
Technical Newsletter
Re: Form No.

This Newsletter No.

Z 28- 6642-0

Z28-2361

Date May 23, 1969

Previous Newsletter Nos.

BSL Language Specification

This Technical Newsletter, a part of Release 17 of the BSL Compiler,
provides replacement pages for BSL Language Specification. These
replacement pages remain in effect for subs equent releas es unles s
specifically altered. Pages to be replaced and/ or added are listed
below.

Remove Insert -----
3-4 3-4

21-22 21-22
23-24 23-24
39 -4:0 39 - 40, 40. 1
43-4:4 43-44, 44. 1
65-66 65-66
67-68 67 -68
69-70 69-70

Changes and additions to the text and illustrations are indicated by a
ve rtical line to the left of the change.

Summary of Amendrrlents

The attached amendn:1ents include information about three BSL language
changes. The first aD:1endD:1ent describes and illustrates a new
language feature, the GENERATE DATA statement, which enables the
user to define data iteD:1s in asseD:1bler language which will be D:1apped
with the cOD:1piler-generated constants and user-declared variables.
The second aD:1endD:1ent discusses a change in the RESTRICT /RELEASE
stateD:1ents which allows the user to specify a register variable name
in addition to the actual register nUD:1ber. The third amendment con­
tains inforD:1ation a bout the acceptance of GEND as a valid abbreviation
of the language keyword GENERATED.

Note: Please file this cover letter at the back of the publication to
provide a quick reference to changes and a means of checking receipt
of all aD:1endments.

IBM Confidential

None

CONTENTS

INTRODUCTION

BASIC STRUCTURE
Syntactic Structure

Character Set
Identifiers
Blanks
Comments
Source Input

Program Structure
Statements
Groups
Procedures

DATA REPRESENTATION
Declarations
Data Types

Arithmetic Items:
String Items
Pointer Items
Program Items

Organization
Arrays
Structures
Arrays of Structures

Scope '
Storage Class

Fixed Data Areas
User Generated Data
Automatic Storage Allocation
Data in Registers
Parameters
Indirect Addressing

Other Attributes
Boundary
Initialization ~
Normality

Default Attributes
Implicit Declaration
Default Data Type

. ..

Default Precision and Length
Default Scope
Default Storage Class
Default Boundary .•....
Default Initialization
Default Normality

IBM Confidential

...

...
...

Contents

7

8
8
8
9
9
9

10
11
11
12
13

14
14
15
15
15
16
17
18
18
18
20
20
22
22
23
23
24
24
24
26
26
27
28
29
29
29
29
29
30
30
30
30

3

CONTENTS (continued)

DATA MANIPULATION
Value Assignment
Expressions

Operators' .•...
Associating Operators and Operands
Comparison Operators

Arithmetic Operations
Mixed Precisions•
Assignment Involving Mixed Precisions
Arithmetic Operations with String Items

String Operations .•..•...................
Operations with Unequal Lengths ...•..
Assignment Involving Unequal Lengths
String Comparisons .•..•..•.......•...
String Operations with Arithmetic Items

Mixed Types•......
Subscripts and Substrings
Assignments
Comparisons
DO Terms
Argument Expressions

Statements ...•............
The Assignment Statement
The CALL Statement
The DECLARE Statement
The DO Statement•.
The END Statement
The ENTRY Statement ~.
The GENERATE Statement
The GOTO Statement
The IF Statement
The Null Statement
The PROCEDURE Statement
The RELEASE Statement
The RESTRICT Statement
The RETURN Statement

COMPILE TIME FACILITIES
Basic Structure

Macro Statements
Macro Variables
Source Text Replacement
Rescanning

Macro Statements

4

Macro Declaration
Value Assignment
Scan Control
Text Inclusion
Conditional Execution
Macro Activation

*" ••

31
31
32
32
32
32
33
33
33
33
34
34
34
34
34
35
35
35
35
35
35
36
36
37
38
38
39
39
40
41
41
42
42
43
44
44.1

45
45
45
46
46
47
48
48
49
50
51
51
52

IBM Confidential

Names known in a procedure are also known in procedures internal
to that procedure. (The internal procedures should not declare
these names.) However, names of item internal to a procedure
are not considered known in any containing procedure, and
therefore cannot be referenced there.

Examples:

P: PROCEDURE; /*P is EXTERNAL*/
DCL A INTERNAL,

EV EXTERNAL,
(INTl,INT2) INTERNAL ENTRYi

A=Oi
GOTO LAB;

EP: ENTRY;
A=l;

LAB: CALL INTI;
CALL INT2;
EV=Ai
RETURN;

INTl:PROCEDURE;
DCL INTLV;
DO INTLV=l TO 10;
A=A+INTLVi
END;
RETURN;
END INTI;

INT2:PROCEDURE;
INTLV=O;

/*EP is EXTERNAL*/

/*LAB is INTERNAL to P*/

/*INTI is INTERNAL to p*/
/*INTLVis INTERNAL to INTl*/

/*valid reference to A*/

/*INT2 is INTERNAL to P*/
/*invalid; INTLV is internal

to INTI, and is not known
in INT2*/

CALL INTI; /*validi INTI is known in P,
and therefore also in INT2*/

RETURNi
END INT2;
END Pi

EXTERNAL items: P, EP, EV
Items INTERNAL to P: A, LAB, INTI, INT2
Items INTERNAL to INTI: INTLV
Items INTERNAL to INT2: none

Items known externally: P, EP, EV
Items known in P: P, EP, EV, A, LAB, INTI, INT2
Items known in INTI: P, EP, EV, A, LAB, INTI, INT2,

INTLV
Items known in INT2: P, EP, EV, A, LAB, INTI, INT2

IBM Confidential Data Representation 21

STORAGE CLASS

Data items may be classified according to how they are located.
An item may be fixed at a particular location, or it may have
a position which varies depending on a locating mechanism.

Attributes: STATIC
LOCAL
NONLOCAL

GEND
GENERATED

(AUTO J
AUTOMATIC

I REG J
REGISTER (register)

BASED [(locating-expression)

Fixed Data Areas

The STATIC attribute indicates that main storage is statically
assigned for the data item, and never reassigned. STATIC has
subclasses LOCAL and NONLOCAL, which indicate the location of
the data item relative to the generated code for the declaring
procedure.

The LOCAL attribute indicates that the data item is assigned
storage, in the same area (CSECT) as for the generated code.

The NONLOCAL attribute specifies that the item is not assigned
storage by the declaring procedure. In the case of a NONLOCAL
EXTERNAL item, storage assignment is provided by a declaration
as LOCAL EXTERNAL in some separately compiled procedure.

22

Examples:

P:PROCEDURE;
DECLARE L INTERNAL LOCAL STATIC;

/*storage for L is with the code for P*/
DECLARE NL STATIC NONLOCAL;

/*storage for NL is assigned by some other
procedure having NL as LOCAL EXTERNAL*/

IBM Confidential

User Generated Data

The GENERATED attribuite is associated with items defined and
insured addressable by the us~r Ln a GENERATE statement
(explained later on). These items are internal to the procedure,
but are not assigned a storage area by the compiler.

The attribute combination NONLOCAL INTERNAL, formerly used to
obtain this function# is still recognized by the compiler but
should no longer be used.

Examples:

DECLARE DCBISN~ GENERATED CHAR(200}i
•
•
•

GENERATE DATA; /*definition of DCBISAM*/
DCBISAM DCB •• It

$ENDGEN

Automatic Storage Allocation

The AUTOMATIC attribu'te may be used in a reentrant environment
to provide an automatic allocation of storage for data on entry
to a procedure, and an automatic freeing on exit. (The
REENTRANT option is' discussed under Procedure Options.) AUTOMATIC
should not be used in a nonreentrant environment.

AUTOMATIC data declar,ed in internal procedures will be allocated
at ,the same time as AUTOMATIC data for the outer procedure. This
reflects the fact that internal procedures cannot be separately
reentrant, and thus only require one data allocation for each
allocation of the outer procedure.

Examples:

P:PROCEDURE OPTIONS (REENTRANT)i
DECLARE S CHAR(256) AUTOMATIC; /*storage assigned on

• entering P*/
•
•

Q:PROCEDUREi
DECLARE SINQ BIT(32} AUTOMATICi /*storage also assigned on

• entering P*/
•
•

END Q;

. END P;

IBM Confidential Data Representation 23

Data in Registers

The user may associate the REGISTER attribute with a name, to access
data located in the registers of the machine. Register specification
must be in the range 0 through 15, corresponding to the general
registers on System/360. Use of registers requires knowledge of the
conventions used by the compiler. These are discussed in the section
on Register Usage.

Example:

DECLARE R3 REGISTER(3) POINTER(31)i

Parameters

For some names, the data attributes provided in the declaration
are applied to an area located indirectly. The most common
example of this is the use of input parameters for a procedure.
References to parameters are indirect references through a list
of pointers to the corresponding arguments.

Parameters have no attribute keyword to represent 'parameter'
storage claps. Parameters are indicated as such by their
appearance in a parameter list.

Examples:

P:PROCEDURE (PARAMl,PARAM2)i /*PARAMI and PARAM2 are
parameters*/

DECLARE PARAMI FIXED (31) , PARAM2 CHAR(16)i
•
•
•

END Pi

Indirect Addressing

The user may obtain indirect data addressing by using the
BASED storage class. A name in this class provides a
description of an area whose location is based on an
associated pointer value. This pointer value is the value
of the locating expression in the BASED attribute, or of a
pointer associated at a reference to the BASED item. (This
topic is explained in the section on Pointer Association.)
The expression or pointer yields the address of a storage
area. This area is then treated as if it had the attributes
associated with the BASED name.

24 IBM Confidential

The END Statement

General form:

[
label]

END entry-name

The END statement indicates the end of the statements in a group
or procedure. With no label or entry name following, it closes
out the nearest preceding unclosed group or procedure. With a
following label, which must be from a preceding unclosed DO
statement, it serves as an end for all unclosed groups up to and
including the one started by that DO statement. (This effect is
called mUltiple closure.) An entry name following the END
keyword must be the name of the nearest unclosed procedure, thus
serving as a check on matching PROCEDURE and END statements.

An END statement which ends a procedure, and which is encountered
in the execution path of that procedure, will act as a RETURN
for that procedure.

Examples:

END; /*closes nearest group or procedure*/
END DOSET; /*closes all up to DOSET*/

The ENTRY Statement

General form:
ENTRY [(parameter [,parameter] ...)]

The ENTRY statement specifies a secondary entry point for a
procedure. It is preceded by an entry name by which this entry
point is known. A correspondence exists between the arguments
of the invocation and the parameters of the entry point, as
discussed with the CALL statement. Parameters common to several
entry points must have the same position in the parameter list.

Examples:

EP: ENTRY(PARI,PAR2);
EPNOPAR: ENTRY;

IBM Confidential Data Manipulation 39

The GENERATE Statement

General form:
GEN }
GENERATE

[((~!~~mbler-text) }]

The GENERATE statement provides a means of inserting assembly
language text into BSL generated code. Use of this facility
requires knowledge of compiler code and data generation
characteristics.

For the simple GENERATE statement, the form with assembler text
in parentheses, the text is mapped starting at column 10 of an
output image. The simple GENERATE statement must be wholly
contained within a single line (or card). The end of the text is
indicated by the following sequence: a right parenthesis, optional
blanks, and a semicolon. A label on the statement is placed in the
name field of the output card.

Examples:

GENERATE (COPY SECTION
L: GEN (LPSW MYOWNPSW) ;

The block GENERATE statement is used to map a series of cards. A
label on a block GENERATE statement is put out into the assembler
text with an "EQU *". The rest of the input card is ignored.
One or more lines (cards) of assembler text following the GENERATE
statement are processed until a delimiting control card is encount­
ered. This control card, $ENDGEN, is discussed in the BSL User's
Guide.

The input cards for the block GENERATE statement are put out into
the assembler text. Mapping of the cards begins with column 1 and
continues to the last column before the sequence number. If no
compiler options (such as GENMGIN and SEQ) are used to modify the
mapping of compiler output, columns 1-72 of the input cards are
put into the assembler text (with sequencing in columns 73-80).
The user should refer to the BSL User's Guide for the use of these
options and their effect on generated code.

Names defined in the assembler text included by a block GENERATE
statement are not known by the compiler, since it does not analyze
these statements. To make labels and variable names known so that
conflicting definitions are not produced, the user should declare
such items with the attribute GENERATED in addition to other data
attributes. These data items are assumed by the compiler to be
addressable, and it is the user's responsibility to insure this.

40 IBM Confidential

The first form of the block GENERATE statement has no operand.
It should be used to insert in-line, executable assembler text
in the user's program.

Example:
/* INITIATE
GENERATE;

SIO
BC
BC
BC

$ENDGEN

I/O OPERATION

R7
1 ;LAB:ELA
2,LABELB
8,LABELC

HANDLE POSSIBLE ERROR
CHANNEL OR SUBCHANNEL IS BUSY
I/O CORRECTLY INITIATED

The second form of the block GENERATE statement has a single
operand, the keyword DATA. (It should be noted that 'DATA' is
a language keyword only when used in this context.) The
GENERATE DATA statement should be used to define data items.
This generated data does not appear in-line in the user's
program at the point of definition; rather, it is put out at
the end of the program following all other data mapping of
compiler generated constants and user-declared variables. If
a source listing is requested, however, the input cards for

*/

the GENERATE DATA statement are listed at the point of definition.

Example:
DCL
/* DECLARE OF GENERA~ED VARIABLE
DCBISAM GENERATED CHAR(200);

/* GENERATE DATA CONTROL BLOCK
GENERA'rE DA'rA;
DCBISAM DCB

*
*
$ENDGEN

IBM Confidential

INCLUDE APPROPRIATE COMMENTS
HERE, IF DESIRED

*/

*/

40.1

entry point, as discussed with the CALL statement. Procedures
can be nested, in which case contained procedures can be
invoked only from the immediately containing procedure or from
other procedures within the containing procedure. A procedure
is syntactically completed by an END statement.

Any internal procedures must be defined immediately before the
END statement for the containing procedure. These procedures
may themselves have internal procedures, in the same format.

The user may control the entry and exit code produced by the
compiler, using the OPTIONS field of the PROCEDURE statement.
These options are discussed in a separate section on Procedure
Op-tions.

Examples:

MAINP: PROCEDURE(PARAM)i
DCL INTP INTERNAL ENTRY;
CALL IN1rp i
RETURN;

INTP: PROCEDURE;
RETURN;
END INTPi
END MAINPi

The RELEASE Statement

General form:-

RELEASE (I registerJ [I register J])
. regname ,regname ;

The RELEASE statement makes the indicated registers available to
the compiler in generating code. The user may still explicitly
reference the registers, but he should be aware of possible
effects both on and by the compiled code.

The registers which may be released are discussed under the
topic of Register Usage. Certain registers are preassigned
and cannot presently be released or restricted.

At the start of each procedure, including each internal procedure,
registers are assumed available for use by the compiler.
Declaration of an item as register does not restrict that register.

The register specification in a RELEASE statement can be either
the actual register number in decimal form or the name of a data
item which has previously been declared with the REGISTER
attribute.

IBM Confidential Data Manipulation 43

,Example:

DCL
PI PTR(31),
R7 PTR(31) REG(7);

RELEASE (6,7,8);
RELEASE (P I) ;

RELEASE (R 7) ;
RELEASE(6,R7,8);

The RESTRICT Statement

General form:

((
register}

RESTRICT regname

/*NON-REG VARIABLE */
/*REG VARIABLE */
/*LEGAL */
/*ILLEGAL-PI HAS NOT */
/* BEEN DECLARED REGISTER*/
/*LEGAL */
/*LEGAL */

[I register}])
, regname ;

The RESTRICT statement prohibits the compiler· from using the
indicated registers. The registers will be used only if
explicitly referenced by the programmer.

The registers which may be restricted are discussed under the
topic of Register Usage. Certain registers are preassigned
and cannot be restricted or released.

At the start of each procedure, including each internal
procedure, registers are assumed available for use by the
compiler; this includes registers which were restricted in
the outer procedure. Declaration of an item as register does
not restrict that register.

The register specification in a RESTRICT statement can be either
the actual register number in decimal form or the name of a data
item which has previously been declared with the REGISTER attribute.

44

Example:

DCL
PI PTR(31),
R7 PTR(31) REG(7);

RESTRICT (6, 7 , 8) ;
RESTRICT (PI);

RESTRICT (R7);
RESTRICT (6,R7,8);

/*NON-REG VARIABLE */
/*REG VARIABLE */
/*LEGAL */
/*ILLEGAL-PI HAS NOT */
/* BEEN DECLARED REGISTER*/
/*LEGAL */
/*LEGAL */

IBM Confidential

The RETURN Stabement

General form:
RETURN ITO labelJ ;

The RETURN statement terminatesexecu·tion of the procedure in
which it is contained, returning control to the invoking
procedure. In the form with no return label, it returns control
immediately past the point of invocation. An END statement
terminating a procedure will also serve as a return if control
ever reaches the statement.

In the form with a return label, the normal return activity is
performed, except that control is returned to the point in the
calling procedure indicated by the label. The label should be
in the invoking procedure, and known in the returning procedure.

Examples:

P: PROCEDURE(L,M);
DCL L LABEL, XL LABEL EXTERNAL,

Q POINTER EXT, DL LABEL BASED(Q)i
RETURNi /*returns to caller past point of call*/
RETURN TO I.; /*returns to label indicated by first

parameter*/
RETURN TO XL; /*returns to label XL, which must be

defined in caller as LABEL LOCAL
EXTERNAL*/

RETURN TO DL; /*returns through pointer Q, which
must have been set in caller*/

END Pi /*this would act as a simple return if
control ever reached this point*/

IBM Confidential 44.1

APPENDIX I: LANGUAGE KEYWORDS

Status

R
R

R

R

R
R
R

R
R
R
R

R

R

R
R

R

Keyword

ABNL
ABNORMAL
ABS
ADDR
AUTO
AUTOMATIC
BASED
BDY
BIT
BOUNDARY
BY
BYTE
CALL
CHAR
CHARACTER
CODEREG
DATA
DATAREG
DCL
DECLARE
DO
DONTSAVE
DWORD
ELSE
END
ENTRY
ENTRY
EXT
EXTERNAL
FIXED
GEN
GEND
GENERATE
GENERATED
GO TO
GOTO
HWORD
IF
INIT
INITIAL
INT
INTERNAL
LABEL
LOCAL
NONLOCAL
NORMAL
NOSAVEAREA

R - reserved identifier

IBM Confidential

Use

data attribute
data attribute
builtin function
builtin function
data attribute
data attribute
data attribute
data attribute
data attribute
data attribute
iteration term
boundary choice
statement header
data attribute
data attribute
procedure option
statement header
procedure option
statement header
statement header
statement header
procedure option
boundary choice
false path header
statement header
data attribute
statement header
data attribute
data att.ribute
data attribute
statement header
data attribute
statement header
data attribute
statement header
statement header
boundary choice
statement header
data attribute
data attribute
data attribute
data attribute
data attribute
data attribute
data attribute
data attribute
procedure option

References

28
28
32,56
25,32,56
22,23 -
22,23,30,60,61
16,17,22,24,28,29,57
26 -
15,29,30,55
26
38
26,30
36,37,39,43,63
15 -
15,29,30
59,61
40,40.1
59,60,61
14,38
14,36,38,42
12,35,36,38,39,41,42
60,61 -
26
36,41,42
12,13,36,38,39,43,44
17,29,30 -
11,13,29,36,37,39,42,63
20 -
20,22,28,29,30
15,29,30,33,35
40,40.1
22,23
36,40,40.1.59
22,23,40.40.1
29,41
29,36,41,45,48,49,50
26,30 -
11,32,36,41,42
27 -
27,31
20
20,23,29,30
17,29,30
22,27,30
22,23,30
28,30
61

'Appendix I: Language Keywords 65

APPENDIX I: LANGUAGE KEYWORDS (continued)

Status Keyword Use References

OPTIONS options header 42,43,59
OPTIONS data attribute 63
POINTER data attribute 16,29,30,33,35,57

R PROC statement header 42
R PROCEDURE statement header 11,13,29,36,37,39,~,43,63

PTR data attribute 16
REENTRANT procedure option 23,59,~,61
REG data attribute 22,24
REGISTER data attribute 22,24,56,58

R RELEASE statement header 36, 42,Q, 44
R RESTRICT statement header 36,42,44
R RETURN statement header 36,37,39,44.1
R RETURN TO statement header 44.1

SAVE procedure option ~
STATIC data attribute 22,27,30

R THEN true path header 41
R TO iteration term 38

VLIST option choice 63
WORD boundary choice 26,30

COMPILE TIME KEYWORDS

Status Keyword Use References

%R ACT statement header 52
%R ACTIVATE statement header 45,48,g

CHAR data attribute 48,49
CHARACTER data attribute 46,~,49,52

%R DCL statement header 48
%R DEACT statement header 52
%R DEACTIVATE statement header 45,48,52
%R DECLARE statement header 45,46,48,49,51
%R ELSE false path header 51

FIXED data attribute 46,47,~,49,52
%R IF statement header 45,51
%R INCLUDE statement header 45,51
%R THEN true path header 51

R - reserved identifier
%R - reserved identifier in compile time statements

66 IBM Confidential

APPENDIX II: ATTRIBUTE CONFLICTS

The matrix below indicates conflicts between attributes. An X
in a position indicates that the attributes conflict. A number
in a position indicates that the appropriate note below applies.

AlA B B B C CID E E FIG III LIL NIN 01 P PIR SI S
Blu A I 0 H oli N X liE NIN AIO 010 PI a OlE TI t
NIT S T U A mlm T T XIN liT BIC NIR Tlr II G AI r
010 E N R pie R E EIE TIE EIA LIM II a NI I TI u
RIM D D A oln Y R DIR IIR LIL OIA Olm TI S II c
MIA A C nls N IA AIN I CIL NI e EIT CI t
AIT R T eli A IT LIA I AI SI t RI E lu
LII Y E nlo L IE IL I LI Ie IR Ir

IC R tin ID I I I Ir I Ie
I I I I I I I I I

ABNORMAL xl xl X I I xl Ix xl I I
AUTOMATIC IX X- xi x x Ix xl xix xl xix Ix xl
BASED IX x xl Ix Ix xl IX XI IX Ix xl
BIT I Ix Ix I xT xl I xl I xl Ix I
BOUNDARY I I xl I xl I I xl I xl Ix I
CHARACTER I Ix IX I xT xT T XI I xl xix I
Component X IX xl I x 11 x Ix Ix Ix Xix XiX xix Ix xl
Dimension I I I 1 Ix xl I T xl I xl Ix I
ENTRY X IX Ix x Ix x Ix xl xl xl XI IX I xix Ix
EXTERNAL IX IXI I Xl Ix Ix Ix I I IX Ix I
FIXED I Ix Ix I xl xl I xl I xl xl I
GENERATED Ix txl I Xl Ix Ix xl IX xl IX Ix xl
INITIAL IX txl I I xl lx xT XI xl XIX IX I
INTERNAL I I 1 xl lx I Ix I 21 I I I
LABEL ~ IX Ix X Ix X IX Xl xl Xl XI IX Xl XiX IX
LOCAL Ix IXI I xl 1 Ix I IX Xl IX Ix I
NONLOCAL IX IXI I X r 1 lx xl2 IX Xl IX IX I
NORMAL X I I I Xl xl I I Xl IX Xl I I
OPTIONS X IX IX x IX X Ix 1 xl xl XI IX xl xix Ix
Parameter Ix ~I I xl Ix Ix xl Ix xl IX Ix xl
POINTER I IX IX I xl xl I XI I xl xl I
REGISTER Ix X Ix lx Ix x Ix xix Ix xl XiX xl XiX IX xix
STATIC IX X I· I ;XI I IX I I I IX Ix XI
Structure I I I I xl I I XI I XI IX IX

1. A component may not have a dimension attribute if a containing
structure i~ dimensioned.

2. The combination NONLOCAL INTERNAL will be recognized as equivalent
-to GENERATED, but ,this combination should no longer be used.

IBM Confidential Appendix II: Attribute Conflicts 67

INDEX

Absolute Storage Locations
Absolute Value
Address References
Addressability
Arguments
Arithmetic Data
Arithmetic Operations
Arrays
Assembler Text Inclusion
Assignment Statement
Associating Operators and Operands
Attributes
Automatic Storage Allocation

Bit Strings
Blanks
Block Generate
Boundary Alignment
Builtin Functions

Character Set
Character Strings
Code Addressability
Comments
Comparisons
Compile Time
Component
Composite Delimiters
Concatenation
Conditional Execution
Constants
Control Variable

Data Addressabi1ity
Data Organization
Data Representation
Data Types
Declarations
Default Attributes
Dimension

Entry Names
Epilog Activity
Expressions
External Procedures

Factored Attributes

68

25
56
25,56
40,59
35,37,39,63
15
33
18,20
40
11,31,33,34,35,36
32
14,29,67
23

15,55
9
40,40.1
26,30
25,33,56

8
15,55
40,59
9,10,47
32,34,35,41,52,55
2,45,53
18,19,20,57,62
8,10
49
12,41,51
15,37
35,38

40,59
18
14
15,29
14,29,38
14,29
18,20

11,17,20,39,42
43,44,58,59
25,31,35
20

14

IBM Confidential

INDEX (continued)

Generated Data
Groups

Hexadecimal Strings

Identifiers
Implicit Declaration
Including Assembler Text
Indirect Addressing
Initialization
Input Line
Internal Procedures
Iterative Execution

Keywords
Known Data

Labels
Level Numbers
Locating Expressions

Macro Activation
Macro Statements
Macro Variables
Mixed Types
Multiple Closure
Multiple Descriptions of an Area
Multiple Initial Values

Name Placeholder
Nested Groups
Nested Procedures
Normality
Null Statement

Operations
Operators
Operator Priority
Options
Overlapped Data

Parameterization
Parameters
Pointer Association
Pointer Data
Pointer Qualification
Precision
Procedure Options
Procedures
Program Data
Prolog Activity

IBM Confidential

23,40,4.0. 1
12,42

15

9,10
29
40,40.1
16,17,24,57
27,30
10,40,40.1,45
13,20,43
12,38,41

9,65
20,40,40. 1

11,17,20
19
25

47,52
45,48
46,48
35,52
39
19,25
27

62
12
13
28,30
11,42

31,32
31,32
32
42,43,59,63
28

45
14,24,30,37,39,63
16,24,57
16
16,24,57
15,16,29
42,43,59
13,20,39,42
17
43,58,59

Index 69

INDEX (continued)

Reentrant Code
Registers
Relational Expressions
Replication Factor
Rescanning

Save Areas
Scan Control
Scope of Names
Source Input
Statements
Static Storage Allocation
Storage Boundaries
Storage Class
String Data
String Operations
Structures
Subscripts
Substrings

Text Inclusion
Text Replacement
Transfer of Control
Truncation

User Generated Data

Value Assignment
Variable Length Substrings
Variable Parameter Lists

70

23,59,60
24,43,44,58,60
32,41,51
27
47

58,60,61
50
20,29
10,40,40.1
11,36
22
26,30
22
15,34,55
34
18,20,57,62
18,20,54
54,55

51
46,47
31,41,50
33,34

23,40 ,40.1

31,33,49
55
63

IBM Confidential

	01
	02
	03
	04
	21
	22
	23
	24
	39
	40.0
	40.1
	43
	44.0
	44.1
	65
	66
	67
	68
	69
	70

