
Jr J ~) ~ Field Engineering

Theory of Operation

System/360 Model 40

Comprehensive Introduction

SY22-2840-2

Preface

This manual describes the basic data flow, machine
instruotion, and channel operations of the IBM 2040
Processing Unit. The basic numbering systems used
within the IBM System/360 are explained in detail. A
thorough understanding of this information is helpful
in the study of the more complex units of the system.

Other manuals useful in understanding the Model
40 are:

IBM System/360 Model 40, Functional Units, Order
No. SY22-2843

IBM System/360 Model 40, Theory of Operation,
Order No. SY22-2844

IBM System/360 Model 40, Power Supplies, Fea­
tures, and Appendix, Order No. SY22-2845

IBM System/360 Model 40, Maintenance Manual,
Order No. SY22-2841

IBM System/360 Model 40, Diagrams Manual, Or­
der No. SY22-2842

Solid Logic Technology Power Supplies, Order No.
SY22-2799

Solid Logic Technology, Packaging, Tools, and
Wiring Change, Order No. SY22-2BOO
This manual is written to engineering change level

254814 for ALD'S and CLD level 255263.

Sixth Edition (April, 1970)

This edition, Order No. SY22-2840-2, is a reprint of Form Y22-2840-1 incorporating
changes released in FE Supplement Y22-6783, dated January 31,1969. Changes are
periodically made to the specifications herein; any such changes will be reported in
subsequent revisions or FE Supplements.

This manual has been prepared by the IBM Systems Development Division, Product
Publications, Dept. B96, P.O. Box 390, Poughkeepsie, N.Y. 12602. A form for
readers' comments is provided at the back of this publication. If the form has been
removed, comments may be sent to the above address.

(0 Copyright International Business Machines Corporation 1966, 1970

Introduction to IBM System/360 Model 40
System/360

The Processor Family.
Flexibility and Compatibility

System/360 Model 40
Computer Functional Units
Functional Units - System/360 Model 40.

Data Formats
Data Coding

Binary Coding
Hexadecimal Coding
Decimal Coding ..
Data Codes for Input/Output.
Other Data Codes

Binary Fixed-Point Arithmetic
Add and Subtract
Multiply
Divide

Floating-Point Arithmetic
Exponential Numbers
Floating-Point Notation

Decimal Arithmetic

System Controls
Instructions ..

Instruction Format
Address Generation

Instruction Types
Data-Handling Instructions
Branch Instructions

Sequential Instruction Execution
Program Status

Program Status 'Word (PSW).
Status Switching Instructions ..

Interrupt System
Types of Interrupts
Permanent Main Storage Locations.
Priority of Interrupts
Masking of Interrupts in PSW.
Interrupt Code in PSW.
Instruction Length Code (ILC) in PSW.
CPU Status

I/O System
Sample System Configuration

FIGURE TITLE

Introduction to IBM System/360 Model 40
1. System Configurations
2. Functional Parts of a Computer.
3. Functional Parts of IBM 2040.

Data Formats
4. Data Formats
5. Powers of Two
6. Packed Decimal Format
7. EBCDIC and ASCII Tables
8. Extended Card Code.
9. Zoned Decimal Format

10. Floating-Point Format

System Controls
11. Five Basic Instruction Formats
12. Alphabetic List of Instructions (Sheet 1 of 2) .
12. Alphabetic List of Instructions (Sheet 2 of 2) ..
13. Program Status "Vord Format.
14. Permanent Storage Assignments

5
5
5
6
6
6
9

10
10
10
13
13
14
16
16
16
17
17
17
18
18
20

22
22
22
23
24
24
27
28
29
29
30
30
31
31
32
32
33
34
34
35
35

PAGE

7
8
8

11
12
13
14
15
16
19

22
25
26
29
32

Contents

Standard Interface
Input/Output Operations
Channel Types

Channel Operation
Channel Program
Device Addressing
Channel Address Word (CAW) .
Channel Command Word (CCW)
Channel Control
Channel Status
I/ 0 Instructions
Interrupts
Generation and Stacking of I/O Interrupts.
Clearing of I/O Interrupts
Sequencing Channel Interrupts
I/O Interrupt Handling
Examples of Interrupt Sequencing.

Initial Program Load (IPL)
~1 ultiprogramming

System/360 Concept
Operating System Principles

Error Detection and Handling
Machine .Malfunctions
Programming Errors

Basic Data Paths
Main Registers and 16-Bit Data Flow
ALUand 8-Bit Data Flow.
Staticizer Latches (Stats)
Local Storage and Addressing
Main Storage (MS)

Data Transfers
Addressing
Extended Addressing
Special Area

Control
Channels

Multiplex
Selector Channel

Basic System Timing
CPU Timing
CPU and MS Timing

Microprogramming Concepts

36
36
37
38
38
39
40
40
41
42
43
45
45
46
47
47
47
49
49
50
51
52
52
52

53
53
53
53
53
55
56
56
56
56
56
57
57
57

59
59
59

61

List of Illustrations

FIGURE TITLE

15. Sample System Configuration
16. Channel Command Word Format.
17. Channel Status Word Format ..
18. Initial System Status
19. Situation After Steps 1 to 6.
20. Situation After Steps 7 to 10.
21. Situation After Steps 11 to 13
22. Situation After Steps 14 to 16.

Basic Data Paths
23. 2040 Simplified Data Flow.
24. ~lain Registers and 16-Bit Data Flow.
25. ALU and 8-Bit Data Flow Added.
26. Staticizer Latches Added
27. Local Storage Added
28. Main Storage and 16-Bit Buses Added.
29. Read Only Storage Added

Basic System Timing
30. Timing Relationships

PAGE

35
40
42
48
48
48
49
49

54
55
55
55
55
56
57

60

Abbreviations

AO A Register byte 0 LS Local Storage
Al A Register byte 1 LSAR Local Storage Address Register
AX A Register Extension LSD Least Significent Digit
ALU Arithmetic and Logic Unit MAP Maintenance Analysis Procedure
AMWP Bits 12-15 of the PS\V MC Machine Check
A Reg A Register MDM Maintenance Diagram Manual
ASCII American Standard Code for Information MI Maskable Interrupt

Interchange MS Main Storage
B Base Register MSC Machine Status Chart
BCD Binary Coded Decimal MSD Most Significant Digit
BCDIC Binary Coded Decimal Interchange Code MSS Manual Single Shot
B Reg B Register OS Operating System
CAS Control Automation System P Parity (,bit)
CAvY Channel Address Word PC Parity Check
CC Chain Command PCI Program Control Interrupt
CC Condition Code PG Parity Generation
CCW Channel Command Word PRI Program Interrupt
COA Chain Data Address Prg Chk Program Check
CE Channel End PSA Protected Storage Address
CI Command Immediate PSW Program Status Word
CLD CAS Logic Diagram Pty Parity
CLFC Condensed Logic Flow Chart Rx Operand Register
COBOL Common Business Oriented Language ROAR Read Only Address Register
CPU Central Processing Unit ROBAR Read Only Back-up Address Register
C Reg C Register ROS Read Only Storage
CSW Channel Status Word ROSCAR ROS Channel Address Register
CT Count RR Register-to-register operations
CU Control Unit RReg R Register
CX C Register Extension RS Register-to-storage operations
CO C Register byte 0 rtpt reinterpret
Cl C Register byte 1 RX Register-to-indexed-storage operations
D Displacement Address RX R Register Extensions
DReg D Register RO R Register byte 0
DO D Register byte 0 Rl R Register byte 1
Dl D Register byte 1 R/W Read/write
DE Device End SAB Storage Address Bus
Decr Decrement SAT Storage Address Test
Del Delayed SC Selector Channel
Des Destination SI Storage-and -immediate-operand operation
DM Diagnostic Monitor SIO Start 110 (Input/Output)
EBCDIC Extended Binary Coded Decimal Interchange SILl Suppress Incorrect Length Indicator

Code SLT Solid Logic Technology
EC Engineering Change SMS Standard Modular System
ECAD Error Checking Analysis Diagram SP Storage Protect

SPLS Storage Protect Local Storage
FNB Functional Branch S Reg S Register
FORTRAN Formula Translating System SS Storage-to-storage operation
FP Floating Point SSK Set Storage Key
GP General Purpose (Registers) STATS Staticizer Latches
HEX Hexaodecimal SVC Supervisor call (op code)

HIO Halt 110 (Input/Output) SX S Register Extension
SO S Register byte 0

I Immediate Data (not in text) SI S Register byte 1
IB Instruction Buffer

TCH Test Channel IC Instruction Count
ICC Interface Control Check TIC Transfer in Channel
ID Inhibit Dump TIO Test 110 (Input/Output)
IOQ Invalid Decimal Digit (on Q bus) TROS Transformer Read Only Storage
IF Interface UBA Use Bump Address
ILC Instruction Length Code UCW Unit Control Word
110 Input/Output Unobt Unobtainable
IOCS Input/Output Control System

WLR Wrong Length Record IPL Initial Program Load
IR Interrupt Request X Index Register
ISA Invalid Storage Address YC Carry Latch
ISK Insert Storage Key YCH 1,3 Selector Channel Stats 1, 3
IZT Integrated Zero Test YCI Indirect Function Carry Stat
L Operand Length YCO Direct function Carry Stat
LDB Load Button ~P Microprogram

• Computers process large quantities of information at
electronic speeds.

• Computers can process any information in appro-
priate form.

Modern methods of accounting, management and
science generate large quantities of information that
must be processed quickly and accurately.

The first steps in automation of office work took
place a long time ago, when devices were introduced
to relieve the staff from simple but repetitive jobs like
writing a date or name (ink stamp). Later the desk
calculator and the typewriter were added. Business
data were stored and filed on sheets of paper; and many
members of the office staff were busy keeping the files
up to date.

Early scientists wasted years of their lives with rela­
tively simple but highly repetitive calculations to find
or prove laws of nature from the observation data they
collected (planetary orbits for example). Calculating
devices were among the first machines to handle scien­
tific data.

Introduction of the punched card led to a new stage
in information processing. The information itself was
now in a form that could be read directly by machines.
A great variety of machines were developed to auto­
mate various steps in data handling such as sorting,
collating, reproducing, accumulating, calculating and
printing. Intermediate results had still to be transferred
manually from one machine to another and many busi­
ness decisions and interventions were necessary to ob­
tain the final result.

When electronic discoveries were applied, the speed
for the single steps was vastly increased; but, more
important, the single operations were interconnected
so that transport of data and intermediate results was
automated. This new machine, as we know it today,
is the modern computer or data processing system.

Computers can process any type of information. The
basic unit of information a system can handle may be
only one decimal digit or alpha character at a time,
but with groups and combinations of these elements
any type of information can be described: numbers,
values, words, messages, diagrams, photographs, etc.

Today's computers are used not only in the tradi­
tional fields of office automation and scientific calcula­
tions, but to automate such tasks as:

1. Control of automatic plants

Introduction to IBM System/360 Model 40

2. Translation from one language to another

3. Medical diagnostics

4. Analysis of photographic equipment from
weather satellites and other scientific equipment.

System/360
Since the early electro-mechanical calculators such as
the IBM 602A, the development of IBM computing de­
vices has moved progressively from the use of ther­
mionic tubes to solid-state circuits. Using tube circuits
in the IBM 604 and 700 series, IBM progressed to solid­
state standard modular system (SMS) circuitry in the
609, 1400 and 7000 series of machines.

The IBM System/360 makes use of IBM'S latest tech­
nological advance - solid logic technology (SLT). This
technology advances solid-state circuitry a stage fur­
ther by repacking semiconductor circuits in sealed
modules. This technique results in lower cost, greater
reliability, faster switching speeds, and lower heat dis­
sipation.

In order to achieve the compactness needed for high
speeds (electronic transit delays increase with distance
to be travelled) a condensed form of logic was needed.'
SLT advances this compactness one stage further. A
component density increase of about nine to one over
SMS has been achieved. In addition, the circuit delays
within circuit cards and components have been re­
duced. Operating at basic levels of 3, 6, and 12 volts,
SLT circuits divide into three families of low, medium,
and high-speed components having average delay-per­
stage rating of 700, 30, and 10 nanoseconds, respec­
tively.

The over-all result is a range of processors of greatly
reduced size and increased performance. These proc­
essors, together with an extremely wide range of equip­
ment, constitute the IBM System/360.

The Processor Family

The IBM System/360 is a family of processors and
input/ output equipment designed for applications in­
cluding scientific and commercial data processing,
process control, data acquisition, and teleprocessing.
Each processor in the range, which covers from the
medium-small (similar to the 1440) to the very large
(similar to the 7094), can have several sizes of main
storage.

Introduction to Model 40 12-65 5

Storage sizes are indicated by suffixes from C (8K
bytes of storage) to I (512K bytes). Typical examples
would be 2030 D and 2060H, which are a model 30
with 16K bytes and a model 60 with 256K bytes of
storage, respectively.

Flexibility and Compatibility

A wide range of input/output equipment is available
for attachment to processors in the System/360. This
equipment includes high and low-speed card reader­
punches; printers; magnetic tape, disc, and drum units;
paper-tape readers; inquiry and display terminals;
transmission adapters; audio-response units; keyboard
consoles; and optical and magnetic readers and
printers. Figure 1 illustrates some typical system con­
figura tions.

The flexibility in processor and system configuration
allows systems to be tailored to the individual user
needs. In addition, a wide range of optional features
extends the flexibility in system design.

The different models in the System/360 are com­
patible. This means that the instruction set is common
and programs written for one system can run on any
other, if the requirements for main storage, features,
and input/output are fulfilled. This important factor
reduces reprogramming to a minimum and provides
for trouble-free system growth.

Most of the available types of System/360 input/
output may be attached to any model in the range.
This is made possible by the standard interface, a
standard set of control and data lines interconnecting
the processor channels and the input/output control
units. Thus, many combinations of processors and
input/ output are possible.

System /360 Model 40

The Model 40 is a medium-small member of the IBM

System/360. In physical size, its processor, the IBM

204'0, is comparable with the IBM 1401 Processing
Unit. Its computing power is, however, roughly three
times that of an IBM 7070 Data Processing System for
commercial work, and about twice that of an IBM 709
system for scientific work.

The range of input/output and data communica­
tions equipment that may be attached to the Model
40 allows the design of systems covering a wide range
of applications and powers. A standard multiplex chan­
nel and two optional selector channels further enhance
this model's input/output flexibility. Over all, the
Model 40 fulfills IBM'S objective of providing greater
flexibility and increased computing power at reduced
cost.

6 12-65 Model 40 Comprehensive Introduction

Microprogramming replaces many of the circuits
previously required for the control and sequence of
computer operations. The microprogram is stored in
coded form in transformer read only storage (mos).

The net result of applying these techniques is a com­
pact processor requiring less electrical power, having
a smaller heat dissipation, and achieving a reduction
in size of approximately nine to one over an equivalent
7070 processor.

Computer Functional Units

• Five functional sections:
Input
Storage
Arithmetic and Logical Circuits
Control
Output

• Data and instructions must be in the language of
the system.

• Instructions to be performed must be broken down
into steps the system can handle.

• A sequence of instruction steps is called a program.

A modern computer (Figure 2) has five distinct func­
tional sections: input, storage, arithmetic and logical
circuits, control, and output.

All information to be used by the computer must
pass through the input section. The input section in­
terprets information and converts it into a form that
the computer can handle. The input section may be
one simple device or a big system of input consisting
of card readers, magnetic tape units, disk storages,
transmission lines, etc.

From the input, the information is directed to the
storage section. The main purpose of the storage sec­
tion is to hold the information necessary to instruct
the system in what it has to do, and to serve as an
information buffer between input and output sections.

The storage section of a computer consists mostly of
a core storage unit with a capacity from a few thou­
ands to many hundreds of thousands of characters, and
an access time which is of the same order as the in­
ternal processing speed.

The control section directs the operation of the en­
tire system. It receives directions from the storage
portion where all instructions for a particular job are
stored, prior to processing, in the sequence the machine
is expected to execute them.

These instructions obviously must describe the single
steps in a code that the control section can recognize
and execute. The range of instructions that a computer
can execute is relatively small; the instructions them­
selves are simple. For example, to calculate the square

SIMPLE SYSTEM

2821
Control

CPU

CPU

C
H
A
N
N
E
L

CH
1

CH-
2

2803
Tape Control

DUPLEX SYSTEM, SHARED TAPE UNITS

Master

CPU

CPU

Slave

Direct
Data
Feature

MASTER - SLAVE COMPLEX

C
H
A
N
N
E
L

C
H
A
N
N
E
L

Figure 1. System Configurations

2821
Integrated

Buffer Control

2803
Tape Control

Magnetic Tape Units

2803

Tape Control

Magnetic Tape Units

2821 2821

1403

CH
1

CH
2

2403

Magnetic Tape Units and Control

CPU

2821

2841
Storage
Control

1302 - N 1 Disk Storages

2821

1403 1403

Introduction to ~Iodel 40 12-6.5 7

Input

Control

Data

Control

Figure 2. Functional Parts of a Computer

,
I ,

Storage

L __

Output

Arith & Logic

I
_______ -1

Main
Storage - - - - - - - - - - ---1

Channels

Registers

Arithmetic & Logic

, ,
Control

Data

10
9! I

Control L _ _ _ ___ _ ~ _ _ _ ~ ______ -.J

Figure 3. Functional Parts of IBM 2040

8 12-65 Model 40 Comprehensive Introduction

Console

I
I
I
I

----~---~

root of a number, the operation has to be broken down
into a sequence of additions, multiplications, and divi­
sions. A sequence of these steps is called a program.

The arithmetic and logical unit receives data from
storage and performs the operations as directed by the
control section. Intermediate or final results are put
back into storage and then moved to the output section.

The output can be printed, punched into cards,
written on magnetic tape or disks, or it can be directly
used to control other systems.

Functional Units-System/360 Model 40

• Inputloutput (1/0) units are physically separated
from the central computer.

• The central computer is known as the IBM 2040.

• Three channels are provided to control 110 op­
erations.

• In addition to main storage, high-speed data regis-
ters can store operands and intermediate results.

• A console contains the necessary operating controls.

Compared with the functional units of a general com­
puter concept, as shown in Figure 2, a more specific
breakdown is given in Figure 3.

1. The arithmetic and logic circuitry is the center of
all information handling.

2. Main storage is connected as before to this cir­
cuitry.

3. I/O information does not flow directly to and from
main storage, but passes through the common data­
handling section and subsequently through the only
main storage access path.

4. Up to three channels are provided to communi­
cate with I/O devices. Channels can be regarded as
independent computers to handle I/O operations con­
currently with the CPU operations. Once instructed by
the CPU they perform all functions necessary to com­
plete an I/O operation on their own, selecting and
controlling the I/O device, and perfroming the data
transfer to or from main storage.

5. One channel can communicate with several I/O

units. See Figure 1.
6. The time for one main storage cycle 2.5 p.Sec

(read/write) takes four internal process cycles (625
nanoseconds each); therefore, an intermediate storage
for efficient data handling is introduced. 16 general,
and 4 floating-point registers are provided.

7. For operator and customer engineer controls and
interventions, a console panel provides access to all
functional parts of the processor.

Introduction to Model 40 12-65 9

Data Formats

• The basic unit of information within the system is
the binary bit.

• 8 bits are grouped together to form one byte.

• The byte is the basic unit of information that can be
addressed and processed.

• Information can be either in a fixed-length or vari­
able-length format.

• Fixed-length formats are:
1 Byte
2 Bytes = Halfword
4 Bytes = Word
8 Bytes = Double word

• Any operand in main storage is specified by the
address of its leftmost byte.

• Fixed-length information must be held in main
storage at the proper boundaries.

• Each general register (Figure 3) can store one word.

• Each floating-point register (Figure 3) can store one
double word.

• Every byte contains a ninth bit for parity checking.

• Correct parity is always an odd bit count.

Common practice in computers is to refer to each of
the individual units of information as a binary bit.
Throughout the system all components are always in
one of two possible states: a line is active or inactive,
a latch is on or off, etc. Components that operate in
this manner are said to be binary; the active or on state
represents a binary 1, the inactive or off state a binary
O.

In order to represent decimal digits, letters, special
characters, etc., a combination of several bits has to
be used. In System/360, this unit of bit combinations
is a group of 8 bits, called one byte. The byte is the
basic information block that can be addressed and
processed. The byte is also the unit in which the capac­
ity of storage devices is expressed. Bytes may be
handled individually or grouped together. A halfword
is a group of 2 consecutive bytes. A word is a group of
4 consecutive bytes. A double word is a group of 8
consecutive bytes.

Every general register (Figure 3) can store 4 bytes
(word). Every floating-point register can store 8 bytes.
(double word) .

10 12-65 Model 40 Comprehensive Introduction

The location of any field or group of bytes in main
storage is specified by the address of its leftmost byte,
except during read backward operations when the
address specified is that of the rightmost byte.

The length of a field is either implied by the opera­
tion to be performed or stated explicitly as part of the
instruction. When the length is implied, the informa­
tion is said to have a fixed length which can be either
1,2,4 or 8 bytes.

Fixed-length information held in main storage must
be located at the correct address boundaries. The ad­
dress (leftmost byte) for any fixed-length information
must specify one of the addresses that will be obtained
if the complete storage, starting with address 0, would
be consecutively filled with that information.

Consequently: Bytes can be stored at any address.
Halfwords (2 bytes) must be stored at addresses that
are multiples of 2. Words (4 bytes) must be stored at
addresses that are multiples of 4. Double words (8
bytes) must be stored at addresses that are multiples
of 8.

Within any fixed-length format, the bits making up
the format are consecutively numbered from left to
right, starting with the number 0 (Figure 4).

When the length of a field is stated explicitly, the
information is said to have variable length. Variable­
length fields can be from 1 to 256 bytes in increments
of one byte; no boundaries have to be observed.

Every byte of information contains a ninth bit, the
parity or check bit. Over-all parity per byte is always
odd and is always checked when the byte is processed.

Data Coding
Information is represented in binary coding. Certain
bit configurations can represent other types of coding.

Binary Coding

• The binary system is a place-value number system
with the base 2.

• All numbers are expressed with the two symbols
o and 1.

• Negative numbers are expressed in two's comple­
mentform.

• Binary numbers of various lengths are used within
the system.

1 1 Byte 1
o I 0 I I 0 11 I I 0 11 8 B;ts = 1 Byte

o 234567

I I I I I I I I 1 I I I I I I I 1 16 BHs = 2 Bytes = 1 Halfwo.d

o 1 2 3 4 5 6 7 8 15

I I I I I I I I 1 I I I I I I I 1 I ~ ~ I 1 I I I I I I I 132 BHs = 4 Bytes = I Wo.d

o 7 8 15 16 23 24 31

1 I I I I I I I 1 I I I I I I I 1 I W I I 1 I I I I I I I I ~I B~u~l~ ~:~~
o 7 8 1 5 16 55 56 63

Figure 4. Data Formats

• Instructions translate numbers from the decimal to
the binary system and vice versa.

The binary number system is a place-value system, as
is the decimal system, differing from it in that its base
is the number 2 (Figure 5). There are only two sym­
bols, 0 and 1, with which all numbers are expressed.
In the decimal system ten symbols are used: 1, 2, 3,
4,5,6, 7, 8, 9, and O.

Examples:

1. The decimal number 209 actually means:
(2 X 102

) + (0 X 101) + (9 X 10°)
equally, in the binary system, the number 101 means:
(1 X 22) + (0 X 21) + (1 X 2°)
5(decimal) - -

2. The decimal number 6.35 actually means:
(6 X 10°) + (3 X 10-1) + (5 X 10-2

)

(6 X 10°) X (3 X 1~1) + (5 X 1~2)
The binary number 11.01 means:
(1 X 21) + (1 X 2°) + (0 X 2-1) + (1 X 2-2

)

(2)+(1)+(0)+(IX ~I!)
3.25 (decimal)

Negative numbers are expressed in complement
form. The complement of any number is obtained by
subtracting the number from the highest number in
the system and adding a one to this intermediate result.

The complement calculated by this method is known
as: the two's complement in the binary system and
the ten's complement in the decimal system.

Examples:
1. Decimal system - a number system of four positions is

assumed.
ten's complement of
highest number
subtract 15

add 1

15
9999

15

9984
9985

The highest digit position is used to indicate the sign: 0 for
positive, 9 for negative. Not all possible numbers are valid in
this system; the sign position can only be 0 or 9

Possible numbers in this system range from:
Most negative number 9000 (- 1000)
Least negative number 9999 (- 1)
Zero 0000 (0)
Most positive number 0999 (999)

2. Binary system - four-position number system.
two's complement of 101 (decimal 5)
highest number 1111
subtract 101 101

1010
add 1 1011

The highest digit position is used to indicate the sign: 0 for
positive, 1 for negative. All possible numbers in this system are
valid.

Numbers in this system range from:
Most negative number
Least negative number
Zero
Most positive number

1000 (decimal - 8)
1111 (decimal -1)
0000
0111 (decimal 7)

The rule for complementing binary numbers is: in­
vert every bit of the number and add 1.

Example:
0111 - invert: 1000 - add 1: 1001
+7 -7

Recomplementing a negative number follows the same rules
discussed previously.

Decimal: 9985 (-15)
9999

Binary:
Invert:

-998.5

0014
+ 1

~

1011 (-5)
0100

+ 1
0101

Binary numbers are used for all internal purposes;
addressing is always binary (main storage, register,

Data Formats 12-6.5 11

2" 1% 2- Il

1 0 1.0
2 1 0.5
4 2 0.25
8 3 0.125

16 4 0.062 5
32 5 0.031 25
64 6 0.015 625

128 7 0.007 812 5

256 8 0.003 906 25
512 9 0.001 953 125

1 024 10 0.000 976 562 5
2 048 11 0.000 488 281 25

4 096 12 0.000 244 140 625
8 192 13 0.000 122 070 312 5

16 384 14 0.000 061 035 156 25
32 768 15 0.000 030 517 578 125

65 536 16 0.000 015 258 789 062 5
131 072 17 0.000 007 629 394 531 25
262 144 18 0.000 003 814 697 265 625
524 288 19 0.000 001 907 348 632 812 5

1 048 576 20 0.000 000 953 674 316 406 25
2 097 152 21 0.000 000 476 837 158 203 125
4 194 304 22 0.000 000 238 418 579 101 562 5
8 388 608 23 0.000 000 119 209 289 550 781 25

16 777 216 24 0.000 000 059 604 644 775 390 625
33 554 432 25 0.000 000 029 802 322 387 695 312 5
67 108 864 26 0.000 000 014 901 161 193 847 656 25

134 217 728 27 0.000 000 007 450 580 596 923 828 125

268 435 456 28 0.000 000 003 725 290 298 461 914 062 5
536 870 912 29 0.000 000 001 862 645 149 230 957 031 25

1 073 741 824 30 0.000 000 000 931 322 574 615 478 515 625
2 147 483 648 31 0,000 000 000 465 661 287 307 739 257 812 5

4 294 967 296 32 0.000 000 000 232 830 643 653 869 628 906 25
8 589 934 592 33 0.000 000 000 116 415 321 826 934 814 453 125

17 179 869 184 34 0.000 000 000 058 207 660 913 467 407 226 562 5
34 359 738 368 35 0.000 000 000 029 103 830 456 733 703 613 281 25

Figure 5. Powers of Two

12 12-65 Model 40 Comprehensive Introduction

I/O devices). With the basic instruction set only binary
arithmetic is provided. Binary numbers within the sys­
tem can have varying sizes:

Registers are addressed with 4-bit numbers - deci­
malO to 15.
Operation codes are eight-bit numbers - decimal
o to 255.
MS addresses are 24-bit numbers - decimal 0 to
16,777,215.
Halfword arithmetic uses 16-bit numbers - decimal
-32,768 to +32,767.
General registers store fullword numbers - decimal
- 2,147,483,648 to + 2,147,483,647.

Although binary numbers, in general, have more
positions than their decimal counterparts (about 3.3
times as many), they are the most suitable numbers
to be represented by binary devices (switches, latches,
etc.).

Machine instructions are provided to translate deci­
mal numbers into binary and vice versa. Assembly
programs translate decimal values of the programmer
to binary for internal use.

Hexadecimal Coding

• Hexadecimal is a place-value system with the base
16.

• Hexadecimal numbers are expressed with 16 differ­
ent symbols.

• The hexadecimal number system is used in floating­
point arithmetic.

• One hexadecimal digit represents four binary bits.

• Hexadecimal is a convenient shorthand for writing
binary numbers.

Hexadecimal, usually abbreviated to "hex," is a place­
value number system with the base 16.
To express any number, 16 diHerent symbols are
necessary.

The symbols used by IBM are:
Decimal: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Hex: 0 1 2 3 4 5 6 7 8 9 ABC D E F

Example: The hex number 1C7 actually means:
(1 X 162

) + (C X 161
) + (7 X 16°)

(1 X 256) + (12 X 16) + (7 X 1)
455 (decimal)

The hexadecimal number system is used in floating­
point arithmetic. Every hex digit represents a four-bit
binary number.

HEX BINARY

0 0000
1 0001
2 0010
3 0011
4 0100

HEX

5
6
7
8
9
A
B
C
D
E
F

BINARY

0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

This property of hex digits provides a very useful
and simple shorthand for writing large binary numbers.

Examples:
1. A halfword contains the value:
Binary 0110 1110
H~ 6 E

0101
5

2. The operation code D2 is actually stored as:
1101 0010

Decimal Coding

1010
A

• Two decimal numbers are packed into one byte
(packed decimal format).

• Every decimal digit is represented by 4 bits.

• Only the combinations for the values 0 to 9 are valid.

• Packed decimal fields are variable in length.

• In a packed decimal field, the lowest-order 4 bits
contain a sign code.

Decimal numbers are coded with four-bit binary num­
bers, two decimal digits per byte. This format is re­
ferred to as packed decimal (Figure 6).

Byte Byte Byte Byte

Digit I Digit I Digit I Digit I)) I Digit I Digit Sign

100001011001 o 0 0 0 01000011 1 1 0 1

Figure 6. Packed Decimal Format

Only the binary numbers 0000 to 1001 (0-9 decimal)
are valid digit codes.

Codes 1010 to 1111 are used to represent the sign.
Interpretation is as follows:

1010 = +ASCIII American Standard Code
1011 = - ASCII f for Information Interchange
1100 = + EBCDICI Extended Binary Coded
1101 = -EBCDICI Decimal Interchange Code
1110 = + I
1111 = + f (any code)

The sign code generated in decimal arithmetic de­
pends on the character set (ASCII or EBCDIC) and is
under program control (Figure 7).

Decimal numbers are treated as signed integers with
a variable field-length format from 1 to 16 bytes long.
Negative numbers are carried in true form. The sign
is stored in the 4 least-significant bits.

Data Formats 12-65 13

Data Codes for Input/Output

• 110 information is handled in units of one byte.

• Character-sensitive units use codes with one charac­
ter per byte.

• Two character sets are standard, EBCDIC and ASCII.

Bit Positions ----01

• An extended card code provides punching of any
character in one card column.

• Decimal numbers are coded in zoned decimal.

• The least-significant character includes the sign.

• Instructions are provided to convert zoned decimal
into packed decimal and vice versa.

~23 L
I r--- 00 ~ ___ 01 ,-___ 10 11

'4'i1>7 no 01 10 II 00 01 10 II 00 01 10 11 00 01 10 11

()()(In NULL bl~nk & - "> <: t 0

0001 / '0 i A J 1

0010 b k s B K 5 2

0011 c I t C L T 3

0100 PF RE5 BYP PN d m u D M U 4

0101 HT NL LF R5 e n v E N V 5

0110 LC 'B5 EOB UC f 0 w F 0 W 6

0111 DEL IDL PRE EOT 9 P x G P X 7

1000
h q y H Q Y 8

1001 I " i r z I R Z 9

1010 ? I :

1011 $ I #
1100 - * % @

1101 ()
~

1110 + i - =
1111 * ¢ ± ../

EXTENDED BINARY-CODED-DECIMAL INTERCHANGE CODE (EBCDIC)

EBCDIC 0 1 2 3 4 5 6 7

ASCII 7 6 X 5 4 3 2 1

BIT NUMBERING

Bit Positions --------i~~76 L L-
X5

_00

4321 00 01 10 11

01 ___ -----,

00 01 10

11 ___ ---,

II 01 10

10 -----,1 '-1 ---

11 00 11 00 01 10

0000 NULL
DCO h~nk 0 i5) P p

0001 50M
DC

1

0010 EOA
DC

2

I 1
i-------'-

2

A Q

B R

0 q

b r

0011 EOM DC
3 # 3 C 5 c s

0100 EOT S~::"4 $ 4 D T d t

0101 WRU ERR % 5 E U e u

0110 RU 5YNJ;: & 6 F V f v

0111 BELL LEM 7 G W 9 w

1000 BK5P 50 (8 H X h x

1001 HT 51) 9 I Y i y

1010 LF ~2 * : J Z i z

1011 VT ~3 + i K C k

1100 FF 54 < L '\. I

1101 CR 55 - = M] m

1110 50 56 :::::.- N f n ESC

1111 51 57 / ? 0 -- 0 DEL

AMERICAN STANDARD CODE FOR INFORMATION INTERCHANGE (ASCII)

Figure 7. EBCDIC and ASCII Tables

14 12-65 Model 40 Comprehensive Introduction

• Any coding can be used on character-sensitive 1/0

units, since a translate instruction is provided which
converts from any code into any other.

All information transfers to and from 110 devices are
in units of one byte. Character-sensitive 110 units
(printers, typewriters, card readers and punches)
utilize a code in which one character (card column) is
represented by one byte. The total number of charac­
ters possible is 256. Two standard sets for character
coding are used: EBCDIC - Extended Binary Coded

Bit Positions -----.11 __ 01

00 01

00 01 10 11 00 01 10

0000 T09 TE9 E09 TE09 T E
18 18 18 18

0001 T9 E9 09 9 T09 TE9 0
1 1 1 1 1 1 1

0010 T9 E9 09 9 T09 TE9 E09
2 2 2 2 2 2 2

0011 T9 E9 09 9 T09 TE9 E09
3 3 3 3 3 3 3

0100 T9 E9 09 9 T09 TE9 E09
4 4 4 4 4 4 4

0101 T9 E9 09 9 T09 TE9 E09
5 5 5 5 5 5 5

0110 T9 E9 09 9 T09 TE9 E09
6 6 6 6 6 6 6

0111 T9 E9 09 9 T09 TE9 E09
7 7 7 7 7 7 7

1000 T9 E9 09 9 T09 TE9 E09
8 8 8 8 8 8 8

1001 T9 E9 09 9 T E 0
18 18 18 18 18 18 18

1010 T9 E9 09 9 T E TE
28 28 28 28 28 28

I-

1011 T9 E9 09 9 T E 0
38 38 38 38 38 38 38

1100 T9 E9 09 9 T E 0
48 48 48 48 48 48 48

1101 T9 E9 09 9 T E 0
58 58 58 58 58 58 58

1110 T9 E9 09 9 T E 0
68 68 68 68 68 68 68

1111 T9 E9 09 9 T E 0
78 78 78 78 78 78 78

T = 12 Punch E =0 11 Punch

Figure 8. Extended Card Code

Decimal Interchange Code and ASCII - American
Standard Code for Information Interchange (Figure
7). Bit numbering is different for the two codes. Cor­
responding bits are:

EBCDIC: 0 1 2 3 4 5 6 7 (the standard bit numbering
within one byte)

ASCII: 7 6 X 5 4 3 2 1
Bits 0-3 are referred to as zone bits, (ASCII: 7-5)
Bits 4-7 are referred to as digit bits, (ASCII: 4-1)

An extended card code provides punching of any
byte value into one column (Figure 8).

10 11

11 00 01 10 11 00 01 10 11

TEO TO TE EO TEO TO EO 0 0
18 18 18 18 28

TE09 TO TE EO TEO T E E09
1 1 1 1 1 1 1

TE09 TO TE EO TEO T E 0
2 2 2 2 2 2 2 2 2

TE09 TO TE EO TEO T E 0
3 3 3 3 3 3 3 3 3

TE09 TO TE EO TEO T E 0
4 4 4 4 4 4 4 4 4

TEO 9 TO TE EO TEO T E 0
5 5 5 5 5 5 5 5 5

TE09 TO TE EO TEO T E 0
6 6 6 6 6 6 6 6 6

TEO~ TO TE £0 TEO T E 0
7 7 7 7 7 7 7 7 7

TEO~ TO TE EO TEO T E 0
8 8 8 8 8 8 8 8 8

TO TE EO TEO T E 0
18 9 9 9 9 9 9 9 9

TO TE EO TEO T09 TE9 E09 TE09
28 28 28 28 28 28 28 28 28

TO TE EO TEO T09 TE9 E09 TE09
38 38 38 38 38 38 38 38 38

TO TE EO TEO T09 TE9 E09 TE09
48 48 48 48 48 48 48 48 48

TO TE EO TEO T09 TE9 E09 TE09
58 58 58 58 58 58 58 58 58

TO TE EO TEO T09 TE9 E09 TE09
68 68 68 68 68 68 68 68 68

TO TE EO TEO T09 TE9 E09 TE09
78 78 78 78 78 78 78 78 78

o = Zero Punch

Data Formats 12-65 15

Decimal numbers coded in either EBCDIC or ASCII are
referred to as zoned decimal format. Zoned decimal
numbers are treated as signed integers with a variable
field length. The sign is carried in the zone bits of the
least-significant digit (Figure 9).

Byte - Character Byte = Character

EBCD 1 1 1 1 0 1 0 0 1 1 1 1 0 1 1 1 1 1 0 1 0 0 1 1

ASC II 0 1 0 1 0 1 0 0 0 1 0 1 0 1 1 1 1 0 1 1 0 0 1 1

4 L EBCD

S ASCII

Meaning

Figure 9. Zoned Decimal Format

The zoned decimal format cannot be used for arith­
metic operations. Instructions are provided for packing
or unpacking decimal numbers so that they may be
translated from the zoned to the packed format (which
provides decimal arithmetic) and vice versa. Interpre­
tation and generation of zone bits depends on the
character set preferred and is program controlled (bit
12 of the psw).

I/O units that are not character-sensitive (magnetic
tape units, disk files, etc.) can handle any coding for­
mat. On these devices, the information is stored in 8-
bit bytes as in the CPU.

Examples: Magnetic tape units use a nine-track R/W

head (8 bits plus parity), recording one byte in par­
allel. On disk files, the bits within the byte are recorded
in series but there is no code change.

Any other character codes of character-sensitive I/O

devices can be handled by means of a translate instruc­
tion. With this instruction, it is possible to convert
variable-length fields from any code into any other.

Other Data Codes

• Any information that is not in a format used for
arithmetic operations is called logical information.

• Logical information can be in any code.

• Instructions are provided to handle logical informa­
tion.

Information that is not in a format that can be handled
with the normal arithmetic operations (binary fixed­
point or floating-point and packed decimal) is referred'
to as logical information.

Character-sensitive I/O codes or any other coding
format are logical information. For the system, logical
information is binary data without any special format.

16 12-65 Model 40 Comprehensive Introduction

A full set of instructions is provided for handling
logical information. Included are logical arithmetic
instructions which do not recognize any special sign
bits.

Binary Fixed-Point Arithmetic

• Operands are signed binary integers, recorded in
halfwords or words.

• Negative numbers are always in two's complement
form.

• Operands are held in general re~isters or in main
storage.

• Fixed-point arithmetic uses the add-to-accumulator
principle.

• Halfword numbers loaded into general registers are
expanded to a full word.

A fixed-point number is a signed value, recorded as a
binary integer. It is called fixed-point, because the
programmer determines the fixed position of the binary
point.

Fixed-point numbers may be recorded in halfword
(16 bit) or fullword (32 bit) length. In both lengths,
the first bit position (bit 0) holds the sign of the num­
ber.

Negative numbers are always carried in two's com­
plement form.

Fixed-point operands are held in general registers
or in main storage. Results of arithmetic operations
are always developed in general registers. For binary
arithmetic the general registers can be assumed to be
accumulators. This type of operation is known as add­
to-accumulator.

Halfword numbers loaded into general registers are
expanded to a full word. The sign is propagated
throughout the high-order 16 bit positions.

Add and Subtract

• Rules for addition:
1. Zero plus zero equals zero.
2. Zero plus one equals one.
3. One plus one equals zero with a carry to the
next higher order bit position.

• For subtract, the two's complement of the second
operand is added.

• Carrys out of bit 0 are lost.

• Overflow has occurred if the carrys out of bit 0 and
bit 1 are not equal.

Examples with eight-bit numbers (range from + 127
to -128) follow.

COMMENTS

Bit number
+ 22

+(+92)

o 1 2 3 4 5 6 7
000 1 0 1 1 0
010 1 1 100

Sign in position zero; significant digits in positions 1-7

o 0 0 1 1 1 0 0 - carrys

+114

+114
-(+92)

o 1 1 1 0 0 1 0 No overflow, carrys out of bit 0 and bit 1 are equal (both 0)

o 1 1 100 1 0
1 0 1 0 0 1 0 0 two's complement of +92

1 1 1 0 0 0 0 0 - carrys

+ 22

- 22
+ (-92)

o 0 0 1 0 1 1 0 No overflow, carrys out of bit 0 and bit 1 are equal (both 1, carry out of bit 0 is lost)

1 110 1 0 1 0
1 0 100 1 0 Q

1 1 1 0 0 0 0 0 - carrys
-114 1 0 0 0 1 1 1 0 No overflow, carrys out of bit 0 and bit 1 are equal (both 1, carry out of bit 0 is lost)

- 22
-(-92)

1 1 1 0 1 0 1 0
010 1 1 100 two's complement of - 92 (= + 92)

1 1 1 1 1 0 0 0 - carrys

+ 70
+114

+(+22)

o 1 0 0 0 1 1 0 No overflow, carrys out of bit 0 and bit 1 are equal (both 1, carry out of hit 0 is lost)
o 1 1 1 0 0 1 0 Sign change
000 1 0 1 1 0

o 1 1 1 0 1 1 0 - carrys
+136

-114

1 0 0 0 1 0 0 0 overflow, carrys out of bit 0 and bit 1 are unequal, result is not correct.

- (+22)
1 000 1 1 1 0
1 1 1 0 1 0 1 0 two's complement of + 22

1 0 0 0 1 1 1 0 - carrys
-136 o 1 1 1 1 0 0 0 overflow, carrys out of bit 0 and bit 1 are unequal, result is not correct.

Multiply

Multiplications of two fullword numbers results in a
double word held in two consecutive general registers.
The sign of the product is determined by the rules of
algebra.

Divide

The dividend is a double word number held in two
consecutive general registers. The divisor is a fullword
number; the resulting quotient is a fullword number.
The sign of the quotient is determined by the rules of
algebra; the remainder has the sign of the dividend.

Floating-Point Arithmetic

• Needed for large numbers used in scientific fields.

• A floating-point number is expressed as a fraction
multiplied by a power of 10.

• A floating-point number is normalized if the decimal
point of the fraction is immediately to the left of
the highest-order significant digit.

• Rules for Add and Subtract:
1. The number with the smaller exponent is shifted

to the right until the exponents are equal.

2. The fractions are added (or subtracted); the ex­
ponent remains unchanged.

3. If necessary, the result is normalized.

• Rules for Multiply:
1. The fractions are multiplied.

2. The exponents are added.

3. If necessary, the result is normalized.

• Rules for Divide:
1. The fractions are divided.

2. The divisor exponent is subtracted from the divi­
dend exponent.

3. If necessary the result is normalized.

Very large and very small numbers are often encoun­
tered in scientific calculations. The electron, for ex­
ample, has a charge of 0.OOOOOOOOOO48cgs (centimeter
gram seconds): one light year (the distance that light
travels in one year) is about 6,000,000,000,000 miles. It
is conceivable that such numbers may be 50 digits in
length.

The problem, when a computer is used to process
such numbers unaltered, is that fixed-point registers
should have 100 decimal digit positions (more than
300 bits) to allow for calculations involving large and
small numbers. Such a computer would be expensive
to build and its calculating speed would be slow. It
should also be observed that most register positions
would contain only zeros (spacer zeros) to define the
magnitude of a few significant digits.

It is possible, however, to handle these numbers with
the register size normally available. The programmer
would have to process the significant digits, and, in a

Data Formats 12-65 17

separate sequence, would have to establish the position
of the decimal point which often (at the time of pro­
gramming) is not easily predictable.

Thus, the need for a shorthand notation and a sim­
plified arithmetic (floating-point) becomes apparent
for those areas where the magnitude of numbers covers
a wide range.

The key to floating-point data representation is the
separation of the significant digits of a number from
the size (magnitude) of the number. Thus, the number
is expressed as a fraction multiplied by a power of 10.

Exponential Numbers

1. In the decimal system, 0.00000000048 actually
means:
(0 x 10°) + (0 X 10-1

) + ... + (4 X 10-10
) + (8 X 10-11

)

All terms except the last two are zero; the number
can be written as:
(4 x 10-1°) + (8 X 10-11

)

In order to simplify this expression, the second
term is transformed into a number with the same
power-of-ten factor as in the first.
(4 x 10-10

) (.8 x lO- JO
)

(4.8) x 10-10

4.8 X 10-10

.48 X 10-9
(nonnalized)

2. In the decimal system, 6,000,000,000,000 actually
means:
(6 x 1012

) + (0 X 1011) + ... + (0 x 10°)
6 X 1012

.6 X 1013

Whenever the decimal point is moved one position
to the left, the power-of-ten (exponent) is increased
by one.

Whenever the decimal point is moved one position
to the right the exponent is decreased by one.

A floating-point number is normalized, if, in the
fraction, no spacer zeros are carried. The decimal point
is immediately to the left of the highest-order signifi­
cant digit.

Rules for Add and Subtract

1. The number with the smaller exponent is shifted
to the right until the exponents are equal.

2. The fractions are added (or subtracted), the ex­
ponent remains unchanged.

3. If necessary the result is normalized.
Example:
21,700,000 + 800 = (.217 X 108

) + (.8 X 103
)

= .217 X 108

+ .000008 X 108

.217008 X 108

Rules for Multiply

Shift right until ex­
ponents are equal.

1. The fractions are multiplied.

18 12-65 Model 40 Comprehensive Introduction

2. The exponents are added.

3. If necessary the result is normalized.
Example:
2500 X 0.000000033 = (.25 X 104

) X (.33 X 10-7
)

Multiply fractions: .25 X .33 = .0825
Add exponents: (+4) + (-7) = -3
Result: .0825 X 10-3

N onnalized: .825 X 10-4

Rules for Divide

1. The fractions are divided.

2. The divisor exponent is subtracted from the div­
idend exponent.

3. If necessary the result is normalized.
Example:

0.000222 + 0.00004 = (.222 X 10-3
) + (.4 x 1O-~)

Divide fractions: .222 + .4 = .555
Subtract exponents: (-3) - (-4) = + 1
Result: .555 X 10

Floating-Point Notation

Format

• Floating-point numbers are recorded in the hexa­
decimal number system.

• The significant digits are recorded as hexadecimal
fractions.

• The exponent (called the characteristic) is a seven­
bit binary number to which the base 16 is raised.

• The characteristic can be a number from 0 to 127.

• Floating-point numbers are recorded in a fixed­
length format:

short precision in single words
double precision in double words

• Bit 0 in either format denotes the sign of the frac­
tion.

• Negative fractions are always carried in true form.

Floating-point numbers are recorded in the hexadeci­
mal number system.

Example: The hexadecimal number 1C.A actually
means:

(1 x lW) + (C x 16°) + (A x 16-1
)

To express this number in the floating-point format,
the exponents have to be equal and the signincant
digits are expressed as a fraction:

(.1 X 162
) + (.OC X 162

) + (.OOA X 162
)

.ICA X 162

In order to store such a number in the machine, two
values have to be recorded:

1. The fraction (.lCA).

2. The power to which 16 has to be raised (+ 2).

The base is always 16; as this fact is implicit in the
operations the number is not recorded.

The general format in which the two numbers are
stored is a fixed-length format of either a single or a
double word:

Sign bit Seven-bit 24- or 56-bit
of fraction characteristic fraction

Since each of the two numbers is signed, some method
must be employed to express two signs. This is ac­
complished by making the fraction sign use the sign
associated with the word (or double word) and ex­
pressing the exponent in excess - 64 arithmetic. The
signed number of the exponent. is always increased
by 64.

The exponent is expressed as a seven-bit binary
number, giving a range for the exponent from 0 to 127.
\Vith excess - 64 arithmetic, valid exponents are from
- 64 to + 63. As this number is no longer a true ex­
ponent, it is referred to in common practice as a
characteristic.

Examples:
Characteristic 0000000 stands for 16-64

Characteristic 0111111 stands for 16-1

Characteristic 1000000 stands for 16°
Characteristic 1000001 stands for 1W1

Characteristic 1111111 stands for 16+d3

The range of decimal numbers which can be expressed
in floating-point notation is therefore 16- 64 to 16+ 63

which is approximately 10-. 78 to 10+ 75 • The first is a
very small number with 78 spacer zeros after the
decimal point; the second is a very big number with
75 digits. This is the absolute value of the number,
since the number itself can be positive or negative
(indicated by the sign bit in position 0; zero indicates
positive fraction, 1 indicates negative).

The fraction is always carried in true form (not
complement). The two available formats (Figure 10)
for floating-point numbers are called:

l. Single precision - the number is recorded in a
single word, also referred to as short format.

2. Double precision - the number is recorded in a
double word, also referred to as long format.

Precision

The precision of any value can be expressed by the
number of significant digits it contains.

IS I Characteristic I Fraction

Bit No. 0 1 2 3 4 5 6 7 8 31

Single Precision

IS I Characteristic Fraction))
63 Bit No. 0 1 2 3 4 5 6 7 8

Double Precision

Figure 10. Floating-Point Format

The statement that the distance covered by light in
one year is .6 X 1013 miles is not very precise (only
one significant digit). Exact measurements could pos­
sibly give this figure as .56322 X 1013 miles or
.6209 X 1013 miles, or even a number with more sig­
nificant digits.

The number of significant digits a computer can
handle defines its precision.

Example: The ordinary slide rule can be regarded
as a calculating device operating in a floating-point
format. The significant digits are handled with the
device; the exponents, however, have to be calculated
by the user.

A 10-inch slide rule has an average precision of about
3 significant digits. This means that operands cannot
have more than 3 significant digits and the results ob­
tained are accurate only to about 3 significant digits:

.176 times .294 calculated with a slide rule is about .517 X 10-1.
The accurate result would be .51744 X 10-1.
The floating-point format has a precision of either

24 or 56 binary bits (the bits available to store the
fraction in either short or long form). These precisions
are equal to 7 or 16 decimal significant digits, respec­
tively.

The precision of short floating-point arithmetic can
be compared with the precision of a hypothetical slide
rule with a length of about 4 yards. Long floating­
point arithmetic would require a slide rule with a
length of about 2600 yards.

Conversion Example: To convert -149.375 into a
short floating-point number:

l. Convert to hexadecimal; easiest way of doing this
is by first converting to binary (use Figure 7).

-149.375 dec
27 26 25 24 23 22 21 2° 2-1 2-2 2-3 2- i

100101010110

in hex 9 5 6

2. Express as fraction times a power of 16.
.956 X 162

3. Calculate characteristic and convert to binary.
26 25 24 23 22 21 2°

Exponent + 64 = 2 + 64 = 66 = 1 0 0 0 0 1 0

4. Arrange according to the format, insert the sign:
S CHARACTERISTIC FRACTION

1 1000010 1001 0101 0110 0000 0000 0000

Arithmetic

• The arithmetic rules for floating-point numbers are
the same as for decimal floating-point.

• Several floating-point instructions are provided.

• Floating-point arithmetic uses the add-to-accumu­
lator principle.

• 4 floating-point registers (double words) are avail­
able.

• Data exceptions are checked.

Data Formats 12-65 19

Arithmetic operations are executed by the computer as
explained for decimal floating-point numbers.

To handle floating-point nuinbers, various instruc­
tions are provided.

Floating-point arithmetic uses the add-to-accumula­
tor principle; the accumulators in this case are the 4
double word floating-point registers. It is implied in
floating-point operations that these registers are used
(and not general registers).

The instructions available include the following
types:

Add
Subtract
Multiply
Divide

Compare
Load floating-point register
Store floating-point register

All instructions are provided for the short and long
format. The results are automatically normalized ex­
cept for the special operations: add unnormalized and
subtract unnormalized.

During execution of the operation, several unusual
conditions can be detected and indicated to the
program:

Exponent Overflow: The result characteristic in ad­
dition, subtraction, multiplication, or division exceeds
127, and the result fraction is not zero. The operation
is completed, and a program interrupt occurs. The
fraction is normalized, and the sign and fraction of the
result remain correct. The result characteristic is made
128 smaller than the correct characteristic. For addi­
tion and subtraction, the condition code is set to 1
when the result is less than zero, and the condition
code is set to 2 when the result is greater than zero.
For multiplication and division, the condition code re­
mains unchanged.

Exponent Underflow: The result characteristic in
addition, subtraction, multiplication, halving, or divi­
sion is less than zero and the result fraction is not zero.
The operation is completed, and a program interrupt
occurs if the exponent-underflow mask bit (psw bit
38) is l.

The setting of the mask bit also affects the result of
the operation. When the mask bit is 0, the sign, char­
acteristic, and fraction are set to zero, thus making
the result a true zero. When the mask bit is 1, the
fraction is normalized, the characteristic is made 128
larger than the correct characteristic, and the sign and
fraction remain unchanged.

Significance Exception: The resulting fraction of add
or subtract operations is zero.

Divide Exception: Division by a number with a zero
fraction is attempted. The operation is suppressed.
There are no instructions to translate floating-point
numbers to and from other number systems. Conver-

20 1-68 Model 40 Comprehensive Introduction

sion has to be programmed; conversion routines are
included in the assembly programs.

Decimal Arithmetic

• Packed decimal is used in decimal arithmetic.

• The storage-to-storage principle is used.

• Negative numbers are carried in true form with the
corresponding sign.

• Multiply and divide are performed as a sequence
of add or subtract operations.

• Decimal arithmetic is performed in a binary adder;
the numbers have to be modified accordingly.

The number format used in decimal arithmetic is the
packed decimal format. Instructions available include:

Zero and Add
Add
Subtract
MultipJy
Divide
Compare

Decimal arithmetic uses the storage-to-storage prin­
ciple. Both operands are held in main storage and
have a variable field length. The result is stored back
into main storage and replaces the first operand.

Negative numbers are always carried in true form
with the corresponding sign in the lowest-order 4 bits.

Prior to instruction execution, the operand signs are
analyzed to determine whether a true or complement
add operatIOn has to take place.

Multiply and divide are performed as a sequence of
add or subtract operations.

Decimal arithmetic is performed in a binary adder;
the decimal numbers have to be modified accordingly.

Rules for True Dec:imal Add

1. A correction 6 is always added to each digit of
the first operand.

2. Binary add the second operand.

3. If the high-order bit position of a packed decimal
digit (bit value 8) generates a carry, the result is
correct.

4. If this bit position does not generate a carry, the
result has to be decreased by 6 (add two's com­
plement of 6 which is 1010). Ignore the decimal
carry that may occur.

Example:

38
+47

----s5
binary add 6 to first operand digits

add second operand

add 10 10 to decimal digits
without carry

ignore digit carrys
decimal result

R.ules for Complement Add

Bit 0 1 2 3 '4 5 6 7
o 0 1 1: 1 0 0 0
o 1 0 0,0 1 1 1

,
0011'1000
o 1 1 0:0 1 1 0
1 0 0 1'1 1 1 0
o 1 0 0:0 1 1 1

NC C,

C

1 1 1 0:0 1 0 1 ,
1 0 1 0,0 0 0 0 , ,
1 0 0 0 10 1 0 1

8 I 5 I

1. No corrections of 6 to first operand.

2. Add two's complement of second operand.

3. If the high-order bit position of the packed deci­
mal digit (bit value 8) generates a carry, the
result is correct.

4. If this bit position does not generate a carry, the
result has to be decreased by 6 (add two's com­
plement of 6 which is 1010).

5. If a sign change occurs, the result has to be re­
complemented (subtract result from zero).

Example:

47 =
-75 =
-28

Add two's complement
of second operand

Add 1010 to digits without carry

Carry out indicates
sign change!

Recomplement: (complement
add to 0 and change sign)

Add 10 10 to digits without carry

Ignore digit carries
decimal result

Bit 0 1 2 3' 4 5 6 7
o 1 0 0 10 1 1 1
o 1 1 1:0 101

I o 1 0 0,0 1 1 1 ,
1 0 0 Ot! 0 1 1

NC C'

C

1 1 0 1'0 0 1 0
1 0 1 0:0 0 0 0

o 1 1 1'0 0 1 0
I

o 0 0 010 0 0 0
1 0 0 011 1 1 0

NC NC:
1 0 0 0,1 1 1 0
1 0 1 0,1 0 1 0

C C I

o 0 1 0; 1 0 0 0
-2 8

Data Formats 1-68 21

System Controls

Instructions
• Instructions can be one, two, or three halfwords.

• Instructions must be located on integral halfword
boundaries.

The length of a machine instruction can be one, two,
or three halfwords. It is related to the ntimber of stor­
age addresses necessary for performing the operation.

An instruction consisting of only one halfword can­
not cause any reference to main storage. An instruction
that is two halfwords long provides one storage address
and a three-halfword instruction provides two storage
addresses. All instructions must be located in storage
on integral halfword boundaries. An integral halfword
boundary is any 24-bit address whose low-order bit
is O.

First Halfword 1

Format Type Byte 1 I Byte 2 I
1 I

I I , Register Register , Operand 1 Operand 2
1 ~~

RR Register -to-register
I Op Code I Rl I R2 I
10 718 1112 151

1 I Register
I
I

1 Operand 1 1 , ~,

RX Register-to-indexed-I Op Code
I

Rl I X2 I B2
storage

10 718 1112 .15:16
1 I

Register Register
1 Operand 1 Operand 3
1 ,---A--..,~(

RS Reg i ste r-to-storage

I
Op Code

I
Rl

I
R3

I
B2

10 7,8 11 12 15116

1 I Immediate I
1 I Operand I
1 , '\I

SI Storage and immed-

I
OpCode

I I iate operand
12 Bl

10 7,8 15,16
I I Length I

I Operand 1 Operand 2
1 ~~,

SS Storage-to-storage I OpCode I L 1
I

L2
I

Bl

Instruction Format

• The first byte of an instruction contains the opera­
tion code (op code).

• Up to 256 op codes possible.

• The five instruction formats are RR, RX, RS, Sl and SSe

The first halfword of an instruction (Figure 11) con­
sists of two parts. In the first part, bits 0-7 are the op
code. Provision is made for up to 256 op codes by using
the eight-bit binary format.

The second part of the first halfword, bits 8-15, may
be used as a register specification, a mask, an operand
length specification, a byte of immediate data, or it
may be ignored. Immediate data are held in the in­
struction format and used as one of the operands.

Second Halfword 2 Third Halfword 3

,
1
1
,
,
1
,
,

Address
Operand 2

,
\

I
D2 J 1920

Address I
Ope:and 2 I

\

I
D2

I I
1920 311 I

Address 1 I
Operand 1 I I

1

I J 1
Dl I

1920 I
Address 1 Address I
Ope~and 1 1 Oper~nd 2 I

" \

I
Dl

I
B2

I
D2 I

o 78 1112 1516 1920 31 47

Figure 11. Five Basic Instruction Formats

22 12-65 Model 40 Comprehensive Introduction

The second and third halfwords, when present in
the instruction, always have the same format. This
format is a four-bit base address register (B), followed
by a twelve-bit displacement address (D).

For purposes of describing the execution of instruc­
tions, operands are designated as first, second, and
third operands. These names refer to the manner in
which the operands participate. The operand to which
a field in an instruction format applies is generally
denoted by the number following the code name of
the field, for example, Rl, Bl, L2, D2•

The length and format of an instruction are specified
by the first two bits of the op code.

BTT POSITIONS

(0-1)
00
01
10
11

INSTRUCTION LENGTH CODE

INSTRUCTION

LENGTH

One halfword
Two halfwords
Two halfwords

Three halfwords

INSTRUCTION

FORMAT

RR
RX

RS or SI
SS

Bits 8-15 of the instruction are used either as two
four-bit fields or as a single eight-bit field. This byte
can contain the following information:

Four-bit operand register specification (Rl, R~, or R:)
Four-bit index register specification (X2)

Four-bit mask (Ml)
Four-bit operand length specification (L1 or L2)
Eight-bit operand length specification (L)
Eight-bit byte of immediate data (12)

In some instructions, a four-bit field (the whole second
byte of the first halfword) is ignored.

The second and third halfwords always have the
same format: four-bit base register designation (Bl or
B2) followed by a twelve-bit displacement (Dl or D2)'

Address Generation

• Base address is a 24-bit number contained in the
general register specified by the instruction B-field.

• Index address is a 24-bit number contained in the
general register specified by the instruction X-field.

• Displacement address is a 12-bit number contained
in tlte instruction D-field.

• An actual main storage address is formed by adding
the contents of B to the contents of X plus D.

• Main storage addresses referring to fixed-length in­
formation must observe the boundary specifications.

For addressing purposes, operands can be grouped
in three classes: (1) explicitly addressed operands in
main storage, (2) immediate operands placed as part
of the instruction stream in main storage, and (3) op­
erands located in the general or floating-point register.

To permit the ready relocation of program segments
and to provide for flexible specifications of input, out-

put, and working areas, all instructions referring to
main storage have been given the capacity of employ­
ing a full address of 24 bits, regardless of the actual
storage size of the individual system.

The address used to refer to main storage is gen­
erated from three binary numbers: the base address
(B), the index (X), and the displacement (D).

Base Address (B)

The base address (B) is a 24-bit number contained in
a general register specified by the program in the
B-field of the instruction. The B-field is included in
every MS address specification. The base address can
be used as a means of static relocation of programs
and data.

In array-type calculations, the base address can
specify the location of an array and, in record-type
processing, it can identify the record. The base address
provides for addressing the entire main storage. The
base address may also be used for indexing purposes.

Index (X)

The index (X) is a 24-bit number contained in a gen­
eral register specified by the program in the X-field of
the instruction. It is included only in the address
specified by the RX instruction format. The index can
be used to provide the address of an element within
an array. Thus, the RX format instructions permit
double indexing.

Displacement (D)

The displacement (D) is a 12-bit number contained
in the instruction format. It is included in every in­
struction that addresses main storage. The displace­
ment provides for relative addressing up to 4095 bytes
beyond the element or base address.

In array-type calculations, the displacement may be
used to specify one of the many items associated with
an element. In the processing of records, the displace­
ment can be used to identify items within a record.

In forming the actual MS address, the base address
and index are treated as unsigned 24-bit positive binary
integers. The displacement is similarly treated as a
12-bit positive binary integer. The three are added
as 24-bit binary numbers, ignoring overflow. Since
every address includes a base, the sum is always 24
bits long. The general register bits used for addressing
are bits 8-31. Bits 0-7 are ignored.

The program may have zeros in the base address,
index, or displacement fields. A zero is used to indicate
the absence of the corresponding address components.
A base or index of zero implies that a zero quantity is to
be used in forming the address regardless of the con­
tents of general register O. A displacement of zero has
no special significance.

System Controls 12-65 23

Initialization, modification, and testing of base ad­
dresses and indices can be carried out by fixed-point
instructions: branch and link, branch on count, or
branch on index.

M:S addresses referring to fixed-length data formats
must specify the proper address boundaries. If the
boundary specifications are not met, a program check
occurs.

Instruction Types

• Only a basic set of instructions is provided as stand­
ard equipment; additional instruction sets are op­
tional.

• Instruction types provided are:
Data handling instructions
Branch instructions
110 instructions
System control instructions.

• Data handling instructions are available for:
Fixed-point data
Floating-point data
Decimal data
Logical information.

The instructions available are listed in Figure 12. For
detailed explanation of instructions, refer to IBM
System/360 Principles of Operation, Order No.
GA22-6821.

Only a basic set of these instructions is provided
with the standard machine; additional instruction sets
are optional. The terminology used for various instruc­
tion sets is as follows:

1. Standard instruction set.

2. Commercial instruction set - standard instruction
set plus decimal feature instructions.

3. Scientific instruction set - standard instruction
set plus floating-point feature instructions.

4. Universal instruction set - includes all instruc­
tions (Figure 12) except the two direct control instruc­
tions (marked Y). Four types of instructions can be
distinguished:

a. Data-handling instructions - perform arithmetic
or logical operations with the data specified by
the operands (actual data-processing functions
within the system).

h. Branch instructions - allow change in sequence
of program instructions.

c. Input/output instructions-control I/O devices and
data transfers between CPU and I/O equipment.

d. System control instructions - control the over-all
system status.

24 12-65 Model 40 Comprehensive Introduction

Data-Handling Instructions

• Arithmetic and logical instructions are provided.

• Depending on the data format processed, the in-
structions are called:

Fixed-point instructions
Floating-point instructions
Decimal instructions
Logical instructions

The arithmetic instructions are provided for all data
formats and with various specifications of their oper­
ands (operands in general registers or main storage).

Fixed-point instructions handle fixed-point data
(signed binary integers); floating-point instructions
handle floating-point data. Decimal instnlctions handle
packed decimal data. Logical instructions handle any
type of data but without special treatment of the posi­
tions used for sign representation of some formats.

Instructions performing other than arithmetic opera­
tions are called logical instructions. A set of instruc­
tions which performs logical operations on the operands
and instructions that are used for data-handling (and
format) belongs to this group.

Arithmetic

Add: 15 add instructions are provided:
Fixed-point instructions:

AR - RR format, fullwords
A - RX format, fullwords
AH - RX format, halfwords

Floating-point instructions:
ADR - RR format, normalized long
AD - RX format, normalized long
AER - RR format, normalized short
AE - RX format, normalized short
A WR - RR format, unnormalized long
A \V - RX format, unnom1alized long
A UR - RR format, unnormalized short
AU - RX format, unnormalized short

Decimal instructions:
AP - 55 format, variable length
ZAP - 55 format, variable length

J ,ogical instructions:
ALR - RR format, binary add without special handling of

sign
AL - RX format

In all formats, the second operand is added to the first
operand; the result replaces the first operand.

A similar range of instructions is provided for other
arithmetic operations.

Subtract: The second operand is subtracted from the
first operand; the result replaces the first operand.

f..fultiply: The product of the multiplier (second
operand) and the multiplicand (first operand) replaces
the multiplicand.

In fixed-point arithmetic, the result contains 64 bits.
Rl must specify an even-numbered general register;

NAME MNEMONIC TYPE EXCEPTIONS CODE NAME MNEMONIC TYPE EXCEPTIONS CODE

Add AR RR C IF lA Halt 110 HIO SI CM 9E
Add A RX C A,S, IF SA Halve (Long) HDR RRF S,V 24
Add Decimal AP SS T,C P,A, D, DF FA Halve (Short) HER RRF S,U 34
Add Halfword AH RX C A,S, IF 4A Insert Character IC RX A 43
Add Logical ALR RR C IE Insert Storage Key ISK RRZ M, A,S 09
Add Logical AL RX C A,S, 5E Load LR RR 18
Add Normalized Load L RX A,S 58 (Long) ADR RRF,C S,U,E,LS 2A Load Address LA RX 41
Add Normalized Load and Test LTR RR C 12 (Long) AD RXF,C A,S,V,E,LS 6A Load and Test Add Normalized (Long) LTDR RRF,C S 22 (Short) AER RRF,C S,V,E,LS 3A Load and Test Add Normalized (Short) LTER RRF,C S 32

(Short) AE RXF,C A,S,U,E,LS 7A Load Complement LCR RR C IF 13
Add Vnnorm- Load Complement alized (Long) AWR RRF,C S, E,LS 2E (Long) LCDR RRF,C S 23
Add Unnorm- Load Complement alized (Long) AW RXF,C A,S, E,LS 6E (Short) LCER RRF,C S 33
Add Unnorm- Load Halfword LH RX A,S 48

alized (Short) AUR RRF,C S, E,LS 3E Load (Long) LDR RRF S 28
Add Unnorm- Load (Long) LD RXF A,S 68 alized (Short) AU RXF,C A,S, E,LS 7E Load Multiple LM RS A,S 98
AND NR RR C 14 Load Negative LNR RR C 11
AND N RX C A,S 54 Load Negative
AND NI SI C P,A 94 (Long) LNDR RRF,C S 21
AND NC SS C P,A D4 Load Negative
Branch and Link BALR RR 05 (Short) LNER RRF,C S 31
Branch and Link BAL RX 45 Load Positive LPR RR C IF 10
Branch on Load Positive

Condition BCR RR 07 (Long) LPDR RRF,C S 20
Branch on Load Positive

Condition BC RX 47 (Short) LPER RRF,C S 30
Branch on Count BCTR RR 06 LoadPSW LPSW SI LM, A,S 82
Branch on Count BCT RX 46 Load (Short) LER RRF S 38
Branch on Index Load (Short) LE RXF A,S 78

High BXH RS 86 Move MVI SI P,A 92
Branch on Index Move MVC SS P,A D2

Low or Equal BXLE RS 87 Move Numerics MVN SS P,A DI
Compare CR RR C 19 Move with Offset MVO SS P.A FI
Compare C RX C A,S 59 Move Zones MVZ SS P,A D3
Compare Decimal CP SS T,C A, D F9 Multiply MR RR S lC
Compare Halfword CH RX C ~,S 49 Multiply M RX A,S 5C
Compare Logical CLR RR C 15 Multiply Decimal MP SS T P,A,S,D FC
Compare Logical CL RX C A,S 55 Multiply Halfword MH RX A,S 4C
Compare Logical CLI SI C A 95 Multiply (Long) MDR RRF S,U,E 2C
Compare Logical CLC SS C A D5 Multiply (Long) MD RXF A,S,U,E 6C
Compare (Long) CDR RRF,C S 29 Multiply (Short) MER RRF S,U,E 3C
Compare (Long) CD RXF,C A,S 69 Multiply (Short) ME RXF A,S,.u,E 7C
Compare (Short) CER RRF,C S 39 OR OR RR C 16
Compare (Short) CE RXF,C A,S 79 OR 0 RX C A,S 56
Convert to Binary CVB RX A,S,D, IK 4F OR 01 SI C P,A 96
Convert to Decimal CVD RX P,A,S 4E OR OC SS C P,A D6
Diagnose SI M, A,S 83 Pack PACK SS P,A F2
Divide DR RR S, IK ID

Read Direct RDD SI Y M,P,A 85 Divide D RX A,S, IK 5D
Divide Decimal DP SS T P,A,S,D, DK FD Set Program Mask SPM RR L 04
Divide (Long) DDR RRF S,U,E,FK 2D Set Storage Key SSK RRZ M, A,S 08
Divide (Long) DD RXF A,S,U,E,FK 6D Set System Mask SSM SI M, A 80
Divide (Short) DER RRF S,U,E,FK 3D Shift Left Double SLDA RS C S, IF 8F
Divide (Short) DE RXF A,S,U,E,FK 7D Shift Left Double

Logical SLDL RS S 80 Edit ED SS T,C P,A, D, DE Shift Left Single SLA RS C IF 8B Edit and Mark EDMK SS T,C P,A, D, DF Shift Left Single Exclusive OR XR RR C 17 Logical SLL RS 89 Exclusive OR X RX C A,S 57 Shift Right Double SRDA RS C S 8E Exclusive OR XI SI C P,A 97 Shift Right Double Exclusive OR XC SS C P,A D7 Logical SRDL RS S 8C Execute EX RX A,S, EX 44

Figure 12. Alphabetic List of Instructions (Sheet 1 of 2)

System Controls 1-68 25

NAME MNEMONIC TYPE EXCEPTIONS CODE

Shift Right Single SRA RS C 8A
Shift Right Single

Logical SRL RS 88
Start 110 SIO SI CM 9C
Store ST RX P,A,S 50
Store Character STC RX P,A 42
Store Halfword STH RX P,A,S 40
Store (Long) STD RXF P,A,S 60
Store Multiple STM RS P,A,S 90
Store (Short) STE RXF P,A,S 70
Subtract SR RR C IF IB
Subtract S RX C A,S, IF 5B
Subtract Decimal SP SS T,C P,A, D, DF FB
Subtract Halfword SH RX C A,S, IF 4B
Subtract Logical SLR RR C IF
Subtract Logical SL RX C A,S 5F
Subtract Norm-

alized (Long) SDR RRF,C S,U,E,LS 2B
Subtract Norm-

alized (Long) SD RXF,C A,S,U,E,LS 6B
Subtract Norm-

alized (Short) SER RRF,C S,U,E,LS 3B

LEGEND

MNEMONIC:

Mnemonic Used For Programming

TYPE:

Instruction Type (RR, RX, RS, SI, SS) and Instruction
Set which provides the Instruction (No Indication =
Standard Set)
F: Floating Point Feature
T: Decimal Feature
Y: Direct Control Feature
Z: Protection Feature

C: Indicates that the Instruction sets the Condition
Code

CODE:

Operation Code in Hexadecimal

Figure 12. Alphabetic List of Instructions (Sheet 2 of 2)

the result is stored in the even/odd register pair speci­
fied by Rl.

In decimal arithmetic, the multiplier size is limited
to 15 digits and must be less than the number of
multiplicand digits to give a maximum of 31 digits
in the result.

Divide: The dividend (first operand) is divided by
the divisor (second operand), and the quotient and
the remainder replace the dividend.

In fixed-point arithmetic, the dividend Rl must
specify an even/odd register pair; the relative size of

26 12-65 Model 40 Comprehensive Introduction

NAME MNEMONIC TYPE EXCEPTIONS CODE

Subtract Norm-
alized (Short) SE RXF,C A,S,U,E,LS 7B

Subtract Unnorm-
alized (Long) SWR RRF,C S, E,LS 2F

Subtract Unnorm-
alized (Long) SW RXF,C A,S, E,LS 6F

Subtract Unnorm-
ali zed (Short) SUR RRF,C S, E,LS 3F

Subtract Unnorm-
ali zed (Short) SU RXF,C A,S, E,LS 7F

Supervisor Call SVC RR OA

Test Channel TCH SI CM 9F
Test 110 TIO SI CM 9D
Test Under Mask TM SI C A 91
Translate TR SS P,A DC
Translate and Test TRT SS C A DD

Unpack UNPK SS P,A F3

Write Direct WRD SI Y M, A 84

Zero and Add ZAP SS T,C P,A, D, DF F8

EXCEPTION:

Program Checks detected during Instruction Execution:
A: Main Storage Address Specification
D: Data Format or Coding

DF: Decimal Overflow
DK: Decimal Divide Exception

E: Exponent Overflow
EX: Execute Exception
FK: Floating Point Divide Exception
IF: Fixed Point Overflow
IK: Fixed Point Divide Exception
LS: Significance Exception
M: Privileged Operation
P: Protection Exception
S: SpeCification Exception
U: Exponent Underflow

dividend and divisor must be such that the quotient
does not exceed 31 bits.

In decimal arithmetic, the maximum size of the divi­
dend is 31 digits. The relative size of dividend and
divisor must be such that the quotient does not exceed
15 digits.

Compare: The first and second operands are com­
pared; the result is related to the first operand (low
- the first operand is less than the second operand).
The first operand is not destroyed.

Shift Left or Right: All shift operations are in the
RS format. The content of Rl is shifted the number of

bits indicated by the 6 low-order bits of the address
specified by B plus D (the address is not used to ad­
dress data in main storage).

Single or double shift specifies the number of regis­
ters to be shifted; single - one register; double - an
even/ odd register pair.

Logicallnstrudions

AND, OR, Exclusive OR: All formats, RR, RX, SI, SS.

The logical result of the first and second operand re­
places the first operand.

The logical operation is performed bit by bit:

AND

o + 0 = 0
o + 1 0
1 + 0 = 0
1 + 1 = 1

o +
o +
1 +
1 +

OR

0=0
1 1
o = 1
1 = 1

XOR

o + 0=0
o + 1 = 1
1 + o = 1
1 + 1 = 0

Load: Load general register Rl with information
specified by the second operand.

Store: Store the contents of general register Rl at
the address specified by the second operand.

Move: ss format. Moves variable-length information
from the address specified by operand 2 to the address
specified by the first operand.

Convert to Binary: RX format. The double word
located at the address spedfied by the second operand
is changed from the packed decimal format to binary
and stored in the general register specified by the first
operand.

Convert to Decimal: RX format. Rl is changed from
binary into packed decimal, the result is stored in the
double word specified by the second operand.

Pack: ss format. The format of the second operand
is changed from zoned decimal into packed decimal;
the result is stored at the address specified by the first
operand.

Unpack: ss format. The second operand is changed
from packed decimal to zoned decimal. The result is
stored at the address specified by the first operand.

Translate: ss format. The string of eight-bit bytes
specified by the ,first operand is used as a number of
successive arguments in a table starting with the ad­
dress specified by the second operand. Each byte of
the first operand is replaced by the contents found in
the table.

The contents of a first-operand byte are added to
the start address of the table. The location thus ad­
dressed contains the code into which the original char­
acter has to be translated.

Examples

RR instruction:
MNEM HEX

AR lA
OP CODE RI

00011010 0111
R2

1001

Fixed-point add - add contents of general register
9 to contents of general register 7; store the result in
general register 7.

RX instruction:
MNEM HEX OP CODE RI X2 B2 D2

C 59 01011001 0011 0110 1111 000000010000

Fixed-point compare - compare the contents of gen­
eral register 3 with the word stored in the main-storage
location with the address (contents of general register
15 plus contents of general register 6 plus the displace­
ment - 16 in this example).

RS instruction:
MNEM HEX OP CODE RI R3 B2 D2

LM 98 10011000 0010 0111 1110 000000000

Load multiple - load general registers 2 to 7 with
information from main storage, starting with the ad­
dress (contents of general register 14-D2 is zero in this
example).

Sl instruction:
MNEM HEX OP CODE 12 BI DI

N 1 94 10010100 00111000 1111 010110010000

AND immediate - AND the byte stored in main stor­
age at the address contents of general register 15 plus
Dl with the immediate information 00111000. The
result is stored back to main storage.

ss instruction:
MNEM HEX OP CODE LI L2 BI DI

SP FB 11111011 0100 0011 1110 001111010111
B2 D2

1110 011110001110

Subtract decimal -subtract the packed decimal
number at the address, B2 plus D2, from the number
at the address, Bl plus Dl. The first operand is located
at the address given by adding the contents of general
register 14 to the value of Dl; it has a length of 5 bytes
(9 digits + sign). The second operand has a length
of 4 bytes (7 digits + sign).

The number of bytes to be processed is the numeric
value of the L field plus one. For example, an Ll field
of 0100 (4 decimal) specifies that five bytes are to be
processed starting at the address of Bl plus Dl.

Branch Instructions

• Branching instructions permit out-of-sequence opera­
tions.

• Conditional branch instructions allow decision
making.

The normal sequence of instructions is changed when
reference is made to a subroutine, when a two-way
choice is encountered, or when a segment of coding
(such as a loop) is to be repeated. These tasks are
accomplished with branching instructions.

System Controls 12-65 27

Subroutine linkage permits not only the introduction
of a new instruction address but also the preservation
of the return address and associated information.

Decision-making is provided by the branch on con­
dition instruction. This instruction inspects a two-bit
condition code that reHects the result of a majority of
the arithmetic, logical, and 110 operations.

Each of these operations can set the code in any of
four states; the conditional branch can specify any
selection of these four states as the criterion for branch­
ing. For example, the condition code reHects such
conditions as result non-zero, first operand high, over­
How, channel busy, etc. Once set, the condition code
remains unchanged until modified by an instruction
that reHects a different condition code. The two bits of
the condition code provide for ,four possible condition
code settings: 0, 1, 2, and 3. The specific meaning
of any setting is significant only to the operation setting
the condition code.

Loop control can be performed by the conditional
branch when it tests the outcome of address arith­
metic and counting operations. For some particularly
frequent combinations of arithmetic and tests, the in­
structions branch on count and branch on index are
provided. These branches, being specialized, provide
increased performance for these tasks.

Branch on Condition

RR - Op Code (BCR, 07) MI, R2
RX - Op Code (BC, 47) MI, X2, B2, D2

The condition code is investigated as specified by
the four-bit mask, M1. If the condition is satisfied, the
current instruction counter (Ie) value is replaced by
the address specified by operand 2 (RR: contents of
general register R2; RX: address specified by B2 +
X2 + D2). If the condition is not satisfied, Ie remains
unchanged and the next sequential instruction is
executed.

The condition code can be any of the following
combinations, depending on the result of the last in­
struction e~ecuted that affects the code.

The four-bit mask in bit positions 8-11 of the in­
struction corresponds, left to right, with the four con­
dition code settings:

00 01 10 11
Bit 8 9 10 11

The branch is successful whenever the present con­
dition code matches a corresponding mask bit of 1.
Multiple mask bits are permissible.

Examples:

1. A branch should occur if the condition code is
00: the mask must specify: 1000.

2. A branch should occur if the condition code is not
00: the mask must specify: 0111.

28 12-65 Model 40 Comprehensive Introduction

3. For an unconditional branch, the mask is 1111.
4. For no operation, the mask is 0000.
5. Any other combination is possible.

Branch and link

RR - op code (BALR, 05) Rl, R2.
RX - op code (BAL, 45) Rl, X2, B2, D2.

Branch and link is an unconditional branch. The
current Ie, together with other psw information (bits
32-63), is stored in the general register specified by
R1. Subsequently, the address specified by operand 2
(RR: contents of general register R2, RX: address speci­
fied by B2 + X2 + D2) replaces the current Ie.

This instruction is normally used for subroutine
linkage. The return address from the subroutine to
the main program is preserved in the register specified.

Branch On Count

RR - op code (BCTR, 06) Rl, R2.
RX - op code (BCT, 46) Rl, X2, B2, D2.

The contents of the general register specified by Rl
are treated as a 32-bit fixed-point integer and alge­
braically reduced by 1 every time this instruction is
executed.

As long as the result in Rl is not zero, the current Ie
is replaced by the address specified in the second oper­
and; consequently, a branch takes place. If the result
is zero, Ie remains unchanged and the next sequential
instruction is executed.

The subtraction is performed prior to testing for
zero result.

This instruction is used if part of the main program
has to be looped a predetermined number of times.

Execute

RX - op code (EX, 44) Rl, X2, B2, D2.
Branch instruction to execute one single instruction
outside the normal instruction sequence.

The single instruction at the address specified by
operand 2 (B2 + X2 + D2) is modified by the con­
tents of general register Rl and executed. Note that
this instruction must not be another execute.

Bits 8-15 of the instruction designated by the branch
address are OR' ed with bits 24-31 of Rl. The contents
of Rl or the instruction held in storage are not changed
by this operation.

The Ie is updated by 4, unless the instruction exe­
cuted is a successful branch instruction. In this case,
the current Ie is replaced by the new Ie introduced.

Sequential Instruction Execution
• Instructions are executed sequentially under con­

trol of an instruction counter (Ie).

• The instruction counter is updated as instructions
are executed.

Normally, the operation of the processing unit is con­
trolled by instructions taken in sequence. An instruc­
tion is fetched from a storage location specified by the
current instruction count. The instruction count is then
increased by the number of bytes in the instruction to
address the next sequential instruction. The instruction
is then executed, and the same s'teps are repeated using
the new value of the instruction counter.

All halfwords of an instruction are fetched from stor­
age after the preceding operation is completed and be­
fore execution of the current operation, even though
physical storage-word size and overlap of instruction
execution with storage access may cause actual instruc­
tion fetching to be different. Thus·, it is possible to
modify an instruction in storage by the immediately
preceding instruction.

A change from sequential operation may be caused
by branching, status switching, interrupts, or manual
intervention.

Program Status

• To increase efficiency, manual controls are kept to
a minimum.

• The over-all system status is defined by stored in­
formation.

• The system status is stored in a double word: the
program status word (psw).

• Status switching instructions alter the status of the
system.

The efficiency of a computer can be increased by keep­
ing the necessary manual controls to a minimum, thus
reducing the idle times for manual interventions'.

Most of the control operations necessary are under
control of stored programs (supervisor programs). The
only manual operations required are those to initially
load the supervisor program and to load I/O units with
external documents (cards, paper, magnetic tape, etc.).

All pertinent information to control and indicate the
over-all systems status for a particular program to be
executed is stored in a double word held within the
data flow of the system. This information is referred
to as the psw (program status word).

In order to alter the system status, the psw has to be
altered. This can be accomplished with special status
switching instructions.

psw information, which may be changed by the sys­
tem during system operation, can be investigated by
the program.

Program Status Word (PSW)

• The psw presently controlling system operation is
called the current psw.

• psw fields explained here:
AMWP

cc
Instruction Counter (IC).

Refer to Figure 13 for the format of the psw.

I System Mask Key I AMWP Interruption Code

o 78 1112 1516 31

0-7 System mask
o Multiplexor channel mask
1 Selector channell mask
2 Selector channe I 2 mask
3 Selector channel 3 mask
4 Selector channel 4 mask
5 Selector channel 5 mask
6 Selector channel 6 mask
7 External mask

8-11 Protection key
12 ASCII mode (A)
13 Machine check mask (M)

Instruction Address

14 Wait state (W)
15 Problem state (P)

16-31 I nterruption code

63

32-33 Instruction Length Code (ILC)
34-35 Condition code (CC)
36-39 Program mask

36 Fixed-point overflow mask
37 Decimal overflow mask
38 Exponent underflow mask
39 Sign i fi cance mask

40-63 Instruction address

Figure 13. Program Status Word Fonnat

psw information held within the data flow (in local
storage or in latches) and currently controlling over­
all system status is called current psw.

Other psw's for future use can be stored anywhere:
in main storage or in external storage media (cards,
tapes, disks, etc.) .

AMWP (Sits 12-15)

Bit 12: A, ASCII Mode: If bit 12 is a 1, all instruc­
tions sensitive to zoned decimal format interpret or
generate the zone and sign bits according to the ASCII

code.
If bit 12 is 0, EBCDIC code is used.
Bit 13: M, Machine Check Mask: If bit 13 is 1, allows

the machine malfunction interrupt. If bit 13 is 0, does
not allow the interrupt.

Bit 14: W, Wait State: If bit 14 is 1, the CPU is in the
wait state; no instructions are executed but the system
is ready to accept interrupts.

If bit 14 is 0, the CPU is in the running state and
executing machine instructions.

Bit 15: P, Problem State: If bit 15 is 1, the CPU is in
the problem state and all I/O instructions and status
switching instructions are invalid. If bit 15 is 0, the
CPU is in the supervisor state and all instructions are
valid. Instructions that are valid only in the supervisor
state are called privileged instructions and are marked
"M" in Figure 12.

System Controls 12-65 29

Problem programs are normally run in problem state
to ensure that instructions that may affect the over-all
system status are invalid. These privileged instructions
may not be executed unnoticed by the supervisor pro­
gram, which is the only program in charge of systems
control. Supervisor programs are always run with bit
15 of the psw = o.

Condition Code (Sits 34 and 35)

• The condition code is set by certain machine in­
structions according to the result obtained.

• The condition code has different meanings for dif­
ferent instructions.

• The condition code can be investigated by branch
on condition.

The condition code in the psw is set according to the
result of certain machine instructions. The instructions
that set the condition code are those marked C in
Figure 12. Other instructions leave the condition code
unchanged.

The result reHected in the condition code depends
on the instruction executed. General forms are shown
below.

The condition code can be investigated by the
branch on condition instructions.

INSTRUCTION CONDITION CODE

00 01 10 11

Arithmetic operations:
result is: 0 <0 >0 Overflow

Compare operations:
result is: equal low high -

Logical operations
(AND, OR, XOR)
result is: 0 #0 - -

I/O operations, the
addressed unit is: available exceptional busy not ready

condition
present

Instruction Counter (Bits 40-63)

• 24-bit MS address of the next sequential instruction.

• IC is updated during instruction fetch by the num­
ber of bytes in the current instruction.

• During successful branch instructions, the IC is re-
placed by the branch address specified.

The instruction counter (Ie) always contains the MS

address of the next sequential instruction. The Ie origi­
nally loaded into the psw specifies the MS address of the
first instruction to be executed.

During sequential instruction execution, the Ie is up­
dated during the instruction-fetch phase by the number

30 12-65 Model 40 Comprehensive Introduction

of bytes the new instruction contains; i.e. by 2 for RR

instructions; by 4 for RX, RS, and SI instructions; or by 6
for ss instructions.

After a successful branch instruction, the current Ie

is replaced by the branch address specified, and in­
struction fetch is resumed from this new location.

Status Switching Instructions

• Instructions that alter part of the current psw or
introduce a new psw are called status switching in­
structions.

• Generally, status switching instructions are valid
only if the system is in supervisor state (bit 15 of
the current psw = 0).

Load PSW

SI format: op code (LPSW, 82), bits 8-15 ignored, BI,
DI.

The double word located at the MS address specified
by Bl plus D1 replaces the entire current psw.

Set Program Masle

RR format: op code (SPM, 04), R1 bits 12-14 ignored.

Bits 2-7 of the general register specified by R1 re­
place bits 34-39 of the current psw (condition code and
program mask).

Exception: This instruction is valid in problem state.

Set System Masle

SI format: op code (SSM, 80), bits 8-15 ignored, B1, Dl.

The byte located at the MS address specified by BI
plus Dl replaces the system mask (bits 0-7) of the
current psw.

Interrupt System

• The interrupt system increases the efficiency of the
programmed system control.

• All conditions that occur asynchronously to the nor­
mal sequential instruction execution are signalled
to the system by a program interrupt.

• Three interrupt types: (1) always accepted by the
system, (2) can be masked off but remains pending,
and (3) can be masked off and ignored.

• Acceptance of an interrupt automatically stores cur­
rent psw: interrupt handling is determined by the
program.

The efficiency of over-all system control by the psw
is further increased by the interrupt concept.

Conditions arise that are asynchronous with sequen­
tial instructions. These conditions can be anticipated

by the program (e.g. completion of a previously initi­
ated I/O operation, inquiries from transmission termi­
nals, etc.) or the conditions may occur with no relation
to the over-all program flow (unexpected conditions,
e.g. program checks, machine malfunctions). All these
conditions are signalled to the system at the time of
occurrence by a program interrupt.

For anticipated conditions, no special programming
is necessary (periodic interrogation of status latches
during the main program). Unexpected conditions do
not necessarily stop the system, and consequently do
not always require manual operator interventions to
resume system operation. Program checks never stop
the system; machine malfunctions do so only if a per­
manent system failure exists.

Anticipated interrupts are accepted by the system
only if the system is in wait state or after completion
of the instruction during which the interrupt is
signalled.

Unexpected interrupts (program or machine checks)
are taken as soon as they occur.

Certain program check interrupts are always ac­
cepted by the system.

The majority of all possible interrupts can be
masked off by programming (set up of psw). When
masked off, they are not accepted by the system at the
time they occur, but remain pending until the psw is
changed (by programming) .

Certain program check interrupts can be masked off
and ignored (exceptional conditions masked off by the
program mask, bits 36-39 of psw).

The only system operation performed when a pro­
gram interrupt is accepted is replacement of the cur­
rent psw.

The current psw is stored at a predetermined main
storage location and is subsequently referred to as old
psw. Depending on the type of interrupt, an interrup­
tion code is set into this old psw.

From another predetermined MS location a new psw
is fetched, which now becomes the current psw con­
trolling further systems operation. In particular, the IC
of the new psw indicates a program segment in main
storage that performs the necessary decisions and con­
tains the instructions to handle the present interrupt.

Since all pertinent information of the interrupted
program is preserved in the old psw, this program can
be resumed after interrupt handling at the exact point
of interruption and with the same over-all system
status as at the time of interruption.

Types of Interrupts

• Five types of interrupts: 11o, external, supervisor
call, program check, and machine check.

• Each type of interrupt has two related psw's, old
and new, held in main storage.

I/O Interrupts

An I/O interrupt provides a means by which the CPU

responds to conditions in the channels and I/O units.
An I/O interrupt can occur only for the channel

whose system mask bit (bit 0, 1, or 2) is a one. The
address of the channel and I/O unit involved are re­
corded in the old psw. Further information concerning
the I/O operation is preserved in the channel status
word (csw) that is stored during the interruption.

External Interrupts

The external interrupt provides the means by which
the CPU responds to signals from the interruption key on
the system control panel, the timer, and the external
signals of the direct control feature.

An external interrupt can occur only when the sys­
tem mask bit 7 is a one.

Supervisor-Call Interrupt

This interrupt occurs as a result of execution of super­
visor call instruction.

A major use for the svc instruction is to switch from
a problem program to the supervisor program.

It is the only instruction available in problem state
(psw bit 15 = 1) that provides a means of status
switching. During execution of this instruction (RR

format: op code (svc, OA), HI, H2) the current psw
is replaced by the new svc psw and the 8 bits HI, R2
are set into the interruption code of the old svc pw.

Program-Check Interrupt

Unusual conditions encountered in a program create a
program check interrupt. These conditions include in­
correct operands and operand specifications, as well
as exceptional results.

Machine-Check Interrupt

The occurrence of an intermittent machine malfunc­
tion (if not disabled by psw bit 13 = 0) terminates
the current instruction, initiates a diagnostic procedure,
and subsequently causes the machine-check interrupt.
A machine check cannot be caused by invalid data or
instructions.

Each type of interrupt has two related psw's, old
and new, stored at predetermined main storage lo­
cations.

If any program interrupt occurs, the type of inter­
rupt is indicated to the system by the MS location from
which the new psw is fetched, i.e. the pre-stored new
psw's indicate different interrupt handling routines (IC).

Permanent Main Storage Locations

• The old and new psw's for the various interruption
types are stored at fixed locations.

• Other essential control information have locations.

System Controls 12-65 31

• Permanent MS locations should not he used for other
data.

Permanent MS locations are shown in Figure 14.
Locations other than those used for old and new

psw's are explained in the appropriate sections of this
introduction.

The locations specified may not he used as storage
for other data without devaluating the system concept.
However the interrupt system provided can be com­
pletely ignored and most functions could be pro­
grammed. The locations for old and new psw's would
then be available for other purposes; but, the system
efficiency would drop considerably.

Priority of Interrupts

• Only one interrupt of anyone type can he present
at a time.

• Simultaneously occurring interrupts of diHerent
types are accepted in a predetermined priority.

• The sequence in which interrupts are handled is
the reverse sequence of their acceptance.

The I/O interrupts may be requested by several units
operating concurrently; however, only one interrupt
can be accepted by the system at anyone time. Ex­
ternal interrupts may be requested by several sources.
They are oR'ed together and accepted as one interrupt.
For other interrupt types, only one interrupt at a time
is possible.

During the execution of an instruction, several in­
terrupt requests of different types may occur simul­
taneously. Simultaneous interrupts are accepted in the
following predetermined order:

ADDRESS LENGTH PURPOSE

0 00000000 double-word Initial program loading PSW
8 0000 1000 double-word Initial program loading CCW 1

16 0001 0000 double-word Initial program loading CCW2
24 00011000 double-word External old PSW
32 0010 0000 double-word Supervisor call old PSW
40 0010 1000 double-word Program old PSW
48 0011 0000 double-word Machine-check old PSW
56 0011 1000 double-word Input/output old PSW
64 01000000 double-word Channel status word
72 0100 1000 word Channel address word
76 01001100 word Unused
80 01010000 word Timer
84 0101 0100 word Unused
88 0101 1000 double-word External new PSW
96 01100000 double-word Supervisor call new PSW

104 0110 1000 double-word Program new PSW
112 0111 0000 double-word Machine-check new PSW
120 0111 1000 double-word Input/output new PSW
128 10000000 Diagnostic scan-out area 0

o The size of the diagnostic scan-out area depends on the par-
ticular model and I/O channels.

Figure 14. Permanent Storage Assignments

32 12-65 Model 40 Comprehensive Introduction

Machine check
Program check or supervisor call
External
Input/ output

The program-check and supervisor-call interrupts
are mutually exclusive and cannot occur at the same
time.

When more than one interrupt source requests
service, the action consists of storing the old psw and
fetching the new psw belonging to the interruption that
is taken first. This new psw is subsequently stored with­
out any instruction execution, and the next interrupt
psw is fetched. This process continues until no more
interrupts are to be serviced.

vVhen the last interrupt request has been serviced,
instruction execution is resumed using the psw last
fetched. The order of execution of the interrupt sub­
routines is, therefore, the reverse of the order in which
psw's are fetched.

Thus, the most important interrupts, I/O and ex­
ternal, are actually serviced first.

Machine check, when it occurs, does not allow any
other interrupts to be recognized.

Masking of Interrupts in PSW

• Most interrupts can he prevented hy zero mask hits
in the current psw.

• Masked interrupts remain pending until the appro-
priate mask hit are set to one.

I/O Interrupts

The I/O interrupts are masked in the system mask of
the psw.

The individual channels can be masked inde­
pendently in bits 0-6. In the IBM 2040, only the first
three bits are significant:

Bit 0 for the multiplex channel.
Bit 1 for selector channell.
Bit 2 for selector channel 2.
\Vhen a mask bit is 1, the source can interrupt the

cpu; with a mask bit of 0, the source cannot interrupt
but the interrupt remains pending.

External Interrupts

External interrupts are masked in bit 7 of the system
mask.

Although different sources for external interrupts
exist, there is only one mask bit (bit 7) that allows all
sources to interrupt.

1: interrupts are allowed and accepted
0: interrupts are not allowed but remain pending.

Supervisor-Call Interrupts

Supervisor-call interrupts cannot be masked off and are
taken whenever a supervisor-call instruction is exe­
cuted.

Program Check Interrupts

Some exceptional conditions which may arise during
arithmetic operations can be masked by the program
mask of the psw. When the appropriate bits are 1, the
interrupts are accepted; when the bits are 0 the inter­
rupts are ignored.

Bit 36: Fixed Point Overflow: masks program-check
interrupts generated by overflows in fixed-point
arithmetic.

Bit 37: Decimal Overflow: masks program-check in­
terrupts generated by overflows in decimal arithmetic.

Bit 38: Exponent Underflow: masks program-check
interrupts generated if the exponent in floating-point
arithmetic is less than - 64.

Bit 39: Significance: masks program-check interrupts
generated if the resulting fraction in floating-point add
or subtract operation is zero.

Other program-check interrupts cannot be masked
and are always accepted.

M'achine-Check Interrupts

Machine check interrupts are masked in bit 13 of the
psw (machine check mask). If bit 13 = 1, intermittent
machine malfunctions genmate a machine check in­
terrupt. If bit 13 = 0, machine check interrupts are not
accepted but remain pending.

Interrupt Code in PSW

• The interrupt code, stored in bits 16-31 of the old
psw during the interrupt sequence, identifies the
source of the interrupt.

I/O Interrupts

Old psw stored in main storage location 38 hex, inter­
ruption source is identified as follows:

0000 0000 aaaa aaaa U nit on MPX channel
0000 0001 aaaa aaaa Unit on SC 1
0000 0010 aaaa aaaa Unit on SC 2
a a = device address of the unit that caused the interrupt.

External Interrupts

Old psw stored in main storage location 18 hex, inter­
rupt source is identified as follows:

Bits 16-23 are always zero,
Bits 24-31 as follows:
x x x x x x x 1 External signal 7
x x x x x x 1 x External signal 6
x x x x x 1 x x External signal 5
x x x x 1 x x x External signal 4
x x x 1 x x x x External signal 3
x x 1 x x x x x External signal 2
x 1 x x x x x x Console interrupt key
1 x x x x x x x Timer
x = Unpredictable external interrupts from different sources

are oR'ed and accepted as one interrupt. Consequently,
more than a single 1 bit may be present in the interrupt
code.

Supervisor-Call Interrupt

Old psw stored in MS location 20 hex, interruption
source is identified as follows:

Bits 16-23 are always zero,
Bits 24-31 contain bits 8-15, of the svc instruction.

Program-Check Interrupt

Old psw stored in MS location 28 hex, interruption
source is identified as follows:

Bits 16-27 are always zero,
Bits 28-31 as follows (instructions affected as in

Figure 12).

0001 Invalid Operation: occurs when an operation
code is unassigned or the operation code is not avail­
able on the particular machine.

0010 Privileged Operation: occurs when the CPU is
operating in the problem program state and a privi­
leged instruction is given. Privileged instructions are
indicated by M.

0011 Execute: occurs when the instruction designated
by an execute instruction is another execute instruction.
Instruction affected: EX.

0100 Protection: occurs when the storage key of an
addressed location does not match the protection key
in the PSW. Instruction affected: P.

0101 Addressing: occurs when an address specifies
any part of data, an instruction, or a control word out­
side the available main storage area for the particular
installation. Instruction affected: A.

0110 Specifications: occurs when:
1. A data word, instruction word, or control word

address does not specify an integral boundary for the
unit of information.

2. The Rl field of an instruction specifies an odd
register address for a pair of general registers that con­
tain a 64-bit operand.

3. A floating-point register address other than 0, 2, 4,
or 6 is specified.

4. In decimal arithmetic, the multiplier or divisor
exceeds 15 digits and sign.

5. The first operand field is shorter than, or equal to,
the second operand field in decimal multiplication or
division.

6. The block address specified in set storage key in­
struction or insert storage key instruction does not con­
tain all zeros in the four low-order bit positions.
Instruction affected: S.

0111 Data: occurs when:
1. The sign or digit codes of operands are incorrect

in decimal arithmetic, convert to binary, or editing.
2. Fields in decimal arithmetic overlap incorrectly.
3. The decimal multiplicand has too many high­

order significant digits. Instruction affected: D.

System Controls 12-65 33

1000 Fixed-Point Overflow: occurs when a high­
order carry is generated or high-order significant bits
are lost in fixed-point add, subtract, or shift operations.
The interrupt is under control of the program mask.
Instruction affected: IF.

1001 Fixed-Point Divide: occurs when a quotient
exceeds the register size in fixed-point divide. For
division by zero, the instruction is suppressed. If the
result of the convert to binary instruction exceeds 31
bits, the instruction is completed and lost information
is ignored. Instruction affected: IK.

1010 Decimal Overflow: occurs when the destination
field is too small to contain the result field. The inter­
rupt is under control of the program mask. Instruction
affected: DF.

1011 Decimal Divide: occurs when a quotient exceeds
the specified data field size. Instruction affected: DK.

1100 Exponent Overflow: occurs when the result
characteristic in addition, subtraction, multiplication,
or division exceeds 127, and the result fraction is not
zero. The operation is completed, and a program in­
terrupt occurs. The fraction is normalized, and the
sign and fraction of the result remain correct. The
result characteristic is made 128 smaller than the cor­
rect characteristic. For addition and subtraction, the
condition code is set to 1 when the result is less than
zero, and the condition code is set to 2 when the result
is greater than zero. For multiplication and division,
the condition code remains unchanged.

1101 Exponent Underflow: occurs when the result
characteristic in addition, subtraction, multiplication,
halving, or division is less than zero and the result
fraction is not zero. The operation is completed, and a
program interrupt occurs if the exponent-underflow
mask bit (psw bit 38) is l.

The setting of the mask bit also affects the result of
the operation. When the mask bit is 0, the sign, char­
acteristic, and fraction are set to zero, thus making the
result a true zero. When the mask bit is 1, the fraction
is normalized, the characteristic is made 128 larger
than the correct characteristic, and the sign and frac-_
tion remain unchanged.

1110 Significance: occurs when the result is an all­
zero fraction in floating-point add or subtract. The
interrupt is under control of the program mask. In­
struction affected: LS.

1111 Floating-Point Divide: occurs when attempting
to divide by a floating-point number with an all-zero
fraction. Instruction affected: FK.

Machine Check Interrupt

Old psw stored in MS location 30 hex. Bits 16-31 are
set to zero's.

34 1-68 Model 40 Comprehensive Introduction

Instruction Length Code (lLC) in PSW

The instruction length code is stored in psw bits 32,
33 and identifies the instruction length of the last in­
struction executed.

For some interrupts, it is desirable to locate the in­
struction that was being interpreted when the interrupt
occurred. Since the instruction address in the old psw
designates the instruction to be executed next, it is
necessary to know the length of the preceding instruc­
tion. This length is recorded in bit positions 32 and 33
of the psw as the instruction length code.

The instruction length code is meaningful only for
program check and supervisor-call interrupts. For I/O

and external interrupts, the interruption is not caused
by the last-interpreted instruction, and the code is not
meaningful for these instructions. For machine-check
interrupts, the setting of the code may be affected by
the malfunction and, therefore, is unpredictable.

For the supervisor-call interrupt, the instruction
length code is 1, indicating the halfword length of
supervisor call. For program check interruptions, the
codes 1, 2, and 3 indicate the instruction length in half­
words.

The code 0 is reserved for program check interrup­
tions where the length of the instruction is not avail­
able because of certain overlapping conditions in in­
struction fetching. In code 0 cases, the instruction
counter in the old psw does not represent the next
instruction address. Instruction length code 0 can occur
for a program check interruption only when the inter­
ruption is caused by a protected or an unavailable data
address.

The following tables shows the states of the instruc­
tion length code.

psw BITS INSTRUCTION

ILC 32-33 LENGTH FORMAT

0 00 Not available
1 01 One halfword RR
2 10 Two halfwords RX, RS or SI
3 11 Three halfwords SS

CPU Status

• CPU status is determined by four types of program­
state alternatives.

• The CPU state alternatives are named:
stopped or operating
running or waiting
masked or interruptible
supervisor or problem state

• The states differ in the way they affect CPU functions
and in the manner their status is indicated and
switched.

• All CPU states are independent of each other.

Stopped or Operating State

The stopped state is entered and left under manual
control. Instructions are not executed, interrupts are
not accepted, and the timer is not updated. In the
operating state, the CPU is capable of executing instruc­
tions and being interrupted.

Running or Waiting State

In the running state, instruction fetching execution
proceeds in the normal manner. The wait state is
normally entered by the program to await an inter­
ruption, for example, an I/O interruption or operator
intervention from the console.

In the wait state, no instructions are processed, the
timer is updated, and I/O and external interruptions are

System Controls 1-68 34.1

accepted unless masked. Running or waiting state is
determined by the setting of bit 14 in the psw.

Masked or Interruptible State

The CPU may be interruptible or masked for interrup­
tions. The interruptible states of the CPU are changed
by changing the mask bits of the psw.

Supervisor or Problem State

In the problem state, all I/O instructions and privileged
instructions are invalid and cause a program check in­
terrupt. In the supervisor state, all instructions are
valid. The choice of problem or supervisor state is de­
termined by bit 15 of the psw.

" Standard Interface

l I I
Integrated Console

Control Unit Typewriter

I J~
Card Printer

Read I Punch

) Standard Interface

l I
Tape File

Control A Control A

1
I I r 1

Tape Tape Tape Disk Disk
Drive Drive Drive Drive Drive

0 1 2 0 1

) Standard Interface

~ I I
Tape File

Control B Control B

1 1
I I -- 1

Tape Tape Disk Disk
Drive Drive Drive Drive

0 1 0' 1

Figure 15. Sample System Configuration

110 System

Sample System Configuration

In order to explain the basic I/O system architecture, a
sample configuration is introduced. See Figure 15. In
the follOWing sections, reference is made to this figure
to show the over-all relationship of functional units
and operations.

IBM 2040 Processing Unit: Functional units within
the central processor in relation to I/O operations are:

1. CPU circuits - all internal data How and control
circuits of the processor.

Multiplex
Channel

Main Storage

Permanent
Locations

CPU
Program

Selector
Channel

CPU -
Circuits Data

1

Channel
Programs

1 Mpx Store r

Selector
Channel

2

System Controls 12-65 35

2. Main storage - storage unit that holds all the in­
formation required for internal processing (programs
and data), destination for input information, and the
source for output information.

Channels: are independent control units for input/
output operations. Three channels are available:

Multiplex channel, standard
Selector channell, optional
Selector channel 2, optional

Control Units: Units that provide the necessary func­
tions for the control of particular I/O devices and trans­
late between device language and channel language.

1. Integrated Control Unit - controls card reader,
card punch and printer for concurrent operations;
translates between internal data coding and card code,
and provides data buffers for a complete card or print
line.

2. Tape Control Unit - controls tape drive functions
for up to eight drives and provides a single data path
between channel and tape drives.

3. File Control - controls disk storage functions for
up to eight disk drives provides a single data path be­
tween channel and one disk drive; translates between
the serial bit representation on disks and the parallel
coding of the channel.

I/O Devices: are units that control information ex­
ternal to the system (cards, printing, magnetic tape,
disks) .

1. IBM 1052 Console Typewriter - communication
between operator and system.

2. IBM 2540 Card Reader/Punoh - functionally, two
independent units for card reading and punching.

3. IBM 1403 Printer - output device for printed doc­
uments.

4. Tape Drives - input/output device for magnetic
tape. Information is stored on nine tracks (1 byte and
parity) in parallel.

5. IBM 2311 or 1302 Disk Drives - high-capacity
storage on magnetic disks (2311 interchangeable disk
packs; 1302, permanent disks). Information is stored
serially by bit.

Many other I/O devices and control units are avail­
able. The chosen sample uses only unit types that are
already widely distributed throughout the field and
whose basic characteristics are commonly known.

The boxes shown on Figure 15 are functional units.
Physically, control units and devices may be housed
within the same frame.

For example, the control unit for the 1443 printer is
included in the printer; the control unit for the console
typewriter is included in the CPU frame, and a tape
control unit may contain one tape drive within the
same frame.

36 12-65 Model 40 Comprehensive Introduction

Interconnection of channels, control units and de­
vices is shown in the most simple way. Individual
control units may be connected to different channels
(shared control units). Individual devices may be
connected to different control units (shared devices)
and a channel may be directly connected to the channel
of a second system (multiprocessor configuration).
See Figures 1, 2 and 3.

Standard Interface

• Channels and control units are connected via the
standard interface.

• The standard interface is a datapath that transmits
one byte of data.

• Electrical specifications for all units connected to
the interface are identical.

• All possible 110 devices are controlled by a common
interface language that is standard.

Most of the available types of System/360 input/output
equipment can be attached to any processor model of
the range. This is made possible by the standard inter­
face. The standard interface connects any control unit
with any channel.

Physically, the standard interface is a data path that
can transmit one byte of information at a time between
channel and control unit. (See Figure 15.) Together
with the data bus, a standard set of control lines pro­
vides identification of the data and allows for inter­
locking requirements.

Electrical spedfications for all units connected to
the interface are identical (signal levels, line drivers,
and terminators).

Communication with any type of I/O device is in
the same common language.

Control units therefore have to interpret this lan­
guage into the actual control signals required by their
attached devices and have to present all information
from the device in the same common language.

The channels have to translate between interface
language and the control signals of the particular
processor. Since the programming concept of any
processor in the System/360 is the same, the over-all
channel functions are identical.

Input/Output Operations

• 110 operations initiated by the CPU program are of
three diHerent types:

1. Data transfer between 110 device and main stor­
age.

2. Control of I/O devices.

3. Test of the status of any functional unit within
the 110 system.

Data Transfer

The main purpose of I/O operations is to transfer data
between main storage and external storage media.
During the actual transfer, the complete datapath
from main storage to I/O device is engaged and no other
operations may occur at that time.

Depending on the data rate (number of bytes per
second) of the particular device and the characteristics
of the data path (control units with or without data
buffer, channels with or without data buffer, and a
variable amount of circuitry independent of the CPU

data How), the entire data transfer can be split into
short transmissions of one to several bytes. This pro­
vides CPU process time or data transfers with other
channels between actual transmissions (overlapping
of CPU processing with data transfers).

Data transfers are initiated by the CPU program.
Then the channel sends the proper command to the
control lmit that is responsible for its execution.

Data transfer commands are:
Read (data from I/O device to main storage)
Write (data from main storage to I/O device)
Read Backwards (magnetic tape is moved back­
wards during reading).

Control

Control units can be instructed by the CPU program
to perform functions other than data transfers, e.g.
card readers - stacker select; printers - form control
(space, skip); tape drives - rewind, backspace, erase,
etc.; disk drives - seek (move the access mechanism),
search (locate a particular position on the circumfer­
ence of the track) .

For most control functions, the entire operation is
specified to the control unit by the command; other
controls may require additional data, such as the track
address for a seek operation in the case of a disk drive.

Once the command is accepted by the unit, channel
and interface facilities are no longer required; the con­
trol llIlit alone controls proper execution of the com­
mand.

rest

The CPU program may require certain status informa­
tion from thp I/O system during processing. Test com­
mands are available to instruct the control unit to send
specific status information. The basic information de­
termined is whether a certain data path or I/O device
is busy or available. Detailed information about error
conditions may also be requested.

A test operation is basically a read data transfer
that does not affect external data. Instead, the informa­
tion is gathered within the system.

Channel Types

• Two types of channels are available:
One multiplex channel is standard.
Two selector channels are optional.

Multiplex Channel

• Connects 110 units with relatively low data-rates.

• Contains a number of independent subchannels.

• Operates either in multiplex or burst mode.

• Is not buffered and shares all facilities with the
CPU.

The multiplex channel is provided to connect a number
of I/O devices with relatively low data-rates to the
CPU (Figure 18). Card readers, printers, and display
terminals are the more common units connected to this
channel, but the full range of teleprocessing and
process control equipment is also possible. Magnetic
tape and disk units can be connected, but with units
of high data-rate, the efficiency of the multiplex chan­
nel drops rapidly.

The multiplex channel can contain up to 128 separate
sub-channels. The number of subchannels is related to
the main storage size of the processor.

One subchannel provides all logical information to
control one I/O device. Simultaneous I/O operations on
several sub channels are possible. This mode of opera­
tion, which is possible only on the multiplex channel,
is called multiplex, byte, or data interleave mode.

It was stated earlier that the interface is one single
datapath. This is still true for the multiplex channel,
but the interface facilities can be time-shared between
the subchannels to control more than one I/O device
at a time.

In multiplex mode, the individual I/O unit is logically
connected to the channel only for the time required to
transmit one byte of data. Between data bytes, the
unit is disconnected and the channel is free to transm~t
single bytes to or from other units. Therefore, during
simultaneous I/O operations on the multiplex channel,
single bytes from different devices are interleaved.

The second mode of operation of the multiplex chan­
nel is called burst mode. During burst mode operation,
one I/O device remains logically connected to the
channel for the entire time of the data-transfer oper­
ation and no other sub-channels can share the interface
facilities.

The maximum data rates of the 2040 multiplex chan­
nel are: 32 KB/S (kilobytes per second) in multiplex
mode, and 266 KB/S in burst mode.

From these figures it is obvious that I/O devices
having a data rate of more than 32 KB/S can operate
only in burst mode. In multiplex mode, the combined

System Controls 8·67 37

data-rate of all operations in progress may not exceed
32 KB/s.

If maximum allowable data-rates are violated by
programming, overrun conditions occur (a device-in
operation which requires channel functions cannot be
satisfied and 110 data is lost). Overrun is signalled
to the program as a unit check condition in the
channel status word (csw).

The multiplex channel is not buffered and shares all
facilities with the CPU. Consequently, the CPU time
available during 110 operations depends on the mode
of operation and the data-rates of the devices.

In multiplex mode, CPU time available gradually
decreases with the over-all data-rate until no time is
available with a data-rate of 32 KB/s.

In burst mode, all facilities of the CPU are blocked
for the entire operation; thus the CPU cannot process
concurrently with the 110 device.

Selector Channel

• Connects 110 units with relatively high data-rates.

• Two selector channels are available.

• Each selector channel contains only one subchannel.

• Selector channels are buffered; interference with the
CPU is low.

The selector channels are provided to connect 1/0

devices with relatively high data-rates to the CPU

(Figure 15). Tape and disk drives are the more com­
mon units, but buffered card equipment and printers
can also be attached.

Two selector channels are available: selector chan­
nel 1 and selector channel 2. Both channels are op­
tional.
-JOne selector channel contains only one subchannel,

i.e. only one 1/0 unit can be logically connected to
the channel at anyone time. The selector channel can
operate only in burst mode.

Maximum data-rate for the selector channel is 400
KB/S. This figure is true only for one channel in opera­
tion. If both channels are working, the maximum data­
rate for each channel drops to 300 KB/S.

Selector channels are almost independent hardware
channels and are buffered. For data transfers, they
share only the main storage access path with the CPU.

Consequently, the interference with the CPU operation
is low.

Channel Operation

• Channels can be regarded as independent com­
puters for processing 110 instructions.

• The CPU program specifies only the 110 operation to
be performed.

38 8,-67 ~Iodel 40 Comprehensive Introduction

• Channels may be physically separated from or may
share the CPU circuitry.

Channels can be regarded as independent computers
for processing I/O instructions. They contain the basic
building blocks of a computer: data handling and
control section. The channels are connected on one
side to the I/O equipment, on the other side, they share
main storage with the central computer for which they
have to provide I/O data.

The CPU program only specifies and initiates an
I/O operation. Execution of the I/O instruction is then
under control of the channel. Similarly to the CPU, the
channel is controlled by a channel program; sequencing
and status control are held in a unit control word (ucw).

Channels may be physically separated from the CPU

circuitry, or they may share CPU facilities. The speed
and efficiency of a channel is defined by the data-rate
it can handle and by the amount of interference with
CPU operations.

An unbuffered channel that shares all facilities with
the CPU obviously cannot provide the same amount of
processing time during channel operations as a buffered
channel with its own dataflow circuitry, which has to
share only the main storage access path.

Channel Program

• Channel instructions are channel command words
(ccw).

• The CPU program specifies an 110 unit and the loca-
tion of the command.

The programs that control the channel functions neces­
sary to execute I/O operations independently from
the CPU program are also held in main storage. The
individual channel program instructions are called
commands and are held in double words called ccw's
(channel command word).

In order to initiate an I/O operation, the CPU pro­
gram has to supply the address of the I/O unit affected
and the main storage address of the ,first ccw.

The only CPU instruction that initiates an I/O data
transfer is start 10, SI format: op code (SID, 9C), bits
8-15 ignored, B1, Dl.

The 1/0 operation is initiated at the channel and de­
vice address specified by the contents of D1 plus the
B1 register. If the channel specified is greater than
channel 2, the condition code is set to 3. The address
of the first ccw is always fetched from the fixed MS

location 48 hex, where the appropriate channel address
word (CAW) has to be stored prior to start 1'0 initia­
tion. The 110 operation is now under control of one or
more ccw's specifying the actual channel commands
necessary to perform the operation.

Device Addressing

• The 110 device address is specified in the 1/0

instruction.

• The address is an II-bit binary number specifying
the device and channel.

An I/O device is designated by an I/O address. Each I/O

address corresponds to a unique I/O device and is
specified by means of an II-bit binary number in
the I/O instruction. The address identifies, for ex­
ample, a particular magnetic tape drive, disk drive,
or transmission line.

The I/O address consists of two parts: a channel
address in the three high-order bit positions, and a
device address in the eight low-order bit positions.
The channel address specifies the channel to which
the instruction applies; the device address identifies
the particular I/O device on that channel. Any num­
ber in the range 0-255 can be used as a device address,
thus providing facilities for addressing 256 devices per
channel. The assignment of I/O addresses is:

ADDRESS ASSIGNMENT

CHANNEL

000
001
010
011
100
101
110
111

DEVICE

xxxx xxxx
xxxx xxxx
xxx x xxxx
xxx x xxx x

I xxxx xxx x
xxx x xxxx
xxxx xxxx
xxxx xxxx

Mpx devices
SCI devices
SC2 devices

Invalid on
the IBM 2040

On the multiplex channel the device address identi­
fies the sub-channel as well as the I/O device. A sub­
channel can be assigned a unique device address or it
can be referred to by a group of addresses. When more
than one device address designates the same sub­
channel, the sub-channel is said to be shared.

The following table lists the basic assignment of
device addresses on the multiplex channel. Addresses
with a zero in the high-order bit position relate to
sub-channels that are not shared. The seven low-order
bit positions of an address in the set identify one of
128 distinct sub-channels.

The presence of a one in the high-order bit position
of the address indicates that the address refers to a
shared sub-channel. There are eight such shared sub­
channels, each of which may be shared by as many
as 16 I/O devices. In addresses that designate shared
sub-channels, the four low-order bit positions iden­
tify the I/O device on the sub-channel.

ADDRESS

0000 0000
to

0111 1111
1000 xxxx
1001 xxx x
1010 xxxx
1011 xxxx

ASSIGNMENT

Devices that do not share a sub-channel

Devices on shared sub-channel 0
Devices on shared sub-channel 1
Devices on shared sub-channel 2
Devices on shared sub-channel 3

ADDRESS

1100 xxxx
1101 xxxx
1110 xxxx
1111 xxx x

ASSIGNMENT

Devices on shared sub-channel 4
Devices on shared sub-channel 5
Devices on shared sub-channel 6
Devices on shared sub-channel 7

Physically, the shared sub-channels are the same as
the first eight non-shared sub-channels. In particular,
the set of addresses 1000 xxxx refers to the same sub­
channel as the address 0000 0000, the set 1001 xxxx
refers to the same sub-channel as the address 0000
0001 etc., while the set 1111 xxxx refers to the same
sub-channel as the address 0000 011l. Thus, the in­
stallation of eight sets of devices that share sub­
channels reduces the maximum possible number of
devices that do not share a sub-channel to 120.

For multiple devices connected to a control unit
(for example, magnetic tape units and the 2701 trans­
mission control) the four high-order bit positions of
the device address identify the control unit.

The I/O devices accessible through more than one
data path (shared control units or shared devices)
have a distinct address for each path of communica­
tion. The device address (4 low-order bits) will be
the fixed address of the individual device. Channel
and control unit address specify the particular data
path.

The assignment of the actual control unit addresses
is arbitrary and is set up during installation by the
customer engineer.

An example of device addresses is given for the con­
figuration in Figure 15 as follows. X = device address,
Y = control unit or sub-channel address.

Multiplex Channel: each I/O device can operate in­
dependently. No sub-channels are shared.

Examples:
Console Typewriter 0000 xxxxxxx 00000000001
Card Reader 0000 xxxxxxx 00000000010
Card Punch 0000 xxxxxxx 00000000011
Printer 0000 xxxxxxx 00000000100

If the tape drives presently connected to selector chan­
nel 1 were connected to the multiplex channel, the
addresses would be: (shared sub-channels)

Tape drive 0:
Tape drive 1:
Tape drive 2:

Selector Channell:

Tape drive 0:
Tape drive 1:
Tape drive 2:
Disk drive 0:
Disk drive 1:

Selector Channel 2:

Tape drive 0:
Tape drive 1:
Disk drive 0:
Disk drive 1:

Examples:
0001 YYY XXXX 0001 101 0000

0001 101 0001
0001 101 0010

Examples:
001 YYYY XXXX 001 0001 0000

001 0001 0001
001 0001 0010

001 YYYY XXXX 001 0010 0000
001 0010 0001

Examples:
01 0 YYYY XXXX 010 0001 0000

010 0001 0001
010 YYYY XXXX 01 0 0010 0000

010 0010 0001

System Controls 12-65 39

Example for shared control unit: if tape control unit
A is also connected to selector channel 2, addressing
for selector channel 1 would remain unchanged; the
addresses for selector channel 2 would be:

010 0001 0000
010 0001 0001
010 0001 0010

Obviously, addresses for tape control unit B have to be
changed.

Example for shared devices: If disk drive 0 and 1 on
channel 1 are also accessible from channel 2, (file con­
trol unit B connects all four disk drives) addressing has
to be changed as follows:

SC 1 addresses: unchanged
SC 2 addresses: Disk drive 0:

Disk drive 1:
Units 0 and 1 I Disk drive 2:
now become 2-3 I Disk drive 3:

Channel Address Word (CAW)

010 0010 0000
010 0010 0001
010 0010 0010
010 0010 DOll

• Full word, stored at permanent MS 48 hex.

• Contains the MS address of the 6.rst ccw of the
channel program and the storage key for the 1/0

operation.

The CAW has the following format:
Bits 0-3 Bits 4-7 Bits 8-31
Key always zero Command Address

The key specifies the storage key, which controls the
access to main storage during the I/O operation. If no
protection is specified, or if the feature is not installed,
the key contains four zeros. Bits 4-7 have to be zeros.
The command address specifies the MS location of the
first ccw to be executed after initiating start I/O.

Channel Command Word (CCW)

• Double word, stored anywhere in main storage.

• Contains the information necessary to specify one
110 command.

• The channel program is one or more ccw's ex­
ecuted one after the other.

• The ccw's for one 1/0 operation are normally stored
in sequential MS locations, but some branching is
possible.

• If the channel program is de6.ned by more than
one ccw, the ccw's are said to be chained.

l. Command Chaining - several ccw's with dif­
ferent commands speci6.ed.

2. Data Chaining - several ccw's with the same
command but with diHerent data sources/
destinations.

• Command and data chaining are possible in the
same 110 instruction.

40 12-65 Model 40 Comprehensive Introduction

Channel command words are double words held any­
where in main storage. Each ccw contains the informa­
tion necessary to specify one I/O command. The chan­
nel program, which specifies all functions of an I/O

instruction, is one ccw or several ccw's executed
sequentially.

For the format of the ccw see Figure 16.

Command
Code

Data Address

o 78

Flags looo~
32 36 37 3940 4748

0-7
8-31

32-36
32
33
34

Command code
Data address
Command flags
Chain data flag
Chain command flag
Suppress length
indication flag

35
36

37-39
40-47
48-63

Count

Skip flag
Program -contro II ed
interruption flag
Zero
Ignored
Count

Figure 16. Channel Command Word Format

31

63

The command code specifies, to the channel and the
I/O device, the operation to be performed.

The channel distinguishes between the following
four operations:
Ou~put forward (write, control)
Input forward (read, sense)
Input backward (read backward)
Branching (transfer in channel)
Commands that initiate I/O operations cause all

eight bits of the command code to be transferred to the
I/O device. In these command codes, the high-order bit
positions can contain modifier bits that specify how the
command has to be executed.

They may cause, for example, carriage control on a
printer or stacker selection on card equipment.

The meaning of the modifier bits depends on the
particular I/O device and may be found in the Systems
Reference Library publications or in the FE Manuals of
Instruction that pertain to the various devices.

The command code assignment is listed in the fol­
lowing table. An X indicates that the bit position is
ignored; an M indicates a modifier bit.

COMMAND

Sense
TIC (transfer in channel)
Read Backward
Write
Read
Control

MMMM
XXXX
MMMM
MMMM
MMMM
MMMM

CODE

o 100
1 100
110 1
MMO 1
MMI0
MM 1 1

The data address, bits 8-31, specifies the main stor­
age address of the first byte of I/O data: source of I/O,

destination of I/O data, or branch address.

The count specifies the number of bytes to be trans­
ferred. Bit 32 is the chain data flag (CD flag). If this bit
is 1, it indicates that after execution of the current ccw
a further ccw with the same command code has to be
executed.

Bit 33 is the chain command flag (cc flag). If this bit
is 1, it indicates that after execution of the current
ccw, a further command has to be executed.

Bit 34 is the suppress length indication flag (SLI
flag). If this bit is 1, incorrect-length indication is
suppressed.

Bit 35 is the skip flag. If this bit is 1 in ccw's specify­
ing input data transfers, the actual data transfer to
main storage is suppressed and only the external docu­
ment is moved as indicated by the ccw (skipping of
card columns or magnetic tape information, for
example).

Bit 36 is the program control interrupt (PCI flag). If
this bit is 1, an I/O interrupt is generated on fetching
the ccw. This may be of importance in I/O operations
where several ccw's are chained, to indicate to the pro­
gram the progress of the operation.

Bits 37-39 must always be zero. Bits 40-47 are ignored
by the channel. Bits 48-63 is the count area which tells
the channel how many bytes to transfer. Examples of
channel programs:

1. One ccw only (no CD and no cc flag) - Read
one complete record of 200 bytes from a tape drive into
MS locations 1000 hex - IOC8 hex.

Command:
MMMM MMlO

Data Address:
00000000 0001 0000 0000 0000

Flags:
00000

Bits 37-39:
000

Bits 40-47:
ignored

Count:
0000 0000 0000 0000 1100 1000

2. Data chaining (CD flag on) - Read a 200-byte
record from a tape drive: Bytes 1-50 into main storage
1000 hex; bytes 51-70 ignored; bytes 71-200 into main
storage 2000 hex.

CCW COMMAND DATA ADDRESS FLAGS COUNT

(HEX) (BINARY) (DECIMAL)

1 Read 1000] 0000 50
2 ignored ignored 10010 20
3 ignored 2000 00000 130

3. Command Chaining (cc flag on) - Write 50-
byte trailer label on tape (from MS 1(00): write tape
mark; rewind and unload.

CCW

1
2

3

COMMAND

\Vrite
Control (modifier hits

DATA

ADDRESS

(HEX)

1000

FL\.GS COUNT

(BINARY) (DECI~1AL)

01000 50

to specify write TM) ignored 01100
Control (modifier hits to

1

specify rewind-unload ignored 00100

NOTE: The initial count of a ccw may never be zero.
In control commands that do not transfer control data,
an initial count not zero has to be specified and the SLI
flag is set to suppress a wrong-length indication.

4. Branching (TIc) - A command code TIC (trans­
fer in channel) switches the channel program from
the next sequential ccw to the ccw specified by the
data address of the TIC ccw.

Together with a status bit received from certain
control units after execution of a ccw (status modifier
bit) some sort of conditional branching is possible.

The first ccw of any channel program may not
specify TIC. Two successive TIC'S are invalid.

5. Combination of examples 2-4 in the same chan­
nel program is possible.

For any programming error detected during fetch­
ing of ccw's (invalid specifications) and machine
errors detected during execution of ccw's, chaining
of any form is suppressed and the I/O operation is
terminated with the proper status information indi­
cated to the program.

Channel Control

• All information necessary to sustain an 110 oper­
ation on a sub-channel is held in a unit control
word (ucw).

• The selector channels have one ucw each; the multi­
plex channel has as many ucw's as sub-channels.

• The ucw is assembled by the start 110 instruction
and updated during the 110 operation.

Information necessary to sustain operation of a sub­
channel is held in ucw's (unit control words). Every
sub-channel has its own ucw. The single ucw of a
selector channel is held within the data-flow; the ucw's
for the multiplex channel are stored in a separate area
of main storage, called mpx storage.

The number of sub-channels is actually defined by
the size of the mpx storage which, in turn, is a func­
tion of the main storage capacity installed.

The ucw information is collected from various
sources: first from the I/O instruction and the first
ccw. During the I/O operation, the information is con­
stantly updated and supplemented by information
from the channel and the device.

System Controls 12-65 41

Contents of the uew:
Data from the
II 0 instruction:

Data from the
CCW:

Data from channel
and II 0 device:

Channel Status

Device address
Address of CCW (from CAW)
Storage key (from CAW)
Command code
Flags
Data address
Count
Channel status and
U nit status after execution
of every CCW

• Channel and device status information is collected
during the 110 operation.

• During an 110 interrupt, status information is trans­
ferred to the channel status word (csw).

• When an 110 interrupt is accepted, the csw is stored
in the fixed MS location 40 hex.

• It is possible to store a partial csw.

Termination of an I/O instruction is signalled to the
program by an I/O interrupt. During the interrupt se­
quence, a channel status word (csw) is stored in the
fixed main storage location 40 hex, giving detailed
information on the status of the functional units
involved.

The esw may be stored if, during initiation of the
I/O instruction, special conditions are detected. In this
case, only bits 32-47 are stored. These status bits belong
to the channel device addressed by the instruction.
The esw format is as shown in Figure 17.

The key specifies the storage key.

Bits 4-7 are always zero.

The command address specifies the main storage
address of the last eew used + 8 (next sequential
:cw).

I Key 10 0 o 01 Command Address I
0 34 78 31

Status Count

32 4748 63

0-3 Protection key 40 Program-controlled
4-7 Zero interruption
8-31 Command add ress 41 Incorrect length

32-47 Status 42 Program check
32 Attention 43 Protection check
33 Status modifier 44 Channel data check
34 Control unit end 45 Channel control check
35 Busy 46 I nterface control
36 Channel end check
37 Device end 47 Chaining check
38 Unit check 48-63 Count
39 Unit exception

Figure 17. Channel Status Word Format

42 12-65 Model 40 Comprehensive Introduction

Bits 32-39 represent the status of the control unit
and I/O device.

Bit 32, attention, is generated if a manual operation
is initiated at the device (console typewriter, inquiry
and display devices only).

Bit 33, status modifier, is generated by the device
when the normal sequence of ccw's has to be modi­
fied, or when the control unit detects, during the selec­
tion sequence, that it cannot execute the command
specified, or if the control unit is busy.

Bit 33 alone indicates that the unit cannot execute
the command (read sent to a printer, for example).
Bit 33 and bit 35 (busy) indicate that the control unit
is busy. This may occur for a control unit such as a
tape control (Figure 15). The control unit A has ac­
cepted a control command to backspace tape drive l.
The channel was freed after acceptance of the com­
mand; the control unit now controls the operation.
During this backspace, the program tries to select tape
drive 2 which is obviously available. The control unit,
however, is busy.

Bit 33 and bit 37 (device end) indicate a jump. The
normal sequential execution of ccw's is modi'fied, the
next ccw is jumped, and the ccw from the present
address + 16 is fetched.

Units such as a disk file generate this condition
during search as soon as the comparison of addresses,
etc., is as specified. A sample string of ccw's for a
search operation would be:

CCW 1 Search
CCW 2 TIC to CCW 1 as long as compare is not satisfactory
CCW 3 Read

Bit 34, control unit end, is generated only if control
unit busy (bits 33 and 35) was present during initia­
tion of an I/O instruction. Indicates to the program
that the control unit is now free.

Bit 35, busy, is generated if the device is busy and
a new selection is initiated.

Bit 36, channel end, is always generated when the
control unit no longer needs channel facilities and is
able to complete the I/O operation on its own.

Bit 37, device end, is always generated when the
device reaches its mechanical ending point or, on some
devices, if the device is switched from the not-ready
to the ready status (tape drives for example).

Bit 38, unit check, is usually generated when the
control unit or device has detected a machine mal­
function.

Bit 39, unit exception, is generated when the I/O

device detects a condition that does not normally occur.
Unit exception includes conditions such as recognition
of a tape mark, stacker full, etc., and does not neces-

sarily indicate an error. It has only one meaning for any
particular command and type of device.

Bits 40-47 represent the status of the channel.

Bit 40, program controlled interrupt (PC!), is gen­
erated if the csw is stored because of a PCI Hag in one
of the ccw's.

Bit 41, incorrect length, is generated if the count of
the ccw is not zero at the end of an I/O operation and
the SLI Hag was O.

Bit 42, program check, is generated if one of the
following conditions is detected:

Invalid CCW specification.
Invalid CCW address.
Invalid command code.
Invalid count (zero).
Invalid data address.
Invalid key.
Invalid CAW format.
Invalid CCW format.
Invalid sequence of CCW's (two TIC's).

Bit 43, protection check, is generated if, during the
I/O operation, an attempt to violate main storage pro­
tection is made.

Bit 44, channel data check, is generated by invalid
data detected by channel.

Bit 45, channel control check, is generated by any
machine malfunction affecting channel controls.

Bit 46, interface control check, is generated if invalid
signals on the interface are detected.

Bit 47, chaining check, is generated by over-run
conditions during data chaining on input operations.

Bits 48-63, count, indicate the residual count after
the termination of the I/O operation. It should normally
be zero; if non-zero, a wrong-length record indication
is generated. When the wrong-length indicator is on,
the count may be used to calculate the number of bytes
transferred and to initiate appropriate action.

1/0 Instructions

• Only four 1/0 .. instructions are used.

• Start 110 is the only 110 instruction to initiate an
110 operation.

The instruction set provides only four I/O instructions.
The only instruction to initiate an I/O operation is start
I/O. Other instructions available are:

1. Halt I/O - used to stop an I/O operation in
progress.

2. Test I/O - used to obtain the current status of
any I/O device including the entire communication
path.

3. Test Channel - used to obtain the status of the
channel only.

Start I/O

• CAW and ccw must be located correctly before
start 110 initiation.

• The system must be in supervisor state.

• Device is selected if available.

• The condition code is set to 11 and the next instruc­
tion is fetched if the unit is unavailable.

• The condition code is set when the CPU portion of
the operation is completed.

An example of a complete I/O operation is given in
Figure 18.

Example: Print a line of 100 characters on the
printer (data are to be taken from MS location 1000
hex) and skip to channel 2 after printing. Prior to
execution of a start I/O instruction, the following con­
trol information has to be in main storage:

1. ccw's specifying the actual channel program, in
the example, one ccw only:

COMMAND

DATA

ADDRESS FLAGS COUNT

MMMM MMOl 1000 hex 00000 100

The command code specifies write, the modifier bits M
are set to cause a skip to channel.

The specific ccw can be anywhere in main storage,
but the boundary specifications for double words must
be observed.

2. CAW in the fixed location 48 hex must be:
Key - 0000
Command address - Address of the above CCW

The start I/O instruction can now be given if the system
is in supervisor state (otherwise, program check in­
terrupt is generated). Op code (SIO, 9C), unit address
(000 0000 0100).

The first objective of the start I/O instruction is to
check the communication path to see whether it is
available or not. This information is contained in the
uew for the addressed sub-channel. If the uew is found
to be busy (I/O operation already in progress or inter­
rupt stacked), the start I/O operation is terminated and
the condition code is set to 10.

If the uew is not busy, it is set up according to the
start I/O instruction and the first ccw (unit address,
command, etc.). The channel now tries to establish
logical connection with the addressed device.

If the addressed device does not reply to the chan­
nel, it means that either this device is not connected at
all, off line, or power at the device is off. The channel
terminates the start I/O instruction and the condition
code is set to 11.

If connection with the device can be established, the
device (and the control unit) sends its present status

System Controls 12-65 43

to the channel, where it is analyzed. Depending on the
status received, the channel can now start the actual
I/O operation (if all functional units are available).
The start I/O instruction is completed and the condition
code is set to 00, indicating to the program that start
I/O is successfully initiated.

The status from the addressed device may, however,
indicate such conditions as:

1. Device busy - the printer is still in operation (for
example, skipping).

2. Device not ready - the devke is not ready to
operate (end of forms, not ready).

3. Unit check - any machine malfunction detected
by either the device or the control unit.

4. Interrupt pending - interrupt information is
stored in the control unit which may not be destroyed
by a new operation.

5. Invalid command - the command issued to the
device is invalid for this particular device (read com­
mand to the printer, for example).

When one of the"e conditions is encountered, the
proper status information is stored in the status field of
the csw and the I/O instruction is terminated with the
condition code set to 01. The program can thus analyze
the status and take the steps necessary to indicate th~
condition to the operator if manual intervention is
necessary.

Summary of the condition code settings for start I/O:

00 110 operation successfully initiated.
01 CSW stored (status portion only).
10 Sub-channel busy.
11 Unit not operational.

Data Transfer: As stated previously, execution of the
I/O instruction"is simultaneous with the CPU program.
The channel is in charge of all necessary control
functions.

The actual access path to main storage has to be
shared by CPU and channel. If the channel requires
access, the CPU operation is halted for the time required
and the main storage access path has to be cleared.

Depending on the channel involved, the data paths
to be cleared may include the complete CPU data­
flow. Obviously, the contents of the data path to be
cleared must be preserved for further CPU operation.

Break-in of the channel in the middle of any CPU

operation is called microprogram interrupt. This type
of interruption must not be confused with the program
interrupts discussed in «Interrupt System" section. A
microprogram interrupt takes place unnoticed by the
problem program, which justifies the statement that
I/O operations are executed in conjunction with the CPU

program.

Termination: The end of an I/O operation is signalled
to the CPU program by an I/O interrupt. Together with

44 12-65 Model 40 Comprehensive Introduction

the exchange of psw's, the complete csw is stored. The
device causing the interrupt is specified in the inter­
rupt code of the old I/O psw. All other relevant in­
formation on the ending status can be found in the
csw.

This end-type interrupt is normally generated when
the I/O operation no longer needs channel facilities
(end of the data transfer specified in the last ccw
of a chain).

The detection of an unusual condition during a
channel program terminates the I/O operation. Data
transfer of the current ccw is completed, but any ccw
chaining is suppressed. The proper status is indicated
in the csw.

Conditions that lead to premature termination are:
program checks (any type of specification error de­
tected during ccw chaining), machine malfunctions
detected anywhere on the communication path, and
exceptional conditions detected by the device (stacker
full, end of tape reel, etc.) .

The status information in the csw may be insuffi­
cient to exactly define the necessary action to be taken.
The status bit unit check may be caused by several
conditions, some of which are machine malfunctions
that prevent any further use of the device; others may
be expected conditions such as a tape-read error, in
which case, a re-try will be programmed.

Additional information from the device may be
obtained by a sense command. On receiving a sense
command, the device sends its associated sense in­
formation to the CPU. Sense information is defined for
all different I/O devices and may be a single byte or up
to any number of bytes. Sense information for tape
drives, for example, is a string of five bytes giving
the status of various control latches and check con­
ditions.

Halt I/O

SI format: op code (HIO, 9E), bits 8-15 ignored, B1, Dl.
Execution of the current I/O operation at the sub­

channel addressed by contents of B1 + D1 is termi­
nated. The instruction does not refer to any ccw.
Resulting condition code:

00 - the channel or sub-channel was not working.
01 - exceptional condition, status portion of CSW is stored.
10 - operation terminated.
11 - unit not operational.

Test I/O

SI format: op code (TIO, 9D), bits 8-15 ignored, B1, Dl.
The status of the addressed communication path is

indicated by the condition code and, under certain
conditions, the status portion of the csw is stored. The
instruction does not refer to any ccw.

Pending interruptions are cleared by test I/O and
the csw is stored.

Resulting condition code:
00 - entire communication path available.
01 - CSW stored (interrupt cleared or exceptional condition

during test 110 detected).
10 - sub-channel busy.
11 - unit not operational.

Test Channel

SI format: op code (TCH, 9F) bits 8-15 ignored, B1, Dl.
The status of the addressed channel is indicated in

the condition code. The state of the channel is not af­
fected and no action is taken. The instruction does not
refer to any ccw. Resulting condition code:

00 - channel available.
01 - interruption pending in channel.
10 - channel operating in burst mode.
11 - channel not operational.

Interrupts

• 110 interrupts are generated by various conditions
in the channels and 110 devices.

• Conditions that generate 110 interrupts are:
Channel end.
Control unit end.
Device end.
Attention.
PCI (program control interrupt Hag in a ccw).

• Every 110 operation initiated by start 110 generates
channel end and device end.

• The other conditions are generated only in special
circumstances.

I/O interrupts are generated by conditions in the chan­
nels and have no timing relationship to the CPU opera­
tion. They are used to signal significant channel and
device information to the CPU program.

In every I/O operation initiated by start I/O the fol­
lowing two conditions are generated and cause an I/O
interrupt.

Channel End

This coudition is generated whenever the control unit
no longer needs the interface facilities to complete a
command. The signal is only used to generate an in­
terrupt if it is received from the control unit in reply
to the last command in a ccw chain. Further reference
to channel end always assumes that it is the last chan­
nel end of a channel program.

Device End

The condition is generated when the device currently
operating reaches its normal mechanical ending point.

On some devices, device end is also generated when
the device is switched from the not-ready to the ready
state (tape drives) and the device was previously ad-

dressed by an I/O instruction (start I/O, test I/O) while
in the not-ready state.

When command chaining is used, an interrupt is
generated only for the device end of the last ccw.

Depending on the type of device and the command
issued, device end can be generated at the same time
as channel end.

Example:

Channel end and device end simultaneously:

Tape drives - read, write, sense.
Disk drives - read, write.

Serial card reader 1442 - read 80 columns.

Device end after channel end:

Tape drives - control (backspace, rewind, etc.).
Disk drives - control (seek).

Buffered card equipment - channel end after
buffer service by the channel, device end after
buffer service by the device.

Control Unit End

Control unit end is generated only if the particular
control unit was previously addressed by an I/O in­
struction (start I/O or test 1/0) and was busy at that
time.

Attention

Attention is generated by such devices as console type­
writers, display consoles, etc., when a manual inquiry
is attempted.

Program Control Interrupt (PCI)

Program control interrupt (PCI) is generated when a
PCI Hag is presented in a ccw chain. Unless channel
end occurs before the PCI interrupt is taken, the PC! Hag
is propagated through the following ccw's until the
interrupt is taken.

Generation and Stacking of 1/0 Interrupts

• Simultaneous interrupt conditions in a sub-channel
generate only one 110 interrupt.

• In every channel, only one 110 interrupt at a time
can be generated and presented to the CPU pro­
gram.

• All other interrupts must be stacked in the control
units where they originated.

• Only channel end (CE) interrupt information is
stored in the sub-channel (ucw).

• CE keeps the sub-channel busy until it is cleared
by the CPU program.

System Controls 12-6.5 45

• Device end (DE) and attention interrupts are
always stacked at the control unit; the sub-channel
is not kept busy.

• In multiplex channel, an interrupt buffer contains
the address of the sub-channel that requested an
110 interrupt.

Simultaneous interrupt conditions in a sub-channel
generate only one I/O interrupt. A device that generates
CE and DE at the same time will always cause only one
interrupt. This is also true for any other combinaion of
interrupts.

In any channel, only one I/O interrupt at a time can
be generated and presented to the CPU. All other in­
terrupts must be stacked in the control units where they
originated. Control units that are connected to only one
sub-channel, but control several devices, can stack in­
terrupt information for only one of their devices.

Control units that are connected to several sub­
channels, e.g. the control unit for the card devices in
Figure 15, can stack interrupt information for every
sub-channel. A control unit with stacked interrupt in­
formation appears busy to further start I/O instructions.

If a sub-channel has an interrupt pending, it appears
busy to the CPU program and may not be used for
further operations until the interrupt is cleared. This is
the reason why only interrupts generated by channel
end are stacked in the sub-channel. Device end type
interrupts are always stacked in the control unit to keep
sub-channels free for actual I/O operations.

The selector channel has only one sub-channel, and
the channel remains busy until the channel end type
interrupt at the end of the I/O operation is cleared.
Only one channel end interrupt can be pending at any
one time because only one operation that uses channel
facilities can be in progress at anyone time. This in­
terrupt is never stacked at the control unit but held in
the channel. Device end type interrupts are always
stacked in the control units although the channel may
be free.

The multiplex channel has multiple sub-channels,
and the individual sub-channel remains busy until the
channel end interrupt is cleared. Multiple channel end
interrupts may be pending in the multiplex channel.
The single interrupt to be presented to the CPU is held
in the sub-channel (ucw). An interrupt buffer contains
the address of this sub-channel.

Other pending channel end interrupts are stacked in
the control units. Device end type interrupts are always
stacked in the control units.

46 12-65 Model 40 Comprehensive Introduction

Clearing of 1/0 Interrupts

• An interrupt is said to be cleared when the csw is
transferred to the CPU program.

• Only one interrupt can be cleared at a time.

• A channel end type interrupt can be cleared by CPU

acceptance or by the test 110 instruction.

• A device end type interrupt may also be cleared by
a start 110 instruction.

An interrupt is cleared when the interrupt information
is transferred to the CPU program. Interrupt informa­
tion is stored in the csw status portion (Figure 17).

Only one I/O interrupt at a time can be cleared and
handled by the CPU program.

Channel end type interrupts can be cleared by the
following two operations:

l. Acceptance of an I/O interrupt by the CPU. The
system mask of the psw contains a 1 for the particular
channel; the CPU is executing instructions or is in the
wait state.

The psw's are changed and the full csw is stored, in
particular, th~ interrupt information is transferred from
the channel to the status portion of the csw.

On the selector channel, the single possible channel
end interrupt is cleared; on the multiplex channel, the
interrupt of the sub-channel indicated by the interrupt
buffer is cleared.

2. Test I/O. If the sub-channel addressed by test I/O

has an interrupt pending, the information will be stored
in the status portion of the csw, and the condition code
is set to 01.

On the selector channel, the single interrupt pos­
sible is cleared; on the multiplex channel, the interrupt
pending in the addressed sub-channel is cleared (and
not interrupt requested by the interrupt buffer).

A device end type interrupt can be cleared by three
conditions:

l. Acceptance of an I/O interrupt by the CPU. The in­
terrupt information in this case must be obtained from
the control unit. On the selector channel, the interrupt
can be accepted only if the channel is not busy. The
control unit address in this case is stored in the ucw.
On the multiplex channel, the interrupt can be ac­
cepted only if the sub-channel is not busy. The control
unit address is held in the interrupt buffer.

2. Test I/O. If the control unit addressed by test I/O

has an interrupt pending, the information will be stored
in the status portion of the csw, and the condition code
is set to Ol. On the selector channel, the interrupt of
the addressed control unit can be cleared only if the
channel is not busy. On the multiplex channel, the
interrupt of the addressed control unit can be cleared
only if the corresponding sub-channel is not busy.

3. Start I/O. If a start I/O instruction specines a con­
trol unit that has an interrupt pending, the following
two conditions are possible:

a. The pending device end type interrupt is
caused by the same device on the control unit
that is addressed by start I/O. The interrupt is
cleared, but start I/O is not executed. The con­
dition code is set to 01 and the status informa­
tion is stored in the csw.

b. The pending device end type interrupt is
caused by a device connected to the control
unit other than the one addressed by start I/O.

The control unit appears busy to start I/O~ and
the interrupt is not cleared. The condition code
is set to 01 and status information is stored
but this status information contains control unit
busy and not the interrupt condition from the
original device. As soon as the interrupt is
actually cleared, control unit end is signalled
which, in turn, generates a second interrupt.

Sequencing Channel Interrupts

• Whenever an interrupt is cleared, the remaining
channel interrupts are re-evaluated.

• One of the remaining stacked interrupts is accepted
by the channel and sent to the CPU.

• Only channel end type interrupt information is
actually transferred to the sub-channel.

• For device end type interrupts, only the device ad­
dress is accepted; the information remains stacked
in the control unit.

Whenever the channel interrupt signalled to the CPU

is cleared, the remaining channel interrupts are re­
evaluated, i.e. one of the remaining interrupts that may
be present in the channel is transferred from the control
unit to the sub-channel and signalled to the cpu.

On the multiplex channel, a new sub-channel address
is set into the interrupt buffer; on the selector channel,
the address of a device with a pending device end type
interrupt is accepted by the channel.

On the multiplex channel, the interrupt information
is transferred to the ucw of the particular sub-channel
only if it is a channel end type; on the selector channel
(one sub-channel), no channel end interrupt could
be stacked at the control unit.

The priority in which interrupts stacked in the con­
trol unit are accepted by the channel depends on the
sequence of how the control units are logically con­
nected to the standard interface.

The interrupt signalled to the CPU is also re-evaluated
if it is a device end type interrupt and a start I/O

instruction addresses another control unit on the selec­
tor channel from which the interrupt originated. Ini-

tially, the interrupt signal to the CPU is cancelled and
the device address in the uew is cleared. The interrupt
condition, however, still remains stacked in the control
unit.

As soon as the interface facilities are available, the
channel again accepts one of the stacked interrupts.
With this arrangement, a device end interrupt does not
block the channel for further I/O operations, but is still
signalled to the CPU if no more-important operations
are to be executed.

I/O Interrupt Handling

• 110 interrupts are accepted by the CPU in a fixed
priority:

1. Multiplex channel interrupts
2. Selector channel 1 interrupts
3. Selector channel 2 interrupts

• This priority can be changed by the system mask.

• During the interrupt-handling program, all further
110 interrupts must be masked off to avoid loss of
vital information (csw, old 110 psw).

• 110 interrupts may be constantly masked off and
cleared by the program in any priority desired
(test 110 instruction).

If all system-mask bits of the psw are 1, I/O interrupts
are accepted by the CPU in the fixed priority:

1. Multiplex channel interrupts
2. Selector channell interrupts
3. Selector channel 2 interrupts
Obviously, it is possible to program any other priority

by setting the system mask accordingly.
There is only one set of psw's for I/O interrupts.

Before the first instruction of the program initiated by
the new I/O psw (the interrupt handling routine), a
test for further I/O interrupts is made. The systems
mask of the new I/O psw therefore may not accept I/O

interrupts (0 bits).
If this rule is not observed, the csw information is

replaced by information concerning the second inter­
rupt and the old I/O psw, containing information of the
interrupted program, is replaced by information of the
interrupt-handling routine. Essential information there­
fore is lost.

I/O interrupts may be constantly masked off and ac­
cepted by test I/O in any priority desired. The priority
within the channels can be changed in like manner.
This mode of programming, however, devaluates the
interrupt system and decreases system efficiency.

Examples of Interrupt Sequencing (Figures 18 to 22)

Some examples of how interrupts are sequenced by
the channels follow. The system configuration is shown
in Figure 15, but only one selector channel is shown.

System Controls 12-65 47

For the multiplex channel, only the control units are
shown, as every control unit has only one device con­
nected. The sub-channels are represented by their
logical function and not with the actual connections to
the interface.

For the initial system status, see Figure 18. All
interrupts are masked off, and this situation has devel­
oped (no devices operating)

Reader
Control

Punch
Control

Tape Drives

Printer
Control

ucw

Disk Drives

CE = Channel End
DE = Device End
B = Busy

Figure 18. Initial System Status

Multiplex Channel:
Interrupt buffer:
Sub-channels:
Control units:

Selector Channel:

Channel end interrupt from the printer.
UCW3 busy.
Device end interrupt stacked in reader
control.

U CW busy with pending channel end and
device end interrupt from tape drive 5.

Tape Control: Stacked device end interrupt from tape
drive 6 (rewind complete) .

File Control: Stacked device end interrupt from disk
drive (seek complete).

1. Start I/O for device 6: not possible, channel busy
(condition code,ee = 10). In fact, no device on the
selector channel can accept a start I/O instruction.

2. Start I/O for device 3: not possible, uew busy
(ee = 10).

3. Start I/O for device 2: can be initiated (ee = (0).
4. Start I/O for device 1: start I/O is not initiated, but

the interrupt is cleared (ee = 01, esw stored).
5. System mask set to 1 for the selector channel only:

Interrupt from device 5 accepted and cleared (new
psw masks the channel off again).

uew re-evaluated.
6. Start I/O for device 1: can be initiated (ee = ()()).

The situation after steps 1-6 have been executed as
shown in Figure 19.

7. Reader reaches channel end.
8. Punch reaches channel end.
9. Printer reaches device end.

48 12-65 Model 40 Comprehensive Introduction

Reader
Control

4

Punch
Control

Tape Drives

Printer
Control

Disk Drives

Figure 19. Situation After Steps 1 to 6

ucw

I/O
Interrupt

Selector
Channel

Op = Operating
CE = Channel End
DE = Device End
B = Busy

10. System mask allows selector channel interrupts:
device end from device 8 accepted and cleared.

uew re-evaluated.
The situation after steps 7-10 have been executed as
shown in Figure 20.

11. Start I/O for device 7: can be executed, old uew
information discarded.

12. System mask allows all I/O interrupts: channel
end interrupt from unit 3 accepted and cleared, inter­
rupt buffer re-evaluated.

13. Reader reaches device end.
The situation after steps 11-13 have been executed as
shown in Figure 21.

14. System mask allows all I/O interrupts:
device end from unit 3 accepted and cleared, inter­
rupt buffer re-evaluated.

15. Unit 7 reaches channel end and device end.
16. Punch reaches device end.

The situation after steps 14-16 have been executed as
shown in Figure 22.

Reader
Control

4

Punch
Control

Tape Drives

Printer
Control

Disk Drives

Figure 20. Situation After Steps 7 to 10

ucw

I/O
Interrupt

Selector
Channel

CE = Channel EnG
DE = Device End
B = Busy

Reader
Control

Punch
Control

Tape Drives

Printer
Control

Disk Drives

Figure 21. Situation After Steps 11 to 13

Reader
Control

4

Punch
Control

Tape Drives

Printer
Control

Disk Drives

Figure 22. Situation After Steps 14 to 16

UCW

UCW

I
I

I

I/O
Interrupt

B I
Selector

Channel

Op = Operating
CE = Channel End
DE = Device End
B = Busy

I/O
Interrupt

CE = Channel End
DE = Device End
B = Busy

17. From this point, no new 1/0 operations are
initiated. The system mask is set to allow interrupts
from both channels after any interrupt is handled.
The remaining interrupts are cleared in the following
sequence:

Channel end from the punch.
Device end form the punch.
Channel end and device end from the reader.
Channel end and device end from device 7.

Initial Program Load (lPL)

• IPL is used to start loading the first program into
main storage.

• Sets up ccw at MS location o.
• Reads double word into MS location 0 from 1/0

addressed by IPL.

• Double word becomes first psw.

Initial program load (IPL) is used to start loading of the
first program into main storage.

After the load button has been pressed, the following
actions occur:

1. A ccw is generated in location 0 of main storage
which specifies the command: Read, command chain­
ing, data address = 0, count = 24.

2. Initiates a start 110 instruction on the device ad­
dressed by the load unit switches. This may be any type
of device. To illustrate the principle, the device is
assumed, in this description, to be a card reader.

3. Execution of this start 110 instruction results in
the first 24 columns of the first card being read into
main storage, starting at location O. The information
punched into this card must be:

Columns 1-8: the first PSW to be used after IPL is completed.
Columns 9-16: the second CCW of the IPL command chain.
Columns 17-24: the third CCW of the IPL command chain.

4. Because the first ccw specifies command chaining,
the next ccw is fetched from main storage location 0+8
(card column 9). Further operation is therefore already
under control of information just read in.

lt depends now entirely on the programmer how his
first program is read in. He may choose to read the
complete program with a single ccw chain (one ccw
required to read one card) which he builds up with the
following cards, or he may choose to store first a proper
load program which in tum loads the problem program.

5. In any case, IPL is terminated as soon as a ccw
no longer specifies command chaining. The psw that
is stored at location 0 of main storage is loaded into
the data How. The overall system status is as specified
in this psw and the first instruction is fetched from the
location indicated by IC.

Multiprogramming

• During execution of a single program on any com­
puter, the internal processing capacity is not eco­
nomically used.

• For a single program, not all 110 devices installed
are normally required by the program.

• Efficiency of a system can be increased by running
more than one program in parallel.

On any computer, the internal processing speed is
normally considerably higher than the speed of 1/0

units where external documents have to be handled.
Particularly in commercial applications, the ratio of
internal processing and 1/0 operations is such that the
CPU has almost constantly to wait until the 110 units
are ready to send or accept data.

System Controls 12-65 49

Many jobs in a typical installation use only part of
all I/O devices installed and the complete system is
used for only a few jobs.

Over-all, the processing capacity of the complete sys­
tem is normally not very economically used.

Efficiency of any system can be increased if at any
time as many functional units as possible are working.
This can be achieved by running more than one pro­
gram in parallel.

This practice is referred to as multiprogramming.

Example: Refer to the sample system configuration
in Figure 15. Assume that at a certain time the main
job is a billing application for delivered products. The
program uses the following I/O units:

3 disk drives containing customer and product records.
1 tape drive with delivery data.
1 printer to prepare the invoices.

The customer and product records are updated ac­
cordingly.

In this example, the printer is the slowest functional
unit. No matter how high the internal processing speed
or the speed of tapes and disks, the rest of the system
has almost constantly to wait for the printer.

If, in this installation, other jobs are pending which
need I/O devices not already used or which can be
shared with the main job (disks), it is sensible to run
these jobs in parallel with the main job.

Examples of other jobs possible are: tape sort (four
drives available) and card to disk (or vice versa). A
further program that may be permanently held in the
system would provide for inquiries from the console
printer concerning file data.

The time required for one particular job will be
increased but, more importantly, the "throughput"
will be much higher. (Throughput = number of jobs
completed per unit of time.)

System/360 Concept

• System/360 features that simplify multiprogram-
ming:

1. Optional high main storage capacities
2. Re-locatable programs
3. Programmed status switching
4. Interrupt system
5. Storage protect feature
6. Interval timer

• A complex operating system is an integral part of
the system configuration.

Multiprogramming is basically possible on any com­
puter although the programming effort involved is, in
most cases, prohibitive. The system concept of the
System/360, however, is based on multiprogram oper-

50 12-65 Model 40 Comprehensive Introduction

ation and provides features that simplify the program­
ming concerned.

High Main Storage Capacity

All processors of System/360 are available with rela­
tively high storage capacities compared with the in­
ternal processing capabilities. The IBM 2040 is available
with up to 256K bytes of main storage.

Relocation of Programs

Every main storage address is specified by a displace­
ment and the contents of a base register. A program
assembled and stored in a certain main storage area
can easily be moved to another area of storage by
simply changing the contents of the base register. All
future references to storage are in the same relation to
the base address.

A specific program therefore may use at one time
storage locations 1000-7000, and at another time loca­
tions 69500-75500, depending on the other programs
concurrently executed.

Programmed Status Switching

The status of every program is defined by the psw.
Switching from one program to another can be accom­
plished at any time by replacing the current psw with
the psw of the new program. The old program can be
continued later at exactly the point and the status at
which it was left.

Interrupt System

Asynchronous conditions are signaled to the program
at the time they occur (I/O termination). Once such
operations are initiated, the individual problem pro­
gram can ignore them, and if the termination of such
operations is essential to carry on, can tum control over
to another program that can process data during the
dead time of the first program.

If the interrupt caused by termination of the I/O
operation comes in, the second program is abandoned,
and control returned to the original program.

This switching from program to program at interrupt
time can obviously be done between more than just the
two programs mentioned.

Storage Protect

Storage protect is a special feature available on the
IBM 2040.

The storage protect feature protects the contents of
certain areas of storage from destruction due to errone­
ous storing of information during the execution of other
programs.

Protection is achieved by identifying blocks of
storage with a storage key and comparing this key with
a protection key supplied with the data to be stored.

The detection of a mis-match results in a protection
interrupt.

For protection purposes, main storage is divided into
blocks of 2,048 bytes. A four-bit storage key is associ­
ated with each block. When data are stored in a storage
block, the storage key is compared with the protection
key. When storing is specified by an instruction, the
protection key of the current psw is used as the com­
parand. When storing is specified by a channel opera­
tion, a protection key supplied by the channel is used
as the comparand. The keys are said to match when
they are equal or when the protection key is zero.

The storage key is not part of the addressable stor­
age. The key is changed by set storage key (SSK) and
is inspected by insert storage key (ISK). The protec­
tion key in the psw occupies bits 8-11 of that control
word. The protection key of a channel is recorded in
bits 0-3 of the CAW.

When a protection mismatch due to an instruction
is detected, the execution of this instruction is sup­
pressed or terminated, and the program execution is
altered by an interrupt. The protected storage location
always remains unchanged.

Protection mismatch due to an 110 operation causes
the data transmission to be terminated in such a way
that the protected storage location remains unchanged.
The mismatch is indicated in the csw stored as a re­
sult of the operation.

Interval Timer

The timer is provided as an interval timer and may
be programmed to maintain the time of day. The timer
consists of a full word in main storage location 50 hex.
The timer word is counted down under control of the
line frequency. The timer word is treated as a signed
integer following the rules of fixed-point arithmetic.

An external interrupt condition is signaled when the
value of the timer word goes from positive to negative.
The full cycle time of the timer is 15.5 hours.

An updated timer value is available at the end of
each instruction execution, but is not updated in the
stopped state. The timer is changed by addressing stor­
age location 50 hex.

As an interval timer, the timer is used to measure
elapsed time over relatively short intervals. It can be
set to any value at any time.

In multiprogramming, the timer may be used to
measure the time consumed by the individual jobs
(billing) or to prevent a program from monopolizing
the CPU (if one of the jobs is program testing for
example, where a program error may cause an in­
definite loop).

Operating System Principles

• The operating system (os) is a supervisor program
that controls the problem programs of the customer.

• The operating system is tailored to the individual
system.

• Operating system programs for real-time computers
are very sophisticated.

Because of the wide variety of possible System/360
configurations, the operating systems are more or less
tailored to the individual system and to the customers'
need (multiprogramming, real time, etc.).

On smaller systems, the optional features, interval
timer and storage protect, would also affect the oper­
ating system. It is obvious that an IBM 2040 with 16K
main storage cannot store or use a supervisory system
that uses 30K locations.

It is assumed that all os programs are permanently
stored within the physical system, e.g. one tape unit
with the system tape or part of a disk file has no other
function than to be part of the operating system.

The programmed portion of the as is sub-divided
into five parts with distinct functions as follows:

Supervisor System

The supervisor system is that part of the system which
exercises supervision over the other parts and maintains
status records and operating statistics. Supervision is
the combined function of allocating, scheduling, dis­
patching and execution of jobs, including readying jobs
for execution and maintaining records of machine,
system, and job status together with operating statistics.

Supervision can therefore be defined as the set of
control functions exercised by the system and the
record-keeping associated with these functions.

Allocation is the action of assigning a machine facility
for some purpose, such as assignment of an area of
main storage to hold a certain program, or a given tape
drive to hold a certain tape file.

Scheduling is the process of ordering future events
(jobs), e.g. determining in which order and at what
times they will take place. Jobs are defined and
initiated by the user by means of job decks. Jobs may
be run in any order or combination, except for orders
based on job priorities.

Dispatching is the act of causing events actually to
occur according to the schedule.

Load programs and housekeeping programs for the
system file and programs for the interface operator­
machine are also included in the supervisor system.
These programs are commonly referred to as supervisor
or monitor programs.

System Controls 12-65 51

Input/Output Control System (I0CS)

The inputloutput control system is that part of the
system concerned with the use of the various input!
output elements. It contains the actual routines for
110 operations.

The problem programmer specifies 110 instructions
in symbolic form which are translated into supervisor
calls by the assembly routines. The execution of these
instructions is under control of the operating system.

The supervisory program tells the lOCS what physical
units are concerned and what operation has to take
place. The IOCS in tum executes and controls the opera­
tion (error routine) and, upon termination, hands con­
trol back to the supervisor.

"Debugging" System

The "debugging" system comprises those parts of the
system that assist programming in the location of mal­
functions in any part of the operating system. Programs
in this section are:

1. Routines for handling program interrupts (pro­
gram errors)

2. Routines for handling machine check interrupts
(machine errors)

3. The diagnostic monitor

4. Diagnostic programs

System Processors

The system processors are those programs residing in
the system library which are used by the system to
execute certain standard jobs. Typical of these are the
autocoder assembler, FORTRAN assembler, COBOL assem­
bler, sort programs, etc.

Problem Program library

The problem program library consists of all customer
programs for the particular system.

Error Detection and Handling

• The system is kept running as long as possible.

• If possible, programmed recovery is attempted.

• Distinction is made between machine and program
errors.

• Machine malfunctions in one unit may not cause
errors in another unit.

The fundamental operating characteristic of a Systeml
360 is its continuously operating state. During normal
system operation the system should never be stopped.
Error detection, therefore, may not stop the system if
programmed recovery is possible.

52 12-65 Model 40 Comprehensive Introduction

In System/360, distinction is made between machine
malfunctions and programming errors. Program errors
may not cause indication of machine malfunctions.

Machine Malfunctions

The IBM 2040 is comprehensively checked by redun­
dancy checking, consisting mainly of parity check
circuits. All data transfers between functional units are
checked by byte. The control circuits are also checked.

If the system is in normal processing mode and a
machine check is detected, the machine is frozen at the
end of the internal cycle and the complete error en­
vironment is stored in coded form into main storage.

This operation is called log out and provides a power­
ful tool for customer engineering, as the status of all
important functional units and information about the
program conditions at the time of error are recorded
for future investigation.

After the log out is executed, an internal checkout
routine applies a check to all functional units. A ma­
chine malfunction during this test will stop the system
and customer engineer intervention is necessary. If,
however, this checkout does not show any machine
malfunctions, it is assumed that the original error is
no longer present (intermittent failure) and that sys­
tem operation can be resumed.

The system is then reset and a machine check
interrupt is taken. Error data can be analyzed by pro­
gram and either a re-try of the failing instruction or a
branch to the last program check point can be intiated.

Machine errors detected in an 110 unit cannot cause
errors in the CPU and vice versa. By design, the data
sent across the interface are always in good parity.
Control checks detected in 110 units are sent to the
CPU as status information. By programming it is pos­
sible to obtain more detailed information about 1/0

unit conditions (sense command).

Programming Errors

Programming errors detected by the CPU lead to a
program check interrupt. Reasons for program checks
are listed in the «Interrupt System," section.

Program checks normally occur during program test­
ing only. The program check interrupt routine indicates
to the programmer what condition occurred but
abandons the program.

Program checks during actual operation will indicate
that certain specifications were not considered (length
of result ,fields or tables that now exceed the available
storage size). The program will again be abandoned
with the proper indication to the operator.

In multiprogram mode, the remaining programs are
carried on immediately.

• To the programmer, all processors within Sys­
tem/360 look the same; internal circuitry, however,
may be entirely different.

Figure 23 shows a simplified data How of the IBM 2040.
Any processor within the System/360 line has the
same architecture, i.e., the internal language, the in­
terpretation of instructions and its basic building
blocks as seen by the programmer are identical. See
detail A of Figure 23.

To the programmer, the various models differ only
in storage and channel capacities and in the internal
processing speed.

These differences affect the actual circuitry as every
model of the line should be the most efficient im­
plementation of its specifications. The IBM 2040
processor is a microprogram-controlled computer,
using SLT (solid logic technology) components. The
data How is explained in more detail in the following
sections.

Main Registers and 16-8it Data flow

• Five main data registers are provided, each two
bytes wide, interconnected by a 16-bit data path.

Figure 24 illustrates the basic components of the 2040
CPU. There are five registers, each two bytes wide.
A byte is eight bits plus one parity bit, and is the
fundamental unit of data in the System/360. The A,
C, and R registers have extender bits in the high-order
positions. The use of the extender bits is explained
in the "Main Storage" section. In general, data trans­
fers are 16 data bits plus 2 parity bits in parallel.

Hereafter, mention will be made only of data bits
in transfers; parity is assumed as one extra bit per
byte. Each register, may transfer its contents to any
of the others via the R register, or back to itself, in
one machine cycle.

ALU and 8-Bit Data flow

• Basic registers are connected to the ALU by an in-
dependent 8-bit data path.

• ALU processes one data byte at a time.

• P and Q are input registers for ALU.

To enable arithmetic and logical operations to be per­
formed on the data in the registers, the arithmetic

Basic Data Paths

and logic unit (ALU) is added to the data How. See
Figure 25. The ALU has two inputs, P and Q, each
8 bits wide plus a parity bit.

Arithmetic and logical operations are performed on
one byte at a time. To interconnect the ALU and reg­
isters an 8-bit data bus is provided, as in Figure 25.
Data on the bus can be selected from, or directed to,
either the low- or high-order byte position of the
register concerned.

For example, to add the contents of Band D and
store the result in D, the low-order bytes from Band
D would be fed to the P and Q inputs, respectively,
and the ALU output gated back to the low-order posi­
tion of D. The same operation would then be per­
formed on the high-order bytes, any carry from the
low-order addition being added in for the final cycle.

Staticizer Latches (Stats)

• Staticizer latches are multipurpose latches to in­
dicate various machine conditions.

• Some stats are connected to the 8-bit ALU data bus.

In Figure 26, the staticizer latches (stats) are added.
They may be set to indicate a machine status such
as condition code. Other uses of these stats are as an
intermediate temporary storage, to alter control func­
tions, or to extend the number of controls possible
with a given set of lines.

In the broadest sense, although the stats may have
names denoting their primary functions, they may be
regarded as a set of general purpose latches. Thus,
a stat may be set to indicate that some condition has
arisen, and the microprogram can test for the con­
dition, branch to an appropriate routine, and reset
the stat that originally indicated it.

A group of eight stats is connected to the ALU data
bus. This gives the possibility of handling control
information with all the facilities available for data.

Local Storage and Addressing

• Local storage is a high-speed core storage with a
capacity of 144 22-bit locations, operating in split­
cycle mode.

• Local storage contains several control and working
areas and is the physical location of the 16 general
and 4 floating-point registers.

Basic Data Paths 12-65 53

CHANNELS

Selector Channel 1

Interface

Interface ... Mpx Register ~ From C Register

_ Multiplex Cha~el _ r --
I Detail A

I
I
I
I
I
I
I

16 General
Registers I I

80
4 Floating

Point
Registers

I
L

Problem Programmers Dataflow /360 -40

Figure 23. 2040 Simplified Data Flow

I
--1

CPU

-t

C)
c:
VI
VI
Qj

Main
Storage

-u ""OI-------f
«

Mpx Store

R Register

144 Words
22 Bits Each

Staticizer
Latches

I
I

L ..sd.. ..chaorW ...J

Control CPU &
Channel Data
Flow

Figure 24. Main Registers and l6-bit Data Flow

Figure 25. ALU and 8-Bit Data Flow Added

Figure 26. Staticizer Latches Added

Staticizer
latches

§

• The R register is the data register of local storage.

• LSAR is the address register of local storage.

• The local storage address loop is connected to the
R register data bus via Hand J registers.

The local storage (LS) is a high-speed core storage
with a capacity of 144 22-bit locations. LS read and
write cycles may be run independently (split-cycle
mode), each cycle (read or write) being 625 nano­
seconds, which is the basic CPU timing cycle.

For high-speed access to several locations in
sequence, LS would be cycled using continuous read
calls and the contents of the accessed locations trans­
ferred each cycle to the required destination.

LS is used as a general-purpose, high-speed inter­
mediate storage. It also has locations reserved for
specific functions. Thus, the general and Boating-point
registers "seen" by the problem programmer are loca­
tions in LS. Additional uses include channel control,
working space, psw storage, and dump areas for use
during microprogram interrupts.

The LS data register is the R register which is con­
nected to the other main data Bow registers. Figure
27 illustrates the addition to the data Bow of LS and
its addressing circuits.

$taticizer
La

Figure 27. Local Storage Added

The local storage address register (LSAR), the in­
crementer, and registers Hand J form the address
loop. The incrementer can alter the LS address by
± 1, - 2, or O. LSAR contents are routed through the
incrementer to H or J. The purpose of Hand J is to
hold LS addresses for subsequent use in LSAR.

LSAR is loaded at the beginning of the machine
cycle, Hand J at the end. Thus, an address can be
set into LSAR at the start of a cycle, used to call LS,

transferred to H or J via the incrementer at the end
of that cycle, and transferred back to LSAR for use at
the beginning of the next cycle, and so on.

The LS address loop bus is 8 bits plus one parity
bit wide. Data may be loaded into the LS address loop
registers from the machine data Bow and also from
entry switches on the console.

Main Storage (NlS)

• Main storage is a core storage with a capacity of
up to 256K bytes (128K halfwords). It operates in
split-cycle mode with a total cycle time of 2.5
microseconds.

Basic Data Paths 12-65 55

• Main storage always reads or writes one halfword
(two bytes) at a time.

• ~fain storage data register is the D register.

• Main storage address registers are the A or S
registers.

• ~fain storage is addressed with binary addresses
up to 18 bits.

• With a special address bit (stat Yl.), a special area,
called multiplex storage, can be addressed.

Figure 28 shows the addition of main storage to the
data flow. The addition of a main storage array to
the data flow provides an immediate-access bulk store
which can be used to hold program instructions and
data. The main storage (MS) in the 2040 may have
a capacity of 16, 32, 64, 128, 192, or 256 K bytes.

Main
Storage

Mpx Store

144 Words
22 Bits Each

Figure 28. ~Iain Storage and 16-Bit Buses Added

Staticizer
Lat

MS always reads or writes two bytes at a time and
operates in split-cycle mode. The time for one com­
plete cycle, read and write, is 2.5 microseconds, or
4 times the basic machine cycle of 625 nanoseconds.
This means that MS access can take place once every
four machine cycles.

Data Transfers

Figure 28 shows that MS data are transferred via a
16-bit bus to register D, whose special purpose is to act

56 1-69 Model 40 Comprehensive Introduction

as the main storage data register. All data in and out
of the array are routed via register D and the 16-bit bus.

Addressing

The MS address circuits are fed by register A (or S for
selector channel), whose special purpose is to act as the
main storage address register. These registers are con­
nected to the MS address decoders via the address bus.
The A register content is decoded as a binary number.

The various storage capacities are defined by the
number of bits contained in the address. A capacity
of 128K bytes actually means that the storage is ad­
dressed with 17 bits and has a total number of 131,072
storage locations. Data are stored in :\IS in halfwords,
or 16 bits plus 2 bits parity. The j\IS is thus said to be
16 bits wide. Every access to :\IS results in 16 + 2P
bits being set into or stored from D. The lowest-order
bit in the :\IS address in A denotes the byte concerned.
The actual address lines do not use this low-order bit
which is reserved for byte selection only.

Extended Addressing

Seventeen binary lines are needed to address 128K
bytes of storage, and 18 binary lines are needed for
192K and 256K. To accommodate the extra address
bits, the A, C, and R registers have extenders (3 bits
plus parity) called AX, ex, and RX, respectively. The
A register (Figure 28) needs the extender because it
addresses main storage. The C register needs the ex­
tender because it receives updated addresses from
ALU, and the R register because it transfers addresses
between the C and A registers.

Special Area

At this point, main storage, with address and data
registers and buses, has been added to the data flow.
In addition, there is a special multiplex storage area in
:\IS. This comprises additional locations which can be
accessed only for multiplex channel operations when
a stat called Yl is set (this stat serves as an additional
address bit for MS addressing).

The special area contains one uew (unit control
word, 10 bytes) for every multiplex subchannel and
contains the necessary control information to sustain
the operation of a subchannel.

Control

• Transformer read only storage (TROS) stores the
microprogram that controls the data flow.

• TROS can be addressed with information coming
from the data How.

g> Main
";;;
Ql Storage
-ot------I
~ Mpx Storage

Figure 29. The Read Only Storage Added

Staticizer
Latches

§

Control CPU
& Channel
Data Flow

Control of the data flow (Figure 29) is accomplished by
a microprogram in TROS, and logic circuits such as con­
trollines, control latches, and stats.

Channels

• Channels provide the data path and control be­
tween main storage and 110 devices.

• The entire CPU data How may be used as a channel.

• CPU and channel operations cannot be executed
simultaneously.

The basic function of a channel is to provide the data
path for 110 information between main storage and
110 device. The channel also controls the information
transfer. A channel is an independent computer for
110 operations.

Some hardware is added to the basic CPU to per­
form the channel functions with the original computer.
Separate microprograms (channel programs) control
the entire operation, which may include data handling
within the CPU and control of the 110 device via the
interface.

It is obvious that this design provides either a CPU

or a Channel and the two units cannot operate simul­
taneously. However, CPU and channel operations are
interleaved to give the most efficient over-all per­
formance. The time used to read a record from tape
from the start 110 instruction until the record is avail­
able in main storage, is split up into CPU and channel
time and most of this time will be available for the
CPU.

Multiplex

• The only special hardware for the multiplex (MPX)

channel is the circuitry required to communicate
with the interface and the special MPX storage area
in main storage.

• Any microprogram interrupt by the multiplex
channel dumps the cpu.

The multiplex channel has no special data flow cir­
cuits except those necessary in connection with the
standard interface.

The R bus is gated from the interface line termi­
nators for read data, the low-order byte of register C
is gated to the interface line drivers for write data.

Special channel-control circuitry includes main
storage, MPX storage, and the logic for generating and .
analyzing interface control signals.

For any microprogram interrupt, the CPU has to be
"dumped" (data flow contents preserved in local
storage for later retrieval) in order to have the entire
data flow available as channel.

Example: To accept one byte of read data from the
interface, the following sequence will take place:

1. A device on a mpx subchannel is ready to send
one byte of data and requests a microprogram in­
terrupt.

2. The data flow, which is currently used as CPU,

is dumped into local storage leaving the data flow
path available to the mpx channel.

3. The channel function now taking place includes:
a. Identifying the device
b. Fetching necessary control information from

mpx storage
c. Accepting the data byte from the interface and

gating it to the D register and to main storage
d. Updating mpx storage

4. U ndump (i.e. retrieve the original data flow from
local storage) and continue CPU processing.

On burst mode operations on the mpx channel, the
CPU is monopolized for the entire 110 sequence; there­
fore, no CPU processing time is available for the dura­
tion of the data transfer.

Selector Channel

• Only D register has to be dumped.

• A five-byte data-buHer is provided between inter-
face and channel.

• Independent MS address register is S register.

• TROS is addressed by independent ROSCAR.

• T register and other registers are provided for con-
trol information.

In addition to the circuitry required to communicate
with the standard interface, the selector channels
(Figure 23) contain a five-byte data-buffer and reg-

Basic Data Paths 12-65 57

isters for control information (ucw information). These
facilities make the selector channels almost indepen­
dent of the CPU hardware.

Only the MS access path is shared with the CPU

(D register). Therefore, the CPU content of the D
register has to be preserved during channel operations.

The two main CPU units which are duplicated in the
channel are:

1. An additional main storage address register (S
register).

2. An additional TROS address register (ROSCAR, TROS

channel address register).
With this independent hardware, channel interference
with the CPU is kept to a minimum.

58 12-65 Model 40 Comprehensive Introduction

During data transmission, the CPU program is only
halted for the transfer between main storage and
buffer.

Example: To accept read data from the interface,
the following sequence will take place:

1. Data transfer between interface and buffer is com­
pletely independent of CPU operation.

2. \iVhenever two bytes of data are available in the
buffer, the CPU operation is halted and control is
switched from ROAR to ROSCAR.

3. The channel preserves the D register contents and
directs the buffer contents to main storage.

4. D register is restored and control is handed back
to ROAR.

CPU Timing

• Basic machine cycle is 625 nanoseconds divided
into overlapping timing pulses of equal length.

• One set of timing pulses is continuously available
(P pulses); a second identical set only for the
cycles in which microinstructions are to be exe­
cuted (T pulses).

The basic machine cycle of 625 nanoseconds (1 nano­
second = 10-9 seconds) is split into eight overlapping
timing pulses of equal length, time 1 to time 4 de­
layed (del).

One continuously available set of pulses is called P
pulses (PI to P4 del). A second identical set is gen­
erated whenever microinstructions are to be executed.
This set is called T pulses (Tl to T4 del). T pulses
are developed by gating P pulses. The only time when
T pulses are blocked is during "hardware" cycle and
in "hardstop."

Some basic data-How timings are shown in Figure'
30. LSAR, P and Q are set early in the cycle. A, B, C,
and D are set late in the cycle.

Local storage is called early; LS data are available
or have to be in the R register in the first half of the
cycle. The ALU output is available late in the cycle.

According to these timings within the machine
cycle, the following data transfers are possible in
one cycle:

1. On the 16-bit path:
a. Transfer from one register (A, B, C, and D)

to any other (via R), or

Basic System Timing

b. Transfer between a register (A, B, C, and D)
and local storage (via R).

2. On the 8-bit ALU data path:
a. Transfers from registers (A, B, C, and D) to

ALU registers P and Q and
b. Performing the ALU function, and
c. Gating the ALU output to a register (A, B, C,

and D).
Operations on the two data buses (R register and
ALU) can occur simultaneously.

CPU and MS Timing

• The basic main storage cycle is 2.5 microseconds.

• To complete one main storage cycle, 4 machine
cycles are necessary.

• Between main storage read and write half cycle
an unspecified number of machine cycles may take
place.

The basic main storage cycle is 2.5 microseconds split
in two halves for read and write. In order to complete
one main storage cycle, four machine cycles are neces­
sary (example: read out information and restore the
location).

Between the read and write cycle of main storage
an unspecified number of machine cycles may take
place (zero up to any number).

Figure 30 shows the relationship between main
storage and CPU timing.

Basic Systems Timing 12-65 59

Reset
P,Q,R, LSAR

Set

Reset

A,B,C,D, J,H Set

LS Call

Local Storage Read Or Write Data

ALU Output

BASIC DATAFLOW TIMINGS

Pl

Pl Del

P2

P2 Del

P3

P3 Del

P4

P4 Del

Tl

Tl Del

T2

T2 Del

T3

T3 Del

T4

T4 Del

One

,--- 156ns--

I
I

I

I

I

I

I

I
I

I ,-
I

I

I
I

I
I

I

I

I

BASIC TIMING PULSES

Machine Cycle

r-..... l56ns i
I

I I

I
I T

I
I 1

I
I- I

I

I
I I

I

I I
I I

I I
I I

I
T
I
I

I

I

I I

I I

Tl T2 T3 T4 Tl T2

~
,........

~

R W

--

= 625ns -----
I
I I
I

I
!.o-
I

I I
I

I

I
I
I 1

I I

I I

I T
I
I I

I I
I
I I
I

I

I
I I

I
I

I
I

MS Read Cycle

Tl T2 T3 T4 Tl T2 T3 T4

MS Read Or Write Call ~
(

J
MS Address Has To Be In A

Read Data Set Into D --
Write Data Has To Be In D

CPU AND MAIN STORAGE TIMING RELATIONSHIP

Figure 30. Timing Relationships

60 8- 67 Model 40 Comprehensive Introduction

T3 T4

-

- ~

MS Write Cycle

Tl T2 T3 T4 Tl T2 T3 T4

O-N ~

Cycles (

Between J

MS Read
AQd Writer ,

A single step of a microroutine is called a micro­
instruction. A microinstruction is very similar to a
machine-language instruction. Microinstructions can
test conditions and branch, move data,~ and set and
reset STATS.

Before the IBM System/360, electronic circuits con­
trolled the functions of the computer. Once the opera­
tion code was analyzed, special circuits were activated
for every microstep, and sequencing and control func­
tions required special circuits for almost every machine­
language instruction.

In the IBM 2040 processor, the standard data How
circuits are controlled by stored program routines held
in transformer read only storage (TROS).

The IBM 2040 can be considered as a group of general
purpose logic circuits with a microprogram that simu­
lates the IBM System/360 architecture. With a different
microprogram, any other computer could be simulated.

Microprogramming Concepts

Two microprograms actually simulate the 1401 and
1410 (special features called 1401/1460 and 1410/7010
compatibility feature).

The capacity of TROS, an inductive type storage,
can vary to a maximum of 8,l92 words or microin­
structions. TROS contains fixed, predetermined infor­
mation that can only be read out. The information is
printed as drive lines on plastic tapes. These drive
lines act as primary windings of coupling transformers
for all bit positions where information is desired.

There are two 56-bit words on a tape. The TROS con­
trol word always causes the same actions and tests to
take place. Variations of a microroutine are possible
only by branching to alternate TROS control words.
A control word controls the system data How, con­
trols special circuits, determines the next TROS address,
and parity-checks itself.

Microprogramming Concepts 12-65 61

Index

Address Generation
base address
displacement
index ...

Basic data paths
ALU
main registers
staticizer latches

Binary fixed-point arithmetic
add and subtract
divide
multiply

Branch instructions
branch and link
branch on condition
branch on count ..
condition code

Channel
address word
command word
control ..
multiplex
operation
program
selector
status
status word format

Channel data paths
Coding

binary .. .
data

23
23
23

53
53
53

16
17
17

28
28
28
28

40
40
41
37
38
38
38
42
42
57

11
. 10

decimal
hexadecimal

. 10

Configuration
Control storage
CPU status

masked or interruptible
running or waiting
stopped or operating
supervisor or problem

. 10
.... 35,36

56

35
34
34
35

Data flow 54
24
20
10

Data-handling instructions
Decimal arithmetic
Decimal coding
Error detection

machine malfunctions
programming errors ..

Floating-point arithmetic
add and subtract
divide
examples
multiply
notation ..

Functional units
Hexadecimal coding

I/O device addressing
I/ 0 instructions

halt I/O
start I/O
test channel

62 12-65 Model 40 Comprehensive Introduction

52
52

18
18
19
18
18
9

10
39

44
43
44

test I/O
I/O interrupts

attention
channel end
clearing
control unit end
device end
examples
generation and stacking
handling ..
program control
sequencing .

I/O operations
control
data transfer
test ...

Initial program load
Instruction format
Instruction length code
Instruction types

branch instructions
commercial instruction set
data-handling instructions
logical instructions
scientific instruction set
standard instruction set
status switching instructions
universal instruction set

Interrupt code
Interrupt types

I/O interrupts
Interrupts

external
I/O
machine-check
program-check
supervisor-call ..

Local storage
Logical instructions
Main storage

addressing
data transfers

Masking of interrupts
Microprogramming concepts
Multiplex channel
Multiprogramming
Operating system

I/O control system
supervisor system

Permanent storage assignments
Priority of interrupts
Program status word
PSW Bits

AMWP
condition code
instruction counter

Selector channel
Standard interface
System timing

Timing - Basic system ...

44

45
45
46
45
45
48
45
47
45
47

37
37
37
49
22
34

27
24
24
27
24
24
30
24
33
33
45

31
31
31
31
31
53
27

56
56
32
60
37
49

52
51
32
32
29

30
30
30
38
36
59

59

System/360 Model 40
Comprehensive Introduction
FETOM

READER'S COMMENT FORM

• How did you use this publication?

D As a reference source D As a classroom text D As a self-study text

We would appreciate your comments; please give section or figure titles where appropriate.

• What sections or figures were particularly useful or understandable to you?

• What sections or figures could be improved? How?

• What sections or figures require additional information?

• Any other comments?

• How do you rate this manual?

If you desire a reply by the group that prepared this manual, include your name and address.

Thank you for your cooperation. WTC users must add postage.

SY22-2840-2

YOUR COMMENTS, PLEASE

Your answers to the questions on the back of this form, together with your comments, will
help us produce better publications for your use. Each reply will be carefully reviewed by
the persons responsible for writing and publishing this material. All comments and sugges­
tions become the property of IBM.

Note: Please direct any requests for copies of publications, or for assistance in using your
IBM system, to your IBM representative or to the IBM branch office serving your locality.

fold fold

()
C
~

~
r
o
Z
C)

~
I
CJ)

C
Z
m

..

BUSINESS REPLY MAl L
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

ATTENTION: FE MANUALS, DEPT. B96

fold

POSTAGE WILL BE PAID BY

IBM CORPORATION
P.O. BOX 390
POUGHKEEPSIE, N.Y. 12602

FIRST CLASS
PERMIT NO. 419

POUGHKEEPSIE, N.Y.

fold

~
~

cu
u

e r:: >- e ~ ~ cu r:: ~ cu
- cu ~ -tIl-..c til
>- r:: .0-4 ~ en .;:I en

:t
CUT HERE

SY22-2840-2

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N. Y. 10601
IUSA OnlY]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
Ilnternationall

I
I
I
I

--.-J

CJ)
'<
~
CD

3
W
~
~
o
c.

~
()
o
3
~
CD
=r
CD
en
<'
CD

~ o
c.
c
!l o·
::J

" m
-I
a
~

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34.0
	34.1
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	replyA
	replyB
	xBack

