
Systems Reference Library

IBM System/360 Basic Programming Support

Basic Utilities

360P-UT-017 -018 -019 -020 I I I

This publication contains all the informa­
tion needed to make use of the Basic
Programming Support Basic Utility programs
provided for users of IBM System/360. The
utility programs provided are:

Absolute Loader
Relocating Loader
Dump Program
Input/Output Support Package

These programs are designed to load assem­
bled programs into main storage; to provide
listings of the contents of storage; and to
provide routines for accessing input/output
devices. The functions and possible modi­
fications of each program are described in
detail.

File No. S360-32
Form C28-6505-2

PREFACE

This publication provides all the informa­
tion users need in order to use the IBM
System/360 Basic Prog·ramming Support Basic
Utility programs.

To fully understand the material pre­
sented in this manual, the reader should be
familiar with the contents of the following
publications:

IBM System/360 Basic Programming Support
Basic Assembler Language, Form C28-6503

IBM System/360 Principles of Operation,
Form A22-6821

In addition, it is suggested that the
reader be familiar with the following pub­
lication: IBM System/360 Basic Programming
Support Operating Guide for Basic Assembler
and Utilities, Form C28-6557.

This publication is arranged in sections
which correspond to the major parts of the
utility program package. Also included are
appendixes that discuss:

• Program segment relocation and linkage,
and

• A program capable of creating self­
loading loaders.

Illustrations, charts, and examples are
provided throughout to provide the clearest
possible presentation.

MAJOR REVISION (June 1965)

This revision, which supersedes the
previous edition, represents Version 2 of
the subject programs. The changes are
marked by a vertical bar to the left of the
revised text; revised illustrations are
denoted by the symbol • to the left of the
caption.

This publication was prepared for production using an IBM computer to update
the text and to control the page and line format. Page impressions for
photo-offset printing were obtained from an IBM 1403 Printer using a special
print chain.

Copies of this and other IBM publications can be obtained through IBM Branch
Offices.

A form for readers' comments appears at the back of this publication. It
may be mailed directly to IBM. Address any additional comments concerning this
publication to the IBM Corporation, Programming Systems Publications, Depart­
ment D58, PO Box 390, Poughkeersie, N. Y. 12602

© 1965 by International Business Machines Corporation

INTRODUCTION • • • • • • • • • • •
IBM System/360 Basic Programming
Support Basic Utility Programs ••

Machine Requirements • • • •
Main Storage Requirements.

ABSOLUTE LOADER. • • • • •
Introduction • • • • • • •
Absolute Loader Functions ••
Program Segment Sequence
Card Formats • •

Text Card •••
Replace Card.
Load End Card • • • • •

Loader Use of I/O Support Package.
Resident Loader Considerations

RELOCATING LOADER. •
Introduction • • •
Loading Capacity •••••
Unique Relocating Loader Functions
Card Formats • • • • • • • • •

Set Location Counter Card • • •
Include Segment Card. • • • • •
External Symbol Dictionary Card

(ESD) • • • • • • • • • • • • •
Text Card • • • • • • • • • • • •
Relocation List Dictionary Card
Replace Card. •

5

5
5
5

7
7
7
8
8
8
9
9

10
10

11
11
11
12
12
12
13

Load End Card • • • • •

14
17
17
18
19
19
20
21
23
23
23

Load Terminate Card • • • • • •
Other Features • • • • • • • •

Overlaying Load Procedure • • • •
Loading in Absolute Form. • • •

Loader Use of I/O Support Package.
Resident Loader Considerations •

DUMP PROGRAM ••
Introduction • • • • • •
Features • • • • • • •
Versions of the Dump Program • •
Request Numbers •••
Dump Program Requirements

(Single-Phase) • • • •
Calling Sequence • • •
Control List Format. • • •

• 24
24

• 24
• 24
• 25

• 26
• 27
• 29

Output Formats • • • • • •
Two-Phase Dump • • • • • •
Self-Loading Dump Program. •

CONTENTS

• 31
• 32
• 34

INPUT/OUTPUT SUPPORT PACKAGE • • • 37
Introduction • • • • • • • • • • • • • • 37

Format of Presentation. • • . • 37
How the I/O Support Package is
Supplied • • • • • • • • • • • • • • 38

Prerequisite Considerations • 38
Required Subroutine Modules. • • •• 39

Significance of the Required Modules 39
Names and Listin9 Grou~ • • • • • • . 39
Preliminary Considerations. • . 40
Use of the Required Modules • • 41
Sununary of Required Modules • • • 42

Optional Subroutine Modules ••••••• 42
Listing Group, Names, and Functions • 42
Practical Uses of the Optional

Routines • • • • • • • • • • • 44
Sununary of Optional Routines •• • 46

• • 4 6 Summary of I/O Entry Modules • •
Detection of Error Conditions •
Check for Busy Device • • • • • • .
Functions of the I/O Entry Modules .

• 46
• 46
• 47

Organization of the Subroutine Modules
Calling the Entry Modules •••

• 49
• 52
• 52 Direct Linkage • • • • • •

Example of Direct Linkage.
Indirect Linkage • • • • •

• .• • • • 5 3
• • 54

Sense Entry Example •••••••• • 56
Control Entry Example. • • • • • • • 58
Card-Only Installations ••••••
Card-Tape Package •••••••••
Charts of Module Relationships •

• 59
• 59
• 59

APPENDIX A: RELOCATION AND LINKAGE • . • 67

APPENDIX B: SELF-LOADING PROGRAM
GENERATOR (LDRGEN) • • • • • • •

Requirements for Using LDRGEN.
Providing Addresses. • • •••
Sequence of Operations • •

INDEX. •

• • 70
• 70
• 70

• • 71

• 72

CHARTS

Chart AA. Required Modules and Chart DD. Unit Exceptional Condition
Interrupt Action Modules 61 Group. 64

Chart BB. I/O Base Routine - Group 1 Chart EE. I/O Call Entry Group Modules
Optional Modules 62 for Non-Tape, Sense, and

Chart cc. I/O Base Routine - Group 1 Control Operations 65
PSW Routines, Machine Check Chart FF. I/O Call Entry Group Modules
Group, Unit Check Group. . . 63 for Tape Operations. 66

FIGURES

Figure 1. The Sequence of a Program Figure 6. Organization of Subroutine
Segment Ready to be Loaded Modules with Optional
by the Absolute Loader. . . 8 Routines. 51

Figure 2. Two Program Segments Ready Figure 7. Primary Call Entry Table. . 54
for Loading by Relocating Figure 8. Secondary Call Entry Table. 55
Loader. 21 Figure 9. Displacement in Entry

Figure 3. Example of Storage Print Tables. 55
Listing 36 Figure 10. Example of Indirect Linkage 57

Figure 4. Coding in User's Program to Figure 11. Sense Entry Coding Example. 58
Test Busy Bit 47 Figure 12. Control Entry Coding

Figure 5. Organization of Subroutine Example 58
Modules without Optional Figure 13. Example of the Loading
Routines. -. . 51 Process 69

TABLES

Table 1. Absolute Loader Functions 7 Table 13. Replace Card 19
'I' able 2. Text Card. . . . 8 Table 14. Load End Card. 19
Table 3. Replace Card 9 Table 15. Load Terminate Card • . . 20
Table 4. Load End Card. 9 Table 16. Format of Replace Card for
Table 5. Unique Relocating Loader Request Numbers. . . . 26

Functions. 12 Table 17. Call Parameter Format • 28
Table 6. Set Location Counter Card. . 13 Table 18. Control List Entry Format. . 30
Table 7. Include Segment Card . . 14 Table 19. Output Formats 31
Table 8. ESD Card Type 0 (Program Table 20. Names and Listing Group of

Name). 15 the Required and Their
Table 9. ESD Card Type 1 (Entry Associated Modules 39

Point) 15 Table 21. Primary and Secondary Entry
Table 10. ESD Card Type 2 (External Modules. 40

Symbol) • 16 Table 22. Module Relationships . . 50
Table 11. Text Card. 17 Table 23. Chart Codes for Basic
Table 12. Relocation List Dictionary Utility Programs 60

Card 18

Every installation requires programs to
perform such common functions as loading an
assembled program into storage or providing
a listing of the contents of storage. To
save the programmer the time and effort
required to write and modify this type of
program as job requirements change, IBM
makes utility programs available to its
customers.

IBM SYSTEM/360 BASIC PROGRAMMING SUPPORT
BASIC UTILITY PROGRAMS

The four utility programs provided are:
the absolute loader, the relocating loader,
the dump program, and the input/output
support package.

Absolute Loader

The absolute loader loads program seg­
ments (the output of an assembly is called
a program segment; a program may be com­
posed of one or more segments) into storage
at the addresses assigned to them by the
assembler and transfers control to a pro­
gram segment for execution; it also allows
the user to make corrections or additions
to the program segments at load time.

Relocating Loader

The relocating loader can load program
segments into storage at locations other
than those assigned by the assembler; it
completes linkage among the segments so
that one program segment may ref er to
another; it allows corrections or additions
to be made to the program segments at load
time; and it transfers control to one of
the loaded segments for execution.

Dump Program

The dump program provides a listing of
the contents of all or part of storage, the
general registers, and floating-point reg­
isters (or any combination of these). The
program will edit the listing to fit any of
eight basic formats, which are described in

INTRODUCTION

"Output Formats. 0 The dump program is
available in a single-phase symbolic ver­
sion, a single-phase assembled version, a
single-phase self-loading version
(self-loading dump) , a symbolic two-phase

version, an assembled version of phase 1,
and a self-loading version of phase 2.

Input/Output Support Package

The input/output support package
consists of a modular set of subroutines
which enable the user to utilize
input/output devices. (A module in the
input/output support package is a logical
sequence of coding which either sets up or
executes one I/O function.) These are
routines to read or punch a card, write on
the message or printer device, sense infor­
mation from a device, single space on the
message or printer device, skip to channel
one on the printer, read or write tape,
write a tapemark, rewind tape, backspace
tape a record or file, forward-space tape a
record or file, and to read tape backward.

MACHINE REQUIREMENTS

The IBM System/360 Basic Programming
Support Basic Utility programs require the
following minimum machine configuration:

1. IBM System/360 with 8,192 bytes of
storage,

2. One IBM 2540 or 1442 Card Reader­
Punch,

3. Standard instruction set,

4. IBM 1403 OR 1443 Printer, or the IBM
1052 Printer-Keyboard if the dump
program is being used,

The user's input/output configuration det­
ermines what routines he can use from the
input/output support package.

MAIN STORAGE REQUIREMENTS

The following is an approximation of how
much storage each of the utility programs
will occupy. (The user should also take in

Introduction 5

to account that locations 0-127 should be
added when figuring available storage.)

Program
Bytes of

Storage Space

Absolute Loader
Relocating Loader
Dump (Phase 1 of 2)
Dump (Phase 2 of 2)
Dump (single phase)
Dump (self-loading)
I/O subroutine

2,580*
3,800*
3,100*
6,350*•
4,460
3,000

800-2,720***

*

6

In the versions of the absolute and
relocating loaders supplied by IBM,
there is a 250-byte sequence of coding
(Initial Entry Routine) that the load­
ers use to determine the system's con­
figuration. Since this 250-byte area
may be overlaid by a program segment at
execution time, it is not included in
these approximations.

** Needs minimum of BK to operate. Uses
remainder of 8K as buffer.

*** The bytes of storage occupied by the
I/O subroutines depend on the
installation's requirements.

If the user selects the modules neces­
sary for his installation from the I/O
support package and keeps them resident in
storage, the I/0 modules can be removed
from the program and the programs modified
by reassembly to link with the I/O of the
installation. If this is done, these
approximations would be greatly reduced.

The maximum length program which can be
loaded by the relocating loader on an 8K
configuration is 4,250 bytes, decreased by
12 bytes for each ESD card in the deck to
be loaded. Therefore, the use of the
relocating loader is recommended only for
users with greater then 8K bytes of stor­
age.

INTRODUCTION

The absolute loader loads program seg­
ments into the storage locations assigned
by the assembler. _CThe absolute loader
will not overlay itself: an attem t to do
so resu in an error wait. This
oa er recognizes as input three types of

load cards. Two of these, the Text (TXT}
and Load End (END) cards, are generated by
the assembler; the Replace (REP) card, if
needed, must be supplied by the programmer.
The absolute loader will also accept pro­
gram segments intended for use by the
relocating loader, with the following
exceptions:

1.

2.

All other cards, including the load
cards recognized only by the relocat­
ing loader -- the Set Location Counter
(SLC) , Include Segment (ICS) , External

Symbol Dictionary (ESD) , Relocation
List Dictionary (RLD) , and Load Termi­
nate (LDT) cards are ignored.
Information meaningful only to the
relocating loader in the Text,
Replace, and Load End cards is also
ignored.

Linkage with another program segment~
is not supplied. If one program seg­
ment must refer to instructions or
data in a separate program segment,
absolute addresses must be used.

3. Two or more program segments can be
loaded one after the other if all END
cards are removed except the END card
after the last program segment.

The absolute loader is available as
follows:

Table 1. Absolute Loader Functions

ABSOLUTE LOADER

1. a symbolic deck.

2. a self-loading, nonrelocatable deck
(assembled in lower storage) •

3. a self-loading, nonrelocatable deck
(assembled in high storage for an SK
configuration) •

If the user wants to employ the self­
loading deck, he may have to make the
following changes to the END card in the
self-loading deck:

1. He must punch (in hexadecimal
notation) the address of the input
device into card columns 17-20, if the
address of the input device is
different from the address that the
loader is to be loaded from. If it is
not different, he may leave it blank.

2. If he desires to use a message or
printer device for error indications,
he must punch (in hexadecimal
notation) the address of his typewrit­
ing device into card columns 21-24.
If there is no typewriter, he must
punch the address of the printer. If
he leaves these columns blank, the
error indications will only be dis­
played on the console.

ABSOLUTE LOADER FUNCTIONS

The functions of the absolute loader and
the cards associated with each function are
listed in Table 1.

r--T--1
I Function I Card I
~----~---------------------------------------+------------------~---------------------i

Loading: Places the instructions and/or One or more Text cards containing
constants of a program segment into the instructions and/or constants of
the storage locations assigned by the the user's program segment, and
assembler. their assigned starting address.

Correcting: Allows changes or additions
to the instructions and/or constants within
the program segment at load time.

One or more Replace cards containing
corrections altering the program
segment.

Transferring Control: Ends loading of the Load End card containing an address
program segment and transfers control within the program segment to
to some location within the program segment. which control will be transferred.

---~-----~------------------------------~-----i--

Absolute Loader 7

PROGRAM SEGMENT SEQUENCE

A program segment ready to be loaded
includes at least two types of cards: Text
cards and a Load End card. A Replace card
is inserted by the programmer only if he
desires to change and/or add to the program
segment at load time.

Figure 1 shows a program segment with a
Replace card inserted by the programmer,
ready for loading by the absolute loader.
(The figure is read from the bottom up.)

r--~-------------------------------------1

--causes the loading process
to end and control to be
transferred to the user's
program segment.

--Makes additions and/or
changes to the internal
format in storage.

--User's program segment:
Assembled instructions
and/or constants.

Figure 1. The Sequence of a Program Seg­
ment Ready to Be Loaded by the
Absolute Loader

CARD FORMATS

The three types of load cards recognized
by the absolute loader are defined in
detail in the following sections. The
function of each card is stated briefly,
with any other information pertinent to its
use. The card formats are shown in tabular
form, with each field of the card
explained.

In most cases, values in load cards
produced by the assembler are represented
in IBM extended card code; for example, the
decimal value 20 -- represented in one byte
as 0001 0100 -- becomes an 11-9-4 punch in
one card column. In contrast, the program­
mer uses the more convenient hexadecimal
code if Replace cards are used. The hexa­
decimal equivalent of decimal 20 is 14;
this is a 1 punch and a 4 punch in two
successive card columns, representing the
contents of one byte. (Tables for conver­
sion from decimal to hexadecimal are in
Appendix B of IBM System/360 Basic Program­
ming Support Basic Assembler Language, Form
C28-6503.)

8

TEXT CARD

The Text card contains, in extended card
code, the following:

1. The starting address in storage where
the assembled instructions and con­
stants of the user's program segment
are to be inserted.

2. The number of bytes of information
contained in the card.

3. The text itself; that is,
bled instructions and/or
contained in the card.

the assem­
constants

Each Text card may contain a maximum of 56
bytes of text. Table 2 defines the con­
tents of the Text card fields.

Table 2. Text Card
r-------T---------------------------------1
I Column! Contents I
~-------+---------------------------------~

1 Load card identification
(12-2-9 punch) • Identifies
this as a card acceptable to
the loader.

2-4 TXT. Identifies the type of
load card.

5

6-8

9-10

11-12

13-14

15-16

17-72

73-80

Blank.

The starting address, in
extended card code, where the
information on the card is to
be loaded into storage.

Blank.

Number, in extended card code,
of bytes of text to be loaded
from the card.

Blank.

Information for the relocating
loader. The content of these
columns is ignored by the abso­
lute loader.

From 1 to 56 bytes of text
instructions and/or constants
assembled in extended card
code.

Not used by the loader. The
programmer may leave blank or
punch in program identification
for his own convenience. _______ i _________________________________ J

REPLACE CARD

The Replace card is supplied by the
programmer, and must be placed in the
program segment following the Text cards
~,f!=>:r }:?3€eceGiBEJ t:fte RI.El eares) -._, Both assezn-
bled instructions and constants may be
changed or additions made. However, all
changes and additions must be punched in
hexadecimal code.

The programmer cannot replace a two­
byte instruction with a four-byte
instruction through the load program.
In order to replace a two-byte instruc­
tion with a four-byte instruction, he
must either reassemble his source pro­
gram or patch; that is, replace the
incorrect or old entry with a branch
instruction to some storage location
into which the replacement will be load­
ed. Replacement must be made byte for
byte.

Table 3 defines the contents of the
Replace card fields.

Table 3. Replace Card
r-------T---------------------------------1
I Column! Contents I
~-------+---------------------------------~

1 Load card identification

2-4

5-6

7-12

13-16

17-70

71-72

(12-2-9 punch). Identifies
this as a card acceptable to
the loader.

REP. Identifies the type of
load card.

Blank.

Address, in hexadecimal, of the
area to be replaced. It must
be right-justified in these
columns, and unused leading
columns filled in with zeros.
The address must specify a
half-word boundary.

Blank.

A maximum of 11 four-digit
hexadecimal fields, separated
by commas, each replacing one
previously loaded half-word
(two bytes) • The last field

must not be followed by a
comma.

Blank.

73-80 Not used by the loader. The
programmer may leave blank or
punch in program identification
for his own convenience. _______ .._ _______________________________ _

LOAD END CARD

The Load End card ends the loading
process and causes control to be trans­
ferred to some location within the program
segment. If a location is not specified in
the END card, control is transferred to the
first location in storage loaded into from
a TXT card (or REP card, if there are no
TXT cards) above 127 decimal, or 7F hexa­
decimal. After control is transferred, the
system operates in the Supervisor state,
disabled for all interruptions, except a
machine check interrupt; see "Input/Output
Support Package" for a discussion of inter­
ruptions. Table 4 defines the contents of
the Load End card fields.

Table 4. Load End Card
r-------T---------------------------------1
I Columnl Contents I
~-------+---------------------------------~

1 Load card identification
(12-2-9 punch) • Identifies
this as a card acceptable to
the loader.

2-4 END. Identifies the type of
load card.

5 Blank.

6-8

9-14

15-16

17-72

Address, in extended card code,
of a point in the program seg­
ment to which control is to be
transferred at load end. If
the END card did not specify a
point in the program segment to
which control is to be trans­
ferred, this field will contain
blanks and control will be
transferred to the first loca­
tion in storage above location
127 decimal, or 7F hexadecimal,
into which data is loaded from
a TXT card (or REP card, if one
precedes the TXT cards) •

Blank.

Information for the relocating
loader. The content of these
columns is ignored by the abso-
1 ute loader.

Blank.

73-80 Not used by the loader. The
programmer may leave blank or
punch in program identification
for his own convenience. _ ______ i ________________________________ _

Abs0lute Loader 9

LOADER USE OF I/O SUPPORT PACKAGE

The absolute loader uses selected
modules of the I/O support package to read
cards or card images from tape. These
routines can be used by the programmer by
employing the coding sequence (with abso­
lute addresses) discussed in "Input/Output
Support Package.•

10

RESIDENT LOADER CONSIDERATIONS

The name of the first instruction in the
absolute loader is: LOAD1. If this loca­
tion is branched to (either from the con­
sole or directly from a program segment in
storage) , another program segment can be
loaded without preceding it by another
absolute loader. The user may obtain the
absolute address of LOAD1 by referring to
his listing.

INTRODUCTION

The distinguishing feature of the relo­
cating loader is its ability to relocate
program segments and to complete linkage
between the segments. (For a detailed
discussion on how the relocating loader
accomplishes this, see Appendix A.) It also
has a storage mapping facility which will
provide, on the message device indicated on
the END card, the name of each segment and
entry point and its assigned location. The
relocating loader recognizes eight types of
load cards. Four of these are generated by
the assembler: the External Symbol Dic­
tionary card (ESD) , Text card (TXT) , Relo­
cation List Dictionary card (RLD) , and the
Load End card (END) • The other four cards
are supplied by the programmer: the Set
Location Counter card (SLC) Include Segment
card (ICS) , Replace card (REP) , and Load
Terminate card (LDT) •

The relocating loader protects itself
and the Reference Table (REFTBL) from being
overlaid when input is in relocatable form.
The Reference Table is a list of 12-byte
entries (a maximum of 253 entries) built by
the loader; it contains the names and entry
points of a program segment along with
their present internal location and the
relocation factor. When an attempt is made
to overlay the loader or the Reference
Table an error wait results. (For a dis­
cussion of codes and operator actions on
any error waits mentioned in this manual,
see IBM System/360 Basic Programming Sup­
port Operating Guide for Basic Assembler
and Utilities, Form C28-6557.) When the
relocating loader is requested to function
as an absolute loader, it does not protect
the Reference Table, and the Reference
Table can be overlaid.

LOADING CAPACITY

The Relocating Loader available from IBM
is set for a maximum storage size of 8K.
To modify the Relocating Loader source
deck, designed for residence in lower stor­
age, for a storage size greater than 8K it
is necessary to alter the constant TOP as
described prior to the constant in the
listing (or to 131071 for 128K). The
source deck should then be assembled and a
new loader generated using the LDRGEN pro­
gram. For further information about loader
options and modifications and how to use

RELOCATING LOADER

the Loader Generator Program, ref er to the
IBM/360 Basic Programming Support, Operat­
ing Guide for Basic Assembler and Utili­
ties, Form C28-6557.

The relocating loader is available as
follows:

1. A symbolic deck.

2. A self-loading, nonrelocatable deck
(assembled in lower storage) for an BK
configuration.

3. A self-loading, nonrelocatable deck
(assembled in higher storage) for an

8K configuration.

If the user wants to employ the self­
loading deck, he may have to modify the END
card in the self-loading deck as follows:

1. Punch (in hexadecimal notation) the
address of the input device into card
columns 17-20, if the address of the
input device is different from the
address that the loader is to be
loaded from. If it is not different,
he may leave it blank.

2. If he desires to use a message or
printer device for error indications,
he must punch (in hexadecimal
notation) the address of his
typewriting or printing device into
card columns 21-24. If there is no
typewriter or printer, he must punch
the address of the printer. If he
leaves these columns blank, the error
indications will only be displayed on
the console.

Finally, the relocating loader contains
its own location counter (LOCCT) ; LOCCT
determines where program segments will be
loaded. LOCCT is set to a constant value
during an initial program-loading proce­
dure. Once LOCCT is set, it is subsequent­
ly incremented by the number of bytes
indicated on an ESD Type 0 card (see "ESD
Type 0 (Program Name)•). It may also be
incremented by the length indicated on an
ICS card (see •Include Segment Card") or
set by an SLC card (see •set Location
Counter Card") •

Relocating Loader 11

UNIQUE RELOCATING LOADER FUNCTIONS

The relocating loader has not only the
three functions of the absolute loader
(that is, loading, correcting, and trans­
ferring ~ontrol) , but also the unique capa­
bilities described in Table 5, by function
and the associated control cards.

CARD FORMATS

The eight types of load cards recognized
by the relocating loader are described in
detail in the following sections. The
function of each card is stated briefly,
with any special considerations in its use.
The card format is shown in tabular form,
and each field of the card is explained.

Particular attention has been given to
those cards that the programmer supplies
(the Set Location Counter, Include Segment,

Replace, and Load Terminate cards) and to
those cards whose function is closely
related to other cards.

SET LOCATION COUNTER CARD

The Set Location Counter card sets the
l~ader location counter in one of th~ee
ways:

Table 5. Unique Relocating Loader Functions

1. Any absolute address, specified as a
hexadecimal number punched in card
columns 7-12.

2. Any symbolic address already defined
as a program name or entry point.
This is specified by a symbolic name
punched in card coltlmns 17-22.

3. If there is both a hexadecimal address
and a symbolic name, the absolute
address (converted to binary) will be
added to the internal address assigned
to the symbolic name, and the result­
ing sum will be the address to which
the loader's location counter is set.
To illustrate this, we will assume
that in card columns 7-12 of the Set
Location Counter card, 00007F was
punched; also that there is a symbolic
address called GAMMA and that GAMMA is
at storage location 000100
(hexadecimal) • The absolute address
in card columns 7-12 will be added to
the internal address assigned to
GAMMA, giving a sum of 00017F. It is
at this location in storage that the
loader's location counter will be set.
(See •Note• under "Include Segment

Card.")

If there are blanks in both card columns
7-12 and 17-22, there will be an error
wait. If the programmer wishes to use only
the symbolic address, he must leave the
absolute field blank (or all zeros) ; if he
wishes to use only the absolute address, he
must leave the symbolic field blank.

r--T----~---------------------------------1

I Functions I Cards I
~--+--------------------------------------~

Relocating. Can place the instructions and I Set Location Counter (SLC) ,
constants of a program segment into storage I Include Segment (ICS) ,
locations other than those assigned by the I External Symbol Dictionary
assembler; that is, relocate them. I (ESD, type 0) , Text (TXT) ,

I Replace (REP) •
I

Linkage. Loads two or more program segments I External Symbol Dictionary
one after the other, and completes linkage I (ESD types 1 and 2), Relocation List
among them, so that one program segment may I Dictionary (RLD) , Replace (REP) •
ref er to constants and/or instructions within I
another program segment. (Makes any changes I
necessary in evaluating address constants whichl
are used by the program segment. I

Transferring Control. Ends loading and causes
control to be transferred according to the
priority noted in the discussion of the Load

I
I Load Terminate (LDT) and Load
I End (END) •
I

Terminate card. I
~--i--------------------------------------~
I Note: The function of the Replace card is essentially the same as in the absolute I
I loader. The Load End card remains an essential part of each program segment, but is I
I subordinate in function to the Load Terminate card. I
L---J

12

I
In the absence of an initial SLC card,

LOCCT is set to the first location availa­
ble for loading above 127 decimal or 7F
hexadecimal.

Table 6 defines the contents of the Set
Location Counter card.

Table 6. Set Location Counter Card
r-----~T---------------------------------1
I Column! Contents I
~-----~+-------------------------------~~

1 Load card identification

2-4

5-6

7-12

13-16

17-22

23-72

(12-2-9). Identifies this as a
card acceptable to the loader.

SLC. Identifies the type of
load card.

Blank.

Address in hexadecimal (to be
added to the value of the sym­
bol, if any, in columns 17-22).
The address must be right­
justif ied in these columns, and
unused leading columns filled
in with zeros.

Blank.

Symbolic name, whose internal
assigned location will be used
by the loader. The symbol must
be left-justified in these
columns. If left blank, the
address in the absolute field
is used.

Blank.

73-80 Not used by the loader. The
programmer may leave blank or
punch in program identification
for his own convenience.

L~--~-i----------------------------~---

INCLUDE SEGMENT CARD

If program segment A is to be loaded,
and it makes reference to a program segment
named B, the relocating loader requires
that the location of segment B must be
already established. This requirement may
be satisfied in one of two ways:

1. Load segment B first, or

2. If segment B has not been loaded, the
programmer must precede segment A with
an Include Segment (ICS) card. This

card will define segment B by name and
length.

Assuming that segment B has not been
loaded but has been defined by name and
length, the loader then includes segment B
in its Control Dictionary and reserves an
area of storage for it. (The Control
Dictionary is comprised of the Reference
Table and the External Symbol Identifi­
cation (ESID} Table. The ESID Table con­
tains pointers to the entries in the Ref­
erence Table that ref er to the current
program segment.) When the loader subse­
quently encounters reference to segment B,
the actual location of B is already known.

When segment B is loaded, it is placed
into the storage area reserved for it. The
programmer must specify in the ICS card a
value not less than the actual length of
segment B (the length of segment B is not
retained by the loader and so overlay
checks are neither made nor verified) •
However, if another segment to be loaded,
C, makes reference to another entry point
within program segment B, then the assem­
bled instructions and constants of B must
either be loaded before segment C, or
defined for C through an ICS card.

Entry points other than those already
established (by an ENTRY assembler
instruction) can be established in the same
manner. To establish this type of entry
point, the programmer takes the following
steps:

1. He provides an SLC card that sets the
location counter to the desired
address. See item 3 under nset Loca­
tion Counter Card.n

2. He provides an ICS card that indicates
a program segment with a length of
zero.

Note: Program segments are loaded only on
double-word boundaries. The loader auto­
matically makes this adjustment before
loading any given segment according to the
following criteria:

1. If the ICS card denotes a symbol of
length O, no adjustment is made to
LOCCT, and the symbol is placed in
REFTBL with the current value of LOCCT
assigned to it.

2. If the ICS card denotes a symbol with
a length greater than 0, then the
following operations occur:

a. LOCCT is adjusted to the
double-word boundary
necessary) •

next
(if

Relocating Loader 13

b. the symbol goes into REFTBL with
the value of LOCCT.

c. the length of the symbol is added
to the value of LOCCT, and LOCCT
is set to the resulting sum.

Table 7 defines the contents of the
Include Segment card fields.

Table 7. Include Segment Card
r-------T---------------------------------1
I Column! Contents I
~-------+---------------------------------~

1 Load card identification

2-4

5-16

17-22

23-24

25-28

29-72

(12-2-9). Identifies this as a
card acceptable to the loader.

ICS. Identifies the type of
load card.

Blank.

Name of segment, left-justified
in these columns.

Blank.

Length (in bytes) in hexadeci­
mal notation of the program
segment. This must not be less
than the actual length of the
segment. (This may be 0 if the
ICS card is used to add entry
points other than for defining
program segments.) The number
must be right-justified in
these columns, and unused lead­
ing columns filled in with
zeros.

Blank.

73-80 Not used by the loader. The
programmer may leave blank or
punch in program identification
for his own convenience. _______ i ________________________________ _

EXTERNAL SYMBOL DICTIONARY CARD (ESD)

ESD Type 0 (Program Name)

The External Symbol Dictionary card,
~Type O, defines the name of the program
segment. The program name is also an entry
"point to the segment. It is produced by
the assembler when it encounters a START
instruction. If the START instruction does
not specify a program name or if there was
no START card, BLANKS will be placed in the
loader's Control Dictionary and will define
the •name• of that program segment.

14

The assembler assigns an External Symbol
Identification number of 01 (ESID 01) to
the program segment. This number is used
by the loader as a control (in the Control
Dictionary) to the Reference Table. It is
at this time, that is, when the loader is
processing the ESD (Type 0) card, that the
loader computes the segment's relocation
factor. The relocation factor is the dif­
ference Eetween the address where the pro­
gram segment is loaded and the address
Wflere it was assembled. The loader saves
"the relocation factor in the Reference
Table. The ESID 01 appears in the ESD
Type O, all ESDs Type 1, TEXT, RLD, and the
Load End (END) cards produced by the assem­
bler.

The starting address at which the pro­
gram segment will be loaded is determined
by the following conditions:

1.

2.

If the name of the segment defined by
the ESD Type 0 card is contained in
REFTBL, then the segment is loaded
beginning at the location specified in
REFTBL and no adjustment of LOCCT is
made.

If the name of the segment specified
in the ESD Type 0 card is not in
REFTBL, then the following occur:

a. LOCCT is adjusted to
double-word boundary
sary) •

the next
(if neces-

b. the segment name is placed in
REFTBL with the adjusted value of
LOCCT.

c. the length of the segment is added
to the adjusted value of LOCCT,
and LOCCT is set to the resulting
sum.

d. the segment is loaded starting at
the location specified in REFTBL.

The loader loads only one program seg­
ment at a time and does not save the
identifying number from one program segment
to another. Therefore, there is no con­
flict in the table when the next segment is
assigned the same identifying number; · that
is, the next program segment loaded may be
assigned an identifying· number of 01 (ESID
01) •

I This routine maps the segment's name and
its assigned location.

Table
Type 0
fields.

8 defines the
External Symbol

contents of the
Dictionary card

Table 8. ESD Card Type 0 (Program Name)
r-------T---------------------------------1
I Column! Contents I
~-------+---------------------------------1

1 Load card identification

2-4

5-10

11-12

13-14

15-16

17-22

23-24

25

26-28

(12-2-9) • Identifies this as a
card acceptable to the loader.

ESD. Identifies the type of
load card.

Blank.

The number of bytes in the
card. Extended card code
12-0-1-8-9 and 12-11-1-8-9
(hexadecimal value of 0010).

Blank.

External Symbol Identification
(ESID). Number, in extended
card code, assigned to the pro­
gram segment.

Program name.

Blank. 7.
•

Extended card
(hexadecimal
identifying
name card.

code
value

this

12-0-1-8-9
of 00) ,

as a program

Address, in extended card code,
of the first byte of the pro­
gram segment as assigned by the
assembler.

29 Blank.

30-32

33-72

Number, in extended card code,
of bytes in the program seg­
ment.

Blank.

73-80 Not used by the loader. The
programmer may leave blank or
punch in program identification
for his own convenience.

~ -------i~--------------------------------

ESD Type 1 (Entry Point)

The Tx~e 1 External Symb91 Dictionary
card defines an entry point within tne
program segment to which another segment
Tuay refer. This card is produced by the
assembler when it encounters an ENTRY
assembler instruction, one card being pro­
duced for each entry point so defined. All
ESD Type 1 cards are assigned the same ESID
as that of the ESD Type 0 of the same
program segment. Duplicate entries will

cause a loader error wait. (See the publi­
cation IBM System/360 Basic Programming
Support Operating Guide for Basic Assembler
and Utilities, Form C28-6557.) There may
not be more than 100 ENTRYs for a given
program segment.

To enable reference to an entry point in
one program segment, another segment must
define it within its own assembly as an
external symbol. However, entry points
need not be predefined if they are not
referenced during the load. This routine
maps each entry point and its assigned
location.

Table 9 defines the contents of the Type
1 External Symbol Dictionary card.

Table 9. ESD Card Type 1 (Entry Point)
r-------T---------------------------------1
I Column! Contents I
~-------+---------------------------------1

1 Load card identification
(12-2-9) • Identifies this as a
card acceptable to the loader.

2-4 ESD. Identities the type of
load card.

5-10

11-12

13-16

17-22

23-24

25

26-28

29-30

31-32

33-72

Blank.

The number of bytes in the
card. Extended card code
12-0-1-8-9 and 12-11-1-8-9
(hexadecimal value of 0010).

Blank.

Name of entry point.

Blank.

Extended card code 12-1-9
(hexadecimal value of 01) ,
identifying this as an entry
point card.

Address, in extended card code,
of the entry point as assigned
by the assembler.

Blank.

External Symbol Identification
(ESID). Number, in extended

card code, assigned to program
segment in which entry points
occur.

Blank.

73-80 Not used by the loader. The
programmer may leave blank or
punch in program identification
for his own convenience.

-------i---------------------------------

Relocating Loader 15

ESD Type 2 (External Symbol)

The Type 2 External Symbol Dictionary
card points to a name within another pro­
gram segment, to which this segment may
~efer. The card is produced by the assern­
~ when it encounters an EXTRN instruc­
tion, one card being produced for each
external symbol so defined. The assembler
assigns each External Symbol a unique ESID.
'The ESIDs range from 2 througlj _ 15 and __ so
there may not be more than 14 in any giv~n
program segment.

The ESID is used as a pointer to the
Reference Table which includes:

1. The external program segment name or
entry point.

2. Its actual internal address.

The same ESID number appears in the RLD
card associated with the external symbol.

The loader loads only one program seg­
ment at a time. It saves names from one
segment to the next, but not identifying
numbers. Therefore, there is no conflict
in the tables when the sequence of ESIDs
reappears. To reference an external sym­
bol, that symbol must be declared an entry
point in some other segment (unless it is
the name of the program segment) •

Table
Type 2
fields.

10 defines the
External Symbol

contents of the
Dictionary card

SUMMARY OF EXTERNAL SYMBOL DICTIONARY
CARDS: The External Symbol Dictionary
cards are generated by the assembler.
There are three types of ESD cards:

1. ESD Type 0 defines the name, starting
address, and length of a program seg­
ment. It is produced by the assembler
when the assembler encounters a START
assembler instruction. There is only
one ESD Type 0 card produced per
program segment; it is assigned an
ESID of 01 by the Basic Assembler.

2. 'ESD Type defines an entry point

16

within the program segment to which
another segment may refer. It is
produced by the assembler when the
assembler encounters an ENTRY assem­
bler instruction. One card is pro­
duced for each entry point so defined.

Table 10. ESD Card Type 2 (External
Symbol)

r-------T-------~------------------------1
I Column! Contents I
~-------+~-----~,-----------------------~
I
I 1 Load card identification
I
I

(12-2-9) • Identifies this as a
card acceptable to the loader.

2-4 ESD. Identifies the type of
load card.

5-10

11-12

13-14

15-16

17-22

23-24

25

26-28

29-72

73-80

Blank.

The number of bytes in the
card. Extended card code
12-0-1-8-9 and 12-11-1-8-9
(hexadecimal value of 0010).

Blank.

External Symbol Identification
(ESID). Sequential number, in
extended card code, assigned to
external symbol.

Name of external symbol.

Blank.

Extended card code 12-2-9
(hexadecimal value of 02) iden­
tifying this as an external
symbol card.

Extended card code
12-0-1-8-9, and
(hexadecimal value

An address of 0
assigned to External
the Basic Assembler.

Blank.

12-0-1-8-9,
12-0-1-8-9

of 000000) •
is always
Symbols by

Not used by the loader. The
programmer may leave blank or
punch in program identification
for his own convenience.

-------~-------~------------------------J

3. ESD Type 2 points to a name within
another program segment to which this
program segment may refer. It is
produced by the assembler when the
assembler encounters an EXTRN assem­
bler instruction.

The assembler assigns the external sym­
bol an identifying number of from 2 through
15 (according to the order in which it is
encountered among the segment's external
symbols) •

TEXT CARD

The Text card contains instructions
and/or constants of the user's program
segment and the starting address at which
the first byte of text is to be loaded from
the card. Each card contains a maximum of
56 bytes of text, in extended card code.

Table 11 defines the contents of the
Text card fields.

RELOCATION LIST DICTIONARY CARD

The Relocation List Dictionary card
(RLD) is produced by the assembler when it

encounters a DC instruction or the second
operand of a CCW instruction which defines
an address as a relocatable symbol or
expression. This may be the address of
either an internal symbol, which occurs
only within the program segment, or of an
external symbol belonging to another seg­
ment (ESID with an identifying number of
from 2 through 15; see •ESD Card Type 2
(External Symbol) .•

For example, in program segment A, the
programmer wishes to refer to a subroutine,
SQRT, in segment B. He defines it as an
external symbol:

EXTRN SQRT

Now he may branch to it within his
segment in the following manner:

L
BALR

15,ADSQRT
14,15

program

J
Because he does not know what its address
will be at load time, he uses a symbolic
address:

AD SQRT DC A (SQRT)

In this example, SQRT is an external,
relocatable symbol, whose value will change
as a result of segment .Ji'. nl?~.}.~gn relocated.
The assembler assign~Jm'S'QR'r'0 a value of
zero, and when the address for SQRT is
defined at load time, this value is added
to zero. A segment may contain more than
one symbol or expression definable in terms
of one relocatable symbol. For example:

Table 11. Text Card
r------T--------------------------------1
I Column I Contents I
~-----+-------------------------------~

1 Load card identification
(12-2-9) • Identifies this as a
card acceptable to the loader.

2-4 TXT. Identifies the type of
load card.

5

6-8

9-10

11-12

13-14

15-16

17-72

Blank.

24-bit starting address (in
extended card code) in storage
where the information from the
card is to be loaded.

Blank.

Number of bytes (in extended
card code) of text to be loaded
from the card.

Blank.

External Symbol Identification
(ESID). Number, in extended
card code, assigned to the pro­
gram segment in which the text
occurs.

A maximum of 56 bytes of
instructions and/or constants
assembled in extended card
code.

73-80 Not used by the loader. The
progranuner may leave blank or
punch in program identification
for his own convenience. _______ J. _______________________________ J

AD SQRT
ADSQR1
ADSQR2

DC A (SQRT)
DC A (SQRT+ 10)
DC A (SQRT+20)

The RLD card lists addresses for as many
as 13 expressions so defined. If there are
more than 13 such expressions, other RLD
cards associated with the symbol are pro­
duced.

Table 12 defines the contents of the
Relocation List Dictionary card fields.

Relocating Loader 17

Table 12. Relocation List Dictionary Card
r-------T---------------------------------1
I Column I Contents ~

~-------+---------------------------------~
I
I 1 Load car'd identification
I (12-2-9) • Identifies this as a

card acceptable to the loader.

2-4 RLD. Identifies the type of
load card.

5-10

11-12

13-16

17-72

Blank.

Number,
of bytes
variable
17-72) of
is from 8

Blank.

in extended card code,
of information in the
field (card columns
this card. The range
to a maximum of 56.

Variable field (in extended
card code) • Consists of the
following subfields:

Relocation Header. (Two
bytes.) An ESID with a value
of from 01 through 15. Whether
or not the value is 01 or from
02 through 15 depends on wheth­
er the symbol it points to is
internal or external to the
particular program segment.

Position Header. (Two bytes.)
The ESID assigned to this pro­
gram segment.

Flag Byte (bits 0 through 3 are
not used) • This byte contains
three items:

1. Size. (Bits 4 and 5.) Two
bits which indicate the
length (in bytes) of the
adjusted address (AA Cell)

a. 00 - one-byte cell
b. 01 - two-byte cell
c. 10 - three-byte cell
d. 11 - four-byte cell

_______ i _________________________________ J

(Continued)

18

Table 12. (Continued)
r-------T---------------------------------1
I Column! Contents I
~-------+---------------------------------~

73-80

2. Complement Flag. (Bit 6.)
When this bit is a one, it
means that the value (or
address) of the symbol is to
be subtracted from the con­
tents of the AA Cell. When
this bit is a zero, the
value of the symbol is to be
added to the contents of the
AA Cell.

3. Continuation Flag. (Bit 7.)
When this bit is a one, it
means that this is one of a
series of addresses to be
adjusted. When this bit is
a zero, this is the only AA
Cell to be adjusted or the
last in a series using the
same Relocation and Position
headers.

Address.
address
AA Cell.

The three-byte
of the location of the

The Flag Byte and Address
may be repeated for AA Cells as
long as the continuation flag
bit is on in the current four­
byte entry.

Not used by the loader. The
programmer may leave blank or
punch in program identification
for his own convenience.

_______ i ________________________________ _

REPLACE CARD

The Replace card is supplied by the
programmer, and should be placed in the
program segment immediately following the
Text cards. Both instructions and
constants may be changed and/or additions
made. The Replace card must be punched in
hexadecimal code.

If additions made by Replace cards
increase the length of a program segment,
the programmer must place an Include Seg­
ment card (which defines the total length
of that program segment) at the front of
the program segment.

Table 13 defines the contents of the
Replace card fields.

Table 13. Replace Card
r-------y---------------------------------1
I Column I Contents I
~-------+---------------------------------~

1 Load card identification

2-4

5-6

7-12

13-14

15-16

17-70

71-72

(12-2-9) • Identifies this as a
card acceptable to the loader.

REP. Identifies the type of
load card.

Blank.

Starting address, in hexadeci­
mal, of the area to be
replaced, as assigned by the
assembler. It must be right­
justified in these columns, and
unused leading columns filled
in with zeros.

Blank.

External Symbol Identification
(ESID) • Hexadecimal number
assigned to the program segment
in which replacement is to be
made.

A maximum
hexadecimal
by commas,
previously
(two bytes) •

must not be
comma.

Blank.

of 11 four-digit
fields, separated
each replacing one
loaded half-word

The last field
followed by a

73-80 Not used by the loader. The
programmer may leave blank or
punch in program identification
for his own convenience. _______ i _________________________________ J

LOAD END CARD

The Load End card (END) is produced by
the assembler when it encounters the END
instruction. This card ends loading of a
program segment and may specify a location
within the segment to which control is to
be transferred.

Table 14 defines the contents of the
Load End card fields.

Table 14. Load End Card
r-------y---------------------------------1
I Column! Contents I
~-------+---------------------------------~

1 Load card identification
(12-2-9) • Identifies this as a
card acceptable to the loader.

2-4 END. Identifies the type of
load card.

5 Blank.

6-8

9-14

15-16

17-72

Address (may be blank) , in
extended card code, of the
point in the program segment to
which control may be trans­
ferred at the end of the load­
ing process. See the condi­
tions and priority discussed
under Load Terminate card.

Blank.

External Symbol Identification
(ESID) •

Blank.

73-80 Not used by the loader. The
progranuner may leave blank or
punch in program identification
for his own convenience. _______ i__ ______________________________ _

LOAD TERMINATE CARD

The Load Terminate card (LDT) must be
placed at the end of the program segment.
It has two uses:

1. It is needed to end the loading proc­
ess.

2. 'It causes control to be transferred to
some location within the segments
loaded.

The specific location to which control
is transferred is determined through the
following order of priority:

1. Control is always transferred to a
location specified in a Load Terminate
card.

2. If the Load Terminate card does not
specify a location, control is trans­
ferred to the location specified by
the first Load End card encountered
during the current loading process.

3. If neither the Load Terminate card nor
any of the Load End cards specifies a

Relocating Loader 19

location, control is transferred to
the first location loaded into from a
TXT card (or REP card, if there are no
Text cards) , above 127 decimal or 7F
hexadecimal, of the first program seg­
ment loaded.

l
When control is transferred to the program
segment(s) loaded, the system operates in
the Supervisor state, disabled for all
interru.ptions except a machine check inter­
rupt; .see "Input/Output Support Package"
for a discussion of interruptions.

Figure 2 shows a possible sequence of
cards, in a series of program segments,
ready to be loaded by the relocating load­
er; it does not show all permissible combi­
nations of load cards. (The figure reads
f rdm the bottom.)

OTHER FEATURES

In addition to the
basic functions, it
other operations:

relocating loader's
can be used for two

1. To implement a technique that allows
execution of programs larger than
available ·storage, that is, an over­
laying load procedure.

20

2. To operate in the same way as the
absolute loader.

A description of these operations follows.

Table 15 defines the contents of the
Load Terminate card fields.

Table 15. Load Terminate Card
r-----~T-------~------------------------1

I Column! Contents I
~-------+---------------------------------~

1 Load card identification
(12-2-9) • Identifies this as a

card acceptable to the loader.

2-4 LDT. Identifies the type of
load card.

5-16

17-22

23-72

Blank.

Name of entry point to the
program segment, left-justified
in these columns. Use of this
field is optional.

Blank.

73-80 Not used by the loader. The
programmer may leave blank or
punch in program identification
for his own convenience.

-------i---------------------------------

r---1

~---
(

(TXT

(ESD (Type 2)

(ESD (Type 0)

(END

(TXT

(ESD (Type 2)

(ESD (Type 1)

(ESD (Type 0)

(res

--If the overlaying load procedure is used, other program
segments may be loaded after the preceding program segments
are executed.

--Causes loading process to end. If this card specifies an
address for transfer of control, this overrules any address
saved or specified by an END card.

--If program segment A's END card does not specify an address to
which control is transferred, this card may do so. (LDT also
can overrule here.)

--Provides information to loader for evaluating relocatable
addresses in Segment B.

--Segment B's instructions and constants.

--Defines external symbol in segment A to which Segment B
refers.

--Defines name and length of Segment B.

--May list an address within Segment A to which control will be
transferred after loading (conditional; LDT card can
overrule) •

--Provides information to loader for evaluating relocatable
addresses in Segment A.

--Causes changes or additions to be made to Segment A's internal
format.

--Segment A's instructions and constants.

--Defines the name of Segment B as a symbol to which Segment A
refers.

--Defines entry point in Segment A to which other segments may
refer.

--Defines name and length of Segment A.

--Defines program Segment B as a segment to be loaded and
specifies length to be reserved for it.

I I (sLC --Sets location counter at an absolute or symbolic address.

L---
Figure 2. Two Program Segments Ready for Loading by Relocating Loader

(This figure reads from bottom to top.)

OVERLAYING LOAD PROCEDURE

The overlaying load procedure allows the
programmer to execute programs larger than
available storage. The general principle
is that once a loaded program segment is no
longer needed, another program segment may
be loaded over it. The process of overlay-

ing the segments no longer needed with
another program segment is continued until
all the program segments are executed.

More specifically, the first segments
are loaded in the usual manner. The load­
ing procedure would then be interrupted by
an LDT card which would transfer control to
one of the loaded segments. When the

Relocating Loader 21

loaded segment has completed its opera­
tions, the program segment would transfer
control back to the loader to load the next
program segment. The considerations for
doing this are described in the next para­
graph.

RE ME. If the loader is entered at
location, loading will resume at the loca­
tion specified in LOCCT, which has not been
reset or changed after loading the previous
segment; the programmer can reset LOCCT by
an SLC card.

The relocating loader may be entered at
RESUME by the following coding sequence in
the program segment:

EXTRN

L

BCR

RESADD DC

RESUME Define RESUME to
the segment

1,RESADD Load address of
RESUME

15, 1 Branch to RESUME

A(RESUME) Define address of
RESUME

If the first card the loader encounters
is an SLC card which sets LOCCT to the same
starting address the previous program seg­
ment had occupied, the previous segment
will be overlaid. Consider the following
example:

A user has a 16K machine. He has inventory
records that show:

1. Quantity on hand at the beginning of
the month.

2. The number of items sold during the
month.

3. The number of items purchased during
the month.

4. The minimum re-order figure.

These inventory records occupy 4000 bytes
of storage.

He has a program segment-to perform each
of the following operations:

1. Subtract the number of items sold from

22

the quantity on hand at the beginning
of the month; program segment J.

2. Add the number of items purchased;
program segment K.

3. Compare the items on hand to the
minimum re-order figure and move those
items which must be re-ordered to an
output buffer area; program segment L.

4. Print a list of the current inventory
on hand; program segment M.

5. Print a list of the items to be
re-ordered; program segment N.

Each of these five program segments
occupies 1500 bytes of storage and the
output buff er occupies 250 bytes of stor­
age. Finally, the relocating loader occu­
pies 3800 bytes of storage and the user's
I/O routines occupy 1000 bytes of storage.

Since the entire program is larger than
available storage, the programmer uses the
overlaying load procedure as follows:

1. He loads the loader, the list of his
inventory, and the first program seg­
ment. He then interrupts the loading
procedure with a Load Terminate card,
which transfers control to one of the
loaded segments; in this case, program
segment J, and execution proceeds
until all the inventory categories
have been processed by this program
segment.

2. Program segment J then transfers con­
trol to location RESUME, and the next
program segment -- program segment K

is loaded. The first card in
program segment K is an SLC card which
uses the name of program segment J as
the address to which the location
counter is to be set. Thus, program
segment K would overlay program seg­
ment J. In this illustration, the
second program segment would overlay
the first, which is no longer needed.

3. Control is again transferred to one of
the program segments by interrupting
the loading procedure with a Load
Terminate card, and execution pro-

7 ceeds. the program segments he no
- l{jnger needs with another program seg­

ment until the lists of inventory on

hand and items to be re-ordered are
printed (always making sure that he
does not attempt to overlay the loader
or the other segments) •

LOADING IN ABSOLUTE FORM

The relocating loader operates in a
manner similar to the absolute loader, if
the External Symbol Dictionary card (ESD
type 0) is removed from the program segment
before load time.

Note: The loader will not record in the
Reference Table the presence of a program
segment loaded in absolute form. The load­
er loads one or more segments in absolute
form until it encounters a Load Terminate
card. (Load End card will not terminate
loading.) It also loads program segments in
both absolute form (without ESD type 0
cards) and in relocatable form. However,
the following limitations apply to this
situation:

1. No linkage is provided with any pro­
gram segment loaded in absolute form.
If the programmer wishes to load at
the locations assigned by the assem­
bler with linkage to another segment,
he must specify the starting address
with a Set Location Counter card and
must· not remove the ESD type 0 card.

2. If two or more program segments are
loaded in absolute form, one will
overlay the other at all common
addresses.

LOADER USE OF I/O SUPPORT PACKAGE·

The relocating. loader uses selected
modules of the I/O Support Package to read
cards or card images from tape and, if a
writing device (typewriter or printer) is
indicated to the loader, storage mapping
and error messages will also be written.
These routines can be used by the program­
mer by employing the coding sequence (with
absolute addresses) discussed in
"Input/Output Support Package."

RESIDENT LOADER CONSIDERATIONS

The name of the first instruction in the
relocating loader is: LOAD2. If this loca­
tion is branched to (either from the con­
sole or from a program segment in storage
that defines LOAD2 as an EXTRN} , another
program segment can be loaded without
preceding it with another relocating load­
er.

CAUTION: The user cannot use LOAD2 for an l
overlaying load procedure, since the Ref­
erence Table is destroyed whenever LOAD2 is
branched to.

See appendixes for further information
about relocation and linkage, and the crea­
tion of self-loading loaders.

Relocating Loader 23

DUMP PROGRAM

INTRODUCTION

The dump program is designed to provide
a listing of the contents Of all or part of
storage, the general registers, and the
floating-point registers (or any combina­
tion of these) • To be more specific, at
the option of the user, the dump program
can produce a listing of any or all of the
following:

1. Console listing; that is, a listing of
storage locations from zero through
127. This listing includes:

a.

b.

c.

Initial Program Loading PSW:
locations 0-7

Initial Program Loading CCW1:
locations 8-15

Initial Program Loading CCW2:
locations 16-23

d. External Old PSW: locations 24-31

e. Supervisor Call Old PSW:
locations 32-39

f. Program Old PSW: locations 40-47

g. Machine check old PSW:
locations 48-55

h. Input/output Old PSW
locations 56-63

i. csw: locations 64-71

j. CAW: locations 72-75

k. Unused word: locations 76-79

1. Timer: locations 80-83

m. Unused word: locations 84-87

n. External New PSW: locations 88-95

o. Supervisor call new PSW 96-103

p. Program New PSW: 104-111

q. Machine Check New PSW:
locations 112-119

r. Input/output New PSW:
locations 120-127

2. The sixteen general registers.

24

3. The four floating-point registers.1

4. All or part of storage.

The listing is printed on the IBM 1403
or 1443 Printer or on the IBM 1052 Printer­
Keyboard.

FEATURES

The dump program has the following
features:

1.

2.

Listings may be taken
during execution of
gram.

at any point
the user's pro-

The user
formats
include
ferent
ing.

may choose any of eight basic
for the listing and may

several storage areas in dif­
f ormats within the same list-

3. Lengths of the areas to be listed,
and, with two of the output formats,
the length of the items within the
area, may be specified.

4. Request numbering allows the user to
provide for several listings in his
source program, but to call for only
those listings needed during a parti­
cular run.

5. Each storage area listed may be
assigned an identifying label of eight
characters, which will immediately
precede the listing of the storage
area.

VERSIONS OF THE DUMP PROGRAM

There are two versions of the dump
program: the single-phase version and a
two-phase version. (See the "Introduction•
to this manual for an approximation of the
storage required for each of the versions
of the dump program.) The single-phase
version is available as follows:

1If the floating-point registers are
requested on a machine without the
floating-point feature, a program error
wait will occur and the program will not
continue.

1. A symbolic deck that may be assembled
by the user at the locations he
desires and loaded by either the abso­
lute or relocating loader; this deck
provides all the facilities listed in
•Features."

2. An assembled deck that may be loaded
by either the absolute or relocating
loader; this version provides all the
facilities listed in •Features."

3. A self-loading deck which is assembled
beginning at Location 128 decimal; it
provides hexadecimal listings only.
This deck provides the user with the
advantage of dumping storage when his
program has come to an unexpected
stop. It also allows the user to dump
the contents of storage after execu­
tion of his program.

The two-phase version is supplied as
follows:

1. Phase 1 of the Two Phase Dump is
available as (a) a symbolic deck that
must be assembled and (b) an assembled
deck that may be loaded by either the
absolute or relocating loader.

2. Phase 2 is available as (a) a symbolic
deck that must be assembled and (b) as
a self-loading deck.

Each of the phases is loaded and execut­
ed separately.

Thus, this version provides the advan­
tage of conserving storage, since only
Phase 1 is resident during execution of the
user's program.

The single-phase version program is dis­
cussed in the body of this section. The
two-phase version is discussed in
"Two-Phase Dump," and the self-loading
version of the dump program is discussed in
0 Self-Loading Dump Program."

REQUEST NUMBERS

Two bytes of storage, beginning at sym­
bolic location RTBL, are used by the dump

program as binary switches indicating the
status of request numbers. The 16 bit
positions, beginning with zero in the high­
order position, correspond to the 16
possible request numbers -- 0 through F.
The presence of a bit indicates that a
storage print is to be executed if the
user's call parameter includes a request
number corresponding to the position of
that bit. After assembly, the programmer
inserts the desired mask into RTBL by a
Replace card.1 Prior to assembly, he may
set the mask in the symbolic deck.

These two bytes are originally defined
as DC x•aooo•. This indicates that a
request specification of zero will result
in the execution of a storage print, while
the specification of any other request
number will cause immediate return to the
user's program.

Table 16 defines the fields of a Replace
card used for request numbers.

Example

Symbolic locations RTBL and RTBL+1, as
originally assembled by DC x•aooo•, may be
illustrated as follows:

Bit

Request
Number

Symbolic
Location
RTBL
t

Symbolic
Location
RTBL+1

r-----~--~--------------------,
11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01
·-----~-----------------------~~
10 1 2 3 4 5 6 7 8 9 ABC DE Fl
L-----~-~--~----------~-----J

~ The programmer must ref er to his listing
and place the absolute address assigned to
symbolic location RTBL in card columns 7-12
of the Replace card. He will find this
location near the end of his listing.

Dump Program 25

Table 16. Format of Replace Card for
Request Numbers

r-------T---------------------------------1
I Column! Contents I
~-------+---------------------------------i

1 Load card identification

2-4

(12-2-9 punch). Identifie.s
this as a card acceptable to
the loader.

REP. Identifies the type of
load card.

5-6 Blank.

7-12

13-14

15-16

17-20

21-72

Starting absolute address in
hexadecimal as assigned by the
assembler to symbolic location
RTBL. The programmer must
ref er to the assembly listing
to get this absolute address.
It must be right-justified in
these columns, and unused lead­
ing columns filled in with
zeros.

Blank.

External Symbol Identification
(ESID 01) • Hexadecimal number

assigned to the program segment
in which the replacement is to
be made.

One four-digit hexadecimal
field indicating which of the
bit positions in symbolic loca­
tion RTBL and RTBL plus 1 are
to be set to a binary one.

Blank.

73-80 Not used by the loader. The
programmer may leave blank or
punch in program identification
for his own convenience. _______ i ________________________________ _

Assume that the programmer finds the
absolute address, as assigned by the assem­
bler to symbolic location RTBL, to be a
hexadecimal 1388 (5000 decimal) ; also
assume that the request numbers that he
wishes are 3, 6, 9, and c.

The programmer punches a hexadecimal
001388 in card columns 7-12 of the Replace
card. In columns 17-20, he punches a
hexadecimal 1248. After the Replace card
has been loaded, the bit positions in
hexadecimal locations 1388 and 1389 are:

26

Bit

1388
t

1389

r-------------------------------,
10 0 0 1 0 0 1 0 0 1 0 0 1 0 0 01
~-------------------------------i

Request
Number

10 1 2 3 4 5 6 7 8 9 ABC DE Fl
L-------------------------------J

Now if the user's call parameter
includes a request number corresponding to
a bit that is on (i. e. , 3, 6 , 9 , or C) , a
storage print will be taken.

DUMP PROGRAM REQUIREMENTS

SINGLE-PHASE

If the single-phase dump program is
being used, the user supplies (by symbolic
cards prior to assembly or by a Replace
card at object time) the following inf orma­
tion to the dump program:

1. The storage capacity of the user's
machine.

2. The type of output device to be used.

3. The address of the output device.

4. The address of the IBM 1052 Printer-
Keyboard (if one is available for
operator messages) •

The storage capacity of the user's
machine is supplied to the dump program by
locating the following card in the dump
source program1:

DSTOPL DC AL3 (8192)

The user takes this card out, and if the
operand field does not specify his storage
capacity, he must punch a copy of this card
(in decimal notation) with the storage
capacity of his machine in the operand
field, and put it back into the dump source
program.

The type of output device that is to be
used and its address are supplied to the
dump program by locating the following card
in the dump source program:

OUTDEV DC X'zzzzzzzz'

'Note: This and subsequent cards come
immediately before the END card in the dump
source program. Their relative order can­
not be altered.

In the low-order two bytes of the oper­
and field, he must punch the address of the
output device; in the high-order two bytes,
if the output device is to be the IBM 1403
or 1443 Printer, he punches 0000. For
example:

OUTDEV DC X'OOOOAddr'

If it is the IBM 1052 Printer-Keyboard, he
punches 0001. For example:

OUTDEV DC X'0001Addr'

The user then loc~tes the following card
in the dump source program:

TYPWTR DC X'zzzz'

If there is an IBM 1052 Printer-Keyboard
available for operator messages, he punches
its address in the operand field; if there
is none, he should punch in the address of
another printer. If there is neither, he
punches this card as follows:

TYPWTR DC X'FFFF'

The user then puts the card back into the
dump source program.

Placing hexadecimal F's in TYPWTR only
disables Dump Program operator messages,
not those of the I/O routines. There are
two methods to disable I/0 messages. They
are as follows:

1. Prior to assembly remove the "Write
Error Message Base Routine,• from the
I/O portion of the program.

2. At object time, use a Replace card to
change the instruction at SAGINW+4 (in
the I/O Base Routine - Group 1, Inter­
rogate I/O Interrupt or CC1) back to
the same format it had on the assembly
listing.

Example

A user has a machine with a storage
capacity of 65,536 bytes. He is going to
make his listings on the IBM 1403 Printer,
which is unit 9 on selector channel 1. He
wants his messages written on the IBM 1052
Printer-Keyboard, which is unit 5 on multi­
plexor channel O. He would punch the cards
as follows:

DSTOPL DC
OUTDEV DC
TYPWTR DC

AL3 (65536)
X'00000109'
x•ooo5•

CALLING SEQUENCE

When the dump program and the user's
program are assen~led together, the user
calls the dump program with the following
sequ.ence of coding :

LA
BALR

15,DUMP
14,15

and follows these instructions with the
appropriate DC assembler instructions set­
ting up the call parameter for the listing.

Note: When the dump program and the user's
program are assembled separately and the
relocating loader is being used, the pro­
grammer must define the dump program as an
external symbol:

EXTRN DUMP

and he can call it by:

L
BALR

15,ADDUMP
14,15

after having generated an address:

ADDUMP DC A (DUMP)

The rest of the discussion on the calling
sequence applies to both loaders.

Control returns to the user's program at
the location immediately following the call
parameter. The call parameter is one half­
word if a print of storage is not desired,
and three half-words, if a print of storage
is desired. The call parameter specifies
the following basic conditions for the
listing:

1. The request number of the listing.

2. The options (see the "Introduction• to
this section for a list of options)
which the listing will include.

If the listing is to include storage,
the number of Control List (see "Control
List Format") entries and the address of
the first entry must be specified. If all
of storage is to be listed in 32-bit
hexadecimal, the Count field of the call
parameter may contain zero, and the Address
field will then be ignored (but must not be
omitted).

Note: Except for symbolic references, the
variable fields of the DC instructions
which set up the Call Parameter and Control
List are usually coded in hexadecimal.

Table 17 shows the format of the call
parameter.

Dump Program 27

Table 17. Call Parameter Format

1 2 3 8 9 12 13 16 17 24 25 48
r-----------T------------,.-----------T-----------T-------------T-------------------------1
I Length of I I I Request I I I
I Parameter I Not Used I Option I Number I Count I Address I
~-----------+------------+----------+-----------+-------------+-------------------------i
I 00 I I 0000 I (0-15) I (00-FF) I Address of first entry I
I or I I 0001 I 10 I 16 I in the control list I
I 11 I I oo 1 o I I I I
I I I 0011 I I I I
I I I o 1 o o I < o-F) I I I
I I I 0101 I u I I I
I I I 0110 I I I I
I I I 0111 I I I I
L-----------i------------.L----------i-----------.1.-------------.1.-------------------------J
r---------T-----------------T---T-------------1
I Bit I I I Hexadecimal I
I Positions I Field Name I Significance I Coding I
~---------+-----------------+---+-------------~

1-2 Length of 00 indicates a half-word parameter and 00

3-8

9-12

13-16

17-24

parameter that no storage is to be dumped. or

Option

Request Number

Count

11 indicates a three half-word parameter
and that at least one area of storage is
to be dumped.

Not used.

0000 indicates no options are exercised.
0001 print general registers.
0010 print floating-point registers.
0011 print floating-point and general

registers.
0100 print console listing.

0101 print console listing and general
registers.

0110 print console listing and floating­
point registers.

0111 print all options.

A four-bit hexadecimal number from 0
through F. If the corresponding RTBL bit
is a one, the listing is provided; other­
wise, control returns immediately to the
user's program.

An eight-bit number (when symbolic address
constants are used to designate addresses,
this number is limited by the maximum
number of address constants allowed by the
Basic Assembler) which is the total number
of entries in the Control List. If this
number is 0, all of storage is printed in
32-bit hexadecimal format and the Address
field of the call parameter is ignored (but
it may not be omitted) •

co

0
1
2
3

4

5

6

1

0
through

F

00
through

FF

25-48 Address The 24-bit address of the first entry in If absolute
the Control List. If symbolic, it is coded a 1 to 6
separately as: DC AL3 (symbol). digit number! _________ i _________________ i ___ i _____________ J

28

Examples of the required call-parameter
coding follow. (Each example assumes that
the corresponding request number has been
specified.)

Example 1

DUMP1

where:

LA
BALR
DC

15,DUMP
14,15
X'0034'

00 indicates a half-word call parameter
and that no storage is to be dumped.

3 indicates that the floating-point and
general registers are to be dumped.

4 is the request number.

In this example, the
floating-point registers are
control returns to DUMP1 + 2.

Example 2

15,DUMP

general
listed,

DUMP2

LA
BALR
DC

14,15
x•cooooooooooo•

where:

and
and

CO indicates a three half-word call param­
eter and that at least one area of
storage is to be dumped.

0 since the count field is zero, no
options are to be exercised.

0 is the request number.

00 is the control list entry, so all of
storage will be listed in 32-bit hexa­
decimal format. Control returns to
location DUMP2 + 6.

000000 is the address field. Since the
count field is 0, this field is ignored
but may not be omitted.

Example 3

LA
BALR

DUMP3 DC
DC

15,DUMP
14,15
X'C01A04'
AL3 (LIST)

where:

CO indicates a three half-word call param­
eter and that at least one area of
storage is to be dumped.

1 indicates that the general registers
are to be printed.

A is the request number.

04 is the number of Control List entries.

LIST is the address of the first Control
List entry.

The general storage registers and the
four storage areas specified by the Control
List entries beginning at location LIST are
to be dumped. Control returns to location
DUMP3 + 6.

CONTROL LIST FORMAT

The Control
of 255 entries.
following:

List consists of a maximum
Each entry specifies the

1. An area of storage to be listed.

2. How it is to be
format it is to he
length in bytes of
listed (where not
format) •

listed: in what
listed and the
each item to be

implied by the

3. The address of the first byte of the
area to be listed.

4. Whether the End Flag field specifies
an end address plus 1 location or a
count of bytes.

5. Whether or not there is a dump iden­
tification label.

6. The size of the area is
Erid/Count field of the
entry either by the
last byte plus 1 or by
bytes in the area.

defined in the
Control List

address of the
the number of

If the programmer assigns an identifying
eight-byte label to an area, he places the
label as the second double-word of the
Control List entry. When printed, the
label precedes the listed area.

Table 18 shows the format of the Control
List Entry.

Dump Program 29

Table 18. Control List Entry Format

1 2 3 4 5 8 9 32 33 40 41 64 65 128
r-----.-----,.----T-------.----------------T--------T--------------------y---------------1
f LabellEnd INot !Format I I I I I
f Flag !Flag fUsedf Code !Starting Address! Length I End/Count I Label I
~-----+-----+----+-------+----------------+--------+--------------------+---------------~ I 0 I 0 I I (0-A) !Address of firstl (01-10) !Either an End !Optional eight-I
I or I or I I • 6 lbyte of the areal • 6 1Address +1 Location,lbyte label I
I 1 I 1 I I Ito be listed I lor a count in bytes I (2 words) I
I I I I I I I of the area to be I I
I I I I I I !listed (see •End I I
I I I I I I f Flag") • I I L _____ j_ ____ i ____ i _______ .,L_ _______________ i ________ i ____________________ i _______________ J

r-----------T------------------T--1
I Bit I I I
I Positions I Field Name I Significance I
~-----------+------------------+--~

1 Label flag 0 indicates that no label is associated with the

2

3-4

5-8

9-32

33-40

41-64

End flag

Format code

Starting Address

Length

End/Count

area.

1 indicates that there is a label associated with
the area.

0 indicates that the End/Count field is interpreted
as a Count.

1 indicates the End/Count field is interpreted as an
end address plus 1.

Not used.

A four-bit hexadecimal number, zero through A,
specifying the list format (see •output Formats•) •

The 24-bit address of the first byte of the area to
be listed. The area must be properly aligned on a
half-word, full-word, or double-word boundary,
according to the format requested. If symbolic, it
is coded separately as: AL3(symbol).

An eight-bit number -- 1 through 16 -- specifying
the length in bytes of each item. Used only with
items of variable length having format codes of
0, 1, 2, or 3. If not used, it may be coded as: 00.

If the End flag is zero, this is the number of bytes
to be listed, right-justified.

If the End flag is one, this is a 24-bit address of
the end of the area plus 1 that is to be listed. If
symbolic, it is coded separately as: AL3 (symbol).

65-128 Label An optional eight-byte label (if less than eight
characters, blanks must be included) , present only
when the Label flag is one. ___________ i __________________ i ___ _

30

Examples of the required coding follow.

LIST DC x•ca• Label flag; end
flag; format 8
Starting address
Length field is
ignored (because
format 8

DC AL3 (START)
DC x•oo•

DC AL3 (END+ 1)
DC C'COREDUMP'

DC x•aa•

DC AL3 (SINE)
DC x•ooooo200•

DC C'SINEDUMP'

DC X'42'

DC AL3(DATA)
DC X'10'
DC AL3(DATA+400)

is specified)
End address + 1
Label field

Label flag;
Count; format 8
Starting address
Length field is
ignored (because
format 8 is
specified) ; Count
Label field

No label flag;
end flag;
format 2
Starting address
Length field of 16
End address + 1

The three list entries above would pro­
duce listings of the following:

1.

2.

3.

The label COREDUMP, followed by the
area from START through END, in hexa­
decimal half-words with mnemonics.

The label SINEDUMP, followed by the
512 bytes starting at SINE, in hexa­
decimal half-words with mnemonics.

The area from DATA through
in hexadecimal, each item
long.

DATA+399,
16 bytes

OUTPUT FORMATS

Listings produced by the dump program
contain as many complete items per line as
the length of the item permits. In the
case of format types O, 1, 2, and 3 (shown
in Table 19) , the length of an item is
defined by the Length field (bit positions
33-40) of the Control List Entry; in the
case of types 4 through A, it is implied by
the format.

The dump program has one error message
intended for the use of the programmer.
This error message, which may be produced
by either the single-phase dump or Phase 2
of the two-phase dump, will appear on the
listing as follows:

DCI Control List Error •••
This Request Skipped

Table 19. Output Formats
r-------T---------------------------------1
I Code I Format I
~-------+---------------------------------~

0 or 21 Hexadecimal. Each byte is
I decoded to two hexadecimal
I digits. Length is as speci-
1 f ied in the Length field.
I

1 or 31 Each byte is printed as an
alphabetic or zoned decimal
character. Length is as spec­
ified in the Length field.

4 or 8

5

6

1

9

I
I
I
I

Hexadecimal half-word with
mnemonics. Each half-word is
decoded to four hexadecimal
digits, and interpreted mne­
monic operation codes appear
beneath each instruction.

NOTE: Data whose bit configu­
ration coincides with that of
an operation code is also
accompanied by a mnemonic. If
a bit combination which does
not represent a valid mnemonic
is encountered, an X will
appear below the high-order
digit of the address in the
left-hand margin.

Hexadecimal full-words without
mnemonics. Length of each
item is four bytes.

Short-precision floating-point
decimal. Each full-word of
binary data is converted to
eight decimal digits, with
sign and exponent. Negative
numbers appear in true form.

Long-precision floating-point
decimal. Each double-word of
binary data is converted to 17
decimal digits, with sign and
exponent. Negative numbers
appear in true form.

Half-word fixed-point decimal.
Each half-word of binary data
is converted to decimal with a
sign. Negative numbers appear
in true form.

A Full-word fixed-point decimal.
Each word of data is converted
to decimal with a sign. Nega­
tive numbers appear in true
form. _______ i ________________________________ _

This message will occur whenever an invalid
condition is encountered in the Control
List Entry. The error may be caused by a

Dump Program 31

Call Parameter which does not contain a
valid Control List Address.

Finally, when the floating-point formats
are used, the printed fraction will not
differ by more than one in the low-order
position from the exact decimal representa­
tion rounded to eight (short-precision) or
17 (long-precision) places.

Table 19 shows the output formats of the
dump program. See Figure 3 for a sample
listing of each of the output formats.
(Note: When a format that prints mnemonics
is being used, the user may find the
character ! beneath the high-order digit of
the location specifier and on the same line
as the mnemonics. If this occurs, it means
that at least one invalid operation code
was encountered on that line.)

TWO<?PHASE DUMP

As mentioned in "Versions of the Dump
Program," the dump program is also availa­
ble in a two-phase version. These phases
are loaded and executed separately to con­
serve main storage; the first phase pro­
duces nonedited data which is used by the
second phase to produce listings in the
same formats that the single-phase opera­
tion does; calling sequence and parameter
formats are the same as in the single-phase
operation.

The user supplies certain information to
the two-phase dump program as he had to do
in the single phase dump program. There­
fore the user supplies Phase 1 (in the
source program or by a Replace card at
object time) with the following informa­
tion:

1. The storage capacity of his machine.

2. The type of device to be used for
output.

3. The address of the output device.

4. The address of the IBM 1052 Printer­
Keyboard (if one is available for
operator messages) •

The storage
Phase 1 source
following card1:

capacity
program

iS
by

provided
locating

to
the

tNot~: The cards to be punched for Phase 1
come immediately before the END card in the
Phase 1 source deck. Their relative order
cannot be altered.

32

DSTOPL DC AL3 (8192)

The user takes this card out, and if the
operand field does not specify his ·storage
capacity, he must punch a copy of this card
(in decimal notation) with the storage
capacity of his machine in the operand
field, and put it back into the Phase 1
source deck.

The type of output device that is to be
used and its address are supplied to the
Phase 1 source program by locating the
following card:

OUTDEV DC X'zzzzzzzz'

In the low-order two bytes of the
operand field, he must punch the address of
the output device; in the high-order two
bytes, if the output device is to be tape
unit, the user punches 0000. For example:

OUTDEV DC X'OOOOAddr'

If the output device is to be the IBM
2540 Card Reader-Punch, the user punches
0001. For example:

OUTDEV DC X'0001Addr'

If the output device is to be the IBM
1442 Card Reader-Punch, the user punches
0002. For example:

OUTDEV DC X'0002Addr'

The user then locates the following card in
the Phase 1 dump source program:

TYPWTR DC X'zzzz'

If there is an IBM 1052 Printer-Keyboard
available for operator messages, he punches
its address in the operand field; if there
is none available, he should punch in the
address of another printer. If neither are
available, he punches it as follows:

TYPWTR DC X'FFFF'

The user then puts the cards back into the
Phase 1 source deck.

Placing hexadecimal F's in TYPWTR only
disables Dump Program operator messages,
not those of the I/O routines. There are
two methods to disable I/O messages. They
are as follows:

1. Prior to assembly, remove the "Write
Error Message Base Routine" from the
I/O portion of the program.

2. At object time, use a Replace card to
change the instruction at SAGINW+4 (in
the I/O Base Routine - Group 1, Inter­
rogate I/O Interrupt or CC 1) back to

the same format it had on the assembly
listing.

If using the Phase 2 source program, the
user must supply (by symbolic changes to
the source program or by a Replace card to
the assembled relocatable deck at object
time} the following:

1. The type of output device to be used
and its address.

2. The type of input device to be used
and its address.

3. The address of the typewriter (if one
is available) •

The type of output device that is to be
used and its address are supplied to Phase
2 by locating the following card in the
Phase 2 source program•:

OUTDEV 'DC X'zzzzzzzz'

In the low-order two bytes of the oper­
and field, he must punch the address of the
output device; in the high-order two bytes,
if the output is to be printed on the IBM
1403 or 1443 Printer, the user punches
0000. For example:

OUTDEV DC X'0000Addr'

If the output is to be written on the
IBM 1052 Printer-Keyboard, the user punches
0001. For example:

OUTDEV DC X'0001Addr'

The input device to be used and its
address are supplied to Phase 2 by locating
the following card in the Phase 2 source
program:

INDEV DC X'zzzzzzzz'

In the low-order two bytes, he must
punch the address of the input device; in
the high-order two bytes, if the input is
to come from tape, the user punches 0000.
For example:

INDEV DC X'0000Addr'

If the input is to come from cards, the
user punches 0001. For example:

INDEV DC X'0001Addr'

The user then locates the following card in
the Phase 2 dump source program:

~Note: The cards to be punched for Phase 2
come immediately before the END card in the
Phase 2 source program. Their relative
order cannot be altered.

TYPWTR DC X'zzzz'

If there is an IBM 1052 Printer-Keyboard
available for operator messages, he punches
its address in the operand field; if there
is none available, he should punch in the
address of another available printer. If
neither are available, he punches it as
follows:

TYPWTR DC X'FFFF'

Placing hexadecimal F's in TYPWTR only
disables Dump Program operator messages,
not those of the I/O routines. There are
two methods to disable I/O messages. They
are as follows:

1. Prior to assembly, remove the Write
Error Message Base Routine from the
I/O portion of the program.

2. At object time use a Replace card to
change the instruction at SAGINW+4 (in
the I/O Base Routine - Group 1, Inter­
rogate I/O Interrupt or CC 1) back to
the same format it had on the assembly
listing.

If the user wishes to use the self­
loading version of Phase 2. (A Phase 2
relocatable assembled deck can not be
loaded by either the absolute or the relo­
cating loader on an 8K machine) the follow­
ing information must be supplied:

1. The type of output device and its
address.

2. The type of input device and its
address.

3. The address of the IBM 1052 Printer-
Keyboard (if one is available for
operator messages) •

The user supplies this information by
taking out the END card from the self­
loading deck of Phase 2 of the Two-Phase
Dump and punching this card as follows:

Columns 17-20

Column 21

Columns 22-25

Column 26

The address of the output
device, printer, or IBM
1052 printer-Keyboard, that
to be used.

0 if a printer is to be
used, or

1 if an IBM 1052 Printer­
Keyboard is to be used.

The address of the input
device that is to be used.

0 if the input is to come
from tape, or

Dump Program 33

1 if the input is to come
from cards.

Columns 27-30 The address of the IBM 1052
Printer-Keyboard, if one is
available for operator
messages. If none is
avai1'able, he must punch it
as: FFFF.

I/O error messages are only displayed on
the console during error waits when the
self-loading deck supplied by IBM is used.

A user with a machine larger than BK can
make more efficient use of Phase 2 of the
Two-Phase Dump by altering the source pro­
gram for residence in higher storage and
increasing the buffer size. (Both of the
preceding are noted on the assembly list­
ing.) The assembled deck can then be
loaded by either the absolute or relocating
loader.

Phase 1 is resident in storage during
execution of the user's program. It occu­
pies much less storage than the single­
phase dump program and it may be called as
often as necessary during the execution of
the user's program.

The output of Phase 1 is in Text (TXT)
card format (formats of Text cards are
discussed in the sections on both the
absolute and relocating loaders) ; when
Phase 2 is loaded at the termination of the
job (or at the end of the day) , all of
storage is available for its use.

1. Sequence

34

a. Phase 1 dumps the contents of
storage and/or registers,
according to the options listed in
the "Introduction," onto DMP and
TXT cards, or as card images on
tape. Storage is dumped on loader
TXT cards or as card images on
tape. (The TXT cards produced by
Phase 1 can be loaded by either
the Absolute or Relocating Load­
ers; thus, if the user programs a
routine to reset the general reg­
isters and locations 0-127, and
the I/O devices are repositioned,
a checkpoint procedure can be
facilitated.) Phase 1 does not
rewind tape.

b. At the conclusion of the user's
program or at the end of the day,
Phase 2 is loaded. Phase 2 ini­
tially rewinds tape. It reads the
output of Phase 1, and produces
listings identical with those of
the single-phase program.

2. Phase 1 output

a. DUMP (DMP) cards (or card images
on tape) identified by a 12-3-9
punch in card column one. These
cards contain the call parameter,
locations 0-127, and the contents
of the general registers (and
floating-point registers, if
requested) •

b. DUMP (DMP) cards for each entry in
the Control List.

c. TEXT
data
tied
cards
punch

(TXT) cards containing the
in all storage areas speci­
in the Control List. These
are identified by a 12-2-9
in card column one.

Note: Output from Phase 1 will go into
stacker one on the 1442 Card Reader-punch
and into the zero stacker on the punch side
if the 2540 Card Reader-Punch is being
used. These cards must be loaded in the
same order that they were produced by Phase
1.

SELF-LOADING DUMP PROGRAM

Both the single-phase dump program and
the two-phase dump program are executed
with the user's program. The self-loading
deck may be executed if an unexpected stop
occurs. It can be loaded directly into
storage to dump the contents of storage.
The self-loading deck is assembled begin­
ning at location 128 decimal; since it is
not loaded by the loaders, it cannot be
altered or patched by a Replace card. It
will provide a listing in full-word hexa­
decimal format of the following:

1. The console.

2. The general registers. Only the con­
tents of registers 0, 7, 9, 10, and 15
remain intact after the loading proc­
ess.

3. The contents of storage from the first
address after the location of the
self-loading dump program through the
full capacity of the user's machine.

The user supplies the following to the
self-loading dump program:

1. The type of output device and its
address.

2. The storage capacity of his machine.

3. The IBM 1052 Printer-Keyboard address
(if one is available for operator

messages) •

The user supplies this information by
taking out the END card from the self­
loading deck and punching it as follows:

Columns 17-20

Column 21

The address of the printer
or IBM 1052 Printer­
Keyboard that is to be
used.

0 if a printer is to be
used, or

1 if an IBM 1052 Printer­
Keyboard is to be used.

Columns 22-26

Columns 27-30

The storage capacity (in
hexadecimal) of his
machine, right-justified in
these columns with a zero
in the high-order column.

The address of the IBM 1052
Printer-Keyboard, if one is
available for operator mes­
sages. If none is avail­
able, he must punch it as:
FFFF.

Dump Program 35

LDC 0 0004000A00000600 0200060060000050 LDC 16
OLD PSWS Ol06004000F12345

LDC 8
000000035001EF84

CA 1,J 000 l. E EEO
OOOLi-00000001 ED50

0000000000000000 0000000000000000
0200046020000050
8006000AOOOOOOOF
00000054
000000000001EE6C

Console Listing
csw 0001EEEBocoooooo 00000000 TIMER 00000000
NEW PSWS 000000000001E092 000400000001EUDC 000400000001EDDC

FPR 0 .1234§678901234561 E 01 .12345678901234567 E-01 .12345678901234567 E 75 .12345678901234567 E-77 Floating-Point
Registers

GPR ()

GPR

00000000

·88888888

COOOLOOl

11111111 22222222 33333333

99999999 A AAA AA AA BBBBBBBB

44444444 55555555

cccccccc DODD DOUD

66666666

EtEEEHE

77777777

FfFFFfFF

General
Registers

000000 00 01 02 03 04 05 06 07 08 09 OA OB oc OD OF 10 11 12 13 14 15 Hexadecimal,
one-byte length

000016 16 17 18 19 lA lC 10 lE lF 20 21 22 23 24 25 26 27 28 29 2A 2B

000032

000052

000072

000096

0001 lC

000138

000160

000188

000100

000216

00025C

00027C
x

OC029C

0002BC

00020C

OOOZF2

000304

OC031C

COOOL002

OCOl 0002 0003 0004 0005 0006 0007 0008

0011 0012 0013 0014 0015 0016 0017 0018

CCOOL003

000001 000002 000003 000004 000005 000006

000000 OOOOOE OOOOOF 000010 OOOOll 000012

C005

00000001 00000002

00000008 oooooooc

COOlLOOl

B c F

c D G H

C00ll005

ABC DE FGHIJ KLMNO

STUVW XYZAB

C004

0580 4890
BALR LH

14FE
NR

COlO

43EE
IC

COEFG

8046

804B

00000003

00000000

G H

PQRST

HIJKL

lA98
AR

42EC
STC

48AO
LH

803E

00000004 00000005

00000001:'. OOOOOOOF

K M N

K M N D p

UVWXY ZABCD fFGHI

8046

88FO
SRL

RSTUV

lA89
AR

0004

WXYZA

4880
LA

46CO
BC T

2147483647 2147483648- 1234567890- 1234567890

0000000001 0000000002 OOOOOU0003 0000000004

C009

32767 32768- 12345 12345 12345 12345 12345

12345 12345- 12345 12345 12345 12345 12345

CC06

0009 OOOA 0008 oooc 0000 OOOE

0019 OOlA OOH\ OOlC 0010 OOlE

000007 000008 000009 OOOOOA 000008

000013 000014 000015 000016 000017

00000006 00000007 00000008 00000009

00000010 00000011 00000012 00000013

0 p

Q

JKLMN

BCOH

8046

801A

Q R

s

UPQRS

GHIJK

lABA
AR

58FO
l

1234567890

0000000005

12345 12345

12345 12345

T

u v

TUVWX

LMNOP

47f0
BC

8042

l.J v

x

YZABC

QR STU

805A

58EO
l

48CO
LH

803E

x

y

DEFGH

VWXYZ

8058

07Fl
ti CK

1234567890 1234567890

0000000006 0000000007

12345 12345 12345

12345 12345 12345

.12345678 01 .12345678 E-01 .12345678 75 .12345678 E-77 .12345678 E 10 .12345678

.00000000 00 .00000000 E 00 .00000000 00 .00000000 E 00 .00000000 00 .00000000

C007

y

OOOt-

OOlF

oooooc

000018

0010 Hexadecimal,
two-byte length

0020

Hexadecimal,
three-byte
length

OOOOOOOA Full-word
unsigned
hexadecimal 00000014

A 13 Characters,

0
one-byte length

IJKLM NOPQR Characters,
five-byte

FGHIJ length ABC DE

48EO
LH

OOOf

803A Hexadecimal,
with
mnemonics

0000

0000000000 Full-word'
fixed-point

0000000008 decimal

12345

12345

10

00

12545- Half-word
fixed-point

12345- decimal

Short-precision
floating-point
decimal

000330 .12345678901234567 E 75 .12345678901234567 E 00 .12345678901234567 E-77 .12345678901234567 00 Long-precision
floating-point
decimal 000350 .00000~00000000000 E 00 .12345678901234567 E 26 .12345678901234567 c 00 .12345678901234567 E 00

Note: Main storage addresses are in left-hand margin; format of each listing is preceded by a label.
Formats are identified by inserts in right-hand margin.

Figui-e 3. Example of Storage Print Listing

36

INTRODUCTION

The Input/Output support Package con­
sists of a modular set of subroutines which
enable the user to operate input/output
devices. (A module in the Input/Output
Support Package is a logical sequence of
coding which either sets up or executes one
I/0 function.) There are three types of
modules in the I/O Support Package; they
are:

1. Required modules. These modules must
always be present when the I/0 Support
Package is used.

2. Optional Modules. These modules need
not be present to perform the basic
functions of the I/O Support Package,
but can be included to expand the
facilities of the basic functions.
(Note: the user physically selects the

modules that are required and the
others that he desires from the decks
supplied by IBM; see "How the I/O
Support Package is Supplied".)

3. Entry modules. These modules support
certain functions of a given I/O
device, for example, to read a card or
write tape.

FORMAT OF PRESENTATION

Each of the three types of modules that
constitute the I/O Support Package is dis­
cussed separately in the following order:

1. Required modules.

2. Optional modules.

3. Entry modules.

The discussions under these three headings
provide the following information:

• The listing group heading for each
module is noted in the discussions.
The listing of the I/O Support Package
provided by IBM groups all the modules
under headings which correspond to the
function of that module; for example,
the entry modules are grouped under the
heading •I/O Call Entry Group".

INPUT/OUTPUT, SUPPORT PACKAGE

• There is a set of charts provided at
the end of the I/O Support Package
which illustrates the relationships of
all the modules. The discussions point
out which chart the reader should go to
for a graphic illustration of module
relationships. When selecting the
modules to be used for a given applica­
tion, the user is strongly urged to
make frequent reference to these charts
and to the listing of the I/O Support
Package provided by IBM. (When using
the charts, the user should find the
name of the module that he desires and
then follow the arrow that leads from
that module, taking all branches, and
include every other module that the
flow line intersects.)

After the entry modules have been des­
cribed, their functions explained, and
requirements for their use defined, the
following sections are presented:

1. Calling the entry modules. This sec­
tion tells what information the user's
program must supply to call the entry
modules.

2. Direct Linkage. This section explains
a method of coding to call the entry
modules when the I/O Support Package
and user's program are assembled
together.

3. Indirect Linkage. This section
explains a method of coding to call
the entry modules when the I/0 Support
Package and user's program are assem­
bled separately.

The remainder of this section shows how
to organize the selected modules and pre­
sents considerations for card-only and lim­
ited card-tape installations, followed by
the charts which show the relationships of
the entire package.

Because of the modularity of the I/0
Support Package, the reader will find many
relationships and dependencies among the
routines. Therefore, he is urged to first
read through the entire section and become
familiar with the general principles that
govern the use of the I/O Support Package.

Input/Output Support Package 37

HOW THE I/O SUPPORT PACKAGE IS SUPPLIED

The I/O Support Package is supplied as
follows:

1. A symbolic deck, which contains the
entire I/O Support Package; the user
may select those modules that suit his
particular needs.

2. An assembled deck which contains the
entire I/0 Support Package.

3. An assembled deck for use with the IBM
1052 Printer-Keyboard, the 2540 and
1442 Card Reader-Punch, and the 1403
or 1443 Printer (card-only installa­
tions) ; this version does not contain
the entire I/O Support Package. For
information on this version, see
•card-Only Installations.•

4. An assembled deck for use with all the
devices noted in 3, above, and the IBM
2400 Series Magnetic Tape Units
(card-tape installations) ; this

version does not contain the entire
I/O Support Package. For information
on this version, see "Card-Tape
Installations.•

PREREQUISITE CONSIDERATIONS

To understand the following discussions,
the reader must be familiar with the f'ol­
lowing information:

1. The symbolic names of the entry
modules and a brief description of
their functions and limitations.

2. The symbolic names assigned by the I/O
Support Package to the general reg­
isters. (These names may be used in
place of actual register numbers) •

The following is a list of the subrou­
tine entry modules. These modules support
certain functions of a given device and are
subject to the limitations of the device
involved. The user is cautioned that no
check is made to ensure that the calling
sequence (see •calling the Entry Modules"
and •nirect Linkage") for the entry modules
conforms to the specifications for the
particular device. For this reason, the
user should be !hroughly familiar with
these specifications as they are explained
in the reference manuals for the various
I./O devices.

The subroutine entry modules are as

38

follows:

SRDCW

SWMSW

SPRTW

SPUC

SRTPW

SPCR

SSNSW

SCTLW

SPCMW

SPCPW

SKI PW

SPCRW

SPUCW

SWTPW

SRWD

SWTMW

SBSRW

SBSF

SFSRW

Read a card; wait.1

Write a message; wait.

Print a line; wait.

Punch n columns; no wait; this
entry is only for a device whose
punch address differs from the
reader address (IBM 2540 Card
Reader-Punch) •

Read tape; wait.

Punch n columns; no wait; this
entry is only for a device whose
punch address is identical with the
reader address (IBM 1442 Card
Reader-Punch) •

Sense information from the desig­
nated device; wait.

Issue specified control command;
wait.

Single-space
wait.

the message unit;

Single-space
wait.

the printer unit;

Printer skip to channel one; wait.

Punch n columns; wait; this entry
is only-for a device whose punch
address is identical with the read­
er address (IBM 1442 Card Reader­
Punch) •

Punch n columns; wait; this entry
is only for a device whose punch
address differs from the reader
address (IBM 2540 Card Reader-
Punch) •

Write tape; wait.

Rewind tape; no wait.

Write a tapemark; wait.

Backspace one
wait.

physical record;

Backspace file; no wait.

Forward-space one physical record;
wait.

1 Wherever •wait• occurs, it indicates that
control does not return to the user's
program until the device reaches the end of
the operation, including all mechanical
motion.

SFSF Forward-space file; no wait.

SBRTW Backward read tape record; wait.

Note: These subroutine entry modules may
be used in any combination; however, since
they are oriented to function and not to
device, it is possible that some function
of a given device may not be supported.
For example, no combination of the entry
modules will enable the user to read from
the IBM 1052 Printer-Keyboard.

The general registers are ref erred to by
symbolic names in the I/0 Support Package.
(Note: the user's program may use the
actual register numbers if it is so
desired.) The following is a list of the
symbolic names used in this section equated
to their corresponding actual register
assignments:

1
SREGR EQU 0
SREGZ EQU 1
SR EGA EQU 2
SREGN EQU 3
SR EGL EQU 4
SR EGE EQU 5
SLUBRG EQU 6
SREGC EQU 7
SREGS EQU 8
SREGP EQU 9

If these symbolic names are used by the
user's program, they must be defined at
assembly time; if the I/O Support Package
is assembled with the user's program, the
I/O Support Package supplies equivalence
statements (see •Direct Linkage•) ; if the
user's program is assembled separately,
these names must be defined within the
user's program (see •Indirect Linkage").
The I/O Support Package saves and restores
these registers. All discussions in this
section use the symbolic names of the
general registers.

REQUIRED SUBROUTINE MODULES

The discussion of the required subrou­
tine modules will deal with ~e following
points:

1.

2.

3.

The significance
modules.

of the required

The names and the group
they can be found on
provided by IBM.

under which
the listing

Considerations about the individual
module.

4. Use of the required modules.

The reader is urged to ref er to the
charts at the end of the I/O section for
the relationship of the other parts· of the
I/O Support Package to the required
modules. The relationship of the required
modules is illustrated on Chart AA.

SIGNIFICANCE OF THE REQUIRED MODULES

The required modules are the foundation
of the I/O Support Package; they must
always be included whenever the I/O Support
Package is used, regardless of what entry
or optional modules are selected by the
user.

NAMES AND LISTING GROUP

Table 20 gives the names of the required
modules and their associated modules; it
also gives the group name under which they
can be found on the listing provided by
IBM.

Table 20. Names and Listing Group of the Required and Their Associated Modules
r--r--------------------------------------1 I Names , I Listing Group I
~----------~-------------------------------------+--------------------------------------~
I I I
I Primary Call Entry Table I I/O Call Entry Group I
I Secondary Call Entry Table I I/O Call Entry Group I
I I/O Base Routine Part 1 I I/O Base Routine - Group 1 I
I I/O Base Routine Part 2 I I/O Base Routine - Group 2 I
I Multiple Unit Device-Address Routine I I/O Base Routine - Group 2 I
I Command Operation Modifiers Routine I I/O Base Routine - Group 2 I
I Initial New PSW Set Up Routine I I/O Base Routine - Group 2 I
I I I
L--i--------------------------------------J

Input/Output Support Package 39

PRELIMINARY CONSIDERATIONS

Before these modules are explained, the
reader must be familiarized with the fol­
lowing basic considerations:

1. Each entry module must have such
information as device address; this
type of information is not supplied
from within the entry module. To
point out where an entry module
obtains this information, we may

0 divide all the entry modules into two
types: nprimaryn and nsecondary.•
(This is only an illustrative distinc­
tion; such a distinction will not be
found in a listing of the entry
modules.)

Table 21 shows which entry modules may
be considered primary and which secondary.

The main difference between the primary
and secondary entry modules is that the
secondary entry modules are dependent on
the primary call modules. The paragraph
following Table 21 explains this depen­
dence.

Table 21. Primary and Secondary Entry
Modules

r~---~-------------T--------------------1

I Primary I Secondary I
I Entry Modules I Entry Modules I
~-----~-------------+--------------------~

SRDCW re~J ca..rJ SPCR f t,w-c..& Y'ckj
SWMSW w-rtte_ \M.~ SSNSW
SPRTW pv\1-1.t &..Ji. SCTLW
SPUC f ~c..e._ SPCMW
SRTPW VeoJ ~ SPCPW

SKI PW
SPCRW
SPUCW
SWTPW
SRWD
SWTMW
SBSRW
SBSF
SFSRW
SFSF
SBRTW

~--~-------~-----i---~----------~---

The primary entry modules are provided
with the information they need to address
an I/O device by the Primary Call Entry
Table module. This module contains the
address of the primary entry module, the
device unit address (Note: '.!'he user must

40

initially supply the addresses of his de­
vices to the Primary Call Entry Table) , and
a space for an exceptional condition return
address. The secondary entry modules have
a similar table, the Secondary Call Entry
Table; however, this table only provides
the address of the secondary entry module.
The unit device address and the space for
an exceptional condition return address are
obtained from the Primary Call Entry Table.

2. The reader will find, by referring to
his listing, that what has been called
I/O Base Routine - Part 1 in Table 20
consists of four modules. The names
of these four modules are:

• I/0 Interrupt Entry

• Set Up Return

• Initiate I/O Action

• Interrogate I/O Interrupt or Con­
dition Code 1

Because of their functions, they will
be ref erred to as if there were only
two modules: I/0 Initiator and Inter­
rupt Analyzer.

3. The reader will also find that what
has been referred to in Table 20 as
I/O Base Routine Part 2, consists of 2
modules. Their names are:

• Save Entry Registers and Initial­
ize CCW and CAW

• I/0 Operations Control Constants

They are referred to as: Housekeeping
and Constants area.

4. The following three routines are spe­
cial cases:

• Multiple Unit Address-Device Rou­
tine

• Command Operation Modifiers Rou­
tine

• New PSW Set Up Routine

They are special cases since, under
certain conditions, the I/O Support
Package could be used without them.
These conditions are explained in the
section immediately following.

USE OF THE REQUIRED MODULES

The following discussion explains each
of the required modules and considerations
for their use.

Primary Call Entry Table

This table consists of primary entry
module addresses, device addresses, and a
space for the exceptional condition return
address. This module must always be
included. For example, if a primary entry
module is used, the user must include:

1. The primary entry module itself, for
example, SRDCW.

2. The Primary Call Entry Table.

In organizing the I/O Support Package, the
Primary Call Entry Table (SINTRY) is placed
first.

Secondary Call Entry Table

This table consists of the addresses of
the secondary entry modules. If a secon­
dary entry module is used, the user must
include the following:

1. The secondary entry module itself, for
example, SKIPW.

2. The associated primary entry module
(if any) : although the secondary

module performs its own specific set­
up functions, it branches to its
associated primary entry module for
all common functions. For example,
the SKIPW module sets up the command
parameters and the skip command, then
branches to the SPRTW module which
sets the printer reference and branch­
es to the Initiate I/O portion of the
I/0 Base Routine. (Table 22, which
appears later in the text, lists these
associations.)

The Secondary Call Entry Table
follows SINTRY when organizing
Support Package.

I/O BASE Routine - Part 1

(SNTRY2)
the I/O

This part of the I/O Base Routine con­
sists of the following:

• The I/O initiator

• The interrupt analyzer

The I/O Base Routine - Part 1 follows the
SNTRY2 in organizing the I/O Support Pack­
age.

Note: All other selected modules should
follow the I/O Base Routine - Part 1 and
precede the I/O Base Routine - Part 2 when
organizing the I/O Support Package.

I/O Base Routine - Part 2

This part of the I/O Base Routine con­
sists of the following:

1. Housekeeping - This module must follow
all other modules added after the I/0
Base Routine - Part 1 and precede the
constants area.

2. Constants This area of constants
must follow the housekeeping and pre­
cede all other I/O Base Routine -
Group 2 modules.

Multiple Unit Device-Address Routine

When the user is employing a class of
device for which the unit address changes
from call to call, the Multiple Unit
Address-Device Routine is required. ~ach
time there is a pew device address, this
address must be loaded right-justified in..t.Q
~he high-order 16 bits of re9ister SREGN.
When this module is present, these bits are
always interpreted as a new device address.
therefore, if this module is present and a
new device address is not being used, these
nits should be set to zero. See "Direct
Linkage• for the procedures and precautions
that must be taken. This routine follows
I/O Base - Part 2 when organizing the I/0
Support Package.

Command Operation Modifiers Routine

When the user wishes to employ any
command operation modifiers, he must use
the Command Operation Modifiers Routine.
He must also place the 5-bit modifier
pattern in the high-order bits of register
SREGA. Any such bits will be inserted in
the CCW for the current call. If this
module is present but modifiers are not
aesired, these hits must be set to zero.
See •Direct Linkage• for procedures and
precautions that must be taken.

Input/Output Support Package 41

This routine follows the Multiple Unit
Address-Device Routine, when organizing the
I/O Support Package.

New PSW Set Up Routine

When the user does not have his own
routine to set up new PSWs, this routine is
required. It follows the Command Operation
Modifiers Routine when organizing the I/O
Support Package.

SUMMARY OF REQUIRED MODULES

This section has provided a verbal des­
cription of the significance, names, group
listing, and the use of the required I/O
Support Package modules. The reader should
ref er to Chart AA for a graphic representa­
tion of these modules and their relation­
ship to the other modules in the I/0
Support Package.

OPTIONAL SUBROUTINE MODULES

The next group of modules to be dis­
cussed are the optional subroutines. These
modules are not required for the basic uses
of the I/O Support Package; they enable the
user to expand the basic capabilities of
the package.

The reader will note that if he wishes
to select a module to perform a particular
function, the module he selects may requir~
the presence of one or more other modules.
For this reason, the charts should be used
along with the verbal descriptions. The
following is the format of presentation in
this section:

1. The names and functions of all of the
optional subroutine modules will be
presented, grouped according to the
heading under which they appear on the
listing provided by IBM. If, within
any group, the_ name of a module is
indented, this signifies that the
module requires the presence of the
last module whose name is not indent­
ed. For example, the format:

42

UE BASE Routine
UE Printer Routine

signifies that the UE Printer Routine
requires the presence of the UE Base
Routine. Other first level require­
ments will be noted in the discussion

of individual routines. However, the
reader is cautioned that these discus­
sions are intended only as an aid to
understand the routines, not to point
out all dependencies. Dependencies
are illustrated on the charts at the
end of the I/0 section; the chart
reference for each group is noted next
to the name of the group.

2. This part also presents some practical
functions that a user might select and
lists the modules that are required
for this function. Here also the
reader should ref er to the charts for
second-level dependencies.

LISTING GROUP, NAMES, AND FUNCTIONS

The following pages provide the user
with a brief explanation of the functions
of the optional modules and their first­
level requirements.

Unit Exceptional Condition (UEq Group

Chart: DD

UE Base Routine: This routine is entered
when an exceptional condition indication
occurs. It directs control to the UE
Specific Unit Base Routine; if that module
is not present, it directs control to Set
Up Unit Exception Return Address routine.
If only the UE Base Routine is present, an
error wait will ensue.

UE Specific Unit Base Routine: This
routine enables the attachment of other
routines that provide for specific reac­
tions to a UEC on a given device. If
the UE Printer Routine is present, con­
trol passes to that routine; if not,
control returns to the UE Base Routine
to check for the exit to the Set Up UE
Return Address Routine.

Set Up Unit Exception Return Address:
This routine will return control to the
address specified in register SREGL.
(See "Direct Linkage.")

UE Printer Routine: This routine deter­
mines if the UEC originated from the
printer; if not, control returns direct­
ly to the UE Base Routine; if it did,
this routine issues a Skip-To-Channel 1
instruction to the printer. (This is
used to restore the printer to a line 1
position on the next page.) Control
then returns to the UE Base Routine to
check for the exit to the Set Up UE
Return Address Routine.

I/O Base Routine - Group 1

Condition Code 1 Unit Identity Display:
This routine E!aces the current device
address and device· identification in the
I/O Old PSW. (Chart AA)

Minor Interrupt Conditions Base Routine:
This routine makes it possible to check for
incorrect record length, program control
interrupt, and/or attention bits. For any
one of these indications, it branches to
the appropriate routine, namely, Incorrect
Length Record Indication Base Routine, Pro­
gram Control Interrupt Base Routine, Atten­
tion Base Routine (each of these three
routines requires the presence of the Minor
Interrupt Conditions Base Routine) • If
these indications are not found, or if the
appropriate module is not present, control
is directed to the Interrupt Analyzer por­
tion of the I/O Base Routine. (Chart BB)

Incorrect Length Record Indication Base
Routine: This routine checks for an
incorrect length record: if there is
one, it branches to the Interrupt Ana­
lyzer portion of the I/O Base Routine;
if not, it branches back to the Minor
Interrupt Conditions Base Routine to
check for a PCI indication.

Proqram Control Interrupt Base Routine:
This routine checks for a program con­
trol interrupt: if there is one, it
branches to the Interrupt Analyzer por­
tion of the I/O Base Routine; if not, it
branches back to the Minor Interrupt
Conditions Base Routine to check for an
Attention indication.

Attention Base Routine: This routine
checks for an attention bit: if there is
one, it branches to the Interrupt Ana­
lyzer portion of the I/O Base Routine;
if not, it branches back to the Minor
Interrupt Conditions Base Routine.

Issue Internal Call Routine: This routine
is required for the operation of the fol­
lowing four optional modules: Internal Unit
Sense Routine, Write Error Message Base
Routine, Tape Retry Routine, UE Printer
Routine. Each of these routines uses the
Issue Internal Call Routine to save the
current registers, set the internal call
switch on, save the current I/O Old PSW and
CSW, branch to the internal call entry, and
restore, after the internal call, all the
locations saved. (Chart BB)

Internal Unit Sense Routine: This rou­
tine also requires the presence of the
SSNSW entry module. It saves the cur­
rent general registers and branches to

the Issue Internal Call Routine. When
the internally called sense routine is
completed, it restores the registers and
I/O Old PSW and returns control to the
calling routine.

Write Error Message Base Routine: This
routine also requires the presence of
the SWMSW entry module and the Condition
Code 1 Unit Identity Display Routine.
If the interrupt device is the message
unit, this routine loads a wait-state
PSW. If it is not, an error message
will be written on the appropriate unit
and the routine will then load a wait­
state PSW.

Write Error Routine - Expansion 1: This
routine also requires the presence of
the Write Error Message Base Routine and
the Binary-to-Hex Conversion into Image
Routine. This routine causes the I/0
Old PSW and the CSW to be written, in
addition to the information provided by
the Write Error Message Base Routine.

Binary-to-Hex Conversion into Image
Routine: This
bytes into two
each and sets
indicated field.

routine converts binary
hexadecimal characters
the characters in the

Write Error Routine - Expansion 2: This
routine also requires the presence of
the Write Error Message Routine - Expan­
sion 1, and the Internal Unit Sense
Routine. This routine causes the six
sense bytes transmitted by the device to
be written, in addition to the informa­
tion provided by the Write Error Message
Base Routine and Write Error Message
Routine - Expansion 1.

Save and Restore External New PSW: This
routine saves the current External New PSW
and replaces it with an External New PSW to
repeat the I/O operation with channel,
external, and machine check interrupts
disabled. This routine requires the pres­
ence of the New PSW Set Up Base Routine
(see the discussion of this module under
•Required Subroutine Modules") to which it
returns control. (Chart CC)

External Interrupt Base Routine: This rou­
tine determines if the interrupt is a
console, timer, or external signal inter­
rupt. If it is a console interrupt, it
branches to the Initiate I/O Action portion
of the I/0 Base Routine; otherwise, it
branches to the Interrupt Analyzer portion
of the I/0 Base Routine. Note: The func­
tion of this routine is~provide exits
for user-supplied routines that handle
timer and external signal interrupts.
(Chart AA)

Input/output Support Package 43

Unit Check Group

Chart: CC

Unit Check Base Routine: This routine will
branch to the Unit Check Tape Routine when
a unit check has occurred. If the Unit
Check Tape Routine is not present, an error
wait will ensue, unless the unit check was
due to sensing a channel 9 on the printer.
In this case, the unit check will be
ignored, unless the user inserts his own
routine.

44

Unit Check Tape Routine: This routine
also requires the presence of the Inter­
nal Unit Sense Routine, Internal Call
Routine, Tape Entry Base Routine, Tape
Backspace Record Entry Routine, and Tape
Forward Space Record Routine. This rou­
tine checks the device address of the
source of the unit check against that of
the tape device. If the source was not
a tape unit, control returns to the Unit
Check Base Routine; if it was, a sense
command is issued to the tape unit and
the sense bits are interrogated. If the
sense bits indicate that the operation
may be retried (and is not a data
check) , another attempt is made. If the
new attempt is successful, processing
continues. If the new attempt is unsuc­
cessful, and the maximum number of
retries have been made, control is
transferred to the Interrupt Analyzer
portion of the I/O Base Routine. If the
sense bits indicate that a data check is
present, control is transferred to the
Tape Retry Base Routine; if not, or if
the Tape Retry Base Routine is not
present, it branches to the Interrupt
Analyzer. If the sense bits indicate
that the attempt may not be retried,
control is transferred to the Interrupt
Analyzer.

Tape Retry Routine: This routine also
requires the presence of the Unit Check
Tape Routine and the Control Entry
module (SCTLW) • This routine tries to
perform the original I/0 call until it
is successful or until the maximum num­
ber (as specified by IBM standards) of
retries has occurred. If the maximum
number of retries has occurred, it
branches to the Tape Read Retry Routine
or the Tape Write Retry Routine or, if
the proper routine is not present, to
the Interrupt Analyzer portion of the
I/O Base Routine.

Tape Read Retry Routine Backspace
Cleaner: This routine requires the pres­
ence of the Unit Check Tape Routine, the
Tape Tape Retry Base Routine, and the
Internal Unit Sense Routine. This rou­
tine performs the backspace cleaner

operation by backspacing four records
(or to load point, if fewer than four

records have been previously read) , then
forward spacing to the position of the
tape at the entrance to the routine.
The routine then branches to re-issue
the original call, if the maximum number
of backspace cleaner operations has not
been performed. If the maximum number
of backspace cleaner operations has been
performed, the routine branches to the
Interrupt Analyzer portion of the I/O
Base Routine.

Tape Write Retry Routine - Erase For­
ward: This routine requires the presence
of the Unit Check Tape Routine, the Tape
Retry Routine, and the Rewind Entry
Routine (SRWD) • This routine performs
the erase forward operation and branches
to re-issue the original call, if the
maximum number of operations has not
been performed. If the maximum number
of operations has been performed, the
routine branches to the Interrupt Ana­
lyzer portion of the I/O Base Routine.

I/O Call Entry Group

Chart: EE

Locate SINTRY Table Unit Block: This rou­
tine sets symbolic register SLUBRG with the
proper device unit block address.

Sense Entry Locate SINTRY Table Block
Exit: This routine also requires the
presence of the SSNSW entry module. It
will effect a branch from the SSNSW
routine to the Locate SINTRY Table Unit
Block routine.

Control Entry Locate SINTRY Table Block
Exit: This routine also requires the
presence of the SCTLW entry module. It
will effect a branch from the SCTLW
routine to the Locate SINTRY Table Unit
Block routine.

PRACTICAL USES OF THE OPTIONAL ROUTINES

This section describes some situations
in which the user would select optional
routines. The situations are ordered so
that the routines required follow the same
order in which they were described under
"Listing Group, Names, and Functions."

The discussions in this section provide
more details about the optional routines,
but should be supplemented by ref erring to

the charts, since the
reflect all module
routine might have.

discussions
requirements

do not
that a

If the user wishes to note and take any
action in his own program on an exceptional
condition indication, the following modules
(Chart DD) must be included:

• UE Base Routine

• Set Up Exception Return Address

The return address to the routine in his
program which is concerned with the excep­
tional condition indication must be loaded
into register SREGL, as explained in
"Direct Linkage.• Whatever is in register
SREGL is used as the return address.

If the user wishes to note and take
action on the printer for an exceptional
condition when an automatic Skip-to-Channel
1 has occurred, the following modules
(Chart DD) must be included:

• UE Base Routine

• UE Specific Unit Base Routine

• UE Printer Routine

• Issue Internal Call Routine

• Set Up Exception Return Address

If, after an error wait resulting from a
condition code 1, the user would like to
provide for displaying the address of the
I/O unit responsible, the following module
(Chart AA) must be included:

• Condition Code 1 Unit Identity Display

If the user wishes to provide to check
for an incorrect length record, a program
control interrupt, or attention bits, the
following modules (Chart BB) must be
included:

• Minor Interrupt Conditions Base Routine

• Incorrect Length Record Indication Base
Routine

• Program Control Interrupt Base Routine

• Attention Base Routine

If information is to be sensed by one of
the selected modules, the following modules
(Chart BB) must be included:

• Issue Internal Call Routine

• The SSNSW entry module

The set of sense bytes transmitted by the
device will be stored in the symbolic
locations in the SSNSW routine, starting at
SNSA. (SNSA is the symbolic name of a
six-byte area which is defined by an ENTRY
instruction in the I/O Support Package. If
the user defines SNSA as an EXTRN in his
program, the information stored there can
be made available to his program.) The
user must ref er to the reference manuals of
the particular I/O device for information
about sense bytes.

If, before an error wait occurs, the
user would like to have the three identify­
ing characters from the address portion of
the current PSW written on the message
device, the following modules (Chart BB)
must be included:

• Write Error Message Base Routine

• Issue Internal Call Routine

• SWMSW Entry Module

• Condition Code 1 Unit Identity Display

If the user would like to further amplify
this and also have the I/O Old PSW and CSW
written on the message unit, he must
include the four modules listed immediately
above, plus the following:

• Write Error Routine - Expansion 1

• Binary-to-Hex Conversion into
Routine

Image

The user can expand the scope of this
option to write sense information from the
device that was being operated when the
interrupt occurred by including the modules
listed immediately above and the following:

• Write Error Routine - Expansion 2

• Internal Unit Sense Routine

If the user wishes to save the current
External New PSW to repeat the I/O opera­
tion with channel, external, and machine
check interrupts disabled, the following
modules (Chart AA) must be included:

• New PSW Set Up Base Routine

• Save and Restore External New PSW

If the user wishes to provide for ser­
vicing console interrupts under the control
of an I/O subroutine and still permit the
attachment of other routines to service
timer and/or external signal caused inter­
rupts, the following module (Chart CC) must
be included:

• External Interrupt Base Routine

Input/Output Support Package 45

If the user wishes to provide for tape
error retries, the following modules (Chart
CC) must be included:

• Unit Check Base Routine

• Unit Check Tape Routine

• Tape Retry Base Routine

• Tape Read Retry Routine (if reading
tape)

• Tape Write Retry Routine (if writing
tape)

If the user is employing either the
control (SCTLW) or the sense (SSNSW) entry
and he does not want to load the location
of the device address into register SLUBRG,
the following module (Chart EE) must be
included:

• Locate SINTRY Table Unit Block

(The device address must appear in the
high-order 16 bits of register SREGN.) If
the user· is employing the Locate SINTRY
Table Unit Block with the SSNSW entry, he
must include the following module:

• Sense Entry Locate SINTRY Table Block
Exit

If the user is employing the Locate SINTRY
Table Unit Block with the SCTLW entry, he
must include the following module:

• Control Entry Locate SINTRY Table Block
Exit

If the user wishes to interface properly
with SEREP (System's Environment Recording
Edit and Print) , he must include the fol­
lowing modules:

• Issue Internal Call Routine

• Internal Unit Sense Routine

• New PSW Set Up Base Routine

• Unit Check Base Routine

SUMMARY OF OPTIONAL ROUTINES

Although the optional routines are not
necessary for the basic use of the I/O
Support Package, they do expand the capabi­
lities of it. To fully understand their
use, the reader should use the charts along
with this section.

46

SUMMARY OF I/O ENTRY MODULES

Charts: EE and FF

The functions of each of the I/O entry
modules are summarized in this section. If
any entry module requires the presence of a
module other than the ones previously
defined, it will be pointed out in the
discussion of that module. Finally, to
avoid repetition while describing the entry
modules, error halts and checking for a
busy device are discussed in the following
two paragraphs.

DETECTION OF ERROR CONDITIONS

The detection of an error condition may
follow execution of an I/O subroutine.
Some subroutines provide for a number of
retries, if an error prevents successful
completion of the subroutine. In all
cases, if a subroutine cannot be completed
successfully because of an error condition,
processing halts and information pertaining
to the error will appear on the operator's
system console. The operator may then
choose to retry through Console Interrupts,
and thereby retry the routine, or he may
wish to load SEREP to obtain diagnostic
information. (For a complete discussion of
error messages and operator actions, see
IBM System/360 Basic Programming Support
Operating Guide for Basic Assembler and
Utilities, Form C28-6557.)

CHECK FOR BUSY DEVICE

Every device has a busy bit (the busy
bit is located in bit position 7 in the
word in SINTRY that contains the device
address) , which is set after initiation of
any operation on that device; when the
operation is completed, this bit is set
back to zero. The programmer may want to
test this bit before issuing another I/O
call to the same device. Figure 4 shows a
coding sequence for an object program by
which the programmer can locate and test
the busy bit.

In using the entry modules which have no
wait for the completion of the I/O opera­
tion, testing this bit is especially impor­
tant before moving new information into the
output area.

When operations that do not wait for
device end have been accepted by the chan­
nel, control returns to the user's program
at the instruction following the calling

r---1

PIT BAD
QPUC

EXTRN

L
TM
BC

DC
EQU

SINTRY

SREGZ,PITBAD
QPUC+4(SREGZ) ,1
1,xxx

A(SINTRY)
36

Define Primary Call Entry Table

Load address of SINTRY
Test to see if busy bit is on
Branch if busy

Define address of SINTRY
Specify the displacement of the punch
entry module from SINTRY

~----~--~ I Note: The displacement of device addresses from SINTRY is obtained by adding 4 I
I to the displacement of the associated primary entry module from SINTRY: thus, to I
I obtain the displacement from SINTRY of the punch device, 4 is added to the I
I displacement from SINTRY of the SPUC entry module. I
L-------------~---J
Figure 4. Coding in User's Program to Test Busy Bit

sequence. When it is completed, an inter­
rupt occurs and the busy bit is set to
zero. If no error was detected, control
then returns to the user's program at the
point where the interrupt occurred.

FUNCTIONS OF THE I/O ENTRY MODULES

In the following discussions, it is
understood that control returns to the
user's program at the instruction following
the calling sequence, tfiat is, the by;te
f ollowina the BALR instruction. In the
entry mo uies that wait for completion of
the I/O operation (all entries whose sym­
bolic names end in W) , control does not
return until completion; in the others,
control returns after successful initiation
of the I/O operation. If the user wants to
provide for an exceptional condition return
address, register SREGL must be loaded as
described in •oirect Linkage• and the
modules specified in •optional Subroutine
Modules" must be included. Finally, the
number of bytes to be transmitted (that is,
the number of bytes the programmer loads
into register SREGN) must not exceed the
capacity of that device, nor can it be
zero, since this is an invalid byte count
to the channel.

Read A Card (SRDCW)

The number of columns specified in reg­
ister SREGN are read into the area speci­
fied by register SREGA.

Write a Message (SWMSW)

The number of bytes specified in reg­
ister SREGN are typed by the IBM 1052
Printer-Keyboard.

Print n Columns (SPRTW)

The number of columns specified in reg­
ister SREGN are written on one line.

Punch n Columns (SPUC)

The number of columns specified in reg­
ister SREGN are punched. This punch entry
is for use only with units which have
individual punch addresses, such as the IBM
2540 Card Reader-Punch.

Read Tape n Bytes (SRTPW)

The number of bytes specified in reg­
ister SREGN are read into the area speci­
fied by register SREGA. (Minimum record
length is 12 bytes.)

Note: The use of this entry requires the
presence of the Tape Entry Base Routine
module.

Input/output Support Package 47

Punch n Columns (SPCR)

The number of columns specified in reg­
ister SREGN are punched. This entry is for
use only with dual service units whose read
and punch addresses are identical (IBM 1442
Card Reader-Punch) •

Note: The IBM 1442 Card Reader-Punch does
not advance cards automatically from the
punch station; therefore, whenever it is
necessary to move a card from the punch
station, the user must include a dummy
read-a-card calling sequence to eject the
card when punching is completed, or the
Command Operation Modifier Routine.

Sense (SSNSW)

To determine the status of an I/O
device, a sense instruction is issued to
the unit designated by symbolic register
SLUBRG (General Register 6) , which must
contain the location of the devic.e address
cell in the Primary Call Entry Table. The
set of sense Dytes transmitted by the
device is stored in symbolic location SNSA.
The number of bytes transmitted is deter­
mined by the device, the maximum being six.
The user is referred to the reference
manuals of the particular I/O devices for
interpretations of sense bytes. See •sense
Entry Example."

Issue Specified Control Command (SCTLW)

A control command for the operation
specified through the Command Operation
Modifier Routine is issued to the control
device whose address is specified in reg­
ister SLUBRG. See •control Entry Example.•

This entry requires the following condi­
tions.

1. The Command Operation Modifier Rou­
tine, to specify the operation of the
control command, must be included.

2. SLUBRG must contain the location of
the device address at the time of
entry to this routine; or the Locate
SINTRY Table Unit Block Routine and
Control Entry Locate SINTRY Table
Block Exit module must be included,
and the high-order 16 bits of register
SREGN must contain the device address
as it appears in SINTRY.

48

Single Space Message Unit (SPCMW)

A line consisting of one blank character
is written on the message unit. No data
parameters are necessary.'

Single Space Printer (SPCPW)

A line consisting of one blank character
is written on the printer. No data param­
eters are necessary.t

Printer Skip to Channel One (SKIPW)

A control commmand initiating a Skip-to­
Carriage Tape One is issued to the printer.
No data parameters are necessary.1

Punch n Columns (SPCRW)

The number of columns specified in
register SREGN are punched. This punch
entry is for use only with dual service
units whose read and punch addresses are
identical (IBM 1442 Card Reader-Punch) •

Note: The IBM 1442 Card Reader-Punch does
not advance cards automatically from the
punch station; therefore, whenever it is
necessary to move a card from the punch
station, the user must include a dummy
read-a-card calling sequence to eject the
card when punching is completed, or the
Command Operation Modifier Routine.

Punch n Columns (SPUCW)

The number of columns specified in reg­
~ster SREGN are punched. This punch entry
is for use only with units which have
individual punch addresses, such as the IBM
2540 Card Reader-Punch.

1 Note: Although the data registers need not
be loaded for the operations so noted, the
specifications (noted in •oirect Linkage")
for using the Multiple Unit Address-Device
Routine and Command Operations Modifiers
Routine must be adhered to.

Write Tape n bytes (SWTPW)

The number of bytes specified
ister SREGN are written from
specified by register SREGA.
record length is 18 bytes.)

by reg­
the area

(Minimum

Note: This entry requires the Tape Entry
Base Routine.

Rewind (SRWD)

The tape is rewound. When the rewind
has been initiated, control returns to the
user's program at the instruction following
the calling sequence. No data parameters
are necessary.1

Note: This entry requires the Tape Entry
Base Routine.

Write Tape Mark (SWTMW)

A tape mark is written on the specified
tape. No data parameters are necessary.•

Note: This entry requires the Tape Entry
Base Routine.

Backspace Record (SBSRW)

The appropriate tape is backspaced over
the physical record. (A tape mark is
recognized as one physical record.) No
data parameters are necessary.1

Note: This entry requires the Tape Entry
Base Routine.

Backspace File (SBSF)

The appropriate tape is backspaced over
the first tape mark encountered. No data
parameters are necessary.•

Note: This entry requires the Tape Entry
Base Routine.

Forward Space Record (SFSRW)

The appropriate tape is spaced forward
one physical record. No data parameters
ar~ necessary. t

Note: This entry requires the presence of
the Tape Entry Base Routine.

Forward Space File (SFSF)

The appropriate tape is spaced forward
over the first tape mark encountered. No
data parameters are necessary. 1

Note: This entry requires the presence of
the Tape Entry Base Routine.

Backward Read Tape Record (SBRTW)

The number of bytes specified in reg­
ister SREGN are read in backward motion
into the area specified by register SREGA.
(Minimum record length is 12 bytes.)

CAUTION: The address in register SREGA for
this routine should be the last address
that is to be read into, rather--than the
starting address. (The user is referred to
the reference manuals for the appropriate
tape units for a discussion of reading in
backward motion.)

Note: This entry requires the presence of
the Tape Entry Base Routine.

Table 22 shows the required modules for
each of the entries. The following consid­
erations should be remembered when reading
this table:

1. All required routines must be present.

2. No optional routines are included in
the table.

ORGANIZATION OF THE SUBROUTINE MODULES

Once the user has selected all the
modules he requires, he must then organize
them in the following sequence:

1. He places the Primary and Secondary
Call Entry Tables first in the deck.

'Note: Although the data registers need
not be loaded for the operations so noted,
the specifications (noted in •oirect
Linkage•) for using the Multiple Unit
Address-Device Routine and Command Opera­
tions Modifiers Routine must be adhered to.

Input/output Support Package 49

2. Then, he places the part of the I/O
Base Routine that contains the I/0
Initiator and the Interrupt Analyzer.

5. If any of the following modules are
selected, they would come last in the
deck: Multiple Unit Address-Device
Routine, Command Operation Modifiers
Routine, New PSW Set Up Routine.

3. He may then place, in any order, all
the other modules he has selected, as
long as all ORG statements follow any
symbol they refer to.

Figures 5 and 6 show two possible organ­
izations of modules. The figures read from
the bottom to the top.

4. Be places the second part of the I/0
Base Routine, which contains the I/0
Base Routine's general housekeeping
and constants area.

Note: The user may follow the order he
finds in examining the assembly listing of
the modules as they were received from IBM.

Table 22. Module Relationships
r-----------,--------------T---1
I Entry I I I
I Module I Type I Additional Modules Required I
~----~----+-------------+---~ I SRDCW Primary Primary Call Entry Table.
(SWMSW Primary Primary Call Entry Table.

SPRTW Primary Primary Call Entry Table.
SPUC Primary Primary Call Entry Table.
SRTPW Primary Primary Call Entry Table, Tape Entry Base Routine.
SPCR Secondary Primary Call Entry Table, Secondary Call Entry Table,

SRDCW.
SSNSW Secondary Primary Call Entry Table, Secondary Call Entry Table,

Symbolic register SLUBRG must contain the location
of the unit device address of the Primary Call Entry
Table module.

SCTLW Secondary Primary Call Entry Table, Secondary Call Entry Table,
Command Operation Modifier Routine, and either SLUBRG
must contain the control device unit block address or
the following two modules must be included: Locate
SINTRY Table Unit Block Routine, Control Entry Locate
SINTRY Table Block Exit.

SPCMW Secondary Primary Call Entry Table, Secondary Call Entry Table,
SWMSW entry module.

SPCPW Secondary Primary Call Entry Table, Secondary Call Entry Table,
SPRTW entry module.

SKIPW Secondary Primary Call Entry Table, Secondary Call Entry Table,
SPRTW entry module.

SPCRW Secondary Primary Call Entry Table, Secondary Call Entry Table,
SRDCW entry module.

SPUCW Secondary Primary Call Entry Table, Secondary Call Entry Table,
SPUC entry module.

SWTPW Secondary Primary Call Entry Table, Secondary Call Entry Table,
Tape Entry Base Routine.

SRWD Secondary Primary Call Entry Table, Secondary Call Entry Table,
Tape Entry Base Routine.

SWTMW Secondary Primary Call Entry Table, Secondary Call Entry Table,
Tape Entry Base Routine.

SBSRW Secondary Primary Call Entry Table, Secondary Call Entry Table,
Tape Entry Base Routine.

SBSF Secondary Primary Call Entry Table, Secondary Call Entry Table,
Tape Entry Base Routine.

SFSRW Secondary Primary Call Entry Table, Secondary Call Entry Table,
Tape Entry Base Routine.

SFSF Secondary Primary Call Entry Table, Secondary Call Entry Table,
Tape Entry Base Routine.

SBRTW Secondary Primary Call Entry Table, Secondary Call Entry Table,
Tape Entry Base Routine. ___________ i _____________ i __ _

50

r---1
Constants

7.
Housekeeping

6. (sPCPW

5. (SPRTW

4. (SRDCW

Interrupt
Analyzer

3.
I/O Initiator

2. Secondary Call
Entry Table

1. Primary Call
Entry Table

--I/O Base Routine; housekeeping and constants area.

--Secondary entry module; requires the presence of numbers
1, 2, 5.

--Primary entry module; requires the presence of number 1.

--Primary entry module; requires the presence of number 1.

--I/O Base Routine; I/O Initiator of Interrupt Analyzer.

--Contains address of secondary entry module (number 6) ;
uses unit address from Primary Call Entry Table
(number 1) •

--Contains address of primary entry module (numbers 4
and 5) , device unit address, and space for exceptional
condition return.,

___ J

Figure 5. Organization of Subroutine Modules without Optional Routines
(Read from bottom to top.)

r---1
10.

9.

Multiple Unit
Addr-Dev. Rt.

Constants

Housekeeping

8. (SPCPW

7. (SPRTW

6. (SRDCW

5. Unit Ex. Cond.
Rtrn. Adr. Rt.

4. Unit Ex. Cond.
Base Routine

Interrupt
3. Analyzer

2.

1.

I/O Initiator

Secondary Call
Entry Table

Primary Call
Entry Table

--Enables user to use a new unit device address.

--I/O Base Routine; housekeeping and constants area.

--Secondary entry module; requires the presence of numbers
1, 2, 6.

--Primary entry module; requires the presence of number 1.

--Primary entry module; requires the presence of number 1.

--Enables user to take action in his program on an excep­
tional condition indication.

--Enables user to take action in his program on an excep­
tional condition indication.

--I/O Base Routine, first in deck;
I/O Initiator and Interrupt Analyzer.

--Contains the address of the secondary entry (number 8) ,
requires presence of number 1 for unit device address.

--Contains the address of primary entry modules (numbers 6
and 7, unit device address for numbers 6, 7, and 8, and
space for exceptional condition return address) •

---~-----------------------J
Figure 6. Organization of Subroutine Modules with Optional Routines '

(Read from bottom to top.)

Input/OUtput Support Package 51

CALLING THE ENTRY MODULES

There are two possible methods of call­
ing the entry modules: directly and indi­
rectly. Direct linkage may be used only
when the selected modules of the symbolic
I/O routines are assembled with the user's
program. (In this· case, the pertinent
ENTRY instructions may be removed.) Indi­
rect linkage must be used when the selected
modules, in assembled form (either as sup­
plied by IBM or those separately assembled
by the user) are not assembled with the
user's program. The indirect method may
also be used when the selected modules are
assembled with the user's program. Since
the indirect method may be used in both
instances, it is the preferred method.

With either of these methods, the
selected entry module is called by loading
the following information into general reg­
isters and transferring control by a BALR
instruction:

1. The address of the I/O entry module.

2. The address of the I/O area.

3. The number of bytes to be processed.

Note: Each installation must initially
supply the addresses of its I/O devices to
the Primary Call Entry Table. This may be
done by changing the symbolic cards prior
to assembly, or by Replace cards at execu-
ion time.

Wherever an exceptional condition may
occur, another general storage register
(SREGL) is loaded with the return address
to the routine in the user's program that
uses the unit exceptional condition; for
example, End of File.

DIRECT LINKAGE

The user may employ any coding sequence
which provides all the information speci­
fied in •calling the Entry Modules.•
(Examples of the coding follow this sec­
tion.) One possible coding sequence when
the user's program and I/O Support Package
are assembled together is as follows:

LA
LA
LA
LA
BALR

SREGZ,xxxx
SREGA,yyyy
SREGN,_!!
SREGL,zzzz
SREGR,SREGZ

The following is an explanation of this
coding sequence.

52

LA SREGZ,xxxx

Load the address of the desired entry
module; for example, SRDCW.

where:

SREGZ is the general register which is
loaded with the address of the desired
entry module: General Register 1.

xxxx is the address of the desired entry
module, for example, SRDCW, SPCR, etc.

LA SREGA,yyyy

Load the address of the first byte of data
to be processed.

where:

SREGA is the general register which is
loaded with the address of the first
byte to be processed: General Register
2.

yyyy is the address of the first byte of
data to be processed.

:CAUTION: To employ any command operation
modifiers, the Command Operation Modifiers
Routine must be included. The user must
also place the 5-bit modifier pattern in
the high-order bits of register SREGA. Any
such bits will be inserted in the CCW for
the current call.

If the Command Operation Modifiers Rou­
tine is being employed, this instruction
may be replaced by the following coding in
the user's program:

L SREGA,MOBITS

DS OF
MOBITS DC X'mm' * DC AL3 (YYYY)

* One byte containing the modifier bit
pattern.

No check is mad validity or
app icability of any such modifier its
found in register SREGA. Any future action
or corrective measures for conditions pro­
duced by the user-supplied modifiers may
not exist in the I/O Support Package. (See
the reference manuals for the particular

II/O device for bit pattern data.) Finally,,
the I/O Support Package always interrogates
the high-order 5 bits of register SREGA;

~
therefore, the user should be certain that
they are set to zeros if the Command
Operation Modifiers Routine is present but
is not being used in the current call.

LA SREGN,~

Load the number of bytes
65,535) to be processed.

(may not exceed

where:

SREGN is the general register which is
loaded with the number of bytes of data
to be processed: General Register 3.

~ is the number of bytes of data to be
processed.

The high-order 16 bits of this register
may be used to hold the address of a new
device which was not specified in the
source program. (The original device
address is supplied by the programmer to
SINTRY in his I/O package source program.
Corrections to the device address in SINTRY
may be made at assembly time by symbolic
card changes, at load time by Replace
cards, and at execution time by manual
stores from the console.) This may be done
by including the Multiple Unit Address­
Device Routine and loading the new address
into the high-order 16 bits of register
SREGN by the following coding in the user's
program:

DEVADR

L SREGN,DEVADR

DS
DC
DC

OF
X'Addr'
H'n'

However, when the Multiple Unit Address­
Device Routine is present, any bits found'
in the high-order 16 bits of register SREGN
are always interpreted as a device address.
Therefore, when an alternate device address
is not going to be used, the programmer
should be certain these bits are set to
zeros.

LA SREGL,zzzz

Load the return address to that routine in
the user's program which uses an
exceptional condition indication. (If the
user desires this option, he must include
the modules specified for it under
•optional Subroutine Modules.")

where:

SREGL is the general register which is
loaded with the return address to that
point in the user's program which uses
an exceptional condition indication:
General Register 4.

zzzz is the address in the user's program
that uses the exceptional condition
indication.

If the modules specified for an excep­
tional condition return address in
"Optional Subroutine Modules• are present,
and if the exceptional condition indication
is not significant, this register should
contain the normal return address to the -
current call. It need not be loaded for
other routines. If an exceptional condi­
tion occurs and these modules are not
present, an error wait will ensue.

BALR SREGR,SREGZ

Branch and Link.

where:

SREGR is the general register which is
loaded with the return address to the
user's program, making linkage possible:
General Register O.

EXAMPLE OF DIRECT LINKAGE

The following is an example of the
coding in the user's program that is assem­
bled with the I/O Support Package. The
first set of coding uses symbolic register
names; the second set uses the actual
register numbers. Both sets assume the
following:

1. All required routines are present.

2. The area INFORM is defined in the
user's program.

3. The routine beginning at CHKRT notes
the occurrence of an exceptional con­
dition and the appropriate modules are
present.

4. The user wishes to write on the IBM
1052 Printer-Keyboard.

5. 32 bytes are to be written beginning
from INFORM.

Input/Output Support Package 53

/

Coding with symbolic register names: INDIRECT LINKAGE

LA SREGZ,SWMSW Load address Of the As was pointed out, the preceding coding
sequence may be used only when the I/O
Support Package is assembled with the
user's program. When the I/0 Support Pack­
age is not assembled with the user's pro­
gram, he must use a different sequence of
coding (this sequence may also be used when
the I/O Support Package is assembled with
the user's program).

routine to write a mes­
sage.

LA SREGA,INFORM Load address of the
first byte of the area
to be written from.

LA SREGN,32 Load number of bytes to
be written.

LA SREGL,CHKRT Load address of routine
in user.' s program that
uses exceptional condi­
tion indication.

BALR SREGR,SREGZ Branch and Link. If the user's program and I/0 Support
Package are not assembled together, the
user must employ the call entry tables to
produce the entry linkage. The starting
address of the Primary Call Entry Table is
symbolic name SINTRY; the starting address
of the Secondary Call Entry Table is sym­
bolic name SNTRY2. Figure 7 shows the
construction of the Primary Call Entry
Table and Figure 8 shows the construction
Secondary Call Entry Table.

Coding with actual register numbers:

LA
LA
LA
LA
BALR

1,SWMSW
2,INFORM
3,32
4,CHKRT
0,1

r---1
SIN TRY

SUTAB
SCRDR

•
STY PR

•
SPRTR

SPNCH

•
* • •
STAP

•
* SDUMD

*

DS
DC
EQU
DC
DC

DC
DC
DC

DC
DC
DC

DC
DC
DC

DC
DC
DC

DC
DC

OD
A (SRDCW)

* A (10) ~ OoA
A (0)

A (SWMSW)
A (9) t 009

A (0)

A (SPRTW)
A (11) "" 006
A (0)

A (SPUC}
A(13} -:::OOD

A (0)

A (SRTPW)
A (180)
A (0)

A (0)
A (61440)

Figure 7. Primary Call Entry Table

54

Define starting address of table
Read card and wait
Define first device entry
Card reader address
Area for unit exceptional condition return
address

Write message and wait
Typewriter address
Area for unit exceptional condition return
address

Print a line and wait
Printer address
Area for unit exceptional condition return
address
Punch
Punch address
Area for unit exceptional condition return
address

Note: This unit block used only
for punch whose unit address
differs from the card reader •

Read tape record and wait
Tape address
Area for unit exceptional condition return
address

Dummy entry - tennination
Dummy entry - tennination

r---1
SNTRY2 EQU * Define starting address of the table

DC A (SPCR) Punch (reader)
DC A (SSNSW} Sense 6 bytes
DC A (SPCMW} Typewriter single space
DC A (SPCPW} Printer single space
DC A (SKIPW) Printer skip-to-channel 1
DC A (SPCRW} Punch (reader) and wait
DC A (SPUCW} Punch and wait
DC A (SWTPW) Write tape record and wait
DC A (SRWD) Rewind tape
DC A (SWTMW) Write tape mark and wait
DC A (SBSRW} Backspace tape record and wait
DC A (SBSF) Backspace tape file
DC A (SFSRW} Forward space tape record and wait
DC A (SFSF) Forward space tape file
DC A (SBRTW) Read tape record backward and wait
DC A (SCTLW} Issue control command

Figure 8. Secondary Call Entry Table

In order to use the entry tables, the
user must first define them in his object
program. He does this as follows:

EXTRN
EXTRN

SINTRY
SNTRY2

The next step is to load the address of
the desired entry module into a general
register. These tables reveal two facts
pertinent to loading this address:

1. It takes two instructions to load this
address. The address of the table is
first loaded into a general register.
The second instruction uses this gen­
eral register to load the address of
the desired entry module.

2. Each of the locations in the tables
that contain the address of an entry
module is displaced from the starting
address of the table by a certain
number of bytes. Therefore, to load
the address of any entry module from
the entry tables, the coding sequence
must reflect the displacement of that
location in the entry table which
contains the address of the desired
entry module. This displacement may
be defined by the use of Equate (EQU)
instructions in the user's program.
Figure 9 shows the exact displacement
for all of the entry modules. The
reader should note that he may use any
symbolic name for the entry modules in
the EQU instructions, as long as he
does not use their actual symbolic
name; that is, he may not use SRDCW,
SPCPW, etc., as a symbolic name, (if
he did, there would be duplicate
symbols) •

r---1
1. Displacement of Primary Entry

Module Addresses from SINTRY

Entry
Address
QRDCW
QWMSW
QPRTW
QPUC
QRTPW

Opera­
tion
EQU
EQU
EQU
EQU
EQU

Bytes from
SINTRY

0
12
24
36
48

2. Displacement of Secondary Entry
Module Address from SNTRY2

Entry Opera- Bytes from
Address ti on SNTRY2
QPCR EQU 0
QSNSW EQU 4
QPCMW EQU 8
QPCPW EQU 12
QKIPW EQU 16
QPCRW EQU 20
QPUCW EQU 24
QWTPW EQU 28
QRWD EQU 32
QWTMW EQU 36
QBSRW EQU 40
QBSF EQU 44
QFSRW EQU 48
QFSF EQU 52
QBRTW EQU 56
QCTLW EQU 60 ._ _______________________________________ _

Figure 9. Displacement in Entry Tables

Thus, what the user must effectively do
is add the displacement to the address of
SINTRY or SNTRY2. Once the user has estab­
lished the addresses of SINTRY and SNTRY2
by:

Input/Output Support Package 55

PITBAD
SETBAD

DC
DC

A(SINTRY)
A (SNTRY2)

and the displacement from these addresses
of that location in the table that contains
the address of the desired entry module
(for example, the routine to print a line) ,

by:

QPRTW EQU 24

he can then load the address of this
routine by the following two instructions:

L SREGZ,PITBAD Load the address of
SINTRY

L SREGZ,QPRTW(SREGZ) Load the contents
of the location
SINTRY+24, in this
case the address of
the SPRTW entry
module

These two instructions replace and serve
the same purpose as:

LA SREGZ,xxxx

which was the first instruction in the
coding sequence noted in •Direct Linkage."
All the other instructions in that
sequence, that is:

LA
LA
LA
BALR

SREGA,yyyy
SREGN,!!
SREGL,zzzz
SREGR,SREGZ

remain the same, if the register assign­
ments are equated as in the I/O Support
Package, and all specifications which were
described there also apply when they are
used as part of the linkage format for a
user's program that was assembled separate­
ly from the I/O Support Package.

Figure 10 is an example of the linkage
format for a user's program that was assem­
bled separately from the I/O Support Pack­
age. The following assumptions are made in
this example:

56

1. The only entry modules desired are
SPCRW and SWMSW.

2. Symbolic register names are used.
Note: The user may employ the actual
register numbers, if it is so desired.

SENSE ENTRY EXAMPLE

This section provides a coding example
of the SSNSW entry. The following assump­
tions are made in this example:

1. All required modules are present.

2. Information is to be sensed from the
printer.

3. The I/0 Package was assembled separ­
ately from the user's program.

4. The user will load the unit reference
into register SLUBRG.

5. The SSNSW entry will transmit the
sensed data to the area defined by the
I/0 Support Package - beginning at
symbolic location SNSA, which must be
defined by an EXTRN in the. user's
program. SNSA is defined as an ENTRY
in the I/O Support Package.

Figure 11 illustrates the coding in the
user's program.

If the user did not want to load the
unit reference into register SLUBRG, he
would do the following:

1. Include the Locate SINTRY Table Unit
Block and Sense Entry Locate SINTRY
Table Block Exit modules.

2. Place the address of the device in the
high-order 16 bits of register SREGN;
this may not be a new device address.

r----~--1

QWMSW

QPCRW

SREGZ
SR EGA
SREGN
SR EGL
SREGR

EXTRN SINTRY Define Primary Call Entry Table
EXTRN SNTRY2 Define Secondary Call Entry Table

L
L

LA
LA
LA
BALR

L
L

LA
LA
BALR

EQU

EQU

EQU
EQU
EQU
EQU
EQU

SREGZ,PITBAD
SREGZ,QWMSW(SREGZ)

SREGA,yyyy
SREGN,n
SREGL,zzzz
SREGR,SREGZ

SREGZ,SETBAD
SREGZ,QPCRW(SREGZ}

SREGA,yyyy
SREGN,n
SREGR,SREGZ

12

20

1
2
3
4
0

Load the address of SINTRY
Load the contents of the Location SINTRY+12,

in this case the address of· SW.MSW
Load address of first byte to be processed
Load the number of bytes to be processed
Load exceptional condition return address
Branch and Link

Load the address of SNI'RY2
Load the contents of the location SNI'RY2+20,

in this case, the address of SPCRW
Load address of first byte to be processed
Load the number of bytes to be processed
Branch and Link

Specify the displacement (as shown in
Figure 9) of the location in SINTRY which
contains the address of the desired entry
module, in this case, SWMSW

Specify the displacement (as shown in
Figure 9) of the location in SNTRY2 which
contains the address of the desired entry
module, in this case, SPCRW

Equate SREGZ to general register 1
Equate SREGA to general register 2
Equate SREGN to general register 3
Equate SREGL to general register 4
Equate SREGR to general register 0

PITBAD DC A(SINTRY} Define the address of SINTRY
SETBAD DC A(SNTRY2} Define the address of SNTRY2

~---~
I Note: If the EXTRN instructions are removed, this coding would also serve when · I
I the object program and I/O Support Package are assembled together. I
L-------------------------------~---J
Figure 10. Example of Indirect Linkage

Input/Output Support Package 57

r---1
EXTRN SINTRY Define primary call table
EXTRN SNTRY2 Define secondary call table
EXTRN SNSA Define sense area

L 1,SETBAD Load address of SNTRY2
L 1, (4, 1) Load address of Sense Entry
L 6,PITBAD Load address of SINTRY
LA 6,28(6) Load address of the wiit address cell, in this case,

that of the printer
BALR 0,1 Branch and Link to I/O

PITBAD DC A(SINTRY) Define the address of SINTRY
SETBAD DC A(SNTRY2) Define the address of SNTRY2

---J
Figure 11. Sense Entry Coding Example

CONTROL ENTRY EXAMPLE 3. The user will load the unit reference
into register SLUBRG(register 6).

This section provides a coding example
of the SCTLW entry. The following assump­
tions are made in this example:

4. The I/O Support Package was assembled
with the user's program.

1. All required modules are present. Figure 12 illustrates the coding in the
user's program.

Note: The SCTLW
presence of the
Modifiers routine.

entry requires the
Command Operation If the user did not want to

unit reference into register
would d~ the following:

load the
SLUBRG, he

2. The user wants to provide for an
immediate space of 3 on the printer;
the modifier bit pattern for this is
00011.

1. Include the Locate SINTRY Table Unit
Block and Control Entry Locate SINTRY
Table Block Exit modules.

r---1
LA SREGZ,SCTLW
LA SLUBRG,SPRTR

LA SREGA,MOBITS

LA SREGN,1

LA SREGL,EXCPAD

BALR SREGR,SREGZ

DC OF
MO BITS DC X' 18'

DC AL3 (0)

Load the address of the SCTLW entry
Load the address in SINTRY of the unit address
cell, in this case, the printer
Load the modifier bit pattern into the high-order
five bits of register SREGA
Load a number to ensure that an invalid byte
count of zero is not in register SREGN
Load the address of the user's routine that
handles an exceptional condition indication
Branch and Link

Align on full-word boundary
Define the modifier bit pattern; this particular
pattern has the bit configuration 00011000;
it is placed in the high-order byte of register
SREGA and the high-order five bits are interpreted
as the modifier bit pattern. For other modifier
bit patterns, the user is referred to the reference
manual of the particular I/O device
The address portion is not significant

Figure 12. Control Entry Coding Example

58

2. Place the address of the device in the
high-order 16 bits of register SREGN;
this may not be a new device address.

CARD-ONLY INSTALLATIONS

An assembled version of the I/O Support
Package is provided for card-only installa­
tions. It includes the following entry
routines:

SRDCW
SW MSW
SPRTW
SPUC and SPUCW
SPCR and SPCRW
SSNSW
SKIPW

All requirements specified in
•Input/Output Support Package• apply to
card-only installations with the following
limitations:

1. Only the modules required for card I/0
routines will be included.

2. The only option provided is for an
exceptional condition return address.
The modules required for this option
will be included.

3. Modules required for SEREP interface
are included.

This version supports the following I/O
devices:

• One IBM 2540 and/or 1442 Card Reader­
Punch

• One IBM 1052 Printer-Keyboard

• One IBM 1403 or 1443 Printer

CARD-TAPE PACKAGE

Another assembled version of the I/O
Support Package is the card-tape package.
It includes the following entry routines:

SRDCW
SWMSW
SPRTW
SPUC and SPUCW
SPCR and SPCRW
SSNSW
SKI PW
STPBKW
SRTPW
SWTPW
SRWD
SWTMW
SBSRW
SBSF
SFSRW
SCTLW

This version supports the following I/O
devices:

1. One IBM 2540 and/or 1442 Card Reader­
Punch.

2. One IBM 1052 Printer-Keyboard.

3. One IBM 1403 or 1443 Printer.

4. Any number of IBM 2400 Series Magnetic
Tape Units.

All the requirements specified in the
•Input/Output Support Package" apply to
this card-tape package, with the following
limitations:

1. Only the modules required to support
these entries will be included.

2. There are four optional facilities
supplied with this version:

• Exceptional Condition Routines

• Tape Retry on Error Routines

• Multiple
Routine

Unit Address-Device

• Command Operation Modifiers Rou­
tine

3. Modules required for SEREP interface
and tape error recovery are included.

CHARTS OF MODULE RELATIONSHIPS

These charts are intended to give the
reader a view of the dependencies among the
modules of the I/O Support Package. The
general approach to these charts is as
follows: all the modules outside the
required group may be used independently,
but the user must follow the flow lines
from the module he selects back to the
required modules and include every module

Input/Output Support Package 59

the flow line intersects. More specifi­
cally, when the user selects any module, he
should follow the arrow from that module,
taking all branches, and incorporate in his
deck all the modules encountered.

The reader should understand the follow­
ing criteria for using these charts:

1. The name (as it appears on the listing
of the I/O Support Package supplied by
IBM) of each module is contained in
process blocks. Also in the process
block is the symbolic starting address
of the module; for example, Issue
Internal Call (listing name of the
routine) , SNTCL (symbolic starting
address of that routine) •

2. The listing group name is also con­
tained on the charts; the reader will
find these group names in the verbal
discussions of the I/O Support Pack­
age.

3. Above each block containing the name
of a module, there are a series of
codes designed to aid the user when
selecting modules from the I/O Support
Package. The fields of the code are
separated by commas. The following is
an explanation of these codes:

60

a. The first two digits are the iden­
tifying number of the module;
these digits are found in columns
76 and 77 of the symbolic decks;
for example, above the block that
contains the name SINTRY, the
first two digits are: 10. These
digits -- 10 -- appear in every
card of the SINTRY module (in the
symbolic deck) in columns 76 and
77.

b. The second field shows the number
of bytes (these are the initial
release figures and are subject to
change) the particular module
occupies; for example, above the
block that contains the name of
the Attention Base Routine, the
following appears in the first two
fields: 3J,12, ••• ; where 3J is the
identifying number and 12
(decimal) indicates that this

module occupies 12 bytes.

c. After the field that indicates the
bytes occupied by the module,
there are a series of codes that

indicate which modules are used by
the basic utility programs (this
is intended as an aid to the user
who desires to select his modules
from the' I/O Support Package and
make his own resident I/O) • Table
23 defines these codes.

Table 23. Chart Codes for Basic
Utility Programs

r----T---~-----~------------------------1
I Code I Significance I
~-~-+~-~-------------------------------~
!ALL This module is used by all the I
I basic utility programs. I
IC This module is provided with the I
I Card-Only version of the I/0 Sup- I
I port Package.
ID1 This module is used by Phase 1 of
I the Two-Phase Dump Program.
ID2 This module is used by Phase 2 of
I the Two-Phase Dump Program.
IDS This module is used by the single
I phase Dump Program.
IDT This module is used by both phases
I of the Two-Phase Dump Program.
IL This module is used by the Absolute
I and Relocating Loaders.
IT This module is provided with the
I Card-Tape version of the I/0 Sup-
1 port Package.
L----i----------~-~---------------------

For example, the codes above the block
that contains the name of the SKIPW entry
module (J3,36,T,C,D2,DS) are interpreted as
follows:

J3 Identifying number; this number appears
in all cards of the symbolic version of
the SKIPW module in columns 76 and 77.

36 This module occupies 36 bytes in stor­
age.

T This module is provided with the Card­
Tape version of the I/O Support
Package.

C This module is provided with the Card­
Only version of the I/O Support
Package.

D2 This module is used by Phase two of the
Two-Phase Dump Program.

DS This module is used by the single phase
Dump Program.

REQUIRED MODULES

CALL ENTRY
TABLES

10 ,68, ALL
*****82**********
* * *

*
*

* *

OPTIONAL MODULES

20,64,ALL
*****83**********
* *
* *

*
SI NT RY *X••••••••* SNTRY2

* * *
* ***************** x

• NO
•*•

*
* *
*

C2 *• *
•* ARE *• *

***************** x

•* SECONDARY *• YES * •
• ENTRIES •• • • • • • •• • • • • • • • • • •

• USED • *
• •

• • x
*
*

30.56
*****AS**********
* * *EXTERNAL INTER-*

••••••* RUPT BASE *
* ROUTINE
* SXTRIN *

3A,82.ALL
*****BS**********
* * • * ERROR *

oX••••*INDICATOR GROUP*
* SINO *

3F.12
*****CS**********
* MINOR *

INTERRUPT
.X••••* CONDITIONS

* SNTPXl
* ' *

*** ***** * ** ** *** *** * ********** ******. **** ******* •:******** ************* * *** * * * * ** ** ** * * * *
BASE ROUTINE
GROUP 1

:30.382,ALL : 3K,96,ALL
*****02********** :****05*********:
: INll~~TOR : : X * ISSUE *
* INTERRUPT *X •. •• • • • • • • * INTERNAL CALL *
* ANALYZER * * X * SNTCL *
* *
***************** x * * *

* ******** ***** *** ********************. ** ** ********
BASE ROUTINE
GROUP 2

Chart AA.

* *
* * .so.278.ALL * *

!****E2*********! : :
* HOUSEKEEPING *
* ANO *

CONSTANTS *

* * ***************** x
• x ••••••••••• ; •••••••••••••

*
.:. YES * :sP.o.ALL

F2 *• * *****F3**********
•* HAS *• * * INITIAL *

•* USER NEW *• NO * * NEW PSW *
• PSW SET UP •••••••••X* SET UP ROUT *

• ROUTINE • * * *
• • * * SORG *

• • ***************** x
.x •••.••••.•. .: •••. ••.•••.••

: NO :
•*• eSA,44.T.L

G2 *• *****G3**********
•* NEW *• * MULTIPLE *

•* DEVICE *• YES * *UNIT ADDRESS - *
•ADDRESS TO BEo••••••••X*DEVICE ROUTINE *

• USED • * * SCHGU *
• • * * * *• •* ***************** x

• * .x •.••••••.•.••••• ••..•••.•
*

: NO :
•*• * .se,40,oT.T.c

H2 *• *****H3**********
•* *• * *

•* COMMAND *• YES * * COMMAND *
•OP MODIFIERS •••••• •••X*OPER MODIFIERS *

• USED • * * ROUT *
• • * SMODF *

• • *****************
x

;
* *

*AA *
* H2*

*
*

* *

*
* * *
* *
*
*
*

* *
*
* *
*
* *

*
*
* * *

* *
*

*
*
*
*

*
*

*

* * *

*
*

Required Modules and Interrupt Action Modules

3L.so.T.DT.L.
*****ES**********
* INTERNAL UNIT *

• * SENSE ROUT I NE *

eX••••: SENS *

3M, i 2, ALL
*****FS**********
* CCI UNIT *
* INOENTIFIER *

.x ••• ·:
SCCIN

* * *****************

3N.46, ALL
*****G5**********
* SET ~p *
* PSWS * .x •.•••
* SION2

* " *****************

B0,50, ALL
*****HS**********
* MACHINE CHK *

• * INTERRUPT
.X••••* ENTRY

* SMCIN
*

DO• 8 • T •OT ,L
*****J5**********
* UNIT CHECK *
* ROUTINES

.x •••• *,. *
* SNKX :

**************~**

F0,8.ALL
*****KS**********
* UNIT EXCEP *
* CONDITION *

• • • •• •: RO~~~~ES

*

Input/OUtput Support Package 61

.. *
*AA *
* 85*
***** x

82*****
* ..

* ERROR
* INDICATION

GROUP

*********** x

•' 3A,82, ALL
*****C2********** * WRITE *

* *
*AA *
* D5*
***** x

• 3K,96,ALL
*****83**********
* ISSUE *

INTERNAL
CALL

* SNTCL *

***************** x

* *
*EE *
* E4*

***** x

• Hl,24,ALL
*****84********** * WRITE *

MESSAGE *
ENTRY *

* SW MSW *
***************** x

* * *AA *
* FS*

***** x

• 3M.12,
*****BS********** * Ctl UNIT *

IDENTIFIER :

SCCIN *
***************** x

* ERROR MESSAGE * • •
* BASE ROUTINE * • • • • • • ~ •

3E,94
*****D 1 **** ******

* * * SI ND *

38.140
*****02**********
* WRITE * * BIN-TO-HEX *

CONVERTC:R * ERROR ROUTINE *
X•••••••• EXPA~SION 1 *
* * * SSBNX *

*****•***********
SINDA

***************** x

• 3C,70
*****E2**********
* WRITE *

* * * AA *X• •
* ES*
**** • 3L,ao,T.DT.L

*****04********** * INTERNAL UNIT *
: SE"lSE ROUT! NE :

* SENS

***************** x

* ERROR ROUTl!'E * •
* EXPA~SI ON 2 * •

*

* * *AA *
* C5*

i:-*G 1 **** ***
MINOR *

INTERRUPT
CONDITIONS

GROUP

* SINDB *

3F, 12
*****G2**********
* MINOR *

I NTPT CONDS
X• •• •• ••• BASE

* * ROUTINE
* SNTPXl *
***************** x

NOTE 3G, 12
*****G3**********
* INCORRECT *

LENGTH *
* RECORD
* BASE ROUTINE
* -SNTPD 1 *

NOTE 3Htl2
*****G4**********
PROGRAM CONTROL
* INTERRUPT *
* BASE ROUTINE *

* * SNTPD 2 *

NOTE 3J, 12
*****G5**********
* ATTENTION *
* BASE ROUTINE

*
* * SNTPD 3

***** ************

.......................... ~

NOTO::
THE FUNCTION OF THIS ROUTINE
IS TO PROVIDE FOR THE ATTACH­
MENT OF USER SUPPLIED
ROUTINES THAT HANDLE THE
INTERRUPT CONDITIO~

*
* * *AA *

* E5*

***** x

K2*****
" * INTERNAL *

SENSE CALL
GROUP *

*

3K,96,ALL
*****.J4**********
* ISSUE *
* INTERNAL CALL *
* *• •••••••

* x
SNTCL *****

***************** *AA *
* 05*

* *
*

3L.ao.T.DT,L J0,40,T.DT
*****K 3********** *****K4********** * INTERNAL UNIT * * SENSE *
* SENSE ROUTINE * ENTRY
* *••••• ••• x* *•••• •• ••
* * * * x

SENS * * SSNSW * *****

***************** ***************** *EE * * Gl*

* *
*

Chart BB. I/O Base Routine - Group 1 Optional Modules

62

* * *AA *

:*~;:
x

BI*;*** *****B2 ********;~ .46, ALL *****B3********~~, 36
MACHINE CHE::K * SET UP * * SAVE *

* I /0 ANO * NEW * AND RESTORE
* EXT'ERNAL NEW *X• •••••• •* PSW *X•• ••••••* EXTERNAL PSW
* PS\11 SET UP * * * *

* ******** *** :****~!~~*~****** :****;;~~.: ••••• :

* * *AA *

:.~;:
x

F 1 •:***
* * * UNIT

D0,20,T,DT,L DS, 162,T.DT.L 3L.80.T,DT.L
*****F2********** *****F3********** *****F4***«·******
* UNIT CHECK * * UNIT CHECK * * INTERNAL UNIT *
* BASE ROUT I NE * * TAPE ROUT I NE * SENSE ROUT I NE *

* CHECK *X••••••••* *X••••••••* *• •••••••X* *••••••••
* * GROUP * * * * * * * x

*** ***** *** ******;~~~******: ******;~~!******* : ••••• ;~~~******: ::;·:

D7,124,T,D2,L

*****G 1 **** ****** * TAPE *
READ *

: G3 :x • •
• 06.

*****G3**********
* * TAPE RETRY

* K3*

* *

142:T,DT.6 , 3K,96,ALL
*****G4**********
* ISSUE *

, * INTERNAL *
RETRY :••••••••••••••••X• •••••• •••••••• •• x: *

* • • • • X* CALL *• • • • • • • •
* * x * SBKSP *

Chart CC.

• 08,68,T,Dl
*****H2**********
* TAPE *

\llRITE
RETRY *

* * * SE FWD *

*************'****

!****J2*********:
: REWIND ENTRY *

* * SRWD *

x

*FF *
* E2*
* *

* STRET *

.X.* G3 *
* *

* SNTCL * *****
***************** *AA * '• * 05*

* *
*

• **** • X M0,46,T,DT,L KS.20,T,DT,L
**** *H3********** *****H4**********
* ISSUE * * TAPE BKSP *
CONTROL COMMAND , * RECORD ENTRY *
* * • • • • X* *• • • • • • • •
* * * * x
* SCTLW * * SBSRW * *****

***************** ***************** *FF * * F2*

x
***** *EC *
* Cl*

* *
*

* * 44444J4********** * FORWARD SPACE *
TAPE RECORD *

•••X* ENTRY *• ••• ••••
* * x * SFSRW * *****
********.******** *FF *

* G2*

* *
*

I/O Base Routine - Group 1 PSW Routines, Machine Check Group, Unit Check Group

Input/Output Support Package 63

* * * *AA *
* KS*
***** x

F0181ALL F21lO,ALL
Bl***** *****B2********** *****B3**********

EXCEPTIONAL * UE * * SET UP *
* CONDITION * * BASE * * EXCEP COND *

* GROUP *X••••••••* ROUTINE *X••••••••*RETURN ADDRESS *
* * * * * *

* * * SUEX * * SUEXR *
*********** ***************** *****************

Chart DD.

64

x

.F1.20.T,OT1L FS,BO.D2 3L,801T10T1L
*****C2********** *****C3********** *****C4**********
* UE * * UE * * INTERNAL UNIT *
* SPECIFIC UNIT * * PRINTER * * SENSE ROUTINE *
* BASE ROUTINE *X••••••••* ROUTINE *••••••••X* *••••••••
* * * * * * x
* SUES * * SUEP * * SENS * *****
***************** ***************** ***************** *BB *

* K3*

Unit Exceptional Condition Group

3K1961ALL
*****04**********
* ISSUE *
* INTERNAL CALL *

* *
*

••• x• *••••••••
* * x * SNTCL * *****
***************** *AA *

'05
* *
*

J31361T1C1DS102
*****E4**********
* SKIP-T0-1 * * ENTRY *

•••••••••••••••••X* *•••••••• . * * x
* SKI PW * *****
***************** *EE *

* GS*
* * *

REQUIRES
COMMAND
MODIFIERS
ROUTINE

* * *AA *
* H3*

***** x

* * *AA *
* H2*
***** x

63*:***
*CALL ENTRY *

* MODULES FOR *
*CARD MACHINES, *

* CONTROL AND *
* SENSE *
*********** x

NOTE 3 :M0,46 •*• NOTE 2 H0,24,T,CoLoDT NOTE 2 H4ol6,T,CoDI

!*~;;5~ *~~~;~;~*: •*~~CAT~•*• :****C~~:;******: :****CS*********!
COMMAND * •* BY GIVEN *• NO • * CARD * P~NCH

••••••••• x•.WAIT ADDRESS •••••••••••••••••• x.x ••••••••••••••••• WAIT SRDCW •x......... (1442)
SCTLW * *• •* * * * SPCR

* * *• •* * *
***************** *• • * ***************** ***************** * YES X

XN2o0
*****02**********
* CONTROL ENTRY *
* LOCATE SINTRY *
*TBL BLOCK EXIT *
* SCTLX *

* *****************

NOTE 3 J4,20.r.c.D1
*****05**********
* *

••••••••••••••••• •*
*

PUNCH WAIT
(1442)

SPCRW

XN0,36 NOTE 2 Hlo24oALL NOTE 3 Jlo32oLoDToDS

!*~~~~i~*;;~~~;*: !****E4*********: :****ES*********:
TABLE UNIT * • * WRITE MESSAGE * * SINGLE SPACE *

~~Bg~ :················x.x ...•..•.•....... : SWMSW :x········: MESs~g~M~NIT
* *
***************** x

* ***************** * *****************

NOTE 2 H2o24.T.c.02,os NOTE 3 J2o32oD2.DS
*****F4********** *****FS**********
* * * * * SINGLE SPACE

aNl .o
*****F2**********
* SENSE ENTRY *
* LOCATE SINTRY *
*TBL BLOCK EX IT *
: SSNSX *

.x••••••••••••••••* PRINT *X••••••••* PRINTER
* SPRTW : : SPCPW

***************** ***************** ***************** x x

• YES
NOTE 3 .JOo40oToLoDT •*• NOTE 3 J3o36oToCoD2,DS

*****G 1 **** *** *** G2 * • *****GS**********
* * •* *• * PRINTER SKIP *
* ISSUE SENSE •* LOCATE *• NO • * TO CARRIA<;E

COMMAND ••••••••• x•.BY GIVEN UNIT.• •••••••••••••••• x. • •••••• •••••• •••••* TAPE ONE
* SSNSW * *• ADDRESS •* * SKIP\>
* * *• •* * * ***************** *• •* *****************

*

NOTE 2 H3o20oToCoD1 NOTE 3 J5o!6,ToCoDl
*****H4**********
* *

:****HS*********:
* PUNCH * PUNCH WAIT ••.•••••••••••••• ·: (~~0g> •x •••••••• • (25401

* * SPUCW

NOTE 2 - REQUIR;;S PRESENCE OF ADDRESS TO
ENTRY IN SINTRY TABLE

NOTE 3 - REQUIR;;S PRESENCE OF ADDRESS TO
ENTRY IN SNTRY2 TABLE

* * ***************** * *****************

Chart EE. I/O Call Entry Group Modules for Non-Tape, Sense, and Control Operations

Input/output Support Package 65

*
* * *AA *

* H2*
***** x

83*****
* TAPE *

* OPERATIONS *
* ENTRY *

* GROUP *
* * *********** x

.KOo56oToLoDT
*****C3**********
* TAPE *
* ENTRY *
* BASE *
* ROUTINE *
* STPBKW *
***************** x

Klo20oToLoD2 K2o20oToD1
* *****D2********** *****D4********** *

* * * *
* READ * * WRITE *
* TAPE *················x.x * TAPE *
* SRTPW * * SWTPW *
* * * *
***************** *****************

K3o24oToDT K4o20oToD1
* *****E2********** *****E4********** *

* * * WRITE *
* REWIND * * TAPE MARK *
* *••••••••••••••••x.x •••••••••••••••• * *
* SRWD * * SWTMW *
* * * *
***************** *****************

K5o20oToLoDT K6o20oToL
* *****F2********** *****F4********** *

* BACKSPACE * * BACKSPACE *
* RECORD * * FILE *
* *••••••••••••••••X•X••••••••••••••••* *
* SBSRW * * SBSF *
* * ***************** * * *****************

K7o20.T,D2 K8o20oT
* *****G2********** *****G4********** *

* FORWARD * * FORWARD *
* SPACE * * SPACE * * RECORD ••••••••••••••••• x.x •••••••••••.•••• * FILE *
* * * *
* SFSRW * * SFSF *
***************** *****************

K9o20oT
*****H4********** *
* READ *
* BACKWARD *

··················* *
* * * SBRTW *

* REQUIRES PRESENCE OF ADDRESS TO
ENTRY IN SNTRY 2 TABLE

Chart FF. I/O Call Entry Group Modules for Tape Operations

66

The programmer often finds it necessary
to use subroutines and other program seg­
ments that he himself' did not produce. In
most cases, the programmer knows the call­
ing sequence of these routines; however,
the assembled location or the size of these
routines usually is not known. In using
the relocating loader, the question of size
may or may not be of concern to the
programmer (depending on the storage capac­
ity of his machine) and the question of
assembled addresses is of no concern, since
the loader will load and set up linkage
between these various routines.

When relocating program segments and
establishing linkage among them, the relo­
cating loader must calculate certain inf or­
mation during the loading process.

The loader receives the information to
answer these questions from the load cards
that it encounters during loading. Some of
the information that the loader receives
must be saved for later use during the
loading process. The information that is
saved is placed in the Control Dictionary,
which js composed or two tables, one called
the Reference Table and the other

Symbol Identification Table.

The External Symbol Identification Table
is contained in the loader itself. The
Reference Table is built downward from the
highest available storage address (location
8191 in the low version released by IBM) ,

I each entry (a maximum of 253 entries)
consisting of 12 bytes. The Reference
Table is protected from being overlaid when
input to the loader is in relocatable form.
However, during an absolute load, the Ref­
erence Table is not protected and may be
overlaid.

The information required by the loader
answers the following questions:

1. What are the names (program name,
entry points, and external symbols) by
which this segment may communicate
with other program segments, and what
are the actual addresses of these
names? A program segment (or
subroutine) may be referenced by other
program segments: if the segment which
is referenced is in storage at load
time, the address of the segment is
already established; if it is not in
storage at load time, the name and
entry points must be defined to the
loader by an ICS card (and SLC card,
if necessary) • (These assigned

APPENDIX A: RELOCATION AND LINKAGE

addresses are kept by the loader in
the Reference Table.)

2. What address constants within the
assembled segment would change value
as a result of this segment or another
segment being relocated? During the
loading process, the loader is noti­
fied that adjustments are to be made
within this program segment by the ESD
cards (types 0 and 2) • It is told how
and where these adjustments are to be
made by the RLD cards.

3. What is the relocation factor; that
is, what is the difference between the
assembled address of the segment and
the address where loading will begin?
This factor must be added to or sub­
tracted from the assembled address of
the program name and any other entry
point to the segment, and the assem­
bled address in all Text and Replace
cards.

Example

In order to illustrate, step by step,
how the loader accomplishes relocation and
linkage, we will assume that there are two
program segments to be loaded, SEGA and
SEGB.

SEGA refers to two subroutines in SEGB
called SQRT and LINK. SEGA defines SQRT
and LINK as external symbols by these
asse~bly instructions:

SEGA START
EXTRN
EXTRN

128
SQRT
LINK

During execution, SEGA can branch to these
external subroutines, thus:

L
BALR

L
BALR

15, ADSQRT
14,15

15,ADLINK
14,15

Address constants are generated for them in
this manner:

AD SQRT
AD LINK

DC
DC

A (SQRT)
A (LINK)

SEGB refers to SEGA by its program name,
which is an entry point.

Appendix A: Relocation and Linkage 67

SEGB must define SEGA as an external sym­
bol:

EXTRN SEGA

and generate an address constant:

ADSEGA DC A (SEGA)

to allow a branch and link operation.

Note that SEGA does not yet have the
actual addresses it needs of SEGB, nor does
SEGB have the address of SEGA. These
addresses will not be assigned until load
time. The ESD and RLD cards produced by
the assembler for each segment provide the
information the loader needs to complete
linkage.

To illustrate the use of the relocation
factor (see point 2 on the preceding page) ,
the example in Figure 13 assumes that SEGA
was assembled at storage location 500 and
has a length of 200 bytes; that SEGB was
assembled at storage. location 400 and has a
length of 100 bytes; finally, it assumes
that the programmer desires to load the
segments beginning at location 1000. Note
carefully that this procedure requires a

68

Set Location Counter card to set the ini­
tial loading location to 1000. Also note
that since SEGB refers to SEGA by name, an
Include Segment card is also necessary to
establish the location and length of SEGA
before it is loaded.

Figure 13 illustrates the loading proc­
ess. It shows how each card is generated
from the user's source deck, through assem­
bler op~rations, to assembler output and
onto load time. Finally, the figure illus­
trates the appearance of storage after
loading. The five columns of Figure 13 are
read left to right following the flow noted
in the previous two sentences.

Each card is referred to by its three­
letter mnemonic: SLC, ICS, ESD, and so
forth.

Other abbreviations used in Figure 13
are:

ESID for External Symbol Identifi-
cation

LOCCT for Location Counter
RE FT BL for Reference Table
ESIDTBL for External Symbol Identifi-

cation Table

User's Problem Progrom

SEGB START 400

ENTRY SQRT
ENTRY LINK

EXTRN SEGA

l 15,AOSEGA
BALR 14, 15

AOSEGA DC A(SE GA)

END

SEGA START 500

EXTRN SQRT
EXTRN LINK

l 15,ADSQRT
BALR 14, 15
l 15,AOLINK
BALR 14, 15

ADSQRT DC A(SQRT)
AOLINK DC A(LINK)

END SEGA

Assembler Output

Progrommer inserts SlC card la location Storage After looding

Assembler Operotion

)000; ICS card to define nome, length of SEGA

1-------"---.~ loader Program , , ,

(

,,_c :""LC...._ ___ __, - Sets LOCCT at 1000 ------------

REFTBL

LOCCT
iooo

.__ _____ __.- ~:;;;~!~~~~~~E::~~:~h ~f~~~'; (;;) t_o_cc_T_; ___ (_ll I SELGOAcc' TIOOO I
Type 0 ESO card with program
name, location and ESID (01) ---- (ESD (Type O) 1- Enters SEGB in REFTBl with location Iran lOCCT; I 1200 j

figures relocation factor (800), puts this in REFTBl""' - REFrBL - - - -
with SEGB; puts number 2 in ESIDTBl as painter ta ~(I) I SEGA 11000 I I

Type I ESO cords with name of
SQRT ond LINK assembled addresses
(450 and 480), ond ESIO (01) ----

,...c;=====:::;i SEGB entry in REFTBl; increases LOCCT by length of (2) SEGB120080Q

-Enters SQRT and LINK in.REFTBL, adds relocation (01) [LJ I 1300
(

ESD (Type I) ~ SEGB (IOO) ESIOTBl LOCCT

• factor to get actual locations ~ ' _______ _

Type 2 ESD card with name of ---- ._ ______,. Finds SEGA is first entry in REFTBl; enters the number ~ ..,....;.RE-..F-TB.,..t ___ ,..

SEGA and sequential ESID (02) (ESD (Type 2) I I in ESIOTBl as a painter to SEGA's entry in REFTBl; (I) SEGA 1000
• enters 1000 as current relocation factor (2) SEGB 1200 800

(3) SQRT 1250
TXT cards with instructions ond rTBt
constants in binary, and location of -- CT ,-Adds relocation factor to address of eac (4) I , L .~ RE i- ~
oreo lobe loaded Iran eoch cord ond loads its contents into core storage esiOiit - - - - - .• J >.1">.UA! l611A.' ~ e. 'I

....__ ____ _, <01i ~ :;.JJ D f(J~ -:.e.~~vt IA.

Goes to entry 02 in ESIDTBl, finds pointer to first L(02) CLJ
RlO cord with Relocation Header 02 --rRlO I Bl •• ,. •• A 0 -entry in REFTBl; gets relocation factor fran REFTBL, REFT YW'V'......,

(:~=:~C::n~:s::e~e:~s~DSEGA adds to contents of ADSEGA. This linkage is (I) SEGA 1000 .)(
canpleted .__ _____ __. (2) SEGB 1200

ENO card with no address for transfer --(ENO 1-Ends loading of SEGB, saves location os conditional (3) S RT 12
of control point for transfer of control. Eroses ESIDTBL. (4) LINK 1280

-------L--------' REFTBL
Type 0 ESO cord with program nome, Finds SEGA ond location in REFTBl; figues reloco- (I) SEGA 1000 500

puts number I in ESIDTBl as pointer to SEGA entry SEGB 1200 800

in REFTBL, Jtortinp new round of ESID numbering (3) SQRT 1250

location ond ESID (01) -- ('.ESD (Type 0) I tion factor (500) ond puts in REFTBl with SEGA; ((
2
)

Type 2 ESD cards with names of SQRT ~ Finds SQRT ond LINK ore third ond fourth entries (4) //
and LINK, and sequential ESID (02,03)--(ESO (Type 2) in REFTBl; puts numbers 3 ond 4 in ESIOTBl os pointers ESIDTBl ... ,..

_ . to REFTBl. tv\akes entries for relocation factor (01) o:J .t!;;--·--·"

TXT cards with instructions ond constants rL--------'~ Adds relocation factor to address of each cord ~-E~D~Bl- - - - -

LINK 1280

in binary, ond lacl!tion of area to be -- T loads its contents into core storage (Ol) P=1
loaded Iran each card l::::tJ
RLO cords with Relocation Header (02,03) Goes first to entry 02 in ESIOTBl, finds pointer to<::(0

2

)
ond locations assigned to AOSQRT ond -rRLD 11 third entry in REFTBL; gets relocation foctor Iran (I)

ADLINK (whose contents are zeros) u :~::!LA~~~~ contents of AOSQRT • Repeats proc (2)

L--------' (3)
END card with address of SEGA for ___ (_E_N-0----~, Ends loading of SEGA, saves specified location os (4)
transfer of control conditional point for transfer of control (superseding
_ _ _ _ _ _ _ _ _ _ _ _ previous location saved)

Progrommer inserts '::=====:=:
LOT cord with no od- LOT I
dress for transfer of
control

Ends all loading ond, since cord specifies no address,
transfers control to address previously saved (SEGA)

RE FT Bl

SEGA 1000 500

SEGB 1200 eoo_
SQRT 1250 1250

LINK 1280 1280

Figure 13. Example of the Loading Process

Appendix A: Relocation and Linkage 69

APPENDIX B: SELF-LOADING PROGRAM GENERATOR (LDRGEN)

LDRGEN is a program designed to
regenerate loader program decks into a form
suitable for direct loading into storage.
Furthermore, since neither the absolute nor
relocating loader is provided in a form
that can be relocated, LDRGEN can be used
by an installation to cause the loaders to
occupy locations in storage other than the
locations they occupy in the versions
released by IBM.

REQUIREMENTS FOR USING LDRGEN

LDRGEN is provided only in symbolic form
and the:,.ref ore must be assembled by the
user. Similarly, the absolute and relocat­
ing loaders must be assembled at the loca­
tions desired by the user. Prior to assem­
bly of the LDRGEN program, the user must
provide LDRGEN with the address of the
output device: he does this by means of an
Equate instruction that he inserts into the
LDRGEN deck immediately before the END
card. It is coded as:

OUTPUT EQU (address of the output
device in hexadecimal
or its equivalent
decimal notation)

The assembled loader deck and LDRGEN
programs can be loaded into storage by the
absolute or the relocating loader.

CAUTION: the versions of the loaders
released by IBM occupy low- or high-storage
locations on an SK configuration. Since it
is necessary to load the assembled reloca­
table decks of both LDRGEN and the loader
being regenerated, care must be taken to
ensure that neither of these will overlay
the loader loading them. In other words,
all must fit in the storage of the machine,
remembering that the self-loading loader
occupies predetermined locations and the
loader being generated must occupy the
locations where its residence is desired.

The loader program must declare the
following information to LDRGEN:

1. The lowest storage address occupied by
the loader; this address shall be
called ALPHA.

2. The loader initial entry point; this
address shall be ·called BETA.

3. The availability of an area of at

70

least 160 bytes for the temporary
residence of the bootstrap routine;
this area shall be called IOTA. (The
address IOTA must be on a double-word
boundary.) IOTA should not be includ­
ed within the loader (that is, between
ALPHA and OMEGA) ; it should be adja­
cent to the loader. This may be coded
as:

IOTA EQU •-160

to reside below the loader or as:

IOTA EQU *
to reside above the loader.

4. The highest storage address plus 1
occupied by the loader; this address
shall be called OMEGA.

PROVIDING ADDRESSES

As was pointed out, LDRGEN is loadable
by either the absolute or the relocating
loader. Both loaders define ALPHA, BETA,
IOTA, and OMEGA by ENTRY assembler instruc­
tions; therefore, these addresses are sup­
plied to LDRGEN in one of two ways, depend­
ing on whether the absolute or the relocat­
ing loader was used to load LDRGEN.

If the absolute loader was used, the
addresses are supplied to LDRGEN by Replace
cards:

Assigned to

ALPHA
ALPHA
BETA
IOTA
OMEGA

Into LDRGEN
at Location

ALPHAA
ALPHAB
BETAA
IOTAA
OMEGAA

If the relocating loader was used to
load LDRGEN, the linkage is supplied
through ENTRY assembler instructions.
LDRGEN defines these addresses through
EXTRN assembler instructions. IOTA should
be designated by the loader program as a
buff er area. This area is temporarily

-occupied by the bootstrap routine, but it
is a"V~ilable to the object program at
execution time.

Finally, LDRGEN provides the facility of
producing duplicate decks: there is a half­
word in LDRGEN called CON. This location
is originally assembled with a value of
one. However, if the user desires more
than one copy of his deck, he may change
the value in CON, by a Replace card, to any
desired value. The value in CON will be
decremented by one after each copy of the
deck is made and will continue to make
copies of the deck until the value in CON
is reduced to zero.

SEQUENCE OF OPERATIONS

The following is
operations of LDRGEN.

the sequence of

1.

2.

3.

It calculates the difference between
ALPHA and OMEGA: this gives LDRGEN the
size of the object program it will
write.

It adjusts
address to
IOTA.

the bootstrap (160 bytes)
the designated area

It issues a write command for:

a. One 24-byte card containing the
IPL record (Initial Program Load­
ing PSW, Initial Program Loading
CCW1, Initial Program Loading
CCW2) ,

b. 'IWo 80-byte cards containing the
bootstrap routine,

c. A series of 80-byte records, of
which the first 72 bytes are text,
containing the loader program in a
form suitable for direct loading
into storage (that is, the con­
tents of ALPHA through ALPHA+71,
ALPHA+72 through ALPHA+143, etc.).
These cards will be sequenced in
columns 77-80.

4. After the entire program has been
regenerated, it writes an END card
using the address of BETA as the
initial entry point to the 'loader.

5. It examines the count to see if dupli­
cate decks are to be written. If
there are duplicate decks to be made,
the sequence of operations begins
again at item 3.

Appendix B 71

Absolute Loader
Card Formats 8-9
Description 7-8
Storage Required 6

Address Constants 67
Address Field 28-29
ALPHA 70

Backspace File 38,49,50
Backward Read Tape Record 39,49,50
Basic Assembler, ESID's 16
Basic Utility Programs 1,6
BETA 71
Busy Device Check 46

Call Parameter 27-29
Calling the Entry Modules 52
Command Operation Modifiers 41,52
Completion of I/O Operation 38,46-47
CON 71
Console Listing 24
Control Dictionary 13
Control List 27-31
Correcting

See Replace Card
Count Field 28-31

Detection of Error Conditions 46
Direct Linkage 52-54
Displacement 55
Dump Cards 34
Dump Program

Calling Sequence 27
Control List Format 29
Description 5,24-26
Requirements, Single-phase 26
Self-loading 25,34-35
Storage Required, Single-phase 6
TWo-phase 25,30-33

End Flag 28-31
End/Count Field 2.8-31
Entry Modules

List of 38
Summary of 47-49
Table of Requirements 50

Entry Point 13
Error Conditions, Detection of

See Detection of Error Conditions
ESD card, Type O, Type 1, Type 2 14-16
ESID Table 13
Exceptional Condition 42-44
Extended Card Code 8
External Symbol Dictionary Cards

See ESD Cards

Format Code 30-31
Forward Space File 39,49,50
Forward Space Record 38,49,50

72

Include Segment Card 13-14
Indirect Linkage 54-56
Input/output Support Package

Storage Required 6
Summary of I/O Entry Modules 46-49
Supplied 38

Installations, Types of 5-6,59-60
Internal Symbol 17
Interrupts 46-47
I/O Charts 61-66
I/O Register Assignments 39
IOTA 70
Issue Specified Control Command 38,48,50

Label Field 29-32
Label Flag 29-32
LDRGEN

See Self-loading Program Generator
Length Field 29-32
Linkage 11-12

See also Relocation and Linkage
LOAD1 10
LOAD2 23
Load End Card

Absolute Loader 9
Generation of 7,18
Relocating Loader 19

Load Terminate Card 1 9

Machine Requirements 5
Modules

Definition of 5,37
Entry 38,46-49
Optional 42-46
Required 39-42

Multiple Unit Address - Routine 39,52

Object Deck Sequence 8,21
OMEGA 70
Optional subroutine Modules 42-46
Options of Dump Program 24
Output Formats 31
overlaying Load Procedure 20-22

Primary Call Entry Table 41,50
Primary Entry

Definition of 40
Explanation of 40
Requirements of 40

Print n Columns 38,47,50
Printer Skip to Channel 1 38,48,50
Program Segment

Boundary Alignment 13.
Definition of 5
Examples 8,21
Reference between 12
Relocation and Linkage 67

Punch n Columns 38,47,48,50

Read a Card 38,47,50
Read Tape n Bytes 38,47,50
Reference Table 11

Relocatable Symbols and Expressions 17-18
Relocating 12

See also Relocating Loader
Relocating Loader

Card Formats 12-20
Description 5,11
Loading Capacity 11
Storage Required 6

Relocation and Linkag·e 14, 67
Relocation Factor 14,67
Relocation List Dictionary Card 17-18
Replace Card 9,18-19
Request Numbers 25
Required Modules 39-42
RESUME 22
Rewind 38,49,50

Secondary Call Entry Table 41,50
Secondary Entry

Definition of 40
Explanation of 40
Requirements of 40-41,50

Self-Loading Dump 6,23,34
Self-Loading Program Generator 70
Sense 38,48,50,56
Set Location Counter Card 12
Single Space Message Unit 38,48,50
Single Space Printer 38,48,50
Single-Phase Dump Requirements 26

Text (TXT) Card
Absolute Loader 7,8
Generation of 7,11
Relocating Loader 17

Transfer of Control 9,19
TWo-Phase Dump

Requirement of 32-34
Storage Required 6
Supplied 24

Write a Message 38,47,50
Write Tape Mark 38,49,50
Write Tape n Bytes 38,49,50

Index 73

READER'S COMMENTS

IBM System/360 Basic Programming Support
Title: Basic Utilities

360P- UT-017, -018, -019, -020

Is the material:
Easy to Read?
Well organized?
Complete?
Well illustrated?
Accurate?
Suitable for its intended audience?

How did you use this publication?
As an introduction to the subject

Yes

Other------------------

Please check the items that describe your position:
_Customer personnel _Operator
__ IBM personnel _Programmer

No

__ Manager _customer Engineer
__ Systems Analyst _Instructor

Form: C28-6505-2

For additional knowledge
fold

_Sales Representative
_Systems Engineer
_Trainee

Other _______ _

Please check specific criticism(s), give page number(s),and explain below:
__ Clarification on page (s)
_ Addi ti on on page (s)

c:i __ Deletion on page (s)
~ _Error on page (s)
~

, Explanation:
~
)

~

FOLD ON TWO LINES,STAPLE AND MAIL
No Postage Necessary if Mailed in U.S.A.

fold

Eold

old

C28-6505-2

r--1 I BUSINESS REPLY MAIL I
I NO POSrAGE STA.MP NECESSARY IF MAILED IN U. S. A. I
L--J

POSTAGE ~ILL BE PAID BY

IBM CORPORATION
P. O. BOX 390
POUGHKEEPSIE, N.

ATTN: PROGRAMMIN3 SYSTEMS PUBLICATIONS
DEPT. D58

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N. Y. 10601

Y. 12602

stapl•

r---------------------1 I FIRST CLASS I
I PERMIT NO. 81 I
I I
I I
I POUGHKEEPSIE, N. Y. I
L---------------------J

111111

111111

111111
111111
111111

111111

II II II

It 1111

111111

II II II

111111

111111

fol

folc

