File No. S360-29
Order No. GC33-2002-2

IBM System/360 Conversion Aids:
FORTRAN IV-to-PL/I Language Conversion Program
for IBM System/360 Operating System

Program Number 360C-CV-710

The System/360 FORTRAN IV-to-PL/I Language
Conversion Program (LCP) assists in the transi-
tion to PL/I by converting FORTRAN IV programs
into PL/I programs. The LCP is distributed in
object module form for inclusion in the user's
system library.

The user should have an understanding of the
System/360 Operating System and be familiar
with the following publications:

IBM System/360 FORTRAN IV Language, Form
C28-6515

IBM System/360 Basic FORTRAN IV Language,
Form C28-6629

IBM System/360 Operating System, PL/I (F)
Programmer's Guide, Form C28-6594

A Guide to PL/I for FORTRAN Users, Form
C20-1637

IBM System/360, PL/I Reference Manual, Form
c28-8201

Second Edition (January 1973)

This is a revision of GC33-2002-1, It incorporates changes issued
in the following Technical Newsletters:

N33-7002 (dated October 4, 1968)
N33=7004 (dated January 15, 1969)
GN33-7007 (dated August 13, 1970).

Specifications contained herein are subject to change from time to
time, Any such change will be reported in subsequent revisions or
Technical Newsletters.

This publication was prepared for production using an IBM computer
to update the text and to control the page and line format. Page
impressions for photo~offset printing were obtained from an IBM
1403 Printer using a special print chain.

Copies of this and other IBM publications can be obtained through
IBM Branch Offices.

A form for reader's comments appears at the back of this publication.
Address any additional comments concerning the contents of this
publication to: IBM France, Centre d'Etudes et Recherches,
Programming Publications, 06610 - La Gaude, France,

© Copyright International Business Machines Corporation

INTRODUCTION <« o o o o « o o o o o o o &
Source Language « « « + « o o « s o ¢ o« @
Output Language . . . e s 4 a2 & s o e @
Distribution of the LCP c e s e e e e e
Sample Progral . « « « « « « o o o« o « &
System Requirements . « « ¢« ¢ ¢ o ¢ ¢ o o
Control Informatiol « « « ¢ o o o o o « =«
General Description of the LCP

Characteristics of FORTRAN Programs to be

LCP Actions - - . - L] - - L] - . - L] L] -
Use of the Output Listing . « « « « « .
PerfOrmance « « « ¢ « o « o s o« o o o @
Notation Used in This Document

GENERAL PROBLEMS IN CONVERTING TO PL/I .
FORTRAN Mathematical Function Subprogran
Prevention of Name Conflicts
Arrangement of Arrays in Storage

CCNVERSION ACTIONS ¢ ¢ ¢ « o o o o« o o @
Data Set Terminology =« « o o s o o o «
Form of Coding Examples . . . « « « o+ &

General Considerationls .« « ¢« « o « « + «
Blanks within Words . « « « « « o o o
Comments .+ « « « « « =

Elements of the Language . . . « « « . .
Program UNit « ¢ « o o s o o o o s a @
Statement NUMberS « « « « o o ¢ o o o«
Integer Constants « « « o ¢« « ¢« & o .« &
Real Constants .« <« ¢ ¢ ¢ ¢ o « o o o @
Complex Constants . . « « « . . . o« e
Logical Constants « o « « « « « « « o« &
Literal Constants « o o o o o o o s
Hexadecimal Constants e e s s s e s e @
Subscripted Variables . « « ¢ & « & o«

Arithmetic EXPressionNsS .« « « « o o o « «

Logical EXPreSSioNsS + « « o « = « « « o &
Logical Assignment Statements
Arithmetic Assignment with Truncatlon
Control Statements « o« « « o o o « o o @
Unconditional GO TO Statement
Computed GO TO Statement . . « « « &

ASSIGN and Assigned GO TO Statements .
Arithmetic IF Statement
Logical IF StatemeRt . + « « o o o « &«
DO Statement . « o« o « o o o ¢ o o o @
CONTINUE Statement .« « o« o« o o o« o o @
PAUSE Statement . ¢« ¢ « o « o o o « o o
STOP Statement .« . o ¢ o ¢« ¢ ¢ ¢ o o &
END Statement e o e o e
Specification Statements « « o o s s @
Predefined Specification . . . « « . .
IMPLICIT Statement . . ¢« ¢« ¢« ¢ ¢ « o o
Explicit Specification Statement . . .
DIMENSION Statement . . « « ¢ o o« &« « &
COMMON Statement .« o« ¢ ¢« @ ¢ o ¢ ¢ o @

EQUIVALENCE Statement « « « « ¢« « « o« &

Common Variables Appearing in an Equivalence Statement

Statement FUNcCtions . . « ¢« « ¢ o o + o @

from REAL

Converted

CONTENTS

FUNCTION SUDPLOQILAMS « « o o o o o o s s o o o o s o s o o o s o &
SUBROUTINE SUDPLOGLAMS « o« « o o « o o s o o « s o o o a o« o s o« =
ENTRY Statement . o o o« o« o o o o o o o o o s o o a o s s o« a « @
RETURN Statement in a Subroutine Subprogram . « « « « o« o o o« «
CALL Statement <« « ¢« o o o o o o o o « o« o o o o o« s ¢ o o s o @
EXTERNAL Statement . o o ¢ ¢ o ¢ o ¢ o o o o o s o s o o s s
BLOCK DATA SUDPFOQLAM « « « « « « o o o s o o« o o « o o o o o =
DATA Initialization Statement « « « o « « « ¢ ¢ o o « s o o o =
DOUBLE PRECISION StatemenNt .« &« « o« « o ¢ o o o o o« o o o o o &
Service Subprograms e o o o 8 4 s a4 e s s e s 4 e e @ e 4 o o
Input/Output Statements

READ Statements « o « o o o o o o « e o & e e e o e e e @ o @
PRINT Statement « « « o e o« o o o« o o o 5 s o o ¢ o s o s o o o o
PUNCH Statement « « ¢ « o o o o ¢ s o o o o s o ¢« o s s s o o o &«
«WRITE Statement) - - - L} . ‘e . - - - - - - . . -
FORMAT Statement e e @ o @ @ ®© a o e @ o e o s e e o s & e o o @
Numeric Format TtEMS =« o o o o « o o o o o « s o o » o o o o o
Scale FACLOL ¢« « o o o o o o s s s o o « s e e e s s .
Logical Format Item « « « « o« « o« & - v e e e e e e e
Character-sString Format Itell .« « ¢ « o o o o o o o o o o o o «
Generalized Format It€M o+ o o « o o « o o o o o « o o« o o o o

Hexadecimal Format IteMm « o« « o o o « o s o o s o o s s s o o =
Literal Data and H-Format Code . ¢ o« « o o o o o« o s o o o o =
Control Format IteMS « « o « o « o o s o s s o o o o o o « o« =
END FILE Statement . « « « ¢ o o« « « « o « o o a o s « o o s o o
REWIND StatemeNt ¢ ¢ o o o ¢ o ¢ o o @ s s s ¢ & o o s s s s o &
BACKSPACE Statement . ¢« « o o ¢ o ¢ e o o o o o o o o o a o s o &«

CONVERSION OUTPUT AND MESSAGES e @ o e e @ o o @ 2 e o e e s s o
LiStiNg o o o o o o o o « o 4 o o o o o s s o o o o s« o s o s o« s =

Messages . L] . - - L] . - . - . . L] . L] . L] L L] . L] . . - . . - .
OULPUL ¢« &« o o o o o o ¢ s o« @ s o & o o s s s s s o s o s o s o a
APPENDIX A. CORRESPONDING FORTRAN AND PL/I BASIC SYMBOLS . . .« . «
APPENDIX B. CONVERSION OF FORTRAN MATHEMATICAL FUNCTION SUBPROGRAMS
APPENDIX C. LCP RESTRICTIONS ¢ « « « o o o o o o o « o o« o s o o« =

APPENDIX D. DISTRIBUTION OF THE LCP . v 2 v ¢ « « 2 o « o o o o o =
Programs on Disk PAack « « « o o« « o o o o o

Contents of the Disk Pack « « « o o« o s o o o o« = e o e o ¢ o e
Creating the Load Module . .+ o ¢ ¢ ¢ « o o o o s o o« « s« « a &
Programs ON TAPE « o o o o o o o o o o o o o s o o a2 s o o « o « >
Contents of the TapPe « « ¢ o o ¢ o o ¢ o « o o o o o o« o o o o
Creating the Load Module .« o« ¢ 4« 4 o o o o « o« s o o o o o« o «
Using the Function LBLNK =« « « 2 « o « o o o o o o s o o o « o «

APPENDIX E. OPERATING PROCEDURES ¢ &« ¢ &« ¢ o ¢ o o o s o o o o« o o
Executing the LCP ¢ & v v ¢ ¢ 4 ¢ ¢ o ¢ o o o o o o o o o o o o o o
Control Card OPtiONS & & & « o o « o o o o« a o o s o s o o o o 2 o
EXEC Card OPtioNS ¢ & 4 o o 4 o 4 o o o o « o o s o o o o o o o o
LCP Control CardsS « « o v o o o o o o o a o o o o o o o« « o o o
Executing the PL/T Target ProgTal . « « o o o « s o o o o o o o o

APPENDIX F. MESSAGES . o o« « ¢ « o o o o o o s « o o s s o s o o @
APPENDIX G: PREPARATION OF DATA « o « o s o o o o o o« o o o o « o «

APPENDIX H. SAMPLE PROGRAM & & & ¢ ¢ 4 4 o & ¢ o o o o o o o o o

TABLES

Table 1.

Table 2.

Logical Data Sets Required by the LCP for a
Conversion RUn . . . « ¢ & & & o « o o« &
Type and Length Specification Conversion .

The FORTRAN IV-to-PL/I Language Conversion Program, referred to in this
publication as "the LCP," is a program provided by IBM to assist its
customers in the transition from FORTRAN IV to PL/I. The LCP can be
added to the user's System/360 Operating System program library to help
him convert his FORTRAN IV source programs into PL/I programs. The
resulting PL/I program is referred to as the PL/I "target" progranm.

The LCP does the following:

e It recognizes and converts FORTRAN IV statements into PL/T state-
ments having the same meaning and effect.

e It detects and flags FORTRAN IV statements that have no PL/I equiva-
lents or that cannot be meaningfully or unambiguously translated
into PL/I statements.

e It produces an output listing of the PL/I program as well as mes-
sages providing information on the conversion actions. The user may
specify that the listing also contain the original FORTRAN IV
statements.

e It produces, when specified to do so by the user, the converted pro-
gram on cards, or as card images on tape or on disk.

In certain programs, limited manual changes will be necessary to make
the generated PL/I program compilable and faithful to the FORTRAN IV
source program. In such cases, the user will be guided by output-
listing messages.

SOURCE_LANGUAGE

The LCP processes programs written in System/360 Operating Systenm
FORTRAN IV language. It will, therefore, process the output of the cur-
rent FORTRAN II to System/360 Operating System FORTRAN IV Language Con-
version Programs for the IBM 1401 (see IBM System/360 Conversion Aids:
FORTRAN II Lanquage Conversion Program_for the IBM 1401, Form C28-6560).

Moreover, the LCP will convert FORTRAN IV source programs written for
current IBM systems other than the System/360. When such source pro-
grams are converted, however, the user should note the two following
points:

1. From the point of view of language, all FORTRAN IV source programs
can be converted by the LCP, subject to the restrictions indicated
in Appendix C.

2. There is no guarantee that the converted programs will be correctly
executed. This is due to differences in implementation between
System/360 and other current IBM systems (storage allocation, mag-
nitude of data, etc.).

Introduction 7

OUTPUT_LANGUAGE

The LCP converts source programs into System/360 Operating System PL/I
language for compilation by the PL/I (F) compiler version 4 and the fol-
lowing versions.

DISTRIBUTION OF THE_LCP

The LCP will be distributed in object module form for inzlusion in
user's system library.

SAMPLE_PROGRANM

The disk pack or the tape distributed by IBM will contain, in addition
to the LCP, a sample program, written in FORTRAN. This program is
described in detail in Appendix H.

SYSTEM REQUIREMENTS

The machine requirements depend on the type of run to be made: a con-
version run or a link-editing run for generating the LCP load module.

The minimum System/360 confiquration required for a conversion run by
the LCP is:

e One System/360 Model 40 with 128K bytes of main storage. The LCP
itself needs a minimum of 70K bytes to operate in a PCP or MFT
environment. The 70K bytes include the Data Management Routines and
buffers. To use the LCP with MVT, it is suggested that 6K be added
to the SIZE chosen so as to obtain the REGION specification.

e Standard instruction set

e Decimal Arithmetic feature

e Floating-Point Arithmetic feature

e Minimum peripheral equipment required by the Operating System
The logical data sets used by the LCP are shown in Table 1. Note

that when these data sets are on DASD, they may be placed on the same
volume as the system residence.

Table 1. Logical Data Sets Required by the ICP for a Conversion Run

Punch, DASD

11SYSPCH is required only for punched-card output (or card image
| on magnetic tape or DASD) of the converted program.
[

v v v 1
1 DATA SET i FONCTION | NFVICF OPTINNS]
L i | 1 ¥ |
AJ v Al
1 SYSIN] Source Tnput | ™agnetic Tape Unit, Card |
| | ! Reader, Direct Access |
] | | Storage Device (DASD) |
1 1 1 3
¥ v v 1
! SYSIOFRR 1 Message Output ! Magnetic Tape Unit, |
! | ! Printer, DASD]
F 4 + J
| SYSPRNT | Listing Output | ®™agnetic Tape Unit, !
| ! ! Printer, DASD !
* + 4 4
| SYSUT1 1 Auxiliarvy Storage | DASD]
| sSYSUT?2 | Auxiliarvy Storage | DASD \
L. 31 3 & |
[4 A\ J p g v
! SYSPCH1 | Deck Output ! Magnetic T™ave Unit, Card 1|
| ! !
! ! !)
| T

1

!

]

For generation of the LCP load module, an additional 2?11 Disk
Storage Drive or magnetic tape unit is required to run the Aistrihuted
program.

In order to generate the LCP load module and/or execute a conversion
run, the Operating System must include the modules for the PL/T (F) com-
piler and its library.

NTROL_INFORMATION

:

A conversion run requires control cards prepared by the user, specifving
which of the options provided by the LCP he has chosen. The control
cards required and the options available are described in Appendix %,

ERAL_DESCRIPTIQN OF THE LCP

g

The LCP is designed to do a maximum amount of conversion. It provides a
number of options that permit the user to apply it effectively to a wiAde
range of conversion needs.

The program is particularly versatile in the following respects:

e Messages in the output listing identify statements that cannot be
converted and those that, once converted. may give incorrect results
on execution.

e In addition to the printed listing, the converted output may also
appear on cards, magnetic tape, or DASD.

e The PL/I program can he generated in either the 48~ or the 60-
character set, depending on the character set used in the source
progranm.

e Optionally, the FORTRAN source program can be listed.

e The user can specify the size of main storage available in the
machine used for conversion.

Introduction 9

e A character code option (BCD or EBCDIC) is provided, which remains the
same for input and for output. :

CHARACTERISTICS OF FORTRAN PROGRAMS TO BE CONVERTED

1 source program to be converted by the LCP must be error-free; that is,
source program statements must conform to the specifications for System/
360 Operating System FORTRAN IV,

The source program can be in the form of punched cards or of 80-
character (blocked or unblocked) card images on tape or on DASD.

Source programs should be converted by the LCP before any hand
changes are made. This makes the best use of the LCP and avoids incor-
rect conversion caused by coding errors.

All FORTRAN source programs and subprograms are converted independ-
ently, except BLOCK DATA subprograms, which must immediately precede the
main program to which they belong. Within a single given batch of
FORTRAN programs, the user need not insert new LCP control statements
unless he wishes to change original LCP control information.

LCP ACTIONS

The LCP analyzes each statement of the FORTRAN source program and takes
one of three types of action:

e Full Conversion: The LCP converts the statement completely into a

PR A LA

form acceptable to the PL/I (F) compiler.

e Conversion, with Warning: The statement is converted into a form
acceptable to the PL/I (F) compiler. However, the execution of the
target program may give results that are not equivalent to those
obtained by the execution of the FORTRAN-compiled source program. A
warning message is issued.

e No_Conversion, with Warning: When a source program statement cannot
be converted, a message identifies the statement and gives tha
reasons for non-conversion.

A list of restrictions is given in Appendix C.
USE OF THE OUTPUT LISTING

The output listing from the LCP always contains the converted statements
and all messages that have been generated. Optionally, it may also con-
tain the source program statements.

Using the output listing, the programmer can analyze the conversion
and determine whether any manual changes are required. The necessary
modifications can be made in the output deck. The deck is then ready
for compilation by the PL/I (F) compiler.

10

PERFORMANCE

On a System/360 Model 50 with 128K bytes of main storage, the average
conversion time (T) for a FORTRAN program containing N cards is given in
the following formula (in seconds):

T=55+37%S+0.75%N
where S is the number of subprograms

The time given is that which is applicable when the user has speci-
fied the options SOURCE and DECK in his EXEC card, thus requiring the
source program to be listed on SYSPRNT and the target program to be
punched on SYSPCH. The devices to be used are as follows:
2540 Ccard Read Punch for SYSIN
1403 Printer for SYSPRNT
2540 Card Read Punch for SYSPCH

When SYSIN, SYSPRNT and SYSPCH are 2401 Magnetic Tape Units (Model
3):

T=55+37%S+0.60%N

NOTATION USED IN THIS DOCUMENT

The object of this paragraph is to provide a simple way of describing
the conversion process, and not a comprehensive theory of languages.

In order to present the general form of a source language statement,
as well as that of its target language equivalent, the following syn-
tactic notation is used.

A syntactic_variable of a language is used to represent one element
of a particular set of elements of the language that have the same syn-
tactic function. The range of values of a syntactic variable is there-
fore the set of elements.

In FORTRAN, for example, the statement numbers constitute a set of
elements that have the same syntactic function. The corresponding syn-
tactic variable has as its range of values the set of all possible
FORTRAN statement numbers (each a sequence of from one to five decimal
digits).

For the purposes of this publication, a syntactic variable is given a
name, made up of a finite sequence of characters, which is a mnemonic
representation of the corresponding syntactic function, e.g.:

statement number
In order to differentiate between syntactic _variables that are not

part of the language and basic_symbols of the language, syntactic
variables are enclosed in corner brackets , e.g.:

<{statement number>
In addition, some keywords of the language (GO TO, IF, etc.) are

used in connection with syntactic variables. For example, the FQORTRAN
arithmetic IF statement is written as follows:

Introduction 11

IF (Karithmetic expression>)<statement number>,<statement number>,
<statement number>

When it is necessary to specify different values of a given syntactac
variable, numeral suffixes are used. In order to specify in the example
shown above that the three statement numbers are different, the follow-
ing notation is used:

IF(<arithmetic expression>)<statement number 1>,<statement number 2>,
<statement number 3>

The operator conv is used to denote the result of the conver51on of a
FORTRAN syntactic variable into its PL/I equivalent:

conv<FORTRAN syntactic variable>

For example, the format of the FORTRAN unconditional GO TO statement
and that of its PL/I equivalent are represented as follows:

GO ToO<statement number> and GO TO conv<statement number>

The operator "conv" is sometimes omitted when there is no risk of
confusion.

12

GENERAL_ PROBLEMS_ IN CONVERTING TO_ PL/I

Conversion from FORTRAN IV to PL/I involves several general problems due
to differences between the two languages.

The sections that follow address these problems and note those which
the LCP can solve.

FORTRAN MATHEMATICAL FUNCTION_ _SUBPROGRAM

The table in Appendix B shows the correspondence between thz PL/I built-
in function names and the FORTRAN IV mathematical function subprogram
names.

Normally, the name of each FORTRAN IV mathematical function subpro-
gram in the source program is changed to the corresponding PL/I built-in
function name, except when suppression of such conversion has been indi-
cated in an LCP control card (see Appendix E). For example, the func-
tion IABS is normally converted to ABS wherever it appears.

PREVENTION OF NAME_CONFLICTS

To avoid name conflicts, the LCP provides an LCP substitution name in
the following cases:

1. COMMON block name
The name is lengthened 7 characters by concatenating ths first
characters of the word COMMON with the original common name (see
the COMMON statement).
2. Other symbolic name
The LCP checks each name written by the user against
e a list of PL/I built-in function names which are different in
FORTRAN or which are used for conversion by the LCP, namely,
LOG, LOG10, TRUNC, MAX, MIN, FIXED, IMAG, BINARY
e the operators of the 48-character set, if this option is
selected, namely, GT, GE, NE, LT, LT, OR, AND, NOT, NL, NG,
CAT, and PT
If they match, a suffix <name-tail> is added to the name specified
by the user. The value given to <name-tail> is as many characters
of the string VARFUN as are required to make the substitution name
seven characters long. For example, LO5 will become LOGVARF, and
GE will become GEVARFU. Optionally, a list of such source names
and their corresponding LCP substitution names can be provided in
the output listing.

General Problems in Converting to PL/I 13

The manner of storing arrays differs in FORTRAN and in PL/I.

The FORTRAN convention is that the elements of an array are stored in
ascending locations, with the value of the first subscript varying most

22— 223

The PL/I convention is the inverse of that for FORTRAN: the elements
of an array are stored in ascending locations, but the value of the
first subscript varies least rapidly, and the value of each subscript
varies more_rapidly than that of its predecessor. Thus, a two-

To conform with the PL/I convention for array storage, the LCP makes
the necessary conversion, as shown in the following example:

Original

DIMENSION A(3,4,5,6)

...} = 4(1,2,3,4)

Converted

DECLARE A(6,5,4,3) FLOAT BINARY;

...} = A(4,3,2,1);

14

CONVERSION ACTIONS

The components of the FORTRAN IV lanquage are discussed in approximately

headings:
e General considerations
e Elements of the Language (Constants, Variables, Arrays)
e Arithmetic Expressions
e Logical Expressions
e Assignment Statements
e Control Statements (DO, GO TO, IF, etc.)
e Specification Statements (COMMON, DIMENSION, EQUIVALENCE, etc.)
e Statement Functions
e Function and Subroutine Subprogranms

e Other FORTRAN statements accepted by the System/360 Operating System
FORTRAN IV compiler

e Service Subprograms
e Input/Output Statements (READ, WRITE, FORMAT, etc.)

The LCP does not convert certain FORTRAN statements that are incom-
patible with PL/I. These statements are identified in the discussion of
the category to which they belong.

DATA SET TERMINOLOGY

The terms "data set" and "data set reference number" are used in the
discussion of input/output statements. In System/360 Operating System
programming, the term "data set!" refers to a named collection of data.
A given data set may reside on one or more input/output units. A "data
set reference number!" refers to the data set itself, without regard to
the input/output unit (or units) on which it resides.

FORM OF CODING EXAMPLES
Coding examples illustrate how the LCP converts a statement. The format

of these examples is:

Qriginal
FORTRAN coding as it would appear in the source progranm

Converted

——— o S S

Coding as it would appear in PL/I output from the LCP

Conversion Actions 15

Note that the LCP output displayed or discussed in this manual is
assumed to be in the 60-character set version of PL/I. Thus, a semico-
lon is represented as it is on a standard typewriter keyboard, the rela-
tionship "less than" by the character < , etc. Each example or discus-
sion, however, remains valid with respect to the #48-character set ver-
sion of PL/I when all necessary replacements are made. For example, the
following statement in the 60-character set:

W THEN IF W<P
THEN Y = 1; ELSE P ELSE;

A: IF X>Y THEN IF 2
ELSE X =4; J : Z =

Q
5

.o weo

would read, in the #48-character code version:

A.. IF X GT Y THEN IF Z = W THEN IF W LT P
THEN Y 1,. ELSE P =Q,. ELSE,.
ELSE X 4,. J.. Z = 5,.

GENERAL_CONSIDERATIONS

BLANKS WITHIN WORDS

FORTRAN IV permits embedded blanks. The LCP removes such embedded
blanks except when they occur within literal constants.

ina
TAL = A + B + 72 .01 92E-2

Converted

=

TOTAL=A+B+72.0192E-2;
COMMENTS

All comments appearing in the FORTRAN program will be converted. The %/
character sequence, where it occurs in the source program, will be con-
verted into the x- sequence. Note that card columns 73 through 80 are
not significant to the FORTRAN compiler and may be used for various pur-
poses. The LCP ignores the contents of these columns and inserts an
identification number in the PL/I target progran.

Original

C THIS IS A /#«COMMENTx%x/
Converted

/% THIS IS A /%COMMENTx-x/

16

ELEMENTS .OF THE_LANGUAGE

S e S e S s s S S S o S e S s s

PROGRAM UNIT

A FORTRAN main program is converted to a PL/I main procedure. The fol-
lowing PL/I statement is created first, even if BLOCK DATA subprograms
are placed before the main program:

(NOZERODIVIDE) : MAINPRO:PROCEDURE OPTIONS (MAIN) ;

A FORTRAN subprogram is converted to a PL/I external procedure (see
FUNCTION and SUBROUTINE statements).

The condition NOZERODIVIDE is created to simulate the effect of
FORTRAN division by zero.

STATEMENT NUMBERS

If <statement number> has as its value a source program statement num-
ber, the LCP converts it into the PL/I statement label:

conv<statement number>

where conv<statement number> is EXTLAB followed by <statement number>
without leading zeros.

SmmEd i

02045 A=BxxC

Converted

EXTLAB2045:A=B%%C;

INTEGER CONSTANTS

FORTRAN integer constants appear in the PL/I conversion in the same form
as in the source text, after elimination of embedded blanks.

If FORTRAN integer constants appear as arquments passed to a
subroutine or as arquments of a function, binary conversion is forced by
using the built-in function BINARY at the time the function or subpro-
gram is called.

CALL SUB(BINARY (472));

Conversion Actions 17

RE

Th

AL CONSTANTS
e following rules apply in the conversion of real constants:
¢ Embedded blanks are suppressed.

e D is changed into E.

e Trailing zeros are added, where necessary, to double-precision cons-
tants to make up the required seven significant digits.

e The exponent EO0 is added as a suffix to decimal real constants with
no exponent part.

e The built-in function FLOAT is used to force the conversion of
FORTRAN single-precision real constants containing seven significant
digits into PL/I single-precision floating-point constants.

e e v —

FL

co

Th
fo

OAT (1.234567E0, 6)

MPLEX CONSTANTS
e same rules apply as for the conversion of real constants, with the
llowing additions:

e A comma followed by a sign is suppressed, otherwise it is replaced
by a + sign.

e The letter I is added as a final suffix.

Original

(...

4. 7D+2,1.9736148)

0E+2+1.9736148E0I)

LOGICAL CONSTANTS

A FORTRAN logical constant has one of two forms:
.TRUE. or .FALSE.

<TRUE. is converted to *1'B, .FALSE. to '0'B.

A.AND..TRUE.

Converted
AE'1'B

LITERAL CONSTANTS
FORTRAN literal constants are reproduced without change in the PL/I
output.

Original
*DON''T PRINT /X-COORDINATE!

Converted
'DON''T PRINT /X-COORDINATE!

FORTRAN literal constants should not be passed as actual parameters

to subprograms. Should this happen, however, a warning message will be
issued to the user.

HEXADECIMAL CONSTANTS

Hexadecimal constants are not converted.

SUBSCRIPTED VARIABLES

If the operator / or xx or a left parenthesis appears in a subscript, a
warning message will be issued. It is the user's responsibility to
check whether the converted subscript is correct, e.g., insert TRUNC for
integer division, invert the order of subscripts for a subscripted vari-
able appearing in a subscript.

ARITHMETIC EXPRESSIONS

FORTRAN arithmetic expressions undergo the following modifications:
 Elimination of blanks embedded in constants and identifiers
e Generation of LCP substitution names, where necessary

e Conversion of the exponent D into the exponent E

Conversion Actions 19

e Addition of trailing zeros
e Addition of the exponent part EO, where necessary

e Use of built-in functions TRUNC, BINARY, FLOAT

Oorigipal
CEIL#x (ABE+2) /7 .98D- 1

Converted
CEIL%* (ABE+2) /7.980000E=1

The built-in PL/I function TRUNC is used to force the results of
division of PL/I fixed-point expressions to be of the same precision as
the results of division of FORTRAN IV integer expressions.

The results of arithmetic expressions may differ from the expected
results, owing to differences' in the implementation of (1) precisions
and (2) conversion of mixed characteristics.

For exponentiation, FORTRAN IV produces type integer if base and
exponent are integer items; this is not always the case with PL/I. \Note
that, in this case, the conversion of FORTRAN integer arithmetic expres-
sions containing exponentiation is not always correct.

LOGICAL_ EXPRESSIONS

Oowing to differences between FORTRAN and PL/I in the relative priorities
of operators, the LCP always inserts an additional pair of parentheses
around the converted form of the expression dependant on the FORTRAN
«NOT. operator.

Ooriginal

(E+9.5D2.GE+.2%E) «OR. (L. NE. 3. 1“E-1)
Converted
(E+9.500000E2>=2%E) | (L7=3. 14E-1)
origipal

(A%xF.GT.ROOT) .AND..NOT. (I.EQ.E)
Conyverted

{(AxxF>ROOT) &4 ((I=E))

original
A.GT.D¥%B.AND..NOT.L.OR. N

Converted
ASD**B&q (L) |N

«AND..NOT. X+Y¥%Z.LE. SIN(Z) .OR.P

Converted
Afq (X+Y¥%Z<=SIN(Z))|P

Original
A.AND..NOT. (B.OR..NOT.C.EQ.E)

Converted

A6+ ((Bl4 (C=E)))

original
«NOT. (A+B) .GT.C

BOOL (J,I) = (A%*F>RO0T) &+ (P) ;

ARITHMETIC ASSIGNMENT STATEMENTS

e e e e e

Y=Cxx% (-Y) /.3000000E-5;

Arithmetic Assignment_ with Truncation from REAL_to INTEGER

The value of an expression of type REAL is obtained using implamentation
defined precision which gives an interval that includes the true value.
If this interval contains an integer value, the result of truncation is
undefined.
For example:
2.000001 will give 2
for a true value of 2

1.999998 will give 1

Conversion Actions 21

The above is valid when using a language for which there are several
implementations. It is all the more applicable when going from one lan-
guage to another with a different implementation defined precision, even
if this difference is slight.

A warning message will be issued.

CONTROL_STATEMENTS

UNCONDITIONAL GO TO STATEMENT

FORTRAN Syntax
GO TO <statement number>

BL/I _Syntax
GO TO EXTLAB<statement number>;

COMPUTED GO TO STATEMENT

For each computed GO TO statement, the LCP creates a one-dim=nsional
array of the same size as the argument vector of the GO TO, with ele-
ments that are, in order, the statement numbers themselves. Thus, for
the i-th GO TO statement taking the form shown, an array BRANCHi is
/generated and a PL/I declaration is created giving the following
information:

e The dimension (n) of BRANCHi
e The LABEL attribute for BRANCHi

e The values of the elements of BRANCHi; that is, the converted state-
ment numbers

FORTRAN Syntax
GO TO (<statement number 1>,...,<statement number n>),<index>

where <index> has as its value an unsubscripted integer variable, with
values ranging from 1 to n.

BL/I_Syntax
<label part> IF(<index> LE n AND <index> GT 0) THEN GO TO
BRANCHi (<index>),.

where <label part> is empty or takes the form EXTLABm.. (To avoid con-
fusion, the above example is shown using the 48-character set.)

Thus, should the value of <index> fall outside the dimension of the

array BRANCHi, the GO TO statement is not executed, and control passes
to the following statement.

original
2 GO TO (25,10,7) ,ITEM

22

Converted (48-character)
DECLARE BRANCH (3) LABEL INITIAL(EXTLAB25,EXTLAB10,EXTLABT),.
[]
[]

EXTLAB..IF (ITEM LE 3 AND ITEM GE 0) THEN GOTO BRANCHO1(ITEM), .

ASSIGN AND ASSIGNED GO TO STATEMENTS

FORTRAN_Syntax
ASSIGN <statement number>TO<unsubscripted integer variable>

LEC I

GO TO <unsubscripted integer variable>, (<statement number 1>,...,
<statement nunmber nd>)

PL/I_Syntax
<unsubscripted integer variable>=EXTLAB<statement number>;

GC TO <unsubscripted integer variable>;

Note: <unsubscripted integer variable> is given the LABEL attribute in
a generated declaration unless this item appears in a specification
statement in the FORTRAN program. A conflict will result when this item
is used as an integer variable elsewhere in the program. Warning mes-
sages to that effect are issued for the converted ASSIGN and assigned
GOTO statemeats.

ARITHMETIC IF STATEMENT

FORTRAN_Syntax
IF (<arithmetic expression>)<statement number 1>,<statement number 2>,
<{statement number 3>

PL/I_Syntax

IF (<arithmetic expression>) =0 THEN GO TO conv<statement number 2>;

ELSE IF (<arithmetic expression>)>0 THEN GO TO conv<statement number 3>;
ELSE GO TO conv<statement number 1>;

If the label of the statement following the arithmetic IF statement
is one of the three transfers, or if two of these three labels are the
same, the conversion is optimized.

original
IF (A(J,K)%%x3-B)10,4,30
4 D=B+C
[]
[]
®
30 C=Dx%x%2
[]
[]

10 E=(FxB) /D+1

Conversion Actions 23

Conyerted
IF (A(K,J) %*x3-B)<0 THEN GOTO EYTLAB10;
ELSE IF(A(K,J) x%x3-B)>0 THEN GOTO EXTLAB3O;
EXTLABU: D=B+C;
. L]
[]
L]

LOGICAL IF STATEMENT

FORTRAN_Syntax
IF (<loqicaI expression>) <statement>

PL/I_Syntax

Note: If <statement> is STOP<integer part> and <integer part> is an
integer constant, the PL/I Syntax is:

IF(<logical expressiond) ™EN DOj;<statement>; END
DO STATEMENT

PORTRAN_Syntax

Do<statement numher><DO0 var>=<initiald>,<finald><increment>
<statements within the range of the DO>

In either of the two cases illustrated below, <increment option> is
empty if <increment> is empty, or is RY <steo> if <increment> is
<stepd.

1. Both <initial> and <final> have unsigned integer constants as their
values.

a. <initial> does not exceed <finald>.

BL/1_Syntax

DOKDO var>=<initiald>To<finald><increment optiond;
conv<statements within the range of the NO>:
END;

be <initiald> exceeds <final>.

PL/I_Syntax
DOLKDO var>=<initiald>;

conv<statements within the range of the DO>:
END;

2. Either <initial> or <final> has an integer variable as its value.

PL/I_Syntax .

DO<DO var>=<initiald>T™0 MAX(<initial>,<finald)<increment ovntiond>;
conv<statements within the range of the DO>;

END;

Note: Whereas, in specific cases, FORTRAN allows a *ransfer out of the
range of an innermost DO loop and a transfer back into the range of the
loop, PL/I does not. (The PL/I (F) compiler will diagnose these trans-
fers at compilation time.) The user should therefore ensure that his

program contains no such transfer, and make the necessary hand changes.

24

CONTINUE STATERHNENT

FORTRAN_Syntax
<state£ent number> CONTINUE

BLA_Syptax
<label part><continue partd

vhere <label part> is empty, <continue partd> is ¢ and if {statement num-
ber> is empty. Otherwise, <label part> is BYTLABSstatement numberd>:

and <continue part> is ;

PAUSE STATEMENT
%%gga N_Syntax
USE<message part>

vhere <message part> is either empty, or has as its value an unsigned
integer constant or a literal constant. Thus, there are three cases to
consider:

1+ <message part> is empty.

PL/I_Syntax
DISPLAY(*PAUSE 00000') REPLY(NEXTSTA);

2. <message part> is an integer constant.

yntax
DISPLAY('PAUSE <integer constant>') REPLY (NEXTSTA) ;

3. <message part> is '<character string>!'.

nta
DISPLAY (*PAUSE <character string>') REPLY(NEXTSTA);

Notg: The character variable NEXTSTA is declared with the CHARACTER

attribute and a length of (60) and receives a string that is a message
to be supplied by the operator.

STOP STATEMENT
PORTRAN Syntax

STOP<integer part>

vhere <integer part> is either empty or has as its value an integer con-
stant, Thus, there are two cases to consider:

1~ <integer partd> is empty.

In a main program:

PL/I_Syntax
RETURN;

In a subroutine or function:

PL/I _Syntax
STOP;

Conversion Actions 25

Table 2. Type and Length Specification Conversion

v v v
| | TYPE \
| LENGTH ¢ . - - 3
| | LOGICAL ! INTEGER i REAL { COMPLEY |
¢ $ + } + 4
| 1 | BIT(M)!? | 1 | |
[™ 1 '} A A]
. e v B2 Al v v
| 2 { | FIXYED BINARY | | |
— + -4 4 4 {
1 4 | BIT(M! { PIXYED BINARY | PLOAT BINARY | !
1 | | 311 ' |
k + $ 4 4 4
\ g8 | | | PLOAT BINARY | COMPLEY BINARY|
| \ | | (5% | |
- + } 4 + -4
| 16\ | ! | COMPLEY BINARY)
| | | [1 (531
- L L A A - |

1In PL/Y, " the result of a comparison is a bit string of length one."i
(See the section "Comparison Operations" in the PL/I language speci- |

fications manual.) !
J

o - s et oy

INPLICIT STATEMENT

Original
IMPLICIT INTEGER%2 (A-H), REAL%8(I-K), LOGICAL (L, M, N)

Conversion Actions 26.1

26.2

This page intentionally left blank

2. <integer part> is an integer constant.

In a main program:

PL/I _syntax
DISPLAY('N');
RETOURN

In a subroutine or function:

END STATEMENT

FORTRAN_Syntax

END
PL/I_Syntax
END;

SPECIFICATION STATEMENTS

The LCP collects and saves the information contained in each specifica-
tion statement. Following completion of the source orogram scan,
DECLARE statements will be generated, listing the variables referred to
in all statements and giving their types, precisions, dimensions,
initial values, etc. :

Note that FORTRAN integers represented in the target PL/Y program
with the precision attribute (15,0) will occupy four bytes in the PL/T
version f#-produced object code and two bytes in the later versions.

PREDEFINED SPECIFPICATION

All variables, including the predefined FORTRAN variables, are declarea
by the LCP, as shown in Table 2.

26

Assume that the only variables in the source proqgram affected bv +hie
statement are A, DF, J, and M. 1In this case, the conversion is done as
follows:

Converted
DECLARF A PIYED BINARY STATIC,DE PTYED BINARY STATIC,Y FLOA™ BYNARY(53)
STATIC,M BIT(1)STATIC;

Tn the case of a function name, the type will be Aeclared in the
RETURNS attribute.

If PUNCT is a function name, the conversion is as follows:

gonverted
DECLARE FUNCT ENTRY RETURNS (FIX®D RINARY) s

EXPLICIT SPECIFICAT™ION STATEMENT

Qriginal

INTEGER%*2 ITEM/76/,A(2,2)/2%6,2%x1/

converted

DECLARE ITEM ‘FIXED BTNARY STATIC TNTTIAL(76),A(2,2) FTXED RTNARY
STATIC INITIAL((2)6,(2)1);

If the specification statement concerns a function name, the tvpe
appears in its associated RETURNS attribute.

original
REAL FOUNCT=x8

Converted
DECLARE FUNCT ENTRY RRTURNS (FLOAT BINARY(53));

DIMENSION STATEMENT

original
DIMENSTON A (10), ARRAY(S5,6,7)

‘:
> 40

onver

te
DECLARE A(10) PLOAT BINARY STAT™IC,ARRAY(7,6,5)PLOAT RYNARY STATTC;

COMMON STATEMENT

For each common block, the LCP creates a two-level structure of external
scope, in which the first item of level 2 is a dummy element which
serves to force alignment on a double word.

In the case of unlabeled common blocks, the name of the mador struc-
ture created is UNLABCM, and the common blocks are processed backwards.
Care should therefore he exercized when initializing common block
variables using DO loops.

In the case of labeled common blocks, the name of the major structure

created will he seven characters in length, and will be made up by con-
catenating the first n characters of the word COMMON to the original

Conversion Actions 27

common lahel, where n=7-(character length of the oriainal lahel). ™he
common label ST, for example, is converted in*to STCOMMQO,

original
COMMON A,B,C/R/D,E/ST/F(10)//G,H/S1/1,3/R/D//W

Converted
DECLARE 1 SICOMMN EVTRRNAL,
2 DUMITEM FLOA™ RTNARV(53),
2 F(10) PLOA™ RINART,
2 I PIXFD BTMARY(31),
2 J PIYED BINAR“(31):

DECLARF 1 RCOMMON FYTFPNAL,
DUMTTEM PLOA™ RTNARY(5?),
D PLCAT BINART,
E FLOAT RTHARY,
P FLCAT™ BINARY;

[\ IR0 BN AN }

DECLARE 1 UNLABRCM EYTERNAL,
2 DUMTTEM FLOA™ BYNARY(5?),
FLOAT BINARY,
FLOA™ RTNARY,
FLCAT BINARY,
FLOAT BINARY,
FLOAT BINARY,
FLOAT RTNARY;

NN
IO D>

Bestrictions

Tn version 4, becanse of the implementation of the PL/T (F) compiler,
the conversion of FORTRAN integer constants two bvtes in lenagth will
result in incorrect adires=sing. ™he user will therefore have tno mave
the necessary correctinns.

similar inconveniences wvwill appear in the conversion of logical data
and may appear for elements with the CHARAC™FPR attribute,

A warning message will he issueAd.
BEQUIVALENCE STATEMEN™

In the followina example:

DIMENSYON A (15),C(20)
EQUYIVALENCE (2(2),B,C(12)), (D,E,F), (2 (15),6G)

each of (A(2),B,C(12)) and (D,E,P) and (R (15),G) form an equivalence
group.

Furthermore, (A(2),B,C(12)) together with (A (15),G) form an "egquivalence
chain," since B, C(12), and 6 are made equivalent to an element of the
array A. The group (M,F,¥) on its own also forms an eauivalence chain,
since the elements D, F, and F are not made equivalent to anry other
element.

28

For each equivalence chain -- the 9-th, say -- a one-dimensional
array, EQUBLKY, is created. This arrayvy is placed within a structure to
force alignment on a double word.

Each element of the equivalence chain is placed in a two-level struc-
ture defined using FQUBLKj, and made up of:
o A dummy element containing the position within the hlock

e The element itself, with its attributes

conversion Actions 2R.1

Note: In the interests of maximum efficiency, the method of conversion
shown here takes advantage of the facility offered by the PL/I (F) com-
piler whereby, under certain circumstances, the attributes of the
defined item may differ from those of the base identifier (see "Examples

of Defining" in Section I of the PL/I reference manual).

Origipnal

DIMENSION A(10),B(5,8),C(4,6,9)
EQUIVALENCE (A (3),B(2,3),C(3,4,5))

Converted:
DECLARE 1 EQUBLKO1 STATIC,
2 DUMITEM FLOAT BINARY (53),
2 DUMBASE(216) FLOAT BINARY;
DECLARE 1 ITEMOO1 DEFINED EQUBLKO1,
2 DUMITEM(2) FLOAT BINARY,
2 C(9,6,4) FLOAT BINARY,
1 ITEM002 DEFINED EQUBLKO1,
2 DUMITEM (101) FLOAT BINARY,
2 B(8,5) FLOAT BINARY,
1 ITEM0O03 DEFINED EQUBLKO1,
2 DUMITEM (110) FLOAT BINARY,
2 A(10) FLOAT BINARY;

e The PL/I (F) compiler does not accept initial values for DEFINED
items. Initialization must, therefore, be done by the user.

e See "COMMON Statement."

COMMON VARIABLES APPEARING IN AN EQUIVALENCE STATEMENT

The one-dimensional array EQUBLKj is not created, and each element of
the equivalence chain is placed in a two-level structure defined using
the common name.

When the equivalence chain extends the size of the common block, a
level 2 dummy one-dimensional array is added to the end of the common
block.

Original

CoMMON &,B,C
DIMENSION D (3)
EQUIVALENCE (B,D(1))

Converted
DECLARE 1 UNLABCM EXTERNAL,
2 DUMITEM FLOAT BINARY(53),
2 A FLOAT BINARY,
2 B FLOAT BINARY,
2 C FLOAT BINARY,
2 DUMITEM2(1) FLOAT BINARY;
DECLARE 1 ITEMOO1 DEFINED UNLABCH,
2 DUMITEM(3) FLOAT BINARY,

2 D(3) FLOAT BINARY;

Restrictions: See "EQUIVALENCE statement."

—

Conversion Actions 29

STATEMENT FUNCTIONS

FORTRAN_Syntax
<func> (<arg1>,...,<argn>)=<expression>

PL/I_Syntax
<func>:PROCEDURE (<arg1>,...,<argn>) conv<type>conv<lengspec>;
DECLARE<argi>conv<type>conv<lengspec>,
...,<argn>conv<type>conv<lengspec>;
RETURN (<expression>) ;

END;

where conv<type> and conv<lengspec> are empty if <func> does not appear
in a specification statement.

FUNCTION_ SUBPROGRAMS

FCRTRAN_Syntax

<type>FUNCTION<func><lengspec> (<argl1>,...,<argn>)
<func>=<expression>
RETURN

END

where <type> and <lengspec> are optional.

PL/I_Syntax

(NOZERODIVIDE) :<func>:PROCEDURE (<argl1>,..,<argn>,<func><name taild>);
<func><name tail>=<expression>;

RETURN;

END;

Note that no attempt is made by the LCP to simulate a FORTRAN IV call
by value; that is, a call by value of a FUNCTION or SUBROUTINE subpro-
gram formal parameter is treated as a call of that parameter by nanme.

Note 1: <func><name tail> is an additional parameter, created by the
LCP, that simulates the effect of a FORTRAN function call, thus taking
advantage of the facilities of the PL/I (F) compiler. The value given
to <name tail> is as many characters of the string VARFUN as are
required to make the parameter name seven characters long. This para-
meter is declared according to the predefined specification or according

to the <type> or <lengspec> specified (see Table 3).

If <func> itself is replaced by a substitution name, the procedure and
the additional parameter have the same name (see "Prevention of Name
Conflicts").

Note_2: The user should keep in mind that FORTRAN IV and PL/I do not
handle adjustable dimensions in the same manner. In PL/I, the dimen-
sions of an array passed as arqument are those of the calling progranm.

meters must be equal to that of the corresponding argument.

Note_3: The number of dimensions of an array used in the list of para-

30

SUBROUTINE _SUBPROGRAMS

Qriginal

SUBROUTINE SUB (X, %,/Y/sZ,%sR,/S/s%)

Note: TFor conversion of the asterisks, see "RETURN Statement.”
SUBROUTINE SETUP

Converted

(NOZERODIVIDE) :SETUP :PROCEDURE;

Adjustable Dimensions: See Note 2 under "Function Subprograms" above.

Array_as Pérametgg: See Note 3 under "Function Subprograms'"above.

ENTRY STATEMENT

Since initialization of parameters at primary and secondary entry points
of a PL/I procedure is not generally performed in the same manner as in
FORTRAN, conversion of each ENTRY statement will take place, but a warn-
ing message will be issued.

FORTRAN_Syntax
ENTRY <entry name><arglist>

PLzL_Syntax
<entry name>:ENTRY conv<arglist>;

where:
conv<arglist> takes exactly the same form as in the SUBROUTINE state-
ment if the ENTRY statement appears in the body of a SUBROUTINE subpro-

gram, or the same form as in the FUNCTION statement if the ENTRY state-
ment appears in the body of a FUNCTION subprogran.

RETURN STATEMENT IN A SUBROUTINE SUBPROGRAM

FORTRAN Syntax
RETURN<index>

where <index> is empty or has as its value an integer constant or an
integer variable. If <index> is empty, then the converted statement is
RETURN;

If <index> has an integer value, or an integer variable value, then a
DECLARE statement is created which takes the form:

DECLARE RETARAY (p) LABEL,RETURNO1 LABEL,...,RETURNp LABEL;

where p is the maximum number of % characters appearing in the
SUBROUTINE or ENTRY statement parameter lists.

Conversion Actions 31

In addition, the RETURN <index> statement is converted to:
GC TO RETARAY (<index>);

Initialization of RETARAY is performed at the primary entry point as
follows:

GO TO EXTLABS;

RETARAY (1) :GO TO RETURNO1;

RETARAY (p) : GO TO RETURNp;
EXTLABS: ;

The conversion shown takes advantage of the alternative method avail-
able for the initialization of elements of non-static variable arrays
(see the PL/I language specifications manual, chapter 4, section
entitled "Initial Attributes").

CALL STATEMENT

FORTRAN_ Syntax
CALL<sbrtn><arglist>

PL/I_Syntax
CALL<sbrtn> conv<arglist>;

where conv<arglist> is empty if <arglist> was empty, or takes the form
<arglist> if no statement number appears in <arglist>.

Otherwise, if &<statement number> appears, it is converted to:
EXTLAB<statement number>

Note that FORTRAN literal constants should not be passed as actual
parameters to subprograms. In the event of this happening, a warning
message is issued.

The name of the PL/I equivalent of certain FORTRAN mathematical func-
tion subprograms cannot be passed as an argument. The PL/I built-in
function names which cannot be used as arguments are: FIXED, ABS, MOD,
REAL, MAX, MIN, FLOAT, IMAG, TRUNC, COMPLEX, and CONJG. For other PL/I
built-in function names passed as arguments, the user must specify the
ENTRY attribute in order to describe their entry points properly.

Array _as_Parameter: See Note 3 under "Function Subprograms"above.

EXTERNAL STATEMENT

FORTRAN Syntax
EXTERNAL<sbpgml>,...,<sbpgmp>

PL/I _Syntax
DECLARE<sbpgmi1>ENTRY RETURNS (<type><length>),...,<sbpgmp>ENTRY RETURNS
(<type><length>);

32

BLOCK DATA SUBPROGRAM

FORTRAN_Syntax
BLOCK DATA

END

BL/L_Syntax
BEGIN;

END;

All BLOCK DATA subprograms must immediately precede the main program to
which they belong.

DATA INITIALIZATION STATEMENT

Initial values appearing in a DATA statement are placed in the
INITIAL attribute of tle corresponding variables.

When the initial values are literals, the corresponding variables are
declared as CHARACTER and must remain so throughout the progranm.

Note: Since the PL/I (F) compiler does not accept initial values for
DEFINED items, the initialization of variables in EQUIVALENCE statements
must be done by the user.

DCUBLE PRECISION STATEMENT

FORTRAN Syntax
DOUBLE PRECISION <var1><dimi1>,...,<varp><dimp>

where <vari> has as its value a variable, array, or function name, and
where each <dimi> is either empty, or has as its value a subscript list
in parentheses.
BL/I_Syntax
DECLARE<var1><dim1>FLOAT BINARY (53) STATIC,...,<varp><dimp>FLOAT
BINARY (53) STATIC;

If <varj> is a function, the specification is given by RETURNS
(<type>) .
SERVICE SUBPROGRAMS.
If a call to any of the following subprogranms:
SLITE, SLITET, OVERFL, DVCHK, DUMP, PDUMP

occurs in the source program, it remains unchanged, but the LCP provides
no corresponding external procedure

A call to the FORTRAN EXIT subprogram is converted directly to STOP,
unless the subprogram name EXIT is followed by <arglist>. 1In this case,
the converted statement takes the following form:

CALL EXIT (conv<arglist>) ;

A warning message is issued.

Conversion Actions 33

INPUT/QOUTPUT STATEMENTS

Sequential input/output statements only are converted.

READ STATEMENTS

The LCP processes each of the three basic forms of the READ statement.
The following syntactic variables are used in the discussion of READ
statement conversion:

e <data set ref no>, which has as its value an unsigned integer con-
stant or variable representing a data set reference number

e <formlist name>, which has as its value the statement number or
array name of the FORMAT statement describing the data to be read,
or a NAMELIST name

e <end err part>, which takes the form <end part><err part>, or <err
part><end part>

where:

<end part> is empty or takes the form:
, END = <end statement no>

<err part> is empty or takes the form:
 ERR = <err statement no>

e <list part>, which is empty, or is a list of variable or array names
that may be indexed and incremented

Note: <Kdata set ref no> is converted into FT<data set ref no>F01

For each of the three basic forms of the READ statement, the LCP pro-
cesses the <end err part>, when present, as follows:

If END=<end statement no> is present, the LCP, just before converting
the READ statement, generates the ON-condition statement:

ON ENDFILE (FT<data set ref no>F01)GO TO EXTLAB<end statement no>;

If ERR=<err statement no> is present, the LCP, just before converting
the READ statement, generates the ON-condition statement:

ON TRANSMIT (FT<data set ref no>F01)GO TO EXTLAB<Kerr statement no>;

In addition, if <end err part> is present, the LCP, immediately after
the converted READ statement, generates the ON-condition statement:

ON<end err cond>(FT<data set ref no>F01) SYSTEM;
where <end err cond> is either ENDFILE or TRANSMIT.

If <formlist name> has the format <namelist name> associated with a
NAMELIST statement, the LCP must process a statement of the form:

NAMELIST/<name 1>/<vararray list 1>/.../<name n>/<vararray list n>

34

where <namelist name> is a <name i>, and <vararray list i> is a list of
variable or array names associated with <name i>.

For each <namelist name>, the LCP creates a table of the associated
variable and array names to be referred to via the <namelist name> in a
subsequently generated GET statement.

Note: 1If <formlist name> 1s an array name referring to a FORMAT state-

ment, or if <data set ref no> is an integer variable, conversion does
not take place and a warning message is issued.

Form_READ (<data_set ref no><namelist name><end err_part>)

PL/I_Syntax
GET FILE (FT<data set rer no>F01)DATA (Kvararray list i>) ;

A warning message is issued after conversion.
Note: In PL/I, no search is made for a specific name list. It is

therefore the user's responsibility to ensure that the data is arranged
in the correct sequence.

PL/I_Syntax

GET FILE (FT<data set ref no>F01)EDIT (conv<list part>) (R(conv<format
name>)) ;

Source program variables within I/0 lists may be indexed and incre-
mented in the same manner as variables in a DO statement; the LCP treats
them identically.

If the <list part> of the READ statement contains index2d I/0 lists
and/or arrays a warning message is issued. If the FORMAT statement
referred to contains literal data or an A- or H-format code, conversion
of the literals or of the A- or H-format codes affecting the elements of
the list included in and following the first array or indexed I/0 list
is incorrect.

Original
DIMENSION A (10),B(10)
READ (5, 100) (A (I),B(I),I=1,10)

100 FORMAT (*'A=',E12.5,'B=',E12.5)

Converted (with warning)
DECLARE A(10) FLOAT BINARY STATIC,B (10) FLOAY BINARY STATIC;
GET FILE(FTO5F01) EDIT ((A(I),B(I) DO I=1 TO 10))
(R(EXTLAB100)) ;

EXTLAB100:FORMAT (COLUMN(1) ,A(2) ,E(12,5),A(2),E(12,5));

Form READ (<data_set_ref no>)<list>

Since binary data cannot be directly transmitted in PL/I in the same
manner as in FORTRAN, statements of this type are not converted; they
are, however, identified by messages.

Form_ READ <format name>,<list_part>

EL/I_Syntax

GET FILE (SYSIN) EDIT (conv<list part>) (R (conv<format name>));

Conversion Actions 35

Original
READ 5, 1
5 FORMAT (I5)

Converted
GET FILE (SYSIN) EDIT (I) (R(EXTLABS)) ;
EXTLAB5:FORMAT (COLUMN (1) ,F (5));

PRINT STATEMENT

Original
PRINT 5,1
5 FORMAT (I5)

Converted

e . e e e e e e

EXTLAB5:FORMAT (COLUMN (1) ,F (5));

PUNCH STATEMENT

PUNCH 5,1
5 FORMAT (I5)

Converted

PUT FILE (SYSPRINT)EDIT(I) (R(EXTLABS)) ;
EXTLAB5:FORMAT (COLUMN (1) ,F (5)) ;

WRITE STATEMENT

Except for the absence of the parameters END and ERR, the LCP treats the
WRITE statement in the same way as the READ statement, replacing GET by
PUT.

Note: Differences in format will appear in the output from the con-
verted program in the case of namelist transmission.

FORMAT STATEMENT

To force a new record each time that a FORMAT statement is used, the LCP
inserts the control format item COLUMN (1) at the beginning of the con-
verted format list.

Note that in PL/I, format items, even when they include control for-
mat items, are ignored if they appear after transmission of the last
data list item. Differences in format may therefore appear in the out-
put listing.

The following examples illustrate the conversion of the various forms
of the FORTRAN FORMAT statement.

36

Numeric Format Items

I, F, E, D codes

5 FORMAT (312, 4F11.4, 2E9.3, 3D20. 16)

Converted

—— o o s e

EXTLAB5: FORMAT (COLUMN (1) ,3 F(2),4 F(11,4),2 E(9,3),3 E(20,16));

The BLKZR control card option enables the user to call the function
LBLNK. LBLNK will then appear in the converted format code. On input,
this function modifies numeric data as follows:

- replaces & (plus sign in BCDIC) by +
- replaces D (double-precision) by E
- inserts a zero if the external data field is blank

- inserts + after E, if the character following E is a blank, and
replaces other embedded and trailing blanks by zeros.

If the FORMAT statement is only used for PRINT files, LBLNK is not
generated.

Transmission_of Complex Data: FORTRAN requires an E-format specifica-
tion for each part of a complex number. This format can be used ia the
same program for both complex and real numbers. It is user's responsi-
bility to replace E-format specifications by PL/I C-format
specifications.

riginal
FORMAT (F5.3,E10.3)

Converted (with option BLKZR)
EXTLABS5:FORMAT (COLUMN (1) ,F (LBLNK(5) ,3) ,E(LBLNK(10),3));

Scale_Factor

<integer constant>P<real item>

where <integer constant> may be positive or negative, and <real item>
takes the form Fw.d.

——mdmaa=

8 FORMAT (-1PF11.4,F11.4)

Converted

————

EXTLAB8:FORMAT (COLUMN (1) ,F(11,4,-1) ,F(11,4,-1)) ;

Since PL/I accepts the P-factor for F-format items only, the LCP does
not convert this factor for E or D codes, and a warning messages is
issued.

Note: The effect of the scale factor is dynamic in FORTRAN IV. The
results of the PL/I target program may therefore differ from the
expected results. If the format refers to an input statement, it is the
user's responsibility to invert the sign of the P-factor.

Conversion Actioas 37

Logical Format Item

<format code> is L.

EXTLAB7 : FORMAT (COLUMN(1),2 B(10)) ;

The user should note that logical data in the external medium must be
in a form accpetable to the PL/I compiler. Thus, the values .TRUE. and
.FALSE. must be represented by 1 and 0 respectively, and may occur
anywhere within the field of the size indicated in the FORMAT statement.
On output, the +truth values 1 and 0 will be left-adjusted within the
indicated field. Thus, using the above example, external data for input
might appear in the form:
<blank> (2) 1<blank>(7) <blank>0<blank> (8)
where <blank>(p) is a string of p consecutive <blank>'s.

Similarly, output of logical data would take the form:
1<blank> (9) 0<blank> (9)

A warning message is issued.

Character-String Format Item

<format code> is A.

FORMAT (20AU)

Converted

EXTLAB5: FORMAT(COLUMN (1) ,20A (4));

Note_ _1: Using the A-format <code, FORTRAN <can read or write a
character-string in a field having a variable name. This variable will
be given the CHARACTER (4) attribute in the PL/I target program, except
if it appears after an indexed list and/or an array. 1It, therefore,
retains the CHARACTER (4) attribute throughout the program, i.e., it
must not be wused to contain numeric values. Tn particular, the user
must check that the variable passed through the FORTRAN COMMON and CALL
statements in both main program and subprograms has the same type of
declaration in PL/I. Note also that, FORTRAN IV source programs written
for current IBN systems other than System/360 may give incorrect results
due to the number of characters that are transmitted.

Note 2: If the <list part> of the corresponding input/output statement
contains indexed lists and/or arrays, the variables of the <list part>
that are included in or follow the first indexed list or array, and that

correspond to an A-format code, are not declared as CHARACTER.

Generalized Format Item

<format code> is G.

This format code is not converted; a message is issued.

38

Hexadecimal Format_Item

<format code> is Z.

This format code is not converted; a message is issued.

Literal Data and H-Format Code

samsdoaoo

98 FORMAT (' HEADING')

Converted
EXTLAB98:FORMAT (COLUMN (1) ,A(8)) ;

98 FORMAT (8H HEADING)

Converted

o o e e e i s s

EXTLAB98:FORMAT (COLUMN (1) ,A(8)) ;

In either case, a dummy variable containing the string ' HEADING' is
created and transferred to the data list in the corresponding GET or PUT
statement, and the remote format item R (EXTLAB98) is appended to the
relevant statement.

For indexed I/0 lists, the conversion of literals or of H-format code
is incorrect (see READ statement).

Control Format_Items

e Spacing_Format Item:

Original

——t—— e

5 FORMAT (I10, 10X, 4I10)

Converted
EXTLAB5:FORMAT (COLUMN (1) ,F(10) ,X(10),4 F(10));

e Printing Format_Item: <blank>,0,1,+,/.

Printer control characters are printed as output data characters
and are included in the format code.

original

5 FORMAT ('1NEXT PAGE', T15,'DATA'/' NEXT LINE'///// ' SKIP',
'*FOUR LINES'/ 'ODOUBLE SPACING')

Converted
EXTLAB5: FORMAT (PAGE,A(10) ,COLUMN (15) ,A (4) , SKIP (1) ,COLUMN (1) ,A(10),
SKIP (5) ,COLUMN(1) ,A(5),A(10),SKIP(3),A(15)) ;

A(10) ,SKIP(2) ,A(15)) ;

Conversion Actions 39

In addition, the literals apppearing in the source FORMAT state-
ment are placed in dummy variables which are transferred, in order,
to the data list of the generated PUT (or GET) statement whose
remote format reference is R (EXTLABS).

The format code + is converted into the format item SKIP (0).

e Parentheses: When there are more data list items than format items,
and in order to force the repetition of the format from the last-
included left parenthesis, an additional pair of parentheses is
required. Therefore, every time it encounters a pair of parentheses
of level 2 in a FORMAT statement, the LCP automatically cresates an
additional pair of parentheses preceded by a repetition factor of
327617.

Qriginal
5 FORMAT (I2, (F5.2,I4),I5)

Converted

EXTLABS: FORMAT (COLUMN (1) ,F(2) ,32767 (1 (F (5,2) ,F (4)) ,F (5) ,SKIP (1)));

When the same FORMAT statement applies to PRINT and non-PRINT files,
a warning message is issued.

Note: The first character of a string appearing at the beginning of a
record is both converted as a control character and treated as data if
one of the corresponding files is a PRINT file. When such a string con-
tains only one character, it is converted as a control character if all
the corresponding files are PRINT files.

END FILE STATEMENT

This statement is not converted; a warning message is issued in the out-
put listing. However, if on the same data set an END FILE statement is
dynamically followed by a REWIND statement, the effect may be the same
as in FORTRAN.

REWIND STATEMENT

i —— s i s

CLOSE FILE(FTO06FO01) ;

Note: The conversion of a REWIND statement by a CLOSE statement nmay
give different effects, for the data set will be repositioned at the
beginning of the tape after writing an end-of-file mark. A warning mes-
sage is issued.

BACKSPACE STATEMENT

This statement is not converted; a message is issued.

40

CONVERSION OQUTPUT AND MESSAGES

The LCP can generate two forms of conversion output:
1. A listing of the converted progranm
2. The converted program on punched cards or in card-image form

The listing of the converted program is always provided, but the
punched-card (or card image) output is optional. The listing contains
the converted program together with messages generated during conver-
sion. Additionally, the user can specify that a listing of the source
program be included.

LISTING

The listing contains two major sections:
1. The optional source program listing
2. The converted progranm

The source program listing contains the original source statements
exactly as they appeared in the input.

The listing of the converted program includes :

e The converted program itself. This again is divided into two parts.
One part contains converted statements, statements generated by the
LCP, messages replacing statements that have not been converted
(i.e., FORTRAN statements for which conversion is not possible or
not practical), and warning message flags. The other contains mes-
sages showing either that the FORTRAN source statement cannot be
converted or that conversion has taken place, but that fidelity to
the source statement cannot be guaranteed.

e A table of source program statement function or subprogram names,
each of which has been replaced either by an equivalent built-in
function or procedure (see Appendix B), or by a function name that
avoids conflict with PL/I built-in function names not available in
FORTRAN. The changed or substituted name appears next to the func-
tion name it has replaced.

e A table of source program variable or array names that have been

replaced by an LCP substitution name. The replacement appears next
to the corresponding variable or array name.

MESSAGES

Messages in the output listing indicate clearly the statements in the
converted program to which they apply, thus enabling the user to scan
the program for statements that require manual changes.

Conversion Output and Messages 41

A message appears with each output statement that falls into one of
the following categories:

e The FORTRAN statement is not convertible into PL/T.

e The PL/I statement may not have the same effect as the corresponding
FORTRAN source statement.

Using the output listing, the present manual, and the PL/I language

specifications manual , the user can determine the hand changes reguired
to make the PL/I program suitable for compilation.

QUTPUT

—————

The punched cards (or card images) produced by the LCP contain converted
statements, the form of which matches that in the listing.

Statements flagged with a warning message should, where nscessary, be
corrected before the PL/I program is submitted for compilation.

42

APPENDIX A. _CORRESPONDING FORTRAN AND PL/I BASIC_SYMBOLS

FORTRAN IV _Symbol PL/I_60-Character PLy/L _U48-Character
Set_Symbol Set_Symbol

A-Z A-2Z A-2

$ $ $

0-9 0-9 0-9

blank blank blank

= Oor oEQ. = =

+ + +

* * *

/ / /

(((

)))

’ r ’

' (apostrophe) ! (apostrophe) ' (apostrophe)

eNQOT e 1 NOT

eANDe & AND

e(QRe | OR

eGTe > GT

o[Te < LT

eGEe >= GE

eNEe Q= NE

eLEe <= LE

Appendix A 43

APPENDIX B. _CONVERSION OF FORTRAN MATHEMATICAL FﬁNCTION SUBPROGRAMS

In the following table, unless otherwise specified, the number of argu-
meats associated with each FORTRAN function is the same as that for the
corresponding PL/I function.

FORTRAN_Function PL/I Function
EXP EXP
DEXP EXP
CEXP EXP
CDEXP EXP
ALOG LOG
DLOG LOG
CLOG LOG
CDLOG LOG
ALOG10 LOG 10
DLOG10 LOG10
ATAN ATAN
DATAN ATAN
ATAN2 ATAN
DATAN2 ATAN
SIN SIN
DSIN SIN
CSIN SIN
CDSIN SIN
cos cos
DCOS cos
ccos cos
CDCOS cos
SQRT SQRT
DSQRT SQRT
CSQRT SQRT
CDSQRT SQRT
TANH TANH
DTANH TANH
MOD MOD
AMOD MOD see Note 2
DMOD MOD
IABS ABS
ABS ABS
DABS . ABS
CABS ABS
CDABS ABS
INT TRUNC
AINT TRUNC
IDINT TRUNC

4y

FLOAT
DFLOAT

IFIX
HFIX

SIGN
ISIGN
DSIGN

DIM (<arg1>,<arg2>)
IDINM(<arg1>,<arg2>)

SNGL (<arg>)
REAL

AIMAG

DBLE (<arg>)

CMPLX
DCMPLX

CONJG
DCONJG

TAN
DTAN

SINH
DSINH

COSH
DCOSH

ERF
DERF

ERFC
DERFC

PL/1 Function

MAX
MAX
MAX
MAX
MAX

MIN
MIN
MIN
MIN
MIN

FLOAT
FLOAT

FIXED
FIXED

See Note 3
n

See Note 2
"

REAL
IMAG
See Note 2

COMPLEX
COMPLEX

CONJG
CONJG

TAN
TAN

SINH
SINH

cosH
COSH

ERF
ERF

ERFC
ERFC

Appendix B

45

If the source program contains subprogram names created by user that
match FORTRAN IV mathematical function names, they must be specified in
an LCP control card (see Appendix E) so as not to be converted to PL/I
functions. Thus, if the assignment statement:

Y=EXP (X) +DEXP (Z)

appears in the source program, and DEXP is a user function name, this
name must be listed in the LCP control card. The user can then provide
his own DEXP FORTRAN function subprogram for conversion to PL/I.

If a name created by the user (EXP, for example) coincides with one
of the PL/I built-in function names listed above (except for COMPLEX and
REAL), a conflict may arise if the name is also the PL/I equivalent of a
FORTRAN function (DEXP, for example) used elsewhere in the program. In
this case, the converted form of the assignment statement illustrated in
the preceding paragraph would be:

Y = EXP(X) + EXP (Z)
The following mathematical functions:

DIM, IDIM, SNGL, DBLE, ARSIN, DARSIN, ARCOS, DARCOS, COTAN, DCOTAN,
GAMMA, DGAMMA, ALGAMMA, DLGAMMA

are not converted.

The conversion provided for the mathematical functions MOD, AMOD, and
DMOD produces correct results only if the first argument is greater than
zero.

Note 3

The LCP converts the functions SIGN, ISIGN, and DSIGN by providing an
internal procedure for each.

For the SIGN function the procedure is:

SIGN:PROCEDURE(A1,A2) FLOAT BINARY;
DECLARE (A1,A2) FLOAT BINARY;
IF (A2<0) THEN RETURN (~ABS(A 1)) ;
ELSE RETURN (ABS (A1)); :
END;

In the ISIGN function, FLOAT BINARY is replaced wherever it appears
by FIXED BINARY(31); in the DSIGN function, by FLOAT BINARY (53).

46

1.

2.

4.

5.

6o

10.

11.

12.

1?

14,

APPENDIY C. _LCP RESTRICTIONS

vervadecimal and octal constants are not converted.

rhe conversion of subscripts containing the operators /or xx, mixed
mode expressions, function references, or subscripted names may
give incorrect results,

The user must ensure that his program, in no event, uses an
assigned variable for any purpose other than for the assiqned GO ™0
statement.

The user must ensure that his program, in no event, contains a
transfer back into a "0 loop.

When converting a COMMNON statement, the user should ensure that
common blocks in the various subprograms are the same, that is, the
COMMON statements in the various subprogram must he identical.

In version #, the conversion of FORTRAN integer constants two bvtes
in length, and of logical data items mav agive incorrect results.

The number of dimensions of an arrav used in the list of parameters
must be equal to that of the corresponding argument.

‘On. entrv to a function or to a subroutine, initialization of para-

meters made on a previous entry may he lost.

Tn a DATA statement, when the initial valves are literals, the
correspqnding variables are declared as CHARACTFR bv the LCP, and
must remain so throughout the program, i.e., they must not he use?d
to contain numeric values. 7Tn particular, the user must check that
variables passed through the FORTRAN COMMON and CALL statements in
both main proaram and suhprogqrams have the same type of declaration
in PL/Y. An implied DO in a DA™A statement is not converted.

FORT™RAN literal constants should not be passed as arquments +o a
subprogram. The user should note that FPOPTRAN TV and PL/T Ao not
handle adjustable dimensions in the same manner, and that in PL/T

the dimensions of an array passed as argument are those of the cal-
ling program.

Initial values assigned to variahles ir FOUIVALFNCE statements
should be adjusted bv the user.

The LCP does not provide PL/I external procedures to simulate the
e“fect of FCRTRAN service subprograms OV®P®L, NVCHK, SLITE, SLITF7,
DUMP, and PDMMP,

The LCP Aoces not provide external procedures to simulate the effect
of the following FORPTRAN mathematical function subprograms:

ARSTN, DARSTN, ARCONS, DARCOS, CO™AN, NCOTAN, GAMMA, NGAMMA, ALGAMA,
DLGAMA, DIM, IDTM, SNGL, DULE.

A READ/VRTTE statement is not+ converted if:
a. The statement anplies to direct-access mrode.

b. A FORMAT™ statement is referred to by an arrav nanme,

Appendiy Cc u7

15.

16.

17.

18.

19.

48

c. Binary data transmission is indicated (no format reference).
d. A data set reference number is an integer variable,

The following restrictions, due to differences in the implementa-
tion of PL/I, apply to the conversion of the FORMAT statement:

a. When an input/output statement contains arrays or indexed I/O
lists, and the FORMAT statement referred to contains literal
data, or an A- or H-format code, conversion of the literals or
of the A~ or H-format codes affecting the elements of the list
included in and following the first array/indexed I/0 list is
incorrect.

be In PL/I, format items, even when they include control format
items, are ignored if they appear after transmission of the
last data list item. Consequently, differences in format may
appear in the output listing.

c. E-format codes associated with complex numbers must be changed
into PL/I C-format codes.

d. Pescale factors associated with E- or D-format codes are not
converted. Moreover, the effect of the scale factor associated
with an F~-format code may differ. 1If the format refers to an
input statement, it is the user's responsibility to invert the
sign of the P-scale factor.

e. G-, Z-, and O-format codes are not conveéerted.

f. When a format refers to a PRINT file and/or a non-PRINT file,
the first character of a string appearing at the beginning of a
record is treated, in general, both as a control character and
as data.

The BACKSPACE and END FILE statements are not converted.

The conversion of the REWIND statement by a CLOSE statement gives
equivalent effects only if the REWIND statement applies to the
first data set on the tape.

If a name created by the user coincides with a PL/I built-in func-
tion name, there may be conflict if the name is also to be the PL/I
equivalent of a FORTRAN mathematical function used elsewhere in the
progqranm.

The name of the PL/I equivalent of certain FORTRAN mathematical
function subprograms cannot te passed as an arqument. These PL/T
built-in function names which cannot he used as arguments are:
FIX®D, ABS, MOD, REAL, MAX, MWIN, FLOAT, IMAG, TRUNC, COMPLEX, and
CONJG. For other PL/I built-in function names passed as arauments,
the user must specify the ENTRY attribute in order to describe
their entry points properly.

APPPENDIX_D, _NDISTRIBUTION OF THF_LCP

The LCP is distributed by TBM in one of two forms:

e On a disk pack for users having no tape units

¢ On tape

PROGRAMS ON_DISK _PACK

CONTENTS OF THE DISK PACK

The following data sets are written on the disk pack with label FLCPRS:

1.

2.

3.

U

A sequential data set (DSNAMF=FOCCARD) containing the control cards
required by the linkage editor to create a partitioned data set
with one member: the LCP.

Fighteen data sets containing the 18 modules of the LCP. fThese
modules are in object form, heing the output from the PL/I (F) com-
piler version 5, or from the System/360 Operating System (F)
assenmbler,

A sequential data set (DSNAME=SAMPLF) containinag the sample program
written in FORTRAN. (For use of the sample proaram, refer to
Appendix H.)

One data set (DSNAME=LBLNK) containing the object module of the
function, provided to process blank as zero in numeric data under
the control of the option BLK7ZR.

CREATING THE LOAD MODULFE

The user must perform the following steps:

1.

Transfer the data set mentioned in (1) above to cards, to obtain
the control cards required by the linkage editor. The following is
an example of the control cards needed to 4o this:

//AB JOB 4727,SMITH, MSGLEVEL=1
//ABA EXEC PGM=IEBPTPCH
//SYSPRINT DD SYSOUT=A
//53s0m2 DD SYSOUT=B
//7sYsum1 DD ONIT=2311, c
// DISP=0LD, C
// DSNAME=FOCCARD, c
// VOLUME=SER=PLCPRS
//SYSIN DD *
PONCH
/*

The control cards obtained contain all the information required
by the linkage editor, i,e., names to be used for the load module
to be created, overlay structure, etc.

Appendix D 49

2. Modify the JOB card and the volume serial number in the //SYSLMOD
DD... card in order to use his own label. 1In addition, the user
may have to modify other cards, depending on:

¢ The level of his linkage editor
(The editor used here is the 44K E-level linkage editor.)

e Any change that may be required in the names of the load module

3. Add a /* card to the control cards obtained, and create a parti-
tioned data set (DSNAME=FORLCP) containing the LCP (member name=
LCPFORT) , using as input to the linkage editor the 18 data sets
described under "Contents of the Disk Pack."

Note: The same procedure will be used when maintaining the LCP; in this
case, the input to the linkage editor will consist of the updated
modules, also delivered in object form.

PROGRAMS ON TAPE

CONTENTS OF THE TAPE

Four files are written on the tape, which is blocked with a blocksize of
2400 bytes:

File 1, which contains the 18 modules of the LCP and the overlay structure
File 2, which contains the control cards required by the linkage editor
File 3, which contains the sample program written in FORTRAN

File 4, which contains the object module LBLNK

CREATING THE LOAD MODULE

The user must perform the following steps:

l. Transfer file 2 to cards to obtain the control cards required by
the linkage editor. The following is an example of the cards
needed to do this:

//ABC JOB 4727 ,SMITH,MSGLEVEL=1
//ABA EXEC PGM=IEBPTPCH
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD UNIT=2400,LABEL=(2,NL), C
// VOLUME=SER=888888 ,DISP=0LD, C
// DCB=(RECFM=FB, LRECL=80 ,BLKSIZE=2400)
//SYSUT2 DD SYSOUT=B
//SYSIN DD *
PUNCH
/*

The control cards obtained contain all the information required
by the linkage editor, i.e., names to be used for the load module
to be created, etc.

50

2. Deblock file 1 using the IEBGFNEP utility progran.

3. Modify the control cards, if required. (See item 2 of the section
"Creating the Load Modules'" under "Proqgrams on Nisk Pack.")

4, ndd a /= card to the control cards ohtained, and create a narti-
tioned data set (DSNAME=FORLCP) containing the ULCP (member name=
LCPPORT), using the 18 modules in file 1 as input to the linkage
editor.

Note: The same procedure will be used when maintaining the UCP; in this
case, the input to the linkage editor will consist of the updated
modules, also delivered in object fornm.

USING THE FUNCTION LBLNK

When executing the PL/I program and if the option RLK7ZR has been used
during the conversion, file 8 must be copied onto a Aisk pack in order
to be used. ™he following is an example of the cards needed to do this.

//AB JOB 4727,SMITH, MSGLEVFL="T

//A EXEC PAM=TEBGENER

//SYSIN DD DUMMY

//SYSPRYNT DD SYSoUT=A

//S¥SUT2 DD DISP= (NFW,KFFP),UNI™=2311, c
7/ VOLUMR=SRR=YYTYYY ,DSNAMNF=LBLYNK, c
V24 DCB= (RFCFM=F,LR¥CL=80,BLKSI"F=80), C
// SPACE= (TRK, (1, 1)) o
//s¥sum1 DD UNTI™=2400,LABEL=(4,NL), c
7/ VOLUME=SFR=888888, DISP=0OLD, c
// DCB=(RECFM=FR,LRECL=80,RLKSTZE=2400)

/*

Appendix D 51

APPENDIY P,

QPERATING PROC¥DURFS

FYECUTING_THE_LCP

mhe following control cards must he supplied by the nser to avecute +he

LCP, The standard options are underlined.
//AR JOR 47?7,SMTTH,MSGLEVEL=1
//JOBLIB DD DSNAMP=FORL,CP,NISP=0LD, UNIT=2311,VOLNM*=SER=xyYYYY
// FYFC PGM=LCPPOPT, PARM=ISOUPCRINOSNURCF,NFCKINONFCK, of
7/ BOD|FRCDIC, FYTRRF| NORXTRE? , CHARUBICHARKD, ~
// BLX7R |NOBLXZR, SIZF=yxyxxx"
//S7SPCH DD SYSONT=B
//SYSIOERR DD SYSOUT=A
//SYSPRNT DD SYSOU™=A,DCRB= (RECFM=VA, BLKST7E=129,L.RRCL=12K)
//7S¥suTi DN Parameters defining a work data set, See also
the note on the parameters SPACE and DCR,
//5YsuT? nn As for SYSU™1
//SYSIN nn Parameters defining source input Aata set
/ (Starting in column 7) Tist of subprogram names created hy the
vser that ma*ch FORTRAN TV mathematical function names
and of data-set-numhers to he declared PRINT. Names
and numbers mav be mixed, but must be separated bv commas.
]
|} FORTRAN SOURCE PROGRAM
|
L
/%
Note:
SYsUT1
SPACE This parameter depends on the length of +he
FORTRAN source program to he converted
One cylinder is reguired for 120 cards of source
program or subprogranm.
This parameter has the following form:
DCB= (DSORG=DA ,KEYLEN=9)
515812

52

ore cvlinder is required for 500 cards
of source program

This parameter has the following form:
DCR=(DSORG=DA)

gg;g Processing: Tn batch processing, the spaces used on the disk are
the same. Therefore, to estimate the number of cvlinders required, the
total number of cards in the batch should not be taken into considera-
tion, but only the number of cards in the largest proqram in the hatch.

CONTROL_CARD_QPTIONS
BXEC CARD OPTIONS

The following options can be specified in the PARM field of the EYRC
card., If no option is specified, the standard option (underlined) is
assunmed.

The total length of the options indicated hetween apostrophes in the
PARM field must not exceed #0 characters, commas included. Because of
this limitation, the LCP accepts abbreviated options (indicated between
parentheses in the following text) s

* NOSOURCE or SQURCE (NS or 5)
This option specifies whether the FORTRAN source program is to he
listed on the device indicated by the SYSPRNT DD card.

e DECK or NODECK (D or ND)
This option specifies whether the PL/T program is to be punched on
the device indicated by the SYSPCH DD card.

e BCD or EBCDIC (B or EB)
This option specifies the character code of the FORTRAN source pro-
gram and, consequently, that of the LCP output,

e CHAR48 or CHAR6O (Cu8 or CEO)
This optlon specifies which character set is to be used to list the
converted program.

e EXTREF or NOEXTREF (E or NE)
This option specifies whether the name changes in the FORTRAN source
program are to be listed on the device indicated by the SYSPRNT DD '

card.

e BLKZR or NOBLKZR (BZ or NBZ)
This option specifies whether the external form of numeric input
data must be processed during execution of the PL/I program; if this
is the case, the function LBENK is used for the conversion of E-, F-
and I-format items.

e SIZE=xxxxx or SI7E=71680
This option specifies the main storage size that is avajlable to the
LCP. The minimum size of main storage is 71680 bytes; this is the
standard size for the purposes of this option., Tf the user:

1. Specifies a smaller value, it is ignored and the standard size
is assumed.

2. Specifies a value greater than 71680. This will result in an
improvement in performance,

Appendix ®» 52

LCP CONTROL CARDS

These cards, if necessary, are placed after a SYSIN DD statement and
between programs in batch processing. These cards contain:

e / in column 1

e Starting in column 7:

1.

The subprogram names created by the user that match FORTRAN IV
mathematical function names (from the list given in appendix
B) ; these names are not changed by conversion.

The data set numbers that he wishes declared with the PL/I
attribute PRINT. Any numeric field of up to two digits is con-
sidered as a data set reference number. Note that the PL/I
file FT06F01 (data set number=6) is automatically declared with
the PRINT attribute. If the user wishes to override this
declaration, he must specify 0 as the data set reference
number.

EXECUTING THE PL/I_ TARGET_ PROGRAM

After any necessary hand changes are made, the converted PL/I target
program may be used with a normal set of control cards for PL/I pro-
granms,

for example, IBM supplied catalogged procedures such as PL1LFCLG.

If the user chooses the option BLKZR during the conversion run, he
must link edit the LBLNK module when executing his target program. He
will have to add the following control card for the link edit step:

//LKED.SYSIN DD DSNAME=LBLNK,DISP=OLD,UNIT=SYSDA,VOLUME=SER=XXXXXX

where xxxxxx is the volume serial number of the disk rack containing the
LBLNK ob-ject module.

54

This appendix contains the list of messages that may be issued during
the execution of the LCP, In each messages, XXxXx represents an identi-
fication number of up to four digits which appears to the right of the
converted line in the output listing and in the corresponding card image
if the option DECK has been specified. The last digit of this number is

that of

IPBOO1I

IEB0OO2I

IPBOO3I

the ten positions; the units position is not printed.

READ OR WRITE STATEMENT
PL/TI AND FORTRAN RESULTS MAY DIFFER IN LINE xxxx

I/0 lists and/or arrays, and the FORMAT statement referred to
contains literal data or an A- or H-format code, conversiomn of
these jtems is incorrect.

In the conversion of a READ or WRITE statement using NAMELIST,
it should be noted that:

e A DEFINED item cannot appear in the data list in PL/T.
e On input, no search is made for a specific NAMELIST name
Required Action: For transmission of a character string appear-

ing among the values of an indexed list or of an array, the user
should:

e On input, create a dummy variable containing the character
string and insert it in the list.

e On output, either proceed as above, or insert the character
string itself in the list.

For a DEFINED item appearing in a data-list, the user should
replace this item by a dummy variable both in the data list and
in the data.

ENTRY STATEMENT
PL/I AND FORTRAN RESULTS MAY DIFFER IN LINE XXXX

Explanation: On entry to a function or a subroutine, initiali-

zation of parameter made on a previous entry may be lost.

Required_Action: If needed, the user should insert additionnal
dummy formal parameters or use dummy static variables.

ASSIGNED GOTO STATEMENT
PL/I AND FORTRAN RESULTS MAY DIFFER IN LINE XXXX

Explanation: An assigned variable cannot be used for any pur-

pose other than for the assigned GOTO statement.

Bequired_Action: If a label used in an ASSIGN and in an
assigned GOTO statement is also used as a variable elsewhere in
the program, the label should be changed.

Appendix F 55

| 1PBOOY4I

| IPBOOSI

IPBOO6I

| IPFB0O7I

56

COMMON/EQUIVALENCE STATEMENT
PL/I AND FORTRAN RESULTS MAY DIFFER IN LINE xxxx

Explanation: In general, the conversion of integer variables
two bytes in length and of logical variables will result in in-
correct addressing. This may also apply to elements with the
CHARACTER attribute.

Required Action: The user should insert additional dummy
variables to provide correct alignment.

ARITHMETIC ASSIGNMENT STATEMENT
PL/I AND FORTRAN RESULTS MAY DIFFER IN LINE XXxXxX

Explanation: The right-hand part of the assignment Statement is
an expression of REAL type and the left-hand part is of INTEGER
type. Due to difference of implementation, the results of the

truncation may differ.

Reguired Action: It is the user's responsibility to check
whether truncation due to conversion gives the expected result.
The built-in function CEIL may be used if the expected result is
not produced.

SUBSCRIPT
PL/I AND FORTRAN RESULTS MAY DIFFER IN LINE xXxXxX

Explanation: A subscript expression contains the operators xx

e el e S

andsor /, or a left parenthesis.

Required Action: If the subscript contains integer division,
the user should insert the built-in function TRUNC. If it con-
tains a subscripted variable, the user must reverse the order of
the subscripts. The operation %% may give a result of REAL
type. The user must verify that the result of the truncation is
correct.

FCRMAT STATEMENT
PL/I AND FORTRAN RESULTS MAY DIFFER IN LINE XXXX

Explanation: PRINT and non-PRINT files have the same format, or

one (or more) of the following items is detected:
e G-, Z- and 0- format codes (not converted)

e P-scale factors associated with E- or D-format codes (not
converted)

e L~-format code.

Required Action:

1. PRINT and non-PRINT files:

The user must specify two FORMAT statements, one for PRINT files
and another for non-PRINT files.

e G-, Z- and O-format codes:

The user must replace these format codes by a type acceptable to
PL/I.

IPBOOSI

| IPB009I

IPB0O10I

| IPBO11I

® P-scale factors:

The user should modify the corresponding data

e L-format code:

Logical data in the external medium must be in a form acceptable
to PL/I.

SERVICE SUBPROGRAMS

PL/I AND FORTRAN RESULTS MAY DIFFEP IN LINE XXxx

Explanation: This message is issued when a call to subprograms

EXIT, DUMP, PDUMP, OVERFL, DVCHK, SLITE and SLITET is detected.

Required Action:

1. EXIT:

The CALL statement has been converted to STOP if EXIT has no
argument list. If the user provides his own EXIT procedure, he
must modify the converted statement. Otherwise, no action is
required.

2. Other service subprograms:

If the user provides his own procedures, no action is required.

Otherwise, the user may

e For DUMP and PDUMP: use the procedure IHEDUMP (or a PUT
statement).

e For OVERFL and DVCHK: use ON-conditioan OVERFLOW or
ZERODIVIDE.

LITERAL PASSED AS ARGUMENT IN LINE xxxXx
Explanation: A literal constant may not be passed as an arqu-

ment to a subprogranm.

Required Action: The user should declare with the CHARACTER (%)
attribute the corresponding parameter in the called subprogram.

HEXADECIMAL/OCTAL CONSTANT NOT CONVERTED IN LINE xxxx

Required Action: The user should modify the type of the
constant.

MATHEMATICAL FUNCTION NOT CONVERTED IN LINE Xxxx

Explanation: This message is issued when the mathematical

FORTRAN functions DIM, IDIM, ®OD, AMOD, DMOD, SNGLE, and DBLE
are invoked.

1 SNGLE, DBLE:
These functions should be replaced where they appear by the PL/I
built-in function PRECISION.

Apvendix F 57

2. DIM, IDIA:
These functions should be replaced by the expression

conv<argument 1>-MIN (conv<argumenti1>,conv<argument2>)

3. MOD, AMOD, DMOD:

These functions are converted using the PL/I built-in function
MOD. If the first argument could be lower than zero, the user
must replace the conversion by the expression:

conv<argument 1>-TRUNC (conv<argument 1>/conv<argument2>)
*conv<argument2>

j IPBO12I DATA SET REFERENCE NUMBER IS VARIABLE IN LINE xxxx

Explanation: A data set number in the FORTRAN statement is an

-

integer variable. The statement is not converted.

Required_Action: The user may simulate the effect of FORTRAN by
using a series of IF statements to test the values of the data
set reference number. For example:

FORTRAN
WRITE (N, 10) <data list>

BL/I
IF N=1 THEN PUT(FTO1FO01) EDIT (conv<data list>) (R(EXTLAB10));
IF N=2 THEN PUT (FTO2FO1)EDIT (conv<data list>) (R(EXTLAB10));

IF N=p THEN PUT(FTOpFO1)EDIT (conv<data list>) (R(EXTLAB10));

where p is the maximum number of data sets

[IPBO13I FORMAT REFERENCE IS ARRAY NAME IN LINE xxxx

Explanation: A FORMAT statement is referred to by an array
name. The statement is not converted.

Required_Action: Attach the FORMAT statement to the input/

output statement.

J IPBO14I BINARY DATA TRANSMISSION IN LINE xxxx

Explanation: Binary data transmission is indicated in the

———

FORTRAN statement. The statement is not converted.

Required_Action: Use the PL/I RECORD I/O0 facility.

e e e e e e e S e e

] IPBO15I BACKSPACE, REWIND, OR END FILE AT LINE xXxxX

Explanation: The FORTRAN statement is a BACKSPACE, REWIND, or
END FILE statement. The statements BACKSPACE and END FILE are
not converted; the statement REWIND is converted into the PL/I
statement CLOSE, but the tape may be incorrectly positioned as a

result.

Required Actjon: None.

58

IPBO16I

IPBO17I

IPBO18Y

IPB019I

SYNTACTICAL ERROR IN LINE x¥xxXx

Explanation: A PORTRAN statement is svntact{cally incorrect.
It is not converted.

Reguired Action: Suppress error.

FPQUIVALENCE STATEMENT. CONVERSION WITH DEFINED TTEM MAY PRODUCE
MESSAGE AT COMPILATION.

Explanation: The conversion of the FQUIVALENCF statement uses a
PL/TI (F) compiler facility; at compilation time an error message

may be issued if the attributes of the DEFINED item differ from
those of the base item, but execution is not prevented.

Reguired Action: None.

THE FOLLOWING STRING NOT IDENTIFYED AS AN OPTION - VYVYVYYYY
Explanation: The LCP is processing the option list passed to it
as a parameter, when it finds a character string that it cannot
identify as an option. The unidentifiable character string is
ignored.

Required Action: Correct the erroneous parameter.

PILE SYSUT2-INEXPLICABLE T/0 ERROR
Explanation: one of the following T/0 errors has occurred:

e Space allocation for SYSUT2 insufficient
e Permanent I/0 error on disk. (Hardware fault)

Regquired MAction: 1In first case, increase SYSUT? space alloca-
tion. In second case, change disk or disk-drive.

Note: This message is always followed by the completion code
ABEND 400.

Appendix F A9

APPENDIX G: _PREPARATION OF DATA

The methods of entering data differ, in certain respects, in FORTRAN and
in PL/I.

Where applicable, the user should therefore modify the data as
follows:

1. For numeric data, the option BLKZR automatically makes the follow-
ing alterations:

e Plus sign in BCDPIC (&) is replaced by +

e D is changed to E

¢ An all blank field is replaced by 0

e If a blank appears after E, a + replaces it

e Other embedded and trailing blanks are replaced by zeros.
For other types of data, the user must do his own modification. 1In
particular, it must be noted that the PL/I (F) compiler does not

accept an exponent of more than 2 digits.

2. The items of FORTRAN logical data TRUE (or T) and FALSE (or F)
should be changed into 1 and 0 respectively.

3. Data pertaining to a FORTRAN NAMELIST statement should be modified
to ensure that:

e The NAMELIST name is suppressed and the end-of-data group
(6END) is replaced by a semicolon.

e The repetition factors, if any, are expanded, and each value in
a data list assigned to the corresponding element of the array.

e The order of subscripts attached to variables is reversed.

e The data must be in EBCDIC.

60

APDFNDIY H, SAMDLF DRNAAPAM

The disk pack or the tape distributed by IBM contains, in addition to
the LCP, a samrle program written in PORTRAN IV. The purpose of the
sample program is to demonstrate the working of the TCP and to illus-
trate the explanations given in the various sections of this manual.

once the load module for the TCP has bheen created, there are three
steps to be performed:

1. Extraction of the sample program with its associated data from the
disk pack or tave, and transfer onto punched cards

2. Execution of a conversion run for the proqranm

3. Execution of a compile, link, and go run with the PL/T conmpiler,
using the output from step 2 and the data from step 1

These steps are described in detail in the paragraphs that follow.

Step 1. Fxtraction of Sample Progranm

a. For_ users receiving their program on disk pack: The FORTRAN TV
program and its data are written on the disk pack as a single data
set (DSNAME=SAMPLFE). The following is an example of the control

cards required to obtain the punched cards:

//AB JOB 4727,SMITH, MSGLEVPL=1
//ABA EYEC PGM=IEBPTPCH
//SYSPRINT DD SYSOUT=A
//75Ysur2 DD SYSOUT=B
//SYSUT DD UNIT=2311, c
/7’ DISP=0LD, c
// DSNAME=SAMPLF, c
7/ VOLUME=SER=FLCPRS
A/7SYSTN DD *

PUNCH

Appendix F 61

Por_users receiving their program on tape: The FORTRAN IV program

and its data are written on tape as a single file. The following
is an example of the control cards required to obtain the punched

/*

62

cards:

//AB JOB
//ABA EYEC
//SYSPRINT DD

//SYSUT1 DD

//

7/

//SYSUT2 DD

//SYSTIN DD
PUNCH

4727,SMITH,MSGLEVEL=1

PGM=IEBPTPCH

SYSOUT=A

UNTT=2800,LAREL= (3,NL),
VOLUNF=SE®=888888,

DCB= (PECPM=FB,LRECL=80,BLKSI?ZP=20400)
SYSOUT=R

*

Step 2. Program Conversion FRun

The following is an example of the control cards required for a pro-
gram conversion run:

//AB JOB

//JOBLIB DD
/7

//F EXFC
//SYSPRNT DD
//SYSIOERR DD

//SYSUT™ DD
//

//SYSUT2 DD
/7

4727,SMITH, MSGLEVEL=1

DSNAME=FORLCP,DISP=0OLY,UNIT=2311, c
VOLUME=SER=XXXXXX

PG ¥=LCPRORT, PARN=? SOURCF, NFCK, BLK"R!
SYSOUT=A, DCR= (RECFN=VA, BLKSIZE=129,LRPECL=125)
SYSoUT=A

DSNAME=UT2, SPACE=(CYL, (5,))., o
DCB= (DSORG=DA,XFYLFN=9) ,UNIT=2211

DSNANP=0T3,SPACP=(CYL, (2,)),DCB= (DSORG=DA) , C
ONTT=2311

//SYSPCH »D SYsSoUT=8
//SYSIN DD *
ces The FORTRAN program cards: SAMPRO10 through SAMPRI60

/*

Since the option SOURCF appears in the ¥"YPC card, a listina of the
FORTRAN source program and of its translation into PL/Y should appear on
the printer as follows:

Appendix F

62

s NeNeNeNe Nz KeEe e Ee EeNe Ne Ne e Ko Ne Ke!

anaaanan

FORTRAN IV TO PL/I LCP - VIiLO

SIMULTANEOUS PQUATION ROUTINE SAMPRO10

THE POLLOWING DATA SHOULD BE OUTPU™ BY THE PROGRAM, SAMPRO?20

MATRIY A SAMPRO30

4,2150 -1.2120 1. 1050 SAMPROUO
1.1220 -1.3130 3. 9860 _SAMPRORO
MATRIX B SAMPRO70

3.2160 SAMPROBO
1. 2470 SAMPROSO
2. 3456 SAMPR100
A=-INVERSE SAMPR110

0.2916 0.0833 -0.0467 QAMPRI20N
0. 1632 0.3836 0.1118 SAMPR120
-0,0283 0.1029 0.3009 SAMPRI40
SOLUTION MATRIY SAMPR150

0.9321 SAMPR160
1. 2655) SAMPR170
0.7429 SAMPR180
DIMENSION A (10,10),%(10),B(10) SAMPR190

301 FORMAT(1H1,10Y,1SHINCOMPATIBILITY) SAMPR200
302 FORMAT (1H ,10X,41HMORE EQUATIONS THAN UNKNOWNS=NO SOLUTIONS) SAMPR210
303 FORMAT(1H ,10Y,46HMORE UNKNOWNS THAN EQUATIONS=SEVERAL SOLUTIONS) SAMPR220
304 FORMAT (1HO, 10X, 15SHSOLUTION MATRIY) SAMPR230
305 FORMAT(1H1,10X,8EMATRIX 1) SAMPR2U4N
306 FORMAT (1HO,10Y,8HMATRIX B) SAMPR250
307 FORMAT(1HO0,08X,10H A-INVERSE) SAMPR260
308 FORMAT(1H ,10%,24HDIAGONAL ELEMENT IS TERQ) SAMPR270
12 FORMAT (6I10) SAMPR280
READ (5,12) M1,M2,L1,L2,N1,N2 SAMPR?90

M1 = NO. OF ROWS OF A SAMPR200

M2 = NO. OF COLS OF A SAMPRI10

L1 = NO. OF ROWS OF X SAMPR220

L2 = NO. OF COLS OF X SAMPRI0

N1 = NO. OF ROWS OF B SAMPRUO

N2 = NO. OF COLS OF B SAMPRIS0

13 FORMAT (7710.48) SAMPR?60
17 FORMAT (10F10.4) SAMPR270
IF (N2-1) 63,64,63) SAMPR280

64 I¥ (L2-1)63,65,63 . SAMPRIO0
65 IF (L1-M2)63,66,63 SAMPRLOO
66 I¥ (M1-N1)63,11,63 SAMPRU10D
63 WRITE (6,301) SAMPREQ0
G0, TO 2 SANPRA0

11 N=M1 . SAMPRUGO
N=M2 SANPRUSO

IFP (M1=M2) 91,14,93 SAMPRO6D

Sl
S3
14

1c
86

2C

4C
5¢C
6C

80

12C
13¢

14C

17¢
18C

2C1
40C

21
4C1

WRITE (€é43C2)
GC T0 2
WRITE (6,303)
GC TO 2
WRITE (64305)
DO 7C I=14N
READ (5913)(A(I9J)sd=14N)
WRITE (€417)MA(I3J)ed=14N)
CONTINLE
FCRMAT (F10.4)
WRITE (€4306)
READ (5485)(B(I),4I=1,4N)
WRITE (&489)(B(I1)yI=1,4N)
DC 12C K=1,4N
C=A(K,yK)
IF(C)4C4200440
A(KyKi=1.C
CC 6C J=1N
A(Ksd)=A(K,J)/D
IF(K-N)8C+130,130
IK=K+1
DC 12C I=IKyN
[=A(14K)
A(I4K}=0.C
CC 12C J=1yN
AL od)=A(I14J)=(C*A(Kyd))
IK=N=1
DC 18C K=1,IK
I1=K+1
DC 18C I=I1,N
C=A(Ky I)
A(Ky1)=C.0
CC 18C J=14N
Al(KgJI=A(K JI=(C*A(T14J))
GC TO zCz
WRITE (6,308)
GC TC 2
WRITE (6,307)
CC 2C1 I=1,N
WRITE (€91T7)(A(I9d)9d=1yN)
CCATINLE
LC 21 I=1sN
X(I}=C.0
CC 21 K=14N
X(I)=Xx(I1)4A(14K)*B(K)
WRITE(€,43C4)
WRITE (€483)(X(1)y1=1,4N)
CALL EXIT
STCP
END

SAMPR4TO
SAMPR48O
SAMPR 490
SAMPRSOQ
SAMPR510
SAMPR520
SAMPR 530
SAMPR540
SAMPRS50
SAMPR560
SAMPR570
SAMPR 580
SAMPRSS0
SAMPR60O
SAMPR610D
SAMPR62C
SAMPR63D
SAMPR640
SAMPR650
SAMPRE6C
SAMPRETQ
SAMPR ¢8C
SAMPR690
SAMPRTCO
SAMPRT10
SAMPR72C
SAMPR730
SAMPR74C
SAMPR750
SAMPRT&Q
SAMPRT70
SAMPR780
SAMPRT90
SAMPRBOD
SAMPR&10
SAMPR 820
SAMPR830
SAMPR R40
SAMPRR5Q
SAMPRB6O
SAMPRBTO
SAMPR&RO
SAMPRBSN
SAMPRAQO
SAMPRG10
SAMPRSG20
SAMPRO3C
SAMPR G40
SAMPRI50
SAMPRSKO

Appendix H €5

(NCZERCCIVICE): NMAINFRC: PROCEDURE OPTIONS(MAIN);

DECLARE IK FIXED BINARY(31) STATIC,I1 FIXEC BINARY(31) STATIC,N2
FIXEC BINARY(31) STATIC,N1 FIXED BINARY(31) STATIC,L2

FIXED BINARY(31) STATIC,sL1 FIXED BINARY(31) STATICsMZ

FIXED BINARY(31) STATIC,M1 FIXED BINARY(31) STATIC,D

FLOAT BINARY STATIC,K FIXED BINARY(31)

STATIC,J FIXED BINARY(31)

STATICsN FIXED BINARY(31) STATIC,I FIXED BINARY(31) STATIC,B(
10) FLCAT BINARY STATIC,X(10) FLOAT BINARY STATIC,A(

1Cy 10) FLCAT BINARY STATIC;

CECLARE DUNMMOO8 CHARACTER(15) INITIAL(*INCOMPATIBILITY');
DECLARE DUMMCO7 CHARACTER(41) INITIAL(*MCRE EQUATIONS THAN UNKNOMAINN11N

WNS-NO SCLUTIGNS') ;

MAICANLN
MAICOQ29
MAINGO3N
MATINNQ40
MATOOCS0
MAIOO0KO
MAT00070
MATCCO8D
MAI CCOGO
MAICC1CO

MATGO120

DECLARE DULMMOO€ CHARACTER(46) INITIAL(*MCFRE UNKNOWAS TEAN EQUATIMAICN130

CNS-SEVERAL SOLUTIONS®);

CECLARE DUMMOO5 CHARACTER(15) INITIAL({*SCLUTION MATRIX');
CECLARE CUMMCO4 CHARACTER(8) INITIAL(*MATRIX A');
CECLARE CUMMOO3 CHARACTER(8) INITIAL('*MATRIX B');
DECLARE DUMMOO2 CHARACTER(10) INITIAL(' A-INVERSE');
CECLARE DUNMMCOL CHARACTER(24) INITIAL(*DIAGONAL ELEMENT IS ZERO'MAICT160

)3

CECLARE LBLNK ENTRY(FIXED BINARY)RETURNS(FIXED BINARY);

CECLAFE(FTO6FOL)PRINT FILES
/% SIMULTANEQUS EQUATION ROUT INE*/
/% THE FCLLCWING CATA SHCOULC BE OUTPUT BY THE PROGRAM.x*/
/% MATRIX Ax/
/* 4.215C -1.2120 1.1050%/
/* -2.12CC 2.5CEC =1.€32C*/
/% 1.1220 -1.313C 2.,68¢€0%/
/% MATRIX B*/

/% 2.21€0%/

/% 1.247C%/

/% 2+3456%/

/% A=-INVERSE*/

/% C.26S1¢ C.GE33 =C.C467%/

/% C.l€22 C.383¢ C.1118%/

/% =C.C283 0.1C29 C.3C09%/

/% SCLUTION MATRI X*/
/% 0.9321%/

/% 1.2655%/

/% Cot425%/

EXTLAB3CL:FCRMAT(PAGE +X(1C)4A{(15));
EXTLAB302: FORMAT(COLUMN(1)4X(10),A(41))
EXTLAB302: FORMAT(COLUMN(1) 4X(1C) sA(4€))
EXTLAE304: FORMAT(SKIP(2),X(10),A(15));
EXTLAB30S:FCFVAT(PAGE,X(10),A(81));
EXTLAE306:FCRMAT (SKIF(2)4X(10)4A(8))3
EXTLAB3CT:FCRMAT(SKIP(2)4X(08)4A(10));
EXTLABZCESFCRVMAT(COLUMNIL) 9X(10) 9A(24));
EXTLABL2:FORMAT(COLUMN(1) 46 F(LBLNK(10)));

s
’

66

MATI00140Q
MAT0N150
MATCN160
MAI CC17¢C
MATCC180

MAINO?00
MATIQO210
MATON?220
MAT CO230
MATCN240
MAICO?E0
MATON260
MATINO270
MAION280
MATO0290
MAIQ02300
MAT CO310
MAICN320
MAIC0220
MAIN0240
MAT00350
MATIOCC360
MAI0I370
MAT 00380
MAT CC3S0
MAIC24CO
MAIOC41Q
MAT00420
MAT0043N
MAT(02440
MAT 30450
MAT CC4€C
MATC2470
MAICQe80
MATI0N489

IPBOO1I
IPBOO1I

IPB0OO11I
IPBOO1I

/%
/%
/%
/%
/%
/%

EXTLABL2:FCGRVMAT(CGLUMN(L) +7 FOLBLNK(10),4));
EXTLAEL7:FORMAT(COLUMN(1),1C F(1044));

0 THEN CC TO EXTLABE3;

0 THEN GO TD EXTLABE3;
EXTLAB65 sIF (L1-N2)== O THEN GC TC EXTLAR&E3;

GET FILE(FTCSFJLIEDITAMIIN29LL yL2 ¢ NLZ N2 (e {eXTL A7))3

M1
2
L1
L2
N1
N2

IF(N2=-1)=
EXTLAB64IIF(L2=1)=

L T T S TR [[

NU
NCe
N
NCe.
NC.
NG

UF
CF
(F
CF
CF
CF

cXTLABEE:IF(M1-N1)

EXTLABLL:N=M1 ;

EXTLABSL:FLT FILE(FTCO6FOLIECIT(CUMMOOT) (R
GCTC EXTLABZ;

EXTLABS3:PLT FILE(FTO6FOL1)EDIT(DUMMGCE) (R{EXTLARB303));
GUTC EXTLAB2;

eXTLABL4SPLT FILE(FTO6FCLIEDIT(DUMMCC4) (K(EXTLAB3CS5))3

N=WVg

IF(V1I=-M2)
EXTLABS3;

KCWS
CCLS
kCwS
CcCLs
RCWS
CCLS

= 0 THEN GG TO EXTLABIL11;
cXTLAB€3:PLT FILE(FTO6FOL)EDIT(DUMMCCE) (R(EXTLAR3GL))
GOTO EXTLABZ2;

OF
CF
CF
CF
oF
OF

CC I=1 TC MAX(1lsN);

CET FILE(FTOSFOLIECIT((A(J,1)
PUT FILE(FTO6FOLIEDIT((A(J,I)
exTLAB7C:;

END ;

EXTLAB8S:FORMAT(COLUMN(1) 4F(LBLNK(1C) 4
PUT FILE(FTO6FCL)EDIT(DUMMCC2) (R(
GET FILE(FTOSFOLIEDIT((B(I)

A/
A%/
X%/
X%/
Bx/
B*/

0 THEN Cu TO EXTLAEiQ;ELSE IF(M1-M2) > C THEN GO TO

EXTLAB2C:CC K=1 TG NMAX(14N)3
D=A(K,K)
IF(C)
EXTLAB4C:A(KyK)=140EC 3
EXTLAB50:CO J=1 TO MAX(1,N);

EXTLAB60:A(JKI=A(J,K)/D
ENC3

IF(K=N)>= 0 THEN CC TC EXTLAB130;
EXTLABBO :IK=K+1
DO I=IK TQ MAX(IK4N)3;

EXTLABL20:A(JsI)=ACJ, I)-(CH*A(JyK))
ENC;
ENC
ENC;

= 0 THEN GO TC EXTLAB200;

D=A(K,I)

A(KyI)=C.CEC

CC J=1 TC MAX(14N);

cXTLAB30Z))3

CO J=1 TO MAX(UYI NI I(R(EXTLABLYZ)) ;
CO J=1 TC MAX(14N)DI)}(REEXTLABLT))5 MAICNT7€N

XTLAB3CE) };
DO I=1 TC MAX({14N)))(R(EXTLABSBS))
PUT FILE(FTO6FO1JECIT((B(I) DO I=1 TO MAX(1,N)))I(R(EXTLABES))

MAT20&NN
MATCN&LN
MATCOS20
MAT CCE30
MATCrE4D
MATO0S50
MATONSEN
MATON5T70
MATIN0580
MAT 00590
MAT CO6ND
MATCOE1N
MAI0CE20
MATONE20
MAT00640
MAIDNESN
MAI 066N
MAT0OETT
MATI COEBQ
MATCNécCH
MAICO7CH
MATQONT1N
MAINO7 20
MAICOT7 37
MATICQ74"
MATCO757

MAICCTT?
MATOCT7EC
MATO02790
MATIQOOROO
H MAICORYIC
5 MAT COB2N
MAT CCe3C
MAICCR4N
MATQN85D
MATCN86D
MATIQNETO
MAIOO880
MATIOCRIC
MATI COGCO
MAICCS1C
MATQ0920
MAICCSG3N
MATI00G40
MATICC950
MAIGC0S60Q
MAICCI70
MATI CCCfq
MATICCGSO

Arperaix ¥ 67

EXTLABL3C:IK=N-1 3
DC K=1 TO MAX(1,IK);
EXTLAB14C:11=K+1 3
CO I=11 TC MAX(I1lsN);
C=A(1,K) 3
A(I4K)=0.0EO0 3
EXTLABLIC:DC J=1 TC NAX(l4N);
EXTLABLECIA(JsKI=A(JoKI-(C*A(JII)) 3
END 3
END ;
ENC3
CLTO EXTLAB202;
EXTLAB200:PUT FILE(FTC6FO1)EDIT(DUMMOOL) (RIEXTLAB208));
GCTC EXTLAB2;
EXTLAB2C2 :PUT FILE(FTO6FOL)EDIT(CUMMOOZ2) (R(EXTLAB307));
DC . I=1 TO MAX(1l4N)3

IPBOO1I PUT FILE(FTOEFCLIEDIT((A(J,I) DO J=1 TC MAX(14N))) (R(EXTLABLT));

EXTLAB2C1:;
ENC
EXTLAE4Q0:CC I=1 TC MAX(L4N);
X(I)=C.0EO 3
DC K=1 TC MAX(1l4N);
EXTLAB2L: X (I)=X(1)+A(KyI)*B(K) 3
END ;
ENC
EXTLAB401:PUT FILE(FTCEFCL)EDIT(DUMMCOE) (R(EXTLAB3C4));
IPBOO1I PUT FILE(FTOEFQLIECIT((X(I) DO I=1 TO MAX(14N)Y)(R(EXTLABBY));
IPBOO8I EXTLAE2:STC#3
DISFLAY('STCP ');STCP;
ENC;

WARNING MESSACGES

IPBOO1I READ CR WRITE STATENMENT
PL/I ANC FCRTRAN RESULTS MAY DIFFER IN LINE
COTZ+4C(76,40C81,0082,40116,0126

IPBOO8I SERVICE SLBPROGRAMS

PL/I ANC FORTRAN RESLLTS MAY DIFFER IN LINE
c127

68

MATIC1CCD
MAIC1010
MAI01020
MATO1030
MAT 01 040
MATC1050
MATO01CéC
MAIOQ1070
MA101080
MAI01090
MAIO1100
MAIO1110
MAIC1120
MAIC1130
MAIC1140
MAIO01150
MAIN1160
MAIOL1170
MAIO1180
MAIC1160
MATIO01200
MAIC1210
MAIO01220
MATIO1230
MAIO1240
MAIO1250
MATO01260
MAIO1270
MATI 01280
MATI C129C

Step 3. Execution of PL/I Program

A normal compile, 1link, and go run can be performed, with or without
the user's cataloged procedure. The following is a sample of the con-
trol cards when using a cataloged procedure:

//Ab JOB 2622,SMITH,MSGLEVEL=1

7/ EXEC PL1LFCLG

//SYSIN DD *

cea Card output from step 2: cards MAIOQ0010 through MAI01290
/%

//LKED,.SYSIN DD DSNAME=ﬁBLNK,DISP=OLD,UNIT=SYSDA C
// VOLUME=SER=XXXXXX

//GO.FT06F01 DD SYSOUT=A,DCB=(BLKSIZE=129,LRECL=125, RECFM=VA)
//GO.FTO5F01 DD *

N The seven FORTRAN data cards: DATAO0001 through DATAQ007

/ %

Appendix H 69

The output listed on FTO06F01 (the printer specified in the above con-

trol cards) should read as follows:

70

MATRIX A
4.2150 -1.2120 1.1050
=-2.1200 3.5050 -1.6320
1.1220 -1.3130 3.9860

MATRIX B
3.2160
1.2470
2.3456

A-INVERSE
0.2916 0.0833 -0.0467
0.1632 0.3836 0.1118
-0.0283 0.1029 0.3009

SOLUTION MATRIX
0.9321
1.2655
0.7429

Where more than one reference is given,

the first page number indicates the major
reference.
actionNsS, LCPueueacsccecccccnaasccccacasas 10
arithmetic eXpPresSiONSe.ceccececccccecceaes 19
arithmetic IF statemeNt.ceccccascecaaces 23
arrangement of arrays in Storag€eaecee... 14
ASSIGN statemeNteceecccceccaaasccanasceaae 23
assigned GO TO StatemeNt.ececscceacasssas 23
assignment
statementSeeececocsccccacsncsccncnncns 21
statements, arithmetiCeececcecacceacace 21
statements, 1logiCaleceevesccccsccccnss 21
BACKSPACE statementeceececececcccnacceas U0
basic symbols, PL/I and FORTRAN
COrresSpOndiNgecececececcsancannacsccsss U3
blanks within WOLdSeseccccsancsossssascee 16

BLOCK DATA SUbPrOgraMecececccccsscocesass 33

CALL statemeNteceacceccascacccnscaccancaas 32
character-string format item............ 38
code, h=formatecececcscaccccncancacsscccssses 39
coding examples, form Of...ceeceecaceeess 15
COMMENTSesasascoscsensscascscssscscscscoanccccas 10
COMMON statemeNteceacsccccsacasscanccscaaa 27
common variables in EQUIVALENCE
StatemenNtecceaceccascescsecsesascsanncaasnae 29
complex conStaNtSiececescecesacscanncaaas 18
computed GO TO statemenNtececececcceceeas 22
conflicts, name, prevention of.eeeecece.s 13
constants
COMPleXeeoesnacesccnancssancasnasaccess 18
hexadecimaleeeccass “eseemsecscacsncsacs <. 19
integereieeececescccncennccsnccssnnaee 17
literaleeceececceacecscancscsasasacaccccnes 19
10giCa@leeeaeccccassccssencsncsacccscas 19
FeAlecaceeoanscsccsasocccscsncsacacnssacnaes 18
CONTINUE statemeNteccceescacccccccsaansaas 25
control card OptioNS.eceeececcccsccnccasss 53
control cards,LlCPecececaccccccacecsseasas OU
control format iteMSeceecececssseasecsess 39

control informatiONececececscccsnescacsces 9
CONtrol statemenNtSeecececcecccccncscencooas 22
CONVEILSiOn OUtPUteeceeccececccccsascncsse U1
CONVersSion probleMSeececcececcccscccaccaas 13
corresponding basic symbols, PL/I and
FORTRANeeoooacseoscsosscccsccossnsansae U3
corresponding functions, PL/I and
FORTRANceeoeocecscoceacsccnnnenscccsasss Ul
creating the load module,diskeeeeceeceaaas U9

creating the load module,tap€ececceccececss 50

data, literalecececceaseccccsccsacsaccnsansa 39
DATA initialization statementeccecesce.. 33
data set termino0logyeeecacsceccccssenscas 15
DIMENSION statemenNtececeececescasccaaccee 27
disk pack,programsS ONecececccccscacseavaas U9
distribution 0of the LCP..cceccacaneass 8,49
DO SstatemeNtececececseaceacecsassccecnceas 24

DOUBLE PRECISION statemeNtececcceccescss
DUMP SUDPrOgraMececesesscecscsssscossnsse
DVCHK SUDDPLOgrAM. cececececncsccasaccneas

elements of the language.cceeeeeceacrenes
END statementecececececescencsoncccacncncas
END FILE statementececececececacencnosss
ENTRY statement.ccecceeceosssaccscocanss
EQUIVALENCE statemenNtecscceceesssecccsanse
examples, coding, form of....cceeececannn
EXEC card optiONSeeececoceccssccacoconas
executing the LCP..icieecacrnescnascnccs
executing the PL/I target prograMe...ses..
EXIT SUDPrOQriMecececcececescsssasscacocesecs
explicit specification statementS.......
expressions, arithmetiC..ievececoccesesss
expressions, logicale..ceecveec.n. .
EXTERNAL statemeNtecececcecessasnse

factor, SCalEececeecossecsccsscssssncsascn
form of coding exampleS....ceee..
form of LCP substitution names.
format itenm
character-stringececececceeseee
CONtrOlecececescossnscascsancsscnsasnesns
generalizedecieeececccocosccascsscacecas
hexadecimalieseeeesceceosoccoansesssnsos
10gicaleeeieieerececenccecncnnnnncenan
NUMELIiCeeaoesoscocacsasscscsnncnsssscsssss
FORMAT statement.ceceseceosccccsssccnsonse
FORTRAN programs to be converted,
characteristiCSeeeeececocsccacanccncass
FORTRAN and PL/I, corresponding basic
SYMbOlS.eeiaceenennn
FORTRAN and PL/I, corresponding
functions.
FUNCTION SUDPrOgramSeecececcecssacccesscs
functions
PL/I and FORTRAN correspondinge..e.o...
Statement.eeceeceeescecscccsncsnocansss
LBLNKeceaooaw

general problems in converting to PL/T..

generalized format iteM.eseeeeeacecacenns

GO TO statement
aSSigned.cceeccesccsosssecasccescnncan
COMPUtEdevecessscssnsescsassnsssavaweas
unconditional.e.ceeecececcececsnoccnnanae

hexadecimal constanNtSeececscceoccacsscacs
hexadecimal format iteMececeecsaa
h=format CodC.eeececceccccssnccaccncancnn

IF statement, arithmeticiecceeesccoccanss
IF statement, logical.ccieeceececaancans
IMPLICIT statemenNtecececeacacansscccnsscse
information, CONtrol....ceeeececncnsoaccas
initialization statement, DATA...cececes
input/output statementSececieeeceoccencns
character-string format iteMsecceececes
control format items.....
generalized format items.ccac..

-

43

uy
30

uy
30
51

13
38

23
22
22
19
39
39

23
24
26
33

38
39

71

hexadecimal format iteMececcecceanceasa 39
integer constantSececceccecascasascaceces 17

LCP
ACtiONSeaccacacacscssnnccsssssssanssnns 10
CONtrol CerGSesececcessscscscacssasasancs OU
distribution......Q.I.I.l.....l...ll 8'49
€XeCUtiONeecascssanccsancscsncsnasnesce D2
general descriptiONeececceccccsccsccacss 9
notation used in this documenNt..ceeee. 11
output liStiNgSececececsscsccccccscccaas 10
PErfOrMANCE e eaacconacsacscacsosnassene 11
reStriCtiONSececencacccceasscnsnscnsnas U7
substitution names, form Of.cecvececeas 13
language
elements Ofceecececsccccannasaccncneane 17
OUtpPULteceeaccscacsnccssenasessccascnscane B
SOULCE@essaacesncscscncanasasssnasscncacsas 7
LBLNKeeoesoeosasoasasacscsananacasnasssanae 91
1iStinNgececcecaccscsoacnscsacssancesnnsess 41
literal CoOnsStantSecescececsceseascaansiacs 19
literal dat@eeesscscscescncansscccacanse 39
load module,creating the diSKeeeeeaaaoss 49
load module,creating the tap€ecececcesess 50
logical constantS.ccaecsacecccccasacsscsas 19
logical e€XPreSSiONSeecscscescssasssccsases 20
logical format iteMesecacecccccancascecacee 38
logical IF statemeNtecececacecsacacnanses 24

mathematical function subprograms.... 13,44
MESSAJES eenonacesnseanscsescssacvossascsssese D5
0 P -

MVTQIII..Ill..-l...-.l-.l.l.l.'Ol‘..ll... 8

name conflicts, prevention Of.cececcescss 13
notation used in this documeénNteccecsceeses 11
NOZERODIVIDEeeceesaoaacssacsscsacscanassnnce 17
numeric format iteMSeececesccesscnsscscees 36

operating proCedUreS.cecscecseascsssosasses D2
options
. CONtrol CArfeeececesaccsscasssssasasaas 53

0 P |

output

CONVErSiONeesecevaccscsnascacssasananss 41

1a0gUagCeeccaceccncacscacascacanacacnae 8
1iStiNgeeaseeccccacancccacsacassnnsnnas U1
StatementSecceececcacacecncoccacaceaas 34
OVERFL SUDPrOgraMecccececccvecaccenesecs 33

PAUSE statemeNteceecececccececcacscosnanness 25
PCPuvcencesancenssasaasnssncsacsccsnssscsnnse 8
PDUMP SUDPrOgraMeccececsccescessosccscsseses 33
performance Of the LCP.ceecesccecncaaaee 11
PL/I and FORTRAN

corresponding funcCtioONSecsecccesccccasa LU

corresponding basic symbolS..cceceocea. 43
PL/I target program executiON.eceeeceseeas 5S4
predefined specificatiONececesccccceseaes 26
prevention of name conflictSeecceesacaecass 13
PRINT sStatemeNt.ecececceccecccccecacsnaneas 36
problems, general converSioONe.c.ceececesss 13
program unit...... cecevsmessaseneasan .o 17
programs ON diSKeeceeoeeeccsosaccsnsnnssoca 49
PLOJrams ON tAPEeseececcsescscsscncscasss 90
PUNCH statemeNt.ececeecceccscsccosccncccsese 36

72 Index

READ statemeNt.eceeeccecccecaccoassancncs
rTeal CONStANtS.ieeeecencaceosscassnnacnss
restrictions,
RETURN statemeNt.icececeeseccscsosscecssosces
REWIND statemenNteccececccscccnacsosnnases

LCPececeasososcccncnascnsnns

Sample PrograMescesceseccscessscsccass 8y
scale factorll.....'l.l..l-l.ll'l...lllo
service sSubprogramSeecvecscssecacesss 33,
SLITE SUDPrOgraMescsesescssoscssacscsassasnse
SLITET SUDPrograMeccecscesascccsssascsecs
SOULCEe 1aNgUAgC ecsneeovocascsossosscasnnsaas
specification, predefined.ccsecececcecee
specification statementS.eececcccccocves
specification statements, explicit......
statement
fUnCtionSeceeececacccesasccaascnccanca
NUMDErSeteessasscccccsassrssccssncscnaass
arithmetic IF.i.icececscaacsccscscannsas
ASSIGNeeesaesescsscsesocssssscscacnasasss
assigned GO TO¢eeevsossosassoccancnnas
BACKSPACE. cevocensososoosasecaveancnsase
CALLcecesasvsecccscscccsasasassnssaccasnos
COMMON..ccaeeercccannscncsosssancnnsecae
computed GO TOieescoacocsccccssoasansecnas
CONTINUE:eeaeocesncsnsanacssasacasonsnae
DATAcceeanascocsccassnasossoscasscnocnsiss
DATA initializatioN.eceeecscececcancasns
DIMENSION:«oeecscaocnsscsconcsscsccsncsscase
DOcecsceccssonscssocsasscsssnsncnscscancess
DOUBLE PRECISIONeescesaccsacsscannessa
ENDeceveonscnanccancasacascscncencnsasnns
END FILE. ccececosancsccsassncscscasssacnsse
ENTRYeeeeeeacocoanneacaacasancoaannnsnss
EQUIVALENCE . eeceeeasancocavescnosnnsens
EXTERNAL ceceeanecnaasoascsasossasanasa
FORMAT . cceeececccascsssassnaceancnccens
FORMAT, character-string format itenm..
FORMAT, control format itemS.cececcens
FORMAT, generalized format item.......
IMPLICTI e e cceeecenaacncososoncsascananansas
10gical IFcececesacacsssacessasnansnnas
PAUSE.ceeeesaeaseeccacssacssascsoscanns
PRINT.eeescecocccnonccnncs cseseececcsens
PUNCHeceeaaooovoeoscacesasacsasanscnscnnas

READuececeecaceacecansssoscnsancasnnsanca

RETURNceeceeecencsecsacasoassnsnccasaaacs
REWTINDeeteeeceesncscoscanncseacscncannsos
STOPeeeeecannn Ceteecccesenecens ceaene
8
statements,
ASSignMeNteceeieaseccsenssccnnassesncsns
assignment, arithmeticC.cecvvececnceaans
assignment, logicalececececccccctccsoacas
CONtrOleveeeceeocceseavsacoscnescoacannas
specificatioNeceecererecesccacsannnnas
statement NUMDbErS.cccesceececareaanaanan
STOP statement.eceeeccecesecsaecccnaancas .
storage, arrangement of arrays iNleececseee
subprogranm
BLOCK DATAcceesceceasccnsecncasanssnnas
DUMP.cieceaaccana ceevsesevresesesnsances
DVCHEKe ceeeeeeacenceacncanccasasacanaacs
)
PDUMP. e cceeeeeeeacococsoanaconcsannnsoas

SLITE eeceeoacsacsssacsncascssscanceccas

SLITET . eeecascensancsssnccssassncs
subprogranms

40

FUNCTIONeeoeoosceencssoscssnncscnccassss 30 terminology, data Setecieeccceccccescenas 15
mathematical function,conversioNeeses.. 44 truncation,REAL t0 INTEGER.:ecevscenveneas 21
SE@LViCCeeeececscecsansenensansscnsnnscs 33
SUBROUTINE.eacescecscsenansocsnssnnsans 31
SUBROUTINE SUbProgramMSecscescacscsescessss 31 unconditional GO TO statemeNticeccoceess 22
subscripted variableSeeececsescscssssccnss 19 using the function LBLNKeeececoaeoeoesaeaess 51
substitution names, LCP, form Ofcececess 13

symbols, basic, PL/I and FORTRAN variables, subcripted.i..cecvccccrcncceass 19
COorresSpoNdinNge ceceveescssesnscscscsascanacs 43 variables,common,in
System requiremenNtSeeececcacessssasscsscsss 8 EQUIVALENCE statemeNteseccescscecansess 29

tape,pPrograms Oleccccsscscsscsanssnscasnees 50 words, blanks withiN.ieevecececarsnesees 16
target program eXeCUtiONeeceeeseccescsess 54 WRITE statemeNtecceccecicnccccacenanacess 36

73

GC33-2002-2

TSI

International Business Machines Corporation

Data Processing Division

1133 Westchester Avenue, White Plains, New York 10604
[U.S.A. only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

ddT 1I/1d-03-A1 NVELIOd

"¥°S°N Ul pa3julad

2-200T-€EDD

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26.1
	26.2
	26
	27
	28.0
	28.1
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	xBack

