
BSL Language Specification

This publication is a complete specification of BSL,
the Basic Systems Language. Topics covered include:

• Basic Structure
• Data Representation
• Data Manipulation
• Compile-Time Facilities

IBM Confidential

Z28-6642-0

This document contains information of a proprietary
nature. ALL INFORMATION CONTAINED HEREIN SHALL BE KEPT
IN CONFIDENCE. None of this information shall, be
divulged to persons other than IBM employees authorized
by the nature of their duties to receive such informa­
tion or individuals or organizations authorized by the
Systems Development Division in accordance with exist­
ing policy regarding release of company information.

PREFACE

All of the features of the BSL language are described in
this publication. Other BSL publications are indicated below:

• Basic Systems Language Primer, Form Z28-6678,
is intended as an introduction to BSL.

• BSL User's Guide, Form Z28-6682, contains
implementation information for BSL.

• BSL Library (no form number) describes a set
of procedures available to the BSL user when
running his program.

• BSL Bulletin is an internally distributed
newsletter covering various BSL topics.

Some features described in this publication are not available in
early releases of the BSL compiler. These features are given
below with the compiler release in which they are available.

• GENERATED Attribute

• Compile-Time Facilities

• OPTIONS(VLIST) Attribute

BSL/IO

BSL/IO

BSL/ll

This publication is a revision of the BSL Basic Systems
Language Description, dated January 24, 1968.

Copies of BSL publications are available from Department D76,
Systems Development Division, Poughkeepsie, New York. Requests
for having names added to the BSL Bulletin Distribution List
should also be directed to this address.

IBM Confidential

CONTENTS

INTRODUCTION • • • . . . • • • • . . • • . 8 • • • e • • • • .0. • • • • • • • • • • . • • .

BASIC STRUCTURE
Syntactic Structure

Character Set
Identifiers
Blanks
Conunents
Source Input . .

• e,e •••• \'I

Program Structure
Statements
Groups ••.••
Procedures . . "

DATA REPRESENTATION
Declarations
Data Types

Arithmetic Items
String Items
Pointer Items
Program Items

Organization
Arrays
Structures
Arrays of Structures

Scope ..•••••.
Storage Class .•.••

Fixed Data Areas
User Generated Data
Automatic Storage Allocation
Data in Registers
Parameters •.•.•..
Indirect Addressing

Other Attributes
Boundary
Initialization .••••
Normality •.•••

Default Attributes
Implicit Declaration••.
Default Data Type
Default Precision and Length
Default Scope ..•.....•.••••
Default Storage Class
Default Boundary .•••••
Default Initialization
Default Normality •••••

IBM Confidential Contents

7

8
8
8
9
9
9

10
11
11
12
13

14
14
15
15
15
16
17
18
18
18
20
20
22
22
23
23
24
24
24
26
26
27
28
29
29
29
29
29
30
30
30
30

3

CONTENTS (continued)

DATA MANIPULATION •••••
Value Assignment
Expressions

Operators

.
. .

Associating Operators and Operands
Comparison Operators

Arithmetic Operations
Mixed Precisions
Assignment Involving Mixed Precisions
Arithmetic Operations with String Items

String Operations •.•••.••••••••••••••••••
Operations with Unequal Lengths ••.•••
Assignment Involving Unequal Lengths
String Comparisons ••••••••••••••••.•
String Operations with Arithmetic Items

Mixed Types •••.•••••.•••••••••
Subscripts and Substrings
Assignments
Comparisons
DO Terms
Argument Expressions

Statements .••.••..•••.••••.••••.
The Assignment Statement
The CALL Statement
The DECLARE Statement ••.•••
The DO Statement ..••..
The END Statement ..••.
The ENTRY Statement
The GENERATE Statement
The GOTO Statement
The IF Statement
The Null Statement
The PROCEDURE Statement
The RELEASE Statement
The RESTRICT Statement
The RETURN Statement

COMPILE TIME FACILITIES
Basic Structure

Macro Statements ...•.
Macro Variables
Source Text Replacement
Rescanning ...••..

Macro Statements•..
Macro Declaration
Value Assignment
Scan Control
Text Inclusion
Conditional Execution•.
Macro Activation .••.•

IBM Confidential

31
31
32
32
32
32
33
33
33
33
34
34
34
34
34
35
35
35
35
35
35
36
36
37
38
38
39
39
40
41
41
42
42
43
44
44

45
45
45
46
46
47
48
48
49
50
51
51
52

4

CONTENTS (continued)

ADDITIONAL TOPICS •••••••••••••••
Substring Notation •••••••••••••••••••••

Variable Len9th Substrings
Bit Substrin9s •••••••

Builtin Functions
ABS Builtin Function
ADDR Builtin Function

Pointer Association
Register Usage •• ~ •.•
Procedure Options

The CODEREG Option
The DATAREG Option
The REENTRANT Option
The SAVE Option •••••
The DONTSAVE Option
The NOSAVEARI~A Option
Combining Opt:ions

Name Placeholder

.
. .

. .

Variable Parameter Lists .••.•.•••

. . .

APPENDIX I: LANGUAGE KEYWORDS
APPENDIX II: ATTRIBUTE CONFLICTS

INDEX

IBM Confidential Contents

54
54
55
55
56
56
56
57
58
59
59
59
60
60
60
61
61
62
63

65

67

68

5

INTRODUCTION

A systems progranuning tool must allow access to the basic
registers and functions of a machine, and must be able to
satisfy constraints on program size, speed, and environment.
These requirements can be met by assembly language, since
one can use it to code at the machine instruction level.
However, much of this coding effort is directed at satisfying
assembler and machine requirements not related to the problem
being solved.

BSL, the Basic Systems Language, allows the programmer to
concentrate on the solution of the problem without being
distracted and slowed by non-essential considerations. BSL
provides access to the machine when required by the problem.
Where not required, such machine detail can be avoided and a
more convenient language level used.

IBM Confidential Introduction 7

BASIC STRUCTURE

BSL allows the user to write his program in a free field format.
Input program text is examined as a single string of characters,
continuing from one input record to the next. Program elements
are delimited by special symbols rather than by record boundaries
or positions.

SYNTACTIC STRUCTURE

Character Set

The character set used for BSL is EBCDIC. Character-type data
appearing in the BSL program is interpreted using EBCDIC
€haracter codes.

In writing a BSL program, all 256 EBCDIC character codes may be
used within comments and character data constants. The rest of
the program is written using only a subset of EBCDIC consisting
of the letters A through Z, the digits 0 through 9, and the
special characters given below:

Name
Blank
Equal or assignment symbol
Plus or addition symbol
Minus or subtraction symbol
Asterisk or multiplication symbol
Slash or division symbol
Left parenthesis
Right parenthesis
Comma
Semicolon
Colon
Quote mark
Negation symbol
And symbol
Or symbol
Greater than symbol
Less than symbol
Percent or compile-time symbol

Graphic

=
+

*
/
(
)

,
&
I
>
<
%

Letters and digits are used in forming language keywords, data
constants, and the user's data names. The special characters
are used, either singly or in combination, to form operators
and other delimiters in the language. (The term 'composite
delimiter' applies to those operators and delimiters composed
of more than one character.)

IBM Confidential , 8

Identifiers

An identifier is a string of letters and digits, with the first
character alphabetic. Identifiers are used as names of data
items and as language keywords. Those identifiers used as data
names must be eight or less characters in length. They should
not conflict with keywords, since some keywords are reserved for
the implementation. A list of BSL keywords is given as an
appendix to this ma.nual.

Examples of identifiers:

IDENT
NUM999
MORE THAN 8
2BITS
$35
CALL

Blanks

legal; may be used as a data name
legal; may be used as a data name
illegal; more than 8 characters
illegal; first character is not a letter
illegal; first character is invalid
BSL keyword; illegal as a data name

Blanks may appear in the program text, with certain minor
requirements on their positio~. They may not be embedded within
identifiers (including keywords), data constants, or composite
delimiters. Identifiers or constants may not be immediately
adjacent; they must be separated by some appropriate delimiter
(which could be a blank). Blanks may otherwise be freely
introduced as desired.

Examples:

AA=BB+CC; is equivalent to AA = BB + CC
but not equivalent to AA=B B+CC;

DOI=JBYKTOL; is equivalent to 001 = JBYKTOL
which is the same assignment statement,
but not equivalent to DO I=J BY K TO L;
which is an entirely different DO statement

Comments

Comments may be included within the program text. A comment
has the form:

/* [data-character-string] */

A comment may be introduced wherever a blank is permitted. The
character string in the comment may not include the substring
'*/', since this would be recognized as terminating the comment.

IBM Confidential Basic Structure 9

Examples:

/*THIS IS A COMMENT*!
/**/
/*THE STRING '/*' IS OK */
/*THE STRING '*/' IS NOT OK */ incorrect comment

Source Input

BSL source statements are usually written in columns 1 through
72 of an input record, with columns 73 through 80 available to
the user for information such as sequencing. Other margins may
be specified, as discussed in the BSL User's Guide. The term
'input line' refers to that part of the input record used for
writing BSL source text.

Record boundaries and positions are not usually significant in
writing BSL source statements. One exception will be found with
the GENERATE statement, discussed in the section on that statement.
Another is where BSL symbols conflict with system usage (such as
/* in columns land 2 for Operating System/360); these conflicts
are discussed in the BSL User's Guide.

Identifiers, arithmetic constants, and composite delimiters may
not be split across input lines. Comments and string constants
may be spread across a number of input lines.

Examples, with input lines enclosed by { and }:

{
{
{
{

A=O; B=O; /*multiple statements on one line*/
DECLARE /*spread across a number of lines*/

STRING CHARACTER (lOO),

}
}
}

{
{
{GOOD;
{
{
{

FLAGS BIT(8);

/*The following is incorrect*/
/*NOGOOD can not be split*/

/*A comment may span
input lines~/

IBM Confidential

}
}

THIS=NO}
}
}
}
}

10

PROGRAM STRUCTURE

The solution of a programming problem is specified as one or more
BSL procedures. A procedure is a sequence of basic elements,
called statements, expres~ing the data and operations for the
procedure. The procedure might express the total problem solution
or it might express a self-contained segment, separated because
it is frequently used o~ because it is a convenient division of
coding effort. A procedure is called upon by other procedures
whenever they have a need for i,ts particular function.

Statements

Statements are the basic structural units of a procedure. BSL
statements have the form:

[identifier:] ••. statement-keyword statement-body

The assignment statement, the null statement and the IF statement
are slight variations of this form.

The leading identifier is the label or entry name associated with
the statement. Entry names (which must precede PROCEDURE and
ENTRY statements) indicate entry points into a procedure. Labels
(which optionally precede other statements) indicate transfer
points within a procedure. More than one label can appear on a
statement used as a transfer point, but only one entry name can
appear on a statement which is an entry point.

The statement keyword is an identifier characterizing the type of
statement. The statement body will vary for different statement
types.

Examples:

GOTO LABEL3;
CALL P (A, B) ;

P: PROCEDURE(X,Y);

LL: A=B+C-D;

NO:

IF A>B THEN
GOTO LL;

IBM Confidential

/*a GOTO statement*/
/*a CALL statement*/
/*a PROCEDURE statement, with

entry name P*/
/*an assignment statement, with

label LL. Note that there is
no statement keyword*/

/*an IF statement, which */
/* includes other statements*/
/*a null statement, with label

NO. Note that there is no
statement keyword and no
statement body*/

Basic Structure 11

Groups

Several statements can be grouped together so that their
execution is controlled as a unit. This facility is especially
useful for conditional and iterative execution of more than
one statement. Such collections of statements are known as
groups. Groups have the form:

DO-statement

{group-member] ...

END-statement

The DO statement heads a group, and may specify iterative
execution of the enclosed statements. The end of a group
definition is indicated by the END statement, which may refer
back to the label (if any) on the starting DO statement. A
member of a group may be a single statement or it may be another,
nested group.

Examples:

Gl: DO;
X=O;

G2: DO 1=1 TO 10;

A(I)=B(I) ;
END G2;

IF X=O THEN
DO;

CALL Pi
X=li
GOTO G2;
END;

END Gl;

IBM Confidential

/*start of a simple group*/

/*start of an iterative,
nested group*/

/*end of the iterative group*/

/*conditional execution*/
/*start of a conditionally

executed group*/

/*end of the conditionally
executed group*/

/*end of the simple group*/

12

Procedures

A procedure is a sequence of statements defining a self­
contained section of a program. Procedures have the form:

PROCEDURE-statement

[procedure-member] •••

END-statement

The PROCEDURE statement heads a procedure, specifying the
name for that entry point as well as any parameter or option
information for that procedure. Secondary entry points can
be defined with the ENTRY statement. The end of a procedure
definition is indicated by the END statement, which may refer
back to the name on the PROCEDURE statement.

A member of a procedure may be a single statement, a statement
group, or another, nested procedure. A nested procedure is
local to its immediately encompassing procedure, and may only
be invoked within that procedure. It can work with the data
of encompassing procedures, and in addition can have its own data.

Examples:

MP: PROCEDUREi' /*start of procedure MP*/

LOOP:SWITCH=O;
CALL PDIV; /*PDIV is a nested procedure*/
IF SWITCH,=O THEN GOTO LOOP;

RETURN;

PDIV : PROCEDURE i~

IF V>O THEN
DO;
SWITCH=I;
V=V-JL;
END;

RETURN;
END;

END MP;

IBM Confidential

/*return from MP to the
procedure calling it*/

/*start of PDIV, within MP*/

/*start of a group*/

/*end of the group*/

/*return from PDIV to MP*/
/*end of procedure PDIV*/

/*end of procedure MP*/

Basic Structure 13

DATA REPRESENTATION

A data item in BSL has a set of attributes indicating such
things as its type, location, and organization. These attributes
are associated with the name representing the data item in the
procedure.

DECLARATIONS

The user explicitly indicates the attributes associated with a
name by means of the DECLARE statement. This statement has the
basic form:

{
DCL I
DECLARE name [attribute] .•• [, name [attribute] .•.] ••• ;

More than one DECLARE statement can be used in a procedure, but
a particular name may be declared only once. All data names do
not have to be declared; a set of default attributes will apply
for undeclared items, based on their use within the procedure.
Defaults will also be applied to declared items as necessary to
complete their attribute set.

Any declaration of a data item must appear before a use of that
item. An exception exists in the case of parameters in a
PROCEDURE statement, which may be declared after their use in
that statement.

Attributes common to several declared names can be factored to
eliminate repeated specification. This is achieved by enclosing
the unique parts of the declarations for the items in
parentheses, and following this by the common attributes. The
partial declarations may themselves involve factoring. Factored
attributes must not conflict with attributes within the
parentheses.

Examples:

DECLARE A FIXED, B BIT(8);
DECLARE (FLAGA,FLAGB) BIT(l);
DCL (B BIT(8) , C CHAR(256)) EXTERNAL, V FIXEDi

/*B is declared as BIT(8) and EXTERNAL*/
/*C is declared as CHAR(256) and EXTERNAL*/
/*V is declared as FIXED*/

DCL (LV FIXED, (SB BIT(l),SC CHAR(16»EXT)LOCALi
/*LV is declared as FIXED and LOCAL*/
/*SB is declared as BIT(l), EXT and LOCAL*/
/*SC is declared as CHAR(16), EXT and LOCAL*/

IBM Confidential 14

DATA TYPES

Da"ta items in BSL can be classified as arithmetic, string, pointer,
or program types.

Arithmetic Items

Attributes: FIXED [(precision)]

Ari thmetic data is c,arried internally as a binary fixed point
integer. For convenience, arithmetic constants in source text
may be in either binary or decimal form. Such a decimal constant
consists of one or more adjacent decimal digits. A binary
constant consists of one or more binary digits (0 or 1) followed
by the letter B.

'Precision' is the number of bits assigned for the maximum
positive value of the item. An additional bit is assigned as a
sign bit; the total field represents a value in two's complement
form. Precisions of 15 and 31 are allowed, corresponding to
halfword and fullword quantities. Absence of a specified precision
results in a default precision of 31.

Examples o~ declarations:
DECLARE VAR FIXED;
DECLARE HALFWORD FIXED(15);

Examples of source text constants:
743 decimal constant
1011 decimal constant
1011B binary constant; decimal value=ll
l14B invalid binary constant
40FF invalid constant

String Items

Attributes: BIT (length)

I CHAR I
CHARACTER (length)

String data is carried internally as either sequences of bits or
sequences of characters (i.e., bytes). For convenience, string
constants in source text may be in character, bit, or hexadecimal
form. A character string constant consists of one or more
EBCDIC-coded characbers enclosed by quote marks, with enclosed
quote marks represen'ted by two adjacent quote marks. A bi t string
constant consists of one or more binary digits (0 or 1) enclosed
in quote marks and followed by the letter B. A hexadecimal string
constant consists of one or more hexadecimal digits (0 through 9
and A through F) enclosed in quote marks and followed by the
letter X.

IBM Confidential Data Representation 15

Examples of declarations:
DECLARE BVAR BIT(l6);
DECLARE CFORI CijAR(l), CFOR256 CHARACTER(256);

Examples of source
'ABC'

text constants:
character constant
character constant
character constant
bit constant

'IT' 'S'
, 10'
'lO'B
'lO'X
'F3'X
'13'B
'GO'X

Pointer Items

Attributes:

hex constant; bit value='OOOlOOOO'B
hex constant; bit value='llllOOll"B
invalid bit constant
invalid hex constant

l PTR I
POINTER [(precision)]

Pointers are used to address data indirectly. The pointer serves
to locate a data area whose attributes are described by a BASED
data item, explained in the section on storage Class. Pointers
have values which are positive integers; they may be used as
arithmetic items.

'Precision' is the number of bits assigned for the maximum value
of the pointer. Precisions of 8, 16, 24, 32, 15, and 31 are
provided. Pointers of precisions 8, 16, 24, and 32 are assigned
1, 2, 3, and 4 bytes respectively, in which all bits are
significant. Pointers of precisions 15 and 31 are assigned 2
and 4 bytes respectively, which includes a leading (sign) bit
that will always be O. The difference between precisions 15 and
16 (and 31 and 32) is that the generated code doesn't have to
guard against propagating the left bit for precision 15, as would
be done in an AH instruction for example. Absence of a specified
precision results in a default precision of 31.

Examples:

DECLARE P POINTER;
DECLARE PTOV PTR(24),PLOCORE PTR(15)i

IBM Confidential 16

Program Items

Attributes: LABEL

ENTRY

This type encompasses the statement labels and entry names of
a program. ENTRY applies to entry names appearing on ENTRY
and PROCEDURE statements in the defining procedure, and also
applies to entry points which are in other procedures but are
known to the declaring procedure. LABEL applies to labels on
statements in a proeedure, and also applies to transfer points
which are in other procedures but are known to the declaring
procedure. Labels and entry names do not have to be declared;
they can receive an implicit declaration, as explained in the
section on Default Attributes.

Indirect program addressing can be accomplished by using labels
or entries with the BASED attribute. This is discussed in
the section on Stor~ Class.

Examples:

A: PROCEDUREi
DECLARE

P ENTRY,

/*A is an ENTRY for this procedure*/

/*P is an ENTRY for some separately
defined procedure*/

LIN LABEL, /*LIN is a LABEL appearing later
in the procedure*/

PT POINTER, /*PT will be used with INDIRECT for */
INDIRECT LABEL BASED(PT)i /*indirect addressing*/

CALL P;
GO TO COM;

E: ENTRY;
COM: PT=ADDR(LIN)i

GOTO INDIRECT;

LIN: RETURN;

END A;

IBM Confidential

/*COM is a LABEL appearing later in
the procedure*/

/*E is an ENTRY for this procedure*/
/*COM is the LABEL referenced in

the earlier GO TO statement*/
/*The transfer point is determined

from the value of the pointer PT*/
/*LIN is the LABEL indicated in

the earlier DECLARE statement*/

Data Representation 17

ORGANIZATION

The data for a program may include single, unrelated data items;
these items are known as scalar items. Data also may be
organized either as a collection of identical data items or as
an arrangement of possibly dissimilar data items. The corresponding
forms in BSL are arrays and structures.

Arrays

An array is a collection of identical data items. The collection
has a common name, called the array name. The array elements are
organized consecutively in storage. A particular element is
referenced by using the array name followed by an expression in
parentheses whose value indicates the appropriate element. This
referencing notation is known as subscript notation.

The number of elements in an array is declared in a dimension
attribute. This attribute consists of a decimal number in
parentheses immediately following the array name.

Examples:

DECLARE ARRAY(lO);
DECLARE C2(32) CHAR(2);

ARRAY (6) = 0

C2(I) = '

Structures

/*ARRAY has ten elements*/
/*C2 is an array of 32 two-character

elements*/
/*The sixth element of ARRAY is set

to zero*/
/*The Ith element of C2 is set to

blanks*/

A structure is an arrangement of scalar items, arrays, and other
structures. The structure has a name, called the structure name,
and each component of the structure will have its own name~
Reference to a component uses the component's name. Consider
the following organization:

I~·~---------------------------DICT --------------------------------~~ I
I I
I • LINKS • I • INFO • I I
I I I I
I.-LINKR-----..I~LINKL ----..1 TYPE -.I..-FLAGS-+! --- NAME-----. .. I
I I I 1 I I
(I I 1 I I

POINTER(3l) POINTER(3l) FIXED(15) BIT(16) CHARACTER (6)

IBM Confidential 18

The overall structure is called DICT. Its initial component is
the structure LINKS, which has as its components the pointers
LINKR and LINKL. The next component of DIeT is the structure
INFO, which consists of the arithmetic item TYPE and the bit
string FLAGS. The :final component of DIeT is the scalar item
NAME, which is a character string.

Structuring is indicated in BSL by level numbers preceding the
structure and component names in a de'claration. The outermost
structure must have a level number of 1. Components of a structure
must have a level number greater than that of the structure;
this number should be the same for all components of the structure.
The following declaration corresponds to the sample structure:

DECLARE /* SAMP:LE STRUCTURE* /
I DICT,

2 LINKS,
3 LINKR POINTER(31),
3 LINKL POINTER(31),

2 INFO,
3 TYPE FIXED(IS),
3 FLAGS BIT(16),

2 NAME CHARACTER(6);

A structure name represents a data item, distinct from the
structure's components. It has a set of data attributes, either
explicitly declared or applied as a default. The default applied
is CHARACTER, wi th ,a length sufficient to span all components.

A structure may be declared with a size different from the size
required to span its components. Where the structure size is
smaller than the required size, the structure's components may
overlap the components following in an outer structure.
Knowledge of how data is kept internally is necessary for using
this facility.

Example, with mapping:

DECLARE
1 SPECIAL,

2 FIELD POINTER (31),
3 SWITCHES BIT(8),

4 FIRSTSW BIT(I),
3 P24 POINTER(24) ,

2 TOOSMALL CHAR(3) ,
3 VAR FIXED (15) ,
3 OVER CHAR(2) ,

2 BITOVER BIT(8),
3 CHAROVER CHAR(I) ,

2 LAST FIXED(31);

IBM Confidential

hi

1--1
+- I

I 14-11 ---III
I
1

1

I
I
1

1 II
t-t I
1 t-t
I I 1+---1

I 1 r-~
1 1 I "'11 ---.1

I 1 I 1

Data Representation 19

Arrays of Structures

An array of structures is indicated by specifying a dimension
attribute for a structure name. This dimension attribute applies
to all components as well as to the structure name. References
to such a structure or its components use subscript notation as
for any other array. The components of a structure array may not
themselves have a dimension attribute.

SCOPE

Example, with mapping:

DECLARE
1 X,

2 Y (2) ,
2 Z (2) ,

3 P,
3 Q,

2 R;

Attributes:

I~I------------------X------------------~II
!-Y (l)-+Y (2)-.1 I
I I ~Z (1) I· Z (2)---f I
I I ~P (l)-.I ~P (2 H I I
I I I ~(lH I-Q(2H I
I I I I I I- R-I
[I I I I I I

l INT I
INTERNAL

I EXT
EXTERNAL I

The scope of a name is that portion of the program where the data
item represented by the name is known and can be referenced.
A data item is known in a set of separately compiled procedures
if each procedure declares the name for that item as EXTERNAL;
the name represents the same data item in each procedure. A
data item is known only within a single procedure if that
procedure declares the name as INTERNAL; the same name declared
as INTERNAL in different procedures represents different data
items in each procedure.

An entry name for a procedure not internal to any other procedure
has EXTERNAL scope; such a procedure is called an external
procedure. Entry names for procedures defined within other
procedures are INTERNAL, local to the containing procedure.
Statement labels are INTERNAL, local to the procedure containing
the statement.

IBM Confidential 20

Names known in a procedure are also known in procedures internal
to that procedure. (The internal procedures should not declare
t.hese names.) However, names of item internal to a procedure
are not considered known in any containing procedure, and
therefore cannot be refeienced there.

Examples:

P: PROCEDURE; ;
DCL A INTERNAL,

EV EXTERNAL,

/*P is EXTERNAL*/

(INT 1 ,. INT 2) INTERNAL
A=Oi

ENTRYi

GOTO LAB;
EP: ENTRY;

A=li
LAB: CALL INT1;

CALL INT2;
EV=A;
RETURN;

INTl:PROCEDURE;
DCL INTLV;
DO INTLV:=l TO 10;
A=A+INTLV;
END;
RETURN;
END INTI;

INT2:PROCEDUREi
INTLV=O;

/*EP is EXTERNAL*/

/*LAB is INTERNAL to P*/

/*INTI is INTERNAL to P*/
/*INTLV is INTERNAL to INTl*/

/*valid reference to A*/

/*INT2 is INTERNAL to P*/
/*invalidi INTLV is internal

to INTI, and is not known
in INT2*/

CALL INT1; /*valid; INTI is known in P,
and therefore also in INT2*/

RETURN;
END INT2;
END Pi

EXTERNAL item:s: P, EP, EV
Items INTERNAL to P: A, LAB, INTI, INT2
Items INTERNAL to INTI: INTLV
Items INTERNA:L to INT 2 : none

Items known externally: P, EP, EV
Items known in P: P, EP, EV, A, LAB, INTI, INT2
Items known in INTI: P, EP, EV, A, LAB, INTI, INT2,

INTLV
Items known in INT2 : P, EP, EV, A, LAB, INTI, INT2

IBM Confidential Data Representation 21

STORAGE CLASS

Data items may be classifed according to how they are located.
An item may be fixed at a particular location, or it may have
a position which varies depending on a locating mechanism.

Attributes:

Fixed Data Areas

STATIC
LOCAL
NONLOCAL

GENERATED

{ AUTO I
AUTOMATIC

{ REG I
REGISTER (register)

BASED [(locating-expression)

The STATIC attribute indicates that main storage is statically
assigned for the data item, and never reassigned. STATIC has
subclasses LOCAL and NONLOCAL, which indicate the location of
the data item relative to the generated code for the declaring
procedure.

The LOCAL attribute indicates that the data item is assigned
storage, in the same area (CSECT) as for the generated code.

The NONLOCAL attribute specifies that the item is not assigned
storage by the declaring procedure. In the case of a NONLOCAL
EXTERNAL item, storage assignment is provided by a declaration
as LOCAL EXTERNAL in some separately compiled procedure.

Examples:

P:PROCEDURE;
DECLARE L INTERNAL LOCAL STATIC;

/*storage for L is with the code for P*/
DECLARE NL STATIC NONLOCALi

/*storage for NL is assigned by some other
procedure having NL as LOCAL EXTERNAL*/

IBM Confidential 22

User Generated Data

The GENERATED attribute is associated with items defined and
insured addressable by the user in a GENERATE statement
(explained later on). These items are internal to the procedure,
but are not assigned a storage area by the compiler.

The attribute combination NONLOCAL INTERNAL, formerly used to
obtain this function, is still recognized by the compiler but
should no longer be used.

Examples:

DECLARE DCBISAM GENERATED CHAR(200);
•
•
•

GENERATE; /*definition of DCBISAM*/
DCBISAM DCB •••

•••
$ENDGEN

Automatic Storage Allocation

The AUTOMATIC attribute may be used in a reentrant environment
to provide an automatic allocation of storage for data on entry
to a procedure, and an automatic freeing on exit. (The
REENTRANT option is discussed under Procedure Options.) AUTOMATIC
should not be used in a nonreentrant environment.

AUTOMATIC data declared in internal procedures will be allocated
at the same time as AUTOMATIC data for the outer procedure. This
reflects the fact that internal procedures cannot be separately
reentrant, and thus only require one data allocation for each
allocation of the outer procedure.

Examples:

P:PROCEDURE OP~~IONS (REENTRANT);
DECLARE S CHAR(256) AUTOMATIC; /*storage assigned on

• entering P*/
•
•

Q:PROCEDURE;
DECLARE SINQ BIT(32) AUTOMATIC; /*storage also assigned on

• entering P*/
•
•

END Q;

END P;

IBM Confidential Data Representation 23

Data in Registers

The user may associate the REGISTER attribute with a name, to access
data located in the registers of the machine. Register specification
must be in the range 0 through 15, corresponding to the general
registers on System/360. Use of registers requires knowledge of the
conventions used by the compiler. These are discussed in the section
on Register Usage.

Example:

DECLARE R3 REGISTER(3) POINTER(31);

Parameters

For some names, the data attributes provided in the declaration
are applied to an area located indirectly. The most common
example of this is the use of input parameters for a procedure.
References to parameters are indirect references through a list
of pointers to the corresponding arguments.

Parameters have no attribute keyword to represent 'parameter'
storage class. Parameters are indicated as such by their
appearance in a parameter list.

Examples:

P:PROCEDURE (PARAMI,PARAM2); /*PARAMI and PARAM2 are
parameters*/

DECLARE PARAMI FIXED(31), PARAM2 CHAR(16);
•
•
•

END Pi

Indirect Addressing

The user may obtain indirect data addressing by using the
BASED storage class. A name in this class provides a
description of an area whose location is based on an
associated pointer value. This pointer value is the value
of the locating expression in the BASED attribute, or of a
pointer associated at a reference to the BASED item. (This
topic is explained in the section on Pointer Association.)
The expression or pointer yields the address of a storage
area. This area is then treated as if it had the attributes
associated with the BASED name.

IBM Confidential 24

The locating expression is of the form:

{

pointer
ADDR(data-item)
decimal-constant

[+decimal constant] }
['+decimal-constant]

A name based on a decimal constant represents data starting
at the absolute machine location indicated by the constant~
A name based on the address function (explained under
Builtin Functions) represents the same area as the item
given as the function argument.; the attributes do not have
to be the same, and may describe the area completely
differently. The description used for an area depends on
the name referenced.

Examples:

DCL SVCOPSW BASED(32);
DCL V STATIC LOCAL;
DCL MAPSV BASED(ADDR(V»;

/*MAPSV represents the same area as V*/
DCL PART2V BASED (ADDR(V)+2) FIXED(IS);

/*PART2V represents the second half of V*/
DCL (P,PT) LOCAL POINTER;
DCL DCHAR CHAR(l) BASED(P);

/*DCHAR describes an area located by P*/
DCL DARITH FIXED BASED(P);

/*DARITH describes an area located by P*/
DCL DCBITI BIT(I) BASED(ADDR(DCHAR»;

/*DCBIT describes an area located by the
address of DCHAR, being the value of P*/

DCL DLABEL LABEL BASED(PT)i
/*DLABEL describes a program transfer point

located by PT. GOTO DLABEL; would cause
a transfer to the point indicated by the
value of PT*/

IBM Confidential Data Representation 25

OTHER ATTRIBUTES

Boundary

Attributes: I BDY I
BOUNDARY (boundary [,position]

BOUNDARY provides a means of aligning data items on System/360
storage boundaries. The boundary may be BYTE, HWORD, WORD, or
DWORD, corresponding to byte, halfword, word and double word
boundaries, respectively. The position is a decimal integer
sele~ting a byte position within the boundary field; if
unspecified, it is assumed to be 1. Data items have default
boundaries appropriate to their representation. Arrays have
the same boundary for each element. Components of a structure
must have a basic boundary less than or the same as that of
the structure; the positions within that boundary need not
agree.

Note that positions in lesser boundaries have more than one
alternative with respect to the higher boundaries. WORD,1
when considered within a doubleword, for example, could be
either DWORD,1 or DWORD,S.

Examples:

DECLARE P PTR(24) BOUNDARY(WORD,2)i
DECLARE C CHAR(80) BOUNDARY(WORD)i
DECLARE I A BOUNDARY (WORD) ,

2 B(2) BDY{HWORD),
3 C CHAR{I) BDY(HWORD,2) , /*legal*/

2 0 BIT(8) BDY(DWORD,6)i /*illegal,
since DWORD is greater than WORD*/

IBM Confidential 26

Initialization

Attributes:
{ INIT I

INITIAL (value [,value] •••)

Initial values may be specified only for STATIC LOCAL data items.
The values are taken as the initial contents of the storage
area assigned for t:he data item. No assumptions should be made
as to the initial contents of uninitialized data items. A user
should also be carE!ful in using and depending on an initial
value for a data item which may be modified.

Multiple initial values are used for array initialization. If
not enough values are specified, the remaining array elements
will not be initialized; if tdo many values are specified, the
leftover ones are ignored. An asterisk may be used in place
of an initial value to indicate no initialization for a particular
element. For convenience, an initial value may be preceded by
a replication numbe!r in parent.heses, indicating repeti tion of
that value the appropriate number of times.

The BSL compiler ha.s some restrictions concerning initial values
which do' not match the item being initialized. These restrictions
can be found in the BSL User's Guide.

Examples:

DCL V FIXED INITIAL(O);
DCL C CHAR(2) INIT('XX');
DCL ARI(S) FIXED INIT(l,2,*,4,S),

AR2(S) FIXED INIT((S)O),
AR3 (S) FIXED INIT ((2) * , (2) 2,0) ;

DCL I FLAGS BIT (8) INIT (, 00 ' X) ,
2 DEFFLG BIT(l),
2 NMFLG BIT(I);

DCL P POINTER INIT(ADDR(V»;
DCL X FIXED INIT('A')1 /*restricted*/
DCL B BIT(I) INIT(I); /*restricted*/

IBM Confidential Data Representation 27

Normality

Attributes: NORMAL

{
ABNORMAL}
ABNL

The need for NORMAL and ABNORMAL attributes arises from
compiler optimization which may be incorrect for ABNORMAL
data.

Consider two variables, A and B, which overlap in some
unknown way. At a reference to A, the compiler may generate
a register load, and may keep history on that register,
remembering that it contains the value of A. After an
assignment to B, this history would be incorrect, but the
compiler would not know it was incorrect. The next reference
to A would still make use of this history, and thus would
have incorrect results. To avoid this, the user could declare
A and B as ABNORMAL, restricting history about these variables
and thus providing correct results.

ABNORMAL is not necessary for overlaps known to the compiler,
as for example with a structure and its components. It is
only necessary for overlaps unknown to the compiler, as
might exist with EXTERNAL items, parameters, or BASED items.

Examples:

P: PROCEDURE(A,B);

V=Ai

B=2i
V=Ai

DCL Q POINTER,
D BASED(Q),
C INIT(l)i

Q=ADDR (C) i
V=Ci

D=2;
V=Ci

IBM Confidential

/*A and B represent the same
item, with value=l*/

/*V is set to the value of A,
which is 1*/

/*B (and thus A) is set to 2*/
/*V would be incorrectly set to

1, the old value of A, if history
were kept. The statement DECLARE
(A,B) ABNORMAL is necessary to
assure no history*/

/*C and D now overlap*/
/*V is set to the value of C,

which is 1*/
/*D (and thus C) is set to 2*/
/*V would be incorrectly set to

1, the old value of C, if history
were kept. Declaring C and D
ABNORMAL is necessary to assure
no history*/

28

DEFAULT ATTRIBUTES

If the user chooses not to declare an item, or if the
declaration does not provide all the attributes of an item,
then defaults will apply as necessary to provide a complete
attribute set. Defaults are applied at the first appearance
of an item, whether this is as a label, as an entry name,
in a declaration, or in a reference within the procedure.
(Note that this would generally require a declaration of an
INTERNAL ENTRY.) '1~he exception is parameters in a PROCEDURE
statement, which would have defaults applied at the next
appearance.

Implicit Declaration

Labels and entry names may receive implicit declarations by
their use within a procedure. If the first reference is as
the target in a CALL statement or as the name preceding a
PROCEDURE or ENTRY statement, then that identifier is implicitly
declared as ENTRY. If the first reference to an identifier
is as the target in a GOTO st~tement or as the name preceding
a statement other than PROCEDURE or ENTRY, then that identifier
is implicitly declared as LABEL.

Items appearing in the BASED expression or in a pointer
association position (discussed under Pointer Association)
do not receive implicit declaration as pointers. Pointers
must be explicitly declared as such, and must be declared
before their appearance in pointer contexts.

Default Data ~

For scalar items and array items the default type is FIXED.
For structures, the default is CHARACTER.

Default Precision and Length

The default precision for both FIXED and POINTER items is 31
(equivalent to a full word). Default length for structures
defaulted to CHARACTER is whatever is sufficient to span
the components. BIT and CHARACTER items both require explicit
length specification.

Default Scope

Entry items, other than those which appear as entry names for
internal procedures, default to EXTERNAL. Other than these
cases, the default scope is INTERNAL.

IBM Confidential Data Representation 29

Default Storage Class

Entry point parameters are in a 'parameter' storage class, for
which no attribute keyword is defined.

Items declared as LOCAL or NONLOCAL imply STATIC.

Items declared as STATIC will default to NONLOCAL if they are
EXTERNAL and not initialized, and will default to LOCAL if they
are INTERNAL or both EXTERNAL and initialized.

Items with no storage class attributes default to STATIC
NONLOCAL if they are EXTERNAL and not initialized, AUTOMATIC
if they are INTERNAL and not initialized in a reentrant
environment, and STATIC LOCAL if they are initialized or are
INTERNAL in a nonreentrant environment.

The components of a structure are in the same storage class as
the structure, but can not have any storage class attributes
declared.

Default Boundary

Structures (including structures within structures) with no
data type explicitly declared have a default boundary of WORD;
where data type is specified, the default for that type is
applied. Default boundaries otherwise are as follows:

Data ~

FIXED (15)
FIXED (31)
BIT

CHARACTER
POINTER (8)
POINTER (15)
POINTER (16)
POINTER (24)
POINTER (31)
POINTER (32)
LABEL
ENTRY

Default Boundary

HWORD
WORD
BYTE (not in a structure)
bit (within a structure)
BYTE
BYTE
HWORD
HWORD
WORD, 2
WORD
WORD
HWORD (may not be specified)
HWORD (may not be specified)

Default byte position where none is specified is 1.

Default Initialization

No initialization takes place by default. The starting values
of uninitialized items are unpredictable.

Default Normalit~

Items are NORMAL by default.

IBM Confidential 30

DATA MANIPULATION

The manipulation of data may be divided into three general
categories: arithmetic operations, string operations, and
control operations. Arithmetic operations apply to numeric
data. String operations manipulate sequences of bits or
characters. Control operations determine the order in which
other operations are executed.

Manipulation of aJrithmetic and string items is indicated in
BSL by means of expressions, which employ data names, constants,
and operators. An expression value may be assigned to a data
item by means of the assignment statement.

Labels and entries are primarily for control operations.
Several statements are defined which 'manipulate' the order
of statement execution.

VALUE ASSIGNMENT

The INITIAL attribute has already been mentioned as a means
of statically assigning values for data. A means of dynamically
assigning values is provided in the assignment statement.

General form::
receiver = source-expression

The source expression is evaluated, and its value is assigned
to the receiving data variable. The form of the source
expression is discussed below, under Expressions. The receiver
is a user's data name, subscripted if it were defined as an
array, and optionally substringed (see Substring Notation)
if it were defined as a string.

IBM Confidential Data Manipulation 31

EXPRESSIONS

An expression may be a single data item, or it may be a
combination of operators and associated data operands.

Operators

The operators available in BSL are as follows:

O]2erator Priorit:[Normal ~ Descri]2tion

+,- 1 arithmetic prefix plus, minus
* ,I,ll 2 arithmetic infix multiplication,

division, remainder
+,- 3 arithmetic infix addition,

subtraction
>,<, ,>,,< 4 varied infix comparisons
=" =, >=, <= 4 varied infix comparisons
& 5 bit infix and
I 6 bit infix inclusive or
&& 7 bit infix exclusive or

A prefix operator has a single operand, which follows the operator.
An infix operand has one operand preceding it and one operand
following it.

Operators are associated with operands according to priority.
A low number indicates that an operator will have its operands
determined before operators with higher numbers. For example,
in the expression A + B * C, Band C are associated with the
multiplication (since its priority number is lower than addition),
and this result and A are associated with the addition. In
expressions involving operators of the same priority, the
operators of priority 1 are associated in order of appearance
from right to left in the expression, and all others are
associated within their level in order of appearance from left
to right. Priority can be overridden by using parentheses to
enclose operands.

Examples:

A+B*C*D
A+B-C/D
(A+B) *-C

is equivalent to (A+((B*C)*D»
is equivalent to ((A+B)-(C/D»
is equivalent to ((A+B)*(-(C»)

Comparison 0]2erators

Comparison operators may only be used in the relational expression
of the IF statement. The general form of a relational expression
is given with the explanation of that statement.

IBM Confidential 32

ARITHMETIC OPERATIONS

The arithmetic operators are the unary plus and minus, and
addition, subtraction, multiplication, division, and remainder.
The builtin functions ABS and ADDR (discussed under Builtin
Functions) are also considered as arithmetic operators of
priority level 1. In addition, the operators and, inclusive
or, and exclusive or may be used in an arithmetic environment
(defined further oUf. The result after applying any of these
operators is a fullword arithmetic value.

Mixed Precisions

Use of arithmetic operands with different precisions will result
in the shorter being conceptually extended on the left with the
sign if it is signed, or zero'if it is not signed. (FIXED
variables are examples of signed values; FIXED constants and
POINTER variables are examples of unsigned values.) This
preserves the arithmetic value of the item, since two's complement
notation is used. The actual extension may not occur, if halfword
or other special length instructions can be used to achieve the
equivalent effect.

Assignment Involvir~ Mixed Precisions

If an assignment receiver's precision is greater than that of
the source value, the source value is conceptually extended
as above. If the receiver's precision is less,'the source
value is truncated on the left; this left part should just be
a repetition of the sign (0 for an unsigned value).

A value assigned to a variable should be within the range of
values allowed for that type of variable. Assigning a value
outside the range can have unpredictable results.

Arithmetic Operations with String Items

Strings which are one, two, three, or four bytes long may be
used in an arithmet~ic environment. They are considered as
unsigned values, with all bits being significant.

IBM Confidential Data Manipulation 33

STRING OPERATIONS

The operators primarily meant for strings are and, inclusive
or, and exclusive or. They are applied to the bits making
up the operands. The result of a string operation is a bit
string whose length is determined from the bit length of the
operands.

Operations with Unequal Lengths

For unequal lengths, the shorter string is conceptually
extended on the right with zero bits. For the and operation,
this has the effect of extending the short result with zeros
to the length of the longer operand. For inclusive or as
well as exclusive or, the effect is to append the difference
between the longer-and shorter operands to the short result.

Assignment Involving Unequal Lengths

Assignment of a string value to a shorter string receiver will
truncate the source value on the right, taking the leftmost
portion for the length of the receiver. Assignment of a string
source value to a longer bit receiver will extend the source
value on the right with zero bits to the length of the receiver.
Assignment of a string value to a longer character receiver
will extend the source value on the right with blanks if no
operators are used, otherwise with zeros.

String Compar1sons

Comparison of strings is valid only if both operands are of the
same length. Character strings may be compared to bit strings,
in which case the bit length of the character string is eight
times its character length.

String Operations with Arithmetic Items

Arithmetic items may be manipulated as strings, as discussed
under Mixed Types. The internal form of the item is simply
treated as a string, with extension or truncation on the
right as for a normal string.

IBM Confidential 34

MIXED TYPES

The user may mix arithmetic and string operators and operands.
The type of all operations performed will be either string or
arithmetic, depending on the appropriate environment. Each
environment will be discussed separately below.

Subscripts and Subst:rings

Subscript and substring specifications are necessarily
arithmetic. This is because they represent numerical information,
being the array or string element position. String data in
subscripts or substrings thus would always be treated
arithmetically.

Assignments

If ari thmetic operat:ors appear (other than in subscript
expressions) or if the receiver is FIXED or POINTER, then
the evaluation of the source expression and the assignment
to the receiver will be treated arithmetically. If neither
condition holds, then the expression evaluation and assignment
will be according to the rules for strings.

Comparisons

If ari thmetic operat:ors appear (other than in subscript
expressions) or if the left operand is of arithmetic type,
then the comparison will be arithmetic. If neither condition
holds, then the comparison will be a string comparison.

Each comparison in a. set of comparisons joined by ands or
ors has this rule applied separately.

DO Terms

The control variable!, and the start, increment, and terminate
values of the DO sta.tement are all considered arithmetically.
The operations of setting, incrementing, and testing the
control variable are all of an arithmetic nature.

Argument Expressions~

String operators are! not allowed in argument expressions.
Arguments involving arithmetic operators are evaluated
arithmetically, resulting in a fullword arithmetic value.

IBM Confidential Data Manipulation 35

STATEMENTS

The statements available in BSL are described individually
in this section.

The table below indicates the statement types, along with
their primary function.

Statement

Assignment
CALL
DECLARE
DO
END
ENTRY
GENERATE
GOTO
IF
Null
PROCEDURE
RELEASE
RESTRICT
RETURN

Function

assigns values to a data item
provides linkage to a specified entry point
conveys data information to the compiler
groups statements, with optional iteration
closes a group or procedure
specifies a secondary procedure entry point
allows insertion of assembly language text
transfers control within a procedure
provides conditional statement execution
causes no action (used with ELSE clause)
specifies the primary procedure entry point
makes registers available to the compiler
prohibits compiler use of certain registers
returns control to the invoking procedure

The Assignment Statement

General form:
variable = expression ;

The assignment statement is used to evaluate an expression and
assign the reSUltant value to a receiving variable. The type
of operations performed depends on the type of data items and
operators involved, as mentioned Under Mixed Types.

Examples:

A=B+C*D;
TABLE (I)=TABLE (I)+I;

IBM Confidential 36

The CALL Statement

General form:
CALL entry {(argument I,argument] •••)] ;

The CALL statement provides a linkage to a specified entry
point. The specified entry will be executed, with control
normally returning immediately following the CALL statement.
(Return of control is discussed with the RETURN statement.)

Arguments can be included as part of the linkage. An argument
may be a single data item, or it may be an expression. There
are some implementation restrictions on arguments; these
restrictions are given in the BSL User's Guide.

Arguments are made known to the invoked entry by passing
addresses in a parameter list. Arguments which are of a
form suitable for being an assignment statement receiver,
or which are arrays, labels or entries, have their address
inserted in the list; subscripts and pointer qualifiers are
evaluated as part of the address. Arguments which are constants
have the address of a generated copy inserted. Arguments other
than the above (i.e., expressions involving operators and/or
parentheses) are evaluated, and their value is assigned to a
generated temporary variable; the address of this temporary
variable is inserted in the list.

A correspondence exists between the arguments of the CALL and
the parameters of the entry point (indicated in the PROCEDURE
or ENTRY statement). The parameter names represent the
arguments in the called entry. Assigning a value to a
parameter results in mod~fying the corresponding argument;
parameters corresponding to constant arguments should not
be modified.

Examples:

CALL NOPARAMPi
CALL ROUTINEA (ARGl,ARG2,ARG3);

CALL PROCP (ARRAY (J) , I+4, 32) i
/*In the last example, the expression I+4 would be
evaluated and assigned to a temporary variable.
Suppose that PROCP were defined as:

PROCP: PROCEDURE (PI, P2, P3) i
Assigning to PI would modify the corresponding element
of ARRAY; note that the subscript was evaluated at the
call, so that changing J does not change the element
of ARRAY to which PI corresponds. Assigning to P2 would
modify the temporary variable, but would not modify I.
Assigning to P3 would have unpredictable results, since
the corresponding argument is a constant*/

IBM Confidential Data Manipulation 37

The DECLARE ,Statement

General form:
J DCL I
\DECLARE name [attribute] ••• [,name [attribute] •••]

The DECLARE statement has already been discussed, and is the
primary means of conveying information about data items to
the compiler.

The DO Statement

General form:

[[
BY increment

DO control=start TO terminate
[TO terminate]]]
[BY increment] ;

The DO statement provides a statement grouping (in association
with the END statement), and may specify iterative execution of
the statements in the group.

In the iterative form, the control variable is set to the start
value. The control is compared against the terminate value; if
the BY keyword is followed by a minus (-) the control is checked
for being less than the terminate value; otherwise it is checked
for exceeding the terminate value. If the comparison yields
true, then the iterations are terminated. If it yields false,
then the statements in the group are executed. The control
variable is then advanced by the increment value, and the test
is made as before.

If the increment (BY) value is not specified, then it is assumed
to be 1. If the terminate (TO) value is not specified, then the
loop is potentially infinite, requiring some other exit mechanism.
If both the increment 'and terminate values are absent, then the
group is executed once, setting the control to the start value
before executing.

The start, increment, and terminate values may all be expressions.

Modification within the loop of the control variable will be
reflected in subsequent iterations. Variables involved in the
increment and terminate expressions must not be changed in the
loop; such changes have unpredictable effects on incrementation
and testing.

Examples:

DO;
DO I=l;
DO V=START TO FINI;
DO SV=O BY 2 TO 10;
DO REPT=l BY 1;
DO I=lO BY -1 TO 1;

IBM Confidential

/*no iteration specified*/
/*no iteration specified*/
/*iteration with increment 1*/
/*iteration specified*/
/*requires exit mechanism*/
/*test is for I less than 1*/

38

The END Statement

General form:

[
labE~1]

END entl~y-name

The END statement indicates the end of the statements in a group
or procedure. With no label or entry name following, it closes
out the nearest preceding unclosed group or procedure. With a
following label, which must be from a preceding unclosed DO
statement, it serVE~S as an end for all unclosed groups up to and
including the one started by that DO·statement. (This effect is
called multiple closure.) An entry name following the END
keyword must be thE~ name of the nearest unclosed procedure, thus
serving as a check on matching PROCEDURE and END statements.

An END statement which ends a procedure, and which is encountered
in the execution path of that procedure, will act as a RETURN
for that procedure.

Examples:

END; /*closes nearest group or procedure*/
END DOSET; /*closes all up to DOSET*/

The ENTRY Statement

General form:
ENTRY [(parameter [,parameter] ...)] ;

The ENTRY statement specifies a secondary entry point for a
procedure. It is preceded by an entry name by which this entry
point is known. A correspondence exists between the arguments
of the invocation and the parameters of the entry point, as
discussed with the CALL statement. Parameters common to several
entry points must have the same position in the parameter list.

Examples:

EP: ENTRY(PARl,PAR2);
EPNOPAR: ENTFtY;

IBM Confidential Data Manipulation 39

The GENERATE Statement

General form:

I GEN I
GENERATE (assembler-text)

The GENERATE statement provides a means of inserting assembly
language text into BSL generated code. Use of this facility
requires knowledge of compiler code and data generation
characteristics. In the form with text in parentheses, the
text is mapped starting at column 10 of an output image, and
must be on a single line. The end of text is indicated by the
sequence: right parenthesis, optional blanks, and semicolon.
A label on the statement would be placed in the name field of
the output card.

In the form with parenthesized text absent, any labels on the
GENERATE statement are first put out into the assembler text
with an 'EQU *'. The rest of the input card is ignored.
Columns 1 through 72 of subsequent input cards are put out into
the assembler text (with sequencing in columns 73 through 80) ,
until a delimiting control card is encountered. This control,
$ENDGEN, is discussed in the BSL User's Guide. This type of
GENERATE statement is called a block GENERATE, since more than
one assembly statement can be inserted.

Names defined in the assembler text included by a GENERATE
are not known by the compiler, since it does not analyze these
statements. To make such names known so that conflicting
definitions are not produced, the user would declare them with
the attribute GENERATED in addition to their data attributes.
Such items are assumed by the compiler to be addressable, and
it is the user's responsibility to insure this.

Examples:

GENERATE (COPY SECTION)i
L: GEN (LPSW MYOWNPSW) i

GENERATE i
SIO R7
BC I,LA
BC 2,LB
BC 4,LC

$ENDGEN
DCL DCBISAM GENERATED CHAR(200)i
GENERATE; the rest of this card is ignored

DCBISAM DCB this card is generated
this card is generated

$ENDGEN the rest of this card is ignored

IBM Confidential 40

The GOTO Statement

General form:

I GOTO I
GO TO label

The GOTO statement provides a transfer of control to the
statement indicated by the specified label. Transfers across
procedure limits may cause incorrect results since no procedure
initiation or complE~tion is implied in the GOTO statement.
Transfers into iterative DO groups may also cause incorrect
results, since no adjustment to the loop control is implied.

Examples:

GOTO L;
GO TO CONTIN;
GOTO INDIRECT; /*INDIRECT might be a BASED LABEL,

thus providing indirect transfers*/

The IF Statement

General form:
IF relational-expression THEN unit-l [ELSE unit-2]

The IF statement provides conditional statement execution,
dependent on the validity of a relational expression. The
general form of a rE~lational expression is given below:

operand comparison-op operand[{~}operand comparison-op operand] ••.

The comparison operands may be expressions; if they involve and,
inclusive or, or exclusive or then they must be enclosed in -­
parentheses. And and or can be used in a relational expression
to connect a set of comparisons; and indicates that all of the
connected comparisons must be true,-while or indicates that any
of the connected conlparisons must be true.--Comparison operations
cannot b~ enclosed in parentheses.

If the relational expression is true, then unit 1 is executed;
unit 2, if present, will be skipped. If the relation is false,
then unit I is skipped; execution flow continues with unit 2
if present, or otherwise with the next statement.

IBM Confidential Data Manipulation 41

Each unit is either a group.of statements (defined by the DO
- END bracketing) or a single statement other than DECLARE,
DO, END, ENTRY, PROCEDURE, RESTRICT, or RELEASE. Where the
unit is another IF statement, any ELSE clauses will be applied
starting at the innermost IF. An ELSE clause, if there is
one, must immediately follow unit 1.

Examples:

IF A=B THEN GOTO SKIPIT;
IF FLAG='O'B THEN R=3; ELSE R=-3;

IF Vl>V2 THEN
DO;
X=Y;

IF A<X THEN A=Vl;
END; /*no ELSE for IF above*/

ELSE A=V2;
B=Y;

The Null Statement

General form:

The null statement causes no action. One use of a null statement
is as an ELSE unit to achieve proper association of ELSE clauses
and IF conditions.

Examples:

;
CONTINUE:

IF A=B THEN IF C>D THEN E=F;
ELSE

ELSE C=D;
GOTO Li

The PROCEDURE Statement

General form:

{ PROC }
PROCEDURE [(parameter [,parameter] ...)] [OPTIONS

(option [, option] ..•)];

The PROCEDURE statement specifies the primary entry point for a
program section. It is preceded by an entry name by which this
entry point (and procedure) is known. A correspondence exists
between the arguments of the invocation and the parameters of the

IBM Confidential 42

entry point, as discussed with 'the CALL statement. Procedures
can be nested, in which case contained procedures can be
invoked only from the inunediately containing procedure or from
other procedures within the corttaining procedure. A procedure
is syntactically completed by an END statement.

Any internal procedures must be defined inunediately before the
END statement for the containing procedure. These procedures
may themselves have internal procedures, in the same format.

The user may control the entry and exit code produced by the
compiler, using the OPTIONS field of the PROCEDURE statement.
These options are discussed in a separate section on Procedure
Options.

Examples:

MAINP: PROCEDURE(PARAM);
DCL INTP INTERNAL ENTRY;
CALL INTP;
RETURN;

INTP: PROCEDURE;
RETURN;
END INTP;
END MAINPj

The RELEASE Statement

General form:
RELEASE (register [,register] ...) ;

The RELEASE statement makes the indicated registers available to
the compiler in generating code. The user may still explicitly
reference the registers, but he should be aware of possible
effects both on and by the compiled code.

The registers which may be released are discussed under the
topic of Register Usage. Certa~n registers are preassigned
and cannot presently be released or restricted.

At the start of each procedure" including each internal procedure,
registers are assumed available for use by the compiler.
Declaration of an item as register does not restrict that register.

Example:

RELEASE (4,7,9);

IBM Confidential Data Manipulation 43

The RESTRICT Statement

General form:
RESTRICT (register [,register] •••) ;

The RESTRICT statement prohibits the compiler from using the
indicated registers. The registers will be used only if
explicitly referenced by the programmer.

The registers which may be restricted are discussed under the
topic of Register Usage. Certain registers are preassigned
and cannot be restricted or released.

At the start of each procedure, including each internal
procedure, registers are assumed available for use by the
compiler; this includes registers which were restricted in
the outer procedure. Declaration of an item as register does
not restrict that register.

Example:

RESTRICT (2,3);

The RETURN Statement

General form:
RETURN [TO label] ;

The RETURN statement terminates execution of the procedure in
which it is contained, returning control to the invoking
procedure. In the form with no return label, it returns control
immediately past the point of invocation. An END statement
terminating a procedure will also serve as a return if control
ever reaches the statement.

In the form with a return label, the normal return activity is
performed, except that control is returned to the point in the
calling procedure indicated by the label.' The label should be
in the invoking procedure, and known in the returning procedure.

Examples:

P: PROCEDURE{L,M);
DCL L LABEL, XL LABEL EXTERNAL,

Q POINTER EXT, DL LABEL BASED(Q);
RETURN; /*returns to caller past point of call*/
RETURN TO Li /*returns to label indicated by first

pararneter*/
RETURN TO XL; /*returns to label XL, which must be

defined in caller as LABEL LOCAL
EXTERNAL*/

RETURN TO DL; /*returns through pointer Q, which
must have been set in caller*/

END P; /*this would act as a simple return if
control ever reached this point*/

IBM Confidential 44

COMPILE TIME FACILITIES

The BSL user can modify his program text at the time it is being
compiled. This function is achieved by considering compile time
as a two stage process. The first stage, or macro stage, scans
the user's source text and forms a modified source text. A set
of macro statements tells the compiler how to modify the source
text, but these macro statements will not themselves be included
in the modified text. The modified text serves as input to the
second stage, which is the normal compilation stage.

Some uses of the compile time, or macro, facilities are indicated
below:

• source program parameterization.
• conditional compilation of source text segments.
• inclusion of text strings residing in a user library.

BASIC STRUCTURE

Macro Statements

Macro statements are recognized by a leading percent sign (%).
A macro statement is executed when it is encountered in the scan
of source text. This execution may affect the point at which
scanning continues, and may also affect the subsequent modification
of source text. The macro statements available in BSL are indicated
below, along with their primary function.

Statement

ACTIVATE

Assignment
DEACTIVATE

DECLARE

GOTO
IF
INCLUDE
Null

Function

marks a macro variable as replaceable
in source'text.
assigns a value to a macro variable.
marks a macro variable as not replaceable
in source text.
conveys attribute information for macro
variables.
changes the point at which scanning continues.
provides conditional macro statement execution.
includes text strings from a user library.
causes no'action. It can specify a GOTO target.

Macro statements may not appear on the same input line with
non-macro source text. A macro statement may be spread across
a number of input lines, and a number of macro statements may
appear on the same line.

IBM Confidential Compile Time Facilities 45

Examples of macro statements:

%DECLARE (A,B,C) FIXED;
%A=4; %B=2*A
%GOTO L;
%L: ;
%C=3i Z=8i

Macro Variables

/*Macro DECLARE*/
/*Macro assignments*/
/*Macro GOTO*/
/*Macro null, used as a GOTO target*/
/*Illegal appearance of macro and

non-macro text on the same line.
The assignment Z=8 is not a macro
statement since it does not have
a leading percent sign*/

A macro variable is simply a variable which exists during the
macro stage of compilation. It is defined by its appearance
in a macro DECLARE statement.

Macro variables may be of type FIXED or of type CHARACTER. These
types are somewhat different from the non-macro FIXED and
CHARACTER types. No size may be specified for FIXED; a standard
size is used. No length may be specified for CHARACTER; a macro
string's length is variable, being equal to the length of the
most recent value assigned to the string.

Examples:

%DECLARE CMAC CHARACTER, F.MAC FIXED;
%DECLARE F FIXED(3l); /*Illegal; a size is not allowed*/
%DECLARE C CHARACTER(2)i /*Illegali a length is not allowed*/
%FMAC=3;
%UNKNOWN=3i

%CMAC= ' ABCD ' ;

Source Text Replacement

/*Illegal unless UNKNOWN appeared
in a macro DECLARE statement*/

/*CMAC receives a length of four*/

Modification of source text takes place by replacing the
appearance of a macro variable's name by its value. For a
FIXED item, this replacement value is a character string
representing the value of the item as a decimal number, preceded
by a minus sign if it is negative. A replacement value is not
enclosed by quote marks when substituted into the source text
for the macro name.

IBM Confidential 46

A blank is appended to each end o'f the replacement value when
it is substituted into,the source text. This means that identifiers
and composite delimiters, which cannot have embedded blanks,
cannot be formed fro~rr two,parts, one part in the unsubstituted
source text and the other part in the replacement value. The
replacement value cannot contain macro statements, nor should
it contain unmatched comment or string delimiters.

A macro name appearing within a comment or a string constant will
not be replaced. A name will not be replaced if it is preceded
or followed in text by a letter, digit, or quote mark; for
example, the macro name B will not be replaced in the strings AB,
IOIB, or 'liB. A name must be marked as available for replacement;
this will be the case unless the user indicates otherwise, as
discussed in the section on Macro Activation.

Macro statements will not appear in the modified source text. A
macro statement is rE~placed by blanks. Comments associated with
a macro statement are also replaced by blanks.

Examples:

% DECLARE (A,B)FIXED,
(COND, IS, PLUS) CHARACTER;

%A=7; %B=-42;
%COND='='i %IS='='; %PLUS=l+'i
V=A+B; /* is modified to V= 7 + -42 ; */
T IS V PLUS B; /* is modified to T = V + -42; */
Z = 'liB;

IF W ,COND A ~ ••

Rescanning

/* is unmodified, since B is preceded
by a quote */

/* is modified to IF W , = 7 .•• which
is incorrect because of the blank
between , and = */

Replacement of a macro name results in a new segment of source
text. This new segmlent of text is scanned to see if it contains
further references to macro variables. such references will
have replacements and rescans performed, until no further
replacements can be made. For FIXED macro variables, the
replacement value will not include any names, and therefore is
not rescanned.

The value of a macro variable should not contain a reference to
the name of the macro variable. Rescanning such a value would
again require substituting the value, resulting in a replacement
loop. This situatio:n can also arise indirectly if some other
replacement in the rescan references the macro name.

IBM Confidential Compile Time Facilities 47

Examples:

%DECLARE (C,D, RESCAN, LOOP, INDIRECT, LOOPING) CHARACTER:
%C=' CVALUE': %0=' DVALUE' :
%RESCAN='C+D': /* The appearance of RESCAN in source

text will result in a substitution
value of CVALUE + DVALUE*/

%LOOP='C+LOOP': /* The appearance of LOOP is illegal,

%INDIRECT='D+LOOPING ' :
%LOOPING='C+INDIRECT'i

MACRO STATEMENTS

since the rescan would reference
LOOP*/

/* The appearance of INDIRECT or
LOOPING would be illegal, since
a rescan would eventually result
in a replacement loop*/

Macro statements are discussed in this section. The subsections,
and the statements discussed in each, are indicated below.

Subsection

Macro Declaration
Value Assignment
Scan Control

Statements

DECLARE
Assignment
GOTO, Null
INCLUDE
IF

Text Inclusion
Conditional Execution
Macro Activation ACTIVATE ,DEACTIVATE

Macro Declaration

General form of a macro DECLARE statement:

I DCL } { (name [, name] ...)}
% DECLARE name {

FIXED }

{~:~CTER}

[
{

(name [, name] •••)}
, name

All macro names must be declared before any reference to them.
There is no default type for macro variables. No initial value
(or length) can be assumed for a macro variable; it will have
a value (and length) only after its appearance in a macro
assignment statement.

IBM Confidential 48

A macro DECLARE statement must be encountered in the source, text
scan in order to be recognized. A macro DECLARE in text which
is not scanned (because of a macro GOTO past it, for example) is
ignored.

Examples:

%DECLARE C CHARACTER, F FI~EDi
%DECLARE (CI, C2)1 CHAR, (VI, V2, V3) FIXED i
%DCL FMAC FIXED j~

%GOTO MLi
%DECLARE UNKNOWN CHARi /*Scanning bypasses this macro

DECLARE. It is ignored*/
%ML:

Value Assignment

General form of a macro assignment statement for CHARACTER macro
variables:

{ constant} [{constant}]
%[label:] ... variable = variable II variable •••

General form of a macro assignment statement for FIXED macro
variables:

[+]{constant}[[+]{constant}]
%[label:] .•. variable = - variable op - variable i

The macro assignment statement assigns a value to a macro variable.
It only allows assigning a sourCe value of the same type as the
target variable.

For CHARACTER assignments, the 0perands in the source expression
may be either character constants or macro variables of type
CHARACTER. The target variable receives both the value and the
length associated with the source expression. The concatenation
operation (I I) may be used in the source expression. This
operator simply connects its operands together, forming a string
wi th a length equal t.o the sum Of the lengths of the operands.

For FIXED assignments, the operands in the source expression may
be either decimal constants or macro variables of type FIXED.
A maximum of two ternlS is allowed in the source expression. The
operators allowed are +,-,*,1, and II.

IBM Confidential Compile Time Facilities 49

Examples:

%DECLARE (Fl,F2,F3,F4) FIXED,
CHARACTER; (Cl,C2,C3,C4)

%F3 = l3;%F2 = 7;
%Fl = F2 + F3;
%F4 = -Fl * F3;
%Fl = (Fl + F3);
%Fl = Fl + F2 + F3;

%C4 = 'FBCD' ;
%C3 = '-39' ;
%Cl = C3;
%C2 = C411Cl;

%C2 = Cl & C3;

%C2 = Cl + C3;

Scan Control

/*Illegal. Parentheses are not allowed*/
/*Illegal. More than two terms in the

source expression*/
/*C4 receives a length of four*/
/*C3 receives a length of three*/
/*Cl receives the value and length of C3*/
/*The values of C4 and Cl are concatenated,

resulting in the string 'FBCD-39'. This
value is assigned to C2, which receives
a length of seven*/

/*Illegal. The 'and' operator is not
allowed*/

/*Illegal. Strings may not be used
arithmetically*/

General form of a macro GOTO statement:

%[label:] ••• GOTO label

General form of a macro null statement:

% [label:] ..•

The macro GOTO statement alters the sequence of scanning source
text, causing continuation of macro activity at the macro
statement having the specified label. The label must be the
label of a macro statement further on in the text. Scanning will
resume after the transferred-to statement, unless that statement
also modifies the scanning sequence.

Examples:

%GOTO Ll;
/*this text
%Ll: ;
/*this text
%GOTO Ll;

IBM Confidential

is skipped*/

is scanned*/
/*Illegal. Ll has already appeared,

and cannot be transferred to*/

50

Text Inclusion

General form of a macro INCLUDE statement:

%[label:] ••• INCLUDE'ddname (membername)

The macro INCLUDE statement is used to incorporate text records
on a user data set into the source text. This incorporated
text is scanned in t:he same manner as the source text, replacements
being made and macro statements being executed. When scanning
comes to the end of the incorporated text, it continues following
the INCLUDE statement.

The incorporated text may include macro statements as well as
program text. The clnly macro statement which cannot appear is
another INCLUDE statement. The incorporated text cannot have
unmatched comment or string delimiters.

The meaning of 'ddna,me' and 'membername' is as for the $ INCLUDE
compiler control opt~ion, which is discussed in the BSL User's
Guide. The $INCLUDE may still be used. The macro INCLUDE
incorporates text during macro activity, while $INCLUDE incorporates
text after macro act~ivity and does not submit the text to scanning
for macro substitution.

Examples:

%INCLUDE COMMON (DECLARES);
%INCLUDE COMMON (MACROS);

Conditional Ex.ecution

General form of a macro IF statement:

%[label:] ••. IF relational-expression %THEN unit-l
[%ELSE uni t-2]

The macro IF statement conditionally executes other macro statements.
Flow through the macro IF statement is as for the non-macro IF
statement. The units for %THEN and %ELSE may be any macro
statement except DECLARE or IF.

General form of a CHARACTER relational expression:

{
constant}

variable relational-op variable

IBM Confidential Compile Time Facilities 51

Gener~l form of a FIXED relational expression:

[+]{constant}[[+] {constant}]
variable relational-op - variable op - variable

Only macro values of the same type may be compared. For CHARACTER
comparisons, both operands must be of the same length. The
relational operators are =,,=,>=,<=,,>, and ~<.

Examples:

%DECLARE(A,B) FIXED;
%A=7; % B=l3i
%IF A=8% THEN %B=B/2;
%IF B>A*2% THEN %GOTO Ll;
/*This text will be skipped if the stated relationship is
%Ll: IF A>B %THEN %INCLUDE -LIB (VERSIONA) ;

%ELSE %INCLUDE LIB(VERSIONB);
/*Scan will continue here after processing the appropriate

INCLUDE unless the INCLUDE contains a transfer to some
other scan point*/

true*/

%IF A=7 %THEN %DECLARE C CHAR; /*Illegal. An IF unit cannot
be a DECLARE statement*/

%IF A=7 %THEN %IF B=6 %THEN %B=l2; /*Illegal. An IF unit cannot
be another IF statement*/

Macro Activation

General form of the macro ACTIVATE and DEACTIVATE statements:

{
{~giIVATE } }

%[label:] ..• {DEACT }
DEACTIVATE

name [,name] ..•

The ACTIVATE and DEACTIVATE statements are used to control whether
or not a text reference to a macro variable name is replaced by
the value of the macro. This function is useful, for example,
where an included macro name conflicts with a name used in the
program. The user can deactivate a macro variable so that the
name is not replaced when it appears in text. At some later point
in the text a macro variable could be reactivated, so that a
reference to its name would again be replaced by its value.

A macro variable which has been deactivated is still available
for use within macro statements. Its value is not altered by
the fact that it has been deactivated.

IBM Confidential 52

The declaration of a. macro variable serves as an activation
of that name. A name needs to be activated only if it has
been deactivated and the user again wishes to use it for
replacement.

Examples:

Original Text Modified Text

%DECLARE A FIXEDi
%A=4i
VI = Ai VI = 4 i
%DEACTIVATE Ai
V2 = Ai V2 = Ai
%A = 5i
%ACTIVATE Ai
V3 = Ai V3 = 5

IBM Confidential Compile Time Facilities 53

ADDITIONAL TOPICS

SUBSTRING NOTATION

It is often desirable to reference only a portion of a string
variable. The notation for such a substring reference is
similar to the array subscript notation. For the simple case
in which one bit or character is desired, the position of that
element is specified, by a data constant or variable, in
parentheses following the name of the original string item.
Where a string of elements is desired, values indicating the
first and last element positions are placed in the parentheses,
separated by a colon. If the string is dimensioned, the
subscript appears first in the parentheses, separated from the
substring indicator by a comma.

Examples:

DECLARE STRING(lOO) CHAR(256), FLAGS BIT(8);

FLAGS
FLAGS (3)
FLAGS(3:6)

STRING(4)

STRING(7,9)

STRING(7,2:5)

STRING(I,J)

IBM Confidential

refers to the entire 8-bit string
refers to the third bit in FLAGS
refers to the third through sixth

bits of FLAGS
refers to the fourth 256-character

string in the array STRING
refers to the ninth character in

the seventh 256-character string
refers to the second through fifth

characters in the seventh
256-character string

refers to the Jth character in the
Ith 256-character string

54

Va:ciable Length Substrings

Where both element positions are specified and at least,one
is a variable, the substring has a variable length. Variable
length substrings may not be used in an arithmetic environment.
A variable length substring as an assignment receiver must
not be longer than the source; in an assignment source
expression, it must not be longer than the receiver (unless the
receiver is also of variable length). As an operand of a
comparison, it should not be used unle:ss the other operand is
also a variable leng,th substring of the same length.

Examples:

STRING (1: I) =' ABC' ; /* I must be 1, 2, or 3*/
STRING(3:33)=STRING(103:K); /*K must be no less than 103,

but no greater than 133*/
STRING(I:J)=STR:ING(2:8); /*J-I+l must be no less than 1,

but no greater than 7*/

Bit Substrings

A number of restrictions exist on substringing bit items. A
single position substring may not be specified by a data
variable. Where both element ppsitions are given and at least
one is a variable, the first must be that of the leftmost bit
in some byte and the second must be that of the rightmost bit
in some (possibly different) byte. More precise restrictions
are given in the BSL User's Guide.

Examples:

DCL B BIT(24);
B(2:l3)='100000000ll1'B; /*legal*/
B(I:J)='FFFFFFFF'Xi /*J must be 8, 16, or 24*/
B=B(I:J)i /*1 must be 1, 9, or 17i J must be

8, 16, or 24, and greater than I*/

IBM Confidential Additional Topics 55

BUILTIN FUNCTIONS

A number of basic functions are defined in BSL. References
to these functions consist of the appropriate identifier
followed by an argument or arguments in parentheses. Each
function has a value which depends on the arguments.

ABS Builtin Function

General form: ABS (expression)

The ABS function has one argument, which is an expression.
It returns an arithmetic value which is the absolute value
of the argument.

Examples:

V=V+ABS(A-B)i
XS=ABS(ABS(A-B)-ABS(C/D))i

ADDR Builtin Function

General form: ADDR (data-item-name)

The ADDR function has one argument, which is the name of a
data item. (This includes array, structure, label and entry
names, as well as array element references.) It returns a
pointer value which is the initial storage location for that
item. This function, when applied to based items, yields a
value determined from the associated pointer. The ADDR
function may not be applied to items in REGISTER class.

Examples:

PTOVAR=ADDR(VAR)i
PELEM3=ADDR(ELEM(3))i
DCL P PTR INIT(ADDR(V)+2)i

IBM Confidential 56

POINTER ASSOCIATION

A BASED item may have a location associated at a reference to
the item by preceding the'reference with a pointer followed
by the combination ._>. This notation is called pointer
qualification. The pointer will be used to locate the item,
overriding any pointer supplied in the declaration of the
BASED item.

A component of a BASED structure is also BASED. A pointer
preceding such an item is treated as pointing to the start of
the outermost structure, and not directly at the component.
The location is det«3rmined by combining the item I s offset
from the outermost structure with the pointer indicated; this
offset does not change the value of the pointer, serving only
to locate the item correctly.

Examples:

DECLARE I FIELD BASED,{P) ,
2 ELEM FIXEP,
2 FLAG BIT(8),

(P,Q) POINTER;
ELEM=Q->ELEMi /*The receiver refers to ELEM as

located by P pointing to FIELD.
The righthand refers to ELEM as

located by Q pointing to FIELD*/
Q->FLAG=FLAGi /*The receiver refers to FLAG as

located by Q pointing to FIELD.
The righthand refers to FLAG as

located by P pointing to FIELD*/

Multiple levels of pointer qualification may also be used.
The intermediate level qualifiers must be both POINTER and
BASED.

Examples:

DECLARE (P,Q) POINTER,
R POINTER BASED{Q),
V FIXED BASEO(P)i

V=R->Vi /*~rhe receiver refers to V as
located by P.

The righthand refers to V as
located by R, which itself
is located by Q*/

P->R->V=O; /*~rhe receiver refers to V as
located by R, which itself
is located by P*/

IBM Confidential Additional Topics 57

REGISTER USAGE

A user wishing to explicitly reference registers should be
aware of the register conventions employed in the System/360
code produced by the compiler, which are explained in the
following paragraphs. All registers may be referenced and
used in BSL, although some have special preassigned functions.

Each procedure, including each internal procedure, employs a
standard save mechanism, with register 13 as the area pointer
and register 14 as the return location pointer. Register 15
is used in linking to external procedures, and is assumed
available for use in the entry code. Register 11 is used for
code addressing, unless it is overridden by a CODEREG option
(see Procedure Options). Register 12 is used for data addressing
in a REENTRANT environment, unless it is overridden by a DATAREG
option (see Procedure Options). Register 1 points to the
parameter list if the procedure has parameters or if arguments
are passed to a called entry.

Registers 14 and 15 are used by the compiler for most arithmetic
calculations, with register 0 involved in certain oases.
Register 10 is also occasionally required for complicated data
moves. The other registers are used as available for indexing,
external item addressing, and pointer manipulation.

The registers which cannot be restricted or released by the
user are 13, 14, 15, 0, 10, any code registers, and any data
registers. Register 1 also cannot be restricted or released
if the procedure has parameters passed to it. Registers 11 and
12 may be restricted and released if they are not used as code
or data registers. Any of the other registers, if they have
no assigned function, may be restricted and released. Registers
which are not restricted are assumed available for use by the
compiler in the generated code.

Since registers are saved on entry to and restored on exit from
a procedure, changes to registers normally do not propagate
back to the calling procedure except possibly by modifying the
save area. In the next section, procedure options are
provided for controlling the saving and restoring of registers
so that changes can be propagated back when desired.

IBM Confidential 58

PROCEDURE OPTIONS

The user is provided a means of controlling the prolog and
epilog activities generated by the compiler. By means of
options specified for a procedure, the user may decrease the
overhead of entry and exit, and may even eliminate it.

The CODEREG Option

General form: CODEREG(register [,register] •••)

The CODEREG option indicates that the specified registers
are to be used for code addressability. (Register 11 will
be used if no CODEF~G is specified.) Each register provides
4095 bytes of addressability.

If register 0 is specified, no addressability is established,
and it is assumed that the user will insure his own addressability
(for example, through GENERATEs). Prolog and epilog code may
depend on code addressability; the user should be aware of
compiler addressability requirements.

CODEREG may not be specified for an internal procedure, since
its addressability is part of that of the external procedure.

The DATAREG Option

General form: DATAREG(register [,register] ...)

The DATAREG option indicates that the specified registers are
used for data addressability. (Register 12 will otherwise be
used in a REENTRANT environment; no data register will be used
in a non-REENTRANT environment.). Each register provides 4095
bytes of addressability.

If register 0 is specified, no addressability is established,
and it is assumed that the user will insure data addressability
or that there is no data that needs to be addressable separately
from the code. Prolog and epilog code may depend on data
addressability; the user should be aware of compiler addressability
requirements.

DATAREG may not be specified for an internal procedure, since
its data area is part of a general data area provided for all
procedures by the external procedure.

IBM Confidential Additional Topics 59

The REENTRANT Option

General form: REENTRANT

The REENTRANT option indicates that the compiler should generate
reentrant code, and that it should dynamically acquire data
storage for data areas defined as AUTOMATIC. Save areas and
compiler work areas would also be dynamically acquired. This
attribute presently has meaning primarily in an OS/360
environment, in which it is implemented as a register form of
GETMAIN in the external procedure's prolog with a corresponding
FREEMAIN in the epilog.

The REENTRANT option will cause register 12 to be used for data
addressabi1ity unless the DATAREG option is also specified.
REENTRANT may not be specified for internal procedures.

The SAVE Option

General form: SAVE [(register [,register] •..)]

The SAVE option indicates which registers are to be saved and
restored by a procedure. If no registers are specified, then
all registers are saved. (This is the standard action.) If
registers are specified, then only those registers are saved
and restored. Other registers will have their then current
value on exit.

SAVE may be specified for internal procedures.

The DONTSAVE Option

General form: DONTSAVE [(register [,register] ...)]

The DONTSAVE option indicates which registers are not to be
saved and restored by a procedure. If no registers are
specified, then no registers are saved. If registers are
specified, then those registers will have their then current
value on exit. Other registers will have their value restored
to the original entry value on exit.

DONTSAVE may be specified for internal procedures. DONTSAVE
may not be specified if SAVE is specified.

IBM Confidential 60

The NOSAVEAREA Option

General form: NOSAVEAREA

The NOSAVEAREA option indicates that no save area is to be
generated for this procedure., (This is useful, for example,
for procedures not invoking any other functions.) This
also eliminates the save area chain updating.

NOSAVEAREA may be specified for internal procedures.

Combining Options

The combination of the options NOSAVEAREA, DONTSAVE, CODEREG(O),
and DATAREG(O) results in the complete absence of any prolog
code in the object program, and the absence of epilog code
except for a branch on register 14.

Combining the options REENTRANT and DATAREG(O) will produce
a DSECT for all AUT'OMATIC data, but will not produce the
GETMAIN, addressability, or FREEMAIN involving that area.
Initialization of compiler work areas is suppressed, and must
be provided by the user; this is discussed in the BSL User's
Guide.

IBM Confidential Additional Topics 61

NAME PLACEHOLDER

A structure name is often'specified simply because of the
requirement for a name on the structure; the name itself is
not significant (except, perhaps, as documentation) and is
never referenced. Similarly, a component name may not be
significant, merely serving to name a filler item which adjusts
the mapping of subsequent components.

Where the name of a structure or component is not significant,
it may be replaced by an asterisk (*). The asterisk serves
in place of the name, not requiring the user to provide
distinct names. The asterisk may not be used for items which
are not structures or components of structures.

Examples:

DECLARE 1 * ,
2 ITEMl,
2 ITEM2,
2 * CHAR(3) /*FILLER*/,
2 BYTE CHAR(l);

DECLARE * CHAR(256); /*Illegal. The asterisk is not

IBM Confidential

in a structure or component
name position*/

62

VARIABLE PARAMETER IJISTS -

At a call, a parame·ter list will be produced with one word for
each argument given,. (If no arguments are given, then no
parameter list is produced.) No indication is normally given
of the last word in the list. .

The end of the list will be indicated if the called entry were
declared with the OPTIONS (VLIST) attribute. This attribute
will cause the high order bit of the last word in the list to
be set to 'l'B; the bit would normally be 'O'B. The called
entry can then include checks for this bit.

Examples:

DECLARE E ENTRY,
EVL ENTRY OPTIONS(VLIST);

CALL E(A,B); /*A parameter list of two words is provided.
The high order bit of both words will be
'O'B*/

CALL EVL(A,B); /*A parameter list of two words is provided.
The high order bit of the first word will
be 'O'B. The high order bit of the second
(and last) word will be 'I'B*/

CALL EVL; /*No parameter list is produced*/

The number of parameters specified at an entry point should be
the number of arguments passed; high order bits of the parameter
list words are assumed to be 'orB. When these conditions are
not true (as would be the case where OPTIONS (VLIST) was declared
on the calling side), the user should manipulate the parameter
list himself using register I (the parameter list register); he
should not specify a list of parameters on the PROCEDURE or
ENTRY statement. Further details on manipulating the parameter
list can be found in the BSL User's Guide.

IBM Confidential Additional Topics 63

APPENDIX I: LANGUAGE KEYWORDS

Status

R
R

R

R

R
R
R

R
R
R
R

R
R

R
R

R

Keyword

ABNL
ABNORMAl.
ABS
ADDR
AUTO
AUTOMATIC
BASED
BDY
BIT
BOUNDARY
BY
BYTE
CALL
CHAR
CHARACTl!!R
CODEREG
DATAREG
DCL
DECLARE
DO
DONTSAVB
DWORD
ELSE
END
ENTRY
ENTRY
EXT
EXTERNA]~

FIXED
GEN
GENERATE
GENERATED
GO TO
GOTO
HWORD
IF
INIT
INITIAL
INT
INTERNAL
LABEL
LOCAL
NONLOCAL
NORMAL
NOSAVEAREA

R - reserved identifier

IBM Confidential

Use

data attribute
data ~ttribute
bui1t~n fUnction
builtin function
data ~ttribute
data attribute
data attribute
data attribute
data attribute
data ~ttribute
iteration term
bound~ry choice
statement header
data attribute
data attribute
procedure option
procedure option
stateijlent header
statement header
statement header
procedure option
boundary choice
false path header
statement header
data attribute
statement header
data attribute
data attribute
data attribute
statement header
statement header
data attribute
statement header
statement header
boundary choice
statement header
data attribute
data attribute
data attribute
data attribute
data attribute
data attribute
data attribute
data attribute
procedure option

References

28
28
32,56
25,12,56
22,23 --
22,23,30,60,61
16,17,22,24,28,29,57
26 --
15,29,30,55
26
38
26,30
36,37,39,43,63
15 --
15,29,30
59,61
59,60,61
14,38
14,36,38,42
12,35,36,38,39,41,42
60,61 --
26
36,41,42
12,13,36,38,39,43,44
17,29,30 --
11,13,29,36,37,39,42,63
20 --
20,22,28,29,30
15,29,30,33,35
40
36,40,59
22,23,40
29,41
29,36,41,45,48,49,50
26,30 --
11,32,36,41,42
27 --
27,31
20
20,23,29,30
U,29,30
22,27,30
22,23,30
28,30
61

Appendix I: Language Keywords 65

APPENDIX I: LANGUAGE KEYWORDS (continued)

Status Keyword

'OPTIONS
OPTIONS
POINTER

R PROC
R PROCEDURE

PTR
REENTRANT
REG
REGISTER

R RELEASE
R RESTRICT
R RETURN
R RETURN TO

SAVE
STATIC

R THEN
R TO

VLIST
WORD

COMPILE TIME KEYWORDS

Status

%R
%R

%R
%R
%R
%R
%R

%R
%R
%R

Keyword

ACT
ACTIVATE
CHAR
CHARACTER
DCL
DEACT
DEACTIVATE
DECLARE
ELSE
FIXED
IF
INCLUDE
THEN

R - reserved identifier

Use

bptions header
data attribute
data attribute
statement header
statement header
data attribute
procedure option
data attribute
data attribute
statement header
statement header
statement header
statement header
procedure option
data attribute
true path header
iteration term
option choice
boundary choice

Use

statement header
statement header
data attribute
data attribute
statement header
statement header
statement header
statement header
false path header
data attribute
statement header
statement header
true path header

References

42,43,59
63
16,29,30,33,35,57
42
11,13,29,36,37,39,42,43,63
16 --
23,59,60,61
22,24 --
22,24,56,58
36,4'2,43
36,42,«
36,37,39,44
44 --
60
22,27,30
41
38
63
26,30

References

52
45,48,52
48,49 -
46,48,49,52
48 --
52
45,48,52
45 , 46 ,48, 49 , 51
51 --
46,47,48,49,52
45,51 --
45,51
51 -

%R - reserved identifier in compile time statements

IBM Confidential 66

APPENDIX II: ATTRIBUTE CONFLICTS

The matrix below indicates conflicts between attributes. An X
in a position indicates that the attributes conflict. A number
in a position indicates that the appropriate note below applies.

AlA BIB BIC CID EIE FIG III LIL NIN OIP PIR 81 S
BIU All OIH oli Nix liE NIN AIO 010 PI a OlE TI t
NIT SIT UIA mlm TIT XIN liT BIC NIR Tlr IIG AI r
010 EI NIR pie RIE EIE TIE EIA LIM II a NI I TI u
RIM DI nlA oln YIR DIR IIR LIL OIA Olm TIS II c
MIA I AIC nls IN IA AIN I CIL NI e EIT CI t
AIT I RIT eli IA IT LIA I AI sit RIE lu
LII I ylE nlo IL' IE IL I LI Ie IR Ir

IC I IR tin I ID I I I Ir I Ie
I I I I I I I I I I I I

ABNORMAL xl I I xl xl I I xl IX xl I I
AUTOMATIC IX xl I xl X IX Ix Xl xix xl xix Ix xl
BASED IX XI I XI IX IX XI IX xl IX IX xl
BIT I IX IX I XI XI I XI I XI Ix I
BOUNDARY I I XI I xl I I xl I xl Ix I
CHARACTER IX IX I XI XI I xl I Xl xix I
Component ~ IX XI I X 11 X IX IX IX xiX XiX xix Ix XI
Dimension I I llx xl I I XI I xl IX I
ENTRY ~IX IX X IX X Ix Xl xl XI XI IX I xix IX
EXTERNAL IX ~I I Xl IX IX IX I I Ix Ix I
FIXED IX IX I Xl Xl I Xl I xl xl I
GENERATED IX p{1 I XI Ix IX Xl IX Xl IX IX Xl
INITIAL IX P'I I I Xl IX XI XI XI XIX IX I
INTERNAL 1 I Dcl Ix I IX I 21 I I I
LABEL X IX IX ~' Ix ~ IX Xl Xl Xl xl IX xl xix IX
LOCAL IX Xl I ~I 1 IX I IX Xl Ix Ix I
NONLOCAL IX xl I ~I I Ix XI2 IX XI IX IX I
NORMAL X I I DCI Xl I I Xl IX Xl I I
OPTIONS ~ IX IX ~IX ~ IX I XI XI XI IX XI XIX Ix
Parameter IX Xl I Xl IX IX Xl IX Xl Ix Ix xl
POINTER IX IX I Xl !X I I Xl I xl xl I
REGISTER K ~ IX Z IX X IX X IX IX XI XIX Xl XIX IX XiX
STATIC X ~I I XI I IX I I I Ix Ix Xl
Structure I I I Xl I I Xl I xl Ix JX

1. A component may not have a dimension attribute if a containing
structure is dimensioned.

2. The combination NONLOCAL INTERNAL will be recognized as equivalent
to GENERATED, but this combination should no longer be used.

IBM Confidential Appendix II: Attribute Conflicts 67

INDEX

Absolute Storage Locations
Absolute Value
Address References
Addressabi1ity
Arguments
Arithmetic Data
Arithmetic Operations
Arrays
Assembler Text Inclusion
Assignment Statement
Associating Operators and Operands
Attributes
Automatic Storage Allocation

Bit Strings
Blanks
Block Generate
Boundary Alignment
Builtin Functions

Character Set
Character Strings
Code Addressabi1ity
Comments
Comparisons
Compile Time
Component
Composite Delimiters
Concatenation
Conditional Execution
Constants
Control Variable

Data Addressabi1ity
Data Organization
Data Representation
Data Types
Declarations
Default Attributes
Dimension

Entry Names
Epilog Activity
Expressions
External Procedures

Factored Attributes

IBM Confidential

25
56
25,56
40,59
35,37,39,63
15
33
18,20
40
11,31,33,34,35,36
32
14,29,67
23

15,55
9
40
26,30
25,33,56

8
15,55
40,59
9,10,47
32,34,35,41,52,55
2,45,53
18,19,20,57,62
8,10
49
12,41,51
15,37
35,38

40,59
18
14
15,29
14,29,38
14,29
18,20

11,17,20,39,42
43,44,58,59
25,31,35
20

14

68

INDEX· (continued)

Generated Data
Groups

Hexadecimal Strings

Identifiers
Implicit Declaration
Including Assemb1E~r Text
Indirect Addressing
Initialization
Input Line
Internal Procedures
Iterative Execution

Keywords
Known Data

Labels
Level Numbers
Locating Expressions

Macro Activation
Macro Statements
Macro Variables
Mixed Types
Multiple Closure
Multiple Descriptions of an Area
Multiple Initial Values

Name Placeholder
Nested Groups
Nested Procedures
Normality
Null Statement

Operations
Operators
Operator Priority
Options
Overlapped Data

Parameterization
Parameters
Pointer Association
Pointer Data
Pointer Qualification
Precision
Procedure Options
Procedures
Program Data
Prolog Activity

IBM Confidential

23,40
12,42

15

9,10
29
40
16,17,24,57
27,30
10,40,45
13,20,43
12,38,41

9,65
20,40

11,17,20
19
25

47,52
45,48
46,48
35,52
39
19,25
27

62
12
13
28,30
11,42

31,32
31,32
32
42,43,59,63
28

45
14,24,30,37,39,63
16,24,57
16
16,24,57
15,16,29
42,43,59
13,20,39,42
17
43,58,59

Index 69

INDEX (continued)

Reentrant Code
Registers
Relational Expressions
Replication Factor
Rescanning

Save Areas
Scan Control
Scope of Names
Source Input
Statements
Static Storage Allocation
Storage Boundaries
Storage Class
String Data
String Operations
Structures
Subscripts
Substrings

Text Inclusion
Text Replacement
Transfer of Control
Truncation

User Generated Data

Value Assignment
Variable Length Substrings
Variable Parameter Lists

IBM Confidential

23,59,60
24,43,44,58,60
32,41,51
27
47

58,60,61
50
20,29
10,40
11,36
22
26,30
22
15,34,55
34
18,20,57,62
18,20,54
54,55

51
46,47
31,41,50
33,34

23,40

31,33,49
55
63

70

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70

