
Systems Reference Library

IBM System/360

FORTRAN IV Language

This publication describes and illus­
trates the use of the FORTRAN IV language
for the IBM System/360 Operating System and
the IBM System/360 Model 44 Programming
System.

File No. S360-25
Form C28-6515-4 as

44PS

PREFACE

This publication describes the IBM
System/360 FORTRAN IV language for the IBM
System/360 Operating System and the IBM
System/360 Model 44 Programming System. A
reader should have some knowledge of an
existing FORTRAN language before using this
publication.

The material in the FORTRAN IV publica­
tion is arranged to provide a quick defini­
tion and syntactical reference to the var­
ious elements of the language by means of a
box format. In addition, sufficient text
describing each element, with appropriate
examples as to possible use, is given.

Appendixes contain additional informa­
tion useful in writing a FORTRAN IV pro­
gram. This information consists of a table
of source program characters, a list of
other FORTRAN statements accepted by
FORTRAN IV, a list of FORTRAN supplied
mathematical subprograms, and sample pro­
grams. Out-of-line mathematical subpro­
grams and service subprograms are described
in the publication IBM System/360 Operating
System: FORTRAN IV (E) Library Subprograms,
Form C28-6596.

Fourth Edition

r---1

TEMPORARY RESTRICTION

The ordering of variables in COMMON
blocks and equivalence groups is
subject to the following restriction:

The programmer must always
ensure proper boundary align­
ment of all variables in COM­
MON blocks and eguivalence
groups.

The methods of ensuring proper align­
ment are given in the descriptions of
the COMMON and EQUIVALENCE statements
in this publication.

The restriction will be rerooved in
the near future.

This is a major revision of, and obsoletes, the previous edition, Form
C28-6515-3 and Technical Newsletter N28-2104. Automatic function typing
has been removed from this edition which also contains minor technical
corrections and additions to the previous edition. Technical changes to
the text are indicated by a vertical line to the left of the change;
revised illustrations are indicated by the symbol • to the left of the
caption.

Significant changes or additions to the specifications contained in this
publication will be reported in subsequent revisions or Technical
Newsletters.

This publication was prepared for production using an IBM computer to
update the text and to control the page and line format. Page
impressions for photo-offset printing were obtained from an IBM 1403
Printer using a special print chain.

Requests for copies of IBM publications should be made to your IBM
representative or to the IBM branch office serving your locality.

A form is provided at the back of this publication for reader's
comments. If the form has been removed, coroments may be addressed to
IBM Corporation, Programming Systems Publications, Department D58,
PO Box 390, Poughkeepsie, N. Y. 12602

© International Business Machines Corporation 1965, 1966

INTRODUCTION • • • • • • •

ELEMENTS OF THE LANGUAGE •

Statements • • • • • .• • •
Coding FORTRAN Statements •

Constants •••••••
Integer Constants •
Real Constants •••
Complex Constants
Logical Constants •
Literal Constants •
Hexadecimal Constants •

Variables •••••••••
Variable Names •••••
Variable Types and Lengths. • •
Type Declaration by the Predefined
Specification. • • • • • • • • • •

Type Declaration by the Implicit
Specification Statement. • • .

Type Declaration by Explicit
Specification Statements •

Expressions •••••••••
Arithmetic Expressions.

Arithmetic Ooerators
Logical Expressions • • • • • •

Relational Operators •
Logical Operators ••

Arrays ••

Subscripts .
Declaring the Size of an Array.
Arrangement of Arrays in Storage. •

ARITHMETIC AND LOGICAL ASSIGNMENT
STATEMENT

CONTROL STATEMENTS

The GO TO Statements •
Unconditional GO TO Statement.
Computed GO TO Statement •
The ASSIGN and Assigned GO TO
Statements.

Additional Control Statements.
Arithmetic IF Statement.
Logical IF Statement
DO Statement • • • •
CONTINUE Statement •
PAUSE Statement.
STOP Statement •
END Statement •

INPUT/OUTPUT STATEMENTS ••

5

7

7
7

8
9
9

11
11
12
12

13
• 13
• 14

• 14

• 15

15

16
• 16
• 16
• 20
• 20

21

• 23

25
• 25
• 25

27

29

29
29

• 30

31

32
32
33
34
37

• 38
• 39

39

• 40

CONTENTS

Sequential Input/Output Statements • • • 40
READ Statement. • • • • • • • • • 41

The Form READ (a,x) •••••••• 42
The Form READ Ca,b) list ••••• 44
The Form READ (a) list • • • 45
Indexing I/O Lists • • • • • • 46
Reading Format Statements. • • • • 47

WRITE Statement • • • • • • • • 47
The Form WRITE Ca,x) ••••••• 48
The Form WRITE (a,b) list ••••• 48
The Form WRITE (a) list. . • • 49

FORMAT Statement. • • • • 50
G Format Code. • • • • • • • 54
Numeric Format Codes (I,F,E,D) •• 58
I Format Code. • • • • • • • • 59
F Format Code. • • • • 59
D and E Format Codes • 60
Z Format Code. • 60
L Format Code. • • • • • • • 61
A Format Code. • • • • 61
Literal Data in a Format
Statement • • • . • • • • • • 64

H Format Code. • • • • 65
X Format Code. • • • • • • • • 65
T Format Code. •
Scale Factor - P • •

• • • • • • • 6 6
• • 66

Carriage Control • • • • 6 9
END FILE Statement.
REWIND Statement. • •
BACKSPACE Statement • •

• • • • 6 9
69

- • 70

Direct Access Input/Output Statements. • 70
DEFINE FILE Statement. • • • • • • 70
Programming Considerations • • •• 72
READ Statement ~ 73
WRITE Statement. • 74
FIND Statement • • • • • 75

SPECIFICATION STATEMENTS •

The Type Statements. • • •
IMPLICIT Statement • •
Explicit Specification
Statements ••••••

Adjustable Dimensions.

• • 77

77
• 77

• • 79
• • 81

Additional Specification Statements ••• 82
DIMENSION Statement. • • • • 82
COMMON Statement • • • • • • • • • 83
Blank and Labeled Common • •
Programming Considerations •
EQUIVALENCE Statement. • •
Programming Considerations •

SUBPROGRAMS. • • • • • • •
Na~ing Subprograms.
Functions • • • • •

Function Definition. .
Function Reference • •

• 84
• 86

87
• 89

. 90
90

• 91
• • • 91

• 91

CONTENTS, CONTINUED

Statement Functions • • • • • • • • • 91
FUNCTION Subprograms. • • • • • • 93

Type Specification of the
FUNCTION Subprogram • • • •

RETURN and END Statements in a
Function Subprogram

SUBROUTINE Subprograms.
CALL Statement • • •

Arguments in a FUNCTION and

94

• 95
96
97

SUBROUTINE Subprogram. • • • 98
RETURN Statement in a SUBROUTINE

Subprogram. • • • • • • • • • •
Multiple ENTRY into a Subprogram
Additional Rules for Using ENTRY
EXTERNAL Statement.

Block Data Subprogram •

• 100
.101
.103
.103
.104

APPENDIX A: SOURCE PROGRAM CHARACTERS .105

ILLUSTRATIONS

FIGURES

Figure 1.
Figure 2.
Figure 3.

FORTRAN Coding Form
Sample Program 1 ••
Sample Program 2 ••

8
• •• 112
• •• 115

APPENDIX B: OTHER FORTRAN STATEMENTS
ACCEPTED BY FORTRAN IV. • • .106

READ Statement • • • .106
PUNCH Statement. • • •• 106
PRINT Statement. • • ••• 107
DATA Initialization Statement ••• 107
DOUBLE PRECISION Statement •• 108

APPENDIX C: FORTRAN· SUPPLIED
SUBPROGRAMS • .109

APPENDIX D: SAMPLE PROGRAMS • •• 112

Sample Program 1 •• 112

Sample Program 2 ••• 113

INDEX.

TABLES

Table 1. Determining the Mode of an
Expression Containing Operands of

• .119

Different Types • • • • • • • • • • 17
Table 2. Valid Combinations with

Respect to thE Arithmetic Operator, **' 18
Table 3. Insurance Premium Codes •••• 24
Table 4. Mathematical Function

Subprograms • • . . • • • • • • • • 10 9

INTRODUCTION

I

IBM System/360 FORTRAN IV for the Operating system and the Model 44
Programming System is comprised of a language, a library of subprograms,
and a compiler.

The FORTRAN IV language is especially useful in writing programs for
scientific and engineering applications that involve mathematical compu­
tations. In fact, the name of the language -FORTRAN- is derived from
its primary use: FORmula TRANslatinge

Source programs written in the FORTRAN language consist of a set of
statements constructed from the elements described in this publication.

The FORTRAN compiler analyzes the source program statements and
transforms them into an object program that is suitable for execution on
the IBM system/360. In addition, when the FORTRAN compiler detects
errors in the source program, appropriate error messages are produced.

I
The FORTRAN compiler operates under control of an operating system

which provides the FORTRAN compiler with input/output and other ser­
vices. Object programs generated by the FORTRAN compiler also operate
under operating system control and depend on it for similar services.

The IBM System/360 FORTRAN IV language is compatible with and
encompasses the American Standards Association CASA) FORTRAN, including
its mathematical subroutine provisions. It also contains, as proper
subsets, Operating system FORTRAN IV CE), Basic Operating system FORTRAN
IV, and Basic Programming support FORTRAN IV.

Any valid programs compiled and executed using any System/360 subset
FORTRAN may also be compiled and executPn by FORTRAN IV compilers.
Equivalent results are assured by:

1. Common data formats.
2. Common format code routines.
3. Common mathematical subroutines.

All of the features and facilities in Operating System FORTRAN IV CE)
also exist in System/360 FORTRAN IV. Equivalent results from valid
programs compiled by either FORTRAN IV (E) and FORTRAN IV are assured
by:

1. Common data formats.
2. Common format code routines.
3. Common calling sequences.
4. Common libraries.

The following features facilitate the writing of source programs and
reduce the possibility of coding errors:

1. Mixed-Mode: Expressions may consist of constants and variables, of
the same and/or different types.

2. Spacing Format Code: The T format code allows input/output data to
be transferred beginning at any specified position.

3. Literal Format Code: Apostrophes ~ay be used to enclose literal
data in a FORMAT Statement.

Introduction 5

6

4. Variable Attribute Control: The attributes of variables and arrays
may now be explicitly specified in the source program. This
facility is provided by a single explicit specification statement
which allows a programmer to:

a. Specify storage length.
b. Explicitly type a variable as integer, real. complex, or

logical.
c. Specify the dimension of arrays.
d. Specify data initialization values for variables.

5. Adjustable Array Dimensions: The dimensions of an array in a
subprogram may be specified as variables; when the subprogram is
called, the absolute array dimensions are substituted.

6. Additional Format Code: An additional format code - G - can be used
to specify the format of numeric and logical data. Previously
implemented format codes are also permitted.

7. Named I/O List: Formatting of input/output data is facilitated by
reading and writing operations without reference to a FORMAT
statement or list.

ELEMENTS OF THE LANGUAGE

STATEMENTS

Source programs consist of a set of statements from which the
compiler generates machine instructions, constants, and storage areas.
A given FORTRAN statement effectively performs one of three functions:

1~ Causes certain operations to be perforwed (e:g:. add, multiply,
branch).

2. Specifies the nature of the data being handled.
3. Specifies the characteristics of the source program.

FORTRAN statements are usually composed of certain FORTRAN key words
used in conjunction with the basic elements of the language: constants,
variables, and expressions. The five categories of FORTRAN statements
are as follows:

1. Arithmetic and Logical Assignment Statements: Upon execution of an
arithmetic or logical assignment statement, the result of calcula­
tions performed or conditions tested replaces the current value of
a designated variable or subscripted variatle.

2. Control Statements: These statements enable the user to govern the
flow and terminate the execution of the otject program.

3. Input/Output Statements: These statements, in addition to control­
ling input/output CI/O) devices, enable the user to transfer data
between internal storage and an I/O medium.

4. Specification Statements: These statements are used to declare the
properties of variables, arrays, and subprograms (such as type and
amount of storage reserved) and to describe the format of data on
input or out put.

5. Subprogram Statements: These statements enable the user to name and
define functions and sutroutines.

The basic elements of the language are discussed in this section.
The actual FORTRAN statements in which these elements are used are

I discussed in following sections. The phrase executable statements
refers to those statements in groups 1, 2, and 3.

CODING FORTRAN STATEMENTS

The statements of a FORTRAN source program can be written on a
standard FORTRAN coding form, Form No. X28-7327 Csee Figure 1).
FORTRAN statements are written one to a line from columns 7 through 72.
If a statement is too long for one line, it may be continued on as many
as 19 successive lines by placing any character, other than a blank or
zero, in column 6 of each continuation line. For the first line of a
statement, column 6 must be blank or zero.

Columns 1 through 5 of the first line of a statement may contain a
statement number consisting of from 1 through 5 decimal digits. Leading
zeros in a statement number are ignored. Statement numbers may appear
anywhere in columns 1 through 5 and may be assigned in any order; the

Elements of the Language 7

value of statement numbers does not affect the order in which the
statements are executed in a FORTRAN program.

columns 73 through 80 are not significant to the FORTRAN compiler and
may, therefore, be used for program identification, sequencing, or any
other purpose.

FORTRAN Coding Farm

1 I I TPAGE OF t-----------------~-------lT~~~~~~JNs 1 l l TCAR:D ELECTRO NUMBER"

STAlEMENT %
NUMBER 8 FORTRAN STATEMENT SEQUENCE

2_!_ .4 5 6 1 ..!_ 9 10 II__!!_ 13 1.(15 16 17 18 19 20 21 22 23_-2425 26 'l7 28. 29 30 313233 34 35 36 37 38 39 ~ 41 42 43~ 46 47 48-49 SO 51 52 53 54 55 56 57 SB 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 >1 h <,'' :L J< '''·.' ,, '.,·TL '' ' < ~·. ' i' : 1
.m rr •· .lrf ·.· 1

;' l 1
• l l~ '". '' \. · .. I;

1
, '. I 1 ,\.T f '

1'·] 1 ''·'k'L,'' .·.,·T :>',J,,t1. · .. '.\'! T··,, kl I' 1"1·' ·r' 1 1· l t II'' ' Ti
.• J ~ " .. ·: · r · ;. '"i, · i ~"' :' . ·I· ·' · · A · r-:i .. .r . I L · 1 . _u i:r.

1 1 ;-r.
1

1 .: T . T

T I l ' I ' ' i ! i ll I ' i
! i i ; :T T I

T T TTT i·

I l T TT i

l T· I
T : l: L i 1 i

I ; I Tl T!
I ,

I

r : ! Tl
l !

T
T 1

i1 T
11 T

T ! i ! ~ l : - T ; T i I

l : : ; !;
I I

! i i l l; !

I i ' i j I I I ! · I i l I I I I

j_:

T

IT
]

I 1, 1 1 : • ; I _i-t
i ~ • T JJ i l l

:,
I

I :
I I l l

1 2 3 ' s 6 1 e 9 10 11 12 13 14 15 16 11 1s 19 20 21 22 23 24 25 26 'Zl 28 29 30 31 3:2 33 34 35 36 37 38 39 ~ ·41 4'2 43 4-4 45 46 47 48 49 so s1 s2 sJ 54 ss 56 s1 se 59 ro 61 62 63 64 65 66 67 68 69 70 n n 73 74 75 76 n 78 79 eo
•AttandardCClldfonn, llMeltlC'ho888157, isawsilablefcr~hing5tcrhtmerlhff'Ofllthisform

• Figure 1. FORTRAN Coding Form

Commen~s to explain the program may be written in columns 2 through
80 of a line, if the letter C is placed in coluwn 1. Comments may
appear anywhere within the source program. They are not processed by
the FORTRAN compiler, but are printed on the source program listing.
Blanks may be inserted where desired to improve readability.

CONSTANTS

A constant is a fixed, unvarying quantity~ There are four classes of
constants - those that deal with numbers (numerical constants), those
that deal with truth values (logical constants), those that deal with
literal data (literal constants>, and those that deal with hexadecimal
data.

Numerical constants may be integer, real, or complex numbers; logical
constants may be .TRUE. or .FALSE.; and literal constants may be a
string of alphameric and/or special characters.

8

INTEGER CONSTANTS

r--1
I Definition I
~--~
I Integer Constant - a whole number written without a decimal point. I
I It occupies four locations of storage. I
I I
I Maximum Magnitude: 2147483647, i.e., (2 31-1). I
L------------------------------------·----------------------------------J

An integer constant may be positive, zero, or negative; if unsigned,
it is assumed to be positive. Its magnitude must not be greater than
the maximum and it may not contain embedded corrroas.

Examples:

Valid Integer Constants:

0
91
173
-2147483647
-12

Invalid Integer Constants:

0.0
27.
3145903612
5f396

REAL CONSTANTS

(contains a decimal point)
(contains a decimal point)
(exceeds the allowable range)
(embedded comma)

r--1
I Definition I
~--~

Real Constant: - a number with a decimal point optionally followed
by a decimal exponent. This exponent is written as the letter E or
D followed by a signed or unsigned, one- or two-digit integer
constant. A real constant may assume one of two forms:

1. From 1 through 7 decimal digits with a decimal point, optionally
followed by an E decimal exponent. This form occupies 4 storage
locations.

2: Either 1 through 7 decimal digits with a decimal point, followed
by a D decimal exponent or 8 to 16 decimal digits optionally
followed by a D decimal exponent. This form occupies 8 storage
locations and is sometimes ref erred to as a double precision
constant.

Magnitude: (either form) 0 or 16-63 through 1663 Ci.e., approxi­
mately 1075).

L--

Elements of the Language 9

A real constant may be positive, zero, or negative Cif unsigned, it
is assumed to be positive> and must be of the allowable magnitude. It
may not contain embedded commas.. The decimal exponent permits the
expression of a real constant as the product of a real constant times 10
raised to a desired power. If a decimal exponent is given, the decimal
point is not required.

Examples:

10

Valid Real Constants (4 storage locations):

+O.
-999.9999
0.0
5764.1
7.0E+O
19761.25E+1

7.E3 } 7.0E3
7.0E03
7.0E+03
7.0E-03

Ci.e.~ 7.0 x 100 = 7.0)
(i.e., 19761.25 x 101 = 197612.5)

Ci.e., 7.0 x 10 3 = 7000.0)

Ci.e., 7.0 x 10-3 0.007)

Valid Real Constants (8 storage locations):

21.98753829457168
1. 0000000
7.9D3
7.9D03
7.9D+03
7.90+3
7.90-03
7.900
00000001.

} Ci.e., 7.9 x 103 7900.0)

Ci.e., 7.9 x 10-3 = .0079)
Ci.e., 7.9 x 100 = 7.9)

Invalid Real Constants:

0
3,471.1
1.E

1. 2E+113

23.5E+97

7 .. 9D

21. 3E90

(missing a decimal point)
(embedded comma)
(missing a one- or two-digit integer
constant following the E. Note that it is not
interpreted as 1.0 x 100)
CE is followed by a 3 digit
integer constant)
(value exceeds the magnitude permitted; that is,
23.5 x 1097>1663)
(missing a one- or two-digit integer
constant following the 0)
(value exceeds the magnitude permitted;
that is, 21.3 x 1Q90>1663)

COMPLEX CONST&~TS

r--1
I Definition I
~--~

Complex Constant an ordered pair of signed or unsigned real
constants separated by a comma and enclosed in parentheses. A
complex constant may assume one of two forms:

1. From 1 through 7 decimal digits with a decimal point, optionally
followed by an E decimal exponent.. In this form, each number in
the pair occupies 4 storage locations.

I
I

2. Either 1 through 7 decimal digits with a decimal point, followed
by a D decimal exponent or 8 through 16 decimal digits
optionally followed oy a D decimal exponent. In this form each
number in the pair occupies 8 storage locations.

I Magnitude: (either form) 0 or 16- 63 through 166 3 (i.e., approximate-
1 ly 10 75) for each real constant in the pair.
L--

The real constants in a complex constant may be positive, zero, or
negative Cif unsigned, they are assumed to be positive), but they must
be in the given range. The first real constant in a complex constant
represents the real part of the complex number; the second represents
the imaginary part of the complex number. If the exponent is given, the
decimal point is not required.

Examples:

Valid Complex Constants:

(3.2,-1.86) Chas the value 3.2-1.86i)
(-5.0E+03,.16E+02) Chas the value -5000.+16.0i)
(4.0E+03,.16E+02) Chas the value 4000.+16.0i)
(2.1,0.0) Chas the value 2.1+0.0i)
(4.70+2,1.9736148) Chas the value 470.+1.9736148i)

Where i 7J=I
Invalid Complex constants:

(292704,1.697)

C1.2E113,279.3)

C.003E4,.005D6)

LOGICAL CONSTANTS

(the real part does not
contain a decimal point)
(the real part contains
an invalid decimal exponent)
(the parts differ in length)

r--1
I Definition I
~--~
I Logical Constant - a constant that specifies the logical value of a I
I variable. There are two logical values: I
I .TRUE. I
I .FALSE. I
I Each occupies four storage locations and must be preceded and I
I followed by a period as shown above. I
L--J

Elements of the Language 11

The logical constants .• TRUE. and .FALSE. specify that the value of
the logical variable they are associated with is true or false,
respectively. (See the section, "Logical Expressions.ri)

LITERAL CONSTANTS

r--~-------~-----------------1

I Definition I
~--i
I Literal Constant - a string of alphameric and/or special characters I
I enclosed in apostrophes. I
L--------------~--J

The string may contain any valid characters (see Appendix A). The
number of characters in the string, including blanks, may not be greater
than 255. Since apostrophes delimit literal data, a single apostrophe
within such data is represented by double apostrophes. An alternative
form for a literal constant is wH immediately followed by a string of
length ~ of alphameric and/or special characters. A single apostrophe
within such data is represented as a single apostrophe.

Examples:

'DATA'
'INPUT/OUTPUT AREA NO. 2'
'X-COORDINATE
'3.14'
'DON''T'

HEXADECIMAL CONSTANTS

Y-COORDINATE Z-COORDINATE'

r--~--------------------------1

I Definition I
~--i
I Hexadecimal Constant - the character Z followed by a number formed I
I from the set 0 through 9 and A through F. I
L---~-----------------J

Hexadecimal constants may be used only as data initialization values.

One storage location contains two hexadecimal digits. If a constant
is specified as an odd number of digits, a leading hexadecimal zero is
added on the left to fill the storage location. The internal form of
each hexadecimal digit is as follows:

0 - 0000
1 - 0001
2 - 0010
3 - 0011

Examples:

12

Z1C49A2F1
ZBADFAD

4 - 0100
5 - 0101
6 - 0110
7 - 0111

8 - 1000
9 - 1001
A - 1010
B - 1011

c - 1100
D - 1101
E - 1110
F - 1111

The maximum number of digits allowed in a hexadecimal constant
depends upon the length specification of the variable being initialized
(see "Variable Types and Lengths"). The following list shows the
maximum number of digits for each length specification:

Length Specification
of Variable

16
8
4
2
1

Maximum Number of
Hexadecimal Digits

32
16

8
4
2

If the number of digits is greater than the maximum, the leftmost
hexadecimal digits are truncated; if the number of digits is less than
the maximum, hexadecimal zeros are supplied on the left.

VARIABLES

A FORTRAN variable is a symbolic representation of a quantity that is
assigned a value. The value may either be unchanged (i.e., constant) or
may change either for different executions of a program or at different
stages within the program.

For example, in the statement:

A= 5.0+B

both A and B are variables. The value of B is determined by some
previous statement and may change from time to time. The value of A
varies whenever this computation is performed with a new value for B.

VARIABLE NAMES

r--1
I Definition I
~--~
I Variable Name - from 1 through 6 alphameric (i.e., numeric, 0 I
I through 9, or alphabetic, A through Z and $) characters, the first I
I of which must be alphabetic. I
L--J

Variable names are symbols used to distinguish one variable from
another. A name may be used in a source program in one and only one way
(e.g., the name of a variable and that of a subprogram may not be
identical in the same source program). A variable name may not contain
special characters (see Appendix A).

The use of meaningful variable names can serve as an aid in
documenting a program. That is, someone other than the programmer may
look at the program and understand its function. For example, to
compute the distance a car traveled in a certain amount of time at a
given rate of speed, the following statement could have been written:

x = y * z

Elements of the Language 13

where * designates multiplication. However, it would be more meaningful
to someone reading this statement if the programmer had written:

DIST = RATE * TIME

Examples:

Valid Variable Names:

B292
RATE
SQ704
$VAR

Invalid Variable Names:

B292704
4ARRAY
SI.X

(contains more than six characters)
(first character is not alphabetic)
(contains a special character)

VARIABLE TYPES AND LENGTHS

The type of a variable corresponds to the type of data the variable
represents. Thus, an integer variable represents integer data, a real
variable represents real data, etc.

For everv tvoe of variable. there is a corresponding standard and
optional length specification which determines the number of storage
locations that are reserved for each variable. The following list shows
each variable type with its associated standard and optional length:

Variable Type
Integer
Real
Complex
Logical

Standard
4
4
8
4

Optional
2
8

16
1

The ways a programmer may declare the type of a variable are . by use
of the:

1,. Predefined specification contained in the FORTRAN language.
2. Explicit specification statements.
3. IMPLICIT Specification statement.

The optional length specification of a variable may be declared only
by the IMPLICIT or Explicit specification statements. If, in these
statements, no length specification is stated, the standard length is
assumed (see the section, "The Type Statements").

TYPE DECLARATION BY THE PREDEFINED SPECIFICATION

The predefined specification is a convention used to specify varia­
bles as integer or real as follows:

1. If the first character of the variable name is I, J, K, L, M, or N,
the variable is integer.

2. If the first character of the variable name is any other alphabetic
character, the variable is real.

14

This convention is the traditional FORTRAN method of implicitly
specifying the type of a variable as being either integer or real. In
all examples that follow in this publication it is presumed that this
specification holds unless otherwise noted~ Variables defined with this
convention are of standard length.

TYPE DECLARATION BY THE IMPLICIT SPECIFICATION STATEMENT

The IMPLICIT statement allows a programmer to specify the type of
variabLes in much the same way as was specified by the predefined
convention. That is, in both, the type is determined by the first
character of the variable name. However, the programmer, using the
IMPLICIT statement, has the option of specifying which initiaI letters
designate a particular variable type. Further, the IMPLICIT statement
is applicable to all types of variables -- integer, real, complex, and
logical.

The IMPLICIT statement overrides the variable type as determined by
the predefined convention. For example, if the IMPLICIT statement
specifies that variables beginning with the letters A through M are real
variables and variables beginning with the letters N through Y are
integer variables, then the variable ITEM (which would be treated as an
integer variable under the predefined convention) is now treated as a
real variable. Note that variables beginning with the letters Z and $
are (by the predefined convention) treated as real variables. The
IMPLICIT statement is presented in greater detail in the section, "Type
Statements."

TYPE DECLARATION BY EXPLICIT SPECIFICATION STATEMENTS

"Q'7Y"'\1.;,,......;..., e""''W""lo.,...,...;4=~,..."':'l~..;,...."""' ,-..4-"':'l~"'-~"-"""'-.._,_ ,..::J~+-4="-,,... ,.f:,....,....T'l"'I ~\..,,... ,t=.;,....r-..a- T.'T~'TY ,....+
.L.l.A..t:'..L..L'-'..LL. 01:-'C'-'..L..L.l...'-'0.L..l...VU. uL.O.L.<::allC.UL.u U...L...L..LC.L ..L..LVUI L..UC ..L...L..LOL. wo.:r U..L

specifying the type of a variable, in that an explicit specification
statement declares the type of a particular variable by its name rather
than as a group of variables beginning with a particular character.

For example, assume:

1. That an IMPLICIT specification statement overrode the predefined
convention for variables beginning with the letter I by declaring
them to be real.

2. That a subsequent Explicit specification statement declared that
the variable named ITEM is complex.

Then, the variable ITEM is complex and all other variables beginning
with the character I are real. Note that variables beginning with the
letters J through N are specified as integer by the predefined
convention.

These statements are discussed in greater detail in the section,
"Specification Statements."

Elements of the Language 15

EXPRESSIONS

Expressions in their simplest form consist of a single constant or
variable. They may also designate a computation between two or more
constants and/or variables. Expressions may appear in arithmetic
statements and in certain control statements.

FORTRAN IV provides two kinds of expressions: arithmetic and logical.
The value of an arithmetic expression is always a number whose type is
integer, real, or complex. However, the evaluation of a logical
expression always yields a truth value: .TRUE. or .FALSE ••

ARITHMETIC EXPRESSIONS

The simplest arithmetic expression consists of a single constant,
variable, or subscripted variable (see the discussion of arrays). The
constant or variable may be one of the following types:

1. Integer
2. Real
3. Complex

If the constant, variable, or subscripted variable is of the type
integer, the expression is in the integer mode. If it is of the type
real, the expression is in the real mode, etc. The mone of the
expression is determined solely by the type of constant, variable, or
subscripted variable appearing in that expression.

Examples:

Expression
3
I
3.0
A
3.14D3
B
(2.0,5.7)
c

Type of Quantity
Integer Constant'
Integer Variable
Real Constant
Real Variable
Real Constant
Real Variable
Complex Constant
Complex Variable
CSpecif ied as such in a
Type statement)

Mode of Expression
Integer of length 4
Integer of length 4
Real of length 4
Real of length 4
Real of length 8
Real of length 4
Complex of length 8
Complex of length 8

More complicated arithmetic expressions containing two or more
constants and/or variables may be formed by using arithmetic operators
that express the computation(s) to be performed.

Arithmetic Operators

The arithmetic operators are as follows:

Arithmetic Operator

**
*
/
+

16

Definition
Exponentiation
Multiplication
Division
Addition
subtraction

I

RULES FOR CONSTRUCTING ARITHMETIC EXPRESSIONS: The following are the
rules for constructing arithmetic expressions that contain arithmetic
operators:

1. All desired computations must be specified explicitly. That is, if
more than one constant, variable, subscripted variable, or function
reference (see the section "SUBPROGRAMS") appears in an arithmetic
expression, they must be separated from one another by an arithme­
tic operator. For example, the two variables A and B will not be
multiplied if written:

AxB or AB or A•B

If multiplication is desired, then the expression must be written
as follows:

A*B or B*A

2. No two arithmetic operators may appear in sequence in the saree
expression. For example, the following expressions are invalid:

A*/B and A*-B

The expression A*-B could be written correctly as follows:

A* (-B}

In effect, -B will be evaluated first and then A will be multiplied
with it. (For further uses of parentheses, see Rule 6.}

3. The mode of an arithmetic expression is determined by the type of
the operands Cwhere an operand is a variable, constant, function
reference, or another expression) in the expression. Table 1
indicates how the mode of an expression that contains operands of
different types may be determined using the operators: +, - *, /.

Table 1. Determining the Mode of an Expression Containing
f"'\T"\O..,....::lT'\rlC ""'-.f=' T'\..; ..f=.f=~,,...,-.......,.4- fT1"1TY"'\."e"'I
"-".t-''-..L.\.A..1..1.'-A._, '\J..L. J.J...L..L .L'C.L. CJ..&.'- ..L.:f _t.JC.::>

r--------T--------T---------T---------T---------T--------T--------1
I I I I I I I I
I !INTEGER I INTEGER I REAL I REAL I COMPLEX! COMPLEX!
I+ - * / I <2> I <4> I <4> I <8> I <8> I C16> I
~--------+--------+--------+---------+---------+--------+--------~
!INTEGER !Integer I IntEger I Real I Real I Complex! Complex!
I c2> I c2> I <4> I C4> I ca> I <8> I c16> I
~--------+--------+---------+---------+---------+--------+--------~
!INTEGER !Integer I Integer I Real I Real I Complex! Complex!
I C4> I <4> I <4> I <4> I C8> I C8> I C16> I
~--------+--------+---------+---------+---------+--------+--------~
!REAL jReal I Real I Real I Real I Complex! Complex!
I <4> I C4> I C4> I <4> I <8> I C8> I C16> I
~--------+--------+---------+---------+---------+--------+--------~
IREAL !Real I Real I Real I Real I Complex! Complex!
I CB) i CS) I cs> i C8> i cs> i C16> I C16> I
~--------+--------+--------1---------+---------+--------+--------~
!COMPLEX !Complex I Complex I Complex I Complex I Complex! Complex!
I ca> I <8> I <a> I <8> I <16> I <8> I <16> I
~--------+--------+---------+---------+---------+--------+--------~
!COMPLEX !Complex I Complex I Complex I Complex I Complex! Complex!
I <16> I <16> I <16> I c16> I C16> I c16> I c16> I L--------4--------i---------i---------i _________ .J.._ _______ i ________ J

Elements of the Language 17

From Table 1 it can be seen that there is a hierarchy of type and
length specification (see the section, "The Type, Statements") that
determines the mode of an expression. For example, complex data
that has a length specification of 16 when combined with any other
types of constants and variables results in complex data of length
16.

Assume that the type of the following variables has been specified
as follows:

variable Names
ROOT, E
A, I, F
C,D

~
Real variable
Integer variable
Complex variable

Length Specification
4,8
4,2,2
16,8

Then the following examples illustrate how constants and variables
of differing types may be combined using the arithmetic operators:
+, - /, *:

Expression Mode of Expression
ROOT*5 Real of length 4
A+3 Integer of length 4
C+2.9D10 Complex of length 16
E/F+19 Real of length 8
C-18.7E05 Complex of length 16
A/I-D Complex of length 8

4. The arithmetic operator denoting exponentiation (i.e.,**) may only
be used to combine any types of operands as shown in Table 2.

18

•Table 2. Valid Combinations with Respect to the Arithmetic
Operator, **

r---1
I Base Exponent I
~---~
I Integer (either length) } { Integer (either length) I
I or ** or I
I Real (either length) Real (either length) I
I I
I Complex (either length) f ** l Integer (either length) I
L---J

Assume that the type of the following variables has been specified
as follows:

Variable Names
ROOT,E
A, I, F
c

~
Real variable
Integer variables
Complex variable

Then the following examples illustrate how constants and variables
of different types may be combined using the arithmetic operator,
**·

Examples:

Expression
ROOT**(A+2)
ROOT**I
I**F
7.98E21**ROOT
ROOT**2.1E5
A**E
C**A

~
CReal**Integer)
CReal**Integer)
(Integer** Integer)
CReal**Real)
CReal**Real)
C Integer**Real)
(Complex** Integer)

Result
(Real)
(Real)
(Integer)
(Real>
<Real>
CReal)
(Complex)

5. Order of Comoutation: ivhere parentheses are omitted, or where the
entire arithmetic expression is enclosed within a single pair of
parentheses, effectively the order in which the operations are
performed is as follows:

Operation
Evaluation of Functions (see the
section, "Subprograms")

Exponentiation (**)
Multiplication and Division (* and /)
Addition and Subtraction (+ and ->

Hierarchy
1st (highest)

2nd
3rd
4th

In addition, if two operators of the same hierarchy <with the
exception of exponentiation) are used consecutively, the component
operations of the expression are performed from left to right.
Thus, the arithmetic expression A/B*C is evaluated as if the result
of the division of A by B were multiplied by c.

For example, the expression:

(A*B/C**I+D)

is effectively evaluated in the following order:

a.
b.
c.
d.

A*B
C**I
X/Y
Z+D

Call the result X (multiplication)
Call the result Y (exponentiation)
Call the result z (division)
Final operation (addition)

(X/C**I+D)
CX/Y+D)
CZ+D)

Note: This order of computation is used in determining the mode of
an expression (see Table 1).

For exponentiation the evaluation is from right to left. Thus, the
expression:

A**B**C

is evaluated as follows:

a. B**C
b. A**Z

Call the result Z
Final operation

6. Use of Parentheses: Parentheses may be used in arithmetic expres­
sions, as in algebra, to specify the order in which the arithmetic
operations are to be computed. Where parentheses are used, the
expression within the parentheses is evaluated before the result is
used.

Elements of the Language 19

For example, the following expression:

(B+((A+B)*C)+A**2)

is effectively evaluated in the following order:

a. CA+B) Call the result x (B+(X*C)+A**2)
b. (X*C) Call the result y (B+Y+A**2)
c. B+Y Call the result w (W+A**2)
d. A**2 Call the result z (W+Z)
e. W+Z Final operation

7. Integer Division: When division is performed using two integers,
the answer is truncated and an integer answer is given. For
example, if I=9 and J=2, then the expression CI/J) would yield an
integer answer of 4 after truncation.

LOGICAL EXPRESSIONS

The simplest form of logical expression consists of a single logical
constant, logical variable, or logical subscripted variable, the value
of which is always a truth value (i.e., either .TRUE. or .FALSE.).

More complicated logical expressions may be formed by using logical
and relational operators. These expressions may be in one of the three
following forms:

1. Relational operators combined with arithmetic expressions whose
mode is integer or real.

2. Logical operators combined with logical constants (.TRUE. and
.FALSE.), logical variables, or subscripted variables.

3. Logical operators combined with either or both forms of the logical
expressions described in items 1 and 2.

Item 1 is discussed in the following section "Relational Operators";
items 2 and 3 are discussed in the section "Logical Operators."

Relational Operators

The six relational operators, each of which must be preceded and
followed by a period, are as follows:

Relational Operator
• GT.
.GE.
.. LT ..
.LE.
.EQ.
.NE.

Definition
Greater than <>>
Greater than or equal to (~)

Less than «>
Less than or equal to (~)

Equal to <=>
Not equal to (*)

The relational operators express an arithmetic condition which can be
either true or false. Only arithmetic expressions whose mode is integer
or real may be combined by relational operators. For example, assume
that the type of the following variables has been specified as follows:

20

Variable Names
ROOT, E
A, I, F
L
c

~
Real variables
Integer variables
Logical variable
Complex variable

Then the following examples illustrate valid and invalid logical
expressions using the relational operators.

Examples:

Valid Logical Expressions Using Relational Operators:

CROOT*A) .. GT .. E
A.LT.I
E**2.7.EQ. (5*ROOT+4)
57.9.LE. (4. 7+F)
.5.GE •• 9*ROOT
E.EQ.27.3D+05

Invalid Logical Expressions Using Relational Operators:

C.LT.ROOT

C. GE. (2. 7, 5. 9E3)

L.EQ. (A+F)

E**2.EQ97.1E9

• GT. 9

Logical Operators

(Complex quantities may never appear in logical
expressions)
(Complex quantities may never appear in logical
expressions)
(Logical quantities may never be joined by
relational operators)
(Missing period immediately after the relational
operator)
(Missing arithmetic expression before the rela­
tional operator>

The three logical operators, each of which must be preceded and
followed by a period, are as follows: CA and B represent logical
constants or variables, or expressions containing relational operators).

Logical Operator

.NOT.

.AND.

.OR.

Definition

.NOT.A if A is .TRUE., then .NOT.A has the
value .FALSE.; if A is .FALSE., then .NOT.A has
the value .TRUE.

A.AND.B if A and B are both .TRUE., then
A.AND.B has the value .TRUE.; if either A or B
or both are .FALSE., then A.AND.B has the value
• FALSE.

A.OR.B - if either A or B or both are .TRUE.,
then A.OR.B has the value .TRUE.; if both A and
Bare .FALSE., then A.OR.B has the value .FALSE.

Two logical operators may appear in sequence only if the second one
is the logical operator .NOT ••

Only those expressions which, when evaluated, have the value .TRUE.
or .FALSE. may be combined with the logical operators to form logical
expressions. For example, assume that the type of the following
variables has been specified as follows:

Elements of the Language 21

Variable Names
ROOT, E
A, I, F
L, W
c

~
Real variables
Integer variables
Logical variables
Complex variable

Then the following examples illustrate valid and invalid logical
expressions using both logical and relational operators.

Examples:

Valid Logical Expressions:
CROOT*A.GT.A).AND.W
L.AND •• NOT.(I.GT.F)
(E+5.9D2.GT.2*E).OR.L
.NOT.W.AND •• NOT.L
L.AND •• NOT.W.OR.I.GT.F
CA**F.GT.ROOT).AND •• NOT. (I.EQ.E)

Invalid Logical Expressions:

A.AND.L
.OR.W
NOT. CA.GT.F)

(C. EQ. I) • AND. L

L.AND •• OR. W

.AND.L

CA is not a logical expression)
(.OR. must be preceded by a logical expression)
(missing period before the logical operator
• NOT.)
Ca complex variable may never appear in a
logical expression)
(the logical operators .AND. and .OR. must
always be separated by a logical expression)
(.AND. must be preceded by a logical
expression)

Order of Computations in Logical Expressions: Where parentheses are
omitted, or where the entire logical expression is enclosed within a
single pair of parentheses, the order in which the operations are
performed is as follows:

Operation
Evaluation of Functions
Exponentiation (**)

Hierarchy
1st (highest)
2nd

Multiplication and division (* and /)
Addition and subtraction (+ and ->
.LT.,.LE.,.EQ.,.NE.,.GT.,.GE.

3rd
4th
5th

.NOT. 6th

.AND. 7th

.OR. 8th

For example, the expression:

CA.GT.D**B.AND •• NOT.L.OR.N)

is effectively evaluated in the following order.

1. D**B Call the result w (exponentiation)
2. A.GT.W Call the result x (relational operator)
3. .NOT.L Call the result y (highest logical operator)
4. X.AND.Y Call the result z <second highest logical operator)
5. Z.OR.N Final operation

Note: Logical expressions may not require that all parts be evaluated.
Functions within logical expressions may or may not be called. For
example, in the expression IF CA.OR.LGFC.TRUE.)), it should not be
assumed that the LGF function is always invoked.

22

Use of Parentheses in Logical Expressions: Parentheses may be used in
logical expressions to specify the order in which the operations are to
be performed. Where parentheses are used, the expression contained
within the most deeply nested parentheses Cthat is, the innermost pair
of parentheses) is effectively evaluated first. For example, the
logical expression:

((I.GT. (B+C)).AND.L)

1. B+C
2. I.GT.X
3. Y.AND.L

Call the result X
Call the result Y
Final operation

The logical expression to which the logical operator .NOT. applies
must be enclosed in parentheses if it contains two or more quantities.
For example, assume that the values of the logical variables, A and B,
are .FALSE. and .TRUE., respectively. Then the following two expres­
sions are· not equivalent:

.NOT. (A.OR.B)

.NOT.A.OR.B

In the first expression, A.OR.B, is evaluated first. The result is
.TRUE.; but .NOT.(.TRUE.) implies .FALSE •• Therefore, the value of the
first expression is .FALSE.

In the second expression, .NOT.A is evaluated first. The result is
.TRUE.; but .TRUE •• OR.B implies .TRUE •• Therefore, the value Of the
second expression is .TRUE ••

ARRAYS

A FORTRAN array is a set of variables identified by a single variable
name. A particular variable in the array may be ref erred to by its
position in the array (e.g., first variable, third variable, seventh
variable, etc.). Consider the array named NEXT which consists of five
variables, each currently representing the following values: 273, 41,
8976, 59, and 2.

NEXT CU is the representation Of 273
NEXT(2) is the representation of 41
NEXTC3) is the representation of 8976
NEXT(4) is the representation of 59
NEXT(5) is the representation of 2

Each variable in this array'consists of the name of the array Ci.e.,
NEXT) immediately followed by a number enclosed in parentheses, called a
subscript. The variables which comprise the array are called subscript­
ed variables. Therefore, the subscripted variable NEXT(l) has the value
273; the subscripted variable NEXT(2) has the value 41, etc.

The subscripted variable NEXT(!) refers to the nithn subscripted
variable in the array, where I is an integer variable that may assume a
value of 1, 2, 3, 4, or 5.

To ref er
subscripted.
element.

to
The

the first element in an array, the array name must be
array name itself does not represent the first

Consider the following array named LIST consisting of two subscript
parameters, the first ranging from 1 through 5, the second from 1
through 3:

Elements of the Language 23

Columnl Column2 Column3
Rawl 82 4 7
Row2 12 13 14
Row3 91 1 31
Row4 24 16 10
Rows 2 8 2

Suppose it is desired to refer to the number in row 2, column 3; this
would be:

LIST (2,3)

Thus, LIST C2,3) has the value 14 and LIST (4,1) has the value 24.

Ordinary mathematical notation might use LIST i,j to represent any
element of the array LIST. In FORTRAN, this is written as LISTCI,J)
where I equals 1,2,3,4, or 5 and J equals 1,2, or 3.

As a further example, consider the array named COST consisting of
three subscript parameters. This array might be used to store all the
premiums for a life insurance applicant given (1) age, (2) sex, and (3)
size of life insurance coverage desired. A code number could te
developed for each statistic where IAGE represents age, ISEX represents
sex, and ISIZE represents policy size desired. (See Table 3.)

Table 3. Insurance Premium Codes
r----------------------------------T-----------------------------------1
I AGE I SEX I
t----------------------------------+-----------------------------------1

Age in Yrs. Code I Sex Code I

1 - 5
6 - 10

11 - 15
16 - 20
21 - 25
26 - 30
31 - 35
36 - 40
41 - 45
46 - 50

IAGE=l
IAGE=2
IAGE=3
IAGE=Ll
IAGE=S
IAGE=6
IAGE=7
IAGE=8
IAGE=9
IAGE=10

I I
I Male ISEX=l I
I Female ISEX=2 I
~-----------------------------------~
I POLICY SIZE I
·-----------------------------------~
I Dollars Code I
I I
I I
I 1,000 ISIZE=l I
I 3,000 ISIZE=3 I
I 5,000 ISIZE=4 I
I 10,000 ISIZE=5 I
I 25,000 ISIZE=6 I
I 50,000 ISIZE=7 I

96 - 100 IAGE=20 I 100,000 ISIZE=8 I
l __________________________________ i ___________________________________ J

Suppose an applicant were 14 years old, male, and desired a policy of
$25,000. From Table 3, these statistics could be represented by the
codes:

IAGE=3
ISEX=l
ISIZE=6

(11 - 15 years old}
(male)
($25,000 policy}

Thus, COST C3, 1, 6) represents the premium for a policy given the
statistics above. Note that "!AGE" can vary from 1 to 20, "ISEX" from 1
to 2, and "!SIZE" from 1 to 8. (The number of subscripted variables in
the array COST is the number of combinations that can be formed for
different ages. sex, and policy size available - a total of 20x2x8 or
320. Therefore, there may be up to 320 different premiums stored in the
array named COST.)

24

SUBSCRIPTS

A subscript is a number used to refer to a particular variable within
an array. There may be a maximum of seven subscripts used with an array
name. If more than one subscript is used they must be separated by
commas. All of the subscripts used with a particular array name must be
enclosed in parentheses.

The following rules apply to the construction of subscripts:

1. Subscripts may contain arithmetic expressions that use any of the
arithmetic operators: +, -,, *, /, **·

"") c, ... i...-..-.--.:-..L.- -....- ---.J--.:- .,,:,,_,..~..;;"'""" ,,...,.....-4=,....,,...-----
1:.. .:n .. u.JU~..L~j:Ji,,...;:) iUO.:f ~V.!!i,....Gl.,L,il J..,U.l.1\.-'-..LV.U . ..L'C.L.C..LC.i.l~~~-

3. Subscripts may contain subscripted names.
4. Mixed mode expressions (integer and real only) within subscripts

are evaluated according to normal FORTRAN rules. If the evaluated
expression is real, it is converted to integer.

5. The evaluated result of a subscript must always be greater than
zero and less than or equal to the size of the corresponding
dimension.

Examples:

Valid Subscripted Variables:

ARRAY CIHOLD)
NEXT (19)
MATRIX CI-5)
BAK CI,JCK+l*L,.3*A(M,N)))
ARRAY CI,J/4*K**2)

Invalid Subscripted Variables

ARRAY (-5)
LOT (0)

(the subscript may not be negative)

ALL Cl.GE. I)
NXT (1+(1.3,2.0))

Ca subscript may never be nor assume a value of
zero)
Ca subscript may not assume a true or false value)
Ca subscript may not assume a complex value)

DECLARING THE SIZE OF AN ARRAY

The size of an array is determined by the number of subscript
parameters of the array and the maximum value of each subscript. This
information must be given for all arrays before using them in a FORTRAN
program so that an appropriate amount of storage may be reserved.
Declaration of this information is made by a DIMENSION statement, a
COMMON statement, or by one of the Explicit specification statements;
these statements are discussed in further detail in the section,
"Specification Statements."

ARRANGEMENT OF ARRAYS IN STORAGE

Arrays are stored in ascending storage locations, with the value of
the first of their subscripts increasing most rapidly and the value of
the last increasing least rapidly.

Elements of the Language 25

The array named A, consisting of one subscript parameter which varies
from 1 to 5, appears in storage as follows:

A(l) A(2) A(3) A(4) A(5)

The array named B, consisting of two subscript parameters., whose
first subscript varies over the range from 1 to 5, and second varies
from 1 to 3, appears in ascending storage locations in the following
order:

BCl,1) BC2,1) B (3., 1) B(4.,1) BC 5,, l)l

~B(l,2) BC2,2) BC3,2) B (4, 2) B(5, 2)l

CBCl,3) B (2., 3) B(3,3) B(4,3) BCS,3)

Note that BC1,2) and BCl,3) follow in storage BCS,1) and BCS,2),
respectively.

The following list is the order of an array named c., consisting of
three subscript parameters,, whose first subscript varies from 1 to 3,
second varies from 1 to 2, and third varies from 1 to 3:

C(l,1,1> C(2,1.,1) CC3,1,,1) c (1,, 2, 1) CC2,2,1) c (3,, 2, 1)1

le c1,1, 2) CC2,1,2) C(3,1,2) c (1,, 2, 2) CC2,2,2) CC3, 2, 2)1

lcc1,1,3> C(2,1,3) c (3,, 1, 3} CCl,2,3) CC2,2.,3) CC3,2,3)

Note that C(1 1 1,2) and C(1 6 1 6 3) follow in storage CC3,2 1 1) and
CC3,2,2), respectively.

26

ARITHMETIC AND LOGICAL ASSIGNMENT STATEMENT

r--~-------~-------~--------,
I General Form I
~--------------------------------~--------~----------~--------------~
I~=~ I
I I
I Where: ~ is any subscripted or nonsubscripted variable. I
I I
! b is any arithmetic expression or logical expression~ I
L------------------------------------~----------------~----~--------J

This FORTRAN statement closely resembles a conventional algebraic
equation; however, the equal sign specifies replacement rather than
equivalence. That is, the expression to the right of the equal sign is
evaluated, and the resulting value replaces the current value of the
variable to the left of the equal sign..

Assume that the type of the following variables has been specified
as:

Variable Names
I, J, W
A, B, C, D
E
G, H

~
Integer variables
Real variables
Complex variable
Logical variables

Length Specification
4,4,2
4,4,8,8
8
4,4

Then the following examples illustrate valid arithmetic statements
using constants, variables, and subscripted variables of different
types:

Statements

A = B

w = B

A = I

I = I + 1

E = I**J+D

A C*D

A= E

E =A

Description

The value of A is replaced by the current value of B.

The value of B is truncated to an integer value, and
this value replaces the value of w.

The value of I is converted to a real value, and this
result replaces the value of A.

The value of I is replaced by the value of I + 1.

I is raised to the power J and the result is
converted to a real value to which the value of D is
added. This result replaces the real part of the
complex variable E. The imaginary part of the
complex variable is set to zero.

The most significant part of the product of c and D
replaces the value of A.

The real part of the complex variable E replaces the
value of A.

The value of A replaces the value of the real part of
the complex variable E; the imaginary part is set
equal to zero.

Arithmetic and Logical Assignment Statement 27

G .TRUE.

H = .NOT.G

G 3 •• GT.I

E = Cl.0,2.0)

28

The value of G is replaced by the logical constant
.TRUE ••

If G is .TRUE., the value of H is replaced by the
logical constant .FALSE •• If G is .FALSE., the value
of His replaced by the logical constant .TRUE ••

The value of I is converted to a real value; if the
real constant 3. is greater than this result, the
logical constant .TRUE. replaces the value of G. If
3. is not greater than I, the logical constant
.FALSE. replaces the value of G.

The value of the complex variable E is replaced by
the complex constant Cl.0,2.0), Note that the state­
ment E = CA,B) where A and B are real variables is
invalid.

CONTROL STATEMENTS

Normally, FORTRAN statements are executed sequentially. That is,
after one statement has been executed, the statement immediately
following it is executed. This section discusses the statements that
may be used to alter and control the normal sequence of execution of
statements in the program.

THE GO TO STATEMENTS

The GO TO statements transfer control to the statement specified by
number in the GO TO statement. Control may be transferred either
unconditionally or conditionally. The GO TO statements are:

..,

.l..

2.

3.

The Unconditional GO TO Statement •

The Computed GO TO Statement.

The Assigned GO TO statement.

Unconditional GO TO Statement

r--1
I General Form I
~--~--------------------------~
I GO TO xxxxx I
I I
j Where: xxxxx is an executable statement number. j
L--J

This GO TO statement causes control to be transferred to the
statement specified by the statement number. Every subsequent execution
of this GO TO statement results in a transfer to that same statement.
Any executable statement immediately following this statement should
have a statement number, otherwise it can never be referred to or
executed.

Example:

50 GO TO 25
10 A = B + C

25 C = E**2

Control Statements 29

Explanation:

In the above example, every time statement 50 is executed, control is
transferred to statement 25.

Computed GO TO Statement

r--1
I General Form I
~--~
I GO TO <~1, ~u ~3'• • • •• ~n) • ! I
I I
I I
I Where: ~1 ,~2 , •• ,. ,~, are executable statement numbers. I
I I
I I
I _! is a nonsubscripted integer variable and is in the range: I
I 1:5.J:.:5n I
L--J

This statement causes control to be transferred to the statement
numbered x1 , ~2 , ~3 ,, •••. , or ~n· depending on whether the current value
of i is 1#-2, 3, ••• , or n, respectively. If the value of i is outside
the-allowable range, the next statement is executed.

Example:

GO TO (25, 10, 50, 7), ITEM

50 A = B+C

7 C = E**2+A

25 L = C

10 B = 21.3E02

Explanation:

In this example, if the value of the integer variable ITEM is 1,
statement 25 will be executed next. If ITEM is equal to 2, statement 10
is executed next, and so on.

30

The ASSIGN and Assigned GO TO Statements

r---~-------~--------,

I General Form I
t--~

ASSIGN i TO !!!

GO TO .!!! , <~1, ~2 , ~3 r • • • , ~n)

Where: i is an executable statement number.

~1 ,~2 ,~3 , ••• ,~n are executable statement numbers •

.!!! is a nonsubscripted integer variable which is of length 4
and is assigned one of the following statement numbers:
~11 ~2 I ~3 I • • • ~Il • __ J

The Assigned GO TO statement causes control to be transferred to the
statement numbered ~.1.r~2 ,~3 , ••• ,or ~nr depending on whether the current
assigr~~ent of.!!! is ~1 ,~2 ,~3 , ••• ,or ~nr respectively. For example, in
the following statement:

GO TON, (10, 25, 8)

If the current assignment of the integer variable N is statement number
8, then the statement numbered 8 is executed next. If the current
assignment of N is statement number 10, the statement numbered 10 is
executed next. If N is assigned statement number 25, statement 25 is
executed next.

The current assignment of the integer variable ~ is determined by the
last ASSIGN statement executed. Only an ASSIGN statement may be used to
initialize or change the value of the integer variable .!!!· The value of
the integer variable~ is not the integer statement number; ASSIGN 10 TO
I is not the same as I = 10.

Example 1:

ASSIGN 50 TO NUMBER
10 GO TO NUMBER, (35, 50, 25, 12, 18)

50 A = B + C

Explanation:

In the above example, statement 50 is executed immediately after
statement 10.

Control Statements 31

Example 2:

ASSIGN 10 TO ITEM

13 GO TO ITEM, (8, 12, 25, 50, 10)

8 A = B + C

10 B = C + D
ASSIGN 25 TO ITEM
GO TO 13

25 C = E**2

Explanation:

In the above example, the first time statement 13 is executed,
control is transferred to statement 10. On the second execution of
statement 13, control is transferred to statement 25.

ADDITIONAL CONTROL STATEMENTS

Arithmetic IF Statement

r--1
I General Forro I
~--~
I IF (~) ~1. .~2'•~3 I
I I
I Where: ~ is any arithmetic expression except complex.. I
I I
I ~1 ,~2 ,~3 are executable statement numbers. I
L--J

This statement causes control to be transferred to the statement
numbered x1 ,x2 , or x 3 when the value of the arithmetic expression (~) is
less than:- equal to-; or greater than zero, respectively. The first
executable statement following the arithmetic IF statement should have a
statement number; otherwise, it can never be referred to or executed.

32

Example:

IF (A(J,K)**3-B)10, 4, 30

4 D = B + C

30 C = D**2

10 E = CF*B)/D+l

Explanation:

In the above example, if the value of the expression CACJ,K)**3-B) is
negative, the statement nurobered 10 is executed next. If the value of
the expression is zero, the statement numbered 4 is executed next. If
the value of the expression is positive, the statement numbered 30 is
executed next.

Logical IF Statement

r--1
I General Form I
t--~--------~
I IF(~)~ I
I I
I Where: ~ is any logical expression. I
I I
I s is any statement except a specification statement, DO I
I statement, or another logical IF statement. I
L--J

The logical IF statement is used to evaluate the logical expression
(~) and to execute or skip statement ~ depending on whether the value of
the expression is .TRUE. or .FALSE., respectively.

Example 1:

5 IF(A.LE.0.0) GO TO 25
10 C = D + E
15 IFCA.EQ.B) ANSWER= 2.0*A/C
20 F = G/H

25 W = X**Z

Control Statements 33

Explanation:

In statement 5, if the value of the expression i~ .TRUE.Ci.e., A is
less than or equal to O.O>, the statement GO TO 25 is executed next and
control is passed to the statement numbered 25. If the value of the
expression is .FALSE. Ci.e., A is greater than 0.0), the statement GO TO
25 is ignored and control is passed to the statement numbered 10.

In statement 15, if the value of the expression is ,. TRUE. Ci. e., A
is equal to B), the value of ANSWER is replaced by the value of the
expression (2.0*A/C) and then the statement numbered 20 is executed. If
the value of the expression is .FALSE.. (i.e., A is not equal to B), the
value of ANSWER remains unchanged and the statement numbered 20 is
executed next.

Example 2:

Assume that P and Q are logical variables.

5 IF(P.OR •• NOT.Q)A=B
10 C = B**2

Explanation:

In statement 5, if the value of the expression is .TRUE., the value
of A is replaced by the value of B and statement 10 is executed next.
If the value of the expression is .FALSE., the statement A= Bis
skipped and statement 10 is executed.

DO Statement

r--------------~--1
I General Form I
~--------------------------------~--~----~--------------------------~

DO

End of DO Initial Test I
Range Variable Value Value Increment I

!!h,
I
I
I

Where: x is an executable statement number that is not defined I
before the DO statement. I

i is a nonsubscripted integer variable.

m1 , m2 , m3 , are either unsigned integer constants greater
than-zero or unsigned nonsubscripted integer variables whose
value is greater than zero. m2 may not exceed 231-2 in
value.. m3 ., is optional; if it is omitted, its value is
assumed to be 1. In this case, the preceding comma roust
also be omitted.

I
I
I
I
I
I
I
!
I __ J

The DO Statement is a command to execute repeatedly the statements
that follow, up to and including the statement numbered ~· The first
time the statements in the range of the DO are executed, i is
initialized to the value ~1 ; each succeeding tiwe ! is increased by the

34

value ~3 • When, at the end of the iteration, i is equal to the highest
value that does not exceed !Q2 , control passes to the statement following
the statement numbered x. Thus: the number of times the statements in
the range of the DO is executed is given by the expression:

r ,
I !!!2 - l!!i. I
I ------- I +1
I !!!3 I
L J

where the brackets represent the largest integral value not exceeding
the value of the expression. If rn 2 is less than m1 , the statements in
the range of the DO are executed once. Upon completion of the DO, the
DO variable is undefined~ and may not be used until redefined (e.g., in
a READ list}.

There are several ways in which looping (repetitively executing the
same statements} may be accomplished when using the FORTRAN language.
For example, assume that a manufacturer carries 1,000 different machine
parts in stock. Periodically, he may find it necessary to compute the
amount of each different part presently available. This amount may be
calculated by subtracting the number of each item used, OUTCI}, from the
previous stock on hand, STOCKCI).

Example:

5 I=O
10 I=I+l
25 STOCK(I}=STOCK(I}- OUT(I}
15 IF(I-1000) 10,30,30
30 A=B+C

Explanation:

The three statements
previously shown loop
shown in Example 1.

Example 1:

DO 25 I = 1,1000

cs,
could

10,
be

25 STOCK(!} = STOCK(I)-OUT(I)
30 A = B+C

Explanation:

and 15} required to control the
replaced by a single DO statement as

In the above example., the DO variable, I, is set to the initial value
of 1. Before the second execution of statement 25, I is increased by
the increment. 1~ and statement 25 is again executed. After 1000
executions of the DO loop, I equals 1000. Since I is now equal to the
highest value that does not exceed the test value., 1000, control passes
out of the DO loop and statement 30 is executed next. Note that the DO
variable I is now undefined; its value is not necessarily 1000 or 1001.

Control Statements 35

Example 2:

DO 25 I=l, 10, 2
15 J = I+K
25 ARRAY(J) = BRAY(J)
30 A = B + C

Explanation:

In the preceding example, statement 25 is the end of the range of the
DO loop. The DO variable, I, is set to the initial value of 1. Before
the second exexution of the DO loop, I is increased by the increment, 2,
and statements 15 and 25 are executed a second time. After the fifth
execution of the DO loop, I equals 9. Since I is now equal to the
highest value that does not exceed the test value, 10, control passes
out of the DO loop and statement 30 is executed next. Note that the DO
variable I is now undefined; its value is not necessarily 9 or 11.

Programming Considerations in Using a DO Loop

1. The indexing parameters of a DO statement Ci, mj_, m2 ., m3) may not
be changed by a statement within the range of-the DO-loop.

2. There may be other DO statements within the range of a DO
statement. All statements in the range of the inner DO must be in
the range of the outer DO. A set of DO statements satisfying this
rule is called a nest of DO's.

Example 1:

DO 50 I = 1, 4

A(I) = B(I)**2

DO 50 J=l, 5 } 50 C(J+l) = A(!)

Example 2:

DO 10 INDEX = L, M

N = INDEX + K

DO 15 J = 1, 100, 2

15 TABLE(J) = SUMCJ,N)-1

10 BCN) = ACN)

Range of
Inner DO

} Range of
Inner DO

Range of
outer DO

Range of
outer DO

3. A transfer out of the range of any DO loop is permissible at any
time; a transfer into the range of a DO loop is permissible only as
described in item 4.

4. When a transfer is made out of the range of an innermost DO loop,
transfer back into the range of that DO loop is allowed if and only
if none of the indexing parameters <ir~j_r~2 ,~3) are changed outside
the range of the DO.

36

Example:

DO DO

______ DO_) l--------D_O:) 4

----~2 -4------s

Exnlanation:

In the preceding example, the transfers specified by the numbers
1,2, and 3 are permissible, whereas those specified by 4,5, and 6
are not.

5. The indexing parameters <i,~1.~2.~3) may be changed by statements
outside the range of the DO statement only if no transfer is made
back into the range of the DO statement that uses those parameters.

6. The last statement in the range of a DO loop (statement ~) must be
an executable statement, not of the form GO TO, PAUSE, STOP,
RETURN, Arithmetic IF, or another DO.

7. The use of, and return from, a subprogram from within any DO loop
in a nest of DOs is permitted.

CONTINUE Statement

r--1
I General Form I
~--~--------------~
I CONTINUE I l __ J

CONTINUE is a durr~y statement which may be placed anywhere in the
source program without affecting the sequence of execution. It may be
used as the last statement in the range of a DO in order to avoid ending
the DO loop with a GO TO, PAUSE, STOP, RETURN, Arithmetic IF or another
DO statement.

Control Statements 37

Example 1:

DO 30 I = 1, 20
7 IF (A(I)-B(I)) 5,30,30
5 A(I) =A(I) +1.0

B{I) = B(I) -2 .• 0

GO TO 7
30 CONTINUE
40 C = A(3) + BC7)

Explanation:

In the preceding example, the CONTINUE statement is used as the last
statement in the range of the DO in order to avoid ending the DO loop
with the statement GO TO 7.

Example 2:

DO 30 I=l,20
IFCA(I)-B(I))S.40,40

5 A(I) = C (I)

GO TO 30
40 A(I) = 0.0
30 CONTINUE

Explanation:

In Example 2, the CONTINUE statement provides a branch point enabling
the programmer to bypass the execution of statement 40.

PAUSE Statement

r--1
I General Form I
~--~
I PAUSE I

PAUSE n I
PAUSE 1 message' I

I
I

Where: .!! is an unsi9ned 1 th.tough 5 uigit integer constanL. I
I
I

I 'message' is a literal constant. I
L--J

38

Information is displayed and the program waits until operator
intervention causes it to resume execution, starting with the next
statement after the PAUSE statement. The particular form of the PAUSE
statement used determines the nature of the information that is
displayed. The PAUSE statement causes PAUSE 00000 to be displayed. If
!! is specified, PAUSE !! is aisplayed. If 'message' is specified, PAUSE
'message' is displayed.

STOP Statement

i--------------~--------------------~----------------------~--------i

I General Form I
~----~--~--------------~
I STOP I
I STOP !! I
I I
I Where: !! is an unsigned 1 through 5 digit integer constant. I
L--J

This statement terminates the execution of the object program and
displays !! if specified.

END Statement

r--1
I General Form I
~--~
I END I
L--J

The END statement is a nonexecutable statement that defines the end
of a source program or source subprogram for the compiler. Physically,

I it must be the last statement of each program or subprogram, and it may
I not be continued.

Control Statements 39

INPUT/OUTPUT STATEMENTS

The input/output statements enable a user to transfer data, belonging
to a named collection of data, between input/output devices (such as
disk units, card readers, and magnetic tape units) and internal storage.
The named collection of data is called a data set and is a continuous
string of data that may be divided into FORTRAN records.

A data set is referred to by an integer constant or integer variable.
Formerly, this reference was called a symbolic unit number. However,
because the reference is to the data rather than any specific device,
this number is called the data set reference number.

Two types of I/O statements are available to the FORTRAN IV user:
sequential I/O statements and direct access I/O statements. The
sequential statements provide facilities for the sequential selection
and placement of data. These statements are device independent because
a given statement may be applicable to a data set on any number of
devices or device types.

The direct access I/O statements provide facilities for the selection
and placement of data in an order specified by the user. These
statements are only valid when the data set will be or is already
resident on a direct access storage device.

SEQUENTIAL INPUT/OUTPUT STATEMENTS

There are five sequential I/O statements: READ, WRITE, END FILE,
REWIND, and BACKSPACE. The READ and WRITE statements cause transfer o=
records of sequential data sets. The END FILE statement defines the end
of a data set; the REWIND and BACKSPACE statements control the
positioning of data sets.

In addition to these five statements, the FORMAT and NAMELIST
statements, although they are not I/O statements, are used with certain
forms of the READ and WRITE statements. The FORMAT statement specifies
the form in which the data is to be transmitted; the NAMELIST statement
specifies a list of variables or array names to be used in an
input/output operation. In addition, both statements allow the user to
divide a data set into FORTRAN records.

Even though the I/O statements are device independent, the original
source or the ultimate destination of the data being transferred
influences the specification of the records and data formats. There­
fore, subsequent examples are in terms of card input and print-line
output unless otherwise noted.

40

READ ST~~TEMENT

r--1
I General Form I
~--~
READ(~,Q,END=£,ERR=Q) list

Where: ~ is an unsigned integer constant or an integer variable
that is of length 4 and represents a data set reference
nu..'Tiber.

b is either the statement number or array name of the FORMAT
statement describing the data being read: or a NAMELIST
name.

£ is the statement number to which transfer is made upon
encountering the end of the data set.

d is the statement number to which transfer is made upon
encountering an error condition in data transfer.

list is a series of variable or array names, separated by
commas, which may be ir.dexed and incremented. They specify
the number of items to be read and the locations in storage
into which the data is placed. I

L--J

The READ statement may take many forms. Either the list parameter or
the ~ parameter may be omitted.

In addition, the parameters END=£ and ERR=g are optional and.
therefore, may or may not appear in a READ statement.

When one or more of the parameters, END=£ or ERR=g, are used after
the a and b portion of a READ statement, they may appear in any order
within the parentheses. For example, the following are valid READ
statements:

READ(5,50,ERR=10)A,B,C
READCS,25, END=15) D,E,F,F,H
READ(N,30, ERR=lOO, END=8) X,Y,Z

If a transfer is made to a statement specified by the END parameter,
no indication is given the program as to the number of items in the list
Cif any) read before encountering the end of the data set. If an END
parameter is not specified in a READ statement, the end of the data set
terminates execution of the object program.

If a transfer is made to a statement specified by the ERR parameter,
no data is read into the list items associated with the record in error..
No indication is given the program as to which input record or records
are in error; only that an error occurred during transmission of data to
fill the READ list. If an ERR parameter is not specified in a READ
statement, an error terminates execution of the object program.

The basic forms of the READ statement involve formatted and unformat­
ted data. They are:

READ(a,x)
READ(a,b)list
READ(~> list

Input/Output Statements 41

The Form READ Ca,x)

This form is used to read data from the data set associated with a
into the locations in storage specified by the NAMELIST name x. The
NAMELIST name ~ is a single variable name that refers to a specific list

I of variables or array names into which the data is placed. Neither a
dummy variable name nor a dummy array name may appear in the list. A
specific list of variable or array names receives a NAMELIST name by use
of a NAMELIST statement. The programmer need only use the NAMELIST name
in the READ <~,~) statement to reference that list thereafter in the
program.

The format and rules for constructing and using the NAMELIST
statement are described in the following text.

r---~-----------------,
I General Form I
~---------------------------------.-------------------------------------~
I NAMELIST/~/~1.!21 ••• ,_£/_y/_g,~, ••• ,.f/_~/g,_h, ••• ,_! I
I I
I Where: ~,y, and~, ••• are NAMELIST names. I
I I
I ~.~,_£,~, ••• are variable or array names. I l __ j

The following rules apply to defining and using a NAMELIST name:

1. A NAMELIST name consists of from 1 through 6 alphameric characters,
the first of which is alphabetic.

2. A NAMELIST name is enclosed in slashes. The list of variable or
array names belonging to a NAMELIST name ends with a new NAMELIST
name enclosed in slashes or with the end of the NAMELIST statement.

3. A variable name or an array name may belong to one or more NAMELIST
names ..

4. A NAMELIST name may be defined only once by its appearance in a
NAMELIST statement and must be so defined before its use. After it
is defined in the NAMELIST statement, the NAMELIST name may appear
only in input or output statements thereafter in the program.

5. A NAMELIST statement may appear anywhere in a FORTRAN program prior
to its use in a READ/WRITE statement.

I 6. A NAMELIST name may not be used as an argument.

Example:

Assume that A, I, and L are array names.

NAMELIST /NAM1/A,B,I,J,L/NAM2/A,C,J,K

READ (5,NAM1)

42

Explanation:

The above READ statement causes the record that contains the input
data for the var1anies and arrays that belong to the NAMELIST naree
referenced, NAM1, to be read from the data set associated with the data
set reference number 5.

When a READ statement references a NAMELIST name, input data in the
form described in the following text is read from the designated input
data set.

Input Data

The first character in the record is always ignored. The second
character of the first record of a group of data records to be read wust
be a &, immediately followed by the NAMELIST name. The NAMELIST name

I
must be followed by a blank and must not contain embedded blanks. This
name is followed by any combination of data items 1 and 2 below.,
separated by commas. CA comma after the last item is optional.) The
end of a data group is signaled by &END.

The form the data items may take is:

1. Variable name = constant

The variable name may be a subscripted variable name or a single
variable name. Subscripts must be integer constants.

2. Array name = set of constants (separated by commas)

The set of
unsigned
number of
specified
number of

constants may be in the form "k* constant" where ~ is an
integer called the repeat constant. It represents the
successive elements in the array to be initialized by the
constant. The number of constants roust be equal to the
elements in the array.

Constants used in the
complex, or logical data.
be in the form T or .TRUE.

data items may be in~eger, real, literal,
If the constants are logical data, they may
and For .FALSE ••

Any selected set of variable or array names belonging to the NAMELIST
name may ue used as specified by items 1 and 2 in the preceding text.
Names that are made equivalent to these names may not be used unless
they also belong to the NAMELIST narr.e.

Example:

Assume that L is an array consisting of one subscript parameter
ranging from 1 to 10.

First Data Card:

Last Data Card:

Explanation:

Column 2
t
&NAMl IC2,3)=5, J=4,

A(3)=4.0, L=2,3,8*4,&END

If this data were input to be used with the NAMELIST and READ
statements previously illustrated, the following actions would take
place. The first data card would be read and examined to verify that
its name (and the data items that follow) is consistent with the
NAMELIST name in the READ statement. (If that NAMELIST name is not

Input/Output Statements 43

found, then it reads to the next namelist group.) When the data is
read, the integer constants 5 and 4 are placed in 1(2,3) and J,
respectively; the real constant 4.0 is placed in A(3). Also, since Lis
an array not followed by a subscript, the entire array is filled with
the succeeding constants. Therefore, the integer constants 2 and 3 are
placed in LCl) and LC2), respectively, and the integer constant 4 is
placed in L{3), L{4), ••• ,LC10).

The Form READ Ca,b) list

This form is used to read data from the data set associated with a
into the locations in storage specified by the variable names in the
list. The list, used in conjunction with the specified FORMAT statement
b (see the section, "FORMAT statement"), determines the number of iteITs
Cdata) to be read, the locations, and the form the data will take in
storage.

Example 1:

Assume that the variables A, B, and C have been declared as integer
variables.

75 FORMAT (110: 18: 19)

READ CJ, 75) A, B, C

Explanation:

The above READ statement causes input data from the data set
associated with data set reference number J to be read into the
locations A, B, and C according to the FORMAT statement referenced
(statement 75). That is, the first 10 positions of the record are read
into storage location A; the next 8 positions are read into storage
location B; and the next 9 positions are read into storage location c.

The list may be omitted from the READ (~,~)list statement. In this
case, a record is skipped or data is read from the data set associated
with ~ into the locations in storage occupied by the FOR~..AT statement
numbered ~-

Example 2:

98 FORMAT ('HEADING')

READ (5, 98)

44

Explanation:

The above statements would cause the characters H, E, A~ D, I, N, and
G in storage to be replaced by the next 7 characters in the data set
associated with data set reference number 5.

Example 3:

98 FORMAT (!10,'HEADING')

READ (5,98)

Explanation:

The above statements would cause the next record in the
associated with data set reference number 5 to be skipped.
transferred into internal storage because there is no list
corresponds with format code !10.

The Form READ (a) list

data set
No data is

item which

The form READ (~) list of the READ statement causes binary data
(internal form) to be read from the data set associated with a into the
locations of storage specified by the variable names in the list. Since
the input data is always in internal form, a FORMAT statement is not
required. This statement is used to retrieve the data written by a
WRITE (a) list statement. - ~~

Example 1:

READ (5) A, B, C

Explanation:

This statement causes the binary data from the data set associated
with data set reference number 5 to be read into the storage locations
specified by the variable names A, B, and c.

The list may be omitted from the READ (a) list statement. In this
case, a record is skipped.

Example 2:

READ (5)

Explanation:

The above statement would cause the next record in the
associated with data set reference number 5 to be skipped.
transferred into internal storage.

data set
No data is

Input/Output Statements 45

Indexing I/0 Lists

Variables within an I/O list may be indexed and incremented in the
same manner as those within a DO statement. These variables and their
indexes must be included in parentheses. For example, suppose it is
desired to read data into the first five positions of the array A. This
may be accomplished by using an indexed list as follows:

15 FORMAT (Fl0.3)

READ (2 , 15) (A CI) , I= 1 , 5)

This is equivalent to:

15 FORMAT (F10.3)

DO 12 I = 1,5
12 READ (2.,15) A(I)

As with DO statements, a third indexing parameter may be used to
specify the amount by which the index is to be incremented at each
iteration. Thus,

READ (2,15) (A(I), I=l,10,2)

causes transmission of values for A(l), A(3), A(5), AC7), and A(9).

Furthermore, this notation may be nested. For example, the state­
ment:

READ (2,15) ({C(I,J),D(l,J),J=l.,3),I=l,4)

would transmit data in the following order:

CC1,1), D(l,1), CC1,2), D(l,2) I CC1,3), D(l,3) I

C(2,1), DC2,1), C(2,2), DC2,2), C(2,3), DC2,3),
C(3,1), D(3,1), C(3,2), D(3,2), C(3,3), DC3,3),
C(4,1), D(4,1), C(4,2), DC4,2), C(4,3), DC4,3).

Since J is the innermost index, it varies more rapidly than I.

As another example, consider the following:

READ (2,25) I,(C{J),J=l,I)

The variable I is read first and its value then serves as an index to
specify the number of data items to be read into the array c.

If it is desired to read data into an entire array, it is not
necessary to index that array in the I/O list. For example, assume that
the array A consists of one subscript parameter varying in the range of
1 to 10~ Then the following READ statement referring to FORMAT
statement numbered 5:

READ (2,5) A

would cause data to be read into A(l), A(2), ••• ,AC10):

The indexing of I/O lists applies to WRITE lists as well as READ
lists.

46

Reading Format Statements

FORTRAN provides the facility for variable FORMAT statements by
allowing a FORMAT statement to be read into an array in storage and
using the data in the array as the FORMAT specifications for subsequent
I/O statements.

For example, the following statements result in A, B, and the array c
being read, converted, and stored according to the FORMAT specifications
(2E10.8,5F10.8), which are read into the array FMT at object time:

DIMENSION FMT (18)

READ (5,1) FMT
READ CS,FMT) A,B,(C(I),I=l,5)

1. The name of the variable FORMAT specification must appear in a
DIMENSION statement, even if the array size is only 1.

2. The form of the format codes read into the FMT array at object time
IriUSt take the same form as a source program FORfJ'.iAT statement.,
except that the word FORMAT is omitted (see the section, "The
FORMAT Statement•).

3. If a format code read in at object time contains double apostrophes
within a literal field that is defined by apostrophes, it should be
used for output only. If an object time format code is to be used
for input and if it must contain a literal field with an internal
apostrophe, the H format code must be used for the literal field
definition.

WRITE STATEMENT

r----------~-------------------~---------~--------------------------,

I General Form I
~--~--------------~

WRITE (~, _Q) list

Where: a is an unsigned integer constant or an integer variable
that is of length 4 and represents a data set reference
number •

.Q is either the statement number or array name of the FORMAT
statement describing the data being written, or a NAMELIST
name.

list is a series of variable or array names, separated by
commas, which may be indexed and incremented. They specify
the number of items to be written and the locations in
storage from which the data is taken.

--------~----~-------------~---------------~--~----------~------J

The WRITE statement may take many different forms. For example, the
list or the parameter .Q may be omitted.

The basic forms of the WRITE statement involve formatted and
unformatted data. They are:

WRITE (a., x)
WRITE(a,b)list
WRITE(~)list

Input/Output Statements 47

The Form WRITE Ca,x)

This form is used to write data from the locations in storage
specified by the NAMELIST name x into the data set associated with ~
Csee the section, "The Form READ(~,~)").

Example:

WRITE (6 ,NAM1)

Explanation:

This statement causes all variable and array names (as well as their
values) that belong to the NA.MELIST name, NAM1, to be written on the
data set associated with data set reference number 6.

When a WRITE statement references a NAMELIST name:

1. All variables and arrays and their values belonging to the NAMELIST
name will be written out, each according to its type. The complete
array is written out by columns.

2. The output data will be written
a. The fields for the data will

significant digits.
b. The output can be read by an

NAMELIST name.

Example:

Assume that A is a 3 by 3 array.

NAMELIST/NAM1/A,B,I,D
WRITE (8,NAMl)

such that:
be large enough to contain all the

input statement referencing the

Then assuming that the output is punched on cards, the format would
be:

First Output Card:
Second Output Card:
Third Output Card:
Fourth Output Card:
Fifth Output Card:

The Form WRITE (a,b) list

Column 2
t
&NAM1
A=3.4, 4.5, 6.2, 25.1,

9.0, -15.2,-7.6, 0.576Eb12,
2. 717, B=3 .14., I=10 I D=O. 378E-15,
&END

This form is used to write data in the data set associ?tt-Pn wit-h ~
from the locations in storage specified by the variable names in the
list. The list, used in conjunction with the specified FORMAT statement
b, determines the number of items (data) to be written, the locations,
and the form the data will take in the data set.

48

Example 1:

In the following example, assume that the variables A, B, and c have
been declared as integer variables.

75 FORMAT CI10, I8, I9)

WRITE (J, 75) A, B, C

Explanation:

The above WRITE statement causes output data to be written in the
data set associated with the data set reference number J, from the
locations A, B, c, according to the FORMAT statement referred to
(statement 75). That is, the 10 rightmost digits in A are written in
the data set associated with the data set reference number J; the next 8
positions in the data set will contain the 8 rightmost digits in B; and
the next 9 positions in the data set will contain the 9 rightmost digits
in c.

The list may be omitted from the WRITE (a,b) list statement. In this
case, a blank record is inserted or data-is written in the data set
associated with ~ from the locations in storage occupied by the FORMAT
statement b.

Example 2:

98 FORMAT (' HEADING')

WRITE C 5, 9 8)

The above statements would cause a blank and the characters H, E, A,
D, I, N, and G in storage to be written in the data set associated with
data set reference number 5.

Example 3:

98 FORMAT (IiO, •ttEADING•j

WRITE (5,98)

Explanation:

The above statements would cause a blank record to be written in the
data set associated with data set reference number 5. No data is
transferred into the data set because there is no list item which
corresponds with the format code I10.

'!'h~_Form.WRITE (a) list

The WRITE (a) list form of the WRITE statement causes binary data
(internal form> from the locations of storage specified by the variable
names in the list to be written in the data set associated with a.
Since the output data is always in internal form, a FORMAT statement is
not required. The READ (~) list statement is used to retrieve the data
written by a WRITE (~) list statement.

Input/Output Statements 49

Example:

WRITE (5)A, B, C

Explanatiorl:

The statement causes the binary data from the locations specified by
the variable names A, B, and c to be written in the data set associated
with data set reference number 5.

FORMAT STATEMENT

r--1
I General Form I
~--~
I XXXXX FORMAT C£1r£2r•••1£n/£1'r£2'1•••1£n'/ •••) I
I I
I Where: xxxxx is a statement number Cl through 5 digits). I
I I
I c1,C21•••1Cn and c 1 ',c2', ••• ,cn' are format codes which may I
I be delimited by one of- the separators: comma, slash, or I
I parenthesis. These codes specify the length, decimal point I
I (if any), and position of the data in the data set. I
I I
I / may be used to separate FORTRAN records. I
l=============================---J

The FORMAT statement is used in conjunction with the READ and WRITE
statements in order to specify the desired form of the data to be
transmitted. The form of the data is varied by the use of different
format codes.

The format codes are:

G - to transfer integer real, complex, or logical data
I - to transfer integer data
F - to transfer real data that does not contain a decimal exponent
D - to transfer real data that contains a D decimal exponent
E - to transfer real data that contains an E decimal exponent
L - to transfer logical data

I Z - to transfer hexadecimal data
A - to transfer alphameric data
Literal - to transfer a string of alphameric and special characters
H - to transfer literal data
X - to either skip data when reading or insert"blanks when writing
T - to specify the position in a FORTRAN record where transfer of

data is to start
P - to specify a scale factor

Any number used in a FORMAT statement, except the statement number or
a literal, must be less than or equal to 255.

USE OF THE FORMAT STATEMENT: This section contains general information
on the FORMAT statement. The points discussed below are illustrated ty
the examples that follow.

1. FORMAT statements are nonexecutable and may be placed anywhere in
the source program.

50

I

2. A FORMAT statement may be used to define a FORTRAN record as
follows:

a. If no slashes or additional parentheses appear within a FORMAT
statement, a FORTRAN record is defined by the beginning of the
FORMAT statement Cleft parenthesis) to the end of the FORMAT
statement (right parenthesis). Thus, a new record is read when
the format control is initiated Cleft parenthesis); a new
record is written when the format control is terminated (right
parenthesis).

xxxxx FORMAT C----, ----, ----)

<-------------->
I
I
I
L---corresponds to 1

FORTRAN record

b. If slashes appear within a FORMAT statement, FORTRAN records
are defined by the beginning of the FORMAT statement to the
first slash in the FORMAT statement, from one slash to the next
succeeding slash, or from the last slash to the end of the
FORMAT statement. Thus, a new record is read when the format
control is initiated, and thereafter a record is read upon
encountering a slash; a new record is written upon encountering
a slash or when forrr.at control is terminated.

Example:

xxxxx FORMAT (----/ ----/ ----)

<---> <---> <--->
I I I
I I I
L---------------each corresponds to

1 FORTRAN record

c. If more than one level of parentheses appear within a FORMAT
statement, a FORTRAN record is defined by the beginning of the
FORMAT statement to the end of the FORMAT statement. At this
point, the definition of the FORTRAN record continues at the
first-level left parenth~sis that precedes the end of the
FORMAT statement.

Example 1:

0 1 2 21 0
xxxxx FORMAT (--- (--- (---)) ---)

<----------------->
I <------------>
I I
I I
I I
I I
L-----------------each corresponds to

1 FORTRAN record

Input/Output Statements 51

Example 2:

0 1 1
xxxxx FORMAT (--- (---)

1 1 0
(---) ---)

<--------------------->
I
I <------->
I I
I I
I I
L------------------each corresponds to

1 FORTRAN record

When defining a FORTRAN record by a FORMAT statement it is
important to consider the original source (input) or ultimate
destination (output) of the record. For example, if a FORTRAN
record is to be punched for output, the record should not be
greater than 80 characters. For input, the FORMAT statement should
not define a FORTRAN record longer than the record ref erred to in
the data set.

3. Blank output records may be introduced or input records may be
skipped by using consecutive slashes (/) in a FORMAT statement. If
there are n consecutive slashes at the beginning or end of a FORMAT
statement, n input records are skipped or n blank records are
inserted between output records, respectively. If n consecutive
slashes appear anywhere else in a FORMAT statement, the number of
records skipped or blank records inserted is n-1. For example, the
statements:

52

10 FORMAT (///I6)

READ (INPUT,10) MULT

cause three records to be skipped on the data set associated with
INPUT before data is read into MULT.

The statements, where 'x' is a carriage control character Csee,
"Carriage Control") :

15 FORMAT ('x',I5,////'x',F5.2,I2//)

WRITE (IOUT,15) K,A,J

result in the following output:

Integer
(blank line)
(blank line)
(blank line)
Real, Integer
(blank line)
(blank line)

4. Successive items in an I/O list are transmitted according to
successive format codes in the FORMAT statement, until all items in
the list are transmitted. If there are more items in the list than
there are codes in the FORMAT statement, control transfers to the
preceding left parenthesis of the FORMAT statement and the same
format codes are used again with the next record. If there are
fewer items in the list, the remaining format codes are not used.
For example, suppose the following statements are written in a
program:

10 FORMAT (F10.3,E12.4,F12.2)

WRITE (3,10) A,B,C,D,E,F,G

The following table shows the data transmitted in the column on the
left and its corresponding format code.

Data Transmitted Format Codes
A F10.3) first data
B E12.4

s
record

c F12.2
D Fl0.3 } second data
E E12.4 record
F F12.2
G F10.3 } third data

record

5. A format code may be repeated as many times as desired by preceding
the format code with an unsigned integer constant. Thus,

(2F10.4)

is equivalent to:

(F10.4,F10.4)

6. A limited parenthetical expression is permitted to enable repeti­
tion of data fields according to certain format codes within a
longer FORMAT statement. Two levels of parentheses, in addition to
the parentheses required by the FORMAT statement, are permitted.
The second level of parentheses facilitates the transmission of
complex quantities.

7. When transferring data on input or output, the type of format code
used, type of data, and type of variables in the I/O list should
correspond.

8. In the following examples, the output is shown as a printed line.
A carriage control character 'x', (see, "Carriage Control") is
specified in the FORMAT statement but does not appear in the first
print position of the print line. This carriage control character
appears as the first character of the output record on any I/O
medium other than the printed line.

Input/Output Statements 53

G Format Code

r--~--------------,
I General Form I
~--~

aGw .• s - - -
Where: ~ is optional and is an unsigned integer constant used to

denote the number of times the same format code is repeti­
tively referenced.

~ is an unsigned integer constant specifying the total field
length.

~ is an unsigned integer constant specifying the number of
significant digits.

The G format code is a generalized code in that it may be used to
determine the desired form of data whether it be integer, real, complex,
or logical.

The .~ portion may be omitted when transferring integer or logical
data. If present, it is ignored. When real data is transferred, the w
portion of the G format code includes four positions for a decimal
exponent field.

I If the real data. say n. is in the ranqe 0.1:5n<10**s where s is the s
portion of the format code Gw.s, then this exponent field is blank~
Otherwise, the real data is-transferred with an E or D decimal exponent
depending on the length specification (either 4 or 8 storage locations,
respectively) of the real data.

I

I

For the purpose of simplification, the following examples deal with
the printed line. However, the concepts developed apply to all
input/output media.

Example 1:

Assume that the variables A, B, C, and D are of type real whose values
are 292.7041, 82.43441, 136.7632, .8081945, respectively.

1
2
3

FORMAT
FORMAT
FORivlAT

C'x',G12.4,G12.5,G12.4,G12.7)
('x',G13.4,G13.5,G13.4)
('x' ,G13.4)

WRITE (5, n) A, B, C, D

Explanation:

54

a. If n has been specified as 1, the printed output would be as
follows: Cb reprPsents ;::i hJ;::ink)

Print Position 1 Print Position 48
t t
bbb292.7bbbbbb82.434bbbbbbb136.7bbbb.8081945bbbb

I

I

•

I

I

b. If B had been specified as 2, the printed output would then
be:

Print Position 1 Print Position 39
t t
bbbb292.7bbbbbbb82.434bbbbbbbb136.7bbbb
bbb0.8081bbbb

Line 1
Line 2

From the above example, it can be seen that by increasing the
field width reserved (~), blanks are inserted.

c. If ~ had been specified as 3, the printed output would be:

Print Position 1
t
bbbb292.7bbbb Line 1
bbbb82.43bbbb Line 2
bbbb136.7bbbb Line 3
bbb0.8081bbbb Line 4

From the above example, it can be seen that the same format
code was used for each variable in the list. Each repetition
of the same format cede caused a new line to be printed.

Example 2:

Assume that the variables I, J, K, and Lare of type integer whose
values are 292, 443428, 4908081, and 40018, respectively.

1
2
3

FORMAT
FORMAT
FORMAT

('x' ,GlO, 2G7 ,GS)
C 'x', G6)
('x',4G10)

WRITE (5, nj I, J, K, L

Explanation:

a. If n had been specified as 1, the printed output would be as
follows:

Print Position 1 Print Position 29
t t
bbbbbbb292b443428490808140018 Line 1

The same results way be achieved, had FORMAT statement 1 been
written as follows:

FORMAT C'x',G10, G7, G7, GS)

Note that the .~ portion of the G format may be omitted when
transmitting integer data.

Input/Output Statements 55

I

I

I

I

b. If n had been specified as 2, the printed output would be as
follows:

Print Position 1
t
bbb292
443428

****** b40018

Line 1
Line 2
Line 3
Line 4

Note that the second format code G6 is an incorrect specif i­
cation for the third variable K, i.e., 4908081. Thus, the
left-most digit is lost. In general, when the width specifi­
cation w is insufficient, the left-most characters are not
printed.

c. If n had been specified as 3, the printed output would be as
follows:

Print Position 1 Print Position 40
t t
bbbbbbb292bbbb443428bbb4908081bbbbb40018 Line 1

From the above example, it can be seen that increasing the
field width ~ improves readability.

Example 3:

Assume that the variable I is integer (length 2), A and B are real
(length 4), D is real (length 8), C is complex (length 8), and Lis
logical (length 1) whose values are 292, 471.93, 81.91, 6.9310072,
(2.1, 3. 7), and .TRUE. respe'ctively.

1 FOR!V".iAT
2 FORMAT
3 FORMAT

C'x',G3,2G9.2,G13.7,2G8.2,G3)
('x' ,G3/'x' ,2G10.2/'x' ,G9.1/'x' ,2G8.2,G3)
(//'x',G3,2G9.2//'x',G13.7,2G8.2,G3///)

WRITE (5,~) I,A,B,D,C,L

Explanation:

56

a. ~ has been specified as 1, the printed output would be as
follows:

Print Position 1 Print Position 53
t t
292b0.47Eb03bb81.bbbbb6.931007bbbpb2.1bbbbb3.7bbbbbbT

When complex data is being transmitted, two format codes are
required. The real and imaginary parts are each treated as
separate real numbers and the parentheses and comma are not
printed as part of the output.

I

I

b. If n has been specified as 2, the printed output would be as
follows:

Print Position 1
t
292
bb0.47Eb03bbb81.bbLb
bbb6.bbbb
b2.lbbbbb3.7bbbbbbT

Line 1
Line 2
Line 3
Line 4

From the above example, it can be seen that the use of the
slash (/) to separate two format codes causes the data, not
yet printed. to be printed on a new line. If the output data
is to be punched on cards. the slash specifies that the
following data will be punched on another card.

c. If Q has been specified as 3, the printed output would be as
follows:

Print Position 1
t
(blank line)
(blank line)
292b0.47Eb03bb81.bbbb
(blank line)
b6.931007bbbbb2.1bbbbb3.7tbbbbbT
(blank line)
(blank line)
(blank line)

Line 1
Line 2
Line 3
Line 4
Line 5
Line 6
Line 7
Line 8

In the above example, note that 2 consecutive slashes appear­
ing at the beginning and 3 at the end of the series of format
codes causes blank lines to be inserted as shown. However,
the 2 consecutive slashes appearing elsewhere in the FORMAT
statement causes the insertion of a blank line as shown in
Line 4.

The principles illustrated in the previous output examples also apply
when using the READ statement on input. In addition, there are the
following further considerations when using the FORMAT statement on
input or output.

I 1. The use of additional parentheses Cup to two levels) within a
FORMAT statement is permitted to enable the user to repeat the same
format code when transmitting data. For example, the statement:

10 FORMAT (2(Gl0.6,G7.1),G4)

is equivalent to:

10 FORMAT (Gl0.6, G7.1, Gl0.6, G7.1, G4)

2. If the data exists with a D decimal exponent, then it is
transferred with this D decimal exponent.

I 3. If a multiline listing is desired such that the first two lines are
to be printed according to a special format and all remaining lines
according to another format, the last forwat code in the statement
should be enclosed in a second pair of parentheses. For exawple,
in the statement:

FORMAT ('x',G2,2G3.l/'x',G10.8/('x',3G5.1))

Input/Output Statements 57

If more data items are to be transmitted after the format codes
have been completely used, the format repeats from the last left
parenthesis. Thus, the printed output would tqke the following
form:

G2,G3.1,G3.1
G10.8
GS.1,GS.1,GS.1
G5.1,G5.1,G5.1

As another example, consider the following statement:

FORMAT ('x',G2/2('x',G3,G6.1),G9.7)

If there are thirteen data items to be transmitted, then the
printed output on a WRITE statement would take the following form:

G2
G3,G6.1,'x',G3,G6.1,G9.7
G3,G6.1,'x',G3,G6.1,G9.7
G3,G6.1

Numeric Format Codes CI,F,E,D)

Four types of format codes are available for the transfer of numeric
data. These are specified in the following form:

r--------------~--1
I General Form I
~--~

aiw aFw.a ---
aEw.d ---
aDw.d ---
Where: a is optional and is an unsigned integer constant used to

denote the number of times the same format code is repeti­
tively referenced.

I,F,E,D are format codes.

w is an unsigned integer constant that is less than or equal
to 255 and specifies the number of characters of data.

d is an unsigned integer constant specifying the number of
decimal places to the right of the decimal point, i.e., the
fractional portion.

L--

For purposes of simplification, the following discussion of format
codes deals with the printed line. The concepts developed apply to all
input/output media.

58

I Format Code

The I format code is used to transmit integer data. If the number of
characters to be transmitted is greater than ~, on input, the excess
leftmost characters are lost; on output, asterisks are given. If the
number of characters is less than ~, on input, leading blanks are not
significant, embedded and trailing blanks are treated as zeros; on
output, the leftmost print positions are filled with blanks. If the
quantity is negative, the position preceding the leftmost digit contains
a minus sign. In this case, an additional position should be specified
in ~ for the minus sign.

The following examples show how each of the quantities on the left is
printed according to the forffiat code I3: Cb represents a blank)

Internal Value

721
-721

-12
568114

0
-5
9

F Format Code

Printed Value

721
721

-12

bbO
b-5
bb9

(incorrect because of insufficient
specification)

(incorrect because of insufficient
specification)

The F format code is used in conjunction with the transferral of real
or double precision data that does not contain a decimal exponent. For
F format codes, ~ is the total field length reserved and g is the number
of places to the right of the decimal point (the fractional portion).
The total field length reserved must include sufficient positions for a
sign (if any) and a decimal point. The sign, if negative, is printed.

If insufficient positions are reserved by g, the fractional portion

I is rounded to the gth position. If excessive positions are reserved by
d, zeros are filled in on the right. The integer portion of the number
Is handled in the same fashion as numbers transmitted by the I-format
code.

The following examples show how each of the quantities on the left is
printed according to the format code F5.2:

Internal Value

12.17
-41.16

-.2
7.3542

-1.
9.03
187.64

Printed Value

12.17
41.16

-0.20
b7.35

-1.00
b9.03

(incorrect because of insufficient
specification)

(last two digits of accuracy lost
because of insufficient specification)

(incorrect because of insufficient
specification)

Input/Output Statements 59

D and E Format Codes

The D and E format codes are used in conjunction with the transferral
of real data that contains a D or E decimal exponent, respectively. A D
format code indicates a field length of 8; an E format code indicates a
field length of 4. For D and E format codes, the fractional portion is
again indicated by g.

The ~ includes field g, spaces for a sign, the decimal point, plus
four spaces for the exponent. For output, space for at least one digit
preceding the decimal point should be reserved. In general, ~ should be

I

at least equal to g+7. If insufficient positions for g are supplied,
the fraction is rounded to the gth position. If excessive positions are
supplied, zeros are added.

The exponent is the power of 10 by which the number must te
multiplied to obtain its true value. The exponent is written with a D
or an E, followed by a space for the sign and two spaces for the
exponent (maximum value is 75).

The following examples show how each of the quantities on the left is
printed, according to the fo~mat codes (010.3/El0.3):

Internal Value

238.
-.002
.00000000004
-21.0057

Printed Value

b0.238Db03
-0.200E-02
b0.400D-10
-0.210Eb02 (Last three digits of accuracy

lost because of insufficient
specification)

When reading input dat~, the start of the exponent field must be
marked by an E, or, if that is omitted, by a+ or - sign (not a blank).
Thus, E2,E+2,+2,+02,E02, and E+02 all have the same effect and are
permissible decimal exponents for input.

Numbers for E, D, and F format codes need not have their decimal
point punched. If it is not present, the decimal point is supplied by
the d portion of the format code. If it is present in the card, its
position overrides the position indicated by the Q portion of the format
code.

Z Format Code

r--1
I General Form I
~--~
I ~z~ I
I I
I Where: ~ is optional and is an unsigned integer constant used to I
I denote the number of times the same format code is repeti- I
I tively referenced. I
I I
I ~ is an unsigned integer constant that is less than or equal I
I to 255 and specifies the number of hexadecimal digits to be I
I read or written. I l __ J

60

I

Hexadecimal numbers rnay be read or written by means of the format
code Zw.

One storage location contains two hexadecimal digits. In read and
write operations~ padding and truncation are on the left. ·However, in a
read operation, the padding character is a hexadecimal zero; in a write
operation, it is a blank.

L Format Code

r--1
I General Form I
~--~
I aLw I
I I
I Where: ~ is optional and is an unsigned integer constant used to I
I denote the number of times the same format code is repeti- I
I tively referenced. I
I I
j ~ is an unsigned integer constant that is less than or equal I
I to 255 and specifies the number of characters of data. I l __ j

Logical variables may be read or written by means of the format code
Lw.

On input, the first T or F encountered in the next ~ characters of
the input record causes a value of .TRUE. or .FALSE., respectively, to
be assigned to the corresponding logical variable. If the field ~
consists entirely of blanks, a value of .FALSE. is assumed.

On output, a T or an F is inserted in the output record corresponding
to the value of the logical variable in the I/O list. The single
character is preceded by ~ - 1 blanks.

A Format Code

r--1
I General Form I
~--~
I aAw I
I I
I Where: ~ is optional and is an unsigned integer constant used to I
I denote the number of times the same format code is repeti- I
I tively referenced. I
I I
I ~ is an unsigned integer constant that is less than or equal I
I to 255 and specifies the number of characters of datq. I l __ J

The format code Aw is used to read or write data. If ~ is equal to
the number of characters corresponding to the length of each item in the
I/O list, ~ characters are read or written.

Input/Output Statements 61

On input, if ~ is less than the length of the storage reserved for
each item in the I/O list, w characters are read and the remaining
right-most characters in the item-are replaced with blanks. If ~ is
greater than the length the number of characters equal to the difference
between w and the length are skipped and the remaining characters are
read.

On output, if ~ is less than the length of the storage reserved for
each item, the printed line will consist of the left-most w characters
of the item. If ~ is greater than the length the printed- line will
consist of the characters right-justified in the field and be preceded
by blanks. Therefore it is important to always allocate enough area in
storage to handle the characters being written (see the section
"Specification Statements").

Example 1:

Assume that the array ALPHA consists of one subscript parameter ranging
from 1 through 20. The following statements could be written to "copy"
a record from one data set to another whose ultimate destination is a
card punch.

10 FORMAT (20A4)

READ (5,10) (ALPHA(I),I=l,20)

WRITE (6,10) (ALPHA(l),!=1,20)

Explanation:

In this example, the READ statement would cause 20 groups of
characters to be read from the data set associated with data set
reference number 5. Each group of four characters would be placed into
one of the 20 positions in storage starting with ALPHA(l) and ending
with ALPHAC20). The WRITE statement would cause the 20 groups of four
characters to be written on the data set associated with data set
reference number 6.

Example 2:

As another example, consider all the variable names in the list of
the following READ statement to have been explicitly specified as REAL
and the array CONST to have been specified as having one subscript
parameter ranging from 1 through 10. Then assuming the following input
data is associated with data set reference number 5,

ABCDE ••. XYZ$1234567890b

where represents the alphabetic characters F through w and b means
a blank, the following statements could be written:

62

10 FORMAT
20 FORMAT

READ
1
2
3

C27A1,10A1,A1)
(Ix I I 6 (7 Al, SX))

(5,10)A,B,C,D,E,F,G,H,I,
J,K,L,M,N,O,P,Q,R,
S,T,U,V,W,X,Y,Z,$,
(CONST CIND),IND=l, 10), BLANK

DO 50 INDEX 1,5

WRITE
1
2
3
4
5

(6,20)G,R,O,U,P,BLANK,CONST(INDEX),
B,L,O,C,K,BLANK,CONST(INDEX),
F,I,E,L,D,BLANK,CONST(INDEX),
G,R,O,U,P,BLANK,CONST(INDEX+5),
B,L,O,C,K,BLANK,CONST(INDEX+S),
F,I,E,L,D,BLANK,CONST(INDEX+S)

50 CONTINUE

Explanation:

The READ statement would cause the 37 alphameric characters and the
blank in the data set associated with data set reference number 5 to be
placed into the storage locations specified by the variable names in the
READ list. Thus, the variables A throuqh Z receive the values A throuqh
Z, respectively; the variable $ receives the value $; the numbers -1
through 9, and O, are placed in the ten fields in storage starting with
CONST(l) and ending with CONSTC10); and the variable BLANK receives a
blank. The WRITE statement within the DO loop would cause the following
heading to be printed. A subsequent WRITE statement within the DO loop
could then be written to print the corresponding output data.

Print Position 1
t
GROUP 1 BLOCK 1

GROUP 2 BLOCK 2

GROUP 5 BLOCK 5

FIELD 1 GROUP 6

(output data)

FIELD 2 GROUP 7

(output data)

FIELD 5 GROUP 0

(output data)

Print Position 67
t

BLOCK 6 FIELD 6

BLOCK 7 FIELD 7

BLOCK 0 FIELD 0

Input/Output Statements 63

Literal Data in a Format Statement

Literal data consists of a string of alphameric and special charac­
ters written within the FORMAT statement and enclosed in apostrophes.
The string of characters must be less than or equal to 255. For
example:

25 FORMAT (' 1964 INVENTORY REPORT')

An apostrophe character within the string is represented by two
successive apostrophes. For example, the characters DON'T are repre­
sented as:

DON''T

The effect of the literal format code depends on whether it is used
with an input or output statement.

INPUT

A number of characters, equal to the number of characters between the
apostrophes, are read from the designated data set. These characters
replace, in storage, the characters within the apostrophes.

For example, the statements:

5 FORMAT (' HEADINGS')

READ (3,5)

would cause the next 9 characters· to be read from the data set
associated with data set reference number 3; these characters would
replace the blank and the 8 characters H,E,A,D,I,N,G, and s in storage.

OUTPUT

All characters (including blanks) within the apostrophes are written
as part of the output data. Thqs, the statements:

5 FORMAT (' THIS IS ALPHAMERIC DATA')

WRITE (2,5)

would cause the following record to be written on the data set
associated with the data set reference number 2:

THIS IS ALPHAMERIC DATA

64

H Format Code

r--1
I General Form I
~--~
I ~H I
I I

I I Where: ~ is an unsigned integer constant that is less than or equal I
I to 255 and specifies the number of characters following H. I
L--J

The H format code is used in conjunction with the transferral of
literal data=

I The format code ~H is followed in the FORMAT statement by ~
characters. For example,

5 FORMAT (31H THIS IS ALPHAMERIC INFORMATION)

Blanks are significant and must be included as part of the count w.
The effect of ~H depends on whether it is used with input or output.

1. On input, w characters are
replace the w characters of
statement.

extracted from the input record and
the literal data in the FORMAT

2. On output, the ~ characters following the format code are written
as part of the output record.

X Format Code

r--1
I General Form I
~--~
I ~x I
I I

I. j Where: w is an unsigned integer constant that is less than or equal I
I to 255 and specifies the number of blanks to be inserted on I
I output or the number of characters to be skipped on input. I
L--J

I When the wX format code is used with a READ statement (i.e., on
input), w characters are skipped before the data is read in. For
example, if a card has six 10-coluron fields of integer quantities, and
it is not desired to read the second quantity, then the stateroent:

5 FORMAT <IlO, lOX, 4110)

may be used, along with the appropriate READ statement.

When the wX format code is used with a WRITE statement (i.e., on
I output), w characters are filled with blanks. Thus, the facility for

spacing within a printed line is available. For example, the statement:

10 FORMAT ('x',3CF6.2,5X))

may be used with an appropriate WRITE statement to print a line as
follows:

123.45bbbbb817.32bbbbb524.67bbbtb

Input/Output Statements 65

T Format Code

r--1
I General Form I
~--~
I T!! I
I I

I I Where: w is an unsigned integer constant that is less than or equal I
I to 255 and specifies the position in a FORTRAN record where I
I the transfer of data is to begin. I
L--J

Input and output may begin at any position by using the format code
I T~. Only when the output is printed does the correspondence between ~

and the actual print position differ. In this case, because of the
carriage control character, the print position corresponds to ~-1, as
may be seen in the following example:

5 FORMAT (T40, '1964 INVENTORY REPORT', T80, 'DECEMBER', Tl, ' PART
NO. 10095')

The preceding FORMAT statement would result in a printed line as
follows:

Print
Position 1
t
PART NO. 10095

Print
Position 39
t
1964 INVENTORY REPORT

The following statements:

5 FORM,AT (T40, ' HEADINGS')

READ (3,5)

Print
Position 79

' DECEMBER

would cause the first 39 characters of the input data to be skipped, and
the next 9 characters would then replace the blank and the characters
H,E,A,D,I,N,G and s in storage.

The T-forrnat code may be used in a FORMAT statement with any type of
format code. For example, the following statement is valid:

5 FORMAT CT100, Fl0.3, TSO, E9.3, Tl, ' ANSWER IS')

Scale Factor - P

The representation of the data, internally or externally, may be
modified by the use of a scale factor followed by the letter P preceding
a format code. The scale factor is defined for input and output as
follows:

external quantity internal quantity x 10 scale factor

66

I

For input, when scale factors are used in a FOR~..AT statement they
have effect only on real data which does not contain an E or D decimal
exponent. For example, if input data is in the form xx.xxxx and it is
desired to use it internally in the form .xxxxxx, then the format code
used to effect this change is 2PF7.4.

INPUT

As another example, consider the following input data:

27bbb-93.2094bb-175.8041bbbb55.3647

where b represents a blank.

The following statements:

5 FORMAT (I2,3F11.4)

READ (6,5) K,A,B,C

would cause the variables in the list to assume the following values:

K
A

27
-93.2094

B
c

The following statements:

-175.8041
55.3647

5 FORMAT (I2,1P3F11.4)

would cause the variables in the list to assume the following values:

K
A

27
-9.3209

B
c

The following statements:

-17.5804
5.5364

5 FORMAT CI2,-1P3F11.4)

READ (6,5) K,A,B,C

would cause the variable in the list to assume the following values:

K
A

27
-932.094x

B
c

-1758.041x
553.647x

where the x represents an extraneous digit.

Input/Output Statements 67

OUTPUT

Assume that the variables K,A,B, and C have the following values:

K
A

27
-93.2094

B
c

-175.8041
55.3647

then the following statements:

5 FORMAT CI2,1P3F11.4)

WRITE (4,5) K,A,B,C

would cause the variables in the list to output the following values:

K
A

27
-932.094x

B
c

-1758.041x
553.647x

where the x represents an extrapeous digit.

The following statements:

5 FORMAT {I2,-1P3F11.4)

WRITE (4,5) K,A,B,C

would cause the variables in the list to output the following values:

K
A

27
-9.3209

B
c

-17.5804
5.5364

For output, when scale factors are used, they have effect only on real
data. However, this real data may contain an E or D decimal exponent.
A positive scale factor used with real data which contains an E or D
decimal exponent, increases the number and decreases the exponent.
Thus, if the real data were in a form using an E decimal exponent, and
the statement FORMAT C1X,I2,3E13.3) used with an appropriate WRITE
statement resulted in the following printed line:

27bbb-0.932Eb02bbb-0.175Eb03bbbb0.553Eb02

Then the statement FORMAT C1X,I2,1P3E13.3) used with the same WRITE
statement results in the following printed output:

27bbb-9.320Eb01bbb-1.758Eb02bbbb5.536Eb01

The statement FORMAT C1X,I2,-1P3E13.3) used with the same WRITE state­
ment results in the following printed output:

27bbb-0.093Eb03bbb-0.017Eb04bbbb0~055Eb03

The scale factor is assumed to be zero if no other value has been
given. However, once a value has been given, it will hold for all
format codes following the scale factor within the same FORMAT state­
ment. This also applies to format codes enclosed within an additional
pair of parentheses. Once the scale factor has been given, a subsequent
scale factor of zero in the same FORMAT statement must be specified by
OP.

68

Carriage Control

When records written under format control are prepared for printing,
the following convention for carriage control applies:

First Character Carriage Advance Before Printing

Blank
0

One Line
Two lines

1
+

To first line of the next page
No advance

The first character of
control and is not printed.

the output record may be used for carriage
It appears in all other media as data.

Carriage control can be specified in either of two forms of literal
data. The following statements would both cause two lines to be skipped
before printing:

10 FORMAT ('0', 5(F7.3))

10 FORMAT {1HO, 5(F7.3))

END FILE STATEMENT

r--1
I General Form I
~--~
I END FILE ~ I
I I
I Where: a is an unsigned integer constant or integer variable that I
I represents a data set reference number. I
l __ J

The END FILE statement defines the end of the data set associated
with a. A subsequent WRITE statement defines the beginning of a new
data set.

REWIND STATEMENT

r--1
I General Form I
~--~
I REWIND ~ I
I I
I Where: ~ is an unsigned integer constant or integer variable that I
I represents a aata set reference number. I
l--J

The REWIND statement causes a subsequent READ or WRITE statement
referring to ~ to read data from or write data into the first data set
associated with a.

Input/Output Statements 69

BACKSPACE STATEMENT

r--1
I General Form I
~--~
I BACKSPACE ~ I
I I
I Where: ~ is an unsigned integer constant or integer variable that I
I represents a data set reference number. I l __ J

The BACKSPACE statement causes the data set associated with a to
backspace one record. If the data set associated with ~ is already at
its beginning, execution of this statement has no effect.

DIRECT ACCESS INPUT/OUTPUT STATEMENTS

There are four direct access I/O statements: READ, WRITE, DEFINE
FILE, and FIND. The READ and WRITE statements cause transfer of data
into or from internal storage. These statements allow the user to
specify the location within a data set from which data is to be read or
into which data is to be written.

The DEFINE FILE statement specifies the characteristics of the data
setlSJ to be used during a direct access operation. The FIND statement
overlaps record retrieval from a direct access device with computation
in the program. In addition to these four statements, the FORMAT
statement (described previously) specifies the form in which data is to
be transmitted. The direct access READ and WRITE statements, and the
FIND statement are the only I/O statements that may ref er to a data set
reference number defined by a DEFINE FILE statement.

DEFINE FILE Statement

The DEFINE FILE statement is a specification statement that describes
the characteristics of any data set to be used during a direct access
input/output operation. To use the direct access READ, WRITE, and FIND
statements in a program, the data set(s) must be described with a DEFINE
FILE statement. Each data set must be described once, and this
description may appear once in each program or subprogram. The
description must appear logically before the use of an input/output
statement with the same data set reference number; subsequent descrip­
tions have no effect.

70

I
r--1
I General Form I
~---~~-~

DEFINE FILE ~1<~1.~1,f11Y1),~2<~2,~2,f2,Y2), ••• ,~n<~n1~n,fn1Yn) I
I

Where: ~ represents an integer constant that is the data set I
reference number. I

I
~ represents an integer constant that specifies
of records in the data set associated with a.

the number I
I
I

~ represents an integer constant that specifies the maximum I
size of each record associated with a. The record size is I
measured in characters, storage locations, or storage units.
CA storage unit is the number of storage locations divided
by four and rounded to the next highest integer). The
method used to measure the record size depends upon the
specification for f.

i specifies that the data set is to be read or written
either with or without format control; f may be one of the
following letters:

L indicates that the data set is to be read or written
either with or without format control. The maximum record
size is measured in number of storage locations.

E indicates that the data set is to be read or written
under format control (as specified by a format statement).
The maximum record size is measured in number of charac­
ters.

U indicates that the data set is to be read or written
without format control. The maximum record size is
measured in number of storage units.

y represents a nonsubscripted integer variable called an
associated variable. At the conclusion of each read or
write operation, v is set to a value that points to the
record that immediately follows the last record transmitted.
At the conclusion of a find operation: v is set to a value
that points to the record found.

DEFINE FILE 2(50,100,L,I2),3(100,50,L,J3)

This DEFINE FILE statement describes two data sets, ref erred to by
data set reference numbers 2 and 3. The data in the first data set
consists of 50 records, each with a maximum length of 100 storage
locations. The L specifies that the data is to be transmitted either
with or without format control. 12 is the associated variable that
serves as a pointer to the next record.

The data in the second data set consists of 100 records, each with a
maximum length of 50 storage locations. The L specifies that the data
is to be transmitted either with or without format control. J3 is the
associated variable that serves as a pointer to the next record.

If an E is substituted for the L in the preceding DEFINE FILE
statement, a FORMAT statement is required and the data is transmitted

Input/Output Statements 71

under format control. If the data is to be transmitted without format
control, the DEFINE FILE statement can be written as:

DEFINE FILE 2(50,25,U,I2),3(100,13,U,J3)

Programming Considerations

when programming for direct access input/output operations, the user
must establish a correspondence between FORTRAN records and the records
described by the DEFINE FILE statement. All of the conventions of
FORMAT control discussed in the section "FORMAT STATEMENT" are applica­
ble.

For example, to process the data set described by the statement:

DEFINE FILE 8(10,48,L,K8)

the FORMAT statement used to control the reading or writing could not
specify a record longer than 48 characters. The statements:

FORMAT(4F12.1) or
FORMAT(I12,9F4.2)

define a FORTRAN record that corresponds to those records described by
the DEFINE FILE statement. The records can also be transmitted under
FORMAT control by substituting an E for the L and rewriting the DEFINE
FILE statement as:

DEFINE FILE 8(10,48,E,K8)

To process a direct access data set without format control, the
number of storage locations specified for each record must be greater
than or equal to the maximum number of storage locations in a record to
be writtea by any WRITE statement referencing the data set. For
example, if the input/output list of the WRITE statement specifies
transmission of the contents of 100 storage locations, the DEFINE FILE
statement can be either:

DEFINE FILE 8(50,100,L,K8) or
DEFINE FILE 8(50,25,U,K8)

Programs may share an associated variable,
or as an argument. The following example
accomplished.

i.e.,
shows

as a COMMON variable
how this can be

COMMON IUAR
DEFINE FILE 3(100,10,L,IUAR)

SUBROUTINE SUBI(A,B)
COMMON IUAR

ITEMP=IUAR
CALL SUBI(ANS,ARG)

8 IF (IUAR-ITEMP) 20,16,20

In this example, the program and the subprogram share the associated
variable !UAR. An input/output operation that references data set 3 and
is performed in the subroutine causes the value of the associated
variable to be changed. The associated variable is then tested in the
main program in statement 8.

72

J

READ Statement

The READ statement causes data to be transferred from a direct access
device into internal storage. The data set being read must be defined
with a DEFINE FILE statement.

r-------------------------------~---------~--------------------------,
I General Form I
~--~

READ (~'!:, .Q, ERR=.Q> list I

Where: ~ is an integer constant or unsigned integer variable that
represents a data set reference number; a must be followed
by an apostrophe ('). -

!
I
I
I
I

r is an integer expression that represents the relative J

position of a record within the data set associated with ~- I

Example:

b is optional and, if given, is either the statement number
of the FORMAT statement that describes the data being read
or the name of an array that contains an object time format.

d is the statement number to which control is given when a
device error condition is encountered during data transfer
from device to storage.

list is a series of variable or array names, separated by
commas, that may be indexed and incremented. They specify
the number of items to be read and the storage locations
into which the data is to be placed. The list has the same
forms and conventions as the list for the sequential READ
statements.

DEFINE FILE 1(500,100, L, IDi) , 2 (100, 28, L, ID2j
DIMENSION M(10)

ID2 21

10 FORMAT (5I20)
9 READ Cl '16, 10) (M(K) ,K=l,10)

13 READ (2'ID2+5) A,B,C,D,E,F,G

READ statement 9 transmits data from the data set associated with
data set reference number 1, under control of FORMAT statement 10;
transmission begins with record 16. Ten data items of 20 characters
each are read as specified by the I/O list and FORMAT statement 10. Two
records are read to satisfy the I/O list, because each record contains
only five data items (100 characters). The associated variable IDl is
set to a value of 18 at the conclusion of the operation.

Input/Output Statements 73

READ statement 13 transmits data from the data set associated with
data set reference number 2, without format control; transmission begins
with record 26. Data is read until the I/O list for statement 13 is
satisfied. Because the DEFINE FILE statement for data set 2 specified
the record length as 28 storage locations, the I/O list of statement 13
calls for the same amount of data (the seven variables are type real and
each occupies four storage locations). The associated variable ID2 is
set to a value of 27 at the conclusion of the operation. If the value
of ID2 is unchanged, the next execution of statement 13 reads record 32.

The DEFINE FILE statement in the previous example can also be written
as

DEFINE FILE 1(500,100,E,ID1),2(100,7,U,ID2)

The FORMAT statement may also control the point at which reading
starts. For example, if statement 10 in the example was

10 FORMAT (//5I20)

records 16 and 17 are skipped, records 18 and 19 are read, and IDl is
set to a value of 20 at the conclusion of the read operation in
statement 9.

WRITE Statement

The WRITE statement causes data
storage to a direct access device.
defined with a DEFINE FILE statement.

to be transferred from internal
The data set being written must be

r--1
I General Form I
r--~

74

WRITE (~'£,~) list

Where: ~ is an integer constant or unsigned integer variable that
represents a data set reference number; a must be followed
by an apostrophe ('). -

£ is an integer expression that represents the relative
position of a record within the data set associated with a.

~ is optional and, if given, is either the statement number
of the FORMAT statement that describes the data being
written or the name of an array that contains an object time
format.

list is a series of variable or array names, separated by
conunas, that may be indexed or incremented. They specify
the number of items to be written and the locations in
storage from which the dqta is to be taken. The list has
the same forms and conventions as the I/O list for the
sequential WRITE statements.

Example:

DEFINE FILE 1(500,100,L,ID1),2{100,28,L,ID2)
DIMENSION MC10)

ID2=21

10 FORMAT {5I20)
8 (M(K),K=l,10)

11 WRITE {2'ID2+5) A,B,C,D,E,F,G

WRITE statement 8 transmits data into the data set associated with
the data set reference number 1, under control of FORMAT statement 10;
transmission begins with record 16. Ten data items of 20 characters
each are written as specified by the I/O list and FORMAT statement 10.
Two records are written to satisfy the I/O list because each record
contains 5 data items {100 characters). The associated variable ID1 is
set to a value of 18 at the conclusion of the operation.

WRITE statement 11 transmits data into the data set associated with
data set reference number 2, without format control; transmission begins
with record 26. The contents of 28 storage locations are written as
specified by the I/O list for statement 11. The associated variable ID2
is set to a value of 27 at the conclusion of the operation. Note the
correspondence between the records described (28 storage locations per
record) and the number of items called for by the I/O list (7 variables,
type real, each occupying four storage locations).

The DEFINE FILE statement in the previous example can also be written
as

DEFINE FILE 1(500,100,E,ID1),2(100,7,U,ID2)

As with the READ statement, a FORMAT statement may also be used to
control the point at which writing begins.

FIND Statement

I
The FIND statement permits record retrieval to proceed concurrently

.'

with computation. By using the FIND statement, the user can increase
the object program execution speed. There is no advantage to a FIND
statement preceding a WRITE statement. The data set from which a record
is being retrieved must be defined with a DEFINE FILE statement.

Input/Output Statements 75

r--1
I General Form I
~--~
I FIND (~'£) I
I I
I Where: ~ is an integer constant or unsigned integer variable that I
I represents a data set reference number; ~ must be followed I
I by an apostrophe ('). I
I I
I £ is an integer expression that represents the relative I
I position of a record within the data set associated with ~- I
L--J
Example:

10 FIND C 3 ' 5 0)

15 READ (3'50) A,B

While the statements between statements 10 and 15 are executed,
record 50, in the data set associated with data set reference number 3,
is retrieved.

General Example -- Direct Access Operations

DEFINE FILE 8(1000,72,L,ID8)
DIMENSION A(100),B(100) ,CC100),DC100),E(100),F(100)

15 FORMAT (6F12.4)
FIND (8 I 5)

ID8=1
DO 100 I=l,100 ,
READ C8'ID8+4,15)A(I),B(I),C(I),D(I),E(I),F(I)

100 CONTINUE

DO 200 I=l,100
WRITE (8'ID8+4,15)A(I),B(I),C(I),D(I),E(I),F(I)

200 CONTINUE

END

The general example illustrates the ability of direct access state­
ments to gather and disperse data in an order designated by the user.
The first DO loop in the example fills arrays A through F with data from
the fifth, tenth, fifteenth, ••• , and five-hundredth record associated
with data set reference number 8. Array A receives the first value in
every fifth record, B the second value and so on, as specified by FORMAT
statement 15 and the I/O list of the READ statement. At the end of the
READ operationt each record has been dispersed into arrays A through F.
At the conclusion of the first DO loop, IDS has a value of 501.

The second DO loop in the example groups the data items from each
array, as specified by the I/O list of the WRITE statement and FORMAT
statement 15. Each group of data items is placed in the data set
associated with data set reference number 8. Writing begins at the
505th record and continues at intervals of five, until record 1000 is
written.

76

SPECIFICATION STATEMENTS

The specification statements provide the compiler with information
about the nature of the data used in the source program. In addition,
they supply the information required to allocate locations in storage
for this data. Specification statements describing data may appear
anywhere in the source program, but must precede any statements which
ref er to that data.

THE TYPE STATEMENTS

There are two kinds of type statements: the IMPLICIT specification
statement and the Explicit specification statements (INTEGER, REAL,
COMPLEX, and LOGICAL).

The IMPLICIT specification statement enables the user:

1. to specify the type of a group of variables or arrays according to
the initial character of their names.

2. to specify the amount of storage to be allocated for each variable
according to the associated type.

The Explicit specification statements enable the user:

1. to specify the type of a variable or array according to their
particular name.

2. to specify the amount of storage to be allocated for each variable
according to the associated type.

3. to specify the dimensions of an array.
4. to assign initial data values for variables and arrays.

IMPLICIT Statement

r--1
I General Form I
~--~

IMPLICIT ~*~(~1.~21•••), ••. ,~*~<~1.~2····) I
I

Where: ~ represents one of the following: INTEGER, REAL, COM- I
PLEX, or LOGICAL. I

i
*s is optional and represents one of the permissible
specifications for its associated type.

length I

~1 , ~2 ,... represent single alphabetic characters each
separated by commas, or a range of characters (in alphabetic
sequence) denoted by the first and last characters of the

I
I
I
I
I

range separated by a minus sign (e.g., (A-D)). I
L--J

The IMPLICIT type statement must be the first statement in a main
program and the second statement in a subprogram. There can be only one
IMPLICIT statement per program or subprogram. The IMPLICIT type
statement enables the user to declare the type of the variables
appearing in his program (i.e., integer, real, complex, or logical) by

Specification Statements 77

specifying that variables beginning with certain designated letters are
of a certain type. Furthermore, the IMPLICIT statement allows the
programmer to declare the number of locations to be allocated for each
in the group of specified variables. The type a variable may assume,
along with the permissible length specifications are as follows:

~ Length Specification
INTEGER 2 or 4 (standard length is 4)
REAL 4 or 8 (standard length is 4)
COMPLEX 8 or 16 (standard length is 8)
LOGICAL 1 or 4 (standard length is 4)

For each type there is a corresponding standard length specification.
If this standard length specification (for its associated type) is
desired, the *~ may be omitted in the IMPLICIT statement. That is, the
variables will assume the standard length specification. For each type
there is also a corresponding optional length specification. If this
optional length specification is desired, then the *~ must be included
within the IMPLICIT statement.

Example 1:

IMPLICIT REAL (A-H, 0-Z,$}, INTEGER CI-N}

Explanation:

All variables beginning with the characters I through N are declared
as INTEGER. Since no length specification was explicitly given Ci.e.,
the *s was omitted}, 4 storage locations (the standard length for
INTEGER} are allocated for each variable.

All other variables (those beginning with the characters A through H,
O through Z, and $> are declared as REAL with 4 storage locations
allocated for each.

Note that the statement in Example 1 performs the exact same function
of typing variables as the predefined convention (see, "Type Declaration
by the Predefined Specification"}.

Example 2:

IMPLICIT INTEGER*2CA-H), REAL*BCI-K}, LOGICALCL,M,N)

Explanation:

All variables beginning with the characters A through H are declared
as integer with 2 storage locations allocated for each. All variables
beginning with the characters I through K are declared as real with 8
storage locations allocated for each. All variables beginning with the
characters L, M, and N are declared as logical with 4 locations
allocated for each.

Since the remaining letters of the alphabet, namely, O through Z and
$, were left undefined oy the IMPLICIT statement, the predefined
convention will taKe effect. Thus, all variables beginning with the
characters O through Z and $ are declared as real, each with a standard
length of 4 locations.

Example 3:

IMPLICIT COMPLEX*16(C-F}

78

Explanation:

All variables beginning with the characters c through F are declared
as complex, each with 8 storage locations reserved for the real part of
the complex data and 8 storage locations reserved for the imaginary
part. The types of the variables beginning with the characters A, B, G
through Z, and $ are determined by the predefined convention.

Explicit Specification Statements

r--1
I General Form I
~--~
~*~ ~*~1<~1)/~1/1R*~2<~2)/~2/, ••• ,~*~n<~n)/~n/

Where: ~ is INTEGER, REAL, LOGICAL, or COMPLEX.

*s,*s1 ,*s2 , ••• ,*sn are
the permissible length
tvpe.

optional. Each ~ represents one of
specifications for its associated

a,b, ••• ,z represent variable, array, or function names Csee
the section, "SUBPROGRAMS")

(~1), C!2), ••• , <~n> are optional. Each~ is composed of 1
through 7 unsigned integer constants, separated by commas,
representing the maximum value of each subscript in the
array. Each ~ may be an unsigned integer variable only when
the Type statement in which it appears is in a subprograrr.

/x1 /,/x2 /, ••• ,/xn/ are optional and represent initial data
values-:- -

The Explicit specification statements declare the ~ (INTEGER,
REAL: COMPLEX: or LOGICAL) of a particular variable or array by its
name, rather than by its initial character. This differs from the other
ways of specifying the type of a variable or array (i.e., pre-define
convention and the IMPLICIT statement). In addition, the information
necessary to allocate storage for arrays (dimension information) may be
included within the statement. However, if this information does not
appear in an Explicit specification statement, it must appear in a
DIMENSION or COMMON statement (see, "DIMENSION Statement" or "COMMON
Statement").

Initial data values may be assigned to variables or arrays by use of
/~n/ where ~n is a constant or list of constants separated by commas.
This set of constants may be in the form nr* constant", where r is an
unsigned integer, called the repeat constant. An initial data value rray
not be assigned to a function name.

An initially defined variable or a variable of an array may not be in
blank common. In a labeled common block, they may be initially defined
only in a BLOCK DATA subprogram. (See the section, "SUBPROGRAMS.")

In the same manner in which the IMPLICIT statement overrides the
predefined convention, the Explicit specification statements override
the IMPLICIT and predefined convention. If the length specification is
omitted (i.e.,*~), the standard length per type is assumed.

Specification Statements 79

Example 1:

INTEGER*2 ITEM/76/, VALUE

Explanation:

This statement declares that the variables ITEM and VALUE are of type
integer, each with 2 storage locations reserved. In addition, the
variable ITEM is initialized to the value 76.

Example 2:

COMPLEX C,D/C2.1,4.7)/,E*16

Explanation:

This statement declares that the variables c, D, and E are of type
complex. Since no length specification was explicitly given, the
standard length is assumed. Thus, C and D each have 8 storage locations
reserved (4 for the real part, 4 for the imaginary part) and D is
initialized to the value (2.1,4.7). In addition, 16 storage locations
are reserved for the variable E. Thus, if a length specification is
explicitly written, it overrides the assumed standard length.

Example 3:

REAL*8 ARRAY, HOLD, VALUE*4, ITEMC5,5)

Explanation:

This statement declares that the variables ARRAY, HOLD, VALUE, and
the array named ITEM are of type real. In addition, it declares the
size of the array ITEM. The variables ARRAY and HOLD have 8 storage
locations reserved for each; the variable VALUE has 4 storage locations
reserved; and the array named ITEM has 200 storage locations reserved (8
for each variable in the array}. Note that when the length is
associated with the type (e.g., REAL*8}, the length applies to each
variable in the statement unless explicitly overridden (as in the case
of VALUE*4}.

Example 4:

REAL A(5,5}/20*6.9E2,5*1.0/, B(100}/100*0.0/,TEST*8(5}/5*0.0/

Explanation:

This statement declares the size of each array, A and B, and their
type (real). The array A has 100 storage locations reserved (4 for each
variable in the array} and the array B has 400 storage locations
reserved (4 for each variable}. In addition, the first 20 variables in
the array A are initialized to the value 6.9E2 and the last 5 variables
are initialized to the value 1.0. All 100 variables in the array B are
initialized to the value 0.0. The array TEST has 40 storage locations
reserved (8 for each variable). In addition, each variable is initial­
ized to the value 0.0.

80

Adjustable Dimensions

As shown in the previous examples, the maximum value of each
subscript in an array was specified by a numeric value~ These numeric
values (maximum value of each subscript) are known as the absolute
dimensions of an array and may never be changed. However, if an array
is used in a subprogram (see the section, "Subprograms") and is not in
Common, the size of this array does not have to be explicitly declared
in the subprogram by a numeric value. That is, the Explicit specifi­
cation statement, appearing in a subprogram, may contain integer
variables of length 4 that specify the size of the array. These integer
variables must be either actual or implicit subprogram arguments. When
the subprogram is called, these integer variables then receive their
values from the calling program. Thus, the dimensions (size) of a dummy
array appearing in a subprogram are adjustable and may change each time
the subprogram is called. Integer variables that provide dimension
information may not be redefined within the subprogram.

The absolute dimensions of an array must be declared in a calling
program. The adjustable dimensions of an array, appearing in a
subprogram, should be less than or equal to the absolute dimensions of
that array as declared in the calling program.

The following example illustrates the use of adjustable dimensions:

Example:

Calling Program Subprogram

REAL*8 ACS, 5) SUBROUTINE MAPMY(... ,R,L,M, •••)

CALL MAPMY(•.. ,A,2,3, ...) REAL*8 ••• ,R(L,M), •••

DO 100 I=l,L

Explanation:

The statement REAL*8 A(5,5) appearing in the calling program declares
the absolute dimensions of the array A. When the subroutine MAPMY is
called, the dummy argument R assumes the array name A and the dummy
arguments L and M assume the values 2 and 3, respectively. The
correspondence between the subscripted variables of the arrays A and R
is shown in the following example.

R(l,1) R(2,1) R(l,2) R(2,2) R(l,3) R(2,3)

A(l,U A(2,1) A(3,1) A(4,1) A(5,1) A(l,2) A(2,2) •••

Thus, in the calling program the subscripted variable A(l,2) refers to
the sixth subscripted variable in the array A. However, in the
subprogram MAPMY the subscripted variable RC1,2) refers to the third

Specification Statements 81

subscripted variable in the array A, namely, AC3,1). This is so because
the dimensions of the array R as declared in the subprogram are not the
same as those in the calling program.

If the absolute dimensions in the calling program were the same as
the adjusted dimensions in the subprogram, then the subscripted vari­
ables RCl,1) through RC5,5) in the subprogram would always refer to the
same storage locations as specified by the subscripted variables ACl,1)
through AC5,5) in the calling program, respectively.

The numbers 2 and 3, which became the adjusted dimension of the dummy
array R, c?uld also have been variables in the argument list or implicit
arguments in a COMMON block. For example, assume that the following
statement appeared in the calling program:

CALL MAPMY (••• ,A,I,J, •••)

Then as long as the values of I and J were previously defined, the
arguments may be variables. In addition, the variable dimension size
may be passed through more than one level of subprograms. For example,
within the subprogram MAPMY could have been a call statement to another
subprogram in which dimension information about A could have been
passed.

Dummy variables (e.g., Land M) may be used as dimensions of an array
only in a FUNCTION or SUBROUTINE subprogram.

ADDITIONAL SPECIFICATION STATEMENTS

DIMENSION Statement

r--1
I General Form I
~--~
I DIMENSION ~1C~1>r~2<~2>r ~3(~3), ••• ,~nC~n> I
I I
I Where: ~1 , ~2 , ~3 , ••• , ~n are array names. I
I I
I ~1 , ~2 , ~3 , •••• ,~n are each composed of 1 through 7 unsigned integer I
I constants, separated by commas, representing the maximum I
I value of each subscript in the array. ~1 through ~n may be I
I integer variables of length 4 only when the DIMENSION I
I statement in which they appear is in a subprogram. I
L--~----------------------J

The information necessary to allocate storage for arrays used in the
source program may be provided by the DIMENSION statement. Allocation
information should be given to an array on its first appearance in a
source program; however, for subprograms, the SUBROUTINE or FUNCTION
statement may include a dummy argument that is dimensioned later. The
following examples illustrate how this information may be declared.

Examples:

82

DIMENSION A (10), ARRAY (5,5,5), LIST (10,100)
DIMENSION B(25,50),TABLEC5,8,4)

COMMON Statement

r--1
I General Form j
~--------------------------------------~-------------------------------~

COMMON /£/~ C~1),QC~2), ••• /£/£(~3),Q(~ 4), •••

Where: ~ 1 Q, ... ,£,Q··· are variable or array names.

~1 1~2 , ••• ~3 1~ 4 ••• are optional and are each composed of 1
through 7 unsigned integer constants, separated by commas,
representing the maximum value of each subscript in the
array.

/£/... represent optional common block names consisting of
1 through 6 alphameric characters, the first of which is
alphabetic. These names must always be embedded in slashes.

Although the COMMON statement may be used to provide dimension
information, adjustable dimensions may never be used.

Variables or arrays that appear in a calling program or a subprogram
may be made to share the same storage locations with variables or arrays
in other subprograms by use of the COMMON statement. For example, if
one program contains the statement:

COMMON TABLE

and a second program contains the statement:

COMMON TREE

the variable names TABLE and TREE refer to the same storage locations.

If the main program contains the statements:

REAL A,B,C
COMMON A,B,C

and a subprogram contains the statements:

REAL X1 Y,Z
COMMON X,Y,Z

then A shares the same storage location as X, B shares the same storage
location as Y, and C shares the same storage location as z.

Common entries appearing in COMMON statements are cumulative in the
given order throughout the program; that is, they are cumulative in the
sequence in which they appear in all COMMON statements~ For example,
consider the following two COMMON statements:

COMMON A, B, C
COMMON G1 H

These two statements have the same effect as the single statement:

COMMON A, B, C, G, H

Specification Statements 83

Redundant entries are not allowed.
statement is invalid:

For example, the following

COMMON A,B,C,A

Consider the following example:

Example:

Calling Program

COMMON A, B, C, RC100)
REAL A,B,C
INTEGER R

CALL MAPMY (•••)

Subprogram

SUBROUTINE MAPMY (•••)

COMMON X, Y, Z, SC100)
REAL X,Y,Z
INTEGER S

Explanation:

In the calling program, the statement COMMON A,B,C,RC100) would cause
412 storage locations (4 locations per variable) to be reserved in the
following order:

r--1
Beginning I A B C j Layout of
of common I 4 locations 4 locations 4 locations I storage
area I I

~--~
I R(l) R(100) I
I 4 locations 4 locations I
L--J

The statement COMMON X, Y, Z, SC100) would then cause the variables
X, Y, Z, and S(1) ••• S(100) to share the same storage space as A, B, C,
and R(1) ••• R(100), respectively.

From the above example, it can be seen that COMMON statements may be
used to serve an important function: namely, as a medium to implicitly
transmit data from the calling program to the subprogram. That is,
values for X, Y, Z, and S(1) ••• SC100), because they occupy the same
storage locations as A, B, c, and RC1) ••• RC100), do not have to be
transmitted in the argument list of a CALL statement. Arguments passed
through COMMON must follow the same rules of presentation with regard to
type, length, etc., as arguments passed in a list. (See the section,
"SUBPROGRAMS.")

Blank and Labeled Common

In the preceding example, the common storage area (common block)
established is called a blank cowman area. That is, no particular name
was given to that area of storage. The variables that appeared in the
COMMON statements were assigned locations relative to tne beginning of
this blank common area. However, variables and arrays may be placed in
separate common areas. Each of these separate areas (or blocks) is
given a name consisting of 1 through 6 alphameric characters (the first
of which is alphabetic); those blocks which have the same name occupy
the same storage space.

84

Those variables that are to be placed in labeled Cor named) common
are preceded by a common block name enclosed in slashes. For example,
the variables A:B: and c will be placed in the labeled common area,
HOLD, by the following statement:

COMMON/HOLD/A,B,C

In a COMMON statement, blank common may be distinguished from labeled
common by preceding the variables in blank common by two consecutive
slashes or, if the variables appear at the beginning of the common
statement, by omitting any block name. For example, in the following
statement:

COMMON A, B, C /ITEMS/ X, Y, Z / / D, E, F

the variables A, B, c, D, E, and F will be placed in blank common in
that order; the variables X, Y, and Z will be placed in the common area
labeled ITEMS .•

Blank and labeled common entries appearing in COMMON statements are
cumulative throughout the program. For example, consider the following
two COMMON statements:

COMMON A, B, C /R/ D, E /S/ F
COMMON G, H /S/ I, J /R/P//W

These two statements have the same effect as the single statement:

COMMON A, B, C, G, H, W /R/ D, E, P /S/ F, I, J

Example:

Assume that A, B, c, K, X, and Y each occupy 4 locations of storage,
H and G each occupy 8 locations, and D and E each occupy 2 locations.

Calling Program Subprogram

SUBROUTINE MAPMY(•••)

COMMON H, A /R/ X, D // B
COMMON G, Y, C /R/ K, E

CALL MAPMY(•••)

Explanation:

In the calling program, the statement COMMON H, A /R/ X, D //B causes
16 locations (4 locations each for A and B, and 8 for H) to be reserved
in blank common in the following order:

Beginning
of blank
common

r--1
I H A B I
I 8 locations 4 locations 4 locations I
I I
~--~--------~
I I
I continuation of blank common I
I I
L--J

Specification Statements 85

and also causes 6 locations (4 for X and 2 for D) to be reserved in the
labeled common area R in the following order:

r--1
Beginning I X D I
of labeled! I
common R I 4 locations 2 locations I

~--~
I I
I continuation of labeled common I
I I
L--J

The statement COMMON G,Y,C/R/K,E appearing in the subprogram MAPMY
would then cause the variables G,Y, and c to share the same storage
space Cin blank common) as H,A, and B, respectively. It would also
cause the variables K and E to share the same storage space {in labeled
common area R) as X and D, respectively. The length of a COMMON area
may be increased by using an EQUIVALENCE statement (see the
section,"EQUIVALENCE Statements").

Programming Considerations

variab~es in a COMMON block may be in any order. However, considera­
ble object-time efficiency is lost unless the programmer ensures that
all of the variables have proper boundary alignment.

Proper alignment is achieved either by arranging the variables in a
fixed descending order according to length, or by constructing the block
so that dummy variables force proper alignment. If the fixed order is
used, the variables must appear in the following order:

length of 16 {complex)
length of 8 <complex or real)
length of 4 Creal or integer or logical)
length of 2 <integer)
length of 1 (logical)

If the fixed order is not used, proper alignment can be ensured by
constructing the block so that the displacement of each variable can be
evenly divided by the reference number associated with the variable.
(Displacement is the number of storage locations from the beginning of
the block to the first storage location of the variable.) The following
list shows the reference number for each type of variable:

Type of Length Reference
Variable s2ecif ication Number

Logical 1 1
4 4

Integer 2 2
4 4

Real 4 4
8 8

Complex 8 8
16 8

86

The first variable in every COMMON block is positioned as if its
length specification were eight. Therefore, a variable of any length
may be the first assigned within a block. To ootain tne proper
alignment for other variables in the same block, it may be necessary to
add a dummy variable to the block. For example, the variables A, I, and
CMPLX are REAL*4, INTEGER*4 1 and COMPLEX*8, respectively, and form a
COMMON block that is defined as:

COMMON A, I 1 CMPLX

Then, the displacement of these variables within the block is illustrat­
ed as follows:

l
A

l
I 1---CMPLX

·1 4 storage 4 storage 8 storage
locations locations locations

' I displacement displacement displacement
0 storage 4 storage 8 storage I
locations locations locations

I
The displacements of I and CMPLX are evenly divisible by their reference
numbers. However, if I were an integer with a length specification of
2, then CMPLX is not properly aligned Cits displacement of 6 is not
evenly divisible by its reference number of 8). In this case, proper
alignment is ensured by inserting a dummy variable with a length
specification of 2 either between A and I or between I and CMPLX.

EQUIVALENCE Statement

r--1
I General Form I
~--~
I EQUIVALENCE (~, .Q, £_, •••) , C.Q, ~I ..f, •••) I
!
I Where: a, b, c, d, e, .f, ••• are variables that may be subscripted.
I The-subscripts may have two forms: If the variable is singly
I subscripted it refers to the position of the variable in the
I array (i.e., first variable, 25th variable, etc). If the
I variable is multi-subscripted it refers to the position in
I the array in the same fashion as the position is referred to
I in an arithmetic statement. I
L-------------------------------~------------------~-----------------J

The EQUIVALENCE statement provides the option for controlling the
allocation of data storage within a single program or subprogram. It is
analogous to (but not identical to) the option of using the COMMON
statement to control the allocation of data storage among several
programs. In particular, when the logic of the program permits it, the
number of storage locations used can be reduced by causing locations to
be shared by two or more variables of the same or different types.
Equivalence between variables implies storage sharing only, not mathema­
tical equivalence.

Example 1:

DIMENSION B(5), C(10, 10), DCS, 10, 15)
EQUIVALENCE CA, B(l)., C(5,3)), CDCS,10,2), E)

Specification Statements 87

Explanation:

This EQUIVALENCE statement indicates that the variables A,B(l), and
CC5,3) are assigned the same storage locations. In addition, it
specifies that DC5,10,2) and E are assigned the same storage locations.
In this case, the subscripted variables refer to the position in an
array in the same fashion as the position is ref erred to in an
arithmetic statement. Note that variables or arrays that are not
mentioned in an EQUIVALENCE statement are assigned unique storage
locations. The EQUIVALENCE statement must not contradict itself or any
previously established equivalences. For example, the further equiva­
lence specification of B(2) with any other element of the array c, other
than C(6,3), is invalid.

Example 2:

DIMENSION B(5), CC10, 10), D(S, 10, 15)
EQUIVALENCE CA, B(l), C(25)), CDC100), E)

Explanation:

This EQUIVALENCE statement indicates that the variable A, the first
variable in the array B, namely B(l), and the 25th variable in the array
C, namely CCS,3), are to be assigned the same storage locations. In
addition, it also specifies that D(100) Ci.e., DCS,10,2)) and E are to
share the same storage locations. Note that the effect of the
EQUIVALENCE statement in Examples 1 and 2 is the same.

Variables that are brought into COMMON through EQUIVALENCE statements
may increase the size of the block as indicated by the following:
statements:

COMMON A, B, C
DIMENSION D(3)
EQUIVALENCE CB,D(1))

This would cause a common area to be established containing the
variables A, B, and C. The EQUIVALENCE statement would then cause the
variable D(l) to share the same storage location as B, D(2) to share the
same storage location as C, and DC3) would extend the size of the common
area, in the following manner:

A
B, DCl)
C, D (2)

DC3)

(lowest location of the common area)

(highest location of the common area)

Since arrays are stored in consecutive forward locations, a variable
may not be made equivalent to another variable of an array in such a way
as to cause the array to extend before the beginning of the common area.
For example, the following EQUIVALENCE statement is invalid:

COMMON A, B, C
DIMENSION D(3)
EQUIVALENCE CB, D(3))

because it would force D(l) to precede A, as follows:

88

D(l)

A, D (2)
B, D (3)
c

(lowest location of the common area)

(highest location of the common area)

Programming Considerations

Two variables in one COMMON block or in two different COMMON blocks
may not be made equivalent. Variables in an equivalence group may be in
any order. However, considerable object-time efficiency is lost unless
the programmer ensures that all of the variables have proper boundary
alignment.

Proper alignment is achieved either by arranging the variables in a
fixed, descending order according to length, or by constructing the
group so that dummy variables force proper alignment. If the fixed
order is used, the variables must appear in the following order:

length of 16 (complex)
length of 8 (complex or real)
length of 4 Creal or integer or logical>
length of 2 (integer)
length of 1 (logical>

If the fixed order is not used, proper alignment can be ensured by
constructing the group so that the displacement of each variable in the
group can be evenly divided by the reference number associated with the
variable. (Displacement is the number of storage locations from the
beginning of the group to the first storage location of the variable.)
The reference numbers for each type of variable are given in the
section, "COMMON Statement". The first variable in each group is
positioned as if its length specification were eight.

For example, the variables A, I, and CMPLX are REAL*4, INTEGER*4, and
COMPLEX*8, respectively, and are defined as:

DIMENSION A(10), IC16), CMPLX(S)
EQUIVALENCE (A(l), I(7), CMPLX(l))

Then, the displacement of these variables within the group is illustrat­
ed as follows:

I I (1) 64 storage locations IC16)

I - . A • 40 storage locations - A(10)

l
l AUJ

CMPLX (1) 40 storage locations CMPLX(5)

displacement displacement
0 storage 2tt storage
locations locations

The displacements of A and CMPLX are evenly divisible by their reference
numbers. However, if the EQUIVALENCE statement were written as

EQUIVALENCE (A(l), I(6), CMPLX(l))

then CMPLX is not properly aligned (its displacement of 20 is not evenly
divisible by its reference number of 8).

Specification Statements 89

SUBPROGRAMS

It is sometimes desirable to write a program which, at various
points, requires the same computation to be performed with different
data for each calculation. It would simplify the writing of that
program if the statements required to perform the desired computation
could be written only once and then could be referred to freely, with
each subsequent reference having the same effect as though these
instructions were written at the point in the program where the
reference was made.

For example, to take the cube root of a number, a program must be
written with this object in mind. If a general program were written to
take the cube root of any number, it would be desirable to be able to
combine that program Cor subprogram) with other programs where cube root
calculations are required.

The FORTRAN language provides for the above situation through the use
of subprograms. There are three classes of subprograms: Statement
Functions, FUNCTION subprograms, and SUBROUTINE subprograms. In addi­
tion, there is a group of FORTRAN supplied subprograms (see Appendix_C).

The first two classes of subprograms are called functions. Functions
differ from SUBROUTINE subprograms in that functions return at least one
value to the calling program; whereas, SUBROUTINE subprograms need not
return any.

NAMING SUBPROGRAMS

A subprogram name consists of from 1 through 6 alphameric characters,
the first of which must be alphabetic. A subprogram name may not
contain special characters (see Appendix A).

1. Type Declaration of a Statement Function: Such declaration may be
accomplished in one of three ways: by the predefined convention, by
the IMPLICIT statement, or by the Explicit specification state­
ments. Thus, the same rules for declaring the type of variables
apply to Statement Functions.

2. Type Declaration of FUNCTION Subprograms: The declaration may be
made in one of three ways: by the predefined convention, by the
IMPLICIT statement, or by an explicit specification (see the
section, "Type Specification of the FUNCTION Subprogram.")

3. Type Declaration of a SUBROUTINE subprogram: The lype of d
SUBROUTINE subprogram can not be defined because the results that
are returned to the calling program are dependent only on the type
of the variable names appearing in the argument list of the calling
program and/or the implicit arguments in COMMON.

90

FUNCTIONS

A function is a statement of the relationship between a number of
variables. To use a function in FORTRAN 1 it is necessary to:

1. Define the function (i.e.. specify what calculations are to be
performed).

2. Refer to the function by name where required in the program.

function Definition

There are three steps in the definition of a function in FORTRAN:

1. The function must be assigned a unique name by which it may be
called (see the section "Naming Subprograms").

2. The arguments of the function must be stated.
3. The procedure for evaluating the function must be stated.

Items 2 and 3 are discussed in detail in the sections dealing with
the specific subprogram (e.g •• "Statement Functions", "FUNCTION
Subprograms", etc.).

Function Reference

When the name of a function appears in any FORTRAN arithmetic
expression, this, effectively, references the function. Thus, the
appearance of a function with its arguments in parentheses causes the
computations to be performed as indicated by the function definition.The
resulting quantity replaces the function reference in the expression.
The type and length of the name used for the reference must agree with
the type and length of the name used in the definition.

STATEMENT FUNCTIONS

Statement functions are defined by
within the program in which they appear.

FUNC(A,B) = 3.*A+B**2.+X+Y+Z

a single arithmetic statement
For example, the statement:

defines the statement function FUNC, where FUNC is the function name and
A and B are the function arguments.

The expression on the right defines those computations which are to
be performed when the function is used in an arithmetic statement. This
function might be used in a statement as follows:

C = FUNC CD, E)

which is equivalent to:

C 3.*D+E**2.+X+Y+Z

Note the correspondence between A and B in the function definition
statement and D and E in the arithmetic statement. The quantities A and
B enclosed in parentheses following the function name are the arguments

Subprograms 91

of the function. They are dummy variables for which the quantities D
and E, respectively are substituted when the function is used in an
arithmetic statement.

r--1
I General Form I
~--~

name <~ 1 ~, ••• ,n> =expression

Where: ~ is any subprogram name (see the section "Naming
subprograms").

a,b, ••• ,n are distinct (within the same statement) nonsub­
scripted-variables.

expression is any arithmetic expression that does not
contain subscripted variables. Any statement functions
appearing in this expression must be defined previously.

The actual arguments must correspond in order, number, and type to
the dummy arguments. There must be at least one argument.

Note: All Statement Function definitions to be used in a program must
precede the first executable statement of the program.

Examples:

Valid statement function definitions:

SUM(A,B,C,D) = A+B+C+D
FUNC(Z) = A+X*Y*Z
AVG(A,B,C,D) = CA+B+C+D)/4
ROOT(A,B,C) = SQRT(A**2+B**2+C**2)

Note: The same dummy arguments may be used in more than one Statement
Function definition and may be used as variables outside Statement
Function definitions.

92

Invalid statement function definitions:

SUBPRG(3,J,K)=3*I+J**3
SOMEF(A(I),B)=A(I)/B+3.

SUBPROGRAM(A,B)=A**2+B**2

3FUNC(D)=3.14*E

ASF(A)=A+B(I)

(arguments must be variables)
(arguments must be nonsub­
scripted)

(function name exceeds limit
of six characters)

(function name must begin with
an alphabetic character)

(subscripted variable in the
expression)

Valid statement function references:

NET = GROS - SUM(TAX, FICA, HOSP, STOCK)
ANS = FUNC(RESULT)
GRADE= AVGCALAB, TERM, SUM(TEST1, TEST2, TEST3, TEST4), FACTOR)

Invalid statement function references:

WRONG = SUM(TAX,FICA)

MIX = FUNC(I)

(number of arguments
does not agree with
above definition)
(mode of argument
does not agree with
above definition)

FUNCTION SUBPROGRAMS

The FUNCTION subprogram is a FORTRAN subprogram consisting of any
number of statements. It is an independently written program that is
executed wherever its name appears in another program.

r--1
I General Form I
~--~
I FUNCTION~ C~11~2r~3r•••1~n) I

I
I
I

RETURN I

END

Where: name is subprogram
Subprograms").

name (see the section "Naming

a 1 ,a2 ,a 3 , ••• ,an are nonsubscripted variable or array names,
or the-dummy names of SUBROUTINE or other FUNCTION subpro­
grams. (There must be at least one argument in the argument
list.)

I

Since the FUNCTION is a separate subprogram, the variables and
statement numbers within it do not relate to any other program.

I
The FUNCTION statement must be the first statement in the subprogram.

The FUNCTION subprogram may contain any FORTRAN statement except a
SUBROUTINE statement, another FUNCTION statement, or a BLOCK DATA
statement. If an IMPLICIT statement is used in a FUNCTION subprogram,
it must immediately follow the FUNCTION statement.

The arguments of the FUNCTION subprogram (i.e., ~1 ,~2 ,~3 , ••• ,~n> may
be considered to be dummy variable names. These are replaced at the
time of execution by the actual arguments supplied in the function
reference in the calling program. The actual arguments may be any of
the following: any type of constant except literal or hexadecimal, any
type of subscripted or nonsubscripted variable, an array name, an
arithmetic expression, or the name of another subprogram. The actual
arguments must correspond in number, order, type, and length to the
dummy arguments. For example, if the actual argument is an integer
constant, then the dummy argument in the FUNCTION statement must be of
length 4. The array size must also be the same, except when adjustable
dimensions are used.

I The name of the FUNCTION subprogram cannot be typed with an Explicit
specification statement in the subprogram.

The relationship between variable names used as arguments in the
calling program and the dummy variables used as arguments in the
FUNCTION subprogram is illustrated in the following example:

Subprograms 93

Example 1:

Calling Program

A SOMEFCB,C)

Explanation:

FUNCTION Subprogram

FUNCTION SOMEFCX,Y)
SOMEF = X/Y
RETURN
END

In the above example, the value of the variable B of the calling
program is used in the subprogram as the value of the dummy variable X;
the value of c is used in place of the dummy variable Y. Thus if B =
10.0 and c = 5.0, then A= B/C, which is equal to 2.0.

The name of the function must be assigned a value at least once in
the subprogram as the argument of a CALL statement, as the variable name
on the left side of an arithmetic statement, or in an input list (READ
statement) within the subprogram.

Example 2:

Calling Program

ANS = ROOT1*CALCCX,Y,I)

Explanation:

FUNCTION Subprogram

FUNCTION CALC (A,B,J)

I J*2

CALC = A**I/B

RETURN
END

In this example, the values of X, Y, and I are used in the FUNCTION
subprogram as the values of A, B, and J, respectively. The value of
CALC is computed, and this value is returned to the calling program
where the value of ANS is computed. The variable I in the argument list
of CALC in the calling program is not the same as the variable I
appearing in the subprogram.

When a dummy argument is an array name, an appropriate DIMENSION or
Explicit specification statement must appear in the FUNCTION subprogram.
None of the dummy arguments may appear in an EQUIVALENCE or COMMON
statement.

Type Specification of the FUNCTION Subprogram

In addition to declaring the type of a FUNCTION name by either the
predefined convention or the IMPLICIT statement, there exists the option
of explicitly specifying the type of a FUNCTION name within the FUNCTION
statement.

94

r--1
I General Form I
~--~
I Type FUNCTION name*~ (a1 ,a2 ,a3 , ••• ,an) !
I I
I Where: ~ is INTEGER, REAL, COMPLEX, or LOGICAL. I
I I
I name is the name of the FUNCTION subprogram. I
I I

*~ is optional and represents one of the permissible length I
specifications for its associated type. I

I
a 1 ,a2 ,a3 , ••• ,an are nonsubscripted variable, array, or dummy I
names of SUBROUTINE or other FUNCTION subprograms. (There I

i must be at least one argument in the argument list.) I
L--J

Example 1:

REAL FUNCTION SOMEF (A,B)

SOMEF = A**2 + B**2

RETURN
END

Example 2:

INTEGER FUNCTION CALC(X,Y,Z)

CALC

RETURN
END

Explanation:

The FUNCTION subp~ograms SOMEF and CALC in Examples 1 and 2 are
declared as type REAL and INTEGER, respectively.

RETURN and END Statements in a Function subprogram

I All FUNCTION subprograms must contain an END statement and at least
one RETURN statement. The END statement specifies, for the compiler,
the end of the subprogram; the RETURN statement signifies a logical
conclusion of the computation and returns any computed value and control
to the calling program. There may, in fact, be more than one RETURN
statement in a FORTRAN subprogram.

Subprograms 95

Examole:

FUNCTION DAV (D,E,F)
IF (D-E) 10, 20, 30

10 A= D+2.0*E

5 A= F+2.0*E

20 DAV = A+B**2

RETURN
30 DAV = B**2

RETURN
END

SUBROUTINE SUBPROGRAMS

The SUBROUTINE subprogram is similar to the FUNCTION subprogram in
many respects: the rules for naming FUNCTION and SUBROUTINE subprograrr.s
are the same, they both require an END statement, and they both contain
the same sort of dummy arguments. Like the FUNCTION subprogram, the
SUBROUTINE subprogram is a set of commonly used computations, but it
need not return any results to the calling program, as does the FUNCTION
subprogram.

The SUBROUTINE subprogram is called oy the CALL statement, which
consists of the word CALL followed by the name of the subprogram and its
parenthesized arguments.

r--1
I General Form I
r--~

SUBROUTINE name (~i•~2•~3•···•~n>

• RETURN

END

Where: name is the subprogram name (see the section "Naming
subprograms").

a 1 ,a2 ,a3 , ••• ,an are arguments. (There need not be any.)
Each argument used must be a nonsubscripted variable or
array name, the dummy name of anot-hPT SUBROUTINE or FUNCTION
subprogram, or of the form * where the character "*" denotes
a return point specified by a statement number in the
calling program. I

--J

96

Since the SUBROUTINE is a separate subprogram, the variables and
statement numbers within it do not relate to any other program.

The SUBROUTINE statement must be the first statement in the subpro­
gram. The SUBROUTINE subprogram may contain any FORTRAN statement
except a FUNCTION statement, another SUBROUTINE statement, or a BLOCK
DATA statement. If an IMPLICIT statement is used in a SUBROUTINE
subprogram, it must immediately follow the SUBROUTINE statement.

The SUBROUTINE subprogram may use one or more of its arguments to
return values to the calling program. Any arguments so used must appear
on the left side of an arithmetic statement or in an input list within
the subprogram, as arguments of a CALL statement or as arguments in a
function reference. The SUBROUTINE name must not appear in any other
statement in the SUBROUTINE subprogram.

The arguments (~H ~2 • ~3 , .•••• ~n> may be considered dummy variable
names that are replaced at the time of execution by the actual arguments
supplied in the CALL statement. The actual arguments must correspond in
number, order. type, and length to the dummy arguments. The array size
must also be the same. Dummy arguments may not appear in an EQUIVALENCE
or COMMON statement within the subprogram.

Example: The relationship between variable names used as arguments in
the calling program and the dummy variable used as arguments in the
SUBROUTINE subprogram is illustrated in the following example. The
object of the subprogram is to "copy" one array directly into another.

Calling Program

DIMENSION X(100),Y(100)

CALL COPY (X,Y,K)

CALL Statement

SUBROUTINE Subprogram

SUBROUTINE COPY(A,B,N)
DIMENSION A (100).B(100)
DO 10 I = 1, N

10 BCD = A (I)

RETURN
END

The CALL statement is used to call a SUBROUTINE subprogram.

r---~-----------------,
I General Form I
~--------------~--------------------------~--------------------------~
I CALL name <~1r~2•~3•···r~n> I
I I
I I
I Where: name is the name of a subroutine subprogram. I
I I
I a 1 ,a2 ,a 3 , ••• ,an are the actual arguments that are being I
I supplied to the subroutine subprogram. Each may be of the I
I form &n where n is a statement number (see, "RETURN I
I statements in a SUBROUTINE Subprogram"). I
L-------------------------------~---------~--------------------------j

Subprograms 97

Examples:

CALL OUT
CALL MA TMPY (X, 5, 4 0 , Y, 7 ,, 2)
CALL QDRTIC (X, Y, z.,ROOT1,ROOT2)
CALL SUBl(X+Y*S,ABDF,SINE)

The CALL statement transfers control to the subroutine subprogram and
replaces the dummy variables with the value of the actual arguments that
appear in the CALL statement. The arguments in a CALL statement may be
any of the following:

I 1. Any type of constant except hexadecimal
2. Any type of subscripted or nonsubscripted variable

I 3. An array name
4. An arithmetic expression
5. The name of a FUNCTION or SUBROUTINE subprogram
6. A statement number Csee the section, "RETURN Statements in a

SUBROUTINE Subprogram).

The arguments in a CALL statement must agree in number, order, type,
and length with the corresponding arguments in the subroutine subpro-

1 gram. For example, if the actual argument is an integer constant, then
the dummy argument in the SUBROUTINE statement must be of length 4. The
array sizes must also be the same in the subroutine and the calling
programs except when adjustable dimensions are used (see the section
"Adjustable Dimensions"). If an actual argument corresponds to a dummy
argument that is defined or re-defined in the referenced subprogram, the
a.ctual argument must be a variable name, subscripted variable name, or
array name.

If a literal constant is passed as an argument, the actual argument
passed is the literal as defined, without delimiting apostrophes or the
preceding ~H specification.

A referenced subprogram cannot define dummy arguments when the
subprogram reference causes those arguments to be associated with other
dummy arguments within the subprogram or with variables in COMMON. For
example, if the external function DERIV is defined as

FUNCTION DERIV (X,Y,Z)
COMMON W

and if the following statements are included in the calling source
program

COMMON B

C = DERIV (A,B,A)

then X, Y, z, and w cannot be defined (e.g., cannot appear to the left
of an equal sign in an arithmetic statement) in the function DERIV.

ARGUMENTS IN A FUNCTION AND SUBROUTINE SUBPROGRAM

Arguments may be referred to in a subprogram in one of two ways: by
value or by name. The method of reference depends on the nature of the
dummy argument.

98

Reference by value: The value of the actual argument is brought from
the calling program to the subprogram. This value is loaded into the
location of the corresponding dummy argument. (During execution, all
intermediate values are also stored in this location.; Upon return to
the calling program, the final value is transmitted from the dummy
argument to the actual argument.

An argument is referenced by value when the corresponding dummy
argument is enclosed only i.n commas.

Reference by name: The address of the actual argument is brought to the
• subprograma During execution of the subprogram, all intermediate values

and the final value are referenced using this address.

An argument is referenced by name when the corresponding dummy
argument is enclosed in slashes, or declared to be an array name or a
subprogram name.

All arithmetic or logical expressions that appear in the argu.~ent
list of the calling program are evaluated and placed in a temporary
storage location. It is either the value or the address of this storage
location which is referenced by value if the dummy arguments are
separated only by commas, and by name if each is enclosed in slashes.

Example:

Calling Program Subprograrr.

SUBROUTINE SUB(X,Y,Z)
CALL SUB CA,B(l),C)

Explanation:

The actual arguments A, B(l), and care associated with X, Y, and Z,
respectively. The arguments A, B(l), and care referred to by value.

Example:

Calling Program Subprograro

SUBROUTINE SUB{/X/,/Y/,Z)
CALL SUB (A,B(l),C)

Explanation:

The actual arguments A,B(l), and care associated with X, Y~ and Z,
respectively. The arguments A and B(l) are referred to by name, C is
referred to by value.

Subprograms 99

RETURN Statement in a SUBROUTINE subprogram

r--1
I General Form I
~--~
I RETURN I
I I
I RETURN i I
I I
I Where: i is an integer constant or variable of length 4 whose I
I value, say n, denotes the nth statement number in the I
I argument list of a SUBROUTINE statement; i may be specified I
I only in a SUBROUTINE subprogram. I
L--J

The normal sequence of execution following the RETURN statement of a
SUBROUTINE subprogram is to the next statement following the CALL in the
calling program. It is also possible to return to any numbered
statement in the calling program by using a return of the type RETURN i·
Returns of the type RETURN may be made in either a SUBROUTINE or
FUNCTION subprogram (see, "RETURN and END Statements in a FUNCTION
Subprogram"). Returns of the type RETURN i may only be made in a
SUBROUTINE subprogram. In a main program, a RETURN statement performs
the same function as a STOP statement.

Example:

Calling Program

10 CALL SUB (A,B,C,&30.&40)
20 Y = A + B

30 Y = A + C

40 Y = B + C

END

Explanation:

100
200
300
400

subprogram

SUBROUTINE SUB (X,Y,Z,*,*)

IF (M) 200,300,400
RETURN
RETURN 1
RETURN 2
END

In the preceding example, execution of statement 10 in the calling
program causes entry into subprogram SUB. When statement 100 is
executed, the return to the calling program will be to statement 20, 30,
or 40, if M is less than, equal to, or greater than zero, respectively.

A CALL statement that uses a RETURN i form may be best understood by
comparing it to a CALL and computed GO TO statement in sequence. For
example, the following CALL statement:

CALL SUB (P,&20,Q,&35,R,&22)

is equivalent to:

100

CALL SUB (P.,Q,R, I)

GO TO (20,35,22),I

where the index I is assigned a value of 1, 2, or 3 in the called
subprogram.

Multiple ENTRY into a Subprogram

The standard (normal) entry into a SUBROUTINE subprogram from the
calling program is made by a CALL statement that references the
subprogram name.. The standard entry into a FUNCTION subprogram is made
by a function reference in an arithmetic expression. Entry is made at
the first executable statement following the SUBROUTINE or FUNCTION
statement ..

It is also possible to enter a subprogram (either SUBROUTINE or
FUNCTION) by a CALL statement or a function reference that references an
ENTRY statement in the subprogram. Entry is made at the first
executable statement following the ENTRY statement.

r------------------------------------~-----------~-------------------,

I General Form I
~--~
I ENTRY name <~1,~2.~3, ••• ,~n> I
I I
I Where: name is the name of an entry point (see the section, "Naming I
I Subprograms"). I
I I
I ~1 ,~2 ,~3 , ••• ,~ are the dummy arguments corresponding to an I
I actual argument in a CALL statement or in a function I
I reference. I
L--J

ENTRY statements do not affect control sequencing during normal
execution of a subprogram. The order, type, and number of arguments
need not agree between the SUBROUTINE or FUNCTION statement and the
ENTRY statements, nor do the ENTRY statements have to agree among
themselves in these respects. Each CALL or function reference however,
must agree in order, type,, and number with the SUBROUTINE, FUNCTION, or
ENTRY statement that it references. Entry may not be made into the
range of a DO; further, a subprogram may not reference itself directly
or through any of its entry points.

Example 1:

Calling Program Subprogram

SUBROUTINE SUBl (U,V,W,X,Y,Z)

1 CALL SUBl (A,B,C,D,E,F)
u = v

2 CALL SUB2 (G,H,P)
ENTRY SUB2 (T,U,V)

3 CALL SUB3

ENTRY SUB3

END

Subprograms 101

Explanation:

In the preceding example, the execution of statement 1 causes entry
into SUB1, starting with the first executable statement of the subrou­
tine. Execution of statements 2 and 3 also causes entry into the called
program, starting with the first executable statement following the
ENTRY SUB2CT,U,V) and ENTRY SUB3 statements, respectively.

Entry into a subprogram initializes all references in the whole
of the referenced ENTRY.
the entry point referenced.
or SUBROUTINE subprograms. I subprogram to items in the argument list

Return from a subprogram is made by way of
ENTRY statements may only appear in FUNCTION
The following is a valid example:

SUBROUTINE SUB ex .• y. z. I)

ENTRY SUB1 (A,B)

C = A+B

Example 2:

Calling Program

CALL SUB1 (A,B,C,D,E,F)

CALL SUB2CG,&10,&20)

CALL SUB3(&10,&20)
5 Y =A+B

10 Y = C+D
20 Y = E+F

Explanation:

50
100
200
300

Subprogram

SUBROUTINE SUB1 cu.v.w.x,Y,Z)
RETURN
ENTRY SUB2 CT,*,*)
U = V* W+T
ENTRY SUB3 (*,*)
X = Y**Z
IF (J-K) 100, 200, 300
RETURN 1
RETURN 2
RETURN
END

In the example above, a call to SUBl merely peLfo.uns initialization.
Subsequent calls to SUB2 and SUB3 result in execution of different
sections of the subroutine SUB1. Then, depending upon the result of the
arithmetic IF at statement 50, return is made to the calling program at
statement 10, 20, or 5.

102

Additional Rules for Using ENTRY

1. Reference to an ENTRY will not transmit new values for arguments
which are referenced by value at soroe previous use of the
subprogram unless those arguments are in the argument list of this
ENTRY.

2. If new dimensions for an adjustable dimension array are to be
passed to a subprogram with an ENTRY, the array name must appear in
the argument list of the ENTRY.

3. The appearance of an ENTRY
~~~~-~;~~ ~ho ~i~~omon~ n~ 
.L.'c;;~t,..;..;,..~· ..... ':J '"-~~"'"" l:"'_,._'"'4"""'-"~l:.~'t,_..&..&."- .._..:... 

statement does not alter the rules 
Statement Functions in subprogramse 

4. If a dummy argument is listed at more than one entry, whenever it 
appears the dummy argument must be referenced consistently either 
by name or by value. 

5. A name which is defined as a dummy argument name may not appear in 
any executable statement unless it has been previously defined (as 
a dummy argument) in an ENTRY, SUBROUTINE, or FUNCTION statement. 

EXTERNAL Statement 

r----------------------------------------------------------------------1 
I General Form I 
~----------------------------------------------------------------------~ 
I EXTERNAL ~r~r£r••• I 
I I 
I Where: ~,£,£,··· are names of subprograms that are passed as I 
I arguments to other subprograms. I 
l ______________________________________________________________________ J 

If a FORTRAN supplied in-line function is used in an EXTERNAL 
statement, it is not expanded in-line. It is assumed that the function 
is part of a library. (Tbe FORTRAN supplied in-line and out-of-line 
functions are given in Appendix C.) 

The name of any subprogram that is passed as an argument to another 
subprogram must appear in an EXTERNAL statement in the calling program. 
For example, assume that SUB and MULT are subprogram names in the 
following statements: 

Example 1: 

Calling Program 

4 
EXTERNAL MULT 

CALL SUB CJ, MULT,C) 6 

Subprogram 

SUBROUTINE SUBCK,Y,Z) 
IF (K) 4,6,6 
D == Y CK,Z**2) 

RETURN 
END 

Subprograms 103 



Explanation: 

In this example, the subprogram name MULT is used as an argument in 
the subprogram SUB. The subprogram name MULT is passed to the dummy 
variable Y as are the variables J and C passed to the dummy variables K 
and Z, respectively. The subprogram MULT is called and executed only if 
the value of K is negative. 

Example 2: 

CALL SUB (A,B,MULT (C,D),37) 

Explanation: 

In this example, an EXTERNAL statement is not required because the 
subprogram named MULT is not an argument; it is executed first and the 
result becomes the argument. 

BLOCK DATA SUBPROGRAM 

In order to initialize variables in a COMMON block, a separate 
subprogram must be written. This separate subprogram contains only the 
DATA, COMMON, DIMENSION, EQUIVALENCE, and Type statements associated 
with the data being defined. Data may be initialized in labeled 
(named), but not unlabeled, COMMON by the BLOCK DATA subprogram. 

r--------------~------------------~------------------------------~--, 

I General Form I 
~----------------------------------------------~----------------------~ 
I BLOCK DATA I 
I I 
I I 
I I 
I END I 
L----------------------------------------------------------------------J 
1. The BLOCK DATA subprogram may not contain any executable state­

ments. 

2. The BLOCK DATA statement must be the first statement in the 
subprogram. If an IMPLICIT statement is used in a BLOCK DATA 
subprogram, it must immediately follow the BLOCK DATA statement. 

3. All elements of a COMMON block must be listed in the COMMON 
statement, even though they are not all initialized; for example, 
the variable A in the COMMON statement in the following example 
does not appear in the data initialization statement: 

BLOCK DATA 
COMMON/ELN/C,A,B/RMG/Z,Y 
REAL B(4)/1.0,1.2.2*1.3/,Z*8(3)/3*7.64980825DO/ 
COMPLEX C/(2.4,3.769)/ 
END 

4. Data may be entered into more than one COMMON block in a single 
BLOCK DATA subprogram. 

104 



APPENDIX A: SOURCE PROGRAM CHARACTERS 

r----------------------------------T-----------------------------------1 
I Alphabetic Characters I Numeric Characters I 
~----------------------------------+-----------------------------------~ 

A 0 
B 1 
c 2 
D 3 
E 4 
F 5 
G 6 
H 7 
I 8 
J 9 
K 
L 

M ~-----------------------------------~ 
N I Special Characters I 
0 ~-----------------------------------~ 
p (blank) i 
Q + I 
R I 
s / I 
T t 
u I 
v I 
w * I 
x • I 
y c I 
Z ' {apostrophe) I 

I $ & I 
L----------------------------------i-----------------------------------J 

The 49 characters listed above comprise the set of characters 
acceptable by FORTRAN <except in literal data where any valid card code 

I is acceptable). 

Appendix A: Source Program Characters 105 



APPENDIX B: OTHER FORTRAN STATEMENTS ACCEPTED BY FORTRAN IV 

This appendix discusses those features of previously implemented 
FORTRAN IV languages that are incorporated into the System/360 FORTRAN 
IV language. The inclusion of these additional language facilities 
allows existing FORTRAN programs to be re-compiled for use on the IBM 
System/360 with little or no re-programming. 

READ Statement 

r----------------------------------------------------------------------1 
I General Form I 
~----------------------------------------------------------------------~ 
I READ .Q, list I 
I I 
I Where: .Q, is the statement number or array name of the FORMAT I 
I statement describing the data. I 
I I 
I list is a series of variable or array names, separated by I 
I commas. which mav be indexed and incremented. Thev soecifv ! 
I the number of items to be read and the locations in storage I 
I into which the data is placed. I 
l----------------------------------------------------------------------J 

I This statement has the effect of a READ Cn,b) list statement where b 
and list are defined as above and the value of n is installation 
dependent. 

PUNCH Statement 

r----------------------------------------------------------------------1 
I General Form I 
~----------------------------------------------------------------------~ 
I PUNCH .Q, list I 
J I 
I Where: b is the statement number or array name of the FORMAT I 
I statement describing the data. I 
I I 
I list is a series of variable or array names, separated by I 
I commas, which may be indexed and incremented. They specify I 
I the number of items to be written and the locations in I 
I storage from which the data is taken. I 
l----------------------------------------------------------------------J 

I This statement has the effect of a WRITE Cn,b) list statement where b 
and list are defined as above and the value- o~ is installation 
dependent. 

106 



PRINT Statement 

r----------~--~------------------------------------------------------1 
I General Form I 
~---------------------------------------------------~-------~--------~ 

PRINT ]2, list 

Where: b is the statement number or arrqy name of the FORMAT 
statement describing the data. 

list is a series of variable or array names, 
commas which may be indexed and incremented. 
the nlli~ber of items to be written and the 
storage from which the data is taken. 

separated by 
They specify 

locations in 

------------------------------------------------------------~--------J 

I This statement has the effect of a WRITE Cn,~) list statement where b 
and list are defined as above and the value of n is installation 
dependent. 

DATA Initialization Statement 

r---------------------------------------------------~-----------------, 
I General Form I 
~----------------------------------------------------------------------~ 

DATA .~fa. r • • •, .Yn/.!1 *.~h, • • • , in*Qn/, .Yn+ j_ r • • • 1 .Y /_in+j_ *Qn+1 r • • • ,_! *Q / • • • • 

Where: v 1 , ••• ,v* are variables, subscripted variables Cin which 
case the subscripts must be integer constants), or array 
names. 

dj_, .••• , d* are values representing integer, real, complex, 
hexadecimal, logical, or literal data constants. 

i 1 , ••• ,i* represent unsigned integer constants indicating 
the number of consecutive variables that are to be assigned 
the value of .Qj_, ••• ,g . 

L------------------------------------~------------~------------------

A data initialization statement is used to define initial values of 
variables, array elements, and arrays. There must be a one-to-one 
correspondence between these variables (i.e., y 1 , ••• ,y*) and the data 
constants (i.e., ~j_r•••rQ*). 

Example 1: 

DIMENSION DCS,10) 
DATA A, B, C/5.0,6.1,7.3/,D/25*1.0/ 

Explanation: 

The DATA statement indicates that the variables A, B, and c are to be 
initialized to the values 5.0, 6,1, and 7.3 respectively. In addition, 
the statement specifies that the first 25 variables in the array D are 
to be initialized to the value 1.0. 

Appendix E: Other FORTRAN Statements Accepted by FORTRAN IV 107 



Example 2: 

DIMENSION ACS), B(3,3), L(4) 
DATA A/5*1.0/, B/9*2.0/, L/4*.TRUE./, C/'FOUR'/ 

Explanation: 

The DATA statement ~pecifies that all the variables in the arrays A 
and B are to be initialized to the values 1.0 and 2.0, respectively. 
All the logical variables in the array L are initialized to the value 
.TRUE. The letters T and F may be used as an abbreviation for .TRUE .• 
and .FALSE., respectively. In addition, the variable C is initialized 
with the literal data constant FOUR. 

An initially defined variable, or variable of an array, may not be in 
blank common. However, in a labeled common block, they may be initially 
defined only in a block data subprogram. (See the section, 
"SUBPROGRAMS.") 

DOUBLE PRECISION Statement 

r--------------~--------------------------~--------------------------, 
I General Form I 
~----------------------------------------------~-~-------------------~ I DOUBLE PRECISION ~(~1 ).,E(~2 ), ••• ,~(~n> 

Where: a,b, ••• ,z represent variable, array, or function names (see 
the section, "SUBPROGRAMS") 

(~1 ), (~2 ), .••• , <~n> are optional. Each ~ is composed of 1 
through 7 uns,igned integer constants, separated by commas , 
that represent the maximum value of each subscript in the 
array. 

The DOUBLE PRECISION statement explicitly specifies that the vari­
ables ~,Q,£,··· are of type double precision. This statement overrides 
any specification of a variable made by either the predefined convention 
or the IMPLICIT statement. This specification is identical to that of 
type REAL*8. 

In addition, FUNCTION subprograms may be typed double precision as 
follows: 

DOUBLE PRECISION FUNCTION name (~1 ,~2 ,~3 , ••• ,~n) 

108 



APPENDIX C: FORTRAN SUPPLIED SUBPROGRAMS 

The FORTRAN supplied subprograms are of either of two types: mathematical subprograms and 
service subprograms. The mathematical subprograms correspond to a FUNCTION subprogram; the 
service subprograms correspond to a SUBROUTINE subprogram. Appendix c lists the in-line and 
out-of-line mathematical FUNCTION subprograms. An in-line subprogram is inserted by the 
FORTRAN compiler at any point in the program where the function is referenced. An out-of-line 
subprogram is located on a library. A detailed description of out-of-line mathematical 
subprograms and service subprograms is given in the publication IBM System/360 Operating 
system: FORTRAN IV (E), Library Subprograms. 

•Table 4. Mathematical Function Subprograms 
r-----------------T------T-------------------T---------------T------T------------T------------1 
I I I I I I I Type of I 
I !Entry I I In-Line (I) INo. of I Type of !Function I 
I Function I Name I Definition !Out-of-Line (0) I Arg. I Arguments !Value I 
r-----------------+------+---------------~--+---------------+------+---~-------+------------i 
!Exponential IEXP learg I O I 1 !Real *4 !Real *4 I 
I IDEXP I earg I o I 1 I Real *8 I Real *8 I 
I ICEXP learg I O I 1 !Complex *8 !Complex *8 I 
I ICDEXP IEarg I O I 1 !Complex *16 !Complex *16 I 
r-----------------+------+-------------------+---------------+------+------------+------------i 
!Natural LogarithmlALOG lln CArg) I o I 1 !Real *4 !Real *4 I 
I IDLOG jln (Arg> I O I 1 !Real *8 !Real *8 I 
I I CLOG I ln (Arg) I o I 1 I Complex *8 I Complex *8 I 
I I CDLOG I ln (Arg) I O I 1 I Complex *16 I Complex *16 I 
r-----------------+------+-------------------+---------------+------+------------+------------~ 
!Common Logarithm IALOG101log, 0 (Arg) I o I 1 !Real *4 !Real *4 I 
I IDLOG101loq10 (Arg) I 0 I 1 !Real *8 !Real *8 I 
r-----------------+------+-------------------+---------------+------+------------+------------i 
!Arcsine IARSIN larcsin (Arg) I o I 1 !Real *4 !Real *4 I 
I IDARSINlarcsin CArg) I O I 1 !Real *8 !Real *8 I 
~-----------------+------+-------------------+---------------+------+------------+------------i 
jArccosine !ARCOS jarccos (Arg> I o I 1 jReal *4 !Real *4 I 
I IDARCOSlarccos (Arg> I o I 1 !Real *8 IReal *8 I 
r-----------------+------+-------------------+---------------+------+------------+------------i 
jArctangent jATAN jarctan (Argi j O j 1 !Real *4 !Real *4 I 
I IATAN2 jarctan CArg.1_/Arg 2 ) I o I 2 !Real *4 !Real *4 I 
I I DATAN I arctan (Arg) I O I 1 I Real *8 I Real *8 I 
I IDATAN21arctan (Arg1 /Arg 2 ) I o I 2 !Real *8 !Real *8 I 
r-----------------+------+-------------------+---------------+-~---+-----~-----+------------~ 
!Trigonometric jSIN lsin(Arg) I O I 1 !Real *4 IReal *4 I 
!Sine IDSIN lsin{Arg) ! o ! 1 !Real *8 !Real *8 ! 
I (Argument in ICSIN lsin(Arg) I o I 1 !Complex *8 !Complex *8 I 
I radians) ICDSIN lsin(Arg) I 0 I 1 !Complex *16 !Complex *16 I 
r-----------------+------+-------------------+---------------+------+------------+------------i 
!Trigonometric 1cos lcos(Arg> I o I 1 !Real *4 !Real *4 I 
I Cosine I DCOS I cos (Arg) I O I 1 I Real *8 I Real *8 I 
I (Argument in 1ccos lcosCArg) I o I 1 I Complex *8 !Complex *8 I 
I radians) I CDCOS I cos (Arg) I O I 1 I Complex *16 I Complex *16 I 
r-----------------+------+-------------------+---------------+------+------------+------------i 
!Trigonometric !TAN !tan (Arg) I O I 1 !Real *4 !Real *4 I 
I Tangent I I I I I I I 
I (Argument in IDTAN I tan (Arg) I O I 1 !Real *8 !Real *8 I 
I radians> I I I I I I I 
~-----------------+------+-------------------+--------~---~-+------+------------+------------~ 
!Trigonometric ICOTAN lcotan (Arg} I O I 1 !Real *4 !Real *4 I 
!Cotangent I I I I I I I 
I (Argument in I DCOTANI cotan (Arg) I 0 I 1 I Real *8 I Real *8 I 
I radians> I I I I I I I 
r-----------------+------+-------------------+---------------+------+------------+------------i 
I Square Root I SQRT I (Arg) ~ ~ 2 I 0 I 1 I Real *4 I Real *4 I 
I IDSQRT I (Arg)

1
'': I 0 I l I Real *8 jReal *8 j 

I ICSQRT I (Arg) / I O I 1 !Complex *8 I Complex *8 I 
I ICDSQRTI (Arg)

1
/

2 
I O I 1 jComplex *16 !Complex *16 I 

r-----------------+------+-------------------+---------------+------+------------+------------~ 
!Hyperbolic !TANH jtanh(Arg) I 0 I 1 IReal *4 !Real *4 I 
!Tangent IDTANH ltanh(Arg) I O I 1 !Real *8 !Real *8 I l _________________ i ______ i ___________________ i _______________ i ______ i ____________ i ____________ J 

(Continued) 

Appendix C: FORTRAN Supplied Subprograms 109 



eTable 4. Mathematical Function Subprograms (Continued) 
r-----------------T------T--------~----------T---------------T------T------------T------------1 

I I I I I I I Type of I 
I !Entry I I In-Line (!) INo. ofl Type of !Function I 
I Function I Name !Definition !Out-of-Line (0) I Arg. I Arguments !Value I 
~-----------------t------t-------------------+---------------+------t------------t------------i 
!Largest value IAMAXO IMax CArg1,Arg2 , ... >1 O I ;:::2 !Integer *4 !Real *4 I 
I IAMAXl I I 0 I 2:2 !Real *4 !Real *4 I 
I I MAXO I I 0 I ;:::2 I Integer *4 I Integer *4 I 
I IMAXl I I O I ;:::2 !Real *4 !Integer *4 I 
I IDMAXl I I o I ;:::2 !Real *8 !Real *8 I 
t-----------------+------+------------------+---------------+------+------------+------------~ 
!Smallest value !AMINO !Min (Arg1 ,Arg2 , .•• >I O I ;:::2 !Integer *4 !Real *4 I 
I IAMINl I I O I ;:::2 !Real *4 !Real *4 I 
I !MINO I I 0 I ;:::2 I Integer *4 !Integer *4 I 
I IMINl I I O I ;:::2 !Real *4 !Integer *4 I 
I IDMINl I I O I ;:::2 !Real *8 !Real *8 I 
t-----------------+------+-------------------+---------------+------+------------+------------~ 
!Float !FLOAT !Convert from I I I 1 I Integer *4 !Real *4 I 
I IDFLOATlinteger to real I I I 1 !Integer *4 !Real *8 I 
t-----------------+------+-------------------+---------------+------+------------+------------~ 
!Fix IIFIX !Convert from I I I 1 !Real *4 !Integer *4 I 
I IHFIX !real to-integer I I I 1 !Real *4 !Integer *2 I 
t-----------------+------+-------------------+---------------+------+------------+------------~ 
!Transfer of sign ISIGN !Sign of Arg2 times I I I 2 !Real *4 !Real *4 I 
I I I IArg1I I I I I I 
I I !SIGN I I I I 2 I Integer *4 I Integer *4 I 
I IDSIGN I I I I 2 !Real *8 !Real *8 I 
t-----------------+------+-------------------+---------------+------+-----------+------------~ 
!Positive IDIM IArg1-MinCArg1 ,Arg2>1 I I 2 !Real *4 !Real *4 I 
!difference IIDIM I I I !Integer *4 !Integer *4 I 
~-----------------+------+-------------------+---------------+------+-----------+-----------" 
!Hyperbolic jSINH lsinh (Arg) I O I 1 !Real *4 !Real *4 I 
I Sine I DSINH I sinh (Arg) I o I 1 I Real *8 I Real *8 I 
t-----------------+------+---------·----------+---------------+------+------------+------------i 
!Hyperbolic ICOSH lcosh (Arg) I O I 1 !Real *4 !Real *4 I 
!Cosine IDCOSH lcosh (Arg) I o I 1 !Real *8 !Real *8 I 
t-----------------+------+-------------------+--------------+------+------------+------------~ 
!Error Function IERF l__?___(x -u2 I O I 1 !Real *4 !Real *4 I 
I IDERF I ff J e du I O I 1 !Real *8 !Real *8 I 
I I I o I I I I I 
t-----------------+------+-------------------+---------------+------+------------+------------~ 
!Complemented IERFC 11-erf (x) I o I 1 !Real *4 !Real *4 I 
!Error Function IDERFC I I 0 I 1 IReal *8 !Real *8 I 
t-----------------+------+-------------------+-------------+------+------------+------------~ 
I Gamma I GAMMA Is oo x-1 -u I o I 1 I Real *4 I Real *4 I 
I IDGAM~..AI u e du I O I 1 !Real *8 IReal *8 I 
I I I o I I I I I 
t-----------------+------+-------------------+---------------+------+------------+------------~ 
!Log-gamma IALGAl".iAI I o I 1 !Real *4 !Real *4 I 
I I DLGAMAI loge T<x> I O I 1 I Real *8 I Real *8 I 
t-----------------+------+-------------------+---------------+------+------------+------------~ 
!Modular IMOD 1Arg1 <mod Arg 2) I I I 2 !Integer *4 !Integer *4 I 
I Arithmetic I I rArg1, I I I I I 
I IAMOD IArg1- l----l*Arg2 I I I 2 !Real *4 1Real*4 I 
I I I LArg2J I I I I I 
I IDMOD !Where: [x] is the I I I 2 !Real *8 !Real *8 I 
I I I largest integer:s; Ix I I I I I I 
t-----------------+------+-------------------+---------------+------+------------+------------1 
!Absolute value IIABS I IArgl I I I 1 I Integer *4 I Integer *4 I 
I IABS I I I I 1 !Real *4 !Real *4 I 
I IDABS I I I I 1 !Real *8 !Real *8 I 
I t------+-------------------+---------------+------+------------+------------~ 
I !CABS I (a 2+b2) for a+bi I o I 1 I Complex *8 !Real *4 I 
I I CDABS I I 0 l 1 I Complex *16 I Real *8 I 
t-----------------+------+-------------------+---------------+------+------------+------------~ 
!Truncation IINT !Sign of Arg times I I I 1 !Real *4 !Integer *4 I 
I I I largest integer j I I j I 
I I I <IArgl I I I I I 
I IAINT I I I I 1 !Real *4 IReal *4 I 
I IIDINT I I I I 1 !Real *8 !Integer *4 I l _________________ i ______ i ___________________ i _______________ i ______ i ____________ i ____________ J 

(Continued) 

110 



•Table 4~ Mathematical Function Subprograms (Continued) 
r-----------------T------T-------------------T---------------T------T------------T------------1 
I I I I I I I Type of I 
I !Entry I I In-Line (I) INo. ofl Type of !Function I 
jFunction jName I Definition IOut-of-Line (0) I Arg. I Arguments !Value I 
~-----------------+------+-------------------+---------------+------+------------+------------1 
!Obtaining most ISNGL I I I I 1 IReal *8 !Real *4 I 
I significant part I I I I I I I 
I of a Real *8 I I I I I I I 
I argument ! I I I I I I 
r-----------------+-----~+-------------------+---------------+------+------------+------------1 
I Obtain real I REAL I I I I 1 I Complex *8 I Real *4 I 
!part of complex I I I I I I I 
iarg-urnent i i ! ! I i j 
r-----------------+------+-------------------+---------------+------+------------+------------1 
!Obtain imaginary IAIMAG I I I I 1 !Complex *8 IReal *4 I 
!part of complex I I I I I I I 
I argument I I I I I I I 
r-----------------+------+-------------------+---------------+------+------------+------------~ 
!Express a Real IDBLE I I I I 1 !Real *4 !Real *8 I 
I *4 argument in I I I I I I I 
I Real * 8 form I I I I I I I 
r-----------------+------+-------------------+---------------+------+------------+------------1 
!Express two real ICMPLX !C=Arg1 ,+iArg2 I I I 2 !Real *4 )Complex *8 I 
targuments in com-IDCMPLXI I I I 2 !Real *8 !Complex *16 I 
I pl ex form I I I I I I I 
r-----------------+------+-------------------+---------------+------+------------+------------1 
!Obtain conjugate ICONJG IC=X-iY I I I 1 !Complex *8 !Complex *8 I 
lof a complex IDCONJGIFor Arg=X+iY I I I 1 )Complex *16 )Complex *16 I 
I argument I I I I I I I l _________________ i ______ i ___________________ i--------~-----i ______ i ____________ i ____________ J 

Appendix C: FORTRAN Supplied Subprograms 111 



APPENDIX D: SAMPLE PROGRAMS 

SAMPLE PROGRAM 1 

The sample program (Figure 2) is designed to find all of the prime 
numbers between 1 and 1000. A prime number is an integer that cannot be 
evenly divided by any integer except itself and 1. Thus 1, 2, 3, 5, 7, 
11,... are prime numbers. The number 9, for example, is not a prime 
number since it can evenly be divided by 3. 

FORTRAN Coding Form 

l'!lOGkAM SAMPLE PROGRAM 1 PUNCHING 
1GRAPHIC I I I I I I••GE 1 OF 1 

PROGRAMMER DATE GIGG INSTRIXTIONS _J PUNCH I I I I I JCARO ELECTRO NUMBER* 

STAT£MENT z FORTRAN STATEMENT 
IDENflACATION 

NUMBER 8 SEQUENCE 

1 2 3 .. s • 7 8 9 10 1112 13.14 15 16 17 1819 20 21 22 23 24 25 26 Z7 28 29-30 31 32 33 34 35 36 3738.39 40 41 42 .t3 ~ 45 46 47 48 49 so 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 6869 70 71 72 73 71, 1s 76 n 78 79 ea 

Ci!: PllHME NIU~BiEiR' PR~BL]EM : ' : : __;_ I 
I 

I 

l l~ fW1RI[f E rn_,~)I -;- .. : ! : 11 : : ' ' I 
·c- ! ! . ' . I • : 1 r l l : 'l 

FiROM 
l 

iM~l!/1 I I i 8 fJ:>RMAil [IS21H1 FOLLQIW_I NI& II!5 ~ LI sm 01F iP1R1I}1E1 1NU~ SERS' 11 TiOi ' 
' 

T: 'j_ 
IT! 11 9X ,1 H 1:/11 91X'' H-1 21119:x 'i1'HJ3_1 l I I l !J _i_ l i ! I I 

1_~11 I=5 I I 
' I : I 

I 
i 11 i 

r : I 

I i I u i l l I : 
I I l ! I l J I ' I ' ! I ! I 

' 
! I 

T I 13 Al_=II1 : ' 
I __;_ : ..:.__:_ : 'j_ '. _:_ I_:_! I : 1 I I -: . 

! I I I I 

I !!!~2 Ai= s~ RT!(!AI) I I I I i I : 
• 

I 
i I I i 

I I 

l j_1 3 J!"'A l _j_ _l 
I 

i [1 q DIO 1 Kl=3' ,·211 I 

• l 
iU?JS Li= I I K ~ ! l l l _l I I T ..:_ i 

: :1~ !IF!(L ~K1-:r) 1 ''2.,14 
i -,- ' : I 

1 ~10 NT IN!UE I I I l 
• 

I 

ii 7 mR 1T E 16,-S}l ] 
= l -L 

j_ 5 F]Q ((~ AT (I 2~); T ~ l ' 
' 2 I!= 1+2 

: 
T ! ' ~ _d 

19'8 IF ri ~ 
-I 17:, Llh3 ! __;_ ' i' 

I 

i I ij. ~R I:T 6:' ) : T j_ ~T I I ! -'-I I : ' 

91 FC R~ All li~H: PR P6 RiA~ ERIR !ORI) i i 

' : 
I I ' I 1 I 

I I 

7 WR ITE ( 61' 6t ' ! j_ 
I I J 

[OF1 'T
1

HE 
__;_ _;_ 

' FO ~,,, AT l{3 1H TH rs IS THjE EiN!D 1 PR ~6 RIATMI : 

1~9 ~T [(]P 
! I i I : I l ~ 

i ! 

I 

I 
I 'l .J. I 

Et]D I 
T I T 

: 
TT I I i I 

Ii° I 1 'l I I I l 
: I 

f 1 
I 

I llll ll I l 1 j I !J I i 

I I l : I 

I l l llll lll ll l l llllll l lll 
1 ~ 3 •. _5 • 7 8 9 10 1112 13 14 15 1617 1819 20 2122232425 26 'Z7 28 2930 3132333'35 36 373839 40-41 42-4344-45 .464748 '4950515253545556 57585960 61626364656667 686970 7172 73 74 1s 76 n 1a 19 so 

Alhstdordccirdform, 11Melectro888157, novodobleforpunchmgstat tsfromthrsfomi 

• Figure 2. Sample Program 1 

112 



SAMPLE PRCGRAM 2 

The n points (xii Yi) are to be used to fit an m degree polynomial by 
the least-squares method. 

In order to obtain the coefficients a 0 , a 1 , ••• , am, it is necessary to 
solve the normal equations: 

( 1) 

(m+l) 

where: 

Wma + Wm+1a1 

Wo = n 

n 
W1 = I x· l. 

i=l 

n 
W2 = I x·2 

1 
i=1 

n 
W2m .I x i~m 

i=l 

+ ... 

7_ ... , 

+ W2mam = Zm 

z 

Z1 = 

Z2 = 

Zm 

n 
I Y· 
i=l l. 

n 
I Yi Xi 
i=l 

n 
I y.x. 2 
i=l l 1 

n 
I Y·X·m 
i=l 1 1 

After the W's and Z's have been computed, the normal equations are 
solved by the method of elimination which is illustrated by the 
following solution of the normal equations for a second degree ~olynomi­
al (m = 2) • 

( 1) 

(2) 

(3) 

The forward solution is as follows: 

1. Divide equation { 1) by W0 

2. Multiply the equation resulting from step 1 by W1 and subtract from 
equation (2) • 

3. Multiply the equation resulting from step 1 by W2 and subtract from 
equation (3) • 

Appendix D: Sample Programs 113 



The resulting equations are: 

where: 

W11 ./W0
, 

b22 = W2-h12W11 , b23 W3-b113W11 , b2q. = Z1-b1it W1 

b32 = W3-b12W2 , b33 Wq.-b113W2 b3q. Z2-b1q. W2 

Steps 1 and 2 are repeated using equations (5) and (6) , with h22 and b32 
instead of Wo and W1• The resulting equations are: 

where: 

'Ihe backward solution is as follows: 

( 9) a2 C3q./C33 from equation (8) 

{ 10) a,, C2q.-C23a2 from equation (7) 

{ 11) a b1q. -b1 2a11-b1 3a2 from equation (4) 

Figure 3 is a possible FORTRAN program for carrying out the 
calculations for the case: n = 100, m ~ 10. W0 , W1 , W2 , •••t W2m are 
stored in W (1), W (2), W (3), ••• , W (2M+1), respectively. Z0 , Z1, Zu 
••• , Zm are stored in z (1) , Z (2) , z (3) , ••• , Z (M+1) , respectively. 

114 



IBJ4 FORTRAN Coding Form 

t GRAPHIC l l l l l l l 1"AGE10> 3 ~··0_GRAM_-'-S~AM-'---'--PL-"-E_P_R0-'--G-'--R--'-A_M_2. ____ ---.-----,--,--=-=-----i ~~~~~Ns 
PROGRAMMER DAT£ G/ 66 l PUNCH 

s~z:.:~r ~ FORTRAN STATEMENT 1~~oN 
i 2 ::; 4 5 0 7 S Y JU ii l2 i3 ;, i5 iO i7 i6 i9 20 2i u. ~ 2-4 25 20 u :2B 29 3U 3i 32 33 34 35 36 37 38 39 -«I 41 42 43 44 45 46 q 48 49 .50 5i 52 53 $4 SS 56 57 58 59 60 61 SJ. 63 6C 65 66 67 68 69 70 11 T2 73 74 75 76 77 78 79..J!l 

11 n~EAL ~c1110~hmc10J~:>1,Wt:<I2I1IT,1m111)1'JAJ<I11m,sc111,112) n n I ITII :1:1':1 1n:n 
ll I1T FjQRMATI !CI 2, Il3I/ ( 4-ffliiij -I7IlD 1 Ill ITIT II I I II II I I I II I IlII T I i 11 TI 
! ! !2 F!ORIMIATJ (!SE1 SI.]~]) ! 11 l ! I 1 lI TT! I 11 ! T I ! ll l I IT F TTT I l [ I ! II 
i 11,1 RIEAlD _lcis1,;1 > Ml,IN,lCXCI )1,fi1(r > ,lrl=Jt ,lNIB i TI, T 1 1 1 : 1 Iii T TIT i T 1 l: 1 : Ti 1 i Ti 1 

I i l i L~ ,= i2f*M+lii I I I I ! ! ' I I ' TT 1 I ! : ; 1 i 1 i i I i i I I ! T ! 11 i I i ; I l ! I i i ' 

! l ; ; LlB1 := _M+ 2 i I : j_ l I ' ' ' I : I I l I ' I I l I : I I : I 

! I ! L 1 :: _M+ 1i l ! ! I --' T l ! l ' : T t : l : 111 I! I ! ' I 11 I I I ' I 1 i I 111 I 

I 
I 112:01 i5 Ji= 2 ,il_W_ I i I ! ! j_ : l i i I j_ J j_ i I ! I I ! I I ! ! I ! j_ : I l : I I 

i I 5 N; ( 1J ) •= Qj • ~ ' T I • T T i T -;. i t T 1 J_ i • T T i : T J_ 1 i • ! i • I l 1 ; I I 

'i ! 

1 

i i ~~,1 ~i =.J',~ill'·L~; 
1 

l ~TI .I' H i h i i l; i : i i I : i : t ii i I i ~ I ' I L l l i i t: : +'I 

· : 116 ~C·J) 1= 0!.~ 1 -'- JI'• 1 : 11 l 1 1 1 : T i : . r I 1 n 1 T 1 1 1 n : 1 I : 1 1 , : 1 
, oo 1~ 1 ... 1,IN I i T , • 1 

1 : r 
: p = b0 I i Ii _;_ I ! I I ! l:: : ; : i-'-' I:: I:: i::::: ! : 

I ' I ' I ~(1) = l'( f)!+'Y([I} I I ; ' I . I I I I I ! I I I I i i I I I I ! I I ! l l ! I ! ! ! I I I IT TTI 

l l Il DO 1 31 J ::: 2 'Vi!, ! : ' l ' i I I ' i ~ I 
1 

: T Il : I . I :J T T 1' i ' ! I' 
l : i l llf = XU >l~P , . l, , l ! l l , : I : I : I I : I i : : I , : , 

i I I I Jf!( J,) "" W( J ),+;p, i ! I I ' ' T I I j I I l ! I j I ; ' l i I i 

:131 ll (J) = l ( J) + Y ( l ) *IP l -'- l ! i I i i I l ! i 
I ' i j[)Q 16 J =IL B' LW I -'- ' I I ! ! : I : I : ! : ! I J 
! ! : IP ~( I ) * p T T ' T + : ' I f i i T . ' ! ! , .= . . . i ! 1 ' 1 1 i I 

1 ++ 1 + + 1 I j_ 1 I I , l_i I . ~ , : '. 
1
1 

L·_i ll 11 l l_i1 l-'-' l ~1l '.LJ. i1i1 , l• ll1iiilll,:J.il111lll 
: I 2 3 4 5 6 - 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 JO 31 32 33 J'4. 35 36 37 38 39 «J 41 .(2 43 .U 45 46 47 48 49 50 51 52 53 S( 55 S6 57 58 59 60 61 62 63 64 65 66 67 68 69 10 7t n_l73 74 75 76 77 78 79 80 
•p, stondord card form, IBM electro 888157, is avciiloble for punc:hing sl'Qtemenh from ~hh form 

•Figure 3. Sample Program 2 

IBJ4 FORTRAN Coding Form 

l GRAPHIC l l l l PUNCH 1 l l 
S'!'A!E.-W:N'!' z !~N!IF!CATION 

NUMBEO 0 FORTRAN STATEMENT SEQUENCE 

1j7 D OJ j_2 0 iI = 1 i, L %! l i i i l i l l I ' i I 11 I l l j 
T o o1 I2~ iK = 1 •' L :l I I T T l l l l l l l · I I I I I 1 

I I 

l 

.___'-+-+=--I;:::...1 -=-+--"t::.-+-=1'---+-__ i _1 ._,__, __ _,_1 ___ --+---'-+-~-1-'_1 
_

1 --+-~' ~+---' _• _I 11--· 
1~--+_1 

_ _.__-+--
1 ---~~ 

!-----+-+I~F~(:o.+-I-='i_--'--L-'--B-JL-[-=28~'_,' ~""-+i3_._, ,3_3-1---' --+-----t---'---'---+---+----i---·--------i ---~--0-_, _ _,, ______ -i---~-,_,,' --: 
2 8 DO 3 ! I = 11' 1L 2 I 1 I ' 
' F MUL TB = B ( I 'L ) I I Ti 

T 
l _;_ 

! I ! 

I I . 
I = Ll 

! ! T 
35 SIG~A = 0·~ ! 

I 1 
! T I T T ! ! 

: l l ~ l i l ; 
1 2 J .cs 6 1 a 9 10 1112 13 14 is 16 111s19 20 21 22 23 24 25 26 v 2B 29 JO JI 32 33 J.4 35 36 3738 39 40 "'' 42 .c 44 cs "46 47 48 49 so s1 s2 53 5'4 ss 56 s1 sa 59 60 61 62 63 64 65 66 67 68 69 10 11 nI73 74 75 76 n 78 79 ao 

A ~tortdon:! con:! form, IBM. electro 888157, :s avo1lablr for pUnCh1"R slotemftlts from l'h1s form 

• Figure 3. Sample Program 2 (Continued) 

Appendix D: Sample Programs 115 



FORTRAN Coding Form 

l GRAPHIC l 1 l 1 1'AGE 3 OF 3 ~PROGIAM--=-SA:....:.=M'-'-P-=L=E---'-PR;...:..0=--6=-R=A'""""'""'M'"---"---'2=-----.----~----1~~~~~~:;N, 
l'IOGRAMMER DATE G/ f06 lPUNCH l 1 l 1 lCARD ELECTRO NUMBER* 

STATEMENT Z IDENTIFICATION 
Nl.MllER 8 FORTRAN STATEMENT SEQUENCE 

1 2~" s 6 1 a 9 10 11 12 13 14 1s 16 11 1s 19 20 2i 22 23 24 25 26 'Z1 28 29 30 31 32 33 34 35 36 37 38 39 -40 41 42 43 44 45 -46 47 49~~9 so s1 s2 53 54 ss 56 s1 sa 59 60 61 62 63 64 65 66 67 68 69 70 11 n 73 74 1s 76 n 1a 79 so 

~·7 SIGMA :Sl6MA+B(I-1'J)*A(:J) I,-- : I ! ] j 

I = I -:i I ' • I i l : 
AI-I> =r s·c r,1LB) -~IG~! 1 

• I 

1 
1 1 1 

l l E1NiDi I 11 ' l 1 i \ T I I I l J_ l I 

I : I I I i i : l ! ! I i 

: 

-'-I i 
I 

T T I l i I 

i 
! 

l '1 
\ 

! 

+ 1T I I 
: 

I i J_ 

I 

' 

I 
Tl j 

; I 

I i i _ 

1 

; I 
! I 

I 
! ·1 I I I I ! 

I ! 
I I 
I I : _L ! ' I 

l : 
I 

! 
I 

I : J_ 
I I 

i ! 

I T T 
I I I T T 
l I I 

! l ; 

I l t : i 

! 

i I 

ti 
'l 

I 

J_ 

I 

J_ 

i 

I 
I 

_J_ 

: l 1 
! I j l ! 

! I I 
I 

i 'j_ 
T ! 

I 

i ! 

' 

I , 

j I ' l 

! 

J_ t ' I 

! I 
I 

_;_ 
I : 1 .T 

_;_ 

i : : _;_J 
J_ 

i 
I TT T ' I : 

I 1 i I I i 
! l : I I 

I I 
i I I i l ! I I 

l 
: 

I 

I l u l ! l I l l I Jll l d 1 1 
I I II I I l I l 1111 ll1 I1I I 111111. 

1 2 3 " 5 6 1 s 9 10 11 12 13 14 1s 16 11 1s 19 20 21 22 23 24 25 26 'l1 28 29 JO JI 32 33 34 JS 36 y 38 39-«> ·41 42 43 44 45 .46 47 ~ "49 so s1 s2 53 54 ss 56 57 58 59 60 61 62 63 64 65 66 67 68 69 10 11 n 73 74 75 76 n 78 79 ao 
Attandanlc:Qldfann, !IMelecm:.888157, 1sGva1\Gbleforpunch1ng_stah!IMntsfl'Otl'lth1s.form 

• Figure 3. Sample Program 2 (Continued) 

The elements of the W array, except W(1), are set equal to zero. 
W(1) is set equal to N. For each value of I, Xi and Yi are selected. 
The powers of Xi are computed and accumulated in the correct W counters. 
The powers of Xi are multiplied by Yi and the products are accumulated 
in the correct Z counters. In order to save machine time when the 
object program is being run, the previously computed power of Xi is used 
when computing the next power of xi. Note the use of variables as index 
parameters. By the time control has passed to statement 17, the 
counters have been set as follows: 

116 

w (1) = N 

N 
w (2) = I Xr 

!=1 

N 
w (3) = I Xr2 

I=1 

N 
W(2M+1) =I x1 2M 

I=1 

N 
z ( 1) = I Yr 

I=1 

N 
z (2) I YrXr 

!=1 

N 
z (3) I Yrx12 

!=1 

Z_ (M+ 1) 



By the time control has passedpto statement 23, the values of W0 , W1 , 

••• , W2 m+ 1 have been placed in the storage locations corresponding to 
columns i through M + i, rows i through M + 1, of the B array, and the 
values of Z , Z1 , ••• , Zm have been stored in the locations correspond­
ing to the column of the B array. For example, for the illustrative 
problem (M = 2), columns 1 through 4, rows 1 through 3, of the B array 
would be set to the following computed values: 

Wo W1 W2 Zo 

W1 W2 W3 Z1 

W2 W3 W4 Z2 

This matrix represents equations (1) , (2) , and (3) , the normal 
equations for M = 2. 

The forward solution, which results in equations (4) , (7) , and (8) in 
the illustrative problem, is carried out by statements 23 through 31. 
By the time control has passed to statement 33, the coefficients of the 
AI terms in the M + 1 equations which would be obtained in hand 
calculations have replaced the contents of the locations corresponding 
to columns 1 through M+l, rows 1 through M+1, of the B array, and the 
constants on the right-hand side of the equations have replaced the 
contents of the locations corresponding to column M+2, rows 1 through 
M+l, of the B array. For the illustrative problem, columns 1 through 4, 
rows 1 through 3, of the B array would be set to the following computed 
values: 

1 b12 b13 b1ct 

0 1 C23 C2ct 

0 0 C33 C31t 

This matrix represents equations (4) I (7) , and ( 8j • 

The backward solution, which results in equations (9), (10), and (11) 
in the illustrative problem, is carried out by statements 33 through 40. 
By the time control has passed to statement 41, which prints the values 
of the A9 terms. the values of the (M+ 1}*A I terms have been stored in 
the M + 1 locations for the A array. For the illustrative problem, the 
A array would contain the following computed values for a 2 , a 1 , and a 0 
respectively: 

Location 

A (3) 

A (2) 

A (1) 

Contents 

The resulting values of the Ar terms are then printed according to 
the FORMAT specification in statement 2. 

Appendix D: Sample Programs 117 





A format code 62-63 
Addition 16 

(see also arithmetic operators) 
Additional input/output statements 

BACKSPACE 70 
END FILE 69 
REWIND 69 

Adjustable dimensions 81-82 
Alphabetic characters (table) 105 
Alphameric characters 13,105 
American Standards Association (ASA) 

FORTRAN 5 
AND (see logical operators) 
Arithmetic and logical assignment 
statement 7,27-28 

Arithmetic expressions 16-20 
arithmetic operators 16-20 
mode 18 
order of computation 10 
use of parentheses 19-20 

Arithmetic IF 32 
Arithmetic operators 16-20 

69-70 

Arrangement of arrays in storage 25-26 
Arrays 23-26 

arrangement in storage 25-26 
declaring size of 25 
subscripted variables 23 
subscripts 25 

ASSIGN statement 31-32 
Assigned GO TO statement 31-32 
Associated variable 71 

BACKSPACE statement 70 
Basic input/output statements 41-50,73-75 

READ statements 41-48,73-74 
WRITE statements 48-50,74-75 

Basic Operating System 5 
Basic Programming Support 5 
Blank common 84-86 
Blank fields (see X format code) 
Blank lines Csee carriage control) 
Blanks 8 
BLOCK DATA subprogram 104 
Boundary alignment 86-87,89 

CALL statement 97-98 
Coding form 8 
Comments lines 8 
COMMON statement 83-87 

blank common 83-86 
declaring size of an array 25 
labeled common 84-86 
programming considerations 86-87 

Compiler 5 
Complex constants 11 
COMPLEX statement 80 

(see also FUNCTION subprograms) 
Computed GO TO statement 30 
Constants 8-13 

complex 11 
double precision 9-10 
hexadecimal 12-13 

integer 9 
literal 12 
logical 11 
real 9-10 

Continuation lines 
CONTINUE statement 

7 
37-38 

Control statements 29-39 
arithmetic IF 32-33 
assigned GO TO 31-32 
computed GO TO 30 
CONTINUE 37-38 
DO 34-37 
END 39 
logical IF 33-34 
PAUSE 38-39 
STOP 39 
unconditional GO TO 29-30 

Conversion codes (see format codes) 

D decimal exponent 9-10,60 
D format code 60 
PATA initialization statement 107-108 
Data set 40 
Data set reference number 40 
Decimal exponents 9-10,60 
Declaring the size of an array 25 
DEFINE FILE statement 70-72 
Device CI/O) 40 
Digit (see numeric characters) 
DIMENSION statement 82 

adjustable dimensions 81-82 
declaring the size of an array 25 

Direct access input/output statements 
70-76 

Division 16 
(see also arithmetic operators) 

DO statement 34-37 
DO variable 34-37 
Double precision constants 9-10 
DOUBLE PRECISION statement 108 

E decimal exponent 9-10,60 
E format code 60 
END FILE statement 69 
END parameter in a READ statement 
END statement 39i95-96 
ENTRY statement 101-103' 
EQ (see relational operators) 
EQUIVALENCE statement 88-89 
ERR parameter in a READ statement 
Explicit specification statement 
Exponentiation 16~18-19 

<see also arithmetic operators) 
Exponents (see decimal exponents) 
Expressions 16-23 

arithmetic 16-20 
logical 20-23 

EXTERNAL statement 103-104 

F f orrnat code 59 
FALSE 11 

(see also logical expressions) 

41 

41,73 
15,79-82 

Index 119 



Features of System/360 FORTRAN IV 5-6 
FIND statement 75-76 
Format codes 54-69 

A code 61-62 
carriage control 69 
D and E codes 60 
F code 59 
G code 54-57 
H code 65 
I code 58-59 
L code 61 
numeric codes 58-60 
scale factor-P 66-68 
T code 66 
X code 65 
Z code 60-61 

FORMAT statement 40,50-69 
format codes 54-69 
FORTRAN record 54-56 
literal data 64 
reading FORMAT statements 47 

FORTRAN 
American Standards Association 5 
Basic Operating System 5 
Basic Programming Support 5 
coding form 8 
compiler 5 
library 109-111 
Model 44 Programming System 5 
object program 5 
operating system 5 
operating system (E) 5 
record 40,54-56 
source program 5 
statements 7 
supplied subprograms 109-111 

Functions 91-96 
definition 91 
FUNCTION subprograms 93-96 
reference to 91 
statement function subprograms 91-92 

G format code 54-57 
GE (see relational operators) 
GO TO statements 29-32 

assigned 31-32 
computed 30 
unconditional 29-30 

GT (see relational operators) 

H format code 65 
Hexadecimal constants 12-13 
Hierarchy of operations 

in a logical expression 22-23 
in an arithmetic expression 19-20 

I format code 58-59 
I/O list 

in a NAMELIST 42-44 
in a READ 41,73 
in a WRITE 47,74 

Imaginary number (see complex constants) 
IMPLICIT specification statement 15,77-79 
In-line 109 
Indexing I/O lists 46 
Indexing parameters in a DO loop 34-35 
Input/output statements 7,40-76 

BACKSPACE 70 

120 

direct access statements 70-76 
END FILE 69 
FIND 75-76 
READ 41-48,73-74 
REWIND 69 
sequential statements 40-70 
WRITE 48-50,74-75 

Integer constants 9 
Integer division 20 
INTEGER statement 79-82 

Csee also FUNCTION subprograms) 

L format code 61 
Labeled common 84-86 
LE (see relational operators) 
Length specification 

(see optional length specification, 
standard length specification) 

Library 109-111 
List (see I/O list) 
Literal constants 12 
Literal data in a FORMAT statement 64 
Logical constants 11 
Logical expressions 20-23 

logical operators 21-22 
order of computation 22-23 
relational operators 20-21 
use of parentheses 23 

Logical IF statement 33-34 
Logical operators 21-22 
LOGICAL statement 79-82 

(see also FUNCTION subprograms) 
Looping Csee DO statement) 
LT (see relational operators) 

Mathematical function subprograms 109-111 
Mixed-mode 5 

(see also expressions) 
Mode of an arithmetic expression 18-19 
Model 44 Programming System 5 
Multiline listing 57 
Multiple ENTRY into a subprogram 100-103 
Multiplication 16 

(see also arithmetic operators) 

Named common (see labeled common) 
NAMELIST statement 42-44,48 
NE (see relational operators) 
Nest of DOS 35-37 
NOT (see logical operators) 
Numeric characters 105 
Numeric format codes 58-60 

Object program 5 
Operands 17-18 
Operating system 5 
Operating system CE) 5 
Operators 

arithmetic 16 
logical 21-22 
relational 20-21 

Optional length specification for 
variables 14,77-82 

OR (see logical operators) 
Order of computation 

in a logical expression 22-23 
in an arithmetic expression 19-20 

Out-of-line 109-111 



P format code 66-68 
Parentheses 

in a FORMAT statement 51-53 
in a logical expression 23 
in an arithmetic expression 20 

PAUSE statement 38-39 
Predefined specifica~ion 14-15 
PRINT statement 107 
Programming considerations 

in using COMMON blocks 86-87 
in using DEFINE FILE statements 72 
in using DO statements 36-37 
in us.ing EQUIVALENCE groups 8 9 

PUNCH statement 106 

Range of a DO statement 35-36 
READ statements 41-48,73-74 

direct access READ statement 73-74 
READ (a) list 45 
READ (a,b) list 44-45 
READ (a'r,b) list 73-74 
READ (a,x) 42-44 
READ b,list 106 
sequential read statements 41-48 

Reading FORMAT statements 47 
Real constants 9-10 
REAL statement 79-82 

(see also FUNCTION subprograms) 
Referencing of arguments by name and by 
value 98-99 

Relational operators 20-21 
Repeat constant 43 
RETURN statement 

in a FUNCTION subprogram 95-96 
in a SUBROUTINE subprogram 99-100 

REWIND statement 69 

Sample program 1 112 
Sample program 2 113-117 
Sequential input/output statements 40-70 
Service subprograms 109 
Slashes in a FORMAT statement 51-52 
Source program 5 
Special characters (table) 105 
Specification statements 7,90-104 

COMMON 83-87 
DEFINE FILE 70-71 
DIMENSION 82 
EQUIVALENCE 87-89 
explicit 15,79-82 
EXTERNAL 103-104 
FORMAT 50-69 
IMPLICIT 15,77-79 
NAMELIST 42-44 

Standard length specification for 
variables 14-15,77-82 

Statements 7 
arithmetic and logical assignment 27-28 
control 29-39 
direct access I/O 70-76 
sequential I/O 40-70 
specification 77-89 
sutprogram 90-104 

STOP statement 39 
subprograms 

FORTRAN supplied 109-111 
FUNCTION 93-96 
statement functions 91-92 
SUBROUTINE 96-97 

Subscripted variable 23 
Subscripts 25 
Subtraction 16 

(see also arithmetic operators) 
Symbolic unit number 

<see data set reference number) 

T format code 66 
TRUE 11 

(see also logical expressions) 
Type and length specification 14 
Type declaration 

explicit 15,79-82 
IMPLICIT 15,78-79 
predefined convention 14-15 

Type specification of FUNCTION subprograms 
94-95 

Type statements 
explicit 79-82 
IMPLICIT 78-79 

Unconditional GO TO statement 29-30 

Variable FORMAT statements 
(see reading FORMAT statements) 

Variables 13-15 
narres 14 
subscripted 23 
type declaration 14~15 
types and length specifications 14 

WRITE statements 48-50.74-75 
direct access WRITE statement 74-75 
sequential WRITE statements 48-50 
WRITE (a) list 49-50 
WRITE Ca,b) list 48-49 
WRITE (a'r,b) list 74-75 
WRITE (a,x) 48 

X format code 65 

Z format code 60-61 

Index 121 







READER'S COMMENTS 

Title: IBM System/360 
FORTRAN IV Language 

Is the material: 
Easy to Read? 
Well organized? 
Complete? 
Well illustrated? 
Accurate? 
Suitable for its intended audience? 

Yes 

How did you use this publication? 
As an introduction to the subject 

Other ____ ~~-~~~~~-~~---

Please check the items that describe your position: 
_Customer personnel _Operator 
_ IBM personnel _Programmer 

No 

_Manager _customer Engineer 
_Systems Analyst _Instructor 

Form: C28-6515-4 

For additional knowledge 

_Sales Representative 
_systems Engineer 
_Trainee 

Other __ ~~~~~ 

Please check specific criticism(s), give page number(s),and explain below: 
__ Clarification on page (s) 
_Addition on page (s) 

µJ _Deletion on page (s) 
~I _Error on page (s) 

..:I I 
~ Explanation: 
.z I 
.... ' 

Name ________________ _ 

Company~~~~~~~~~~~~~ 

Address-------------­
City 
State ______ Zip Code __ _ 

FOLD ON TWO LINES,STAPLE AND MAIL 
No Postage Necessary if Mailed in U.S.A. 



staple 

fold 

told 

"' 

r------------------------------------------------1 
9 BUSINESS REPLY MAIL I 
I NC POSTAGE STAMP NECESSARY IF MAILED IN U.S.A. I 
L-------··-----------------------------------------J 

POSTAGE WILL BE PAID BY 

IBM CORPORATION 
P.O. BOX 390 
POUGHKEEPSIE, N. Y. 12602 

ATTN: PROGRAMMING SYSTEMS PUBLICATIONS 
DEPT. D58 

International Business Machines Corporation 
Data Processing Division 
112 East Post Road, White Plains, N.Y. 10601 
[USA D.nly] 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
[International] 

sta 

r--------------------, 
I FIRST CLASS I 
I PERMIT NO. 81 I 
I I 
I POUGHKEEPSIE, N.Y. I l ____________________ J 

II 1111 

111111 

111111 

11 II II 

111111 

111111 

I II I II 

1-d 
~ 
f-'· 
::::s 
c+ 
(j) 
p, 

f-'· 
::::s 

c:: 
(/) 

::r> 

0 
I\) 
co 
I 
0\ 
Vl 
f-l 
Vl 
I 

+::-

f c 

fo. 

stapJ 



C28-6515-4 

® 

International Business Machines Corporation 
Data Processing Division 
112 East Post Road, White Plains, N.Y.10601 
[USA Only] 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
[International] 

Q 
I\) 

co 
I 
0\ 
Vl 
~ 
Vl 
I 

+::--


