
Technical Newsletter File Number S360-25 

Re: Form No. Y28-6601-2 

This Newsletter No . Y28-6827 

. Date November 15, 1968 

Previous Newsletter Nos. Y 28 - 6 8 1 9 

IBM System/360 Operating System 
FOR~~RAN IV (E) 
P·ro~rram Logic Manual 

(applies to -2) 
Y28-6383 

(applies to -2) 

This Technical Newsletter, a part of Release 17 of the IBM 
Syst.em/360 Operating System, provides replacement pages for IBM 
Sys1:em/360 0rerating System: FORTRAN IV (E) program Logic Manual, 
Form Y28-660 -2. These replacement pages remain in effect for 
subsequent releases unless specifically altered. Pages to be 
replaced and/or added are listed below. 

Pages 

Cover, preface 
37-38.1 
91-94 
159-162 (159.1 deleted, 161.1 added) 
165-166 

Changes to the text, and small changes to illustrations, are indi­
cated by a vertical line to the left of the change 1 changed or 
addE~d illustrations are denoted by the symbol _ to the left of 
the caption. 

Suoonary of Amendments 

The discussion of address assignment by the compiler is clarified. 
Information concerning the format and organization of the com­
munication area has been changed. Improvements in the processing 
of BACKSPACE statements by the FOR'I'RAN object-time library have 
been added. 

File this cover letter at the back of the publication to provide 
a record of changes. 

IBM; Corporation, Programming Publications, 1271 Avenue of the Americas, New York, N.Y. 10020 

PRINTED IN U. S.A. 

Restricted Distribution 



IBM System/3S0 Operating System 

FORTRAN IV (E) 

Program Logic Manual 

Program Number 360S-FO-092 

This publication describes the internal 
design of the IBM System./360 Operating 
System FORTRAN IV (E) compiler program. 
Program Logic Manuals are intended for use 
by IBM customer engineers involved in pro­
gram maintenance, and by system programmers 
involved in altering the program design. 
Program logic information is not necessary 
for program operation and use; therefore, 
distribution of this manual is limited to 
persons with program maintenance or modi­
fication responsibilities. 

Restricted Distribution 

Y28-660l-2 

Program Logic 



Form Y28-6601-2 
Page Revised 11/15/68 by TNL Y28-6827 

PREFACE -----

This manual is organized into three 
sections. section 1 is an introduction and 
describes the overall structure of the 
compiler and its relationship to the 
operating system. Section 2 discusses the 
functions and logic of each phase of the 
compiler. section 3 includes a series of 
flowcharts that show the relationship among 
the routines of each phase. Also provided 
in this section are phase routine 
directories. 

Appendixes at the end of this pUblica­
tion provide information pertaining to: 
(1) source statement scan, (2) intermediate 
text formats, (3) table formats, (4) main 
storage allocation, etc. 

Prerequisites to the use of this publi­
cation are: 

!BM System/360 0Eer~~i~_sys!em~_~~i~= 
ciples of 0p~~~i!Q~, Form A22-6821 

IBM System/360 Operating_§Y~~~~l __ §~~i£ 
rQgT~~_!y_!!~~g:~~g:~, Form C28-6629 

IBM System/360 Operating: SY~i~~~ __ !~i~Q= 
duct ion to Control PrQg~~~ __ !!Qgi£L __ ~~Q= 
g:~~~~Qgi£_~~~~~!, Form Y28-6605 

IBM System/360 Operating: System: Basic 
FORTRAN IV (E) Prog:~~~~~~~_~~ig~, Form 
C28-6603 (Sections "Job Processing" and 
"Cataloged Procedures") 

Although not prerequisite, the following 
documents are related to this publication: 

IBM System/360 Operating System: 
sequential Access Methods, PrQgram Logic 
Manual, Form Y28-6604 

IBM System/360 Operating system: Con­
cepts and Facilities, Form C28-6535 

This compiler is similar in design to 
the IBM System/360 Basic Programming Sup­
port FORTRAN IV Compiler. 

RESTRICTED DISTRIBUTION: This publication is intended primarily for use 
by IBM personnel involved in program design and maintenance. It may not 
be made available to others without 'the approval of local IBM management. 

Third Edition (September 1966) 

This is a major revision of, and makes obsolete, the previous edition, 
Form Y28-660l-l. Changes to the text, and small changes to illustrations, 
are indicated by a vertical line to the left of the change 7 changed or 
added illustrations are denoted by the symbol. to the left of the caption. 

The specifications contained in this publication, as amended by TNL 
Y28-6827, dated November 15, 1968, correspond to Release 17 of the 
IBM System/360 Operating System. 

Changes are periodically made to the specifications herein7 any 
such changes will be reported in subsequent revisions or Technical 
Newsletters. 

Requests for copies of IBM publications should be made to your IBM 
representative or to the IBM branch office serving your locality. 

Address comments concerning the contents of this publication to 
IBM Corporation, Programming Publications, 1271 Avenue of the 
Americas, New York, N. Y. 10020. 



Form Y28-6601-2 
Page Revised 11/15/68 by TNL Y28-6827 

r---------------, 
tliain Storage I Dictionary I 

I and I 

r---------------, 
·1 Intermediate 1 SYSUT2 or 
1 text for non- 1 Main Storage 
1 syntactical 1 
1 errors 1 
1 encountered 1 
1 in COMMON and 1 
1 EQUIVALENCE 1 
1 Statements 1 L _______________ J 

r---------------, 
1 Dictionary 1 Main Storage 
1 and 1 

t_~~~=::~~:_~~~:=J ~ V-l-~~::::~:-~~~::J 
~r------------, r---------------, 

I 1 ESD, TXT, RLD 1 
I Phase 12.1 Card Images 1 

SYSLIN 
and/or 
SYSPUNCH I 1 1 1 , ~L-------'----- L _______________ J 

r----------------,~ , . ~r---------------, 
SYpUT1 or 
Main Storage 

I COMMON and I 1 1 SYSPRINT 
I EQUIVALENCE 1 I Storage Map I 
I Text I 1 1 L _______________ J L _______________ J 

Figure 9. Phase 12 Data Flow 

ADDRESS ASSIGNMENT 

An effective address in IBM System/360 
Operating system (a base-displacement 
address) is generated by adding the dis­
placement value in an instruction to the 
value in an assigned base register. (A 
complete description of address generation 
can be found in the publication IBM System! 
~~-E~inci21es 2~ Operation, Form A22-68~1.) 
When addresses are assigned by Phase 12, 
the compiler uses a modified base­
displacement format, where the high-order 
six bits represent the assigned base 
register and the low-order ten bits repre­
sent the displacement. The 2-byte address 
is stored in this internal format until 
Phase 25 converts it to IBM System/360 
base-displacement form (i.e., the high­
order four bits represent the base register 
and the low-order twelve bits represent the 
displacement.) All symbols in the object 
module generated by the compiler are 
referenced by this converted 2-byte 
address. 

r---------------, 
1 Source Symbol 1 Main 
1 Table if 1 Storage 
1 Object Listingl 
1 Option is in 1 
1 effect 1 L _______________ J 

The base-displacement address is 
assigned through the use of a location 
counter, which is initialized and then 
incremented by the number of words needed 
in main storage to contain the variable, 
array, constant, address constant, or 
equated variable assigned an address. If 
more than 4096 bytes are needed, a new base 
register is assigned. 

There are only two instances in which 
the location counter may be incremented 
when no address is assigned: 

• The first occurs after the variables in 
COMMON are assigned addresses. A new 
base register is assigned to the loca­
tion counter so that variables not in 
COr-1MON have different base registers 
than variables in COMMON. 

• The second may occur before the assign­
ment of addresses to double-precision 
constants that are not in COMMON. The 
location counter is adjusted to a 
doubleword boundary in order to accom­
modate double-precision constants. 

Section 2: Discussion of Compiler Phases 37 



Form Y28-6601-2 
Page Revised 11/15/68 by TNL Y28-6827 

When a variable is assigned an address, 
that address is placed in the chain field 
of the dictionary or overflow table entry 
for the variable. 

FORMAT statements are assigned 
during the execution of Phase 
phases after Phase 12 assign 
whenever a constant or work 
defined. 

addresses 
14. All 
addresses 
area is 

EQUIVALENCE STATEMENT PROCESSING 

The EQUIVALENCE text is processed by 
Phase 12 so that equated variables are 
assigned to the same address. 

The following terms are used in the 
description of EQUIVALENCE processing: 

• EQUIVALENCE group -- the variable and/ 
or array names between a left and right 
parenthesis in an EQUIVALENCE 
statement. 

• EQUIVALENCE class two or more 
EQUIVALENCE groups that have the fol­
lowing characteristics. If any EQUIVA­
LENCE groups contain the same element, 
these groups form an EQUIVALENCE class. 
Further, if any other group contains, an 
element in this class, the other group 
is part of this class, etc. 

• Root -- the member of 
group or class from 
variables in that group 
referenced by means 
displacement. 

an EQUIVALENCE 
which all other 
or class are 

of a positive 

• Displacement -- the distance, in bytes, 
between a variable and its root. 

The root of an EQUIVALENCE 
assigned an address, and 
variables in the group are 
addresses relative to that root. 

group is 
all other 

assigned 

To determine the root and the dis­
placement of the other elements in the 
group from the root, the first element in 
the EQUIVALENCE group is established ini­
tially as the root. The displacement for 
the other elements (in relation to the 
root) is calculated by subtracting the 
offset of the root from the offset of the 
variable whose displacement is being calcu­
lated. (The offset for subscripted 
variables is contained in the EQUIVALENCE 
text created by Phase 10D. The offset for 
nonsubscripted variables is zero.) 

38 

If the resulting displacement is nega­
tive, the root is changed. The new root is 
the variable whose displacement was being 
calculated. Whenever a new root is 
assigned to an EQUIVALENCE group, the pre­
viously calculated displacements must be 
recalculated. 

The root and the displacements in each 
group are entered in an EQUIVALENCE table, 
which is used by the storage assignment 
routines of Phase 12 to assign addresses to 
equated variables. (Refer to Appendix I 
for the table format.) 

Note: Phase 12 generates intermediate text 
for nonsyntactical errors encountered in 
COMMON and EQUIVALENCE statements during 
relative address assignment. (The internal 
statement numbers for the error messages 
that are generated from this intermediate 
text by Phase 30 is 0000.) The amount of 
intermediate text for such errors depends 
on whether the SPACE or the PRFRM option is 
in effect. 

If the SPACE option is in effect, the 
amount of error text is limited by the size 
of the first internal text buffer for the 
SYSUT2 data set. Phase 12 does not write 
any of the error text onto the SYSUT2 data 
set; it places the text into the above 
buffer. (The contents of the buffer are 
written onto SYSUT2 by Phase 14.) If the 
buffer is filled before COMMON and pro­
cessing is completed, Phase 12 continues 
such processing, but does not generate 
additional error text. If the buffer is 
not filled before COMMON and EQUIVALENCE 
processing is completed, Phase 12 places 
the displacement of the next available 
location within the buffer into the 
FTXTPTRB field in the communication area. 
Phase 14 starts placing its intermediate 
text output at the location indicated by 
this field. 

If the PRFRM option is in effect, there 
is no limitation on the amount of interme­
diate text generated by Phase 12 for COMMON 
and EQUIVALENCE statement errors. Phase 12 
starts placing the error text into the 
first text buffer in the first text buffer 
chain for the SYSUT2 data set. When that 
buffer is full, the next buffer in the 
chain is used, etc. When all of the COMMON 
and EQUIVALENCE text is processed, the 
displacement of the next available location 
within the current buffer is placed into 
the FTXTPTRB field in the communication 
area. Phase 14 starts placing its interme­
diate text output at the location indicated 
by this field. 



Form Y28-6601-2 
Page Revised 11/15/68 by TNL Y28-6827 

BRANCH LIST TABLE PREPARATION 

The branch list table is initialized by 
Phase 12 (and is completed by Phase 25). 
This table is used by the object module to 
control the branching process. (Refer to 
Appendix Jr for the table format. ) Each 
statement number referenced in a control 
statement is assigned a position relative 
to the start of the branch table. This 
position i.s indicated to Phase 25 by a 
relative number, which replaces the chain 
field of t.he corresponding statement number 
entry in the overflow table. 

section 2: Discussion of Compiler Phases 38.1 



FOR PRFRM COMPILATIONS 

For PRFRM compilations, the compiler 
requires main storage for: 

• Load modules (phases, interface, and 
performance) 

• Resident tables (dictionary, overflow 
table, and SEGMAL) 

• Internal text buffer chains 

• BSAM I/O routines 

• Block/deblock buffers if blocking is 
specified 

The main storage required by any given 
phase of the compiler need be contiguous 
only for each control section within that 
phase. Figure 23 reflects the main storage 
allocation for the duration of a PRFRM 
compilation, when only a minimal amount of 
main storage (19K bytes, where K=1024) is 
available for compilation. 

When the main storage allocated to the 
compiler (specified in the SIZE option) is 
greater than 19K bytes, the internal text 
buffers may be interspersed within the area 
occupied by the dictionary and the overflow 
table. In this case, there need be no 
relationship among the various areas 
required by the compiler" 

Figure 23 is a schematic showing the 
main storage allocated; proportional sizes 
within the diagram do not necessarily indi­
cate proportional amounts of main storage. 

r--------------------------------------, 
36KI INTERFACE MODULE I 

.--------,-----------------------------~ 
I PERFORMANCE MODULE I 
r--------------------------------------~ 
I I 
I BSAM ROUTINES I 
I I 
.--------------------------------------~ 
I TRANSIENT WORK AREA I 
·t--------------------------------------~ I PHASE 1,' PHASE 5, I 
I PHASE 7, PHASE 8, I 
1 PHASE 10D, PHASE 10E, I 
I PHASE 12, PHASE 14, I 
I PHASE 15, PHASE 20, I 
I PHASE 25, OR PHASE 30 I 
t--------------------------------------~ 
1 I 
I DICTIONARY, OVERFLOW TABLE, I 
1 AND SEGMAL I 
, I 
.--------------------------------------~ I 4 INTERNAL TEXT BUFFER CHAINS I 
.-------~-----------~------------------~ I BLOCK/DEBLOCK BUFFERS I 
I (IF BLOCKING IS SPECIFIED) I 

17K.--------------------------------------~ 
I I 
I I 
I RESIDENT I 
I CONTROL I 
I PROGRAM I 
I I 
I I OL-------------------___________________ J 

Figure 23. Mairi Storage Allocation for a 
PRFRM Compilation 

Appendiy A: Main Storage Allocation 91 



Form Y28-6601-2 
Page Revised 11/15/68 by TNL Y28-682? 

APPENDIX B: COMMUNICATION AREA (FCOMM) 

The communication area is a central 
gathering area used to communicate neces­
sary information between the various phases 
of the compiler. The communication area, 
as a portion of the interface module, is 
resident throughout the compilation. 

Several entries in the communication 
area are equated to the addresses of other 
entries in the communication area used 
during earlier phases. Equating the 
entries keeps the size of the communication 
area to a minimum. 

various bits in the communication area 
are examined by the phases of the compiler. 
The status of these bits determines such 
things as: 

The communication area is assembled as a 
DSECT (dummy section) within each phase. 
This allows the phases to symbolically 
address the entries in the communication 
area without the communication area actual­
ly residing in each phase. e Options specified 

programmer 
by the source 

e Specific action to be taken by a phase 
Table 22 indicates the format and 

organization of the communication area. 

eTable 22. Communication Area (Part 1 of 3) 
r---------T-------------T---------------------------------------------------------------, 
\ Entry I Size I Meaning I 
~---------+-------------+---------------------------------------------------------------~ 

FCOMM DS XL4 BITO SOURCE 1 

BITl DECK 1 

BIT2 MAP 1 

BIT3 ADJUST 1 

BIT4 PRFRM 1 

BITS 5-6 00 NOLOAD 1 

11 LOAD 1 

BIT? 
BIT8 
BITS 9-10 

BITll 
BIT12 
BIT13 
BIT14 
BIT15 
BIT16 
BIT1? 
BIT18 

BIT19 
BIT20 
BIT21 
BIT22 

BCD 1 

NAME PARAMETER EXISTED 
00 MAIN PROGRAM 
10 SUBROUTINE SUBPROGRAM 
11 FUNCTION SUBPROGRAM 

FUNCTION NAME DEFINED 
OBJECT MODULE CALLS AN EXTERNAL S/P 
SPARE 
LAST COMPILE OF THIS JOB STEP-PH 10E/l 
ERROR ON ANY COMPILE OF A BATCH RUN 
WARNING MESSAGES 
ERROR MESSAGES 
MESSAGE IN CURRENT STATEMENT-PH 10D/l0E 
INPUT BUFFER TO BE PRIMED-PH 12/14 
'DIOCS'ESD TO BE GENERATED-PH 14/20 
WARNING IN ANY COMPILE OF A BATCH RUN 
ABORT COMPILATION 
ALL INTERNAL TEXT IN STORAGE 
ONE INTERNAL TEXT RECORD-PH 10D/l0E 
OBJ. MOD. USES A SPILL BASE REG-PH 12/25 
BRANCH LIST TEXT NOT ALL IN STORAGE-PH. 25/30 

BIT23 OBJECT LISTING 
BIT24 OTHER THAN FIRST COMPILE 
BIT25 COMPILATION RESTARTED 
BIT26 INVALID OPTION(S) IN 'PARM' FIELD 
BIT2? 'NAME' OPTION TOO LONG-TRUNCATED 
BIT28 SYNAD EXIT OUTSTANDING 
BITS 29-31 SPARE 

~---------i-------------i-----------------------------__________________________________ ~ 
I~Default values for these compiler options may be specified by the user during the \ 
\ system generation process via the FORTRAN macro-instruction. The default values I 
I specified at system generation time are assumed if the corresponding parameters in the I 
I PARM field of the user's EXEC statement are not included. \ L _______________________________________________________________________________________ J 

92 



Form Y28'-6601-2 
Page Revised 11/15/68 by TNL Y28-6827 

-Table 22.. Communication Area (Part 2 of 3) 
r------~---T-----·---------l"------------------'--------------------------------------------, 

I I I I 
I Entry I Size I Meaning I 
~----------+-----.---------+------------------,---------------------------------------------1 
FSIZE I DS F I BYTES OF STORAGE REQUESTED FOR COMPILER1 I 
FDATE I DS CL5 I YEAR (2 DIGITS), DAY (3 DIGITS) I 
FLINELNG I DS, X I OBJECT PROGRAM PRINT LINE LENGTH1 I 
FINDEX I DS H I DISPLACEMENT FROM'FCOMM TO FDECBIN I 

J 
FMAXLINE I DS H I MAXIMUM NUMBER OF LINES ON LISTING PAGE1 I 

, FCURLINE I DS H I CURRENT LINE ON LISTING PAGE1 I 
FIEJF I DS CL4 I FORTRAN E INTERNAL COMPONENT CODE - IEJF I 
FPHASE I DS CL4 I ENTRY POINT OF PHASE IN CONTROL I 
FDMRRDCD I DS X I HI-ORDER BYTE OF REREAD ITEM IN CLOSE LIST I 
FDMLSTCD I DS X I HI-ORDER BYTE OF LAST ITEM IN CLOSE LIST I 
FPRTCTRl~ I DS 2H I BRANCH TO PRINT CONTROL ROUTINE I 

t--------·-i--------------t---------------------------T-----------------------------------I I THE CON']~ENTS OF THE I FOR SPACE COMPILATIONS I FOR PRFRM COMPILATIONS I 
I NEXT 4 l~IELDS DEPEND I I I 
I ON WHETHER A SPACE OR I I I 
IA PRFRM COMPILATION IS I I I 
I BEING PERFORMED. I I I 
~---------T--------------t---------------------------t-----------------------------------1 
IFIORTN I DS 2H I B SIORTN I MVI FPRFRMDL,X'4' I 
I FNEXT I DS 2H I B SNEXT I L 13, FPRFRMDL I 
J I DS H I (NOT USED) I BR 13 I 
I FPRFRMDI. I DS A I ZERO I ADDR. OF IEJFAPAO I 
t--------.-+-------~------t-------------~-------------i-_________________________________ -I 
IFAGAOEND DS A ADDRESS OF (END OF INTERFACE MODULE + ONE) 
I FSAVADDR DS A ADDRESS OF CONTROL PROGRAM SAVE AREA 
I FTXBFSZ1~ DS H SIZE OF 'SYSUT1' INT. TEXT BUFFER 
IFTXBFSZB DS H SIZE OF 'SYSUT2' INT. TEXT BUFFER 
IFTXTPTR1~ DS H DISP. OF NEXT SYSUT1 TEXT RCD.-PH. 10D/10E,12/14 
IFTXTPTRB DS H DISP. OF NEXT SYSUT2 TEXT RCD.-PH. 12/14 
FTXTBFAl DS A ADDRESS OF INTERNAL TEXT BUFFER 1 - SYSUT1 
FTXTBFA2 DS A ADDRESS OF INTERNAL TEXT BUFFER 2 - SYSUT1 
FTXTBFBl DS A ADDRESS OF INTERNAL TEXT BUFFER 1 - SYSUT2 
FTXTBFB2 DS A ADDRESS OF INTERNAL TEXT BUFFER 2 - SYSUT2 
FPRTBUFl DS A ADDRESS OF FIRST PRINT BUFFER 
FPRTBUF2 DS A ADDRESS OF SECOND PRINT BUFFER 
FINITBFS DS 4A INITIAL TEXT BUFFER POINTERS 
FDICTNDX DS A ADDRESS OF DICTIONARY INDEX - PHASE 7/12 
FOVFLNDX DS A ADDRESS OF OVERFLOW INDEX 
FDICTBLK DS A DICT. BLOCK NOW BEING BUILT - PH. 10D/E 
FOVFLBLF~ DS A OVFL. BLOCK NOW BEING BUILT - PH. 10D/E 
FDICTNX,]~ DS A DICT. ENTRY NEXT TO BE BUILT - PH. 10D/E 
FOVFLNX,]~ DS A OVFL. ENTRY NEXT TO BE BUILT - PH. 10D/14 

IFISNEX1 DS F ISN OF FIRST EXECUTABLE-PHASE 10D/E 
I FOBJPROG DS CL6 NAME OF OBJECT PROGRAM 
I FOBJREGS DS X BITS 0-2 SPARE 
I BIT3 EXTERNAL FUNCTION HAS BEEN CALLED 
I BITS 4-7 LOWEST INDEX REGISTER iN OBJ. PROG. 
IFASFCNT DS X COUNT OF SF'S IN OBJECT PROGRAM 
IFDOCOUN,]~ DS H NUMBER OF DO STATEMENTS 
I DS H SPARE 
t--------·-.L--------------J.-----------------------------------------------'----------------1 
11Default: values for these compiler options may be specified by the user during the I 
I system generation process via the FORTRAN macro-instruction. The default values I 
I speci~ied at system generation time are assumed if the corresponding parameters in thel 
I PARM field of the user's EXEC statement are not included. I l ___________________________________________________________ ~ ___________________________ J 

Appendix B: Communication Area (FCOMM) 93 



Form Y28-6601-2 
Page Revised 11/15/68 by TNL Y28-6827 

• Table 22. Communication Area (Part 3 of 3) 
r---------T----------------T------------------------------------------------------------, 
I Entry I Size I Meaning I 
~---------+----------------+------------------------------------------------------------~ 
FCOMSIZE I EQU FDICTBLK SIZE OF OBJECT PROGRAM COMMON - PH. 12/30 
FALSIZE I EQU FDICTBLK+2 SIZE OF OBJ. PROG. ARGUMENT LIST - PH. 15/20 
FBLSIZE I EQU FOVFLBLK SIZE OF OBJ. PROG. BRANCH LIST - PH. 12/30 
FBLSTRT I EQU FOVFLBLK+2 ADDR. OF OBJ. PROG. BRANCH LIST -PH. 12/30 
FASFDOBL I EQU FOVFLNXT+2 ADDRESS OF ASF/DO BRANCH LIST - PH. 20130 
FBVSTRT I EQU FDICTNXT ADDR. OF OBJ. PROG. BASE VAL. LIST - PH. 12/30 
FOBJSTRT I EQU FDICTNXT+2 STARTING ADDR. OF OBJECT PROGRAM - PH. 12/30 
FLOCCTR t EQU FISNEX1 LOCATION COUNTER FOR OBJ. PROG. - PH. 12/30 
FFNCADDR EQU FDICTBLK+2 ADDRESS OF RESULT (FUNCTION SIP) - PH. 14/15 
FIBCOM EQU FOVFLNXT ADDRESS OF IBCOM - PHASE 20/25 
FOBJERR EQU FDICTBLK+2 ADDR. OF OBJ. PROG. ERROR RTNE. - PH. 20/25 
FDECKSEQ EQU FDICTNDX OBJECT PROGRAM DECK SEQUENCE NUMBER - PH. 12/30 
FESDSEQ EQU FDICTNDX+2 OBJECT PROGRAM ESD SEQUENCE NUMBER - PH. 12/20 
FENDSTOR EQU FDLCTNDX+2 END-OF-DATA STORAGE ADDRESS - PH. 25/30 
FALSTRT DS F DSRN ARGUMENT LIST ADDRESS 
FDATEMP DS F ADDRESS OF DIRECT ACCESS 1/0 TEMPORARY AREA 
FDEFILCT DS F 'DEFINE FILE' DSRN COUNT - PH. 10D/20 
FDIOCS EQU FDEFILCT ADDRESS OF DIOCS - PH. 20/25 
FPATCH DS 2H BRANCH TO PATCH ROUTINE IN INTERFACE MODULE 
FPTCHTBL DS A ADDRESS OF PATCH TABLE 
FPTCHPTR DS A PATCH TABLE ENTRY NEXT TO BE POSTED 
FSORSYM1 DS A ADDRESS OF SORSYM TABLE 
FSORSYM2 DS A SORSYM TABLE ENTRY NEXT TO BE BUILT 
FSYNADGR DS 2A DECB AND DCB POINTERS AT SYNAD EXIT 
~---------L----------------~--------------------------_____________________ ------~------~ 
11 Default values for these compiler options may be specified by the user during the I 
I system generation process via the FORTRAN macro-instruction. The default values I 
I specified· at system generation time are assumed if the corresponding parameters in I 
I the PARM field of the user's EXEC statement are not included. I L _________________ a. _____________________________________________________________________ J 

94 



Form Y28-6601-2 
Page Revised 11/15/68 by TNL Y28-6827 

The I/O device manipulation routines of 
IHCFCOME implement the BACKSPACE, REWIND, 
and END FILE source statements. These 
routines receive control from within the 
load module via calling sequences that are 
generated by the compiler when these state­
ments are encountered. 

~ot~: Backspace, rewind, and end file 
requests are honored only for sequential 
data sets and are ignored for direct access 
data sets. However, these statements are 
device independent and can be used for 
sequential data sets on either sequential 
or direct access devices. 

The implementation of BACKSPACE, REWIND, 
and END FILE sta'tements is straightforward. 
The I/O device manipulation routines submit 
the appropriate control request to 
IHCFIOSH, the I/O interface module. After 
the request is executed, control is 
returned to the calling routine within the 
load module. 

Write-to-operator Routines 

The 1~rite-to-operator routines of 
IHCFCOME implement the STOP and PAUSE 
source s'tatements. These routines receive 
control f:r-om wi thin the load module via 
calling sequences generated by the compiler 
upon recognition of the STOP and PAUSE 
statements. 

§TOE: A write--to-operator (WTO) macro­
instruction is issued to display the mes­
sage associated with the STOP statement on 
the console. Load module execution is then 
terminated. by passing control.to the pro­
gram termination routine of IHCFCOME. 

PAUS§: A write-to-operator-with-reply 
(WTOR) ma.cro-instruction is issued to dis­
play the message associated with the PAUSE 
statement on the console and to enable the 
operator's reply to be transmitted. A WAIT 
macro-inst,ruction is then issued to deter­
mine when the operator's reply has been 
transmi ttE~d. After the reply has been 
received, control is returned to the cal­
ling routine within the load module. 

The utility routines of IHCFCOME perform 
the folloVi7ing functions: 

• Process object-time error messages 

• Process arithmetic-type program 
interruptions 

• Terminate load module execution 

PROCESSING OF ERROR 
message· processing 
receives control 
library subprograms 
object-time errors. 

MESSAGES: 
routine 

from various 
when they 

The error 
(IBFERR) 
FORTRAN 
detect 

Error message processing consists of 
initializing the data set upon which the 
message is to be written and also of 
writing the message. Control is then 
passed to the termination routine of 
IHCFCOME. 

PROCESSING OF ARITHMETIC INTERRUPTIONS: 
The arithmetic-interrupt routine (IBFINT) 
of IHCFCOME initially receives control from 
within the load module via a compiler­
generated calling sequence. The call is 
placed at the start of the executable 
coding of the load module so that the 
interrupt routine can set up the program 
interrupt mask. Subsequent entries into 
the interrupt routine are made through 
arithmetic-type interruptions. 

The interrupt routine sets up the pro­
gram interrupt mask by means of a SPIE 
macro-instruction. This instruction speci­
fies the type of arithmetic interruptions 
that are to cause control to be passed to 
the interrupt routine, and the location 
within the routine to which control is to 
be passed if the' specified interruptions 
occur. After the mask has been set, con­
trol is returned to the calling routine 
within the load mqdule. 

In processing an arithmetic interrup­
tion, the first step taken by the interrupt 
routine is to determine its type. If 
exponential overflow or underflow has 
occurred, the appropriate indicators, which 
are referenced by OVERFL (a library subpro­
gram), are set. If any type of divide 
check caused the interruption, the indica­
tor referenced by DVCHK (also a library 
subprogram) is set. 

Regardless of the type of interruption 
that caused control to be given to the 
interrupt routine, the old program PSW is 
written out for diagnostic purposes. 

After the interruption has been pro­
cessed, control is returned to the inter­
rupted routine at the point of 
interruption. 

PROGRAM TERMINATION: The load module ter­
mination routine (IBEXIT) of IHCFCOME 
receives control from various library sub­
programs (e.g., DUMP and EXIT) and from 
other IHCFCOME routines (e.g., the routine 
that processes the STOP statement). 

Appendix L: Object-Time Library Subprograms 159 



Form Y28-6601-2 
Page Revised 11/15/68 by TNL Y28-6827 

This routine terminates execution of the 
load module by the following means: 

• Calling the appropriate I/O inter­
face(s) to check (via the CHECK macro­
instruction) outstanding write requests 

e Issuing a SPIE macro-instruction with 
no parameters to indicate that the 
FORTRAN object module no longer desires 
to give special treatment to program 
interruptions and does not want mask­
able interruptions to occur. 

e Returning to the 
supervisor. 

operating system 

IHCFIOSH, the object-time FORTRAN 
sequential access input/output data manage­
ment interface, receives I/O requests from 
IHCFCOME and submits them to the appropri­
ate BSAM (basic sequential access method) 
routines and/or open and close routines for 
execution. 

Chart E3 illustrates the overall logic 
and the relationship among the routines of 
IHCFIOSH. Table 37, the IHCFIOSH routine 
directory, lists the routines used in 
IHCFIOSH and their functions. 

BLOCKS AND TABLE USED 

IHCFIOSH uses the following blocks and 
table during its processing of sequential 
access input/output requests: (1) unit 
blocks, and (2) unit assignment table. The 
unit 'blocks are used to indicate I/O acti­
vity for each unit number (i.e., data set 
reference number) and to indicate the type 
of operation requested. In addition, the 
unit blocks contain skeletons of the data 
event control blocks (DECB) and the data 
control blocks (DCB) that are required for 
I/O operations. The unit assignment table 
is used as an index to the unit blocks. 

The first reference to each unit number 
(data set reference number) by an input/ 
output operation within the FORTRAN load 
'module causes IHCFIOSH to construct a unit 
block for each unit number. The main 
storage for the unit blocks is obtained by 
IHCFIOSH via the GETMAIN macro-instruction. 
The addresses of the unit blocks are placed 
in the unit assignment table as the unit 
blocks are constructed. All subsequent 
references to the unit numbers are then 
made through the unit assignment table. 

r------------T------------T------------T------------T------------, 
I ABYTE I BBYTE I CBYTE I DBYTE I 4 bytes I 
~-~----------L------------L------------L------------+-___________ ~ 
I Address of Buffer 1 I 4 bytes I 
~------------~--------------------------------------f------------~ 
I Address of Buffer 2 I 4 bytes I 
~---------------------------------------------------+-----~------~ 
I Current buffer pointer* I 4 bytes I Housekeeping 
~---------------------------------------------------f------------~ section 
I Record offset (RECPTR)* I 4 bytes I 
~---------------------------------------------------+------------~ 
I Address of last DECB I 4 bytes I 
~---------------------------------------------------f------------~ 
I Mask for alternating buffers I 4 bytes I 
~---------------------------------------------------f------------~ 
I DECBl skeleton section I 20 bytes I 
~--------------------------------------T------------f------------~ 
I Not used . I LIVECNTl I 4 bytes I 
~--------------------------------------~------------+------------~ 
I DECB2 skeleton section I 20 bytes I 
~-------------------------T------------T------------+------------~ 
I Work space I Not used I LIVECNT2 I 4 bytes I 
~-------------------------L------------~------------+-___________ ~ 
I DCB skeleton section I 88 bytes I 
~--------------------------------------------------~------------~ 
I ' I 
I *Used only for variable length and/or blocked records. I 
I I l __ ---------------_______________________________________________ J 

eFigure 90. Format of a Unit Block for ct Sequential Access Data Set 

160 



Form Y28·-6601-2 
Page Revised 11/15/68 by TNL Y28-6827 

Figure 90 illustrates the format of a unit 
block for a unit that is defined as a 
sequential access data set. 

Each unit block is divided into four 
sections: a housekeeping section, two DECB 
skeleton sections, and a DCB skeleton 
section. 

HOUSEKEEPING SECTION: The housekeeping 
section :is maintained by IHCFIOSH. The 
information contained in it is used to 
indicate data set type, to keep track of 
I/O buffer locations, and to keep track of 
addresses internal to the I/O buffers to 
enable the processing of blocked records. 
The fields of this section are: 

• ABYTE. This field, containing the data 
set type passed to IHCFIOSH by 
IHCFCOME, can be set to one of the 
following: 

FO - Input data set requiring a format 
FF - output data set requiring a format 
00 - Input data set not requiring a 

format 
OF - Output data set not requiring a 

format 

• BBYTE~ This field contains bits that 
are-set and examined by IHCFIOSH during 
its processing. The bits and their 
meanings, when on, follow: 

o - Exit to IHCFCOME on I/O error 
1 - I/O error occurred 
2 -'Current buffer ind~cator 

3 - Not used 
4 - End-of-current buffer indicator 
5 - Blocked data set indicator 
6 - Variable record format switch 
7 - Not used 

• CBYTE. This field also contains bits 
that are set and examined by IHCFIOSH. 
The bits and their meanings, when on, 
follow: 

o - Data control block opened 
1 Data control block not TCLOSEd 
2 - Data control block not previously 

opened 
3 - Buffer pool attached 
4 - Data set not previously rewound 
5 - Not used 
6 - Concatenation occurring -- reissue 

READ 
7 - Data set is DUMMY 

• QgXT~. This field contains bits that 
are set and examined by IHCFIOSH during 
the processing of an input/output 
operation involving a backspace 
request. The bits and their meanings, 
when on, follow: 

o - A physical BACKSPACE has occurred 
1 Previous operation was BACKSPACE 
2 - Not used 
3 - End-of-file routine should retain 

buffers 
4 - Not used 
5 - Not used 
6 - END FILE followed by BACKSPACE 
7 - Not used 

Appendix L: Object-Time Library Subprograms 161 



Form Y28-6601-2 
Page Revised 11/15/68 by TNL Y28-6827 

• Address of Buffer 1 and Address of 
Buffer--2;--These-iields-contain-point= 
ers~o-the two I/O buffers obtained 
during the opening of the data control 
block for this data set. 

• Current Buffer Pointer. This field 
contains a pointer to the I/O buffer 
currently being used. 

• Record Offse't (RECPTR) • This field 
contains a pointer to the current log­
ical record within the current buffer. 

• Address of Last DECB. This field con­
taIns-'a-pointer-to-the last DECB used. 

• Mas~ __ ,fQL_~!te!:!!~!!n.g __ g~ffer.§.. This 
field contains the bits which enable an 
Exclusive Or operation to alternate the 
current buffer pointer. 

DECB SKELETON SECTIONS (DECBl AND DECB2): 
T~DECB-'(data-eVent-control-block)-s"kele-
ton sections are blocks of main storage 
within the unit block. They have the same 
form as the DECB constructed by the control 
program for an L form of an S-type READ or 
WRITE macro-instruction (refer to the pub­
lication ~~~-2YstemLl£Q_~E~!:~ti!!~_§y.§.!~~~ 
§~~rvi§2!~_~g ___ Q~!~_~~!!~~~~nt __ ~~S!:2= 
Instructions, Form C28-6647). The various 
fields -of:-the DECB skeleton are filled in 
by IHCFIOSH~ the completed block is 
referred to when IHCFIOSH issues a read/ 
write request to BSAM. The read/write 
field is filled in at ODen time. For each 
I/O operation, IHCFIOSH ~supplies IHCFCOME 
with: (1) an indication of the type of 
operation (read or write), and (2) the 
length of and a pointer to the I/O buffer 
to be used for the operation. 

• LIVECNTl AND LIVECNT2. These fields 
indicate whether any input/output 
operation performed for the data set is 
unchecked. (A value of 1 indicates 
that a previous read or write has not 
been checked~ a value of 0 indicates 
that all previous read and write opera­
tions for the data set have been 
checkE~d. ) 

• Work Space. This field is used to 
align the logical record length of a 
variable record segment on a fullword 
boundary. 

DCB SKELETON SECTION: The DCB (data con­
trol block) skeleton section is a block of 
main storage within the unit block. It is 
of the same form as the DCB constructed by 
the control program for a DCB macro­
instruction under BSAM (refer to the Super­
visor and Data Management Macro­
Instructions publication). The various 
fields of the DCB skeleton are filled in by 
the control program when the DCB for the 
data set is opened (refer to the publica­
tion IBM System/360 Operating System: Con­
cepts and Facilities, Form C28-6535). 
Standard default values may also be 
inserted in the DCB skeleton by IHCFIOSH. 
See "Unit Assignment Table" for a discus­
sion of the insertion of default values 
into the DCB skeleton. 

Unit Assignment Table 

The unit assignment table (IHCUATBL) 
resides on the FORTRAN system library 
(SYS1.FORTLIB). Its size depends on the 
maximum number of units that can be 
referred to during execution of any FORTRAN 
load module. This number (~ 99) is speci­
fied by the user during the system genera­
tion process via the FORTLIB macro­
instruction. 

The unit assignment table is designed to 
be used by both IHCFIOSH and IHCDIOSE. It 
is included once, by the linkage editor, in 
the FORTRAN load module as a result of an 
external reference to it within IHCFIOSH 
and/or IHCDIOSE • 

The unit assignment table contains a 
16-byte entry for each of the unit numbers 
that can be referred to by the user. These 
entries differ in format depending on 
whether the unit has been defined as a 
sequential access or a direct access data 
set. 

Figure 91 illustrates the format of the 
unit assignment table. 

Appen~ix I,: Object-Time Library Subproqrams 161.1 



Form Y28-6601-2 
Page Revised 11/15/68 by TNL Y28-6827 

r----------------------T----------T-------, 
IUnit number (DSRN) I 1 1 
Ibeing used for current I I I 
I operation I ~ n x 16 14 bytesJ 
t----------------------+----------+-------~ 
)Unit number (DSRN) of I I I 
Jerror output device I not used 14 bytes I 
~----------------------i-~--------+-------~ 
JUBLOCK01 field 14 bytes 1 
r----------------------------~----+-------~ 
IDSRN01 default values 18 bytes 1 
~---------------------------------+-------~ 
ILIST01 field 14 bytes] 
r---------------------------------+-------~ 
) I I 
I • 1 • I 
I • ] • 1 
1 • I • 1 
I 1 I 
r---------------------------------+-------~ 
IUBLOCKn field 2 14 bytes) 
~---------------------------------+-------~ 
IDSRNn default values 3 18 bytes I 
~---------------------------------+-------~ 
ILISTn field 4 14 bytes I 
~---------------------------------+-------~ 
I~n is the maximum number of units thatl 
\ can be referred to by the FORTRAN loadl 
I module. The size of the unit table isl 
I equal to (8 + n x 16) bytes. ~ 
12The UBLOCKn field contains either al 
I pointer to the unit block constructed I 
I for unit number n if the unit is being\ 
I used at object-time, or a value of 1 if I 
I the unit is not being used. I 
13 The default values for the various unitl 
J numbers are specified by the user andl 
I ar~ assembled into the unit assignment I 
I table entries during the system genera-I 
I tion process. The default values arel 
I used only by IHCFIOSH; they are ignored) 
) by IHCDIOSE. I 
14If the unit is defined as a directl 
I access data set, the LISTn field con-I 
I tains a pointer to the parameter list\ 
1 that defines the direct access data set. I 
I Otherwise, this field contains a value I 
I of 1. I l _________________________________________ J 

Figure 91. Unit Assignment Table Format 

Because IHCFIOSH deals only with 
sequential access data sets, the remainder 
of the discussion on the unit assignment 
table is devoted to unit assignment table 
entries for sequential access data sets. 
If IHCFIOSH encounters a reference to a 
direct access data set, it is considered 
an error, and control is passed to the 
load module termination routine of 
IHCFCOME. 

The pointers to the unit blocks created 
for sequential data sets are inserted into 
the unit assignment table entries by 
IHCFIOSH, when the unit blocks are 
constructed. 

162 

Note: Default values are standard values 
that IHCFIOSH inserts into the appropriate 
fields (e.g., BUFNO) of the DCB skeleton 
section of the unit blocks if the user 
either: 

• Causes the load module to be executed 
via a cataloged procedure, or 

• Fails, in stating his own procedure 
for execution, to include in the DCB 
parameter of his DD statements those 
subparameters (e.g., BUFNO) he is per­
mitted to include (refer to the publi­
cation IBM System/360 Operating Sys­
tem: Basic FORTRAN IV (E) Program­
mer's Guide). 

Control is returned to IHCFIOSH during 
data control block opening so that it can 
determine whether the user has included 
the subparameters in the DCB parameter of 
his DD statements. IHCFIOSH examines the 
DCB skeleton fields corresponding to user­
permitted subparameters, and upon encount­
ering a null field (indicating that the 
user has not specified the subparameter), 
inserts the standard value (i.e., the 
default value) for the subparameter into 
the DCB skeleton. (If the user has 
included these subparameters in his DD 
statement, the control program routine 
performing data control block opening 
inserts the subparameter values, before 
giving control to IHCFIOSH, into the DCB 
skeleton fields reserved for those 
values.) 

BUFFERING 

All input/output operations are double 
buffered. (The double buffering scheme 
can be overriden by the user if he speci­
fies in a DD statement: BUFNO=l.) This 
implies that during data control block 
opening, two buffers will be obtained. 
The addresses of these buffers are given 
alternately to IHCFCOME as pointers to: 

• Buffers to be filled (in the case of 
output) 

• Information that has been read in and 
is to be processed (in the case of 
input) 

COMMUNICATION WITH THE CONTROL PROGRAM 

In requesting services of the control 
program, IHCFIOSH uses Land E forms of 
S-type macro-instructions (refer to the 
publication !~~_~y§E~~L~£Q_Qp~Eat!g~~y~= 
E~~~ __ £QgtrQ!_E!Qg!~_~~!yi£~~)· 



Form Y28-6601-2· 
Page Revised 11/15/68 by TNL Y28-6827 

Note: The write section checks to see if 
the- data set being written on is a 1403 
printer. If it is, the carriage control 
character is changed to machine code, and 
three buffers, instead of the normal two, 
are used when writing on the printer. 

ERROR PROCESSING: If an end-of-data set or an-I/oerrori;i encountered during reading 
or writing, the control program returns 
control to the location within IHCFIOSH 
that was specified during data set initia­
lization. In the case of an I/O error, 
IHCFIOSH sets a switch to indicate that the 
error has occurred. Control is then 
returned to the control program. The con­
trol program completes its processing and 
returns control to IHCFIOSH, which interro­
gates the switch, finds it to be set, and 
passes control to the I/O error routine of 
IHCFCOME. 

In the case of an end-of-dat~ 
IHCFIOSH simply passes control to the 
of-data set routine of IHCFCOME. 

set, 
end-

Chart E4 illustrates the execution-time 
I/O recovery procedure for any I/O errors 
detected by the I/O supervisor. 

Device Manipulation 

The device manipulation section of 
IHCFIOSH processes backspace, rewind, and 
write end-of-data set requests. 

BACKSPAC~: IHCFIOSH processes the back­
space r 4equest .by issuing the appropriate 
number of BSP (physical backspace) macro­
instructions (0, 1, 2, or 3) and adjusting 
the REcprR in the unit blocks to point to 
the preceding logical record. The number 
of BSP's issued depends on the number of 
buffers used, the previous input/output 
operation, and the position of RECPTR prior 
to the backspace. 

For unformatted records, the processing 
of a backspace request also includes 
examining the SDW (segment descriptor 
word) of each record segment in order to 
locate the first segment of a spanned 
record (i.e., a logical record which causes 
more than one physical input/output opera­
tion to lbe performed). Control is tben 
returned to IHC1~COMH. 

gEWIND: IHCFIOSH processes the rewind 
request by issuing a CLOSE macro­
instruction, using the REREAD option. This 
option has thE~ same effect as a rewind. 
Control is then returned to IHCFCOME. 

WRITE ENJD-OF-DATA SET: IHCFIOSH processes 
this--re;~uest-i;y--Issuing a CLOSE macro­
instruction, type = T. It then frees the 

I/O buffers 
instruction, 
IHCFCOME. 

by issuing a FREEPOOL macro­
and returns control to 

The closing section of IHCFIOSH examines 
the entries in the unit assignment table to 
determine which data control blocks are 
open. In addition, this section ensures 
that all write operations for a data set 
are completed before the data control block 
for that data set is closed. This is done 
by issuing a CHECK macro-instruction for 
all double-buffered output data sets. Con­
trol is then returned to IHCFCOME. 

Not~: If a 1403 printer is being used, a 
WRITE from the last print buffer is issued 
to ensure that the last line of output is 
written. 

IHCDIOSE 

IHCDIOSE, the object-time FORTRAN direct 
access input/output data management inter­
face, receives I/O requests from IHCFCOME 
and submits them to the appropriate BDAM 
(basic direct access method) routines and/ 
or open and close routines for execution. 
(For the first I/O request involving a 
non-existent data set, the appropriate BSAM 
routines must be executed prior to linking 
to the BDAM routines. The BSAM routines 
format and create a new data set consisting 
of blank records.) 

IHCDIOSE receives control from: (1) the 
initialization section of the FORTRAN load 
module if a DEFINE FILE statement is 
included in the source module, and (2) 
IHCFCOME whenever a READ, WRITE, or FIND 
direct access statement is encountered in 
the load module. 

Charts E5 and E6 illustrate the overall 
logic and the relationship among the rou­
tines of IHCDIOSE. Table 38, the IHCDIOSE 
routine directory, lists the routines used 
in IHCDIOSE and their functions. 

BLOCKS AND TABLE USED 

IHCDIOSE uses the following blocks and 
table during its processing of direct 
access input/output requests: (1) unit 
blocks, and (2) unit assignment table. The 
unit blocks are used to indicate I/O activ­
ity for each unit number (i.e., data set 
reference number) and to indicate the type 
of operation requested. In addition, each 
unit block contains skeletons of the 

Appendix L: Object-Time Library Subprograms 165 



Form Y28-6601-2 
Page Revised 11/15/68 by TNL Y28-6827 

data event control blocks <DECB) and the 
data control block <DCB) that are required 
for I/O operations. The unit assignment 
table is used as an index to the unit 
blocks. 

The first reference to each unit number 
<i.e., data set reference number) by a 
direct access input/output operation within 
the FORTRAN load module causes IHCDIOSE to 
construct a unit block for each of the 
referenced unit numbers. The main storage 
for the unit blocks is obtained by IHCDIOSE 
via the GETMAIN macro-instruction. The 
addresses of the unit blocks are inserted 
into the corresponding unit assignment 
table entries as the unit blocks are con­
structed. subsequent references to the 
unit numbers are then made through the unit 
assignment table. 

Figure 93 illustrates the format of a 
unit block for a unit that has been defined 
as a direct access data set. 

r-------T-------T------T------T-----------, 
IIOTYPE ISTATUSUI not I not I 4 bytes I 
I I I used I used I I 
~-------~-------~------~-~----+-----------~ 
I RECNUM I 4 bytes I 
~------T---------------------+-----------~ 
ISTATUSAI CURBUF I 4 bytes I 
~.-------~--------------------+-----------~ 
I BLKREFA I 4 bytes I 
~-------T---------------------+-----------~ 
I STATUSB I NXTBUF I 4 bytes I 
~-------~---------------------+-----------~ 
I BLKREFB I 4 bytes I 
r-----------------------------+-----------~ 
I DECBA I 28 bytes I 
~-----------------------------+-----------~ 
I DECBB I 28 bytes I 
~-----------------------------+-----------~ 
I DCB I 104 bytes J l _____________________________ L ___________ J 

Figure 93. Format of a Unit Block for a 
Direct Access Data Set 

The meanings of the various unit block 
fields are outlined below. 

IOTYPE: This field, containing the data 
set--type passed to IHCDIOSE by IHCFCOME, 
can be set to one of the following: 

166 

FO Input data set requiring a format 
FF - Output data set requiring a format 
00 - Input data set not requiring a 

format 
OF - Output data set not requiring a 

format 

STATUSU: This field specifies the status 
of the associated unit number. The bits 
and their meanings, when on, follow: 

o - Not used 
1 - Error occurred 
2 - Two buffers are being used 
3 - DCB for data set open 

4-5 - 10 ~ U-form specified in DEFINE 
FILE statement 
01 - E-form specified in DEFINE 
FILE statement 
11 - L-form specified in DEFINE 
FILE statement 

6-7 - Not used 

Note: IHCDIOSE references only bits 1, 2, 
and 3. 

EECNQ~: This field contains the number of 
records in the data set as specified in the 
parameter list for the data set in a DEFINE 
FILE statement. It is filled in by the 
file initialization section after the data 
control block for the data set is opened. 

STATUSA: This field specifies the status 
or-the buffer currently being used. The 
bits and their meanings, when on, follow: 

0 - READ macro-instruction has been 
issued 

1 - WRITE macro-instruction has been 
issued 

2 - CHECK macro-instruction has been 
issued 

3-7 - Not used 

CURBUF: This field contains the address of 
the DECB skeleton currently being used. It 
is initialized to contain the address of 
the DECBA skeleton by the file initializa­
tion section of IHCDIOSE after the data 
control block for the data set is opened. 

BLKREFA: This field contains an integer 
tha~indicates either the relative position 
within the data set of the record to be 
read, or the relative position within the 
data set at which the record is to be 
written. It is filled in by either the 
read or write section,of IHCDIOSE prior to 
any reading or writing. In addition, the 
address of this field is inserted into the 
DECBA skeleton by the file initialization 
section of IHCDIOSE after the data control 
block for the data set is opened. 

STATUSB: This field specifies the status 
of-the- next buffer to be used if two 
buffers are obtained for this data set 
during data control block opening. The 
bits and their meanings are the same as 
described for the STATUSA field. However, 
if only one buffer is obtained during data 
control block opening, this field is not 
used. 


	0001
	001
	002
	037
	038.0
	038.1
	091
	092
	093
	094
	159
	160
	161.0
	161.1
	162
	165
	166

