Systems Reference Library

IBM System/360
FORTRAN IV Language

This publication describes and illus-
trates the use of the FORTRAN IV language
for the IBM System/360 Operating System and
the IBM System/360 Model U4 Programming
System.

File No. S360-25
Form C28-6515-4

0s
44PS

|

PREFACE

This publication describes the 1IBM
System/360 FORTRAN IV language for the IBM
System/360 Operating System and the IBM
System/360 Model 44 Programming System. A
reader should have some knowledge of an
existing FORTRAN language before using this
publication.

The material in the FORTRAN IV publica-
tion is arranged to provide a quick defini-
tion and syntactical reference to the var-
ious elements of the language by means of a
box format. In addition, sufficient text
describing each element, with appropriate
examples as to possible use, is given.

Appendixes contain additional informa-
tion wuseful in writing a FORTRAN IV pro-
gram. This information consists of a takle
of source program characters, a list of
other FORTRAN statements accepted by
FORTRAN IV, a 1list of FORTRAN supplied
mathematical subprograms, and sample pro-
grams. Out-of-line mathematical subpro-
grams and service subprograms are described
in the publication IBM System/360 Operating
System: FORTRAN IV (E) Library Subprograms,
Form C28-6596.

Fourth Edition

r———

[o —— ——— i i e it e T S~ — — — —— — So— _—_ —— — — ——

TEMPORARY RESTRICTION

The ordering of variakles in COMMON
blocks and equivalence groups is
subject to the following restriction:

The programmer must always
ensure proper boundary align-
ment of all variables in COM-
MON blocks and equivalence

groups.

The methods of ensuring proper align-
ment are given in the descriptions of
the COMMON and EQUIVALENCE statements
in this publication.

The restriction will be removed in
the near future.

bie o e ot e s s i et e e e — s o —— —— ——— — To— . Tt st o]

This is a major revision of, and obsoletes, the previous edition, Form

C28-6515-3 and Technical Newsletter N28-2104.

Automatic function typing

has been removed from this edition which also contains minor technical
corrections and additions to the previous edition. Technical changes to

the text are indicated by a vertical line to the

left of the change;

revised illustrations are indicated by the symbol e to the left of the

caption.

Significant changes or additions to the specifications contained in this

publication will be reported in subsequent

Newsletters.

revisions or Technical

This publication was prepared for production using an IBM computer to

update the text and to control the page

and 1line format. Page

impressions for photo-offset printing were obtained from an IBM 1403

Printer using a special print chain.

Requests for copies of IBM publications should be made to your IBM
representative or to the IBM branch office serving your locality.

A form is provided at the back of this

publication for reader's

comments. If the form has been removed, comrments may be addressed to
IBM Corporation, Programming Systems Puklications, Department D58,

PC Box 390, Poughkeepsie, N. Y. 12602

© International Business Machines Corporation 1965, 1966

INTRODOUCTION . & 2 o o o o « « « « «
ELEMENTS OF THE LANGUAGE

Statements 4 . 4 4 e e o .
Coding FORTRAN Statements

ConstantS. ¢ ¢« ¢ o ¢ o « o « @« o o
Integer Constants
Real Constants. . « . . .« . .« . .
Complex Constants
Logical Constants« . . .
Literal Constants . « « « « « « =«
Hexadecimal Constants

Variables. . . . <« ¢« « ¢« ¢« ¢ ¢ ¢ . .
Variable Names. . . e e e .
Variable Types and Lengths.

Type Declaration by the Predeflned

Specification.
Type Declaration by the Imp11c1t
Specification Statement.

Type Declaration by Explicit
Specification Statements

EXpressionS. « « « « « « o « o « « =
Arithmetic Expressions.
Arithmetic Operators . + « «
Logical Expressions « « -
Relational Operators
Logical Operators.
ATTAYS v o o o o o o o o o o o o « =
Sl“r‘lPtQ_.._.. e e e e o =
Declaring the Size of an Array. -
Arrangement of Arrays in Storage.

ARITHMETIC AND LOGICAL ASSIGNMENT
STATEMENT . o & 2 o« o o o o o s = «

CONTROL STATEMENTS . . . & « « « « «

The GO TO Statements . . . « e e e
Unconditional GO TC Statement.
Computed GO TO Statement . . .
The ASSIGN and Assigned GO TO

StatementS. . <« .+« « ¢ o o «

Additional Control Statements. . . .
Arithmetic IF Statement. . . .
Logical IF Statement
DO Statement
CONTINUE Statement
PAUSE Statement. . . . « « . .
STOP Statement « . . .
END Statement

INPUT/OUTPUT STATEMENTS.

iu
15
15

16
16
16
20
20
21

23
25

25
25

27

CONTENTS

Sequential Input/Output Statements .

READ Statement. « « « « ¢« + « « -«

The Form READ (a,X).e « o« « « =«

The Form READ (a,b) list . . .

The Form READ (a) list

Indexing I/0 Lists

Reading Format Statements. . .

WRITE Statement « « « ¢ &« o « « =«

The Form WRITE (3a,X) « « « « «

The Form WRITE (a,b) list. . .

The Form WRITE (a) list. . . .

FORMAT Statement. « « +

G Format Code. « « v o o o« « «

Numeric Format Codes

Format Cod€. « o o « ¢ « o« &

Format Code. . « o« & &« « .+ =

and E Format Codes

Format Code. . .+ .« « . o « =«

Format Cod€e v o o o o o o =

Format Code. « « ¢ o o o o«
Literal Data in a Format

Statement 4 . . .

H Format Code. ¢« o o & o o o .

X Format Code. « « « =«

T Format Code.« . « .

Scale Factor - P

Carriage Control

END FILE Statement.

REWIND Statement.

BACKSPACE Statement

N D A

Direct Access Input/Output Statements.

DEFINE FILE Statement.
Programming Considerations . .
READ Statement -«

WRITE Statement.
FIND Statement « .

SPECIFICATION STATEMENTS

The Type Statements. . «
IMPLICIT Statement « 2 a4 e
Explicit Spec1flcat10n

Statements.
Adjustable Dimensions.

Additional Specificaticn Statements.
DIMENSION Statement.
COMMON Statement
Blank and Labeled Common . . .
Programming Considerations . .
EQUIVALENCE Statement.
Programming Considerations . .

SUBPROGRAMS. 2 2 2 « o « a2 o« o « « =
Naring Subprograms.
Functions « « ¢ ¢ o« o o « o « &

Function Definition.
Function Reference

CONTENTS, CONTINUED

Statement Functions . . . -« « 91
FUNCTION Subprograms. . - « . - - <« 93
Type Specification of the
FUNCTION Subprogram < 9
RETURN and END Statements in a
Function Subprogram 95
SUBROUTINE Subprograms. . « « « . « . 96
CALL Statement 97
Arguments in a FUNCTION and
SUBROUTINE Subprogram. 98
RETURN Statement in a SUBROUTINE
Subprogram. . . . - « « « « - 2100
Multiple ENTRY into a Subprogram .101
Additional Rules for Using ENTRY .103
EXTERNAL Statement. . -«103
Block Data Subprogram104

APPENDIX A: SOURCE PROGRAM CHARACTERS .105

ILLUSTRATIONS

FIGURES

Figure 1.
Figure 2.
Figure 3.

FORTRAN Coding Form 8
Sample Program l. «
Sample Program 2.115

APPENDIX B: OTHER FORTRAN STATEMENTS
ACCEPTED BY FORTRAN IV. =« 4 « « « « - 2106
READ Statement « « .« . . .106
PUNCH Statement.106
PRINT Statement. . « « « « « « - 2107
DATA Initialization Statement. . .107
DOUBLE PRECISION Statement108

APPENDIX C: FORTRAN- SUPPLIED
SUBPROGRAMS « +« o« v « o « o « =« « « « 2109

APPENDIX D: SAMPLE PROGRAMS . . « . . .112

Sample Program 1 « « « . < 112

Sample Program 2 . o« « « « « =« « =« « <« <113

INDEXe o o o = = = 2 o « = o« =« « « « « 2119

TABLES

Table 1. Determining the Mode of an
Expression Containing Cperands of
Different TYPeS « -« « o o « « « = « « » 17

Table 2. Valid Combinations with
Respect to the Arithmetic Operator, s 18

Table 3. Insurance Premium Codes. . . . 24

Table 4. Mathematical Function

SUbprograms . . « .+ « + o « « « o = - <109

INTRODUCTION

IBM System/360 FORTRAN IV for the Operating System and the Model 44
Programming System is comprised of a language, a library of subprograms,
and a compiler.

The FORTRAN IV language is especially useful in writing programs for
scientific and engineering applications that involve mathematical compu-
tations. In fact, the name of the language -FORTRAN- is derived from

its primary use: FORmula TRANslating.

Source programs written in the FORTRAN language consist of a set of
statements constructed from the elements described in this publication.

The FORTRAN compiler analyzes the source program statements and
transforms them into an object program that is suitabkle for execution on
the IBM System/360. In addition, when the FORTRAN compiler detects
errors in the source program, appropriate error messages are produced.

The FORTRAN compiler operates under control of an operating system
which provides the FORTRAN compiler with input/output and other ser-
vices. Object programs generated by the FORTRAN compiler also operate
under operating system control and depend on it for similar services.

The IBM System/360 FORTRAN IV language is compatible with and
encompasses the American Standards Association (ASA) FORTRAN, including
its mathematical subroutine provisions. It also contains, as proper
subsets, Operating System FORTRAN IV (E), Basic Operating System FORTRAN
IV, and Basic Programming Support FORTRAN IV.

Any valid programs compiled and executed using any System/360 subset
FORTRAN may also be compiled and executed by FORTRAN IV compilers.
Equivalent results are assured by:

1. Common data formats.
2. Common format code routines.
3. Common mathematical subroutines.

All of the features and facilities in Operating System FORTRAN IV (E)
also exist in System/360 FORTRAN IV. Equivalent results from valid
programs compiled by either FORTRAN IV (E) and FORTRAN 1V are assured
by: '

1. Common data formats.

2. Common format code routines.
3. Common calling sequences.

4., Common libraries.

The following features facilitate the writing of source programs and
reduce the possibility of coding errors:

1. Mixed-Mode: Expressions may consist of constants and variables, of
the same and/or different types.

2. Spacing Format Code: The T format code allows input/output data to
be transferred beginning at any specified position.

3. Literal Format Code: Apostrophes may be used to enclose literal
data in a FORMAT Statement.

Introduction 5

Variable Attribute Control: The attributes of variables and arrays
may now be explicitly specified in the scurce program. This
facility is provided by a single explicit specification statement
which allows a programmer to:

a. Specify storage length.

b. Explicitly type a variable as integer, real, complex, or
logical.

c. Specify the dimension of arrays.

d. Specify data initialization values for variables.

Adjustable Array Dimensions: The dimensions of an array in a
subprogram may be specified as variables; when the subprogram is
called, the absolute array dimensions are substituted.

Additional Format Code: An additional format code - G - can be used
to specify the format of numeric and 1logical data. Previously
implemented format codes are also permitted.

Named I/0 List: Formatting of input/cutput data is facilitated by
reading and writing operations without reference to a FORMAT
statement or list.

ELEMENTS OF THE LANGUAGE

STATEMENTS

Source programs consist of a set of statements from which the
compiler generates machine instructions, constants, and storage areas.
A given FORTRAN statement effectively performs one of three functions:

< -3
+g-,; aaG;

== L AN S
nultiply,

1]

1. Causes certain operations to be performed (
branch).

2. Specifies the nature of the data being handled.

3. Specifies the characteristics of the source program.

e

FORTRAN statements are usually composed of certain FORTRAN key words
used in conjunction with the basic elements of the language: constants,
variables, and expressions. The five categories of FORTRAN statements
are as follows:

1. Arithmetic and Logical Assignment Statements: Upon executicn of an
arithmetic or logical assignment statement, the result of calcula-
tions performed or conditions tested replaces the current value of
a designated variable or subscripted variatle.

2. Control Statements: These statements enable the user to govern the
flow and terminate the execution of the object program.

3. Input/Output Statements: These statements, in addition to control-
ling input/output (I/0O) devices, enable the user to transfer data
between internal storage and an I/0 medium.

4, Specification Statements: These statements are used to declare the
properties of variables, arrays, and subprograms (such as type and
amount of storage reserved) and to describe the format of data on
input or output.

5. Subprogram Statements: These statements enable the user to name and
define functions and sukroutines.

The basic elements of the language are discussed in this section.
The actual FORTRAN statements in which these elements are used are
discussed in following sections. The phrase executable statements
refers to those statements in groups 1, 2, and 3.

CODING FORTRAN STATEMENTS

The statements of a FORTRAN source program can be written on a
standard FORTRAN coding form, Form No. X28-7327 (see Figure 1).
FORTRAN statements are written one to a line from columns 7 through 72.
If a statement is too long for one line, it may be continued on as many
as 19 successive lines by placing any character, other than a blank or
zero, in column 6 of each continuation line. For the first 1line of a
statement, column 6 must be blank or zero.

Columns 1 through 5 of the first line of a statement may contain a
statement number consisting of from 1 through 5 decimal digits. Leading
zeros in a statement number are ignored. Statement numbers may appear
anywhere in columns 1 through 5 and may be assigned in any order; the

Elements of the Language 7

value of statement numbers does not affect the order in which the
statements are executed in a FORTRAN program.

Columns 73 through 80 are not significant to the FORTRAN compiler and
may, therefore, be used for program identification, sequencing, or any
other purpose.

_ [
m“ FORTRAN Coding Form hintved
PROGRAM N
PUNCHING GRAPHIC PAGE OF
PROGRAMMER I DATE INSTRUCTIONS PUNCH [CARD ELECTRO NUMBER*
IDENTIFICATION
e |3 FORTRAN STATEMENT SEQUENCE

47_48-49 50 51 74 75 76 77 78 79 80

T T O R 5 50 A 0 550 P A T A S0 0 15 0 S T
. g S22 INENE NN DN ENNEN RN b DR e P

|
| s
I — ¥ * — ’ -
; | i | | i |
HIEIENRRNANEEEN EININEERRANNREEREN | [[]]] EEREEE
1 2 3 4 5(6|7 B 9 10 1112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 4) 42 43 44 45 46 47 48 49 50 51 52 53 54 55 5¢ 57 58 59 60 81 62 63 &4 &5 66 67 &8 69 70 71 72|73 74 7S 76 77 78 79 €0
A stondard cort form, IBM electvo BBB157, is available for punching statements from this form

Figure 1. FORTRAN Coding Form

Comments to explain the program may be written in columns 2 through
80 of a 1line, if +the 1letter C is placed in column 1. Comments may
appear anywhere within the source program. They are not processed by
the FORTRAN compiler, but are printed on the source program listing.
Blanks may be inserted where desired to improve readability.

CONSTANTS

A constant is a fixed, unvarying quantity. There are four classes of
constants - those that deal with numbers (numerical constants), those
that deal with truth values (logical ccnstants), those that deal with
literal data (literal constants), and those that deal with hexadecimal
data.

‘Numerical constants may be integer, real, or complex numbers; logical
constants may be .TRUE. or .FALSE.; and literal constants may be a
string of alphameric and/or special characters.

INTEGER CONSTANTS

T 1
| Definition |
L
b -1
| Integer Constant - a whole number written without a decimal point. |
| It occupies four locations of storage. |
| |
| Maximum Magnitude: 2147483647, i.e., (231-1),. |
L i
An integer constant may be positive, zero, or negative; if unsigned,

it is assumed to be positive. Its magnitude must not be greate than
the maximum and it may not contain embedded cormas.
Examples:

Valid Integer Constants:

0

91

173

-2147u483647

-12

Invalid Integer Constants:

0.0 (contains a decimal point)

27. (contains a decimal point)

3145903612 (exceeds the allowable range)

5,396 (embedded comma)
REAL CONSTANTS
T . 1
| Definition]
L
r e e 4
| Real Constant: - a number with a decimal point optionally followed |
| by a decimal exponent. This exponent is written as the letter E or |
| D followed by a signed or unsigned, one- or two-digit integer |
| constant. A real constant may assume one of two forms:]
| I
| 1. From 1 through 7 decimal digits with a decimal point, optionally |
] followed by an E decimal exponent. This form occupies 4 storage |
| locations. |
| |
| 2. Either 1 through 7 decimal digits with a decimal point, followed |
] by a D decimal exponent or 8 to 16 decimal digits optionally |
| followed by a D decimal exponent. This form occupies 8 storage |
| locations and is sometimes referred to as a double precision |
| constant. |
I |
| Magnitude: (either form) 0 or 16-¢2 through 1663 (i.e., approxi- |
| mately 1075).]
L d

Elements of the Language 9

A real constant may be positive, zero, or negative (if

is assumed to be posit
may not contain embedded
expression of a real con

raised to a desired power.

point is not required.

Examples:

Vvalid Real Constants

+0.
-999.9999
0.0
5764.1
7.0E+0
19761.25E+1
7.E3
7.0E3
7.0E03
7.0E+03
7.0E-03

21.98753829457168
1.0000000

7.9D3

7.9D03

7.9D+03

7.9D+3

7.9D-03

7.9D0

00000001.

Invalid Real Constan

0
3,471.1
1.E
1.2E+113
23.5E+97
7.9D

21.3E90

10

unsigned, it
ive) and must be of the allowable magnitude. It
commas. The decimal exponent permits the

stant as the product of a real constant times 10
If a decimal exponent is given, the decimal

(4 storage locations):

(i.e., 7.0 x 10° 7.00
(i.e., 19761.25 x 10* = 197612.5)

(i.e., 7.0 x 103 = 7000.0)
(i.e., 7.0 x 10-3 = 0.007)
{8 storage locations)
(i.e., 7.9 x 103 = 7900.0)
(i.e., 7.9 x 10-3 = ,0079)
(i.e., 7.9 x 10° = 7.9)

ts:

(missing a decimal point)
(embedded comma)
(missing a one- or two-digit integer

constant following the E. ©Note that it is not
interpreted as 1.0 x 10°)

(E is followed by a 3 digit

integer constant)

(value exceeds the magnitude permitted; that is,

23.5 x 10°97>1663)
(missing a one- or
constant following the D)

(value exceeds the magnitude permitted;
that is, 21.3 x 1099>1663)

two-digit integer

COMPLEX CONSTANTS

Definition
Complex Constant - an ordered pair of signed or unsigned real
constants separated by a comma and enclosed in parentheses. A

complex constant may assume one of two forms:

1. From 1 through 7 decimal digits with a decimal point, optionally
followed by an E decimal exponent. In this form, each number in
the pair occupies 4 storage locations.

2. Either 1 through 7 decimal digits with a decimal point, followed
by a D decimal exponent or 8 through 16 decimal digits
optionally followed by a D decimal exponent. In this form each
number in the pair occupies 8 storage locations.

Magnitude: (either form) 0 or 16-%3 through 16%3 (i.e., approximate-
ly 107S5) for each real constant in the pair.

[e e e o e - (et (M e e i St e s e vt ot Sy
bt e e e i M —— it s At e s st it oo b st 2

The real constants 1in a complex constant wmay be positive, zero, or
negative (if unsigned, they are assumed to be positive), but they must
be in the given range. The first real constant in a complex constant
represents the real part of the complex number; the second represents
the imaginary part of the complex number. If the exponent is given, the
decimal point is not required.

Examples:

Valid Complex Constants:

(3.2,-1.86) (has the value 3.2-1.861)
(-5.0E+03,.16E+02) (has the value -5000.+16.01)
(4.0E+03,.16E+02) (has the value 4000.+16.01)
(2.1,0.0) (has the value 2.1+0.01i)

(4.7D+2,1.9736148) (has the value 470.+1.97361481)

Where i sJ=1

Invalid Complex Constants:

(292704,1.697) (the real part does not
contain a decimal point)
(1.2E113,279.3) (the real part contains
an invalid decimal exponent)
(.003E4,.005D6) (the parts differ in length)

LOGICAL CONSTANTS

Each occupies four storage locations and must be preceded and
followed by a period as shown above.

r 1
| Definition |
k i
| Logical Constant - a constant that specifies the logical value of a |
| variable. There are two logical values: |
I . TRUE. I
| .FALSE. |
| |
I |
L J

Elements of the Language 11

The logical constants .TRUE. and .FALSE. specify that the value of
the logical variable they are associated with is true or false,
respectively. (See the section, "Logical Expressions.")

LITERAL CONSTANTS

Definition

Literal Constant - a string of alphameric and/or special characters
enclosed in apostrophes.

[s et o e oy
b o comen it e wad

The string may contain any valid characters (see Appendix A). The
number of characters in the string, including blanks, may not be greater
than 255. Since apostrophes delimit literal data, a single apostrophe
within such data is represented by double apostrophes. An alternative
form for a literal constant is wH immediately followed by a string of
length w of alphameric and/or special characters. A single apostrophe
within such data is represented as a single apostrophe.

Examples:

'DATA"

'INPUT/CUTPUT AREA NO. 2°

'X-COORDINATE Y-COORDINATE Z-COORDINATE"
'3.14"

IDON' 'T'

HEXADECIMAL CONSTANTS

Definition

Hexadecimal Constant - the character Z followed by a number formed
from the set 0 through 9 and A through F.

;
|
-
|
J

[e o s s ey

Hexadecimal constants may be used only as data initialization values.

One storage location contains two hexadecimal digits. If a constant
is specified as an odd number of digits, a leading hexadecimal zero is
added on the left to fill the storage location. The internal form of
each hexadecimal digit is as follows:

0 - 0000 4 - 0100 8 - 1000 Cc - 1100

1 - 0001 5 - 0101 9 - 1001 D - 1101

2 - 0010 6 - 0110 A - 1010 E - 1110

3 - 0011 7 - 0111 B - 1011 F - 1111
Examples:

Z1CU49A2F1

ZBADFAD

12

The maximum number of digits allowed in a hexadecimal constant
depends upon the length specification of the variable being initialized
(see "vVariable Types and Lengths"). The following 1list shows the
maximum number of digits for each length specification:

Length Specification Maximum Number of
of Vvariable Hexadecimal Digits
16 32
8 16
4 8
2 4
1 2

If the number of digits is greater than the maximum, the leftmost
hexadecimal digits are truncated; if the number of digits is less than
the maximum, hexadecimal zeros are supplied on the left.

VARIABLES

A FORTRAN variable is a symbolic representation of a quantity that is
assigned a value. The value may either be unchanged (i.e., constant) or
may change either for different executions of a program or at different
stages within the program.

'For example, in the statement:
A = 5.0+B
both A and B are variables. The value of B is determined by some

previous statement and may change from time to time. The value of A
varies whenever this computation is performed with a new value for B.

VARIABLE NAMES

r - -1
| Definition |
pmm oo — -- -4
| Variable Name - from 1 through 6 alphameric (i.e., numexric, 0 |
| through 9, or alphabetic, A through Z and $) characters, the first |
| of which must be alphabetic. |
L _— - _ -4

Variable names are symbols used to distinguish one variable from
another. A name may be used in a source program in one and only one way
(e.g., the name of a variable and that of a subprogram may not be
identical in the same source program). A variable name may not contain
special characters (see Appendix A).

The use of meaningful variable names can serve as an aid in
documenting a program. That is, someone other than the programmer may
lock at the program and understand its function. For example, to
compute the distance a car traveled in a certain amount of time at a
given rate of speed, the following statement could have been written:

X=Y * %

Elements of the Language 13

where * designates multiplication. However, it would be more meaningful
to someone reading this statement if the programmer had written:

DIST = RATE #* TIME

Examples:

Valid Variable Names:

B292
RATE
sSQ704
$VAR

Invalid Variable Names:

B292704 (contains more than six characters)
4ARRAY (first character is not alphabetic)
SI.X (contains a special character)

VARIABLE TYPES AND LENGTHS

The type of a variable corresponds to the type of data the wvariable
represents. Thus, an integer variable represents integer data, a real
variable represents real data, etc.

For every type of variable, there is a corresponding standard and
optional 1length specification which determines the number of storage
locations that are reserved for each variable. The following list shows
each variable type with its associated standard and optional length:

Variable Type Standard Optional
Integer 4 2
Real 4 8
Complex 8 16
Logical 4 1

The ways a programmer may declare the type of a variable are. by use
of the:

1. Predefined specification contained in the FORTRAN language.
2. Explicit specification statements.
3. IMPLICIT Specification statement.

The optional length specification of a variable may be declared only
by the IMPLICIT or Explicit specification statements. If, in these

statements, no 1length specification is stated, the standard length is
assumed (see the section, "The Type Statements").

TYPE DECLARATION BY THE PREDEFINED SPECIFICATION
The predefined specification is a convention used to specify varia-
bles as integer or real as follows:

1. TIf the first character of the variable name is I, J, kK, L, M, or N,
the variable is integer.

2. If the first character of the variable name is any other alphaketic
character, the variable is real.

i

This convention 1is the +traditional FORTRAN method of implicitly
specifying the type of a variable as being either integer or real. In
all examples that follow in this publication it is presumed that this
specification holds unless otherwise noted. Variables defined with this
convention are of standard length.

TYPE DECLARATION BY THE IMPLICIT SPECIFICATION STATEMENT

The IMPLICIT statement allows a programmer to specify the type of
variables in much the same way as was specified by the predefined
convention. That is, in both, the type 1is determined by the first
character of the wvariable name. However, the programmer, using the
IMPLICIT statement, has the option of specifying which initial letters
designate a particular variable type. Further, the IMPLICIT statement
is applicable to all types of variables -- integer, real, complex, and
logical.

The IMPLICIT statement overrides the variable type as determined by
the predefined convention. For example, if the IMPLICIT statement
specifies that variables beginning with the letters A through M are real
variables and variables beginning with the 1letters N through Y are
integer variables, then the variable ITEM (which would be treated as an
integer variable under the predefined convention) is now treated as a
real variable. Note that variables beginning with the letters Z and $§
are (by the predefined convention) treated as real variables. The
IMPLICIT statement is presented in greater detail in the section, "Type
Statements."

TYPE DECLARATION BY EXPLICIT SPECIFICATION STATEMENTS

Explicit specification statement differ from the first way of
specifying the type of a variable, in that an explicit specification
statement declares the type of a particular variable by its name rather

than as a group of variables beginning with a particular character.

For example, assume:

1. That an IMPLICIT specification statement overrode +the predefined
convention for variables beginning with the letter I by declaring
them to be real.

2. That a subsequent Explicit specification statement declared that
the variable named ITEM is complex.

Then, the variable ITEM is complex and all other variables beginning
with the character I are real. Note that variables beginning with the
letters J through N are specified as integer by the predefined
convention.

These statements are discussed in greater detail in the section,
"Specification Statements.”

Elements of the Language 15

EXPRESSIONS

Expressions 1in their simplest form consist of a single constant or
variable. They may also designate a computation between two or more
constants and/or variables. Expressions may appear in arithmetic
statements and in certain control statements.

FORTRAN IV provides two kinds of expressions: arithmetic and logical.
The value of an arithmetic expression is always a number whose type is
integer, real, or complex. However, the evaluation of a logical
expression always yields a truth value: .TRUE. or .FALSE..

ARITHMETIC EXPRESSIONS

The simplest arithmetic expression consists of a single constant,
variable, or subscripted variable (see the discussion of arrays). The
constant or variable may be one of the following types:

1. Integer
2. Real
3. Complex

If the constant, variable, or subscripted variable 1is of the type
integer, the expression is in the integer mode. If it is of the type
real, the expression is in the real mode, etc. The mode of the

expression is determined solely by the type of constant, variable, or
subscripted variable appearing in that expression.

Examples:

Expression Type of Quantity Mode of Expression
3 Integer Constant'® Integer of length 4
I Integer Variable Integer of length &4
3.0 Real Constant Real of length 4

A Real Variable Real of length 4
3.14D3 Real Constant Real of length 8

B Real Variable Real of length &4
(2.0,5.7) Complex Constant Complex of length 8
C Complex Variable Complex of length 8

(Specified as such in a
Type statement)

More complicated arithmetic expressions containing two or more

constants and/or variables may be formed by using arithmetic operators
that express the computation(s) to be performed.

Arithmetic Operators

The arithmetic operators are as follows:

Arithmetic Operator Definition

** Exponentiation
* Multiplication
/ Division

+ Addition

- Subtraction

RULES FOR CONSTRUCTING ARITHMETIC EXPRESSIONS: The following are the

rules for constructing arithmetic expressions that contain arithmetic
operators:
1. BAll desired computations must be specified explicitly. That is, if

more than one constant, variable, subscripted variable, or function
reference (see the section "SUBPROGRAMS") appears in an arithmetic
expression, they must be separated from one another by an arithme-
tic operator. For example, the two variables A and B will not be
multiplied if written:

AXB or AB Or AeB

If mulitipiication 1is desired, then the expression must be written
as follows:

A*¥B or B*A
No two arithmetic operators may appear in sequence in the same
expression. For example, the following expressions are invalid:
A*/B and A*-B
The expression A*-B could be written correctly as follows:
A* (-B)
In effect, -B will be evaluated first and then A will be multiplied

with it. (For further uses of parentheses, see Rule 6.)

The mode of an arithmetic expression is determined by the type of
the operands (where an operand is a variable, constant, function
reference, or another expression) in the expression. Table 1
indicates how the mode of an expression that contains operands of
different types may be determined using the operators: +, -, *, /.

Table 1. Determining the Mode of an Expression Containing
3 + Fa

Operands of Different Types
= T T T T T T 1
| I I I I [| I
| | INTEGER | INTEGER | REAL | REAL | COMPLEX| COMPLEX|
|+ - * /71 (2) |) | (4) | (8)] (8) | (16) |
i 1] 1 1 1 4
L] T 1 T T T T "
| INTEGER |Integer | Integer | Real | Real | Complex| Complex|
| (2) | 2] (4) | (W | (8 | (8) | (16) |
—_— 1 1 | — R 1 -

T T T + + T 'I
|INTEGER |Integer | Integer | Real | Real | Complex| Complexj
|) |) | ()] €')) | (8) i (8) | (16) |
———————— gt —f-————— ¥ .
| REAL |Real | Real | Real | Real | Complex| Complex|
| W) (D] |) | (€3] | (8) | (8) | (16) |
e e e ¢ 3= 1
|REAL | Real | Real | Real | Real | Complex| Complex|
| (8 i 8 | (8) | (8) | (8) i 16y | (16) |
——m - + -4- ¥ A e 1
| COMPLEX |Complex | Complex | Complex | Complex | Complex| Complex|
| (8) | (8) | (8) | (8) | (16)] (8) | (16) |
———————— Fomm s} $-—— 4 t —
| COMPLEX |Complex | Complex | Complex | Complex | Complex| Complex|
| (16) | (16) | (16)] (16) | (16) i (16) | (16) |
L L — 1 ——4 _—— L L P |

Elements of the Language 17

18

From Table 1 it can be seen that there is a hierarchy of type and
length specification (see the section, "The Type, Statements") that
determines the mode of an expression. For example, complex data
that has a length specification of 16 when combined with any other
types of constants and variables results in complex data of 1length
16.

Assume that the type of the following variables has been specified
as follows:

Variable Names Type Length Specification
ROOT, E Real variable 4,8

A, I, F Integer variable 4,2,2

c,D Complex variable 16,8

Then the following examples illustrate how constants and variables
of differing types may be combined using the arithmetic operators:
+, =/, *:

Expression Mode of Expression
ROOT*5 Real of length 4

A+3 Integer of length &
C+2.9D10 Complex of length 16
E/F+19 Real of length 8
C-18.7E05 Complex of length 16
A/I-D Complex of length 8

The arithmetic operator denoting exponentiation (i.e.,**) may only
be used to combine any types of operands as shown in Table 2.

e Table 2. Valid Combinations with Respect to the Arithmetic

Operator, *#*

Base Exponent

or or

Integer (either length) } { Integer (either length)
*%
Real (either length) Real (either length)

Complex (either length) } ** i Integer (either length)

[s e . e g e
Uy S Wp——

Assume that the type of the following variables has been specified
as follows:

Variable Names Type

ROOT, E Real variable

A, I, F Integer variables
C Complex variable

Then the following examples illustrate how constants and variables

of different types may be combined using the arithmetic operator,
%,

Examples:

Expression Type Result
ROOT** (A+2) (Real#**Integer) (Real)

ROOT**1 (Real#**Integer) (Real)

I**F (Integer**Integer) (Integer)
7.98E21**ROOT (Real*#*Real) (Real)

ROOT*#*2.1E5 (Real*#*Real) (Real)

A**E (Integer**Real) (Real)
C**A (Complex**Integer) (Complex)
Order of Computation: Where parentheses are omitted, oxr where the
entire arithmetic expression is enclosed within a single pair of
parentheses, effectively the order in which the operations are
performed is as follows:
Operation Hierarchy
Evaluation of Functions (see the 1st (highest)

section, "Subprograms"))
Exponentiation (*%*) 2nd
Muitiplication and Division (* and /) 3rd
Addition and Subtraction (+ and -) 4th
In addition, if two operators of the same hierarchy (with the

exception of exponentiation) are used consecutively, the component
operations of the expression are performed from 1left to right.
Thus, the arithmetic expression A/B#*C is evaluated as if the result
of the division of A by B were multiplied by C.

For example, the expression:

(A*B/C**I+D)

is effectively evaluated in the following order:

a. A*B Call the result X (multiplication) (X/C**I+D)

b. C**I Call the result Y (exponentiation) (X/Y+D)

c. X/Y Call the result Z (division) (z+D)

d. Z+D Final operation (additionm)

Note: This order of computation is used in determining the mode of

an expression (see Table 1).

For exponentiation the evaluation is from right to left. the

expression:

Thus,

A*x*¥Bx*(C
is evaluated as follows:

a. B¥*C
b. A*%*Z

Call the result 2
Final operation

Use of Parentheses: Parentheses may be used in arithmetic expres-
sions, as in algebra, to specify the order in which the arithmetic
operations are to be computed. Where parentheses are used, the
expression within the parentheses is evaluated before the result is
used.

Elements of the Language 19

For example, the following expression:
(B+ ((A+B) *C) +A**2)

is effectively evaluated in the following order:

a. (A+B) Call the result X (B+ (X*C) +A%*2)
b. (X*C) Call the result Y (B+Y+A**2)

c. B+Y Call the result W (W+A**2)

d. A**2 Call the result 2 (W+2Z)

e. W+Z Final operation

7. Integer Division: When division is performed using two integers,
the answer 1is truncated and an integer answer is given. For
example, if I=9 and J=2, then the expression (I/J) would yield an
integer answer of 4 after truncation.

LOGICAL EXPRESSIONS

The simplest form of logical expression consists of a single logical
constant, logical variable, or logical subscripted variable, the value
of which is always a truth value (i.e., either .TRUE. or .FALSE.).

More compllcated logical expre881ons may be formed by using logical

A 1o+ 3 1 + my, -
and relational operators. These expressions may be in cone of the three

following forms:

1. Relational operators combined with arithmetic expressions whose
mode is integer or real.

2. Logical operators combined with 1logical constants (.TRUE. and
.FALSE.), logical variables, or subscripted variables.

3. Logical operators combined with either or both forms of the logical
expressions described in items 1 and 2.

Item 1 is discussed in the following section "Relational Operators”;
items 2 and 3 are discussed in the section "Logical Operators."

Relational Operators

The six relational operators, each of which must be preceded and
followed by a period, are as follows:

Relational Operator Definition

.GT. Greater than (>)

.GE. Greater than or equal to (2)
.LT. Less than (L)

.LE. Less than or equal to (X)
-EQ. Equal to (=)

.NE. Not equal to (#)

The relational operators express an arithmetic condition which can be
either true or false. Only arithmetic expressions whose mode is integer
or real may be combined by relational operators. For example, assume
that the type of the following variables has been specified as follows:

20

Variable Names Type

ROOT, E Real variables

A, I, F Integer variables
L Logical variable
C Complex variable

Then the following examples illustrate wvalid and invalid 1logical
expressions using the relational operators.

Examples:

Valid Logical Expressions Using Relational Operators:

57.9.LE.(4.7+F)
«5.GE..9%ROOT
E.EQ.27.3D+05

Invalid Logical Expressions Using Relational Operators:

C.LT.ROOT (Complex quantities may never appear in logical
expressions)

C.GE.(2.7,5.9E3) (Complex quantities may never appear in logical
expressions)

L.EQ. (A+F) {Logical quantities may never be joined by
relational operators)

E**2_,EQ97.1E9 (Missing period immediately after the relational
operator)

.GT.9 (Missing arithmetic expression before the rela-

tional operator)

Logical Operators

The three logical operators, each of which must be preceded and
followed by a period, are as follows: (A and B represent logical
constants or variables, or expressions containing relational operators).

Logical Operator Definition

.NOT. .NOT.A - if A is .TRUE., then .NOT.A has the
value .FALSE.; if A is .FALSE., then .NOT.A has
’ the value .TRUE.

.AND. A.AND.B ~ if A and B are both .TRUE., then
A.AND.B has the value .TRUE.; if either A or B
or both are .FALSE., then A.AND.B has the value
. FALSE.

.OR. A.OR.B - if either A or B or both are .TRUE.,
then A.OR.B has the value .TRUE.; if both A and
B are .FALSE., then A.OR.B has the value .FALSE.

Two logical operators may appear in sequence only if the second one
is the logical operator .NOT..

Only those expressions which, when evaluated, have the wvalue .TRUE.
or .FALSE. may be combined with the logical operators to form 1logical
expressions. For example, assume that the +type of the following
variables has been specified as follows:

Elements of the Language 21

Variable Names Type

ROOT, E Real variables

A, I, F Integer variables
L, W Logical variables
c Complex variable

Then the following examples illustrate valid and invalid 1logical
expressions using both logical and relational operators.

Examples:

Valid Logical Expressions:
(ROOT*A.GT.A).AND.W
L.AND..NOT.(I.GT.F)
(E+5.9D2.GT. 2*E) .OR.L
-NOT.W.AND..NOT.L
L.AND..NOT.W.OR.I.GT.F
(A#*F.GT.ROOT) .AND. .NOT. (I.EQ.E)

Invalid Logical Expressions:

A.AND.L (A is not a logical expression)

.OR.W (.OR. must be preceded by a logical expression)

NOT. (A.GT.F) (missing period before the 1logical operator

. - NOT.)

(C.EQ.I).AND.L (a complex variable may never appear in a
logical expression) ;

L.AND..OR.W (the 1logical operators .AND. and .OR. must
always be separated by a logical expression)

.AND.L (.AND. must be preceded by a 1logical
expression)

Order of Computations in Logical Expressions: Where parentheses are
omitted, or where the entire logical expression is enclosed within a
single pair of parentheses, the order in which the operations are
performed is as follows:

Operation Hierarchy
Evaluation of Functions 1st (highest)
Exponentiation (*%*) 2nd
Multiplication and division (* and /) 3rd

Addition and subtraction (+ and -) 4th
.LT.,.LE., .EQ., .NE., .GT., -GE. 5th

.NOT. 6th

.AND. 7th

.OR. 8th

For example, the expression:
(A.GT.D*#*B.AND..NOT.L.OR.N)
is effectively evaluated in the following order.

1. D**B Call the result W (exponentiation)

2. A.GT.W Call the result X (relational operator)

3. .NOT.L Call the result Y (highest logical operator)

4. X.AND.Y Call the result % (second highest logical operator)
5. Z.0R.N Final operation

Note: Logical expressions may not require that all parts be evaluated.
Functions within logical expressions may or may not be called. For
example, in the expression IF (A.OR.LGF(.TRUE.)), it should not ke
assumed that the LGF function is always invoked.

22

Use of Parentheses in Logical Expressions: Parentheses may be used in
logical expressions to specify the orxrder in which the operations are to
be performed. Where parentheses are used, the expression contained
within the most deeply nested parentheses (that is, the innermost pair
of parentheses) is effectively evaluated first. For example, the
logical expression:

((I.GT.(B+C)).AND.L)

1. B+C Call the result X

2. I.GT.X Call the result Y

3. Y.AND.L Final operation

The logical expressioﬁ to which the logical operator .NCOT. applies

must be enclosed in parentheses if it contains two or more quantltles.
For example, assume that the values of the logical variables, A and B,
are .FALSE. and .TRUE., respectively. Then the following two expres-
sions are not equivalent:

.NOT. (A.OR.B)
.NOT.A.OR.B

In the first expression, A.OR.B, is evaluated first. The result is
.TRUE.; but .NOT.(.TRUE.) implies .FALSE.. Therefore, the value of the
first expression is .FALSE.

In the second expression, .NOT.A is evaluated first. The result is
.TRUE.; but .TRUE..OR.B implies .TRUE.. Therefore, the value of the
second expression is .TRUE..

ARRAYS

A FORTRAN array is a set of variables identified by a single variable
name. A particular variable in the array may be referred to Ly its
position in the array (e.g., first variable, third variakle, seventh
variable, etc.). Consider the array named NEXT which consists of five
variables, each currently representing the following values: 273, 41,
8976, 59, and 2.

NEXT(1) 1is the representation of 273
NEXT(2) 1is the representation of 41
NEXT(3) 1is the representation of 8976
NEXT(4) is the representation of 59
NEXT(5) is the representation of 2

Each variable in this array consists of the name of the array (i.e.,
NEXT) immediately followed by a number enclosed in parentheses, called a
subscript. The variables which comprise the array are called subscript-
ed variables. Therefore, the subscripted variakle NEXT(1) has the value
273; the subscripted variable NEXT(2) has the value 41, etc.

The subscripted variable NEXT(I) refers to the "Ith" subscripted
variable in the array, where I is an integer variable that may assume a
value of 1, 2, 3, 4, or 5.

To refer to the first element in an array, the array name must Le
subscripted. The array name itself does not represent the first
element.

Consider the following array named LIST consisting of two subscript

parameters, the first ranging from 1 through 5, the second from 1
through 3:

Elements of the Language 23

Rowl 82 4 7
Row2 12 13 14
Row3 91 1 31
Rowl 24 16 10
Row5 2 8 2

Suppose it is desired to refer to the number in row 2, column 3; this
would be:

LIST (2,3)
Thus, LIST (2,3) has the value 14 and LIST (4,1) has the value 24.

Ordinary mathematical notation might use LIST i,j to represent any
element of the array LIST. In FORTRAN, this is written as LIST(I,J)
where I equals 1,2,3,4, or 5 and J equals 1,2, or 3.

As a further example, cconsider the array named COST consisting of
three subscript parameters. This array might be used to store all the
premiums for a life insurance applicant given (1) age, (2) sex, and (3)
size of life insurance coverage desired. A code number could ke
developed for each statistic where IAGE represents age, ISEX represents
sex, and ISIZE represents policy size desired. (See Table 3.)

Table 3. Insurance Premium Codes

i T 1
| AGE I SEX |

—— e i :
| Age in Yrs. Code | Sex Code]
I | |
| | Male ISEX=1]
| i- 5 IAGE=1 | Female ISEX=2 |
| 6 - 10 IAGE=2 b 4
| 11 - 15 IAGE=3 | POLICY SIZE |
i 16 - 20 IAGE=4 ¢ i
| 21 - 25 IAGE=5 | Dollars Code |
I 26 - 30 IAGE=6 I I
| 31 - 35 IAGE=7 i |
] 36 - 40 IAGE=8] 1,000 ISIZE=1 |
I 41 - 45 IAGE=9 I 3,000 ISIZE=3 [
| 46 - 50 IAGE=10 i 5,000 ISIZE=4]
. .	10,000 ISIZE=5
. .	25,000 ISIZE=6
. .	50,000 ISIZE=7
96 - 100 IAGE=20	100,000 ISIZE=8
L j J

Suppose an applicant were 14 years old, male, and desired a policy of
$25,000. From Table 3, these statistics could be represented by the
codes:

IAGE=3 (11 - 15 years old)
ISEX=1 (male)
ISIZE=6 ($25,000 poliicy)

Thus, COST (3, 1, 6) represents the premium for a policy given the
statistics above. Note that "IAGE" can vary from 1 to 20, "ISEX" from 1
to 2, and "ISIZE" from 1 to 8. (The number of subscripted variables in
the array COST is the number of combinations that can be formed for
different ages, sex, and policy size available - a total of 20x2x8 or
320. Therefore, there may be up to 320 different premiums stored in the
array named COST.)

24

SUBSCRIPTS

A subscript is a number used to refer to a particular variable within
an array. There may be a maximum of seven subscripts used with an array
name. If more than one subscript is used they must be separated by
commas. All of the subscripts used with a particular array name must be
enclosed in parentheses.

The following rules apply to the construction of subscripts:

1. Subscripts may contain arithmetic expressions that use any of the
arithmetic operators: +, -, *, /, *¥%,

o] Cralm vty macr masmdbate LramaaddAan »afAarAarnaacs

“ e SUDo L J:&)L—D LLIG_“I il iii A UWEILLALAViL A TLATATIICT S e

3. Subscripts may contain subscripted names.

4. Mixed mode expressions (integer and real only) within subscripts

are evaluated according to normal FORTRAN rules. If the evaluated
expression is real, it 1is converted to integer.

5. The evaluated result of a subscript must always be greater than
zero and less than or equal to the size of the corresponding
dimension.

Examples:

Valid Subscripted Variables:

ARRAY (IHOLD)

NEXT (19)

MATRIX (I-5)

BAK (I,J(R+1*L,.3*A(M,N)))
ARRAY (I,3/4*K*%*2)

Invalid Subscripted Variables

ARRAY (-5) (the subscript may not be negative)

LOT (0) (a subscript may never be nor assume a value of
zero)

ALL(1.GE.I) (a subscript may not assume a true or false value)

NXT (1+(1.3,2.0)) (a subscript may not assume a complex value)

DECLARING THE SIZE OF AN ARRAY

The size of an array 1is determined by the number of subscript
parameters of the array and the maximum value of each subscript. This
information must be given for all arrays kefore using them in a FORTRAN
program so that an appropriate amount of storage may be reserved.
Declaration of this information is made by a DIMERSION statement, a
COMMON statement, or by one of the Explicit specification statements;
these statements are discussed in further detail in the section,
"Specification Statements."

ARRANGEMENT OF ARRAYS IN STORAGE

Arrays are stored in ascending storage locations, with the value of
the first of their subscripts increasing most rapidly and the value of
the last increasing least rapidly.

Elements of the Language 25

The array named A, consisting of one subscript parameter which varies
from 1 to 5, appears in storage as follows:

A(1) A(2) A(3) A(4) A(5)

The array named B, consisting of two subscript parameters, whose
first subscript varies over the range from 1 to 5, and second varies
from 1 to 3, appears in ascending storage locations in the following
order: :

B(1,1) B(2,1) B(3,1) B(4,1) B(5,1%j

L--B(1,2) B(2,2) B(3,2) B(4,2) B(5,2)j

L—B(1,3) B(2,3) B(3,3) B(4,3) B(5,3)

Note that B(1,2) and B(1,3) follow in storage B(5,1) and B(5,2),
respectively.

The following 1list is the order of an array named C, consisting of
three subscript parameters, whose first subscript varies from 1 to 3,
second varies from 1 to 2, and third varies from 1 to 3:

c{,1,1) c(2,1,1) c(3,1,1) C(1,2,1) C(2,2,1) C(3,2,1)—1

L-C(1,1,2) c(2,1,2) c(3,1,2) c(@1,2,2) C(2,2,2) C(3,2,2)—1

L>C(1,1,3) c(2,1,3) ¢(3,1,3) C(,2,3) C(2,2,3) C(3,2,3)

Note that C(1,1.2) and ¢(1,1.3) follow in storage C(3.2.1) and
r

c(3,2,2), respectively. o

26

ARITHMETIC AND LOGICAL ASSIGNMENT STATEMENT

b is any arithmetic expression or logical expression.

=

r 1
| General Form i
L E |
[} 1
la=D>b I
I : : . . !
| Where: a is any subscripted or nonsubscripted variable. |
I |
! !
L i |

This FORTRAN statement closely resembles a conventional algebraic
equation; however, the equal sign specifies replacement rather than
equivalence. That is, the expression to the right of the equal sign is
evaluated, and the resulting value replaces the current value of the
variable to the left of the equal sign.

a ..

Assume that the type of the following variables has been specified
as:

Variable Names Type Length Specification
I, J, W Integer variables 4,4,2

A, B, ¢, D Real variables 4,4,8,8

E Complex variable 8

G, H Logical variables 4,4

Then the following examples illustrate valid arithmetic statements
using constants, variables, and subscripted variables of different
types:

Statements Description
A=1B The value of A is replaced by the current value of B.
W=RB8 The value of B is truncated to an integer value, and

this value replaces the value of W.

A=1 The value of I is converted to a real value, and this
result replaces the value of A.

I=I+1 The value of I is replaced by the value of I + 1,

E = I#**%J+D I is raised to the power J and the result is
converted to a real value to which the value of D is
added. This result replaces the real part of the
complex variable E. The imaginary part of the
complex variablie is set to zero.

A = C*D The most significant part of the product of C and D
replaces the value of A.

A=E The real part of the complex variable E replaces the
value of A.

E=A The value of A replaces the value of the real part of

the complex variable E; the imaginary part is set
equal to zero.

Arithmetic and Logical Assignment Statement 27

28

. TRUE.

.NOT.G

3..GT.I

(1.0,2.0)

The value of G is replaced by the logical constant
.TRUE..

If G is .TRUE., the value of H is replaced by the
logical constant .FALSE.. If G is .FALSE., the value
of H is replaced by the logical constant .TRUE..

The value of I is converted to a real value; if the
real constant 3. 1is greater than this result, the
logical constant .TRUE. replaces the value of G. If
3. is not greater than I, the logical constant
.FALSE. replaces the value of G.

The value of the complex variable E is replaced by
the complex constant (1.0,2.0), Note that the state-
ment E = (A,B) where A and B are real variables is
invalid.

CONTROL STATEMENTS

Normally, FORTRAN statements are executed sequentially. That is,
after one statement has been executed, the statement immediately
following it 1is executed. This section discusses the statements that
may be used to alter and control the normal sequence of execution of
statements in the program.

THE GO TO_ STATEMENTS

The GO TO statements transfer control to the statement specified by
number in the GO TO statement. Control may be transferred either
unconditionally or conditionally. The GO TO statements are:

i. The Unconditional GO TO Statement.
2. The Computed GO TO Statement.

3. The Assigned GO TO statement.

Unconditional GO TO Statement

General Form

GO TO XXXXX

T

nere: XxXXxx

e s e e e

an executable statement number.

o o ———— e — =

| &

This GO TO statement causes control to be transferred to the
statement specified by the statement number. Every subsequent executiocn
of this GO TO statement results in a transfer tc that same statement.
Any executable statement immediately following this statement should
have a statement number, otherwise it can never be referred to or
executed.

Example:

50 GO TO 25
10 A =B + C

25 C = E**2

Control Statements 29

Explanation:

In the above example, every time statement 50 is executed, control is
transferred to statement 25.

Computed GO TO Statement

General Form

GO TO (_)_(1, X2s X3y --o,zn), i
wWhere: X3,X2,..-:,%n, are executable statement numbers.

i is a nonsubscripted integer variable and is in the range:
1<i=<n

[s S s — —— —— O — o
U S SNSRI * ——

This statement causes control to be transferred to the statement
numbered X;, Xay Xsse---4 Or Xn, depending on whether the current value
of i is 1, 2, 3,..., or n, respectively. If the value of i 1is outside
the allowable range, the next statement is executed.

Example:

Go TO (25, 10, 50, 7), ITEM

50 A = B+C

T C = E**2+A
25 L =¢C

10 B = 21.3E02

Explanation:

In this example, if the value of the integer variable ITEM is 1,
statement 25 will be executed next. If ITEM is equal to 2, statement 10
is executed next, and so on.

30

The ASSIGN and Assigned GO TO Statements

r 1
| General Form |
F :
| ASSIGN i TO m |
.
-
GO TO m, (51,52,§3,.--,§n) ‘
Where: i is an executable statement number.
!
i X14X2+X3s---,¥n are executable statement numbers.
m is a nonsubscripted integer variable which is of length 4
and 1is assigned one of the following statement numbers:
X1sX2¢X3¢+++%Xn-
L J

The Assigned GO TO statement causes control to ke transferred to the
statement numbered X3,X2,X3s..+,0r Xn, depending on whether the current
assignment of m is x4,X2,Xa,..-,0r Xn, respectively. For example, in
the following statement:

Go TO N, (10, 25, 8)

If the current assignment of the integer variakle N is statement number
8, then the statement numbered 8 is executed next. If the current
assignment of N is statement number 10, the statement numbered 10 is
executed next. If N is assigned statement number 25, statement 25 is
executed next.

The current assignment of the integer variable m is determined by the
last ASSIGN statement executed. Only an ASSIGN statement may be used to
initialize or change the value of the integer variable m. The value of
the integer variable m is not the integer statement number; ASSIGN 10 TO

= 10.

m
I is not the same as I

Example 1:

ASSIGN 50 TC NUMBER
10 GO TO NUMBER, (35, 50, 25, 12, 18)

Explanation:

In the above example, statement 50 is executed immediately after
statement 10.

Control Statements 31

Example 2:

ASSIGN 10 TO ITEM

13 Go TO ITEM, (8, 12, 25, 50, 10)

10 B=C + D
ASSIGN 25 TO ITEM
GO TO 13

25 C = E*#*2

Explanation:
In the above example, the first time statement 13 is executed,

control is transferred to statement 10. On the second execution of
statement 13, control is transferred to statement 25.

ADDITIONAL CONTROL STATEMENTS

Arithmetic IF Statement

r 1
| General Form |
L ___-{
]

l IF (Q) X1+X24X3 I
I |
| Where: a is any arithmetic expression except complex. |
I |
| X1:X2¢X3 are executable statement numbers. |
L 3

This statement causes control to be transferred to the statement
numbered x,,X,, Or X3 when the value of the arithmetic expression (a) is
less than, equal to, or greater than zero, respectively. The first
executable statement following the arithmetic IF statement should have a
statement number; otherwise, it can never be referred to or executed.

32

Example:
IF (A(J,K)#**3-B)10, 4, 30

10 E = (F*B)/D+1

Explanation:

In the above example,
negative, the

statement numbered 10 is executed next.

the expression is zero, the statement numbered 4 is executed next.

the wvalue
executed next.

Logical IF Statement

if the value of the expression (A(J,K)**3-B) is
If the value of

If

of the expression is positive, the statement numbered 30 is

—

L QS —

r
| General Form
i
| IF(al)s
|
| Where: a is any logical expression.
I
i s is any statement except a specification statement, DO
| statement, or another logical IF statement.
L _—
The 1logical IF statement is used to evaluate the logical expression

(a) and to execute or skip statement s depending on whether the value of

the expression is .TRUE.

Example 1:

5 IF(A.LE.0.0) GO TO 25
10 C =D + E

15 IF(A.EQ.B) ANSWER =
20 F = G/H

2.0*%A/C

25 W = X**7

or .FALSE., respectively.

Control Statements

33

Explanation:

In statement 5, if the value of the expression is .TRUE.(i.e., A is
less than or equal to 0.0), the statement GO TO 25 is executed next and
control is passed to the statement numbered 25. If the value of the
expression is .FALSE.(i.e., A is greater than 0.0), the statement GO TO
25 is ignored and control is passed to the statement numbered 10.

In statement 15, if the value of the expression is .TRUE. (i.e., A
is equal to B), the value of ANSWER is replaced by the value of the
expression (2.0*A/C) and then the statement numbered 20 is executed. If
the value of the expression is .FALSE. (i.e., A is not equal to B), the
value of ANSWER remains unchanged and the statement numbered 20 is
executed next.

Example 2:

Assume that P and Q are logical variables.

5 IF(P.OR. .NOT.Q)A=B
10 C = B**2

Explanation:

In statement 5, if the value of the expression is .TRUE., the value
of A is replaced by the value of B and statement 10 is executed next.
If the value of the expression is .FALSE., the statement A = B is
skipped and statement 10 is executed.

DO Statement

General Form
End of DO Initial Test
Range Variable Value Value Increment
N~ N N S Nt~ '
DO X i = My o, s

Where: x is an executable statement number that 1is not defined

before the DO statement.
i is a nonsubscripted integer variable.

my, Mp, M3, are either unsigned integer constants greater
than zero or unsigned nonsubscripted integer variables whose
value is greater than zero. m, mway not exceed 231-2 in
value. m3, 1is optional; if it is omitted, its value is
assumed to be 1. In this case, the preceding comma mnust
also be omitted.

[. — — i — — T — — i — —— e Wi Tt 220
Lt s i i e — —— ———— — c— —— ———— o— ——— 2— ot sl .

The DO Statement is a command to execute repeatedly the statements
that follow, up to and including the statement numbered x. The first
time the statements in the range of the DO are executed, 1 is
initialized to the value m,; each succeeding time i is increased by the

34

value m3. When, at the end of the iteration, i is equal to the highest
value that does not exceed m,, control passes to the statement following
the statement numbered x. Thus, the number of times the statements in
the range of the DO is executed is given by the expression:

where the brackets represent the largest integral value not exceeding
the value of the expression. If m, is less than m,, th statement in
the range of the DO are executed once. Upon completion of the DO, the
DO variable is undefined, and may not be used until redefined (e.g., in
a READ 1list).

There are several ways in which looping (repetitively executing the
same statements) may be accomplished when using the FORTRAN language.
For example, assume that a manufacturer carries 1,000 different machine
parts in stock. Periodically, he may find it necessary to compute the
amount of each different part presently available. This amount may be
calculated by subtracting the number of each item used, OUT(I), from the
previous stock on hand, STOCK(I).

Example:
5 I=0
10 I=I+1

25 STOCK (I)=STOCK(I)- OUT(I)
15 IF(1-1000) 10,30,30
30 A=B+C

Explanation:

The three statements (5, 10, and 15) required to control the
previously shown loop could be replaced by a single DO statement as
shown in Example 1.

Example 1:

DO 25 I =1,1000
25 STOCK(I) = STOCK(I)-0UT(I)
30 A = B+C

Explanation:

In the above example, the DO variable, I, is set to the initial value
of 1. Before the second execution of statement 25, I 1is increased by
the increment, 1, and statement 25 is again executed. After 1000
executions of the DO loop, I equals 1000. Since I is now equal to the
highest value that does not exceed the test value, 1000, control passes
out of the DO loop and statement 30 is executed next. Note that the DO
variable I is now undefined; its value is not necessarily 1000 or 1001.

Control Statements 35

Example 2:

DO 25 I=1, 10, 2
15 J = I+K
25 ARRAY (J) = BRAY(J)
30 A=B+CC

Explanation:

In the preceding example, statement 25 is the end of the range of the
DO loop. The DO variable, I, is set to the initial value of 1. Before
the second exexution of the DO loop, I is increased by the increment, 2,
and statements 15 and 25 are executed a second time. After the fifth
execution of the DO loop, I equals 9. Since I 1is now equal to the
highest value that does not exceed the test value, 10, control passes
out of the DO loop and statement 30 is executed next. Note that the DO
variable I is now undefined; its value is not necessarily 9 or 11.

Programming Considerations in Using a DO Loop

1. The indexing parameters of a DO statement (i, m,, m>, m3) may not
be changed by a statement within the range of the DO loop.

2. There wmay be other DO statements within the range of a DO
statement. All statements in the range of the inner DO must be in
the range of the outer DO. A set of DO statements satisfying this
rule is called a nest of DO's.

Example 1:

DO 50 I =1, &4

A(I) = B(I)**2

3.

36

DO 50 J=1, 5 Range of
Range of Outer DO
50 C(J+1) = A(I) Inner DO
Example 2:
DO 10 INDEX = L, M)
N = INDEX + K
Do 15 3 =1, 100, 2 > Range of
Range of Outer DO
15 TABLE(J) = SOM(J,N)-1 Inner DO
10 B(N) = A(N) Y,

A transfer out of the range of any DO lcocop is permissible at any
time; a transfer into the range of a DO loop is permissible only as
described in jitem 4.

When a transfer is made out of the range of an innermost DO 1loop,
transfer back into the range of that DO loop is allowed if and only
if none of the indexing parameters (i,m;,m,,M3) are changed outside
the range of the DO.

Exampie:

DO

DO
ok =)

s s

Explanation:

In the preceding example, the transfers specified by the numbers
1,2, and 3 are permissible, whereas those specified by 4,5, and 6
are not.

5. The indexing parameters (i,m,;,m,,Mm3) may be changed by statements
outside the range of the DO statement only if no transfer is made
back into the range of the DO statement that uses those parameters.

6. The last statement in the range of a DO loop (statement X) must bLe
an executable statement, not of the form GO TO, PAUSE, STOP,
RETURN, Arithmetic IF, or another DO.

7. The use of, and return from, a subprogram from within any DO loop
in a nest of DOs is permitted.

CONTINUE Statement

General Form

CONTINUE

[— e ——
| IR SR

CONTINUE is a dummy statement which may be placed anywhere in the
source program without affecting the sequence of execution. It wmway ke
used as the last statement in the range of a DO in order to avoid ending
the DO loop with a GO TO, PAUSE, STOP, RETURN, Arithmetic IF or another
DO statement.

Control Statements 37

Example 1:

DO 30 I =1, 20
7 IF (A(I)-B(I)) 5,30,30
5 A(I) =A(I) +1.0

B(I) = B(I) -2.0

GO TO 7
30 CONTINUE
4o ¢ = A(3) + B(7)

Explanation:

In the preceding example, the CONTINUE statement is used as the last
statement in the range of the DO in order to avoid ending the DO loop
with the statement GO TO 7.

Example 2:

-

DO 30 I=1,20
IF(A(I)-B(I))5,40,40
5 A(I) = cCc(D)
GO TO 30
40 A(I) = 0.0
30 CONTINUE

Explanation:

In Example 2, the CONTINUE statement provides a branch point enabling
the programmer to bypass the execution of statement 40.

PAUSE Statement

General Form

PAUSE
PAUSE n

PAUSE 'message'

Where: n is an unsigned 1 through 5 digit integer constant.

oo e — —— ———— ————)

‘message' is a literal constant.

U S LA S VI O Sp—

w
o

Information is displayed and the program waits until operator
intervention causes it to resume execution, starting with the next
statement after the PAUSE statement. The particular form of the PAUSE
statement used determines the mnature of the information that is
displayed. The PAUSE statement causes PAUSE 00000 to be displayed. 1f
n is specified, PAUSE n is displayed. If 'message’ is specified, PAUSE
'message' is displayed.

STOP Statement

General Form

0w

H

(o]

g

=}
R S

Where: n is an unsigned 1 through 5 digit integer constant.

el

This statement terminates the execution of the object program and
displays n if specified.

END Statement

General Form

END

-~ - —y——
L Ty |

The END statement is a nonexecutable statement that defines the end

of a source program or source subprogram for the compiler. Physically,

| it must be the last statement of each program or subprogram, and it may
| not be continued.

Control Statements 39

INPUT/OUTPUT STATEMENTS

The input/output statements enable a user to transfer data, belonging
to a named collection of data, between input/output devices (such as
disk units, card readers, and magnetic tape units) and internal storage.
The mnamed collection of data is called a data set and is a continuous
string of data that may be divided into FORTRAN records.

A data set is referred to by an integer constant or integer variable.
Formerly, this reference was called a symbolic wunit number. However,
because the reference 1is to the data rather than any specific device,
this number is called the data set reference number.

Two types of I/O statements are available to the FORTRAN IV user:
sequential I/O statements and direct access I/0 statements. The
sequential statements provide facilities for the sequential selection
and placement of data. These statements are device independent because
2 given statement may be applicable to a data set on any number of
devices or device types.

The direct access I/0 statements provide facilities for the selection
and placement of data in an order specified by the user. These
statements are only valid when the data set will be or 1is already
resident on a direct access storage device.

SEQUENTIAL INPUT/OUTPUT STATEMENTS

There are five sequential I/0 statements: READ, WRITE, END FILE,
REWIND, and BACKSPACE. The READ and WRITE statements cause transfer o=l
records of sequential data sets. The END FILE statement defines the end
of a data set; the REWIND and BACKSPACE statements control the
positioning of data sets.

In addition to these five statements, +the FORMAT and NAMELIST
statements, although they are not I/0 statements, are used with certain
forms of the READ and WRITE statements. The FORMAT statement specifies
the form in which the data is to be transmitted; the NAMELIST statement
specifies a 1list of variables or array names to be wused in an
input/output operation. In addition, both statements allow the user to
divide a data set into FORTRAN records.

Even though the I/0 statements are device independent, the original
source or the ultimate destination of the data being transferred
influences the specification of the records and data formats. There-
fore, subsequent examples are in terms of card input and print-line
output unless otherwise noted.

40

READ STATEMENT

General Form

READ(a, b, END=c, ERR=d) list

Where: a is an unsigned integer constant or an integer variable
that is of 1length 4 and represents a data set reference
number.

b is either the statement number or array name of the FORMAT
statement describing the data being read, or a NAMELIST
name.

c 1is the statement number to which transfer is made upon
encountering the end of the data set.

d is the statement number to which transfer is made wupon
encountering an error condition in data transfer.

list is a series of variable or array names, separated by
commas, which may be indexed and incremented. They specify
the number of items to be read and the locations in storage
into which the data is placed.

P o S s i i, . e s ot e S s AP e e i o P it S S .)
L s s s e it it it st It i e i W et ke et i St o st it st]

The READ statement may take many forms. Either the list parameter or
the b parameter may be omitted.

In addition, the parameters END=c and ERR=d are optional and,
therefore, may or may not appear in a READ statement.

When one or more of the parameters, END=c¢ or ERR=d, are used after
the a and b portion of a READ statement, they may appear in any order
within the parentheses. For example, the following are valid READ
statements:

READ(5,50,ERR=10)A,B,C
READ(5, 25, END=15) D,E,F,F,H
READ(N, 30, ERR=100, END=8) X,Y,Z

If a transfer is made to a statement specified by the END parameter,
no indication is given the program as to the number of items in the 1list
(if any) read before encountering the end of the data set. If an END
parameter is not specified in a READ statement, the end of the data set
terminates execution of the object program.

If a transfer is made to a statement specified by the ERR parameter,
no data is read into the list items associated with the record in error.
No indication is given the program as to which input record or records
are in error; only that an error occurred during transmission of data to
£ill +the READ 1list. If an ERR parameter is not specified in a READ
statement, an error terminates execution of the object program.

The basic forms of the READ statement involve formatted and unformat-
ted data. They are:

READ(a, x)

READ(a,b)list
READ(a)1list

Input/Output Statements 41

The Form READ (a, x)

This form is used to read data from the data set associated with a
into the 1locations in storage specified by the NAMELIST name x. The
NAMELIST name X is a single variable name that refers to a specific list
of variables or array names into which the data is placed. Neither a
dummy variable name nor a dummy array name may appear in the list. A
specific list of variable or array names receives a NAMELIST name by use
of a NAMELIST statement. The programmer need only use the NAMELIST nare
in the READ (a,x) statement to reference that 1list thereafter in the
program.

The format and rules for constructing and using the NAMELIST
statement are described in the following text.

General Form

NAMELIST/X/8,Dy -« ,C/¥/3,€,--«,£/2/9,hy 22,1
Where: x,y, and z,... are NAMELIST names.

a,b,c,d,... are variable or array names.

[ro o o . e e g e oy
R g S

The following rules apply to defining and using a NAMELIST name:

1. A NAMELIST name consists of from 1 through 6 alphameric characters,
the first of which is alphabetic.

2. A NAMELIST name is enclosed in slashes. The list of variable or
array names belonging to a NAMELIST name ends with a new NAMELIST
name enclosed in slashes or with the end of the NAMELIST statement.

3. A variable name or an array name may belong to one or more NAMELIST
names.

4. A NAMELIST name may be defined only once by its appearance in a
NAMELIST statement and must be so defined before its use. After it
is defined in the NAMELIST statement, the NAMELIST name may appear
only in input or output statements thereafter in the program.

5. A NAMELIST statement may appear anywhere in a FORTRAN program prior
to its use in a READ/WRITE statement.

6. A NAMELIST name may not be used as an argument.

Example:

Assume that A, I, and L are array names.

NAMELIST /NAM1/A,B,I,J,L/NAM2/A,C,J,K

READ (5,NAM1)

42

Explanation:

The above READ statement causes the record that contains the input
data for the wvariables and arrays that belong to the NAMELIST name
referenced, NAM1, to be read from the data set associated with the data
set reference number 5.

When a READ statement references a NAMELIST name, input data in the
form described in the following text is read from the designated input
data set.

Input Data

The first character in the record is always ignored. The second
character of the first record of a group of data records to be read must
be a &, immediately followed by the NAMELIST name. The NAMELIST namre
must be followed by a blank and must not contain embedded blanks. This
name is followed by any combination of data items 1 and 2 below,
separated by commas. (A comma after the last item is optional.) The
end of a data group is signaled by &END.

The form the data items may take is:

1. Variable name = constant

The variable name may be a subscripted variable name or a single
variable name. Subscripts must be integer constants.

2. Array name = set of constants (separated by commas)

The set of constants may be in the form "k#* constant"™ where k is an
unsigned integer called the repeat constant. It represents the
number of successive elements in the array to be initialized by the
specified constant. The number of constants must be equal to the

number of elements in the array.

Constants used 1in the data items may be integer, real, literai,
complex, or logical data. If the constants are logical data, they may
be in the form T or .TRUE. and F or .FALSE..

Any selected set of variable or array names belonging to the NAMELIST
name may be used as specified by items 1 and 2 in the preceding text.
Names that are made equivalent to these names may not be used unless
they also belong to the NAMELIST name.

Example:

Assume that L is an array consisting of one subscript parameter
ranging from 1 to 10.

Column 2

t
First Data Card: ENAM1 I(2,3)=5, J=4,
Last Data Card: A(3)=4.0, L=2,3,8%4,8END

Explanation:

If this data were input to be used with the NAMELIST and READ
statements previously illustrated, the following actions would take
place. The first data card would be read and examined to verify that
its name (and the data items that follow) is consistent with the
NAMELIST name in the READ statement. (If that NAMELIST name 1is not

Input/Output Statements 43

found, then it 1reads to the next namelist group.) When the data is
read, the integer constants 5 and 4 are placed in I(2,3) and J,
respectively; the real constant 4.0 is placed in A(3). Also, since L is
an array not followed by a subscript, the entire array is filled with
the succeeding constants. Therefore, the integer constants 2 and 3 are
placed in L(1) and L(2), respectively, and the integer constant 4 is
placed in L(3), L(4),...,L(10).

The Form READ (a,b) list

This form is used to read data from the data set associated with a
into the 1locations in storage specified by the variable names in the
list. The list, used in conjunction with the specified FORMAT statement
b (see the section, "FORMAT statement"), determines the number of items
(data) to be read, the locations, and the form the data will take in
storage.

Example 1:

Assume that the variables A, B, and C have been declared as integer
variables.

75 FORMAT (I10, I8, I9)

READ (J, 75) A, B, C

Explanation:

The above READ statement causes input data from the data set
associated with data set reference number J to be read into the
locations A, B, and C according to the FORMAT statement referenced
(statement 75). That is, the first 10 positions of the record are read
into storage 1location A; the next 8 positions are read into storage
location B; and the next 9 positions are read into storage location C.

The list may be omitted from the READ (a,b)list statement. In this
case, a record is skipped or data is read from the data set associated
with a into the locations in storage occupied by the FORMAT statement
numbered b.

Example 2:

98 FORMAT ('HEADING')

READ (5, 98)

4y

Explanation:

The above statements would cause the characters H, E, A, D, I, N, and
G in storage to be replaced by the next 7 characters in the data set
associated with data set reference number 5.

Example 3:

98 FORMAT (I10,'HEADING')

.

READ (5,98)

Explanation:

The above statements would cause the next record in the data set
associated with data set reference number 5 to be skipped. No data is
transferred into internal storage because there is no 1l1list item which
corresponds with format code I10.

The Form READ (a) list

The form READ (a) 1list of the READ statement causes binary data
(internal form) to be read from the data set associated with a intc the
locations of storage specified by the variable names in the list. Since
the input data 1is always in internal form, a FORMAT statement is not
required. This statement is used to retrieve the data written by a
WRITE (a) 1list statement.

Example 1:

READ (5) A, B, C

Explanation:

This statement causes the binary data from the data set associated
with data set reference number 5 to be read intoc the storage 1locations
specified by the variable names A, B, and C.

The 1list may be omitted from the READ (a) list statement. In this
case, a record is skipped.

Example 2:
READ (5)

Explanation:

The above statement would cause the next record in the data set
associated with data set reference number 5 to be skipped. No data is
transferred into intermnal storage.

Inputs/Output Statements 45

Indexing I/0 Lists

Variables within an I/0 list may be indexed and incremented in the
same manner as those within a DO statement. These variables and their
indexes must be included in parentheses. For example, suppose it is
desired to read data into the first five positions of the array A. This
may be accomplished by using an indexed 1list as follows:

15 FORMAT (F10.3)

-

READ (2,15) (A(D),I=1,5)
This is equivalent to:

15 FORMAT (F10.3)

Do 12 I = 1,5
12 READ (2,15) A(I)

As with DO statements, a third indexing parameter may be used to
specify the amount by which the index is to be incremented at each
iteration. Thus,

READ (2,15) (A(I), I=1,10,2)

causes transmission of values for A(1), A(3), A(5), A(7), and A(9).

Furthermore, this notation may be nested. For example, the state-
ment:

READ (2,15) ((c(x,o),D(I1,J),J=1,3),I=1,4)
would transmit data in the following order:
c(,1), np(1,1, c(1,2>, D(1,2), C(1,3), D(1,3),
c(2,1), D(2,1), C(2,2), D(2,2), C(2,3), D(2,3),
c(3,1), b(3,1), c(3,2), D(3,2), C(3,3), D(3,3),
c(4,1), D(4,1), C(4,2), D(4,2), Cc(4,3), D(4,3).
Since J is the innermost index, it varies more rapidly than I.
As another example, consider the following:

READ (2,25) I,(C(J3),J=1,1I)

The wvariable I 1is read first and its value then serves as an index to
specify the number of data items to be read into the array C.

If it is desired to read data into an entire array, it is not
necessary to index that array in the I/0 list. For example, assume that
the array A consists of one subscript parameter varying in the range of
i to 10. Then the following READ statement referring to FORMAT
statement numbered 5:

READ (2,5) A
would cause data to be read into A(1), A(2),...,A(10).

The indexing of I/0 1lists applies to WRITE lists as well as READ

lists. .

46

Reading Format Statements

FORTRAN provides the facility for variable FORMAT statements bLy
allowing a FORMAT statement to be read into an array in storage and
using the data in the array as the FORMAT specifications for subsequent
I/0 statements.

For example, the following statements result in A, B, and the array C
being read, converted, and stored according to the FORMAT specifications
(2E10.8,5F10.8), which are read into the array FMT at object time:

DIMENSION FMT (18)

TADMAM (1 020L1Y
LD RIUINLTIA L ANy O

READ (5,1) FMT
READ (5,FMT) A,B,(C(I),I=1,5)

[y

1. The name of the variakle FORMAT specification must appear in a
DIMENSION statement, even if the array size is only 1.

2. The form of the format codes read into the FMT array at object time
must take the same form as a source program FORMAT statement,
except that the word FORMAT is omitted (see the section, "The
FORMAT Statement®).

3. If a format code read in at object time contains double apostrophes
within a literal field that is defined by apostrophes, it should be
used for output only. If an object time format code is to be used
for input and if it must contain a literal field with an internal
apostrophe, the H format code must be used for the 1literal field
definition.

WRITE STATEMENT

General Form

WRITE (a, b) list

Where: a is an unsigned integer constant or an integer variable
that is of length 4 and represents a data set reference
number.

b is either the statement number or array name of the FORMAT
statement describing the data being written, or a NAMELIST
name.

list is a series of variable or array names, separated by
commas, which may be indexed and incremented. They specify
the number of items to be written and the 1locations in
storage from which the data is taken.

ke e
e o e —— — — " — — — — — — it s il vt wad]

The WRITE statement may take many different forwms. For example, the
list or the parameter b may be omitted. .

The basic forms of the WRITE statement involve formatted and
unformatted data. They are:

WRITE (a, x)

WRITE(a,b)list
WRITE (@)1list

' Input/Output Statements 47

The Form WRITE (a,x)

This form is used to write data from the 1locations in storage
specified by the NAMELIST name x into the data set associated with a
(see the section, "The Form READ(a,x)").

Example:
WRITE (6 ,NAM1)

Explanation:

This statement causes all variable and array names (as well as their
values) that belong to the NAMELIST name, NAM1, to be written on the
data set associated with data set reference number 6.

When a WRITE statement references a NAMELIST name:

1. BAll variables and arrays and their values belonging to the NAMELIST
name will be written out, each according to its type. The complete
array is written out by cclumns.

2. The output data will be written such that:
a. The fields for the data will be large enough to contain all the
significant digits.
b. The output can be read by an input statement referencing the
NAMELIST name.

Example:

Assume that A is a 3 by 3 array.

NAMELIST/NAM1/A,B,I,D
WRITE (8,NAM1)

Then assuming that the ocutput is punched on cards, the format would
be:

Column 2

t
First Output Card: ENAM1
Second Output Card: A=3.4, 4.5, 6.2, 25.1,
Third Output Card: 9.0, -15.2,-7.6, 0.576Ebl2,
Fourth Output Card: 2.717,B=3.14,1=10,D=0.378E-15,
Fifth Output Card: SEND

The Form WRITE (a,b) list

This form is used to write data in the data set associated with a
from the 1locations in storage specified by the variable names in the
list. The 1list, used in conjunction with the specified FORMAT statement
b, determines the number of items (data) to be written, the 1locations,
and the form the data will take in the data set.

48

Example 1:

In the following example, assume that the variables A, B, and C have
been declared as integer variakbles.

75 FORMAT (110, I8, I9)

WRITE (J, 75) A, B, C

Explanation:

The above WRITE statement causes output data to be written in the
data set associated with the data set reference number J, from the
locations A, B, C, according to the FORMAT statement referred to
(statement 75). That 1is, the 10 rightmost digits in A are written in
the data set associated with the data set reference number J; the next 8
positions in the data set will contain the 8 rightmost digits in B; and
the next 9 positions in the data set will contain the 9 rightmost digits
in C.

The list may be omitted from the WRITE (a,b) list statement. 1In this
case, a blank record 1is inserted or data is written in the data set
associated with a from the locations in storage occupied by +the FORMAT
statement b.

Example 2:
98 FORMAT (' HEADING')

WRITE (5,98)

The above statements would cause a blank and the characters H, E, A,
D, I, N, and G in storage to be written in the data set associated with
data set reference number 5.

Example 3:
98 FORMAT (I10, °*HEADING®)

WRITE (5,98)

Explanation:

The above statements would cause a blank record to be written in the
data set associated with data set reference number 5. No data is
transferred into the data set because there is no list item which
corresponds with the format code I10.

The Form WRITE (a) 1list

The WRITE (a) list form of the WRITE statement causes binary data
(internal form) from the locations of storage specified by the variable
names in the list to be written in the data set associated with a.
Since the output data is always in internal form, a FORMAT statement is
not required. The READ (a) list statement is used to retrieve the data
written by a WRITE (a) list statement.

Input/Output Statements 49

Example:
WRITE (5)A, B, C

Explanation:

The statement causes the binary data from the locations specified Ly
the variable names A, B, and C to be written in the data set associated
with data set reference number 5.

FORMAT STATEMENT

General Form

XXXXX FORMAT (Ci,C2se++sCn/C1"¢C2"1+++4Cn'7/+..)
Where: XxXxXX is a statement number (1 through 5 digits).

C14C2se-+4Cn and c4",C2",-.--,Cn"' are format codes which may
be delimited by one of the separators: comma, slash, or
parenthesis. These codes specify the length, decimal point
(if any), and position of the data in the data set.

U
| |
Sy Sy N S |

/ may be used to separate FORTRAN records.

The FORMAT statement is used in conjunction with the READ and WRITE
statements in order to specify the desired form of the data to be
transmitted. The form of the data is varied by the use of different
format codes.

The format codes are:

G - to transfer integer real, complex, or logical data

I - to transfer integer data

F - to transfer real data that does not contain a decimal exponent

D - to transfer real data that contains a D decimal exponent

E - to transfer real data that contains an E decimal exponent

L - to transfer logical data

Z - to transfer hexadecimal data

A - to transfer alphameric data

Literal - to transfer a string of alphameric and special characters

H - to transfer literal data

X - to either skip data when reading or insert blanks when writing

T - to specify the position in a FORTRAN record where transfer of
data is to start

P - to specify a scale factor

Any number used in a FORMAT statement, except the statement number or
a literal, must be less than or equal to 255.

USE OF THE FORMAT STATEMENT: This section contains general information
on the FORMAT statement. The points discussed below are illustrated Lty
the examples that follow.

1. FORMAT statements are nonexecutable and may be placed anywhere in
the source program.

50

2. A FORMAT statement may be used to define a FORTRAN record as
follows:

If no slashes or additional parentheses appear within a FORMAT
statement, a FORTRAN record is defined by the beginning of the
FORMAT statement (left parenthesis) to the end of the FORMAT
statement (right parenthesis). Thus, a new record is read when
the format control 1is initiated (left parenthesis); a new
record is written when the format control is terminated (right
parenthesis).

---corresponds to 1
FORTRAN record

If slashes appear within a FORMAT statement, FORTRAN records
are defined by the beginning of the FORMAT statement to the
first slash in the FORMAT statement, from one slash to the next
succeeding slash, or from the 1last slash to the end of the
FORMAT statement. Thus, a new record is read when the format
control 1is initiated, and thereafter a record is read upon
encountering a slash; a new record is written upon encountering
a slash or when format control is terminated.

Example:

xxxxx FORMAT (----/ ----/ ----)

<===> <===> <-==>

bee e each corresponds to
1 FORTRAN record

If more than one level of parentheses appear within a FORMAT
statement, a FORTRAN record is defined by the beginning of the
FORMAT statement to the end of the FORMAT statement. At this
point, the definition of the FORTRAN record continues at the
first-level left parenthesis that precedes the end of the
FORMAT statement.

Example 1:
0 1 2 21 0
XxxXxX FORMAT (--- (-=—- (-=--)) ---)
< —_— _—
D S >

- —-——each corresponds to
1 FORTRAN record

Input/Output Statements 51

52

Example 2:

0 1 1 1 1 0

XXXXx FORMAT (~--- (-=-=) =-== (==-=) ---)
D >

<-==m-e- >

-——each corresponds to
1 FORTRAN record

When defining a FORTRAN record by a FORMAT statement it is
important to consider the original source (input) or ultimate
destination (output) of the record. For example, if a FORTRAN
record is to be punched for output, the record should not be
greater than 80 characters. For input, the FORMAT statement should
not define a FORTRAN record longer than the record referred to in
the data set.

Blank output records may be introduced or input records may kLe
skipped by using consecutive slashes (/) in a FORMAT statement. If
there are n consecutive slashes at the beginning or end of a FORMAT
statement, n input records are skipped or n blank records are
inserted between output records, respectively. If n consecutive
slashes appear anywhere else in a FORMAT statement, the number of
records skipped or blank records inserted is n-1. For example, the
statements:

10 FORMAT (///16)

READ (INPUT,10) MOULT

cause three records to be skipped on the data set associated with
INPUT before data is read into MULT.

A

The statements, where 'x' 1is a carriage control character (see,
"Carriage Control"™):

15 FORMAT ('x',I5,////'x"',F5.2,12//)

WRITE (IOUT,15) K,A,J
result in the following output:

Integer
(blank line)
(blank line)
(blank line)
Real, Integer
(blank line)
(blank line)

5.

6.

Successive items in an I/0 1list are transmitted according to
successive format codes in the FORMAT statement, until all items in
the list are transmitted. If there are more items in the list than
there are codes in the FORMAT statement, control transfers to the
preceding left parenthesis of the FORMAT statement and the same
format codes are used again with the next record. If there are
fewer items in the list, the remaining format codes are not used.
For example, suppose the following statements are written in a
program:

10 FORMAT (F10.3,E12.4,F12.2)

WRITE (3,10) A,B,C,D,E,F,G

The following table shows the data transmitted in the column on the
left and its corresponding format code.

Data Transmitted Format Codes

A F10.3) first data

B El12.4 record

C Fl12.2 f

D F10.3 second data

E E12.4 } record

F Fl12.2

G F10.3 third data
} record

A format code may be repeated as many times as desired by preceding
the format code with an unsigned integer constant. Thus,

(2F10.4)
is equivalent to:

(F10.4,F10.4)

A limited parenthetical expression is permitted to enable repeti-
tion of data fields according to certain format codes within a
longer FORMAT statement. Two levels of parentheses, in addition to
the parentheses required by the FORMAT statement, are permitted.
The second level of parentheses facilitates the transmission of
complex quantities.

When transferring data on input or output, the type of format code
used, type of data, and type of variables in the I/0 list should
correspond.

In the following examples, the output is shown as a printed 1line.
A carriage control character 'x', (see, "Carriage Control") is
specified in the FORMAT statement but does not appear in the first
print position of the print line. This carriage control character
appears as the first character of the output record on any I/0
medium other than the printed line.

Input/Output Statements 53

G Format Code

s is an unsigned integer constant specifying the number of
significant digits.

r 3
| General Form {
8 3
r h
| 2Gw.s |
I I
| Where: a is optional and is an unsigned integer constant used to |
i denote the number of times the same format code 1is repeti- |
| tively referenced. |
| |
| W is an unsigned integer constant specifying the total field |
| length. |
| |
| I
| I
1 1

The G format code is a generalized code in that it may be used to
determine the desired form of data whether it be integer, real, complex,
or logical.

The .s portion may be omitted when transferring integer or logical
data. If present, it is ignored. When real data is transferred, the w
portion of the G format code includes four positions for a decimal
exponent field.

If the real data, say n, is in the range 0.1<n<10%**s where s is the s
portion of the format code Gw.s, then this exponent field is blank.
Otherwise, the real data is transferred with an E or D decimal exponent
depending on the length specification (either 4 or 8 storage locations,
respectively) of the real data.

For the purpose of simplification, the following examples deal with
the printed 1line. However, the concepts developed apply to all
input/ocutput media.

Example 1:

Assume that the variables A, B, C, and D are of type real whose values
are 292.7041, 82.43441, 136.7632, .8081945, respectively.

FORMAT ('x',Gl2.4,G12.5,G12.4,G12.7)
FORMAT ('x',G13.4,G13.5,G13.4)
FORMAT ('x',G13.4)

wN -

WRITE (5, n) A, B, C, D

Explanation:

a. If n has been specified as 1, the printed output would be as
follows: (b represents a bhlank)

Print Position 1 Print Position 48

t t
bbb292. 7bbbbbb82. 434bbbbbbbl136.7bkbb.8081945bbbb

54

Example 2:

If n had been specified as 2, the printed output would then
be:

Print Position 1 Print Position 39

4 t

bbbb292. 7bbbbbbb82. 434bbbbbbbbl136.7bkkb Line 1
bbb0.8081bbbb Line 2

From the above example, it can be seen that by increasing the
field width reserved (w), blanks are inserted.

If n had been specified as 3, the printed output would bLe:

Print Position 1
4

bbbb292.7bbbb Line 1
bbbb82. 43bbbb Line 2
bbbbl136.7bbbb } Line 3
bbb0.8081bbbb Line 4

From the above example, it can be seen that the same format
code was used for each variable in the list. Each repetition
of the same format ccde caused a new line to be printed.

Assume that the wvariables I, J, K, and L are of type integer whose
values are 292, 443428, 4908081, and 40018, respectively.

(SN

WRITE (5, n) I, J, K, L

FORMAT ('x',G10,2G7,G5)
FORMAT ('x',G6)
FORMAT ('x',4G10)

-

Explanation:

ae.

If n had been specified as 1, the printed ocutput would ke as
follows:

Print Position 1 Print Position 29
t L 4
bbbbbbb292b443428490808140018 Line 1

The same results may be achieved, had FORMAT statement 1 been
written as follows:

FORMAT ('x',G10, G7, G7, G5)

Note that the .s portion of the G format may be omitted when
transmitting integer data.

Input/Output Statements 55

Example 3:

If n had been specified as 2, the printed output would be as
follows:

Print Position 1
t

bbb292 Line 1
443428 Line 2
*kkkk*k Line 3
b40018 Line 4

Note that the second format code G6 is an incorrect specifi-
cation for the third wvariable K, i.e., 4908081. Thus, the
left-most digit is lost. 1In general, when the width specifi-
cation w is insufficient, the left-most characters are not
printed.

If n had been specified as 3, the printed output would be as
follows:

Print Position 1 Print Position 40
t t
bbbbbbb292bbbb443428tbb4908081bbbbbl0018 Line 1

From the above example, it can be seen that increasing the
field width w improves readability.

Assume that the variable I is integer (length 2), A and B are real
(length
logical (length 1) whose values are 292, 4#71.93, 81.91, 6.9310072,

(2.1,3.7),

W N

4), D 1is real (length 8), C is complex (length 8), and L is

and .TRUE. respebtively.

FORMAT ('x',G3,2G9.2,G13.7,2G8.2,G3)
FORMAT ('x*',G3/'x',2G10.2/'x',G9.1/°'x"',2G8.2,G3)
FORMAT (//'x',G3,2G9.2//'x"',G13.7,2G8.2,G3///)

WRITE (5,n) I,A,B,D,C,L

Explanation:

56

Q.

n has been specified as 1, the printed output would be as
follows:

Print Position 1 Print Position 53
4 +
292b0.47Eb03bb81.bbbbb6.931007kbbbbb2.1bbbbb3.7bbkbbbbT

When complex data is being transmitted, two format codes are
required. The 1real and imaginary parts are each treated as
separate real numbers and the parentheses and comma are not
printed as part of the output.

b. If 1n has been specified as 2, the printed output would ke as
follows:

Print Position 1
t

292 Line 1
bb0.47Eb03bbb81. bokb Line 2
bbbé6 . bbbb Line 3
b2.1bbbbb3. 7bbbbbbT Line 4

From the above example, it can be seen that the use of the
slash (/) to separate two format codes causes the data, not
yet printed, to be printed on a new line. If the output data
is to be punched on c¢ards, the slash specifies that the
following data will be punched on another card.

c. If n has been specified as 3, the printed output would be as
follows:

Print Position 1
L

(blank line) Line 1
(blank line) Line 2
292b0.47Eb03bb81. bbb Line 3
{blank line) . Line 4
b6.931007bbbbb2.1kbkbb3. 7kkkbbbT Line 5
(blank line) Line 6
(blank line) Line 7
(blank line) Line 8

In the above example, note that 2 consecutive slashes appear-
ing at the beginning and 3 at the end of the series of format
codes causes blank 1lines to be inserted as shown. However,
the 2 consecutive slashes appearing elsewhere in the FORMAT
statement causes the insertion of a blank line as shown in
Line 4.

The principles illustrated in the previous output examples alsc apply
when using the READ statement on input. In addition, there are the
following further considerations when wusing the FORMAT statement on
input or output.

1. The use of additional parentheses (up to two 1levels) within a
FORMAT statement is permitted to enable the user to repeat the same
format code when transmitting data. For example, the statement:

10 FORMAT (2(G10.6,G7.1),G4)
is equivalent to:

10 FORMAT (G10.6, G7.1, G10.6, G7.1, Gu4)

2. If the data exists with a D decimal exponent, then it is
transferred with this D decimal exponent.

3. If a multiline listing is desired such that the first two lines are
to be printed according to a special format and all remaining lines
according to another format, the last forwat code in the statement
should be enclosed in a second pair of parentheses. For exarple,
in the statement:

FORMAT ('x',G2,2G3.1/'x',G10.8/('x',3G5.1))

Input/Output Statements 57

If more data items are to be transmitted after the format codes
have been completely used, the format repeats from the last left
parenthesis. Thus, the printed output would take the following
form:

G2,63.1,G3.1
G10.8

G5.1,G5.1,G5.1
G5.1,G5.1,G5.1

As another example, consider the following statement:
FORMAT ('x',G2/2('x',G3,G6.1),G9.7)
If there are thirteen data items +to be transmitted, then the
printed output on a WRITE statement would take the following form:
G2
G3,G6.1,'x",G3,G6.1,G9.7

G3,66.1,'x",G3,G6.1,G9.7
G3,G6.1

Numeric Format Codes (I,F,E,D)

Four types of format codes are available for the transfer of numeric
data. These are specified in the following form:

: -

General Form]
______ - _——

alw

afw.d

akEw.d

abw.d

Where: a 1is optional and is an unsigned integer constant used to

denote the number of times the same format code 1is repeti-
tively referenced.

I,F,E,D are format codes.

w is an unsigned integer constant that is less than or equal
to 255 and specifies the number of characters of data.

d is an wunsigned integer constant specifying the number of
decimal places to the right of the decimal point, i.e., the
fractional portion.

[— s e S e . S— —— . ot (it it e e St s O i

R e e it e e e c——— ———— —— — sttt ettt s, it

For purposes of simplification, the following discussion of format
codes deals with the printed line. The concepts developed apply to all
input/output media.

58

I Format Code

The I format code is used to transmit integer data. If the number of
characters to be transmitted 1s greater than w, on input, the excess
leftmost characters are lost; on output, asterisks are given. If the
number of characters is less than w, on input, leading blanks are not
significant, embedded and trailing blanks are treated as zeros; on
output, the leftmost print positions are filled with blanks. If the
quantity is negative, the position preceding the leftmost digit contains
a minus sign. In this case, an additional position should be specified
in w for the minus sign.

The following examples show how each of the quantities on the left is
printed according to the format code I3: (b represents a blank)

Internal Value Printed Value

721 721

-721 721 (incorrect because of insufficient
specification)

-12 -12

568114 *kk (incorrect because of insufficient
specification)

0 bb0

-5 b-5

9 bb9

F Format Code

The F format code is used in conjunction with the transferral of real
or double precision data that does not contain a decimal exponent. For
F format codes, w is the total field length reserved and 4 is the number
of places to the right of the decimal point (the fractional portion).
The total field length reserved must include sufficient positions for a
sign (if any) and a decimal point. The sign, if negative, is printed.

If insufficient positions are reserved by d, the fractional portion
is rounded to the dth position. If excessive positions are reserved Ly
d, zeros are filled in on the right. The integer portion of the mnumber
is handled in the same fashion as numbers transmitted by the I-format
code.

The following examples show how each of the quantities on the left is
printed according to the format code F5.2:

Internal Value Printed Value

12.17 12.17

-41.16 41.16 (incorrect because of insufficient
specification)

~-.2 -0.20

7.3542 b7.35 (last two digits of accuracy lost
because of insufficient specification)

-1. -1.00

9.03 b29.03

187.64 *Fkkkk (incorrect because of insufficient

specification)

Input/Output Statements 59

D and E Format Codes

The D and E format codes are used in conjunction with the transferral
of real data that contains a D or E decimal exponent, respectively. A D
format code indicates a field length of 8; an E format code indicates a
field 1length of 4. For D and E format codes, the fractional portion is
again indicated by d.

The w includes field 4, spaces for a sign, the decimal point, plus
four spaces for the exponent. For output, space for at least one digit
preceding the decimal point should be reserved. 1In general, w should ke
at least equal to d+7. If insufficient positions for d are supplied,
the fraction is rounded to the dth position. If excessive positions are
supplied, zeros are added.

The exponent 1is the power of 10 by which the number must ke
multiplied to obtain its true value. The exponent is written with a D
or an E, followed by a space for the sign and two spaces for the
exponent (maximum value is 75).

The following examples show how each of the quantities on the left is
printed, according to the format codes (D10.3/E10.3):

Internal Value Printed Value
238. b0.238Db03
-.002 -0.200E-02
.00000000008 b0.U400D-10
-21.0057 -0.210Eb02 (Last three digits of accuracy
lost because of insufficient
specification)

When reading input data, the start of the exponent field must ke
marked by an E, or, if that is omitted, by a + or - sign (not a blank).
Thus, E2,E+2,+2,+02,E02, and E+02 all have the same effect and are
permissible decimal exponents for input.

Numbers for E, D, and F format codes need not have their decimal
point punched. If it is not present, the decimal point is supplied by
the d portion of the format code. If it is present in the card, its
position overrides the position indicated by the d portion of the format
code.

Z Format Code

General Form

aiw

Where: a is optional and is an unsigned integer constant used to
denote the number of times the same format code is repeti-
tively referenced.

w is an unsigned integer constant that is less than or equal
to 255 and specifies the number of hexadecimal digits to be
read or written.

[e —— d— ——— —— —{—— —
b s e e o s s s st s s et ed

60

Hexadecimal numbers may be read or written by means of the format
code Zw.

One storage location contains two hexadecimal digits. In read and
write operations, padding and truncation are on the left. ‘However, in a
read operation, the padding character is a hexadecimal zero; in a write
operation, it is a blank.

L Format Code

|
|
| Where: a is optional and is an unsigned integer constant used to
| denote the number of times the same format code is repeti-
| tively referenced.

|

|

|

w is an unsigned integer constant that is less than or equal
to 255 and specifies the number of characters of data.

O S - —_————

L S —

Logical variables may be read or written by means of the format code
Lw.

On input, the first T or F encountered in the next w characters of
the input record causes a value of .TRUE. or .FALSE., respectively, to
be assigned to the corresponding 1logical variable. If the field w

consists entirely of blanks, a value of .FALSE. 1is assumed.
On output, a T or an F is inserted in the output record corresponding

to the value of the logical variable in the I/0 1list. The single
character is preceded by w - 1 blanks.

A Format Code

r 1
| General Form |
E— —- - -
| aAw I
I |
| Where: a is optional and is an unsigned integer constant used to |
| denote the number of times the same format code is repeti- |
| tively referenced. |
! |
| w is an unsigned integer constant that is less than or equal |
| to 255 and specifies the number of characters of dats. |
L e _J

The format code Aw is used to read or write data. If w is equal to
the number of characters corresponding to the length of each item in the
I/0 list, W characters are read or written.

Input/Output Statements 61

On input, if w is less than the length of the stcorage reserved for
each item in the I/0 1list, w characters are read and the remaining
right-most characters in the item are replaced with blanks. If w is
greater than the length the number of characters equal to the difference
between w and the length are skipped and the remaining characters are
read.

On output, if w is less than the length of the storage reserved for
each item, the prlnted line will consist of the left-most w characters
of the item. If w is greater than the length the prlnted line will
consist of the characters right-justified in the field and be preceded
by blanks. Therefore it is important to always allocate enough area in
storage to handle the characters being written (see the section
"Specification Statements").

Example 1:

Assume that the array ALPHA consists of one subscript parameter ranging
from 1 through 20. The following statements could be written to "copy"
a record from one data set to another whose ultimate destination is a
card punch.

10 FORMAT (20AY4)

READ (5,10) (ALPHA(I),I=1,20)

WRITE (6,10) (ALPHA(I),I=1,20)

Explanation:

In this example, the READ statement would cause 20 groups of
characters to be read from the data set associated with data set
reference number 5. Each group of four characters would be placed into
one of the 20 positions in storage starting with ALPHA(1) and ending
with ALPHA(20). The WRITE statement would cause the 20 groups of four
characters to be written on the data set associated with data set
reference number 6.

Example 2:

As another example, consider all the variable names in the list of
the following READ statement to have been explicitly specified as REAL
and the array CONST to have been specified as having one subscript
parameter ranging from 1 through 10. Then assuming the following input
data 1is associated with data set reference number 5,

ABCDE...XY7Z$1234567890b

where ... represents the alphabetic characters F through W and b means
a blank, the following statements could be written:

62

10 FORMAT (27A1,10A1,A1)
20 FORMAT ('x',6(7A1,5X))

READ (5,10)4,

P
J,K,
5,T,

(CON

w N

’
’
1, 10), BLANK

DO 50 INDEX

]
[y
2]

WRITE (6,20) + BLANK, CONST (INDEX),
s BLANK, CONST (INDEX) ,
« BLANK, CONST (INDEX),
 BLANK, CONST (INDEX+5) ,
 BLANK, CONST (INDEX+5),
1

BLANK, CONST (INDEX+5)

LOEWN R

50 CONTINUE

Explanation:

The READ statement would cause the 37 alphamwmeric characters and the
blank in the data set associated with data set reference number 5 to be
placed into the storage locations specified by the variable names in the
READ list. Thus, the variables A through Z receive the values A through
Z, respectively; the variable $§ receives the value $§; the numbers 1
through 9, and 0, are placed in the ten fields in storage starting with
CONST(1) and ending with CONST(10); and the variable BLANK receives a
blank. The WRITE statement within the DO loop would cause the following
heading to be printed. A subsequent WRITE statement within the DO loop
could then pe written to print the corresponding output data.

Print Position 1 Print Position 67
4 t
GROUP 1 BLOCK 1 FIELD 1 GROUP 6 BLOCK 6 FIEID 6

- - (output data) - - -

GROUP 2 BLOCK 2 FIELD 2 GROUP 7 BLOCK 7 FIELD 7

- - (output data) - - -

GROUP 5 BLOCK 5 FIELD 5 GROUP O BLOCK 0 FIELD O

- - (output data) - - -

Input/Output Statements 63

Literal Data in a Format Statement

Literal data consists of a string of alphameric and special charac-
ters written within the FORMAT statement and enclosed in apostrophes.
The string of characters must be 1less than or equal to 255. For
example:

25 FORMAT (' 1964 INVENTORY REPORT')

An apostrophe character within the string is represented by two
successive apostrophes. For example, the characters DON'T are repre-
sented as:

DON''T

The effect of the literal format code depends on whether it is used
with an input or output statement.

INPUT

A number of characters, equal to the number of characters between the
apostrophes, are read from the designated data set. These characters
replace, in storage, the characters within the apostrophes.

For example, the statements:

5 FORMAT (' HEADINGS')

-

READ (3,5)

would cause the next 9 characters to be read from the data set
associated with data set reference number 3; these characters would
replace the blank and the 8 characters H,E,A,D,I,N,G, and S in storage.

OUTPUT

All characters (including blanks) within the apostrophes are written
as part of the output data. Thus, the statements:

5 FORMAT (' THIS IS ALPHAMERIC DATA')

WRITE (2,5)

would cause the following record to be written on the data set
associated with the data set reference numwber 2:

THIS IS ALPHAMERIC DATA

64

H Format Code

General Form

|
{
H I
i
|
l
4

€

Where: w is an unsigned integer constant that is less than or equal
to 255 and specifies the number of characters following H.

-
I
L
[}
I
I
I
I
L

The H format code is used in conjunction with the transferral of
literal data

The format code wH is followed in the FORMAT statement by w
characters. For example,

5 FORMAT (31H THIS IS ALPHAMERIC INFORMATION)

Blanks are significant and must be included as part of the count w.
The effect of wH depends on whether it is used with input or output.

1. On input, W characters are extracted from the input record and
replace the w characters of the 1literal data in the FORMAT
statement.

2. On output, the w characters following the format code are written
as part of the output record.

X Format Code

- - - =TT

[

Where: w is an unsigned integer constant that is less than or equa
to 255 and specifies the number of blanks to be inserted on
output or the number of characters to be skipped on input.

b e e et i s e

When the wX format code 1is used with a READ statement (i.e., cn
input), w characters are skipped before the data is read in. For
example, if a card has six 10-column fields of integer guantities, and
it is not desired to read the second quantity, then the statement:

5 FORMAT (I10,10X,4I10)
may be used, along with the appropriate READ statement.

When the wX format code is used with a WRITE statement (i.e., on
output), W characters are filled with glanks. Thus, the facility for
spacing within a printed line is available. For example, the statement:

10 FORMAT ('x',3(F6.2,5X))

may be used with an appropriate WRITE statement +to print a 1line as
follows:

123.45bbbbb817.32bbbbb524.67bbbkb

Input/Output Statements 65

T Format Code

r
| General Form]
F -4
o |
| Where: w is an unsigned integer constant that is less than or equal |
| to 255 and specifies the position in a FORTRAN record where |
] the transfer of data is to begin. |
L P 4

Input and output may begin at any position by using the format code
TW. Only when the output is printed does the correspondence between w
and the actual print position differ. In this case, because of the
carriage control character, the print position corresponds to w-1, as
may be seen in the following example:

5 FORMAT (Tu40, '1964 INVENTORY REPORT', T80, ‘DECEMBER', T1, ' PART
NO. 10095")

The preceding FORMAT statement would result in a printed 1line as
follows:

Print Print Print
Position 1 Position 39 Position 79
t t t

PART NO. 10095 1964 INVENTORY REPORT DECEMBER

The following statements:

5 FORMAT (Tu40, ' HEADINGS')

READ (3,5)
would cause the first 39 characters of the input data to be skipped, and
the next 9 characters would then replace the blank and the characters
H,E,A,D,I,N,G and S in storage.

The T-format code may be used in a FORMAT statement with any type of
format code. For example, the following statement is valid:

5 FORMAT (T100, F10.3, TS50, E9.3, T1, ' ANSWER IS')

Scale Factor - P

The representation of the data, internally or externally, may be
modified by the use of a scale factor followed by the letter P preceding
a format code. The scale factor is defined for input and output as
follows:

. . . scale factor
external quantity = internal quantity x 10

66

For input, when scale factors are used in a FORMAT statement they
have effect only on real data which does not contain an E or D decimal
exponent. For example, if input data is in the form xx.xxxx and it is
desired to use it internally in the form .xxxxXxx, then the format code
used to effect this change is 2PF7.4.

INPUT
As another example, consider the following input data:

27bbb-93.2094bb-175.8041bbbb55.3647

where b represents a blank.

The following statements:

5 FORMAT (I2,3Fl11l.4)

READ (6,5) K,A,B,C

would cause the variables in the list to assume the following values:

-175.8041

K : 27 B
: 55.3647

-93.2094 C

s s

The following statements:

5 FORMAT (I2,1P3F11.4)

would cause the variables in the 1list to assume the following values:

27 B : -17.5804
-9.3209 C : 5.5364

R

The following statements:

5 FORMAT (I2,-1P3F11.4)

READ (6,5) K,A,B,C
would cause the variable in the list to assume the following values:

: 27 B : -1758.041x
A : -932.094x C : 553.647x

where the x represents an extraneous digit.

Input/Output Statements 67

OUTPUT
Assume that the variables K,A,B, and C have the following values:

K : 27 B : -175.8041
A : -93.2094 C : 55.3647

then the following statements:

5 FORMAT (I2,1P3F11.4)

WRITE (4,5) K,A,R,C
would cause the variables in the list to output the following values:

K : 27 B : -1758.041x
A : -932.09u4x C : 553.647x

where the x represents an extraneous digit.

The following statements:

5 FORMAT (I2,-1P3F11.4)

WRITE (4,5) K,A,B,C
would cause the variables in the list to output the following values:

K : 27 B : -17.5804
A : -9.3209 C : 5.5360

For output, when scale factors are used, they have effect only on real
data. However, this real data may contain an E or D decimal exponent.
A positive scale factor used with real data which contains an E or D
decimal exponent, increases the number and decreases the exponent.
Thus, 1if the real data were in a form using an E decimal exponent, and
the statement FORMAT (1X,I2,3E13.3) used with an appropriate WRITE
statement resulted in the foliowing printed line:

27bbb-0.932Eb02bbb-0.175Eb03bkbbb0.553Eb02

Then the statement FORMAT (1X,I2,1P3E13.3) used with the same WRITE
statement results in the following printed output:

27bbb-9.320Eb01bbb-1.758Eb02bbbb5.536Eb0O1

The statement FORMAT (1X,I2,-1P3E13.3) used with the same WRITE state-
ment results in the following printed output:

27bbb-0.093Eb03bbb-0.017EbO4bbbb0.055Eb03

The scale factor 1is assumed to be zero if no other value has been
given. However, once a value has been given, it will hold for all
format codes following the scale factor within the same FORMAT state-
ment. This also applies to format codes enclosed within an additional
pair of parentheses. Once the scale factor has been given, a subsequent
scale factor of zero in the same FORMAT statement must be specified Ly
0P.

68

Carriage Control

When records written under format control are prepared for printing,
the following convention for carriage contrcl applies:

First Character Carriage Advance Before Printing
Blank One Line

0 Two lines

1 To first line of the next page

+ No advance

The first character of the output record may be used for carriage
control and is not printed. It appears in all other media as data.

Carriage control can be specified in either of two forms of 1literal
data. The following statements would both cause two lines to be skipped
before printing:

10 FORMAT ('0', 5(F7.3))

10 FORMAT (1HO, 5(F7.3))

END FILE STATEMENT

General Form

END FILE a

|
|
|
|
-

=
=2
0}
In}
o

a is an unsigned integer constant cr integer variable that
represents a data set reference number.

o — . ——— o . oy
U S S A —

The END FILE statement defines the end of the data set associated
with a. A subsequent WRITE statement defines the beginning of a new
data set.

REWIND STATEMENT

- — —_ —————————— e

| General Form

represents a data set reference number.

|

l - - . a -

| Where: a is an unsigned integer constant or integer variable that
|

L

The REWIND statement causes a subsequent READ or WRITE statement
referring to a to read data from or write data into the first data set
associated with a.

Input/Output Statements 69

BACKSPACE STATEMENT

General Form |

BACKSPACE a

represents a data set reference number.

o o e v v s i oy

g
Where: a is an unsigned integer constant or integer variable that |
|
J

The BACKSPACE statement causes the data set associated with a to
backspace one record. If the data set associated with a is already at
its beginning, execution of this statement has no effect.

DIRECT ACCESS INPUT/OUTPUT STATEMENTS

There are four direct access I/0 statements: READ, WRITE, DEFINE
FILE, and FIND. The READ and WRITE statements cause transfer of data
into or from internal storage. These statements allow the wuser to
specify the location within a data set from which data is to be read or
into which data is to be written.

The DEFINE FILE statement specifies the characteristics of the data
set(s) to be used during a direct access operation. The FIND statement
overlaps record retrieval from a direct access device with computation
in the program. In addition to these four statements, the FORMAT
statement (described previously) specifies the form in which data is to
be transmitted. The direct access READ and WRITE statements, and the
FIND statement are the only I/0 statements that may refer to a data set

reference number defined by a DEFINE FILE statement.

DEFINE FILE Statement

The DEFINE FILE statement is a specification statement that describes
the characteristics of any data set to be used during a direct access
input/output operation. To use the direct access READ, WRITE, and FIND
statements in a program, the data set(s) must be described with a DEFINE
FILE statement. Each data set must be described once, and this
description may appear once in each program or subprogram. The
description must appear logically before the use of an input/output
statement with the same data set reference number; subsequent descrip-
tions have no effect.

70

- Tttt T T T T 1

r
| General Form |

DEFINE FILE a3 (my,Xy,f5,v1), aa(mz,rz,fz,vz),...,an(mn,rn,fn,vn)

Where: a represents an integer constant that is the data set
reference number.

m represents an integer constant that specifies the number
of records in the data set associated with a.

r represents an integer constant that specifies the maximum
size of each record associated w1th a. The record 31ze is

mnsssav-rw-i Ao EPeS o-Vo 2= AnAEiana AT e
measureda in L,AAO.LU\,LC.LO, DL..U.LG_.’C .I.Ul.al..l.vl.lo, oY DLULGKJC Unics.

(A storage unit is the number of storage locations divided
by four and rounded to the next highest integer). The
method used to measure the record size depends upon the
specification for f.

f specifies that the data set is to be read or written
either with or without format control; f may be one of the
following letters:

L indicates that the data set is to be read or written
either with or without format control. The maximum record
size is measured in number of storage locations.

E indicates that the data set is to be read or written
under format control (as specified by a format statement).
The maximum record size is measured in number of charac-
ters.

U idindicates that +the data set is to be read or written
without format control. The maximum record size 1is
measured in number of storage units.

VvV represents a nonsubscripted integer variable called an
associated variable. At the conclusion of each read or
write operation, v 1is set to a value that points to the
record that immediately follows the last record transmitted.
At the conclusion of a find operation, v is set to a wvalue
that points to the record found.

[o e s e e e s S e s e i e e o . T i s it S S i W S et S e 8 S . . S i o U, i o .

Example:
DEFINE FILE 2(50,100,L,I2),3(100,50,L,J3)

This DEFINE FILE statement describes two data sets, referred to by
data set reference numbers 2 and 3. The data in the first data set
consists of 50 records, each with a maximum length of 100 storage
locations. The L specifies that the data is to be transmitted either
with or without format control. I2 is the associated variable that
serves as a pointer to the next record.

The data in the second data set consists of 100 records, each with a
maximum length of 50 storage locations. The L specifies that the data
is to be transmitted either with or without format control. J3 is the
associated variable that serves as a pointer to the next record.

If an E 1is substituted for the L in the preceding DEFINE FILE
statement, a FORMAT statement is required and the data 1is transmitted

Input/Output Statements 71

under format control. If the data is to be transmitted without format
control, the DEFINE FILE statement can be written as:

DEFINE FILE 2(50,25,0,12),3(100,13,0,J33)

Programming Considerations

When programming for direct access input/output operations, the user
must establish a correspondence between FORTRAN records and the records
described by the DEFINE FILE statement. All of the conventions of
FORMAT control discussed in the section "FORMAT STATEMENT" are applica-
ble.

For example, to process the data set described by the statement:
DEFINE FILE 8(10,48,L,K8)

the FORMAT statement used to control the reading or writing could not
specify a record longer than 48 characters. The statements:

FORMAT (4F12.1) or
FORMAT (112,9F4.2)

define a FORTRAN record that corresponds to those records described by
the DEFINE FILE statement. The records can also be transmitted under
FORMAT control by substituting an E for the L and rewriting the DEFINE
FILE statement as:

DEFINE FILE 8(10,48,E,K8)

To process a direct access data set without format control, the
number of storage 1locations specified for each record must be greater
than or equal to the maximum number of storage locations in a record to
be written by any WRITE statement referencing the data set. For
example, if the input/output 1list of the WRITE statement specifies
transmission of the contents of 100 storage locations, the DEFINE FILE
statement can be either:

DEFINE FILE 8(50,100,L,K8) or
DEFINE FILE 8(50,25,U,K8)

Programs may share an asscciated variable, i.e., as a COMMON variable
or as an argument. The following example shows how this can be
accomplished.

COMMON IUAR SUBROUTINE SUBI(A,B)
DEFINE FILE 3(100,10,L, IUAR) COMMON TUAR
ITEMP=IUAR

CALL SUBI(ANS,ARG)
8 IF (IUAR-ITEMP) 20,16,20

In this example, the program and the subprogram share the associated
variable IUAR. An input/output operation that references data set 3 and
is performed in the subroutine causes the value of the associated
variable to ©be changed. The associated variable is then tested in the
main program in statement 8.

72

READ Statement

The READ statement causes data to be transferred from a direct access
device into internal storage. The data set being read must be defined
with a DEFINE FILE statement.

General Form

READ (a'r, b, ERR=d) list

Where: a is an integer constant or unsigned integer variable that
represents a data set reference number; a must be followed
by an apostrophe (').

r is an integer expression that represents the relative
position of a record within the data set associated with a.

b is optional and, if given, is either the statement number
of the FORMAT statement that describes the data being read
or the name of an array that contains an object time format.

d 1is the statement number to which control is given when a
device error condition is encountered during data transfer
from device to storage.

list is a series of variable or array names, separated by
commas, that may be indexed and incremented. They specify
the number of items to be read and the storage locations
into which the data is to be placed. The list has the same
forms and conventions as the list for the sequential READ
statements.

[e e e e e e i i o i M, e st e, St e S St o W1 . pp e
b o e e e e e (— —— . e it st P, S s o . st e tiremn. manmn soclott e wed

Example:

DEFINE FILE 1(500,100,L,1ID1),2(100,28,L,ID2)
DIMENSION M(10)

10 FORMAT (5120)
9 READ (1'16,10) (M(K),K=1,10)

13 READ (2'ID2+5) A,B,C,D,E,F,G

READ statement 9 transmits data from the data set associated with
data set reference number 1, under control of FORMAT statement 10;
transmission begins with record 16. Ten data items of 20 characters
each are read as specified by the I/0 list and FORMAT statement 10. Two
records are read to satisfy the I/0 list, because each record contains
only five data items (100 characters). The associated variable 1ID1 is
set to a value of 18 at the conclusion of the operation.

Input/Output Statements 73

READ statement 13 transmits data from the data set associated with
data set reference number 2, without format control; transmission begins
with record 26. Data is read until the I/O list for statement 13 is
satisfied. Because the DEFINE FILE statement for data set 2 specified
the record length as 28 storage locations, the I/O list of statement 13
calls for the same amount of data (the seven variables are type real and
each occupies four storage locations). The associated variable ID2 is
set to a value of 27 at the conclusion of the operation. If the value
of ID2 is unchanged, the next execution of statement 13 reads record 32.

The DEFINE FILE statement in the previous example can also be written
as

DEFINE FILE 1(500,100,E,1ID1),2(100,7,U0,ID2)

The FORMAT statement may also control the point at which reading
starts. For example, if statement 10 in the example was

10 FORMAT (//5I20)

records 16 and 17 are skipped, records 18 and 19 are read, and 1ID1 is
set to a value of 20 at the conclusion of the read operation in
statement 9.

WRITE Statement

The WRITE statement causes data to be transferred from internal
storage to a direct access device. The data set being written must be
defined with a DEFINE FILE statement.

General Form

WRITE (a'r,b) list

Where: a is an integer constant or unsigned integer variable that
represents a data set reference number; a must be followed
by an apostrophe (').

r is an integer expression that represents the relative
position of a record within the data set associated with a.

b is optional and, if given, is either the statement number
of the FORMAT statement that describes the data being
written or the name of an array that contains an object time
format.

list is a series of variable or array names, separated by
commas, that may be indexed or incremented. They specify
the number of items to be written and the locations in
storage from which the data is to be taken. The list has
the same forms and conventions as the I/0 1list for the
sequential WRITE statements.

[e e S — . . S " —— " S (T — — — — — ——{— . Wt e
g gy oy U Sy Sy——

T4

Example:

DEFINE FILE 1(500,100,L,ID1),2(100,28,L,ID2)
DIMENSION M(10)

iD2=21

[anY
w O

11 WRITE (2'ID2+5) A,B,C,D,E,F,G

WRITE statement 8 +transmits data into the data set associated with
the data set reference number 1, under control of FORMAT statement 10;
transmission begins with record 16. Ten data items of 20 characters
each are written as specified by the I/0 list and FORMAT statement 10.
Two records are written to satisfy the I/0O 1ist because each record
contains 5 data items (100 characters). The associated variable ID1 is
set to a value of 18 at the conclusion of the operation.

WRITE statement 11 transmits data into the data set associated with
data set reference number 2, without format control; transmission begins
with record 26. The contents of 28 storage 1locations are written as
specified by the I/0 list for statement 11. The associated variable ID2
is set to a value of 27 at the conclusion of the operation. Note the
correspondence between the records described (28 storage 1locations per
record) and the number of items called for by the I/0 list (7 wvariables,
type real, each occupying four storage locatiomns).

The DEFINE FILE statement in the previous example can also be written
as

DEFINE FILE 1(500,100,E,ID1),2(100,7,U,ID2)

As with the READ statement, a FORMAT statement may also be used to
control the point at which writing begins.

FIND Statement

The FIND statement permits record retrieval to proceed concurrently
with computation. By using the FIND statement, the user can increase
the object program execution speed. There is no advantage to a FIND
statement preceding a WRITE statement. The data set from which a record
is being retrieved must be defined with a DEFINE FILE statement.

Input/Output Statements 15

General Form

FIND (a'rm)

Where: a 1is an integer constant or unsigned integer variable that
represents a data set reference number; a must be followed
by an apostrophe (').

r 1s an integer expression that represents the relative
position of a record within the data set associated with a.

= o e e e i ot e e e .
b e s e s e e e e bt e

Example:
10 FIND (3'50)

15 READ (3°'50) A,B

While the statements between statements 10 and 15 are executed,
record 50, in the data set associated with data set reference number 3,
is retrieved.

General Example -- Direct Access Operations

DEFINE FILE 8(1000,72,L,ID8)
DIMENSION A(100),B(100),C(100),D(100),E(100),F(100)

15 FORMAT (6F12.4)
FIND (8'5)

Ip8=1

DO 100 I=1,100

READ (8'ID8+4,15)A(I), B(I) c(D,d(D,E(D,F(I)
100 CONTINUE

DO 200 I=1,100
WRITE (8'ID8+4,15)A(I),B(1),C(I),D(I) ,E(I),F(I)
200 CONTINUE

END

The general example illustrates the ability of direct access state-
ments to gather and disperse data in an order designated by the user.
The first DO loop in the example fills arrays A through F with data from
the fifth, tenth, fifteenth,..., and five-hundredth record associated
with data set reference number 8. Array A receives the first wvalue in
every fifth record, B the second value and so on, as specified by FORMAT
statement 15 and the I/O list of the READ statement. At the end of the
READ operation, each record has been dispersed into arrays A through F.
At the conclusion of the first DO loop, ID8 has a value of 501.

The second DO loop 1in the example groups the data items from each
array, as specified by the I/0O list of the WRITE statement and FORMAT
statement 15. Each group of data items is placed in the data set
associated with data set reference number 8. Writing begins at the
505th record and continues at intervals of five, until record 1000 is
written.

76

SPECIFICATION STATEMENTS

The specification statements provide the compiler with information
about the nature of the data used in the source program. In addition,
they supply the information required to allocate locations in storage
for this data. Specification statements describing data may appear
anywhere in the source program, but must precede any statements which
refer to that data.

THE TYPE STATEMENTS

There are two kinds of type statements: the IMPLICIT specification
statement and the Explicit specification statements (INTEGER, REFAL,
COMPLEX, and LOGICAL).

The IMPLICIT specification statement enables the user:

1. to specify the type of a group of variables or arrays according to
the initial character of their names.

2. to specify the amount of storage to be allocated for each wvariable
according to the associated type.

The Explicit specification statements enable the user:

1. to specify the type of a variable or array according to their
particular name.

2. to specify the amount of storage to be allocated for each variable
according to the associated type.

3. to specify the dimensions of an array.

4. to assign initial data values for variables and arrays.

IMPLICIT Statement

r Tt T - |
General Form

IMPLICIT type*sf(aj,dzs,-«+)s---,type*s(a;,as,«-.)

e —

Wwhere: type represents one of the following: INTEGER, REAL, COM-
PLEX, or LOGICAL.

specifications for its associated type.

A3y Bore-- represent single alphabetic characters each
separated by commas, or a range of characters (in alphabetic
sequence) denoted by the first and last characters of the
range separated by a minus sign (e.g., (A-D)).

[—— e e s i S, e, it . et

|
i
|
|
|
|
|
*s is optional and represents one of the permissible 1length |
|
|
|
|
|
|
J

The IMPLICIT type sStatement must be the first statement in a main
program and the second statement in a subprogram. There can be only one
IMPLICIT statement per program oOr subprogram. The IMPLICIT type
statement enables the user to declare the type of the variables
appearing in his program (i.e., integer, real, complex, or 1logical) by

Specification Statements 77

specifying that variables beginning with certain designated letters are
of a certain type. Furthermore, the IMPLICIT statement allows the
programmer to declare the number of locations to be allocated for each
in the group of specified variables. The type a variable may assume,
along with the permissible length specifications are as follows:

Type Length Specification

INTEGER 2 or 4 (standard length is 4)
REAL 4 or 8 (standard length is 4)
COMPLEX 8 or 16 (standard length is 8)
LOGICAL 1 or ot (standard length is 4)

For each type there is a corresponding standard length specification.
If this standard 1length specification (for its associated type) is
desired, the *s may be omitted in the IMPLICIT statement. That is, the
variables will assume the standard length specification. For each type
there is also a corresponding optional length specification. If this
optional 1length specification is desired, then the *s must be included
within the IMPLICIT statement.

Example 1:

IMPLICIT REAL (A-H, 0-%,%$), INTEGER (I-N)

Explanation:

All variables beginning with the characters I through N are declared
as INTEGER. Since no length specification was explicitly given (i.e.,
the *s was omitted), 4 storage locations (the standard 1length for
INTEGER) are allocated for each variable.

All other variables (those beginning with the characters A through H,
O through 2z, and §) are declared as REAL with 4 storage locations
allocated for each.

Note that the statement in Example 1 performs the exact same function
of typing variables as the predefined convention (see, "Type Declaration
by the Predefined Specification").

Example 2:
IMPLICIT INTEGER*2(A-H), REAL*S(I—K), LOGICAL(L,M,N)

Explanation:

All variables beginning with the characters A through H are declared
as integer with 2 storage locations allocated for each. All variables
beginning with the characters I through K are declared as real with 8
storage 1locations allocated for each. All variables beginning with the
characters L, M, and N are declared as 1logical with 4 locations
allocated for each.

Since the remaining letters of the alphabet, namely, O through Z and
$, were 1left undefined by the IMPLICIT statement, the predefined
convention will take effect. Thus, all variables beginning with the
characters O through Z and $ are declared as real, each with a standard
length of 4 locations.

Example 3:
IMPLICIT COMPLEX*16 (C-F)

78

Explanation:

A1l wvariables beginning with the characters C through F are declared
as complex, each with 8 storage locations reserved for the real part of
the complex data and 8 storage locations reserved for the imaginary
part. The types of the variables beginning with the characters A, B, G
through Z, and § are determined by the predefined convention.

Explicit Specification Statements

General Form

Type*s a*s, (k1) /x:7/,b*s,(Kka) /%274 4..,2*%¥Sn{kn) 7xn/

Where: Type is INTEGER, REAL, LOGICAL, or COMPLEX.

*3S,%¥S,,%S3,...¢%¥Sn are optional. Each s represents one of
the permissible length specifications for its associated

type.

the section, "SUBPROGRAMS")

(ky), (kz)s-..,kn) are optional. Each k is composed of 1
through 7 unsigned integer constants, separated by commas,
representing the maximum value of each subscript in the
array. Each k may be an unsigned integer variable only when
the Type statement in which it appears is in a subprograr.

/X3/4/%X27/ ¢--+,/Xn/ are optional and represent initial data
values.

[o i s e . e e M . . s S i S e i B it e S e)

|
4
I
I
|
I
|
|
|
|
a,b,...,2z represent variable, array, or function names (see |
|
|
|
|
|
|
|
|
|
|

The Explicit specification statements declare the type (INTEGER,
REAL, COMPLEX, or LOGICAL) of - a particular variable or array by its
name, rather than by its initial character. This differs from the other
ways of specifying the type of a variable or array (i.e., pre-define
convention and the IMPLICIT statement). In addition, the information
necessary to allocate storage for arrays (dimension information) may be
included within the statement. However, if this information does not
appear in an Explicit specification statement, it must appear in a
DIMENSION or COMMON statement (see, "DIMENSION Statement" or "COMMON
Statement") .

Initial data values may be assigned to variables or arrays by use of
/Xn/ where =xpn 1s a constant or list of constants separated by commas.
This set of constants may be in the form "r* constant", where r 1is an
unsigned integer, called the repeat constant. An initial data value ray
not be assigned to a function name.

An initially defined variable or a variable of an array may not be in
blank common. In a labeled common block, they may be initially defined
only in a BLOCK DATA subprogram. (See the section, "SUBPROGRAMS.")

In the same manner in which the IMPLICIT statement overrides the
predefined convention, the Explicit specification statements override
the IMPLICIT and predefined convention. If the length specification is
omitted (i.e.,*s), the standard length per type is assumed.

Specification Statements 79

Example 1:
INTEGER*2 ITEM/76/, VALUE

Explanation:

This statement declares that the variables ITEM and VALUE are of type
integer, each with 2 storage locations reserved. In addition, the
variable ITEM is jnitialized to the value 76.

Example 2:
COMPLEX C,Dr/(2.1,4.7)/,E*16

Explanation:

This statement declares that the variables C, D, and E are of type
complex. Since no length specification was explicitly given, the
standard length is assumed. Thus, C and D each have 8 storage locations
reserved (4 for the real part, 4 for the imaginary part) and D is
initialized to the value (2.1,4.7). 1In addition, 16 storage locations
are reserved for the variable E. Thus, if a 1length specification is
explicitly written, it overrides the assumed standard length.

Example 3:
REAL*8 ARRAY, HOLD, VALUE*4, ITEM(5,5)

Explanation:

This statement declares that the variables ARRAY, HOLD, VALUE, and
the array named ITEM are of type real. 1In addition, it declares the
size of the array ITEM. The variables ARRAY and HOLD have 8 storage
locations reserved for each; the variable VALUE has 4 storage locations
reserved; and the array named ITEM has 200 storage locations reserved (8
for each variable in the array). Note that when the length is
associated with the type (e.g., REAL*8), the 1length applies to each
variable in the statement unless explicitly overridden (as in the case
of VALUE#*4).

Example 4:
REAL A(5,5)/20%6.9E2,5*%1.0/, B(100)/100%0.0/,TEST*8(5)/5%0.0/

Explanation:

This statement declares the size of each array, A and B, and their
type (real). The array A has 100 storage locations reserved (4 for each
variable in the array) and the array B has 400 storage locations
reserved (4 for each variable). 1In addition, the first 20 variables in
the array A are initialized to the value 6.9E2 and the last 5 variables
are initialized to the value 1.0. All 100 variables in the array B are
initialized to the value 0.0. The array TEST has 40 storage locations
reserved (8 for each variable). In addition, each variable is initial-
ized to the value 0.0.

80

Adjustable Dimensions

As shown 1in the previous examples, the maximum value of each
subscript in an array was specified by a numeric value. These numeric
values (maximum value of each subscript) are known as the absolute
dimensions of an array and may never be changed. However, if an array
is used 1in a subprogram (see the section, "Subprograms") and is not in
Common, the size of this array does not have to be explicitly declared
in the subprogram by a numeric value. That is, the Explicit specifi-
cation statement, appearing in a subprogram, may contain integer
variables of length 4 that specify the size of the array. These integer
variables must be either actual or implicit subprogram arguments. When
the subprogram is called, these integer variables then receive their
values from the calling program. Thus, the dimensions (size) of a dummy
array appearing in a subprogram are adjustable and may change each time
the subprogram is called. Integer variables that provide dimension
information may not be redefined within the subprogram.

The absolute dimensions of an array must be declared in a calling
program. The adjustable dimensions of an array, appearing in a
subprogram, should be less than or equal to the absolute dimensions of
that array as declared in the calling program.

The following example illustrates the use of adjustable dimensions:

Example:
Calling Program Subprogram
REAI;*S a(5,5) SUBROUTINE MAPMY(...,R,L,M,...)
CALI:_. MAPMY(...,A,2,3,--.) REA;J*B...,R(L,M),...
: DO iOO I=1,L
Explanation:

The statement REAL*8 A(5,5) appearing in the calling program declares
the absolute dimensions of the array A. When the subroutine MAPMY is
called, the dummy argument R assumes the array name A and the dummy
arguments L and M assume the values 2 and 3, respectively. The
correspondence between the subscripted variables of the arrays A and R
is shown in the following example.

R(1,1) R(2,1) R(1,2) R(2,2) R(1,3) R(2,3)
A(1,1) A(2,1) A(3,1) A(4,1) A(5,1) A(1,2) A(2,2)...
Thus, in the calling program the subscripted variable A(1,2) refers to

the sixth subscripted variable in the array A. However, in the
subprogram MAPMY the subscripted variable R(1,2) refers to the <third

Specification Statements 81

subscripted variable in the array A, namely, A(3,1). This is so because
the dimensions of the array R as declared in the subprogram are not the
same as those in the calling program.

If the absolute dimensions in the calling program were the same as
the adjusted dimensions in the subprogram, then the subscripted vari-
ables R(1,1) through R(5,5) in the subprogram would always refer to the
same storage locations as specified by the subscripted variables A(1,1)
through A(5,5) in the calling program, respectively.

The numbers 2 and 3, which became the adjusted dimension of the dummy
array R, could also have been variables in the argument list or implicit
arguments in a COMMON block. For example, assume that the following
statement appeared in the calling program:

‘CALL MAPMY (...,A,I,J,...)

Then as 1long as the values of I and J were previously defined, the
arguments may be variables. In addition, the variable dimension size
may be passed through more than one level of subprograms. For example,
within the subprogram MAPMY could have been a call statement to another
subprogram in which dimension information about A could have been
passed.

Dummy variables (e.g., L and M) may be used as dimensions of an array
only in a FUNCTION or SUBROUTINE subprogram.

ADDITIONAL SPECIFICATION STATEMENTS

DIMENSION Statement

General Form

DIMENSION aq (].El) v22 (_]Sz) ¢ A3 (_k_a) so++¢32n (_]_(.n)

Where: a,, 2z, 8ar---, &n are array names.

ki, kay kagee..rkn are each composed of 1 through 7 unsigned integer
constants, separated by commas, representing the maximum
value of each subscript in the array. k, through kn may be
integer variables of 1length &4 only when the DIMENSION
statement in which they appear is in a subprogram.

[o v T e e . it it A . e Y
L e i st i s ot o — s b e)

The information necessary to allocate storage for arrays used in the
source program may be provided by the DIMENSION statement. Allocation
information should be given to an array on its first appearance in a
source program; however, for subprograms, the SUBROUTINE or FUNCTION
statement may include a dummy argument that is dimensioned later. The
following examples illustrate how this information may be declared.

Examples:

DIMENSION A (10), ARRAY (5,5,5), LIST (10,100)
DIMENSION B(25,50),TABLE(5,8,4)

82

COMMON Statement

—_— ————————————— e -— —_— o

| General Form i

—_—— _ —_— — _— —_ -—
| COMMON /r/a (ki),b(kz),.../x/clk3),d(k,),--- i
I I
| Where: a,b,...,c,d... are variable or array names. |
I I
| kiskor---k3sky--. are optional and are each composed of 1 |
| through 7 unsigned integer constants, separated by commas, |
| representing the maximum value of each subscript in the |
] array. i
| : s l
| /’x/ ... represent optional common block names consisting of |
] 1 through 6 alphameric characters, the first of which is |
| alphabetic. These names must always be embedded in slashes. |
IS U e 1

Although the COMMON statement may be used to provide dimension
information, adjustable dimensions may never be used.

Variables or arrays that appear in a calling program or a subprogram
may be made to share the same storage locations with variables or arrays
in other subprograms by use of the COMMON statement. For example, if
one program contains the statement:

CCMMON TABLE
and a second program contains the statement:

COMMON TREE

the variable names TABLE and TREE refer to the same storage locations.

If the main program contains the statements:

REAL A,B,

C
COMMON A,B,C
and a subprogram contains the statements:

REAL X, Y, %
COMMON X,Y,Z

then A shares the same storage location as X, B shares the same storage

location as Y, and C shares the same storage location as Z.

Common entries appearing in COMMON statements are cumulative in the
given order throughout the program; that is, they are cumulative in the
sequence 1in which they appear in all COMMON statements. For example,
consider the following two COMMON statements:

COMMON A, B, C
COMMON G, H

These two statements have the same effect as the single statement:

COMMON A, B, C, G, H

Specification Statements 83

Redundant entries are not allowed. For example, the following
statement is invalid:

COMMON A,B,C,A

Consider the following example:

Example:
Calling Program Subprogram

. SUBROUTINE MAPMY (...)

COMMON A, B, C, R(100)

REAL A,B,C COMMON X, Y, Z, S(100)
INTEGER R REAL X,Y,Z

- INTEGER S
CALL MAPMY (...) .

Explanation:

In the calling program, the statement COMMON A,B,C,R(100) would cause
412 storage 1locations (4 locations per variable) to be reserved in the
following order:

r T T 1
Beginning | A B C i Layout of
of common | 4 locations 4 locations 4 locations | storage
area | |

r —— 4

| R(1) « e . R(100) |

| 4 locations 4 locations |

L _ 3

The statement COMMON X, Y, Z, S(100) would then cause the variables
X, ¥, 2, and S(1)...S(100) to share the same storage space as A, B, C,
and R(1)...R(100), respectively.

From the above example, it can be seen that COMMON statements may be
used to serve an important function: namely, as a medium to implicitly
transmit data from the calling program to the subprogram. That 1is,
values for X, Y, Z, and S(1)...S(100), because they occupy the same
storage locations as A, B, C, and R(1)...R(100), do not have to be
transmitted in the argument list of a CALL statement. Arguments passed
through COMMON must follow the same rules of presentation with regard to
type, length, etc., as arguments passed in a list. (See the section,
"SUBPROGRAMS. ")

Blank and Labeled Common

In the preceding example, the common storage area {(common block)
established is called a blank common area. That is, no particular name
was given to that area of storage. The variables that appeared in the
COMMON statements were assigned locations relative to the beginning of
this Dblank common area. However, variables and arrays may be placed in
separate common areas. Each of these separate areas (or blocks) is
given a name consisting of 1 through 6 alphameric characters (the first
of which is alphabetic); those blocks which have the same mname occupy
the same storage space.

84

Those variables that are to be placed in labeled (or named) common
are preceded by a common block name enclosed in slashes. For example,
the variables A,B, and C will be placed in the labeled common area,
HOLD, by the following statement:

COMMON/HOLD/A,B,C

In a COMMON statement, blank common may be distinguished from labeled
common by preceding the variables in blank common by two consecutive
silashes or, if the variables appear at the beginning of the common
statement, by omitting any block name. For example, in the following
statement:

COMMON A, B, C /ITEMS/ X, ¥, 2 / /D, E, F
the variables A, B, C, D, E, and F will be placed in blank common in
that order; the variables X, ¥, and 2 will be placed in the common area
labeled ITEMS.
Blank and labeled common entries appearing in COMMON statements are
cumulative throughout the program. For example, consider the following
two COMMON statements:

COMMCON A, B, C /R/ D, E /S/ F
COMMON G, H /s/ I, J /R/P//W

These two statements have the same effect as the single statement:
COMMON A, B, C, G, H, W/R/ D, E, P /S/ F, I, J

Example:

Assume that A, B, C, K, X, and Y each occupy 4 locations of storage,
H and G each occupy 8 locations, and D and E each occupy 2 locations.

Calling Program Subprogram
- SUBROUTINE MAPMY(...)

COMMON H, A /JR/ X, D // B .
. COMMON G, Y, C /R/ K, E
CALL MAPMY(...) .

Explanation:

In the calling program, the statement COMMON H, A /R/ X, D //B causes
16 locations (4 locations each for A and B, and 8 for H) to be reserved
in blank common in the following order:

[T~ — T T T m o — oo e T TS s s s -1
Beginning | H A B |
of blank | 8 locations 4 Jocations 4 locations |
common | |
! - 1

|)) |

| continuation of blank common |

| I

L - J
Specification Statements 85

and also causes 6 locations (4 for X and 2 for D) to be reserved in the
labeled common area R in the following order:

Beginning X D
of labeled
common R 4 locations 2 locations

continuation of labeled common

[e e s e e s s =)
L L S |

The statement COMMON G,Y,C/R/K,E appearing in the subprogram MAPMY
would then cause the variables G,Y, and C to share the same storage
space (in blank common) as H,A, and B, respectively. It would also
cause the variables K and E to share the same storage space (in labeled
common area R) as X and D, respectively. The length of a COMMON area
may be increased by using an EQUIVALENCE statement (see the
section, "EQUIVALENCE Statements").

Programming Considerations

Variables in a COMMON biock may be in any order. However, considera-
ble object-time efficiency 1is lost unless the programmer ensures that
all of the variables have proper boundary alignment.

Proper alignment is achieved either by arranging the variables in a
fixed descending order according to length, or by constructing the block
so that dummy variables force proper alignment. If the fixed order is
used, the variables must appear in the following order:

length of 16 (complex)
length of 8 (complex or real)

length cf 4 (real or integer or logical)
length of 2 (integer)
length of 1 (logical)

If the fixed order is not used, proper alignment can be ensured by
constructing the block so that the displacement of each variable can be
evenly divided by the reference number associated with the variable.
(Displacement 1is the number of storage locations from the beginning of
the block to the first storage location of the variable.) The following
list shows the reference number for each type of variable:

Type of Length Reference
variable Specification Numberxr
Logical 1 1
4 4
Integer 2 2
4 4
Real 4y 4
8 8
Complex 8 8
16 8

86

The first variable in every COMMON block is positioned as if its
length specification were eight. Therefore, a variable of any length
may be the first assigned within a block. To obtain the proper
alignment for other variablies in the same block, it may be necessary to
add a dummy variable to the block. For example, the variables A, I, and
CMPLX are REAL*4, INTEGER#*4, and COMPLEX*8, respectively, and form a
COMMON block that is defined as:

COMMON A, I, CMPILX

Then, the displacement of these variables within the block is illustrat-
ed as follows:

| < A — | ~— I + | -——— CMPLX >~
4 storage 4 storage 8 storage
locations locations locations
displacement displacement displacement
0 storage 4 storage 8 storage
locations locations locations

The displacements of I and CMPLX are evenly divisible by their reference
numbers. However, if I were an integer with a length specification of
2, then CMPLX is not properly aligned (its displacement of 6 1is not
evenly divisible by its reference number of 8). 1In this case, proper
alignment is ensured by inserting a dummy variable with a 1length
specification of 2 either between A and I or between I and CMPLX.

EQUIVALENCE Statement

General Form

EQUIVALENCE (a, b, ¢, ...), (4, e, £f,...)

Where: a, b, ¢, 4, e, £,.-. are variables that may be subscripted.
The subscripts may have two forms: If the variable is singly
subscripted it refers to the position of the variable in the
array (i.e., first wvariable, 25th variable, etc). If the
variable is multi-subscripted it refers to the position in
the array in the same fashion as the position is referred to
in an arithmetic statement.

[e e — i i e s e . S e)
L e e o s s o Wt e v b e d

The EQUIVALENCE statement provides the option for controlling the
allocation of data storage within a single program or subprogram. It is
analogous to (but not identical to) the option of using the COMMON
statement to control the allocation of data storage among several
programs. In particular, when the logic of the program permits it, the
number of storage locations used can be reduced by causing locations to
be shared by two or more variables of the same or different types.
Equivalence between variables implies storage sharing only, not mathema-
tical equivalence.

Example 1:

DIMENSION B(5), c(10, 10), D(5, 10, 15)
EQUIVALENCE (A, B(1), C(5,3)), (D(5,10,2), E)

Specification Statements 87

Explanation:

This EQUIVALENCE statement indicates that the variables A,B(1), and
C(5,3) are assigned the same storage locations. In addition, it
specifies that D(5,10,2) and E are assigned the same storage locations.
In this case, the subscripted variables refer to the position in an
array 1in the same fashion as the position is referred +to in an
arithmetic statement. Note that variables or arrays that are not
mentioned in an EQUIVALENCE statement are assigned unique storage
locations. The EQUIVALENCE statement must not contradict itself or any
previously established equivalences. For example, the further equiva-
lence specification of B(2) with any other element of the array C, other
than C(6,3), is invalid.

Example 2:

DIMENSION B(5), c(10, 10), D(5, 10, 15)
EQUIVALENCE (A, B(1), C(25)), (D(100), E)

Explanation:

This EQUIVALENCE statement indicates that the variable A, the first
variable in the array B, namely B(1), and the 25th variable in the array
C, mnamely ¢(5,3), are to be assigned the same storage locations. In
addition, it also specifies that D(100) (i.e., D(5,10,2)) and E are to
share the same storage locationms. Note that the effect of the
EQUIVALENCE statement in Examples 1 and 2 is the same.

Variables that are brought into COMMON through EQUIVALENCE statements
may increase the size of the Dblock as indicated by the following:
statements:

COMMON A, B, C
DIMENSION D(3)
EQUIVALENCE (B,D(1))

This would cause a common area to be established containing the
variables A, B, and C. The EQUIVALENCE statement would then cause the
variable D(1) to share the same storage location as B, D(2) to share the
same storage location as C, and D(3) would extend the size of the common
area, in the following manner:

A (lowest location of the common area)
B, D(1)
C, D(2)

D(3) (highest location of the common area)

Since arrays are stored in consecutive forward locations, a variable
may not be made equivalent to another variable of an array in such a way
as to cause the array to extend before the beginning of the common area.
For example, the following EQUIVALENCE statement is invalid:

COMMON A, B, C
DIMENSION D(3)
EQUIVALENCE (B, D(3))

because it would force D(1l) to precede A, as follows:

D(1)
A, D(2) (lowest location of the common area)
B, D(3)
C (highest location of the common area)

88

Programming Considerations

Two variables in one COMMON block or in two different COMMON blocks
may not be made equivalent. Variables in an equivalence group may be in
any order. However, considerable object-time efficiency is lost unless
the programmer ensures that all of the variables have proper boundary
alignment.

Proper alignment is achieved either by arranging the variables in a
fixed, descending order according to 1length, or by constructing the
group so that dummy variables force proper alignment. If the fixed
order is used, the variables must appear in the following order:

length of 16 (complex)
length of 8 (complex or real)

length of 4 (real or integer or logical)
length of 2 (integer)
length of 1 (logical)

If the fixed order is not used, proper alignment can be ensured by
constructing the group so that the displacement of each variable in the
group can be evenly divided by the reference number associated with the
variable. (Displacement 1is the number of storage locations from the
beginning of the group to the first storage location of the wvariable.)
The reference numbers for each type of variable are given in the
section, "COMMON Statement”. The first wvariable in each group is
positioned as if its length specification were eight.

For example, the variables A, I, and CMPLX are REAL*4, INTEGER*4, and
COMPLEX*8, respectively, and are defined as:

DIMENSION A(10), I(16), CMPLX(5)
EQUIVALENCE (A(1), I(7), CMPLX(1))

Then, the displacement of these variables within the group is illustrat-
ed as follows:

I(1) - 64 storage locations ———I(16)

- 74

A{l)—-= 40 storage locations ————A{10)

CMPLX(1)«—— 40 storage locations —— CMPLX(5)

displacement displacement .
0 storage 24 storage
locations locations

The displacements of A and CMPLX are evenly divisible by their reference
numbers. However, if the EQUIVALENCE statement were written as

EQUIVALENCE (A(1), I(6), CMPLX(1))

then CMPLX is not properly aligned (its displacement of 20 is not evenly
divisible by its reference number of 8).

Specification Statements 89

SUBPROGRAMS

It is sometimes desirable to write a program which, at various
points, requires the same computation to be performed with different
data for each calculation. It would simplify the writing of that
program if the statements required to perform the desired computation
could be written only once and then could be referred to freely, with
each subsequent reference having the same effect as though these
instructions were written at the point in the program where the
reference was made.

For example, to take the cube root of a number, a program must bLe
written with this object in mind. If a general program were written to
take the cube root of any number, it would be desirable to be able to
combine that program (or subprogram) with other programs where cube root
calculations are required.

The FORTRAN language provides for the above situation through the use
of subprograms. There are three classes of subprograms: Statement
Functions, FUNCTION subprograms, and SUBROUTINE subprograms. In addi-
tion, there is a group of FORTRAN supplied subprograms (see Appendix C).

differ from SUBROUTINE subprograms in that functions return at least one
value to the calling program; whereas, SUBROUTINE subprograms need not
return any.

The first two classes of subprograms are called functicns. Functions

NAMING SUBPROGRAMS

A subprogram name consists of from 1 through 6 alphameric characters,
the first of which must be alphabetic. A subprogram name may not
contain special characters (see Appendix A).

1. Type Declaration of a Statement Function: Such declaration may be
accomplished in one of three ways: by the predefined convention, by
the IMPLICIT statement, or by the Explicit specification state-
ments. Thus, the same rules for declaring the type of variables
apply to Statement Functions.

2. Type Declaration of FUNCTION Subprograms: The declaration may be
made 1in one of three ways: by the predefined convention, by the
IMPLICIT statement, or by an explicit specification (see the
section, "Type Specification of the FUNCTION Subprogram.")

3. Type Declaration of a GSUBROUTINE JSubprogram: The type of a
SUBROUTINE subprogram can not be defined because the results that
are returned to the calling program are dependent only on the type
of the variable names appearing in the argument list of the calling
program and/or the implicit arguments in COMMON.

90

FUNCTIONS
A function is a statement of the relationship between a number of
variables. To use a function in FORTRAN, it is necessary to:
1. Define the function (i.e., specify what calculations are to be

pexrformed) .
2. Refer to the function by name where required in the program.

Function Definition

There are three steps in the definition of a function in FORTRAN:

1. The function must be assigned a unigue name by which it may be
called (see the section "Naming Subprograms").

2. The arguments of the function must be stated.

3. The procedure for evaluating the function must be stated.

Items 2 and 3 are discussed in detail in the sections dealing with

the specific subprogram (e.g., "Statement Functions", "FUNCTION
Subprograms", etc.).

Function Reference

When the name of a <function appears in any FORTRAN arithmetic
expression, this, effectively, references the function. Thus, the
appearance of a function with its arguments in parentheses causes the
computations to be performed as indicated by the function definition.The
resulting gquantity replaces the function reference in the expression.
The type and length of the name used for the reference must agree with
the type and length of the name used in the definition.

STATEMENT FUNCTIONS
Statement functions are defined by a single arithmetic statement
within the program in which they appear. For example, the statement:
FUNC(A,B) = 3.#A+B**2_ +X+Y+Z

defines the statement function FUNC, where FUNC is the function name and
A and B are the function arguments.

The expression on the right defines those computations which are to
be performed when the function is used in an arithmetic statement. This
function might be used in a statement as follows:

C = FUNC(D,E)
which is equivalent to:
C = 3.%D+E**2_ +X+Y+2
Note the correspondence between A and B in the function definition

statement and D and E in the arithmetic statement. The quantities A and
B enclosed in parentheses following the function name are the arguments

Subprogramnms 91

of the function. They are dummy variables for which the quantities D
and E, respectively are substituted when the function is wused in an
arithmetic statement.

=== —/

General Form |

name (a,b,...,n) = expression

Where: name 1is any subprogram name (see the section "Naming
Subprograms").

I

|

I

:
a,b,...,n are distinct (within the same statement) nonsub- |
scripted variables. |
I

|

|

I

d

expression is any arithmetic expression that does not
contain subscripted variables. Any statement functions
appearing in this expression must be defined previously.

[——— ————— ——— — — e —)

The actual arguments must correspond in order, number, and type to
the dummy arguments. There must be at least one argument.

Note: All Statement Function definitions to be used in a program must
precede the first executable statement of the program.

Examples:

vValid statement function definitions:

SUM(A,B,C,D) = A+B+C+D

FUNC(Z) = A+X*Y*Z

AVG(A,B,C,D) = (A+B+C+D)/4
ROOT(A,B,C) = SQRT(A**2+B**2+C**2)

Note: The same dummy arguments may be used in more than one Statement
Function definition and may be used as variables outside Statement
Function definitions.

Invalid statement function definitions:

SUBPRG(3,J,K)=3#I+J%%*3 (arguments must be wvariables)
SOMEF (A (I),B)=A(I)/B+3. (arguments must be nonsub-
scripted)

SUBPROGRAM(A,B) =A% *2+B**2 (function name exceeds limit
of six characters)

3FUNC(D)=3.14%*E (function name must begin with
an alphabetic character)

ASF(A)Y=A+B(I) (subscripted variable in the
expression)

Valid statement function references:

NET = GROS - SUM(TAX, FICA, HOSP, STOCK)
ANS = FUNC(RESULT)
GRADE = AVG(ALAB, TERM, SUM(TEST1, TEST2, TEST3, TEST4), FACTOR)

Invalid statement function references:

WRONG = SUM(TAX,FICA) (number of arguments
does not agree with
above definition)

MIX = FUNC(I) (mode of argument
does not agree with
above definition)

92

FUNCTION SUBPROGRAMS

The FUNCTION subprogram 1is a FORTRAN subprogram consisting of any
number of statements. It is an independently written program that is
executed wherever its name appears in another program.

2 1
| General Form]
L 4
T 1
| FUNCTION name (24 ,32,834-++¢3n) |
| . |
b |
| . I
| RETURN i
| . |
| . |
| . I
| END I
| _ |
| Where: name is subprogram name (see the section "Naming |
| Subprograms") . |
| |
i ai482,83¢---¢an are nonsubscripted variable or array names, |
| or the dummy names of SUBROUTINE or other FUNCTION sukpro- |
| grams. (There must be at least one argqument in the argument |
| list.) |
L 4

Since the FUNCTION 1is a separate subprogram, the variables and
statement numbers within it do not relate to any other program.

The FUNCTION statement must be the first statement in the subprogram.
The FUNCTION subprogram may contain any FORTRAN statement except a
SUBROUTINE statement, another FUNCTION statement, or a BLOCK DATA
statement. If an IMPLICIT statement is used in a FUNCTION subprogram,
it must immediately follow the FUNCTION statement.

The arguments of the FUNCTION subprogram {(i.e., a;,32¢23s---,8n) May
be considered to be dummy variable names. These are replaced at the
time of execution by the actual arguments supplied in the function
reference in the calling program. The actual arguments may be any of
the following: any type of constant except literal or hexadecimal, any
type of subscripted or nonsubscripted variable, an array name, an
arithmetic expression, or the name of another subprogram. The actual
arguments must correspond in number, order, type, and 1length to the
dummy arguments. For example, if the actual argument is an integer
constant, then the dummy argument in the FUNCTION statement must be of
length 4. The array size must also be the same, except when adjustable
dimensions are used.

The name of the FUNCTION subprogram cannot be typed with an Explicit
specification statement in the subprogram.

The relationship between variable names used as arguments in the
calling program and the dummy variables used as arguments in the
FUNCTION subprogram is illustrated in the following example:

Subprograms 93

Example 1:

Calling Program FUNCTION Subprogram
. FUNCTION SOMEF (X,Y)
. SOMEF = X/Y¥Y

A = SOMEF(B,C) RETURN
. END

-

Explanation:

In the above example, the value of the variable B of the calling
program is used in the subprogram as the value of the dummy variable X;
the wvalue of C is used in place of the dummy variable Y. Thus if B =
10.0 and ¢ = 5.0, then A = B/C, which is equal to 2.0.

The name of the function must be assigned a value at 1least once in
the subprogram as the argument of a CALL statement, as the variable name
on the 1left side of an arithmwetic statement, or in an input list (READ
statement) within the subprogram.

Example 2:
Calling Program FUNCTION Subprogram
FUNCTION CALC (A,B,J)
. I = J%2
ANS = ROOT1#*CALC(X,Y,I) -
o CALC = A**I/B
RETURN
END

Explanation:

In this example, the values of X, ¥, and I are used in the FUNCTION
subprogram as the values of A, B, and J, respectively. The value of
CALC is computed, and this value is returned to the calling program
where the value of ANS is computed. The variable I in the argument list
of CALC in the calling program is not the same as the variable I
appearing in the subprogram.

When a dummy argument is an array name, an appropriate DIMENSION or
Explicit specification statement must appear in the FUNCTION subprogram.
None of the dummy arguments may appear in an EQUIVALENCE or COMMON
statement.

Type Specification of the FUNCTION Subprogram

In addition to declaring the type of a FUNCTION name by either the
predefined convention or the IMPLICIT statement, there exists the option
of explicitly specifying the type of a FUNCTION name within the FUNCTION
statement.

94

General Form

Type FUNCTION name*s (23,253,234 +43n)
Where: Type is INTEGER, REAL, COMPLEX, or LOGICAIL.
name is the name of the FUNCTION subprogram.

*s 1is optional and represents one of the permissible length
specifications for its associated type.

Qj,83,33,.-+¢a8n are nonsubscripted variable, array, or dummy
names of SUBROUTINE or other FUNCTION subprograms. (There

must be at least one argument in the argument iist.}
g

[e e ot — . —— A — 1} S ot ot B oy
b et s e s — —— s o it e et e)

Example 1:
REAL FUNCTION SOMEF (A,B)

-

SOMEF = A**2 + B**2

-

RETURN
END

Example 2:
INTEGER FUNCTION CAILC(X,Y,2Z)

-

CALC = X+Y+Z**2

RETURN
END

Explanation:

The FUNCTION subptrograms SOMEF and CALC in Examples 1 and 2 are
declared as type REAL and INTEGER, respectively.

RETURN and END Statements in a Function Subprogram

All FUNCTION subprograms must contain an END statement and at 1least
one RETURN statement. The END statement specifies, for the compiler,
the end of the subprogram; the RETURN statement signifies a logical
conclusion of the computation and returns any computed value and control
to the calling program. There may, in fact, be more than one RETURN
statement in a FORTRAN subprogram.

Subprograms 95

Example:

FUNCTION DAV (D,E,F)
Ir (D-E) 10, 20, 30
10 A = D+2.0%*E

-

5 A = F+2.0*E

20 DAV = A+B**2

RETURN
30 DAV = B#**2

-

RETURN
END

SUBROUTINE SUBPROGRAMS

The SUBROUTINE subprogram is similar to the FUNCTION subprogram in
many respects: the rules for naming FUNCTION and SUBROUTINE subprogrars
are the same, they both require an END statement, and they both contain
the same sort of dummy arguments. Like the FUNCTION subprogram, the
SUBROUTINE subprogram is a set of commonly used computations, but it
need not return any results to the calling program, as does the FUNCTION
subprogram.

The SUBROUTINE subprogram is called by the CALL statement, which
consists of the word CALL followed by the name of the subprogram and its
parenthesized arguments.

General Form

SUBROUTINE name (24,32,33s+<+s2n)

RETURN

END

Where: name 1is the subprogram name (see the section "Naming
Subprograms").

@1¢32¢83¢-++,3n are arguments. (There need not be any.)
Each argument used must be a nonsubscripted variable or
array name, the dummy name of another SUBROUTINE or FUNCTION
subprogram, or of the form * where the character "*" denotes
a return point specified by a statement number in the
calling program.

[e e . e s e . s . G e e e St S e, St s, S W S
e o S S —— T —— —" T il S T Aol SN At Mot (it s s b e o}

96

Since the SUBROUTINE is a separate subprogram, the variables and
statement numbers within it do not relate to any other program.

The SUBRCUTINE statement must be the first statement in the subpro-
gram. The SUBROUTINE subprogram may contain any FORTRAN statement
except a FUNCTION statement, another SUBROUTINE statement, or a BLOCK
DATA statement. If an IMPLICIT statement is used in a SUBROUTINE
subprogram, it must immediately follow the SUBROUTINE statement.

The SUBROUTINE subprogram may use one or more of its arguments to
return values to the calling program. Any arguments so used must appear
on the left side of an arithmetic statement or in an input list within
the subprogram, as arguments of a CALL statement or as arguments in a
function reference. The SUBROUTINE name must not appear in any other
statement in the SUBROUTINE subprogram.

The arguments (a,, @8z, 83rs---,2n) May be considered dummy variable
names that are replaced at the time of execution by the actual arguments
supplied in the CALL statement. The actual arguments must correspond in
number, order, type, and length to the dummy arguments. The array size
must also be the same. Dummy arguments may not appear in an EQUIVALENCE
or COMMON statement within the subprogram.

Example: The relationship between variable names used as arguments in
the calling program and the dummy variable used as arguments in the
SUBROUTINE subprogram is illustrated in the following example. The
object of the subprogram is to "copy" one array directly into another.

Calling Program SUBROUTINE Subprogram
DIMENSION X(100),¥(100)
- SURBROUTINE COPY(2A,R,N)
. DIMENSION A (100),B(100)
- . DO 10 I =1, N
CALL COPY (X,Y¥Y,K) 10 B(I) = a (D)
- RETURN
- END

-

CALL Statement

The CALL statement is used to call a SUBROUTINE subprogram.

General Form

CALL name (34 ,35,83¢++-7s3n)

Where: name is the name of a subroutine subprogram.

a1+82+83,---¢an are the actual arguments that are being
supplied to the subroutine subprogram. Each may be of the
form é&én where n 1is a statement number (see, "RETURN
statements in a SUBROUTINE Subprogram").

[. et ot i e S it e S e
e R USSR Sp——

Subprograms 97

Examples:

CALL OUT

CALL MATMPY (X,5,40,Y,7,2)
CALL QDRTIC (X,Y,Z,RO0T1,R0O0T2)
CALL SUBL1(X+Y*5,ABDF,SINE)

The CALL statement transfers control to the subroutine subprogram and
replaces the dummy variables with the value of the actual arguments that
appear in the CALL statement. The arguments in a CALL statement may be
any of the following:

1. Any type of constant except hexadecimal

2. Any type of subscripted or nonsubscripted variable

3. An array name

4. An arithmetic expression

5. The name of a FUNCTION or SUBROUTINE subprogram

6. A statement number (see the section, "RETURN Statements in a
SUBROUTINE Subprogram) .

The arguments in a CALL statement must agree in number, order, type,
and length with the corresponding arguments in the subroutine subpro-
gram. For example, if the actual argument is an integer constant, then
the dummy argument in the SUBROUTINE statement must be of length 4. The
array sizes must also be the same in the subroutine and the calling
programs except when adjustable dimensions are used (see the section
"Adjustable Dimensions"). If an actual argument corresponds to a dummy
argument that is defined or re-defined in the referenced subprogram, the
actual argument must be a variable name, subscripted variable name, or
array name.

If a 1literal constant is passed as an argument, the actual argument
passed is the literal as defined, without delimiting apostrophes or the
preceding wH specification.

A referenced supprogram cannot define dummy arguments when the
subprogram reference causes those arguments to be associated with other
dummy arguments within the subprogram or with variables in COMMON. For
example, if the external function DERIV is defined as

FUNCTION DERIV (X,Y,Z)
COMMON W

and if the following statements are included in the calling source
program

COMMON B

C = DERIV (A,B,R)

then X, Y, Z, and W cannot be defined (e.g., cannot appear to the left
of an equal sign in an arithmetic statement) in the function DERIV.

ARGUMENTS IN A FUNCTION AND SUBROUTINE SUBPROGRAM

Arguments may be referred to in a subprogram in one of two ways: by
value or by name. The method of reference depends on the nature of the
dummy argument.

98

Reference by value: The value of the actual argument is brought from
the calling program to the subprogram. This value is loaded into the
location of the corresponding dummy argument. (During execution, all
intermediate values are also stored in this location.) Upon return to
the calling program, the final wvalue 1is transmitted from the dummy
argument to the actual argument.

An argument 1is referenced by value when the corresponding dummy
argument is enclosed only in commas.

Reference by name: The address of the actual argument is brought to the
subprogram. During execution of the subprogram, all intermediate values
and the final value are referenced using this address.

An argument is referenced by name when the corresponding dummy
argument 1is enclosed in slashes, or declared to be an array name or a
subprogram name.

All arithmetic or logical expressions that appear in the argument
list of the calling program are evaluated and placed in a temporary
storage location. It is either the value or the address of this storage
location which is referenced by wvalue if the dummy arguments are
separated only by commas, and by name if each is enclosed in slashes.

Example:
Calling Program Subprogram
- SUBROUTINE SUB(X,Y,Z)
CALL SUB (A,B(1),C) .
Explanation:

The actual arguments A, B(1l), and C are associated with X, ¥, and Z,
respectively. The arguments A, B(1), and C are referred to by value.

Example:
Calling Program Subprogram
. SUBROUTINE SUB(/X/,/Y¥Y/,Z)
CALL SUB (A,B(1),0) -
Explanation:

The actual arguments A,B(1l), and C are associated with X, Y, and 2,
respectively. The arguments A and B(l) are referred to by name, C is
referred to by value.

Subprograms 99

RETURN Statement in a SUBROUTINE Subprogram

General Form

T 1
I |
k -= -
| RETURN |
| I
| RETURN i |
I I
| Where: i is an integer constant or variable of 1length 4 whose |
i value, say n, denotes the nth statement number in the |
| argument list of a SUBROUTINE statement; i may be specified |
| only in a SUBROUTINE subprogram. |
L J

The normal sequence of execution following the RETURN statement of a
SUBROUTINE subprogram is to the next statement following the CALL in the
calling program. It is also possible to return to any numbered
statement in the calling program by using a return of the type RETURN i.
Returns of the type RETURN may be made in either a SUBROUTINE or
FUNCTION subprogram (see, "RETURN and END Statements: in a FUNCTION
Subprogram"). Returns of the type RETURN i may only be made in a
SUBROUTINE subprogram. In a main program, a RETURN statement performs
the same function as a STOP statement.

Example:
Calling Program Subprogram

. SUBROUTINE SUB (X,Y,Z,*,%)

10 CALL SUB (A,B,C,&30,&40)

20Y = A+ B 100 IF (M) 200,300,400
. 200 RETURN
. 300 RETURN 1
. 400 RETURN 2

30 Y=A+C END

Explanation:

In the preceding example, execution of statement 10 in the calling
program causes entry into subprogram SUB. When statement 100 is
executed, the return to the calling program will be to statement 20, 30,
or 40, if M is less than, equal to, or greater than zero, respectively.

A CALL statement that uses a RETURN i form may be best understood by

comparing it to a CALL and computed GO TO statement in sequence. For
example, the following CALL statement:

CALL SuUB (P,&20,Q,835,R,§22)
is equivalent to:

CALL SUB (P,Q,R,I)

GO TO (20,35,22),1

100

where the index I is assigned a value of 1, 2, or 3 in the called
subprogram.

Multiple ENTRY into a Subprogram

The standard (normal) entry into a SUBROUTINE subprogram from the
calling program is made by a CALL statement that references the
subprogram name. The standard entry into a FUNCTION subprogram is made
by a function reference in an arithmetic expression. Entry is made at
the first executable statement following the SUBROUTINE or FUNCTION
Statement.

It is also possible to enter a subprogram (either SUBROUTINE or
FUNCTION) by a CALL statement or a function reference that references an
ENTRY statement in the subprogram. Entry 1is made at the first
executable statement following the ENTRY statement.

General Form

ENTRY name (a3,82,83¢--+¢23n)

Where: name is the name of an entry point (see the section, "Naming
Subprograms").

81,32¢23¢-+-¢8n are the dummy arguments corresponding to an
actual argument in a CALL statement or 1in a function
reference.

[e e S e maion. S S . S S S
e e e e e b e

ENTRY statements do not affect control sequencing during normal
execution of a subprogram. The order, type, and number of arguments
need not agree between the SUBROUTINE or FUNCTION statement and the
ENTRY statements, nor do the ENTRY statements have to agree among
themselves in these respects. Each CALL or function reference however,
must agree in order, type, and number with the SUBROUTINE, FUNCTION, or
ENTRY statement that it references. Entry may mnot be made into the
range of a DO; further, a subprogram may not reference itself directly
or through any of its entry points.

Example 1:
Calling Program Subprogram
. SUBROUTINE SUBl1 (U,V,W,X,Y,2Z)
1 CcALL suBl (A,B,C,D,E,F) -
. U=V

. -

2 CALL suB2 (G,H,P)

. ENTRY SUB2 (T,U,V)
3 CALL SUB3 -
- ENTRY SUB3
END

Subprograms 101

Explanation:

In the preceding example, the execution of statement 1 causes entry
into SUB1, starting with the first executable statement of the subrou-
tine. Execution of statements 2 and 3 also causes entry into the called
program, starting with the first executable statement following the
ENTRY SUB2(T,U,V) and ENTRY SUB3 statements, respectively.

Entry into a subprogram initializes all references in the whole
subprogram to items in the argument 1list of the referenced ENTRY.
Return from a subprogram is made by way of the entry point referenced.
ENTRY statements may only appear in FUNCTION or SUBROUTINE subprograms.
The following is a valid example:

SUBROUTINE SUB (X,Y,Z,I)

ENTRY SUBl1 (A,B)

C = A+B
Example 2:
Calling Program Subprogram
. SUBROUTINE SUB1 (U,V,W,X,Y,2)
. RETURN
. ENTRY SUB2 (T, *,%*)
CALL SUB1 (A,B,C,D,E,F) U = V¥ W+T
. ENTRY SUB3 (#*,%*)
o X = Y**7Z
. 50 IF (J-K) 100, 200, 300
CALL SUB2(G,8§10,§&20) 100 RETURN 1
. 200 RETURN 2
. 300 RETURN
. END
CALL SUB3(£10,&20)
5 Y =A+B
10 Y = C+D
20 Y = E+F

Explanation:

In the example above, a call to SUB1 merely performs initialization.
Subsequent calls to SUB2 and SUB3 result in execution of different
sections of the subroutine SUBl1. Then, depending upon the result of the
arithmetic IF at statement 50, return is made to the calling program at
statement 10, 20, or 5.

102

Additional Rules for Using ENTRY

1. Reference to an ENTRY will not transmit new values for arguments
which are referenced by value at some previous use of the
subprogram unless those arguments are in the argument list of this
ENTRY.

2. If new dimensions for an adjustable dimension array are to be
passed to a subprogram with an ENTRY, the array name must appear in
the argument list of the ENTRY.

3. The appearance of an ENTRY statement does not alter the rules
t of Statement Functions in snbprograms.

lacemen t (]

regarding the p

4. If a dummy argument is listed at more than one entry, whenever it
appears the dummy argument must be referenced consistently either
by name or by valiue.

5. A name which is defined as a dummy argument name may not appear in

any executable statement unless it has been previously defined (as
a dummy argument) in an ENTRY, SUBROUTINE, or FUNCTION statement.

EXTERNAL Statement

General Form

EXTERNAL a,b,cs--.-

Where: a,b,c,.-.. are names of subprograms that are passed as
arguments to other subprograms.

o e e e e e oy
b e et i e s s e

If a FORTRAN supplied in-line function 1is wused in an EXTERNAL
statement, it is not expvanded in-line. It is assumed that the function
is part of a library. (The FORTRAN supplied in-line and out-of-line
functions are given in Appendix C.)

The name of any subprogram that is passed as an argument to another
subprogram must appear in an EXTERNAL statement in the calling program.
For example, assume that SUB and MULT are subprogram names in the
following statements:

Example 1:
Calling Program Subprogram
- SUBROUTINE SUB(K,Y,Z)
- IF (K) 4,6,6

- 4 D =Y (K,Z%%*2)
EXTERNAL MULT

CALL sUB (J, MULT,C) 6 RETURN
. END

Subprograms 103

Explanation:

In this example, the subprogram name MULT is used as an argument in
the subprogram SUB. The subprogram name MULT is passed to the dummy
variable Y as are the variables J and C passed tc the dummy variables K
and Z, respectively. The subprogram MULT is called and executed only if
the value of K is negative.

Example 2:

CALL SUB (a,B,MULT (C,D),37)

Explanation:

In this example, an EXTERNAL statement is not required because the
subprogram named MULT is not an argument; it is executed first and the
result becomes the argument.

BLOCK DATA SUBPROGRAM

In order to initialize variables in a COMMON block, a separate
subprogram must be written. This separate subprogram contains only the
DATA, COMMON, DIMENSION, EQUIVALENCE, and Type statements associated
with the data being defined. Data may be initialized in labeled
(named), but not unlabeled, COMMON by the BLOCK DATA subprogram.

General Form

I 1
| |
L 4
L} 1
| BLOCK DATA |
| I
- |
I - |
| END I
L —— J
1. The BLOCK DATA subprogram may not contain any executable state-
ments.
2. The BLOCK DATA statement must be the first statement in the

subprogram. If an IMPLICIT statement is used in a BLOCK DATA
subprogram, it must immediately follow the BLOCK DATA statement.

3. All elements of a COMMON block must be listed in the COMMON
statement, even though they are not all initialized; for example,
the variable A in the COMMON statement in the following example
does not appear in the data initialization statement:

BLOCK DATA

COMMON/ELN/C,A,B/RMG/Z,Y

REAL B(4)/1.0,1.2,2%1.3/,2%8(3)/3%*7.64980825D0/
COMPLEX C/(2.4,3.769)/

END

4, Data may be entered into more than one COMMON block in a single
BLOCK DATA subprogram.

104

APPENDIX A: SOURCE PROGRAM CHARACTERS

I T 1
| Alphabetic Characters i Numeric Characters |
b H -
| A | 0 |
| B | 1 !
i C | 2 |
I D | 3 |
| E | 4 !
I F i 5 |
[G | 6 |
| H | 7 |
I I | 8 i
| J | 9 |
| K I |
| L | |
| M t -4
| N | Special Characters |
| o F .
| P i (blank) i
I Q | + |
I R [- I
I s | / |
| T I = |
[U [- I
| \'% I) |
| W I * I
I X | ' I
| Y I (I
| Z | ' (apostrophe) |
| $! & |
L 1 J

The 49 characters 1listed above comprise the set of characters
acceptable by FORTRAN (except in literal data where any valid card code
is acceptable).

Appendix A: Source Program Characters 105

APPENDIX B: OTHER FORTRAN STATEMENTS ACCEPTED BY FORTRAN IV

This appendix discusses those features of previously implemented
FORTRAN IV 1languages that are incorporated into the System/360 FORTRAN
IV language. The inclusion of these additional 1language facilities
allows existing FORTRAN programs to be re-compiled for use on the IBM
System/360 with little or no re-programming.

READ Statement

General Form

READ b, list

Where: b, is the statement number or array mname of the FORMAT
statement describing the data.

list is a series of variable or array names, separated by
commas, which may be indexed and incremented. They specify
the number of items to be read and the locations in storage
into which the data is placed.

e Y
e e s s o s s e s s oo e el

This statement has the effect of a READ (n,b) list statement where b
and 1list are defined as above and the value of n is installation
dependent.

PUNCH Statement

General Form

PUNCH b, list

Where: b is the statement number or array mname of the FORMAT
statement describing the data.

list is a series of variable or array names, separated by
commas, which may be indexed and incremented. They specify
the number of items to be written and the locations in
storage from which the data is taken.

T
e et e e e e s i e e i e

This statement has the effect of a WRITE (n,b) list statement where b

and list are defined as above and the wvalue o n is installation
dependent.

106

PRINT Statement

storage from which the data is taken.

T 1
| General Form |
t -1
r -

| PRINT b, list I
I I
| Where: b is the statement number or array name of the FORMAT |
| statement describing the data. |
| i
| list is a series of variable or array names, separated by |
| commas which may be indexed and incremented. They specify |
! the number of items toc be written and the locations in |
| !
L J

This statement has the effect of a WRITE (n,b) list statement where b
and list are defined as above and the value of n is installation
dependent.

DATA Initialization Statement

General Form

DATA _71,.-.,Zn/_i_i*gl,-‘-.,in*gn/,zn"‘g_,-..,z /_é._n“‘l*gn*‘i,-.-,i *_d_ VAT

Where: V4,...,V* are variables, subscripted variables (in which
case the subscripts must be integer constants), or array
names.

dys...,d* are values representing integer, real, complex,
hexadecimal, logical, or literal data constants.

ii4...¢1i* Trepresent unsigned 1integer constants indicating
the number of consecutive variables that are to be assigned
the value of ds,...,d .

e ma
e

A data initialization statement is used to define initial values of
variables, array elements, and arrays. There must be a one-to-one
correspondence between these variables (i.e., Vv4,...,Vv¥) and the data
constants (i.e., dj,...,d%).

Example 1:

DIMENSION D(5,10)
DATA A, B, C/5.0,6.1,7.3/,D/25%1.0/

Explanation:

The DATA statement indicates that the variables A, B, and C are to be
initialized to the values 5.0, 6,1, and 7.3 respectively. In addition,
the statement specifies that the first 25 variables in the array D are
to be initialized to the value 1.0.

Appendix E: Other FORTRAN Statements Accepted by FORTRAN IV 107

Example 2:

DIMENSION A(5), B(3,3), L)
DATA A/5%1.0/, B/9%2., 0/ L/4*,TRUE./, C/ FOUR'/

Vv
Explanation:

The DATA statement specifies that all the variables in the arrays A
and B are to be initialized to the values 1.0 and 2.0, respectively.
All the logical variables in the array L are initialized to the vwvalue
.TRUE. The 1letters T and F may be used as an abbreviation for .TRUE.
and .FALSE., respectively. 1In addition, the variable C is initialized
with the literal data constant FOUR.

An initially defined variable, or variable of an array, may not be in
blank common. However, in a labeled common block, they may be initially
defined only in a block data subprogram. (See the section,
"SUBPROGRAMS. ")

DOUBLE PRECISION Statement

General Form

DOUBLE PRECISION a(ks),b(kz),---,2(kp)

a,by...,2 Trepresent variable, array, or function names (see
the section, "SUBPROGRAMS")

(Ke) , (k2) ..., (kn) are optional. Each k is composed of 1
through 7 unsigned integer constants, separated by commas,
that represent the maximum value of each subscript in the
array.

[e — —— —— —— —_——] — -
®
A
®

e e e . — — — — o c— cakitn e 2

The DOUBLE PRECISION statement explicitly specifies that the vari-
ables a,b,c,... are of type doublie precision. This statement overrides
any specification of a variable made by either the predefined convention
or the IMPLICIT statement. This specification is identical to that of
type REAL*8.

In addition, FUNCTION subprograms may be typed double precision as
follows: ’

DOUBLE PRECISION FUNCTION name (a31,32,83¢+++san)

108

APPENDIX C: FORTRAN SUPPLIED SUBPROGRAMS

The FORTRAN supplied subprograms are of either of two types: mathematical subprograms and
service subprograms. The mathematical subprograms correspond to a FUNCTION subprogram; the
service subprograms correspond to a SUBROUTINE subprogram. Appendix C lists the in-line and
out-of-line mathematical FUNCTION subprograms. An in-line subprogram is inserted by the
FORTRAN compiler at any point in the program where the function is referenced. An out-of-line
subprogram is 1located on a library. A detailed description of out-of-line mathematical
subprograms and service subprograms is given in the publication IBM System/360 Operating
System: FORTRAN IV (E), Library Subprograms. .

Table 4. Mathematical Function Subprograms

r T T T T T T 1
i		-	Type of			
	Entry		In-Line (I)	No. of	Type of	Function
Fanction	Name	Definition	Out-of-Line (0)	Arg.	Arguments [Value
t 4 t—	+ } : {					
Exponential	EXP	e3X9	o]	1	Real #*4	Real *u4
	DEXP	e3T9	o)	1	Real *8	Real *8]
	cEXP	e3T9	o}	1	Complex #8	Complex *8
i	CDEXP {e3T9 i 0	1	cComplex *16	Complex *16		
¢ ————4 + t } { 4 1						
Natural Logarithm	ALOG	1n (Arg)	o)	1	Real #*4	Real *4
	DLOG	1n (Arg)	¢}	1	Real *8	Real *8
	CLoG	1n (Arg)	o]	1	Complex *8 [Complex *8	
	CDLOG	1ln (Axg)	o]	1	Complex *16	[Complex *16
IN] 1 1 1 i L] b						
v T T T T T T 1						
Common Logarithm	ALOG10	log,c (Arg)	o	1	Real *iu	Real *U4
	DLOG10	log, o (Arg)	0	1	Real *8	Real *8]
t $ } + ¢ { { !						
Arcsine	ARSIN {arcsin (Arq)	¢}	1	Real *4	Real *U4	
	DARSIN	arcsin (Arg)	(¢}	1	Real #38	Real #8
t . $-——t t : t { 1						
Arccosine	ARCOS	arccos (Arg)	o]	1	Real *4	Real *4
	DARCOS	arccos (Arg)	¢}	1	Real =*8	Real *8
t t t + + + t 1						
jArctangent jATAN jarctan {(Arg) i [¢] i i	Real #*4 {Real *4 {					
	ATAN2 jarctan (Arg,/Arg;)	0 i 2	Real #*4	Real *4		
	DATAN	arctan (Arg)	(¢}	1	Real *8	Real *8
	DATAN2	arctan (Arg,/Arg,)	o]	2	Real *8	Real *8
L 1 4 i] 4] ¥						
.3 T T T T T T 1						
Trigonometric	SIN	sin(Arg)	o]	1	Real #4	Real *u4
Sine IDSIN	sin(Arqg)	o] i 1 {Real *8	Real *8			
(Argument in	CSIN	sin(Arg)	o]	1	Complex *8	[Complex *8
radians)	CDSIN	sin(Arg)	0	1	Complex #*16	Complex *16
b $ + t t t ¢ :						
Trigonometric	Ccos	cos (Arg)	o]	1	Real *4	Real =*4
Cosine	DCOS	cos (Arg)	o]	1	Real #8	Real *8
(Argument in jccos	cos(Arg)	o	1	Complex *8	Complex *8	
radians)	CDCOS	cos (Arg)	(0]	1	Complex *16	Complex *16
t ~————} - + + + + 4						
Trigonometric	TAN ftan (Arg)	o	1	Real *4	Real *4	
[Tangent		a	[
(Argument in	DTAN	tan (Arg) ! o] ! 1 JReal *8	Real *8			
radians)		i [[
L 1L I 1	4 L i					
Trigonometric	COTAN	cotan (Arg)	o]	1	Real *4	Real *4
[Cotangent				[[
(Argument in	DCOTAN]	cotan (Arg)	0	1	Real *8	Real *8
radians)						
t + + t - + +- 1 1						
Square Root	SORT l(Arg)’{z	o]	1	Real *4	Real *u	
	DSQRT	(Arg)j;2 i 0 i 1	[Real *8 jReal *8 i			
	CSQRT	(Arg)1/2v	(0]	1	Complex *#8	Complex *8
	CDSQRT	(Axg)	(¢}	1	Complex *16	Complex *16
F t ¢ $ -t { {						
Hyperbolic	TANH [tanh(Arg)	0	1	Real *4	Real *U4
Tangent	DTANH	tanh(Arg)	¢}	1	Real *8	Real *8
L I S - JE S L i L 1
(Continued)

Appendix C: FORTRAN Supplied Subprograms 109

e Table 4. Mathematical Function Subprograms (Continued)

r T T T T T 1 1
| | | |) i I |Type of i
| |Entry | | In-Line (I) |No. of} Type of | Function |
| Fanction |Name |Definition |Out-of-Line (0)| Arg. | Arguments [Value i
F i t S ; t + i
|Largest value |AMAX0 |Max (Arg,,Arg,,...)| ¢} | 22 |Integer *4 |[Real *4
	AMAX1		0	22	Real =*u4 {Real *4	
JMAXO0		o)	22	Integer *4	Integer #*4	
	MAX1		¢}	22	Real #*4	Integer *4
	DMAX1		0]	22	Real =*8	Real *8
i i] 1 1. 1 1 4						
H H e T T T i 1						
Smallest value	AMINO	Min (Arg,,Args,...)j 0o	22	Integer *U4	Real *4	
	AMIN1		[¢]	22	Real *4	Real *4
	MINO		0	22	Integer *U4	Integer *4
	MIN1		(o)	22	Real *4	Integer *4
	DMIN1		¢}	22	Real *8	Real *8
F	t { —1 { ¢ {					
Float	FLOAT	Convert from	I	1	Integer *4	Real *4
	CFLOAT	integer to real	1	1	Integer *4	Real #8
1 1 1 1 1 1 1]						
r R T T T T] T a						
Fix	IFIX	Convert from	I	1	Real *4	Integer *U4
	HFIX	real to-integer	I	1	Real =*4	Integer *2
f t $ t ¢ { t !						
Transfer of sign	SIGN	Sign of Arg, times	I	2	Real *u4	Real *4
I		1ATg,] [[I [I				
	ISIGN		I	2	Integer *4	Integer *4
	DSIGN		I] 2	Real *8	Real *8	
t t 1 t t + t {						
Positive	DIM	Arg,-Min(Arg, ,Arg,)	1	2	JReal *4	Real *4
difference	IDIM				Integer *4	Integer *u
13 1 + + + 4 + 4						
Hyperbolic	SINH	sinh (Arqg)	[¢]	1	Real *4	Real *4
Sine	DSINH	sinh (Arg)	o]	1	Real *8	Real *8
i — —4—- i { + {						
Hyperbolic	COSH	[cosh (Arg)	o]	1	Real =*4	Real *4
Cosine	DCOSH	cosh (Arq)	o]	1	[Real #*8	Real *8
t] 4 J 1 1 1]						
r T T T T 1] 1						
Exrror Function	ERF	2 px -u2	¢}	1	Real *4	Real *u4
	DERF	7« S e du	[¢)	1	Real *8	Real *8
		0 []			
L 1 1 1 1 1 4]						
f T T T T]] 1						
Complemented	ERFC {l-exrf (x)	o} i 1	Real *u4	Real *4		
Exrror Function	DERFC	-	o]	1	Real *8	Real *8
L i I, 1 1 1 ! 1 J						
T i T T T T) 1						
Gamma	GAMMA	» ©© x-1 -u	(¢}	1	Real #*u4	Real *4
	DGRMMA	u e du	0]	1	Real #*8	Real #8
	I~ 0 [I]			
I 1 i	1 1 1 J					
L} T T T T T 1 1						
Log-gamma	ALGAMA]	o]	1 JReal #*4	Real =*4		
DLGAMA	lo o} 1 Real *8 Real *8					
	prema{ 103, T	1]				
r T T T T T T 1						
Modular	MOD	Arg, (mod Argy)	I	2	Integer *4	Integer *U
Arithmetic	I rArg,q { i					
	AMOD	Argyi-	----	*Arg,	I	2
tArg,!						
	OMOD	Where: [x] is the	I	2	Real #*8	Real *8
		largest integer<	x			
[N 1 1 1 1 4] 4						
L) T T T T T 1 1						
Absolute value	IABS	}jArg] .	I	1	Integer *4	Integer *4
	ABS i	I	1	Real #*4	Real *4	
	DABS		I	1	Real *8	Real *8
I t : — ; + { !						
	CABS	{(a2+b2) for a+bi	o]	1	Complex *8	[Real *4]
	CDABS		o	1	Complex *16	Real *8
L] 1 1 i R 1 [
r T T . T T 1 T 1						
Truncation	INT	sign of Arg times	I	1	Real *u	Integer *Uu
i { largest integer i 1 i i i						
[<lArg] !]		
	AINT		I	1 JReal #*u4	Real *U	
	IDINT		I	1	Real *8	Integer *4
L- L 1 L 1 1 i J

(Continued)

110

Table 4. Mathematical Function Subprograms (Continued)

r T T T T T T 1
| [| | _ [[|Type of [
| |Entry | | In-Line (I) |No. of]| Type of | Fanction |
| Function |Name |[Definition |out-of-Line (O)| Arg. | Arguments |[Value |
L 1 1 4 4) T i]
13 1 T i i]]]
|Obtaining most | SNGL | | I | 1 |Real #8 |Real *4 |
|significant part | | | | | | |
jof a Real *8 | | | { | | |
|argument ! ! | ! | | i
t + + + + + + 1
|Obtain real |REAL | | I | 1 |Complex *8 |Real *4 |
|part of complex | | | | | | |
jargument i ! i i i i i
t } + + 1 + + 1
|Obtain imaginary |AIMAG | | I | 1 |Complex *8 |Real *i4 |
|part of complex | | | | | | |
|argument] | | | | | I
IR 1] 1 L] s 1 3
T T T 1 T T T 1
Express a Real	DBLE		I	1	Real *4	Real #*8
*4 argument in						
Real *8 form						
L 1] L 1. 1 [l 4						
r T T T T T T hl						
Express two real	CMPLX	C=Arg,,+iArg,	I	2	Real *i4	Complex #*8
arguments in com-	DCMPLX		I	2	Real *8	Complex *16
plex form I						
N 1 1 1 L] 1 H 4						
1 T T B T T T T 1						
Obtain conjugate	CONJG	C=X-iY¥Y	I	1	Complex *8	Complex *8
Jof a complex	DCONJG	For Arg=X+iY	I	1	Complex *16	Complex *16
argument		i		I		
L L L L L L 1 4

Appendix C: FORTRAN Supplied Subprograms 111

APPENDIX D: SAMPLE PROGRAMS

SAMPLE PROGRAM 1

The

sample program (Figure 2) is designed to find all of the prime

numbers between 1 and 1000. A prime number is an integer that cannot be
evenly divided by any integer except itself and 1. Thus 1, 2, 3, 5, 7,

11, ...

are prime numbers. The number 9, for example, is not a prime

number since it can evenly be divided by 3.

FORTRAN Coding Form il
PROGRAM SAM PI.E PROGRAM i PUNCHING GRamic PAGE 1 oF 1
PROGRAMMER I DATE 6 / 66 INSTRUCTIONS PUNCH CARD ELECTRO NUMBER™
T |5 FORTRAN STATEMENT DENTIFCATION
C | | | PRIME NUMBER PROBLEM 1R : o ‘ ‘
100 WRITE (698) || 1 ; IR EEEEE NN
8] FORMAT, (52H FOLLOWING IS/ A LIST OF PRIME NUMBERS FROM I TO 1408/
11119XsAH1/ 49X s[AHI2/19X]2 1 H3)| ‘ | ! : ‘ B
1:@1] |1]=5] ! i Bl | ! | : :
3 AT ’
1772 A=ISQRTI(]AD B
1@¢3[[=A
1¢1 DO 1| K=3>122
@5 IL=T/K »
" Ade IF(L¥K-T)19294
A/ [CONT[INUE
1@7] WRITE (l6s5)I
5| FORMAT (I29)
2 I=1I+2
198 IF(1190@-TI)) 743
Y WRITE (629) f ‘
9| FORMAT] [(1l4H PRIOGRAM ERROR)
7] WRITE [(616)]
6| [FJORMAT [(3[{H THIS T'S| THE END 'OF THE| PROGRAM) e
1169 [ETOP ! t i e j T
END ‘ NN ‘ Bl

® Figure 2. Sample Program 1

112

SAMPLE PRCGRAM 2

The n points (x;,; y;) are to be used to fit an m degree pclynomial by
the least-squares method.

Y T agt a4x + agx? + ... + apxi

In order to obtain the coefficients ag, a4,..., am, it is necessary to
solve the normal equations:

(1) Woao + W1a1 t eee + Wmam = ZO
{2} Wij3g ¥+ WopBg ¥ eee * Wpigam = Z,
(m+1) Wma + Wm+1a1 + ... + Wzmam = Zm
where:
n
Wo = n Z =3 Y4
i=1
n n
Wy =3 xj§ Ze = X ¥iXj
i=1 i=1
n n
Wy = 3 x;2 Z, = ; v;ixi?
i=1 i=1
. n
. Zm = X y;ixyM
- i=1
n
W2m = 2 xizm
i=1 -

After the W's and Z's have been computed, the normal equations are
solved by the method of elimination which is illustrated by the
following solution of the normal equations for a second degree polynomi-
al m = 2).

(1) Woa, + Weay + Wia, = Z,
(2) Wiao + Wpay + Wizax = Z4
(3) Waa, + Waayq + Wya, = Zy

The forward solution is as follows:
1. Divide equation (1) by W,

2. Multiply the equation resulting from step 1 by W, and subtract from
equation (2).

3. Multiply the equation resulting from step 1 by W, and subtract from
equation (3).

Appendix D: Sample Programs 113

The resulting equations are:

(4) a, + ky2a4 + byzaz = bqg
(5) kazas + baza, = bog
(6) bzzaq + bazas = bag
where:
bag = We/W,, bya = Wy/Wg, baa = Zo/We
bas = Wa-b42Ws , b2z = W3—DbqaWe , bau = Z1-bqu Wy

bas = Wa—kg2Wa , bas = Wu=bgaWz , bay = Zy-bagWy

Steps 1 and 2 are repeated using equations (5) and (6), with b,, and bis,
instead of Wy, and Wy. The resulting equations are:

(7 Aq + Cz3a2 = Cay4
(8) Cazdz = Caa

where:

bz3/bs> ¢+ C24 bau/baz

Cz2a

Caaz = D33=C23b3z , Caa D34—C24 D32

The backward solution is as follows:

(9) Qs = Ca3yu/Caa from equation (8)
(10) a4 = Ca4-Cz3zas from equation (7)
(11) a = b1q ‘b12aq—b1 a3da from eqllaf‘:ion (u)

Figure 3 1is a possible FORTRAN program for carrying out the
calculations for the case: n = 100, m £ 10. Wy, Wy, Ws, <e., Wop are
stored in W(1l), W(2), W(3), ..., W(2M+1), respectively. Zor 24, 23,
eeey 2y are stored in Z (1), Z (2), Z (3), <., Z(M+1), respectively.

114

IBM

FORTRAN Coding Form

mowm SAMPLE PROGRAM 2

PUNCHING

PROGRAMMER

6/66

INSTRUCTIONS

T
Pdated 0 0.2

GRAPHIC PAGE 1 or 3

oo [CARD ELECTRO NUMBER"

STATEMENT | Z
NUMBER S

FORTRAN STATEMENT

IDENTIFICATION
SEQUENCE

iz 5 & 56

al_a2 83 4

55756 57 58 59 80 61

EAL]

,A(ii)aB?

2 63 64 &5 & & 68 &9 70 71 12
T T

73 74 75 76 77 78 79 B0
T H

ORMA

=] | D |5

£

ORMA

EA

@ |~

(
/
6
5| N[2 (X(T

(3.1
= ~m[~
- 5
o[|«

EdLN |
(TR

ZU!‘rjr:O'l‘l‘n?U"

LW

L3 N (N [

OGO
Lo o [0 et e (2 | NN KR =

—ls| o | 2Z]a [N

=16

Ll

" |~

YD)

el

. 13

i |
I1)%P

l—ivv

O[T W= O[O | N[0S NS

T

i

[

S
111

E
i
[

|

iij”iéjm

it 23 45

| { H i
(3 AN TSNS vawznzlnnuzzevzszysoalazuuassannzywu 4204446«.nuwsoslszsas‘sssevusveoslamua“wau

70772[73747575777077&

#A stondard card form, IBM electro 888157, is available for punching stafements from this form

® Figure 3.

Sample Program 2

[p—
IBM FORTRAN Coding Parm —
moan SAMPLE PROGRAM 2 roncrING cramic met 2 o 3
INSTR! N [CARD NUMBER*

PROGRAMMER lout 6/66 INSTRUCTIONS PUNCH

TATEMEN! z IDENTIRCATION

Rerweial 5 FORTRAN STATEMENT EE
i 2 3 4 5])6]7 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 St 62 63 64 65 66 &7 68 69 70 7| 72|73 74 75 76 77 78 79 .

1

WD P

T

6
7

LiZ

1

T=ts

19LZ |

75

w(J

Lal

22 K=1sLZ _
. 22] B(KsLB) =] Z(K)|[-
23 DO 31 L=lsLZE ‘ ‘

i DIVB| = (L’Lg' L]] |1

B(L>J)/DIV

i

) 28133233

I19L2

B(IL])

LyLB

B(IsJD-B(L

5J)¥FMULTB

33

(LZ5LB)

35

i

I
I
i
|

123 4 5]

|
7 & 9011213 U5 Y BY NN 2B AB BT ABNN RV UD B IR 2OME 46‘740‘9505‘ 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 &9 W 71 72

T4 7S 7677 78T

“A stondard cord form, 1B electro 888157,

oildble for punching statements from this form

e Figure 3.

Sample Program 2 (Continued)

Appendix D:

Sample Programs 115

m FORTRAN Coding Form b Bion,
PROGRAM SAM PLE PROGRAM 2 [FUNCHING " :AA::EléT :;U?KR'
PROGRAMMER e G / 66 INSTRUCTIONS PUNCH ®
SATMENT 2 FORTRAN STATEMENT i
l73‘5:7l9,‘0||IZ|J|4‘15|617IHWZOZIEZ!ZIZZGWZ!?VWJW3?3334‘-'536373839404!42’43“45%47QAI9505|525354555657585960”42Kiu‘ﬁééﬂéﬂwmﬂﬂn‘ﬂ7576ﬂn79w
1 B7 [STEMA = 'STEMA+B(I-1sJ)¥A/()) BEEEERERBERE
I =1-1 ‘
" ACT) = B(IsLB)-SIGMA
g TF (I-1) 41941)435 ,
Wi WRITE [(e[2) [(AICIDIl=1sLZ)
sn‘ ! . [: i i ;\‘ |
ENDI i
| |
i 7
|
- ‘ Lol |
i i Cod i
| B AR
! i I | P P !
i ! |
! 1 T T
i
H T
H .
] T 1
I
1T i
1 |
i
T ;
i "
]
i
i " I
|2345é7.9IﬂIIIZ1114|5|6|7|!19201|222324526272829N31n&iu:&“wa&]ﬁlﬁﬂQU“““”‘!WSDH52535‘5556‘57565’9&0“&2636“666667&59707|n7374ﬁ]7bkﬂm79’w
'A standard cord form, 1BM electro 888157, s availoble for punching statements from this form

® Figure 3. Sample Program 2 (Continued)

The elements of the W array, except W(1), are set equal to zero.
W (1) is set equal to N. For each value of I, Xj and Y;j are selected.
The powers of Xj are computed and accumulated in the correct W counters.
The powers of Xj are multiplied by ¥; and the products are accumulated
in the correct Z counters. 1In order to save machine time when the
object program is being run, the previously computed power of Xji is used
when computing the next power of Xj. Note the use of variables as index

parameters. By the time control has passed to statement 17, the
counters have been set as follows:
N
W(l) =N Z() =3 ¥
I=1
N N
I=1 I=1
N N
W3) =3 xg2 Z2(3) =3 YrX{2
I=1 I=1
- N M
. ZM+1) =3 YrX;p
- I=1
N
W(2M+l) = 3 xp=M
I=1

116

By the time control has passed,to statement 23, the values of Wy, W,,
eeey Wom+s have been placed in the storage locations corresponding to
columns 1 through M + i, rows 1 through M + 1, of the B array, and the
values of Z , Z4, ..., Zp have been stored in the locations correspond-
ing to the column of the B array. For example, for the illustrative
problem (M = 2), columns 1 through 4, rows 1 through 3, of the B array
would be set to the following computed values:

Wa Wa Wa Z4
W2 Vs Wy Zay

This matrix represents equations (1), (2, and (3), the normal
equations for M = 2.

The forward solution, which results in equations (4), (7), and (8) in
the illustrative problem, is carried out by statements 23 through 31.
By the time control has passed to statement 33, the coefficients of the
Al terms in the M + 1 equations which would be obtained in hand
calculations have replaced the contents of the locations corresponding
to columns 1 through M+1, rows 1 through M+1, c¢f the B array, and the
constants on the right-hand side of the equations have replaced the
contents of the locations corresponding to column M+2, rows 1 through
M+1, of the B array. For the illustrative problem, columns 1 through 4,
rows 1 through 3, of the B array would be set to the following computed
values:

1 by2 bsa b4
0 1 C23 Caa
0 0 Cas Caan

This mwatrix represents eguations %), (7), and (8).

The backward solution, which results in equations (9), (10), and (11)
in the illustrative problem, is carried out by statements 33 through 40.
By the time control has passed to statement 41, which prints the values
of the A9 terms, the values of the (M+1)*A7 terms have keen stored in
the M + 1 locations for the A array. For the illustrative problem, the
A array would contain the following computed values for a,, a,, and aq

respectively:

Location Contents

A (3) C34/Caa

A (2) C24~Cz3a2

A(hH b4y -b4aas-bgaa

The resulting values of the Ay terms are then printed according to
the FORMAT specification in statement 2.

Appendix D: Sample Programs 117

A format code 62-63
Addition 16
(see also arithmetic operators)
Additional input/output statements
BACKSPACE 70
END FILE 69
REWIND 69
Adjustable dimensions 81-82
Alphabetic characters (table) 105
Alphameric characters 13,105
American Standards Association (ASA)
FORTRAN 5
AND (see logical operators)
Arithmetic and logical assignment
statement 7,27-28
Arithmetic expressions
arithmetic operators
mode 18
order of computation 10

69-70

16-20
16-20

use of parentheses 19-20
Arithmetic IF 32
Arithmetic operators 16-20

Arrangement of arrays in storage 25-26
Arrays 23-26
arrangement in storage 25-26
declaring size of 25
subscripted variables 23
subscripts 25
ASSIGN statement 31-32
Assigned GO TO statement 31-32
Associated variable 71
BACKSPACE statement 70
Basic input/output statements #41-50,73-75

READ statements 41-48,73-74
WRITE statements 48-50,74-75
Basic Operating System 5
Basic Programming Support 5
Blank common 84-86
Blank fields (see X format code)
Blank lines (see carriage control)
Blanks 8
BLOCK DATA subprogram 104

Boundary alignment 86-87,89

CALL statement 97-98

Coding form 8

Comments lines 8

COMMON statement 83-87
blank common 83-86

declaring size of an array 25
labeled common 84-86
programming considerations
Compiler 5
Complex constants 11
COMPLEX statement 80
(see also FUNCTION subprograms)
Computed GO TO statement 30
Constants 8-13
complex 11
double precision 9-10
hexadecimal 12-13

86-87

INDEX

integer 9

literal 12

logical 11

real 9-10
Continuation lines 7
CONTINUE statement 37-38

Contrel statements 29-39
arithmetic IF 32-33
assigned GO TO 31-32

computed GO TO 30

CONTINUE 37-38

DO 34-37

END 39

logical IF 33-34

PAUSE 38-39

STOP 39

unconditional GO TO 29-30
Conversion codes (see format codes)

D decimal exponent
D format code 60
DATA initialization statement 107-108
Data set 40
Data set reference number 40
Decimal exponents 9-10,60
Declaring the size of an array 25
DEFINE FILE statement 70-72
Device (I/0) 40
Digit (see numeric characters)
DIMENSION statement 82
adjustable dimensions 81-82
declaring the size of an array 25
Direct access input/output statements
70-76
Division 16
(see also arithmetic operators)
DO statement 34-37
DO variable 3u4-37
Double precision constants 9-10
DOUBLE PRECISION statement 108

9-10, 60

E decimal exponent
E format code 60
END FILE statement 69 .
END parameter in a READ statement 41
END statement 39,95-96
ENTRY statement 101-103"
EQ (see relational operators)
EQUIVALENCE statement 88-89
ERR parameter in a READ statement 41,73
Explicit specification statement 15,79-82
Exponentiation 16,18-19
(see also arithmetic operators)
Exponents (see decimal exponents)
Expressions 16-23
arithmetic 16-20
logical 20-23
EXTERNAL statement

9-10, 60

103-104
F forwat code 59

FALSE 11
(see also logical expressions)

Index 119

Features of System/360 FORTRAN IV 5-6
FIND statement 75-76
Format codes 54-69

A code 61-62

carriage control 69

D and E codes 60

F code 59

G code 54-57

H code 65

I code 58-59

L code 61

numeric codes 58-60
scale factor-P 66-68
T code 66

X code 65

Z code 60-61

FORMAT statement 40,50-69
format codes 54-69
FORTRAN record 54-56
literal data 64
reading FORMAT statements 47
FORTRAN
American Standards Association 5
Basic Operating System 5
Basic Programming Support 5
coding form 8
compiler 5
library 109-111
Model 44 Programming System 5
object program 5
operating system 5
operating system (E) 5
record 40,54-56
source program 5
statements 7

supplied subprograms 109-111
Functions 91-96

definition 91

FUNCTION subprograms 93-96

reference to 91
statement function subprograms 91-92
G format code 54-57
GE (see relational operators)
GO TO statements 29-32
assigned 31-32
computed 30
unconditional 29-30
GT (see relational operators)

H format code 65
Hexadecimal constants
Hierarchy of operations
in a logical expression 22-23
in an arithmetic expression 19-20

12-13

I format code 58-59
I/0 list
in a NAMELIST U42-44
in a READ 41,73
in a WRITE 47,74
Imaginary number (see complex constants)
IMPLICIT specification statement 15,77-79
In-line 109
Indexing I/O lists 46
Indexing parameters in a DO loop 34-35
Input/output statements 7,40-76
BACKSPACE 70

120

direct access statements 70-76
END FILE 69

FIND 75-76

READ 41-48,73-74

REWIND 69

sequential statements 40-70
WRITE 48-50,74-75

Integer constants 9
Integer division 20
INTEGER statement 79-82
(see also FUNCTION subprograms)

L format code 61
Labeled common 84-86
LE (see relational operators)
Length specification
(see optional length specification,
standard length specification)
Library 109-111
List (see I/O list)
Literal constants 12
Literal data in a FORMAT statement 64
Logical constants 11
Logical expressions 20-23
logical operators 21-22
order of computation 22-23
relational operators 20-21
use of parentheses 23
Logical IF statement 33-34
Logical operators 21-22
LOGICAL statement 79-82
(see also FUNCTION subprograms)
Looping (see DO statement)
LT (see relational operators)

Mathematical function subprograms 109-111
Mixed-mode 5

(see also expressions)
Mode of an arithmetic expression 18-19

Model 44 Programming System 5
Multiline listing 57
Multiple ENTRY into a subprograwm 100-103
Multiplication 16
(see also arithmetic operators)

Named common (see labeled common)
NAMELIST statement 42-44,48

NE (see relational operators)
Nest of DOs 35-37

NOT (see logical operators)
Numeric characters 105

Numeric format codes 58-60

Object program 5
Operands 17-18
Operating system 5
Operating system (E) S

Operators
arithmetic 16
logical 21-22

relational 20-21
Optional length specification for
variables 14,77-82
OR (see logical operators)
Order of computation
in a logical expression
in an arithmetic expressiocn
OCut-of-line 109-111

22-23
19-20

P format code 66-68
Parentheses
in a FORMAT statement 51-53
in a logical expression 23
in an arithmetic expression 20
PAUSE statement 38-39
Predefined specification 14-15
PRINT statement 107
Programming considerations
in using COMMON blocks 86-87
in using DEFINE FILE statements 72
in using DO statements 36-37
in using EQUIVALENCE groups 89

PUNCH statement 106

Range of a DO statement 35-36
READ statements 41-48,73-74
direct access READ statement 73-74
READ (a) list 45
READ (a,b) list 44-45
READ (a'r,b) 1list 73-74
READ (a,x) Uu2-44
READ b,list 106
sequential read statements 41-48
Reading FORMAT statements 47
Real constants 9-10
REAL statement 79-82
(see also FUNCTION subprograms)
Referencing of arguments by name and by
value 98-99
Relational operators 20-21
Repeat constant 43
RETURN statement
in a FUNCTION subprogram 95-96
in a SUBROUTINE subprogram 99-100
REWIND statement 69

Sample program 1 112
Sample program 2 113-117
Sequential input/output statements 40-70
Service subprograms 109
Slashes in a FORMAT statement 51-52
Source program 5
Special characters (table) 105
Specification statements 7,90-104
COMMON 83-87
DEFINE FILE 70-71
DIMENSION 82
EQUIVALENCE 87-89
explicit 15,79-82
EXTERNAL 103-10&4
FORMAT 50-69
IMPLICIT 15,77-79
NAMELIST Uu42-44
Standard length specification for
variables 14-15,77-82

Statements 7
arithmetic and logical assignment 27-28
contrecl 29-39
direct access I/0 70-7¢
sequential I70 40-70
specification 77-89
sukbprogram 90-104
STOP statement 39
Subprograms
FORTRAN supplied 109-111
FUNCTION 93-96
statement functions 91-92
SUBROUTINE 96-97
Subscripted variable 23
Subscripts 25
Subtraction 16
(see also arithmetic operators)
Symbolic unit number
(see data set reference number)

T format code 66
TRUE 11

(see also logical expressions)
Type and length specification 14
Type declaration

explicit 15,79-82

IMPLICIT 15,78-79

predefined convention 1u4-15
Type specification of FUNCTION subprograms

94-95

Type statements

explicit 79-82

IMPLICIT 78-79

Unconditicnal GO TO statement 29-30

Variable FORMAT statements

(see reading FORMAT statements)
Variables 13-15

nawres 14

subscripted 23

type declaratiom 14-15

types and length specifications 14

WRITE statements 4#8-50,74-75
direct access WRITE statement 74-75
sequential WRITE statements U48-50
WRITE (a) 1list 49-50
WRITE (a,b) list 48-49
WRITE (a'r,b) list 74-75
WRITE (a,x) 48

X format code 65

Z format code 60-61

Index 121

L

CUT 7 °"NG LINE

READER'S COMMENTS

Title: IBM System/360 Form: C28-6515-4
FORTRAN IV Language

Is the material: Yes No
Easy to Read? - -
Well organized? - -
Complete? I —
Well illustrated? N -
Accurate? - —
Suitable for its intended audience? - P
How did you use this publication?
___As an introduction to the subject ___ For additional knowledge
Other
Please check the items that describe your position: .
—— Customer personnel —Operator - Sales Representative
— IBM personnel —_Programmer —Systems Engineer
— Manager — Customer Engineer —_Trainee
— Systems Analyst ___Instructor Other

Please check specific criticism(s), give page number(s),and explain below:
——Clarification on page(s)
— Addition on page(s)
— Deletion on page(s)
— Error on page(s)

Explanation:

Name
Company
Address
City
State Zip Code

FOLD ON TWO LINES,STAPLE AND MAIL
No Postage Necessary if Mailed in U.S.A.

sta

staple
fold fc
r 1
| FIRST CLASS |
i PERMIT NO. |
I I
| POUGHKEEPSIE, N.Y. |
L J
) BUSINESS REPLY MATIL
| NU POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.
L RRRNE
(ARNEE!
POSTAGE WILL BE PAID BY
RN
IBM CORPORATION
P.0O. BOX 390 (NERRR]
POUGHKEEPSIE, N. Y. 12602
ARRRE
)
ATTN: PROGRAMMING SYSTEMS PUBLICATIONS ERREN 2.
DEPT. D58 &
L &
o
o
fold b fo.
0
=
Q
no
P
N
0
-
ut
I
BV "
®
International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y. 10601 ‘
[USA Only]
IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
stapl]

(International]

C28-6515-4

TIBIM

®

International Business Machines Corporation
Data Processing Division

112 East Post Road, White Plains, N.Y. 10601
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

VSTl UT PSjuUTId

7=$T1$9-920

