
Systems Reference Library

IBM System/360

FORTRAN IV Language

This publication describes and illustrates the
use of the FORTRAN IV language for the IBM
System/360 Operating System, the IBM Systern/360
Model 44 Programming System, and the IBM

ICuc+-om/~h() n;clr ("'\no...-:::i+-;nrr C•7c+-om
I .._,1....,'-'-11.1.# .J'VV J,J~...,, .. ~ ""'l::''-.L.. '--1..I.~ ._,.Z._,'-'-11.L•

File No. S36o-j:
Form C28-6515 \ OS

44PS
DOS

PREFACE

This publication describes the IBM
System/360 FORTRAN IV language for the IBM
System/360 Operating System, the IBM
System/360 Model 44 Programming System, and
the IBM System/360 Disk Operating system.
A reader should have some knowledge of an
existing FORTRAN language before using this
publication. A useful source for this
information is the set of programmed
instruction texts, FORTRAN IV for IBM
system/360, Forms R29-0080 through
R29--0087.

The material in this publication is
arranged to provide a quick definition and
syntactical reference to the various ele­
ments of the language by means of a box
format. In addition, sufficient text
describing each element, with appropriate
examples as to possible use, is given.

Appendixes contain additional informa­
tion useful in writing a FORTRAN IV pro­
gram. This information consists of a table
of source program characters, a list of
other FORTRAN statements accepted by
FORTRAN IV, a list of FORTRAN-supplied
mathematical subprograms and service sub­
programs, lists of differences between
FORTRAN IV and Basic FORTRAN IV and USA

seventh Edition

FORTRAN IV, and sample programs. out-of­
line mathematical subprograms and service
subprograms are described in the publica­
tion IBM System/360: FORTRAN IV Lib~ary
Subprograms, Form C28-6596. compiler
restrictions and programming considerations
are contained in the programmer's guide for
the respective system. The programmer's
guides are as follows:

IBM svste~/360 Operating System:
FORTRAN IV CG) Programmer's Guide, Form
C28-6639

IBM svstem/360 Operating System:
FORTRAN IV CH) Programmer's Guide, Form
C28-6602

IBM System/360 Model 44 Programming Sys­
tem: Guide to system Use for FORTRAN
Programmers, Form C28-6813

No programmer's
available for the
FORTRAN IV compiler.

guide
Disk

is currently
Operating System

A comparison of FORTRAN IV compilers is
in the publication IBM FORTRAN IV Reference
Data, Form X28-6383.

This is a major revision of1 and makes obsolete, the previous edition,
Form C28-6515-5.

This revision corrects errors that appeared in the previous edition. It
also makes this publication applicable to FORTRAN IV for use under the
Disk Operating System. Technical changes are indicated by a vertical
line to the left of the text.

Significant changes or additions to the specifications contained in this
publication are continually being made. When using this publication in
connection with the operation of IBM equipment, check the latest SRL
Newsletter for revisions or contact the local IBM branch office.

Requests for copies of IBM publications should be made to your IBM
representative or to the IBM branch office serving your locality.

Address comments concerning the contents of the publication to IBM
corporation, Programming Publications~ 1271 Avenue of the Americas. New
York. N. Y. 10020. Comments should mention the compiler and level
being used.

@) International Business Machines Corporation 1965, 1966

INTRODUCTION • • • • • • • 7

ELEMENTS OF THE LANGUAGE • 8
STATEMENTS • • .• • • • • • 8

coding FORTRAN statements • • • • • • 9
CONSTANTS • • • • • 10

Integer constants • • • • • 10
Real con'stants • • • • 11
complex constants • • • • • • • • 12
Logical constants • • • • • • • • • • 12
Literal Constants • • • • • • • 13
Hexadecimal Constants • • • • 13

SYMBOLIC NAMES • • • • • • 14
VARIABLES • • • • • 15

Variable Names 15
Variable Types and Lengths • • • 16

Type Declaration by the Predefined
Specification • • • • • • • • • 16
Type Declaration by the IMPLICIT
statement • • • • • • • • 17
Type Declaration by Explicit
Specification Statements •••••• 17

ARRAYS • • • • • • • • • • • • • 17
Declaring the Size and Type of an
Array • • • • • • • • • • • • •
Arrangement of Arrays in Storage

SUBSCRIPTS • • • • • • • • •
EXPRESSIONS • • • • • • • • • • •

Arithmetic Expressions • • • • •
Arithmetic Operators

Logical Expressions
Relational Operators • •
Logical Operators

ARITHMETIC AND LOGICAL ASSIGNMENT
STATEMENT

18
• 19
• 19

20
• • • 20

21
24

• • • 24
25

28

CONTROL STATEMENTS • • • • • • 31
GO TO STATEMENTS • • • 31

Unconditional GO TO Statement • 31
Computed GO TO Statement • • • • • 32
ASSIGN apd Assigned GO TO Statements • 32

ADDITIONAL CONTROL STATEMENTS • 34
Arithmetic IF Statement • • • • 34
Logical IF Statement .• • • • • • 35
DO Statement • • • • • • • • 36
Programming considerations in Using
a DO Loop • • • • • • 38
CONTINUE Statement • • • • • 39
PAUSE Statement • • • • • • • • • 40
STOP Statement • • • • • • 41
END Statement • • • • • 41

INPUT/OUTPUT STATEMENTS • • 42
SEQUENTIAL INPUT/OUTPUT STATEMENTS • 44

READ Statement • •
Formatted READ • •
Unformatted READ •

WRITE Statement
Formatted WRITE • • • •
Unformatted WRITE

READ and WRITE Using NAMELIST

• • • • 44
45
45
46
46
47

• 47

CONTENTS

NAMELIST Input Data • • • • 48
NAMELIST Output Data • 49

FORMAT Statement • • • • • • • 50
Various Forms of a FORMAT Statement 51
I Format code • • • • 52
F Format code • • • • 53
E and p Format Codes • 53
Z Format Code • 53
G Format Code • 54
Examples of Numeric Format Codes • • 54
Scale Factor - P • • • • • • 56
L Format Code • • • • • • • 57
A Format Code • • • • • • 57
H Format code and Literal Data • 58
X Format code • • • • • • 59
T Format code • • • • • • • • • 59
Group Format Specification • • • 60
Reading FORMAT Specifications at
Object Time

END FILE Statement •
REWIND Statement • •
BACKSPACE Statement • • • •

DIRECT ACCESS INPUT/OUTPUT STATEMENTS
DEFINE FILE Statement
Direct Access Programming
Considerations • • •
READ Statement • •
WRITE Statement
FIND Statement •

DATA INITIALIZATION STATEMENT

SPECIFICATION STATEMENTS
DIMENSION Statement • • • •
TYPE Statements
IMPLICIT Statement • •
Explicit Specification Statements
DOUBLE PRECISION Statement •

60
• • 61

• 61
• • 62

• 62
• 62

• 64
65

• 66
67

• 69

10
• • 70

70
• • 71

73
74

COMMON Statement • • • • • • • • • •
Blank and Labeled Common • • • • • •
Arrangement of Variables in Common •
EQUIVALENCE Statement

• 75
• 76
• 78

79
Arrangement of Variables in
Equivalence Groups •

SUBPROGRAMS • • • • •
Naming Subprograms • •
Functions • • • • • • •

Function Definition
Function Reference

Statement Functions
FUNCTION Subprograms

RETURN and END Statements in a
FUNCTION Subprogram

SUBROUTINE Subprograms •
CALL Statement • • . • • • •
RETURN Statements in a SUBROUTINE
Subprogram • • • • • • •

Arguments in a FUNCTION or
SUBROUTINE Subprogram
Multiple Entry into a Subprogram •
EXTERNAL Statement • • • • • • •

• • 80

• • 82
• • 82
• • 82

83
83
83

• • 85

• 87
87

• • 89

• • 89

• 90
• • 92

• 95

Object-Time Dimensions •
BLOCK DATA Subprogram • • • •

• .• • 96
• 99

APPENDIX A: SOURCE PROGRAM CHARACTERS .100

APPENDIX B: OTHER FORTRAN STATEMENTS
ACCEPTED BY FORTRAN IV • .• • • • • • 101

READ Statement • • .101
PUNCH Statement •• 101
PRINT Statement .102

APPENDIX C: FORTRAN-SUPPLIED
SUBPROGRAMS • • • • •

APPENDIX D: SAMPLE PROGRAMS
SAMPLE PROGRAM 1 • • • • •
SAMPLE PROGRAM 2 •

APPENDIX E: FORTRAN IV (G) DEBUG

•••• 103

•••• 107
•••• 107
• • • .. 108

FACILITY • • • • • • • • ••• 113

Programming considerations • •
DEBUG FACILITY STATEMENTS

DEBUG Specification Statement
AT Debug Packet Identification
Statement • • • • •
TRACE ON Statement •
TRACE OFF Statement
DISPLAY Statement
Debug Packet Programming Examples

• .113
.114

•• 114

.116
• •• 116

• .116
.117

•• 117

APPENDIX F: FORTRAN IV FEATURES Nor IN
BASIC FORTRAN IV •••••••••••• 120

APPENDIX G: FORTRAN IV FEATURES NOT IN
USA FORTRAN IV • • • • • .121

INDEX .123

FIGURES

Figure 1.
Figure 2.

TABLES

Sample Program 1
Sample Program 2

Table 1. Determining the Type and
Length of the Result of +, -, *• /

.107

.110

Operations • • • • • • • • • • 23
Table 2. Valid Combinations with
the Arithmetic Operator ** • • • • • 24

Table 3. Conversion Rules for the
Arithmetic Assignment Statement
a = b • • • • • • • • • • • • • • • 30

Table 4. Mathematical Function
Subprograms •••••••••••• 103
Table 5. Out-of-Line Service
Subprograms • • • . • • • • • .106

ILLUSTRATIONS

INTRODUCTION

IBM System/360 FORTRAN IV for the Operating System I the Model 44
Programming System, and the Disk Operating System comprise a language, a
library of subprograms, and a compiler.

The FORTRAN IV language is especially useful in writing programs for
applications that involve mathematical computations and other manipula­
tion of numerical data. The name FORTRAN is derived from FORmula
TRANslator.

source programs written in the FORTRAN IV language consist of a set
of statements constructed by the programmer from the language elements
described in this publication.

In a process called compilation, a program called the FORTRAN
compiler analyzes the source program statements and translates them into
a machine language program called the object program, which will be
suitable for execution on IBM System/360. In addition, when the FORTRAN
compiler detects errors 1n the source program, it produces appropriate
diagnostic error messages. The FORTRAN programmers' guides, listed in
the Preface, contain information about compiling and executing FORTRAN
programs.

The FORTRAN compiler operates under control of an operating system
which provides the FORTRAN compiler with input/output and other ser­
vices. Object programs generated by the FORTRAN compiler also operate
under operating system control and depend on it for similar services.

The IBM System/360 FORTRAN IV language is compatible with and
encompasses the United States of America (USA) FORTRAN, including its
mathematical subroutine provisions. It also contains, as a proper
subset, Basic FORTKAN IV. Appendixes F and G contain lists of
differences between FORTRAN IV and Basic FORTRAN IV and USA FORTRAN IV.

Introduction 7

ELEMENTS OF THE LANGUAGE

STATEMENTS

Source programs consist of a set of statements from which the
compiler generates machine instructions., constants, and storage areas.
A given FORTRAN statement effectively performs one of three functions:

1. Causes certain operations to be performed (e.g., addition., multi­
plication, branching)

2. Specifies the nature of the data being handled

3. Specifies the characteristics of the source program

FORTRAN statements usually are composed of certain FORTRAN key words
used in conjunction with the basic elements of the language: constants,
variables, and expressions. The categories of FORTRAN statements are as
follows:

1. Arithmetic and Logical Assignment Statements: These statements
cause calculations to be performed or conditions to be tested. The
result replaces the current value of a designated variable or
subscripted variable.

2. Control Statements: These statements enable the user to govern the
flow of and to terminate the execution of the object program.

3. Input/Output statements: These statements, in addition to control­
ling input/output devices, enable the user to transfer data between
internal storage and an input/output medium.

4. FORMAT Statement: This statement
certain input/output statements
record.

is used in conjunction with
to specify the form of a FORTRAN

5. NAMELIST Statement: This statement is used in conjunction with
certain input/output statements to specify the form of a special
kind of record.

6. DATA Initialization Statement: This statement is used to assign
initial values to variables.

7. Specification Statements: These statements are used to declare the
properties of variables, arrays, and functions (such as type and
amount of storage reserved) and, in addition, can be used to assign
initial values to variables and arrays.

8. Statement Function Definition Statement: This statement specifies
operations to be performed whenever the statement function name
appears in the program.

9. Subprogram Statements: These statements enable the user to name
and define functions and subroutines, which can be compiled
separately or with the main program.

The basic elements of the language are discussed in this section.
The actual FORTRAN statements in which these elements are used are
discussed in following sections. The term program unit refers to a main

8

program or a subprogram; the term executable statements refers to those
statements in groups 1, 2, and 3.

The order of a FORTRAN program unit Cother than a BLOCK DATA
subprogram) is as follows:

1. Subprogram statement, if any.

2. IMPLICIT statement, if any.

3. Other specification statements, if any. (Explicit specification
statements that initialize variables or arrays must follow other
specification statements that contain the same variable or array
names.)

4. Statement function definitions, if any.

5. Executable statements, at least one of which must be present.

6. END statement.

FORMAT, NAMELIST, and DATA statements may appear anywhere after the
IMPLICIT statement, if present, and before the END statement. DATA
statements, however, must follow any specification statements that
contain the same variable or array names.

The order of statements in BLOCK DATA subprograms is discussed in the
section "BLOCK DATA Subprogram."

CODING FORTRAN STATEMENTS

The statements of a FORTR~N source program can be written on a
standard FORTRAN coding form, Form X28-7327. Each line on the coding
form represents one 80-column card. FORTRAN statements are written one
to a card within columns 7 through 72. If a statement is too long for
one card, it may be continued on as many as 19 successive cards by
placing any Character I Other than a blank Or zero, iii" CO'.iUffiil 10 Or~aCh
continuation card. For the first card of a statement, column 6 must be
blank or zero.

As many blanks as desired may be written in a statement to improve
its readability. They are ignored by the compiler. Blanks that are
inserted in literal data are retained and treated as blanks within the
data.

Columns 1 through 5 of the first card of a statement may contain a
statement number consisting of from 1 through 5 decimal digits. Blanks
and leading zeros in a statement number are ignored. Statement numbers
may appear anywhere in columns 1 through 5 and may be assigned in any
order; the value of statement numbers does not affect the order in which
the statements are executed in a FORTRAN program.

Columns 73 through 80 are not significant to the FORTRAN compiler and
may, therefore, be used for program identification, sequencing, or any
other purpose.

Comments to explain the program may be written in columns 2 through
80 of a card if the letter c is placed in column 1. Comments may appear
between FORTRAN statements; a comments card may not immediately precede
a contiouation card. Comments are not processed by the FORTRAN
compiler, but are printed on the source program listing. Blanks may be
inserted where desired to improve readability.

Elements of the Language 9

CONSTANTS

A constant is a fixed, unvarying quantity. There are four classes of
constants - those that specify numbers (numerical constants), those that
specify truth values (logical constants), those that specify literal
data (literal constants), and those that specify hexadecimal data
(hexadecimal constants).

Numerical constants may be integer, real, or complex numbers; logical
constants may be .TRUE. or .FALSE.; literal constants may be a string
of alphameric and/or special characters; and hexadecimal constants must
be hexadecimal (base 16) numbers.

INTEGER CONSTANTS

r--1
I Definition I
~--~
I Integer Constant - a whole number written without a decimal point. I
I It occupies four locations of storage Ci.e., four bytes). I
I I
I Maximum Magnitude: 2147483647 Ci.e., 231-1). I
L--J

An integer constant may be positive, zero, or negative; if unsigned,
it is assumed to be positive. Its magnitude must not be greater than
the maximum and it may not contain embedded commas.

Examples:

10

Valid Integer Constants:

0
91
173
-2147483647

Invalid Integer Constants:

27.
3145903612
5,396

(Contains a decimal point)
(Exceeds the allowable range)
(Contains an embedded comma)

REAL CONSTANTS

r--1
I Definition i
~--~

Real Constant -- has one of three forms: a basic real constant, a
basic real constant followed by a decimal exponent, or an integer
constant followed by a decimal exponent.

A basic real constant is a string of decimal digits with a
decimal point. If the string contains fewer than eight digits, the
basic real constant occupies four storage locations (bytes); if the
string contains eight or more digits, the basic real constant
occupies eight storage locations (bytes).

The storage requirement (length) of a real constant can also be
explicitly specified by appending an exponent to a basic real
constant or an integer constant. An exponent consists of the letter
E or the letter D followed by a signed or unsigned 1- or 2-digit
integer constant. The letter E specifies a constant of length four;
the letter D specifies a constant of length eight.

Magnitude: (either four or eight locations) 0 or 16-65 (approxi­
mately 10-78) through 1663 (approximately 1075)

Precision: (four locations) 6 hexadecimal digits
(approximately 7.2 decimal digits)

(eight locations) 14 hexadecimal digits
(approximately 16.8 decimal digits) I

----------------------------=---J
A real constant may be positive, zero, or negative (if unsigned, it

is assumed to be positive) and must be of the allowable magnitude. It
may not contain embedded commas. The decimal exponent permits Lu~
expression of a real constant as the product of a basic real constant or
integer constant times 10 raised to a desired power.

Examples:

Valid Real Constants (four storage locations):

+O.
-999.9999
7.0E+O
19761.25E+1

7.E3 }
7.0E3
7.0E+03
7E-03

<i.e., 7.0 x 10° = 7.0)
(i.e., 19761.25 x 101 = 197612.5)

<i.e •• 7.0 x 103 = 7000.0)

(i.e., 7.0 x 10-3 = 0.007)

Valid Real Constants (eight storage locations):

1234567890123456.D-94
21.98753829457168
1.0000000
7.9D03 I
7.9D+03
7.9D+3
7.9DO
7D03

(Equivalent to .1234567890123456x10-75)

<i.e., 7.9 x 103 = 7900.0)

<i.e., 7.9 x 100 = 7.9)
(i.e., 7.0 x 103 = 7000.0)

Elements of the Language 11

Invalid Real constants:

1
3~471.1
1.E

1.2E+113
23.5E+97

21.3E-90

COMPLEX CONSTANTS

(Missing a decimal point or a decimal exponent)
(Embedded comma}
(Missing a 1- or 2-digit integer constant

following the E. Note that it is not inter­
preted as 1.0 x 10°>

CE is followed by a 3-digit integer constant)
(Magnitude outside the allowable range; that

is, 23.5 x 1097>1663)
(Magnitude outside the allowable range; that

is, 21.3 x 10-90<16-65)

r--1
I Definition I
~--~
I complex Constant an ordered pair of signed or unsigned real I
I constants separated by a comma and enclosed in parentheses. The I
I first real constant in a complex constant represents the real part I
I of the complex number; the second represents the imaginary part of I
I the complex number. Both parts must occupy the same number of I
I storage locations (either four or eight). I
L--J

The real constants in a complex constant may be positive, zero, or
negative Cif unsigned, they are assumed to be positive), but they must
be in the given range.

Examples:

Valid Complex Constants

(3.2~-1.86)

(-5.0E+03,.16E+02)
(4.70+2.1.9736148)
C47D+2~38D+3)

(Has the value 3.2 - 1.86i}
(Has the value -5000. + 16.0i)
(Has the value 470. + 1.9736148i)
(Has the value 4700. + 38000.i}

Where i ::y,:r

Invalid Complex Constants:

(292704,1.697)
C.003E4,.00SD6}

LOGICAL CONSTANTS

CThe real part is not a valid real constant)
CThe parts differ in length}

r--1
I Definition I
~--~
I Logical Constant - a constant that specifies a logical value. There I
I are two logical values: I
I .TRUE. i
I .FALSE. I
I Each occupies four storage locations. The words TRUE and FALSE must I
I be preceded and followed by periods as shown above. I
L--J

12

The logical constant .TRUE. or .FALSE. when assigned to a logical
variable specifies that the value of the logical variable is true or
false, respectively. (See the section "Logical Expressions.")

LITERAL CONSTANTS

r------~---1
I Definition I
~--~
I Literal Constant - a string of alphameric and/or special characters, I
I delimited as follows: I
I I
I 1. The string can be enclosed in apostrophes. I
I I
I 2. The string can be preceded by ~H where ~ is the number of I
I characters in the string. I
L------------------------------~---------------------------------------J

The string may contain any characters (see Appendix A). The number
of characters in the string, including blanks, may not be greater than
255. If apostrophes delimit the literal, a single apostrophe within the
literal is represented by two apostrophes. If ~H precedes the literal,
a single apostrophe within the literal is represented as a single
apostrophe.

~
Literals can be used lonl~ in CALL statement or ~tion refer~pce 1

~rgume9t Its.ts, as Jtata ini,t~zati~alues, or in FO ::r slafements
1
•

The lirst l'orm, a string enclosed in apostrophes, may be used in PAUSE
statements.

Examples:

24H INPUT/OUTPUT AREA N0.2
I DATA·'
'X-COORDINATE Y-COORDINATE
'3.14'
I DON' IT'
SHDON'T

HEXADECIMAL CONSTANTS

Z-COORDINATE'

r--1
I Definition I
~--i I Hexadecimal Constant - the character Z followed by a hexadecimal I
I number formed from the set 0 through 9 and A through F. I
L--J

Hexadecimal constants may be used ~s data initialization values.

Elements of the Language 13

One storage location (byte) contains two hexadecimal digits. If a
constant is specified as an odd number of digits, a leading hexadecimal
zero is added on the left to fill the storage location. The internal
form of each hexadecimal digit is as follows:

0 - 0000
1 - 0001
2 - 0010
3 - 0011

4 - 0100
5 - 0101
6 - 0110
7 - 0111

8 - 1000
9 - 1001
A - 1010
B - 1011

c - 1100
D - 1101
E - 1110
F - 1111

Examples:

Z1C49A2Fl represents the bit string: 00011100010010011010001011110001

ZBADFADE represents the bit string: 00001011101011011111101011011110
where the first four zero bits are implied because an odd
number of hexadecimal digits is written.

The maximum number of digits allowed in a hexadecimal constant
depends upon the length specification of the variable being initialized
(see "Variable Types and Lengths"). The following list shows the
maximum number of digits for each length specification:

Length Specification
of Variable

16
8
4
2
1

Maximum Number of
Hexadecimal Digits

32
16

8
4
2

If the number of digits is greater than the maximum, the leftmost
hexadecimal digits are truncated; if the number of digits is less than
the maximum, hexadecimal zeros are supplied on the left.

SYMBOLIC NAMES

r--1
I Definition I
~--~
I Symbolic Name - from 1 through 6 alphameric (i.e., numeric, O I
I through 9~ or alphabetic, A through Z and $) characters, the first I
I of which must be alphabetic. I
L--J

Symbolic names are used in a program unit (i.e., a main program or a
subprogram> to identify elements in the following classes.

• An array and the elements of that array (see "Arrays")

• A variable (see "Variables")

• A statement function (see "Statement Functions")

• An intrinsic function (see Appendix C)

• A FUNCTION subprogram (see "FUNCTION Subprograms")

14

• A SUBROUTINE subprogram (see "SUBROUTINE Subprograms")

• A block name (see "BLOCK DATA Subprogram")

• An external procedure that cannot be classified as either a
SUBROUTINE or FUNCTION subprogram (see "EXTERNAL Statement")

Symbolic names must be unique within a class in a program unit and
can identify elements of only one class with the following exceptions.

A block name can also be an array, variable, or statement function
name in a program unit.

A FUNCTION subprogram name must also be a variable name in the
FUNCTION subprogram.

Once a symbolic name is used as a FUNCTION subprogram name, a
SUBROUTINE subprogram name, a block name,, or an external procedure name
in any unit of an executable program, no other program unit of that
executable program can use that name to identify an entity of these
classes in any other way.

VARIABLES

A FORTRAN variable is a symbolic representation of a quantity that
occupies a storage area. The value specified by the name is always the
current value stored in the area.

For example, in the statement:

A= 5.0+B

both A and B are variables. The value of B is determined by some
previous statement and may change from time to time. The value of A is
calculated whenever this statement is executed and changes as the value
of B changes.

VARIABLE NAMES

The use of meaningful variable names can serve
documenting a program. That is, someone other than the
look at the program and understand its function.
compute the distance a car traveled in a certain amount
given rate of speed, the following statement could have

x = y * z

as an aid in
programmer may
For example, to
of time at a

been written:

where * designates multiplication. However, it would be more meaningful
to someone reading this statement if the programmer had written:

DIST = RATE * TIME

Elements of the Language 15

Examples:

Valid Variable Names:

B292S
RATE
$VAR

Invalid Variable Names:

B292704
4ARRAY
SI.X

(Contains more than six characters)
(First character is not alphabetic)
(Contains a special character)

VARIABLE TYPES AND LENGTHS

The type of a variable corresponds to the type of data the variable
represents. Thus. an integer variable represents integer data, a real
variable represents real data, etc. There is no variable type asso­
ciated with literal or hexadecimal data. These types of data are
identified by a name of one of the other types.

For every type of variable, there is a corresponding standard and
optional length specification which determines the number of storage
locations (bytes) that are reserved for each variable. The following
list shows each variable type with its associated standard and optional
length: ,-, I I I} I• rl r'

Variable Type Standard ~ Optional v

Integer 4 4 2 3
Real 4 S"" 8 '? clt,,-f 1

,.,,l,,f ~) 1!:,,/~·
I"

Complex 8 l 16 g,.
Logical 4 1 I

The ways a programmer may declare the type of a variable are by use
Of the:

• Predefined specification contained in the FORTRAN language

• Explicit specification statements

• IMPLICIT statement

An Explicit specification statement overrides an IMPLICIT statement,
which,, in turn, overrides the predefined specification. The optional
length specification of a variable may be declared only by the IMPLICIT
or Explicit specification statements. If, in these statements, no
length specification is stated, the standard length is assumed Csee the
section, "Type Statements").

Type Declaration by the Predefined Specification

The predefined specification is a convention used to specify
variables as integer or real as follows:

1. If the first character of the variable name is I, J, K, L, M, or N,
the variable is integer of a standard length 4.

16

2. If the first character of the variable name is any other alphabetic
character, the variable is real of a standard length 4.

This convention is the traditional FORTRAN method of implicitly
specifying the type of a variable as being either integer or real. In
all examples that follow in this publication it is presumed that this
specification applies unless otherwise noted. Variables defined with
this convention are of standard length.

Type Declaration by the IMPLICIT Statement

The IMPLICIT statement allows a programmer to specify the type of
variables in much the same way as was specified by the predefined
convention. That is, in both the type is determined by the first
character of the variable name. However, the programmer, using the
IMPLICIT statement, has the option of specifying which initial letters
designate a particular variable type. The IMPLICIT statement can be
used to specify all types of variables -- integer, real, complex, and
logical -- and to indicate standard or optional length.

The IMPLICIT statement overrides the variable type as determined by
the predefined convention. For example, if the IMPLICIT statement
specifies that variables beginning with the letters A through M are real
variables and variables beginning with the letters N through Y are
integer variables, then the variable ITEM (which would be treated as an
integer variable under the predefined convention) is now treated as a
real variable. Note that variables beginning with the letters Z and $
are (by the predefined convention) treated as real variables. The
IMPLICIT statement is presented in greater detail in the section
"Specification Statements."

Type Declaration by Explicit Specification Statements

Explicit specification statements differ from the first two ways of
specifying the type of a variable, in that an Explicit specification
statement declares the type of a particular variable by its name rather
than as a group of variables beginning with a particular character.

For example, assume that an IMPLICIT statement overrode the prede­
fined convention for variables beginning with the letter I by declaring
them to be real and that a subsequent Explicit specification statement
declared that the variable named ITEM is complex. Then, the variable
ITEM is complex and all other variables beginning with the character I
are real. Note that variables beginning with the letters J through N
are specified as integer by the predefined convention.

The Explicit specification statements are discussed in greater detail
in the section "Specification Statements."

ARRAYS

A FORTRAN array is a set of variables identified by a single variable
name. A particular variable in the array may be referred to by its
position in the array (e.g., first variable, third variable, seventh
variable, etc.). consider the array named NEXT which consists of five
variables, each currently representing the following values: 273, 41,
8976, 59, and 2.

Elements of the Language 17

NEXT(l) is the location containing 273
NEXT(2) is the location containing 41
NEXT(3) is the location containing 8976
NEXT(4) is the location containing 59
NEXT(5) is the location containing 2

Each variable (element) in this array consists of the name of the
array (i.e., NEXT) immediately followed by a number enclosed in
parentheses, called a subscript quantity. The variables which the array
comprises are called subscripted variables. Therefore, the subscripted
variable NEXT(l) has the value 273; the subscripted variable NEXT(2) has
the value 41~ etc.

The subscripted variable NEXT(I) refers to the "Ith" subscripted
variable in the arrav.. where I is an integer variable that may assu..rne a
value of 1., 2., 3, 4., - or 5.

To refer to any element in an array, the
subscripted. In particular~ array name alone does
first element.

array name must be
not represent the

consider the following array named LIST described by two subscript
quantities, the first ranging from 1 through 5, the second from 1
through 3:

Column 1 column 2 Column 3
Row 1 82 4 7
Row 2 12 13 14
Row 3 91 1 31
Row 4 24 16 10
Row 5 2 8 2

Suppose it is desired to refer to the number in row 2, column 3; this
would be:

LIST (2,, 3)

Thus., LIST (2,3) has the value 14 and LIST (4,,1) has the value 24.

Ordinary mathematical notation might use LIST,ij to represent any
element of the array l..IST. In FORTRAN, this is written as LIST CI, J)
where I equals 1, 2, 3, 4, or 5 and J equals l,, 2, or 3.

DECLARING THE SIZE AND TYPE OF AN ARRAY

The size (number of elements) of an array is specified by the number
of subscript quantities of the array and the maximum value of each
subscript quantity. This information must be given for all arrays
before using them in a FORTRAN program so that an appropriate amount of
storage may be reserved. Declaration of this information is made by a
DIMENSION statement, a COMMON statement, or by one of the Explicit
specification statements; these statements are discussed in detail in
the section "Specification Statements." The type of an array name is
determined by the conventions for specifying the type of a variable
name. Each element of an array is of the type specified for the array
name.

18

ARRANGEMENT OF ARRAYS IN STORAGE

Arrays are stored in ascending storage locations, with the value of
the first of their 8Ubscript quantities increasing most rapidly and the
value of the last increasing least rapidly.

For example, the array LIST, whose values are given in the previous
example, is arranged in storage as follows:

82 12 91 24 2 4 13 1 16 8 7 14 31 10 2

The array named A, described by one subscript quantity which varies
from 1 to 5, appears in storage as follows:

A(1) A(2) A(3) AC4) ACS)

The array named B,, described by two subscript quantities with the
first subscript quantity varying over the range from 1 to 5, and the
second varying from 1 to 3, appears in ascending storage locations in
the following order:

BC1,1) BC2,1) BC3,1) B(4,1) BCS,1)--1
r--------------------------------------J
L->BC1,2) BC2,2) BC3,2) BC4,,2) BC5,2)--1
r--------------------------------------J
L->BC1.3) BC2*3) BC3,3) B(4,3) BC5,3)

Note that BC1,2) and BC1,3) follow in storage BCS,1) and BC5,2),
respectively.

The following list is the order of an array named c, described by
three subscript quantities with the first varying from 1 to 3, the
second varying from 1 to 2, and the third varying from 1 to 3:

CC1,1,1) CC2,1,1) C(3,1,1) CC1,2,1) C(2,2,1) CC3,2,1)--1
r---J
L->CC1,1,2) C(2,1,2) C(3,1,2) C(l,2,2) C(2,2,2) C(3,2,2)--1
r------~--J
L->CC1,1,3) C(2,1,3) C(J,1,3) C(1,2,3) C(2,2,3) C(3,2,3)

Note that CC1,1,2) and C(l,1,3) follow in storage CC3,2,1) and
c C 3 ,.2, 2), respectively.

SUBSCRIPTS

A subscript is an integer subscript quantity or a set of integer
subscript quantities separated by commas, which is used to identify a
particular element of an array. The number of subscript quantities in
any subscript must be the same as the number of dimensions of the array
with which the subscript is associated. A subscript is enclosed in
parentheses and is written immediately after the array name. A maximum
of seven subscript quantities can appear in a subscript.

The following rules apply to the construction of subscript quantities
(see the section "Expressions" for additional information about the
terms used below).

1. Subscript quantities may contain arithmetic expressions that use
any of the arithmetic operators: +, -, *• / 1 **·

Elements of the Language 19

2. Subscript quantities may contain function references.

3. Subscript quantities may contain subscripted names.

4. Mixed mode expressions (integer and real only) within subscript
quantities are evaluated according to normal FORTRAN rules. If the
evaluated expression is real, it is converted to integer.

s. The evaluated result of
greater than zero and less
corresponding dimension.

a subscript quantity should always be
than or equal to the size of the

Examples:

Valid Subscripted Variables:

ARRAY (!HOLD)
NEXT (19)
MATRIX CI- 5)
BAK (!,J(K+l*L,.3*A(M,N)))
ARRAY CI,J/4*K**2)

Invalid Subscripted Variables

ARRAY (-5)
LOT (0)

ALL(l.GE.I)

NXT (1+(1.3,2.0))

CA subscript quantity may not be negative>
CA subscript quantity may never be nor assume a

value of zero)
CA subscript quantity may not assume a true or

false value)
CA subscript quantity may not assume a complex

value)

EXPRESSIONS

FORTRAN IV provides two kinds of expressions: arithmetic and
logical. The value of an arithmetic expression is always a number whose
type is integer, real, or complex. The value of a logical expression is
always a truth value: .TRUE. or .FALSE •• Expressions may appear in
assignment statements and in certain control statements.

ARITHMETIC EXPRESSIONS

The simplest arithmetic expression consists of a primary which may be
a single constant, variable, subscripted variable, function reference,
or another expression enclosed in parentheses. The primary may be
either integer,.real, or complex.

In an expression consisting of a single primary, the type of the
primary is the type of the expression.

20

Examples:

Primary
3
A
3.14D3
(2.0,5.7)
SIN(X)
CA*B+C)

Type of Primary
Inteqer constant
Real-variable
Real constant
Complex constant
Real function reference
Parenthesized real

expression

Type of Expression
Integer of length 4
Real of length 4
Real of length 8
Complex of length 8
Real of length 4
Real of length 4

More complicated arithmetic expressions containing two or more
primaries may be formed by using arithmetic operators that express the
computation(s) to be performed.

Arithmetic Operators

The arithmetic operators are as follows:

Arithmetic Operator
**

* /
+

Definition
Exponentiation
Multiplication
Division
Addition
Subtraction

RULES FOR CONSTRUCTING ARITHMETIC EXPRESSIONS: The following are the
rules for constructing arithmetic expressions that contain arithmetic
operators:

1. All desired computations must be specified explicitly. That is, if
more than one primary appears in an arithmetic expression, they
must be separated from one another by an arithmetic operator. For
example, the two variables A and B will not be multiplied if
written:

AB

If multiplication is desired, the expression must be written as
follows:

A*B or B*A

2. No two arithmetic operators may appear in sequence in the same
expression. For example, the following expressions are invalid:

A*/B and A*-B

The expression A*-B could be written correctly as follows:

A* (-B)

In effect, -B will be evaluated first and then A will be multiplied
with it. (For further uses of parentheses, see rule 3.)

Elements of the Language 21

3. Order of Computation: computation is performed from left to right
according to the hierarchy of operations shown in the following
list.

22

Operation
Evaluation of functions
Exponentiation <**)
Multiplication and division (* and /)
Addition and subtraction (+ and -)

Hierarchy
1st
2nd
3rd
4th

This hierarchy is used to determine which of two consecutive
operations is performed first. If the first operator is higher
than or equal to the second, the first operation is performed. If
not, the second operator is compared to the third, etc. When the
end of the expression is encountered, all of the remaining
operations are performed in reverse order.

For example, in the expression A*B+C*D**I, the operations are
performed in the following order:

a. A*B Call the result x (multiplication) (X+C*D**I>
b. D**I Call the result y (exponentiation) (X+C*Y)
c. C*Y Call the result z (multiplication) CX+Z)
d. X+Z Final operation (addition)

If there are consecutive exponentiation operators, the evaluation
is from right to left. Thus, the expression:

A**B**C

is evaluated as follows:

a. B**C Call the result Z
b. A**Z Final operation

Parentheses may be used in arithmetic expressions, as in algebra,
to specify the order in which the arithmetic operations are to be
computed. Where parentheses are used, the expression within the
parentheses is evaluated before the result is used. This is
equivalent to the definition above since a parenthesized expression
is a primary ..

For example, the following expression:

B+((A+B)*C)+A**2

is effectively evaluated in the following order:

a. (A+B) .,.....,., , , the result v B+(X*C)+A**2 ~Q..£...L A

b. CX*C) Call the result y B+Y+A**2
c. B+Y Call the result w W+A**2
d. A**2 Call the result z W+Z
e. W+Z Final operation

Table 1. Determining the Type and Length of the Result of +, *I /
Operations

r-------------T--------T---------T---------T---------T--------T--------1
! ! I I I I I I
I I INTEGER I INTEGER I REAL I REAL I COMPLEX I COMPLEX I
1+ - * / I <2) I <4> I <4> I <8> I <8> I <16> I
~-------------+--------+---------+---------+---------+--------+--------~
!INTEGER !Integer I Integer I Real I Real I Complex! Complex!
I <2> I <2> I <4> I <4> I <8> I <8> I <16> I
~-------------+--------+---------+---------+---------+--------+--------~
jINTEGER ;Integer I Integer I Real I Real I Complex! Complex!
1 <4> I <4> I <4> I <4> I <8> I <8> I <16> I
~-------------+--------+---------+---------+---------+--------+--------~
!REAL !Real I Real I Real I Real I Complex! Complex!
I <4> I <4> I <4> I <4> I <8> I <8> I C16> I
~-------------+--------+---------+------~--+---------+--------+--------~
IREAL !Real I Real I Real I Real I Complex! Complex!
I C8) I <8) I <8> I <8> I <8> I <16> I <16> I
~-------------+--------+---------+---------+---------+--~-----+--------~
!COMPLEX !Complex I Complex I Complex I Complex I Complex! Complex!
1 <8> 1 <8> I <8> I C8) I <16> I <8> I <16> I
~-------------+--------+---------+---------+---------+--------+--------~
!COMPLEX !Complex I Complex I Complex I Complex I Complex! Complex!
I <16> I <16> I <16> I <16> I <16> I <16> I <16> I
~-------------~--------i _________ i _________ i _________ i ________ i ________ ~

!Note: When division is performed using two integers, the answer isl
!truncated and an integer answer is given. For example, if I=9 andl
IJ=2, then the expression (I/J) would yield an integer answer of 41
!after truncation. I
L--J

4. The type and length of the result of an operation depends upon the
type and length of the two operands (primaries) involved in the
operation. Table 1 shows the type and length of the result of the
operations +, -, *, and /.

Assume that the type of the following variables has been specified
as follows:

Variable Names

c
I, J, K
D

Real variable
Integer variable
Complex variable

Length Specification

4
4 I 2, 2
16

Then the expression I*J/C**K+D is evaluated as follows:

Subexpression Type and Length

I*J (Call the result X) Integer of length 4
C**K (Call the result Y) Real of length 4
X/Y (Call the result Z) Real of length 4
Z+D Complex of length 16

Thus the final type of the entire expression is complex of length
16, but the type changed at different stages in the evaluation.
Note that, depending on the values of the variables involved,, the
result of the expression I*J*C might be different from I*C*J.

5. The arithmetic operator denoting exponentiation (i.e.,**) may only
be used to combine the types of operands shown in Table 2.

The type of the result depends upon the type of the two operands
involved, as shown in Table 1. For example, if an integer is
raised to a real power, the type of the result is real.

Elements of the Language 23

Table 2. Valid Combinations with the Arithmetic Operator **
r--1 I Base Exponent I
~--i
I Integer (either length) } { Integer .(either length) I
I or ** or I
I Real (either length) Real (either length) I
I I
I Complex (either length) ** Integer (either length) I
L--J

LOGICAL EXPRESSIONS

The simplest form of logical expression consists of a single logical
primary. which can be a logical constant, logical variable, logical
subscripted variable, logical function reference, or logical expression
enclosed in parentheses;, which always has the value .TRUE. or .FALSE ••

More complicated logical expressions may be formed by
and relational operators. These expressions may be
following forms:

using logical
in one of the

1. Relational operators combined with arithmetic expressions whose
type is integer or real.

2. Logical operators combined with logical primary.

3. Logical operators combined with either or both forms of the logical
expressions described in items 1 and 2.

Item 1 is discussed in the following section1, "Relational Operators;"
items 2 and 3 are discussed in the section "Logical Operators."

Relational Operators

The six relational operators, each of which must be preceded and
followed by a period, are as follows:

Relational Operator
.GT.
.GE.
.LT.
.LE.
.EQ.
.NE.

Definition
Greater than <»
Greater than or equal to <~>
Less than C<)
Less than or equal to (~)

Equal to <=>
Not equal to <*->

The relational operators express an arithmetic condition which can be
either true or false. Only arithmetic expressions whose type is integer
or real may be combined by relational operators. For example, assume
that the type of the following variables has been specified as follows:

Variable Names
ROOT, E
A,, I,, F
L
c

~
Real variables
Integer variables
Logical variable
Complex variable

Then the following examples illustrate valid and invalid logical
expressions using the relational operators.

24

Examples:

Valid Logical Expressions Using Relational Operators:

A .LT. I
E**2.7 .EQ. (5*ROOT+4)
.5 .GE •• 9*ROOT
E .. EQ .. 27 .. 3D+05

Invalid Logical Expressions Using Relational Operators:

c .GE. (2.7,5.9E3) (Complex quantities may never appear in logical
expressions)

L .EQ. (A+F) (Logical quantities may never be joined by
relational operators}

E**2 .EQ 97.1E9 (Missing period immediately after the relational
operator)

.GT. 9 (Missing arithmetic expression before the rela-
tional operator}

Logical Operators

The three logical operators, each of which must be preceded and
followed by a period, are as follows Cwhere A and B represent logical
constants or variables, or expressions containing relational operators):

Logical Operator Use

.NOT. .NOT.A

.AND. A.AND.B

.OR. A.OR.B

Meaning

If A is .TRUE., then .NOT.A has the value
.FALSE.; if A is .FALSE., then .NOT.A
has the value .TRUE.

If A and B are both .TRUE., then A.AND.B
has the value .TRUE.; if either A or B
or both are .FALSE., then A.AND.B has
the value .FALSE.

If either A or B or both are .TRUE., then
A.OR.B has the value .TRUE.; if both A
and Bare .FALSE., then A.OR.B has the
value .FALSE.

Two logical operators may appear in sequence only if the second one
is the logical operator .NOT ••

Only those expressions which, when evaluated, have the value .TRUE.
or .FALSE. may be combined with the logical operators to form logical
expressions. For example, assume that the type of the following
variables has been specified as follows:

Variable Names
ROOT, E
A, I,, F
L, W
c

~
Real variable~
Integer variables
Logical variables
complex variable

Then the following examples illustrate valid and invalid logical
expressions using both logical and relational operators.

Elements of the Language 25

Examples:

Valid Logical Expressions:

CROOT*A .GT. A) .AND.
L • AND. • NOT. (I • GT.
CE+S.902 .GT. 2*E) .OR.

.NOT. W .AND. .NOT.
L .AND. .NOT. W .OR.
CA**F .GT. ROOT) .AND.

w
F)

L
L
I .GT.

.NOT.

Invalid Logical Expressions:

F
CI • EQ. E)

A .. AND .. L
.. OR.. W

CA is not a logical expression)

NOT. (A • GT. F)

CC • EQ. I) • AND. L

L .AND •• OR. W

.AND. L

(.OR. must be preceded by a logical expression)
(Missing period before the logical operator

.NOT.)
CA complex quantity may never be an operand of

a relational operator)
(The logical operators .AND. and .OR. must

always be separated by a logical expression>
(.AND. must be preceded by a logical

expression)

Order of Computations in Logical Expressions:
operations· are performed is:

The order in which the

Operation
Evaluation of functions
Exponentiation (**)

Hierarchy
1st (highest)
2nd

Multiplication and division <• and /)
Addition and subtraction (+ and -)

3rd
4th

• LT. , • LE. , • EQ. , • NE. , • GT. ,, • GE. 5th
.NOT. 6th
.AND. 7th
.OR. 8th

For example, the expression:

A.GT.D**B.AND •• NOT.L.OR.N

is effectively evaluated in the following order:

1. D**B Call the result w <exponentiation)
2. A.GT.W Call the result x <relational operator)
3. .NOT .. L Call the result y (highest logical operator>
4 .. X.AND.Y Call the result z (second highest logical operator>
5 .. Z.OR.N Final operation

Note: Logical expressions may not require that all parts be evaluated.
Functions within logical expressions may or may not be called. For
example, in the expression A.OR.LGF(.TRUE.),, it should not be assumed
that the LGF function is always invoked.

26

Use of Parentheses in Logical Expressions: Parentheses may be used in
logical expressions to specify the order in which the operations are to
be performed. Where parentheses are used, the expression contained
within the most deeply nested parentheses (that is;, the innermost pair
of parentheses) is effectively evaluated first. For example, the
logical expression:

(I.GT.(B+C)).AND.L

is effectively evaluated in the following order:

1. B+C
2. I.GT.X
3. Y.AND.L

call the result X
Call the result Y
Final operation

The logical expression to which the logical operator .NOT. applies
must be enclosed in parentheses if it contains two or more quantities.
For example, assume that the values of the logical variables, A and B,
are .FALSE. and .TRUE., respectively. Then the following two expre­
ssions are not equivalent:

.NOT.(A.OR.B)

.NOT.A.OR.B

In the first expression~ A.OR.B~ is evaluated first. The result is
.TRUE.; but .NOT.(.TRUE.) implies .FALSE •• Therefore, the value of the
first expression is .FALSE.

In the second expression, .NOT.A is evaluated first.
.TRUE.; but .TRUE •• OR.B implies .TRUE •• Therefore, the
second expression is ~TRUE ••

The result is
value of the

Elements of the Language 27

ARITHMETIC AND LOGICAL ASSIGNMENT STATEMENT

r--1
I General Form I
~--~
I ~=f?. I
I I
I Where: ~ is ~ subscripted or nonsubscripted variable. I
I I
I Q is an arithmetic expression or logical expression. I
L--J

This FORTRAN statement cl?sely resembles a conventional algebraic
equation; however, the equal sign specifies replacement rather than
equivalence. That is, the expression to the right of the equal sign is
evaluated, and the resulting value replaces the current value of the
variable to the left of the equal sign.

If Q is a logical expression, a must be a logical variable. If b is
an arithmetic expression,, ~ must be an integer, real., or complex
variable. Table 3 gives the conversion rules used for placing the
evaluated result of arithmetic expression !;?_ into variable a.

Assume that the type of the following variables has been specified
as:

Variable Names
I, J, W
A, B, C, D
E
G, H

~
Integer variables
Real variables
Complex variable
Logical variables

Length Specification
4,4,2
4,4,8,8
8
4,4

Then the following examples illustrate valid arithmetic statements
using constants, variables. and subscripted variables of different
types:

Statements

A = B

w B

A = I

I = I + 1

E = I**J+D

A = C*D

A E

28

Description

The value of A is replaced by the current value of B.

The value of B is truncated to an integer value, and
this value replaces the value of w.

The value of I is converted to a real value, and this
result replaces the value of A.

The value of I is replaced by the value of I + 1.

I is raised to the power J and the result is
converted to a real value to which the value of D
is added. This result replaces the real part of
the complex variable E. The imaginary part of the
complex variable is set to zero.

The most significant part of the product of c and D
replaces the value of A.

The real part of the complex variable E replaces the
value of A.

Statements

E =A

G = .TRUE.

H = .NOT.G

G = 3 •• GT.I

E = (1. 0,, 2. 0)

Description

The value of A replaces the value of the real part of
the complex variable E; the imaginary part is set
equal to zero.

The value of G is replaced by the logical constant
• TRUE ••

If G is .TRUE., the value of H
logical constant .FALSE ••
value of H is replaced by
• TRUE ••

is
If

the

replaced by the
G is .FALSE., the
logical constant

The value of I is converted to a real value; if the
real constant 3. is greater than this result, the
logical constant .TRUE. replaces the value of G.
If 3. is not greater than I, the logical constant
.FALSE. replaces the value of G.

The value of the complex variable E is replaced by
the complex constant (1.0,2.0). Note that the
statement E = (A,B) where A and B are real
variables is invalid.

Arithmetic and Logical Assignment Statement 29

Table 3. Conversion Rules for the Arithmetic Assignment statement !!_ = Q
----------T-----------T-----------T-----------T-----------T-----------1

I Type I I I I I I
I of Q I INTEGER*2 I I I I I
jType I INTEGER*4 I REAL*4 I REAL*8 I COMPLEX*8 ICOMPLEX*16 I
I of ~ I I I I I I
~---------- -----------+-----------i-----------+-----------i-----------~
1INTEGER*2 I Assign I Fix and Assign I Fix and Assign real I
IINTEGER*4 I I I part; imaginary part I
I I I I not used I
~----------f-----------f-----------T-----------+~----------T-----~-----~
I REAL*4 I Float and I Assign !Real AssignlAssign realjReal Assign!
I I Assign I I) part; imag-1 real part; I
I I I I I inary part I imaginary I
I I I I lnot used !part not I
I I I I I 1used J

~----------+-----------+-----------i------~---~+---~--~---i-----------~
I REAL*8 IDP Float I Assign !Assign real part; I
I land Assign I limaginary part not usedl
~----------t-----------t-----------T-----~-----f-----------T---~-------~
ICOMPLEX*8 !Float and !Assign to jReal Assignl Assign !Real Assign!
I !Assign to !real part; !real part; I !real and I
I jreal part; !imaginary !imaginary I !imaginary I
I I imaginary I part set to I part set to I I parts I
I !part set tojzero !zero I I I
I I zero I I I I I
~----------+-----------+-----------i-----------+-----------i-----------~
ICOMPLEX*l6lDP Float I Assign to real part; I Assign I
I jand Assign I imaginary part set to I I
I Ito real I zero I I
I I part; imag-1 I I
I I inary part I I I
I I set to zero I I I
~----------i ___________ i _______________________ i-----------------------~
!Notes:
)1. Assign means transmit the resulting value, without change. If

the significant digits of the resulting value exceed the speci­
fied length, results are unpredictable.

2. Real Assign means transmit to ~ as much precision of the most
significant part of the resulting value as REAL*4 data can
contain.

3. Fix means transform the resulting value to the form of a basic
real constant and truncate the fractional portion.

4. Float means transform the resulting value to the form of a REAL*4
number, retaining in the process as much precision of the value
as a REAL*4 number can contain.

5. DP Float means transform the resulting value to the form of a
REAL*8 number.

6. An expression of the form E=CA,B), where E is a complex variable
and A and B are real variables,, is invalid. The mathematical
function subprogram CMPLX can be used for this purpose. See
Appendix c.

L--

30

CONTROL STATEMENTS

Normally, FORTRAN statements are executed sequentially. That is,
after one statement has been executed,, the statement immediately
following it is executed. This section discusses the statements that
may be used to alter and control the normal sequence of execution of
statements in the program.

GO TO STATEMENTS

GO TO statements permit transfer of control to an executable
statement specified by number in the GO TO statement. Control may be
transferred either unconditionally or conditionally. The GO TO state­
ments are:

1. Unconditional GO TO statement

2. computed GO TO statement

3. Assigned GO TO statement

UNCONDITIONAL GO TO STATEMENT

i-------=~~=~--1
I General Form I
~--~
I GO TO ~ I
I I
I Where: ~ is an executable statement number. I
l----------------~--~----------J

This GO TO statement causes control to be transferred to the
statement specified by the statement number. Every subsequent execution
of this GO TO statement results in a transfer to that same statement.
Any executable statement immediately following this statement should
have a statement number; otherwise it can never be referred to or
executed.

Example:

GO TO 25
10 A = B + C

25 C = E**2

Explanation:

In this example, each time the GO TO statement is executed, control
is transferred to statement 25.

Control Statements 31

COMPUTED GO TO STATEMENT

r--1
I General Form I
~--~
I GO TO <~11 ~2r ~3r • • • r !fn) 1 !. I
I I
I Where: ~1.J~2 , ••• ,~n'r are executable statement numbers. I
I I
I i is a nonsubscripted integer variable whose current value I
I is in the range: 1 ~ i ~ n I
L--J

This statement causes control to be transferred to the statement
numbered ~1 , ~2 , ~3 , ••• , or ~nr depending on whether the current value
of i is 1, 2, 3, ••• ,, or n, respectively. If the value of i is outside
the allowable range,, the next statement is executed.

Example:

GO TO (25, 10, 7), ITEM

7 C = E**2+A

25 L = C

10 B = 21. 3E02

Explanation:

In this example, if the value of the integer variable ITEM is 1,
statement 25 will be executed next. If ITEM is equal to 2, statement 10
is executed next, and so on.

ASSIGN AND ASSIGNED GO TO STATEMENTS

r----------------------------------~-----------------------------------1
I General Form I
~--~

ASSIGN !. TO ill I

GO TO illr (~1. , ~2 , ~3 1 • • • '' ~n)

I
I
I
I
I

Where: i is an executable statement number. It must be one of the I
numbers ~1.,~2·•~3• •••• ~n· I

x1. 1 x 2 ,x3 , ••• ,xn are executable statement numbers
program unit containing the GO TO statement.

I
in the I

I
I

m is a nonsubscripted integer variable of length 4 which is I
assigned one of the statement numbers: ~1.r~2 ,~3,, ••• r~n· I

l--J

32

The assigned GO TO statement causes control to be transferred to the
statement numbered ~.1.•~2.,~3 •••• ,or ~n, depending on whether the current
assignment of~ is ~.1.1~2 ,~3 , ••• ,or ~n. respectively. For example, in
the following statement:

GO TO N,, (10, 25, 8)

If the current assignment of the integer variable N is statement number
8, then the statement numbered 8 is executed next. If the current
assignment of N is statement number 10, the statement numbered 10 is
executed next. If N is assigned statement number 25, statement 25 is
executed next.

At the time of execution of an assigned GO TO statement, the current
value of m must have been defined to be one of the values x, ~2 ••• ~n by
the previous execution of an ASSIGN statement. The value of the integer
variable m is not the integer statement number; ASSIGN 10 TO I is not
the same as I = 10.

Example 1:

ASSIGN 50 TO NUMBER
10 GO TO NUMBER, (35, 50, 25, 12, 18)

50 A = B + C

Explanation:

In example 1, statement 50 is executed immediately after statement
10.

Example 2:

ASSIGN 10 TO ITEM

13 GO TO ITEM, (8, 12, 25, 50, 10)

8 A = B + C

10 B = C + D
ASSIGN 25 TO ITEM
GO TO 13

25 C = E**2

Control Statements 33

Explanation:

In example 2, the first time statement 13 is executed, control is
transferred to statement 10. On the second execution of statement 13;,
control is transferred to statement 25.

ADDITIONAL CONTROL STATEMENTS

ARITHMETIC IF STATEMENT

r--1
I General Form I
~--~
I IF (~) ~1-~2~~3 I
I I
I I
I Where: ~ is any arithmetic expression except complex. I
I I
I ~1.,~2 .,~3 are executable statement numbers. I
L--J

The arithmetic IF statement causes control to be transferred to the
statement numbered x1 .,x2 w or x 3 when the value of the arithmetic
expression <~> is less-than, equal to, or greater than zero, respective­
ly. The first executable statement following the arithmetic IF state­
ment should have a statement number; otherwise., it can never be referred
to or executed.

Example:

IF (A(J,K)**3-B)10 1 4, 30

4 D = B + C

30 C = D**2

10 E = (F*B)/D+l

Explanation:

In this example, if the value of the expression (A(J,,K) **3-B) is
negative,, the statement numbered 10 is executed next. If the value of
the expression is zero., the statement numbered 4 is executed next.. ' If
the value of the expression is positive, the statement numbered 30 is
executed next.

34

LOGICAL IF STATEMENT

r--1
I General Form I
~--~
I IFC~>2 I
I I
I Where: 2. is any logical expression. I
i i
I 2 is any executable statement except a DO statement or I
I another logical IF statement. I
L--J

The logical IF statement is used to evaluate the logical expression
(~) and to execute or skip statement ~ depending on whether the value of
the expression is • TRUE. or • FALSE •. , respectively.

Example 1:

IFCA.LE.0.0) GO TO 25
C = D + E
IFCA.EQ.B) ANSWER= 2.0*A/C
F = G/H

25 W = X**Z

Explanation:

In the first statement, if the value of the expression is .TRUE.
Ci.e., A is less than or equal to 0.0), the statement GO TO 25 is
executed next and control is passed to the statement numbered 25. If
the value of the expression is .FALSE.Ci.e., A is greater than 0.0), the
statement GO TO 25 is ignored and control is passed to the second
statement.

In the third statement, if the value of the expression is .TRUE.
Ci.e., A is equal to B), the value 9f ANSWER is replaced by the value of
the expression (2.0*A/C) and then the fourth statement is executed. If
the value of the expression is .FALSE. Ci.e., A is not equal to B), the
value of ANSWER remains unchanged and the fourth statement is executed
next.

Example 2:

Assume that P and Q are logical variables.

IFCP.OR •• NOT.Q)A=B
C = B**2

Control Statements 35

Explanation:

In the first statement, if the value of the expression is .TRUE., the
value of A is replaced by the value of B and the second statement is
executed next. If the value of the expression is .FALSE., the statement
A = B is skipped and the second statement is executed.

DCJ STATEMENT

r--1
I General Form I
~==--~

End of DO Initial Test
Range Variable Value Value Increment
~~~~-~ 

DO i = !!!2·• 

Where: ~ is an executable statement number appearing after the DO 
statement. 

! is a nonsubscripted integer variable. 

!!!1 , !!!2 , and !!!3,, are either unsigned integer constants great­
er than zero or unsigned nonsubscripted intege·r variables 
whose value is greater than zero. !!!2 may not exceed 231-2 
in value. m3 is optional; if it is omitted, its value is 
assumed to be-1. In this case, the preceding comma must 
also be omitted. 

The DO statement is a command to execute, at least once, the 
statements that physically follow the DO statement,, up to and including 
the statement numbered ~- These statements are called the range of the 
DO. The first time the statements in the range of the DO are executed, 
i is initialized to the value !!!1 ; each succeeding time i is increased by 
the value !!!3 • When, at the end of the iteration, i is equal to the 
highest value that does not exceed !!!2 , control passes to the statement 
following the statement numbered ~- Thus, the number of times the 
statements in the range of the DO are executed is given by the 
expression: 

r , 
I !!!2 - !!!1 I 
I ------- I +1 
1 !!!3 I 
L J 

where the brackets represent the largest integral value not exceeding 
the value of the expression within the brackets. If !!!2 is less than !!!1 , 

the statements in the range of the DO are executed once. Upon 
completion of the DO, the DO variable is undefined and may not be used 
until assigned a value Ce.g., in a READ list). 

There are several ways in which looping (repetitively executing the 
same statements) may be accomplished when using the FORTRAN language. 
For example, assume that a manufacturer carries 1,000 different machine 
parts in stock. Periodically, he may find it necessary to compute the 
amount of each different part presently available. This amount may be 
calculated by subtracting the number of each item used, OUTCI), from the 
previous stock on hand, STOCK(!). 

36 



Example 1: 

I=O 
10 I=I+l 

STOCK{!)=STOCK(l)- OUT(I) 
IFCI-1000) 10,30,30 

30 A=B+C 

Explanation: 

The first, second, and fourth statements required to control the 
previously shown loop could be replaced by a single DO statement as 
shown in example 2. 

Example 2: 

DO 25 I = 1,1000 
25 STOCK{!) = STOCK(I)-OUT(I) 

A = B+C 

Explanation: 

In example 2, the DO variable; I, is set to the initial value of 1. 
Before the second execution of statement 25., I is increased by the 
increment, 1., and statement 25 is again executed. After 1000 executions 
of the DO loop, I equals 1000. Since I is now equal to the highest 
value that does not exceed the test value, 1000, control passes out of 
the DO loop and the third statement is executed next. Note that the DO 
variable I is now undefined; its value is not necessarily 1000 or 1001. 

Example 3: 

DO 25 I=l, 10, 2 
J = I+K 

25 ARRAY(J) = BRAYCJ) 
A = B + C 

Explanation: 

In example 3, statement 25 is the end of the range of the DO loop. 
The DO variable~ I, is set to the initial value of 1. Before the second 
execution of the DO loop, I is increased by the increment, 2, and the 
second and third statements are executed a·second time. After the fifth 
execution of the DO loop, I equals 9. Since I is now equal to the 
highest value that does not exceed the test value, 10, control passes 
out of the DO loop and the fourth statement is executed next. Note that 
the DO variabie I is now undefined; its value is not necessarily 9 or 
11. 

Control Statements 37 



PROGRAMMING CONSIDERATIONS IN USING A DO LOOP 

1. The indexing parameters of a DO statement (i, m1 , m2 , m3 ) should 
not be changed by a statement within the range-of the DO-loop. 

2. There may be other DO statements within the range of a DO 
statement. All statements in the range of the inner DO must be in 
the range of the outer DO. A set of DO statements satisfying this 
rule is called a nest of DO's. 

Example 1: 

DO 50 I = 1, 4 

A(I) = B(I)**2 

DO 50 J=l, 5 } 

50 C(J+l) = A(I) 

Example 2: 

DO 10 INDEX = L, M 

N = INDEX + K 

DO 15 J = 1, 100, 2 } 

15 TABLE(J) = SUMCJ,N)-1 

10 B(N) = A(N) 

Range of 
Inner DO 

Range of 
Inner DO 

Range of 
Outer DO 

Range of 
Outer DO 

3. A transfer out of the range of any DO loop is permissible at any 
time. 

4. The extended range of a DO is defined as those statements in the 
program unit containing the DO statement that are executed between 
the transfer out of the innermost DO of a nest of DO's and the 
transfer back into the range of this innermost DO. The following 
restrictions apply: 

38 

• Transfer into the range of a DO is permitted only if such a 
transfer is from the extended range of the DO. 

• The extended range of a DO statement must not contain another DO 
statement that has an extended range if the second DO is within 
the same program unit as the first. 

• The indexing parameters Ci, fil1 , ffi2• ffi3 ) cannot be changed in the 
extended range of the DO. 

Note that a statement that is the end of the range of more than one 
DO statement is within the innermost DO. 

( 



Example 1: 

I=O 
10 I=I+l 

STOCK(I)=STOCK(I)- OUT(I) 
IF(I-1000) 10,30,30 

30 A=B+C 

Explanation: 

The first, second, and fourth statements required to control the 
previously shown loop could be replaced by a single DO statement as 
shown in example 2. 

Example 2: 

DO 25 I = 1,1000 
25 STOCK(I) = STOCK(I)-OUT(I) 

A = B+C 

Explanation: 

In example 2, the DO variable, I, is set to the initial value of 1. 
Before the second execution of statement 25., I is increased by the 
increment, l,, and statement 25 is again executed. After 1000 executions 
of the DO loop, I equals 1000. Since I is now equal to the highest 
value that does not exceed the test value, 1000, control passes out of 
the DO loop and the third statement is executed next. Note that the DO 
variable I is now undefined; its value is not necessarily 1000 or 1001. 

Example 3: 

DO 25 I=l, 10, 2 
J = I+K 

25 ARRAY(J) = BRAY(J) 
A = B + C 

Explanation: 

In example 3, statement 25 is the end of the range of the DO loop. 
The DO variable., I, is set to the initial value of 1. Before the second 
execution of the DO loop, I is increased by the increment, 2, and the 
second and third statements are executed a·second time. After the fifth 
execution of the DO loop, I equals 9. Since I is now equal to the 
highest value that does not exceed the test value, 10, control passes 
out of the DO loop and the fourth statement is executed next. Note that 
the DO variab~e I is now undefined; its value is not necessarily 9 or 
11. 

Control Statements 37 



PROGRAMMING CONSIDERATIONS IN USING A DO LOOP 

1. The indexing parameters of a DO statement Ci, m1 , m2 , m3 ) should 
not be changed by a statement within the range-of the DO-loop. 

2. There may be other DO statements within the range of a DO 
statement. All statements in the range of the inner DO must be in 
the range of the outer DO. A set of DO statements satisfying this 
rule is called a nest of DO's. 

Example 1: 

DO 50 I = 1, 4 

ACI) = BCI)**2 

DO 50 J=l, 5 } 

50 CCJ+l) = A(I) 

Example 2: 

DO 10 INDEX = L, M 

N = INDEX + K 

DO 15 J = 1, 100, 2 } 

15 TABLECJ) = SUMCJ,N)-1 

10 BCN) = ACN) 

Range of 
Inner DO 

Range of 
Inner DO 

Range of 
outer DO 

Range of 
Outer DO 

3. A transfer out of the range of any DO loop is permissible at any 
time. 

4. The extended range of a DO is defined as those statements in the 
program unit containing the DO statement that are executed between 
the transfer out of the innermost DO of a nest of DO's and the 
transfer back into the range of this innermost DO. The following 
restrictions apply: 

38 

• Transfer into the range of a DO is permitted only if such a 
transfer is from the extended range of the DO. 

• The extended range of a DO statement must not contain another DO 
statement that has an extended range if the second DO is within 
the same program unit as the first. 

• The indexing parameters Ci, m11 IB2 • IB3 ) cannot be changed in the 
extended range of the DO. 

Note that a statement that is the end of the range of more than one 
DO statement is within the innermost DO. 



Example: 

DO DO 

00)1 004 DO\ 
2 i5 

.__.,_. 7 

Explanation: 

In the preceding example, the transfers specified by the numbers 1, 
2, and 3 are permissible, whereas those specified by 4, 5, 6, and 7 
are not. 

5. The indexing parameters <i•!!!.1.i!!!2 ,,!!!3 ) may be changed by statements 
outside the range·of the DO statement only if no transfer is made 
back into the range of the DO statement that uses- those parameters. 

6. The last statement in the range of a DO loop <statement ~) must be 
an executable statement. It cannot be a GO TO statement of any 
form, or a PAUSE, STOP, RETURN, arithmetic IF statement, another DO 
statement, or a logical IF statement containing any of these forms. 

7. The use of, and return from., a subprogram from within any DO loop 
in a nest of DO's is permitted. 

CONTINUE STATEMENT 

r----------------------------------------------------------------------1 
I General Form I 
~----------------------------------------------------------------------~ 
I CONTINUE I 
L----------------------------------------------------------------------J 

CONTINUE is a dununy statement that may be placed anywhere in the 
source program without affecting the sequence of execution. It may be 
used as the last statement in the range of a DO in order to avoid ending 
the DO loop with a GO TO, PAUSE, STOP, RETURN, arithmetic IF, another DO 
statement, or a logical IF statement containing any of these forms. 

Control Statements 39 



Example 1: 

DO 30 I = 1,, 20 
7 IF (A(I)-B(I)) 5,,30,30 
5 A(I) =A(I) +l.O 

B(I) = B(I) -2.0 

GO TO 7 
30 CONTINUE 

C = A(3) + B(7) 

Explanation: 

In example 1,,, the CONTINUE statement is used as the last statement in 
the range of the DO in order to avoid ending the DO loop with the 
statement GO TO 7. 

Example 2: 

DO 30 I=l,20 
IF(A(I)-B(I))5,401 40 

5 A(I) = CCI) 
GO TO 30 

40 A(I) = 0.0 
30 CONTINUE 

Explanation: 

In example 2,, the CONTINUE statement provides a branch point enabling 
the programmer to bypass the execution of statement 40. 

PAUSE STATEMENT 

r----------------------------------------------------------------------1 
I General Form I 
~----------------------------------------------------------------------~ 
I PAUSE I 
I PAUSE n I 
I PAUSE 1 message' I 
I I 
I Where: g is a string of 1 through 5 decimal digits. I 
I I 
I 'message' is a literal constant of up to 255 characters I 
I enclosed in apostrophes. I 
L----------------------------------------------------------------------J 

PAUSE !!• PAUSE message, or PAUSE 00000 is displayed, depending upon 
whether !!, 'message' or no parameter was specified., and the program 
waits until operator intervention causes it to resume execution, 
starting with the next statement after the PAUSE statement. For further 
information, see the FORTRAN programmers' guides listed in the Preface. 

40 



STOP STATEMENT 

r-------------------------------~============~-~-----------------------1 
I General Form I 
~----------------------------------------------------------------------~ 
I STOP I 
I STOP g I 
I I 
I Where: g is a string of 1 through 5 decimal digits. I 
l----------------------------------------------------------------------J 

The STOP statement terminates the execution of the object program and 
displays g if specified. For further information, see the FORTRAN 
programmers' guides listed in the Preface. 

END STATEMENT 

r----------------------------------------------------------------------1 
I General Form I 
~----------------------------------------------------------------------~ 
I END I 
l----------------------------------------------------------------------J 

The END statement is a nonexecutable statement that defines the end 
of a source program or source subprogram for the compiler. Physically, 
it must be the last statement of each program or subprogram, and it may 
not be continued. The END statement does not terminate program 
execution. To terminate execution, a STOP statement or a RETURN 
statement in the main program is required. 

Control Statements 41 



INPUT/OUTPUT STATEMENTS 

Input/output statements are used to transfer and control the flow of 
data between internal storage and an input/output device, such as a card 
reader,, printer,. punch, magnetic tape unit, or disk storage unit.. The 
data that is to be transferred belongs to a data set. Data sets are 
composed of one or more records. Typical records are punched cards, 
printed lines,. or the images of either on magnetic tape or disk. 

Operation: In order for the input or output operation ~o take place,. 
the programmer must specify the kind of opera ti on he desires; READ,, 
WRITE,, or BACKSPACE,, for example. 

Data Set Reference Number: A FORTRAN programmer refers to a data set by 
its data set reference number. (The FORTRAN programmers' guides, listed 
in the preface, explain how data set reference numbers are associated 
with data sets.) In the statement specifying the type of input/output 
operation, the programmer must give the data set reference number 
corresponding to the data set he wishes to operate on. 

I/O List: Input/output statements in FORTRAN are primarily concerned 
with the transfer of data between storage locations defined in a FORTRAN 
program and records which are external to the program. On input, data 
is taken f rorn a record and placed into storage locations that are not 
necessarily contiguous. On output, data is gathered from diverse 
storage locations and placed into a record. An I/O list is used to 
specify which storage locations are used. The I/O list can contain 
variable namesr subscripted array names., unsubscripted array names, or 
array names accompanied by indexing specifications in a form called an 
implied DO. No function references or arithmetic expressions are 
permitted in an I/O list. 

If a variable name or subscripted array name appears in the I/O list, 
one item is transmitted between a storage location and a record. 

If an unsubscripted array name appears in the list, the entire array 
is transmitted in the order in which it is stored. (If the array has 
more than one dimension., it is stored in ascending storage locations, 
with the value of the first subscript quantity increasing most rapidly 
and the value of the last increasing least rapidly. An example is given 
in the section "Arrangement of Arrays in Storage.") 

If an implied DO appears in the I/O list, the elements of the 
array(s) specified by the implied DO are transmitted. The implied DO 
specification is ~nclosed in parentheses. Within the parentheses are 
one or more subscripted array names,, separated by commas with a comma 
following the last name,, followed by indexing parameters i=m1., ma, m3 
like those in the DO statement. The indexing parameters specify an 
initial value,, test value, and increment. If the increment is omitted, 
1 is assumed. 

42 



For example, assume that A is a variable and that B, c, and D are 
one-dimensional arrays each containing 20 elements. Then the statement: 

WRITE (6) A, B., (C(I) I I=1, 4), 0(4) 

writes the current value of variable A~ the entire array B, the 
four elements of the array c,, and the fourth element of D. 
following the WRITE is the data set reference number.) 

first 
(The 6 

Implied DO's can be nested if required. For example, to read an 
element into array B after values are read into each row of a 10 x 20 
array A, the following would be written: 

READ (5) ((A(I.,J),, J=l,10), BU), I=l.,20) 

The order of the n:ames i.n the list specifies the order in which the 
data is transferred between the record and the storage locations. 

A special kind of I/O list called a NAMELIST list is explained in the 
section "READ and WRITE Using NAMELIST." 

Formatted and Unformatted Records: Data can be transmitted either under 
control of a FORMAT statement or without the use of a FORMAT statement. 

When data is transmitted with format control,, the data in the record 
is coded in a form that can be read by the programmer or satisfies the 
needs of machine representation. The transformation for input takes the 
character codes and constructs a machine representation of an item. The 
output transformation takes the machine representation of an item and 
constructs character codes suitable for printing. Most transformations 
involve numeric representations that require base conversion. To obtain 
format control., the programmer must include a FORMAT statement in the 
program and must give the statement number of the FORMAT statement in 
the READ or WRITE statement specifying the input/output operation. 

When data is transmitted without format control, no FORMAT statement 
is used. In this case, there is a one-to-one correspondence between 
internal storage locations (bytes) and external record positions. A 
typical use of unformatted data is for information that is written out 
during a program, not examined by the programmer, and then read back in 
later in the program or in another program for additional processing. 

For unformatted data., the I/O list determines the length of the 
record. For example, an output record is complete when the current 
values of all the items in the I/O list have been placed in it, plus any 
control words supplied by the input/output routines or Data Management. 
For further information, see the FORTRAN IV programmers' guides listed 
in the Preface. 

For formatted data., the I/O list and the FORMAT statement determine 
the form of the record. For further information see the section "FORMAT 
Statement" and the FORTRAN IV programmers' guides. 

Input/Output Statements 43 



There are two types of input/output statements: sequential and 
direct access. Sequential input/output statements are used for storing 
and retrieving data sequentially. These statements are device indepen­
dent and can be used for data sets on either sequential or direct access 
devices. 

The direct access input/output statements are used to store and 
retrieve data in an order specified by the user. These statements can 
be used only for a data set on a direct access storage device. 

SEQUENTIAL INPUT/OUTPUT STATEMENTS 

There are five sequential input/output statements: READ, WRITE, END 
FILE., REWIND, and BACKSPACE. The READ and WRITE statements cause 
transfer of records of sequential data sets. The END FILE statement 
defines the end of a data set; the REWIND and BACKSPACE statements 
control the positioning of data sets. In addition to these five 
statements, the FORMAT and NAMELIST statements, although not 
input/output statements., are used with certain forms of the READ and 
WRITE statements. The FORMAT and NAMELIST statements are not executable 
statements and can appear anywhere in the program. 

READ STATEMENT 

r----------------------------------------------------------------------1 
IGeneral Form I 
~----------------------------------------------------------------------~ 
IREAD(!!_,f!,END=.£,ERR=g> list 
I 
Where: a is an unsigned integer constant or an integer variable 

that is of length 4 and represents a data set reference 
number. 

b is optional and is either the statement number or array 
name of the FORMAT statement describing the record(s) being 
read, or a NAMELIST name. 

END=c is optional and c is the number of the statement to 
which transfer is made-upon encountering the end of the data 
set. 

ERR=g is optional and g is the number of the statement to 
which transfer is made upon encountering an error condition! 
in data transfer. I 

I 
list is optional and is an I/O list. I 

---------==-----------------------------------------------------------J 
The READ statement may take many forms. The value of !!_ must always 

be specified, but under appropriate conditions £, .£., g,, and list can be 
omitted. The order of the parameters END=.£ and ERR=g can be reversed 
within the parentheses. 

44 



Transfer is made to the statement specified by the END parameter when 
the end of the data set is encountered; i.e., when a READ statement is 
executed after the last record on the data set has already been read. 
(No indication is given of the number of list items read into before the 
end of the data set was encountered~> If the END parameter is omitted, 
object program execution is terminated upon encountering the end of the 
data set. 

Transfer is made to the statement specified by the ERR parameter if 
an input/output device error occurs. No data is read into the list 
items and no indication is given of which record or records could not be 
read,, only that an error occurred during transmission of data. If the 
ERR parameter is omitted., object program execution is termiria ted when an 
input/output device error occurs. 

The basic forms of the READ statements are: 

READ(a,b)list 
READ(a)li~ 
READ(~,~) 

Purpose 

Formatted READ 
Unformatted READ 
READ using NAMELIST 

The discussion of READ using NAMELIST is in the section "READ and 
WRITE Using NAMELIST." 

Formatted READ 

The form READ Ca,b)list is used to read data from the data set 
associated with data--set reference number ~into the variables whose 
names are given in the list. The data is transmitted from the data set 
to storage according to the specifications in the FORMAT statement, 
which is statement number Q• 

Example: 

READ (5,, 98) A, B, (CCI, K) I I=l, 10) 

Explanation: The above statement causes input data to be read from the 
data set associated with data set reference number 5 into the variables 
A,, B,, C(l,K), C(2,K), ••• , C(lO.,K) in the format specified by the FORMAT 
statement whose statement number is 98. 

Unformatted READ 

The form READ{~) list is used to read a single record from the data 
set associated with data set reference number a into the variables whose 
names are given in the list. Since the data is unformatted, no FORMAT 
statement number is given. This statement is used to read unformatted 
data written by a WRITE(~) list statement. If the list is omitted, a 
record is passed over without being processed. 

Input/Output Statements 45 



Example: 

READ (J) AwB,C 

Explanation: The above statement causes data to be read from the data 
set associated with data set reference number J into the variables A, B, 
and c. 

WRITE STATEMENT 

r-------------------------------------~-------------------------------1 
IGeneral Form I 
~----------------------------------------------------------------------~ 
IWRITEC~.Q>list I 
I I 
IWhere: ~ is an unsigned integer constant or an integer variablel 
I that is of length 4 and represents a data set reference! 
I number. I 
I I 
I Q is optional and is either the statement number or arrayl 
I name of the FORMAT statement describing the record(s) beingf 
I written, or a NAMELIST name. I 
I I 
I list is optional and is an I/O list. I 
L--------------~------------------------------------------------------J 

The WRITE statement may take many different forms. For example, the 
list or the parameter £ may be omitted. 

The three basic forms of the WRITE statement are: 

WRITE(a.,b)list 
WRITE Ca) list 
WRITE(a.x) 

The discussion of 
WRITE Using NAMELIST." 

Formatted WRITE 

Purpose 

Formatted WRITE 
Unformatted WRITE 
WRITE using NAMELIST 

WRITE using NAMELIST is in the section "READ and 

The form WRITE<a.b)list is used to write data into the data set whose 
reference number is a from the variables whose names are given in the 
list.. The data is transmitted from storage to the data set according to 
the specifications in the FORMAT statement, whose statement number is Q~ 

Example: 

WRITEC7, 75)A, CBCI.,3).,I=l,10,2).,C 

46 



Explanation: The above statement causes data to be written from the 
variables A, B(1~3>w B(3~3)., B(S,3)~ B(7,3)~ BC9,3),, C into the data set 
associated with data set reference number 7 in the format specified by 
the FORMAT statement whose statement nU&Taber is 75. 

Unformatted WRITE 

The form WRITE(~)list is used to write a single record from the 
variables whose names are given in the list into the data set whose data 
set reference number is §!.· This data can be read back into storage with 
the unformatted form of the READ statement,, READ(~) list. The list 
cannot be omitted. 

Example: 

WRITE (L) ((ACI,J,,I=l1,10,,2) I B(J,,3) I J=l,,K) 

Explanation: The above statement causes data to be written from the 
variables A(l,,1),, AC3,,1)~····• AC9,1),, BC1,3), AC1,2), AC3,2), ••• , 
AC9,,2)., B<2~3),.... BCK,3) into the data set associated with the data 
set reference number L. Since the record is unformatted, no FORMAT 
statement number is given. Therefore,, no FORMAT statement number should 
be given in the READ statement used to read the data back into storage. 

READ AND WRITE USING NAMELIST 

The NAMELIST statement is used in conjunction with the READ(~,~) and 
WRITE(a.,x) statements to provide for reading and writing data without 
including the list specification in the READ and WRITE statements. The 
NAMELIST statement declares a name ~ to ref er to a particular list of 
variables or array names. Neither a dummy variable name nor a dummy 
array name may appear in the list. Thereafter, the forms READCa,x) and 
WRITE(a,x) are used to transmit data between the data set associated 
with the reference number §!. and the ·variables specified by the NAMELIST 
name x. 

The format and rules for constructing and using the NAMELIST 
statements are described in the following text. 

r--------------~------------------------------------------------------1 
!General Form I 
~----------------------------------------------------------------------~ 
I NAMELIST/~/~ .• 12· •• £/y/9_, ~:f ••• !/~/g,, h_, • , •• .! I 
I I 
I Where: !_, y, and ~,, • .• • are NAMELIST names. I 
I I 
I §!.w 12·· £:• £,.. . are variable or array names. I 
L----------------------------------------------------------------------J 

Input/Output Statements 47 



The following rules apply to declaring and using a NAMELIST name: 

1. A NAMELIST name is a symbolic name. 

2. A NAMELIST name is enclosed in slashes. The list of variable or 
array names belonging to a NAMELIST name ends with a new NAMEtIST 
name enclosed in slashes or with the end of the NAMELIST statement. 

3. A variable name or an array name may belong to one or more NAMELIST 
lists. 

4. A NAMELIST name must be declared in a NAMELIST statement before it 
is used in an input/output statement, and it may be declared only 
once. After it is declared, it may appear only in input/output 
statements. 

5. The rules for input/output conversion of NAMELIST data are the same 
as the rules for data conversion described in the section "FORMAT 
Statement." The NAMELIST data must be in a special form, described 
in the following sections. 

6. A NAMELIST name may not be used as an argument. 

NAMELIST Input Data 

Input data must be in a special form in order to be read using a 
NAMELIST list. · The first character in each record to be read must be 
blank. The second character in the first record of a group of data 
records must be an &, immediately followed by the NAMELIST name. The 
NAMELIST name must be followed by a blank and must not contain any 
embedded blanks. This name is followed by data items separated by 
commas. (A comma after the last item is optional.) The end of a data 
group is signaled by &END. 

The form of the data items in an input record may be: 

• variable name = constant 

The variable name may be a subscripted array name or a single 
variable name. Subscripts must be integer constants. The constant 
may be integer, real, literal, complex, or logical. <If the 
constants are logical,, they may be in the form T or . TRUE. and F or 
.FALSE.) 

• array ~ = set of constants (separated by commas) 

The array ~ is not subscripted. The set of constants consists of 
constants of the type integer,, real, literal, complex, or logical. 
The number of constants must be less than or equal to the number of 
elements in the array. Successive occurrences of the same constant 
can be represented in the form k*constant. 

The variable names and array names specified in the input data set 
must appear in the NAMELIST list, but the order is not significant. A 
name that has been made equivalent to a name in the input data cannot be 
substituted for that name in the NAMELIST list. The list can contain 
names of items in COMMON but must not contain dummy argument names. 

Each data record must begin with a complete variable or array name or 
constant. Embedded blanks are not permitted in names or constants. 

48 



NAMELIST output Data 

When output data is written using a NAMELIST list, it is written in a 
form that can be read using a NAMELIST list. All variable and array 
names specified in the NAMELIST list and their values are written out, 
each according to its type. The fields for the data are made large 
enough to contain all the significant digits. The values of a complete 
array are written out in columns. 

Example: Assume that A is a 3 by 1 array., I and L are 3 by 3 arrays, 
and that the following statements are given: 

NAMELIST /NAMl/A, B., I, J., L/NAM2/C, J., I, L 

READ {5,NAM1) 

WRITE (6,NAM2) 

Explanation: The NAMELIST statement defines two NAMELIST lists, NAMl 
and NAM2. The READ statement causes input data to be read from the data 
set associated with data set reference number 5 into the variables and 
arrays specified by NAMl. Assume that the data cards have the form: 

Column 2 
I 
v 

First card &NAMl I ( 2,, 3) =5,, J=4., B=3. 2 

Last card A(3}=4. 0,, L=2, 3,, 7*4., &END 

The first data card is read and examined to verify that its name is 
consis~en~ wi~n the NAMELIST name in the READ statement. (If that 
NAMELIST name is not found1, then it reads to the next NAMELIST group.> 
When the data is read1, the integer constants 5 and 4 are placed in 
I (2, 3) and J., respectively; and the real constants 3. 2 and 4. 0 are 
placed in B and A(3)., respectively. Since L is an array name not 
followed by a subscript, the entire array is filled with the succeeding 
constants. Therefore,, the integer constants 2 and 3 are placed in 
L(l,1) and LC2,l>,, respectively., and the integer constant 4 is placed in 
LC31 1>1, L(l.,2), ••• , L(3,3). 

The WRITE statement cquses data to be written from the variables and 
arrays specified by NAM2 into the data set associated with data set 
reference number 6. Assume that the values of J, L, and IC2,3) were not 
altered since the previous READ statement, that c was given the value 
428.0E+03, that IC1,3) was given the value 6, and that the rest of the 
elements of I were set to zero. Then.. if the output is punched on 
cards., the form is: 

First card 

Second card 

Third card 

Fourth card 

Column 2 
I 
v 
&NAM2 

C=428000.00,J=4~I=0,0,0,0~0,0~6,5, 

0 , L= 2 , 3 ,, 4 , 4 ·• 4 • 4 ., 4 , 4 ., 4 , 

&END 

Input/Output Statements 49 



FORMAT STATEMENT 

r----------------------------------------------------------------------1 
IGeneral Form I 
~----------------------------------------------------------------------i 
xxxxx FORMAT <c1,C21•••,,cn> 

Where: ~is a statement number (1 through 5 digits). 

£1w£211·• •• 1£n are format codes. 

The format codes are: 

aiw 
aF'W.a aEw.a 
~D~-~ 

aGw.s EP- -
aLw 
a Aw 
1 Literal' 
!!H 
!!X 

Tw 

a C ••• ) 

Where: 

(Describes integer data fields.) 
(Describes basic real constant data fields.) 
(Describes fields for real data with an E decimal exponent.) 
(Describes fields for real data with a D decimal exponent.) 
(Describes hexadecimal data fields.) 
(Describes integer., real, complex, or logical data fields.> 
(Specifies a scale factor for real numbers.) 
(Describes logical data fields.) 
(Describes alphameric data fields.) 
(Transmits literal data.) 
<Transmits literal data.) 
(Indicates that a field is to be skipped on input or filled 

with blanks on output.) 
(Indicates the position in a FORTRAN record where transfer 

of data is to start.> 
(Indicates a group format specification.) 

~ is optional and is an unsigned integer constant used to 
denote the number of times the format code is to be used. 
If ~ is omitted,, the code is used only once. 

!! is an unsigned nonzero integer constant less than or equal 
to 255 that specifies the number of characters of data in 
the field. 

g is an unsigned integer constant specifying the number of 
decimal places to the right of the decimal point; i.e., the 
fractional portion. 

~ is an unsigned integer constant specifying the number of 
significant digits. 

E is an unsigned or negatively signed integer constant 
specifying the scale factor. 

( ••• ) is a group format specification. Within the paren­
theses are format codes separated by commas or slashes. 
Group format specifications can be nested to a level of two. 
The ~ preceding this form is called a group repeat count. 

Note: Complex number fields in records require two successive D, E, 
or F format codes. These codes may be grouped within parentheses. 

!Both commas and slashes can be used as separators between format codes! 
l<see the section "Various Forms of a FORMAT Statement"). i ______________________________________________________________________ j 

50 



The FORMAT statement is used in conjunction with the I/O list in the 
READ and WRITE statements to specify the structure of FORTRAN records 
and the form of the data fields within the records. In the FORt'iAT 
statement., the data fields are described with format codes, and the 
order in which these format codes are specified gives the structure of 
the FORTRAN records. The I/O list gives the names of the data items to 
make up the record. The length of the list in conjunction with the 
FORMAT statement specifies the length of the record <see the section 
nvarious Forms of a FORMAT Statement"). Throughout this section, the 
examples show punched card input and printed line output. The concepts 
apply to all input/output media. In the examples, the character b 
represents a blank. 

The following list gives general rules for using the 
statement: 

FORMAT 

1. FORMAT statements are not executed; their function.is to supply 
information to the object program. They may be placed anywhere in 
the source program. 

2. When defining a FORTRAN record by a FORMAT statement, it is 
important to consider the maximum size record allowed on the 
input/output medium. For example, if a FORTRAN record is to be 
punched for output, the record should not be longer than 80 
characters. If it is to be printed,, it should not be longer than 
the printer's line length. For input,, the FORMAT statement should 
not define a FORTRAN record longer than the record referred to in 
the data set. 

3. All FORMAT specifications describing records to be printed must 
begin with a carriage control character. This character can be 
specified in one of two forms of literal data: either 'x' or lH~,, 
where ~ i& one of the following: 

~ Meaning 

blank Advance one line before printing 

0 Advance two lines before printing 

1 Advance to first line of next page 

+ No advance 

The carriage control character is not printed. It is treated as 
data for all input/output media except the printer. 

4. If the I/O list is omitted from the READ or WRITE statement, a 
record is skipped on input,, or a blank record is inserted on 
outputw unless the record was transmitted between the data set and 
the FORMAT statement (see "H Format Code and Literal Data"). 

Various Forms of a FORMAT Statement 

All of the format codes in a FORMAT statement are enclosed in a pair 
of parentheses. Within these parentheses, the format codes are deli­
mited by the separators: comma and slash. 

Each time a READ or WRITE statement is executed., successive i terns in 
the I/O list are transmitted according to successive format codes in the 
FORMAT statement until all the items in the list are transmitted. If 
there are more items in the I/O list than there are format codes in the 

Input/Output Statements 51 



FORMAT statement,, control is transferred to the group repeat count of 
the group format specification terminated by the last right parenthesis 
that precedes the right parenthesis ending the FORMAT statement; the 
same format codes are used again with the next record. (If there are no 
group format specifications, control is transferred to the left paren­
thesis beginning the FORMAT statement.) If there are fewer items in the 
I/O list than there are format codes in the FORMAT statement, the 
remaining FORMAT codes are ignored. For an example, see "Group Format 
Specifications." 

Comma: The simplest form of a FORMAT statement is the one shown in the 
box at the beginning of this section with the format codes, separated by 
commas, enclosed in a pair of parentheses. One FORTRAN record is 
defined by the beginning of the FORMAT statement Cleft parenthesis) to 
the end of the FORMAT statement (right parenthesis). For an example, 
see the section "Examples of ~wueric Format Codes." 

Slash: A slash is used to indicate the end of a FORTRAN record format. 
For example, the statement: 

25 FORMAT (I3~F6.2/Dl0.3,F6.2) 

describes two FORTRAN record formats. The first, third, etc., records 
are transmitted according to the format I3, F6.2 and the second, fourth, 
etc., records are transmitted according to the format Dl0.3, F6.2. 

Consecutive slashes can be used to introduce blank output records or 
to skip input records. If there are g consecutive slashes at the 
beginning or end of a FORMAT statement, g input records are skipped or g 
blank records are inserted between output records. If g consecutive 
slashes appear anywhere else in a FORMAT statement, the number of 
records skipped or blank records inserted is g-1. For example, the 
statement: 

25 FORMAT (lX~lOI5//lX,8E14.5) 

describes three FORTRAN record 
spacing between the line written 
written with the format 1X,8E14.5. 

I Format Code 

formats. On output, it causes double 
with format lX,, 10I5 and the line 

The I format code is used in transmitting integer data. For example, 
if a READ statement refers to a FORMAT statement containing I format 
codes,, the input data is stored in internal storage in integer format. 
The magnitude of the data to be transmitted must not exceed the maximum 
magnitude of an integer constant. 

Input: Leading., embedded,, and trailing blanks in a field of the input 
card are interpreted as zeros. 

Output: If the number of significant digits and sign required to 
represent the quantity in the storage location is less than ~, the 
leftmost print positions are filled with blanks. If it is greater than 
~. asterisks are printed instead of the number. 

52 



F Format Code 

The F format code is used in transmitting basic real constants. The 
magnitude of the data to be transmitted must not exceed the maximum 
magnitude for a real or double-precision constant. 

Input: Leading.. embedded, and trailing blanks in a field of the input 
card are interpreted as zeros. The decimal point of the number need not 
be punched in the card. If it is, its position overrides the position 
indicated by the g portion of the format code and the positions reserved 
by ~ must include a place for the decimal point. 

output: On output,, only g digits are printed for the fractional 
portion. If the fractional portion is greater than d, it is rounded 
off e The positions reserved by ~ must include a position for the 
decimal point. If the integer portio~, including the decimal point and 
sig~, if any., is too large,, asterisks are printed instead of the number. 
If the number is too small., it is preceded by leading blanks. 

E and D Format Codes 

The E and D format codes are used in transmitting real or double­
prec1s1on data that contains an E or D decimal exponent, respectively. 
The ~ specification should include four places for the exponent portion, 
space for g (the fractional portion>, and places for the decimal point, 
a zero preceding it, and a sign if any. In general ~ should be at least 
equal to d+7. 

Input: Since four positions are reserved for the exponent, the rest of 
the number must not exceed w-4 even if not all four positions are used 
for the exponent. Leading,, embedded, and trailing blanks are treated as 
zeros. Therefore., if the number is not right justified in the field, 
significant zeros are appended to the exponent. The decimal point need 
not be punched. If it is, its position overrides the position indicated 
by g and the position reserved by ~ must include a place for the decimal 
point. 

output: The first significant digit appears just to the right of the 
decimal point. Therefore, the g specification controls the number of 
significant digits that are printed. Digits in excess of g are dropped 
after rounding from the right. Places should be reserved in ~ for one 
digit, and a sign, if necessary, to the left of the decimal point. 

z Format Code 

The Z format code is used in transmitting hexadecimal data. 

Input: Leading,, embedded, and trailing blanks in an input field are 
treated as zeros. One storage location (byte> in internal storage 
contains two hexadecimal digits; thus, if a number punched in a field of 
an input card contains an odd number of digits, the number will be 
padded on the left with a hexadecimal zero when it is stored. 

Output: If the number of characters in the storage location is less 
than ~. the leftmost print positions are filled with blanks. If the 
number of characters in the storage location is greater than ~· the 
leftmost digits are truncated and the rest of the number is printed. 

Input/Output Statements 53 



G Format Code 

The G format code is a generalized code used to transmit integer, 
real, complex, or logical data according to the type specification of 
the corresponding variable in the I/O list. 

Input: The rules for input for G format code depend upon the type of 
the variable in the I/O list and the form of the number punched on the 
card. For example, if the variable is real and the number punched in 
the card has an E decimal exponent, the rules are the same as for the E 
format code. If the variable in the I/O list is integer or logical, the 
~ portion of the format code can be omitted; if it is given, it is 
ignored. For complex and real data, the s portion gives the location of 
the implied decimal point for input -- just like the g specification for 
D, E, and F format codes •. 

output: The -~ portion of the format code can be omitted for integer 
and logical data and the numbers are printed according to the rules for 
I and L format codes. For complex and real data, the s is used to 
determine the number of digits to be printed and whether the number 
should be printed with or without a decimal exponent. If the number, 
say n, is in the range 0.1~ n < lO**s, the number is printed without a 
decimal exponent. Otherwise, it is printed with an E or D decimal 
exponent depending on the length specification (either four or eight 
storage locations, respectively) of the variable in the 1/0 list. The ~ 
specification for complex and real data should include positions for a 
decimal point and a sign and four positions for a decimal exponent 
field, in case one is necessary. All other rules for output are the 
same as those for the individual format codes. 

Examples of Numeric Format Codes 

The following examples illustrate the use of the format codes I, F, 
D, E, Z, and G. 

Example 1: 

75 FORMAT (13,F5.2,E10.3,G10.3) 

READ (5,75) N,A,B,C 

Explanation: 

1. Four input fields are described in the FORMAT statement and four 
variables are in the I/O list. Therefore, each time the READ 
statement is executed, one input card is read from the data set 
associated with data set reference number 5. 

2. When an input card is read, the number in the first field of the 
card (3 columns) is stored in integer format in location N. The 
number in the second field of the input card CS columns) is stored 
in real format, with no decimal exponent, in location A, etc. 

3. If there were one more variable in the I/O list, say M, another 
card would be read and the information in the first three columns 
in that card would be stored in integer f orrnat in location M. The 
rest of the data on the card would be ignored. 

4. If there were one fewer variable in the list (say c is omitted), no 
number would be stored according to the format Gl0.3. 

54 



5. This format statement defines only one record format. 
nvarious Forms of a FORMAT Statementn explains how to 
than one record format in a FORMAT statement. 

Example 2: Assume that the following statements are given: 

75 FORMAT CZ4,D10.3,2G10.3) 

READ (5,75) A,B,C,O 

The section 
define more 

where A., c, and o are REAL*4 and B is REAL*8 and that the following 
input cards are read: 

Column 

Input 

Cards 

Format 

1 
I 

5 
I 

15 
I 

25 
I 

35 
I 

v v v v v 

l
b3F1156432D+02276.38E+15bbbbbbbbbb 

2AF3155381+02b382506E+28276.38E+15 

3ACb346.18D-03485.322836276.38E+15 

Z4 010.3 G10.3 G10.3 

Then the variables A, B, c., and D receive values as if the following 
had been punched: 

A 
OJF1 

2AF3 

Explanation: 

B 
156.4320+02 

155.3a1o+020 

c 
276.J8E+15 

382.506E+28 

485.322836 

0 
000000.000 

276.38E+15 

276 .. 38E+15 

1. Leading, trailing, and embedded blanks in an input field are 
treated as zeros. Therefore., since the value for B on the second 
input card was not right-justified in the field., the exponent is 20 
not 2. 

2. Values read into the variables c and D with a G format code are 
converted according to the type of the corresponding variable in 
the I/O list. 

Example 3: Assume that the following statements are given: 

76 FORMAT ('1' ,I3,,F6.2,E10.3,G12.6) 

WRITE (6,76) N,A,B,C 

and that the variables N, A, B, and c have the following values: 

!! ~ B £ 

031 034.40 123.380E+02 123.380E+02 

130 031.1 1156.1E+02 123456789. 

428 -354.32 834.621E-03 1234.56789 

000 01.132 83.121E+06 1233800+02 

Input/Output Statements 55 



Then, the following lines are printed: 

Column 1 4 10 20 
I I I I 
v v v v 

31 34.40 0.123E 05 12338.0 

130 31.10 0.116E 060.123457E 09 

428****** 0.83SE 00 1234.57 

0 1.13 0.831E 08 12338.0 

Explanation: 

1.. The integer portion of the third value of A exceeds the format 
specification, so asterisks are printed instead of a value. The 
fractional portion of the fourth value of A exceeds the format 
specification, so the fractional portion is rounded. 

2. Note that for the variable B the decimal point is printed to the 
left of the first significant digit and that only three significant 
digits are printed because of the format specification El0.3. 
Excess digits are rounded off from the right. 

3. The values of variable c are printed according to the format code 
G12.6. The s specification, which in this case is 6, determines 
the number of digits to be printed and whether the number should be 
printed with or without a decimal exponent. The numbers whose 
values are between 0.1 and 1000000 are printed without a decimal 
exponent. Thus the first, third, and fourth values have no decimal 
exponent. The second value is greater than or equal to 1000000 so 
it is printed with a decimal exponent. 

Scale Factor - P 

The P scale factor is used to change the location of the decimal 
point in real numbers. The effect of the scale factor is: 

scale factor 
external number internal number x 10 

Input: A scale factor can be specified only for basic real numbers. 
For example, if the input data is in the form xx.xxxx and is to be used 
internally in the form .xxxxxx, then the format code used to effect this 
change is 2PF7.4. Or, if the input data is in the form xx.xxxx and is 
to be used internally in the form xxxx.xx, then the format code used to 
effect this change is -2PF7.4. 

Output: A scale factor can be specified for real numbers with or 
without E or D decimal exponents. For numbers without an E or D decimal 
exponent, the effect is the same as for input data except that the 
decimal point is moved in the opposi~e direction. For example, if the 
number has the internal form xx.xxxx and is to be written out in the 
form xxxx.xx, the format code used to effect this change is 2PF7.4. 

56 



For numbers with an E or D decimal exponent, when the decimal point 
is moved, the exponent is adjusted to account for it, i.e., the value is 
not changed. For example, if the internal number 238. were printed 
according to the format E10.3, it would appear as 0.238Eb03. If it were 
printed according to the format 1PE10.3, it would appear as 2.380Eb02. 

A repetition code can precede the D, E, or F format code. For 
example, 2P3F7.4 is valid. 

Warning: One~ a scale factor has been given, it holds for all format 
codes following the scale factor within the same FORMAT statement. This 
also applies to format codes enclosed in an additional pair of 
parentheses. A scale factor of OP must be specified to remove the 
effect of a previous scale factor. 

L Format Code 

The L format code is used in transmitting logical variables. 

Input: The first T or F encountered in the ~ characters of the input 
field causes a value of .TRUE. or .FALSE., respectively, to be assigned 
to the corresponding logical variable in the I/O list. If the field ~ 
consists entirely of blanks, a value of .FALSE. is assumed. 

Output: A T or F is inserted in the output record depending upon 
whether the value of the logical variable in the I/O list was .TRUE. or 
.FALSE., respectively. The single character is right-justified in the 
output field and preceded by ~-1 blanks. 

A Format Code 

The A format code is used in transmitting data that is stored 
internally in character format. The number of characters transmitted 
under A format code depends on the length of the corresponding variable 
in the I/O list. Each alphabetic or special character is given a unique 
internal code. Numeric data is converted digit by digit into internal 
format, rather than the entire numeric field being converted into a 
single binary number. Thus, the A format code can be used for numeric 
fields, but not for numeric fields requiring arithmetic. 

Input: The maximum number of characters stored in internal storage 
depends on the length of the variable in the I/O list. If ~ is greater 
than the variable length, say y, then the leftmost ~-y characters in the 
field of the input card are skipped and the remaining y characters are 
read and stored in the variable. If w is less than v, then w characters 
from the field in the input card are read and the-remaining rightmost 
characters in the variable are filled with blanks. 

Output: If ~ is greater than the length of the variable in the I/O 
list, say the length is y, then the printed field will contain v 
characters right-justified in the field, preceded by leading blanks. If 
w is less than v, the leftmost w characters from the variable will be 
printed and the-rest of the data will be truncated. 

Example 1: Assume that B has been specified as real of length 8, that'N 
and M are integers of standard length 4, and that the following 
statements are given. 

Input/Output Statements 57 



25 FORMAT (3A7} 

READ ( 5, 2 5) B, N,, M 

When the READ statement is executed, one input card is read from the 
data set associated with data set reference number 5 into the variables 
B., N, and M in the format specified by FORMAT statement number 25. The 
following list shows the values stored for the given input cards Cb 
represents a blank). 

Input Card B N M 

ABCDEFG46bATb11234567 ABCDEFGb AT bl 4567 

HIJKLMN76543213334445 HIJKLMNb 4321 4445 

Examnle 2: 
is a real 
given: 

Assume that A and B are real variables of length 4, ~nat c 
variable of length 8, and that the following statements are 

26 FORMAT (A6,A5,A6) 

WRITE (6,26) A,B,C 

When the WRITE statement is executed,, one line is written on the data 
set associated with data set reference number 6 from the variables A, B, 
and c in the format specified by FORMAT statement 26. The following 
list shows the printed output for values of A, B, and c Cb represents a 
blank). 

A B Printed Line 

A1B2 C3D4 

£ 

E5F6G7H8 bbA1B2bC3D4E5F6G7 

H Format Code and Literal Data 

Literal data can appear in a FORMAT statement in one of two ways: it 
can be enclosed in apestrophes or it can follow the H format code. For 
example, the following FORMAT statements are equivalent. 

25 FORMAT (' 1968 INVENTORY REPORT') 

25 FORMAT (22H 1968 INVENTORY REPORT) 

No item in the I/O list corresponds ·to the literal data. The data is 
read or written directly into or from the FORMAT statement. (The FORMAT 
statement can contain other types of format codes with corresponding 
variables in the I/O list.) 

Input: Information is read from the input card 
data in the FORMAT statement. (If the H 
characters are read. If apostrophes are used, 
there are spaces between the apostrophes are 
following statements: 

8 FORMAT (' HEADINGS') 

READ (5,8) 

and replaces the literal 
format code is used, w 

as many characters as 
read.) For example, the 

cause the first 9 characters of the next record to be read from the data 
set associated with data set reference number 5 into the FORMAT 
statement 8, replacing the blank and the 8 characters H, E, A,, D, I, N, 
G, and s. 

58 



output: The literal data from the FORMAT statement is written on the 
output data set. <If the H format code is used,, the w characters 
following the H are written. If apostrophes are used,, the - characters 
enclosed in apostrophes are written.) For example, the following 
statements: 

8 FORMAT (31H THIS IS ALPHAMERIC INFORMATION) 

cause the following record to be written on the data set associated with 
data set reference number 6: 

THIS IS ALPHAMERIC INFORMATION 

Note: If the literal data is enclosed in apostrophes,, an apostrophe 
character in the data is represented by two successive apostrophes. For 
example., DON'T is represented as DON' 'T. 

X Format Code 

The X format code specifies a field of w characters to be skipped on 
input or filled with blanks on output. For example, the following 
statements: 

5 FORMAT (I10,10X,4I10) 

READ (5, 5) I,J,,K.,L,,M 

cause the first 10 characters of the input card to be read into variable 
I, the next 10 characters to be skipped over without transmission, and 
the next four fields of 10 characters each to be read into the variables 
J,, K., L,, and M;. 

T Format Code 

The T format code specifies the position in the FORTRAN record where 
the transfer of data is to begin. (If the output is printed, the actual 
print position is one less than ~ because of the carriage control 
character; i.e •. , the print position corresponds to w-1. For example, 
the following statements: -

5 FORMAT (T40,'1968 INVENTORY REPORT',,T80, 

'DECEMBER',,T1.,'0PART NO. 10095') 

WRITE (6,5) 

cause the following· line to be printed: 

Print Print Print 
Position 1 Position 39 Position 79 
I I I 
v v v 
PART NO. 10095 1968 INVENTORY REPORT DECEMBER 

The T format code can be used in a FORMAT statement with any type of 
format code. 

Input/Output Statements 59 



Group Format Specification 

The group format specification is used to repeat a set of format 
codes and to control the order in which the format codes are used, 

The group repeat count ~ is the same as the repeat indicator ~ which 
can be placed in front of other format codes. For example, the 
following statements are equivalent: 

10 FORMAT CI3.2CI4,I5),I6) 

10 FORMAT CI3, CI4,I5,I4.,I5),I6) 

Group repeat specifications control the order in which format codes 
are used since control returns to the last group repeat specification 
when there are more i terns in the I/O list than there are fo·rmat codes in 
the FORMAT statement (see 0 Various Forms of a FORMAT Statement0

). Thus, 
in the previous example, if there were more than six items in the I/O 
list, control would return to the group repeat count 2 which precedes 
the specification CI4,I5). 

If the group repeat count is omitted., a count of 1 is assumed. For 
example, the statements: 

15 FORMAT (I3,CF6.2,D10.3)) 

READ CS.15) N,A,B,C,D~E 

cause values to be read from the first record for N, A, and B, according 
to the format codes I3,F6.2, and Dl0.3,, respectively. Then, because the 
I/O list is not exhausted, control returns to the last group repeat 
specification, the next record is read, and values are transmitted to C 
and D according to the format codes F6.2 and Dl0.3, respectively. Since 
the I/O list is still not exhausted, another record is read and a value 
is transmitted to E according to the format code F6.2 -- the format code 
Dl0.3 is not used. 

The format codes within the 
separated by commas and slashes. 
is valid: 

group repeat 
For example, the 

40 FORMAT C2I3/C3F6.2,F6.3/D10.3,3D10.2)) 

specification can be 
following statement 

The first record is transmitted according to the specification 213, the 
second, fourth, etc., records are transmitted according to the specifi­
cation 3F6.2,F6.3, and the third, fifth, etc., records are transmitted 
according to the specification D10.3,3D10.2, until the I/O list is 
exhausted. 

Reading FORMAT Specifications at Object Time 

FORTRAN provides for variable FORMAT statements by allowing a FORMAT 
specification to be read into an array in storage and using the data in 
the array as the FORMAT specification for subsequent input/output 
statements. 

1. The name of the variable FOID"..AT specification must appear in a 
DIMENSION, COMMON, or Explicit specification statement, even if the 
array size is only 1. 

60 



2. The format codes read into the array at object time must have the 
same form as a source program FORMAT statement, except that the 
word FORMAT is omitted. 

t 

3. If a format code read in at object time contains double apostrophes 
within a literal field that is defined by apostrophes, it should be 
used for output only. If an object time format code is to be used 
for input, and if it must contain a literal field with an internal 
apostrophe,, the H format code must be used for the literal field 
definition. 

Example: Assume that the following statements are given: 

DIMENSION FMT (18) 

1 FORMAT (18A4) 

READ ( 5,, 1) FMT 

READ (5,FMT) A,B, (C(I),,I=l,5) 

and that the first input card associated with data set reference number 
5 contains C2E10.3, 5F10.8). 

The data on the rest of the input cards is read, converted, and stored 
in A,, B,, and the array C, according to the format codes 2E10.3, 5F10.8. 

END FILE STATEMENT 

r----------------------------------------------------------------------1 
I General Form I 
~----------------------------------------------------------------------~ 
I END FILE ~ I 
I I 
I Where: ~ is an unsigned integer constant or integer variable that I 
I is of length 4 and represents a data set reference number. I 
L----------------------------------------------------------------------J 

The END FILE statement defines the end of the data set associated 
with ~· 

REWIND STATEMENT 

r---------------------------~------------------------------------------1 
I General Form I 
~----------------------------------------------------------------------~ 
I REWIND ~ I 
I I 
I Where: ~ is an unsigned integer constant or integer variable that I 
I is of length 4 and represents a data set reference number. I 
l----------------------------------------------------------------------J 

The REWIND statement causes a subsequent READ or WRITE statement 
referring to a to read data from or write data into the first record of 
the data set associated with ~-

Input/Output Statements 61 



BACKSPACE STATEMENT 

r----------------------------------------------------------------------1 
I General Form I 
~----------------------------------------------------------------------~ 
I BACKSPACE ~ I 
I I 
I Where: ~ is an unsigned integer constant or integer variable that I 
I is of length 4 and represents a data set reference number. I 
L----------------------------------------------------------------------J 

The BACKSPACE statement 
backspace one record. If the 
its beginning, execution of 
information, see the FORTRAN 
Pref ace .. 

causes the data set associated with a to 
data set associated with ~ is already- at 
this statement has no effect. For further 

IV programmers' guides listed in the 

DIRECT ACCESS INPUT/OUTPUT STATEMENTS 

There are four direct access input/output statements: READ, WRITE, 
DEFINE FILE, and FIND. The READ and WRITE statements cause transfer Of 
data into or out of internal storage. These statements allow the user 
to specify the location within a data set from which data is to be read 
or into which data is to be written. 

The DEFINE FILE statement specifies the characteristics of the data 
set(s) to be used during a direct access operation. The FIND statement 
overlaps record retrieval from a direct access device with computation 
in the program. In addition to these four statements, the FORMAT 
statement (described previously) specifies the form in which data is to 
be transmitted. The direct access READ and WRITE statements and the 
FIND statement are the only input/output statements that may refer to a 
data set reference number defined by a DEFINE FILE statement. 

Each record in a direct access data set has a unique record number 
associated with it. The programmer must specify in the READ, WRITE, and 
FIND statements not only the data set reference number, as for 
sequential input/output statements, but also the number of the record to 
be read, written, or found. Specifying the record number permits 
operations to be performed on selected records of the data set, instead 
of on records in their sequential order. 

The number of the record physically following the one just processed 
is made available to the program in an integer variable known as the 
associated variable. Thus, if the associated variable is used in a READ 
or WRITE statement to specify the record number, sequential processing 
is automatically secured. The associated variable is specified in the 
DEFINE FILE statement, which also gives the number., size, and type of 
the records in the direct access data set. 

DEFINE FILE STATEMENT 

The DEFINE FILE statement describes the characteristics of any data 
set to be used during a direct access input/output operation. To use 
the direct access READ, WRITE, and FIND statements in a program, the 
data set(s) must be described with a DEFINE FILE statement. Each data 
set must be described once, and this description may appear once in each 
program or subprogram. Subsequent descriptions have no effect. 

62 



The DEFINE FILE statement must logically precede any input/output 
statement ref erring to the data set described in the DEFINE FILE 
statement. 

r-------------------------------------~-------------------------------1 
I General Form I 
~----------------------------------------------------------------------~ 
I DEFINE FILE ~J. <mJ.'• !:J.·• fJ.,, YJ. >.,~:a <mu !:21 f2·1 Y2> ,, • ••. , ~n <mn;, !:nw fn, Yn> 
I t Where: a represents an integer constant that is the data set 

reference number. 

m represents an integer constant that specifies the number 
of records in the data set associated with ~· 

!: represents an integer constant that specifies the maximum 
size of each record associated with a. The record size is 
measured in characters <bytes)., storage locations (bytes>, 
or storage units <words). (A storage unit is the number of 
storage locations divided by four and rounded to the next 
highest integer.) The method used to measure the record 
size depends upon the specification for f. 

f specifies that the data set is to be read or written 
either with or without format control; f may be one of the 
following letters: 

L indicates that the data set is to be read or written 
either with or without format control. The maximum record 
size is measured in number of storage locations (bytes). 

E indicates that the data set is to be read or written 
under format control (as specified by a format statement). 
The maximum record size is measured in number of charac­
ters <bytes). 

u indicates that the data set is to be read or written 
without format control. The maximum record size is 
measured in number of storage units <words). 

y represents a nonsubscripted integer variable called an 
associated variable. At the conclusion of each read or 
write operation, y is set to a value that points to the 
record that immediately follows the last record transmitted. 
At the conclusion of a find operation, v is set to a value 
that points to the record found. -______________________________________________________________________ J 

The associated variable cannot appear in the I/O list of 
WRITE statement for a data set associated with the 
statement. 

Example: 

DEFINE FILE 8(50,,100,, L,, I2) ,, 9 (100., 50, L,,J3) 

a READ ·or 
DEFINE FILE 

This DEFINE FILE statement describes two data sets, referred to by 
data set reference numbers 8 and 9. The data in the first data set 
consists of 50 records., each with a maximum length of 100 storage 
locations. The L specifies that the data is to be transmitted either 
with or without format control. I2 is the associated variable that 
serves as a pointer to the next record. 

Input/Output Statements 63 



The data in the second data set consists of 100 records, each with a 
maximum length of 50 storage locations. The L specifies that the data 
is to be transmitted either with or without format control. J3 is the 
associated variable that serves as a pointer to the next record. 

If an E is substituted for the L in the preceding DEFINE FILE 
statement, a FORMAT statement is required and the data is transmitted 
under format control. If the data is to be transmitted without format 
control, the DEFINE FILE statement can be written as: 

DEFINE FILE 8(50,25,U,I2),9(100,13,U.J3) 

DIRECT ACCESS PROGRAMMING CONSIDERATIONS 

When programming for direct access input/output operations, the user 
must establish a correspondence between FORTRAN records and the records 
described by the DEFINE FILE statement. All conventions of FORMAT 
control discussed in the section "FORMAT Statement" are applicable. 

For example, to process the data set described by the statement: 

DEFINE FILE 8(10,48,L,KS) 

the FORMAT statement used to control the reading or writing could not 
specify a record longer than 48 characters. The statements: 

FORMAT(4Fl2.1) or 
FORMATCI12,9F4.2) 

define a FORTRAN record that corresponds to those records described by 
the DEFINE FILE statement. The records can also be transmitted under 
FORMAT control by substituting an E for the L and rewriting the DEFINE 
FILE statement as: 

DEFINE FILE 8C10,48,E,K8) 

To process a direct access data set without format control, the 
number of storage locations specified for each record must be greater 
than or equal to the maximum number of storage locations in a record to 
be written by any WRITE statement referencing the data set. For 
example, if the I/O list of the WRITE statement specifies transmission 
of the contents of 100 storage locations, the DEFINE FILE statement can 
be either: 

DEFINE FILE 8CS0.100,L,K8) or 
DEFINE FILE 8C50,25,U,K8) 

Programs may share an associated variable as a COMMON variable. The 
following example shows how this can be accomplished. 

COMMON !UAR 
DEFINE FILE 8(100,10,L,IUAR) 

ITEMP=IUAR 
CALL SUBI(ANS,ARG) 

8 IF CIUAR-ITEMP) 20,16,20 

64 

SUBROUTINE SUBICA,B) 
COMMON IUAR 



In this example, the program and the subprogram share the associated 
variable IUAR. An input/output operation that references data set 8 and 
is performed in the subroutine causes the value of the associated 
variable to be changed. The associated variable is then tested in the 
main program in statement 8. 

READ STATEMENT 

The READ statement causes data to be transferred from a direct access 
device into internal storage. The data set being read must be defined 
with a DEFINE FILE statement. 

r----------------------------------------------------------------------1 
I General Form I 
~----------------------------------------------------------------------~ 

! 
I 
I 

READ (~'Er !2_, ERR={!) list 

Where: ~ is an integer constant or unsigned integer variable that 
is of length 4 and represents a data set reference number; ~ 
must be followed by an apostrophe ('). 

E is an integer expression that represents the relative 
positio? of a record within the data set associated with a. 

!2_ is optional and,, if given, is either the statement number 
of the FORMAT statement that describes the data being read 
or the name of an array that contains an object time format. 

ERR=g is optional and d is the statement number to which 
control is given when a device error condition is encoun­
tered during data transfer from device to storage. 

I list is optional and is an I/O list. 

L----------------------------------------------------------------------
The I/O list must not contain the associated variable defined in the 

DEFINE FILE statement for data set a. 

Example: 

DEFINE FILE 8(500,100,L~ID1),9(100,28,L.ID2) 
DIMENSION M(10-) 

ID2 = 21 

10 FORMAT (5I20) 
9 READ (8'16,10) (M(K),,K=l,10) 

13 READ (9'ID2+5) A,B,C,,D,,E,F.,G 

READ statement 9 transmits data from the data set associated with 
data set reference number 8, under control of FORMAT statement 10; 
transmission begins with record 16. Ten data items of 20 characters 
each are read as specified by the I/O list and FORMAT statement 10. Two 
records are read to satisfy the I/O list, because each record contains 

Input/Output Statements 65 



only five data items (100 characters). The associated variable IDl is 
set to a value of 18 at the conclusion of the operation. 

READ statement 13 transmits data from the data set associated with 
data set reference number 9., without format control; transmission begins 
with record 26. Data is read until the I/O list for statement 13 is 
satisfied. Because the DEFINE FILE statement for data set 9 specified 
the record length as 28 storage locations, the I/O list of statement 13 
calls for the same amount of data (the seven variables are type real and 
each occupies four storage locations). The associated variable ID2 is 
set to a value of 27 at the conclusion of the operation. If the value 
of ID2 is unchanged, the next execution of statement 13 reads record 32. 

The DEFINE FILE statement in the previous example can also be written 
as: 

DEFINE FILE 8(500,100 1 E,ID1),9(1001 7,U1 ID2) 

The FORMAT statement may also control the point at which reading 
starts. For example, if statement 10 in the example is 

10 FORMAT (//5I20) 

records 16 and 17 are skipped, record 18 is read, records 19 and 20 are 
skipped, record 21 is read, and IDl is set to a value of 22 at the 
conclusion of the READ operation in statement 9. 

WRITE STATEMENT 

The WRITE statement causes data to be transferred from internal 
storage to a direct access device. The data set being written must be 
defined with a DEFINE FILE statement. 

r----------------------------------------------------------------------1 
I General Form I 
~----------------------------------------------------------------------~ 

WRITE C~'!:rQ) list 

Where: a is an integer constant or unsigned integer variable that 
is of length 4 and represents a data set reference number; ~ 
must be followed by an apostrophe ('). 

!: is an integer expression that represents the relative 
position of a record within the data set associated with ~-

b is optional and, if given, is either the statement number of the FORMAT statement that describes the data being 
written or the name of an array that contains an object time 
format. 

list is optional and is an I/O list. I 
----------------------------------------------------------------------J 

66 



Example: 

DEFINE FILE 8(500~1001 L~IDl) 1 9(100.28 1 L,ID2l 
DI~..ENSION M(10) 

ID2=21 

10 FORMAT (5!20) 
8 WRITE (8' 16, 10) (M(K) ,, K=l, 10) 

11 WRITE (9'ID2+5) A,B,C,D,,E,,F,G 

WRITE statement 8 transmits data into the data set associated with 
the data set reference number 8,, under control of FORMAT statement 10; 
transmission begins with record 16. Ten data items of 20 characters 
each are written as specified by the I/O list and FORMAT statement 10. 
Two records are written to satisfy the I/O list because each record 
contains 5 data items ClOO characters). The associated variable IDl is 
set to a value of 18 at the conclusion of the operation. 

WRITE statement 11 transmits data into the data set associated with 
data set reference number 9, without format control; transmission begins 
with record 26. The contents of 28 storage locations are written as 
specified by the I/O list for statement 11. The associated variable ID2 
is set to a value of 27 at the conclusion of the operation. Note the 
correspondence between the records described (28 storage locations per 
record) and the number of items called for by the I/O list (7 variables, 
type real,, each occupying four storage locations) • 

The DEFINE FILE statement in the example can also be written as: 

DEFINE FILE 8 (500,,100,E.,IDl), 9(100, 7,,U.ID2) 

As with the READ statement, a FORMAT statement may also be used to 
control the point at which writing begins. 

FIND STATEMENT 

The FIND statement causes the next input record to be found while the 
present record is being processed., thereby increasing the execution 
speed of the object program. The program has no access to the record 
that was found until a READ statement for that record is executed. 
(There is no advantage to having a FIND statement precede a WRITE 
statement.) 

r----------------------------------------------------------------------1 
I General Form I 
~----------------------------------------------------------------------~ I FIND (~'E) I 
I I 
I Where: a is an integer constant or unsigned integer variable that I 
I is of length 4 and represents a data set reference number; ~ I 
I must be followed by an apostrophe ('). I 
I I 
I r is an integer expression that represents the relative I 
I position of a record within the data set associated with ~· I l ______________________________________________________________________ J 

Input/Output Statements 67 



The data set on which the record is being found must be defined with a 
DEFINE FILE statement. 

Example: 

10 FIND (8'50) 

15 READ (8'50) A,B 

While the statements between statements 10 and 15 are executed, 
record 50, in the data set associated with data set reference number 8., 
is found. 

General Example -- Direct Access Operations 

DEFINE FILE 8(1000,72,L,IDS) 
DIMENSION AC100), B ( 100), C ( 100), D ( 100), E (100), F(100) 

15 FORMAT (6F12.4) 
FIND (8'5) 

ID8=1 
DO 100 I=l,100 
READ (8'ID8+4,15)A(I),B(I),C(I),D(I),E(I),F(I) 

100 CONTINUE 

DO 200 I=l,100 
WRITE ( 8 I ID8+4 I 15) A (I). B (I), c (I) , D (I)., E CI). F (I) 

200 CONTINUE 

END 

The general example illustrates the ability of direct -access state­
ments to gather and disperse data in an order designated by the user. 
The first DO loop in the example fills arrays A through F with data from 
the 5th, 10th, 15th, ••• , and SOOth record associated with data set 
reference number 8. Array A receives the first value in every fifth 
record, B the second value and so on, as specified by FORMAT statement 
15 and the I/O list of the READ statement. At the end of th~ READ 
operation, each record has been dispersed into arrays A through F. At 
the conclusion of the first DO loop, ID8 has a value of 501. 

The second DO loop in the example groups the data i~ems from each 
array, as specified by the I/O list of the WRITE statement and FORMAT 
statement 15. Each group of data items is placed in the data set 
associated with data set reference number 8. Writing begins at the 
505th record and continues at intervals of five,, until record 1000 is 
written, if IDS is not changed between the last READ and the first 
WRITE. 

68 



DATA INITIALIZATION STATEMENT 

r----------------------------------------------------------------------1 
I General Form I 
~----------------------------------------------------------------------i 

DATA ,Y1r. • • r.Yn/.~1*.911•••1.!n*.9n/ r.Yn+1' • • • '~m/l:n+1 *£n+1r • • • r.!m*£m1 • • • • 

Where: y1 , ••• ,ym are variables, subscripted variables Cin which 
case the subscripts must be integer constants), or array 
names. Dummy arguments are not permitted. 

£ 1 , ••• ,~m are values representing integer, real, complex, 
hexadecimal, logical, or literal data constants. 

_!1 , ••• ,_!m represent unsigned integer constants indicating 
the number of consecutive variables that are to be assigned 
the value of .91r•••r.9m· 

L----------------------------------------------------------------------
A DATA initialization statement is used to define initial values of 

variables, array elements, and arrays. There must be a one-to-one 
correspondence between the total number of variables,, subscripted 
variables., and array elements specified or implied by y1 , ••• , .Yn and the 
total number of constants specified by ~1 , ••• ,£n after application of 
any replication factors, !_1 , •••. , !.n· The DATA initialization statement 
can appear anywhere in the program as long as it does not assign a value 
to a variable that has not yet been defined. 

Example 1: 

DIMENSION DC5,10) 
DATA A, B., C/5.0.,6.1,7.3/.,D,E/25*1.0,25*2.0,S.1/ 

Explanation: 

The DATA statement indicates that the variables A., B,, and c are to be 
initialized to the values 5.0, 6.1, and 7.3 respectively. In addition, 
the statement specifies that the first 25 variables in the array D are 
to be initialized to the value 1.0, the remaining 25 variables in D to 
the value 2.0, and the variable E to the value ~.1. 

Example 2: 

DIMENSION A(5), B(3,,3)- L(4) 
DATA A/S*l.O/, B/9*2.0/, L/4*.TRUE./, C/'FOUR'/ 

Explanation: 

The DATA statement specifies that all the variables in the arrays A 
and B are to be initialized to the values 1.0 and 2.0, respectively. 
All the logical variables in the array L are initialized to the value 
.TRUE.. The letters T and F may be used as an abbreviation for .TRUE. 
and • FALSE •. , respectively. In addition, the variable c is initialized 
with the literal data constant FOUR. 

An initially defined variable, or variable of an array,, may not be in 
blank common. In a labeled common block., they may be initially defined 
only in a BLOCK DATA subprogram. (See the section "Subprograms.") 

Data Initialization Statement 69 



SPECIFICATION STATEMENTS 

The specification statements provide the compiler with 
about the nature of the data used in the source program. 
they supply the information required to allocate locations 
for this data. 

information 
In addition, 
in storage 

Specification statements must precede statement function definitions, 
which must precede the program part containing at least one executable 
statement. Within the specification statements,, any statement describ­
ing data must precede references to that data. In particular, the 
IMPLICIT statement, if used, must be the first specification statement. 

The specification statement EXTERNAL is described in the section 
"Subprograms." 

DIMENSION STATEMENT 

r----------------------------------------------------------------------1 
I General Form I 
~----------------------------------------------------------------------~ 
I DIMENSION ~1. <Jfa) .~2 <~2> I ~3 (~3) I ••• ·!!xi(~) I 
I I 
I I 
I Where: ~1 , ~2., ~3 , ••• , ~n are array names.. I 
I I 
I k 1 ., k 2 ., ~3 , ••• , ~n are each composed of 1 through 1 unsigned I 
I Integer constants, separated by commas, representing the I 
I maximum value of each subscript in the array. ~1 through ~ I 
I may be integer variables of length 4 only when the DIMENSION I 
I statement in which they appear is in a subprogram. I 
L----------------------------------------------------------------------J 

The information necessary to allocate storage for arrays used in the 
source program may be provided by the DIMENSION statement. The 
follciwing examples illustrate how this information may be declared. 

Examples: 

DIMENSION A (10),, ARRAY (5.,5,5), LIST (10,100) 
DIMENSION B(25,, 50) .,TABLE (5., 8., 4) 

TYPE STATEMENTS 

There are two kinds of type statements: the IMPLICIT specification 
statement and the Explicit specification statements <INTEGER, REAL,, 
COMPLEX, and LOGICAL). 

70 

The IMPLICIT statement enables the user to: 

• Specify the type of a group of variables or arrays according to the 
initial character of their names. 

~ 

• specify the amount of storage to be allocated for each variable 
according to the associated type. 



The Explicit specification statements enable the user to: 

• Specify the type of a variable or array according to its particular 
name. 

• Specify the amount of storage to be allocated for each variable 
according to the associated type. 

• Specify the dimensions of an array. 

• Assign initial data values for variables and arrays. 

The Explicit specification statement overrides the IMPLICIT state­
ment, which, in turn, overrides the predefined convention for specifying 
type. 

IMPLICIT STATEMENT 

r----------------------------------------------------------------------1 
I General Form I 
~----------------------------------------------------------------------~ 

IMPLICIT ~*~C~11~21•••), ••• ,~*~C~11~21•••> 

Where: ~ is one of the following: INTEGER, REAL, COMPLEX, or 
LOGICAL. 

*s is optional and represents one of the permissible length 
specifications for its associated type. 

~1 , ~2 , ••• are single alphabetic characters each separated 
by commas, or a range of characters Cin alphabetic sequence) 
denoted by the first and last characters of the range 
separated by a minus sign <e.g., (A-D)). 

The IMPLICIT specification statement must be the first statement in a 
main program and the second statement in a subprogram. There can be 
only one IMPLICIT statement per program or subprogram. The IMPLICIT 
specification statement enables the user to declare the type of the 
variables appearing in his program Ci.e., integer, real, complex, or 
logical) by specifying that variables beginning with certain designated 
letters are of a certain type. Furthermore, the IMPLICIT statement 
allows the programmer to declare the number of locations (bytes) to be 
allocated for each in the group of specified variables. The types that 
a variable may assume, along with the permissible length specifications, 
are as follows: 

~ Length s2ecif ication 
INTEGER 2 or 4 (standard length is 4) 
REAL 4 or 8 (standard length is 4) 
COMPLEX 8 or 16 (standard length is 8) 
LOGICAL 1 or 4 (standard length is 4) 

For each type there is a corresponding standard length specification. 
If this standard length specification·' (for its associated type) is 
desired, the *s may be omitted in the IMPLICIT statement. That is., the 
variables will assume the standard length specification. For each type 
there is also a corresponding optional length specification. If this 
optiqnal length specification is desired, then the *s must be included 
within the IMPLICIT statement. -

Specification Statements 71 



Example 1: 

IMPLICIT REAL (A-H, 0-Z,$), INTEGER (I-N) 

Explanation: 

All variables beginning with the characters I through N are declared 
as INTEGER. Since no length specification was explicitly given (i.e., 
the *~was omitted), four storage locations (the standard length for 
INTEGER) are allocated for each variable. 

All other variables <those beginning with the characters A through H, 
o through Z, and $) are declared as REAL with four storage locations 
allocated for each. 

Note that the statement in example 1 performs the same function of 
typing variables as the predefined convention Csee "Type Declaration by 
the Predefined Specification"). 

Example 2: 

IMPLICIT INTEGER*2(A-H), REAL*8CI-K), LOGICAL(L,M,N) 

Explanation: 

All variables beginning with the characters A through H are 
as integer with .two storage locations allocated for each. All 
beginning with the characters I through K are declared as 
eight storage locations allocated for each. All variables 
with the characters L, M~ and N are declared as logical 
locations allocated for each. 

declared 
variables 
real with 
beginning 
with four 

Since the remaining letters of the alphabet, namely, O through Z and 
$, are left undefined by the IMPLICIT statement, the predefined 
convention will take effect. Thus, all variables beginning with the 
characters o through Z and $ are declared as real, each with a standard 
length of four locations. 

Example 3: 

IMPLICIT COMPLEX*16(C-F) 

Explanation: 

All variables 
as complex, each 
of the complex 
imaginary part. 
ters A, B, G 
convention. 

72 

beginning with the characters c throuqh F are declared 
with eight storage locations reserved-for the real part 
data and eight storage locations reserved for the 

The types of the variables beginning with the charac­
through Z, and $ are determined by the predefined 



EXPLICIT SPECIFICATION STATEMENTS 

r----------------------------------------------------------------------1 
I General Form I 
~----------------------------------------------------------------------~ 
~*2 ~*21 <~1> /~1/ ,Q*22 <~2> /!:.2/,, • • • ·~*2n <~n)/~n/ 

Where: ~ is INTEGER., REAL, LOGICAL;, or COMPLEX. 

*~··*~1,,*22 , ••• ,,*~n are optional. Each 2 represents one of 
the permissible length specifications for its associated 

~-

a, b •••• ,, z are variable,, array,, or function names (see the 
section "subprograms") 

(~1 ), (~2 ),, ••• , <~n> are optional and give dimension informa­
tion for arrays. Each ~ is composed of 1 through 7 unsigned 
integer constants,, separated by commas, representing the 
maximum value of each subscript in the array. Each ~ may be 
an unsigned integer variable of length four only when the 
Type statement in which it appears is in a subprogram. 

/x1 /,,/x2/,, ••• ,,/xn/ are optional and represent initial data 
values:- -

-----------------------------------------------------------------------J 
The Explicit specification statements declare the ~ (INTEGER, 

REAL, COMPLEX,, or LOGICAL) of a particular variable or array by its 
name, rather than by its initial character. This differs from the other 
ways of specifying the type of a variable or array <i.e., predefir~d 
convention and the IMPLICIT statement). In addition, the information 
necessary to allocate storage for arrays (dimension information) may be 
included within the statement. 

Initial data values may be assigned to variables or arrays by use of 
/~n/ where ~n is a constant or list of constants separated by commas. 
Lists of constants are used only to assign initial values to array 
elements. r successive occurrences of the same constant can be 
represented by the form ~*constant. If initial data values are assigned 
to an array in an Explicit specification statement, the dimension 
information for the array must be in the Explicit specification 
statement or in a preceding DIMENSION or COMMON statement. An initial 
data value may not be assigned to a function name. 

Initial data values cannot be assigned to variables or arrays in 
blank common. The BLOCK DATA subprogram must be used to assign initial 
values to variables and arrays in labeled common. 

In the same manner in which the IMPLICIT statement overrides the 
predefined convention, the Explicit specification statements override 
the IMPLICIT statement and predefined convention. If the length 
specification is omitted (i.e.y*s)~ the standard length per type is 
assumed. -

Example 1: 

INTEGER*2 ITEM/76/., VALUE 

Explanation: 

This statement declares that the variables ITEM and VALUE are of type 
integer,, each with two storage locations reserved. In addition, the 
variable ITEM is initialized to the value 76. 

Specification Statements 73 



Example 2: 

COMPLEX C,D/C2.1,4.7)/,E*16 

Explanation: 

This statement declares that the variables c, D, and E are of type 
complex. Since no length specification was explicitly given, the 
standard length is assumed. Thus,, c and D each have eight storage 
locations reserved (four for the real part, four for the imaginary part) 
and D is initialized to the value (2.1,4.7). In addition, 16 storage 
locations are reserved for the variable E. Thus, if a length specifica­
tion is explicitly written., it overrides the assumed standard length. 

Example 3: 

REAL*8 ARRAY,, HOLD, VALUE*4, ITEM(5, 5) 

Explanation: 

This statement declares that the variables ARRAY, HOLD, VALUE, and 
the array named ITEM are of type real. In addition, it declares the 
size of the array ITEM. The variables ARRAY and HOLD have eight storage 
locations reserved for each; the variable VALUE has four storage 
locations reserved; and the array named ITEM has 200 storage locations 
reserved (eight for each variable in the array). Note that when the 
length is associated with the type (e.g., REAL*8), the length applies to 
each variable in the statement unless explicitly overridden (as in the 
case of VALUE*4). 

Example 4: 

REAL A(5,5)/20*6.9E2,5*1.0/, B(100)/100•0.0/,TEST*8(5)/5*0.0/ 

Explanation: 

This statement declares the size of each array, A and B, and their 
type <real). The array A has 100 storage locations reserved (four for 
each variable in the array) and the array B has 400 storage locations 
reserved (four for each variable). In addition, the first 20 variables 
in the array A are initialized to the value 6.9E2 and the last five 
variables are initialized to the value 1.0. All 100 variables in the 
array B are initialized to the value 0.0. The array TEST has 40 storage 
locations reserved (eight for each variable). In addition, each 
variable is initialized to the value 0.0. 

DOUBLE PRECISION STATEMENT 

r----------------------------------------------------------------------1 I General Form I 
~----------------------------------------------------------------------~ 
I DOUBLE PRECISION ~ (Jf1.). Q CJf2) ,, ••• I~ (Jfn) I 
I I 
I Where: a, b, ..... , z represent variable,, array,, or function names Csee I 
I the section "Subprograms") I 
i 
I 
I 
I 

(~.1.), q~2 ) ,, ••• , CJfn> are optional. Each Jf is composed of 1 
through 7 unsigned integer constants, separated by commas, 
that represent the maximum value of each subscript in the 

I array. I 
L----------------------------------------------------------------------J 

74 



The DOUBLE PRECISION statement explicitly specifies that the vari­
ables a., b, c, • • • are of type double-precision. This statement overrides 
any specification of a variable made by either the predefined convention 
or the IMPLICIT statement. This specification is identical to that of 
type REAL*S. This statement cannot be used to define initial data 
values. 

In addition, FUNCTION subprograms may be typed double-precision as 
follows: 

DOUBLE PRECISION FUNCTION name <~1·1 ~2• ~3, ••• , ~n) 

COMMON STATEMENT 

r----------------------------------------------------------------------1 
I General Form I 
~----------------------------------------------------------------------~ 

COMMON /~/~ <~1>.Q<~2>, ••• /~/£{~3),g(~ ),... I 
I 

Where: a, b., ••• , c., d... are variable names or array names that I 
cannot be dummy arguments. I 

~1 ,~2 , ••• ~3 ,~ ••• are optional and are each composed of 1 
through 7 unsigned integer constants, separated by commas, 
representing the maximum value of each subscript in the 
array. 

I 
I 
I 
I 
' I 
I 

/~/... represent optional common block names consisting of I 
1 through 6 alphameric characters,, the first of which is I 
alphabetic. These names must always be embedded in slashes. I ______________________________________________________________________ J 

The COMMON statement is used to define a storage area that can be 
ref erred to by a calling program and one or more subprograms and to 
specify the names of variables and arrays to be placed in this area. 
Therefore., variables or arrays that appear in a calling program or 
subprogram can be made to share the same storage locations with 
variables or arrays in other subprograms. Also., a common area can be 
used to implicitly transfer arguments between a calling program and a 
subprogram. Arguments passed in common are subject to the same rules 
with regard to type,, length, etc., as arguments passed in an argument 
list <see the section "Subprograms"). 

If more than one COMMON statement appears in a calling program or 
subprogram, the entries in the statements are cumulative. Redundant 
entries are not permitted. 

Although the entries in a COMMON statement can contain dimension 
information, object-time dimensions may never be used. 

The length of a common area can be increased by using an EQUIVALENCE 
statement. 

Since the entries in a common area share storage locations, the order 
in which they are entered is significant. Consider the following 
example: 

Specification Statements 75 



Example: 

Calling Program 

COMMON A., B, c I R ( 100) 
REAL A,B,C 
INTEGER R 

CALL MAPMY ( ••• ) 

Subprogram 

SUBROUTINE MAPMY ( ••• ) 

COMMON X., Y, Z, S(100) 
REAL X,Y,Z 
INTEGER S 

Explanation: 

In the calling program, the statement COMMON A,B,C,RC100) would cause 
412 storage locations (four locations per variable) to be reserved in 
the following order: 

r--------------------------------------------------1 
Beginning I A B c I Layout of 
of common I 4 locations 4 locations 4 locations I storage 
area I I 

~--------------------------------------------------~ I R(l) R(100) I 
I 4 locations 4 locations I 
L--------------------------------------------------J 

The statement COMMON X, Y., Z, s (100) would then cause the variables 
x., Y,, z,, and S(l) ••• SC100) to share the same storage space as A, B, c, 
and R(l) ••.• RC100), respectively. Note that values for X, Y, Z, and 
S(1) ••• S(100)., because they occupy the same storage locations as A, B, 
c, and R(1) ••• R(100), do not have to be transmitted in the argument list 
of a CALL statement. 

BLANK AND LABELED COMMON 

In the preceding example, the common storage area (common block) is 
called a blank common area. That is, no particular name was. given to 
that area of storage. The variables that appeared in the COMMON 
statements were assigned locations relative to the beginning of this 
blank common area. However, variables and arrays may be placed in 
separate common areas. Each of these separate areas (or blocks) is 
given a name consisting of 1 through 6 alphameric characters (the first 
of which is alphabetic); those blocks which have the same name occupy 
the same storage space. This permits a calling program to share one 
common block with one subprogram and another common block with another 
subprogram and also facilitates program documentation. 

Those variables that are to be placed in labeled (or .named) common 
are preceded by a common block name enclosed in slashes. For example, 
the variables A,B, and c will be placed in the labeled common area, 
HOLD, by the following statement: 

COMMON/HOLD/A,B,C 

In a COMMON statement, blank common may be distinguished from labeled 
common by preceding the variables in blank common by two consecutive 
slashes or, if the variables appear at the beginning of the common 
statement, by omitting any block name. For example, in the following 
statement: 

76 



COMMON A., B., C /ITEMS/ X., Y,, Z / / D., E., F 

the variables A., B., Ci, D:, E.. and F will be placed in blank common in 
that order; the variables X,, Y,. and Z will be placed in the common area 
labeled ITEMS. 

Blank and labeled common entries appearing in COMMON statements are 
cumulative throughout the program. For example, consider the following 
two COMMON statements: 

COMMON A,, B, C /R/ D,, E /S/ F 
COMMON G, H /S/ I., J /R/P//W 

These two statements have the same effect as the single statement: 

COMMON A., B, C, G., a, W /R/ D, E., P /S/ F, I, J 

Example: 

Assume that A., B., c., K., X,, and Y each occupy four locations of 
storage, H and G each occupy eight locations, and D and E each occupy 
two locations. 

Calling Program subprogram 

SUBROUTINE MAPMY( ••• ) 

COMMON H, A /R/ X, D // B 
COMMON G, Y, C /R/ K., E 

CALL MAPMY( ••• ) 

Explanation: 

In the calling prog.ram., the statement COMMON H, A /R/ x., D //B causes 
16 locations (four locations each for A and B, and eight for H) to be 
reserved in blank common in the following order: 

Beginning 
of blank 
common 

r------------------------------------------------------------1 
I H A B I 
I 8 locations 4 locations 4 locations I 
I I 
~------------------------------------------------------------~ 
I I 
I continuation of blank common I 
I I 
L------------------------------------------------------------J 

and also causes six locations (four for X and two for D) to be reserved 
in the labeled common area R in the following order: 

r------------------------------------------------------------1 
Beginning I X D I 
of labeled! 4 locations 2 locations I 
common R I I 

~------------------------------------------------------------~ 
I I 
I continuation of labeled common I 
I I 
L------------------------------------------------------------J 

Specification Statements 77 



The statement COMMON G,Y,C/R/K,E appearing in the subprogram MAPMY 
would then cause the variables G,Y, and c to share the same storage 
space Cin blank common) as H,A, and B, respectively. It would also 
cause the variables K and E to share the same storage space Cin labeled 
common area R) as X and D, respectively. 

ARRANGEMENT OF VARIABLES IN COMMON 

Variables in a common block need not be aligned properly. However., 
considerable object-time efficiency is lost un1ess the programmer 
ensures that all of the variables have proper boundary alignment. 

Proper alignment is achieved either by arranging the variables in a 
fixed descending order according to length, or by constructing the block 
so that dummy variables force proper alignment. If the fixed order is 
used, the variables must appear in the following order: 

length of 16 (complex) 
length of 8 (complex or real) 
length of 4 Creal or integer or logical) 
length of 2 (integer) 
length of 1 (logical) 

If the fixed order is not used, proper alignment can be ensured by 
constructing the block so that the displacement of each variable can be 
evenly divided by the reference number associated with the variable. 
(Displacement is the number of storage locations Cbytes) from the 
beginning of the block to the first storage location of the variable.) 
The following list shows the reference number for each type of variable: 

Type of Length Reference 
Variable SEecif ication Number 

Logical 1 1 
4 4 

Integer 2 2 
4 4 

Real 4 4 
8 8 

Complex 8 8 
16 8 

The first variable in every common block i·s positioned as though its 
length specification were eight. Therefore, a variable of any length 
may be the first assigned within a block. To obtain the proper 
alignment for other variables in the same block, it may be necessary to 
add a dummy variable to the block. For example, the variables A, I, and 
CMPLX are REAL*4, INTEGER*4, and COMPLEX*S, respectively, and form a 
COMMON block that is defined as: 

COMMON A:1 I 1 CMPLX 

Then, the displacement of these variables within the block is illus­
trated as follows: 

78 



l<--------A--------->l<-------I---------->l<-------CMPLX-----------> 
I 4 storage I 4 storage I 8 storage 
I locations I locations I locations 
i I 
v v v 
displacement displacement displacement 
O storage 4 storage 8 storage 
locations locations locations 

The displacements of I and CMPLX are evenly divisible by their reference 
numbers. However, if I were an integer with a length specification of 
2, then CMPLX is not properly aligned (its displacement of 6 is not 
evenly divisible by its reference number of 8). In this case, proper 
alignment is ensured by inserting a dummy variable with a length 
specification of 2 either between A and I or between I and CMPLX. 

EQUIVALENCE STATEMENT 

r----------------------------------------------------------------------1 
I General Form I 
~----------------------------------------------------------------------~ 
I EQUIVALENCE <~. 12·· £, •.• ) • (9_, ~, f,, •.• ) I 
I I 
I Where: ~. £,, £·• g., ~,, f.,... are variables (not dummy arguments) I 
I that may be subscripted. The subscripts may have two forms: I 
I If the variable is singly subscripted it refers to the I 
I position of the variable in the array (i.e., first variable, I 
I 25th variable,, etc). If the variable is multi-subscripted .I 
I it refers to the position in the array in the same fashion I 
i as the position is referred to in an arithmetic statement. ! 
L----------------------------------------------------------------------J 

The EQUIVALENCE statement provides the option for controlling the 
allocation of data storage within a single program unit. In particular, 
when the logic of the program permits it, the number of storage 
locations used can be reduced by causing locations to be shared by two 
or more variables of the same or different types. Equivalence ·between 
variables implies storage sharing only, not mathematical equivalence. 

Since arrays are stored in a predetermined order <see "Arrangement of 
Arrays in Storage"), equivalencing two elements of two different arrays 
may implicitly equivalence other elements of the two arrays. The 
EQUIVALENCE statement must not contradict itself or any previously 
established equivalences. 

Two variables in one common block or in two different common blocks 
cannot be made equivalent. However, a variable in a program or a 
subprogram can be made equivalent to a variable in a common block. If 
the variable that is equivalenced to a variable in the common block is 
an element of an array, the implicit equivalencing of the rest of the 
elements of the array may extend the size of the common block <see 
example 2). The size of the common block must not be extended so that 
elements are added before the beginning of the established common block. 

Example 1: 

Assume that in the initial part of a program, an array c of size 
lOOxlOO is needed; in the final stages of the program c is no longer 
used, but arrays A and B of sizes 50x50 and 100, respectively, are used. 
The elements of all three arrays are of the type REAL*4. Storage space 
can then be saved by using the statements: 

Specification Statements 79 



DIMENSION C Cl 00, 100 )., AC 50,, 50) ,, B (100) 
EQUIVALENCE CCCl);, ACl)),, (CC2501>w BCl)) 

The array A,, which has 2500 elements,, can occupy the same storage as 
the first 2500 elements of array c since the arrays are not both needed 
at the same time. Similarly, the array B can be made to share storage 
with elements 2501 to 2600 of array c. 

Example 2: 

DIMENSION BC5), C(lO, 10), DCS,, 10,, 15) 
EQUIVALENCE CA, BU), CCS,3)),, CDC5,10,2),, E) 

This EQUIVALENCE statement s.pecifies that the variables A, BC1), and 
CC5~3> are assigned the same storage locations ana that variables 
DC5,10,2) and E are assigned the same storage locations. It also 
implies that B(2) and C(6~3>, etc., are assigned the same storage 
locations. Note that further equivalence specification of B(2) with any 
element of array c other than CC6,3) is invalid. 

The designations c CS,, 3) and D CS, 10., 2) could have been replaced with 
the designations CC25) and DC100) and the effect would have been the 
same. 

Example 3: 

COMMON A., B, C 
DIMENSION D(3) 
EQUIVALENCE (B,,DCl)) 

Explanation: 

This would cause a common area to be established containing the 
variables A, B, and c. The EQUIVALENCE statement would then cause the 
variable D Cl> to share the same storage location as B,, D ( 2) to share the 
same storage location as c, and DC3) would extend the size of the common 
area., in the following manner: 

A 
B, DCl) 
C., D(2) 

D( 3) 

(lowest location of the common area) 

(highest location of the common area) 

The following EQUIVALENCE statement is invalid: 

COMMON A., B, C 
DIMENSION D(3) 
EQUIVALENCE CB, DC3)) 

because it would force D(l) to precede A, as follows: 

D(l) 
A., D < 2) <lowest location of the common area) 
B, D(3) 
c (highest location of the common area) 

ARRANGEMENT OF VARIABLES IN EQUIVALENCE GROUPS 

Variables in an equivalence group may be in any order. However, 
considerable object-time efficiency is lost unless the programmer 
ensures that all of the variables have proper boundary alignment. 

80 



Proper alignment is achieved either by arranging the variables in a 
fixed, descending order according to length, or by constructing the 
group so that dummy variables force proper alignment. If the fixed 
order is used, the variables must appear in the following order: 

length of 16 (complex) 
length of 8 (complex or real) 
length of 4 Creal or integer or logical) 
length of 2 (integer) 
length of 1 (logical) 

If the fixed order is not used, proper alignment can be ensured by 
constructing the group so that the displacement of each variable in the 
group can be evenly divided by the reference number associated with the 
variable. (Displacement is the number of storage locations (bytes) from 
tne beginning of the group to the first storage location of the 
variable.) The reference numbers for each type of variable are given in 
the section "COMMON Statement." The first variable in each group is 
positioned as if its length specification were eight. 

For example, the variables A, I, and CMPLX are REAL*4, INTEGER*4, and 
COMPLEX*8, respectively, and are defined as: 

DIMENSION AC10), IC16), CMPLX(5) 
EQUIVALENCE (A(l), I(7), CMPLX(l)) 

Then, the displacement of these variables within the group is illus­
trated as follows: 

I(l)<----------T------------------64 storage locations-------->IC16) 
I 

v 
displacement 
0 storage 
locations 

I A(l)<------------40 storage locations-------->AC10) 
I 

CMPLX(l)<--------40 storage locations----->CMPLX(5) 

v 
displacement 
24 storage 
locations 

The displacements of A and CMPLX are evenly divisible by their reference 
numbers. However, if the EQUIVALENCE statement were written as 

EQUIVALENCE (A(l), I(6), CMPLX(l)) 

then CMPLX is not properly aligned Cits displacement of 20 is not evenly 
divisible by its reference number of 8). 

Specification Statements 81 



SUBPROGRAMS 

It is sometimes desirable to write a program which, at various 
points. requires the same computation to be performed with different 
data for each calculation. It would simplify the writing of that 
program if the statements required to perform the desired computation 
could be written only once and then could be referred to freely, with 
each subsequent reference having the same effect as though these 
instructions were written at the point in the program where the 
reference was made. 

For example, to take the cube root of a number, a program must be 
written wi~n ~nis onJect in mind. If a general program were written to 
take the cube root of any number, it would be desirable to be able to 
combine that program Cor subprogram) with other programs where cube root 
calculations are required. 

The FORTRAN language provides for the above situation through the use 
of subprograms. There are two classes of subprograms: FUNCTION 
subprograms and SUBROUTINE subprograms. In addition, there is a group 
of FORTRAN supplied subprograms (see Appendix C). Functions differ from 
SUBROUTINE subprograms in that they return at least one value to the 
calling program, whereas SUBROUTINE subprograms need not return any. 

Statement functions are also discussed in this section since they are 
similar tq FUNCTION subprograms. The difference is that subprograms are 
a sepa'rate program unit from the program unit referring to them while 
statement functions definitions and references are in the same program 
unit. 

NAMING SUBPROGRAMS 

A subprogram name consists of from 1 through 6 alphameric characters, 
the first of which must be alphabetic. A subprogram name may not 
contain special characters (see Appendix A). The type of a function 
determines the type of the result that can be returned from it. 

• Type Declaration of a Statement Function: Such declaration may be 
accomplished in one of three ways: by the predefined convention, by 
the IMPLICIT statement, or by the Explicit specification statements. 
Thus~ the rules for declaring the type of variables apply to 
statement functions. 

• Type Declaration of FUNCTION Subprograms: The declaration may be 
made by the predefined convention, by the IMPLICIT statement, by an 
Explicit specification in the FUNCTION statement, or by an Explicit 
specification statement within the FUNCTION subprogram. 

The type of a SUBROUTINE subprogram cannot be defined because the 
results that are returned to the calling program are dependent only on 
the type of the variable names appearing in the argument list of the 
calling program and/or the implicit arguments in COMMON. 

FUNCTIONS 

A function is a statement of the relationship between a number of 
variables. To use a function in FORTRAN, it is necessary to: 

82 



1.. Define the function (i.e., specify what calculations are to be 
performed). 

2. Refer to the function by name where required in the program. 

Function Definition 

There are three steps in the definition of a function in FORTRAN: 

1. The function must be assigned a unique name by which it may be 
called (see the section "Naming Subprograms"). 

2. The dummy arguments of the function must be stated. 

3. The procedure for evaluating the function must be stated. 

Items 2 and 3 are discussed in detail in the sections dealing with 
the specific subprogram (e.g., "Statement Functions," "FUNCTION Subpro­
grams," etc.). 

Function Reference 

When the name of a function, followed by a list of its arguments, 
appears in any FORTRAN expression, it references the function and causes 
the computations to be performed as indicated by the function def ini­
tion. The resulting quantity replaces the function reference in the 
expression and assumes the type of the function. The type of the name 
used for the reference must agree with the type of the name used in the 
definition .• 

STATEMENT FUNCTIONS 

A statement function definition specifies operations to be performed 
whenever that statement function name appears as a function reference in 
another statement in the same program unit • 

.----------------------------------------------------------------------, 
!General Form I 
~------------------------------------~---------------------------------~ 
lname(~1 ,~2 ,~3 ., •••• ~n> = expression I 
I I 
!Where: name is the statement function name (see the section "Naming! 
I Subprograms") I 
I I 
I ~1 .~2 ,~3 , ••• ,~n are dummy arguments. They must be unique! 
I (within the statement) nonsubscripted variables. I 
I I 
I expression is any arithmetic or logical expression that does! 
I not contain subscripted variables. Any statement function! 
I appearing in this expression must have been defined! 
I previously. I 
L----------------------------------------------------------------------J 

The expression to the right of the equal sign defines the operations 
to be performed when a reference to this function appears in an 
assignment statement. The expression defining the function must not 
contain a reference to the function. 

Subprograms 83 



The dummy arguments enclosed in parentheses following the function 
name are dummy variables for which the arguments given in the function 
reference are substituted when the function reference is encountered. 
The same dummy arguments may be used in more than one statement function 
definition and may be used as variables outside the statement function 
definitions. 

The actual arguments in the function reference must correspond in 
order, number, and type to the dummy arguments. There must be at least 
one argument. The arguments can be any of the following: any type of 
constant except hexadecimal, any type of subscripted or nonsubscripted 
variable, an array name, an arithmetic or logical expression, or the 
name of another subprogram. 

All statement function definitions to be used in a program must 
precede the first executable statement of the program. 

Example: The statement: 

FUNC(A,B) = 3.*A+B**2.+X+Y+Z 

defines the statement function FUNC, where FUNC is the function name and 
A and B are the dummy arguments. The expression to the right of the 
equal sign defines the operations to be performed when the function 
reference appears in an arithmetic statement. 

The function reference might appear in a statement as follows: 

C = FUNC-(D, E) 

This is equivalent to: 

C = 3.*D+E**2.+X+Y+Z 

Note the correspondence between the dummy arguments A and B in the 
function definition and the actual arguments D and E in the function 
reference. 

Examples: 

84 

Valid statement 
references: 

function definitions and statement function 

Oef inition 

SUMCA,B,C.,D) = A+B+C+D 
FUNC(Z) = A+X*Y*Z 
VALID CA., B) = • NOT. A • OR. B 

Reference 

NET = GROS-SUM(TAX,FICA,HOSP,STOCK) 
ANS = FUNC(RESULT) 
VAL = TEST .OR. VALID(D,E) 
BIG SUM = SUM(A,B.,SUM(C,D.,E,F) ,G) 

Invalid statement function definitions: 

SUBPRG(3,J,K)=3*I+J**3 
SOMEFCACI),B)=A(I)/B+3. 
SUBPROGRAM (A., B) =A** 2 + B* * 2 

3FUNC(D)=3.14*E 

ASF(A)=A+B(I) 

BAD (A, B) =A+B+BAD (C., D) 

<arguments must be variables> 
(arguments must be nonsubscripted) 
(function name exceeds limit of six 

characters) 
(function name must begin with an 

alphabetic character) 
(subscripted variable in the expres­

sion> 
<recursive definition not permitted) 



Invalid statement function references (the functions are defined 
as above): 

WRONG = SUM(TAX,FICA) 

MIX = FUNC CI) 

FUNCTION SUBPROGRAMS 

(number of arguments does not agree 
with above definition) 

(mode of argument does not agree with 
above definition) 

The FUNCTION subprogram is a FORTRAN subprogram consisting of a 
FUNCTION statement followed by other statements including at least one 
RETURN statement. It is an independently written program that is 
executed wherever its name is referenced in another program. 

r----------------------------------------------------------------------1 
I General Form I 
~----------------------------------------------·------------------------~ 
~FUNCTION name*.§. Ca1.,a2,a3, ••• ,an) 

Where: ~ is INTEGER, REAL., COMPLEX,, or LOGICAL. It can be 
omitted if the predefined convention is used to type the 
function. 

name is the name of the FUNCTION. 

*.§. is optional and represents one of the permissible length 
specifications for its associated type. 

a1. 1 a 2,,a3 , ••• ,an are dummy arguments. They must be nonsub­
scripted variable, array, or dummy names of SUBROUTINE or 
other FUNCTION subprograms. (There must be at least one 
argument in the argument list.) 

The function must also be typed in the calling program, if the 
predefined convention is not used. 

Since the FUNCTION is a separate subprogram, the variables and 
statement numbers within it do not relate to any other program. 

The FUNCTION statement must be the first statement in the subprogram. 
The FUNCTION subprogram may contain any FORTRAN statement except a 
SUBROUTINE statement, another FUNCTION statement, or a BLOCK DATA 
statement. If an IMPLICIT statement is used in a FUNCTION subprogram, 
it must immediately follow the FUNCTION statement. 

The name of the function must be assigned a value at least once in 
the subprogram -- either as the variable name to the left of the equal 
sign in an assignment statement, as an argument of a CALL statement, or 
in an input list (READ statement) within the subprogram. 

Subprograms 85 



The dummy arguments of the FUNCTION subprogram Ci.e., ~~ 1 ~2 ,~3 , ••• , 

~n> may be considered to be dummy variable names. These are replaced at 
the time of execution by the actual arguments supplied in the function 
reference in the calling program. Additional information about argu­
ments is in the section "'Arguments in a FUNCTION or SUBROUTINE 
Subprogram." 

The relationship between variable names used as arguments in the 
calling program and the dummy variables used as arguments in the 
FUNCTION subprogram is illustrated in the following example: 

Example 1: 

Calling Program 

ANS = ROOTl*CALC ex, Y, I) 

Explanation: _ 

FUNCTION Subprogram 

FUNCTION CALC CA,B,J) 

I J*2 

CALC = A**I/B 

RETURN 
END 

In this example, the values of X, Y, and I are used in the FUNCTION 
subprogram as the values of A, B, and J, respectively. The value of 
CALC is computed, and this value is returned to the calling program 
where the value of ANS is computed. The variable I in the argument list 
of CALC in the calling program is not the same as the variable I 
appearing in the subprogram. 

Example 2: 

Calling Program 

INTEGER*2 CALC 

ANS=ROOTl*CALCCN,M,P) 

Explanation: 

FUNCTION Subprogram 

INTEGER FUNCTION CALC*2(I,J,K) 

CALC = I+J+K**2 

RETURN 
END 

The FUNCTION subprogram CALC is declared as type INTEGER of length 2. 

86 



RETURN and END Statements in a FUNCTION Subprogram 

All FUNCTION subprograms must contain an END statement and at least 
one RETURN statement. The END statement specifies, for the compiler, 
the end of the subprogram; the RETURN statement signifies a logical 
conclusion of the computation and returns the computed value and control 
to the calling program. There may be more than one RETURN statement in 
a FORTRAN subprogram. 

Example: 

FUNCTION DAV CD, E, F) 
IF (D-E) 101 20 1 30 

10 A = D+2.0*E 

5 A= F+2.0*E 

20 DAV = A+B**2 

RETURN 
30 DAV = B**2 

RETURN 
END 

SUBROUTINE SUBPROGRAMS 

The SUBROUTINE subprogram is similar to the FUNCTION subprogram in 
many respects. The rules for naming FUNCTION and SUBROUTINE subprograms 
are similar. They both require an END statement, and they both contain 
the same sort of dummy arguments. Like the FUNCTION subprogram, the 
SUBROUTINE subprogram is a set of commonly used computations, but it 
need not return any results to the calling program, as does the FUNCTION 
subprogram. 

The SUBROUTINE subprogram is referenced by the CALL statement, which 
consists of the word CALL followed by the name of the subprogram and its 
parenthesized arguments. 

Subprograms 87 



r----------------------------------------------------------------------1 
I General Form I 
~----------------------------------------------------------------------~ 

SUBROUTINE name C!!,:1..d!.2r!!.31 • • • r!!,n> 

RETURN 

END 

Where: name is the SUBROUTINE name (see the section "Naming 
Subprograms"). 

!!,1 ,!!,2 ,~3 , ••• r!!n are dummy arguments. (There need not be 
any.) Each argument used must be a nonsubscripted variable 
or array name,, the dummy name of another SUBROUTINE or 
FUNCTION subprogram, or of the form * where the character 
"*" denotes a return point specified by a statement number 
in the calling program. 

since the SUBROUTINE is a separate program, the variables and 
statement numbers within it do not relate to any other program. 

The SUBROUTINE statement must be the first statement in the subpro­
gram. The SUBROUTINE subprogram may contain any FORTRAN statement 
except a FUNCTION statement, another SUBROUT+NE statement, or a BLOCK 
DATA statement. If an IMPLICIT statement is used in a SUBROUTINE 
subprogram, it must immediately follow the SUBROUTINE statement. 

The SUBROUTINE subprogram may use one or more of its arguments to 
return values to the calling program. Any arguments so used must appear 
to the left of an arithmetic statement in an input list within the 
subprogram, as arguments of a CALL statement, or as arguments in a 
function reference. The SUBROUTINE name must not appear in any other 
statement in the SUBROUTINE subprogram. 

The dummy arguments (~1 ,, ~2 , !!,3 , ••• , ~n> may be considered dummy 
v~riable names that are replaced at the time of execution by the actual 
arguments supplied in the CALL statement. Additional information about 
dummy arguments is in the section "Arguments in a FUNCTION or SUBROUTINE 
Subprogram." 

Example: The relationship between variable n~mes used as arguments in 
the calling program and the dummy variable used as arguments in the 
SUBROUTINE subprogram is illustrated in the following example. The 
object of the subprogram is to "copy" one array directly into another. 

Calling Program 

DIMENSION X(100),Y(100) 

K = 100 
CALL COPY CX, Y., K) 

88 

SUBROUTINE Subprogram 

SUBROUTINE COPY(A,B;N) 
DIMENSION A (100),B(100) 
DO 10 I = 1,, N 

10 B(I) = A (I) 

RETURN 
END 



CALL Statement 

The CALL statement is used to call a SUBROUTINE subprogram. 

r----------------------------------------------------------------------1 
I General Form I 
~----------------------------------------------------------------------~ 
I CALL name <~1,, ~2, ~3• ••• , ~n) I 
I 
I 
I Where: name is the name of a SUBROUTINE subprogram. 
I 
I 
I 
I 

~1 ,~u~3 , ••• ,~ are the actual arguments that are being 
supplied to the SUBROUTINE subprogram. Each may be of the 
form &n where ~ is a statement number (see "RETURN State-

I ments in a SUBROUTINE Subprogram"). I 
l----------------------------------------------------------------------j 

Examples: 

CALL OUT 
cALL MATMPY ex, s, 40, Y., 1, 2> 
CALL QDRTIC (X,Y,Z,ROOT1,ROOT2) 
CALL SUBl(X+Y*S,ABDF,SINE) 

The CALL statement transfers control to the SUBROUTINE subprogram and 
replaces the dummy variables with the value of the actual arguments that 
appear in the C~..LL statemente 

RETURN Statements in a SUBROUTINE Subprogram 

r------------------------------------------------~---------------------1 

I General Form I 
~----------------------------------------------------------------------~ 
I RETURN I 
I I 
I RETURN i I 
I I 
I Where: i is an integer constant or variable of length ~ whose I 
I value, say n, denotes the nth statement number in the I 
I argument list of a SUBROUTINE statement; i may be specified I 
I only in a SUBROUTINE subprogram. I 
l----------------------------------------------------------------------j 

The normal sequence of execution following the RETURN statement of a 
SUBROUTINE subprogram is to the next statement following the CALL in the 
calling program. It is also possible to return to any numbered 
statement in the calling program by using a return of the type RETURN i· 
Returns of the type RETURN may be made in either a SUBROUTINE or 
FUNCTION subprogram (see "RETURN and END Statements in a FUNCTION 
Subprogram"). Returns of the type RETURN i may only be made in a 

Subprograms 89 



SUBROUTINE subprogram. In a main program, a RETURN statement performs 
the same function as a STOP statement. 

Example: 

Calling Program Subprogram 

SUBROUTINE SUB (X,Y,Z,*,*) 

10 CALL SUB (A,B,C,&30,&40) 
20 y = A + B 100 IF (M) 200,300,400 

200 RETURN 
300 RETURN 1 
400 RETURN 2 

30 y =A + c END 

40 Y = B + C 

END 

Explanation: 

In the preceding example, execution of statement 10 in the calling 
program causes entry into subprogram SUB. When statement 100 is 
executed., the return to the calling program will be to statement 20, 30, 
or 40, if M is less than, equal to, or greater than zero, respectively. 

A CALL statement that uses a RETURN i form may be best understood by 
comparing it to a CALL and computed GO TO statement in sequence. For 
example, the following CALL statement: 

CALL SUB (P, &20,Q, &35.,R, &22) 

is equivalent to: 

CALL SUB (P,Q,,R,I) 
GO TO (20,35,22)#I 

where the index I is assigned a value of 1, 2, or 3 in the called 
subprogram. 

ARGUMENTS IN A FUNCTION OR SUBROUTINE SUBPROGRAM 

The dummy arguments of a subprogram appear after the FUNCTION or 
SUBROUTINE name and are enclosed in parentheses. They are replaced at 
the time of execution by the actual arguments supplied in the CALL 
statement or function reference in the calling program. The dummy 
arguments must correspond in number, order, type, and length to the 
actual arguments. For example, if an actual argument is an integer 
constant, then the corresponding dummy argument must be an integer of 
length 4. The array sizes must also be the same except when the arrays 
are one-dimensional., in which case, the actual argument array size can 
be less than or equal to the dummy argument array size. 

90 



The actual arguments can be: 

• Any type of constant except hexadecimal 

• Any type of subscripted or nonsubscripted variable <except one last 
defined by an ASSIGN statement) 

• An array name 

• An arithmetic or logical expression 

• The name of a FUNCTION or SUBROUTINE subprogram 

• A statement number (for a SUBROUTINE subprogram only, see the 
section "RETURN Statements in a SUBROUTINE Subprogram") 

If a literal constant is passed as an argument, the actual argument 
passed is the literal as defined, without delimiting apostrophes or the 
preceding wH specification. An actual argument which is the name of a 
subprogram must be identified by an EXTERNAL statement containing that 
name. 

When the dummy argument is an array name, an appropriate DIMENSION or 
Explicit specification statement must appear in the subprogram. None of 
the dummy arguments may appear in an EQUIVALENCE or COMMON stateme~t. 

If a dummy argument is assigned a value in the subprogram, the 
corresponding actual argument must be a subscripted or unsubscripted 
variable name, or an array name. A constant should not be specified as 
an actual argument unless the programmer is certain that the correspond­
ing dummy argument is not assigned a value in the subprogram. 

A referenced subprogram cannot define dummy arguments such that the 
subprogram reference causes those arguments to be associated with other 
dummy arguments within the subprogram or with variables in COMMON. For 
example, if the function DERIV is defined as 

FUNCTION DERIV ex., Y, Z) 
COMMON W 

and if the following statements are included in the calling program 

COMMON B 

then X, Y, Z, and W cannot be defined (e.g., cannot appear to the left 
of an equal sign in an arithmetic statement) in the function DERIV. 

Arguments may be referred to in a subprogram in one of two ways: by 
value or by location. 

In reference by value, the dummy argument is assigned a storage 
location in the subprogram to which the value of the actual argument is 
brought from the calling program at execution time. During execution, 
all intermediate values are also stored in this location. Upon return 
to the calling program, the final value is transmitted from the dummy 
argument to the actual argument. 

An argument is referenced by 
argument is enclosed only in 
subprogram name. 

value when 
commas and 

the corresponding dummy 
is not an array name or 

Subprograms 91 



In reference by location, no storage is assigned to the dummy 
argument and during execution of the subprogram, all intermediate values 
and the final value are referenced using the location of the actual 
argument. 

An argument is referenced by location when the corresponding dummy 
argument is enclosed in slashes, or declared to be an array name or a 
subprogram name. 

Example: 

Calling Program Subprogram 

SUBROUTINE C:::Tltl (V V '7\ 
'-''-'.J.-1 '~Jr.. • ..L, UI 

CALL SUB (A, B ( 1) , C) 

Explanation: 

The actual arguments A, B(l}, and care associated with X, Y, and Z, 
respe~tively. The arguments A, B(l), and care referred to by value. 

Example: 

Calling Program Subprogram 

SUBROUTINE SUB(/X/,/Y/,Z) 
CALL SUB (A,B(l),C) 

Explanation: 

The actual arguments A,B(l), and care associated with X, Y, and z, 
respectively. The arguments A and B(l) are referred to by location, c 
is referred to by value. 

MULTIPLE ENTRY INTO A SUBPROGRAM 

The standard (normal) entry into a SUBROUTINE subprogram from the 
calling program is made by a CALL statement that references the 
subprogram name. The standard entry into a FUNCTION subprogram is made 
by a function reference in an arithmetic expression. Entry is made at 
the first executable statement following the SUBROUTINE or FUNCTION 
statement .. 

It is also possible to enter a subprogram (either SUBROUTINE or 
FUNCTION) by a CALL statement or a function reference that references ,an 
ENTRY statement in the subprogram. Entry is made at the first 
executable statement following the ENTRY statement. 

92 



r----------------------------------------------------------------------1 
I General Form I 
~----------------------------------------------------------------------~ 
I ENTRY ~ <~11~2•~3·• • • • .• ~n) 
I 
I Where: 
I 
I 
I 
I 

name is the name of an entry point (see the section 
Subprograms"). 

"Naming 

a 1 ,, a 2 , a 3 , • • • ,, an 
actual-argument 

are the dummy arguments corresponding to an 
in a CALL statement or in a function 

I reference. I 
L----------------------------------------------------------------------J 

ENTRY statements are non-executable and do not affect control 
sequencing during execution of a subprogram. A subprogram must not 
reference itself directly or through any of its entry points. Entry 
cannot be made into the range of a DO. The appearance of an ENTRY 
statement does not alter the rule that statement functions in subpro­
grams must precede the first executable statement of the subprogram. 

The dummy arguments in the ENTRY statement need not agree in order, 
type, or number with the dummy arguments in the SUBROUTINE or FUNCTION 
statement or any other ENTRY statement in the subprogram. However, the 
arguments for each CALL or function reference must agree in order, type, 
and number with the dummy arguments in the SUBROUTINE, FUNCTION, or 
ENTRY statement that it references. 

Entry into a subprogram initializes the dummy arguments of the 
referenced ENTRY statement. Thus, all appearances of these arguments in 
the whole subprogram are initialized. Arguments that were referenced by 
value at some previous use of the subprogram need not appear in the 
argument list of the ENTRY statement. In this case, the reference will 
not transmit new values for the arguments not listed. A function 
reference, and hence the corresponding ENTRY statement, must have at 
least one argument. 

If a dummy argument is listed at more than one entry point, it must 
be consistently referenced either by name or by value. A dummy argument 
must not be used in any executable statement in the subprogram unless it 
has been previously defined as a dummy argument in an ENTRY, SUBROUTINE, 
or FUNCTION statement. 

If information for an object-time dimension array is passed in a 
reference to an ENTRY statement, the array name and all of its dimension 
parameters (except any that are in a common area) must appear in the 
argument list of the ENTRY statement. 

Subprograms 93 



In a FUNCTION subprogram, the types of the function name and entry 
name are determined by the FUNCTION and ENTRY statements. The types of 
these variables (i.e., the function name and entry names) can be 
different; the variables are treated as if they were equivalenced. 
After one of these variables is assigned a value in the subprogram, the 
others become indeterminate in value. 

Upon exit from a FUNCTION subprogram, the value returned is the value 
last assigned to the function name or any entry name. It is returned as 
though it were assigned to the name in the current function reference. 
If the last value is assigned to a different entry name, and that entry 
name differs in type from the name in the current function reference, 
the value of the function is undefined. 

Example 1: 

Calling Program 

TABLE(l) = FUNC(W,X,Y,Z) 
DO 5 I=2,100 
TABLE(I) = ENT(U) 

5 CONTINUE 

Subprogram 

FUNCTION FUNC(T,A~B,C) 

ENTRY ENT(T) 

FUNC = A * B + C ** T 
RETURN 

END 

Explanation: The FUNCTION subprogram is entered once at entry point 
FUNC and initial values are assigned to the dummy arguments T, A, B, and 
c. Thereafter, the FUNCTION subprogram is entered at entry point ENT, 
and only one value is transmitted. No new values are passed for A, B, 
or c, so their values are changed only by operations in the subprogram. 
(Note that the original reference to A, B, and c must be by value -- not 
a reference by location.) 

Each time, the result of the FUNCTION subprogram is returned to the 
main program function reference by the variable FUNC. If FUNC and ENT 
had been of different types, it would have been necessary to have 
returned the result by FUNC the first time and by ENT the rest of the 
times. 

94 



Example 2: 

Callinq Proqram 

CALL SUB1 {A,B,C,D,E,F) 

CALL SUB2{G,&10,&20) 
y = G 

CALL SUB3{&10,&20) 
Y = A+B 

10 Y = C+D 
20 Y = E+F 

Explanation: 

50 
100 
200 
300 

Subprogram 

SUBROUTINE SUBl {U,V,W,X,Y,Z) 
RETURN 
ENTRY SUB2 {T,*,*) 
U = V* W+T 
ENTRY SUB3 {*,*) 
X = Y**Z 
IF {W) 100, 200~ 300 
RETURN 1 
RETURN 2 
RETURN 
END 

In this example, a call to SUB1 merely performs initialization. A 
subsequent call to SUB2 or SUB3 causes execution of a different section 
of the SUB1 subroutine. Then, depending upon the result of the 
arithmetic IF statement at statement soi control returns to the calling 
program at statement 10, 20, or the statement following the call. 

EXTERNAL STATEMENT 

r-------------------------------------------------~--------------------1 
I General Form I 
~----------------------------------------------------------------------~ 
I EXTERNAL ~ • .Q, £, . . • I 
I I 
I Where: ~.Q,£1 ••• are names of subprograms that are passed as I 
I arguments to other subprograms. I 
L----------------------------------------------------------------------J 

The EXTERNAL statement is a specification statement and must precede 
statement function definitions and the executable statements. 

If the name of a FORTRAN supplied in-line function is used in an 
EXTERNAL statement, the function is not expanded in-line when it appears 
as a function reference. Instead, it is assumed that the function is 
supplied by the user or is part of the FORTRAN-supplied library. (The 
FORTRAN supplied in-line and out-of-line functions are given in Appendix 
c.) 

The name of any subprogram that is passed as an argument to another 
subprogram must appear in an EXTERNAL statement in the calling program. 
For example, assume that SUB and MULT are subprogram names in the 
following statements: 

subprograms 95 



Example 1: 

Calling Program 

EXTERNAL MULT 

CALL SUB (J, MULT,C) 

Explanation: 

4 

6 

subprogram 

SUBROUTINE SUB(K,Y,Z) 
IF (K) 4,6,6 
D = Y (K,Z**2) 

RETURN 
END 

In this example, the subprogram name MULT is used as an argument in 
the subprogram SUB. The subprogram name MULT is passed to the dummy 
variable Y as are the variables J and C passed to the dummy variables K 
and z, respectively. The subprogram MULT is called and executed only if 
the value of K is negative. 

Example 2: 

CALL SUB (A,B,MULT (C,D),37) 

Explanation: 

SUBROUTINE SUB (W,X,Y,Z) 

RETURN 
END 

In this example, an EXTERNAL statement is not required because the 
subprogram named MULT is not an argument; it is executed first and the 
result becomes the argument. 

OBJECT-TIME DIMENSIONS 

If an array is used in a FUNCTION or SUBROUTINE subprogram and its 
name is not in a COMMON statement within the subprogram, the absolute 
dimensions of the array do not have to be explicitly declared in the 
subprogram by constants. Instead, an Explicit specification statement 
or DIMENSION statement appearing in the subprogram may contain integer 
variables of length 4 to specify the size of the array. When the 
subprogram is called, these integer variables receive their values from 
the actual arguments in the calling program reference or from common. 
Thus, the dimensions of a dummy array appearing in a subprogram may . ' change each time the subprogram is called. 

96 



The absolute dimensions of an array must be declared in the calling 
program or in a higher level calling program and the array name must be 
passed to the subprogram in the argument list of the calling program. 
The dimensions passed to the subprogram must be less than or equal to 
the absolute dimensions of the array declared in the calling program. 
(Note that if the arrays have more than one dimension, the corresponding 
elements must agree, so the dimensions must be the same.) The variable 
dimension size can be passed through more than one level of subprogram 
(i.e., to a subprogram that calls another subprogram, passing it 
dimension information). 

Integer variables in the Explicit specification or DIMENSION state­
ment that provide dimension information must not be redefined within the 
subprogram; i.e., they must not appear to the left of an equal sign. 

The name of an array with object-time dimensions cannot appear in a 
COMMON statement. 

Example 1: 

DIMENSION A(5,10) ••• 

CALL .SUBRl ( ••• A, 5, 10 ••• ) 

END 

Explanation: 

SUBROUTINE SUBRl( ••• R,L,M ••• ) 

REAL ••• R(L,M) ••• 

DO 10 I=l,L 
DO 10 J=l,M 

10 R(I,J)=O. 

RETURN 

END 

This example shows the use of object-time dimensions to supply 
dimension information to a subroutine that will perform some operation 
on an array of any specified size. In this case, the dimensions passed 
are those specified for the array in the calling program, i.e., the full 
size of the array. 

Subprograms 97 



Example 2: 

DIMENSION ACS,10) 

I = 4 

J = 7 

CALL SUBR1( ••• A,I,J ••• ) 

END 

Explanation: 

SUBROUTINE SUBR1( ••• R,L,M ••• ) 

REAL ••• RCL,M) ••• 

DO 10 I=1,L 
DO 10 J=1,M 

10 R CI, J) =O. 

RETURN 

END 

This example shows the use of object-time dimensions to specify a 
subset of the extent of an array Ci.e., a partitioning of the matrix if 
two-dimensional) to a subprogram. The effect of this coding is the same 
as if another array, B, of dimensions C4,7) had been defined in the 
calling program and had been made equivalent to array A; the array B and 
its dimensions would then have been passed to SUBRl as follows: 

DIMENSION ••• ACS,10),B(4,7) ••• 

EQUIVALENCE CACl,1),B(l,1)) 

I = 4 

J = 7 

CALL SUBRl ( ••• B,I,J ••• ) 

END 

98 



BLOCK DATA SUBPROGRAM 

To initialize variables in a labeled (named) common block, a separate 
subprogram must be written. This separate subprogram contains only the 
DATA, COMMON, DIMENSION, EQUIVALENCE, and Type statements associated 
with the data being defined. Data may not be initialized in unlabeled 
common. 

r-------------~-------------------------------------------------------1 
I General Form I 
~-----------------~---------------------------------------------------~ 
I BLOCK DATA I 
I I 
I I 
I I 
I E~ I 
L----------------------------------------------------------------------J 

1. The BLOCK DATA subprogram may not contain any executable 
statements. 

2. The BLOCK DATA statement must be the first statement in the 
subprogram. If an IMPLICIT statement is used in a BLOCK DATA 
subprogram, it must immediately follow.the BLOCK DATA statement. 
The COMMON statement must precede the data initialization 
statements. 

3. Any main program or subprogram using a common block must contain a 
co~~~ON statement defining that block. If +nitial values are to be 
assigned, a BLOCK DATA subprogram is necessary. 

4. All elements of a common block must be listed in the COMMON 
statement, even though they are not all initialized; for example, 
the variable A in the COMMON statement in the following example 
does not appear in the data initialization statement: 

BLOCK DATA 
COMMON/ELN/C,A,B/RMG/Z,Y 
REAL B (4) /1. 0, 1. 2, 2*1. 3/ I Z*8 ( 3) /3*7. 64980825DO/ 
COMPLEX C/(2.4,3.769)/ 
END 

5. Data may be entered into more than one common block in a single 
BLOCK DATA subprogram. 

Subprograms 99 



APPENDIX A: SOURCE PROGRAM CHARACTERS 

r----------------------------------T-----------------------------------1 
I Alphabetic Characters J Numeric Characters j 
t----------------------------------+-----------------------------------~ 

A 0 
B 1 
c 2 
D 3 
E 4 
F 5 
G 6 
H 7 
I 8 
J 9 
K 
L 
M 
N 
0 
p 

~-----------------------------------~ 

Q 
R 
s 
T 
u 
v 
w 
x 
y 
z 
$ 

I Special Characters I 
~-----------------------------------~ 

(blank) 
+ 

/ 
= 
) 

* , 
( 
' (apostrophe) 
& __________________________________ i ___________________________________ J 

The 49 characters listed above constitute the set of characters 
acceptable by FORTRAN, except in literal data where any valid card code 
is acceptable. 

100 



APPENDIX B: OTHER FORTRAN STATEMENTS ACCEPTED BY FORTRAN IV 

This appendix discusses those features of previously implemented 
FORTRAN IV languages that are incorporated into the System/360 FORTRAN 
IV language. The inclusion of these additional language facilities 
allows existing FORTRAN programs to be recompiled for use on the IBM 
System/360 with little or no reprogramming. 

READ STATEMENT 

r----------------------------------------------------------------------1 
I General Form I 
~----------------------------------------------------------------------~ 
I READ g,list I 
I I 
I Where: b is the statement number or array name of the FORMAT I 
I statement describing the data. I 
I I 
I list is a series of variable or array names, separated by I 
I commas, which may be indexed and incremented. They specify I 
I the number of items to be read and the locations in storage I 
I into which the data is placed. I 
L----------------------------------------------------------------------J 

This statement has the effect of a READ {n,b) list statement where b 
and list are defined as above, and the vallie()f g is installation 
dependent. 

PUNCH STATEMENT 

r----------------------------------------------------------------------1 
I General Form I 
~----------------------------------------------------------------------i 
I PUNCH £, list I 
I I 
I Where: b is the statement number or array name of the FORMAT I 
I statement describing the data. I 
I I 
I list is a series of variable or array names, separated by I 
I commas, which may be indexed and incremented. They specify I 
I the number of items to be written and the locations in I 
I storage from which the data is taken. I 
L----------------------------------------------------------------------J 

This statement has the effect of a WRITE <n,£) list statement where £ 
and list are defined as above, and the value of ~ is installation 
dependent. 

Appendix B: Other FORTRAN Statements Accepted by FORTRAN IV 101 



PRINT STATEMENT 

r----------------------------------------------------------------------1 
I General Form I 
~----------------------------------------------------------------------~ 
I PRINT Q, list I 
I I 
I Where: b is the statement number or array name of the FORMAT I 
I statement describing the data. I 
I I 
I list is a series of variable or array names, separated by I 
I commas which may be indexed and incremented. They specify I 
I the number of items to be written and the locations in I 
I storage from which the data is taken. I 
L----------------------------------------------------------------------J 

This statement has the effect of a WRITE Cn,b) list statement where b 
and list are defined as above, and the value of g is installation 
dependent. 

102 



APPENDIX C: FORTRAN-SUPPLIED SUBPROGRAMS 

The FORTRAN-supplied subprograms are of two types: mathematical 
subprograms and service subprograms. The mathematical subprograms 
correspond to a FUNCTION subprogram; the service subprograms correspond 
to a SUBROUTINE subprogram. An in-line subprogram is inserted by the 
FORTRAN compiler at any point in the program where the function is 
referenced. An out-of-line subprogram is located in a library and the 
compiler generates an external reference to it. A detailed description 
of out-of-line mathematical subprograms and service subprograms is given 
in the publication IBM System/360: FORTRAN IV Library Subprograms, Form 
C28-6596. Table 4 shows mathematical function subprograms, and Table 5 
shows out-of-line service subprograms. 

Table 4. Mathematical Function subprograms (Part 1 of 3) 

r--------------T------T------------------T---------------T------T-----------T-----------1 
I I I I I I I Type Of I 
I !Entry I I In-Line (I) INo. of I Type of !Function I 
I Function I Name I Definition !Out-of-Line (0) I Arg. I Arguments I Value I 
~--------------+------+------------------+---------------+------+-----------+-----------i 
I Exponential I EXP I earg I O I 1 I Real * 4 I Real * 4 I 
I I DEXP I earg I o I 1 I Real * 8 I Real * 8 I 
I ICEXP learg I o I 1 !Complex *8 !Complex *8 I 
I I CDEXP I earg I O I 1 I Complex *161 Complex *16 I 
~--------------+------+------------------+---------------+------+-----~-----+-----------i 
!Natural IALOG lln (Arg) I O I 1 !Real *4 !Real *4 I 
!Logarithm IDLOG lln (Arg) I O I 1 !Real *8 !Real *8 I 
I ICLOG lln (Arg) I o I 1 !Complex *8 !Complex •8 I 
I ICDLOG lln (Arg) I O I 1 !Complex *161Complex *161 
~--------------+------+------------------+---------------+------+------~----+-----------i 
!Common IALOG101log1o<Arg) I O I 1 !Real *4 tReal *4 I 
!Logarithm !DLOG10!log10 CArg) ! o ! 1 !Real *8 !Real *8 I 
t--------------t------t------------------t---------------+------+-----------+-----------i 
!Arcsine IARSIN tarcsin (Arg) I O I 1 !Real *4 !Real *4 I 
I IDARSINtarcsin CArg) I O I 1 !Real *8 !Real *8 I 
~--------------+------+------------------+---------------+------+-----------+-----------i 
IArccosine IARCOS tarccos (Arg) I o I 1 !Real *4 !Real *4 I 
I IDARCOStarccos CArg> I o I 1 jReal *8 !Real *8 I 
~--------------+------+------------------+---------------+------+-----------+-----------i 
!Arctangent )ATAN tarctan (Arg) I o I 1 !Real *4 jReal *4 I 
I I ATAN2 I arctan (Arg~,./Arg2.l I O I 2 I Real *4 I Real *4 I 
I IDATAN tarctan (Arg) I O I 1 )Real *8 tReal *8 I 
I IDATAN21arctan (Arg1/Arg2>I O I 2 !Real *8 !Real *8 I 
~--------------+------+------------------+---------------+------+-----------+-----------i 
ITrigonorr~tric ISIN tsin (Arg) I o I 1 !Real *4 !Real *4 I 
!Sine IDSIN tsin (Arg) I O I 1 !Real *8 !Real *8 I 
!<Argument in ICSIN tsin (Arg) I O I 1 !Complex •8 !Complex *8 I 
I radians) ICDSIN tsin (Arg) I O I 1 !Complex *161Complex *161 
~--------------+------+------------------+---------------+------+-----------+-----------i 
!Trigonometric !COS tcos (Arg) I O I 1 !Real *4 !Real *4 I 
!Cosine IDCOS tcos (Arg) I o I 1 !Real •8 !Real *8 I 
!<Argument in ICCOS tcos (Arg) I O I 1 !Complex *8 !Complex *8 I 
I radians) ICDCOS lcos (Arg) I O I 1 !Complex *161Complex *161 
~--------------+------+------------------+--------~------+------+-----------+-----------i 
!Trigonometric ITAN ltan <Arg) I o I 1 !Real •q !Real *4 I 
I Tangent I I I I I I I 
!<Argument in IDTAN ltan <Arg) I O I 1 jReal *8 jReal *8 I 
I radians> I I I I I I I ._ _____________ i ______ i __________________ i _______________ ..._ _____ i ___________ i ___________ J 

Appendix C: FORTRAN-Supplied Subprograms 103 



Table 4. Mathematical Function Subprograms (Part 2 of 3) 

r--------------T------T------------------T---------------T------T-----------T-----------1 
I I I I I I I Type of I 
I !Entry I I In-Line (I) !No. ofl Type of jFunction I 
I Function !Name I Definition jOut-of-Line CO) I Arg. I Arguments jValue I 
1-------~-----+------+~----------------+---------------+------+-----------+-----------i 
!Trigonometric jCOTAN tcotan (Arg) I o I 1 !Real *4 !Real *4 I 
tcotangent I I I I I I I 
!<Argument in IDCOTANtcotan <Arg) I o I 1 !Real *8 jReal *8 I 
I radians> I I I I I I I 
r--------------+------+--------~--------+---------------+------+-----------+-----------i 
!Square Root !SQRT t<Arg>!: I o I 1 !Real *4 JReal *4 I 
I I DSQRT I ( Arg) I o I 1 I Real * 8 I Real * 8 I 
I ICSQRT I CArg>:tA I O I 1 !Complex *8 !Complex *8 I 
I ICDSQRTI CArg)\4 I O I 1 !Complex *161Complex *161 
r-------~-----+------+------~~~---------+---------------+------+-----------+-----------i 
!Hyperbolic !TANH ttanh CArg) I o I 1 !Real *4 !Real *4 I 
!Tangent IDTANH ttanh CArg) I o I 1 jReal *8 JReal *8 I 
t--------------+------+------------------+---------------+------+-----------+------~----~ 
!Hyperbolic ISINH tsinh CArg) I o I 1 jReal *4 !Real *4 I 
I Sine I DSINH I sinh CArg) I O I 1 I Real * 8 I Real * 8 ·I 
r--------------+------+------------------+---------------+------+-----------+-----------i 
!Hyperbolic ICOSH tcosh CA~g) I o I 1 jReal *4 jReal *4 I 
jCosine JDCOSH jcosh (Arg) I o I 1 jReal *8 jReal *8 I 
~-------~-----+------+---~-------------+----~---------+------+-----------+-----------i 
!Error FunctionlERF I .1.. ~x -u2 I o I 1 I Real *4 !Real *4 I 
I IDERF I J71· e du I o I 1 jReal *8 jReal *8 I 
I I I o I I I I I 
~-------~-----+------+---.,..,~~------------+---------------+------+-----------+--~-------i 
!Complemented IERFC 11-erf Cx) I o I 1 jReal *4 jReal *4 I 
I Error Function I DERFC I I O I 1 I Real * 8 I Real * 8 I 
~-~-----------+------+----,-----------~-+---------------+------+-----------+-----------i 
I Gamma I GAMMA I ~oo x-1 -u I O I 1 I Real * 4 I Real * 4 I 
I IDGAMMAI u e du I O I 1 !Real *8 !Real *8 I 
I I I o I I I I I 
1-------~-----+------+---~--~-----------+---------------+------+-----------+-----------i 
!Log-gamma jALGAMAI I o I 1 !Real *4 !Real *4 I 
I I DLGAMAI loge TCx) I O I 1 I Real *8 I Real *8 I 
r-------~-----+------+~-~------~-·----+----~---------+------+-----------+-----------i 
!Modular jMOD 1Arg1 (mod Arg2>= I I I 2 !Integer *4 !Integer *4 I 
!Arithmetic jAMOD jArg1-[x]*Arg2 I I I 2 jReal *4 1Real*4 I 
I jDMOD !Where: [x] is the I I I 2 !Real *8 jReal *8 I 
I I I largest integer I I I I I 
I I jwhose magnitude I I I I I 
I I jdoes not exceed I I I I I 
I I lthe magnitude of I I I I I 
I I I Arg1/Ar:<i,2· The I I I I I 
I I I sign of the·integer I I I I I 
I I I is the same as the I I I I I 
I I !sign of Arg1/Arg2· I I I I I 
~~~---------~+------+------------------+---------------+------+-----------+-----------i 
!Absolute valuetIABS llArgl I I I 1 !Integer *4 !Integer *4 I
I IABS I I I I 1 !Real *4 !Real *4 I
I !DABS I I I I 1 !Real *8 jReal *8 I
I r------+-,.,._...., ... '!.-.-,...---.-.--.------+---------------+------+-----------+-----------i
I jCABS I J<a2+b2) for a+bi I o I 1 !Complex *8 jReal *4 I
I jCDABS I I O I 1 !Complex *161Real *8 I
r--------------+------+------------------+---------------+------+-----------+-----------i
!Truncation IINT !Sign of Arg times I I j 1 jReal *4 !Integer *4 I
I I I largest integer I I I I I
I (ISIArgl I I l I I
I IAINT I I I I 1 !Real *4 !Real *4 I
I IIDINT I I I I 1 !Real *8 !Integer *4 I
L-~----~-----i------..1..------------------~----------------'------~-----------~-----------J

104

Table 4. Mathematical Function Subprograms (Part 3 of 3)

r-~-----------T------T------------------T---------------y------T-----------y-----------1
I I I I I I I Type of I
I !Entry I I In-Line CI) jNo. of I Type of !Function I
I Function !Name I Definition !Out-of-Line CO>I Arg. I Arguments !Value I
1--------------+------+------~-----------+---------------+------+-----------+-----------~
I Largest value1 I AMAXO I Max (Arg1_,Arg2,, ••• >I o I <::2 I Integer *4 I Real •4 I
I I AMAXl I I o I <::2 jl:teal •4 I Real *4 I
I I MAXO I I O I <::2 I Integer *4 I Integer *4 I
j IMAXl I I O I <::2 !Real *4 !Integer *4 I
I IDMAXl I I O I <::2 !Real *8 !Real *8 I

t~;1~;~~~------t~~~0-t;i~-<;r-;1~-;;g-;.~~~>t------~--------t---;;-t~~~;~;;-;;-t~;;1-;;----1
I IAMINl I I o I <::2 !Real *4 !Real *4 I
I I MINO I I o I <::2 I Integer *4 I Integer *4 I
I IMINl I I O I <::2 !Real *4 !Integer *4 I
I I DMINl I i o i <::2 I Real * 8 I Real * ~ I
~--------------+------+------------------+---------------+------+-----------+-----------~
I Float I FLOAT I Convert from I I I 1 I Integer *4 I Real *4 I
I I DFLOAT I integer to real I I I 1 I Integer *4 I Real *8 I
~--------------+------+------------------+---------------+------+-----------+-----------1
!Fix IIFIX !Convert from I I I 1 !Real •4 !Integer *4 I
I I HFIX I real to integer I I I 1 I Real * 4 I Integer * 2 I
~--------------+------+------------------+---------------+------+-----------+-----------1
!Transfer of ISIGN !Sign of Arg2 times! I I 2 !Real *4 !Real *4 I
I sign I I I Arg1 I I I I I I
I IISIGN I I I I 2 !Integer *4 !Integer *4 I
I IDSIGN I I I I 2 !Real *8 !Real •8 I
~--------------+------+------------------+---------------+------+-----------+-----------1
!Positive IDIM jArg1 -MinCArg1 , I I I 2 !Real *4 !Real *4 I
!difference IIDIM 1Arg2) I I !Integer *4 !Integer *4. I
~--------------+------+------------------+---------------+------+-----------+-----------1
I Obtaining most I SNGL I I I I 1 I Real * 8 I Real *4 I
I significant I I I I I I I
I part of a I I I I I I I
I Real *8 I I I I I I I
I argument I I I I I I I
~--------------+------+------------------+---------------+------+-----------+-----------1
I Obtain real I REAL I I I -I 1 I Complex *8 I Real *4 I
l part of l l I ! ! ! !
I complex I I I I I I I
I argument I I I I I I I
~--------------+------+------------------+---------------+------+-----------+-----------~
!Obtain IAIMAG I I I I 1 !Complex *8 !Real *4 I
I imaginary I I I I I I I
I part of I I I I I I I
I complex I I I I I I I
I argument I I I I I I I
~--------------+------+------------------+---------------+------+-----------+-----------1
!Express a ReallDBLE I I I I 1 !Real *4 !Real •8 I
I * 4 argument in I I I I I I I
I Real •8 form I I I I I I I
~--------------+------+------------------+---------------+------+-----------+-----------1
!Express two ICMPLX jC=Arg1 ,+iArg2 I I I 2 jReal *4 !Complex *8 I
I real arguments I I I I I I I
I in complex I I I I I I I
I form I I I I I I I
~--------------+------+------------------+---------------+------+-----------+-----------1
I Obtain I CONJG I C=X-i Y I I I 1 I Complex * 8 I Complex * 8 I
!conjugate IDCONJGIFor Arg=X+iY I I I 1 !Complex *161Complex *161
I of a complex I I I I I I I
I argument I I I I I I I
~--------------i ______ i __________________ i _______________ i ______ i ___________ i ___________ 1

l 1 For the FORTRAN IV CH) compiler, these functions are in-line. I
'-~-------------------~---J

Appendix C: FORTRAN-Supplied Subprograms 105

Table 5. Out-of-Line Service Subprograms

r----------------------T-----------------------T--,
I Function I CALL Statement I Argument Information I
~----------------------+-----------------------+--i
!Alter status of sense !CALL SLITE<i> Ii is an integer expression. I
I lights I I I
I I IIf i = O, the four sense lights arel
I I I turned off. I
I I IIf i = 1, 2, 3, or 4, the corresponding!
I I I sense light is turned on. I
~------~-------------+-----------------------+--~
!Test and record statuslCALL SLITET<iri> Ii is an integer expression that has al
lof sense lights I I value of 1, 2, 3, or 4 and indicates!
I I I which sense light to test. I
I I Ii is an integer variable that is set tol
I I I 1 if the sense light was on, or to 21
I I I if the sense light was off. I
~----------------------+-----------------------+--i
jDump storage on the CALL DUMP (~1 ,£1 ,f1 , I~ and £ are variables that indicate thet
joutput data set and ••. ,~.~nrfn>I limits of storage to be dumped.I
!terminate execution I (Either ~ or ~ rr~y be the upper orj
I I lower limits of storage, but both mustj
I I be in the same program or subprogram!
I I or in COMMON.> I
I If indicates the dump format and may bel
I I one of the following: I
I I 0 - hexadecimal I
I I 4 - integer I
I I 5 - real I
I I 6 - double precision I
~----------------------+---------------------~--i
!Dump storage on the !CALL PDUMP <~1 ,£1 ,f1 , I~. £, and f are as defined above forl
toutput data set and l ····~nr~nrin>I DUMP. I
I continue execution I I I
~----------------------+-----------------------+------~-----~-------------------------i
jTest for divide check !CALL DVCHK<i> Ii is an integer variable that is set tot
!exception I I 1 if the divide-check indicator was)
I I I on, or to 2 if the indicator was off.I
I I I After testing, the divide-check indi-1
I I I ca tor is turned off. I
~----------------------+-----------------------+------~-----~-------------------------i
jTest for exponent ICALL OVERFL(j) Ii is an integer variable that is set toj
joverflow or underflow I I 1 if an exponent overflow condition!
I I I was the last to occur, to 2 if no I
I I I overflow condition exists, or to 3 if I
I I I an exponent underflow condition was I
I I I the last to occur. After testing, the I
I I I overflow indicator is turned off. I
~----------------------+-----------------------+--i
I Terminate execution I CALL EXIT I None I
L----------------------i-----------------------i--J

106

APPENDIX D: SAMPLE PROGRAMS

SAMPLE PROGRAM 1

The sample program (Figure 1). is designed to find all of the prime
nunlbers between 1 and 1000. A prime number is an integer that cannot be
evenly divided by any integer except itself and 1. Thus 1, 2, 3, 5, 7,
11,... are prime numbers. The number 9,, for example, is not a prime
number since it can evenly be divided by 3.

IBlt1 PORTRAH CadlDg Parm .-..1aa.s.A.

l'IOGRAM SAMPLE PROGRAM i PUNCHING
GRAPHIC l l l JPAGE 1 Of 1

flOGRAMMER DATE Il'~
INSTRUCTIONS

PUNCH l J 1 l
STATEMENT z FORTRAN STATEMENT

IDfNl'IRCATlON ,._, 8 S£GUENCE

~' 3. s ' p~ IM " "~ "M "ER 19 p~ ~~l ~M 17 ,. ,. " " "" ,.. " ,. ",.,. «>" .., "' .. ., .,. " ., 49 so " ., ;:i "'ss" 51,. 59 '°" ., "'J" ;; .. " ,. "n 1374 757177781'180

i I~ ~R~TE ~M~) _I I
8 F~RMATI 75~H F~LL WIN~ 16 LI S[!] ~F PR I~E NUM 81EI R~ ~R ,., i m 1110 ""/ l
119X,1H1/19X,1M2/19X,1H3~ -'- i I

1 1 1•5 I 1 I I

3 Ac! i i I I
I I

1 2 A:ai:, RTI (A) 1 I l j_ l l l
1 3 J ·A I T T

l T l i I
1 !ij DO 1 K= 3, ,2 l ·l _;_ ! l I : I

J
1 s La I/K1 I l I : I I j_ 11 I '..l i : I
1 I~ IF CL ~K -I [J1' 2,,ij.

! !

T
I_;_ T l ..:. T 11 ! I I

1 r1 NT IN UE ;
! j_ i i ~ i I j_ 1

'T. i '_;_ v

1 7 ~R I[g .(6 ,s1r l I' I : l I I 'l : .

Fll'J R~ ~_I (12~ j_
i 1 j_ ~l·l • J_ ..l: ! ' T·
I I I ..l' ii J_ ..l

2 I= I+2 l' i_l_ i . -'c I I~ . J_ i
I 11 i I. l J.

lfJ8 lit-[:l ~<ll'f?!-I 7,1ij. ,~ I ..l

lJ ~ I1T E {6' 1' ..:..
FQ ~ [T 1 H TP R~ G1R1AM ERj_R [QR l ! T I T

7 WR I1T E (16' 611 ...:.. ! i ! I J_ I I I l I .l. i i i_l_ I ! I

' F" Rj1 AT J. 3 1 H1 ['[H rs IS !HiEJ ~N1D1 PF nfE iPIRP~ R1AM) I 1 I' l i
I I I I

1 9 §_T QP i : j__ll I 1 I I :
I 1 I 'j I J. I ! _l i l' l l

..l EN,O, l. ''
l J. _._ 1 I . j
Ji _[_ i

I _j_ J. l I'

I 2 3 4 .5 •1 •9~ttn~u~~v•wm~~~~~~~a~~"~D~~»~a~~~GC44~'6C4~~~~~~"~~9"~MQ~~~~~~m~nn 7374757677717'1!1
•A c..dla., llM.&ecf9D .. 151,-cWng.......-m.IWtkwm

Figure 1. Sample Program 1

Appendix D: Sample Programs 107

SAMPLE PROGRAM 2

The n points <xi, Yi> are to be used to fit an m degree polynomial by
the least-squares method.

In order to obtain the coefficients a 0 , a 1 , ••• , am, it is necessary to
solve the normal equations:

where:

(1)

(2)

(m+l)

Woao + W.1.a1 +
W1 a 0 + W2 a 1 +

Wmao

Wo =

W1 =

W2

tiiL - ~ -+ .. lll +:1 1.

n

n
2; X·
i=l l.

n
2; x. 2

i=l
1

n
= 2; x.2m

i=l 1

+

+ Wmam = Zo
+ Wm+1am = Z1

+

Zo

Z1

Z2

W2mam 7__
.. lll

n
= 2; Y·

i=l
1

n
= 2; y.x.

i=l l., 1

n
2; y.x.2
i=l l.

1

n
= }; y.x.m

i=l l. 1

After the W's and Z's have been computed, the normal equations are
solved by the method of elimination which is illustrated by the
following solution of the normal equations for a second degree polynomi­
al Cm = 2).

The forward solution is as follows:

1. Divide equation (1) by W0 •

2. Multiply the equation resulting from step 1 by W1 and subtract from
equation C2).

3. Multiply the equation resulting from step 1 by W2 and subtract from
equation (3).

108

The resulting equations are:

(4) ao + b12a1 + b13a2 = b14

(5) b22a1 + b23a2 = b24

(6) b32a1 + b33a2 = b34_

where:

b12 = W1/Wo·, b:1..3 = W;a/Wo., bj_ = Zo/Wo

b22 = W2-b:i.2W:i. b23 = W3-b13W1 ,, b2 = Z1 -b:1.;4 W1

b32 = W3-bj_2W2 b33 = W4 -b13W2 b3 = Z2-b14W2

Steps 1 and 2 are repeated using equations (5) and (6),, with b 22 and b 32
instead of Wo and wj_. The resulting equations are:

where:

The backward solution is as follows:

from equation (8)

from equation (7)

from equation (4)

Figure 2 is a possible FORTRAN program for carrying out the
calculations for the case: n = 100, m :S 10. W0 ,, W:i., W2 , ••• , W2m are
stored in W(l), WC2), W(3),, ••• , W(2M+1>,, respectively. Z0 , Zi.., Z2 ,
••• , Zm are stored in Z Cl>, Z (2), Z (3), ••• ,, ZCM+l>, respectively.

Appendix D: Sample Programs 109

STATEMENT z
,..... 8 FORTRAN STATEMENT

l l
I 1

l L ~ .• J2J!M+ ii I I I J I 11 1 I I l I i I l I

Ls: = Ml+ 2' l I i I i I I I 1 I -'-

L! 1= ~+1i 1

I 1 , l I I I I l I !

5 ~ (iJ) I= 1(61.1 1 f I I i TT I I
! i

I I I 6 l (j[1=1 ,f .1 i I I : :: T i
j I!

i I
1 fT l

I Ii I! I l
! T P1 = 11. r1I 1 1 ~ n 1 1 T 1 I I

~1c o ·111:c 11u+ c n , T lJ_ l 1 1 1
.l ! DiO :13' J = 2' :Lj~ J_ I • ! l l I I j_ i l

P1 i=l i(iI)~P I l J_ I I 1 l ! i i I:
WC!Ji} I• _WC Ji} +P I ! ! i I _'._ J_ ; T i l : .

I 13 ZCJll :s: ~1CIJ.;)+[1L.{]I)*.P 1. 1 I I I I I I ! ! I

JI 1
i 1 i

I l Ji J I Il I I _i

l l ll l l

l
T

l
l l_ ..

J_. ii
T. I ..l I 1 I

Ii ll

i 1

I I T I I

l

I I
I I

I I I

1'

[I I IJ_

T T I

I ~ I I

I

I I J.

IDeNTIFICATION
SEQUENCE

. TI I

T:

T
I I

l
1 2 3 ' 5 6 7 I P IO II 12 IJ I• 15 16 17 II 19 20 21 Z2 23 2• 25 26 'Z'I 28 29 30 31 32 33 :M 35 36 3731 39 «I 41 '2 43 '4 45 '6 '1 41 #150 51 S2 53 .54 55 .56 ~ '9 5'9 60 61 6l 63 64 65 66 Iii '911170 7172 T.I 74 75 76 71 71 79 ID

Figure 2. Sample Program 2 lPart 1 of 2)

FTgure 2. Sample Program 2 C Part 2 of 2 >

110

PDRTllAH CadiDg Pmm

I l I l l I
I 1 I 1 I I l

l i I 1 ! ! ! l i ! i l I i i I T I I Tj _'_ ' I i I i I j_ J

i :

1 l
l l
! 1I

I I

i 1 i J!J 'Ii ill! I iii ii ;l !
1 1 I l i l 1: lII

I! I! 1: l ! i} Ii-'- ii iiii /l: liJ.Ui
-'-' Ti :I +·+, 1 1I 1- T1 I ii 1 ·11· 111 j_•

i l ·T T I J T I I l I l ! ; Ii I I T L
1

]
i j_ i i I j 1 i I ! i l I I I i ll I ; 1 l -i- : ! I i : I I I l TI;
1 ~' 'l 11i _;_1:1 T:,: 1I+ J.:lJ. ,:;: 11 .J.l 1

1 , T;,!!
1J: 1

I l ! : I i l l ! JI i I

-'- J: l l ,u1 1 111 :j_11 1,J: l ·: 11 l IT· 1J 1
1 2>•••• ••wn~~u~~vraw~~~~~~uv~~~~n"~~~w~~~~Q~•E4q•~~~~~~~~~~~~~Q~MMM~~m~nnnu~~nn~~

•Alftll>Cbd~fona.IBM.i.c11oaeal51, .. -kiitleb'~ i-thisbm

Figure 2. Sample Program 2 (Part 3 of 3)

The elements of the w array, except W(l), are set equal to zero.
W(l) is set equal to N. For each value of I, XI and YI are selected.
The powers of XI are computed and accumulated in the correct w counters.
The powers of XI are multiplied by YI., and the products are accumulated
in the correct z counters. In order to save machine time when the
object program is being run, the previously computed power of XI is used
when computing the next power of XI. Note the use of variables as index
parameters. By the time control has passed to statement 17, the
counters have been set as follows:

W(l) = N

N
W(2) = % XI

I=l

N
W(3) = % XI 2

I=l

N
WC2M+1) = % XI2M

!=1

N
z(l) = % YI

I=l

N
z(2) = % YIXI

I=l

N
z (3) = % YIXI 2

I=l

N
z (M+l) = % YIXIM

I=l

Appendix D: sample Programs 111

By the time control has passed to statement 23, the values of Wo1, W.1.,
.•• , W2 m+.1. have been placed in the storage locations corresponding to
columns 1 through M + 1, rows 1 through M + 1, of the B array, and the
values of Z0 , Z.1., ••• , Zm have been stored in the locations correspond­
ing to the column M + 2 of the B array. For example, for the
illustrative problem CM= 2), columns 1 through 4, rows 1 through 3, of
the B array would be set to the following computed values:

Zo

This matrix represents equations (1),
equations for M = 2.

(2), and (3), the normal

The forward solution, which results in equations (4), (7) ,, and (8) in
the illustrative problem, is carried out by statements 23 through 31.
By the time control has passed to statement 33, the coefficients of the
AI terms in the M + 1 equations which would be obtained in hand
calculations have replaced the contents of the locations corresponding
to columns 1 through M+l, rows 1 through M+l, of the B array, and the
constants on the right-hand side of the equations have replaced the
contents of the locations corresponding to column M+2., rows 1 through
M+l, of the B array. For the illustrative problem, columns 1 through 4,,
rows 1 through 3, of the B array would be set to the following computed
values:

1

0 1 C24

0 0

This matrix represents equations (4), (7),, and (8).

The backward solution, which results in equations (9), (10), and (11)
in the illustrative problem, is carried out by statements 33 through 40.
By the time control has passed to statement 41, which prints the values
of the A9 tenns, the values of the CM+l) *AI terms have been stored in
the M + 1 locations for the A array. For the illustrative problem, the
A array would contain the following computed values for a 21 a.1., and a 0 ,

respectively:

Location Contents

A{ 3)

A(2)

A(l)

The resulting values of the AI terms are then printed according to
the FORMAT specification in statement 2.

112

APPENDIX E: FORTRAN IV (G) DEBUG FACILITY

The IBM System/360 Operating System FORTRAN IV (G) Debug Facility is
a programming aid that enables the user to locate errors in a source
program. The debug facility provides for tracing the flow within a
program, tracing the flow between programs, displaying the values of
variables and arrays, and checking the validity of subscripts.

The FORTRAN IV debug facility consists of a DEBUG specification
statement, an AT debug packet identification statement, and three
executable statements. These statements, alone or in combination with
any FORTRAN IV source language statements, are used to state the desired
debugging operations for a single program unit in source language. (A
program unit is a single main program or a subprogram.)

The source deck arrangement consists of the source language state­
ments that comprise the program, followed by the DEBUG specification
statement, followed by the debug packets, followed by the END statement.

The statements that make up a program debugging operation must be
grouped in one 07 mor~ ~ebu~ packets. ~Sl.£«\~ket.J.~ 2~e?n2:~q 1 ~1 ~
AT debug packet 1dent1f 1cat1on statement and consists of one or more
~cutable debug facility statements, and/or FORTRAN IV source language

statements. A debug packet is terminated by either another debug packet
identification statement or the END statement of the program unit.

PROGRAMMING CONSIDERATIONS

The following precautions must be taken when setting up a debug
packet:

1. Any DO loops initiated within a debug packet must be wholly
contained within that packet.

2. Statement numbers within a debug packet must be unique. They must
be different from statement numbers within other debug packets and
within the program being debugged.

Appendix E: FORTRAN IV (G) Debug Facility 113

3. An error in a program should not be corrected with a debug packet;
when the debug packet is removed, the error remains in the program.

4. The following statements must not appear in a debug packet:

SUBROUTINE
FUNCTION
ENTRY
IMPLICIT
BLOCK DATA
statement function definition

5. The program being debugged must not transfer control to any
statement number defined in a debug pacKet; however, control may be
returned to any point in the program from a packet. In addition, a
debug packet may contain a RETURN, STOP, or CALL EXIT statement.

DEBUG FACILITY STATEMENTS

The specification statement (DEBUG) sets the conditions for operation
of the debug facility and designates debugging operations that apply to
the entire program unit <such as subscript checking). The debug packet
identification statement CAT) identifies the beginning of the debug
packet and the point in the program at which debugging is to begin. The
three executable statements (TRACE ON, TRACE OFF, and DISPLAY) designate
actions to be taken at specific points in the program. The following
text explains each debug facility statement and contains several
programming examples.

DEBUG SPECIFICATION STATEMENT

There must be one DEBUG statement for each program or subprogram to
be debugged, and it must immediately precede the first debug packet.

114

r--1
IGeneral Form I
~---------~--~
DEBUG option, •••• option I

I
Where: option may be any of the following: I

I
UNIT (a) I

- where ~ is an integer constant that represents a data setl
reference number. All debugging output is placed in this datal
set, called the debug output data set. If this option is not!
specified .• any d~bugging output is placed in the standard!
output data set. All unit definitions within an executable!
program must refer to the same unit. I

I
SUBCHK <!!~·· !!~u ••• '• !!n> I

where n is an array name. The validity of the subscripts usedl
with the named arrays is ?hecked by comparing the subscriptl
combination with the size of the array. If the subscriptl
exceeds its dimension bounds, a message is placed in the debugl
output data set. · Program execution continues, using thel
incorrect subscript. If the list of array names is omitted, I
all arrays in the program are checked for valid subscriptl
usage. If the entire option is omitted, no arrays are checkedl
for valid subscripts. I

I
TRACE I

This option must be in the DEBUG specification statement of I
each program or subprogram for which tracing is desired. If I
this option is omitted, there can be no display of programl
flow by statement number within this program. Even when thisl
option is used, a TRACE ON statement must appear in the first!
debug packet in which tracing is desired. I

I
INIT <m~, ID21•••1!!!n> I

where m is the name of a variable or an array that is to bel
displayed in the debug output data set only when the variable!
or the array values change. If m is a variable name, the namel
and value are displayed whenever the variable is assigned al
new value in either an assignment, a READ, or an assigned GOI
TO statement. If m is an array name, the changed element i~I
displayed.· If the list of names is omitted, a display occursl
whenever the value of a variable or an array element isl
changed. If the entire option is omitted, no display occursl
when values change. I

I
ISUBTRACE I
I This option specifies that the name of this program orl
I subprogram is to be displayed whenever it is entered. The)
I message RETURN is to be displayed whenever execution of thel
I subprogram is completed. I
L--J

The options in a DEBUG specification statement may be given in any
order and they must be separated by commas.

Appendix E: FORTRAN IV (G) Debug Facility 115

AT DEBUG PACKET IDENTIFICATION STATEMENT

The AT statement identifies the beginning of a debug packet and
indicates the point in the program at which debugging is to begin.
There must be one AT statement for each debug packet; there may be many
debug packets for one program or subprogram.

r--1
!General Form I
~--i
IAT statement number I
I I
!Where: statement number is an executable statement number in thel
I program or subprogram to be debugged. I
L--J

The debugging operations specified
performed prior to the execution of
statement number in the AT statement.

TRACE ON STATEMENT

within the debug packet are
the statement indicated by the

The TRACE ON statement initiates the display of program flow by
statement number. Each time a statement with an external statement
number is executed, a record of the statement number is made on the
debug output data set. This statement has no effect unless the TRACE
option was specified in the DEBUG specification statement.

r--1
!General Form I
~---i
!TRACE ON I
L------------------------~---J

For a given debug packet, the TRACE ON statement takes effect
immediately before the execution of the statement specified in the AT
statement; tracing continues until a TRACE OFF statement is encountered.
The TRACE ON stays in effect through any level of subprogram call or
return. However, if a TRACE ON statement is in effect and cont~ol is
given to a program in which the TRACE option was not specified, the
statement numbers in that program are not traced. Trace output is
placed in the debug output data set.

This statement may not appear as the conditional part of a logical IF
statement.

TRACE OFF STATEMENT

The TRACE OFF statement may appear anywhere within a debug packet and
stops the recording of program flow by statement number.

r--1
!General Form I
~---~--------------------------~
ITRACE OFF I
L--J

This statement may not appear as the conditional part of a logical IF
statement.

116

DISPLAY STATEMENT

The DISPLAY statement may appear anywhere within a debug packet and
causes data to be displayed in NAMELIST output format.

r--1
!General Form I
~-------------------------------------~-------------------------------1
!DISPLAY list j
I I
!Where: list is a series of variable or array names, separated byl
I commas. I
L--J

The DISPLAY statement eliminates the need for FORMAT or NAMELIST and
WRITE statements to display the results of a debugging operation. The
data is placed in the debug output data set.

The effect of a DISPLAY list statement is the same as the following
FORTRAN IV source language statements:

NAMELIST /name/list
WRITE (Q, name)~~

where:
name is the same in both statements. Note that subscripted
variables or dummy arguments may not appear in the list.

This statement may not appear as the conditional part of a logical IF
statement.

DEBUG PACKET PROGRAMMING EXAMPLES

The following examples show the use of a debug packet to test the
operation of a program.

Example 1:

INTEGER SOLON., GFAR., EWELL

10 SOLON = GFAR * SQRT (EWELL)
11 IF (SOLON) 40, 50, 60

DEBUG UNIT (3)
AT 11
DISPLAY GFAR, SOLON, EWELL
END

In example 1, the values of SOLON, GFAR, and EWELL are to be examined
as they were at the completion of the arithmetic operation in statemene
10. Therefore, the statement number entered in the AT statement is 11.

Appendix E: FORTRAN IV (G) Debug Facility 117

The debugging operation indicated is carried out just before execu­
tion of statement 11. If statement number 10 is entered in the AT
statement, the values of SOLON, GFAR, and EWELL are displayed as they
were before execution of statement 10.

Example 2:

DIMENSION STOCK(1000),0UT(1000)

DO 30 I = 1, 1000
25 STOCK (I) = STOCK (I) - OUT (I)
30 CONTINUE
35 A = B + C

DEBUG UNIT (3)
AT 35
DISPLAY STOCK
END

In example 2, all of the values of STOCK are to be displayed. When
statement 35 is encountered, the debugging operation designated in the
debug packet is executed. The value of STOCK at the completion of the
DO loop is displayed.

Note: If the AT statement indicated statement 25 as the point of
execution for the debugging operation, the value of STOCK is displayed
for each iteration of the DO loop.

Example 3:

10 A = 1. 5
12 L = 1
15 B = A + 1.5
20 DO 22 I = 1,5

22 CONTINUE
25 C = B + 3.16
30 D = C/2

STOP

DEBUG UNIT (3), TRACE
c DEBUG PACKET NUMBER 1

AT 10
TRACE ON

c DEBUG PACKET
AT 20
TRACE OFF
DO 35 I =

35 CONTINUE
TRACE ON

1,3

NUMBER 2

C DEBUG PACKET NUMBER 3
AT 30
TRACE OFF
END

118

When statement 10 is encountered, tracing begins as indicated by
debug packet 1. When statement 20 is encountered, tracing stops as
indicated by the TRACE OFF statement in debug packet 2 and no tracing
occurs during the execution of the statements within this packet.
Tracing begins again before leaving debug packet 2. When statement 30
is encountered, debug packet 3 is executed, and causes tracing to stop.

In this example, all trace information is placed in the data set
associated with data set reference number 3. This data set contains
trace information for the following statement numbers: 10, 12, 15, 20,
22, 22., 22., 22, 22., 25. Note that statement numbers 35 and 30 do- not
appear,.

Appendix E: FORTRAN IV (G) Debug Facility 119

APPENDIX F: FORTRAN IV FEATURES NOT IN BASIC FORTRAN IV

The following features in FORTRAN IV are not in Basic FORTRAN IV:

ASSIGN
BLOCK DATA
Labeled COMMON
COMPLEX
DATA
Debug Facility
More than three dimensions
Object-time dimensions
Object-time FORMAT specifications
Assigned GO TO
Logical IF
LOGICAL
PRINT b, list
PUNCH b, list
READ b; list
END and ERR parameters in a READ
Generalized Type statement (But note that DOUBLE PRECISION is

provided as an explicit type.)
IMPLICIT
Call by name
Literal as argument of CALL
ENTRY
RETURNi Ci not a blank)
NAMELIST _
PAUSE with literal
G, z, and L format codes
Complex, logical, literal, and hexadecimal constants
Generalized subscript form

The following in-line subprograms in FORTRAN IV are not
FORTRAN IV:

REAL INT
AIMAG AINT
DCMPLX IND INT
CMPLX
DCONJG
CONJG
HFIX
CABS
CDABS

The following out-of-line subprograms in FORTRAN IV are not
FORTRAN IV:

CEXP DARSIN
CD EXP ARCOS DAR COS
CLOG TAN DTAN
CD LOG COTAN DCOTAN
CSIN SINH DSINH
CDS IN COSH DCOSH
ccos ERF DERF
cocos
CSQRT ERFC DERFC
CDSQRT GAMMA DGAMMA
DATAN2 ALGAMMA DLGAMMA

120

in Basic

in Basic

APPENDIX G: FORTRAN IV FEATURES NOT IN USA FORTRAN IV

Direct Access Input/Output Statements
Double Exponentiation
END and ERR parameters in READ
ENTRY
Generalized subscripts
Hexadecimal constant
IMPLICIT
Initial data values in type statement
Length of variables as part of type specifications
Literal enclosed in apostrophes
Mixed mode expressions
More than 3 dimensions in an array
NAMELIST
PAUSE 'message'
PRINT
PUNCH
READ b,list
T and-Z format codes
RETURN i

Appendix G: FORTRAN IV Features Not In USA FORTRAN IV 121

&END statement 48

A format code 57
Actual arguments 84,YU
Adjustable dimensions 96
Arguments, in function or subroutine

subprograms 90
Arithmetic assignment statements 28
Arithmetic expressions

defined 20
order of computation 22

Arithmetic IF 34
Arithmetic operators 21
Arrays

arrangement of 19
dimension information 70
general 17
type specification 18

ASSIGN and Assigned GO TO 32
Assignment statements 28
Associated variable 63
AT debug packet identification 116

BACKSPACE statement 62
Basic FORTRAN IV 120
Basic real constant, definition 11
Blank common 76
Blank record 51
Blanks 9
BLOCK DATA subprogram 99
Bytes (storage locations> 71

CALL statement 89
Carriage control characters 51
Character set 100
Character string 13
Coding form 9
Coding statements 9
Comments 9
COMMON statement 75
compilers 8
COMPLEX statement 73
Complex value~

constants 12
in arithmetic assignment statement
in FORMAT statement 54
length specification 71
type specification 73

Computed GO TO 32
Constants 10
Continuation statements 9
CONTINUE statement 39
Control statements 31
conversion rules

in arithmetic assignment statements
in FORMAT statements 53-60

D format code 53
DATA initialization statement 69

BLOCK DATA subprogram 99
Data set reference number 42
Debug facility 113

28

30

DEBUG statement 115
DEFINE FILE statement
DIMENSION statement

62
70

Object-time dimensions 96
Direct access input/output statements 62

programming considerations 64
DISPLAY statement 117
DO statement 36

programming considerations 38
Double-precision number (see real numbers)
DOUBLE PRECISION statement 74
Dummy arguments 84,88,90

E format code 53
Elements of language 8
Embedded blanks 9
END FILE statement 61
END parameter in READ 44
END statement

in FUNCTION subprogram 87
in main program 41
in NAMELIST (&END) 48

ENTRY statement 93
Equivalence groups 80
EQUIVALENCE statement 79
ERR parameter in READ 44,65
Executable statement, definition 8
Explicit specification 17
Explicit specification statement 73
Exponentiation 22
Expressions

arithmetic 20
defined 20
logical 24

Extended range of DO 38
EXTERNAL statement 95

F format code 53
FIND statement 67
FORMAT statement

form of 50
purpose of 51
use at object time 60

Formatted READ statement 45
Formatted records 43
Formatted WRITE statement 46
FORTRAN coding form 9
FORTRAN-supplied subprograms 103
Function definition 83
FUnction reference 83
FUNCTION subprogram 85

G format code 54
GO TO statement

assigned 32
computed 32
unconditional 31

Group format specification 60

Index 123

H format code 58
Hexadecimal values

constants 13
transmitting 53

Hierarchy of operations

I format code
IF statement

arithmetic

52

34
logical 35

Implicit specification
IMPLICIT statement 71
Implied DO 42
Index 123
INIT option of DEBUG
Input/output statements
Integers

constants 10
I format code 52
length specification
magnitude 10

22

17

115
42

71

type specification 73
use in arithmetic assignment
statements 28

INTEGER statement
I/O list

defined
omitted

42
51

73

L format code 57
Labeled common 76
Language elements 8
Length specification 16
Library subprograms 103
Literal

constants 13
data in FORMAT statements

Logical assignment statements
Logical expressions 24
Logical IF statement 35
Logical operators 25
LOGICAL statement 73
Logical values

constants 12
type specification 73
use in arithmetic assignment
statements 28

use in logical expressions
Logical variables 16
Loop control 36

Mathematical subprograms
Mixed-mode expressions
Mode (see type)

NAMELIST statement 47
Nested DO loops 38
Numeric format codes 54

Object-time dimensions
Object-time format 60
Operators

124

arithmetic 21
logical 25
order of computation
relational 24

103
30

96

22

58
28

24

Order
of arithmetic computation 22
of common blocks 78
of equivalence groups 80
of logical expression computation
of source program statements 9

P scale factor 56
Parenthesis

in arithmetic expressions
in logical expressions 27
in FORMAT statement 51

PAUSE statement 40
Predefined specification 16
Primary

arithmetic 21
logical 24

PRINT b~ list 102
PRINT statement 102
Printer control characters 51
Program unit, definition 8
PUNCH b, list 101
PUNCH statement 101

Range Of DO
READ b, list
READ statement

36,38
101

direct access 65
sequential 44

Real numbers
constants 11
in D, E, and F format codes
length specification 71
magnitude 11
precision 11
type specification 73

22

53

26

use in arithmetic assignment statement
28

REAL statement 73
Record number 62
Records

formatted 43
length of 63
unformatted 43

Reference by location 92
Reference by value 91
Relational operators 24
RETURN statement

in FUNCTION subprogram 87
in main program 90
in SUBROUTINE subprogram 89

REWIND statement 61

Scale factor 56
Sequential input/output statements
Service subprograms 106
Size specification, array 18
Source program 100
Special characters 100
Specification statements 70
Statement

categories 8
function definitions 83
numbers 9
order 9
source 8

STOP statement 41
Storage locations (bytes) 71

44

SUBCHK option Of DEBUG statement 115
Subprograms

arguments 90
BLOCK DATA 99
FUNCTION 82
general 82
multiple entry 92
naming 82

Subprogram statements 82
SUBROUTINE subprogram 87
subscripts 19
SUBTRACE option Of DEBUG statement 115
Symbolic names 14

T format code 59
Termination of program 41
TRACE OFF statement 116
TRACE ON statement 116
TRACE option of DEBUG statement 115
Truth values 12
Type specification

of arithmetic expressions 23
of arrays 18
of FUNCTION subprograms 82
of statement function definitions 82
of variables 16

Type statement 73
Type statements 70

Unconditional GO TO 31
Unformatted READ statement 45
Unformatted records 43
Unformatted WRITE statement 47
UNIT debug option 115
USA FORTRAN IV 7,121

Variables
arrangement in common 78
arrangement in equivalence groups
general 15
length specification 16
names 15
type specification 16

WRITE statement
direct access 66
sequential 46

X format code 59

Z format code 53

80

Index 125

C28-6515-6

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y.10601
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

