Systems' Reference Library

File No. S360-21
Form C28-6555-1

IBM System/360 Basic Programming Support

Basic Assembler

Program Logic Manual

This publication provides detailed informa-
tion on the internal 1logic of the IBM
System/360 Basic Programming Support Basic
Assembler. It 1is intended for technical
personnel who are responsible for analyzing
program operation, diagnosing malfunctions,
and/or adapting the program to special
usage.

PREFACE

This manual is designed to give the
reader a thorough understanding of the
functioning of the Basic Programming Sup-
port Basic Assembler Program.

Effective use of this publication is
based on an understanding of the IBM
System/360 machine operations and the
System/360 Basic Programming Support Basic
Assembler Language. This information can
be found in the following IBM System/360
publications:

IRM System/360 Principles of Operation,
Form A22-6821

IBM System/360 Basic Programming Support
Basic Assembler Langquage, Form C28-6503

The first section of this manual pre-
sents the overall purpose and description
of the Basic Programming Support Basic
Assembler program, A Dbreakdown of the
Basic Programming Support Basic Assembler
into its major components is also provided
in this first section. The remainder of
the manual is devoted to more detailed
descriptions and flowcharts of the major
components, down to the function block
level. If more detail is needed than that
provided by the function block description,
the reader is referred to the Basic Pro-
gramming Support Basic Assembler Program
listing.

MAJOR REVISION (June, 1965)

This publication is a major revision of
the previous edition, Form C28-6555-0,
which is now obsolete. Significant changes
have been made throughout this publication.
The new edition should be reviewed in its
entirety.

This publication was prepared for production using an IBM computer to update
the text and to control the page and 1line format. Page impressions for
photo-offset printing were obtained from an IBM 1403 Printer using a special
print chain.

Copies of this and other IBM publications can be obtained through IBM Branch
Offices.

A form for readers' comments appears at the back of this publication. It may
be mailed directly to IBM. Address any additional comments concerning this
publication to the IBM Corporation, Program Logic Documentation, Department D89,
PO Box 390, Poughkeepsie, N,Y. 12602

© 1965 by International Business Machines Corporation

GENERAL INTRODUCTION « o« o o « o o o «
Purpose Of Program « « o o o o o o o o
Program Organization « « « « « o « o «

Overall Operation of Program
Phase I (Chart 01) « « o « o « «
Phase II (Chart 02) . o o o o o «

Storage Allocation . « ¢ « o ¢ ¢ o o .
I/JO FIOW ¢ ¢ ¢ o o o « o o o o o o o« «
PHASE I. ¢ ¢ o o o o o o o o o o o o o

Section 1: Introduction. « « « « " .« .
Replace the Symbolic Operation
Code with Its Machine Language
Equivalent. . . ¢« ¢« « ¢ « . . .
Translate Symbolic Operands into
Intermediate Text
Allocate Storage for
Intermediate Text « « « « « . .

Section 2: Tables.
Intermediate Text
Byte 1 — ID-Code « « .+ «
Byte 2 - Operation Code. .
Bytes 3-22 - Operand Field
Bytes 21-24 - Error Flags.
Operation Code Table.
Symbol Table.
Location «
Length « ¢« « « .
Relocatability . .
Defined Bit . . .

e e e

e o o o 0 6 o o & s o o
e o & o o 6 o 0 o o s
e o 6 o ¢ & 0 o s s 0

Section 3: Subroutine Description. . .
EVE - Evaluation Routine
(Charts AM and AN) e « o o o o @
ERR - Store Error FlagsS. . . .
BAR - Boundary Alignment Routlne
STORE - Store into Intermediate
TE€Xte o o o o o o o o o o o o =
BUMP - Increment Location

Counter . . . e o o o
TLUN/TLUS - Symbol Table
ProceduresS. . . « « .

INOUT - Input/Output Subroutlne
(CHARTS RO and AP) e« o o « « o &

Section 4: Phase I Processing Flow
Initialization - Chart 03 . .
Control Routine - Chart 0O4. . .
Control Routine - Chart 05. . .

-
-
.
-

SECTION 5: Operand Field Translation
Assembler Instruction Statements.
CCW Translation - Chart AA . .

DC Translation - Chart AB. . .

e o 0

NN

ONN

15

15

15

CONTENTS

CNOP Translation - Chart AC
(Blocks 01-09). o o .
DS Translation - Chart AD
(Blocks 10-20) ¢ ¢ o o & o « o &«
DROP Translation - Chart AD
(BloCks 12=15) e v o o o o o o «
EJECT Translation - Chart AD
(Blocks 01-02) v ¢ o o o « o o
END Translation - Chart AD
(Blocks 08-11). . . . - .
ENTRY Translation - Chart AD
(Blocks 03-07).
EQU Translation - Chart AE
(Blocks 01-08) « &« o « o =« . .
EXTRN Translation - Chart AE
(Blocks 09-14) . & o & o & .« .
ICTL Translation - Chart AF
(Blocks 01-07) . « « .« o o o
ORG Translation - Chart AG
(Blocks 01-07) . . « . . . - .
SPACE Translation - Chart AG
(Blocks 08-12).« o
START Translation - Chart AF
(Blocks 08-16)
USING Translation - Chart AH
(Blocks 01-07) « o o o o o o o @
Machine Instruction Statements. . .
RR Format Translation - Chart AH
(Blocks 08-17) . o « <« « - .
RS Format Translation - Chart AI
RX Format Translation - Chart AJ
SI Format Translation - Chart AK
SS Format Translation - Chart AL

PHASE II « o« « o o o o o o« o« o o s o« «

Section 1: Introduction. . . . « « . .
Translate Intermediate Text into
Machine Language€. « « « o « « «
Produce Output Cards . « « « «
Produce Object Program Listing .

Section 2: TableS. o« « ¢« ¢ ¢ o o « o »
Register Table.« .
Relocation List chtlonary (RLD)

Tablee o« ¢ o« o o o o o o o « o o &

Section 3: Subroutine Description. . .
SER - Simple Expression
Translation Routine
EER - Compound Expression
Translation Routine
PRTA - Print Subroutine. . . .
PCHA - Store into Punch Buffer
Routine« - .
Punch RLD and END Cards Routlne.
DOUT - Punch TXT Cards Routine .
FERR - Store Error Flags Routine
INOUT - Input/Output Subroutine.

Section 4: Phase II Processing Flow. .
Initialization - Chart 06

s e e e o

31
32
33
34
34
35
36
37
38
39
39
40

41
42

42
43
45
47
71
71
71
74

75
75

75

Control Routine - Chart 07.
General. ¢« ¢« o« o o« ¢ o« o o o o @
COMMON o o« o o o o o o o s o o =
Machine Instruction Processing .

SECTION 5: Intermediate Text
Translation « o« o« o o o o o o o o o «
ASSEMBLER INSTRUCTIONS. « « « &

CNOP Translation - Chart BA
(Blocks 01-07) e ¢ &« o« &« « « =«
ICTL Translation - Chart BA

(Block 08) e o o o o o o o o o =
EJECT Translation - Chart BA
(Blocks 09-13). . . . - .
SPACE Translation - Chart BA
(Blocks 14-20). o o
START Translation - Chart BB
(Blocks 01-03) e o o o« o o « o «
ENTRY and EXTRN Translation -
Chart BB (Blocks 04-08)
DROP Translation - Chart BB
(Blocks 09-13). o « « « o o
USING Translation - Chart BB
(Blocks T4-2U) . ¢ o o o o o o o
END, EQU, and ORG Translation -
Chart BC. v o o o o o o o o o @
DS Translation - Chart BD
(Blocks 09-14) . v v o o« o o o @

o o o o

83
83
83
83
83
84
84
84

84

CCW Translation - Chart BD
(Blocks 02-08) and Chart BE
(BlOCKS 1522) ¢ 4 o o o« o o« o «

DC Translation - Chart BD
(Blocks 01, 03-06) and Chart BE
(Blocks 01-18) e o o o o o o o @

Machine InstructionsS. « « « « « o «

RR Format Translation - Chart
BF (Blocks 01-08)e o ¢« o o« o «
RS Format Translation - Chart
BF (Blocks 09-15)ac o o o « « &
RX Format Translation - Chart
BG (Blocks 07-13) . o o o o « =«
SI Format Translation - Chart
BG (Blocks 01-06).

SS Format Translation - Chart BH

APPENDIX A: AUTOCHART CROSS-REFERENCE
TABLES: o ¢ o o o o o o o o o o o o &

Table I: Labels. ¢« ¢« ¢« ¢ ¢ ¢ ¢ ¢ o &« «
Table II: Entry Connector References .
Table III Subroutine Usage . « « « « &
APPENDIX B: AUTOCHART SYMBOLS
GLOSSARY ¢ o o o o o o o o o o = o o

INDEXe o o ¢ o o o o o o o o o o o o o

. 85

. 85

. 85

. 86
. 86

. 99
.100
.103
.104
. 105

01. Phase I. o« o o o o « o =

03. Phase I Initialization .

02. Phase II . o ¢« o o o o o =

O4. Phase I Control Routine.
05. Phase I Control Routine

CCW Translation. . . .
DC Translation . . .

CNOP and DS Translation.

DROP, EJECT, END, and

ENTRY Translation « « « « « o o o o«

Chart
Chart
Chart
Chart
Chart
(continued)
Chart AA.
Chart AB.
Chart AC.
Chart AD.
Chart AE.
Translation
Chart AF.
Translation
Chart AG.
Translation
Chart AH.
Translation
Chart AI.
Chart AJ.
Chart AK.
Chart AL.
Figure 1.

EQU and EXTRN

ICTL and START

ORG and SPACE

USING and RR Format
RS Format Translation.
RX Format Translation.
SI Format Translation.
SS Format Translation.

Storage Allocation. . .

Figure 2. I/O FlOW « ¢ o« o o o o o =

Figure

3.

Option. . .

Figure 4. Buff

Buffer Areas for Card

Figure 5. Intermediate Text Summary.
Figure 6. Symbol Table Card Format .

er Areas for Tape Option

e

-

e o o 0

e o & s 0

¢ o o o

ILLUSTRATIONS

Chart AN. EVE Subroutine

(continued) « « ¢ o « o o « « o« o o o o 67
Chart AO. Input/Output Subroutine. . . . 68
Chart AP. Tape Read/Write Retry

ProcedUreS. « o« o s o o o o o« o« o « o« « 69
Chart 06. Phase II Initialization. . . . 87
Chart 07. Phase II Control Routine . . . 88
Chart BA. SPACE, EJECT, CNOP, and ICTL
Translation « « « « « « o o « « « « « « 89
Chart BB. DROP, ENTRY, EXTRN, START,

and USING Translation . « « « « « « « « 90

Chart BC. END, EQU, and OR

Translation « « « o o o o o o « o o« « « 91
Chart BD. CCwW, DC, and DS

TransSlation « « o« « « « o o « « o « o o 92
Chart BE. CCW and DC Translation
{continued) « o« o « ¢ o « o o o « o o o« 93
Chart BF. RR and RS Format

Translation « « o « 2 o o o « o « o« o« « 94
Chart BG. RX and SI Format

Translation « « « o o o o o « « « « « « 95
Chart BH. SS Format Translation. . . 926

FIGURES
Figure 7. Error FlagSe « o o o« o o o « o« 21
Figure 8. Error SUMMAXYe « « o « o« o« o o 22
Figure 9. Increment Values « . 23
Figure 10. Output FormatsS. « « « o « « o 73

Figure 11. Object Program Listing

EXamMple o « o« o o o o o o o o o o « « « 14
Figure 12. Print Control Switch (SWPT)
Setting « o o o o o o o o o o o o o o o 18

PURPOSE OF PROGRAM

The Basic Programming Support
Assembler Program is designed to translate
a source program written in symbolic lan-
guage into an object program in machine
language. Each phase of the program must
be assembled on an IBM System/360 with main
storage of greater than 8,192 bytes.

PROGRAM ORGANIZATION

The assembler is a two-phase program,
i.e., two-storage-load program. Phase I is
the first storage load, and Phase II is the
second storage load. Only the phase cur-
rently being executed occupies an area in

" main storage. The program is designed in
this manner so that the maximum amount of
main storage is available as working area
for each phase (main storage not occupied
by the assembler, tables, etc.).

The Basic Programming Support Basic
Assembler Program has the same functions as
any assembly program. It accomplishes the
following:

1. Replaces each symbolic operation code
with its machine-language equivalent,

2. Replaces each symbolic operand with an
actual address,

3. Reserves an area of main storage for
each instruction and data area.

Phase I accomplishes the following major

“functions:

1. Replaces the symbolic operation code
of each source statement with its
machine language equivalent through
the use of the Operation Code Table.
(See "Phase I," Section 2, "Tables.")
This information is placed in a buf-
fer, .the Intermediate Text Buffer, to
be translated by Phase II. (See
"Phase I," Section 2, "Tables.")

2. Builds a table of all symbolic oper-
ands 1in the source statements. This
table is called the Symbol Table.
(See "Phase I," Section 2, "Tables.")
The location of the symbolic operand
within the Symbol Table, along with
all self-defining operands, is also
placed in the Intermediate Text.

3. Allocates storage to source statements
and to data areas with an internal
counter called the location counter.

Basic.

GENERAL INTRODUCTION

Phase II of the Assembler Program accom-
plishes the following major functions:

1. Translates the Intermediate Text into
machine language. During this tran-
slation the symbolic operands are
replaced with the actual addresses of

~symbols from the Symbol Table.

2. Produces the object program.
3. Produces a program listing.

The tables, cards,

translation required to accomplish the

functions listed above are described in
detail in the discussion of each phase.

records, and the

OVERALL OPERATION OF PROGRAM

A generalized logic flow of the two-
phase assembly program is shown on Charts

01 and 02. A detailed description of each
phase is given in the "Phase I™ and "Phase
II" sections of this publication. In the

following text, the flowchart block numbers
being described are indicated in
parentheses.

Phase I (Chart 01)

At the start of the assembly, the Phase
I assembly deck or tape is 1loaded into
lower main storage (02).

If the source program is on cards and is
being reassembled, the symbol table that
was constructed and punched into cards from
a previous assembly is read into main
storage (03) . -

The symbolic language source program, oOn
cards or in the form of card images on
tape, follows Phase I of the assembly
program and the symbol table (if present).
Each source statement from card or tape is
read and processed, and the necessary
information is punched into the same card,
or written onto tape, or punched into a new
card before the next source statement is
read. If this 1is a reassembly, the new
information is compared to the old informa-
tion before any action occurs. The type of
input depends upon the system configu-
ration.

General Introduction 7

The first test performed on a source
statement is to check for a symbol in the
name field (05). If the statement has' a
symbol in the name field, it is noted (06).
The symbol is not placed in the Symbol
Table at this time because the correct
processing of the symbol will be determined
by the operation code of the statement.
Symbols in the name field of some Assembler
instructions will not be used by the assem-
bler and, therefore, will not be placed in
the Symbol Table.

If the name field does not contain a
symbol, but the statement begins with an
asterisk (07), indicating a comments state-
ment, the only action taken is to indicate
this in the Intermediate Text (08) .

If the statement is blank (09), it is
ignored, and the next source statement is
read in (04) . If it is not blank, the
Operation Code Table that was loaded into
main storage as part of the assembler deck
is searched for the corresponding machine
language operation code (10). The machine
language operation code is then stored in
the Intermediate Text. If the operation
code is not found, or if other errors in
any part of the source program statement
are found by the assembler, the necessary
error flag(s) is placed in the Intermediate
Text.

The operand field of the source state-
ment is scanned next (11). Formats are
checked, and the expressions in the operand
field are translated according to format
and placed in the Intermediate Text. (See
"Phase I," Section 5, "Operand Field Tran-
slation.")

All the information concerning the
source statement that can be determined by
Phase I is stored in the Intermediate Text,
and the Intermediate Text is then punched
into a card or written on tape, depending
upon the system configuration (13).

The next source statement is then read
and processed. Source statements are read
and processed until the END statement is
encountered (14) . When the END statement
is encountered, the Symbol Table is punched
into blank cards for a card system (15),
the value (attribute) section of the Symbol
Table is relocated to upper main storage,
and the message 1EA is printed. The assem-
bly program is then ready to read Phase 1II
into main storage. However, if the assem-

bler was loaded from tape, the message 1EA
is not printed, and Phase II is 1loaded
immediately.

Phase II (Chart 02)

Phase II of the Assembler.Program is
read into main storage. If the Symbol
Table deck is 1in the card reader, it is

read into the area of main storage reserved
for the Symbol Table (03).

The first statement containing the
Intermediate Text is then read and checked.
The output buffer area is checked to deter-
mine if enough information has been trans-

lated to produce an object program card
07) . If enough information has been
translated, an object program card is pro-

duced (08) before the next statement is

read (05).

Text is translated
and format of the

The Intermediate
according to the type
input source statement.

An Assembler instruction (09) is trans-
lated according to type (14). Each
instruction has different requirements and
requires a different routine to translate
it. (See "Phase II," Section 5,
"Intermediate Text Translation.")

A machine instruction (10) must be
translated according to format (15) since
there are five different formats (RR, RX,
RS, SI, SS) for machine instructions. (See
"Phase 1II," Section 5, "Intermediate Text
Translation.")

If an error was encountered during Phase
I requiring that the instruction be assem-
bled as zeros (11), zeros are stored in the
output buffer (16).

A statement that contains comments, or
an error that will not allow the instruc-
tion to be translated, will cause only the
source statement to be printed in the
object program listing (12).

The Intermediate Text is read and trans-
lated until the END statement is encoun-

tered (12.5). When the END statement is
encountered, the following conditions
occur:

1. The remaining information in the out-

put area is produced in object program
form.

2. RLD cards, if any, are produced.

3. If object code 1is being written on
tape, a LDT record is written immedi-
ately after the END record and the

tape 1is backspaced. If it is stacked
output, only the final LDT record
remains, the others being overlaid by
the first record of each succeeding
job. :

4. The message 2EA is printed and the

program stops.

Phase I
4. B.
r 1 [—————————— 1
I		
Phase I		Phase I
Assembly		Assembly
Program		Program
I		
-		- I
Temporary		Symbol
Storage**		Table*
-——=—=-		
Loader		
I		
I | b 4

[o o — —— — —— — o— — _— — " o @ T T— oo 2 o s, o e sy

* Phase I Symbol Table is twice the size of the Phase II Symbol Table.
** Includes housekeeping, ICTL, START, ENTRY, and EXTRN processing.

Phase II
A. B.

| I f

| Loader |

____________ |
Phase II | Phase II
Assembly | Assembly
Program | Program

I

1

|

|

I

|

I

I

I

!
Storage** | |

|

I

|

|

I

|

I

4

P LU ——

Temporary | Output
Buffers
| RLD Buffer
____________ I_---____-__-
Symbol | Symbol
Table* | Table*
|
L

e e e s e e e S —— —— ———— o t— o}
b e s s e — — ———— ———— — —— —— t— — — ——— o—

Figure 1. Storage Allocation

STORAGE ALLOCATION

Figure 1 illustrates the relative loca-
tions in main storage of Phase I and Phase
IT of the' Assembler Program. Figure 1,
part A, shows the allocation at load time,
and Figure 1, part B, shows the allocation
after the housekeeping and the ICTL, START,
ENTRY, and EXTRN processing are completed.

1/0 FLOW

Figure 2 illustrates the I/0 flow of the
Assembler Program.

The Phase I deck is read from the card
reader or input tape unit. The Symbol
Table deck will then precede the source

deck if this is a reassembly procedure as
described in the publication, IBM
System/360 Basic Programming Support Basic
Assembler Language, Form C28-6503.

After the Phase I Assembler deck is read
into main storage, and the Symbol Table
deck 1if present, each Statement of the
source program is read and partially trans-
lated. The partially translated source
statement (Intermediate Text) is punched
into the source statement card (1442),
punched into a new card along with the
source statement (2540), or placed on tape
(1442 or 2540 with tape).

The Phase II deck is then read from the
card reader or tape unit. The Symbol Table
deck will then be read into main storage if
this is a deferred assembly, as described
in the publication, IBM System/360 Basic
Programming Support Basic Assembler Lan-
guage, Form C28-6503.

The Intermediate Text developed by Phase
I is then read one card or record at a time
and translated, the object program is
punched into cards or placed on tape, and
the object program listing is produced.

3 shows the buffer areas for the
shows the

Figure
card-only option and Figure 4
buffer areas for the tape option.

General Introduction 9

(1) Reassembly Only
(2) Card Option Deferred

Source Program

Symbol Table (1)

Source
Program

Assembly Only
Phase |
Deck
Phase
|
Tape
\
Phase |
Execution
Card Option
Symbol Table (2)
Intermediate Phase II
Text Deck
Phase 11
Execution
Card Option

Object
Program
Listing

Obiject Program
Deck

Figure 2. 1I/0 Flow

10

Tape Option

Intermediate
Text

Tape Option

Object
Program
Listing

Card Input
A

|4 Y

r 1

Phase I | FLDA* | FLDB* |

L J

| 24 col. | 56 col. |

L, 80 col. |

~ /

Card Output
Card Input
A

r L-)
Phase II | FLDC | FLDA | FLDB [
L]
| 40 col. J 24 col. | 56 col. |
. & - _/

Y Y
“ J

Printer Oﬁgput 96 col.
Punch Output 80 col.**

FLDA Intermediate Text
FLDB Source Statement
FLDC Object Program Statement

*# Punched into source statement card (1442) or new card (2540).
** The 80 col. punch output depends upon the card type. Refer to "Phase II"
Introduction for card output.

Figure 3. Buffer Areas for Card Option

[P S o e . s e . e . . — ————— — . o — e o oo —— — — —— ——
b e o o e, s o s —— — — —— — —— — ——— —— — — ——— —— o— ——)

r 1
I Card Input |
| A |
I r - 3 |
| Phase I | FLDA | FLDB | |
| L 4 |
| | 24 col. | 80 col. | |
| ~ : N — I
I 104 col. Tape Output :
| Tape Input |
| A |
! r £ ‘ Y
| Phase II | FLDC | FLDA | FLDB | |
| t o
[| 40 col. |24 col.| 80 col.* | |
' A\ _/ . / l
Y Y
| \ ~ J i
| 120 col. Printer Output |
[|
: Object program (card or tape) output same as for card only optionf :
| * If ICTL 25, only the last 56 columns of FLDB are printed. |
| |
| FLDA Intermediate Text |
| FLDB Source Statement |
| FLDC Object Program Statement |
L 4

Figure 4. Buffer Areas for Tape Option

General Introduction 11

01
ERE L SRR TS 2
* *

*
*

START

RN NN NR

Chart 01.

*oeee
*

K ok e ok ok Kk ok ok ok ok ok ok k ok Ok K ok ok K K Kk 3K K K ko ok K ok ok ok ok ok ok K 30K o oK ok kK K K ok ok ok K R ok ok ok ok ok ok R K Kk ok ok ok ok ok ok ok ok ok ok ol ok ok ok ok ok ok ok ok e K ok Kk ok ok ok R ok ke ok ok ok sk R Sl sk ok i ok Kk ke sk ol ok ok ok ok e ok ok ok K ok ok ok ko ok sk ok oK ok oK Kk ok ok k koK

*
*
*
*
*
*
*

XX

02
iii**Azi&il&*****

FEAD IN PHASE 1

eeeX¥* DO NECESSARY %

* HOUSEKEEPING *

*****l{&*ii**&{i*
.

Xe s oo

03
AEREKDO2EH KRR RERR
* *

* [F NOT FIRST *

*ASSEMBLYs READ *

IN SYMBOL TABLE

* *

HEEERRRER LR RHRH
.

.
R e

.
eXeoosoeo

X 04
HREERKCOREHHRH R AE R

* READ *
SOURCE
* STATEMENT *

HEEREEE XKLL KR

X 06
EERERERRRRXR NN
*

*
SAVE SYMBCL AND#
SET INDICATORS #
*IF NOT CORRECT *
* *

EEEKEEERRFRRREXRE

PHASE I CONTROL ROUTINE
(CHARTS 04 AND 0S)

o ¥
eseeeX¥, COMMENTS
*

PHASE I INITIALIZATION

(CHART 03)

* g ¥
*.

08
*&*5*53**&******&

PLACE ID-CODE C
IN INTERMEDIATE#
* *
*

*
e]
.

.
-
.
.
.
.

.......-X*

EHEE

ERER .
* * o
* _E4 *,Xeo
* * -
e HR -

X 10
HRKEAKELHFRE XX RN
* GET OPERATION *
*CODE AND STORE *

*
* XNTERMEDIATE *

i**&ii}&*li
.

MR

. 11
EREERFLHAERRR LR ERH
* TRANSLATE *
* OPERAND FIELD *
* AND STORE IN *
* INTERMEDIATE *
* TEXT *
AXREXFEREEL R RRRR

.

Xeo oo

12
HERERGARFERRRRRRR
* PLACE SYMBOL ¥
FROM NAME FIELD

TO
*SYMBOL TABLE [F!
CORRECT
in*****iii*****&*
.
.
.

eessessssssccscccscsssesXe

X 13
FREERRHERHHEEXRRERR

* WRITE *
INTERMEDIATE
* TEXT

ERERRXNERRERE

Xeoeeoe

.

Ja *o 14

* o ¥
q o

*
YES

Xo oo 00 K
.

15
HERRERKGRFERXREEXRR

PUNCH SYMBOL
* TBL DECK IF #
CARD_INTER=-
*MEDIATE TEXT *
SYSTEM
HEEERK KR EH RN

.
*.
*. END CARD o*eee

.
.
.
.
.
.

.
.
.
.
.

*

Phase I

L e a2

s e ok ok ok oK R ok ok ok ok K Kk ok K Kk ok ok ok ok ok Ok ok K R ko K K Kk kK ok ok ok %o Kok ok K kK Kk K kR ok ok ok oK ek ok oK ok ok ok K kK ok ok

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

16
EXEXKSERRERERER
*

*
- X*
*

NN TNRR

Phase 1

13

HRHRAL RN RRR R

*
* START *
* *

RN R RN RN RE
.

Xes oo o

HRRARD L HERN RRERNH
* *

READ IN *
PHASE 11

* kK ok

*
e e R T e

PHASE II INITIALIZATICN
(CHART 06)

Chart 02.

14

seesss s

.

Heeeene
*

1

*

*

* INPUT *
«X¥* PARAMETERS *
*

*

*

o
EEARRADHE XK RRE R
*

SET
* ACCORDING TO

* INPUT
MR KA RRNEN
.

Xeoaos

02
HERRRRB2EFH XX NERER

* *

READ A
STATEMENT

EERRRENRERERHR

Xe oo

03
ERARRC2HFERRI RS
* *

*READ IN SYMBOL *

TABLE IF SYMBOL

* TABLE DECK *

* *

R NNIE RN RE AR
.

Xe oo oo

. 0a
ERRERD2EX X XXX HERR
* SET OUTPUT *
*AREAS AND OUT- *
*PUT PARAMETERS *
* ACCORDING TO *
*

*
(I e I T T Y
.

Phase II

kRN

EX 23S

0sS
FEEERCITHRRRERRNER
* *

#RESET NECESSARY
* SWITCHES AND *
*STORE LOCe CTRe¥®
* *

EXRFFEXRRARRRFRERS

Xe o oo

06
EREREEDIHRERRRR AR

* READ A *
STATEMENT

HEERREHEERREN
.
.
.

PHASE 11 CONTROL ROUTINE
(CHART 07)

oXe %o 14
E2 * g 07 E4 *, 09 ERXRRESHERF R HHR
¥ 1s * o - ¥ * o * *
% OUTPUT *. NO % IS IT AN *. YES * TRANSLATE %
*#.BUFFER READY e%esceceeoX¥e ASSEMBLER e¥*eececseeX* ACCORDING TO *
*e . *INSTRUCTION® * TYPE *
EMPTIED *. o * *
Hae o *e oF R 222222 S 222222
* YES * NO

.

.

.

.

.

oXe

X 08
HRRERFIHXERRRR RN
* *
* PRODUCE CARD %
* IF QUTPUT *
* BUFFER FULL *
* *
* *

HRERRERRERERRRN

ek ok ok ok o ok ok ke ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok e ok ok ok ke ok ok oK e ok koK oK ok Kok K ok kR O sk ok ok ok ok ko ok ok ok 3K 3 K ok ok ok ok ok ok ook ok ok ok ak ok ok sk ok ok ok kK kK ok oK oK e ok K ko ok kol sk ok ok ak ok ok ik ke 0k 3k ok ok ak ok ok ok ok ok ok ok k ok Kok ko ok ok ok ok ok Ok ok ok K Sk K K K K X
sesen

15
HEXXRFESHARRERRRRE
* *

* TRANSLATE *
seeX¥®* ACCORDING TO ¥
* FORMAT *
. . * *
*o o# EEREREERERRERRERR
* NO
.
.
o Xe

16
EEAERGSRRIRRRRRKS
* *

o *.
«* IS IT TO *. YES * PROCESS *
#.BE ASSEMBLED e¥eceecsocesX¥ ERROR *
*, ZE * * *
*q o ¥ * *
*e o HRARRAHFRRRRRRARR
* NO

.

.

.

.

X

12 17
HERFRHGERH R XX RN AERRXHSERE XXX EHRXH
* * * *
* * * STORE DATA *
* PRINT A LINE ¥X.
* * * BUFFER
* *
*

*
EEEFEXREERERRRER ERRERHRERERRNRRRR

Ja *e. 1245
*

o - HERKJSEERRERRRR
o ® *o YES * *
, END e¥eeeseseeX END PHASE II %
* ¥ * *
*. ¥ ERRERERRERERRRN
®e oF
* NO

.

.

.

X

13
HERERKLERERRHXRRR
* *

* INCREMENT *
* LOCATION *
* COUNTER *
* *
EEERERREERRREERRR

.

.

.

X
R

X ER

cee¥ IN OUTPUT *X oo
*

R

IR

SECTION 1: INTRODUCTION

The major functions of Phase I of the
Assembler Program are as follows:

Replace the Symbolic Operation Code with
Its Machine Language Equivalent

The symbolic operation code of each
assembler language source statement is
replaced with its machine language equiva-
lent through the use of a table called the
Operation Code Table. This table contains
each assembler language symbolic operation
code and its equivalent machine language
operation code. The Operation Code Table
is discussed 1in detail in Section 2,
“Tables."

The Assembler Program reads the symbolic
operation code in each source program
statement, 1looks it up in this table, and
picks up the corresponding machine opera-
tion code. The machine operation code and
other pertinent information concerning the
source statement are stored in a buffer
called an Intermediate Text buffer. The
Intermediate Text is discussed in detail in
Section 2, "Tables."

Translate Symbolic Operands into
Intermediate Text

The symbolic operands of each assembler
language source statement are partially
translated by Phase I and placed into the
Intermediate Text. The symbolic operands
of statements refer to the symbolic names
of data fields, or symbolic names of other
source statements. In order to determine
the actual address for a symbolic operand,
the actual address of all symbols must
first be determined. This is why the final
translation of the source statement is
accomplished by Phase II.

The actual address of all symbols is
determined by building a table during the

PHASE I

execution of Phase I. This table, called
the Symbol Table, consists of each symbolic
name and its associated actual address, and
other pertinent data. The Symbol Table is
discussed in detail in Section 2, "Tables."
The Symbol Table is punched into cards at
the completion of Phase I when the card
intermediate text system 1is being used.
The Symbol Table remains in main storage
when intermediate text is-on tape.

If Phase II of the Assembler Program is
not executed immediately following Phase I,
the Symbol Table cards must be placed in
front of the source deck when Phase II is
to be executed. When a tape system is
being wused, Phase II must immediately fol-
low Phase 1I. If Phase II is executed
immediately following Phase I, the Symbol
Table remains in main storage, and the
Symbol Table cards do not have to be
loaded.

During the execution of Phase II, the
Symbol Table entry corresponding to the
symbolic operand is found, and the value of
that symbol is used to generate the object
program statement.

Allocate Storage for Intermediate Text

A counter internal to the program is
used to allocate storage for the intermedi-
ate text compiled from the source state-
ments. This counter, called the location
counter, is initialized with the machine
address at which the program is to begin by
using the START Assembler instruction.

When the 1length of a translated source
statement has been determined, the counter
is incremented by this length (after bound-
ary alignment, if necessary) , and the next
instruction or data area will begin at the

new location specified by the location
counter.

When a statement 1is encountered that
specifies that an area of storage must be

reserved for data, the location counter is
incremented by the number of storage bytes
specified for that area.

Phase I 15

SECTION 2: TABLES

INTERMEDIATE TEXT

The Intermediate Text associated with
each statement contains a total of 24 bytes
of information. The specific meaning of
the 24 bytes of information and the bit
patterns associated with the bytes are
shown in a figure accompanying the descrip-
tion of each instruction type in Section 5,
"Operand Field Translation." A general
discussion of the bytes in the Intermediate
Text is given in this section.

- Figure 5 is a summary of the Intermedi-
ate Text associated with each instruction

type.

The Dbreakdown of the Intermediate Text
is as follows:

Byte 1 - ID-Code

This field is one byte in 1length and
contains an ID-Code which indicates whether
the source statement is a machine instruc-
tion or an Assembler instruction, whether
the instruction contains an error, and
whether or not the statement requires
further processing by Phase II. The pos-

* Error flags printed but no further
translation by Phase II

sible ID-Codes and their meanings are as
follows:

r T . 1
|Code | Meaning |
— {
A	Machine instruction, no errors
B	Assembler instruction, no errors
I I	
C	Comments%*
J	Error in a machine instruction
	statement
I I	
K	Error in an Assembler instruction
	statement
	:
L	Error, statement not assembled*
I	I
‘M	Error, operand field assembled as
	zeros
i 4L 4	
L] 1	
I |
L J

After it is determined whether the oper-
ation code is a machine instruction, an

16

Assembler instruction, or a comments state-
ment, an ID-Code of A, B, or C, respective-
ly, is placed into byte 1 of the Intermedi-
ate Text. If an error is encountered later
during the translation of the source state-
ment, these ID-Codes will be replaced with
the appropriate error ID-Code (i.e., J,K,L,
or M).

Byte 2 - Operation Code

The machine-language operation code is
placed in this field after the search of
the Operation Code Table. This field will
be blank if the source statement contains
an illegal operation code.

Bytes 3-22 - Operand Field

These bytes contain the text compiled
from the operand field of the instruction.
Since these bytes will contain different
information for each instruction type, they
are explained in detail in the discussion
of each instruction in Section 5, "Operand
Field Translation." Bytes 21 and 22 may
contain error flags if the error ID-Code is
L or M.

Bytes 21-24 - Error Flags

These bytes will contain error flags to
indicate the +type of error encountered
during the translation of the instruction.
If no error is encountered, the bytes will
be blank. The error flags and their mean-
ings are shown in Phase I, Section 3,
"Subroutine Description," under the discus-
sion of subroutine ERR.

OPERATION CODE TABLE

The Operation Code Table is divided into
five sections, each section containing all
the symbolic <codes of the same length
(e.g., all one-character symbolic codes in

one section, all two-character symbolic
codes in another section, etc.) plus the
equivalent machine-language code. All sym—

bolic codes within each section are also
grouped according to the operand field
format - (e.g., all machine instructions in
the SI Format, SS Format, etc.)

. S e e S . o, S S . i g o W . e e B e . e g

T 1
| | I I N R A N I I I N I I N S I A N N B D I
| 3] 4 51 6] 7181 911011112113 14}15)16]17|18(19]20]21]|22]|23|24|
| I e e O e e D e I B
1 1
| R2 | R1 | |
1 i}
T 1
| X2 | RT | D2 | B2 | |
+ 1
| R3 | R1T | D2 | B2 | |
t — {
| I | D1 | B1 | |
+ i
| L2/L| L1 | D1 | BT | D2 | B2 | |
1 4
T 1
| |ba] d1 | d2 | |
+ : 1
ICTL | BIED| 4 | |
+ i
EJECT | B|EB| |
4 {
SPACE | BIE7] 4 | |
1 4
T 1
ORG | B|E8| | rx | |
t i
END | B|EF| | rx or blank | |
} 4
T 1
EQU | BIE5| | ax or rx | |
4 4
T 1
USING | BIE6| | rx | sx | |
4 4
T 1
DROP | BIEC} | 554 | |
1 4
T 1
EXTRN | BIE9| | rs | as | |
1 4
T 1
ENTRY | BIEA]| | rs | as] |
4 i
T 1
START | BIEE| |ba] aa | as | |
— 4 {
|CCw | BIE4| sx | ‘ rx | 554 | sx |
¢ - {
IDS | BIEO] llba] 4 | |
- 3= - {
|pCc(c,b,E,F,H,X)| B|E1| ljbal m | dc | |
I8 + —_— 4
g . 1
| DC (B) | B|E2] 1llbal] m | | ax or rx |
L 4 4
[} T 1
| COMMENTS 1 ¢l i
o t . i
|Err.Mach.Instr.| J|OP] , ' same as Type A o - je.f. |
L 4 4
) T 1
|Exrr.Assem.Inst.| K|OP| same as Type B je.f. |
|8 4 4
1) T 1
|ERR (1) | L |error flags|
{ 1 i |
1] T 1
|ERR (2) | M|OP| n| : |error flags])
i 1 3
] 1
| Legend |
| aa = assembled address d = decimal integer n = number of bytes of |
| as = actual symbol dc = defined constant zeros to be assembled |
| ax = absolute expression e.f. = error flags rs = relocatable symbol |
| ba = boundary alignment bits 1 = length of constant rx = relocatable expression |
| m = duplication factor sx = simple expression |
L 4
¥ 1
| (1) statement not assembled (2) operand assembled as zeros |
L 4

Figure 5. Intermediate Text Summary

Phase I 17

The organization of this table allows a
faster assembly because it is not necessary
to search the entire table to find the
equivalent machine-language code. Only the
section of the table containing the same
number of characters as the symbolic code
is searched. In addition, the table pro-
vides the Assembler Program with the oper-
and field format and the address of the
subroutine necessary to translate that for-
mat.

The machine-language operation code
obtained from the table is placed into the
Intermediate Text.

The Operation Code Table is loaded into
main storage as part of Phase I.

SYMBOL TABLE

The Symbol Table is divided into two
sections. The first section contains the
compressed symbols from the source state-
ments; the second section contains the
attributes (values) associated with each
symbol. Only the attributes are passed on
to Phase II Dbecause there is no further
need of the symbol itself once it has been
replaced with the address of the location
within the Symbol Table that contains the
symbol attributes.

The first two entries in the Symbol
Table refer to the location counter. The
first entry contains the current setting of
the location counter. This entry is neces-
sary because the current setting of the
location counter can be referred to within
the symbolic program with an asterisk. For
example, the expression (*+12) in the oper-
and field of a symbolic statement refers to
the current location plus 12 bytes. There-
fore, when an asterisk is encountered as a
symbol, +the Assembler Program replaces the
asterisk with the address contained in the
first entry of the Symbol Table.

The second entry contains the highest
value the location counter reached during
Phase 1I. This location is needed for the
producing of an External Symbol Dictionary
(ESD) START card, which 1is wused by the
relocatable loader. This is a function of
Phase II and is discussed in detail in the
introduction to Phase II.

The format of the Symbol Table Cards
produced by Phase I is shown in Figure 6.

The attributes assigned to a symbol when

the symbol 1is defined in the Symbol Table
are as follows:

18

Location

This is a two-byte field containing the
machine address of the symbol.

Length

This 1is a one-byte field containing the
number of storage bytes associated with the
symbol. This number will always be one
less than the actual number due to program-
ming considerations. For example, if the
symbol DATA is the name of the DS instruc-
tion that defines a data area of 16 bytes,
DATA would have a length of 15 assigned to
it in the Symbol Table. When a length is
not indicated, the Assembler Program
assumes a length of one byte.

If the symbol is defined by a compound
expression, the length is the same as the
implied length of the leftmost simple
expression in the compound expression. If
the leftmost expression is a self-defining
value, the length attribute is one.

Relocatability

This four-bit (1/2 byte) field contains
a 1 - 15 if the symbol is relocatable and a
zero if the symbol 1is not relocatable
(i.e., is assigned an absolute address).

If the symbol is a linkage symbol that
has been defined in the operand field of an
EXTRN instruction, the relocatability field
will contain a value from 2 to 15, depend-
ing upon which EXTRN instruction in the
source program defines the symbol. For
example, if the symbol was defined by the
first EXTRN instruction, the relocatability
value would be 2. If it was defined by the
second EXTRN .instruction, the relocatabili-
ty value would be 3, etc. If the symbol is
defined 1in the same program and not in the
operand field of an EXTRN instruction, the
relocatability attribute will be one.

Defined Bit

Each Symbol Table entry also contains
one bit to indicate whether or not the
symbol was ever defined.

-
N

3 4 | 5-16 | 17-28 | 29-40 | 41-52 | 53-64 | 65-76 |77 - 80

12|Address of |
9|first loc. |
4]|of Phase II |

|

| Symbol Table

*
*
*

1

|

|

| |

* | Blank |
| |
N

[e e o et e e sy

* Each of these 12 bytes contains the symbol name, value, and attributes as follows:

e Contents
Pointer to symbol position in table
Not used
Symbol in compressed form
Symbol value
Symbol length
Symbol attributes

bits 0-3 relocatability

bit 4 defined bit

1 defined

undefined
entry used
not an entry or entry not defined.

- 0 £ N

o

- - O UW -
N= LN

wnn

0
bit 5 1
0

[o e s . o s W i St S S — ——— —— — —— — f— o . e oy
b e e . e A —— —— —— —— — — — ——— — — — —— — a— ——o—— — o2}

Figure 6. Symbol Table Card Format

Phase I 19

SECTION 3: SUBROUTINE DESCRIPTION

This section describes the subroutines
of the Assembler Program that are used
during Phase I processing.

EVE - Evaluation Routine (Charts AM and AN)

This subroutine is used during Phase I
of the Assembler Program to accomplish the
following:

1. Scan the Name Field

2. Scan for non-blank character
3. Scan the Operation Code Field
4. Translate the Operand Field

The first three items mentioned above
are discussed in detail in Section 4,
"Phase I Processing Flow," under "Control
Routine." Only the translation of the
operand field will be discussed here. How-
ever, the parameters necessary for each of
the above procedures are shown at the end
of this discussion.

This subroutine is shown in detail in
Charts AM and AN.

Subroutine EVE will scan the operand
field until the first character of the
operand field expression is located. Sub-
routine EVE then translates the first term
of the operand field expression and com-
pares the translation to the parameters
described below. The translated results,
if correct, are placed into the relevant
bytes of the Intermediate Text by subrou-
tine STORE.

If the translation is not correct, con-
trol exits from this subroutine via the
error exit set up by the calling routine.

After the translated term is placed into
the Intermediate Text, control exits to the
calling routine. The calling routine then
determines if the character following the
term is correct. If it 1is correct, and
more terms of the operand field need trans-
lation, new parameters are set up and
subroutine EVE is entered again.

The parameters used by subroutine EVE,
which describe the next term of the expres-
sion in the operand field to be translated,
are as follows:

T is set according to the type of term to
be translated as follows:

20

operand should be blank

a simple term

a compound term

an integer (decimal value)

[T T

W =20

L indicates the number of bytes of inter-
mediate text the term being translated
will occupy.

M indicates the maximum value allowed for
any self-defining value within the
expression being translated.

PC indicates the starting column minus 2
(due to programming considerations) of
the Intermediate Text into which the
translated term of the expression will
be placed.

C indicates the operation code of the
statement being translated or the oper-
ation to be performed - by subroutine
EVE, as follows:

10 = CNOP

20 = EXTRN

20 = ENTRY

40 = Name Field or Operation Code scan

60 = DS or DC (type C,D,E,F,H,X),
EJECT, SPACE, or scan until non-
blank character

80 = END

90 = ORG or EQU

AO0 = START

BO = DC (type A), USING, DROP, or CCW
(2nd term)

00 = all other operation codes

The other subroutines used by subroutine
EVE are:

DCC - Define Character Constant: This sub-

routine is used when a character constant
appears in the operand field of a source
statement. It translates the character
constant and checks its validity.

DCF - Define Full-Word Constant: This

subroutine is used when a full-word
constant appears in the operand field of a
source statement. It converts a decimal
integer to its binary representation and
checks its validity.

DCX - Define Hexadecimal Constant: This

subroutine is used when a hexadecimal con-
stant appears in the operand field of a
source statement. It translates the hexa-
decimal constant and checks its validity.

TLUS - Symbol Table Look-up: This subrou-

tine is used when a symbol appears in the
operand field of a source statement. It
looks up the symbol in the Symbol Table and
indicates its value (if known), its 1loca-
tion in the Symbol Table, its length and
relocatability attributes, and the bit

indicating whether or not the symbol is
defined.

STORE - Store into Intermediate Text: This
subroutine stores the translated terms of
the expression in the operand field into
the Intermediate Text.

ERR - Store Error Flags

The ERR subroutine places the necessary
error flags into the Intermediate Text. If
the error is such that the statement can
not be assembled by Phase II, ID-Code L is
also placed into the Intermediate Text.
This subroutine is entered from the calling
routine at location ERR if it is necessary
to place the ID-Code into the Intermediate
Text along with the error flags. If only
the error flags are to be placed into the
Intermediate Text, this subroutine is
entered at location ERR1. The error flags
are dependent upon the error conditions and
are set by the calling routine.

The error flags that may be placed into
the Intermediate Text by Phase I are shown
in Figure 7.

Figure 8 shows what action is taken in
Phase I of the Assembler Program when
errors are encountered in the source state-
ment.

BAR - Boundary Alignment Routine

The BAR subroutine is used to align the
location counter to the proper word bounda-
ry, if necessary.

This subroutine will interrogate the
boundary alignment bits of the Intermediate
Text (byte #4) and, if necessary, add to the
location counter the number of bytes that
will align it to the proper word boundary.

After the location counter is increment-
ed, it is tested to see if it exceeds the
maximum allowable value of 65,535. If it
does, the location counter is truncated and
an error flag is placed into the Intermedi-
ate Text.

T T B

|Flag | Meaning

L [l

r T

|* A | Expression not simply relocatable
I I

| B | START, EXTRN, ENTRY, or ICTL out
| | of order

| |

| C | Location counter overflow

I |

| E | More than 14 EXTRNs or more than
| | 100 ENTRIES

| I

| F | Operand field format error or
| | self-defining value in operand
| | field too large :

I |

| G | DC D or E range error

I |

| J | Symbol Table full

I |

| L | Name field error

I |

| M | Multiple defined symbol

| I

|* N | Statement not used

I I

| O | Invalid operation code

I I

|* R | Expression not absolute

I I

|* S | Specification error

| I

|* T | Value too large

| I

| V | ORG or EQU symbol not previously
| | defined

I I

|*¥* Y | Negative expression

I |

| 2z | Column 72 not blank

L i

t

|* May also be set by Phase 1I.

L

b oo carkhih cos G — — — — o—— — — . — —_—— — . ——— — —— S— ——— — —— — — —— — —————— bt — v}

Figure 7. Error Flags

STORE - Store into Intermediate Text

The STORE subroutine is used to store
the translated expressions of the operand
field into the Intermediate Text.

This subroutine will store, one byte at
a time, the translated terms of the expres-
sion in the operand field into the correct
bytes of the Intermediate Text. The cor-
rect byte is determined by adding the value
of the input parameter PC, which is set to
the starting byte (minus 2) into which the
translated term is to be placed, to the
length of the translated term.

Therefore, the translated term is placed
into the Intermediate Text beginning with
the low-order byte of the field of the
Intermediate Text associated with the term.

Phase 1 21

BUMP - Increment Location Counter

The BUMP subroutine is used to increment
the location counter by the required number
of bytes and to indicate if the location
counter exceeds the maximum allowable value
of 65,535.

After the source statement is translated
and placed into the Intermediate Text, the
location counter is incremented by the
number of bytes determined by the operation
code of the statement. The location coun-
ter is incremented (after boundary
alignment) as shown in Figure 9.

22

- r T T 1
| | | |
| INSTRUCTION | NAME FIELD ERROR OPERAND FIELD ERROR |
| | (Exrror Flag Set For All Instructions) |
[N 4 4
) T T 1
| All Machine | Symbol stored | Indicate how many bytes of zeros |
| Instructions | in Symbol Table | are to be assembled by Phase II |
| | | for the operand field |
L 1 (] 4
r T - T i 1
| CCW | Symbol not stored | Indicate how many bytes of zeros |
| | in Symbol Table | are to be assembled by Phase II |
| | | for the operand field |
] 4 I N
r T T 1
| CNOP | Symbol ignored | Statement ignored |
L 4 Ny 1 4
r T - T 1
| DC | Symbol not stored | Statement ignored |
| | in Symbol Table | Undefined symbol in type A will |
| | | set operand field to zero |
L 4 } 4
v T T 1
| DROP | Symbol ignored | Statement ignored |
L 4 4 4
v T T 1
| DS | Symbol not stored | Statement ignored |
| | in Symbol Table | |
t t - t {
| EJECT | Symbol ignored | Symbol ignored |
L 4 1]
L} T T 1
| END | Symbol ignored | No ENTRY point to this program
| | | will be defined |
¢ t t {
| ENTRY | Symbol ignored | Statement ignored |
L 1 [4
v T T 1
| EQU | Statement ignored | Statement ignored |
1 1 1 4
L] T T 1
| EXTRN | Symbol ignored | Statement ignored |
i 4] 4
r T T 1
| ICTL | Symbol ignored | Operand set to a 1 in a tape system |
| | | and to 25 in a card system |
| i 1]
r T T 1
| ORG | Symbol ignored | Statement ignored |
L 4 4 i
v - T T 1
| SPACE | Symbol ignored | If not a decimal value, statement
| | | ignored |
b { t 1
| START | Symbol not stored | Location counter set to zero |
| | in Symbol Table | |
b t t {
| USING | Symbol ignored | Statement ignored |
L 4L L J
Figure 8. Error Summary

This subroutine is entered with the
parameter VALUE indicating the amount the
location counter is to be incremented by or
reset to. It is entered with parameter
ADJUST BIT ‘set to a zero if the location
counter is to be incremented; parameter
ADJUST - BIT set to a one if the location
counter is to be reset.

After the location counter is increment-
ed or reset, it is tested to see if it
exceeds the maximum allowable value. If it
does, the location counter is truncated and
an error flag is placed into the Intermedi-
ate Text.

The BUMP subroutine also places the
highest value the location counter reached
during Phase I of the assembly into the
second entry of the Symbol Table.

1) T 1
|Instruction| Location Counter |
| Type | Incremented by |
L i 1]
r T 1
| RR Format | 2 bytes |
| | |
| RX,RS,SI | 4 bytes |
| Format i |
| | |
| SS Format | 6 bytes |
| | |
| ORG | Reset to the value of the |
| | translated operand field |
| | |
| START | Translated operand field |
| | expression after alignment |
| | to a double-word boundary |
| | ' |
| cCw | 8 bytes |
| | |
| CNOP | Depends wupon the current |
| | setting of the & location |
| | counter and the translated |
| | operand field expression |
| | |
| DS | Translated operand field |
| | expression |
| | |
| DC | Length of the constant mul- |
| | tiplied by the duplication |
| | factor |
L L 4
Figure 9. Increment Values

TLUN/TLUS - Symbol Table Procedures

This subroutine is used during Phase I
to build the Symbol Table and enter the
attributes of each symbol into the Symbol
Table. The subroutine has two entry points
as follows:

1. TLUN - used when a symbol is
tered in the name field

2. TLUS - used when a symbol is encoun-
tered in the operand field

encoun-

The symbol entry point in the Symbol
Table is determined by dividing the com-
pressed symbol by the length of the Symbol
Table. The remainder is added to the
starting location of the Symbol Table, and
this sum is used as the entry point within
the Symbol Table.

Thus, it can be seen that it is possible
for more than one symbol to have the same
entry point. A different symbol, there-
fore, may already have been entered into

‘scanned before the

the Symbol Table at this entry point.
this mismatch occurs, the Symbol Table is
searched (from the entry point down) wuntil
a match occurs or until the next empty
location is found.

The symbol name is reduced from 48 to 32
bits as follows:

1. The first two bits of each character
(always ones) are disregarded;

2. The next two bits of each character
are saved, as the first 12 bits of the
32-bit reduced symbol name;

3. The remaining four bits of each char-
acter are converted to decimal and
then, as a six-digit decimal number,
this group is converted to binary and
stored as the remaining 20 bits of the
32-bit reduced symbol name.

TLUN: The symbol entry point within the
Symbol Table is checked. If the symbol has
already been entered into the Symbol Table
at this 1location, a check is made to
determine if the symbol is defined. If the
defined bit 1is a one, the symbol has been
previously defined and error flag M is
placed in byte 24 of the Intermediate Text.

If the defined bit is zero, the symbol
has not been previously defined, and the
attributes associated with the symbol are
entered into the Symbol Table at this
location. The defined bit is then set to a
one.

If the symbol is not in the table at
this location, and the location is empty,
the symbol and its attributes are entered
into this location. The defined bit is
then set to a one.

If the symbol 1is not in the table at
this location, and the 1location is not
empty, a search of the Symbol Table is made
to determine if the symbol was previously
entered or to locate the next empty loca-
tion within the table. If the symbol was
previously entered at a different location,
and the defined bit is not a one, the
attributes associated with the symbol are
entered into that location and the defined
bit is set to a one. If the defined bit is
a one, the symbol has been previously
defined, and error flag M is placed into
the Intermediate Text. If the symbol has
not been previously entered into the Symbol
Table, the symbol and its associated attri-
butes are entered into the next empty
location in the Symbol Table, and the
defined bit is set to a one.

Symbol Table is completely
symbol or an empty
location is found, error flag J is placed
in byte 24 of the Intermediate Text to
indicate that the Symbol Table is full.

If the

Phase I 23

When -

- This symbol, and any other symbol following
that is not already entered into the Symbol
Table, will remain undefined.

TLUS: The symbol entry point within the
Symbol Table is checked. If the symbol has
already been entered into the Symbol Table
at this location, a pointer to this 1loca-
tion 1is placed into the relevant bytes of
the Intermediate Text.

If the symbol is not in the table at
this location, and the location is empty,
the symbol is entered into this location.
Since the symbol is from the operand field,
none of the symbol attributes are known at
this time. Therefore, the remainder of the
table entry for this symbol remains blank.
The attributes for the symbol will be

placed into the Symbol Table when the
symbol is encountered in the name field of
a source statement. A pointer to this

location 1is then placed into the relevant
bytes of the Intermediate Text.

If the symbol is not in the table at
this 1location, and the 1location is not
empty, a search of the Symbol Table is made
to determine if the symbol was previously
entered or to locate the next empty loca-
tion within the Symbol Table. If the
symbol was previously entered at a differ-
ent location, a pointer to that location is
placed into the relevant bytes of the
Intermediate Text. If the symbol has not
been previously entered into the Symbol
Table, the symbol is entered into the next
empty location in the Symbol Table, and a
pointer to that location is placed into the
relevant bytes of the Intermediate Text.

If the Symbol Table is completely
scanned Dbefore the synbol or an empty
location is found, error flag J is placed

in byte 24 of the Intermediate Text.

INOUT - Input/Output Subroutine (CHARTS AO
and AP)

This subroutine is the same for both
Phase I and Phase II. It controls all the
I/0 operations for the Assembler Program.

The subroutine is entered at location
INOUT from the calling routine. The inter-
rupts are disabled and the CAW and device
address are stored (02-04).

The I/0 device is then tested for the
following conditions (05) :

1. Device unavailable. This is an error
condition and an error halt occurs.
The SEREP ID code for the unavailable
device is set and the device address

24

is stored in the old IOPSW
and 3).

(bytes 2

2. Device busy. The program goes into an
internal 1loop until the device is
ready. When the device is ready, a
test is made to determine if the CSW
is stored.

3. CSW stored. Control is transferred to
the interrupt routine.

The condition codes and their meanings
are as follows:
Condition code Meaning
0 Available
1 CSW stored (Immediate
operation)
2 Busy
3 Unavailable

When the device is available and ready,
an attempt is made to start the I/O opera-

tion. Two procedures are possible as fol-
lows:

1. The device is started and the data

transfer initiated. Interrupts are

enabled, and the program enters a wait
state until an interrupt occurs
(06-07) . When an interrupt occurs,
either as a result of the current SIO
or from a previous SIO, the interrupt
procedure is initiated. The interrupt
entry switch is set (except when a
busy condition was cleared by a TIO
operation), and a Retry switch is
tested (09-10) .

2. The device is started for an immediate
operation (rewind, skip), the inter-
rupt procedure , is initiated, and the
Retry switch is tested.

The Retry switch is tested and if this a
tape-positioning: operation (backspace,
skip) or sensing operation resulting from
the error correction procedure, control is
transferred to the error correction proce-
dure.

If the Retry switch is not on, the read

switch is set if this is a read operation,
and the error conditions are checked
(11-12). If it is a channel error, the
SEREP ID code and the recovery address in

the external New PSW are set and the
program enters a wait state with AIS in the

location counter (13-33-28). If it is a
unit error and the unit is not tape, the
SEREP ID code for device failure is set,

the recovery address is set in the external
New PSW, and the program enters a wait
state with AIS in the 1lcocation counter
(14-34-28) . If there is a unit error, and

the unit is tape, control is transferred to
the error correction procedure (AP-A2).

If there are no errors, the busy indica-
tor is checked (15). If the busy indicator
is on, control is transferred to the inter-
rupt procedure to check the Retry switch.

‘switch was set on this
pass, it is cleared and the registers
restored before EOF and other exceptional
conditions are checked.

If the error

If there are no exceptional conditions,
control is returned to the calling routine.
If an exceptional condition is caused by
the printer, it is ignored, and control is
returned to the calling routine; otherwise
the error halt occurs and the recovery
address 1is placed in the external New PSW
32) .

Error Recovery Procedure:
is entered for a tape

This procedure
error only. The

Retry switch is set and the I/0 014 PSW,
CSW, and CAW are’ saved (01). The sense
bytes are requested and the original condi-
tions are restored (02-04). V

If the sense information is a unit
check, a test is made to determine if it is
a first read error (05-06). If it is, the
error switch is turned on. If it is not a
first error, the read switch is checked and
10 read retries are made. If the read
attempt is still not successful, an error
halt occurs and a standard device failure
message is produced.

If it is a write failure, three rewrite
and skip operations occur three times
before an error halt occurs and a standard
device failure message is produced.

Note: The error recovery procedure des-
cribed above does not conform to IBM stand-
ards; i.e., no priority checking or tape
cleaning is implemented.

Phase I 25

SECTION 4: PHASE I PROCESSING FLOW

This section uses three charts to des-
cribe the overall processing flow of Phase
I of the Assembler Program. Chart 03
illustrates the initialization procedures,
and Charts 04 and 05 illustrate the Control
Routine. The numbers in parentheses within
the text describing each chart indicate. the
block on the chart being explained.

INITIALIZATIO! - CHART 03

Phase I of the Assembler Program is read
into main storage (01). The addressability
and main storage size, as determined by the
Phase I Configuration Card, are set up, and
the necessary control parameters to be used
by the subroutines of Phase I are generated
and stored (02-03).

The Configuration Card is discussed in
detail in the publication, IBM System/360
Basic Programming Support Operating Guide
for Basic Assembler and Utilities, Form
€28-6557.

The area reserved for the Symbol Table,
determined by the size of main storage, is
cleared, and the first two entries are
reserved for the uses indicated in Section
2, "Tables" (04).

The input/output addresses are deter-
mined and set up for the read and write
routines. These addresses are determined
by the intermediate text device being used
(card or tape) . The size of the Intermedi-
ate Text to be written or punched as output
(24 bytes for a card intermediate text
system, 104 bytes for a tape intermediate
text system) is stored into the necessary
locations of the write routine (05-12).
The first source statement is then read in
(13) .

In a card intermediate text system, if
column 1 of the first card indicates it is
a Symbol Table card (14), the Symbol Table
deck is read into the area of main storage
reserved for the Symbol Table (15). The
use of the Symbol Table deck is discussed
in detail in the publication, IBM
System/360 Basic Programming Support Basic
Assembler Language, Form C28-6503.

After the last card of the Symbol Table
deck is read into main storage, or wnen the
Symbol Table deck is not present, control
exits to the Phase I Control Routine (Chart
o) .

26

CONTROL ROUTINE - CHART 04

The first statement of the source pro-
gram is read in (01) . The first column of
the card to be scanned by the . EVE subrou-
tine (determined by the SYSCON control byte
of the Phase I Configuration Card) is set,
the control switches are set, and the punch
buffer output area is cleared (02).

Column 72 of the source program state-
ment, which must be blank, is tested (03).
If it does not contain a blank, error flag

Z is placed in byte 22 of the relevant
Intermediate Text (04) . Any information
contained in column 72 is ignored when the

source statement is processed, but column
72 1is printed as part of the source state-
ment in the program listing.

The first column of the source statement
is tested for an asterisk or a Dblank
(05-06) . If the source statement begins
with a blank, the operation code is then
checked (11). If the column contains an
asterisk, ID-Code C, indicating the source
card is a comments card, is placed in byte
1 of the Intermediate Text. No further
translation of +the source statement is
performed during the assembly process. A
comments card is only reproduced in the
object program listing.

If the statement begins with neither an
asterisk nor a blank, it indicates that the
source statement begins with a symbol in
the name field. The symbol in the name
field is scanned by subroutine EVE to

determine if it is wvalid (08). If the
symbol is wvalid (i.e., begins with an
alphabetic character and contains no more

than six characters), the valid-symbol
indicator is set. However, the symbol is
not placed into the Symbol Table at this
time. A symbol in the name field of the
source statement being translated may not
be allowed. Until this can be determined,
the symbol is only temporarily stored (09).
If the symbol is not valid, error flag L is
placed in byte 24 of the Intermediate Text
(10) . The operation code is then checked
(11) .

If the "operation code field of the
source statement is blank (the remainder of
the source statement is blank) ID-Code L,
indicating the statement is not to be
assembled as part of the object program,
and error flags NO are placed in bytes 1,
23, and 24, respectively, of the Intermedi-
ate Text (17). If the remainder of the
source statement 1is not blank, but the
operation code has been omitted, the first
characters of the operand field or comments
field will be treated as the operation
code. Control then exits to produce the
Intermediate Text (Chart 05, block F2).

If the operation code field contains an
operation code, the Operation Code Table is
searched to determine if the operation code
is wvalid (12). If the operation code is
not valid, ID-Code L, indicating the state-
ment is not to be assembled as part of the
object program, and error flags N and O are

placed in bytes 1, 23, and 24, respective-
ly, of the Intermediate Text (17). The
next source program statement is then read

in (01).

If the operation code contained in the
source statement is found during the search
of the Operation Code Table, it is checked
for type (14) . If it is a machine opera-
tion code, ID-Code A is placed in byte 1 of
the 1Intermediate Text, and the location
counter is aligned to a half-word boundary
(18-19) . Control then exits to the subrou-
tine necessary to translate the operand
field as determined by the operation code.

If the operation code indicates an

Assempbler Instruction, ID-Code B is placed
in byte 1 of the Intermediate Text and
control exits to the subroutine necessary

to translate the operand field as deter-
mined Dby the operation code. (See Section
5, "Operand Field Translation.")

Subroutine EVE is used to translate the
operand field of each statement, The
translation of each operand field by sub-
routine EVE is basically the same regard-
less of the type of statement. This sub-
routine is, however, entered with different
parameters for each statement type. These
parameters are shown in the description of
subroutine EVE in Section 3, "“Subroutine
Description."

Each expression within the operand field
is translated separately and placed in the
relevant bytes of the Intermediate Text for
that statement.

If an error is encountered in the oper-
and field, the remaining expressions within
the operand field are not translated. The
intermediate text that has been developed
up to that point, however, is written as
Intermediate Text with the relevant ID-Code
and error flags. The ID-Codes used in the
Intermediate Text are discussed in the
description of the Intermediate Text in
Section 2, "Tables." The error flags and
their meanings are shown in Section 3,
"Subroutine Description,"” under subroutine
ERR. These flags are also shown in Figure
3.

If an error is encountered during the
translation of the operand field such that
the statement will not Dbe assembled by
Phase II (20), control exits to produce the
Intermediate Text (Chart 05, block F2). If

not, control exits to Chart 05, Dblcck B2,
to process the name field.
CONTROL ROUTINE - CHART 05

The valid-name indicator (set if the

symbol in the name field was valid) and the
name-allowed indicator (set by the operand
translation subroutine if a symbol in the
name field of the source statement being
translated is legal) are tested (01).

If neither indicator is set, byte 24 of
the Intermediate Text is tested to deter-
mine if an invalid symbol (error flag L)
was in the name field (05). If byte 24 is
blank, control transfers to produce the
Intermediate Text (09). If Dbyte 24 con-
tains error flag L, the ID-Code indicating
an error 1is placed in Dbyte 1 of the
Intermediate Text , replacing the ID-Code
already there (04) . Control then transfers
to produce the Intermediate Text (09).

If one indicator is set, the valid-name
indicator 1is <checked (02) . If the valid-
name indicator is not set, the procedures
described above for neither indicator set
are followed (05). If the valid-name
indicator is set but not the name-allowed
indicator, the ID-Code indicating an error
is placed in byte 1 of the Intermediate
Text replacing the ID-Code already there
(O4) . It is possible that the symbol in
the name field of this source statement is
referenced in the operand field of another
source statement. If this is the case, the
source statement referencing this symbol
will contain an error flag, indicating an
undefined symbol because this symbol is not
placed into the Symbol Table. Flagging
both statements will make the error easier
to locate. Control then transfers to pro-
duce the Intermediate Text (09).

If both indicators are set, indicating
there 1is a valid symbol in the name field

and a name is allowed for the source
statement being translated, the value of
the location counter is placed into the

value attribute of the symbol in the Symbol
Table (06) .

If an error is encountered by subroutine
TLUN while placing the symbol into the
Symbol Table (e.g., Symbol Table is full),
the ID-Code indicating an error is placed
in byte 1 of the Intermediate Text along
with the error flag placed by subroutine
TLUN, replacing the ID-Code already there.
Control then transfers to produce the
Intermediate Text (09).

If no error is encountered by subroutine

TLUN (08), control transfers to produce the
Intermediate Text (09).

Phase I 27

Depending upon the configuration of the
system being used to assemble the program,
one of the following three procedures,

along with the common procedure, is fol-
lowed.
Tape Procedure (blocks 09, 12-14): The

Intermediate Text is written on tape.

1442 Card Read Punch Procedure (blocks 10,

14, 20-21): If the information in the
first 24 columns of the source card is

equal to the information in the Intermedi-
ate Text (10), this is a reassembly, and
the punching of the Intermediate Text is
not necessary since the source card already
contains the record for that statement.
Control then transfers to test for an END
card (15).

If the information is not equal (10) and
the first 24 columns of the source card are
blank 20) , the Intermediate Text is
punched into these columns (14) .

If the information is not equal (10) or
the first 24 columns of the source card are
not blank (20), the punch buffer is blanked
and a '9' is placed into column 1 of the
Intermediate Text . If the system has a
printer or typewriter, the '9' is punched
into the card, and error flag N will be
printed in the 1listing produced by Phase
II. If no printer or typewriter is avail-
able, the system stops. A manual interrupt
will cause processing to be resumed; the
'9' is punched into column 1 of the card
(14) , and processing continues.

28

2540 Card Read Punch Procedure (blocks 09,
12-14: The Intermediate Text is moved to
the output area, if necessary, and punched
into the first 24 columns of a blank card.
Then the first 48 columns, the
Identification-Sequence Field, and column
72 of the source card are punched into the
remaining columns of the new card.

Common Procedure (blocks 11, 15-19) : After
the Intermediate Text is written or
punched, a test is made to determine if the
statement just translated was an END state-
ment (15). If it was not, the 1location
counter is incremented by the size (number
of bytes) of the statement (11), and con-
trol exits to read the next source state-
ment (Chart 04, block 01).

If the statement is an END statement
(15), and a card intermediate text system
is being used (16), the Symbol Table Deck
is punched into the blank cards following
the source program (17). If a tape inter-
mediate text system is being used, it is
not necessary to punch the Symbol Table
Deck Dbecause Phase II must immediately
follow Phase I.

In either case, the attributes of the
Symbol Table are relocated to upper main
storage (18). (See description of Symbol
Table in Section 2, "Tables.") The message
1EA is printed (19), and the program waits
for Phase II to be loaded. However, if the
assembler was loaded from tape, the message
1EA 1is not printed, and Phase II is loaded
immediately.

SECTION 5: OPERAND FIELD TRANSLATION

‘This section discusses the translation of the operand fields of each
different instruction format. A chart of the logic flow is given for each
type. The reader will require a basic knowledge of the subroutines described
in Section 3, "Subroutine Description," before using this section.

ASSEMBLER INSTRUCTION STATEMENTS

CCW Translation - Chart AA

The CCW instruction provides a convenient way to define and generate an
8-byte Channel Command Word aligned to a double-word boundary.

The source statement format is as follows:

T
NAME | OPERATION OPERAND

)
I
1I,
Optional | CCw |
41 L
Where the four expressions, from left to right, are:
simple absolute expression specifying the command code
relocatable expression specifying the data address
simple absolute expression specifying the flags and bits 37-39
simple absolute expression specifying the count

Four expressions separated by commas

[S e e ot S iy e o e)
it i

- T B

This subroutine is entered at location CCW (block AAO1) from the Phase I
Control Routine. It translates the operand into intermediate text meaningful
to Phase II of the Assembler Program and returns control to location €311 in
the Phase I Control Routine (Chart 04).

The format of the Intermediate Text is as follows:

r T T T T T A 1
| BYTE I I * I | | | |
| 1 | 2 { 3-4 | 5-16 | 17-20 | 21-22 | 23-24 |
L 4 + 4 4 4 4 4
T T T T T T T 1
ID-code	Internal	Translated	Translated	Translated	Translated	Error
	code of	first	second	fourth	third	flags
	instruction	expression	expression	expression	expression	
	(EY)			I	I	
% i 1 L 1 i 4 4.						
* Byte 3 contains the number of bytes of zeros to be assembled by Phase II						
if an error is encountered.						
L J

The bit patterns of the translated expressions placed into the Intermediate
Text are as follows:

Phase I 29

First expression:

r 1
| Bit 12 3 - 8 9 - 16 |
: [PIT] N | ‘
| Byte 3 y |
t : 4
| Where: P = 0 if the expression is a self-defining value |
| P = 1 if the expression is a symbol |
| L = 0 since field N will contain something other than a blank

| N = a self-defining value or the location of a symbol within

| the Symbol Table |
L]
Second expression:

1)]
| Bit 1 2 3 4 5 - 8 9 - 16 17 - 24 25 - 32 |
| [PIlnlx] x] N] I
' — ~— /__v N —~ J _ ~ J |
| Bytes 5,9,13 6,10,14 7,11,15 . 8,12,16 |
L 4
1) 1
| Where: P and N have the same meanings as the first expression |
| L =0 if field N contains something other than a blank |
| L = 1 if field N contains a blank |
| XX = 00 if the arithmetic operator preceding N is + |
| XX = 10 if the arithmetic operator preceding N is - |
| XX = 11 if the arithmetic operator preceding N is #* |
L J

Third expression:

This expression has the same format as the first expression except
bytes 21 and 22 are used.

[S —

o e =)

Fourth expression:

This expression has a format similar to the first expression except bytes 17
through 20 are used.

Bit 12 3 - 8 9 - 16 17 - 24 25 - 32
[BILl v |

Byte 17 18 19 20

Where: P, L, and N have the same meanings as the first expression

[e S e s o . oy
b e i e e o e e

DC Translation - Chart AB

The DC instruction is used for generating constant data in main storage.

30

The source statement format is as follows:

T
NAME OPERATION | OPERAND

e

DC | dtLn'c' or ALn (c)
-1 1
Where: d 1is the duplication factor
t specifies the type of constant
Ln specifies the length of the constant
c specifies the constant

Optional

e s s

e e e e e

This subroutine is entered at location DC (block ABO1) from the Phase 1
Control Routine. It translates the operand of the instruction into intermedi-
ate text meaningful to Phase II of the Assembler Program and returns control to
location C311 in the Phase I Control Routine (Chart 04). The format of the
Intermediate Text is as follows:

T T T T T T

BYTE I * | I I ** l %* % % I
1 | 2 | 3 | 4 | 5-6 | 7-22 | 23-24

I 1 4 -4 1 4

‘ T T T T . T T
ID-code | Internal | Constant | Boundary | Dupli- |Translated| Error
| code of | 1length | alignment| cation | constant | flags

|instruction| | pattern | factor |
1 L i L 1 41

* E1 except DC type A which is E2.
** One if DC type A or not specified.
*** Bytes 9-20 contain the translated expression for DC type A, and
bytes 7, 8, 21, and 22 are blank.

[S e i sy S e s S . e)
S S S ——"

The relocatable expression allowed for code type A may have a maximum of
three terms. Therefore, bytes 9-20 are divided into three U4-byte fields. The
bit pattern for each translated term is as follows:

Bit 5-18 9 - 16 17 - 24 25 - 32

L

X | N
Ny ~ J \ J ———
, 13,17 10,14,18 11,15,19 12,16,20

L o] Y
[l [)
> W

[Ye]

Bytes

Where: 0 if the term is a self-defining value
1 if the term is a symbol
0 if field N contains something other than a blank
1 if field N contains a blank
00 if the arithmetic operator preceding N is +
10 if the arithmetic operator preceding N is -
11 if the arithmetic operator preceding N is #*
= a self-defining value or the location of a symbol within
the Symbol Table

Db X
nnn

[e e o . e s o e e o . e e e)
ZM XXy

e S U USU S S —— |

CNOP Translation - Chart AC (Blocks 01-09)

The CNOP instruction 1is wused to align an instruction to a specific word
boundary.

Phase I 31

The source statement format is as follows: .

r T : T 1
| NAME | OPERATION | OPERAND |
! + t 1
| Not used | CNoOP | b,w |
¢ L L 1
| Where: b is a decimal value of 0, 2, 4, or 6 |
| w is a decimal value of 4 or 8 |
L 4
1) 1
| The following combinations of b and w are valid: |
| 0,4 2,8 |
| 2,4 ‘ 4,8 |
| 0,8 6,8 |
L J

Thas subroutine is entered at location CNOP (block ACO01) from the Phase I
Control Routine. It translates the operand of the instruction into intermedi-
ate text meaningful to Phase II of the Assembler Program and returns control to
location C311 in the Phase I Control Routine (Chart 04).

The format of the Intermediate Text is as follows:

r T T R T T T T 1
IBYTE | | | I | | I |
| 1 | 2 | 3 | 4y | 5-6 | 7-8 | 9-22 | 23-24 |
b 4 — 4 —_———-4t —_ - 1 4
r T + T T + + T 1
ID-code	Internal	Blank	Boundary	Trans-	Trans-	Blank	Ergpor
	code of		alignment	lated	1lated		flags
	instruction		pattern	wvalue	value		
	(E3)			of b	of w		
L i L 1 L L L L 4							
The boundary alignment bit pattern placed into byte 4 is as follows:							
r =1							
Bit 1 2 3 4 5 6 7. 8							
: L [M [M	M [N[N[NJ :						
Byte 4							
% 4							
Where: NNN = 011 if alignment is to a full-word boundary (w = 0)							
NNN = 111 if alignment is to a double-word boundary (w = 8)							
MMM = 000 if location counter is to be set to byte 0 of NNN (b = 0)							
MMM = 010 if location counter is to be set to byte 2 of NNN (b = 2)							
MMM = 100 if location counter is to be set to byte 4 of NNN (b = 4)							
MMM = 110 if location counter is to be set to byte 6 of NNN (b = 6)							
L ' J

DS Translation - Chart AD (Blocks 10-20)

The DS instruction is used to reserve main storage areas and to assign
symbolic names to the areas that are to be reserved.

32

The format of the source statement is as follows:

NAME OPERATION OPERAND

DS

T
|
4
T
| dtLn

T

I

1

. T
Optional |
1 1

Where: d 1is the duplication factor
t is the type of field
Ln specifies the length (valid for field code C only)

[e e o e s . s
| PR SRR SAp——

This subroutine is entered at location DS (block AD10) from the Phase I
Control Routine. It translates the operand of the instruction into intermedi-
ate text meaningful to Phase II of the Assembler Program and returns control to
location C311 in the Phase I Control Routine (Chart 04).

The format of the Intermediate Text is as follows:

r T T T T T T 1
| BYTE I | | | | | |
| 1 | 2 | 3 | 4 | 5-6 | 7-22 | 23-24 |
b ¢ t { B 4 t -
ID-code	Internal	Length	Boundary	Translated	Blank	Error
	code o§	of	alignment	value (4		flags
	instruction	Constant	pattern	times n)		
	(E0) I			I I		
L 1 L L 4 1 L]

DROP Translation - Chart AD (Blocks 12-15)

The DROP instruction specifies a previously available general register that
is no longer available for base addressing. '

The source statement format is as follows:

NAME OPERATION OPERAND

Not used DROP A simple absolute expression

oy
T S——
o e e =
T S—

This subroutine is entered at location DROP (block AD12) from the Phase I
Control Routine. It translates the operand of the instructicn into intermedi-
ate text meaningful to Phase II of the Assembler Program and returns control to
location C311 in the Phase I Control Routine (Chart 04).

The format of the Intermediate Text is as follows:

r T T T T T 1
‘ BYT? | 2 | 3-16 } 17-20 I 21-22 ' 23-24 |
| ! 1 L | | 4
L) T T } T T

ID-code	Internal	Blank	Translated	Blank	Error
	code of	{ operand		flags	
	instruction	o			
	(EC) I [I			
L 1 1 1 4 1 4

Phase 1 33

The bit pattern for the translated operand field placed into bytes 17-20 is
as follows:

r 1
| Bit 1 2 3 4 5 - 8 9 - 16 17 - 24 25 - 32 |
I [P T & [X] X] N 1
| - ~ J \ ~ /U — N - J |
| Bytes 17 18 19 20 |
t . -]
| Where: P = 0 if the operand is a self-defining value |
| P = 1 if the operand is a symbol |
| L = 0 if field N contains something other than a blank |
| L =1 if field N contains a blank |
| XX = 00 since the expression will always be positive |
| N = a self-defining value or the location of a symbol within |
| the Symbol Table |
L J

EJECT Translation - Chart AD (Blocks 01-02)

The EJECT instruction causes the next line of the object program 1istipg to
appear at the top of a new page.

The source statement format is as follows:

NAME OPERATION OPERAND

Not used

Not used EJECT

[— -
pm
b — - —— =

[PR S ——

This subroutine is entered at location EJECT (block ADO1) from the Phase I
Control Routine. The operand field is checked for a blank. If it is not a
blank, the necessary ID-Code and error flags are placed in the Intermediate
Text. Control then returns to location C311 in the Phase I Control Routine
(Chart 04) .

The format of the Intermediate Text is as follows:

BYTE

2 23-24

ID-code Internal code
of instruction

(EB)

Error flags

[o v oy .
D o=
e e e e o e

b — o —

|
|
i
|
|
|
J

END Translation - Chart AD (Blocks 08-11)

The END instruction terminates the assembly of a program. It may also
indicate a point in the program to which control may be transferred after the
program is loaded.

34

The source statement format is as follows:

NAME OPERAND OPERATION

T
!
_——
4
I
i

o - —

Not used END A relocatable expression or a blank

Where: The relocatable expression specifies the point to which control
may be transferred after the object program is loaded.

o o — e oy o

i S T

This subroutine is entered at location END (block AD08) from the Phase I
Control Routine. It translates the operand of the instruction into intermedi-
ate text meaningful to Phase II of the Assembler Program and returns control to
location C311 in the Phase I Control Routine (Chart 04).

The format of the Intermediate Text is as follows:

r T T T T T 1
| BYTE | | | * | [|
| 1 | 2 | 3-4 | 5-16 | 17-22] 23-24 |
L B I 4 1 4 i

r T T T T T {
ID-code	Internal	Blank	Translated	Blank	Exrror
	code of		operand		flags
	instruction				
1 L=] ! ! 1 ,'					
r 1					
* Blank if the operand field is blank. N					
L 4.

The relocatable expression may have a maximum of three terms. Therefore,
bytes 5-16 are divided into three U4-byte fields. The bit pattern for each
translated term of the operand field placed into bytes 5-16 is as follows:

Bit 5 - 8 9 - 16 17 - 24 25 - 32

|
J

N ~ ~~ ~
,9, 6,10, 14 7,11,15 8,12,16

L o] P8
[
(S R 1 (V)
L i
2

Bytes

-
w

0 if the term is a self-defining value
1 if the term is a symbol
0 if field N contains something other than a blank
1 if field N contains a blank
00 if the arithmetic operator preceding N is +
10 if the arithmetic operator preceding N is -
11 if the arithmetic operator preceding N is *
N = a self-defining value or the location of a symbol within
the Symbol Table

Where:

[(S S (—— —— ——— i — — —— —— — — —— -
o
>
o

b . o o s e St . e i s o e e e o]

ENTRY Translation - Chart AD (Blocks 03-07)

The ENTRY instruction identifies a symbol, defined elsewhere in the program,
that may be used as an entry point to this program by other programs.

Phase I 35

The source statement format is as follows:

NAME OPERATION OPERAND

o e oy e)
o o e o
o e e e =
[R - S ———

Not used ENTRY A relocatable symbol

This subroutine is entered at location ENTRY (block ADO7) from the Phase I
Control Routine. It translates the operand of the instruction into intermedi-
ate text meaningful to Phase II of the Assembler Program and returns control to
location C311 in the Phase I Control Routine (Chart 04).

The format of the Intermediate Text is as follows:

r T T T T T T 1
| BYTE | | | | | | -
| 1 | 2 - 3-4 | 5-8 | 9-14 | 15-22 | 23-24 |
t 4 ¥ —4 4 + $ 1
ID-code	Internal	Blank	Translated	Actual	Blank	Error
	code of		operand	symbol		flags
	instruction			from		
I (ER) I		operand				
L L i 1 L L 1 J

The bit pattern of the translated relocatable symbol placed into bytes 5-8
is as follows:

P =
L = 0 since field N will contain something other than a blank
XX = 00 since the location of the symbol is always positive
N = the location of a symbol within the Symbol Table

r 1
| Bit 1 2 3 4 5 - 8 9 - 16 17 - 24 25 - 32 |
| [P T L[X] X | N _ |
l \ ~ JLW /yV/\ VJ|
| Byte 5 6 7 8 |
t 1
| Where: 1 since the operand is a symbol |
| !
I |
I |
L J

EQU Translation - Chart AE (Blocks 01-08)

The EQU instruction is used to assign to a symbol in the name field the same
length and attributes as an expression in the operand field.

The format of the source statement is as follows:

NAME OPERATION OPERAND

An expression (any symbols in the
expression must be previously defined)

Required EQU

[o e g e
o o o o e
pr e e e 4
o e e e e

This subroutine 1is entered -at location EQU (block AEO1) from the Phase I
Control Routine. It translates the operand of the instruction into intermedi-
ate text meaningful to Phase II of the Assembler Program and returns control to
location C311 in the Phase I Control Routine (Chart 04).

36

The format of the Intermediate Text is as follows:

r T T T T T 1
| BYTE I I I I I I
| 1 | 2 | 3-4 | 5-16 | 17-22 | 23-24 |
t == + + t + 1
ID-code	Internal	Blank	Translated	Blank	Error
	code of		operand		flags
	instruction				
I | (ES) | I | | I
L L 1 L L 4 J

The operand field may have a maximum of three terms. Therefore, bytes 5-16
are divided into three U4-byte fields. The bit pattern for each translated term
is as follows:

4 5 - 8 9 - 16 17 - 24 25 - 32
N]
7\ N J

Y VT
29,13 6,10,14 7,11,15 8,12,16

Bit

-

o]
(I[N
-
(S, W
>

Bytes

if the term is a self-defining value

if the term is a symbol

if field N contains something other than a blank

if field N contains a blank

00 if the arithmetic operator preceding N is +

10 if the arithmetic operator preceding N is -

11 if the arithmetic operator preceding N is *

N = a self-defining value of the location of a symbol within
the Symbol Table

Where:

i
-_0 - O

[- S e S o S S e, S S s s s 42}
o)
>
o

b e e s —— s e e e e e e —— .

EXTRN Translation - Chart AE (Blocks 09-14)

The EXTRN instruction identifies a linkage symbol as an external symbol
defined in some other program that will be referred to in this program.

The source statement format is as follows:

NAME OPERATION OPERAND

Not used EXTRN A relocatable symbol

= m— Y e
s a—
o e e e
L

This subroutine is entered at location EXTRN (block AEQ09) from the Phase I
Control Routine. It translates the operand of the instruction into intermedi-
ate text meaningful to Phase II of the Assembler Program and returns control to
location €311 in the Phase I Control Routine (Chart 04).

Phase I 37

The format of the Intermediate Text is as follows:

v T T Ll A T T 1
| BYTE ! I | | | I |
| 1 | 2 | 3-4 | 5-8 | 9-14 | 15-22 | 23-24

t $ t t t t t .
ID-code	Internal	Blank	Translated	Actual	Blank	Error
	code of		operand	symbol		flags
	instruction			from		
	(E9)			operand		
L y 1 'y 1 L i J

The bit pattern of the translated relocatable symbol placed into bytes 5-8
is as follows:

1
{Bit 12 3 4 5 - 8 9 - 16 17 - 24 25 - 32 |
| Pl o [x| X] N 7
| C y J . -)\ ~ J ~— y |
| Byte 5 6 7 8 }
L
) 1
i Where: P = 1 since the operand is a symbol |
| L = 0 since field N contains something other than a blank |
| XX = 00 since the location of the symbol is always positive |
| N = the location of a symbol within the Symbol Table |
L J

ICTL Translation - Chart AF (Blocks 01-07)

The ICTL instruction +tells the Assembler Program in which column the
statement portion of the source program statement begins.

The format of the source statement is as follows:

NAME OPERATION OPERAND

Not used ICTL The decimal value 1 or 25

e pu——
e - —
o o e e]
(RSN Sp——

This subroutine is entered at location ICTL (block AF01) from the Phase I
Control Routine. When the ICTL instruction is used, it must be the first
statement in the source program. This subroutine translates the operand into
intermediate text which will be reproduced in the object program 1listing. If
the operand field is incorrect, Phase I will set the starting column to a 1 for
a tape system and to a 25 for a card system. Control returns to location C311
in the Phase I Control Routine (Chart 04).

The format of the Intermediate Text is as follows:

e e

r T T T T

| BYTE | | | I

| 1 | 2 i 3-4 | 5-22 | 23-24

t + t + ¥

| ID-code | Internal code | Translated | Blank | Error flags
| | of instruction | operand | |

| | (ED) | | |

L 1 L L ¥ R

w
<o

ORG Translation - Chart AG (Blocks 01-07)

The ORG instruction is used to set the 1location counter to a specified
address.

The format of the source statement is as follows:

NAME OPERATION OPERAND

A relocatable expression (any symbols in
the expression must be previously defined)

Not used

[e e e
o — - —
| SR TRp—

This subroutine 1is entered at location ORG (block AGO1) from the Phase I
Control Routine. It translates the operand of the instruction into intermedi-
ate text meaningful to Phase II of the Assembler Program and returns control to
location C311 in the Phase I Control Routine (Chart 04).

The format of the Intermediate Text is as follows:

r T T T T T 1
| BYTE | | I | | I
| 1 I 2 | 3-4 I 5-16 | 17-22 | 23-24 |
L +__ 1 . ——— 1 4]
1] T T T T a
| ID-code | Internal | Blank | Translated | Blank | Error |
| | code of | | operand | | flags]
| | instruction | | | | |
I I (E8) I I | | [
L 1 1 i L L J

The relocatable expression may have a maximum of three terms. Therefore,
bytes 5-16 are divided into three U-byte fields. The bit pattern for each
translated term is as follows:

3 4 5 - 8§ 9 - 16 17 - 24 25 - 32
[x [xT1 N |
- J _J - J

A4 \ Y A
Bytes 5,9,13 6,10,14 7,11,15 8,12,16

[
5

if the term is a self-defining value

if the term is a symbol

if field N contains something other than a blank

if field N contains a blank

00 if the arithmetic operator preceding N is +

10 if the arithmetic operator preceding N is -

11 if the arithmetic operator preceding N is #*

a self-defining value or the location of a symbol within
the Symbol Table

nwnn
- O m O

I

zggﬁggbr*mru

S SN VAU

SPACE Translation - Chart AG (Blocks 08-12)

The SPACE instruction 1is used to insert one or more blank lines in the
object program listing.

Phase I 39

The source statement format is as follows:

NAME OPERATION OPERAND

Not used SPACE A decimal value not greater than 63

[oy —
R S
po o - 4
(R S

This subroutine is entered at location SPACE (block AGO08) from the Phase I
Control Routine. It translates the operand of the instruction into intermedi-
- ate text meaningful to Phase II of the Assembler Program. If the operand field
is blank, the Assembler assumes a value of 1. If the operand field is greater
than 63, the SPACE instruction is treated the same as the EJECT instruction by
Phase II of the Assembler Program. Control returns to 1location C311 in the
Phase I Control Routine (Chart 04).

The format of the Intermediate Text is as follows:

r T T T T 1
| BYTE | I | | |
| 1 | 2 | 3-4 | 5-22 | 23-24

¢ $ $ t t -
ID-code	Internal code	Translated	Blank	Error flags
	of instruction	operand		
	(E7)			
L L L 1 4 4

START Translation - Chart AF (Blocks 08-16)

The START instruction may be used to indicate the beginning of an assembly,
to give a name to the object program, and to set the 1location counter to an
initial value.

The format of the source statement is as follows:

NAME OPERATION OPERAND

START

o e oy o
o o e e]
SR
S S

Optional A self-defining value or blank

This subroutine is entered at location START (block AF08) from the Phase I
Control Routine. It translates the operand of the instruction into intermedi-
ate text meaningful to Phase II of the Assembler Program. If the operand field
contains an error, the location counter will be set to zero. Control returns
to location C311 in the Phase I Control Routine (Chart 04) .

The format of the Intermediate Text is as follows:

r T T T 1 v T hl 1
IBYTE | I | | | | | |
R | 2 | 3 | 4 | 5-8 | 9-14 | 15-22 | 23-24 |
b } 1 4 4 4 4 4 4
¥ T T T 1 T T T 1
ID-code	Internal	Blank	Boundary	Trans-	Actual	Blank	Error
	code of		alignment	lated	symbol		flags
	instruction]		pattern	operand	from		
	@		1	name			
I | | | | | field | | |
L L L 4L 1 L L 4 J

40

The translated operand placed into bytes 5-8 will be the assembled 24-bit
address of the first byte of the object program.

USING Translation - Chart AH (Blocks 01-07)

The USING instruction indicates that the general register specified is
available for use as a register for base addressing. This instruction also
states the base-address value that the Assembler may assume will be in the
indicated general register at object time.

The source statement format is as follows:

NAME OPERATION OPERAND

Not used USING A relocatable expression and a simple

expression separated by a comma

o s . o e

T
|
!
4
|
|

i

Where: The relocatable expression specifies a value that the Assembler
can use as a base register.

The simple absolute expression specifies the general register
that can be assumed to contain the base address represented by
the relocatable expression,

o e i e o o — . S—— —— —
Y NP R A S U——

This subroutine is entered at location USING (block AHO1) from the Phase I
Control Routine. It translates the operand of the instruction into intermedi-
ate text meaningful to Phase II of the Assembler Program and returns control to
location C311 in the Phase I Control Routine (Chart 04).

The format of the Intermediate Text is as follows:

r 1 T T T T 1] 1
| BYTE I | | I I | |
| 1 | 2 | 3-4 | 5-16 | 17-20 | 21-22 | 23-24 |
L 1 4 4 i 4 + 4
r T T T T T i T 1
ID-code	Internal	Blank	Translated	Translated] Blank	Error	
l_ code of		relocat-	simplg		flags	
	instruction		able	expression		
	(E6) I	expression		I I		
L 1 L L i iy 1 J

The bit patterns for the translated expression of the operand field placed
into the intermediate text are as follows: ‘

Relocatable Expression:

The relocatable expression may have a maximum of three terms. Therefore,
bytes 5-16 are divided into three U4-byte fields. The bit pattern for each
translated term is as follows:

Phase 1 41

r q
| Bit 1 3 4 5 - 8 9 - 16 17 - 24 25 - 32 |
l Pl L]x[Xx] N | |
| — ~ AN ~~ /. ~ AN v J |
| Bytes 5,9,13 6,10,14 7,11,15 8,12,16 |
k i
| Where: P = 0 if the term is a self-defining value |
| P = 1 if the term is a symbol |
| L = 0 if field N contains something other than a blank |
i L =1 if field N contains a blank. |
| XX = 00 if the arithmetic operator preceding N is + |
| XX = 10 if the arithmetic operator preceding N is - |
| XX = 11 if the arithmetic operator preceding N is * |
| N = a self-defining value or the location of a symbol within |
| the Symbol Table |
L 4

Simple Expression:

Bit

1 2 3
(P [L [X |
N—

-Bytes 1

< [=|e
_1
2

~
-
o
-
o
N
(=}

Where: P, L, and N have the same meanings as in the relocatable expression
XX = 00 since the expression will always be positive

[e s . . s s,
| AP S S —

MACHINE INSTRUCTION STATEMENTS

RR Format Translation - Chart AH (Blocks 08-17)

Instructions in the RR format are used for register-to-register operations
except for SVC (the operand specifies immediate data) and SPM (the operand
specifies one general register)

The source statement formats are as follows:

r T 1 1
| NAME | OPERATION | OPERAND |
L 4 4 4
r T T 1
Optional	All RR instruc-	R1, R2
	tions except SVC	
	and sPM	
pm t —1 1		
{ Optional l SvC 1 I }		
T T T 1		
Optional	SPM	R1
L 4 1 J

This subroutine is entered at location MACHB (block AH09) from the Phase I
Control Routine, except for the SVC instruction which enters at location MACHI
(block AH13) and the SPM instruction which enters at location MACHJ (block
AHO1) . This subroutine translates the operand of the instruction into
intermediate text meaningful to Phase II of the Assembler Program and returns
control to location C311 in the Phase I Control Routine (Chart 04).

42

The format of the Intermediate Text is as follows:

* Blank if no R2 field. Byte 3 contains the number of zeros to be
assembled by Phase 2 if an error is encountered.
** Blank if SVC instruction.

T Ll A T L] T 1
| BYTE I | * I ** | I

| 1 | 2 | 3-4 | 5-6 | 7-20 | 21-24 |
b + t t t + {
ID-code { Internal	Translated	Translated	Blank	Error	
	code of	R2orI	R1 field		flags
	instruction	field			
L L 4 . 4 1 L 4					
T 1					
I					
L 4

The bit pattern for the translated R1 field, R2 field, or I field is as
follows:

) 1
| Bit 1 2 3 - 8 9 - 16 |
| T o] N | I
| < g — T C ~ 0 |
| Bytes 3,5 4,6 |

4
r 1
| Where: P = 0 if the field is a self-defining value |
| P = 1 if the field is a symbol |
| L = 0 if field N contains something other than a blank |
| L =1 if field N contains a blank |
| N = a self-defining value or the location of a symbol within |
| the Symbol Table |
L]

RS Format Translation - Chart AI

Instructions in the RS Format are used for register-to-storage operations
and for shift operations.

The source statement formats are as follows:

Format type 1

r T k) 1
| NAME | OPERATION | OPERAND |
b 1 1 4
v T T 1
Optional	All instructions	R1, R3, D2 (B2)
	except shift	
	instructions	
L 1 L J
Format type 2

f T T 3
| NAME | OPERATION | OPERAND |
L 4 } 4
r T T 4
| Optional | All shift | R1, D2 (B2) |
| | instructions | |
L R, 1_ 4

This subroutine is entered at location MACHC (block AI(O1) from the Phase I
Control Routine, except for format type 2 which enters at location MACHD (block
AIO2) . This subroutine translates the operand of the instruction into

Phase I 43

intermediate text meaningful to Phase II of the Assembler Program and returns
control to location C311 in the Phase I Control Routine (Chart 04).

The format of the Intermediate Text is as follows:

T T T T T T T

BYTE | I * | | | ¥* I
1 | 2 | 3-4 | 5-6 | 7-12 | 13-14 | 15-20 | 21-24

1 4 4 i I, 4 i 1

=T T T T T T T
ID-code| Intermal | Trans- | Trans- | Trans- | Trans- | Blank | Error
| code of | 1lated | lated | 1lated | 1lated | | flags

|instruction| R3 field| R1 field| D2 field| B2 field| | ’
i L —_——1 L P i L

*

Blank if not specified or if format type 2 is being translated.
Byte 3 contains the number of bytes to be assembled as zeros if an
error is encountered.

Blank if not specified.

*
*

[o o . it oy . e s o S e
b o e e s i e e e i s e <o)

The bit patterns for the translated fields of the operand placed into the
Intermediate Text are as follows:

R3 field, R1 field, or B2 field:

r 1
| Bit 1 2 3 - 8 9 - 16 |
I (] L N] I
| N J J |
Y A

| Bytes 3,5,13 4,6,14 |
I 4
v . 1
| Where: P = 0 if the field is a self-defining value |
| P = 1 if the field is a symbol |
| L =0 if field N contains something other than a blank

| L = 1 if field N contains a blank |
| N = a self-defining value or the location of a symbol within |
i the Symbol Table |
L d
D2 field:

The D2 field may have a maximum of three terms. Therefore, bytes 7-12 are
divided into three 2-byte fields. The bit pattern for each translated term is
as follows:

r 1
| Bit 1 2 3 4 5 - 8 9 - 16 |
I (P I & T X [X] N] |
' — ~ I\ ~ J |
| Bytes 7,9,11 8,10,12 |
L 4
r 1
| Where: P, L, and N have the same meanings as indicated for the R3, R1, |
| and B2 fields |
| XX = 00 if the arithmetic operator preceding N is + |
| XX = 10 if the arithmetic operator preceding N is -

| XX = 11 if the arithmetic operator preceding N is * |
L J

4y

RX Format Translation - Chart AJ

Instructions in the RX Format are used for register-to-indexed-storage
operations.

The source statement format is as follows:

r T il 1
| NAME | OPERATION | OPERAND |
b 4 1 4
r T T 1
| Optional | Any RX | R1,D2(B2,X2)

| : | instruction | |
L 4 N L 4

This subroutine is entered at location MACHA (block AJO1) from the Phase I
Control Routine. It translates the operand of the instruction into intermedi-
ate text meaningful to Phase II of the Assembler Program and returns control to
location C311 in the Phase I Control Routine (Chart 04).

7

The format of the Intermediate Text is as follows:

r T T T T T T T 1
|BYTE | I+ | I [|
| 1 | 2 | 3-4 | 5-6 | 7-12 | 13-14 | 15-20 | 21-24 |
[N 4 4 4 4 i 4] 4
v T T T T T T T A
ID-code	Internmal	Trans-	Trans-	Trans-	* Trans-	Blank	Error
	code of	lated	1lated	1lated	1lated		flags
	instruction	X2 field	R1 field	D2 field	B2 field		
lf 1 4 1 41 L AL 4)jl							
* Blank if not specified. Byte 3 contains the number of bytes to be							
assembled as zeros if an error is encountered.							
L J

The bit patterns for the translated fields of the operand placed into the
Intermediate Text are as follows:

X2 field, R1 field, or B2 field:

v]
| Bit 1 2 3 - 8 9 - 16 |
l P [T] N | l
| A ~ 7 g 4 I
| Bytes 3,5,13 4,6,14 |
L 4
r 1
| Where: P = 0 if the field is a self-defining value |
| P = 1 if the field is a symbol |
| L = 0 if field N contains something other than a blank |
| L =1 if field N contains a blank |
| N = a self-defining value or the location of a symbol within |
| the Symbol Table |
L 4
D2 field:

The D2 field may have a maximum of three terms. Therefore, bytes 7-12 are
divided into three 2-byte fields. The bit pattern for each translated term is
as follows:

Phase I 45

Bit 1 2 3 4 5 - 8 9 - 16
P T T x T x| N |
- J \L J
Y h'd
Bytes 7,9,11 8,10,12

Where: P, L, and N have the same meanings as indicated for the
X2, R1, and B2 fields

[—— - — ——— —————
SR SN

XX = 00 if the arithmetic operator preceding N is +
XX = 10 if the arithmetic operator preceding N is -
XX = 11 if the arithmetic operator preceding N is *

S1I Format Translation - Chart AK

Instructions in the SI Format are used for storage and immediate data
operations.

The source statement formats are as follows:

Format type 1

r T T 1
| NAME | OPERATION | OPERAND |
b { 4
L} +- T 1
Optional	All SI instruc-	D1@®BMN,I2
	tions except	
	those in format	
	type 2	
L L 1 3
Format type 2

r T k) 1
| NAME | OPERATION | OPERAND]
[N 4] ¥
r T T 1
| Optional | LPSW,SSM,HIO, | D1@®1) |
| | sI0,TIO,TCH,TS | |
L L L]

This subroutine is entered at location MACHE (block AKO1) from the Phase I
Control Routine, except for format type 2 which enters at location MACHF (block
AK02) . It translates the operand of the instruction into intermediate text
meaningful to Phase II of the Assembler Program and returns control to location
C311 in the Phase I Control Routine (Chart 04).)

The formats of the Intermediate Text are as follows:

Format type 1

r T T T T T T 1
| BYTE I | * | | ** I | |
| 1 | 2 | 3-6 | 7-12 | 13-14 | 15-20 | 21-24

G $- ¥ } % + + |
| ID-code | Internal |Translated|Translated|Translated| Blank | Error |
| | code of | I field | b1 field | B1 field | | flags

| |instruction| | | |] |
Ir_ L 1 L L 1 i _‘
| * Byte 3 contains the number of bytes to be assembled as zeros if an |
| error is encountered. |
| ** Blank if not specified. |
L J

46

Format type 2

r - 1
| The format is the same as type 1, except that bytes 3-6 are blank. |
L a

The bit patterns for the translated fields of the operand placed into the
Intermediate Text are as follows:

I field or B1 field:

1
| Bit 1.2 3 - 8 9 - 16 17 - 24 25 - 32
| P 1T T] N i
I N —~— AN AN — — ~ /|
| Bytes 3,13 4,14 5 6 J
L
| Where: P = 0 if the field is a self-defining value]
| P =1 if the field is a symbol |
| L =0 if field N contains something other than a blank |
| L =1 if field N contains a blank |
| N = a self-defining value or the location of a symbol within |
| the Symbol Table |
L y
D1 field:

The D1 field may have a maximum of three terms. Therefore, bytes 7-12 are
divided into three 2-byte fields. The bit pattern for each translated term is
as follows:

r 1
| Bit 1 2 3 4 5 - 8 9 - 16 |
| PT T T x [T x 1] N] |
l — ~" J ~ J I
| Bytes 7,9,.11 8,10,12 |
L -~ 4
t .

| Where: P, L, and N have the same meanings as indicated for the |
| I2 and B1 fields I
| XX = 00 if the arithmetic operator preceding N is + |
| XX = 10 if the arithmetic operator preceding N is - |
| XX = 11 if the arithmetic operator preceding N is #* |
L J

SS Format Translation - Chart AL

Instructions in the SS Format are used for storage-to-storage operations.

The source statement formats are as follows:

Format type 1

NAME OPERATION OPERAND

PACK, UNPK,
MVO, AP, CP,
DP,MP,SP, ZAP

Optional p1 (1,81, D2(L2,B2)

,_._...,,__,
e e e o
e

I Wp——

Phase 1 47

Format type 2

NAME OPERATION OPERAND

All other SS

D1 (L,B1), D2 (B2)
instructions ’

_Optional

...__...,,....,
b e e e o =
o e o o e o
R —

This subroutine is entered at location MACHG (block ALO1) from the Phase I
Control Routine, except for format type 2 which enters at location MACHH (block
ALO2) . It translates the operand of the instruction into intermediate text
meaningful to Phase II of the Assembler Program and returns control to location
C311 in the Phase I Control Routine (Chart 04).

The formats of the Intermediate Text are as follows:

Format type 1

T T T T T T T T 1
| BYTE | P * |+ | | * | * boo* |
I | 2 | 3-u4 | 5-6 | -7-12 | 13-14 | 15-20 | 21-22 | 23-24 |
L i 1] 4 2 [1 1 i 4
v T T T T T T T T a1
|ID- |Internal| Trans- | Trans- | Trans- | Trans- | Trans- | Trans- | Error |
lcode |code of | lated | lated | lated | lated | lated | lated | flags |
| |instruc-| L2 | 1 | D1 | B1 | D2 | B2 | |
| | tion | field | field | field | field | field | field | |
} L L L 1 L N L 1 %
| * Blank if not specified. Byte 3 contains the number of bytes to |
| be assembled as zeros if an error is encountered. |
L J
Format type 2

1
| ‘The format is the same as type 1, except that bytes 3-4 contain the |
| translated L field and bytes 5-6 are blank. |
L 4

The bit patterns for the translated fields of the operand placed into the
Intermediate Text are as follows:

L or L2 field, L1 field, B1 field, or B2 field:

Bit 1 2 3 - 8 9 - 16
P [1 | N J
“ J J
v v
Bytes 3,5,13,21 4,6,14,22
Where: if the field is a self-defining value

if the field is a symbol

if field N contains something other than a blank

if field N contains a blank

self-defining value or the location of a symbol within
he Symbol Table

Zog

,__._..._..__q,_._"_._,
wwnnn
TP aO-=mO

b comes v c— — w—. — i c— —— — o}

D1 field or D2 field:
The D1 field and the D2 field may contain a maximum of three terms.

Therefore, bytes 7-12 and 15-20 are divided into three 2-byte fields. The bit
pattern for each translated term is as follows:

48

r : 1
| Bit 1 2 3 4y 5 - 8 9 - 16 |
[(P [v [x [x | N | |
l N —~ D _/ '
| Bytes 7,9,11,15,17,19 8,10,12,16,18,20 |
L |
r - 1
| Where: P, L, and N have the same meanings as indicated for the |
| L, L1, L2, B1, and B2 fields |
| XX = 00 if the arithmetic operator preceding N is +]
| XX = 10 if the arithmetic operator preceding N is - |
| XX = 11 if the arithmetic operator preceding N is * |
L J

Phase I

49

EERKATERRRNE R RS

* *
* START PHASE 1 #
* *

HHRRKEEERRHEKR RS
.

Xe v oo

o1
WKW WD TN NI RN
*INOYT *
R B S T s B
READ IN PHASE I¥
* #*

QF
* ASSEMBLER *
LR I e St 2
.

Xe oo oo

02
ERREHCIHERER AR HXE
* *
* ESTABLISH
*
*ADDRESSABILITY
*

LR RS

NN KNI HHRH
.

Xe oo

03
HERREDIERR LA RN ERR
*DETERMINE MAIN *
* STORAGE SIZE *
* AND GENERATE #
* CONTROL *
* PARAMETERS *
L E s i i

.

X 04
KR TR KRR KRR
CLEAR SYMBOL

TABLE AREA

AND
RESERVE FIRST
TWO ENTRIES

*
*
*
*
*
RN REN RN

*
*
*
*
*
*

08
HERERE2ERRRER AR RS 0s
* * . .
* GET INPUT AND #* YES % -
* OUTPUT %*¥Xesooosseky ot
* ADDRESSES AND * *o .
* STORE * *e ¥
LR e s e e] T ¥
. *
. .
. .
. .
. .
. .
09 X
RREERG2EE KRR NKR G3 %o
SET OUTPUT SIZE ¥
* OF * 1
* INTERMEDIATE %, OUTPUT
* TEXT * TAPE
* TC 24 BYTES * . .
R e L] *e oF
* NO
.
.
.
.
.
X 10
HERERHIH R R XRN
* *
* SET X *
* MOVE DATA *
3* SWITCH *
* *
HARREERREERRRRRRR

Xe oo oo

13
HREENJTHEREERERER

*INOUT *
LR B L B S B T 2t
* READ *Xeoesooee
* NEXT_SOURCE *
* STATEMENT *
FRRERERRERRRERENR
.
.
.
.
.
-
15 Xeo
HHERRRC2HRRRERRRRR K3 * o 14
*INOUT * o* *
EEE B T 2 B B T 2 3 YES % I *q NO
esccsece® READ #Xeeeeeeee*eCARD A SYMBOLe¥®eeovooes
X * SYMBOL TABLE * *TABLE CARD * X
EX 22 2] * DECK * *q ¥ L2 22
*04 * EI T I TE TR Ry Ko o¥ *04
* Bl * * B1
* » * *
* *

Chart 03. Phase I Initialization

* SET
oo X¥ MOVE DATA
*

07
HREHRGH R RN RR R
* *

*

SWITCH *
* *
FRRHERAREERAHERRR

.

.

.

.

X 11
FEEFERHEEE XXX ERERR
SET OUTPUT SIZE
* *
* INTERMEDIATE *
* T *
* TO 104 BYTES *

e T
.

X 12
REERRJLERRREERRRR
* *
STORE TAPE UNIT#
* OUTPUT *
* ADDRESS *

*

*
MW BRK KRR RIERNNRRRR

*
*
*

Phase I

51

Chart

52

> w
*#04 *
* B1*

.
eXeseosescscecnconce

X 01
EE IR TSR TSR R TS
*INOUT *

R e D T T e
* READ *
* SOURCE *

* STATEMENT *
R R e i

Xesooes

02
HHHARC] RN RN R
* SET _COLUMN TO_ #*
START SCAN. SET#
* NECESSARY *
*SWITCHES.
* PUNCH BUFFER #
I T I e

03

*o

Is *e YES
COLUMN 72 e%*eeee

*o BLANK
*eo

.
*o
o*
, ..
NO

Xe oo s e %

04
I] I IR
STORE ERROR *
* FLAG Z *
* N *
* INTERMEDIATE *
* *
* *

NI R XN

0s -

o .
«* STARTING *. YES
*eo COLUMN

BLANK &%

07
FEERRH] EE EERRRR
STORE *

*
*
*
*
*

KNI N

I0-CODE
INTO
INTZRMEDI ATE

e

ok kK

04.

08
WK G2 KRN N

L

*C=40 *
FHHEAIR RN XK NE N
« CORRECT
.
.
.
.
X

09

HEEREHD R RAR AR RN

* SAVE SYMBOL #
FROM NAME FIELO¥
seee® AND SET VALID *
. *NAME INDICATOR *
* *

.
. LR T
.

* INTERMEDIATE *
*

*
(33T T R YT T Y
.

X

e¥eeesessccsscccecsscccssecssnceX

AMB3*
- #—%—%—%-¥ERR
e X*SCAN NAME FIELC¥*..
* *

10
K GO XE
* STORE ERROR %
* FLAG (L) *
* *Xee

P R R R N

o o
. .
. .
o o
o o
o .
. .
. .
..
. .
.« .
. .
.- .
o o
. .

.
.
.
.
.

.
.
.
-
.
.
.
.
.
.

Phase I Control Routine

cescsccssacecce

#C=40 *
RN N REINRHRR
«FOUND
.
.
.

X 12
WK C TN NN
*EVE

AMB3*NOT IN
RN H N —R—%—%TABLE

*SCAN OPERATION *eoecoeeseX¥
*

CODE TABLE
*C=40 *
336 I RN

«FOUND IN
«TABLE

.

.

.

13
RN HD TR KK NN XK
* STORE OP CODE *
*IN INTERMEDIATE®
* TEXT *
* SET BRANCH TO *
*TRANS« OPERAND #
AR R I S T TR T

.
.
.
oXe
E3 *o 14
.
o% MACHINE #.
%o OPERATION o%
*, CODE
*o
*e o
* NO
.
.
.
.
.
X

* *
* ID-CODE 8 *
* INTO BYTE 1 *
* *
*

. . .
*g ¥ . *o
e o¥ X
NO RN
. *05 *
. * F2w
. * ¥
- *
X 17
FREERCLEERERHHIEH
*ERR *
LS B Tt B B et Tt B

STORE ERROR *

* FLAGS (NO) IN *

*BYTES 23 AND 24%

HEERREREREERNRR RN
.

.

.

X
LR RS 2
%*¥05 *
* F2%

* *

*

18
HRERRELRKEXRRRRNR

* SET ID-CODE A *
*

*
*
*
*

ICA
L2 a e e T e d

19
FE KK R G RHRRRR
EVE AMB3%*
i e e e o Ot
*ALIGN LOCe CTRe¥
* TO HALF=-WORD %
* BOUNDARY *
L e T]

.

eXeosesessessescesccccscccse

.

st se s s s s esss s

**

* TRANSFER TO SUBROUTINE TO *

* TRANSLATE OPERAND FIELD *

* OPERATION LOCATION

*

*

*

*

*o

*

* esecsesescsecsssscnns®

* DROP « DROP « ADG4 *

*eeeseescesccccsssccccsccccccnnst

* DS « DS o ACAG %

*oosececsscescscccsscsceccssone

* EJECT « EJECT e+ ADB1 *

¥oeeeeeeccscecsccccccsccsncscact

* END « END « ADB4 ¥

¥oeeeesesecesscssscccnccccncence®

* ENTRY « ENTRY e ADF1 %

*oevevesscssevsevssevscvcvssvene

* EQU « EQU « AEC1 *

sesesccccseX¥osevssescccvcsscccscsccsccsnsccso®osneX

EXTRN o AEC4 *

.
E
seesees
« START
ceessss
« USING

ese eesesssssscvece®

o MACHB « AHB4 ¥

P S L

e MACHI AHF4 *

esecscesssesesnaccset

o MACHJ e AHB3 %

cee essescssccssee

e MACHC *

T REY *

« MACHD *

sessccs co¥®

A *

. o ¥

E *

. ¥

F *

. coessee¥

G *

*

sessesse

.o
MACHH e ALB1 %

* SS2 .

¥ oesoseesecccccssssecssscscscnet

¥
H, o
* YES
.
.

X
EEHER
%05 *
* B2¥

* ®

LA E S
* *
* p5 *
* *

EHER

o *.

% STATEMENT %.
8

%, ASSEMBLED.*

o¥,
B1 * o
ok *o

NO

*
*o NAME ERROR
. .
q o

*e o

*
<
m
[

tesesess s st

-
-
-
.
-
.
B
-
.
o
.
-
-
-
-

R T I I A S A

-
-
-
-
-
.
-
-

@eeescecscccscesccscseccescssosscscscscscsceXeXcoooosoocosscccccccccncone

WRK] HEHE R XF
IPL PHASE II
#AND TRANSFER
* _CONTROL TO
* PHASE I1I
*

NN R NR

Chart 05.

05

*
*

.
e%Xeo

*

NEITHER

.
.
.
.
.
.

R

HHN RN

*05 *

* B2

* *
*

.
.
.

Xe

B * 01
o¥* NAME %,

«*ALLOWED ANC%*. BCTH OUNTER IN
e¥*ceeeceeseX*¥VALUE ATTRIBUTE¥
* OF NAME IN *

%o VALID NAME
*INDICATORS *
* *

Ky o ¥
* CNE

Xeoooe

oXeo

c2 *e 02
*

d .
NO +*VALID NAME %,

cecacte

INDICATOR O
o SET o
*

Xe oo 00 %

03
HRHEEDORHEERHRHER
* STORE ERROR
: FLAG (L)

06
HEXEHBIHHAHEHERHR
#STORE LOCATION #*
* C *

* SYMBOL TABLE *
L e e L

Xe oo oo

07
FEERFC M RN AR RNR
*TLUN *
e e e et o B S
* STORE IN *
: SYMBOL TABLE :

HEERERREEREEEHENR

Xe oo s

oXe
D3 *, 08

*
*
N * PROCESSING %
* INTERMEDIATE % . o ¥
* * *e o
63 3 336 3 3H 36 36 3 36 I 3 X HH He o
. * NO
. o
. .
. .
eXeXe .
. .
X 04 .
HRRHREDEH R HRE RN RN -
* STORE ID-CODE * .
* J OR K IN * .
* BYTE 1 * .
* ACCORDING TO * .
*#*CPERATION CODE * .
RN NN NN RN -
. .
. .
. .
.
.
oXe o¥a
F2 *s. 09 F *o 12
. *o « ¥QUTPUT
e N + RECORD
1442 SYSTEM %, IN OUTPUT
. ¥ o AREA o
*g ¥ * o o
*e o X o%
* YES * YES
. .
. .
. .
. . ceeee
e Xe o¥e
G2 *e 10 G3 *e 20
o* *. o* *e
o DOES *e NO o® *o
*o INPUT EQUAL e*eecseeseeX*IS INPUT
*o PU o *o .
. . *o o
. ¥ *e o
* YES * NO
. .
. .
X .
EERE .
* * .
* H4 * X 21
* * 3 3 I TR
XX R * BLANK *
#* PUNCH BUFFER *
* AND STORE 9 *
*PUNCH IN PUNCH *
AR * BUFFER COL 1 %
* * I I I I I NN NN
* g2 * .
* * e
" .
. .
. .
. .
X X
P N T e J3 22
* INOUT * ¥ * o
W o o e W o e e N ¥ PRINTER * g
* PRINT * . [¢]

* END PHASE 1 *

* MESSAGE . *

HEEERERERNARRNE RN
-

.
.
.
.
.
.

X
IR
* WAIT FOR *
b PHA: II *
* TO BE LOADED *

LRI s T e 2]

*o. LINE o
*e .
*e o%

Xo s o000 %

23
PR TN NN
* . *
* HALT *

HREEERRRERRENRR

Phase I Control Routine (continued)

YES
BLANK *osseceeeeX
* X

.
.
.
-
.
.
.
.
.
.
.
B
.
.
-
.
.
.
.
.
-
.
.
.
.
.
.
B
.
.
.
.
.
.
.
.

YES

eseeX

esese

13
FREREFLRERERRER RN

* MOVE *
* INTERMEDIATE *
.00 X¥ TEXT *
* *
* QUTP! AREA #

escccce

uT
R e s L]

.
seeXe
.

X 14
ERRRRGH N NHR RN RRN
*INOUT o=
EEE T Bl B e T s B
* WRITE *
* INTERMEDIATE *
* TEXT *

X 17
e e

*INOUT *
Bt R s DL S

* PUNCH *
* SYMBOL TABLE *
* DECK *

*4 ¥

*o

o®
NO

Xe oo e

11
HHHNH JAERRHINRR R
*BUMP *
et Bt B DL P Bt St Bt g
* INCREMENT *
* LOCATION *
* COUNTER *
RIS I T T
B

X
XX HER
*#04 *
* B1*

* *

NO
.o
.

X
R

HRXF

R)

.
eXoeoseesssone

X 18
KKK HS KRR RER

* RELOCATE *
* SYMBOL TABLE *
* T0 *
* UPPER MAIN *
* STORAGE *
e e R et
.
.
.
.
.
J5s . 19
. *o
o CARD *o
%o ASSEMBLER %
o o
*e o
o ¥
* YES
* -
* .
* X
EERR
* *
* J2 *
* *
EEEE

Phase I

53

AR
AR ®
* B2%

Xe oo

cCw 01
LS 32T PR TS 22 20
*BAR *
L R e e et it D 2
ALIGN LOCe CTRe¥
*TC DOUBLE-WORD %
* BOUNDARY *
LI R e eI s 2L
.

Xe o oo

02
ERERHRC2XAERRR KL RN
EVE AMB3

Hom Nm e ¥ = ¥ =% = #ERR
*TRANSLATE FIRST¥eecooee
* TERM *
#PC=01 C=00 T=01%
[T

« CORRECT

Xe o o0

*****Da********gi
*STORE *
L Dt it S 2 2
* STORE INTO *
: INTERMEDIATE :

EXT
NI RN NN

Xeooooe

oXe
E2 *s 04
¥ .
o NEXT *o NO
*e CHARACTER A e*ce0ee
*s COMMA %

. ¥

Xy ok
YES

Xe oo oo x

0S
RERRKE2HH RN XX HE
EVE AMB3#
Yo RN’ — N =%~ HERR
* TRANSLATE *¥eo00eX
* SECOND TERM *
*PC=03 C=BO0 T=02%
Er T e T T T)

«CORRECT

Xe o o0

06
R GDIH R NXRK
#STORE *
LS Bt Bl B B P 2 2
STORE INTO *
* INTERMEDIATE *
* TEXT *
33 3 3 I I WX XN

Xo oo oo

«Xe
H2 *. 07
o *o
o¥ NEXT *. NO
%o CHARACTER A o%ecess
*. COMMA o%
*q ¥
*e

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
x
.
X
.
.
.
.
.
.
.
.
.
.
-
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

o
* YES
.
.

X
*H*E
* B4 *
* *
W %

Chart AA.

54

14
e E TN
#STORE NUMBER OF#*
* BYTES TO ZERO ¥

eeX* AND ID-CODE M %*Xeo

#IN INTERMEDIATE
* *

TEXT
3636 3 36 9 I I 36 3 36 I I I X 3 XX
.

Xe o o0

15
NI T W KN
*ERR *
LR R Ot St Bl
STORE ERROR #*
* FLAG IN *
* BYTE 24 *
IR IR
.

es e 00 ec s s e0s e

CCW Translation

© 6 0.0 0 00000 00 00000 000000000 8XEXE 0000000000000 00000000000000000c000000C0CTC0OT0

cessesit

.
NO % NEXT *e
eeseo¥e CHARACTER A o
LANK

L2 22

* *k %
o
»

* %k %k

Xe oo %

o
XRENRBLNEEERERERLR
EVE AMB3%

ERR¥—#— %% —%—%—%—%
esees o ¥*TRANSLATE THIRD*
* TERM *

*#pC=21 C=00 T=01#%
L2 R 2 2 2
«CORRECT

X 09
FRERECLHERERRIE X AR
*STORE *
e e e e o et S
* STORE INTO *
* INTERMEDIATE %
* TEXT *
IR R RN NN

Xe o oo

oXeo

D4 *. 10
o* *o

EXT *o

NO o% Ni
Xeeoeoo*e CHARACTER A o%
*, COM

OMMA o
*o o
%o ok
YES

Xe oo oo %

11
ARERREGRE R R KRR
EVE AMB3%

ERR¥ =¥ —%—¥— Nk —W—%—%

TRANSLATE *
¥ FOURTH TERM #
*PC=17 C=00 T=01%
LR I s s i
«CORRECT

.

.
-
.
.

X 12
I LK RR
*STORE *
Lt B e S S P 2 B 3
* STORE INTO *
* INTERMEDIATE *
* TEXT *
IR R KR

Xeoo oo

oXe
G4 *e 13

*o

*, B
. .
*g o
* YES

¥

seecsscssssscssscescssceXe

*XH R

%04 *

* B5*
x *
*

EREX * TEXT
* * P T T
* E4 * .
* * -
*k R .
X .
. ssescsccssXe
e YES .
o¥ao X 07
H1 *. 08 *****Hz***i******
¥ *. STORE *
. NEXT * BOUND ARY *
*. CHARACTER ‘A .*X....o...*ALlGNMENT BITS *
#*o BLANK oW #* ACCORDING TO
*e o ¥ * TYPE CODE *
*e o P Y e
* NO
B
.
.
.
.
oeXe 10
J1 %*e 09 *****Jz**********
o ¥ *eo *OCF
o* Is *o P T . *-*ERR
* 0 CODE TYPE eteeeeeeeeX¥ TRANSLATE ¥ eeoee
Hs E+ OR D # * LENGTH
*e ¥ * CODE *
%o oF I KX KR
* YES « CORRECT
. .
. .
X X
*% X % %%
* * * *
® F3 # * Ba *
* * * *
33 % % 3%

Chart AB.

06
HARHRGDH RN RT KRR
*

* INTERNAL CODE
* FOR TYPE A IN

*
*
*
* INTERMEDIATE *
*
¥*

22227 ET 2T
*AB * * *
* B2* * B4 *
* % #* *
* * AR
. .
. .
- -
DC eXe oXe
B2 *e 01 B4 *e 11
o* * o o® .
NO o* IS THERE %o . IS *o NO
esee¥*eA DUPLICATIONS#* #, CODE TYPE o¥eceseccceccscccsconse
. #. FACTOR ¥ . A o .
- *o o ¥ * o o ¥ -
. *e o *e * -
. * YES * YES -
. o . .
. . . -
. . . -
. . . .
. . . .
. 02 X 13 X 12
. *****cz********** ERRERCHEH A ERRERE NI IR R
. *CCF *EVE AMB3#%* 3* *
. *—%— *—*—*-*—*-*o*ERR ERR¥ =% —#— ¥t mi—it =% * LINK TO *
. * TRANSLATE ¥eovoee cocsee¥ TRANSLATE * * SUBROUTINE *
. * AND - . 3* CONSTANT * * ACCORDING *
. * STORE * . . *PC=07 C=BO0 T=02% * TO TYPE CODE *
. 3636 36 3 9 % 3 3 I 3 I 3 H . . 3 3 3 36 36 96 6 3 3 3 3 3 X XN * *
. « CCRRECT . . «CORRECT 39 3NN
. * C « DCC *
. #eso0sc0000000e™
. . - . . * D o DCD *
eecccccscerXe . . - $eoevosccccnccci
- - . . # E « DCE *
eXe . . eXe ¥eeossoecovcvceeit
D2 %o 03 . . D4 *o 14 * *
o *o - - o ¥ *e *e seceed
o ¥ Is . . NO o% NEXT *o ERR* DCH *
*e CODE TYPE . eXesoo¥e CHARACTER A o% ceo¥eosacecsessaseci
*o CORRECT o# . . ¥oe BLANK o% . « D *
*, ¥ - . *o o* o EEEEXNEEAEEREANR
He o¥ . . *o o X -
* YES . . * YES KR «CORRECT
. . ° 3 3 3 ¥ - * * -
- . . * * . * F3 * -
. . . * E4 *eXe * * -
. . . * * 33 -
. . . * 3R . -
eXe . . X 15 -
E2 * o 04 . . I 3 36 3 E 4 % 3 3 333 33 3 -
¥ *o . . * MULTIPLY * -
NO o % IS *o . . # DUPLICATION * .
eese¥e CODE TYPE ¥ . . * FACTOR BY #¥Xeossoeececcsnancanse
. . A . . . * LENGTH CODE
. *o o . AR . * AND STORE *
. *e o . * * - R e eI)
- * YES . * F3 * . .
. . . * * . .
. . . *RXHR . .
. - . - . .
.
. -
. eXe - X . eXe
- F2 *q 0S - *****Fa********** . F4 * o 16
. ¥) *o . #*ERR . o *e
. % IS THERE *+ YES X *—*—*—*—*—*—*‘*—* X YES <% RESULT *o
. %¥eA DUPLICATIONe¥eeooeeeeX¥®* STORE ERROR *X-....-o.*.GREATER THAN o%
. #o FACTOR o X * FLAGS IN 65535 oW
. *o o ¥ . *BYTES 23 AND 24* . .
. #e o . LTI T T T Ty 2 *oe o
. * NO - . * NO
. . . -
- . . .
. . . .
. . . .
B . . .
. X . X
. .
. .
. .
B .
. .
. .
. .
. .
. -
. .
. .
- .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
-
-
.
.
.

DC Translation

.
.
.
-
.
.
.
.
.
.
.
-
.
.
.
.

17
_****&54******&***

*SET PARAMETERS *
FOR BUMP *

* SUBROUTINE *
*

*

36 38 36 36 3 36 36 3 3 3 33N X
.
.

eececccesccccccccsccccccXe

3 3% *
*064 *
* BS5*

B

3*

Phase I 55

R
#AC *
* Bl¥
* *
*
-
-
.
CNOP X 01
Edabta- RS A SRS 220
*EVE AMB3#

Hm W m e — Nk %= K= FERR
*TRANSLATE FIRST¥eececcccccccscse
*TERM M=6%
*PC=03 C=10 T=03%
LR I R e R bbbt
«CORRECT

Xe éoo

02
*«{**clnu*&u&iﬂ**
*#STORE

Lt B 2 T B &—ﬁ—ﬁ

* STORE INTQ #

* INTERMEDIATE #

* TEXT *

REZ SR X 22222
.

Xe e s oo

03
R IRD] WX
* *

STORE MMM BITS #
IN INTERMEDIATE#
* TEXT *

* *
I I NN

Xe oo s o

oXe
E1 %, 04
*g
*. NO
2" CHARRCTER A s¥uo
¥, COMMA _.%

.
o oW

*

PIEEEE)

0S5
I TS TR T
EVE AMB3
XN =¥ = ¥ = RERR
#TRANSLATE NEXT *ccececccccccccceX
TERM M=8#
*#PC=05 C=10 T=03#%
NI AN NN

«CORRECT

Xe oo

06
nai&us;******i*&i
*STORE
Q-&—l-’-i—ﬁ—i-i—ﬂ

* STORE INTO *

: INTERMEDIATE :

NI NN
.

Xe oo

o7
HRERNE] R TN RN
» *

*STORE NNN BITS *
IN INTERMEDIATE®
* TEXT *

* *
RN NI N XNR

.
.
.
.
.
.
.
.
.
.
.
.
.
-
.
.
.
.
.
.
.
.
.
.
.
.
.
.
-
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
-
.
X

.
.
.
-
-
.
X 09
J1 o8 u-νz&*n&**nw;*
o® - *ERR
¥ NEXT #e NO Lo e e ot *-*—&-*
*o CHARACTER A o*c---.---X* STORE ERROR
*o NK o % FLAGS IN
*. ¥ *EYTES 23 AND 24%
Ho ok P T e Y
* YES .
eXesessescescsssssccssccsssne
.
X
LA 22 2
*04 *
* BS*
* *

*

Chart AC. CNOP and DS Translation

56

ok ok ok ok ok ok ok 3k 3k sk 3k 3k ok ok %k 3k 3k ok 3k 3 ok sk ok 3k ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok 3k ok ok sk ok ok ok ok ok oK ok ok 3 oK ok sk Kk sk oKk ok ok ok ke ok ok sk oK oK ok ok % oK ok ok %k ok ok ok % ok ok ok ok 3k 3k ok 3k ok 3k 3K oK ok ok ok ok ok ok ok ok R K K ok K K ok R K %

A4 *e 10
*

*
NO o% IS THERE %,

-...*oA DUPL!CATION-*

sessesesersssessnssense

R R R I N A A A A AP A A A S S P T AP ST ST

.
esccscsccaXe

YES

‘O
*e ox
YES

Xeoo oo x

*****quiii*&*&ii
*DCF
—i-i—-&-i—*—*—*ERR
* TRANSLATE *eo0e0
* AND *

esecccsccne

* STORE *

L R bbbl
«CORRECT
.

.
o Xe
Ca *e 12
o *

o ¥ IS *o NO
%o TYPE CODE oe¥eeecccocccscscseX
*o CORRECT o
. .
*e oF
YES

Xe e oo e x

13
IR RD G XN
* STORE *
* BOUNDARY *
*AL!GNMENT BITS *
* ACCORDI
* TYPE CODE *
L2 2 e e 2 2

.
.
.
.
.
.
.
.
.
.
.
.

Xeoeo e

.
Ea *e 14
*
o NEXT *o
o CHARACTER A %
%o BLANK %
*o o
*e ok
N

Xeovee x

oXe
Fa %o 15
¥ *,

_e¥® Is *o NO
*o TYPE CODE o*ccessssscccsceneX
*o ok
*. o

%o o
YES

Xe s es e x
.

16
I RGN RN
OCF *

EoF WKk X~ R K—FERR

* TRANSLATE *e000e

* LENGTH CODE %

* A RE *

P T e
«CORRECT

Xe oo

HQ *o 17
*,

¥ *. NO
*o CHARACTER A e¥eceseessscessceeX
*o BLANK %

*q ¥
. e
* YES
.
.
.
eecsssXe .
. .
X X 20
R 2 NS 2T 222l “***“JS****I**{**
MULTIPLY *ERR
LAt B B B B B B 2

18
*
*
DUPLICATION *
FACTOR BY *
* * FLAGS IN

*

*

*
*
*
: LENGTH CODE
*

a2 T 2T TR T 22
.

IREEE)

19
Ead A CS 2T IS LS 2
*SET PARAMETERS
*
* SUBROUTINE
*

EEEE R]

.
P T I T T .
. .
. .
eXeosooccocseccescscscccccce

ERHER

%04 *

* BS*
* *

* STORE ERROR

*BYTES 23 AND 2
R e e

LEa A i
*AD *
* Bl
* *
*
.
.
EJECT o1
RREERD] I RRN RN
EVE AMB3

Em e e == X~ ¥ NON—BLANK

* CHECK FOR *ooee
* BLANK *
* OPERAND *
EI T Ty Ty 22
«BL ANK
eccccccccce o Xeo
-
X
XX
%04 *
* BS*
* *
*

02
*****91******§***

*ERR
- l-*-*-i—*—*—l

R I N R R R R A A R R R IR I I ey

ees 0000 s 0s 0000000000000

eeee* STORE ERROR #Xee
FLAG IN
* BYTE 24

P36 IR KN RHE ***

B3 36 3636 36 36 96 3 JEI 3 36 I 6 I 6 3 I IE I I 36 I I I IEIE I I I I I IE I IE I I I IE I I I I 36 I I I I IE I I I I I I I I I I I I IE I3 I I I3 3 I I3 36 I I I I I I I I I I I I I IEI6 I 336 I I I I I I I I I I I I I I I I I 63 I I X2

FRXRE
#AD *
* F1*
* *
*
.
.
ENTRY X 03
PRI TR T XL 2T X
EVE AMB3

F—R =Wt K- *=HERR
* TRANSLATE
* OPERAND
*PC=03 C=20 T=01%
3 3596 3 I I I I 6 KX XX

«CORRECT

¥eevececsscccccce

Xe s

04
H WX HG] KR HXE ***

*STORE
-*-!-*—l—*—*—i-*

STORE INTO *
* INTERMEDIATE %
* TEXT *
IR TN RN RN

Xe oo e

0S
*i***ﬂ[***l***i*i
STORE *

* ACTUAL SYMBOL *
I

NTO
* INTERMEDI ATE *
* *

3 36 96 3 3 I 36 I I X KKK

Xe oo e 00 e 0000000000000 00000000000s000000s

s 3k ok ok ok ok ok ok ok ok ok ok ok ok ok ok oK ok sk ok ok ok ok sk ok %k ok 3k %k ok ok ok Sk dk ok ok 3Kk ok dk ok 3K 3 ok ok Kk ok 3k ok Ak ok ok %k Xk ok X

% ok ok ok ok ok ok ok ok ok ok 3k dk o ok ok ok dk ok k sk ok ok sk ok ok ok sk ok dk ok ok ok ok ok ok sk ok ok sk ok ok ok ok ok dk 3k ok ok ok ok ok ok ok ok ok ok ok ok ok Kk ok 3k ok ok ok ok Xk

.
.
.
.
.
.
oXe 07 -
J1 *, 06 *****Jz*i********
o *q *ERR
o NEX *e NO *-*—*-*-*-*~*-*-*
*o CHARACTER A e¥seeecoeeXi STORE ERROR *
* o BLANK o * FLAGS 1IN *
*q ¥ *BEYTES 23 AND 24%
He oF 3 3 3 I 336 I I X X XK
*YES -
eXeoeoeeosescccscsccscccccccccns
.
) X
%3 HX
*04 *
* BS*
* ¥
*
Chart AD. DROP, EJECT, END, and ENTRY Translation

END

DROP

ERERR

*AD *

* B4*
* *
*

X 08
RHRHHBLHE R R HE
EVE AMB3%
Xk Hm kR —H—¥—%—¥ERR
* TRANSLATE ¥oaeoee000cccccccce
* OPERAND * .
*PC=03 C=80 T=02%
3R KKK R

«CORRECT

.

Xo oo

*****c4**.**.**33
*STORE *
W e e W e I P I W
* STORE INTO *
* INTERMEDIATE #

*

*

* TEXT
I3 366 I 3363 I3 X R

Xe o oss o0 s 0000000000000 000

.
.
.
.
.
o
oXeo 11
D& *e 10 HRRREDS H R EEXRER
ot *o *ERR *
NE *, NO B S
. CHARACTER A e¥eeeesseeX® STORE ERROR *
#o BLANK % * FLAG IN *
*. o * BYTE 24 *
*e o 23 3 I I I I IR
* YES .
eXeooososeccssestrocsscascas
.
X
336 % %
*04 *
* BS#*
*

*

RN

*AD *

* Gax
* *
*

X 1

AERRRGLIEERREREE

EVE AMB3#

Kk kK k—K—R—k—RERR

* TRANSLATE ¥eesecscsecccccce
* OPERAND *

*#pPC=15 C=B0 T=01%
IR R X

«CORRECT

Xe o oo

13
*****HA**********
*STORE
L Rt i B *-*-*-*-*
STORE INTO *
* INTERMEDIATE *
* EXT *
RN RN

‘o

.
.
.
.
.
- eXe 15
Ja *e 14 L2 S S NEE LS 22 2 2 22
o *o #ERR *
¥ NEXT *, NO L i et Bl
o CHARACTER A e¥eeeeeeeeX¥¥ STORE ERROR #*
*o BLANK % * FLAGS IN *
*o o *BYTES 23 AND 24%
*e o L e T 2 T e T

* YES .
eXeoseescccccccsssccsccscncs
.

X
XX AR
*04 *
* BS*

* ®

*

Phase 1 57

EQU

KN

C1 *o 01
.* *o
VAL ID *o NO
*SYMBOL IN NAME ¥ceecccccccccccccne
*e FIELD %
. .
Ky o
YES

Xe o o0 0 X

02
HHERRD] RK Rk HEH
EVE AMB3#
* K Rk — ¥ ¥—KERR
* TRANSLATE *eee00eccccccscceX
* OPERAND *
*PC=03 C=90 T=02%
AN KR KRR RK R
«CORRECT

Xe oo

*****51********23
*STORE *
Fm R Rk — W R
* STORE INTO *
* INTERMEDI ATE *

T
****** ¥* 33 HH ******
.

Xe oo 00

.
F1 *e 04
- *o
o® NEXT *e NO
*e CHARACTER A e¥*ceescescessacsccceX
*e BLANK %
. .
¥a o
YES

Xe oo oo %

oS
HHRHRG] IR KRR XX R
* DETERMINE *
* VALUE AND *
* ATTRIBUTES *
* OF SYMBOL IN *
* NAME FIELD *
LE R R R e e s 2]

3C6 6 5 6 5 6 6 6 0 6 6 0 6600000 5060600008000 S 0000000060080 000e000s00000000000000000000c000c0000000

.
.
.
.
.
.
eXe
H1 *o. 06
o . *o
o¥ *e NO
*o CORRECT e¥eoeccescscccscceX
. .
*, o
*e ¥
* YES
.
.
.
.
.
X 07 o8
(322 NBE TSR 2 222 **l**JZ**********
* STORE * *ERR
* VALUE AND * *—*-*—*-*-*—*-*-*
* ATTRIBUTES IN ¥ * STORE ERROR *
* SYMBOL * * FLAGS 1IN *
* TABL * *BYTES 23 AND 24%
R e e R LR T S s e L
. .

eXeooeosoescssescscccnccnccee
N

X
E2 2223
*04 *
* B5*

* ®

*

Chart AE. EQU and EXTRN Translation

58

ook ok ok ok sk sk s ok ke ok ok ok ok ok ok ok ke ok ok sk sk ok ok ok ok ok ok ke ok ok sk ok k3 ok sk ok ok ok ok 3k ke ok ok ok sk ok ok ok ok sk ok ok ok ok ok ok ok ok ok sk sk sk ok ok sk ok ok ok ok ok ok ok e sk ok ok ok ok sk ok ok ok ok ok k3K sk ok ok ok ok ok ok ok sk sk ok ks ok ok ok ok oK ok 3 ok ok k ok ok K ok ok b

XEHEH

*AE *

* Ca»
* *
*

.
.
.

EXTRN

X 09
HREERCHERERRH R RS

EVE AMB3
Fe e N k==X —RERR

* TRANSLATE Hoeeesscecssscccscne
*

* OPERAND

#PC=03 C=20 T=01#

LI e s s L]
+«CORRECT

Xe oo e

10
*****94*******&**
*STORE
L R et St I 4
* STORE INTO *
* INTERMEDIATE %
* EXT *
WHRRHREKRERRRRRRRR

.

Xe oo oo

11
HHK K QRN HH
* STORE *
* ACTUAL SYMBOL *
* INTO *
* INTERMEDIATE %
* *
*

363 36 36 3 36 3 I I 3¢ 36 X3¢

Xeooo oo

Fa *e 12
o *o
¥ MAXIMUM *, YES

*¥e NUMBER OF oe%ceecccescccccsceX

%*e EXTRNS o%
* o ¥

*e o
NO

Xe oo o0 %

eXe
Ga *e 13

o® %o
*o

o ¥ NEX NO
e CHARACTER A e¥oeecseeeX¥

*o. BLANK o%
*o o
*.

* YES

e © 6 6.0 0060 00 0000000006000 0000000000008 0000000000000000

14
*****GS**********

STORE ERROR
FLAGS IN
*BYTES 23 AND 243
LR R S S XS 2% 2

eXeoooocsoscsccsccscsssconcone

.

X
EE T
*04 *
* BS*

* %

*

Xe oo e 0 Xk

02
HRHERC] R EEERE R

* TRANSLATE *oeXe
*

* OPERAND

*¥PC=01 C=00 T=03%

222222 22 2 I it E]
«CORRECT

Xe o 00

03
R HD T R XX
*STORE *
L e e Dl T B 2
* STORE INTO *
* INTERMEDIATE *
* TEXT *
I I I I KN

Xe o o000

.
E1l * o 04
o
¥

* 4 BLANK o ¥
*e ok
Xo o

YES

Xe oo e o X

oXe
F1 *e 0S
* *

. .
YES «*% OPERAND ¥,

seee¥e LEGAL FOR o%*

R R N A N S A S A ST ST A A

*e SYSTEM %
. - ¥
*e o
* NO

.
.
.

eXessooseces

.

X 06
G] K I RN
*FORCE STARTING ¥
#*COLUMN TO SCAN *
*# ACCORDING TO ¥
* SYSTEM *

* *
3 36 3 3% % I 33 K X KX
.

MR

07
I IIER 2R T 2T 2 X
*ERR *
[2 T N PR e 2
* STORE ERROR #
* FLAGS IN *
*BYTES 23 AND 24%
336 3 3636 3 36 36 36 3636 N3 X

eecsescee o Xe

.
X
A RH
*04 *
* BS5*
* *
*

Chart AF. ICTL and START Translation

NEXT *o NO
#*o CHARACTER A o¥%eeX
A

R ER]

%k ok ok ok sk ok ok ok sk ok ok ok sk ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok sk ok ok ok ok ok K ok ok ok ok ok ok ke ok sk ok ok ok ok ok ko ok ok ol ok ek ok ok ok ke ok sk ok ok ok ok ok ok ok sk ok ke ok ok ok ok ok ok dk 3k ok ok 3k ke e ok ok ok ok ok ok ok ok K ok ok ok 3k ok ok ok ok ok ok ok ok ok ok ok K K

essessesccscsccseci TRANSLATE *
*

Xeoeesocestocs0rsocsecconococs

12
HHERERE TR RN RN
* SET LOC.
*TO ZEROe N
#* ID-CODE K AND ¥*¥Xeseeoooos¥
*ERROR _FLAGS IN *

*

* TEXT
NN

.
START oXe
B4

.
#¢ZERO o¥% .
L .

* YES .

. .

. .

. .

. .

. .

X © 09 .
HRRERCEERERERREE RN .
EVE AMB3# .
ERR#—F—F—d— = —%—%—% .
.

OPERAND * .
#PC=03 C=A0 T=01% .
LR e e s Tt .
«CORRECT .

. .

. .

. .

. .

. .

X 10 .
HREHRDEH®ERERERRR -
*STORE * .
L e . T B B B) .
.

.

.

.

.

.

.

.

.

.

X

ececcsssecscecscscsccccscsXe

% 3 % % %

*, 08
o* FIRST ¥,
«¥ START AND #*. NO
*e LOCATION eHeesesscsecsssccsces
*o COUNTER o%

*# STORE INTO *
* INTERMEDIATE *
*

* TEXT
IR RR RN
.

. .
.
.
.
.
o Xe 16
E4 *e 11 SRR ERH
o *ERR
0 o NEXT *q L e R L L B T St 3
o CHARACTER A % * STORE ERROR
%, BLANK o% * FLAGS IN
*o o *BYTES 23 AND 24%
*e o% L e s S R s s L

* YES
.
-
.

3
EETT TR TR TR 2
STORE NAME IN #*
*TEXT RECORD IF #
¥LEGALe SET LOCe¥
CTRe TO START #*
* ADDRESS *
E2 22222222222 22 22

-

Xe o oo

14
LA Z 2 RS R L 2 22 8 22
*BAR *
RN R e e e .
#ALIGN LOC. CTR.¥
*TO DOUBLE-WORD *
* BOUNDARY *
36 I 3 3 I 3 3 I I I XX
. . .

Xe oo oo

15
H R R R R R R RR
*TLUL *
L et L T I e 2
* STORE SYMBOL %
* IN *

* SYMBOL TABLE *

R T2 I T]
.
eXeooeesosecccccccsccscccsce
.

© 06000 0060000000 000000000 COL00IOOLIOLINGIEOGEOEEOCELIEEOGEEOETS

X
EXERR
*04 *
* AS*

* *

*

Phase I ., 59

ORG

Chart AG. ORG and SPACE Translation

60

XXX AR
%AG *
* C1%

Xeo oo

1
HHF R] R IR RRR RN
EVE AMB3

HmR—dm N =Rt —%—%=KERR

* TRANSLATE *es000c0cccsccsscne
#*

* - OPERAND

*PC=03 C=90 T=02%

LR R Es A i At
«CORRECT

Xe o oo

*****01********25
*STORZ *
Ll Dt Bt B S)
STORE INTO *
INTERMEDIATE

* TEX *
33636363 3 WX XX

Xe oo o

oXe
£1 *o 03
o ¥

*o
ok NEXT *e NO
#*e CHARACTER A es%*sceeccccssscsccceX

%o BLANK %
*e o
*e o

YES

Xe oo s 0 %

04
XXRRRE] R KRR RHX
* DETERMINE *
* VALUE AND *
* ATTRIBUTES OF *
* SYMBOL IN 3*
* OPERAND *
L2222 R e S S R R

Xeoooss

o *e N
*o CORRECT e¥oeecesssecscsscccX
*

*o %
*e ok

Xe oo o 0 X

06
W3 36 HH]3I KN XX
*

*
SET PARAMETERS #
* FOR BUMP *
* SUBROUTINE *
3* *

336 36 3 3 I I I 36X X XN
.

3<® ¢ 6 6 ¢ 0 0 0 00 0% 006000 000 E e S0 s G0 0e000esc00000SCO0CENILEGIOCOOCOCIOCIEOEOGIOIETLIOOE

07
KK KRN R RN
*ERR *
L T e e B T P Bt
* STORE ERROR %
* FLAGS IN *
*BYTES 23 AND 24%
LR I TR I T I]
.

eXeoeoeoeescessececcccccccns

X
EX)
*04 *
* BS%

* *

*

<k ok ok ok koK ok ok ok ok %k ok %k k %k ok %k kK 3k ok ok ok ok sk 3k ok ok ok sk ok 3k ok sk ok ok ok k ok k3 ok ok ok ok ok sk ok ol sk ok ok ok ok ok ok ok sk ok ok k ok ok sk Sk 3k ok K ok ok ok K ki ok ok ok sk 3k ok ok ko ok ke ok i ke ke sk kX ok ok %k

EXT Y
*AG *
* Ca4*

SPACE X 08
I3t 3 3 3 C 4 3 33 3 3 ¥ %N
SET OPERAND ~*
FIELD IN *
* INTERMEDIATE *
* TEXT *
* A ONE ®
36 36 36 36 36 36 3 3 3 36 3¢ I I 3 ¢ *
.

MEERE

09

3% 3 33D 4 I KX

NO *EVE AMB3#*
VALUE # =% =% =3 =% =3 =% =% =%
eeeee¥ CHECK OPERAND #
. * FOR VALUE *
#PC=00 C=60 T=00%
R NR KRN E R

« VALUE

.
.
.
.
.

. X 10
HRHRES KRR ENR
EVE AMB3#
FmR—Rm %K% —%—HFERR

* OPERAND *
#PC=01 C=00 T=03%*
HERHEERERREER TR XS

«CORRECT

Xe oo

****1F4**&§****ii
*STORE *
[N T Tt e
* STORE INTO *
* INTERMEDIATE :

* TEXT
ERAHERHRHRRHERR R

R R R I I A A S B A S A SR A I

X
3% % ®
%04 *
* BS*

* ®

*

.
seeccessseseXeXesosoncsesccscscsscconcos

* TRANSLATE #oeeessesccesccccsee

Xe oo o s oo e

12
HERERFESH AR R R ERF
*ERR *
[RE T T T e e
* STORE ERROR *
* FLAGS 1IN 3*
*BYTES 23 AND 24%
L R L R

.

USING

Chart AH.

SRR
*AH *
* B1%

Xo oo

[
HHAEED] R R KRR
*EVE

AMB3*
e tm N N — ¥ R = HERR
*TRANSLATE FIRST¥*eses
*

* TERM

*PC=03 C=BO0 T=02%

L I bt
«CORRECT

.

Xe s

}*&iic1liiiii§i2§
*STORE *
L R e s T
* STORE INTO *
* INTERMEDIATE *

* TEXT *
AN IR KRR

Xe s oo

oXe
D1 *e 03
o*
o NEXT
#+ CHARACTER A
*e COMMA o
*o ¥
*o o
YES

Xeosee %

04
HHAHRE] AR RNT KR
*EVE AMB3%

Em W R W=k —Km K- ¥ERR

* TRANSLATE '
SECOND TERM *
*PC=15 C=BO0 T=01#
L s e i

«CORRECT

Xe oo

i****Fl**&***i*gi
*¥STORE *
e e e Rttt 2L]
* STORE INTO *
* INTERMEDIATE *

* TEXT *
NI NI HHR

.
.
.
.
.
.
oeXe
G1 * o 06
o *o
*e NC
#o BLANK o ¥
o o
Ko oF
* YES
eXoosecsesscsas
.
X
kR
%04 *
* BS*
* *
*

*e
*o. NO

KeeeosssscssescceX

X6 8 0000 6000006006000 06000000000000000000000000000000s000000s00000c0Es e

(x4
Y e)
*ERR *

¥ NEXT D S Sl B e Pt s
#¢ CHARACTER A e*eseeseeeX¥®¥ STORE ERROR %
* FLAGS IN *

*EYTES 23 AND 24%
LR I e 2)

USING and RR Format

¢ ok ok Rk sk ok ok ok sk ok ok ok ok ok ok ok ok K kK oK 3k Sk o Kk i ok ok oK ok oK Kok K K 3k Kk ko ok ok ok R ok ok ki ke ok o ol i ok ke ke ok ok o oK K K ke kK K o Ak ok ko ok ok ok ok ok ok R R R R R K K R R R R R kR K R K Rk Rk Rk K R R KR KK Rk R K KKK K KK Kk KK KK K om

L1222

MACHJ
SET SWITCH

* kKKK

TO INDICATE

SPM
INSTRUCTION %
*

08
EERERDIHEEE RN RRE

*
*

%eoe

L2222

*AH *

* Ba*
* *
*

.
.
.

MACHB

X 09
F T T v
EVE AMB3

Fw e W W= R ®=*ERR
«X* TRANSLATE RI1
*PC=03 M=1

*C=00 T=01#%

Translation

.
.
.
.
-
.
.
.
.
.
.
.
.
.
.
.

sess e

.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

YE

see

MA

EF

+CORRECT

Xe oo oo

u*u&*cq«&uu****ls
*STORE *
L i e e e ot I
* STORE INTO *
: INTERMEDIATE :

EE 2 T TR

Xe oo oo

¥ *o

S o *q
«%#SPM INSTRUCTION®
*o o
*gq ¥
L

Xe o oo

eXe

E4 *e 12

. .
o NEXT *4 NO
*, CHARACTER A e¥cceccosccccccsceX
oM

%o, COMMA %

* kX% .
* * .
*AH ¥ Xe
* Fax .
XN .
HI

C X 13
EARREEFLRERER XXX XS

:TRANSLATE R2/1 :.

*PC=01 C=00 T=01%

R
«CORRECT

o

EEEE RSP

*****GA*i*l***!
*STORE

L R o B o 2
* STORE INTO

#* INTERMEDIATE

* TEXT
HEEEEEEEERERRRER

.

.

.

.
ecssscceXe

o
o8 «Xe
Ha
¥
NEXT
CHARACTER A
e BLANK %
* *

esecesecsssrnes

sescee

escecee

I R R R R R R S R A I R R R R R R R R R I N A S S S S PP P P PP

7 16
HERERHSHERXRR K XS
#*STORE NUMBER OF#*
#* BYTES TO ZERO *

«X¥* AND ID-CODE M *

#IN INTERMEDIATE®
* T *

I T T TR R
.

Xe s s o0

17
LA NLT R 222

*ERR *
LR B PR T T P e 2

* STORE ERROR %
* FLAG IN *
* BYTE 24 *
R T e e et

.
oXe

Phase I

61

RN
XAT *
* AD¥

Xe oo

MACHC 01
LSRR AT V-EE R T T T
* *

* SET SWITCH TO ¥
* INDICATE *
* FORMAT 1 *

* *
ERREENMER R AR RN

ETT S .
* * .
AL *eXe
* B2 o
ERER .

MACHC X 02
HHHERDBE RN HRN RN AR
EVE AMB3

ERR* =¥ %% o X—W Wk
ee¥* TRANSLATE R1 %
* *
*FC=03 C=00 T=01%
BTN IR RN

« CCRRECT

Xe s o0

03
EERRC2HF AR RERR
*STORE *
L D o ot Dl Dl DL P
* STORE INTO *
* [INTERMEDIATE %
* TEX *

RN R

.
.

Xe
b2 *e 04
. *
NC o% NEXT *
Xeeso*e CHARACTER A o%
%o, COMMA %

sees s st sess s

, o
®e o
* YES
.
.
.
.
X
E2 *, 05
ok *o

.
*o o
He o

Xeo s o0 0 %

06

EERRRFORRRARRRNAR
EVE AMB3
ERR¥F= ¥ e bl m o —
Xeeoe* TRANSLATE R3 *
* *
#PC=01 C=00 T=01%
AR N RN R

+« CORRECT

.
.
.
.
.
.
-
.
.
.
-
.
.
.
.
.
.
.
.
.

X 07
KR G2 H KN X RN
*STORE *
L D i i et ad
* STORE INTO *
% INTERMEDIATE *
*

TEXT *
TN I AR

Xeooson

oXe
H2 *, 08
¥

*e COMMA %
*, ¥
%y o ¥
* NO
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

essesssceXe
.

X 16
HERERJOERERER AR
#STORE NUMBER OF#%
* BYTES TO ZERO *

o s *o NO
*#oFORMAT TYPE le¥see
* o*

*
o7 NexT Tx. vES
%I CHARACTER A +%ess

R

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

R

ceccsccccccscssccccssscscce

X 09
HHRERCHRRREEX RN
*

EVE AMB3#*
ERR* =¥ ¥t e W o W

eesee*® TRANSLATE D2 *
* *

3X6 6 8 8 660600000 6000 8008000000080 000 0000000000000t bR OIS

*PC=0S C=00 T=02%
IR ER
«CORRECT

Xeo oo

10
HHHERDATH KRR R
*STORE *

L e R et et et
* STORE INTO *
* INTERMEDIATE *
* TEXT *

NN W NN NN NN
.

.
.
.
.
X

e o
o o
E -

Xeoeee %

12
HARREFLEERERRRRER

EVE AMB3
ERR¥—%—F ¥ N = F e N ¥

Xeeo* TRANSLATE B2 #
* *

*PC=11 C=00 T=01%
R L e s
«CORRECT

.
.
.
.

#*STORE *
R e L e o e
* STORE INTO *
* INTERMEDIATE %

* TEXT *
LR T T

Xe oo oo

H4 %o 14

.) .
*e o¥
*e ok

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

X 13 .
HRERRGLNE RN RN RN .
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

* .
. .
. .
. .
.

eXeosoososne

oXe
Ja *ao 15
¥ .
NO o% NEXT *o

* AND ID-CODE M *Xoseoeeossccosccccsccosssscscsnsscecs*e CHARACTER A o%
*o BLANK

IN INTERMEDIATE#
* TE. *

RN RN AN
.

Xes oo

17
AN RN XN KRR
*
* STORE ERROR *
* FLAG IN *
* BYTE 24
R e e I T
.

eXeooeescsccesanccecsccscscscccssovcscccccsccccscsccns
x

XX R
%04 *
* B5%*
* %

*

Chart AI.

62

RS Format Translation

ok

*e ¥
*e oF

Es

esesc e s e X

RN

*AY *
* B2#
® *
*
.
MACHA X o1
HERRRBAERAEREA AR

EVE AMB3

ERR*= ¥R H—t—K—Foik
eesecee® TRANSLATE R1 #

. * *

#RC=03 C=00 T=01%
LR e il
« CCRRECT

.
.

X 02
HEXKRCDHHEEER A XKE

*STORE *
L et s et Bt S 2

* STORE INTO *

* INTERMEDIATE %

* TEXT *

L T
.

R

.
.
-
X

seses e

03
.
NO NEXT *o
Xeeso* s CHARACTER A o%
* M *

*, o®
*e o ¥
* YES

.
.
.

Xe oo oo

04

ERREREDH IR XA

EVE AMB3
ERR*—# =% =% = % —3 — % =%
Xeeeoo* TRANSLATE D2 %
* *
#EC=05 C=00 T=02%
33 333 I 36 NI NN N

« CCRRECT

.

.
.
.
.
.
.
.

X 05
HXAXRF2H KRR HK
*STORE *
LRt B P DS B Bt T 2t 4

.
. * STORE INTO *
. * INTERMEDIATE =
. * TEXT *
. LRI T e e T
. .
. -
. -
. .
. .
. .
. e Xe 07
. G2 *. 06 HERERGIHHERARHERN
. o ¥* o *EVE AMB3#* *XEX
- o NEXT *o YES R R R H-K—H—-%-%ERR ¥ *
. %o CHARACTER A e+¥eceeesoeX¥® TRANSLATE X2 F*eeeeX¥® H1 *
. *q (¥ * * * *
R R . *o ¥ #PC=11 C=00 T=01% LA
* * ¥e ¥ 303 3636 3 I 36K K KX
* H1 * . * NO «CORRECT
* * . . .
* R - - -
. . . .
. . eXseeoosescne .
.
X . . X

14 08
L P e T 2] X R HHIRAN KRN H R

13
STORE NUMBER OF . *STORE *
* BYTES TO ZERO * X NEXT *e . B e e e
* AND ID—CODE M *Xeeoessee¥e CHARACTER A o% o * STORE INTO *
IN INTERMEDIATE A o . % INTERMEDIATE ¥
* TEXT * *. o . * *
33636 3 363 36 3 3 I I I K *o ¥ - E2 22222222 222222
. * YES . .
. . .
. . . .
. . .
. . L.
. . . .
X 15 . . oXeo EG11 10
EEAZ S S NBR IS 222 - - J3 *o 09 HHRREJL R HERERRRR
*ERR * . . *, *EVE AMB3*
LR B S B P L P - . ¥ NEXT *e YES LR 2 2 RN Wk -RER
* STORE ERROR * . . %o CHARACTER A e%eceeeeeeX* TRANSLATE B2
* FLAG IN * . . %o COMMA o% *
* BYTE 24 . . *e o *#PC=01 C=00 T=01%
SR Z IR 2222 2222) . *e ¥ I 336N
. . . * NO «CORRECT
. . N . .
eXeoeosesascsscecesscsccnce . . .
X . . .
R . eXeoosooossee .
*04 *
* BS* . EG15 eXo . X 11
* * - K3 *o 12 - 33K G IR N
* . . . *STORE *
* NEXT *e . [
. CHARA?TER A o* . o* INTO *

. .
e o

E
* INTERMEDIATE *
*

* TEXT
®o ¥ EEFEEFRRFRERERERY

* NO

Chart AJ. RX Format Translation

X RR

*
FoeoeXH H1 *
* * *

X"

Phase 1 63

ERHER

AK *

* B2#

* %
*

.
.
.

MACHF

X 02
HREHEBOHH R RN RN RH
AMB3*

*EVE
ERR¥—X— k¥ m R Wm

esecee

EG1

Xeoo

EG1

© 8 6 0 6 0 0 6 0 0 00 60 0 8 0 S S C OG00S0 G008 0000 000000000 000000000000000000sLNsSIEIIOLOLTE

Chart AK.

6U

EG1l1

* TRANSLATE D1

*

*pPC=05 C=00 T=02%

LR R e e e s S]
« CCRRECT

Xe o s e

03
HREKRCDHE I RHN KR RN
*#STORE *
L T o Tt P A
* STORE INTO *
* INTERMEDIATE %
* T *

I3 I 36 36 I W I I MR

Xe oo oo

2 oXe
D2 *o 04
o *

o ¥ NEXT *o
*e CHARA?TER L
*

. .
*q o
%o o
* YES

.
.
.
.
.
X

05
XRREREDH I NN RN AN
AMB3#

*EVE
ERR¥ =% m X ¥t

* TRANSLATE B1 %
* *
*PC=11 C=00 T=01%
KM IR NN R R KR
« CORRECT

Xe oo

*****ngi******gg
*STORE *
L st B St B I
* STORE INTO *
: INTERMEDIATE :

TEXT
FHRERRRERRRARERLRR
.

o ¥ NEXT
*q CHARACTER A e*ccoecccescnsasnssose
*q)

.
-
.
.
.
S eXe
G2 *e 07
o ¥ *o
*o YES
.
¥* o ¥
*e o
* NO
.
.
.
sceseeeXe
.
X

13
KR RHD W KKK KA
STORE NUMEER OF¥*
* BYTES TO ZERO *

* AND ID-CODE M #*#Xeeooeoscccscccccscscsccccccsssssccos

IN INTERMEDIATE®
* 3*

TEXT
3NN KRR
.

Xe oo o

14
ARAREJ2HRRHRERXHR
*ERR *
I SR .)
* STORE ERROR #*
* FLAG IN *
* BYTE 24 *
X RRKRENNH W RIER KRR

.

eXeeeeececcecsorccsccscscescscsosscccsescsesssscesssees

X
X R
*04 *
* BS*

* *

*

MACHE

#Xeoeseeoe
* *

3363 3 #
*AK ¥
¥ B3#

Xe oo

01
KD TR KK KKK KR
* *
* SET SWITCH TO *
INDICATE *
FORMAT 1 *

* *
336 % 36 33 36 I 33 3 I N

*

.

®eeccccssssesssssssssssccsscccscace XX FORMAT TYPE
*o

® 0 9 0 000 000000 0000200000 sss 00000000000 X

SI Format Translation

EGleé o ¥,

D4 *o. 08
o ¥ *o

*o NO

letoose

¥

*o o
%o oF

YES

Xe oo o %

E4 *e 09
#*

¥
NO o% NEXT *o
eee*e CHARACTER A o*
#. COMMA %
* o ¥
He ¥
YES

Xo oo & %

10

R 4R NN R
EVE AMB3
ERR¥—#—%—dok—k—k—%—%
eeo¥ TRANSLATE I *
* FIELD *
#*PC=01 C=00 T=01%
FRERRFHRRRRERRRES
«CORRECT

.

Xeo oo

1
&*&&*th******«i*
#*STORE *
LR 2 DL T REL B PR PEY
* STORE INTO *
* INTERMEDIATE *
* TEXT *
3636 36 3 3 I 3 I I I I I K X H

.

.

.

.

eXeoesoneans

© 0 0 0600060060080 0 8600800000000 06000000000s0000000s000s0

.
eXe
H4 *o 12
¥ *o
NEXT *e
CHARACTER A %
*e BLANK %
*q o ¥

Xe 60660000 c0000000 00008000 0c0s000ses0000sss 00

NO o

YES

0s0se0es 000 x

MACH

¢ R
*AL *
* Al¥

Xe oo

G o
EETIITSRE TS TR 3
* .

* SET SWITCH
* TO INDICATE
* FORMAT TYPE 1 #*
* *

NI HE IR R

* ko ko

AR .
* .
HAL ¥4 Xe
* Bl1% .
XXX -
MACHH X 02
N RND] I RRE R RN
EVE AMB3#
ERR* =%t 3t m I

.
X
AR
*
* H2
*
XX AR

EG1

N
cee
.

* H2
XX

ERR

.
X
kR
*
* H2
*

* XN

X
HHRH
*

* ok

TRANSLATE *
D1 FIELD *
¥PC=05 C=00 T=02%
[T T T TR T T ey
«CORRECT
*
*
*

Xe oo e

03
***&*51**n*n**a**
*STORE

B R e it t 2 *
* STORE INTO *
: INTERMEDIATE :

R T

Xe oo s e

2 .
D1

o® *-
*o CHARACTER A

.X.
E « 05
*o
*o
*. CHARACTER A ¥
#*o COI ¥
*o
*o

.*
ot
YES

*

Xe oo 00 %

06
ST] I N NN
EVE AMB3
E N BT TN T B e 2
* TIANSLATE *
02 3
*pc=13 €206 T=02%
I N IR NN NN
«CORRECT

3*
*
*

Xe s oo

07
HREHRKG] HNXNHRE XXX
*

F e Kme
* STORE INTO *
* INTERMEDIATE *
* TEXT *
EEZ R R R T s e]

.
.
o

X

YES

Chart AL.

cess st seen e e Xk

eXeoosssescsccsccccscoccee

IR

*04 *

* BS%
* *
*

Xeosocseseoos

O R I S A A A R S R P A S R NP T R I AT A AP

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.

secea¥,

o
X*o

*e 10
*.
CHARACTER A
o
q. .*
X ¥
NO

Xe o oo e %

YE

s

*

ll*

oaox* F3 *

*

NO
.FORMAT TYPE l-*................-.

.

*q o
He ok
* YES
.
.
.
X 12
HHHRRD2E RN KRR RN
EVE AME3
Ho R KRR —R—H—¥-HERR
#* TRANSLATE *ooae
* L1 FIELD * .
#PC=03 C=00 T=01% .
L R e Rt X
« CCRRECT XK
. * *
. * H2 *
. * *
. 222
.
X 13
agz***&******
*STORE
L e st I 2

i
* STORE INTO %
* INTERMEDIATE *
* *

*

TEXT
LR e
.

.

.

eXeessesscsne

.
eXe
F2 *e 14
.* NEX *. YES
*e CHARACTER A s*ese
#*e COMMA %
. .
*e oF
* NO
.
.
.
sXesossecsscsse
. .
o X .
G2 15 .
¥ .
ot NEXT *o .
CHARACTER A o% .
.) .
*o o
*e oF
* NO
I RR -

* * .
* H2 *.Xe
* * .
>R .

X . 28
FHKRERHE R KR AKNH
*STORE NUMBER OF¥
* BYTES TO ZERO #

eeeX* AND ID-CODE M *

.

Ry

SS Format

IN INTERMEDIATE
* *

HRHEBRREREER AR
.

Xe s e

29
HRRHR DR KRN KR

*ERR *
o W o o B B W e
* STORE ERROR *
* FLAG IN *
* BYTE 24 *

Er I e YT
.

.
.
.
.
.
.
.
.
.
.
.
.
-
.

Translation

HRRR
%

* F3
*

KRR

cecee

Xe oo s s oo e

16
HEEERDIHERHERRERR
EVE AMB3#

Fe R RN K—H—R—F—FERR

* TRANSLATE
* L FIELD *
#PC=01 C=00 T=01%
R R At t

«CORRECT

Xe s oe

17
*****Ezaa*»&*****
*STORE
ii—l******
STORE INTO *
: INTERMEDIATE #*

TEXT *
L

18
HHRE R HH KRR ENERRN
*EVE

*oeoe

R

AMB3#*
Hm R R W — W= K —R—¥ERR

TRANSLATE
Bl FIELD *
T=01%
R e e s st
«CORRECT
* .
*
*

Xoe o oo

19
l****Gj**********
*STORE
i—* *—*—*—*—*-*-i
* INTO *
* lNTERMEDlATE 3*

*

* TEX
HERERERREHRRKEREX

* % K

*eoea

.
X
R H R
H2

XEEE

kK

R
*

RN

ETTES

* * YES
* C5 *X...-*.
* *

EER

*

NO
* G5 *Xeeeoits
* *

ERR
cee
.

.

X
22 2

o *o

¥ . *e N
%o FORMAT TYPE loe%*ecoe
*
.

*o o®
*o o
* YES
.
.
.
.
oXe
BS *e 21

¥ *eo
o NEXT *o
CHARACTER A o%
. oMM .

*a o
*e ok
*YES
XY .
* * .
* C5 *eXe
* * X

.
ERER .
X 22
HHHARCSHHHRRHRRER
AMB3*
L Bl el St e Tt et et
* TRANSLATE *
B2 LD *
*PC 19 C 00 T=01%
KRR H KR
+CORRECT

.
.

X 23
*****DS**********

*STORE
[N S Tt D T e R *

* STORE INTO *

* INTERMEDIATE %

* TEXT *

IR R
.

.
.
oX

24

o *e

* NEXT *.

CHARACTER A o%
) o

* g ¥

o
* YES

25
HHEARGS R R A ERK
EVE AMB3#*

.
.
-
.
.
.
.
.
.
.
.

Hm R Wk m kN — K=k —XERR

* TRANSLATE
* L2 FIELD *
*PC=01 C=00 T=01%
A IR RN SR

+CORRECT

.
.
.

X 26
;****Hsb*nn**&***
*STORE
e S e s T &
#* STORE INTO *
#* INTERMEDIATE #*

*

* TEXT
39 3 33 I AR

.
.
.
X
Js
.*

*o 27

*o
o®

CHARACTER A
o

*e COMMA
*a o
*o o

X

Phase I

ceces

.
.

ses s e

.
.
.
.
.
.
.

. .
. .
- *o oXe
- B2 *e 02 B3 *e 01
- EE S E-BR I XL R RS ¥ * g o ¥ * g
- * * YES o% *e ES % IS *o
0 * ERROR RETURN *Xeoeoosooe¥o e¥Xeeeosese*s CHARACTER o%
- * * *o BLANK ¥
RN KRR *e o*
. Ho o¥
. * N
. .
. .
- .
. .
- EMO4 T eXe
o4 c3 *ao 03
* .

NO .* IS YES . ¥e NO
.X.oo.-oo-oo-o-.o-.ooooo.-oo...*.cc LESS THAN .*X..-.-... C = 40 e¥ oo
. SEE NOTE *e *e ¥
. . o’ *, o
. *e o *o o
. * YES *

. .
.
.
- - L2 2 2]
- . *AM *
. EMO8+4 X * C2%
. D2 *o 05 * *
- ETTTY -¥ * o *
. * YES o¥% *o
- * C5 %¥Xeseo¥e
. *
X HE
.
.
.
.
-
. X"
. * * YES
. * CS *Xeeoe¥e
. * *
. R
.
- * NO
. «SEE NOTE 2
. .
.
cen cecees ceesce
- ENO7
. *, 15
. . .
. YES o% *o
eXeoosescssscccceccscencsescsccsscccsccsvscccsnsnscsccsscascestsy = 40 e*¥Xooe
. *e o
. e ok
. Fe o¥
* NO
. -
. .
. .
. .
. X 16
- 33 3 G TR
- * *
* TURN *
* ALPHABETIC *
. * INDICATOR OFF *
- *XRR * . %
. * * P T
. * H2 * .
. * * XRER .
. ERAR * .
. . # H3 *oXe
. . * .
. ERRE .
- EN27 X EN12 oXe
. 2 *e 20 *- 17
- *l**H]l*l’**l’ii* - ¥
. * NC o*ALPHABETIC *o ¥ CHARACTER *e YES
. : ERROR RETURN *X....-...*.INDICATOR ON o% oALPHANUMERlC o*¥avese
. . .
- *ll*l***llli**i * g - ¥ .&. .*.
. *e o o o ¥
* YES * NO
. .
. . .
. .
. . eXeoesoeacsece
. . . .
. EN26 eXe EN11 oXe .
. J2 *o 21 *e 18 .
- o ¥ . -
YES -‘ IS” NC *o
eceese secoese eecoe o¥e GREATER THAN .*X.o C = 40 ¥
. 6 *o ok .
. *- -* *e o* .
- *e o ¥ e o¥ .
. * NO * NO .
. . . .
. . . .
. . . .
. . . .
. . . .
. ¥ eXe eXe .
. K1 *. 23 K2 *, 22 K3 *e 19 .
. ok *e * *o . . -
. NO o% 1s *o YES o% . *e YES o% *o .
eseee¥e CHARACTER o*Xoooooooois C = 40 o seets C 20 o¥ .
*o BLANK % *e o . *eo o
*o o ¥ *o o* . *e ¥
*e *o * X *e o¥
YES * NO L2) * NO
. . * * .
. . * H2 * .
X * * X
R EE 222 L2 22 R
* * AN ¥ AN *
* CS * * Bl * B3*
* * * *® * *
LA 22 * *

Chart AM. EVE Subroutine

66

e e e ok K kK K K K K K K K K K K K K K

*

NOTE 1
CC INCREMENTED BY 1

NOTE 2
CC DECREMENTED BY 1

.€C = COLUMN TO BE SCANNED
SC = STARTING COLUMN

NC = NUMBER OF CHARACTERS
TC = TERM COUNT

C THE PARAMETER SET BY
THE CALLING ROUTIN!

R

*

s e sk ok ok K ok R K K ok K ok ok ok K

****cs*&***i*i*

¥ *o YES *
seeeX¥g C = 60 -*---oooo-X* NORMAL RETURN *
*q ¥ X * *
o o . UK KRR
¥o o¥ .
* NO XX R
- * *
. * C5 *
. * *
. ERNH
.
X

08
HHH DL KK RN RE RN

SET
TC EQUAL TO
ZERO

%k %k ok ok K
EEE

LR

*Ha .
* *
*AM ¥ eXe
* E4 .
*E .

EVE

1 X 09
REHKARELRFRARRRERR
* *

SET SC EQUAL TO
#CC AND NC EQUAL
* TO ZERO *

* *
R e

*. 10
*

IS *
CHARACTER
ALPHA= %
¥eBETICe¥

o ¥

* YES

sseea¥,
*eo

PO

1
G4 RN
* *
* TURN *
* ALPHABETIC *
* INDICATOR ON *

*

*

*
FHARIRN R RRRR
.

EN13

.
Ha *e 12
*.

-.-.X*.GREATER THAN

*.
*o

Xe o oo %

13
i**l’*\‘4l*i&i**il~i
*

STORE *
*SYMBOL. VALUE, *
OR OP-CODE = *

*

*

KN NNNR R

YES

e¥eene

essssene

.
o

* .
NO o% Is *
sesee®*sCC LESS THAN
* 71 o*

o

* YES
«SEE NOTE
-

-

R RR

*#AN *
* B1%
* *
*

.

.

.

EN2S X o1
HHKNHD] N NN XN
*TLUL
Hm e e W N W = X—R~%ERR
* ENTER IN *o

* SYM30L TABLE *
* *

L T T T Y

RHRRB2 NI R R
* *

«X*¥ ERROR RETURN %
* *

WRNRRNAIERARXRN

«CORRECT * %
. *
. B2 *
. *
. *RHE
.
eXe
c1 *e 02
o *e
YES % Is .
CERR T Y SYMBOL o ¥
. #o DEFINED o%
. *o o
*o o¥
. * NO
. .
. .
. .
. .
. .
. oXe o ¥
. D1 *e 03 D2 *e 14
- o ¥ *e ¥ .
NO % *o * Is *o
eXeooo¥ c = 90 ¥ CHARACTER A %X
- . . ¥ . *s COMMA ¥
. *o ¥ . *e o
. *o o e o ¥
. * YES %N * YES
. . * * .
- . * B2 * .
- . * * .
. o [232] .
. .
. X 04 oXe
- M RIT] N REHRR E2 * 4 15
- *ERR * . * o
. B R e e o ot NO o% IS NEXT *a
. * STORE -ERROR ¥ eee¥e CHARACTER o%
. * LAGS IN * . . BLANK %
. *BYTES 23 AND 24% . *e o
R KRR HHEARK X He o ¥
. TS * YES
. * * «SEE NOTE 1
- . * B2 * .
. . * * X
- . LR L 20 L2 L2
. . *AM *
. . * D2*
- X * * -
. FRMEF] X RN HRE R *
T0 *

* CONTROL *
*

ROUTINE *
Rl e R R

R
* *
* *
* NOTE -1 *
* CC INCREMENTED BY 1 *
* *
% CC = COLUMN TO BE SCANNED ¥
%* NC = NUMBER OF CHARACTERS *
* *
* SC = STARTING COLUMN *
¥* *
* T = NUMBER OF TERMS *
* *
* *
%% E2 22 23

Chart AN.

*

*

*, o
*o o
* YES
.
.
.
e
oXe
c3 *e 06
o ¥ *o
* *o YES
*eo c =10 e*eeane
*q o¥
*, ¥
He o
* NO
.
.
«Xe
D3 *. 07
o ¥ *o

o 1s *o
«CHARACTER AN %
* * ¥

*o o
%o o ¥
* YES
.
«Xe
E3 *e. 08
*

. .

YES o% IS NEXT %,

eee®¥ e CHARACTER AN %
*e * ¥

. *o o*
X He ¥
Ty * NO
* «SEE NOTE 1
B2 * .
* .
EXEE .
.

EPO21 X 09
I TN RN
*STORE *
e e o b bt

* STORE INTO *

* INTERMEDIATE #*

EXT RECORD #

R IR NHHK KRR
.

#0 0000000000000 00000000000sess0s000000000000000000ss0000sssosssXe

X 10
R EGIH KN HNR

* *
*SET INDICATORS *
IN INTERMEDIATE
* TEXT *

* *
RN R RN RRR

.
ERRE .
* * .
* H3 *.Xe
* * L
X R o

EPO1 X 11

I I J I I K XK

* SET SIGN IN *

* INTERMEDIATE #

*Xe

.
J3 *e 12
o ¥ *o
«*MORE TERMS *. NO
%o IN EXPRESSIONe*sosee
*o o
*o
*o

Xe o e e %

13
AR TR N NN

* *
*DETERMINE SIGN *
#OF TERM AND SET#*
*#SIGN INDICATOR *

* *
R ERHEHREERRR
-

.

X
HNHER
EAM *
* E4%

* *

*

EVE Subroutine (continued)

B4
%
o ¥
ALPHABETIC
*< INDICATORe *
*e ON o%
*e ¥
NO

*o

Xe oo o0 ¥

03 17
EEERRCHHRERRERRKRR
* *
SET SC EQUAL TO
* CC AND SAVE #*
* REGISTERS *

* *
P e e

18
.
*e
o ¥
*, ¥
, o
*e o¥
* NO
.
B
.
.
X

19
FHIHRHE LK KRR KRR
*DCF2 *
R R et 2l D 3
TRANSLATE VALUE..s
* *

.
ERROR RETURN B2%
HERRHERHRRRRRERRRRR

sessess s s e enc e

.
sesscsccccce .
X 20 .
REARXFAXRRREXARERS
*DCF4 * .
L o it et Y
TRANSLATE VALUE
* * o
#*ERROR RETURN B2% .
EEXEREARKERRRRERR
. .
. .

oXe

X 21
HHHHEGHIH RN RRER
* *

*

* RESTORE *
* REGISTERS *
* *
B3 36 I 336 I H XX NN

X
HEEHJLEEER LR
* *

eeeX¥ NORMAL RETURN ¥
* *

RN NN

NO

seee

.
.
.
B
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.

.
Xeoooseeon
.

cs *e 23
o .
o* *o
*e T =3 o
o o
*. o
e o
* NO
* .
* .
* .
.
eXe
DS *e 24
¥ .
Is *e YES
CHARACTER A o%
*e QUOTE &% .
*o . .
He o .
* N .
. .
- ’ .
.
4 X

.
.
.
.
.
.

* .
* . .
* X .
R XH R .
*AM * .
* g2 .
* % .
* .
-
.
.
.
.
cesesccscsece
.
N X
oo
GS *e 26
o
. ¥ IS NEXT *o
*o CHARACTER o3
*a X o
*, o
Ko o
* YES
.
.
.
X

EERERHSRERFRRRRAR
*DCX1 *
L e Tt T
*TRANSLATE VALUE*se00
* *

#*ERROR RETURN B2%
KRR RRH

R

.
.
.
.
.
.

X 29
IS I NN
*DCC, *
L e R e e O
#*TRANSLATE VALUE#*
* *

*ERROR RETURN B2%
EEREEEEERERRR RN

.
eXeesesssosse

Phase 1

67

AN KKK AT RN
INOUT

HREERREE LR RXN
.

o
EE X

*
*

Xeeoo s oo

02
03 *l!**az**********
W FRT] N NE NN *

* RETRY AND * * DISABLE
* RECOVERY * *INTERRUPTS. SET
NTR * * UNIT ADDRESS
e *

. *i&**&*ﬁ***l*****
. .
. ETTTS .
. * * .
. *AC *eXae
. * C2% .
. LA E 2] .
. X 04
. P T e R
. * *
. STORE CAW.

seeene X¥ *
* *
* *
I KIN KRR

*EE
*

* D2 *.X
* *

R

LTS .
* 3 o
CS #Xesoelte
* *

ET T2

Xe oo o x

06
HRH KRR H K KR HH KRR
* START

1/0

33 I WK NN
* xR
* * .
* F2 *eXe
* *

LR

X o7

09 ERKKRF2HERERERERE

HHRRE | R R R KKK R
*

* *
* WAIT FO *

*INTERRUPT ENTRY#® * /o INTERRUPT b
* * *
IR K *
. *************;***

.
.

essesevsecscsescsscsssccseXe

X 08
HERERG2EXRXEEHLRE
*

SET *
INTERRUPT ENTRY#
* SWITCH *

* IFF OFF *
RN * *
* * 3 I I NN NN
* H1 .
* * -
rxax eXeoooesoses
. .
. .
.
X 20 o Xe
*****H]********** H2 *q 10
RESET
INTERRUPT ENTRV YES o% IS THE
SWITC ceerSTRIRETRY SWITCH o
RESTORE LINKAGE . *e .
ISTE * . %o o
********I*****l*i - *e oF
. . * NO
. . .
. . .
. . .
eXeoesseeanns .
. .
. X

10
X 21 I T NI R
K LR KKK XK
RETURN
VIA CALLING
SEQUENCE
HEEIKEETEK L REER

* SAVE
* * REGISTERS
* *

EEE RS
LEEEE]

X KKK FIIE KRN R R

12
R] R KK KN KX
*

*

* SET * YES
* READ ¥Xeooosaosk
* SWITCH *

*

*
NN ER KKK RN

. .
X X
RS2 XK

¥* * *
* B3 * * B3 *
* * * *
% R X *

Chart AO.

68

YES
coe
.

.

X
L2323

EX TS

o ¥
A4 *o
-k
BIT *o NO
seeX¥e 444 45, 46 o¥eee
. . N .
ERER . *o ot
* * . *o o ¥
* B3 * . * YES
* * . -
*un . .
. .
. . .
. . .
X . X 33
B3 *e 13 . HEEERBEEE IR R R"
¥ . . *#SET YSEREP' ID #*
. IS THI *e . *CODE FOR CHAN- *
%o A CHANNEL e¥cceccoe * NEL FAILURE - %
. RROR #* SET WAIT CODE *
. o * . . *
*o o¥ I T
* NO .
. .
. .
. .
. eXeosesossese
. .
oXe X 28
c3 *e 14 *l***ca******;
.
IS THIS *. * SET RECOVERY *
A UNIT . #ADDRESS IN NEW *
CHECK o% * EXTERNAL PSW *
*, ¥ * *
*e ok HHHEERRHIRE R
* NO .
. .
. .
. o Xe seces
. .
oXe NOTE X 29
D3 * o 15 FI T LYE TR TS T ey
¥ S * 4 * *
«%* BUSY AND *, YES #* ERROR HALT *
*e /OR STATUS o¥cecvos * *
#eMODIFIER o% . * (EXTRN INTRPT %
. o * TO RECOVER) *
*e ot 333633 I I3 I I ® R
* NO . .
. . .
. . .
. . .
. . .
. . .
X . .
E3 #*e 16 . X 30
¥ *, ERRRELHHERHRELR
¥ IS THE * * *
#¢ERROR SWITCH . * INTERRUPT *
. ON . * *
*q ¥ - 3369 3 36 3 % 3 I3 WX
*e o¥ .
* YES .
. .
. .
. .
.
X 17 . . 26
F3 . . Fa * %
* * .o . * *
#* RESET ERROR #* o . * SET
SWITCHe RESTORE o eeeX¥® INTERRUPT *
* REGISTERS * . * ENTRY SWITCH *
* * . * *
3N IR NN HNRRN . K IR NN
. . .
. .
. . .
. X
eXeoossocoscne XX
. * *
oXe * F2 *
G3 *o 18 * *
- ¥ * g ERER
¥ IS IT *e YES
*o EXCEPTIONAL seesence
%o CONDITION % .
*e o .
¥o o .
* .
. .
. .
«Xeo o Xe
H3 *e 19 H4 *e 31
o ¥ *o . o
o ¥ IS IT *o YES % IS PRTR %o
*o CHANNEL e¥Xoooseoee*e SELECTED ot
*e END ¥ *e UNIT ¥
- . *o ¥
*e o¥ *a ¥
* NO * NO
* . .
* . .
* . L
. .
o .
eXe X
J3 *e 22 HRERE JAHRRRHER
o% IS . ®
o IT *e * SET RECOVERY #

*4 CONTROL UNIT
#40R DEVICE %
*

*o END
Fe o
* YES
* .
* .
* .
.

“x. 23

YES

Input/Output Subroutine

*ADDRESS IN NEW #e.0
* EXTERNAL PSw #*
* *

R I 2T

24
****&KA******!***
*

o--.....X*!NTERRUPT ENTRY*..---...X*

*
*****«***********

*A0 *
* AS#
* *
*
.
.
.
oXe
AS *- 27
YES IS THIS A TAPE NO
. coo ¥, e¥e0e
PR . .
- . *o o
« X e o
CHRXEE *
e HAP XREXN
o ¥ E2%% *
* RAQ Heew
» % % BS .
. XXAR .
. X 34
. WX HBS N KRR
. *SET 'SEREP' ID #
. *CODE FOR DEVICE¥*
. * FAILUREe SET *X..
. * WAIT CODE
.
*&*****}*****i***
. .
. .
. .
X .
eXeseovessoosnne
.
. 35
. FHKREKCSRHHIRH R RN

*SET *SEREP' ID *
CODE FOR DEVICE¥
* UNAVAILABLE. *
*#SET DEVICE ADDR#%
*#IN OLD I/O0 PSW *
A KN RR N
SET WAITXCODE *AIS®

.
.
.
.

.
.

.
.

.
.
.
-
.
.
.
.
.
.
.
.
.
.
.

T
* NOTE *
*IF ENTRY IS FROM *
*SEREP INTERFACE, %
#*PROGRAM IS NO LCN-*
*GER RECOVERABLE *
B3 9 96 I I I N KN KX

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

25
HERRKSHHEXERRRN
* RETURN *
*
*

VIA OLD
I/0 PSW

EEEER

KRR
*AP *
* A2%

Xe v e

o1
I AD KRNI R HH
* *
* SET RETRY SWe *
* SAVE OLD I/0 %
*PSW,CSWs AND CAWX
* *

HERERRTRRERER AR RS

Xe oo oo

02
ERREEB2AR RRKE XX KR
* STOCAW *
E et e R e s
* *
* SENSE DEVICE *
* *

HHAKR RN R RN
.
o

R E

R

11
EERFRAZHERRERERRR
*

*
* SET WRITE AND *
* WRITE/SKIP
#RETRY COUNTERS.*
* *

HREERERREKR RN ARH
.

Xe oo o

12
HHRE D IHHEK KRR HE K
* STOCAW *
e et it .t B
* BACKSPACE *
* TAPE *
*
*

*
MBI REE R HRRNR
.

eccccsssseeXe seessscscseXe
. o - -
. «Xe . oXe
. c3 *
. *
«YES . «YES .
cece¥ WAIT ¥ esee® WAIT o ¥
. ¥
%, o*
*, o
* NO
.
.
.
.
X

04
EREFRD2EX XX RHHH
*

*
RESTORE OLD *

*

* [/C PSWs CSWs *eeae

* AND CAW * -

* * .

e e T X

RN

XX *AQ *
* * ASH

*AF % * *

* E2% . *

essccsse®

*o
o ¥ .
YES o% 1s *o
eee¥e READ SWITCH %
*o ON

EREKR . *q o
*AQ * X %o o
% B5%* EREER * NO
® ¥ *AQ * .
* * BS* -
* * .
* .
X 16
REEHRFIRXERRRRNES
EXXH % *, * *
* * NO o IS IT *e * RESET *
* AS ¥Xeeee¥e A NOISE o * WRITE RETRY ¥
* * #*e¢ RECORD o% * COUNTER *
EERE . o® * *
L — 4 HHHE KRR ERE R HEE
* YES .
. .
. .
. .
«Xe 17
G2 *, 24 EEREAGIHREHNNERRR
wEER o * STOCAW *
* * NO IS THE *o B D e
* A5 ¥Xeeee¥e NOISE BIT o% * *
* * *o ON ¥ * SKIP TAPE *
ERRR *. ¥ * *
®e o¥ EEREEREREEERRERER
* YES .
. .
. .
X
XX RR
*A0Q *
* C2%*
® % 18
* .
o*
*, o
¥o o
* NO
.
.
.
oXe
J3 *o 19
¥ .
o* IS *o
*+SKIP COUNTER o%
*. =0 ¥
e o
®o o
* YES
.
.
T X
]
*A0 *
* B5#*
x* ®
*

Chart AP.

*Xeoe

REEE

seceecnn

.
.
.
.
.
.
.

0€

o
* IS THIS
THE FIRST
ERROR %
o

*,
*o

e o ¥

* YES

Xe oo oe

c7
EEEAKDS REHHR I RN
*

*
* SET *
* ERROR *
* SWITCH *
* *
FHEEE R AR R RER

.
eXooosoee
.
oXe

Cs *o

o¥ *o
NO IS READ SWITCH
ON .

08

esecscsesscecsccccssnscsssosneete

o¥e
*o 21

o

« NO

o¥e

o¥ Is “x
eeX*e READ SWITCH
*o ON

*o ¥ .
e o¥ .
* YES .
. .
. .
. .
. .
o Xe .
E4 *, 22
. .
IS IT *o YESX
7 TRACK e¥eaee
*e. TAPE o .
- ¥ .
*e ¥ .
* NO .
. .
. .
. .
. .
. .
X 23 .
e e T] -
* STOCAW * .
L e e e .
* TRACK * .
* IN ERROR * .
* * .
EREERHRE R R REERR .
. .
. .
eXesessescose
EEEER
*A0 *
* C2%
* *
*

Tape Read/Write Retry Procedures

*
*o
*o

o
o

ok
* YES

09
EEXRHDSEXRREREXRR
* *

* SET *
READ RETRY *
* COUNTER *
* *
* *

EEREERERRRRRERR

.
*o NO

e¥eese

tesse sttt

R

SECTION 1: INTRODUCTION

The major functions of Phase II of the
Assembler Program are as follows:

Translate Intermediate Text into Machine
Lanquage

The Intermediate Text, which contains
the partially translated source statements
developed by Phase I, are translated into
machine-language statements which make up
the object program.

The symbols contained in the source
statements are replaced with the actual
machine addresses which can now be obtained
from the Symbol Table developed by Phase I.

The type of translation that occurs
depends upon the ID-Code in the Intermedi-
ate Text and upon the instruction format.

The operand field, part of Intermediate
Text, 1is translated and placed in the
output buffer area to be punched into a
card or written on tape, and printed as a
line in the object program listing.

The translation of each instruction for-
mat type is shown in Section S,
"Intermediate Text Translation." The sub-
routines wused by Phase II to translate the
Intermediate Text are discussed in Section
3, "Subroutine Description."”

Produce Output Cards

The assembler produces
cards or card images on tape to be loaded
as part of the object program. They are
the ESD (External Symbol Dictionary), RLD
(Relocation List Dictionary), and TXT
(Text) cards. The format for each type of
card is shown in Figure 10 at the end of
this discussion.

three types of

The ESD cards are produced at the begin-
ning of Phase Il processing. One ESD card
is punched for each START, EXTRN, and ENTRY
Assembler instruction.

The TXT cards are produced during Phase
II processing. When an output buffer entry
becomes full, one text card is punched.

PHASE II

Each TXT card may contain the text from

several source statements.

The RLD cards are produced at the end of
Phase II processing. The RLD cards are
punched from the RLD Table (see Section 2,
"Tables") . RLD cards are produced for each
relocatable address constant and Channel
Command Word defined in the source program.

ESD and RLD Cards: The ESD
produced to provide complete linkage
between separate program segments. The RLD
cards are produced to allow the Relocating
Loader to reevaluate symbols and expres-
sions within address constants and Channel
Command Words in relocated segments. (For
a description of the Relocating Loader, see
IBM System/360 Basic Programming Support
Basic Utilities, Form No. C28-6505.)

cards are

These cards become input to the Relocat-
ing Loader, which in turn creates an Exter-
nal Symbol Identification Table (ESID) and
a Reference Table to provide communication
between the ESD's and RID's of various
program segments. Collectively, the RLD's
and ESDs are called the Control Dictionary.

encountered
assigned the

When a START statement was
by the assembler, Phase I
symbol in the statement the identifying
number 1, which 1is entered into the Ref-
erence Table by the loader, along with the
program segments relocation factor (the
difference between the address where the
segment was assembled and the address where
it is loaded). Identifying number 1 was
also assigned to the symbols appearing in
the operands of all ENTRY statements in
that assembly.

For EXTRN statements, the assembler
assigned each external symbol an identify-
ing number ranging from 2 through 15,
indicating the order in which the EXTRN
Assembler instructions were found in the
source program. This number is placed in
one of the Control Dictionary tables by the
loader, along with a pointer to the Ref-
erence Table which includes the external
symbol and its actual address (inserted
from START and ENTRY ESD cards in other
program segments). This allows the loader
to implement cross-referencing.

The identifying number associated with
the external symbol also appears in the RLD
cards produced by the assembler. This
allows address constants with either inter-
nal or external symbols to be properly
evaluated.

Phase II 71

TXT Cards: The object text to be loaded by
the 1loader appears on the text cards. The
TXT cards will contain a maximum of 56
bytes of information (columns 17-72) .
Therefore, each TXT card may contain the
text from several source program state-
ments. If less than 56 bytes are specified
for one TXT card, the remaining columns of
. the card are blank.

The text is produced
which it is declared by the source program.
TXT cards, therefore, are not necessarily
in order by origin (tentative loading
address) . For example, an ORG statement
may cause the program to skip a block of
addresses and later in the source program
these addresses may be referenced by anoth-
er ORG statement. .

A TXT card is terminated and a new one
begun whenever there is a break in the
string of specified =~ storage content
(boundary alignment excluded), whenever a
total of 56 bytes of continuous text has
been accumulated, or whenever a DC Assem-
bler instruction with a duplication factor
is encountered. An ORG statement, whether
it results in a change of location counter
value or not, is considered to be a break
in the string of specified storage content.
Any DS Assembler instruction (except one
with zero length and no boundary alignment
needed) is also considered to be a break.

Boundary alignment caused by an instruc-
tion being coded at an odd byte boundary, a
CNOP coded at an odd byte boundary, a DC
Assembler instruction without a duplication

factor, or a CCW Assembler instruction,
will not cause a new TXT card to be
started. Instead, zeros will be inserted

into the bytes that are skipped to perform
the alignment.

A DC
factor will cause a

instruction with a duplication
new TXT card to be
produced after the necessary alignment is
done. The new TXT card, and those follow-
ing, will contain a multiple of the bytes

that are to be repeated for as long as the -

bytes fit on the card, or until all desired
data is put on cards. The last card,
whether full or not, will not be wused for
any other text. The text developed from
the statement following the DC statement
will be put on the following card.

For example, ihe source statement DC
5CL16'A' will produce the following cards:

r T T T B T 1
Card 1 11 16]17-32|33-48|49-64]|65-80|
Control]				
infor-				
mation	A	A	A	
L L y 1. L i J

72

in the order in’

T L] A] T 1

Card 2 11 16417-32|33-48|49 - 80|
- |Controlj] 1 | |

|infor- | | I |

|mation |A 1A | |

L L 4 L 4

f T - * T 1

Card 3 |1 16117 - 72|73-80]
|Control| Text from the |- |

|infor- | following state-| |

|mation | ments | |

L L1 1 4

Card Formats: The formats of the different

described

types of cards produced by Phase II of the
Assembler Program are shown in Figure 10.
The ESD and TXT card formats are self-
explanatory. The RLD card format is
in detail in the discussion that
follows.

The position header, which is two bytes
long, is the relocatability attribute
(external symbol identification) assigned
by the assembler to the program segment in
which the constant is being defined.

The relocation header, - which is two
bytes long, is the relocatability attribute
that was assigned to the address symbol
when it was defined in the operand field of
an EXTRN Assembler instruction.
same as the external symbol identification
assigned to the symbol in Phase I.

The address is the value of the relative
assembled address of the relocatable con-
stant within the program segment indicated
by the position header. 1In the case of a
CCW, the address constant is the value of

the location counter plus one. This
address points to the second field of a
CCW.

All RLD's with the same position and
relocation headers will be grouped, in the
order found, into one card image.

The flags are as follows:

1. Complement Flag - this one-bit flag
indicates to the 1loader whether the
relocation constant for the program
segment indicated by the relocation
header need be added or subtracted
from the address constant.

2. Continuation Flag - a 1 indicates that
more addresses with this relocation
and position header are on this card;
a 0 indicates that this is the last
address with this relocation and posi-
tion header = (another relocation and
position header could follow on this
card) . This flag occupies one bit.

3. Size - this two-bit flag indicates the
size of the symbol (10 - three bytes;
11 - four bytes).)

It is the

EXTRN"—2

[e e o e —) [e e e [e — [o e e e [e ——— - [o — e -
o (=] (=] S (=} (=] [
x . x]) X @ o] A o] kA 1] =
=] <] . <] =] Q o}
| (1] |] | 1] |] =] o
— ~ = ~ + +
m m [\ m ™ [s9] ©
™ ™ ~ ~ + 3]
o ™ o e e e e o e e s e ———] ¥ QO o
k oo man s o w— e o s e e e e cad o N Py e -~ 0
a N N [} ™~ &~ o > [ONN)}
| [™ [™ W § =} n - M3
~ H O o] 0] 0} (o] [—
23] - na - 0 M + O g T
[ag] =5] o™ e | o} 6] <-4
o e e e e o O O | =] o} m o
(=3 O |2 >N + 2
2} ™ Q Q| - Q Q g o
o ———— [=} : 0] > o«
[=)} [=))] o | m N 2] S] [
o~ o~ | &N | ~N ~ s T P U
b ——t — —— P e —— — — b e e e] —~ e e e o e e e e - w0 A&
© 9] @ | 0 @© n o o] 1] n 8] n
N [2] — ~N | » — N 1] ~ [3] N 7] Q Q
0] o} I o Q Q Q L V] [Ol o] Qg
| H e Q [R e | MW Q =} M | N QUM +
T O E | T OE T OE | 1] + U e} [=I=2] 2
e} g >~ . o T > Nl Lo} >~ —~ ISl Ne) e} ~ O V3
N W N w N 0 m 1 [0} N & [ON] <]
b — e bt —— — b — e — — —] o b e e o e e — - Qb - Lol
| ~N | - n o + n] ~ QO
o N N > N [T I R OR V)] T e P
b —— =~ — b——t ——— o - e e e Q R T - ~m© o P
= | = | = = 1] -HE OOWQO
o o~ o~) ~N 0 BerdpP— 3 Q
URY/ | | =] v O W (0]
™Y ™ ™0 0 | N P VUVH®© M
o | | o~ o~ ~ o] [le] [\
o — —— b e b — A — — — o~ 4ol g aE I
~ | o~ o~ ~N [=9 XN Q
N N | N [e e e e e e e - e O m@WOUN
| - | oo~
| NI AW o] [=RiceNy
b e e e e e e e - OVOoO~gao-
T je] Lo} o | [0oqo T 2
— o ~ =] | e~ [=] N o 0) By .
.mma Mma _.mma ~ g 0 M T AT O
| O M | O M [O M A 0 0T H4e = 0NN
g MO g4 | EMNOQ e - g UAD>
>N Q >N Qy | >y e} | +H O VO3 ™I~
n (o] 2] [¢] |2l (@] e~ - A . —Hog PN -
Ll H O 2] [e] T Oowno
o e e e e e n 0n g [eR o R] OPTOQO®W
~ ©~ ~ o) - m ~ SV =R ko] HQUO O
- - - - O e e e e e e e] - I CoOm™MnpPP
b e e o e o e e e e o e o e H O E 4 P o A e e e e e -4 VT O O >y
e} O | e} n n & -) £ 0 - Q0
- [a Y Lol - [a Y Lt [£5] - ¥ 0N
H O H O b e o e s e] ™M [} 0 s g
[Te} wna [T} [Ta} 0w aq =4 - n TR m© Y
Ll 3] - - = - P e e e e] - [« 7] | £
b e e ———] | N @ G VO QKM
= = = - v © E4 og 1 g
A Al - N P e And g P = O
TR TS — — >~O0 @ [Thye] I 0 .
[ag] [3g] [20] @© (o] Ll 1] 6] 2] Vg~ ©
hd - - o o o e e e e - ST O~ 00
e e e —e] e o e o e e o] po e e o e e yu) o i M —— -] T o (=R Y]
N o~ o~ N M - ~N %] O VNN LA
= | o | - | 0 - o ocunaow - o T I v =]
| | | | 7] =)} + e M [oTR-] . 0o
- | - | - | - - - MO0 o e e e e - >~»O © VT MO
- | | - | - [~ Y-} e - m 0] 8T M
b——t———— e o ————] © T © @© NN o ——— - o Em™
o | | o o iR | Lol = [el n o
- | | - - o Mm o 4 e + T - Moo UM
[| [' o o o e e e o] n < | NH™ | P ©
| | | 0| e o e e e Lo} O PN
[Tl | | | wn b = e e e e wn | [Ts] M0 Qn
fr o e e e] e e e] b e o e e e - e e e s e b o o e o e e -4 o T o~ ~
= | [} | | = =] = [a] . £ A : =r 3] =X | A OM m [
| | N N | osowm™
™ | 0 | I 1o, 2] [™ 9] ™ P ™ b ™ | = ~ 0| O
| | - | - |] | -~ 0oN g
N = | ™ol =] T H N 3} ~N 3] - N H | | N 24 <HNO~H O
o ——— o ————] o e e — e o — e o o} - fo e e e e o e e - e r -
= | NN | | = | NONO ~ | NN [m} = NN = = | NNO | w - | NN O . (y]
[| | |~ [|~ Z | 23] | - | | -
b e e e e S E Ll P —— S L ——— | E b e e e e e T R e | R O T -d et

73

Phase II

Output Formats

Figure 10.

Produce Object Program Listing

!

The object program listing produced by
Phase II has the format shown in Figure 11,
part B. The only exception will be com-
ments statements, which are reproduced on
the listing exactly as the source program
statements appear. '

For example, if the first statement of a

at location 80 (specified by the START
Assembler instruction), the 1line on the
object program listing would appear as
indicated in Figure 11, part C. If the
statement contained an error, the error
flags would be printed to the left of the
location counter.

Although the source program statement
will produce one line of listing, several
source statements may be reproduced on a

program is as shown in Figure 11, part A, TXT card, as indicated in the previous
and the program is to be assembled starting discussion. :
b
| Name | Operation | Operand | Comments | ID-Seq. |
| SETBAS | BALR | 14,0 | LOAD BASE REG 14 | 1080 |
L J

A. Input Statement

r
| ERROR | LOCATION | ASSEMBLED MACHINE | SOURCE PROGRAM
| FLAGS | COUNTER | LANGUAGE STATEMENT | STATEMENT
1
B. Listing Format
1
000080 05 EO SETBAS BALR 14,0 LOAD BASE REG 14 00001080 |

J

.
|
L

C. Print Line

[. . ——— —— — — —— ———— S——V—— — —— oaa—" S—— — o

| MEpERp—
b s e o —— o— —— —— — —— — —— — ———— ————]

Figure 11. Object Program Listing Example

74

SECTION 2: TABLES

REGISTER TABLE

The Register Table contains the general

register numbers, their corresponding
values, and relocatable attributes. An
entry is made into this table each time a
USING Assembler instruction is encountered.
An entry will be deleted from the table
each time a DROP Assembler instruction is
encountered or when a USING statement uses
a previously entered register.
Note: Using Register zero will not drop
Register zero with an absolute attribute.
Register zero is placed into the table by
the assembler and remains in the table.

The Register Table is referenced when-
ever it becomes necessary for the assembler
to compute addresses (i.e., assign base
registers and displacements) .

The values assigned to the registers are
relocatable.
Each

entry in the table occupies a

single 32-bit word and has the following

configuration:

r T T 1

I | | |

| RELA | VALUE | REG |

L i 4 J

4 bits 24 bits 4 bits
where:

RELA indicates the relocatability value
(0—-15)

VALUE is the value of the expression in
the operand field of the USING
statement :

REG indicates the general register that

is assigned the above value

RELOCATION LIST DICTIONARY (RLD) TABLE

The RLD Table is constructed to hold the
data necessary for producing RID cards or
tape records at the conclusion of Phase II
processing (see Introduction to Phase II
for description of the RLD cards) .

are made into the RLD Table for
relocatable ' address

Entries
three- or four-byte
constants and Channel Command Words. Each
entry in the RLD Table occupies a single
32-bit word and has the following configu-
ration:)

r T " T T°T 1
| 0-3 | 4-5 | 6 17] 8-31 |
L i 4 I 4
L} T T T7 1
| S [. |
|Relocation| Size |Comple-| | Address |
| header |indicator| ment |[O0] pointer |
I I | flag | | I
| I | I]
L L 4 i1 J
Each of these entries is discussed in the

Phase II Introduction under. the RLD card.

At the end of Phase II, the RLD Table is
scanned, and the entries having the same
position and relocation headers are grouped
into a single card image for producing an
RLD card or tape record. Error flag K is
indicated on all address constants and
Channel Command Words in excess of the
number allowed for the RLD Table.

Phase II 75

SECTION 3: SUBROUTINE DESCRIPTION

This section describes the subroutines
of the Assembler Program that are used
during Phase II processing.

SER - Simple Expression Translation Routine

The SER subroutine is used to translate
a field in the Intermediate Text that
contains a simple expression (i.e., the R1
field of an RR format machine instruction,
the operand field of a DROP Assembler
instruction, etc.), and to tramnslate each
term of a compound expression.

This subroutine 1is entered with the
following parameters, which are set by the
calling routine:

COL indicates the first column of the
Intermediate Text to be scanned,

LGH indicates
fields used
area,

the number of four-bit
in the output buffer

TXT indicates the rightmost bit in the
output buffer area into which the
translated expressions are to be

placed,

indicates the number of bytes of
input to be translated.

After the field is translated, the out-
put parameter RELA will be set to indicate
whether the expression is absolute or relo-
catable. RELA will have one of the follow-
ing values:

0 the expression is absolute,
1-15 the expression is relocatable.

The field of the Intermediate Text indi-
cated by the above parameters is checked
for a self-defining value or a symbol.
(Fields 1, 3, and 4 of a CCW instruction
are checked for absolute values. If one of
the fields is not absolute, error flag R is
placed in the print buffer and the entire
output area for the CCW is reset to zeros.)
Depending upon the value, one of the fol-
lowing procedures plus the Common procedure
is followed.

SYMBOL: If the value is a symbol (P bit of
the Intermediate Text a 1), the defined bit
of the Symbol Table entry is checked. Iif
the symbol is undefined, the procedures
described under Undefined are followed. If
the symbol is defined, the procedures des-
cribed under Defined are followed.

76

Undefined: Error flag U is placed in the
print buffer. One of the following proce-
dures is then followed, depending upon the
instruction type. For instruction types
not indicated, no further action is taken
and control is returned +to the calling
routine.

Machine Instruction: The operand field
of the output area is set to =zero. The
operation code remains unchanged. Control
is returned to the Phase II Control Rou-
tine.

CCW or DC Assembler Instruction: The
entire output area for the instruction is
set to zero. Control is returned to the
Phase II Control Routine.

DROP, USING, EXTRN, or ENTRY Assembler

Instruction: Error flag N is placed in the
print buffer along with error flag U. Only
the source statement and the error flags

will be printed. Control is returned to
the Phase II Control Routine.

Defined: The symbol value and the reloca-
tability attribute (RELA) are placed in a
temporary output area, and the procedures
described under Common are then followed.

SELF-DEFINING VALUE: REILA is set to zero
since a self-defining value is absolute,
and the absolute value is placed in a
temporary output area. The procedures des-
cribed under Common are then followed.

COMMON: If the translation of the field is
not complete (parameter TXT not equal to
zero) , control is returned to the calling
routine. If the translation is complete
(TXT equal to zero), the output buffer is
checked to see if the value will fit into
the buffer.

If the wvalue will fit, it is stored in
the output buffer by subroutine STXT, and
control is returned to the calling routine.

Note: If the value is the L field of an SS
format instruction, the value is reduced by
one before it is stored. L with a value of
zero 1is processed the same as an L field
with a value of one. The value of zero is
not reduced.

If the value will not fit, error flag T
is placed in the print buffer, and one of
the following procedures is used.

Machine Instruction: If the value is a D1
or D2 field and is absolute, the value is
truncated and stored in the output buffer.
For all other fields, the operand field of
the output buffer for this instruction is
set to zero. The operation code, however,
remains unchanged. Control is returned to
the Phase II Control Routine.

CCW Assembler Instruction: The entire out-
put buffer for this instruction is set to
zero and control is returned to the Phase
II Control Routine.

USING and DROP Assembler Instructions: The
entire statement is ignored and control is
returned to the Phase II Control Routine.

Other Assembler Instructions: The trans-
lated value is truncated and then stored in
the output buffer by subroutine STXT. Con-
trol is returned to the calling routine.

When control is returned to the Phase II
Control Routine by subroutine SER, the
remaining fields of the Intermediate Text
for that instruction, if any, are not
translated.

EER - Compound Expression Translation
Routine

This subroutine is used to translate the
fields of the Intermediate Text that may
contain a compound expression (i.e., D2
field of a machine instruction, second
expression of a CCW Assembler instruction,
etc.) . The parameters set by the calling
routine are the same parameters that are
set for the SER subroutine (see preceding
discussion) .

The compound expression may contain a
maximum of three terms. Each term is
translated by subroutine SER. After each
term has been translated, several tests are
made to determine the validity of the
terms.

The following conditions must be met:

1. If one
cannot be
sign.

2. If two relocatable terms are used, one
of the two terms must be minus (=),
and the value of RELA for both terms
must be equal.

3. If three relocatable terms are used,
there may be only one minus (-) sign,
and the value of RELA for all three
terms must be equal.

4. TIf the sign of a term is multiply (*),
the terms preceding and following the
sign must be absolute.

relocatable term is used, it
preceded by a minus (-)

If these conditions are met, the proce-
dures described under Common are followed.

If +these conditions are not met, one of
the following procedures is used, depending
upon the instruction type. Only the
instructions that may have a compound
expression in the operand field are indi-
cated. °

COMMON:

Machine Instruction, CCW or DC Type A
Assembler Instruction: Error flag A is
placed in the print buffer, the output

buffer for the instruction is set to zero
(the operation code remains unchanged for a
machine instruction), and control is
returned to the Phase II Control Routine.

USING Assembler Instruction: Error flags A
and N are placed in the print buffer. Only
the source statement and the error flags
are printed in the object program 1listing.
Control is returned to the Phase II Control
Routine.

END Assembler Instruction: Error flag A is
placed in the print buffer, and control is
returned to the calling routine.

The value of REIA is set to the
relocatability attribute of the symbols,
and the terms are combined according to
their signs. The result is stored in a
temporary save area.

The only negative answer that is allowed
is for a DC type A instruction with a RELA
value of zero. If the answer is negative
for any other instruction type, or RELA is
not zero for a DC type A, error flag Y is
placed in the print buffer.

If the answer is positive, or after
error flag Y is placed in the print buffer,
one of the following procedures is used.

Machine Instructions: If a base register

is not indicated, the values of the base
register and displacement are obtained from
the Register Table by subroutine MARS and
stored in the output buffer. Control is
then returned to the calling routine.

If a Dbase register 1is indicated, the
value of the displacement should be abso-
lute. If it is not, error flag R is placed
in the print buffer before the displacement
is tested to see if it is equal to, or less
than, 4095, the maximum value allowed.

If the displacement is too large, error
flag T is placed in the print buffer, the
value is truncated and stored in the output
buffer by subroutine STXT, and control is
returned to the calling routine.

If the displacement is correct, the
value of the combined terms is stored in
the output buffer, subroutine SER is
entered to translate the base register
field, and control is returned to the
calling routine.

Assembler Instructions: The value of the
combined terms is placed in the output
buffer by subroutine STXT, and control is
returned to the calling routine.

Phase II 77

r T T 1
| SweT | | I
| Setting | Meaning | When Used |
L | 4 4
1] 1 T 1
| 0 | Normal - print location counter, | For all correctly assembled |
| | assembled data and source statement | instructions |
L } 1 4
1] T + 4
1	Duplication - print location	DC instruction with a dupli-
	counter and assembled data	cation factor or a non-zero
		cwnop
b t + {		
2	Zero £ill - print location	Location counter not aligned
	counter and assembled data	to a half-word boundary for

| | (zeros) | a machine instruction |
L 4 4 4
r T T h)
| 4 | Comments - print source statement | Non-blank card with an

	only	incorrect ID-Code
	I	
		CNOP zero
	I	
		USING with an absolute value
		A relocatable value preceded
		by a minus sign

| | | I
| | | EJECT, ENTRY, EXTRN, SPACE |
1 4 + - J
] T T 1
| 8 | Print location counter and | DS, START |
| | source statement | |
F + } {
| 16 | Internal repeat switch | Assembler instruction with a |
| | | size greater than 8 |
b t + 1
| 32 | Print new location counter and | END, EQU, ORG |
| | source statement | |
b + $ 1
| 64 | Print value (USING) or | USING, DROP

| | register number (DROP) | |
L 1 —_1 i
r T T i
| 128 | Space control (no printing) | SPACE |
L s L []
Figure 12. Print Control Switch (SWPT) Setting

PRTA - Print Subroutine The PRTA subroutine also counts the

This subroutine is entered after the
translation of each source statement is
complete. It is used to print a line in
the object program listing.

The data, instruction, and 1location
counter are translated into their hexadeci-
mal equivalent by subroutine TRAN and
placed in the assembled machine instruction
portion of the print line. A line of the
object program 1listing is then printed by
subroutine INOUT.

The number of columns that are printed
and - the contents of the print line are
dependent upon the setting of switch SWPT.
This switch is set by the routine that
calls the PRTA subroutine. The settings of
the switch, their meanings, and when used,
are shown in Figure 12.

78

number of lines printed per page; when the
count exceeds 56, the printer is ejected to
the next page.

After a 1line is printed, control is
returned to the calling routine.

PCHA - Store into Punch Buffer Routine

This subroutine is entered after the
translation of a machine instruction or a
DC, CNOP, or CCW Assembler instruction.
The translated text is placed in the punch

buffer up to a maximum of 56 bytes.

The actual punching of a card is under
the control of the Phase II Control Rou-
tine.

Control is returned to the calling rou-
tine. ' '

Punch RLD and END Cards Routine

This subroutine is entered after the END
statement has been processed. :

The RLD Table is searched, and all RLD's
with the same position header are grouped
into one card image (or until a card is
full) and produced. (See Phase II Intro-
duction for RLD card layout and Section 2,
"Tables," for a description of the RLD
Table.)

After the RLD cards are produced, the
END card format is punched, and the program
halts.

If the output is tape, an 'LDT' record
is written on the tape after the 'END'
record. The tape is then backspaced over
the LDT record, so that in a stacked
assembly all LDT records but that following
the last object program are overwritten.

DOUT - Punch TXT Cards Routine

This subroutine is entered from the
Phase II Control Routine whenever enough
data to £fill an output buffer has been
accumulated, and, if it is a card systenm,
when a blank card is available.

The necessary control information is
placed in the card image along with the
translated text. (See Introduction to

Phase II for TXT card layout, Figure 10.)
The card image is then punched or written
on tape, depending upon the system being
used.

Control is returned +to the Phase 1II
Control Routine except when the output
buffer is emptied after the END card is
read. Control is then transferred to out-
put RLD and END cards (see preceding
discussion) .

FERR - Store Error Flags Routine

The FERR subroutine places the necessary
error flags in the print buffer. These
flags are those placed in the Intermediate
Text by Phase I and the flags for the
errors encountered during Phase II process-
ing.

The following error flags may be placed
in the print buffer by Phase II:

T 1
|Flag | Meaning |
i . -————{
| I | Expression cannot be mapped into |
| | a base register and displacement |
| I |
| XK | RLD Table full |
| . |
| U | Undefined symbol |
[| |
| W | Unused mask bits in CCW instruc- |
| | tion not zero |
[| [
X	Duplicate ENTRY statement
Y	Illegal negative expression in
	operand field
L L 4
Note: See "Phase 1", Section 3, Subroutine
Description, subroutine ERR for Phase I
error flags and flags common to both
phases.

INOUT - Input/Output Subroutine
This subroutine is the same subroutine
used by Phase I. Refer to "Phase I,"

Section 3, "Subroutine Descriptions."

Phase II 79

SECTION 4: PHASE II PROCESSING FLOW

This section uses two charts to describe
the overall processing flow of Phase II of
the Assembler Program. Chart 06 illus-
trates the initialization procedures, and
Chart 07 illustrates the Control Routine.
The numbers in parentheses within the text
describing each chart indicate the block on
the chart being explained.

INITIALIZATION - CHART 06

Phase II of the Assembler Program is
read into main storage. The new PSW's are
loaded into main storage, and the print
buffer is set to blanks (01). The type of
input is then checked (03) . The printer is
ejected to a new page and a heading is
printed.

If the input control indicates that
Phase I assembled on tape, the tape unit is
selected, the read parameter is set to read
104 bytes (one input record on tape), and
the input tape unit is rewound (04-05). A
card image is then read from tape (06), and
control 1is transferred to complete the
"initialization processing (09).

If the input control indicates that
Phase I assembled on cards, the first card
is read and checked (06-07). If the card
is a Symbol Table card, the rest of the
Symbol Table deck is read into the area of
main storage reserved for the Symbol Table
(10) s The Symbol Table deck will not be
included when Phase I assembled on tape
(Phase II must immediately follow Phase I),
or when Phase II immediately follows Phase
I in a card assembly, because the Symbol
Table will still be in storage.

The type of object output is checked,
i.e., tape or card 09.1), and the
appropriate parameters for the output are
modified (13,15) and control is then trans-
ferred to location C811 in the Control
Routine (Chart 07, block 07) (05-06) .

A test is made to determine what type of
printing device is on 1line. One of the
following then occurs:

1. If the off-line printing option is
used, the parameters for off-line
printing are modified (16) .

2. If both a printer (1443/1403) and a
typewriter (1052) are available, no
modifications are made.

3. If the printer is used as a typewrit-
er, all warning messages will be list-
ed on the printer. However, if the
programmer uses the no-print option,

80

Note:

these warning messages will not be
printed. but will only be displayed in
the I.C. 1lights on the console.

4. If the typewriter is used as a print-
er, modifications are made so that an
EJECT instruction will be processed as
a SPACE 6 instruction.

5. If no device is available, all print-
ing is inhibited (including error
flags) .

The RLD Table is set up according to the
size of main storage, the number of output
buffers is determined, and the header for
each 1is <cleared (08) . The number of buf-
fers is determined by dividing the unused
main storage into 64-byte fields. This
number is then placed in locations NOPB
(number of output buffers) and NBL (number
of buffers 1left) for later use in the
processing routine.

The first output buffer is set up to
contain a START format with a blank program
name and a starting location of zero. This
is done to guard against the possibility of
a programmer not specifying a START, with-
out which the object program is not reloca-
table. If the program contains a START
statement it will overlay the pseudo-start.

CONTROL ROUTINE - CHART 07

The discussion of the Control Rou-
tine starts at location C811 (07) since
this is the initial entry point from the
initialization routine.

General

The card image, when the 1442 card
read-punch unit is used, is checked for a
blank. If the card is blank, the output
buffer area 1is checked to determine if
enough information has been processed to
fill an object program card or card image
on tape (8). If not, the blank card is
ignored and control is transferred to loca-
tion C819 (10) for further testing. If an
output buffer is full, an object program
card is produced by subroutine DOUT (09)
before control is transferred to location
c819 (10) .

If the card is not blank (07), or the
object program card has been produced (09),
the 1ID-Code of the Intermediate Text is
checked (10-14).

If the ID-Code is B or K (10), indicat-
ing an Assembler instruction, control is
transferred to location €827 to determine

which Assembler instruction is to be proc-
essed (byte 2 of the Intermediate Text is
checked) , and control is transferred to the
routine necessary to translate that
instruction (see section 5, "Intermediate
Text Translation"). The return to the
Control Routine varies with the type of
instruction and is shown in Section 5.

If the card was blank (11), as it would
have been if an object program card had
just been produced, control is transferred
to location C804 (01) to set up for proc-
essing the next statement.

If the ID-Code is A, Jd or M (12),
indicating a machine instruction or error
type M, control is transferred to 1location
c8231 (20) to translate the machine
instruction (see Machine Instruction Proc-
essing section) .

If the ID-Code is L or C (14), indicat-
ing the instruction is not to be assembled
(I) or it is a comments statement (C),
control 1is transferred to 1location C825
(16) to list the card in the object program
listing (see Common section).

If the card does not contain a correct
ID-Code or is not blank, error flag N is
placed in the print buffer (15) by subrou-
tine FERR before control is transferred to
the print routine (16) (see Common
section) .

Common

After the above procedures, or after the
translation of the instruction is completed
correctly, subroutine PRTA 1is entered to
store the data in the print buffer and to
list a line of the object program (16).
The number of columns to be listed, and the
contents of each 1line, are determined by
the procedure followed before entering this
subroutine (see Section 3, "Subroutine Des-
criptions,” subroutine PRTA, for detailed
explanation) .

The location counter is incremented by
SIZE (number of bytes) of the instruction
just translated (17). Control is trans-
ferred to location C804 (01) to set up for
processing the next intermediate text
statement.

Location C804 (01) will contain a trans-
fer to location FH11 (02) until all START,
ENTRY, EXTRN, and ICTL Assembler instruc-
tions have been translated.

The statement just processed is checked
(02-03), and if it is Dblank, a START,
ENTRY, EXTRN, or ICTL, or contains ID-Code

L or C, control transfers to location D805
(05) to prepare for the next intermediate
text statement.

If the intermediate text statement is
none of the above, control is transferred
to location FH12 (04) . Location C804 (01)
is changed to a branch to location C805,
and shared main storage is reset to be used
as additional output buffers. NBL and NOPB
are incremented accordingly.

Shared main storage is the area of main
storage occupied by the initialization rou-
tine and the routines necessary to tran-
slate the START, ICTL, ENTRY, and EXTRN
Assembler instructions.

After shared main storage has been
reset, the program switches that affect the
processing of each instruction are reset,
and the current value of the 1location
counter is stored in the first location of
the Symbol Table (05).
each

The program switches reset after

instruction is processed are:

contains the size of the instruc-
tion, and controls the incrementing
of the location counter,

contains the trap and operate
switches for the INOUT subroutine,
is the output byte counter for the
PRTA subroutine,

controls the printing of a line of
the object program by subroutine
PRTA,

RELA is the relocatability
indicator.

SIZE

IOCTL
ZBYT

SWPT
attribute

After the switches are reset, subroutine
INOUT is entered to read the next card or
tape record (06). Control is then trans-
ferred to 1location C811 (07) to start the
processing of the statement (see General
section) .

Machine Instruction Processing

If this is a type M CCW, control is
transferred to location C908 (chart BD).

If the location counter 1is not at an
even byte (half-word boundary) (18), con-
trol is transferred to location C930 (23).

SIZE, which indicates the number of
bytes by which to increment the location
counter, 1is set to a 1. Control is trans-

ferred to subroutine SUZ which zeros the
output buffer and causes a byte of zeros to
be printed. Subroutine PCHA is then
entered to store one byte of zeros in the
text buffer (24), and the location counter

Phase II 81

is incremented by SIZE (25). Control is
then transferred to translate the machine
instruction (19).

If the 1location counter is on a half-
word boundary,. or after it is aligned to a
half-word boundary, a test is made for a
CNOP instruction (19). If this is a CNOP
instruction, control is transferred to
Chart BA to process the instruction. If

this is not a CNOP, the operation code
(byte 2 of the Intermediate Text) is placed
in the output text buffer (20). A test is

an ID-Code M machine
instruction (21). If the 1ID-Code is M,
control is transferred to location F730 in
subroutine SER to reset the text buffer to

then made for

82

zeroes. If the ID-Code is not M, the size
of the instruction (determined by the oper-
ation code) is stored in SIZE (21).

Control is then transferred to translate
the instruction according to format (22)
and returns to location C824 (27) to store
the translated instruction in the punch
buffer (27). (See Section 5, "Intermediate
Text Translation," for error returns from
the specific instruction translation rou-
tines.) After the data has been stored in
the punch buffer, control is transferred to
location C804 (01) to set up for processing
the next intermediate text statement (see
General section).

SECTION 5: INTERMEDIATE TEXT TRANSLATION

SPACE Translation - Chart BA (Blocks 14-20)

This section contains the flowcharts
showing the translation of the operand
fields of the Intermediate Text developed
by Phase I. It contains a flowchart for
each instruction type and format and a
brief description of the flowchart.

The reader will require a basic know-
ledge of the subroutines described in Sec-

tion 3, "Subroutine Description," Dbefore
using this section.

ASSEMBLER INSTRUCTIONS

CNOP Translation - Chart BA (Blocks 01-07)

This routine is entered at location C923
(block 01) from the Phase 2 Control Routine
(Chart 07). This routine determines what

.action is necessary for the PRTA and PCHA
subroutines, and processes accordingly.

Control is returned to location C805 in
the Phase II Control Routine.

ICTL Translation - Chart BA (Block 08)

The only action required for the ICTL
Assembler instruction in Phase II is to set
the print routine control switch, SWPT.

This translation routine is part of the
CNOP translation routine. The routine is
entered at location €926 (block 08); it
sets the SWPT switch, and control is
returned to location €825 in the Phase II
Control Routine (Chart 07). ‘

EJECT Translation - Chart BA (Blocks 09-13)

This routine is entered at location D104
from the Phase II Control Routine (Chart

07 .

If the source statement contains an
error, the source statement is printed
‘before the printer EJECT instruction is

carried out.
action occurs.

Otherwise, only the EJECT

If tape print option is used, an eject
control bit causes the next statement writ-
ten on tape to have an eject action after
printing. If, however, the no-print option
is used, the EJECT statement is ignored.

Control is returned to location C825 in
the Phase II Control Routine.

" statement does not

This routine is entered at location D107
from the Phase II Control Routine (Chart
07 .

If the operand contains a count greater
than 63, the statement is processed in the
same way as an EJECT statement with an
error (see preceding discussion) .

If the source statement contains an
error other than the one above, the source
statement will be printed, and the number
of blank lines indicated in the operand
(minus one) will be printed. If the source
contain an error, the
numper of blank 1lines indicated in the
operand will be printed.

If the space count plus the count of the
number of lines already printed on the page
is equal to or greater than 56, the line
counter is reset to zero and the statement
is processed as an EJECT instruction. This
check is made after each single space; thus
it is possible to SPACE to the bottom of
the page and EJECT to the top of the next

page.

Control is returned to location C825 in
the Phase II Control Routine.

START Translation - Chart BB (Blocks 01-03)

This routine is entered at location D002
(block 01) from the Phase II Control Rou-
tine (Chart 07). The location counter is
set to the translated value of the operand,
or to zero if the operand is invalid. An
ESD card image 1is placed in the output
buffer, and control is returned to location
C825 in the Phase II Control Routine.

If the translation is incorrect, error
flags are placed in the print buffer, and
the necessary action, depending upon the
severity of the error, is taken.

Control is returned to location C824 in
the Phase II Control Routine, or the tran-
slation continues, depending upon the
severity of the error.

ENTRY and EXTRN Translation - Chart BB

(Blocks 04-08)

This routine is entered at location D001
(block 04) from the Phase II Control Rou-
tine. The operand is translated and placed
into the output buffer area.

Phase IT 83

If the statement is an EXTRN, an ESD
card image is placed into the punch buffer,
and control is returned to location C825 in
the Phase II Control Routine (Chart 07).

If the statement is an ENTRY, the symbol
in the operand can be used in one ENTRY
statement only. The ESD card image is
placed in the punch buffer if the symbol
has not been used previously. Control is
returned to location €825 in the Phase II
Control Routine.

If the symbol has been previously used,
this ENTRY statement is ignored, and an
error flag is placed in the output buffer
before control is returned to location C825
in the Phase II Control Routine.

If +the translation is incorrect, error
flags are placed in the print buffer, and
the necessary action, depending upon the
severity of the error, is taken.

Control is returned to location C824 in
the Phase II Control Routine, or the tran-
slation continues, depending upon the
severity of the error.

DROP Translation - Chart BB (Blocks 09-13)

This routine is entered at location D140
(block 09) from the Phase II Control Rou-
tine (Chart 07) . The operand is translated
and, if wvalid, the indicated register is
removed from the Register Table.

The source statement is 1listed, and
control is returned to location C804 in the
Phase II Control Routine.

If the translation is incorrect, error
flags are placed in the print buffer, and
the necessary action, depending upon the
severity of the error, is taken.

Control returns to location C824 in the
Phase II Control Routine, or the transla-
tion continues, depending upon the severity
of the error.

USING Translation - Chart BB (Blocks 14-24)

This routine is entered at location D020
(block 14) from the Phase II Control Rou-
tine (Chart 07). The first expression is
translated and placed in the output buffer
area.

If the first expression is valid, the

second expression is translated and, if
valid, the indicated register is entered

8u

into the Register Table. Control 1is
returned to location C825 in the ©Phase II
Control Routine.

If either translation is incorrect,

error flags are placed in the print buffer,
and the necessary action, depending upon
the severity of the error, is taken.

Control is returned to location C824 in
the Phase II Control Routine, or the tran-
slation continues, depending wupon the
severity of the error.

END, EQU, and ORG Translation - Chart BC

This routine is entered at location D006
(block 01) from the Phase II Control Rou-
tine (Chart 07). The operand is translated
and, if valid, placed in the output buffer
area.

If the translation is incorrect, error
flags are placed in the print buffer, and
the necessary action, depending upon the
severity of the error, is taken.

Control returns to location C824 in the
Phase II Control Routine, or the transla-
tion continues, depending upon the severity
of the error.

If the instruction is an EQU, control is
returned to 1location C825 in the Phase II
Control Routine.

The source statement is printed, and the
output is set to a blank buffer, since an
ORG or an END instruction is considered to
be a break in the string of specified
storage content, and therefore a new output
card must be started.

If the statement is an ORG instruction,
control is returned to location C804 in the
Phase II Control Routine.

If the statement is an END instruction,
all remaining output buffers are produced;
the RLD cards are produced from the RLD
Table (see "Introduction"); the END card is
produced; the EOJ message is listed and/or
displayed; the processing is ended, and the
program stops. If object output is on
tape, an LDT record is written, and then
backspaced over so that it will be over-
written if this is a stacked assembly.

DS Translation - Chart BD (Blocks 09-14)

This routine is entered at location C915
(block 09) from the Phase II Control Rou-
tine (Chart 07).

The location counter is incremented by
the number of bytes reserved by the DS
instruction. The output is set to a blank
buffer, since a DS instruction is consid-
ered to be a break in the string of
specified storage content, and therefore a
new output buffer must be started.

The source statement is printed, and
control is returned to location C804 in the
Phase II Control Routine.

CCW Translation - Chart BD (Blocks 02-08)
and Chart BE (Blocks 15-22)

This routine is entered at location C908
(Chart CF, block 02) from the Phase II
Control Routine (Chart 07).

The location counter 1is aligned to a
double-word boundary, and the necessary
zeros are placed in the output buffer. The
location counter is then set to be incre-
mented by eight bytes, the size of the CCW
instruction, since the location counter is
incremented regardless of errors.

If the 1ID-Code is M, indicating the
instruction is to be assembled as zeros, no
further processing occurs, and control is
returned to location C824 in the Phase II
Control Routine.

The expressions in the operand are tran-
slated and placed in the output buffer
area. The translation of the second
expression, if wvalid, will cause an entry
into the RLD Table (see "Introduction").

If the translation of any expression is
incorrect, error flags are placed in the
print buffer, and the necessary action,
depending Upon the severity of the error,
is taken.

Control is returned to location C824 in

the Phase II Control Routine, or the tran-
slation continues, depending upon the
severity of the error. If control is
returned to the Phase II Control Routine
because of an error, the remaining expres-
sions in the statement are not translated.

DC Translation - Chart BD (Blocks 01,
03-06) and Chart BE (Blocks 01-14)

This routine is entered at location C901
(Chart CF, block 01) from the Phase II
Control Routine (Chart 07).

The 1location counter 1is set to be
aligned to the word boundary determined by

the type of DC statement. The number of
zeros necessary to accomplish this are
placed in the output buffer.

The location counter is set to be incre-
mented according to the L (length) field of
the statement, and one of the following
procedures is followed.

DC_Type A Instruction: The operand is
translated and placed into the output buf-
fer area.

If the translation is invalid, error
flags are placed into the print buffer and
the necessary action, depending upon the
severity of the error, is taken.

Control returns to location C824 in the
Phase II Control Routine, or the transla-
tion continues, depending upon the severity
of the error.

An entry is made into the RLD Table (see
"Introduction") if the translated operand
is a three- or four-byte value. Control is
returned to location C824 in the Phase II
Control Routine.

Other DC Instructions: The constant is
placed in the output buffer area and the
source statement is listed. The location
counter is then incremented by the size of
the L field. A line is printed and the
location counter is incremented until the
duplication factor is equal to zero.

Control is then returned to location
C804 in the Phase II Control Routine.

MACHINE INSTRUCTIONS

RR Format Translation - Chart BF

(Blocks 01-08)

This routine 1is a continuation of the
machine-instruction translation portion of
the Phase II Control Routine starting at
location C8201 (Chart 07).

The operand is translated
the type of RR format
Section 5, Chart AH and description) and
placed in the output buffer area. Control
is returned to location C824 in the Phase
ITI Control Routine.

according to
(see "Phase I,"

If the translation is incorrect, error
flags are placed in the print buffer, and
the necessary action, depending upon the
severity of the error, is taken.

Control is returned to location C824 in
the Phase II Control Routine, or the tran-

Phase II 85

slation continues, depending upon the
severity of the error. If control is
returned to the Phase II Control Routine,
the remaining terms of the operand are not
translated.

RS Format Translation - Chart BF
(Blocks 09-15))

This routine 1is a continuation of the
machine-instruction translation portion of
the Phase II Control Routine starting at
location C8201 (Chart 07).

The expressions in the operand field are
translated according to the type of RS
format (see "Phase I," Section 5, Chart AI
and description) and placed in the output
buffer area. Control is returned to loca-
tion C824 in the Phase II Control Routine.

If the translation is incorrect, error
flags are placed in the print buffer, and
the necessary action, ‘depending upon the
severity of the error, is taken.

Control is returned to location C824 in
the Phase II Control Routine, or the tran-
slation continues, depending upon the
severity of the error. If control is
returned to the Phase II Control Routine,
the remaining expressions of the operand
are not translated.

RX Format Translation - Chart BG
(Blocks 07-13)

This routine 1is a continuation of the
machine-instruction translation portion of
the Phase II Control Routine starting at
location C8201 (Chart 07).

The expressions in the operand field are
translated and placed in the output buffer
area. Control is returned to location C824
in the Phase II Control Routine.

If the translation of any expression is
incorrect, error flags are placed in the
print buffer, and the necessary action,
depending upon the severity of the error,
is taken.

Control is returned to location C824 in
the Phase II Control Routine, or the tran-
slation continues, depending upon the
severity of the error. If control is
returned to the Phase II Control Routine,
the remaining expressions of the operand
are not translated.

86

SI Format Translation - Chart BG

(Blocks 01-06)

This routine is a continuation of the
machine-instruction translation portion of
the Phase II Control Routine starting at
location C€8201 (Chart 07) . The translation
of the SI format starts at location FA05
(block 01) .

The operand field is translated accord-
ing to the type of SI format (see "Phase
I," Section 5, Chart AK and description)
and placed in the output buffer area.
Control is returned to location C824 in the
Phase II Control Routine.

If the translation of any expression is
incorrect, error flags are placed in the
print buffer, and the necessary action,
depending upon the severity of the error,
is taken.

Control is returned to location C824 in
the Phase II Control Routine, or the tran-
slation continues, depending upon the
severity of the error. If control is
returned to the Phase II Control Routine,
the remaining expressions in the operand
field are not translated.

SS Format Translation - Chart BH

This routine 1is a continuation of the
machine-instruction translation portion of
the Phase II Control Routine starting at
location C8201 (Chart 07). The translation
of the SS format starts at 1location FBO1
(block 01) .

The operand field is translated accord-
ing to the type of SS format (see "Phase
I," Section 5, Chart AL and description)
and placed in the output buffer area.
Control is returned to location C824 in the
Phase II Control Routine.

If the translation of any expression is
incorrect, error flags are placed in the
print buffer, and the necessary action,
depending upon the severity of the error,
is taken.

Control is returned to location C824 in
the Phase II Control Routine, or the tran-
slation continues, depending upon the
severity of the error. If control is
returned to the Phase II Control Routine,
the remaining expressions in the operand
field are not translated.

02
HERRRRDENRHRRRRRER

04
FHRRIC] HE R KA REH
*

*

MODIFY 1/0 *
PARAMETERS TO *X.

READ TAPE *

*

I KKK KRR
.

LER X

.

.

X 0S
HEEEAD] HHXE RREEXS
* INOUT *
* *
* REWIND ¥eseseoseeX
* ITXT * X
* TAPE *
L e

.
.
.
.

s e

. 10
HERHRE] HXRR RREHXR
*
STORE * YES
DATA IN *Xeooooose
SYMBOL TABLE *
*

EE T

LR

09.2
HERRRE] RERE RHERRH

* *
*MODIFY PROGRAM *
*IF NO PUNCH SW %X.o
* IS ON *

* *
R T
.

13
RERERG I HHHE XX RRH
* *

* MODIFY I/O * YES
PARAMETERS TO *Xeeossooe
PUNCH CARDS *
* *
ER 2 e

.

Xeo oo

14
R T T
*

ceee

17
RS TNEE TR TS
* *

SET * NC
NO-PRINT *Xeoeonsose
SWITCH *

* O ok ok

*
HHEHNKE RN KRR

Chart 06.

I At
*#06 *
* A2%

Xe oo
*0

EEE R T

FREEEADHE RN AR
*
*LCAD PSW'S AND
* CLEAR CAW AND
* PRINT BUFFERS
*

HEREERREERERERER

Xeooo o

WRITE AND

* REWIND SYSLIB *
TAPE, IF

* REQUESTED *

RERREHRERER RN

06
R

o INOUT *

L R S e B P
* READ *
* I[NTERMEDIATE *
*TEXT STATEMENT #
HARHFEREER RN RRNH

.

.

.

.

.

oXe
E2 . 07
% IS %,

% IT A *e
*. syMBOL o
#*. TABLE %
*#.CARD %

*eo o ¥

* NO

.

.

.

.

X 09
HRRRRF2RRRRERAR
* STORE *
INTERPHASE BYTE#
*(TCD)o SET "%t %
* LENGTH = 6 *

* *
IR NN NN NN

ceeees
X
G2 .
o .

% IS IT A %
. CARD OUTPUT .
*. SYSTEM %
Txe o’

NO

Xo 000 x

15
RERERHDE XX AR R RN
* *

* MCDIFY 1/0
* PARAMETERS TO
* WRITE TAPE

* Kk

* *
LR]

09.1

YES

cece

R I N I I A A S ST ST A AP

R

eeeX

Xesooosos e

*e 20

83
* -
*.

* IS IT
A 1052

*, PRINTER %
, o

R o #

NO

Xe oo oo %

21
EXRFRCIHERRRRR RN
* INOUT *
ok KWK R F—X— R
* *
* EJECT PAPER *
* *

e e s I T T ST

XRER .
* * .
* D3 *.Xe
* -

*xEw .

22
FEHERDIHHEEERHEKRN
* INOUT *

L R s T 2
*

* LIST HEADING *
* *

HERERRFRERR RN RER

23
FEEERFIREERREXRNS
*MODIFY PROGRAM *
* TO HANDLE *
**EJECT' PSEUDO *
* OP'S AS A *
* SPACE 6 *
R 2 e s L

YES

e¥Xooecosee®

Feeessoee X¥*
*

oo
J2 *e 16 J3 *e 1661
¥ *o o* IS *o
¥ IS A *e¢ YES o OFF *o NO
* LISTING e¥eoesseseX¥ e LINE PRINT o¥%ceee
eREQUESTED+ *o SWITCH o% .
*e o® *e ON o% .
e ¥ *o o¥ X
* YES *HR%
. * *
. * A4 *
- * *
. EERE
.
X 2

Phase II Initialization

16.
ERERRK IR RHRXHK
* *

*MODIFY PROGRAM *
* FOR OFF LINE *
* PRINTING *
*
*

*
I

.
*o
o ®
o ¥

o*" THERE
.7 A PRINTER
*.

Xe oo oo %

XXBLEX XX EXR
* 1s *
* THERE A *
TYPEWRITER *

ON LINE *
* *
i s e
+NO

-

24

FRREFCHEXRRRRER RN
*

INHIBIT

ALL
PRINTING

PR
* ok kK K

e T T T R
.

Xe oo

25
HEREEDAXH RN RRHR
* RESET
* REGISTER
TABLE AND
CTR.

I E L]

*
EHEERHEFRRRRRRRRR
.
.
.

.

X 0
HRERRELRRRRRRERRE
*DETERMINE SIZE *
*OF OUTPUT BFRS *
®*SET UP MIN. OF *
%30 RLD BUFFERS *
#PER 8K OF CORE *
HERRRFERRREREREER

Xeooon

08,
FEXREFLEXRRRRRERR
* BUMP COUNT OF *
*RLD BUFFERS BY *
SIZE OF CORE IN¥
GAP BETWEEN RLD
TBL AND OPT BFR¥
HEEERREERERRRRRER

.
.
.
4 X 08.
AXARBGARRERRERRRR
* *
* RESET *
* RLD *
* TABLE *
* *
36 RN NN

Xe oo

08.
FREERHLEF R R R FRERRS
* MODIFY 1/0 *
*PARAMETERS FOR *
* CORRECT PRINT *
* FORMAT *
* *
EE 2222222222222 22

Xeos e

08
HEERRJLAERERERRRR
T

SE
#* DUMMY *'START®
* FORMAT IN
* FIRST OUTPUT

F K K K

* UFFER
HERARERERRRRRRRR

Xeoone

08,
HERREKGF R EERRER TR
* *

* RESET *
*INITIALIZATION *
* OUTINE *
* *
FEERRREERERXRERRNR
-

X
ERERR
*C8 *
* 19%

* ¥

*

1

S

2

4

YES
e
.
.

X
XXX
*C8 *
* D1*

* *

*

YES
cee
.
.

X
XX RRR
%*C8 *
* D1%

® *

*

X
EERR

EZ 222

¥
o

IS 1T *.
TYPE "C OR 'Li*

*o0OR BLANK %

.

*e ox
NO

START,
*¢ EXTRNSENTRY s
*o OR ICTL o%
*, o ¥
Ko o¥
* NO

Xe o oo e ¥

S

Aok ok ok Kk kD

ERRREDSHEXHH AR
*

* RESET

* REST OF

* SHARED CORE

*

FREREEEERERNHERR
.

Xe oo

12
HEXRRESHEX XXX ERXX
*

*

* BUMP_COUNT OF *

*NO. OF BUFFERS *

* BY SIZE OF *

* SHARED CORE %

HHEFRER NN F RN
.

X
XX
*C8 *
* 05%

* %

*

1

Phase II

87

FH11 oXe

B1 *o. 02

.
.

#* .

. .

. .

. .

. .

. .

oXe .

c * o 03 .

o* IS IT %, .
e* A START, #. YES.

S
*JEXTRN,
*o OR I
*e
*o

.
.

.

.

-

.

.
FH12 X 04 .
HHEED] RN R H K -
*SET €804 TO BRN¥ .

* BUMP NBL AND % .
NCPB BY SIZE OF# .
SHARED CORE RE-# .
#SET SHARED CORE™¥* .

LR e R T -

. .

*XNE . .

* * . .

* oXe .
.

eXessocese

Cc80s X "~ 0S5
FRRRT P RARE RRR RN
* RESET PROGRAM %
SWITCHESe STORE¥
* CURRENT VALUE *
0F LOCe CTRe IN¥
* SYMBOL TABLE ¥
EEEREEERER LT NNR

06
FREEKRE L R R RXRXER
*INOUT *
L i et o
* READ *
* INTERMEDIATE *
* TE *

T Y Y

[X:3 9% .

¥

07

*e NO
#o IS IT BLANK oe¥cc0eX
* *

*o 08

*

- QUTPUT
BUFFER
FuLL o*

*e ok
Ko oF

YES

o
*o
*o

*e NO

e¥ooeaX

09
I LN e L T T 2
*

PRODUCE
* AN OBJECT

* C
P R e e

* % x

Chart 07.

88

Phase II

c819 o¥q cea7
A2 * g 10 Wk
o® *o # ENTER CORRECT ASSEMELER TRANS. *
¥ IS *e YES * ROUTINE BY CHECKING BYTE 2 OF #
oo X¥e 1D-CODE e*eoosseeeX*® INTERMEDIATE TEXTe RETURN DE- *
. B OR K # PENDS UPON INSTRUCTION TYPE. *
. *, ok *HXE
. *e ¥ * INSTRe o LOCe ** INSTRe o LOC.
. * NO o %% cee
. . * BC
. . *oee sseseeiiag, esee
. . * CNOP « 07C4 ** EXTRN .« BBB2
. . Hooeeecsenssscendtooeececcocsosna
. . * DC « BDB1 #** ICTL « BAC
. X HooeeeccessssseseHtoio0cesceccrsesnek CNOP
. *o 11 #* DROP « BBG1 ** CORG « BCB1 * XX
. . *osesesesecscssee ¥ o0s0csserscsssei
. « BDB4 ¥% SPACE .
. ¥ooee
. * EJE
. *oe0 ese eXH g0 csesea
. * END « BCB1 #% USING < BBE&4 *
. ¥oesseessecsssce¥¥iaccccncroscanst
. * ENTRY o« BBB2 #*#* *
.
.
. €8201
. . 12 18
. «¥* IS *o o% IS *q
- o* ID-CODE *, YES o Is #*o NO o* LOCs CTRe *, NO
. As Js OR M e¥ooseneneX¥, OP CODE esesesseX¥,ON EVEN BYTE esseeccscsssssscss
. *o . cCw *o ¥ .
. *o o ¥ *o ¥ *o o * .
. *e * e o¥ *e o .
. NO * YES #* YES .
. . . .
. . . .
. . X . .
. . hbabataled eXeosososssese .
. . *BD * . . .
. . * B2% «Xe s €930 X z23
. . * % Da *. 19 . I DS KK IR KX
. . * ¥ *e . *SET 'SIZE' TO 1%
- . . - * LIST A BYTE *
. ¥ . * OF ZEROS *
. . . *SET TEXT BUFFER¥
. LA 2 L - * T {s] *
. *PA * - I
. * B1% * . .
. L . . .
. * . . .
. . . .
. . . .
. . . .
. X 20 . X 24
- 9 3 HE G % I RN . NI E SN NN NR
. * * . *PCHA *
. * STORE * . B T ey
. * OP CODE IN * . * STORE DATA *
- . * TEXT BUFFER * . * IN *
. . * * . * PUNCH BUFFER *
. - B3 363 3 I K I IR X N - RN N R
- * NO
.
.
.
.
.
. X 15 . o« Xe . X S
. HERERFE2ER AR HRHR . Fa *. 21 . HHHERFSHRHIR TR
. *FERR * . * *o . * *
. Rt et S bk et Sl d . YES o¥% . * INCREMENT #*
. * SET * . seecsseaity ID CODE M % ssesee® LOCse CTRe BY ¥
. * ERROR FLAG * . - * *SIZE"* *
- * * . F X - * *
. EIT IR R TR TR . *BF * o* ET2 2T T T L
. . . * H1% * NO
. N - - * * -
. * - . * .
. *07 *eXe X .
. * G2#* eXeoesssccses .
- A2 - - .
«C825 X 16 . X 2145
. HREKEG2IEHEXRRERE . HREEEGAERRHHNERHR
. *ERTA * . ¥* *
. B o B e 3 . * SET 'SIZE! *
. * STORE DATA IN # . # TO SIZE OF *
. * PRINT BUFFER ¥ . * INSTRUCTION %
. * AND LIST LINE * . Ebdetaled * *
- 333 NI IR ERR - #07 * A3 9 I IR
. . . * H3* .
. . . * ® .
. . . * .
. . .
. . .
.
. X 17 . C824 X 27 X
. HRMARHDE R HRE KRR . EE T TV TR R RINK IR
. * * . *PCHA * * TRANSLATE *
. * INCREMENT * . R W W * OPERANDS *
. * LO0Ce CTRe BY * eescee® STORE DATA #Xesoosoceisosvesccscesesach
. * 'SIZE" * * IN * * e BFB1 *
. * * * PUNCH BUFFER * * RS . BFB4 *
. AR HHRRRERE NIRRT NN * RX BGB4 *
. . * SI BGB2 *
. o * SS o BHB3 ¥
. . EITTT T TS T e s
. X
. XY
. * *
. * Al %
. * *
. %
.
.
EEERR
* *
* NOTE- *
* ALL REFERENCES TO PRTA *
* APPLY TO ON-LINE PRINT=- ¥
* ING AND TO WRITING TAPE *
* FOR OFF-LINE PRINTING :
*
*

Control Routine

CNoP ICTL EJECT
LA 2 W EE 2 223
R EEE R R
*BA * *BA * #BA *
* B1¥ * C2% . * Bax
* * * *® **
* * *
. . .
. . .
cs23 X 01 . D104 o Xe
&u&a;******l*** . - 09
*BA . *o
*— *—*—*—*—*—i—*—i - 1s
* SET 'SIZE' * . IT AN
#EQUAL TO BYTES * . . *, ERROR
* SKIPPED *
P e e I . . E
. . . #* YES
. . . .
. - . .
. . . .
. . . .
. . . .
eXe c926 X 08 . X 10
c1 *. 02 FRHKRCOEKERRRHERE . HHRERCHIEEEREIN XN
¥ *e SET PR[NT * . *PRTERR
o DOES *, YES * . e N K
e'SIZE' EQUALx* PRINT SOURCE * . PRINT *
*o ZE ¥ STATEMENT * . ERROR *
. I * . STATEMENT *
*e o ¥ *!********i**ﬂ*!* - NI IR RRN
* NO . .

c€s271 03
HHRRHD] X R R EKK
*#L_OAD *NOP' INTO®*
* TEXT BUFFERe %
* SAVE ORIGINAL *
*SIZEe SET SIZE *
*EQUAL TO ZEROe *
MR K RRRXER

ecsccccses o Xe

. X 04
. *****51**********
. *PRTA
.
-

Et e 2 B e —*-*—i

* PRINT *

* SOURCE *
.« * STATEMENT %
- 2222 RIS RS2 2223
. .

0S
&Fl******&***
*PCHA
e W e — »-*-*
: STORE DATA *
*

* PUNCH BUFFER %
T e e

Xe o oo

06
FERERG] HERH XN AN
* SET TO PRINT *
#120 COLSe INCRe¥
* LOCe CTRe AND *
REDUCE ORIGINAL®

* SIZE BY *
e e e L)

Xeoooos

H1 *. 07
*

¥ -
NO % ORIGINAL %o
eee¥*s SIZE EQUAL o %
RO o *

.

Chart BA. SPACE,

EJECT, CNOP,

X B
HREER cos cesssenns
*07 *
* G2 SEE NOTE 1 X 11
* % P T Ve N
LE 22 * *
* * * SET *
* D4 *eeeeXHSWITCH TO EJECTH
* * * RINTER *
LA a2

* *
HEEEFEEETRERERR RN

MR

SEE _NOTE 2 12
*i***E4*ii***ii*i

*INOUT
L. —i—*—&—*—&-*—}

* EJECT PRINTER *
* *

* *
PR
.

Xe o

13
RERERF LR T ERRERR
* *

* CLEAR *
* EJECT PRINTER *
* SWITCH *

*
FEREANH RN AR EREARR
-

.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
B

seccccccce

NCTE 1 - .
IF NO PRINT OPTION
IS USED, BRANCH TO
804(07-A1)

.
.

.
NOTE 2 - .
IF OFF~LINE PRINTINGs o

ET THE CARRIAGE .

CONTRO BYTE OF THE .

PRINT BUFFER TO .

'EJECT'- TH!S .
.

.

.

.

.

-

.

.
.
.
.
.
.
.
.
.
.

HE XT
STATEMENT WRITTEN
ON TAPE TO HAVE
AN EJECT ACTION
AFTER PRINTING

-
.
.
.
.
.
.
.
o
.
.
.
.
.
.

4cecscccsscscsccccscrncsccesscnne

and ICTL Translation

D10

S ececsscess et s cer st s esss s

YES

e

.

.

X
L2

*
* D&
*

RRR

ee X
*

7

oXe
B85 *e 14

o *e
o SPACE *o NO
#¢ COUNT GREATERe%.
*o THAN 63 o

*. o
* YES

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

IS *.
*. IT AN e*X oo
*. ERROR %
* *
*e o ¥
YES

Xe o s oo %

17

FHHHK TSN NRHNH
*

SET T0 *
LIST ERROR *o
STATEMENT *

*
P)

LR E RS

> 18
HHHBRFSEERIE RN
*

* RESET PRINT
* BUFFER
TO BLANKS

EEE TR

HRRRNFRREERH LR

.

*RER .

*

* GS *.X-
eXesessssose

*n** .

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

19
ﬁ*&**gs:*****ﬁ**&
*PRTA
-—*-u-*-«—;-*_
* LIST
* ERROR OR
* BLANKS
LTI T 2 2 i)

.

LEE R X1

Xe oo oo
.

% S
-*COUNT PLUS *.
*o LINE COUNT %
#+GRTR THAN*
*e 56 o¥
Ky o
N

* %k %

.* *o
SPACE COUNT %
ZERO o*

scocossscsssscescscssccceXe
X

EXERE

%07 *

* E1%
* *
*

Phase II

89

START ENTRY s EXTRN
Ex 2223 e 2222222223
XX R R E R
*BB * *BB_*
* B1* * B2%*
* * * *
* *
. .
. .
. .
poo2 X 01 D001 X 04
HENRED] XX RE * B2 *
*SER *SER *

TRANSLATE OPER-#

* ANDe ERROR *

*EXITS B4 AND BS#%

LR e S e 2]
.

L ot b el
TRANSLATE OPER=-#
* AND.
*EXI 4 AND B

EER AR S PR R S 2

ERROR *

TS B S*

ERROR EXITS FOR SUBROUTINE

SER

UNDEF INED
YMBOL
XREERENER
ERER

*
* B4
*

* %k ok

XN

Xe oo %

-
~

08 25
PARAMETERS FOR ERRHEBLXERXRNRRER
*

BOTH ROUTINES *
SET *

* ERROR FLAGS %

* U AND N *

* (SEE NOTE) *

R e s L]

TRANSLATED VALUE
TOO LARGE
HHEREEEERHERRNE

XXRR

F744
KBS NHI RN

*SET ERROR FLAG *

* T *

*TRUNCATE VALUE *

* BEFORE *

* STORING *

FRN R RRARRRRNS
.

ok ok ok e ok ok ok %k ok ok ok ok ok ok ok ok ok ok ok ok ke 3K ok ok ok K ok ok ok ok ok ok ok ke k ok ok ok ok Xk

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

. * . .

. * o o

. * X .

. * RN R .

. * *07 * .

X 02 * * H3#%® .

I] KRR RENR * * * X

#* SET LOCe CTRe * * * R CS KRR N XN
* TO NEW VALUE. #* * * RETURN TO *
*AL IGN BOUNDARY * * NOTE * CALLING *
* AND ADD BYTES * * NO N FLAG SET ON * ROUT INE *
* TO LOC. CTR. * . . . * UNDEFINED START 33k
IR NN . *e o *

. . * YES *

. . . *

. . .

. X . *

eXeososcoscnce . *

. . . *

D00S3 X 03 . eXe 08 *

HHHERD L HIHIH R RE IR . D2 *e 06 RRRRNRDIXRERRARRRN *
* SET UP * . ok *FERR * *
* PUNCH BUFFER ¥ . ¥ NTRY *- YE R R R RN X=X * USING
#* TO PRODUCE * . *e SYMBOL USED e¥*eessoseeX¥* SET * * HRH NN
* ESD CARD * . #*e BEFORE % * ERROR * *
* * . . ok * F * * R
N I I W NN - e o I I I I NN * *BB *

- . * NO . * * E4QR

. . . * * *

. . . * *

X . X * .

R . ERRER * .
%07 * . *07 * » .
* G2% X o7 * G2* * D020 X 14
* * HEREREDHEHNARERRE * * * *****54**;*****&* EER PARAMETERS
* * TURN SYMBOL * * * *EER
* USED * * i—l—l—i—*-*-*-l-* coL=05
essee*® INDICATOR ON * * *TRANSLATE OPER-* LGH=06
* FOR * * * AND. SEE * TXT=00
* THIS SYMBOL ' * * * ON CHART BC * NBT=04
HHBHREERRANRRERS * 3383 IE I NKH IR N
* .
* .
* .
XX R XXX .
* .
* .
* X 15
* FREREELEERKE R HRN
* *w *CV *
DROP * * * YESH—dm et
HE X * #* H2 *Xoeeoo¥* IS VALUE *
* * * * 00 *
EA 222 * LA 2 2] * LARGE *
*BB * * IR
* G1¥ * «NO SER PARAMETERS
* % *

* *

. *

. *

.

D140 X 09 * D0223 24 17
*****51»********* SER PARAMETERS * *****53**q**i*;§{ 16 liﬁii@sliii***il&
*SER * *FERR o* *o *SER
— I—-*-i-*-*-*—* * o *-*-* YES —l—*-*-*-*-*—i—i
* GET REGISTER * * * SET *Xoo-o-coo*VALUE ABSOLUTE ¥eeosseeeX® GET REGISTER *
* NUMBER. ERROR * * * ERROR *e * NUMBERs ERROR *
EXITS B4 AND BS EERR * * FLAGS *o .* *EXITS B4 AND BS*
EEE S S R 22 R Rt 2 s * * i*i**ll***i*****i . *q oF 3 3 3 9 33 I I I I XXX

. * H2 * * . * .

. * * * . .

. xR * . .

. . * X .

. . * RN .

. . * *07 * .

CcvTL X 10 X 13 * * G2% CVTL X 18
***l!ﬂl**}u*l*i** KR E RN AR * * % AR T T T
*CVTL *FERR * o *ENR *CVTL *
O e *-*s*No Fo KRk NN * * * NO# =3 — % =t m X ¥ N ¥
* IS VALUE *oee ce X® SET * * * H2 *Xeooo¥ IS VALUE *
* 15 OR * ERROR * * * * 15 OR *
* LESS * * FLAGS * * *R XX * LESS *
R T I 2 2 EE IR LT PR * RN NI NN RN RR

«YES . * «YES

. . * .

. . * .

. X * .

- RN * -

. *07 * * .

X 11 * G2% * 22 o¥, oXe

HHWIE] R E R RRR * % * RN XY THARRRHERE Ja *#, 21 Js *. 19
*DROP * * * * * . *e . .
Eo NN W RN * * SET VALUE * NO o 1s *e YES o% IS REG- *.
REMOVE REGISTER * * ‘TO ¥Xeosscecaits VALUE e¥Xeoosseee ¥ ISTER NUMSER o¥
* FROM * * * ZERO * *eo ZERO - *o ZE . ¥
*REGISTER TABLE * * * * *eo o *o o
T I e T T * IR AR A RRR *o 0¥ *e o ¥

. * . * YES * NO

. * . . .

* . . .
* . . -
= * . . :

o * o . .

X 12 * X 23 . D024 X 20
*****Kl********** * *****Ka********** . P I R T S T
*PRTA * *FERR . * *
i-&-:-*-*-*-*-n-* * *-*-*-*-*-*-*-*-& X *PLACE REGISTER *
* LIST * * * SET ¥eoaesecscccscsncscsnsssscsasecesee X NUMBER INTO ¥
SOURCE * * * ERROR * *REGISTER TABLE #*
* STATEMENT * * * FLAG * * *
FRHERR K HIIERRR R * e P T Y

. * .

. * .

*

Chart BB.

90

X
R
*07 *
* AlR

* *

*

DROP,

ENTRY, EXTRN,

START, and USING Translation

.

X
LR 22
*07 *
* G2%

* *

*

ss s e s ess st sssssesnsee

¥ *e
NO
#VALUE ABSOLUTE ¥*scesee
. X
*o o .
¥o o .
* YES .
. .
. .
. .
. .
. .
bcogz oXe .
F1 *o 0S5 .
o .
Is *e NO o
THIS AN e¥soes
END .
*o .
*o
* YES
.
.
eXe
G1 *s 06
i *.
YES o%
csee¥, OPERAND FIELD.
. *o .*
. Ho ok
. * NO
. .
. .
. .
. .
. .
. X 07
. R] IR RN
- *FERR *
- R s S R S 2
. * SET *
- * ERROR *
.
.
.
2223
Chart BC. END,

oo

YES

END »EQU, ORG
R R RERRR

i
*BC *
* B1¥
* *

06 01
*&**iax****{****«

*EER

L —l—*—*—l—i
* TRANSLATE *
* OPEZRAND AND %

STORE *
RS TS SR e S 22 2 2

Xe s e

c1 *e 02
¥ .
o* 1s *o
VALUE 65535
*e OR LESS o%
. ¥
*o oF
NO

Xe oo e e %

03
l*!iiDlillil**iii

*SET ERROR FLAG *
#T AND SET SAVE #
* AREA TO ZERO #*

* *
FH R IR KR EEN

ceccoccce o Xe .

.
Dooel oXe
E

NOTE

ERROR EXITS FOR SUBROQUTINE ERR
ARE THE SAME AS FOR SUBROUTINE
SER (SEE CHART EB) PLUS THE
ERROR EXITS B4 AND BS ON THIS
PAGE.

EER PARAMETERS
coL=0S
LGH=00
TXT=00
NBT=04

Doo84 ¥
2

* R .
DO101 X 09
&Fz******&***
*PRTA
- l‘—*—*—*—l-*-*
* LIST *
* SOURCE *

STATEMENT

10
RGN R RN
*SKNE *
E R P T 2 D T 2
* SKIP TO BLANK #*
* CUTPUT BUFFER *
* IF NECESSARY *
FRREEREEERRRRENRN

11
*. NO
e¥eeocosee
. . EEEER
*e o ¥ *BA ¥
* YES * c2x
- * *
. *
.
.
.
X Fcol

l**i*Jz*****ii(iE
PUNCH REMAINING
*CUTPUT BUFFERS *
* INTO TEXT *ooeceeneX¥
* RECORDS * * END
* * *

R e e

EQU, and ORG Translation

*{**iJ]*h&***i*ii
#*PUNCH RLD CARDS*
*FROM RLD TABLE *
AND PRODUCE

*
e T

oo ok ok kK K K oK KK Kk K K ok K R ok R ok ok ok ok oKk ok ok ok K K K K ok kK K Kk ok 3k K ok ok ok ok ok ok ok ok koK K K

¥ooeeeseeX¥e
*

XXX
ERROR EXITS FOR SUBROUTINE EER

INDICATED MULTIPLY OF NON-
ABSOLUTE TERMS OR TOO MANY
MIN

US SIGNS

TRANSLATED VALUE
TOO LARGE

F232 13
i***{ﬂq*li%**llli

xR

SET RELA=0 TO *
*IND!CATE VALUE *
AS

ABSOLUTE

*llil*i*{*lll&i**

Xe oo oo

ERRRCLHERREXRER
* RETURN TO
* CALLING

* ROUTINE
LR R s

222
* *
* BS *
* *
XEER
.
.

46 X 14
l****ﬂsii****iiil
*FERR
—ﬁ-i—i—-&-*—*—*
* SET *

* ERROR _FLAG *
* T *

EEREERERREERRER R

Xe o oo

1S
Il**icsu!*llll**i

TORI
TRUNCATED VALUE
* IN OUTPUT l

i**!i***!*i*i
.
.

X
EEEER
*07 *
* H3%®

* *

*

ook K K K B K ok ki ok ok ok ok R o ok oK o sk 3 K K K K ok ok ok K ok ok ok ok ok ok ok oK KK K K K K

¥,

Ja *e &****J5******i{**
ok *e *
¥ TAPE *o * LDT RECORD *
OBJECT e¥oscsesee X¥ *
. * EACKSPACE *
¥ * OVER IT *
ok HERRRERRHR XXX NR

* NO .

eXeooeosecsseccsecscccsssssce

X 14
I e]

* LIST AND/OR
DISPLAY EOJ

EREREREERRRRRER

Phase II

91

cso

cso

cs1

cs1

YES
eee
.
.

X
3k
#07 *
* H3w

* *

*

DC ccw
L2 2 223 NN
L2 2223 RN
*BD * *BD *
* B1* * B2
* * * %
* *
. .
. .
. .
1 X 01 coo08 X 02
HHRNND] HH AT ERE RN HEXXRB2HE R REHN
*BA * * SET 'SIZE' *
R N N * ACCORDING TO *
* SET 'SIZE' * * LAST 3 BITS *
*EQUAL TO BYTES * * OF LOCATION *
* SKIPPED * * COUNTER *
EX 2222 22222222222 NI IR NN AR
. .
. .
. .
. .
T
3

¥ .

o® Is *e YES
¥OSIZE' EQUAL TO%eeee
s ZERO -¥ .
*o o¥ .
He ¥ .
* NO .

.

.

.

.

X

04
HHRIHHD | R RN KRR
sLz *

e et e B B 2t 2
* SET ZEROS IN %
* TEXT BUFFER %
* AND LIST *
R R A E R 2 2]

.
.
.
.
.
.
.

Xe oo o

.
.
.
.
.
.
.

0s
I ISR TR T Py
*PCHA *
P W W W
* STORE DATA *
* IN *

* PUNCH BUFFER #
R IR R R R L L]
.

.

.
.
.
-
.
.
.

.
eXeosossne
.
] o Xe
F1 *e 06
o ¥ *o

o ¥ *4 NO
*¥eIS THIS A CCWe*eooooons
* X

“x. o ERRER
*o o *BE *
* YES * Bl1¥
. * %
. *
.
.
01 X

07
KHRHHG] KKK AN RNR
* *
* SET *
*#OSIZE'EQUAL TO *
* 8 *

* *
RN I NN HR K

. -
.
.
.
.
X
H1 *o 08
¥ *e
o* #e NO
*oIS ID-CODE M o¥%eces
*o . .
*o o .
o o¥ X
RN
*BE *
* Ba*
* %

*

Chart BD. CCW, DC, and DS Translation

92

sk sk e ok k% ok 3k ok ok ok ok ok sk ok ok ok ok ok ok ok sk ok ok ok % Kk K %k e ok ok ok ok ok sk ok sk ok ok ok ok ok ok Kk ok K K K ok ok 3 ok ok ok ok sk sk ok ok sk sk ok sk ok ok ok ok i e ks K ok K 3k ok ok Sk ok K e ok ok kK e ok Sk sk ook ok sk ok ok ok Ok ok ok ok dk ok ok K ok ok ok i ok ok sk ok sk kOl Ok ok Ok ok Rk ok ok e K K kK ok K K

c918

DS
X H

R EH R

09
- T a TR E 22
*BA *

LT B 2 B T s T

* SET 'SIZE' . *

*EQUAL TO BYTES *

* 'SKIPPED *

F6 3 I I I NN NN NN
.

.
.
.
.
*Xe
ca4 *e 10
¥ *o
¥ Is *. YES
*'SIZE' EQUAL TO¥*eees
*o. ZERO ¥
* ¥
e o ¥
* NO

.

X 11
HHERHDAHRRRER XX
* *

INCREMENT *
LOCATION CTRe *
BY 'SIZE" *

Kk

* *
NN IR H RN AR
.
.
.
eXesesosscoe

e e e s e s s s s es e es s

c9192

X 12
W NE QKRN RN
*#SKNB *
LR Bt Bt B Bt B B
* SKIP TO *
* BLANK OUTPUT *
* BUFFER

*
HHEEEERRRR R RRHR

13
EEERNFLERRXEFER XN
*PRTA *
LS B B T 2 Tt Bt T
* LIST *
* SOURCE *

STATEMENT
EX 2222222 RS L)

Xeoeoens

14
AXKERGHAHFAKAXEER
* *

* INCREMENT *
* LOCe CTR. BY
SIZE OF OPERAND#
* *

HEEAEREERRRRERERR
.
-
.

X
AR XK
*#07 %
#* AL¥

* *

FSso

*
*
*
*
*
* NOTE 1
* FOR ERROR EXITS FROM
* SUBROUTINE SER,s REFER
Redabladed * TO CHART BB
*BE * * NOTE 2
* B1% * FOR ERROR EXITS FROM
* * * SUBROUTINE EERs REFER
* * TO CHART BC.
. *
- *
. *
X 01 *
22 PR TR) *
* * *
* SET *SIZE' * *
* ACCORDING TO % *
* L FIELD *
* *
e e T e e
.
.
.
.
.
.
oXe 10
c1 *. 02 HRRERCIRERRRXERRN
o *eo * SET TO REPEAT ¥
*¢ NO * ACCORDING TO %
oIS THIS A DCAc¥eoocvsccscs DUPLICATION %
. . * FACTOR. STORE *
o o #CONSTANT IN TXT#
*o o RN RA RN N
* YES .
. .
. .
. .
. .
2 X 03 FS11 X 11
ERRRED] KRR XXX XXX PARAMETERS *i***D3**********
EER * *PCHA
R i it coL=9 i—l—i—*-l—*—l—l—l
* TRANSLATE * LG * STORE DATA *
OPERAND * * IN *
* (SEE NOTE 2) * * PUNCH BUFFER #*
RN RN R RN R e

-
eseseXe

ceae

. .
oF5172 X 12

. HREXREIHRRXRXRRRR

. *PRTA *

YES o% *e . L i s o Tt)
esese¥s DOES RELA=0 <% . * LIST *
. . . * SOURCE *

*eo ¥ . * STATEMENT *

®o oF . TR ERH RN

* NO . .

. . .

. . .

. . .

. . -

oXe . X 13

F1 *. 05 . HRERREIHERREEEERR

¥ . . *INCREMENT LOC. *

¥ DOES *s YES . *CTR. BY *
%oL FIELD EQUALe*eese . * AND REDUCE *
e 3 OR 4 o% . . * DUPLICATION #

. . . . * FACTOR *

%o o . . P I I T

* NO . . .

. . . .

. . . .

. . . .

. . . .

. . . .

X 06 . . «Xeo
;***«g;***’&****u . . *. 14
#FERR - . . .
--*—*-*-*-*-*-* . « NO DOES *o

Xooott SET * . eese¥*e DUPLICATION o%
* ERROR * . +FACTOR=0 o%
* FLAG * . *o o*
3636363 I I I X H XN - * g *

. * YES
. .
. .
. X
EEERR
*07 *
* AL%
* x
o *q *
+* DOES RLD *. YES
#TABLZE CONTAIN A¥coee
* BLANI o
. .
*e o
NO

R R I I R R S R R R R S R R S R S R R A N S R R N R ST S S T T R ST A AT A S AT ST Y

Chart BE.

*
-
.
.
.
-

X

08
EZZIINERE TS S 22 T2
*

* FLAG *
LR R ST S 22 22 d]

ceae

X 09
MK] R R NER
#* SET NECESSARY #*
INFORMATICN ¥

INTO *

RLD TABLE *
* ENTRY *
BRI KWK R
.

EE XS

eseescccsseXe

.
X
R RE
*#07 *
* H3*
* %

*

CCW

“es e et s s et essss s

and DC Translation (continued)

% %k ok 3 ok ok ok sk ok ok Kk ok ok ok ok ok K ok dk ok ok ok ok ok Kk ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ke ok ok Kk ok sk ok ok ke ok sk ok ok ok ok ok ok ok K ok ok ok ok ok ok ok K ok ok ok K ok ok ok K ok ok ok ok ok ok ok sk ok Kk ok ok ok ok ok ok ok 3k ok ok ok ok ok K 3k ok ok ok ok ok ok ok ok ok ok 3k ok ok ok 3k ok ok ok ok ok ok ok ok ok ok ok ok ok ok Xk ok

F237

F709

15
ERRRRBLEXEXREEXRR
SER *

e s e e e e S
* TRANSLATE *
* FIRST TERM *

16
3993 C 4 I NN
*SER

£
W B W W I e B W
* TRANSLATE %
* THIRD TERM %
* (SEE NOTE 1) %
R 2222222 2222222

Xes oo

oXe
D4 *o
. ¥ *,

17
¥ ARE
*e UNUSED MASK
#+BITS ZEROe
*, ¥
%o oF
* YES

B
eXeoooo
.

X 18
ERRRRELXERLRERE XX
ER *

E R e e e o
* TRANSLATE *

FRERH RN RE R RTRN
.

Xe oo 0

19
&&*Fn***&***l

* TRANSLATE *
* SECOND TERM %
* (SEE NOTE 2) *
R S T R e e

Xeos oo

.
G4 *o
¥ IS *o
SECOND

20

o *e
(RELA=0)
*e

* g .*
YES

Xe o oo e X

&l&ilﬂqiii*i**iii
*FERR
-*-*-»-*-*-*-*-*
* SET

* ERROR *

* FLAG *
R e e it
.

Xe oo e

22
HRRREJEEXERHER RN
* *

* *

* *

* BUFFER *

* *

ERERERRERERRRERRR
.

X
L2222
*07 *
* H3®

* *

o
e¥oseeeosaX¥
*

0
o TERM ABSOLUTE.....X* H1 *®
, o *

PARAMETERS

PARAMETERS

23
l**liDsi&ii*i*il!

ERROR *

* FLAG *
I e e T T

PARAMETERS

PARAMETERS

232
* *

*
222

Phase II 93

NO
csee
-

.

.
.
-
.
-

RR FORMAT
R KRR

3 3H

*BF *

* B1#
* ®
*

Xe s o

X

81 %, 01
o* *e
*e

¥ Is NO
*e DATA IN R1 e¥ooescese X¥
o® *

*o FIELD
*o

¥o ¥
YES

¥

Xevsoe x

02
HREERT R HH KRR RRH
*

* TRANSLATE *

* R2 FIELD *
* (SEE NOTE 1) *
LR S TR a2 2
.
.
.
.
oXe
D1 *o 03
o *e
¥ *o
%o IS RELA=0 %
. ¥
*q ok
*, o
* YES
.
.
.
.
X

04
EERERT P HARE RRRHER
R *

LT B P B 2 BT T T
* TRANSLATE *
« % Rl FIELD *
e % (SEE NOTE 1) *
- LR AT 22222 22222
. .
. .
. .
.
«FAl2 «Xe
. F1 *. 05
. o *e
- *
e *. IS RELA=0
.
. *o o
- *o o¥
* NO
. .
. .
. .
covecseseeeXe
FA121 X 06
EEZ S S SR RS R 2T 22 2]
*FERR *
RS DL 2 B N e T P]
* SET *
* ERROR *
* FLAG *
EE 222 R TR RIS T)
.
* X -
*
*BF % .X.
* HI®
EREE .
F7

Chart

94

30 X o7
REERKH] HRHE AR R

* STORE ZERO *
*IN TEXT BUFFER ¥

* EXCEPT *
* FOR OPERATION *
* CODE *

e s T

PARAMETERS

PARAMETERS

BF.

FAOS

R T e

NOTE 1

*
*
*
*
*
* NOTE 2
*
*
*
*
*

08
EE3 A 1:-FEE R RS T
SER *

e e e e

TRANSLATE *

I FIELD *

* (SEE NOTE 1) %

HERRRERERRRXRRRAR
.

R R R R N N S I S T S R P AP A S

ecescccee

FOR ERROR EXITS FROM
SUBROUTINE SERs
TO CHART

FOR ERROR EXITS FROM
SUBROUTINE
TO CHART BCe

L e I s

BB«

EER,

PARAMETERS

5
NBT=02

REFER

REFER

s ok ok e ok ek K ok ROk ok kK ok ok ok ok sk K Kk ok % ok sk ok ok i ok Rl ok ke sk ok ok ok sk oK ok ok k303K ik ok ke sk sk ke ok sk ok sk e ok ok ok sk ok sk ok ok ok ok ko sk ok ok ok 3k ok ok ok S ok ok ok ok k k sk ok ok ki 3k ok ok ok ok ok ok ok ok ok sk ok ok ke ok sk ok ok ok sk i K Kk ok ok oK 3k Ok ok ok ok ok ok K K K K K

RR and RS Format Translation

RS FORMAT
KK

i

#BF *

* Ba*

* ¥
*

.
.
.

X 09
AEXRHBLRERR XX XXXX PARAMETERS
*

*SER

P e e
* TRANSLATE *
* R3 FIELD *
* (SEE NOTE 1) *
LRI T T T A

Xe s e e

* g o
e o ¥
* YES
.
.
.
.
. .
. X 11
- D 4NN NN
.« *SER *
. e I e I B e W
« % TRANSLATE =
.« % Rl FIELD *
* (SEE NOTE 1) *
HRHERRRRAREERERRR
. .
. .
. .
. .
. .
«FA12 oXe
B 4 *e 12
. o *.

*o
IS RELA=0 %
*o o
*o o®
*e o¥
YES

Xe oo e &

*EER
e e el S e e DL
* TRANSLATE *
* 02(B2) FIELD *
* (SEE_NOTE 2) *
HREHEFRRH R RN AR
.
.

-
.
.
.
.
.
.
.
.
.
.
.
.

PARAMETERS

. eXoooesoons
. X
. PTITTY
. *#07 %
. * H3%
. * *®
P *
.
.
.
.
.
FA121 14
- RGN RN RN
. *FERR *
- LR B B Bt Bl Tt P et
oeoX¥ SET *
* ERROR »
* FLAG *
FEEXEERXERRRRERR
.
.
.
.
.
.
F730 X 15
EE ST NS L2222l
* STORE ZERO *
*IN TEXT BUFFER *
*eeo

* EXCEPT
* FOR OPERATION *
* CODE *

R e S T

coL=03
LGH=01
TXT=15
NBT=02

CoL=05
LGH=01
TXT=11
NBT=02

13
FAAKKFLAERRARXRX® PARAMETERS
*

coL=07

.
-
.
.
.
.
.

et essne

.
.
.
.
.

sessessc s

SI FORMAT
FRH K ERER

.
.
.
FAOS oXe

PARAMETERS

B2 *e 01
* *

. .
o ® LPSW, %o YES

*eSSMsHIO+SIOs e*oeee

*o TIOSTCH o¥
. .
*, o ¥

NO

Xe oo o %

02
AERERKC2EERRKR XX XK
* *

* TRANSLATE *

* I FIELD *

* (SEE NOTE 1) *

T e e e
.

Xe oo

D2 %, 03
¥ *o
*o

IS RELA=0 %
o

*e o
e o ¥

* YES

.

.

.

.
.
.
.
.

.
.
.
.
.
-

eXesocssccces

e I L O)

* TRANSLATE *

* D1(B1) FIELD *

* (SEE NOTE 2) *

R T e e e T ey
.

eXesoossaase

EREER
*07 %
* H3I®
* *®
" *
.
.
.
.
.
.
.
<FAl121 05
- HREERG2HRERER RN RN
. *FERR *
. EEE B T 2 B I B
ceoX¥ SET
* ERROR *
* FLAG *
I NW IR
.
.
.
.
.
.
F730 X

Chart BG.

06
HEEERNHDFR R RTR R
* STORE ZERO *
*IN TEXT BUFFER %
* EXCEPT
* FOR OPERATION *

*

* C
EEEHERIRERRENRERR

22 X 04
EEARRHE2X XX XXR XX ¥X PARAMETERS
*EER *

COL=07
LGH=03
TXT=31
NBT=02

sesesene

.
.
.
-
.
.

.

¥eeoe

NOTE

NOTE

ok ok ok Kk ok ok ok ok K K

2T TR

1

FOR ERROR EXITS FROM
SUBROUTINE SERs REFER
TO CHART BB.

2

FOR ERROR EXITS FROM
SUBROUTINE EERs REFER
TO CHART ECe.

R

ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok oK ok ok ok ok ok ok ok ok ok K ok 3k ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok sk ok ok ok ke ke ok o gk ok i ok ok ok ok 3k ok ok ok K ok ok sk sk ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok sk ok sk ok ok ok ok ok sk ok ok ok ok K K ok Xk X K Xk ok ok ok ok ok ok K ok

13

RX FORMAT
WA RH XK

R
*BG *
* Ba*
® *

.
.

X o7
HARERBLEEERRXEREE
#SER *

* TRANSLATE *
* X2 FIELD *
* (SEE NOTE 1) *
R e T e e s

* *,.
ces ¥ IS RELA=0 ¥
*o o

*e

ok
YES

Xe s o e e %

09
FEFREDLHHRR AL R
*SER *

B e o DL
* TRANSLATE *

s esssesssas e e

F730 1
I 4RI

* STORE ZERO *

#IN TEXT BUFFER *

* EXCEPT

* FOR OPERATION *
*

L e

RX and SI Format Translation

.

.

.

.

o NO o% *

eXes*e IS RELA=0 &%

. . .

. *e o

. *e o oF

. * YES

. .

. .

. .

. .

. .

oFA22 X 11

. FEREREARERIXHR RN

. *EER *

. o e

. * TRANSLATE *

. # D2(B2) FIELD #*

. * (SEE NOTE 2) ¥

. R T e e

. .

. .

. eXeooosssnee

B

. *xXER

. *07 *

. * H3*®

. * *x

. *

.

.

.

.

.

.

.

.

.

.

«FA121 12

- 363363 I 43 I I X XK

. *FERR *

. P B T T e

oo X¥ SET *
* ERROR *

AG

*ou

PARAMETERS

PARAMETERS

PARAMETERS

.
P R I N I R R I N R R A S A A S A A A A

Phase I1I

95

FB1

Xeesoessoene

03
W HC] KKK

*SER *
e e e e R et 2

* TRANSLATE *
* L1 FIELD *
*(SEE NOTE 1,1A)%
P e R R T T

TEXT BUFFER

I IR NN MR
.
.

*g ¥
g ¥
* YES
* .
* .
* .
.
X 0s
I IE | N N NN
* *
* STORE L1 *
* FIELD IN *
* *
* *

.

eXeoensecse

.
7 oXe
F *e 06
o® *o
ok Is *
*e DATA IN L2
*o FIELD %
*q o ¥
Ko o
* YES
.
.
.
.
X

07
HHHERG] H KK R HERNN
*SER *
e e e o el
* TRANSLATE *

* L2 FIELD *
(SEE NOTE 1,1B)
LR T e

sXeeosssesssscesssocccacse

.
:
:
:
:
.
FBZ2O oeXe
H1 * o 08
o ¥ *o
NO % *o
ene¥, IS RELA=0 ¥
- * o o
- *, ¥
X *o o¥
R R * YES
* * -
* D3 * .
* * -
L2 22 -
.
X 09
LA A S NBR L2 X 2L R 2]
* *
* STORE L2 *
* FIELD IN *
* TEXT BUFFER #
* *
EE2 2222 22222222 2]
.
:
X
3% ¥H
* *
* F5 #*
* *
*HRX
Chart BH.

96

e¥eee

*e 02
¥ *o

¥ Is

DATA IN L1

%o FIELD o%
* *

ok
NO

YES

.
*o

*
.
.
-
.
.

.*
YES
*IS Dl A SYMBOL *ooc-
n. .*.
e o ¥
* NO

X

11
R ED2E K XK N NH RN
* *
* ZERO TEXT AND *
«*PLACE ABSOLUTE *
VALUE IN BUFFER%
* *

HHRERNNN IR RRN RN

12
Y T T
* PLACE LENGTH *
UTE *
* FROM SYMBOL *X oo
TABLE IN BUFFER¥
*

s esseses et ettt s s sssse s

*
AERERHEER AR R KRR

Xesoessossecssscscsscscssse
.

.
.
.
.

FB23 .
F

-* *-
YES
o-¢..X*lS D2 A SYMBOL LEXTRY
o*
“x. o*
*e o
NO

Xe s oo %
.

.
.

.

.

.

.

.

B

14 .
i{ill@ziili***il* .

.

‘ * ZERO TEXT AND * .
esesee*FLACE ABSOLUTE * .
VALUE IN BUFFER¥ -

* * -

.

.

.

.

.

.

.

.

R)

. 15
HRHARHOHHRHEE A RHR
* FLACE LENGTH *

*TABLE IN EUFFER

l****{l****
.

.
.
.
.
.
.
.
-
.
.
.
.
-
o
.

cesns e
seseease

Xeoses e

.
.
.
.
-
.

SS Format Translation

L
e¥Xesee

XX NR

*BH *
* B3%
* *
*
.
.
FEO1 oeXeo FBO3 ek
3 *o 01 B4 *o 16
L . L
YES % PACK; *e NO *o
. PKsMVOs
*e DECIMAL o
. .
“ke o *e ok
* * YES
.
.
B
.
X
il{-i*c‘****l’*****
*SER
a_a_*-*-»-*-a_w-&
* TRANSLATE *
* L FIELD *
EXRW *(SEE NOTE 1,1C)*
* * FEEEERRERXRREEE RN
* D3 * .
* * .
R .
. .
. .
. .
FAl121 X 24 *Xeo
HERERD IR NN R KRR D4 *o 18
*FERR * ¥ *o
Fom W R W W e N N *o
* - SET *Xeeoe IS RELA=0 o*
* ERROR * *q o
* FLAG *o o®
RN R o*
. YES

F730

Xeeooe

25
FEERREIHRRHEERRER
* STORE ZERO *
*IN TEXT BUFFER *
* EXCEPT *

* FOR OPERATION *
*

*
EE T e T 2
.

.

.

X
HHXEH
*07 *
* H3*

* %

*

e s esees sttt e st Kk

1 NO
FOR ERROR EXITS FROM
SUBROUTINE SERs REFER
TO CHART BB

1A

PARAMETERS FOR
COL=05 TXT
LGH=11

1B

PARAMETERS FOR

CcoL=03
LGH=01

NOTE

L1 FIELD
1
2
L2 FIELD
TXT=15
NBT=02

1C
PARAMETERS FOR L FIELD
CcoL=03 TXT=15

NBT=
NOTE

NOTE

Kk kK R ok ok kK K K K K K K K

esessesccsssssse X¥*

TE

NOTE 2A

NOTE 2B

2
FOR ERROR EXITS FROM

.
.
.
.
.
.
.
FBO7 oXe
cs *. 19
o* *
o ¥ *, YES
*IS D1 A SYMBOL ¥sees
*, . .
*o ¥ .
*o o¥ .
NO .

Xe o ose ¥

FB14 20
HEERHADS R XA X R XX
* *

* ZERO TEXT AND *
+ *PLACE ABSOLUTE #*
*VALUE IN BUFFER¥
* *

e g

.
.
.
.
.

21
RERRRESHEX XXX XXX
* PLACE LENGTH *

.
.
.
.
.
.
.
.

*X-.
TABLE IN BUFFER

*li****l}il*l*{i&

.
.
.
.

Xe oo
m
o

TRANSLATE *
* D2(B2) FIELD *
*(SEE NOTE 2,2A)%
EEEEHEH AR RN

FA22 X 23
*****55**********

* TRANSLATE *

* D1(Bl1) FIELD *

(SEE NOTE 2,2B)

e s e
.

X
EEERR
%07 *
* H3*

* *

*

L e e g

SUBROUTINE EER,
TO CHART BC.

REFER

PARAMETERS FOR D2(B2)

FIELD
COL=15
GH=03

TXT=14
NBET=02

PARAMETERS FOR D1(B1)
FIELD

coL=07
LGH=03

TXT=31
NBT=02

ok ok ek kK kK ok ok K K K K K K K

EHEEERR *%

e ok e K K K Kk sk Ok ok K K K K

E

This appendix contains three cross-
reference tables which may be used with the
Autochart diagrams within this manual. Use
of the tables will enable a user to 1locate
any label appearing on any chart, all
references to a particular entry connector,

and all blocks where a subroutine is used.
BLOCK BLOCK BLOCK
LABEL Loc NUMBER
ccw AAB2 AAO1
CNOP ACB1 ACO1
CVTL BBH1 BB10O
BBHS BB18
c311 04B5 0420
c804 07A1 0701
c805 07E1 0705
cs11 076Gl 0705
c819 07A2 0710
c8201 o7ca 0718
c82a 07H3 0727
c825 07G2 0716
c901 3DB1 8DO1
Cc903 3DC1 BDO3
coo08 BDB2 BDO2
c910 BDF1 BDO6
c9101 3DG1 BDO7
c915 BDB& BDO9
c9192 BDE% BD12
€923 BAB1 BAO1
Cc926 BAC2 BAOS
c9271 BAD1 BAO3
c930 07D5 0723
DC - ABB2 ABO1

Appendix A:

APPENDIX A: AUTOCHART CROSS-REFERENCE TABLES

TABLE I: LABELS

This table lists all labels that appear
on charts. To the right of each label is
the grid 1location and the block number
associated with the block that bears that
label.

BLOCK BLOCK BLOCK
LABEL LoC NUMBER
DROP ADG4 AD12
DS ACA4 AC10
D001 BBB2 BBO4
D002 BBB1 BBO1
00053 BBD1 BBO3
D006 BCB1 BCO1
D0081 BCE1 BCO4
Do082 BCF1 BCOS
D0084 3CE2 BCO8
D0101 BCF2 BCO9
D020 BBE4 BB14
D0223 BBG3 BB24
D024 BBKS BB20
D104 BAB4 BAO9
D107 BAB5 BAl4
D140 8BG1 BBO9
EFO7 AHH5 AH16
EF08 AHH& AH15
EG11 AJJS AJ10
AKE2 AKOS
EG12 AKD2 AKO4
. ALD1 ALO4
EG15 A JK3 AJ12
AKG2 AKO7
EG16 AKD4 AKOS8

Autochart Cross-Reference Tables 97

BLOCK BLOCK BLOCK BLOCK BLOCK BLOCK BLOCK BLOCK BLOCK

LABEL LoC NUMBER LABEL LocC NUMBER LABEL LocC NUMBER
EJECT ADB1 ADO1 FA121 BFG1 BFO06 F730 BFH1 BFO7
BFH4 BF14 3FJ4 BF15
83 6G2 8GOS BGH2 BGO6
EMO4 AMC2 AMO4 BGH4& BG12 3GJ4 BG13
BHD3 BH24 BHE3 BH25
EMO8+4 AMD2 AMOS5)
FA22 BGE2 BGO4 F744 BBB5 BB26
, BGFa& BG11
END ADBS& ADOS BHG5 BH23
F746 BCB5 BC1l4
ENTRY ADF1 ADO3 FBO1 BHB3 BHO1
MACHA AJB2 AJO1
A AM15 FB03 BHBS BH16
ENO7 MF3 MACHB AHBS AHO9
M AM18 FBO7 BHC5 BH19
EN11 AMJ3) MACHC AIA2 AIO1
M17 FB14 BHD5 BH20
EN12 AMH3 A MACHD AIB2 AIO2
AM12 FB17 BHF1 BHO6
EN13 A MH4 MACHE AKB3 AKO1
AN FB20 BHH1 BHOS8
EN25 ANB1 01 MACHF AKB2 AKO2
M21 FB23 -~ BHF2 BH13
EN26 AMJ2 A MACHG ALA1L ALO1
' AM20 FB26 BHF5 BH22
EN27 AMH2 MACHH ALB1 ALO2
AN11 FCoO1 BCJ3 BC13
EPO1 ANH3 MACHI AHF& AH13
ANF ANO9 FH11 0781 0702
EPO21 3 MACHJ AHB3 AHO8
EQU AEC1 AEO1 FH12 07D1 0704
NOTE - AOD& A029
ERO3 ANC4% AN17 F232 3CB#&% BC13
ORG AGC1 AGO1
ERO4 ANES AN25 F237 BEH4 BE21
‘ SEE NCTZ 1 BAD& BA11
EVE1 AMEG4 AMO9S F502 3ED1 BEO3
SEE NOTZ 2 BAE& BA12
EXTRN AEC4 AEO9 F511 8ED3 BE11
SPACE AGCA AGO8
FAO5 BEB2 BFO8 F5172 BEE3 BE12
BGB2 BGO1 START AFB& AFO08
F708 3BB& B8B25
FA12 BFE& BF12 I
BFES BF12 USING AHB1 AHO1
BGD2 BGO3 F709 SEJS BE22
BGE& BG10 1CTL AFB1 AFO1

98

TABLE II: ENTRY CONNECTOR REFERENCES entry connectors are arranged in alphameric

order with the grid 1location and block

This table 1lists all off-page entry number of all blocks that reference this

connectors that are referenced by any off- connector to the right and on as many
page exit connector on another chart. The additional lines as necessary.

ENTRY EXIT BLOCK ENTRY EXIT BLOCK
CONN CONN NUMBER CONN CONN NUMBER
AMD2 ANE2 AN1S 04B1 03K2 0315
03K3 0314
05J4 0511
AME4 ANK3 AN13
04BS AAGS AA13
ABG4 AB17
AMJ2 ANES AN2S ACJ1 ACO8
ACK& AC19
: ADB1 ADO1
ANB1 AMK2 AM22 ADD4 AD10
ADJ1 ADO6
ADJ4 AD14
ANB3 AMK3 AM19 AEG4 - AE13
AEJ1 AEO7
AFH1 AFO7
AOAS APD2 APO4 AGF4 AG11
AGH1 AGO06
AHG1 AHO6
AOBS5 APE2 APOS AHJS AH17
APE3 AP15 AIK2 ALL17
AP J3 AP19 AJJL AJ1S
AKJ2 AK14
ALK1 AL 09
AoC2 APFa AP23
APG2 AP24 0582 04B5 0420
APA2 AOC3 AOl4 0SF2 04B5 0420
o04Ca 0417
04H1 0407
APE2 AOAS AO27
07A1 BBK1 BB12
BAB1 07D4 0719 BDGA4 BD14
- - BEG3 BE14
BAG2 BCH2 BC11
07E1 BAH1 BAO7
BAJS BA20
BDB2 07C3 0713 0762 BAC2 BA0S
BBD1 BB03
BBD3 BBO8
BEB1 BDF1 BDO6 BBe3 BB24
BBH2 BB13
BBKS BB20
BEB4 BDH1 BDOS BCES BCOS
07H3 BBB4 BB25S
BFH1 O7F& 0721 BCC5 BC15
BDH1 BDO08
BE J4 BE22
c8Dn1 06AS5 0611 BEK1 BEO9
06B5 0611 BFF4& BF13
06C5 0611 BFH1 BFO7
BGE2 BGO4
04AS AFH4 AF1S BGF4 BG11
BHE3 BH25
BHGS BH23

Appendix A: Autochart Cross-Reference Tables 929

TABLE III SUBROUTINE USAGE

This table lists the subroutine names as
they appear in subroutine blocks on the
individual charts. The first appearance of
a subroutine block has the name of that

SUBROUTINE ENTRY BLOCK BLOCK
NAME CONN LocC NUMBER
BA BAB1 BAO1
BDB1 BDO1
BDB4 BDO9
BAR AAB2 AAOQ1
AF G4 AF1l4
BUMP 05J4 0S11
CVTL BBF4 BB1S
BBH1 BB10
BBHS BB18
DCC ANKS AN29
DCF ABC2 ABO2
ABJ2 AB10O
ACBa4 ACl1
ACG4 ACl16
DCF2 ANE4 AN19
DCF4 ANF 4 AN20
DCX1 ANHS5 AN27
DOUT 07J1 0709
DROP BBJ1 BB11
EER BBE4 BBl4
BCB1 B8CO1
BED1 BEO3
BEF4 BE19
BFF4 BF13
BGE2 BGO4
BGF4 BG11
BHFS BH22
BHGS BH23
ERR AAF3 AA1S
ABF3 ABl18
ACJ2 ACO9
ACJS AC20
ADD1 ADO2
ADDS AD11
ADJ2 ADO7
ADJS AD1S
AEGS AEl4
AEJ2 AEO8
AFES AF16
AFH1 AF07
AGF5 AG12
AGH2 AGO7
AHG2 AHO7
AHJS AH17
AIK2 AIl7
AJJ1 AJ15
AKJ2 AK14
ALJ2 AL29
ANE1 ANO&
04C4 0417
EVE AMB3 AAB4 AAOS8

100

block as it appears in the first line of
the block. To the right of the name is
found the entry point into the subroutine,
if it is present, and the grid location and
block number of each block where this
subroutine reference appears.

SUBROUTINE ENTRY BLOCK BLOCK
NAME CONN Loc NUMBER
EVE AMB3 AAC2 AAO2
: AAE4 AA1l1l
AAF2 AAOS
ABC4& AB13
ACB1 ACO1
ACF1 ACO5
ADB1 ADO1
ADB4 ADO8
ADF1 ADO3
ADGA AD12
AECA AE09
AED1 AEO2
AFC1 AF02
AFC4 AF09
AGC1 AGO1
AGD4 AGO9
AGE4 AG10
AHB1 AHO1
AHB4 AHO9
AHE1 AHO4
AHF4 AH13
AIB2 AI02
AICa AI09
AIF2 AI06
AIFa AIl12
AJB2 AJO1
AJE2 AJOG
AJG3 AJO7
AJJG AJ10
AKB2 AKO2
AKE2 AKO5
AKF4 AK10
ALB1 ALO2
ALCS AL22
ALD2 AL12
ALD3 AL16
ALF1 ALO6
ALF3 AL18
ALGS AL25
0483 0411
04C3 0412
04F4 0419
04G2 0408
FERR BBD3 BBO8
BBG3 BB24
BBH2 BB13
BBK3 8823
BCBS BC1a
BCH1 BCO7
BEDS BE23
BEG1 BEO6
BEH4 BE21
BEJ1 BEOS
BFG1 BF06
BFH4 BF14
BGG2 BGOS
BGH4 BG12
BHD3 BH24
07F2 0715
INOUT BAE4 BA12
03B3 0301
03J3 0313
03K2 0315
0481 0401
05G4 0514
05GS 0517
05J2
06C3 0621
06D2 0606
06D3 0622
06H1 0614
07F1 0706

SUBROSTINE ENTRY BLOCK BLOCK SUBROUTINE ENTRY BLOCK BLOCK
NAME

CONN LoOC NUMBER NAME C ONN LocC NUMBER

PCHA BA STORE AAC4 AA09

BOE1 BDOS AADZ AAO3

BED3 BE11 AAF 4 AAl12

O07E5 0724 AAG2 AAO06

07H3 0727 ACC1 ACO02

ACG1 ACO06

Agc4 ADO9

PRTA BAE1 BA ADG1 ADO4

BAGS BA?; ADH4 AD13

BBK1 BB12 AED4 AE10

BCF2 BCO9 AEE1 AEO3

BDF4 BD13 AFD1 AF03

BEE3 BE12 AFD4 AF10

0762 0716 AGD1 AGO2

STORE AGF 4 AG11

AHC1 AHO2

PRTERR BAC4 BA10 AHC4 AH10

AHF 1 AHOS

AHG4 AH14

SER BBB1 BBO1 AIC2 AIO3

BBB2 BBO4 AID4 AIlO

BBG1 BBO9 AIG2 AIO07

BBGS BB17 AIGa AIl3

BEB4 BE1S AJC2 AJO2

BEC4 BE16 AJF2 AJOS

BEE&4 BE18 AJH3 AJO8

BFB2 BFO8 AJK4 AJ11

BFB4 BFO9 AKC2 AKO3

BFC BF02 AKF2 AKO6

BFD4 BF11 AKG4 AK11

BFE1 BFO04 ALC1 ALO3

BGB4 BGO7 ALDS AL23

BGC2 BGO2 ALE2 AL13

BGD4 BGO9 ALE3 AL17

BHC1 BHO3 ALG1 ALO7

BHC4 BH17 ALG3 AL19

BHG1 BHO7 ALHS AL26

ANF3 ANO9
SKNB BCG2 BC10
BDE4 BD12

TLUL AFH4 AF15

STocAW APB3 APi2 ANBI ANO1
APF& AP23

APG3 AP17 TLUN 05C3 0507

Appendix A: Autochart Cross-Reference Tables 101

kol ok ok ok ok kK oK K K Kk ok ko ok ok Ok R K oK KK KK KK ok N K K ik K Kk K ok ok Ok Rl i sk ok kol R Ok R IOk Kl ko K K ok 3k s R Ok sk kO R RO R kol Ok R e 30k Kk i 3k sk i s ok ol ok ok ok 3k ok sk ok 0l K K K Ok ko KOk Sk ok ok sk ol ok sl koK ek ok ok ok K K K ROk

*
*

APPENDIX B: AUTOCHART SYMBOLS

I)

HHEHRD] R HE KRR XHN
* *

* PROCESSING *
* BLOCK *
* *
* * 336 3 % 3
33 I NI NN NN R *ZA *
* C3%
EE L2 * *

* * ¥
* C3 *eXe
* * .

*XE .
o¥e

C1 * o EREERC IR RNR NN

o *q HRWHRC2HHERRH NN * *

«¥% DECISION . * * * *

*o BLOCK ¥ * USER ENTRY * * *

*o o * * * *

. ¥ 33 I I N RNR * *

*e o¥ AT FII R RIR N RN

R
.

SAMPLE FLOWCHART

HREHD] R RN XN *o
* TERMINAL * *e
® BLOCK * e¥enee
* * . . ¥ .
FHRRKRFRRERRR R . *q - .
. *e ¥ .
* .
. .
. . -
. . .
. . .
«GOTO X .
HRRERE] KR XRR . HERRRETRERE XXX XX .
* * . *SUBNM ZCA1® .
* MODIFICATION * . Fm o R N W N W .
* BLOCK * * * .
* * * .
* * . * * .
EE i S22 Rl . 3K KT NKNNH .
. . -
- . .
. . .
. .
. eXeeseocnse
. .
oXe
FHHRRHRKF LR R AR . F3

ERREF2HH RENR AR
* INPUT/OUTPUT * * * *e
BLOCK # USER EXIT
* * * *o ¥
NI NN Ie *a ¥
Ne
Ee

*Xeooooneeke
L

NN NR RE N

7

o
.

HHE KNG] R HHKEREH
C *

E e s o e e B 2 2
* SUBROUTINE *
* BLOCK

OZmUNOD
EREEEE)

.
x

Xe oo oo esesssovssevses s ¥

*

* *
NI I RN NNR

HREE TN NN RN
EEEEHD R R ERERNN * *
* *

3 ok ok ok ok ok ok ok ok ok ok 3 K ok 3k ko ok ok ok ok ok ok ok Kok ok ok ok ok ok ok o K K K ok ok Kk K ok ok ok ok ok sk R ok ke ok ok koK ok 3K 3K K K ok oK Kk 3k 3k 3 R ok K 3 ok ok K sk Ok i ok ook K ok oK ok 3 Kk ok ok ok ok i sk ok R ke ok ok ok ok ok ok K Kk ok kK 3k Rk ok kR ok ok ok ok ok R R R R K

Pt IS
*#VARIABLE RETURN¥*Xeoeossose® *
ON-PAGE * * * *
CONNECTOR HHRRRRARNRAR RN * *
RS 222 22222222222
. .
. .
. .
X X
X HR R 222
* * *ZB * OFF-PAGE_CONNECTOR-—
: c3 : **Agf CONTROL TRANSFERS TO BLOCK A2 ON CHART ZBe.
EIT) * :
OF F-PAGE
CONNECTOR
.
.
.
X
XX RR
* *
* *
* *
*
*xR

e*oeeeX¥ C3 ¥
* *

LINE JUNCTION

L2223

XX

BLOCK C3 IS ENTERED FROM THIS CHART AND FRCM
AT LEAST ONE OTHER CHART. ALL REFERENCES TO
OFF-PAGE ENTRY CONNECTORS CAN BE FOUND IN
AUTOCHART CROSS—-REFERENCE TABLE II.

THE TERMINAL BLOCK IS USED TO SHOW USER ENTRY
AND EXIT POINTS WHEN THE PROGRAM BEING
FLOWCHARTED IS AVAILABLE TO AN IBM CUSTOMER.
IT IS ALSO USED AS AN EXIT CONNECTOR WHEN

THE TO LOCATION IS TO NO SPECIFIC CHART AS IN
A MULTIPLE USE SUBROUTINE.

THE INSTRUCTION AT SYMBOLIC LOCATION GOTO
CALLS A SUBROUTINE NAMED SUBNM. THE GIC OF
SUBNM IS SHOWN ON CHART ZC STARTING AT BLOCK
Ale. ALL REFERENCES TO SUBROUTINES CAN BE
FOUND IN AUTOCHART CROSS-REFERENCE TABLE III.

*

ON-PAGE EXIT CONNECTOR-
CONTROL TRANSFERS TO BLOCK C3 ON THIS CHART.

Ao ok ok e oK ok ok i e o ki ke ke e ok ok kol okl ok ok ok ok e o ok ok e ok ok ol e ok kol R ol ko ok i ok ol e ok ok kol ok ok ok i ok sk ol o e sl o Ol ok ok e ok ok ok ke ok ki ok ol ok Kl i ok o ok il ok okl ok oK ko i ok o ol 3k ok kR ok ok K ok ke ok ok ok ok ok ok ok ki sk e ok ok ke K ok ok ok ok ok o ke ok ok ok

Appendix B: Autochart Symbols 103

- GLOSSARY

identification of a
data

address: The unique
register, storage location, or other
source or destination.

Assembler instruction statement: An
assembler language statement that directs
the operation of the assembler or affects
the format, content, location assignments,
or register usage of its output, and usual-
ly does not cause any machine language
instructions to be produced.

compound expression: A combination of two
or, at most, three simple expressions,
connected to each other by arithmetic oper-
ators.

ESD cards: These cards or card images oOn
tape are part of the object program deck,
and are produced for each START, ENTRY, and
EXTRN Assembler instruction to provide com-
plete linkage between different object pro-
grams.

Intermediate Text: The partially translated
source statement produced by Phase I and
used as input to Phase II.

location counter: The internal counter used
to assign consecutive storage addresses to
program statements.

machine instruction: An Assembler language
statement specifying an operation that cor-
responds to a machine operation or opera-
tions, and that causes the Assembler to
produce a corresponding machine-language
instruction or instructions.

Operation Code Table: The table that is
part of Phase I and contains each symbolic
operation code, its machine equivalent, and
the location of the routine necessary to
translate the operand field.

Register Table:
Phase II that

The table constructed by
contains general register

104

‘butes of

numbers, their corresponding values and
relocatable attributes and 1is used to
assign base registers and displacements
when the assembler must compute addresses.
relocation: Modification of address con-
stants to compensate for the difference
between the origin assumed in an object
program and its assumed origin relative to
other object programs with which it is
combined.

RLD cards: These cards or card images on
tape are part of the object program, and
are produced for each relocatable address
constant and CCW defined in the program to
allow the Relocatable Loader to reevaluate
symbols and expressions within address con-
stants and CCW's.

RLD Table: The table constructed by Phase
IT that contains the data necessary to
produce the RLD cards.

simple expression: A single symbol or a
single self-defining value used as an oper-
and.

symbol: Any collection of characters by
which something is known and can be

referred to; a name.

Symbol Table: The table constructed by
Phase I that contains all the symbols, and
their attributes, contained in the source
program.

Symbol Table Deck: The deck (produced in a
card system only) that contains the attri-
all the symbols in the object
program and is used as input to Phase II.

TXT .cards: These cards or card images on
tape, are part of the object program deck,
and contain the machine language statements
constructed from the symbolic statements in
the source program.

Assembler instructions (see also specific

instructions)
Phase I
Errors -21,28-41,53-60

Translation 26,28-41,53-60
Phase II
Errors 78-83,87-91

Translation 74,75,78-83,87-91

Assembler Program

Purpose 7

Organization 7
Attributes, Symbol 17
Autochart Cross Reference Tables 95-100
BAR Subroutine 20,99
Buffer areas, output 11
BUMP Subroutine 21,99

Cards (see also specific cards)
ESD 66,71,81,82
RLD 66,71,73,82
TXT 66,71
Symbol Table 18
Card buffer areas 11
CCW Assembler instruction
Phase 1
Errors 21,52
Intermediate text 16,28,29
Source statement 28
Translation 28,53
Phase II
Errors 74,75,90,91
Special considerations
CNOP Assembler instruction
Phase I
Errors 21,55
Intermediate text
Translation 30,55
Phase II
Errors 75,86,87
Special considerations 76
Translation 81,86,87

73,79

16,31

DC Assembler instruction

Phase 1
Errors 21,54
Intermediate text 16,30
Translation 29,54

Phase II
Errors 74,75,90,91

Special considerations 76
Translation 83,90,91
DCC Subroutine 19
DCF Subroutine 19
DCX Subroutine 19
DOUT Subroutine 77,78,98
DROP Assembler instruction
Phase I
Errors 21,56
Intermediate text
Translation 33,56
Phase II

16,33

Errors 74,75,88

Special considerations 73

Translation 82,88
DS Assembler instruction

Phase I

Errors 21,55

Intermediate text

Translation 32,55

16,32

Phase II
Errors 75,90
Translation 82,90

EER Subroutine 75,98
EJECT Assembler instruction
Phase I
Errors 21,56
Intermediate text
Translation 33,56
Phase II
Errors 75,85
Translation 81,85
END Assembler instruction
Phase I
Errors 21,56
Intermediate text 16,34
Special considerations 26
Translation 34,56
Phase II .
Errors 75,89
Translation 82,89
ENTRY Assembler instruction
Phase I
Errors 21,56
Intermediate text
Translation 35,56
Phase II
Errors 74,77,88
Special considerations 67
Translation 78,81,88
ERR Subroutine 20,24,98
Errors (see specific instructions)
Error flags, list of 20,77
EQU Assembler instruction
Phase I
Errors 21,56,57
Intermediate text
Translation 35,56
Phase II
Errors 82,89
Translation
ESD Card
Described 67
Format 71
EVE Subroutine 19,20,24,98
EXTRN Assembler instruction
Phase I
Errors 21,57
Intermediate text
Translation 36,57
Phase II
Errors

16,33

16,35

16,36

82,89

16,37
74,88

Index

INDEX

105

Special considerations 67

Translation 79,81,88
FERR Subroutine 77,79,98
ICTL Assembler instruction
Phase I)
Errors 21,58
Intermediate text
Translation 37,58
Phase II
Translation 81,87
ID-Code (see also Intermediate text and
specific instruction)
Phase I 15,16,20,23,24
Phase II 67,78,79
INOUT Subroutine 23,76,77,99
Instructions (see specific instructions and
formats)
Intermediate text
Detailed (see specific instructions)
General 15,16
Summary 16

16,37

Listing, Program 7,8,9,72
Location counter 7,14,17,20,21,22,26

Logic flow
Phase I 7,23,49,51
Phase II 8,78,85,86

Machine instructions (see specific
instruction format)

Object program 7-11,14,67,73,76,78
Operand translation (see specific

instruction)
Operation code (see also Operation Code
Table)
Errors 8 :
Translation 7,8
Operation Code Table
Description 15

Used 7,8,14,23
ORG Assembler instruction

Phase I
Errors 21,59
Intermediate text 16,38
Translation 38,59

Phase II
Errors 82,89
Translation 82,89

Output
Phase I 4-11,16,17
Phase II 4,11,67-72

Output buffer area 11
Output cards (see specific card)
Output listing 7,8,9,72

PCHA Subroutine
Phase I
Description 7,14-22
Logic flow 7,12,24-27
Phase II
Description 8,67-77
Logic flow 8,13,78-80

76,99

Program listing 7,8,9,72
PRTA Subroutine 76,79,99
PRTERR Subroutine 99

106

Register Table

Relocation List Dictionary Table (see RLD

Described 73
Used 75,78,82

Table)

RLD Card
Described 67
Format 71

RLD Table

RR

RS

RX

SER

ST

SKNB Subroutine

Described 73
Used 67,77,78

Format
Phase I
Errors 21,61
Intermediate text
Translation 42,61
Phase II
Errors 74,75,92
Translation 75,79,
Format
Phase I
Errors 21,61
Intermediate text
Translation 42,56
Phase II
Errors 74,75,92

Translation 75,79,
Format

Phase I
Exrrors 21,62
Intermediate text
Translation 45,62
Phase II
Errors 74,75,93
Translation 75,79,
Subroutine 74,75,99
Format
Phase I
Errors 21,63
Intermediate text
Translation 45,63
Phase II
Exrors 74,75,93
Translation 75,79,

99

16,42
80,83,92
16,43
80,84,92
16,44,45

80,84,93

16,45,46

80,84,93

Source program 7,9,10,14,24,72
SPACE Assembler instruction

SS

Phase I
Errors 21,59
Intermediate text
Translation 38,59
Phase II
Erxrrors 81,87
Translation
format
Phase I
Errors 21,64
Intermediate text
Translation 46,64
Phase II .
Errors 74,75,84,94
Translation 75,79

81,87

16,39

16,46,47

START Assembler instruction

Phase I
Errors 81,88
Intermediate text
Translation 39,58

16,39

Phase II
Errors 81,88
Special considerations 67
Translation 80,82,88
Storage allocation 9
STORE Subroutine 19,20,99
Subroutines, described (see also specific
subroutine)
Phase I 19-23
Phase II 74,79
Symbols 7,8,14,17,19,21,22,24,26,67,74
Symbol Table
Attributes 17
Described 17
Phase I, used 7,8,14,22,26,27
Phase II, used 7,8,67,74,79,80
Symbol Table card 18
Symbol Table deck 7,8,9,14,24,27,79

Tape buffer areas 11
Tables (see specific table)
TLUN Subroutine 22,26,99
TLUS Subroutine 22,23,99
TXT card

Described 67,78

Format 71

USING Assembler instruction

Phase I
Errors 21,60
Intermediate text 16,40,41
Translation 40,60

Phase II
Errors 174,75,82,88
Special considerations 73
Translation 82,88

Index

107

READER'S COMMENTS

IBM System/360 Basic Programming Support
itle: Basic Assembler Form: C28-6555-1
Program Logic Manual

3 the material: Yes No

Easy to Read? P -

Well organized? _ N

Complete? J— I

Well illustrated? - -

Accurate? - -

Suitable for its intended audience? _ -
>w did you use this publication?

___As an introduction to the subject ___ For additional knowledge

Other fold

lease check the items that describe your position:

— Customer personnel —Operator ——Sales Representative

— IBM personnel — Programmer —— Systems Engineer

—— Manager ——Customer Engineer — Trainee

— Systems Analyst —_Instructor Other !

lease check specific criticism(s), give page number(s),and explain below:
—Clarification on page(s)
— Addition on page (s)
— Deletion on page(s)
— Error on page(s)

tplanation:

fold

Name

Address

FOLD ON TWO LINES,STAPLE AND MAIL
No Postage Necessary if Mailed in U.S.A.

staple stapl«

fold fol

FIRST CLASS
PERMIT NO. 81

PCUGHKEEPSIE, N. Y.

(= e e e e oy
R

BUSINESS REPLY MAIL |
NO POSTAGE STAMP NECESSARY IF MAILED IN U. S. A. | RN

— —— e —e—————— -
RRRNR

IBM CORPORATION T
P. O. BOX 390
POUGHKEEPSIE, N. Y. 12602 TERRR

NRRRN
RERRR

e
ATTN: PROGRAM LOGIC DOCUMENTATION
DEPARTMENT D89 IRERRE

o e 2oy

POSTAGE WILL BE PAID BY

B - - - ——— —————— ———

fold fols

staple stapl¢

C28-6555-1

IS

®
International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N. Y. 10601

‘¥°S°N Ut ps3uTag

1-6669-8¢0

