
Systems Reference Library

IBM System I 360 Transition Aids:

FORTRAN II Language Conversion Program

For the IBM 1401

Preliminary Specifications

This publication contains preliminary
information about the IBM FORTR~N II Lan­
guage Conversion Program (FORTR AN LCP) •
The FORTRAN LCP facilitates transition to
IBM System/360 by ietecting statements in
current-systems FORTRAN II source programs
that are incompatible wi th System/3~0 FOR­
TRAN IV, by converting these statements to
the proper System/360 format when p8ssible,
and by flagging sta t ements that cannot be
converted. Thi s publication is intended t o
assist programmers and other installation
personnel in planning for use of this
conversion program.

File No. 8360-25
Form C28 - 6560-0

The FORTRAN Language Conversion Program
(FORTRAN LCP) facilitates transition to IBM

System/360 by converting FORTRAN II source
programs written for IBM current-systems
FORTRAN II compilers into source programs
for an IBM System/360 FORTRAN compiler.

The preliminary information in this pub­
lication will aid the user in planning for
use of the FORTRAN LCP as part of his
complete plan for conversion to System/360.

PREREQUISITE LITERATURE

The reader
familiar with
language and
as it is used

of this publication should be
a current IBM FORTRAN II
with the FORTRAN IV language

with System/360.

The FORTRAN II language for a current
IBM system is described in the publication
FORTRAN II General Information Manual, Form
F28=8074, and one-of°t:he following publica­
tions:

[ORTRAN _§£~cifi~~i2!!~ and__Qeerating
Procedures; IBM 1401, Form C24-1455

IBM_l~FORTRAN, Form J24-1468
I~M_l~20 GOT~~~-Int~~p!etive Prog!~ming

~stem_;~_Refereg~~-~~anual, Form
C26-5594

IBM 1620 FORTRAN with FORMAT, Form
C26-5619

IBM 1620 FORTRAN II Programming System
Reference Manual, Form C26-5876

IBM 7070-Series Programming Systems;
FORTRAN, Form C28-6170

User's and Operator's Guide, IBM
7070-Series Programming System;
FORTRAN Operating Systems (FOSI , Form
C28-6369, which contains a listing of
features and restrictions added to
7070-Series FORTRAN to form 7070 FOS
FORTRAN

IBM 705 FORTRAN Programming System, Form
J28-6122

IBM 7080 Programming Systems; 7080 Proc-
essor; FORTRAN Language, Form
J28-6247 .

IBM 7090/7094 Programming Systems; FOR­
TRAN II Programming, Form C28-6054

The FORTRAN LCP permits the user to
specify that his source programs are to be
converted to one of three design levels of
System/360 FORTRAN IV -- Basic Programming
Support FORTRAN, Level E FORTRAN, or Level
H FORTRAN. The reader of this manual
should be familiar with the publication
that describes the level of System/360
FORTRAN to which he is converting his
source programs. The publications that
describe System/360 FORTRAN are:

IBM System/360 Basic Pr.Qg:ramming Support
FORTRAN, Form C28-6504

IBM--c5Perating System/360 FORTRAN IV (E
Level Subset), Form C28-6513

IBM__Q£erating System/360 FORTRAN IV,
Form C28-6515 (This is referred to as
Level H FORTRAN.)

The information in this manual is based
on System/360 FORTRAN IV specifications as
published in the following versions of the
above manuals:

This publication was prepared for production using an IBM computer to up­
date the text and to control the page and line format. Page impressions
for photo-offset printing were obtained from an IBM 1403 Printer using a
special print chain.

Copies of this and other IBM publications can be obtained through IBM
Branch Offices.

A form for readers' comments appears at the tack of this publication. Ad­
dress any additional comments concerning the contents of this publication
to: IBM Corporation, Programming Systems Publications, Department 637,
Neighborhood Road, Kingston, New York 12401

(£) 1965 by International Business Machines Corporation

Basic Programming Support FORTRAN, Form
C28-6504-1, with no technical news­
letters (Note that the name Special
Support FORTRAN has been changed to
Basic Support FORTRAN.)

Level E FORTRAN, Form C28-6513-0, with
no technical newsletters

Level H FORTRAN, Form C28-6515-2, with
no technical newsletters

ORGANIZATION OF THIS MANUAL

The body of the manual is divided into
six major sections with each section devot­
ed to a specific type of information.

The "Introduction" provides basic infor­
mation on the characteristics of the pro­
gram.

The section "General Description of the
Program" provides the reader with an over­
all view of the program and serves as an
introduction to the detailed sections that
follow.

The section "General Problems in Con­
verting to System/360 FORTRAN° contains
discussions of some of the major differen­
ces between current FORTRAN II and
System/360 FORTRAN IV. The section also
indicates control card options that can be
used to designate the manner in which the
FORTRAN LCP is to resolve some of these
differences.

The "Conversion Actions• section con­
tains a series of lists that show the
manner in which the LCP processes specific
source statements. The first list, enti­
tled "Conversion Actions for Current FOR-
TRAN II Compilers," contains discussions of
items that must be converted for all cur­
rent FORTRAN II compilers. Subsequent

lists contain items that apply specifically
to one current FORTRAN II compiler such as
1401 FORTRAN, 1410 FORTRAN, etc. A user
interested in a particular item need look
in only two lists -- the all-compilers list
and a specific-compiler list -- to obtain
information on that item.

The "Conversion Output and Messages•
section describes the output listing pro­
duced by the FORTRAN LCP and explains the
messages that appear in the listing.

The "Control Cards and Operating
Procedures" section lists the control
information that the user specifies in
control cards and describes the IBM 1401
configurations on which the FORTRAN LCP can
be used.

Two appendixes are provided. Appendix A
contains a sample converted program. The
sample shows the original source program
and the System/360 source program generated
by the FORTRAN LCP. Appendix B shows the
System/360 function names that are equiva­
lent to the function names used in current
FORTRAN II compilers.

NATURE OF FORTRAN INFORMATION IN THIS
MAlifUAL

The discussion of each FORTRAN item in
this manual is intended primarily to indi­
cate how that item is acted upon by the
FORTRAN LCP. To explain conversion
actions, many major differences between
current FORTRAN II and System/360 FORTRAN
IV are described. However, this manual
does not delineate all of the differences
between a current FORTRAN II compiler and
System/360 FORTRAN, nor does the manual
list all of the requirements of System/360
FORTRAN.

3

CONTENTS

INTRODUCTION • • • • •
Acceptable Languages
Output Languages
Minimum Machine Requirements
Terminology • • • • • •

Integer and Real . .
Single-Precision and

Double-Precision
Categories of Functions and

Subprograms • • • • • • • •

GENERAL DESCRIPTION OF THE PROGRAM
Characteristics of Source Programs to

be Converted • • • •
Processing Options • • • •
Program Actions • • • • • • •
Use of the Output Listing •

GENERAL PROBLEMS IN CONVERTING TO
SYSTEM/360 FORTRAN • • • • • • •

Data File Conversion Problem
Dual-Character-Code Problem and Options
Magnitude and Precision Problems

Magnitude of Constants and Variables
Precision of Calculations
Precision of Functions • • • • •

Function-Name Conflicts • • • • • • •
Variable-Name Conflicts and Options
Arrangement of Arrays in Storage

Integer and Real {Single-Precision)
Variables and Arrays

Double-Precision Variables and
Arrays • • • • · • • • • • • .• •

Complex Variables and Arrays • •
COMMON-EQUIVALENCE Interaction Problem

and Option • • • • • • • • • . • •
Nature of the Problem • • • • •
FORTRAN LCP Resolution of the

Problem • • • • • • • • • • •

CONVERSION ACTION LISTS
Organization of the Lists

4

s
s
s
s
6
6

6

6

7

7
7
8
9

10
10
10
11
11
11
11
11
12
13

13

14
16

18
18

19

21
21

Data Set Terminology • • • • • • • •
Form of Coding Examples • • • • • •

Conversion Actions for Current FORTRAN
II Compilers • • • • • • • • • • • • •

Conversion Actions for the 1401 FORTRAN
II Compiler •••••••••••••

Conversion Actions for the 1620 GOTRAN,
1620 FORTRAN With FORMAT, and 1620.
FORTRAN II Compilers • • • • • • • • •

Conversion Actions for the 1410 FORTRAN
II Compiler • • • • • • • • • • • • •

Conversion Action for the 7070-Series
and 7070 FOS FORTRAN Compilers • • • •

Conversion Actions for the 70S and 7080
FORTRAN Compilers • • • • • • • • • •

Conversion Actions for the 7090/7094
FORTRAN II Compiler • • • • •

Double-Precision Operations • • • •
Complex Operations • • • • • • • • •

Incompatibilities That Are Not
Recognized • • • • • • • • • •

CONVERSION
Conversion

Punched
Listing

Messages

OUTPUT AND MESSAGES
Output
Card Output • • • • •
Output •

CONTROL CARDS AND OPERATING PROCEDURES
Control Specifications

Preset Control Information •
Use of Control Cards •
Control Card Entries • • • • • •

System Creation • • • • • • • • •
Creating a System Card Deck
Creating a System Tape •

Processing Configurations •
Card-Oriented System • • • • •
Tape-Oriented System • •

APPENDIX A. SAMPLE CONVERSION •
APPENDIX B. FUNCTION-NAME CONVERSION

21
21

22

32

33

36

37

38

40
44
47

S1

S2
S2
S2
S2
S3

S4
S4
S4
S4
S4
SS
SS

·S6
S6
S6
S6

61
63

The FORTRAN II Language Conversion Pro­
gram (FORTRAN LCP) is one of a series of
programs provided by IBM to assist in
transition from a current IBM data process­
ing system to System/360.

The FORTRAN language provided for
Systerrv360 is the more powerful FORTRAN IV
language. The FORTRAN II languages are
sufficiently different from System/360 FOR­
TRAN IV to require some recoding to prepare
the earlier programs for compilation on
System/360.

The purpose of the FORTRAN LCP is to
reduce the time and effort required to
convert existing FORTRAN II programs into
System/360 FORTRAN IV programs.

To accomplish this, the FORTRAN LCP does
the following:

• Recognizes FORTRAN II statements that
are incompatible with System/360 FOR­
TRAN.

• When possible, translates incompatible
FORTRAN II statements into System/360
FORTRAN statements that have the same
meaning and effect.

• Detects and flags FORTRAN II statements
that have no System/360 FORTRAN equiva­
lent or cannot be translated into a
meaningful sequence of System/360 FOR­
TRAN statements.

• Issues messages indicating incompati­
bilities that were found and specifying
whether conversion action was taken.

• Produces an output listing that always
contains the converted FORTRAN II
statements and messages that document
the conversion actions. When
specified, the listing also contains
the original source statements.

• Produces a punched deck, when
specified, that contains the converted
program.

Guided by the messages in the listing, a
programmer can make any hand changes
required to make his program compatible
with System/360 FORTRAN IV.

ACCEPTABLE LANGUAGES

The FORTRAN LCP processes programs writ­
ten in any of the following current IBM
FORTRAN II languages:

IBM 1401 FORTRAN

IBM 1410 FORTRAN II
IBM 1620 GOTRAN
IBM 1620 FORTRAN With FORMAT
IBM 1620 FORTRAN II
IBM 7070-Series FORTRAN
IEM 7070 FOS FORTRAN
IBM 705 FORTRAN
IBM 7080 Processor FORTRAN
IBM 7090/7094 FORTRAN II

INTRODUCTION

Each of these languages is described in
one of the publications listed in the
Preface under "Prerequisite Literature."

In the remainder of this manual, the
phrases "current FORTRAN II compilers" and
"current FORTRAN II" are defined to mean
the languages listed above.

OUTPUT LANGUAGES

The FORTRAN LCP converts source programs
into any of the following System/360 FOR­
TRAN IV languages:

IBM System/360 Basic Programming Support
FORTRAN (Level D)

IBM Operating System/360 FORTRAN IV (E
Level Subset)

IBM Operating System/360 FORTRAN IV
(Level H)

In the remainder of this manual, the
term System/360 FORTRAN is used to refer
jointly to all three levels of System/360
FORTRAN IV. When referring to a specific
level of System/360 FORTRAN IV, one of the
following terms is used: Basic Support
FORTRAN, Level E FORTRAN, or Level H FOR­
TRAN.

MINIMUM MACHINE REQUIREMENTS

The FORTRAN LCP can be executed on an
IBM 1401 Data Processing System or an IBM
System/360 with the 1401 Compatibility Fea­
ture.

The minimum 1401 configuration required
for use of the program is as follows:

1. An IBM 1401 Data Processing System
with:
• 8,000 positions of core storage
• Advanced Programming Feature
• High-Low-Equal Compare Feature

Introduction 5

2. One IBM 1402 Card Read-Punch
3. One IBM 1403 Printer, Model 2
4. Three IBM 729 Magnetic Tape Units

(Models II, IV, V, or VI) or three IBM
7330 Magnetic Tape Units

This minimum configuration allows proc­
essing of one source program at a time from
the card reader or from tape.

An additional magnetic tape unit is
required for each of the following options:

1. Processing stacked source program
input from tape.

2. Processing with the FORTRAN LCP system
on tape instead of cards.

3. Recording of printed and/or punched
output on tape.

The minimum System/360 configuration
required for use of this program must be
equivalent to the 1401 configuration des­
cribed above. Information on equivalent
System/360 configurations can be found in
the publications IBM System/360 Model 30;
1401/1440/1460 Compatibility Feature, Form
A24-3255, and IBM System/360, Model 40;
Emulation of the IBM 1401/1460 Data Proc­
essing System, Form C28-6561.

Details on 1401 processing configu­
rations are provided in the section
•control Cards and Operating Procedures."

TERMINOLOGY

The following discussions concern terms
that are used throughout this manual.

INTEGER AND REAL

Many IBM FORTRAN II manuals use the
terms fixed-point and floating-point to
describe the types of constants, variables,
and functions. System/360 FORTRAN uses the
terms integer and real in place of fixed­
point and floating-point, respectively.

The terms integer and real are used
throughout this manual.

SINGLE-PRECISION AND DOUBLE-PRECISION

The terms single-precision and double­
precision are used in 7090/7094 FORTRAN II

6

to describe the precision of constants and
variables and to indicate the precision of
calculations.

In System/360 FORTRAN, length
specification and type (integer, real, com­
plex, or logical) determine the precision
of a value or a calculation.

The terms single-precision and double­
precision have been retained in this manual
to aid the programmer who is already
familiar with them. As applied to
System/360, the term single-precision is
used to describe a real value that occupies
four bytes, and the term double-precision
is used to describe a real value that
occupies eight bytes. The terms are also
used to describe calculations that result
in such values.

CATEGORIES OF FUNCTIONS AND SUBPROGRAMS

This manual uses the following categor­
ies for functions and subprograms:

• Arithmetic Statement Functions
• Built-In Functions
• Library Functions
• Function Subprograms
• Subroutine Subprograms

In some current FORTRAN II compilers,
there is no distinction between built-in
and library functions. In these compilers,
only the term library function is used. In
7090/7094 FORTRAN II, built-in functions
are compiled as "open" subroutines and
appear in the object program each time they
are referred to in the source program.
Library functions are compiled as "closed•
subroutines and appear only once in the
compiled program.

The reader should note that the terms
built-in function and library function do
not appear in System/360 FORTRAN manuals.
These functions have been incorporated into
System/360 FORTRAN as function subprograms.
In addition, the reader should note that
the term arithmetic statement function has
been shortened to statement function in
System/360 FORTRAN.

Thus, System/360 FORTRAN uses only the
following three categories for functions
and subprograms:

• Statement Functions
• Function Subprograms
• Subroutine Subprograms

The FORTRAN LCP is designed to accom­
plish a maximum amount of conversion. The
program includes a variety of options that
permit the user to apply it effectively to
a wide range of FORTRAN II conversion
needs.

Flexibility has been built into the
program in the following major areas:

• Ability
current
any of
TRAN.

to translate from any of ten
IBM FORTRAN II languages into
three levels of System/360 FOR-

• Provision for use of the program on a
variety of 1401 machine configurations.

• Construction of the program so that it
will bypass certain processing phases
when the functions performed by those
phases are not needed.

• Inclusion of messages that indicate all
conversion actions and clearly identify
statements that could not be converted.

• Provisions for both card and listing
output with the ability to suppress
card output.

These features of the program are swn­
mari zed in the paragraphs that follow.
When details on a topic are provided in
other sections of the manual, a reference
is provided to the appropriate section.

CHARACTERISTICS OF SOURCE PROGRAMS TO BE
CONVERTED

Each source program submitted to the
FORTRAN LCP must have been compiled suc­
cessfully on the user's current FORTRAN II
compiler.

The source program may consist of
punched cards or of 80-character unblocked
card images on tape.

It is strongly recommended that the
source programs be subjected to LCP conver­
sion before any hand changes are made.
This takes maximum advantage of the FORTRAN
LCP capabilities and precludes hand coding
errors that might cause erroneous conver­
sion.

If any hand changes are made prior to
conversion, these changes must not make the
program unsuitable for compilation on the
current IBM compiler for which the program
was written originally.

GENERAL DESCRIPTION OF THE PROGRAM

The source program may contain current­
moni tor or FORTRAN-compiler control cards
and non-FORTRAN statements. The manner in
which the FORTRAN LCP treats these control
cards and statements is explained in the
following paragraphs.

• Current-Monitor and Current-Compiler
Control Cards: No attempt is made to
convert these cards into System/360
control cards. These control cards are
merely reproduced in the source program
listing. The cards are not included in
the punched output.

• Non-FORTRAN Statements: The FORTRAN LCP
makes no attempt to convert portions of
a FORTRAN program that are written in
another language. These statements are
reproduced in the source program list­
ing. If specified, non-FORTRAN state­
ments are also punched. The user is
responsible for recoding and reassem­
bling non-FORTRAN routines.

The user is cautioned that each FORTRAN
program and subprogram is converted separ­
ately. This requires that the user provide
a sepaxate LCP couLrol caret deck for each
program and subprogram. Because each pro­
gram is converted separately, there is no
cross-checking between a subprogram and a
calling program.

PROCESSING OPTIONS

Conversion can be executed on a variety
of 1401 configurations, depending on avai­
lable equipment and the user's preferences.
Details on processing configurations are
provided in the section "Control Cards and
Operating Procedures."

The input options are as follows:

• System Input Options: The FORTRAN LCP
system can be loaded from the card
reader or from a magnetic tape unit.

• Source-Program Input Options: The
source program to be converted can be
read from either the card reader or a
magnetic tape unit.

When both the FORTRAN LCP and the source
program are on cards, only one source
program at a time can be converted. Howev­
er, when a fourth tape unit is available,
stacked programs can be processed from tape
or from the card reader.

General Description of the Program 7

The output options are as follows:

• Listinq Output: The FORTRAN LCP always
provides a listing of the converted
program. A listing of the original
source program is optional and is pro­
vided only if specified by the user.

• Punched Card Output: The user can spec­
ify that the converted program is to be
punched into cards. If desired, non­
FORTRAN statements will be punched and
separated from converted FORTRAN
statements.

Options are available to record punched
and/or printed output on magnetic tape. If
both forms of output are to be on tape,
they will be recorded on the same tape.

PROGRAM ACTIONS

The FORTRAN LCP takes one of four types
of action when it recognizes an incompati­
ble source statement. Each type of action
is discussed in the following paragraphs.

1. Full Conversion: .When possible, the
FORTRAN LCP converts an incompatible state­
ment into the appropriate form for
System/360 FORTRAN. A message in the out­
put listing indicates that the statement
has been converted.

For example, System/360 FORTRAN requires
that READ and WRITE statements appear in
the FORTRAN IV format.

Thus, a FORTRAN II statement such as:
READ INPUT TAPE IN, 45, A, B, C

is converted to:
READ (IN,45)A,B,C

2. Conversion With Warning: In some
instances, the FORTRAN LCP converts an
incompatible statement to an acceptable
System/360 form, but issues a warning mes­
sage to indicate that the conversion might
produce undesirable execution results.

For example, in System/360 FORTRAN, a
single-precision real constant may contain
no more than seven digits.

When the FORTRAN LCP encounters a
single-precision real constant containing
more than seven digits, it adds E-exponent
notation, but does not truncate the con­
stant.

Thus, the statement:
x = 12345678.

is converted to:
X = 12345678.EO

8

In the output listing, the converted
statement is accompanied by a message indi­
cating that the statement may produce unde­
sirable results during execution of the
converted program. The warning is issued
because the constant may exceed the preci­
sion that can be accommodated in a single
System/360 machine word.

3. Warning of Possible Incompatibil­
ity: The format of a FORTRAN II statement
may be entirely acceptable to System/360
FORTRAN, but the effect of the statement in
System/360 FORTRAN may differ from its
effect on the computer for which it was
written.

For example, a FORMAT statement contain­
ing A-conversion may be acceptable to
System/360 but may not produce the same
results it did on a current IBM computer.

Specifically, assume the following cod­
ing is used in a 7090 FORTRAN II program to
read BCD information froro tape records:

DIMENSION NAME(2)

10 FORMAT (2A6)

READ INPUT TAPE IN, 10, NAME

When the READ statement is executed on a
7090, 12 BCD characters from symbolic tape
unit IN are read into two 7090 machine
words. (Each 7090 word holds six BCD
characters.)

However, on a System/360, the two
machine words reserved by the DIMENSION
statement will hold only 8 of the 12
characters. (Each System/360 word holds
four EBCDIC characters.) If the READ
statement were converted and executed on a
System/360, the first 2 characters on tape
would be skipped, 4 characters would be
read into NAME(1), 2 more characters would
be skipped, and 4 characters would be read
into NAME{2).

The FORTRAN LCP issues a warning message
for a statement (such as the FORMAT state­
ment above) when the statement might pro­
duce undesirable results on a System/360.

4. Incompatible Item, No Conversion: In
some instances, an incompatible statement
cannot be translated to an acceptable
System/360 form.

For example, Boolean statements in 7090
FORTRAN II cannot be converted because
System/360 FORTRAN does not manipulate Boo-

lean functions; instead, it implements log­
ical variables and expressions.

Because of this, the FORTRAN LCP
each Boolean statement with a message
eating that the statement was
converted.

USE OF THE OUTPUT LISTING

flags
indi­

not

The output listing produced by the FOR­
TRAN LCP always contains the converted
program statements and messages generated
during conversion. The listing may also
contain tables that indicate changes in
function names and variable names (see the
section "Conversion Output and Messages") •
At the user's option, the listing can also
contain the original source statements.

Two types of messages appear in the
converted program listing -- text messages
and numeric message codes. A text message
appears beside each statement that is con­
verted by the LCP, generated by the LCP, or
recognized as incompatible with System/360
FORTRAN. The numeric message codes (each
four digits long) are provided to indicate
the exact nature of a conversion action or
to flag incompatible items. These message
codes will be explained in a later version
of this reference manual.

Using the output listing, the programmer
can analyze conversion actions and deter­
mine whether any hand changes are required.
If hand changes are required, they can be
inserted into the converted output deck.
The deck is then ready for compilation on a
System/360 FORTRAN compiler.

General Description of the Program 9

GENERAL PROBLEMS IN CONVERTING TO SYSTEM/360 FORTRAN

Conversion to System/360 FORTRAN
involves consideration of several general
problems caused by differences in machine
characteristics and differences among indi­
vidual FORTRAN II compilers.

These general problems include dif feren­
ces in data file requirements, card codes,
precision of calculations, arrangement of
arrays, treatment of double-precision and
complex values, and variances in the manner
in which related COMMON and EQUIVALENCE
problems are handled.

The FORTRAN LCP provides a solution for
most of these differences. However, some
problems either exceed the scope of lan­
guage conversion, or are not subject to
independent logical analysis. In these
cases, the LCP signals the user that he
must resolve the problem by making hand
coding changes after conversion.

The discussions in this section are
intended to call attention to these general
problems and to indicate those problems for
which FORTRAN LCP provides a solution. For
certain problems, the user can specify in a
control card the manner in which the FOR­
TRAN LCP is to handle the problem. These
options are explained within the appropri­
ate discussions.

DATA FILE CONVERSION PROBLEM

Users who are converting programs for
System/360 will also be concerned with the
problem of data file conversion. Informa­
tion on this subject will be-provided at a
later time.

DUAL-CHARACTER-CODE PROBLEM AND OPTIONS

Two basic sets of graphics are associat­
ed with the Binary Coded Decimal Inter­
change Code (BCDIC) used on current IBM
computers. The two sets are the H set and
the A set. The H set is used in FORTRAN
programs.

In five cases, the card code used for a
character in the H set is the same as the
card code used for a different character in
the A set. The conflicting characters,
called dual characters in this manual, are:

10

H-Set A-Set
Character Character Card Code

+ & 12
= # 3-8

@ 4-8
) ll 12-4-8
(3 0-4-8

The card code used in System/360 is the
Extended Binary Coded Decimal Interchange
Code (EBCDIC) • In EBCDIC, the codes for
the H-set characters have been changed so
that each character has a separate and
distinct code.

The EBCDIC character and card codes are:

Character

+
&

@

)
< (replaces ll)

(
3

Card Code

12-6-8
12
6-8
3-8
5-8
4-8
11-5-8
12-4-8
12-5-8
0-4-8

System/360 requires
EBCDIC card code be used
H-set dual characters.

that
for

the
the

proper
former

FORTRAN LCP Options: The FORTRAN LCP
provides control card options that allow
the user to designate the type of code
contained in his source deck and the type
of code he wants punched in his output
deck. The code that is present in the
source program is designated in one control
card, and the desired output code is desig­
nated in another control card. (See the
section "Control Cards and Operating Proce­
dures.")

By using these control cards, the user
can specify one of four input/output combi­
nations for treatment of dual-character
codes, as follows:

• BCDIC input with BCDIC output
• BCDIC input with EBCDIC output
• EBCDIC input with BCDIC output
• EBCDIC input with EBCDIC output

MAGNITUDE AND PRECISION PROBLEMS

Differences in machine characteristics
and compiler specifications contribute to
potential conversion problems in the fol­
lowing FORTRAN areas:

• The magnitude of a constant or variable
in a FORTRAN II program may exceed the
limits of System/360 FORTRAN.

• The precision of System/360 FORTRAN
calculations may be either greater than
or less than precision of current FOR­
TRAN II calculations.

These problems are discussed in the
following paragraphs.

MAGNITUDE OF CONSTANTS AND VARIABLES

Each FORTRAN II compiler contains res­
trictions on the magnitude of constants and
variables.

In some cases, the permissible magnitude
for a current FORTRAN II compiler exceeds
the limits of System/360 FORTRAN. This may
cause differences in execution results. If
a constant or variable in a source program
exceeds System/3 60 limits 1 the user may
want to change the constant or modify his
program to make the magnitude compatible
with System/360.

The System/360
as follows:

Type Of
Constant or
Variable
Integer

Real

Double-Precision

limits on magnitude are

Limits on
Magnitude
231-1
(or approximately 109)
16-63 through 16 63 or 0
(or approximately 1075)
16-6 3 through 1663 or 0
(or approximately 1075)

PRECISION OF CALCULATIONS

The precision of a FORTRAN calculation
depends on the amount of core storage
provided to hold the fraction portion of a
real value. The greater the number of
machine character-positions or binary bits
provided for the fraction, the greater the
precision of the computed value will be.

The maximum precision that can be
achieved in a System/360 is less than the
precision that can be achieved in some
current IBM computers. This may cause

differences in results when the converted
program is executed on a System/360.

The System/360 limits on
of constants are as follows:

Type Of
Constant
Integer
Real

Double-Precision

Limits on
Precision
231-1
1 through
digits
1 through
digits

PRECISION OF FUNCTIONS

the precision

7 decimal

16 decimal

Some System/360 functions are more prec­
ise than the same FORTRAN II functions
because new algorithms have been developed
for real arguments. This may also cause
differences in results when a converted
program is executed on a System/360.

FUNCTION-NAME CONFLICTS

The names of FORTRAN functions provided
in System/360 FORTRAN differ from the names
for the same functions in current FORTRAN
II compilers.

Appendix B shows the System/360 function
names that are equivalent to function names
used in current FORTRAN II compilers. Note
that IBM-provided functions are classified
as function subprograms in System/360 FOR­
TRAN, whereas these functions were classi­
fied as built-in and library functions in
current FORTRAN II.

Conversion to System/360 Function Names:
The name of each IBM-provided function that
appears in a FORTRAN II source program is
changed to its proper System/360 name. For
example, the function name XABSF is con­
verted to IABS wherever it appears in the
source program.

Because the System/360 function names
are new, it is possible that a FORTRAN II
programmer used one of these names for a
function or subprogram that he wrote him­
self. This could produce a situation in
which a user-created function or subprogram
name would be the same as a System/360
function name. The FORTRAN LCP takes
action to prevent such name conflicts in
the converted program.

The possibility also exists that a user­
written function or subprogram name is the
same as a System/360 reserved word. The
FORTRAN LCP also prevents this type of

General Problems 11

conflict in a converted program. (Note
that there are no reserved words in
System/360 Level H FORTRAN. When
converting to this level, the FORTRAN LCP
does not have to check for conflicts with
reserved words.)

Prevention of Name Conflicts: To avoid
the above possibilities, the FORTRAN LCP
checks each user-written function or sub­
program name against a list of System/360
function names and reserved words. If a
match occurs, the user-written name is
replaced with an LCP substitution name. A
unique LCP substitution name is provided
for each source program function name that
could possibly conflict with a System/360
function name or reserved word. Therefore,
the same name is used to replace a particu­
lar conflicting name in all programs (and
subprograms) processed by the FORTRAN LCP.

Form of LCP Substitution Names: An LCP
substitution name is in one of the follow­
ing three forms:

FCxxP

LCxxP

SCxxP

(Used to replace specific real
function or subprogram names;-­
(Used to replace specific inte­

ger function or subprogram
names)
(Used to replace specific real
function or subprogram names)

The xx portion of the name consists of two
digits ranging from 01 to 99. (The fact
that two forms are provided for replacement
of real function and subprogram names has
no significance for the programmer; the two
forms are provided merely to facilitate
internal LCP processing.)

The user should note that the letter. D
or C is added to the front 'of the LCP
substitution name when the function or
subprogram is double-precision or complex,
respectively.

The insertion of an LCP substitution
name is illustrated in the example shown
below. Note that in the original coding,
AIMAG is the name of a user-written func­
tion subprogram. The problem results from
the fact that AIMAG is also the name of a
System/360 function.

Original:

Y=AIMAG (X)

Converted:

Y=FCO 1P (X)

The name FC01P is the LCP substitution
name that is used to replace AIMAG wherever
it appears in a source program.

12

Possible Substitution Name Problem:
User-created function and subprogram names
are also checked against the list of LCP
substitution names. If a match is
detected, the LCP issues a message to
indicate that the user-created name may
have to be changed by hand.

For example, assume the source program
contains the following statement in which
FC01P is a user-created function subprogram
name:

A=FC01P (B)

The function name FC01P need not be
changed if that name (which is also an LCP
substitution name) has not been inserted
into the program to replace a reference to
the function AIMAG, and the user's library
does not contain a function named AIMAG.

In extreme cases, the program might
contain a double conflict. For example,
assume that a source program contains the
following statement in which AIMAG and
FC01P are the names of user-created func­
tion subprograms:

X=AIMAG (Y) +FC01P (Z)

During conversion, AIMAG is replaced by
the LCP substitution name FC01P. The
statement than contains the same name for
two different function subprograms. The
converted statement appears as follows:

X=FC01P (Y) +FC01P (Z)

The FORTRAN LCP detects that the second
function name matches an LCP substitution
name and issues a warning message. The
user would have to change the second func­
tion name by hand to remove the conflict.

Note: Besides changing the name in the
source program, the user must also change
the name of the function in his library.

VARIABLE-NAME CONFLICTS AND OPTIONS

Two conditions can cause a variable name
in a source program to be invalid. Those
conditions are:

• The variable name is the same as a
System/360 function name or reserved
word, or

• The variable name is the same as an LCP
substitution name.

In either case, the FORTRAN LCP replaces
the conflicting variable name with a six­
character insert variable.

Form of Insert variables: There are two
forms of insert variables, as follows:

LCPxxx (Used to replace integer
variables)

FCPxxx (Used to replace real variables)

The xxx portion of both forms consists of
three digits. The first insert variable
required for a program contains the digits
000, and the count is increased by 1 for
each additional variable that is needed.

If a variable name already present in a
source program coincidentally matches a
potential insert variable, the source
program variable is left unchanged and the
conflicting insert variable is not used
during conversion of the program. For
example, if a source program coincidentally
contains the integer variable LCPOOO, the
first integer insert variable used during
the conversion will be LCP001.

As many as 15 integer variables and 15
real variables can conflict with potential
insert variables without affecting conver­
sion. If more than 15 of one type conflict
with potential insert variables, the con­
version is terminated. A message is issued
to indicate that the alphabetic p::>rtion of
the LCP insert variable must be changed.

Option to Change Insert Variables: The
FORTRAN LCP allows the user to change the
three alphabetic characters that will
appear in each type of insert variable. To
change the alphabetic characters to be used
in insert variables, the user enters three
alphabetic characters in a control card.
(See •control Card Entries• in the section
"Control Cards and Operating Procedures.")

Option to Replace Tape References: The
FORTRAN LCP also allows the user to specify
that a tape reference constant is to be
replaced by a variable name or another tape
constant. A tape constant is replaced by
entering the following two i terns in a
control card: (1) the tape constant as it
appears in the source program, and (2) the
variable name or tape constant that is to
replace that reference whenever it appears
in an input/output statement in the
program. The FORTRAN LCP stipulates that
when a tape constant is to be replaced by a
variable name, the variable name must begin
with one of the letters I through N.

For example, assume that the user wants
to replace references to Tape 6 with the
variable IOUT in a program he is converting
to System/360 Level H FORTRAN. By speci­
fying the replace option, the user could
cause the replacement action shown in the
following conversion.

Original:

WRITE OUTPUT TAPE 6, 120, G, H, I

Converted:

DATA IOUT /6/
WRITE (IOUT, 120) G, H, I

In specifying replacement of a tape
constant, the user causes the constant to
be changed every time it is encountered in
an input/output statement. The user can
specify that five different tape constants
are to be modified throughout the program.

ARRANGEMENT OF ARRAYS IN STORAGE

The manner in which arrays are placed in
storage varies among the current FORTRAN II
compilers. As a result, there are signifi­
cant differences between the arrangements
us.ed by some current compilers and the
arrangement used by System/360 FORTRAN com­
piler.

These differences are of little or no
importance to a programmer who uses only
FORTRAN coding to manipulate elements in an
array. However, the differences are very
significant to the programmer who uses
non-FORTRAN coding (Autocoder, for example)
to manipulate elements, or to the program­
mer who accesses only one part of a double­
precis ion or complex number.

INTEGER AND REAL (SINGLE-PRECISION}
VARIABLES AND ARRAYS

The various ways in which elements are
arranged in integer or real
(single-precision) arrays
in Figure 1.

are illustrated

Each compiler controls the placement and
manipulation of the elements according to
its own conventions. If a programmer uses
FORTRAN subscript no·tation and adheres to
compiler rules, the proper elements in an
array are used in computations.

However, if a programmer has used non­
FORTRAN coding to manipulate the elements,
he must be aware of the System/360 array
arrangement in order to properly recode the
non-FORTRAN portions of his program.

The differences between 7090/7094 arrays
and System/360 arrays are even
critical when manipulating elements
double-precision and complex arrays.
7090/7094 FORTRAN II compiler is the

more
in

The
only

General Problems 13

INTEGER AND SINGLE-PRECISION ARRAYS

1401, 1620, 7070 - Series, and 7070 FOS FORTRAN Il 705 and 7080 FORTRAN

DIMENSION A (2,3) DIMENSION A (2,3)

X + n 2,3
} Colomo 3

X + n 2,3

}·~2 • ' I 1,3 I 2,2
I

} Column 2

I
I 2,2 I 2, l
I

I

}·~1
I 1, 2 1,3
I I
I 2, 1

} Colomo 1 I 1,2
I I

Location X 1, 1 Location X 1, 1

Stored in ascending locations; Stored in ascending locations;
Column items are grouped together. Row items are grouped together.

1410 and 7090/7094 FORTRAN lI SYSTEM/360 FORTRAN (Levels D, E, and H)

DIMENSION A (2,3) DIMENSION A (2,3)

Location X + n 1, 1
} Colomo 1 x + 20 2,3

}Colomo 3 I (4 bytes
I 2, 1 per word) 1,3
I + I 1,2

} Colomo 2 I 2,2
} Colomo 2 I I I 2,2 1,2

I I
I 1,3

} Colomo 3
I 2, 1 }Colo~ 1 + I

x 2,3 Location X 1, 1

Stored in descending locations; Stored in ascending locations;
Column items are grouped together. Column items are grouped together.

Figure 1. Arrangement of Integer and Single-Precision Arrays in Storage

current FORTRAN II compiler to provide
double-precision and complex . computations.
Therefore; the following discussions apply
only to that compiler and the System/360
Level E and Level H compilers.

DOUBLE-PRECISION VARIABLES AND ARRAYS

Because of a difference in the machine­
word format of double-precision numbers,
the System/360 compilers unlike the
7090/7094 FORTRAN II compiler do not
allow ~ direct access to the least
significant portion of a double-precision
number.

Differences in Machine-Word Format of
Double-Precision Numbers: In the 7090/7094,

14

a double-precision number is stored inter­
nally as a pair of real numbers. One
36-bit word contains the most-significant
part, and another 36-bit word contains the
least-significant part. Each part has its
own characteristic and fraction. Both
parts of the number are used in double­
precision calculations, and it is possible
to manipulate either part of the number
independently.

In System/360, a double-precision number
is stored as an entity in one machine
double-word. The first byte of the double­
word contains the sign and the
characteristic; the other seven bytes con­
tain the fraction. The function SNGL can
be used to derive the most-significant
part. If the programmer desires the least­
signif icant part, he must code his own

DOUBLE - PRECISION ARRAYS

7090/7094 FORTRAN II SYSTEM/360 FORTRAN (Levels E and H)

D DIMENSION B (2,3) DOUBLE PRECISION B
DIMENSION B (2,3)

x + 11 1, 1 (ms)
Double Word

2, 1 (ms) (
.A l

1,2 (ms) x +40 2, 3 (Entity)
(4 bytes

2,2 (ms) per word) 1,3 (Entity)

+
1,3 (ms) I 2, 2 (Entity)

2,3 (ms) I 1,2 (Entity)

1, 1 (Is) (1,4) I 2, 1 (Entity)
I

2, 1 (Is) (2,4) Locotian X 1, 1 (Entity)

1,2 (Is) (1, 5)

2,2 (Is) (2,5)
Symbols:

'
1, 3 (Is) (1, 6)

ms = Most-Significont Part

Locotion X 2,3 (Is) (2,6)
Is =Least-Significant Part

Entity= lnseperable Parts

Figure 2. Arrangement of Double-Precision Arrays in Storage

routine to derive it from the double-word
entity.

This difference in double-precision
format means that a FORTRAN II statement
containing a reference to the least­
significant part of a double-precision
number cannot be translated into a meaning­
ful System/360 FORTRAN statement. Because
conversion is not possible, the FORTRAN LCP
generates a message to indicate the state­
ment must be changed by hand.

Arrangement of Double-Precision Arrays:
Figure 2 shows the arrangement of a double­
precision array in 7090/7094 FORTRAN II and
the arrangement of the same double­
precision array in System/360.

Notice that in the example of the
7090/7094 array, the six double-precision
numbers occupy 12 storage locations. The
six most-significant parts are followed by
the six least-significant parts.

This contrasts with the System/360
double-precision array in which the six
double-precision numbers are stored conse­
cutively as six double-word entities.

Input and Output of Double-Precision
Numbers: The combined format of double­
precision numbers in System/360 also
affects the manner in which double­
precision values are read into and written
out of storage.

In 7090/7094 FORTRAN II, each half of a
double-precision number must be read or
written separately. There is no provision
in the compiler for reading or writing a
double-precision quantity as a single
entity.

For example, to define and fill a
double-precision array the 7090/7094 pro­
grammer could use the statements:

D DIMENSION A (10)
READ TAPE 5, (A (I) , I=1, 20)

These statements assume that all 10 most­
significant parts of the double-precision
numbers are recorded on the input tape
first, followed by all 10 least-significant
parts of the numbers.

The READ statement would be invalid in
System/360 FORTRAN because the parts of a
double-precision number cannot be read

General Problems 15

separately. System/360 FORTRAN
that a double-precision number be
written as a single entity.

requires
read or

Consequently, when converting a
7090/7094 program to System/360 FORTRAN,
hand changes must be made to input-output
items in three areas: (1, The format of
double-precision input data must be changed
on its external medium; (2) FORMAT state­
ments must be changed; and (3) input/output
statements must be changed.

When the FORTRAN LCP encounters an
input/output statement that contains a ref­
erence to a double-precision variable or
array, it issues a message to indicate the
statement must be changed by hand. The
user is responsible for making hand changes
to FORMAT statements and for changing the
format of the input data itself.

COMPLEX VARIABLES AND ARRAYS

Both System/360 FORTRAN
FORTRAN II store the real
parts of complex variables
values.

and 7090/7094
and imaginary
as separate

Machine-Word Formats for Complex
Numbers: In the 7090/7094, a complex number
is stored internally as a pair of single­
precision numbers. One 36-bit word
contains the real part and another 36-bit
word contains the imaginary part. Either
part of the number can be manipulated
independently.

In a System/360, a complex number is
also stored as a pair of numbers. The real
part may occupy either one word or a
double-word. The imaginary part occupies
the same amount of storage as the corres­
ponding real part.

Nature of the Complex-Number Conversion
Problem

Two factors contribute to the conversion
problem associated with complex numbers.

One factor involves the different meth­
ods by which a 7090/7094 FORTRAN II pro­
grammer and a System/360 Level H FORTRAN
programmer accesses separate parts of a

16

complex number. The other factor is a
significant difference in the sequence in
which the compilers store the elements of a
complex array.

Accessing Separate Parts of a Complex
Number: In 7090/7094 FORTRAN II, entire
statements (not individual variable names
or arrays) are classified as complex. By
using the appropriate subscripts in a non­
complex statement, a FORTRAN programmer can
access either part of a complex number.

In System/360 FORTRAN, individual
variable names, arrays, and functions are
typed as complex. To secure the real or
imaginary part of a complex number, the
FORTRAN programmer must use the functions
REAL or AIMAG.

Arrangement of Complex Arrays: Figure 3
shows the arrangement of a complex array in
7090/7094 FORTRAN II and the arrangement of
the same array in System/360 Level H FOR­
TRAN.

The sequence of elements in a 7090/7094
complex array is similar to the sequence of
elements in a 7090/7094 double-precision
array, shown in Figure 2. In a complex
array, all of the real parts precede all of
the imaginary parts. This is similar to
the double-precision array in which all of
the most-significant parts precede all of
the least-significant parts.

The real and imaginary parts are
sequenced differently in a System/360 com­
plex array. In a System/360 array, the
real part of each complex number is fol­
lowed immediately by the imaginary part.

Because of the two factors discussed
above, references in a FORTRAN II program
to the separate parts of a complex number
would be invalid in System/360 Level H
FORTRAN unless conversion actions are taken
to make them valid.

FORTRAN LCP Actions for Complex Variables
and Arrays

The FORTRAN LCP handles the complex­
number conversion problem by doubling the
dimension of each complex variable and
array, and by treating each part of the
converted variable or array as a real
~~e.

COMPLEX ARRAYS

7090/7094 FORTRAN II SYSTEM/360 FORTRAN (Level H)

COMPLEX B
I DIMENSION B (2,3) DIMENSION B (2,3)

x + 11 1, 1 (real)

I
One Word Next Word

I
2, 1 (real) ~.-----'--I

I 1,2 (real) x + 40 2,3 (real) 2,3 (imog)

(4 bytes

I 2,2 (real) per word) 1, 3 (real) 1,3 (imog)

I 1,3 (real) t 2,2 (real) 2,2 (imog)
I

I 2,3(real) I 1,2 (real) 1,2 (imog)

I
1, 1 (imog) (1,4) I 2, 1 (real) 2, 1 (imog)

I I
I 2,l(imag) (2, 4) Location X 1, 1 (real) 1, 1 (imog)

I 1,2 (imog) (1,5)

I 2,2(imog) (2;'5)

I Symbols:

•
1,3(imog) (1,6)

real= Real Port
Location X 2,3 (imog) (2,6)

imog = lmog inory Port

Figure 3. Arrangement of Complex Arrays in Storage

By doubling the dimension of the
variable or array, the FORTRAN LCP causes
the System/360 compiler to provide the same
number of machine words for the array as
were provided by the 7090/7094 compiler.
This allows the elements in the array to be
stored and manipulated in a manner similar
to 7090/7094 FORTRAN II.

The significance of the dimension action
is illustrated in the following conversion
example:

Original:

I DIMENSION B (2, 3)

READ INPUT TAPE 5, 1 0, ((B (I , J) ,
I=1, 2) J=l, 6)

Converted:

DIMENSION B (2, 6)

READ (5,10) ({B(I,J) ,I=1,2) J=1,6)

In System/360, the converted DIMENSION
statement will create an array consisting
of 12 machine words, the same number of
words required for the complex array gener­
ated from the original statement in
7090/7094 FORTRAN II.

Except for conversion to FORTRAN IV for­
mat, the READ statement is unchanged. The
implied DO in the statement remains valid.
When the READ statement is executed on a
System/360, the elements are stored in the
sequence shown in Figure 4, which is the
same sequence as in the equivalent
7090/7094 array (see Figure 3) • Note also
that, by doubling the dimension of the
array, the FORTRAN LCP has made it possible
to read the data without changing the
format of the data on its external medium.

Thus, the LCP action ensures that ref­
erences to one part (real or imaginary) of
a complex variable within noncomplex state­
ments in the program remain valid. Such
references require no conversion.

Further details on conversion of
7090/7094 complex statements are provided
under the heading •complex Operations" in
the section "Conversion Actions for the
7090/7094 FORTRAN II Compiler.•

General Problems 17

System/360 Arroy

DIMENSION B (2,6)

x +44
(4 bytes
per word)

t
I
I
I
I
I
I
I
I
I
I
I

Location X

2,6(reol)

1,6 (reol)

2,5 (reol)

1,5 (reol)

2,4 (reol)

1,4 (reol)

2, 3 (reol)

1,3 (reol)

2,2(reol)

1,2 (real)

2, l (real)

l, l (real)

Contents After 7090/7094
Doto Hos Been Read

Imaginary Part of 2, 3

Imaginary Part of l, 3

Imaginary Part of 2, 2

Imaginary Part of l, 2

Imaginary Part of 2, l

Imaginary Part of l, l

Real Part of 2, 3

Real Part of 1,3

Real Part of 2, 2

Real Part of 1,2

Real Part of 2, !'

Real Part of l, l

Figure 4. System/360 Array Resuiting From
Converted DIMENSION Statement

COMMON-EQUIVALENCE INTERACTION PROBLEM AND
OPTION

Conversion to System/360 FORTRAN may
require resolution of the COMMON-
EQUIVALENCE interaction problem. This
problem results from the fact that some
FORTRAN II compilers give EQUIVALENCE
statements precedence over COMMON state­
ments in allocating COMMON storage. In
contrast, System/360 FORTRAN gives prece­
dence to the COMMON statements.

This difference can have serious effects
on ~he allocation of COMMON storage by
System/360 FORTRAN unless adjus;tments are
made to ensure that the COMMON area is
structured in the same way it was struc­
tured in FORTRAN II.

The FORTRAN II compilers that give
precedence to EQUIVALENCE statements are:

• 1410 FORTRAN II
• 7070-Series FORTRAN
• 7070 FOS FORTRAN
• 7090/7094 FORTRAN II

In converting from one of these FORTRAN
languages t.o System/360 FORTRAN, the user
must determine whether or not the equiva­
lencies specified in the FORTRAN II program
are to be preserved in the System/360
program.

18

The COMMON-EQUIVALENCE interaction prob­
lem is not involved in conversion from any
of the other FORTRAN II languages. The
1620 FORTRAN II compiler gives precedence
to COMMON statements. None of the remain­
ing FORTRAN II compilers provide both the
COMMON statement and the EQUIVALENCE state­
ment, and some provide neither.

The nature of the COMMON-EQUIVALENCE
interaction problem and the manner in which
the FORTRAN LCP resolves the problem are
discussed in the following text.

NATURE OF THE PROBLEM

In 1410, 7070-Series, 7070 FOS, and
7090/7094 FORTRAN II, EQUIVALENCE state­
ments take precedence over COMMON state­
ments in allocating COMMON storage. When
variables named in COMMON statements also
appear in EQUIVALENCE statements, the orai­
nary sequence of the variables in COMMON
storage is changed. Priority is given to
the variables in EQUIVALENCE statements in
the order in which they appear in the
EQUIVALENCE statements.

For example, the statements shown below
result in the indicated storage
allocations:

FORTRAN II

COMMONA,B
EQUIVALENCE (B,C)

Storage Allocation

I. B •••••• C
2. A

SYSTEM/360 FORTRAN

COMMON X,Y
EQUIVALENCE Y,Z

Storage Allocation

I. x
2. v z

Notice that although the variable A is
~entioned first in the COMMON statement,
FORTRAN II relegates that variable to the
second position in COMMON storage. Prece­
dence is given to the EQUIVALENCE statement
and the variable B and its equivalent C are
located in the first area.

In System/360 FORTRAN, however, the
order in which the variables are assigned
to COMMON storage is not affected by the
equivalencing. System/360 assigns COMMON
storage locations in the sequence in which
variables are encountered in COMMON state­
ments. Consequently, in the example above,
the variable X is assigned first and the
equivalenced variables Y and z are assigned
second.

The problem is further complicated when
an equivalenced variable also appears in a
DIMENSION statement.

FORTRAN II permits the ~irst variable
mentioned in a COMMON statement to be
equivalenced to a dimensioned variable even
though the equivalencing forces reposition­
ing of the first COMMON variable. An
example of this follows:

FORTRAN II

COMMON D
DIMENSION E(2)
EQUIVALENCE (D,E(2))

Storage Allocation

1. E(l)
2. E(2) ••.••• D

In giving precedence to the EQUIVALENCE
statement, FORTRAN II assigns the first
COMMON location to E(1), thus allowing D
and E(2) to share the second location.

This usage is not permitted in
System/360 FORTRAN. Because System/360
FORTRAN requires ~hat arrays be stored in
consecutive forward locations, a variable
may not be made equivalent to an element in
an array in such a way as to cause the
proposed array to extend beyond the begin­
ning of COMMON storage.

A third phase of the COMMON-EQUIVALENCE
interaction problem· is shown in the follow­
ing examp1e:

FORTRAN lI

COMMON F,G
DIMENSION F(2), H(3)
EQUIVALENCE (F(2), H)

Storage Allocation

1. F(l)
2. F(2) H(l)
3. H(2)
4. H(3)
5. G

SYSTEM/360 FORTRAN

COMMON U,V
DIMENSION U(2),W(3)
EQUIVALENCE (U(2),W)

Storage Allocation

1. U(l)
2. U(2) W(l)
3. V W(2)
4. W(3)

The statements in this example cause
FORTRAN II to leave a gap in COMMON storage
between the locations assigned to the vari­
ab1es · F(2) and G. The EQUIVALENCE state­
ment causes H(1), ·the first element in
array H, to share the second location in
COMMON storage with the variable F(2). Two
locations must be provided for the elements
H(2) and H(3). FORTRAN II assigns the
variable G to the fifth location, thus
avoiding any implied equivalence.

This treatment contrasts with System/360
FORTRAN in which the variable V is assigned
to the third location, thus creating an
implied equivalence .between the variable V
and the element W(2).

FORTRAN LCP RESOLUTION OF THE PROBLEM

The user can specify that the FORTRAN
LCP is to resolve the COMMON-EQUIVALENCE
interaction problem. If the user specifies
the reorder COMMON option, the FORTRAN LCP
generates new COMMON statements that will
cause the System/360 compiler to allocate
COMMON storage in the same way it was
assigned in FORTRAN II.

Optionally, the user can designate that
the LCP is to disregard the interaction
problem and allow the COMMON statement to
remain unchanged.

When the user specifies that the problem
is to be resolved, the three phases of the
problem are handled as shown in the exam­
ples below. The first three examples show
the manner in which the FORTRAN II coding
in the preceding examples would be convert­
ed.

EXAMPLE l

Original:

COMMON A,B
EQUIVALENCE (B,C)

Storage Al location

l. B C
2. A

EXAMPLE 2

Original:

COMMON D
DIMENSION E(2)
EQUIVALENCE (D,E(2))

Storage Allocation

1. E(l)
2. E(2) D

EXAMPLE 3

COMMON F,G
DIMENSION F(2),H(3)
EQUIVALENCE (F(2),H)

Stor11ge Al loc11tion

1. F(l)
2. F(2) H(l)
3. H(2)
4. H(3)
5. G

Converted:

EQUIVALENCE (B,C)
COMMON B,A

Storage Allocation

l. B C
2. A

Converted:

DIMENSION E(2)
EQUIVALENCE (D,E(2))
COMMON E

Stor11ge Alloc11tion

1. E(l)
2. E(2) D

Converted:

DIMENSION F(2),H(3)
EQUIVALENCE (F(2),H)
COMMON F,FCP000(2),G

Stor11ge Allocation

1. F(l)
2. F(2) H(l)
3. FCPOOO(l) H(2)
4. FCP000(2) H(3)
5. G

General Problems 19

In Example 3, a dimensioned insert vari­
able is created by the FORTRAN LCP and
added to the COMMON statement to ensure
that the System/360 compiler places the
variable G in the fifth location of COMMON
storage.

Note that internal FORTRAN LCP process­
ing normally causes the sequence of COMMON,
DIMENSION, and EQUIVALENCE statements to be
changed. In the converted program the
sequence is: DIMENSION, EQUIVALENCE, and
COMMON. This change has no effect upon
execution of the converted program. All
specification statements (except FORMAT
statements) are moved to the beginning of
the converted program.

Example 4 shows the resolution of a
combination of these problems.

In Example 4, the COMMON-EQUIVALENCE
interaction problem is resolved as follows:

1. The array name L is inserted as the
first variable in the COMMON statement
so that L(1) will occupy the first
location in COMMON storage. This per­
mits C(1) to be equivalent to L(2).

2. The positioning of array C now relies
on the position of array L and is
determined by the EQUIVALENCE state­
ment. Therefore, the array name C is
removed from the COMMON statement.

3. The insert variable FCPOOO is created
and placed in the COMMON statement to
force element K(1) into equivalency
with c (3) •

4. The array name K is inserted into the
COMMON statement to provide for con­
secutive assignment of COMMON storage
locations.

5. The variables B and A are placed at
the end of the COMMON statement
because they do not involve any equiv­
alencies.

20

EXAMPLE 4

Original FORTRAN ll Coding:

COMMON B,C,A
DIMENSION C(4),K(3),L(2)
EQUIVALENCE (C,L(2)),(C(3),K)

FORTRAN ll
Storage Allocation

System/360
Storage Al location

1. L(I) 1. B L(l)
2. L(2) C(l)
3. C(2)

2. C(l) L(2)
3. C(2)

4. K(l) C(3) 4. C(3) K(l)
5. K(2) C(4) 5. C(4) K(2)
6. K(3)
7. 8
B. A

6. A K(3)

Converted LCP Coding:

DIMENSION C(4),K(3), L(2)
EQUIVALENCE (C,L(2)),(C(3),K)
COMMON L,FCPOOO,K,B,A

System/360
Storage Allocation

1. L(l)
2. L(2) C(l)
3. FCPOOO C(2)
4. K(l) C(3)
5. K(2) C(4)
6. K(3)
7. 8
B. A

The Reorder COMMON Option: The FORTRAN
LCP provides a control-card option that
enables the user to specify whether or not
the COMMON-EQUIVALENCE problem is to be
resolved. This option is the reorder COM­
MON option. (See the section •control
Cards and Operating Procedures.•)

The lists in this section contain dis­
cussions of FORTRAN items that require
modification for System/360 FORTRAN.

The lists include items that are con­
verted by the FORTRAN LCP as well as items
that require hand conversion. For an item
that is converted by the FORTRAN LCP, the
discussion explains how the statement is
converted and provides a coding example to
illustrate the conversion. For an item
that cannot be converted, the discussion
indicates the reason the conversion cannot
be accomplished.

ORGANIZATION OF THE LISTS

The first conversion action list in this
section contains discussions of items and
statements that must be converted for all
current FORTRAN II compilers, or for all
compilers except those specifically noted.
When the discussion does not apply to a
compiler, the exception is noted by the
phrase "Not Applicable to ••• • at the
beginning of the text.

Subsequent lists in this section contain
discussions of items and statements that
apply to a specific FORTRAN II compiler,
i,e., 1401 FORTRAN, 1410 FORTRAN II, 1620
GOTRAN, etc.

Thus a FORTRAN II item that must be
converted is either discussed in the all­
compilers list or a specific-compiler list.
A user interested in the conversion action
for a particular FORTRAN II item should
scan the all-compilers list first. If he
fails to find the item there, he should
look in the list that applies to his
FORTRAN II compiler.

The FORTRAN items in each list are
arranged in the same sequence in which they
are discussed in the System/360 Level H
FORTRAN manual, Form C28-6515.

Within each list, individual items are
grouped in the following categories:

1. General Considerations
2. Elements of the Language (constants,

variables, and arrays)
3. Arithmetic and Logical Expressions
4. Control Statements (DO, GO TO, IF,

etc.)
5. Input/Output Statements (READ, WRITE,

FORMAT, etc.)

CONVERSION ACTION LISTS

6. Specification Statements
DIMENSION, and EQUIVALENCE)

7. Functions and Subprograms

The FORTRAN LCP does not recognize cer­
tain items and statements that are incompa­
tible with System/360 FORTRAN. These items
are discussed within the conversion action
lists. However, as an aid to the user,
these items are also summarized in a separ­
ate list entitled "Incompatibilities That
Are Not Recognized."

DATA SET TERMINOLOGY

The terms data set and data set ref­
erence number are used in the discussion of
input/output statements. In System/360
programming, the term data set refers to a
named collection of data. A data set may
reside on one or more input/output units.
A data set reference number refers to the
data set itself without regard to the
input/output unit (or units) on which the
data set resides.

FORM OF CODING EXAMPLES

Coding exampl~s are provided to illus­
trate the manner in which the FORTRAN LCP
modifies a statement.

The format of each coding example is:

Original:

FORTRAN CODING AS IT WOULD
APPEAR IN THE SOURCE PROGRAM

Converted:

CODING AS IT WOULD APPEAR
IN OUTPUT FROM THE FORTRAN LCP

The printing format of this manual
requires that some coding)statements be
continued on one or more subsequent lines.
These continuations are right-justified,
and no continuation indicators are used.
The reader should note that the continua­
tions as shown in the examples do not
reflect continuations produced by the FOR­
TRAN LCP. All continuation lines generated
by the FORTRAN LCP meet System/360 FORTRAN
continuation requirements.

Conversion Action Lists 21

CONVERSION ACTIONS FOR CURRENT FORTRAN II
COMPILERS

This list contains items that must be
converted for all current FORTRAN II com­
pilers, or for all compilers except those
cited in a "Not Applicable• statement.

General Considerations

CONTROL CARDS: The FORTRAN LCP does not
attempt to translate current-monitor or
FORTRAN-II-compiler control cards. These
cards are printed in the original source
program listing with messages to indicate
that they must be either removed or
replaced. These cards are not included in
converted punched output.

NON-FORTRAN STATEMENTS: The FORTRAN LCP
recognizes non-FORTRAN coding within source.
programs being converted. Some current
FORTRAN II compilers permit only subpro­
grams to be written in a non-FORTRAN lan­
guage while other current compilers permit
individual non-FORTRAN instructions to be
inserted among FORTRAN statements.

All non-FORTRAN statements are listed in
the source program listing. A message
appears with a single, non-FORTRAN state­
ment or with the first in a series of
non-FORTRAN statements to indicate that the
statements must be converted by hand.

The user can specify in a control card
that the non-FORTRAN statements are to be
punched. If punching of these statements
is specified, cards containing non-FORTRAN
statements are separated from converted
FORTRAN cards.

CONTINUATION CARDS: A converted FORTRAN
statement may be longer than the original
statement. If necessary, the FORTRAN LCP
generates continuation cards to complete
the statement.

System/360 FORTRAN permits a maximum of
19 continuation cards. If a converted
source statement requires more than 19
continuation cards, the FORTRAN LCP com­
pletes conversion of the statement but
issues a warning message in the output
listing.

BLANKS WITHIN WORDS: Some current FORTRAN
II compirers permit embedded blanks within
FORTRAN key words (such as READ, WRITE,
COMMON, GO TO, etc.) and within names
(such as variable names, arrays names,
subprogram names, etc.).

22

The requirements differ for the three
levels of System/360 FORTRAN, as follows:

Basic Support and Level E: Embedded
blanks are not permitted.

Level H: Embedded blanks are permitted.

When converting to any level of
System/360 FORTRAN, the FORTRAN LCP removes
embedded blanks from FORTRAN key words and
from names that appear in the program. No
messages are generated.

Original:

TO TAL=A+B

Converted:

TOTAL=A+B

CONDENSING OF OUTPUT STATEMENTS: The FOR­
TRAN LCP removes extraneous blanks from all
FORTRAN statements in the converted output
program. (Note, however, that blanks are
not removed from the literal portion of an
H-code specification.)

In condensing the statements, the LCP
follows the following conventions:

• One blank follows each FORTRAN key
word.

• If the key word that begins a statement
starts later than column 7, the key
word is moved to column 7.

• Blanks following a delimiter are
removed. The delimiters are:
+-*/),.(

• A blank appears before a delimiter only
when the delimiter follows a FORTRAN
key word.

• Column 73 is also a delimiter. Blanks
are inserted so that a name or constant
is never split between the end of one
coding line and the beginning of the
next continuation line.

One exception to these rules is the DO
statement in which a blank appears follow­
ing the statement number that specifies the
last statement in the range of the DO loop.
The b in the following DO statement shows
the location of that blank:

DO 22bI=1,9,2

The FORTRAN LCP does not generate messa­
ges when statements are merely condensed by
removing extraneous blanks. The following
example illustrates the condensing of a
statement.

Original:

ROOT1 = (-B + SQRT ((B * B) - 4.0 *
A* C)) / (2.0 * ~

Converted:

ROOT1= (-B+ SQRT ((B*B) -4. O*A*C)) / (2. O*A)

Elements of the Language

REAL CONSTANTS: Some current FORTRAN II
compilers allow a single-precision real
constant to contain more than seven decimal
digits.

In System/360 FORTRAN, a single­
precision real constant is limited to seven
decimal digits.

When a single-precision real constant
contains more than seven significant
digits, the FORTRAN LCP adds a decimal
exponent of EO, but does not truncate the
constant. A message in the output listing
indicates that the statement has been
converted.

Original:

x = 1234567891.

Converted:

X=1234567891.EO

Addition of the exponent notation of .EO
ensures that the System/360 FORTRAN compil­
er will compile the constant as a single­
precision constant (the E overrides the
number of digits). The System/360 compiler
retains the magnitude of the constant.
However, the System/360 compiler modifies
the constant if the number of digits
exceeds the precision that can be contained
in one System/360 machine word.

EXPONENT NOTATION: Some current FORTRAN II
compilers allow the digit 0 to be omitted
from decimal exponent notation.

System/360 FORTRAN requires that the
zero be included when the exponent is zero.

The FORTRAN LCP adds a 0 to the E or
D-exponent notation when the zero is
absent. A message in the output listing
indicates that the statement has been con­
verted.

Original:

D Y = 2.4E
X = 2.4E

Converted:

DOUBLE PRECISION Y
Y=2.4DO
X=2.4EO

VARIABLE NAMES: The FORTRAN LCP replaces
any variable name that is the same as (1) a
System/360 FORTRAN reserved word, (2) a
System/360 FORTRAN function name, or (3) an
LCP substitution name. The conflicting
variable name is replaced by an insert
variable created by the FORTRAN LCP.

The form of an insert variable is as
follows:

LCPxxx (for replacing integer variables)
FCPxxx (for repla~ing real variaules)

The xxx portion represents three digits
varying from 000 through 999. The first
insert variable of either form contains 000
and the number is increased by 1 for each
additional variable of that form.

Note: In the coding examples in this
section, the names LCPOOO and FCPOOO are
used as insert variables for integer varia­
bles and real variables, respectively.

Arithmetic Expressions

HIERARCHY OF ARITHMETIC OPERATIONS: The
order in which arithmetic operations are
executed is important when computing inte~
ger values.

All current FORTRAN II compilers specify
that operations proceed from left to right
in an established order of precedence.
However, there are slight variations in the
manner in which a series of non­
parenthesized operations is implemented.

In System/360 FORTRAN, arithmetic
operations at the same hierarchy (except
exponentiation) are performed on a strict
left to right basis when parentheses are
not included to control the order of compu­
tation.

The FORTRAN LCP assumes that parentheses
were used in arithmetic expressions when
the order of computation was important. If
the parentheses were omitted, the user must
insert them by hand. The FORTRAN LCP does
not attempt to provide parentheses and does
not generate messages to indicate they are
lacking.

Conversion Actions for All Compilers 2.3

Contro1 Statements

ASSIGN STATEMENT: (Not App1icable to 1401
FORTRAN, 1620 GOTRAN, 1620 FORTRAN With
FORMAT, or 1620 FORTRAN II) This statement
is not provided in Systern/360 Basic Support
or Level E FORTRAN.

The FORTRAN LCP issues a message when it
encounters this statement in any source
program being converted to Basic Support or
Level E FORTRAN. The statement must be
converted by hand.

The ASSIGN statement is accepted by
Level H FORTRAN.

ASSIGNED GO TO STATEMENT: (Not Applicable
to 1401 FORTRAN, 1620 GOTRAN, 1620 FORTRAN
With FORMAT, or 1 62 0 FOR TRAN II) This
statement is not provided in System/360
Basic Support or Level E FORTRAN.

The FORTRAN LCP issues a message when it
encounters this statement in any program
being converted to Basic Support or Level E
FORTRAN.

The Assigned GO TO statement is accepted
by Level H FORTRAN.

DO STATEMENT: Some current FORTRAN II
compilers permit transfers into the range
of a DO loop. The restrictions on such
transfers vary among the compilers.

Systern/360 FORTRAN allows transfer into
the range of a DO loop under only one
condition. If a transfer was made out of
the range of the innermost DO loop in a
nest of DOs, transfer can be made back into
that innermost DO providing none of the
indexing parameters have been changed by
statements outside the range of the DO.

If the source program contains a trans­
fer into a DO loop under any condition
except that cited above, the user is
responsible for changing the program. The
FORTRAN LCP does not generate a message
when the source program contains an illegal
transfer into a DO loop.

MACHINE INDICATOR STATEMENTS: (Not
cable to 1 620 GOTRAN) All current
II compilers except 1620 GOTRAN
statements that set or test machine
tors such as sense lights, overflow
tors, and divide-check indicators.

Appli­
FORTRAN
contain
indica­
indica-

System/360 FORTRAN provides subroutine
subprograms that simulate these tests.
These subroutines are ref erred to by using
CALL statements.

The FORTRAN LCP converts an instruction

24

to turn a sense light on or off into a CALL
SLITE(i) statement.

Original:

100 SENSE LIGHT 3

Converted:

100 CALL SLITE(3)

A source program statement that tests a
sense light or indicator is converted to a
CALL statement followed by a computed GO TO
statement. Insert variables are generated
to provide a location to which the subrou­
tine can return a value to reflect the
status of the indicator.

Original:

110 IF (SENSE LIGHT 2) 111 , 112
120 IF DIVIDE CHECK 121,122
130 IF ACCUMULATOR OVERFLOW 131,132
140 IF QUOTIENT OVERFLOW 141,142

Converted:

110 CALL SLITET (2,LCPOOO)
GO TO (111,11~ ,LCPOOO

120 CALL DVCHK(LCPOOO)
GO TO (121, 122) ,LCPOOO

130 CALL OVERFL(LCPOOO)
GO TO (131, 132, 132) ,LCPOOO

140 CALL OVERFL(LCPOOO)
GO TO (141, 142, 142) ,LCPOOO

Note that a third statement number is
generated in the GO TO statements related
to the accumulator overflow and quotient
overflow tests. In Systern/360 FORTRAN,
this is the statement to which transfer is
made if an underflow condition is detected.
Statements were not available in FORTRAN II
to test underflow conditions. The second
statement number in these GO TO statements
is the statement to which transfer is made
if no overflow has occurred. By duplica­
ting the no-overflow address, the FORTRAN
LCP will cause underflow conditions to be
ignored. If the user desires corrective
action to be taken for underflow
conditions, he must change the third state­
ment number and provide an appropriate
correction routine.

In all cases illustrated above, the
FORTRAN LCP generates messages to indicate
the statements have been converted.

Systern/360 FORTRAN has no equivalent for
a sense-switch statement. Thus, a state­
ment such as:

IF (SENSE SWITCH 5) 121,122

cannot be
System/360

translated into. a
FORTRAN statement.

meaningful
Whenever a

Table 1. Summary of Conversion Actions for Input/Output Statements

Format After LCP Conversion to:

Formot of
FORTRAN II Statement Basic Support FORTRAN Level E FORTRAN Level H FORTRAN

PRINTn, li'st WRITE (3,n)list WRITE (3,n)list
No conversion; Level H accepts
this FORTRAN II statement.

PUNCH n, list WRITE (2, n)I ist WRITE (2, n)I ist
No conversion; Level H accepts
this FORTRAN II statement.

READ n, list READ (1, n)list READ (1,n)list
No conversion; Level H accepts
this FORTRAN 1I statement.

READ INPUT TAPE i, n, list READ (i ,n)list READ (i,n)list READ (i,n)list

READ TAPE i, list READ (i)list READ (i)list READ (i)I ist

TYPE n, list WRITE (3, n)I ist WRITE (3,n)list PRINT n, list

WRITE OUTPUT TAPE i, n, list WRITE (i,n)list WRITE (i,n)list WRITE (i,n)list

WRITE TAPE i, list WRITE (i)list WRITE (i)I ist WRITE (i)list

Symbols:
i =a logical unit number in FORTRAN Il end a date set reference number in

System/360 FORTRAN.
n =a statement number of a FORMAT statement.

I isl =a I isl of variables ta which date is to be read or from which data is to be written.
1, 2, 3 =date set reference numbers.

Nate that date set reference numbers ere inserted by the LCP during conversion of the
PRINT, PUNCH, READ n, end TYPE statements •

.

sense switch statement is encountered in a
source program, the FORTRAN LCP generates a
message to indicate that the statement must
be changed by hand.

Input/Output Statements

Table summarizes LCP conversion
actions for input/output statements that
are available in all or most FORTRAN II
compilers. The manner in which each FOR­
TRAN II statement is converted is discussed
in detail in the paragraphs that follow.
For discussions of input/output statements
that do not appear in the table, the reader
should refer to the conversion action list
that contains items that apply specifically
to the compiler in which he is interested.

DATA SET REFERENCE CONVENTIONS: Operating
System/360 and Basic Programming Support
programs contain conventions pertaining to
standard input and output units.

Under these conventions, the following
data set reference numbers are associated
with the indicated system units:

Data Set
Reference Number

1
2

3

Associated Unit

System input unit
System output unit

(Punch output)
System output unit

(Print output)

The unit assignments to specific data
set reference numbers can be modified
through the use of control cards.

Conversion Actions for All Compilers 25

A source program submitted to the FOR­
TRAN LCP may already contain READ and WRITE
statements that refer to logical units 1,
2, and 3. In the converted program, these
become references to data sets 1, 2, and 3,
respectively.

In addition, during conversion of cer­
tain incompatible input/output statements
(such as PRINT, PUNCH, and TYPE) , the

FORTRAN LCP creates new input/output state­
ments that also contain references to the
data sets 1, 2, and 3.

Thus, conversion may produce situations
in which input/output statements that
referred to different units in a FORTRAN II
program will refer to the same unit in the
converted program.

If the user anticipates this problem, he
can use the replace tape reference option
to change tape references in READ and WRITE
statements, or he can check his converted
program and change any data set references
that are in conflict.

PRINT STATEMENT: The following FORTRAN II
format of the PRINT statement is not pro­
vided in System/360 Basic Support or Level
E FORTRAN:

PRINT n, list

where n is the number of a FORMAT statement
and list is a list of variables from which
the data is to be printed.

When converting to Basic Support or
Level E FORTRAN, the FORTRAN LCP converts a
PRINT statement into a WRITE statement.
The number 3 is inserted as the data set
reference number. A message in the output
listing indicates the statement has been
converted.

Original:

PRINT 10, A

Converted:

WRITE (3, 10) A

The format of the PRINT statement shown
above is valid in System/360 LEVEL H FOR­
TRAN and is not modified during conversion
to that level. On a System/360, the com­
piled PRINT statement causes output to be
written in the data set associated with
system output.

PUNCH STATEMENT: The following FORTRAN II
format of the PUNCH statement is not pro­
vided in System/360 Basic Support for Level
E FORTRAN:

PUNCH n, list

26

where n is the number of a FORMAT statement
and list is a list of variables from which
the data is to be punched.

When converting to Basic Support or
Level E FORTRAN, the FORTRAN LCP converts a
PUNCH statement into a WRITE statement.
The number 2 is inserted as the data set
reference number. A message in the output
listing indicates the statement has been
converted.

Original:

PUNCH 10, A

Converted:

WRITE (2, 1 0) A

The format of the PUNCH statement shown
above is valid in System/360 Level H FOR­
TRAN and is not modified during conversion
to that level. On a System/360, the com­
piled PUNCH statement causes output to be
written in the data set associated with
system output.

READ STATEMENT: Current FORTRAN II compil­
ers permit use of the following form of the
READ statement when input is to be read
from the card reader:

READ n, list

where n is the number of a FORMAT statement
and list is a list of varibles into which
the input data is to be read.

System/360 Basic Support and Level E
FORTRAN do not recognize the above form of
the READ statement. When converting to
either of these levels, the FORTRAN LCP
changes the format of the statement and
inserts the number 1 as the data set
reference number. A message in the output
listing indicates that the statement has
been converted.

Original:

READ 10, A

Converted:

READ (1 , 10) A

System/360 Level H FORTRAN
READ statement in the f orrn READ
On a System/360, the compiled
causes input to be read from the
associated with system input.

accepts a
n, list.
statement
data set

READ INPUT TAPE STATEMENT: (Not Applicable
to 1620 GOTRAN, 1620 FORTRAN With FORMAT,
or 1620 FORTRAN II) This statement is used
in current FORTRAN II to read data that was

recorded on magnetic tape in external nota­
tion. The format of the statement is:

READ INPUT TAPE i, n, list

where i designates the tape unit, g is the
number of a FORMAT statement, and list is a
list of variables into which the data is to
be read.

This form of the READ statement is not
provided in System/360 FORTRAN.

The FORTRAN LCP converts a READ INPUT
TAPE statement into the following form
which is accepted by System/360 FORTRAN:

READ (i,n) list

Note that in this form, i represents a
data set reference number instead of desig­
nating a tape unit. A message in the
output listing indicates that the statement
has been converted.

Original:

READ INPUT TAPE 7, 100, A, B, C

Converted:

READ (7,100)A,B,C

READ TAPE STATEMENT: (Not Applicable to
1620 GOTRAN, 1620 FORTRAN With FORMAT, or
1620 FORTRAN II) This statement is used in
current FORTRAN II to read data that was
recorded on magnetic tape in internal nota­
tion. The format of the statement is:

READ TAPE i, list

where i designates the tape unit and list
is a list of variables into which the data
is to be read.

In System/360 FORTRAN, the format of
this statement has been changed to:

READ (i) list

Note that in this form, i represents a
data set reference number instead of desig­
nating a tape unit.

The FORTRAN LCP converts a READ TAPE
statement into the proper System/360
format. A message in the output listing
indicates that the statement has been con­
verted.

Original:

READ TAPE 4, D, E, F

Converted:

READ (4) D,E,F

Data files written in internal notation
will require conversion before records in
those files can be processed on System/360.
Information on data file conversion will be
provided at a later time.

TYPE STATEMENT: (Not Applicable to 1401
FORTRAN, 1620 GOTRAN, 705 FORTRAN, or
7090/7094 FORTRAN II) The TYPE statement is
used in current FORTRAN II to write output
on t.he console typewriter. The format of
the statement is:

TYPE n, list

where n is the number of a FORMAT statement
and list is a list of variables from which
the data is to be typed.

This statement
System/360 FORTRAN.

is not provided in

When converting to System/360 Basic Sup­
port or Level E FORTRAN, the FORTRAN LCP
converts a TYPE statement into a WRITE
statement. The number 3 is inserted as the
data set reference number.

Original:

TYPE 10, X, Y, Z

Converted:

WRITE (3,10)X,Y,Z

When converting to Level H FORTRAN, the
FORTRAN LCP converts the TYPE statement
into a PRINT statement.

Original:

TYPE 10, X, Y, Z

Converted:

PRINT 10,X,Y,Z

In all cases, a message in the output
listing indicates that the statement has
been changed.

WRITE OUTPUT TAPE STATEMENT: (Not Applica­
ble to 1620 GOTRAN, 1620 FORTRAN With
FORMAT, or 1620 FORTRAN II) This statement
is used in current FORTRAN II to write data
on magnetic tape in external notation. The
format of the statement is:

WRITE OUTPUT TAPE i, n, list

where i designates the tape unit, g is the
number of a FORMAT statement, and lisb is a
list of variables from which the data is to
be written.

This form of the WRITE statement is not
provided in System/360 FORTRAN.

Conversion Actions for All Compilers 27

The FORTRAN LCP converts a WRITE OUTPUT
TAPE statement into the following form
which is accepted by System/360 FORTRAN:

WRITE (i,n) list

Note that in this form, i represents a
data set reference number instead of desig­
nating a tape unit. A message in the
output listing indicates that the statement
has been converted.

Original:

WRITE OUTPUT TAPE 5, 100, A, B, C

Converted:

WRITE (5,100)A,B,C

WRITE TAPE STATEMENT: (Not Applicable to
1620 GOTRAN, 1620 FORTRAN With FORMAT, or
1620 FORTRAN II) This statement is used in
current FORTRAN II to write data on tape in
internal notation. The format of the
statement is:

WRITE TAPE i, list

where i designates the tape unit and list
is a list of variables from which the data
is to be written.

In System/360 FORTRAN, the format of
this statement has been changed to:

WRITE (i) list

Note that in this form i represents a
data set reference number instead of desig­
nating a tape unit.

The FORTRAN LCP converts a WRITE TAPE
statement into the proper System/360
format. A message in the output listing
indicates that the statement has been con­
verted.

Original:

WRITE TAPE 6, D, E, F

Converted:

WRITE (6)D,E,F

INPUT AND OUTPUT OF ARRAYS: (Not Applica­
ble to 1620 GOTRAN or 1620 FORTRAN With
FORMAT) In a current FORTRAN II program,
the name of an array can appear in an
input/output statement before the array is
defined in a DIMENSION statement.

When the array name is used in an
input/output statement before it appears in
a DIMENSION statement, only the first ele­
ment in the array is read or written. When
the DIMENSION statement precedes use of the

28

array name in an input/output statement,
the entire array is read or written.

The FORTRAN LCP reorders the sequence of
statements in the source program so that
all specification statements (except FORMAT
statements) appear before the first execut­
able statement of the program. Thus, all
DIMENSION statements are moved to the
beginning of the program.

This change may produce a coding
sequence that specifies input or output of
an entire array when only the first element
is desired.

In reordering the specification state­
ments, the FORTRAN LCP does not check to
determine whether the reordering will
affect input/output references to arrays.
The user must check the converted output to
determine whether any hand coding changes
are required.

REPLACING TAPE REFERENCES: (Not Applicable
to 1620 GOTRAN, 1620 FORTRAN With FORMAT,
or 1620 FORTRAN II) The FORTRAN LCP pro­
vides a control-card option that enables
the user to replace a tape constant with a
variable name or another tape constant.
The tape constant is replaced wherever it
appears in an input/output statement.

To specify replacement, the tape con­
stant that appears in the source program
and the variable or constant that is to
replace it are entered in a control card.
Any variable name to be used as a tape
reference must begin with one of the let­
ters I through N.

The following paragraphs indicate the
manner in which replacement with a variable
name is implemented. In the examples, the
user has specified that each reference to
Tape 6 is to be replaced by the variable
!OUT.

When converting to Basic Support or
Level E FORTRAN, the input/output state­
ments associated with the tape unit are
modified and an arithmetic statement is
constructed to assign the proper value to
the variable name. The arithmetic state­
ment will precede the first executable
statement from the source program.

Original:

WRITE OUTPUT TAPE 6, 120, J, K, L

Converted:

IOUT=6

WRITE (IOUT,120)J,K,L

When converting to System/360 Level H
FORTRAN, replacement is implemented by
modifying each input/output statement asso­
ciated with Tape 6 and by creating a DATA
statement to assign the proper value to the
variable name.

Original:

WRITE OUTPUT TAPE 6, 120, G, H, I

Converted:

DATA ICUT /6/

WRITE (IOUT, 120) G, H, I

Messages in the output listing indicate
that the statements have been converted.

Details on specifying replacement of
tape references are provided in the section
"Control Cards and Operating Procedures."

FORMAT Statements

A-CONVERSION: (Not Applicable to 1620
GOTRAN or 1620 FORTRAN With FORMAT) FORMAT
statements containi"ng A-conversion may pro­
duce undesirable results in System/360 if
the A-conversion specifications are left
unchanged.

In current FORTRAN II, the basic field
length (that is, the amount of core storage
to be provided for a certain type of
variable) is either specified by the pro­
grammer, pre-established by the compiler,
or determined by the fix~d word-length of
the computer.

In System/360 FORTRAN, a length specifi­
cation (either implicit or explicit) deter­
mines the amount of core storage reserved
for each type of variable.

If the basic field length for a variable
in current FORTRAN II differs from the
length specification for that type of vari­
able in System/360 FORTRAN, the field may
be either too large or too small for the
number of characters to be read or written
using A-conversion specifications.

If the ~ in the specification nAw
exceeds the System/360 length
specification, characters will be lost when
the data is read. If the w is less than
the System/360 length specification, unde­
sired blanks may be created.

Because A-conversion specifications are
closely related to data format, the FORTRAN

LCP does not attempt to convert such speci­
fications. However, when the FORTRAN LCP
encounters an A-conversion specification in
the source program, it generates a message
to indicate that the statement should be
reviewed and hand changes made where neces­
sary.

CARRIAGE CONTROL CHARACTERS: (Not Applica­
ble to 1620 GOTRAN or 1620 FORTRAN II)
System/360 FORTRAN does not permit use of
the characters 2 through 9 or J through R
to control the printer carriage. However,
it does permit use of the following charac­
ters:

Character

Blank
0

Carriage Advance
Before Printing

Advance one line.
Advance two lines.

1
+

First line of next page.
No advance.

The FORTRAN LCP does not check the
validity of carriage control characters in
source-program statements. The user must
check his converted program to ensure that
the proper carriage control characters are
specified.

READING FORMAT SPECIFICATIONS: System/360
Basic Support and Level E FORTRAN do not
permit FORMAT specifications to be read
into storage during execution of the FOR­
TRAN program.

When converting to Basic Support or
Level E FORTRAN, the FORTRAN LCP issues a
warning message whenever it encounters an
input/output statement in which a variable
appears in the position that normally con­
tains a FORMAT statement number. A varia­
ble in this position indicates that the
input/output statement utilizes object-time
FORMAT information.

Object-time reading of FORMAT
tion is allowed in System/360
FORTRAN.

Specification Statements

informa­
Level H

ORDER OF SPECIFICATION STATEMENTS:
System/360 Basic Support and Level E FOR­
TRAN require that specification statements
(COMMON, DIMENSION, EQUIVALENCE, and Type

statements) precede the first executable
statement in the program.

To meet this requirement, the FORTRAN
LCP reorders statements so that specifi­
cation statements precede the first execut­
able statement in the program.

Conversion Actions for All Compilers 29

In addition, Basic Support and Level E
FORTRAN require that the dimension of an
array be provided the first time the array
name is used in the source program. The
FORTRAN LCP provides dimension information
for an array in the first specification
statement (Type, DIMENSION, or COMMON
statement) in which the array name appears
in the converted program.

Messages are provided in the output
listing.

Functions and Subprograms

TERMINAL F IN FUNCTION NAMES: System/360
FORTRAN does not require that the name of a
function end with an F.

The FORTRAN LCP removes the terminal F
from each library, built-in, and arithmetic
statement function name encountered in a
source program. This eliminates the possi­
bility of a seven-character name and also
makes the function name in the source
program match the name as it appears in the
user's library. A message in the output
listing indicates the statement has been
modified.

In the following
SINF is the name of an
function and ADFUNCF
user-written function.

Original:

conversion example,
IBM-provided library
is the name of a

X = Y + SINF (A) * ADFUNCF (Z **2)

Converted:

X=Y+SIN(A)*ADFUNC(Z**2)

CONFLICTING FUNCTION AND SUBPROGRAM NAMES:
The FORTRAN LCP detects any user-created
function or subprogram name that is the
same as a System/360 function name and
replaces it with an LCP substitution name.
(See the information under the heading
•Function-Name Conflicts• in the section
•General Problems in Converting to
System/360 FORTRAN.")

Whenever the FORTRAN LCP replaces a
function or subprogram name, it generates a
message to indicate that the statement has
been converted.

Original:

CALL AIMAG (A,B)

Converted:

CALL FC01P (A,B)

30

Because the names of IBM-provided func­
tions are different in System/360 FORTRAN
from the names used for the same functions
in FORTRAN II, the FORTRAN LCP replaces a
FORTRAN II function name with the proper
System/360 name. A message in the output
listing indicates the name has been
replaced.

Original:

X = Y + LOGF (Z)

Converted:

X=Y+ALOG (Z)

TYPE STATEMENTS FOR FUNCTION NAMES: (Not
applicable to 1620 GOTRAN, 1620 FORTRAN II,
and 7080 FORTRAN) The initial-letter con­
ventions for establishing the type (integer
or real} for user-created built-in,
library, and arithmetic statment functions
have been changed in System/360 FORTRAN.

Current FORTRAN II compilers designate X
as the only initial character that can be
used to establish that a function is an
integer function (I through N indicate real
functions) • In System/360 FORTRAN, the
initial characters I through N imply that
the function is an integer function; all
other initial letters (including X) imply
the function is real. (Note that
System/360 FORTRAN provides implicit and
explicit specification statements that may
be used to override the initial-letter
conventions in establishing the type of a
function.)

As indicated earlier, the FORTRAN LCP
removes the terminal F from all user­
created function names. In addition, the
LCP creates an explicit type statement for
user-created function names that start with
an x, or with I through N. The explicit
statement establishes the function as
integer or real, respectively.

Original:

J XTRAF (A,B)
Y = INTGRF (C)

Converted:

INTEGER XTRA
REAL INTGR
J=XTRA (A, B)
Y=INTGR (C)

Note: The rules for naming arithmetic
statement functions in 1620 FORTRAN II are
the same as those in System/360 FORTRAN.
Therefore, when converting from this lan­
guage, the FORTRAN LCP does not generate an
explicit type statement for arithmetic
statement fi,mctions. The same is true for

all functions in 7080 FORTRAN programs that
are named according to FORTRAN IV rules.

ARGUMENTS IN ARITHMETIC STATEMENT
FUNCTIONS: (Not Applicable to 1401
FORTRAN, 1620 GOTRAN, 1620 FORTRAN With
FORMAT, 7070-Series Basic FORTRAN, and 7070
FOS FORTRAN) In current FORTRAN II compil­
ers, there is no specified limit on the
number of variables that can appear as
dummy arguments in an arithmetic statement
function.

In System/360 FORTRAN, a maximum of 15
variables that appear in the expression of
an arithmetic statement function can be
used as arguments of the function.

The FORTRAN LCP issues a warning message
when it encounters an arithmetic statement
function in which more than 15 variables
are used as dummy arguments. The statement
must be converted by hand.

Conversion Actions for All Compilers 31

CONVERSION ACTIONS FOR THE 1401 FORTRAN II
COMPILER

This list contains conversion actions
that apply specifically to the 1401 FORTRAN
compiler. Items that apply to all current
compilers, including the 1401 compiler, can
be found in the list entitled "Conversion
Actions for Current FORTRAN II Compilers. 0

STATEMENTS CONTAINING VARIABLES WITH INSUF­
FICIENT SUBSCRIPTS: In 1401 FORTRAN, a
programmer can use a singly-subscripted
reference to a multiply-subscripted varia­
ble. An example of this is:

DIMENSION J (10, 10) ,K (5, 5)

J (1) =Y (1)

Such references
System/360 FORTRAN
statements) •

are invalid in
(except in EQUIVALENCE

When the FORTRAN LCP encounters a
singly-subscripted reference in a 1401 FOR­
TRAN program, it checks to determine wheth­
er the value of the single subscript is
greater than the value of the first sub­
script for the variable in the DINENSION
statement.

If the single subscript is less than or
equal to the first subscript in the DIMEN­
SION statement, the FORTRAN LCP appends
sufficient subscripts to make the number of
subscripts in the reference equal to the
number of subscripts in the DIMENSION
statement. Each appended subscript con­
sists of a 1. A message in the output
listing indicates that the statement has
been converted.

Original:

DIMENSION Y(3,3)
X=Y (2)

Converted:

DIME NS ION y (3 I 3)
X=Y (2, 1)

However, if the single subscript exceeds
the initial subscript in the DIMENSION
statement, the reference is left unchanged.
A warning message is issued to indicate
that the statement must be changed by hand.

For example, the following coding is
left unchanged:

32

DIMENSION Y (3, 3)
X=Y (8)

Subscripts are also appended to a non­
subscripted reference to a dimensioned
variable in an arithmetic or IF statement
when the variable is used as an expression
in that statement. Note, however, that
subscripts are not appended to a nonsub­
scripted array name that is passed as an
argument to a function or subprogram. Mes­
sages in the output listing indicate the
statements have been converted.

Original:

DIMENSION X (10, 10), Y (10, 10), Z (10, 10)
EQUIVALENCE (X(3) ,XX}
X (I} = Y (I} * Z - SUBF (Y} - COSF (Y (3) }

* SINF (Y**2}

Converted:

DIMENSION X(10,10} ,Y(10,10) ,Z(10,10)
EQUIVALENCE (X (3) ,XX}
x (I I 1) =Y (I, 1) *Z (1, 1) -SUB (Y) -cos (Y (3, 1))

*SIN(Y(1,1) **2)

Note that in the third line of converted
coding, a subscript has not been appended
to the nonsubscripted array name Y where it
is passed as an argument to the function
SUB. No subscript has been appended to
that reference because the function needs
only the starting location of the array.

INDEX IN A DO STATEMENT: In 1401 FORTRAN,
the index name in a DO statement can be the
same as a dimensioned integer variable that
appears in a statement outside the DO loop.
The index name is the ! in the following DO
statement format:

The following coding illustrates this
usage:

DIMENSION J(10,2)

DO 10 J=5, 100, 5
LL = J

10 PRINT 35, LL

END

System/360 FORTRAN does not permit the
index name in a DO statement to be the same
as a dimensioned variable that appears
outside the DO loop.

The FORTRAN LCP detects this violation
and issues a message to indicate the state­
ment must be changed by hand.

CONVERSION ACTIONS FOR THE 1620 GOTRAN,
1620 FORTRAN WITH FORMAT, AND 1620 FORTRAN
II COMPILERS

This list contains conversion items that
apply specifically to 1620 GOTRAN, 1620
FORTRAN With FORMAT, and 1620 FORTRAN II.
Items that apply to all current compilers,
including the 1620 compilers, can be found
in the list entitled •conversion Actions
for Current FORTRAN II Compilers."

An item that applies to only one of the
1620 compilers is marked by the statement
0 1620 FOTRAN Only", "1620 FORTRAN With
FORMAT Only", or H 1620 FORTRAN II Only" at
the beginning of the discussion.

Input/Output Statements

Table 2 summarizes LCP conversion
actions for specialized input/output state­
ments available in the 1620 GOTRAN and
FORTRAN compilers. The manner in which
each statement is converted is discussed in
detail in the paragraphs that follow. For
discussions of other 1620 input/output
statements, see "Input/Output Statements"
in the section •conversion Actions for
Current FORTRAN II Compilers."

ACCEPT STATEMENT: (1620 FORTRAN With FOR­
MAT and 1620 FORTRAN II Only) In the 1620
FORTRAN compilers, the ACCEPT statement is
used to accept input from the console
typewriter. The format of this statement
is:

ACCEPT n, list

Table 2. Summary of Conversion Actions for Specialized 1620 Input/Output Statements

Statement
Available in:

"' z c
~- r=I 0 ,_ " z Format After LCP Conversion to: z "" §

<(0 0 <(

"" u.. u.. "" Format of 1620 0 ,_ 0..C o!;;:
Statements ~o ~-'t= ~o Basic Support FORTRAN Level E FORTRAN Level H FORTRAN

-<!> - 3: -u..

ACCEPT n, list x x READ (1,n)list READ (1,n}list READ n, list

ACCEPT TAPE n, list x x READ (1,n)list READ (1,n)list READ n,list

PLOT (v,c) x No meaningful No meaningful No meaningful
conversion possible conversion possible conversion possible

PRINT, list x WRITE (ivar)list WRITE (ivar)list WRITE (ivar}list

PUNCH, list x WRITE (ivar)list WRITE (ivar)list WRITE (ivar)list

PUNCH TAPE n, list x x WRITE (2,n)list WRITE (2,n)list PUNCH n, list

READ, list x READ (ivar)l ist READ (ivar)list READ (ivar)l ist

Symbols:
n = a statement number of a FORMAT statement.

list= a I ist of variables to which data is to be read or from which data is to
be written.

ivar =an insert variable that represents a data set reference number.
1, 2 =data set reference numbers.

Note: See Table 1 for conversion af: PRINT n, list
PUNCH n, list
TYPE n, list

Conversion Actions for the 1620 Compilers 33

where n is the number of a FORMAT statement
and list is a list of variables containing
the data to be typed.

System/360 FORTRAN does not provide this
statement.

When converting to System/360 Basic Sup­
port or Level E FORTRAN, the FORTRAN LCP
converts an ACCEPT statement into a READ
statement that contains a data set ref­
erence number. The number 1 is inserted as
the data set reference number.

Original:

ACCEPT 10,A, X

Converted:

READ (1, 10) A, X

When converting to System/360 Level H
FORTRAN, the FORTRAN LCP converts the
ACCEPT statement into a READ statement in
which the input unit is implied. The input
will be read from the data set associated
with system input.

Original:

ACCEPT 10, A, X

Converted:

READ 10,A,X

In both cases, a message in the output
listing indicates the statement has been
converted.

ACCEPT TAPE STATEMENT: (1620 FORTRAN With
FORMAT and 1620 FORTRAN II Only) In the
1620 FORTRAN compilers, the ACCEPT TAPE
statement is used to read input from a
paper tape reader. The format of this
statement is:

ACCEPT TAPE n, list

where n is the number of a FORMAT statement
and list is a list of variables into which
the data is to be read.

System/360 FORTRAN does not provide this
statement.

When converting to System/360 Basic Sup­
port or Level E FORTRAN, the FORTRAN LCP
converts an ACCEPT TAPE statement into a
READ statement that contains a data set
reference number. The number 1 is inserted
as the data set reference number.

Original:

ACCEPT TAPE 50, Q, R, S

34

Converted:

READ (1, 50) Q,R, S

When converting to System/360 Level H
FORTRAN, the FORTRAN LCP converts an ACCEPT
TAPE statement to a READ statement in which
the input unit is implied. The input will
be read from the data set associated with
system input.

Original:

ACCEPT TAPE 60, T, U, V

Converted:

READ 60,T,U,V

In both cases, a message in the output
listing indicates the statement has been
converted.

PLOT STATEMENT: (1620 GOTRAN Only) In 1620
GOTRAN, the PLOT statement is used to plot
curves on the console typewriter. There is
no equivalent statement in System/360 FOR­
TRAN.

Whenever the FORTRAN LCP encounters this
statement, it issues a message to indicate
that the statement is invalid.

PRINT STATEMENT: (1620 GOTRAN Only) In
1620 GOTRAN, the PRINT statement is used to
type output data on the console typewriter.
The format of the statement is:

PRINT, list

where list is a list of variables from
which the data is to be transmitted.

System/360 does not recognize this form
of the PRINT statement.

The FORTRAN LCP converts the statement
to a WRITE statement and creates an insert
variable to represent the data set ref­
erence number. A message in the output
listing indicates the statement has been
converted.

Original:

PRINT, X, Y, Z

Converted:

WRITE (LCPOOO)X,Y,Z

PUNCH STATEMENT: (1620 GOTRAN Only) In
1620 GOTRAN, the PUNCH statement is used to
punch data into cards or paper tape. The
form of the statement is:

PUNCH, list

where list is a list of variables from
which the data is to be transmitted.

System/360 FORTRAN does not recognize
this form of the PUNCH statement.

The FORTRAN LCP converts the statement
to a WRITE statement and creates an insert
variable to represent the data set ref­
erence number. A message in the output
listing indicates that the statement has
been converted.

Original:

PUNCH, D, E, F

Converted:

WRITE (LCPOOO)D,E,F

PUNCH TAPE STATEMENT: (1620 FORTRAN With
FORMAT and 1620 FORTRAN II Only) In the
1620 FORTRAN compilers the PUNCH TAPE
statement is used to punch output on paper
tape. The format of this statement is:

PUNCH TAPE n,.list

where n is the number of a FORMAT statement
and list is a list of variables from which
the data is to be punched.

system/360 FORTRAN does not provide this
statement.

When converting to System/360 Basic Sup­
port or Level E FORTRAN, the FORTRAN LCP
converts a PUNCH TAPE statement to a WRITE
statement that contains a data set ref­
erence nurober. The number 2 is inser.ted as
the data set reference number.

Original:

PUNCH TAPE 10, X, Y

Converted:

WRITE (2, 10) X, Y

When converting to System/360 Level H
FORTRAN, the FORTRAN LCP converts a PUNCH
TAPE statement to a PdNCH statement in
which the output unit is implied. The
output is written in the data set associat­
ed with system output.

Original:

PUNCH TAPE 10, X, Y

Converted:

PUNCH 10,X,Y

READ STATEMENT: (1620 GOTRAN Only) In 1620
GOTRAN, the READ statement is used to
accept input from either punched cards,
punched tape, or the console typewriter.
The format of the statement is:

READ, list

where list is a list of variables into
which the input data is to be read.

System/360 FORTRAN does not recognize
the above form of the READ statement.

The FORTRAN LCP changes the form of the
statement and creates an insert variable to
represent the data set reference number. A
message in the output listing indicates
that the statement has been converted.

Original:

READ, A, B, C

Converted:

READ (LCPOOO)A,B,C

Conversion Actions for the 1620 Compilers 35

CONVERSION ACTIONS FOR THE 1410 FORTRAN II
COMPILER

This list contains conversion items that
apply specifically to the 1410 FORTRAN II
compiler. Other items that apply to the
1410 compiler can be found in the list
entitled •conversion Actions for Current
FORTRAN II Compilers.•

Elements of the Language

ORDER OF ELEMENTS IN ARRAYS: In 1410
FORTRAN, the elements in an array are
stored in descending storage locations.
(See Figure 1 in the section "Arrangement

of Arrays in Storage.") This contrasts with
System/360 FORTRAN in which the elements
are stored in ascending locations. (Note
that in both 1410 FORTRAN and System/360
FORTRAN, the first subscript is varied most
rapidly and the last subscript is varied
least rapidly.)

No conversion is
different ways in
store arrays. Both
proper element when
FORTRAN statements.

required because of the
which the two compilers
compilers supply the
subscripts are used in

However, if the user has employed non­
FORTRAN statements to manipulate individual
elements in an array, the locations
referred to in the non-FORTRAN statements
may be incorrect. In recoding non-FORTRAN
portions of his program, the user must be
careful to refer to the elements of an
array according to the locations in which
they are stored by the System/360 FORTRAN
compiler.

The
FORTRAN
message
issued.

FORTRAN LCP does not analyze non­
coding. Therefore, no warning
concerning this difference is

COMMON-EQUIVALENCE INTERACTION PROBLEM: In
1410 FORTRAN, EQUIVALENCE statements are
given precedence over COMMON statements in
determining the allocation of COMMON stor­
age.

This contrasts with System/360 FORTRAN
in which variables and arrays are assigned
to COMMON storage in the order in which
they appear in COMMON statements.

Because Systenv360 FORTRAN gives prece­
dence to COMMON statements, the manner in
which System/360 FORTRAN allocates COMMON
storage for a given set of COMMON and
EQUIVALENCE statements may differ signifi­
cantly from the manner in which COMMON
storage was allocated for those statements
by the 1410 FORTRAN compiler.

36

If the user specifies the reorder COMMON
option, the FORTRAN LCP resolves this prob­
lem by generating new COMMON statements
that will cause the System/360 compiler to
allocate storage in the same way it is
assigned by the 1410 FORTRAN compiler. A
message in the output listing indicates new
COMMON statements have been generated.

Further information on the COMMON­
EQUIVALENCE interaction problem is provided
in the section •General Problems in
Converting to System/360 FORTRAN. 0

Input/Output Statements

DIRECT ACCESS STATEMENTS: The FORTRAN LCP
does not convert any of the following 1410
FORTRAN direct access statements:

DEFINE FILE Statement
FIND Statement
FETCH Statement
RECORD Statement

When the FORTRAN LCP encounters any of
these statements in a source program, it
issues a message to indicate that the
statement must be changed by hand.

Functions and Subprograms

F CARDS: In 1410 FORTRAN, an F card is
required when the name of a function sub­
program or subroutine subprogram appears as
an argument in a CALL statement.

F cards are not used in System/360
FORTRAN. Instead, a function subprogram
name or a subroutine subprogram name that
is used as an argument in a CALL statement
must appear in an EXTERNAL statement in the
calling program.

The FORTRAN LCP generates an EXTERNAL
statement for each F card encountered in
the source program and places the EXTERNAL
statement among the specification state­
ments at the beginning of the output pro­
gram. A message in the output listing
indicates the statement has been converted.

Original:

F SIN, COS, FUNC

Converted:

EXTERNAL SIN,COS,FUNC

CONVERSION ACTION FOR THE 7070-SERIES AND
7070 FOS FORTRAN COMPILERS

This list contains conversion actions
that apply specifically to the 7070-Series
and 7070 FOS FORTRAN compilers. Other
items that apply to the 7070-Series and
7070 FOS FORTRAN compilers can be found in
the list entitled "Conversion Actions for
Current FORTRAN II Compilers."

H-LITERAL IN AN ARITHMETIC STATEMENT: In
the 7070 FORTRAN compilers, it is possible
to use an H-literal on the right side of
the equal sign in an arithmetic statement.
An example is:

WORD = 4H END

This usage is unacceptable in System/360
Basic Support and Level E FORTRAN. When
converting to either of these levels, the
FORTRAN LCP issues a message to indicate
the statement must be changed by hand.

Level H FORTRAN does not accept an
H-literal in an arithmetic statement. How­
·ever, this level does accept an H-literal
in a DATA statement.

When converting to Level H FORTRAN, the
FORTRAN LCP replaces the H-literal with an
insert variable and creates a DATA state­
ment to establish the value of the insert
variable. A warning message is issued to
indicate that the user should check for
incompatibilities between the size of the
literal and the length specification for
the variable to which the literal is equat­
ed.

Original:

WORD = 4H END

Converted:

DATA FCP000/4H END/
WORD=FCPOOO

COMMON-EQUIVALENCE INTERACTION PROBLEM:
(Not Applicable to 7070-Series Basic

FORTRAN) In 7070-Series Full FORTRAN and in
7070 FOS FORTRAN, EQUIVALENCE statements

are given precedence over COMMON statements
in determining the allocation of COMMON
storage.

This contrasts to Systern/360
which variables and arrays are
COMMON storage in the order in
appear in COMMON statements.

FORTRAN in
assigned to
which they

Because System/360 gives precedence to
COMMON statements, the manner in which
System/360 FORTRAN allocates COMMON storage
for a given set of COMMON and EQUIVALENCE
statements may differ significantly from
the manner in which COMMON storage is
allocated for these statements by either
7070 FORTRAN compiler.

If the user specifies the reorder COMMON
option, the FORTRAN LCP resolves this prob­
lem by generating new COMMON statements
that will cause the System/360 compiler to.
allocate storage in the same way it was
assigned by the 7070 FORTRAN compiler. A
message in the output listing indicates
that new COMMON statements have been gener­
ated.

Further information on the COMMON­
EQUIVALENCE interaction problem is provided
in the section "General Problems in
Converting to System/360 FORTRAN."

OVERFLOW INDICATOR TEST STATEMENTS: In the
7070 FORTRAN compilers, the IF ACCUMULATOR
OVERFLOW and IF QUOTIENT OVERFLOW state­
ments can be used to test integer and real
operations.

In System/360 FORTRAN, the subroutine
subprograms that simulate these tests apply
only to real operations.

Whenever either of these statements is
encountered in a 7070 program, the FORTRAN
LCP completes the conversion as indicated
under the heading "Machine Indicator
Statements• in the section "Conversion
Actions for Current FORTRAN II Compilers.•
However, in the case of the 7070 program,
the FORTRAN LCP issues a message with the
generated CALL statement. The statement
must be changed by hand if it is used to
test an integer operation.

Conversion Actions for the 7070 Compilers 37

CONVERSION ACTIONS FOR THE 705 AND 7080
FORTRAN COMPILERS

This list contains conversion items that
apply specifically to the 705 FORTRAN and
7080 Processor FORTRAN compilers. Other
items that apply to these compilers can be
found in the list entitled "Conversion
Actions for Current FORTRAN II Compilers."

An item that applies to the 705 compiler
or the 7080 compiler only is marked by the
statement "705 FORTRAN Only" or "7080 FOR­
TRAN Only" at the beginning of the discus­
sion.

Elements of the Language

LENGTH OF VARIABLES: (705 FORTRAN Only) In
705 FORTRAN, a variable name can contain as
many as ten characters.

System/360 FORTRAN limits a variable
name to six characters.

During FORTRAN LCP conversion, any vari­
able name in a 705 FORTRAN program that
exceeds six characters is truncated to six
characters by removing characters from the
right end of the name. A message in the
output listing indicates the statement has
been changed.

Original:

VARIABLE = A + CONSTANT

Converted:

VARIAB = A+CONSTA

The FORTRAN LCP does not check to deter­
mine whether a truncated variable name
matches another name in the program. The
user should check his converted program to
ensure that truncation did not create name
conflicts.

ARRANGEMENT OF ARRAYS: In 705 and 7080
FORTRAN, the elements in an array are
stored so that elements in the same row are
together; that is, the elements are stored
by varying the last subscript most rapidly
and varying the first subscript least
rapidly. (See Figure 1 in the section
"Arrangement of Arrays in Storage.")

This contrasts with System/360 FORTRAN
in which the elements in an array are
stored by varying the first subscript most
rapidly and the last subscript least rapid­
ly.

38

(Note that 705 FORTRAN, 7080 FORTRAN,
and System/360 FORTRAN all store the ele­
ments in ascending storage locations.)

No LCP conversion is required because of
the different ways in which the compilers
store arrays. The compilers supply the
proper elements when subscripts are used in
FORTRAN statements.

However, if the user has employed non­
FORTRAN statements to manipulate individual
el.ements in an array, the locations
referred to in the non-FORTRAN statements
may be incorrect.

In recoding the non-FORTRAN portions of
his program, the user must be careful to
refer to elements of an array according to
the locations in which they are stored by
the System/360 FORTRAN compiler.

The FORTRAN LCP does not analyze non­
FORTRAN coding. Therefore, no warning
message concerning this difference is
issued.

Control Statements

NEGATIVE INDEXING PARAMETERS IN A DO STATE­
MENT: (705 FORTRAN Only) In 705 FORTRAN,
it is possible to use a negative value for
the third indexing parameter. The third
indexing parameter is ~3 in the following
DO statement form:

Use of the negative parameter allowed the
programmer to decrement the value i instead
of incrementing it.

System/360 requires that the value
all indexing parameters be positive.

The FORTRAN LCP detects the use
negative constant as the m3 parameter.
parameter is left unchanged, but the
generates a message to indicate that
statement must be changed by hand.

of

of a
The
LCP
the

When the ~3 parameter has been specified
as a variable, the user should check to
ensure that the variable contains a posi­
tive value each time the DO loop is
entered.

Input/Output Statements

READ (0100) STATEMENT: (7080 FORTRAN Only)
In 7080 FORTRAN, a programmer can refer to
the card reader in a READ (i,n) list or

READ (i) list statement by designating
0100, either as a constant or a variable,
as the input unit. For example, the fol­
lowing statements would result in input
from the card reader:

J = 0100
READ (J) A, B
READ (0 1 0 0 , 1 0) C, D

This usage is unacceptable to System/360
FORTRAN.

The FORTRAN LCP does not recognize this
incompatibility. The statements can be
changed by using the replace tape reference
option provided by the LCP.

WRITE (0500) STATEMENT: (7080 FORTRAN
Only) In 7080 FORTRAN, a programmer can
refer to the console typewriter in a WRITE
(i,n) list or WRITE (i) list statement by
designating 0500, either as a constant or a
variable, as the output unit. For example,
the following statements would result in
output to the console typewriter:

I = 0500
WRITE (I) W, X
WRITE (0500,10) Y, Z

This usage is unacceptable to System/360
FORTRAN.

The FORTRAN LCP does not recognize
incompatibility. The statements can

this
be

changed by using the replace tape reference
option provided by the LCP.

Specification Statements

VARIABLE DIMENSIONS: (7080 FORTRAN Only)
In 7080 FORTRAN, integer variables can be
used in a DIMENSION statement to represent
the dimensions of an array. For example, a
programmer can specify an array as follows:

DIMENSION A (J,K/1000)

where 1000 specifies the maximum size of
the array. By using integer variables as
subscripts, the programmer can vary the
dimensions of an array during execution of
the program.

System/360 FORTRAN allows integer varia­
bles to be used as the dimensions of an
array only when the DIMENSION statement is
in a function subprogram or subroutine
subprogram, and the dimensions of the array
appear as arguments in a FUNCTION or SUB­
ROUTINE statement.

When the FORTRAN LCP encounters a DIMEN­
SION statement containing variable dimen­
sions, it issues a message to indicate that
the statement must be changed by hand.

Conversion Actions for the 705/7080 Compilers 39

CONVERSION ACTIONS FOR THE 7090/7094
FORTRAN II COMPILER

This list contains conversion items that
apply specifically to the 7090/7094 FORTRAN
II compiler. Other items that apply to the
7090/7094 FORTRAN II compiler can be found
in the list entitled "Conversion Actions
for Current FORTRAN II Compilers."

The organization of
varies somewhat from
the preceding lists.

this action list
the organization of

Items that are not specifically related
to double-precision or complex number oper­
ations are discussed first. These items
are arranged according to the type of
statement to which they are related. These
general items are followed by two separate
groups of items: (1) a group of items
related to double-precision operations, and
(2) a group of items related to complex

operations.

Background information on the problems
of double-precision and complex operations
can be found in the section "General Prob­
lems in Converting to System/360 FORTRAN."

Elements of the Language

ORDER OF ELEMENTS IN ARRAYS: In 7090/7094
FORTRAN II, the elements in an array are
stored in descending storage locations.
(See Figure 1 in the section °Arrangement

of Arrays in Storage.)

This contrasts with System/360 FORTRAN
in which the elements are stored in ascend­
ing locations.

(Note that in both 7090/7094 FORTRAN II
and System/360 FORTRAN, the first subscript
is varied most rapidly and the last sub­
script is varied least rapidly.)

No conversion is required because of the
different ways in which the two compilers
store arrays. Both compilers supply the
proper element when subscripts are used in
FORTRAN statements.

However, if the user has employed non­
FORTRAN statements to manipulate individual
elements in an array, the locations
referred to in the non-FORTRAN statements
may be incorrect.

In recoding non-FORTRAN portions of his
program, the user must be careful to refer
to the elements of an array according to
the locations in which they are stored by
the System/360 FORTRAN compiler.

40

NO warning message concerning this dif­
ference is issued by the FORTRAN LCP.

Arithmetic and Logical Statements

BOOLEAN STATEMENTS: Boolean statements in
7090/7094 FORTRAN II cannot be converted
because System/360 FORTRAN does not manipu­
late Boolean functions. Instead,
System/360 FORTRAN provides for use of
logical variables and expressions.

When the FORTRAN LCP encounters a Boo­
lean statement, it generates a message to
indicate that the statement must be changed
by hand.

H-LITERAL IN AN ARITHMETIC OR IF STATEMENT:
In 7090/7094 FORTRAN II, it is possible to
use an H-literal in an IF statement or on
the right side of the equal sign in an
arithmetic statement. An example is:

WORD = 4H END

This usage is unacceptable in System/360
Basic Support and Level E FORTRAN. When
converting to either of these levels, the
FORTRAN LCP issues a message to indicate
that the statement must be changed by hand.

Level H FORTRAN accepts an H-literal in
a DATA statement.

When converting to Level H FORTRAN, the
FORTRAN LCP replaces the H-literal with an
insert variable and creates a DATA state­
ment to establish the value of the insert
variable. A warning message is issued to
indicate that the user should check for
length incompatibilities.

Original:

WORD = 4H END

Converted:

DATA FCP000/4H END/
WORD=FCPOOO

IMPLICIT MULTIPLICATION: In some cases,
7090/7094 FORTRAN II performs multi­
plication even though an asterisk has been
omitted.

System/360 FORTRAN does not implement
implicit multiplication. All desired com­
putations must be specified explicitly.

The FORTRAN LCP inserts an asterisk into
an expression at any point at which the
asterisk is needed to make multiplication
explicit. A message in the output listing
indicates the statement has been converted.

Original: gram need only the starting location of
array Y and array X, respectively.

X = (A + B) C + 3 .D - (E + F) (G + H)
+ 2.EOX

Converted: Control Statements

X=(A+B)*C+3.*D-(E+F) *(G+H)+2.EO*X

STATEMENTS CONTAINING VARIABLES WITH INSUF­
FICIENT SUBSCRIPTS: In 7090/7094 FORTRAN
II, a programmer can use a singly­
subscripted reference to a multiply­
subscripted variable. An example of this
is:

DIMENSION J (10, 10) ,K (5, 5)

J (1) =Y (1)

Such references
System/360 FORTRAN
statements) •

are invalid in
(except in EQUIVALENCE

When the FORTRAN LCP encounters an
invalid singly-subscripted reference, it
appends sufficient subscripts to make the
number of subscripts in the reference equal
to the dimensions of the array. Each
appended subscript consists of a 1.

Subscripts are also added to a nonsub­
scripted reference to a dimensioned varia­
ble in an arithmetic, IF, or CALL statement
when the variable is used as an expression
in that statement. Note, however, that
subscripts are not appended when a nonsub­
scripted array name is passed as an argu­
ment to a function or subprogram. Messages
in the output listing indicate the state­
ments have been converted.

Original:

DIMENSION X(10,10,5), Y(10,10), Z(10,10)
EQUIVALENCE (X(3) ,XX)
X (I) = Y (I) * Z-SUBF (Y) - COSF (Y (3)) *

SINF (Y**2)
CALL XYZ (X, Y (3) , Z**2)

Converted:

DIMENSION X (1O,10, 5) , Y (10, 10) , Z (10, 10)
EQUIVALENCE (X (3) ,XX)
X (I, 1, 1) =Y (I, 1) *Z (1, 1) -SUB (Y)

-COS (Y (3, 1)) *SIN (Y (1, 1) **2)
CALL XYZ (X,Y (3, 1) ,z (1, 1) **2)

Note that subscripts have not been
appended to the nonsubscripted array name Y
where it is passed as an argument to the
function SUB or to the nonsubscripted array
name X where it is passed as an argument to
subprogram XYZ. No subscripts have been
appended because the function and subpro-

INDEX IN A DO STATEMENT: In 7090/7094
FORTRAN, the index in a DO statement can be
the same as a dimensioned integer variable
that appears in a statement outside the DO
loop. The index is the i in the following
DO statement format:

The following coding illustrates this
usage:

DIMENSION J (10,2)

DO 10 J=5, 100, 5
LL = J

10 PRINT 35, LL

END

SystP.m/360 FORTRAN does not permit a
variable to be used as the index in a DO
statement if the variable appears as a
dimensioned variable in a statement outside
the DO loop.

The FORTRAN LCP detects this violation
and issues a message to indicate that the
DO statement must be changed by hand.

END STATEMENT: In 7090/7094 FORTRAN II,
the END statement can contain a series of
program option parameters. These options
are meaningless in Systern/360 FORTRAN.

The FORTRAN LCP blanks out the paramet­
ers and generates a message to indicate
that the statement has been converted.

Original:

END (1,2,0,1,1)

Converted:

END

Input/Output Statements

READ DRUM STATEMENT: In 7090/7094
II, the READ DRUM statement is used
binary information from a drum
unit. The format of the statement

FORTRAN
to read
storage

is:

Conversion Actions for the 7090/7094 Compiler 41

READ DRUM i, j, list

where i designates the drum unit, i is a
drum address, and list is a list of varia­
bles into which the information is read.

The FORTRAN LCP converts a READ DRUM
statement to a READ statement. An insert
variable is created to represent the data
set reference number. During conversion of
the statement, the FORTRAN LCP also deletes
the drum address (j) • A message in the
output listing indicates the statement has
been converted.

Original:

READ DRUM K, J, A, B, C, D (3)

Converted:

READ (LCPOOO) A,B, C,D (3)

Data files written in internal notation
will require conversion before records in
those files can be processed on System/360.
Information on data file conversion will be
provided at a later time.

RIT STATEMENT: In 7090/7094 FORTRAN II, it
is possible to use an RIT statement in
place of a READ INPUT TAPE statement. The
RIT statement is converted in the same
manner as the READ INPUT TAPE statement
(see "Conversion Actions for Current FOR­

TRAN II Compilers") • An example follows.

Original:

RIT INTAPE, 60, D, E, F

Converted:

READ (INTAPE,60)D,E,F

Note that in the converted form, INTAPE
is an integer variable that represents the
data set reference number.

WRITE DRUM STATEMENT: In 7090/7094 FORTRAN
II, the WRITE DRUM statement is used to
write binary information on a drum storage
unit. The format of the statement is:

WRITE DRUM i, j, list

where i designates the drum unit, i is a
drum address, and list is a list of varia­
bles from which the information is to be
written.

The FQRTRAN LCP converts a WRITE DRUM
statement into a WRITE statement. An inte­
ger insert variable is created to represent
the data set reference number. During
conversion of the statement, the FORTRAN
LCP also deletes the drum address (j) • A

42

message in the output listing indicates the
statement has been converted.

Original:

WRITE DRUM 2, 1000, D, E, F, G(6)

Converted:

WRITE (LCPOOO) D,E,F,G (6)

WOT STATEMENT: In 7090/7094 FORTRAN II, it
is possible to use a WOT statement in place
of a WRITE OUTPUT TAPE statement. The WOT
statement is
as the WRITE
•conversion
Compilers") •

Original:

converted in the same manner
OUTPUT TAPE statement (see

Actions for Current FORTRAN II
An example follows.

WOT NOUTTP, 70, R, L, B

Converted:

WRITE (NOUTTP,70)R,L,B

Note that in the converted form, NOUTTP
is an integer variable that represents the
data set reference number.

OCTAL CONVERSION IN A FORMAT STATEMENT:
The 7090/7094 FORTRAN II permits octal
conversion to be specified in a FORMAT
statement. Octal conversion is not mean­
ingful in System/360 FORTRAN and is not
permitted.

The FORTRAN LCP generates a message
whenever it encounters a FORMAT statement
containing octal-conversion notation. The
message is issued to indicate that the
statement must be changed by hand.

Specification Statements

MULTIPLE APPEARANCE OF THE SAME VARIABLE IN
A COMMON STATEMENT: In 7090/7094 FORTRAN
II, the same variable can appear more than
once in a COMMON statement.

In System/360 FORTRAN, a COMMON state­
ment is invalid if the same variable
appears in it twice.

The FORTRAN LCP reconstructs the COMMON
statement and deletes the second and all
subsequent references to the variable. A
message in the output listing indicates
that a new COMMON statement has been gener­
ated.

Original:

COMMON A, B, C, A, D, E

Converted:

COMMON A,B,C,D,E,

COMMON-EQUIVALENCE INTERACTION PROBLEM: In
7090/7094 FORTRAN II, EQUIVALENCE state­
ments are given precedence over COMMON
statements in determining the allocation of
COMMON storage.

This contrasts with System/360 FORTRAN
in which variables and arrays are assigned
to COMMON storage in the order in which
they appear in COMMON statements. Conse­
quently, the manner in which System/360
FORTRAN allocates COMMON storage for a
given set of COMMON and EQUIVALENCE state­
ments may differ significantly from the
manner in which COMMON storage was allocat­
ed for those statements by the 7090/7094
FORTRAN II compiler.

If the user specifies the reorder COMMON
option, the FORTRAN LCP resolves this prob­
lem by generating new COMMON statements
that will cause the System/360 compiler to
allocate storage in the same way it is
assigned by the 7090/7094 FORTRAN II com­
piler. A message in the output listing
indicates that new statements have been
generated.

Further information on the COMMON­
EQUIVALENCE interaction problem is provided
in the section "General Problems in
Converting to System/360 FORTRAN."

FREQUENCY STATEMENT: The FREQUENCY state­
ment is used in 7090/7094 FORTRAN II pro­
grams to optimize object coding. The
statement indicates the estimated frequency
with which specific control branches will
be taken.

The statement is
System/360 FORTRAN.

not provided in

The FORTRAN LCP conve:rts a FREQUENCY
statement into a comment card. A message
in the output listing indicates the state­
ment has been converted.

Original:

FREQUENCY 30(1,2,1) ,40(11, ,50
(1,7,1,1)

Converted:

C FREQUENCY 30(1,2,1, ,40(11) ,50
(1,7,1,1)

Functions and Subprograms

F CARDS: In 7090/7094 FORTRAN, an F card
is required when a library function name,
function subprogram name, or a subroutine
subprogram name is used as an argument to
another function subprogram or subroutine
subprogram.

F cards are not used in System/360
FORTRAN. Instead, a function or subprogram
name that is used as an argument to a
function or subroutine subprogram must
appear in an EXTERNAL statement in the
calling program. (System/360 FORTRAN clas­
sifies an EXTERNAL statement as a specifi­
cation statement. Basic Support and Level
E FORTRAN stipulate that EXTERNAL state­
ments must appear prior to the first exe­
cutable statement in a program.)

The FORTRAN LCP generates an EXTERNAL
statement for each F card encountered in
the source program and places the EXTERNAL
statement among the specification state­
ments at the beginning of the output pro­
gram. A message in the output listing
indicates that EXTERNAL statements have
been converted.

Original:

F SIN, COS, FUNC

Converted:

EXTERNAL SIN,COS,FUNC

REPLACING ARGUMENTS IN ARITHMETIC STATEMENT
FUNCTIONS: In 7090/7094 FORTRAN II, argu­
ments that appear in arithmetic statement
functions are dummy variables and may be
the same as names that appear elsewhere in
the program.

However, conflicts may arise when the
FORTRAN LCP generates Type statements for
double-precision and complex variables.
Consider the following 7090/7094 FORTRAN II
coding:

D DIMENSION X(10,10)
FIRSTF(X,I)=A + X**I

The variable X in the DIMENSION statement
is a double-precision variable. The argu­
ment X in the arithmetic statement function
is a single-precision dummy argument. This
causes no problem in 7090/7094 FORTRAN II.

However, during conversion, the FORTRAN
LCP generates an explicit DOUBLE PRECISION
statement that establishes the variable X
as a double-precision variable throughout
the program, even in its use as a dummy
argument.

Conversion Actions for the 7090/7094 Compiler 43

When a 7090/7094 program contains
double-precision or complex operations, the
FORTRAN LCP replaces all dummy arguments in
arithmetic statement functions with insert
variables. A message in the output listing
indicates the statement has been converted.

Original:

D DIMENSION X (1O,10)
FIRSTF (X,I) = A+X**I

Converted:

DOUBLE PRECISION X
DIMENSION X (10, 10)
FIRST (FCPOOO,LCPOOO) =A+FCPOOO

**LCPOOO

DOUBLE-PRECISION OPERATIONS

This list
specifically
operations.

contains
to

items that apply
double-precision

System/360 Basic Support FORTRAN does
not permit use of double-precision varia­
bles, arrays, or statements.

SPECIFYING DOUBLE-PRECISION VARIABLES AND
ARITHMETIC STATEMENT FUNCTIONS: In
7090/7094 FORTRAN, entire statements are
designated as double-precision by inserting
the letter D in column 1.

System/360 FORTRAN requires that varia­
bles, arithmetic statement function names,
and function subprogram names be designated
individually as double-precision. The DOU­
BLE PRECISION type statement provides one
means of doing this.

The FORTRAN LCP generates DOUBLE PRECI­
SION statements that include each variable
name and arithmetic statement function name
found in 7090/7094 double-precision state­
ments.

Original:

D ALPHA = BETA * GAMMA + FUNCTF (Y, Z)

Converted:

DOUBLE PRECISION ALPHA, BETA,
GAMMA,FUNCT,Y,Z

ALPHA=BETA*GAMMA+FUNCT(Y,Z)

·Note that FUNCT is the name of an
arithmetic statement function.

REAL CONSTANTS IN DOUBLE-PRECISION STATE­
MENTS: In 7090/7094, a real constant con­
taining E-exponent notation can appear in a
double-precision statement. The use of the

44

letter D in column 1 causes the constant to
be treated as double-precision.

By removing the D from column 1 of
double-precision statements, the FORTRAN
LCP creates the need for explicit specifi­
cation of double-precision constants. This
problem is solved by inserting D-exponent
notation into each real constant found in a
double-precision statement.

Original:

D A= 1567.0E15 * X + 2.4

Converted:

DOUBLE PRECISION A,X
A=1567.0D15*X+2.4DO

REFERENCES TO THE MOST-SIGNIFICANT PART OF
A DOUBLE-PRECISION VARIABLE: In 7090/7094
FORTRAN II, a programmer can refer to the
most-significant part of a double-precision
variable by ref erring to that variable in a
single-precision statement.

In System/360 FORTRAN, a double­
precision number is stored as an entity. A
programmer cannot directly access the most­
signif icant or least-significant part of
the number. However, by using the function
SNGL, the programmer can derive the most
significant part from the double-precision
entity.

The FORTRAN LCP uses the function SNGL
to translate a reference to the most­
signif icant part of a double-precision
variable in a statement without a D in
column 1.

When the reference in such a statement
is used in any manner except as an argument
to a function or subprogram, the FORTRAN
LCP makes the variable an argument to the
function SNGL. During execution of the
converted statement, the desired part of
the double-precision variable is returned
to the object program.

The variable is also made an argument to
the function SNGL when it is in an expres­
sion used as an argument to another func­
tion or subprogram (see example below) •
However, when the variable name stands
alone as an argument to a function or
subprogram, the reference is not altered.

Original:

D B = C * D
IF (B) 5 , 5 , 1 0

5 CALL XYZ (B, C**2)
10 AB = C * D - SINF (B)

Converted:

DOUBLE PRECISION B,C,D
B=C*D
IF {SNGL {B)) 5, 5, 10

5 CALL XYZ{B,SNGL{C)**2)
10 AB=SNGL (C) *SNGL {D) -SIN (B)

REFERENCES TO THE LEAST-SIGNIFICANT PART OF
A DOUBLE-PRECISION VARIABLE: In System/360
FORTRAN, it is not possible to refer to the
least-significant portion of a double­
precision variable.

When the FORTRAN LCP detects that a
subscripted variable definitely refers to
the least-significant part of a double­
precision number, it issues a message to
indicate that the statement must be changed
by hand.

However, when variables are used as
subscripts to a double-precision variable,
the FORTRAN LCP cannot determine whether
the values of the subscripts will refer to
the most-significant or least-significant
part of a number. In this case, LCP
translates the statement by using the
function SNGL.

Consider the following example:

D DIMENSION A (5, 5) , C (3)
DIMENSION B (10)
DO 7 J=1, 10

7 B (J) = A (I, J)
8 D = C (I)
9 E = C (4)

The FORTRAN LCP can determine immediate­
~y that the subscript of C in statement 9
is a reference to the least-significant
part of a number. The statement is not
translated and is flagged for hand conver­
sion.

However, the FORTRAN LCP cannot deter­
mine whether the subscripts in statements 7
and 8 refer to the most-significant or
least-significant part of the numbers.
Those two statements are translated by
using the function SNGL and warning messa­
ges are issued to indicate that the tran­
slations may be invalid. The conversion is
shown below.

Original:

D DIMENSION A(5,5),
DIMENSION B (10)
DO 7 J=1, 10

7 B (J) = A (I, J)
8 D = C (I)
9 E = C (4)

c (3)

Converted:

DOUBLE PRECISION A(5,5) ,C(3)
DIMENSION B (10)
DO 7 J=1,10

7 B (J) =SNGL (A (I ,J))
8 D=SNGL (C (I))
9 E=C (4)

Warning messages appear with statements
7, 8, and 9 in the output listing.

If a reference containing variable sub­
scripts appears on the left side of an
arithmetic statement, the statement is not
converted. This reference indicates that a
quantity is to be stored in one part of a
double-precision number. The FORTRAN LCP
issues a message to indicate that the
statement must be changed by hand.

Original:

D DIMENSION A(5,5,5)
A(I,J,K)=B**2

Converted:

DOUBLE PRECISION A(S,5,5)
A (I ,J ,K) =B**2

DOUBLE-PRECISION VARIABLES IN INPUT/OUTPUT
LISTS: In 7090/7094 FORTRAN
of a double-precision number
written separately.

II, each part
is read or

In System/360
precision number
entity.

FORTRAN, a double­
is read or written as an

In converting input/output statements,
the FORTRAN LCP does not attempt to modify
references to double-precision variables or
double-precision arrays. When such
references are encountered, the FORTRAN LCP
generates messages to indicate that the
statements must be changed by hand.

Consider the following conversion:

Original:

D
D

DIMENSION H (10)
A= B * C

13 WRITE TAPE 6, A(1), A (2)
14 WRITE TAPE 6, A, C (1)
15 READ TAPE 5, (H (I) , I=1, 20)
16 WRITE TAPE 6, B (2) , (H (I) ,

H(I+10), I=1, 10)

Conversion Actions for the 7090/7094 Compiler 45

Converted:

DOUBLE PRECISION A,B,C,H(10)
A=B*C

13 WRITE (6)A(1) ,A(2)
14 WRITE (6) A, C (1)
15 READ (5) (H(I) ,I=1,20)
16 WRITE (6) B (2), (H (I) ,H (I+10) ,

I=1, 10)

Note that the DOUBLE PRECISION statement
is generated and that the READ and WRITE
portions of the statements are converted.
However, all references to double-precision
variables and arrays are unchanged. Warn­
ing messages are generated in the output
listing for statements 13, 14, 15, and 16.

The difference in the manner in which
double-precision variables and arrays are
read and written also requires that FORMAT
statements be changed. Consider the fol­
lowing coding:

D A = B * C
WRITE OUTPUT TAPE 5,10,A(1) ,A(2)

1 0 FORMAT (20 12)

The FORTRAN LCP cannot recognize that
the conversion specified in the FORMAT
statement pertains to double-precision
variables and therefore cannot translate
the statement. Whenever there is a double­
prec1s1on variable or array in an
input/output list, a message is generated
to indicate that the FORMAT statement asso­
ciated with the input/output statement must
be changed by hand.

COMMON STATEMENTS CONTAINING DOUBLE­
PRECISION VARIABLES: In 7090/7094 FORTRAN
II, no boundary problems are involved when
a COMMON statement contains a mixture of
single-precision and double-precision
variables.

This contrasts with System/360 FORTRAN
in which boundary requirements may affect
the validity of a COMMON statement that
contains both single-precisio~ and double­
precision variables.

Consider the following coding in two
subroutine subpr9grams:

Subprogram 1:
SUBROUTINE SUB1
COMMON R,S,T

D A=S**2

Subprogram 2:
SUBROUTINE SUB2
COMMON X,Y,Z
-DIMENSION Y (2)

In 7090/7094 FORTRAN II, COMMON storage
is allocated so that R is equivalent to X,
S to Y, and T to z.

46

In System/360 FORTRAN, the COMMON
statement in Subprogram 1 would be invalid
because the double-precision variable S
would not begin on a double-word boundary.
The System/360 FORTRAN compilers begin COM­
MON storage on a double-word boundary and
assign variables consecutively. To remedy
the boundary problem and to preserve the
implied equivalencies between the subpro­
grams, the programmer could change the
order of the variables in the COMMON state­
ments so that T appeared before S, and Z
appeared before Y.

In making hand changes to compensate for
boundary problems, the user must take care
not to destroy implied equivalencies
between one program and another. For exam­
ple, if the user attempted to compensate
for the boundary problem in Subprogram 1 by
inserting a dummy variable between R and S,
the implied equivalencies between Subpro­
gram 1 and Subprogram 2 would be destroyed.

The boundary problem is also involved in
use of the reorder COMMON option. In
reordering variables in COMMON statements,
the FORTRAN LCP does not ensure that a
double-precision variable will begin on a
System/360 double-word boundary.

When converting double-precision pro­
grams, the FORTRAN LCP issues a message to
indicate that COMMON statements should be
checked and hand changes made where neces­
sary.

EQUIVALENCE STATEMENTS CONTAINING DOUBLE­
PRECISION VARIABLES: In 7090/7094 FORTRAN,
a single-precision variable can be
equivalenced to the least-significant por­
tion of a double-precision variable. Con­
sider the following coding:

EQUIVALENCE (A (2) ,E)
D A = B**2

In 7090/7094 FORTRAN, the EQUIVALENCE
statement specifies that the variable E is
to share COMMON storage with the least­
significant part of A (assuming that A is
not an array). In System/360 FORTRAN, it
is not possible to directly reference the
least significant part of a double­
precision variable.

The FORTRAN LCP generates a warning
message when it encounters a statement that
equivalences a variable to the least­
significant portion of a double-precision
variable. The statement must be changed by
hand.

DOUBLE-PRECISION
TRAN LCP adds the
of the name of
function wherever

FUNCTION NAMES: The FOR­
letter D to the beginning

a library or built-in
that name appears in a

double-precision statement. The letter F
at the end of the name is removed.

These actions make the source program
name the same as the name of the function
on the library tape.

A message in the output listing indi­
cates the statement has been converted.

Original:

D Y = SINF (X)

Converted:

DOUBLE PRECISION Y,X
Y=DSIN (X)

DOUBLE-PRECISION FUNCTION SUBPROGRAMS: In
converting a double-precision function sub­
program, the FORTRAN LCP specifies the type
of the function as part of.the FUNCTION
statement. A message in the output listing
indicates that the FUNCTION statement has
been converted.

Original:

FUNCTION SUB1 (X,Y)

D SUB1=X+Y

D RETURN
END

Converted:

DOUBLE PRECISION FUNCTION SUB1

DOUBLE PRECISION X,Y

SUB1=X+Y

RETURN
END

COMPLEX OPERATIONS

(X, Y)

This list contains conversion items that
apply specifically to complex arithmetic
operations.

Incompatibilities conc~rning
arithmetic operations result from
ferences in the manner in which
FORTRAN II and System/360 FORTRAN

complex
(1) dif-
7090/7094
store the

elements of a complex array, and (2) dif­
ferences in the manner in which a program­
mer accesses parts of a complex number.
These differences are discussed in the
section "Arrangement of Arrays in Storage. 0

The FORTRAN LCP resolves most of these
incompatibilities by doubling the dimension
of each complex variable or array and by
treating both parts of a complex number as
real numbers.

When complex arithmetic statements are
encountered during the conversion, the FOR­
TRAN LCP uses the functions REAL, AIMAG,
and CMPLX to accomplish the complex calcu­
lations. The function CMPLX is used to
derive a complex value from the two real
numbers that represent the FORTRAN II com­
plex number. Once the complex value has
been derived, the functions REAL and AIMAG
are used to derive the parts. Each part,
however, is stored as a real number.
Insert variables are created where neces­
sary to facilitate the conversion and to
make the converted coding more efficient.

System/360 Level H FORTRAN is the only
level that permits use of complex
variables, arrays, or statements. When
converting to Basic Support or Level E
FORTRAN, the FORTRAN LCP generates a warn­
ing message whenever it encounters a com­
plex statement in the source program. The
statement must be converted by hand.

COMPLEX VARIABLES IN ARITHMETIC STATEMENTS:
In 7090/7094 FORTRAN II, entire statements
are designated as complex by inserting an I
in column 1 of the statement.

The FORTRAN LCP removes the I from
column 1 and treats both parts of a complex
variable as real variables. References to
a complex variable are translated by using
the functions REAL, AIMAG, and CMPLX.

Original:

I DIMENSION A (4, 4)
I 10 A (I,J) = B**2

Converted:

DIMENSION A (4, 8) , B (2)
COMPLEX FCPOOO

10 FCPOOO=CMPLX (B (1) ,B (2)) **2
A (I,J) =REAL (FCPOOO)
A(I,J+4)=AIMAG(FCPOOO)

The dimensions of array A and variable B
are doubled. An insert variable is created
and established as a complex variable by
using the explicit type statement COMPLEX.
This insert variable is created to avoid
duplicate computations.

Conversion Actions for the 7090/7094 Compiler 47

Statement 10 causes a complex value to
be computed and stored in the complex
variable FCPOOO. The real part of that
variable is then stored in A(I,J) and the
imaginary part is stored in A(I,J+4).

Note: In the above example, statement 10
might be the last statement in the range of
a DO loop. The FORTRAN LCP flags this
statement to indicate that the user should
check to determine whether the generation
of additional statements has affected the
range of a DO loop. See the discussion of
"Statement Numbers With Complex
Statements."

COMPLEX DATA IN IF STATEMENTS: In
7090/7094 FORTRAN II, complex constants and
variables can be used in the expression of
an arithmetic IF statement.

This is invalid in System/360 FORTRAN.

The FORTRAN LCP issues a warning message
whenever it encounters an IF statement that
contains an I in column 1. The user must
change the statement by hand.

COMPLEX VARIABLES IN NONCOMPLEX STATEMENTS:
If a reference to a complex variable
appears in a 7090/7094 FORTRAN II statement
that lacks an I in column 1, the reference
is left unchanged.

Original:

I DIMENSION A (5, 5, 5) , C (3)
BB= A(I,J,K) +C(4)

Converted:

DIMENSION A (5, 5, 10) ,C (6)
BB=A (I,J,K) +C (4)

The FORTRAN
variables and
subscripts of a
plex statements
remain valid in

LCP treatment of complex
arrays is such that the
complex variable in noncom­
and input/output statements
the converted program.

STATEMENT NUMBERS WITH COMPLEX STATEMENTS:
In converting complex arithmetic
statements, the FORTRAN LCP replaces the
original statement with several new state­
ments.

If a statement number is associated with
the complex arithmetic statement, that num­
ber is assigned to the first of the new
statements. This creates a problem if the
original statement is the last statement in
the range of a DO loop. Consider the
following conversion:

48

Original:

I DIMENSION A (10) , B (10)
DO 100 K=1, 10

IF (X-Y) 100,200,100

I 1 00 A (K) B (K)

Converted:

DIMENSION A (20) ,B (20)
COMPLEX FCPOOO
DO 1 0 0 K= 1 , 1 0

IF ~-Y) 100,200,100

100 FCPOOO=CMPLX (B (K) ,B (K+10))
A (K) =REAL (FCPOOO)
A (K+10) =AIMAG (FCPOOO}

In the converted coding above, the user
will want the last two statements to be
included in the range of the DO loop. One
solution to the problem is to move the
statement number 100 to the last of the
generated statements. Note, however, that
this action necessitates modification of
two transfer numbers in the IF statement
within the DO loop.

When the FORTRAN LCP converts a complex
arithmetic statement, it generates a warn­
ing message whenever the statement has a
statement number.

COMPLEX VARIABLES IN INPUT/OUTPUT LISTS:
References to complex variables in
input/output lists are left unchanged. The
original references are valid because of
the manner in which the FORTRAN LCP treats
complex variables and arrays.

Original:

I DIMENSION D (3, 4) , H (10)
I 10 E = F * G / H (J) + D (1, 1)

WRITE OUTPUT TAPE 6, 13, D{I,J),
E(2) ,G(1), (H(I) ,I=1,20)

READ INPUT TAPE 5,20, (H(I),
I=1, 20)

Converted:

COMPLEX FCPOOO
DIMENSION D (3, 8) ,H (20), E (2) ,G (2),

F (2)
10 FCP000=CMPLX{F(1),F(2))*CMPL(G(1),

G (2)) /CMPLX (H (J) ,H (J+10))
+Ctr.iPLX (D (1, 1) , D (1, 5))

E (l) =REAL (FCPOOO)
E(2)=AIMAG(FCPOOO)
WRITE (6, 13) D (1,J) ,E (2) ,G (1), (H (I),

I=1, 20)
READ (5, 20) (H (I) , I=1, 20)

COMPLEX FUNCTION NAMES: The FORTRAN LCP
adds the letter C to the beginning of the
name of a library or built-in function
wherever the name appears in a complex
statement. The letter F at the end of the
name is removed.

These actions make the source program
name the same as the name of the function
on the library tape.

A message in the output listing indi­
cates the statement has been converted.

Original:

I A= COSF(~

Converted:

COMPLEX FCPOOO
DIMENSION A (2) , B (2)
FCPOOO=CCOS (CMPLX (B (1) , B (2)))
A (1) =REAL (FCPOOO)
A(2)=AIMAG(FCPOOO)

REFERENCES TO COMPLEX FUNCTIONS AND SUBPRO­
GRAMS: The FORTRAN LCP takes the following
actions in converting complex functions or
subprograms and in converting statements
that contain references to a complex func­
tion or subprogram.

Arithmetic Statement Function: The func­
tion name and insert variables that replace
the dummy arguments used in the definition
of tne function are included in COMPLEX
type statements. A variable that appears
in the expression part of the definition
but is not a dummy argument will result in
incompatibilities. The converted defini­
tion statement is flagged to indicate that
such variables are in the statement.

When a reference to a arithmetic state­
ment function appears in a complex state­
ment, the arguments in the reference are
converted by using the function CMPLX to
derive complex values from the two real
parts of each argument.

Built-In and Library Functions: Complex
arguments must be transmitted to the actual
functions that exist in the library. The

statements are converted so that complex
arguments are provided.

Subprograms: Because subprograms are
also converted by the FORTRAN LCP, varia­
bles and array names that appear as argu­
ments are converted to real variables and
arrays. However, the FORTRAN LCP is unable
to convert a complex expression used as an
argument in the calling program because the
converted subprogram expects to receive
real arguments. The statement containing
the complex expression as an argument is
flagged to indicate the need for hand
conversion.

Consider the following conversion in
which ALIBF is a library or built-in func­
tion, FNCSUB is a function subprogram,
ARITHF is an arithmetic statement function,
and SUBRTN is a subroutine subprogram:

Original:

I DIMENSION A (10) ,P (5)
I ARITHF(C,D) = C + D + X
I Y = ALIBF(B) + FNCSUB(E) + ARITHF

(H,G)
I 20 CALL SUBRTN {P,Jl.(1)+(3.0,2.1) ,Y)

Converted:

COMPLEX ARITH,FCP001,FCP101,FCP102
DIMENSION A (2 0) , P (10) , X (2) , Y (2) ,

B (2) ,E (2) ,H (2) ,G (2)
ARITH (FCP101,FCP102)=FCP101

+FCP102+X
FCP001=CALIB (CMPLX (B (1) ,B (2))

+FNCSUB(E)+ARITH
(CMPLX (H (1) ,H (2)),
CMPLX (G (1) ,G (2)))

Y (1) =REAL (FCP001)
Y (2) =AIMAG (FCPOO 1)

20 CALL SUBRTN (P,A(I)+(3.0,2.1) ,Y)

A message in the output listing indi­
cates that the variable X in the arithmetic
statement function could not be converted
and must be changed by hand. A message
will also be issued to indicate that the
second argument in statement 20 (the argu­
ment A (I)+ (3. 0, 2. 1)) could not be
converted.

The following example illustrates the
conversion action within a subprogram,
using the subroutine name SUBRTN from the
example above:

Conversion Actions for the 7090/7094 Compiler 49

Original:

SUBROUTINE SUBRTN (R,S,T)
I DIMENSION R (5) , S (1 0)

I

I

T = SINF (R (K))

RETURN
END

Converted:

SUBROUTINE SUBRTN(R,S,T)
DIMENSION R (10) , S (2 0) ,T (2)
COMPLEX FCPOOO

FCPOOO=CSIN (CMPLX (R (K) , R (K+S))
T (1) =REAL (FCPOOO)
T (2) =AIMAG (FCPOOO)

RETURN
END

The complex variables and arrays have
been converted so they can be treated as
real variables and arrays. The conversion
of the subprogram arguments in the calling
program is effective only when the argu­
ments are arrays, unsubscripted variables,
and other function or subprogram names.

50

The FORTRAN LCP issues a message whenever
an argument in a calling program cannot be
converted

COMPLEX FUNCTION SUBPROGRAMS: In convert­
ing a complex function subprogram, the
FORTRAN LCP specifies the type of the
function as part of the FUNCTION statement.
A message in the output listing indicates
the FUNCTION statement has been converted.

Original:

I

I

FUNCTION SUB2 (R, S)

SUB2=R+S

RETURN
END

Converted:
COMPLEX FUNCTION SUB2 (R,S)
DIMENSION R (2) , S (2)

SUB2=CMPLX (R (1) ,R (2)) +CMPLX (S (1) ,
s (2))

RETURN
END

INCOMPATIBILITIES THAT ARE NOT RECOGNIZED

This list summarizes the FORTRAN II
items and statements that are incompatible
with System/360 FORTRAN and are not recog­
nized by the FORTRAN LCP. All items in
this list are also discussed in the conver­
sion action lists. The user must check his
converted program for occurrence of these
items and make hand changes where
necessary. The current FORTRAN compilers
to which an item or statement refers are
listed beside the title of the item or
statement.

HIERARCHY OF ARITHMETIC OPERATIONS: (All
current FORTRAN II compilers) If the user
has failed to include parentheses to con­
trol the order of computations in arithmet­
ic expressions, the FORTRAN LCP neither
provides parentheses nor generates a mes­
sage. If the order of computations is
important, the user must check his program
and insert the parentheses where necessary.

DO STATEMENT: (All current FORTRAN II
compilers) If a source program contains a
transfer into a DO loop under any condition
except that cited under the heading nDc
Statement• in the section "Conversion
Actions for current FORTRAN II Compilers,"
the user must change his program by hand.

INPUT AND OUTPUT OF ARRAYS: (All current
FORTRAN II compilers except 1620 GOTRAN and
1620 FORTRAN With FORMAT) The FORTRAN LCP
changes the sequence of specification
statements in a source program so that all
specification statements (except FORMAT
statements) appear before the first execut­
able statement of the program. Because
this reordering may affect input/output
references to arrays, the user must check
the converted output to determine whether
any hand coding changes are required.

CARRIAGE CONTROL CHARACTERS: (All current
FORTRAN II compilers) The user must check
his program to ensure that the characters 2

through 9 or J through R are not used as
carriage control characters.

ORDERING OF ELEMENTS IN ARRAYS: (1410,
705/7080, 7090/7094) If the user employs
non-FORTRAN statements to manipulate indi­
vidual elements in an array, the locations
referred . to in the non-FORTRAN statements
may be incorrect in System/360 FORTRAN.
Care should be taken to ref er to the
elements of an array according to the
locations in which they are stored by the
System/360 FORTRAN compiler.

READ (0100) AND WRITE (0500) STATEMENTS:
(7080) The FORTRAN LCP does not recognize

use of the values 0100 or 0500 in READ or
WRITE statements, respectively, to desig­
nate the card reader or console typewriter
in a 7080 FORTRAN program. The replace
tape reference option can be used to cor­
rect this incompatibility.

COMMON STATEMENTS CONTAINING DOUBLE­
PRECIS I ON VARIABLES: (7090/7094) Two
problems are associated with COMMON state­
ments that contain double-precision varia­
bles, as follows:

1. Boundary Problem: System/360 FORTRAN
requires that a double-precision variable
begin on a double-word boundary. Neither
converted COMMON statements nor COMMON
statements generated in response to the
reorder COMMON option are checked by the
LCP to determine that each double-precision
variable starts on a double-word boundary.
The user should check COMMON statements in
the converted program and make hand changes
where necessary.

2. Implied Equivalencies: In some
instances, COMMON statements in a calling
program and a subprogram are specified so
that implied equivalencies exist between
variables in the two programs. In making
hand changes to meet System/360 boundary
requirements, the user should take care to
preserve these implied equivalencies.

Unrecognized Incompatibilities 51

CONVERSION OUTPUT AND MESSAGES

This section describes the output gener­
ated by the FORTRAN LCP and explains the
messages created during conversion.

CONVERSION OUTPUT

The FORTRAN LCP can produce two forms of
output: punched output and printed output.

Punched output is optional. When
punched output is specified, the FORTRAN
LCP produces a punched deck that contains
the converted FORTRAN program. The user
can also specify that non-FORTRAN state­
ments are to be punched into cards.

A listing of the converted program is
always provided. This listing contains the
converted program with messages generated
during conversion, and also contains tables
showing changes in variable and function
names. In addition, the user can specify
that a listing of the original source
statements is to be included in the listing
output.

Both forms of output are discussed in
the following text.

PUNCHED CARD OUTPUT

The punched card deck produced by the
FORTRAN LCP contains converted statements
and source statements that did not require
conversion. In all cases, extraneous
blanks have been removed from the state­
ments. The form of the coding in the
punched cards matches the coding in the
listing of the converted program.

Cards
should
deck is
FORTRAN

containing incompatibilities
be corrected before the new source
submitted for initial System/360
compilation.

If the user has specified that non­
FORTRAN statements are to be punched, cards
containing these statements are separated
from cards containing converted FORTRAN
statements. The manner in which the cards
are separated differs according to the
device to which the punched output is sent.

When punched output is sent directly to
the 1402 card punch, cards containing non­
FORTRAN statements drop into a different

52

punched-card pocket from the one that
contains converted FORTRAN statements.
When punched output is recorded on tape and
l.ater punched, the non-FORTRAN cards are
punched before non-FORTRAN cards, but all
cards fall into the same punched-card pock­
et.

LISTING OUTPUT

The listing is divided into two major
sections, as follows:

• Source program listing (which is
optional)

• Converted program listing (which is
always provided)

The converted program listing is subdi­
vided into four parts, as follows:

• Listing of the specification statements
in the converted program.

• Function name table showing the
System/360 function names and LCP sub­
stitution names that have replaced
source program function names.

• Insert variable table showing the LCP
insert variables that have replaced
variable names in the source program.

• Listing of the remainder of the con­
verted program with messages.

Each part of the output listing is
described more fully in the following para­
graphs.

Source Proqram Listing

This listing contains
source statements exactly
in the input cards. The
listed consecutively.

the original
as they appeared
statements are

This portion of the listing is optional.
The user specifies in a control card wheth­
er or not the source program is to be
listed.

Function Name Table

This table contains each function name
in the source program that has either (1)

been replaced with an LCP substitution
name, or (2) been changed to an equivalent
System/360 function name. (However, FOR­
TRAN II function names that have been
converted merely by removing the terminal F
are not included in the table.) The
changed name or the LCP substitution name
appears beside the function name it has
replaced.

This table does not appear in the output
listing if there are no function name
changes.

The conditions that cause a function
name to be changed or replaced are des­
cribed in the section "General Problems in
Converting to System/360 FORTRAN."

Appendix B contains a listing of
System/360 function names that are equiva­
lent to FORTRAN II function names.

Insert Variable Table

This table shows each source program
variable name that has been replaced and
the LCP insert variable that has replaced
it. The same insert variable is used to
replace the same variable name wherever
that name appears in a source program.

This table does not appear in the output
listing if no variable name has been
replaced by an insert variable.

The conditions that cause insert varia­
bles to be placed in a program are des­
cribed in the section "General Problems in
Converting to System/360 FORTRAN.•

Converted Program Listing

This listing contains the converted
source program and the messages generated
during the conversion.

The converted program contains converted
statements, statements generated by the
LCP, incompatible statements that could not
be converted, and source statements that
did not require conversion. Extraneous
blanks have been removed from statements in
the converted program.

In the converted program listing, all
specification statements (except FORMAT
statements) are printed in a section that
precedes the function name table and the
insert variable table. The remainder of
the converted program, starting with the
first executable statement, is printed
after the two tables.

The listing of the converted program
coding is divided generally into two parts.
The left portion of the listing contains
the converted FORTRAN statements. The
right portion of the listing contains text
messages that indicate whether the state­
ment has been modified by the FORTRAN LCP,
generated by the FORTRAN LCP, or is incom­
patible with System/360 FORTRAN. Also pro­
vided are four-digit message codes that aid
the user in determining the exact nature of
each conversion action or incompatibility.
These message codes will be explained in
detail in the reference manual provided
when the program is completed.

MESSAGES

The messages in the converted program
listing provide the user with two methods
of identifying actions taken by the FORTRAN
LCP. .

The text messages facilitate quick visu­
al identification of the status of each
statement in the converted program. This
enables the user to scan the program to
find individual statements or groups of
statements that require hand changes.

A text message appears with each output
statement that fits into one of the follow­
ing categories:

• The statement was modified by the FOR­
TRAN LCP •.

• The statement was generated by the
FORTRAN LCP.

• The statement, or a portion of the
statement, is definitely invalid in
System/360 FORTRAN but could not be
converted by the FORTRAN LCP.

• The statement, or a portion of the
statement, may be invalid in System/360
FORTRAN.

In addition to text messages, the FOR­
TRAN LCP produces four-digit message codes
to assist the user in determining the exact
nature of each conversion action and each
unresolved conversion problem. A distinct
message code will be related to each con­
version actipn or unresolved problem. The
meaning of each code will be explained in a
later version of this reference manual.

Using the output listing, the FORTRAN
LCP manual, and the proper System/360 FOR­
TRAN manual, the user can determine the
hand changes that are required to make his
program suitable for compilation by a
System/360 FORTRAN compiler.

Conversion Output And Messages 53

CONTROL CARDS AND OPERATING PROCEDURES

This
control
machine
options

section contains information on
specifications and the various

configurations and operating
available to the user.

CONTROL SPECIFICATIONS

Certain control information is required
for the FORTRAN LCP to accomplish a conver­
sion. This control information can be
provided in either of two ways.

preset in the
the LCP Control

can be provided in

The information can be
communications areas of
Phase or the information
control cards.

PRESET CONTROL INFORMATION

In the distributed
entries have already
standard pattern.

LCP
been

tape,
preset

control
to a

The user might not need to change the
pattern. However, to modify an entry, the
user punches specified characters into
cards within the LCP Control Phase. In
this way, the user replaces a standard
option with his own preset option.

Whenever the LCP Control Phase is loaded
at the beginning of a conversion, control
indicators are set to reflect the preset
options.

To override a preset option the user
must include a control card for that option
in the control card deck for the source
program. The control card overrides a
preset option only for the program for
which it is used.

By presetting control options, the user
can reduce the number of control cards
required for each conversion. This proce­
dure is useful whenever the same options
are desired for many consecutive programs.

USE OF CONTROL CARDS

When all control options have been pre­
set, the only control card required with a
source program is a specific terminal con­
trol card.

54

However, if the user wants to change
options for a particular conversion, addi­
tional control cards must be included in
the control card deck.

The terminal control card or a set of
control cards must be provided for each
source program processed by the FORTRAN
LCP.

When more than one control card is used,
the cards related to one source program (a
main FORTRAN program or a subprogram) must
appear in a single control card deck. The
individual cards may be in any order within
this deck except that the last card must be
the terminal card-.

The position of this deck within the
card input stream depends upon the data
processing equipment being used. Position­
ing of control cards is discussed later in
this section.

CONTROL CARD ENTRIES

To override preset options for one con­
version, the user must provide one or more
of the following entries in control cards
used with a source program:

1. Base Computer: This entry indicates
the current IBM computer for which the
source program was written.

2. Target Level of System/360 FORTRAN:
This entry indicates the level of
System/360 FORTRAN to which the source
program is to be converted. The user
can specify Basic Support, Level E, or
Level H FORTRAN.

3. Input Unit: This entry indicates the
input unit on which the source program
is located. The user can specify the
card reader, an LCP work tape (single
program only) , or an additional tape
unit.

4. Input Card Code: This entry indicates
the card code that is present in the
source program. The user specifies
either BCDIC input or EBCDIC input.

5. Output Card Code: This entry indi­
cates the card code to be used in
punching an output deck. The user
specifies either BCDIC output or
EBCDIC output.

6. Listing Output Specifications: Two
entries are specified for listing out­
put, as follows:
a. Source Program Entry. This entry

indicates whether or not a listing
of the original source program is
to be included in listing output.

b. Listing Output Unit Entry. This
entry indicates whether listing
output is to be sent to the on­
line 1403 printer or to magnetic
tape.

7. Punched Output Specification: An entry
is required to indicate whether or not
the FORTRAN LCP is to provide punched
output. Two other entries are
specified, as follows:
a. Punched Output Content Entry.

This entry indicates whether FOR­
TRAN statements only are to be
punched, or whether converted FOR­
TRAN statements and non-FORTRAN
statements are to be punched. If
the user designates that non­
FORTRAN statements are to be
punched, these cards are separated
from converted FORTRAN cards.

b. Punched Output Unit Entry. This
entry indicates whether punched
output is to be sent to the on­
line 1402 card punch or to
magnetic tape.

8. Reorder COMMON Specification: This
entry indicates whether or not the
variables in COMMON statements are to
be reordered. The options are:
a. Variables are to be left in the

same order in which they appear in
the source. program COMMON state­
ments.

b. Variables are to be reordered so
that the System/360 FORTRAN com­
piler will allocate COMMON storage
in the same manner in which it was
allocated by the FORTRAN II com­
piler. (See the discussion of the
COMMON-EQUIVALENCE interaction
problem in the section "General
Problems in C-0nverting to
System/360 FORTRAN.")

9. Date: This entry can be used to pro­
vide the date on which the conversion
is being performed. If provided, the
date appears in the output listing.

10.. Integer Variable Change Entry: This
entry can be used to change the three
alphabetic characters that appear at
the beginning of all integer insert
variables generated by the FORTRAN
LCP. The form of the integer insert
variable is normally LCPxxx where the
xxx represents a three-digit number.
If the user desires alphabetic charac­
ters other than LCP, the desired
alphabetic characters are entered in a
control card.

11. Real Variable Change Entry: This entry
can be used to change the three alpha­
betic characters that appear at the
beginning of all real insert variables
generated by the FORTRAN LCP. The
form of the real insert variable is

normally FCPxxx where the xxx rep­
resents a three-digit number. If the
user desires alphabetic characters
other than FCP, the desired alphabetic
characters are entered in a control
card.

12. Replace Tape Reference Entry: This
entry can be used to specify that
constants used as tape references in
input/output statements are to be
modified. The user can specify that a
particular tape constant is to be
replaced with a variable name or
another tape constant wherever that
tape constant appears in the source
program. If a tape constant is to be
replaced by a variable name, the name
must be six or fewer characters and
must begin with one of the letters I
through N. For each tape constant to
be changed, the user is required to
provide the constant as it appears in
the source program and followed by the
variable or constant that is to
replace it. The LCP allows references
to as many as five different tape
units to be changed wherever they
appear in input/output statements in
the program.

SYSTEM CREATION

The FORTRAN LCP is delivered to the
customer on a reel of magnetic tape. This
tape is used to create an LCP system either
in the form of a system card deck or in the
form of a system tape.

The term LCP system is used in this
manual to refer to the control and process­
ing phases of the FORTRAN LCP. The term
system card deck refers to a deck of cards
that contain these phases. The term system
tape refers to a tape that contains the
phases.

The manner in which the user creates the
system card deck and the system tape is
discussed in the following paragraphs.

CREATING A SYSTEM CARD DECK

The delivered FORTRAN LCP tape is con­
verted to a system card deck by using a
utility program to punch the contents of
the delivered tape.

The first program on the delivered tape
is the Tape Create Program. Consequently,
this program is the first to be punched
out. The user must remove the Tape Create
Program cards from the front of the punched

Control Cards And Operating Procedures 55

deck. The remainder of the deck is then
ready for use as a system card deck.

Preset options can be punched into Con­
trol Phase cards if the deck is used.

CREATING A SYSTEM TAPE

The Tape Create Program enables the user
to automatically convert the system card
deck into a system tape.

The procedure for creating a system tape
is as follows:

1. Punch the contents of the delivered
FORTRAN LCP tape as described above.

2. At this point, the user can punch
control options into Control Phase
cards.

3. Place the entire punched deck into the
read hopper of the 1402 Card-Read­
Punch. (Do not remove the Tape Create
Program from the front of the punch
deck.)

4. Mount a work tape on an available tape
unit.

The pressing of the Load key initiates
loading and execution of the Tape Create
Program. When execution is completed, the
LCP system has been created on the work
tape.

PROCESSING CONFIGURATIONS

The FORTRAN LCP is designed to operate
on a minimum machine configuration
consisting of an 8,000-character 1401 with
a card-reader, a printer, three tape units,
the Advanced Programming Feature, and the
High-Low-Equal Compare Feature (or a
System/360 with the 1401 Compatibility Fea­
ture and equivalent input/output devices
and features.)

The three tape units in the minimum
configura.tion are LCP work tapes. One of
these units can be used for an input
function. If the user desires, he can
convert a single program mounted on one of
the work tape units. When the source
program has been read, the tape is rewound
and unloaded.

Greater efficiency can be achieved by
using more than three tape units. Each
additional tape unit either speeds process­
ing or provides the user with more options.
The 1401 system permits as many as six tape
units to he used. If available, the
fourth, fifth, and sixth tape units can be

5.6

used for the LCP system input, source
program input, or punched and/or print
output, depending on the user's preferences
(see Figure 5) •

CARD-ORIENTED SYSTEM

If the LCP phases are on cards, the
system is called a card-oriented system.
The source programs may be either on cards
or on tape. Note that the LCP control
cards must always be introduced through the
card reader.

If a source program is on cards, the
source program is inserted into the LCP
system card deck. Figure 6 shows the
sequence in which portions of the combined
deck are placed in the 1402 read hopper.

The deck begins with the LCP Control
Phase. This phase is followed by the
control card deck for this conversion. The
control cards are followed by the first LCP
processing phase and then by the source
program itself. The rest of the deck
consists of the other LCP processing phases
in sequence.

When the minimum three tape units are
available, only a single source program can
be processed from tape. This tape is
mounted on an LCP work tape unit. The
control card deck and the system card deck
are placed in the card reader. The
sequence of the deck is: (1) LCP Control
Phase, (2) control card deck, and (3) LCP
processing phases in sequence. An entry in
a control card indicates that the source
program is on the work tape.

When a fourth tape unit is available,
the user can process single or stacked
programs from tape. However, the operator
must reload the system card deck and a
control card deck for each program to be
converted. When processing stacked pro­
grams, the LCP issues a message after the
last pro.gram has been converted.

TAPE-ORIENTED SYSTEM

When the LCP phases are on tape, the
system is called a tape-oriented system.
The source programs may be either on cards
or on tape.

In a tape-oriented system, single or
stacked programs can be processed through
the card reader. For stacked programs on
cards, the format of the input deck is as
shown in Figure 7. A control card deck is

required for each source program, and the
source program immediately follows its con­
trol card deck.

The minimum tape-oriented
tape units) also allows a
program to be processed from
tape.

system (four
single source
an LCP work

When a fifth tape unit is available,
stacked source programs can be processed
from the additional unit. When the LCP
phases and the source programs are on tape,
the only input from the card reader is the

control card decks in the sequence in which
the programs are to be converted.

In processing stacked source programs on
tape, transition from one job to the next
is accomplished by the LCP. When conver­
sion of one program is completed, the LCP
Control Phase is automatically reloaded and
processing of the next program begins.

A special entry in the terminal control
card for the last source program signals
the FORTRAN LCP that it is processing the
last in a series of stacked source
programs.

Control Cards And Operating Procedures 57·

Required Tape Units

NOTES:
* A tape containing a
single source program
can be mounted on a
work unit and removed
after the program has
been read.

**When placed on tape,
punch and listing output
are recorded on the same
tape unit.

IBM 1402 Card
Reader

LCP
Control
Cards

IBM 1401
Processing Unit

(or System/360 With
the 1401
Compatibility
Feature)

Input/Output Options

Figure 5. Input/Output Configuration Options for the FORTRAN LCP

58

IBM 1402
Card Reader

ar
Tape Unit

IBM 1402
Card Reader

or
Tape Unit

IBM 1402
Card Punch

or
Tape Unit

IBM 1403
Printer

(Model 2)
or

Tape Unit

r- --------
1 '1

I I ,._ __________ -(I

(l I I)
I

--;
- __ /User's Saurce Pragram

A II Subsequent LC P Phases
In Sequence

Termina Cantra Card __ ~ 7 First LCP Precessing Phase

-/antral Phase

Figure 6. Input Deck When Both the FORTRAN LCP and Source Program Are on Cards

Control Cards And Operating Procedures 59

,.------------71
I /I

I I I
I I I

I I I
I I

/ II 1)----1 I L-------------(I

(I / Next

-l----------, : 11 Source L :I=r~ i~aj_ f.o!!_ti:£] S'!!9 _ l I 1 / Program
I ~---"'----,r- - --------- l I I

r------------1 11
(1 __ -- -------11 I t--1----1 Iµ; I i-J LCP Control Cards for

U Next Source Program
_J ___ _

Terminal Control Card

Terminal Control Card

Terminal Control Card

...._ _________ __._ --_ 7CP C~•ml Co•• lo. fio• S°"'" P,.,,rom

Figure 7. Input Deck When the FORTRAN LCP Is on Tape and Source Programs Are
Read from the Card Reader

60

This appendix illustrates LCP conversion
of a FORTRAN program. Figure 8 is a
listing of the program as it was written
for a FORTRAN II compiler. Figure 9 is a
listing of the same program after conver­
sion by the FORTRAN LCP.

The program reads ten real numbers from
tape, sorts the numbers into ascending
sequence, takes the square root of each
number, multiplies it by .J2i, and truncates
the result to an integer. Finally, the
program writes the results onto tape. If
any product causes an accumulator overflow,
the program prints out the corresponding
input number with a message and halts.

Conversion actions and the reasons for
them are explained fully under "Conversion

APPENDIX A. SAMPLE CONVERSION

Action Lists" in the body of this manual.
Besides condensing the coding, the LCP has:

1. Placed specification statements before
the first executable statement in the
program.

2. Converted the READ and WRITE state­
ments into acceptable System/360 for­
mat.

3. Created insert variables where
required.

4. Supplied a 0 for the exponent of the
real constant PI.

5. Replaced the function names SQRTF and
XINTF with the proper System/360 names
(see Appendix B) •

6. Converted the accumulator overflow
test into a CALL to a System/360
FORTRAN subroutine.

,--~---------------------------------,
COMMON ARRAY, !FIX
DIMENSION ARRAY (1 0) , IFIX (10)
READ INPUT TAPE 2, 1 00, (ARRAY (I) , I = 1, 10)

100 FORMAT (10F12.4)
DO 200 INDEX= 1, 10
NCOMP = 1 0- INDEX
DO 200 ISUB = 1, NCOMP
IF (ARRAY (ISUB) - ARRAY (!SUB+ 1)) 200, 200, 150

150 TEMP= ARRAY (ISUB + 1)
ARRAY (!SUB + 1) = ARRAY (!SUB)
ARRAY (!SUB) = TEMP

2 00 CONTINUE
PI= 3.1415927E
DO 300 INDEX= 1,. 10
ARRAY (INDEX) = SQRTF (ARRAY (INDEX)) *PI
IF ACCUMULATOR OVERFLOW 400, 300

300 !FIX (INDEX) = XINTF (ARRAY (INDEX))
GO TO 900

400 PRINT 500, ARRAY (INDEX)
500 FORMAT (1HO, F12.4, 20HACCUMULATOR OVERFLOW)

STOP
900 WRITE OUTPUT TAPE 6, 1000, (!FIX (INDEX), INDEX = 1, 10)

1000 FORMAT (10I6)
END

INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT

-------------------------~--------------~---------------------------------J

Figure 8. FORTRAN II Source Program

Appendix A 61

r--------------------------------~----------------------~------------------,

DIMENSION ARRAY(10) ,LCP001(10) OUTPUT!
COMMON ARRAY,LCP001 OUTPUT!
READ (2, 10 0) (ARRAY {I) , I= 1, 10) OUTPUT I

100 FORMAT (10F12.4) OUTPUT!
DO 200 INDEX=1,10 OUTPUT!
NCOMP=10-INDEX OUTPUT I
DO 200 ISUB=1,NCOMP OUTPUT!
IF (ARRAY(ISUB)-ARRAY(ISUB+1)) 200,200,150 OUTPUT!

150 TEMP=ARRAY(ISUB+1) OUTPUT!
ARRAY(ISUB+1)=ARRAY(ISUB) OUTPUT!
ARRAY(ISUB)=TEMP OUTPUT!

200 CONTINUE OUTPUT!
PI=3.1415927EO OUTPUT!
DO 300 INDEX=1,10 OUTPUT!
ARRAY(INDEX)=SQRT(ARRAY(INDEX)) *PI OUTPUT!
CALL OVERFL(LCP002) OUTPUT!
GO TO (400,300,300) ,LCP002 OUTPUT!

300 LCP001 (INDEX)=INT(ARRAY(INDEX)) OUTPUT!
GO TO 900 OUTPUT!

400 PRINT 500,ARRAY(INDEX) OUTPUT!
500 FORMAT (1HO,F12.4,20HACCUMULATOR OVERFLOW) OUTPUT!

STOP OUTPUT I
900 WRITE (6,1000) (LCP001 (INDEX) ,INDEX=1,10) OUTPUT!

1000 FORMAT (10I6) OUTPUT!
END OUTPUT I

-------------------~----~---J

Figure 9. Converted Source Program

62

When the FORTRAN LCP encounters the name
of an IBM-provided built-in or library
function, it converts the FORTRAN II name
to the appropriate System/360 FORTRAN name.

Table 3 shows the function names used in
the various FORTRAN II compilers and the
equivalent function names in System/360
FORTRAN.

To use the table, the reader should scan
down a column until he finds the name of
the FORTRAN II function in which he is
interested. The reader then scans across
to find the equivalent System/360 name.
Except for certain 705 and 7080 FORTRAN
function names, the FORTRAN II names are in
alphabetical order.

A blank box on the FORTRAN II side of
the table indicates that the function was
not provided in that FORTRAN II compiler.

A blank box on the System/360 side of
the table indicates that no equivalent
function is provided in System/360 FORTRAN.
If there is no System/360 equivalent for a
FORTRAN II function, the FORTRAN LCP issues
a warning message in the output listing.

APPENDIX B. FUNCTION-NAME CONVERSION

Certain functions provided in System/360
Level B FORTRAN are not provided in Level E
or Basic Support FORTRAN. Asterisk nota­
tion is used in the table to indicate those
function that are not available in either
or beth of the lower level System/360
FORTRAN compilers.

Note 1: The 7080 FORTRAN compiler accepts
either the FORTRAN II names listed in the
table or FORTRAN IV equivalents. Except
for two cases noted in the table, the
FORTRAN IV function name is the same as the
System/360 function name. The 7080 FORTRAN
IV names are not included in the table.
When the 7080 FORTRAN IV name is the same
as a System/360 name, no name change is
required.

Note 2: The name of each of the six
functions provided in 1620 GO'I'RAN is
included in the table in the same box as
the equivalent 1620 FORTRAN function name.
Each GOTRAN function name is converted to
the equivalent System/360 single-precision
function name.

Appendix B 63

Table 3. System/360 Names for FORTRAN II Functions

FORTRAN ll Name System/360 Name

7070/7074 7090/7094
Single- Daub le-

Complex 1401 1620 1410 705 7080 Precision Precision

ABSF ABSF ABSF ABSF ABSF ABSF ABSF ABS DABS* CABS**

ASINF

ATANF
ATNtt

ATANF ATANF ATANF ATANF ATANF ATAN- DA TAN* ATANF

ATAN2F. DATAN2*

COSF cos 11
COSF

COSF COSF COSF COSF COSF cos DCOS* ccos••

DIMF DIMF DIMF DIMF DIMF DIM

EXPF
Exptt EXPF EXPF EXPF EXPF EXPF EXP DEXP* CEXP** EXPF

EXPXF EXPBF
EXPBF
EXPB t

FLOATF FLOATF FLOATF FLOATF FLOATF FLOATF FLOAT DFLOAT*

INTF INTF INTF INTF INTF INTF AINT

LOGF
LOG It

LOGF LOGF LOGF LOGF LOGF ALOG DLOG* CLOG** LOGF

LOGXF LOGBF LOGBF ALOGlO DLOGlO* CLOGlO**
ALOGB 1

MAX OF MAXOF MAX OF MAX OF MAX OF AMAXO

MAXlF MAXlF MAXlF MAXlF MAXlF AMAXl

MINOF MINOF MINOF MINOF MINOF AMINO

MINlF MINlF MINlF MINlF MINlF AMINl

MODF MODF MODF MODF MODF AMOD DMOD*

SIGNF SIGNF SIGNF SIGNF SIGNF SIGN DSIGN*

SINF
SINtt

SINF SINF SINF SINF SINF SIN DSIN* CSIN**
SINF

SQ RTF SQR It
SQ RTF

SQ RTF SQ RTF SQ RTF SQ RTF SQ RTF SQRT DSQRT* CSQRT**

TANHF TANHF TANH

XABSF XABSF XABSF XABSF XABSF XABSF IABS

XDIMF XDIMF XDIMF XDIMF XDIMF IDIM

XFIXF XFIXF XFIXF XFIXF XFIXF XFIXF IFIX

XINTF XINTF XINTF XINTF XINTF INT

XMAXOF XMAXOF XMAXOF XMAXOF XMAXOF MAXO

XMAXlF XMAXlF XMAXIF XMAXIF XMAXlF MAXl DMAXl*

XMINOF XMINOF XMINOF XMINOF XMINOF MINO

XMINIF XMINlF XMINlF XMINlF XMINlF MINl DMINl*

XMODF XMODF XMODF XMODF XMODF MOD

XSIGNF XSIGNF XSIGNF XSINGF XSIGNF !SIGN

Notes:
• Function not available in System/360 Basic Support FORTRAN.

••Function not available in System/360 Basic Support or Level E FORTRAN.
l·This is the 7080 FORTRAN Isz:name for the function. ALOGB is converted to ALOGlO.

tt This is a 1620 GOTRAN function name .'.It is converted to the equivalent System/360 single-precision function name.

64

Where more than one page reference is
provided, the first page number indicates
the major reference.

To differentiate between entries for
some input/output statements, a number in
parentheses is provided to indicate the
compiler(s) to which the entry applies.
For example, (1620) indicates that the
statement is related to one or more 1620
compilers.

ACCEPT statement (1620) ••.••••••••••••• 33
ACCEPT TAPE statement (1620) •••.•••.••• 34
Acceptable Languages •••••••••••••••••••• 5
Accessing parts of complex variables. 16,47
Accessing parts of double-precision
variables •••••••.•••••••••••• 14-15,44-45

Accumulator overflow test ••••.•••••• 24,37
A-conversion ..•..•....•.•.•••.•.•••.• 29,8
AIMAG (function) ••••••••.••••••.•••• 47,16
Allocation of COMMON storage

by FORTRAN II compilers ••••••••••••• 18
by System/360 FORTRAN compilers ••••• 18

Arithmetic operations, hier-
archy of • • • • • • • • • • • • . • • • • • • • • • • • • • • 2 3 , 51

Arithmetic statement functions
arguments in •.•••••.••.•••••••••. 31,43
containing references to complex

functions or subprograms •••••••.••• 49
definition of •..•.••••.•••.••••.•.••• 6
deletion of terminal F •..•••••••.••• 30
explicit type statements for integer
or real • 30

explicit type statements for double-
precision •..••••..••.•••.••••••. 44,43

explicit type statements for
complex • • . 4 9

initial-letter conventions •••••••••• 30
limit on arguments in •••••••••••.•••• 32
names in 1620 FORTRAN II •••••••.. 30,63
names in 7080 FORTRAN •••••••••••. 30,63
potential name conflicts ••••••••. 11,30
replacing dummy arguments in ••.••••• 43

Arithmetic statements
complex variables in •••••••••••••••• 47
containing variables with insuffi-
cient subscripts •.•••••••••••••. 32,41

double-precision variables in •••. 44-45
H-literals in •••••••••••••••••••. 37,40
involving implicit multiplication ••• 40
parentheses in•.•.....•...•....• 23

Arguments
appending subscripts to •••••••••. 32,41
effect of implicit type statements on 43
function names as arguments in CALL
statements •••••••••••••••••••••• 36,43

in arithmetic statement functions ••• 31
in complex statements ••••••••••••••• 49
limit on number of variables used as

dummy arguments • . • • . • 31
replacing dummy arguments in arith­
metic statement functions ••••••.••• 43

subprogram names as arguments in CALL
statements •••••••••••••••••••••• 36,43

INDEX

Arrays
arrangement in storage •• 13-17,36,38,40
complex arrays •.••••••••••••••.••••• 16
dimensions of . 30
double-precision arrays ••••••••••••• 14
integer and real (single-
precision) •••••••••••••••••••••• 13-14

input/output of •••••••••••••••••• 28,51
input/output of complex arrays •••••• 17
input/output of double-precision

arrays . 15
order of elements in ••••••• 13-17,36,40

ASSIGN statement ••••••••••••••••••••••• 24
Assigned GO TO statement ••••••••••••••• 24

Base computer control-card entry ••••••• 54
Basic field length ••••••••.•••••••••••• 29
Basic Programming Support FORTRAN •••• 5,54
BCDIC (Binary Coded Decimal Interchange

Code) • 10 , 5 4
Blanks in output statements •••••.•••••• 22
Blanks within words •••••••••••••••••••• 22
Boolean statements ••••••••••••••••••• 40,8
Boundary problems, relating to double-
precision variables •••••••••••••••• 46,51

Built-in functions
definition of . 6
deletion of terminal F •••••••••••••• 30
explicit type statements for integer

and real . 30
explicit type statements for double-
precision •••••••••••••••••••••••••• 30

in complex statements ••••••••••••••• 49
in double-precision statements •••••• 46
names of • • • • • • • • • • • • • • • • • • • 30, 4 6, 49, 6 4
potential name conflicts ••••••••• 11,30

CALL DVCHK statement ••••••••••••••••••• 24
CALL OVERFL statement •••••••••••••••••• 24
CALL SLITE statement ••••••••••••••••••• 24
CALL SLITET statement •••••••••••••••••• 24
Card codes

BCDIC and EBCDIC ••••••••·•••••••• 10,54
dual-character-code problem ••••••••• 10

Card code options
available combinations •••••••••••••• 10
input card code entry ••••••••••••••• 54
output card code entry •••••••••••••• 54

Card output • 5 2, 8
Card-oriented system ••••••••••••••••••• 56
Carriage control characters ••••••••• 29,51
Changing alphabetic portion of
insert variables

integer variable change entry ••••••• 55
real variable change entry •••••••••• 55

Changing preset control options •••••••• 54
CMPLX (function) ••••••••••••••••••••••• 47
Column 7, starting statements at ••••••• 22
Column 73 delimiter •••••••••••••••••••• 22
COMMON statements

containing double-precision
variables •...•.•••..••.•.•••••.. 46,51

in COMMON-EQUIVALENCE interaction
problem . 18-20

Index 65

multiple appearance of the same
variable in • 42

COMMON storage, allocation of •••••••••• 18
COMMON-EQUIVALENCE interaction problem

examples of •••••••••••••••••••••• 18-20
FORTRAN LCP resolution of ••••••••••• 19
nature of •••••••••••••••••• 18,36,37,43
reorder COMMON option .••••••••••• 19-20

Compatibility Feature, 1401 ••••• 5-6,57-58
Complex arrays

arrangement of ••••••••••••••••••• 16-17
doubling dimensions of ••••••••••• 47,17
input/output of • 17

Complex function names
conversion of •••••••••••••.•••••• 49,64
references to ••••••••••••••••••••••• 49

COMPLEX FUNCTION statement ••••••••••••• 50
Complex numbers

accessing parts of •••••••••••••••••• 16
machine-word formats of ••••••••••••• 16

Complex operations ••••••••••••••• 47,16-17
Complex statements, statement

numbers with . • 4 8
Complex subprograms, references to ••••• 49
COMPLEX type statement •••••••••••••• 48-49
Complex variables

in arithmetic statements •.•••••••••• 47
in IF statements •••••••••••••••••••• 48
in input/output lists •.••••••••••••• 48
in noncomplex statements •••••••••••• 48

Condensing of output statements •. 22,52,53
Constants

adding D-exponent notation to •••• 23,44
adding E-exponent notation to ••••• 23,8
magnitude of ..••.•.•••••.•.••.•••••• 11
number of digits in ••••••••••••••• 11,23
precision of ••••••••.••••••••••••••• 11
real constants in single-precision
statements . • • • • • • • • • • • • • • • . • • • • • • • • 2 3

real constants in double-precision
statements • • • • • • • • • • • • • • • • • • . • • • • • • 2 3

Continuation cards ···········~········· 22
Continuation lines in coding examples •• 21
Control card deck

definition of •••••••••••••••••••.••• 54
positioning in card input decks •• 59-60

Control card entries
base computer entry .•••••••••••••••• 54
date en try • 5 5
input card code entry ••••••••••••••• 54
input unit entry • 5 4
integer variable change entry ••••••• 55
listing output entries •••••••••••••• 54
listing output unit entry ••••••••••• 55
output card code entry •••••••••••••• 54
punched output content entry ••.••••• 55
punched output unit entry ••••••••••• 55
real variable change entry •••••••••• 55
reorder COMMON entry •••••••••••••••• 55
replace tape reference entry •••••••• 55
source program listing entry •••••••• 54

Control information, preset •••••••••••• 54
Conversion actions, types of •••••••••••• 8
Conversion Actions for Current FORTRAN II
Compilers

A-conversion .•...•••.•••••••••.•.••• 29
arguments in arithmetic statement

functions . 31

66

ASSIGN statement •••••••••••••••••••• 24
Assigned GO TO statement •••••••••••• 24
blanks within words ••••••••••••••••• 22
carriage control characters ••••••••• 29
condensing of output statements ••••• 22
conflicting function and subprogram

names •••••••••••••••••••••••.••• 30,64
continuation cards •••••••••••••••••• 22
current-monitor and current-compiler
control cards .•••••.••••••••••••••• 22

data set reference conventions •••••. 25
DO statement ••••••••••.••••••••••••• 24
D-exponent notation ••••••••••••••••• 23
hierarchy of arithmetic operations •• 23
input and output of arrays •••••••••• 28
machine indicator statements •••••••• 24
non-FORTRAN statements •••••••••••••• 22
order of specification statements ••• 29
PRINT statement ••.•••.••••••••••••.• 26
PUNCH statement •.••••••••••.•••••••• 26
READ INPUT TAPE statement .•••.••.••• 26
READ statement ••.•••••.•••••••••.••• 26
READ TAPE statement •••••••••.••••••• 27
reading Format specifications •.••••• 29
real constants •.••••••••••••••••..•• 23
replacing tape references ••••••••••. 28
terminal Fin function names •••••••• 30
TYPE statement •..••••.•••••••.•••.•• 27
type statements for function names •• 30
variable names ••••.••••••••.•.••••.. 23
WRITE OUTPUT TAPE statement •••••••.• 27
WRITE TAPE statement ••••.•.•••••.••• 28

Conversion Actions for the 1401 FORTRAN II
Compiler • • • • • • . • • • • • • • • • • • • • • • • • • • . • . • 3 2

index in a DO statement ••••••••.•••• 32
statements containing variables with
insufficient subscripts •••.•••••.•• 32

Conversion Actions for the 1620 GOTRAN,
1620 FORTRAN with FORMAT, and 1620
FORTRAN II Compilers

ACCEPT statement .••..••.••..•••..••• 33
ACCEPT TAPE statement •••••••••••••.• 34
PLOT statement • • • . • • • • • . • • • • • • • • • • . • 34
PRINT statement ••••••••••••••••••••• 34
PUNCH statement ••••••••.•••••••••••• 34
PUNCH TAPE statement •••••••••••••••• 35
READ statement • • • • • • • . • • • • • • • • • • • • • • 35

Conversion Actions for the 1410 FORTRAN II
Compiler

COMMON-EQUIVALENCE interaction
problem • • • • • • • • • • • • • • • • . • • • • • • • • • • . 36

direct access statements •.•••.•.•••• 36
F-cards • • . • • • • • • • • • • • • • • • • • • • . • • • • • • 36
order of elements in arrays .•.•••••. 36

Conversion Actions for the 7070-Series
and 7070 pOS FORTRAN Compilers

COMMON-EQUIVALENCE interaction
problem • • • • • . • • • • • • • • • • • • • . • • • • • • • . 3 7

H-literal in an arithmetic statement. 37
overflow indicator test statements •• 37

Conversion Actions for the 705 and 7080
FORTRAN Compilers

arrangement of arrays •••••.••••••••• 38
length of variables ••••••••••••••••• 38
negative indexing parameter in a DO

statement • 3 8
READ 0100 statement
variable dimensions •••••••••••••••••

38
39

WRITE 0500 statement .••••••••••••••• 39
Conversion Actions for the 7090/7094

FORTRAN II Compiler
General Items•.•....••..•.. 40

Boolean statements ••••••••••••.••• 40
COMMON-EQUIVALENCE interaction

problem 43
END statement ••••••••••••••••••••• 41
F-cards • . • . . • • • . . • . 4 3
FREQUENCY statement ••••••••••••••• 43
H-literal in an arithmetic or IF

statement . 40
implicit multiplication ••••••••••• 40
index in a DO statement ••••••••••• 41
multiple appearance of the same
variable in a COMMON statement ••• 42

octal conversion in a FORMAT
statement . 42

order of elements in arrays ••••••• 40
READ DRUM statement ••••••••••••••• 41
replacing arguments in arithmetic
statement functions •••••••••••••• 43

RIT statement ••.•.•••.•.•••.•••.•. 42
statements containing variables
with insufficient subscripts ••••• 41

WOT statement ••••••••••••••••••••• 42
WRITE DRUM statement •••••••••••••• 42

Complex Operations •••••••••••• 47,16-17
complex data in IF statements ••••. 48
complex function names •••••••••••• 49
complex function subprograms ••• 50,64
complex variables in arithmetic
statements • 4 7

complex variables in input/output
lists . 49

complex variables in noncomplex
statements 48

references to complex functions and
subprograms . 49

statement numbers with complex
statements . 4 8

Double-Precision Operations .•• 44,14-15
COMMON statements containing
double-precision variables ••••••• 46

double-precision function names 47,64
double-precision function sub-

programs 47,64
EQUIVALENCE statements containing
double-precision variables •••.••• 46

real constants in double-precision
statements 44

references to the least-significant
part of a double-precision
variable . 45

references to the most-significant
part of a double-precision
variable 44

specifying double-precision variables
and arithmetic statement functions 44

Conversion of function
names •••••••••••••••••• 11-12,30,47,49,63

Conversion output
listing output •••••••••••••••••• 52,8-9

converted program listing ••••••••• 53
function name table ••••••••••••••• 52
insert variable table ••••••••••••. 53
source program listing •••••••••••• 52

punched card output ••••••••••••••• 52,8

Conversion with warning, example of ••••. 8
Converted program, example of ••••••••.• 61
Creating a system card deck •.•••••••••• 55
Creating a system tape •..•.•.•••••••••• 56

Data file conversion problem .••••••••.• 12
Data sets, definition of .•••.•••••••••• 21
Data set reference numbers

conventions for System/360 ••••••••.• 25
definition of .••••••.••.•.•••••••••• 21
insertion of .•..•••••.••..•••••••••• 25

DATA statement
generated for H-literals •.••••••• 37,40
generated when inserting tape
variables •••••••••••••••••••••••••• 22

Date control card entry •••••••••••••••• 55
DEFINE FILE statement •••••••••••••••••• 36
D-exponent notation •.••••••••••.•...•.• 23
Design levels of System/360 FORTRAN .• 2,54
DIMENSION statement

array names in •.••••••.•••••••••.••• 28
in COMMON-EQUIVALENCE interaction
problem •••..•••••••••••••••••... 18-20

in relation to. variables with
insufficient subscripts •••..•••.••• 32

variable dimensions in •••.••••.••••• 39
Dimensioned insert variables •••••••••.• 19
Dimensioned variable as index in a DO

statement • • • • • . • • • • • • • • • • . • . • • . • . • • 32, 41
Direct access statements .•••••••.••.••• 36
Distributed LCP tape •••••••••••.•.•••.• 54
DO loop

effect of conversion of complex
statements on Q8

illegal transfers into •••••••.•.• 24,51
DO statements

dimensioned variable as index in . 32,41
negative indexing parameter in •••••.• 38

Double-precision, definition of ••••••.•• 6
Double-precision arrays

arrangement in storage ••••••••••.••• 15
diagram of . 15
input/output of ••••••••••••••••••••• 15

Double-precision function names ••••. 46,64
DOUBLE PRECISION FUNCTION statement •••• 47
Double-precision numbers

input/output of •••••••••••••••••.••• 15
machine-word format of •••••••••••••• 14

Double-precision operations •.• 44-47,14-15
Double-precision statements ••••••••• 44-47
Double-precision variables

in COMMON statements •••.••••••••• 46,51
in EQUIVALENCE statements .•••••.•••. 46
in input/output lists ••••••••••••••• 45
references to least-significant
parts of ••••••••••••••••••••• 45,14-15

references to most-significant
parts of ••••••••••••••••••••• 44,14-15

type statements for ••••••••••••••••• 44
Dummy arguments

effect of implicit type statements on 43
limit on variables that are also

dummy arguments •••••••••••••••.•.•. 31
replacing dummy arguments in
arithmetic statement functions ••••• 43

E-exponent notation •••.•••••••••••••••• 23
EBCDIC (Extended Binary Coded Decimal

Interchange Code) • • • • • • • • • • • • • • • • • 10, 54

Index 67

Elements in arrays, order of •• 13-17,36,40
Embedded blanks •••••••••••••••••••••••• 22
END statement • • • • • . • 41
EQUIVALENCE statements

containing double-precision variables 46
in COMMON-EQUIVALENCE interaction
problem • 18-20

Equivalencies, implied ······•· 46,51,13-17
Equivalent function names ••••••••••• 63-64
Example of converted program ••••••••••• 61
Extended Binary Coded Decimal Inter-

change Code • • • • • • • • • • . • • • • • • • • • • • • • 10, 5 4
EXTERNAL statement, generated for

F-card names • 36
Exponent notation •••••••••••••••••••• 23,8
Extraneous blanks, removal of ••••••• 22,52

F-cards • • • • • • • • • • • • . • . • • • • • • • • • • • • • • 36, 4 3
Fin function names ••••••••••••••••• 30,53
FCxxP (substitution name) • • • • • • • • • • • • • • 12
FCPxxx (insert variable) ••••••••••••••• 13
FCPOOO, use of ••••••••.•••••••••••••••• 23
FETCH statement •••••••••••••••••••••••• 36
FIND statement • 36
Fixed-point (integer), definition of 6
Floating-point (real), definition of •••• 6
FORMAT statements

A-conversion • . • 2 9, 8
applying to double-precision values • 46
H-specification ••••••••••••••••••••• 22
a-conversion • • • • • • • • . • • • • • • • • • • • • • • • 42
object-time reading of Format
specifications ••••••••••••••••••••• 29

order unchanged ••••••••••••••••••••. 53
FORTRAN key words •••••••••••••••••••••• 22
FORTRAN II Language Conversion Program

acceptable languages for ••••••••••••• 5
features and functions of •••••••••• 5,8
forms of output ••••••••••••••••••• 52,8
general description of ••••••••••••••• 7
input/output options for ••••• 56-58,7-8
messages generated by ••••••••••••••• 53
minimum machine configuration for •••• 5
output languages ••••••••••••••••••••• 5
source program requirements •••••••••• 7

FORTRAN II manuals •••••••••••••••••••••• 2
FREQUENCY statement •••••••••••••••••••• 43
Full conversion, example of ••••••••••••• 8
Function names

changing names in library ••••••••••• 12
complex function names ••••••••••• 49,64
conversion of ••••••••••• 11,30,47,49,63
double-precision function names •• 47,64
in 1620 GOTRAN •••••••••••••••••••••• 63
in 1620 FORTRAN II •••••••••••••••••• 30
in 7080 FORTRAN •••••••••••••••••• 63,30
prevention of conflicts •••••••••• 30,11
removal of terminal F ••••••••••••••• 30
substitution names for •••••••••••••• 12
table showing System/360 equivalents
for FORTRAN II names ••••••••••••••• 64

type statements for ••••••••••••••••• 30
Function name table •••••••••••••••••••• 52
FUNCTION statement •••••••••••••••••• 47,50
Function subprogram, definition of •••••• 6
General description of the FORTRAN LCP

program . 7

68

General problems in converting to
System/360 FORTRAN

arrangement of arrays in storage • 13-17
boundary problems (for double-
precision) ••••••••••••• ~ •••••••• 46,51

data file conversion •••••••••••••••• 10
dual-character codes •••••••••••••••• 10
function-name conflicts ••••••••••••• 11
magnitude of constants and variables 11
precision of calculations ••••••••••• 11
precision of functions •••••••••••••• 11
variable-name conflicts ••••••••••••• 12

H-literals
in arithmetic statements ••••••••• 37,40
in IF statements •••••••••••••••••••• 40

Hand changes before conversion,
warning against • . • . • • • • • • • • . . • • • • • • • • • • 7

Hand changes after conversion ••••• 53,9,10
Hierarchy of arithmetic operations •• 23,51
H-specifications ••••••••••••••••••••••• 22

IBM FORTRAN II compilers •••••••••••••••• 5
IF ACCUMULATOR OVERFLOW statement •••••• 24

exception for 7070 integer operations 37
IF DIVIDE CHECK statement •••••••••••••• 24
IF QUOTIENT OVERFLOW statement ••••••••• 24

exception for 7070 integer operations 37
IF (SENSE LIGHT) statement ••••••••••••· 24
IF (SENSE SWITCH) statement •••••••••••· 24
IF statement

containing complex data ••••••••••••• 48
containing H-literal •••••••••••••••• 40

Imaginary parts of complex
variables ••••••••••••••••••••••• 16-17, 4 7

Implicit multiplication •••••••••••••••• 40
Implied equivalencies ••••••••• 46,51,13-17
Incompatibilities that are not
recognized • 51, 21

carriage control characters .••••• 51,29
COMMON statements containing
double-precision variables •••••• 51,46

hierarchy of arithmetic operations 51,23
illegal transfers into a DO loop • 51,24
input and output of arrays ••••••• 51,28
order of elements in
arrays ••••••••••••••••• 51,36,40,13-17

READ 0100 statement •••••••••••••• 51,38
WRITE 0500 statement ••••••••••••• 51,38

Index in a DO statement
dimensioned variable as •••••••••• 32,41
negative indexing parameter ••••••••• 38

Input card code entry •••••••••••••••••• 54
Input/output configurations •••••••••••• 58
Input/output of arrays ••••••••••••••••• 28
Input/output of complex values ••••••••• 17
Input/output of double-precision values 15
Input/output lists

complex variables in •••••••••••••••• 48
double-precision variables in ••••••• 45

Input/output options •••••• 56-58,7-8,54-55
Input/output statements, conversion of

ACCEPT statement (1620) ••••••••••••• 33
ACCEPT TAPE statement (1620) •••••••• 34
DEFINE FILE statement (1410) •••••••• 36
direct access statements (1410) ••••• 36
FETCH statement (1410) •••••••••••••• 36

FIND statement (1410) ••••••••••••••• 36
PLOT statement (1620) ••••••••••••••• 26
PRINT statement ••••••••••••••••••••• 26
PUNCH statement ••••••••••••••••••••• 26
PUNCH statement (1620) •.•••••••••••. 34
PUNCH TAPE statement (1620) ••••••••• 34
READ statement •••••••••••••••••••••• 26
READ statement (1620) ••••••••••••••• 34
READ 0100 (7080) ••••••••••••••••••38,51
READ DRUM statement (7090) •••••••••• 41
READ INPUT TAPE statement ••••••••••• 26
READ TAPE statement ••••••••••••••••• 27
RECORD statement (1410) ••••••••••••• 36
RIT statement (7090) •••••••••••••••• 42
TYPE statement •••••••••••••••••••••• 27
WOT statement (7090) •••••••••••••••• 42
WRITE 0500 (7080) •••••••••••••••• 39,51
WRITE DRUM statement •••••••••••••••• 42
WRITE OUTPUT TAPE statement ••••••••• 27
WRITE TAPE statement •••••••••••••••• 28

Input/output statement conversion tables
summary for statements available in
most compilers •.....•..•.•..•....•• 25

summary for specialized 1620
statements • 33

Input/output units
associated with data set reference

numbers • . . . • . . • • . • . • • 2 5
options . 56-5 8

Input unit•.................•... 54,58
Insert variables

definition of •••••••••••••.••••••••• 12
changing alphabetic portions of ••••• 55
form of . . • . • • • • • • • • • . • • • • • • • • • • • • • • • 13
options to change •••••••••••••••• 55,13
purpose of •••••••••••••••••••• 12-13,23
use of dimensioned insert variables • 19
used to replace dummy arguments in
arithmetic statement functions ••••• 43

Insert variable table •••••••••••••••••• 53
Insufficient subscripts ••••••••••••• 32,41
Integer (fixed-point)

definition of .••..••.••.••.•••.•••••. 6
magnitude of .•.•.•••••..•...•••••••. 11
precision of ...•.•...•..•...•••••••• 11

Integer arrays •••••••••••••••••••••• 13-14
Integer variable change entry •••••••••• 55

Key words • 2 2

LCxxP (substitution name) •••••••••••••• 12
LCP substitution name •••••••••••••••••• 12
LCPxxx (insert variable) ••••••••••••••• 13
LCPOOO, use of ••.••••••••••.••••••••••• 23
LCP work tapes ••...••.••.••.••.•.•.•... 55
Least-significant part of a double­
precision variable

equivalencing a single-precision
variable to •••.•••••.•.•.••••••••.• 46

in arrays . 15
machine-word formats of ••••••••••••• 14
references to •.•..•••..••••.•••••.•• 45

Length of variable names ••••••••••••••• 38
Length specification on •••••••••••••••• 29
Levels of System/360 FORTRAN ••••••••• 2,54
Library functions

changing function names in library •• 12
definition of ••.•••••...•••.•.•••..•• 6

deletion of terminal F •••••••••••••• 30
explicit type statements for integer

and real • • • • • • • • • . . • 30
explicit type statements for double-
precision • • . • • . . • • • . • • • 30

in complex statements ••••••••••••••• 49
in double-precision statements •••••• 46
names of ••••••••••••••••••• 30,46,49,64
potential name conflicts ••••••••• 11,30

Listing output
contents of .•....•.••.••.•••.•..• 52-53
converted program listing ••••••••••• 53
function name table ••••••••••••••••• 52
insert variable table ••••••••••••••• 53
options for .•.•...••••..•..•.•. 56-58,8
source program listing •••••••••••••• 52
specifications in control cards ••••• 54
use of . 5 3, 9

Listing output control card entries
listing output unit entry ••••••••••• 55
source program entry •••••••••••••••• 54

Listing output unit ••••••••••••••• 55,58,5

Machine indicator statements ••••••••••• 24
Machine requirements

minimum •........•......•.••••.. 5,55-56
for additional options ••••••••••••••• 6
for card-oriented system •••••••••••• 56
for input/output options •••••••••••• 58
for tape-oriented system •••••••••••• 56
for use of 1401 Compatibility Feature 6
use of fourth, fifth, and sixth tape
units 56-57,5

Magnitude of constants and variables ••• 11
Messages

message codes•.•..•...•••••••• 53,9
text messages••....••••••• 53,9

Most-significant parts of double-
precision variables

in arrays . 15
machine-word formats of ••••••••••••• 14
references to ·······~··············· qq

Multiple appearance of the same variable
in a COMMON statement ••••••••••••••••• 43

Multiplication, implicit ••••••••••••••• 40

Name conflicts •.•.•......•..•••.•••. 11-13
Nature of FORTRAN information in this

manual • • • • • • • • • . • . . . • . • . • • • . • • • • . • . 3
Negative indexing parameter in a DO

statement • • • • • • • • • . . . • . • . • • • • • • • • • 38
No conversion, example of ••••••••••••••• 8
Non-FORTRAN coding

actions for ••••.••••••••.••••••••• 22,7
listing of •••••••••••••••••••••••••• 22
punching of ••••••••••••••••••• 55,52,22
used to refer to arrays ••••••• 13,36,40

Nonsubscripted array names •••••••••• 32,41
Nonsubscripted references to a

dimensioned variable ••••••••••••••• 32,41

Object-time reading of Format
specifications ••••••••••••.•••••••.••• 29

0-conversion .••••..••••••••..•••.••..•• 42
Operating System/360 FORTRAN IV (E Level

Subset) . 5, 2
Operating System/360 FORTRAN IV

(Level H) •••••••••••••••••••••••••••• 5 ,2

Index 69

Order of elements in arrays 13-17,36,40,51
Order of specification statements ••• 29,53
Organization of this manual ••••••••••••• 3
Output card code entry ••••••••••••••••• 54
Output languages •••••••••••••••••••••••• 5
Output listing •••••••••••••••••••••• 52-53
Output options • •••••4•••···· 56-58,8,54-55
Output statements

condensing of ••••••••••••••••••••••• 22
listing of •••••••••••••••••••••••••• 53

Output uni ts •••••••••••••••••••••••• 55, 58
Overflow indicator test statements

conversion of . 2 4
exception for 7070 integer operations 37

Parentheses in arithmetic statements ••• 23
PLOT statement ••••••••••••••••••••••••• 34
Precision

of calculations •••••••••••••.••••••• 11
of constants and variables ••••••• 11,23

Prerequisite literature ••••••••••••••••• 2
Preset control information ••••••••••••• 54
PRINT statement •••••••••••••••••••••••• 26
Processing configurations ••••••• 56-58,7-8
Processing options •••••••••••••••••••••• 7
Program actions

conversion with warning •••••••••••••• 8
full conversion •••••••••••••••••••••• 8
incompatible item, no conversion ••••• 8
warning of possible incompatibility •• 8

PUNCH statement •••••••••••••••••••••••• 26
PUNCH statement (1620) 34
Punched card output •••••••••••••••••• 52,8
Punched output specifications

punched output content entry •••••••• 55
punched output unit entry ••••••••••• 55

Punched output unit ••••••••••••••••• 55,58

Quotient overflow test •••••••••••••• 24,37

READ statement ••••••••••••••••••••••••• 26
READ statement (1620) •••••••••••••••••• 34
READ 0100 (7080) •••••••••••••••••••• 38,51
READ DRUM statement •••••••••••••••••••· 41
READ INPUT TAPE statement •••••••••••••• 26
READ TAPE statement•••••••••••••••••••• 26
Reading and writing double-precision
values •••••••.••••••••••••••••••••• 45 ,15

Real (floating-point), definition of •••• 6
Real constants and variables

limit on digits in ••••••••••••••• 23,11
magnitude of • 11
precision of • 11

REAL (function) ••••••••••••••••••••• 47,16
Real parts of complex numbers •••• 16-17,47
Real variable change entry ••••••••••••• 55
RECORD statement ••••••••••••••••••••••• 36
References

70

nonsubscripted reference to a dimen­
sioned variable ••••••••••••••••• 32,41

singly-subscripted reference to a
multiply-subscripted variable ••• 32,41

to complex functions and subprograms 49
to the least-significant part of a
double-precision variable •••••••••• 43

to the most-significant part of a
double-precision variable •••••••••• 44

Reorder COMMON option •••••••••••••••••• 55
Reordering of specification
statements ••••••••••••••••••••••••• 29, 53

Replace tape reference option
examples of implementation •••••••••• 28
specification of •••••••••••••• 55,28,13
use in correcting READ 0100 and

WRITE 0500 statements •••••••••••••• 51
use in relation to data set reference

numbers . 26
Replacing arguments in arithmetic
statement functions •••••••••••.••••••• 43

Reserved words in System/360 FORTRAN ••• 11
RIT statement . 42

Sample converted program ••••••••••••••• 61
SCxxP (substitution name) •••••••••••••• 12
SENSE LIGHT statement •••••••••••••••••• 24
Sense-switch statement ••••••••••••••••• 24
Single-precision, definition of ••••••••• 6
Single source program from work

tape ••••••••••••.•••••••••••••••• 56,58,6
SNGL (function) ••••••••••••••••••••• 44,14
Source programs

characteristics of ••••••••••••••••••• 7
hand changes to •••••••••••••••••••••• 7
input options for •••••••••••••• 56-58,7
listing of . 52

Specification statements
A-conversion . 29
effect of reordering on input/output
of arrays . 2 8

object-time reading of Format
specifications•... 29

0-conversion •••••••••••••••••••••••• 42
reordering of ••••••••••••••••• 29,28,53
sequence of .•..•..•....•.•.•...••... 19

Stacked programs
in card reader •••••••••••••••••••• 56,7
on tape • 56, 7

Standard control entries ••••••••••••••• 54
Statement function, definition of ••••••• 6
Statement numbers with complex

statements . 48
Subprogram names

complex • • . . . • • . • • • . • 49
double-precision •••••••••••••••••••• 47
F-cards for •••••••••••••••••••••• 36,43

Subroutine subprograms
definition of •••••••••••••••••••••••• 6
that simulate machine indicator tests 24

Subscripts
insufficient ••••••••••••••••.•••• 32,41
used to refer to parts of double­
precision variables •••••••••• 44-45,14

used to refer to parts of complex
variables • 16

Substitution names ••••••••••••••••••••• 12
System card deck

creation of • 55
definition of • 55

System creation •••••••••••••••••••••••• 55
System tape

creation of . 55
definition of ••••••••••••••••••••••• 55

System input options •••••••••••••• 56-58,7
System/360 function names for

FORTRAN II functions •••••••••••••••••• 64

Tape constants
conflicts with data set reference

numbers ••••••••••••••••••.•••.••••• 25
replacement of •••••••••••••••• 28,55,13

Tape Create Program •••••••.••••••••• 55-56
Tape-oriented system ••••••..••••••••••• 56
Tape reference replace
option •.•••••••••••••••••• 55,13,26,28,51

Target level of System/360 FORTRAN ••• 54,2
Terminal control card •••••.••••••••• 54,57
Terminal Fon function names •••••••• 30,53
Terms, definition of

arithmetic statement function •••••••• 6
Basic Support FORTRAN •••••••••••••••• 5
built-in function •••••••••••••••••••• 6
card-oriented system •••••••••••••••• 56
data sets • 21
data set reference numbers •••••••••• 21
double-precision • • • • • • • • . • • • • • • • • • . • • 6
dual characters . • • • • • • • • • • • • . • • • • • • • 10
fixed-point •••••••••••••••••••••••••• 6
floating-point ••••••••••••••••••••••• 6
function subprograms ..•••.••••••••••• 6
insert variable ••••••••••••••••••••• 12
integer • • • • • • . • 6
LCP system • 55
Leve 1 E FORTRAN • • • • • • • . • • • • • • • • • . • • • • 5
Level H FORTRAN •••••••••••••••••••••• 5
library function ••••••••••••••••••••• 6
magnitude • 11
precision • . • • 11
re a 1 • 6
single-precision ••••••••••••••••••••• 6
statement function ••••••••••••••••.•. 6
subroutine subprogram •••••••••••••••• 6
substitution name • • • • • • • • • • • • • • • • • • • 11
System/360 FORTRAN ••••••••••••••••••• 5
system card deck ••••.••••••••••••••• 55
sys tern tape • 5 5
tape-oriented system •••••••••••••••• 56

TYPE (as an input/output statement) •••• 27
Type statements for function names ••••• 30

Unblocked card-image input •••••••••••••• 7
Unrecognized incompatibilities •••••• 51,21

User-written functions and subprograms • 11

Variables
changing real and integer insert
variables .••••••••••••••••••••••••• 55

complex variables ••••••••••••• 47-48,16
double-precision variables •••• 44-45,14
dummy variables •••••••••••••••••• 31,·43
insert variables •••••••••••••• 12,23,55
limits on magnitude ••••••••••••••••• 11
multiple appearance of the same

variable in a COMMON statement ••••• 42
precision of ••••••••••..•••••••••••• 11
references to parts of double-
precision variables •.••••••••••• 44-45

replacement of ••••••••••••••••••.••• 23
specifying as double-precision •••••• 44
substituted for tape constants •••••• 23
types of • 11
used as dummy arguments ••••••••••••• 31
with insufficient subscripts ••••• 32,41

Variable names
length in 705 FORTRAN ••••••••••·•••• 38
replacement of •••••••••••••••••••••• 23
truncation of ••••••.•••••••••••••••• 38

Variable-name conflicts .••••••••• 12-13,23

Warning of possible incompatibility,
example of • 8

Work tapes • . • . • . • • • • 56
WOT statement • 42
WRITE 0500 statement (7080) ••••••••• 39 ,51
WRITE DRUM statement ••••••••••••••••••• 42
WRITE OUTPUT TAPE statement •••••••••••• 27
WRITE TAPE statement ••••••••••••••••••• 28

72 9 Magnetic Tape Uni ts • • • • • • • • • • • 5
1401 Compatibility Feature •••••••••••••• 6
1401 configuration ••••••••••••••••••• 5,58
1402 Card Read-Punch ••••••••••••••••• 5,58
1403 Printer, Model 2 •••••••••••••••• 5,58
7330 Magnetic Tape Units •••••••••••••••• 5
System/360 Model 30 ••••••••••••••••••••• 6
System/360 Model 40 ••••••••••••••••••••• 6

Index 71

READER'S COMMENTS

IBM System/360 Transition Aids: FORTRAN II Language Conversion Program
For the IBM 1401; Preliminary Specifications

C28-6560-0

Your comments will help us to produce better publications for your use. Please check or
fill in the items below and add explanations and other comments in the space provided.

Which of the following terms best describes your job?

n Programmer
n Manager
U Operator
n Instructor

U Systems Analyst
n Engineer
U Mathematician
n Student/Trainee

U Customer Engineer
U Systems Engineer
U Sales Representative
n Other (explain) ~~~~~~~~-

Does your installation subscribe to the SRL Revision Service? n Yes n No

How did you use this publication?

n As an introduction
n As a reference manual
n As a text (student)
n As a text (instructor)
n For another purpose (explain>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Did you find the material easy to read and understand?

Did you find the material organized for convenient use?

Specific Criticisms (explain below)

Clarifications on pages
Additions on pages
Deletions on pages
Errors on pages

Explanations and Other Comments

n Yes n No (explain below)

n Yes U No (explain below)

No postage necessary if mailed in U.S.A.

C28-6560-0

FOLD F'OLD

--- - - -- -- - ----- ...-------~------.-.------~--------

BUSINESS REPLY MAIL
NO POSTAGE STAft\P NECESSARY IF MAILED IN U.S. A.

POSTAGE WILL llE PAID BY

IBM CORPORATION

NEIGHBORHOOD ROAD

KINGSTON, N. Y. 12401

ATTN: PROGRAMMING SYSTEMS PUBLICATIONS

DEPARTMENT 637

FIRST CLASS
PERMIT NO. 116

KINGSTON, N. Y.

- -- - - - ------- ----- - - --- -- - ---------- - -----
F'OLD

rtrn~
©

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N. Y. 10601

FOLD

r.
[\;
oc
I

01
(J1
01
c
I c

C28-6560-0

Ilrnllir
@

International B11siness Machines Corporation
Data Processing Division

.112 East Post Road, White Plains, N. Y. 10601

