Z28-6682-2
BSL

BSL User's Guide

IBM Confidential

Fifth Edition (May, 1969)

This publication is a major revision of, and obsoletes,
728-6682~1.

A new section on compiler-generated code is included in this
edition. The information on compile-time facilites has been
expanded. New and modified compiler options are covered.
Significant changes in technical information (additions,
deletions, alterations) can also be found under the following
headings:

Compiler Operation

Summary of Compiler Options (Table 1)

Modifying Dictionary Size, Source Margins, and Control
Character

Using the GENMGIN Option

Ending a Block GENERATE

Options to Print or Suppress Source Listings

Options to Format Source Listings

Options to Punch or Store Assembler Text

Options to Annotate Assembler Text

Description of DOS Files Used by the Compiler (Table 2)
Compilation Without Assembly (DOS)

Compilation, Assembly, and Execution (DOS)

Storing Text in External Libraries (DOS)

Specifying INCLUDE Option of Macro Statement (DOS)
Description of OS Data Sets Used by the Compiler (Table 4)
Cataloged Procedure BSLX (Figure 7)

Cataloged Procedure BSLASM (Figure 8)

Cataloged Procedure BSLALG (Figure 9)

Alternate DD Names (Table 5)

Labels Generated by the Compiler (Table 7)

BSL Size Restrictions (Table 10)

Initialization

String Items

Subscript Notation

Substring Notation

Aveoiding Parameter References

The Compile-Time Processor and the GENERATE Statement
Program Parameterization

Compile-Time Macro Processor (Formerly Appendix B. Has been
deleted)

Diagnostic Messages and Codes (Appendix E)

Changes to the text, and small changes to the illustrations,
are indicated by a vertical line to the left of the change;
changed or added illustrations are denoted by the symbol e to
the left of the caption.

Specifications contained herein are subject to change from
time to time. BAny such change will be reported in the BSL
Bulletin, an internally distributed newsletter covering
various BSL topics.

Copies of BSL publications are available from Department
D76, Systems Development Division, Poughkeepsie, New York.
Requests for the addition of names to the BSL Bulletin dis-
tribution list should also be directed to this address.

IBM Confidential

IBM Confidential

Preface

This publication provides you (the systems programmer) with the informa-
tion necessary to compile, assemble, linkage edit, and execute programs
written in the Basic Systems Language (BSL).

Section 1 is an introduction to the functions of the BSL compiler.
Section 2 describes the various compiler options that you can specify.

Section 3 explains how to process BSL programs with the IBM System/
360 Disk Operating System (DOS); and Section 4 covers the same type of
material for the IBM System/360 Operating System (0S). In each of these
sections, knowledge of the particular operating system is assumed.

Section 5 discusses compiler conventions for the generation of
assembler text output and the restrictions that affect the type of pro-
gram you can successfully compile.

Section 6 deals with compiler-generated code. Section 7 describes
programming techniques. The initial Appendixes contain examples of cod-
ing and compiler output. The final Appendix lists and explains the
diagnostic messages that may occur during use of the compiler.

Additional information about BSL can be obtained from the following
publications:

Basic Systems Lanquaqge Primer, Form Z28-6678

BSL Lanquage Specification, Form Z28-6642

BSL Library

This document contains information of a proprietary nature. ALL INFOR-
- MATION CONTAINED HEREIN SHALL BE KEPT IN CONFIDENCE. None of this

. information shall be divulged to persons other than IBM employees
authorized by the nature of their duties to receive such information or
| individuals or organizations authorized by the Systems Development
Division in accordance with existing policy regarding release of company
information.

IBM Confidential

SECTION 1: INTRODUCTION . < & o « « o«
Compiler Operation . . . « o
Compiler-Generated Assembler Text
Information Listings

SECTION 2: COMPILER OPTIONS .+ « « « =
Specifying the Options . . . « . . .
Parameters of the EXEC Statement
(OS ONly) & & 4 « o « o « « « o «
Compiler Control Statements . . .
Modifying Compiler Input . . « « « . .
Modifying Dictionary Size, Source
Margins, and Control Character . .
Including BSL Source Statements
From a Library « . « « ¢ ¢ ¢ ¢ « =«
Using the Compile-Time MACRO
Facility ¢ ¢ o ¢ ¢ o ¢ ¢ o o o « «
Using the GENMGIN Option
Ending a Block GENERATE
Delimiter for Batch Compilation .
Modifying Compiler Output
Options to Print or Suppress
Source Listings . « w ¢ « o « o &
Options to Format Source Listings
Options to Punch or Store
Assembler Text
Options to Annotate Assembler Text
Using The Object Program Tracing
Facility . « . . . « o e e o o o o
Trace Control Statements e e o =
TRACE Assembler Code « . . « « <« .
TRACE Routines and Output

SECTION 3: BSL UNDER THE DISK
"OPERATING SYSTEM (DOS) o+ « « .
Adding BSL to the System
Using the BSL Compiler
Files Required for Compilation
Compilation Without Assembly .
Compilation and Assembly . . .
Compilation, Assembly, and
Execution .« ¢ ¢ ¢ o v o o o o & .
Using Control Program Services and
Special Machine Instructions
Using the BSL Library Routines
Including Text From a Library .
Storing Text in External Libraries
Specifying INCLUDE Option of Macro
Statement . « ¢ ¢ ¢ o ¢ o ¢ o o .

o & 0 0
e » e 3

SECTION 4: BSL UNDER THE OPERATING
SYSTEM (OS) =+ v o « o« « « o = = « o =
Adding BSL to the System . « « « « - «
Creating a Private Library
Cataloging the Job Control
ProcedUres « « o« o« « « o o w o = =
Using the BSL Compiler . . « .« « « « «
Data Sets Required for Compilation
BSL Cataloged Procedures
Compilation Without Assembly . . .
Compilation and Assembly .

Contents

Compilation, Assembly, and
Execution . . ¢ ¢ ¢ ¢ ¢ o o o o
Dynamic Invocation Of The Compiler . .
Form of Invocation
Option List .« « v o ¢ o o o o o« &
List of Alternate DD Names
Using Control Program Services and
Special Machine Instructions
Using the BSL Library Routines
Including Text From a Library
Storing Text in External Libraries
Specifying INCLUDE Option or Macro
Statement . < ¢ ¢ o & o e 0 e . .
Using the TESTRAN Facilities . . . -
BSL Requirements for the TESTRAN
Control Section . . o ¢ « & & . .
Job Control Statements for TESTRAN
Using The Clear Facilities

SECTION 5: COMPILER CONVENTIONS
RESTRICTIONS o« « o o o = o o o o« o « «
General Form of Compilation
Compiler-Generated Labels
Register Conventions and Options . . .
Linkage Conventions and Options . . .
Use of Linkage Registers
Use of Save Areas . ¢« ¢« ¢ o o « «
Effect of Procedure Options . . .
Conventions for Reentrant Procedures .
Obtaining Dynamic Storage
Using the Dynamic Storage Area . .
BSL Size Restrictions . . .
BSL Language Restrictions .
Reserved Words «
Procedure Format
Procedure Parameters . .
CALL Statements . .
Addresses . .« . .

LR T T }
.
« 8 s

Register Attribute
Initialization . .
String Items .« . ¢ ¢ ¢« ¢ ¢ « o . .
String Assignment Statements . . .
Comparison Expressions

Subscript Notation « . .
Substring Notation

SECTION 6: COMPILER-GENERATED CODE .
Arithmetic EXpressions « « « « « « « o«
Register Usage o & o « o &
Compiler Generated Temporaries . .
Fixed Data « « ¢ o & o o o « o o &
Pointer data . . . ¢« ¢« . ¢ .« . . .
String Data .« « « ¢ o « o « o «
String EXpressions « . « « « o « « o &
SECTION 7: BSL PROGRAMMING TECHNIQUES
Formatting the Source Program
Use of External Procedures
Organization of Source Statements
Handling Argument Lists and Parameters
Building an Argument List

IBM Confidential

Passing an Argument List in a
Register ¢« ¢ ¢ o o o o o o o o @
How to Avoid Passing Arguments .
Variable Parameter Lists
Avoiding Parameter References .
Setting a Return Code
Obtaining the Optimum Code
Putting Variables in Registers .
Eliminating Compiler-Generated
Temporary Locations . « « « «
Improving Iterative DO LoOOps . .
Location Free Code . « « o« o « «
Data Manipulation and Reference . .
Using the Same Area in Different
WAYS « ¢ o « s o« o o o o o s o o
Scanning a String of Bits .
Propagating a Character . .
Setting an Area to Zero . . .

Searching a Table
Using the GENERATE Statement .
The Compile-Time Processor and
GENERATE Statement . « « « . .
Program Parameterization
Changing Buffer Sizes
Including Text From A Library
Altering the Source Code

s o o
=

APPENDIX A: EXAMPLE OF PROGRAM USING
BSL GENERATE STATEMENTS .+ « « « .« «

APPENDIX B: EXAMPLE OF PROGRAM USING
BSL TRACE OPTION o o « o s o = o o =

APPENDIX C: EXAMPLE OF BSL PROGRAM
USING OS TESTRAN 4 & « « o o o o o &

APPENDIX D: EXAMPLE OF DYNAMIC
INVOCATION OF COMPILER « « o« « « o o«

APPENDIX E: DIAGNOSTIC MESSAGES AND
CODES &« o « o o o o s s o a o o o =
Message numbers and Severity Levels
Compiler Return Codes . « « = . .
Console Error Messages (0S) . . .
Message Explanations (Macro Phase)
Macro Warning Messages
Macro Error Messages . « « « «
Macro Serious Error Messages . .
Macro Disastrous Error Messages
Message Explanations (Compile Phase)
Warning MeSSages « « « o « o « @
Exrror MesSsages . « « « « « o o
Serious Error Messages
Disastrous Error Messages . .

s s s 8

INDEX <« o « = o o o o o 2 o @ o « o

.109

.120

.137

147
.147
.149
.149
.150
.150
.151
.151
154
155
155
.158
164
.167

.171

IBM Confidential

Figures

Figure 1. Basic Flowchart for
Handling a BSL Program .- . .
Figure 2.
Figure 3. Adding BSL to the Disk
Operating System e o e o s w o =
Figure 4. Flowchart of DOS Files
Used by the Compiler « e e = e e
Figure 5. Adding BSL to the

Operating System c e e s s o o =

Tables

Table 1.
(Part 1 of 3) o ¢ o ¢ o o o o o &
Table 2. Descripion of DOS Files
Used By the Compiler e e e e e o
Table 3. Functions of the BSL

Library Routines (DOS)
Table U.
Used By the Compiler
Table 5. Alternate DD Names . .
Table 6. Functions of the BSL

Library Routines (0S) . . « ¢ +

Examples

Example 1. BSL Program to Read a
Card and Print It
Example 2. BSL
(Changing Buffer
Example 3. BSL
(Including Text) e e e e e e e o
Example 4. BSL
(Altering Source

Sizes)

Code) « o e e

-

Macro Source Listing

Macro Source Listing

Macro Source Listing

Example of Compller Output

Summary of Compiler Options

Description of 0S Data Sets

10
20

29
31
4o

12
31
36
43

52

91
93
95

97

Illustrations

Figure 6. Flowchart of 0OS Data Sets

Used by the Compiler « e e 8 e o o @
Figure 7. Cataloged Procedure BSLX .
Figure 8. Cataloged Procedure BSLASM
Figure 9. Cataloged Procedure BSLALG

Figure 10. Sample Use of BSLX - . .
Figure 11. Sample Use of BSIASM -
Figure 12. sSample Use of BSIALG .« .
Figure 13. Source Text From an
External Library « o 4 8 s e o = e .
Table 7. Labels Generated by the

Compiler (Part L o0f 2) . « . « .« « . .

Table 8. Register Use Table
Table 9. Format of Save Area
Table 10. BSL Size Restrictions (Part

1of 2) .. ¢ ¢ ¢ o o ¢ o o @
Table 11. Severity Levels of
Diagnostic Messages (Macro Phase) . .
Table 12. Severity Levels of
Diagnostic Messages (Compile Phase) .

Example 5. Use
Statements (Part 1 of 10)
Example 6. Use of BSL TRACE Optlon

(Part 1 of 11) . . . “ e e e e = .
Example 7. Use of OS TESTRAN (Part 1
of 17) . . ¢ 4 L i i i i d e e e e e
Example 8. Use of Dynamic Invocation
of Compiler (Part 1 of 10)

of the GENERATE

-147

.148

- 99

-109

.120

.137

IBM Confidential

Section 1: Introduction

The translation of a Basic Systems Language (BSL) source program into a
System/360 object program requires a compilation and an assembly:

1. The BSL compiler translates the BSL source statements into assem-
bler language instructions which serve as input to a System/360
assembler. Usually, a number of assembler language instructions
result from each BSL source statement.

2. The System/360 assembler translates the compiler's output into an
object module.

Figure 1 illustrates the flow of a BSL source program through the two
steps of translation, and through subsequent steps of linkage editing
and execution. As shown, the object module produced by the assembler is
processed by a linkage editor to add any routines required from BSL or
user libraries. The resulting load module is loaded into main storage,
and control is passed to it for execution.

Compiler Operation

The BSL compiler runs as a problem program under the IBM System/360 Disk
Operating System (DOS) or the IBM System/360 Operating System (0S).
Under DOS, the compiler requires a machine configuration with 128K bytes
of main storage. Under 0S, the compiler requires 100,000 bytes of main
storage in addition to the storage required by the operating system, and
the compiler's dictionary (see SIZE option), as well as input and output
buffers.

You use an appropriate sequence of job control statements to execute
the BSL compiler as a job step under DOS or 0OS. Optionally, you can
follow the compilation with job steps that perform assembly, linkage
editing, and execution of the program. For 0S users, a set of cataloged
procedures facilitates the handling of these operations:

e BSLX is a cataloged procedure for the compile-only operation.
e BSLASM is a cataloged procedure for compilation and assembly.

* BSLALG is a cataloged procedure for compilation, assembly, linkage
editing, and execution.

In addition to executing the compiler as a job step, OS users can invoke
the compiler dynamically during execution of a problem program.

The BSL compiler offers many options which you can use to modify the
compiler's input, modify the compiler's output, and test and debug your
program. Most compiler options must be specified in compiler control
statements that you include with the BSL source program in the compiler
input. Compiler control statements are 80-byte records usually identi-
fied by a dollar sign ($) control character in the first byte. Three
special options (SIZE, SORMGIN, and CONCHAR) are available only for 0OS
compilations, and are specified in the PARM field of the EXEC statement.

Compiler-Generated Assembler Text

compilation of a BSL external procedure produces one assembler language
control section (CSECT). Separate control sections are not generated
for BSL internal procedures.

Section 1: Introduction 9

INT

IBM Confidential

Source
Program

BSL
Compiler

Assembler

Assembler

A 4

Text

Object _ Linkage
Module Editor

A

Load
Module

Y

Load
Module
Execution

Figure 1. Basic Flowchart for Handling a BSL Program

The compiler follows certain conventions when it translates your BSL
source program into assembler text. These conventions concern program
format, statement labels, register usage, and program linkage. You will
need this information to communicate with or modify BSL-produced pro-
grams, or to include assembler text in your BSL source program. In
addition, there are certain size and language restrictions which affect
the type of program you can successfully compile.

The assembler text output of the BSL compiler does not depend on any
system macro instructions; therefore, it can be assembled, loaded, and
executed under any System/360 programming system. (Exception: the
REENTRANT procedure option can cause the compiler to generate a GETMAIN
macro instruction.)

Information Listings

To assist in the development of your program, the BSL compiler produces
information listings for each compilation. The listings include:

10

IBM Confidential

¢ The BSL source statements.

e An attribute and cross-reference table.
e Diagnostic messages.

s The generated assembler text.

You can use compiler options to partly suppress these listings or to
change the listing format.

When an incorrect statement is encountered in your BSL source pro-
gram, the compiler flags the statement and writes a diagnostic message.
The messages are numbered in the form snn; where s is an alphabetic
character that indicates the severity level of the error, and nn is an
integer that numbers the message within its severity group. Messages
from the BSL compile-time macro facility are numbered in the same man-
ner, but are prefixed by the letter M.

Note: The examples of coding and job control statements contained in
this manual are presented for your quidance. In actual use, these
examples should be modified to suit your particular needs.

Section 1: Introduction 11

IBM Confidential

Section 2: Compiler Options

This section describes all options available with the BSL compiler. You

use the options to:

e Modify or supplement the compiler input.

¢ Modify, suppres

s, or supplement the compiler output.

e Trace entry points and branches.

Table 1 is a summary of all compiler options. For each item, the
table shows the form of specification, the placement in the input

stream, the general
listed in the same

» Table 1. Summary

function, and the default condition. The items are
order as they are described later in this section.

of Compiler Options (Part 1 of 3)

Specification

T)
|Place- |Function Default

|ment2 |
[

SIZE=number?2

i
i)]

|PARM |Indicates the size of
|the compiler
|dictionary.

4

SIZF=

SORMGIN= (xxx,yyy) 2

]
PARM |Indicates the margins SORMGIN=(001,072)
jof the compiler input

| records.
L

CONCHAR=x2

>
o
=

|that identifies compil-
ler control statements.
1

e — e a— S — —— —— — S —— —

INCLUDE
ddname (member)
or
sublibrary
(bookname)

¥

| Includes source state-
[ments from external
|1library.

<r
0

MACRO

e a——

|Invokes the compile-
| time macro facility.
L

I
|
1
L]
|
|
|
1
1]
|
|
|
} +
| Specifies the character |CONCHAR=$
|
|
1.
]
|
|
|
|
|
}
|[No macro phase?®
|

L

GENMGIN=(xxx,yyy)

]

| Specifies columns to belColumn 1 to the
[used as input for |right column of the
|assembler language in a|the object margin.#
|block GENERATE.
L

o>
]

ENDGEN

I

|Indicates the end of a
|block GENERATE.

1

“r
Q

[v S T s S S . e SOt T S e S s, S S S — — ——
o
“r
Ur

+
|Control characters

| assigned by CONCHAR

| that separate BSL
|external procedures in
|batch compilation.

L

s oo s e s, . e s e s o, S . e e e, S i o — — — e, S —— 2 . s — s, "o e
o> <
o] o

o e o e e . e et e e

12

1
|
|
4
]
|
|
|
4
1
|
|
[
4
1
|
|
I
4
T
|
|
I
|
I
4
1
|
|
4
!
|
|
I
|
4
1
|
|
4
1
|
|
|
|
|
J
)

(Part 1 of 3

IBM Confidential

Table 1. Summary of Compiler Options (Part 2 of 3)
I T T T 1
jspecification | Place- | Function |Default |
| |ment2 | | |
- 1 ¢ 1 {
| NOLIST | sa | Suppresses all compiler|Listing? |
| | |listings except for | |
I | |control statements, | |
| | |time, and error | |
I | | messages. | I
b + + — 1
| XREF | sa |Causes attribute and | XREF. NOXREF |
| | |cross-reference table |if NOLIST is |
| | |to be listed. |specified. |

L [4 d
1 t T i T "
NOXREF	$a	Suppresses the attri-	Attribute and cross-
i	bute and cross-refer-	reference table3	
		ence table.	
b + ? + !			
MSGLEVEL={0}	$a	Controls the printing	MSGLEVEL=0
1		of warning messages.	
L] (] y L d			
[]]] L	1		
TITLE="title"	$a	Provides a heading for {No title3	
		each page of compiler	
	output.	i	
t i + i			
PAGE=number	$a	Indicates the starting	PAGE=0001
		number for output page	
		numbering.	
+ + t 1
NOPAGE | $a | Suppress page numbers |Page numbers3 |
| | |]on compiler output. | |
I [L 4
]] 1 1
EJECT | $b [Causes a page eject in |No eject? |
| | |the BSL source program | |
| (listing. | |
1 = = {
TIME | $a |Obtains a printing of |No time3 |
| | |the compilation time. | |
b { t t {
{LINE | $a | Input line number |Uses statement |
l |replaces statement |numbers. |
| | number in attribute and| | |
| |cross-referenece table | |
| | |and in error messages. | |
b t + { 1
| NOSNUMBER | $a | Suppresses assembler |BSL statement num- |
| | |text references to the |ber references3 I
| I | BSL statement numbers. | |
b ¢ t t {
| SEQ= | $a Indicates character | SEQ= |
| (*character | string and starting | (*B6B500000*,73,80) |
string', | sequence number to be | |
left col., | placed between | |
right col.) | specified columns of | |
| assembler text. | |
+ % {
INCR= | $a Indicates the increment|INCR=('00010",76,80) |
('increment | value for the characterj |
value,' | string and sequence | |
left col., | |number given in SEQ | |
right col.) | joption for assembler | |
| | | text. | |
L 1 i | X J
(Part 2 of 3)
Section 2: Compiler Options 13

OPT

IBM Confidential

Table 1. Summary of Compiler Options (Part 3 of 3)

r T T T 1
|Specification | Place-|Function | Default |
| |ment?t | | |
1 4 1 L _l
r T T . T .

RESEQ=	$b	Indicates character [No change in	
(*character		string to	SEQ number
string"',		replace character	
left col.,		string in SEQ	
right col.)		statement	
b ¢ + t 1			
NOSEQ	$a	Suppresses assembler	Sequence numbers?3
	jtext sequence numbers.		
L 4 L i 4			
1 3 L Ll . 1 . . q			
INTER	sa	Intermixes the	No intermix3
{	generated assembler		
		text with the BSL	
i		source statements on	
i i	the source listing.		
L —_—t I 4 q			
H T 1 t]			
0			I
ANNOTATE=<1	sa	Adds comments to the [No annotate?	
2		generated assembler	
		text.	
’ 1 + : {			
PUNCH	$a	Provides punched output	No punch?
		of the generated assem—	i
{		bler text.	
L 4 [1 i			
] T T .) 1			
ASSEM	sa	Writes assembler text	ASSEM
		on auxiliary storage	
		for subsequent use.	[
I t ¢ 1 {			
NOASSEM	$a	No assembler text writ-	ASSEM
		ten for subsequent use.	
F ¢ t 1 {			
TRACE [OFFSET=n]	$a	Specifies program	No trace3]
i	tracing.]	
L { } (] 4			
L T T ~ - T 1			
TRACE ON	$c	Indicates the starting	
		point for the trace	
		operation.]	
s { + t {			
TRACE OFF	$b	Indicates the stopping	
		point for the trace	
	operation.		
= L L L {			
tPlacement Codes: '			
PARM -- In the PARM field of the EXEC statement for the BSL			
compiler. i			
$a —— In a control statement preceding the BSL source program.			
(Free-form)			
$b -- In a control statement within the BSL source program. (Not			
free-form)]			
$c -- In a control statement anywhere in the compiler input. (Not			
free-form)			
i $d -- Between BSL external procedures. (Not free-form)			
I			
I			
I			
I			
I			
L 4

20ptions available only with OS.

3The default cannot be specified in a control statement.

4The object margins are column 1 and the last column of output before
sequencing information begins.

14

IBM Confidential

Specifying the Options

Three special options (SIZE, SORMGIN, and CONCHAR) are available only
for 0S compilations, and are specified in the PARM field of the EXEC
statement. All other options must be specified in compiler control
statements (i.e., control cards) which you include with the BSL source
program in the compiler input.

Parameters of the EXEC Statement (OS Only)

To use the SIZE, SORMGIN, or CONCHAR options, you must specify the
appropriate keyword in the PARM field of the EXEC statement for the OS
compiler job step. You need only specify the options you require, and
they can be specified in any order.

The following example shows how to code options in the PARM field of
an EXEC statement that invokes the BSL compiler:

T
| //STEPA EXEC PGM=BSL, PARM="SORMGIN=(003,072),SIZE=96"
L

[N}

The following example shows how to code options in the PARM field of
an EXEC statement that uses one of the BSL cataloged procedures:

r
| 7/STEPA EXEC BSLALG,PARM.STEP1='SIZE=96 ,CONCHAR=3"
L -

-1
|
d

Compiler Control Statements

All compiler options except SIZE, SORMGIN, and CONCHAR are specified in
compiler control statements, as follows:

e A control statement is an 80-byte record -- usually a card. The
compiler scans columns 1-72 for option specifications. (Under OS,
you may use the SORMGIN option to change the beginning and ending
columns.) A control statement may not be continued beyond a single
card, but you may use as many control statements as you need.

e A control statement is identified by a dollar sign ($) in the first
column. (Under 0S, the first column refers to the left-most source
margin, and you can use the CONCHAR option to establish an identi-
fication character other than the dollar sign.)

e Most options can be coded free-form in the control statement. One
or more of these free-form options can be included in a single con-
trol statement. The options must be separated by commas, but the
use of blanks is not restricted.

e The following options are not free-form: INCLUDE, ENDGEN, TRACE
ON, TRACE OFF, and EJECT. Each of these options must be coded in a
separate control statement, and must immediately follow (no space)
the control character.

Section 2: Compiler Options 15

IBM Confidential

The following example shows several ways you might code any of the
free-form options:

$ASSEM, TIME, NOSEQ

or

ASSEM, TIME
NOSEQ

Ly

or
$ASSEM
$TIME
$NOSEQ

[— s ot S— —— — — f— ———)
Lo e e e s e s S e e S i i o)

The following example shows how you must code the options which are
not free-form:

r

| SINCLUDE ddname (member name)
| $ENDGEN

| $TRACE ON

|$TRACE OFF

| SETECT

L

b e e e — —

control statements are included with the BSL source statements in
the compiler input. Compiler control statements must precede the BSL
source statements, except as follows:

e Control statements that specify the ENDGEN or TRACE ON options can
appear before or within the BSL source statements.

e Control statements that specify the EJECT or TRACE OFF options can

only appear within the BSL source statements; that is, they must
not appear before the start of the source program.

Modifying Compiler Input

To modify compiler input, you can choose from a number of available
options. These options are described in the following paragraphs.

Modifying Dictionary Size, Source Margins, and Control Character

If you compile under 0S, you may adjust the compiler's dictionary size
to provide more efficient storage utilization. You may also change the
margins on the source statements or change the control character to
avoid conflicts with other processors. To accomplish these modifica-
tions, you specify the appropriate options in the PARM field of the
EXEC statement for the compiler job step. (If the compiler is dynamic-
ally invoked, these options may be passed as parameters -- see Section
.) These options are: .

SIZE=number
indicates the size of the compiler dictionary. You specify a
three-digit decimal number which, when multiplied by 1000, deter-
mines the number of bytes of storage to be allocated for dic-
tionary space. You may specify a number from 001 to 128. If you
do not specify this option, the compiler uses a dictionary size of
30,000 bytes.

16

IBM Confidential

To determine the approximate dictionary size that is required to
compile an external procedure, use the following formula:

Approximate Dictionary Size (in bytes)=(37*V1)+(4*Vv2)+V3 where:

Vl = the total number of identifiers in the program.

V2 = the total number of references to all identifiers in the pro-
gram. (This value is zero if you specify the NOXREF option.)

V3 = the total number of characters included in INITIAL
attributes.

If you compile under DOS, you cannot specify the SIZE option. The
compiler uses available storage for its dictionary space.

SORMGIN=(xxx,yyy)
indicates the margins of the source and control statements to be
read by the compiler. You must specify three-digit decimal num-
bers for xxx and yyy, where:

xxx is the left margin. The compiler begins scanning each input
statement at the column designated by xxx. The number can be from
001 to 065.

yyy is the right margin. It is the last column scanned by the
compiler for possible input. The number can be from 015 to 080.

The number xxx must be less than the number yyy, and the dif-
ference between the numbers must provide an input record of at
least 15 columns. If you do not specify the source-margin option,
the compiler uses columns 001 through 072.

The source-margin option does not control the margins of assembler
text within a block GENERATE statement. The margins of the
assembly text are controlled by the GENMGIN option.

If you compile under DOS, you cannot specify the SORMGIN option.
The compiler always uses columns 1-72 for the source margins.

CONCHAR=x
indicates the character that appears in the first column (left-
most margin) of all compiler control statements. You may specify
any EBCDIC character except the single quote ('). If you do not
use the CONCHAR option, the compiler identifies control statements
by the appearance of a dollar sign ($) in the first column.

If you compile under DOS , you cannot specify the CONCHAR option.
The compiler always uses the dollar sign (3) for the control
character.

When you compile under 0OS, there are two special cases that require
use of the SORMGIN or CONCHAR options. These are:

Section 2: Compiler Options 17

IBM Confidential

1. When you want to use the output of the PL/I macro processor as
input to the BSL compiler, you must specify SORMGIN=(002,072) for
your BSL compilation. This is necessary because the output mar-
gins of the PL/I macro processor are always 2-72.

2. When you want to maintain BSL source programs as libraries under
the CLEAR system, then the dollar sign (%) must not appear in
columns one or two of the BSL source statements. The CLEAR system
has a reserved meaning for the dollar sign in these positions. To
avoid conflict with CLEAR, you can use the SORMGIN option to
establish column three as the left source margin, or you can use
the CONCHAR option to change the dollar sign identification. (See
"Using the Clear Facilities,"™ Section 4.)

Including BSL Source Statements From a Library

The INCLUDE option allows you to keep certain standard declarations or
sections of source code in external libraries. As needed, these items
can be obtained from the libraries during compilation, and included in
your prograns.

The INCLUDE option is specified in a compiler control statement.
For a complete description of the option and the libraries, refer to
Section 4 which describes 0S compilation or Section 3 which describes
DOS compilation.

Using the Compile-Time MACRO Facility

The MACRO option invokes the compiler's macro phase (a compile-time
modification of the source text). The macro phase starts immediately
following the compiler control statement that contains the MACRO
option, and processes all input from that point to the end of file or
$$5. You should note that:

s The macro phase and the compile phase use the same source margins
(see SORMGIN option).

® The control character in macro statements is always %, and is not
affected by the CONCHAR option.

The macro phase writes the modified source text on intermediate
storage for subsequent use in the compile phase. Under DOS, the interxr-
mediate text is directed to the file with the symbolic name SYS002.
Under 0S, the intermediate text is directed to the data set with the
ddname SYSUT3.

Using the GENMGIN Option

The GENMGIN option specifies the columns that will be used as input for
the assembly language in a block GENERATE. The format of the option is
GENMGIN=(xXxx,yYy)-

xxx indicates the left input column. This column will be put in
column 1 of the generated output.

yyy indicates the right input column. This column will be put in
the continuation column of the output.

18

IBM Confidential

If GENMGIN specifies columns that are the same as the object margin,
then the code to be generated remains in the same columns. (If no
object margins are specified, the default values are columns 1 and 72.)
If, for example, the specification is:

GENMGIN=(001, 072)
the code to be generated remains in the same columns.

If GENMGIN specifies fewer input columns than there are output
columns between the object margins, blanks are generated for the dif-
ference. The rightmost column of input will be placed in the continua-
tion column. If, for example, the specification is:

GENMGIN=(005,071)

the BSL compiler will put the code to be generated into columns 1
through 67. Blanks will be generated to column 72. The character that
is placed in column 67 will also be placed in column 72.

If GENMGIN specifies more input columns than there are output
columns between the object margins, truncation will occur. The right
most column of input will be placed in the continuation column. If,
for example, the specification is:

GENMGIN=(001,079)

the BSL compiler will put columns 1 through 71 of the code to be
generated into columns 1 through 71. Characters in columns 72 through
78 will be truncated. The character in column 79 will be placed in
column 72.

Ending a Block GENERATE

The compiler recognizes the end of a block GENERATE when it encounters
a compiler control statement with the word ENDGEN. However, the
GENERATE statement (at the beginning of a block GENERATE) is not a com-
piler control statement. Thus, the format of a block GENERATE is:

GENERATE [DATA];

.

$ENDGEN

[s s . e s
| FEREE R S —

Delimiter for Batch Compilation

When you use the batch compilation process, you separate the external
procedures with a compiler control statement consisting of three dollar
signs ($5%). The $$$ statement must follow each external procedure in
the batch -- except the last.

The three dollar signs must appear in the first three columns (at
the left source margin) of the compiler control statement. If you use
the CONCHAR option, all three dollar signs must be replaced by the
appropriate control character.

Section 2: Compiler Options 19

IBM Confidential

(D) ExAMPLE OF BSi OUTPUT

0001 LFBSL : PROCEDURE;

0002 DCL X FIXED(15):
0003 X=2;

0004 ¥=2;

0005 X = X+1;

0006 END;

DCL'D IN ATTREIBUTE AND CROSS REFERENCE TABLE

1 %STATIC, LOCAL, ENTRY, EXTERNAL
1

STATIC, LOCAL, FIXED(15), INTERNAL, BOUNDARY (HWORD, 1)
3, S,

STATIC, LOCAL, FIXED(31), INTERNAL, BOUNDARY (WORD,1)
4, 5

LCLA &T
CSECT ,
STM @E,@C, 12 (@D)
BALR &B,0
USING *+0000+00000,ab
ST @D,dSAV00 1+4
LA BF, #SAV001
ST ?F,8(0,dD)
LB aD,af
1A F,2
STH oF,X
ST aF,Y
AH @F,X
STH @F,X
ELO1 L @D, 4 (0,aD)
LM @E, ¥C, 12 (@D)
BCR 15,QE
&DATA1 EQU *
20 EQU 00 EQUATES FOR REGISTERS 0-15
@1 EQU 01
@2 EQU 02
o3 EQU 03
24 EQU 04
@5 EQU 05
@6 EQU 06
a7 EQU 07
a8 EQU 08
a9 EQU 09
@A EQU 10
@B EQD 11
?C BQU 12
@D EQU 13
aE EQU 14
@F EQU 15
DS 0D
@DATA EQU *
@SAVO01 EQU @DATA+00000000 72 BYTE(S) ON WORD
X EQU @DATA+00000072 HALFWORD INTEGER
Y EQU @DATA+00000076 FULLWORD INTEGER
DS 00000080C
9TEMPS DS oF
END

Figure 2. Example of Compiler Output

20

IBM Confidential

Modifying Compiler Output

As its basic output, the compiler lists the BSL source statements, an
attribute and cross-reference table, the generated assembler text, and
diagnostic messages. Figure 2 shows an example of the output. In the
figure, the circled letters point out the various output items, as
explained below:

e Ttem A is a listing of the BSL source statements. Page headings
(Item D) are obtained only when you specify the TITLE option. The
page numbers (Item E) can be changed or suppressed by the use of
options. The BSL statement numbers (Item F) are produced during
compilation.

e Ttem B is a listing of the attribute and cross-reference table.
The table contains reference information for each variable in the
BSL program. There are three parts to the table:

1. The first column (Item G) shows the number of the BSIL source
statement in which the variable was declared. BAn asterisk
following the statement number indicates that the attributes
were assigned by default.

2. The second column (Item H) lists the identifiers in collating
sequence. Any referenced but undefined labels are denoted by
the letter U which appears to the right of the identifier.

3. The third column shows the list of attributes (Item J)
assigned to the variable. The PARAMETER attribute is given
for items which are parameters to procedures or procedure
entry points. The thi¥d column also shows the number of the
statement (Item K) in which the variable is referenced.

e Ttem C is a listing of the generated assembler text. The reference
to BSL statement numbers (Item L) shows which assembler text was
generated for each BSL statement. A column is provided (Item M)
for an identification name that you can specify with the SEQ
option. The assembler text sequence numbers (Item N) can be
changed or suppressed by the use of options.

To suppress, supplement, or format the basic compiler output, you
can choose from a number of available options. These options which
must be specified in compiler control statements, are described in the
following paragraphs.

Options to Print or Suppress Source Listings

You can use options to suppress the printing of all or part of the com-
piler listings. These options are:

NOLIST
suppresses the printing of all compiler listings, except for list-
ings of control statements, time, and error messages.

XREF
causes an attribute and cross-reference table to be listed even if
the NOLIST option has been used.

NOXREF
suppresses printing of the attribute and cross-reference table.

MSGLEVEL=n
controls the printing of warning messages. MSGLEVEL=0 is the
default option and allows printing of the warning messages.
MSGLEVEL=1 suppresses printing of the warning messages.

Section 2: Compiler Options 21

IBM Confidential

| Options to Format Source Listings

You can use options for heading and paging the listings, and to obtain
a printed compilation time. These options are:

TITLE="Title’
provides a heading for each page of the output listing created by
the compiler. If the TITLE option comes before the MACRO option
it will also title the macro source listing. The title is printed
with the first character printed in the same print position as
column 1 of the source statement. You specify a character string
enclosed in single quotes. With the normal source margins of
1-72, the character string can contain a maximum of 63 characters
(including blanks). The other nine columns are required for the
statement format S$TITLE=".

PAGE=number
indicates the initial page number to be used on the printed output
of the compiler. You specify a number up to four decimal digits,
with or without leading zeros. If you do not use this option, the
compiler numbers the pages starting from number one.

NOPAGE
eliminates the page numbers from the output listing created by the
compiler.

EJECT
causes a page eject whenever this option is encountered within the
| BSL source program or the macro source listing. The word EJECT is
not printed on the source listing. This option has no effect on
the page format of the generated assembler text listing.

TIME
indicates that the time required for the BSL compilation is to be
printed on the output listing. The compilation time is shown in
nimutes and seconds, and represents the total elapsed time from
the beginning of compiler execution to its termination.

LINE
causes the input line number to be used in place of the statement
number in the attribute and cross-reference table listing and in
the error messages.

Options to Punch or Store Assembler Text

The compiler produces a printed listing of the generated assembler
text. You can use options to punch or store this assembler text for
use in subsequent operations. These options are:

PUNCH
indicates that the assembler text is to be punched. If you are
compiling under DOS, the assembler text output is directed to the
file with the symbolic unit name SYSPCH. If you are compiling
under 0S, the assembler text output is directed to the data set
with the ddname SYSPUNCH. With this option, you get the printed
listing of assembler text as well as the punched output.

ASSEM
indicates that the assembler text is to be written on auxiliary
storage (provides input to the assembly operation.) Tf you are
compiling under DOS, the assembler text output is directed to the

22

IBM Confidential

file with the symbolic unit name SY¥S001. If you are compiling
under 0OS, the assembler text output is directed to the data set
with the ddname SYSUT2.

NOASSEM

indicates that no assembler output for subsequent use will be
generated.

Options to Annotate Assembler Text

The compiler provides a link between the BSL source program and the
generated assembler text by means of the BSL statement numbers. Each
line of the assembler text contains, as a remark, the number of the BSL
statement that caused the code to be generated. You may refer back to
Figure 2 (Items F and L) for an example of this relationship.

There are options you can use to add other types of annotation to
the assembler text, and to change or suppress the existing annotation.
These options are:

NOSNUMBER
suppresses the references to BSL statement numbers in the assem-
bler text.

SEQ=('character string',left col.,right col.)
indicates a character string to be placed in the assembler text
beginning at the column number specified in left column and con-
tinuing through the column number specified in right column. You
may specify up to 19 alpha characters, blanks, and digits in the
character string. Any part of the character string may be the
starting sequence number. Left column may not be less than 62.
The number of columns between left column and right column must
equal the length of the character string. SEQ must be followed by
an INCR option, on a separate card. BAn ICTL assembler statement
is generated as a result of SEQ. The continuation column becomes
the column before the SEQ character string begins.

INCR=('increment wvalue', left col.,right col.)
indicates the increment value for the assembly language sequence
number in a SEQ character string. You may specify up to 19
digits. The number of columns between left column and right
column must equal the length of the number. The increment value
will be added to the number in the SEQ character string starting
at left column. Therefore this portion of the SEQ character
string must have been a number.

The following example illustrates the SEQ and the INCR options.

$SEQ= (" APARO1 0000',70,80)
$INCR=('0010*,77,80)

[= —
e —

The character string APARO1 0000 is less than 19 characters long.
It will be generated in columns 70 through 80 of the assembler
text. In this example the starting sequence number is 0000. It
may appear anywhere in the string. When the INCR option is coded,
right and left column indicators must reflect the position of the
starting sequence number in the string. In this case it would be
columns 77 through 80. The INCR option would add 0010 to the
sequence number each time a line is printed, making each subse-
quent line 0010,0020,0030, etc.

Section 2: Compiler Options 23

IBM Confidential

RESEQ=("'character string',left col.,right col.)
indicates the character string that replaces the character string
originally specified in the SEQ option. You may specify up to 19
alpha characters, blanks, and digits in charactexr string. The
left column must be equal to or greater than the SEQ left column.
The right column must be equal to or less than the SEQ right
column. If the RESEQ character string replaces the incremented
field with alpha characters, these will be set to zeros before the
increment is applied.

The following example illustrates the RESEQ option.

r
| $RESEQ=('23",74,75)

L

S

This option would cause the data in columns 74 and 75 to be
replaced by the number 23. If applied to the example for SEQ and
INCR the result would be APAR23 in columns 70 through 75 of the
assembler text.

NOSEQ
suppresses the generation of assembler text sequence numbers.

INTER
causes the listing of the BSL source program to be merged with the
listing of the assembler text. Each BSL source statement is fol-
lowed by the assembler text that it generated. This combined
listing replaces both the BSL source statement listing and the
assembler text listing that are usually produced by the compiler.
(An alternate method of obtaining an intermixed listing is
explained under ANNOTATE.)

ANNOTATE=x
allows you to add comments to the generated assembler text. The
comments are derived from the BSIL source program. The codes you
can specify are:

ANNOTATE=0 -- the portion of the BSL input record between the
established source margins is included as a comment
in the generated assembler text.

ANNOTATE=1 -- the entire BSL input record is included as a comment
in the generated assembler text. Source margins
specified by the SORMGIN option are ignored.

ANNOTATE=2 -- only the comments from the BSL input records are
included as comments in the generated assembler
text. These comments are placed in the assembler
text listing in the same position as they appeared
in the BSL source program. (Actually, the comments
are moved one column to the right to allow for the
assembler text asterisk.) If the source comment
appeared within a BSL source statement (preceding
the semicolon), it is placed before the assembler
text generated for that statement. If the source
comment appeared after a BSL source statement (fol-
lowing the semicolon), it is placed after the assem—
bler text generated for that statement.

Note: The contents of columns 7.-80 of the BSL input records are
never reproduced in the assembler text by the ANNOTATE option.

24

IBM Confidential

Using the Object Program Tracing Facility

The compiler's TRACE option is designed to help you debug your BSL pro-
gram. The TRACE option generates extra assembler code at pertinent
points in your program so that entries and branches can be traced. The
program trace is listed at execution time. An example of this output
is illustrated in Appendix B.

Trace Control Statements

There are three compiler control statements associated with the tracing
facility. The TRACE statement appears first and establishes use of the
option. The TRACE ON and TRACE OFF statements indicate starting and
stopping points for the trace operation. Specifically, the require-
ments for the control statements are:

TRACE [OFFSET=number]
indicates use of the option for the compilation. This statement
must precede the BSL source program. For the OFFSET value
(optional), you specify a number up to 4095 which indicates a dis-
placement (in bytes) from the save area address contained in
register 13. The default offset value is 2.

The TRACE option always assumes that register 13 contains the
address of a save area. At this location, plus the offset, the
tracing operation saves the statement number of each statement
before it is executed. If you specify an offset greater than 71
bytes, a larger save area is generated to meet the requirement.

If the procedure option NOSAVEAREA is specified, tracing is still
performed using the contents of register 13. (The main BSL proce-
dure should not specify NOSAVEAREA if the TRACE option is to be
used. The results are unpredictable.)

The compiler options TRACE and NOSNUMBER are mutually exclusive.
If both are specified, the compiler uses only the first one it
encounters.

TRACE ON
indicates a point at which program tracing is to start. TRACE ON
statements can appear anywhere in the input records provided that
the TRACE statement has been specified previously.

TRACE OFF
is used in conjunction with the TRACE ON statement, and indicates
the point at which program tracing is to stop. TRACE OFF state-
ments can appear anywhere within the BSL source program provided
that the TRACE statement has been specified previously.

TRACE Assembler Code

The extra assembler code generated by the compiler sets up linkage to
the object-time tracing routines, and defines the constants that are
needed for tracing. The tracing code precedes the regqular code
generated for the corresponding statements. After testing and debug-
ging is completed, you eliminate the extra code by recompiling your
program without TRACE control statements. (You may need to provide
additional addressability to handle the extra code generated for trac-
ing purposes. This addressability may be removed when the TRACE option
is removed.)

When the TRACE option is in effect, the extra code generated for
each point in the program is as follows:

Section 2: Compiler Options 25

IBM Confidential

Entry Points: If TRACE ON is not specified, the tracing code generated
at entry points is:

L 15, dBSLTRCI
BALR 14,15
DC H'offset value'

[S — — ey
b e e .

If TRACE ON is specified, the tracing code generated at entry points
is:

r 1
| L .15 ,8BSLTRCE |
| BALR 14,15 i
| DC CL8'entry name' |
| DC H'statement number' |
| DC H'offset value' |
L J

If CODEREG(0) is specified, you are responsible for generating the
trace initialization code at the entry points. Follow the appropriate
example shown above, depending on whether or not TRACE ON is in effect.

Labeled Statements: If TRACE ON is specified, the tracing code
generated at labeled statements is:

AL 14,3BSLTRCB
C

B
D H'statement number'

(= o—
b v e d

Unlabeled Statements: If TRACE ON is specified, the tracing code
generated at unlabeled statements is:

r 1
| MVI offset(13),first part of statement number |
| MVI offset+1 (13) ,second part of statement number |
L J
If there is no change to the first part of the statement number, the
first MVI instruction is omitted.

CALL Statements: If TRACE ON is specified, the tracing code generated
at CALL statement is:

L] 1
| L aF, aBSLTRCC |
|BALR QE,aF |
jDC H'statement number' |
|DC CL8'entry name' |
L 1
RETURN Statements: If TRACE ON is specified, the tracing code
generated at RETURN statement is:

] 1
| BAL 14,3BSLTRCB |
| DC H'statement number' |
| L 15, aBSLTRCR |
| BALR 14,15 |
| DC CL8'return point’ |
L d

26

IBM Confidential

If a return code must be passed when TRACE ON is specified, the return
code must be placed in the register 15 field of the save area rather
than in register 15.

Data Area: Whether or not TRACE ON is specified, the tracing code
generated in the program's data area is:

aBSLTRCC DC V(IKETRCC)

aBSLTRCR DC V (IKETRCR)

aBSLTRCI DC V(IKETRCI)

aBSLTRCE DC V (IKETRCE)

?#BSLTRCL DC V(IKETRCL)

aBSLTRCB L 15, aBSLTRCL
BCR 15,15

B
b e s e cesirs v . . o]

TRACE Routines and Output

The tracing routines are included in the BSL object-time library.

These routines initialize and perform tracing operations when your pro-
gram is executed. If you are executing under DOS, the tracing output
is directed to the file with the symbolic unit name SYSLST. If you are
executing under 0S, the tracing output is directed to the data set with
the ddname BSLOUT.

The five tracing routines and their related output are:

1. The IKETRCE routine initializes tracing and produces the following
output:

ENTERING entry name, SAVE AREA AT savearea address.

2. When TRACE ON is not specified, the IKETRCI routine performs trac-
ing initialization at entry to a BSL procedure.

3. The IKETRCL routine produces the following output when the program
executes a branch to a labeled statement:

TO statement number FROM 0ld statement number.

4. The IKETRCC routine produces the following output when a CALL
statement is encountered:

CALLING entry name FROM STATEMENT statement number.

5. The IKETRCR routine produces the following output when a RETURN TO
statement is encountered:

RETURNING TO return name FROM statement number. RETURN CODE
IS register 15 wvalue.

and the following output when a RETURN statement is encountered:

RETURNING TO -CALLER- FROM statement numbexr. RETURN CODE IS
register 15 value.

Your program can dynamically suppress the tracing output by setting
a switch in the tracing routine. This switch is a variable named
IKETRCOF which is declared in the tracing routine as FIXED(31) LOCAL
EXTERNAL INIT(0). To use the switch, your program must declare the
same variable as NONLOCAL EXTERNAL.

Section 2: Compiler Options 27

IBM Confidential

The IKETRCOF switch is initially set to 0, which allows normal trac-
ing output. If your program sets the switch to 1, no tracing informa-
tion is printed until the switch is reset to 0. For example, if you
only want to trace the last time through a loop, your program might
specify:

r 1
| DCL IKETRCOF EXTERNAL;

! .

| |
| IKETRCOF = 1; |
| DOI =1 TO 100;

| IF I = 100 THEN IKETRCOF = 0;

-

| -

| -

| END; |
L J

28

IBM Confidential

Section 3: BSL Under the Disk Operating
System (DOS)

This section contains the information you need to compile, assemble,
linkage edit, and execute your BSL programs under the IBM System/ 360
Disk Operating System (DOS).

Adding BSL to the System

The BSL compiler runs as a problem program under DOS. It requires a
machine configuration with 128K bytes of main storage.

Figure 3 shows the BSL distribution package and how it is incorpo-
rated into the system. For DOS users, the BSL distribution package is
provided on a magnetic tape volume which is 9-track, 800 bpi, and unla-
beled. The tape contains two files:

File 1 -- The BSL compiler in a form suitable for linkage editing.

File 2 -- The BSL library containing object-time program in object
module form.

BSL Distribution Package System/360 Disk Operating System
r T T B T 1
|
l
|
l
|

Magnetic Tape
9=Track, 800 bpi

: Direct Access
Unlabeled |
|

U

BSL Compiler

-~ Linkage
Editing
Form

Core
Image
Library

|
|
|
|
|
|
|
I
|
1
4
I

BSL Library ——.—_.__._____..___I

~ Object
Module
Form
Card Deck

Notes:

* To put the BSL compiler into the core image library, use the CATAL linkage editor option.
¢ To punch the BSL library, use the TPCD utility program.

Figure 3. Adding BSL to the Disk Operating System

Section 3: BSL Under the Disk Operating System (DOS) 29

IBM Confidential

To linkage edit the BSL compiler and add it to the core image
library, you may use +he job control statements shown in the following
example. The example assumes that the distribution tape is mounted on
unit 284. (The operator should type 'ignore' when intervention is
required on unit 284.) The job control statements are:

7/ JOB LNKBSL

/7 ASSGN SYSIPT,X'284°

7/ OPTION LINK,CATAL

/7 UPSI 10000000
PHASE BSL,*
INCLUDE
ENTRY BSLCTL

7/ EXEC LNKEDT

/&

[t — T — —— ————— —
e e o e S s S e et s

To have the programs of the BSL library available at execution time,
you should punch them as object decks. An example of the job control
statements for the punch operation is given below. The example assumes
that the distribution tape is mounted on unit 284. Specify:

r 1
| 77 JOB PNCHBSL |
| 7/ ASSGN SYS006,X"'00D' |
| 77 ASSGN SYs004,x"284" |
| 77 MIC FSF,SYs004,01 |
| 77 UPSI 10100000 |
| 77 EXEC TPCD |
|\ »~/ UTC TR,FF,A=(80,1600),B=(80,80),IN,S1,01,R1 |
| /77 END |
| 7& |
L J

Using the BSL Compiler

The smallest self-contained unit of input to the compiler is a BSL
external procedure. The output of the compiler is assembler text. The
compiler output must subsequently be assembled before your program can
be loaded and executed.

The assembler text output of the compiler does not depend on any
system macro instructions; therefore, it can be assembled, loaded, and
executed under any System/360 programming system. However, if you
include system macro instructions in the BSL program (by means of the
GENERATE statement or the REENTRANT attribute), you must use the
related system's assembler to process the compiler's output.

Files Required for Compilation

The files used in the compilation process are illustrated in Figure 4,
and described in Table 2. The Compiler's input/output processing is
independent of the device type used, except for the scratch file
(5YS003) and the intermediate files (SYS001 and SYS002). The scratch
and intermediate files require magnetic tape devices.

30

IBM Confidential

SYS003

SYSIPT

Scratch File

for Intermediate

Work
(Optional)

Control
Statements
& Source
Program

SYS001

4 SYSPCH

Assembler Text \ A
ssembler
for Subsequent < BSL Compiler >
Assembly) o Texf.
(Optional) {Optional)
SYS002 v
Qutput from
Macro Phase for / Information
Subsequent Listings
Compilation
(Optional)
SYSLST
e Figure 4. Flowchart of DOS Files Used by the Compiler
e Table 2. Descripion of DOS Files Used By the Compiler
r T T - T 2
Symbolic		Device Types	
Unit	Function	Permitted	Blocking
Names			
= + F 1 1			
SYSIPT	Provides input to the compiler; i.e.,	Card Reader	Unblocked
	{control statements and source	Direct Access]	
	program.	Tape	
b { t + 1			
SYSLST	Used to write out information	Printer {Unblocked	
	1listings of source program, assembler	Direct Access	
[text, diagnostic messages, etc.	Tape		
L 4 41 1 ")			
L] 1] L] T]			
SYS003	Scratch file for intermediate work.	Tape	Unblocked
	Used only to save data created by	Direct Access]	
	GENERATE DATA statement.		
L 1 4 4			
L]] L] 1			
SYS001 Used to write out generated assembler	Tape	Unblocked	
text for subsequent assembly. If the	Direct Access		
NOASSEM option is specified, this			
£file is not required.			
k t + + 1			
SYS002 The macro phase writes the modified	Tape	Unblocked	
I 1 source text on this file for subse-	Direct Access		
quent use in the compile phase. If			
the MACRO option is not specified,			
this file is not required.			
% + ¢ {			
SYSPCH	The PUNCH option provides this output	Card Punch { Unblocked	
	of the generated assembler text. If	Direct Access	
	the PUNCH option is not specified,	Tape	
	this file is not required.		
L 1 L 1 K]

Section 3: BSL Under the Disk Operating System (DOS) 31

IBM Confidential

Compilation Without Assembly

The compile-only operation allows you to compile a batch (one or more)
of BSL external procedures without the production of an output file of
assembler text. You should not specify the ASSEM option for compile-
only operations. If you specify the PUNCH option, the compiler produces
a punched deck containing the generated assembler text. This punched
output may be subsequently used as input to an assembler.

To compile your source programs, you execute the BSL compiler in a
DOS job step. An example of the job control statements needed to com-
pile a single BSL external procedure is:

/7 JOB BSL
// ASSGN SY¥s003,X'282"' (only if program uses GENERATE DATA)
// ASSGN SYS002,X'284" (only for MACRO option)
// EXEC BSL
Compiler Control Statements (include the NOASSEM option)

-

BS1, External Procedure

/%
/7 RESET S¥YS003 (only if program uses GENERATE DATA)
// RESET SYS002 (only for MACRO option)

/&

[e o S ——— — ——— S—— S— —— S—)
b s e e e e — — — — p—— . s o]

For batch compilation, you use the 5 delimiter to separate the BSL
external procedures in the compiler input. The last BSL external proce-
dure is followed by the /* delimiter. An example of the job control
statements needed to compile a batch of BSL external procedures is:

// JOB BSL
// RASSGN SYs003,X'282° (only if program uses GENERATE DATA)
// ASSGN SYS002,X'284" (only for MACRO option)
// EXEC BSL
Compiler Control Statements (include the NOASSEM option)

First BSL External Procedure
. |
. |
§68 _
Compiler Control Statements (include the NOASSEM option)

$$$
Compiler control Statements (include the NOASSEM option)

Last BSL External Procedure
/*)
// RESET SYS003 (only if program uses GENERATE DATA)
// RESET SYS002 (only for MACRO option)

r
|

|

|

|

|

|

|

|

|

|

%

{ Next BSL External Procedure
|

|

|

|

|

|

|

|

|

|

|

| 78§
L

b o s e ot ettt e S S —— ——

32

IBM Confidential

Compilation and Assembly

If you are going to assemble the compiler's output with a DOS assembler,
you can accomplish both compilation and subsequent assembly by executing
two DOS job steps. This method permits compilation and assembly of one

BSL external procedure. Batched compilation with subsequent assembly is
not possible because the assembler cannot handle the multiple END state-
nents generated by the compiler.

An example of the job control statements needed to compile and
assemble one BSL external procedure is:

// JOB BSL
// ASSGN SYS001,X"283*
// ASSGN SYS002,X'284" (only for MACRO option)
// EXEC BSL
Compiler Control Statements

BSL External Procedure

// RESET SYsS001)

// RESET SYS002 (only for MACRO option)
// ASSGN SYSIPT,X'283°

// EXEC ASSEMBLY

// RESET SYSIPT

[on S — G — — — Y SO g S — — —— - a— o
e o e e A —— ——— —— ——— —— ——c—— ———]

You can compile and assemble several BSL external procedures by
repeating the job steps shown above.

Section 3: BSL Under the Disk Operating System (DOS) 33

IBM Confidential

Compilation, Assembly, and Execution

Since BSL is a language for the writing of systems programs, the compil-
er makes no assumptions about the environment in which the resulting
object program will be executed. The environment you select for program
execution depends on the type of program that you write. You can run
the program in a stand-alone mode or under some operating system. You
can use any execution-time facilities that are available in the environ-
ment, such as control program services or special machine instructions.

If you are going to execute the program under DOS, the compilation,
assembly, linkage edit, and execution may each be a separate step of a
single job. 1In this job, you can compile and assemble a number of BSL
external procedures, and then linkage edit and execute them as one load
module. Additional object decks can be included in the linkage edit
step. An example of the job control statements needed for this type of
job is:

r
|77 JOB RUNBSL
{7/ OPTION LINK

|7/ ASSGN SYS003,X'281° (only if program uses GENERATE DATA.)
|7/ ASSGN SYS001,X'283"
|7/ ASSGN SYS002,X'284" (only for MACRO option)

|7/ EXEC BSL
Compiler Control Statements

First BSL External Procedure

|7/ RESET SYS003 (only if program uses GENERATE DATA.)
|7/ RESET SYS001

|77 RESET SYS002 (only for MACRO option)

|7/ ASSGN SYSIPT,X"283'

|/7/ EXEC ASSEMBLY

|77/ RESET SYSIPT \
|// ASSGN SYS003,X"'281' (only if program uses
| GENERATE DATA.)
|7/ ASSGN SYS001,X"283"
|77 ASSGN SYS002,X*284' (only for MACRO
| option)
|7/ EXEC BSL Repeat these statements
| Compiler Control Statements for each additional BSL
| R | procedure, or delete to
| Next BSL External Procedure compile only one BSL
i - procedure.
| .
| /*
|7/ RESET SYS003 (only if program uses
| GENERATE DATA.)
|7/ RESET SYS001
|// RESET SYS002 (only for MACRO option)
|7/ ASSGN SYSIPT,X'283"
|7/ EXEC ASSEMBLY
|7/ RESET SYSIPT
INCLUDE Delete if object decks
| Object Decks are not required.

|7*

} ENTRY Name of procedure to be entered
|7/ EXEC LNKEDT

|7/ EXEC

] Program Input (if any)

|78

L

b e s e e o s e e e e e e e e . o —— — —— {— — —— s {— — {—— q——" m—— — a— T—— —— " S— — —— — o a2}

34

IBM Confidential

BSL source programs written for execution under DOS should comply
with the following special requirements:

e If you specify the REENTRANT procedure option, and DATAREG is not
zexro, the compiler generates the 0S GETMAIN macro instruction. If
you want reentrant code for execution under DOS, you must specify
DATAREG(0) and provide the storage and addressability for the
AUTOMATIC data.

e The BSL program that will receive control from DOS should use the
DONTSAVE procedure option.

e To return control to DOS, the EOJ macro instruction should be speci-
fied in a GENERATE statement at the logical end of the BSL program.

The following example illustrates all of the above requirements:

DOSMAIN: PROC OPTIONS (REENTRANT,DATAREG(0),DONTSAVE) ;

GEN (EOJ);
END;

[— s . S e sy
L s e ot e e e

Using Control Program Services and Special Machine Instructions

The GENERATE statement allows you to use any control program service or
special machine instruction in your BSL program. In the case of control
program services or other pre-defined macro instructions, you are
responsible for ensuring that the required macro expansions are avail-
able at assembly time.

The BSL compiler never inspects the contents of a GENERATE statement.
If you use the GENERATE statement, you must ensure that the contents are
legal and properly related to the compiler-generated assembler text.

Other considerations for using GENERATE are explained under "BSL Pro-
gramming Techniques™ in Section 7 of this manual. The form of the
statement is described in the BSL_Language Specification manual.

Section 3: BSL Under the Disk Operating System (DOS) 35

IBM Confidential

Using the BSL Library Routines

When executing a BSL program under DOS, you may use the service routines
provided in the BSL library. These routines perform certain basic func-
tions that are useful for testing your programs. To call a library rou-
tine, you must specify the entry name in a BSL CALL statement and then
include the object deck in the linkage editing process.

Complete descriptions and examples of the available routines can be
found in the BSL Library publication. For your reference, a summary of
the functions is listed in Table 3. (The BSL library also contains the
TRACE routines which are described in Section 2.)

The facilities provided by the library routines should not be
regarded as part of the BSL language. The output of the BSL compiler is
independent of any operating environment, but the library routines func-
tion cnly under DOS. (Similar routines with identical entry names are
provided in the compiler distribution package for 0S.)

Table 3. Functions of the BSL Library Routines (DOS)

]) Ll 1
{Routine |Entry | |
| Names |Points | Functions |
b 4 1 1
| EDIT | GET | Performs reading, writing, and conversion of data |
| | GETS lin a manner similar to PL/I EDIT DIRECTED I/O. |
I |PUT | |
] | PUTS | |
| | TABSET | |
t t t 1
| PDUMP | PDUMP |Pexrforms snapshot dumps of specific data areas. |
| | | The dumps are provided in hexadecimal, character, |
l | jor bit string formats. |
b ¢ 1 {
| SUBSTR | SUBSTR |Performs character substring assignment while i
| | |checking substring ranges. |
1 i 4 d
v T 1 1
BSL I/0	READ	Employs the DOS sequential access method to provide
	PRINT	basic input/output services at object time. These
	PUNCH	routines can read an 80-byte record from SYSRDR,
	CLOSE	write a 121-byte record on SYSIST, write an 80-byte
		record on SYSPCH, and close SYSLST.
5 1 + i		
{Interrupt	IKETRCII	Provides statement number and save area trace when
Handler	IKETRCID	a program check occurs.
L L L J

Including T'ext From a Library
When you compile under DOS, you can use the compiler's INCLUDE features:

e The INCLUDE macro statement (%INCLUDE) incorporates text during
compile-time macro processing.

e The INCLUDE option ($INCLUDE) incorporates text after macro activity
and does not submit the text to scanning for macro substitution.

These features allow you to keep certain standard declarations or sec-
tions of source code in external libraries. As needed, these items can
be obtained from the libraries during compilation, and included in your
programs.

36

IBM Confidential

Storing Text in External Libraries

The section of code that is to be kept for inclusion in source programs
must be 'a book in a source statement library. The source statement
library may be a private library if SYSSLB is assigned.

You can use the source statement library maintenance and service pro-
grams to add, delete, rename, condense or update the books. The follow-
ing example adds a book to a private library. If SYSSILB is not defined,
the book will be added to the system source statement library. Example:

] 1
77 JOB jobname |
|77 OPTION PARSTD |
|77 ASSGN SYSSLB,X'cnn' |
\77 DLBL IJSYSSL, 'user identification of private X|
\77 library', date,code |
|77 EXTENT SYSSLB,extent information |
\77 EXEC MAINT |
| CATALS sublib.booknamel,v.m[,c]] |
| BKEND I
| (BSL source statements) |
| BKEND |
|7* [
{78 |
L J

Specifying INCLUDE Option of Macro Statement

The INCLUDE option or macro statement may appear at any point (and any
nunmber of times) in the compiler input. When INCLUDE is specified, the
contents of the book in the source statement library is read as input to
the compiler. This included text may not contain an INCLUDE.

You specify INCLUDE in the following format:

r 1
| SINCLUDE sublibrary(bookname) |
| or I
| #INCLUDE sublibrary(bookname) |
L J
where:

$INCLUDE

%INCLUDE

specifies the type of INCLUDE. The dollar sign ($) identifies the
INCLUDE option, and must appear in the first column (leftmost
source margin). The word INCLUDE must immediately follow (no
space) the dollar sign, and cannot be combined with other options
in the same compiler control statement.

The percent sign (%) identifies the INCLUDE macro statement, as
described in the BSL Language Specification manual.

sublibrary
indentifies the sublibrary to which the book belongs. This can be

an alpha character (0-9,2A-%2,#,%, and a).

(bookname)
represents the name of the book in the sublibrary. The name is one

to eight alphanumeric characters, the first of which must be alpha-
betic. If the named book is not in the sublibrary, the compilation
is terminated after printing a D13 diagnostic message.

Section 3: BSL Under the Disk Operating System (DOS) 37

IBM Confidential

The following example shows the use of the INCLUDE option. In the
example, text is obtained from book DCLO1 in sublibrary B of a private
source statement library. Example:

I 1
|77 JOB BSLCOMP |
\77 OPTION PARSTD |
|77 ASSGN SYSSLB,X"'191' |
\/7 DLBL IJYSSLB, "library identification',date,code |
\77s EXTENT SYSSLB,extent information |
V24 EXEC BSL 1
| $TIME |
|PROGM1: PROC; |
| DCL TABLE(256)CHAR(10); |
| $INCLUDE B(DCLO01) |
| CALL X; |
|X: PROC;]
| DO I=1 BY 1 TO 256; |
| TABLE(I,1:4)=CODE(I); |
| END; |
| END X; |
| END PROGM1; |
/7% |
|7¢ |
L J

38

IBM Confidential

Section 4: BSL Under the Operating System (OS)

This section contains the information you need to compile, assemble,
linkage edit, and execute your BSL programs under the IBM System/360
Operating System (0S).

Adding BSL to the System

The BSL compiler runs as a problem program under OS. It requires
100,000 bytes of main storage in addition to the storage required by the
operating system, and the compiler's dictionary (see SIZE option) as
well as the input and output buffers.

Figure 5 shows how BSL is incorporated into the system. For 0S
users, the BSL distribution package is provided on a magnetic tape
volume (9-track, 800 bpi) with standard labels. Three suggested job
control procedures are provided later in the section.

Creating a Private Library ﬂ
The volume serial number of the distribution tape is BSLBSL. The tape
contains two partitioned data sets:

BSLLDM
is the BSL compiler in the form of a partitioned data set. The
data set name is BSLILDM. The data set has only one member, and the
menber name is BSL.

BSLLIB
is the BSL library in the form of a partitioned data set. The data
set name is BSLLIB. Its members are a number of object-time ser-
vice programs.

The examples of job control statements in this section of the manual
are based on the assumption that you will create private libraries that
contain the BSL compiler and BSL library. At compilation time, the
private library that contains the BSL compiler is concatenated to the
link library (SYS1.LINKLIB) by means of a JOBLIB DD statement. Option-
ally, you can add the BSL compiler to the link library, and omit the
JOBLIB DD statement at compilation time.

You can use the IEHMOVE system utility program to move the parti-
tioned data sets from the distribution tape to the private library
volume (direct access). If these partitioned data sets already exist on
your volume, they must be scratched first.

Section 4: BSL Under the Operating System (0S) 39

IBM Confidential

r N
I Magnetic Tape |
| 9-Track, 800 bpi

Standard Labels |
| (Volume Serial I
| Number BSLBSL) | System/360 Operating System

——————— —
l | e
‘ irect Access
| BSL Compiler I | :
| |
Partitioned .
I D::'CI‘ IS:r:'e e (r:!named COMR) = | Private l
| BSLLDM T Library |
or
Link
| |
| Library I
I |
| |
| l
| |
| |
|
| . Proced |
I BSL Library : Lirg;::ryure ‘
] Partitioned
l Data Set : |
BSLLIB
| | l
| | |
| ! |
| ‘ |
| | |
| o e
| |
| l Notes:
‘ e To put the BSL compiler and BSL library
l into a private library, use the IEHMOVE
l | utility program.
| Card Deck | e To put the BSL compiler into the link library,
: first put it on a direct access volume, then
‘ b use the IEBUPDTE utility program.
/ o To put the cataloged procedures into the

| m / : procedure library, use the IEBUPDTE
I utility program.
] BSLX
I Cataloged
| Procedures
|
l
L

Figure 5. Adding BSL to the Operating System

An example of the job control statements needed to create the private
libraries is shown below. The example assumes that the private
libraries are placed on a 2311 disk with the volume serial number
111111. Also, the data set BSLLDM (the BSL compiler) is renamed COMP
because that is the name usually specified in the JOBLIB DD statement.
The job control statements are:

40

IBM Confidential

1 a
{/7A JOB I
|7/B EXEC PGM=IEHMOVE |
| //SYSPRINT DD SYSOUT=A |
| 7/DD1 DD VOLUME=SER=BSLBSL, UNIT=2400, DI SP=OLD |
|//DD2 DD DSNAME=COMP, VOLUME=SER=111111,UNIT=2311, X|
V24 SPACE= (TRK, (30,10,9)),DISP=(NEW, KEEP) I
| 77SYSUT1 DD VOLUME=SER=111111,UNIT=2311 X|
\77 SPACE= (TRK, (30,10)), DISP=(NEW, DELETE) i
| //SYSIN DD * I
| COPY PDS=BSLLDM,T0=2311=111111, X|
| FROM=2400=(BSLBSL, 1) ,RENAME=COMP |
|/* I
|7/BB EXEC PGM=IEHMOVE |
|//SYSPRINT DD SYSOUT=A |
| //DD1 DD VOLUME=SER=BSLBSL, UNIT=2400, DI SP=0LD]
| //DD2 DD DSNAME=BSLLIB,VOLUME=SER=111111,UNIT=2311, X|
|77 SPACE=(CYL, (4,2,8)),DISP=(NEW, KEEP) I
| //SYSUT1 DD VOLUME=SER=111111,UNIT=2311, x|
|77 SPACE=(TRK, (30,10)),DISP=(NEW, DELETE) |
| //SYSIN DD * |

COPY PDS=BSLLIB,T0=2311=111111, FROM=2400=(BSLBSL, 2) i
|/* |
L (]

Cataloging the Job Control Procedures

A set of job control procedures is provided in this section. The set
contains three procedures (BSLX, BSLASM, and BSLALG) which can be used
as cataloged procedures for BSL operations under OS.

If you intend to use cataloged procedures to run the BSL operations,
you must add the suggested procedures (or your own procedures) to the
procedure library (SYS1.PROCLIB).

An example of the job control statements you need to catalog the pro-
cedures is shown below. The example uses the IEBUPDTE utility program,
and assumes that the procedure library is on a 2311 disk with the volume
serial number 111111. The job control statements are:

1)

V24 JOB

177 EXEC PGM=IEBUPDTE,PARM=MOD

| //SYSPRINT DD SYSOUT=A

| //5YSUT1 DD DSNAME=SYS1.PROCLIB, VOLUME=SER=111111, X
|7/ UNIT=2311,DISP=(OLD,KEEP), X
\77 DCB=(RECFM=F , LRECL=80, BLKSIZE=80)

| //SYSUT2 DD DSNAME=SYS1.PROCLIB, VOLUME=SER=111111, X
|77 UNIT=2311,DISP=(OLD,KEEP),

77 DCB= (RECFM=F, LRECL=80, BLKSIZE=80)

| //SYSIN DD DATA

.7 ADD LIST=ALL, NAME=BSLALG, LEVEL=01, SOURCE=0

Card Deck (containing BSLALG procedure)

V4 ADD LIST=ALL,NAME=BSLASM,LEVEL=01,SOURCE=0
Card Deck (containing BSLASM procedure)

N

ADD LIST=ALL,NAME=BSLX,lLEVEL=01, SOURCE=0
Card Deck (containing BSLX procedure)

bt o o . T — —————— —— ————— ———— —— —]

/¥

Section 4: BSL Under the Operating System (0S) 41

IBM Confidential

Using the BSL Compiler

The smallest self-contained unit of input to the compiler is a BSL
external procedure. The output of the compiler is assembler text. The
compiler output must subsequently be assembled before your program can
be loaded and executed.

The assembler text output of the compiler does not depend on any sys-
tem macro instructions; therefore, it can be assembled, loaded, and
executed under any IBM System/360 programming system. However, if you
include system macro instructions in the BSL source program (by means of
the GENERATE statement or the REENTRANT attribute), you must use the
related system's assembler to process the compiler's output.

Data Sets Required for Compilation

The data sets used in the compilation process are illustrated in Figure
6, and described in Table 4. As shown in the table, the compiler's
input/output processing is independent of the device type used.

A column in Table 4 describes the DCB attributes for each of the com-
piler"s data sets, and shows which attributes are subject to change.
The values shown for the changeable attributes are those that the com-
piler assigns by default. To establish different values, you specify
the desired attributes in the DCB parameter of the applicable DD state-
ment. For example, if the SYSIN data set is on tape with blocked rec-
ords, the DD statement could be specified as:

r 1
| 7/7SYSIN DD DSNAME=SOURCE1,UNIT=183, DISP=OLD, VOLUME=SER=A11111, X|
| LABEL=(, NL) ,DCB=(RECFM=FB, BLKSIZE=640) |
L J

SYSUTI SYSIN
Scratch Data Set
for Intermediate Control
Work ifasfemenfs
jonal ource
(Optional) Program
SYSUT2 Y : SYSPUNCH
A
Assembler Text \
for Subsequent < BSL Compiler > Assemb ler
Assembly D Text
(Optional) (Optional)

SYSUT3 \ 4

Output from
Macro Phase for Information
Subsequent Listings
Compilation
(Optional)

SYSOUT

Figure 6. Flowchart of 0S Data Sets Used by the Compiler

42

IBM Confidential

e Table 4. Description of 0S Data Sets Used By the Compiler

|[data set is not required. |
1 1 1

i1These are the device types specified in the cataloged procedures.

r Ll]) 1
i | |Device Types |DCB Specifica-|
|ddname | Function | Permitted |tions Used By |
| | | |Compiler |
: t 4 : {
SYSIN	Provides input to the compiler;	Card Reader®	RECFM=F2
	i.e., control statements and	[Direct Access	LRECL=80
	source program.	Tape	BLKSIZE=802
BUFNO=32			
S ; 4			
SYSOUT	Used to write out information	Printer?	RECFM=FAZ2
	listings of source program,	Direct Access	LRECL=121
{assembler text, diagnostic	Tape	BLKSIZE=1212	
	messages, etc.		BUFNO=32
= { + ¢ {			
SYSUT1	Scratch data set for intermedi-	Direct Access1	RECFM=FB=2
	ate work. Used only to save	Tape	LRECL=80
	data created by GENERATE		BLKSIZE=35202
	DATA statement.		BUFNO=22
b : $ t {			
SYsUT2	Used to write out generated	Direct Access®1	RECFM=FB2
	assembler text for subsequent	Tape	LRECL=80
	assembly. If the NOASSEM		BLKSIZE=8002
i	option is specified, this data		BUFNO=22
	set is not required.		
* 1 + ' 1
| SYSUT3 |The macro phase writes the |Direct Access? |RECFM=FB2 |
I |modified source text in this | Tape | LRECL=80 |
| | data set, for subsequent | | BLKSIZE=35202 |
| juse in the compile phase. If | | BUFNO=2 i
| | the MACRO option is not speci- | | |
| |fied, this data set is not i | |
| | required. | I |
b t ¢ ¢ {
| SYSPUNCH [The PUNCH option provides this |Card Punch? | RECFM=F2 | |
| joutput of the generated assem- |Direct Access |LRECL=80 |
| |bler text. If the PUNCH | Tape | BLKSIZE=802 |
| |option is not specified, this | | BUFNO=22 {
| I
k 1
I I
| |
| I
L 4

2You can specify other wvalues for these DCB parameters.

BSL Cataloged Procedures

Three cataloged procedures are provided for BSIL operations under OS.
You can:

| e Use the cataloged procedures suggested in this section.
e Write and use your own cataloged procedures.
e Execute BSL without cataloged procedures, by providing the full set

of job control statements at compilation time.

| If you create your own procedures, you can use the suggested procedures
as examples of format and statement requirements. Your procedures must
conform to the data set requirements described previocusly.

Section 4: BSL Under the Operating System (0S) 43

IBM Confidential

Three suggested cataloged procedures are listed in Figures 7, 8, and
9. The procedure names and functions are:

BSLX
contains the job control statements for the compile-only operation.

BSLASM
contains the job control statements for compilation and assembly.

BSLALG
contains the job control statements for compilation, assembly,
linkage editing, and execution.

r 1
|7/STEPL EXEC PGM=BSL |
| 7/SY¥SOouT DD SYSOUT=A |
| 775YSUT1 DD DSNAME=€§UT1, UNIT=SYSDA,DISP=(NEW,DELETE), X|
\77 SPACE=(CYL, (2,1)) |
| 775YSUT2 DD DSNAME=§BSLGO, UNIT=SYSDA,DISP=(NEW,DELETE), X]
77 SPACE=(CYL, (3,1)) |
| 77SYSUT3 DD DSNAME=§UT3,UNIT=SYSDA,DISP=(NEW,DELETE), X|
\77 SPACE=(CYL, (3,1)) |
|//SYSPUNCH DD UNIT=SYSCP |
L J
Figure 7. Cataloged Procedure BSLX

r 1
|7/STEP1 EXEC PGM=BSL |
|7/5YsSouT DD SYSOUT=A |
| 7/SYSUT1 DD DSNAME=§UTI1,UNIT=SYSDA,DISP=(NEW,DELETE), X|
77 SPACE=(CYL, (2,1)) |
|7/SYSUT2 DD DSNAME=§BSLGO,UNIT=SYSDA,DISP=(NEW,PASS), X|
177 SPACE=(CYL, (3,1)) |
| 77/SYSUT3 DD DSNAME=¢UT3,UNIT=5Y¥SDA,DISP=(NEW,DELETE), X|
|77 SPACE=(CYL, (3,1)) |
| 7/ SYSPUNCH DD UNIT=SYSCP |
! |
| 7/STEP2 EXEC PGM=ASMBLR,COND=(9,LT,STEP1),PARM=LOAD i
| 7/7/SY¥YSGO DD DSNAME=§LOADSET, UNIT=SYSDA,DISP=(MOD,PASS), X|
|77 SPACE=(80, (200,50)) |
| 7/ SYSPUNCH DD UNIT=SYSCP |
| 77/SYSPRINT DD SYSOUT=A 1
| //8YSUT1 DD DSNAME=6UT1,UNIT=SYSDA,DISP=(NEW,DELETE), X|
|77 SPACE=(CYL, (3,1)) |
|7/SYSUT2 DD DSNAME=§UT2,UNIT=SYSDA,DISP=(NEW, DELETE), X|
|77 SPACE=(CYL, (3,1)) |
| 7//SY¥SUT3 DD DSNAME=EUT3,UNIT=SYSDA,DISP=(NEW,DELETE), X|
|77 SPACE=(CYL, (3,1)) |
| //5Y¥SIN DD DSNAME=*.STEP1.SYSUT2 ,UNIT=SYSDA, X]
\ 77 DISP=(0OLD,DELETE) |
L J

Figure 8. Cataloged Procedure BSLASM

L4y

IBM Confidential

T 1
{//STEP1 EXEC PGM=BSL |
| 7/s¥soUT DD SYSOUT=A |
| 7/7SYSUT1 DD DSNAME=§UT1,UNIT=SYSDA,DISP=(NEW,DELETE), X|
177 SPACE=(CYL, (2,1)) |
| 7/S¥YSUT2 DD DSNAME=§BSLGO,UNIT=SYSDA,DISP=(NEW,PASS), X|
/7 SPACE=(CYL, (3,1)) |
//SYSUT3 DD DSNAME=§UT3,UNIT=SYSDA,DISP=(NEW,DELETE), X}
V24 SPACE=(CYL, (3,1)) 1
//SYSPUNCH DD UNIT=SYSCP |
|

//STEP2 EXEC PGM=ASMBLR,COND=(9,LT,STEP1) ,PARM=LOAD |
//78YSGO DD DSNAME=ELOADSET, UNIT=SYSDA, DISP=(MOD,PASS), X|
|77 SPACE=(80, (200,50)) l
| 7/SYSPUNCH DD UNIT=SYSCP |
//SYSPRINT DD SYSOUT=A |
//78YSUT1 DD DSNAME=6UT1,UNIT=SYSDA,DISP=(NEW,DELETE), X]
V4 SPACE=(CYL, (3,1)) |
| 77SY¥YSUT2 DD DSNAME=§UT2, UNIT=SYSDA,DISP=(NEW,DELETE), X1
V4 SPACE=(CYL, (3,1)) |
| 7/SYSUT3 DD DSNAME=§UT3,UNIT=SYSDA,DISP=(NEW,DELETE), X|
|77 SPACE=(CYL, (3,1)) |
|7//SYSIN DD DSNAME=#*.STEP1.SYSUT2, UNIT=SY¥SDA, X|
(V4 DISP=(OLD,DELETE) |
E !
|//LKED EXEC PGM=LINKEDIT,COND=(4,LT,STEP2), X|
|77 PARM="XREF,LIST,LET' i
|*//SYSLIB DD DSNAME=BSLLIB,UNIT=SYSDA,DISP=(OLD,KEEP), X|
\77 VOLUME=SER=111111 |
j//SYSLIN DD DSNAME=§LOADSET,DISP=(OLD, DELETE) |
VA4 DD DDNAME=SYSIN |
|7/SYSUT1 DD DSNAME=§UTLl, UNIT=SYSDA,DISP=(NEW,DELETE), X|
|77 SPACE=(CYL, (2,1)) |
| 7/SYSLMOD DD DSNAME=§GOSET (BSLGO) , UNIT=SYSDA, X}
\ 77 DISP=(MOD,PASS), SPACE=(1024, (50,20,1)) |
| 7/SYSABEND DD SYSOUT=A |
| 7//SYSPRINT DD SYSOUT=A {
.' |
|77GO EXEC PGM=%*,LKED.SYSLMOD,COND=(4,LT,LKED) |
|7/ SYSABEND DD SYSOUT=A |
| //BSLOUT DD SYSOUT=A |
{7/BSLPUNCH DD UNIT=SYSCP |
L J
L] 1
|*Used by the operating system to locate the private library that |
| contains the BSL library. If the library is resident in the system |
| 1link library (SYS1.LINKLIB), the SYSLIB statement should be |
| omitted. |
L (]

Figure 9. Cataloged Procedure BSLALG

Compilation Without Assembly

The compile-only operation allows you to compile a batch (one or more)
of BSL external procedures without the production of an output data set
of assembler text. You should specify the NOASSEM option for compile-
only operations. If you specify the PUNCH option, the compiler produces
a punched deck containing the generated assembler text. This punched
output may subsequently be used as input to an assembler.

Section 4: BSL Under the Operating System (0S) 45

IBM Confidential

The BSLX cataloged procedure executes the BSL compiler as a single 0S
job step. This job step performs the compile-only operation. Figure 10
describes the input stream that you must provide for the BSLX cataloged
procedure.

r

|+//7AA JOB JOHNDOE , MSGLEVEL=1

|2/7/7J0OBLIB DD DSNAME=COMP, UNIT=2311,DISP=(OLD,PASS), X
/7 VOLUME=SER=111111

|3//STEPA EXEC BSLX
|4//STEP1.SYSIN DD *
|® Compiler Control Statements

First BSIL External Procedure

$93%

Compiler Control Statements

Next BSL External Procedure

[]

$$9

Compiler Control Statements

oo

Last BSI External Procedure

o
N
*

—— . ———— —— — — ——— ——— — {— — — —

1iThe JOB statement is required. The jobname and the parameters in the
operand field are optional.

'2Used by the operating system to locate the private library that con-
tains the BSL compiler. If the compiler is resident in the system
link library (SYS1.LINKLIB), the JOBLIB statement should be omitted.

3Identifies the BSLX cataloged procedure. If you want to add the
SORMGIN, SIZE, or CONCHAR options, specify PARM.STEPl='options' in
the operand field of this statement.

4Describes the data set containing the compiler input.

5Should include the NOASSEM option.

|®The $3$$ delimiter is used only between BSL external procedures. The
| last (or only) BSL external procedure is followed by the /%

| delimiter.
L

Figure 10. Sample Use of BSLX

b s s e e, o s s . e S S o — — —— — o S —— — —— —————————— — — — — t— —o—_ wa— oy, . 2}

Compilation and Assembly

If you are going to assemble the compiler's output with an 0S assembler,
you can accomplish both compilation and subsequent assembly by executing
two OS job steps. This method permits compilation and assembly of one
external procedure. Batched compilation with subsequent assembly is not
possible because the assembler cannot handle the multiple END statements
generated by the compiler.

The BSLASM cataloged procedure executes the job steps required for
compilation and subsequent assembly (Assembler F). Figure 11 describes
the input stream that you must provide for the BSLASM cataloged
procedure.

46

IBM Confidential

r v

|*//BB JOB JOHNDOE , MSGLEVEL=1

{2/7/7J0BLIB DD DSNAME=COMP, UNIT=2311,DISP=(0OLD,PASS), X
// VOLUME=SER=111111

|37//STEPA EXEC BSLASM
|4//STEP1. SYSIN DD *
Compiler Control Statements
BSL External Procedure

5/%
|¢//STEP2.SYSLIB DD DSNAME=SYS1.MACLIB,DISP=(OLD,KEEP)
1777 DD DSNAME=MYLIB,DISP=(OLD,KEEP)

L

[}

|*The JOB statement is required. The jobname and the parameters in the

| operand field are optional.

|2Used by the operating system to locate the private library that con-
tains the BSL compiler. If the compiler is resident in the system
link library (SYS1.LINKLIB), the JOBLIB statement should be omitted.

3Identifies the BSLASM cataloged procedure. If you want to add the
SORMGIN, SIZE, or CONCHAR options, specify PARM.STEPl='Options' in
the operand field of this statement.

4Describes the data set containing the compiler input.

6Required only if 0OS macro instructions are used in the BSL program,
or generated for the REENTRANT attribute. This statement describes
the data set containing the 0S macro definitions.

7Required only if user—defined macro instructions are used in the BSL
program. This statement describes the data set containing your macro
definitions.

b e o — T . — —— ———_— ——— — — —— —— — ——— - — i Wo— — —— —— —— o— — v———)

|
|
I
|
|
|
I
|
| 5Separates the compiler input data set.
|
|
|
|
|
|
I
|
L

Figure 11. Sample Use of BSLASM

Compilation, Assembly, and Execution

Since BSL is a language for the writing of systems programs, the compil-
er makes no assumptions about the environment in which the resulting
object program will be executed. The environment you select for program
execution depends on the type of program that you write. You can run
the program in a stand-alone mode or under some operating system. You
can use any execution-time facilities that are available in the environ-
ment, such as control program services or special machine instructions.

Note: If you specify the REENTRANT procedure option, and DATAREG is not
zero, the compiler generates the 0S GETMAIN macro instruction. If you
want reentrant code, but do not intend to execute the program under OS,
You must specify DATAREG(0) and provide the storage and addressability
for the AUTOMATIC data.

If you are going to execute the program under 0S, compilation,
assembly, linkage edit, and execution may each be separate steps of a
single job.

The BSLALG cataloged procedure executes the job steps required to
compile, assemble, linkage edit, and execute a single BSL external pro-

Section 4: BSL Under the Operating System (0S) 47

IBM cConfidential

cedure. Additional object modules can be included in the linkage edit
step. Figure 12 describes the input stream that you must provide for
the BSLALG cataloged procedure.

r 1
|/7/CC JOB JOHNDOE ,MSGLEVEL=1 |
|2/7//J0BLIB DD DSNAME=COMP,UNIT=2311 ,DISP=(0OLD,PASS), X}
/7 VOLUME=SER=111111 |
| 2//STEPA EXEC BSLALG |
|4//STEP1.SYSIN DD * |
| | Compiler Control Statements |
| . |
| BSL External Procedure |
| . |
| . |
|37% |
| ¢//STEP2.SYSLIB DD DSNAME=SYS1.MACLIB,DISP=(OLD,KEEP) |
777 DD DSNAME=MYLIB,DISP=(OLD, KEEP) |
|8//LKED.SYSIN DD * |
| Object Decks |
| . |
| . |
|o/* |
|t°//GO.ddname DD (parameters) |
L d
|] 1
|1The JOB statement is required. The jobname and the parameters in the|
| operand field are optional. |
| |
|2Used by the operating system to locate the private library that con- |
| tains the BSL compiler. If the compiler is resident in the system
. . 34
| 1ink library (SYS1.LINKLIB), the JOBLIB statement should be omitted. |
] |
|2Identifies the BSLALG cataloged procedure. If you want to add the |
| SORMGIN, SIZE, or CONCHAR options, specify PARM.STEPl1='options' in i
| the operand field of this statement. |
i |
|Describes the data set containing the compiler input. i
| |
| |®separates the compiler input data set. |
i |
SRequired only if 0OS macro instructions are used in the BSL program,
q 0 € gr
or generated for the REENTRANT attribute. This statement describes
g - - - - -
| the data set containing the O0S macro definitions. |
| |
l |7Required only if user-defined macro instructions are used in the BSL |
| program. This statement describes the data set containing your macroj
| definitions. |
I |
| |
I | 8Required only if additional object modules are to be included in the |
linkage editing step. This statement describes the data set contain-
g P
| ing the object modules. |
| |
| |2Indicates the end of the object module data set. |
| |
| |
I 10Required only to define additional data sets that may be needed for
q Y
| the execution of the BSL program. |
L d

¢ Figure 12. Sample Use of BSLALG

48

IBM Confidential

The cataloged procedures can also be used to compile, assemble, link-
age edit, and execute several BSL external procedures in a single job.
To accomplish this, you use and repeat the BSLASM cataloged procedure to
compile and assemble each BSL external procedure except the last.

For the final BSL external procedure to be compiled and assembled,
you use the BSLALG cataloged procedure in the normal manner. This
sequence of steps causes all the assembler output to be placed in the
ELOADSET data set, from where it is linkage edited and executed as a
single load module.

Dynamic Invocation of the Compiler

In addition to being executed as a job step, the BSL compiler can be
invoked during the execution of a problem program. Your program can
pass control to the compiler through the use of the CALL, LINK, ATTACH,
or XCTL macro instructions; or you can set up your own calling sequence
using branching instructions. The compiler receives and returns control
according to standard linkage conventions.

When the compiler receives control, it assumes that register 1 con-
tains the address of a parameter list which is made up of contiguous
fullword addresses on fullword boundaries. These address parameters are
positional:

1. The first address parameter points to a list of compiler options.
This address must always be provided. If there are no options to
be specified, this address must point to a halfword of binary
Zeros.

2. The second address parameter points to a list of alternate ddnames.
If this address is omitted, the high-order bit of the first address
must be set to 1.

An example of dynamic invocation is provided in Appendix D.

Form of Invocation

If you use the CALL, LINK, or ATTACH macro instructions to invoke the
compiler, the macro expansion builds the parameter list and loads the
pointer into register 1. If you use XCTL or your own calling sequence,
your program must build the parameter list and load the pointer into
register 1. The various methods of invoking the compiler are shown
below:

f T a
!0perationl Operands }
¥ ¥ 1
] LINK | EP=BSL,PARAM=(optionlist(,ddnamelistl),VL=1 |
ATTACH
| ! 4
| CALL | BSL, (optionlist(,ddnamelist]),VL |
|8 s 4
]] 3
| XCTL | EP=BSL |
i iy]
) 1 1
|La | 1,parlist [
| | 15,bsladdr }
| BALR | 14,15 |
L L. J

Section 4: BSL Under the Operating System (0S) 49

IBM Confidential

optionlist
specifies the address of a variable length list containing the
options usually specified in the PARM field of the EXEC statement.
If there are no options to be specified, this address must point to
a halfword of binary zeros.

ddnamelist
specifies the address of a variable length list containing alter-
nate ddnames for the data sets used by the compiler. If alternate
ddnames are not required, this operand may be omitted.

parlist
specifies the address of a parameter list which is built by your
program. If your parameter list contains only one address (option-
list), its high-order bit must be set to 1. If the high-order bit
of the first address is not set to 1, the parameter list must con-
tain a second address (ddname list).

bsladdr
specifies the entry point of the load module containing the BSL
compiler. You should use a V-type address constant for BSL, or
issue a LOAD macro instruction for BSL and use the address that is
returned in register 0.

Option List

The first address parameter in the parameter list points to a variable
length list of compiler options. This option list must be provided in
the form:

r T
!counter!optionl,option2,option3 }

where counter is a halfword on a halfword boundary. This halfword coun-
ter contains the binary value of the number of characters in the string
of options. The maximum value is 35. If the counter is set to binary
zeros, no options are specified.

The string of options contains the same compiler options that may be
specified in the PARM field of the EXEC statement. These three options
(SIZE, SORMGIN, and CONCHAR) can be specified in any order, and any or
all may be omitted.

List of Alternate DD Names

The second address in the parameter list points to a variable length
list containing alternate ddnames for the data sets used by the BSL com-
piler. This ddname list must be provided in the form:

r T
|counter|string of ddnames
L | |

(]

where counter is a halfword on a halfword boundary. The halfword coun-
ter contains the binary value of the number of characters in the string
of ddnames. The maximum value is 88. If the counter value is less than
or equal to 32, no alternate ddnames are specified.

The ddnames in the list must be specified in the sawme positions as
the standard order of I/0 ddnames. Each ddname must be an 8-byte ele-
ment of the string. If the last ddname is less than eight characters,
the low-order bytes will be padded with blanks. If a ddname is omitted
within the list, the 8-byte entry must contain binary zeros. If neces-

50

IBM Confidential

sary, ddnames can be omitted from the end of the list by adjusting the
counter value.

Table 5 shows the standard list of ddnames, the seven ddnames used by
the BSL compiler, the positions for specifying the seven altermate
ddnames, and the required counter values. Whenever you do not specify
an alternate ddname, the compiler ddname is used. The compiler ddnames
are restored after every invocation.

Table 5. Alternate DD Names
) T 1 L) v b
|Dec. | | | Counter|
|Displ.|{standard DD Names|Compiler DD Names|Alternate DD Names | (binary) |
L L [l [1 ,'
] i] [} 1}
| +0 | SYSLINDD | not used | - | -—= |
i i L L i J
r T]] T 1
i +8 | member | not used | -—- | -—]
L L 1 L 4 ,'
r T 1 N !
| +16 | SYSLMODb | not used | -—- | -—=]
L 1 L 4 1 d
1) T v 1 T 1
| +24 | SYSLIB®BH | not used | -—- | -— |
! L 4 H 4 _l
r T T T H
| #32 | SYSINDbHH | SYSIN bbH | ddnamel | 40 |
; 1 t + ¥ !
| +80 | SYSPRINT | SYSOUTHH | ddname2 | 48 |
L L (] L L
) L] 1} T "
| +u48 | SYSPUNCH | SYSPUNCH | ddname3 | 56 |
; : + + : !
| +56 | SYSUT1 bbb | SYSUTLBH | ddnamel | 64 |
1 L [3
T r v 1
+64 | SYSUT2bD SYSUT2bb | ddname5 | 72 |
L 1 1 1 ")
) 1 [} 1 1
| +72 | SYSUT3bbH | SYSUT3%b | ddname6 | 80 |
1 L L i]
t T T T 1
+80 | SYSTERMbD | SYSTERM b | ddname7 | 88 |
L L 1 L 41 -1

Using Control Program Services and Special Machine
Instructions |

The GENERATE statement allows you to use any control program service or
special machine instruction in your BSL program. In the case of control
program services or other pre-defined macro instructions, you are
responsible for ensuring that the required macro expansions are avail-
able at assembly time.

The BSL compiler never inspects the contents of a GENERATE statement.
If you use the GENERATE statement, you must ensure that the contents are
legal and properly related to the compiler—-generated assembler text.

Other considerations for using the GENERATE statement are explained
under "BSL Programming Techniques" in Section 7 of this manual.
Detailed examples are listed in Appendix A. The form of the GENERATE
statement is described in the BSL Lanquage Specification manual.

Using the BSL Library Routines

When executing a BSL program under 0OS, you may use the service routines
provided in the BSL library. These routines perform certain basic func-
tions that are useful for testing your programs. To call a library rou-
tine, you specify the entry name in a BSL CALL statement, and identify
the BSLLIB data set in the linkage-editing operation:

Section 4: BSL Under the Operating System (0S) 51

IBM Confidential

e The BSILALG cataloged procedure provides for use of the BSL library.
In the linkage-editing job step, the SYSLIB DD statement describes
the BSLLIB data set. No additional DD statements are required.

e If you do not use the cataloged procedure, your linkage-editing job
step must include a SYSLIB DD statement that describes the BSLLIB
data set, and you may not specify the linkage-editor option NCAL.

Complete descriptions and examples of the available routines can be
found in the BSL Library publication. For your reference, a summary of
the functions is listed in Table 6. (The BSL library also contains the
TRACE routines which are described in Section 2.)

The facilities provided by the library routines should not be
regarded as part of the BSL language. The output of the BSL compiler is
independent of any operating environment, but the library routines func-
tion only under 0S. (Except for ERRINT, similar library routines with
identical entry names are provided in the compiler distribution package
for DOS.)

Table 6. Functions of the BSL Library Routines (0S)

| | close the system output data set.
8 4

T LE
{Interrupt | IKETRCII|Provides statement number and save area trace when
|Handler |IKETRCID|a program check occurs.
L L 1.

i L]] a
JRoutine |Entry |]
| Names |Points | Functions |
i [4 4
) T T 1
| EDIT | GET | Performs reading, writing, and conversion of data |
| | GETS |in a manner similar to PL/I EDIT DIRECTED I/0. |
I |PUT | I
| | PUTS | |
| | TABSET | |
F t t {
|ERRINT |ERRINT |Gives the user a facility like PL/I ON-UNITS for |
| | ERRCL | handling program interruptions. |
| 1 4 4
I T T 1
PDUMP	PDUMP	Performs snapshot dumps of specific data areas.
		The dumps are provided in hexadecimal, character,
	Jor bit string formats.	
L 1 4 4		
L] \) 1		
SUBSTR	SUBSTR	Performs character substring assignment while i
		checking substring ranges.
L L A "		
r 1 1 hl		
BSL I/0	READ	Employs the queued sequential access method (QSaM)
	PRINT	to provide basic input/output services at object
	PUNCH	time. These routines can read a logical record,
	CLOSE	write a logical record, punch a logical record, andj}
L 4
] L}

|

|

J

Including Text From a Library
When you compile under 0S, you can use the compiler's INCLUDE features:

®» The INCLUDE macro statement (%INCLUDE) incorporates text during
compile-time macro processing.

s The INCLUDE option ($INCLUDE) incorporates text after macro activity
and does not submit the text to scanning for macro substitution.

52

IBM Confidential

These features allow you to keep certain standard declarations or
sections of source code in external libraries. As needed, these items
can be obtained from the libraries during compilation, and included in
your programs. :

Storing Text in External Libraries

The section of code that is to be kept for inclusion in source programs
must be a member of a partitioned data set. The data set requirements
are:

e The partitioned data set must contain fixed format records; the DCB
parameter RECFM must not specify U (undefined) or V (variable).

e The partitioned data set must contain 80-byte logical records; the
DCB parameter LRECL must specify 80.

e The partitioned data set may contain blocked records up to a block
size of 3520 bytes. The compiler obtains storage for two input
blocks, and this storage must be taken into account when determining
the total storage size required for BSL compilation (see SIZE
option).

If you attempt to include text from a data set that does not conform to
the above requirements, the compiler issues an error message and compi-
lation is terminated.

You can use the IEBUPDTE utility program to create or add-to your
library of text. The following example shows how to do it. In the
example, the SYSUT2 DD statement describes the partitioned data set that
will contain the text, and the sections of text to be added as members
are named MEMBR1 and MEMBR2. The example is:

r

| /7730B1 JOB

| //STEPL EXEC PGM=IEBUPDTE, PARM=NEW

| //SYSPRINT DD SYSOUT=A

| //SYSUT2 DD DSNAME=TEXTLIB, UNIT=2311,DISP=(NEW, KEEP), X
\/7 VOLUME=SER=111111,SPACE= (80, (25,25,1))

| //SYSIN DD *

|.7 ADD NAME=MEMBR1,LEVEL=00,SOURCE=0,LIST=ALL

Card Deck (containing section of text to be kept in the library)

|
|
|
|7 ADD NAME=MEMBR2, LEVEL=00, SOURCE=0, LIST=ALL

] Card Deck (containing section of text to be kept in the library)
| .

| .

|

!

|

L

ENDUP

b s e e . —— S — — — — ——— — —— — p— — —— o]

o/
/*

Specifying INCLUDE Option or Macro Statement

The INCLUDE option or macro statement may appear at any point (and any
number of times) in the compiler input. When INCLUDE is employed, the
contents of the named member of the partitioned data set is used as

input to the compiler. This included text may not contain an INCLUDE.

Section 4: BSL Under the Operating System (0S) 53

IBM Confidential

You specify INCLUDE in the following format:

SINCLUDE ddname (member name)
or

%INCLUDE ddname(member name);

P - i —— —
[N S |

where:

$INCLUDE}

{%INCLUDE
specifies the type of INCLUDE. The dollar sign ($) identifies the
INCLUDE option, and must appear in the first column (leftmost
source margin). The dollar sign is the default control character
-- a different character can be specified by means of the CONCHAR
compiler option. The word INCLUDE must immediately follow (no
space) the dollar sign, and cannot be combined with other options
in the same compiler control statement.

The percent sign (%) identifies the INCLUDE macro statement, as
described in the BSL Lanquage Specification manual.

ddname
identifies the DD statement that describes the partitioned data set
from which the text is to be obtained. The appropriate DD state-
ment must be included in the job control statements for the
compilation.

(member name)
identifies the member of the partitioned data set. The contents of
this member are included in the compiler input at the point where
INCLUDE is specified. If the named member does not exist in the
defined data set, compilation is terminated.

The following example shows the use of the INCLUDE option. In the
example, text is obtained from the MEMBR1 and MEMBR2 members of the par-
titioned data set named TEXTLIB. The TEXTLIB data set is described by
the LIB1 DD statement. The LIB1 DD statement, as well as the member
names, are identified in the INCLUDE option. The example is:

13 1
|7730B2 JOB I
| //30BLIB DD DSNAME=COMP, UNIT=2311, DISP=(OLD,PASS), X|
V4 VOLUME=SER=111111 1
|//STEPA EXEC BSLASM |
|//STEP1.LIB1 DD DSNAME=TEXTLIB,UNIT=2311,DISP=0LD, X|
(V24 VOLUME=SER=111111 I
|//STEP1.SYSIN DD * [
| $ASSEM, TIME [
| R1l: PROC; |
| DCL M PTR(31), (Q,X) ENTRY INTERNAL; |
I CALL X; |
| CALL Q; I
| $INCLUDE LIB1(MEMBR1) |
| Q: PROC; |
| $INCLUDE LIB1(MEMBR2) I
| J=J+1; |
| END; |
| END; |
|7# |
L]

(%
=

IBM Confidential

Using the TESTRAN Facilities

If you test your BSL program under 0OS, you can take advantage of the
debugging facility called TESTRAN. TESTRAN is a feature of 0S; it is
not part of the BSL compiler.

TESTRAN assists in debugging BSL programs in the same manner as with
assembler language programs. The scope of this manual does not include
a detailed description of TESTRAN processing (see the TESTRAN publica-
tion, Form C28-6648); however, items of special significance to BSL pro-
grammers are explained in the following paragraphs. In addition,
examples illustrating the use of TESTRAN with BSL are provided in Appen-
dix C.

BSL Requirements for the TESTRAN Control Section

You should place all TESTRAN macro instructions to be used in a separate
control section. This TESTRAN control section should execute the TEST
OPEN macro instruction, and call the BSL program. The entry name of the
BSL external procedure that is to be the primary entry point of your
program must be identified by an EXTRN instruction in the TESTRAN con-
trol section.

For the DUMP DATA statement of TESTRAN, you may refer to the BSL data
in two ways:
1. If the data is STATIC in BSL, refer to it by name.
2. If the data is AUTOMATIC in BSL, you should use a DSECT instruction

in the TESTRAN control section, and point the appropriate register
at the item in the BSL program.

Job Control Statements for TESTRAN

When you run your BSL program with TESTRAN, certain items must be added
to the job control statements. You must:

e Specify the entry name of the TESTRAN control section. This name
must be specified by the linkage editor ENTRY statement in the link-
age editing step.

e Specify the linkage editor TEST option in the linkage editing step.
* Define a SYSTEST data set for the execution step.

e Execute an additional step after execution to perform the TESTRAN
EDIT.

If you specify the TEST parameter for the assembly job step, names in
BSL programs can be referred to without special attributes. The TEST
parameter causes the assembler to produce symbol tables in the object
module. The following example shows how to specify the TEST parameter
when you use the BSLALG cataloged procedure:

r
| //STEPAR EXEC BSLALG,PARM.STEP2='TEST"
L

e e o)

Section 4: BSL Under the Operating System (0S) 55

IBNM Confidential

Using the CLEAR Facilities

If you develop or maintain your BSL program under 0S, you can use the
control facility called CLEAR. CLEAR is a separate facility; it is not
part of the BSL compiler. To use CLEAR with BSL, your system must have
CLEAR Version 4.0 or a later version.

CLEAR allows you to use the verbs AITER, EDIT, INTEG, MODIFY, and
SCREATE, by specifying the keyword parameter CMPLR=BSL. If your CLEAR
system has been modified with PTF (referencing APAR) number CL4017, you
can also specify a number of optional keyword parameters which invoke
the appropriate compiler options described in section 2 of this manual.
The optional keyword parameters are:

BCOL=beginning card column
specifies the card column in which the BSL source statements begin.
The compiler uses this value as the leftmost source margin. You
must specify a three-digit number, using leading zeros as neces-
sary. The default is BCOL=003. (Using CLEAR Version 5.1 the
default is BCOL=002.)

ECOL=ending card column
specifies the card column in which the BSL source statements end.
The compiler uses this value as the rightmost source margin. You
must specify a three-digit number, using leading zeros as neces-
sary. The default is ECOL=072.

CONCHAR=control character
specifies a single character that will be used as the identifier of
the compiler control statements in the compiler input. The default
is CONCHAR=4. (Using CLEAR Version 5.1 the default is CONCHAR=3.)

SIZE=dictionary size in multiples of 1000 bytes
specifies the size of main storage (in multiples of 1000 bytes)
that the BSL compiler may use for dictionary space. The default is
SIZE=48. (Using CLEAR Version 5.1 the default is SIZE=30.)

BSLRGN=region size in multiples of K
specifies a region size for the BSL compiler job step. You specify
a number up to four digits, followed by the character K (K=1024
bytes). The default is BSLRGN=175K. (Using CLEAR Version 5.1 the
default is BSLRGN=160K.)

INCLUDE=data set name
causes the generation of a DD statement named SYSLIB which defines
a DSNAME equal to the name shown in this keyword. The named data
set must be cataloged. This parameter allows you to use the BSL
INCLUDE option in your source program, provided the INCLUDE state-
ment specifies SYSLIB in the ddname field.

PVTMACS=data set name

PVTMAC2=data set name

PVTMAC3=data set name
provides access to private macro libraries during the assembler -job
step of the BSL job. The requirements for using these keyword
parameters are exactly the same as described in the CLEAR Program—
mer's Guide publication (Form Z28-6636) under the ALTER, EDIT,
INTEG, MODIFY, and SCREATE verbs.

If your system has not been modified with PTF number CL4017, you can-
not use the optional keyword parameters described above. The default
values are assigned for the BCOL, ECOL, CONCHAR, SIZE, and BSLRGN key-
words; and the options for private libraries (INCLUDE, PVTMACS, PVTMAC2,
and PVTMAC3) are not available.

56

IBM Confidential

Section B: Compiler Conventions and Restrictions

This section describes:

e The conventions that the BSL compiler follows for the generation of
its assembler text output. These conventions concern the general
form of the output program, the types of compiler-generated state-
ment labels, the use of registers, and the linkage to called and
calling programs. You will need this information to communicate
with or modify BSL-produced programs, or to include assembler text
in your BSL source program.

e The restrictions that affect the type of program you can successful-
ly compile. Some of the restrictions are necessitated by the
compiler's table sizes; others are due to BSL language
implementation.

General Form of Compilation

Compilation of a BSL external procedure produces one assembler language
control section (CSECT). Separate control sections are not generated
for BSL internal procedures. The control section produced by the com-
piler contains:

e All the executable instructions generated by the compilation.
e Compiler-generated constants and temporaries.
e Data declared as STATIC LOCAL in the BSL source program. CONV

e An assembler language ENTRY statement for data declared as LOCAL
EXTERNAL in the BSL program.

e An assembler language EXTRN statement and an A-type address constant
for items (except branch points) declared as NONLOCAL EXTERNAL in
the BSL program.

e An assembler language V-type address constant for all branch points
external to the BSL program.

e All text specified in BSL GENERATE statements.

If you specify the REENTRANT option, the compiler also generates a
dummy control section (DSECT) to describe the AUTOMATIC storage that is
required.

Compiler-Generated Labels

The labels (statement identifiers) that you use in the BSL source pro-
gram are reproduced in the compiler-generated assembler text. However,
the compiler must generate additional labels to identify areas, values,
and statements created by expansion of the BSL program into assembler
text. To help you identify various items in the assembler text, the
conventions for compiler—-generated labels are listed in Table 7.

Section 5: Compiler Conventions and Restrictions 57

IBM Confidential

As shown in Table 7, almost all of the compiler—-generated labels
begin with either the character ? or the character §. The label types

that may be needed more than once in a control section are followed by

an integer that is incremented sequentially. For example, if four
separate character constants are required, they may be labeled acl, ac2,

ac3, and acu.

Table 7. Labels Generated by the Compiler (Part 1 of 2)

L)
|Label
L

)
| Function
[

aADO1

1
|Identifies the address of aDATAl in a non-reentrent pro-

|gram when the DATAREG option is specified.
[N

aDATAL

+
jIdentifies the compiler constant area.
i

AaDATA

+
|Identifies the start of the static data area, and the
]end of the generated code.

[

aDATD

]
|Identifies the DSECT that describes the dynamic storage

|area.
1

2aDATEND

1

|Identifies the end of the DSECT that describes the
|dynamic storage, or the end of the data area in a non
| reentrant program.

}

asIz001

L

|Identifies a value that represents the size of the
| dynamic storage area.

L

™
4]
e}
2

}
|Subpool number of dynamic storage for reentrant
| procedure.

L

aTEMPS

L)
|[Identifies an area that contains space for temporaries.
[

]
aCTEMPinteger|Identifies a string temporary.

ATEMPinteger

Identifies an arithmetic temporary which has high-order

|zeros.
4

aSAvVinteger

1
Identifies a procedure save area.

aIFinteger

|Identifies a value that represents the length of a tem-
| porary area to be cleared for string expressions (vari-
|able length substrings).

1

)
[

+
|Identifies a value that represents the length of a tem-
| porary area needed in reentrant procedures.

1

@™
=

]
|Used to initialize interleaved arrays.
4

aPLinteger

1
|Identifies an argument list for reentrant procedures.
1

aELinteger

+
|Identifies the epilogue of a procedure.
[

aAinteger

T
jIdentifies an A-type address constant.
[}

avinteger

-

|Identifies a V-type address constant.

— b e e c— gy, w— e e ol ——— iy ———— b . b T b — ke et ket T—— e S — . ey . m—— b cave. S ke c— — " — i ——— b w—ad

aBinteger

Identifies a bit constant.

aCinteger

[S s s S e S — I s G S P (o G S —— S e e S SN e A S S G S S A SIS Bt T S o e S i S SN e A S St i U v g s g Y

Identifies a character constant.

o —

b o

58

(Part 1 of

IBM Confidential

Table 7. Labels Generated by the Compiler (Part 2 of 2)
r { 1
| Label Function |
I -—1
| aDinteger Identifies an arithmetic constant. |
L 4
1} L]
|aTinteger |Identifies a temporary location used for evaluating an |
| |arithmetic expression. |
| 1. J
) L) h)
|aXinteger |Identifies a hexadecimal constant. |
L [l {
1) [}
| aDOintegerxr |Identifies statements in the generation of a DO loop. |
L 1 y |
[} 1 1
|aCLinteger |Used in non-reentrant procedures to identify and branch |
| |around argument lists. |
L + . i
L}] 1
|ainteger |Used for IF branches and to branch around ELSE |
| |statements. |
L 1 4
1 ¥ 1
jacLc | |
| aMVC "]Identifies instructions which must be executed |
|anc | by means of an EX instruction. |
|aoC | |
|axc | |
F : i
|]20,a1,...aF [Symbolic names for the general registers. |
g 4
)]
.2001 |Label of an ANOP following a LCLA assembler instruction.]
i]
T L)
Ainteger | Name generated for items declared without a name (#*). |
1 d
] 1
AaPSTART |Label for first instruction following the BALR that |
| |establishes the primary base register. |
L 1 1

Section 5: Compiler Conventions and Restrictions 59

IBM Confidential

Register Conventions and Options

Although your BSL source program need not be concerned with the use of
registers, the BSL compiler must use registers in the generated assem—
bler text. If you do not specify the BSL procedure options CODEREG,
DATAREG, or REENTRANT, the compiler follows the basic register conven-
tions listed in Table 8.

Table 8. Register Use Table

r T |
|Register | |
| Number | Function |
F + 1
i 0 |Alternate area for holding partial results of expression |
| |evaluations. i
L [d
3 1 1
| 1 |Used as pointer to parameter and argument lists. |
L 4

b + i
| 11 |Used as base register for addressing data and code. |
i [4
f v 1
| 12 |Used as base register for addressing the dynamic storage |
| area in reentrant procedures. |
L 4
r i)
| 13 |Used as pointer to the current procedure's save area. |
L 4 4
|] T 1
| 14 Used as linkage for calls. |
L d
L) 1
| 15 Used as branch register for external calls. |
i 1]
¥] |
|2 through 9, |Used to hold pointer values, index calculations, and |
|and 12 | to evaluate arithmetic expressions. |
1 4 J
1)]]
j10 and 14 |Used for subscript and substring computations. |
L 'R 4
1 3] |
{14 and 15 |Used to hold the results of expression evaluations. i
L 1 J

The following procedure options affect the register assignment for
the compilation:

CODEREG (register numbers)
allows you to designate the base registers used for addressing the
generated code. The registers:you specify replace register 11 as
the base register, and are unavailable for any other purposes in
the entire compilation. Registers 1, 10, 13, 14, and 15 cannot be
specified in this option.

If you specify zero as the register in this option, the compiler
does not generate any addressability. In this case, the compiler
assumes that you provided your own addressing by means of a
GENERATE statement, or that your program resides in the lower 4K of
main storage.

DATAREG (register numbers)
allows you to designate the base registers used for addressing the
data. The registers you specify are unavailable for any other pur-
poses in the entire compilation. Registers 1, 10, 13, 14, and 15
cannot be specified in this option.

If you specify zero as the register in this option, then the same
base register is used for the data and the executable code, and the
compiler generates no storage or addressability for the AUTOMATIC
data.

60

IBM Confidential

REENTRANT
requires the existence of separate base registers for addressing
data and code. You can designate specific registers by using the
DATAREG and CODEREG options described above, or you can let the
compiler assign the base registers by the following conventions:

Register 12 ~-- Base register for addressing the dynamic storage
area.

Register 11 —-- Base register for addressing the generated code and
STATIC data. ;

Linkage Conventions and Options

The BSL compiler generates code to handle the linkage between called and
calling programs. The code generated for BSL external procedures fol-
lows the established 0S type 1 linkage conventions; that is, specific
registers are assigned to handle the various linkage functions, and a
save area in storage is used to preserve the contents of all registers.
You can use certain BSL procedure options to override the established
linkage conventions.

Use of Linkage Registers

The 0S type 1 conventions for the use of linkage registers are sum-
marized below:

* Register 15 contains the address of the entry point to the called
program. The called program can use register 15 as its initial base
register for addressability. Register 15 can contain a return code
when control is returned to the calling program.

s Register 14 contains the address of the next sequential instruction
in the calling program. The called program can use register 14 to
return to the calling program.

* Register 13 contains the address of the calling program's save area.

e If parameters are passed to the called program, register 1 contains
the address of a list of fullword gquantities that are the addresses
of the parameters.

Use of Save Areas

The OS type 1 conventions for the use of save areas are summarized
below:

e Every calling program provides a 72-byte save area for the preserva-
tion of its registers, and places the address of this save area in
register 13. (If your program does not call any other programs, you
need not provide a save area.)

e The called program saves the contents of registers 14 through 12 in
the calling program's save area, in accordance with the format shown
‘in Table 9.

e If the called program has no save area of its own, then the address
of the calling program's save area is kept in register 13.

Section 5: Compiler Conventions and Restrictions 61

IBM Confidential

e If the called program has its own save area, then it places the

address of the calling program's save area (from register 13) into
the chain-back field of its own save area; and places the address of
its own save area into register 13. Optionally, the called program
also may place the address of its own save area into the chain-
forward field of the calling program's save area.

Before returning to the calling program, the called program restores
the contents of all registers. First the called program restores
register 13 from its own save area (if necessary), and then uses
this pointer to restore registers 14 through 12 from the calling

program's save area.

Table 9. Format of Save Area

] T
|Word |Contents
i

T
1 |[Not used
1

— ——

L)
|Chain back (address of calling program's save area)
1

Wil N

|
|Chain forward (address of called program's save area)
1

-

+
4 |Register 14 (return address)
|

T
5 |Register 15 (entry point address and return code)
1

}
6 |Register 0

|

|

|

]
-+~

|Register 1
1

+
8 |Register 2
(1

i
|Register 3
i

[Py S Sy S ——
~

o | ©

L
1 |Register 4

_—
=
=
|
|

|Register 5
[N 4

r T
|12 |[Register 6
b 1

r T .
113 |[Register
L 1

+

L)
|14 |Register
L |

L

] T
|16 |Register
i 1

7
8
T T
|15 |[Register 9
1
1

L L]
|17 |Register 11
1 i

¥ L
{18 |Register 12
L 1

e e iy e e s by e s e i e i e i e i e by e b e s s i e i e i e el e e e el e ks e od

Effect of Procedure Options

There are three BSL procedure options (SAVE, DONTSAVE, and NOSAVEAREA)
that modify the linkage conventions that are followed by the compiler.
These options allow you to define your own linkage conventions, or to
reduce the program housekeeping associated with internal procedures.
The effect of these options is:

62

IBM Confidential

SAVE (register numbers)
specifies the registers to be saved and restored. Only the regis-
ters you specify are saved -- you can use the other registers to
propagate register changes back to the calling program. If you
specify this option with no registers, all the registers are saved.

DONTSAVE (register numbers)
specifies the registers not to be saved. The registers you specify
are not saved, and may be used to propagate register changes back
to the calling program. If you specify this option with no regis-
ters, none of the registers are saved. If register 13 is not
saved, the chain forward field in the o0ld save area is not updated.

The SAVE and DONTSAVE options are mutually exclusive; that is, you
cannot use both options in the same PROCEDURE statement.

NOSAVEAREA .
eliminates the generation of a save area. This option is useful
with a procedure that does not call any other procedures. When you
use this option, your program:

1. Does not establish a save area.

2. Does not update the chain-forward@ field in the calling pro-
gram's save area.

3. Does not restore the contents of register 13 before returning
control to the calling program.

Note: You can suppress all of the BSL compiler's initial procedure hou-
sekeeping by specifying DONTSAVE, NOSAVEAREA, CODEREG(0), and
DATAREG(0) .

Conventions for Reentrant Procedures

If you specify the BSL procedure option REENTRANT, the compiler
generates reentrant code in accordance with the conventions described in
the following paragraphs. You should note that the generated code is
reentrant only for the BSL external procedure together as a unit with
its internal procedures. In other words, the internal procedures by
themselves are not reentrant.

Obtaining Dynamic Storage

In the prologue of the external procedure, the BSL compiler generates an
O0S GETMAIN macro instruction to obtain an area for dynamic storage. The
storage is obtained from subpool 0. A different subpool can be speci-
fied by setting &SPN to the desired value. For example:

r

| GEN;

|6sPN SETA 1
| SENDGEN

L

[|

This will set the subpool number to 1. If you do not intend to execute
a reentrant program under 0OS, you specify the procedure option
DATAREG(0), in which case the compiler generates no storage or addressa-
bility for the AUTOMATIC data (you must obtain your own dynamic
storage.)

Section 5: Compiler Conventions and Restrictions 63

IBM Confidential

The code expansion of the GETMAIN macro instruction requires the use
of register 1. If your procedure has one or more parameters, the com-
piler generates code to restore register 1 after execution of GETMAIN.
If your procedure has no parameters, register 1 is not restored. If you
need to preserve the contents of register 1, you can specify a dummy
parameter for your procedure.

The size of the dynamic storage area required by the procedure is
always stored in an area labeled asS1Iz001, which is one fullword in
length and located on a word boundary in the static area. You can use
this size specification to obtain your own dynamic storage.

Using the Dynamic Storage Area

The compiler maps the dynamic storage area in a dummy control section
(DSECT) labeled aDATD. A separate base register is assigned to address
this area —- you can specify a particular register with the procedure
option DATAREG.

Data generated by GENERATE DATA statements will be placed in the
dynamic storage area. Remember to use only define storage and equate
statements, not define constants.

Data items that are not initialized, as well as data items that are
declared AUTOMATIC, are placed in the dynamic storage area by default.
The compiler will not allow you to to specify the INITIAL attribute for
data declared as AUTOMATIC.

Save areas are located in dynamic storage.

When non-arithmetic items or off-boundary arithmetic items are used
in arithmetic expressions, the compiler requires a temporary storage
space with high-order zeros. In a reentrant environment, the compiler
generates code to clear an area for this temporary storage -- the area
is labeled aTEMPS and its length is equated to the label aL. If you
specify the DATAREG(0) option to suppress the GETMAIN macro instruction,
then you assume responsibility for clearing this temporary area. This
can be accomplished with the following instruction:

T
|GEN (XC aTEMPS(aL), aTEMPS) ;
L

b e

64

IBM Confidential

BSL Size Restrictions

The maximum size of some items in your BSL procedure are limited by the
size of the compiler's work areas. These size restrictions are listed,
by category, in Table 10.

e Table 10. BSL Size Restrictions (Part 1 of 2)

=]
o
[0}
=]

1)
|Limitation
1

]

Internal procedures | The maximum number of internal procedures in a
|single compilation is 14.
1

B N I

]

Secondary entry points|The maximum displacement between a secondary
|entry point and the beginning address of the
|procedure is 4095 bytes.

4

v
Variables | Generally, the number of variables in a single
|]compilation should not exceed 1000 (with
|SIZE=96).
_— 4 J
Constants | The maximum number of unique FIXED constants in

|a single compilation is 75.
| :
| The maximum number of unique address constants
]in a single compilation is 75.

|
| The maximum length of a string constant in an

| INITIAL attribute is 256 characters. The maxi-
|mum length of a string constant in an assign-
|ment statement is 53 characters. A constant
|]such as '010'B counts as three characters.

|

|

|

{
|

|

|

4
|

|

|

|

|

|

|

|

|

|

|
The maximum total length of all string con- |
stants in a single compilation is 1400 charac- |
ters. A constant such as '010'B counts as |
|three characters. Duplicates do not count. |
Constants used as initial values in DECLARE |
statements do not count. |
.1l

|

|

|

|

|

|

|

|

|

|

|

|

|

i

|

3

)

Structures and arrays |The maximum number of levels in a structure is
|255. This maximum applies to the actual number
of levels.

| The maximum nuwmber of components in any one
|level of a structure is 255.

|
| The maximum offset of any element in a struc-
|ture from the beginning of its major structure
|is 32,767 bytes.

|
|The maximum dimension of an array is 32,767
|bytes. An array can have only one dimension.
L

[o e o ———— ———— ——————— . f—— — —— —— — — —— S T—{— — So— — —— — — Y m——— . S— — — S —T—

1
DO loops | The maximum level of nesting for DO loops is 8.
L

(Part 1 of 2

Section 5: Compiler Conventions and Restrictions 65

IBM Confidential

Table 10. BSL Size Restrictions (Part 2 of 2)

r
[Item
t

k|
|Limitation
1

IF statements

]

|The maximum level of nesting for IF statements
{is 14.

|

|The maximum number of true/false branches in an
| IF statement is 24. The maximum number of
|truesfalse branches in a nest of IF statements
|is 50. The number of trues/false branches is
|]equal to the number of IF statements plus the
|number of logical connectives (| or §&).

L

P U SR |

Pointers

= T M SO . S e S A o T . S— —— P s S —

1
| The maximum number of explicit pointer qualifi-
Jcations applied to a variable is 7.

|The maximum number of implicit pointer qualifi-
| cations is 7.
|

Factored attributes

i
{The maximum number of left parentheses used to
| factor attributes in a DECLARE statement is 20.

|The maximum number of identifiers that can have
| factored attributes in a single declaration is
[49.

(|

CALL statements

1

| The maximum number of arguments in a CALL sta-
|tement is 25.

[l

Macro statements

[o . s S — — — —— t—— ——] — — . (— S G S—— ——

¢
| The maximum number of macro variables and
| labels is 500.

I

|

| The maximum length of a macro string variable
|is 1000 bytes. The total length of all macro

| string variables should not exceed 45,000 bytes
|at any one time.

|The range of a macro FIXED variable is from
|-9999999 to 99999999,

L

b e o v — i — — —— — —— i . — . — o— - —— —— ol — —— —— — — i S——— c—— —

66

IBM Confidential

BSL Language Restrictions

Some uses of the BSL language features are not supported by the current
compiler. These language restrictions are described, by general cate-
gory, in the following paragraphs.

Reserved Words

Some words have special meanings to the BSL compiler, and therefore must
not be used as identifiers in your BSL source program. These reserved
words are:

ABS END PROCEDURE
ADDR ENTRY RELEASE
BY GEN RESTRICT
CALL GENERATE RETURN
DCL GO THEN
DECLARE GOTO TO

DO IF

ELSE PROC

The following words are reserved only in the compiler's macro phase:

ACT
ACTIVATE
DEACT
DEACTIVATE
INCLUDE

Procedure Format

An internal procedure must be placed immediately preceding the END
statement of the external procedure. If more than one procedure is
internal to the same external procedure, they must immediately follow
one another and the group must be immediately followed by the END state-
ment of the external procedure. An example of an illegal format is:

f a
|A: PROC; |
| . i
- i
B: PROC;
.
. I
-
END B;
X =1; /% THE POSITION OF THIS STATEMENT IS ILLEGAL */
END A;
L J

Procedure Parameters

Parameters common to more than one entry point must be in the same
parameter position. You can use dummy parameters to obtain proper posi-
tioning. An example of this restriction is:

r

|R1: PROC(Q1,02);

|R2: ENTRY(Q1,02,03); /% LEGAL %/

|R3: ENTRY(Q2,01,03); /#%* ILLEGAL PARAMETER POSITIONS */
Ri: ENTRY(Q3,01,02); /* ILLEGAL PARAMETER POSITIONS */

R

Section 5: Compiler Conventions and Restrictions 67

IBM Confidential

If the main entry point has no parameters, secondary entry points
cannot have parameters. An example of an illegal parameter at a secon-
dary entry point is: :

A: PROC;

= o — S— —
e o s e s el

B: ENTRY(P1l); /% ILLEGAL PARAMETER */

Internal procedures cannot reference parameters of the containing
procedure. An example of illegal reference is:

I 1
|P1: PROC(A); |
| DECLARE B FIXED; |
| P2: PROC; |
| A =5; /% ILLEGAL REFERENCE TO A %/ |
| B =5; /% LEGAL REFERENCE TO B #*/ |
| END P2; |
{ END P1; |
L 3
CALL Statements

You cannot use an explicit pointer to qualify the entry name in a CALL
STATEMENT. BAn example of illegal qualification is:

r 1
|CALL P-> NAME; /* ILLEGAL POINTER QUALIFIER */ |
L 4

Arguments in a CALL statement must not be:
e REGISTER variables.
s Expressions involving 'and', ‘or', or 'exclusive or' operations.

e Bit strings that are not on byte boundaries.

Addresses

If the constant displacement from the starting address of EXTERNAL,
parameter, or BASED data items is greater than 4095 bytes, an addressing
error occurs. The constant displacement is equal to the sum of the
following:

e For an element in a structure, the displacement of the element from
the beginning of the major structure.

e For an array element with a constant subscript, the product of the
constant subscript, minus one, and the element length.

s For an element with a constant substring, the displacement of the
initial character of the substring from the beginning of the base
string.

An example of an illegal displacement is:

68

IBM Confidential

DCL 1 X BASED(P),
2 Y CHAR(5000),
2 Z CHAR(1);

= 'A': /* ADDRESSING ERROR OCCURS BECAUSE ELEMENT Z IS 5000 BYTES
FROM BEGINNING OF STRUCTURE */

N
e e s e v e et

[v e S e S g

If an absolute address is used in the declaration of a BASED attri-
bute, that address cannot be greater than 65,535. An example is:

e e o

r
|DCL. A BASED(70000); /% ILLEGAL ADDRESS */
L

Register Attribute

Data declared with the REGISTER attribute must be either FIXED(31),
PTR(31), or PTR(24). No boundary attribute can be specified.

Initialization

Arithmetic items must not be initialized with BIT or CHARACTER con-
stants, or with addresses.

String items must not be initialized with a character string that is
longer than the declared length of the string item.

string items must not be initialized with binary or decimal con-
stants, or with addresses.

If hexadecimal or bit string constants do not fill a byte multiple,
the low-order bits are padded with zerxros.

If bit string items are initialized as components of a structure, or
are elements of a bit array, bits are not packed; that is, each bit
string starts on a byte boundary. For example:

r I |
IpCL 1 X, |
| 2 R BIT(1), |
| 2 Y BIT(3)INIT('111'B); |
| /* R AND Y ARE NOT PACKED INTO THE SAME BYTE */ |
| 2 2(5) BIT(1); |
| /% EACH ELEMENT OF Z IS IN SEPARATE BYTE */ 1
L ']

String Items

String items used in arithmetic expressions cannot be longer than 4
bytes. String items used in assignment statements or comparison expres-
sions cannot be longer than 256 bytes.

String Assignment Statements

If a bit variable is assigned to a bit variable, the variables must be
on byte boundaries and must be multiples of 8 bits. An example of legal
and illegal assignments is:

Section 5: Compiler Conventions and Restrictions 69

IBM Confidential

DCL A BIT(16), B BIT(8), C BIT(3);
; /% LEGAL ASSIGNMENT */
; /7% ILLEGAL ASSIGNMENT #*/
H

A
A
c /* ILLEGAL ASSIGNMENT */

> Ow

r
|
I
|
|
L

b e . e s

If a bit constant is assigned to a bit variable, and the bit variable
is not on a byte boundary, then the assigned bit string must not cross
two byte boundaries (it may cross one byte boundary.) If the bit vari-
able is aligned on a byte boundary, the length of the bit string is not
restricted. Examples of legal and illegal assignments are:

DCL 1 R,
2 X BIT(3)
2 M BIT(13),
2 Q BIT(3);
M = '1111110000001°'B; /% LEGAL BECAUSE IT CROSSES ONE BYTE
) BOUNDARY #*/
DCL 1 R,
2 X BIT(3),
2 M BIT(14),
2 Q BIT(2);
M = '11111110000000'B; /* ILLEGAL BECAUSE IT CROSSES TWO BYTE
BOUNDARIES #*/

[— — —— —— ——— ——— — -
[TP S S S S U ———

Comparison Expressions

If the left side of a string comparison has constant length substring,
the right side cannot have a variable length substring. For example:

r 1]
|DCL (A,B) CHAR(10); |
| IF A(I:J3) = B(K:L) THEN... /% LEGAL */ |
| IF A = B(K:L) THEN... /% ILLEGAL */ |
L }

The length of the left side of a string comparison should be equal to
the length of the right side. If the right side is longer, the compari-
son is still made by ignoring the extra length. However, if the left
side is longer, no comparison is made and an error message is issued.
For example:

[
|DCL (A,B) CHAR(10), (C,D) CHAR(4);

|] IF A = C THEN GOTO L1; /% ILLEGAL */
| IF (AgB)>(CED) THEN GOTO 11; /7% TILLEGAL */
L

b e e e)

If a string data item appears on the left side of a comparison, then
only string data items can appear on that side of the comparison. An
example of illegal combinations is:

DCL Cu4 CHAR(4), F31 FIXED(31), P31 PTR(31);
IF (C4sF31) = 0 THEN GOTO 11; /% ILLEGAL */
IF (P31 &€& Cu4) > 0 THEN GOTO L1; /* ILLEGAL */

[o . e o
Y bt]

Expressions involving comparison operators, as well as comparisons
connected by 'and' or 'or' operators, must not be enclosed in paren-
theses. However, when 'and', ‘'or', or 'exclusive or' is used as a bit
operator in an IF statement, the containing expression must be enclosed

70

IBM Confidential

in parentheses. Use of the parentheses is shown in the following
example:

)

|IF A>B|C>D THEN... /% LEGAL */

|IF (A>B) | (C>D) THEN... /% ILLEGAL */

|IF A>BECOD|E = F THEN... /* LEGAL */

|IF (A>B&C>D) [E = F THEN... /* ILLEGAL #*/
|IF (A|B) = (C&D) THEN... /% LEGAL */

|IF A|B = C&D THEN... /* ILLEGAL */

[IF (AEB)>C THEN... /* LEGAL */

|IF A&B>C THEN... /* ILLEGAL */

L

e e s i s —— —]

If a comparison involves a bit variable that is not on a byte bound-
ary, a bit variable not a multiple of eight bits on a byte boundary, or
a bit constant that is less than eight bits, then the bit variable or
constant must be:

Entirely contained within the boundaries of one byte.

On the left side of the comparison.

Compared to a bit constant which is either all ones or all zeros.
Compared by the = or .= aperator.

For example:

1)
|DCL 1 R,

i 2 Y BIT(3),

[2 2 BIT(5);

| IF Z(1:3) = '111'B THEN GOTO L1; /% LEGAL */

| IF 2(1:3) = '101°'B THEN GOTO Ll; /% ILLEGAL BECAUSE BIT CONSTANT IS
| MIXED ONES AND ZEROS */

| DCL B8 BIT(8);

| IF B8="11'B THEN GOTO L1; /#* LEGAL */

| IF B8="10'B THEN GOTO Ll; /* ILLEGAL BECAUSE BIT CONSTANT IS

1 MIXED ONES AND ZEROS */

L

e tm o ctioen et — . —— o]

Subscript Notation

Subscript expressions must contain either decimal constants or unsub-
scripted, unsubstringed variables. The subscript expression can contain
*exclusive or', 'or', 'and', plus, minus, or multiplication operators
(¢€,],&,+,~,%) —— but not the division operator. Operators must appear
in order of binding strength (from low to high). A subscript expression
cannot contain a subset of parentheses. Examples of subscript form are:

| SUBSCRIPT */
L

r 1
|DCL A(10) FIXED; 1
|A(3) = 0; /% LEGAL */ I
|[A(I) = 0; /% LEGAL */ I
|A(3+3) = 0; /% LEGAL */ |
|A(10-2%I) = 0; /* LEGAL */ I
|A(I6J810%K) /% LEGAL #*/ I
|A(R+L+M+N*Q) = 0; /% LEGAL */ 1
|A(R+L+M*N*Q) = 0; /% LEGAL %/ |
|A(B->C) = 0; /% LEGAL */ i
[A(A(D)) = 0; /* ILLEGAL BECAUSE SUBSCRIPT IS SUBSCRIPTED */ |
|A(R/L) = 0; /% ILLEGAL BECAUSE DIVISION OPERATOR IS USED */ |
|A(2%1I+1) = 0; /% ILLEGAL BECAUSE OPERATORS ARE NOT IN ORDER OF |
I BINDING STRENGTH */ |
[A(10-(2%1)) = 0; /* ILLEGAL BECAUSE PARENTHESIS IS NOT ALLOWED IN |

|

Jd

Section 5: Compiler Conventions and Restrictions 71

IBM Confidential

A bit string item that is not on a byte boundary or is not a multiple
of eight bits cannot be used as a subscript.

The control variable of a DO statement cannot be subscripted. An
example is:

]
|DCL A(10) FIXED;

| DO A(2) = 1 TO 10; /% ILLEGAL CONTROL VARIABLE */
L

e e e

In a declaration, a locating expression that is associated with a
BASED item cannot be subscripted or substringed. 1In a reference state-
ment, a pointer that is associated with a BASED item cannot be
subscripted. Examples are:

T
|DCL X CHAR(3), P PTR;

|DCL CAT CHAR(1) BASED(P); /% LEGAL */
|DCL FAT CHAR(2) BASED(P+1); /* LEGAL */
{DCL RAT CHAR(4) BASED(72); /% LEGAL */
|DCL BAT CHAR(3) BASED(ADDR(FAT)); /*¥ LEGAL */

|DCL HAT CHAR(3) BASED(ADDR(X)+1); /% LEGAL %/
|DCL, MAT CHAR(3) BASED(ADDR(X(1))); /% ILLEGAL */
|DCL P(10) PTR, R BASED(P(1)); /* ILLEGAL */
[P(1)->R = 3; /% ILLEGAL */
L

Substring Notation

Substring expressions must contain either constants or unsubscripted,
unsubstringed variables. The substring expression can contain 'exclu-
sive or','or"','and’, plus, minus, or multiplication operators(&&,,&,+,-,
*)-- but not the division operator. Operators must appear in order of
binding strength (from low to high). A substring expression cannot con-
tain a subset of parentheses. Examples of substring form are:

r 1
| DCL, CHAR30 CHAR(30) ; |
|DCL. A CHAR(10); |
|A(3) = "0°*; /% LEGAL */ |
|A(I) = '0°%; /* LEGAL */ |
|A(3+3) = "0"; /* LEGAL */ |
[A(10-2#%1I) = '0'; /% LEGAL */ I
|A(IEJE10*K) = '0'; /% LEGAL */ |
|A(R+L+M+N*Q) = '0'; /#* LEGAL */ |
[A(K+L+M*N#*Q) = '0'; /% LEGAL */ |
|A(B-C) = '0°; /* LEGAL */ |
JACI:I+U)="xy"; /% LEGAL */ |
fA(I+1:I+K)=CHAR30; /* LEGAL */ |
|AaCA(L)) = *0°*; /* ILLEGAL BECAUSE SUBSTRING IS SUBSTRINGED */ |
JA(RK/L) = '0°*; /% ILLEGAL BECAUSE DIVISION OPERATOR IS USED */ |
|A(C2%1+1) = '0*; /% ILLEGAL BECAUSE OPERATORS ARE NOT IN ORDER |
| OF BINDING STRENGTH */ |
JACLO-(2*1I)) = '0"; /* ILLEGAL BECAUSE PARENTHESES ARE NOT ALLOWED |
| IN SUBSTRING */ I
L ¥ |

A bit string item that is not on a byte boundary or is not a multiple
of eight bits cannot be used as a substring.

A bit string cannot be substringed with a variable that specifies a
single bit. For example:

72

IBM Confidential

[]

[DCL B Bit(32);

| B(I)= '1'B /* ILLEGAL */
L

e e e e

An arithmetic or pointer item cannot be substringed. An example is:

DCL (A,B) FIXED;
A = B(2); /% ILLEGAL SUBSTRING #*/

b e e

[o vy

A string constant of one byte cannot be assigned to a substring with
a variable range. For example:

DCL A CHAR(6);
A (I:3) = 'B'; /7% ILLEGAL */

e o e

[e m—

Note: If a bit variable has a variable substring range the compiler
assumes, but does not check to assure, that the lower bound specifies
the first bit of a byte and the upper bound specifies the last bit of a

byte.

The compiler assumes that the range of the substring notation does
not exceed the range of its associated string item. However, there is
no enforced restriction to this effect, and the compiler does not pro-
vide code to check the range. In the following example:

DCL A CHAR(6);
A (I:J) = X;

p= o

p——

the compiler does not provide code to check that:
» I is equal to, or greater than ome.
e J is eqﬁal to, or less than six.
e I is equal to, or less than J.

* J minus I, plus one, is not greater than the length of X.

Section 5: Compiler Conventions and Restrictions 73

IBM Confidential

' Section 6: Compiler-Generated Code

This section contains examples of the code generated by the current BSL
compiler to manipulate various kinds of data. (Future compilers may not
generate the same code.)

It is provided for two reasons:

e With this information the user can obtain insight to produce better
and more efficient code.

¢ The user will have closer control of the hardware and software
interfaces.

This section is organized to provide easy access to examples of dif-
ferent data. It illustrates how changing the attributes of data affects
the way it is accessed. Included in the section is information on
arithmetic and string expressions.

Arithmetic Expressions

Unless otherwise noted the following conventions are used in the example
of arithmetic expressions:

e A, B, C, etc. represent FIXED(31l) variables.
e Fn represents a fixed item with precision n.
e Pn represents a pointer with precision n.

e 3ar and arl represent any available registers.

Register Usage

The BSL compiler always uses register 15 for evaluating arithmetic
expressions. Register 14 will be used with register 15 when an even/odd
pair of registers is required. For example:

r 1
| A=B*C+D; |
| L aF,C I
| N ?E,B |
| a aF,D |
| sT aF,A |
L J

For expressions containing a subscripted, substringed, based or non-
local variable, another register will be used to compute the address of
the variable. The variable will then be used as if no address calcula-
tion was necessary. For example:

r

|DCL P PTR, B BASED (P);
|DCL C(10) FIXED;

|A=B + C(I);

1
|
|
I
| L ar,I COMPUTING THE ADDRESS I
| sLa ar, 2 OF C(I) [
| L aF,C-4(ax) LOAD C(I) |
| L arl,Pp ADDRESS OF B |
| A arF,0(0,arl) USE OF B I
1 ST aF,A !

74

IBM Confidential

If a register is available, it will be used for evaluating parts of
an arithmetic expression when register 15 already has a partial result.
When no register is available, register 15 will be stored in a compiler
generated temporary and evaluation will continue in register 15. For

example:

r 1
|A=B+C & D+E; |
| L aF,C |
| & aF,B |
| L ar,E |
| A ar,D |
| ©NR aF,ar |
| sT arF,A |
L —_———

Compiler Generated Temporaries

Temporaries are generated to hold partial results of arithmetic expres-
sions when no register is available to continue the evaluation. The
code shown above would compile as follows if no register were available:

L
A
ST
L
A
N
ST

[. o c— " —— o t—

A=B+C & D+E;

aF,C
aF,B
aF,aT1
aF,E
aF,D
aF,aTl
aF,A

R S |

Unsigned data (CHAR, BIT, or PTR) that occupies two or three bytes
will be moved to a compiler-generated temporary with high order zeros
before it is used. This is to eliminate the sign bit from the opera-
tion. For example:

DCL P16 PTR(16);

I

|

|a=B + P16;
| MvC

| L

| A

| sT

L

ATEMP2+2(2), P16
aF, aTEMP2

aF,B

arF,A

O e e |

A temporary will be used to align data that is not on an appropriate

boundary.

For example:

r 1
|DCL F31 FIXED(31) BDY(WORD,2); |
|A=B + F31; |
(MvC aTu (u) ,F31 |
| L arF, Tl |
| A aF,B |
{ ST aF,A [
L J

Section 6: Compiler-Generated Code 75

(610)9)

IBM Confidential

Fixed Data

FIXED(31) and FIXED(15) data items used in arithmetic statements are
normally manipulated with fullword or halfword RX instructions. For
example:

r k]
|F31=F31 + F15; |
| LH aF,F15 |
| A aF,F31 |
| sT aF,F31 |
L (]

FIXED items that are not on appropriate boundaries are moved to
compiler-generated temporaries that are on appropriate boundaries, and
the temporaries are manipulated with RX instructions. For example:

I

|DCL F31 FIXED(31) BDY (WORD,2);
|A=B + F31:

| MvC aTu(u) ,F31

| L aF, aTh

| a aF,B

| sT aF,A

L

b e o e o s a—

FIXED items with register storage class are manipulated with RR
instructions. For example:

DCL R2 REG(2);
A=B + R2;
LR aF,a2
A aF,B
ST aF,A

o e o e e e
R

76

IBM Confidential

Pointer data

The way a pointer is accessed depends on its precision, boundary, and
storage class. The following examples show the code that would be
generated to access pointers of various precisions with default bound-
aries, when used as pointers and as arithmetic items.

r 1
| 1. A=p8-> 7B; |
| SR ar, ar |
| Ic ar, P8 |
| L aF, 0(0, ar) |
| ST aF,A I
| 2. A=P8; |
| SR aF, aF |
i ic aF, P8 1
| ST aF,A |
| 3. A=P15-> B; |
| LH ar,Pl5 |
| L aF,0(0,ar) |
| ST F,A |
| 4. A=P15; |
| LH aF,P15 i
| ST aF, A |
| 5. A=P1l6-> B; |
| MVC ATEMP2+2(2),P16 |
| L ar, aTEMP2 |
| L ar, 0(0, ar) |
| ST aF,A |
| 6. A=P16; |
| MVC aTEMP2+2(2) ,P16 |
| L aF, 9TEMP2 |
| ST aF,A |
| 7. A=P24-> B; |
i L ar,P24-1 |
| L aF, 0(0, axr)]
| ST aF,A]
| 8. A=P24; |
| MVC TEMP1+1(3) ,P24 |
i L aF, TEMP1 I
I ST arF,n |
| 9. A=P31-> B; /* THE SAME CODE IS GENERATED FOR P32 */ |
| L ar, P31 |
| L aF,0(0, axr) |
| ST aF,R |
{10. A=P31; /* THE SAME CODE IS GENERATED FOR P32 */ |
| L aF, P31 |
| ST aF, A |
L J

A pointer with other than a default boundary will be moved to a tem—
porary with the appropriate boundary, and the temporary will be accessed
with the same sequence of code generated for precisions 31 and 32. For
example:

[]

|[DCL P15 PTR(15) BDY (WORD,2);
|A=P15-> B;

| Mve ATEMP2+2(2) ,P15

| L ar,aTEMP2

| L aF,0(0,ar)

| sT aF,A

1

e e o e e v e el

Section 6: Compiler-Generated Code 77

IBM Confidential

A pointer with register storage class will generate the same sequence
of code without loading the pointer into a register. For example:

r -
|DCL P24 PTR REG(5);

|A=P24 -> B;

|
| L aF,0(0,35) |
| ST aF,A I
| or |
|a=P24; [
| st a5,A !

A pointer that is a parameter, a nonlocal pointer, or a based pointer
will generate the same sequence of code with additional code to locate
the pointer. For example:

r 1
|DCL P15 PTR(15); |
|DCL P8 PTR(8) BASED (P15); |
|a=P8; |
| LH ar,pl15 ADDRESS OF P8 |
| SR aF, aF |
| IC aF,0(0,ar) P8 |
| ST ar,A |
L J
String Data
String data is unsigned. Whenever possible the BSL compiler generates
code to prevent the high order bit from being treated as a sign.

The sign is eliminated from one byte items by using the SR-IC
sequence. For example:
r i)
|A=C1; [
| SR aF,aF |
| 1C aF,Cc1 [
| sT aF,A |
L J

For two and three byte items a compiler generated temporary with high
order zeros is used. For example:

T 1
|A=B+C2; |
(.)\ /e ATEMP2+2(2),C2 [
| L aF,C2 |
| A aF,B |
| sT aF,A |
L J

Logical instructions are used whenever possible for four byte items.
For example:

r 3
|a=Cu+B; I
| L aF, B |
| AL aF,Cl 1
| sT aF,A |
L J

String items longer than four bytes are not allowed in arithmetic
expressions.

78

IBM Confidential

String Expressions

No registers are involved in the evaluation of a string expression,
(except for calculating the addresses of operands that are subscripted,
substringed, based, or nonlocal). The expression will either be evalu-
ated in a temporary or in the receiver of an assignment statement.

A temporary will be used for string expressions in IF statements, and
for assignment expressions that include the variable that will have the
result of the expression assigned to it. For example:

I b
|DCL (A,B,C,D) CHAR(4); |
| IF(A&B)=(C&D) THEN... |
| mMvC aCTEMP1(4),B |
| Nc ACTEMP1(4) ,A I
| MvC aCTEMP2(4),D |
| N ACTEMP2 () ,C |
| cic ACTEMP1 (4) , 9CTEMP2 I
| and |
| A=BEAEC; |
| MveC aCTEMP1(4),C f
| NC ACTEMP1(4),A I
| Nc aCTEMP1(4),B |
.\ A(4) ,aCTEMP1 |
L 4

The receiver of an assignment statement will be used when it does not
appear in the assignment expression, or it appears in the expression in
such a way that it can be used first when:

I 1
| A=B&C; /% RECEIVER DOES NOT APPEAR */ I
| MvC A ,C I
| NC A(4),B [
| or [
|A=BéA; /% CAN BE USED FIRST */ |
| ©Nc A(4),B [
L J

Expressions with variable length strings are evaluated using the same
criteria for deciding whether to use the assignment receiver or a tem—
porary. Whatever is used, it will be zeroed (or blanked) before it is
used to insure that shorter operands will be properly extended. Regis-
ters 10,14, and two other registers are used in all operations with
variable-length strings. For example:

L] 1
|A=B&C(I:J); |
| L ar,J |
| MVI A,C'Db’ BLANK A IN CASE C(I:J) |
i MVI A+1(3) ,A IS SHORTER THAN A |
| L arl, I |
| LA aE,C-1(arl) |
| SR ar,arl |
| BCTR ar,0 |
| 1A aA,A |
| EX ar,aMvC 1
| NcC A(H),B |
L J

Section 6: Compiler-Generated Code 79

IBM Confidential

Section 7: BSL Programming Techniques

This section describes a variety of programming techniques that you can
use to:

e Format your source programe.
e Handle parameters and argument lists.
e Improve the compiler-generated code.

e Manipulate data.

Formatting the Source Program

The modular arrangement of your program affects the efficiency of its
operation. The appearance of your program -- the way your source state-
ments are set up -- is an important debugging tool. Both the arrange-
ment and the appearance are factors in making future changes and
analyses.

Use of External Procedures

Invoking a procedure generates more instructions than branching to a
label; therefore, you should not write a separate procedure for an
operation that can conveniently be placed in line.

You may find it convenient to modularize a programming task by break-
ing it up into a number of separately compiled procedures. However,
this convenience should be balanced against the resulting call, pro-
logue, and epilogue overhead. If you modularize your program, keep down
the overhead by carefully planning the breaks between procedures.

Organization of Source Statements

The following guide lines® may help you produce a source program listing
that is easy to read, easy to understand, and easy to use:

o Avoid placing many BSL statements on a single card. This can cause
difficulty when it is necessary to change one statement on the card.

» Adopt specific conventions about the placement of comments in your
source statements.

¢ Group your DECLARE statements at the beginning of the procedure.

s Indent each DO statement in a nest of DO statements, and line up
each END statement under its associated DO statement. This ensures
that you properly close each DO group. Also, indent and align all
statements applicable to each DO statement.

e When you write nested IF statements, adopt a specific convention to
associate each IF statement with its ELSE clause. A suggested
method is to indent each IF statement in the nest, and line up its
ELSE clause under it.

1pdditional information on guide lines is available in BSL Bulletin
Number Four or in the Design Summary Book Section 3.50.17.

80

IBM Confidential

Handling Argument Lists and Parameters

Argument lists and parameters are the means of communication between
procedures. The following paragraphs discuss a few techniques for
handling this communication.

Building an Arqgument List

You can let the compiler generate code for building the necessary argu-
ment lists, or you can build your own. There are two conditions under
which you may want to build your own argument lists:

1. If a particular argument list is used many times, you can save
space by building it yourself. Otherwise, the BSL compiler builds
a separate argument list for each CALL statement in your program.

2. You may need an argument list that is different from the one
generated by the compiler.

The following example shows how to build your own argument list for
calling the PDUMP routine:

]
|/* THIS BUILDS AN ARGUMENT LIST FOR PDUMP */
IDCL L1 CHAR(1) INIT('A');
|DCL A CHAR(50) ;
[DCL L2 CHAR(1) INIT('*');
|DCL LEN FIXED INIT(50);
|DCL 1 ARG,
2 TYPE PTR(31) INIT(ADDR(L1)),
2 ADCON PTR(31) INIT(ADDR(A)),
2 LENGTH PTR(31) INIT (ADDR(LEN)),
2 STOP PTR(31) INIT(ADDR(L2));
/* ARGUMENT LIST DEFINED AS A STRUCTURE */
RESTRICT (1) ;
DCL R1 REG(1) PTR(31);
Rl =ADDR(ARG); /* POINT R1 TO ARG LIST %/
CALL PDUMP;

e e

CALL PDUMP;

b s o e e — — ——— —————— — ——]

Section 7: BSL Programming Techniques 81

TECH

IBM Confidential

Passing an Argument List in a Register

To pass an argument in a register, you must set the register in the cal-
ling procedure, and preserve its value on entry to the called procedure.
This example shows how:

>

PROC;
DCL TAB CHAR(80), R3 REG(3) PTR(31);
RESTRICT(3) ; _

R3 = ADDR(TAB); /#* SET R3 TO POINT TO TAB */
CALL IN; /% INVOKE PROCEDURE */

PROC;

DCL FAB CHAR(80) BASED(R3); /% FAB BASED ON R3 */
RESTRICT(3);

IF FAB(1) = '§' THEN DO;

END IN;
END X3

[e e e e S S T S s S o S . S— T
=
2
.

bee oo o et e S —— A" G c— A— —— — C— —— — o)

How to Avoid Passing Arguments

For performance reasons, it is sometimes desirable to avoid passing
arguments to procedures. There are two ways to do this:

1. An internal procedure can directly access all the data declared in
the external procedure.

2. If an external procedure is called and the data to be communicated
is static, declare the data LOCAL EXTERNAL in the calling procedure
and NONLOCAL EXTERNAL in the called procedure.

Variable Parameter Lists

The BSL language does not support variable length parameter lists, but
you can handle them with the following method:

1. The calling procedure declares the procedure having the variable
parameter list with OPTIONS(VLIST) and calls it with the standard
CALL statement.

2. The called procedure defines its own parameter list and searches
for the end of the list.

82

IBM Confidential

This method is illustrated in the following example:

r

| CALLPROC: PROC;

= -

|DCL VPLIST ENTRY OPTIONS(VLIST);

|CALL VPLIST (Al,A2);

| END CALLPROC;

|

| VPLIST: PROC; /* NO FORMAL PARAMETERS */
DCL R1 REG(1)PTR; /* R1 POINTS TO THE ARGUMENT LIST */
RESTRICT(1);
/% IF THIS PROCEDURE WILL CHANGE REGISTER 1 -- BY */
/% GENERATING A SYSTEM MACRC FOR EXAMPLE -- THEN */

|

|

}

| /% A COPY OF REGISTER 1 SHOULD BE USED INSTEAD OF */
| /% REGISTER 1 ITSELF. */

| DCL /* DESCRIPTION OF ONE OF N SETS OF ARGUMENTS */
| 1 ARG BASED(R1),

| 2 AFIRST PTR,

| 2 ASECOND PTR,

|L1l:/% PROCESS ONE SET OF ARGUMENTS */
| .

|

I

|

i

|

|

|

L

IF ASECOND <0 THEN /#* IS THIS THE FINAL ARGUMENT */
RETURN; /* YES */

R1=R1+8; /* SET POINTER TO NEXT SET OF ARGUMENTS */

GOTO L1; /% PROCESS NEXT SET OF ARGUMENTS */

END VPLIST;

bt s i e s s e ——— " ———— i — — — T— — —— T~ —— — —— ———— 2}

Avoiding Parameter References

The use of parameters in a BSL procedure is both a programming con-
venience and a documentation aid. As with most conveniences, there is a
cost: -

1. Register 1 must be used for all parameter references. This means
register 1 must be saved and restored around GENERATE statements
that generate system macros or instructions that change register 1.

2. The code generated to refer to a parameter is less efficient than
the code generated to refer to a local variable.

If you want your BSL object program to be competitive with an object
program written in assembly language, you may wish to avoid the use of
parameters. A good way to avoid referring to parameters is to make a
local copy of the parameters at the start of the procedure. For
example:

r
|A: PROC(P1,P2);

| DCL P1 CHAR(4);

| DCL P1COPY CHAR(Y4);

| DCL P2(10) CHAR(256);

| DCL P2PTR REG(6) PTR;

| RESTRICT(6);

l DCL P2COPY(10) CHAR(256) BASED(P2PTR);
| P1COPY = P1;

| P2PTR = ADDR(P2);

i

b st o e e s s b e, . 0]

In this example Pl is a scalar variable that is copied to P1COPY.
Subsequent references to P1 should be made by using P1COPY.

Section 7: BSL Programming Techniques 83

IBM Confidential

P2 is an array that is too large to copy, so P2COPY is declared with
the attributes of P2 and based on a pointer that is set to the address
of P2. References to P2COPY will now be references to P2.

Setting a Return Code

To set a return code, you place a value in register 15 before returning
control to the caller. For example:

Ll

}]X: PROC OPTIONS (DONTSAVE(15));

| /% REG 15 IS NOT SAVED OR RESTORED */
| DCL R15 REG(15) FIXED(31); '

| R15 = 20; /% SETS REG 15 TO VALUE OF 20 */
i RETURN; /% RETURNS TO CALLER */

| END;

L

S

If another BSL procedure receives the return code, the code cannot be
tested while it is in register 15. Since the compiler uses register 15
to evaluate expressions, you must assign register 15 to another variable
before anything else is done. For example:

DCL RETCODE FIXED(15);
DCL R15 REG(15);

-

— — v —— ——

CALL X;
| RETCODE = R15;

b e carate e . —— — — — ——

|
| -
|
L

Note: 1In a reentrant procedure, or whenever the TRACE option is used,
you may not place the return code directly into register 15. Instead,
you must place the return code in the register 15 field of the calling
program's save area. For example:

I

|[DCL R13 PTR REG(13);
|IDCL. A PTR BASED(R13+4);
|DCL RETCODE BASED(A+16);
| RETCODE = 20;

1

b e e e s s

Obtaining the Optimum Code

The following paragraphs discuss various techniques that you can use to
favorably affect the compiler-generated code.

Putting Variables in Registers

A good technique to use in a BSL program to improve speed and save space
is to place certain key variables in registers. The compiler's cross-
reference listing shows you which variables are used most often.

If you place variables in registers, you must RESTRICT those regis-
ters to prevent the compiler from generating conflicting register usage.
You should also note that the RESTRICT statement does not carry into
internal procedures.

84

IBM Confidential

When you make an assignment to a register variable, there are two
special cases that cause the compiler to generate optimized code. This
optimization occurs only when the statements are written in one of the
formats described below.

Case 1: The statement format is REGPTR24 = REG + CONST; where REGPTR24
is a register variable declared as POINTER(24), and REG is a register
variable, and CONST is a constant less than 4096. For example:

r 1
[DCL R6 REG(6) PTR(24); |
|IDCL R7 REG(7); |
|IR6 = R6 + 7; /* SPECIAL CASE*/ I
IR6 = R7 + 12; /* SPECIAL CASE */ |
L —_—d

Case 2: The statement format is REG = EXP; where REG is a register
variable, and EXP is an expression that contains no subscript or
substring, and no operators other than +, -, §, |, or §§. REG must not
be one of the operands in the expression. For example:

[} h]
|DCL R7 REG(7); _ |
IR7=A+B- 3 /% SPECIAL CASE */ |
[R7 = A + R7 - 3; /* NOT A SPECIAL CASE */ |
|[R7 = A(I) + B - 3; /% NOT A SPECIAL CASE */ |
L 1

Eliminating Compiler-Generated Temporary Locations

There are certain programming practices that require the compiler to
generate extra code to move items to temporary locations. If you
eliminate the need for these temporary locations, you can save time
and storage space in program execution.

When a pointer or arithmetic item is not on a proper boundary, the
compiler generates code to move the item to a properly aligned temporary
location, and loads it from there. To avoid this, place arithmetic
items and pointers on their default boundaries, which are as follows:

Attribute Best Boundary
FIXED(15) Halfword
FIXED(31) Fullword
PTR(16) Halfword
PTR (31) Fullword
PTR(32) Fullword

When character substrings are used in arithmetic expressions, the
compiler generates code to move the item to a temporary location, and
loads it from there. To avoid this, do not use character substrings in
arithmetic expression.

When a PTR(16) item is used in an arithmetic context, the pointer
must be moved to a temporary location to avoid propagating the high-
order bit. The arithmetic evaluation is then done from the temporary
location. To avoid this, declare the item as PTR(15), unless you really
need a 16-bit pointer.

When a PTR(24) item is used in a arithmetic context, the pointer must
be moved to a temporary location so that the high-order byte will not
affect the result. The arithmetic evaluation is then done from the tem-
porary location. To avoid this, declare the item as PTR(31), unless you
actually use the high-order byte for some other purpose.

Section 7: BSL Programming Techniques 85

IBM Confidential

Improving Iterative DO loops

The compiler generates the most efficient DO loop code when you write
your DO loops according to the guide lines presented in the following
paragraphs.

The control variable, the TO value, and the BY value of the DO loop
statement should be simple variables that do not have any of the follow-
ing attributes:

BASED

PARAMETER

EXTERNAL

Dimension (subscripted)

If possible, the control variable should be declared in a register.

If a DO statement is only for counting the number of iterations
through a loop, write it as:

]

|DO REG = EXP TO 1 BY -1;
} generates

|BCT REG, start of loop

L

TP ——

where REG is a register variable, and EXP is any expression. Note that
if REG is set negative or zero in the loop, the iteration continues even
though REG is less than 1.

Location Free Code

You can obtain location free code by avoiding BSL language that results
in the generation of address constants. Currently, the compiler
generates address constants for:

e NONLOCAL EXTERNAL items.
e POINTER items with initial values.
e Argument lists in non-reentrant procedures.

The only way you can eliminate address constants for NONLOCAL
EXTERNAL items is by not using such items.

You can eliminate address constants for POINTER items with initial
values by not declaring the INITIAL attribute. Instead, you can ini-
tialize the items with assignment statements.

The only way you can eliminate address constants for argument lists
in a non-reentrant procedure is by not using such argument lists.

In addition to the elimination of address constants, you must follow
self-relocating coding practices as described in the DOS Assembler Manu-
al publication (Form C24-3414). Thus, pointers kept across interrupt
points would have to be revalidated after a possible code move.

Data Manipulation and Reference

The following paragraphs offer some programming techniques that you can
use to handle data in your BSL procedure.

Using the Same Area in Different Ways

It is sometimes useful to refer to parts of the same storage area in
different ways. Two methods of doing this are described below:

86

IBM Confidential

Case 1: You can declare the area as a structure. For example:

DCL 1 F FIXED(31),
2 L FIXED(15),
2 R FIXED(15),
3 * CHAR(1),
3 B BIT(8);

e e e e e s s

Case 2: You can base items on the address of a common area. This is
similar to the EQUIVALENCE feature in FORTRAN. For example:

r

|DCL F FIXED(31);

|DCL L FIXED(15) BASED(ADDR(F));
/* LEFT 2 BYTES OF F #*/

|DCL R FIXED(15) BASED(ADDR(F)+2);
/* RIGHT 2 BYTES OF F */

|[DCL B BIT(8) BASED(ADDR(F)+3);

i /7* TREAT LOW-ORDER BYTE OF F AS BIT 8 #*/
L

bt vt s e s e g womsna nd

Scanning a String of Bits

If you want to scan a string of bits to find the first nonzero bit, con-

sider the method shown in the following example:

DCL FLAGS BIT(32), MASK BIT(32);
MASK = '7FFFFFFF'X;
DO I =1 TO 32;
IF FLAGS > MASK THEN GOTO OUT;
ELSE MASK = MASK/2;
/* SHIFT MASK ONE BIT RIGHT TO SELECT NEXT BIT */
END;

[o e S e, S e, e)

b s e . a— —— —]

Propagating a Character

If you want to propagate a given character through a string, an effi-
cient method is shown in the following example:

DCL A CHAR(50);
A(1) = '2°; /% PUTS CHARACTER Z INTO BYTE A(1l) */
A(2:50) = A(1:49); /* FILLS REST OF A WITH CHARACTER Z */

[o o

e L

Setting an Area to Zerxo

If you have an area which is greater than four bytes in length and a
multiple of eight bits, you can set the entire area to zeros with the
following technique:

r
|DCL A(10) FIXED(31); /* AREA TO BE CLEARED */
|DCL B BIT(320) BASED(ADDR(A)); /* DESCRIBE AREA AS A BIT STRING */

— v d

| B= '"'"B; /* THIS CAUSES THE CONSTANT TO BE PADDED RIGHT WITH 320 BIT|
| ZEROS. SINCE A IS EQUIVALENT TO B, A IS SET TO ZEROS */|
L i

Section 7: BSL Programming Techniques

87

IBM Confidential

Searching a Table

Your BSL programs may frequently need to search a table to match a given
argument, and then branch to a particular label. Two techniques for
doing this are described below.

Case 1: If the search arguments are in a small, ordered range, you may
use the technique shown in this example:

]
i /% I IS THE ARGUMENT #*/

| /* I IS FIXED(31) #*/

I /% THE VALUE OF I MAY BE 1 TO 10 #*/

|pcL (11,12,L3,L4,L5,L6,L7,L8,L9,110) LABEL;

i /* DECLARE BRANCH TABLE POINTS */

[DCL BRANT (10) PTR(31) INIT(ADDR(L1),ADDR(L2),ADDR(L3),
| ADDR(LY4),ADDR(L5) ,ADDR(L6) ,ADDR (L7) , ADDR(L8),

| ADDR(19) ,ADDR(L10)) ;

| GO TO BRANT(I);

| /7# THIS TRANSFERS CONTROL TO THE REQUIRED POINT */

L

ban S e e ——— —— — — a— w—]

Case 2: If the search arguments are not in a small, ordered range, you
may use the technique shown in this example:

—)

/* Q IS THE ARGUMENT */
/* Q IS CHAR(1) #*/
/* Q CAN HAVE NINE HEX VALUES */
DCL Q CHAR(1); |
pci (11,.2,13,L4,1.5,16,L7,L8,19) LABEL; |
/* REQUIRED BRANCH POINTS */ |
DCL 1 BTAB(9) BDY (WORD),
2 ARG CHAR(1) INIT('F3'X,"'91'X,'29'X,"337X,"52"X,"'81"'X,'00'X,
'CC'X,"FF'X),
/* ALLOWABLE VALUES OF ARGUMENT #*/
2 BPT PTR(24) INIT(ADDR(L1),ADDR(L2),ADDR(L3),
ADDR(L4) ,ADDR(L5) ,ADDR(L6) ,ADDR(L7) ,ADDR(LS),
ADDR (1L9)) ;
/* BRANCH POINTS FOR EACH CODE */
DO J =1 TO 9 BY 1;
IF ARG(J) = Q THEN GOTO BPT(J);
/% BRANCH TO PROPER ROUTINE */

/% IF YOU FALL OUT OF LOOP TO THIS POINT THEN Q DID NOT MATCH
ANY ARG IN THE TABLE */
GOTO ERROR;

[e s S e e S e S s . B WA . S — o — — — — —)

b e innn. . — — —— — — — c—

Using the GENERATE Statement
There are two forms of the GENERATE statement in BSL:

» The simple GENERATE maps the contents of the GENERATE statement into
the object margin (see GENMGIN compiler option) of the output
assembler text starting in column 10. The simple GENERATE is
limited to a single card.

¢ The block GENERATE maps a series of cards into the object margin
(see GENMGIN compiler option) of the output assembler text (the
source margin specification is ignored). The end of a block
GENERATE is indicated by a special control statement ($ENDGEN).

88

IBM Confidential

In practice, you should use the simple GENERATE to generate a single
instruction or macro instruction; and use the block GENERATE to generate
a number of lines of executable code or data items. Another considera-
tion is the mapping of the output -- the block GENERATE allows you to
insert text in column one of the output; the simple GENERATE does not
allow this.

Note: To provide proper instruction alignment, the compiler adds a DS
0H instruction following every simple GENERATE statement and those block
GENERATE statements which are not of the form GENERATE DATA.

If you include a data item in the text of a block GENERATE statement
which is not of the form GENERATE DATA, you may need to include code to
branch around the data item. In the GENERATE DATA statement, however,
no branch code is necessary.

If a variable is defined in a GENERATE statement and is referred to
in both the GENERATE statements and the BSL source statements, you must
declare the variable as GENERATED. This attribute shows the compiler
that the named variable is defined in a GENERATE statement and, there-
fore, need not be redefined in BSL.

Appendix A contains a detailed listing of a program that uses
GENERATE statements. The form of the GENERATE statement is described in
the BSL Language Specification manual.

The Compile-Time Processor and the GENERATE Statement

When the BSL compile-time processor substitutes a value for a compile-
time variable, the replacement value is preceded by and followed by a
blank. This can result in an illegal assembly language statement if the
compile-time variable is in a GENERATE statement. The problem can be
avoided in one of the following two ways:

1. ©Stop the compile-time processor from scanning the GENERATE state-
ment by making it look like a comment during compile-time proces-
sing. For example:

GEN; /*

= e S e s e oy
[y y——

$ENDGEN */

After reading a "GEN;' or a "$ENDGEN', the BSL compiler ignores the
remainder of the card. The compile~time processor will not make
substitutions in a comment. Therefore, the compile-time processor
has been stopped from changing the text of the GENERATE statement,
without changing the way that the BSL compiler handles the GENERATE
statement.

2. Define the compile-time variable in such a way that blanks will be
legal after the substitution is made. For example, if you would
like to write:

GEN (LBHBHHL5, CTVBL) ;
and have the compile-time processor replace CTVBL by its value,
it could be done as follows:

Section 7: BSL Programming Techniques 89

IBM Confidential

% DCL CTVBL CHAR;

% DCL CODE CHAR;

% CTVBL = 'ACTNAME';

% CODE ='LbbbbH15,'| |CTVBL;
GEN (CODE) ;

[o s s — c———
b s e, e i, e)

This will result in:

GEN (BLbHHEHHL5,ACTNAME);

oo — ey
[y |

Program Parameterization

Example 1 shows a sample BSL program to read a card and then print it.
The program could have been written to allow either the input_ card buff-
er (INSZ) or the output line buffer (QUTSZ) to be any length for a given
run. The program could also have been written to allow source text from
a library to be included at points within the source program during com-
pilation. And the program could have been written to determine how many
input records could fit on an output 1line, and compile only the code to
print that number of records.

The sample program should have been parameterized (generalized) when
first written by using compile-time macro facilities to do all these
things. This would provide a more flexible, functional program. The
program could be used as an application with many different values,
rather than only once as it stands in its original form.

Remember, this generalizing takes place at compile-time, not at
object time. In the one compilation, two distinct phases occur. These
are:

e MACRO PHASE: The compile-time processor modifies the source text
according to user instructionmns.

e COMPILE PHASE: The compiler translates the modified source text
into assembler text.

Using the sample program in Example 1 as a base, inserts can be added

to generalize the program. (The place for each insert is noted by
shading.)

920

« Example

1

BSt./10°*

1.

DEC68

IBM Confidential

BSL Program to Read a Card and Print It

0001

0002

0004

7 ottt s R FoR R s R KRR e ok 3 ok s ok R ok SRR KK s O R K

/% */
/XTITLE: MAIN - SAMPLE DOCUMENTED BSL PROGRAM */
/% */
/*FUNCTION: TO READ A CARD AND THEN PRINT IT OUT */
/% */
J*ENTRY 3 MAINe ONLY ENTRY POINT */
A */
1% e */
TAS */

1 Aoksdotssolol ottt oot skl ol ook sk ek o ok ke ok ek Bk Sk R ol ol R oK o ks ok ok SRR R ook ok /
MAIN: PROCEDURE : ‘

DECLARE /*VARIABLE DATA ITEMS FOR THIS PROCEDURE*/
BUFFER AREAS*/

CODE FIXED(31%: /%CODE SET BY RET*/
DECLARE /*ROUTINES CALLED*/

RET ENTRY, /*READS IN A CARD*/

PRINT ENTRY: J*PRINTS A LINE*/

OBTAIN: /*DBTAIN AN INPUT CARD*/

CALL RET(BUF.CNODE) s J%GET A CARD, AND SET CODE:
=0, NORMAL READ
=1s END OF FILE

- =2+ ERROR */
/*CHECK CODE FOR VALIDITY*/
TF CODE=0 THEN /*VALID INPUT*/
/%PRINT QUT THIS CARD AND KEEP GOING%/
DOz
OUT(L)="* '3 J*SET FOR SINGLE SPACING*/

2T J=HL

S = S e e WELY
NT(QUT) ¢
GO TO ORTAIN: /*CONTINUE WITH THE NEXT CARD*/
END: .
ELSE IF CODE=1 THEN /%NO MORE INPUT*/
RETURN;: /*%RETURN TO CALLING PROGRAM*/
FLSF /*ERROR SITUATION*/
/%*NOTE THE ERROR ON THE PRINT FILE*/
DO:

7z

NK THE OUTPUT LINE*/

DIC
7*00TPUT T

CALL PRINT(OUTY: ERROR INDICATION®/
RETURN 7#RETURN TO CALLING PROGRAM*/
END 3

END MAING: /%END OF THE PROCEDURE*/

Section 7: BSL Programming Techniques

921

IBM Confidential

|
-

L)
|Insert A

|
|% DECLARE . /% COMPILE TIME VARIABLES */

OUT (LECOL:RECOL)="ERROR"; 7% INDICATE AN ERROR OCCURRED */

|

|
| INSZ FIXED, /* INPUT BUFFER SIZE */ |
| ouTsZz FIXED, /* OUTPUT BUFFER SI1IZE */ |
| LECOL FIXED, /7% LEFT ERROR COLUMN */ |
| RECOL FIXED, /% RIGHT ERROR COLUMN */ |
| ; |
|% 1INSZ=80; |
|% o0uUTsz=121; |
|% RECOL=INSZ+5; |
LECOL=RECOL~-U4 /% SET LEFT ERROR COLUMN #*/;
.
.
]Insert B
BUF CHAR(INSZ), /% INPUT CARD BUFFER */
OUT CHAR(OQUTSZ), /% OUTPUT LINE BUFFER */
. I
.
-
Insert C
OUT(2:00TSZ)=BUF; /% MOVE CARD TO OUTPUT LINE */ i
.
-
-]
Insert D
L J

Changing Buffer Sizes

The inserts A, B, C, and D generalize the buffer sizes as well as the
position where the word 'ERROR' will appear in the output line.

Insert A comes immediately after the compiler control statement con-
taining the MACRO option. This insert does several things:

¢ The DECLARE statements symbolically name the general items - buffer
lengths, right and left error column indicators.

e The assignment statements give numerical values to the buffer
lengths and the right and left error column indicators.

Inserts B, C, and D replace the original numerical values with vari-
able names. Example 2, a macro source listing, illustrates the place-
ment of the inserts.

The resulting program is of far greater value than the original.

This generalized program may be used for this application a number of
times with different numerical values for buffer lengths.

92

"

-

IBM confidential

Example 2.

BSL Macro Source Listing (Changing Buffer Sizes)

MACRO SOURCE LISTING PAGE
1 $ASSEM
2 $ANNOTATE=2 i
3 % DECLARE /*#COMPILE TIME VARIABLES*/)
4 INSZ FIXEDs /%INPUT BUFFER SIZE%/
5 QUTSZ FIXED, /%0UTPUT BUFFER SIZEx/
6 LEGOL FIXEDs /%LEFT ERROR COLUMN*/
7 RECOL FIXED /%RIGHT ERROR COLUMN*/
8 3
9 2 INSZ=80:
10 2 0UTSZ=1213
11 2 RECOL=INSZ+5 3 2/*SET FOR ERROR POSITION PAST®/
12 /%*NORMAL CARD POSITIONS*/:
13 % LECOL=RECOL=4% /%SET LEFT ERROR COLUMN*/
14 7 3ok st s sl ok o 3k ook ok ok % kok ek o e o 3k e 3¢ s Ak e e ok 30 o o oo ok e ekl ok R ok
15 Iz w/
16 /ATITLE: MAIN - SAMPLE DOCUMENTED BSL PROGRAM */
17 7% ®/
18 /#FUNCTION: TO READ A CARD AND THEN PRINT IT OUT %/
19 /% ®/
20 J%ENTRY: MAIN, ONLY ENTRY POINT */
21 /% ®/
22 e . ®/
23 7% x/
24 /4‘*****************************#************************************/
25 MATN: PROCEDURE 3
26
27 DECLARE /*VARIABLE DATA ITEMS FOR THIS PROCEDURE*/
28 /%1/0 BUFFER AREAS*/
29 BUF CHARCINSZ), /*INPUT CARD BUFFER*/
30 OUT CHAR(OUTSZ), 7%0UTPUT LINE BUFFER*/
31 /%RETURN CODE VARIABLE*/
32 CODE FIXED(31): /*CODE SET BY RET#*/
33 DECLARE /#ROUTINES CALLED*/
34 RET ENTRY, /%READS IN A CARD*/
35 PRINT ENTRY: /%PRINTS A LINE*/
36
37 0BTAIN: /%OBTAIN AN INPUT CARD*/
38 CALL RET(BUF +CODE} 3 J*GET A CARD, AND SET CODE:
39 =0, NORMAL READ
40 =1, END OF FILE
41 =2, ERROR %/
42 /*CHECK CODE FOR VALIDITY*/
43 IF CODE=0 THEN JEVALID INPUT*/
44 /%PRINT OUT THIS CARD AND KEEP GQING*/
45 DO
46 ouT(1Y=" '3 /%SET FOR SINGLE SPACING*/
47 OUT(2:0UTSZ) =BUF: 7%MOVE CARD TO OUTPUT LINE*/
48 CALL PRINT(OUT) 7%0UTPUT THE CARD*/
49 GO TO OBTAIN: #%CONTINUE WITH THE NEXT CARD*/
50 END:
51 ELSE IF CODE=1 THEN 7%ND MORE INPUT*/
52 RETURN3 /*%RETURN TO CALLING PROGRAM*/
53 ELSE /%ERROR SITUATION*/
54 /#NOTE THE ERROR ON THE PRINT FILE*/
T AT ION*®/
J*RETURN TO CALLING PROGRAM#%/
62 . END MAIN: /*END OF THE PROCEDUREX/
NO ERROR OR WARNING CONDITION HAS BEEN DETECTED FOR THIS MACRO PASS.

Section 7:

BSL Programming Techniques

93

Including Text From A Library

It is possible that an error could result from
and LECOL. If OUTSZ is less than either RECOL
word 'ERROR' would not be placed in the output
sibility, and to further generalize the sample
an external library (Figure 13) could be added

IBM Confidential

the generalizing of RECOL
or LECOL, or both, the
line. To avoid this pos-
program, source text from
during compilation.

Direct Access

MACROEX

Figure 13. Source Text From an External Likrary

Insert E will replace the two instructions of the sample program
(both the OUT='b'; and the OUT(LECOL:RECOL)='ERROR'; statements in

Example 2).

i
|Insert E

|

| %IF RECOL<=OUTSZ % THEN /% IS RECOL IN RANGE OF OUTPUT LINE #*/
| %INCLUDE MACROEX(NORMAL) /¥ YES */;

| #*ELSE

| %INCLUDE MACROEX(SHORT) /% NO */;

L

b et e, s . e e

One of the two paths will be taken at compile time, depending upon
the values of RECOL and OUTSZ. One of two sets of data will be included
in the program. Example 3 shows a macro source listing that adds source

text from MACROEX(NORMAL).

o4

IBM Confidential

¢ Example 3.

BSL Macro Source Listing (Including Text)

MACRO SOURCE LISTING PAGE

1 $ASSEM
2 $ANNOTATE=2 :
3 z DECLARE /*COMPILE TIME VARIABLES*/
4 INSZ FIXED., /*INPUT BUFFER STZE*/
5 OUTSZ FIXED, /%0UTPUT BUFFER STZE*/
6 LECOL FIXED, /%LEFT ERROR COLUMN*/
7 RECOL FIXED 4/%RIGHT ERROR COLUMN*/
8 H
9 4 INSZ=80:
10 4 ouTsSz=1213
11 2 RECOL=INSZ+5 % Z/%SET FOR ERROR POSITION PAST*/
12 . /*NORMAL CARD POSITIONS*/3
13 % LECOL=RECOL=4 /%SET LEFT ERROR COLUMN%/3
14 o e ke ke o ol oo e o ¢ o o sfe ek s sk ofe s e 3 ofe ok s sfeale e sfe e ok s 3k s e ofe e e ke sl o o ek ol sk ok sfe sk 3 ok e e skl kol ol ke ok f
15 /% ®/
16 JETITLE: MAIN - SAMPLE DOCUMENTED BSL PROGRAM ®/
17 /4 : A
18 /#FUNCTION: TO .READ A CARD AND THEN PRINT IT OUT ®/
19 /% */
20 JH*ENTRY: MAIN. ONLY ENTRY POINT */
21 VA */
22 /% e %/
23 /% . */
24 /2 3 e e ke e ke ok ek sfefe el ook ok e R koK * sbesfe e K sfe o ofe e o o A X e o e ol X ok ok ok /.
25 MAIN: PROCEDURE 3
26
27 DECLARE /*VARIABLE DATA ITEMS FOR THIS PROCEDURE*/
28 /%1/0 BUFFER AREAS#*/
29 BUF CHAR(INSZ) /*INPUT CARD BUFFER%¥/
30 OUT CHAR(OUTSZ), /¥0UTPUT LINE BUFFERX*/

’ /*RETURN CO

e (@) - X —

DECLARE /%*ROUT

34 RET ENTRY¢ J%READS IN A CARDx/
35 PRINT ENTRY: /*PRINTS A LINE*/
36
37 OBTAIN: /*OBTAIN AN INPUT CARD*/
38 CALL RET(BUF ,CODE) 3 /*GET A CARD, AND SET CODE:
39 =0, NORMAL READ
40 =1, END OF FILE
41 =2, ERROR */
42 /%CHECK CODE FOR VALIDITY*/
43 IF CODE=0 THEN /*VALID INPUT*/
44 /%PRINT OUT THIS CARD AND KEEP GOING*/
45 DO:
46 OUT(1)=' '3 /%SET FOR SINGLE smcmeg/

‘II @ CALL PRINT(OU 7
49 GO. TO OBTAIN; /*CDNTINUE WITH THE NEXT CARD*/
50 END s :
51 ELSE IF CODE=1 THEN /*NO MORE INPUTx/
52 RETURN3$ /*%RETURN TO CALLING PROGRAM%/
53 ELSE /*¥ERROR SITUATION*/
54 J¥NOTE THE ERROR ON THE PRINT FILE%/
55 DO ‘
56 % IF RECOL <= 0OUTSZ %THEN /%IS RECOL IN RANGE OF OUYPUT LINE*/
57 Z INCLUDE MACROEX (NORMAL) /*YES*/:
58 OUT = ¢+ 13 “ /*SET CARRIAGE CONTROL TO BLANK¥*/
59 OUT(LECOL:RECOL) = 'ERROR':

END OF NORMAL
60 % . ELSE
61 2 INCLUDE MACROEX(SHORT? 7 *NO%/ 3
62 CALL PRINT(OUTY s /%0UTPUT THE ERROR INDICATION*/
63 RETURN 3 /*RETURN TO CALLING PROGRAM%/
64 ENDs
65
66 END MAIN; /*END OF THE PROCEDURE®/
NO ERROR OR WARNING CONDITION HAS BEEN DETECTED FOR THIS MACRO PASS.
Section 7: BSL Programming Techniques 95

IBM Confidential

Altering the Source Code

To determine the number of input records that would fit on an output
line for any given run, and to compile only the code to print that num-
ber of records, two changes to the program, as shown in Example 3, are

%ONECARD: ; /* COMPILE TIME BRANCH POINT FOR ONLY 1 CARD PER LINE */

needed. (Note the places for changes are indicated in Example 3.)

) 1
| Insert F |
l N

| CODE FIXED (31), /*¥ CODE SET BY RET #*/

| T FIXED (31) INIT (2); /* INDEX TO OUTPUT LINE */ |
| |
| Insert G) |
|

| OUT(I:I+INSZ)=BUF; /% MOVE ONE CARD TO OUTPUT LINE #*/

| v

| %IF OUTSZ <=INSZ#*2 % THEN /* WILL 2 CARDS FIT IN OUTPUT LINE */

| % GOTO ONECARD; /¥ NO. OMIT CODE TO PROCESS 2ND CARD */ |
| IF I=2 THEN /% IS THIS THE FIRST CARD IN LINE */ |
| DO; /*¥ YES. PREPARE TO PROCESS 2ND CARD */ |
| I=I+INSZ; /% SET INDEX FOR 2ND CARD IN LINE #*/ |
| GOTO OBTAIN; /* READ ANOTHER CARD #*/ |
| END; [
| ELSE : /% 2ND CARD HAS BEEN PROCESSED #*/ |
| I=2; /% SET INDEX TO START OF OUTPUT #*/ |
| |
L J

Insert F initializes the variable I. Insert G moves data from one
input card to the output buffer. The compile-time statements determine
if data from two input cards can fit into the output buffer. One of two
branches is taken as a result of the determination. Example 4 shows the
macro source listing at compile-time, and indicates an altered input
line. :

96

IBM Confidential

Example 4. BSL Macro Source Listing (Altering Source Code)

MACRO SOURCE LISTING PAGE 1
1 $ASSEM
2 $ANNOTATE=2
3 % DECLARE /%COMPILE TIME VARIABLES*/
4 INSZ FIXED. /%INPUT BUFFER SIZEx/
5 QUTSZ FIXED, /*0UTPUT BUFFER SIZE*/
[LECOL FIXED., /*LEFT ERROR COLUMN*/
7 RECOL FIXED /*RIGHT ERROR COLUMN*/
8 3
9 4 INSZ=803
10 % 0UTSZ=1213%
11 R RECOL=INSZ+5 %/%SET FOR ERROR POSITION PAST*/
12 J*NORMAL CARD POSITIONS*/;
13 % LECOL=RECOL-4 7%SET LEFT ERROR COLUMN*/3
14) e 3t s e e e e o s obe 3l i o s o e s e sl s 3 s ofe e ke ke ol o ok R o 6 ol ofe oK ok kel e e ke ek ek ke koo ok A kR R R ARk
15 % */
16 I%TITLE: MAIN — SAMPLE DOCUMENTED BSL PROGRAM */
17 /% */
18 /%FUNCTION: TO READ A CARD AND THEN PRINT IT OUT */
19 1% */
20 /*ENTRY: MATN. ONLY ENTRY POINT */
21 /% . x/
22 /% ... */
23 /% */
24 7 %35 s s e e b sbe e ol sk ook st o o o o e sk o o e e ok ke skt sk e 3o s e s ek sl skl ok s e ol skl okl s sk ook ok e kok /
25 MATN PROCEDURE 3
26
27 DECLARE /%VARIABLE DATA ITEMS FOR THIS PROCEDUREX*/
28 /%1/0 BUFFER AREAS*/
29 BUF CHAR(INSZ) . J/*INPUT CARD BUFFER*/
30 OUT CHAR(OUTSZ), /*0UTPUT LINE BUFFER*/
31 /*RETURN CODE VARIABLE*®/
32 CODE FIXED(31) /*CODE SET BY RET*/
33 T FIXED(31) INIT{(2):/*INDEX TO OUTPUT LINE*/
34 DECLARE /*%ROUTINES CALLED*/
35 RET ENTRY: /*READS IN A CARDx%/
3é PRINT ENTRY; /*PRINTS A LINEX*/
37 . : :
38 ORTAIN: /%0BTAIN AN INPUT CARD*/
39 CALL RET{BUF.CODE}: /#GET A CARDs+ AND SET CODE:
40 =0, NORMAL READ
41 X =1, ENC OF FILE
42 =2+ ERROR */
43 /%CHECK CODE FOR VALIDITY*/ .
44 IF CODE=0 THEN /*VALID INPUT*/
45 /%PRINT OUT THIS CARD AND KEEP GOING*/
46 Do
47 ouT(LY=* '3 /*SET FOR SINGLE SPACING*/
48 OUT(I:I+INSZI=BUF; /%MOVE ONE CARD TO OUTPUT LINEX*/
49 % IF OUTSZ <= INSZ%2 BTHEN /*WILL 2 CARDS FIT IN OUTPUT LINE*/
50 % GOTO ONECARD: /%NO.OMIT CODE TO PROCESS 2ND CARD*/
51 IF I=2 THEN /*%IS THIS THE 1ST CARD :IN LINE*/
52 DO /*YES.PREPARE TO PROCESS 2ND CARD*/
53 I=I+INSZ; J*SET INDEX FOR 2ND CARD IN LINE*/
54 GOTO OBTAIN: 7*READ ANGTHER CARD*/
56 END:
56 ELSE /%2ND CARD HAS BEEN PROCESSED*/
57 I=2: #*%SET INCEX TO START OF OUTPUT*/
58 %ONECARD:: /% COMPILE~-TIME BRANCH POINT FOR ONLY 1 CARD PER L INEx/
59 CALL PRINT(OUT): /%0UTPUT THE CARD*/
60 GO TO OBTAIN: /*CONTINUE WITH THE NEXT CARD*/
€1 END:
62 ELSE IF CODE=1 THEN /%NO MORE INPUT*/
63 RETURN 3 /%RETURN TO CALLING PROGRAM%/
64 ELSE /*ERROR SITUAT ION*/
65 /%NOTE THE ERROR ON THE PRINT FILE*/
66 D0t
67 % IF RECOL <= OUTSZ %THEN 7#IS RECOL IN RANGE OF OUTPUT LINE*/
68 % INCLUDE MACROEX (NORMAL) /*YES*/3
69 ouUT = v g /%SET CARRIAGE CONTROL TO BLANK*/
70 OUT(LECOL:RECOL) = "ERROR';
END OF NORMAL
71 z ELSE
72 2 INCLUDE MACROEX(SHORT) /%NO*/;
73 CALL PRINTIOUT) ; /*%0UTPUT THE ERROR INDICATION*/
T4 RETURN: /*RETURN TO CALLING PROGRAM%/
75 END:
76 . END MAIN: J/*END OF THE PROCEDURE*/
NO FRROR OR WARNING CONDITION HAS BEEN DETECTED FOR THIS MACRO PASS.

Section 7: BSL Programming Techniques

97

IBM Confidential

Appendix A: Example of Program Using BSL

GENERATE

Statements

| Example 5 shows a BSL program which uses both forms of the GENERATE
The program reads a card into an area called BUF.

statement.

Of special interest to 0S users is the reference to the
of the DCB, which appears in a block GENERATE. You should
that CARDIN, the DCB, is declared as GENERATED.

e Example 5.

BSL/ELEVEN MAY69

0001

0002
coe3
0004
0605

000é

00C7
oooeg

oces
0010
0011

Appendix A:

Use of the GENERATE Statements (Part 1 of 10)

CRIVER FOR PROGRAM TO DEMCNSTRATE GENERATE PAGE 001
7RO ORIOOROR RO R K /
/% */
/% THIS PROCEDURE CALLS ANCTHER BSL PRCCEDURE TO READ A CARD INTO ANx/
/*AREA CALLED BLF, MOVES IT TC AN AREA CALLEC CUTs AND CALLS A */
/*%ROUTINE FROM THE BSL LIBRARY TO PRINT IT. */
A ®/
3okl R R R ROl R A RO ROIOK /

CRIVFR?

JHENTRY PCINT#/
PROC:

ocL BLF CHAR(80) LOCAL EXTERNAL:

ocL CUT CHAR{121):
neL CODE NONLCCAL EXTERNAL:

CALL GETCD:
/*TEST CODE FCR SUCCESSFUL READ*/
IF CODE==0 THEN
RETURN3:
JHREAD WAS SUCCESSFUL*/
OLT{1)=r1%s
OLT(2:121}=BUF}
CALL PRINT(BUF)3
END DRIVER:

/%INPUT AREA%/
/%CUTPUT AREA®/
/%*CODE SET BY GETCD*/

/%READC 1 CARD*/

/%READ NOT SUCCESSFUL*/
/%*RETURN TO CALLING PROC*/

/%SET CARRIAGE CONTROL*/

/%PUT BUF IN PRINT LINE*/

/*PRINT 1 LINEXx/

/%*RETURN TO CALLING PROC~
END CF DRIVER%/

OFLAGS field

also note

Example of Program Using BSL Generate Statements

929

e« Example 5.

BSL/ELEVEN MAY69Y

100

ccL'o IN

2

IBM Confidential

Use of the GENERATE Statements (Paxrt 2 of 10)

ORIVER FOR PROGRAM TO DENCNSTRATE GENERATE PAGE 002

NAME ATTRIBUTE ANC CRCSS REFERENCE TABLE

BUF STATIC+ LOCAL. CHARACTER(80). EXTERNAL, BCUNDARY(BYTE.1)
9, 10

CCDE STATICs NCNLCCAL. FIXEC(31)s EXTERNAL, BOUNDARY{WORD,1}
6

CRIVER STATIC. LCCAL. ERTRY. EXTERNAL
1. 11

GETCD STATIC. NONLCCAL. ENTRY. EXTERMNAL
S5e 11

out STATICs LDCALs CHARACTER(121), INTERNAL, BCUNCARY(BYTE.1l)
8¢ 9

PRINT STATTICs NCNLCCAL. ENTRY., EXTERMNAL
16+ 11

#*% PROC. ORIVER HAD

NO ERRORS

IBM Confidential

e Example

Lce

000000
000000
000004
000006
€C0006
000006
000004
00000E
000012

000014
000018

000014
00001C
000020

000024

000028

00002C
000032
000036

00003C
0€0040
000042
000046
000048
00004C

00004C
000050
000054
000056

5. Use of the GENERATE Statements (Part 3 of 10)

0OBJFCT CODE ADDR1

90FC
0580

5000
41F0
50F0Q
186CF

58F0
OSEF

LRFF
5810
59F0

4770

92F1

D24F
9240
D22¢

41E0
0700
58F0
051F

pooc

ROGE
B062
o008

RC52

RCS6
1000

BO46

ROFA
BOFR
R14R
f14C
BO46

ROSA

000000R0O

5800
98EC
O7FE

D0OC4
cooc

00100

80AA 00101
00151
R14B 00152

ACDR2

0000C

acoec
0C068
00008

00058

ocecsc
00000

0004C

000BO
0C151
0004C

00060

00004
0000C

Appendix A:

STMT

OEONTUMH BN

Example of Program Using BSL Generate Statements

SOURCE STATEMENT FL5APR68B
ICTL 0l.71.16
LTS Aok ROk ok
* /% *
% /% THIS PROCFDURE CALLS ANCTHER BSL PROCEDURE TO READ A CARD INTO AN*
* /*AREA CALLED BUF. MOVES IT TO AN AREA CALLED OUT, AND CALLS A
% /%ROUTINE FROM THE BSL LIBRARY TO PRINT IT. *
* % *
* LAk AR ok dekk
*DRIVER' /*ENTRY PCINT*/
PROC
LCLA &T.&SPN 0001
- 3001 ANCP 0001
DRIVER CSECT « 0001
STM @EsacC,12(abd) 0001
BALR 3@B.0 0001
APSTART DS OH 0001
USING @PSTART+00000.,aB 0001
ST 3D+ASAVOOL+4 0001
LA aF+aSAVOOL 0001
ST JF+B8(0+20) 0001
LR aD.aF 0001
* DCL BUF CHAR(80) LOCAL EXTERNAL: /*INPUT AREA*/
* pcL QUT CHAR(121); /#*0UTPUT AREA*/
* ocL CODE NONLCGAL EXTERNAL: /%CODE SET BY GETCD*/
*
* CALL GETCD: /%READ 1 CARD*/
L F+aAVL ADDRESS OF GETCD 0005
BALR QE.aF 0005
* /*TEST CCDE FCR SUCCESSFUL READ*/
* IF CODE~=0 THEN /¥READ NOT SUCCESSFUL*/
SR aFaF 0006
L Aledh2 ADDRESS OF CODE 0006
C AF+0(0+21) 0006
* RETURNS /*RETURN TO CALLING PROC*/
BC 07+2ELO 0007
* /*READ WAS SUCCESSFUL*/
* OuT(1)1="'1¢; /*SET CARRIAGE CONTROL*/
aSFF MVI oUT,C*1! 0008
* 0UT{2:121)=BUF: J%PUT BUF IN PRINT LINE*/
MVC QUT+1(80)4+BUF 0009
MVI QUT+81,Ct ¢ 0009
rVC QUT+82(39).0UT+81 0009
* CALL PRINT(BUF)3 /%PRINT 1 LINE*/
LA JE+ACLOFE 0010
CNOP 244 0010
L JF,av3 ADDRESS OF PRINT 0010
BALR @1.+3F 0010
oc A{BUF) 0010
2CL9FE EQU * 0010
* END DRIVER;: /*¥RETURN TO CALLING PROC-
* END OF DRIVER¥/
QAELOL L aD+4(0.a0} 0011
LM JEV@C412(JC} 0011
BCR 15.aE 0011
ADATAL EQU *

1

3/28/69

00000
00010
00020
00030
00040
00050
00060
00070
00080
00090
00100
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00330
00340
00350
00360
00370
00380
00390
00400
00410
00420
00430
00440
00450
00460
00470
00480
00490
00500
00510
00520
00530
00540

101

IBM Confidential

o Example 5. Use of the GENERATE Statements (Part 4 of 10)

PAGE 2
LCC NRJFCT CODE ADDR1 ACDR2 STMT SOURCE STATEMENT F15APR68 3/28/69
c00000 56 a0 EQU 0o EQUAIES FOR REGISTERS 0-15 00550
000001 57 @l EQU ol 00560
000002 58 a2 EQU 02 00570
000003 59 a3 EQuU 03 00580
000004 60 A4 EQU 04 00590
000005 61 a5 EQU 05 00600
©00006 62 A6 EQU 06 00610
000007 63 a1 EQU 07 00620
€00008 64 @8 EQU o8 00630
€00009 65 @s EQu 09 00640
©00004 66 ah EQU 10 00650
000008 67 ak EQU 11 00660
00000C 68 AC EQU 12 00670
000000 69 @D EQU 13 00680
0O000E 70 AE EQU 14 00690
00000F 71 afF EQU 15 00700
000C5¢& 0000
000C58 00C00000 72 avi cc VIGETCO) 00710
000C5C 00C000C0 73 8A2 oc ALCCDE) 00720
000060 00000000 74 AV3 ocC VIPRINT) 00730
0000€4 75 os oF 00740
000068 76 0s oD 00750
0000¢&8 77 QADATA EQU * 00760
000068 78 @SAVO0l EQU aDATA+00000000 72 PYTE(S) DN WORD 00770
79 ENTRY BUF 00780
0000R0 a0 BUF EQU 20ATA+00000072 80 BYTE(S) 00790
€00100 81 OuT EQU aDATA+00000152 121 BYTE(S) 00800
82 EXTRN COCE 00810
000068 AY bs 00000273C 00820
00017C 84 DTEMPS cs OF 00830
00017C 85 ACATEND EQU * 00840
000000 86 END DRIVER 0085C

102

IBM Confidential

e Example 5. Use of the GENERATE Statements (Part 5 of 10)

BSL/FLFVEN MAY&9 PROGRAM T0O DEMCNSTRATE THE GENERATE STATEMENT

/%

0001 /sodskoictodtoR ok s 6 ootk ok sl ool dok ook /
*/

/% THIS PROCEDURE USES CONTROL PRCGRAM SERVICES TO DEFINE A DCB« */
/%QPEN [T+ ANC READ A RECCRC. *J

/% */

/

AL EE S FAARA R
GETCD: /AENTRY PCINT*/
PROC:

0002 ceL CARDIN CHAR(92} GENERATED: /%DCB%/

0003 ocL BUF CHAR{80) NONLCCAL: /*INPUT BUFFER%/

0004 ocL CODE LOCAL EXTERNAL /%SET TO INDICATE I/0
ERROR*/

0005 ocL GFLAGS BIT(8) BASED(ADDR(CARDINI+4813 /*OPEN FLAGS IN

DCR*/

0006 pcL RO REG(O} PTR(31): /%*PCINTER TO INPUT
BUFFER%/

0007 Do TRTPTR REG(7) PTR(31): /%PTR TO INPUT BUFFER
FOR TRT SCAN*/

0008 RESTRICT(TRTPTRI § /#RESTRICT COMPILER USE%/

0009 GFNERATE DATA: /*GENERATE DCB ANC TRT TABLEX/

CARDIN nce DSORG=PS+MACRF=(GM) + CONAME=BSLINy CPTCD=C+RECFM=F,
LRECL=80+BLKSIZE=80 +BFTEK=S yBFALN=F+EODAD=ENCFILE,
BUFNO=3 s SYNAC=TCERRCR+ERODPT=ACC

TRTTAB DC 64X 'FF 1
DC Xxtoor ONLY NCN-ZERO FUNCTION BYTE = BLANK
oC 191X'FF*
$FNDGFEN
0010
GEN(OPEN (CARDIN«{INPUT,REREAD)})3 /*GPEN DCB*/
0011 /*TEST FOR SUCCESSFUL CPEN*/
1F OFLAGS(4)='0'B THEN /%CPEN FAILED*/
0012 /*UPCN FATLURE TG OPENy SET A CCCE AND RETURN%/
003
0013 CODE=3: /%SET OPEN FAILURE CODE%*/
0014 RETURN: /*RETURN TO CALLING PROC*/
0015 END ¢
001€¢ GFTNEXT: RO=ADDR{BUF}: J*SET PTR TO INPUT
BUFFER*/
0017 GEN(GET CARDIN.(0O}): /*READ A RECORD*/
0018 TRTPTR=ADDR(BUF) { /*SET PTR TO EXECUTE TRT¥/
0019 GENERATE:
TRT 0(80.7) s TRTTAB 1S THIS CARC BLANK
8Cc 8,GETNEXT YESs GET NEXT CARD
$ENDGEN
0020 CODE=0 /%SET SUCCESSFUL READ*/
0021 RETURN /*RETURN TO CALLING PROC*/
0022 ENDFILE: /*ON END OF FILE*/
CODE=13 /%SET END OF FILE CODE»/
0023 RETURN3Z /%RETURN TO CALLING PROC*/
0024 I0ERROR: /*IF AN I/C ERRCR CCCURS*/
CCDE=24% /#*SET CODE FOR READ
ERROR*/
0025 RETURN S /*RETURN TO CALLING PROC*/
0026 END GETCD: /%END OF GETCD PROC*/

Appendix A: Example of Program Using BSL Generate Statements

103

IBM Confidential

¢ Example 5. Use of the GENERATE Statements (Part 6 of 10)

BSL/EL EVEN MAYES PROGRAM TO DEMCNSTRATE THE GENERATE STATEMENT PAGE 002
ccu'c IN NAME ATTRTBLTE ANC CROSS REFERENCE TABLE

3 BUF STATIC+ NONLOCAL, CHAPACTER(80), EXTERNAL., BOUNDARY(BYTEs1)
16, 18

2 CARDIN GENERATED, CHARACTER{92), BOUNCARY(BYTE,1)
5

4 CeNE STATIC. LOCALs FIXED(31), EXTERAAL, BCUNDARY(WORCs1)
134 20+ 224 24

22 ENCFILE STATIC. LOCALs LABEL+ INTERNAL
22

1 GETCL STATIC. LOCAL,» ENTRY, EXTERNAL
1s 2¢€

16 CETNEXT STATIC, -LOCAL, LABEL, INTERNAL
1€

24 IOERROR STATIC. LOCAL. LABEL. INTERNAL
24

5 CFLAGS BASED ON ADDR(CARDIN)+48., BIT(8), BOUNDARY({BYTE.1)
11

6 RO REGISTER(0)s PCINTER(31), INTERNAL, BCUNCARY(WORD.1)
16

7 TRTPTR REGISTER(7), PCINTER{31}, INTERNAL, BCUNDARY(WORC,1)
8., 18

%*%% PROC. GETCD HAD NO ERRORS

104

IBM Confidential

e Example

Lee

0C0000
000000
cooco4
00000¢
0c0006
c0000¢&
000004
NCO00E
000012

000014
000014
000018
000015
onoo1c
00001E

00001F

000027

60002¢
000024

00002E

5.

OBJECT CODE

90FC DOOC
05R0

50C0 RCT7E
4} FO RCTA
50F0 D008
18DF

4510 BClé
90

0000CC
0Aa13

9110 ROF6

4750 RC2C

41F0 0003
S0F0 BOC2

4TFO BO€A

Use 0of the GENERATE Statements (Part 7 of 10)

ADDR1

0COFC

ACDR2

0C00C

00084
cco8o
00008

6colc

00022

00003
000C8

oceTo

Appendix A:

STMT

CONO DN WN -
% H B E R K E K

GETCD:

SOURCE STATEMENT F15APRES
ICTL 0171416

/AR ok Rk Aok R ok

/% *

/% THIS PROCEDURE USES CCNTRCL PRCGRAM SERVICES TO DEFINE A DCB, *

/*0PEN 1T+ AND READ A RECORD. *

/% *

7wk

/*ENTRY. POINT*/
PROC:

10 LCLA &T.&SPN 0001
11 .3001 ANOP 0001
12 GETCD CSECT o B 0001
13 STM ?E.aC,12(a0) 0001
14 RALR a@B.0 0001
15 @PSTART DS OoH 0001
16 USING @aPSTART+00000,38B 0001
17 ST 3D +aSAVOO0L+4 0001
18 LA aF +aSAVOO1 0001
19 ST aF+8(0+aD) 0001
20 LR a0+ aF 0001
21 * ocL CARDIN CHAR{92) GENERATED; /*DCB*/

22 * pcL BUF CHAR(80) NCNLCCAL;: /*INPUT BUFFERX/

23 * bcL CODE LOCAL EXTERNAL: /*SET TO INDICATE 1/0

24 % ERROR*/

25 * ccL OFLAGS BIT(8) BASEC(ACCR(CARDIN)+48); /%0OPEN FLAGS IN
26 * DCB*/

27 * ocL RO REG(0) PTR(31}: /*POINTER TQ INPUT

28 * BUFFER*/

29 * DcL TRTPTR REG(7) PTR(31)3 /*¥PTR TO INPUT BUFFER

30 * FOR TRT SCAN*/

31 * RESTRICT(TRTPTR): /#RESTRICT COMPILER USE*/
32 *GENERATE DATAj: /*GENERATE CCB AND TRT TABLE*/

33 *

34 * GEN(OPEN (CARCIN.(INPUT,REREAD))); /*OPEN DCB*/

35 CPEN (CARDINs (INPUT,REREAC))

36+ CNOP 044

37+ BAL Le%+8 LCAC REGL W/LIST ADDR.

38+ 0C ALl{144) OPTION BYTE

39+ cc AL3(CARCIN) CCB ADCRESS

40+ sve 19 ISSUE CPEN SVC

41 DS oH

42 * /*TEST FOR SUCCESSFUL OPEN*/

43 % IF OFLAGS(4)='0'8 THKEN /*0OPEN FAILED*/

44 ™ CFLAGS+8'00010000" 0011
45 * /#*UPON FAILURE TO OPEN, SET A CODE AND RETURN%/

46 * o0

47 ac 05 +Q9FF 0oLl
48 * CODE=33¢ /%#SET OPEN FAILURE CODE*/
4G LA AF+3 0013
5¢C ST aF +CODE 0013
51 * RETURN? /*RETURN TO CALLING PROC*/
52 BC 13+8ELOL 0014
53 * D:

Example of Program Using BSL Generate Statements

END:
54 *GETNEXT: RO=ADDR(BUF);
*

/%SET PTR TO INPUT
BUFFER*/

1

3/28/69

00000
00010
00020
00030
00040
00050
00060
00070
00080
00090
00100
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00330
00340

00350
00360
00370
00380
00390
00400
00410
00420
00430
00440
00450
00460
00470
00480
00490

105

e Example 5.

Lcc

000032
000032
000036

nooo38
00003C
G00040
000042

0no042
000046

000048
00004F
000057

000052
000054

000058

60005C
000060

0000¢4

000068
0000éC

0€0070
000074
ncoo78
000074
000000
600001
000002
000003
000004
000005
000006
noacot
0Cc0008
000009
000004
00000R
00000C
¢0000D
00000E
00000F
000074

106

ORJECT CCDE

5810
1801

4110
58F0
05EF

5810
1871
DD4F
4780
1BFF
50F0
47F0
41FC
50F0
47F0

41F0
50F0

5800
98EC
07FE

0000

AC76

aoce
1030

BOT6

7000
RO2C

Boc2
BCé&A
0co1
Bac2

RCEA

0002
BOC2

Coo04
naoc

ADDR1

8126 00000

ADDR2

oco7c

000CC
00030

0007C

oo12c
00037

0G0C8
0C070
acool
000C8

0co070

00002
ococs

0C004
ocooc

IBM

Use of the GENERATE Statements (Part 8 of 10)

SOURCE STATEMENT F15APR6ES
@9FF EQU * 0015
GETNEXT L al.ahl ADDRESS OF BUF 0018

LR 0L 0015
* GENIGET CARCIN,{0})3 /%READ A RECCRD*/
GET CARDIN, {0}
LA 1,CARDIN LCAD PARAMETER REG 1
L 15,48(0+,1) LCAD GET ROUTINE ADOR.
BALR 14415 LINK TO GET ROUTINE
oS OH
* TRTPTR=ADDR (BUF) 3 J*SET PTR TO EXECUTE TRT*/
L alyaAl ADDRESS OF BUF 0018
LR aT+al oole
*GENERATE @
TRT 0(80+7)+TRTTAB IS THIS CARD BLANK
BC B+ GETNEXT YESs GET NEXT CARD
DS OH
) * CODE=0% /%SET SUCCESSFUL READ*/
SR 2F +3F 0020
ST aF,CODE 0020
* RETURN3: /*RETURN TO CALLING PROC*/
BC 15+3ELOL 0021
*ENDFILE: /%0ON END OF FILEx/
CODE=13: /*SET END OF FILE CODEx/
ENCFILE LA aF.l 0022
ST aF.CODE 0022
* RETURN: J%RETURN TO CALLING PROCX/
:19 15+3ELOL 0023
[0ERRCR: /%IF AN 1/0 ERROR OCCURS/
x CODE=23% /%*SET CODE FOR READ
* ERROR*/
IGERROR LA aF 2 0024
ST @F +CCOE 0024
x RETURN: /*%RETURN TO CALLING PROC*/
* END GETCD: /*END OF GETCD PROC*/
QELOL L aD4(0+2D) 002é
LM QE.aCyl2(aCH 0026
BCR 15.aE 002¢é
ACATAL EQU *
a0 EQuU 00 EQUATES FOR REGISTERS 0-15
al EQU 01
a2 EQU 02
a3 EQU 03
a4 EQU 04
a5 EQU 05
a6 EQU a6
ar EQU 07
a8 EQU 08
ag EQU 09
aA EQU 10
ag EQU 11
aC EQU 12
aC EQU 13
aE EQU 14
aF EQU 15

confidential

PAGE 2

3/28/69

00500
00510
00520
00530
00540

00550
00560
00570
00580
00590
00600
00610
00620
00630
00640
00650
00660
00670
00680
00690
00700
00710
00720
00730
00740
00750
00760
00770
00780
00790
00800
00810
00820
00830
00840
00850
00860
00870
00880
00890
00900
00910
00920
00930
00940
00950
00960
00970
00980
00990
01000

IBM Confidential

Example 5.

LCC NBJFCT CODE

00007C 00000000
060080
060080
0Cc0080
ocooso

0000C8
€€o000
0¢2007
©co080
onooce

acooce
cooocc
oqoocc

€¢000CC 0000000000000000
¢c000DC 00000000

0G00F0 03
0COOF1L 000001
0000E4 0000
0000FE 4000
000CFE 00000001

0000EC 41
OD00FD 00005C
0Q00F0 80
0000F1 000000

0000F4 C2E203C5N5404040
000CFC 02

0000FD 00

00COFE 5000

€00100 20
©00101 000001
000104 00C00068

Appendix A:

ADDR1 ACDR2

Use of the GENERATE Statements

STMT SOURCE STATEMENT

110 aAy
111

112

113 ACATA
114 3SAVO01
115

116

117 CODE
118 RO

119 TRTPTR
120

121 aTEMPS
122 CARDIN

124+%
1254%

126+
127+CARDIN
128+

130+%

132+
133+

135+%

137+
138+
139+
140+
141+

143+%

145+
146+
147+
148+

150+%

152+
153+
154+
155+

157+%
159+

160+
161+

Example of Program Using BSL Generate Statements

ocC

cs

DS
EQU
EQU
EXTRN

CRG

ORG

nc
cc

A(BUF)
oF
oD

%*
ADATA+00000000
BUF

CODE
aDATA+00000072
00000000
00000007
00000076C

OF

DSORG=PS yMACRF=(GM) 4 UDNAME=BSLINsOPTCD=C+RECFM=F,
LRECL=80+BLKSIZE=80,BFTEK=S5,BFALN=F,EODAD=ENDFILE,

72 BYTE{S) ON WORD

FULLWORD INTEGER

FULLWORG POINTER REGISTER
FULLWORD POINTER REGISTER

BUFNQO=3, SYNAD=ICERRCRs EROPT=ACC

CATA CCNTROL BLOCK

*=0 TO ELIMINATE UNUSEC SPACE
OF ORIGIN CN WCRD BCUNDRY
%*¥+0 TO ORIGIN GENERATION

CIRECT ACCESS CEVICE INTERFACE

BL16'0' FDAD.DVTBL

ALO) KEYLE+DEVT,TRBAL

CCMMON ACCESS METHOD INTERFACE

AL1(3) BUFNO
AL3{1) BUFCB
AL2(0) BUFL

BL2%0100000000000000" DSORG

A(1l) I0BAC

FCUNDATION EXTENSION

BRL1%'01000001* BFTEKsBFALNsHIARCHY

AL3(ENCFILE) EOCAD
BL1'10000000* RECFM

AL3(0) EXLST

FCUNDATION BLOCK

CLB'BSLIN' DONAME

BL1'00000010" GFLGS
BL1'00000000 IFLG

BL2'01031000000000000* MACR

BSAM-BPAM—QSAM INTERFACE

BL1'001006000' RER1

AL3(1) CFECK, GERRs

A(TOERROR) SYNAD

PERR

(Part 9 of 10)

PAGE 3

F15APR68 3/28/69
0L010
gloz0
01030
01040
01050
01060
01070
01080
01090
01100
0illo0
01120
01130
01140
01150

> X

107

IBM Confidential

Use of the GENERATE Statements (Part 10 of 10)

e Example 5.
LCC 0NRJFCT CODE ADDR1 ACDR2 STMT
0c0108 0000 162+
000104 0050 163+
00010C 00000000 164+
ncolio ococoo0Ct 165+
000114 00 166+
000115 000001 167+
L6G+%*
000118 00C00001 171+
no011C 0000 172+
00011F 0050 173+
©C0120 80 174+
000121 000001 175+
Go0l24 00000000 176+
000128 00000001 177+
00012C FFFFFFFFFFFFFFFF 178 TRTTAB
0001&C 00 179
000160 FFFFFFFFFFFFFFFF 180
0C00FC 181 OFLAGS
00022C 182 aDATEND
€00000 183

108

SOURCE STATEMENT

H*O* CIND1, CIND2
AL2(80) BLKSIZE

F1Q' WCPCy WCPL, OFFSRs OFFSW
A{1) 10BA
AL1(0) NCP
AL3(1) ECBR, ECBAD

CSAM INTERFACE
A(l} RECAC
HYQ* QSWS

ALZ2(80) LRECL
BL1t10000000"
AL3(1) CANTRL
FrQ" PRECL
A(l) EOB

64XV FFY

X100!'

191X *FF?
CARLCIN+00000048
*

GETCD

EROPT

8 BITIS) ON BYTE

ONLY NCN-ZERO FUNCTION BYTE

PAGE 4

FLl5APR68 3/28/69

Q1160
01170
0L180
01190
01200
01210

= BLANK

IBM Confidential

Appendix B: Example of Program Using BSL
TRACE Option

| Example 6 illustrates the use of the BSL TRACE option.

e Example 6. Use of BSL TRACE Option (Part 1 of 11)

%CONTRCL CARDS%
$TRACE
$ MSGLFVEL=1
$TRACE ON

Appendix B: Example of Program Using BSL TRACE Option 109

« Example

6. Use of BSL TRACE Option (Part 2 of 11)

BSL/ELFVEN MAY69

110

0001

0002
0003
0004
0005
0006

0007
0008

0009

0010
onll

0012
0013

0014
0015
colé
0017
0018
0019
0020

0021
0022

0023

PAGE 001
73 A O SORORRR O s OROR R OR SOROROR R kR ke /
IAd */
/#*RNUTINE TO SCAN FOR NAMES SEPARATED BY SEMICOLONS */
/% */
/ HetOk FoR RO ook okok e s koK /
TRACECD: /*ENTRY PCINT FOR MAIN PROCEDURE*/
PROC:
DCL CARD CHAR(80): /%USED TO HOLD A CARD IMAGEx/
ncL SEMI CHAR(1L) INIT(':'}; /%USED TO CHECK FOR SEMICOLON*/
ocL LENRTN ENTRY INTERNAL: /*ENTRY POINT OF INTERNAL
PROC*k/
peL NPTR PTR(31): /%POINTS TO CHARACTERS ON THE
CARD*/
DcL FLAG CHAR(1) LOCAL EXT INIT('00'X);/*INDICATES IF A NAME
IS FOUNDx/
ncL NMTAB(3) CHAR(9) INIT((3)¢ Y): /%*NAME TABLE*/

ocL R13 REGISTER(13) PTR: /*%CONTAINS ADDRESS OF CALLERS
SAVE AREA%*/
ocL PTBCK POINTER BASED(RL3+4}:/*PCINTS TC SECONC WORD OF
CALLERS SAVE AREAx/
ocL RETCD FIXED BASED(PTBCK+16%:/*USED FOR RETURN CODE*/

J=13 /%START OF NAME TABLE®/

CALL READ(CARD): /*READ A CARD INTO *CARDt'*/

/*SCAN CARD*/

no I=1 TO 803

/*CHECK FOR SEMICOLON OR RLANK%/

IF CARD(I)-=*' '&CARD(I)~=SEMI THEN /%NOT A SEMICOLCN CR BLNK*/
/%SFT NPTR TO THE CHARACTER AND CALL ROUTINE TO PRUCESS A */
/%#NAME*/

003
NPTR=ADDR(CARD}+I~-13
CALL LENRTN(NPTR}:

END:
FND: /*END OF ITERATIVE GRCUP FDR
SCANNING*/
FLAG='OF'X: J*INDICATE NG NAMES FOUND*/
RETURN? /*RETURN TO CALLING PROCH/
FULLTAB: /*THE NAME TABLE 1S FULL*/
FLAG='FQ': /*SET APPROPRIATE FLAG*/
RETCD=43: /*SET APPROPRIATE RETURN CODE*/

IBM Confidential

IBM Confidential

o Example 6

BSL /El FVEN MAY69
0024

0025

0026
0027
0028

0029
0030

0031
0032
0033
0034
0035

0036
0037
0038

0039
0040
0041

0042

0043
0044
0045
0046

0047
0048
0049

005¢
0051

0052

. Use of BSL. TRACE Option (Part 3 of 11)

PAGE 002
/ sokokok 7
1% */
/%ROUTINE TO PROCESS A NAME-FIND LENGTH AND PUT NAME IN TABLE */
/% */
/ Aotdodok ok Aok ; Rk RRER /
LENRTN: /#ENTRY POINT FOR INTERNAL PROC*/
PROC (STPTRY: |
DCL STPTR PTR: /*¥POINTS TO A CHAR ON THE
CARC-SAME AS NPTR IN
TRACECD*/
DcL NAME CHAR(8) BASED{STPTR):/%NAME ON THE CARD*/
ocL LEN PTR(8) ¢ /*LENGTH OF NAME*/
/*%SCAN EACH LETTER OF NAME-SHOULD BE LESS THAN 8%/
DO K=1 TO 93
/% LOOK FOR A SEMICCLON*/ ‘
TF NAME(K)=SEMI THEN J*WHEN A SEMICOLON 1S FOUND*/
/*PROCESS NAMEx*/
plsH
LEN=K~13 /*SET LENGTH OF NAME*/
T=T+LEN: J*REPOSITION SCAN INDEX*/
GOTO SETNAME: /*PUT NAME IN TABLEX/
END
END 1 /*END OF ITERATIVE GROUP FOR
SCANNING NAMEx/
FLAG='FF' X3 /*INDICATE NAME TOO LONG*/
RETURN: /*RETURN TO CALLING ROUTINE*/
SETNAME: /*PUT NAME IN TABLEX/
NMTAB (J.L)=LENS J*PUT LENGTH IN TABLEx/
NMTAB(Je2) =NAME(LSLEN) 3 7#PUT NAME IN TABLE*/
J=d+ls /*BUMP PTR TC NEXT SLOT*/
/*CHECK FEOR FULL TABLEX*/
IF J<4 THEN J*TABLE NOT FULL*/
/%*SET RETURN CODE AND RETURN*/
D0%
RETCD=03 /*SET RETURN CNDE%/
GOTO RET: /*BRANCH TO RETURN%/
ENfIz
ELSE /*TABLE 1S FULL%/
/*INDICATE FULL TABLEX/
00%
J=13 /*RESET INDEX FOR NEXT GROUP*/
RETCD=20: /*SET RETURN CODE FOR FULL
TABLE*/S
RETURN TO FULLTAB; /%BRANCH TO FULLTAB*/
END
RET: /*END OF ROUTINE*/ ‘
END LENRTN: /*RETURN TO CALLING PROC-END OF
INTERNAL PROC*/
END TRACECD: /*END OF MAIN PROC*/

Appendix B: Example of Program Using BSL TRACE Option 111

IBM Confidential

e Example 6. Use of BSL TRACE Option (Part 4 of 11)

BSL/FLEVEN MAY69 PAGE 003
ncL'D N NAME ATTRIBUTE AND CROSS REFERENCE TABLE

2 CARD STATIC. LOCAL. CHARACTER(80), INTERNAL. BOUNDARY(BYTE.l}
12, 14, 14, 16

&6 FLAG STATICs LOCAL+ CHARACTER(1}. EXTERNAL, BOUNDARY{BYTE.1)
20, 22, 36

22 FULLTAB STATIC, LDCAL. LABELs INTERNAL
224 49

13 % 1 STATIC. LOCAL, FIXED(31)+ INTERNAL, BCUNDARY(WDRDs1)
134 l4e 14y 164 324 32

11 J STATIC. LOCAL, FIXED(31). INTERNAL., BCUNDARY (WORD,1)
11, 38+ 39, 40, 40. 41, 47

28 % K STATIC. LOCAL., FIXED{(31)+ INTERNAL,» BCUNDARY(WORD,1)
28, 29, 31

27 LEN STATIC. LOCAL. POINTER(8). INTERNAL., BOUNDARY(BYTE,1)
31, 32+ 38. 3§

4 LENRTN STATICs LOCALs ENTRYs INTERNAL
17, 24. 51

26 NAME BASED ON STPTR, CHARACTER(8}, BCUNDARY(BYTE,1)
29, 39

7 NMTAB (3), STATICe LOCALs CHARACTER(9)., INTERNAL., BOUNDARY(BYTE.1)
38, 39

5 NPTR STATIC. LOCAL, POINTER(31}, INTERNAL, BOUNDARY (WORD, L)
16, 17

9 PTBCK BASED ON R13+4, POINTER(31), BCUNDARY(WORDy1)
10

12 READ STATIC. NONLOCAL, ENTRY. EXTERNAL
12, 52

44 RET STATICs LOCAL. LABEL, INTERNAL
44y 51

10 RETCD BASED ON PTBCK+16s FIXED(31), BCUNDARY (WORD.1)

. 23y 43, 48

8 R13 REGISTER(13}, POINTER(31), INTERNAL: BOUNDARY (WORD,1)
9

3 SEMI STATIC, LOCAL, CHARACTER(1)« INTERNAL, BOUNDARY{BYTE,1)
a4, 29

33 SETNAME . STATIC., LOCAL, LABEL. INTERNAL

112

IBM Confidential

e Example 6. Use of BSL TRACE Option (Part 5 of 11)

RSL/ELEVFN MAY69

PAGE 004
DCLYC IN NAME ATTRIBUTE AND CROSS REFERENCE TABLE
33, 38
24 STPTR PARAMETER, POINTER(31}, INTERNAL. BOUNDARY(WORD,1)
25, 25, 26
1 TRACECD STATIC, LOCAL+ ENTRY, EXTERNAL
1, 52

*¥% PROC. TRACECD HAD NO ERRORS

Appendix B: Example of Program Using BSL TRACE Option 113

IBM Confidential

e Example 6. Use of BSL TRACE Option (Part 6 of 11)

PAGE 1

LOC ORJFCT CODE ADDR1 ADDR2 STM1 SOURCE STATEMENT F15APR68 3/28/69
1 ICTL O0l.71,l6 00000

2 LCLA &T.&SPN 0001 00010

3 .a001 ANCP 0001 00020

000000 4 TRACECD CSECT 0001 00030
000000 90FC DOOC 0000C 5 STM QEAC,12(aAD) 0001 00040
000004 05R0 6 BALR aB.0 0001 00050
000006 7 aPSTART DS 0 0001 00060
000006 8 USING @aPSTART+00000.aB 0001 00070
000006 50D0 R2EF 002F 4 9 ST AD+ASAVOO1+4 0001 00080
00000A 41F0 R2EA Q002F0 10 LA aF +SAVOOL 0001 00090
00D00OE SOFO0 NOO8 00008 11 ST aF,8(0+20) 0001 00100
000012 180F 12 LR aDsafF 0001 00110
000014 58F0 R2D6 0020C 13 L aF +aBSLTRCE 0001 00120
000018 0OSFF 14 RALR QE.aF 0001 00130
00001A F3D9C1C3C5C3C440 15 ocC CL8'TRACECC ' 0001 00140
000022 0001 L6 cc H'0001" 0001 00150
000024 0002 17 DC H10002! 0001 00160
000026 9200 D002 00002 18 MVI 0002(aD).0011/256 00170
000024 920R CO03 00003 19 MVI 0002+1{aC},0011-0000 00180
00002E 41F0 0001 00001 20 LA aFs1 0011 00190
000032 50F0 R3A¢ 003AC 21 ST aF+d 0011 00200
000036 920C DOO3 00003 22 MV 0002+1(aD),0012-0000 00210
000034 S8F0 R2DE 002E4 23 L @F +@BSLTRCC 0012 00220
00003E OSEF 24 BALR QE+aF 0012 00230
000040 000C 25 bpC H'0012' 0012 00240
000042 DIC5C1C440404040 26 nc CL8'READ 0012 00250
0N004A 41E0 RO52 00058 27 LA QE.ACLOFF 0012 00260
00004F 28 CNOP 244 0012 00270
D0004E 58F0 B2CA 002D0 29 L aFeavl ADDRESS OF READ 0012 00280
0000€? 051F 30 BALR al.af 0012 00290
000054 00000338 31 boc A(CARD) 0012 00300
000058 41F0 0001 00001 32 aCL9FF LA aFel 0013 00310
00005C 50F0 B3AA 00380 33 ST AF .1 0013 00320
000060 45E0 B2C4 002CA 34 aDO9FD BAL QE+aBSLTRCB 0013 00330
000064 000D 35 nec H'0013" o013 00340
000066 920E DOO3 00003 36 MVI 0002+1(aD),0014-0000 00350
000064 5810 B3AA 00380 37 L alel 0014 00360
00006F 41A1 B331 00337 38 LA dA+CARD-1 (21} 0014 00370
000072 9540 A00O 00000 39 cLI 0(aA).C* ! 0014 00380
000076 4780 RORC 000C2 40 BC 08 429F9 0014 00390
00007A D500 A000 BR382 000CO 00388 41 cLc 0(1l+dA},SEMI 0014 00400
000080 4780 RORE 0008C 42 BC 08,39F8 0014 00410
000084 9210 D003 00003 43 MV 0002+1(aC),0016~0000 00420
000088 48F0 B2R6 002RC 44 LH aF+aDLl 0016 00430
0000AC 54F0 R3AA 00380 45 [} aF.l 0016 00440
000090 4100 B332 00338 46 LA @0+ CARD 0016 00450
000094 1AFO 47 AR aF .20 0016 00460
000096 50F0 B386 oo3ac 48 ST AF ¢y NPTR 0016 00470
000094 9211 NOO3 00003 49 MVI 0002+1(aC),0017-0000 00480
00009F 58F0 B2DE 002E4 50 L @F +@BSLTRCC 0017 00490
0000A2 OSEF 51 BALR QE.aF 0017 00500
000044 0011 52 ocC H*'0017¢* 0017 00510
000046 D3C505D9E3D54040 53 ocC CLB'LENRTN ¢ 0017 00520
0000AE 41E0 BOB6 0COBC 54 LA QE,aACLOFT 0017 00530
0000R2 0700 55 CNOP 0+4 0017 00540

114

IBM Confidential

e Example 6. Use of BSL TRACE Option (Part 7 of 11)

PAGE 2

LCC OBJECT CODE ADDR1 ADDR2 STMT SOURCE STATEMENT F15APR68 3/28/69
0000B4 4510 8132 00138 56 BAL @14+LENRTN 0017 00550
0000R8 0000038C 57 oC A(NPTRY 0017 00560
00008C 58 ACLOFT EQU * 0017 00570
0000RC 45E0 B2C4 002CA 59 @9F8 BAL QE,aBSLTRCB 0018 00580
0000€0 0012 60 bC H10018* o018 00590
0000C2 45E0 B2C4 002CA 61 @a9F9 BAL BE,ABSLTRCB 0018 00600
0000C6 0012 62 oc HtoOlR! 0018 00610
0000C8 9213 D003 00003 63 MVI 0002+1(3CY+0019-0000 00620
0000CC 58F0 B3AA 00380 64 L AF 1 0019 00630
0000D0 4AFO R2B8 002BE 65 AH aF,ab2 0019 00640
000004 S0F0 B3AA 00380 66 dDO9FC ST aF+1 0019 00650
000008 50F0 B3FE 00404 67 ST AF .aTl 0019 00660
0000DC 45EQ B2C4 002CA 68 BAL @E,aBSLTRCB 0019 00670
0000F0 0013 69 bc H'0019" 0019 00680
0000E2 58F0 R3FE 00404 70 L F4aT1 0019 00690
0000E&6 49F0 B2BA 002C0 71 CH @F D3 0019 060700
0000EA 47C0 ROSA 00060 72 [12+aD09FC 0019 00710
0000EE 9214 D003 00003 73 MVI 0002+1(aC)+0020-0000 00720
0000F2 920F B384 00390 T4 MVI FLAG+X'OF! 0020 00730
0000F6 9215 D003 00003 15 MVI 0002+1(aC1+0021-0000 00740
0000FA 47F0 Bll4 0011A 76 BC 154QELOL 0021 00750
0000FE 45E0 B2C4 o02CcA 77 FULLTAB BAL BE.ABSLTRCE 0022 00760
000102 0016 78 nc HY0022* 0022 00770
000104 D200 R38A B2E2 00390 002£8 79 mMve FLAG(1Y,aC3 0022 00760
000104 9217 D003 00003 80 MVI 0002+1(aCY+0023-0000 00790
00010E 41F0 0004 00004 81 LA AF e 4 0023 00800
000112 581D 0CC4 00004 82 L Al+4(Q0Y 0023 00810
000116 50F0 1010 00010 83 §T aF,16(0,31) 0023 00820
00011A 45E0 R2C4 002CA 84 QELOL BAL QE +ABSLTRCB 0024 00830
00011E 0018 85 oc H*0024! 0024 00840
000120 58F0 B2CE 00204 86 L QAF +@BSLTRCR 0024 00850
000124 0SEF 87 BALR AE.AF 0024 00860
000126 60C3C10D3D3C5D%60 a8 oc CL8"—CALLER~* 0024 00870
00012F 5800 D004 00004 89 L @D+4(0+a0) 0024 00880
000132 98EC DOOC 0000C 90 LM QEaCsL2(AL) 0024 00890
000136 OTFE 91 BCR 15.9E 0024 00900
000138 90EC DOOC 0000C 92 LENRTN STM QE+aCy12(30) 0024 00910
00013C 50D0 B3R2 00388 93 ST @D, ASAVO02+4 0024 00920
000140 41F0 B3aE 00384 94 LA BF +@SAV002 0024 00930
000144 50F0 DOO8 ocoo0s 95 ST aF+.8(0,aD) 0024 00940
000148 18DF 96 LR aD.aF 0024 00950
000148 58F0 R2D6 0020C 97 L @F+@BSLTRCE 0024 00960
00014F OSEF 98 BALR QE.QF 0024 00970
000150 D3C5D5D9E3D54040 99 bncC CL8YLENRTN 0024 00980
000158 0018 100 oc H*0024¢ 0024 00990
000154 0002 101 bc H10002" 0024 01000
00015¢ 41FC 0001 00001 102 LA AF.1 0028 01010
000160 50F0 R3FA 00400 103 ST AF WK 0028 01020
000164 45E0 R2C4 002cA 104 aDO9F5 BAL AE+aBSLTRCB 0028 01030
000168 001C 105 oc H*0028* 0028 01040
00016A 921D D003 00003 106 MVI 0002+11{aC)+0029-0000 01050
00016E 58C0 B3FA 00400 107 L ACK 0029 01060
000172 5880 1000 00000 108 L @84+0(0.21) ADDRESS OF STPTR 0029 01070
000176 5898 0000 0C000 109 L a9,0(a8) STPTR 0029 01080
000174 4LAC 9000 00000 110 LA BAL0(DC49) 0029 01090

Appendix B: Example of Program Using BSL TRACE Option 115

IBM Confidential

e Example 6. Use of BSL TRACE Option (Part 8 of 11)

PAGE 3

LCC NRJECT CODE ADDR1 ADDRZ STMT SOURCE STATEMENT FLl5APR68 3/28/69
00017E 06A0 111 BCTR A0 0029 01100
000180 N500 AN00 R382 00000 (0388 112 cLe 0(1+2A) . SEMI 0029 0oLl10
000186 4770 ALAC 00182 113 ac 07sa9FL 0029 01120
00018A 921F D003 00003 114 MVI 0002+1(aC),0031-0000 01130
O00018F S58F0C B3FA 00400 115 L AF oK 0031 01140
000192 06F0 116 RCTR a@F+0 0031 01150
000194 42F0 R3Fé 003FC 117 STC AF «LEN 0031 01160
000198 9220 NOO3 00003 118 MVI 0002+1(aC),0032-0000 01170
00019C 18FF 119 SR AFaF 0032 o1180
00019F 43F0 R3F6 003FC 120 1c @FLEN 0032 01190
0001A2 5AF0 B3AA C03B0 121 A aF.l 0032 01200
000146 50FQ B3AA 0C3R0 122 ST aF«1 0032 01210
000144 9221 DCO3 00003 123 MVI 0002+11(aC),0033-0000 01220
0001AE 4TF0 B1E8 001EE 124 8C 15¢SETNAME 0033 01230
000182 45F0 82C4 oo2ca 125 @a9F1 BAL AE+ABSLTRCB 0034 01240
0001RE 0022 126 oc H'0034* 0034 01250
0001R8 9223 D003 00003 127 MVI 0002+11aCy,0035-0000 01260
0001RC 58F0 B3FA 004C0 128 L AF«K 0035 01270
NOOL1CO 4AFO R2R8 002BE 129 AH aF+abd2 0035 01280
0001C4 50F0 R3FA €g400 130 a00SF4 ST AF K 0035 01290
0001C8 50F0 R3FE 00404 131 ST aF .aTl 0035 01300
0001CC 45E0 B2C4 oczcaA 132 BAL AE+ABSLTRCE 0035 01310
000100 0023 133 oC H*0035¢ 0035 01320
000102 58F0 R3FF 00404 134 L aF+.aTl 0035 01330
0001n6 49F0 R2RC co2c2 135 CH aF.aD4 0035 01340
0001DA 47CO B15F 00164 136 8C 12.,@D09F5 0035 01350
0001DE 9224 D003 00003 137 MVI 0002+1(aL),0036-0000 01360
0001E2 92FF B384 00390 138 MVI FLAG+X'FF* 0036 01370
0001lE6 9225 DCO3 00003 139 MVI 0002+1(2C),0037-0000 01380
Q001FA 47F0 Bl1l4 0Ql1A 140 BC 15+3ELOL 0037 01390
NO001EF 45E0 B2C4 og2ca 141 SETNAME PRAL AE.ABSLTRCB 0038 01400
0001F2 002¢€ 142 oc H'0038" 0038 01410
0001F4 58C0 B3Aé 003AC 143 L acCed 0038 01420
0001F8 4CCO R2RC Qo2c2 144 MH ACsAD4 0038 01430
0001FC 41AC R382 00388 145 LA @A+ NMT AB-9(3C) 0038 01440
000200 D200 AQOG0 B3F6 00000 003FC 146 MVC O{L+@A),LEN 0038 01450
000206 9227 DOO3 00003 147 MVI 0002+1(3C)»0039-0000 01460
00020A 1BR88 148 SR 28438 0039 01470
©C020C 4380 B3F6 003FC 149 IC @8 4LEN 0039 01480
000210 41AC R383 00389 150 LA DA+NMT AB-8(C) 0039 01490
000214 4190 0001 00001 151 LA @941 0039 01500
000218 5860 1000 00000 152 L 2640(04a1) ADDRESS OF STPTR 0039 01510
00021 5876 0000 00000 153 L ar.0taé) STPTR 0039 01520
000220 41E9 70600 00000 154 La AE0(a9,a7) 0039 01530
000224 06EO0 155 BCTR AE«C 0039 01540
000226 1889 156 SR a8 a9 0039 01550
000228 4480 R2BE 002C4 157 EX @8 v AMVC 0039 01560
00022¢C 9228 D003 00003 158 MVI 0002+1{(ac),0040-0000 01570
000230 41F0 CCOL 00001 159 La AFe1 0040 01580
000234 5AF0 B3A6 003AC 160 A aFed 0040 01590
000238 50F0 R3A6 0C3AC 161 ST AF«d 0040 01600
00073C 9229 0003 00003 162 MVI 0002+1(aC)+0041-0000 01610
000740 41FQ0 0004 00004 163 LA AF+4 0041 01620
000244 S9F0 R3Aé 003AC 164 [aF +J 0041 01630
000248 47C0 B2€4 Q0264 165 BC 12,a9F0 0041 01640

116

IBM Confidential

e Example 6.

LCC OBJFCT CODE ADDR1 ACDR2
00024C 9228 D003 00003
000250 1BFF
000252 588D 0004 00004
000756 S0F0 8010 00010
00025A 922C D003 00003
00025F 47F0 R2AC . 00282
000262 922N DOO3 00003
0002¢6 4TF0 B2AE 002AC
00026A 45E0 B2C4 002CA
000246E 002D
000270 922F 0003 00003
000274 41F0 0001 0Cc0o01
000278 SOF0 B3A6 003AC
00027C 9230 D003 00003
000280 41F0 0014 00014
000284 58C0D 0004 €004
000288 50F0 CO10 00010
00028C 9231 0003 00C03
000290 58F0 B2CE 002D4

000294 O5FF

000296 C6E4D3C3F3C1C240
G0Q29E 58D0 D004

0002A2 41E0 ROF8

000246 Q8FC DOLO

0002AA OTFE
0002AC 45€E0
000280 0032
000282
0002R2
0002R6
€00288
0002RC
000000
000001
000002
000003
000004
000005
000006
000007
000008
000009
000004
000G0R
00000C
000000
00000F
00000F
0002RC FFFF
0002RF 0001

00004
CCOFE
00010

R2C4 002cA

45E0 B2C4 002CA

0032
4TF0

Rl1l4 00114

0002€0 0050
0002¢2 0009
0002C4 D200 AOOO FNDOO 00000 00000
0007CA 58F0 R2DA CO02E0

0002CE OTFF

STMT

166
167
168
169
170
17
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
157
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220

Use of BSL TRACE Option (Part 9 of 11)

SOURCE STATEMENT

bElY

@9EF

RET
QELO2

abl

a2

an3

aD4

AMVC
ABSLTRCB

Appendix B:

MVI
SR

Example of Program Using BSL TRACE Option

0002+1(aD¥,0043-0000
AF+AF

@8 +4(aD)

aF+16(0,28)
0002+11aC},0044-0000
154RET
0002+1(aC)+0045-0000
1549EF

DE+@BSLTRCB

H10045"
0002+1(aC)+0047-0000
dFy1

A d
0002+1(aC)+0048-0000
aF«20

aC+4(30)

aF,16(0,aC)
0002+1(aC)+0049~0000
@F +@BSLTRCR

AE v aF

CLB'FULLTASB ¢
AD+4(0,a0)
QELFULLTAB
AF+aC,16(aD)

15.,9E

@E«@BSLTRCR

H*0050*

*
@E+aBSLTRCB
H*0050!"
15.3EL01

*

on EQUATES FOR REGISTERS 0-15

Heot
0(1+3A)+0(IE)
aF +@BSLTRCL
15.aF

F15APR68

0043
0043
0043

0044

0045
0045
0045

0047
0047

0048
0048
0048

0049
0049
0049
0049
0049
0049
0049
0050
0050
0050
0050
0050
0050

PAGE 4

3/28/69

01650
01660
0le70
01680
01690
01700
01710
01720
01730
01740
01750
01760
01770
01780
01790
01800
01810
01820
01830
01840
01850
01860
01870
01880
01890
01900
01910
01920
01930
01940
01950
01960
01970
01980
01990
02000
02010
02020
02030
02040
02050
02060
02070
02080
02090
02100
02110
02120
02130
02140
02150
02160
02170
02180
02190

117

IBM Confidential

e Example 6. Use of BSL TRACE Option (Part 10 of 11)

PAGE 5

LCC OBJECT CODE ADDRL ADDR2 STMT SOURCE STATEMENT F15APR68 3/28/69
0002n0 00000000 221 avl nc VIREAD) 02200
0002n4 00C00000 222 @aBSLTRCR DC VUIKETRCR) 02210
©00208 00000000 223 @BSLTRCI DC VIIKETRCI) 02220
0002nc 00000000 224 ABSLTRCE DC V{IKETRCE) 02230
0002£0 00000000 225 aBSLTRCL DC VIIKETRCL}) 02240
0002E4 00C00000 226 @aBSLTRCC DC V(IKETRCC) 02250
0002€8 227 DS OF 02260
0002F8 C6FO 228 ac3 DL CtFO' 02270
0002F0 229 0s oD 02280
0002F0 230 9DATA EQU * 02290
0002F0 231 @SAV0Ol EQU aDATA+00000000 72 BYTE(S) ON WORD 02300
000338 232 CARD EQU aDATA+00000072 80 BYTE(S) 02310
000388 233 ORG ADATA+00000152 02320
000388 234 SEMI EQU * 1 BYTE(S) 02330
000388 SE 235 oc Cctyt 02340
00038¢C 236 NPTR EQU ACATA+00000156 FULLWORD POINTER 02350
237 ENTRY FLAG 02360

000390 238 ORG QDATA+00000160 02370
000390 239 FLAG EQU * 1 BYTE(S) 02380
000390 00 240 DC Xt00"* 02390
000391 241 NMTAB EQU * 3%9 BYTE(S) 02400
242 &T SETA 00003 02410

243 .L099999 ANOP 02420

000391 40 244 oC [02430
000392 4040404040404040 245 oc 000o8Ct ¢ 02440
246 &7 SETA E&T~1 02450

247 ALF (&T NE 0).L099999 02460

248 .L099999 ANOP 02420

0003294 40 249 oc [02430
000298 4040404040404040 250 oc oooosCt ¢ 02440
251 €T SETA &T~1 02450

252 AIF (ET NE 01.L099999 02460

253 .L099999 ANOP 02420

000243 40 254 oC [02430
000344 4040404040404040 285 oc 00008C* ' 02440
256 &T SETA &7-1 02450

257 AIF (ET NE 0}.L099999 02460

000000 258 R13 EQU 00000013 FULLWORD PDINTER REGISTER 02470
000004 259 PTBCK EQU 00000004 FULLWORD PODINTER 02480
000010 260 RETCD EQU 00000016 FULLWORD INTEGER 02490
0003AC 261 J EQU ADATA+00000188 FULLWORD INTEGER 02500
0C0380 262 1 EQU aDATA+00000192 FULLWORD INTEGER 02510
000384 263 aSAV002 EQU 2DATA+00000196 72 BYTE(S) ON WORD 02520
ccoo00 264 STPTR EQU 00000000 FULLWORD POINTER 02530
000000 265 NAME EQU 00000000 8 BYTE(S) 02540
0003FC 266 LEN EQU 2DATA+00000268 1 BYTE POINTER 02550
€00400 267 K EQU DDATA+00000272 FULLWORD INTEGER 02560
0C02F0 268 ORG aDATA 02570
0002F0 269 0s 00000276C 02580
000404 270 QTEMPS DS oF 02590
0C0404 00000000 271 aT1 Dc Fror 02600
£00408 272 ACATENC EOQU * 02610
ceoo00 273 END TRACECD 02620

118

IBM Confidential

Example 6.

FENTERING TRACECT
CALLTING REAC
TO 00N1A
T0 00013
CALLING LENRTN

ENTERING LENRTN
00028

TO 00034
TO 00028
TO 00034
TO 00028
TO 00034
TD 00028
T0 00038
T 00050
0 00024

Use of BSL TRACE Option (Part 11 of 11)

« SAVE AREA AT 016310

FROM
FROM
FROM
FROM

STATEMENT 00012.
00014,
Q0019.
STATEMENT 0CO017.

« SAVE AREA AT 0163D4

FROM
FROM
FROM
FROM
FROM
FROM
FRNM
FROM
FROM
FROM

RETURNING TO —CALLER—

TQ 00013
T0 0C018
T0 00013
TG 00018
TO 00013
CALLTING LFNRTN

ENTERING LENRTN
T0 00028
TN 00034
TO 00028
TO 00C34
T0O 00028
TO 00038
T0 00050
00024

-
o

FROM
FROM
FROM
FROM
FROM
FROM

00024,
00029.
00035,
00029,
00035.
00029,
00035.
00033,
00044.
00050,
FROM 00024.RETURN CODE IS 000000.

00C19.
00014,
00019.
00014.
0C019.
STATEMENT CCOL7.

« SAVE AREA AT 016304

FROM
FROM
FROM
FROM
FROM
FROM
FROM
FRNM

RFTURNING TO —CALLER-

TO 00013
CALLING LENRTN

ENTFRING LFNRTN
TN 00078
TO 00034
TO 00028
T0 00038
TO 00045

FROM
FROM

00024.
00029.
00035,
00029.
00035,
00033.
00044,
60050,
FROM 00024.RETURN CODE 1S 000000«

00019.
STATEMENT 0G017.

« SAVE ARFA AT 016304

FROM
FROM
FROM
FRNM
FROM

RETURNING TN FULLTAB

TO 00022

FROM

RFTURNING 70O —CALLER-

00024,
00029,
00035,
00033,
00041,
FROM 00049.RETURN CODE IS 000014,

60017,
FROM 00024,RETURN CODE IS 000004.

Appendix B: Example of Program Using BSIL TRACE Option

119

IBM Confidential

Appendix C: Example of BSL Program Using

OS TESTRAN

Example 7 illustrates the use of 0S TESTRAN with your BSL program. The
example shows a method of displaying two areas in the BSL program. One
area is AUTOMATIC, the other is STATIC, and both areas are displayed at

the label BACK in the BSL program.

Example 7. Use of OS5 TESTRAN (Part 1 of 17)

//8 JOR MSCLEVFL=1

//JDRLIB CD DSNAMF=CMP2,DISP={(0LD.PASS)+UNIT=2311,VOLUME=SER=XB157
J/STEPL EXFC PGM=IFUASM,PARNM='LNAD.NODECKTEST"

//5YSGC DD DSNAME=&LOADSFT,SPACE=(804(20045)),DISP=(MCD,PASS) UNIT= 2311
//SYSLIR DD DSNAMF=SYSL.MACLIB.UNIT=2311,VOLUME=SER=SYSRS3,

124 CISP=(DLD.PASS)

//SYSPUNCH CR UNIT=2540-72

//SYSPRINT L SYSOUT=4A

/7SYSUTL DO DSNAME=EUT1.UNIT=2311.0ISP=(NEW.DELETE}SPACE=(CYL,(3,1)}
//SYSUT2 DD DSNAME=EUT?.UNIT=2311.DISP={NEW,DELETE) SPACE=(CYL,(3,1))
//SYSUT3 DG DSNAME=&UT3.UNIT=2311+01SP=(NEW+DELETE}SPACE=(CYL,(3,1)}
//SYSTN CF *

TFF2361 ALLOC. FOR 4 STEPL
IFF?227F JOBLIR ON 2G1
TFF2371 SYSCGC ON 190

TFF2371 SYSLIR 0N 290
TEF2371 SYSPUNCH ON 00D
TEF2371 SYSUT1 ON 1€2
IFF237T SYSUT2 ON 161
TFF2371 SYSUT3 ON 261
TEF?2371 SYSIN NN 00C

120

IBM Confidential

e Example 7. Use of 0S TESTRAN (Part 2 of 17)

PAGE 1
LCC OBJECT CODE ADDR1 ADDR2 STMT SOURCE STATEMENT F15APR6B 3/28/69
1 * TESTRAN MODULE TC DUMP S AND A
acoo0n 2 60 CSECT -
3 EXTRN BACK TESTRAN POINT IN BSL
4 EXTRN DRIVER ENTRY POINT TO BSL PGM
5 EXTRN A NAME OF BSL VARAIABLE IN BSL
6 ENTRY GOL ENTRY POINT TO TESTRAN CSECT
000000 7 USING S+5 PTR TO DSECT TO DESCRIBE STRUCTURE S
8 GOL TEST OPENsDRIVER,BSLCUT+LOADMAXP=50,MAXE=96,SELECT=1
9 *gd%% TEGMO4* — THIS MACRO ESTABLISHES CSECT GOl
ac0000 10+G01 CSECT + TESTRAN CSECT
000000 0A31 11+IHBRL sSve 49 SVC WITH START SYMBOL
000002 15 12+ DC AL1(IHBS1-THBR1) LENGTH
000003 000000 13+ cc AL3{DRIVER) ENTRY POINT
000006 4040C2E2C3C6F4E3 14+ oc CL8" BSLCUT* ICENTIFIER
00000F 80 15+ oC AL1{128) SELECT CODE
00000F 0032 16+ ocC AL2(50) MAXIMUM PAGES
000011 00¢€0 17+ Dc AL2{96) MAX EXECS
000013 BC 18+ DC AL1(18B8) FLAG BYTE
000014 00 16+ DC AL1{0) FLAG BYTE PART 2
000015 62 20+IHBS1 oc X'62' ENTRY END CODE
€00000 21+G0 CSECT .+ PROBLEM PROGRAM CSECT
22 % AFTER EXECUTING THE TEST OPEN CONTROL GDES TO DRIVER
23 TEST AT +BACK WHEN CCNTROL REACHES LABEL BACK THEN DO
24 *ok¥% [EGMOO* — MACRO NUMBER 1 IN GO
000000 25+601 CSECT o TESTRAN CSECT
000015 26+ ORG *—1 ORG OVER PREVIOUS END
000015 27+1HBR2 EOU % NAME THE FIRST BYTE
000015 0?2 28+ oC X*t02' TYPE
000016 01 29+ oc AL1C1) IDENT
000017 07 30+ ocC AL1(IHBS2-1HBR2} LENGTH
000018 000000 31+ nc AL3(BACK) LOCATIDN
000018 01 32+ pc ALL(l) FLAG BYTE
00001C 62 33+IHBS2 ocC X?62' ENTRY END CODE
060000 34+G0 CSECT » PROBLEM PROGRAM CSECT
35 * THE FOLLOWING TESTRAN STATEMENTS
36 DUMP COMMENT, *BSL DATA!
37 *okkk JEGMO9® — MACRO NUMBER 2 IN GO1
000000 38+G0L CSECT o+ TESTRAN CSECT
00001C 39+ CRG *—1 ORG CVER LAST END ENTRY
00001C 40+IHBR3 EQU * NAME THE FIRST BYTE
00001C 1A 41+ oC X*1A' TYPE
€0001D 02 42+ DC AL1(2) IDENT
00001F 0OC 43+ oc ALL({IHBS3-IHBR3) LENGTH
Q0001F 44+THBY3 EQU * TO COMPUTE CCMMENT LENGTH
CO001F C2E2D340C4C1E3CL 45+ ocC C'BSL DATA* LAST OF COMMENT
000027 46+THBZ3 EQU * TO COMPUTE COMMENT LENGTH
000027 08 47+ oc AL1(IHBZ3-1IHBY3) FLAG BYTE
000028 62 48+1HBS3 DC X*62' ENTRY END CODE
000000 49460 CSECT .+ PROBLEM PROGRAM CSECT
50 DUMP DATAyS+S+24,DATAM=X,NAME=S,DSECT=(5,2}
51 #Hyk¥x TEGMO9* - MACRO NUMBER 3 IN GOl
€c0000 52+GCl CSECT .+ TESTRAN CSECT
000028 53+ ORG *-1 ORG OVER LAST END ENTRY
000028 54+IHBR4 EQU * NAME THE FIRST BYTE
000028 06 55+ bc X106' TYPE

Appendix C: Example of BSL Program Using OS TESTRAN 121

-Example 7.

Lee

000029
000024
00002R
00002C
00002E
00002F
000031
000032
000033
000034
000035
000036
00003R
000039
000034
000000

0c0Q00
000034
000034
0000324
000038
00003€C
000030
00003E
000041
000042
000045
000046
0C0048
000049
000044
00004R
0c0000

000000
00004E
000048
000048
00004C
000040
00004E
00004F
000050
000051
0c0000

000000
000051
000051

122

ORJECT CODE ADDR1 ADDR2

03

06

04

11

10
000000
10
00003C
00
0004

€1
38
62

16
05
06
o1
20
[o]4]
62

IBM Confidential

Use of 0S TESTRAN (Part 3 of 17)

PAGE 2
STMT SOURCE STATEMENT F15APR68 3/28/69
s56+ 0C ALL{3) IDENT
57+ 0C ALLIIHBS4=IHBR4) LENGTH
58+ OC X'20' A FIELD OR BYTE
59+ 0C SL2(S+0)
60+ DC X'20' A FIELD OR BYTE
61+ DC SL2(S+24+0)
62+ DC ALL(1)} DATAM FO FIELD
63+ OC AL1(1) LENGTH OF NAME FIELD
64+ DC C'S* NAME FIELD
65+ CC ALL(1) LENGTH OF DSECT NAME
66+ DC AL1(2) DSECT REPEAT COUNT
67+ DC SL2(S) RASE AND DISPLACEMENT
68+ DC C'S* DSECT NAME
69+ DC AL1l44) FLAG BYTE
70+1HBS4 DC_ X'62¢ ENTRY END CODE
71460 CSECT o PROBLEM PROGRAM CSECT
72 * DUMPS STRUCTURE IN HEX
73 DUMP DATA4AsA+60s DATAN=CL 10/ NAME=A
74 * xxk [EGHO9® ~ MACRO NUMBER 4 IN GO1
75+G01 CSECT .+ TESTRAN CSECT
76+ ORG *-1 ORG CVER LAST END ENTRY
77T+IMBR5S EQU * NANE THE FIRST BYTE
78+ DC X'06' TYPE
79+ DC ALL(4) IDENT
80+ 0C ALL(IHBS5-IHBRS) LENGTH
81+ DC X'10¢ A FLD OR BYTE
82+ 0C AL3(A+0) A FIELD AL BYTES
83+ DC X'10* A FLD CR BYTE
84+ CC AL3(A+60+0) A FIELD AL BYTES
85+ OC ALL(O) DATAM FO FIELD
86+ 0C AL2(10) DATAM L FIELD
87+ DC ALY(1) LENGTH GF NAME FIELD
88+ DC Cr'A' NAME FIELD
89+ DC AL1(56) FLAG BYTE
90+IHBSS ~ DC X162 ENTRY END CODE
91+6C CSECT + PROBLEM PROGRAM CSECT
92 * DUMPS ARRAY A IN CHARACTER
93 DUMP PANEL DATAN=X DUMPS REGISTERS
94 #o#%% [EGHOO® — MACRD NUMBER 5 IN GO1
95+G01 CSECT .+ TESTRAN CSECT
96+ CRG #-1 ORG CVER LAST END ENTRY
97+IHBR6 EQU % NAME THE FIRST BYTE
S8+ oc Xt16' TYPE
99+ 0C ALL(5) TDENT
100+ DC ALL(IHBS6=IHBRG) LENGTH
101+ DC ALL(1) DATAM FO FIELD
102+ 0C AL1(32) FLAG BYTE
103+ DC AL1(0) FLAG BYTE PART 2
104+1HBS6 ~ DC_ X'62' ENTRY END CCDE
105460 CSECT . PROBLEM PROGRAM CSECT
106 60 BACK RETURN TO CONTINUE EXECUTION CF DRIVER
107 * k%% [EGMOO* - MACRO NUMBER 6 IN GO1
108+GC1 CSECT o TESTRAN CSECT
109+ ORG #-1 ORG CVER LAST END ENTRY
110+1HBR? EQU % SET UP NAME FCR LENGTH

IBM Confidential

Example 7. Use of OS TESTRAN (Part 4 of 17)

PAGE 3
LCC ORJECT CODE ADDRL ACDR2 STMT SOURCE STATEMENT F15APR68 3/28/69
000051 3F 111+ DC X'3E* TYPE
000052 06 112+ DC AL1(6) IDENT
000053 03 113+ DC ALL(IHBS7-IHBR7) LENGTH
000054 62 114+1HBST oC X1621 ENTRY ENG CODE
0€0000 115460 CSECT + PROBLEM PROGRAM CSECT
000000 116 DS oF
000000 117 § DSECT
000000 118 D76 0S 6F10t STRUCTURE DESCRIPTION
€00000 119 END GOl

Appendix C: Example of BSL Program Using OS TESTRAN 123

s Example 7.

IFF285T
IFF2851
TEF?R51
IFF2857
TFF2851
IFF2851
1FF2851
[FF?851
TFF?2851
TFF2851
1FF2851
TEF2851
TEF2851
IEF2851
J/STEPA
//STEPL
//78YS0OUT
/758YSUT1
7
77SYSUT2
77
/7/78YSUT3
77SYSPUN
//STEPL.
1FF2361
TFF2371
1FF?2371
YRF2371
1FF2371
TEF2371
TEF2371

124

CMp 2

VoL SER NOS= XB157 .
SYS&9087.T000136.RPCOL. ALLOADSET
vOL SER NOS= 231100.
SYS1.MACL IR

VOL SER MOS= SYSRS3.

sysouT

VOL SFR NOS= T77439.
SYSEG087.T00013€6.RPO0L.ALLTL
VoL SER NOS= 111l1l1l.
SYS€9087.T000136.RP001.A.LT2
vOL SER NOS= XB231 .
SYS£S087.T000136.RP0O0L.A.UT3
vNL SER NOS= XB157 .

Use of 0OS TESTRAN

PASSED
PASSED
PASSED
sysout
DELETED
DELETEC

DELETEC

FXFC BSLALG.PARM.STEP?='TEST.LOAD' PARM.LKED=4TEST"

FXEC PCM=RSL

DD SYsou

CD DSNAME=ECAT UNIT=2311.DISP=(NEW,DELETE) .
SPACE=(CYL.(2.,1))

DN DSNAME=&RSLGOUNIT=2311,DISP=(NEW.FASS},
SPACE={CYL.(2,1))

0D DSNAME=&UT3,UNIT=2311,D1SP=(NEW.DELFTEY SPACE=(CYL,(3,1))

CH DR UNIT=2540-2

SYSIN DC *

ALLOC. FOR A STEP1 STEPA

JNRLIR ON 291
SYsSuT1 aN 150
sSYsuv2 N 191
SYSuT?2 ON 261
SYSPUNCH ON 00D
SYSIN On coC

(Part 5 of 17)

00000009
00000010
X00000011
00000012
X00000013
00000014

00000015

IBM Confidential

IBM Confidential

e Example 7. Use of OS TESTRAN (Part 6 of 17)

BSL/ELEVEN MAYEQ PROCECURE TO DEMONSTRATE USF CF TESTRAN WITH PSL PAGE 001

*/
/% THIS PROCEDURE DECLARES AN AUTCMATIC ANC A STATIC AREA AND GIVES*/
/%VALUES TC EACH AREA. THE AREAS ARE THEN CUMPED BY TESTRAN AT THE */

0001 Fsoksdoksoksk oot ookok R ok R RS RE * ok /
7%

/%#STATEMENT LABELED *BACK'. *7
1% k4
kR Aol B R AR R o AR R R RO R kR Ok o /

DRIVER: /*MATN ENTRY POINT*/
PROC OPTIONS{REENTRANT):

0002 bncL /%AUTOMATIC STRUCTURE TO BE DUMPED BY TESTRAN*/
1 S{2) AUTOMATIC, /%STRUCTURE NAME*/
2 FLAG BIT(8), /*ARBITRARY ELEMENT USED AS AN
EXAMPLE*/
2 LN PTR(8), /%ARBITRARY ELEMENT USED AS AN
EXANPLE*®/
2 DIT PTR{8}, /%*ARBITRARY ELEMENT USED AS AN
EXAMPLEX/
2 0D PTR(8), /%ARBITRARY ELEMENT USED AS AN
EXAMPLE*/
2 L0C PTR(31), /#*ARPITRARY ELEMENT USED AS AN
EXAMPLEX/
2 DVS FIXED(31), /%ARBITRARY ELEMENT USED AS AN
EXAMPLE*®/
2 DICTOFF PTR{1l6), /*ARBITRARY ELEMENT USED AS AN
EXAMPLE*®/
2 MOFF PTR(16}. /%ARBITRARY ELEMENT USED AS AN
EXAMPLE*/
2 SIZEOFF FIXED{(31}, /*ARRITRARY ELEMENT USED AS AN
EXAMPLEX/
2 BOUNDT PTR(31}: /%ARBITRARY ELEMENT USED AS AN
EXAVPLEX/
0003 nDcL BACK LABEL LCCAL EXTERNAL: /*TESTRAN TEST POINT*/
0004 pcL A(6) CHAR(LO) STATIC EXT INIT((6)'AAAAAAAAAAY); /*STATIC
ARRAY TO BE CUMPED BY
TESTRAN¥/
0005 ocL R5 REG(5) PTR: /% PDINTER TO S*/
0006
0000001083 /*GIVE ELEMENT A VALUE*/
0007 00001111'B3 /*GIVE ELEMENT A VALUE*/
0008 /*GIVE ELEMENT A VALUE*®/
0c09 /*GIVE ELEMENT A VALUEX/
0010 /*GIVE ELEMENT A VALUEx/
0011 /*GIVE ELEMENT A VALUEX/
0012 /*GIVE ELEMENT A VALUE*/
0013 /*GIVE ELEMENT A VALUE*/
0014 /%GIVE ELEMENT A VALUE*/
0015 J*GIVE ELEMENT A VALUE*/
0016 /*GIVE ELEMENT A VALUE*/
0017 DVS(2)=73 /*GIVE ELEMENT A VALUEX/
0018 DICTOFF(11=0 J#*GIVE ELEMENT A VALUEX/
0019 DICTGFF(2)=0: J*GIVE ELEMENT A VALUEX/
0020 MOFF (1) /*GIVE ELEMENT A VALUEX/
0021 MOFF (2} /*GIVE ELEMENT A VALUEx*/
0022 SIZECFF(1)=0: /*GIVE ELEMENT A VALUE*/
0023 STZEOFF(2)=03 /*GIVE ELEMENT A VALUE*/

Appendix C: Example of BSL Program Using OS TESTRAN 125

IBM Confidential

e Example 7. Use of 0S TESTRAN (Part 7 of 17)

RSL/ELEVFEN MAY69 PROCEDURE TO DEMONSTRATE USE OF TESTRAN WITH BSL PAGE 002
0024 /%GIVE ELEMENT A VALUE*/
0025 /#GIVE ELEMENT A VALUE*/
0026 RESTRICT(S5): /*REGISTER 5 POINTS TO S*/
0027 TIME=23 J*SET TIME*/
0028 L1z /=SET REGISTER 5%/
R5=ADDR(S(11) ¢ /%TESTRAN POINTER TO S*/
0029 BACK: /%TAKE TESTRAN DUMP#/
TIME=1: J*RESET TIMEx/
0030 END DRIVER: /*#RETURN TO CALLING PROC- END OF
PROC*/

126

IBM Confidential

e Example 7. Use of OS TESTRAN (Part 8 of 17)

BSL/ELFVEN MAY69 PROCECURE TO DEMONSTRATE USE OF TESTRAN WITH BSL PAGE 003
CCL'D IN NAME ATTRIBUTE ANC CROSS REFERENCE TABLE
4 A {6)s STATICs LCCAL. CHARACTER{10), EXTERNAL, BOUNDARY(BYTE,l)
3 BACK STATIC. LOCAL+ LABEL. EXTERNAL
29
2 BOUNDT IN S, POINTER(31), INTERNAL. BCUNGARY(WORD,1}
244 25
2 CICTOFF IN S, POINTER(16)y INTERNALs BCUNDARY(HWGRD,1)
18+ 19
2 cIT IN S. POINTER(8). INTERNALy BCUNCARY(BYTE, 1)
1 11
1 CRIVER STATIC. LOCALs ENTRY, EXTERNAL
. 1. 3C
2 Dvs IN S+ FIXED(31), INTERNALs BOUNDARY(WCRDs1)
16y 17
2 FLAG IN S BIT(8)+ INTERNAL, BOUNDARY(BIT)
6y 7
? LN IN S, POINTER(8), INTERNAL, BOUNCARY(BYTE,1)
8e 9
2 Loc IN S, POINTER(31). INTERNAL. BCUNDARY (WORD,1)
144 15
28 L STATICy LOCAL, LABELs INTERNAL
28
2 MOFF IN Se POINTER(16%, INTERNALs BCUNDARY(HWORD,1)
2C, 21
2 Qo IN S. POINTER(8)4 INTERNAL, BCUNCARY(BYTE.1}
124 13
5 RS REGISTER(5)y PCINTER(31), INTERNAL, BCUNDARY{WORDs1}
28
2 S STRUCTUREs (2)+ AUTOMATICe CHARACTER(24}: INTERNAL+ BOUNDARY (WORD.1)
28
2 SIZEOFF IN Se FIXED{3Ll}. INTERNALs BCUNCARY(WCRDs1)
22, 23
27 * TIME ALTOMATICs FIXED(31)s+ INTERNAL, BCUNDARY(WORD,1)
27+ 29

*#% PROC. DRIVER HAD NO ERRORS

Appendix C: Example of BSL Program Using OS TESTRAN 127

e Example 7. Use of 0OS TESTRAN (Part 9 of 17)

IFF2851 CMP2

IFF2851 VOL SER NOS= XB157 . PASSED

1EF2851 SYSOUT SysouT

IEF2851 VOL SFR NOS= T77439.

1EF28571 SYS66087.T000136.RPO01.ALCAT DELETED

TFF2851 VOL SFR NOS= 231100.

TFF2851 SYS€ESC87.T000136.RP001.A,.BSLGO PASSED

1FF2851 VOL SER NOS= xB231 .

IFF2851 SYSESORT.TOCC13E6.RPOOL.A.LTS DELETED

TEF2857 VOL SER NOS= XB157 .

//STEP2 EXEC PGM=1EUASM.COND={9.LT«STEPL) +PARNM='LCAD? 00000016

//5YSGC. DD DSNAME=gLOADSET,SPACE=(80,(200,50))DISP={MOD+PASS) + X00000017

17 UNTT=2311 00000018

/7SYSPUNCH CR UNIT=2540-2 00000019

//SYSPRTINT CD SYSOUT=A 00000020

/7SYSUT1 LD DSNAME=EDOG.UNIT=2311+CISP=(NEWsDELETE) X00000021

'z SPACE={CYL.{(3.1}) 00000022

IJQVSUTZ CO DSNAME=EFOGWUNIT=2311+DISP=(NEW.DELETE} . X00000023
SPACE=(CYL+{3.1)) 00000024

I.H\/SUYB CD DSNAME=&MOG+UNIT=2311,0ISP=(NEW.DELETE]}, X00000025
SPACE={CYL.(3,1)) 00000026

//SVSIN DD OSNAME=*.STEPL.SYSLT2,01SP=(OLD+DELETE),UNIT=2311 00000027

//STEP2.SYSLTR OD DSNAME=SYS1.MACLIB,UNIT=2311,VOLUME=SER=SYSRS3, X

7 DISP=(0LD.PASS)

TEF2361 ALLOC. FOR A STEP2 STEPA

TEF23271 JORLIB ON 291

TFF2271 SYSGO ON 160

IFF2371 SYSPUNCH ON 00D
IFF2371 SYSUTL ON 1S1
TEF2371 SYSUT2 ON 290
TEF2371 SysuT2 ON 161
LEF2371 SYSIN ON 191
TEF237T SYSLIR ON 290

128

IBM Confidential

e Example

Lce

000C00
0000C0
000004
000006
00000¢€
000006

€00004A
CO000E
000010
000000
000012
000018
a0001C
000020
000024

NRJECT CPDE

90EC
05RQ

5800

4510
QAOA
18C1

D700
5000
41FQ0
50F0
18CF

cooc

BORA

ROO8

corc
COC4
€000
D008

7.

ADDR1

€07C 0007C

Use of 0OS TESTRAN (Part 10 of 17)

ADDR2 STMT SOURCE STATEMENT F15APRE8
1 CTL O0L.7l416
2 %/ Aokookokdokotor R ook ok 3R AR AR R Ok kK
3 % /% *
4 % /% THIS PROCEDURE CECLARES AN AUTOMATIC AND A STATIC AREA AND GIVES*
5 % /%VALUES TO EACH AREA. THE AREAS ARE THEN DUMPED BY TESTRAN AT THE *
6 * /*STATEMENT LABELED 'BACK'. *
7k /% - *
8 x / * roox SRR R R
9 *DRIVER: /*MAIN ENTRY PCINT*/
10 * PROC OPTICNS(REENTRANTI}S
11 LCLA ET+8SPN 0001
12 .a001 ANDP 0001
13 DRIVER CSECT 0001
c000C 14 STM™ QE+3C+12{(a0) 0001
15 RALR QB.0Q 0001
16 dPSTART DS OH 0001
17 USING @PSTART+00000.3B 0001
€00CO 18 L @0+AS1Z001 0001
19 GETMAIN R.LV=(0) 0001
0000E 20+ BAL 1leo¥+4 INCICATE GETMAIN
21+ svc 10 ISSUE GETMAIN SVC
22 LR aC+al 0001
23 USING @aDATD+00000+aC 0001
acorc 24 XxC ATENPS(QL) +QTEMPS 0001
00004 25 ST @D+aSAVOO1+4 0001
0Co000 26 LA AF «@SAVOO0L 0001
00008 27 ST AF+8(04+a0) 0001
28 LR aD.aF 0001
29 % DeL /*AUTOMATIC STRUCTURE TO BE DUMPED BY TESTRAN*/
30 * 1 S(2) AUTGMATIC. /*STRUCTURE NAME*/
31 * 2 FLAG BIT(8), /*ARBITRARY ELEMENT USED AS AN
32 % EXAMPLE*/
33 % 2 LN PTR{8)+ /%ARBITRARY ELEMENT USED AS AN
34 * EXAMPLE*/
35 % 2 DIT PTR(8}, /*ARBITRARY ELEMENT USED AS AN
36 * EXAMPLEX/
37 * 2 0D PTR(8). /*ARBITRARY ELEMENT USED AS AN
38 * EXAMPLE*/
39 * 2 LOC PTR(31). /*ARBITRARY ELEMENT USED AS AN
40 * EXAMPLE*/
41 % 2 DVS FIXED(31l). /*ARBITRARY ELEMENT USED AS AN
42 * EXAMPLE*/
43 * 2 DICTOFF PTR(161, /*ARBITRARY ELEMENT USED AS AN
44 * EXAMPLE*/
45 * 2 MCFF PTR(161}, /*ARBITRARY ELEMENT USED AS AN
46 * EXAMPLE*/
47 * 2 SIZECFF FIXED(31), /*ARBITRARY ELEMENT USED AS AN
48 * EXAMPLEX*/
49 % 2 BOUNCT PTR(31)3 /*ARBITRARY ELEMENT USED AS AN
50 * EXAMPLE*/
51 * ocL BACK LABEL LOCAL EXTERNAL; /*TESTRAN TEST POINT*/
52 % ocL A(6) CHAR(LO) STATIC EXT INIT{(6)'AAAAAAAAAAY); /*STATI
53 * ARRAY TO BE DUMPED BY
54 * TESTRAN*/
55 % DCL RS REG(5) PTR: /% POINTER TO S*/

Appendix C:

Example of BSL Program Using OS TESTRAN 129

PAGE 1

3/28/69

006000
00010
00020
00030
00040
00050
00060
00070
ooosC
00090
00100
00110
00120
00130
00140
00150
00160
00170
00180

00190
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00330
00340
00350
00360
00370
00380
00390
00400
00410
00420
00430
00440
00450
00460
00470
00480
00490
00500
00510
00520

IBM Confidential

e Example 7. Use of 0S TESTRAN (Part 11 of 17)

PAGE 2

tCC O0OBJFCT CORE ADDRL ACOR2 STMT SOURCE STATEMENT F15APR68 3/28/69
56 * 00530

57 * FLAG(1)='00000010"8; /%GIVE ELEMENT A VALUE*/ 00540

000026 9202 €048 00048 58 MVI S.B*00000010" 0006 00550
59 % FLAG(2)='00001111'B: /%GIVE ELEMENT A VALUEx®/ 00560

N00024 920F COéan 00060 60 MV S$+244B'00001111" 0007 00570
61 * LN(1)=01 /%GIVE ELEMENT A VALUE*/ 00580

00002E LRFF 62 SR aF «aF 0008 00590
000030 42F0 €049 00049 63 STC AF+S+1 0008 00600
64 * LN(2)=03 /%GIVE ELEMENT A VALUE*/ 00610

000034 42F0 CCEL 0C0él 65 STC IF45+25 0009 00620
66 * DIT(1)=0%¢ /%GIVE ELEMENT A VALUEX/ 00630

000038 42F0 C04A GCO4A 67 STC AF ¢S+2 0010 00640
68 * DIT(21=0: /#GIVE ELEMENT A VALUEX/ 00650

£0003C 42F0 €C62 00062 69 STC aF +S+26 0011 00660
70 * oo(1y=2¢ /*GIVE ELEMENT A VALUEx/ 00670

000040 41F0 0CO2 00002 71 LA aFe2 0012 00680
000044 42F0 C048 0C048B 72 STC AF +S+3 0012 00690
73 * op(2)=3: /#GIVE ELEMENT A VALUEX/ 00700

000048 41F0 0C03 0CC003 T4 LA aF,3 0013 00710
G0004C 42F0 €063 00063 75 STC BF «S+27 0013 00720
76 * LCC(l)=1: /%GIVE ELEMENT A VALUEX/ 00730

€C0050 41FC 0001 GCcool 77 LA aFel 0014 00740
000054 50F0 CO4C 0004C 78 ST AF.S+4 0014 00750
7S * LCC(2) =33 /*GIVE ELEMENT A VALUE®/ 00760

000058 41F0 0CO3 0CcCo3 80 LA F+3 0015 00770
00005C 50F0 €064 0coe4 81 ST AF45+28 0015 00780
82 * DVS(1)=51 /*GIVE ELEMENT A VALUEX/ 00790

0C0060 41F0 0CO5 ccoos 83 LA AF 45 0016 00800
000064 50F0 CO50 0co50 84 ST aF.S+8 oole 00810
85 * DVS(21=71 /%*GIVE ELEMENT A VALUEX/ 00820

€000&8 41F0 0COT 0coo7 86 LA aF 7 0017 00830
0000&6C 50F0 CC68 0c068 87 ST @F+S+32 0017 00840
88 * DICTOFF(1}=03 /%GIVE ELEMENT A VALUE*/ 00850

000070 1LRFF 89 SR aFsaF ools 00860
000072 40F0 CCS4 00054 %0 STH AF4S+12 0018 00870
91 * DICTOFF(2)=02 /#GIVE ELEMENT A VALUE*/ 00880

000076 4CFO CCer ccoec 52 STH aF «S+36 0019 00890
93 x MOFF(L)=43 /*GIVE ELEMENT A VALUE*/ 00500

GOOOTA 41F0 0C04 00004 94 LA aF ¢4 0020 00910
00007F 40F0 (C5¢ 0co056 95 STH AF +S+14 0020 00920
96 * MOFF (2) =43 /%GIVE ELEMENT A VALUE*/ 00930

000082 40F0 CC6E 0CO6F 57 STH aF +S+38 0021 00940
98 * SIZEQFF(1)1=0% /*GIVE ELEMENT A VALUE*/ 00950

0000R6 LRFF 99 SR AF «AF 0022 00960
000088 50F0 €058 00058 100 ST AF «S+16 0022 00970
101 * SIZEDFF (2}=0: /%GIVE ELEMENT A VALUEX/ 00980

Q0008C 50F0 COTO 0co70 102 ST AF «S+40 0023 00990
103 * BOUNDT(11=03% /%*GIVE ELEMENT A VALUE*/ 01000

6C0090 50F0 COSC ©005C 1C4 ST @F +S+20 0024 01010
105 * BOUNDT(2)=03 /*GIVE ELEMENT A VALUE*/ 01020

0C00S4 SOF0 CO74 00074 106 ST AF 1S+44 0025 01030
1C7 * RESTRICT(5) ¢ /*REGISTER 5 POINTS TO S%/ 01040

108 * TIME=2: /*SET TIMEx/ 01050

000098 41FO0 0002 00002 109 LA dF+2 0027 01060
00009C 50F0 €078 00078 110 ST aF +TIME 0027 01070

130

IBM Confidential

e Example 7. Use of 0S TESTRAN (Part 12 of 17)

PAGE 3
LCC ORJECT CODE ADDRL ADDRZ STMT SNURCE STATEMENT FL5APR6E 3/28/69
111 *L1: /#SET REGISTER 5%/ 01080
112 * R5=ADDR(S (11} /#TESTRAN POINTER TO S%/ 01090
000040 4150 C048 00048 113 L1 LA @5.5 0028 01100
114 *BACK: /%TAKE TESTRAN DUMP%/ 01110
115 * TIME=1: /*RESET TIME¥/ 01120
000044 41F0 0001 00001 11€ BACK LA BF.1 0029 01130
0000AB 50F0 COT8 ocore 117 ST AF ¢ T IME 0029 01140
118 * END DRIVER: /*RETURN TO CALLING PROC— END [01150
119 * PROCH/ 01160
0000AC 5800 D004 00004 120 AELOL L @D410,a0) 0030 01170
0000R0 181C 121 LR @1,aC 0030 01180
0000B2 5800 ROBA ococo 122 L @0+@S12001 0030 01190
123 FREEMAIN RyLV=(0),A=(1} 0030 01200

0000R6 0AQA 124+ SVC 10 ISSUE FREEMAIN SVC
000088 98EC DOOC 0000C 125 LM QE+DC+12(3C) 0030 01210
0000RC O7FE 126 8CR 15.4E 0030 01220
0000RE 127 aCATAL EOU * 01230
00000 128 a0 EQU 00 EQUATES FOR REGISTERS 0-15 01240
000001 129 31 EQU Ol 01250
©0000? 130 a2 EOU 02 01260
000003 131 @3 EQU 03 01270
000004 132 94 EQU 04 01280
000005 133 a5 EQU 05 01290
000006 134 96 EOU 06 01300
000007 135 a7 EQU 07 01310
000008 136 a8 EQU 08 01320
000009 137 a9 EQU 09 01330
000004 138 ah EQU 10 01340
000008 139 3R EQU 11 01350
00000¢ 140 aC EQU 12 01160
000000 141 @D EQU 13 01370
00000F 142 @E EOU 14 01380
€0000F 143 9F EQU 15 01390
0000C0 144 0s OF 01400
145 @S12001 OC FLLYESPN! 01410

000060 00 as1zool DC FLLO!

0000€1 000070 146 0C AL3(@DAT END-2DATD) 01420
0000C4 147 DS oF 01430
0000CA 148 DS 00 01440
0000c8 149 ADATA EOU % 01450
150 ENTRY BACK 01460
151 ENTRY A 01470
0000C8 152 A EQU ¥ 6%10 BYTE(S) 01480
0000C8 ClCiclClClclcicl 153 oC 00006CTAAAAAAAAAAY 01490
€00005 154 R5 EQU 00000005 FULLWORL POINTER REGISTER 01500
0000C8 155 ORG ~ @DATA 01510
00008 156 os 00000060C 01520
000001 157 aL EQU 1 01530
0€0000 158 aCATD DSECT 01540
600000 159 @SAVQOL EQU @DATD+00000000 72 BYTE(S) CN WORD 01550
000048 160 § EQU @DATD+00000072 2%24 BYTE(S) ON WORD 01560
000048 161 FLAG EQU $+00000000 8 BIT(S) 01570
000049 162 LN EQU S+00000001 1 BYTE POINTER 01580
000044 163 DIT EQU $+00000002 1 BYTE POINTER 01590
000048 164 0D EQU $+00000003 1 BYTE POINTER 01600

Appendix C: Example of BSL Program Using OS TESTRAN 131

e Example 7. Use of OS TESTRAN (Part 13

Lec

00004C
ncaos50
000054
000056
000N0sSe
0005C
100078
0€0000
nooo7c
00007¢
noonTn
neoooo
6C0000

132

ORJECT CODE ADDRY ALDR2 STMT

165
166
167
168
149
170
171
172
173
174
175
176
177

SOURCE STATEMENT

LGC

bvs
DICTOFF
MCFF
SIZEOFF
BCUNDT
TIME

ATEMPS

ADATENC
DRIVER

EQU
EQU
EQu
EQU
EQu
EQU
EQU
ns
0s
cs
EQU
CSECT
END

S+00000004
$+00000008
§$+00000012
S+00000014
$400000016
$+00000020
@DATD+00000120
00000124C
0F

C

*

.

DRIVER

of 17)

FULLWORD
FULLWORD
HALFWORD
HAL FWORD
FULLWORD
FULLWORD
FULLWCRD

POINTER
INTEGER
POINTER
POINTER
INTEGER
POINTER
INTEGER

IBM Confidential

PAGE 4

F15APR68 3/28/69

01610
01620
01630
01640
01650
01660
01670
01680
01690
01700
01710
01720
01730

IBM Confidential

e Example 7. Use of OS TESTRAN (Part 14 of 17)

TFF2851 CMP2 PASSED

1FF2851 VOL SFR NOS= XB157 .

TFF2851 SYS65087.T000136.RP00L.A.LOADSET PASSED

TEF2851 VOL SFR NOS= 231100.

TEFP851 SYSE5087.T000136,RP00L1.A.R0O000018 DELETED

TEF?R51 VAL SFR NOS= .

IFF2851 .SYSOUT SYSOUT

IEF?851 VOL SER NOS= T77439.

IFF2851 5Y$€9087.T0C0136.RPO01.A.DOG DELETED

IEF2851 VOL SER NOS= XB231 .

IEF2851 SYS69087.T000136.RP0O0L.A.FOG DELETED

IFF2851 VDL SER NOS= SYSRS3.

TEF2851 SYS65087.T000136.RPO0L.A.MOG DELETED

TEF2851 VNL SER NOS= XR231 .

TEF?851 SY$S69087.T000136.RP0O01. A.BSLGO DELETED

TEF2851 VOL SER NOS= XB231 .

TEF2851 SYS1.MACLIR PASSED

IFF2R5T VOL SER NOS= SYSRS3, 5

//LKEC EXEC PGM=LINKEDTTCOND=(9+LT+STEP2) s PARM=tXREF +LIST,LET' 00000028
//SYSLIB [D CSNAME=BSLLIB.UNIT=2311,VCLUME=SER=111111,DISP=(0LDKEEP) 00000029
//SYSPRINT OC SYSOUT=A 00000030
//SYSLIN DD CSNAME=&LCADSET,DISP=(OLD,DELETE) 00000031
2 DR DCNAME=SYSIN 00000032
/7SYSUTL DD DSNAME=G&CAT.UNIT=231L,DISP=(NEW.DELETE), X00000033
24 SPACE=(CYL.{2.1)) 00000034
//SYSLMOD CD DSNAME=EGOSET(BSLGO) «SPACE=(10244(5042041))4UNIT=2311, X00000035
/r DISP=({MOD.PASS) 00000036
//SYSABENE DG SYSOUT=A 00000037

T1EF2361 ALLOC. FOR A LKED STEPA
TFF2271 JORLIB ON 291
TEF2371 SYSULIR ON 192
TEF2371 SYSLIN ON 190
IFF2371 SYSUT1 ON 251
IFF2371 SYSLMOD ON 290

Appendix C: Example of BSL Program Using OS TESTRAN 133

IBM Confidential

e Example 7. Use of 0S TESTRAN (Part 15 of 17)

IFF2851 CMP2 PASSED

TFF2R51 VOL SER NOS= XB157 .

TEF2R851 RSLLIB KEPT

1EF2851 VOL SER NOS= 11l1llt.

1FF2851 SysnuT SYSCUT

T1EF2851 VAL SER NOS= T77439.

TEF2RST SYS6S087.T000136.RPCOL.A.LDADSET DELETED

IEF2851 VOL SER NOS= 2311C0.

TEF2A51 SYSES0RT7.T000136.RPO0L.ALCAT DELETED

1FF2851 VOL SER NOS= XB157 .

TEF2851 SYS65087.T00013£.RPCO1.A.GOSET PASSED

TEF2851 VOt SER NDOS= SYSRS3.

/760 EXFC PGM=% L KED.SYSLMODCOND=(9+LT.LKED} 00000038
//SYSABEND DD SYSOUT=aA 00000039
//RSLOUT DD SYSCUT=A 00000040
//BSLPUNCH DD UNIT=2540-2 00000041
//7GO.SYSTFST OC DSNAME=EBEGME«UNIT=2311+DISP=(NEW.PASS)s X

r/ SPACF=(CYL.(2+1)).DCB=(RECFM=F,BLKSIZE=80)

[EF2361 ALLCC. FOR A GO STEPA

TEF2371 JOBLIB ON 251
1EF23271 PGM=%.DC CN 290
TFF2371 BSLPUNCH ON 0OCD
TEF2371 SYSTFST ON 190

134

IBM Confidential

Example 7. Use of OS TESTRAN (Part 16 of 17)

1EF2851 CMP2 PASSED
1EF2851 VoL SFR NOS= XB157 .
TEF2851 SYS€9087.T00013€6.RP0O01.A,GOSET PASSED
IFF2851 VOL SER NOS= SYSRS3,
TEF2R51] SYS€9087.T000136.RP00L. ALBEGME PASSED

IEF2851 VoL SER NOS= 2311C0.
//STEPC FXEC PGM=TEGTTEDT.PARM='T1P7¢

//SYSTEST CC DSNAME=EREGME.UNIT=2311,0T1SP=(CLD.DELETE) X
/7 NCB=(RECFM=F,BLKSIZE=80)

//SYSUTL CU DSNAME=ELNKWCRK+UNIT=2311+CISP={NEW.DELETE), X
" SPACE=(TRK+(15.10))

//SYSPRINT DD SYSOUT=A

/7SYSIN DC DUMMY

IEF23&1 ALLOC. FOR A STEPC
TEF2371 JORLIB ON 291

IFF2371 SYSTEST ON 190

TFF2371 SYSUTL 0N 16C

Appendix C: Example of BSL Program Using OS TESTRAN 135

IBM Confidential

e Example 7. Use of 0S TESTRAN (Part 17 of 17)

#S10UT TESTRAN OUTPUT DATE 69/087 TIME 00/11 PAGE 1
)] MACRO IC 000. TFST OPEN + IDENTIFICATICN BSLOUT
MAXIMUM NUMBER 0OF PAGES 50+ MAXTMLM NUMBER COF STATEMENTS 9¢

AT LOCATIOM 01&11C FNTER

1) MACRD TD 0C2. CUMP CCMMFNT
BSL CATA
1) MACRD ID 003. DUMP CATA STARTING IN SECTICN S

S
N3FRCO 02000002 00000001 €00CCOC5 C0000004 00000000 00000000 OF00C003 00000003 00000007 00000004 00000000 00000000

1) MACRD IC CC4, CUMP CATA
A
016140 AAAAAANAAA AAAAARAAAA BAAAAAAAAA AAAAADAAAA AAAAAAAAAA AAAAAAAAAA
1) MACRD [C 0CS5. [UMP PANEL
G'00* 0000007C G*Cl*' Q003FRE88 G'02' 00CO0CAC G*03* 00000181 G'G4' 0000$5C8 G'05* Q003FBDO G'06' 000074D8 G'07' 00000080
G'Cc8' 00000078 G'09' 6001CFD2 G'1C' OQO3FED8 G'11' 7001607E G'12* 00Q3FB8B8 G'1l3* 0003FB88 G'l4* 00007528 G'15' 00000002

PSW FF 1 6§ 0026 4 0 01611E CC=0 FIX POINT CVERFLOW OFF CEC CVERFLCW OFF EXP UNDERFLOW OFF SIGNIFICANCE OFF
F10' 00000000 00000000 F*2*' C0C00CGO 00000000 F'4' 00000000 00000000 F'é' 00000000 00000000

*%% IEGECT END CF TFSTRAN FECIT--CC00CO5 STATEMENTS PROCESSEC

136

IBM Confidential

Appendix D: Example of Dynamic Invocation of
Compiler

| Example 8 is an example of how the BSL compiler can be invoked during
execution of a problem program.

e Example 8. Use of Dynamic Invocation of Compiler (Part 1 of 10)

RSL/ELEYFN MAY6S PAGE 001
0001 /dksokk ERELE R L Y Aok A AHAR AN Hok /
/% L4
/% THIS ROUTINE TLLUSTRATES THE USE OF CYNAMIC INVGCATION OF THE */
/%BSL CCMPILER */
1% */
/ LR R L R AR R R A OR K AR R KX ROR ok /)
PCCANAMES :/#MAIN ENTRY PCINT*/
PROCECURES
€002 ocL /*PARAVETER LIST CF OPTIONS*/

1L GPTIONS BCY(WORD,3)s /*LIST NAME*/
2 CTR FIXED(15)} INIT(35), /*NUMBER CF CHARS IN
SOPTIONS STRING*/
2 SOPTICNS CHAR(35), /*0OPTIONS ARE WRITTEN EXACTLY
AS THEY WOLLD BE IN THE PARM
FIFLD OF THE EXEC CARD*/
3 SIZF CHAR(8) INIT('SIZE=40,'), /%SIZE OF THE
COMPILER
DICTIONARY*/
3 SCRMCGIN CHAR(18) INIT('SORMGIN=(001,072),%),
/*MARGINS TO BE READ%/
3 CONCFAR CHAR(9)} INIT('CONCHAR=2'}; /*CHAR IN FIRST
COLUMN CF
COMPILER CNTL
STATEMENTS*/
0003 DCL /*PARAMETER LIST OF DDNAMES#*/
1 CCNAMES BCY(WORD.3)e /*NAME OF LIST*/
2 DCTR FIXEC(15) INIT(é€4}s /*NUMBER OF CHARS IN
SDDNAMES STRING*/
2 SCDNAMES CHAR (641 /*NO ALTERNATE UDNAMES FOR
FIRST 4 IN STANDARD LIST*/
3 ANYCC CHAR(32), /*MUST USE STANDARD NAMES*/
3 CSYSIN CHAR(8) INIT(*SCSYSIN'), /#INPUT TC
COMPILER*/
3 DSYSOUT CHAR(8) INIT('SCSYSOUT'}. /*QUTPUT FOR
PRINTER*/
3 DSYSPNCH CFAR(8) INIT('G00000CCCOC00000'X),
/*NO ALTERNATE DDNAME FCR

SYSPUNCH*/
3 DSYSUT1 CHAR(8) INIT(®"SCSYSLTL'): /#SCRATCH FILE
OR NON-
INTERSPERSED
CODEx*/
0004 GEN (LINK EP=BSL+PARAM= (OPTIONS+GCNAMES)#VL=1):/*LINKS TO BSL
COMPILER*/
005 /% A CHECK CCULD BE MADE HERE TO CHECK THE RETLRN CCDE IN */
/% FEGISTER 15 ANC TFEN CONTINUE PROCESSING ACCORDING TO */
/% THE LEVEL OF SEVERITY OF ERRORS FOUND DURING COMPILATION.*/
ENC PLCNAMES: /*¥RETURN TO CALLING PROC*/

Appendix D: Example of Dynamic Invocation of Compiler 137

e Example

RSL/FLFVEN MAYe9

138

DL IN
3
2

IBM Confidential

8. Use of Dynamic Invocation of Compiler (Part 2 of 10)

NANF
ANYDO
CCACHAR
CTR
DCTR
CDNAVES
DSYSIN
DSYSCUT
DSYSPNCH
CSYSUuTL
CPTICANS

PDLNAVES

SDRNAMES
S1ZF
SCPTICNS
SCRMGIN

%% FRCC.

ATTRIBUTE ANC CROSS REFERENCE TABLE

IN SDCNAMES.
IN SCPTICNS.
IN CPTIONS.
IN DCNAMES,

FIXED(15),
FIXED(15).

CHARACTER(32),

CHARACTER(S) .

STRUCTURE. STATICs LOCAL.

IN SLLNAMES.
IN SCCNANMES.
IN SLCNAMES.

IN SCLNAMES.

CHARACTER{(8) .
CHARACTER(8),
CHARACTER(8)4

CHARACTER(8).

STRUCTURE. STATIC+ LOCAL.

INTERNAL,

INTERNAL.

INTERNAL +

INTERNAL»

CHARACTER(66),

INTERNAL .«
INTERNAL +
INTERNAL

INTERNAL ¢

STATIC. LOCAL. ENTRY, EXTERNAL

1.
IN CCNAMES.

1

=

SCPTICNS.

IN OPTICNS,

z

IN SCPTICNS,

CHARACTER{£&4)

CHARACTER(B),

CHARACTER(35),

CHARACTER(18),

PODNAVES FAC NC ERRORS

INTERNAL,
INTERNAL .

INTERNAL

INTERNAL,

BOUNDARY(BYTEs1)

BOUNDARY(BYTE,1)

BOUNDARY(HWCRD,1)

BOUNDARY(HWORD,1)

BOUNDARY(BYTE,1)
BOUNDARY{BYTE,1)
BOUNDARY(BYTE,L)

BOUNDARY(BYTE 1)

BCUNDARY(BYTE 1)
BOUNDARY(BYTE.1)

BOUNDARY{(BYTE,1)

BOULNDARY(BYTEs1)

PAGE 002

INTERNALy BCUNDARY(WCRD 3}

CHARACTER(37}, INTERNAL, BCUNDARY(WCRD,3}

IBM Confidential

e Example 8. Use of Dynamic Invocation of Compiler (Part 3 of 10)

PAGE 1

LOC NBJECT CCDE ADDRL ACER2 STHMT SCURCE STATEMENT F154APR68 4/01769

1 ICTL 01,71.1¢€ 00000

2 % J ookl ek AR iR HokHK ot Rk Aok * 00010

3 % /% * 00020

4 % /% TEIS ROUTINE ILLUSTRATES THE USE OF DYNAMIC INVCCATICN CF THE * 00030

5 % /%*RASL COMPILER * 00040

6 * f¥ * 00050

T ok S Aokl 00060

8 *PCCNAMES:/*MAIN ENTRY POINT*/ 00070

9 * PROCECURES 00080

10 LCLA &T+&SPN 0001 00090

11 .2001 ANOP 0001 00100

cecooon 12 PCLCNAMES CSECT 0001 00110
0COCCO 9CFC DOOC oooocC 13 STM BE,@Cy12(3D) 0001 0012Q
CC0004 058C 14 BALR Q@R.0 0001 00130
6Coone 15 @aPSTART ©CS OH 0001 00140
0coo0ne 16 USING APSTART+CGCCOC.3B 0001 00150
€000C6 50D0 BC3E 00044 17 ST aDyASAVOCL+4 0001 00160
CCOO0A 41F0 RC3A 00040 18 LA @F»dS5AVOG1 0001 00170
CCOCOF SOFG DOO8 00008 19 ST dF+8(0+20) 0001 00180
000012 18DF 20 LR absaF 0001 00190
21 * pcL /*%PARAMETER LIST OF OPTIONS#*/ 00200

22 * 1 OPTIONS BOY(WORD.3}, /%LIST NAME*/ 00210

23 * 2 CTR FIXED(15) INIT(35), /*NUMBER CF CHARS IN 00220

24 * SCPTIONS STRING*/ 00230

25 * 2 SOPTIONS CHAR(35), /*CPTIONS ARE WRITTEN EXACTLY 00240

26 * AS THEY WOULD RE IN THE PARM 00250

27 * FIELD OF THE EXEC (ARC*/ 00260

28 * 3 SIZE CHAR(8) INIT('SIZE=40+')y /%SIZE OF THE 00270

29 * COMFILER 00280

30 * DICTIONARY */ 00290

31 * 3 SORMGIN CHAR(18) INIT('"SORMGIN=(00L+072)4s"'), 00300

32 % /*MARGINS TO BE REAC*®/ 00310

33 % 3 CONCHAR CHAR(9Q) INIT('CCONCHAR=2')3; /*CHAR IN FIRS 00320

34 x CCLUMN ©OF 00330

35 CCOMPILER CNTL 00340

36 * STATEMENTS */ 00350

37 % bcL /*PARAMETER LIST OF UDNAMES*/ 00360

38 x 1 DDNAMES BDY(WORD+3), /#NAME OF LIST/ 00370

39 % 2 DCTR FIXED{15) INIT(64), /%NUMBER OF CHARS IN 00380

40 * SDDNAMES STRING*/ 00390

41 % 2 SODNAMES CHAR(64). (*NO ALTERNATE DDNANES FCR 00400

42 % FIRST 4 IN STANDARD LIST*/ 00410

43 * 3 ANYDD CHAR(32), /*MUST USE STANDARD NAMES*/ 00420

44 * 3 DSYSIN CHAR(8) INIT('SCSYSIN')s /#INPUT TC 00430

45 % COMPILER%/ 00440

46 * 3 DSYSOUT CHAR(8) INIT('SCSYSCUT'), /*CUTPUT FOR 00450

47 % PRINTER*®/ 00460

48 * 3 DSYSPNCH CHAR(8} INIT('0000000000000000'X), 00470

49 * /*NO ALTERNATE DDNAME FCR 00480

50 % SYSPUNCH*/ 00490

51 * 3 DSYSUTL CHAR{8) INIT(*SCSYSUT1'); /*SCRATCH FILE 00500

52 * FCR NON-— 00510

53 % INTERSPERSED 00520

54 % CCDE*/ 00530

55 % GEN (LINK EP=BSL+PARAM=(OPTIONS+DONAMES) ,VL=1);/*LINKS TO BSL 00540

Appendix D: Example of Dynamic Invocation of Compiler 139

IBM Confidential

e Example 8. Use of Dynamic Invocation of Compiler (Part 4 of 10)

PAGE 2
LCC OBRJECT CCOE ACDR1 ALCR2 STMT SCURCE STATEMENT F15APRES 4/01/69
50 ¥ COMPIL ERX/ 00550
57 LINK FP=BSL.PARANM=(OPTIONS DONAMES) ¢VL=1 00560
0co00L4 58+ CNOP 0«4
0CCC14 4510 RNlA 00020 59+ RAL 1+ THBOOO02A LOAG LIST ADDR IN REGL
aeoo18 60+1FBO002 EQU *)
€C0C18 0000CCEA 61+ ocC A{OPTIONS) PROB.PROG.PARANETEFR
0coo01C 80 62+ oC B*1000000C* SET VL ShITCH EIT
0CC01D 0000R2 63+ cc AL3(CDNAMES) PRGB. PROG. PARAMETER
0coe20 £4+1FBO0024A EQU *
0C0020 65+ CNOP 0+ 4
GCO020 45FO0 BC2E 00034 6e+ BAL 15¢%+20 LOAD SUP.PARAMLIST ADR
060024 0000002C 67+ cc A(*+8) ADDR OF EP PARAMETEK
0¢nc?8 0cceocao 68+ cc A(C) DCB ADLRESS PAKAMETER LCOA
aC0C2C C2E2D340404C4040 69+ oc CL8*BSL*' EP PARAMETER
CCoC34 0AQE 70+ sve 6 ISSUE LINK SvC
00003¢€ 71 os 0H 00570
7 * /% A CHECK CLULD Bt MADE HEFE TO CHECK THE RETURN CCDE IN * 00580
73 * /% REGISTER 15 AND THEN CONTINUE PROCESSING ACCCRDING TC * 00590
74 * /% THE LEVEL OF SEVERITY CF ERKRCRS FCUNC DURING CCMPILATION.* 00600
75 * END PDDNAMES: /*RETURN TO CALLING PRCC®/ 00610
©C0c3¢e 58DC DOC4 00004 76 @ELOL L aby4(04aC) 0005 00620
0C003A 98EC DOOC 0000C 77 LM AE«2Cs12(80) 0005 00630
0COC3F OTFE 78 BCR 15+2E 0005 00640
0C0040 79 RLATAL EQU * 00650
0NC€oeco 80 a0 ECU 00 EQUATES FOR REGISTERS 0-15 00660
ccocel ar al EQU ol 00670
£600c2 82 a2 FQU 0z 00680
ococes 83 &3 EQU 02 00690
€oocca 84 24 EQU 04 00700
acoocs 85 as Eau 05 Q0710
Conoce 86 at EQU o€ 00720
cecoce? 87 a7 EQU 07 00730
cceece 88 a8 EQu 08 00740
ceoces 89 a9 EQU 09 00750
acooeA 90 A EQU 10 00760
ocecace 91 aE EoU 11 00770
cegocec 92 acC EQU 12 00780
ccocan 93 al EQU 12 00790
GC0COE 94 AE ECU 14 00800
CCoCOF 95 aF EQU 15 00810
000040 96 DS ocC 00820
aC0040 97 aLATA EQU * 00830
¢coc40 98 @SAVOOl EQU abATA+00CCGCCC 72 BYTE(S) CN WCRD 00840
GGOOBA 99 CPTICNS EOU BDATA+COCOCOT74 37 BYTE(S) CN WORD+2 00850
ocooea 100 0ORG OPTIONS+CCCCCCCC 00860
ococea 101 CTR EQU * HALFWUGRD INTEGER 00870
occeea 0C23 lo2 cc FL2'25¢ 00880
0cocsc 103 SCPTICNS ECU OPTIONS+CCCO0GC2 35 BYTE(S) 00890
ncooac 104 SIZE EQU * 3 BYTE(S) 00900
0CO08C E2C9ESCSTEF4FO6R 105 cc C'SI2E=4Cy" 00910
occesa 106 SCRMGIK EQU * 18 BYTE(S) 00920
CCCOS4 E2DEDSD4CTCIDSTE 107 cc CYSORMGIN=(CO1,072)," 00930
ncocae 108 CCNCHAR EQU * S BYTE(S) 00940
000046 C3DEDSC3CBCIDITF 109 oC C'CONCHAR=2' 00950
0COCR2 110 DLCNAMES EQU ACATA+C0O0CCL14 €6 BYTE(S) CN WCRD+2 00960

140

IBM Confidential

e Example 8. Use of Dynamic Invocation of Compilerﬂ(Part 5 of 10)

LOC 0ORJFCT CCDE ADDR1 ALCR2 STMT SCURCE STATEMENT
GCOCR2? 111 ORG DDNAMES+CCCCGCCC
0CCCR? 112 CCTR EQU * HALFWGRD INTEGER
GCOCR? 0040 113 cc FL21€4!
0COO0R4 114 SLLCNAMES EQU DONAMES+C00000C2 64 BYTE(S)
0COCR4 115 ANYCL EQU DDNAMES+C0CCCCC2 32 BYTE(S)
ceocna 116 ORG DDNAMES+CCOGCC34
6eoona 117 CSYSIN EQU * 8 BYTE(S)
0C00N4 F2C3E2FBE2C9D5 118] CY'SCSYSINY
0COODR 40 119 cc ooopict !
cecone 120 C£SYSGUT EQU * 8 BYTE(S)
NCOODC E2C3F2FBE?DHE4E3 121 £c C*'SCSYSOUT!
OCOOF 4 122 CSYSPRCH EGU * 8 BYTE(S)
0COCF4 000000C000C0O0000 123 oc X*000000CCCCCOOCCOT
OCOCEC 124 CSYSUT1 EQU * 8 BYTE(S)
0COOFC F2C3E2EEFZE4E3F1 125 DnC CrSCSysuTL:
0C0040 12¢ ORG ACATA
Leecao 127 DS 00000180C
OCOOF 4 128 QTEMPS bS OF
0COOF 4 129 QACATENC FEQU *
Geeeco 130 END PLCNAMES

Appendix D: Example of Dynamic Invocation of Compiler

141

s Example 8. Use of Dynamic

IFF 2851
IFFZRET
LEF 2851
TFF2851
TFF2851
TFF 2851
LFF 2857
IFF2857
TEF 2851
1FF2857
TEF2851
IFF 2851
IFF2851
TEF285T
TFF 2851
IFF2851
//LKED

/4SYSPRT
//SYSLIN
11

/75YSLTL DD DSNAME=ECATUNIT=2311.CISP=(NEWJEELETE],

17

//SYSLMDD DD DSNAME=EGCSET(BSLGD) +SPACE=(10244+(50420+ 1))+ UNIT=2311,

124

4/ SYSABE
IFF2361
TFF2271
IFF2371
TEF 2371
IFF2371
IFF2271

142

cvpo

VCL SER NCS= XR157 .

SYSEGCSL. T000052, RPOO L. SACETC.LCACSET
VOL SER ACS= SYSRS3.

SYSeLT

VCL SER NCS= T77439.

SYSESES1. T0C0052.RPOOL. SACETC.OCG
VCL SFR ACS= 11111t.

SYS65091. T000052.RPO0L. SACETC.FCG
VOL SER ACS= 231100.

SYSESCSL. TOG0052.RPOO L. SACETC.MCC
VCL SFR RCS= SYSRS3.
SYS€9691.T000052.RPOOL, SACET (. RSLGE
VCL SFR NCS= SYSRS3.

SYSL.MACLTR

VCL SER NCS= SYSRS3.

FXEC PGM=LINKEDITWCONC=(94LTASTEP2) PARN='XREF.LIST,LET"
//SYSLIB DO NSNAMF=RSLLIB.UNIT=2311.VCLUME=SER=111111.DISP=(NLOs+KEEP)

NT DO SYSCUT=A
DD DSMNANE=ELCADSET«CISP=(CLC.LCELETE}
DL DCNAME=SYSIA

SPACE=(CYL+(2.1)}

DYSP=(FCL.FASS)

ND DD SYSCLT=4A

ALLCC. FRR SACFTC LKED TEST
JCRLIR N 192

SYSLIA €N 193

SYSLIN €N 191

SYSUTL TN 180

SYSLMCD CN 191

IBM confidential

Invocation of Compiler (Part 6 of 10)

PASSEL
PASSEC

SYsouT

DELETEC
UVELETECD
DELETEC
DELETEC

PASSEL

€0600028
6000029
00600030
0C000031
€0000022
X00000033
00000034
X00000035
0000003¢
00060037

IBM Confidential

* Example 8. Use of Dynamic Invocation of Compiler (Part 7 of 10)

PAGE 3 F44—-LEVFL LINKAGE E
VARTA:

D
BLE O OEFAULLT OPTION(S) USED

17¢
PTICA
FL5APR6S 4/01/69

00970 CRCSS REFERENCE TABLE

00980

00990 .

oo CCKTROL SECTICN ENTRY

oo NAME CRIGIN LENGTH NAME LOCATION NAME LOCATICN NAME LOCATICN NAME

01030

01040 PDDNAMES 00 Fa

01050

01060

oroae LCCATICN REFERS TC SYMBGL 1IN CCNTRCL SECTICN LOCATION REFERS T0 SYMBOL

01090

orLe0 ENTRY ADDRESS 00

o TOTAL LENGTH F8 »

ol HHHKRSLAC DOES NOT EXIST BUT HAS BEEN ACDEC TC DATA SET

01150

01160

LOCAT ION

IN CCNTRCL SECTICN

Appendix D: Example of Dynamic Invocation of Compiler 143

e Kxample 8.

IFF2e«l crvp2 PASSEC

1FF2881 VEL SFK NCS= XBIST .

IFF?2851 RSLIIB KEPT

TFF2PRT VL SER NCS= 111111

TFF28€T SyscLT SYsoLT

IFF2851 VCL SFR NCS= T77439.

TEF?2851 SYS6S0G1.T000052.RPO0L.SACETC.LCALSFT DELETEC

TFFE2e5Y VCL SER ACS= SYSRS3.

1EF285] SYS£€051. T000052.RPO0L.SACETC.CAT CELETEC

TEF2PST VOL SFR NCS= 231100.

1FF2851 SYS6S091.T000052.kFO01.SACETC.GCSET PASSED

TEF 2851 VCL SFP NCS= SYSRS3.

7/60 FXEC PGM=*,LKEC.SYSLMCC+CONC=(SsLT LKEC) 00000038
//SYSABEND DD SYSCUT=A 00000039
//BSIOLT DD SYSCUT=4 €G000040
Z#BSLPUNCH DD UNIT=2540-2 00000041
//GC. SCSYSLTL DD NSKAME=ECAT JUNIT=2311.CISP=(NEW.CELETE), X

i

//G0.SCSYSNUT Do

SPACE=(CYL.(2.1})
SYSCUT=4a

Z/GP.SCSYSIN DC %

TEF22¢1
TFF2371
IFF2271
TEE 2371
IFF2371
TEF?2371

144

ALLTC. FCR SACETC GC TEST
JCBLTR Ch 192
PGM=*.LL CN 191
RSLPUACH CA OOC
SCSYSLTY CN 163
SCSYSIAN CKN 00C

IBM Confidential

Use of Dynamic Invocation of Compiler (Part 8 of 10)

IBM Confidential

Example 8. Use of Dynamic Invocation of Compiler (Part 9 of 10)

RSI/FLEVEN MAYES PAGE 001
CC01 foxoksooksok ok A A A oo AR AR ek e R R AROIOK
4 */
/%SAMFLE RCUTINE COMPILEC BY USE OF DYNAMIC INVOCATION OF THE */
/*CCMEILER */
/% */

7 AR OB AR o o AR AR AR A R K 3O B R R Rl R Ok ROk OO0k
TRCNANES:/*ENTFY PCINT*/
FROCECURES

0002 ocL (A.84C) FIXEC(31): #%*STCRAGE AREASX/

0003 [aN {CoEsF) CHAR(4): /*STORAGE AREAS*/

0004 A=B+C3 /*SOURCE STATEMENT*/

0C05 C=B/C: /*SOURCE STATEMENTx/

0co6 D=ElF3 /%SOURCE STATEMENTH*/

0c07 ENC TCCNAMES: /*RETULKN TO CALLING ROUTINE-

END OF SAMPLE ROUTINE#*/

Appendix D: Example of Dynamic Invocation of Compiler 145

IBM Confidential

oEkample 8. Use of Dynamic Invocation of Compiler (Part 10 of 10)

RSL/FLEVEN MAY6S PAGE 002
DeL'D IN NANE ATTRIBUTE ANC CROSS REFERENCE TABLE

2 & STATIC: LOCALs FIXED(31)s INTERNAL., BOUNDARY({WCRD,1)
4

2 B STATIC, LCCAL, FIXED(31), INTERNAL. BOUNDARY(WCRD.1)
44 5

2 [STATIC, LGCAL, FIXED(31)s INTERNAL+ BCUNGARY{WORD,1}
44 54 5

3 D STATIC. LGCALs CHARACTER(4), INTERNAL. BOUNDARY(BYTE 1)
6

3 E STATICs LCCALs CFARACTER(4)y INTERNAL, BCULNDARY{BYTE,1)
6

3 F STATIC. LCCAL. CHARACTER(4)s INTERNAL: BOUNUARY(BYTE 1)
6+ 6

1 TCCNAMES STATIC. LCCAL, ENTRY., EXTERNAL
1s 7

#%% PRCC. TDONAMES FAL NC ERRCRS

146

IBM Confidential

Appendix E: Diagnostic Messages and Codes

When an incorrect statement is encountered in your BSL program, the com-
piler flags the statement and writes a diagnostic message. At the point
of error, a statement flag is printed in the form:

*** ERROR message—number *¥*

Following the attribute and cross-reference table, the related diagnos-
tic message is printed in the form:

statement message message text
number number

Message Numbers and Severity Levels

Each of the compiler's diagnostic messages is numbered in the form
(M)snn where:

e M indicates that the error occurred during the compiler's macro
phase. The absence of an M indicates that the error occurred during
the compile phase.

¢ s is an alphabetic character that indicates the severity level of
the error that occurred.

* nn is an integer that numbers the message within its severity group.
The compiler recognizes four severity levels. These levels and their
meanings are summarized in Table 11 (for the macro phase) and Table 12

(for the compile phase).

Table 11. Severity Levels of Diagnostic Messages (Macro Phase)
(Part 1 of 2)

Explanation

MW is an abbreviation for a macro phase "Warning Message." This

prefix indicates that either:

e The statement had an error that was repaired by the
compiler's macro phase.

¢ The statement is not in error, but it may produce unex-
pected results when the program is compiled.

potential errors.

=
b=

is a abbreviation for a macro phase "Exrror Message."™ This
prefix indicates that the flagged statement is definitely in-
correct, and compile-time processing of the statement is
terminated.

This severity level is used when the error is localized to a
single statement. Processing continues from the next
statement.

b o e e e e e v i —— T———— —— — o, o ool .]

T
|
4
|
|
|
|
|
|
|
I|

| This severity level is intended to draw your attention to
!
|
|
|
|
|
{
|
I
L
1

of 2)

Appendix E: Diagnostic Messages and Codes 147

W

(]

IBM Confidential

Table 11. Severity Levels of Diagnostic Messages (Macro Phase)
(Part 2 of 2)

&
<
)
-

Explanation

=2
0

is an abbreviation for a macro phase "Serious Error Message."
This prefix indicates that the flagged statement is definitely
incorrect. The flagged statement is not processed.

This severity level is used when the error cannot be localized
to a single statement and, therefore, the error may affect the
remaining statements. Processing continues from the next
statement.

=
@)

is an abbreviation for a macro phase "Disastrous Error Mes-
sage." This prefix indicates an error of the highest severi-
ty, and processing is terminated at the point of error.

R Sy U ——
e e e o e e . e et s e e]
e e e e e e e ————— e b

Table 12. Severity Levels of Diagnostic Messages (Compile Phase)

f
|Level| Explanation

W is an abbreviation for a "Warning Message." This prefix indi-

cates that either:

e The statement had an error that was repaired by the BSL
compiler.

* The statement is not in error, but it may produce unex-
pected results when the program is executed.

This severity level is intended to draw your attention to
potential errors.

is an abbreviation for an "Error Message." This prefix indi-
cates that the flagged statement is definitely incorrect. The
compiler does not generate code for the flagged statement.

This severity level is used when the error is localized to a
single statement. Compilation continues from the next state-
ment, and assembler text is produced.

is an abbreviation for a "Serious Error Message." This prefix
indicates that the flagged statement is definitely incorrect.
The compiler does not generate code for the flagged statement.

This severity level is used when the error cannot be localized
to a single statement and, therefore, the error may affect
other statements in the compilation. cCompilation continues
from the next statement, but assembler text is not produced.

is an abbreviation for a "Disastrous Error Message." This
prefix indicates an exrror of the highest severity, and compi-
lation is terminated at the point of error. Assembler text is
not produced.

|
I
1
|
|
I
|
|
|
|
|
[
|
|
+
|
!
|
|
I
I
|
I
)
|
I
|
I
|
I
|
|
|
+
I
|
I
|
1

[o T Wit e S ey St e s S, e T o — —— " f— - f— " i— T — — W—— ———— — — —
b s e e it s e e . e e P — — i — ———— — — — . i) — o s i, e . i it s, i, e el e, s

148

IBM Confidential

Compiler Return Codes

When the compilation is completed or terminated, the compiler places a
return code value in register 15. These return codes, which indicate
the error status of the compilation, are:

Return Code Exrxoxr Status

0 No errors.

4 W-type errors were the highest level that occurred.

8 E-type errors were the highest level that occurred.
12 S-type errors were the highest level that occurred.
16 D-type errors were the highest level that occurred.

If the return code is 12 or 16, the compiler does not produce
assembler text. If you assemble under 0S, the cataloged procedures v
BSLASM and BSLALG test the compiler return codes to determine whether or
not to attempt assembly. :

The macro phase does not set a return code that can be tested by the
user. If an errcr above the warning level occurs during the macro
phase, the compile phase (when it gets control) sets the return code to
16 and returns to the system without attempting compilation.

Console Error Messages (0S)
If the BSL compiler cannot open one of its required data sets, the com-
piler terminates with a user code of 016. A message is written on the
console device. This message is:

UNABLE TO OPEN XXXXXX
where xxxxxx is the ddname.

If invalid parameters are passed to the compiler when it is dynamic~-
ally invoked, a compiler error may occur while trying to process the
parameters. The following disastrous error message is written on the
console device:

INCORRECT INVOCATION OF THE BSL COMPILER

Compilation is terminated at the point of error and no assembly text is
produced. (See also diagnostic message D19 explanation.)

Appendix E: Diagnostic Messages and Codes 149

Message Explanations (Macro Phase)

In the following listings, you will find an
explanation for each of the diagnostic mes-
sages that may occur during the macro

phase.

These explanations will assist you

in interpreting the messages and correcting

the errors.

There is a separate listing

for messages of each severity level (W, E,

S5, and D).

Within each severity level, the

messages are listed numerically by message
number.

Macro Warning Messages

MWO1

MWO02

MWO3

MWOUY

150

XXXXXXXX HAS NOT BEEN SET.
MENT CANNOT OCCUR.

REPLACE-

Explanation: The named macro vari-
able has been activated, but a wvalue
has not been assigned to it. For
example:

%DCL A CHAR;

B = A; /*¥ MACRO ASSIGNMENT HAS NOT
APPEARED */

%A = 'XYZ';

Compiler Action: The macro variable
is not replaced by an assigned wvalue.

xxxxxxxx APPEARS AS A COMPILE-TIME
LABEL, BUT HAS BEEN DEFINED PREVIOQUS-
LY. IT IS IGNORED.

Explanation: The named item is a
label on a compile-time statement.
It has also appeared as a label on a
previous compile-time statement, or
has been declared FIXED or CHAR in a
compile-time DECLARE statement.
Compiler Action: The label is
ignored.

XXXXXxXxXX IS MULTIPLY DEFINED. THE
SECOND DEFINITION IS IGNORED.

Explanation: The named item has
appeared as a label on a previous
compile~time statement, or has been
declared in a previous compile-time
DECLARE statement.
Compiler Action: The second defini-
tion is ignored.

XXXXXXXx CANNOT BE ACTIVATED/
DEACTIVATED BECAUSE IT IS UNDEFINED
OR IS A COMPILE-TIME LABEL.

Explanation: The named item is not
the type of item that can be acti-
vated or deactivated. If the item is
undefined, xxxxxxxx will be replaced
by the word VARIABLE. If the item is

MWO5

MWO6

MWO7

MWOS8

IBM Cconfidential

a compile-time label, xxxxxxxx will
be replaced by the label name.

Compiler Action: The item in the
ACTIVATE or DEACTIVATE statement is
ignored.

XXXXXXXX IS A COMPILE-TIME KEYWORD
BUT APPEARS AS A COMPILE-TIME LABEL.
THE LABEL IS IGNORED.

Explanation: A keyword is used as a
compile-time label. For example:

%IF: GO TO Ll; /% IF IS A KEYWORD */

Compiler Action: The label on the
compile-time statement is ignored.

MORE THAN ONE PERCENT APPEARS FOLLOW-
ING A COMPILE-TIME THEN OR ELSE. IT
IS IGNORED.

Explanation: A THEN or ELSE is fol-
lowed by more than one % sign. For
example:

%X = 10;
%IF X = 5 %THEN %A = %Y = 6;
/¥ TWO % FOLLOW THEN */

Compiler Action: The additional
macro expressions are ignored.

THERE IS A MIXTURE OF COMPILE-TIME
AND NON COMPILE-TIME STATEMENTS ON A
CARD. PERCENT INSERTED.

Explanation: A compile-time state-
ment is followed by a non compile-
time statement on the same card or a
percent is missing where one is
expected. For example:

%X = 10; Y= 5; /¥ ¥ = 5 DOES NOT
HAVE % PRECEDING IT */

%IF A = 5 THEN % B = 10; /¥ A % WAS
EXPECTED BEFORE THEN #*/

Compiler Action: Percent assumed.

THERE IS A MIXTURE OF NON COMPILE-
TIME AND COMPILE-TIME STATEMENTS ON A
CARD. PERCENT IGNORED.

Explanation: A non compile-time
statement is followed by a compile-
time statement on the same card. For
example:
NAMELST="OF'X; /7% GAPPEARS
BEFORE Y=10 */

% ¥Y=10;

Compiler Action: Percent ignored.

IBM Confidential

Macro Error Messages

MEO1

| MEO2

MEO3

MEO4

MEOS

MEO6

A COMPILE-TIME REPLACEMENT LENGTH IS
GREATER THAN 1000 BYTES. IT IS
TRUNCATED.

Explanation: A string is specified
to replace a compile-time variable
name, and the string is greater than
1000 bytes.
Compiler Action: The first 1000
bytes are used.

(Unassigned)

A COMPILE-TIME VARIABLE CONTAINS AN
UNBALANCED QUOTE OR COMMENT.

Explanation: The replacement text
for a compile-time variable contains
an unbalanced quote or comment. For
example:

%#DCL (A, B) CHAR;
%A ='/*THIS IS';

will cause A to be as an unbalanced
comment after substitution is made.

Compiler Action: The condition is
accepted. The assignment is made as
specified.

A COMPILE-TIME THEN APPEARS IN AN IN-
CORRECT POSITION. THE COMPILE-~TIME
STATEMENT IS SKIPPED.

Explanation: Self-explanatory.
Compiler Action: Everything up to
and including the next semicolon (;)
is ignored.

A COMPILE-TIME DECLARE IS NOT TER-
MINATED BY A SEMICOLON. SCANNING
RESUMES AFTER NEXT SEMICOLON.

Explanation: Self-explanatory.

A DEACTIVATE OR ACTIVATE LIST HAS AN
ILLEGAL DELIMITER. THE REST OF THE
STATEMENT IS IGNORED.

delimiter is
DEACTI—-

Explanation: BAn illegal
contained in an ACTIVATE or
VATE list. For example:

%DEACT A,B: C; /*ILLEGAL DELIMITER*/
%DEACT A,B,C? /*ILLEGAL DELIMITER*/

Compiler Action: The statement is
ignored from the point of the illegal
delimiter.

Appendix E:

MEO7

MEOS8

MEO9

ME10

Macro

XXXXXXXX WAS THE TARGET OF A COMPILE-
TIME GOTO, BUT NOW APPEARS IN A NON-
LABEL POSITION. IT IS IGNORED.

Explanation: The named item is used
in a non-label position, but was pre-
viously the target of a GOTO state-
ment. For example:

%GOTO Li;
%A = L1; /* CONFLICTING USAGE */
Compiler Action: The statement is

ignored.

THE LENGTH OF A COMPILE-TIME VARIABLE
EXCEEDsS 1000 BYTES. THE LENGTH IS
RESET TO O.

Explanation: The concatenation of a
compile-time string variable resulted
in a string length of more than 1000
bytes.

Compiler Action: The variable
receives a length of 0.

CONCATENATING A STRING CONSTANT HAS
CAUSED THE LENGTH OF A STRING VARI-
ABLE TO EXCEED 1000 BYTES.

Explanation: The concatenation of a
compile-time string constant resulted
in a string length of more than 1000
bytes.

Compiler Action: The string variable
receives a length of 0.

THE NUMBER OF COMPILE-TIME ERRORS
EXCEEDS 99. THE REMAINING ERRORS ARE
NOT LISTED.

Explanation: The compiler lists a

maximum of 99 compile-time error
messages.

Serious Error Messages

MS01

MS02

AN ILLEGAL CHARACTER APPEARS IN A
COMPILE-TIME STATEMENT. THE REST OF
THE STATEMENT IS IGNORED.

Explanation: The first character
following the % is not an alphabetic
character, a semicolon, or a blank.

THE RECEIVER IN A COMPILE-TIME
ASSIGNMENT STATEMENT HAS NOT BEEN
PREVIOUSLY DECLARED. THE STATEMENT
IS IGNORED.

Explanation: An assignment was made
to an item that was not previously
declared in a compile-time DECLARE
statement.

Diagnostic Messages and Codes 151

MsS03

MSO4

MS05

MS06

Mso07

Ms08

152

THE RECEIVER ON A COMPILE-TIME
ASSIGNMENT STATEMENT IS A LABEL.
STATEMENT IS IGNORED.

THE

Explanation: A compile-time assign-
ment was made to an item that was
previously used or declared as a
label.

ILLEGAL NAME IN COMPILE-TIME DECLARE.
THE DECLARE IS IGNORED.

Explanation: The compile-time
DECLARE statement contains an illegal
name. For example:

%DECLARE ? ;7 /7% ILLEGAL NAME */

A , OR) APPEARS IN A COMPILE-TIME
DECLARE THAT HAS NO FACTORING. THE
STATEMENT IS IGNORED.

Explanation: A comma or a right
parenthesis has been encountered in a
compile-time DECLARE statement, but
the statement contains no factored
items.

A COMPILE-TIME DECLARE STATEMENT HAS
AN ILLEGAL ATTRIBUTE. THE STATEMENT
IS IGNORED.

Explanation: A compile-time DECLARE
statement contains an illegal or
unidentifiable attribute. For
example:

%DCL (A, B, C) GLOM ;
/* NO SUCH ATTRIBUTE */

AN UNKNOWN RELATIONAL OPERATOR HAS
BEEN ENCOUNTERED. THE STATEMENT IS
IGNORED.

A relational operator
For example:

Explanation:
is illegal.

%IF A ?= B %THEN %GOTO L1;
/7% 2= IS ILLEGAL */

THERE ARE UNEQUAL LENGTHS ON A STRING
COMPARISON. THE STATEMENT IS
IGNORED.

Explanation: Both operands of a
compile-time comparison expression
are not the same length. For
example:

%DCL (A,B) CHAR;
%A = "'X";
%B = "XYZ';
%IF A = B ¥THEN %GOTO L1;
/*A AND B ARE DIFFERENT LENGTHS*/

MS09

| msi0

MS11

MS12

MS13

MS14

MS15

MS16

IBM Confidential

THE TARGET OF A COMPILE-TIME GCTO
DOESN'T START WITH AN ALPHABETIC.
THE GOTO IS IGNORED.

Explanation: An illegal identifier
is the target of a compile-time GOTO.
For example:

%GOTO 1C; /* ILLEGAL IDENTIFIER */

(Unassigned)

xXxXXxxxxx HAS APPEARED PREVIOUSLY IN
TEXT, BUT IT IS THE TARGET CF A
COMPILE-TIME GOTO. THE GOTO IS
IGNORED.

Explanation: The compile-time facil-
ity does not allow a branch backward
to a label that previously appeared.

AN ILLEGAL OPERAND IS FOUND IN A
COMPILE-TIME STATEMENT. THE REST OF
THE STATEMENT IS IGNORED.

Explanation: The operand of a
compile-time statement is not a name,
a decimal number, or a character
string.

A NAME OR NUMBER IN A COMPILE-TIME
STATEMENT IS LONGER THAN 8 CHARAC-
TERS. THE STATEMENT IS IGNORED.

Explanation: An identifier or a
number in a compile-time statement is
illegal because it has more than
eight characters.

XXXXXXXx IS IN A COMPILE-TIME EXPRES-
SION BUT IS A LABEL, KEYWORD, OR
UNDEFINED. THE STATEMENT IS IGNORED.

Explanation: The named item is used
jllegally in a compile-time expres-
sion. For example:

/*¥GOTO IS A KEYWORD*/

%A = B + GOTO;

XXXXXxXx FOLLOWS A COMPILE-TIME IF,
BUT IT IS A KEYWORD. THE STATEMENT
IS IGNORED.

Explanation: The named item is a
keyword and is used illegally follow-
ing a compile-time IF.

A COMPILE~-TIME ASSIGNMENT STATEMENT
DOES NOT HAVE AN '=' OPERATOR. THE
STATEMENT IS IGNORED.

Explanation: The = operator is mis-
sing from a compile-time assignment
statement.

IBM Confidential

MS17

MS18

MS19

MS20

MSs21

MS22

THERE ARE MORE THAN 2 TERMS IN A Ms23
COMPILE-TIME ARITHMETIC EXPRESSION.

THE STATEMENT IS IGNORED.

Explanation: A maximum of two terms
is allowed in a compile-time arith-
metic expression. For example:
%A = B + C + D; /*#*TOO MANY TERMS*/

Ms24
THERE IS AN ILLEGAL OPERATOR IN A
COMPILE-TIME EXPRESSION. THE STATE-
MENT IS IGNORED.

Self-explanatory. For

Explanation:
example:

%A
%X

B ** C;
Y & Z;

/% ILLEGAL OPERATOR */
/7% ILLEGAL OPERATOR */

A COMPILE-TIME IF CLAUSE IS NOT FOL-
LOWED BY A THEN CLAUSE. THE STATE-
MENT IS IGNORED. MS25
Explanation: A compile-time IF

statement is incomplete because the

IF clause is not followed by a THEN

clause.

A NUMBER APPEARS AS AN OPERAND OUT-
SIDE OF A COMPILE-TIME ARITHMETIC
EXPRESSION. THE STATEMENT IS
IGNORED.
MS26
Explanation: The compile-time expre-
ssion is not arithmetic, but has a
number as an operand. For example:

%DCL C CHAR;

%#C=1; /*1 IS ILLEGAL OPERAND*/

XXXXxxxx IS A COMPILE-TIME VARIABLE
THAT DOES NOT HAVE A VALUE, BUT IS
BEING USED IN A COMPILE-TIME
EXPRESSION.
MS27
Explanation: A compile-time variable
cannot appear in a compile-time
expression unless it has been pre-
viously assigned a value.
Compiler Action: The statement is
ignored.

THE RESULT OF A COMPILE-TIME ARITH-
METIC EXPRESSION IS MORE THAN 8
DIGITS. THE STATEMENT IS IGNORED. MS28

Self-explanatory. For

Explanation:
example:

%DCL
%A
%B
%C

(A, B, C)

99999999;

2;

A + B; /* RESULT IS MORE THAN 8
DIGITS */

FIXED;

It

Appendix E:

AN ILLEGAL NUMBER APPEARS IN A
COMPILE~-TIME EXPRESSION. THE STATE-
MENT IS IGNORED.

Explanation: Self-explanatory. For
example:
%A=B+28X; /*28X IS ILLEGAL NUMBER#*/ .

AN COPERATOR OTHER THAN CONCATENATION
IS IN A COMPILE-TIME STRING EXPRES~-
SION. THE STATEMENT IS IGNORED.

Explanation: The concatenation
operatcr is the only operator allowed
in a compile-time string expression.
For example:

%DCL C CHAR;

%C = "XYZ' || C + 3;
/% OPERATOR + IS ILLEGAL */

A CHARACTER STRING CONSTANT APPEARS

OUTSIDE OF A COMPILE-TIME STRING

EXPRESSION. THE STATEMENT IS IGNORED.

Explanation: A character string con-
stant can only be used in a compile+
time expression. For example:

%A = B + "XYZ';

/*¥ILLEGAL ARITH EXPRESSICN*/

XxXxxxxxx IS AN OPERAND OF A COMPILE-
TIME ARITHMETIC STATEMENT BUT IS NOT
ARITHMETIC. THE STATEMENT IS
IGNORED.

Explanation: The named item is
illegally used as an operand of a
compile-time arithmetic statement.
For example:

%DCL A FIXED, C CHAR;
%A = A + C; /*%C IS NOT ARITHMETIC*/

XxxXXxXXxxX IS AN OPERAND OF A COMPILE-
TIME STRING STATEMENT, BUT IS NOT A
STRING. THE STATEMENT IS IGNORED.

Explanation: The named item is
illegally used as an operand of a
compile-time string statement. For
example:

%DCL C CHAR, A FIXED;
%C='YXZ' || A; /%A IS NOT STRING*/

THERE IS A DIVISION BY 0 IN A
COMPILE-TIME ARITHMETIC EXPRESSION.
THE STATEMENT IS IGNORED.
Explanation: Division by zero is
illegal. For example:

%DCL
%R
%B

(A, B) FIXED;
0; %B = 6;
B/A; /* DIVISION BY ZERO */

Diagnostic Messages and Codes 153

Macro Disastrous Error Messages

MDO5

MDO1

MDO2

MDO3

MDO4

154

AN END-OF-FILE IS ENCOUNTERED BEFORE
NORMAIL END OF TEXT. COMPILE-TIME
PROCESSING IS TERMINATED.

End-of-file is found
For

Explanation:
before the normal end of text.

example:

e In the middle of a compile-time
statement.

e In the middle of a string.

e In the middle of a comment.

¢ While attempting to execute
%GOTO, but before reaching the
target label.

s In the middle of a BSL source
statement.

MDO6

THE COMPILE-TIME DICTIONARY OR WORK
AREA HAS OVERFLOWED. ALL COMPILE-
TIME PROCESSING IS TERMINATED.

MDO7

Explanation: There is not enough
space for compile-time processing
because the number of compile-time
variables and labels exceeds 500, or
the total length of compile-time
character strings exceeds 45,000
bytes.

A LOOP HAS OCCURRED IN THE COMPILE-
TIME RESCAN. ALL COMPILE-TIME PRO-
CESSING IS TERMINATED.

Compile-time processing MDO 8
and

Explanation:
allows a maximum of 50 rescans,

then assumes that a loop has
occurred.

THE INCLUDE STATEMENT IS INCORRECTLY
WRITTEN. MDO9
Explanation: The ddname or member

name is too long, or there are blanks
between ddname (member).

IBM Confidential

THE INCLUDE STATEMENT ASKS FOR A
LIBRARY MEMBER THAT CANNOT BE FOUND
IN THE SPECIFIED LIBRARY.

Explanation: The member name speci-
fied in the INCLUDE statement cannot
be found in the specified partitioned
data set.

User Response: Check the spelling of
the member name in the INCLUDE state-
ment, and check the data set name on
the DD statement indicated in the
INCLUDE statement.

AN I/O ERROR HAS OCCURRED WHILE
SEARCHING FOR THE REQUESTED MEMBER IN
THE USER'S LIBRARY.

Explanation: I/0 error.

THE PARTITIONED DATA SET SPECIFIED IN
THE INCLUDE HAS A BLKSIZE GREATER
THAN 3520 OR A RECFM OTHER THAN F.

Explanation: The partitioned data
set may contain blocked records up to
a block size of 3520 bytes, and must
contain fixed format records.

User Response: Respecify the block
size or record format of the data set
and run the job again. Make sure
that the INCLUDE statement specifies
the correct data set.

AN INCLUDE STATEMENT APPEARS WITHIN
INCLUDED TEXT.

Explanation: Included text may not
contain an INCLUDE statement.

A COMPILER ERROR HAS OCCURRED IN THE
MACRO PHASE. SUBMIT A TROUBLE REPORT

TO DEPT. D76, POUGHKEEPSIE, N.Y.
Explanation: Self-explanatory.

IBM Cconfidential

Message Explanations (Compile Phase)

In the following listings, you will find an
explanation for each of the diagnostic mes-
sages that may occur during the compile
phase. These explanations will assist you
in interpreting the messages and correcting
the errors. There is a separate listing
for messages of each severity level (W, E,
S, and D). Within each severity level, the
messages are listed numerically by message
number.

Warning Messages

W01 VARIABLE HAS ILLEGAL PRECISION OR
LENGTH. THE DEFAULT PRECISION OR

LENGTH HAS BEEN USED.

Explanation: The declaration contains
one of the following illegal preci-
sions or length:

e A FIXED variable is declared with
a precision other than 15 or 31.
For example:

DCL A FIXED(25); /* ILLEGAL */

e A POINTER variable is declared

with a precision other than 8, 15,
16, 24, 31, or 32. For example:
DCL B PTR(17); /% ILLEGAL */

e A BIT or CHAR variable is declared

with no specified length. For
example:
DCL C BIT; /% TILLEGAL */

DCL D CHAR; /% ILLEGAL */
Compiler Action: The default preci-
sion or length is used for the
declared variable, as follows:

e A precision of 31 for a FIXED

variable.

e A precision of 31 for a POINTER
variable.

e A length of 1 for a BIT or CHAR
variable.

W02 xxxxxxxx HAS A BOUNDARY GREATER THAN
THAT OF ITS CONTAINING STRUCTURE. A

BYTE BOUNDARY WAS USED.

Explanation: The boundary of the
named variable is greater than the
boundary of its containing structure,
where DWORD>WORD>HWORD>BYTE. For
example:

DCIL. 1A FIXED(31) BDY HWORD,
2B CHAR(2),
2C FIXED(31); /#* BDY GREATER
THAN HWORD */

Appendix E:

W03

Wou

W05

Woe6

Compiler Action: The named variable
is put on the next byte boundary.

XXXXXXXX HAS MORE INITIAL VALUES THAN

THERE ARE ELEMENTS TO BE INITIALIZED.

THE EXTRA VALUES WERE IGNORED.

Explanation: One of the following:

¢ The named item is an array with g
replication factor that specifies
too many initial values. For
example:

DCL A(10) INIT(1,2,(9)3);
/*¥TOO0 MUCH REPLICATION*/

e The named item is an array with
too many initial values. For
example:

DCL B(3) INIT(1,2,3,4);
/*TOO MANY VALUES*/

e The named item is not dimensioned,
but contains a replication factozr.

Compiler Action: All elements of the
array are initialized, and the remain-
ing initial values are not used.

XXXXXXXX HAS A CONSTANT SUBSCRIPT THAT
IS GREATER THAN THE NUMBER OF ELEMENTS
DECLARED FOR THE ARRAY.

Explanation: The named item, which
was declared to be an array, is being
referred to with a constant subscript
that is larger than its dimension.
For example:

DCL A(10);
A(12) = B; /*SUBSCRIPT TOO LARGE*/
A DECLARED REGISTER IS ONE OF THE
REGISTERS WHICH MAY BE REQUIRED FOR
USE BY THE COMPILER.

Explanation: A variable is declared
with REGISTER storage class. The
register specified is register 0, 13,
14, or 15; or a CODEREG or DATAREG; oOr
register 1 when there are formal
parameters.

XXXXXXXX IS A DIMENSIONED ITEM THAT
APPEARS WITHOUT A SUBSCRIPT.

Explanation: The named item was
declared to be an array, but is being
referred to without a subscript. For
example:

DCL A (10);
A = B; /% COMPILED AS A(1)=B */

Compiler Action:
assumed.

A subscript of 1 is

Diagnostic Messages and Codes 155

| wo7

w08

wo9

W10

Wil

W12

W13

156

(Unassigned)

XXXXXXXX SHOULD NOT BE USED AS A
LABEL. IT HAS BEEN PREVIOUSLY USED OR
DECLARED AS OTHER THAN LOCAL LABEL.

Explanation: The named item is being
used as a label, but was previously
used or declared as other than a LOCAL
label. For example:

DCL P PTR, L LABEL BASED(P); Wil
/% L IS A BASED LABEL AND
SHOULD NOT APPEAR AS
LABEL OF A STATEMENT */

L: CALL Q;

I1: A =B + C;

/*¥ L1 HAS BEEN PREVIOUSLY
USED AS A IABEL */
The named item is

Compiler Action:

not used.

PROCEDURE STATEMENT WAS NOT FOUND. A W15

CSECT WITH NO NAME WAS PRODUCED.

Explanation: The first statement in a
compilation is neither a GENERATE
statement nor a PROCEDURE statement.
compiler Action: An unnamed procedure
is assumed.

(Unassigned)

COMMENT TERMINATOR MAY BE MISSING. A
SEMICOLON OR A /* APPEARS WITHIN THE
COMMENT.

or a /%
For

Explanation: A semicolon
appears within a comment.
example:

/% A BSL STATEMENT ENDS WITH A; */

/% THE COMBINATION OF OPERATORS /%
SHOULD NOT START IN COLUMN 1 */ Wie
VARIABLE HAS BEEN TRUNCATED TO EIGHT
CHARACTERS.

Explanation: An identifier has more
than eight characters.

compiler Action: The identifier is
shortened to eight characters by using
the eight leftmost characters.

XXXXXXXX MAY NOT BE ADDRESSABLE.

Explanation: The generated code may
not correctly address the named item.
For example:

DCL (B(10),A) CHAR(256) ;
A = B(I);

IBM Confidential

might be compiled as:

L 8,I
SLL 8,8

LA 10,B-256(8)
MVC A(256),0(10)

which would be incorrect if the array
began less than 256 bytes from the
start of addressability.

VARIABLE IS ARITHMETIC, AND MAY RESULT
IN AN ERROR WHEN USED IN THIS CONTEXT.

Explanation: The result of the
assignment may not be what is
expected. For example:

DCL C CHAR(1), V INIT(1);
Cc =V;

IS COMPILED AS MVC C(1),V which sets C
to '00'X.

XXXXxxxx HAS PREVIOUSLY RECEIVED DIF-
FERENT ATTRIBUTES. THESE ATTRIBUTES
ARE OVERRIDDEN AT THIS POINT.

Explanation: The label or entry name
was previously declared with different

attributes. For example:
P = ADDR(L); /* L DEFAULTS TO
FIXED(31) */
L: A=A+ 1;

/% L GETS AN OVERRIDDING ATTRIBUTE
OF LAEEL */

Compiler Action: The previous attri-
bute is overridden at this point, and
the result may be incorrect or
inefficient.

XXXXXXXX HAS SIGNIFICANT HIGH ORDER
BIT, BUT CODE MAY HAVE BEEN PRODUCED
THAT ASSUMES ITS HIGH ORDER BIT IS 0.

Explanation: Code may have been pro-
duced assuming that the high-order bit
of the named item is 0. For example:

DCL P32 PTR(32), A FIXED;
IF P32 = A THEN GOTO L1;
/* COMPARISON MAY BE WRONG */

THE USE OF REGISTER 1 MAY BE INCO-
RRECT. IT IS REQUIRED FOR USE AS A
PARAMETER LIST OR ARGUMENT LIST
POINTER.

Explanation: The use of register 1
may be incorrect for one of the fol-
lowing reasons:

IBM Confidential

W18

W19

W20

w21

e A CALL statement with arguments W22
appears in a PROCEDURE with formal
parameters and register 1 was not

saved. The user must save and

restore register 1 around the CALL
statement before making another
reference to a parameter.

e A PROCEDURE statement has formal
parameters and register 1 has not
been saved.

XXXXXXXX APPEARS ON A PROCEDURE END
STATEMENT, BUT IS NOT THE NAME OF THE
PROCEDURE.

Explanation: The named item is an
identifier that follows a procedure
END statement, but is not the name of
the procedure that the END statement
will close. For example: W23

A: PROC;

END B; /* NOT PROCEDURE NAME */
AUTOMATIC
FIED IN A
AUTOMATIC

ATTRIBUTE CANNOT BE SPECI-
NON-REENTRANT PROCEDURE.
HAS BEEN REPLACED BY STATIC.

Explanation: The AUTOMATIC attribute
is specified for an item, but the
external procedure does not specify
the REENTRANT option. i

W24

Compiler Action: The item is given
the STATIC attribute.

XXXXxXxxxXx IS NOT IN THE SCOPE OF THIS
PROCEDURE.

Explanation: The named item was
declared in a disjoint procedure.
example:

For

A: PROC;
B: PROC;
DCL X;
END B;
/¥PROC B IS DISJOINT FROM C*/
C: PROC;
X = 1Z;
END C;
END;

W25

/%X IS DECLARED IN PROC B*/

VARIABLE HAS AN ILLEGAL DIMENSION. A
DIMENSION OF ONE HAS BEEN USED. W26
Explanation: The value specified for

a dimension is not a decimal constant
between 1 and 32767.

Compiler Action: A constant of one is
used for the dimension.

Appendix E:

XXXXXXXX fAS CONFLICTING BASED AND
BOUNDARY ATTRIBUTES; THE BASE WAS
ADJUSTED TO AGREE WITH THE BOUNDARY.

Explanation: The named item is
declared with both BASED and BOUNDARY
attributes. The BOUNDARY attribute
specifies a boundary that differs from
that of the item in the BASED
attribute.

Compiler Action: The base is adjusted
upward to the next higher boundary
that agrees with the boundary in the
BOUNDARY attribute. For example:

DCL A BASED(3) BDY(WORD);
Location 3 is not a word boundary, sd
A will be based on 4 instead of 3.

TRACE OPTION WAS SPECIFIED FOR A PRO-
CEDURE WITH NO SAVE AREA. TRACE WILL
BE DONE USING THE VALUE IN REGISTER
13.

Explanation: The TRACE option is
specified, but the procedure has no
save area.

Compiler Action: Tracing code is
generated assuming that register 13
points to a save area which is at
least as large as the specified
offset.

PROCEDURE SPECIFIED CODEREG(0) AND
TRACE OPTION HAS BEEN USED. USER MUST
GENERATE CODE TO INITIALIZE TRACING.

Explanation: The compiler did not
generate addressability for the proce-
dure because of the CODEREG (0) option.
with no addressability, the compiler
cannot generate code to initialize the
tracing operation.

Compiler Action: The compiler assumes
that the user has provided the code to
establish addressability and initial-
ize tracing.

XXXXXXXX HAS BEEN USED OUTSIDE THE
SCOPE OF THIS PROCEDURE.

Explanation: The named variable is a
label that was referred to by a GOTO
statement from outside the scope of
this procedure.

A LABEL APPEARS ON A DECLARE,
RESTRICT, OR RELEASE STATEMENT.
LABEL WILL BE APPLIED TO THE NEXT
STATEMENT.

THE

Explanation: DECLARE, RESTRICT, and
RELEASE statements should not be
labeled.

Diagnostic Messages and Codes 157

w27

W28

W29

W30

w31

158

Compiler Action: The label will be
used on the next statement that can
have a label.

XXXXXXXX IS BASED ON REGISTER ZERO,
WHICH CANNOT BE USED DIRECTLY AS A
BASE REGISTER.

Explanation: This warning is given on
the declare statement where the named
item is declared. A register other
than zero should be used as a base.

THE OPTION NOSAVEAREA WAS SPECIFIED IN
THE CONTAINING PROCEDURE. REGISTER 13
MAY CONTAIN AN INCORRECT ADDRESS.

Explanation: An internal procedure is
contained in a procedure that used the
NOSAVEAREA procedure option, and the
internal procedure has used no proce-
dure options that would suppress save
area chaining. For example:

A: PROC OPTIONS(NOSAVEARERA);

B: PROC;

END B;
END A;
Compiler Action: Save area chaining

will be done using the current value
in register 13.

(Unassigned)

xxxxxxxx IS A REGISTER VARIABLE AND
HAS WOT BEEN RESTRICTED. INCORRECT
CODE MAY BE GENERATED.

Explanation: The indicated register
is still available for use by the com-
piler as long as it has not been
restricted by the programmer. If the
programmer needs to maintain a certain
value in a register for a particular
section of code, that register should
be restricted in order to prevent the
compiler from allocating it for
generated code.

AN END STATEMENT WAS ENCOUNTERED FOR A
DO STATEMENT WHICH CONTAINED AN ERROR.

Explanation: The corresponding DO
statement for this END statement:

W32

W33

IBM Confidential

e contained an error.
¢ was contained in a dangling ELSE
clause.

The END statement has been matched
with a DO statement for which no code
was generated. Thus, no loop return
code will be generated for the END
statement. When the error in the DO
statement or the error that caused the
dangling ELSE has been corrected, the
END statement will be correctly
processed.

XXXXXXxX IS A STRUCTURE WHOSE SPECI-
FIED SIZE IS LESS THAN THE TOTAL SIZE
OF ITS COMPONENTS.

Explanation: The named structure is a
major or minor structure with a
declared size and the total size of
this structure's components exceeds
that size.

XxXxxxxxx HAS A BOUNDARY REQUIREMENT
WHICH CAUSES BYTES TO BE SKIPPED IN
THE MAPPING OF THE STRUCTURE.

Explanation: The named variable is in
a structure and it has a declared or
implied boundary which causes bytes to
be skipped in mapping the structure.
For example:

DCL 1 RECORD,
2 NAMEFLD CHAR(27),
2 CODE FIXED(31);

There will be a byte skipped between
NAMEFLD and CODE because CODE requires
a word boundary.

Error Messages

EO1

EO02

XXXXXXXX HAS BEEN PREVIOUSLY DECLARED.
THIS DECLARATION HAS NOT BEEN
PROCESSED.

Explanation: The named item was
declared previously, either explicitly
or by default.
Compiler Action: The declaration is
not processed.

MORE THAN 20 LEVELS OF FACTORING ARE
USED.

Explanation: The DECLARE statement
has more than 20 as yet unmatched left
parentheses.

Compiler Action: The statement is

processed as if factoring ended after
20 levels.

IBM Confidential

EO3

EO4

E05

E06

E07

EO08

A DATA NAME WAS EXPECTED BUT NOT EO09

FOUND.

Explanation: A DECLARE statement has
something other than the name of a
data item in a place where a data name
is expected. For example:

DCL A FIXED, ; :
/* DATA NAME IS EXPECTED FOLLOWING
THE COMMA */
E10

A RIGHT PARENTHESIS WAS EXPECTED BUT
NOT FOUND. ONE WAS ASSUMED.

Self-explanatory. For

Explanation:
example:

DCL A FIXED(15;
/* RIGHT PAREN IS MISSING */

Compiler Action:
is assumed.

A right parenthesis

XXXXXXXX HAS CONFLICTING ATTRIBUTES.
THE SECOND ATTRIBUTE WAS IGNORED.

Explanation: The named item has con-

flicting attributes. For example:

DCL A INTERNAL EXTERNAL; Ell
/% CONFLICTING ATTRIBUTES */

Compiler Action: The second attribute

is ignored.

A KEYWORD, OPERATOR, OR DELIMITER
APPEARS IN AN INCORRECT POSITION.

Explanation: The position of a key-
word, operator, or delimiter is syn-
tactically incorrect. For example:

E12

A=B+; /*OPERATOR PRECEDES SEMICOLON*/

A CONSTANT SUBSCRIPT LARGER THAN 32767
HAS BEEN USED.

The maximum value of a
For

Explanation:
subscript constant is 32,767.

example:
A(32768) = 0; /% ILLEGAL SUBSCRIPT */
OPTION SPECIFIED WITH AN ENTRY ATTRI-
BUTE IS INVALID OR INCORRECTLY
WRITTEN. E13
Explanation: The option specified is

not 'VLIST' or the format is incor-

rect. For example:

DCL A ENTRY OPTIONS VLIST);
/*¥No left paren*/

DCL B ENTRY OPTIONS(DONTSAVE) ;
/*¥0Option is not VLIST*/

Appendix E:

VARIABLE HAS AN ILLEGAL BOUNDARY
ATTRIBUTE. THE NORMAL DEFAULT BOUND-
ARY WAS USED.

The BOUNDARY attribute .
For example:

Explanation:
is incorrectly written.

DCL A FIXED BDY (HWRD);
/% SHOULD BE SPELLED HWORD #*/

CALL STATEMENT HAS AN ILLEGAL ARGUMENT
-— A REGISTER VARIABLE OR AN EXPRES-
SION USING A BIT OPERATOR.

Explanation: The following items can-
not be used as arguments in a CALL
statement:

* Register variables.

e Expressions using only bit opera-
tors (&,|,&6¢8).

For example:

DCL R3 REG(3), X CHAR(4), Y CHAR(5);
CALL SUBR(X&Y, R3);
/* ILLEGAL ARGUMENTS */

STATEMENT CONTAINS UNBALANCED
PARENTHESES.

Explanation: There are more right
parentheses than left parentheses.
For example:

DCL A,B) FIXED;
/*MISSING LEFT PAREN#*/

A SEMICOLON WAS ENCOUNTERED BEFORE
FACTORING WAS CLOSED OUT. A RIGHT
PARENTHESIS WAS ASSUMED AT THAT POINT.

Explanation: In a DECLARE statement,
a semicolon was encountered in the
list of names having factored attri-
butes. For example:

DCL (A, B FIXED;
/% INCOMPLETE FACTORING */

Compiler Action: A right parenthesis
is assumed at the point where the
semicolon was encountered.

XXXXXXxX CANNOT HAVE AN INITIAL VALUE.

Explanation: The named variable can-
not be initialized because it is part
of a BASED or AUTOMATIC structure.
For example:

DCL 1 A BASED,
2 B INIT(10),
/*ILLEGAL INITIALIZATION*/
2 C;

Diagnostic Messages and Codes 159

El4

E15

E16

160

VARIABLE DOES NOT HAVE AN ATTRIBUTE
WHERE AN ATTRIBUTE IS EXPECTED.

Explanation: A non-attribute appears
where an attribute is expected. For
example:

DCL A FIXED B EXT;
/% MISSING COMMA BEFORE B */

XXXxXxxxx HAS AN ILLEGAL INITIAL VALUE.

Explanation: The initial value for
the named item is illegal for one of
the following reasons:

s The syntax of the initial value is
incorrect. For example:
(*0101Aa°'B).

e Initial values are not separated
by commas.

e Tnitial values are not terminated
by a right parenthesis.

e ITnitial values contain a
semicolon.

e The initial value is a null
string.

e An initial string value is longer
than the declared length of the
string.

e A FIXED or POINTER item is ini-
tialized with a character or bit
string. -

e A CHARACTER or BIT item is ini-
tialized with a binary or decimal
number.

e A FIXED, CHARACTER, or BIT item is
initialized with the ADDR
function.

e The syntax of an ADDR function is
incorrect.

s In ADDR(name), the name is not a
STATIC item.

e A replication factor is not a
decimal number.

SUBSTRING NOTATION IS IMPROPERLY WRIT-
TEN OR INCORRECTLY USED.

Explanation: The substring notation
is illegal for one of the following
reasons:

e A subscript is used with a non-
dimensioned LABEL item. For
example:

E17

E18

E19

IBM Confidential

DCL L LABEL;
GO TO L(2); /*ILLEGAL SUBSCRIPT*/

e A substring is used on a FIXED or
POINTER item.

e A variable range or variable off-
set substring is used in an arith-
metic or CALL statement, or in an
ADDR function.

e A variable range is used for the
assignment of one byte. ' For
example:

A(I:J)='A'; /*#ILLEGAL RANGE*/

XxXxXXxxxx IS A REGISTER USED IN A
STRING EXPRESSION OR WITH A SUBSCRIPT
OR SUBSTRING.

Explanation: The named variable is a
register; therefore, it may not be
subscripted, substringed, or used in a
string expression. For example:

DCL R2 REG(2), A CHAR(4), B CHAR(4);
F31 = R2(2);

/% USED WITH A SUBSTRING */
A =B & R2;

/% USED IN STRING EXPRESSION */

AN ILLEGAL COMBINATION OF OPERATORS
WAS USED. AN OPERAND MAY BE MISSING.

Explanation: The combination of
operators is illegal for one of the
following reasons:

¢ An operand is missing. For
example:
A =B + ; /% MISSING OPERAND */

e The argument of an ADDR function
is a number. For example:

P = ADDR(24);
/% ILLEGAL ADDR ARGUMENT */

'DO* IS NOT FOLLOWED BY SEMICOLON,
EQUAL, OR A SERIES OF POINTERS FOL-
LOWED BY EQUAL.

Explanation: The DO statement is
written incorrectly, the control vari-
able is subscripted or substringed, or
is more than four bytes long. For
example:

pO I 1 TO 10 BY 3;
/* INCORRECTLY WRITTEN #*/
DO A(I) = 1 TO 10;
/*SUBSCRIPT WITH CONTROL VARIABLE*/
DCL C5 CHAR(5) ;
DO C5=1 TO 10;
/*VARIABLE MORE THAN FOUR BYTES
LONG#*/

IBM Confidential

E20

E21

E22

E23

E24

E25

A SEMICOLON APPEARS BEFORE THE END OF
A FORMAL PARAMETER LIST.

Explanation: A simicolon is encoun-
tered before the right parenthesis of
a formal parameter list. For example:

A: PROC (X, Y, Z ;
/7% SEMICOLON BEFORE PAREN */

'GENERATE' IS NOT FOLLOWED BY A LEFT
PAREN OR A SEMICOLON, OR IS NOT ENDED
BY A RIGHT PAREN AND A SEMICOLON.

Explanation: The keyword GENERATE
must be followed by a left parenthesis
(for a simple GENERATE) or a semicolon
(for a block GENERATE). A simple GEN-
ERATE statement must be ended by a
right parenthesis and a semicolon.

For example:

GEN TRT 0(100,7),TABLE);
/% MISSING LEFT PAREN */

GEN (TRT 0(100,7),TABLE)
/% MISSING SEMICOLON #*/

This message may also occur if a
simple GENERATE statement covers more
than one card.

A PARAMETER IS MISSING.

Self-explanatory. For

Explanation:
example:

X: PROC (A, ,B);
/* SUCCESSIVE COMMAS IN PARAMETER
LIST */

THE LEFT SIDE OF A RELATIONAL EXPRES-
SION CONTAINS BOTH STRING AND ARITH-
METIC DATA WITH NO ARITHMETIC
OPERATOURS.

Self-explanatory. For

Explanation:
example:

DCL A FIXED, B CHAR(2);
IF (A & B) = 10 THEN GOTO L1;
/7% ILLEGAL */

(Unassigned)

STATEMENT CONTAINS TOO MANY TERMS OR
TOO MANY ARGUMENTS.

Explanation: The statement is illegal
for one of the following reasons:

e A statement contains too many
terns.

e A CALL statement contains more
than 25 arguments.

e An IF statement requires more than
24 true/false branches.

Appendix E:

E26

E27

E28

E29

E30

E31

AN INVALID CHARACTER WAS FOUND IN THIS
STATEMENT. THE COMPILER WILL SKIP TO
THE NEXT SEMICOLON.

Explanation: The compiler has found
an illegal punch or a character not in
the legal character set. The error
could be a misplaced control card or
the absence of a $MACRO control card.

A PARAMETER IS IN THE FORM OF A DATA
CONSTANT. PARAMETERS MUST BE SIMPLE
DATA NAMES.

A parameter is written
Parameters must

(Arguments may
For example:

Explanation:
as a data constant.

be simple data names.
be data constants.)
3);

A: PROC (X, Y, /* 3 IS ILLEGAL */

VARIABLE HAS AN INCORRECTLY WRITTEN
SUBSCRIPT, OR SHOULD NOT BE
SUBSCRIPTED.

The form of the sub-
For example:

Explanation:
script is incorrect.

A=B(I+J*K+1); /*MULT OPERATOR MUST BE
LAST IN SUBSCRIPT*/

THE °*NOT' OPERATOR IS NOT USED WITH A
RELATIONAL OPERATOR.

Explanation: The q operator may only
be used in combination with one of the
relational operators (4=,7<, or {>).
For example:

A = 9B; /* ILLEGAL OPERATOR */

VARIABLE IS NOT QUALIFIED BY A POINT-
ER. QUALIFIER IS MISSING OR HAS NOT
BEEN DECLARED A POINTER.

Self-explanatory. For

Explanation:
example:

DCL. A BASED;
A = 3; /7* A HAS NO QUALIFIER */
B ->a = 3;
/*B WAS NOT DECLARED POINTER*/

CONSECUTIVE VARIABLES OR CONSTANTS
APPEAR.

Explanation: Consecutive data
variables or constants were found.
Operators or delimiters may be miss-

ing. For example:
A =B C + D; /7* ERROR */
A = 1 B; /¥ ERROR */

Diagnostic Messages and Codes 161

E32

E33

E34

162

VARIABLE HAS NOT BEEN DECLARED BASED
OR BASED ON A POINTER, BUT IS BEING
LOCATED BY A POINTER.

Explanation: A pointer qualifier is
used to locate an item that has not
been declared BASED or is not BASED on
a pointer. For example:

DCL B FIXED(31);
DCI, A BASED(ADDR(B));
B =P => A; /% ILLEGAL */

THE RIGHT SIDE OF A RELATIONAL EXPRES-
SION IS SHORTER THAN THE LEFT SIDE.
THIS IS NOT ALLOWED WITH STRING DATA.

Self-explanatory. For

Explanation:
example:

DCL A CHAR(U4), B CHAR(2);
IF A = B THEN GOTO L1;
/% B IS SHORTER THAN A */

ILLEGAL BIT OPERATION.‘ CONSULT 'BSL
USER'S GUIDE'.

Explanation: A bit string constant is
illegal (e.g., *1011A’'B), or a bit
operation violates one of the follow-
ing restrictions:

e If a bit variable is assigned to a
bit variable, each bit variable
must be on a byte boundary and
must be a multiple of eight bits.

e If a bit constant is assigned to a
bit variable, and the bit variable
is not on a byte boundary, then
the assigned bit string must not
cross two byte boundaries (it may
cross one byte boundary). 1If the
bit variable is aligned on a byte
boundary, the length of the bit
string is not restricted.

s A null string constant used in any
context other than a simple
assignment statement of the type
A=";.

e If a comparison involves a bit
variable that is not on a byte
boundary or not a multiple of
eight bits, then the bit variable
must be:

1. Less than eight bits.

2. Entirely contained within the
boundaries of one byte.

3. On the left side of the
comparison.

4. Compared to a bit constant
which is either all omnes or
all zeros.

5. Compared by the = or .=
operator.

E35 VARIABLE

E36

E37

E38

IBM Confidential

e A bit string item that is not on a
byte boundary cannot be used as a
subscript or substring.

e A bit variable that is not on a
byte boundary is used as an argu-
ment in a CALL statement.

* A bit string constant that is used
as an argument in a CALL statement
is not a multiple of eight bits.

IS A FORMAL PARAMETER OF A
CONTAINING PROCEDURE.

Explanation: The formal parameter
referred to does not appear in the
PROCEDURE statement of the current
procedure. For example:

A: PROC (X, Y,

Z) ;

B: PROC (L, M, N);
N=X; /% ILLEGAL REFERENCE TO X */

THE FORMAL PARAMETER IN THE ENTRY
STATEMENT APPEARED IN A DIFFERENT
POSITION IN THE PROCEDURE STATEMENT.

Explanation: The position of a formal
parameter in an ENTRY statement is
different from its position in the
PROCEDURE statement (or different from
its position in another ENTRY state-
ment). For example:

X: PROC (A, B, C);

Y: ENTRY (L, M, A); /* A IN WRONG
POSITION */

Z: ENTRY (A, B, L); /* L IN WRONG
POSITION */

INVALID CONSTANT.

Explanation: A constant is invalid
for one of the following reasons:

¢ A hexadecimal string constant con-
tains illegal digits (e.g.,
'01ABXY'X).

* A decimal number contains digits
other than 0, 1, 2, 3, 4, 5, 6, 7,
8, 9; or is larger than 231 -1,

e A binary number is longer than 31
digits.

¢ A string constant has more than 53
positions.

XXXXX¥xx IS NOT A POINTER, LABEL, OR
ENTRY, BUT IS THE OPERAND OF A GOTO OR
RETURN TO STATEMENT.

Explanation: The target in a GOTO or
RETURN TO statement is not a POINTER,
LABEL, or ENTRY item. For example:

GOTO V; is illegal if V is FIXED.

IBM Confidential

E39

E40

E41

E42

RELATIONAL EXPRESSION HAS A STRING
CONSTANT ON THE LEFT OR A VARIABLE
LENGTH SUBSTRING ON THE RIGHT.

Explanation: A relational expression
is incorrect for one of the following
reasons:

e A string constant is the first
item on the left side of a rela-
tional expression. For example:

“IF ('FF'X & A) = 10 THEN GOTO L1;
/% ILLEGAL USE OF STRING
CONSTANT */

e A variable length substring
appears on the right side of a
relational expression and the left
side is a constant length. For
exanmple:

IF A = B(I:J) THEN GOTO L1;
/% ILLEGAL SUBSTRING */

AN OFFSET OF MORE THAN 4096 IS
REQUIRED IN CODE GENERATED FOR THIS
STATEMENT. CONSULT 'BSL USER'S
GUIDE".

Explanation: An addressing error
occurred because the constant dis-
placement was greater than 4095 bytes.
Constant displacement is explained
under "Addresses" in Section V of this
manual.

THE END STATEMENT FOR A DO STATEMENT
HAD NOT BEEN ENCOUNTERED WHEN ANOTHER
PROCEDURE STATEMENT WAS ENCOUNTERED.

Explanation: A DO statement was not
properly closed. For example:

A: RPOC;

/% DO WAS NOT CLOSED
BEFORE START OF INTERNAL
PROCEDURE */

Xxxxxxxx IS A LABEL OR ENTRY ITEM,
IS NOT BEING USED AS SUCH.

BUT

Explanation: The named item is an
LABEL or ENTRY item, but is being used
for an arithmetic or logical opera-
tion. For example:

DCL L1 LABEL;
A=B+Ll; /* ILLEGAL USE OF LABEL */

Appendix E:

EU43

E44

E4S

EU46

E48

AN ELSE WAS ENCOUNTERED WHERE THERE
WAS NO IF STATEMENT NEEDING AN ELSE.

There is an unmatched
For example:

Explanation:
ELSE clause.

IF A =B THEN X = Y;
A=B+ 1;
ELSE A=B-1; /*NO IF FOR THIS ELSE*/

xxxx LABEL(S) HAVE BEEN REFERENCED BUT
NOT DEFINED. UNDEFINED I1ABELS ARE
MARKED WITH A 'U' IN THE XREF LIST.

Explanation: A number of labels have
been referred to in the program, but
were not defined. These undefined
labels are marked with a 'U' in the
attribute and cross-reference table.

END OF FILE OR SEPARATOR EXPECTED
HERE.

Explanation: BSL statements were
found after the logical end of the BSL

program. For example:
A: PROC;
END A;
X=Y+3; /*EOF OR $$$ SHOULD BE HERE*/

AN OPERATION OF MORE THAN 256 BYTES IS
INDICATED. THE SUBSTRING NOTATION
SHOULD BE USED TO BREAK UP THIS TASK.,

Explanation: The coding requires an
operation of more than 256 bytes. For
example:

DCL (B,C) CHAR(500);

B=C; /* TOO MANY BYTES. BREAK UP
OPERATION BY USING SUBSTRING
NOTATION */

XXXXXXXX IS A STRING LONGER THAN 4
BYTES BEING USED IN AN ARITHMETIC
EXPRESSION.

Explanation: The named item is a
string longer than four bytes; there-
fore, it cannot be used in an arith-
metic expression. For example:

DCL A CHAR(6), (X, ¥Y) FIXED;
X=A+ Y; /¥ A IS TOO LONG */

A COMPILER ERROR HAS OCCURRED. SUBMIT
A TROUBLE REPORT TO DEPARTMENT D76,
BUILDING 706, POUGHKEEPSIE, N.Y.

Explanation: Self-explanatory.

Diagnostic Messages and Codes 163

E49

ES50

AN ILLEGAL OR NONEXISTENT REGISTER IS
BEING RESTRICTED OR RELEASED, OR THE
STATEMENT IS INCORRECTLY WRITTEN.
Explanation: One of the following:
e The specified register is resexrved

for use by the compiler. For
example:

RESTRICT (13); /*RESERVED
REGISTER*/

e The specified register does not
exist. For example:

RELEASE(17) ;
/*NONEXISTENT REGISTER*/

e The statement has a syntax error.
For example:

RESTRICT 8; /*SYNTAX ERROR*/

* The variable name specified has
not been declared register. For
example:

RESTRICT(X); /%X HAS NOT BEEN
DECLARED REGISTER*/

XXXxxxxx APPEARS BETWEEN TWO DELIMI-
TERS THAT SHOULD BE ADJACENT. AN
OPERATOR MAY BE MISSING.

Explanation: The named item appears
between two delimiters that should be
adjacent. For example:

LBL CALL X; /*COLON MISSING*/
XXXXXXXX HAS A BIT LENGTH WHICH IS NOT

AN INTEGRAL NUMBER OF BYTES. LENGTH
HAS BEEN TRUNCATED.

Explanation: The name that replaces
XXXXXXXX is a bit variable substringed
with variable bounds. Its upper bound
is specified as the lower bound plus a
constant. The length specified by the
bounds is not a whole number of bytes.
For example:

DCL B BIT(40);
B(I:I+8)=X; /*ILLEGAL--SPECIFIES
NINE BITS*/
B(I:I+7)=X; /*LEGAL*/

Serious Error Messages

501

164

xxxXxxxxx IS A STRUCTURE WITH MORE THAN
255 ELEMENTS.

Explanation: The named item is a
structure that contains more than 255
components. The structure named could
be a minor structure or it could be
the major structure.

502

S03

IBM Confidential

THE PROCEDURE OPTIONS ARE INCORRECTLY
WRITTEN, OR ARE USED IMPROPERLY.

Explanation: One of the following
errors was found in the procedure
options:

¢ The syntax of the options is in-
correct. For example:

1. The options are in the wrong
position -- they must follow
any parameter list specified.

2. The registers specified in
the options CODEREG or
DATAREG are not enclosed in
parentheses. ‘

3. The options are not followed
by a right parenthesis.

e An invalid register is specified
for CODEREG or DATAREG.

e The same register is specified for
CODEREG or DATAREG.

e CODEREG, DATAREG, or REENTRANT is
specified on an internal
procedure.

e SAVE and DONTSAVE are both speci-
fied for the same procedure.

e The register list for SAVE or
DONTSAVE is incorrectly written or
specifies a nonexistent register.

ONE OF THE IF STATEMENTS IN THIS NEST
CCNTAINED AN ERROR CAUSING IMPROPER
MATCHING OF IF'S AND ELSE'S.

Explanation: There are several IF
statements which are nested, and at
least one of them has an error. The
ELSE statements which have been been
processed up to this point will not
correspond to the correct IF. (This
message occurs only for a nest of IF
statements. It corresponds to the E43
message which is given for single IF
statements.) For example:

Ll: IF A=B THEN
L2: IF C=D THEN

L3: IF E=X|Y THEN /#* ERRCR ON
THIS IF */
Li: IF F=0 THEN FL=0;
ELSE FL~=1; /% CLOSES L4 */
ELSE FL=2; /% CLOSES 1.2

BECAUSE L3
WAS FLUSHED */

ELSE FL~=3; /% CLOSES L1 */

ELSE F1~4; /% S03 MESSAGE GIVEN

HERE BECAUSE THERE
ARE NO MORE IFS TO
CLOSE */

IBM Confidential

sS04

S05

S06

XXXxXxXxxx IS A MINOR STRUCTURE WHICH
HAS A TOTAL SIZE GREATER THAN 32,767
BYTES. THE ENTIRE STRUCTURE IS
DELETED.

Explanation: The named item is a com—
ponent of a structure that contains
more than 32,767 bytes.

The entire major
For example:

Compiler Action:
structure is deleted.

DCL 1 ST,
2 MINOR,
3 MINA CHAR(30000),
3 MINB CHAR(4000),
2 MINOR2;
/% MINOR HAS A SIZE GREATER THAN
32,767. THE MAJOR STRUCTURE, ST,
IS DELETED */

VARIABLE HAS ILLEGAL REGISTER ATTRI-
BUTE. REGISTER STORAGE CLASS HAS NOT
BEEN USED FOR THIS VARIABLE.

Explanation: The keyword REGISTER is
not followed by a left parenthesis, or
the number within the parentheses is
not a legal register.

Compiler Action: The REGISTER storage
class is not used for this variable.

VARIABLE HAS ILLEGAL BASED ATTRIBUTE.
BASED ATTRIBUTE HAS NOT BEEN APPLIED
TO THIS VARIABLE.

Explanation: One of the following
errors has been found in the BASED
attribute:

e The syntax of the ADDR function is
incorrect. For example:

DCL BAS BASED(ADDR XXX);

/*¥ NO PARENTHESIS AFTER ADDR */
DCL BAS BASED(ADDR(XYZ);

/% NO CLOSING PARENTHESIS */
DCL BAS BASED (ADDR(XXX+U4));

/* OFFSET SHOULD BE OUTSIDE THE

PARENTHESIS */

e The offset from the base is not a
decimal number, or is greater than
32,767 bytes. For example:

DCL A BASED(P+40000) ;
/% ILLEGAL */

DCL B BASED (ADDR(XX)+40000) ;
/% ILLEGAL */

e The absolute value given as the
base is greater than 32,767.

Compiler Action: In all cases the
variable is treated as a STATIC item.
(Only the BASED attribute is ignored.)

Appendix E:

S07

s08

S09

s10

VARIABLE HAS AN ILLEGAL NAME IN THE
BASED ATTRIBUTE.

The name given as the
For

Explanation:
base is not a legal name.

example:

DCL. A BASED(12B); /* ILLEGAL NAME */-
DCL C BASED(ADDR(1B));
/% ILLEGAL NAME */

XXXXXXXx IS BASED ON AN UNDECLARED OR
IMPROPERLY DECLARED ITEM.

Explanation: One of the following
errors was found in the BASED name:

¢ The named item is based on a vari-
able that has not been declared or
has been declared other than
pointer: For example:

DCL FLG BASED(PFLG) ;
/* WHERE PFLG IS NOT DCL'D OR NQT
PTR */

¢ The variable in the ADDR function
has not been declared. For
example:

DCL CODE BASED(ADDR(FIELD)) ;
/% WHERE FIELD HAS NOT BEEN
DECLARED */

e The named item is based on a
dimensioned variable. For
example:

DCL NMPTS(10) PTR;

DCL XPT BASED(NMPTS);
/% ILLEGAL BECAUSE NMPTS IS A
DIMENSIONED VARIABLE */

MORE THAN 50 ITEMS HAVE BEEN FACTORED.
A RIGHT PARENTHESIS WAS ASSUMED AFTER
THE 50TH ITEM.

Explanation: More than 50 variables
appear inside parentheses as factored
items.

Compiler action: The statement is
processed as if there were a right
parenthesis after the 50th item.

VARIABLE IS BASED ON THE ADDRESS OF A
REGISTER.

Explanation: A variable is declared
BASED, using the ADDR function, and
the name in the ADDR function is the
name of a register variable. For
example:

Diagnostic Messages and Codes 165

S11

512

513

si4

515

166

DCL R1 REG(1);

DCL VBL BASED(ADDR(R1)) ;
/* ILLEGAL USE OF REGISTER VARI-
ABLE #*/

XxXxxXxxxx HAS MORE THAN ONE DIMENSION.
ONLY THE FIRST DIMENSION HAS BEEN
ACCEPTED.

Explanation: The named item is an
element of a dimensioned structure,
and the item itself is also dimen-
sioned. TFor example:

DCL 1 CDIMG(10);
2 NMS CHAR(20),
2 CDs(5); /*ILLEGAL DIMENSION*/

Compiler Action: Only the dimension
on the containing structure is
accepted.

XXXXXXXx IS MORE THAN 32,767 BYTES
FROM THE BEGINNING OF A STRUCTURE.
THE STRUCTURE IS DELETED.

Explanation: The named item is a com-
ponent of a structure, and is offset
more than 32,767 from the start of the
structure. For example:

DCL 1 COM,
2 AREA CHAR(32767),
2 IND CHAR(1); /* OFFSET GREATER
THAN 32767 */

Compiler Action: The entire major
structure is deleted.

NO REGISTER IS AVAILABLE FOR ADDRES-
SING EXTERNAL DATA.

Explanation: A register is needed to
obtain the address of an external
item, but there are no registers
available to the compiler.

NO REGISTERS ARE AVAILABLE FOR CALCU-
LATING SUBSCRIPTS OR SUBSTRINGS.

Explanation: A register is needed to
calculate an index, but there are no
registers available for the compiler's
use.

NOT ENOUGH REGISTERS ARE AVAILABLE FOR
THIS COMPUTATION.

Explanation: Not enough registers are
available to generate code for a
statement that needs a number of regi-
sters. For example:

DCL CRSTR CHAR(10);
DCL XREC(5) EXTERNAL CHAR(50);
XREC(L,I:J) = CRSTR(K:10);

sl1e6

s17

s18

S19

IBM Confidential

needs at least four registers to
address XREC: one for the ADCON, one
for the subscript, one for the sub-
string, and one to do an EXECUTE of an
MVC instructiom.

NO EVEN/ODD PAIR OF REGISTERS IS
AVAILABLE TO DO A MULTIPLICATION THAT
IS PART OF A SUBSCRIPT CALCULATION.

Explanation: The compiler needs an
even/odd pair of registers to do a
multiplication that is part of a sub-
script calculation. No such pair of
registers is available.

VARIABLE FOLLOWING "END" DOES NOT
MATCH THE IABEL ON ANY OPEN DO
STATEMENT.

Explanation: The name given on the
END statement does not correspond to
the label on any previous DO
statements.

Compiler Action: All open DO state-
ments will be closed.

THE STATEMENT IS TOO LONG. A STRING
CONSTANT MAY HAVE A MISSING QUOTE.
THE STATEMENT HAS NOT BEEN COMPILED.

Explanation: The statement is too
long, for one of the following
reasons:

e A DECLARE statement is too long
for the compiler to process. (The
compiler can handle approximately
1000 characters, not counting
blanks.)

e A string constant does not have a
closing quote, in which case all
statements following the string
are taken as part of the string.
(One indication of this is that no
statement numbers will be printed
for the statements that follow the
string.)

A PROCEDURE OR ENTRY STATEMENT IS
INCORRECTLY WRITTEN.

Explanation: One of the following
errors was found in a PROCEDURE or
ENTRY statement:

¢ The syntax of the statement is
incorrect. For example:

1. The keyword is not preceded
by a name.

2. More than one name precedes
the keyword.

IBM Confidential

520

521

¢ The procedure name is declared as
other than ENTRY.

¢ An ENTRY statement has parameters,
but the procedure it is contained
in has no parameters.

MORE THAN 75 UNIQUE DECIMAL CONSTANTS,
OR MORE THAN 75 NONLOCAL EXTERNAL
ITEMS HAVE BEEN USED.

Explanation: The compiler can handle
a maximum of 75 unique decimal con-
stants, or 75 NONLOCAL EXTERNAL items,
in a single compilation.

THERE ARE MORE THAN SEVEN IMPLICIT OR
SEVEN EXPLICIT POINTERS IN A CHAIN.

Explanation: A statement has more
than seven levels of one type of
pointer. (With a combination of both
types, a statement may have up to 14
pointers.) For example:

P1->P2->P3->PU->P5-5P6->P7->P8->X = 0;

is a string of explicit pointers, and
is illegal because there are more than
seven. The next example:

DCL P1 PTR, P2 PTR BASED(P1),
P3 PTR BASED(P2), P4 PTR
BASED(P3),

P5 PTR BASED(PY4),
BASED (P5) ,

P7 PTR BASED(P6),
BASED(PT),

X BASED(PS);

P6 PTR

P8 PTR

contains implicit pointers. To locate
X implicitly, more than seven pointers
are required. Thus, the assignment X
= 0; would be illegal. The next
example:

P7->PA->PB->X = 0;

involves more than seven pointers, but
is legal because there is a combina-
tion of implicit and explicit
pointers.

Disastrous Error Messages

DO1

PROGRAM HAS TOO LARGE A DATA AREA.
CONSULT 'BSL USER'S GUIDE'.

Explanation: A data item is more than
32,767 bytes from the start of the

data area. This problem involves the
offset from the beginning of the data
area, not the total size. Once 32,767

Appendix E:

D02

D03

DO4

no addi-
For

bytes of data are declared,
tional data can be declared.
example:

DCL INTERFAC CHAR(32767);
DCL CODE CHAR(2); /* ILLEGAL */

If the above example is reversed, the
declarations are legal. For example:

DCL CODE CHAR(2) ;

DCL, INTERFAC CHAR(32767);
/% LEGAL BUT NO DATA CAN BE
DECLARED AFTER INTERFAC */

THE PROGRAM IS TOO LARGE. THE DIC-
TIONARY SPACE HAS BEEN FILLED. SEE
SIZE OPTION IN 'BSL USER'S GUIDE'.

Explanation: The number of data items
in the program is more than can be
handled in the compiler's dictionary
space.

User Response: Use the SIZE option to
specify a larger dictionary (OS only),
or remove some data items from the
programe.

THE PROGRAM IS TOO LARGE. THE SPACE
ASSIGNED FOR DICTIONARY, INITIAL
VALUES, AND CROSS REFERENCE TABLES 1S
FILLED.

Explanation: The program is too large
because of the number of data items,
the number and size of initial values,
and the number of references to the
data items.
User Response: One or more of the
following:

e Use the SIZE option to specify a
larger dictionary (0OS only).

e Use the NOXREF option to suppress
the attribute and cross-reference
table.

¢ Reduce the number or size of ini-
tial values by initializing the
items dynamically.

TOO MANY STRING CONSTANTS HAVE BEEN
USED.

Explanation: The total number of
characters in string constants (hexa-
decimal, bit, and character) is too
large. There are about 1400 bytes
available to hold these constants, and
the compiler does eliminate duplicate
strings.

User Response: Change the constant to
a variable and initialize it.

Diagnostic Messages and Codes 167

D05

D06

D07

D08

D09

D10

168

THE END OF AN INTERNAL PROCEDURE IS
NOT FOLLOWED BY THE END FOR THE CON-
TAINING PROCEDURE OR A NEW INTERNAL
PROCEDURE.
D11

Explanation: The END statement of an
internal procedure was not followed by
another intermnal procedure or the END
statement for the external procedure.

THERE ARE MORE THAN 14 INTERNAL
PROCEDURES. D12
Explanation: The total number of pro-
cedures that can be handled in one
compilation is 15, including the
external procedure. It does not mat-
ter if the internal procedures are
nested or disjoint.

D13
THERE ARE MORE THAN 8 DO STATEMENTS IN
A NEST.

Explanation: More than eight DO
statements are open at the same time.
User Response: Break up the nest of
DO statements.

THERE ARE MORE THAN 14 IF STATEMENTS

IN AN IF NEST.

Explanation: More than 14 IF state-
ments are open at the same time.
User Response: Break up the nest of D1y
IF statements. Branch out on one of

the IF statements, and continue with
another IF nest at the branch point.

THERE ARE MORE THAN 50 TRUE/FALSE
BRANCHES IN A NEST OF IF STATEMENTS. D15
Explanation: The total number of
true/false branches in a nest of IF
statements is the sum of the number of

IF statements and the number of logic-

al connectives in the IF statements.

This number cannot be greater than 50.

User Response:
IF statements.

Simplify the nest of

THREE CONTROL CHARACTERS OR AN END OF
FILE HAS BEEN ENCOUNTERED BEFORE ALL
PROCEDURES HAVE BEEN CLOSED.
Explanation: At least one procedure D16
is open, and three control characters

or end of file has been read.

This error could be caused by a DO
statement which does not have a corre-
sponding END statement. The compiler
would assume that the procedure's END

IBM confidential

statement is the close for the DO, and
then look for another END statement.

AN INCLUDE OPTION APPEARS WITHIN
INCLUDED TEXT.

Explanation: Included text may not
contain an INCLUDE option.

THE INCLUDE OPTION IS INCORRECTLY
WRITTEN.

Explanation: The ddname or member
name is too long.

THE INCLUDE OPTION ASKS FOR A LIBRARY
MEMBER THAT CANNOT BE FOUND IN THE
SPECIFIED LIBRARY.

Explanation: The member name speci-
fied in the INCLUDE option cannot be
found in the specified partitioned
data set.

User Response: Check the spelling of
the member name in the INCLUDE state-
ment, and check the data set name on
the DD statement indicated in the
INCLUDE option.

AN I/0 ERROR HAS OCCURRED WHILE
SEARCHING FOR THE REQUESTED MEMBER IN
THE USER'S LIBRARY.

Explanation: I/0 error.

THE PARTITIONED DATA SET SPECIFIED IN
THE INCLUDE OPTION HAS A BLKSIZE
GREATER THAN 3520 OR A RECFM OTHER
THAN F.

Explanation: The partitioned data set
may contain blocked records up to a
block size of 3520 bytes, and must
contain fixed format records.

User Response: Respecify the block
size or record format of the data set
and run the job again. Make sure that
the INCLUDE option specifies the
correct data set.

MORE THAN 2559 COMPILER GENERATED
LABELS HAVE BEEN USED.

Explanation: This is the maximum
count of labels generated for DO
statements, IF statements, and CALL
statements. The count does not
include any labels on data.

IBM Confidential

D17

Dis

D19

User Response: Reduce the number of
IF, DO, and CALL statements.

COMPILATION HAS BEEN TERMINATED
BECAUSE OF SOURCE ERRORS THAT HAVE
OCCURRED PREVIOUSLY. FIX ERRORS AND
RERUN.

Explanation: The compilation cannot
continue because of the errors that
occurred previously.

Usexr Response: Correct the errors and
recompile.

A COMPILER ERROR HAS OCCURRED. SUBMIT
A TROUBLE REPORT TO DEPARTMENT D76,
BUILDING 706, POUGHKEEPSIE, N.Y.

Explanation: Self-explanatory.

INCORRECT INVOCATION OF BSI. COMPILER

Explanation: A compiler error has
occurred while trying to process the
parameters passed to the compiler when
it is dynamically invoked. The fol-
lowing kinds of errors could cause a
compiler error: ’

e Register 1 contains an invalid
addres=.

* Register 1 contains an address
that is not on a fullword
boundary.

s The address parameters to which
register 1 points are not valid
addresses.

e The second address parameter (list
of alternate ddnames) has been
omitted and the high order bit of
the first address has not been set
to one.

e No compiler options or alternate
ddnames have been specified, and
the high order bit of the first

Appendix E:

D20

D21

D22

address has not been set to one,
or the first address parameter has
been omitted, or the first address
parameter does not point to a
halfword of zeros on a halfword
boundary.

¢ One or both address parameters
contain an address that is not on
a2 halfword boundary.

User Response: Correct the calling
sequence for the dynamic invocation of
the BSL compiler. If the problem per-
sists, submit a trouble report to
Department D76, Building 706, Pough-
keepsie, New York.

THREE CONTROL CHARACTERS OR AN END OF
FILE APPEARS WITHIN A BLOCK GENERATE.

Explanation: Three control characters
or an end of file has been read while
BSL source input is still being pro-
cessed as the text statements of a
block GENERATE. The corresponding
SENDGEN control statement for the
block GENERATE is missing.

THREE CONTROL CHARACTERS OR AN END OF
FILE APPEARS WITHIN A COMMENT.

Explanation: Three control characters
or an end of file has been read before
the comment terminator (*/) of a com-
ment was found. An indication of this
error is that the statements following
the comment will not have statement
numbers.

THREE CONTROL CHARACTERS OR AN END OF
FILE APPEARS WITHIN A STRING CONSTANT.

Explanation: Three control characters
or an end of file has been read before
the closing quote of a string con-
stant. An indication of this error is
that the statements following the
string constant will not have state-
ment numbers.

Diagnostic Messages and Codes 169

IBM Confidential

$$% delimiter ..eeveceacescacecnacncenaa 19
in DOS compilation .eeeeecesccesseases 32
in OS compilation ceeveeecesecsnenses U6
in table eeceesecccsessoccsnscnaasess 12

Address constantS .ccecececesacssscasscas 27,86
Address restrictionsc.ceceece... 68-69
Addressability
for AUTOMATIC data seeesees. 35,47,63-6U
CONVENLIONS cecencvsacccnsscssaass 60-61
for tracing ceeeeececvecccnnancacasas 25
Alternate ddnamesvecencccnsesass U9-51
ANNOTATE OptiOn eceeececcecacenes ceessae 24
in table ceicieereerececccncnosncanaaeas 1h
Argument 1iStS ..eeecececcscscveceess 81-84
AYTAYS eeececcecesscsancoscsnsceanvecsnssccss 05
Arithmetic expressions e.ceceecvcececss 74-78
Arithmetic 1temS ceecseocecscancaccacces 09
ASSEM option esesessseccsnccsees 22-23
in DOS compilation ..eeececeaceea.. 31-34
in OS compilation eceeacecescccaceeaas U3
in table cieeeeeecercsannnncsnsanaess LU
Assembler text
COMMENLS eecevecoacoccconcccscscanans 23-24
compiler-generated ce.eeesccecscas. 93-10
labels generated forccecee.. 57-59
1isting Of wecieeerecanncncenceacss 20-24
punching of ...ieeceeceacenccenananss 22
sequence numMbers eeveees.... 20-21,23-24
storage Oof ¢..veeeceecaanns eeseses 22-23
suppression O0f ceeeeiiciececcacnceaas 21
tracing code cevecesaannaceas 25-27
Assembly
DOS ceceaccccssscancsccsansssssasas 33-35
OS eevsescossnsaccassansssncenscanaes HO-U4O
Assignment statements ..ceceseecece.. 69-70
Asterisk
in assembler LeXT ceeverecacccacenaas 24
in cross-reference table .sieeeeaecaes 21
Attribute and cross-reference table . 20-21
Attributes, data S€et ceeeceececoceaaa.s. U2-43
for included teXt ceecceccenccanas 52-53
AUTOMATIC data eeeeeeececeeeees 35,47,63-64

Base regisSter ceevecscescscacesnaaeses 60-61
BASED attribute .s.eceececnceaas ceeceee. 68-69
Batch compilation

delimiter fOY .cceeececnecceanancseas 19

DOS teceoaccacacssncsaccseascsassncnasas 32

OS ceecencscsssnccnancesncncsnsassas US5-U46
Bit strings

length Oof ..eveeecreecncancscancconas 65

scannNing O0f .eeceeveeccacaaens ceacees 87

Setting tO ZEr0 .c.esecececvcsaconcass 87

USE OFf ceveeeeeacacncaccnaunneaoanas 68=-73
BlOCK S1Z€ ceeecceasnscescsaanscanasas 43,53
BOUNAAX1€S weeeeceencccnssencannsncsasneas 85
BSLALG cataloged procedure

description Oof c..ieeeieeicncncaecneass U8

use Of .eceeen. teescecencseancaccens HT-UO

Index

BSLASM cataloged procedure

description O0f .ciiceeeecnncnencccaass Ul

USE Of teeevevacasvcancucnnoeaas UHO~U47 049
BSLLDM data Set eceencosencerscoscasss 39-41
BSLLIB data Set ceeececscccccaces e 39-41,52
BSLOUT seecesccsaccncanccascnncensasnnoa 27
BSLX cataloged procedure

description 0f ..cecireneecnecacnena. Uit

USE Of ctevevecocannnccnaccccenness US5-46
BULfEYS sceeccsaccacesccuncnanasaccncaaass U3

changing size Of s.cececcanccacacanes 90

number Of ... veeneccecocccsaccananaas U3

CALL statements
argument 1ists fOr eeeeceececeec.. 82-83
for library routines .ceeeseesecee. 36,51
restrictions c.ceececencenccacecacess 66
tracing at c.eecienncevaccanaceaes 25-26
Cataloged procedures
Cataloging eceeceecnceccsecacncaccnnss U1
description 0f ciceeecieevennaaces U3-45
USE Of vtecevevenccsosnsnsscsnansssas UH-U49
Character strings
length of .. cieiiiinenceeececncnnnas 65
propagating c.ceeeecerecaceccennaaeaaa 87
USE Of cenccencccascacnancncacesaa 09-73
CLEAR ceveeevccesncncacsansancsnseennnns D6
CODEREG procedure option eeceeseececesce.. 60
Comments, assembler textc..... 23-24
COMMON AYXEH eoeovecsscocsanssscnncsnsancoane 37
COMP data Set .ececetacccnvacsnncasaneas U0
Comparison exXpressions seecescececsss 70=-71
Compilation and assembly
DOS eeeccecccsacenncasnscnnnnsonsssene 33
OS. teeecccacescascsannnnnanncececas HO-U4T
Compilation, assembly, and execution
DOS eceececscsnccsencsecnnacsscnnnsss 3U=35
OS cecenecsccasenssasossncnascnnasas UT-U48
Compilation without assembly
DOS eaeee ceceteacesnscssnnasencnnae ees 32
OS5 tcececcesanoanasnancnssssnsnesaces U5-U6
Compiler, BSL
DOS weeesccacsncnnacancnncosaconsas 29-38
dynamic invocation of c...enccc... H49-51
macro phase cescesscascacncsesces 18
operation Of .c.ieieecnieeienncacanananas 9
OPtions ceeeeeeenanccccenananneaas 12-28
OS teevncecososncnncncnsnsensnancsseaa 39-56
OULPUL ceeeecovsscnconancnanancases 20-204
Compiler-generated code eceececeseso. T4-79
Compile-time macro facility «e.ecec... 18-19
Compile time macro processor 89-90
Completion COAES ceeweaceanacncacsasass 149
CONCHAR OPtion .sescesascsccsscscecncacaas 17
in table tiieeeerieeecacnnnncncncncans 12
(see also control character)
CONS0le MESSAGES weevecscacecscasancacens 149
CoNStants .ceeeesvacsacsccancescanasannsas 605
CONtrOl CArAS ceceucecvacnacaacncacsas 15-16
(see also options, compiler)

Index 171

Ccontrol character
in $$% delimitercecerececaaacasaas 19
With CLEAR vecececccsaccsnsacancas 18,56
for control statements .ecceececs. 15-16
for macro statementsccviccecec... 18
option fOY ceeeceecccacnancsanssocnacasne 17
Control program services
DOS ceceacesnnsascoansansscasnsnsnes 35-36
OS wecesoscaceaccscascsancassnancaaanna 51=52
Control SectiOn .cecceecccscasacscasasanae D7
TOr TESTRAN .cucecceccsnctasasscacascaas 95
Control statements eececececcacecaeaass 15-16
(see also options, compiler)
CONVeNntionS. ceececcsccancsccscaccnsaasa 27=-73
Conversion Of data@ eeeeseesasesacasas 36,52
Core image 1ibrary ececeececesccccanacsass 30
Cross-reference table c.cceececesennaeces 20-21

DATAREG procedure option «..cceceesseaas. 60
Data sets, OS requirementsc..... U42-43
DCB attributesS e.cieceececacsncaanass U42-43
for included text .eceeceeececaaaceaas 53
AANAME . cceecncecacncccncncascacaannnaes Ok
Defaults
boundarie€s .ccecececcensccacacacaceeass 85
compiler OptioNS ceeeeemecacsecaaaas 12-104
data set attributes ...c.ceiacease.. U42-43
Device types
DOS eeeevnccsccsascnsscncnscaccanns 30-31
OS ececeeenescccsacnnonccanccenacacaeass U3
Diagnostic messages (see messages)
Dictionary SizZ€e .eeeeccacescccesnaaes 16-17
With CLEAR cveecccevcssccnnasssncaceans D6
Disastrous error messages
compile phase c.cceeecacenecaase 167-169
MECYO PRASE ceecaccencecscncanncnaes 154
(see also messages)
DiSplacement cececececeecsasacacanscaas 68-69
Distribution package, BSL
DOS ceeeeannnnn cecacsceecsnacsasess 29-30
OS eeececnasseasnsacssassssassances 39-41
DO 1lOOPS ceecececasasncsccnsenaasocsasnes 65,86
DOllaY SigN seeeacecccncscseacsasacass 16-19
With CLEAR ceceeceacaccnnnsaavasas 18,56
with INCLUDE - 1)
DONTSAVE procedure optioncecee.. 35,63
DOS ceeeasncscccccancccccannasanncace 29-38
DUNPS ececeecenseasccscescancccncnanaeca 36,52
Dynamic invocation e.eeeceesasceceaasa 49-51
example Of c.ieieeneeeeeennanaes 137-146
Dynamic StOrage .ceececececncocacaasas 63-64

EDIT routine .cceeeecccssssancecacsaee 36,52
EJECT OptiON eeceseccscnsssceacananannanas 22
in table scieeececacsnacnnnaaccnnanaas 13
END statement ececceecececcsscccacccscanncaas 07
ENDGEN statement ..ceceeccecesasacncacassas 19
in table c.cececcccessccncasnaaanaanes 12
Entry points
for library routines ...c.ceceeee. 36,52
PArameters cecceccscnnacccace eeee. 67-68
restrictions ..cece.a. sececncecnacsans 65
tracing at c..ceecceescancacaaaaas 25-27
EOJ macro instruction e..ceececcccasaanas 35
ERRINT YOULINE cevececcecacnse -]
Error messages
compile phase cececescass 158-164

172

IBM Confidential

macro phase ..ccieecetececccacesaaes 151
(see also messages)
EXEC statement, parameters of 15-18
Execution
DOS eveceacsncssceonncanasssacesss 34-35
OS ceeeensscccscscsnnncanvassaasas UT-U9
External procedures
compiler input ...c.ceccecceaecaces 30,42
separation Of .c..eeeecacncecaccneaane 19
USe Of cccieieeenccaceneasccncansancaass 80

Factored attribUtesS ..ccecscsccccasnassans 66
Files, DOS requirements eecseceacessecss 30-31
Fixed data@ eecsesccsacnccancnacosassanans 716
Free-form oOoptiOnsS .cececessccccsasaceas 15-16

Generalization ..cccescacacscsccnacacansaa 90
GENERATE statement
DOS weevecsecsscacnaacsnnsasnccassscnnaas 3D
end Of ececeevenccsnoccanccscnccnccnanaca 19
example Of ..ceienecccnnannceaees 99-108
forms Of ceeeenanccccncncanaancccnaes 88
OS cuieeesssncsscsanncsncascasssccacnanae D1
technigques ..veecececscccacacceaass 88-89
GETMAIN macro instruction <.... 35,47,63-64
GENMGIN OptiOn ececeecescacecacscsese 18-19
in table civiieeecaccccnannosnnacsannanas 12

Identification NamMe .cevecccascecsasaases 21
IEBUPDTE utility program -..ceeceee... 41,53
IEHMOVE utility program e..ceceeceeeee.. 39,41
IF statementsS ccececesesacasanss 66,70-71,80
1IKETRCOF SWitCh cevceacoancasncasnnaaceese 28
INCLUDE macro statement eceeeeceeseses 52-53
INCLUDE OpPtiOn <eeececsseccccscacasanacas 18
With CLEAR c.ceeccacccnaacncasasancas D6
in talkle cecceecccncsaccccasasacnannas 12
USE Of tveecccaccnncecncncncecsanas 923-54
INCR OPtiON ceeeececncsccncsacanacanncans 23
in table cccececccesasccasnancncsaseas 13
Information 1istings ..eeeceecss. 10-11,20-24
Initialization .cecccaceccancacssscacaanas 69
Arithmetic items ccacescscecescacanas 69
String iteMS ceceeecececacansccancaes 69
Input
DOS ccevscecasasnsnncnsacancsasasncas 30-31
OS tecacenccavscsansoacaacncsasanceas U2-U3
statements cccescencevacccacsanecas 15-18
Input/output library routines
DOS ticeeuncasnccansnncassanssananasas 36

OS5 tereerencenncscaconacsnacnannnasse D2

INTER OPLiON eccieececnncncaccacsacncanans 20
in talkle tieiceeecnacacacnascaasnansa 1l
Internal procedUres eesceeceecess 63-6U,07-68
Interrupt handler
DOS ceececencccsncccnanncanse cceeecscansss 36

OS5 cecenenccccscsancancnancsncnnnsnas 52

Job control statements
DOS 4aescsnccssscansannncennanscssss 32-35
OS ceteeaceacescnsanoncescsnassonnses 45-49
TESTRAN cceeceaccosacccsososnscsnccsanane 95
JOBLIB DD statement eeeececes... 39-40,46-48

IBM Confidential

ceees 26-27
57-58

Labeled statements, tracing
Labels, compiler-generated
Library, BSL

DOS eeecececcaccsscnnanseses 29-30,36-37

OS eceveecncnacacnsancsnnases 39-42,51-52

tracing routines iNn .eeceevecccccceaes 27
LINE OPtiOn eceeeceecccsccncacecsanancase 22

in table ..veeececcencnsccesacanenses 13
Link 1ibrary eceseececescscsscacass 39,U6-48
Linkage conventions sceceeccececeacess 61-63
Linkage edit

DOS eeececcscsncossanasasnsvsnaneanss 33=-35

OS teeecceaccscanncnnsanacsnaessans UT-U49
LiStingS ceeceeccccccsccanscscncssscesoss 20-24
Load MOAUle eeeeerecceccasscscsaccasnonna 9
Location free code .cieeeencacccceccccees 86

Machine configuration eecececeacecaeeces 9,29
Macro 1ibrary cceececececccecessss 47-48,56
MACRO OPtiOn ceeeceeececcscacessascscasasne 18
in table .ciieececcaneccsceaccanaanssas 12
MacrYo phaSe eceeeeeceeccesancoscscaceacaannas 18
Macro source 1istings .eeseesceees 93,95,97
Macro statements, restrictionse.... 66
MAYJINS seseveocascsssassccscanccnses 17-19
MEemMbhEeYr NAME ¢.eeeececssncsccasscscasneees DU
Merged 1istings cieeececcecescencnncnsas 20U
Messages
compile phase .(.cceeeeeecaceness 155-169
CONSOLE teveeeceecvncnusenncanansssas 1U9
MACYO PhASE c.ieceecnaccensenaaas 150-154
numbering Of cieeeececcscecaccancaas 147
return COUES cvveeccocevanosensonsss 1U9
severity levelsS eueeeececesecesas 1U7-148
MSGLEVEL OpPtiON eeieeeacecccsccceasasass 21
in table cceeeeacancccesasevnacaacans 13

Nested statementsS .ceecececsccscvasesss 06,80
NOASSEM OPtiON eceecececceancesanecncecans 23

in €table ceeecccccncacccnnanccansaase 1U°

NOLIST OptiOn «cueeecececceccenacnaaseas 21
in table cieeeeeceneneccscancncananes 13
NOPAGE OpDtIiON eecescceccccsccasasannscas 22
in table ceveeeeeea vacscacsonanseses 13
NOSAVEAREA procedure option 25,63
NOSEQ OPtiOn ceviececeecccscsccnsaaceeaes 20U
in table ceeeeeieeeececancancnacnasas 1l
NOSNUMBER Option .eeeeeceececcaenncaaaas 23
in takble cceeeceeeee.n. cesccscscenssess 13
with tracing ceececeeceecececccanascaas 25
NOXREF OpPtiON coveececcsacsenccsssacccses 21
in table .eiieeececececnenseesccanceass 13

Object deCKk eeeeceececcncecenees 30,34-35,48
Object margin eeecsascscenses 14,19
Object MOdULE ceececcsccccccaccaaaaaas 9,U8
Offset vValle cieceaceseccccnecsnacanaaas 25
Optimum code, obtaining ...c.ceeec... 84-86
Options, COMPller seceeececessessaasss 12-28

With CLEAR cececcscacscancacacnsesses 96

with dynamic invocation .eeecec... 49-50
OPTIONS (VLIST) ceecececcacccscaaasas 82-83
OS cveencaceanseascacancansascscsasss 39-56
Ooutput, CONPIler eceeccecicaccaccceaass 20-24

Page €3JeCt cuccenecenncncenancnsncnnnaes 22
Page headings ..eceeececcacennencnsae 20-22
Page NUNbErS ceceececencnccoosonssncae 20-22
PAGE OpPtiOn eecececccccancncnscscncnscsa 22
in table cceeeeccecncacanncccnnveceass 13
PARAMETER attribute eceeeeeecececaccaaces 21
Parameterization ...cecececcnccecenacesa. 90
Parameters
avoiding reference tO ..eeeeeoa... 83-84
fOr CLEAR ctceeccsncccccncnscascannes 56
for dynamic invocationc..... 49-51
fOr TESTRAN c.ccececcsccccanannsosnannaen 55
of EXEC statement .vcccececcecec.. 15-16
Of ProcedUres .cecescecscenceess 21,07-68
programming technigques e.cecese... 80-97
PARM field ceceeeecennscanasancacseas 15-16
PDUMP YOULINE cececacccccnassncacsseaa 36,52
Percent Sign ...ececececsccenncnacssas 18,54
PL/I MACrO PYOCESSOYr esesessvscasscacaasan 18
Pointer data@ cecececececccancnncenneeas 17-78
POINLErS eciveceecececncaccancnsnsncnncas 66
PreCiSiON cececececcacenccacancssnconnoas 17
Private 1library «ecceceseeeess cssrcanae 39-41
Procedure 1ibrary eceeececescceccaceneas U1
Programming technigues .scececaccesesas 80-97
PUNCH OPtiOn e.ceeccaccnacenscsenccanaas 22
DOS ececececncsasecconcncnnssnceses 31-32
43,45
in table ceieieecieeecencnannscacnas .. 14

OS sececencacccnnsnnccnasnanancsansna

Record fOormat .cescececceccesencceneasas 43,53

‘Record length .cceeceeeceanncevccacaeaas 43,53

Reentrant procedures ..ceeeeeccsces.. 01-63
DOS cieacascecacasnccncanancscennnnes 35
OS cecevacccscssssnccncnncnceannannass 48
register conventions .e.cceceeccessss 60-61
return COde ceeecesccncencnacennnacnas 8U
REGION cerverececcacecannscnnncacnnnaanas 56
Registers
AttribUte .civeeeecencacncencancnnass 09
CcOnVENtionsS .ececesccacccaccacaeas 60-61
evaluating in .ceesecceccccsccaassas T4=-75
OPLiONS wecieneneocenacncvnanscesas 00-61
passing arguments in .ecececeecevees.. 82
usage Of ceeeececenceeccncncanaaaas 74-T75
variables in ceececcescscocsea-. 68,82-83
RESEQ OPtiOn sccecacsecconcasncscnsacaeas 24
in table c.eceverencenccancacceaneonas 1l
Reserved WOXAS eceeeeescccccceccncncaaces 67
RESTRICT statement 1
Restrictions
AQAYESS .ceceitcnccncnensncccaacccoenae 68
bit constant comparison .ccseeecaca... 71
bit variable comparisSon ec.ecececac.s 71
CALL statement c.cecececccccecccccacans 66
comparison operators ceeceececceaces 11-72
compiler control statement 15-16
entyry point .e.cceeccecccacccensccscaae 65
initializing arithmetic items 69
initializing string items .cc.cece... 69
1laNgUAgEe cecevwcvceccncsasneancecans . 67-73
macrou statement .ceeccaccccnccncecsas 06
parameter reference c.ececececaa.. ... 83
procedure formatceccecrteceveacan 80
SIZE ceeenrrecerecancnccnancennnnn
subscript notation eceeeececceceaas
substring notation .ccececcencceces 72-73
VariableS cecccececaccccnccacascancas

Index 173

Return code
from COMPiler eeeceeceacecasananaass 149
from source programc...... 61-62,84
RETURN statements, tracing 26-27
Routines, tracing eeceeeceecccascscaass 26-27

25,61,63
63
88
86
23

s

20,23

Save area
SAVE procedure Ooption ceeeeececeecanccan
Search argument
Self-relocating code
SEQC OPtiOn ecececeeaccacacaaasacnsaannans
in table
Sequence number
Serious error messages
compile phase cieeieececeanaeaaa 164-167
macro phase ...eeeeeeenenaraana. 151-153
(see also messages)
Severity levels .ececeecencsacacaas 1U7-148
SIZE option 16-17
in table c.iiececiererecennceancacnans 12
Size restrictions 65-66
SORMGIN Option eeeacecescscacccaaanaannas 17
in table cieceiencecncnaananaa ceecaans 12
Source code, alteringceeeecceeceas. 96-97
SOULrCEe MAXGINS eeevencescnsecasacanccanas 17
with CLEAR 56
Source program
format of 80
1isting Of cececeeccscanccanacacas 20=-204
modification of 18-21
translation of 9,57
Statements
guidelines fOr .iciaceccecsneaaneaacess 80
margins Of .ecieeeecncceccsaacancaancas 17
numbers of 20-24
Storage requirements ...ccececcccccnccacas 9
DOs 29
0s 39
Strings
length Of ..i.icueencacnceansacaannseana 65
techniques ..ceeececececnncencasnsess 87
use of 69-73
Structures 65
SUDSCTipt ceeceveccncacoceanancccenananeas 71
SUBSTR rOUtine ..c.eveeeccecccaacacaaas 36,52
SUDStXIiNg eeeeeececncacacccascscenannecas 11
SYSIN ceeceeacecaanancccncncanaccacnnaas 42-43
SYSIPT .tecsuccascccacccsacccsaasncancasese 31
SYSLST 27,31
SYSOUT 42-43
SYSPCH 22,31

s e s seemnescsessoncnceccean
Cee e e nrcoes s wreseno et useans

e s eameso0sscsncoascosaasna

e essecevecoscacoseas

e s e s e ncecasnccssssseaur @

s s e s e neaccecsraeneceanssenae

e e e e s a0 es 0 cccenwosavaance

I R R R A I I I N A

e s evecsceencecseseroessnesnesvaes

L R I N R R R A N A N R A
e s e dacrseccesesanoesanacnrcacsaass

174

IBM Confidential

SYSPUNCH “veveseenenccnnnanncnnens 22,42-43
SYSTEST wevevecesocncancaacnsanesnnaaneas 55
SYSUTL +eeveecnccnannencncasnnnens 23,42-43
SYSUT2 23,42-43
SYSUT3 4eeveensencacnoncncancaness 18,42-03
SYS001 22,31
SYS002eeuenuancannansconsannaneeennas 18,31
SYS003 veeececennnnsnnocacssasenascnanas 31

S e s cesccsc a0 anennacveraaanase

DR R R R e L I I B R I R A R I R R Y

Taple search 88
Temporary lOoCationsS .eeesessccceacacacses 85
TESTRAN cacececccvcsncanasncscsvasnssanaces 95
example Of ..ueuanceccececcsnces 120-136
TIME OpPtion ceceeeeecenacacnccenonnnanne 22
in table ci.ccacancaccascancoannanaaa 13
TITLE OPtiON c.eecencesacsccccnsnsocaneaes 22
in table saeeemcvcsennesncnaancncaanves 13
TRACE statement 25
in table .sacecescsacasssscvncvsasonsans 14
TRACE OFF statement ceccceseccccaccancerea 25
in table ccecececncnenaasanccacnnsanss 1U
TRACE ON statement 25
in table .v.ceecencaccacannceannnnanas 1U
TraCing weeececesnscscsccncscscanuaananes 25-28
example Of ..ceveenccaceccnanaas 109-119
return COAEe .ueceencccananascsccccnaaas 8l
TransSlatiOn eeeeceesecacsscscancssnscacnnce 9

@ eeenesavsecencoenss a0 ene0eae

®0 e e sessceseanes consesoea

" ee escesnneee e esseea

Unlabeled statements, tracing sc.cceasc.. 26

Variable parameter 1iStS secveceeae.s. 82-83
Variables
in GENERATE statement 89
listing Of tiiecencesncenneancanaea 20=21
in registers .eeceaceecessecacecss 8U-85
resStrictiOnsS cseecsnssscescsenacesssasns 65

Volume serial number 39-40

eeevsemnssmas nosaecae

Warning messages
compile phase ...ceceeenenaneaaas 155-158
MACYO PhASE ceeececoancesancsacncanaa 150
suppression Of ceeececececoancavaacansa 21
(see also messages)

21
i3

XREF OpPtiON cececeececnascacvncansananns
in table tecceeeenecanecsncancnansacs

READER'S COMMENT FORM

BSL User's Guide Form Z28-6682-2
® Is the material: Yes No

Easy toread? ... O 0O

Well organized? O O

Complete? . 0O 0O

Well illustrated? ... O Od

Accurate? ... TP PP O O

Suitable for its intended audience? O O

® How did you use this publication?

[] As an introduction to the subject Other
O For additional knowledge

® Please check the items that describe your position:

[] Customer personnel O Operator [0 Sales Representative

[0 IBM personnel [1 Programmer [Systems Engineer

] Manager [J Customer Engineer] Trainee

] Systems Analyst O Instructor Other
e Please check specific criticism(s), give page number(s), and explain below:

O Clarification on page(s) (] Deletion on page(s) ...

0 Addition on page(s)] Error on page(s)
Explanation:

e Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

YOUR COMMENTS PLEASE . . .

This publication is one of a series which servesas reference for systems analysts, program-
mers and operators of IBM systems. Your answers to the questions on the back of this
form, together with your comments, will help us produce better publications for your use.
Each reply will be carefully reviewed by the persons responsible for writing and publish-
ing this material. All comments and suggestions become the property of IBM.

FIRST CLASS
PERMIT NO. 81
POUGHKEEPSIE, N.Y.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN U. S. A.

POSTAGE WILL BE PAID BY

IBM Corporation
P.O. Box 390
Poughkeepsie, N.Y. 12602

Attention: Programming Systems Publications
Department D58

B R Y

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	replyA
	replyB

