following
conditions.

1. The Command Operation Modifier
Routine, to specify the operation of
the control command, must be included.

2. SLUBRG must contain the location of
the device address at the time of
entry to this routine; or the Locate
SINTRY Table Unit Block Routine and
Control Entry Locate SINTRY Table
Block Exit module must be included,
and the high-order 16 bits of register
SREGN must contain the device address
as it appears in SINTRY. The device
address cannot be a new device because
the locate SINTRY Table Block Routine
operates in a manner directly opposed
to the Multiple Unit Address Adjusting
Routine.

Single Space Message Unit (SPCMW): A line
consisting of one blank character is
written on the message unit. No data
parameters are necessary.~

Single Space Printer (SPCPW): A line
consisting of one blank character is

~Note: Although the data registers need not
be loaded for the operations so noted, the
specifications (noted in Direct Linkage)
for using the Multiple Unit Address-Device
Routine and Command Operations Modifiers
Routine must be adhered to.

written on the printer. No data parameters
are necessary.1

Printer Skip to Channel One (SKIPW): A
control commmand initiating a
Skip-to-Carriage Tape One is issued to the
printer. No data parameters are
necessary. 1

Punch n Columns (SPCRW): The number of
columns specified in register SREGN are
punched. This punch entry is for use only
with dual service units whose read and
punch addresses are identical (IBM 1442-Nl
or 2520-B1 Card Read-Punch)~

Note: The IBM 1442-Nl Card Read-Punch does
not advance cards automatically f:com the
punch station; therefore, whenever it is
necessary to move a card from the punch
station, the user must include a dummy
read-a-card calling sequence to eject the
card when punching is completed, or the
Command Operation Modifier Routine.

If the IBM 2520-Bl Card Read-Punch is
used and a read operation is to be followed
by a punch operat.ion, an extra feed cycle
is required in order to move the last card
read beyond the punch station; otherwise,
the last card read will be punched.

Punch n Columns (SPUCW): The number of
columns specified in register SREGN are
punched. This punch entry is for use only
with units which have individual punch
addresses, such as the IBM 2540 Card
Read-PUnch.

Write Tape n Bytes (SWTPW): The number of
bytes specified by register SREGN are
written from the area specified by register
SREGA. (Minimum record length is 18
bytes.)

Note: This entry requires the Tape Entry
Base Routine.

Rewind (SRWD): The tape is rewound. When
the rewind has been init.iated, control
returns to the user's program at the
instruction following the calling sequence.
No data parameters are necessary.~

Note: This entry requires the Tape Entry
Base Routine.

write Tape Mark (SWTMW): A tape mark is
written on the specified tape. No data
parameters are necessary.1

Note: This entry requires the Tape Entry
Base Routine.

Backspace Record (SBSRW): The appropriate
tape is backspaced over the physical
record. (A tape mark is recognized as one
physical record.) No data paramet.ers are
necessary. 1

Note: This entry requires the Tape Entry
Base Routine.

Backspace File (SBSF): The appropriate
tape is backspaced over the first tape mark
encountered. No data parameters are
necessary. 1

Note: This entry requires the Tape Entry
Base Routine.

Forward Space Record (SFSRW): The
appropriate tape is spaced forward one
physical record. No data parameters are
necessary. 1

Note: This entry requires the presence of
the Tape Entry Base Routine.

Forward Space File (SFSF): The appropriate
tape is spaced forward over the first tape
mark encountered. No data parameters are
necessary.1

Note: This entry requires the presence of
the Tape Entry Base Routine.

Backward Read Tape Record (SBRTW): The
number of bytes specified in register SREGN
are read in backward motion into the area
specified by register SREGA. (Minimum
record length is 12 bytes.)

CAUTION: The address in register SREGA for
this routine should be the last address
that is to be read into, rather than the
starting address. (The user is referred to
the reference manuals for the appropriate
tape units for a discussion of reading in
backward motion.)

Note: This entry requires the presence of
the Tape Entry Base Routine.

Figure 49 shows the required modules for
each of the entries. The following
considerations should be remembered when
reading this table:

1. All required routines must be present.

2. No optional routines are included in
the table.

1Note: Although the data registers need
not be loaded for the operations so noted,
specifications <noted in Direct Linkage)
for using the Multiple Unit Address-Device
Routine and Command Operations Modifiers
Routine must be adhered to.

Basic Utility Programs 89

ORGANIZATION OF THE SUBROUTINE MODULES

Once the user has selected all the modules
he requires, he must then organize them in
the following sequence:

1. He places the Primary and Secondary
Call Entry Tables first in the deck.

2. Then, he places the part of the I/O
Base Routine that contains the I/O
Initiator and the Interrupt Analyzer.

3. He may then place, in any order, all
the other modules he has selected, as
long as all ORG statements follow any
symboi they refer to.

90 BPS Basic AssmQ. & Utile Progs.

4. He places the second part of the I/O
Base Routine, which contains the -I/O
Base Routine's general housekeeping
and constants area.

5. If any of the following modules are
selected, they would come last in the
deck: Multiple Unit Address-Device
Routine, Command Operation Modifiers
Routine, New PSW Set Up Routine.

Figures 50 and 51 show two possible
organizations of modules. The figures read
from the bottom to the top.

Note: The user may follow the order he
finds in examining the assembly listing of
the modules as they were received from IBM.

r-----------T-------------T---,
I Entry I I I
I Module I Type I Additional Modules Required I
~-----------+-------------+---~

SRDCW Primary Primary Call Entry Table. I
SWMSW Primary Primary Call Entry Table. I
SPRTW Primary Primary Call Entry Table. I
SPUC Primary Primary Call Entry Table. I
SRTPW Primary Primary Call Entry Table, Tape Entry Base Routine. I
SPCR Secondary Primary Call Entry Table, Secondary Call Entry Table, I

SRDCW. I
SSNSW Secondary Primary Call Entry Table, Secondary Call Entry Table, I

Symbolic register SLUBRG must contain the location I
of the unit device address of the Primary Call Entry I
Table module. I

SCTLW Secondary Primary Call Entry Table, Secondary Call Entry Table, I
Command Operation Modifier Routine, and either SLUBRG I
mus:t contain the control device unit block address or I
the' following two modules must be included: Locate I
SINTRY Table Unit Block Routine, Control Entry Locate
SINTRY Table Block Exit.

SPCMW Secondary Primary Call Entry Table, Secondary Call Entry Table,
SWMSW entry module.

SPCPW Secondary primary Call Entry Table, Secondary Call Entry Table,
SPRTW entry module.

SKIPW Secondary primary Call Entry Table, Secondary Call Entry Table,
SPRTW entry module.

SPCRW Secondary Primary Call Entry Table, Secondary Call Entry Table,
SRDCW entry module.

SPUCW Secondary Primary Call Entry Table, Secondary Call Entry Table,
SPUC entry module.

SWTPW Secondary Primary Call Entry Table, Secondary Call Entry Table,
Tape Entry Base Routine.

SRWD Secondary Primary Call Entry Table, Secondary Call Entry Table,
Tape Entry Base Routine.

SWTMW Secondary Primary Call Entry Table, Secondary Call Entry Table,
Tape Entry Base Routine.

SBSRW Secondary Primary Call Entry Table, Secondary Call Entry Table,
Tape Entry Base Routine.

SBSF Secondary Primary Call Entry Table, Secondary Call Entry Table,
Tape Bntry Base Routine.

SFSRW Secondary Primary Call Entry Table, Secondary Call Entry Table,
Tape Entry Base Routine.

SFSF Secondary primary Call Entry Table, Secondary Call Entry Table,
Tape Entry Base Routine.

SBRTW Secondary Primary Call Entry Table, Secondary Call Entry Table,
Tape Entry Base Routine.

__________ -~-------------~-----------------------------________________________________ J

Figure 49. Module Relationships

Basic Utility Programs 9l

r---,
7.

6.

5.

4.

3.

2.

1.

constants

Housekeeping

SPCPW

SPRTW

SRDCW

Interrupt
Analyzer

I/O Initiator

Secondary Call
Entry Table

Primary Call
Entry Table

--I/O Base Routine; housekeeping and constants area.

--Secondary entry module; requires the presence of numbers
1, 2, 5.

--primary entry module; requires the presence of number 1.

--primary entry module; requires the presence of number 1.

--I/O Base Routine; I/O Initiator of InterrUpt Analyzer.

--Contains address of secondary entry module <number 6);
uses unit address from Primary Call Entry Table
<number 1).

--Contains address of primary entry module (numbers 4
and 5), device unit address, and space for exceptional
condi£ion return.

___ J

Figure 50. Organization of Subroutine Modules without Optional Routines
(Read from bottom to top.)

r---,
10.

9.

8. (
7. (
6. (
5.

4.

3.

2.

1.

Multiple Unit
Addr-Dev. Rt.

Housekeeping

SPCPw

SPRTW

SRDCW

Unit Ex. Condo
Rtrn. Adr. Rt.

Unit Ex. Condo
Base Routine

Interrupt
Analyzer

I/O Initiator

Secondary Call
Entry Table

Primary Call
Entry Table

--Enables user to use a new unit device address.

--I/O Base Routine; housekeeping and constants area.

--Secondary entry module; requires the presence of numbers
1, 2, 6.

--Primary entry module; requires the presence of number 1.

--Primary entry module; requires the presence of number 1.

--Enables user to take action in his program on an excep­
tional condition indication.

--Enables user to take action in his program on an excep­
tional condition indication.

--I/O Base Routine, first in deck;
I/O Initiator and Interrupt Analyzer.

--contains the address of the secondary entry <number 8),
requires presence of number 1 for unit device address.

--contains the address of primary entry modules <numbers 6
and 7, unit device address for numbers 6, 7, and 8, and
space for exceptional condition return address).

___ J

Figure 51. Organization of Subroutine Modules with Optional Routines
(Read from bottom to top.)

92 BPS Basic Assmb. & Utile Progs.

CALLING THE ENTRY MODULES

There are two possible methods of calling
the entry modules: directly and indirectly.
Direct linkage m~y be used only when the
selected modules of the symbolic I/O
routines are assembled with the user's
program. (In this case, the pertinent
ENTRY instructions may be removed.)
Indirect linkage must be used when the
selected modules g in assembled form (either
as supplied by IBM or those separately
assembled by the user) are not assembled
with the user's program. The indirect
method may also be used when the selected
modules are assembled with -the user's
program. Since the indirect method may be
used in both instances, it is the preferred
method.

With either of these methods, the
selected entry module is called by loading
the following information into general
registers and transferring control by a
BALR instruction:

1. The address of the I/O entry module.

2. The address of the I/O area.

3. The number of bytes to be processed.

Note: Each installation ~~ initially
supply the addresses of its I/O devices to
the Primary Call Entry Table. This may be
done by changing the symbolic cards prior
to assembly, or by Replace cards at
execution time.

Wherever an exceptional condition may
occur, another general storage register
(SREGL) is loaded with the return address
to the routine in the user's program that
uses the unit exceptional condition; for
example, End of File.

DIRECT LINKAGE

The user may employ any coding sequence
that provides all the information specified
in Calling the Entry Modules. (Examples of
the coding follow this section.) One
possible coding sequence when the user's
program and I/O Support Package are
assembled together is as follows:

LA
LA
LA
LA
BALR

SREGZ,xxxx
SREGA,yyyy
SREGN,.l!:!
SREGL,zzzz
SREGR,SREGZ

The following is an explanation of this
coding sequence.

LA SREGZ,xxxx

Load the address of the desired entry
module; for example, SRDCW.

where:

SREGZ is the general register which is
loaded with the address of the desired
entry module: General Register 1.

xxxx is the address of the desired entry
module, for example, SRDCW, SPCR, etc.

LA SREGA,yyyy

Load the address of the first byte of data
to be processed.

where:

SREGA is the general register which is
loaded with the address of the first
byte to be processed: General Register
2.

yyyy is the address of the first byte of
data to be processed.

CAUTION: To employ any command operation
modifiers, the Command Operation Modifiers
Routine must be included. The user must
also place the 5-bit modifier pattern in
the high-order bits of register SREGA. Any
such bits will be inserted in the CCW for
the current call.

If the command Operation Modifiers
Routine is being employed, this instruction
may be replaced by the folLowing coding in
the user's program:

MOB ITS

L SREGA,MOBITS

DS
DC
DC

OF
X'mm'
AL3(yyyy)

* One byte containing the modifier bit
pattern.

*

No check is made for the validity or
applicability of any such modifier bits
found in register SREGA,. Any future action
or corrective measures for conditions
produced by the user-supplied modifiers may
not exist in the I/O Support Package. (SeE~
the reference manuals for the particular
I/O device for bit pattern data.) Finally,
the I/O Support Package always interrogates
the high-order 5 bits of register SREGAi

Basic Utility Programs 93

therefore, the user should be certain that
they are set to zeros if the Command
Operation Modifiers Routine is present but
is not being used in the current call.

LA SREGN,.!!

Load the number of bytes (may not exceed
4095) to be processed.

where:

SREGN is the general register which is
loaded with the number of bytes of data
to be processed: General Register 3.

.!! is the number of bytes of data to be
processed.

The high-order 16 bits of this register
may be used to hold the address of a new
device which was not specified in the
source program. (The original device
address is supplied by the programmer to
SINTRY in his I/O package source program.
Corrections to the device address in SINTRY
may be made at assembly time by symbolic
card changes, at load time by Replace
cards, and at execution time by manual
stores from the console.) This may be done
by including the Multiple Unit
Address-Device Routine and loading the new
address into the high-order 16 bits of
register SREGN by the following coding in
the user's program:

L SREGN,DEVADR

DS OF
DEVADR DC X'Addr'

DC H'n'

However, when the Multiple Unit
Address-Device Routine is present, any bits
found in the high-order 16 bits of register
SREGN are always interpreted as a device
address. Therefore, when an alternate
device address is not going to be used, the
programmer should be certain these bits are
set to zeros.

LA SREGL,zzzz

Load the return address to that routine in
the user's program which uses an
exceptional condition indication. (If the
user desires this option, he must include
the modules specified for it under Optional
SUbroutine Modules.

94 BPS Basic Assmb. & Util. Progs.

where:

SREGL is the general register which is
loaded with the return address to that
point in the user's program which uses
an exceptional condition indication:
General Register 4.

zzzz is the address in the user's program
that uses the exceptional condition
indication.

If the modules specified for an
exceptional condition return address in
Optional Subroutine Modules are present,
and if the exceptional condition indication
is not significant, this register should
contain the normal return address to the
current call. It need not be loaded for
other routines. If an exceptional
condition occurs and these modules are not
present, an error wait will ensue.

BALR SREGR,SREGZ

Branch and Link.

where:

SREGR is the general register which is
loaded with the return address to the
user's program, making linkage possible:
General Register O.

Example of Direct Linkag~

The following is an example of the coding
in the user's program that is assembled
with the I/O Support Package. The first
set of coding uses symbolic register names;
the second set uses the actual register
numbers. Both sets assume the following:

1. All required routines are present.

2. The area INFORM is defined in the
user's program.

3. The routine beginning at CHKRT notes
the occurrence of an exceptional
condition and the appropriate modules
are present.

4. The user wishes to write on the IBM
1052 Printer-Keyboard.

5. 32 bytes are to be written beginning
from INFORM.

LA

LA

LA

LA

Coding with symbolic register names:

SREGZ,SWMSW Load address of the
routine to write a
messageG

SREGA,INFORM Load address of the
first byte of the area
to be written from.

SREGN,32 Load number of bytes to
be writt.en.

SREGL,CHKRT Load address of routine
in user's program that
uses exceptional

INDIRECT LINKAGE

As was pointed out, the preceding coding
sequence may be used only when the I/O
Support Package is assembled with the
user's program. When the I/O Support
Package is not assembled with the user's
program, he must use a different sequence
of coding (this sequence may also be used
when the I/O Support Package is assembled
with the user's program).

BALR SREGR,SREGZ
condition indication.
Branch and Link. If the user's program and I/O Support

Package are not assembled together, the
user must employ the call entry tables to
produce the entry linkage. The starting
address of the Primary Call Entry Table is
symbolic name SINTRYi the starting address
of the Secondary Call Entry Table is
symbolic name SNTRY2. Figure 52 shows the
construction of the Primary Call Entry
Table and Figure 53 shows the construction
Secondary Call Entry Table.

Coding with actual register numbers:

LA
LA
LA
LA
BALR

1, SWMSW
2, INFORM
3,32
4,CHKRT
0,1

r---1
SINTRY

SUTAB
SCRDR

*
STYPR

*
SPRTR

SPNCH

*
*
*
*
STAP

*
* SDUMD

*

DS
DC
EQU
DC
DC

DC
DC
DC

DC
DC
DC

DC
DC
DC

DC
DC
DC

DC
DC

OD
A(SRDCW)

* A(10)
A(O)

A(SWMSW)
A(9)
A (0)

A(SPRTW)
A(ll)
A(0)

A(SPUC)
A (13)
A(O)

A(SRTPW)
A(180)
A(O)

A(0)

A(61440)

Define starting address of table
Read card and wait
Define first device entry
Card reader address
Area for unit exceptional condition return
address

write message and wait
Typewriter address
Area for unit exceptional condition return
address

Print a line and wait
Printer address
Area for unit exceptional condition return
address
Punch
Punch address
Area for unit exceptional condition return
address

Note: This unit block used only
for punch whose unit address
differs from the card reader.

Read tape record and wait
Tape address
Area for unit exceptional condition return
address

Dummy entry - termination
Dummy entry - termination

___ J

Figure 52. Primary Call Entry Table

Basic Utility Programs 95

r---,
SNTRY2 EQU

DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC

* A(SPCR)
Define starting address of the table
Punch (reader)

A(SSNSW)
A <SPCMW)
A(SPCPw)
A (SKIPW)
A(SPCRW)
A(SPUCW)
A(SWTPW)
A(SRWD)
A (SWTJ.ViW)
A(SBSRW)
A(SBSF)
A(SFSRW)
A(SFSF)
A(SBRTW)
A(SCTLW)

Sense 6 bytes
Typewriter single space
Printer single space
Printer skip-to-channel 1
Punch (reader) and wait
Punch and wait
Write tape record and wait
Rewind tape
Write tape mark and wait
Backspace tape record and wait
Backspace tape file
Forward space tape record and wait
Forward space tape file
Read tape record backward and wait
Issue control command

___ J

Figure 53. Secondary Call Entry Table

In order to use the entry tables, the
user must first define them in his object
program. He does this as follows:

EXTRN
EXTRN

SINTRY
SNTRY2

The next step is to load the address of
the desired entry module into a general
register. These tables reveal two facts
pertinent to loading this address:

1. It takes two instructions to load this
address. The address of the table is
first loaded into a general register.
The second instruction uses this
general register to load the address
of the desired entry module.

2. Each of the locations in the tables
that contain the address of an entry
module is displaced from the starting
address of the table by a certain
number of bytes. Therefore, to load
the address of any entry module from
the entry tables, the coding sequence
must reflect the displacement of that
location in the entry table which
contains the address of the desired
entry module. This displacement may
be defined by the use of Equate (EQU)
instructions in the user's program.
Figure 54 shows the exact displacement
for all of the entry modules. The
reader should note that he may use any
symbolic name for the entry modules in
the EQU instructions, as long as he
does not use their actual symbolic
name; that is, he may not use SRDCW,
sPCPW, etc., as a symbolic name, (if
he did, there would be duplicate
symbols).

96 BPS Basic Assmb. & Utile Progs.

r---,
1. Displacement of Primary Entry

Module Addresses from SINTRY

Entry
Address
QRDCW
QWMSW
QPRTW
QPUC
QRTPW

Opera­
tion
EQU
EQU
EQU
EQU
EQU

Bytes from
SINTRY

o
12
24
36
48

2. Displacement of Secondary Entry
Module Address from SNTRY2

Entry Opera- Bytes from
Address tion SNTRY2
QPCR EQU 0
QSNSW EQU 4
QPCMW EQU 8
QPCPW EQU 12
QKIPW EQU 16
QPCRW EQU 20
QPUCW EQU 24
QWTPW EQU 28
QRWD EQU 32
QWTMW EQU 36
QBSRW EQU 40
QBSF EQU 44
QFSRW EQU 48
QFSF EQU 52
QBRTW EQU 56
QCTLW EQU 60 I ___ J

Figure 54. Displacement in Entry Tables

Thus, what the user must effectively do
is add the displacement to the address of
SINTRY or SNTRY2. Once the user has
established the addresses of SINTRY and
SNTRY2 by:

PITBAD
SETBAD

DC
DC

A(SINTRY)
A(SNTRY2)

and the displacement from these addresses
of that location in the table that contains
the address of the desired entry module
(for example, the routine to print a line),
by:

QPRTW EQU 24

he can then load the address of this
routine by the following two instructions:

L SREGZ,PITBAD Load the address of
SINTRY

L SREGZ,QPRTvHSREGZ) Load the contents
of the location
SINTRY+24, in this
case the address of
the SPRTW entry
module

These two instructions replace and serve
the same purpose as:

LA SREGZ,xxxx

which was the first instruction in the
coding sequence noted in Direct Linkage All
the other instructions in that sequence,
that is:

LA
LA
LA
BALR

SREGA,yyyy
SREGN ,I!
SREGL,zzzz
SREGR , SREGZ

remain the same, if the register
assignments are equated as in the I/O
Support Package, and all specifications
which were described there also apply when
they are used as part of the linkage format
for a user's program that was assembled
separately from the I/O Support Package.

Figure 55 is an example of the linkage
format for a user's program that was
assembled separately from the I/O Support
Package. The following assumptions are
made in this example:

1. The only entry modules desired are
SPCRw and SWMSw.

2. Symbolic register names are used.
Note: The user may employ the actual
register numbers, if it is so desired.

SENSE ENTRY EXAMPLE

This section provides a coding example of
the SSNSW entry. The following assumptions
are made in this example:

1. All required modules are present.

2. Information is_to be sensed from the
printer.

3. The I/O Package was assembled
separately from the user's program.

4. The user will load the unit reference
into register SLUBRG.

5. The SSNSW entry will transmit the
sensed data to the area defined by the
I/O Support Package - beginning at
symbolic location SNSA, which must be
defined by an EXTRN in the user's
program. SNSA is defined as an ENTRY
in the I/O Support Package.

Figure 56 illustrates the coding in the
user's program.

If the user did not want to load the
unit reference into register SLUBRG, he
would do the following:

1. Include the Locate SINTRY Table Unit
Block and Sense Entry Locate SINTRY
Table Block Exit modules.

2. Place the address of the device in the
high-order 16 bits of register SREGNi
this may not be a new device address.

Basic Utility Programs 97

r---,

QWMSW

QPCRW

SREGZ
SREGA
SREGN
SREGL
SREGR

EXTRN SINTRY Define Primary Call Entry Table
EXTRN SNTRY2 Define Secondary Call Entry Table

L
L

LA.
LA
LA
BALR

L
L

LA
LA
BALR

EQU

EQU

EQU
EQU
EQU
EQU
EQU

SREGZ,PITBAD Load the address of SINTRY
SREGZ,QWMSW(O,SREGZ) Load the contents of the Location SINTRY+12,

SREGA,yyyy
SREGN,~

SREGL,zzzz
SREGR,SREGZ

in this case the address of SWMSW
Load address of first byte to be processed
Load the number of bytes to be processed
Load exceptional condition return address
Branch and Link

SREGZ,SETBAD Load the address of SNTRY2
SREGZ,QPCRW(O,SREGZ) Load the contents of the location SNTRY2+20,

SREGA,yyyy
SREGN,~

SREGR,SREGZ

12

20

1
2
3
4
o

in this case, the address of SPCRW
Load address of first byte to be processed
Load the number of bytes to be processed
Branch and Link

Specify the displacement (as shown in
Figure 54) of the location in SINTRY which
contains the address of the desired entry
module, in this case, SWMSW

Specify the displacement (as shown in
Figure 54) of the location in SNTRY2 which
contains the address of the desired entry
module, in this case, SPCRW

Equate SREGZ to general register 1
Equate SREGA to general register 2
Equate SREGN to general register 3
Equate SREGL to general register 4
Equate SREGR to general register 0

PITBAD DC A(SINTRY) Define the address of SINTRY
SETBAD DC A(SNTRY2) Define the address of SNTRY2

~-----------------------------~---~
I Note: If the EXTRN instructions are removed, this coding would also serve when I
I the object program and I/O Support Package are assembled together. I L ___ J

Figure 55. Example of Indirect Linkage

98 BPS Basic Assmb. & Utile Progs.

r--------------------------------·---,
EXTRN SINTRY Define primary call table I
EXTRN SNTRY2 Define secondary call table I
EXTRN SNSA Define sense area I

Load address of SNTRY2
Load address of Sense Entry
Load address of SINTRY

I
I
I
!
I
i

L
L
L
LA

1,SETBAD
1,4(0,1)
6,PITBAD
6,28(0,6) Load address of the unit

that of the printer
address cell, in this case, I

PI 'I' BAD
SETBAD

BALR

DC
DC

0,1

A(SINTRY)
A(SNTRY2)

Branch and Link to I/O

Define the address of SINTRY
Define the address of SNTRY2

I
I
I
I
I
I
I ___ J

Figure 56. Sense Entry Coding Example

CONTROL ENTRY EXAMPLE the modifier bit pattern for this is
00011.

This section provides a coding example of
the SCTLW entry. The following assumptions
are made in this example:

3. The user will load the unit reference
into register SLUBRG (register 6).

1. All required modules are present.
4. The I/O Support Package was assembled

with the user's program.

Note: The SCTLW entry requires the
presence of the Command Operation
Modifiers routine.

Figure 57 illustrates the coding in the
user's program.

2. The user wants to provide for an
immediate space of 3 on the printer;

If the user did not want to load the
unit reference into register SLUBRG, he
would do the following:

r---~

LA SREGZ,SCTLW
LA SLUBRG,SPRTR

L SREGA,MOBITS

LA SREGN,l

LA SREGL,EXCPAD

BALR SREGR,SREGZ

DC OF
MOBITS DC X'18'

DC AL3 (0)

Load the address of the SCTLW entry
Load the address in SINTRY of the unit address
cell, in this case, the printer
Load the modifier bit pattern into the high-order
five bits of register SREGA
Load a number to ensure that an invalid byte
count of zero is not in register SREGN
Load the address of the user's routine that
handles an exceptional condition indication
Branch and Link

Align on full-word boundary
Define the modifier bit pattern; this particular
pattern has the bit configuration 00011000;
it is placed in the high-order byte of register
SREGA and the high-order five bits are interpreted
as the modifier bit pattern. For other modifier
bit patterns, the user is referred to the reference
manual of the particular I/O device
The address portion is not significant

___ J

Figure 57. Control Entry Coding Example

Basic Utility Programs 99

1. Include the Locate SINTRY Table Unit
Block and Control Entry Locate SINTRY
Table Block Exit modules.

2. Place the address of the device in the
high-order 16 bits of register SREGN;
this may not be a new device address
because the locate SINTRY Table Block
Routine operates in a manner directly
opposed to the Multiple Unit Address
Adjusting Routine.

CARD-ONLY INSTA"LLATION

I A symbolic version of the I/O Support
Package is provided for card-only
installations. It includes the following
entry routines: '

SRDCW
SWMSW
SPRTW
SPUC and SPUCW
SPCR and SPCRVl
SSNSW
SKIPW

All requirements specified in
Input/output Support Package apply to
card-only installations with the following
limitations~

1. Only the modules required for card I/O
routines will be included.

2. The only option provided is for an
exceptional condition return address.
The modules required for this option
will be included.

3. Modules required for SEREP interface
are included.

This version supports the following I/O
devices:

• One IBM 2540, 1442-N1 or 2520-B1 Card
Read-Punch;
or a 2501 Card Reader with a 2520-B2 or

B3 Card Punch

• One IBM 1052 Printer-Keyboard

• One IBM 1403 or 1443 Printer

CARD-TAPE PACKAGE

Another symbolic version of the I/O Support
Package is the card-tape package. It
includes the following entry routines:

100 BPS Basic Assmb. & util. Progs.

SRDCW
SWMSW
SPRTW
SPUC and SPUCW
SPCR and SPCRW
SSNSW
SKIPW
STPBKW
SRTPW
SWTPW
SRvlD
SWTMW
SBSRW
SBSF
SFSRW
SCTLW

This version supports the following I/O
devices:

1. One IBM 2540, 1442-N1 or 2520-B1 Card
Read-Punch;

or a 2501 Card Reader with a 2520-B2
or B3 Card Punch.

2. One IBM 1052 Printer-Keyboard.

3. One IBM 1403 or 1443 Printer.

4. Any number of IBM 2400 Series Magnetic
Tape Units.

All the requirements specified in the
Input/Output Support Package apply to this
card-tape package, with the following
limitations:

1. Only the modules required to support
these entries will be included.

2. There are four optional facilities
supplied with this version:

• Exceptional Condition Routines

• Tape Retry on Error Routines

• Multiple Unit Address-Device
Routine

• Command Operation Modifiers
Routine

3. Modules required for SEREP interface
and tape error recovery are included.

FLOWCHARTS OF MODULE RELATIONSHIPS

These flowcharts (Figures 59-64) are
intended to give the reader a view of the
dependencies among the modules of the I/O
Support Package. The general approach to
these flowcharts is as follows: all the
modules outside the required group may be
used independently, but the user must

follow the flow lines from the module he
selects back to the required modules and
include every module the flow line
intersects. More specifically, when the
user selects any module, he should follow
the arrow from that module, taking all
branches, and incorporate in his deck all
the modules encountered.

The reader should understand the
following criteria for using these
flowcharts:

1. The name (as it appears on the listing
of the I/O Support Package supplied by
IBM) of each module is contained in
process blocks. Also in the process
block is the symbolic starting address
of the module; for example, Issue
Internal Call (listing name of the
routine), SNTCL (symbolic starting
address of that routine).

2. The listing group name is also
contained on the flowcharts; the
reader will find these group names in
the verbal discussions of the I/O
Support Package.

3. Above each block containing the name
of a module, there are a series of
codes designed to aid the user when
selecting modules from the I/O support
Package. The fields of the code are
separated by commas. The following is
an explanation of these codes:

a. The first two digits are the
identifying number of the module;
these digits are found in columns
76 and 77 of the symbolic decks;
for example, above the block that
contains the name SINTRY, the
first two digits are: 10. These
digits -- 10 -- appear in every
card of the SINTRY module (in the
symbolic deck) in columns 76 and
77.

b. The second field shows the number
of bytes (these are the initial
release figures and are subject to
change) the particular module
occupies; for example, above the
block that contains the name of
the Attention Base Routine, the
followingr appears in the first two
fields: 3J,12, •.• ; where 3J is the
identifying number and 12
(decimal) indicates that this
module occupies 12 bytes.

c. After the field that indicates the

bytes occupied by the module,
there are a series of codes that
indicate which modules are used by
the basic utility programs (this
is intended as an aid to the user
who desires to select his modules
from the I/O Support Package and
make his own resident I/O).
Figure 58 defines these codes.

r----T------------------------------------l
ICodelSignificance I
~----+------------------------------------1
ALL This module is used by all the I

basic utility programs. i
C This module is provided with the I

Card-Only version of the I/O I
Support Package. i

Dl This module is used by Phase 1 of
the Two-Phase Dump Program.

D2 This module is used by Phase 2 of
the Two-Phase Dump Program.

DS This module is used by the single
phase Dump Program.

DT This module is used by both phases
of the Two-Phase Dump Program.

L This module is used by the Absolute
and Relocating Loaders.

IT This module is provided with the
I Card-Tape version of the I/O
I Support Package. L ____ ~ ____________________________________ j

Figure 58. Chart Codes for Basic Utility
Programs

For example, the codes above the block
that contains the name of the SKIPW entry
module (J3,36,T,C,D2,DS) are interpreted as
follows:

J3 Identifying number; this number appears
in all cards of the symbolic version of
the SKIPW module in columns 76 and 77.

36 This module occupies 36 bytes in
storage.

T This module is provided with the
Card-Tape version of the I/O Support
Package.

C This module is provided with the
Card-Only version of the I/O Support
Package.

D2 This module is used by Phase two of the
Two-Phase Dump Program.

DS This module is used by the single phase
Dump Program.

Basic utility Programs 101

REOUIRED MODULES

CALL ENTRY
TABLES

OPTIONAL MODULES

lO.68.ALL
*****82**********
* *
* *

20.64.ALL
*****83**********
* *
*

*
*

SINTRY *x .••••••• *
• * *
*

SNTRY 2

X

****************iII
X

NO
. *.

C2
.* ARE *.

.* SECONDARY *. YES * •
*. ENTRIES

*. uSED.'" ...
. .

..... *
X

*
*
*

*** ... **** .. ** ** *** ********************. ********************* *********-M-*** ... ******* **********
*

30.56
*****A5**********
* * *EXTERNAL INTER-*

• • • •• RUPT BASE ..
* ROUTINE
* SXTRIN *

3A.82.ALL
*****85**********
* * • ... ERROR ...

.X •••• *INDICATOR GROUP*
* SIND *
* * *****************

3F.12
*****cs********** * MINOR *

INTERRUPT

.X •••• : CO~~i~!~NS

* *****************

BASE ROUTINE
GROUP 1

.30.382.ALL 3K.96.ALL
*****02********** *****05**********
* INITIATOR * * *

AND * * X * ISSUE *
I NTE RRUPT *X ••••••••••••••••••••••••••••• ct •• • • • •• I NT ERNAL CALL *
ANALYZER * * X * SNTCL *

X

************************************.**
* *

BASE ROUTINE .50.278.ALL
GROUP 2 :****E2*********:

* HOUSEKEEPING *
* AND

CONST ANTS

*** .. ** * ... ***.***
X

.x ...•••.••••.••••.•.•••.•.

• YES .*.
F2 *.

.* HAS *.
.* USER NEW *. NO

*

*
*

:SP.O.ALL
*****F3********** * INITIAL *

. PSW SET UP . ..•••... x*
NEW PSW *

SET UP ROUT
. ROUTINE

. SORG ...
* •• * *****************

X

.x •••••....•••••.••..•.•••.
*

• NO .*. .SA.44.T.L
G2 *. *****G3**********

.* NEW *. * MULTIPLE *
.* DEVICE *. YES * *UNIT ADDRESS - *

.ADDRESS TO BE. •••••••• X*DEVICE ROUTI!'lE ...
. USED. * * SCHGU .•

. .
* .• * ... *****************

X *
• * • X ••••••••••• : •••••••••••••

• NO .*. .58.40.DT.T.C
H2 *. *****H3**********

.* *. * *
.* COMMAND *. YES * * COMMAND *

.OP MODIFIERS . •••••••• X·.OPER MODIFIERS *
. USED. ... * ROUT *

. . * * SMODF
*. • * * ** .. * ***********

X

:.
* *

.AA *

... H2*

*

Figure 59. Required Modules and Interrupt Action Modules

102 BPS Basic Assrnb. & util. Progs.

3L.80.T.DT.~

*****E5********** * INTERNAL UNIT *
• * SENSE ROUTINE * • X....... ...

* SENS .•

* *

3Mo12.ALL
*****F5**********
* CCl UNIT *

INDENTIFIER
.X •••• *

* SCCIN

3N.46. ALL
*****G5********** * SET ~P *

PSWS
.x .••• :

SION2

* * *****************

BO.50.ALL
*****H5********** * MACHINE CHK *

INTERRUPT
.X •••• * ENTRY

* SMCIN

* * *****************

DO. 8. T • DT , L
*****J5********** * UNIT CHECK *

ROUT INES
.x •••• *

* SNKX
*

FO.B.ALL
*****K5********** * UNIT EXCEP *

CONDITION
•••••• : RO~~~~ES

* * *****************

* "
*AA *
:*~;:

x

82*****
" " " ERROR " * INDICATION

GROUP

X

• 3A.82. ALL
*****C2**********
" WRITE "

" * "AA *
* D5*

X

• 3K.96.ALL
*****83**********
" IS5UE "
" INTERNAL
" CALL

" *
*EE "

:*;!:
x

• Hl.24.ALL
*****84**********
" WRI TE "

MESSAGE
ENTRY

SWMSW "

X

" " "AA "
" F5"

X

• 3M.12.
*****85*********w
" CCI UNIT *

IDENTIFIER

" SCCIN "
****.***********:1

X

" ERROR MESSAGE * • • * BASE ROUTINE * .. .

3E.94
*****01 **** ******
* BIN-TO-HEX "

CONVERTER

* " * SIND "

3B.140
*****02**********
* WRITE " * ERROR ROUTINE *

*X •••••••• * EXPANSION 1 ...
* * * SSBNX" * SINDA

***************** *****************
X

• 3C.70
*****E2**********
" WRITE "

" * AA *X ••
" E5*
**** • 3L.8Q,T,DT,L

*****04**********
" INTERNAL UNIT "
* SE"ISE ROUTI NE "

" "
" SENS

X

* ERROR ROUT I NE " •
* EXPANS I ON 2 * .. .

* * *AA *
* C5*

X

G 1 ** ***
" MINOR *

* INTERRUPT

* * SINDB *

3F.12
*****G2** *****iI·**
* MINOR *

INTPT CONDS
" CONDITIONS

* GROUP **X ••••• ~ •• : R~~iiNE

" *** ***** ***

NOTE
THE FUNCT ION OF THI S ROUT! NE
IS TO PROVIDE FOR THE ATTACH-­
MENT OF USER SUPPLIED
ROUTINES THAT HANDLE THE
INTERRUPT CONOITION

" SNTPXl
********* **** *-1:1.**

X

* " *AA *
" E5*

X

K2*****
* * * INTERNAL

* SENSE CALL "
GROUP "

NOTE 3G.12
*****G3**********
" INCORRECT *

LENGTH "
" RECORD
" BASE ROUT INE
" SNTPD 1 *

NOTE 3H.12 NOTE 3J.12
*****G4**********
"PROGRAM CONTROL*
" INTERRUPT "
: BASE ROUTINE

* SNTPD 2 "

3K.96.ALL
*****J4**********
" ISSUE "
" INTERNAL CALL *
*

" X

*****G5**********
" ATTENTION"
: BASE ROUT INE :

* * SNTPD 3
***** * *********

" SNTCL * **",,*
********** .. ****** *AA *

* D5*

* "

3L.80.T.DT.L JO.40.T.DT
*****K 3********** *-1:1 ***K4**********
* I~TERNAL UNIT * "SENSE *
* SENSE ROUT I NE " ENTRY
* : ..•.•.•. X: : X
* SENS "

" SSNSW " ***4*
***************** *EE *

**G!*

Figure 60. 1/0 Base Routine - Group 1 Optional Modules

Basic Utility Programs 103

* * *AA *
* G5*

X

3N. 46. ALL 3P. 38
81***** *****82********** *****83**********

MACHINE CHECK * SET UP * * SAVE *
* I/O AND * * "lEW * * AND RESTORE

*4E~;;R~~~ ~~W ... *X •••••••• : PS\IJ :X •••••••• : EXTERNAL PSW

* * SION 2 * * SION 4
*** ***.1-* *** ***************** *****************

* * *AA *
* J5*

X

00.20.T.DT.L D5.162.T.OT.L 3L.BO.T.DT.L
*****F2********** *****F3********** *****F4**********
* UNIT CHECK * * UNIT CHECK * * INTERNAL UNIT *
* BASE ROUTINE * TAPE ROUTINE * * SENSE ROUTINE *

.**FI****"'* ••
UNIT
CHECK
GROUP

* *X •••••••• : :X : : X: : X
SNKX * * SNKT * SENS * *****

************* . .,*** ***************** ***************** *88 ...
* *K~*

* ... G3 *X ••
* *

D7,124wT,D2.L
*****G 1 **** *****.

• 06,
*****G3**********

142.T.OT.6 3K.96.ALL
*****G4 ********** * TAPE * * * T APE RETRY
* ISSUE *

READ
RETRY * •••••••••••••••• X ••••••••••••••• ... X*

* *

* INTERNAL
•••• x* CALL * ••••••••

* * X
SBKSP * * STRET * SNTCL * *****

*4*4 ** *********** ***************** ***************** *AA ... * 05*

Figure 61.

• 08.68.T.01
*****H2*********·
* TAPE "

WRITE
RETRY

SEFWD

:****J2*********:

: REWIND ENTRY

* SRWD *

X

"FF *
" E2"

" " *

.x_* G3 *
• * • • ** •

* *
*

X MQ,46.T,QT,L K5,20.T.DT,L
*****H3********** ***·It*H4********** * ISSUE" • TAPE BKSP •
*CONTROL COMMAND" •• RECORD ENTRY *
* * •••• x* * ••••••••
* X
" SCTLW * * SBSRW " "***"
***************** ***************** *FF ...

x

*EC "
* Cl* . . *****J4**********

• FORWARD SPACE "
TAPE RECORD *

* *F.i*

••• x* ENTRY * ••••••••
* "X * SFSRW * *****
***************** *FF *

• G2*

* "

I/O Base Routine-Group 1 PSw Routines, Machine Check Group, Unit Check Group

104 BPS Basic Assmb. & Utile Progs.

*
* * *AA *

* K5*

X

FO.8.ALL F2,10,ALL
81***** *****82********** *****83**********

EXCEPTIONAL * UE * * SET UP *
* CONDITION * * 8ASE * * EXCEP COND *

* GROUP *X •••••••• * ROUTINE *X •••••••• *RETURN ADDRESS *
* * * * * *

* * * SUEX * * SUEXR *
*********** ***************** *****************

Figure 62.

X

.Fl.20,T,DT,L F5,80.D2 3L.80.T.DT.L
*****C2********** *****C3********** *****C4**********
* UE * * UE * * INTERNAL UNIT *
* SPECIFIC UNIT * * PRINTER * * SENSE ROUTINE *
* BASE ROUTINE *X •••••••• * ROUTINE * .••••••• X* * ••••••••
* * * * * * X * SUES * * SUEP * * SENS * *****
***************** ***************** ***************** *BS *

* K3*

Unit Exceptional Condition Group

3K.96.ALL
*****04**********
* ISSUE *
* INTERNAL CALL *

* *
*

••• x* * ••••••••
* * X
* SNTCL * *****
***************** *AA *

-D5
* *

J3.36.T.C.DS.D2
*****E4**********
* SKIP-TO-l *
* ENTRY *

••••••••••••••••• X* * ••••••••
* * X
* SKIPW * *****
***************** *EE *

* G5*
* *

Basic Utility Programs 105

REQUIRES
COMMAND
MODIFIERS
ROUTINE

* *
*AA *
* H3*

X

NOTE 3 :MO.46
*****C 1 **********
* ISSUE CONTROL *

COMMAND

* *
*AA *
:*~~:

x

63*':***
*CALL ENTRY *

* MODULES FOR *
*CARD MACHINES. * * CONTROL AND *

* SENSE *
* ... **** ***

X

.*. NOTE 2 HO.24.T.C.L.DT NOTE 2 H4ol6.T.C.DI
C2 *. ****"C4********** *****C5**********

.*LOCATE *. * READ * * *
.* BY GIVEN *. NO • * CARD PUNCH

* •••••••• X*.WAIT ADDRESS .*•.....•.••• X.X •••••••••••••••• * WAIT SRDCW *X •••••••• * (1442)
SCTLW ... *. .* *... * SPCR

*
*****It ***** ******

NOTE 3 .I0.40.T.L.DT
«·****G 1 **** *** ***
* "

. *
*. ***************** *****************

* YES X

XN2.0
*****02**********
* CONTROL ENTRY *
* LOCATE SINTRY *
*TBL BLOCK EXIT *
* SCTLX *
* * *****************

NOTE 3 J4.20.T.C.DI
*****05**********
* * * PUNCH WAIT

•••••••••••••••••• * (1442)
* SPCRW

XNO.36 NOTE 2 Hl.24.ALL NOTE 3 Jl.32.L.DT.DS

:*~~~~i~*;;~;~~*: :****E4********"': :****ES*********:
TABLE UNIT * * WRITE MESSAGE * * SINGLE SPACE

BLOCK ** •••••••••••••••• X.X •••••••••••••••• ** SWMSW *X •••••••• * MESSAGE UNIT
SNUDE *: : SPCMW

***************** * ... ******* ... ******. *****************
X

NOTE 2 H2.24.T.C.D2.DS NOTE 3 J2.32.D2.DS
*****F4********** *****F5**********
... * * ... * " SINGLE SPACE

:Nl.O
*****F2**********
" SENSE ENTRY "
" LOCATE SINTRY *
*TBL BLOCK EXIT *
* SSNSX "

.X •••••••••• II........ PRINT ... X •••••••• * PRINTER

X

• YES .*.
G2 *.

.* * •
• * LOCATE *. NO •

" SPRTW" * SPCPW

" "" **** ... ** ... * ... *** ** *****************
X

NOTE 3 J3.36.T.C.D2. OS
*****G5********** * PRINTER SKIP *
* TO CARRIAGE ISSUE SENSE

COMMAND
SSNSW

* •••••••• X*.BY GIVEN UNIT.* •••••••••••••••• X. * TAPE ONE
* *. ADDAESS .*

. .
* •• *

"

NOTE 2 - REQUIR~S PRESENCE OF ADDRESS TO
ENTR YIN S I NTRY TABLE

NOTiO 3 - REQUIR=:S PRESENCE OF ADDRESS TO
ENTRY IN SNTRY2 TABLE

* SKIPW

NOTE 2 H3.20.T.C.Dl NOTE 3 J5ol6.T.C.DI
*****H4********** *****H5**********
* ... * ...

PUNCH * " PUNCH WAIT •••••••••••••••••• : (~~~g) :X : (~g~g~

* * ************ ... ** " * *****************

Figure 63. I/O Call Entry Group Modules for Non-Tape, Sense and Control Operations

106 BPS Basic Assmb. & util. Progs.

Kl.20.T.L.D2
* *****02**********

* *

*
* * *AA *

* H2*

X

B3*****
* TAPE *

* OPERATIONS *
* ENTRY *

l. GROUP *
* * ***********

X

.KO.56.T.L.DT
*****C3**********
* TAPE *
* ENTRY *
* BASE *
* ROUTINE *
* STPBKW *

X

K2.20.T.Dl
*****D4********** *
* * *

*
*
*

READ
TAPE
SRTPW

* * * •••••••••• ~ ••••• X.X •••••••••••••••• * WRITE
TAPE
SWTPW

*
*
*
*

* *
* * ***************** *****************

K3.24.T.DT K4.20.T.Dl
* *****E2********** *****E4********** *

* * * WRI TE *
* REIH NO * * TAPE MARK *
* * •••••••••••••••• X.X •••••••••••••••• * *
* SRWD * * SWTMW *
* * * * ***************** *****************

K5.20.T.L.DT K6.20.T.L
* *****F2********** *****F4********** *

* BACKSPACE * * BACKSPACE *
* RECORD * FILE * * * •••••.•••••••••• X.X •••••••••••••••• * *
* SBSRW * * SBSF *
* * * * ***************** *****************

K7.20.T.D2 K8.20.T
* *****G2********** *****G4********** *

* FORWARD * * FORWARD *
* SPACE * * SPACE *
* RECORD * •••••••••••••••• X.X •••••••••••••••• * FILE *
* * * * * SFSRW * * SFSF *
***************** *****************

K9.20.T
*****H4********** *
* READ *
* BACKWARD * •.•••••••••••••.•• *
*
* SBRTW *

* *****************

* REQUIRES PRESENCE OF ADDRESS TO
ENTRY IN SNTRY 2 TABLE

Figure b4. 1/0 Call Entry Group Modules for Tape operations

Basic Utility Programs 107

RELOCATION AND LINKAGE

The programmer often finds it necessary to
use subroutines and other program segments
that he himself did not produce. In most
cases, the programmer knows the calling
sequence of these routines; however, the
assembled location or the size of these
routines usually is not known. In using
the relocating loader, the question of size
mayor may not be of concern to the
programmer (depending on the storage
capacity of his machine) and the question
of assembled addresses is of no concern,
since the loader will load and set up
linkage between these various routines.

Note: The program to be loaded by the
relocating loader cannot have as entry
points the symbol LOAD2 or RESUME. These
symbols are entry points in the relocating
loader itself.

When relocating program segments and
establishing linkage among them, the
relocating loader must calculate certain
information during the loading process.

The loader receives the information to
answer these questions from the load cards
that it encounters during loading. Some of
the information that the loader receives
must be saved for later use during the
loading process. The information that is
saved is placed in the Control Dictionary,
which is composed of two tabl'es, one called
the Reference Table and the other the
External Symbol Identification Table.

The External Symbol Identification Table
is contained in the loader itself. The
Reference Table is built downward from the
highest available storage address (location
8191 in the low version released by IBM),
each entry (a maximum of 253 entries)
consisting of 12 bytes. The Reference
Table is protected from heing overlaid when
input to the loader is in'relocatable form.
However, during an absolute load, the
Reference Table is not protected and may be
overlaid.

The information required by the loader
answers the following questions:

1. What are the names (program name,
entry points,-and external symbols) by
which this segment may communicate
with other program segments, and what
are the actual addresses of these
names? A program segment (or
subroutine) may be referenced by other
program segments: if the segment which
is referenced is in storage at load
time, the address of the segment is
already established; if it is not in
storage at load time, the name and

108 BPS Basic Assmb. & Util. Progs.

entry points must be defined to the
loader by an ICS card (and SLC card,
if necessary). (These assigned
addresses are kept by the loader in
the Reference Table.)

2. What address constants within the
assembled segment would change value
as a result of this segment or another
segment being relocated? During the
loading process, the loader is
notified that adjustments are to be
made within this program segment by
the ESD cards (types 0 and 2). It is
told how and where these adjustments
are to be made by the RLD cards.

3. What is the relocation factor; that
is, what is the difference between the
assembled address of the segment and
the address where loading will begin?
This·factor must be added to or
subtracted from the assembled address
of the program name and any other
entry point to the segment, and the
assembled address in all Text and
Replace cards.

Example

In order to illustrate, step by step, how
the loader accomplishes relocation and
linkage, we will assume that there are two
program segments to be loaded, SEGA and
SEGB.

SEGA refers to two subroutines in SEGB
called SQRT and LINK. SEGA defines SQRT
and LINK as external symbols by these
assembly instructions:

SEGA START
EXTRN
EXTRN

144
SQRT
LINK

During execution, SEGA can branch to these
external SUbroutines, thus:

L
BALR

L
BALR

15, ADSQRT
14,15

15,ADLINK
14,15

Address constants are generated for them in
this manner:

ADSQRT
ADLINK

DC
DC

A(SQRT)
A(LINK)

SEGB refers to SEGA by its program name,
which is an entry point.

SEGB must define SEGA as an external
symbol:

EXTRN SEGA

and generate an address constant:

ADSEGA DC A(SEGA)

to allow a branch and link operation.

Note that SEGA does not yet have the
actual addresses it needs of SEGB, nor does
SEGB have the address of SEGA. These
addresses will not be assigned until load
time. The ESD and RLD cards produced by
the assembler for each segment provide the
information the loader needs to complete
linkage.

To illustrate the use of the relocation
factor (see point 2 on the preceding page),
the example in Figure 65 assumes that SEGA
was assembled at storage location 500 and
has a length of 200 bytes; that SEGB was
assembled at storage location 400 and has a
length of 100 bytes; finally, it assumes
that the programmer desires to load the
segments beginning at location 1000. Note
carefully that this procedure requires a
Set Location Counter card to set t.he
initial loading location to 1000. Also
note that since SEGB refers to SEGA by
name, an Include Segment card is also
necessary to establish the location and
length of SEGA before it is loaded.

Figure 65 illustrates the loading
process. It shows how each card is
generated from the user's source deck,
through assembler operations, to assembler
output and onto load time. Finally, the
figure illustrates the appearance of
storage after loading. The five columns of
Figure 65 are read left to right following
the flow noted in the previous two
sentences.

Each card is referred to by its
three-letter mnemonic: SLC, ICS, ESD, and
so forth.

Other abbreviations used in Figure 65
are:

ESID

LOCCT
REFTBL
ESIDTBL

for

for
for
for

External Symbol Identifi­
cation
Location Counter
Reference Table
External Symbol Identifi­
cation Table

LOADER GENERATOR PROGRAM (LDRGEN)

LDRGEN is a program designed to regenerate
loader program decks into a·form suitable
for direct loading into storage.
Furthermore, since neither the absolute nor
relocating loader is provided in a form
that can be relocated, LDRGEN can be used
by an installation to cause the loaders to
occupy locations in storage other than the
locations they occupy in the versions
released by IBM.

REQUIREMENTS FOR USING LDRGEN

LDRGEN is provided only in symbolic form a!."i
optional material. It must be assembled by
the user. Similarly, the absolute and
relocating loaders must be assembled at the
locations desired by the user. Prior to
assembly of the LDRGEN program, the user
must provide LDRGEN with the address of the
output device: he does this by means of an
Equate instruction that he inserts into the
LDRGEN deck immediately before the END
card. It is coded as:

OUTPUT EQU (address of the output
device in hexadecimal
or its equivalent
decimal notation)

The assembled loader deck and LDRGEN
programs can be loaded into storage by the
absolute or the relocating loader.

CAUTION: the versions of the loaders
released by IBM occupy low- or high-storage
locations on an 8K configuration. Since it
is necessary to load the assembled
relocatable decks of both LDRGEN and the
loader being regenerated, care must be
taken to ensure that neither of these will
overlay the loader loading them. In other
words, all must fit in the storage of the
machine, remembering that the self-loading
loader occupies predetermined locations and
the loader being generated must occupy the
locations where its residence is desired.

Basic Utility Programs 109

Assembler Output

Programmer inserts SlC card for location Storage After loading

)000; ICS card to define name, length of SEGA

Assembler Operation lOCCT
1000

User's Problem Program

Ir:S-lC----'--....,~ loader Program ...

(

""c-=S=----- - Sets lOCCT at 1000

SEGB

ADSEGA

SEGA

ADSQRT
ADllNK

START 400

ENTRY SQRT
ENTRY LINK

EXTRN SEGA

l 15,ADSEGA
BAlR 14,15

DC A(SEGA)

END

START 500

EXTRN SQRT
EXTRN LINK

l 15,ADSQRT
BALR 14,15
L 15,ADLINK
BALR 14,15

DC A(SQRT)
DC A(LlNK)

END SEGA

REFTBl
- Enters SEGA in REFTBl with location from lOCCT;

Type 0 ESD card with program '----------' increases lOCCT by length of SEGA (200) ______ (1) I SEl~~~~OOO I

name, location and ESID (01) ---- (ESD (Type 0) 1- Enters SEGB in REFTBl with location from lOCCT; 1200
figures relocation factor (800), puts this in REFTBl ~

'--_____ ---l. with SEGB; puts number 2 in ESIDTBl as pointer to (1) ~~~=~=~=::::~::::::::~
Type 1 ESD cards with name of ~~g: (In~~ in REFTBl; increases lOCCT by length of (2) """""""''-'-''''''''''-'''''''''-...J

SQRT and LINK assembled addresses ESD (Type 1) ESIDTBl lOCCT

(450 and 480), and ESID (01) ---- '--_____ ---' - ~;;~~; ;~::t :~u~II~:~~i~:TBL' adds relocation ~ (01) [LJ I 1300

Type 2 ESD card with name of ---- 1 H.~ SEGA I. H., '.'0 I. REFT .. , ,.re" 'h, .0 ' " REFTBL
SEGA and sequential ESID (02) (ESD (Type 2) . 1 in ESIDTBl as a painter to SEGA's entry in REFTBl; (1)

:~:st::t~Si~i~~n:~~~u;~~o~~:~~on of -- (TxT I-:~:::l:'~::::': ~:::,: ~::~ ::
area tobe loaded from each card and loads its contents into core storage h card ~ ESIDTBl

'---_____ ...J (01) LTl
RlD d · h R I . H 2 Goes to entry 02 in ESIDTBl, finds pointer to first (02) CLJ

car Wit e ocatlon eader 0 -- (RlD 1 L and location assigned to ADSEGA -entry in REFTBl; gets relocation factor from REFTBl, REFTBl
(whose contents are zeros) adds to contents of ADSEGA. This linkage is (1)

completed

SEGA 1000

SEGB 1200 800

SQRT 1250

ILiNK 1280

SEGA 1000 1000

(2) SEGB 1200 800

END card with no address for transfer --(END 1 Ends loading of SEGB, saves location as conditional (3)
of control point for transfer of control. Erases ESIDTBl. (4)

'---------' REFTBl

SQRT 1250

LINK 1280

Type 0 ESD cord with program nome, Finds SEGA and location in REFTBl; figues reloca- (1)
location and ESID (01) -- (ESD (Type 0) I tion factor (500) and puts in REFTBl with SEGA; <

puts number 1 in ESIDTBl as pointer to SEGA entry (2)
in REFTBl, starting new round of ESID numbering (3)

Type 2 ESD cards with names of SQRT E=:=========i/- Finds SQRT and LINK are third and fourth entries (4)
and LINK, and sequential ESID (02,03)-- ESD (Type 2) in REFTBl; puts numbers 3 and 4 in ESIDTBl as pointers ESIDTBl

SEGA 1000 500

SEGB 1200 800

SQRT 1250

LINK 1280

to REFTBL. Makes entries for relocation factor (01) I:=::i:J
TXT cards with instructions and constants ~ \V"_ - - - - - - -

b I ~
-AddS relocation factor to address of each card and ~ ESIDTBL

in inary, and loc.ation of area to be -- XT I
loaded from. each card _ oods its contents into core stolage (01) ffi
RlD cards with Relocation Header (02,03) '--_____ ---l _Goes first to enhy 02 in ESIDTBl, finds pointer to<::(g~l 3

and locations assigned to ADSQRT and -(RlD ~ third entry in REFTBl, gets relocation factor from (1)
ADLINK (whose contents are zeros) REFTBl, adds to contents of ADSQRT. Repeats proc-

ess for ADLINK (2)

Ends loading of SEGA, saves specified location as (3) END card with address of SEGA for ---(END
transfer of control

Programmer inserts ';:=====::::;
LDT card with no ad- (loT
dress for transfer of
control

conditional point for transfer of control (superseding (4)
previous location saved)

Ends all loading and, since card specifies no address,
transfers control to address previously saved (SEGA)

REFTBl

SEGA 1000

SEGB 1200

SQRT 1250

LINK 1280

500

800

1250

1280

Figure 65. Example of the Loading Process

The loader program must declare the
following information to LDRGEN:

IOTA EQU *

1. The lowest storage address occupied by
the loader; this address shall be
called ALPHA.

2. The loader initial entry point; this
address shall be called BETA.

3. The availability of an area of at
least 160 bytes for the temporary
residence of the bootstrap routine;
this area shall be called IOTA. (The
address IOTA must be on a double-word
boundary.) IOTA should not be
included within the loader (that is,
between ALPHA and OMEGA); it should be
adjacent to the loader. This may be
coded as:

IOTA EQU *-160

to reside below the loader or as:

110 BPS Basic Assmb. & Utile Progs.

4.

to reside above the loader.

The highest storage address plus 1
occupied by the loader; this address
shall be called OMEGA.

PROVIDING ADDRESSES

As was pointed out, LDRGEN is loadable by
either the absolute or the relocating
loader. Both loaders define ALPHA, BETA,
IOTA, and OMEGA by ENTRY assembler
instructions; therefore, these addresses
are supplied to LDRGEN in one of two ways,
depending on whether the absolute or the
relocating loader was used to load LDRGEN.

If the absolute loader was used, the

addresses are supplied to LDRGEN by Replace
cards:

Assigned to

ALPHA
ALPHA
BETA
IOTA
OMEGA

Into LDRGEN
at Location

ALPHAA
ALPHAB
BETAA
IOTAA
OMEGAA

I Note: The value for OMEGA must be 72 bytes
below maximum main storage address.

If the relocating loader was used to
load LDRGEN, the linkage is supplied
through ENTHY assembler instructions.
LDRGEN defines these addresses through
EXTRN assembler instructions. IOTA should
be designated by the loader program as a
buffer area. This area is temporarily
occupied by the bootstrap routine~ but it
is available to the object program at
execution time.

Finally, LDRGEN provides the facility of
producing duplicate decks; there is a
half-word in LDRGEN called CON. This
location is originally assembled with a
value of one. However, if the user desires
more than one copy of his deck, he may
change the value in CON, by a Replace card,
to any desired value. The value in CON
will be decrement~ed by one after each copy
of the deck is made and will continue to
make copies of the deck until the value in
CON is reduced to zero.

SEQUENCE OF OPERATIONS

The following is the sequence of operations
of LDRGEN.

1. It calculates the difference between
ALPHA and OMEGA; this gives LDRGEN tht:!
size of the object program it will
write.

2. It adjusts the bootstrap (160 bytes)
address to the designated area -­
IOTA.

3. It issues a write command for:

a. One 24-byte card containing the
IPL record (Initial Program
Loading PSW, Initial Program
Loading CCW1, Initial Program
Loading CCW2),

b. Two 80-byte cards containing the
bootstrap routine,

c. A series of 80-byte records, of
which the first 72 bytes are text,
containing the loader program in a
form suitable for direct loading
into storage (that is, the
contents of .ALPHA through
ALPHA+71, ALPHA+72 through
ALPHA+143, etc.). These cards
will be sequenced in columns
77-80.

4. After the entire program has been
regenerated, it writes an END card
using the address of BETA as the
initial entry point to the loader.

5. It examines the count to see if
duplicate decks are to be written. If
there are duplicate decks to be made,
the sequence of operations begins
again at item 3.

Basic Utility Programs 111

BASIC ASSEMBLER OPERATING PROCEDURES

This section provides operating information
and techniques for the System/360 Basic
Assembler and is concerned only with
operating considerations, not with the
internal logic of the programs.

The Basic Assembler is essentially a
language translator. It translates source
programs written in the Basic Assembler
language into executable machine-language
object programs. The assembler is divided
into two parts, Phase 1 and Phase 2.

Input to Phase 1 consists of source
program statements punched into cards or
written on magnetic tape. Phase 1
partially translates the source program
statements into machine-language object
code. The partially translated statements
are passed to Phase 2 (see Figure 66) where
the translation process is completed. The
output produced by Phase 1 (that is, the
partially translated source statements)
must be passed to Phase 2 via punched cards
or magnetic tape.

Note: Certain character constants (C' ')
that do not fall into the normal BCD
configuration, when entered into System/360
by means of another computer, may lose bits
during the card-to-tape phase.

The assembler is available as two
non-relocatable, assembled self-loading
decks, one for each phase. It is also
available as optional program material in
symtolic form for both phases.

Program Listings

The assembler provides a program or error
listing for each assembly if a printer or
printer-keyboard is attached to the system,
and the assembler has been instructed to
provide listings or error listings. This
is described in detail in the section Phase
1 Configuration Card. -----

Assembled Object Program output

Assembled object programs produced by the
assembler may be punched in cards or
written on tape. The specification of the
object program storage medium is described
in detail in the section Phase 1
Configuration Card.

Machine Configuration

The IBM System/360 Basic Programming
Support Basic Assembler program requires
the following minimum machine
configuration:

• An IBM System/360 with 8,192 bytes of
storage

•

•

An IBM 2540, 1442-N1 or 2520-B1 Card
Read-Punch;

or an IBM 2501 Card Reader with a
2520-B2 or B3 Card Punch

The Standard Instruction Set

Note: In reference to the card assembler,
the IBM 2501 Card Reader with the

r---,
I
I
I
I Source
I program
Ifrom cards
lor tape
I
I
I
I
I

r-----------,
I Phase 1 I

->1 of the 1->
I Basic I
I Assembler I L ___________ J

Intermediate
text ->
on cards
or tape

r-----------,
I Phase 2 I
I of the 1->
I Basic I
I Assembler I L ___________ J

Assembled
Object
program
on cards
or tape,
listing on
printer, printer­
keyboard.

L ___ J

Figure 66. Basic Programming Support Basic Assembler

112 BPS Basic Assmb. & Utile Progs.

IBM 2520-B2 or B3 Card Punch is
equivalent~ to the IBM 2540 Card
Read-Punch.

If additional input/output devices are
attached to the system, the assembler's
operational capabilities are increased.
The various input/output devices and their
uses are listed below.

IBM 2400-Series Magnetic Tape Unit:

From one to five magnetic tape units can be
used for the storage of any of the
fOllowing:

1. Source program
2. Basic Assembler object decks
3. Intermediate text
4. Program listing (Model 40 or larger

system only. See note in the section
Assembling with Card and Tape
Configuration.)

5. Object program

Note: 7-track tape units must have the
Data Conversion special feature.

One IBM 1403 or 1443-2 Printer: Used by
the assembler to provide program listings,
complete with operator and error messages,
for each assembly.

One IBM 1052 Printer-Keyboard: Used by the
assembler to provide program listings,
complete with operator and error messages,
for each assembly.

One IBM 1403 or 1443-2 Printer and One IBM
1052 Printer-Keyboard: The assembler uses
the IBM 1403 Or 1443-2 Printer to print
program listings. The IBM 1052
Printer-Keyboard is used for operator and
error messages.

ASSEMBLER INITIALIZATION

Since all installations do not have the
same machine configuration, the Basic
Assembler program must be tailored for
operation at each installation. This
tailoring consists of defining to the
assembler:

1. The main-storage size of the system.

2. The input/output devices attached to
the system and their addresses.

3. What use is to be made of cards and
magnetic tape.

In addition to the initialization
associated with the machine configuration,
other initialization may instruct the
assembler to print or suppress program
listings or to print only error listings.

The Basic Assembler is initialized
through the use of configuration cards.
There are two configuration cards, one for
each phase of the assembly program. The
cards are called the Phase 1 and Phase 2
Configuration Cards.

PHASE 1 CONFIGURATION CARD

The Phase 1 Configuration Card is a Replace
card which describes to Phase 1 of the
assembler the machine configuration upon
which it is to operate. The card is
inserted in the Phase 1 deck just before
the END card. The Phase 1 Configuration
Card has the format shown in Figure 67.

Basic Assembler Operating Procedures 113

r-----T----T------------------------------,
I Cols. 1 Fld. 1 Description 1
~-----+----+------------------------------~

1- 4 1 Contains a 12-2-9 punch 1

5- 6

7-12

13-14

15-16

17-20

21

22-25

26

27-30

31

followed by the characters 1
REP. This identifies the card
as a configuration card.

Blank.

2 Contains 000090. This is the
hexadecimal starting addresa,
in storage, where the data in
columns 17-55 is to be placed.

Blank .

3 Contains 01. This is a
constant.

4 Contains a 0, if the source
input device is a card reader,
followed by the three-digit
hexadecimal address of the
reader. If the source input
device is a tape unit, the
field contains a 1, followed
by the three-digit hexadecimal

laddress of the source device.

5 Comma.

6 If the intermediate text data
is to be stored on cards, this
field contains a 0, followed
by the three-digit hexadecimal
address of the card punch. If
the intermediate text is to be
stored on tape, the field
contains a 1, followed by the
three-digit hexadecimal
address of the tape unit.

7 Comma.

8 If the assembler is to be
copied on tape, this field
contains a 1, followed by the
three-digit hexadecimal
address of the tape unit which
will be used. If the
assembler is not to be copied,
the field contains O's.

9 Comma.

132-35 10
1

contains a 0, followed by the
three-digit hexadecimal
address of the system message
device -- a printer or a
printer-keyboard -- or O's, if
neither of these devices is
attached to the system.

1
1
1
1
1
1
1 36 11 Comma. L _____ i ____ i ______________________________ J

Figure 67. Format of Phase 1
configuration (Part 1 of 2)

114 BPS Basic Assmb. & Utile Progs.

r-----T----T------------------------------,
ICols.IFld.1 Description I
~-----+----+------------------------------~
37-40 12 If the program listing is to

be printed on the printer or
printer-keyboard, this field
contains a 0, followed by the
three-digit hexadecimal
address of one of these. If
the listing is to be written
on tape, the field contains a
1, followed by the address of
the tape unit. If none of
these devices is used, the
field contains O's.

41 13 Comma.

42-45 14 If the final object program is
to be punched on cards, this
field contains a 0, followed
by the three-digit hexadecimal
address of the card punch. If
the object program is to be
written on tape, the field
contains a 1, followed by the
address of the tape unit.

46 15 Comma.

47-50 16 Contains a four-digit
hexadecimal number. The first
two digits indicate the mode
set code (see Figure 68) for
the source input tape. The
second two digits indicate the
mode set code for the object
program output.

51 17 Comma.

52-53 18 The first two digits of this
field indicate the mode set
code (Figure 68) for the
device on which a listing is
to be written.

54

55

56

157-80

o for
1 for
2 for
3 for
5 for

8K
16K
32K
64K
24K

o for 2540 or 2501 with a
2520-B2 or B3

2 for 2520-Bl
4 for 1442-Nl

Must be blank

May include anything that

I
1
I
I
I
I
1
1
I
I

I programmer wishes. I L _____ i ____ i ______________________________ J

Figure 67. Format of Phase 1
Configuration (Part 2 of 2)

r---,
IThe code 03 must be used for unit record I
I devices, and 7-track tapes that will be I
I used only on System/360. For 9-t~rack I
Itape, code CB must be used for 800 BPI I
land code C3 for 1600 BPI. I
I I
IThe following mode set codes are used for
17-track tapes that will be used on
ISystem/360 and some other machine:
I
I
I
I
I
I
I
I

Code
2B
3B
6B
7B
AB
BB

Density
200 BPI
200 BPI
556 BPI
556 BPI
800 :aPI
800 BPI

Parity
Even
Odd
Even
Odd
Even
Odd L ________________ . ________________________ _

Figure 68. Mode Set Codes

PHASE 2 CONFIGURATION CARD

The Phase 2 configuration Card is a Replace
card that must be inserted in the middle of
the Phase 2 deck just before an existing
dummy END card (not before the actual END
card of the Phase 2 deck). This dummy END
card contains no transfer address. The
Phase 2 Configuration Card is identical to
the Phase 1 Configuration Card, except that
columns 22-25 and 54 are punched in the
following manner:

Columns 22-25
Must reflect the input device for
the intermediate text. If the
intermediate text data has been
stored in cards, this field
contains a 0, followed by the
three-digit hexadecimal address of
the card reader. If the
intermediate text data has been
stored on tape, the field contains
a 1, followed by the three-digit
hexadecimal address of the tape
unit.

Column 54
o - Error Listing on Printer
1 - Error Listing on Printer­

Keyboard
4 - Program Listing on Printer
5 - Program Listing on

Printer-Keyboard

The results of mispunching configuration
cards are unpredictable.

RUNNING AN ASSEMBLY JOB

A. ASSEMBLING ON A CARD SYSTEM USING THE
2540 OR 2501 CARD READER WITH A 2540-B2 OR
B3

Assembler: cards
Source deck: cards
Intermediate text: cards
Object program: cards
Listing: printer or printer-keyboard

1. Make the printer and printer-keyboard
ready for use.

2. Clear the card reader of cards.

3. Insert the proper configuration cards
immediately before the proper END card
in both decks of the assembler. See
Phase 2 Configuration Card section.
Detailed information concerning these
cards is presented in the section
Assembler Initialization.

4. Place the Phase 1 deck of the
assembler in the reader hopper: then
place the source program deck in the
hopper.

5. Place blank cards in the punch hopper.
The number of blank cards must be
equal to or greater than the number of
cards contained in the source program
deck.

6. Place additional blank cards for the
symbol table in the punch hopper at
the ratio of approximately one blank
card for every twenty source program
cards.

7. Initialize card reader-punch for use.

8. Press end-of-file key on the card
reader-punch.

9. Select the card reader with the
load-unit switches on the system
control panel and press load key.

10. A program wait with the location
counter containing lEI occurs at the
completion of Phase 1. If the system
has provisions for typing messages, a
message "lEI" is typed on the printer
or printer-keyboard. The contents of
the stackers at this point are shown
in Figure 69.

11. Make printer or printer-keyboard ready
for use if necessary.

Basic Assembler Operating Procedures 11~

12. Clear the card reader of cards.

13. Place the Phase 2 deck of the
assembler in the card read hopper.

14. Place intermediate text deck on the
assembler deck.

15. Place blank cards in the punch hopper
at the ratio of one blank card for
every ten source program cards.

16. Press end-of-file key on card
reader-punch.

17. Select the card reader with the
load-unit switches on the system
control panel and press the load key.

18. A "2EI" message or a program wait with
the location counter containing 2EI
signals the end of the second phase of
assembling. The contents of the
stackers at the completion of the
assembly job are shown in Figure 70.

19. When a punching error is detected on a
card, the card containing the error
and the card immediately following it
will fall into the reject hopper.

20. For program execution information
refer to the Using the Loaders
section.

r---,
I 2540 I
I I I I I I I I I I I
I ~--------~ I I I I I I I I
I I Intermed. I ~---------~ I t---------~ ~---------~ I
I I Text I I Symbol* I I I Source I I Phase 1 I I
I I I I Table I I I Deck I I Deck I I I l _________ J l _________ J l _________ J l _________ J l _________ J I
I 0 4 8/2 1 0 I
I I
~---~
IThe intermediate text deck consists of data produced by Phase 1 for use as input to I
I Phase 2. I
I*The symbol table deck is produced for use in a special application described in the I
I section Special Procedures. I l ___ J

Figure 69. Stacker Contents for the IBM 2540 Card Read-Punch at End of Phase 1

r---,
I 2540 I
I I I I I I I I
I I I I I ~---------~ I
I I I I I I I Intermed. I I
I I I I I I I Text I I
I ~---------~ I I I ~---------~ I
I IObject I I I I I Phase 2 I I
I I Deck I I I I I I I Deck I I I l _________ J l _________ J l _________ J l _________ J l _________ J I
I 0 4 8/2 1 0 I l ___ J

Figure 70. Stacker Contents for the IBM 2540 Card Read-Punch at End of Assembly

B. ASSEMBLING ON A CARD SYSTEM USING THE
1442-N1 OR 2520-Bl

Assembler: cards
Source deck: cards
Intermediate text: cards
Object program: cards
Listing: printer or printer-keyboard

116 BPS Basic Assmb. & Utile Progs.

1. Make the printer and printer-keyboard
ready for use.

2. Clear the card reader of cards.

3. Insert the proper configuration cards
immediately before the proper END card
in both decks of the assembler. See
Phase 2 Configuration Card section.
Detailed information concerning

configuration cards is presented in
the section Assembler Initialization.

4. Place the Phase 1 deck of the
assembler in the reader hopper. Then
place the source program deck in the
hopper. Columns 1-24 of the source
program must be blank.

5. Place blank cards for the symbol table
in the hopper at the ratio of
approximately one blank card for every
twenty source program cards.

6. Initialize card reader-punch for use.
(Do not press end-of-file key.)

7. Select the card reader with the
load-unit switches on the system
control panel and press the load key.

8. A program wa it vii th the location
counter containing lEI occurs at the
completion of Phase 1. If the system
has provisions for typing messages, a
message "lEI" is typed on the printer
or printer-keyboard. The contents of
the stackers at this point are shown
in Figure 71.

9. .t-1ake the printer and printer-key:Coard
ready for use if necessary.

10. Clear the card reader of cards.

r---,
I 1442-Nl and 2520-Bl I
I I I I I
I t--------~ I I
I I Symbol I I I I
I I Table I I I I
I ~-------~ ~--------~ I
I I Source I I Phase 11 1
I I Deck 1 I Deck I 1 1 L _______ J L ________ J I

I 2 1 1

~---~
I I
I The intermediate text deck consists ofl
Idata produced by Phase 1 for use as input I
Ito Phase 2. The symbol table deck is I
Iproduced for use in a special application I
1 described in the section Special 1
1 Procedures. I
INote that the intermediate text i~ 1
I contained in columns 1-24 of the source 1
1 deck on the 1442-Nl and 2520-Bl. 1 L ___ J

Figure 71. Stacker Contents for IBM
1442-Nl and 2520-Bl Card
Read-Punch at End of Phase 1

11. Place Phase 2 deck of the assembler in
the card read hopper.

12. Place the source program deck

(containing the intermediate text) in
the card hopper.

13. Place blank cards in the hopper behind
the source program deck (containing
the intermediate text).

14. Select the card reader with the
load-unit switches on the system
control panel and press the load key.

15. A program wait with the location
counter containing 2HA or a message
"2HA" indicates that blank cards must
be placed in the 1442-Nl or 2520-Bl
card hopper. Remove any cards in the
hopper, insert blanks, and replace the
cards just removed. The number of
blank cards is governed by the
machine's storage size: 15 blanks for
an 8K machine, 80 blanks for a 16K
machine, 140 blanks for a 24K machine,
200 blanks for a 32K machine, and 450
blanks for a 64K machine. After
inserting the blanks, press the
interrupt key.

16. A "2EI" message or a program wait with
the location counter containing 2EI
signals the end of the second phase of
assembling. completion of assembling
are shown in Figure 72.

18. For program execution information
refer to Using the Loaders section.

r---,
1442-Nl and 2520-Bl I

I I I I
I I I I
I ~--------~ I

I I I Source I I
I I I Deck I I
~--------~ ~--------~ 1
I Object I I Phase 21 I
I Deck I I Deck I I L ________ J L ________ J I

211 ___ J

Figure 72. Stacker Contents for the IBM
1442-Nl and 2520-Bl Card
Read-Punch at End of Assembly

C. COPYING THE ASSEMBLER ON TAPE

1. Punch the correct configuration cards
(described in detail in Assembler
Initialization) and place them before
the END cards in Phases 1 and 2.

2. Ready the card reader.

3. Place Phases 1 and 2 of the assembler
in the read hopper.

Basic Assembler Operating Procedures 117

4. Load tape on tape unit whose address
was specified in field 8 of
configuration cards.

5. Ready tape unit.

6. Press end-of-file on card reader.

7. Select the card reader with the
load-unit switches on the system
control panel and press load key.

8. When the "lEI" message appears in the
location counter, press load key a
second time to write Phase 2 on tape.

9. When the "2EI" message is printed or
appears in the location counter, the
assembler has been written entirely on
the selected tape. Rewind before
using. (Note that the assembler may
be written on one tape unit and run on
a different tape unit, provided they
both have the same number of tracks.>

D. ASSEMBLI~G WITH CARD AND TAPE
CONFIGURATION

Assembler: cards or tape (If tape
used, intermediate text must be on
tape. >

Source deck: cards or tape
Intermediate text: cards or tape
Object program: cards or tape
Listing: printer, printer-keyboard,
or tape

Note: If tape is used for listing, it must
be 800 BPI or less. Also, tape may be used
for listing only with a Model 40 or larger
system because the speed of these systems
is sufficient to handle "chain data".

1. Ready assembler input device.

2. Ready source program input device.

3. Ready intermediate text device.

4. Ready object program device.

5. Ready listing device.

6. Select assembler input device with
load-unit switches on the system
control panel and press load key.

7. If intermediate text medium is punched
cards, see steps A 10-20 or B 8-18 in
the preceding sets of instructions.

8. If intermediate text is on tape and the
assembler is on cards, a "lEI" message
or a program wait with the location
counter containing lEI signals the end

118 BPS Basic Assmb. & Utile Progs.

of Phase 1. Load Phase 2 of the
assembler. If the assembler is on
tape, the message will not appear and
control will automatically pass to
Phase 2. Note that when the
intermediate text is on tape, Phase 2
must always follow immediately after
Phase 1, since no symbol table is
punched.

9. A "2EI" message or a program wait with
the location counter containing 2EI
signals the end of the second phase of
assembling.

10. For program execution information refer
to Using the Loaders section.

SPECIAL PROCEDURES

There are three special procedures
available for use with card systems. They
are:

1. A procedure for saving time when
reasserobling a previously assembled
program on a 1442-Nl or 2520-Bl card
system.

2. A procedure for running an assembly job
on a card system when Phase 2 is not
executed immediately after Phase 1.

3. A procedure for saving time during
Phase 2 when using a 1442-Nl or 2520-Bl
card system that punches the assembled
object programs into cards.

1442-Nl or 2520-Bl Card System Reassembly
Procedure

A special reassembly procedure is provided
for card systems using the IBM 1442-Nl or
2520-Bl Card Read-Punch. This procedure
enables a previously assembled program to
be reassembled in less time than that
required for a new assembly.

To use this procedure, one must have the
symbol table deck produced by Phase 1 of
the previous assembly (see Figure 69).

Input to Phase 1 during a reassembly
consists of the Phase 1 assembler deck
followed, in order, by the previously
punched symbol table, the source pJ::-ogram,
and blank cards (into which the new symbol
table will be punched). The number of
blank cards should be approximately equal
to the number of cards in the previously
punched symbol table. Note that the only
difference between. the Phase 1 input
required for a new assembly and the Phase 1
input required for a reassembly is' the
inclusion of the symbol table deck in the
latter case. Other than preparing the
Phase 1 input, the actions required to run
a reassembly job are exactly the same as
those required for a new assembly.

Interrupted Assemblies on Card Systems

If a card system assembly job is
interrupted after the completion of Phase
1, but before the conclusion of Phase 2, a
special procedure is provided to complete
the assembly job without re-executing Phase
1. Tape assembly jobs may not be
interrupted.

When this procedure is used, it is only
necessary to run Phase 2 of the assenibler
(Phase 1 was run before the interruption).
Input to Phase 2, in this case, is the same
as that required for a new assembly, with
one exception. That exception consists of
placing the symbol table deck (produced by
Phase 1 before the interruption) on top of
the Phase 2 assembler deck in the input
card hopper. The rest of the Phase 2 input
is then placed on top of the symbol table
deck. Other than setting up the Phase 2
input, the actions required to run Phase 2
are the same as those required to run Phase
2 of a new assembly.

I
I

1442-Nl or 2520-Bl Card Systems with Card
Output

Occasionally, when running an assembly job
on a 1442-Nl or 2520-Bl card system with
card output, a program wait occurs during
Phase 2 with the location counter
containing 2HA, indicating the need for
more blank cards. If the system has
provisions for typing messages, a message
"2HA" is typed out. In either case, blank
cards must be placed in the 1442-Nl or
2520-Bl card hopper and the interrupt key
must be pressed (see Figure 70).

This intervention may be avoided by
interleaving blank cards with the source
program deck before starting Phase 2 of the
assembler. The size of the system's
storage governs the manner in which the
blank cards are interleaved with the source
program, as shown in the following:

Main-Storage
Size Action

8K Insert approximately 15 blank
cards after each 150 source
program cards.

16K Insert approximately 80 blank
cards after each 800 source
program cards.

24K Insert approximately 140
blank cards after each 1400
source program cards.

32K Insert approximately 200
blank cards after each 2,000
source program cards.

64K Insert approximately 450
blank cards after each 4,500
source program cards.

Basic Assembler Operating Procedures 119

BASIC UTILITY PROGRAMS OPERATING PROCEDURES

This section provides operating information
and techniques for the basic utility
programs. The basic utility programs
enable the user to print out the contents
of registers and/or storage, load assembled
programs, and program the use of
input/output devices. The material is
concerned only with operating
considerations, not with the internal logic
of the programs.

THE SINGLE-PHASE DUMP PROGRAM

The single-phase dump program is designed
to produce listings of the contents of
registers and/or storage.

When used, the single-phase dump program
resides in storage along with the user's
program. Figure 73 shows the relationship
between the single-phase dump program and
the user's program.

INITIALIZATION OF THE SINGLE-PHASE DUMP
PROGRAM

I The single-phase dump program is available
from IBM as an assembled relocatable object
deck. It is also available as optional
material in symbolic form. Before the
program can be used, it will require
modification for operation on the
installations's machine. This modification
consists of altering three constants near
the end of the IBM-supplied program. These
constants are shown in Figure 74. They are

identified in the figure by the number 1 in
column one on the left-hand side. One must
ensure that these locations properly
describe the installation's machine
configuration before using the single-phase
dump program. Note that a card's position
in the deck should not be altered during
the modification process.

USING THE SINGLE-PHASE DUMP PROGRAM

The single-phase dump program is
essentially a subprogram designed for use
by the programmer; its use, therefore, is
primarily his concern. He must define, in
his program, the registers and/or storage
areas whose contents are to be listed. In
addition, he must define the format of the
listing. Finally, he must transfer control
to the single-phase dump program in order
to have the listing produced.

In order to execute a program that uses
the single-phase dump program, both
programs must reside in storage, and the
proper linkage must exist between them.
These reqUirements can be fulfilled by
either of two methods.

One method consists of assembling the
single-phase dump and user's programs
together. The resulting assembled object
program contains both the single-phase dump
and problem programs with the appropriate
linkages. It can be loaded into storage
for execution by the Absolute or Relocating
Loaders. (The Relocating Loader cannot be
used to accomplish this on an 8K
configuration.)

r---, r---------------------------, r---------------------------,
1 User's Program 1 1 Single-Phase Dump Program 1
~---------------------------~ ~---------------------------~
1 1 1 Produces listing of the 1
1 Defines registers and/0r 1<---->1 contents of the registers 1--> Listing
1 storage areas to be listedl I and/or storage areas I
1 and passes control to the 1 1 defined by the user's 1
1 single-phase dump program 1 1 program and returns I
1 I I control to the user I L ___________________________ J L ___________________________ J

Figure 73. The Single-Phase Dump Program

120 BPS Basic Assmb. & Util. Progs.

1. Single-Phase Dump Program
.2. Phase 1 of the Two-Phase Dump Program

3. Phase 2 of the Two-Phase Dump Program
r-T-T-T------T------T-----------T---,
1 1 1 1 IOpera-1 1 I
1112131 Name 1 tion 1 Operand 1 Description I
~-+-+-+------+------+-----------+---~
11121 1 DSTOPL 1 DC IAL3 (zzzzz) Izzzzz represents the machine's storage size in bytes. I
1 1 1 1 1 1 IValid operands may be: I
1 1 1 1 1 1 1 AL3(8192) AL3(16384) AL3(32768) AL3(65536) I
~-+-+-+------+---.---+-----------+----------------------~--------------------------------~

3 INDEV DC X'zzzzzzzz' zzzzzzzz represents eight hexadecimal digits generated I
in the following way:

Digits
1-2

3
4

5
6-8

Description
If the input device is a tape unit with the I
7-track feature, these digits specify the model
set used to create the tape. 1 Otherwise, thesel
digits are 00. I
Always O. !
Specifies the Phase 2 input device: I

o = IBM 2400 Series Magnetic Tape Unit I
1 = IBM 2540, 1442-N1, or 2520-B1 Card I

Read-Punch or 2501 Card Reader I
Always O. I
The three-digit hexadecimal address of the I
Phase 2 input device. I

~-+-+-+------+------+-----------+---~

1

1 2 30UTDEV DC X'zzzzzzzz' zzzzzzzz represents eight hexadecimal digits generated I
in the following way: I

Digits
1-2

3
4

5
6-8

Description I
Always 0 for Single-Phase Dump and Phase 2 of I
Two-Phase Dump. For Phase 1 of Two-Phase I
Dump, if the output device is a tape unit with I
the 7-track or dual density feature, the mode I
set desired may be used. 1 Otherwise, these I
digits are 00.
Always 0."
For the Single-Phase Dump Program and Phase 2
of the Two-Phase Dump Program, this digit
specifies the type of output device used to
produce listings.

o = IBM 1403 or 1443-2 Printer
1 = IBM 1052 Printer-Keyboard

For Phase 1 of the Two-Phase Dump Program, I
this digit specifies the type of output device I
used by Phase 1.

o IBM 2400 Series Magnetic Tape Unit
1 IBM 2540 Card Read-Punch or 2520-B2

or B3 Card Punch
2 IBM 1442-N1 Card Read-Punch
3 IBM 2520-B1 Card Read-Punch

Always O.
The three-digit hexadecimal address of the
output device. l

~~_~ ______ ~ ______ ~ ___________ ~_. __ J

1 1 Fur a discussion of the 7-track feature and dual density feature, see IBM 2400 and
1 2816 Model 1 Component Description, Form A22-6866. I L ___ ~

Figure 74. Dump Program Initialization Cards (Part 1 of 2)

Basic Utility Programs Operating Procedures 121

r-T-T-T------T-----~-----------T----------------------------------~--------------------,
1 2 3 TYPWTR DC X'zzzz' zzzz represents a 0 followed by the three-digit I

hexadecimal address of the printer or printer-keyboard I
used to produce operator messages. If neither device I
is available, the operand must be specified as X'FFFF'.1
Placing hexadecimal F's in TYPWTR only informs the dump I
program that no IBM 1052 Printer-Keyboard is available I
and does not disable the Input/Output Routine from I
trying to print error messages. There are two ways to I
disable printing by the I/O routines. I

I
1. Prior to assembly time, remove the Write Error I

Message Base Routine module from the I/O routines. I
2. At object time, insert a Replace card to put the I

LPSW instruction at SAGINW+4 (in the I/O Base I
Routine - Group 1, Interrogate I/O Interrupt or I
Condition Code 1 module) back in the same form as I
on the assembly listing after it has been overlaid I
by the branch instruction in the Write Error I

I Message Base Routine module. I
~~_~ ______ ~ ______ ~ ___________ ~ ___ J

Figure 74. Dump Program Initialization Cards (Part 2 of 2)

The other method consists of assembling
the single-phase dump and user programs
separately. In this case, the respective
assembled object programs must be loaded
into storage for execution by the
Relocating Loader. Note that during the
load process, the dump program should
precede the user's program into storage so
that the loader can establish the proper
linkages.

THE TWO- PHASE DUMP PROGRA!J1

The Two-Phase Dump Program produces
listings of the contents of registers
and/or main storage. The program consists
of two phases, Phase 1 and Phase 2.

Phase 1 is designed to produce card
image records (on punched cards or magnetic
tape) of the contents of registers and/or
storage. When used, it resides in storage
along with the user's program. Figure 75
shows the relationship between Phase 1 and
the user's program.

122 BPS Basic Assmb. & Utile Progs.

INITIALIZATION OF THE TWO-PHASE DUMP
PROGRAM

The Two-Phase Dump Program is available
from IBM as an assembled relocatable object
deck for Phase 1 and as an assembled
nonrelocatable deck (self-loading deck) for
Phase 2. It is also available as optional
material in symbolic form for both phases.
Before the program can be used, each phase
may require modification for operation on
the installation's machine. This
modification consists of altering three
constants near the end of each phase in the
IBM-supplied programs or punching
information in the END card in the case of
Phase 2 assembled nonrelocatable deck.

The constants in question are shown in
Figure 74. Constants to be modified in the
Phase 1 program are identified by the
number 2 in column two on the left-hand
side of the figure. Constants to be
modified in the Phase 2 program are
identified by the number 3 in column three.
One must ensure that these constants
properly describe the installation's
macnine configuration before assembling the
Phase 1 or Phase 2 source decks or by
altering the assembled relocatable decks
with Replace cards at object time or by
punching information in the END card of the
Phase 2 self-loading deck. Note that a
card's position in the source deck should
not be altered during the modification
process.

r-----------~---, r------------·-----, r-------------------, r------------,
I User's Program I I Phase 1 I I Phase 2 I
~------------------~ ~-------------------~ ~------------~
I I IProduces card- I I I

IProduces a I IDefines registers I limage records of I Phase 1
output
on cards
or tape

land/or storage lithe contents of I
lareas to be listedl<--->Ithe registers and/ 1->

Ilisting froml
->Ithe output 1->

Igenerated byl
Listing

I and passes control I lor sitorage areas I
Ito Phase 1 of the I Idefined by the I IPhase 1 I
ITwo-Phase Dump I luser's program I I I
I Program I land returns control I I I
I I Ito the user I I I l _____________ . _____ J l ___________________ J l ____________ J

Figure 75. The .Two-Phase Dump Program

USING THE T~O-PHASE DUMP PROGRAM

Each phase of the Two-Phase Dump Program
has its own set of operating procedures.
These procedures are described in the
following text.

Phase 1

Phase 1 is used in essentially the same way
as the Single-Phase Dump Program (see the
topic Using the Single-Phase Dump Program).
The two differ only with respect to their
output. Phase 1 produces card or tape
output for subsequent use by Phas,e 2. The
Single-Phase Dump Program produces
listings. Note that if tape is used for
output, this tape is only rewound at
end-of-reel by Phase 1. This enables the
user to place the dump output of more than
one program on a single reel for later
processing by Phase 2.

Phase 2

Phase 2 produces listings of the contents
of registers and/or storage from the output
generated by Phase 1.

Phase 2, as supplied by IBM, is a
self-loading version. To use the
self-loading deck, the following must be
supplied:

1. The type of output device and its
address.

2. The type of input device and its
address.

3. The address of ~he IBM 1052
Printer-Keyboard (if one is available
for operator messages).

The user supplies this information by
taking out the END card from the
seif-loading deck of Phase 2 of the
two-phase dump and punching this card as
follows:

27-30 The address of the IBM 1052
Printer-Keyboard if one is
available.
FFFF if no IBM 1052
Printer-Keyboard is available.

31-32 If the input device is a tape unit
with the 7-track feature and a mode
set was used to create the tape,
the same mode set must be punched
in columns 31 and 32. Otherwise,

I leave nlank. I l _____ ~ ___________________________________ J

I/O error messages are only displayed on
the console during error waits when the
self-loading deck supplied by IBM is used.

To use Phase 2 of the Two-Phase Dump
Program in its self-loading version, the
following steps must be performed:

1. RUn cards out of the card reader.

2. Place the properly initialized

Basic Utility Programs Operating Procedures 123

self-loading deck of Phase 2 in the
card-read hopper.

3. Place the Phase 1 output on the
appropriate unit. This unit address
was defined to Phase 2 in the END card.
If tape is used, the tape will be
rewound at the beginning of execution.
If card reader was used for Phase 1
output, this output should be followed
by at least one blank card to ensure
that the last listing will print.

4. Set the load unit switches on the
system control panel to address the
card reader and press the load key.

A user with a machine larger than 8K can
make more efficient use of Phase 2 of the
two-phase dump by altering the source
program for residence in higher storage and
increasing the buffer size. The assembled
deck can then be loaded by either the
absolute or relocating loader. In order to
use Phase 2 in this form (an assembled
relocatable version), the following are
required:

1. A properly prepared and assembled Phase
2 program.

2. The output generated by Phase 1. The
output can be on cards or tape.

3. A self-loading loader on cards.

To execute Phase 2 in its assembled
relocatable version, perform the following
steps:

1. Run cards out of the card reader.

2. Prepare the self-loading Absolute or
Relocating Loader to read from the
device containing Phase 2 of the
two-phase dump program. The method of
initialization is described in the
section The Absolute and Relocating
Loaders.

3. Place the self-loading loader in the
card read hopper.

4. Place Phase 2 of the two-phase dump
program on the appropriate device.

5. Place the Phase 1 output on the
appropriate unit. This unit address
was defined to Phase 2 during the Phase
2 initialization process (see the topic
Initializing the Two-Phase Dump
Program). If tape, the tape will be
rewound at the beginning of Phase 2.
If card, Phase 1 output should be

124 BPS Basic Assmb. & Util. Progs.

followed by at least one blank card to
ensure that the last listing will
print.

6. Set the load-unit switches on the
system control panel to address the
card reader, and press the load key.

THE ABSOLUTE AND RELOCATING LOADERS

Two load programs are available from
IBM: the Absolute Loader and the
Relocating Loader. Both are designed to
load assembled programs (from cards or
tape) into storage for execution. The
Absolute Loader is available in two
versions: one is assembled to occupy lower
storage and the other to occupy higher
storage on an 8K configuration. Both
versions of the Absolute Loader are
available in non-relocatable assembled
self-loading decks. The Relocating Loader
is available in a non-relocatable assembled
self-loading deck to occupy lower storage.
Certain installations may want loaders that
reside elsewhere in storage and/or disable
the printing of I/O error messages. For
these reasons, both loaders are available
from IBM in symbolic form as optional
material. See the description of the
Loader Generator program for information on
generating self-loading loaders. (Use of
the Relocating Loader is recommended for
users with greater than 8K main storage.)

PREPARING THE LOADERS FOR USE

The Absolute and Relocating Loaders are
available from IBM in self-loading form on
punched cards. Before either program can
be used, it may require modification for
operation on the installation's machine.
This modification consists of altering the
program's END card.

The END card is the last card in the
deck. It must include the following:

r-----T-----------------------------------,
ICols·1 Description I
~-----+-----------------------------------~
117-201Blank if the program to be loaded I
I lis on the same device as the I
I I loader. 1
1 10 followed by the three-digit I
I Ihexadecimal address of the unit I
I I from which the program is to be I
I Iloaded if it is on a different unitl
I I from the loader. I
I I I
121-2410 followed by the three-digit I
1 Ihexadecimal address of the I
I linstallation's printer or I
I Iprinter-keyboard (used to produce I
I loperator messages). I
I IBlank if neither device is I
I I available. I L _____ .1. ___________________________________ J

LOADER OPTIONS AND MODIFICATIONS

The loader source progran1s available from
IBM are designed for residence in lower
storage, beginning at location 14Lt·. The
programs can be broken into the following
general groups:

Introduction
I/O Routines
Loader Routines
Initial Entry Routine (IER)

They are organized as such so that the
user can overlay the Initial Entry Routine
with the beginning or end of his program,
if he wishes. After loading, he can
overlay the loader routines during
execution and still use the loader's I/O
routines if he is exercising that option.

If the loaders are to be modified for
residence in higher storage, it is
recommended that the groups be reo~ganized
to make optimum use of available storage,
as described below.

To modify the Absolute Loader for
residence in upper'storage, the following
alterations to thE~ source deck are
necessary:

1. Remove the constant IOTA EQU * from
the end of the deck. Insert the
constant IOTA EQU *-160 in the
beginning of the deck, in place of the
comment card *IOTA EQU *-160.

2. Move the Initial Entry Routine from
the end of the deck to the position
specified by the comments following
the new constant IOTA.

3. Move the Loader Routines (Hex-Bin
Conversion Rou.tine through the end of

Constants Area) to precede the I/O
Routines. The constants THE END and
OMEGA should now precede the END card.

4. Alter the START card to the desired
starting address of the new loader.

5. Assemble the modified deck and
generate a self-loading deck using the
LDRGEN program.

To modify the Relocating Loader for
residence in upper storage, the following
alterations to the source deck are
necessary:

1. Remove the constant IOTA EQU * from
the end of the deck. Insert the
constant IOTA EQU *-160 in the
beginning of the deck, in place of the
comment card *IOTA EQU *-160.

2. Move the Initial Entry Routine from
the end of the deck to the position
specified by the comments following
the new constant IOTA.

3. Move the Loader Routine (Hex-Bin
Conversion Routine through end of
constants Area) to precede the I/O
Routines. The constant OMEGA should
still precede the END card.

4. In the section of the Loader Routines,
Routine to Search Reference Table ••.
(found in the program listing>,
repunch the card:

*ST 12, BELOW
to delete the asterisk. Replace the new
card in the source deck.

5. Change the existing constants TOP,
BELOW, and CTRSET to the following:

TOP
BELOw
CTRSET

EQU
DC
DC

MON
A (LOAD2)
XL4'BO'

6. Alter the START card to the desired
starting address of the new loader.

7. Assemble the modified deck and
generate a self-loading deck using the
LDRGEN program.

LOADING CAPACITY

The Relocating Loader available from IBM
is set for a maximum storage size of BK.
To modify the Relocating Loader designed
for residence in lower storage for a
larger storage size than BK, it is
necessary to alter the constant TOP; this
constant may be altered as described in

Basic Utility Programs Operating Procedures 125

the listing (the description of this
alteration occurs just before the actual
constant), or it may be altered to 131071
for 128K storage. The source deck should
then be assembled and a new loader
generated using the LDRGEN program.

USING THE LOADERS

To load an assembled program into storage
for execution, the following two items are
required:

1. An Absolute or Relocating Loader in
self-loading form on punched cards.

2. The assembled program to be loaded.
The program may exist on punched cards
or magnetic tape.

To run a job, perform the following
steps:

1. Run cards out of the card reader.

2. Place the Absolute or Relocating
Loader in the reader hopper. The
loader must be initialized as
described under Preparing the Loaders
for Use.

3. Place the assembled program on the
input unit from which it is to be
loaded.

4. Set the load-unit switches on the
system control panel to address the
card reader, and press the load key.

LOADER GENERATOR PROGRAM

The self-loading Absolute and Relocating
Loaders available from IBM reside in lower
storage during execution (higher storage
in an 8K configuration). They are not in
a form suitable for relocation. Since
installations may want self-loading
loaders that reside elsewhere in storage,
IBM supplies a means to create them. This

126 BPS Basic Assmb. & Utile Progs.

involves the use of the IBM-supplied
Loader Generator (LDRGEN) program.

IBM provides both the Absolute and
Relocating Loaders in symbolic form on
punched cards. To create a self-loading
loader, one must assemble the associated
symbolic deck. The assembled loader is
then loaded into storage with the LDRGEN
program.

The LDRGEN program is designed to
regenerate assembled loaders into a form
suitable for direct loading into storage
-- that is, to make them self-loading.
Figure 76 shows the sequence of operations
required to produce a self-loading loader.

PREPARING THE LDRGEN DECK FOR ASSEMBLY

I The LDRGEN program as supplied by IBM is
in symbolic form as optional material on
punched cards. Before the LDRGEN source
deck can be assembled for use, the address
of the card reader-punch upon which the
self-loading loaders are to be written
must be defined. This is accomplished by
inserting an Equate card in the LDRGEN
source deck just before the END card. The
format of the Equate card is:
r-------T---------T-----------------------,
I Name I Operation I Operand I
t-------+---------+-----------------------~
IOUTPUT IEQU IA decimal or I
I I I hexadecimal I
I I Iself-defining value I
I I lequivalent to the I
I I laddress of the output I
I I I unit. I l _______ ~ _________ ~ _______________________ J

Once the Equate card has been inserted
in the deck, the LDRGEN program can be
assembled.

RUNNING A JOB

In order to produce a self-loading loader,
both the assembled loader (to be
regenerated in self-loading form) and the
assembled LDRGEN program must be loaded
into storage. Since neither is
self-loading, a separate load proJram must
be used. Neither of these programs can
overlay the self-loading loader used to
load them. Two such programs are
available in self-loading form: the
Absolute Loader and the Relocating Loader.
The use of each is described in the
following text.

r---,
1 1
1 r-----------, r-----------, 1
1 Loader 1 Assembler 1 Assembled 1 LDRGEN 1 Self-Loading 1
1 Source -->1 Program 1--> Loader -->1 Program 1--> Loader 1
1 Program lion Cards lion Cards 1 1 L ___________ J L ___________ J 1

I I L ___ J

Figure 76. The LDRGEN Program

Using the Absolute Loader

Since the Absolut:e Loader loads programs
into the storage locations assigned to
them by the assembler, care must be taken
to ensure that none of the programs to be
loaded overlays another.

To use the Absolute LoadE:!r, one must
have:

1.

2.

3.

4.

The Absolute Loader in self-loading
form.

An assembled LDRGEN program.

The assembled loader to be regenerated
in self-loading form. Note that the
storage locat,ions at which the loader
was assembled are the ones assigned to
the self-loading loader produced by
the LDRGEN program.

Several Replace cards. These cards
replace data in the LDRGEN program.
They define addresses in the assembled
loader and, if applicable, specify the
number of duplicate self-loading
loader decks to be produced by the
LDRGEN program. The addresse~s in the
assembled loader that they specify and
the places in the LDRGEN program at
which these addresses are inserted are
shown in the following lists.

Address of Symbol
in Assembled Loader

ALPHA
ALPHA
BETA
IOTA
OMEGA

Inserted at
Symbolic Location
in LDRGEN Program

ALPHAA
ALPHAB
BETAA
IOTAA
OMEGAA

If duplicate self-loading decks are
desired, a Replace card is used to
insert the number of duplicates
desired in a half-word area in the
LDRGEN program named CON.

To run a job, the self-loading Absolute
Loader is placed in the card read hopper.
The assembled loader is placed behind it.
The Replace cards are inserted in the

assembled LDRGEN deck immediately after
the Text cards, and the entire deck is
placed behind the assembled loader in the
card reader hopper. The card reader-punch
upon which the self-loading loader is to
be written is prepared for use. Then the
load-unit switches on the system control
panel are set to address the card reader,
and the load key is pressed.

Using the Relocating Loader

Since the Relocating Loader loads programs
into storage at the locations specified by
Set Location Counter <SLC) cards, care
must be taken when s.pecifying these cards
so as to ensure that the programs to be
loaded do not overlay one another. SLC
cards are described in the Basic Utility
Programs section.

To use the Relocating Loader, one must
have:

1. The Relocating Loader in self-loading
form.

2. An assembled LDRGEN program.

3. The assembled loader to be regenerated
in self-loading form. Note that the
storage locations into which this
program is loaded by the Relocating
Loader are the ones assigned to the
self-loading loader produced by the
LDRGEN program.

4. A single Replace card, if duplicate
self-loading decks are to be produced
by the LDRGEN program. The Replace
card inserts the number of duplicates
in a half-word area in the LDRGEN
program called CON. Note that the
Replace cards that define addresses
when the Absolute Loader is used are
not required in this case. The
Relocating Loader performs this
function automatically.

To run a job, the self-loading
Relocating Loader is placed in the card
read hopper. The assembled loader is
placed behind it. If applicable, the

Basic Utility Programs Operating Procedures 127

Replace card (for duplicate decks) is
inserted in the assembled LDRGEN deck
immediately after the Text cards, and the
entire deck is placed behind the assembled
loader in the card read hopper. A Load
Terminate card, with LDRGEN in columns
17-22, is then placed in the card read
hopper. The card reader-punch upon which
LDRGEN will write the self-loading
program(s) is prepared for use. The
load-unit switches on the system control
panel are set to address the card reader
and the load key is pressed.

128 BPS Basic Assmb. & Utile Progs.

INPUT/OUTPUT SUPPORT PACKAGE

IBM supplies a group of routines designed
to provide the programmer with the coding
required to use input/output devices.
This group of routiries is called the
Input/Output Support Package.

I

The routines are available in symboli~
form. The use of the IBM-supplied decks
is exclusively the task of the programmer
and, therefore, will not be described in
this publication. For detailed
information on the Input/Output Support
Backage, refer to the Basic Utility
Programs section of this manual.

A program wait occurs whenever the Basic
Assembler or Basic utility programs find
it necessary to communicate with the
operator. A program wait is indicated by
the wait light on the system control
panel.

When a program wait occurs, the three
low-order bytes of the current PSW contain
a three-character code, each character
consisting of eight bits. This code
identifies the reason for the program
wait. This code can be displayed on the
system control panel through use of the
storage-select switch and the address
switches. The storage-select switch is
set to display the current PSW. The
address switches are set to display the
three low-order bytes in thePSW. Smaller
System/360 models may display only the
last byte or the last two bytes.

The first character of the code
identifies the program being executed when
the program wait occurred. The characters
and the programs with which they are
associated are shown in the following:
r------------T----------------------------,
I Character I Program I
~----.--------+--,-------------------------~
I A I Assembler (both phases) I
I 1 I Assembler (Phase 1 only) I

I 2 I Assembler (Phase 2: only) I

I D I Dump Programs I
I G I Loader Generator I

I I I I/O Support Package I

I L I Loaders I L __________ .L _______________ ____ . ________ J

The third character of the code can be
one of the following:

A Operator action is necessary. No
decision on the part of the operator
is required.

D Operator action is necessary. The
operator must, however, make a
decision on the course of action to
be taken.

S A program wait has occurred because
of a machine error. The job cannot
continue. SEREP interface has been
set up, and the SEREP program should
be loaded and executed. Save the
SEREp1 printout for Field
Engineering analysis.. If attention
is required, Field Engineering
should be notified. Once SEREP has
completed its processing, the
operator must re-initialize the
system to rc~run the

PROGRAM WAITS AND OPERATOR MESSAGES

error-interrupted job or to proceed
with the next job.

W A program wait has occurred because
of a program check.. The job cannot
continue.

I Operator information only

If the installation has provisions to
print operator messages, the
three-character code is printed on the
output device. In some cases, the code is
followed by a descriptive message. In
others, it is followed by a string of
hexadecimal characters which define the
conditions that exist as the result of an
erroneous I/O operation.

The following is a list (in
alphabetical order) of all possible
message codes and their hexadecimal
equivalents. It is provided to enable
easy translation of the display on the
system control panel into the proper
message code.

Message Hexadecimal
Code Equivalent

AlA
AID
AIS
AlvIS
APW
DEA
DRA
DTA
GCS
GDD
GDS
GEA
GIA
GMS
GNS
IMS

C1C9Cl
C1C9C4
C1C9E2
C1D4E2
C1D7E6
C4C5Cl
C4D9Cl
C4E3Cl
C7C3E2
C7C4C4
C7C4E2
C7C5C1
C7C9C1
C7D4E2
C7D5E2
C9D4E2

Message Hexadecimal
Code Equivalent

IOD
lOS
I1D
I1S
13S
LAA
LDA
LED
LKA
LOA
LPA
LUA
lEI
2EI
2HA
2SA

C9FOC4
C9FOE2
C9F1C4
C9F1E2
C9F3E2
D3C1C1
D3C4C1
D3C5C4
D3D2Cl
D3D6C1
D3D7C1
D3E4C1
F1C5C9
F2C5C9
F2C8C1
F2E2C1

The program waits and messages
presented in the following paragraphs are
grouped according to the programs with
which they are associated. Note that the
I/O support package is built into each of
the utility programs. Therefore, program
waits listed under the I/O support package

1SEREP (System Environment Recording,
Editing, and printing) provides Field
Engineering with detailed, accurate
information about the system's environmenT­
at the time of a machine failure.

Program Waits and Operator Messages 129

can occur during the execution of any of
the uti.lity programs. Where "Not typed"
appears in parentheses after the
three-character code, the code is
displayed in the PSW but not typed on the
output device.

TWO PHASE DUMP PROGRAM

DEA END OF DUMP-PHASE 2

Phase 2 of the two-phase dump program
has been completed.

Action: Proceed with the next job.

DRA MT NEXT INPUT REEL

Phase. 2 of the two-phase dump program
has encountered an end-of-reel
condition on its input tape. The reel
has been rewound and unloaded.

Action: Mount next reel on the input
unit and make the device ready. Then,
press the interrupt key on the system
control panel to proceed with the job.

DTA MT NEW OUTPUT REEL

Phase 1 of the two-phase dump program
has encountered an end-of-reel
condition on its output tape. The reel
has been rewound and unloaded.

Action: Mount a new work tape on the
output unit. Then, press the interrupt
key on the system control panel to
proceed with the job.

130 BPS Basic Assmb. & Utile Progs.

SELF-LOADING DUMP PROGRAM

DEA END OF DUMP

The self-loading dump program has been
completed.

Action: Proceed with the next job.

THE BASIC ASSEMBLER

AlA (not typed)

The assembler has detected an I/O error
which can be retried.

Action: Continue the program by
depressing the Interrupt key. If after
five retries the error still exists,
load and execute SEREP.

AID (not typed)

The assembler is unable to properly
perform an I/O operation. The address
of the associated I/O unit is contained
in the low-order 11 bits of general
register 2.

Action: The action taken varies with
the type of operation in error.

• Tape operation - Core location 44
hexadecimal (CSW unit status)
should be interrogated.

1. If the unit exception bit (bit
7) is set, an end-of-file
condition on input or an
end-of-reel condition on output
has occurred. The address of
the device causing the unit
exception will be located in
the lower half of register 2.

The operator should change that 2EI
tape and press the interrupt
key to continue the job.

2. If the unit exception bit is
not set, the operator should
press the interrupt key to
retry the operation. If after
five retries the condit,ion
still exists, the operator
should dump all of storage and
discon·tinue the job.

• Read - If a reader check light is
on, the cards in the reader should
be run out and reloaded. 'Ilhe
operator should then press the
interrupt key to retry the
operation. If after one retry the
condition still exists, the
operator should mark the card in
error and discontinue the job.

• Punch - Rerun the job.

• Write Line - Press interrupt key to
repeat operation.

• Space or Eject - Press interrupt
key to repeat operation.

AIS (not typed)

The assembler has detected an equipment
failure while trying to execute an I/O
operation. SEREP interface has been
set up.

Action: Load and execute SEREP.

AMS (not typed)

A machine check has occurred.

Action: Load and execute SEREP.

APW (not typed)

lEI

A program check has occurred. The
assembler program has been altered in
some way.

Action: Dump all of storage and
compare against listing to find the
area altered. Correct if possible and
rerun the job.

Phase 1 of the assembler has been
completed.

Action: Proceed with Phase 2.

Phase 2 of the assembler has been
completed.

Action: Proceed with next job.

2HA

2SA

Phase 2 of the assembler requires that
blank cards be placed in the 1442-N1 or
2520-Bl card hopper.

Action: Remove any cards in the 1442
card hopper, insert blank cards, and
replace the cards just removed.

Phase 2 of the assembler requires a
blank card at the punch station or
blank cards in the 1442-Nl or 2520-Bl
card hopper.

Action: Remove cards from the hopper,
rUn cards out of the 1442-N1 or
2520-Bl, and place them at the bottom
of the cards just removed from the
hopper. Place blank cards in the
hopper and place the cards removed from
the 1442-Nl or 2520-Bl on top of the
blanks. Make the unit ready and press
the interrupt key on the system control
panel to continue.

THE ABSOLUTE AND RELOCATING LOADERS

Several of the program waits associated
with the load programs concern load
control cards. References to these cards
are made in abbreviated form in the
descriptions that follow. The abbreviated
titles and their equivalent names are
given in the following list:

ESD
ICS

External Symbol Dictionary card
Include Segment card

Program Waits and Operator Messages 131

LOT
REP
RID
SLC

Load Terminate card
Replace card
Relocation List Dictionary card
Set Location Counter card

Note: The preceding cards are described
in the Basic Utility Programs section.

LAA WAIT

The relocating loader has encountered
an invalid RLD or ESD card in the
program being loaded.

Action: Mark card and discontinue job.

LDA WAIT

The relocating loader has encountered
duplicate entry points in the program
being loaded.

Action: Discontinue job.

LED WAIT

One of the following situations has
occurred:

1. The relocating loader has
encountered an end-of-file
condition without having read an
LDT card.

2. The absolute loader has encountered
an end-of-file condition without
having read an END card.

Action: Discontinue job if the program
is being loaded from tape. If the
program is being loaded from cards,
make the reader not ready. A card with
a 12-2-9 punch in column one and the
characters END or LDT (whichever is
appropriate) in columns two through
four is then placed in the reader
hopper. The device is made ready and
the interrupt key on the system control
panel is pressed.

Note: The programmer should have
included the proper LDT or END card in
his source program. The operator
action described in the preceding does
not guarantee proper execution of the
user's program.

LKA (not typed)

132 BPS Basic Assrob. & Ut~l. Progs.

The absolute or relocating loader has
encountered an invalid SLC, ICS, or REP
card in the program being loaded. This
message is displayed but not typed for
an invalid hexadecimal character.

Action: Mark card and discontinue job.

LOA WAIT

An attempt has been made to load a
program into main storage locations
reserved for use by the absolute or
relocating loader.

Action: Discontinue job.

LPA (not typed)

A program check has occurred. Note
that this wait can occur during the
execution of any program loaded into
storage by either the Absolute or
Relocating Program Loader.

Action: Discontinue job.

LUA WAIT

The relocating loader has encountered
an undefined symbol in an SLC, ESD type
2, or LDT card in the program being
loaded.

Action: Mark card and discontinue job.

INPUT/OUTPUT SUPPORT PACKAGE

The Input/Output Support Package is used
by the IBM-supplied utility programs and
by the programmer. In the case of the
utility programs, the I/O package is built
in prior to their distribution.

When the input/output support routines
are unable to properly execute an I/O
operation, a program wait occurs to notify

the operator of the unusual condition, and
SEREP Interface is set up. An operator
message accompanies the program wait if
the installation has provisions for
printing messages.

The Input/Output Support Package has
three levels of messages. They are:

1. CCC
2. CCC IOOPSW CSW
3. CCC IOOPSw CSW SBYTES

where:

CCC
is the three-character code which
identifies the reason for the message.

IOOPSW

CSW

is the contents of the old input/output
program status word in hexadecimal
notation. The channel and unit. number
of the I/O device in error is contained
in bits 21-31 of this word.

is the contents of the channel status
word associated with the operat.ion in
error. It is in hexadecimal notation.

SBYTES
is the contents of the six sense bytes
in hexadecimal notation.

All three levels will only appear when
the full complement of error message
expansions is included. The Basic Utility
Programs, other than the Basic I/O Support
Package, contain only the first level.

IMS (not typed)

A machine check has occurred.

Action: Load and execute SEREP.

IOD IOOPSW CSW SBYTES

The input/output support package is
unable to properly perform an I/O
operation.

Action: The action taken varies with
the operation in error:

• Tape - If unit is not ready, make
ready and press console Interrupt to
retry operation. If retry is
unsuccessful, discontinue job.

• Punch Card - If the punch is not
ready or out of cards, make it ready
and press console Interrupt to retry

the punch operation. If retry is
unsuccessful, discontinue job.

• Read Card - If the reader is not
ready or out of cards, make it ready
and press console Interrupt to retry
the read operation. If retry is
unsuccessful, discontinue job.

• Write a Line - Press interrupt key
to repeat the operation. If retry
is unsuccessful, discontinue job.

• Skip or Space - Press interrupt key
to repeat the operation. If retry
is unsuccessful, discontinue job.

lOS IOOPSw CSW SBYTES

The input/output support package is
unable to properly execute an
operation. The standard retries have
been attempted and the error persists.

Action: Load and execute SEREP.

110 IOOPSW CSW SBYTES

One of the following has occurred:

1. A request to start an I/O operation
has been rejected because of a
programming error. In this case,
the busy bit (bit 35) in the
channel status word is off.

2. An overlapped I/O operation has
been completed unsuccessfully while
an attempt was being made to start
a new operation. In this case, the
busy bit in the channel status word
is on.

Action: If the busy bit in the channel
status word is off, press the interrupt
key on the system control panel to
repeat the request for an I/O
operation. If the operation is again
rejected, discontinue the job and call
the customer engineer. If the busy bit
in the channel status word is on, rerun
the job.

liS IOOPS~ CSW SBYTES

One of the following has occurred:

1. A request to start an input/output
operation has been rejected because
of a machine error.

Program Waits and Operator Messages 133

2. An overlapped I/O operation has
been completed unsuccessfully while
an attempt was being made to start
a new operation.

Action: Load and execute SEREP.

I3S IOOPSW CSW SBYTES

The Input/Output Support Package
attempted to use an I/O device which
was not operational or not available.

Action: Load and execute SEREP.

LOADER GENERATOR PROGRAM

GCS (not typed)

A channel error has occurred.

Action: Load and execute SEREP.

GDD (not typed)

The LDRGEN program has attempted to
punch a card but the operation resulted
in an error.

Action: Mark the erroneously punched

134 BPS Basic Assmb. & Utile Progs.

card and press the .interrupt key to
repeat the operation.

GDS (not typed)

A device failure has occurred.

Action: Load and execute SEREP.

GEA (not typed)

The LDRGEN program has been executed.
This is a normal end-of-job situation.

Action: Proceed with next job.

GIA (not typed)

The punch unit has run out of blank
cards.

Action: Place blank cards in the punch
hopper and press interrupt key to
continue job.

GMS (not typed)

~achine check has occurred.

Action: Load and execute SEREP.

GNS (not typed)

The device specified as the output unit
in the LDRGEN program is not available.

Action: Load and execute SEREP.

A sample Card Assembler and Utilit.ies
program is provided to test the Basic
Assembler and Basic Utility Programs
(Card) supplied to the user. The sample
problem sorts, in ascending order, 16 full
word constants located at address "IN" and
stores them at address "OUT". The 16
sorted numbers are also printed on the
output device, and a message is typed on
the IBM 1052 Printer-Keyboard at the end
of the run.

Identifying the Card Deck

The sample program deck (Figure 77)
consists of 72 source cards. The first
card of the sample program is identified
by:

r---,
I CARD COLUNNS I
~-------T------~-------------T-----------~
I I 32-35 I 38-39 I 73-80 I
~ -------+-------+._------------+-----------~
I I I I I
I I ICTL I 25 I SMPL1030 I
I I I I I l _______ L _______ L _____________ L ___________ J

Each source card contains SMPL, the
program identifier, in columns 73-76,
followed by the sequence number in columns
77-80. The last source card is identified
by:

r---,
I CARD COLUMNS I
~-------T-------T -------------T---·--------~
I I 32-34 I 38-39 I 73-80 I
~-------+-------+-------------+-----------~
I I I I I
I I END I GO I SMPL1740 I
I I I I I l __ _____ L _______ L _____________ L ___ . ________ J

Sixteen data cards are included in the
source deck as DC's. The first data card
is identified by:

r---,
I CARD COLUMNS I
~-------T------~-------------T-----------~
I 25-26 I 32-33 I 38-48 I 73-80 I
~-------+-------+-------------+-----------~
I I I I I
I IN I DC I X'00000005' I SMPL1440 I
I I I I I l _______ L _______ L _____________ L ___________ J

CARD ASSEMBLER AND UTILITIES SAMPLE PROB~EM

The last data card is identified by:

r---,
I CARD COLUMNS I
~-------T-------T-------------T-----------i
I I 32-33 I 38-48 I 73-80 I
~-------+-------+-------------+-----------~
I I I I I
I I DC I X' 00000008' I SHPL1590 I
I I I I I l _______ L _______ L _____________ L ___________ J

Running the Sample Problem

1. The sample problem is supplied with 16
full word hexadecimal constants
starting at address "IN." If left in
place and run as described here, these
numbers will sort from 0 through 15.
If the user wishes to sort 16 other
numbers, he may replace the original
numbers with his own. The first full
word constant must be given the name
"IN."

2. Assemble the sample program. Prepare
Phase 1 and Phase 2 Configuration
Cards as described in the Assembler
Initialization section. Insert Phase
1 Configuration Card in the Phase 1
deck of the Basic Assembler and Phase
2 Configuration Card in the Phase 2
deck of the Basic Assembler.

3. If the system has a storage capacity
of greater than 8K and the user
desires to assemble the Dump Program
source deck:

a. Add to the Single-Phase Dump
Program an ENTRY SINTRY statement,
and

b. Supply to the Dump Program

• the address of the available
output device (OUTDEV)

• the address of the available
IBM 1052 Printer-Keyboard
(TYPWTR), and

• the storage capacity of the
computer (DSTOPL)

See description in Basic Utility
Programs.

or

Card Assembler and Utilities Sample Problem 13~)

If the syst".em has a storage capacity
of 8K, or if the user desires to use
the Single-Phase Dump Program object
deck supplied by IBM to avoid having
to assemble:

a. Remove the Load End card (the last
card) from the assembled Dump
Program deck as supplied by IBM.

b. Using Replace cards, alter the
constants OUTDEV, TYPWTR, and
DSTOPL as described in the Basic
utility Programs section. -----

c. If the High Absolute Loader is
used, remove the two symbolic
address constants (DUMP and SINTRY
+ 12) from the IBM supplied Sample
Problem. These two cards are
identified by an * in column 71.
Replace the address constants with
the following two cards:

column 25
ADDUMP DC A(X'90')
ADSIN DC A(X'C9C')

d. If the High Absolute Loader is
used, assemble the Sample Problem
at starting address 1240
(hexadecimal) •

4. Assemble the Dump Program, if the
source deck is used.

5. Place in the card reader these cards
in the following order:

Loader Assembled Deck (see Note 1)

Assembled Dump Program

Assembled Sample Problem

Load Terminate Card (see Note 2)

Note 1: On an 8K system, the High
Absolute Loader must be used

136 BPS Basic Assmb. & Utile Progs.

to load the sample problem
and Dump Program. However,
on a system with greater
storage capacity, the
Relocating Loader may, if
desired, be used instead.

Note 2: SAMPLE must be in column
17-22. This card must be
prepared by the user. See
the Basic Utility Programs
section.

6. Load and execute program.

7. At the end of the run, the Wait state
will be entered and FF will be in the
instruction address portion of the
current PSW.

8. The output will be as follows:

a. On the output device will be
printed: the console listing and
general registers, followed by the
name "SORTDUMP", followed by the
16 numbers sorted in ascending
order.

b. On the IBM 1052 Printer-Keyboard
the following message will be
typed: nEnd of Sample Problem
Demonstration".

Figure 78 shows (for illustrative
purposes only) the Configuration Cards
used to assemble the Sample program. The
user must prepare his own Configuration
Cards in order to tailor the Basic
Assembler program for operation at his own
installation and to print or suppress
program listings, or to print only error
listings.

Figure 79 shows the Sample Problem
output as produced using the Single-Phase
Dump Program object deck and the High
Absolute Loader.

---------------------------_._---,

Icn
SAMPLE START

EXTRN
EXTRN

GO BALR
USING
MVC
LA
LA

SET LA
L

LOAO L
CLR
BC
XR
XR
XR
ST

SUB S
BC
ST
S
BC
l
BALR
DC
DC
L
L
LA
LA
LA
BALR

UNEX LPSW
LOOP LA

LH
S
STH
BC

CONI DC
CON4 DC
IN DC

DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC

our os
OS

ENDJOB DC
DC

ENDMSG DC
DC

DC
ADSIN DC
ADDUMP DC
L[ST DC

DC
DC
DC
DC
END

25
0 STARTING ADDR
DUMP DEFINE DUMP
SINTRY DEFINE SINTRY
13,0 SET UP BASE REGISTER
*,13
OUTl(4) ,I N MOVE DATA TO OUT
6,OUT POINT TO TABLE TOP
7,15 SET FOR 15 PASSES
4,56 SET INDEX REGISTER
2,010·.6) LOAD FROM TABLE TOP
3.414,6) LOAD FROM TABLE
2.3 COMPARE VALUES
12.SU!B TOP = OR LESS BRANCH
2.3 EXCHANGE VALUES
3.2 EXCHANGE VALUES
2,3 EXCHANGE VALUES
3,4(4,6) STORE LARGER BACK
4.CON4 REDUCE INDEX
10,LO'AD LOOP IF MORE TO SORT
2,010.61 STORE IN TABLE TOP
7,CONl REDUCE PASS COUNTER
7,LOOP
15.ADDUMP CALL DUMP PROGRAM
14.15
X'C05001' DUMP CAll PARAMETERS
AL3ILISTI
1.ADS·IN ADDR OF TYPWTR
1,0111
2.ENDMSG ADDR OF MSG
3,35 SIZE OF MSG
4.UNEX UNIr EXCEPTION AD DR
0,1
ENDJOB END OF JOB
6.4(6)
2. SET"2 MODIFY
2.CON4 INDEX
2,SEh-2 INSTRUCTION
15. SE r RETURN
F'l' CONSTANT OF 1
F'4' CONS rANT OF 4
X'OOOOOO05'
X'OOOOOOOA'
X' 00000001'
X'000OOO07'
X'OOOOOOO3'
X' OOOOOOOC'
X' 00000 OOF'
X'OOOOOO09'
X' 00000008'
X'OOOOOO04'
X'OOOOOOOO'
X'OOOOOOOE'
X'000OOO06'
X' OOO()OOOD'
X' 00000002'
X'OOOOOOOS'
16F OUTPUT AND WORK AREA
00 BOUNDARY ALIGNMENT
X'OO020000' PSW WITH WAIT BIT
X' OOOOOOFF'
C'END OF SAMPLE PR' TYPWTR MSG
C'OBLE~ DEMONSTRAT'

C'ION'
AISINTRY+12) TYPWTR ADDR
AIDUMP) DUMP PROG ADDR
X'CA' DUMP CONTROL LIST
AL310UTl
X'OO'
AL310UT+64)
C'SORfDUMP'
GO

SMPLI030
SMPLI040
SMPLI050
SMPLI060
SMPL 1070
SMPLI080
SMPLl090
SMPLI100
SMPLlllO
SMPLl120
SMPLl130
SMPLl140
SMPLl150
SMPLl160
SMPLl170
SMPLl180
SMPLl190
SMPLl200
SMPLl210
SMPL1220
SMPLl230
SMPL 1240
SMPLl250
SMPL1260
SMPL1270
SMPLl280
SMPLl290
SMPL1300
SMPLl310
SMPLl 320
SMPL 1330
SMPLl340
SMPLl350
SMPL 1360
SMPL 1370
SMPLl380
SMPLI390
SMPL1400
SMPL1410
SMPL1420
SMPL1430
SMPL 1440
SMPL1450
SMPL1460
SMPLlHO
SMPLl480
SMPLl490
SMPL1500
SMPLl510
SMPL 1520
SMPL1530
SMPL1540
SMPL1550
SMPLl560
SMPLl570
SMPLl580
SMPL1590
SMPL1600
SMPLl610
SMPL 1620
SMPL1630
SMPL 1640
SMPL 1650

SMPL1660
* SMPLl670
* SMPLl680

SMPL1690
SMPL1700
SMPLl710
SMPL1720
SMPLl730
SMPLl740

!

Data Cards

l __ 1

Figure 77. Program Deck for Sample Problem

Card Assembler and Utilities Sample Problem 137

Phase 1 Phase 2

~
.REP 000090 01000C,OOOD,OOOOi001F,OOOE,ooon, 0303, 0310 I I I I I I I I
I I :REP 000090 01 OOOC,'OOOC, 000(1, OOtF ,OOOE,'OOOD, 0303,0340

00
12

11

12

33

44

55

66

77

8 8

II
12

I I I I I I I
I I

000000111101001011101111011111111001111011110110101100 10000000000000000000000000
12345678910"UgU~ffin~~w~nn~~~vn~W~U~MH~n~~~~ao«~~QO~~~~~~~~D~~W~~~~~~D~~mnnnM~Mnn~w

11

1222

33333333333333333331133311333313333133331333313131131333333333333333333333333333

44144444444144444444444444444444444444

5 51 5 5 5 5 5 5 55 15

6666666666666666666666666666666666166666666666666666 6 6 6 6 6 6 6 666666666666666666666

777177 i 7

888888888888888888881888 81s 8 8 818 8 8 818 8 8 818 8 8 818 8 B 818

1199999999199999999999999.99999999999999999999999999 9 9 9 9 9 9 9 9 9 9 9 9 99999999999999999
123456 78910"~8N~ffinffiijW~nn~§~Vn~WnU"MH~~~~"~ao«~OQO~~~~~~~~D~~Wm~~"~~D~~mnnnN~Mnn~W

lIB .. SOB' I

Figure 78. Phase 1 and Phase 2 Configuration Cards for Sample Problem

138 BPS Basic Assmb. & Utile Progs.

001240

001240

001242
(J01248
00124C
001250
001254
001258
00125C
00125E
00126:.!
001204
001266
001268
00126C
001210
001274
001218
00127£.
0012tlO
001284
0014:86
001289
00128C
001290
001291t
001298
00129(;
OOl2AO
0012A2
OOl2Ao
0012AA
001lAI:
00ll8~

001286
00128A
00128C
0012CO
0012C4
0012C8
0012C(;
001200
001204
001208
00120C
0012EO
0012E4
00121:8
0014:tC
0012fO
0012flt
0012f8
0012fC
001300
00130lt
001348
001348
00134C

001350
001358
00D60
00136&
001370
001373
001374
001::118
00131(;
001310
001380
001381
001381t
OC1240

05 DO

02 3f V OC:.!
41 60 0 OC2
41 10 0 OOf
41 40 0 038
58 lO 6 000
5t! 34 6 004
15 23
41 CO 0 02A
17 23
11 32
11 23
50 34 6 004
St! 40 0 01E
41 AU 0 016
50 20 6 000
Stl 1(. 0 01A
4110 D 064
58 fG I) 136
05 Ef
C05001
00137C
58 10 0 132
58 11 0 000
41 20 0 10E
41 30 0 0:.!3
41 40 0 060
05 01
82 00 0 106
41 66 0 004
48 20 DOlO
58 2C 0 OlE
40 20 DOlO
41 fC 0 OOE
0000
00000001
00000004
C0000005
OOOOOOOA
OOOO(JOOI
00000007
00000003
OOOOOOOC
OOOOOOOf
00000009
OOOOOOOB
00000004
00000000
OOOOOOOE
00000006
OOOOOOO!)
00000002
00000008

00020000
OOOOOOff

001242
U 082

C50SC44006C640El
C104D703C5400709
C6C2D3C50440C4C5
04D605E2E309CIE3
C90605
00
00000C9C
00000090
CA
001304
00
001344
E2D6D9E3C4f:4D4D7

IC Tl
SAMPLE START

EXTRN
EXTRN

GO BALR
USING
MVC
LA
LA

SET LA
L

LOAU L
CLR
tiC
XR
XR
XR
ST

SU8 S
BC
ST
S
BC
L
BALR
DC
DC
L
L
LA
LA
LA
BALR

UNEX LPS\Ii
LOOP LA

LH

CONI
CON4
IN

our

S
STH
BC

DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
OC
DC
DC
DC
DC
DC
DC
DC
OS
0::;

ENOJ.QtI DC
DC

ENDHSG DC

DC

DC

AUSIIN DC
ADOUHP DC
LIST DC

DC
DC
OC
DC
END

2~

X'1240'
DUMP DEfINE DUHP
SINTRY DEfINE SlNTRY
13,0 SET UP BASE REGISTER
*,13
OUT(64) ,IN
6,OUT
1,1S
4,56
2,010,6)
3,4(4,/»)
2,3
12,SUB
2,3
3,2
2,3
3,4 (4,6)
4,C0N4
10,LOAD
2,0(0,/»)
7,CONI
7,LOUP
15,AUDUMP
14,lS
X'COSOOl'
AU (LIST)
1,ADSIN
1,0(1)
2,ENOMSG
3,35
4,UNEX
0,1
ENDJOtl
6,4(6)
2,SET+2
2,CON't
2,SET+2
15,SET

f'l'
f'4'
X'OOOOOOOS'
X'OOOOOOOA'
X'OOOOOOO1'
X'00000007'
X'00000003'
)('OOOOOOOC'
x'OOOOOOOf'
X'00000009'
)('OOOOOOOB'
X'00000004'
)('00000000'
)('OOOOOOOE'
X'00000006'
x'OOOOOOOO'
X'00000002'
X'00000008'
16f
00
X'00020000'
X'OOOOOOff'

MOVE DATA TO OUT
POINT TO TABLE TOP
SET fOR 15 PASSES
SET INDEX REGISTER
LOAD FROM TABLE TOP
LOAD fROM TABLE
COMPARE VALUES
TOP = OR LESS BRANCH
EXCHANGE VALUES
EXCHANGE VALU ES
EXCHANGE VALUES
STORE lARGER BACK
REDUCE INDEX
LOOP If MORE TO SORT
STORE IN TABLE TOP
REDUCE PASS COUNTER

CAll DUMP PROGRAM

OUMP CALL PARAMETERS

AOOR Of TYPWTR

ADDR Of MS6
SIZE Of MSG
UNIT I:XCEPTION ACDR

END Of JOB

MODIFY
INDEX

INSTRUCT ION
RETURN

CONSTANT Of 1
CONSTANT Of 4

OUTPUT AND WORK AREA
BOUNDARY ALIGNMENT
PSW WITH WAIT BIl

C'ENO Of SAMPLE PR' TYPWTR HSG

C'OBLEM DEMDNSTRAT'

C'ION'

A(X'C9C')
A(X'90')
X'CA'
AU (OUT)
X'OO'
AU (OUI+04)
C'SORTDUHP'
GO

DUHP CONTROL LIST

SMPLI030
SMPlI040
SMPL 10S0
SMPL1060
SMPl1070
SMPl1080
SMPlI090
SHPlllOO
SMPLl110
SMPL1l20
SMPL 1130
SMPL 1140
SMPL 11 SO
SHPl1160
SHPl1170
SMPl1l80
SMPL1190
SMPL 1200
SMPL1210
SMPL 1220
SMPl1230
SHPl1240
SHPL 1250
SMPl1260
SMPL1270
SMPl1280
SMPl1290
SHPL1300
SHPL1310
SMPL1320
SHPLl330
SMPl1340
SMPl1350
SMPL1360
SMPl1370
SHPL 13110
SHPL 1390
SMPLl'tOO
SMPl1410

SMPl1420
SMPL1430
SHPl1440
SMPl14S0
SMPL 1460
SMP1l4l0
5HPl1480
SMPl1490
SMPL1500
SMPL 1510
SMPL 1520
SMPl1530
5MPL 1540
SMPl1550
SMPl1560
SMPl1570
5MPL 1580
SMPL1590
SMPL 1600
SMPl1610
SHPL1620
SHPL1630

SMPl1640

SHPl16S0

SHPL1660

SHPL1690
SMPl1700
SMPll710
SMPL1720
SHPl1730
SMPl1740

[_________________ ~ ___________ ~ _______________________________________ ==J
Figure 79. Assembly Listing for Sample Problem (Part 1 of 3)

Card Assembler and Utilities Sample Problem 139

Lec 0 OOOO~CD~80000CAO
GLO PSWS 000000000000'9Cl
CS. OOOOOOOOO~OCOOOO

NEW PSWS OOCCOOOOOOU018B8

LUC 8
0004000~5000072A

I... A loll OOOOlt:LJO
00C6000000E2f:5C3

0000043000004Af4 lOC 16
040000054CeC4042 45901fE8D201104A
00004C04 TIMER 16139200
01060000000307C1 000lOOOOOOC904E2

020013E000001790
ff04000060001604
E5f204F2
0000000000001814

GRtGS 0 - 7
GKEGS 8 - 15

DCOC16C4 40CCll40 OOOOOOOE
00000080 000L1700 02C~O,C4

COOOOOOf fffffffC 00001719 0000133C 00000000
OOOOOOOB 000013tiO 40001242 40001286 400000Q2

SOtl-TDUHP

001304 OOCOOOOOO(0000000001 OOOOOOOGOl OOOOOOUOOJ 0000000004 0000000005 0000000006 0000000007

001324 OOOCOOOOOc 000000000'1 0000000010 0000000011 000000001l 0000000013 0000000014 0000000015

[----------------------__ 1
Figure 79. Output Device Listing for Sample Problem (Part 2 of 3)

lEI

2EI

END OF SAMPLE PROBLEM DEMONSTRATION

[___ J
Figure 79. 1052 Printer-Keyboard Nessage for Sample Problem (Part 3 of 3)

140 BPS Basic Assmb. & Util. Progs.

APPENDIX A. CHARACTER CODE~

r------------T-----------------T---------T---------T------------,
I 8-Bit I Character Set I I I I
I BCD I Punch I I Hexa- I Printer I
I Code I Combination I Decimal I Decimal I Graphics I
~------------+-----------------+---------+---------+------------~

00000000 12,0,9,8,1 I 0 00 I
00000001 12,9,1 I 1 01 I
00000010 12,9,2 I 2 02 I
00000011 12,9,3 3 03 I
00000100 12,9,4 4 04 I
00000101 12,9,5 5 05 I
00000110 12,9,6 6 06 I
00000111 12,9,7 7 07
00001000 12,9,8 8 03
00001001 12,9~8,1 9 09
00001010 12,9,8,2 10 OA
00001011 12,9,8,3 11 OB
00001100 12,9,8,4 12 OC
00001101 12,9,8,5 13 00
00001110 12,9~8,6 14 OE
00001111 12,9,8,7 15 OF
00010000 12,11,9,8,1 16 10
00010001 11,9,1 17 11
00010010 11,9,2 18 12
00010011 11,9,3 19 13
00010100 11,9,4 20 14
00010101 11,9,5 21 15
00010110 11,9,6 22 16
00010111 11,9,7 23 17
00011000 11,9,8 24 18
00011001 11,9,8,1 25 19
00011010 11,9,8,2 26 lA
00011011 11,9,8,3 27 lB
00011100 11,9,8,4 28 lC
00011101 11,9,8,5 29 ID
00011110 11,9,8,6 30 lE
00011111 11,9,8,7 31 lF
00100000 11,0,9,8,1 32 20
00100001 0,9,1 33 21
00100010 0,9,2 34 22
00100011 0,9,3 35 23
00100100 0,9,4 36 24
00100101 0,9,5 37 25
00100110 0~9,6 38 26
00100111 0,9,7 39 27
00101000 0,9,8 40 28
00101001 0,9,8,1 41 29
00101010 0,9,8,2 42 2A
00101011 0,9,8,3 43 2B
00101100 0,9,8,4 44 2C
00101101 0,9,8,5 45 2D
00101110 0,9,8,6 46 2E
00101111 0,9,8,7 47 2F
00110000 12,11,0,9,8,1 48 30
00110001 9,1 49 31
00110010 9,2 50 32 ____________ .L __ . ______________ .L __ . _______ .L _________ .L ___________ _

Appendix A 141

r------------T-----------------T---------T---------T------------,
I 8-Bit I Character Set I I I I
I BCD I Punch I I Hexa- I Printer I
I Code I Combination I Decimal I Decimal I Graphics I
~------------+-----------------+---------+---------+------------~

00110011 9,3 51 33
00110100 9,4 52 34
00110101 9,5 53 35
00110110 9,6 54 36
00110111 9,7 55 37
00111000 9,8 56 38
00111001 9,8,1 57 39
00111010 9,8,2 58 3A
00111011 9,8,3 59 3B
00111100 9,8,4 60 3C
00111101 9,8,5 61 3D
00111110 9,8,6 62 3E
00111111 9,8,7 63 3F
01000000 64 40 blank
01000001 12,0,9,1 65 41
01000010 12,0,9,2 66 42
01000011 12,0,9,3 67 43
01000100 12,0,9,4 68 44
01000101 12,0,9,5 69 45
01000110 12,0,9,6 70 46
01000111 12,0,9,7 71 47
01001000 12,0,9,8 72 48
01001001 12,8,1 73 49
01001010 12,8,2 74 4A
01001011 12,8,3 75 4B . <period)
01001100 12,8,4 76 4C <
01001101 12,8,5 77 4D (

01001110 12,8,6 78 4E +
01001111 12,8,7 79 4F
01010000 12 80 50 &
01010001 12,11,9,1 81 51
01010010 12,11,9,2 82 52
01010011 12,11,9,3 83 53
01010100 12,11,9,4 84 54
01010101 12,11,9,5 85 55
01010110 12,11,9,6 86 56
01010111 12,11,9,7 87 57
01011000 12,11,9,8 88 58
01011001 11,8,1 89 59
01011010 11,8,2 90 5A
01011011 11,8,3 91 5B $
01011100 11,8,4 92 5C * 01011101 11,8,5 93 5D
01011110 11,8,6 94 5E
01011111 11,8,7 95 5F
01100000 11 96 60
01100001 0,1 I 97 61 /
01100010 11,0,9,2 I 98 62
01100011 11,0,9,3 I 99 63
01100100 11,0,9,4 I 100 64
01100101 11,0,9,5 I 101 65
01100110 11;0,9,6 I 102 66
01100111 11,0,9,7 I 103 67
01101000 11,0,9,8 I 104 68
01101001 0,8,1 I 105 69
01101010 12,11 I 106 6A
01101011 0,8,3 I 107 6B , (comma) l ____________ _ ________________ ~ _________ ~ _________ ~ ____________ J

142 BPS Basic Assmb. & util. Progs.

r------------T-----------------T----------T---------T------------,
I 8-Bit I Character Set I I I I
I BCD I Punch I I Hexa- I Printer I
I Code I Combination I Decimal I Decimal I Graphics I
~------------+-----------------+---------+---------+------------~

01101100 0,8,4 108 6C %
01101101 0,8,5 109 6D
01101110 0,8,6 110 6E
01101111 0,8,7 111 6F
01110000 12,11,0 112 70
01110001 12,11,0,9,1 113 71
01110010 12,11,0,9,2 114 72
01110011 12,11,0,9,3 115 73
01110100 12,11,0,9,4 116 74
01110101 12,11,0,9,5 117 75
01110110 12,11,0,9,6 118 76
01110111 12,11,0,9,7 119 77
01111000 12,11,0,9,8 120 78
01111001 8,1 121 79
01111010 8,2 122 7A
01111011 8,3 123 7B #
01111100 8,4 124 7C @
01111101 8,5 125 7D I (quote)
01111110 8,6 126 7E =
01111111 8,7 127 7F
10000000 12,0,8,1 128 80
10000001 12,0,1 129 81
10000010 12,0,2 130 82
10000011 12,0,3 131 83
10000100 12,0,4 132 84
10000101 12,0,5 133 85
10000110 12,0,6 134 86
10000111 12,0,7 135 87
10001000 12,0,8 136 88
10001001 12,0,9 137 89
10001010 12,0,8,2 138 8A
10001011 12,0,8,3 139 8B
10001100 12,0,8,4 140 8C
10001101 12,0,8,5 141 8D
10001110 12,0,8,6 142 8E
10001111 12,0,8,7 143 8F
10010000 12,11,8,1 144 90
10010001 12,11,1 145 91
10010010 12,11,2 146 92
10010011 12,11,3 147 93
10010100 12,11,4 148 94
10010101 12,11,5 149 95
10010110 12,11,6 150 96
10010111 12,11,7 151 97
10011000 12~11,8 152 98
10011001 12,11,9 153 99
10011010 12,11,8,2 154 9A
10011011 12,11,8,3 155 9B
10011100 12,11~8,4 156 9C
10011101 12,11,8,5 157 9D
10011110 12,11,8,6 158 9E
10011111 12,11,8,7 159 9F
10100000 11,0,8,1 160 AO
10100001 11,0,1 161 Al
10100010 11,0,2 162 A2
10100011 11,0,3 163 A3
10100100 11,0,4 164 A4 ____________ ~ _________________ ~ _________ ~ _________ ~ ____________ J

Appendix A 143

r------------T-----------------T---------T---------T------------,
I 8-Bit I Character Set I I I I

I BCD I Punch I I Hexa- I Printer I

I Code I Combination I Decimal I Decimal I Graphics I

~------------+-----------------+---------+---------+------------~
10100101 11,0,5 165 A5
10100110 11,0,6 166 A6
10100111 11,0,7 167 A7
10101000 11,0,8 168 A8
10101001 11,0,9 169 A9
10101010 11,0,8,2 170 AA
10101011 11,0,8,3 171 AB
10101100 11,0,8,4 172 AC
10101101 11,0,8,5 173 AD
10101110 11,0,8,6 174 AE
10101111 11,0,8,7 175 AF
10110000 12,11,0,8,1 176 BO
10110001 12,11,0,1 177 Bl
10110010 12,11,0,2 178 B2
10110011 12,11,0,3 179 B3
10110100 12,11,0,4 180 B4
10110101 12,11,0,5 181 B5
10110110 12,11,0,6 182 B6
10110111 12,11,0,7 183 B7
10111000 12,11,0,8 184 B8
10111001 12,11,U,9 185 B9
10111010 12,11,0,8,2 186 BA
10111011 12,11#0,8,3 187 BB
10111100 12,11,0,8,4 188 BC
10111101 12,11,0,8,5 189 BD
10111110 12,11,0,8,6 190 BE
10111111 12,11,0,8,7 191 BF
11000000 12,0 192 CO
11000001 12,1 193 Cl A
11000010 12,2 194 C2 B
11000011 12,3 195 C3 C
11000100 12,4 196 C4 D
11000101 12,5 197 C5 E
11000110 12,6 198 C6 F
11000111 12,7 199 C7 G
11001000 12,8 200 C8 H
11001001 12,9 201 C9 I
11001010 12,0,9#8,2 202 CA
11001011 12,0,9,8,3 203 CB
11001100 12,0,9,8,4 204 CC
11001101 12,0,9,8,5 205 CD
11001110 12,0,9,8,6 206 CE
11001111 12,0#9,8,7 207 CF
11010000 11,0 208 DO
11010001 11,1 209 Dl J
11010010 11,2 210 D2 K
11010011 11,3 211 D3 L
11010100 11,4 212 D4 M
11010101 11,5 213 D5 N
11010110 11,6 214 D6 0
11010111 11,7 215 D7 P
11011000 11,8 216 D8 Q
11011001 11,9 217 D9 R
11011010 12#11,9,8,2 218 DA
11011011 12,11,9,8,3 219 DB
11011100 12,11,9,8,4 220 DC
11011101 12,11,9,8,5 221 DD

------------~-----------------~---------~---------~------------

144 BPS Basic Assmb. & Utile Progs.

r------------T-----------------T---------T---------T------------,
I 8-Bit I Character set I I I I
I BCD I Punch I I Hexa- I Printer I
I Code I Combination I Deciroal I Decimal I Graphics I
~------------+-----------------+-.--------+---------+------------~

11011110 12,11,9,8,6 222 DE
11011111 12,11,9,8,7 223 DF
11100000 0,8,2 224 EO
11100001 11,0,9,1 225 El
11100010 0,2 226 E2 S
11100011 0,3 227 E3 T
11100100 0,4 228 E4 U
11100101 0,5 229 E5 V
11100110 0,6 230 E6 W
11100111 0,7 231 E7 X
11101000 0,8 232 E8 Y
11101001 0,9 233 E9 Z
11101010 11,0,9,8,2 234 EA
11101011 11,0,9,8,3 235 EB
11101100 11,0,9,8,4 236 EC
11101101 11,0,9,8,5 237 ED
11101110 11,0,9,8,6 238 EE
11101111 11,0,9,8,7 239 EF
11110000 ° 240 FO 0
11110001 1 241 Fl 1
11110010 2 242 F2 2
11110011 3 243 F3 3
11110100 4 244 F4 4
11110101 5 245 F5 5
11110110 6 246 F6 6
11110111 7 247 F7 7
11111000 8 248 F8 8
11111001 9 249 F9 9
11111010 12,11,0,9,8,2 250 FA
11111011 12,11,0,9,8,3 251 FB
11111100 12,11,0,9,8,4 252 FC
11111101 12,11,0,9,8,5 253 FD
11111110 12,11,0,9,8,6 254 FE
11111111 12,11,0,9,8,7 255 FF ____________ ~ _________________ ~ _________ L _________ ~ ____________ J

Appendix A 145

APPENDIX B. HEXADECIMAL-TO-DECIMAL CONVERSION

The table in this appendix provides
direct conversion of decimal and
hexadecimal numbers in these ranges:

for

Hexadecimal Decimal

000 to FFF 0000 to 4095

For numbers outside the range of the
table, add the following values to the
table figures:

0 1 2 3 4 5 6

000 0000 0001 0002 0003 0004 0005 0006
010 0016 0017 0018 0019 0020 0021 0022
020 0032 0033 0034 0035 0036 0037 0038
030 0048 0049 0050 0051 0052 0053 0054

040 0064 0065 0066 0067 0068 0069 0070
050 0080 0081 0082 0083 0084 0085 0086
060 0096 0097 0098 0099 0100 0101 0102
070 0112 0113 0114 0115 0116 0117 0118

080 0128 0129 0130 0131 0132 0133 0134
090 0144 0145 0146 0147 0148 0149 0150
OAO 0160 0161 0162 0163 0164 0165 0166
OBO 0176 0177 0178 0179 0180 0181 0182

OCO 0192 0193 0194 0195 0196 0197 0198
ODO 0208 0209 0210 0211 0212 0213 0214
OEO 0224 0225 0226 0227 0228 0229 0230
OFO 0240 0241 0242 0243 0244 0245 0246

100 0256 0257 0258 0259 0260 0261 0262
110 0272 0273 0274 0275 0276 0277 0278
120 0288 0289 0290 0291 0292 0293 0294
130 0304 0305 0306 0307 0308 0309 0310

140 0320 0321 0322 0323 0324 0325 0326
150 0336 0337 0338 0339 0340 0341 0342
160 0352 0353 0354 0355 0356 0357 0358
170 0368 0369 0370 0371 0372 0373 0374

180 0384 0385 0386 0387 0388 0389 0390
190 0400 0401 0402 0403 0404 0405 0406
lAO 0416 0417 0418 0419 0420 0421 0422
1BO 0432 0433 0434 0435 0436 0437 0438

1CO 0448 0449 0450 0451 0452 0453 0454
1DO 0464 0465 0466 0467 0468 0469 0470
lEO 0480 0481 0482 0483 0484 0485 0486
IFO 0496 0497 0498 0499 0500 0501 0502

146 BPS Basic Assmb. & Utile Progs.

7

0007
0023
0039
0055

0071
0087
0103
0119

0135
0151
0167
0183

0199
0215
0231
0247

0263
0279
0295
0311

0327
0343
0359
0375

0391
0407
0423
0439

0455
0471
0487
0503

8

0008
0024
0040
0056

0072
0088
0104
0120

0136
0152
0168
0184

0200
0216
0232
0248

0264
0280
0296
0312

0328
0344
0360
0376

0392
0408
0424
0440

0456
0472
0488
0504

Hexadecimal
1000
2000
3000
4000
5000
6000
7000
8000
9000
AOOO
BOOO
COOO
DOOO
EOOO
FOOO

9 A

0009 0010
0025 0026
0041 0042
0057 0058

0073 0074
0089 0090
0105 0106
0121 0122

0137 0138
0153 0154
0169 0170
0185 0186

0201 0202
0217 0218
0233 0234
0249 0250

0265 0266
0281 0282
0297 0298
0313 0314

0329 0330
0345 0346
0361 0362
0377 0378

0393 0394
0409 0410
0425 0426
0441 0442

0457 0458
0473 0474
0489 0490
0505 0506

B

0011
0027
0043
0059

0075
0091
0107
0123

0139
0155
0171
0187

0203
0219
0235
0251

0267
0283
0299
0315

0331
0347
0363
0379

0395
0411
0427
0443

0459
0475
0491
0507

Decimal
4096
8192

12288
16384
20480
24576
28672
32768
36864
40960
45056
49152
53248
57344
61440

C D

0012 0013
0028 0029
0044 0045
0060 0061

0076 0077
0092 0093
0108 0109
0124 0125

0140 0141
0156 0157
0172 0173
0188 0189

0204 0205
0220 0221
0236 0237
0252 0253

0268 0269
0284 0285
0300 0301
0316 0317

0332 0333
0348 0349
0364 0365
0380 0381

0396 0397
0412 0413
0428 0429
0444 0445

0460 0461
0476 0477
0492 0493
0508 0509

E F

0014 0015
0030 0031
0046 0047
0062 0063

0078 0079
0094 0095
0110 0111
0126 0127

0142 0143
0158 0159
0174 0175
0190 0191

0206 0207
0222 0223
0238 0239
0254 0255

0270 0271
0286 0287
0302 0303
0318 0319

0334 0335
0350 0351
0366 0367
0382 0;;83

0398 0399
0414 0415
0430 0431
0446 0447

0462 0463
0478 0479
0494 0495
0::>10 0511

200
210
220
230

240
250
260
270

280
290
2AO
2BO

2CO
2DO
2EO
2FO

300
310
320
330

340
350
360
370

380
390
3AO
3BO

3CO
3DO
3EO
3FO

400
410
420
430

440
450
460
470

480
490
4AO
4BO

4CO
4DO
4EO
4FO

500
510
520
530

540
550
560
570

580
590
5AO
5BO

5CO
5DO
5EO
5FO

o

0512
0528
0544
0560

0576
0592
0608
0624

0640
0656
0672
0688

0704
0720
0736
0752

0768
0784
0800
0816

0832
0848
0864
0880

0896
0912
0928
0944

0960
0976
0992
1008

o

1024
1040
1056
1072

1088
1104
1120
1136

1152
1168
1184
1200

1216
1232
1248
1264

1280
1296
1312
1328

1344
1360
1376
1392

1408
1424
1440
1456

1472
1488
1504
1520

1

0513
0529
0545
0561

0577
0593
0609
0625

0641
0657
0673
0689

0705
0721
0737
0753

0769
0785
0801
0817

0833
0849
0865
0881

0897
0913
0929
0945

0961
0977
0993
1009

1

1025
1041
1057
1073

1089
1105
1121
1137

1153
1169
1185
1201

1217
1233
1249
1265

1281
1297
1313
1329

1345
1361
1377
1393

1409
1425
1441
1457

1473
1489
1505
1521

2

0514
0530
0546
0562

0578
0594
0610
0626

0642
0658
0674
0690

0706
0722
0738
0754

0770
0786
0802
0818

0834
0850
0866
0882

0898
0914
0930
0946

0962
0978
0994
1010

2

1026
1042
1058
1074

1090
1106
1122
1138

1154
1170
1186
1202

1218
1234
1250
1266

1282
1298
1314
1330

1346
1362
1378
1394

1UO
1426
1442
1458

1474
1490
1506
1522

0515
0531
0547
0563

0579
0595
0611
0627

0643
0659
0675
0691

0707
0723
0739
0755

0771
0787
0803
0819

0835
0851
0867
0883

0899
0915
0931
0947

0963
0979
0995
1011

3

1027
1043
1059
1075

1091
1107
1123
1139

1155
1171
1187
1203

1219
1235
1251
1267

1283
1299
1315
1331

1347
1363
1379
1395

1411
1427
1443
1459

1475
1491
1507
1523

4

0516
0532
0548
0564

0580
0596
0612
0628

0644
0660
0676
0692

0708
0724
0740
0756

0772
0788
0804
0820

0836
0852
0868
0884

0900
0916
0932
0948

0964
0980
0996
1012

4

1028
1044
1060
1076

1092
1108
1124
1140

1156
1172
1188
1204

1220
1236
1252
1268

1284
1300
1316
1332

1348
1:164
1380
1396

1412
1428
1444
1460

1476
1492
1508
1524

5

0611
0533
0549
0565

0581
0597
0613
Ol529

0645
0661
0677
0693

0109
0125
0141
0157

0773
0789
0805
0821

0837
0853
0869
0885

0901
0917
0933
0949

0965
0981
0997
1013

5

1029
1045
1061
1077

1093
1109
1125
11.41

1157
1173
11;89
1205

1221
1237
12'53
12',69

1285
13,01
1317
1333

1349
1365
1381
1397

1413
1429
1445
1461

1417
1493
1509
1525

6

0518
0534
0550
0566

0582
0598
0614
0630

0646
0662
0678
0694

0710
0726
0742
0758

0774
0790
0806
0822

0838
0854
0870
0886

0902
0918
0934
0950

0966
0982
0998
1014

6

1030
1046
1062
1078

1094
1110
1126
1142

1158
1174
1190
1206

1222
1238
1254
1270

1286
1302
1318
1334

1350
1366
1382
1398

1414
1430
1446
1462

1478
1494
1510
1526

7

0519
0535
0551
0567

0583
0599
0615
0631

0647
0663
0679
0695

0711
0721
0743.
0759

0775
0791
0807
0823

0839
0855
0871
0887

0903
0919
0935
0951

0967
0983
0999
1015

7

1031
1047
1063
1079

1095
1111
1127
1143

1159
1175
1191
1207

1223
1239
1255
1271

1287
1303
1319
1335

1351
1367
1383
1399

1415
1431
1447
1463

1479
1495
1511
1527

8

0520
0536
0552
0568

0584
0600
0616
0632

0648
0664
0680
0696

0712
0728
0744
0760

0776
0192
0808
0824

0840
0856
0872
0888

0904
0920
0936
0952

0968
0984
1000
1016

8

1032
1048
1064
1080

1096
1112
1128
1144

1160
1176
1192
1208

1224
1240
1256
1272

1288
1304
1320
1336

1352
1368
1384
1400

1416
1432
1448
1464

1480
1496
1512
1528

9

0521
0537
0553
0569

0585
0601
0617
0633

0649
0665
0681
0697

0713
0729
0745
0761

0777
0793
0809
0825

0841
0851
0873
0889

0905
0921
0937
0953

0969
0985
1001
1017

9

1033
1049
1065
1081

1097
1113
1129
1145

1161
1177
1193
1209

1225
1241
1257
1273

1289
1305
1321
1337

1353
1369
1385
1401

1417
1433
1449
1465

1481
1497
1513
1529

A

0522
0538
0554
0570

0586
0602
0618
0634

0650
0666
0682
0698

0714
0730
0746
0762

0778
0794
0810
0826

0842
0858
0874
0890

0906
0922
0938
0954

0970
0986
1002
1018

A

1034
1050
1066
1082

1098
1114
1130
1146

1162
1178
1194
1210

1226
1242
1258
1274

1290
1306
1322
1338

1354
1370
1386
1402

1418
1434
1450
1466

1482
1498
1514
1530

B

0523
0539
0555
0571

0587
0603
0619
0635

0651
0667
0683
0699

0715
0731
0747
0763

0779
0795
0811
0827

0843
0859
0875
0891

0907
0923
0939
0955

0971
0987
1003
1019

B

1035
1051
1067
1083

1099
1115
1131
1147

1163
1179
1195
1211

1227
1243
1259
1275

1291
1307
1323
1339

1355
1371
1387
1403

1419
1435
1451
1467

1483
1499
1515
1531

C

0524
0540
0556
0572

0588
0604
0620
0636

0652
0668
0684
0700

0716
0732
0748
0764

0780
0796
0812
0828

0844
0860
0876
0892

0908
0924
0940
0956

0972
0988
1004
1020

C

1036
1052
1068
1084

1100
1116
1132
1148

1164
1180
1196
1212

1228
1244
1260
1276

1292
1308
1324
1340

1356
1372
1388
1404

1420
1436
1452
1468

1484
1500
1516
1532

D

0525
0541
0557
0573

0589
0605
0621
0637

0653
0669
0685
0701

0717
0733
0749
0765

0781
0797
0813
0829

0845
0861
0877
0893

0909
0925
0941
0957

0973
0989
1005
1021

D

1037
1053
1069
1085

1101
1117
1133
1149

1165
1181
119'1
1213

1229
1245
1261
1277

1293
1309
1325
1341

1357
1373
1389
1405

1421
1437
1453
146~

1485
1501
1517
1533

E

0526
0542
0558
0574

0590
0606
0622
0638

0654
0670
0686
0702

0718
0734
0750
0766

0782
0798
0814
0830

0846
0862
0878
0894

0910
0926
0942
0958

0974
09~0

1006
1022

E

10;}8
1054
1070
1086

1102
1118
1134
1150

1166
1182
1198
1214

1230
1246
1262
1278

1294
1310
1326
1342

1358
1374
1390
1406

1422
1438
1454
1470

1486
1502
1518
1534

F'

0527
054:i
055~j

057!)

Oo~H

0607
062:i
063!)

065:,
0671
068','
070:i

071~.l

073b
0751
076'/

078:1
0799
081~>

083J

0847
086:1
0879
089t,

0911
092'/
094;\
0959

097S
09~1

1007
1023

F

1039
1055
1071
1087

1103
111S
1135
1151

1167
1183
1199
1215

1231
1247
1263
1279

1295
1311
1327
1343

1359
1375
1391
1407

1423
1439
1455
1471

1487
1503
1519
1.,35

Appendix B 147

600
610
620
630

640
S50
660
670

680
690
6AO
6BO

6CO
6DO
6EO
6FO

700
710
720
730

740
750
760
770

780
790
7AO
7BO

7CO
7DO
7EO
7FO

800
810
820
830

840
850
860
870

880
890
8AO
8BO

8CO
8DO
8EO
8FO

900
910
920
930

940
950
960
970

980
990
9AO
9BO

9CO
9DO
9EO
9FO

o

1536
1552
1568
1584

1600
1616
1632
1648

1664
1680
1696
1712

1728
1744
1760
1776

1792
1808
1824
1840

1856
1872
1888
1904

1920
1936
1952
1968

1984
2000
2016
2032

o

2048
2064
2080
2096

2112
2128
2144
2160

2176
2192
2208
2224

2240
2256
2272
2288

2304
2320
2336
2352

2368
2384
2400
2416

2432
2448
2464
2480

2496
2512
2528
2544

1

1537
1553
1569
1585

1601
1617
1633
1649

1665
1681
1697
1713

1729
1745
1761
1777

1793
1809
1825
1841

1857
1873
1889
1905

1921
1937
1953
1969

1985
2001
2017
2033

2049
2065
2081
2097

2113
2129
2145
2161

2177
2193
2209
2225

2241
2257
2273
2289

2305
2321
2337
2353

2369
2385
2401
2417

2433
2449
2465
2481

2497
2513
2529
2545

2

1538
1554
1570
1586

1602
1618
1634
1650

1666
1682
1698
1714

1730
1746
1762
1778

1794
1810
1826
1842

1858
1874
1890
1906

1922
1938
1954
1970

1986
2002
2018
2034

2

2050
2066
2082
2098

2114
2130
2146
2162

2178
2194
2210
2226

2242
2258
2274
2290

2306
2322
2338
2354

2370
2386
2402
2418

2434
2450
2466
2482

2498
2514
2530
2546

3

1539
1555
1571
1587

1603
1619
1635
1651

1667
1683
1699
1715

1731
1747
1763
1779

1795
1811
1827
1843

1859
1875
1891
1907

1923
1939
1955
1971

1987
2003
2019
2035

3

2051
2067
2083
2099

2115
2131
2147
2163

2179
2195
2211
2227

2243
2259
2275
2291

2307
2323
2339
2355

2371
2387
2403
2419

2435
2451
2467
2483

2499
2515
2531
2547

4

1540
1556
1572
1588

1604
1620
1636
1652

1668
1684
1700
1716

1732
1748
1764
1780

1796
1812
1828
1844

1860
1876
1892
1908

1924
1940
1956
1972

1988
2004
2020
2036

4

2052
2068
2084
2100

2116
2132
2148
2164

2180
2196
2212
2228

2244
2260
2276
2292

2308
2324
2340
2356

2372
2388
2404
2420

2436
2452
2468
2484

2500
2516
2532
2548

5

1541
1557
1573
1589

1605
1621
1637
1653

1669
1685
1701
1717

1733
1749
1765
1781

1797
1813
1829
1845

1861
1877
1893
1909

1925
1941
1957
1973

1989
2005
2021
2037

5

2053
2069
2085
2101

2117
2133
2149
2165

2181
2197
2213
2229

2245
2261
2277
2293

2309
2325
2341
2357

2373
2389
2405
2421

2437
2453
2469
2485

2501
2517
2533
2549

148 B~S Basic Assmb. & Util. Progs.

6

1542
1558
1574
1590

1606
1622
1638
1654

1670
1686
1702
1718

1734
1750
1766
1782

1798
1814
1830
1846

1862
1878
1894
1910

1926
1942
1958
1974

1990
2006
2022
2038

6

2054
2070
2086
2102

2118
2134
2150
2166

2182
2198
2214
2230

2246
2262
2278
2294

2310
2326
2342
2358

2374
2390
2406
2422

2438
2454
2470
2486

2502
2518
2534
2550

7

1543
1559
1575
1591

1607
1623
1639
1655

1671
1687
1703
1719

1735
1751
1767
1783

1799
1815
1831
1847

1863
1879
1895
1911

1927
1943
1959
1975

1991
2007
2023
2039

7

2055
2071
2087
2103

2119
2135
2151
2167

2183
2199
2215
2231

2247
2263
2279
2295

2311
2327
2343
2359

2375
2391
2407
2423

2439
2455
2471
2487

2503
2519
2535
2551

8

1544
1560
1576
1592

1608
1624
1640
1656

1672
1688
1704
1720

1736
1752
1768
1784

1800
1816
1832
1848

1864
1880
1896
1912

1928
1944
1960
1976

1992
2008
2024
2040

8

2056
2072
2088
2104

2120
2136
2152
2168

2184
2200
2216
2232

2248
2264
2280
2296

2312
2328
2344
2360

2376
2392
2408
2424

2440
2456
2472
2488

2504
2520
2536
2552

9

1545
1561
1577
1593

1609
1625
1641
1657

1673
1689
1705
1721

1737
1753
1769
1785

1801
1817
1833
1849

1865
1881
1897
1913

1929
1945
1961
1977

1993
2009
2025
2041

9

2057
2073
2089
2105

2121
2137
2153
2169

2185
2201
2217
2233

2249
2265
2281
2297

2313
2329
2345
2361

2377
2393
2409
2425

2441
2457
2473
2489

2505
2521
2537
2553

A

1546
1562
1578
1594

1610
1626
1642
1658

1674
1690
1706
1722

1738
1754
1770
1786

1802
1818
1834
1850

1866
1882
1898
1914

1930
1946
1962
1978

1994
2·010
2026
2042

A

2058
2074
2090
2106

2122
2138
2154
2170

2186
2202
2218
2234

2250
2266
2282
2298

2314
2330
2346
2362

2378
2394
2410
2426

2442
2458
2474
2490

2506
2522
2538
2554

B

1547
1563
1579
1595

1611
1627
1643
1659

1675
1691
1707
1723

1739
1755
1771
1787

1803
1819
1835
1851

1867
1883
1899
1915

1931
1947
1963
1979

1995
2011
2027
2043

B

2059
2075
2091
2107

2123
2139
2155
2171

2187
2203
2219
2235

2251
2267
2283
2299

2315
2331
2347
2363

2379
2395
2411
2427

2443
2459
2475
2491

2507
2523
2539
2555

c

1548
1564
1580
1596

1612
1628
1644
1660

1676
1692
1708
1724

1740
1756
1772
1788

1804
1820
1836
1852

1868
1884
1900
1916

1932
1948
1964
1980

1996
2012
2028
2044

c

2060
2076
2092
2108

2124
2140
2156
2172

2188
2204
2220
2236

2252
2268
2284
2300

2316
2332
2348
2364

2380
2396
2412
2428

2444
2460
2476
2492

2508
2524
2540
2556

D

1549
1565
1581
1597

1613
1629
1645
1661

1677
1693
1709
1725

1741
1757
1773
1789

1805
1821
1837
1853

1869
1885
1901
1917

1933
1949
1965
1981

1997
2013
2029
2045

D

2061
2077
2093
2109

2125
2141
2157
2113

2189
2205
2221
2237

2253
2269
2285
2301

2317
2333
2349
2365

2381
2397
2413
2429

2445
2461
2477
2493

2509
2525
2541
2557

E

1550
1::>66
1582
1598

1614
1630
1646
1662

1678
1694
1710
1726

1742
1758
1774
1790

1806
1822
1838
1854

1870
1886
1902
1918

1934
1950
1966
1982

1998
2014
2030
2046

E

2062
2078
2094
2110

2126
2142
2158
2174

2190
2206
2222
2238

2254
2270
2286
2302

2318
2334
2350
2366

2382
2398
2414
2430

2446
2462
2478
2494

2510
2526
2542
2558

F

1551
1567
1583
1599

1615
1631
1647
1663

1679
1695
1711
1727

1743
1759
1775
1791

1807
1823
1839
1855

1871
1887
1903
1919

1935
1951
1967
1983

1999
2015
2031
2047

F

2063
2079
2095
2111

2127
2143
2159
2175

2191
2207
2223
2239

2255
2271
2287
2303

2319
2335
2351
2367

2383
2399
2415
2431

2447
2463
2479
2495

2511
2527
2543
2559

AOO
A10
A20
A30

A40
A50
A60
A70

A80
A90
AAO
ABO

ACO
ADO
AEO
AFO

BOO
B10
B20
B30

B40
B50
B60
B70

B80
B90
BAO
BBO

BCO
BDO
BEO
BFO

COO
C10
C20
C30

C40
C50
C60
C70

C80
C90
CAO
CBO

CCO
CDO
CEO
CFO

DOO
D10
D20
D30

D40
D50
D60
D70

D80
D90
DAO
DBO

DCO
DDO
DEO
DFO

o

2560
2576
2592
2608

2624
2640
2656
2672

2688
2704
2720
2736

2752
2768
2784
2800

2816
2832
2848
2864

2880
2896
2912
2928

2944
2960
2976
2992

3008
3024
3040
3056

o

3072
3088
3104
3120

3136
3152
3168
3184

3200
3216
3232
3248

3264
3280
3296
3312

3328
3344
3360
3376

3392
3408
3424
3440

3456
3472
3488
3504

3520
3536
3552
3568

1

2561
2577
2593
2609

2625
2641
2657
2673

2689
2705
2721
2737

2753
2769
2785
2801

2817
2833
2849
2865

2881
2897
2913
2929

2945
2961
2977
2993

3009
3025
3041
3057

1

3073
3089
3105
3121

3137
3153
3169
3185

3201
3217
3233
3249

3265
3281
3297
3313

3329
3345
3361
3377

3393
3409
3425
3441

3457
3473
3489
3505

3521
3537
3553
3569

2

2562
2578
2594
2610

2626
2642
2658
2674

2690
2706
2722
2738

2754
2770
2786
2802

2818
2834
2850
2866

2882
2898
2914
2930

2946
2962
2978
2994

3010
3026
3042
3058

2

3074
3090
3106
3122

3138
3,154
3170
3186

3202
3218
3234
3250

3266
3282
3298
3314

3330
3346
3362
3378

3394
3410
3426
3442

3458
3474
3490
3506

3522
3538
3554
3570

3

2563
2579
2595
2611

2627
2643
2659
2675

2691
2707
2723
2739

2755
2771
2787
2803

2819
2835
2851
2867

2883
2899
2915
2931

2947
2963
2979
2995

3011
3027
3043
3059

3

3075
3091
3107
3123

3139
3155
3171
3187

3203
3219
3235
3251

3267
3283
3299
3315

3331
3347
3363
3379

3395
3411
3427
3443

3459
3475
3491
3507

3523
3539
3555
3571

4

2564
2580
2596
2612

2628
2644
2660
2676

2692
2708
2724
2740

2756
2772
2788
2804

2820
2836
2852
2868

2884
2900
2916
2932

2948
2964
2980
2996

3012
3028
3044
3060

4

3076
3092
3108
3124

3140
3156
3172
3188

3204
3220
3236
3252

3268
3284
3300
3316

3332
3348
3364
3380

3396
3412
3428
3444

3460
3476
3492
3508

3524
3540
3556
3572

5

2565
2581
2597
2613

2629
2645
2661
2677

2693
2709
2725
27,41

2757
2773
2789
2805

2821
2837
2853
2869

28'85
2901
2917
2933

2949
2965
2981
29,97

30'13
3029
3045
3061

5

3077
3093
3109
3125

3141
3157
3173
3189

3205
3221
3237
3253

3269
3285
3301
3317

3333
3349
3365
3381

3397
34,13
3429
3445

3461
3477
3493
3509

3525
3541
3557
3573

6

2566
2582
2598
2614

2630
2646
2662
2678

2694
2710
2726
2742

2758
2774
2790
2806

2822
2838
2854
2870

2886
2902
2918
2934

2950
2966
2982
2998

3014
3030
3046
3062

6

3078
3094
3110
3126

3142
3158
3174
3190

3206
3222
3238
3254

3270
3286
3302
3318

3334
3350
3366
3382

3398
3414
3430
3446

3462
3478
3494
3510

3526
3542
3558
3574

7

2567
2583
2599
2615

2631
2647
2663
2679

2695
2711
2727
2743

2759
2775
2791
2807

2823
2839
2855
2871

2887
2903
2919
2935

2951
2967
2983
2999

3015
3031
3047
3063

7

3079
3095
3111
3127

3143
3159
3175
3191

3207
3223
3239
3255

3271
3287
3303
3319

3335
3351
3367
3383

3399
3415
3431
3447

3463
3479
3495
3511

3527
3543
3559
3575

8

2568
2584
2600
2616

2632
2648
2664
2680

2696
2712
2728
2744

2760
2776
2792
2808

2824
2840
2856
2872

2888
2904
2920
2936

2952
2968
2984
3000

3016
3032
3048
3064

8

3080
3096
3112
3128

3144
3160
3176
3192

3208
3224
3240
3256

3272
3288
3304
3320

3336
3352
3368
3384

3400
3416
3432
3448

3464
3480
3496
3512

3528
3544
3560
3576

9

2569
2585
2601
2617

2633
2649
2665
2681

2697
2713
2729
2745

2761
2777
2793
2809

2825
2841
2857
2873

2889
2900
2921
2937

2~53
2969
2985
3001

3017
3033
3049
3065

9

3081
3097
3113
3129

3145
3161
3177
3193

3209
3225
3241
3257

3273
3289
3305
3321

3337
3353
3369
3385

3401
3417
3433
3449

3465
3481
3497
3513

3529
3545
3561
3577

A

2570
2586
2602
2618

2634
2650
2666
2682

2698
2714
2730
2746

2762
2778
2794
2810

2826
2842
2858
2874

2890
2906
2922
2938

2954
2970
2986
3002

3018
3034
3050
3066

A

3082
3098
3114
3130

3146
3162
3178
3194

3210
3226
3242
3258

3274
3290
3306
3322

3338
3354
3370
3386

3402
3418
3434
3450

3466
3482
3498
3514

3530
3546
3562
3578

B

2571
2587
2603
2619

2635
2651
2667
2683

2699
2715
2731
2747

2763
2779
2795
2811

2827
2843
2859
2875

2891
2907
2923
2939

2955
2971
2987
3003

3019
3035
3051
3067

B

3083
3099
3115
3131

3147
3163
3179
3195

3211
3227
3243
3259

3275
3291
3307
3323

3339
3355
3371
3387

3403
3419
3435
3451

3467
3483
3499
3515

3531
3547
3563
3579

c

2572
2588
2604
2620

2636
2652
2668
2684

2700
2716
2732
2748

2764
2780
2796
2812

<::828
2844
2860
2876

2892
2908
2924
2940

2956
2972
2988
3004

3020
3036
3052
3068

c

3084
3100
3116
3132

3148
3164
3180
3196

3212
3228
3244
3260

3276
3292
3308
3324

3340
3356
3372
3388

3404
3420
3436
3452

3468
3484
3500
3516

3532
3548
3564
3580

D

2573
2589
2605
2621

2637
2653
2669
2685

2701
2717
2733
2749

2765
2781
2797
2813

2829
2845
2861
2877

2893
2909
2925
2941

2957
2973
2989
3005

3021
3037
3053
3069

D

3085
3101
3117
3133

3149
3165
3181
3197

3213
3229
3245
3261

3277
3293
3309
3325

3341
3357
3373
3389

3405
3421
3437
3453

3469
3485
3501
3517

3533
3549
3565
3581

E

2574
2590
2606
2622

2638
2654
2670
2686

2702
2718
2734
2750

2766
2782
2798
2814

2830
2846
2862
2878

2894
2910
2926
<:942

2958
2974
2990
3006

3022
3038
3054
3070

E

3086
3102
3118
3134

3150
3166
3182
3198

3214
3230
3246
3262

3278
3294
3310
3326

3342
3358
3374
3390

3406
3422
3438
3454

3470
3486
3502
3518

3534
3550
3566
3582

F

2575
2591
2607
2623

2639
2655
2671
2687

270~

2719
2735
2751

2767
2783
2799
2815

2831
2847
2863
2879

2895
2911
2927
2943

2959
2975
2991
3007

3023
3039
3055
3071

F

3087
3103
3119
3135

3151
3167
3183
3199

3215
3231
3<::47
3263

::S279
3295
3311
3327

3343
3359
3375
3391

3407
3423
3439
3455

3471
3487
3503
3519

3535
3551
3567
3ti83

Appendix B 149

0 2 3 4 5 6 7 8 9 A B C D E F

EOO 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599
El0 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615
E20 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631
E30 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647

E40 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663
E50 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679
E60 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695
E70 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711

E80 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727
E90 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743
EAO 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759
EBO 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775

ECO 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791
EDO 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807
EEO 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823
EFO 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839

FOO 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855
FlO 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871
F20 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887
F30 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903

F40 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919
F50 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935
F60 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951
F70 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967

F80 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983
F90 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999
FAO 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015
FBO 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031

FCO 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047
FDO 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063
FEO 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079
FFO 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095

150 BPS Basic Assmb. & Utile Progs.

APPENDIX C. SYSTEM/360 ASSEMBLERS-LANGUAGE FEATURES COMPARISON CHART

Features not shown below are common to all assemblers. In the chart:

Dash = Not allowed.
X = as defined in the manual IBN System/360 Operating System Assembler Language,

Form C28-6S14.

r---------------------------------------T-------------T----------T------------T----------,
/ / Basic / I I I
I / Programming /7090/7094 / / I
I Feature /Support/360: ISupport I Other I I
I IBasic I Package ISystem/360 IOS/360 I
I IAssembler IAssembler IAssemblers IAssembler I
~---------------------------------.-----+-------------+----------+------------+----------~
/No. of Continuation Cards/Statement I 0 I 0 , 1 I 2 I
I (exclusive of macro-instructions) I I I , I
~---------------------------------.-----+-------------+----------+------------+----------~
I Input character Code I I BCD or I I I
I ,EBCDIC I EBCDIC I EBCDIC IEBCDIC I
~---------------------------------.-----+-------------+----------+------------+----------~
IELENENTS: I I I I I
~--------------------------------------+-------------+----------+------------+----------~
I Maximum Characters per symbol I 6 I 6 I 8 I 8 I
~---------------------------------.-----+-------------+----------+------------+----------1
I Character self-defining terms I 1 Char. I I I j
I I only I X I X I X i
t---------------·-----------------·-----+-------------+----------+------------+----------1
I Binary self-defining terms I I 'X I X I
t---------------·----------------------+-------------+----------+------------+----------1
I Length attribute reference I , I X I X I
t--------------------------------------+-------------+----------+------------+----------1
I Literals I -- I -- I X I X I
t--------------------------------------+-------------+----------+------------+----------i
IExtended mnemonics I I X I X I X I
1---------------------------------------+-------------+----------+------------+----------1
IMaximum Location Counter value I 216-1 I 22~-1 I 22~-1 122~-1 I
1---------------------------------------+-------------+----------+------------+----------1
/Nultiple Control Sections per assembly I I 'X I X I
~--------------------------------------+-------------+----------+------------+----------i
/EXPRESSIONS: 'I I I I
t--------------------------------------+-------------+----------+------------+----------1
I Operators I +-* I +-*/ I +-*/ 1+-*/ I
1---------------------------------------+-------------+----------+------------+----------1
/ Number of terms I 3 I 16 I 3 I 16 ,
r-------------------------------------+-------------+----------t------------+----------~
I Number of parentheses I I , 1 Level 15 Levels I
t--------------------------------------+-------------+----------+------------+----------1
I Complex relocatability , , I X I X ,
I---------------------------------,-----+-------------t----------+------------+----------1
'ASSEMBLER INSTRUCTIONS: I I I I I
1----------------------------------.-----+-------------+----------+------------+----------i
I DC and DS I I , I ,
t-----------~---------------------·-----+-------------+----------+------------+----------i
I Expressions allowed as modifiers I I I 'X I
t--------------------------------------+-------------+----------+------------+----------i
I Multiple operands I I , I X I
t--------------------------------------+-------------+----------+------------+----------i
/ I' / Except, I
/ Multiple constants in an operandi I I Address I X I
I I I I Consts. I I L _________________________________ • _____ L _____________ L __________ L ____________ L __________ J

<Continued)

Appendix C 151

Appendix C: Assembler Languages--Features Comparison Chart (Continued)
r--------------------------------------T-------------T----------T------------T----------,
I I Bas ic I I I I
I I Programming 17090/7094 I I I
I Feature 18upport/36~: ISupport I Other I I
I IBasic I Package 18ystem/360 108/360 I
I IAssembler IAssembler IAssemblers IAssembler I
~--------------------------------------+-------------+----------+------------+----------~
I Bit length specifications I I I I X I
~--------------------------------------+-------------+----------+------------+----------~
I Scale modifier I I I X I X I
~--------------------------------------+-------------+----------+------------+----------~
I Exponent Modifier I I I X I X I
~--------------------------------------+-------------+----------+------------+----------~
I I Except I Except I I I
I DC types I B, P, z, I B, Y, V I X I X I

I I V, Y, 8 I I I I
~--------------------------------------+-------------+----------+------------+----------~
I I Except I Except I Except I I
I DC duplication factor I A, 8 I A, 8 I 8 I X I

~--------------------------------------+-------------+----------+------------+----------~
I I I I Except I I

I DC duplication factor of zero I 1 I S I X I
~--------------------------------------+-------------+----------+------------+----------~
I I Except I Except I I I

I DC length modifier I H, E, D, 8 I 8 I X I X I
~--------------------------------------+-------------+----------+------------+----------~
I I Only C, I Only C I I I 1
I DS types I H, F, D I H, F, l? I X I X I
~--------------------------------------+-------------+----------+------------+----------~
I D8 length modifier I Only C I Only C I X I X I

~--------------------------------------+-------------+----------+------------+----------~
I DS maximum length modifier I 256 I 256 I 256 165,535 I
~--------------------------------------+-------------+----------+------------+----------~
I D8 constant subfield permitted I I I X I X I
~--------------------------------------+-------------+----------+------------+----------~
I COpy I I 1 I X I
~--------------------------------------+-------------+----------+------------+----------~
I CSECT I I I X 1 X I
~--------------------------------------+-------------+----------+------------+----------~
1 DSECT I I 1 X I X I
~--------------------------------------+-------------+----------+------------+----------~
1 ISE~ 1 -- I -- 1 X I X 1
~--------------------------------------+-------------+----------+------------+----------~
I LTOkG I I I X I X I
~--------------------------------------+-------------+----------+------------+----------~
I PRINT I I 1 X I X I
~--------------------------------------+-------------+----------+------------+----------~
I TITLE I I X I X I X I
~--------------------------------------+-------------+----------+------------+----------~
I COM I -- I -- I -- I X I
~--------------------------------------+-------------+----------+------------+----------~
I I 1 oprnd I I I I
I ICTL I 1 or 25 I 1 oprnd I X I X I
I I only I I I I
~--------------------------------------+-------------+----------+------------+----------~
I I 2 oprnds I 2 oprnds I I I
I USING I oprnd 1 I oprnd 1 I 6 oprnds I X I
I I reloc I reloc I I I
I I only I only I I I
~--------------------------------------+-------------+----------+------------+----------~
I I 1 oprnd I 1 oprnd I I I
I DROP I only I only I 5 oprnds I X I L ______________________________________ L _____________ L __________ L ____________ L __________ J

(Continued)

152 BP8 Basic Assmb. & Utile Progs.

Appendix C: Assembler Languages--·Features comparison Chart (Continued)
r--------------------------------------T-------------T----------T------------T----------,
I I Basic 1 1 I I
I I Programming 17090/7094 1 I I
I Feature Isupport/360: ISupport I Other I I
I IBasic I Package ISystem/360 IOS/360 I
I IAssembler IAssembler IAssemblers IAssembler I
~--------------------------------------+-------------+----------+------------+----------~
I I oprnd 2 I oprnd 2 1 I I
I CCW I reloc I reloc I X I X I
I I only I only I I I
~--------------------------------------+-------------+----------+------------+----------~
I 1 no blank 1 no blank I 1 I
I ORG I oprnd I oprnd I X I X I
~---------------------------~----------+-------------+----------+------------+----------~
I I 1 oprnd 1 1 oprnd I 1 oprnd I I
I ENTRY I only I only I only I X I
~--------------------------------------+-------------+----------+------------+----------1
I I max 14 I I 1 I
I EXTRN I 1 oprnd I 1 oprnd I 1 oprnd I X I
I 1 only I only I only I I
~--------------------------------------+-------------+----------+------------+----------~
I I 2 dec I 2 dec I 2 dec 1 I
I CNOP I digits I digits I digits I X I
~--------------------------------------+~------------+----------+------------+----------1
I PUNCH I I I I X I
~--------------------------------------+-------------+----------+------------+----------1
1 REPRO I I I I I
I I I I X 1 X I
~---------------------------------.-----+-------------+----------+------------+----------1
IMacro Instructions I I I X I X I L _________________ ~ ____________________ ~ _____________ ~ __________ ~ ____________ ~ __________ J

Appendix C 153

APPENDIX D. HEXADECIMAL TO MNEMONIC OPERATION CODE TABLE

The table in this appendix provides for
easy conversion from the hexadecimal
equivalent of the actual machine operation
codes to their associated assembler
mneroonic operation codes.

second Hexadecimal Digit

o 1 2 3 4 5 6 7 8 9 A B C D E F
r----T----T----T----T----T----T----T----T----T----T----T----T----T----T----T----'

o I I I I ISPM IBALRIBCTRIBCR ISSK IISK ISVC I I I I I I
~----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----~

1 ILPR ILNR ILTR ILCR INR ICLR lOR IXR ILR ICR IAR ISR IMR IDR IALR ISLR I
F ~----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----~ RR
i 2 ILPDRILNDRILTDRILCDRIHDR I I I ILDR ICDR IADR ISDR IMDR IDDR IAWR ISWR I
r ~----+----+_---+----+----+----+----+----+----+----+----+----+----+----+----+----~
s 3 ILPERILNERILTERILCERIHER I I IlLER ICER IAER ISER IMER IDER IAUR ISUR I
t ~----+----+_---+----+----+----+----+----+----+----+----+----+----+----+----+----~

4 ISTH ILA ISTC IIC lEX 13AL IBCT IBC ILH ICH IAH ISH IMH I ICVD ICVB I
~----+----+_---+----+----+----+----+----+----+----+----+----+----+----+----+----4

H 51sT I I I IN ICL 10 IX IL IC IA IS 1M ID IAL ISL I
e ~----+----+_---+----+----+----+----+----+----+----+----+----+----+----+----+----4 RX
x 6 ISTD I I I I I I I ILD ICD lAD ISD IMD IDD lAW ISw I
a ~----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----~
d 7 ISTE I I I I I I I ILE ICE IAE ISE IME IDE IAU ISU I
e ~----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----4
c 8 ISSM I ILPSWI IWRD IRDD IBXH IBXLEISRL ISLL ISRA ISLA ISRDLISLDLISRDAISLDAI
i ~----+----+_---+----+----+----+----+----+----+----+----+----+----+----+----+----~
In 9 ISTM ITM IMVI ITS INI ICLI 101 IXI ILM I I I ISIO ITIO IHIO ITCH I RS
a ~----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----~ or
1 A I I I I I I I I I I I I I I I I I SI

~----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----~
B I I I I I I I I I I I I I I I I I

D ~----+----+_---+----+----+----+----+----+----+----+----+----+----+----+----+----~
i C I I I I I I I I I I I I I I I I I
g ~----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----4
i D I IMVN IMVC IMVZ INC ICLC 10C IXC I I I I ITR ITRT lED IEDMKI
t ~----+----+_---+----+----+----+----+----+----+----+----+----+----+----+----+----4 ss

E I I I I I I I I I I I I I I I I I
~----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----4

F I IMVO IPACKIUNPKI I I I IZAP ICP lAP ISP IMP IDP I I I l ____ ~ ____ L- ___ ~ ____ ~ ____ ~ ____ ~ ____ ~ ____ ~ ____ ~ ____ ~ ____ ~ ____ ~ ____ ~ ____ ~ ____ ~ ____ J

154 BPS Basic Assmb. & Utile Progs.

Where more than one page number follows an
Index entry, the most important reference
is listed first.

Absolute
Expressions 14
Symbols 12, 28

Absolute Loader 49-53, 48
Card Formats 50-52
Description 49
Functions 50
Program Segment Sequence 50
Resident Loader Considerations 53
Storage Required 49

Absolute Loader Operating Procedures
Description 124
Initialization 124
Loader Options 125
Use 126
Use with LDRGEN 126

Address Attributes 11
Address Constants f

Relocation and Linkage 108
Address Field, Dump Program 70-71
Addressing, Relative 14, 47
ALPHA, LDRGEN 110
Arithmetic Operators 14
Assembled Object Decks,

Produced by Assembler 116-119
Assembled Object Programs Produced 112
Assembler Instructions 25-38

Base Register 25, 35-37
Control 25-28
Definition 25, 28-35
Program Linking 25, 37, 38

Assembler Language Statements
Defined 8
Rules for Writing 8
Writing of 11

Assembler Processing 43
Phase 1 43
Phase 2 43

Assemblers-Language Features Comparison
(Appendix C) 151-153

Assembling 115-119
Copying Assembler on Tape 117
On Card System Using l442-Nl or

2520-Bl 116
On Card System Using 2540 or 2501 115
Special Procedures 118

Card Output 119
Card System Reassembly 118
Interrupted Assemblies 119

with Card ana Tape Configuration 118
Asterisk as an Operand 14
Attributes Defined 11

Address 11
Expressions
Length 11
Symbol 11

14

Backspace File 79, 80, 89
Backward Read Tape Record 80, 89
BALR or BAL Instruction 36
Base Registers and Displacements 18

Base Register Zero 37
DROP 35, 36
Example of 17
Implied 18
Instruction Formats Used with 18
Loading Registers for Use as 36
Rules for 18
Use of 18
USING 35

Basic Assembler Language
Basic Assembler Operating
Procedures 112-120

Block Diagram 112
Description 112
Initialization 113-115

7

INDEX

Operator Actions 115-118
Phase 1 Configuration Card
Phase 2 Configuration Card
Running a Job 115-118
Special Procedures 118, 119

113-115
115

Basic Assembler Statements, Writing
Basic Utility Programs 48

Absolute Loader 49
Dump Program 66
Input/Output Support Package
Relocating Loader 53

Basic Utility Programs Operating
Procedures 120-128

78

11

Absolute and Relocating Loaders 124
Input/Output Support Package 128
Loader Generator Program 126
Single Phase Dump 120
Two-Phase Dump 122

BETA, LDRGEN 110
Boundary Alignment, Result of

Character Constant 31, 32
Expression Constant 34
Full-Word Constant 33
Half-Word Constant 33
Hexadecimal Constant 32
Long-Precision Floating-Point

Constant 34
Machine Instruct~ons 15
Short-Precision Floating-Point
Constant 33

Specific Assembler Instructions
Busy Device Check,

I/O Support Package 87

Call Parameter, Dump Program
Calling the Entry Modules,

I/O Support Package 93

69-71

25-38

Index 155

Card Formats, Basic Assembler 7
Card Intermediate Text 7
Card Punch Address, Specification of

Dump Program Initialization
Cards 121, 122

Phase 1 Configuration Card 113-115
Phase 2 Configuration Card 115

Card Reader Address, Specification of
Dump Program Initialization

Cards 121-122
Phase 1 Configuration Card 113-115
Phase 2 Configuration Card 115

CCW Assembler Instruction 30
Example of 30
Format of 30
Operand Field 30
Use of 30

Channel Command Word (CCW) 30
Character Codes (Appendix A) 141-145
Character Constant

Boundary Alignment with 31, 32
Example of 32
Self-Defining Values 13
Size 32

Character Self-Defining Value 13
Character Set 11
CNOP Assembler Instruction 25-27

Boundary Alignment 26, 27
Examples of 27
Format of 27
Operand Field of 27
Use of 27

Command Operation Modifiers Routine,
I/O Support Package 82, 93

Comments Field Defined 10
Example of 10
Limits of 10

Compatibility 6
Completion of I/O Operation 87, 88, 79
Compound Expression 14
CON, LDRGEN III
Configuration Cards, Basic Assembler
Initialization

Phase 1 113-115
Phase 2 115

Console Listing 66
Constant Data 30
Constants 31-34, 25

Character 31
Expression 34
Full-Word 33
Half-Word 33
Hexadecimal 32
Long-Precision Floating-Point 34
Self-Defining Values 13
Short-Precision Floating-Point 33

Control Dictionary 56
Control List 69-73
Conversion, Hexadecimal to Decimal

(Appendix B) 146-150
Conversion, Hexadecimal to Mnemonic

Op Code (Appendix D) 154
Correcting

Replace Card 51, 52, 61
Count Field, Dump Program 70-73

156 BPS Basic Assmb. & Util. Progs.

Data
Constant 30
Immediate 12, 28

DC Assembler Instruction 30
Boundary Alignment 31
Format of 30, 31
Maximum Size of 31
Operand Field 31
Type of Constants Used with 30
Use of 30

Decimal Self-Defining Value 13
Definition Instructions 28
Detection of Error Conditions,

I/O Support Package 87
Direct Linkage,

I/O Support Package 93-95
Displacement

Computing by Assembler 18
In Entry Tables 96

DROP Assembler Instruction 35
Example of 36
Format for 35
Invalid Operand 36
Operand of 35
Use of 35

DS Assembler Instruction 29
Area ReseEved by 29
Boundary Alignment with 29
Examples of 29
Format of 29
Operand Field 29, 30
Use of 29

DUMP (DMP) Cards 78
Dump Program 66-78, 48

Calling Sequence 69
Control List Format 71
Description 66-68, 48
Features 66
Options 66
Single-Phase 68-74

Storage Required 49
Two Phase 74, 76-78, 67

Dump Program Operating Procedures
Single Phase 120-122
Two Phase 122-124
Initialization Cards 121, 122
Output Device, Specification of 121, 122

Duplicate Self-Loading Decks
LDRGEN 127

Duplication Factor Used in
Character Constant 32
DC Assembler Instruction 31
DS Assembler Instruction 29
Full-Word Constant 33
Half-Word Constant 33
Hexadecimal Constant 32
Long-Precision Floating-Point 34

EJECT Assembler Instruction 28
Format of 28
Use of 28

END Assembler Instruction 27
Example of 28
Format of 27
Invalid Use of 28

Operand Field of 27
Use of 27

End Flag, Dump Program 71-73
End/Count Field, Dump Program 70-73
ENTRY Assembler Instruction 37

Example of 38
Format of 38
Operand Field 38
Restrictions on 38
Use of 37

Entry Modules, I/O Support Packag:e
Calling 93
List of 79, 80
Summary of 88, 89
Table of Requirements 91

Entry Point 12, 56
ENTRY Assembler Instruction 37

EQU Assembler Instruction 28
Examples of 29
Format of 28
Name Field of 28
Operand Field of 28
Use of 28

Error Conditions, Detection of,
I/O Support Package 87

Error Notification 45
ESD (External Symbol Dictionary)

Card 56-58, 45
ESID Table

Basic Assembler Program 58
Relocating Loader 55

Exceptional Condition,
I/O support Package 83, 84

Explicit Length 19
Specific Assembler Instructions 25-38

Exponent 33
Expression Constant 34

Boundary Alignment of 34
Examples of 34
How Specified 34
Length Codes of 34
Rules for 35
Self-Defining Values 13

Expressions 13
Absolute 14
Attribute of 14
Compound 14
Defined 13
Relative Addressing With 14
Relocatable 14
Restrictions on 15
Simple 14
Terminators of 14

Extended Card Code 51
External Symbol 12, 38
External Symbol Dictionary (ESD)

Card 56-58, 45
EXTRN Assembler Instruction 38

Example of 38
Format of 38
Operand Field 38
Restrictions on 38
Use of 38

Features of Basic Assembler 5
Flags, Program Listing, List of 44, 45

Floating-Point Constants
Long-Precision 34
Short-Precision 33

Format Code, Dump Program 72, 73
Formats, Machine Instruction 16, 17, 24
Forward Space File 80, 89, 91
Forward Space Record 80, 89, 91
Fraction 33
Full-Word Constants 33

Boundary Alignment with 33
Examples of 33

Half-Word Constants 33
Boundary Alignment 33
Example of 33
Length Code of 33

Hexadecimal Constant 32
Boundary Alignment with 32
Examples of 32, 33
Self-Defining Value 13
Valid Digits 32

Hexadecimal Self-Defining Value 13

ICTL Assembler Instruction
Format of 25
Use of 25

Identification Sequence Field
Immediate Data 12, 28
Implied Base Register

DROP 35
USING 35

Implied Length 19

18

Include Segment Card,
Relocating Loader 55, 56

Indirect Linkage,
I/O Support Package

Initialization
95-97

Absolute Loader 124
Basic Assembler 113-115

25

Loader Generator 126, 127
Relocating Loader 124
Single-Phase Dump 120-122
Two-Phase Dump 122, 123

10

78-107, 48
52

Input/Output Support Package
Absolute Loader, Use of
Card Only Installation
Entry Modules, Summary
Optional Modules 82-86
Required Subroutine Modules
Storage Required 49
Supplied 79

100
87-89

80 ... 82

Input/Output Support Package Operating
Procedures 128

Installations, Types of
Instructions

48, 49, 100

Assembler 25
Base Register
Definition 28
Machine 20

35

Program Linking 37
Interleaving Blank Cards

Phase 2, Basic Assembler
Intermediate Text 7, 112
Internal Symbol 59
Interphase Tape Unit Address,
Specification of

Phase 1 Configuration Card
Phase 2 Configuration Card

119

113, 114
115

Index 157

Interrupted Assemblies, Basic Assembler
Interrupts, I/O Support Package 86, 87
I/O Base Routine, Part 1 and 2,
I/O Support Package 82

I/O Charts 102-107
I/O Register Assignments 80
IOTA, LDRGEN 110

119 Machine Instruction Mnemonics
Machine Instruction Statements

Examples 24
Instruction Format

Machine Requirements
16, 17

20-23
15

Issue Specified Control Command 79, 88, 91

Basic Assembler 6, 112, 113
Basic Utility Programs 49

Main Storage Requirements,
Utility Programs 49

L (Load Full Word) Instruction 36
Label Field, Dump Program 71-74
Label Flag, Dump Program 71-74
LDRGEN (Loader Generator

Program) 109-111, 48
Providing Addresses
Requirements 109
Sequence of Operations

110

Length Attributes 19, 11
Explicit 19
Implied 19

III

Specific Assembler Instructions
Length Field, Dump Program 71-74
Linkage

Relocating Loader 53, 54
Relocation and Linkage 108

Load End Card (END)
Absolute Loader 52
Basic Assembler 27, 46
Generation of 49, 61
Relocating Loader 61

Load Procedure, Relocating Loader
In Absolute Form 65
Overlaying 63

Load Terminate Card,
Relocating Loader 62-63

LOADl, Absolute Loader 53
LOAD2, Relocating Loader 65
Loader Generator Program

(LDRGEN) 109-111, 48
Providing Addresses
Requirements 109

110

Sequence of Operations III

25-38

63

Loader Generator Program (LDRGEN) Operating
Procedures

127 Block Diagram
Defined 126
Initialization 126
Running a Job 126, 127

Loading Base Registers 36
Location Counter 12

Contents of 12
Defined 12
Maximum Value of
Overflow of 12

12

Program Listing 44
Programmer, Use of 12
Specific Assembler Instructions 25-38

Long-Precision Floating-Point Constant
Boundary Alignment 34
Example of 34
How Specified 34
Invalid Fraction or Exponent
Operand Format of 34

Exponent of 34
Fraction of 34

34

158 BPS Basic Assmb. & Utile Progs.

Messages 129-134
Modules, Subroutine, I/O Support Package

Defined 78
Entry 79, 80, 87-89
Optional 82-86
Organization 90, 92
Relationships 91
Required 80-82

Multiple Unit Device-Address Routine,
I/O Support Package 80, 82, 92

Name Field
Defined 9
Example of 9
Limits of 9
Symbols 11

New PSW Set Up Routine,
I/O Support Package 82

Object Deck Sequence
Absolute Loader 50
Relocating Loader 64

Object Program Output 45
External Symbol Dictionary Card
Load End Card 46, 27
Relocation List Dictionary Card
Text Card 45

OMEGA, LDRGEN 110
Operand Field Defined

Examples of 10
Limits of 10
Subfields of

Operation Field
Defined 9

10

Example of 9
Invalid Mnemonic in
Limits of 9
List of 21-23

10

9

Machine Instruction Statements
Specific Assembler Instructions
Valid Mnemonic Limit of 9

Operator Actions, Description of
Absolute Loader 124, 127
Basic Assembler 115-118
LDRGEN 126, 127

45

46

15-17, 24
25-38

Phase 1 of Assembler 115-118
Phase 2 of Assembler 115-118
Phase 2 of Two-Phase Dump 122-124
Relocating Loader 124, 127
Single-Phase Dump 120-122

Operator Messages
Description 129, 130
List of 130-134

Optional Subroutine Modules,
I/O Support Package 82-86

Options of Dump Program 66

ORG Assembler Instruction 26
Example of 26
Format of 26
Operand Field of 26
Use of 26

Origin, Program
ORG 26
START 25

Output Formats, Dump Program 73
Output Tape Unit Address, Specification of

Dump Program Initialization
Cards 121, 122

Phase 1 Configuration Card 113, 114
Phase 2 Configuration Card 115

Output Unit Address, Specification of
Dump Program Initialization
Cards 121, 122

Loader Generator Program 126
Overlaying Load Procedure,

Relocating Loader 63-65

Patching 46
Replace Card 51, 52, 61

Phase 1 Configuration Card
Basic Assembler Operation 113, 114

Phase 1, Operating Procedure
Basic Assembler 112
Two-Phase Dump Program 122

Phase 1 Output Device
Dump Program Initialization
Cards 121, 122

Phase 2 Configuration Card
Basic Assembler Operation 115

Phase 2 Input Device
Dump Program Initialization Cards 123

Phase 2, Operating Procedure
Basic Assembler 112, 115
Two-Phase Dump Program 122-124

Primary Call Entry Table,
I/O Support Package 81, 91

Primary Entry, I/O Support Package
Defined 81
Explanation of 81
Requirements of 81

Print n Columns,
I/O Support Package 79, 88, 91

Printer Skip to Channell, I/O
Support Package 79, 89, 91

Printer, Specification of
Absolute Loader 124, 125
Dump Program Initialization
Cards 121, 122

Phase 1 Configuration Card 114
Phase 2 Configuration Card 115
Relocating Loader 124, 125

Printer-Keyboard, Specification of
Absolute Loader 124, 125
Dump Program Initialization
Cards 121, 122

Phase 1 Configuration Card 114
Phase 2 Configuration Card 115
Relocating Loader 124, 125

Program Linking 37
Conventions of 38
ENTRY 37
Example 40
EXTRN 38
Limitations on

Program Listings
39

44, 112, 113, 115

Program Origin
ORG 26
START 25

Program Segment, Utility Programs
Absolute Loader 50
Boundary Alignment 56
Defined 48
Examples 50, 64
Reference Between 54
Relocation and Linkage 108

Program Waits 130-134
Punch n Columns, I/O Support

Package 79, 88, 89, 91

Read a Card, I/O Support Package
Read Tape n Bytes, I/O Support
Package -79, 88, 91

Reassembly Procedure 46, 118
Reference Table, Relocating Loader
Relative Addressing 14, 47
Relocatable Expression 15, 59, 60
Relocatable Symbol 11, 59, 60
Relocating 54

Relocating Loader 53
Relocation and Linkage 108

Relocating Loader 53-66, 48
Card Formats 54-62
Description 53, 48
Loading Capacity 53
Overlaying Load Procedure
Storage Required 49
Unique Functions 54

63

Use of I/O Support Package 65

79,88,91

53

Relocating Loader Operating Procedures
Description 121
Initialization 124
Loader Options 125
Loading Capacity 125
Use 126

108
Use with LDRGEN 126

Relocation and Linkage
Relocating Loader 53

Relocation Factor 56, 57, 108
Relocation List Dictionary (RLD)

Card 46, 59, 60
Replace Card

~~solute Loader 51, 52
Relocating Loader 61

Request Numbers, Dump Program 67
Required Subroutine Modules, I/O Support

Package 80-82
Use 81
Primary Call Entry Table
Secondary Call Entry Table

RESUME, Relocating Loader 63

81
82

Rewind, I/O Support Package 79, 89, 91
RLD (Relocation List Dictionary)

Card 46, 59, 60
RR Machine Instruction Format
RS Machine Instruction Format
Running a Job

Absolute Loader 124-126
Basic Assembler 115-118
Loader Generator 126-128
Relocating Loader 124-126
Single Phase Dump 120-122
Two-Phase Dump 122-124

RX Machine Instruction Format

15, 24
15, 24, 18

15, 24, 18

Index 150

Sample Problem 135-140
Secondary Call Entry Table, I/O Support

Package 82, 90
Secondary Entry, I/O Support Package

Definition of 81
Explanation of 81
Requirement of 8, 82, 90

Self-Defining Values 13
Character 13
Decimal 13

13
Defined 13
Hexadecimal
Types of 13
Use of 13, 25

Sense, I/O Support Package
Entry Example 97

79, 88, 91

Set Location Counter Card, Relocating
Loader 54

Short-Precision Floating-Point Constant
Boundary Alignment with 33
Example of 34
Invalid Fraction or Exponent
Operand Format of 33

SI Machine Instruction Format
Simple Expression 14
Single-Phase Dump Program 68

Calling Sequence 69
Control List Format
Output Formats 73
Requirements 68
Supplied 67

71

33

15,24,18

Single-Phase Dump Program Operating

120
Procedures

Assembling
Block Diagram
Description
Initialization
Use 120

120
120

120

Single Space Message Unit, I/O Support
Package 79, 88, 91

Single Space Printer, I/O Support
Package 79, 88, 91

SPACE Assembler Instruction
Format of 28
Operand Field of
Use of 28

28

28

33

SS Machine Instruction Format 15, 24, 18
Stacker Contents, Basic Assembler 116, 117
START Assembler Instruction 25

Examples of 26
Format of 25
Invalid Use of
Name Field of
Operand Field of
Use of 25

26
25

8
10

Statement Fields
Comments Field
Name Field 9
Operand Field 10
Operation Field 9

26

Storage Areas Reserved by
DS Assembler Instruction 29

26 ORG Assembler Instruction
Storage Select Switches, Use of
Storage Size, Specification of

Dump Program Initialization
Cards 121, 122

129

Phase 1 Configuration Card 114

160 BPS Basic Assmb. & util. Progs.

Symbol Table 46
Blank Cards for
Defined 46
Maximum Size 46
New Assembly 46
Overflow 47
Reassembly 47
Reducing Number of
Several Assemblies

Symbols
Absolute 12
Attributes of 11
Defined 11
Entry 12, 37
External 12, 38
Previously Defined
Relocatable 11
Renaming 5, 28
Restrictions 12
Symbol Table 46
Undefined 45
Used in Name Field

116, 118, 119

Symbols 47
47

12

9

Tape Intermediate Text 7
TEXT (TXT) Card 49-51, 53, 59, 45, 30
Transfer of Control 52, 61
Two-Phase Dump Program

Requirement of 74, 76-78
Storage Required 49
Supplied 67

Two-Phase Dump Program Operating Procedures
Block Diagram 123
Description 122
Initialization 122
Use 123, 124

TXT (Text) Card 49-51, 53, 59, 45, 30

Undefined Symbols 45, 47
USING Assembler Instruction 35

Example of 35
Format for 35
Invalid Operand 35
Operand of 35
Use of 37, 35

Write a Message, I/O Support
Package 79, 88, 91

Write Tape Mark, I/O Support
Package 79, 89, 91

Write Tape n Bytes, I/O Support
Package 79, 89, 91

1442-Nl or 2520-Bl Card Option Systems
with Card Output

Basic Assembler 115-118
1442-Nl or 2520-Bl Card Read-Punch

Dump Program Initialization
Cards 121, 122

Phase 1 Configuration Card 113, 114
1442-Nl or 2520-Bl Card System Reassembly

Basic Assembler 118
2540 Card Read-Punch

Dump Program Initialization
Cards 121, 122

Phase 1 Configuration Card 113, 114

C28-6503-6

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y.I060t
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

OJ
5:
(J)

W
0')
o

READER'S COMMENT FORM

IBM System/360 C28-6503-6
Basic Programming Support
Basic Assembler and Basic utility Programs (Card)
Specifications and Operating Guide

• Your comments, accompanied by answers to the following questions, help us produce better
publications for your use. If your answer to a question is "No" or requires qualification,
please explain in the space provided below. All comments will be handled on a non-confi­
dential basis. Copies of this and other IBM publications can be obtained through IBM
Branch Offices.

• Does this publication meet your needs?
• Did you find the material:

Easy to read and understand?
Organized for convenient use?
Complete?
Well illustrated?
Written for your technical level?

• What is your occupation?
• How do you use this publication?

Yes
c::J

As an introduction to the subject? c::J
For advanced knowledge oj[the subject? c::J
For information about operating procedures? c::J

No
CJ

CJ
c::J
c::J
c:J
c:J

As an instructor in a class? c::J
As a student in a class? c::J
As a reference manual? c::J

Other __ __

• Please give specific page and line references with your comments when appropriate.

COMMENTS:

• Thank you for your cooperation. No postage necessary if mailed in the U. S. A.

C28-6503-6

YOUR COMMENTS, PLEASE

This publication is one of a series that serves as a reference source for systems
analysts, programmers, and operators of IBM systems. Your answers to the ques­
tions on the back of this form, together with your comments, help us produce
better publications for your use. Each reply is carefully reviewed by the persons
responsible for writing and publishing this material. All comments and sugges­
tions become the property of IBM.

Please note: Requests for copies of publications and for assistance in using your
IBM system should be directed to your IBM representative or to the IBM sales
office serving your locality.

Fold

Staple

Fold

--~------

BUSINESS REPLY MAIL
NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES

Attention: Programming Publications, Dept. 157

POSTAGE WILL BE PAID BY .••

IBM Corporation

P. O. Box 6

Endicott, N. Y. 13760

FIRST CLASS
PERMIT NO. 170

ENDICOTT, N. Y.

---------~---
Fold

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y.106Ot
[USA Only]

IBM World Trade Corporation
821 United.Nations Plaza, New York, New York 10017
[International]

Fold

: slu~U1U10J I~UO!HPPV

CD
C

::;

m
c o

:;(
....
::I

U

c
en
?>

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164

