
Systems Reference Library

IBM System/360
Disk Operating System
Data Management Concepts

This reference publication contains a discussion
of the data management facilities inherent in the
Disk Operating System. It describes the file
formats, labeli.ng procedures, and access methods
available with the system. There is also a
general section describing the design of the
direct-access storage devices supported.

The following publications are recommended as
prerequisite re!adings:

1. IBM System/360 Principles of Operation, Form
A22-6821.

2. IBM Systeml:360 Disk Operating System, System
Control and System Service Programs, Form
C24-5036.

Other related publications are:

1. IBM Systeml360 Disk Operating System
Supervisor and Input/Output Macros, Form
C24-5037.

File Number S360-30
Form C24-3427-3

2. IBM Systernl360 Disk and Tape Operating Systems
Assembler S~cifications, Form C24-3414.

3. Glossary for Information Processing, Form
C20-8089.

For a list of associated Systern/360
publications, refer to IBM System/360
Bibliography, Form A22-6822.

DOS

Major Revision (February 1968)

This edition, Form C24-3427-3, is a major revision
of, and obsoletes Form C24-3427-1 and Form
C24-3427-2. It also obsoletes the following
Technical Newsletters: N24-5122, N24-5169,
N24-5197, N24-5276, and N24-5291. Changes are
designated in three ways:

1. A vertical line appears to the left of
affected text where only part of the page has
been changed.

2. A dot (.) appears to the left of the page
number where the complete page should be
reviewed.

3. A dot (.) appears to the left of the title of
each figure that has been changed.

Specifications contained herein are subject to change from time to time.
Any such change will be reported in subsequent revisions or TeChnical
Newsletters.

Requests for copies of IBM publications should be made to your IBM
representative or to the IBM branch office serving your locality.

A form is provided at the back of this publication for readers'
comments. If the form has been removed, comments may be addressed to
IBM Corporation, Programming Publications, Endicott, New York 13760.

C International Business Machines Corporation 1965

Form C24-3427-3, Page modified by TNL N24-5349, May 6, 68

DATA MANAGEMENT CONCEPTS . . . • 5

Physical IOCS. . • . . • • • 5
6
6
6

Symbolic Device Addressing.
Physical IOCS Macro Instructions.
Label Processing. . • •

Logical IOCS . . . • •
Device Independent Sequential File
Processing For System Units .•.

Data Files •.••..

7

8
8

Sequential-Access Method 10
GET-PUT Level Sequential Access . 12
READ-WRITE Level Sequential Access .. 23

Indexed-Sequential File Management
System. . • . . • • • 25

Indexed-Sequential Organization . 25
Resident Cylinder Index . 27
Logic Modules 28
Record Formats•.•... 29
Macro Instructions for

Indexed-Sequential Files . . . • . . 30
Creating an Indexed-Sequential File . 30
To Add Records to a File ...•••• 31
Sequential Record Retrieval and

Update • • • . . 31
Random Record Retrieval and Update •• 32
Reorganizing an Indexed-Sequential
File • 32

Indexed Sequential Disk Storage
Space Formulas • . . . 33

Direct-Access Method 34
Logic Module Assembly . 34
Record Formats. . . 35
Capacity Record . . • • 35
ID Location • . 35
Macro Instructions. • 36
Creating Direct-Access Files. . 38

Direct-Access Storage Devices ..
IBM 2311 Disk Storage Drive . • .
IBM 2314 Disk Access Storage
Facility • • .

IBM. 2321 Data Cell Drive.
DASD Track Format . .
DASD Record Format. • . • . .

40
40

42
. 43

44
45

CONTENTS

DASD Initialization and Maintenance. . . 46
Initialize Disk/Data Cell Programs •• 46
Physical IOCS and Defective DASD

Tracks 47

DASD Labels. 47
Standard Volume Label . . • .. . 48
Standard File Labels•.• 48
Standard File Label Formats • . 49
DASD User Header and Trailer Labels . 49
DASD Label Processing . . • 50

Tape Labels•... · . . 52
Standard Tape Label Set
Standard Tape File Labels
Additional File Labels
User Header and Trailer Labels on

Tape •
Tape Marks with Standard Tape

· . 52
· • 53

· 54

· 54

Labels • . .. •...•.... 54
Standard Tape Label Processing. . . . 54

Nonstandard Tape Labels .. • 55

Unlabeled Tape Files . . . · 56

APPENDIX A: STANDARD VOLUME LABEL,
TAPE OR DASD. . • 57

APPENDIX B: STANDARD DASD FILE
LABELS, FORMAT 1. · · · · · · 58

APPENDIX C: STANDARD DASD FILE
LABELS, FORMAT 2. · · · · · · · 61

APPENDIX D: STANDARD DASD FILE
LABELS, FORMAT 3. · · · · · · · 63

APPENDIX E: STANDARD DASD FILE
LABELS, FORMAT 4. · · · · · · 64

APPENDIX F: STANDARD DASD FILE
LABELS, FORMAT 5. · · · · · 66

APPENDIX G: STANDARD TAPE FILE LABEL. . 67

I

APPENDIX H: PLANNING INFORMATION
FOR FUTURE SYSTEM RELEASE . 67.1

INDEX. · . • 68

Contents 3

The da'ta management f acili ties of the Disk
Operating System are provided by a group of
routines that are collectively referred to
as the input/output control system (IOCS).
A distinction is made between two types of
routines:

1. Physical IOCS - The physical I/O rou­
tines included in the supervisor.

2. Logical laCS - The logical I/O routines
linked with the user's problem program.

Physical IOCS is used by all programs run
within the system. Its function is to
supervise the execution of channel programs
supplied by the problem program without
regard to the logical content, format, or
organization of the data being read or
written. It includes facilities for:

1. Scheduling and queuing I/O operations.

2. Checking for and handling error condi­
tions and other exceptional conditions
related to input/output devices.

3. Handling I/O interruptions to maintain
maximum I/O speeds without burdening
the user's problem program.

The logical laCS routines arE! linked with
and executed as a part of the user's prob­
lem program. They provide an interface
between the user's file-processing routines
and the physical IOCS routinE!s. Unlike
physical IOCS, the IQgical IOCS routines
handle logical data files. Following are
the two options the user has of including
these routines in his program.

1. Assembling the routines with his source
programs, using the appropriate LIOCS
macro instructions.

2. Keeping a selected group of LIOCS
object modules (modules and DTF's) in
the Relocatable Library from where they
will be called by the Linkage Editor
when unresolved EXTRN statements are
encountered when the user's program is
edited.

Depending on the defined attributes of
the file, the logical laCS routines perform
the following functions WherE! applicable.

1. Requesting (of physical IOCS) execution
of appropriate channel programs.

DATA MANAGEMENT CONCEPT~)

2. Handling end-of-file and end-of-volume
conditions.

3. Blocking and deblocking of records.

4. Switching between I/O areas when two
areas are specified for a file (except
when combined files are specified).

PHYSICAL laCS

All I/O operations are performed by the
physical IOCS routines included within the
disk operating system supervisor. The main
element of physical IOCS is the channel
scheduler. This routine is entered through
a supervisor call (SVC) instruction. The
SVC may be issued by the user's program
(assembled from an EXCP macro instruction),
by a logical laCS routine for the user's
program, or by any of the other routines of
the control program. In all cases, the
routine issuing the SVC supplies a command
control block (CCB) which indicates the I/O
device to be operated (see Symbolic Device
Addressing) and the location of a channel
program (one or more channel command words
- CCw's) to be executed. The CCB is also
used to indicate the error options selected
by the user and, at the completion of the
operation, to indicate any exceptional
ending conditions.

Physical laCS determines the channel for
which the request was made and places the
CCB on a queue for that channel. If the
channel and device are not busy, the IIO
operation is started and control is
returned to the next instruction in the
problem program. If the channel or device
is busy, the I/O request is placed in the
channel queue and control is returned to
the next instruction in the problem pro­
gram. When the channel and device become
free, as the result of I/O interruption
processing, the operation is started.
Channel queuing is discussed further under
Symbolic Device Addressin~.

The problem program will be interrupted
when the I/O operation is complete. This
is indicated either by the completion of
the channel operation (channel end) or the
completion of the device operation (device
end). These occur simultaneously for many
I/O operations. Physical laCS checks for
exceptional ending conditions and posts, in
the CCB, an indication of any detected. If
I/O errors are detected, physical laCS will

DOS Data Management Concepts 5

retry if the error is of a type that can
possibly be corrected. If errors cannot be
corrected in this manner, the requesting
routine is notified by a flag in the CCB,
or the ope.rator is notified by a message.

SYMBOLIC DEVICE ~DDRESSING

The physical IOCS routines are designed to
allow a program to refer to I/O devices by
symbolic names. This allows data files to
be processed from one physical device dur­
ing one run and from another device during
the next without modifying the program.
The symbolic name used in the CCB refers to
a logical-unit block (LUB).. The LUB in
turn points to a physical-unit block (PUB)
that contains the physical address of the
device and other information needed by
physical IOCS.

The physical unit to which a symbolic
name points can be changed between job
steps by the machine operator or the prob­
lem programmer via job-control statements.
The LUB table is arranged in a fixed logi­
cal sequence, allowing the language tran­
slators to equate the symbolic device names
to displacement factors pointing to the
proper LUB. The PUB table, on the other
hand, is arranged in an order determined by
the channel to which each device is
attached. This sequencing allows the chan­
nel scheduler to determine quickly whether
an I/O operation can be started when
requested, or whether the request must be
queued. A separate queue is maintained for
each physical unit.

On the multiplexor channel, the queuing
operation can take account of whether a
device operates in burst or multiplex mode
and, if in multi~lex mode, whether it is
likely to lose information in an overrun
condition. This is done by a specification
made at the time of system generation.
This specification allows burst-mode dev~­
ces to be present on the channel. For
example, the 1285, 1287, 1442-N1, 2501, and
2520-B1 are overrunable devices. If there
are no burst-mode devices specified on the
multiplexor channel, each device can be
considered to have a separate channel.
Regardless of the number of operations
already started on the channel, each new
request is started as soon as the specific
device is available. If burst-mode devices
are specified present, I/O requests for
burst-mode and overrunable devices are
executed one at ~ time. Only those devices
that operate in the multiplex mode with no
danger of overrun are operated concurrently
(without concern for other channel
opera tions) •

6

PHYSICAL IOCS MACRO INSTRUCTIONS

A user's problem program normally uses
logical IOCS for file processing. Logical
IOCS, in turn, uses physical IOCS to per­
form actual data transfers. rhere are
occasions, however, when a user may need to
bypass the logical IOCS routines to perform
a particular I/O operation. Three macro
instructions are provided to allow the user
to communicate directly with physical IOCS.

CCB

EXCP

WAIT

This macro instruction can be used
to create a command control block.

This macro instruction is converted
to the proper SVC instruction to
request execution of a channel
program. It supplies the location
of the corresponding CCB.

This macro instruc"tion is used to
test a bit in the CCB to determine
when an I/O operation has been
completed. If the operation is not
completed, the program yields con­
trol to the Supervisor until physi­
cal IOCS sets the bit to indicate
completion of the operation.

The EXCP macro instruction gives the
programmer more freedom in controlling
devices than the logical IOCS macros yet
EXCP retains many of the operational advan­
tages of an operating system. The system
provides for scheduling and queuing of I/O
requests, efficient use of ch~nnels and
devices, data protection, interruption
procedures, and error recognition and
retry. To use physical IOCS, however, the
programmer needs detailed knowledge of
device control and system fUnctions. He
must supply his own channel programs, using
the CCW (define channel command word)
assembler instruction statement.

When the EXCP macro instruction is used,
physical IOCS knows nothing of the logical
content or structure of the files being
accessed. It is possible, however, for the
user to make use of the protection features
of the system available through label proc­
essing.

LABEL PROCESSING

All D~SD and tape label processing is per­
formed by routines inclUded as a permanent
part of the disk-resident system. Label
processing is performed in response to OPEN
and CLOSE macro instructions issued in the
problem program. These macros are assem­
bled into linkages to logical IOCS routines

that fetch the actual label-processing
routines into the transient area, from
where they are executed. A special logical
IOCS routine is available to allow labels
to be processed on files that the user
handles directly with physical I/O macros.
The user includes a DTFPH (Define The File
for ~!!ysical IOCS) macro ins'truction in his
program. The label processing performed by
the routine is explained in the last part
of this publication.

LOGICAL IOCS

Logical IOCS consists of a number of
logical-file accessing routines that pro­
vide an interface between the user's proc­
essing function and physical IOCS. These
routines, called IOCS logic modules, are
executed in response to imperative macro
instructions in the problem program. A
number of such logic modules, each designed
to perform I/O operations on a particular
type of data file, are provided. Each
logic module is ~eneralized, using file­
description information included in the
user's program to process any number of
specific files.

If a selected group of LIOCS object
modules has previously been assembled and
cataloged to the Relocatable Library, the
proper logic modules are retrieved from the
relocatable library and linked with the
user's program by the linkage editor. This
eliminates the need for lengthy macro
generation each time a program is assem­
bled. In certain cases, the logic modules
can be assembled along with the user's
problem program and included in the same
output object module.

Logical IOCS operates on logical data
files that are defined as such in the
user's program. It differs from physical
IOCS in that physical IOCS knows only the
location of data being accessed and other
information about the physical I/O device
being used. Logical IOCS, on the other
hand, uses some or all of th,e following
information, depending on the specific
logic modules used.

1. File name

2. 1/0 device type

3. Organization structure

4. Access method

5. Record format and size

6. 1/0 areas (number and location)

I

7. Location and size of record identifi­
cation (control) fields

8. Labeling procedures

9. Error options

10. Other optional information

The programmer includes some or all of this
information as parameters in DrF (define
the file) macro instructions. His first
choice is among the following DTF macro
instructions*:

DTFCN Qefine !he ~ile for f°!isole

DTFCD Define The ~ile for CarD.

DTFPR Qefine !he File for PRinter.

DTFMT Define !he File for ~gnetic
!ape.

DTFPT Define The File for ~aper ~ape

DTFOR Define The ~ile for Qptical
Reader

DTFMR Define !he File for ~gnetic
geader

DTFDI Define The File for Qevice !nde-
pendence

DTFSD Qefine !he ~ile for §.equential
QASD.

DTFDA Qefine The File for Qirect
Access file:-

DTFIS Define The File for Indexed
§:equentIal file.

*Note: An additional macro instruction,
DTFSR, is available to provide the ability
to assemble programs written for the disk­
resident version of the Basic Operating
System. In the Disk Operating System,
this macro instruction is used to call the
specific macro instruction corresponding
to any of the first six DTF's listed
above. The tables and logic modules
generated are the same ones used for files
defined with the individual DTF's listed
above. DTFSR requires more time during
program assembly and should be used only
to avoid recoding programs written for the
Basic Operating System or Basic Program­
ming Support. This macro is described
along with the others in the Supervisor
and Input/Output Macros publication listed
on the cover of this publication.

Th~ basis of choice for the first seven of

DOS Data Management Concepts 7

the preceding is obvious. DTFCN is used
for the 1052 Printer Keyboard. DTFCD is
used for all card files, including input,
output, and combined files (where a card is
read and then punched). DTFPR is used for
all printer output files, DTFMT for all
magnetic tape files, DTFPT for all paper
tape files, DTFOR for all optical reader
files, and DTFMR for all magnetic reader
files.

Three of the preceding macros: DTFSD,
DTFDA, and DTFIS, are all used for files on
direct-access storage devices. The choice
of which of these should be used for a
specific file is determined by the organi­
zation structure of the file and the proc­
essing sequence to be used. The combina­
tion of these two factors defines the
access method that should be used on the
file.

There are three access methods available
within the Disk Operating System:

1. Sequential-Access Method

2. Direct-Access Method

3. Indexed-Sequential-Access Method

The sequential-access method is used for
files defined by the following DTF's list-

, ed: DTFCD, DTFCN, DTFPR, DTFMT, DTFOR,
DTFMR, DTFDI, DTFPT and DTFSD. The direct­
access method is used for files defined by
DTFDA. The indexed-sequential access
method is used for files defined by DTFIS.
Logical IOCS includes a.number of routines
to load indexed-sequential files, add
records, and provide sequential and/or
random retrieval. These routines are much
more than an access method, and are
referred to as the indexed-sequential-file
management system (ISFMS).

The DTF macro instructions create con­
stants called DTF tables. These tables
contain all of the information necessary
for the general~zed logic modules to proc­
ess the specific file defined. They
include the CCB's (command control blocks,
discussed under ~hysical IOCS) and either
include or reference the channel programs
to be used. Also produced during assembly
of these tables are references to the pro­
per logic modules. The linkage editor uses
these references to resolve the linkages
between the tables and the modules.

.The macro definitions, when received
from IBM, include complete capability for
generating all options that might be
selected. The user can assemble a number
of individual modules, each with only those
capabilities needed for specific applica­
tions. Note, however, that the assembled

8

routines are still generalized and can be
used for a large number of different files.

DEVICE INDEPENDENT SEQUENTIAL FILE
PROCESSING FOR SYSTEM UNITS

Define The File For Device Independence
(DTFDI) -system uni ts -and the Qevice Inde­
pendent MODule (DIMOO) are IOCS file defi­
nition macros that provide device­
independent sequential file processing for
system units SYSRDR, SYSIP1~, SYSPCH, and
SYSLST.

The physical device can be assigned at
execution time, allowing data files to be
processed by the physical device the user
prefers at that time. For example, when
the device-independent maCI:O is used in the
program, at execution time the system
logical unit SYSRDR could be assigned to a
card reader, magnetic tape, or a disk
extent. This can be particularly advanta­
geous to the user when one physical device
is temporarily inoperative, enabling him to
process on another device. The user's
program need not be modified. The user's
program, however, must be reassembled with
the new DTFDI/DIMOD macros to obtain device
independent capabilities for system units.

These macros are described in the Super­
visor and Input/Output Macros publication
listed on the front cover of this publica­
tion.

DATA FILES

Many types of data files are used in data
processing applications. Theoretically,
there is no restriction on the logical
content of information that. can be proc­
essed, on the relationship of various units
of information in the file, on the organi­
zation, or format. Physical IOCS knows
nothing of these aspects of files processed
with the EXCP level of macro instruction.
As long as the user's program includes the
necessary channel programs and processing
cap.ability, the only restrictions imposed
are those made by the physical device
itself. Logical IOCS, on the other hand,
is concerned with more than the physical
device and the physical unit of recorded
information. Files defined to logical IOCS
are called logical files. They are named,
organized collections of lc~£~lly-rel~teg
data. Depending on the facilities to be
provided by logical IOCS, files may be
restricted only to a maximum size or they
may be required to be completely fixed with
regard to size, format, logical sequence,
and, to a limited degree, logical content.

The following sections discuss logical
record formats that can be processed with
various parts of logical IOCS. Then follow
three major sections that describe the
three access methods available and the
specific file configurations handled by
each.

Logical Records

A data file is made up of a collection of
logical records that have some relation to
one another. The logical record is the
basic unit of information for a data proc­
essing program. A logical record might be,
for example, one employee's record in a
master payroll file, or one part-number
record in an inventory file. Much data
processing consists of reading, processing,
and writing individual logical records.

Recor9 Block.ing

Blocking of records is the process of
grouping a nurr~er of logical records before
writing them on an external storage device.
Such a grouping of logical records is
called a block. Blocking improves effec­
tive data rate and conserves storage space
on the device by reducing the number of
interrecord gaps in the file. Blocking
usually increases processing efficiency by
reducing the number of input/output opera­
tions required to process a file.

Logical Record

Blocked Records

~ogical Logical Logical
~ecord Record Record

- - - - - - - - - - - - Fixed Length - - - -- - - - - - - - - - -

Unblocked Records

r-- Logical Record L--_____ ----'
- - - - - - - - Fixed Length - - - - - - - - - - - - - -

Figure 1. Format F Records

Record Formats

Logical records may be in one of three
formats: fixed-length (format F), variable­
length (format V), or undefined (format u).

The record format and whether or not the
file is blocked are specified in the DrF
macro instruction used to define the file.

The prime consideration in the selection
of a record format is the nature of the
file .. itself. The programmer knows the type
of input his program will receive and the
type of output it will produce. His
selection of a record format is based on
this knowledge, as well as an understanding
of the type of input/output devices on
which the file is written and of the access
method used to read or write the file.

FIXED-LENGTH (FORMAT F): Format F records
are fixed-length records. The number of
logical records within a block (blocking
factor) is normally constant for every
block in the file unless the block is trun­
cated (short block).

In unblocked format F, the logical
record constitutes the block.

The system performs physical length
checking on blocked format F records, auto­
matically making allowance for truncated
blocks. Because the channel and interrup­
tion system can be used to accommodate
length checking, and the
blocking/deblocking is based on a constant_
record length, format F records can be
processed by logical IOCS faster than for­
mat V.

Format F records are shown in
The optional control character ,
ed by C in Figure 1, is used for
selection and carriage control.
included in each logical record.

Figure 1.
represent:­
stacker
It may be

VARIABLE-LENGTH (FORMAT V): Format V pro-'
vides for variable-length records, each of
which describes its own length, and for
variable-length records in variable-length
blocks, each of which includes a block
length. The system performs length check­
ing of the block and makes use of the
record length information in deblocking and
blocking. Format V records are shown in
Figure 2. The first four characters of the
logical record contain control information;
"11" represents the length of the logical
record and 'bb' represents two characters
reserved for system use. These characters
must be provided by the user when he is
creating the record. An optional control
character , represented by C in Fig~re 2,
may be specified as the fifth character of
each logical record.

DOS Data Management Concepts 9

Blocked Records
- - - - - - - - .- - - - - - - - L L. - - - - - - - - - - - - - - - - - --

I 1 Logical Logical Logical

LL bb ___ Re_c_o_rd ____ ~----Re-c-o-rd----L----Re-c-o-rd--~

, Logical Record

~ I I b b I c I Data I,
'- -- - - - - - II - - - - - - -

Unblocked Records

~L-_LL __ ~I __ b_b~ _______________ Log __ ic_a_I_R_ec_o_ro ______ - ~
LL - -- - - - - - - - - - - - -

Figure 2. Format V Records

In blocked format V, ILL' represents the
block length and 'bb' represents the two
characters reserved for system use. These
characters are automatically provided when
the file is written. Although these four
characters do not appear in the logical
record furnished the user. input and output
areas must be larqe enough to accommodate
them.

In unblocked format V, the logical
record and the block control information
constitute the block.

The initial four characters (five if the
optional control character is specified) of
the block are not printed or punched.

UNDEFINED (FORMAT U): Format U is provided
to permit the processing of any blocks that
do not conform to the F or V formats. For­
mat U records are shown in Figure 3. The
optional control character may be used in
each logical record.

Since each block is treated as a logical
record (unblocked), any deblocking must be
performed by the problem program.

Logical Record

~L.---I _ Data==-----'J

Format U Record

Logical Record J
Figure 3. Format U Records

Control Character

The programmer may optionally specify, in
the DTF macro-instruction, that a control
character precedes each logical record in a

10

file. This character specifies carriage
control when the file is printed or stacker
selection when the file is punched. The
character itself is never printed or
punched but is a part of the record in
storage. I/O areas must be large enough to
accommodate this character. If the immedi­
ate destination of the record is a device
that does not recognize this control char­
acter, e.g., disk, the system assumes that
the control character is the first charac­
ter of the data.

If the destination of a record is a
printer or a punch and the user has not
specified that the first character of the
record is to be used as a control charac­
ter, this character is simply treated as
the first character of the data.

SEQUENTIAL-ACCESS METHOD

The sequential-access method allows the
programmer to store and retrieve the
records of a sequential file. The method
can be used for card, printer, printer­
keyboard, magnetic tape, optical reader,
magnetic reader, paper tape, and DASD
files. The logical IOCS routines used are
linked with the user's program as the
result of his use of one of the following
file-description macro instructions:

DTFCN - Console (Printer Keyboard)

DTFCD - Card

DTFPR - Printer

DTFMT - Magnetic Tape

DTFPT - Paper Tape

DTFOR - Optical Reader

DTFMR - Magnetic Reader

DTFDI - Device Independence

DTFSD - Sequential DASD

DTFSR - Serial

The sequential-access method provides
two levels of I/O macro instruction lan­
guage. The most common is the GET-PUT
level, for normal input/output files. The
READ-wRITE level is a more restricted lan­
guage, used in applications where records
are to be alternately read and written from
and to DASD or tape, used as a temporary
extension of main storage. The READ-wRlrE
macro instructions are used for files
defined as work files.

Data Format-Devic~pe Relat.ionships

The following text discusses data format
considerations that apply to specific
input/output device types supported by the
sequential-access method. Included are
descriptions of acceptable data formats for
printer keyboard, card readers, punches,
printers, magnetic tape devices, paper tape
devices, optical readers, maqnetic readers,
and direct-access devices.

CONSOLE: Records can be read from or writ­
ien on the IBM 1052 Printer-Keyboard in
either format F or U. No control charac­
ters a.re recognized. All records read or
written must be 256 characters or less.
When keying information in from the printer
keyboa.rd, the end of the record is indicat­
ed by the end-of- block (®) character.

CARD READERS AND PUNCHES: All card input
must consist of fixed-length unblocked (80
characters or less) records. Card output
can be any unblocked record format (F, V,
or U). When format V records are punched,
the four record length characters in the
output area are not punched. The control
character, if specified, is used for stack­
er selection purposes only; it is not
punched.

Note: Logical IOCS accommodates only
8-bit character codes. Column binary cards
cannot be processed.

OPTICAL READERS: Records can be read from
both the IBM 1285 and 1287 Optical Reader
in either format F or U. Format F is used
when reading journal tapes containing an
equal number of characters per line. When
the line length is variable, format U is
used. When processing documents, each
field to be read by the 1287 Optical Reader
can be treated as either format F or U.
This is possible because the user provides
CCW's to read the various fields of a docu­
ment, and can set the SLI flag bit to ON or
OFF at his discretion. If the user wishes
to avoid certain IOCS register generations
(RECSIZE and IOREG) , records can be defined
as format F.

MAGNETIC CHARACTER READERS: Undefined
records can be read from both the IBM 1412
and 1419 Magnetic Character Readers.
Record definition is determined by the
settings of the field selection switches on
the reader.

PRINTERS: The printer accepts data of any
standard unblocked record format (F, V, or
U). ~Yhen format V records are printed, the
record length characters in the output area
are not printed. The control character, if
specified, is used for carriage control
purposes only.

Records to be printed must not exceed
the length of a print line.

MAGNETIC TAPE: All standard blocked or
unblocked record formats (F, V, and U) are
acceptable to magnetic tape, when using the
GET-PUT macro level. The READ-WRITE level
allows only unblocked formats F and U. All
control bytes are transmitted. 7-Track
tapes not using the data-conversion feature
do not handle format V.

Multivolume Tape Processi~ When more
than one reel of tape is used during the
processing of a single file (multivolume
file), IOCS will automatically switch to
the alternate drive if one or more is spec­
ified in the ASSGN cards. The switching
will be in the same order as the sequence
of the ASSGN cards; not by physical drive
number.

If more switching is needed and no more
assignments are available, IOCS will switch
back to the original drive and begin going
through the original sequence again.

If no alternate drive is assigned and
the end of volume is reached, a message
will be written and the user may mount a
new reel on the existing drive and continue
processing.

PAPER TAPE READER: Undefined records ter­
minated by an end-of-record character, or
fixed-length unblocked records are accepta­
ble as input from paper tape when using the
GET macro instruction.

DIRECT-ACCESS DEVICES: All standard
blocke~or unblocked record formats (F, V,
and U) are acceptable to direct-access
devices when using GET-PUT macro instruc­
tions. READ-WRITE allows only unblocked
formats F and U. All control bytes are
transmitted.

All direct-access devices have the same
track format. Each track consists of con­
trol information, a track descriptor record
(RO), and the records (R~ - Rn). Record
reading and writing always be~ins with R~
(RO is ignored).

!':!2!=~: R~ has a special meaning to IBH
System/360 Operating System programs, where
it may be either the first complete data
record on a track, or the overflow portion
of a record from a preceding track. The

, DiSk Operating System does not support
record overflow for direct access devices.

When writing output files, IOCS gener­
ates the successive disk addresses (count
fields) and writes the user's record as the
data field of the record. Files with key
fields cannot be read or written using the
sequential-access method.

DOS Data Management Concepts 11

When OPENing ~ DASD file for consecutive
processing, the user may define that the
file use only a specified portion of each
cylinder. This portion must be within the
head limits for the cylinder and within the
range of the defined extent limits. For
example, three cylinders might be allocated
for two files; one file to occupy the first
two tracks of each cylinder and the other
file to occupy the remaining tracks. This
allocation of ~2!it ~Ylinders reduces
access time in some specialized applica­
tions. Split cylinder specification is

I accomplished through the use of the Type 8
EXTENT card (explained in the System
Control and System Service Programs publi-
cation referenced on the front cover).

GET-PUT LEVEL SE~UENTIAL ACCESS

GET-PUT macro instructions permit the pro­
grammer to store and retrieve records of a
sequential file without coding blocking/
aeblocking routines. The programmer can,
therefore, concentrate all his efforts on
processing the data he reads and writes.
Another major feature of these macro
instructions is the ability to use one or
two I/O areas and to process records either
in a work area or in the I/O area. These
factors are discussed in the following
section as they relate to achieving maximum
overlap of processing with I/O.

Stora~Areas and Effective I/O Overl~

These routines are designed to provide for
overlapping the physical transfer of data
with processing. The amount of overlapping

12

actually achieved (effective overlap) is
governed by the problem program through the
assignment of I/O areas and work areas. An
I/O area is that area of main storage to or
from-which a block of data is physically
transferred by the channel scheduler and
physical IOCS routines. A wOE~~rea is an
area used for processing an individual
logical record from the block of data.

There are certain combinations of 1/0
areas and work areas that are possible.
These are:

1. One I/O area with no work area.

2. One I/O area with a work area.

3. Two I/O areas with no work area.

4. Two I/O areas with a work area.

In some cases, a larger blocking factor
may improve processing speE,d more than the
use of either two I/O areas or a work area.

Also, certain devices are buffered,
increasing the potential amount of overlap.
Illustrations of these combinations for
buffered devices, unbuffered devices,
blocked tape, and blocked DASD records
follow. These illustrations reflect the
principle of overlap processing and are not
intended to indicate the exact amount of
overlap possible with any specific I/O
device.

The maximum achievable overlap in Figure
4 is the device time only. The transfer
time between 1/0 area and buffer is not
overlapped. If the next GET (or PUT) is
issued prior to device-end, the data trans­
fer between I/O area and buffer does not
take place until device-end is reached.

Processing

Execute Data Transfer t Channel from Buffer
Program to I/O Area Data Transfer from I/O Device to Buffer

Issue Ne xt GET

t
laue GET

t--Max. Achievable o"",,,p---l
Channel E:nd Device End

O---------Tlme ---

Processing

Execute Data Transfer t
Channel from I/O Area Issue Ne xt PUT
Program to Buffer Delta Transfer from Buffer to I/O Device

t "' t-Aax. Achievable overlap~t
PUT laue

Channel E;nd Device End

Figure 4. Overlap of Processing and I/O: One I/O Area and No work Area
(Buffered I/O Device)

The maximum achievable oVE!rlap in Figure
5 is the total data transfer time (the
device time plus the time for data transfer
between I/O area and buffer). If the next
GET (or PUT) is issued after channel-end
but before device-end, the transfer of data
between the work area and the I/O area can
take place (even though physical IOCS can­
not start the data transfer between the
device and the buffer until device-end is
reached). Control transfers to the problem
program.

If the next GET (or PUT) is issued
before channel-end, logical 10CS must wait
until channel-end to transfer data between
the work area and the I/O arE~a.

The maximum achievable overlap in Figure
6 is the total data transfer time (the
device time plus the time for data transfer
between I/O area and buffer). If the next
GET (or PUT) is issued after channel-end
and before device-end, only I/O area
switching occurs. Control transfers to the
problem program but physical IDes does not
start the device/buffer transfer until
device-end is reached.

If the next GET (or PUT). is issued
before channel-end, logical IOCS must wait
for channel-end before performing any
action.

DOS Data Management Concepts 13

Processing

Data Transfer Execute Data Transfer t
from I/o Area Channel from Buffer Issue Ne xt GET
to Work Area Program to I/o Area Data Transfer from I/O Device to Buffer

1
Issue GET

I "'" ·------.... 1--"""'. Achlewble ovedaP--t

Channe I End Device End

o -------Time_

ProcessIng

Data Transfer Execute Data Transfer
from Work Area Channel from I/O Area Issue Ne xt PUT
to I/O Area Program to Buffer Data Transfer from Buffer to I/O Devi ce

f
Issue PUT

11-oI1-----~l---lv\ax. Achlewble Ovedap--i

Channel End Device End

Figure 5. Overlap of Processing and I/O: One I/O ~rea and One Work
Area (Buffered I/O Device)

Processing

IOCS Points Execute Data Transfer
to I/O Area A Channel from Buffer Issue Ne xt GET

Program to I/O Area B Data Transfer from I/O DeviCe to Buffer

I Channel End

Issue GET ~Iv\aXI""'m Achievable ovedap~lce End •

O---------------Time---------~

Figure 6.

14

10CS Points
to I/O Area B Processing

Execute Data Transfer
Channel from I/O Area Issue Ne xt PUT
Program A to Buffer Data Transfer from Buffer to I/O Device ..

I Channel End

Issue PUT ~Iv\aXlmum Achle""ble Ovedap~ce End

overlap of Processing and I/O:
(Buffered I/O Device)

Two I/O ~reas and No Work Area

The maximum achievable overlap in Figure
7 (as in Figures 5 and 6) is the total data
transfer time (the device time plus the
time for data transfer between I/O area and
buffer). However, there is a disadvantage
to the combination illustrated (in compari­
son with Figures 5 and 6), because it
requires extra main storage.

If the next GET (or PUT) is issued after
channel-end but before device-end, the data
transfer between the I/O area and the work
area can take place. Control returns to
the problem program (even though physical
IOCS cannot start the device until device­
end is reached).

If the next GET (or PUT) is issued
before channel-end, logical IOCS must wait.

There is no overlap possible in the
illustration in Figure 8.

The maximum achievable overlap in Figure
9 is the data transfer time between device
and I/O area. If the next GET (or PUT) is
issued prior to channel-end, logical IOCS
must wait before performing any action.

The maximum achievable overlap in Figure
11 (as in Figures 9 and 10) is the data
transfer time between device and I/O area.
However, there is a disadvantage to the
combination illustrated (in comparison with
Figures 9 and 10), because it requires
extra main stora~e. If the next GET (or
PUT) is issued before channel-end, logical
IOCS must wait before any action is per­
formed.

The combination illustrated in Figure 12
has no overlap of processing with

input/output. The input/output time per
record depends on the blocking factor.
Therefore, with this combination, the I/O
time can be reduced if the blocking factor
is increased.

The maximum overlap achievable in Figure
13 is the time for data transfer between
device and I/O area. The GET (or PUT) for
all records, except the last in a block,
involves only a transfer between work area
and I/O area. For the last record in a
block, the data transfer is followed by an
overlap of device time and processing
(control returns to the problem program).
Channel-end must occur before logical IOCS
can process the first record of the next
block.

The maximum overlap achievable in Figure
14 is the time for data transfer between
device and I/O area. The GET for all but
the first record of a block takes time only
for pointing to the next record. The GET
for the first record must wait for channel­
end of the data transfer to the alternate
area. Then, pointing to the first record
and returning control to the program is
overlapped with the next device transfer.
The PUT is the same as GET, except that the
wait occurs with the last record of a
block.

There is a disadvantage to the
combination shown in Figure 15 over those
in Figures 13 and 14 because it requires
extra main storage.

A summary of the overlap of processing
and I/O is shown in Figure 16.

DOS Data Management Concepts 15

Data Transfer
from I/O Area Processing
A to Work Area

Execute Data Transfer t
Channel from Buffer to Issue Ne xt GET
Program I/O Area B Data Transfer from I/O Device to Buffer

1
Issue GET

0------Time_

Data Transfer
from Work Area Processing
to I/O Area B

Execute Data Transfer t
Channel from I/o Area B Issue Ne xt PUT
Program to BUffer Data Transfer from Buffer to I/o Device

Issue PUT

Figure 7.

Execute
Channel
Program

Issue GET

I Channel End t ~Max. Achievable Overlap~ce End

overlap of Processing and I/O:
(Buffered I/O Device)

Data Transfer
from I/O Device
to I/O Area

Channe I End,
Device End

Processing

Two I/O Areas and a Work Area

Issue Next GET

O,-----Time-----_

Execute
Channel
Program

Issue PUT

Figure 8.

16

Data Transfer
from I/O Area
to I/O Device I

Channel End,
Device End

Processing

Overlap of Processing and I/O:
(Unbuffered I/O Device)

I
Issue Next PUT

One I/O Area and No Work Area

Data Transfer Execute
from I/O Area Channel
to Work Area Program

1
Issue GET

Processing

Data Transfer from I/o DeviCe to I/o Area

I~Ma)(. Achievable Overlap- -t
Channel End,
Device End

Issue Next GET

O-------Time _

Data Transfer
from Work Area
to I/O Area

t
Issue PUT

Figure 9.

Processing

Execute
Channel
Program Data Transfer from I/O Area to I/O Device

1---Max. Achievable Overlap

overlap of Processing and 1/0:
(Unbuffered 1/0 Device)

Processing

--t
Channel End,
Device End

Issue Next PUT

One 1/0 Area and a work Area

IOCS Points Execute
to I/O Area A Channel

Program

Issue GET

C.ata Transfer from I/O Device to I/O Area B

f'--.. Max. Achievable Overlap---------

Channel End,
Device End

O--------Time-

Execute
Channel
Program

Issue PUT

IOCS Points
t() I/O Area B Processing

I)ata Transfer from I/O area A to I/O ,oevice

I'''Max. Achievable overlap~
Channel End,
Device End

Issue Next GET

Issue Next PUT

Figure 10. overlap of Processing and 1/0: Two 1/0 Areas and No work
Area (Unbuffered 1/0 Device)

DOS Data Management Concepts 17

Data Transfer
from I/O Area Processing
A to Work Area

,-----
Execute
Channel Issue Next GET
Program Data Transfer from I/O Device to I/O Area B

1 r- - /llv:Jx • Achievable Overlap - --
Issue GET I

Channel End, Issue Next GET
Device End

O-------Tirne _

Data Transfer
from Work Area Processing

to I/O Areo A

Execute
Channel
Program Data Transfer from I/O Area A to I/o Device

I""'"---Max. Achievable Overlap- -1
Issue PUT Channel End,

Device End
Issue Next PUT

Figure 11. Overlap of Processing and I/O:
(Unbuffered I/O Device)

Two I/O Areas and a work Area

lacs Points
to Next Record Processing

t I
Issue GET Issue Next

t

GET

(Record Gotten is not the First in the Block)

O-------Time_

lacs Points
to Next Avai 1-
able Space

Processing

Issue PUT /
Issue Next
PUT

(Record Put is not the Last in the Block)

Execute Data Transfer 10CS Points
Channel from I/O Device to First Processing
Program to I/O Area Record

t
Issue GET

t
Channel End,
Device End

(Record Gotten is the First in the Block)

O-------Time_

Execute Data Transfer 10CS Points
Channel from I/O Area to First Processing
Program to I/O Device Space

t
Channel End,

t
Issue PUT

Device End

(Record Put is the Last in the Block)

Figure 12. overlap of Processing and I/O:
(Blocked Records)

One I/O Area and No Work Area

18

~
t

Issue Next GET

~
Issue Next PUT

Processing

Data Transfer Execute
Processing from I/o Area Channel

Data Transfer
from I/o Area
to Work Area to Work Area Program Data Transfer fram I/o Device to I/o Area

t
Issue GET Issue Next

GET

(Record Gotten is not the Last in the Block)

0------ Time --...

Processing

1r Max. Achievable Overlap
Issue GET

(Record Gotten is the Last in the Block)

0-------- Time--+-

Processing

I

Data Transfer Execute
from Work Area Channel

•
Channel End,
Device End

Data Transfer
from Work Area
to I/o Area I to I/O Area Program Data Transfer from I/o Area to I/o Device

t
Issue Next t Max. Achievable Overlap t

Iissue PUT
Issue PUT PUT

(Record Put is nat the Last in the Block) (Record Put is the Last Record in the Block)

Note: For both GET and PUT, a channel end must have occurred before the data transfer
between I/O area and work area can take place (for the first record in a block).

• t
Channel End,
Device End

Figure 13. Overlap of Proc4~ssing and I/O:
(Blocked Records)

One I/O Area and a Work Area

I
Issue
Next
GET

Issue
Next
PUT

DOS Data Management Concepts 19

10CS Points to
Next Record
in I/o Area B

Issue GET

Execute
Processing Channel

Program

t
Issue Next Issue GET
GET

{Record Gotten is not the First in the Block)

10CS Points to
First Record in Processing
I/O Area A

Data Transfer from I/O Device to I/O Area B

~Max. Achievable overlap~
Channe I End,
Device End

(Record Gotten is the First Record in the Block)

o -------Time---+- O-------Time-

10CS Points to
Next Record in
I/O Area B

Issue PUT

Execute
Processing Channel

Program

Issue Next Issue PUT
PUT

(Record Put is not the Lost in the Block)

10CS Points to
First Space in Processing
I/O Area A

Data Transfer from I/O Device to I/O Area B

""Max. Achievable Overlap--------t
Channel End,
Device End

(Record Put is the Last Record in I/O Area B)

Issue Next GET

Issue Next PUT

Figure 14. Overlap of Processing and I/O:
(Blocked Records)

Two I/O Areas and No Work Areas

Data Transfer from
First Record in I/o Processing
Area A to Work Area

Execute

!-

f_ro_m_lf_O_A_r_ea_B-L. Processi ng
to Work Area

t
Channel
Program Data Transfer from I/O Device to I/o Area B

I· Max. Achievable Overlap

Data Transfer ~

Issue GET Issue Next
t
Issue GET Channel End,

Device End GET

(Record Gotten is not the First in the Block) (Record Gotten is the First in the Block)

O------Time- O-------Time-

Processing

Data Transfer Execute
Processing from Work Area Channel

]

I
Issue Next GET

Data Transfer
from Work Area
to I/O Area B to I/O Area B Program Data Transfer from I/O Area B to I/o Device

t I
Issue PUT Issue Next Issue PUT

PUT

(Record Put is not the Last in the Block)

Figure 15.

20

Overlap of Processing and I/O:
(Blocked Records)

I· Max. Ach ievable Overlap

Channel Endl, Issue Next PUT
Device End

(Record Put is the Last in the Block)

Two I/O Areas and a work Area

Record Separate
Format Number of
(Blocked or I/O Areas

Work Amount of Effective Overlap

Unblocked)
Area

no Overlap of the device operation only for buffered devices such as 1403, 1443,25 40.

1
No overlap of magnetic tape, 1052,1442,2311,2671, 1285, 1287.

yes Overlap processing of each record. (Record move required.)
Unblocked

no Overlap processing of each record. (No record move required.)
2

yes Overlap processing of each record. (No advantage to a work area.)

no No overlap.
1

yes Overlap processing of last record in each block.
Blocked --

no Overlap processing of full block.
2·

yes Overlap processing of full block. (No advantage to a work area.)

Note: Overlap given is the maximum achievable.

Figure 16. Summary of Achievable Overlap of Processing and Input/Output

Macrq Instructions

The following macro-instructions are pro­
vided when using the GET-PUT level of the
sequential-access method.

GET -~- Get a Logical Record: The GET
macro-instruction obtains a single logical
record from a logical file in either of two
opera.tions: move or locate. In the move
operation, GET moves the 109icai record
from an input area into a work area speci­
fied by the programmer. The record may be
processed or extended in the work area.

In the locate operation, GET does not
move the logical record from the input
buffer, but places into a register the
address of the 1/0 area segment in which
the programmer may process that record.
The programmer may not extend record size.

GET operates in a strictly'sequential
manner. As required, the system schedules
the filling of input areas, deblocks
records, and directs input error recovery
procedures. After GET has retrieved all
records to be processed and has discovered
that no data remains, the system checks
labels and passes control to the
programmer's end-of-file exit specified in
the DTF macro instruction. The system also
tests for an end-of-volume condition and
initiates automatic volume switching if an
input file extends across several volumes.
Finally, the system switches from one
extent to the next when a file occupies

discontinuous areas on a direct-access
device.

The following operands must be specified
by the programmer in the GET macro­
instruction:

1. The name of the file.

2. The address of the programmer's work
area for input logical records if the
move operation is used, or a register
containing the address of the work
area.

RDLNE -- Read a Line: The RDLNE macro
instruction provides selective on-line
correction when processing journal tapes on
the IBM 1285 or 1287 Optical Reader. This
macro causes the reader to read a line in
the on-line correction mode while
processing in the off-line correction mode.

RELSE_==-Rel§~!!~!!put Blo£~.!.. The RELSE
macro-instruction causes the GET macro
instruction to ignore the remaining logical
records in an input block and to obtain
logical records from the next block. ~hen
the programmer does not require the remain­
ing contents of an input block that GET is
deblocking, he may issue the RELSE macro
instruction to release the input area so
that the next logical record is retrieved
from the next block with the next GET
macro.

The file name is the only operand
required by the RELSE macro.

DOS Data Management. Concepts 21

DISEN -- Disengage Magnetic Reader: The
DISEN macro-instruction causes the magnetic
character reader to stop feeding documents.

LITE -- Light Pocket Lights: The LITE
macro-instruction permits any combination
of pocket lights on the magnetic character
reader to be lighted.

PUT -- Put a Logical Record: The PUT
macro-instruction places a logical record
into an output file in either of two opera­
tions: move or locate. In the move opera­
tion, PUT mOVes the logical record from a
work area specified by the programmer into
an output area. In the locate operation,
PUT does not move the logical record into
the output area, but places into a register
the address of the I/O area segment into
which the programmer may build the next
record.

Like the GET macro-instruction, PUT
operates in a strictly sequential manner.
As required, the system blocks records,
schedules the emptying of output areas, and
handles output error correction procedures,
where possible. The system also resolves
discontinuities of DASD file extents, tests
for an end-of-volume condition, and ini­
tiates automatic volume switching and label
creation.

The following operands are specified in
the PUT macro-instruction.

1. The name of the file.

2.

3.

The address of the programmer's work
area for output logical records if the
move operation is used, or a register
containing the address of the work
area.

An additional operand is provided for
the Selective Tape Listing feature.
This operand provides forms control for
the feature.

TRUNC -- Truncate an Output Buffer: The
TRUNC macro-instruction causes the PUT
macro-instruction to regard an output area
as full, and subsequently to place logical
records into the next block. When the
programmer does not need the remaining
portion of an output area that PUT is
blocking, he may issue the TRUNC macro­
instruction to truncate the area so that
the next logical record is placed into
another block. Thus, just as input areas
may be released, output areas may be
truncated for writing short blocks.

The name of the file is specified in the
TRUNC macro-instruction.

The CLOSE macro-instruction effectively
truncates the last block of a file.

22

FEOV -- Force End of Volume: The FEOV
macro-instruction causes thEi system ·to
assume an end-of-volume condition for eith­
er an input or output tape file, thereby
causing automatic volume switching. When
volumes are switched, FEOV creates output
labels as required and verifies labels on
new input reels. When FEOV is issued to a
tape input file, trailer labels are not
checked.

The name of the file is specified in the
FEOV macro-instruction.

CNTRL -- Control I/O Device~ The CNTRL
macro-instruction provides t:he following
functions:

For magnetic tape units:

1. Rewind

2. Rewind and unload

3. Erase gap (write blank t:ape)

4. Write tape mark

5. Backspace to interrecord gap

6. Backspace to tape mark

7. Forward space to interrE~cord gap

8. Forward space to tape mark

for-2ptical readers:

1. Marking error lines when reading jour­
nal tapes.

3.

4.

Read keyboard information when reading
journal tapes.

Ejection of documents.

Stacker selection of documents.

5. Incrementing documents.

For direct-access storage U!~~~:

1. Seek to specified track

2. Restore strip to data cE~ll (2321 only)

For card readers and punche~:

1. Stacker select

For printers:

1. Immediate space specified number of
lines

2. Space specified number of lines after
print

3. Immediate skip to specified channel

4. Skip to specified channel after print

The following operands must be specified
in the CNTRL macro-instruction:

1. The name of the input or output file.

2. A mnemonic code indicating the action
to be taken.

3. For card readers and punches - the
stacker number.

4. For printers - the number of lines to
space or the channel to be skipped to.

Note: If directed to a card reader,
CNrRL-ffiust follow every GET macro instruc­
tion directed to that card reader for the
same file, except for a 1442. Furthermore,
only one input area may be used. As soon
as CNTRL is issued, the card input area may
be scheduled for refilling by issuing
another GET.

PRTOV -- Test for Printer Ov'erflow: The
PRTOV macro-instruction test.s overflow
indicators for on-line printer channel
overflow. If an overflow indicator is on,
PRTOV causes either an automatic skip to a
new page or a transfer of control to a
specified point in the problem program.
Before testing overflow indicators, PRTOV
waits for completion of all previously
requested printing.

The following operands must be specified
in the PRTOV macro-instruction:

1. The name of the file.

2. The printer channel to be tested for
overflow (either 9 or 12).

3. The address of a user routine may
optionally be specified for transfer of
control on condition of overflow; if
this is not specified, a printer over­
flow condition causes automatic skip­
ping to channel one.

Updat~

A sequential tile on a direct-access
device, a card input file in a 1442 or
2520, or a card file in· the punch feed of a
2540 equipped with the punch-feed-read
special feature can be updat.ed. That is,
each DASD or card record can be read, proc­
essed, and transferred back to the same
storage location or card from which it was
read. When desired, this function is spec­
ified in the DTF macro-instr'uction that
defines the file.

The physical DASD record or card record
is transferred to main storage by a GET
instruction. After the record is proc­
essed, the next PUT instruction causes the
updated ... physical record to be written in
the same location or punched in the same
card from which it was read. For a card
record, PUT transfers the record to the
file from the inpu~ area of main storage.
For a DASD record, the PUT instruction sets
up an indication for the next SET instruc­
tion, which accomplishes the transfer.
(The input area must not be modified
between the PUT and GET executions.) If a
work area is specified in the GET and pur
instructions, PUT first moves the updated
record from the work area back to the i~~~
area and then transfers the record to this
file.

A GET instruction must always precede a
PUT instruction for a DASD or card record,
and only one PUT can be issued for each
record. A PUT instruction may be omitted,
except for the 2540 and 2520 if a particu­
lar record does not require updating.

READ-WRITE LEVEL SEQUENTIAL ACCESS

The READ-WRITE level of the sequential­
access method provides the programmer with
an efficient and flexible means for storing
and retrieving the blocks of a sequentially
organized disk or tape file. The macro
instructions provided with this level of
the sequential-access method allow a file
to be treated alternately as input and
output. It is particularly effective in
applications where records are alternately
read and written from and to a file used as
a temporary extension of main storage.

Storage Areas

A single I/O area equal to one block length
is used with these macros. This area is
filled or emptied each time a READ-WRITE is
issued. The I/O area need not be fixed in
location. The programmer supplies the
address of the area in the macro
instruction itself, each time the macro
instruction is issued.

Macro Instructions

The following macro instructions are pro­
vided when using the READ-WRIrE level of
the sequential-access method.

DOS Data Management Concepts 23

READ -- Read a Block: The READ macro
instruction requests that a block be trans­
mitted from a work file to a main-storage
area specified by the programmer. READ
operates in a strictly sequential manner,
starting either at the beginning of the
file or at a point previously positioned
with one of the POINT macro instructions.
READ can also be used to read backwards
sequentially from magnetic tape. Each read
operation transfers one full block into
main storage. To allow overlap of the
input operation Nith processing, READ does
not wait for the end of the input opera­
tion, but returns control to the problem
program. The completion of the operation
must be tested by issuing the CHECK macro
instruction described below.

After READ has retrieved all records to
be processed, anj has discovered no data
remains, the system passes control to the
programmer's end-of-file exit specified in
the DTF macro instruction. work files may
not occupy multiple volumes (tape reels or
disk packs).

The following operands must be specified
by the programmer in the READ macro
instruction. For document processing on
the IBM 1287 Optical Reader, the READ macro
instruction is used to access selected
data. The channel command words that
effect the reading and the channel command
word list to be used in reading the docu­
ments from the 1287 file are provided by
the user.

1. The name of the file.

2. Type of processing (SQ for sequential
or MR for records read from the IBM
1412 or 1419 Magnetic Character
Readers) .

3. The input area to be used. (Not appli­
cable to 1287, 1412, or 1419 document
processing.)

4. For format u records, the record
length, or S to specify that the maxi­
mum record length must be used. (Not
applicable to 1287, 1412, or 1419 docu­
ment processing.)

5. For 1287 Optical Reader document proc­
essing, the ~ddress or name of the user
provided CCw list used to read a docu­
ment.

Note: when processing format F records,
the-record length in the DTF table can
be changed before each read.

The READ macro-instruction, when used
for magnetic character readers, permits the
use of more than one magnetic reader per
program.

24

WRITE -- Write a Block: The WRITE macro
instruction requests that a block be trans­
mitted from a main-storage area specified
by the programmer to a work file. Like the
READ macro instruction, WRITE operates in a
strictly sequential manner. ro allow over­
lap of the output operation. with process­
ing, wRITE does not wait for completion of
the output operation, but returns control
to the problem program. The WRITE opera­
tion transfers one full block to the file.
The file must be contained within one vol­
ume.

The following operands must be specified
in the WRITE macro instruction.

1. The name of the file.

2. Type of processing (SQ for sequential).

3. The output area to be used.

4. For Format U records, the record
length.

CHECK -- Wait for and Test Co~leti9n of
Read or Write Operation: The CHECK macro
instruction waits for completion of an
input/output operation requested by a READ
or wRITE macro instruction and tests for
errors and exceptional conditions. As
required, CHECK passes control to the
appropriate exits that are specified by the
programmer in the DTF macro instruction for
error analysis and end-of-file. The pro­
grammer must issue a CHECK macro­
instruction to test the input/output
operation before issuing any other macro
instructions for the same file. Similarly,
a problem program must check ~n input/
output operation for completion before
altering the input or output area in main
storage.

The file name used in the preceding READ
or WRITE macro instruction must be speci­
fied in the CHECK macro instruction.

NOTE -- Note Positional Data: The NOTE
macro~instruction placeS-Into a general
register the position on a volume of the
last block read from or written into a work
file. This data identifies the block for
SUbsequent repositioning of that volume.

The identification that NOTE provides is
a 3-byte block count for magnetic tape; for
direct-access volumes, it is three bytes
identifying the cylinder, track, and record
number within the track.

The file name must be specified in the
NOTE macro instruction.

Notes: The following items should be
consIdered when using the NOTE macro
instruction:

1. Before issuing a NOTE macro instruc­
tion, the programmer must test the last
input/output operation for completion.

2. NOTE is normally used to provide infor­
mation for a subsequent POINT macro
instruction.

3. For output files being written on
direct-access volumes, NOTE places into
a general register the number of bytes
of remaining space on the track con­
taining the noted record. (This data
may be used subsequently by a POINTW
macro instruction).

POINTR Position to Block for Read:

Position to Block for Write:

POINTS Position to Start of File: Three
POINT- macro instructions are~ provided to
allow the programmer to reposition a work
file to a specified block for subsequent
operations. The POINTS macro instruction,
when used for magnetic tape files, causes a
rewind to the tape load-point and then
positions the tape to the first data block
(bypassing any labels to the~ first tape
mark). when the POINTS macro instruction
is issued to a DASD file, the file is posi­
tioned to the lower limit of the first
extent of the file. The POINTR and POINTW
macro instructions are used on both DASD
and magnetic tape files to position the
file to a specified block. The block count
(for tape) or the physical cylinder, track,
and record address (for DASD) specified in
these macro-instructions are obtained from
a previous NOTE.

subsequent READ instructions following a
POINTR pick up blocks sequentially, begin­
ning with the one specified. Subsequent
WRITE instructions following a POINTW write
blocks sequentially immediately following
the one specified. Subsequent writes to a
tape work file cause any blocks previously
written on that portion of the tape to be
destroyed and the new blocks. to be written
in their place. On direct-access device
files, however, NRITE instructions follow­
ing a POINTW place blocks on remaining
unused track space immediately following
the block specified. The amount of space
remaining on the track is determined by the
NOTE macro instruction that was previously
used to identify the location.

The following operands must be specified
by the programmer in the POINT macro
instructions.

1. The name of the file.

2. For POINTR and POINTW, the address of
the main-storage location containing

the tape block count or the DASD
address.

FEOV -- Force End of Volume: rhe CNTRL and
FEOV-ffiacro-instructions-described for the
GET-PUT level of the sequential-access
method are also provided with the READ­
WRITE level for files defined as work
files. Their operation is exactly the same
in both cases.

DS~LY_=- DisQl~~_~i~ld: The DSPLY macro
instruction displays a document field on
the display screen of the IBM 1287 optical
Reader. This macro is used to key in a
complete field on the keyboard when a 1287
read error makes this type of correction
necessary.

RESCN -- Reread a Field: The RESCN macro
Instruction seTectively-rereads a field on
a document when a 1287 read error makes
this type of correction necessary.

WAITF -- Wait: The WAITF macro
instruction,-for use with document process­
ing on the IBM 1287 Optical Reader, is
issued to ensure that the transfer of a
record has been validly completed.

The WAITF macro-instruction is used with
magnetic character readers in a multiprog­
ramming system to determine if any magnetic
character reader has documents ready for
processing.

INDEXED-SEQUENTIAL ORGANIZATION

An indexed-sequential file is one whose
records are organized on the basis of a
collating sequence determined by control

I fields called keys that precede each record
or block of data. The key for each block
of data is 1-255 bytes in length and con-
tains the identifier of the last logical
record in that block. An indexed­
sequential file exists in space allocated
on direct-access volumes as prime areas,
overflow areas, and index areas.

Indexed-sequential organization gives
the programmer a great deal of flexibility
in the operations he can perform on a file.
He has the ability to:

• Read or Write (in a manner similar to
that for sequential organization)
logical records whose keys are in
ascending collating sequence.

DOS Data Management Concepts 25

• Read or write individual random logical
records. If a large portion of the
file is being processed, reading
records in this manner is somewhat
slower per record than reading accord­
ing to a collating sequence. A search
for pOinters in indexes is required for
the retrieval of each record.

• Add logical records with new keys. The
system locates the proper position in
the file for the new record and makes
all necessary adjustments to the index­
es.

The ISFMS has these advantages:

• An IOCS file management system specifi­
cally designed for direct access stor­
age devices.

• Sequentially organized files that can
be processed in random order or in
sequential order.

• Both READ/WRITE and GET/PUT macro
instruction routines available to the
problem program.

• Routines for processing blocked or
unblocked records.

• Record processing directly in the I/O
area or in a work area.

• Presorted logical records that are
loaded onto disk while a series of
indices are established for subsequent
processing.

• An efficient chaining method for han­
dling additions requiring an overflow
area.

The ISFMS has these restrictions:

26

• Only one I/O area is permitted when a
file is loaded.

• All physical data records must contain
key areas, and all key areas must be
the same length.

• Data records must be fixed-length only.

• Only Standard Disk Labels are permit­
ted.

• For multipack files, all packs must be
online for any function (loading,

adding, retrieving randomly or retriev­
ing sequentially) performed for the
file.

• The prime data area for a logical file
must be contained within one extent on
a disk pack or a data cel~- It must
start on the first track (track 0) of a
cylinder, and it must end on the last
track (track 9 or track 19) of the same
or a different cylinder. Prime data
extents cannot start or end in the
middle of a cylinder. For a multipack
file, the prime data area must continue
from the last track of one pack to the
first track (track 0) of £ylinder 1 on
the next pack so that the area is con­
sidered continuous by ISFMS. The first
cylinder (cylinder 0) is reserved for
labels. For a multicell file, the
prime data area must continue from the
last track of one cell to the first
track in the second head position
(HH=10) on the next cell so that the
area is considered continuous by ISFMS.
The first head position (HH=OO) is
reserved for labels.

Indexes

The ability to read and write records from
anywhere in a file with indexed-sequential
organization is provided by indexes that
are part of the file itself. rhere are
always two types of indexes: a cylinder
index for the whole file, and a track index
for each cylinder. An entry in a cylinder
or track index contains the identification
of a specific cylinder or track and the
highest key that is associated with that
cylinder or track. The system locates a
given record by its key after a search of a
cylinder index and a track index within
that cylinder.

A third index can be created and used if
desired. If a file occupies many cylin­
ders, a search of the cylinder index for a
key is inefficient. The programmer can
request that a master index be created that
indexes the cylinder index as shown in
Figure 17. Each entry in the master index
points to a track in the cylinder index. A
master index should be constructed if the
cylinder index occupies four or more

Itracks, and a cylinder index in main stor­
age is not used.

Master Index

I TIT1~OI
----------~~~~~~
--------------------------~.~I

Track
Index
Track 1

~~:~~ ; ~:~~~:;~~::~~==~:=~==~
Track 4
Track 5 t-=F--r--~'--~~--__I

Overflow
Area '"T~~F-L-.:.;:..I,.~-r-.L.T~:...L--'

Cylinder 2 Cylinder 3 Cylinder N

Figure 17. Index Structure for an Indexed-Sequential File

Insertion of Records

A new record added to an indexed-sequential
file is placed into a location on a track
determined by the value of its key field.
If records were inserted in precise physi­
cal sequence, insertion would require
shifting all records of the file with keys
higher than that of the one inserted. How­
ever, because an overflow area exists,
indexed-sequential file organization allows
a record to be inserted into its proper

I position on a track, with only the records
with higher keys on .that track being shift­
ed.

Overflow Area

In addition to the prime are!a, whose tracks
initially receive records of an indexed­
sequential file, there is an overflow area
for records forced off their original
tracks by the insertion of new records.
When a record is to be inserted, the
records already on the track that are to
follow the new record are written back on
the track after the new record. The last
record on the track is writt.en onto an
overflow track. Track index entries are
adjusted to indicate records on an overflow
track.

RESIDENT CYLINDER INDEX

Allor part of the cylinder index can
reside in main storage. If the area
assigned to the cylinder index is large
enough for all the index entries to be read
into main storage at one time, no presort­
ing of the record keys need be done. If
the area assigned to the cylinder index is
not large enough, the keys of the records
to be processed should be presorted to
fully utilize the resident cylinder index.
This option speeds up the random retrieve
and add functions when the number of
records to be processed is significant.
Processing time per record is reduced by
decreasing the number of times that the
cylinder index on secondary storage must be
accessed. Searching the master index (if
any) is eliminated entirely.

Another option permits the writing and
reQding of more than one physical record on
DASD per I/O operation. This option can be
used when adding a new record on a prime
data track and shifting over the existing
records. It is available to the prime
areas only. Fewer I/O operations are
required, thereby increasing speed.

Any user not desiring the new options
need not modify or reassemble his source
decks. The parameters for specifying these
options are described in the Supervisor and
Input/Output Macros publication listed on
the front cover of this publication.

DOS Data Manageme.nt Concepts '27 •

Initial Format of File

Prime Track 1 [1
2 3 4 5 8 10 11

Prime Track 2 [12 1 13 16

Overflow Track 1 J
Format of File after Insertion of Record 7

Prime Track 1

Prime Track 2

Overflow Track 1

Format of File after Insertion of Records 17 - 22 and Record 9

Prime Track 1 [1 1 2 3 I 4 1 5 I 7 1 8 m
Prime Track 2 1'\12 113 1 16

•
Om'low T ,ock I r II II 10

Figure 18. Addition of Records to a
1-Cylinder, 3-Track Indexed­
Sequential File

Figure 18 illustrates this adjustment
for addition of records to an indexed­
sequential file whose keys'are in a
numerical collating sequence. when this
file is created, its records are placed on
the prime tracks in the storage area allo­
cated to the file. If a record, e.g.,
record 7, is to be inserted into the file,
the indexes indicate that record 7 belongs
on prime track 1. Record 7 is written
immediately following record 5, and records
8 and 10 are retained on prime track 1.
Since record 11 no longer fits on this
track, it is written on an overflow track
and the proper track index is adjusted to
show that the highest key on prime track 1
is 10 and that overflow records exist.
When records 17 through 22 are added to the

28

end of the file, prime track 2 receives
records 17 to 21, but record 22 does not
fi~ and is written following record 11 on
the overflow track. When record 9 is
inserted, record 10 is shifted to the over­
flow track after record 22~ Note that
records 10 and 11 on the overflow track are
chained together to show their logical
sequence and to indicate that they belong
on the same prime track.

Two types of overflow areas may be
requested by the programmer. He can
request a cylinder overflow area that pro­
vides a certain number of tracks on each
cylinder to hold the overflow of tfiat cyl­
inder. He can also request an independent
overflow area that provides a certain num­
ber of tracks independent of the rest of
the file, perhaps even on a different vol­
ume. The independent overflow area is used
whenever one of the cylinder overflow areas
is filled, or the independent overflow area
can be used without a cylinder overflow
area.

LOGIC MODULES

The logical IOCS routines provided for
indexed-sequential files are much more than
an access method. Several routines are
available to provide complete file manage­
ment for direct-access storage files. The
complete facility is called the indexed­
sequential file management system (ISFMS).
The ISFMS routines can be retrieved from
the relocatable library by the linkage
editor just as with the sequential access
method routines. The routines must be
assembled by the user before placing them
in the relocatable library. This is
normally a one-time operation, performed as
part of the total system generation proc­
ess. The routines generated are tailored
to provide specific functions but remain
generalized as to specific fi1e attributes.
Four basic types of routines are available: .. '

1. Load - To load (create) an indexed­
sequential file.

2. Add - To add records, in sequence, to
an existing indexed-sequential file.

3. Sequential Retrieval - To retrieve
records sequentially in key sequence
from an indexed-sequential file.

4. Random Retrieval - To retrieve
individual records called for by key
from any point in the file.

The load routine is always separate. No
other operations can be performed on an

Count Key Data L R~l,Kl,Dl Key of Logical
Record

One Logical
Record]

Figure 19. Unblocked fixed-Length Records

output file as it is being loaded. The add
and retrieve routines can bE~ used in any
combination. Furthermore, t:he retrieval
routines can be assembled with updating
capability, allo~ing records to be written
back into the file after ret~rieval,.

The assembled routines are called logic
modules. They are selected from a master
source routine in accordanCE! with paramet­
ers in a special macro instI:uction, ISMOD­
indexed sequential module. The assembled
logic modules are completely file indepen­
dent and can be used for all indexed­
sequential files. If desirE~d, the logic
modules can be assembled along with the
user's problem program and included in the
output object module.

The user's program includes a DTFIS
macro instruction for each indexed­
sequential file to be processed. Some of
the fields within the DTF table generated
from this macro instruction are not
determined or filled in until the file is
opened during execution of t~he program.
Many of the fields in the talble are
retained with the file in a special format
of the standard DASD file lalbel (format 2).

In addition to the parameters that des­
cribe the file to be processed, the DTFIS
macro instruction includes certain paramet­
ers identical to those used in the ISMOD
macro instruction.

Count Key

L Key of Last
R 1, KL, B x RL Logical Record

in Block

Figure 20. Blocked Fixed-LEmgth Records

RECORD FORMATS

The indexed-sequential access method sup­
ports fixed unblocked records and fixed
blocked records.

The formats of records as they appear on
direct-access devices are shown in the
follo~ing sections. Each block is recorded
on a direct-access device with a count
field, a key field, and a data field.

The key field is used by the system to
locate a requested logical record. The
data field contains the logical records.

Fixed Unblocked

Fixed-length unblocked records appear on
direct-access devices as shown in Figure
19.

R is the sequence number of the record
on the track (RO is not used).

DL is the logical record length.

KL is the key length. This length must
remain constant for the file.

Data

B Logical Records
with Their Keys
Embedded.

DOS Data Management Concepts 29

Fixed Blocked

Fixed-length blocked records appear on
direct-access devices as shown in Figure
20.

R is the sequence number of the record
on the track (R=O is not used).

RL is the logical record length.

B

KL

is the number of logical records
appearing in a block and is a con­
stant for a file.

is the key length. This length must
remain constant for the file.

More specifically, the key and the data
areas may be pictorially represented as
shown in Figure 21.

Keys 1, 2, and 3, respectively, are the
keys of logical records 1, 2, and 3 and are
physically embedded in the records. The
position and length of the key in each
logical record of the file must be speci­
fied in theDTF~macro-instruction. The
contents of the key field on the direct­
access volume is used by the system for
locating the block containing a requested
logical record.

Key Area

Key 3

Dolo Area

I I Key 1 I I ! Key 2 ! I ! Key 3

Logica I Record 1 Logica I Record 2 Logica I Record 3

Figure 21. Key and Data Areas

OVERFLOW RECORDS: The preceding figures
are for prime (rather than overflow) data
records only. Data records in an overflow
area are organized somewhat differently, as
shown in Figure 22. They are never
blocked, even though the prime data records
may be blocked. In addition, they contain
a link field which links to the next record
in the overflow chain. The link field is
10 characters in length.

R~ 1, Kl, Rl+ 10 J
1...--__

Count

Figure 22. O'verflow Records

30

Key of logical
Record

Key

MACRO INSTRUCTIONS FOR INDEXED-SEQUENTIAL
FILES

Both GET-PUT and READ-WRITE input/output
macro instructions are provided for
indexed-sequential files. The purpose and
effect of the instructions vary depending
on the log ic modules used and condi,tions
preset by other macro instructions. The
following macro instructions are provided:

DTFIS

SETFL

ENDFL

READ

WRITE

WAITF

SETL

ESETL

GET

Define The File for Index Sequen­
t'ial

Set File Load Mode

End File Load Mode

Read a Record (random ret:rieval)

Write a Record (load, add, or
random update)

Wait for Completion of READ or
WRITE

Set Lower Limit f,or Sequential
Retrieval

End Sequential Re'trieval

GET a Record (sequential
retrieval)

PUT PUT a Record (sequential update)

This section does not di:scuss each of
these macro instructions separately but,
instead, presents t.lem in the context of a
particular function.

CREATING AN INDEXED-SEQUENTIAL FILE

In order to create an indexed-sequential
file, the programmer writes a DTFIS macro
instruction that calls for a load routine.
The parameters of the macro instruction
completely define the desired outpu~ file.
Note that this macro instruction provides
no information to the system about the

link
Field

l':>gical Record

Datu

input file. The flexibility of the system
allows the input to be retriE~ved by any
access method. For example, two or more
input files can be merged as they are pre­
sented to the load routine~ These can be
defined for sequential, direct, or indexed­
sequential retrieval routines from any
device. The only requirement. of the load
routine is that the records be presented in
ascending order by key.

A SETFL macro instruction is issued
before beginning the file IOclding process.
The SETFL initializes the index areas.
control does not return to the problem
program until this operation has been
completed. The program can 1:hen begin
loading the file.

Each logical record is prE~sented to the
load routine separately. The programmer
issues a WRITE macro instruc1:ion to place
the record in the file. NotE~ that for
blocked files, the WRITE macro instruction
in this instance operates like the PUT,
blocking records in an outpU1: area and then
performing the actual I/O opE~ration when
the block is full.

When all records have been loaded, the
programmer issues an ENDFL ~lcro instruc­
tion to terminate the loadin9 process.
This instruction writes the last block of
records, followed by an end-of-file record.
It then completes the indexes with any
final index record needed and writes dummy
index entries for the rest of the specified
prime data extent.

To Extend a File

The same program used to ini1:.ially set up
an indexed-sequential file can be used to
extend the file, where all rE~cords being
added are sequent ially higheJc than the last
record previously in the file.

TO ADD RECORDS TO A FILE

The WRITE macro instruction ls used to add
new records to an existing file. Although
the WRITE macro is written just as when
loading or extending a file, it is not
preceded by the SETFL macro. The operation
of the WRITE, when records are being added,
is entirely different. When the WRITE is
issued, the add routine locates the proper
block for the new record (using the indexes
to speed the search). It reads this block,
inserts the ,new record in the proper loca­
tion, shifts all following records on the
track over one record position (changing

records from one block to the next when
necessary) and rewrites the block. The
last record previously on the track is then
written in the overflow area. (This is
always true except in the case of the last
track in the file, which may have usable
space remaining after the last record.)
The WAITF macro instruction is used at the
point in the program where processing must
be held up until the I/O operation is com­
plete.

SEQUENTIAL RECORD RETRIEVAL AND UPDATE

Sequential retrieval from an indexed­
sequential file begins at a location or
record specified in a SETL macro
instruction. Input blocks are read and
each record is presented in sequence in
response to the GET macro instruction.
When necessary, the sequential retrieval
routine reads from the overflow area for
records that were displaced from the prime
area by added records. The track index is
used to indicate when this is necessary.
The key field of unblocked records is read
along with the data field. With blocked
records, however, the key of the block
(repeated in the last record of the block)
is not read.

The programmer can issue a PUT after
processing each record to cause it to be
written back into its original location.
If the file is blocked, the entire block is
written back after all records in the block
have been processed and a GET is issued for
the first record in the next block or if an
ESETL is issued. The PUT macro instruction
does not have to be issued for records that
have not been changed; a series of GET's
can be issued with no intervening PUT. The
entire block is written back into the file
if, and only if, a PUT is issued for any
record in the block.

Once a SETL macro instruction has been
issued, GET and PUT are the only I/O opera­
tions that can be performed before issuing
an ESETL macro instruction. For example,
if a WRITE is to be issued to add a record
to a file that is being processed sequen­
tially, it must be preceded by an ESETL.
After adding the new record, the SETL macro
instruction can be reissued, specifying the
last record processed as the new starting
point.

DOS Data Management Concepts 31

RANDOM RECORD RETRIEVAL AND UPDATE

Random retrieval from an indexed-sequential
file is performed by the READ macro
instruction. The programmer first places
the key field of the desired record in a
special field. In response to the READ
instruction, the random retrieval routine
searches the indexes to locate the track
containing the desired record and then
searches the track for the record. The
block containing the record is read and the
record is made available for processing.
For both blocked and unblocked files, only
the data portion of the record is read; the
key field is not read.

The programmer can issue a WRITE after
processing the record to cause it to be
written back into its original location.
To allow overlap of input and output opera­
tions with processing, READ and WRITE do
not wait for completion of the operations,
but return control to the problem program.
The WAITF macro jnstruction is used at the
point in the program where processing must
be held up until the I/O operation is com­
plete.

REORGANIZING AN INDEXED-SEQUENTIAL FILE

As new records are added to an indexed­
sequential file, existing records are
placed in overflow areas. The access time
for retrieving records in an overflow area
is greater than that required for retriev­
ing other records. Therefore, when many
overflow records develop, input/output
performance is reduced. For this reason,
the programmer should reorganize indexed­
sequential files as soon as the need
becomes evident. The system maintains a
set of statistics to assist the programmer
in determining when reorganization is
required.

These statistics are maintained in the
format 2 file label recorded with the file.
During file processing, they occupy fields
within the DTFIS table. The DTFIS name
(filename) is concatenated with a letter to
reference these fields. The programmer can
test these 4-byte fields as he processes
the file. The following statistics are
kept:

32

Prime Record Count (filenameP) - A
count of the number of records in the
prime record area. (filenameP is used
for DTFIS ADD, while filenameP+4 is
used for DTFIS LOAD.>

I ·

I ·

I ·

Overflow Record Count (filenameO) - A
count of the number of records in the
overflowarea(s).

Available Independent Overflow Tracks
(filenameI) - A count of the number of
tracks remaining in the independent
overflow area.

Cylinder Overflow Areas Full
(filenameA)- A count of the number of
cylinder overflow areas that are full,
necessitating use of the independent
overflow area.

Non-First Overflow Reference
(filenameR)- A count of the number of
times a random reference (READ) is made
to records that are the second or
higher links in an overflow chain.

In addition to these statistics maintained
by the system, there is another field
(filenameT) that can be used by the pro­
grammer to keep a count of tagged (for
deletion) records. This field is kept in
the format-2 label and is available in the
DTFIS table during file processing.

No facility is provided in the Disk
Operating System for tagging or deleting
records. The programmer can perform these
functions in any way that he wishes. The
data portion of the records can be tagged
or deleted as desired. The key fields
should not be changed in any way that modi­
fies their sequence in the file. Tagged or
deleted records can be eliminated when
reorganizing the file.

Reorganization is accomplished by creat­
ing a new version of the file, using the
existing version as input. The program
that performs this operation would include
two DTFIS macro instructions: one describ­
ing the input file (sequential retrieval),
and the other describing the output file
(loading). Note that these are completely
unrelated files as far as the system is
concerned. They must even be called by
different names in the macro instructions.
(These names are not stored with the files;
a file can be created using one name and
processed using another.)

INDEXED SEQUENTIAL DISK STOR1\GE SPACE FORMULAS

Three formulas compute IBM 2311 disk storage requirements for an
Indexed Sequential file. ThE~ known quanti ties for the computations
given are:

DL Data Length
KIL Key Length
BL Block Length (Data Length x Number of Records)
X Number of prime data tracks per cylinder
L Number of bytes (10) for overflow link information.

I. TO CALCULATE THE NUMBER OF PRIME DATA RECORDS PER CYLINDER (Npr)
Let: A Number of prime data records on a shared track

B = Number of records on a non-shared track.

(Note: ThesE~ values must be whole numbers.)

Then: a. Determine the size of the track index (T~),
T~=[2X+l][91.49+1.049(KL)]

b. Determine the number of bytes remaining on a
track for prime records (T2),

T2=3625-T~

c. Determine the size of the last prime record on a
track (T3),

T3=20+K L+B L

d. Determine the number of prime data records on a
shared track (A),

T~=T2,-T3

if the result (T~) is negative, set A=O,

if the result (Tl+) is zero, set A=l,

if the result (T~) is positive, set

A=l+ T~
81+1.049(K L+B L)

e. Determine the number of records on a non-shared
track (B),

B=l+ 3605-(KL+B~)
81 + 1 • 0 4 9 (K L, + B L)

Compute the number of prime records per cylinder (Npr) by
substituting for A, B and X in

Npr=A+B(X-l)

II. TO DETERMINE THE NUMBER OF OVERFLOW RECORDS PER TRACK (Nor)
Compute:

Nor=l+ 3605-(KL+D~+L)
81+1.049(KL+DL+L)

III. TO DETERMINE THE NUMBER OF CYLINDER OR MASTER INDEX RECORDS PER
'rRACK (Nir)

Compute:
Nir=l+ 3595-KL

91.49+1.049(K L)

(Note: Allow for a dummy record.)

DOS Data Management Concepts 33.

DIRECT-ACCESS METHOD

The direct-access method (DAM) is a flexi-
'ble access method provided specifically for
use with direct-access storage devices.
The flexibility of the system is derived
from the advanced design of the direct­
access devices available with the
System/360 rather than being the result of
intricate and lengthy programming routines.
All of the direct-access devices supported
by the Disk Operating System use the same
recording techniques. Some of the
outstanding features of these devices are:

• Flexible record format, at the record
level.

•

•

Flexible record reference; either on
record ID (physical track and record
address) or on record key (control
field of the logical record).

Ability to search sequentially through
an area for a record, using a minimum
of central processing unit process
time"

The macro instructions of the direct­
access method allow the programmer to take
advantage of the flexibility of the
System/360 direct-access devices with a
minimum of effort. The fUnction of the
READ-WR~TE macro instructions is basically
the same as the physical IOCS EXCP macro
instruction, except that the system
provides the appropriate CCW chains. There
are no elaborate routines for handling file
maintenance fUnctions such as adding
records to existing files, handling over-'
flows, locating synonyms (multiple records
with duplicate addresses), deleting
records, etc. Many of the problems asso­
ciated with these fUnctions that had to be
solved with involved programming procedures
on prior systems are virtually eliminated
because of the advanced recording and
addressing technique of the direct-access
devices used with the System/360.

The ease with which random files can be
created and maintained illustrates this
flexibility. The user is still faced with
the problem of developing a randomizing
formula to convert record keys (control
fields) to valid device addresses. Howev­
er, it is no longer of such paramount
importance that the addresses produced be
nearly perfectly distributed or that the
number of duplicate addresses be kept to a
bare minimum~ The formula can randomize to
track instead of to record. In some cases,
it is sufficient to randomize to a cylinder
address. Records can be written in any
order on a track. If there is no room on
the track, the record is simply written on
the first track that does have an available

34

location. There is no need to chain
records with duplicate addresses. To
retrieve the record, the system can start
at any specified track (the randomized
address) and search for the record on the
basis of its actual key. It will search
exactly as far to locate and. read the
record as it did to locate the available
location when writing it.

Another example of the flexibility of
these devices is the ease with which
selected records can be processed in a
sequential file,. A presequenced file can
be loaded into consecutive record locations
and then processed:

1. In straight sequential order, reading
every record, for jobs that require the
entire file.

2. In selective sequential order, reading
specific records (deterlnined by a
sequenced transaction file), for jobs
that require only selected records out
of a file.

The direct-access method provides two
programmed features to enhance the flexi­
bility of the System/360 direct-access
device recording techniques:

1. Maintenance of capacity record

2. Return of ID for next read, write, or
start of search.

LOGIC MODULE ASSEMBLY

The logic modules available with the
direct-access method must be assembled by
the user from a master source routine sup­
plied by IBM. Once assembled, they can be
stored in the relocatable library and
linked automatically with any program that
requires them. If preferable, they can be
assembled along with the user's problem
program and included in the same output
object module. The modules are assembled
in accordance with parameters in a special
macro instruction DAMOD (direct-access
module). These parameters specify the
fUnctions that the particular module is to
provide.

A file-definition macro instruction,
DTFDA (define the file for direct access),
is written to define each file to be proc­
essed.

RECORD FORMATS

The direct-access method supports fixed
unblocked records and undefined records.
Both format F and format u records can be
written on direct-access storage with or
withou"t keys. The data porti.on of unde­
fined records can be variable in length.
If key fields are written, however, they
must be present on all records and they
must all be the same length. Record block­
ing and deblocking must be ha.ndled by the
programmer.

CAPACITY RECORD

When creating variable-length sequential
files and in most random-file applications,
records are written by searching on the ID
of the last record currently on the track
and then writing count, key, and data of
the new record. The direct-access routines
maintain a special record on each track to
facilitate this type of operation.. The
record is called the capacity record. It
is written in the data portion of the first
record (RO) of each track. The capacity
record contains the ID of the last record
currently on the track and the count of the
number of bytes that can be written after
the last record. When a record is to be
written, the system can:

1. Read the capacity record,
2. Determine whether there is room on the

track for the record.
3. If the record fits, write the record

and the updated capacity record.
4. If no room, notify the problem program.

The capacity record is not always used.
The description of the WRITE macro instruc­
tion explains when it is used.

BY,e,j
Volume
Number

(M)

0

May -! 0-221
Contain I

I-
I

1

o

: 0 -221 I 0
I I
r I
: 0 -221 I 0

L f

Cell
(BB)

Address Specified by
SEEKADR =Name

Cylinder
(CC)

I
2 3 I 4 5

I
I

o 10 :0-199: 0
I I

0-9 10-19: 0-9 : 0-4
I I

I

o o
I I

; 0-199: 0
I

Head
(HH)

I
I
I 6

- - - -,
:

Record:
(R) I

I
I

7 I
I

- ---I
I

0-9 : 0-255; 2311
I

I I I

10-19 10-255 I 2321
I I I

i I I
: 0-19 10-255 I 2314

: I :
Required for Record
Reference by I D

Figure 23. DASD Address Formats

ID LOCATION

The direct-access method requires that the
programmer provide actual DASD addresses
for all READ-WRITE operations. These are
8-byte binary addresses (Figure 23) of the
form MBBCCHHR, where:

M identifies the file volume. A single
logical file can occupy several
volumes (i.e., disk packs or data
cells). When this is the case, the
physical units must be assigned (in
XTENT control cards) to a sequential
set of symbolic unit numbers. For
example, a single logical file on
three disk drives could be assigned
to SYS002, SYS003, SYS004. The value
M is always 0 for the first volume, 1
for the second, 2 for the third, etc.
In the previous example, M=O refers
to SYS002; M=l refers to SYS003; and
M=2 refers to SYS004. Note that M is
never read or written on the storage
device by the Disk Operating System.
It is used to reference the proper
logical unit block for the symbolic
name (see Symbolic Device Addressing
under Physical IOCS).

BB is a 2-byte field containing cell
numbers (0-9) for IBM 2321 Data Cell
Drives. This is always a 2-byte
binary zero for IBM 2311 or IBM 2314
Disk Storage.

CC is a 2-byte field, containing either
cylinder number (0-199) for 2311 or
2314 disk storage, or subcell (0-19)
and strip (0-9) for 2321 data cell.

Note: The last four strips of subcell
19 are reserved for alternate tracks,
and consequently are invalid address­
es.

HH is a 2-byte field, containing either
head number (0-9) for 2311 disk stor­
age, head number (0-19) for 2314 disk
storage, or cylinder (0-4) and head
(0-19) for 2321 data cell.

R is the record number. This byte can
have a binary number of 0 to 255 to
identify the physical location of the
record on the track. The value R
does not always have to be specified.
The descriptions of the READ and
WRITE macro instructions explain when
R is needed.

These 8-byte addresses are used either
as the starting point for a search on
record key or as the actual address for a
READ or WRITE ID. When searching for a
record key~ the programmer has the option
of specifying that the search be only with-

DOS Data Management Concepts 35

in the specified track or from track to
track, starting at the address given and
continuing either until the record is found
or until the end of the cylinder is
reached.

For certain types of operations, the
system can be requested to return the 10
(CCHHR) of the record read or written or of
the next record following the one read or
written. The programmer can place these in
the 8-byte address field to either READ or
WRITE a new record or to update the one
read. For example, to delete a record from
a random file with keys, the programmer can
randomize the record key to a starting
location, search on key to read the record,
and then use the 10 returned to write a
blank or zeroed record (key and data) back
into the same location. The descriptions
of the REAO and WRITE macro instructions
explain when the 10 can be returned and
whether the 10 returned is that of the same
or of the next record.

When the 10 returned is that of the next
record, the system obtains the 10 by chain­
ing to a read-count command. This command
will skip to the next track if the record
read or written was the last currently on
the track. The system does not attempt to
read the next 10 if the end of a cylinder
is reached. In this case, it adds one to
the CC portion of the previous 10, forces

I the HH portion to 0, and forces R to 1 for
a 2311 or 2314 file. For a 2321 file, it
adds one to the high order H, forces the
low order H to zero, and forces R to one.
An overflow from the high order H will
increase the low order C by one, force both
H's to zero, and force R to one. Subse­
quent overflows of address locations will
cause increases in the next higher posi­
tions of the addresses. (It is the user's
responsibility to check the validity of the
address returned in IOLOC.)

36

MACRO INSTRUCTIONS

WRITE -- Write a Block

The WRITE macro instruction can be used to
execute the following operations:

Instruction Format Operation

WRITE filename, KEY 1. Search on key

2. Write data

WRITE filename,IO 1. Search on 10

WRITE filename,RZERO

WRITE filename, AFTER

WRITE filename, AFTER,
EOF

Write key (~O)

and data

1. Search on
specified 10.

2. Restore the
maximum ca­
pacity of the
track in RO.

3. Erase the re­
mainde:r of the
track following
RO.

1. Read RO (cap­
aci tyrecord)
of specified
track

2. Calculate
whether room
exists to write
record after
last record.

3. Search on pre­
vious 10 (10
of last record
taken from RO).

4. Write count,
key (~O),
and data.

5. Update RO with
new last 10
and count

1. Write EOF on
OASO

WRITE filename, KEY: The programmer sup­
plies the key of the recol:d to be updated
and the track address (MBBCCHH) at which
the search is to begin.. Only the data
portion of the referenced record is writ­
ten. If the OTFOA macro instruction speci­
fies that the system is tC) return record

IO. the IO returned depends O~l whether or
not the search multiple option is speci­
fied.

•

•

With search multiple - IO of record
written

Without search multiple - IO of the
record following the one \<irritten.

WRITE filename,IO: The programmer sup­
plies the track and record address
(MBBCCHHR) of the record to bE~ written.
The system searches on this II> and then
executes a write key and data (or write
data only) operation. The key field length
can be zero. If the system is requested to
return I04 the IO returned is that of the
next record in the file.

WRITE filename, RZERO: The pr()grammer sup­
plies the track address after which the
track is to be erased. The system searches
for this track, restores the maximum capac­
ity of the track in RO, and erases the
remainder of the track after RO.

WRITE filename, AFTER: The prc)grammer sup­
plies the track address (MBBCCHH) of the
track at the end of which the record is to
be written. The system reads the capacity
record and checks to see if there is enough
room for the record to be wri 1:ten. If not,
the problem program is notifiE~d. If there
is enough room, the system searches on the
IO of the last record and then executes a
write count, key, and data opE~ration for
the new record. The capacity record is
then rewritten with the updatE~d count of
remaining bytes and the new last-record IO.

This format of the WRITE cannot return
any ID field.

If requested in the DTF ma(~ro instruc­
tion, each of the preceding w]~ite opera­
tions is verified by a read command chained
to the write.

In all cases, the WRITE ma(~ro instruc­
tion returns control to the pl~oblem program
after requesting execution of the CCW
chain. The programmer can perform any
processing desired and then iBsue a WAITF
macro instruction to check fOl: completion
of the operation.

WRITE filename, AFTER, EOF: This operation
will cause an EOF record to bE~ written
after the last record on the 1:.rack.

READ -- Read a Block

The READ macro instruction can be used to
read from a random file in either of two
ways:

Instruction Format °Eeration

READ filename, KEY 1 • Search on key

2. Read data

READ filename,ID 1. Search on ID

2. Read key (~ 0) and
data

In the first format (reference by key),
the programmer supplies the key field of
the record to be read and the track address
(MBBCCHH) at which the search is to begin.
Only the data portion of the referenced
record is read. The system searches either
the track specified or to the end of the
cylinder, depending on whether the search
multiple option is selected. If requested
to return record ID, the system returns:

• With search multiple - ID of record
read

• Without search multiple - ID of record
following the record read.

In the second format (reference by ID)
the programmer supplies the track and
record address (MBBCCHHR) of the record to
be read. The system searches on this IO
and then executes a read key and data (or
read data only) operation. The key-field
length can be zero. If requested to return
ID, the system will supply the ID of the
next record.

The READ macro instruction returns con­
trol to the problem program after request­
ing execution of the CCW chain. The pro­
grammer can perform any processing desired
and then issue a WAITF macro instruction to
check for completion of the operation.

CNTRL -- Control Seek and Control Restore

The CNTRL macro instruction provided with
the direct-access routines can be used in
two forms:

CNTRL - Seek

CNTRL - Restore

To initiate a seek oper­
ation in anticipation of
a subsequent READ or
WRITE

To restore a data cell

DOS Data Management Concepts 37

strip from the
read/write head to the
cell.

The READ and WRITE macro instructions do
not have to be preceded by a CNTRL-Seek.
They automatically seek to the correct
cylinder if necessary. However, it is
often possible to issue a seek to position
the access mechanism to the correct cylin­
der before the actual 10 or key required
for a READ or WRITE is available.

Use of the CNTRL-Restore macro instruc­
tion is not essential. The 2321 data cell
automatically restores a strip from the
read/write drum:

1. When a seek is given for another strip

2. After 800 milliseconds pass without an
operation being performed on the strip.

If the programmer knows that he is finished
with a strip, he should issue a CNTRL­
Restore to avoid unnecessary delay when the
next READ is issued.

The CNTRL macro instruct~on returns
control to the problem program as soon as
the operation is initiated.

The programmer must provide the
following operands for the CNTRL macro
instruction:

1. The name of the file

2. The operation to be performed; either
SEEK or RESTR

3. For a seek, the symbolic name of the
field containing the seek address.

WAITF-Wait for and Test Completion of Read
or Write Operation

The WAITF macro instruction waits for com~·
pletion of an in~ut/output operation
requested by a READ or WRITE macro instruc­
tion and tests for errors and exceptional
conditions. Any exceptional conditions
discovered are passed to the problem pro­
gram in a special 2-byte location defined
by the programmer. The programmer must
issue a WAITF macro instruction after a
READ or WRITE before issuing any other
macro instruction for the same file.

The only oper~nd required for this macro
instruction is the name of the file.

38

CREATING DIRECT-ACCESS FII~S

There are no rigid rules governing the
organization of files processed by the
direct-access method.. ThE! programmer is
free to do anything he wishes within the
power of the macro instructions provided.
There are, however, certain standard, typi­
cal file organizations and processing tech­
niques for which the obvious direct-access
method possibilities can be outlined. The
following sections are intended to suggest
to the reader possible ways in which he can
use direct access routines for his more
typical files. The technigues shown are
not the only ones that can be used. In
cases where more involved procedures are
required, such as linking together multiple
files, master and trailer records, etc.,
the user may have to use variations on
these techniques to achieve the desired
results.

Sequential File~

FIXED-LENGTH RECORDS, WITH KEYS: ro load
the file - Either of the following tech­
niques can be used to produce identical
files.

1. a. Preformat the area

b. WRITE filename,ID

Note: DTFDA macro instruction should
request the system to return the
next ID for each successive
WRITE.

2. WRITE filename, AFTER

TO __ 'p!:ocess the file - Use the first of the
following techniques to process the entire
file. Use the second technique to process
selected records (against sequenced input).

1. READ filename,ID
WRITE filename,ID (if updating)

~~~~: DTFDA macro instruction should 
request the system to return the 
next ID for each successive 
READ. 

2. READ filename, KEY 
WRITE filename, KEY (if updating) 

~~te: DTFDA macro instruction should 
request the system to return the 
next ID to be used as the start­
ing point for each successive 
READ operation .. 



FIXED-LENGTH RECORDS L WITHOU~' KEYS: To 
load the file - Fixed-length records with 
no keys can be created and processed with 
the GET-PUT level of the sequential-access 
method. If any of the direct-access tech­
niques shown for Fixed-Length Records, With 
Keys, is used, the output will be identical 
to that produced by the seque~ntial-access 
routine, providing the user has included 
the WRITE EOF options during creation of 
the files. 

To process the file - Use the~ sequential­
access' GET or the direct-acce:ss READ 
Filename,ID. Files should be~ processed by 
the access method used to cre:ate them. 

UNDEFINED RECORDS~TH KEYS:. To Load the 
File -

1. a. Use clear or initialize utility 
program or the macro WRITE filen­
ame,RZERO to initialize the capac­
ity record. 

b. WRITE filename,AFTER 

Note: Use track address of first 
track, update to n.ext track or 
track and cylinder when system 
indicates no more room on a 
track. 

To process the file - Use the same tech­
niques as listed for Fixed-Le~nqth Records, 
with Keys. 

UNDEFINED RECORDS WITHOUT KEYS: To load 
the file - Undefined records with no keys 
can be created and processed with the GET­
PUT level of the sequential-access method .• 
The direct-access method can be used to 
create a file identical to th.at produced by 
the sequential-access method. Use the same 
techniques shown for Undefined Records with 
Keys. 

To process the file - Use the sequential­
access GET or the direct-access READ 
filename,ID~ Files should be processed by 
the access method used to cre'ate them. 

Random Files 

FIXED-LENGTH RECORDS, WITH KEYS: To load 
the file - Either of the following tech­
niques can be used. 

1 • a. Preformat the area,. 

b. Randomize to track and record, 
leaving one or more-tracks on each 
cylinder for overflow. 

c. READ filename,ID to determine 
whether record position is occu­
pied. 

d. If record position available, wRITE 
filename,ID. 

e. If record position not available, 
place record in overflow area, 
using WRITE filename, AFTER. 

2. a. Use clear or initialize utility 
program to set up the capacity 
records. 

b. Randomize to track (or, possibly, 
only to cylinder). 

c. WRITE filename, AFTER. 

d. If record not written (no room on 
track) re-issue WRITE for next 
track or overflow area. 

To process the file - Use the same random­
izing formula used to create the file. 

1. If randomizing to track and record: 
READ filename,ID 
WRITE filename,ID (update) 

2. If randomizing to track (or cylinder): 
READ filename,KEY 
WRITE filename,KEY (update) 

FIXED-LENGTH RECORDS, WITHOUT KEYS: 

To load the file - Use first technique 
listed for Fixed-Length Records, with Keys. 

To process the file - Use first technique 
listed for Fixed-Length Records, with Keys. 

UNDEFINED RECORDS, WITH KEYS: To load the 
file: 

1. a. Use clear or initialize utility 
program to set up the capacity 
records. 

b. Randomize to track (or cylinder) 

c. WRITE filename, AFTER 

d. If record not written (no room on 
track) re-issue WRITE for next 
track or overflow area. 

To process the file: 

1. a. Randomize to track (or cylinder) 

b. READ filename,KEY 

UNDEFINED RECORDS. WITHOUT KEYS: This is 
normally feasible.. File would have to be 

DOS Data Management Concepts 39 



written using the ID of the previous record 
for reference (AFTER or AFTERID). It would 
have to be read for processing with the 
READ filename,ID. The ID field, however, 
would not normally be available to the 
processing program. 

DIRECT-ACCESS STORAGE DEVICES 

IBM 2311 DISK STORAGE DRIVE 

The IBM 2311 Disk-Storage Drive features 
removable, interchangeable disk packs, 
offering virtually unlimited data-storage 
capacity. A disk pack can be easily 
removed and replaced with another pack in 
less than a minute. These units have flex­
ibility comparable to a tape system, plus 
the advantage of direct-access processing. 

Cylinder Concept 

The corresponding recording tracks on each 
disk surface are physically located one 
above the other, and may be pictured as 
forming 203 concentric cylinders of 10 data 
tracks each. Figure 24 is a schematic 
representation of the cylinder concept. 

203 
Cylinders 

Figure 24. Cylinder Concept 

40 

Access Mechanism 

Ten read/write heads are mounted on a ver­
tical assembly. The heads are aligned 
vertically and are all moved together hori­
zontally to any of 203 positions. There­
fore, each time the read/write heads are 
moved into position, one entire cylinder of 
ten data tracks is accessible for reading 
and writing. Only electronic switching of 
the heads is necessary to select a particu­
lar track within the cylinder. Figure 25 
illustrates the access mechanism and the 
disk pack. 



000 Cylinders 202 
r----------~ 
I 
I 

Figure! 25. IBM 2311 Access Assembly and Disk Pack 

Per Per 
Track Cylinder 

Disk Storage Drives 

Cylinders 

Tracks 10 

Bytes (Alphameric Characters) 3,625 36,250 

Packed Decimal Digits (Numeric Only) 7,250 72,500 

NOTE: All figures are based on one record per track. 

Figure 26. 2311 Disk Storage Drive capacity 

Storage capacity 

The 7.25 million byte capacity of each disk 
pack is based on 200 tracks per disk sur­
face. With the high-density recording of 
the 2311, minute contamination particles 
can affect data reading and 1writing. 
Therefore, 203 tracks per disk surface are 
provided to ensure that the stated capacity 
is maintained for the life of the disk 
pack. 

Because each record has certain non-data 
characters, such as disk add:resses, the net 
data-storage capacity of tracks may vary. 

Per Disk Per Storage 
Storage Drive Control Unit 

S 

200 1,600 

2,000 16,000 

7,250,000 58,000,000 

14,500,000 116,000,000 

Figure 26 indicates that on the basis of 
one 3625-byte record per track each disk 
pack can store 7,250,000 bytes. Figure 27 
shows the number of bytes per record 
according to the number of equal-length 
records per track. The figure is used only 
for illustration; in actual practice 
records on the same track can vary in 
length in both the key areas and the data 
areas. Formulas for determining record 
capacity per track are available in the 
publication, IBM 2841 Storage Control Unit, 
Form A24-3254. 

DOS Data Management Concepts 41 



Number of Equal- Length Records per Track 
-

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Maximum Number of 
Bytes per Record 3625 1740 113] 830 65] 532 447 384 334 295 263 236 213 193 177 162 149 138 127 118 
without Key Field 

-- --- --
Maximum Number of 
Bytes per Record 3605 1720 1111 811 632 512 428 364 315 275 244 217 194 174 158 143 130 119 108 99 
with Key Field 

-

Figure 27. Bytes per Record vs Records per Track (2311) 

Per Track 

Disk Storage Drives 

Cylinders 

Tracks 

Bytes (Alphameric Characters) 7,294 

Packed Decimal Digits {Numeric Only} 14,588 

NOTE: All figures are based on one record per track • 

• Figure 28. IBM 2314 Storage Capacity 

IBM 2314 DISK ACCESS STORAGE FACILITY 

The IBM 2314 Direct Access Storage Facility 
consists of eight on-line disk storage 
modules, one spare (off-line) module, and 
an integral control unit. The spare module 
is available for immediate use if servicing 
or routine maintenance is necessary on any 
of the other modules. Of the total of nine 
modules, any eight can be on line at a 
time. Each disk storage module has an 
individually addressable access mechanism, 
and uses a removable and interchangeable 
IBM 2316 Disk Pack to provide programming 
flexibility and virtually unlimited offline 
storage capacity. 

Access Mechanism and Disk Organization 

Information is written on and read from 
disk surfaces of the 2316 disk packs by 
read/write heads in the 2314. The 20 
read/write heads at each disk-module loca­
tion are positioned by a movable comblike 
access mechanism. Each disk module has its 
own access mechanisma Two read/write heads 
are attached to each arm of an access 

.42 

Per Disk 
Per Cylinder Storage Module Per IBM 2314 

8 

200 1,600 

20 4,000 32,000 

145,880 29,176,000 233,409,000 

291,760 58,352,000 466,816,000 

mechanism. Because all 20 read/write heads 
are always positioned in the same vertical 
plane, 20 tracks are availclble for reading 
or writing purposes without~ movement of the 
ac~ess mechanism. Figure 24 shows how the 
entire disk pack consists of 203 concentric 
cylinders of information. The numbering is 
from 000 (outermost cylindE~r) to 202 
(innermost cylinder). Tracks in cylinders 
200 through 202 are alternate tracks that 
can be used if any of the t:racks in cylin­
ders 000 through 199 should become defec­
tive. 

storage and Record Capacity 

Because each record has certain nondata 
areas (such as count fields and gaps), the 
net data storage capacity of tracks varies 
with the number of records. With one 
record per track, each track has a data 
capacity of 7294 bytes. 

Because of the high-density recording 
method used by the 2314, minute contamina­
tion particles can affect data reading and 
writing and may cause loss of bits. There­
fore, 203 tracks per disk surface are pro-



Track Capacity in Bytes Bytes Per Data Record 
- Storage ------

When RO is Used as Specified Data Records (except for last record) Last Record 
Device -- -

By IBM Programming Systems Without Key With Key Without Key With Key 
-- --

2314 7294 
2137 2137 

101 + 2048 (DL) 146 + 2048 (KL + DL) DL 45 + KL + DL 

Record RO used as specified by Number of 'Equal Length Records That Can Be Stored on a 2314 Track 

IBM Programming Systems. No 
.-----,--

::I~lE 
application data; KL == 0; DL == 8 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

"'-_." 

Bytes per record without key 7294 3520 229B 1693 1332 1092 921 793 694 615 550 496 450 411 377 347 321 
-"-- ---". _._._-

Bytes per record with key 7249 3476 2254 1649 1288 1049 877 750 650 571 506 452 407 368 333 304 277 

8 

o 

5 

RO == Record 0 (track descriptor record) 

DL == Data Length 

K L == Key Length 

• Figure 29. Record Capacities 

vided to ensure that a capacity of 29.17 
million bytes (based on 200 t_racks) is 
maintained for the life of the disk pack 
(Figure 28). 

Record capacities for the 2314 are list­
ed for records with keys and without keys 
in Figure 29. Further information on the 
2314 is available in the publication, IBM 
§ystem/360 Component Descrip!:ions_- 231~ 
Direct Access Storage Facili t:y and 2844 
Auxiliary storage Control, Form A26-3599. 

IBM 2321 DATA CELL DRIVE 

The IBM 2321 Data Cell Drive is a device 
for storing data on magnetically coated 
strips. Two hundred s.trips are contained 
in a single removable and int:erchangeable 
cell assembly (see Figure 30). Ten cell 
assemblies, each containing t:wenty sub­
cells, can be mounted on a data cell drive 
at one time. A rotary positioning system 
positions a selected subcell of ten strips 
beneath an access station. At this sta­
tion, a selected strip is wit:hdrawn from 
the subcell and rotated past a read/write 
head element for data transfer. The strip 
is then returned to its original location 
in the subcell. 

Read/Write Head Block 

The read/write head block contains 20 mag­
netic elements. It can be positioned to 
one of five positions, creating five cylin­
ders of 20 data tracks each and providing 
read/write access for the 100 recording 
tracks per strip. The head block is posi­
tioned during access time. 

DOS Data Management Concepts 43. 



Drum Drive 

Data Cell 
(Contains 
200 Strips) 

Read/Write 
Head 

Figure 30. Data Cell and Strip Selection 
(2321) 

Storage Capacity 

Figure 31 illustrates the capacity of a 
2321 data cell, based upon 2,000 bytes per 
track. Formulas for determining record 
capacity per track are available in IBM 
2841 Storage Control Unit, Form A24-3254. 

MODEL 1 
Capacity 

8-Bit Packed Decimal 
Alpha-numeric Mode Digit tv10de 

Track 2,000 4,000 

Cylinder 40,000 80,000 
r---" 

Strip 200,000 400,000 

Subcell 2,000,000 4,000,000 
r" 

Data Cell 40,000,000 80,000,000 

Full Array 400",000,000 800 ,000 , 000 

Figure 31. 2321 Data Cell Capacity 

44 

DASD TRACK FORMAT 

The 2311 Disk Storage Drive and the 2321 
Data Cell Drive use a track format consist­
ing of an index marker, a home address, and 
one or more data records. An address mark­
er precedes each data record (except the 
first one, as explained later) to indicate 
the beginning of a new record. Each track 
area is separated by a gap. Figure 32 is a 
schematic representation of a DASD track. 
The various areas of the track format are 
described as follows: 

Index Marker: The index marker indicates 
the physical beginning of each track. 
There is one index marker per track. 

Home Address: There is one home address 
per track. This address is 7 bytes in 
length and is recorded in binary code. The 
home address defines the location of the 
track in terms of the physical parameters 
of the files. Home addresses are written 
on the track by an initializing utility 
program, which will be explained later. 

Figure 33 is a schematic representation 
of the home-address area. 



~Record Zero: RO - ......... 1.----------Record One: Rl -------

] G~'__~_d_;:_e_r~Gap'__~_~;_re_es_s~G~1 ~:~}apl ~: IGa
p ~~= Gap ;;::' Gap I ~~:a IGa

p 
,___D_A_T_A_A_RE_A __ _ 

--1 .... 1·----------Record Two: R2 -----------, ... II-4~----Record Three: R3 1 etc. -----

Jop ~~_~_~_~:_S:..JGap L--~_;e_u;_t ~Gap ~:a IGa
p 

,-1 ___ D_A_TA_A_RE_A __ ~IGap ~~;:: Gap 
Count 
Area !;lE Gap OGap Da'a 

Figure 32. Schematic Representation of DASD Track (with Key Area) 

The Flag Byte: The flag byte is record­
ed on the track during a write-home­
address operation. This flag infor­
mation byte indicates the condition 
of the track and is automatically 
propagated to all records as they 
are recorded on the track. 

The Address: The four byt;es containing 
the cylinder number and head number 
given the physical location of the 
track. 

The Check Bytes: Two check bytes con­
tain the 16 check bits used to veri­
fy the validity of reading and writ­
ing. Thes e check bytE~s are a func­
tion of the record-verification 
circuits of the systems. They are 
automatically appended to each sep­
arate area written on a DASD track. 
The two bytes are not included in 
the count field's key length and 
data length when the length of the 
correspon:iing areas al~e defined. 

] 

Index 

Gap ,-_M_or_ke_r-....J Gap 

Home Address 

Cylinder Head Check 
Flag 

BYT Byte 
clC H/H 

Figure 33. Schematic RepresEmtation of the 
Home Address 

Record Zero (RO) 

The first record on every track (record 
number zero: RO) is used primarily to 
facilitate the use of an alternate track, 
when the original track is found to be 
defective. Referred to as the track­
descriptor record or record :~ero (RO), this 
record is unique in that it is not preceded 

by an address marker and does not contain a 
key area (key length is always zero). 
Figure 34 is a schematic representation of 
the Record Zero. 

The count area is similar to other 
records as described in the following para­
graph. The data area can be used to main­
tain updated information about the data 
records on the track. A discussion of the 
capacity-record portion of this data area 
is contained in the section Direct-Access 
Method. 

DASD RECORD FORMAT 

There are three basic parts to each DASD 
record: the count area, the key area 
(optional), and the data area. Figures 35 
and 36 are schematic representations of a 
record with a key area and without a key 
area. 

The Count Area: The count area consists 
of the flag byte recorded from the 
home address flag byte, the iden­
tifier field, the key length, the 
data length, and check bytes. This 
area is recorded in binary notation. 

The Identifier Field: The identifier 
field (record ID) of five bytes 
contains the cylinder number, the 
head number and the record number to 
define the physical location of the 
record. The record number is the 
sequential position of the record on 
the track. Record number zero (RO) 
is the first record on the track and 
each succeeding record is numbered 
in ascending order. 

The Key Length: The key length is one 
byte and denotes the number of bytes 
in the key portion of the record, 

DOS Data Management Concepts 45 



but does not include the two check 
bytes. If~he record does not con­
tain a key area, key length is 
recorded as zero. 

The Data Length: The data length is two 
bytes long and specifies the number 
of bytes in the data portion of the 
record, but does not include the two 
check bytes. ---

The Key Area: The key area consists of 
the key field and two check bytes. 
The key is an external number, such 
as part number or employee number, 
that identifies the information 
stored in the data portion of the 
record. rhis field will usually be 
the major control field of the logi­
cal data record to which it is 
appended. The key length can vary 
from zero to a maximum of 255 bytes. 

The Data Area: The data area contains 
the information stored in the file, 
plus two check bytes. The data area 
can be one logical record or many 

logical records blocked together. 
Records on the same track can vary 
in length in the key area and in the 
data areas. The length of the data 
area is defined by 1:he data-length 
field. 

DASD INITIALIZATION AND MA~[NTENANC~~ 

INITIALIZE DISK/DATA CELL PROGRAMS 

Initialize-disk and initialize-data-cell 
utility programs are provided as part of 
the IBM System/360 Disk Operating System 
package. Initialization programs are pro­
vided to prepare disk packs and data cells 
to be used. As the packs and cells are 
received by an installation, the programs 
are used to write standard home addresses 
and track description records (record zero) 
and to make a surface analysis to identify 
defective recording surfaces (if any). The 
program will write the volume label and 

Count Area------..... --II ... , .... ------Data Area -------1 
Ide~tjfjer 

Data 
-£ Check 

2 '"U Length Bytes Cylinderi Head 5 Ol 
>.. c: 

c:c u Q) 

C I C H I H 
~ ...J 

I I 8' >.. 
R Q) u:: ~ 

Th is area is used for the 1 
Capacity Record Option (DTFDA) Check 
or the Cylinder Overflow Bytes 
Control Record (DTF IS) 

Gap 

Figure 34. Schematic Representation of Record Zero 

r-----Count Area ----....;I--tl t----Key Area--l 1-011

1----- Data Area -----1 

Gap Address 
Marker 

Gap 
Q) 

>.. 
<0 

0> 
0 

u: 

Identifier 

" Cylinder Head 
0 
u 

C I C HIH 

~ 
R 

Data Check 

..t: 
Length Bytes 

g, 
Q) 

I I 
-l 

>.. 
Q) 

::.:: 

Gap 

Key Check 
Area Bytes 
(Variable Gap 

Length) 

I 

(Variable Length) 

Figure 35. Schematic Representation of a DASD Record with a Key Area 

"'I~------Count Area-------tootl I I ..... -------Data Area 

] 

Address 

Gap r.....-Mar_ker---l Gap 

Identifier 
Data Check -£ 

Q) 

~ Ol Length Bytes >.. Cylinder Head c: 
c:c 0 CII 

U ...J 
Ol 

C I C H I H 
~ >.. I I 0 

R 
CII 

u.. ~ 

Gap (Variable Length) 

Figure 36. Schematic Representation of a DASD Record Without a Key Area 

46 

Check 
Bytes 

Check 
Bytes 

J 

I 



establish the volume table of contents 
(VTOC) area to be used fdr cataloging file 
labels. For further details on the VTOC 
see the section ~abel~. 

The initialization programs are also 
used to reinitialize disk packs or cells 
when job requirements changE!. To guard 
against accidental reinitialization of 
devices containing valid dat~a fields, the 
VTOC is checked for labels reflecting unex­
pired data files. 

Home Address and Record Zero Generation 

When the initialization programs write the 
home address and record zero fields on each 
track, a verification of the accuracy of 
recording is made. If a home address and 
record zero (RO) cannot be successfully 
written on a track, a message will be 
printed indicating the error. The 
pack/cell will be deleted from the job if a 
home address andlor record zero cannot be 
written on one or more tracks. The remain­
der of the storage area will be analyzed 
before the device is deleted. The program 
will continue processing the next device, 
if present. 

PHYSICAL IOCS AND DEFECTIVE DASD TRACKS 

Discovery of a Defective Tralck 

Whenever a record cannot be successfully 
read from a DASD track with standard error 
recovery procedures, a messalge indicating 
the error condition and the address of the 
track which failed is issued to the opera­
tor. If the error condition is not accep­
table to the program (processing cannot 
continue), the program is terminated. DASD 
IOCS provides the facility, in the Verify 
Option, to read each record as it is writ­
ten to verify that it was written correct­
ly. The user must request t:he Verify 
Option by specifying VERIFY==YES in his DTF 
entry for the file. The CC~l Skip bit pro­
vides this verification capalbility without 
requiring an 1/0 area for the record. If 
the Verify procedure is not used, write 
data checks will not be discovered until 
the record is later read for processing. 

Correction of a Defective Track 

The operator should note the address of the 

I defective track and later process the IBM 
Systeml360 DOS Alternate Track Assignment 
program which flags the defective tracks 
and assigns alternate tracks to replace 
them. A portion of each DASD volume is 
reserved for alternate tracks, i.e., the 
last three cylinders of each disk and the 
last four strips of each cell. 

Previously Established_Defective Tracks 

Whenever a DASD device detects that a 
flagged defective track is being accessed 
(every count field on the track contains 
this flag), it indicates the rrack Condi­
tion Check error condition. When this 
condition occurs, physical IOCS error reco­
very procedures retrieve the address of the 
assigned alternate track from record zero 
(RO) of the defective track and restart the 
channel program on the assigned alternate 
track. 

Whenever a channel program operating in 
multiple track mode reaches the end of an 
alternate track, the DASD device detects 
this and indicates the Track Condition 
Check error condition. Physical IOCS 
retrieves the address of the defective 
track from record zero (RO) of the alter­
nate track and restarts the channel program 
on the track following the defective track. 
The problem program is therefore never 
concerned with flagged defective tracks or 
alternate tracks. 

DASD LABELS 

The IBM System/360 Disk Operating System 
provides positive identification and pro­
tection of all DASD files by recording 
labels on each volume (pack or cell). 
These labels ensure that the correct volume 
is used for input and that no current 
information is destroyed on output. 

Certain standard labels are required for 
all DASD files, although it is possible to 
process files with the physical 1/0 macro 
instructions (EXCP) without processing any 
labels. When using any of the logical IOCS 
routines, labels must be processed for each 
data file. A special IOCS facility (DTFPH) 
is also provided to allow label processing 
when using physical 1/0 macro instructions. 
In addition to the required standard 
labels, logical IOCS provides facilities 
for optional user labels. 

DOS Data Management Concepts 47 



The standard labels include one volume 
label for each volume and one or more file 
IabeIs for each logical file on the volume. 
There may be user volume labels and, in 
some cases, user header labels and user 
trailer labels. 

Note: User file labels are processed by 
IBM System/360 Operating System. 

STANDARD VOLUME LABEL 

The standard volume label identifies the 
entire volume (cell or pack). Every volume 
used in the Disk Operating System environ­
ment must have a standard volume label. It 
is always the third record on cylinder 0, 
track O. The first two records on this 
track of every resident pack are IPL 
records, otherwise the records contain 
binary zeros. The volume-label record has 
a 4-byte key field and an aO-byte data 
field. Both the key field and the first 
four bytes of the data field contain the 
label identifier VOL1. The format of the 
data field is shown in Appendix A. 

The volume label contains a volume seri­
al number. This number is assigned when 
the volume is prepared for use in the sys­
tem, and the number is never changed. It 
is repeated in the labels for all files on 
the volume. 

The only other field in this label that 
is used by the Disk Operating System pro­
grams is the address of the area containing 
the file labels. 

Additional Volume Lab~ls 

The standard volume label can be followed 
by one to seven additional volume labels 
(starting with the fourth record on cylin­
der 0, track 0). These labels must contain 
the label identifier VOL2, VOL3, etc. in 
the 4-byte key fields and in the first four 
bytes of the data fields. The other 76 
bytes can contain whatever information the 
user requires. rhese labels are not read 
or processed by IOCS. If required, they 
must be read by using physical I/O macro 
instructions. 

Creation of Volume Lapels 

All volume labels (the standard label and 
any additional labels) are written by the 
initialize-disk or initialize-data-cell 

48 

utility programs at the time the pack or 
cell is prepared for use. The information 
in the standard volume label is checked, 
but never altered, by 10CS during file 
processing. 

STANDARD FILE LABELS 

A standard file label or set of file labels 
identifies a particular logical file, gives 
its location(s) on the pack or cell, and 
contains information to prevent premature 
destruction of current files. The indexed­
sequential file management system also 
supplies and maintains info:cmation in the 
file labels to further define an indexed­
sequential file. Other fields within the 
file labels are set aside for use by the 
Operating System/360 management features. 
The number and format of labels required 
for anyone file depends on the file 
organization structure and the number of 
separate areas (extents) used by the file 
(see Standard File Label Formats). 

Volume Table of Contents (v~rOC) 

All standard file labels are grouped 
together and stored in a specific area on 
the pack or cell. Because I=ach file label 
contains file limits, the group of labels 
is essentially a directory of all data 
records on the volume. Therefore, it is 
called the volume table of contents (VTOC). 
The VTOC itself is a file of records (one 
or more standard label records per logical 
file) and is defined as such with its own 
file label. The label of the VTOC is the 
first record on the VTOC. This label iden­
tifies the file as the VTOC file and gives 
the file limits of the VTOC .. 

Preformattinq the VTOC: The VTOC is pre­
formatted by the initialize--disk or 
initialize-data-cell program. The user 
specifies its location and length when 
initially preparing the volume for use. It 
can be placed anywhere within the volume 
with the following restrictions: 

1. For the 2311, it must be within cylin­
ders 0-199 (cylinders 200-202 are used 
as the alternate track area). For the 
2321, it must be within ~ubcell~ 
strip 0, cylinder 0 and subcell 19, 
strip 5, cylinder 4 (strips 6-9 are 
used as the alternate track area). 

2. If it is on a system residence disk 
pack, it must be outside of the resi­
dence area. 

3. It must be one or more full tracks, 
with the single exception noted in 



number 5. 
4. It must be contained within one cylin­

der. It cannot overflow onto another 
cylinder. 

5. If it is on a disk pack that is not 
used for system residence, it can begin 
on cylinder 0, track 0, immediately 
following the last volume label. 

The utility program used for preformatting 
writes the foundation records that are to 
be filled in later. Each record location 
is written with a 44-byte key field and a 
96-byte data field. Both these fields in 
each record are filled with binary zeros. 
The initializing program then writes the 
label for the VTOC itself in the first 
record location. This label is described 
as Format 4 under Standard File Label For­
mats. 

The second record in the VTOC is also 
reserved at this time by inserting a hexa­
decimal 05 in each of the f i:r'st four bytes 
of the key field and a EBCDIC value 5 in 
the first byte of the data field. This 
label is used by the Direct-Access Device 
§.pace ~anagement (DADSM) facIlity of Oper­
ating System/360. It is not used or main­
tained by the Disk Operating System pro­
grams. The label is describ€!d as Format 5 
in the next section. 

STANDARD FILE LABEL FORMATS 

All standard file labels are written in the 
preformatted 140-byte records in the VTOC 
(44-byte key and 96-byte data). The field 
types contained within the labels written 
for data files follow three standard for­
mats. In addition to these t:hree formats, 
there are the two special labels: the one 
used for the VTOC itself, and the DADSM 
label (see preformatting the VTOC). The 
format of a label is identified by the 
value in the first byte of the data field. 
This is an EBCDIC value from 1 to 5 indi­
cating label format 1 to 5. 

Format 1: This format is us«~d for all 
logical files. It is always the first of 
the series of labels when a file requires 
more than one label (as discussed in for­
mats 2 and 3). 

The format-1 label identifies the logi­
cal filej(by a file name assigned by the 
user and included in the 44-byte key area), 
and it. contains file and data-record speci­
fications. It also provides the addresses 
for three separate areas (ext.ents) for the 
file.. If the file is' scatte:ced over more 
than three separate areas, a format-3 label 
is also required. In this case, the 
format-1 label points to the second label 
set up for the file on this 'volume. 

If a logical file is recorded on more 
than one volume, a format-1 label is always 
in the VTOC for each volume. The format-1 
label is illustrated in Appendix B. 

Format 2: This format is required for any 
file that is organized by the indexed­
sequential file management system. The 
44-byte key area is not used by the Disk 
Operating System programs. Operating 
System/360 uses this area to describe the 
second-level and third-level master 
indexes. The 96-byte data area contains 
additional specifications unique to this 
file organization (such as the track res­
erved for indexes). 

If an indexed-sequential file is record­
ed on two or more volumes, the format-2 
label is used on the first volume only. It 
is no~ repeated on the additional volumes 
(as the format-1 label is). The format-2 
label is illustrated in Appendix C. 

Forma:£2.:.. If a logical file uses more than 
three extents of any volume, this format is 
used to specify the addresses of the addi­
tional extents. It is used only for extent 
information, and the entire 140 bytes pro­
vide for as many as 13 extents) 

The format-3 label is pointed to by the 
format-1 label for the logical file or by a 
preceding format-3 label. It is included 
as required on the first volume or any 
additional volumes if the logical file is 
recorded on two or more volumes. The 
format-3 label is illustrated in Appendix 
D. 

Format 4: The format-4 label is used to 
define the VTOC itself. This is always the 
first label in the VTOC. This label is 
also used to provide the location and num­
ber of available tracks in the alternate 
track area. The format-4 label is illus­
trated in Appendix E. 

Format 5: This label is used by the 
System/360 Operating System for Direct­
Access Device Space Management (DADSM). 
The Disk Operating System programs do not 
use or maintain this label, although it is 
reserved by the initialize-disk and 
initialize-data-cell utility programs. The 
format-5 label is illustrated in Appendix 
F. 

DASD USER HEADER AND TRAILER LABELS 

The user can include additional labels to 
further define his file, if he desires, 
provided the file is processed by the rou­
tines of either the sequential or the 
direct-access methods or with the physical 

DOS Data Management Concepts 49 



I/O macro instructions (DTFPH). The DTFSD 
and DTFSR routines allow as many as eight 
user header labels and as many as eight 
user trailer labels. The DTFDA and DTFPH 
routines allow as many as eight user header 
labels, but no user-trailer labels. The 
DTFIS routine (for indexed-sequential 
files) makes no provision for any user 
labels. 

Note: All eight additional user labels may 
be used with a 2311 file. Five 
additional user labels are the maxi­
mum possible with a 2321 file. 

User header and trailer labels are not 
stored in the VTOC. Instead, they are 
written on the first track of the first 
extent allocated by the user for the logi­
cal file. The user label track is defined 
by IOCS as a separate extent in the 
format-1 label for the file. If a file is 
written on two or more volumes, the user 
label track is reserved in the first extent 
of each. 

The user header labels are read after 
the standard file labels are processed. As 
each user header label is read, the DTF 
routine branches to a routine supplied by 
the user to process the label. User trail­
er labels are read when DTFSD or DTFSR 
reaches the end of the last extent on each 
volume. They are furnished to the user's 
routine in the same way as the header 
labels. 

All user labels must be SO bytes long 
and they must contain standard information 
in the first four bytes. The remaining 76 
bytes may contain information desired by 
the user. 

The standard information in the first 
four bytes of a user header label is used 
as a key when reading or writing the label. 
The header labels are identified by UHL1, 
UHL2 ••• UHLS. The trailer labels, when 
applicable, are identified in the key field 
by UTLO, UTL1 ••. UTL7, although the first 
four bytes of the SO byte labels contain 
UTL1, UTL2 ••• UTLB. Each user label set 
(header or trailer) is terminated by an 
end-of-file record Ca record with data 
length 0). For example, if a file has five 
header labels and four trailer labels, the 
user label track contains: 

50 

RO 

R1 

R2 

R3 

R4 

R5 

R6 

R7 

RS 

R9 

R10 

R11 

Standard Information 

Key 
Field 

UHL1--user's 1st header label 

UHL2--user's 2nd header label 

UHL3--user's 3rd header label 

UHL4--user's 4th header label 

UHL5--user's 5th header label 

UHL6--end-of-file record 

UTLO--user's 1st trailer label 

UTL1--user's 2nd trailer label 

UTL2--user's 3rd trailer label 

UTL3--user's 4th trailer label 

UTL4--end-of-file record 

When files are processed by the direct­
access method, or by physical IOCS defined 
with the DTFPH statement MOUNTED=ALL, only 
user header labels can be used. In this 
case the user label track contains~ 

RO 

R1 

R2 

R (n) 

RCn+1) 

R(n+2) 

Standard information 

Key 
Field 

UHL1--user's 1st header label 

UHL2--user's 2nd header label 

UHL(n)--user's nth header label, 
where n S S 

UHLCn+1)--end-of-file record 

UTLO--end-of-file record 

DASD LABEL PROCESSING 

All DASD label processing is performed by 
the transient label-processing routines of 
the supervisor. These rout~ines use the 
information stored in the label information 
area of the resident pack. This 
information is supplied by the DLBL and 
EXTENT job control cards. A DLBL card must 
be supplied for each logical file, and an 
EXTENT card must be supplied for each 
extent in which the file is located. 

Note: Job Control information previously 
supplied on VOL, DLAB and XTENT 
statements should now be supplied on 



the simplified DLBL and EXTENT 
statements. However, DOS will con­
tinue to accept the information in 
the previous form. 

DASD Output Files 

The DTFSD and DTFSR routines process the 
labels of a sequential file (input or 
output) one volume at a timE~. For DTFSR, 
as each extent is checked, IOCS can pass 
control to a user' s extent-E~xit routine. 
When the end of the last ex1:ent on a volume 
is reached, an automatic OPEN is issued for 
the next volume. The DTFDA (direct-access 
method) and DTFIS (indexed sequential) 
routines require that all volumes be on­
line for the initial OPEN. DTFPH can be 
used to process Sequential or Direct Access 
files. 

The actual label processing consists of 
the following checks: 

DASD Input Files 

• 

-

• 

The file name entry is ithe only one I-
required for the DLBL control card. 

• 

• 

• 

• 

• 

-

All other entries are optional. If any 
optional entry is specified, it is 
checked as described in the following. 
Any entry not specified will not be 
checked. 

The volume serial numbers in the volume 
labels are compared to -the file serial 
numbers in the EXTENT cards. 

-

Fields 1-3 in the forma-t-1 label are -
compared to the corresponding fields in 
t.he DLBL card. Fields lij-6 are then 
checked. 

Each of the extent definitions in the 
format-1 and format-3 labels is checked 
against the limit fields supplied in 
the EXTENT cards. 

If user header labels a:re indicated 
(when using DTFSD, DTFSR, DTFPH, or -
DTFDA), they are read as each volume is 
opened. After reading each label, the 
OPEN routine branches to the user's 
label routine to perform any processing 
necessary. 

If user trailer labels are indicated 
(when using DTFSD or DTFSR), they are 
read after reaching the end of the last 
extent on each volume or an end-of-file 
read by logical IOCS. .As with the user 
header labels, the trailer labels are 
processed by the user's routine. 

The file name entry is the only one 
r?quired for the DLBL control card. 
All other entries are optional. If any 
optional entry is specified, it is 
checked as described in the following. 
For any entry not specified, IOCS fills 
in the required information with 
default options. 

The volume serial numbers in the volume 
labels are compared to the volume seri­
al numbers in the EXTENT cards. 

The extent definitions in all labels in 
the VTOC are checked to determine if 
any overlap into areas defined in the 
EXTENT cards. If any do overlap, the 
expiration date is checked against the 
"today's date" in the communication 
region. If the expiration date has 
passed, the old labels are deleted. If 
not, the operator is notified of the 
condition. 

The new format-1 label is written with 
information supplied in the DLBL card. 
If an indexed-sequential file is beinq 
processed, the DTFIS routine supplies 
information for the format-2 label. 

The information in the EXTENT cards is 
placed in the format-1 labels and, if 
necessary, additional format-3 labels. 

If user header labels are indicated 
(when using DTFSD or DTFSR, DTFPH, or 
DTFDA), the user's label routine is 
entered to furnish the labels as each 
volume is opened. This can be done for 
as many as eight user header labels per 
volume. As each label is presented, 
IOCS writes it out on the first track 
of the first extent of the volume. 

If user trailer labels are indicated 
(when using DTFSD or DTFSR), the user's 
label routine is entered to furnish the 
labels when the end of the last extent 
on each volume is reached. This can be 
done for as many as eight user trailer 
labels. As each label is presented, 
laCS writes it out on the first track 
of the first extent of the volume. The 
CLOSE macro instruction must be issued 
to create trailer labels for the last 
volume of a file. 

DOS Data Management Concepts 51 



TAPE LABELS 

A tape file processed by the logical IOCS 
routines must conform to certain standards. 
These standards concern labels, placement 
of tape marks, and the grouping (or 
blocking) of tape records. Considerations 
of blocked records were discussed previous­
ly under Types of Records. This section 
(TAPE Labels) discusses the topics of tape 
labeling and the placement of tape marks 
(on both labeled and unlabeled files). 

Tape files can be processed with or 
without labels. If labels are present, 
they are classified as either standard or 
nonstandard. The standard label set 
includes the following types of labels: 

1. Standard volume label - fixed in length 
and format, processed by Ioes. 

2. Additional volume labels - fixed in 
length and identifier, but not fixed 
format; bypassed by DOS/360 IOCS. 

3. Standard file label - fixed in length 
and format, processed by Ioes. 

4. Additional file labels - fixed in 
length, identifier, and format; 
bypassed by 00S/360 IOCS. 

5. User labels - fixed in length and iden­
tifier, but not fixed format; read and 
written by Ioes, processed by user 
routine. 

The additional volume labels, additional 
file labels and user labels are classified 
as part of the standard label set even 

load 
Point 

Volume 
label 
(80 Char) 

Standard 
Header 
label 
for File A 
(80 Char) 

TM 

File 
A 

TM = Tape Mark 

( Standard 
) Trailer 

label for 

t File A 

) 
TM 

Figure 37. Tape File with Standard Labels 

52 

TM 

though they are not fixed-format. They 
are, however, standard in length (80 bytes) 
and have standard label identifier fields. 
Nonstandard labels, on the other hand, are 
unrestricted in size, format, or identifi­
cation. All these label types and the 
rules governing their positioning are des­
cribed in the following sections. 

STANDARD TAPE LABEL SET 

When standard tape labels are specified in 
the OTFMT or OTFSR entries, the minimum set 
of labels (Figure 37) allowed for 00S/360 
consists of: 

1. One standard volume label per reel. 

2. Two standard file labels for each logi­
cal file on the reel (one header label 
preceding the file and one trailer 
label following the f il,;;) • 

The user has the option of adding addition­
al header and trailer labels (see example 
in Figure 38): 

1. Up to seven additional volume labels. 

2. Up to eight user header labels and up 
to eight user trailer labels. 

Note: On 7-track tape, standard labels are 
written in the same density as the 
data on the tape. O~ll information 
on a tape reel must be written in a 
single density.) These standard 
labels are written with even parity 
in the translation mode. 

Standard File I I Stand'lrd 
Header B ) 
label for 
File B 

J Trailer ( label for 
File B 

( 

TM 
\ I 

TM TM TM 
...... ) t---' 



load 
Point 

Volume 
label 

Standard 
Header 
label 
for File A 

User 
Header 
l.abel 
for File A 

TM = Tape Mark 

TM 

File 
A 

TM 

Standard 
Troller 
label 
for File A 

User 
Troller 
label 
for File A 

TM TM 

Figure 38. Tape File with Standard and User Labels 

Standard Volume Label 

The standard volume label identifies the 
entire volume (or reel). If standard 
labels a~e specified for a file, every reel 
used for the file must have the standard 
volume label. It is always the first 
record on the reel. It is BO bytes long 
and follows a fixed format. The first four 
bytes contain the label identifier VOLle 
The standard tape volume label is identical 
to the standard DASD volume label except 
that the DASD label contains the address of 
the file label area on the volume. The 
format of the standard volume label is 
shown in Appendix A. 

The standard volume label contains a 
volume serial number. This number is 
assigned to the reel when it is prepared 
for use in the system. This number is 
never changed. It is repeated in the file 
labels for all files on the reel. 

when building output files. If an output 
tape specified to have standard labels is 
found to have no volume label by the OPEN 
routine, a diagnostic message is issued. 
This gives the machine operator an oppor­
tunity to supply a volume serial number so 
that, a volume label can be written on the 
output tape. 

STANDARD TAPE FILE LABELS 

Standard file labels are written before and 
after every logical file on a reel. These 
labels are referred to as file header 
labels or file trailer labels, depending on 
their position and use. They are always 80 
bytes long and always have the same format 
and content, with the following exceptions: 

1. The label identifier field (bytes 1-3) 
Additional Volume Labels contains: 

The standard volume label can be followed 
by up to seven additional volume labels. 
These labels are 80 bytes long and must 
contain the label identifier VOL2, VOL3, 
etc. in the first four bytes. The other 
76 bytes can contain whatever information 
the user requires. These labels are not 
processed by IOCS. IOCS bypasses all addi­
tiona.l volume labels on input files. 

Creat~ion of Volume Labels 

All volume labels (the standard label and 
any additional labels) are 'written by an 
IBM-supplied utility program at the time a 
reel is prepared for use. 'The information 
in the standard volume label is checked, 
but never altered, during file processing. 
IOCS bypasses all additional volume labels 

a. HDR to indicate a header label 
(precedes the data file). 

b. EOV to indicate an end-of-volume 
(end of reel) trailer label 
(written at the end of a reel, 
indicating that the file is contin­
ued on another reel). 

c. EOF to indicate an end-of-file 
trailer label (written at the end 
of the logical file). 

2. The block count field is used only in 
the EOF and EOV trailer labels. This 
field is blank in the HDR label. 

The standard tape file label is illus­
trated in Appendix G. 

DOS Data Management Concepts 53 



ADDITIONAL FILE LABELS 

Each standard file label (one header and 
one trailer) can be followed by up to seven 
additional file labels. These labels are 
80 bytes long and must contain the label 
identifier HDR, EOV, or EOF in the first 
three bytes. The fourth byte should con­
tain a character 2, 3, ••• 8, indicating the 
second, third ••• and up to the eighth file 
label. These labels are not processed by 
IOCS. If required, these labels must be 
written in the user's LABADDR routine by 
using physical 1/0 macro instructions. 
IOCS bypasses additional header labels on 
input files. 

USER HEADER AND rRAILER LABELS ON TAPE 

The user can include additional header and 
trailer labels to further define his file, 
if he desires. As many as eight additional 
header labels can be written after the 
standard.file header label, and as many as 
eight additional trailer labels can be 
written after the standard file trailer 
label (EOF and EOV). Each additional label 
in the set is 80 characters long. The 
first four characters of each additional 
label must contain standard identifying 
information. The remaining 76 characters 
can contain any information and arrangement 
desired by the user. The user header 
labels are identified by UHL1, UHL2 ••• UHL8 
in bytes 1-4. The user trailer labels are 
i.dentified by UTL1, UTL2 ••• UTL8 in bytes 
1-4. 

TAPE MARKS WITH STANDARD TAPE LABELS 

Figures 37 and 38 illustrate the use of 
tape marks with files that use the standard 
label sets. The sequence of items on the 
tape is: 

1. No tape mark preceding header label 
set. 

2. Header label set: 
Standard volume label (required) 
Additional volume labels (none to 

seven, optional) 
Standard file header label 

(required) 
Additional file labels (none to 

seven, optional) 
User header labels (none to eight, 

optional) 

3. Tape mark between header label set and 
first data record • 

• 54 

4. Physical records for file. 

5. Tape mark between last data record and 
trailer label set. 

6. Trailer label set: 
Standard file trailer label 

(required at end of file and end 
of volume) 

Additional file labels (none to 
seven, optional) 

User trailer labels (none to eight, 
optional) 

7. Tape mark after trailer label set. 

8. If multi-file reel, (EOF label) next 
standard file header label follows 
here. If single-file reel (EOF label) 
or if last file of a multi-file reel, 
another tape mark follows here. If 
multi-reel file (EOV label), one tape 
mark follows the EOV label. 

STANDARD TAPE LABEL PROCESSING 

Standard tape label processing is performed 
by the IOCS transient routines. These 
routines use the information stored in the 
label information area of resident pack. 
This information is supplied by the TLBL 
job control cards. Note that only one TLBL 
card need be supplied for each logical 
file, regardless of the number of reels 
required to make up the file. 

Note: Job Control information previously 
supplied on VOL and TPLAB statements 
should now be supplied on the sim­
plified TLBL statement. However, 
DOS continues to accept the informa­
tion in the previous form. 

The actual label processing consists of 
the following checks: 

Tape Input File 

• 

• 

The file name entry is the only one 
required for the TLBL control ca.rd. 
All other entries are optional. If any 
optional entry is specified, it is 
checked as described in the following. 
Any entry not specified will not be 
checked. 

The volume serial number in the stand­
ard volume label on the first or only 
reel is compared to the file serial 
number in the TLBL card. All other 
volume labels on all reels of the file 
are bypassed. 



I 

• 

• 

• 

• 

The contents of the TLBL. card are com­
pared to the corresponding fields in 
the standard file header label on the 
first reel. For successive reels of a 
multi-reel file, the volume sequence 
number is increased by one for each 
reel. 

If user labels are indicated, they are 
read into main storage by the OPEN 
routine for processing by the user's 
label routines. The user labels are 
read one at a time, until all have been 
processed. 

When a standard file trailer label is 
read, the block count is compared to a 
count accumulated by IOCS. 

If user trailer labels are indicated, 
they are read into main storage by the 
CLOSE routine for processing by the 
user's label routine. The user trailer 
labels are read one at a time until all 
have been processed. 

Tape 9utput File 

• The file name entry is the only one 
required for the TLBL control card. 

• 

• 

• 

• 

All other entries are optional. If any 
optional entry is specified, it is 
checked as described in the following. 
For any entry not specified, IOCS fills 
in the required information with 
default options. 

The volume serial number in the stand­
ard volume label on the first or only 
reel is compared to the file serial 
number in the TLBL card. All other 
volume labels on all reels are 
bypassed. 

The expiration date in the standard 
file header label is checked against 
the "today's date" in the communication 
region. If the expiration date has 
passed, the reel is backspaced to write 
the new standard file label. If not 
the operator is notified of the condi­
tion. This check is performed on each 
reel of a multi-reel output file. If 
no file label is present, the tape is 
considered expired. 

The new standard file label is written 
with the information supplied in the 
TLBL card. For multi-reel files, the 
volume sequence number is increased by 
1 for each successive reel. 

If user header labels are indicated, 
the user's label routine is entered to 

• 

• 

• 

furnish the labels as each reel is 
opened. This can be done for as many 
as eight user header labels per file. 

If end of reel is sensed before com­
pleting the file, an EOV trailer label 
is written with all fields presented in 
the TLBL card plus a block count. 

When end of file is reached, an EOF 
trailer label is written identical to 
the EOV label previously mentioned. 

If user trailer labels are indicated, 
the user's label routine is entered to 
furnish the labels after each trailer 
<EOV or EOF) label is written. This 
can be done for as many as eight user 
trailer labels) 

NONSTANDARD TAPE LABEL~ 

Any tape labels that do not conform to the 
standard label specifications are consid­
ered nonstandard. If they are to be read, 
checked, or written, it must be done by the 
user. On input files, the nonstandard 
labels mayor may not be followed by a tape 
mark. Therefore, four conditions are pos­
sible: 

1. Nonstandard label(s), followed by a 
tape mark, to be checked. 

2. Nonstandard label(s), not followed by a 
tape mark, to be checked. 

3. Nonstandard label(s), followed by a 
tape mark, which are not to be checked. 

4. Nonstandard label(s), not followed by a 
tape mark, which are not to be checked. 

For conditions 1 and 2, the DTFMT or DTFSR 
entries must specify nonstandard labels and 
the address of a user-written routine to do 
the reading or writing. 

For condition 3, nonstandard labels must 
be specified, but the address of a user 
routine is omitted. IOCS skips all labels, 
passes the tape mark, and positions the 
tape at the first data record to be read. 

For condition 4, nonstandard labels and 
a user address are specified. IOCS can not 
distinguish labels from data records 
because there is no tape mark to indicate 
the end of the labels. Therefore, to posi­
tion the tape at the first data record, the 
user must read all labels. 

with nonstandard labels when an end-of­
file or an end-of-volume condition exists, 

DOS Data Management Concepts 55 



the user indicates to IDes which condition 
it is. On end of file, IDes branches to 
the user's end-of-file address. On end of 
volume, IOCS initiates the end-of-volume 
procedures to close the completed volume 
and open the next volume for processing. 

On output files, nonstandard labels are 
written by the user's routine by using 
physical IDeS. The OPEN routine writes a 
tape mark between the user's nonstandard 
header labels and his first data record 
unless the DTF macro instruction has the 
entry: TPMARK=NO. The CLOSE routine writes 
a tape mark after the user's last data 
record before he writes his nonstandard 
trailer labels, and after the trailer 
laoels. 

UNLABELED TAPE FILES 

The DTF macro instruction specifies whether 
the first record of an unlabeled file is a 
tape mark. 

56 

Unlabeled input tape files mayor may 
not have a tape mark as thE? first record. 
(If the first record is noi: a tape mark, 
laCS assumes it is a data record.> Any 
tape that is to be read backward must have 
a tape mark as the first record ontape. 
Unlabeled output tape files (which are 
written by laCS) may be written with a tape 
mark as the first record. This allows for 
the use of the read-backward feature. 

Note: Seven-track tapes may be read 
backward only if they were written by a 
System/360, and they must not have been 
written in the conversion mode. 

When an unlabeled output file is speci­
fied, the OPEN routine assumes the mounted 
scratch tape is also unlabeled. Therefore, 
~!!Y~~!.~ting labelsL-!.nclufling the volume 
label, are destroyed. 



Volume 
Label 

Field Number 

I L1,t, 
Voiume 
Serial 
Number 

Data File 
Directory 
(Disk Only) 

Label 
Identifier 

Volume 
Security 

Volume Label Format (80 bytes) for Tape or DASD 

FIELD 

I. 

2. 

3. 

4. 

NAME AND LENGTH 

LABEL IDENTIFIER 
3 bytes 

VOLUME LABEL NUMBER 
1 byte 

VOLUMESER1AL NUMBER 
6 bytes 

VOLUME SECURITY 
1 byte 
(OS/360 only) 

Reserved Reserved 

DESCRIPTION 

Must contain VOL to indicate that 
this is a Volume Label. 

I ndicates the relative position (1-8) 
of a volume label within a group of 
volume labels. 

A unique identification code which is 
assigned to a volume when it enters 
an installation. This code may also 
appear on the external surface of the 
volume for visual identification. It 
is normally a numeric field 000001 to 
999999, however any or all of the 6 
bytes may be alphameric. 

Indicates security status of the volume: 
o = no further identification for each 

file of the volume is required. 
1 = further identification for each file 

of the volume is required before 
processing. 

Owner Name 
and Address Code 

FIELD 

5. 

6. 

7. 

8. 

9. 

81 

Reserved For Future Expansion 

NAME AND LENGTH 

DATA FILE DIRECTORY 
JO bytes 

RESERVED 
10 bytes 

RESERVED 
10 bytes 

OWNER NAME AND 
ADDRESS CODE 
10 bytes 

RESERVED 
29 bytes 

DESCRIPTION 

For DASD only. The first 5 bytes con­
tain the starting address (CCHHR) of 
the VTOC. The last 5 bytes are blank. 
For tape files, this field is not used and 
should be recorded as blanks. 

Reserved. 

Reserved. 

Indicates a specific customer, instal­
lation and/or system to which the 
volume belongs. This field may be a 
standardized code, name, address, etc. 
(05/360 only) 

Reserved. 

Note: All reserved fields should contain blanks to facilitate their use in the future. 
Any information appearing in these fields at the present time will be ignored by the 
Disk Operating System programs as well as the Operating System/360 programs. 



U'1 Field 
ex) 

9 
Reserved 

~I II I I I~ 

Option 
Codes 

l 
101112 13 

File 
Type 

~I"<t 10-0 r-;I~ (Xl (Xl (Xl (Xl (Xl (Xl 

t t 

Record 
Length 

i 

File Nome 

Key 
Location 

i 
14 15

1

16 17 18 

Secondary 
Allocation 

<>;1° (Xl 0- 0:: st~ ~ g?1 I I~ 
t 

Record Block Key lDota Set 
Format Length Length Indicators 

19 20 First Extent 
Lost 
Record 

<II 2122 23 
Upper

2425 0 Lower 
Pointer Jr limit limit 

~l I I I§ C!;I~ -Or-. 
~I I 1= =1 I I~ = -- 99 

J L~xtent 
Extent Type Sequence 

Number Indicator 

Format I: This format is common to all cIota fi les on Direct Access Storage Devices. 

FIELD 

1. 

NAME AND LENGTH 

FILE NAME 
44 bytes, alphameric 
EBCDIC 

DESCRIPTION 

This field serves os the key portion of 
the file label. 

Each file must have a unique file nome. 
Duplication of file names will couse 
retri eval errors. The fj Ie name can 
consist of three sections: 

1. File ID is an alphameric name 
assigned by the user and identifies 
the fi Ie. Can be 1-35 bytes if 
generation and version numbers 
are used, or 1-44 bytes if they 
are not used. 

2. Generation Number. If used, this 
field is separated from File ID by a 
period. It has the format Gnnnn, where 
G identifieS the field (.is the generation 
number and nnnn (in decimal) identifies 
the generation of the file. 

3. Version Number of Generation. 
If used, this section immediately follows 
the generation number and has the format 
Vnn, where V identifies the field as the 
version of generation number and nn 
(in decimal) identifies the version of 
generation of the file. 

I 2 

Identifier 

Additional Extent 

Sequence 
Number 

Additional Extent 
2829 

8 

System Code 

33 

32 Pointer 

I I I I I IE~ I I I II I~ ~I I I I§: 

NAME AND LENGTH DESCRIPTIO N 

Note: The Disk Operating System 
compares the entire field 
against the file nome given in 
the DLAB cord. The generation 
and version numbers are treated 
differently by Operating 
System/360. 

The remaining fields comprise the DATA portion of the file label: 

2. 

3. 

, ... 

5. 

FORMAT IDENTIFIER 
1 byte, EBCDIC numeric 

FILE SERIAL NUMBER 
6 bytes, alphameric EBCDIC 

VOLWv\[ SEQUENCE 
NUMBER 2 bytes, binary 

CREATION DATE 
3 bytes, discontinuous binary 

1 = Format 1 

Uniquely identifies a file/volume 
relationship. It is identical to the 
Volume Serial Number of the first 
or only volume of a multi-volume file. 

Iridic.otes the ufdt:f uf u vuluft'i€: relutiv.:: 
to the first volume on which the data 
file resides. 

Indicates the year and the cloy of the 
year the file was created. It is of 
the form YDD, where Y signifies the 
year (0-99) and DD the cloy of the 
year (1-366). 

I;t;>' 

I~ 
I~ 
to 

en 

~ 
Is 
I~ 
0 
;t;>' 

en 
0 

"'Zl 
H 
t"'I 
tz:I 

f; 
to 
tz:I 

~ 

"'Zl 
0 

~ 
1-:3 

~ 



FIELD NAME AND LENGTH DESCRIPTION FIELD NAME AND LENGTH DESCRIPTION ~ 

6. EXPIRATION DATE Indicates the year and the day of the Bit (1) 

3 bytes, discontinuous binary year the fi Ie may be deleted. The form Position Content Meaning ::I 
of this field is identical to that of Field 5. 

Q,a 
1-" 

Blocked records >< 
7A EXTENT COUNT Contains a count of the number of extents 

tx! 
for this file on this volume. If user labels 4 0 No truncated 
are used, the count does not include the records -user label track. This field is maintained by 0 

0 
the Disk Operating System programs. Truncated ::I 

records in file rt 
7B BYTES U SED I N LAST BLOCK Used by Operating System/360 only for 

1-" 

OF DIRECTORY partitioned (library Structure) data sets. 5 and 6 OJ Control character I[ 1 byte, binary Not used by the Disk Operating System. ASA code 
'>oJ 

7C SPARE Reserved. 10 Control Character 
1 byte mach i ne code 

8 SYSTEM CODE Uniquely identifies the programming system. 00 Control Character 
13 bytes The character codes that can be used in this not stated 

field are limited to 0- 9, A- Z or blanks. 
(OS/360 only) 7 0 Records have no 

9 RESERVED Reserved. keys 
7 bytes 

Records are 
10 FILE TYPE The contents of this field uniquely identify written with 

2 bytes the type of data fi Ie: keys. 

Hex 4000 = Consecutive organization 12. OPTION CODES Bits within this field are used to in-
1 byte dicate various options used in build-

Hex 2000 =" Direct-access organization ing the file. 

Hex 8000 = Indexed-sequential organiza-
Bit 

tion 0=0 
1 = Reserved 

Hex 0200 = Library organization 2 = Moster index present 
3 = Independent overflow present 

Hex 0000 = Organization not defined in 4 = Cylinder overflow present 

the file label. 5 = Reserved 
6 = Delete record (OS/360 only) 

11. RECORD FORMAT The contents of this field indicate the type of 7 = Reorganize (OS/360 only) 
1 byte records contained in the file: 13. BLOCK LENGTH indicates the block length for fixed 

Bit 
2 bytes, binary length records or maximum block size 

Position Conte~t Meoning 
for variable length blocks. 

14. RECORD LENGTH indicates the record length for fixed 
o and 1 01 Variable length 2 bytes, binary length records or the maximum record 

records length for variable length records. 

10 Fixed length 15. KEY LENGTH indicates the length of the key portion 

records 1 byte, binary of the data records in the file. 

16. KEY LOCATION indicates the high order position of 

;J::oI 
11 Undefined format 2 bytes, binary the data record. 

to 
to 2 0 No trock over- 17. DATA SET INDICATORS Bits within this field are used to 
(1) flow 1 byte indicate the following: 
::I 
OJ 
1-" Fi Ie is organized BIT 
>< using track over-

to flow (Operating 0 If on; indicates that this is the 
System/360 only) lost volume on which this file 

normally resides. This bit is used 
t11 3 0 Unblocked records by the Disk Operating System. 

'" 



FIELD 

18. 

19. 

20. 

NAME AND LENGTH 

SECONDARY ALLOCATION 
4 bytes, binary 

LAST RECORD POINTER 
5 bytes discontinuous binary 

SPARE 
2 bytes 

BIT 

2 

3 

DESCRIPTION 

If on, indicates that the data 
set described by this file must 
remain in the same absolute 
location on the direct access 
device. (OS/360 only) 

If on, indicates that Block 
Length must always be a multiple 
of 8tpytes. (OS/360 only) 

If on, indicates that this data 
file is security protected; a 
password must be prav ided in 
order to access it. (05/360 only) 

4-7 Spare. Reserved for future use. 

indicates the amount of storage to be 
requested for this data file at End of 
Extent. Th is field is used by Operating 
5ystem/360 only. It is not used by 
the Disk Operating 5ystem routines. 
The first byte of this field is an 
indication of the type of allocation 
request. Hex code C2 (EBCDIC B ) 
blocks (physical records), hex code 

E3 (EBCDIC T ) indicotes tracks, 
and hex code C3 (EBCDIC C ) 
indicates cylinders. The next three 
bytes of this field is a binary number 
indicating how I)'IQny bytes, tracks or 
cylinders are requested. 

paints to the last record written in a 
sequential or partition-organization 
data set. The format is TTRLL, where 
TT is the re lative address of the track 
containing the last record, R is the ID 
of the last record, and LL is the number 
of bytes remaining on the track following 
the last record. If the entire field 
contains binary zeros, the last record 
pointer does not apply. (05/360 only) 

Reserved. 

FIELD 

21. 

22. 

23. 

24. 

25-28. 

29-32. 

33. 

NAME AND LENGTH 

EXTENT TYPE INDICATOR 
1 byte 

EXTENT SEQUENCE NUMBER 
1 byte, binary 

LOWER LIMIT 
4 bytes, discontinuous binary 

UPPER LIMIT 
4 bytes 

ADDITIONAL EXTENT 
10 bytes 

ADDITIONAL EXTENT 
10 bytes 

POINTER TO NEXT FILE LABEL 
WITHIN THIS LABEL SET 
5 bytes, discontinuous binary 

DESCRIPTION 

indicates the type of extent with which 
the following fields are associated: 

HEX CODE 

00 Next three fields do not indicate 
ooy extent. 

01 Prime area (Indexed Sequential)i 
or Consecutive area, etc., (i.e., 
the extent containing the user's 
data recards.) 

02 Overflow area of an Indexed 
Sequential file. 

04 Cylinder Index or master Index 
area of an Indexed Sequential 
file. 

40 User label track area. 

8n Shared cylinder indicator, where 
n=I,2, or4. 

indicates the extent sequence in a 
multi-extent file. 

the cylinder and the track address 
specifying the starting point (lower 
limit) of this extent component. This 
field has the format CCHH. 

the cylinder and the track address 
specifying the ending point (upper 
I imit) of th is extent component. 
This field has the format CCHH. 

These fields have the same format as 
the fields 21-24 above. 

These fie Ids have the same format as 
the fields 21-24 above. 

the address (format CCHHR) of a 
continuation label if needed to 
further describe the file. If field, 10 
indicates Indexed Sequential 
organization, this field will paint to 
a Format 2 file label within this 
label set. Otherwise, it points to a 
Fum-Cit 3 file ~ube I, Cind theft Uii~Y 
if the fi Ie con lains more than three 
extent segments. This field confains 
all binary zeros if no additional file 
label is pointed to. 

(1 

g 
rt .... 

Il -



Field 

~ 
K 1 Address of K2 Last 2nd K3 

2nd Level Level Master 
Master Index Entry 
Index Address 

K4 K5 
Address of last 3rd 
3rd Level Level Master 
Master Index Index Entry 

Address 

Highest" R" on 
High Level l Highest "R" on 
Index Track r-Overflow Track Number Tracks 

Last Data II R" of Last for Highest Level 
Number of , --, Track in 1 i rData Record Index I 
Index Levels ~ Cylinder ~ On Shared Track + 

Spare 

K6 D1P~P~ 0 D4 D5 D6Pi D )S D D11 D12 D13 D14 D D16 D 
'0 -= Qj 8 10 ~ 15 Prime 17 

~ 1] 8. ~:::d 
~~J VI 

- NI 1 1 1 1 1 ex) 0-1 1 1 I~! 1 1 1 1 1 1 ~ Nil 1 I~ ~l .1 1 j 1 j 1 I 1 1 1 I 1 1 1 1 
K!y.ldentification 

D18 
Address of 
Cylinder 
Index 

Address of D 19 
Lowest Level 
Master 
Index 

D20 
Address of 
Highest Level 
Index 

Last Prime 
Data Record 
Address 

D21 Last 
Track 

D22 

Fo!mat Number TracJs Higtest "R" on Nu~ber Bytes StatL 
ID for Cylinder 

Overflow 
High Level Index 
Development 
Indicator 

Prime Track for Highest Indicator 
Level Index 

Last D24 

Number of 
Independent 
Overflow Tracks 

Last Independent 
Overflow Record 
Address 

Non-First Overflow 
Tag Deletion 
Count 

L...- Reference Count (RORG3) 

Cylinder 
Overflow 

D30 

Spare 

D31 

Pointer 

Format 2: This format is applicable only to Indexed Sequential data files. It is always pointed to by a Format 1 label. 

FIELD 

Kl 

K2 

K3 

K4 

NAME AND LENGTH 

KEY IDENTIFICATION 
I byte 

ADDRESS OF 2ND LEVEL 
MASTER J NDEX 
7 bytes, discontinuous binary 

LAST 2ND LEVEL MASTER 
INDEX ENTRY 
5 bytes, discontinuous binary 

ADDRESS OF 3RD LEVEL 
MASTER INDEX 
7 bytes, discontinuous binary 

DESCRIPTION 

This byte contains the Hex Code 02 
in order to avoid conflict with a file 
name. 

This field contains the address of the 
first track of the second level of the 
master index, in the form MBBCCHH. 
(05/360 only) 
This field contains the address of the 
last index entry in the second leve I 
of the master index, in the form 
CCHHR. (OS/360 only) 

This field contains the address of the 
first track of the third level of the 
master index, in the form MBBCCHH • 
(OS/360 only) 

FIELD 

K5 

K6 

D1 

D2 

NAME AND LENGTH 

LAST 3RD LEVEL MASTER INDEX 
ENTRY 
5 bytes, discontinuous binary 

SPARE 
19 bytes 

FORMAT I DE NTI FI ER 
1 byte, EBCDIC numeric 

NUMBER OF INDEX LEVELS 
1 byte, binary 

DESCRIPTION 

This field contains the address of 
the last entry in the third level of 
the master index, in the form 
CCHHR. (05/360 only) 

Reserved. 

2 = Format 2 

The contents of this fie Id indicate 
how many levels of index are 
present with an Indexed Sequential 
file. 

~ 
ttl 
ttl 
t'%J 
Z 
0 
H 
>< 
() 

CJ) 

1-3 

~ 
0 

~ 
0 

0 
~ 
CJ) 
0 

tzj 
H 
t"t 
t'%J 

s;: 
tx:I 
t'%J 

~ 

tzj 
0 
~ 

~ 
N 



'" I\.) 
FIELD NAME AND LENGTH DESCRIPTION FIELD NAME AND LENGTH DESCRIPTION 1;1:01 

D3 HIGH LEVEL INDEX DEVEOP- This field contains the number of tracks DI8 ADDRESS OF CYLINDER INDEX This field contains the address of the ('1) 

MENT INDICATOR determining development of Master 7 bytes first track of the cylinder index, in ::s 
0.. 

I byte, binary Index. (05/360 only) the form MBBCCHH. ~. 

X 

D4 FIRST DATA RECORD IN This field contains the address of the DI9 ADDRESS OF LOWEST-LEVEL This field contains the address of the () 

CYLINDER first data record on each cylinder in MASTER INDEX 7 bytes first track of the lowest-level index 
3 bytes the form HHR. of the high leve I indexes I in the form 

...... 
(') 

MBBCCHH. 0 
D5 LAST DATA TRACK IN This field contains the address of the ::s 

rt 
CYLINDERS 2 bytes last data track on each cylinder, in the D20 ADDRESS OF HIGHEST-LEVEL This field contains the address of the ~. 

form HH. INDEX 7 bytes first track of the highest level master It index, in the form MBBCCHH. 
D6 NUMBER OF TRACKS FOR This field contains the number of tracks 

CYLINDER OVERFLOW in cylinder overflow area. (05/360 only) D21 LAST PRIME DATA RECORD This field contains the address of the 
'-J 

I byte, binary ADDRESS 8 bytes last data record in the prime data 
area, in the form MBBCCHHR. 

D7 HIGHEST "R" ON HIGH-LEVEL This field contains the highest possible 
I NDEX TRACK I byte R on track containing high-level index D22 LAST TRACK INDEX ENTRY This field contains the address of the 

entries. ADDRESS 5 bytes last normal entry in the track index on 
the last cylinder in the form CCHHR. 

D8 HIGHEST "R" ON PRIME TRACK This field contains the highest possible 
I byte R on prime data tracks for form F records. D23 LAST CYLINDER INDEX ENTRY This field contains the address 

ADDRESS 5 bytes of the last index entry in the 
D9 HIGHEST "R" ON OVERFLOW This field contains the highest possible cylinder index in the form CCHHR. 

TRACK I byte R on overflow data tracks for form F 
records • D24 LAST MASTER INDEX ENTRY This field contains the address of 

ADDRESS 5 bytes the last index entry in the master 
DIO "R" OF LAST DATA RECORD ON This field contains the R of the last index in the form CCHHR. 

SHARED TRACK I byte data record on a shared track. 
D25 LAST INDEPENDENT OVERFLOW This field contains the address of 

Dll SPARE 2 bytes Reserved. RECORD ADDRESS 8 bytes the last record written in the 
current independent overflow 

DI2 TAG DELETION COUNT This field contains the number of area, in the form MBBCCHHR. 
2 bytes, binary records that have been tagged for 

deletion. D26 BYTES REMAINING ON This field contains the number of 
OVERFLOW TRACK bytes remaining on current 

DI3 NO N-FIRST OVERFLOW This field contains a count of the 2 bytes, binary independent overflow track. 
REFERENCE COUNT number of random references to a non- (05/360 only) 
(RORG3) 3 bytes, binary first overflow record. D27 NUMBER OF INDEPENDENT This field contains the number of 

OVERFLOW TRACKS (RORG2) tracks remaining in independent 
DI4 NUMBER OF BYTES FOR The contents of this field indicate how 2 bytes, binary overflow area. 

HI GHEST -LEVEL INDEX many bytes are needed to hold the 
2 bytes, binary h ighest-Ie\lel index in main storage. D28 OVERFLOW RECORD COUNT This field contains a count of the 

2 bytes, binary number of records in the overflow 
DI5 NUMBER OF TRACKS FOR This field contains a count of the area. 

HI GHEST -LEVEL INDEX number of tracks occupied by the 
I byte, binary highest-level index. D29 CYLINDER OVERFLOW AREA This field contains the number of 

COUNT (RORGJ) cylinder overflow areas full. 
DI6 PRIME RECORD COUNT This field contains a count of the 2 bytes, binary 

4 bytes, binary number of records in the prime data 
area. D30 SPARE Reserved. 

DI7 STATUS INDICATOR The eight bits of this byte are used 
3 bytes 

I byte for the following indications: D31 POINTER TO FORMAT 3 This field contains the address (in the 

bit description FILE LABEL 5 bytes form CCHHR) of c Format 3 fi!e label 
if more than 3 extent segments exist for 

0 last block full the data file within this volume. Other-
I last track full wise it contains binary zeros. 
2-7 must remain off (05/360 only) 



Field 

I 
L-..1 Extent 1 Extent 2 Extent 3 Extent 4 Extent 5 Extent 6 Extent 7 

Key 
2 1718]9 30 ldent- Lower Upper 

ification limit limit 

-I 1 I~ lit': -0 r-.I I Ie =11 J:! ~ 11 I I 11~~ 111 I I I;;~ I I I I I I~ ~~ I I I I I l:g;g I I I I I I~:g I I I II ~ 
t 1 

Extent Sequence 
Number 

Extent Type 
Indicator 

Extent 8 
31 

~ I I I 1 I 1:2 cg 

Extent 9 Extent 10 Extent 11 

1 I I I I I~~ 1 I I I ll~~ J 11 

t .. Format Identifier 

Extent 12 Extent 13 55 

54 
Pointer 

III~= I I 1 I II~~ I I I 111~ ~J J ll~ 

Format 3: This format is used to describe extra extent segments on the volume if there are more than can be described in the Format 1 (and Format 2 if it exists) file label. This file label is 
pointed to by a Format 1, Format 2, or another Format 3 file label. 

2-17 

18. 

NAME AND LENGTH 

KEY IDENTIFICATION 
4 byte 

EXTENTS (in KEY) 
40 bytes 

FORMAT IDENTIFIER 
1 byte, EBCDIC numeric 

DESCRIPTION 

Each byte of this field contains the 
Hex Code 03 in order to avoid conflict 
with a data file name. 

Four groups of fields identical in format 
to fields 21-24 in the Format 1 label are 
contained here. 

3 :: Format 3 

FIELD 

]9-54 

55. 

NAME AND LENGTH 

ADDITIONAL EXTENTS 
90 bytes 

POI NTER TO NEXT 
FILE LABEL 
5 bytes 

DESCRIPTION 

Nine groups of fields identical in format 
to fields 21-24 in the Format 1 label are 
contained here. 

This field contains the address (in the form 
CCHHR) of another Format 3 label if 
additional extents must be described. 
Otherwise, it is all binary zeros. 



Format 4: 

FIELD 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

SA. 

SB. 

1 2 Device Constants 9 

Key 

10 VTOC Extent 15 

11 
Reserved 

14 
Reserved 

This format is used to describe the Volume Table of Contents an(:l is always the first file label in the VTOC. There must be one and only one of these Format 4 file labels per volume. 

NAME AND LENGTH 

KEY FiElD 
44 bytes, binary 

FORMATID 
1 byte, EBCDIC numeric 

LAST ACTIVE FORMAT 1 
5 bytes 

AVAILABLE FILE LABEL RECORDS 
2 bytes, binary 

HIGHEST ALTERNATE TRACK 
4 bytes 

NUMBER OF ALTERNATE TRACKS 
2 bytes, binary 

VTOC INDICATORS 
1 byte 

NUMBER OF EXTENTS 
1 byte 

RESERVED 
2 bytes 

DESCRIPTION 

Each byte of this field contains the 
Hex Code 04 in order to provide a unique 
key. 

4 = Format 4 

Contains the address (in the form CCHHR) of 
the last active Format 1 fi Ie label. It is used 
to stop a search on a fi Ie name. (OS/36O only) 

Contains a count of the number of unused 
records in the VT OC • 

Contains the highest address (in the form 
CCHH) of a block of tracks set aside as 
a I ternates for bad tracks. 

Contains the number 'of alternate tracks 
available. 

Bit 0, if on, indicates no DADSM (format 5) 
label, or DADSM label does not reflect 
true status of volume. 

Bit 1-7 not used. 

Contains the hexadecimal constant 01, to 
indicate one extent in the VTOC. 

Reserved. 

FIELD 

9. 

NAME AND LENGTH 

DEVICE CONSTANTS 
14 bytes 

DESCRIPTION 

This field contains constants 
describing the device on which 
the volume was mounted when 
the VTOC was created. The 
following describes each of the 
subfields • 

Device Size (4 bytes) - The number of cylinders (CC) and tracks per cylinder (HH). 

Track Length (2 bytes) - The number of available bytes on a track exclusive of home 
address and record zero (record zero is assumed to be a non-keyed record with an 
eight byte data field). 

Record Overhead (3 bytes) - The number of bytes required for gaps, check bits, and 
count field for each record. This value varies according to the record characteristics 
and thus is broken down" into three subfields. 

I - Overhead required for a keyed record other than the last record on the track. 
L- Overhead required for a keyed record that is the last record on the track. 
K- Overhead bytes to be subtracted from lor L if the record does not have a key 

field. 

Flag (l byte) - Further defines unique characteristics of the device. 

bits 

0-5 
6 
7 

reserved 
CC and HH must be used as l-byte values, as in the case of the 
2321. A tolerance factor must be applied to all but the last 
record on the trock. 



FIELD NAME AND LENGTH DESCRIPTION 

Tolerance (2 bytes) - A val ue that is to be used to determine the effective length of 
the record on the trock. The effective length of a record is calculated in the foiiow­
ing manner: 

1. Add the key length to the data length of the record. 

2. Test bit 7 in the flag byte: 
a. if 0 go to 3 
b. multiply value from I "by the tolerance factor 
c. shift result 9 bits to the right 

3. Add overhead bytes to the result. 

NOTE: Step 2 is not required if the calculation is for the last record on the track. 

Labels/Track (l byte) - A count of the number of labels that can be written on each 
track in the VTOC. (Number of full records of 44-byte key and 96-byte data lengths 
that can be contained on one track of this device). 

Directory Blocks/Track (l byte) - A count of the number of directory blocks that can 
be written on each track for an Operating System/360 partitioned data set. (Number 
of full records of 8-byte key and 256-byte data lengths that can be contained on one 
track of this device.) 

The following illustrates the device constants field for the various direct access devices: 

Device CC 

1
2311 
2314 
2321 
2301 
2302 
7320 

203 
203 
20 10 
0 
250 
0 

Track 
HH Length 

10 3656 
20 7294 
5 20 2027 
200 20616 
46 5070 
400 2129 

Labels/ Dir Blk/ 
L ~ Flag Tolerance Track Track 

82 55 20 I 537 16 10 
146 45 45 I 2137 25 17 
101 47 16 3 537 8 5 
186 186 53 0 512 63 45 
82 55 20 I 537 22 14 
III 43 14 I 537 8 5 

NOTE: CCHH for the 2321 above are separate I byte quantities. 

10. 

11-14. 

15. 

RESERVED 
29 bytes 

VTOC EXTENT 

RESERVED 
25 bytes 

Reserved. 

These fields describe the extent of the 
VTOC, and are identical in format to 
fields 21-24 of the Format I file label. 
Extent type OJ (prime data area). 

Reserved. 

-o 
g 
rt ..,. 
::t 
~ 
('I) 
Q.. 



Field 

23 

Available Extents in Key 

t 
Key 
Identification 

Available Extents 

Format 5: This format is used for Direct Access Device Space Management (DADSM) only. 

FIELD 

1. 

2. 

3-9 

NAME AND LENGTH 

KEY IDENTIFICATION 
4 bytes 

AVAILABLE EXTENT 
5 bytes 

AVAILABLE EXTENTS IN KEY 
35 bytes 

I Note: Format 5 label used by OS/36O only. 

DESCRIPTION 

Each of these four bytes is a hex 05. 

This field indicates on extent of space 
avai lable for allocation to 0 data file. 
The first two bytes are relative track 
address. The next two are the number 
of full cylinders included in the extent. 
The last byte is the number of tracks in 
oddition to the cylinders in the extent. 

These fields are identical to field 2. 
They are in relative track address 
sequence. 

91011 

t 
Format 
Identifier 

FIELD 

10. 

11-28 

29. 

Available Extents 

28 29 
Pointer 
to Next 
Format 5 

NAME AND LENGTH 

FORMA T IDENTIFIER 
1 byte EBCDIC numeric 

AVAILABLE EXTENTS 
90 bytes 

POINTER TO NEXT FORMAT 5 

DESCRIPTION 

5 = Format 5 

These fields are the same as 
Field 2. There are 26 ovailable 
extent fie Ids in the Format 5 
label. 

Contains the oddress (in the form 
CCHHR) of the next Format 5 
file label if one exists. 



~ ro ro 
(1) 
::3 
0. .... 
>< 
Cil 

0'1 
....J 

File 
Label 

Field Number 

Label 
Identifier 

File Identifier 

3 
File 
Serial 
Number 

4 5 6 
Volume File 
Sequence Sequence 
Number Number 

7 8 

Version 
Number of 
Generation 

The standard tape file iabei format and contents are as foiiows: 

FIELD NAME AND LENGTH DESCRIPTION 

l. LABEL IDENTIFIER identifies the type of label 
3 bytes, EBCDIC HDR = Header -- beginning of a data 

file 
EOF = End of File -- end of a set of 

data 
EOV = End of Volume -- end of the 

physical reel 

2. FILE LABEL NUMBER always a I 
1 byte, EBCDIC 

3. FILE IDENTIFIER uniquely identifies the entire file, 
17 bytes, EBCDIC may contain only printable characters. 

4. FILE SERIAL NUMBER uniquely identifies a file/volume 
6 bytes, EBCDIC relationship. This field is identical 

to the Volume Serial Number in the 
volume label of the first or only 
volume of a multi-volume file or a 
multi-file set. This field will normally 
be numeric (000001 to 999999) but may 
contain any six alphameric characters. 

5. VOLUME SEQUENCE indicates the order of a volume in a 
NUMBER 4 bytes given file or multi - file set. This 

number must be numeric (0000-9999). 
Multiple volumes of an output file will 
be numbered in consecutive sequence. 

6. FILE SEQUENCE NUMBER assigns numeric sequence to a file 
4 bytes within a multi -file set. 

7. GENERATION NUMBER numerically identifies the various 
4 bytes editions of the file. 

a. VERSION NUMBER OF indicates the version of a generation 
GENERATION 2 bytes of 0 file. 

FIELD 

9. 

10. 

11. 

12. 

13. 

14. 

9 

Expiration 
Date 

10 il 

File 
Security 

Blo.ck 
Count 

12 

NAME AND LE NG TH 

CREATION DATE 
6 bytes 

EXPIRATION DATE 
6 bytes 

FILE SECURITY 
I byte 

BLOCK COUNT 
6 bytes 

SYSTEM CODE 
13 bytes 

RESERVED 
7 bytes 

13 14 

System Code Reserved 

DESCRIPTION 

indicates the year and the day of the 
year that the file was created: 

Position Cade Meaning 

I blank none 
2-3 00-99 Year 
4-6 001-366 Day of Year 

(e.g., January 31, 1965 I would be 
entered as 65031). 

indicates the year and the day of the 
year when the file may become a 
scratch tape. The format of this field :t:" 
is identical to Field 9. On a multi- '"0 
file reel, processed sequentially, all '"0 
files are considered to expire on the I:J:J 

Z 
same day. 0 

H 

indicates security status of the file. ~ 

o = no security protection Cil 
1 = security protection. Additional . 

identification of the file is en 
required before it can be t-3 
processed. ~ 

0 
indicates the number of data blocks ;1:>1 

written on the file from the last ::0 
0 

header label to the first trailer lobel, 
exclusive of tope marks. Count does ~ 

not i ncl ude checkpo i nt records. This ~ 
field is used in trailer labels. ttl 

t'Ij 
uniquely identifies the programming H 
system. ~ 
Reserved. Should be recorded as ~ 
blanks. G; 

ttl 
I~ 



Form C24-3427-3, Page modified by TNL N24-5349, May 6, 68 

APPENDIX H: PLANNING INFORMATION FOR FUTURE SYSTEM RELEASE 

This appendix describes a future release of 
the Disk Operating System and is included 
for planning purposes only. When coding 
for the future release is available, this 
appendix will be deleted, and the informa­
tion will be incorporated in the appropriate 
sections of the publication. A future 
release will provide: 

• A new system of DASD addressing, called 
Relative Track Addressing. 

• Trailer Label Processing for Direct 
Access Management. 

RELATIVE TRACK ADDRESSING 

Relative Track Addressing is more convenient 
to use than the physical address (MBBCCHHR). 
In the new system, the programmer has two 
main advantages: 

1. The data in the file appears to be one 
logically continuous area, although it 
may be physically non-contiguous. 

2. The user needs to know only the relative 
position of the data within the file; 
its actual address is not required. 

The relative address may be specified by 
the user in either of two formats: Hexa­
decimal (TTTR), or Zoned Decimal 
(TTTTTTTTRR). In the hexadecimal format, 
TTT represents the track number relative to 
the start of the data file, and R represents 
the record number on that track. In the 
zoned decimal format, TTTTTTTT represents 
the track number relative to the start of 
the data file, and RR represents the record 
number on the track. 

The hexadecimal format requires 4 bytes, 
while the zoned decimal format requires 10 
bytes, as shown in the following illustra­
tion. In this illustration the relative 

• 67.1 

address of the 15th record of the 675th 
track of the data file is used as an 
example: 

Hexadecimal 4 bytes, (X'0002A30F') 
in the form TTTR 

r---T----r----T----' 
: T : TIT I R : 
I I I I I 
I 00 : 02 I A3 I OF I 
I dd I dd I dd , dd I 
I I I I L ___ ~ ____ • ____ ~ ____ ~ --------------- --~ 
Relative 
Track No. 

Record 
No. 

Zoned Decimal -- 10 bytes, (C'00000675l5') 
in the form TTTTTTTTRR 

r ---r - - -.- - - -,- - - ..... - - - -~ - - ..... - - - -.- - --,-- --,- - - -., 
IT IT IT IT IT IT I 'I' IT IR IR I I I I I I I I I I I I 
I I I I I I I I I I I 
I I I I I I I I I I I 
I FO I FO I FO I FO I FO I F6 I F'7 I F5 I Fl I C5 I 

I d l d l d l d l d l d l d l d l d l d I I Z I Z I Z I Z I Z I Z I Z I Z I Z I S I ... __ -' ___ -' ____ l- _ _ ...J _ ___ l-___ ' __ . __ , ___ _ L.. __ ...J _ ___ oJ --- --- ------~ Relative Track No. Record No. 

Specific information on the implementa­
tion of Relative Track Addressing can be 
found in the Supervisor and I/O Macros 
publication referenced on the front cover 
of this manual. 

DASD TRAILER LABEL PROCESSING 

This new DTFDA option allows user standard 
labels to be read or written at CLOSE time. 
If used, this option requires that header 
labels must also be read or written. 
Specific information on the implementation 
of Trailer Label Processing can be found in 
the Supervisor and I/O Macros publication 
referenced on the front cover of this 
manual • 



Form C24-3427-3, Page modified by TNL N24-5349, May 6, 68 

INDEX 

Whenever one reference has more signifi­
cance than the others for an item, that 
page number is listed first. 

Access Mechanism (IBM 2311) 
Access Mechanism (IBM 2314) 
Access Methods 8 

Direct Access 34 

40 
42 

Iridexed Sequential File Management 
System 25 

Sequential Access 10 
Additional File Labels TAPE 
Additional Volume Labels DASD 
Additional Volume Labels TAPE 
Alternate Tracks 47 

54 
48 
53 

Appendix A: Standard Volume Label, 
TAPE or DASD 57 

Appendix B: Standard DASD File Labels, 
Format 1 58 

Appendix C: Standard DASD File Labels, 
Format 2 61 

Appendix D: Standard DASD File Labels, 
Format 3 63 

Appendix E: Standard DASD File Labels, 
Format 4 64 

Appendix F: Standard DASD File Labels, 
Format 5 66 

Appendix G: Standard Tape File Label 

IAPpen.dix H: Planning Information for 
Future System Release 67.1 

Available Independent Overflow 
Tracks (ISFMS) 32 

Blocking, Record 8 
Buffered Devices 12 

Capacity Record (DAM) 35 
Card Readers and Punches (Data 

Formats) 11 
CCB 5 
CCB Macro Instruction 6 
CCW 5 
Channel Command Word (CCW) 5 
Channel Scheduler 6 
CHECK 24 
Check Bytes (DASD) 45 
CNTRL (DAM) 37 
CNTRL (GET-PUT) 22 
CNTRL (READ-WRITE) 25 
Command Control Block (CCB) 5 
Console (Data Formats) 11 
Control Character 10 
Correction of a Defective Track 
Count Area (DASD Records) 45 
Creating an Indexed-Sequential 
Creating Direct Access Files 

Random Files 39 
Sequential Files 38 

Creation of Volume Labels 
DASD 48 
TAPE 53 

Cylinder Concept 40 

68 

47 

File 30 

67 

Cylinder Index 26 
Cylinder Overflow Areas Full (ISFMS) 34 

DADSM - Format V Label 66, 49 
DASD Initialization and Maintenance 46 
DASD Label Processing 

DASD Input Files 51 
DASD Output Files 51 

DASD Labels 47 
DASD Record Format 45 
DASD Track Format 44 
DASD User Header and Trailer Labels 49 
Data Area (DASD Records) 46 
Data Files 8 
Data Format-Device Type Relationships 11 
Data Length (DASD Records) 46 
Defective Track, Discovery of 47 
Device Independent Macros 8 
Direct Access Device Space 

Management (DADSM) 49, 66 
Direct Access Devices (Data Formats) 11 
Direct Access Files, Creation of "38 
Direct Access Method (DAM) 34 
Direct Access Storage Devices (DASD) 40 
Discovery of a Defective Track 47 
DISEN 22 
Disk Storage Space Formula 33 
DSPLY (Read-Write) 25 
DTF Tables 8 
DTFCD 7 
DTFCN 7 
DTFDA 7 
DTFDI 7 
DTFDI/DIMOD Macros 8 
DTFIS 7 
DTFMR 7 
"DTFMT 7 
DTFOR 7 
DTFPH 7" 
DTFPR 7 
DTFPT 7 
DTFSD 7 
DTFSR 7 

ENDFL 
ESETL 
EXCP 
EXTRN 

30 
30, 31 

6 
5 

FEOV (GET-PUT) 22 
FEOV (READ-WRITE) 
File Labels 

Additional Tape 
Standard DASD 
Standard Tape 

Files, Data 8 

25 

54 
48 
53 

Fixed Length (Format F) Records 
Flag Byte (DASD) 45 

9 

Format F: (Fixed Length) Records 
Format U: (Undefined) Records 10 
Format V: (Variable Length) Records 
Formats, Standard File Label (DASD) 
Formula, Disk Storage Space 33 

9 

9 
49 



Generation of Home Address and 
Record Zero 47 

GET 21 
GET-PUT Level Sequential Acce~ss 12 

Home Address (DASD) 44 
Home Address and Record Zero 

Generation 47 

IBM 2311 Disk Storage Drive 40 
IBM 2314 Disk Access Storage Facility 
IBM 2321 Data Cell Drive 43 
ID Location (DAM) 35 
Identifier Field (DASD Records) 45 
Index Marker (DASD) 44 
Indexed Sequential Disk Storage 
Space Formula 33 

Indexed Sequential File Management 
System 25 

Indexes 26 
Input/Output Areas 12 
Input/Output Control System (IOCS) 
Defined 5 

Insertion of Records (ISFMS) 27 
IOCS Logic Modules 7 
IOCS Logical 5 
IOCS Physical 5 

Key Area (DASD Records) 46 
Key Length (DASD Records) 45 
Keys 25 

Label Processing 
DASD 50 
Tape 54 

Label Sets, Standard Tape ~)2 
Labels 

DASD 47 
Tape 52 

LITE 22 
Locate Operation 

GET 21 
PUT 21 

Logic Module Assembly (DAM) 34 
Logic Modules 

(IOCS) 7 
(ISFMS) 28 

Logical Files Defined 8 
Logical IOCS 5, 7 
Logical Records 9 
Logical Unit Block (LUB) 6 
LUB 6 

Macro Instructions (DAM) 
CNTRL 37 
READ 37 
WAITF 38 
WRITE 36 

Macro Instructions (DTF) 
DTFCD 7, 10 
DTFCN 7, 10 
DTFDA 7, 38 
DTFDI 7, 8 
DTFIS 7, 8 
DTFMR 7 
DTFMT 7 
DTFOR 7 
DTFPH 7 

42 

DTFPR 7, 10 
DTFPT 7, 10 
DTFSD 7, 10 
DTFSR 7, 10 

Macro Instructions (GET-PUT) 
CNTRL 22 
FEOV 22 
GET 21 
PRTOV 23 
PUT 21 
RDLNE 21 
RELSE 21 
TRUNC 22 

Macro Instructions (ISFMS) 30 
Macro Instructions (READ-WRITE) 

CHECK 24 
CNTRL 25 
DSPLY 25 
FEOV 25 
NOTE 24 
POINTR 25 
POINTS 25 
POINTW 25 
READ 23 
RESCN 25 
WAITF 24 
WRITE 24 

Magnetic Readers (Data Formats) 11 
Magnetic Tape (Data Formats) 11 
Master Index 26 
MBBCCHR 35 
Move Operation 

GET 21 
PUT 21 

Multivolume Tape Processing 11 

Non-First Overflow Reference (ISFMS) 
Nonstandard Tape Labels 55 
NOTE Macro 24 

Optical Readers (Data Formats) 11 
Overflow Area (ISFMS) 27 
Overflow Record Count (ISFMS) 32 
Overflow Records (ISFMS) 30 
Overlapped Processing 12-21 
Overrunable Devices 6 

Paper Tape Reader (Data Formats) 11 
Physical IOCS 5 
Physical IOCS and Defective 

DASD Tracks 47 
Physical IOCS Macro Instructions 6 
Physical Unit Block (PUB) 6 
POINTR 25 
POINTS 25 
POINTW 26 
Previously Established Defective 

Tracks 47 
Prime Areas 26 
Prime Record Count (ISFMS) 32 
Printers (Data Formats) 11 
Processing and Input/Output Overlap 
PRTOV 23 
PUB 6 
Punches, Card Readers and (Data 

Formats) 11 
PUT 22 

32 

12 

DOS Data Management Concepts 69 



C24·3421·3 

Random Record Retrieval and 
Update (ISFMS) 32 

RDLNE 21 
READ 24 
READ ( DAM) 37 
Read Filenarne,ID 37 
Read Filenarne,KEY 37 
READ/WRITE Head Block (IBM 2321) 43 
READ/WRITE Level Sequential Access 23 
Record Blocking 9 
Record Formats 

(DAM) 35 
(DASD) 45 
(ISFMS) Fixed Blocked 30 
(ISFMS) Fixed Unblocked 29 

Record Insertions 27 
Record Zero (RO) 45 
RELSE 21 
Reorganizing an Indexed-Sequential 
File 32 

RESCN (READ-WRITE) 25 

Sequential Access Method 10 
Sequential Record Retrieval and 

Update (ISFMS) 31 
SETFL 30, 31 
SETL 30 
Split Cylinder (Concept) 12 
Standard File Label Formats 49 
Standard File Labels 

DASD 49 
Tape 53 

Standard Tape Label Processing 
Tape Input File 54 
Tape Output File 55 

Standard Tape Label Sets 52 
Standard Volume Label 

DASD 48 
Tape 53 

Storage and Record Capacity (IBM 2314) 
Storage Areas (READ-WRITE) 23 
Storage Areas and Effective I/O Overlap 
Storage Capacity 

IBM 2311 41 
IBM 2314 42 
IBM 2321 44 

International Business Machines Corporation 
Data Processing Division 
112 East Post Road, White Plains, N.Y.I06ot 
[USA Only] 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
[International] 

Storage Space Formula (Disk) 33 
Symbolic Device Addressing 6 

Tape Labels 
Standard 52 
Nonstandard 55 

Tape Marks with Standard Labels 54 
To Add Records to a File (ISFMS) 31 
To Extend a File (ISFMS) 31 
Track Descriptor Record (RO) 11 
Track Format, DASD 44 
Track Index 26 
TRUNC 22 

Undefined (Format U) Records 10 
Unlabeled Tape Files 56 
Updating (GET-PUT) 23 
User Header and Trailer Labels 

DASD 49 
Tape 54 

Variable Length (Format V) Records 
Volume Labels, Additional 

DASD 48 
Tape 53 

Volume Labels, Creation of 
DASD 48 
Tape 53 

Volume Labels, Standard 
DASD 48 
Tape 53 

Volume Table of Contents (VTOC) 

WAIT 6 
WAITF (DAM) 38 
Work Areas 12 
WRITE 24 
WRITE (DAM) 36 
WRITE Filenarne,AFTER 36 

42 WRITE Filenarne,ID 36 
WRITE Filenarne,KEY 36 

12 WRITE Filename,RZERO 36 

XTENT Card 12 

48 

9 



Technical Ne'wsletter 

IBM System/360 
Disk Operating System 
Data Management Concepts 

File No. S360-30 (DOS) 

Re: Form No. C24-3427-3 

This Newsletter No. N 2 4 - 5 3 4 9 

Date: May 3, 1968 

Previous Newsletter Nos. None 

This Technical Newsle1:ter adds Appendix H to your publication. 
This appendix contains information, to be used for planning 
purposes only, concerning a future release of the Disk Operating 
System. When coding for the future release is available, this 
appendix will be delet:ed and the information will be incorporated 
in the proper location in the publication. 

The pages attached to this Newsletter replace the following pages 
of your publication. 

3 and 4 
67 and 67.1 

Blank and 68 

Changes on modified pages are indicated by a vertical line to the 
left of the affected text and to the left of affected parts of 
figures. A dot (e) next to a figure title or page number indicates 
that the entire figure or page should be reviewed. Please insert 
this page to indicate that your publication now includes the 
following modified pages: 

Modified Pages 

3, 67.1, 68 

IBM Corp., Programming Publications De pt., Elldicott, N. Y. 13760 

PRINTED IN U. S.A. 



DATA MANAGEMENT CONCEPTS • • • 5 

Physical IOCS. • • • . • . • • • . • •. 5 
Symbolic Device Addressing-. 6 
Physical IOCS Macro Instructions. •. 6 
Label Processing. • . • • • • • 6 

Logical IOCS . • • • • . . • • • • 7 
Device Independent Sequential File 
Processing For System Units. • 8 

Data Files. • • • • • • • • • • • 8 

Sequential-Access Method • • • • • . • • 10 
GET-PUT Level Sequential Access • • • 12 
READ-WRITE Level Sequential Access •. 23 

Indexed-Sequential File Management 
System. • • • • • • • • • • • • . • 

Indexed-Sequential Organization • 
Resident Cylinder Index . . • • • 
Logic Modules • • • • . • . 
Record Formats ..•••• 
Macro Instructions for 

• • 25 
.0 . 25 
• • 27 

28 
29 

Indexed-Sequential Files • • . 30 
Creating an Indexed-Sequential File . 30 
To Add Records to a File. • 31 
Sequential Record Retrieval and 

Update • • • • • • • . • • • . • • • 31 
Random Record Retrieval and Update. • 32 
Reorganizing an Indexed-Sequential 
File . . . .. . . . . . . . . . • 32 

Indexed Sequential Disk Storage 
Space Formulas • •• •• • • • • 33 

Direct-Access Method • • • 
Logic Module Assembly • 

• • • • • • • 34 
• • 34 

Record Formats •. 
Capacity Record • • • 
ID Location • • • • • 
Macro Instructions ••• 

• • • • • • 35 
• • • • • • 35 
• • • • • • 35 

Creating Direct-Access Files. • • 

Direct-Access Storage Devices •• 
IBM 2311 Disk Storage Drive • 
IBM 2314 Disk Access Storage 

• • 36 
• • 38 

• • 40 
40 

• • 42 Facility • • • • • • • • 
IBM 2321 Data Cell Drive. 
DASD Track Format • • 

· • • • . . 43 
• 44 

DASD Record Format. • • • • • 45 

CONTENTS 

DASD Initialization and Maintenance. • • 46 
Initialize Disk/Data Cell Programs .• 46 
Physical IOCS and Defective DASD 

Tracks • . • . . . . 47 

DASD Labels. • . . • • • . 47 
Standard Volume Label . . . •. . 48 
Standard File Labels. • 48 
Standard File Label Formats • •• 49 
DASD User Header and Trailer Labels . 49 
DASD Label Processing . • . • . . • • 50 

Tape Labels ..••••.•••..••• 52 
Standard Tape Label Set . • 52 
Standard Tape File Labels 53 
Additional File Labels. • . • • 54 
User Header and Trailer Labels on 

Tape . • • • . • • • • • • •• • 54 
Tape Marks with Standard Tape 
Labels . • •. •.••..... 54 

Standard Tape Label Processing.. 54 

Nonstandard Tape Labels .. · 55 

Unlabeled Tape Files • . • . 56 

APPENDIX A: STANDARD VOLUME LABEL, 
TAPE OR DASD. . . · · · · · · 57 

APPENDIX B: STANDARD DASD FILE 
LABELS, FORMAT 1. · · · · · · · · 58 

APPENDIX C: STANDARD DASD FILE 
LABELS, FORMAT 2. · · · · · · · · 61 

APPENDIX D: STANDARD DASD FILE 
LABELS, FORMAT 3. · · · · · · · · 63 

APPENDIX E: STANDARD DASD FILE 
LABELS, FORMAT 4. · · · · · · · · 64 

APPENDIX F: STANDARD DASD FILE 
LABELS, FORMAT 5. · · · · · 66 

APPENDIX G: STANDARD TAPE FILE LABEL. · 67 

INDEX. . . . . · · · · . . . · · · · 68 

Contents 3 



INDEX 

Whenever one reference has more signifi­
cance than the others for an item, that 
page number is listed first. 

Access Mechanism (IBM 2311) 
Access Mechanism (IBM 2314) 
Access Methods 8 

Direct Access 34 

40 
42 

Indexed Sequential File Management 
System 25 

Sequential Access 10 
Additional File Labels TAPE 
Additional Volume Labels DASD 
Additional Volume Labels TAPE 
Alternate Tracks 47 

54 
48 
53 

Appendix A: Standard Volume Label, 
TAPE or DASD 57 

Appendix B: Standard DASD File 
Format 1 58 

Appendix C: Standard DASD File 
Format 2 61 

Appendix D: Standard DASD File 
Format 3 63 

Appendix E: Standard DASD File 
Format 4 64 

Appendix F: Standard DASD File 
Format 5 66 

Appendix G: Standard Tape File 
Available Independent Overflow 

Tracks (ISFMS) 32 

Blocking, Record 8 
Buffered Devices 12 

Capacity Record (DAM) 35 
Card Readers and Punches (Data 

Formats) 11 
CCB 5 
CCB Macro Instruction 6 
CCW 5 
Channel Command Word (CCW) 5 
Channel Scheduler 6 
CHECK 24 
Check Bytes (DASD) 45 
CNTRL (DAM) 37 
CNTRL (GET-PUT) 22 
CNTRL (READ-WRITE) 25 
Command Control Block (CCB) 5 
Console (Data Formats) 11 
Control Character 10 

Labels, 

Labels, 

Labels, 

Labels, 

Labels, 

Label 

Correction of a Defective Track 47 
Count Area (DASD Records) 45 
Creating an Indexed-Sequential File 30 
Creating Direct Access Files 

Random Files 39 
Sequential Files 38 

Creation of Volume Labels 
DASD 48 
TAPE 53 

Cylinder Concept 40 
Cylinder Index 26 

67 

Cylinder Overflow Areas Full (ISFMS) 34 

68 

DADSM - Format V Label 66, 49 
DASD Initialization and Maintenance 
DASD Label Processing 

DASD Input Files 51 
DASD Output Files 51 

DASD Labels 47 
DASD Record Format 45 
DASD Track Format 44 
DASD User Header and Trailer Labels 
Data Area (DASD Records) 46 
Data Files 8 
Data Format-Device Type Relationships 
Data Length (DASD Records) 46 
Defective Track, Discovery of 47 
Device Independent Macros 8 
Direct Access Device Space 

Management (DADSM) 49, 66 
Direct Access Devices (Data Formats) 
Direct Access Files, Creation of 38 
Direct Access Method (DAM) 34 
Direct Access Storage Devices (DASD) 
Discovery of a Defective Track 47 
DISEN 22 
Disk Storage Space Formula 33 
DSPLY (Read-Write) 25 
DTF Tables 8 
DTFCD 7 
DTFCN 7 
DTFDA 7 
DTFDI 7 
DTFDI/DIMOD Macros 8 
DTFIS 7 
DTFMR 7 
DTFMT 7 
DTFOR 7 
DTFPH 7 
DTFPR 7 
DTFPT 7 
DTFSD 7 
DTFSR 7 

ENDFL 
ESETL 
EXCP 
EXTRN 

30 
30, 31 

6 
5 

FEOV (GET-PUT) 22 
FEOV (READ-WRITE) 25 
File Labels 

Additional Tape 54 
Standard DASD 48 
Standard Tape 53 

Files, Data 8 
Fixed Length (Format F) Records 9 
Flag Byte (DASD) 45 
Format F: (Fixed Length) Records 9 
Format U: (Undefined) Records 10 
Format V: (Variable Length) Records 
Formats, Standard File LabE!l (DASD) 
Formula, Disk Storage SpaCE! 33 

46 

49 

11 

11 

40 

9 
49 



Reader's Comments Form 

IBM System/360 
Disk Operatmg System 
Data ~anagement COlncepts C24~3427-3 

Your comments, accompanied by answers to the following questions, help us produce 
better publications for your use. If your answer to a question is "No" or requires 
qualification, please explain in the space provided below. Please give specific page 
and line references with your comments when appropriate. All comments will be 
handled on a non-confidential basis. Copies of this and other IBM publications can 
be obtained through IBM branch offices. 

Yes No 

• Does the publication meet your needs? 0 0 

• Did you find the material: 
Easy to read and understand? 0 0 
Organized for convenient use? 0 0 
Complete? 0 0 
Well illustrated? 0 0 
Written for your technical level? 0 0 

• What is your occupation? ________________________ _ 

• How do you use this publication: 
As an introduction to the subject? 0 
For advanced knowledge of the subject? 0 
For information about operating procedures? 0 

Your comments: 

As an instructor in a class? 0 
As a student in a class? 0 
As a reference manual? 0 

Thank you for your cooperation. No postage necessary if mailed in the U.S.A. 



04-3427-3 

Your comments, please ... 

This publication is one of a series that serves as a reference source for systems 
analysts, programmers, and operators of IBM systems. Your answers to the 
questions on the back of this form, together with your comments, help' us 
produce better publications for your use. Each reply, is carefully reviewed by 
the persons responsible for writing and publishing this material. All comments 
and suggestions become the property of IBM. 

Please note: Requests for copies of publications and for assistance in using 
your IBM system should be directed to your IBM representative or to the IBM 
sales office serving your locality. 

Fold 

Staple 

Fold 

-------------------------------------------------------------

BUSINESS REPLY MAil 
NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES 

Attention: Programming Publications, Dept. 157 

POSTAGE WILL BE PAID BY ••• 

IBM Corporation 

P. O. Box 6 

Endicott, N. Y. 13760 

[

FIRST CLASS 
. PERMIT NO. 170 

ENDICOTI, N. Y. 

------------~---------~---------------------------------~-----
Fold 

International Business Machines Corporation 
Data Processing Division 
112 East Post Road, White Plains, N.Y.I06ot 
[USA OnlyJ 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
[International J 

Fold 

: sluawwo~ llluo,nppv 

• c 
:::i 

rJ» 
C o 

:c 
'S 
u 


	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67.0
	67.1
	68
	69
	70
	_00
	_03
	_68
	replyA
	replyB

