Systems Reference Library

IBM System/360

FORTRAN IV Language

This publication describes and illustrates the
use of the FORTRAN IV language for the IBM System/
360 Operating System, the IBM System/360 Model u4u
Programming System, and the IBM System/360
Disk Operating System.

File No. S360-25
Form C28-6515-7

0s
44PS
DOS

K3 1111

PREFACE

This publication describes the IBM
System/360 FORTRAN IV language for the
IBM System/360 Operating System, the IBM
System/360 Model 44 Programming System,
and the IBM System/360 Disk Operating
System. A reader should have some know-
ledge of FORTRAN before using this pub-
lication. A useful source for this
information is the set of programmed
instruction texts, FORTRAN IV for IBM
System/360, Forms R29-0080 through
R29-0087.

The material in this publication is
arranged to provide a quick definition
and syntactical reference to the various
elements of the language by means of a
box format. In addition, sufficient
text describing each element, with
appropriate examples as to possible use,
is given.

Appendixes contain additional infor-
mation useful in writing a FORTRAN IV
program. This information consists of a
table of source program characters, a
list of other FORTRAN statements
accepted by FORTRAN IV, a list of
FORTRAN-supplied mathematical subpro-
grams and service subprograms, lists of
differences between FORTRAN IV and Basic

Eighth Edition (October, 1968)

FORTRAN IV and USA FORTRAN IV, and
sample programs. Out-of-line mathemat-
ical subprograms and service subprograms
are described in the publication IBM
System/360: FORTRAN IV Library Subpro-
grams, Form C28-6596. Compiler restric-
tions and programming considerations are
contained in the programmer's guide for
the respective system. The programmers'
guides are as follows:

IBM System/360 Operating System:
FORTRAN IV (G) Programmer's Guide,
Form C28-6639

IBM System/360 Operating System:
FORTRAN IV (H) Programmer's Guide,
Form C28-6602

IBM System/360 Model 44 Programming
System: Guide to System Use for
FORTRAN Prograrmers, Form C28-6813

IBM System/360 Disk Operating System,
FORTRAN IV Programmer's Guicde, Form
C28-6397

A comparison of FORTRAN IV compilers
is in the publication IBM_FORTRAN_IV
Reference Data, Form X28-6383.

This is a major revision of, and makes obsolete, Form C28-6515-6.
This edition clarifies text and corrects errors that appeared in the
previous edition, and should be reviewed for revised, added, and

deleted material.

Changes to text, and small changes to illustrations,

are indicated by a vertical line to the left of the change; changed or
added illustrations are denoted by the symbol e to the left of the

caption.

Changes are periodically made to the specifications herein;

any such

changes will be reported in subsequent revisions or Technical

Newsletters.

Requests for copies of IBM publications should be made to your IBM
representative or to the IBM branch office serving your locality.

Address comments concerning the contents of this publication to IBM
Corporation, Programming Publications, 1271 Avenue of the Americas,

New York, N. Y.
level being used.

10020.

Comments should mention the compiler and

© Copyright International Business Machines Corporation 1965, 1966, 1968

INTRODUCTION o « « « o o« o« o o o o o

ELEMENTS OF THE LANGUAGE « ¢« o o o o
Statements « ¢« ¢ ¢ o o . " e o o e
Coding FORTRAN Statements e o o o
Constants « o« o o o o o o o o o o
Integer ConstantsS « « « o« o « o o
Real Constants « &« ¢« ¢ ¢ ¢ o o o &«
Complex ConstantsS e« « o ¢« o o o o
Logical Constants .« « o o o o o &
Literal Constants . . « ¢« ¢ « + &«
Hexadecimal ConstantsS .« « « « « &
Symbolic NameS o« o o o o o o « o o »
Variables =« « « o o o ¢ o« ¢« o o o o
Variable Names . . . s s o o
Variable Types and Lengths

Type Declaration by the Predeflned

Specification . .
Type Declaration by the IMPLICIT
Statement .« ¢ ¢ ¢ ¢ o ¢ e o o
Type Declaration by Explicit
Specification Statements
AYT3yS o« o « o o s o o o o o o .
Declaring the Size and Type of an
Array . - Ll - L] . - - L] - - . - -
Arrangement of Arrays in Storage .
Subscripts @ ®© e e e e o & e o e o o
EXPYreSSiONS =« o o o o o o o o o o »
Arithmetic EXpressions « « « « « o
Arithmetic Operators
Logical EXpressions « « « « « o o
Relational Operators . « « « « «
Logical Operators .« « « « o« o «

ARITHMETIC AND LOGICAL ASSIGNMENT
STATEMENT .« o ¢ e« o o o o o o o o o

CONTROL STATEMENTS e « o o o o o o o«

GO TO Statements « « e e o o & e o
Unconditional GO TO Statement o .
Computed GO TO Statement
ASSIGN and Assigned GO TO Statement

ADDITIONAL CONTROL STATEMENTS . . .
Arithmetic IF Statement .« « o« « «
Logical IF Statement . « « o 2 o o«
DO Statement « « ¢« o o ¢ ¢ ¢ ¢ o o
Programming Considerations in Using
Q@ DO LOOD « o o o ¢ o o o @
CONTINUE Statement
PAUSE Statement . « o« o« ¢ o o o o
STOP Statement . « « « « o &
END Statement o« « « o« o o o o« o o

INPUT/OUTPUT STATEMENTS &« « o o o «
Sequential Input/Output Statements .
READ Statement « « ¢ o o ¢ o o o &
Formatted READ e ®© e e & o o e o
Unformatted READ + ¢ ¢« « o » = o«
WRITE Statement e @€ e e e e o o o
Formatted WRITE . . ¢ o o « o o«
Unformatted WRITE, . . « o« o o
READ and WRITE Using NAMELIST . .

5

17
17

17
18

18

19
20
20
21

24
25

CONTENTS

NAMELIST Input Data « « « o « o
NAMELIST Output Data « « « « . «
FORMAT Statement « « o« « o ¢ o« « o o
Various Forms of a FORMAT Statement
I Format COde &« « o o « « o o o o
D, E, and F Format Codes =«
Z Format CoOde o o o o o ¢ o o o &
G Format Code o o « o o o o « o« @
Examples of Numeric Format Codes .
Scale Factor = P & o « o « o « o o
L Format Code . &« o o o o o o o @
A Format Code & & @ 6 @ & e e e e
H Format Code and Literal Data . .
X Format COdEe o o« « o o e ¢ o o o
T Format Code . o« o o o o o o o o«
Group Format Specification « « «
Reading Format Specifications at
Object Tim€ ¢ « « « « o« o o ¢ « @
END FILE Statement . ¢« « ¢« ¢« o o« o o
REWIND Statement « « « « ¢« ¢ o ¢ o &
BACKSPACE Statement .« « ¢« « « o o «

Direct Access Input/Output Statements

DEFINE FILE Statement =« « o« « ¢ o «
Direct Access Programming

Considerations « o« « o ¢ « « « o « o
READ Statement « o« o« o o o o o o o
WRITE Statement e e o e e e @ o e @
FIND Statement « o o« o ¢ ¢ o o o o @

DATA INITIALIZATION STATEMENT

SPECIFICATION STATEMENTS o« ¢ o « « o &

DIMENSION Statement « ¢ o « o o o «
Type Statements . « « « ¢ ¢ o & o &
IMPLICIT Statement « o« o« « « « o o &
Explicit Specification Statements .
DOUBLE PRECISION Statement « « o« « &
COMMON Statement«
Blank and Labeled Common . . . « . .
Arrangement of Variables in Common .
EQUIVALENCE Statement
Storage Arrangement of Variables in
Equivalence Groups . « « » « o = « «

SUBPROGRAMS & ¢ 2 o o o o o o o o o &

Naming SubprOgrams « « « o« « o o o @
Functions e s o o s o o
Function Deflnltlon « e e e o o o
Function Reference
Statement Functions <« « « « o «)
FUNCTION Subprograms . . o B
RETURN and END Statements in a
FUNCTION Subprogram <« « « « o
SUBROUTINE SubprOgrams . « « o o o «
CALL Statement « « « o o o o «
RETURN Statements in a SUBROUTINE
Subprogram « « e e e e e o o
Arguments in a FUNCTION or
SUBROUTINE Subprogram e« « « o o .
Multiple Entry into a Subprogram o =
EXTERNAL Statement « « « « « o
Object-Time Dimensions . « « « « « «

90

91
93
95
96

"BLOCK DATA Subprogram . « « « « « » « 99 Programming Considerations . « . . o114

‘ Debug Facility Statements115

APPENDIX A: SOURCE PROGRAM CHARACTERS 100 DEBUG Specification Statement « « 116

AT Debug Packet Identification

APPENDIX B: OTHER FORTRAN STATEMENTS Statement o+ « ¢ ¢ ¢ . « e o o o o o117

ACCEPTED BY FORTRAN IV101 TRACE ON Statement «117

READ Statement « o« « o« « « o ¢ ¢ ¢ o ¢101 TRACE OFF Statement « « o« « « o 117

PUNCH Statement . « ¢ ¢« ¢ ¢ ¢ o« « . 101 DISPLAY Statement . « « ¢« « ¢« « « . 118

PRINT Statement .« o« « « « o ¢ « « « 102 Debug Packet Programming Examples . .118
APPENDIX C: FORTRAN-SUPPLIED APPENDIX F: FORTRAN IV FEATURES NOT IN

SUBPROGRAMS &+ & « o o o o o« o o o o o« 103 BASIC FORTRAN IV ¢ ¢ ¢ o o o o = « « « o121

APPENDIX D: SAMPLE PROGRAMS . « « « « 108 APPENDIX G: FORTRAN IV FEATURES NOT IN
Sample Program 1 . « o « o o o o « o « 108 USA FORTRAN IV ¢ ¢ o o o o o o o o« o o« o122

Sample Program 2 « « o« « e o o o o« o « <109
INDEX =« o o o o o o o o o o o o ¢ o o «123

APPENDIX E: DEBUG FACILITY « o« o o « « o114

TABLES

Table 1. Determining the Type and
Length of the Result of +, -, *,
Operations « o« « o o« o o o o o & o« « 23
Table 2. Valid Combinations with

the Arithmetic Operator ** , ., . . . 24

FIGURES

Figure 1. Sample Program 1108
Figure 2. Sample Program 2
(Part 1 of 3)e ¢ o o e « s ¢ e o o .111

ILLUSTRATIONS

Table 3. Conversion Rules for the
Arithmetic Assignment Statement

g-—_b L] L] L) - L] - - - . - . - L] - . 30
Table 4. Mathematical Function
Subprograms (Part 1 of 3)104
Table 5. Out-of-Line Service
SUbprograms e« o« « o o « o o o o o o107

INTRODUCTION

IBM System/360 FORTRAN IV for the Operating System, the Model U4 Pro-
gramming System, and the Disk Operating System consists of a language, a
library of subprograms, and a compiler,

The FORTRAN IV language is especially useful in writing programs for
applications that involve mathematical computations and other manipula-
tion of numerical data. The name FORTRAN is derived from FORmula
TRANslator.

Source programs written in the FORTRAN IV language consist of a set
of statements constructed by the programmer from the language elements
described in this publication.

In a process called compilation, a program called the FORTRAN com-
piler analyzes the source program statements and translates them into a
machine language program called the object program, which will be suit-
able for execution on IBM System/360. In addition, when the FORTRAN
compiler detects errors in the source program, it produces appropriate
diagnostic error messages. The FORTRAN programmers' guides listed in
the Preface contain information about compiling and executing FORTRAN
programs.

The FORTRAN compiler operates under control of an operating system
which provides the FORTRAN compiler with input/output and other ser-
vices. Object programs generated by the FORTRAN compiler alsoc operate
under operating system control and depend on it for similar services.

The IBM System/360 FORTRAN IV language is compatible with and encom-
passes the United States of America (USA) FORTRAN, including its mathe-
matical subroutine provisions. It also contains, as a proper subset,
Basic FORTRAN IV. Appendixes F and G contain lists of differences
between FORTRAN IV and Basic FORTRAN IV and USA FORTRAN IV.

Introduction 7

ELEMENTS OF THE LANGUAGE

STATEMENTS

Source programs consist of a set of statements from which the com-
piler generates machine instructions, constants, and storage areas. A
given FORTRAN statement effectively performs one of three functions:

1. Causes certain operations to be performed (e.g., addition, multi-
plication, branching)

2. Specifies the nature of the data being handled

3. Specifies the characteristics of the source program

FORTRAN statements usually are composed of certain FORTRAN key words
used in conjunction with the basic elements of the language: constants,
variables, and expressions. The categories of FORTRAN statements are as
follows:

1. Arithmetic and Logical Assignment Statements: These statements
cause calculations to be performed or conditions to be tested. The
result replaces the current value of a designated variable or sub-
scripted variable.

2. cControl Statements: These statements enable the user to govern the
flow of and to terminate the execution of the object program.

3. Input/Output Statements: These statements, in addition to control-
ling input/output devices, enable the user to transfer data between
internal storage and an input/output medium.

4. FORMAT Statement: This statement is used in conjunction with cer-
tain input/output statements to specify the form of a FORTRAN
record.

5. NAMELIST Statement: This statement is used in conjunction with
certain input/ocutput statements to specify the form of a special
kind of record.

6. DATA Initialization_ Statement: This statement is used to assign
initial values to variables.

7. Specification Statements: These statements are used to declare the
properties of variables, arrays, and functions (such as type and
amount of storage reserved) and, in addition, can be used to assign
initial values to variables and arrays.

8. Statement Function Definition Statement: This statement specifies
operations to ke performed whenever the statement function name
appears in the program.

"9. Subprogram Statements: These statements enable the user to name
and define functions and subroutines, which can be compiled separ-
ately or with the main program

The basic elements of the language are discussed in this section
The actual FORTRAN statements in which these elements are used are dis-
cussed in following sections The term program unit refers to a main
program or a subprogram; the term executable statements refers to those
statements in groups 1, 2, and 3.

The order of a FORTRAN program unit (other than a BLOCK DATA subpro-
gram) is as follows:

1. Subprogram statement, if any.
2. IMPLICIT statement, if any.

3. Other specification statements, if any. (Explicit specification
statements that initialize variables or arrays must follow other
specification statements that contain the same variable or array
names.)

4, Statement function definitions, if any.
5. Executable statements, at least one of which must be present.
6. END statement.

FORMAT, NAMELIST, and DATA statements may appear anywhere after the
IMPLICIT statement, if present, and before the END statement. DATA
statements, however, must follow any specification statements that con-
tain the same variable or array names. A NAMELIST statement declaring a
NAMELIST name must precede the use of that name in any input/output
statement.

The order of statements in BLOCK DATA subprograms is discussed in the
section "BLOCK DATA Subprogram."

CODING FORTRAN STATEMENTS

The statements of a FORTRAN source program can be written on a stan-
dard FORTRAN coding form, Form X28-7327. Each line on the coding form
represents one 80-column card. FORTRAN statements are written one to a
card within columns 7 through 72. If a statement is too long for one
card, it may be continued on as many as 19 successive cards by placing
any character, other than a blank or zero, in column 6 of each continua-
tion card. For the first card of a statement, column 6 must be blank or
zero.

As many blanks as desired may be written in a statement to improve
its readability. They are ignored by the compiler. Blanks that are
inserted in literal data are retained and treated as blanks within the
data.

Columns 1 through 5 of the first card of a statement may contain a
statement number consisting of from 1 through 5 decimal digits. Blanks
and leading zeros in a statement number are ignored. Statement numbers
may appear anywhere in columns 1 through 5 and may be assigned in any
order; the value of statement numbers does not affect the order in which
the statements are executed in a FORTRAN program.

Columns 73 through 80 are not significant to the FORTRAN compiler and

may, therefore, be used for program identification, sequencing, or any
other purpose

Elements of the Language 9

Comments to explain the program may be written in columns 2 through
80 of a card if the letter C is placed in column 1. Comments may appear
between FORTRAN statements; a comments card may not immediately precede
a continuation card. Comments are not processed by the FORTRAN com-
piler, but are printed on the source program listing. Blanks may be
inserted where desired to improve readability.

CONSTANTS

A constant is a fixed, unvarying quantity. There are four classes of
constants -- those that specify numbers (numerical constants), those
that specify truth values (logical constants), those that specify liter-
al data (literal constants), and those that specify hexadecimal data
(hexadecimal constants).

Numerical constants may be integer, real, or complex numbers; logical
constants may be .TRUE. or .FALSE.; literal constants may be a string
of alphameric and/or special characters; and hexadecimal constants must
be hexadecimal (base 16) numbers.

INTEGER CONSTANTS

Definition |

P 1
] Integer Constant - a whole number written without a decimal point.
] It occupies four locations of storage (i.e., four bytes).

-T-—-w

I
| Maximum Magnitude: 2147483647 (i.e., 231-1),
L

An integer constant may be positive, zero, or negative; if unsigned,
it is assumed to be positive. 1Its magnitude must not be greater than
the maximum and it may not contain embedded commas.

Examples:

Valid Integer Constants:

0

91

173
-2147483647

Invalid Integer Constants:

27. (Contains a decimal point)
3145903612 (Exceeds the allowable range)
5,396 (Contains an embedded comma)

10

REAL CONSTANTS

Definition

[o e et Wt et s e et i GBS et St et SR it et ek et e e e € Sl st B et ey

Real Constant -- has one of three forms: a basic real constant, a
basic real constant followed by a decimal exponent, or an integer
constant followed by a decimal exponent.

A basic real constant is a string of decimal digits with a deci-
mal point. If the string contains fewer than eight digits, the
basic real constant occupies four storage locations (bytes); if the
string contains eight or more digits, the basic real constant occu-
pies eight storage locations (bytes).

The storage requirement (length) of a real constant can also be
explicitly specified by appending an exponent to a basic real con-
stant or an integer constant. An exponent consists of the letter E
or the letter D followed by a signed or unsigned 1- or 2-digit
integer constant. The letter E specifies a constant of length four;
the letter D specifies a constant of length eight.

Magnitude: (either four or eight locations) 0 or 16-65 (approxi-
mately 10-78) through 1663 (approximately 1075)

Precision: (four locations) 6 hexadecimal digits
(approximately 7.2 decimal digits)
(eight locations) 14 hexadecimal digits
(approximately 16.8 decimal digits)

e e e e e e . . — — —— s — e — ot S st it et St Sttt st e]

A real constant may be positive, zero, or negative (if unsigned, it

is assumed to be positive) and must be of the allowable magnitude. It
may not contain embedded commas. The decimal exponent permits the

expression of a real constant as the product of a basic real constant or
integer constant times 10 raised to a desired power.

Examples:

Valid Real Constants (four storage locations):

+0.

-999.9999

7.0E+0 (i.e., 7.0 x 10° = 7.0)
19761.25E+1 (ie€ey 19761.25 x 10* = 197612.5)
7.E3

7.0E3 (i.eey 7.0 x 103 = 7000.0)
7.0E+03

7E-03 (i.eey 7.0 x 10-3 = 0.007)

Valid Real Constants (eight storage locations):

1234567890123456.D-94 (Equivalent to .1234567890123456x10-78)
21.98753829457168

1.0000000

7.9D03

7.9D+03 (i.e.y, 7.9 x 103 = 7900.0)

7.9D+3

7.9D0 (i.e., 7.9 x 10° = 7.9)

7D03 (i.e., 7 0 x 103 = 7000.0)

Elements of the Language

11

Invalid Real Constants:

1
3,471.1
1.E

1.2E+113
23.5E+97

21.3E-90

COMPLEX CONSTANTS

(Missing a decimal point or a decimal exponent)

(Embedded comma)

(Missing a 1- or 2-digit integer constant fol-
lowing the E.
preted as 1 0 x 109°)

(E is followed by a 3-digit integer constant)

(Magnitude outside the allowable range; that

23.5 x 10°7>16¢3)

(Magnitude outside the allowable range; that

21.3 x 10—°9<16-965)

is,

is,

Note that it is not inter-

Definition

[e Mt it s S s g e e

Complex Constant - an ordered pair of signed or unsigned real con-
stants separated by a comma and enclosed in parentheses. The first
real constant in a complex constant represents the real part of the
complex number; the second represents the imaginary part of the com-
plex number. Both parts must occupy the same number of storage
locations (either four or eight).

The real constants in a complex constant may be positive, zero, or
negative (if unsigned, they are assumed to be positive), but they must

be in the given range.

Examples:

Valid Complex Constants

(3.2,-1.86)
(-5.0E+03, .16E+02)
(4.7D+2,1.9736148)
(47D+2,38D+3)

(292704,1.697)
(.003E4, ,005D6)

12

(Has
(Has
(Has
(Has

the
the
the
the

value
value
value
value

Where i =v-1

3.2 - 1.861)
-5000. + 16.01)
470. + 1.97361481)
4700. + 38000.1)

(The real part is not a valid real constant)
(The parts differ in length)

LOGICAL CONSTANTS

1
| Definition |
b J
1 1
] Logical Constant - a constant that specifies a logical value There |
| are two logical values: |
| . TRUE, |
| .FALSE. ; |
| Each occupies four storage locations. The words TRUE and FALSE must |
| be preceded and followed by periods as shown above. |
L -
The logical constant .TRUE. or .FALSE. when assigned to a logical
variable specifies that the value of the logical variable is true c¢r
false, respectively. (See the section "Logical Expressions.")
LITERAL CONSTANTS
- ==
Definition |
- - -4

Literal Constant - a string of alphameric and/or special characters, |
delimited as follows:

-
.

The string can be enclosed in apostrophes.

18]
.

The string can be preceded by wH where w is the number of
characters in the string.

oo s o o e e e g e

The string may contain any characters (see Appendix A). Each
character requires one byte of storage. The number of characters in the
string, including blanks, may not be greater than 255. If apostrophes
delimit the literal, a single apostrophe within the literal is repre-
sented by two apostrophes. If wH precedes the literal, a single apos-
trophe within the literal is represented as a single apostrophe.

Literals can be used only in CALL statement or function reference
argument lists, as data initialization values, or in FORMAT statements.
The first form, a string enclosed in apostrophes, may be used in PAUSE
statements.

Examples:

24H INPUT/OUTPUT AREA NO.2

‘DATA!

' X-COORDINATE Y~-COORDINATE Z-COORDINATE!
'3 14

IDONI 'Tl

SHDON'T

Elements of the Language 13

HEXADECIMAL CONSTANTS

-7

Definition

Hexadecimal Constant - the character Z followed by a hexadecimal
number formed from the set 0 through 9 and A through F.

[e e e i
., .

Hexadecimal constants may be used only as data initialization values.

One storage location (byte) contains two hexadecimal digits. If a
constant is specified as an odd number of digits, a leading hexadecimal
zero is added on the left to fill the storage location. The internal
form of each hexadecimal digit is as follows:

0 - 0000 4 - 0100 8 - 1000 Cc - 1100

1 - 0001 5 - 0101 9 - 1001 D - 1101

2 - 0010 6 - 0110 A - 1010 E - 1110

3 - 0011 7 - 0111 B - 1011 F - 1111
Examples:

Z1CU9A2F1 represents the bit string: 00011100010010011010001011110001

ZBADFADE represents the bit string: 000010111010110111131101011011110
where the first four zero bits are implied because an odd
numker of hexadecimal digits is written.

The maximum number of digits allowed in a hexadecimal constant
depends upon the length specification of the variable being initialized
(see "Variable Types and Lengths"). The following list shows the maxi-
mum number of digits for each length specification:

Length Specification Maximum Number of
of Vvariable Hexadecimal Digits
16 32
8 16
4 8
2 4
1 2

If the number of digits is greater than the maximum, the leftmost
hexadecimal digits are truncated; if the number of digits is less than
the maximum, hexadecimal zeros are supplied on the left.

SYMBOLIC NAMES

1

r

| Definition |
)R —
[}

| Symbolic Name - from 1 through 6 alphameric ({i.e., numeric, O

| through 9, or alphabetic, A through Z and $) characters, the first |
] of which must be alphabetic. |
L J

14

Symbolic names are used in a program unit (i.e., a main program or a
subprogram) to identify elements in the following classes.

e An array and the elements of that array (see "Arrays")
A variable (see "Variables™)

A statement function (see "Statement Functions"™)

e An intrinsic function (see Appendix C)

A FUNCTION subprogram (see "FUNCTION Subprograms")

A SUBROUTINE subprogram (see "SUBROUTINE Subprograms")

A block name (see "BLOCK DATA Subprogram")

e An external procedure that cannot be classified as either a SUBROU-
TINE or FUNCTION subprogram (see "EXTERNAL Statement"™)

Symbolic names must be unique within a class in a program unit and
can identify elements of only one class with the following exceptions.

A block name can also be an array, variable, or statement function
name in a program unit.

A FUNCTION subprogram name must also be a variable name in the
FUNCTION subprogram.

Once a symbolic name is used as a FUNCTION subprogram name, a
SUBROUTINE subprogram name, a block name, or an external procedure name
in any unit of an executable program, no other program unit of that
executable program can use that name to identify an entity of these
classes in any other way.

VARIABLES

A FORTRAN variable is a symbolic representation of a quantity that
occupies a storage area. The value specified by the name is always the
current value stored in the area.

For example, in the statement:
A = 5.04B

both A and B are variables. The value of B is determined by some pre-
vious statement and may change from time to time. The value of A is
calculated whenever this statement is executed and changes as the value
of B changes.

VARIABLE NAMES

The use of meaningful variable names can serve as an aid in document-
ing a program. That is, someone other than the programmer may look at
the program and understand its function For example, to compute the
distance a car traveled in a certain amount of time at a given rate of
speed, the following statement could have been written:

Elements of the Language 15

X=Y * 7

where * designates multiplication. However, it would be more meaningful
to someone reading this statement if the programmer had written:

DIST = RATE * TIME

Examples:

Valid variable Names:
B292s
RATE
$VAR

Invalid Variakle Names:

B292704 (Contains more than six characters)
4ARRAY (First character is not alphabetic)
SI.X (Contains a special character)

VARIABLE TYPES AND LENGTHS

The type of a variable corresponds to the type of data the variable
represents. Thus, an integer variable represents integer data, a real
variable represents real data, etc. There is no variable type asso-
ciated with literal or hexadecimal data. These types of data are iden-
tified by a name of one of the other types.

For every type of variable, there is a corresponding standard and
optional length specification which determines the number of storage
locations (bytes) that are reserved for each variable. The following
list shows each variable type with its associated standard and optional
length:

Variable Type Standard Optional
Integer 4 2
Real) 8
Complex 8 16
Logical b4 1

A programmer may declare the type of a variable by using the
following:

e Predefined specification contained in the FORTRAN language
e Explicit specification statements
e TMPLICIT statement

An explicit specification statement overrides an IMPLICIT statement,
which, in turn, overrides the predefined specification The optional
length specification of a variable may be declared only by the IMPLICIT
or explicit specification statements. 1If, in these statements, no
length specification is stated, the standard length is assumed (see the
section, "Type Statements").

16

Type Declaration by the Predefined Specification

The predefined specification is a convention used to specify
variables as integer or real as follows:

1. If the first character of the variable name is I, J, K, L, M, or N,
the variable is integer of a standard length 4.

2. If the first character of the variable name is any other alphabetic
character, the variable is real of a standard length 4.

This convention is the traditional FORTRAN method of implicitly
specifying the type of a variable as being either integer or real. In
all examples that follow in this publication it is presumed that this
specification applies unless otherwise noted. Variables defined with
this convention are of standard length.

Type Declaration ky the IMPLICIT Statement

The IMPLICIT statement allows a programmer to specify the type of
variables in much the same way as was specified by the predefined con-
vention. That is, in both the type is determined by the first character
of the variable name. However, the programmer, using the IMPLICIT
statement, has the option of specifying which initial letters designate
a particular variable type. The IMPLICIT statement can be used to
specify all types of variables -- integer, real, complex, and logical --
and to indicate standard or optional length.

The IMPLICIT statement overrides the variable type as determined by
the predefined convention. For example, if the IMPLICIT statement
specifies that variables beginning with the letters A through M are real
variables and variables beginning with the letters N through Y are
integer variakles, then the variable ITEM (which would be treated as an
integer variable under the predefined convention) is now treated as a
real variable. Note that variables beginning with the letters Z and $
are (by the predefined convention) treated as real variables. The
IMPLICIT statement is presented in greater detail in the section "Speci-
fication Statements."

Type Declaration by Explicit Specification Statements

Explicit specification statements differ from the first two ways of
specifying the type of a variable, in that an explicit specification
statement declares the type of a particular variable by its name rather
than as a group of variables beginning with a particular character.

For example, assume that an IMPLICIT statement overrode the prede-
fined convention for variables beginning with the letter I by declaring
them to be real and that a subsequent explicit specification statement
declared that the variable named ITEM is complex. Then, the variable
ITEM is complex and all other variables beginning with the character I
are real. Note that variables beginning with the letters J through N
are specified as integer by the predefined convention.

The explicit specification statements are discussed in greater detail
in the section "Specification Statements."

Elements of the Language 17

ARRAYS

A FORTRAN array is a set of variables identified by a single variable
name. A particular variable in the array may be referred to by its
position in the array (e.g., first variable, third variable, seventh
variable, etc.). Consider the array named NEXT which consists of five
variables, each currently representing the following values: 273, 41,
8976, 59, and 2. '

NEXT(1) 1is the location containing 273
NEXT(2) is the location containing 41
NEXT(3) is the location containing 8976
NEXT(4) is the location containing 59
NEXT(5) is the location containing 2

Each variable (element) in this array consists of the name of the
array (i.e., NEXT) immediately followed by a number enclosed in paren-
theses, called a subscript quantity. The variables which the array com-
prises are called subscripted variables. Therefore, the subscripted
variable NEXT(1) has the value 273; the subscripted variable NEXT(2) has
the value 41, etc.

The subscripted variable NEXT(I) refers to the "Ith" subscripted
variable in the array, where I is an integer variable that may assume a
value of 1, 2, 3, 4, or 5.

To refer to any element in an array, the array name must be sub-
scripted. 1In particular, array name alone does not represent the first
element.

Consider the following array named LIST described by two subscript

quantities, the first ranging from 1 through 5, the second from 1
through 3:

Column 1 Column 2 Column 3

Row_1 82 4 7
Row_2 12 13 14
Row_3 91 1 31
Row_& 24 16 10
Row_5 2 8 2

Suppose it is desired to refer to the number in row 2, column 3; this
would be:

LIST (2,3)
Thus, LIST (2,3) has the value 14 and LIST (4,1) has the value 24,
Ordinary mathematical notation might use LIST to represent any ele-

ment of the array LIST. In FORTRAN, this is written as LIST(I,J) where
I equals 1, 2, 3, 4, or 5 and J equals 1, 2, or 3.

DECLARING THE SIZE AND TYPE OF AN ARRAY

The size (number of elements) of an array is specified by the number
of subscript quantities of the array and the maximum value of each sub-
script gquantity. This information must be given for all arrays before
using them in a FORTRAN program so that an appropriate amount of storage
may be reserved Declaration of this information is made by a DIMENSION

18

statement, a COMMON statement, or by one of the explicit specification
statements; these statements are discussed in detail in the section
"Specification Statements." The type of an array name is determined by
the conventions for specifying the type of a variable name. Each ele-
ment of an array is of the type specified for the array name.

ARRANGEMENT OF ARRAYS IN STORAGE

Arrays are stored in ascending storage locations, with the value of
the_‘;ﬁ?ﬁ.Of their subscript quantities increasing most rapidly and the
value of the last increasing least rapidly.

For example, the array LIST, whose values are given in the previous
example, is arranged in storage as follows:

82 12 91 24 2 4 13 1 16 8 7 14 31 10 2

The array named A, described by one subscript quantity which varies
from 1 to 5, appears in storage as follows:

A(1) A(2) A(3) A(4) A(S)

The array named B, described by two subscript quantities with the
first subscript quantity varying over the range from 1 to 5, and the
second varying from 1 to 3, appears in ascending storage locations in
the following order:

B(1,1) B(2,1) R(3,1) B(4,1) B(5,1)-—
J

. -
L->B(1,2) B(2,2) B(3,2) B(4,2) B(5,2)——
4

r -
L->B(1,3) B(2,3) B(3,3) B(4,3) B(5,3)

Note that B(1,2) and B(1,3) follow in storage B(5,1) and B(5,2),
respectively.

The following list is the order of an array named C, described by
three subscript quantities with the first varying from 1 to 3, the
second varying from 1 to 2, and the third varying from 1 to 3:

c(1,1,1) Cc(2,1,1) C(3,1,1) c(,2,1) Cc(2,2,1) C(3,2,1)-—
- |

r - -
L->c(1,1,2) c(2,1,2) c(3,1,2) c(1,2,2) c(2,2,2) C(3,2,2)-—
_— 1

. -
t->c(1,1,3) c¢2,1,3) c(3,1,3) c(1,2,3) C(2,2,3) C(3,2,3)

Note that C€(1,1,2) and C(1,1,3) follow in storage C(3,2,1) and
c(3,2,2), respectively.

SUBSCRIPTS

A subscript is an integer subscript quantity or a set of integer sub-
script quantities separated by commas, that is used to identify a parti-
cular element of an array. The number of subscript quantities in any
subscript must be the same as the number of dimensions of the array with

Elements of the Language 19

which the subscript is associated. A subscript is enclosed in paren-
theses and is written immediately after the array name A maximum of
seven subscript quantities can appear in a subscript.

The following rules apply to the construction of subscript quanti-
ties. (See the section "Expressions" for additional information about
the terms used below)

1. Subscript quantities may contain arithmetic expressions that use
any of the arithmetic operators: +, -, *, /, **,

2. Subscript quantities may contain function references.
3. Subscript quantities may contain subscripted names.

4. Mixed mode expressions (integer and real only) within subscript
quantities are evaluated according to normal FORTRAN rules. If the
evaluated expression is real, it is converted to integer.

5. The evaluated result of a subscript quantity should always be
greater than zero and less than or equal to the size of the corres-
ponding dimension.

Examples:

valid Subscripted Variables:

ARRAY (IHOLD)

NEXT (19)

MATRIX (I-5)

BAK (I,J(K+1%*L,.3%*A(M,N)))
ARRAY (I,J/4*K¥%2)

ARRAY (-5) (A subscript quantity may not be negative)

LOT (0) (A subscript quantity may never be nor assume a
value of zero)

ALL(1.GE.I) (A subscript quantity may not assume a true or
false value)

NXT (1+(1.3,2.0)) (A subscript quantity may not assume a complex
value)

EXPRESSIONS

FORTRAN IV provides two kinds of expressions: arithmetic and logi-
cal. The value of an arithmetic expression is always a number whose type
is integer, real, or complex. The value of a logical expression is
always a truth value: .TRUE. or .FALSE.. Expressions may appear in
assignment statements and in certain control statements.

ARITHMETIC EXPRESSIONS

The simplest arithmetic expression consists of a primary which may be
a single constant, variable, subscripted variable, function reference,
or another expression enclosed in parentheses. The primary may be eith-
er integer, real, or complex.

20

In an expression consisting of a single primary,

mary is the type of the expression

Examples:
Primary Type of Primary
3 Integer constant
A Real variable
3.14D3 Real constant
(2.0,5.7) Complex constant
SIN(X) Real function reference
(A*B+C) Parenthesized real

expression

Type of

the type of the pri-

Expression

Integer
Real of
Real of
Complex
Real of
Real of

of length 4
length 4
length 8
of length 8
length 4
length 4

More complicated arithmetic expressions containing two or more pri-
maries may be formed by using arithmetic operators that express the

computation(s) to ke performed.

Arithmetic Operators

The arithmetic operators are as follows:

Arithmetic Operator Definition
** Exponentiation
* Multiplication
7/ Division
+ Addition
- Subtraction

RULES _FOR_CONSTRUCTING ARITHMETIC EXPRESSIONS:

The following are the

rules for constructing arithmetic expressions that contain arithmetic

operators:

1. All desired computations must be specified explicitly. That is, if
more than one primary appears in an arithmetic expression, they
must be separated from one another by an arithmetic operator. For
example, the two variables A and B will not be multiplied if

written:

AB

If multiplication is desired, the expression must be written as

follows:

A*B or B*A

2. No two arithmetic operators may appear in sequence in the same
expression. For example, the following expressions are invalid:

A*/B and A*-B

The expression A*-B could be written correctly as follows:

A* (-BR)

In effect, -B will be evaluated first and then A will be multiplied
with it. (For further uses of parentheses, see

Elements

rule 3.)

of the Language 21

22

Order of Computation: Computation is performed from left to right
according to the hierarchy of operations shown in the following
list

Operation Hierarchy
Evaluation of functions 1st
Exponentiation (#*%*) 2nd
Multiplication and division (* and /) 3rd
Addition and subtraction (+ and -) 4th

This hierarchy is used to determine which of two consecutive opera-
tions is performed first. If the first operator is higher than or
equal to the second, the first operation is performed. If not, the
second operator is compared to the third, etc. When the end of the
expression is encountered, all of the remaining operations are per-
formed in reverse order.

For example, in the expression A*B+C*D**I, the operations are per-
formed in the following order:

a. A*B Call the result X (multiplication) (X+C*D**7T)
b. D**I Call the result Y (exponentiation) (X+C*Y)

C. C*Y Call the result Z (multiplication) (X+2)
d. X+2 Final operation (addition)

If there are consecutive exponentiation operators, the evaluation
is from right to left. Thus, the expression:

A**R%*%C
is evaluated as follows:
a. B**C Call the result 27

b. A**Z Final operation

A unary plus or minus has the same hierarchy as a plus or minus in
addition or subtraction. Thus,

=-B is treated as A=0-B
A=-B*C is treated as A=-(B*C)

=-B+C is treated as A=(-B)+C
Parentheses may be used in arithmetic expressions, as in algebra,
to specify the order in which the arithmetic operations are to be
computed. Where parentheses are used, the expression within the
parentheses is evaluated before the result is used. This is equi-
valent to the definition above since a parenthesized expression is
a primary.
For examrle, the following expression:

B+ ((A+RB) *C) +A**2

is effectively evaluated in the following order:

a. (A+B) Call the result X B+ (X*C) +A*%2
b. (X*C) Call the result Y B+Y+A*%*2

Cc. B+Y Call the result W WH+A**2

d. A*x*2 Call the result 2Z W+7Z

e, W+Z Final operation

Table 1. Determining the Type and Length of the Result of +, -, *, /
Operations
r T T T T T T 1
| I | ! I | | I
| | INTEGER | INTEGER | REAL | REAL | COMPLEX] COMPLEX|
1+ - * /] (2)]) |) | (8) | 8) | (16) |
-------------------- e S 1 1 e
} INTEGER]Integer] Integer | Real | Real | Complex| Complex]
| (2)] (2)])] W) | (8) | 8) | (16) |
} oo fommmmmmmd -—4-- e B
| INTEGER jInteger | Integer | Real] Real | Complex] Complex]
|) | W) | 4)] 4) | (8)] (8) | (16) |
b 1 e e e
| REAL jReal | Real | Real] Real] Complex| Complex]
| (4) 1 W] (4)] €)) | (8) | (8) | (16) |
1 —_—— 4 4 i S [S
b 1 1 1 -~ 1 1
]REAL |Real] Real | Real] Real | Complex| Complex]
| (8) 1 (8) | (8)] (8) | (8) | (1e) | (16) |
} 1 3- I St
] COMPLEX JCorrlex | Complex | Complex | Complex | Complex] Complex]
| (8)] (8)] (8)] (8) | (16) | (8) | (16) |
| vt e o e 1- 1 S e
] COMPLEX JCorrlex | Complex | Complex | Complex | Complex] Complex])
] (16)] (16}] (16)] (16) | (16) | a6y | (16) |
} L - 1 A - 1 - L —_———d e
|Note: When division is performed using two integers, the answer is

{truncated and an integer answer is given.
]J=2, then the expression (I/J) would yield an integer answer of 4
Jafter truncation.
L

For example,

if 1I=9

and

.|
!
|
l
,'

The type and length of the result of an operation depends upon the

type and length of the two operands (primaries) involved in the

operation.
operations +,

*y

and /.

Table 1 shows the type and length of the result of the

Assume that the type of the following variables has been specified
as follows:

Variable Names

Type

Real variable
Integer variable
Complex variable

Length Specification

Then the expression I*J/C**K+D is evaluated as follows:

Subexpression

I*J
C**K
X/Y
Z+D

(Call the result X)
(Call the result Y)
(Call the result 2)

Type and Length

Integer of length &

Real of
Real of

length 4
length 4

Complex of length 16

Thus, the final type of the entire expression is complex of length
16, but the type changed at different stages in the evaluation.

Note that,

depending on the values of the variables involved,

the

result of the expression I*J*C might be different from I*C*J.

Elements of the Language

23

5. The arithmetic operator denoting exponentiation (i e ,**) may only
be used to combine the types of operands shown in Table 2.

The type of the result depends upon the type of the two operands

involved, as shown in Table 1. For example, if an integer is
raised to a real power, the type of the result is real.

Table 2. Valid Combinations with the Arithmetic Operator **

Complex (either length) ** Integer (either length)

r 1
| Base Exponent |
L |
r 1
| Integer (either length) Integer (either length) |
] or *% or |
i Real (either 1length) Real (either length) |
| I
| I
L d

LOGICAL EXPRESSIONS

The simplest form of logical expression consists of a single logical
primary, which can be a logical constant, logical variable, logical sub-
scripted variable, logical function reference, or logical expression
enclosed in parentheses, which always has the value .TRUE. or .FALSE..

More complicated logical expressions may be formed by using logical
and relational operators. These expressions may be in one of the fol-

lowing forms:

.1« Relational operators combined with arithmetic expressions whose
type is integer or real.

2. Logical operators combined with logical primary.

3. Logical operators combined with either or both forms of the logical
expressions described in items 1 and 2.

Item 1 is discussed in the following section, "Relational Operators;"
items 2 and 3 are discussed in the section "lLogical Operators."

Relational Operators

The six relational operators, each of which must be preceded and fol-
lowed by a period, are as follows:)

Relational Operator Definition

«GT. Greater than (>)

.GE. Greater than or equal to ()
«LT. Less than ()

.LE. Less than or equal to (X)
«EQ. Equal to (=)

. NE. Not equal to (#)

The relational operators express an arithmetic condition which can be
either true or false Only arithmetic expressions whose type is integer
or real may be corbined by relational operators. For example, assume
that the type of the following variables has been specified as follows:

24

Variable Names Type

ROOT, E Real variables

A, I, F Integer variables
L Logical variable

C Complex variable

Then the following examples illustrate valid and invalid logical
expressions using the relational operators.

Examples:

Valid Logical Expressions Using Relational Operators:
A .LT. I

Ex*2,7 (EQ. (5%ROOT+U4)

«5 .GE. .9*%ROCT

E .EQ. 27.3D+05

Invalid Logical Expressions Using Relaticnal Operators:

C .GE. (2.7,5.9E3) (Complex quantities may never appear in logical

expressions)
L .EQ. (A+F) (Logical gquantities may never be joined by
relational operators)
E**2 ,EQ 97.1E9 (Missing period immediately after the relational
operator)
.GT. 9 (Missing arithmetic expression before the rela-

tional operator)

Logical Operators

The three logical operators, each of which must be preceded and fol-
lowed by a period, are as follows {(where A and B represent logical con-
stants or variables, or expressions containing relational operators):

Logical Operator Use Meaning
- NOT. « NOT. A If A is .TRUE., then .NOT.A has the value

.FALSE.; if A is .FALSE., then .NOT.A
has the value .TRUE.

«AND. A.AND.B If A and B are both .TRUE., then A.AND.B
has the value .TRUE.; if either A or B
or both are .FALSE., then A.AND.B has
the value .FALSE.

«OR. A.OR.B If either A or B or both are .TRUE., then
A.OR.B has the value .TRUE.; if both A
and B are .FALSE., then A.OR.B has the
value .FALSE.

Two logical operators may appear in sequence only if the second one
is the logical operator .NOT..

Only those expressions which, when evaluated, have the value .TRUE.
or .FALSE may be combined with the logical operators to form logical
expressions. For example, assume that the type of the following vari-
ables has been specified as follows:

Elements of the Language 25

Variable Names Type

ROOT, E Real variables

A, I, F Integer variables
L, W Logical variables
C Complex variable

Then the following examples illustrate valid and invalid logical
expressions using koth logical and relational operators.

Examples:

Valid Logical Expressions:

(ROOT*A «GT. A) AND. W
L .AND. .NOT. (I .GT. F)
(E+5,9D2 .GT., 2*E) ,OR. L
«NOT. W .AND. .NOT. L
L .ANDe «NOT. W (ORe I .GTI. F
(A**F .GT. RCCT) .AND. .NCT. (I .EQ. E)

Invalid Logical Expressions:

A .AND. L (A is not a logical expression)
«OR. W (.OR. must be preceded by a logical expression)
NOT. (A .GT. F) (Missing period before the logical operator
- NOT.)

(C .EQ. I) .AND. L (A complex gquantity may never be an operand of
a relational operator)

L .AND. .OR. W (The logical operators .AND. and .OR. must
always be separated by a logical expression)
<AND. L (.AND. must be preceded by a logical
expression)

Order of Computations in Logical Expressions: The order in which the
operations are performed is:

Operation Hierarchy
Evaluation of functions 1st (highest)
Exponentiation (*%) 2nd
Multiplication and division (* and /) 3rd

Addition and subtraction (+ and -) 4th
eLTe,eLEeyeEQe,sNEe, e GTe, « GE. 5th

«NOT. 6th

«AND. 7th

- OR. 8th

26

For example, the expression:

A.GT.D**B.AND. . NOT. L. OR. N

is effectively evaluated in the following order:

1. D**B Call the result W (exponentiation)

2. A.GT.W Call the result X (relational operator)

3. .NOT.L Call the result Y (highest logical operator)

4, X.AND.Y Call the result % (second highest logical operator)
5. Z.OR.N Final operation

Note: Logical expressions may not require that all parts be evaluated.
Functions within logical expressions may or may not be called. For
example, in the expression A.OR.LGF(.TRUE.), it should not be assured
that the LGF function is always invoked.

Use of Parentheses in Logical Expressions: Parentheses may be used in
logical expressions to specify the order in which the operations are to
be performed. Where parentheses are used, the expression contained
within the most deeply nested parentheses (that is, the innermost pair
of parentheses) is effectively evaluated first. For example, the logi-
cal expression:

(I.GT.(B+C)).AND. L
is effectively evaluated in the following order:

1. B+C Call the result X
2. I.GT.X Call the result Y
3. Y.AND.L Final operation

The logical exrression to which the logical operator .NOT. applies
must be enclosed in parentheses if it contains two or more quantities.
For example, assume that the values of the logical variables, A and B,
are .FALSE. and .TRUE., respectively. Then the following two expres-
sions are not equivalent:

« NOT. (A.OR. R)
. NOT.A.OR.B

In the first expression, A.OR.B, is evaluated first. The result is
.TRUE.; but .NCT.(.TRUE.) implies .FALSE.. Therefore, the value of the
first expression is .FALSE.

In the second expression, .NOT.A is evaluated first. The result is

.TRUE.; but .TRUE..OR.B implies .TRUE.. Therefore, the value of the
second expression is .TRUE..

Elements of the Language 27

ARITHMETIC AND LOGICAL_ASSIGNMENT STATEMENT

b is an arithmetic expression or logical expression.

r 1
| General Form |
F -
r

| a=b '
I

1 Where: a is a sukscripted or nonsubscripted variable.

|

|

L

This FORTRAN statement closely resembles a conventional algebraic
equation; however, the equal sign specifies replacement rather than
equivalence. That is, the expression to the right of the equal sign is
evaluated, and the resulting value replaces the current value of the
variable to the left of the equal sign.

If b is a logical expression, a must be a logical variable. If b is
an arithmetic expression, a must be an integer, real, or complex vari-
able. Table 3 gives the conversion rules used for placing the evaluated
result of arithmetic expression b into variable a.

Assume that the type of the following variables has been specified
as:

Variable Names Type Length_Specification
I, J, W Integer variables 4,4,2

A, B, C, D Real variables 4,4,8,8

E Complex variable 8

G, H Iogical variables 4,4

Then the following examples illustrate valid arithmetic statements
using constants, variables, and subscripted variables of different
types:

Statements Description
A =B The value of A is replaced by the current value of B.
W=RB8B The value of B is truncated to an integer value, and

this value replaces the value of W.

A=1 The value of I is converted to a real value, and this
result replaces the value of A.

I=1I+1 The value of I is replaced by the value of I + 1.

=
1]

I**J+D I is raised to the power J and the result is con-
verted to a real value to which the value of D is
added. This result replaces the real part of the
complex variable E. The imaginary part of the com-
plex variable is set to zero.

A = C*D The most significant part of the product of C and D
' replaces the value of A.

A =E The real part of the complex variable E replaces the
value of A.

28

Statements Description

E=A The value of A replaces the value of the real part of
the complex variable E; the imaginary part is set
equal to zero

G = .TRUE. The value of G is replaced by the logical constant
« TRUE. .«
H = .NOT.G If G is .TRUE., the value of H is replaced by the

logical constant .FALSE.. If G is .FALSE., the
value of H is replaced by the logical constant
« TRUE..

G = 3..GT.1 The value of I is converted to a real value; if the
real constant 3. is greater than this result, the
logical constant .TRUE. replaces the value of G.
If 3. is not greater than I, the logical constant
. FALSE. replaces the value of G.

E = (1.0,2.0) The value of the complex variable E is replaced by
the complex constant (1.0,2.0). Note that the
statement E = (A,B) where A and B are real vari-
ables is invalid.

Arithmetic and Logical Assignment Statement 29

Table 3. Conversion Rules for the Arithmetic Assignment Statement a

1]

R T A —— |O-'

[\]
.

w
.

£
.

w
)

(o))
)

the significant digits of the resulting value exceed the speci-
fied length, results are unpredictable.

Real Assign means transmit to a as much precision of the most
significant part of the resulting value as REAL*4 data can
contain.

Fix means transform the resulting value to the form of a basic
real constant and truncate the fractional portion.

Float means transform the resulting value to the form of a REAL*4U
number, retaining in the process as much precision of the value
as a REAL*4 number can contain.

DP_Float means transform the resulting value to the form of a
REAL*8 number.

An expression of the form E=(A,B), where E is a complex variable
and A and B are real variables, is invalid. The mathematical
function sukprogram CMPLX can be wused for this purpose. See
Appendix C.

30

T T T T T
| Type | I I I
| of b | INTEGER*2 | | | |
| Type | INTEGER*4 | REAL*4 | REAL*8 | COMPLEX*8 |COMPLEX*16
| of a | | I | I
L] 1 L 4 1
T T T
iINTEGER*Z | Assign] Fix and assign | Fix and assign real
| INTEGER*4 | | | part; igaginary part
u .
A S S 1.
| REAL*4 | Float and | Assign |Real assign|Assign real|Real assign]
1 | assign | | |part; imag-]real part; |
] | | | |inary part |imaginary
} |]] |not used. |part not
i i ; 1 i lused.
] REAL*8 |DP Float | Assign |Assign real part; imag-
] |]and assign |]inary part not used.
b 1 I 1
r + T T LI T
]COMPLEX*8 |Float and |Assign to |Real assign| Assign JReal assign
i Jassign to |real part; |real part; | |real and
|]real part;]imaginary |imaginary | |imaginary
1 |imaginary |part set |part set toj |parts.
] |part set |to zero. | zexo. | |
! !to zZero. ! l j l
r T T T
] COMPLEX#*16 |DP float | Assign to real part; | Assign
1 Jand assign | imaginary part set to |
i jto real | zero. |
| |part; imag-| |
|]inary part | |
] |set to] |
] | zero. | |
} 4 1 —— e e e e e e e e e e e e
]| Notes:
]1. Assign means transmit the resulting value, without change. If
!
|
]
I
|
|
|
i
I
|
l
|
|
]
i
|
1

I
I
|
I
|
I
I
I
I
I
;
I
I
I
I
I
I
I
1
I
|
I
I
I
I
I
I
I
I
I
I
I
I
|
I
I
I
J

CONTROL_STATEMENTS

Normally, FORTRAN statements are executed sequentially. That is,
after one statement has been executed, the statement immediately follow-
ing it is executed. This section discusses the statements that may be
used to alter and control the normal sequence of execution of statements

in the program.

GO _TO STATEMENTS

GO TO statements permit transfer of control to an executable state-
ment specified by number in the GO TO statement. Control may be trans-
ferred either unconditionally or conditionally. The GO TO statements
are:

1. Unconditional GO TO statement
2. Computed GO TO statement

3. Assigned GO TO statement

UNCONDITIONAL GO TO STATEMENT

General Form

GO TO XXXXX

e e e e e e

Where: XxxxXX is an executable statement number.

o e it g W2

This GO TO statement causes control to be transferred to the state-
ment specified by the statement number. Every subsequent execution of
this GO TO statement results in a transfer to that same statement. Any
executable statement immediately following this statement should have a
statement number; otherwise it can never be referred to or executed.

Example:

GO TO 25
10 A =B + C

Explanation:

In this example, each time the GO TO statement is executed, control
is transferred to statement 25.

Control Statements 31

COMPUTED GO TO STATEMENT

General Form

GO TO (X1,4 X24 X3¢ eeesXn), i

=
o
0]
Al
0]

X14X2,+++9Xne are executable statement numbers.

i is a nonsubscripted integer variable whose current value
is in the range: 1 < i < n

[e e o M i e St K2 g
b s e e e i e e e

This statement causes control to be transferred to the statement num-
bered xi, X2, X34e..4 Or Xn, depending on whether the current value of i
is 1, 2, 3,..., or n, respectively. If the value of i is outside the
allowable range, the next statement is executed.

Example:
GO TO (25, 10, 7), ITEM

7 C = E*%2+A

25 L =¢C

10 B = 21.3E02
Explanation:
In this example, if the value of the integer variable ITEM is 1,

statement 25 will be executed next. If ITEM is equal to 2, statement 10
is executed next, and so on.

ASSIGN AND ASSIGNED GO TO STATEMENTS

|
|
|
-

General Form

ASSIGN i TO m

GO TO my (X14X2¢yX3geseyXn)

Where: 1 is an executable statement number. It must be one of the
numbers X4 ,X2¢X3geee¢Xne

X19X2sXareeeyXn are executable statement numbers in the pro-
gram unit containing the GO TO statement.

m is a nonsubscripted integer variable of length 4 which is
assigned one of the statement numbers: Xi,X2sX3ss «¢Xne

[o S ot e e i S SR s S e e i et e e
b e i e e e o . . e s S s, . . i e

w
N

The assigned GC TO statement causes control to be transferred to the
statement numbered Xi,X2¢X3s «sOr Xn, depending on whether the current
assignment of m is X,,X2¢Xageee¢0Or Xn, respectively. For example, in
the following statement:

GO TO N, (10, 25, 8)

If the current assignment of the integer variable N is statement number
8, then the statement numbered 8 is executed next. If the current
assignment of N is statement number 10, the statement numbered 10 is
executed next. If N is assigned statement number 25, statement 25 is
executed next.

At the time of execution of an assigned GO TO statement, the current
value of m must have been defined to be one of the values X, Xz...Xn by
the previous execution of an ASSIGN statement. The value of the integer
variable m is not the integer statement number; ASSIGN 10 TO I is not
the same as I = 10.

Example 1:

ASSIGN 50 TO NUMBER
10 GO TO NUMBER, (35, 50, 25, 12, 18)

Explanation:

In example 1, statement 50 is executed immediately after statement
10.

gxamglg_g:'

ASSIGN 10 TO ITEM

13 Go TO ITEM, (8, 12, 25, 50, 10)

10 B=C + D
ASSIGN 25 TO ITEM
GO TO 13

Control Statements 33

Explanation:
In example 2, the first time statement 13 is executed, control is

transferred to statement 10. On the second execution of statement 13,
control is transferred to statement 25

ADDITIONAL CONTROL_STATEMENTS

ARITHMETIC IF STATEMENT

General Form

IF (&) Xi1,X2¢X3

Where: a is any arithmetic expression except complex.

o e S it s ACEN Bt St G oy
RS Wp——

X19X2¢X3 are executable statement numbers.

The arithmetic IF statement causes control to be transferred to the
statement numkbered x,,X2, Or xs; when the value of the arithmetic expres-
sion (a) is less than, equal to, or greater than zero, respectively.

The first executakle statement following the arithmetic IF statement
should have a statement number; otherwise, it can never be referred to
or executed.

Example:

10 E = (F*R)/D+1

Explanation:

In this example, if the value of the expression (A(J,K)**3-B) is
negative, the statement numbered 10 is executed next. If the value of
the expression is zero, the statement numbered 4 is executed next. If
the value of the expression is positive, the statement numbered 30 is
executed next.

34

LOGICAL IF STATEMENT

General Form

|
|
]

IF{al)s
Where: a is any logical expression.

s is any executable statement except a DO statement or
another logical IF statement.

[S et WS M i et St et v
RS S S U W ——

—_—d

The logical IF statement is used to evaluate the logical expression
(a) and to execute or skip statement s depending on whether the value of
the expression is .TRUE. or .FALSE., respectively.

Example 1:

IF(A.LE.0.0) GO TO 25

C =D+ E
IF(A.EQ.B) ANSWER = 2.0%A/C
F = G/H

Explanation:

In the first statement, if the value of the expression is .TRUE.
(i.e., A is less than or equal to 0.0), the statement GO TO 25 is
executed next and control is passed to the statement numbered 25. If
the value of the expression is .FALSE.(i.e., A is greater than 0.0), the
statement GO TO 25 is ignored and control is passed to the second

statement.

In the third statement, if the value of the expression is .TRUE.
(i.e., A is equal to B), the value of ANSWER is replaced by the value of
the expression (2.0*A/C) and then the fourth statement is executed. If
the value of the expression is .FALSE. (i.e., A is not equal to B), the
value of ANSWER remains unchanged and the fourth statement is executed

next.

Example 2:

Assume that P and Q are logical variables.

IF(P.OR..NOT Q)A=B
C = B**2

. Ccontrol Statements 35

Explanation:

In the first statement, if the value of the expression is TRUE , the
value of A is replaced by the value of B and the second statement is
executed next. If the value of the expression is .FALSE., the statement
A = B is skipped and the second statement is executed.

DO STATEMENT

1
General Form |
- -
End of DO Initial Test |
Range Variable Value Value Increment
—a— N N —— S—— N
Do X i = 1) Moy ms

Where: x is an executable statement number appearing after the DO
statement.

i is a nonsubscripted integer variable.

my, M2, and ms, are either unsigned integer constants great-
er than zero or unsigned nonsubscripted integer variables
whose value is greater than zero. m, may not exceed 231-2
in value., ms is optional; if it is omitted, its value is
assumed to be 1. In this case, the preceding comma must
also be omitted.

(oo S . i e e e . i e e e SN . et St S S WS sy
b e e e e ——— s — . — ——— ——

The DO statement is a command to execute, at least once, the state-
ments that physically follow the DO statement, up to and including the
statement numbered x. These statements are called the range of the DO.
The first time the statements in the range of the DO are executed, i is
initialized to the value m;; each succeeding time i is increased by the
value ms. When, at the end of the iteration, i is equal to the highest
value that does not exceed m,, control passes to the statement following
the statement numbered x. Thus, the number of times the statements in
the range of the DO are executed is given by the expression:

where the brackets represent the largest integral value not exceeding
the value of the expression within the brackets. If m, is less than m,,
the statements in the range of the DO are executed once. Upon comple-
tion of the DO, the DO variable is undefined and may not be used until
assigned a value (e.g., in a READ list).

There are several ways in which looping (repetitively executing the
same statements) may be accomplished when using the FORTRAN language.
For example, assume that a manufacturer carries 1000 different machine
parts in stock. Periodically, he may find it necessary to compute the
amount of each different part presently available. This amount may be
calculated by subtracting the number of each item used, OUT(I), from the
previous stock on hand, STOCK(I).

36

Example 1:

I=0

10 I=I+1
STOCK{(I)=STOCK(I)- OUT(I)
IF(I-1000) 10,30,30

30 A=B+C

Explanation:

The first, second, and fourth statements required to control the pre-
viously shown loop could be replaced by a single DO statement as shown
in example 2.

Example_2:

DO 25 1 = 1,1000
25 STOCK(I) = STOCK(I)-OUT(I)
A = B+C

Explanation:

In example 2, the DO_variable, I, is set to the initial wvalue of 1.
Before the second execution of statement 25, I is increased by the
increment, 1, and statement 25 is again executed. After 1000 executions
of the DO loop, I equals 1000. Since I is now equal to the highest
value that does not exceed the test_value, 1000, control passes out of

the DO loop and the third statement is executed next. Note that the DO
variable I is now undefined; its value is not necessarily 1000 or 1001.

Example 3:

Do 25 1=1, 10, 2

J = I+K
25 ARRAY (J) = BRAY(J)
A =8B+ C

Explanation:

In example 3, statement 25 is the end of the range of the DO loop.
The DO _variable, I, is set to the initial value of 1. Before the second
execution of the DC loop, I is increased by the increment, 2, and the
second and third statements are executed a second time. After the fifth
execution of the DC loop, I equals 9 Since I is now equal to the high-
est value that does not exceed the test value, 10, control passes out of

the DO loop and the fourth statement is executed next. Note that the DO
variable I is now undefined; its value is not necessarily 9 or 11.

Control Statements 37

PROGRAMMING CONSIDERATIONS IN USING A DO LOOP

1.

3.

38

The indexing parameters of a DO statement (i, m,, m>, m3) should
not be changed by a statement within the range of the DO loop.

There may be other DO statements within the range of a DO state-
ment. All statements in the range of the inner DO must be in the
range of the outer DO. A set of DO statements satisfying this rule
is called a nest of DO's.

Example 1:

DC 50 I =1, 4

A(I) = B(I)**2

DO 50 J=1, 5 Range of
Range of Quter DO
50 C(J+1) = A(I) Inner DO
Example_ 2:
DO 10 INDEX = L, M
N = INDEX + K
po 15 g =1, 100, 2 Range of
Range of Outer DO
15 TABRLE(J) = SUM{(J,N)-1 Inner DO

10 B(N) = A(N)

A transfer out of the range of any DO loop is permissible at any
time.

The extended range of a DO is defined as those statements in the
program unit containing the DO statement that are executed between
the transfer out of the innermost DO of a nest of DO's and the

transfer kack into the range of this innermost DO. The following
restrictions apply:

e Transfer into the range of a DO is permitted only if such a
transfer is from the extended range of the DO.

¢ The extended range of a DO statement must not contain another DO
statement that has an extended range if the second DO is within
the same program unit as the first.

¢ The indexing parameters (i, m,, M, Ma) cannot be changed in the
extended range of the DO.

Note that a statement that is the end of the range of more than one
DO statement is within the innermost DO. The statement label of
such a terminal statement may not be used in any GO TO or arithme-
tic IF statement that occurs anywhere but in the range of the most
deeply contained DO with that terminal statement.

Example:

DO DO

0O

2)
DO

—_— 5
6
D3

. _ 7

In the preceding example, the transfers specified by the numbers 1,
2, and 3 are permissible, whereas those specified by 4, 5, 6, and 7
are not.

5. The indexing parameters (i,m4,m,,Mm3) may be changed by statements
outside the range of the DO statement only if no transfer is made
back into.the range of the DO statement that uses those parameters.

6. The last statement in the range of a DO loop (statement x) must be
an executable statement. It cannot be a GO TO statement of any
form, or a PAUSE, STOP, RETURN, arithmetic IF statement, another DO
statement, or a logical IF statement containing any of these forms.

7. The use of, and return from, a subprogram from within any DO loop
in a nest of DO's is permitted.

CONTINUE STATEMENT

General Form

CONTINUE

[y ==

CONTINUE is a dummy statement that may be placed anywhere in the
source program without affecting the sequence of execution. It may be
used as the last statement in the range of a DO in order to avoid ending
the DO loop with a GO TO, PAUSE, STOP, RETURN, arithmetic IF, another DO
statement, or a logical IF statement containing any of these forms

Control Statements 39

Example 1:

DO 30 I = 1, 20
7 IF (A(I)-B(I)) 5,30,30
5 A(I) =A(I) +1 0

B(I) = B(I) -2.0

GO TO 7
30 CONTINUE
C = A(3) + B(7)

Explanation:

In example 1, the CONTINUE statement is used as the last statement in
the range of the DO in order to avoid ending the DO loop with the state-
ment GO TO 7.

Example 2:

DO 30 I=1,20
IF(A(I)-B(I))5,40,40
5 A(I) = c(1)
GO TO 30
40 A(I) = 0.0
30 CONTINUE

Explanation:

In example 2, the CONTINUE statement provides a branch point enabling
the programmer to bypass the execution of statement 40.

PAUSE STATEMENT

General Form

PAUSE
PAUSE n
PAUSE 'message'

Where: n is a string of 1 through 5 decimal digits.

'message' is a literal constant of one form only: specific-

ally, a string of alphameric and/or special characters
enclosed in apostrophes.

o e e B e MR et Sl it S g G
R e s i s e s e e i s e o

|
|
|

F =~
o

whether n, ‘'message’ or no parameter was specified, and the program
waits until operator intervention causes it to resume execution, start-
ing with the next statement after the PAUSE statement. For further
information, see the FORTRAN programmers' guides listed in the Preface.

STOP STATEMENT

----- 1
| sTop |
| STOP n [
| |
| Where: n is a string of 1 through 5 decimal digits. |
L]

The STOP statement terminates the execution of the object program and
displays n if specified. For further information, see the FORTRAN pro-
grammers' guides listed in the Preface.

END STATEMENT

.

General Form

|
|8
1)
| END
L

The END statement is a nonexecutable statément that defines the end
of a source program or source subprogram for the compiler. Physically,
it must be the last statement of each program or subprrogram. It may not
have a statement number, and it may not be continued. The END statement
does not terminate program execution. To terminate execution, a STOP
statement or a RETURN statement in the main program is required.

Ccontrol Statements 41

INPUT/QUTPUT_STATEMENTS

Input/output statements are used to transfer and control the flow of
data between internal storage and an input/output device, such as a card
reader, printer, punch, magnetic tape unit, or disk storage unit. The
data that is to be transferred belongs to a data set. Data sets are
composed of one or more records. Typical records are punched cards,
printed lines, or the images of either on magnetic tape or disk.

Cperation: In order for the input or output operation to take place,
the programmer must specify the kind of operation he desires; READ,
WRITE, or BACKSPACE, for example.

Data_Set Reference Number: A FORTRAN programmer refers to a data set by
its data set reference number. (The FORTRAN programmers' guides, listed
in the preface, explain how data set reference numbers are associated
with data sets.) In the statement specifying the type of input/output
operation, the programmer must give the data set reference number corre-
sponding to the data set he wishes to operate on.

I/0_List: Input/output statements in FORTRAN are primarily concerned
with the transfer of data between storage locations defined in a FORTRAN
program and records which are external to the program. On input, data
is taken from a record and placed into storage locations that are not
necessarily contiguous. On output, data is gathered from diverse
storage locations and placed into a record. An I/O list is used to spe-
cify which storage locations are used, The I/0 list can contain vari-
able names, subscripted array names, unsubscripted array names, or array
names accompanied by indexing specifications in a form called an implied
DO. No function references or arithmetic expressions are permitted in
an I/0 list.

If a variable name or subscripted array name appears in the I/O list,
one item is transmitted between a storage location and a record.

If an unsubscripted array name appears in the list, the entire array
is transmitted in the order in which it is stored. (If the array has
more than one dimension, it is stored in ascending storage locations,
with the value of the first subscript quantity increasing most rapidly
and the value of the last increasing least rapidly. An example is given
in the section "Arrangement of Arrays in Storage.")

If an implied DC appears in the I/O list, the elements of the
array(s) specified by the implied DO are transmitted. The implied DO
specification is enclosed in parentheses Within the parentheses are
one or more subscripted array names, separated by commas with a comma
following the last name, followed by indexing parameters i=m;, m5, Ms.
The indexing parameters are as defined for the DO statement. Their
range is the list of the DO-implied list and, for input lists, i, m,,
m;, and ms may appear within that range only in subscripts.

42

For example, assume that A is a variable and that B, C, and D are
l1-dimensional arrays each containing 20 elements. Then the statement:

WRITE (6) A, B, (C(I), I=1,4), D(u4)

writes the current value of variable A, the entire array B, the first
four elements of the array C, and the fourth element of D. (The 6 fol-
lowing the WRITE is the data set reference nurber.)

Implied DO's can be nested if required. For example, to read an ele-
ment into array B after values are read into each row of a 10 x 20 array
A, the following would be written:

READ (5) ((A(I,J), J=1,10), B(I), I=1,20)

The order of the names in the list specifies the order in which the
data is transferred Letween the record and the storage locations.

A special kind of I/0 list called a NAMELIST list is explained in the

section "READ and WRITE Using NAMELIST."

Formatted and Unformatted Records: Data can be transmitted either under
control of a FCRMAT statement or without the use of a FCRMAT statement.

When data is transmitted with format control, the data in the record
is coded in a form that can be read by the programmer or satisfies the
needs of machine representation. The transformation for input takes the
character codes and constructs a machine representation of an item. The
output transformation takes the machine representation of an item and
constructs character codes suitable for printing. Most transformations
involve numeric representations that require base conversion. To obtain
format control, the programmer must include a FORMAT statement in the
program and must give the statement number of the FORMAT statement in
the READ or WRITE statement specifying the input/output operation.

When data is transmitted without format controcl, no FORMAT statement
is used. In this case, there is a one-to-one correspondence between
internal storage locations {(bytes) and external record positions. A
typical use of unformatted data is for information that is written out
during a program, not examined by the programmer, and then read back in
later in the program or in another program for additional processing.

For unformatted data, the I/O list determines the length of the rec-
ord. For example, an output record is complete when the current values
of all the items in the I/O0 list have been placed in it, plus any con-
trol words supplied by the input/output routines or Data Management.
For further information, see the FORTRAN IV programmers' guides listed
in the Preface

For formatted data, the I/0 list and the FORMAT statement determine
the form of the record. For further information see the section "FORMAT
Statement” and the FORTRAN IV programmers' guides

Input/Output Statements 43

There are two types of input/output statements: sequential and
direct access Sequential input/output statements are used for storing
and retrieving data sequentially. These statements are device indepen-
dent and can be used for data sets on either sequential or direct access
devices.

The direct access input/output statements are used to store and
retrieve data in an order specified by the user. These statements can
be used only for a data set on a direct access storage device.

SEQUENTIAL INPUT/CUTPUT STATEMENTIS

There are five sequential input/output statements: READ, WRITE, END
FILE, REWIND, and BACKSPACE. The READ and WRITE statements cause
transfer of records of sequential data sets. The END FILE statement
defines the end of a data set; the REWIND and BACKSPACE statements con-
trol the positioning of data sets. In addition to these five state-
ments, the FORMAT and NAMELIST statements, although not input/
output statements, are used with certain forms of the READ and WRITE
statements.

READ STATEMENT

r

General Form

| PEAD(a, b, END=c, ERR=d) 1list

Where: a is an unsigned integer constant or an integer variable

| that is of length 4 and represents a data set reference
numker.,

| b is optional and is either the statement number or array
name of the FORMAT statement describing the record(s) being
read, or a NAMELIST name.

END=c is optional and ¢ is the number of the statement to
which transfer is made upon encountering the end of the data
set.

ERR=d is optional and d is the number of the statement to
which transfer is made upon encountering an error condition
in data transfer.

S S I Wapa——

[S et MR St S Gt et Sl St e

list is optional and is an I/0 list.

The READ statement may take many forms. The value of a must always
be specified, kut under appropriate conditions b, ¢, 4, and list can be
omitted. The order of the parameters END=c and ERR=d can be reversed
within the parentheses.

4y

Transfer is made to the statement specified by the END parameter when
the end of the data set is encountered; i e., when a READ statement is
executed after the last record on the data set has already been read.
{(No indication is given of the number of list items read into before the
end of the data set was encountered.) If the END parameter is omitted,
object program execution is terminated upon encountering the end of the
data set.

Transfer is made to the statement specified by the ERR parameter if
an input/output device error occurs. No data is read into the list
jtems and no indication is given of which record or records could not be
read, only that an error occurred during transmission of data. If the
ERR parameter is omitted, object program execution is terminated when an
input/output device error occurs.

The basic forms of the READ statements are:

Form Purpose

READ(a,b) list Formatted READ
READ(a) 1list Unformatted READ
READ(a, x) READ using NAMELIST

The discussion of READ using NAMELIST is in the section "READ and
WRITE Using NAMELIST."

Formatted READ

The form READ (a,b) list is used to read data from the data set asso-
ciated with data set reference number a into the variables whose names
are given in the list. The data is transmitted from the data set to
storage according to the specifications in the FORMAT statement, which
is statement number b.

Example:
READ (5,98) A,B,{C(I,K),I=1,10)

Explanation: The akbove statement causes input data to be read from the
data set associated with data set reference number 5 into the variables
A, B, C{1,K), C(2,K)yeeey C(10,K) in the format specified by the FORMAT
statement whose statement number is 98.

Unformatted READ

The form READ(a) list is used to read a single record from the data
set associated with data set reference number a into the variables whose
names are given in the list. Since the data is unformatted, nc FORMAT
statement number is given. This statement is used to read unformatted
data written by a WRITE(a) list statement. If the list is omitted, a
record is passed over without being processed.

Input/Cutput Statements U5

Example:
READ (J) A,R,C

Explanation: The above statement causes data to be read from the data
set associated with data set reference number J into the variables A, B,
and C.

WRITE STATEMENT

|
]
|
-

r
|General Form
L

1)
|WRITE(a,b) list

|Where: a is an unsigned integer constant or an integer variable
that is of length U4 and represents a data set reference
nunker.

b is optional and is either the statement number or array
name of the FORMAT statement describing the record(s) being
written, or a NAMELIST name.

b s e e e e e e e et e e i

list is optional and is an I/0 list.

The WRITE statement may take many different forms. For example, the
list or the parameter b may be omitted.

The three kasic forms of the WRITE statement are:

Form Purpose

WRITE(a,b) list Formatted WRITE
WRITE(a) list Unformatted WRITE
WRITE(a,x) WRITE using NAMELIST

The discussion of WRITE using NAMELIST is in the section "READ and
WRITE Using NAMELIST."

Formatted WRITE

The form WRITE(a,b) list is used to write data into the data set
whose reference number is a from the variables whose names are given in
the list. The data is transmitted from storage to the data set accord-
ing to the specifications in the FORMAT statement, whose statement num-

ber is b.
Example:
WRITE(7,75)Rn, (B(I,3),I=1,10,2),C
Explanation: The above statement causes data to be written from the
variables A, B(1,3), B(3,3), B(5,3), B(7,3), B(9,3), C into the data set

associated with data set reference number 7 in the format specified by
the FORMAT statement whose statement number is 75.

46

Unformatted WRITE

The form WRITE(a) list is used to write a single record from the
variables whose names are given in the list into the data set whose data
set reference numker is a. This data can be read back into storage with
the unformatted form of the READ statement, READ{(a) list. The list can-
not be omitted.

Example: _

WRITE (L) ({(a{(I1,J),I=1,10,2), B(J,3), J=1,K)

Explanation: The above statement causes data to be written from the
variables A(1,1), A(3,1),..., A(9,1), B(1,3), A(1,2), A(3,2),ee.,
A(9,2), B(2,3),..., B(K,3) into the data set associated with the data
set reference number L. Since the record is unformatted, no FORMAT
statement number is given. Therefore, no FORMAT statement number should

be given in the READ statement used to read the data back into storage.

READ AND WRITE USING NAMELIST

The NAMELIST statement is used in conjunction with the READ(a,x) and
WRITE(a,x) statements to provide for reading and writing data without
including the list specification in the READ and WRITE statements. The
NAMELIST statement declares a name x to refer to a particular list of
variables or array names. Neither a dummy variable name nor a dummy
array name may aprear in the list. Thereafter, the forms READ(a,x) and
WRITE(a,x) are used to transmit data between the data set associated
with the reference number a and the variables specified by the NAMELIST
name x.

The format and rules for constructing and using the NAMELIST state-
ments are described in the following text.

General Form |

————————————————————— e -

NAMELIST/x/a,b...c/y/d,e,...£/2/9,h,...1 |

Where: X4Ye and z,... are NAMELIST names.

askycedy..s are variable or array names.

o et S Gt ot e g et e

The following rules appiy to declaring and using a NAMELIST name:
1. A NAMELIST name is a symbolic name.
2. A NAMELIST name is enclosed in slashes. The list of variable or

array names kelcnging to a NAMELIST name ends with a new NAMELIST
name enclosed in slashes or with the end of the NAMELIST statement.

Input/Output Statements 47

3. A variable name or an array name may belong to one or more NAMELIST
lists.

4, A NAMELIST name must be declared in a NAMELIST statement before it
is used in an input/output statement, and it may be declared only
once. After it is declared, it may appear only in input/output
statements.

5. The rules for input/output conversion of NAMELIST data are the same
as the rules for data conversion described in the section "FORMAT
Statement." The NAMELIST data must be in a special form, described
in the following sections.

6. A NAMELIST name may not be used as an argument.

NAMELIST Input Data

Input data must be in a special form in order to be read using a
NAMELIST list. The first character in each record to be read must be
blank. The second character in the first record of a group of data
records must be an §, immediately followed by the NAMELIST name. The
NAMELIST name must be followed by a blank and must not contain any
embedded blanks. This name is followed by data items separated by com-
mas. (A comma after the last item is optional.) The end of a data
group is signaled by &END,

The form of the data items in an input record may be:

e variable name = constant

The variakle name may be a subscripted array name or a single vari-
able name. Subscripts must be integer constants. The constant may
be integer, real, literal, complex, or logical. (If the constants

are logical, they may be in the form T or .TRUE. and F or .FALSE.)

e array name = set of constants (separated by commas)

The array name is not subscripted. The set of constants consists of
constants of the type integer, real, literal, complex, or logical.
The number of constants must be less than or equal to the number of
elements in the array. Successive occurrences of the same constant
can be represented in the form k*constant.

The variable names and array names specified in the input data set
must appear in the NAMELIST list, but the order is not significant. A
name that has been made equivalent to a name in the input data cannot be
substituted for that name in the NAMELIST list. The list can contain
names of items in COMMON but must not contain dummy argument names.

Each data record must begin with a complete variable or array name or
constant. Embedded klanks are not permitted in names or constants.
Trailing blanks after integers and exponents are treated as zeros.

48

NAMELIST Output Data

When output data is written using a NAMELIST list, it is written in a
form that can be read using a NAMELIST list. All variable and array
names specified in the NAMELIST list and their values are written out,
each according to its type. The fields for the data are made large
enough to contain all the significant digits. The values of a complete
array are written out in columns.

Example: Assume that A is a 3 by 1 array, I and L are 3 by 3 arrays,
and that the fcllowing statements are given:

NAMELIST /NAM1/A,B,I,J,L/NAM2/C,J,I,L

READ (5, NAM1)

WRITE (6,NAM2)
Explanation: The NAMELIST statement defines two NAMELIST lists, NAM1
and NAM2. The REALD statement causes input data to be read from the data

set associated with data set reference number 5 into the variables and
arrays specified by NAM1l. Assume that the data cards have the form:

Column 2

|

v
First card ENAM1 1(2,3)=5,J=4,B=3.2
Last card A(3)=4.0,1=2,3,7*4, EEND

The first data card is read and examined to verify that its name is con-
sistent with the NAMELIST name in the READ statement. (If that NAMELIST
name is not found, then it reads to the next NAMELIST group.) When the
data is read, the integer constants 5 and 4 are placed in I(2,3) and J,
respectively; and the real constants 3.2 and 4.0 are placed in B and
A(3), respectively. Since L is an array name not followed by a sub-
script, the entire array is filled with the succeeding constants.
Therefore, the integer constants 2 and 3 are placed in 1L(1,1) and
L(2,1), respectively, and the integer constant 4 is placed in L(3,1),
L(1,2)yeeey L(3,3).

The WRITE statement causes data to be written from the variables and
arrays specified by NAM2 into the data set associated with data set
reference number 6. Assume that the values of J, L, and I(2,3) were not
altered since the previous READ statement, that C was given the value
428.0E+03, that I(1,3) was given the value 6, and that the rest of the
elements of I were set to zero. Then, if the output is punched on
cards, the form is:

Column 2
]
v
First card E§NAM2
Second card c=428000.00,J=4,1=0,0,0,0,0,0,6,5,
Third card 0,L=2,3,4,4,4,04,4,4,4,
Fourth card E§END

Input/Output Statements 49

FORMAT STATEMENT

General Form

XXXXX FORMAT (C44C2y¢ee¢Cn)

The format codes are:

et i e B et et e s e e e
=
=8
o
In}
0]

i
1 H
| B

7

[URI)
[ple]]
21z

loslulos

jwH

==l
I >

o
-~
.
.
.
~

Where:

XXXXX is a statement number (1 through 5 digits).

C14C24¢+9¢Cn are format codes.

(Descrikes integer data fields.)

(Describes real data fields.)

{Describes real data fields.)

(Describes real data fields.)

(Descrikes hexadecimal data fields.)

(Describes integer, real, complex, or logical data fields.)

(Describes logical data fields.)

(Descrikes alphameric data fields.)

(Transmits literal data.)

(Transmits literal data.)

(Indicates that a field is to be skipped on input or filled
with klanks on output.)

(Indicates the position in a FORTRAN record where transfer
of data is to start.)

(Indicates a group format specification.)

a is optional and is an unsigned integer constant used to
denote the number of times the format code is to be used.
If a is omitted, the code is used only once.

w is an unsigned nonzero integer constant that specifies the
nunmber of characters in the field.

d is an unsigned integer constant specifying the number of
decimal places to the right of the decimal point; i.e., the
fractional portion.

s is an unsigned integer constant specifying the number of
significant digits.

r is an unsigned integer constant designating a character
position in a record.

p 1s optional and represents a scale factor designator of
the form nP where n is an unsigned or negatively signed
integer constant.

(ee.) 1is a group format specification. Within the paren-
theses are format codes separated by commas or slashes.
Group format specifications can be nested to a level of two.
The a preceding this form is called a group repeat count.

S

IZ
{0
s |t

0}

[e M e e B M o G T S e i i S e R e R i i N (S i B s e s S o Gk L St S Ml SR Bt Lt M st
N

Complex data fields in records require two successive D, E, F,
G, or A format codes. These codes may be grouped within
parentheses

Both commas and slashes can be used as separators between format
codes (see the section "Various Forms of a FORMAT Statement").

|
‘1'
|
I
|
|
I
I
I
|
I
|
I
|
|
|
|
I
|
|
|
|
|
|
I
|
I
I
I
|
|
I
I
|
|
!
|
|
I
I
|
|
|
|
|
I
|
|
I
|
|
.l
|
|
I
I
|
I
|
4

50

The FORMAT statement is used in conjunction with the I/O list in the
READ and WRITE statements to specify the structure of FORTRAN records
and the form of the data fields within the records. In the FORMAT
statement, the data fields are described with format codes, and the
order in which these format codes are specified gives the structure of
the FORTRAN records. The I/O list gives the names of the data items to
make up the record. The length of the list in conjunction with the FOR-
MAT statement specifies the length of the record (see the section
"Various Forms of a FORMAT Statement"). Throughout this section, the
examples show punched card input and printed line output. The concepts
apply to all input/output media. In the examples, the character b
represents a blank.

The following list gives general rules for using the FORMAT
statement:

1. FORMAT statements are not executed; their function is to supply
information to the object program. They may be placed anywhere in
the source program.

2. When defining a FORTRAN record by a FORMAT statement, it is impor-
tant to consider the maximum size record allowed on the input/
output medium. For example, if a FORTRAN record is to be punched
for output, the record should not be longer than 80 characters. If
it is to be printed, it should not be longer than the printer's
line length. For input, the FORMAT statement should not define a
FORTRAN record longer than the record referred to in the data set.

3. When formatted records are prepared for printing, the first
character of the record is not printed. It is treated as a car-
riage control character. It can be specified in a FORMAT statement
with either of two forms of literal data: either *'x' or 1Hx, where
X is one of the following:

X Meaning

blank Advance one line before printing

0 Advance two lines before printing
1 Advance to first line of next page
+ No advance

For media other than the printer, the first character of the record
is treated as data.

4, TIf the I/0 list is omitted from the READ or WRITE statement, a
record is skipped on input, or a blank record is inserted on out-
put, unless the record was transmitted between the data set and the
FORMAT staterent (see "H Format Code and Literal Data").

Various Forms of a FORMAT Statement

All of the format codes in a FORMAT statement are enclosed in a pair
of parentheses. Within these parentheses, the format codes are delim-
ited by the separators: comma and slash.

Execution of a formatted READ or formatted WRITE statement initiates
format control Fach action of format control depends on information
provided jointly ky the I/O list, if one exists, and the format specifi-
cation. There is no I/O list item corresponding to the format descrip-

Input/Output Statements 51

tors X, H, and literals enclosed in apostrophes. These communicate
information directly with the record.

Whenever an I, D, E, F, G, A, L, or Z code is encountered, format
control determines whether there is a corresponding element in the I/O
list. 1If there is such an element, appropriately converted information
is transmitted. If there is no corresponding element, the format con-
trol terminates.

If, however, format control reaches the last outer right parenthesis
of the format specification and another element is specified in the I/0
list, control is transferred to the group repeat count of the group for-
mat specification terminated by the last right parenthesis that precedes
the right parenthesis ending the FORMAT statement.

The question of whether there are further elements in the I/O list is
asked only when an I, D, E, F, G, A, L, or Z code or the final right
parenthesis of the format specification is encountered. Before this is
done, T, X, and H codes, literals enclosed in apostrophes, and slashes
are processed. If there are fewer elements in the I/O list than there
are format codes, the remaining format codes are ignored.

Comma: The simplest form of a FORMAT statement is the one shown in the
box at the beginning of this section with the format codes, separated by
commas, enclosed in a pair of parentheses. One FORTRAN record is
defined by the beginning of the FORMAT statement (left parenthesis) to
the end of the FORMAT statement (right parenthesis). For an example,
see the section "Examples of Numeric Format Codes,"

Slash: A slash is used to indicate the end of a FORTRAN record format.
For example, the statement:

25 FORMAT (I13,F6.2/D10.3,F6.2)

describes two FORTRAN record formats. The first, third, etc., records
are transmitted according to the format I3, F6.2 and the second, fourth,
etc., records are transmitted according to the format D10.3, F6.2.

Consecutive slashes can be used to introduce blank output records or
to skip input records. If there are n consecutive slashes at the begin-
ning or end of a FORMAT statement, n input records are skipped or n
blank records are inserted between output records. If n consecutive
slashes appear anywhere else in a FORMAT statement, the number of
records skipped or blank records inserted is n-1. For example, the
statement:

25 FORMAT (1X,10I5//71X,8E14.5)
describes three FORTRAN record formats. On output, it causes double

spacing between the line written with format 1X,10I5 and the line writ-
ten with the format 1X,8E14.5.

I Format Code

The I format code is used in transmitting integer data. For example,
if a READ statement refers to a FORMAT statement containing I format
codes, the input data is stored in internal storage in integer format.
The magnitude of the data to be transmitted must not exceed the maximum
magnitude of an integer constant.

52

Input: Leading, embedded, and trailing blanks in a field of the input
card are interpreted as zeros.

Output: If the number of significant dlglts and sign required to repre-
sent the quantity in the storage location is less than w, the leftmost
print positions are filled with blanks., If it is greater than w,
asterisks are printed instead of the number.

D, E, and F Format Codes

The D, E, and F format codes are used in transmitting real or double
precision data. The data must not exceed the maximum magnitude for a
real or double precision constant.

Input: Input must be a real or double precision number which, optional-
ly, may have a D or E exponent. The decimal point may be omitted. If
it is present, its position overrides the position indicated by the d
portion of the format field descriptor, and the number of positions
specified by w must include a place for it. If the data has a D or E
exponent and the format field descriptor includes a P scale factor, the
scale factor has no effect. Each data item must be right justified in
its field, since leading, trailing, and embedded blanks are treated as
" zeros. These three format codes are interchangeable for input. It
makes no difference, for example, whether D, E, or F is used to describe
a field containing 12.42E+08.

Output: For data written under a D or E format code, unless a P scale
factor is specified, output consists of an optional sign (required for
negative values), a decimal point, the number of significant digits
specified by d, and a D or E exponent requiring four positions. The w
specification must provide for all these positions, including the one
for a sign when the output value is negative. If additional space is

availakle, a leading zero may be written before the decimal point.

For data written under an F format code, w must provide sufficient
spaces for an integer segment if it is other than zero, a fractional
segment containing d digits, a decimal point, and, if the output value
is negative, a sign. If insufficient positions are provided for the
integer portion, including the decimal point and sign (if any),
asterisks are written instead of data. If excess positions are pro-
vided, the number is preceded by blanks.

For D, E, and F, fractional digits in excess of the number specified
by 4 are drorped after rounding.

Z Format Code

The Z format code is used in transmitting hexadecimal data.

Input: Leading, erbedded, and trailing blanks in an input field are
treated as zeros. One storage location (byte) in internal storage con-
tains two hexadecimal digits; thus, if an input field contains an odd
number of digits, the number will be padded on the left with a hexa-
decimal zero when it is stored.

Output: If the number of characters in the storage location is less
than w, the leftmost print positions are filled with blanks If the
number of characters in the storage location is greater than w, the

leftmost digits are truncated and the rest of the number is printed.

Input/Output Statements 53

G Format Code

The G format code is a generalized code used to transmit integer,
real, complex, or logical data according to the type specification of
the corresponding variable in the I/0 list.

Input: The rules for input for G format code depend upon the type of
the variable in the I/0 list and the form of the number punched on the
card. For example, if the variable is real and the number punched in
the card has an E decimal exponent, the rules are the same as for the E
format code. If the variable in the I/0 list is integer or logical, the
s portion of the format code, specifying the number of significant
digits, can be omitted; if it is given, it is ignored. For complex and
real data, the s portion gives the location of the implied decimal point
for input -- just like the d specification for D, E, and F format codes.

Qutput: The s portion of the format code can be omitted for integer and
logical data and the numbers are printed according to the rules for I
and L format codes. For complex and real data, the s is used to deter-
mine the number of digits to be printed and whether the number should be
printed with or without a decimal exponent. If the number, say n, is in
the range 0.1< n < 10%**s, the number is printed without a decimal
exponent. Otherwise, it is printed with an E or D decimal exponent
depending on the length specification of the variable in the I/O list.
The w specification for complex and real data must include a position
for a decimal point, four positions for a decimal exponent, and, if the
value is negative, a position for a minus sign. All other rules for
output are the same as those for the individual format codes.

Examples of Numeric Format Codes

The following examples illustrate the use of the format codes I, F,
D, E, Z, and G.

Example 1:
75 FORMAT (I3,F5.2,E10.3,G10.3)

READ (5,75) N,A,B,C
Explanation:

1. Four input fields are described in the FORMAT statement and four
variables are in the I/0 list. Therefore, each time the READ
statement is executed, one input card is read from the data set
associated with data set reference number 5.

2. When an input card is read, the number in the first field of the
card (three columns) is stored in integer format in location N.
The number in the second field of the input card (five columns) is
stored in real format, with no decimal exponent, in location 3,
etc.

3. If there were one more variable in the I/C list, say M, another
card would be read and the information in the first three columns
in that card would be stored in integer format in location M. The
rest of the data on the card would be ignored.

4. If there were one fewer variable in the list (say C is omitted), no
number would be stored according to the format G10. 3.

54

5 This format statement defines only one record format. The section
"Various Forms of a FORMAT Statement" explains how to define more
than one record format in a FORMAT statement

Example 2: Assume that the following statements are given:
75 FORMAT (Z4,D10.3,2G10.3)
READ (5,75) A,B,C,D

where A, C, and D are REAL*4 and B is REAL*8 and that the following
input cards are read:

Column 1 5 15 25 35
| | |] |
v v v v v
b3F1156432D+02276.38E+15bbbbbbbbbb
Input

2AF3155381+02b382506E+28276.38E+15
Cards l

3ACb346.,18D-03485.322836276.38E+15
Format zu D10.3 G10.3 G10.3

Then the variakles A, B, C, and D receive values as if the following
had been punched:

A B c D

03F1 156.432D+02 276.38E+15 000000.000
2AF3 155.381D+020 382.506E+28 276.38E+15
3AC0 346.18D-03 485, 322836 276.38E+15

Explanation:
1. Leading, trailing, and embedded blanks in an input field are
treated as zeros. Therefore, since the value for B on the second

input card was not right justified in the field, the exronent is 20
not 2.

2. Values read into the variables C and D with a G format code are
converted according to the type of the corresponding variable in
the I/0 list.

Example 3: Assume that the following statements are given:
76 FORMAT ('0*,F6.2,E12.3,G14.6,15)

WRITE (6,76)A,B,C,N

and that the variakles A, B, C, and N have the following values:

3 B c N
034.40 123.380E+02 123.380E+02 031
031.1 1156.1E402 123456789, 130
-354 32 834 621E-03 1234 56789 428
01.132 83,121E+06 123380 D+02 000

Input/Output Statements 55

Then, the following lines are printed:

Column 2 3
1 9 1 5
34,40 0 123E 05 12338.0 31

31.10 0.116E 06 0 123457E 09 130
okokkk 0.835E 00 1234.57 428

1.13 0.831E 08 0.123380E 08 0

Explanation:

1. The integer portion of the third value of A exceeds the format spe-
cification, so asterisks are printed instead of a value. The frac-
tional portion of the fourth value of A exceeds the format specifi-
cation, so the fractional portion is rounded.

2. Note that for the variable B the decimal point is printed to the
left of the first significant digit and that only three significant
digits are printed because of the format specification E12.3.
Excess digits are rounded off from the right.

3. The values of the variable C are printed according to the format
specification Gl4.6. The s specification, which in this case is 6,
determines the number of digits to be printed and whether the
number should be printed with a decimal exponent. Values greater
than or equal to 0.1 and less than 1,000,000 are printed without a
decimal exponent in this example. Thus, the first and third values
have no exponent. The second and fourth values are greater than
1,000,000, so they are printed with an exponent,

Scale Factor - P

The P scale factor may be specified as the first part of a D, E, F,
or G field descriptor to change the location of the decimal point in
real numbers. The effect of the scale factor is:

scale factor
external numker = internal number x 10

Input: A scale factor may be specified for any real data, but it is
ignored for any data item that contains an exponent in the external
field. For example, if the input data is in the form xx.xxxx and is to
be used internally in the form .xxxxxx, then the format code used to
effect this change is 2PF7.4., Or, if the input data is in the form xx.
xxxx and is to be used internally in the form xxxx.xx, then the format
code used to effect this change is -2PF7.4.

Output: A scale factor can be specified for real numbers with or
without E or D decimal exponents. For numbers without an E or D decimal
exponent, the effect is the same as for input data except that the
decimal point is moved in the opposite direction For example, if the
number has the internal form xx.xxxx and is to be written out in the
form xxxx.xx, the format code used to effect this change is 2PF7.4.

56

For numbers with an E or D decimal exponent, when the decimal point
is moved, the exponent is adjusted to account for it, i.e., the value is
not changed. For example, if the internal number 238. were printed
according to the format E10.3, it would appear as 0 238Eb03. If it were
printed according to the format 1PE10.3, it would appear as 2.380EbO02.

A repetition code can precede the D, E, or F format code. For
example, 2P3F7.4 is valid.

Warning: Once a scale factor has been established, it applies to all
subsequently interpreted D, E, F, and G codes in the same FORMAT state-
ment until another scale factor is encountered. The new scale factor is
then established. A factor of 0 may be used to discontinue the effect

of a previous scale factor.

L Format Code

The L format code is used in transmitting logical variables.

Input: The first T or F encountered in the w characters of the input
field causes a value of .TRUE. or .FALSE., respectively, to be assigned
to the corresponding logical variable in the I/0O list. If the field w
consists entirely of blanks, a value of .FALSE. is assumed.

Qutput: A T or F is inserted in the output record depending upon wheth-
er the value of the logical variable in the I/0 list was .TRUE. oOr
.FALSE., respectively. The single character is right justified in the
output field and preceded by w-1 blanks.

A Format Code

The A format code is used in transmitting data that is stored
internally in character format. The number of characters transmitted
under A format code depends on the length of the corresronding variable
in the I/O 1list. Each alphabetic or special character is given a unique
internal code. Numeric data is converted digit by digit into internal
format, rather than the entire numeric field being converted into a
single binary number. Thus, the A format code can be used for numeric
fields, but not for numeric fields requiring arithmetic.

Input: The maximum number of characters stored in internal storage
depends on the length of the variable in the I/O list. If w is greater
than the variakle length, say v, then the leftmost w-v characters in the
field of the input card are skipped and the remaining v characters are
read and stored in the variable. If w is less than vy, then w characters
from the field in the input card are read and the remaining rightmost
characters in the variable are filled with blanks.

Cutput: If w is greater than the length of the variable in the I/O
list, say the length is v, then the printed field will contain v charac-
ters right-justified in the field, preceded by leading blanks. If w is
less than v, the leftmost w characters from the variable will be printed
and the rest of the data will be truncated.

Example_1: Assume that B has been specified as real of length 8, that N

and M are integers of standard length 4, and that the following state-
rents are given.

Input/Output Statements 57

25 FORMAT (3A7)
READ (5,25) B, N, M

When the READ statement is executed, one input card is read from the
data set associated with data set reference nuwber 5 into the variables
B, N, and M in the format specified by FORMAT statement number 25. The
following list shows the values stored for the given input cards (b
represents a klank).

Input_card B N M
ABCDEFGU6LATDL1123U567 ABCDEFGDb ATb1l 4567
HIJKLMN76543213334445 HIJKLMNDb 4321 4445

Example 2: Assume that A and B are real variables of length 4, that C
is a real variable of length 8, and that the following staterents are
given: '

26 FORMAT (A6,A5,A6)
WRITE (6,26) B,B,C

When the WRITE statement is executed, one line is written on the data
set associated with data set reference number 6 from the variables A, B,
and C in the format specified by FORMAT statement 26. The following
list shows the printed output for values of A, B, and C (b represents a
blank).

A B C Printed Line

A1B2 C3D4 ESF6GT7HS EbA1B2bC3DUESF6GT

H Format Code and Literal Data

Literal data can appear in a FORMAT statement in one of two ways: it
can be enclosed in apostrophes or it can follow the H format code. For
example, the following FORMAT statements are equivalent:

25 FORMAT (' 1968 INVENTORY REPORT')
25 FORMAT (22H 1968 INVENTORY REPORT)

No item in the I/C list corresponds to the literal data. The data is
read or written directly into or from the FORMAT statement. (The FORMAT
statement can contain other types of format codes with corresponding
variables in the I/0 list.)

Input: Information is read from the input card and replaces the literal
data in the FORMAT statement. (If the H format code is used, w charac-
ters are read. If apostrophes are used, as rany characters as there are
spaces between the apostrophes are read.) For example, the following
statements:

8 FORMAT (' HEADINGS')
READ (5,8)
cause the first nine characters of the next record to be read from the
data set associated with data set reference number 5 into the FORMAT

statement 8, replacing the blank and the eight characters H, E, A, D, I,
N, G, and S.

58

Cutput: The literal data from the FORMAT statement is written on the
output data set (If the H format code is used, the w characters fol-
lowing the H are written. If apostrophes are used, the characters
enclosed in apostrorhes are written.) For example, the following
statements:

8 FORMAT (14HOMEAN AVERAGE:, F8.U4)
WRITE (6,8) AVRGE

would cause the following record to be written if the value of AVRGE
were 12.3456:

MEAN AVERAGE: 12.3456
Note: If the literal data is enclosed in apostrophes, an apostrophe

character in the data is represented by two successive apostrophes. For
example, DON'T is represented as DON''T.

X Format Code

The X format code specifies a field of w characters to be skipped on
input or filled with blanks on output. For example, the following
statements:

5 FORMAT (I10,10X,4I10)
READ (5,5 1,J3,K,L,M
cause the first ten characters of the input card to be read into vari-
able I, the next ten characters to be skipped over without transmission,

and the next four fields of ten characters each to be read into the
variables J, K, L, and M.

T Format Code

The T format code specifies the position in the FORTRAN record where
the transfer of data is to begin. (Note that for printed output, the
first character of the output data record is used for carriage control
and is not printed. Thus, for example, if T50, *Z' is specified in a
FORMAT statement, a Z will be the 50th character of the output record,
but it will aprear in the 49th print position.)

The following illustrates the use of the T code.

5 FORMAT (Tu0,'1968 STATISTICAL REPORT', T80,
X 'DECEMBER',T1, 'OPART NO. 10095')
WRITE (6,5)

cause the following line to be printed:

Print Print Print
Position 1 Position 39 Position 79
I | |

v v v

PART NO. 10095 1968 STATISTICAL REPORT DECEMBER

The T format code can be used in a FORMAT statement with any type of
format code, as, for example, with FORMAT ('0',Tu0,I5).

Input/Output Statements 59

Group Format Specification

The group format specification is used to repeat a set of format
codes and to control the order in which the format codes are used.

The group repeat count a is the same as the repeat indicator a which

can be placed in front of other format codes. For example, the follow-
ing statements are equivalent:

10 FORMAT (I3,2(I4,I5),I6)

10 FORMAT (I3, (I4,I5,I4,I5),I6)

Group repeat specifications control the order in which format codes
are used since control returns to the last group repeat specification
when there are more items in the I/0 list than there are format codes in
the FORMAT statement (see "Various Forms of a FORMAT Statement"). Thus,
in the previous example, if there were more than six items in the I/0
list, control would return to the group repeat count 2 which precedes
the specification {(I4,I5).

If the group repeat count is omitted, a count of 1 is assumed. For
example, the statements:

15 FORMAT (I3, (F6.2,D10.3))
READ (5,15) N,A,B,C,D,E

cause values to be read from the first record for N, A, and B, according
to the format codes I3,F6.2, and D10.3, respectively. Then, because the
I/0 list is not exhausted, control returns to the last group repeat spe-
cification, the next record is read, and values are transmitted to C and
D according to the format codes F6.2 and D10.3, respectively. Since the
I/0 list is still not exhausted, another record is read and a value is
transmitted to E according to the format code F6.2 -- the format code
D10.3 is not used.

The format codes within the group repeat specification can be
separated by commas and slashes. For example, the following statement
is valid:

40 FORMAT (2I3/(3F6.2,F6.3/D10.3,3D10.2))

The first record is transmitted according to the specification 2I3, the
second, fourth, etc., records are transmitted according to the specifi-
cation 3F6.2,F6.3, and the third, fifth, etc., records are transmitted
according to the specification D10.3,3D10.2, until the I/0 list is
exhausted.

Reading Format Specifications at Cbject Time

FORTRAN provides for variable format statements by allowing a format
specification to ke read into an array in storage. The data in the
array may then be used as the format specification for subsequent input/
output operations. The format specification may also be placed into the
array by a DATA statement or an explicit specification statement in the
source program.

60

The name of the array containing the variable FORMAT specification
must appear in a DIMENSION, COMMON, or explicit specification
statement, even if the array size is only 1.

The format codes entered into the array must have the same form as
a source program FORMAT statement, except that the word FORMAT and
the statement number are omitted.

If a format code read in at object time contains double apostrophes
within a literal field that is defined by apostrophes, it should be
used for output only. If an object time format code is to be used
for input, and if it must contain a literal field with an internal
apostrophe, the H format code must be used for the literal field
definition,

Example: Assume that the following statements are given:

DIMENSION FMT (18)
1 FORMAT (18Al4)
READ (5,1) FMT

READ (5,FMT) A,B, (C(I),I=1,5)

and that the first input card associated with data set reference nurker
5 contains (2F10.3, 5F10.8).

The data on the rest of the input cards is read, converted, and stored

in A,

B, and the array C, according to the format codes 2E10.3, 5F10.8.

END FILE STATEMENT

General Form

e e e e St

Where: a is an unsigned integer constant or integer variable that

.
|
.’
END FILE a |
I
|
]
J

is of length 4 and represents a data set reference number.

e —_— e e e e e e e e e e e e o e e e e e e e

The END FILE statement defines the end of the data set associated

with a.

REWIND STATEMENT

General Form |

[e et (et gt 2 g

REWIND a

I

Where: a is an unsigned integer constant or integer variable that |
” I

4

is of length 4 and represents a data set reference number.

The REWIND statement causes a subsequent READ or WRITE statement ref-

erring to a tc read data from or write data into the first record of the
data set associated with a.

Input/Output Statements 61

BACKSPACE STATEMENT

General Form |

BACKSPACE a |

Where: a is an unsigned integer constant or integer variable that |

is cf length 4 and represents a data set reference number. |
e i

o o et M e g S e

The BACKSPACE statement causes the data set associated with a to kack-
space one record. If the data set associated with a is already at its
keginning, execution of this statement has no effect. For further
information, see the FORTRAN IV programmers' guides listed in the
Preface.

DIRECT ACCESS_INPUT/OUTPUT_ STATEMENTS

There are four direct access input/output statements: READ, WRITE,
DEFINE FILE, and FIND. The READ and WRITE statements cause transfer of
data into or out cf internal storage. These statements allow the user
to specify the location within a data set fromr which data is to be read
or into which data is to be written.

The DEFINE FILE statement specifies the characteristics of the data
set(s) to be used during a direct access operation. The FIND statemwent
overlaps record retrieval from a direct access device with computation
in the program. In addition to these four statements, the FORMAT state-
ment (described previously) specifies the form in which data is to be
transmitted. The direct access READ and WRITE statements and the FIND
statement are the only input/output statements that may refer to a data
set reference numker defined by a DEFINE FILE statement.

Each record in a direct access data set has a unique record number
associated with it. The programmer must specify in the READ, WRITE, and
FIND statements nct only the data set reference number, as for sequen-
tial input/output statements, but also the number of the record to be
read, written, or found. Specifying the record number permits opera-
tions to be perforred on selected records of the data set, instead of on
records in their sequential order.

The number of the record physically following the one just processed
is made availabkle to the program in an integer variable known as the
associated variable. Thus, if the associated variable is used in a READ
or WRITE statement to specify the record number, sequential processing
is automatically secured. The associated variable is specified in the
DEFINE FILE statement, which also gives the number, size, and type of
the records in the direct access data set.

DEFINE FILE STATEMENT

@

The DEFINE FILE statement describes the characteristics of any data
set to be used during a direct access input/output operation. To use
the direct access READ, WRITE, and FIND statements in a program, the
data set{s) must ke described with a DEFINE FILE statement. Each data
set must be described once, and this description may appear once in each
program Or subprogram. Subsequent descriptions have no effect.

62

The DEFINE FILE statement must logically precede (i.e., must be
"executed" prior to) any input/output statement referring to the data
set described in the DEFINE FILE statement.

General Form

DEFINE FILE a;(mysXaef1sVa)eao(MairasfasVvadseeesan{mn,nsfnsvn)

Where: a represents an integer constant that is the data set
reference number.

m represents an integer constant that specifies the number
of records in the data set associated with a.

r represents an integer constant that specifies the maximum
size of each record associated with a. The record size is
measured in characters (bytes), storage locations (bytes),
or storage units (words). (A storage unit is the number of
storage locations divided by four and rounded to the next
highest integer.) The method used to measure the record
size depends upon the specification for £f.

f specifies that the data set is to be read or written eith-
er with or without format control; f may be one of the fol-
lowing letters:

L indicates that the data set is to be read or written
either with or without format control. The maximum record
size is measured in number of storage locations (bytes).

E indicates that the data set is to be read or written
under format control (as specified by a format statement).
The maximum record size is measured in number of charac-
ters (bytes).

U indicates that the data set is to be read or written
without format control. The maximum record size is mea-
sured in number of storage units (words).

Vv represents a nonsubscripted integer variable called an
associated variable. At the conclusion of each read or
write operation, v is set to a value that points to the rec-
ord that immediately follows the last record transmitted.
At the conclusion of a find operation, v is set to a value
that points to the record found.

- —— e e e e e e e e e —_— ———— e —————————————————_———_————

[o e £ WS K et et et S e e e A N £t i S et e i St i e e e G et o e St 5 e Gt M e e e £ e g et
e e e e e e e s e e et e — — — — — e — s —— . S . oo S ot S ot Ml e el S s S e, e b, o, . sl e e

The associated variable cannot appear in the I/0 list of a READ or
WRITE statement for a data set associated with the DEFINE FILE
statement.

Example:
DEFINE FILE 8(50,100,L,I2),9(100,50,L,33)

This DEFINE FILE statement describes two data sets, referred to by
data set reference numbers 8 and 9. The data in the first data set con-
sists of 50 records, each with a maximum length of 100 storage loca-
tions. The L specifies that the data is to be transmitted either with
or without format control. 1I2 is the associated variable that serves as
a pointer to the next record.

Input/Output Statements 63

The data in the second data set consists of 100 records, each with a
maximum length of 50 storage locations. The L specifies that the data
is to be transmitted either with or without format control. J3 is the
associated variable that serves as a pointer to the next record.

If an E is substituted for the L in the preceding DEFINE FILE state-
ment, a FORMAT statement is required and the data is transmitted under
format control. If the data is to be transmitted without format con-
trol, the DEFINE FILE statement can be written as:

DEFINE FILE 8(50,25,U,12),9(100,13,U,J3)

DIRFCT ACCESS PROGRAMMING CONSIDERATIONS

When programming for direct access input/output operations, the user
must establish a correspondence between FORTRAN records and the records
described by the LEFINE FILE statement. All conventions of FORMAT con-
trol discussed in the section "FORMAT Statement” are applicable.

For example, tc process the data set described by the statement:
DEFINE FILE 8(10,48,L,K8)

the FORMAT statement used to control the reading or writing could not
specify a record lcnger than 48 characters. The statements:

FORMAT (4F12.1) or
FORMAT (I12, 9F4. 2)

define a FORTRAN record that corresponds to those records described by
the DEFINE FILE statement. The records can also be transmitted under
FORMAT control by substituting an E for the 1 and rewriting the DEFINE
FILE statement as:

DEFINE FILE 8(10,48,E,K8)

To process a direct access data set without format control, the number
of storage locations specified for each record must be greater than
or equal to the maximum number of storage locations in a record to be
written by any WRITE statement referencing the data set. For example,
if the I/0 list of the WRITE statement specifies transmission of the
contents of 100 storage locations, the DEFINE FILE statement can be
either:

DEFINE FILE 8(50,100,L,K8) or
DEFINE FILE 8(50,25,U,K8)

Programs may share an associated variable as a COMMON variable. The
following example shows how this can be accomplished.

COMMON IUAR SUBROUTINE SUBI(A,B)
DEFINE FILE 8(100,10,L,IUAR) COMMON IUAR
ITEMP=IUAR

CALL SUBI (ANS,ARG)
8 IF (IUAR-ITEMP) 20,16,20

6L

In this example, the program and the subprogram share the associated
variable IUAR. An input/output operation that references data set 8 and
is performed in the subroutine causes the value of the associated vari-
able to be changed. The associated variable is then tested in the main

rrogram in statement 8.

READ STATEMENT

The READ statemrent causes data to be transferred from a direct access
device into internal storage. The data set being read must be defined
with a DEFINE FILE statement.

General Form

Where:

READ (a'r, b, ERR=4) list

a is an integer constant or unsigned integer variable that
is of length 4 and represents a data set reference number; a
must be followed by an apostrophe (').

r is an integer expression that represents the relative
position of a record within the data set associated with a.

b is optional and, if given, is either the statement number
of the FORMAT statement that describes the data keing read
or the name of an array that contains an object time format.

ERR=d is optional and 4 is the statement number to which
control is given when a device error condition is encoun-

tered during data transfer from device to storage.

list is optional and is an I/O list.

oo T e ol M et e S e W S S . Sl e St el b G e e ety

|

3

1

|

|
——t

e e — e — — e e ——— — ——— —

The I/0 list must not contain the associated variable defined in the

DEFINE FILE statermrent for data set a.

Example:

DEFINE FILE 8(500,100,L,ID1),9(100,28,L,ID2)
DIMENSION M(10)

10 FORMAT (5I20)
9 READ (8'16,10) (M(K),K=1,10)

13 READ (9'IC2+5) BA,B,C,D,E,F,G

Input/Output Statements

65

READ statement 9 transmits data from the data set associated with
data set reference number 8, under control of FORMAT statement 10;
transmission kegins with record 16. Ten data items of 20 characters
each are read as srecified by the I/0 list and FORMAT statement 10. Two
records are read to satisfy the I/0O list, because each record contains
only five data items (100 characters). The associated variable ID1 is
set to a value of 18 at the conclusion of the operation.

READ statement 13 transmits data from the data set associated with
data set reference number 9, without format control; transmission begins
with record 26. Data is read until the I/0 list for statement 13 is
satisfied., Recause the DEFINE FILE statement for data set 9 specified
the record length as 28 storage locations, the I/0 list of statement 13
calls for the same amount of data (the seven variables are type real and
each occupies four storage locations). The associated variable ID2 is
set to a value of 27 at the conclusion of the operation. If the value
of ID2 is unchanged, the next execution of statement 13 reads record 32.

The DEFINE FILE statement in the previous example can also be written
as:

DEFINE FILE 8(500,100,E,ID1),9(100,7,0,ID2)

The FORMAT statement may also control the point at which reading
starts. For example, if statement 10 in the example is

10 FORMAT (//5120)
records 16 and 17 are skipped, record 18 is read, records 19 and 20 are

skipped, record 21 is read, and ID1 is set to a value of 22 at the con-
clusion of the READ operation in statement 9.

WRITE STATEMENT

The WRITE statement causes data to be transferred from internal
storage to a direct access device. The data set being written must ke
defined with a DEFINE FILE statement.

General Form

WRITE {(a'r,b) list

Where: a is an integer constant or unsigned integer variakle that
is of length 4 and represents a data set reference number;
a must ke followed by an apostrophe (').

r is an integer expression that represents the relative
position of a record within the data set associated with a.

b is optional and, if given, is either the statement number
of the FORMAT statement that describes the data being writ-
ten or the name of an array that contains an object time
format.

et e e St ot e e e S e B et o o o

list is optional and is an I/0 list.

b vt s i bt G et e o s et e s S et et s . s s

|
!
|

66

Example:

DEFINE FILE 8(500,100,L,ID1),9(100,28,L,ID2)
DIMENSION M(10)

ID2=21

10 FORMAT (5I20)
8 WRITE (8'16,10) (M{K),K=1,10)

11 WRITE (9'IrC2+5) A,B,C,D,E,F,G

WRITE statement 8 transmits data into the data set associated with
the data set reference number 8, under control of FORMAT statement 10;
transmission kegins with record 16. Ten data items of 20 characters
each are written as specified by the I/0 list and FORMAT statement 10,
Two records are written to satisfy the I/0O list because each record con-
tains 5 data items (100 characters). The associated variable ID1 is set
to a value of 18 at the conclusion of the operation.

WRITE statement 11 transmits data into the data set associated with
data set reference number 9, without format control; transmission begins
with record 26. The contents of 28 storage locations are written as
specified by the I/C list for statement 11. The associated variable ID2
is set to a value of 27 at the conclusion of the operation. Note the
correspondence between the records described (28 storage locations per
record) and the numker of items called for by the I/O list (7 variables,
type real, each occupying four storage locations).

The DEFINE FILE statement in the example can also be written as:
DEFINE FILE 8(500,100,E,ID1), 9(100,7,U,ID2)

As with the READ statement, a FORMAT statement may also be used to
control the pecint at which writing begins.

FIND STATEMENT

The FIND statement causes the next input record to be found while the
present record is being processed, thereby increasing the execution
speed of the okject program. The program has no access to the record
that was found until a READ statement for that record is executed.
{(There is no advantage to having a FIND statement precede a WRITE
statement.)

General Form

FIND (a'r)

Where: a is an integer constant or unsigned integer variable that
is of length 4 and represents a data set reference number; a
must be followed by an apostrophe (').

r is an integer expression that represents the relative
position of a record within the data set associated with a.

o St Pt S B Sk et M e Sy S 1y
e et e e e s e e e hes e vl

= Input/COutput Statements 67

The data set on which the record is being found must be defined with a
DEFINE FILE statement

Example:

10 FIND (8'50)

15 READ (8'50) A,B
While the statements between statements 10 and 15 are executed, rec-
ord 50, in the data set associated with data set reference number 8, is
found.

General Example -- Direct Access Operations

DEFINE FILF 8(1000,72,L,ID8)
DIMENSION A(100),B(100),C(100),D(100),E(100),F(100)

15 FORMAT (6F12.4)
FIND (8'5)

1Dp8=1

DO 100 I=1,100

READ (8'ID8+4,15)A(I),B(I),C(I),D(I),E(I),F(I)
100 CONTINUE

DO 200 I=1,100
WRITE (8'IC8+4,15)A(I),B(I),C(I),D(I),E(I),F(I)
200 CONTINUE

END

The general exarple illustrates the ability of direct access state-
ments to gather and disperse data in an order designated by the user.
The first DO loop in the example fills arrays A through F with data from
the 5th, 10th, 15th,..., and 500th record associated with data set
reference number 8. Array A receives the first value in every fifth rec-
ord, B the second value and so on, as specified by FORMAT statement 15
and the I/0 list cf the READ statement. At the end of the READ opera-
tion, each record has been dispersed into arrays A through F. At the
conclusion of the first DO loop, ID8 has a value of 501.

The second DO loor in the example groups the data items from each
array, as specified by the I/0 list of the WRITE statement and FORMAT
statement 15. Each group of data items is placed in the data set asso-
ciated with data set reference number 8. Writing begins at the 505th
record and continues at intervals of five, until record 1000 is written,
if ID8 is not changed between the last READ and the first WRITE.

68

DATA INITIALIZATION STATEMENT

General

Form

DATA

Where:

e S

k1/d1/,k2/32/,--. ,kn/dn/

Each k is a list containing variables, subscripted variables
(in which case the subkscripts must be integer constants), or
array names. Dummy arguments may not appear in the list.

Each d is a list of constants (integer, real, complex, hexa-
decimal, logical, or literal), any of which may be preceded

by i*.

Each i is an unsigned integer constant. When the form i*
appears before a constant, it indicates that the constant is
to be srecified i times.

b s e s — e —— —— — —— et sttt i e el

A DATA
variables,

initialization statement is used to define initial values of
array elements, and arrays. There must be a one-to-one

correspondence between the total number of elements specified or implied
by the 1list k and the total number of constants specified by the corres-
ponding list d after application of any replication factors, i.

This statement cannot precede any other specification statement that

refers to

the same variables or arrays. It also cannct precede an

IMPLICIT statement. Otherwise, a DATA statement can appear anywhere in
the program.

Example 1:

DIMENSION D(5,10)

DATA

A, B, ¢/5.0,6.1,7.3/,D,E/25%1.0,25*%2.0,5.1/

The DATA statemrent indicates that the variables &, B,

initialized to the valves 5.0, 6.1, and 7.3 respectively. In additicn
the statement specifies that the first 25 variables in the array D are
to be initialized to the value 1.0, the reraining 25 variables in D to

the value

2.0, and the variable E to the value 5.1.

Data Initialization Statement

and C are to be

69

Example 2:

DIMENSION A(5), B(3,3), L(4)
DATA A/5%1.0/, B/9%2 0/, L/U*,TRUE./, C/'FOUR'/

The DATA statement specifies that all the variables in the arrays A
and B are to be initialized to the values 1.0 and 2.0, respectively.
All the logical variables in the array L are initialized to the value
«.TRUE.. The letters T and F may be used as an abbreviation for .TRUE.
and .FALSE., respectively. In addition, the variable C is initialized
with the literal data constant FOUR.

An initially defined variable, or variable of an array, may not be in

blank common. In a labeled common block, they may be initially defined
only in a BLOCK DATA subprogram. {(See the section "Subprograms.")

70

SPECIFICATION STATEMENTS

The specification statements provide the compiler with information
about the nature of the data used in the source program. In addition,
they supply the information required to allocate locations in storage
for this data.

Specification statements must precede statement function definitions,
which must precede the program part containing at least cone executable
statement. Within the specification statements, any statement describ-
ing data must precede references to that data. In particular, the
IMPLICIT statement, if used, must be the first specification statement.

The specification statement EXTERNAL is described in the section
"Subprograms."

DIMENSION STATEMENT

General Form [

-_— e o e e {
DIMENSION aj(ki),a2(k2), a3(K3),ee.,an(kn)

Where: a;, as, @a,-.., @n are array names.

I

|

|

|

|

Kiy k2y K3aseeeykn are each composed of one through seven |
unsigned integer constants, separated by commas, represent- |
ing the maximum value of each subscript in the array. ki |
through kp may be integer variables of length 4 only when |
the DIMENSION statement in which they appear is in a |
subprograme. |
a

[T et ot WS M s A e e e e . S S e

The information necessary to allocate storage for arrays used in the
source program may ke provided by the DIMENSION statement. The follow-
ing examples illustrate how this information may be declared.

Examples:

DIMENSICN A (10), ARRAY (5,5,5), LIST (10,100)
DIMENSION B(25,50),TABLE(S5,8,4)

TYPE STATEMENTS

There are two kinds of type statements: the IMPLICIT specification
statement, and the explicit specification statements (INTEGER, REAL,
CCMPLEX, and LCGICAL).

The IMPLICIT statement enables the user to:

o Specify the type of a group of variables or arrays according to the

initial character of their names

Specification Statements 71

Specify the amount of storage to be allocated for each variable
according to the associated type

The explicit specification statements enable the user to:

Specify the tyre of a variable or array according to its particular
name

o Specify the amount of storage to be allocated for each variable
according tc the associated type

e Specify the dimensions of an array
e Assign initial data values for variables and arrays
The explicit specification statement overrides the IMPLICIT state-

ment, which, in turn, overrides the predefined convention for specifying
type.

IMPLICIT STATEMENT

General Form

IMPLICIT type*s(ajsaosece)yeesstype*slazsassjeas)

Where: type is one of the following: INTEGER, REAL, COMPLEX, or
LOGICAL.

*s 1s ortional and represents one of the permissible length
specifications for its associated type.

A4y d29.e« are single alphabetic characters separated by
comras, or a range of characters drawn from the set A, B,
eeeZ2, $§, in that order. The range is denoted by the first
and last characters of the range separated by a minus sign
(e-g.' (A—D))-

[e St o et et e o e et e s St Kt e i ey
L e s o s it . et e et et s s s et e)

The IMPLICIT specification statement must be the first statement in
main program and the second statement in a subprogram. There can be
only one IMPLICIT statement per program or subprogram. The IMPLICIT
specification statement enables the user to declare the type of the
variables appearing in his program (i.e., integer, real, complex, Or
logical) by specifying that variables beginning with certain designated
letters are of a certain type. Furthermore, the IMPLICIT statement
allows the programmer to declare the number of locations (bytes) to be
allocated for each in the group of specified variables. The types that
a variable may assume, along with the permissible length specifications,
are as follows:

o1}

Type Length Specification

INTEGER 2 or 4 (standard length is U4)
REAL 4 or 8 (standard length is 4)
COMPLEX 8 or 16 (standard length is @)
LOGICAL 1 or 4 (standard length is #)

For each type there is a corresponding standard length specification.
If this standard length specification (for its associated type) 1is
desired, the *s may ke omitted in the IMPLICIT statement. That is, the

72

variables will assume the standard length specification. For each type
there is also a corresponding optional length specification. If this
optional length specification is desired, then the *s must be included
within the IMPLICIT statement.

Example 1:

IMPLICIT REAL (A-H, O-3%), INTIEGER (I-N)

Explanation:

All variakles keginning with the characters I through N are declared
as INTEGER. Since no length specification was explicitly given (i.e.,
the *s was omitted), four storage locations (the standard length for
INTEGER) are allocated for each variable.

All other variables (those beginning with the characters A through H,
C through Z, and $§) are declared as REAL with four storage locations
allocated for each.

Note that the statement in example 1 performs the same function of
typing variables as the predefined convention (see "Type Declaration by
the Predefined Specification").

Example 2:

IMPLICIT INTEGER*2(A-H), REAL*8(I-K), LCGICAL(L,M,N)

All variables keginning with the characters A through H are declared
as integer with two storage locations allocated for each. All variables
beginning with the characters I through K are declared as real with
eight storage locations allocated for each. All variables beginning
with the characters 1, M, and N are declared as logical with four loca-
tions allocated for each.

Since the remaining letters of the alphabet, namely, O through Z and
$, are left undefined by the IMPLICIT statement, the predefined conven-
tion will take effect. Thus, all variables beginning with the charac-
ters O through Z and § are declared as real, each with a standard length
of four locations.

Example 3:

IMPLICIT COMPLEX*16(C-F)

All variables keginning with the characters C through F are declared
as complex, each with eight storage locations reserved for the real part
of the complex data and eight storage locations reserved for the
imaginary part. The types of the variables beginning with the charac-
ters A, B, G through Z, and $ are determined by the predefined
convention

Specification Statements 73

EXPLICIT SPECIFICATION STATEMENTS

General Form

Type*s a*s; (ki) /x1/,b*s5(ka)/Ka/yeee,2¥%Snl{kn) /2n/

Where: Type is INTEGER, REAL, LOGICAL, or COMPLEX.

*S,*S,,*Ss,e.e9*Sn are optional. Each s represents one of
the permissible length specifications for its associated

type.

ayDyee.,2 are variable, array, or function names (see the
section "Subprograms")

(k1) p {k2)geeey (kn) are optional and give dimension informa-
tion for arrays. Each k is composed of one through seven
unsigned integer constants, separated by commas, represent-
ing the maximum value of each subscript in the array. Each
k may be an unsigned integer variable of length 4 only when
the type statement in which it appears is in a subprogram.

/X4/4/X274.00,/%Xn/ are optional and represent initial data
values.

oo et e e A R et e S et o e e A e et s e e . S g Gt g
e s s e s i e s s S— . o S— — s St S, ettt e e, s e

The explicit specification statements declare the type (INTEGER,
REAL, COMPLEX, or LOGICAL) of a particular variable or array by its
name, rather than by its initial character. This differs from the other
ways of specifying the type of a variable or array (i.e., predefined
convention and the IMPLICIT statement). In addition, the information
necessary to allocate storage for arrays (dimension information) may be
included within the statement.,

Initial data values may be assigned to variables or arrays by use of
/Xn/ where xn is a constant or list of constants separated by commas.
Lists of constants are used only to assign initial values to array ele-
ments. r successive occurrences of the same constant can be represented
by the form r*constant. If initial data values are assigned to an array
in an explicit specification statement, the dimension information for
the array must be in the explicit specification statement or in a pre-
ceding DIMENSION or COMMON statement. An initial data value may not be

assigned to a function name.

Initial data values cannot be assigned to variables or arrays in
blank common. The BLOCK DATA subprogram must be used to assign initial
values to variables and arrays in labeled common.

In the same manner in which the IMPLICIT statement overrides the pre-
defined convention, the explicit specification statements override the
IMPLICIT statement and predefined convention. If the length specifica-
tion is omitted (i.e.,*s), the standard length per type is assumed.

Example 1:
INTEGER*2 ITEM/76/, VALUE

Explanation:

This statement declares that the variables ITEM and VALUE are of type
integer, each with two storage locations reserved. In addition, the
variable ITEM is initialized to the value 76.

T4

Example 2:
COMPLEX C,D/{2.1,4.7)/,E*16

This statement declares that the variables C, D, and E are of type
complex. Since no length specification was explicitly given, the stan-
dard length is assumed. Thus, C and D each have eight storage locations
reserved (four for the real part, four for the imaginary part) and D is
initialized to the value (2.1,4.7). 1In addition, 16 storage locations
are reserved for the variable E. Thus, if a length specification is
explicitly written, it overrides the assumed standard length.

Example 3:
REAL#8 BAKER, HOLD, VALUE*4, ITEM(5,5)

Explanation:

This statement declares that the variables BAKER, HOLD, VALUE, and
the array named ITEM are of type real. In addition, it declares the
size of the array ITEM. The variables BAKER and HOLD have eight storage
locations reserved for each; the variakle VALUE has four storage loca-
tions reserved; and the array named ITEM has 200 storage locations
reserved (eight for each variable in the array). Note that when the
length is associated with the type (e.g., REAL#*8), the length applies to
each variable in the statement unless explicitly overridden (as in the
case of VALUE*4),

Example 4:
REAL A(5,5)/20%6.9E2,5*1,0/, B(100)/100*%0,0/,TEST*8(5)/5%0. 0/

Explanation:

This statement declares the size of each array, A and B, and their
type (real). The array A has 100 storage locations reserved (four for
each variable in the array) and the array B has 400 storage locations
reserved (four for each variable). 1In addition, the first 20 variables
in the array A are initialized to the value 6.9E2 and the last five
variables are initialized to the wvalue 1.0. 2All 100 variakles in the
array B are initialized to the value 0.0. The array TEST has 40 storage
locations reserved (eight for each variable). 1In addition, each vari-
able is initialized to the value 0.0.

DOUBLE PRECISICN SETATEMENT

General Form

DOUBLE PRECISION af(ks) b(K2)yeee,z(kn)

Where: a,bs...,2 represent variable, array, or functicon names (see
the section "Subprograms").

(ki) gy (k2)y ««4(kn) are optional. Each k is composed of one
through seven unsigned integer constants, separated by cocm-
mas, that represent the maximum value of each subscript in

the array.

[e A et e et e i R e g ik g
e e e i e e e e e o)

Srecificaticn Statements 75

The DOUBLE PRECISION statement explicitly specifies that the vari-
ables a,b,cy... are of type double precision. This statement overrides
any specification of a variable made by either the predefined convention
or the IMPLICIT statement. This specificaticn is identical to that of
type REAL*8. This statement cannot be used to define initial data
values

In addition, FUNCTION subprograms may be typed double precision as
foliows:

DOUBLE PRECISION FUNCTION name (21,22¢83¢¢«¢¢2n)

COMMON STATEMENT

General Form

COMMON /r/a (ki) ,b(Kz2)yeee/r/clks) d(K)yeas

Where: a,bByeec«scsde.. are variable names or array names that can-
not ke dummy arguments.

KisKkzpeeekark «oo are optional and are each composed of one
through seven unsigned integer constants, separated by com-
mas, representing the maximum value of each subscript in the
array.

/xr/... represent optional common block names consisting of
one through six alphameric characters, the first of which is
alphabetic. These names must always be embedded in slashes.

o N M e et s €T i et it et T BB o S Bt 2y
I

The COMMON statement is used to define a storage area that can be
referred to by a calling program and one or more supprograms, and to
specify the names of variables and arrays to be placed in this area.
Therefore, variables or arrays that appear in a calling program or sub-
program can be made to share the same storage locations with variables
or arrays in other subprograms. Also, a commron area can be used to
implicitly transfer arguments between a calling program and a subpro-
gram. Arguments passed in common are subject to the same rules with
regard to type, length, etc., as arguments passed in an argument list
(see the section "Subprograms").

If more than one COMMON statement appears in a calling program or
subprogram, the entries in the statements are cumulative. Redundant
entries are not permitted.

Although the entries in a COMMON statement can contain dimension
information, okject-time dimensions may never be used.

The length of a common area can be increased by using an EQUIVALENCE
statement.

Since the entries in a common area share storage locations, the order

in which they are entered is significant. Ccnsider the following
exanple:

76

Example:

Calling Program

COMMON A, B, C, R(100)
REAL A, B,C
INTEGER R

.

CALL MAPMY (...)

Subprogram

SURROUTINE MAPMY (...)

COMMON X, Y, 2%, S(100)
REAL X,Y,Z
INTEGER S

Explanation:

In the calling rrogram, the statement COMMON A,B,C,R(100) would cause
412 storage locations (four locations per variable) to be reserved in
the following order:

- -1
Beginning A B C | Layout of
of common 4 lccations 4 locations 4 locations | storage
area |

R{(1) . e
4 locations

R(100) H
4 locations |

T S et i i g

The statement COMNMNON X, Y, Z, S(100) would then cause the variables
X, ¥y Z, and S{1)...S(100) to share the same storage space as A, B, C,
and R(1)...R{100), respectively. Note that values for X, ¥, Z, and S(1)
«eeS5(100), because they occupy the same storage locations as A, B, C,
and R(1)...R(100), do not have to be transmitted in the argument list of
a CALL statement.

BELANK AND LABELED COMMON

In the preceding example, the common storage area (common block) is
called a blank common area. That is, no particular name was given to
that area of storage. The variables that appeared in the COMMON state-
ments were assigned locations relative to the beginning of this blank
common area. However, variables and arrays may be placed in separate
common areas. Each of these separate areas (or blocks) is given a name
consisting of one through six alphameric characters (the first of which
is alphabetic); those blocks which have the same name occupy the same
storage space. This permits a calling program to share one common block
with one subprogram and another common block with another subprogram and
also facilitates program documentation.

Those variables that are to be placed in labeled (or named) common
are preceded by a common block name enclosed in slashes. For example,
the variables A,B, and C will be placed in the labeled comron area,
HOLD, by the follcwing statement:

COMMON/HOLD/A, B, C

In a COMMON statement, blank common may be distinguished from labeled
common by preceding the variables in blank common by two consecutive
slashes or, if the variables appear at the beginning of the COMMON
statement, by omitting any block name. For example, in the following
statement:

Specification Statements 77

COMMON A, B, C /ITEMS/ X, ¥, 2 / 7 D, E, F
the variables A, B, C, D, E, and F will be placed in blank common in
that order; the variables X, ¥, and Z will be placed in the common area
labeled ITEMS. .

Blank and labeled common entries appearing in COMMON statements are
cumulative throughout the program. For example, consider the following
two COMMON statements:

COMMON A, B, C /R D, E /S/ F
COMMON G, H /S/ I, J /R/P//W

These two statements have the same effect as the single statement:
COMMON A, B, C, G, H, W /R/ D, E, P /S/ F, 1, J
Example:
Assume that A, B, C, K, X, and Y each occupy four locations of

storage, H and G each occupy eight locations, and D and E each occupy
two locationms.

Calling Program Subprogram
. SUBROUTINE MAPMY (...)

COMMON H, A /JR/ X, D // B .
. COMMON G, ¥, C /R/ K, E
CALL MAPMY(...) .

Explanation:

In the calling program, the statement COMMON H, A /R/ X, D //B causes
16 locations (four locations each for A and B, and eight for H) to be
reserved in blank common in the following order:

Beginning H A B
of blank 8 locations 4 locations 4 locations
common

continuation of blank common

o — i s et S e et

and also causes six locations (four for X, and two for D) to be reserved
in the labeled common area R in the following order:

Beginning X D
of labeled 4 locations 2 locations
common R

continuation of labeled common

oo e et s e oot i W g
IR SN S———

78

The statement COMMON G,Y,C/R/K,E appearing in the subprogram MAPMY
would then cause the variables G, ¥, and C to share the same storage
space (in blank common) as H, A, and B, respectively. It would also
cause the variables K and E to share the same storage space (in labeled
common area R) as X and D, respectively.

ARRANGEMENT OF VARIABLES IN COMMON

Variables in a common block need not be aligned properly. However,
considerable object-time efficiency is lost unless the programmer
ensures that all of the variables have proper boundary alignment.

Proper alignment is achieved either by arranging the variables in a
fixed descending order according to length, or by constructing the block
so that dummy variables force proper alignment. If the fixed order is
used, the variables must appear in the following order:

length of 16 (complex)

length of 8 (complex or real)

length of 4 (real or integer or logical)
length of 2 (integer)

length of 1 (logical)

If the fixed order is not used, proper alignment can be ensured by
constructing the block so that the displacement of each variable can be
evenly divided by the reference number associated with the variable.
(Displacement is the number of storage locations (bytes) from the begin-
ning of the block to the first storage location of the variable.) The
following list shows the reference number for each type of variable:

Type of Length Reference
Variable Specification _Number
Logical 1 1
4 4
Integer 2 2
4)
Real 4 - 4
8 8
Complex 8 8
16 8

The first variable in every common block is positioned as though its
length specification were eight. Therefore, a variable of any length
may be the first assigned within a block. To obtain the proper align-
ment for other variables in the same block, it may be necessary to add a
dummy variable to the block. For example, the variables A, I, and CMPLX
are REAL*U4, INTEGER*4, and COMPLEX*8, respectively, and form a COMMON
block that is defined as:

COMMON A, I, CMPLX

Then, the displacement of these variables within the block is illus-
trated as follows:

Specification Statements 79

1< A 1< I >1< CMPLXmmmm e e >
} 4 storage | 4 storage] 8 storage

i locations] locations] locations

| |]

v v v

displacement displacement displacement

0 storage 4 storage 8 storage

locations locations locations

The displacements of I and CMPLX are evenly divisible by their reference
numbers. However, if I were an integer with a length specification of
2, then CMPLX is not properly aligned (its displacement of 6 is not
evenly divisible by its reference number of 8). In this case, proper
alignment is ensured by inserting a dummy variable with .a length speci-
fication of 2 either between A and I, or between I and CMPLX.

EQUIVALENCE STATEMENT

General Form

|

|

{
s ks e

EQUIVALENCE (a, Lk, Cs -.+), (d, €, £,...)

a, b, ¢ d, &, £,... are variables (not dummy arguments)
that may be subscripted. The subscripts may have two forms:
If the variable is singly subscripted, it refers to the
position of the variable in the array (i.e., first variable,
25th variable, etc.). If the variabkle is multi-subscripted,
it refers to the position in the array in the same fashion
as the rosition is referred to in an arithmetic statement.

Where:

[T M ik R M UGN M et et S S ey
b s e s s S— —— —"

The EQUIVALENCE statement provides the option for controlling the
allocation of data storage within a single program unit. In particular,
when the logic of the program permits it, the number of storage loca-
tions used can be reduced by causing locations to be shared by two or
more variables of the same or different types. Egquivalence between
variables implies storage sharing only, not mathematical equivalence,

Since arrays are stored in a predetermined order (see "Arrangement of
Arrays in Storage"), equivalencing two elements of two different arrays
may implicitly equivalence other elements of the two arrays. The
EQUIVALENCE statement must not contradict itself or any previously esta-
blished equivalences.

Two variables in one common block or in two different common blocks
cannot be made equivalent. However, a variable in a program or a sub-
program can be made equivalent to a variable in a common block. If the
variable that is equivalenced to a variable in the common block is an
element of an array, the implicit equivalencing of the rest of the ele-
ments of the array may extend the size of the common block (see example
2). The size of the common block must not be extended so that elements
are added before the beginning of the established common block.

Example 1:

Assume that in the initial part of a program, an array C of size
100x100 is needed; in the final stages of the program C is no longer
used, but arrays A and B of sizes 50x50 and 100, respectively, are used.
The elements of all three arrays are of the type REAL*4, Storage space
can then be saved by using the statements:

80

DIMENSION C(100,100), A(50,50), B(100)
EQUIVALENCE (C(1), A(1)), (C(2501), B(1))

The array A, which has 2500 elements, can occupy the same storage as
the first 2500 elements of array C since the arrays are not both needed
at the same time. Similarly, the array B can be made to share storage
with elements 2501 to 2600 of array C.

Example_2:

DIMENSION B(5), (10, 10), D(5, 10, 15)
EQUIVALENCE (A, B(1), c(5,3)), (D(5,10,2), E)

This EQUIVALENCE statement specifies that the variables A, B(1), and
C(5,3) are assigned the same storage locations and that variables D(5,
10,2) and E are assigned the same storage locations. It also implies
that B(2) and C(6,3), etc., are assigned the same storage locations.
Note that further equivalence specification of B(2) with any element of
array C other thamn C(6,3) is invalid.

The designations C(5,3) and D(5,10,2) could have been replaced with
the designations C(25) and D(100) and the effect would have been the
same.

Example_3:

COMMON A, B, C
DIMENSION D(3)
EQUIVALENCE (B,D(1))

Explanation:

This would cause a common area to be established containing the vari-
ables A, B, and C. The EQUIVALENCE statement would then cause the vari-
able D(1) to share the same storage location as B, D(2) to share the
same storage location as C, and D(3) would extend the size of the common
area, in the following manner:

A (lowest location of the common area)
B, D(1)
Cc, D(2)

D(3) (highest location of the common area)

The following EQUIVALENCE statement is invalid:

COMMON A, B, C
DIMENSION D(3)
EQUIVALENCE (B, D(3))

because it would force D(1l) to precede A, as follows:

D(1)
A, D(2) (lowest location of the common area)
B, D(3)
C (highest location of the common area)

Specification Statements 81

STORAGE ARRANGEMENT OF VARIABLES IN EQUIVALENCE GROUPS

Variables in an equivalence group may be in any order in main
storage. However, considerable object-time efficiency is lost unless
the programmer ensures that all of the variables have proper boundary
alignment.

Proper alignment is achieved either by arranging the variables in a
fixed, descending order according to length, or by constructing the
group so that dummy variables force proper alignment. If the fixed
order is used, the variables must appear in the following order:

length of 16 (complex)

length of 8 (complex or real)

length of 4 (real or integer or logical)
length of 2 (integer)

length of 1 (logical)

If the fixed order is not used, proper alignment can be ensured by
constructing the group so that the displacement of each variable in the
group can be evenly divided by the reference number associated with the
variable. ({(Displacement is the number of storage locations (bytes) from
the beginning of the group to the first storage location of the vari-
able.) The reference numbers for each type of variable are given in the
section "COMMON Statement." The first variable in each group is posi-
tioned as if its length specification were eight.

For example, the variables A, I, and CMPLX are REAL#*4, INTEGER*4, and
COMPLEX*8, respectively, and are defined as:

DIMENSION A(10), I(16), CMPLX(5)
EQUIVALENCE (A(1), I(7), CMPLX(1))

Then, the displacement of these variables within the group is illus-
trated as follows:

] IT(D)< T 64 storage locations——-——-—-— >I(16)
] |

} | A(D)< 40 storage locations———————— >2(10)
| !

| | CMPLX(1)<-~—=———— 40 storage locations———-—-— >CMPLX(5)
1 I

v v

displacement displacement

0 storage 24 storage

locations locations

The displacements of A and CMPLX are evenly divisible by their reference
numbers. However, if the EQUIVALENCE statement were written as

EQUIVALENCE (A(1), I(6), CMPLX(1))

then CMPLX is not properly aligned (its displacement of 20 is not evenly
divisible by its reference number of 8).

Note that this discussion applies solely to the manner in which the
equivalence group is arranged in storage This arrangement is not
affected by the order in which the variable and array names are listed
in the EQUIVALENCE statement For example, the statement EQUIVALENCE
(A(1),I(7),CMPLX(1)) has exactly the same effect as EQUIVALENCE
(CMPLX (1) ,A(1) ,I(T7)).

82

SUBPROGRAMS

It is sometimes desirable to write a program which, at various
points, requires the same computation to be performed with different
data for each calculation. It would simplify the writing of that pro-
gram if the statements required to perform the desired computation could
be written only once and then could be referred to freely, with each
subsequent reference having the same effect as though these instructions
were written at the point in the program where the reference was made.

For example, to take the cube root of a number, a program must be
written with this object in mind. If a general program were written to
take the cube root of any number, it would be desirable to be able to
combine that program (or subprogram) with other programs where cube root
calculations are required.

The FORTRAN language provides for the above situation through the use
of subprograms. There are two classes of subprograms: FUNCTION subpro-
grams and SUBROUTINE subprograms. In addition, there is a group of
FORTRAN supplied subprograms (see Appendix C). Functions differ from
SUBROUTINE subprograms in that they return at least one value to the
calling program, whereas SUBROUTINE subprograms need not return any.

Statement functions are also discussed in this section since they are
similar to FUNCTION subprograms. The difference is that subprograms are
not in the same program unit as the program unit referring to them,
while statement function definitions and references are in the same pro-
gram unit.

NAMING SUBPROGRAMS

A subprogram name consists of from one through six alphameric charac-
ters, the first of which must be alphabetic. A subprogram name may not
contain special characters (see Appendix A). The type of a function
determines the type of the result that can be returned from it.

e Type Declaration of a Statement Function: Such declaration may be
accomplished in one of three ways: Dby the predefined convention, by
the IMPLICIT statement, or by the explicit specification statements.
Thus, the rules for declaring the type of variables apply to state-
ment functions.

e Type Declaration of FUNCTION Subprograms: The declaration may be
made by the predefined convention, by the IMPLICIT statement, by an
explicit specification in the FUNCTION statement, or by an explicit
specification statement within the FUNCTION subprogram.

The type of a SUBROUTINE subprogram cannot be defined because the
results that are returned to the calling program are dependent only on
the type of the variable names appearing in the argument list of the
calling program and/or the implicit arguments in common.

Subprograms 83

FUNCTIONS
A function is a statement of the relationship between a number of
variables To use a function in FORTRAN, it is necessary to:

1. Define the function (i.e , specify which calculations are to be
performed)

2. Refer to the function by name where required in the program

Function Definition

There are three steps in the definition of a function in FORTRAN:

1. The function must be assigned a unique name by which it may be
called (see the section "Naming Subprograms")
2. The dummy arguments of the function must be stated
3. The procedure for evaluating the function must be stated
Items 2 and 3 are discussed in detail in the sections dealing with

the specific subprogram (e.g., "Statement Functions," "FUNCTION Subpro-
grams, " etc.).

Function Reference

When the name of a function, followed by a list of its arguments,
appears in any FORTRAN expression, it references the function and causes
the computations to be performed as indicated by the function defini-
tion. The resulting quantity replaces the function reference in the
expression, and assumes the type of the function. The type of the name
used for the reference must agree with the type of the name used in the
definition.

STATEMENT FUNCTIONS

A statement function definition specifies operations to be performed
whenever that statement function name appears as a function reference in
another statement in the same program unit.

General Form

name(a,; s82¢8assee¢an) = €xXpression

Where: name is the statement function name (see the section "Naming
Subprograms").

Q3982¢83¢ese¢a8n are durmy arguments. They must be unique
(within the statement) nonsubscripted variables.

expression is any arithmetic or logical expression that does
not contain subscripted variables Any statement function
appearing in this expression must have been defined
previously.

o S i) G A et s e S s W (S e oo S sy
L e

84

The expression to the right of the equal sign defines the operations
to be performed when a reference to this function appears in an assign-
ment statement. The expression defining the function must not contain a
reference to the function.

The dummy arguments enclosed in parentheses following the function
name are dummy variables for which the arguments given in the function
reference are substituted when the function reference is encountered.
The same dummy arguments may be used in more than one statement function
definition, and may be used as variables outside the statement function
definitions. An actual argument in a statement function reference may
be any expression of the same type as the corresponding dummy argument.

All statement function definitions to be used in a program must pre-
cede the first executable statement of the program.
Example: The statement:
FUNC(A,B) = 3.*%A+B**2, +X+Y+Z
defines the statement function FUNC, where FUNC is the function name and
A and B are the dummy arguments. The expression to the right of the
equal sign defines the operations to be performed when the function
reference appears in an arithmetic statement.
The function reference might appear in a statement as follows:
C = FUNC(D,E)
This is equivalent to:
C = 3.*%D+E**2_,+X+Y+7Z
Note the correspondence between the dummy arguments A and B in the func-

tion definition and the actual arguments D and E in the function
reference.

Examples:
vValid statement function definitions and statement function
references:
Definition Reference
SUM(A,B,C,D) = A+B+C+D NET = GROS-SUM(TAX, FICA, HOSP, STOCK)
FUNC(Z) = DA+X*Y*Z ANS = FUNC(RESULT)

VALID(A,B) = .NCT. A .OR. B VAL = TEST .OR. VALID(D,E)
BIGSUM = SUM(A,B,SuM(c,D,E,F),G)

Invalid statement function definitions:

SUBPRG(3,J,K)=3%I+J%%*3 (Arguments must be variables)

SOMEF(A(I),B)=A(I)/B+3, (Arguments must be nonsubscripted)

SUBPROGRAM (A, B)=A**2+4B**2 (Function name exceeds limit of six
characters)

3FUNC(D)=3 14%*E (Function name must begin with an
alphabetic character)

ASF(A)=A+B(I) (Subscripted variable in the expres-
sion)

BAD(A, B)=A+B+EAL(C,D) (Recursive definition not permitted)

Subprograms 85

Form C28-6515-7
Page revised 3/3/69 by TNL N28-0251

Invalid statement function references (the functions are defined
as above): ,

WRONG = SUM(TAX, FICA) (Number of arguments does not agree
) ‘ with above definition)
- MIX’ijEUNC(I) (Type of argument does not agree with

above definition)

FUNCTION SUBPROGRAMS

The FUNCTION subprogram is a FORTRAN subprogram consisting of a
FUNCTION statement followed by other statements including at least one
RETURN statement. It is an independently written program that is
executed wherever its name is referenced in another program.

—— e ————————————————————————————_—————— — —————

General Form

o —— —— — —————————————————————————— —————————————— ——————————— o ——

Type FUNCTION name*s (ai,224234+++,2n)

Where: Type is INTEGER, REAL, DOUBLE PRECISION, COMPLEX, or LOSIC-
AL. Its inclusion is optional.

name is the name of the FUNCTION.

*s represents one of the permissible length specifications
for its associated type. It may be included optionally only
when Type is specified. It must not be used when DOUBLE
PRECISION is specified.

Q1482483+ ..,3n are dummy arguments. They must be nonsub-
scripted variable, array, or dummy names of SUBROUTINE or
other FUNCTION subprograms. (There must be at least one
argument in the argument list.)

[et e e At i R R i ko i S e Bl st s S U S

A type declaration for a function name may be made by the predefined
convention, by an IMPLICIT statement, by an explicit specification in
the FUNCTION statement, or by an explicit specification statement within
the FUNCTION subprogram.

A type declaration in the FUNCTION statement overrides any type
declaration by an explicit specification statement within the FUNCTION
subprogram. The function must also be typed in the calling program, if
the predefined convention is not used.

Since the FUNCTION is a separate subprogram, the variables and state-
ment numbers within it do not relate to any other program.

The FUNCTION statement must be the first statement in the subprogram.
The FUNCTION subprogram may contain any FORTRAN statement except a
SUBROUTINE statement, another FUNCTION statement, or a BLOCK DATA state-
ment, If an IMPLICIT statement is used in a FUNCTION subprogram, it
must immediately follow the FUNCTION statement.

The name of the function must be assigned a value at least once in
the subprogram -- either as the variable name to the left of the egual
sign in an assignment statement, as an argument of a CALL statement, or
in an input 1list (READ statement) within the subprogram.

86

The dummy arguments of the FUNCTION subprogram
(i.e.y @1482y23¢ «e«sa8n) mMay be considered to be dummy variable names.
These are replaced at the time of execution by the actual arguments sup-
rlied in the function reference in the calling program Additional
information akout arguments is in the section "Arguments in a FUNCTION
or SUBROUTINE Subprogram."

The relationship between variable names used as arguments in the cal-
ling program and the dummy variables used as arguments in the FUNCTION
subprogram is illustrated in the following example:

Example 1:
Calling Program FUNCTION Subprogram
FUNCTION CALC (A,B,J)
. I = J*%2
ANS = ROOT1*CALC(X,Y,I) .
. CALC = A**I/B
RETURN
END

Explanation:

In this example, the values of X, Y, and I are used in the FUNCTION
subprogram as the values of A, B, and J, respectively. The value of
CALC is computed, and this value is returned tc the calling program
where the value of ANS is computed. The variable I in the argument list
of CALC in the calling program is not the same as the variable I
appearing in the subprogram.

Example 2:
Calling Program FUNCTION Subprogram
INTEGER*2 CALC INTEGER FUNCTION CALC*2(I,J,K)
ANS=ROOT1*CALC{(N, M, P) CALC = I+J+K**2

RETURN
END

Explanation:

The FUNCTION subprogram CALC is declared as type INTEGER of length 2.

Subprograms 87

RETURN and END Statements in a FUNCTION Subprogram

All FUNCTION subprograms must contain an END statement and at least
one RETURN statement. The END statement specifies, for the compiler,
the end of the subprogram; the RETURN statement signifies a logical con-
clusion of the computation and returns the computed value and control to
the calling program. There may be more than one RETURN statement in a
FORTRAN subprogram.

Example:

FUNCTICN DAV (D,E,F)
IF (D-E) 10, 20, 30
10 A = D+2.0%E

20 DAV = A+B**2

RETURN
30 DAV = B*#*2

RETURN
END

SUBROUTINE SUBPROGRAMS

The SUBROUTINE subprogram is similar to the FUNCTION subprogram in
many respects. The rules for naming FUNCTION and SUBROUTINE subprograms
are similar. They both require an END statement, and they both contain
the same sort of dummy arguments. Like the FUNCTION subprogram, the
SUBROUTINE subprogram is a set of commonly used computations, but it
need not return any results to the calling program, as does the FUNCTION
subprogram.

The SUBROUTINE subprogram is referenced by the CALL statement, which
consists of the word CALL followed by the name of the subprogram and its
parenthesized arguments,

88

|
|
|
|
-

General Form

SUBROUTINE name {(a4,@2433y ee«¢an)

RETURN

END

Where: name is the SUBROUTINE name (see the section “"Naming
Subprograms").

244824834++4,an are dummy arguments. (There need not be
any.) Each argument used must be a nonsubscripted variable
or array name, the durmy name of another SUBROUTINE or
FUNCTION subprogram, or of the form * where the character
"*" denotes a return point specified by a statement number
in the calling program.

o ot et S o ST M et it MR e G ol Sk et ot et i o R S et W sy
e e e e e e e e s e — s — s S e ot s e s, s it

Since the SUBRCUTINE is a separate program, the variables and state-
ment numbers within it do not relate to any other program.

The SUBROUTINE statement must be the first statement in the subpro-
gram. The SUBROUTINE subprogram may contain any FORTRAN statement
except a FUNCTION statement, another SUBROUTINE statement, or a BLOCK
DATA statement. If an IMPLICIT statement is used in a SUBROUTINE sub-
program, it must inrmediately follow the SUBROUTINE statement.

The SUBROUTINE subprogram may use one or more of its arguments to
return values to the calling program. Any arguments so used must appear
to the left of an arithmetic statement in an input list within the sub-
program, as arguments of a CALL statement, or as arguments in a function
reference. The SUBROUTINE name must not appear in any other statement
in the SUBROUTINE subprogram.

The dummy arguments (a;, 32, @3,...,an) may be considered dummy vari-
able names that are replaced at the time of execution by the actual
arguments supplied in the CALL statement. Additional information about
dummy arguments is in the section "Arguments in a FUNCTION or SUBROUTINE
Subprogram. "

Example: The relationship between variable names used as arguments in
the calling program and the dummy variable used as arguments in the SUB-
ROUTINE subprogram is illustrated in the following example. The object
of the subprogram is to "copy" one array directly into another.

Calling Program SUBROUTINE Sukprogram
DIMENSION X(100),Y(100)

. SUBROUTINE COPY(A,B,N)

. DIMENSION A (100),B(100)
K = 100 DO 10 I =1, N
CALL COPY (X,Y,K) 10 B(I) = A (1)

. RETURN
. END

Subprograms 89

CALL Statement

The CALL statemrwent is used to call a SUBROUTINE subprogram.

1} - - 1
| General Form |
L J
) h
| CALL name (ai1,32/3@3sse+v2n) |
| I
I |
| Where: name is the name of a SUBROUTINE subprogram. |
| |
| _ |
] 24,82,834+.+48n are the actual arguments that are being sup- |
1 plied to the SUBROUTINE subprogram. Each may be of the form |
] én where n is a statement number (see "RETURN Statements in |
| a SUBROUTINE Subprogram®). |
L - J
Examples:

CALL OUT

CALL MATMPY (X,5,40,Y,7,2)

CALL QDRTIC (X,Y,Z,RO0T1,RCOT2)

CALL SUBl(X+Y*5,ABDF,SINE)

The CALL statement transfers control to the SUBROUTINE subprogram,
and replaces the dummy variables with the value of the actual arguments
that appear in the CALL statement.

RETURN Statements in a SUBROUTINE Subprogram

r 1
| General Form]
+ it 4
] RETURN |
| |
| RETURN i |
! I
| Where: i is an integer constant or variable of length 4 whose |
] value, say n, denotes the nth statement number in the argu- |
] ment list of a SUBROUTINE statement; i may be specified only |
] in a SUBROUTINE subprogram. [
L —_—

The normal sequence of execution following the RETURN statement of a
SUBROUTINE subprogram is to the next statement following the CALL in the
calling program. It is also possible to return to any numbered state-
ment in the calling program by using a return of the type RETURN i.
Returns of the type RETURN may be made in either a SUBROUTINE or
FUNCTION subprogram (see "RETURN and END Statements in a FUNCTION Sub-
program"). Returns of the type RETURN i may only be made in a
SUBROUTINE subprogram. In a main program, a RETURN statement performs
the same function as a STOP statement

90

Example:

Calling Program Subprogram
. SUBROUTINE SUB (X, Y,Z,*,*)

. .

10 CALL SUB (A,B,C, &30, §40)

20y = A + B 100 IF (M) 200,300,400
N 200 RETURN
. 300 RETURN 1
. 400 RETURN 2

30 Y=A+C END

Explanation:

In the preceding example, execution of statement 10 in the calling
program causes entry into subprogram SUB. When statement 100 is
executed, the return to the calling program will be to statement 20, 30,
or 40, if M is less than, equal to, or greater than zero, respectively.

A CALL statement that uses a RETURN i form may be best understood by
comparing it to a CALL and computed GO TO statement in sequence. For
example, the following CALL statement:

CALL SUB (P, §20,Q, §35,R, §22)
is equivalent to:

CALL SUB (P,Q,R,I)
GO TO (20,35,22),1

where the index I is assigned a value of 1, 2, or 3 in the called
subprogram.

ARGUMENTS IN A FUNCTION OR SUBROUTINE SUBPROGRAM

The dummy arguments of a subprogram appear after the FUNCTION or
SUBROUTINE name and are enclosed in parentheses. They are replaced at
the time of execution by the actual arguments supplied in the CALL state-
ment or function reference in the calling program. The dummy argu-
ments must correspond in number, order, type, and length to the actual
arguments. For example, if an actual argument is an integer constant,
then the corresponding dummy argument must be an integer of length 4.
If a dummy argument is an array, the corresponding actual argument must
be (1) an array, or (2) an array element. In the first instance, the
size of the dummy array must not exceed the size of the actual array.
In the second, the size of the dummy array must not exceed the size of
that portion of the actual array which follows and includes the desig-
nated element.

Subprograms 91

The actual arguments can be:
Any type of constant except hexadecimal

Any type of subscripted or nonsubscripted variable (except one last
defined by an ASSIGN statement)

e An array name
e An arithmetic or logical expression

¢ The name of a FUNCTION or SUBROUTINE subprogram

A statement number (for a SUBROUTINE subprogram only, see the sec-
tion "RETURN Statements in a SUBROUTINE Subprogram")

If a literal constant is passed as an argument, the actual argument
passed is the literal as defined, without delimiting apostrophes or the
preceding wH specification. An actual argument which is the name of a
subprogram must be identified by an EXTERNAL statement containing that
name.

When the dummy argument is an array name, an appropriate DIMENSION or
explicit specification statement must appear in the subprogram. None of
the dummy arguments may appear in an EQUIVALENCE or COMMON statement.

If a dummy argument is assigned a value in the subprogram, the corre-
sponding actual argument must be a subscripted or unsubscripted variable
name, or an array name. A constant should not be specified as an actual
argument unless the programmer is certain that the corresponding dummy
argument is not assigned a value in the subprogram.

A referenced subprogram cannot define dummy arguments such that the
subprogram reference causes those arguments to be associated with other
dummy arguments within the subprogram or with variables in COMMON. For
example, if the function DERIV is defined as

FUNCTION DERIV (X,Y,2)
COMMON W

and if the following statements are included in the calling program

COMMON B

C = DERIV (A,B,R)

then X, ¥, Z, and W cannot be defined (e.g., cannot appear to the left
of an equal sign in an arithmetic statement) in the function DERIV,

Enclosing a dummy argument in slashes (e.g., (/X/,/Y¥/)) ensures that
it will be referred to in the subprogram by location. In reference by
location, the subprogram reserves no storage for the dummy argument.

The subprogram uses the location of the corresponding actual argument
for its calculations. This contrasts with reference by value in which
the dummy argument is assigned storage in the subprogram. When the sub-
program is entered, the value of the actual argument is brought in from
the calling program. When the subprogram terminates, the final value is
transmitted back to the actual argument. An argument which is an ex-
pression (other than a simple variable) is always referred to by value
unless its corresponding dummy argument is enclosed in slashes.

92

MULTIPLE ENTRY INTC A SUBPROGRAM

The standard (normal) entry into a SUBROUTINE subprogram from the
calling program is made by a CALL statement that references the subpro-
gram name. The standard entry into a FUNCTICN subprogram is made by a
function reference in an arithmetic expression Entry is made at the
first executable statement following the SUBROUTINE or FUNCTION
statement.

It is also possible to enter a subprogram (either SUBROUTINE or
FUNCTION) by a CALL statement or a function reference that references an
ENTRY statement in the subprogram. Entry is made at the first execut-
able statement following the ENTRY statement.

General Form |

ENTRY name (a,,82,83¢¢-¢2n)

Where: name is the name of an entry point (see the section "Naming
Subprograms").

24,482,834+ 0+¢438n are the dummy arguments corresponding to an
actual argument in a CALL statement or in a function
reference.

[o S s e S S et N et W sy

ENTRY statements are nonexecutable and do not affect control sequenc-
ing during execution of a subprogram. A subprogram must not reference
itself directly or through any of its entry points. Entry cannot be
made into the range of a DO. The appearance of an ENTRY statement does
not alter the rule that statement functions in subprograms must precede
the first executakle statement of the subprogram.

The dummy arguments in the ENTRY statement need not agree in order,
type, or number with the dummy arguments in the SUBROUTINE or FUNCTION
statement or any cther ENTRY statement in the subprogram. However, the
arguments for each CALL or function reference must agree in order, type,
and number with the dummy arguments in the SUBROUTINE, FUNCTION, or
ENTRY statement that it references.

Entry into a sukprogram initializes the dummy arguments of the
referenced ENTRY statement. Thus, all appearances of these arguments in
the whole subprogram are initialized. Arguments that were referenced by
value at some previous use of the subprogram need not arpear in the
argument list of the ENTRY statement. 1In this case, the reference will
not transmit new values for the arguments not listed. A function
reference, and hence the corresponding ENTRY statement, must have at
least one argument.

If a dummy argument is listed at more than cne entry point, it must
be consistently referenced either by name or by value. A dummy argument
must not be used in any executable statement in the subprogram unless it
has been previocusly defined as a dummy argument in an ENTRY, SUBROUTINE,
or FUNCTION statement.

Subprograms 93

If information for an object-time dimensicn array is passed in a
reference to an ENTIRY statement, the array name and all of its dimension
parameters (except any that are in a common area) must appear in the
argument list of the ENTRY statement.

In a FUNCTICN subprogram, the types of the function name and entry
name are determined by the FUNCTION and ENTRY statements. The types of
these variables (i.e., the function name and entry names) can be dif-
ferent; the variakles are treated as if they were equivalenced. After
one of these variakles is assigned a value in the subprogram, the others
become indeterminate in value.

Upon exit from a FUNCTION subprogram, the value returned is the value
last assigned to the function name or any entry name. It is returned as
though it were assigned to the name in the current function reference.
If the last value is assigned to a different entry name, and that entry
name differs in type from the name in the current function reference,
the value of the function is undefined.

Example 1:

Calling Program

TABLE(1) = FUNC(W,X,Y,2)
DO 5 I=2,100
TARLE(I) = ENT(U)

5 CONTINUE

Subprogram
FUNCTION FUNC(T,A,B,C)

ENTRY ENT(T)

-

FUNC = A * B + C ** T
RETURN

END

Explanation: The FUNCTION subprogram is entered once at entry point
FUNC and initial values are assigned to the dummy arguments T, A, B, and
C. Thereafter, the FUNCTION subprogram is entered at entry point ENT,
and only one value is transmitted. No new values are passed for A, B,
or C, so their values are changed only by operations in the subprogram.
(Note that the original reference to A, B, and C must be by value -- not
a reference by location.)

Each time, the result of the FUNCTION subprogram is returned to the
main program function reference by the variable FUNC. If FUNC and ENT
had been of different types, it would have been necessary to have
returned the result by FUNC the first time and by ENT the rest of the
times.

94

Example 2:

Calling Program Subprogram
. SUBROUTINE SUB1 (U,V,W,X,Y,Z)
. RETURN
. ENTRY SUB2 (T, *, *)
CALL SUB1 (a,R,C,D,E,F) U = V¥ W+T
. ENTRY SUB3 (%, %)
. X = Y**7Z7
. 50 IF (W) 100, 200, 300
CALL SUB2(G, £10, £20) 100 RETURN 1
Y =G 200 RETURN 2
. 300 RETURN
. END
CALL suB3(&10,&20)
Y = A+B
10 Y = C*+D
20 Y = E+F
Explanation:

In this example, a call to SUBl merely performs initialization. A
subsequent call to SUB2 or SUB3 causes execution of a different section
of the SUB1 subroutine. Then, depending upon the result of the arith-
metic IF statement at statement 50, control returns to the calling pro-

gram at statement 10, 20, or the statement following the call.

EXTERNAL STATEMENT

[- T T TS T T T T T T T T T T T T T T ST T T 1
| General Form |
| 4
r 1
| EXTERNAL a,b,Cyeee |
l I
| Where: a,bscs.«. are names of subprograms that are passed as argu- |
| ments to other subprograms.]
e e e e e e e e e e e e o e o e e e e e e e e e e . o e e e e e e o o e et e 2 e e e e o o e e e o e o e o e e e e e e e o e e o e J

The EXTERNAL statement is a specification statement, and must precede
statement function definitions and the executable statements.

If the name of a FORTRAN supplied in-line function is used in an
EXTERNAL statement, the function is not expanded in-line when it appears
as a function reference. Instead, it is assumed that the function is
supplied by the user or is part of the FORTRAN-supplied library. (The
FORTRAN-supplied in-line and out-of-line functions are given in Appendix

-) : !

The name of any subprogram that is passed as an argument to another
subprogram must appear in an EXTERNAL statement in the calling program.
For example, assume ' that SUB and MULT are subprogram names in the fol-
lowing statements:)

Subprograms 95

Calling Program Subprogram

SUBROUTINE SUB(K, Y, 2)
. IF (K) 4,6,6
. 4 D = Y (K,Z%*2)
EXTERNAL MULT

. .

CALL SUB (J, MULT,C) 6 RETURN
. END

Explanation:

In this example, the subprogram name MULT is used as an argument in
the subprogram SUB. The subprogram name MULT is passed to the dummy
variable Y as are the variables J and C passed to the dummy variables K
and Z, respectively. The subprogram MULT is called and executed only if
the value of K is negative.

Example 2:
. SUBROUTINE SUB (W,X,Y,2)
CALL SUB (a,B,MULT (C,D),37) .
. RETURN
. END

Explanation:

In this example, an EXTERNAL statement is not required because the
subprogram named MULT is not an argument; it is executed first and the
result becomes the argument.

OBJECT-TIME DIMENSICNS

If an array is used in a FUNCTION or SUBROUTINE subprogram and its
name is not in a COMMON statement within the subprogram, the absolute
dimensions of the array do not have to be explicitly declared in the
subprogram by constants. Instead, an explicit specification statement
or DIMENSION statement appearing in the subprogram may contain integer
variables of length 4 to specify the size of the array. When the sub-
program is called, these integer variables receive their values from the
actual arguments in the calling program reference or from common. Thus,
the dimensions of a dummy array arpearing in a subprogram may change
each time the subrrogram is called.

96

The absolute dimensions of an array must be declared in the calling
program or in a higher level calling program, and the array name must be
passed to the subrrogram in the argument list of the calling program.
The dimensions passed to the subprogram must be less than or equal to
the absolute dimensions of the array declared in the calling program.
The variable dimension size can be passed through more than one level of
subprogram (i.e., to a subprogram that calls another subprogram, passing
it dimension information).

Integer variables in the explicit specification or DIMENSION state-
ment that provide dimension information must not be redefined within the
subprogram; i.e., they must not appear to the left of an equal sign.

The name of an array with object-time dimensions cannot agpear in a
COMMCN statement.

Example 1:

o SUBROUTINE SUBR1(...R,L,M...)

DIMENSION A(5,10)... .
. REAL...R(L,M)...

CALL SUBR1(ee<B,5,10e0.)

. DO 10 I=1,L
. DO 10 J=1,M
. 10 R(I,J)=0.
END .
RETURN
END

Explanation:

This example shows the use of object-time dimensions to supply
dimension information to a subroutine that will perform some operation
on an array of any specified size. In this case, the dimensions passed
are those specified for the array in the calling program, i.e., the full
size of the array.

Subprograms 97

Example 2:

. SUBROUTINE SUBR1(¢«RyL;Mess)

DIMENSION A(5,10)

. REAL.. R(L,M) ..
I =4 .

. DO 10 I=1,L

. DO 10 J=1,M

. 10 R(I1,J)=0.
Jg =17 B

. RETURN
CALL SUBR1(ee¢eBAyIyJess) .

. END

END

Explanation:

This example shows the use of object-time dimensions to specify a
subset of the extent of an array to a subprogram. The effect of this
coding is the same as if another array, B, of dimensions (4,7) had been
defined in the calling program and had been made equivalent to array A;

the array B and its dimensions would then have been passed to SUBR1 as
follows:

.

DIMENSION...A(5,10),B(4,7)...

EQUIVALENCE (A(1,1),B(1,1))

e o

CALL SUBRL (eeeB,I,Jees)

END

98

BLOCK DATA SUBPROGRAM

To initialize variables in a labeled (named) common block, a separate
subprogram must be written. This separate subprogram contains only the
DATA, COMMON, DIMENSION, EQUIVALENCE, and Type statements associated
with the data being defined. Data may not be initialized in unlabeled
common «

General Form |

BLOCK DATA I
. I

. |

. |

l

END

(o o et s et i sy W W

1. The BLOCK DATA subprogram may not contain any executable
statements.

2. The BLOCK DATA statement must be the first statement in the subpro-
gram. If an IMPLICIT statement is used in a BLOCK DATA subprogram,
it must immediately follow the BLOCK DATA statement. The COMMON
statement must precede the data initialization statements.

3. Any main program or subprogram using a common block must contain a
COMMON statement defining that block. If initial values are to be
assigned, a BLOCK DATA subprogram is necessary.

4. All elements of a common block must be listed in the COMMON state-
ment, even though they are not all initialized; for example, the
variable A in the COMMON statement in the following example does
not appear in the data initialization statement:

BLOCK DATA
COMMON/ELN/C, A, B/RMG/Z, Y

REAL B(4)/1.0,1.2,2%1.3/,2*%8(3)/3%7,64980825D0/
COMPLEX C/(2.4,3.769)/

END

5. Data may be entered into more than one common block in a single
BLOCK DATA subprogram.

6. Only one BLOCK DATA subprogram may be used to enter data into a
particular common block.

Subprograms 99

APPENDIX A: SOURCE PROGRAM CHARACTERS

T T

i Alphabetic Characters | Numeric Characters
b frmmm e
I A | 0

I B I 1

] C I 2

I D | 3

| E I 4

I F | 5

I G I 6

1 H I 7

I 1 | 8

| J | 9

| K I

I L l

| M b —————-
| N | Special Characters
| 0 b

| P | (blank)

| Q | +

| R | -

| S | /

I T | =

| U | .

| v |)

| W | *

| X [‘

| Y | (

| z | * (apostrophe)
| $ | &

L 1

b e s e o e e s it e, e et e et et ol . . —— — — — — —— — — o kit s, aoe]

The 49 characters listed above constitute the set of characters
acceptable by FORTRAN, except in literal data where any valid card code
is acceptable.

100

APPENLCIX B: OTHER FORTRAN STATEMENTS ACCEPTED BY FORTRAN IV

This appendix discusses those features of previcusly implemented
FORTRAN IV languages that are incorporated into the System/360 FORTRAN
IV language. The inclusion of these additional language facilities
allows existing FORTRAN programs to be recompiled for use on the IBM
System/360 with little or no reprogramming.

READ STATEMENT

General Form

READ b,list

Where: Db is the statement number or array name of the FORMAT state-
ment describing the data.

list is a series of variable or array names, separated by
commas, which may be indexed and incremented. They specify
the numker of items to be read and the locations in storage
into which the data is placed.

[o Gk S Ml il e o el Ak o s, KR et et G
O g S U U N G S S U S SR S—

This statement has the effect of a READ (n,b) list statement where b
and list are defined as above, and the value of n is installation
dependent.

PUNCH STATEMENT

T 1
] General Form |
1
T 1
] PUNCH b, list I
| ' I
! |
| . |
] Where: Db is the statement number or array name of the FORMAT state- |
| ment describing the data. |
| |
| |
1 o |
1 list is a series of variable or array names, separated by |
i comras, which may be indexed and incremented. They specify |
} the numkber of items to be written and the locations in]
| storage from which the data is taken. |
e e e e e e e e e e e e e e o o e 2 e e e e e e e 2 e e e e e e e e e e e e 2 e e o J
This statement has the effect of a WRITE (n,b) list statement where b

and list are defined as above, and the value of n is installation
dependent.

Appendix B: Other FORTRAN Statements Accepted by FORTRAN IV 101

PRINT STATEMENT

General Form

PRINT b, list

Where: b is the statement number or array name of the FORMAT state-
ment describing the data.

list is a series of variable or array names, separated by
cormas which may be indexed and incremented. They specify
the number of items to ke written and the locations in
storage from which the data is taken.

[S e ot MR o e e St o . B et (s S sy
b e e e ————— e e)

This statement has the effect of a WRITE (n,b) list statement where b
and list are defined as above, and the value of n is installation
dependent.

102

APPENDIX C: FORTRAN-SUPPLIED SUBPROGRAMS

The FORTRAN-suprplied subprograms are of two types: mathematical sub-
programs and service subprograms. The mathematical subprograms corres-
pond to a FUNCTION subprogram; the service subprograms correspond to a
SUBROUTINE subprogram. An in-line subprogram is inserted by the FORTRAN
compiler at any point in the program where the function is referenced.
An out-of-line subprogram is located in a library and the compiler
generates an external reference to it. A detailed description of out-
of-line mathematical subprograms and service subprograms is given in the
publication IBM System/360: FORTRAN IV Library Subprograms, Form
C28-6596. Takle 4 shows mathematical function subprograms, and Table 5
shows out-of-line service subprograms. An asterisk in the in-line/
out-of-line column of Table 4 identifies the function as one defined as
an intrinsic function in USA FORTRAN 1IV.

Appendix C: FORTRAN-Supplied Subprograms 103

Table 4. Mathematical Function Subprograms (Part 1 of 3)
T b L] T L T T 1
] t			Type of		
	Entry] In-Line (I)	No. of	Type of	Function
Function [Name	Definition	out-of-Line (0)}	Arg.	Arguments	Value
I 1 4 4 [l 4] 4					
L} L] L v k] T L) 1					
Exponential	EXP	e@¥9	o	1	Real *4
]	[DEXP	earg	o)	1 {	Real #*8
	CEXP	earg	o	1	Complex *8
	CDEXP	¢4X9 i (0]	1	Complex #*16	Complex #*16]
L 1 4 1 I } 1 4					
] T L] T T T T a1					
{Natural	ALOG	1n (Arg)	(o)	1	Real *u4
]Logarithm	DLOG	1n (Arg)	o	1	Real *8
	CLOG	1n (Arg)	o { 1	Complex *8	Complex *8
	CDLOG {1n (Arg)	(o]	1	Complex *16	Complex *16
F ¥ t { 1 : 4 {					
Common {ALOG10	1log,0 (Arg)	0] i 1	Real *4	Real *4	
]Logarithm	D.OG10	1log, 0 {Arg) i [¢) i 1	[Real *8	Real *8	
8 4 3 4 . 1 1					
r T] 1] T T T					
Arcsine	ARSIN }arcsin (Arg)] [¢]] 1	Real *4	Real *4 1		
	{	DARSIN}arcsin (Arg)	[¢) i 1	Real *8	Real *8
¢ { t ¥ } + 3 {					
Axrccosine JARCOS	arccos (Arqg)	(o)	1	Real *4	Real *4
{DARCOS	arccos (Arg) H o] 1	Real *8	Real #*8		
¢ + t 3 -t 1 1					
Arctangent?®	ATAN	arctan (Arg)	o}] 1	Real *4	Real *4
1	ATAN2	arctan (Arg,/Arg,)	(o) i 2	Real *u	Real *U4
	DATAN	arctan (Arqg)	[¢]	1	Real #*8
	DATAN2}{arctan (Arg,/Arg,)	(o]	2	Real *8	Real *8
F + ¢ { { 4 { 1					
Trigonometric	SIN sin (Arg)	o	1	Real *4	Real *4
Sine	DSIN sin (Arg)	o i 1	Real *8	Real #*8	
(Argument in]JCSIN sin (Axrg)	[¢]	1	[Complex *8	Complex *8	
radians)	{CDSIN	sin (Arqg) i (@] i 1	Complex *16	Complex *16	
b t $ + + + 1					
Trigonometric	COS Jcos (Arg) 1 [¢]	1	Real *4	Real *4	
{Cosine {DCOs cos (Arqg) i [¢)] 1	Real *8	Real *8			
] (Argument in	CCOS cos (Arg)] (o)	1	Complex *8	Complex *8	
radians) {CDCOS	cos (Arg)	o	1	Complex *16	Complex *16
t $ ¥ 4 ' 1 1					
Trigonometric	TAN tan (Arg) i (o) i 1 iReal *4	Real *4			
Tangent					
(Argument in	DTAN tan (Arg)	[¢]	1	Real *8	Real *8
radians)]					
b + { $ 4 = : {					
Trigonometric	COTAN	cotan (Arg)		1	Real #4
]Cotangent	i			I	
(Argument in	DCOTAN]cotan (Arg)	o	1	Real #8	Real *8
radians)		I i [n		
b + fommee ¥ t ¢ : 1					
Square Root	SQRT I(I-\rg)vQ	o	1	Real *4	Real *4
	DSORT	(Arg)	o}] 1 JReal *8	Real *8	
	CSORT {(arg)’	o	1	Complex *8	Complex *8
!	CDSQRT{ (arg)®	o] 1	Complex *16	Complex *16	
'L L i 1 1 L 1 _'					
	*Two arguments must be supplied for ATAN2 and DATAN2.				
L ——d

104

Table 4. Mathematical Function Subprograms (Part 2 of 3)

r T T T T T T 1
| | i |) | | |Type of |
] |Entry | | In-Line (I) |No. of]| Type of |Function |
| Function |Name | Definition |out-of-Line (0)] Arg. | Arguments |Value |
F - ¥ T R 1 —mmmmmmmt ¥ o 1
| Hyperbolic |TANH |tanh (Arg)] o | 1 |Real *4 |Real *Uu |
| Tangent {DTANH |tanh (Arg) | o] | 1 |Real *8 |Rea” *8 |
prmmmmm o frmmmm oo fommmmm o t---m-- oo fmmmmmoomeee 4
|Hyperbolic |SINH |sinh (Arg) | [¢) | 1 |Real *u |Real *4 |
|Sine |DSINH |sinh (Arg) | (¢} | 1 |Real *8 |Real *8 |
I e fommmmm oo T fm=mommome- 4
|Hyperbolic |COSH |cosh (Arg) 1 [¢] | 1 |Real *4 |Real *u4 |
|Cosine |DCOSH |cosh (Arg) | [¢] { 1 |Real *8 |Real *8 |
| SN I, J —— } 1 ——
r + T T B i R + ___________ {
Error Function	ERF	2 ex -u?	o	1	Real *u	Real #u4
IDERF	[S e du	0	1	Real *8	Real *8	
		0				
______ 3 'y 1] 4 4 4						
Ll T T T T T a						
Complemented	ERFC	l-erf (x)	o 1 1	Real *4	Real *u	
Error Function	DERFC]	1	Real *8	Real *8
' ¢ + 4 ¥ + t 1						
Gamma	GAMMA	o x-1 -u	¢}	1 [Real #i	Real *i	
1	DGAMMA	S u e du	(o}	1 JReal *8	Real *8	
		Jo				
1 } 4 4 B 4 R, {						
r T T T T T T						
Log-gamma	ALGAMA		o]	1	Real *4	Real *4
	DLGAMA	1oge l(x)	o)] 1	Real *8	Real *8	
e ooooomt - + --- 4 1 T 4						
Modular	MOD	Arg, (mod Arg,)=	I *	2)Integer *U4	Integer *u4
Arithmetic?	AMOD	Arg,;- [x]1*Arg,	I *	2	Real *4	Real*l
1	DMOD	Where: [x] is the	I *	2	Real *8	Real *8
		largest integer				
		whose magnitude				
		does not exceed				
1		the magnitude of				
		Args /Args. The				
		sign of the inte-				
		ger is the same				
	las the sign of					
		Args/Arga.				
[1 e e e e e e e e e e e e e e o e 4 4 - -						
L) T + T T T 'l						
Absolute value	IABS		Arg] i I =	1	Integer *U4	Integer *4
	ABs		I] 1	Real %t	Real *u	
	DABS	1 I *	1	Real *8	Real *8	
! b + 4 ¥ 1 : {						
	CABS	J(a2+b2) for a+bi	o	1	Complex *8	Real *Uu
	CDABS	i [¢]	1	Complex *16	Real *8	
F : + ¥ 4 ¢ 1 1						
] Truncation { INT]Sign of Arg times	I *	1	Real *Uu4	Integer *4		
		largest integer				
[<	Arg			I [
	AINT		I *	1	Real *u4	Real *u4
	IDINT		I =	1	Real *8	Integer *4
1 1 4 N DRI S 4 B						
L T T T - + T T 1						
Largest value3	AMAX0	Max(Arg;,Args,...)	o * i 22	Integer *4	Real *U	
	AMAXL		o *	22	Real *U4	Real *u4
I	MAX0]	o *	22	Integer *4	Integer *U4	
	MAX1		o *	22	Real *u4	Integer *4
	DMAX1		o *	22	Real *8	Real *8
% 1 L 1 1 L L JI						
IleOD and AMOD are not defined when the value of the second argument is zero.						
2For the FORTRAN IV (H) compiler, these functions are in-line.						
	*USA FORTRAN IV intrinsic function					
L — e o e e 2 e 2 2 e e 2 o 2 e o e . e o S 2 o e 2 e e e o o 2 e Jd

Appendix C: FORTRAN-Supplied Subprograms 105

Table 4. Mathematical Function Subprograms (Part 3 of 3)

r
|3For the FORTRAN IV (H) compiler, these functions are in-line.

| “SIGN, ISIGN, and DSIGN are not defined when the value of the second argument is zero.

T T T T T T T 1
I | I) | I |Type of |
1 | Entry | | In-Line (I) | of | Type of |Function
1 Function |Name | Definition |out-of-Line (0)| Arg. | Arguments |Value |
L 1 } d d 4 4 ____,4
T T 12 T T T T
|Smallest JAMINO {Min(Args,Argsz,...)| o *] 22 |Integer *4 |Real *4 |
| value3 |AMIN1 | | o * | 22 |Real *4 |Real #*4 |
1 |MINO | 1 o * | 22 |Integer *4 |Integer *4 |
| |MIN1T |] o * | 22 |Real *4 | Integer *4 |
{ |DMIND | | o * | 22 |Real *8 |Real *8 |
L 1 1 1 4] 4 4
T T s T T T T 1
|Float | FLOAT |Convert from | I = | 1 |Integer *4 |Real *4 |
i | DFLOAT| integer to real 1 I | 1 |Integer *U4 |Real *8 |
|8] 1 3 4 31 4 . d
L T T T T T T 1
|Fix |IFIX |Convert from] I * | 1 |Real *4 |Integer *4 |
] JHFIX |real to integer | I | 1 |Real *4 |Integer *2 |
b ¢ - — t t + 1
|Transfer of]SIGN |]sign of Arg, times]| I =* | 2 Real #*4 |Real *4 |
|sign® | | 1Arg, | | | | |
i]ISIGN | | I * | 2 Integer *4 |Integer *4 |
] | DSIGN | | I * 1 2 |Real *8 |Real *8 |
b= } + - } } + i
|Positive |DIM |Args-Min(Arg,, | I * | 2 Real *4 |Real *4 |
jdifference |IDIM |Argz) | I * | 2 Integer *4 |Integer *4 |
} 1 LR 3 4 4 4
¥ L) v T T T h)
jObtaining most|SNGL | | I * | 1 |Real *8 |Real *4 |
{significant | | | | | | |
part of a						
Real *8	i]	I				
argument !		!				
1 1 } } 4 4 4 ,‘						
r . T T T T T T B						
Obtain real	REAL	H I *	1	Complex *8	Real *U4	
part of]						
complex l						
argument]	!				
1 4 3 1 3 4 } d						
r N T T T T T T 1						
Obtain	AIMAG] I *	1	Complex *8	Real *U4	
imaginary		{ !				
part of]]				
complex]				
argument	1 1					
8 i b d 1 1 1 i						
r T T T T T T a						
Express a Real	DBLE]	I *	1	Real *4	Real *8	
[*4 argument in	1 1					
Real *8 form						
8 3 3 31 4 il 1 _____'						
T T T T o T T						
{Express two	CMPLX	C=Arg,,+iArg, 1 I *	2	Real *4	Complex *8	
real arguments	DCMPLX]	I	2	Real *8	Complex *16	
in complex]					
form]						
} l } } 4 4 4 {						
r " T T N T T T T						
]Obtain]CONJG	C=X-iY	I *	1	Complex *8	Complex *8	
conjugate	DCONJG	For Arg=X+iY	I	1	Complex *16	Complex *16
J]of a complex		1			I	
argument						
L 1 4 1 4 y 1]						
4						
J

| *USA FORTRAN IV intrinsic function
L

106

Table 5.

Out-of-Line Service Subprograms

Function

CALL Statement

Argument Information

Alter status of sense
lights

CALL SLITE (i) i
1

T
|
I
T
|
[
!
|
| I
|

I

T

is an integer expression.

f i = 0, the four sense lights are
turned off.
fi=1, 2, 3, or 4, the corresponding

sense light is turned on.

Test and record status|CALL SLITET(i,)

of sense lights

i

j is an integer variable that is set to

is an integer expression that has a
value of 1, 2, 3, or 4 and indicates
which sense light to test.

1 if the sense light was on, or to 2
if the sense light was off.

!
1
|
|
|
!
|
|
|
|
|
!
|
t
!
|
|
|
!
|
{
|
|
|
]
|
|
|
|
|
i
!

Dump storage on the
output data set and
terminate execution

CALL DUMP (ay,b,,f,,
eeey@nsbnsfn)

£

and b are variables that indicate the
limits of storage to be dumped.
(Either a or b may be the upper or
lower limits of storage, but both must
be in the same program or subprogram
or in common.)
indicates the dump format and may be
one of the following:

0 - hexadecimal
- logical*1l
- logical#*lu
- integer*2
- integer*u
real*y
- real#*8
- complex*8
- complex*16
- literal

CoNoOULEWNDERE
I
e e e b

i
|
!

Dump storage on the
output data set and
continue execution

a
a

CALL PDUMP (a4,bs,fs,
ees¢@nybnsfn)

» b, and £ are as defined above for|
DUMP.

r
|
I

Test for divide check
exception

CALL DVCHK(J) i

is an integer variable that is set to
1 if the divide-check indicator was
on, or to 2 if the indicator was off.
After testing, the divide-check indi-
cator is turned off.

Test for exponeht
overflow or underflow

CALL OVERFL(7) g

is an integer variable that is set to
1 if an exponent overflow condition
was the last to occur, to 2 if no
overflow condition exists, or to 3 if
an exponent underflow condition was
the last to occur. After testing, the
overflow indicator is turned off.

[o e e e e et i i e St e e

Terminate execution

T
|
1
|
|
|
|
|
|
1
|
|
]
|
|
|
+
I
|
|
|
|
!
|
|
|
|
|
|
|
I
|
|
|
|
_l[
|
I
|
%
|
I
|
|
!
|
|
|
|
|
|
|
Jr

CALL EXIT |

P o o o e e e e e e e e e e i e e e e e —————

None

e e e e

Appendix C: FORTRAN-Supplied Subprograms 107

APPENDIX D: SAMPLE PROGRAMS

SAMPLE PROGRAM 1

The sample program (Figure 1) is designed to find all of the prime
numbers between 1 and 1000. A prime number is an integer that cannot be
evenly divided by any integer except itself and 1. Thus, 7 is a prime
number. The number 9 is not prime since it can be divided evenly by 3.

IBM FORTRAN Coding Form

o SAMPLE P ROGR AM [ocae — fewme [T 1 [[[[o= s
pr———— o 2/€9 g) A A O O
"NUMBER FORTRAN STATEMENT SEQUENCE
1.2 3 45 17 & 9 70 1112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 25 30 31 32 30 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72173 74 75 76 77 78 79 80

5 WumBElR] levee
R 1TIE|]

e[PIRIN
1

RMIA

WA [oN [[~] m [Ty
Yl =~

[

T 23 & 5(6]7 8 5 To 112 15 14 15 16 17 16 15 B 21 2 % 2 % % 7 % 27 30 31 37 38 34 35 3% H 9 3 @ 41 0 & 4 &5 % & & 49 50 51 52 53 54 55 55 57 % 59 & 61 &1 6 64 6 % & 06 70 71 7|7 78 75 76 77 58 5w
A stondord card Torm, 16 clectrs GB1S7, T ovallable Tor ponching sttements From s form

Figure 1 Sample Program 1

108

SAMPLE PROGRAM 2

The n points (xj, yj) are to be used to fit an m degree polynomial by
the least-squares method.

Yy = aot ai;x + asx2 + ... + agpxN

In order to obtain the coefficients ag, ai,..., am, it is necessary to
solve the normal equations:

(1) Woao + W1a1 + <e. *+ Wpay = Zo
(2) W_-,_ao + Wza, + ...+ Wm+1am = Zl

(m+1) Wpa, + Wpei1das + ... + Wopam = Zp

where:

w2m =2z x .2
i=1 *

After the W's and Z's have been computed, the normal equations are
solved by the method of elimination which is illustrated by the
following solution of the normal equations for a second degree polynomi-
al (m = 2).

(1) Woao + Wlal + W2a2 = Zo
(2) wlao + Wzal + W3a2 = Z.l
(3) Woapg + W3a1 + w"az = Zz

The forward solution is as follows:
1. Divide equation (1) by Wo.

2. Multiply the equation resulting from step 1 by W; and subtract from
equation (2).

3. Multiply the equation resulting from step 1 by W, and subtract from
equation (3).

Appendix D: Sample Programs 109

The resulting eguations are:

1) ao *+ biza; *+ Dizaz = bag
(5) byras + bazaz = bay
(6) bisa; + bazas = bas
where:
bis = Wi/Wo, by = Wa/Wo, b1y = Zo/Wo

bas = Wa-bji Wi , bas Wa-byaWy , bau = Z3-byaW,

bas = W3=bioWo , bas Wy=byaWo , ba, Z2o-big W

Steps 1 and 2 are repeated using equations (5) and (6), with b,, and ba,
instead of Wo and W,. The resulting equations are:

(7) a; + Cszas = Caq

(8) C33ds = Cag

where:

Ca3 = baa/baa r C24 bay /ba2

1l

C3s = b33=Ca3baz , Caq bau=Caubaz

The backward solution is as follows:

(9) A, = Cayu/Cas from equation (8)
(10) a; = Co4—Caads from equation (7)
(11) ag = biyu-bijsajs-bizas from equation (4)

Figure 2 1is a possible FORTRAN program for carrying out the
calculations for the case: n = 100, m £ 10. Wy, Wyp, Wz, ..., Wop are
stored in W(1), W(2), W(3), ..., W(2M+1l), respectively. Zoy 214 Zg,
eeey Zm are stored in Z (1), Z2 (2), z 3), ..., 2(M+1), respectively.

110

IBM PORTRAN Coding Form [rtved

room _GAMPLE PROGRAM Z loge oo [T [T T T T Tailo 3

UNGH
PROGRAMMER |Dm 6 / 6{2 J I INSTRUCTIONS I e I I I I | | | [cuo FLECTRO NUMBER™
STATEMENT | £ -
I FORTRAN STATEMENT ogTIncAToN
1 23 4 516 9 10 V1 V2 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 02 33 34 35 36 37 38 39 40 Al 47 43 44 4 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 45 68 67 68 49 70 71 72|73 74 75 76 77 78 79 80,

AL XL s Y (1@ s (2D R D A AN 2 B TE2])
RMAT] [([T2]sIT[31/[(WF[t . 7DD
b

2)9I31/[(

RMAT! [(5EL[5.[6])

(151a41) M N [(XICT) oYL [o[T]=]1[sN])
2k M+

M+
M+
J

i
2

>
o

S
%

D

J

o [P
LSV
—

"
—
<>
=z

-]
G et (Y e e (2 TR R
[aal(s))
W~ i nin
Q| 1 [ZIQ n =N

S

O[OMOO[N[T
il
=

x| W]
W RS
-

[y
=]

=
o

N[=~
il oo e
—

+
<o M| <
1

O[T

v 3 4 5]ef7 8 9 20 1) 12 13 1415 16 17 1819 20 2) 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 0 41 42 1 4 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 & 66 67 60 69 70 71 7217 74 75 76 77 78 70 80
R ondard cord form, 1BM slectro 888157, is ovailabla far punching siatements from This form

Figure 2. Sample Program 2 (Part 1 of 3)

I FORTRAN Coding Form et
= SRMPLE PROGRAM 2 Toee e T T T T T T [Twz-3
;HOGIAMMU l DATE G/GL& | INSTRUCTIONS. - I PUNCH ‘ I l | l | l |CAII7 ELECTRO NUMBER™

S g] FORTRAN STATEMENT e

5 10 1112 13 14 15 16 17 16 15 % 21 22 73 74 %5 % % % % 30 31 37 33 34 35 36 37 3 39 40 41 42 43 &4 45 46 &/ © 45 50 51 57 53 54 55 36 57 30 59 60 61 67 & 64 65 68 &7 66 69 70 71 72|73 74 75 76 77 78 79 80

ID] =] WD P,
210 | Tl=1t]»
210 | Kislt)
KH+

12 3 4 5|67
1o
A7

N (v [[N[@ j—

[0 T o) el ot B 28} L B P

s
2
)
3
B
2
b)
(
3
L
3
)
Z

[
=
[E ol o
@ |9 (e |00
—
[+ 5] o~ W] I~

S OB OO N W O[T RPom e [T

v 2.3 4 sJel7 ® 9 10 1112 13 14 15 16 17 18 15 20 21 22 23 24 25 26 27 28 29 30 3) 32 33 34 3% 6 37 38 39 4O} Al 42 43 A4 45 44 47 48 49 50 S| 52 53 54 55 56 57 58 59 60 61 62 63 64 &5 66 &7 68 69 70 71 72|73 74 75 76 77 78 79 80
A wandard cord form, 1BM: clectro G8B157, 1s ovailable for punching statements from fhis form

Figure 2. Sample Program 2 (Part 2 of 3)

Appendix D: Sample Programs 111

IBM FORTRAN Coding Form e

roow SAMPLE PROGRAM 2 T ~fowme T T T T [T [[re3o3
P v 6/6B ™ [ww T T T T T 1]
e § FORTRAN STATEMENT el
137 [STEMA =] S[TGMAR[B(TT- 4[N ¥A/ (D |
I = -4
ACID] = BT LB)|-SIGMA-
LR ICI-AD] (K 9 [[35]
Uil WRITIE| [(l622)] [CAICT)2T|=/412LZ])
1 | ISTIOP
END

| i
102 3 4 sfelz 8 9 10 112 13 1415 16 17 1819 20 21 22 23 24 25 26 27 28 26 30 3] 32 33 34 35 36 37 38 39 W41 4273 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 &3 64 65 66 67 68 69 70 7\ 72|73 74 75 76 77 78'79 &0
TR stondd cord Torm. 18M sToctro BBB157, s avallable or munchins satements Fom 1 Torm

Figure 2. Sample Program 2 (Part 3 of 3)

The elements of the W array, except W(l), are set equal to zero.
W(1l) is set equal to N. For each value of I, XI and YI are selected.
The powers of XI are computed and accumulated in the correct W counters.
The powers of XI are multiplied by YI, and the products are accumulated
in the correct Z counters. In order to save machine time when the
object program is being run, the previously computed power of XI is used
when computing the next power of XI. Note the use of variables as index
parameters. By the time control has passed to statement 17, the coun-
ters have been set as follows:

N
W(1l) = N z(1) =2 YI
I=1
N N
W(2) = £ XI z(2) = 3 YIXI
I=1 I=1
N N
W(3) =3 XI=2 z(3) = 2 YIXI=?
I=1 I=1
. N
. z(M+1) = Z YIXIM
. I=1

N
W(2M+1) = Z XI2M
I

112

By the time control has passed to statement 23, the values of Wy, Wi,
esy Wam+s have been placed in the storage locations corresponding to
tolumns 1 through M+1, rows 1 through M+1, of the B array, and the
values of Zoy 214 eees Zp have been stored in the locations correspond-
ing to the column M+2 of the B array. For example, for the illustrative
problem (M = 2), columns 1 through 4, rows 1 through 3, of the B array
would be set to the following computed values:

Wo Wy Wy Zo
Wi W Ws 24
w2 w3 wh Z2

This matrix represents equations (1), (2), and (3), the normal equa-
tions for M = 2.

The forward solution, which results in equations (#), (7), and (8) in
the illustrative problem, is carried out by statements 23 through 31.
By the time control has passed to statement 33, the coefficients of the
ATl terms in the M+1 equations which would be obtained in hand calcula-
tions have replaced the contents of the locations corresponding to
columns 1 through M+1, rows 1 through M+1, of the B array, and the con-
stants on the right-hand side of the equations have replaced the con-
tents of the locations corresponding to column M+2, rows 1 through M+1,
of the B array. For the illustrative problem, cclumns 1 through 4, rows
1 through 3, of the B array would be set to the following computed
values:

1 by bia bau
0 1 Ca3 Cau
0 0 Cas Cay

This matrix represents equations (4), (7), and (8).

The backward solution, which results in equations (9), (10), and (11)
in the illustrative problem, is carried out by statements 33 through 40.
By the time control has passed to statement 41, which prints the wvalues
of the A9 terms, the values of the (M+1l) *AI terms have been stored in
the M+1 locations for the A array. For the illustrative problem, the A
array would contain the following computed values for a,, ai, and ag,
respectively:

Location Contents

A(3) C34/Cas

A (2) Ca24~C23dn2

A(1) big-bizai-bisas

The resulting values of the AI terms are then printed according to
the FORMAT specification in statement 2.

Appendix D: Sample Programs 113

APPENDIX E: _DERUG_FACILITY

The debug facility is a prograrming aid that enables the user to loc-
ate errors in a FCRTRAN source program. It is available only with the
Operating System (G) compiler and the Disk Operating System FORTRAN com-
piler. The debug facility provides for tracing the flow within a pro-
gram, tracing the flow between programs, displaying the values of vari-
ables and arrays, and checking the validity of subscripts.

The debug facility consists of a DEBUG specification statement, an AT
debug packet identification statement, and three executable statements.
These statements, alone or in combination with any FORTRAN source lan-
guage statements, are used to state the desired debugging operations for
a single program unit in source language. (A program unit is a single
rain program or a subprogram.)

The source deck arrangement consists of the source language state-
ments that comprise the program, followed by the DEBUG specification
statement, followed by the debug packets, followed by the END statement.

The statements that make up a program debugging operation must be
grouped in one or more debug packets. A debug packet is preceded by the
AT debug packet identification statement and consists of one or more
executable debug facility statements, and/or FORTRAN source language
statements. A dekug packet is terminated by either another debug packet
identification statement or the END statement of the program unit.

PROGRAMMING CONSIDERATIONS

The following precautions must be taken when setting up a debug
packet:

1. Any DO lcops initiated within a debug packet must be wholly con-
tained within that packet.

2. Statement nurkers within a debug packet must be unique. They must
be different from statement numbers within other debug packets and
within the program being debugged.

3. An error in a program should not be corrected with a debug packet;
when the debug packet is removed, the error remains in the program.

114

4. The following statements must not appear in a debug packet:

SUBROUTINE

FUNCTICN

ENTRY

IMPLICIT

BLOCK DATA

statement function definition

5. The program being debugged must not transfer control to any state-
ment number defined in a debug packet; however, control may be
returned to any point in the program from a packet. 1In addition, a
debug packet may contain a RETURN, STOP, or CALL EXIT statement.

DEBUG _FACILITY STATEMENTS

The specification statement (DEBUG) sets the conditions for operation
of the debug facility and designates debugging operations that apply to
the entire program unit (such as subscript checking). The debug packet
identification statement (AT) identifies the beginning of the debug pac-
ket and the point in the program at which debugging is to begin. The
three executable statements (TRACE ON, TRACE OFF, and DISPLAY) designate
actions to be taken at specific points in the program. The following
text explains each debug facility statement and contains several pro-
gramming examples.

Appendix E: Debug Facility 115

DEBUG SPECIFICATION STATEMENT

There must be one DEBUG statement for each program or subprogram to
be debugged, and it must immediately precede the first debug packet.

r
]General Form

| DEBUG option,...,option

|
|Where: option may be any of the following:
|

UNIT (a)
where a is an integer constant that represents a data set
reference number. All debugging output is placed in this data
set, called the debug output data set. If this option is not
specified, any debugging output is placed in the standard out-
put data set. All unit definitions within an executable pro-
gram must refer to the same unit.

SUBCHK (_1'!._1, Nogeeay ﬂn)
where n is an array name. The validity of the subscripts used
with the named arrays is checked by comparing the subscript
combination with the size of the array. If the subscript
exceeds its dimension bounds, a message is placed in the debug
output data set. Program execution continues, using the in-
correct subscript. If the list of array names is omitted, all
arrays in the program are checked for valid subscript usage.
If the entire option is omitted, no arrays are checked for
valid subscripts.

I

I

|

|

I

|

|

|

I

|

|

I

I

l

I

|

|

|

}

! This option must be in the DEBUG specification statement of
] each program or subprogram for which tracing is desired. If
| this option is omitted, there can be no display of program
| flow by statement number within this program. Even when this
H option is used, a TRACE ON statement must appear in the first
] debug packet in which tracing is desired.

I

|

|

|

!

!

|

|

|

|

!

]

|

!

|

|

|

|

L

INIT (miy Moygeeo 'I_Un)
where m is the name of a variable or an array that is to be
displayed in the debug output data set only when the variable
or the array values change. If m is a variable name, the name
and value are displayed whenever the variable is assigned a
new value in either an assignment, a READ, or an assigned GO
TO statement. If m is an array name, the changed element is
displayed. If the list of names is omitted, a display occurs
whenever the value of a variable or an array element is
changed. If the entire option is omitted, no display occurs
when values change.

SUBTRACE
This option specifies that the name of this subprogram is to
be displayed whenever it is entered. The message RETURN is to
be displayed whenever execution of the subprogram is
completed.

b e e —— —— — —— ——— — — — — ——— — — — ot T— — — — — . S— —— — —— 7o— — — — — — o— . st s s e, S, S, weli. —

The options in a DEBUG specification statement may be given in any
order and they must be separated by commas

116

AT DEBUG PACKET IDENTIFICATION STATEMENT

The AT statement identifies the beginning of a debug packet and indi-
cates the point in the program at which debugging is to begin. There
must be one AT statement for each debug packet; there may be many debug
packets for one program or subprogram.

= - 1
General Form |

e e e i e e e e o e o e i e S e i 2 i o 2 R 3 S i i 2 2 e B e e e 2 q

AT statement_ numker |

Where: statement number is an executable statement number in the pro-|

gram or sukprogram to be debugged. |
J

[et e ey i o

The debugging operations specified within the debug packet are per-
formed prior to the execution of the statement indicated by the state-
ment number in the AT statement.

TRACE CN STATEMENT

The TRACE ON statement initiates the display of program flow by state-
ment number. Each time a statement with an external statement number
is executed, a record of the statement number is made on the debug out-
put data set. This statement has no effect unless the TRACE option was
specified in the DERUG specification statement.

| TRACE ON |
L o o o 2 o o o e o o 2 e S e 2 e e 2 o e 2 i e e e 2 e S e o e o < o e i o < o e e e 2 <o S o S 2 o S S S o e e e e e e e e J

For a given debug packet, the TRACE ON statement takes effect immedi-
ately before the execution of the statement specified in the AT state-
ment; tracing continues until a TRACE OFF statement is encountered. The
TRACE ON stays in effect through any level of subprogram call or return.
However, if a TRACE ON statement is in effect and control is given to a
program in which the TRACE option was not specified, the statement num-
bers in that program are not traced. Trace output is placed in the
debug output data set.

This statement may not appear as the conditional part of a logical IF
statement.

TRACE OFF STATEMENT

The TRACE OFF statement may appear anywhere within a debug packet and
stops the recording of program flow by statement number.

[T ———oooo—— o - B 1
]General Form |
__ 4
| TRACE OFF I
e e J

This statement may not appear as the conditional part of a logical IF
statement.

Appendix E: Debug Facility 117

DISPLAY STATEMENT

The DISPLAY statement may appear anywhere within a debug packet and
causes data to be displayed in NAMELIST output format

c
|General Form I
1 .

b — - - R 1
|DISPLAY list]
I !
|Where: 1list is a series of variable or array names, separated by |
! commas. |
L 4

The DISPLAY statement eliminates the need for FORMAT or NAMELIST and
WRITE statements to display the results of a debugging operation. The
data is placed in the debug output data set.

The effect of a DISPLAY list statement is the same as the following
FORTRAN IV source language statements:

NAMELIST /name/list
WRITE (n, name)

where:
name is the same in both statements. Note that subscripted
variables or dummy arguments may not arpear in the list.

This statement may not appear as the conditional part of a logical IF
statement.

DEBUG PACKET PROGRAMMING EXAMPLES

The following examples show the use of a debug packet to test the
operation of a program.

Example 1:

INTEGER SOLON, GFAR, EWELL

10 SOLON = GFAR * SQRT (EWELL)
11 IF (SOLON) 40, 50, 60

DEBUG UNIT (3)

AT 11

DISPLAY GFAR, SOLON, EWELL
END

In example 1, the values of SOLON, GFAR, and EWELL are to be examined

as they were at the completion of the arithmetic operation in statement
10. Therefore, the statement number entered in the AT statement is 11.

118

The debugging Qreration indicated is carried out just before execu-
tion of statement 11 If statement number 10 is entered in the AT
statement, the values of SOLON, GFAR, and EWELL are displayed as they
were before execution of statement 10.

DIMENSION STOCK(1000),00T(1000)

DO 30 I =1, 1000
25 STOCK (I) = STICCK (I) - OUT (I)
30 CONTINUE
35 A=B +C

DERUG UNIT (3)
AT 35

DISPLAY STOCK
END

In example 2, all of the values of STOCK are to pe displayed. When
statement 35 is encountered, the debugging operation designated in the
debug packet is executed. The value of STOCK at the completion of the
DO loop is displayed.

Note: If the AT statement indicated statement 25 as the point of execu-
tion for the debugging cperation, the value of STOCK is displayed for
each iteration of the DO loop.

Example 3:
10 A = 1.5
12 L =1
15 B =A + 1.5
20 DO 22 I = 1,5
22 CONTINUE
25 C =B + 3.16
30 D =cC/2

STOP

DEBUG UNIT (3), TRACE
C DEBRUG PACKET NUMBER 1
AT 10
TRACE ON
C DEBUG PACKET NUMRER 2
AT 20
TRACE OFF
Do 351 =1,3

35 CONTINUE
TRACE ON
C DEBUG PACKET NUMRER 3
AT 30
TRACE OFF
END

Appendix E: Debug Facility 119

When statement 10 is encountered, tracing begins as indicated by
debug packet 1. When statement 20 is encountered, tracing stops as
indicated by the TRACE OFF statement in debug packet 2 and no tracing
occurs during the execution of the statements within this packet. Trac-
ing resumes before leaving debug packet 2 When statement 30 is encoun-
tered, debug packet 3 is executed, and causes tracing to stop.

In this example, all trace information is placed in the data set
associated with data set reference number 3. This data set contains
trace information for the following statement numbers: 10, 12, 15, 20,
22, 22, 22, 22, 22, 25. DNote that statement numbers 35 and 30 do not
appear.

120

APPENDIX F: FORTRAN IV FEATURES NOT IN BASIC FORTRAN IV

The following features in FORTRAN IV are not in Basic FORTRAN IV:

ASSIGN

BLOCK DATA

Lakeled COMMON

COMPLEX

DATA

Debug Facility

More than three dimensions

Object-time dimensions

Object-time FORMAT specifications

Assigned GO TO

Logical IF

LOGICAL

PRINT b, list

PUNCH b, 1list

REAC b, list

END and ERR parameters in a READ

Generalized Tyre statement (But
provided as an explicit type.)

IMPLICIT

Call by name

Literal as argument of CALL

ENTRY

RETURNi (i not a blank)

NAMELIST

PAUSE with literal

G, 2, and L format codes

Complex, logical, literal,

Generalized subscript form

note that DOUBLE PRECISION is

and hexadecimal constants

The following in-line subprograms in FORTRAN IV are not in Basic FOR-

TRAN IV:

REAL INT

AIMAG ATINT

DCMPLX IDINT

CMPLX

CCCNJG

CONJG

HFIX

CABS

CDABS
The following out-of-line subprograms in FCRTRAN IV are not in Basic

FORTRAN 1IV:

CEXP DARSIN
CDEXP ARCOS DARCOS
CLOG TAN DTAN
CDLOG COTAN DCOTAN
CSIN SINH DSINH
CDSIN COSH DCOSH
CCOCS ERF DERF
CDCOS

CSQORT ERFC DERFC
CDSQRT GAMMA DGAMNMA
DATAN2 ALGAMA DLGAMA

Appendix F:

FORTRAN IV Features Not In Basic FORTRAN IV 121

APPENDIX G: _FCRTRAN IV _FEATURES NOT_IN USA FORTIRAN IV

Direct Access Input/Output Statements
Double Exponentiation

END and ERR parameters in READ

ENTRY

Generalized subscripts

Hexadecimal constant

IMPLICIT

Initial data values in type statement
Length of variables as part of type specifications
Literal enclosed in apostrophes

Mixed mode expressions

More than 3 dimensions in an array
NAMELIST

PAUSE 'message'

PRINT

PUNCH

READ b, list

T and Z format codes

RETURN i

122

EEND statement u8

A format code 57
ABS function 105
absolute value functions 105
actual arguments 85,91
adjustable dimensions 96
AIMAG function 106
AINT function 105
ALGAMA function 105
ALOG function 104
ALOG10 function 104
AMAX0 function 105
AMAX1 function 105
AMINO function 106
AMIN1 function 106
AMOD function 105
ARCOS function 104
arccosine functions 104
arcsine functions 104
arctangent functions 104
arguments in function or subroutine
subprograms 91
arithmetic assignment statements 28
arithmetic expressions
defined 20
order of computation 22
arithmetic IF 34
arithmetic operators 21
arrays
arrangement of 19
dimension information 71
general 18
type specification 18
ARSIN function 104
ASSIGN and assigned GO TO 32
assignment statements 28
associated variable 63
AT debug packet identification 117
ATAN function 104
ATAN2 function 104

BACKSPACE statement 62

Basic FORTRAN' IV 121

basic real constant 11

blank common 77

blank record 51

blanks 9

BLOCK DATA subprogram 99
bytes (storage locations) 72

CABS function 105

call by name/location 92

CALL statement 90

carriage control characters 51
- CCos function 104

CDABS function 105

CDCOS function 104

CDEXP function 104

CDLOG function 104
CDSIN function 104
CDSQRT function 104
CEXP function 104
character set 100
character string
CLOG function 104
CMPLX function 106
coding form 9
coding statements 9
comments 9
common logarithm 104
COMMON statement 76
compilers 8
completed error function 105
COMPLEX statement T4
complex values
constants 12
in arithmetic assignment statement
in FORMAT statement 54
length specification 72
type specification T4
computed GO TO 32
CONJG function 106
constants 10
continuation statements 9
CONTINUE statement 39
control statements 31
conversion rules
in arithmetic assignment statements
in FORMAT statements 53-60
COS function 104
COSH function 105
COTAN function 104
CSIN function 104
CSQRT function 104

13,50,57

D format code 53

DABS function 105

DARCOS function 104

DARSIN function 104

DATA initialization statement 69
in BLOCK DATA subprogram 99

data set reference number 42

DATAN function 104

DATAN2 function 104

DBLE function 105

DCMPLX function 105

DCONJG function 105

DCOS function 104

DCOSH function 105

DCOTAN function 104

debug facility 114

DEBUG statement 116

DEFINE FILE statement 62

DERF function 105

DERFC function 105

DEXP function 104

DFLOAT function 105

Ind

INDEX

28

30

ex 123

DGAMMA function 105

DIM function 105

DIMENSION statement 71
object-time dimensions 96

direct access input/output statements
programming considerations 64

DISPLAY statement 118

DLGAMA function 105

DLOG function 104

DLOG10 function 104

DMAX1 function 105

DMIN1 function 105

DMOD function 105

DO statement 36
programming considerations 38

62

double precision number (see real numbers)

DOUBLE PRECISION statement 75
DSIGN function 105

DSIN function 104

DSINH function 105

DSQRT function 104

DTAN function 104

DTANH function 105

dummy arguments 85,89,91
DUMP subprogram 107

DVCHK subprogram 107

E format code 53
elements of the language 8
embedded blanks 9
END FILE statement 61
END parameter in READ 44
END statement

in FUNCTION subprogram 88

in main program 41

in NAMELIST (&END) 48
ENTRY statement 93
equivalence groups 80,82
EQUIVALENCE statement . 80
ERF function 105
ERFC function 105
ERR parameter in READ
error functions 105
executable statement, definition 8
EXIT subprogram 107
EXP function 104
explicit specification 17
explicit specification statements 74
exponential functions 104
exponentiation 22
expressions

arithmetic 20

defined 20

logical 24
extended range of DO 38
EXTERNAL statement 95

44,65

F format code 53
field descriptors 50
FIND statement 67
fix functions 106
FLOAT function 106
float functions 106
FORMAT statement
form 50
purpose 51
use at object time 60

124

formatted READ statement 45
formatted records 43

formatted WRITE statement 46
FORTRAN coding form 9
FORTRAN-supplied subprograms 103
function definition 84

function reference 84

FUNCTION subprogram 86

G format code 54
GAMMA function 105
gamma functions 105
GO TO statement
assigned 32
computed 32
unconditional 31
group format specification 60

H format code 58
hexadecimal values

constants 14

transmitting 53
HFIX function 106
hierarchy of operations 22
hyperbolic cosine function 105
hyperbolic sine function 105
hyperbolic tangent function 105

I format code 52
IABS function 105
IDIM function 106
IDINT function 105
IF statement
arithmetic 34
logical 35
IFIX function 106
implicit specification 17
IMPLICIT statement 72
implied DO 42
index 123
INIT option of DEBUG 116
input/output statements 42
INT function 105
integers
constants 10
I format code 52
length specification 72
magnitude 10
type specification 74
use in arithmetic assignment
statements 28
INTEGER statement T4
I/0 list
defined 42
omitted 51
ISIGN function 106

L format code 57
labeled common 77
language elements 8
largest value functions 105
length specification 16
library subprograms 103
literals

constants 13

data in FORMAT statements 58
logical assignment statements 28
logical expressions 24

logical IF statement 35
logical operators 25
LOGICAL statement T4
logical values
constants 12
type specification T4
use in arithmetic assignment
statements 28
use in logical expressions 24
logical variables 16
loop control 36
log-gamma functions 105

mathematical subprograms 104
MAX0 function 105

MAX1 function 105

MINO function 106

MIN1 function 106

mixed mode expressions 30

MOD function 105

mode (see type)

modular arithmetic functions 105

NAMELIST statement 47
natural logarithm 104
nested DO loops 38
numeric format codes 54

object-time dimensions 96
object-time format 60
operators
arithmetic 21
logical 25
order of computation 22
relational 24
order
of arithmetic computation 22
of common blocks 78
of equivalence groups 80
of logical expression computation
of source program statements 9
OVERFL subprogram 107

P scale factor 56
parentheses
in arithmetic expressions 22
in logical expressions 27
in FORMAT statement 51
PAUSE statement 40
PDUMP subprogram 107
positive difference functions 106
predefined specifications 17
primary
arithmetic 21
logical 24
PRINT b, list 102
PRINT statement 102
printer control characters 51
program unit, definition 8
PUNCH b, list 101
PUNCH statement 101

range of DO 36, 38
READ b, 1list 101
READ statement
direct access 65
sequential 44,101
REAL function 106

real numbers
constants 11
in D, E, and F format codes 53
length specification 72
magnitude 11
precision 11
type specification 73
use in arithmetic assignment
statements 28
REAL statement T4
record number 62
records
formatted 43
length of 63
unformatted 43
reference by location 92
reference by value 92
relational operators 24
RETURN statement
in FUNCTION subprogram 88
in main program 90
in SUBROUTINE subprogram 920
REWIND statement 61

scale factor 56
sequential input/output 4y
service subprograms 107
SIGN function 106
sign transfer functions 106
SIN function 105
SINH function 105
size specification, array 18
SLITE subprogram 107
SLITET subprogram 107
smallest value functions 106
SNGL function 106
source program characters 100
special characters 100
specification statements 71
SORT function 104
square root functions io04
statement
categories 8
function definitions 84
numbers 9
order 9

source 8
STOP statement 41
storage locations (bytes) 72

for literals 13
SUBCHK debug option 116
subprograms

arguments 91

BLOCK DATA 99

FUNCTION 86

general 83-99

multiple entry 93

naming 83
subprogram statements 83
SUBROUTINE subprogram 88
subscripts 19
SUBTRACE debug option 116
symbolic names 14

T format code 59

TAN function 104

TANH function 105
termination of program 41

Index

125

TRACE OFF statement 117
TRACE ON statement 117
TRACE debug option 116
transfer of sign functions 106
trigonometric cosine functions 104
trigonometric¢ cotangent functions 104
trigonometric sine functions 104
trigonometric tangent functions 104
truncation functions 105
truth values 13,25
type specification
of arithmetic expressions 23
of arrays 18
of FUNCTION subprogram 83
of statement function definitions 83
of variables 16
type statement T4
type statements 71

unary minus 22

unconditional GO TO 31
unformatted READ statement 45

126

unformatted records 43
unformatted WRITE statement 47
UNIT debug option 116

USA FORTRAN IV 7,122

variable format statements 60
variables
arrangement in common 79
arrangement in equivalence groups
general 15
length specification 16
names 15
type specification 16

WRITE statement
direct access 66
sequential 46

X format code 59

Z format code 53

82

C28-6515-7

TBHM

International Business Machines Corporation
Data Processing Division

112 East Post Road, White Plains, N.Y. 10601
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

i i S360-25
IBM Technical Newsletter File Number
Re: Form No. C28-6515-7
This Newsletter No. N28-0251
Date March 3, 1969
Previous Newsletter Nos. None

IBM System/360
FORTRAN IV Language

This Technical Newsletter amends the IBM Systems Reference Library
publication IBM System/360 FORTRAN IV Language, Form C28-6515-7.

In the referenced publication, replace the page listed below with

the corresponding page attached to this newsletter.

Page Subject of Amendment

86 Function Subprograms

Changes to text are indicated by a vertical line to the left of

the change.

File this cover letter at the back of the publication as confirm-
ation that all changes have been received and incorporated into

the publication.

IBM Corporation, Programming Publications, 1271 Avenue of the Americas, New York, N.Y. 10020

PRINTED IN U.S.A.

