
Systems Reference Library

IBM System/360

Basic FORTRAN IV Language

This publication describes and illus­
trates the use of the Basic FORTRAN IV
language for the IBM System/360 Operating
System, the IBM System/360 Disk Operating
System, the IBM system/360 Tape Operating
System, and the IBM System/360 Basic Pro­
gramming support Tape System.

File No. 8360-25
Form C28-6629-0

OS
DOS
TOS
BPS

PREFACE

This publication is designed to support
four implementations of the Basic FORTRAN
IV language for the IBM System/360. The
language described is implemented for the
IBM System/360 Operating System, the IBM
System/360 Disk Operating system. the IBM
System/360 Tape Operating System. and the
IBM System/360 Basic Programming support
Tape System. Differences among the lan­
guage implementations are indicated by
footnotes.

The material in this publication is
arranged to provide a quick definition and
syntactical reference to the Basic FORTRAN
IV language by means of a box format. In
addition, sufficient text to describe each
element and examples of possible use are
given.

Appendixes contain additional informa­
tion useful in writing a FORTRAN program.
This information consists of a table of
source program characters, a comparison of
the four language implementations,, a list
of FORTRAN supplied subprograms. sample
programs. and a list of FORTRAN IV features
and statements not available in Basic
FORTRAN IV.

The reader should have some knowledge of
an existing FORTRAN language before using
this publication. A useful source of
information is the FORTRAN IV for
System/360 Programmed Instructiorl Course.

First Edition (August 1966)

This publication., Form C28-6629-0, combines the specifications coxitained
in the following publications and associated technical newsletters:

IBM Operating System/360: FORTRAN IV (E Level Subset)., Form
C28-6513

IBM Svstem/360 Basic Operating System: Specifications FORTRAN IV (16K
Disk/Tape), Form C24-5014 and Technical Newsletters N24-~.041,
N24-5069 0 N21-5018

tem/360 Basic Pro
• Form C28-6504
8

Technical Newsletters N28-210 5 and

Although the information contained in these publications and newslet­
te-rs is not obsolete~ the publications themselves are no longer being
maintained.. significant changes or additions to the specifications of
the Basic FORTRAN IV language will be reported in subsequent revisions
or Technical Newsletters to this publication, C2B-6629-0.

This publication was prepared for production using an IBM computer to
update the text and to . control the page and line format. Page
impressions for photo-offset printing were obtained from an IBM 1 l.103
Printer using a special print chain.

Requests for copies of IBM publications should be made to your IBM
representative or to the IBM branch office serving your locality.

A form is provided at the back of this publication for reader's
comments. If the form has been removed, comments may be addressed to
IBM Corporation~ Programming Systems Publications, Department D39
1271 Avenue of the Americas, New York, New York 10020

C International Business Machines Corporation 1966

Forms R29-0080 through R29-0087. This
course is available through IBM representa­
tives.

Compiler restrictions and programming
aids are contained in the progrannner's
guide for the respective system. The
appropriate programmer's guide and this
language publication are corequisite publi­
cations. The programmer's guides are as
follows:

IBM System/360 Operating System: FORTRAN
IV (E) Programmer's Guide, Form C28-6603

IBM svstem/360 Disk and Tape Operating
System: FORTR N IV Programmer's Guide,
Form C24-5038

IBM svstem/360 Basic Programming support
FORTRAN IV (Tape) Programmer's Guide,
Form C28-6583

References
tained in the
the following

are made to information con­
programmer' s guides and in
publications:

IBM System/360 FORTRAN IV Language, Form
C28-6515

IBM Svstem/360 Operating System: FORTRAN
IV (E) Library Subprograms, Form
C28-6596

INTRODUCTION • • • • • • •

ELEMENTS OF THE LANGUAGE •

Statements • • .• • • • • •
Coding FORTRAN Statements •

Constants. • • .• • • • • • •
INTEGER CONSTANTS •
Real Constants. •
Double Precision Constants.

5

7

7
8

9
9

• • • 10
11

variables. .• • • .• • • • • .• .• • • ·• • • 12
Variable Names. • .• • • • • • • 12
Variable Types and Lengths. • • • •.• 13
Type Declaration by the Predefined

Specification. • • • • • • • • • • .• 13
Type Declaration by Explicit
Specification Statements • • • • 13

Express ions. • • .• • • • • • • • • • • .• 14
Arithmetic Expressions. • • • 14

Arithmetic Operators • • • 14

Arrays • • • • • • • • • 18

Subscripts. • • • •.••••••• 20
Declaring the Size of an Array. • • • 21
Arrangement of Arrays in Storage. • • 21

ARITHMETIC STATEMENT • • • .• 22

CONTROL STATEMENTS • .• • • • 23

The GO TO Statements • .. 23
Unconditional GO TO Statement. • • 23
Computed GO TO Statement • • 24

Additional Control Statements.
Arithmetic IF Statement.
DO Statement • • • •
CONTINUE Statement •
PAUSE Statement..
STOP Statement •
END Statement •

INPUT/OUTPUT STATEMENTS.

• • 24
24

• 25
28
29

• • • 30
30

• • • 31

Sequential Input/Output Statements • • • 31
READ Statement.. • • • .• • • • • • 32

The Form READ <a,, b) list • .. 32
The Form READ (a) list • • • • 33
Indexing I/O Lists • .. • • •• 34

WRITE Statement • • • • • .• • 35
The Form WRITE <a.b) list. • • 36
The Form WRITE (a) list. • • • 37

FORMAT statement. • • • • • .• • 37
Numeric Format Codes U,F,.E,,D) •• 41
I Format Code. .• • • • • • • 41
F Format Code. • • • • • • 42
E and D Format Codes • • • • • • • 43

CONTENTS

A Format Code. • • • • • •
Literal Data In a Format

• • 44

Statement • • • • • • • • • • 46
H Format Code. • • • • • • 47
X Format Code. • • • • • 48

• • 48 T Format Code. •
Scale Factor - P •
Carriage Control

• • • • • • 49
• • • • • 51

• • • 52 END FILE Statement.
REWIND Statement. •
BACKSPACE Statement

• • • • • • • 52
52

Direct Access Input/Output statements •• 53
DEFINE FILE Statement. • • • • • • 53
Programming Considerations 54
READ Statement • • • • • • • 55
WRITE Statement. • 56
FIND Statement • • • • • 58

SPECIFICATION STATEMENTS • .
Explicit Specification
Statements •••••

DIMENSION Statement. •
COMMON Statement • • •
EQUIVALENCE Statement.

SUBPROGRAMS. • • • .• •
Naming Subprograms.
Functions • • • • •

Function Definition.
Function Reference •

Statement Functions • •

. 60

• • • . 60
• 61

62
• 64

67
•• 67

• • • • 6 8
• • 68

68
• 68

FUNCTION Subprograms •••••••
Type Specification of the

• • 70

FUNCTION Subprogram • • • • • • • 71
RETURN and END Statements in a
Function Subprogram • 72

SUBROUTINE subprograms. • • • • • 73
CALL Statement • • • • • • • • • • 74
RETURN Statement in a SUBROUTINE

Subprogram. • • • • • • • • • • • 75
EXTERNAL Statement. • • • • • • • 76

APPENDIX A: SOURCE PROGRAM CHARACTERS • 77

APPENDIX B: BASIC FORTRAN IV
IMPLEMENTATION DIFFERENCES ••••••• 78

APPENDIX C: FORTRAN SUPPLIED
SUBPROGRAMS • • • 80

APPENDIX D: SAMPLE PROGRAMS • • 83

sample Program 1 • • • • 83

Sample Program 2 • • • 84

APPENDIX E: FORTRAN IV FEATURES NOT
IN BASIC FORTRAN IV • .• .• • • • 89

INDEX. • • • • • • • • .• 91

ILLUSTRATIONS

FIGURES

Figure 1.
Figure 2.
Figure 3.

TABLES

FORTRAN Coding Form • •
Sample Program 1 •.•
Sample Program 2 ••

8
• • • 83

86

Table 1. Key Words in Basic FORTRAN IV • . 7
Table 2. Determining the Mode of an
Expression Containing Operands of
Different Types • • . • • . • • • • . 15

Table 3. Valid Combinations with
Respect to the Arithmetic Operator, ** .. 16

Table 4. Insurance Premium Codes •.••• 19

Table 5. Implementation Differences ••
Table 6. In-Line Mathematical Function

Subprograms • . • • • • • • • • • •
Table 7. Out-of-Line Mathematical

Function Subprograms • • • •
Table 8. Out-of-Line Service

Subprograms • • • • • • • • •

INTRODUCTION

The FORTRAN language is especially useful in writing programs for
scientific and engineering applications that involve mathematical compu­
tations. source programs written in the FORTRAN language consist of a
set of statements constructed from the elements described in this
publication. The FORTRAN compiler analyzes the source program state­
ments and transforms them into an object program that is suitable for
execution on the IBM System/360.

The IBM System/360 Basic FORTRAN IV language is compatible with and
encompasses the American Standards Association (ASA) Basic FORTRAN,
including its mathematical subroutine provisions. Basic FORTRAN IV is a
subset of FORTRAN IV, as described in the publication IBM System/360
FORTRAN IV Language.

The Basic FORTRAN IV language can be used with the following
compilers:

IBM System/360 Operating System FORTRAN IV (E) Compiler

IBM system/360 Disk Operating System FORTRAN IV Compiler

IBM System/360 Tape Operating System FORTRAN IV Compiler

IBM System/360 Basic Programming Support Tape System FORTRAN IV
Compiler

All of the features and facilities in Basic FORTRAN IV also exist in
FORTRAN IV. Equivalent results from valid programs compiled by either
Basic FORTRAN IV or FORTRAN IV are assured by:

1. Common data formats.

2. Common format code routines.

3. Common calling sequences.

4. Common libraries .•

The following features of Basic FORTRAN IV facilitate the writing of
source programs and reduce the possibility of coding errors:

1. Mixed-Mode: Expressions may consist of constants and variables, of
the same and/or different types.

2. Spacing Format Code: The T format code allows input/output data to
be transferred beginning at any specified position.

3. Literal Format Code: Apostrophes may be used to enclose literal
data in a FORMAT Statement.

4. The A Format Code: The A format code allows reading and writing of
character data.

5. Scale Factor: The scale factor allows modification of the internal
or external representation of data.

Introduction 5

6 .• Variable Attribute Control: The attributes
may now be explicitly specified in the
facility is provided by a single explicit
which allows a programmer to:

of variables and arrays
source program. This
specification statement

a. Explicitly type a variable as integer, real, or double preci­
sion.

b. Specify the dimension of arrays.

7. carriage Control: The first character of a record to be printed is
used for carriage control.

8. DOUBLE PRECISION Data Type: A third type of data is available: it
gives greater precision than real data.

9. Three Dimension Arrays: An array may have one~ two or three
dimensions.

10. Six Character Variable Names: The name of a variable may contain up
to six characters.

11. Direct-Access Statements: Data records may be either read from or
written on direct-access input/output devices in an order specified
by the user.

12. Function Subprograms may return results via the argument list.

6

ELEMENTS OF THE LANGUAGE

STATEMENTS

source programs consist of a set of statements from which the
compiler generates machine instructions, constants,, and storage areas.
A given FORTRAN statement effectively performs one of three functions:

1. Causes certain operations to be performed (e.g.,, add, multiply,
branch).

2. Specifies the nature of the data being handled.
3. Specifies the characteristics of the source program.

FORTRAN statements are usually composed of certain FORTRAN key words
<see Table 1) used in conjunction with the basic elements of the
language: constants., variables, and expressions. The five categories of
FORTRAN statements are as follows:

1. Arithmetic Statements: Upon execution of an arithmetic statement,
the result of calculations performed replaces the current value of
a designated variable or subscripted variable.

2. Control Statements: These statements enable the user to govern the
flow and terminate the execution of the object program.

3. Input/Output Statements: These statements, in addition to control­
ling input/output (I/O) devices, enable the user to transfer data
between internal storage and an I/O medium.

4. Specification Statements: These statements are used to declare the
properties of variables, arrays, and subprograms (such as type and
amount of storage reserved) and to describe the format of data on
input or output.

5.. Subproqram statements: These statements enable the user to name and
define functions and subroutines.

The basic elements of the language are discussed in this section.
The actual FORTRAN statements in which these elements are used are
discussed in following sections. The phrase executable statements
refers to those statements in categories 1, 2, and 3.

Table 1. Key Words in Basic FORTRAN IV
r-------------------------------~-------------------------------------1

ABS DFLOAT FORMAT READ

BACKSPACE

CALL
COMMON
CONTINUE

DABS
DBLE
DEFINE

DO FUNCTION REAL
DOUBLE RETURN
DSIGN GO REWIND

END
END FILE
EQUIVALENCE
EXIT
EXTERNAL

GOTO

IABS
IDIM
IF
IFIX
INTEGER
I SIGN

SIGN
SNGL
STOP
SUBROUTINE

WRITE
DIM FIND
DIMENSION FLOAT PAUSE
-----~------------------------------------~--------------------------J

Elements of the Language 7

CODING FORTRAN STATEMENTS

The statements of a FORTRAN source program can be written on a
standard FORTRAN coding form, Form No. X28-7327 Csee Figure 1).
FORTRAN statements are written one to a line from columns 7 through 72.
If a statement is too long for one line, it may be continued on as many
as 19 successive lines by placing any character, other than a blank or
zero, in column 6 of each continuation line. For the first line of a
statement, column 6 must be blank or zero.

Columns 1 through 5 of the first line of a statement may contain a
statement number consisting of from 1 through 5 decimal digits. Leading
zeros in a statement number are ignored. Statement numbers may appear
anywhere in columns 1 through 5 and may be assigned in any order; the
value of statement numbers does not affect the order in which the
statements are executed in a FORTRAN program. Blanks may be inserted in
statement numbers where desired.

Columns 73 through 80 are not significant to the FORTRAN compiler and
may, therefore,, be used for program identification, sequencing, etc.

IB1t1 FORTRAN Coding Form

t--------------------,----------1 ~~~~t:::~~NS

Figure 1. FORTRAN Coding Form

Comments to explain the program may be written in columns 2 through
80 of a line, if the letter c is placed in column 1. Comments may
appear anywhere within the source program. They are not processed by
the FORTRAN compiler, but are printed on the source program listing.

8

The format of all FORTRAN statements requires that every word of the
statement or expression, every name (e.g., variable name or subprogram
name), and every constant used in a statement must be terminated by one
of the following delimiters:

-• •• +/=()' Column 73

In a statement of more than one line, column 73 is only considered a
delimiter in the last line of the statement. As many blanks as desired
may be written with any delimiter to improve readability. In addition,
blanks may be inserted in key words, names, and constants; the blanks
are ignored by the compiler. However, blanks that are inserted in
literal data either enclosed in apostrophes or used in the H format code
are treated as blanks within the data. The following examples show how
blanks are treated in Basic FORTRAN IV (where E represents a blank):

GbObbTbObb2b5

~ GObTOb25 treated as GO TO 25
GOT025
3b74 treated as 374
O.b36 treated as 0.36
'TABLbE' treated as TABLbE

CONSTANTS

A constant is a fixed, unvarying quantity. Three types of constants
can be used in a FORTRAN source program: integer, real, and double
precision.

INTEGER CONSTANTS

r--1
I Definition I
~--~
I Integer Constant - a whole nwnber written without a decimal point. I
I It occupies four locations of storage. I
I I
I Maximum Magnitude: 214748 3647, i.e., (231-1). I
L--~--------J

An integer constant may be positive, zero., or negative; if unsigned,
it is assumed to be positive. Its magnitude must not be greater than
the maximum and it may not contain embedded commas.

Examples:

Valid Integer Constants:
-0--

91
173
-2147483647
-12

Invalid Integer
o.o
27.
3145903612
5,396

Constants:
(contains a decimal point)
(contains a decimal point)
(exceeds the allowable range)
(embedded comma)

Elements of the Language 9

REAL CONSTANTS

r--1 I Definition I
~--~
I I
I Real Constant: - a number with a decimal point consisting of from 1 I
I through 7 significant decimal digits occupying four storage loca- I
I tions. A real constant optionally may be followed by a decimal I
I exponent written as the letter E followed by a signed or unsigned, I
I one- pr two-digit integer constant. If the decimal point is not I
I present,, then an E exponent specifies that the constant is real. I
I I
I Magnitude: If followed by an E decimal exponent: O or 16-63 through I
I 1663 (i.e., approximately 1075); otherwise, it may I
I consist of from 1 through 7 decimal digits. I
L--J

A real constant may be positive., zero, or negative <if unsigned, it
is assumed to be positive> and roust be of the allowable magnitude. It
may not contain embedded commas. The decimal exponent permits the
expression of a real constant as the product of a real constant times 10
raised to a desired power.

Examples:

10

Valid Real Constants:

+O.
-999.9999
o.o
5764 .• 1
7.0E+O
19761.25E+l
7E3
7.0E3
7.0E03
1 .• 0E+03
7.0E-03

(i.e.~ 7.0 x 100 = 7.0>
<i.e.~ 19761.25 x 101 = 197612.5}

(i.e., 7.0 x 103 = 7000.0}

(i.e.~ 7.0 x 10-3 = 0.007}

Invalid Real Constants:

0
3.,471.1
1.E

1.2E+l13

23.5E+97

-91437.143

1.0000000

(missing a decimal point)
(embedded comma>
(missing a one- or two-digit integer
constant following the E. Note that it is not
interpreted as 1.0 x 100>
<E is followed by a 3 digit
integer constant}
<value exceeds the magnitude permitted~ that is,
23.5 x 1097>1663)
(exceeds the number of significant decimal
digits permitted}
(exceeds the number of significant decimal
digits permitted)

DOUBLE PRECISION CONSTANTS

r------------------~----------------------~--------------------------,
I Definition I
~--~
I
!Double-Precision Constant - a number with a decimal point optionally
!followed by a decimal exponent. This exponent may be written as the
!letter O followed by a signed or unsigned, one- or two-digit integer
!constant. If the decimal point is not present, then a D exponent
!specifies that the constant is double precision. A double-precision
!constant may assume one of two forms (both forms occupy eight storage
locations):

1. From 1 through 7 decimal digits followed by a D decimal
exponent..

2. From 8 through 16 significant decimal digits optionally followed
by a O decimal exponent.

Magnitude: <either form) 0 or 16-63 through 1663 (i.e., approximate­
ly 10 75).

------------------------------------~--------------------------------J

A double-precision constant may be positive, zero., or negative <if
unsigned, it is assumed to be positive) and must be of the allowable
magnitude. It may not contain embedded commas. The decimal exponent D,
similar to that for real constants (i.e., E), permits the expression of
a double-precision constant as the product of a double-precision
constant times 10 raised to a desired power. Note that a double­
precision constant has more than twice the number of significant digits
as that for a real constant, but its maximum magnitude remains the same.

Examples:

Valid Double-Precision Constants:

21.98753829457168
1. 0000000
7903
7.9003 }
7. 90+3
7.90+03
1. 90-03
7.900
O.ODO

<i.e., 7.9x103 = 7900.0)

(i.e., 7.9x10- 3 = 0.0079)
(i.e., 7.9x10° = 7.9)
<i.e., o.ox100 = o.o>

Invalid Double-Precision Constants

7.9E3
7.90

7.987143

21.3090

(should have decimal exponent D, not E)
(missing a one- or two-digit integer
constant following the D)
(decimal exponent D must follow when less
than 8 significant decimal digits are used)
(exceeds given magnitude, i.e.,
21.3x1oso>1663)

Elements of the Language 11

VARIABLES

A FORTRAN variable is a symbolic representation of a quantity that is
assigned a value. The value may either be unchanged (i.e., constant) or
may change either for different executions of a program or at different
stages within the program. For example, in the statement:

A = 5.0+B

both A and B are variables. The value of B is determined by some
previous statement and may change from time to time. The value of A
varies whenever this computation is performed with a new value for B.

VARIABLE NAMES

r-----------------------~-----------~----~--------------~----------,
I Definition I
1--~-------~
I Variable Name - from 1 through 6 alphameric (i.e., numeric, 0 I
I through 9, or alphabetic, A through z and $ > characters, the first I
I of which must be alphabetic. I
L--J

Variable names are symbols used to distinguish one variable from
another. A name may be used in a source program in one and only one way
<e.g., the name of a variable and that of a subprogram may not be
identical in the same source program). A variable name may not contain
special characters other than the blank (see Appendix A).

The use of meaningful variable names can serve
documenting a program. That is, someone other than the
look at the program and understand its function.
compute the distance a car traveled in a certain amount
given rate of speed, the following statement could have

x = y * z

as an aid in
programmer may
For example, to
of time at a

been written:

where * designates multiplication. However, it would be more meaningful
to someone reading this statement if the programmer had written:

DIST = RATE * TIME

Examples:

12

Valid variable Names:
B292
RATE
SQ704
$VAR

Invalid Variable Names:

B292704
4ARRAY
SI.X

(contains more than six characters)
(first character is not alphabetic)
(contains a special character)

VARIABLE TYPES AND LENGTHS

The type of a variable corresponds to the type of data the variable
represents. Thus, an integer variable represents integer data, a real
variable represents real data,, etc.

The number of storage locations reserved for variables depends on the
type of the variable. Integer and real variables have four storage
locations reserved; double precision variables have eight storage
locations reserved.

The ways a programmer may declare the type of a variable are by use
of the:

1. Predefined specification contained in the FORTRAN language.

2. Explicit specification statements.

TYPE DECLARATION BY THE PREDEFINED SPECIFICATION

The predefined specification is a convention used to specify
variables as integer or real as follows:

1. If the first character of the variable name is I, J, K, L, M, or N,
the variable is integer.

2. If the first character of the variable name is any other alphabetic
character, the variable is real.

This convention is the traditional FORTRAN method of implicitly
specifying the type of a variable as being either integer or real. In
all examples that follow in this publication, it is t>resumed that this
specification holds unless otherwise noted.

TYPE DECLARATION BY EXPLICIT SPECIFICATION STATEMENTS

Explicit specification statements differ from the first way of
specifying the type of a variable, in that an explicit specification
statement declares the type of a particular variable by its name rather
than as a group of variables beginning with a particular character.

For example, assume that an Explicit specification statement declared
that the variable named ITEM is real. Then ITEM is treated as a real
variable but all other variables beginning with the character I are
treated as integer variables.

These statements are discussed in greater detail in the section,
"Specification Statements."

Elements of the Language 13

EXPRESSIONS

Expressions in their simplest form consist
variable. They may also designate a computation
constants and/or variables. Expressions may
statements and in certain control statements.

of a single constant or
between two or more
appear in arithmetic

Basic FORTRAN IV provides only one kind of expression: the arithmetic
expression. The value of an arithmetic expression is always a number
whose type is integer, real,, or double precision.

ARITHMETIC EXPRESSIONS

The simplest arithmetic expression consists of a single constant,
variable. or subscripted variable (see the discussion of arrays). The
constant or variable may be one of the following types:

1. Integer
2. Real
3. Double Precision

If the constant, variable., or subscripted
integer, the expression is in the integer mode.
real, the expression is in the real mode., etc.

Examples:

Expression
3
I
3.0
A
3.14D3
B(2*I>

Tvpe of Quantity
Integer Constant
Integer Variable
Real constant
Real Variable
Double-precision Constant
Double-precision Subscripted
Variable (Specified as
such in an Explicit
Specification statement)

variable
If it is

is of the type
of the type

Mode of Expression
Integer
Integer
Real
Real
Double precision
Double precision

In the expression B(2*I), the subscript C2*I>, which must always
represent an integer,, does not affect the mode of the expression. That
is. the mode of the expression is determined solely by the type of
constant, variable, or subscripted variable appearing in that expres­
sion.

More complicated arithmetic expressions containing two
constants and/or variables may be formed by using arithmetic
that express the computation(s) to be performed.

Arithmetic Operators

The arithmetic operators are as follows:

Arithmetic Operator
**

* /
+

14

Definition
Exponentiation
Multiplication
Division
Addition
subtraction

or more
operators

RULES FOR CONSTRUCTING ARITHMETIC EXPRESSIONS: The following are the
rules for constructing arithmetic expressions that contain arithmetic
operators:

1. All desired computations roust be specified explicitly. That is, if
more than one constant, variable, subscripted variable, or function
reference (see the section °SUBPROGRAMS") appears in an arithmetic
expression, they must be separated from one another by an arithme­
tic operator. For example, the two variables A and B will not be
multiplied if written:

AxB or AB or A•B or A(B)

If multiplication is desired, then the expression must be written
as follows:

A*B or B*A

2. No two arithmetic operators may appear in sequence in the same
expression. For example, the fo~.lowing expressions are invalid:

A*/B and A*-B

The expression A*-B could be written correctly as follows:

A* (-B)

In effect, -B will be evaluated first and then A will be multiplied
by the result. (For further uses of parentheses, see Rule 6.)

3. The mode of an arithmetic expression is determined by the type of
the operands (where an operand is a variable, constant, function
reference, or another expression) in the expression. Table 2
indicates how the mode of an expression that contains operands of
different types may be determined using the operators: +., - , *, /.

Table 2.

r---------
1
I+ - * /

Determining the Mode of an Expression Containing Operands
of Different Types

----------T-----------T-----------1
I I DOUBLE I

INTEGER I REAL I PRECISION I

!INTEGER Integer I Real I Double I
I I I Precision I
~------~- -----------+-------~--+-----------~
IREAL Real I Real I Double I
I I I Precision I
~--------- -----------+---------~+---~------~
!DOUBLE Double I Double I Double I
!PRECISION Precision I Precision I Precision I
L~------- ----------~-----------~-----------1

From Table 2 it can be seen that there is a
determines the mode of an expression.
precision data when combined with any other
variables results in double-precision.

hierarchy of type that
For example, double­

types of constants and

Assume that the type of the following variables has been specified
as follows:

Variable Names
ROOT, E
A, I, F
C,D

~
Real variables
Integer variables
Double-precision variables

Elements of the Language 15

Then the following examples illustrate how constants and variables
of different types may be combined using the arithmetic operators:

+, - /, *:

Expression
ROOT*5
A+3
C+2.9D10
E/F+19
C-18. 7E05
A/I-D
C/D

Mode of Expression
Real
Integer
Double Precision
Real
Double Precision
Double Precision
Double Precision

4. The arithmetic operator denoting exponentiation (i.e.,**> may be
used to combine any types of operands as shown in Table 3.

Table 3. Valid Combinations with Respect to the Arithmetic
Operator, **

r-------------------------------------~--,

I I
I Base Exponent I
I I
I Integer } { Integer I
I Real ** Real I
I Double Precision Double Precision I
l-----------~----------------------------J

Assume that the type of the following variables has been specified
as follows:

Variable Names
ROOT,E
A, I, F
C, D

~
Real variable
Integer variables
Double-Precision variables

Then the following examples illustrate how constants and variables
of different types may be combined using the arithmetic operator,
**·

Examples:

Expression
ROOT**(A+2)
ROOT**!
I**F
7. 98E2l**ROOT
ROOT**2.1E5
A**E
C**A
E**C
I**C
D**E
D**C

~
(Real••Integer>
(Real**Integer)
<Integer••Integer>
(Real **Real>
(Real**Real>
<Integer••Real)
(Double Precision**Integer)
(Real**Double Precision)
(Integer**Double Precision>
(Double Precision**Real>
(Double Precision**Double

Precision>

Result
(Real>
(Real>
<Integer)
(Real>
<Real>
(Real>
(Double Precision)
(Double Precision)
(Double Precision)
(Double Precision)
(Double Precision>

5. Order of Computation: Where parentheses are omitted, or where the
entire arithmetic expression is enclosed within a single pair of
parentheses, effectively the order in which the operations are
performed is as follows:

16

Operation
Evaluation of Functions (see the
section, "Subprograms"}

Exponentiation (**>
Multiplication and Division (* and /)
Addition and Subtraction (+ and -)

Hierarchy
1st (highest>

2nd
3rd
4th

In addition, if two operators of the same hierarchy (with the
exception of exponentiation} are used consecutively, the component
operations of the expression are performed from left to right.
Thus, the arithmetic expression A/B*C is evaluated as if the result
of the division of A by B were multiplied by c.

For example, the expression:

(A*B/C**I+D}

is effectively evaluated in the following order:

a.
b.
c.
d.

A*B
C**I
X/Y
Z+D

Call the result X
Call the result Y
Call the result Z
Final operation

(multiplication)
(exponentiation}
(division)
(addition)

(X/C**I+D)
(X/Y+D)
(Z+D)

Note: This order of computation is used in determining the mode of
an expression (see Table 2).

For exponentiation the evaluation is from right to left. Thus, the
expression:

-A**B**C

is evaluated as follows:

a. B**C
b. A**Z
c. -Y

Call the result Z
Call the result Y
Final operation

6. Use of_ Parentheses: Parentheses may be used in arithmetic expres­
sions, as in algebra., to specify the order in which the arithmetic
operations are to be computed. Where parentheses are used, the
expression within the parentheses is evaluated before the result is
used.

For example, the following expression:

(B+((A+B}*C)+A**2)

is effectively evaluated in the following order:

a. (A+B) Call the result x (B+(X*C)+A**2)
b. (X*C) Call the result y (B+Y+A**2)
c. B+Y Call the result w (W+A**2)
d .. A**2 Call the result z CW+Z)
e. W+Z Final operation

Elements of the Language 17

7. Integer Division: When one
quotient is also an integer.
ed. For example:

integer is divided by another, the
If necessary, the result is truncat-

5/2

gives a quotient of 2.

ARRAYS

A FORTRAN array is a set of variables identified by a single variable
name. A particular variable in the array may be referred to by its
position in the array {e.g., first variable, third variable, seventh
variable, etc.). Consider the array named NEXT which consists of five
variables, each currently representing the following values: 273, 41,
8976, 59, and 2.

NEXT{1) is the representation of 273
NEXT(2) is the representation of 41
NEXT{3) is the representation of 8976
NEXT(4) is the representation of 59
NEXT(5) is the representation of 2

Each variable in this array consists of the name of the array (i.e.,
NEXT) immediately followed by a number enclosed in parentheses, called a
subscript. The variables which comprise the array are called subscript­
ed variables. Therefore, the subscripted variable NEXT(1) has the value
273; the subscripted variable NEXT(2) has the value 41, etc.

The subscripted variable NEXT(!} refers to the "Ith" subscripted
variable in the array, where I is an integer variable that may be
assigned a value of 1, 2, 3, 4, or 5.

To refer to the first element in an array, the
subscripted. The array name itself does not
element.

array name
represent

must be
the first

Consider the following array named LIST consisting of two subscripts,
the first ranging from 1 through 5, the second from 1 through 3:

Colurnn1 Column2 Column3

Rowl 82 4 7
Row2 12 13 14
Row3 91 1 31
ROW4 24 16 10
Rows 2 8 2

Suppose it is desired to refer to the number in row 2, column 3; this
would be:

LIST (2,3)

Thus, LIST (2,3) has the value 14 and LIST (4,1) has the value 24.

18

Ordinary mathematical notation might use LIST i,j to represent any
element of the array LIST. In FORTRAN, this is written as LIST(I,J)
where I equals 1,2,3,4, or 5 and J equals 1,2, or 3.

As a further example, consider the array named COST consisting of
three subscripts. This array might be used to store all the premiums
for a life insurance applicant given (1) age, (2) sex, and (3) size of
life insurance coverage desired. A code number could be developed for
each statistic where IAGE represents a.ge, ISEX represents sex, and ISIZE
represents policy size desired. (See Table 4.)

Table 4. Insurance Premium Codes
r----------------------------------T-----------------------------------1
I AGE I SEX I
t----------------------------------+-----------------------------------~
I I I
I Age in Yrs. Code I Sex Code I
I I I
I I Male ISEX=l I
I 1 - 5 IAGE=l I Female ISEX=2 I
I 6 - 10 IAGE=2 t-----------------------------------~
I 11 - 15 IAGE=3 I POLICY SIZE I
I 16 - 20 IAGE=4 t-----------------------------------~
I 21 - 25 IAGE=5 I Dollars Code
I 26 - 30 IAGE=6 I
I 31 - 35 IAGE=7 I
I 36 - 40 IAGE=8 I
I 41 - 45 IAGE=9 I
I 46 - 50 IAGE=lO I
I I
I I
I I
I 96 - 100 IAGE=20 I
I I

1,000
2,000
3,000
5,000

10,000
25,000
50,000

100,000

ISIZE=l
ISIZE=2
ISIZE=3
ISIZE=4
ISIZE=5
ISIZE=6
ISIZE=7
ISIZE=8

l----------------------------------~-----------------------------------

suppose an applicant were 14 years old, male, and desired a policy of
$25,000. From Table 4, these statistics could be represented by the
codes:

IAGE=3
ISEX=l
ISIZE=6

(11 - 15 years old)
(male)
<$25,000 policy)

Thus, COST (3, 1, 6) represents the premium for a policy given the
statistics above. Note that "IAGE" can vary from 1 through 20, "ISEX"
from 1 through 2, and "ISIZE" from 1 through 8. The number of
subscripted variables in the array COST is the number of combinations
that can be formed for different ages, sex, and policy size available -
a total of 20x2x8 or 320. Therefore., there may be up to 320 different
premiums stored in the array named COST.

The actual size (in storage iocations) of the array COST
the type of elements in the array. If each element in
real, the array size is 1280 storage locations; if each
double precision, the array size is 2560 storage locations.

depends upon
the array is

element is

Elements of the Language 19

SUBSCRIPTS

A subscript is a number used to refer to a particular variable within
an array. A subscript may take one of several forms and there may be a
maximum of three subscripts used with an array name. If more than one
subscript is used, they must be separated by commas. All of the
subscripts used with a particular array name must be enclosed in
parentheses. The number of subscripts used must be equal to the number
of dimensions in the array.

r--1 I General Form I
~--i

Subscripts - may be one of seven forms:

v
c'
v+c'
v-c'
c*v
c*v+c'
c*v-c'

Where: v represents an unsigned, nonsubscripted, integer variable.

£ and £' represent any unsigned integer constant.

Whatever subscript form1 is used, its evaluated result, as well as the
intermediate result, must always be greater than 0 and less than or
equal to 32,767. For example, when reference is made to the subscripted
variable V(I-2>, the value of I should be greater than 2 and less than
or equal to 32,767. In any case, the evaluated result must be within
the range of the array.

Examples:

Valid Subscripted Variables:

ARRAY (!HOLD)
NEXT (19)
MATRIX (l-5)
A(S*L)
W(4*M+3)

Invalid subscripted variables

ARRAY (-I)
COST(A+2)

ARRAYCI+2.)

NEXT(-7*J}
W(l(2))
LOT (0)

(the subscript I may not be signed)
CA is not an integer variable unless defined as
such by an Explicit specification statement>
Cthe constant within a subscript must be an
integer)
(the constant within a subscript must be unsigned)
(the subscript, I, may not be subscripted>
Ca subscript may never be nor assume a value of
zero)

1If more than one subscript form is used., the product of all subscripts
must be less than or equal to 131., 068 in Operating System FORTRAN IV CE)
and less than or equal to 32,767 in the other three systems.

20

TEST CK*2) (if multiplication is indicated, the constant must
precede the variable. Thus, TEST C2*K) is
correct.)

TOTAL (2+K) (if addition is indicated, the variable must pre­
cede the constant. Thus, TOTAL (K+2) is correct.)

DECLARING THE SIZE OF AN ARRAY

The size of an array is determined by the number of subscripts of the
array and the maximum value of each subscript. This information must be
given for all arrays before using tnern in a FORTRAN program so that an
appropria.te amount of storage may be reserved. Declaration of this
information is made by a DIMENSION s+-atement, a COMMON statement, or by
one of the Explicit specification statements; these statements are
discussed in further detail in the section, "Specification Statements."

ARRANGEMENT OF ARRAYS IN STORAGE

Arrays are stored in ascending storage locations, with the value of
the first of i:.heir subscripts increasing most rapidly and the value of
the last increasing least rapidly.

The array named A, consisting of one subscript which varies from 1 to
5, appears in storage as follows:

A(l) A(2) A(3) A(4) A(5)

The array named B, consisting of two subscripts, whose first
subscript varies over the range from 1 to 5, and second varies from 1 to
3, appears in ascending storage locations in the following order:

B(l,1) B(2,1) B(3,1) B(4,1) B(5,1)J

r+:B(l,2) B(2,2) B(3,2) B(4,2) B(5,2)J

i:B(1,3) B(2,3) B(3,3) B(4,3) B(5,3)

Note that B(l,2) and B(l,3) follow in storage B(5,1) and B(5,2),
respectively.

The following list is the order of an array named
three subscripts, whose first subscript varies
varies from 1 to 2, and third varies from 1 to 3:

c, consisting of
from 1 to 3, second

C(l,1,1) C(2,1,1) c { 3,, 1, 1) C<l,2,1) CC2,2,1) CC3,2.,1) I

l..cu,1,2> CC2,1,2) C(3,1,2) C(l,2,2) C(2,2,2) C(3,2.,2) I

Ccu,1,3> C(2,1,3) C(3,1,3) C<l,2,3) C(2,2,,3) CC3,2,3)

Note that C(l,1,2) and CCl,1,3) follow in storage C(3,2,1) and
C(3,2,2), respectively.

Elements of the Language 21

ARITHMETIC STATEMENT

,--, I General Form I
~--~
I I
l~=B I
I I
I Where: ~ is any subscripted or nonsubscripted variable. I
I I
I B is any arithmetic expression. I
~--J

This FORTRAN statement closely resembles a conventional algebraic
equation; however. the equal sign specifies replacement rather than
equivalence. That is. the expression to the right of the equal sign is
evaluated. and the resulting value replaces the current value of the
variable to the left of the equal sign.

Assume that the type of the following variables has been specified
as:

Variable Names

I,. J .• W
A .• B, D
E
F

Integer variables
Real variables
Double-Precision variable
Real array

Then the following examples illustrate valid
using constants,. variables, and subscripted
types:

arithmetic statements
variables of different

Statements

A = B
w = B

~ = iI
I

I = I + 1
B = I**J+D

A = B*D

A = I+E

A= F(5,.4)
E :::; I

J = E

E =A

22

Description

The value of A is replaced by the current value of B.
The value of B is truncated to an integer value. and
this value replaces the value of w.
The value of I is converted to a real value, and this
result replaces the value of A.
The value of I is replaced by the value of I + 1.
The value of I is raised to the power J and result is
converted to a real value to which the value of D is
added. This result then replaces the value of B.
The most significant part of the product of B and D
replaces the value of A.
The value of I is converted to double precision and
and added to E. The result of the addition is
truncated from double precision to real and replaces
the value of A.
The value of F(5,4) replaces the value of A.
The value of I is converted to double precision, and
this value replaces the value of E.
The value of E is truncated to an integer value., and
this value replaces the value of J.
The value of A is converted to double precision., and
this value replaces the value of E.

CONTROL STATEMENTS

Normally, FORTRAN statements are executed sequentially. That is,
after one statement has been executed, the statement immediately
following it is executed. This section discusses the statements that
may be used to alter and control the normal sequence of execution of
statements in the program.

THE GO TO STATEMENTS

The GO TO statements transfer control to the statement specified by
number in the GO TO statement. Control may be transferred either
unconditionally or conditionally. The GO TO statements are:

1. The Unconditional GO TO Statement.

2. The Computed GO TO Statement.

Unconditional GO TO Statement

r--1
I General Form I
~--~
I I
I GO TO xxxxx I
I I
I Where: ~ is an executable statement nwnber. I
L--J

This GO TO statement causes control to be transferred to the
statement specified by the statement number. Every subsequent execution
of this GO TO statement results in a transfer to that same statement.
Any executable statement immediately following this statement should
have a statement number; otherwise, it can never be referred to or
executed.

Example:

50 GO TO 25
10 A = B + C

25 C = E**2

Explanation:

In the above example, every time statement 50 is executed, control is
transferred to statement 25.

Control Statements 23

Computed GO TO Statement

r--1
I General Form I
~------------------~---------~---------------------------------------~
I GO TO (.!1 r .!2 r .!3 r • • • r .!n) r ! I
I I
I Where: ,!1 ,,!2 , ••• ,~, are executable statement nlimbers. I
I I
I ! is a nonsubscripted integer variable and is in the range: I
I 1 :s; ! :s; n I
l--------------~--------------------~--------------------------------J

This statement causes control to be transferred
numbered .!1 , .!2 , ,!3 •••• , or .!nr depending on whether
of! is 1, 2, 3, ••• , or n, respectively. If the value
the allowable range, the next statement is executed.

Example:

GO TO (25, 10, 50, 7), ITEM

50 A = B+C

7 C = E**2+A

25 L = C

10 B = 21.3E02

Explanation:

to the statement
the current value
of ! is outside

In this example, if the value of the integer variable ITEM is 1,
statement 25 will be executed next. If ITEM is equal to 2, statement 10
is executed next, and so on.

ADDITIONAL CONTROL STATEMENTS

Arithmetic IF Statement

r----------~----------------------------~~--------------------------, I General Form I
~----------~~----------~--~
I I
I IF (~) .!1·r.!2r.!3 I
I I
I Where: ~ is an arithmetic expression. I
I I
I .!1rr.!2 .,!3 are executable statement numbers. I
l--------------~--~----------------~----~--------------------------J

24

This statement causes control to be transferred to the statement
numbered ~1 ,~2 , or ~3 when the value of the arithmetic expression (~) is
less than, equal to, or greater than zero, respectively. 'rhe first
executable statement following the arithmetic IF statement should have a
statement number; otherwise, it can never be referred to or executed.

IF (A(J,K)**3-B)10, 4, 30

4 D = B + C

30 C = D**2

10 E = (F*B)/D+l

Explanation:

In the above example, if the value of the expression (A(J,K)**3-B) is
negative, the statement numbered 10 is executed next. If the value of
the expression is zero, the statement numbered 4 is executed next. If
the value of the expression is positive, the statement numbered 30 is
executed next.

DO Statement

r--1
I General Form I
~--~

End of DO Initial Test
Range Variable Value Value Increment
~~ ~~~

DO i = .!!!2.

Where: x is an executable statement number that is not defined
before the DO statement.

i is a nonsubscripted integer variable.

_!!! 1 , .!!!2 , .!!! 3 , are either unsigned integer constants greater
than zero or unsigned nonsubscripted integer variables whose
value is greater than zero. _!!! 2 may not exceed 2 31-2 in
value. .!!!3 , is optional; if it is omitted, its value is
assumed to be 1. In this case, the preceding comma must
also be omitted.

I
I
I
I __ J

The DO Statement is a command to execute repeatedly the statements
that follow,, up to and including the statement numbered ~- The first
time the statements in the range of the DO are executed, i is
initialized to the value .!!!1 ; each succeeding time ! is increased by the

Control statements 25

value m3 • When, at the end of the iteration, i is equal to the highest
value that does not exceed !!,!2 , control passes to the statement following
the statement numbered x. Thus, the number of times the statements in
the range of the DO is executed is given by the expression:

r ,
I !!!2 - !!!1 I
I ------- I +1
I !!!s I
l J

where the brackets represent the largest integral value not exceeding
the value of the expression. If m2 is less than m1 , the statements in
the range of the DO are executed once. Upon completion of the DO, the
DO variable is undefined, and should not be used until redefined (e.g.,
in a READ list).

There are several ways in which looping (repetitively executing the
same statements) may be accomplished when using the FORTRAN language.

Example 1:

Assume that a manufacturer carries 1,000 different machine parts in
stock. Periodically, he may find it necessary to compute the amount of
each different part presently available. This amount may be calculated
by subtracting the number of each item used, OUT(I), from the previous
stock on hand, STOCK(l).

5 I=O
10 I=I+l
25 STOCK(I)=STOCK(I)- OUT(I)
15 IF(I-1000) 10,30,30
30 A=B+C

Explanation:

The three statements (5, 10, and 15)
previously shown loop could be replaced by a
follows:

DO 25 I = 1,1000
25 STOCK(I) = STOCK(I)-OUT(I)
30 A = B+C

required to control the
single DO statement as

In the above code, the DO variable, I, is set to the initial value of 1.
Before the second execution of statement 25, I is increased by the
increment, 1, and statement 25 is again executed. After 1000 executions
of the DO loop, I equals 1000. Since I is now equal to the highest
value that does not exceed the test value, 1000, control passes out of
the DO loop and statement 30 is executed next. Note that the DO
variable I is now undefined; its value is not necessarily 1000 or 1001.

26

Example 2:

DO 25 I=l, 10, 2
15 J = I+K
25 ARRAY(J) = BRAY(J)
30 A = B + C

Explanation:

In the preceding example, statement 25 is the end of the range of the
DO loop. The DO variable, I, is set to the initial value of 1. Before
the second execution of the DO loop, I is increased by the increment, 2,
and statements 15 and 25 are executed a second time. After the fifth
execution of the DO loop, I equals 9. Since I is now equal to the
highest value that does not exceed the test value, 10, control passes
out of the DO loop and statement 30 is executed next. Note that the DO
variable I is now undefined; its value is not necessarily 9 or 11.

Programming Considerations in Using a DO Loop

1. The indexing parameters of a DO statement <i, ~1 , ~2 , ~3) may not
be changed by a statement within the range of the DO loop.

2. There may be other DO statements within the range of a DO
statement. All statements in the range of the inner DO must be in
the range of the outer DO. A set of DO statements satisfying this
rule is called a nest of DO's.

Example 1:

DO 50 I = 1, 4

A(I) = B(I) **2

DO 50 J=l, 5

50 C(J+l) = A(I)

Example 2:

DO 10 INDEX L, M

N = INDEX + K

DO 15 J = 1, 100, 2

15 TABLE(J) = SUM(J,N)-1

10 B(N) = A(N)

Range of
Inner DO

l Range of
Inner DO

Range of
Outer DO

Range of
Outer DO

3. A transfer out of the range of any DO loop is permissible at any
time; a transfer into the range of a DO loop is permissible only as
described in item 4.

Control Statements 27

4. When a transfer is made out of the range of an innermost DO loop,
transfer back into the range of that DO loop is allowed if and only
if none of the indexing parameters <1,m1 ,m2 .m3 > are changed outside
the range of the DO

Example:

DO DO

----+-2 -4"----s

'-----;)3

Explanation:

In the preceding example, the transfers specified by the numbers
1,2, and 3 are permissible, whereas those specified by 4,5, and 6
are not.

5. The indexing parameters C!,m1 ,m2 ,m3 > may be changed by statements
outside the range of the DO statement only if no transfer is made
back into the range of the DO statement that uses those parameters.

6.. The last statement in the range of a DO loop (statement ~) must be
an executable statement, not of the form GO TO, PAUSE, STOP,
RETURN, Arithmetic IF, or another DO.

7. The use of, and return from, a subprogram from within any DO loop
in a nest of DOs is permitted.

CONTINUE Statement

r--1 I General Form I
~------------------------~---i
I I
I CONTINUE I
L--J

CONTINUE is a dummy statement which ma.y be placed anywhere in the
source program without affecting the sequence of execution. It may be
used as the last statement in the range of a DO in order to avoid ending
the DO loop with a GO TO, PAUSE., STOP, RETURN, Arithmetic IF or another
DO statement.

28

Example 1:

DO 30 I = 1, 20
7 IF (A(I)-B(I)) 5,30,30
5 A(I) =A(I) +1.0

B(I) = B(I) -2 .• 0

GO TO 7
30 CONTINUE
40 C = A(3) + B(7)

Explanation:

In the preceding example, the CONTINUE statement is used as the last
statement in the range of the DO in order to avoid ending the DO loop
with the statement GO TO 7.

Example 2:

DO 30 I=l,, 20
IF(A(I)-B(I))S,40,40

5 A(I) = CCI)
GO TO 30

40 A(I) = 0.0
30 CONTINUE

Explanation:

In Example 2, the CONTINUE statement provides a branch point enabling
the programmer to bypass the execution of statement 40.

PAUSE Statement

r----------~--1

I General Form I
~------------------~-----------~---------~----------------~--------i
I PAUSE I
I PAUSE !! I
I I
I Where: !! is an unsigned 1 through 5 digit integer constant. I
L--------------~-------------~---------------------------------------l

Information is displayed and the program waits until operator
intervention causes it to resume execution, starting with the next
statement after the PAUSE statement. The particular form of the PAUSE
statement used determines the nature of the information that is
displayed. The PAUSE statement causes PAUSE 00000 to be displayed. If
!! is specified, PAUSE !! is displayed.

Control Statements 29

STOP Statement

r--1
I General Form I
~--~
I I
I STOP I
1 sToP n 1
I I
I Where: n is an unsigned 1 through 5 digit integer constant. I
L--J

This statement terminates the execution of the object program and
displays n if specified.

END Statement

r--1
I General Form I
~--~
I I
I END I
L--J

The END statement is a nonexecutable statement that defines the end
of a source program or source subprogram for the compiler. Physically,
it must be the last statement of each program or subprogram, and it may
not be continued.

30

INPUT/OUTPUT STATEMENTS

The input/output statements enable a user to transfer data, belonging
to a named collection of data, between input/output devices (such as
disk units, card readers, and magnetic tape units) and internal storage.
The named collection of data is called a data set and is a continuous
string of data that may be divided into FORTRAN records.

A data set is referred to by an integer constant or integer variable.
Formerly, this reference was called a symbolic unit number. However,
because the reference is to the data rather than any specific device,
this number ~s called the data set reference number.

There are two types of I/O statements: sequential I/O statements
(available in all Basic FORTRAN IV systems) and direct access I/O
statements Cnot available in Basic Programming Support FORTRAN IV). The
sequential statements provide facilities for the sequential selection
and placement of data.. These statements are device independent because
a given statement may be· applicable to a data set on any number of
devices or device types.

The direct access I/O statements provide facilities for
and placement of data in an order specified by the
statements are only valid when the data set will be
resident on a direct access storage device.

SEQUENTIAL INPUT/OUTPUT STATEMENTS

the selection
user. These
or is already

There are five sequential I/O statements: READ, WRITE, END FILE,
REWIND, and BACKSPACE. The READ and WRITE statements cause transfer of
records of sequential data sets. The END FILE statement defines the end
of a data set; the REWIND and BACKSPACE statements control the
positioning of data sets.

In addition to these five statements, the FORMAT statement, although
it is not an I/O statement, is used with certain forms of the READ and
WRITE statements. The FORMAT statement specifies the form in which the
data is to be transmitted and allows the user to divide a data set into
FORTRAN records.

Even though the I/O statements are device independent, the original
source or the ultimate destination of the data being transferred
influences the specification of the records and data formats. There­
fore, subsequent examples are in terms of card input and print-line
output unless otherwise noted.

Input/Output Statements 31

READ STATEMENT

r---~--------------------------, I General Form I
1--~

Where: a is an unsigned integer constant or an integer variable
that represents a data set reference number.

b is the statement number of the FORMAT statement that
describes the data being read.

list is a series of variable or array names,,
indexed and must be separated by connnas.
specify the number of items to be read and the
storage into which the data is placed.

which may be
These names
locations in

L--J
The READ statement may take many forms. Either the list parameter or

the B parameter may be omitted.

The basic forms of the READ statement involve formatted and unformat­
ted data. They are respectively:

READ(a~b)list
READ(~)list

The Form READ (a,,b) list

This form is used to read data from the data set associated with a
into the locations in storage specified by the variable names in the
list. The list, used in conjunction with the specified FORMAT statement
b (see the section, "FORMAT statement">, determines the number of items
Cdata) to be read,, the locations, and the form the data will take in
storage.

Example 1:

Assume that the variables A, B., anii c have been declared as integer
variables.

75 FORMAT (110,, IS, I9)

READ (J, 75) Aw B., C

32

Explanation:

The above READ statement causes input data from the data set
associated with data set reference number J to be read into the
locations A,, B,. and c as specified by FORMAT statement 75. That is, the
first 10 positions of the record are read into storage location A; the
next 8 positions are read into storage location B; and the next 9
positions are read into storage location c.

The list may be omitted from the READ (~ 1 .Qllist statement. In this
case, a record is skipped or data is read from the data set associated
with a into the locations in storage occupied by the FORMAT statement
numbered _Q.

Example 2:

98 FORMAT ('HEADING')

READ (5, 98)

Explanation:

The above statements would cause the characters H, E, A, D, I, N, and
G in storage to be replaced by the next 7 characters in the data set
associated with data. set reference number 5.

Example 3:

98 FORMAT (IlO,'HEADING')

READ (5,,98)

Explanation:

The above statements would cause the next record in the data set
associated with data set reference number 5 to be skipped. No data is
transferred into internal storage because there is no list item which
corresponds with format code IlO.

The Form READ (a) list

The form READ (~) list of the READ statement causes binary data
(internal form) to be read from the data set associated with a into the
locations of storage specified by the variable names in the list. Since
the input data is always in internal form., a FORMAT statement is not
required. This statement is used to retrieve the data written by a
WRITE (~) list statement.

Input/Output Statements 33

Example 1:

READ (5) A, B. C

Explanation:

This statement causes the binary data from the data set associated
with data set reference number 5 to be read into the storage locations
specified by the variable names A,, B, and c.

The ~ may be omitted from the READ (~) list statement. In this
case,, a record is skipped.

Example 2:

READ (5)

E~lanation:

The above statement would cause the next record in the data set
associated with data set reference number 5 to be skipped. No data is
transferred into internal storage.

Indexing I/O Lists

Variables within an I/O list may be indexed and incremented in the
same manner as those within a DO statement. These variables and their
indexes must be included in parentheses. For example., suppose it is
desired to read data into the first five positions of the array A. This
may be accomplished by using an indexed list as follows:

15 FORMAT (F10.3)

READ (2.15} (A(I) • I=l, 5)

This is equivalent to:

15 FORMAT (FlO. 3)

DO 12 I = 1,5
12 READ (2,15) A(I)

As with DO statements. a third indexing parameter may be used to
specify the amount by which the index is to be incremented at each
iteration,. Thus,

READ (2,15) (A(I)., !=1.,10,2)

causes transmission of values for A(l), A(3), A(5), A(7), and A(9).

Furthermore. this notation may be nested. For example, the state­
ment:

READ (2 ,15) ((C U,J) ,D(I,J) .,J=l., 3) I I=l., 4)

34

would transmit data in the following order:

C(l,1), 0(1,1). C(l,2), on. 2>. C(l,3), DCl,3).,
C(2,1),, 0(2,,1). C(2,2), 0(2,2),, C(2,3), DC2,3) I

C(3,,1} I 0(3,1), C(3,2), 0(3,2), C(3,3)., 0(3,3),
C(4,1), DC4.,U., C(4.,2)., 0(4,,2), C(4,,3) 1 DC4,3).

Since J is the innermost index, it varies more rapidly than I.

As another example, consider the following:

READ (2,25) I,(C(J),J=l,I)

The variable I is read first and its value then serves as an index to
specify the number of data items to be read into the array c.

If it is desired to read data into an entire array., it is not
necessary to index that array in the I/O list. For example, assume that
the array A consists of one subscript ranging from 1 to 10. Then the
following READ statement referring to FORMAT statement numbered 5:

READ (2,,5) A

would cause data to be read into A(l),, A(2) , ••• ,A(lO).

The indexing of I/O lists applies to WRITE lists as well as READ
lists.

WRITE STATEMENT

r--------~--------~--1
I General Form I
~---~--------------~

WRITE (.5!_,. _Q) list

Where: a is an unsigned integer constant or an integer variable
that represents a data set reference number.

b is the statement number of the FORMAT statement that
describes the data being written.

list is a series of variable or array names, which may be
indexed and must be separated by commas. These names
specify the number of items to be written and the locations
in storage from which the data is taken.

L----------~--~--~--------------------~----------------------------

The WRITE statement may take many different forms. For example, the
list or the parameter .Q may be omitted.

The basic forms of the WRITE statement involve formatted and
unformatted data. They are:

WRITECa.b)list
WRITEC°i>Iist

Input/Output Statements 35

The Form WRITE (a,b) list

This form is used to write data in the data set associated with ~
from the locations in storage specified by the variable names in the
list. The list. used in conjunction with the specified FORMAT statement
]2, determines the number of items (data> to be written, the locations,
and the form the data will take in the data set.

Example 1:

In the following example, assume that the variables A, B, and c have
been declared as integer variables.

75 FORMAT (IlO, I8, I9)

WRITE (J,, 75) A, B., C

Explanation:

The above WRITE statement causes output data to be written in the
data set associated with the data set reference number J, from the
locations A,, B, c, as specified by FORMAT statement 75. That is, the 10
rightmost digits in A are written in the data set associated with the
data set reference number J; the next 8 positions in the data set will
contain the 8 rightmost digits in B; and the next 9 positions in the
data set will contain the 9 rightmost digits in c.

The list may be omitted from the WRITE <~ .• !!> list statement. In this
case,, a blank record is inserted or data is written in the data set
associated with ~ from the locations in storage occupied by the FORMAT
statement B·
Example 2:

9 8 FORMAT (I HEADING I)

WRITE (5,98)

The above statements would cause a blank and the characters H, E, A,
D,, I., N,, and G in storage to be written in the data set associated with
data set reference number 5 .•

Example 3:

98 FORMAT <IlO., 'HEADING')

WRITE (5,98)

Explanation:

The above statements would cause a blank record
data set associated with data set reference
transferred into the data set because there is
corresponds with the format code IlO.

36

to be written in the
number 5. No data is
no list item which

The Form WRITE (a) list

The WRITE (a) list form of the WRITE statement causes binary data
(internal form) from the locations of storage specified by the variable
names in the list to be written in the data set associated with a.
Since the output data is always in internal form, a FORMAT statement Is
not required. The READ (a) list statement is used to retrieve the data
written by a WRITE (a) list statement.

Example:

WRITE (5) A. B. C

Explanation:

The statement causes the binary data from the locations specified by
the variable names A. B, and c to be written in the data set associated
with data set reference number 5.

FORMAT STATEMENT

r--------------~--1
I General Form I
·--~

~ FORMAT (_£,.,.£21 ••• 1£n/£,_' 1.£2' 1 ••• 1.£n' / • ••)

Where: xxxxx is a statement number (1 through 5 digits).

£3.1.£21•••1.£n and .£,_'1.£2 '1•••1.£n' are format codes which may
be delimiteo by one of the separators: comma, slash, or
parenthesis. These codes _specify the length, decimal point
(if any), and position of the data in the data set.

/ may be used to separate FORTRAN records.

The FORMAT statement is used in conjunction with the READ and WRITE
statements in order to specify the desired form of the data to be
transmitted. The form of the data is varied by the use of different
format codes.

The format codes are:

I - to transfer integer data
F - to transfer real or double precision data that does not contain

a decimal exponent
E or D - to transfer real or double precision data that contains an

E or D decimal exponent. respectively
A - to transfer character data
Literal - to transfer a string of alphameric and special characters
H - to transfer literal data
X - to either skip data when reading or insert blanks when writing
T - to specify the position in a FORTRAN record where transfer of

data is to start
P - to specify a scale factor

Input/Output Statements 37

Any number used in a FORMAT statement, except the statement number,
scale factor., or any literal, must be less than or equal to 255. The
scale factor must be less than or equal to 127.

USE OF THE FORMAT STATEMENT: This section contains general information
on the FORMAT statement. The points discussed below are illustrated by
the examples that follow.

1. FORMAT statements are nonexecutable and may be placed anywhere in
the source program.

2. A FORMAT statement may be used to define a FORTRAN record as
follows:

38

a. If no slashes or additional parentheses appear within a FORMAT
statement, a FORTRAN record is defined by the beginning of the
FORMAT statement (left parenthesis> to the end of the FORMAT
statement <right parenthesis). Thus., a new record is read when
the format control is initiated <left parenthesis); a new
record is written when the format control is terminated <right
parenthesis).

Example:

xxxxx FORMAT (----, ----., ----)

<-------------->
t
I
I
L---corresponds to 1

FORTRAN record

b. If slashes appear within a FORMAT statement, FORTRAN records
are defined by the beginning of the FORMAT statement to the
first slash in the FORMAT statement, from one slash to the next
succeeding slash, or from the last slash to the end of the
FORMAT statement. Thus, a new record is read when the format
control is initiated, and thereafter a record is read upon
encountering a slash; a new record is written upon encountering
a slash or when format control is terminated.

Example:

~ FORMAT (----/ ----/ ----)

<---> <---> <--->
I I I
I I I
L---------------each corresponds to

1 FORTRAN record

c. If more than one level of parentheses appear within a FORMAT
statement, a FORTRAN record is defined by the beginning of the
FORMAT statement to the end of the FORMAT statement. At this
point, the definition of the FORTRAN record continues at the
first-level left parenthesis that precedes the end of the
FORMAT statement.

Example:

0 1 1
xxxxx FORMAT (--- (---)

1 1 0
(---) ---)

<--------------------->
I
I <------->
I I
I I
I I
L------------------each corresponds to

1 FORTRAN record

When defining a FORTRAN record by a FORMAT statement it is
important to consider the original source {input) or ultimate
destination (output) of the record. For example, if a FORTRAN
record is to be punched for output, the record should not be
greater than 80 characters. For input, the FORMAT statement should
not define a FORTRAN record longer1 than the record referred to in
the data set.

3. Blank output records may be introduced or input records may be
skipped by using consecutive slashes (/) in a FORMAT statement. If
there are n consecutive slashes at the beginning or end of a FORMAT
statement, n input records are skipped or n blank records are
inserted between output records, respectively. If n consecutive
slashes appear anywhere else in a FORMAT statement, the number of
records skipped or blank records inserted is n-1. For example, the
statements:

10 FORMAT (///I6)

READ (INPUT,10) MULT

cause three records to be skipped on the data set associated with
INPUT before data is read into MULT.

The statements, where 'x' is a carriage control character (see,
"Carriage Control"):

15 FORMAT ('x',I5,////'x',F5.2,I2//)

WRITE (IOUT,15) K,A,J

result in the following output:

Integer
(blank line)
(blank line)
(blank line)
Real., Integer
<blank line)
(blank line)

1 In Basic Programming Support FORTRAN IV, Disk Operating System FORTRAN
IV, and Tape Operating System FORTRAN IV, a maximum of 255 characters
per record may be transmitted. In Operating System FORTRAN IV (E), the
maximum depends upon the device (see the FORTRAN IV (E) Programmer's
Guide).

Input/Output Statements 39

4. Successive items in an I/O list are transmitted according to
successive format codes in the FORMAT statement,, until all items in
the list are transmitted. If there are more items in the list than
there are codes in the FORMAT statement, control transfers to the
preceding left parenthesis of the FORMAT statement and the same
format codes are used again with the next record. If there are
fewer items in the list, the remaining format codes are not used.
For example., suppose the following statements are written in a
program:

10 FORMAT (F10.3,E12.4,F12.2)

WRITE (3.,10) A,B,,C,D,E,F,G

The following table shows the data transmitted in the column on the
left and its corresponding format code.

Data Transmitted Format Codes

A F10.3 } first data
B E12.4 record
c F12.2
D Fl0.3

l
second data

E E12.4 record
F F12.2
G F10.3 third data

record

5. A format code may be repeated as many times as desired by preceding
the format code with an unsigned integer constant. Thus,

(2F10.4)

is equivalent to:

(F10.4,F10.4)

6. A limited one-level parenthetical expression is permitted to enable
repetition of data fields according to certain format codes within
a longer FORMAT statement. If a multiline listing is desired such
that the first two lines are to be printed according to a special
format and all remaining lines according to another format, the
last format code in the statement should be enclosed in a second
pair of parentheses. For example., in the statement:

40

FORMAT (1 x 1 ,I2,F3.1/ 1 x 1 ,F10.8/('x',3F5.1))

If more data items are to be transmitted after the format codes
have been completely used, the format repeats from the last left
parentheses. Thus, the printed output would take the following
form:

I2,F3.1
F10.8
F5.1,F5.1,F5.1
F5.1,F5.1,F5.1

As another example, consider the following statement:

FORMAT ('x',I2/2('x',I3,F6.1),F9.7)

If there are 13 data items to be transmitted, then the printed
output on a WRITE statement would take the following form:

I2
I3,F6.l,'x',I3,F6.1,F9.7
I3,F6.1,'x',I3,F6.1,F9.7
I3 ,F6. l

7. When transferring data on input or output, the type of format code
used, type of data, and type of variables in the I/O list should
correspond.

8. In the following examples, the output is shown as a printed line.
A carriage control character 'x', (see, "Carriage Control") is
specified in the FORMAT statement but does not appear in the first
print position of the print line.. This carriage control character
appears as the first character of the output record on any I/O
medium other than the printed line.

Numeric Format Codes (I,F,E,D)

Four types of format codes are available for the transfer of numeric
data. These are specified in the following form:

r----------~--1
I General Form I
~--~

aiw aF'W.d
aEw.a aow.a - - -
Where: ~ is optional and is an unsigned integer constant used to

denote the number of times the same format code is repeti­
tively referenced.

I,F,E,D are format codes.

w is an unsigned integer constant that is less than or equal
to 255 and specifies the number of characters of data.

g is an unsigned integer constant that specifies the number
of decimal places to the right of the decimal point, i.e.,
the fractional portion.

L--

For purposes of simplification, the following discussion of format
codes deals with the printed line. The concepts developed apply to all
input/output media.

I Format Code

The I format code is used to transmit integer data. If the quantity
is negative, the position preceding the leftmost digit contains a minus
sign. In this case, an additional position should be specified in ~ for
the minus sign.. If the number of characters is less than ~· on input,
leading blanks are not significant., embedded and trailing blanks are

Input/Output Statements 41

treated as zeros; on output, the leftmost print positions are filled
with blanks. If the number of characters to be transmitted is greater
than w, on output, asterisks are given. The magnitude of the data to be
transmitted must not exceed the maximum magnitude for an integer
constant.

The following examples show the internal
quantities on the left, according to format code
blank):

External Value

345
bb4
4b3
43b

Internal Value

345
004
403
430

value for each of the
I3: Cb represents a

The following examples show how each of the quantities on the left is
printed according to the format code I3:

Internal Value Printed Value

721 721
-721 721 (incorrect because of insufficient

specification)
-12 -12
568114 *** (incorrect because of insufficient

specification)
0 bbO
-5 ~5
9 bb9

F Format Code

The F format code is used in conjunction with the transferral of real
or double precision data that does not contain a decimal exponent. For
F format codes, ~ is the total field length reserved and g is the number
of places to the right of the decimal point (the fractional portion).
The total field length reserved must include sufficient positions for a
sign (if any) and a decimal point. The sign, if negative, is printed.
The magnitude of the data to be transmitted must not exceed the maximum
magnitude for a real or double precision constant.

The integer portion of the number is handled in the same fashion as
numbers transmitted by the I format code. If excessive positions are
reserved by g., zeros are filled in on the right. If insufficient
positions are reserved by g, on input the fractional portion is
truncated from the right and on output the fractional portion is
rounded; truncating and rounding occur at the gth position.

The following examples show the internal value for each of the
quantities on the left, according to format code F5.2:

External Value

32.46
-8.4
13.568

Internal Value

32.46
-8.40
13.57

The following examples show how each of the quantities on the left is
printed according to the format code F5.2:

42

Internal Value
12.17

Printed Value
12.17

-41.16 41.16 (incorrect because of insufficient
specification)

-o. 20
b7.36
-1.00
b9.03

-.2
7.3582
-1.
9.03
187.64 ***** (incorrect because of insufficient

specif ica ti on)

E and D Format Codes

The E and D format codes are used in
of real or double precision data that
exponent, respectively. For E and
portion is again indicated by g.

conjunction with the transferral
contains an E or D decimal

D format codes, the fractional

The ~ includes field g, spaces for a sign, the decimal point, plus
four spaces for the exponent. For output, space for at least one digit
preceding the decimal point should be reserved. In general, ~ should be
at least equal to 3+1.

The exponent is the power of 10
multiplied to obtain its true value.
or an E, followed by a space for the
exponent (maximum value is 75).

by which the number must be
The exponent is written with a D
sign and two spaces for the

The following examples show the internal value for each of the
quantities on the left, according to the format codes CD10.3/E10.3)

External Value
02.380+02
-0.001E+03
-7.654D-06
1.E2
4.673

Internal Value
238.
-1.
-.000007654
100.
4.673

The following examples show how each of the quantities on the left is
printed, according to the format codes CD10.3/E10.3):

Internal Value
238.

Printed Value
b0.238Db03
-0.200E-02
b0.400D-10

-.002
.00000000004
-21.0057 -0.210Eb02 (Last three digits of accuracy

lost because of insufficient
specification)

When reading input data, the start of the exponent field must either
be marked by an E or D, or, if that is omitted, by a + or - sign (not a
blank). Thus, E2,E+2,+2.,+02,E02, and E+02 all have the same effect and
are permissible decimal exponents for input.

Numbers for E, D, and F format codes need not have
point punched. If it is not present, the decimal point is
the d portion of the format code. If it is present in
position overrides the position indicated by the ~ portion
code.

their decimal
supplied by

the card, its
of the format

Input/Output Statements 43

A Format Code

r--------------~-----------------------------------~-----------------, I General Form I
~--------------~--~
I I
I !!A~ I
I I
I Where: !! is optional and is an unsigned integer constant used to I
I denote the number of times the same format code is repeti- I
I tively referenced. I
I I
I ~ is an unsigned integer constant that is less than or equal I
j to 255 and specifies the number of characters of data, I
I including blanks. I
L--J

The format code Aw is used to read or write character data.
equal to the number of characters corresponding to the length
item in the I/O list, ~ characters are read or written.

If w is
of each

On input, if ~ is less than the length of the storage reserved for
each item in the I/O list, w characters are read and the remaining
right-most characters in -the item are replaced with blanks. If ~ is
greater than the length, the number of characters equal to the
difference between w and the length are skipped, and the remaining
characters are read. -

On output, if ~ is less than the length of the storage reserved for
each item, the printed line will consist of the left-most ~ characters
of the item. If ~ is greater than the length the printed line will
consist of the characters right-justified in the field and be preceded
by blanks. Therefore it is important to always allocate enough storage
to handle the characters being written <see the section "Specification
Statements").

Example 1:

Assume that the array ALPHA consists of one subscript ranging from 1
through 20. The following statements could be written to "copy" a
record from one data set to another whose ultimate destination is a card
punch.

10 FORMAT {20A4)

READ { 5, 10) {ALPHA {I), I=l, 20)

WRITE (6.,10) (ALPHA CI) ,I=l,20)

44

Explanation:

In this example, the READ statement would cause 20 groups of
characters to be read from the data set associated with data set
reference number 5. Each group of four characters would be placed into
one of the 20 positions in storage starting with ALPHA(l) and ending
with ALPHA(20). The WRITE statement would cause the 20 groups of four
characters to be written on the data set associated with data set
reference number 6.

Example 2:

As another example, consider all the variable names in the list of
the following READ statement to have been explicitly specified as REAL
and the array CONST to have been specified as having one subscript
ranging from 1 through 10. Then assuming the following input data is
associated with data set reference number 5,

ABCDE ••• XYZ$1234567890b

where ••• represents the alphabetic characters F through wand b means
a blank, the following statements could be written:

10 FORMAT
20 FORMAT

READ
1
2
3

(27A1, 10A1 I Al)
('x',6(7A1,5X))

(5,10)A,B,C,D,E,F,G,H,I,
J,K,L,M,N,O,P,Q,R,
S,T,U,V,W,X,Y,Z,$,
(CONST (IND) I IND=l, 10) I BLANK

DO 50 INDEX 1,5

WRITE
1
2
3
4
5

(6,20)G,R,O,U,P,BLANK,CONST(INDEX),
B,L,O,C,K,BLANK,CONST(INDEX),
F,I,E,L,D,BLANK,CONST(INDEX),
G,R,O,U,P,BLANK,CONST(INDEX+5),
B,L,O,C,K,BLANK,CONST(INDEX+5),
F,I,E,L,D,BLANK,CONST(INDEX+5)

50 CONTINUE

Explanation:

The READ statement would cause the 37 alphameric characters and the
blank in the data set associated with data set reference number 5 to be
placed into the storage locations specified by the variable names in the
READ list. Thus, the variables A through Z receive the values A through
Z, respectively; the variable $ receives the value $; the numbers 1
through 9, aud O, are placed in the ten fields in storage starting with
CONST(l) and ending with CONST(10); and the variable BLANK receives a

Input/Output Statements 45

blank. The WRITE statement within the DO loop would cause the following
heading to be printed. A subsequent WRITE statement within the DO loop
could then be written to print the corresponding output data.

Print Position 1
t
GROUP 1 BLOCK 1 FIELD 1

<output data)

GROUP 2 BLOCK 2 FIELD 2

<output data)

GROUP 5 BLOCK 5 FIELD 5

(output data)

Literal Data In a Format Statement

GROUP 6

GROUP 7

GROUP 0

Print Position 67

BLOCK 6

BLOCK 7

BLOCK 0

t
FIELD 6

FIELD 7

FIELD 0

Literal data consists of a string of alphameric and special charac­
ters written within the FORMAT statement and enclosed in apostrophes.
The string of characters must be less than or equal to 255. For
example:

25 FORMAT {' 1964 INVENTORY REPORT')

An apostrophe character within the string is represented by two
successive apostrophes (either with or without embedded blanks). For
example, the characters DON'T are represented as:

DON' 'T

The effect of the literal format code depends on whether it is used
with an input or output statement.

INPUT

A number of characters, equal to the number of characters between the
apostrophes, are read from the designated data set. These characters
replace, in storage. the characters within the apostrophes.

For example, the statements:

5 FORMAT (' HEADINGS')

READ (3,5)

would cause the next 9 characters to be read from the data set
associated with data set reference number 3; these characters would
replace the blank and the 8 characters H,E.A,D,I,N.G, and s in storage.

46

OUTPUT

All characters (including blanks) within the apostrophes are written
as part of the output data. Thus, the statements:

5 FORMAT (' THIS IS ALPHAMERIC DATA')

WRITE (2,5)

would cause the following record to be written on the data set
associated with the data set reference number 2:

THIS IS ALPHAMERIC DATA

H Format Code

r---1
I General Form I
~--~
I I
I ~H I
I I
I Where: ~ is an unsigned integer constant that is less than or equal I
I to 255 and specifies the number of characters following H. I
L--,,---------------J

The H format code is used in conjunction with the transferral of
literal data.

The format code wH is followed in the FORMAT statement by ~
characters. For example,,

5 FORMAT (31H THIS IS ALPHAMERIC INFORMATION)

Blanks are significant and must be included as part of the count ~·
The effect of ~H depends on whether it is used with input or output.

1. On input,, w characters are extracted
replace the w characters of the
statement. -

from the input record and
literal data in the FORMAT

2. On output. the ~ characters following the format code are written
as part of the output record.

Input/Output Statements 47

X Format Code

.----------------------------------~----------------------------------, I General Form I
~--~
I I
I wX I
I I
I Where: w is an unsigned integer constant that is less than or equal I
I to 255 and specifies the number of blanks to be inserted on I
I output or the number of characters to be skipped on input. I
'--J

When the wX format code is used with a READ statement (i.e., on
input), ~ characters are skipped before the data is read in. For
example, if a card has six 10-column fields of integer quantities, and
it is not desired to read the second quantity., then the statement:

5 FORMAT (I10.,10X.,4I10)

may be used, along with the appropriate READ statement.

When the wX format code is used with a WRITE statement <i.e., on
output), ~characters are filled with blanks. Thus, the facility for
spacing within a printed line is available. For example, the statement:

10 FORMAT ('x',3lF6.2,5X))

may be used with an appropriate WRITE statement to print a line as
follows:

123.45bbbbb817.32bbbbb524.67bbbbb

T Format Code

r--1
I General Form I
~--~
I I
I Tw I
I I
I Where: ~ is an unsigned integer constant that is less than or equal I
I to 255 and specifies the position in a FORTRAN record where I
I the transfer of data is to begin. I
L--J

Input and output may begin at any position by using the format code
~· Only when the output is printed does the correspondence between ~
and the actual print position differ. In this case, because of the
carriage control character, the print position corresponds to ~-1, as
may be seen in the following example:

48

5 FORMAT (T40., •1964 INVENTORY REPORT', T80, 'DECEMBER' 1 Tl, ' PART
1 NO. 10095'')

The preceding FORMAT statement would result in a printed line as
follows:

Print
Position 1
t
PART NO. 10095

Print
Position 39
t
1964 INVENTORY REPORT

The following statements:

5 FORMAT (T40, ' HEADINGS')

READ (5, 5)

Print
Position 79
t
DECEMBER

would cause the first 39 characters of the input data to be skipped, and
the next 9 characters would then replace the blank and the characters
H.E,A,D,I,N,G ands in storage.

The T format code may be used in a FORMAT statement with any type of
format code. For example, the following statement is valid:

5 FORMAT (T100, F10.3, T50, E9.3, Tl, ' ANSWER IS')

Scale Factor - P

The representation of the data, internally or externally, may be
modified by the use of a scale factor followed by the letter P preceding
a format code. The scale factor must be less than or equal to 127 and
is defined as follows:

external quantity
scale factor

= internal quantity x 10

INPUT

For input, when scale factors are used in a FORMAT statement, they
have effect only on real or double precision data which does not contain
an E or D format code, respectively. For example, if input data is in
the form xx.xxxx and it is desired to use it internally in the form
.xxxxxx, then the format code used to effect this change is 2PF7.4.

As another example, consider the following input data:

27bbb-93.2094bb-175.8041bbbb55.3647

where b represents a blank.

The following statements:

5 FORMAT (12, 3 Fll .• 4)

READ (6, 5) K,A,B,C

would cause the variables in the list to assume the following values:

K
A

27
-93.2094

B
c

-175.8041
55.3647

Input/Output Statements 49

The following statements:

5 FORMAT (I2.1P3F11.4)

READ (6.5) K,,A,B,,C

would cause the variables in the list to assume the following values:

K
A

27
-9.3209

B
c

-17.5804
5.5364

The following statements:

5 FORMAT (I2.-1P3F11.4)

READ (6 • 5} K,.A,, B,, C

would cause the variable in the list to assume the following values:

K
A

27
-932.094x

B
c

-1758.041x
553.647x

where the x represents an extraneous digit.

OUTPUT

Assume that the variables K,A,B,, and c have the following values:

K
A

27
-93.2094

B
c

-175. 8041
55.3647

then the following statements:

5 FORMAT (I2.1P3F11.4)

WRITE (4,5) K,A,B,C

would cause the variables in the list to output the following values:

K
A

27
-932.094x

B
c

-1758.041x
553.647x

where the x represents an extraneous digit.

The following statements:

5 FORMAT (I2,-1P3F11.4)

WRITE (4,5) K,A.B,C

would cause the variables in the list to output the following values:

50

K
A

27
-9.3209

B
c

-17.5804
5.5365

For output, when scale factors are used,, they have effect only on real
or double precision data. However, this real or double precision data
may contain an E or D decimal exponent, respectively. A positive scale
factor used with real or double precision data which contains an E or D
decimal exponent increases the number and decreases the exponent. Thus,
if the real data were in a form using an E decimal exponent, and the
statement FORMAT C1X,I2,3E13.3) used with an appropriate WRITE statement
resulted in the following printed line:

27bbb-0.932Eb02bbb-0.175Eb03bbbb0.553Eb02

Then the statement FORMAT C1X,I2,1P3E13.3) used with the same WRITE
statement results in the following printed output:

27bbb-9.320Eb01bbb-1.758Eb02bbbb5.536Eb01

The statement FORMAT C1X.,I2,-1P3E13.3) used with the same WRITE state­
ment results in the following printed output:

27bbb-0.093Eb03bbb-0.017Eb04bbbb0.055Eb03

The scale factor is assumed to be zero if no other value has been
given. However,, once a value has been given, it will hold for all
format codes following the scale factor within the same FORMAT state­
ment. This ~lso applies to format codes enclosed within an additional
pair of parentheses. Once the scale factor has been given, a subsequent
scale factor of zero in the same FORMAT statement must be specified by
OP.

carriage Control

When records written under format control are prepared for printing,
the following convention for carriage control applies:

First Character Carriage Advance Before Printing

Blank
0
1
+

One Line
TWO lines
To first line of the next page
No advance

The first character of the output record may be used for carriage
control and is not printed. It appears in all other media as data.

Carriage control can be specified in either of two forms of literal
data. The following statements are equivalent and each would cause two
lines to be skipped before printing:

10 FORMAT c•o•,, 5(F7.3))

10 FORMAT (lHO, 5(F7.3))

Input/Output Statements 51

END FILE STATEMENT

..--1 I General Form I
t--i
I I
I I
I END FILE ~ I
I I
I I
I Where: ~ is an unsigned integer constant or integer variable that I
I represents a data set reference number. I
'------------------------------------~---------------------------------J

The END FILE statement defines the end of the data set associated
with a. A subsequent WRITE statement defines the beginning of a new
data set.

REWIND STATEMENT

r--1 I General Form I
t--i
I I
I REWIND ~ I
I I
I Where: ~ is an unsigned integer constant or integer variable that I
I represents a data set reference number. I
L--J

The REWIND statement causes a subsequent READ or WRITE statement
referring to ~ to read data from or write data into the first data set
associated with ~·

BACKSPACE STATEMENT

r--1 I General Form I
t--i
I I
I BACKSPACE ~ I
I I
I Where: a is an unsigned integer constant or integer variable that I
I represents a data set reference number. I
L--J

The BACKSPACE statement causes the data set associated with a to
backspace one record. If the data set associated with ~ is already at
its beginning. execution of this statement has no effect.

52

DIRECT ACCESS INPUT/OUTPUT STATEMENTS

There are four direct access I/O statements: 1 FILE, and FIND. The
READ and WRITE statements cause transfer of data into or from internal
storage. These statements allow the user to specify the location within
a data set from which data is to be read or into which data is to be
written.

The DEFINE FILE statement specifies the characteristics of the data
set(s) to be used during a direct access operation. The FIND statement
overlaps record retrieval from a direct access device with computation
in the program. In addition to these four statements, the FORMAT
statement (described previously) specifies the form in which data is to
be transmitted. The direct access READ and WRITE statements, and the
FIND statement are the only I/O statements that may refer to a data set
reference number defined by a DEFINE FILE statement.

DEFINE FILE Statement

The DEFINE FILE statement is a specification statement that describes
the characteristics of any data set to be used during a direct access
input/output operation. To use the direct access READ, WRITE, and FIND
statements in a program, the data set (s) must be described wj 1:h a DEFINE
FILE statement. Each data set must be described once, and this
description may appear once in each program or subprogram.

Because the DEFINE FILE statement is a specification statement, it
must precede the first executable statement of the source program as
well as all statement function definition statements. The description
must appear logically before the use of an input/output statement with
the same data set reference number; subsequent descriptions have no
effect.

Example:

DEFINE FILE 2(50,100,L,I2),3{100,50,LJJ3)

This DEFINE FILE statement describes two data sets, referred to by
data set reference numbers 2 and 3. The data in the first data set
consists of 50 records, each with a maximum length of 100 storage
locations. The L specifies that the data is to be transmitted either
with or without format control. I2 is the associated variable that
serves as a pointer to the next record.

The data in the second data set consists of 100 records, each with a
maximum length of 50 storage locations. The L specifies that the data
is to be transmitted either with or without format control. J3 is the
associated variable that serves as a pointer to the next record.

If an E is substituted for the L in the preceding DEFINE FILE
statement, a FORMAT statement is required and the data is transmitted
under format control. If the data is to be transmitted without format
control, the DEFINE FILE statement can be written as:

DEFINE FILE 2(50,25~U,I2)J3(100~13,U,J3}

1 The direct access I/O statements are not available in Basic Programming
Support FORTRAN IV.

Input/Output Statements 53

r--1 I General Form I
!--~

Where: ~ represents an unsigned integer constant that is the data
set reference number.

m represents an unsigned integer constant that specifies the
number Of records in the data set associated with ~·

~ represents an unsigned integer constant that specifies the
maximum size of each record associated with a. The record
size is measured in characters, storage- locations, or
storage units. (A storage unit is the number of storage
locations divided by four and rounded to the next highest
integer).. The method used to measure the record size
depends upon the specification for !·

! specifies that the data set is to be read or written
either with or without format control; f may be one of the
following letters:

L indicates that the data set is to be read or written
either with or without format control. The maximum record
size is measured in number of storage locations.

E indicates that the data set is to be read or written
under format control <as specified by a FORMAT statement).
The maximum record size is measured in number of charac­
ters.

u indicates that the data set is to be
without format control. The maximum
measured in number of storage units.

read or
record

written
size is

y represents a nonsubscripted integer variable called an
associated variable. At the conclusion of each read or
write operation, y is set to a value that points to the
record that immediately follows the last record transmitted.
At the conclusion of a find operation., y is set to a value
that points to the record found.

L----------·--

Programming Considerations

When programming for direct access input/output operations, the user
must establish a correspondence between FORTRAN records and the records
described by the DEFINE FILE statement. All of the conventions of
FORMAT control discussed in the section "FORMAT STATEMENT" are applica­
ble.

For example, to process the data set described by the statement:

DEFINE FILE 8 (10, 48.,L.,K8)

the FORMAT statement used to control the reading or writing could not
specify a record longer than 48 characters. The statements:

FORMAT(4F12.1) or
FORMAT(l12,9F4.2)

54

define a FORTRAN record that corresponds to those records described by
the DEFINE FILE statement. ~·he records can also be transmitted under
FORMAT control by substituting an E for the L and rewriting the DEFINE
FILE statement as:

DEFINE FILE 8C10,48,E,K8)

Programs may share an associated variable only as a COMMON variable.
The following example shows how this can be accomplished.

COMMON IUAR
DEFINE FILE 3(100,10,L,IUAR)

ITEMP=IUAR
CALL SUBICANS,ARG)

8 IF (IUAR-ITEMP) 20,16,20
20 CONTINUE

SUBROUTINE SUBI(A,B)
COMMON IUAR

In this example, the program and the subprogram share the associated
variable IUAR. An input/output operation that refers to data associated
with data set reference number 3 and is performed in the subroutine
causes the value of the associated variable to be changed. The
associated variable is then tested in the main program in statement 8.

READ Statement

The READ statement causes data to be transferred from a direct access
device into internal storage. The data set being read must be defined
with a DEFINE FILE statement.

r--1
I General Form I
~--~

READ c~·~.£) list

Where: ~ is an unsigned integer constant or integer variable that
represents a data set reference number~ ~ must be followed
by an apostrophe (').

~ is an integer expression that represents the relative
position of a record within the data set associated with a.

b is optional and, if given, is the statement number of the
FORMAT statement that describes the data being read.

list is a series of variable or array names, which may be
indexed and must ·be separated by commas. These names
specify the number of items to be read and the storage
locations into which the data ls to be placed. The list has
the same forms and conventions as the list for the sequen­
tial READ statements. __ J

Input/Output Statements 55

Example:

DEFINE FILE 1(500,,100,, L, ID1>, 2 (100,, 28,, L, ID2}
DIMENSION M(10)

ID2 = 21

10 FORMAT (5I20)
9 READ (1' 16, 10} (M(K} ,, K=l, 10}

13 READ C2'ID2+5) A,B,,C,D,E,F,G

READ statement 9 transmits data from the data set associated with
data set reference number 1, under control of FORMAT statement 10;
transmission begins with record 16. Ten data items of 20 characters
each are read as specified by the I/O list and FORMAT statement 10. Two
records are read to satisfy the I/O list, because each record contains
only five data items (100 characters}. The associated variable IDl is
set to a value of 18 at the conclusion of the operation.

READ statement 13 transmits data from the data set associated with
data set reference number 2., without format control; transmission begins
with record 26. Data is read until the I/O list for statement 13 is
satisfied. Because the DEFINE FILE statement for data set 2 specified
the record length as 28 storage locations, the I/O list of statement 13
calls for the same amount of data <the seven variables are type real and
each occupies four storage locations}. The associated variable ID2 is
set to a value of 27 at the conclusion of the operation. If the value
of ID2 is unchanged., the next execution of statement 13 reads record 32.

The DEFINE FILE statement in the previous example can also be written
as

DEFINE FILE 1(500, 100, E, IDl), 2 <100, 7, U, ID2)

The FORMAT statement may also control the point at which reading
starts. For example, if statement 10 in the example was

10 FORMAT (//5I20)

records 16 and 17 are skipped, records 18 and 19 are read, and IDl is
set to a value of 20 at the conclusion of the read operation in
statement 9.

WRITE Statement

The WRITE statement causes data
storage to a direct access device.
defined with a DEFINE FILE statement.

56

to be transferred from internal
The data set being written must be

r--~-----------------,
I General Form I
~--i

Where: ~ is an unsigned integer constant or integer variable that
represents a data set reference number; a must be followed
by an apostrophe (').

~ is an integer expression that represents the relative
position of a record within the data set associated with a.

R is optional and, if given, is the statement number of the
FORMAT statement that describes the data being written.

list is a series of variable or array names, which may be
Indexed and must be separated by commas. These names
specify the number of items l.o be written and the locations
in storage from which the dtata is to be taken. The list has
the same forms and conventions as the I/O list for the
sequential WRITE statements,,

Example:

DEFINE FILE 1(500,~00,,1",Iul};21,100,28,L,ID2)
DIMENSION M(lO)

ID2=21

10 FORMAT (5I20)
8 WRITE (1'16,10) (M(K),K~l,10)

WRITE statement 8 transmits data into the data set associated with
the data set reference number 1, under control of FORMAT statement 10;
transmission begins with record 16. Ten data items of 20 characters
each are written as specified by the I/O list and FORMAT statement 10.
Two records are written to satisfy the I/O list because each record
contains 5 data items (100 characters). The associated variable IDl is
set to a value of 18 at the conclusion of the operation.

WRITE statement 11 transmits data into the data set associated with
data set reference number 2, without format control; transmission begins
with record 26. The contents of 28 storage locations are written as
specified by the I/O list for statement 11. The associated variable ID2
is set to a value of 27 at the conclusion of the operation. Note the
correspondence between the records described (28 storage locations per
record) and the number of items called for by the I/O list {7 variables,
type real, each occupying four storage locations).

The DEFINE FILE statement in the previous example can also be written
as

DEFINE FILE 1(500,100,E,ID1),2(100,7,U,ID2)

As with the READ statement., a FORMAT statement may also be used to
control the point at which writing begins.

Input/Output Statements 57

FIND Statement

The FIND statement permits record retrieval to proceed concurrently
with computation. By using the FIND statement, the user can increase
the object program execution speed. There is no advantage to a FIND
statement preceding a WRITE statement. The data set from which a record
is being retrieved must be defined with a DEFINE FILE statement.

r--1 I General Form I
~---~
I I
1 FIND c~~~> 1
I I
I Where: ~ is an unsigned integer constant or integer variable that I
I represents a data set reference number; ~ must be followed I
I by an apostrophe C'). I
I I
I r is an integer expression that represents the relative I
I position of a record within the data set associated with ~· I
L--J
Example:

10 FIND (3'50)

15 READ (3'50) A,B

While the statements between statements 10 and 15 are executed,
record 50, in the data set associated with data set reference number 3,
is retrieved. If a WRITE statement refers to this record between the
issuing of the FIND statement and the READ statement, the FIND operation
is nullified.

General Examples Direct Access Operations

Example 1:

DEFINE FILE 8(1000.72,L,ID8)
DIMENSION A(100) ,B(l00) ,c (100) ,D(100) ,,E (100) ,F{100)

15 FORMAT (6F12.4)
FIND (8'5)

ID8=1
DO 100 I=l,100
READ (8' ID8+4, 15) A(l) ,B (I) ,c (I) ,D (I) .,E en .,F (I)

100 CONTINUE

DO 200 I=l,100
WRITE (8 1 ID8+4,15)A(l) • B (I) .,C (I) ,D(l) ,E CU, FU)

200 CONTINUE

END

58

Explanation:

Example 1 illustrates the ability of direct access statements to
gather and disperse data in an order designated by the user. The first
DO loop in the example fills arrays A through F with data from the
fifth, tenth, fifteenth, .••• , and five-hundredth record associated with
data set reference number 8. Array A receives the first value in every
fifth record, B the second value and so on, as specified by FORMAT
statement 15 and the I/O list of the READ statement. At the end of the
READ operation, each record has been dispersed into arrays A through F.
At the conclusion of the first DO loop, IDS has a value of 501.

The second DO loop in the example groups the data items from each
array, as specified by the I/O list of the WRITE statement and FORMAT
statement 15. Each group of data items is placed in the data set
associated with data set reference number 8. Writing begins at the
505th record and continues at intervals of five, until record 1000 is
written.

Example 2:

C MAIN PROGRAM
COMMON I

1 READ <1,2) I
2 FORMAT (14)

I=IABS(I)
IF (I) 10,20,,10

10 CALL SUBl (A)
GO TO 70

20 CALL SUB2 (A)
10 CONTINUE

WRITE [9 1 I+l 1 100) x.Y,Z
100 FORMAT (3Fl0.3)

END

Explanation:

C SUBROUTINE ONE
SUBROUTINE SUB1 (AA)

COMMON J
DEFINE FILE 9(100.100,E.J)

RETURN
END

C SUBROUTINE TWO
SUBROUTINE SUB2 (BB)
COMMON K
DEFINE FILE 9(125.,80,L,K)

RETURN
END

Example 2 illustrates the use of two different DEFINE FILE statements
to describe the characteristics of the data set associated with data set
reference number 9. If subroutine SUB1 is called., the data set contains
100 records, each with a maximum length of 100 characters; the data is
to be transmitted under format control, and the associated variable is
J. If subroutine SUB2 is called1 the data set contains 125 records,
each with a maximum length of 80 storage locations; the data is to be
transmitted either with or without format control, and the associated
variable is K. Because the associated variables are declared to be in
COMMON along with I, the information is shared between the main program
and the two subroutines.

Input/Output Statements 59

SPECIFICATION STATEMENTS

The specification statements provide the compiler with information
about the nature of the data used in the source program. In addition,
they supply the information required to allocate locations in storage
for this data. Specification statements describing data must precede
any statements which refer to that data. For examplew if an element of
an array is to be made equivalent to a variablew the specification
statement that declares the size of the array (e.g., a DIMENSION
statement> must precede the EQUIVALENCE statement.

All specification statements must precede the first executable
statement of the source program.1 They must also precede all Statement
Function definition statements.. Therefore, the source program layout is
as follows:

1. Specification Statements .•
2. Statement Function Definition Statements.
3. Executable Statements.

FORMAT statements may appear anywhere in the program. They do not
affect the sequence of execution.

Explicit Specification Statements

r--------------~--1 I General Form I
~--------------~--i

~ !!<~3).,!;!<~2L, •••• ~<~n>

Where: ~ is INTEGER, REAJ •• or DOUBLE PRECISION.

!!•!!• •••. ,~ represent variable,, array, or function names (see
the section, "SUBPROGRAMS")

<b.) ., (~2), •••. , <~n> are optional. Each ~ is composed of 1
through 3 unsigned integer constants, separated by commas,
representing the maximum value of each subscript in the
array.

L--
The Explicit specification statements declare the ~ <INTEGER,

REAL, or DOUBLE PRECISION) of a particular variable or array by its
~· rather than by its initial character. This differs from the other
way of specifying the type of a variable or array (i.e., predefined
convention). In addition, the information necessary to allocate storage
for arrays (dimension information) may be included within the statement.
However, if this information does not appear in an Explicit specifi­
cation statement, it must appear in a DIMENSION or COMMON statement
(see, "DIMENSION Statement" or "COMMON Statement").

1In Operating System FORTRAN IV (E) and Basic Programming Support
FORTRAN IV, EQUIVALENCE statements must follow any DIMENSION, COMMON, or
explicit specification statements; they need not follow DEFINE FILE
statements in FORTRAN IV (E).

60

Example 1:

INTEGER DEV, ARRAY, SMALL

Explanation:

This statement declares the type of the variables DEV, ARRAY, and
SMALL as integer and thus overrides the implied declaration made by the
predefined convention.

Example 2:

REAL ITA,JOB,MATRIX (5,2,6)

Explanation:

This statement declares the type of the array, MATRIX, and variables,
ITA and JOB, as real. In addition, it declares the size (dimension) of
the array MATRIX. This statement overrides the implied declaration made
by the predefined convention.

Example 3:

DOUBLE PRECISION DOUB,TWIN

Explanation:

This statement declares the type of the variables, DOUB and TWIN , as
double precision.

DIMENSION Statement

r--1
I General Form I
~--------------~--~
I I
I DIMENSION ~1<~1>.~2<}S2>, ~3(}S3), ••• ,~n<}Sn> I
I I
I Where: ~1 , ~2 , ~3 , ••• , ~n are array names. I
I I
I }S1 , }S2 , }S3 , •••• ,,]Sn are each composed of 1 through 3 unsigned I
I integer constants, separated by commas, representing the I
I maximum value of each subscript in the array. I
L--------------~--J

The information necessary to allocate storage for arrays used in the
source program may be provided by the DIMENSION statement. Allocation
information should be given to an array on its first appearance in a
source program; however. for subprograms,, the SUBROUTINE or FUNCTION
statement may include a dummy argument that is dimensioned later. The
following examples illustrate how this information may be declared.

Examples:

DIMENSION A (10), ARRAY (5.,5,,5), LIST {10.,100)
DIMENSION B (25, 50) ,,TABLE (5, 8, 4)

Specification Statements 61

COMMON Statement

..--, I General Form I
~---~-----------------~
I I
I COMMON ~~(b_).,~2<~2> .• ~3(.!3), ••• ,~n<.!n> I
I I
I Where: ~~·~2 ,~3 ., •••• ~n are variable or array names. I
I I
I .!u.!21~3·• •• •·1.!n are optional and are each composed of 1 I
I through 3 unsigned integer constants,, separated by commas, I
I representing the maximum value of each subscript in the I
I array. I
L--J

The COMMON statement may be used to provide dimension information.
However, this information must be given on the first appearance of an
array. For example., if an array has appeared first in an Explicit
specification statement, the array should be dimensioned in that
statement rather than in the COMMON statement.

Variables or arrays that appear in a calling program or a subprogram
may be made to share the same storage locations with variables or arrays
in other subprograms by use of the COMMON statement. For example, if
one program contains the statement:

COMMON TABLE

and a second program contains the statement:

COMMON TREE

the variable names TABLE and TREE refer to the same storage locations.

If the main program contains the statements:

REAL A,B,,C
COMMON A,B,C

and a subprogram contains the statements:

REAL X,Y,Z
COMMON X,Y,Z

then A shares the same storage location as X, B shares the same storage
location as Y, and c shares the same storage location as z.

Common entries appearing in COMMON statements are cumulative in the
given order throughout the program; that is,, they are cumulative in the
sequence in which they appear in all COMMON statements. For example,
consider the following two COMMON statements:

COMMON A, B, C
COMMON G, H

These two statements have the same effect as the single statement:

COMMON A, B., C., G, H

62

Redundant entries are not allowed.
statement is invalid:

COMMON A,B,C,A

Consider the following examples:

Example 1:

Calling Program Subprogram

For example, the following

SUBROUTINE MAPMY (•••)

COMMON A, B, C, RC100}
REAL A,B,C
INTEGER R

COMMON X, Y, Z, SC100}
REAL X, Y,Z
INTEGER S

CALL MAPMY C ••• }

Explanation:

In the calling program, the statement COMMON A,B,C,RC100) would cause
412 storage locations (4 locations per variable) to be reserved in the
following order:

Beginning of COMMON area r---------------1

I A I
~---------------~
I B I
~---------------~
I c I
r---------------1
I RCl) I
I R(2) I
I I
I I
I I
I R(100) I
L------~-------J

4 storage locations

The statement COMMON X, Y, Z, S(100) would then cause the variables
X, Y, z, and SC1) ••• SC100) to share the same storage space as A, B, c,
and R(l} .••• RC100), respectively.

From the above example., it can be seen that COMMON statements may be
used to serve an important function: namely, as a medium to implicitly
transmit data from the calling program to the subprogram. That is,
values for X, Y, z., and S(l) ••• SC100), because they occupy. the same
storage locations as A, B, c, and R(l) ••• RC100), do not have to be
transmitted in the argument list of a CALL statement. Arguments passed
through COMMON must follow the same rules of presentation with regard to
type., length,, etc., as arguments passed in a 1ist. (See the section,
"SUBPROGRAMS.")

Specification Statements 63

Example 2:

Assume COMMON is defined in a main program and 3 subprograms as
follows:

Main program:

Subprogram 1:

Subprogram 2:
subprogram 3:

COMMON

COMMON

COMMON
COMMON

A,B,C, {A and B are 8 storage locations,
c is 4 storage locations>

D,E,F {D and E are 8 storage locations,
F is 4 storage locations)

Q,R,S,T,U (4 storage locations each)
V,W,X,Y,Z (4 storage locations each)

The correspondence of these variables within COMMON can be illustrated
as follows:

Main Program subprogram 1 Subprogram 2 Subprogram 3

COMMON A,B,C COMMON D,E,F COMMON Q,R,S,T,U COMMON V,W,X,Y,Z
r----------, r----------, r----------, r----------,
I I I I I Q ... 1'4---"I v I
I- - -A - - ,..1"4---... I- - -D - -I ·----------~ ~----------~
I I I I I R 1... "I w I
·----------~ ~---------~ ·----------i ·----------i
I I I I I s 14 "I x I
1- - - B - -,, _ - - E - - I ·----------~ ·----------~
I I I I I T l'4 ..-i Y I
·----------i ~---------~ ·----------~ ·----------i I c, F ,..,.. ___ .,.""' u I• .. , z I
'----------l L----------J L----------J L----------J
4 storage 4 storage 4 storage 4 storage
locations locations locations locations

In this case, the variables A,B,C and D,E,F may be validly referred to
in their respective programs as may Q,R,S,T,U and V,W,X,Y,Z. In
addition, Subprogram 1 may implicitly refer to c,u, and Z by explicitly
referring to F.

To insure proper boundary alignment, the user is advised to arrange
the variables in COMMON in the following order:

Double Precision
Real or Integer

EQUIVALENCE Statement

r--1 I General Form I
·--~
I I
I EQUIVALENCE {.§!, .f!, .£, •••) , {_9, ~· .f, •••) I
I I
I Where: .§!, .f!, .£• _9, ~· .f, ••• are variables that may be subscripted. I
I The subscripts may have two forms: If the variable is singly I
I subscripted it refers to the position of the variable in the I
I array <i. e. 11 first variable, 25th variable, etc). If the I
I variable is multi-subscripted, it refers to the position in I
I the array in the same fashion as the position is referred to I
I in an arithmetic statement. I
L--l
64

The EQUIVALENCE statement provides the option for controlling the
allocation of data storage within a single program or subprogram. It is
analogous to the option of using the COMMON statement to control the
allocation of data storage among several programs. In particular, when
the logic of the program permits it, the number of storage locations
used can be reduced by causing locations to be shared by two or more
variables of the same or different types.

In storage established by EQUIVALENCE statements, double precision
variables must precede real or integer variables.

Example 1:

DIMENSION B(5), C(10, 10) 1 0(5, 10, 15)
EQUIVALENCE (A, B(l), C(5,3)), (0(5,10,2), E)

Explanation:

This EQUIVALENCE statement indicates that the variables A, B(l), and
C(5,3) are to share the same storage locations. All other corresponding
variables in arrays Band c share the same storage locations; e.g., B(2)
and C(6,3). In addition, it specifies that D(S,10,2) and E are to share
the same storage locations. In this case, the subscripted variables
refer to the position in an array in the same fashion as the position is
referred to in an arithmetic statement. Note that variables or arrays
that are not mentioned in an EQUIVALENCE statement are assigned unique
storage locations. The EQUIVALENCE statement must not contradict itself
or any previously established equivalences. For example, the further
equivalence specification of B(3) with any other element of the array c,
other than C(7,3), is invalid.

Example 2:

DIMENSION B(5), C(lO, 10), D(5, 10, 15)
EQUIVALENCE CA, B(1), C(25)), (D(100), E)

Explanation:

This EQUIVALENCE statement indicates that the variable A, the first
variable in the array B, namely B(l), and the 25th variable in the array
c, namely C(5,3), are to share the same storage locations. In addition,
it also specifies that D(100) (i.e., 0(5,10,2)) and E are to share the
same storage locations. Note that the effect of the EQUIVALENCE
statement in Examples 1 and 2 is the same.

Variables that are brought into COMMON through EQUIVALENCE statements
may increase the size of the block as indicated by the following:
statements:

COMMON A, B, C
DIMENSION 0(3}
EQUIVALENCE (B,D(l))

This would cause a common area to be established containing the
variables A, B, and c. The EQUIVALENCE statement would then cause the
variable D(l) to share the same storage location as B, D(2) to share the
same storage location as c, and D(3) would extend the size of the common
~u,h~f~~~~nn~:

A (lowest location of the common area)
B, 0(1)
C, D(2)

0(3) (highest location of the common area)

Specification Statements 65

Since arrays are stored in consecutive forward locations, a variable
may not be made equivalent to another variable of an array in such a way
as to cause the array to extend before the beginning of the common area.
For example, the following EQUIVALENCE statement is invalid:

COMMON A, B, C
DIMENSION D(3)
EQUIVALENCE (B, D(3))

because it would force D(1) to precede A, as follows:

0(1)
A, D(2) (lowest location of the common area)
B, 0(3)
c <highest location of the common area)

Two variables in COMMON may not be made equivalent. In addition, a
user must observe the suggestion on boundary alignment mentioned in the
description of the COMMON statement. Any double precision variable that
is made equivalent to any variable in COMMON must be aligned properly.
For example, the following statements will produce proper boundary
alignment:

66

REAL A,B
DOUBLE PRECISION DOUB,TWIN
INTEGER I,J
COMMON DOUB,A,I,B
EQUIVALENCE (A,TWIN),(B,J)

SUBPROGRAMS

It is sometimes desirable to write a program which, at various
points, requires the same computation to be performed with different
data for each calculation. It would simplify the writing of that
program if the statements required to perform the desired computation
could be written only once and then could be referred to freely, with
each subsequent reference having the same effect as though these
instructions were written at the point in the program where the
reference was made.

For example, to take the cube root of a number, a program must be
written with this object in mind. If a general program were written to
take the cube root of any number, it would be desirable to be able to
combine that program (or subprogram) with other programs where cube root
calculations are required.

The FORTRAN language provides for the above situation through the use
of subprograms. There are three classes of subprograms: statement
Functions, FUNCTION subprograms, and SUBROUTINE subprograms. In addi­
tion, there is a group of FORTRAN supplied subprograms (see Appendix C).

The first two classes of subprograms are called functions. Functions
differ from SUBROUTINE subprograms in that functions return at least one
value to the calling program; whereas, SUBROUTINE subprograms need not
return any.

NAMING SUBPROGRAMS

A subprogram name consists of from 1 through 6 alphameric characters,
the first of which must be alphabetic. A subprogram name may not be a
variable name and may not contain special characters other than the
blanks (see Appendix A). Blanks embedded in a subprogram name are
ignored. The type of a subprogram can be indicated in the same manner
as variables.

1. Type Declaration of a Statement Function: Such declaration may be
accomplished in one of two ways: by the predefined convention, or
by the Explicit specification statements. Thus, the same rules for
declaring the type of variables apply to Statement Functions.

2. Type Declaration of FUNCTION Subprograms: The declaration can be
made in one of two ways: by the predefined convention or by an
explicit specification <see the section., "Type Specification of the
FUNCTION Subprogram"). In addition, the type may appear in the
FUNCTION definition statement.

3. Type Declaration of a SUBROUTINE Subprogram: The type of a
SUBROUTINE subprogram can not be defined because the results that
are returned to the calling program are dependent only on the type
of the variable names appearing in the argument list of the calling
program and/or the implicit arguments in COMMON.

Subprograms 67

FUNCTIONS

A function is a statement of the relationship between a number of
variables. To use a function in FORTRAN, it is necessary to:

1. Define the function (i.e., specify what calculations are to be
performed).

2. Refer to the function by name where required in the program.

Function Definition

There are three steps in the definition of a function in FORTRAN:

1. The function must be assigned a unique name by which it may be
called (see the section "Naming subprograms">.

2. The arguments of the function must be stated.
3. The procedure for evaluating the function must be stated.

Items 2 and 3 are discussed in detail in the
the specific subprogram (e.g., "Statement
subprograms", etc.).

Function Reference

sections dealing with
Functions" 1 "FUNCTION

When the name of a function appears in any FORTRAN arithmetic
expression, this, effectively, references the function. Thus, the
appearance of a function with its arguments in parentheses causes the
computations to be performed as indicated by the function definition.
The resulting quantity replaces the function reference in the expres­
sion. The type of the name used for the reference must agree with the
type of the name used in the definition.

STATEMENT FUNCTIONS

Statement functions are defined by
within the program in which they appear.

FUNC(A,B) = 3.*A+B**2.+X+Y+Z

a single arithmetic statement
For example, the statement:

defines the statement function FUNC, where FUNC is the function name and
A and B are the function arguments.

The expression on the right defines those computations which are to
be performed when the function is used in an arithmetic statement. This
function might be used in a statement as follows:

C = FUNC CD, E)

which is equivalent to:

C = 3.*D+E**2.+X+Y+Z

Note the correspondence between A and B in the function definition
statement and D and E in the arithmetic statement. The quantities A and
B enclosed in parentheses following the function name are the arguments
of the function. They are dummy variables for which the quantities D
and E:r respectively, are substituted when the function is used in an
arithmetic statement.

68

r--------------~------------------------------~----------------------1 I General Form I
~-----------~--------------~-----------------------------------~----i

~ (~1 .Q, •.•.• •!!> = expression

Where: ~ is any subprogram name (see the section "Naming
Subprograms"> •

.2_,.Q •••• ,._!! are distinct <within the same statement) nonsub­
scripted V(iriables.

expression is any arithmetic expression that does not
contain subscripted variables. Any statement functions
appearing in this expression must be defined previously.

L----~------~---------------------------~~--------------------------

A maximum of 15 variables appearing in the expression may be used as
arguments of the function. The actual arguments must correspond in
order., number, and type to the dummy arguments. There must be at least
one argument.

Note: All Statement Function definitions to be used in a program must
precede the first executable c-~ .•• tement of the program.

Examples:

Valid statement function definitions:

SUMCA,B,C,D) = A+B+C+D
FUNC(Z) = A+X*Y*Z
AVG(A,B,C,D) = (A+B+C+D)/4
ROOT(A,B,C) = SQRT(A**2+B**2+C**2)

Note: The same dummy arguments may be used in more than one Statement
Function definition and may be used as variables outside Statement
Function definitions.

Invalid statement function definitions:

SUBPRG(3,J,Kl=3*I+J**3
SOMEF(A(I),B)=A(I)/B+3.

SUBPROGRAM(A,B)=A**2+B**2

3FUNC (D)=3.14*E

ASF (A) =A+B (I)

(arguments must be variables)
(arguments must be nonsub­
scripted)

(function name exceeds limit
of six characters)

(function name must begin with
an alphabetic character)

(subscripted variable in the
expression)

GRADE = AVG(ALAB, TERM, SUM(TEST1., TEST2, TEST3, TEST4) 1 FACTOR)

Invalid statement function references:

WRONG = SUM(TAX,FICA)

MIX = FUNC (I)

(number of arguments
does not agree with
above definition)
<mode of argument
does not agree with
above definition>

Subprograms 69

FUNCTION SUBPROGRAMS

The FUNCTION subprogram is a FORTRAN subprogram consisting of any
number of statements. It is an independently written program that is
executed wherever its name appears in another program.

r-----------------------------~--------------------~-----------------,
I General Form I
~----------~------~~-----------------~-----------------------------~

FUNCTION ~ (~,.2.2•.2.3•• • • ,.2.Ji)

RETURN

END

Where: ~ is subprogram
Subprograms") •

name (see the section "Naming

.2.s.•.2.2•.2.3 , ••• ,.2.Ji are nonsubscripted variable or array names,
or the dummy names of SUBROUTINE or other FUNCTION subpro­
grams. (There must be at least one argument in the argument
list.}

-----------------------------~---------------------------------------J

Since the FUNCTION is a separate subprogram, the variables and
statement numbers within it do not relate to any other program.

The FUNCTION subprogram may contain any FORTRAN statement except a
SUBROUTINE statement or another FUNCTION statement.

The arguments of the FUNCTION subprogram (i.e., ,2.1 ,,2.2 ,,2.3 , ••• ,~) may
be considered to be dummy variable names. These are replaced at the
time of execution by the actual arguments supplied in the function
reference in the calling program. The actual arguments may be any of
the following:

1. any type of constant
2. any type of subscripted or nonsubscripted variable
3. an array name
4. an arithmetic expression
5.. the name of another FUNCTION or SUBROUTINE subprogram.

The actual arguments must correspond in number, order, and type to the
dummy arguments. The array size must also be the same. The name of the
FUNCTION subprogram cannot be typed with an Explicit specification
statement in the subprogram.

The relationship between variable names used as arguments in the
calling program and the dummy variables used as arguments in the
FUNCTION subprogram is illustrated in the following example:

70

Example 1:

Calling Program

A = SOMEF(B,,C)

Explanation:

FUNCTION Subprogram

FUNCTION SOMEF(X,Y)
SOMEF = X/Y
RETURN
END

In the
program is
the value
10.0 and C

above example. the value of the variable B of the calling
used in the subprogram as the value of the dummy variable X;
of C is used in place of the dummy variable Y. Thus if B =

= 5.0, then A= B/C, which is equal to 2.0.

The name of the function must be assigned a value at least once in
the subprogram as the argument of a CALL statement, as the variable name
on the left side of an arithmetic statement, or in an input list (READ
statement) within the subprogram.

Example 2:

Calling Program

ANS= ROOTl*CALC(X,Y,I)

Explanation:

FUNCTION Subprogram

FUNCTION CALC (A,B,J)

I = J*2

CALC = A**I/B

RETURN
END

In this example, the values of X, Y, and I are used in the FUNCTION
subprogram as the values of A, B, and J, respectively. The value of
CALC is computed, and this value is returned to the calling program
where the value of ANS is computed. The variable I in the argument list
of CALC in the calling program is not the same as the variable I
appearing in the subprogram.

When a dummy argument is an array name, an appropriate DIMENSION or
Explicit specification statement must appear in the FUNCTION subprogram.
None of the dummy arguments may appear in an EQUIVALENCE or COMMON
statement.

Type Specification of the FUNCTION Subprogram

In addition to implicitly declaring the type of a FUNCTION name by
the predefined convention, there exists the option of explicitly
specifying the type of a FUNCTION name within the FUNCTION statement.

Subprograms 71

However. the type of a FUNCTION name may not be declared in an Explicit
specification statement in that subprogram.

r--1
I General Form I
~--~
I I
I ~ FUNCTION name (~1 , ~2 , •••• ~n> I
I I
I Where: ~ is INTEGER, REAL, or DOUBLE PRECISION. I
I I
I ~ is the name of the FUNCTION subprogram. I
I I
I ~1.~2 ••••• ~ are nonsubscripted variable or array names, or I
I the dummy names of a SUBROUTINE or another FUNCTION subpro- I
I gram. <There must be at least one argument.) I ._ ___ J

Example 1:

REAL FUNCTION SOMEF (A,B)

SOMEF = A**2 + B**2

RETURN
END

Example 2:

INTEGER FUNCTION CALC(X,Y,Z)

CALC = X+Y+Z**2

RETURN
END

Explanation:

The FUNCTION subprograms SOMEF and CALC in Examples 1 and 2 are
declared as type REAL and INTEGER, respectively.

RETURN and END Statements in a Function Subprogram

All FUNCTION subprograms must contain an END statement and at least
one RETURN statement. The END statement specifies., for the compiler,
the physical end of the subprogram~ the RETURN statement signifies a
logical conclusion of the computation and returns any computed value and
control to the calling program. There may, in fact, be more than bne
RETURN statement in a FORTRAN subprogram.

72

Example:

FUNCTION DAV (D,E,F)
IF (D-E) 10, 20, 30

10 A = D+2.0*E

5 A= F+2.0*E

20 DAV = A+B**2

RETURN
30 DAV = B**2

RETURN
END

SUBROUTINE SUBPROGRAMS

The SUBROUTINE subprogram is similar to the FUNCTION subprogram in
many respects: the rules for naming FUNCTION and SUBROUTINE subprograms
are the same, they both require an END statement, and they both contain
the same sort of dummy arguments. Like the FUNCTION subprogram, the
SUBROUTINE subprogram is a set of commonly used computations, but it
need not return any results to the calling program, as does the FUNCTION
subprogram.

The SUBROUTINE subprogram is called by the CALL statement, which
consists of the word CALL followed by the name of the subprogram and its
parenthesized argwnents.

r------------------~--~------------------~--------------------------1
I General Form I
·----------~--~

RETURN

END

where: name is the subprogram name (see the section "Naming
Subprograms").

~1 ,~2 ,~3 , •••• ~n are nonsubscripted variable or array names,
or the dummy names of other SUBROUTINE or FUNCTION subpro­
grams. (There need not be any arguments.>

--J
Since the SUBROUTINE is a separate subprogram, the variables and

statement numbers within it do not relate to any other program.

The SUBROUTINE subprogram may contain any FORTRAN statement except a
FUNCTION statement or another SUBROUTINE statement.

Subprograms 73

The SUBROUTINE subprogram may use one or more of its arguments to
return values to the calling program. Any arguments so used must appear
on the left side of an arithmetic statement or in an input list within
the subprogram, as arguments of a CALL statement or as arguments in a
function reference. The SUBROUTINE name must not appear in any other
statement in the SUBROUTINE subprogram.

The arguments (~:Lr ~2 , ~3 , ••• ,~n> may be considered dummy variable
names that are replaced at the time of execution by the actual arguments
supplied in the CALL statement. The actual arguments must correspond in
number,, order, and type to the dummy arguments. The array size must
also be the same. Dummy arguments may not appear in an EQUIVALENCE or
COMMON statenent within the subprogram.

Example:, The relationship
the calling program and the
SUBROUTINE subprogram is
object of the subprogram is

Calling Program

DIMENSION X(l00).Y(100)

CALL COPY (X,Y,K)

CALL Statement

between variable names used as arguments in
dummy variable used as arguments in the
illustrated in the following example. The
to "copy" one array directly into another.

SUBROUTINE Subprogram

SUBROUTINE COPY(A,B,N)
DIMENSION A (100),B(lOO)
00 10 I = 1., N

10 B(l) = A (I)
RETURN
END

The CALL statement is used to call a SUBROUTINE subprogram.

r--1 I General Form I
~--~
I I
I CALL~ (~:Lr~2r~3·r•••r~n> I
I I
I Where: ~ is the name of a subroutine subprogram. I
I I
I ~1 , ~ ., ~3 " ••••• , ~n are the actual arguments that are being I
I supplied to the subroutine subprogram. I L. ___ J

Examples:

74

CALL OUT
CALL MATMPY ex, 5., 40., Y, 7, 2)
CALL QDRTIC (X, Y, Z,, ROOTl,. ROOT2)
CALL SUB1CX+Y•5,ABDF,SINE)

The CALL statement transfers control to the subroutine subprogram and
replaces the dunnny variables with the value of the actual arguments that
appear in the CALL statement. The arguments in a CALL statement may be
any of the following:

1. any type of constant
2. any type of subscripted or nonsubscripted variable
3. an array name
4. an arithmetic expression
5. the name of a FUNCTION or SUBROUTINE subprogram

The arguments in a CALL statement must agree in number, order, and
type with the corresponding arguments in the subroutine subprogram. The
array sizes must also be the same in the subroutine and the calling
programs. If an actual argument corresponds to a dummy argwnent that is
defined or redefined in the subprogram, the actual argument must be a
variable name. subscripted variable name. or array name.

A subprogram cannot define dummy arguments when the subprogram
reference causes those arguments to be associated with other dummy
arguments within the subprogram or with variables in COMMON. For
example, if the external function DERIV is defined as

FUNCTION DERIV cx.Y,Z)
COMMON W

and if the following statements are included in the calling source
program

COMMON B

C = DERIV CA.B,A)

then X, Y, Z, and W cannot be defined (i.e., cannot appear to the left
of an equal sign in an arithmetic statement) in the function DERIV
because the actual argument list causes both A and B to be associated
with more than one value.

RETURN Statement in a SUBROUTINE Subprogram

,--,
I. General Form I
~--i
I I
I RETURN I
L--3

This is the exit from a subprogram. The RETURN statement signifies
the conclusion of a computation and returns control, and any values
requested, to the calling program. In a main program, a RETURN
statement performs the same function as a STOP statement. There may be
several RETURN statements in a subprogram.

Subprograms 75

EXTERNAL Statement

r--1 I General Form I
·--~
I I
I EXTERNAL ~·E·.£···· I
I I
I Where: ~·B•.£•··· are names of subprograms that are passed as I
I arguments to other subprograms. I
L--J

The EXTERNAL statement is a specification statement and must appear
prior to any executable statement in the source program.

The name of any subprogram
subprogram must appear in an
For example, assume that SUB
following statements:

Example 1:

Calling Program

EXTERNAL MULT

CALL SUB (J, MULT,C)

Explanation:

that is passed as an argument to another
EXTERNAL statement in the calling program.
and MOLT are subprogram names in the

4

6

Subprogram

SUBROUTINE SUB(K,Y,Z)
IF (K) 4,6,6
D = Y (K,Z**2)

RETURN
END

In this example, the subprogram name MULT is used as an argument in
the subprogram SUB. The subprogram name MOLT is passed to the dummy
variable Y as are the variables J and c passed to the dummy variables K
and z, respectively. The subprogram MULT is called and executed only if
the value of K is negative.

Example 2:

CALL SUB (A,,B.,MULT (C,D) ,37)

Explanation:

In this example, an EXTERNAL statement is not required because the
subprogram named MULT is not an argument1 it is executed first and the
result becomes the argument.

76

APPENDIX A: SOURCE PROGRAM CHARACTERS

source programs may be coded in either BCDIC or EBCDIC character
codes. Mixing of the two, however, is not allowed.

EBCDIC EBCDIC
or BCDIC or BCDIC

AlQhabetic Card Numeric Card
Characters Punches Characters Punches

A 12-1 0 0
B 12-2 1 1
c 12-3 2 2
D 12-4 3 3
E 12-5 4 4
F 12-6 5 5
G 12-7 6 6
H 12-8 7 7
I 12-9 8 8
J 11-1 9 9
K 11-2
L 11-3
M 11-4
N 11-5
0 11-6
p 11-7
Q 11-8
R 11-9
s 0-2
T 0-3
u 0-4
v 0-5
w 0-6
x 0-1
y 0-8
z 0-9
$ 11-8-3

s2ecial EBCDIC Card BCDIC Card Dual
Characters Punches Punches Characters

(blank) (no punch) (no punch)
11 11

* 11-8-4 11-8-4
12-8-3 12-8-3

,(comma) 0-8-3 0-8-3
+ 12-8-6 12 & (ampersand)
/ 0-1 0-1
= 8-6 8-3 #
(12-8-5 0-8-4 %
) 11-8-5 12-8-4 ll
' C apostrophe) 8-5 8-4 @

Appendix A: Source Program Characters 77

APPENDIX B: BASIC FORTRAN IV IMPLEMENTATION DIFFERENCES

The differences among the four implementations of the Basic FORTRAN
IV language are minor except for the absence of the direct access
input/output statements in Basic Programming Support FORTRAN IV. These
differences are indicated in the body of this publication by footnotes
and, in addition, are summarized in Table 5.

78

The following abbreviations are used in Table 5:

OS - Operating system FORTRAN IV (E)
DOS - Disk Operating System FORTRAN IV
TOS - Tape Operating System FORTRAN IV
BPS - Basic Programming Support Tape System FORTRAN IV

Table 5. Implementation Differences
r-----------------T-------------------r-----------------1
I OS I DOS/TOS I BPS I

r----------------+-----------------+-----------------+-----------------~
!Direct-access !Direct-access !Direct-access I/OIDirect-access I/OI
I input/output I I/O is available .• I is available. A I is not available. I
I statements I I program with I I
I I I direct-access I/OI I
I I !may be cpmpiled I I
I I !using either DOS I I
I I lor TOS, but it I I
I I !must be executed I I
I I 1using DOS. I I
~----------------+-----------------+-----------------+-----------------~
!Key word !Control card op- !The restriction IThe restriction I
land blank ltion may be used !has been removed; I has been removed; I
!restriction !to either keep or!there is no op- !there is no op- I
I !remove the re- jtion to retain ltion to retain I
I lstriction. See lit. lit. I
I !the programmer's I I I
I I guide. I I I
~----------------+-----------------+-----------------+-----------------~
!Maximum array 1131,068 storage 132,767 storage 132,767 storage I
!size I locations I locations I locations I
~----------------+-----------------+-----------------+-----------------~
!Maximum !Depends upon 1255 characters 1255 characters I
!record size lthe input/output !per record !per record I
I !device in use; I I I
I !See the program- I I I
I I mer' s guide. · I I I
~----------------+-----------------+-----------------+-----------------~
!Order of Specification Specification jThe EQUIVALENCE
!Specification statements that statements that !statements must
statements describe data describe data !follow the ex­

must precede any must precede any lplicit specifica­
statements which statements which jtion, COMMON, and
refer to that refer to that !DIMENSION state-
data. EQUIVALENCE data. EQUIVALENCElments.
statements must statements must I
follow the ex- follow the ex- I
plicit specifica- plicit specifica-1
tion, COMMON, and tion, COMMON, andl
DIMENSION state- DIMENSION state- I

lments but do not ments but do not I
!have to follow have to follow I
!the DEFINE FILE the DEFINE FILE I I
!statement. statement. I I

~----------------+-----------------+-----------------+-----------------~
!Subprogram names!Any valid FORTRANIAny valid FORTRAN!Any valid FORTRAN!
I !name may be used !name may be used.tname may be used. I
I !unless key word I I I
I !restriction is I I I
I I retained; key I I I
I !words may not I I I
I !then be used. I I I l ________________ i _________________ i _________________ i _________________ J

Appendix B: Basic FORTRAN IV Implementation Differences 79

APPENDIX C: FORTRAN SUPPLIED SUBPROGRAMS

The FORTRAN supplied subprograms are either in-line or out-of-line.
An in-line subprogram is inserted by the FORTRAN compiler at any point
in the program where the subprogram is referenced. The in-line
subprograms are mathematical function subprograms. These subprograms
are listed in Table 6.

The out-of-line subprograms are located on a library. These subpro­
grams are mathematical function subprograms and service subprograms.
The out-of-line mathematical function subprograms are listed in Table 7;
out-of-line service subprograms are listed in Table 8. A detailed
description of all out-of-line subprograms is contained in the publica­
tion IBM System/360 Operating System: FORTRAN IV (E), Library Subpro­
grams.

Note: Variables used as arguments of any mathematical function subpro­
gram must be defined in accordance with the function in which they
appear. This definition is accomplished either with the Explicit
specification statement or with the predefined convention.

Table 6.. In-Line Mathematical Function Subprograms
r----------------'T------T---------------,.------T---------T----------1
I !Entry I INo. ofl Argument !Function I
!Function !Name !Definition I Arg. I Type !Value Typel
·----------------+------+--------------+------+---------+----------i
!Absolute value IIABS llArgl I 1 !Integer !Integer I
I IABS I I 1 !Real !Real I
I I DABS I I 1 I Double I Double I
I I I I I Precision I Precision I
·-----------------+------+---------------+-----+---------+---------i
I Float I FLOAT I Convert from I 1 I Integer I Real I
I I DFLOAT I integer to real I 1 I Integer I Double I
I I I I I !Precision I
·-----------------+-----+-------------+-----+------~---+----------i
I Fix I IFIX I Convert from I 1 I Real I Integer I
I I lreal to integer I I I I
·---------------+-----+----------------+-----+----------+----------~
!Transfer of sign !SIGN !Sign of Arg2 I 2 !Real !Real I
I I !times IArgj. I I I I I
I I ISIGN I I 2 I Integer I Integer I
I IDSIGN I I 2 !Double !Double I
I I I I I Precision! Precision!
·----------------+------+-----------+-----+---------+---------~
!Positive IDIM IArg3.-MinCArg3._ I 2 IReal !Real I
!difference IIDIM I Arg2 > I 2 !Integer !Integer I
·----------------+-----+--------------+----+---------+---------i
I Obtaining most I SNGL I I 1 I Double I Real I
!significant part I I I I Precision! I
I of a Double I I I I I I
I Precision I I I I I I
I argument I I I I I I
·--------------+------+------------+----+---------+------~--~
!Express ~ Real IDBLE I I 1 !Real !Double I
I argument in I I I I I Precision I
!Double Precision I I I I I I
I form I I I I I I L----------------i.---.L------------L------L-------.L----------J
80

Table 7. Out-of-Line Mathematical Function Subprograms
r-----------------y------T----------------r------T----------T----------1
I I Entry I I No. of I Argument I Function I
!Function JName !Definition I Arg. I Type !Value Type!
·-----------------+------+----------------+------+----------+----------i
!Exponential !EXP I earg I 1 !Real I Real I
I IDEXP learg I 1 !Double !Double I
I I I I I Precisidil I Precision I
·----------------+-----+----------------+------+----------+----------i
!Natural LogarithmlALOG I Ln(Arg) I 1 !Real !Real I
I IDLOG ILn(Arg) I 1 !Double !Double I
I I I I I Precision! Precision!
·-----------------+------+----------------+------+----------+----------i
!Common Logarithm IALOGlOILog10 (Arg) I 1 !Real !Real I
I I DLOG10 I.Log (Arg) I 1 I Double I Double I
I I r 10 I I Precision! Precision!
·-----------------+------+----------------+------+----------+----------i
I Arctangent IATAN I arctan (Arg) I 1 I Real I Real I
I IDATAN f arctan(Arg) I 1 !Double !Double ·I
I I I I I Precision! Precision!
·---------------+------+----------------+------+----------+----------i
!Trigonometric ISIN tsinCArg) I 1 !Real !Real I
!Sine IDSIN lsinCArg) I 1 !Double !Double I
I I I I I Precision! Precision!
·-----------------+------+----------------+------+----------+----------i
I Trigonometric I COS I cos CArgl, I 1 I Real I Real I
!Cosine IDCOS tcosCArg) I 1 !Double !Double I
I I I I I Precision I Precision I
·-----------------+------+---------------+--·----+----------+----------i
I Square Root !SQRT I CArg)1/2 I 1 !Real !Real I
I IDSQRT I CArg)V2 I 1 !Double I Double I
I I I I I Precision! Precision!
·-----------------+------+----------------+------+----------+----------i
!Hyperbolic !TANH ltanh(Arg) I 1 !Real !Real I
!Tangent IDTANH ltanhCArg) I 1 !Double !Double I
I I I I I Precision I Precision I
·-----------------+------+---------------+------+----------+----------i
fModular fMOD 1Arg1 (mod Arg2) I 2 !Integer !Integer I
!Arithmetic IAMOD I I 2 !Real !Real I
I <Remaindering) I DMOD I I 2 I Double I Double I
I I I I I Precision I Precision I
·-----------------+------+----------------+------+----------+----------i
I Truncation I INT I Sign of Arg I 1 I Real I Integer I
I I I times largest I I I I
I I I integer <IArgl I I I I
I IAINT I - I 1 !Real !Real I
I I IDINT I I 1 I Double I Integer I
I I I I I Precision! I
·-----------------+------+-----------~---+------+----------+----------i
!Largest value IAMAXO IMax (Arg1 , I ~2 !Integer !Real I
I IAMAX1 I ••• ,Argn> I ~2 !Real !Real I
I JMAXO I I ~2 !Integer !Integer I
I I MAXl I I ~2 I Real I Integer I
I IDMAX1 I I ~2 !Double !Double I
I I I I I Precision! Precision!
·-----------------+------+---------------+------+----------+----------i
!Smallest value IAMINO !Min (Arg1 , I ~2 !Integer !Real I
I I AMIN1 I ••• , Argn> I ~2 I Real I Real I
I !MINO I I ~2 !Integer !Integer I
I I MINl I I ~2 I Real I Integer I
I IDMINl I I ~2 lnouble !Double I
I I I I I Precision! Precision! L-----------------i-------'----------------i ______ i __________ i __________ J

Appendix c: Fortran supplied Subprograms 81

Table 8. Out-of-Line Service Subprograms
r---------------y----~-----------------T------------------------------1
!Function f Call Statement !Argument Information I
·---------------+-----------------------+------------------------------1
!Alter status off CALL SLITEC!> I! is an integer expression. I
I sense lights I I I
I I I I
I I I If ! = 0, the four sense I
I I I lights are turned off. I
I I I If !. = 1, 2, 3, 4, the corres-1
I I I ponding sense light is I
I I I turned on. I
·-~------------+-----------------------+--~--------------------------1
!Test and recordlCALL SLITETC!,j> I! is an integer expression I
I status of sensef I that has a value of 1, 2, 3, I
!lights I I or 4 and indicates whichf
I I I sense light to test. I
I I lj is an integer variable that I
I I I is set to 1 if the sense!
I I I light was on; or to 2 if thel
I I I sense light was off. I
·----------~---+-----------------------+------------------------------1
!Dump storage onf CALL DUMP C~1 ,£1 ,f1 , I~ and£ are variables that I
the output data ····~n•Enr!n> I indicate the limits of stor-1
set and termin- I age to be dumped. (Either ~I
ate execution I or £ may be the upper orl

I lower limits of storage, butl
I both must be in the samel
I program or subprogram or inl
I COMMON.} I
11 indicates the dump format!
I and may be one of the fol-I
I lowing: I
I 0 - hexadecimal I
I 4 - integer I
I 5 - real I
I 6 - double precision I

·---------------+--------------------~-+------------------------~----1
!Dump storage ontCALL PDUMP C~1 ,B1 ,f1 , I~. £, and fare as previously I
I the output data! •••• ~n•En•!n> I defined for DUMP. I
I set and contin-1 I I
I ue execution I I I
·---------------+-----------------------+------~----------------------1
!Test for dividelCALL DVCHKCj> lj is an integer variable that I
!check exception! I is set to 1 if the divide-I
I I I check indicator was on; orl
I I I to 2 if the indicator was I
I I I off. After testing, the I
I I I divide-check indicator is I
I I I turned off. I
·---------------+---------------~------+------------------------------1
!Test for expon-ICALL OVERFLCj> lj is an integer variable that I
lent overflow orl I is set to 1 if an overflow I
funderflow I I condition exists; to 2 if nol
I I I overflow condition exists; I
I I I or to 3 if an underflow!
I I I condition exists. After!
I I I testing, the overflow indi-1
I I I cator is turned off. I
~-~--------~--+-----------------------+------------------~----------~ I Terminate exec- I CALL EXIT I None I
lution I I I
'---------------.1.-----------------------~------------------------------J

82

APPENDIX D: SAMPLE PROGRAMS

SAMPLE PROGRAM 1

The sample program (Figure 2) is designed to find all of the prime
numbers between 1 and 1000. A prime number is an integer that cannot be
evenly divided by any integer except itself and 1. Thus 1, 2, 3, S, 7,
11, ••• are prime numbers. The number 9, for example, is not a prime
number since it can evenly be divided by 3.

IBJ4 FORTRAN Coding Form

"00"" SAMPLE PROGRAM 1 '""'"'"G 0"'"" J J J J J J J }•m 1 °' 1
1-,.-0G•-..,,M-.. ~~~~~~~~-----..-,-.,,------06.-J_...-OG"'60----f INSTRUCTIONS PUNCH I I l I CARDELECTRONUMBCR"

STATEMENT !z IDENTIFICATION
NUMBER 8 FORTRAN STATEMENT SEQUENCE

1~1 !=5 I I i I I ! ! ! i I I l ! I I

1 ~3 J ,. A I ; --'- I J_ i j_ ! ! l l l i 1 i i i I

1 ais L = u K r , , 1 1 : 1 , 1 , ' , 1 , , 1

2 I=I+2 : I I i ! I : I ! ' ii ! I : I i ! !
1(lJ6 IF71~10Jl(lJ-I[f7?ll'l3 ITI l T I I l ! I I : ! l
4~RITE(6.,9j)' ~' JI! IJI! t,I !J T·_i1}
9 FORMAT (11.f.H PRO~Rl_AM ERR!OR)I ! l 1,, i : I ! ! Ii I
7 ~RITE (6_i'l 61) : 11 I ' ' i l I I I ! • : ' : ! I I I
:G FiOR~AT (31H THrs1:r1s THjE END OF :THE !PR_Ql_GR1A~) : I i i 1 I ' ' l 1

10:9 SiT 0 p l 1 I 1 1 l I I ' ! I l ! I T I : ! ! ! I ; I !
i END I : I l -;- i : l 1 l i : I '1 1 ' ! ~ ' I j_ i : 11 :

i ' ! I !1 i ! :1 ! il I I i l i • I I! 1 l
1 l i I!:}! I l ' l l !'j_! 1 1 l i 1' 11

1 2 3-. s 6 1 a 9 10 1112 is 141s 1617 1s19 20212223 24 25 2627 28 293<l 31323334 35 J6 373839 4041 42 43 4445 <16 47 48 495051 52535455 56 5758596061 62 6364 65 M 67 686970 1112 n 74 1s 11>n10 19ao

A •ta'ldard oard form. IBMelectroBS~157, "ova1lable farpunch1"1l stotements from th1• form

Figure 2. Sample Program 1

Appendix D: Sample Programs 83

SAMPLE PROGRAM 2

The n points (xi, Yi) are to be used to fit an m degree polynomial by
the least-squares method.

In order to obtain the coefficients a 0 , a 1 , ••• , am, it is necessary to
solve the normal equations:

where:

(1)
(2)

(m+1)

W0 a 0 + W1 a 1 +
W1a o + W2a1 +

Wma + Wm+1a1

Wo = n

n
W1 = I Xi

i=1

n
W2 = I x·2

. 1 l l.=

n
W2 m = l: x i.:am

i=1

+

+ Wmam = Zo.
+ Wm+~am = Z1

... + W2ma·m = Zm

z

Z1

Z2

Zm

n
= I Y·

i=1 1.

n
= I y·x· l 1.

i=1

n
= I Y·X· 2

i=1 l. l.

n
=I Y·x·m . 1 l. l. l.=

After the W's and Z's have been computed, the normal equations are
solved by the method of elimination which is illustrated by the
following solution of the normal equations for a second degree polynomi­
al (m = 2) •

(1) W0 a 0 + W1a 1 + W2a 2 = Z0

(~ W1ao + W2a1 + W3a2 = Z1

The forward solution is as follows:

1 • Di vi de equation (1) by W0

2. Multiply the equation resulting from step 1 by W1 and subtract from
equation (2) •

3. Multiply the equation resulting from step 1 by W2 and subtract from
equation (3) •

84

The resulting equations are:

(4) ao + b12a11 + b13a2 = bua.

(5) b22a11 + b23a2 = b2 ..

(6) b32a11 + b33a2 = b34

where:

b112 = W11 /W 0 , b13 = W2/Wo,

Steps 1 and 2 are repeated using equations (5) and (6) , with b 22 and b32
instead of W0 and W1 • The resulting equations are:

(8)

where:

C33 = b33-C23b32 , C34 = b3't-C24b32

The backward solution is as follows:

(9) a2 = C3,./C33 from equation (8)

(10) a,. = C2,.-C23a2 from equation (7)

(11) a = b1'1· -b12a,.-b,. 3a2 from equation (4)

Figure 3 is a possible FORTRAN program for carrying out the
calculations for the case: n = 100, ms 10. W0 , W1 , W2 , ···• W2 m are
stored in W(1), W(2), W(3), ••• , W(2M+1), respectively. Z0 , Z1 , Z2 ,
••• , Z:m are stored in z (1) , z (2) , z (3) , ••• , Z (M+ 1) , respectively.

Appendix D: Sample Programs 85

IBM FORTRAN Coding Form

1 2 3 4 5 6 7 8 9 10 1112 13 14 15 16 17 18 19 20 21 22 23 24 75),6 77 2B 79 30 31 32 33 34 35 36 3738 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 SB 59 60 61 62 63 64 65 66 67 6869 70 7172 73 74 75 76 77 78 79 80

1 2 3 4 5 6 7 8 9 10 1112 13 14 15 \6 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 3738 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 SB 59 60 61 62 63 64 65 66 67 6669 70 7172 73 74 75 76 77 78 79 BO
A "andmd ~a'~ fo,m, IBM .l.,cho BB8157, "ava,lable fo, punch•og "afement< !ram th>< form

Figure 3. Sample Program 2

86

IBJ.t FORTRAN Coding Farm

'I I I 1 :·11 Ji 1' I !l!: l: j, ! 'J_i

'i l'' j_; l ;,, I J_'.l' I' 1J_ij 'i' 1 J_i l l
~+---;- - i ' i : J 1 !, ' : ' ' l : l I 111 ' l . . .1 : -'- I l ! i

! 1 J J ! l' 1 : I . ~ i J 1 Jl ' 1 ! I : l I 1

11 l . : J _1 , J , 1 I : _ n TI1 • 1 m ; L__ ±__·+----"--~I._~'_,_ -c-+---+-·~-t--+--+--+-J_-+-1 t--;-1 -t--1 ,-+-i--'--t-+-t-r-+-'-+-+--t

i I : : I ! : I ' : I Jj_ I 1--1 __l ~; I i I I I I I I !
111l Ji' : ! ·1:1 ! Ii: I i'I ; .• 1 j_ !i JI' ! I:

1 I I ! _LI! . I I l iJ l i: [I ! ! I:! I ; ! _J_

I l ! I I J_ l ! I I I I TI j_J I I I I TT ' I IT I l I i 1 :

' l : I I I ! ' I ' I l ' I : l l i • l i l i i 1 Il : J_ + i I ' i

I ~ : l I : I i l + i -P 11 ' l _Ll l ' i ! l : ~ l I i J_ : l ! T; I T l i J_ i l j_ + T
I l I'' : I!! : I l u ij : I I j_ j_ I T I ii I i I i I 11 l :

! I 11 : l I r- : l IIll I I I I ! j_ l T l . I I J_ ! : J_ l
1 2 3 4 5 6 7 8 9 10 1l 12 13 14 15 16 17 18 19 20 21 22 23 24·25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 4a 49 50 51 52 53 54 55 56 57 SB 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

A standard card fc,..., IBM electro8S8157, "a~allci>lefor punch1n~ •talernentsfrom th" Ferm

Figure 3. Sample Program 2 (Continued)

The elements of the W array, except W(1), are set equal to zero.
W(1) is set equal to N. For each value of I, ~i and Xi are selected.
The powers of Xi are computed and accumulated in the correct W counters.
The powers of Xi are multiplied by Yi and the products are accumulated
in the correct Z counters. In order to save machine time when the
object program is being run, the previously computed power of Xi is used
when computing the next power of Xi• Note the use of variables as index
parameters. By the time control has passed to statement 17, the
counters have been set as follows:

w (1) = N

N
w (2) = I. XI

I=1

N
w (3) = I. X12

1=1

N
W(2M+1) =I, x1 M

1=1

N
z (1) = I. YI

1=1

N
z (2) = I. Y1X1

I=1

N
z (3) = I, Y1XI2

1=1

N
Z (M+1) = I, Y1 x1 M

I=1

Appendix D: Sample Programs 87

By the time control has passed to statement 23, the values of W0 , W1 ,

••• , W2 m+t have been placed in the storage locations corresponding to
columns 1 through M + 1, rows 1 through M + 1, of the B array, and the
values of z , Z1 , ••• , Zm have been stored in the locations correspond­
ing to the column of the B array. For example, for the illustrative
problem (M = 2), columns 1 through 4, rows 1 through 3, of the B array
would be set to the following computed values:

Wo W1 W2 Zo

W1 W2 W3 Z1

W2 W3 w .. Z2

This matrix represents equations (1) , (2) , and (3) , the normal
equations for M = 2.

The forward solution, which results in equations (4) , (7) , and (8) in
the illustrative problem, is carried out by statements 23 through 31.
By the time control has passed to statement 33, the coefficients of the
AI terms in the M + 1 equations which would be obtained in hand
calculations have replaced the contents of the locations corresponding
to columns 1 through M+1, rows 1 through M+1, of the B array, and the
constants on the right-hand side of the equations have replaced the
contents of the locations corresponding to column M+2, rows 1 through
M+1, of the B array. For the illustrative problem, columns 1 through 4,
rows 1 through 3, of the B array would be set to the following computed
values:

1

0

0

1

0 C31t

This matrix represents equations (4) , (7) , and (8) •

The backward solution, which results in equations (9), (10), and (11)
in the illustrative problem, is carried out by statements 33 through 40.
By the time control has passed to statement 41, which prints the values
of the A9 terms, the values of the (M+1)*Ar terms have been stored in
the M + 1 locations for the A array. For the illustrative problem, the
A array would contain the following computed values for a 2 , a 1 , and a 0 ,

respectively:

Location

A (3)

A (2)

A (1)

Contents

The resulting values of the At terms are then printed according to
the FORMAT specification in statement 2.

88

APPENDIX E: FORTRAN IV FEATURES NOT IN .B~IC FORTRAN IV

The following statements and features in FORTRAN IV are not in Basic
FORTRAN IV:

ASSIGN
BLOCK DATA
Labeled COMMON
COMPLEX
DATA
More than three dimensions
Adjustable dimensions
Assigned GO TO
Logical IF
LOGICAL
PRINT b.list
PUNCH b, list
READ b,list
END and ERR parameters in a READ
Generalized Type statement (But note that DOUBLE PRECISION is
provided as an explicit type)

IMPLICIT
Call by name
Literal as argument of CALL
ENTRY
RETURN i Ci not a blank)
NAMELIST
PAUSE with literal
G, L, and Z format codes
Complex, logical, literal, and hexadecimal constants
Generalized subscript form

Appendix E: FORTRAN IV Features Not in Basic FORTRAN IV 89

A format code 44-46
ABS 78
Addition

(see Arithmetic operators}
AINT 81
ALOG 81
ALOGlO 81
AMAXO 81
AMAXl 81
AMINO 81
AMINl 81
AMOD 81
Arithmetic expressions 14-18

mode of 14,15-16
rules for writing 15-18

Arithmetic IF 24-25
Arithmetic operators 14-16
Arithmetic statement 7,22
Arrangement of arrays in storage 21
Arrays 18-21

arrangement in storage 21
size declaration 21
subscripted variables 19
subscripts 20-21

ASA basic FORTRAN 5
ATAN 81

BACKSPACE statement 52
Basic FORTRAN IV 5-6,78-79
Blank fields

(see X format code)
Blank lines

(see Carriage control)
Blanks 8-9

C (see Comments line}
CALL statement 74-75
Carriage control 51
Character card punch codes 77
Coding form 8
Comments line 8
COMMON statement 62-64
Compilers 5
Computed GO TO statement 24
Constants 9-11

double precision 11
integer 9
real 10

Continuation lines 7
CONTINUE statement 28-29
Control statements 7,23-30

arithmetic IF 24-25
computed GO TO 24
CONTINUE 28-29
DO 25-28
END 30
PAUSE 29
STOP 30

Conversion codes (see Format codes)
cos 81

D format code 41,43
DABS 80
Data set (defined) 31

INDEX

Data set reference number (defined} 31
DATAN 81
DBLE 80
DCOS 81
Declaring the size of an array 21
DEFINE FILE statement 53-55
DEXP 81
DFLOAT 80
Differences among implementations 78-79
DIM 80
DIMENSION statement 61
Division

(see Arithmetic operators)
Direct-access I/O statements 53-59

DEFINE FILE 53-55
FIND 58
READ 55-56
WRITE 56-58

DLOG 81
DLOG10 81
DMAXl 81
DMINl 81
DMOD 81
DO loops 25-28
DO statement 25-28

increment 25,26,27,28
initial value 25,26,27,28
programming considerations 27-28
range 25,27-28
test value 25,26,27,28
variable 25,26,27,28

Double precision constants 11
DOUBLE PRECISION statement 60-61
DSIGN 80
DSIN 81
DSQRT 81
DTANH 81
DUMP 82
DVCHK 82

E format code 41,43
END FILE statement 52
END statement 30

in FUNCTION subprograms 72-73
EQUIVALENCE statement 64-66
EXIT 82
EXP 81
Explicit specification statement 60-61
Exponentiation

(see Arithmetic operators}
Exponents

(see E and D format codes}
Expressions 14-18
EXTERNAL statement 76

F format code 41,42-43

Index 91

FIND statement 58
FLOAT 80
Format codes 41-51

A code 44
carriage control 51
D and E codes 41,43
F code 41,42-43
H code 47
I code 41-42
numeric codes
scale factor -
r code 48-49
X code 48

41-43
p 49-51

FORMAT statement 37-51
format codes 41-51
FORTRAN record 38-40
literal data 46-47
use of 38-41

FORTRAN supplied subprograms 67,80-82
EXIT, DUMP, and PDUMP 82
in-line mathematical function

subprograms 81
machine indicator tests 82
out-of-line mathematical function

subprograms 82
FUNCTION subprograms 67,70-73,80-81

FORTRAN supplied 80-82
type specification of 67,71-72
use of RETURN and END 72-73

Functions 68-73
definition 68
FUNCTION subprograms 70-73
reference to 68
statement functions 68-69
type specification of 67,71-72

GO TO statements 23-24
computed 24
unconditional 23

H format code 47
Hierarchy of operations in an arithmetic
statement 16-17

I format code 41-42
IA.BS 80
IDIM 80
!DINT 81
IFIX 80
IF statement 24-25
Implementation differences 78-79
Input/output statements 7,31-59

BACKSPACE 52
DEFINE FILE 53-55
direct access 53-59
END FILE 52
FIND 58
READ 32-35,55-56
REWIND 52
sequential 31-37,52
wRITE 35-37,56-58

INT 81
Integer constants
Integer division
INTEGER statement

92

9
18

60-61

I/O lists 32-37,54-55,57
ISIGN 80

Library
(see FORTRAN supplied subprograms)

Literal data 46-47

Machine indicator tests 82
Mathematical function subprograms 80-81
MAXO 81
MAXl 81
MINO 81
MINl 81
Mixed mode 6
MOD 78,81
Mode of an arithmetic expression 14,15-16
Multiplication

(see Arithmetic operators)

Naming subprograms 67
Nesting DO loops 27-28
Numeric characters 77
Numeric format codes 41-43

D format coae 43
E format code 43
F format code 42-43
I format code 41-42

Operands 15
Operators

(see Arithmetic operators)
Order of computation in an arithmetic

expression 16-17
OVERFL 82

P format code
PAUSE statement
PDUMP 82

49-51
27

Predefined specification
<convention) 13

Programming considerations
in DO loops 27-28
using direct access 54,58-59

Range of a DO statement 25,27-28
READ statement 32-35,55-56

READ (a) list 33-34
READ (a,b) list 32-33
READ (a'r,b) list 55-56

Real constant 10
REAL statement 60-61
RETURN statement 72-73,75
REWIND statement 52

Sample programs 83-87
scale factor - P 49-50
Sense light subprograms
Sequential I/O statements

BACKSPACE 52
END FILE 52
READ 32-35
REWIND 52
WRITE 35-37

SIGN 80
SIN 81

82
31-37,52

SLITE 82
SLITET 82
SNGLE 80
Source program characters 77
Special characters 77
Specification statements 7,60-66

COMMON 62-64
DIMENSION 61
EQUIVALENCE 64-66
Explicit specification 60-61

SQRT 81
Statement functions 67,68-69
STOP statement 30
subprograms 67-76,80-82

FORTRAN supplied 80-82
FUNCTION subprogram 70-73,80-81
functions 68-73
naming 67
statement functions 68-69
SUBROUTINE subprograms 73-76,82

SUBROUTINE subprograms 67,73-76,82
Subscript 18,20-21

Subscripted variables 18,20-21
Subtraction

(see Arithmetic operators)

T format code 48-49
TANH 81
Type declaration 13
Type specification 60-61,71-72

Unconditional GO TO 23

Variables 12-13,18-21
subscripted 18-21
type specification 13
variable names 12

WRITE statement 35-37,56-58
WRITE (a) list 37
WRITE (a,b) list 36
WRITE (a'r,b) list 56-58

X format code 48

Index 93

READER'S COMMENTS

Title: IBM System/360
Basic FORTRAN IV Language

Is the material:
Easy to Read?
Well organized?
Complete?
Well illustrated?
Accurate?
Suitable for its intended audience?

How did you use this publication?

Yes No

Form: C28-6629-0

As an introduction to the subject _ For additional knowledge
Other~--------~~------

Please check the items that describe your position:
_Customer personnel _Operator
_ IBM personnel _Programmer
_Manager _customer Engineer
_Systems Analyst _Instructor

fold

_Sales Representative
_Systems Engineer
_Trainee

Other~--~~-~-

Please check specific criticism(s), give page number(s) ,and explain below:
__ Clarification on page (s)
_Addition on page (s)
__ Deletion on page (s)
_ Error on page (s)

Explanation:

fold

FOLD ON TWO LINES,STAPLE AND MAIL
No Postage Necessary if Mailed in U.S.A.

C28-6629-0

staple staple

fold fold

fold

r--1 I BUSINESS REPLY MAIL I
I NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A. I
L--J

POSTAGE WILL BE PAID BY

IBM CORPORATION
1271 AVENUE OF THE AMERICAS
NEW YORK, NEW YORK 10020

ATTN: PROGRAMMING SYSTEMS PUBLICATIONS
DEPARTMENT D39

International Business Machines C:orporation
Data Processing Division
112 East Post Road, White Plains, N.Y.10601
[USA Only]

IBM World Trade C:orporation
821 United Nations Plaza, New York, New York 10017
[International]

r--------------------,
I FIRST CLASS I
I PERMIT 33504 I
I I
I NEW YORK, N.Y. I
L--------------------J

111111

111111

I 11111

111111

111111

111111

111111

fold

staplE

C28-6629-0

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y.10601
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

