
Systems Reference Library

IBM System/360 Model 195

Functional Characteristics

This publication describes the organization and functional characteristics
of the IBM System/360 Model 195, an information-processing system
designed for ultrahigh-speed, large-scale scientific applications.

System components are described, and detailed consideration is given
to the functions of processor storage, central processing unit, input/output
channels, and operator-control and operator-intervention portions of the
system control panel. Coding and timing considerations are discussed.

The reader is assumed to have a knowledge of information-processing
systems and to have read the IBM System/360 Principles of Operation,
Form A22-6821.

File No. S360-01
Form A22-6943-O

First Edition (August, 1969)
Changes are periodically made to the specifications herein; before using this publi­
cation in connection with the operation of IBM systems, refer to the latest System/
360 SRLNewsletter, Form N20-0360, for the editions that are applicable and current.

Requests for copies of IBM publications should be made to your IBM representative
or to the IBM branch office serving your locality.

This manual has been prepared by the IBM Systems Development Division, Product
Publications, Dept. B98, PO Box 390, Poughkeepsie, N.Y. 12602. A form for readers'
comments is provided at the back of this publication. If the form has been removed,
comments may be sent to the above address.

©Copyright International Business Machines Corporation 1969

Contents

System Description 5 Channel-to-Channel Adapter Feature. 20
Relationship to Other Models of IBM System/360 5
System Components . 6 System Control Panel 21

System Con trol Functions . 21
Central Processing Complex 9 System Reset 21
Central Processing Unit 9 Store and Display 21
Processor Storage 10 Initial Program Loading 21
Instruction Processor 10 Controls 22

Instruction Fetching 10 Operator Control . 22
Instruction Issuing 11 Operator Intervention 24
Execution of Branching Instructions 11 Key Switch and Meters 30
Execution of Other Instructions 13
Handling Interrupts 13 Appendix A: Coding Considerations 31

Storage Control Unit 16
Buffer Storage 16 Appendix B: Timing Considerations 32
Buffer Storage Operation 16 Instruction Processor Delays 32

Fixed-Point/Variable-Field-Length/Decimal Execution Transmission Time 32
Element 17 Branches 32

Floating-Point Execution Element 18 Fixed-Point Execution 33
Add Execution Unit . 19 Floating-Point Execution 33
Multiply/Divide Execution Unit 19 Selected Execution Times 34
Extended Execution Unit 19

Channels 20
2860 Selector Channel 20
2870 Multiplexer Channel 20 Index 35

The IBM System/360 Model 195 is an information-processing
system designed for ultrahigh-speed, large-scale computer
applications. Its speed and power result primarily from ad­
vanced circuit technology, a high performance buffer for
processor storage accesses, buffering within the processor,
very fast execution times, a high degree of concurrency in
operations, and employment of exceptionally efficient
algorithms, particularly in floating-point operations.

Speed in accessing storage and in executing instructions is
achieved with a high-speed buffer storage and multiple, inter­
leaved processor storage elements, by functional buffering
within the processor, and by an assembly-line approach to
instruction processing. All of these factors are controlled to
maintain a high degree of concurrent, continuous operation
in the instruction unit and in several execution units. A
unique internal bus system also plays a major role.

In the Model 195, five separate units - each to a large de­
gree autonomous - may be operating concurrently: proces­
sor storage, storage control unit and buffer storage, instruc­
tion processor, fixed-point/VFL/decimal processor, and
floating-point processor. Furthermore, each of these units
may be performing several functions at one time. In the
floating-point processor, for example, as many as three
floating-point operations may be taking place concurrently.

Because of the concurrency achieved in the Model 195 ,the
effective time required by a given instruction is not directly
related to the rate at which that instruction can be processed.
For example, one normalized floating-point-add operation
requires two cycles and one normalized floating-point-multi­
ply operation requires three cycles; if the operations are
logically independent, it is possible in the Model 195 to
process up to two add and one multiply instructions concur­
rently for a total of three cycles, rather than sequentially
for a total of seven.

Although central processing unit (CPU) operations are to a
high degree performed in parallel, no special optimization is
required in preparing programs for CPU processing. In gen­
eral' System/360 coding is processed in the CPU with a high
degree of efficiency. Using the interrupt mechanism as a
part of the problem program logic should be avoided. Al­
though this use of interrupts applies reasonably well to
slower, serial CPU's, such use degrades higher performance
CPU's. In particular, certain program interrupts that occur
at the end of a particular "assembly line" are too late to act
as modifiers to the beginning of that line. This situation re­
stricts the user from taking unique, in-line action based on
exceptions like floating-point overflow.

Another consequence of the high-performance design is a
recommendation (not a functional requirement) that
FORTRAN users arrange arrays in COMMON so that long
precision data precedes short-precision data, etc. This enSliues

System Description

that the data does not need to be aligned at execution time.
(See IBM System/360 FORTRAN IV Language, Form
C28-6515.)

Model 195 machine cycle time is 54 nanoseconds; data
flow is eight bytes (one doubleword) in parallel. The proces­
sor storage cycle time is 756 nanoseconds, and the buffer
storage cycle time for successive read or successive write
cycles is 54 nanoseconds. (Depending on the addressing
pattern, an occasional Write followed by a Read may
encounter a blank cycle.)

Monolithic circuitry is used in the Model 195. The ad­
vanced circuits have a basic delay time of less than 5 nano­
seconds, compared to SLT delay times ranging from 5 to 30
nanoseconds. In packaging, densities many times that of SLT
have been achieved. Boards approximately 8 by 12 inches
can hold pluggable cards containing up to 4,000 circuits. Two
of these boards can contain a floating-point-add execution
unit for 64 bits in which both preshifting and postshifting
are accomplished.

The buffer storage, also in monolithic technology, has a
54-nanosecond read cycle with an eight-byte data path. The
buffer storage capacity of 32,768 bytes is packaged, using
pluggable cards, on two 10- by 12-inch boards. Storage cir­
cuits lend themselves to much denser packaging techniques,
with one board containing as many as 150,000 circuits.

Relationship to Other Models of IBM System/360

Because of the emphasis on high performance, the operation
of the Model 195 in the following cases differs from that
specified in the IBM System/360 Principles 0/ Operation,
Form A22-6821.
1. The quotient of a floating-point-divide operation may

differ in the Model 195 from that of bther models by
an amount equal to one bit in the low-order fraction
position. For zero remainders, the results are identical.

2. Several program interruptions that should, according to
the IBM System/360 Principles a/Operation, store a
nonzero instruction-length code are imprecise in the
Model 195. An imprecise interruption is one that causes
an instruction-length code of zero to be stored; this code
indicates that the address of the instruction causing the
interruption has not been retained. When imprecise pro­
gram interruptions occur, the interruption-code portion
of the current PSW is used in a special way. (See the
discussion of imprecise interruptions in "Instruction
Processor. ")

3. Because floating-point overflow and underflow cause
imprecise interruptions on the Model 195, it is possible
that subsequent instructions will be executed using the
overflow or underflow results. For this reason, the re­
sults are made to differ from the standard System/360
results, which produce the correct fraction and a

System Description 5

wraparound exponent. In the Model 195, overflow pro­
duces the correct sign and the maximum fraction and
exponent; underflow produces a true zero result. For
those instructions that change the condition code, the
code is 1 or 2 for overflow and 0 for underflow.

4. The Model 195 is capable of executing CPU stores out
of sequence. Logical consistency is maintained within
CPU programs, including the beginning and ending of
[/0 operations. However, if a CPU program is to modify
a string of CCW's while they are being used by the chan­
nel, steps must be taken to arrange the CPU program so
that the stores are made in sequence.

To provide a synchronization when other means are not
practical, a branch instruction may be used. This particular
branch instruction is a no-operation instruction for other
models of System/360, but is implemented in the Model 195
in such a way that its execution is delayed until all previously
decoded instructions have been completed. (See the handling
of interrupts discussion in "Instruction Processor .")

System Components

Major components of the Model 195 include an IBM 2195
Processing Unit (which includes the Processor Storage), an
IBM 2860 Selector Channel, and/or an IBM 2870 Multiplexer
Channel. Input/output (I/O) devices are attached to the
channels through control units (Figure 1). The three proces­
sor models are termed J, K, and L, depending upon the
amount of processor storage available. (In this publication,
main storage and processor storage are used interchangeably.)

Processing Interleave
Unit Model Processor Storage Factor

J 1,048,576 bytes 8
K 2,097,152 bytes 16
L 4,194,304 bytes 16

Figure 2 is an outline configuration of the 2195 J, K, and
L Processing Units, including processor storage.

The standard features for any IBM 2195 Processing Unit
(CPU) include:

6

Universal Instruction Set (including the Standard Instruction Set,
Floating-Point Arithmetic, Decimal Arithmetic, and storage pro­
tection)

Extended Precision Floating-Point Arithmetic
Byte-Oriented Operands
Direct Control
Protection Features (Store and Fetch Protection)
Buffer Storage

Interval Timer (9.6-kilohertz - about 104-microsecond interval)
2870 Multiplexer Channel Attachment
2860 Selector Channel Attachment
Display Console
Remote Operator Control Panel Attachment
Emergency Power-Off Control

Resolution of the interval timer is 104 microseconds. The
timer is updated by decrementing bit position 28 every 104
microseconds (more precisely, at· a frequency of 9.6 kilo­
hertz). The updating takes place with minimal interference,
and no backup storage for the timer is used.

The display console, similar to an IBM 2250 Display Unit
Modell, is integrated with the system console, which is a
stand-alone unit. Positioning a switch connects the display
cOllsole with either an I/O channel or the system console.
(When connected to a channel, the display console may be
used for two-way communication with the system. When
the display console is connected to the system console, the
communication path is from the system console to the dis­
play console.) For connection to an I/O channel, the display
console requires one control unit position on a 2860 Selector
Channel or on a selector sub channel of a 2870 Multiplexer
Channel.

Standard on the display console are an alphameric key­
board, character generator, light pen, 8, I 92-byte buffer
(4,096 bytes of which are reserved for maintenance pur­
poses and contain format control data), and operator con­
trol panel with one set of controls and indicator lights.

To control another System/360 processor, a second set of
controls and indicator lights may be added as an optional
feature to the operator control panel.

One set of the operator control panel controls and indi­
cators may be duplicated as a remote panel on a stand-alone
operator's console (IBM 2150 Console or IBM 2250 Display
Unit Modell). Provision for this attachment is a standard
feature.

A channel-to-channel adapter, an optional feature, may
be installed on an IBM 2860 Selector Channel (maximum
of one per selector channel), permitting program-controlled,
storage-to-storage operations to take place directly between
I/O channels.

A variety of control units and input/output devices is
available for use with the Model 195. Descriptions of these
devices appear in separate publications. Configurators for
I/O devices and for system components are also available.
(See IBM System/360 Bibliography, Form A22-6822.)

2195 PROCESSING UNIT

(Including Processor Storage)

NOTES:

2195J -1,048,576 Bytes
8-Way Interleaving

2195K-2,097, 152 Bytes
16-Way Interleaving

2195L-4, 194,304 Bytes
16-Way Interleaving

2870 Multiplexer ,Channel

First Selector
Subchannel

Second Selector
Subchannel

Third Selector
Subchannel

Fourth Selector
Subchannel

Indicates Optional
Feature

2860 Selector Channel

First Selector Channe

Channel-to-Channe I
Adapter t

Second Selector Channel

Channel-to-Channel
Adapter t

Third Selector Channel

Channel-to-Channel
Adapter T

Up to eight control units :I:

Up to eight control units :I:

Addresses up to 16 I/O devices

Up to eight
control units:t

..J.---1..---lL...-...l..--L--J-'---'---I Up to eight

-~------------~-~
control units:t

-..J--'---1..-L...-..I.--L---1..---J1..--f Up to eight

--r------------I control units :t

Each selector channel addresses up to 256
I/O devices, one at a time. Operation is
in burst mode, with overlapped processing.
The IBM 2860 Selector Channel has three
models:

Modell -- one channel
Model 2 -- two channels
Model 3 -- three channels

A maximum of six selector channels and
one 2870 and a minimum of one selector
channel or one 2870 can be installed.
If only a 2870 is installed, the first
selector subchannel feature is required.

* The universal instruction set includes the standard instruction set, floating-point arithmetic, decimal arithmetic,
and storage protection.

t A channel-to-channel adapter option (one per 2860 channel) permits interconnection of two channels.
One channel position can connect to one channel position on any other IBM System/360 channel. Only one
channel-to-channel adapter is needed per connection; it counts as one control unit on each channel.

Input/output control units and devices are shown on the IBM System/360 Input/Output Configurator,
Form A22-6823.

Figure 1. System/360 Model 195 Configurator
System Description 7

2186
Coolant

Distribution
Unit*

2185
Power

Distribution
Unit*

2180
Modell

CPU
Power
Unit*

2180
Model 2

CPU
Power
Unit*

2180
Model 3

CPU
Power
Unit*

2160 Modell
System Console *

*These items may be positioned elsewhere as required. See
IBM System/360 Installation Manual-Physical Planning,
Form C22-6820.

Figure 2. IBM 2195 J, K, L Processing Unit and Processor Storage Configurations

8

The central processing complex of the System/360 Model
195 is made up of seven stand-alone units: a CPU, three
CPU power supply units, a power distribution unit, a coolant
distribution unit, and a system console (Figure 2). (A motor­
generator set must be ordered separately and may be located
in a remote area.)

CENTRAL PROCESSING UNIT

Functionally, the central processing unit consists of these
major logical elements: instruction processor, fixed-point/
variable-field-length (VFL)/decimal execution element,
floating-point execution element, high-speed buffer storage,
storage control unit, and processor storage (Figure 3). The
instruction processor and the two execution elements make
up the central processing element (CPE), also called the
processor.

The instruction processor is the major coordinating ele­
ment in the Model 195. For each instruction, it determines
what must be done and issues the operation to the proper
execution unit. Branching, status switching, and I/O instruc­
tions are handled by the instruction processor; other in­
structions are issued by the instructiQn processor to other
processor elements for completion.

The fixed-point/VFL/decimal execution element contains
the general registers, which are used also by the instruction

Central Processing Unit (CPU)

I Processor Storage I

Buffer I---
Storage
Control

Storage ~ Unit

Central Processing Complex

processor. Functionally, this element operates as an inde­
pendent stored-program computer; it has its own instruction
stream, its own execution circuitry, and a set of operand
buffers.

The floating-point execution element also operates as an
independent computer. Although most of the floating-point
instructions require more than one cycle of execution time,
this element is capable of sustaining an execution rate of up
to one instruction per cycle.

The storage control unit handles all fetching and storing
of data for the CPE. It is designed to minimize conflicting
requests for storage and to make the most efficient use of
storage.

The high-speed buffer storage provides the principal means
of reducing average access time to main storage. The most
current blocks (a block is eight doublewords) of storage are
maintained in the buffer storage, the operation of which is
not obvious to the programmer. The first processor fetch to
a block, for a storage address within that block, accesses the
addressed location and initiates a transfer of the block into
the buffer storage.

Subsequent accesses to that block can then be made di­
rectly from the buffer storage. Processor stores are made to
both the buffer (if appropriate) and to processor storage.
I/O fetches and stores are made to processor storage only.

--1---+ I/O
Channels

r-------- ---- -- ----------------) I Central Processing Element

I 1 J I
Fixed-Point/ Floating-Point
VFL/Decimal Execution
Execution Element
Element

Instruction
Processor

I L ________________________________ ~

Figure 3. Model 195 Logical Elements

Central Processing Complex 9

An I/O store to a location also currently held in the buffer
storage invalidates the appropriate block in the buffer storage.

PROCESSOR STORAGE

Up to 4,194,304 bytes of processor storage are available
with an individual access of eight bytes (a doubleword).
Interleaving of processor storage is provided so that the ad­
dresses of successive double words are in successive, func­
tionally independent units. Processor aocess to storage is
performed in combination with the high-performance buffer
storage. The effect is that average access time approaches
the access time of the buffer storage. Transfers between the
buffer storage and processor storage are made in blocks of
eight doublewords. I/O accesses (eight bytes) to processor
storage do not involve buffer storage except where necessary
for control.

Function Performed

Access time to buffer storage
Access time to processor storage if not in

buffer storage
Access time to processor storage for I/O

channels
Cycle time for buffer storage, successive

read or successive write cycles
Cycle time for processor storage

INSTRUCTION PROCESSOR

Time
(Nanoseconds)

162
810

648

54
756

The primary functions of the instruction processor are
fetching and buffering instructions from storage, fetching
required operands, issuing instructions to the appropriate

PrOCCe5sor
Storage

64 bits

Instruction
Stack

Decoder
(64 bits)

I LB I IR
__ ::oJ i
____ --I

UB]
I

I
I

~
-} General
_ Registers

Storage
'-----,__+_ Control

Unit

...----..Instruction Processor Execution Circuits

.--'---•• Fixed-Point/VFL/Decimal Execution Element

'------~. Floating-Point Execution Element

Figure 4. Instruction Processor

10

execution elements, handling interrupts, and executing all
branching, status-switching, and I/O instructions.

The instruction processor has an instruction stack of eight
doublewords, a set of three instruction-control registers, a
set of temporary instruction buffer registers totaling two
double words, a decoder, and a three-input adder for the
generation of effective addresses (Figure 4). The instruction
processor uses the general registers in the fixed-point/VFL/
decimal execution element.

Instruction Fetching

Instructions fetched from storage are stored in the instruc­
tion stack of the instruction processor. An instruction stack
is used for two principal reasons:
1. To minimize storage access time for instruction fetching.
2. To reduce the number of instruction fetches required

while the program is executing a tight loop.
The instruction stack normally contains the current in­

struction doul?leword, and seven double words of either his­
tory (instructions already decoded) or instructions to be
executed. Keeping a number of doublewords ahead enables
the fetching mechanism to fit instruction fetches into slack
periods between data fetches and stores. The doubleiwords
of history in the stack minimize refetching of instructions
when a loop backward that can be contained in the instruc­
tion stack is detected.

The fetching mechanism operates differently under each
of three conditions: initialization, normal operation, and
recognition of a discontinuity. It is governed by three con­
trol registers: the instruction register (IR), the upper-bound
(VB) register, and the lowe.r-bound (LB) register. The IR
points to the instruction being decoded, the VB register to
the most recent doubleword brought into the stack, and the
LB register to the earliest doubleword in the stack.

Initialization

Initially, the instruction stack is empty. When instruction
fetching is initiated, the main-storage address of the first
doubleword of instructions is set into the VB and LB regis­
ters, and part of the address of the first instruction is set into
the IR. The UB register, which controls the actual fetching
of doublewords of instructions, brings til" dlst doubleword
into the appropriate position of the instruction stack. At
the same time, the first doubleword is brought into the de­
coder.

As eachinstruction double word is fetched during initiali­
zation, the VB register is incremented (a doubleword being
brought into the stack for each increment) until any of
three conditions occurs:
1. The address in the VB register is seven doublewords higher

than that of the IR (Figure 4). Doubleword instruction
fetches are made whenever it does not delay data fetching
or storing .

2. A branch instruction is decoded that sets conditional
mode (see "Execution of Branching Instructions").

3. A discontinuity is recognized (see "Discontinuities").

Normal Operation

During normal operation, the instruction fetching mechan­
ism continually attempts to fetch a doubleword (Figure 4).
Fetching will not take place if any of the three conditions
just described is present.

When incrementing the DB register would cause the three
low-order bits of that register to match the three low-order
bits of the LB register, both the DB and LB registers are
incremented. This incrementing of both registers causes the
earliest (oldest) doubleword in the stack to be replaced with
the latest doubleword just fetched. The LB and DB registers
then point to a doubleword pOSitioned one doubleword
higher in the stack. This relative positioning of the LB and
DB pointers (instruction stack addressing) remains constant
during normal operation.

Discontinuities

A branch operation, interrupt, or store into the instruction
stream may cause a disruption in fetching. (Branching oper­
ations and interrupts are discussed separately. See "Execu­
tion of Branching Instructions" and "Handling Interrupts.")

If the store instruction results in the alteration of the
contents of a doubleword in the stack, the instruction fetch­
ing mechanism treats that doubleword slot as empty and
fetches the altered doubleword from storage.

Because the Model 195 can execute several instructions at
one time, the instruction STORE * + 4 presents a special
problem. This problem is solved by making a check of the
effective address of each store operation to determine
whether the operation affects the instruction following the
store; if the next instruction might be affected, measures
are taken to preserve the logical consistency of the program.

Instruction Issuing

In addition to fetching and buffering instructions, the in­
struction processor fetches the required operands and issues
instructions to the appropriate execution elements.

During each machine cycle, the instruction processor checks
for interlocks. If there are none, the instruction selected by
the instruction register is decoded. After an instruction has
been decoded, the IR is incremented by the number of half­
words of the instruction just decoded, and the next instruc­
tion is then decoded. Decoding is the first of three possible
stages in the issuing of the instruction.

Stage 1

During decoding, the following are determined:
1. The type of operation to be performed.

2. Whether the operation stack for the appropriate execu­
tion element can accept the operation.

3. If a storage operand is required, whether a buffer regis­
ter in the appropriate execution element is available to
receive the operand; or, if a store operation is specified,
whether a store address register is available in the stor­
age control unit.

4. If an effective address is required, whether the three­
input adder and general registers used in generating the
effective address are available.

When the results of these checks indicate that the instruc­
tion can be processed, the decoding control determines
whether the instruction processor is operating in conditional
mode (see "Execution of Branching Instructions"); if it is,
the operation is tagged as conditional, indicating to the exe­
cution element that it is not to decode or execute the opera­
tion until signaled to do so. The operation is then issued
for processing to the appropriate execution element (usu­
ally during stage 2), along with information about which
buffer registers in the execution element, if any are needed,
have been assigned by the instruction processor for use in
the operation.

Stage 2

If address generation is required, the pertinent operand ad­
dresses are routed to the three-input adder. (Another in­
struction can now be processed at stage 1.) If the instruc­
tion is a store, a quick check is made of the effective address
and, if this check indicates a possible store into the already
fetched instruction stream, processing of the instruction at
stage 1 is stopped until the processor determines whether
the store is actually into the instruction stream. If it is, the
processing at stage 1 remains stopped until the processor has
issued a fetch to storage for the updated value of the in­
struction doubleword affected.

Fetches and stores can be made to operands that are not
on proper boundaries; however, performance is degraded.
Operands should be located on proper boundaries.

Stage 3

At this stage, the effective address of the storage operand
is passed to the storage control unit. If a fetch operation
is specified, the address of the buffer register to which the
operand is to be issued is also specified. (During stage 3,
another instruction can be processed at stage 1 and another
at stage 2.)

Execution of Branching Instructions

The instruction processor executes all branching instruc­
tions. The actions taken by the instruction processor as a
result of decoding a branch instruction are determined by

Central Processing Complex 11

the type of branch instruction to be processed, the availabil­
ity of circuitry for processing, and the following:
1. Whether the instruction processor is in conditional mode

(see "Conditional Mode").
2. Whether the instruction processor is in loop mode (see

"Loop Mode").
3. If loop mode is established, whether the current instruc­

tion is that which defined the current loop.
4. Whether the current instruction is the target of an

'execute' instruction currently being processed.
When a branch is taken, the target address of the branch

normally is set into the instruction register, and the UB and
LB registers and instruction stack are adjusted as required.

When a conditional branch is encountered and loop mode
is not set, the instruction processor operates as though either
direction could be taken. It continues to process the in­
structions in the instruction stack as long as conditions per­
mit, while issuing operations to the fixed-point and floating­
point execution elements on a conditional basis. These con­
ditional operations will not be executed until after the con­
dition code is set.

The instruction processor also makes use of two tempor­
ary buffers. Into these buffers it fetches the branch-target
doubleword and the succeeding doubleword. Therefore,
regardless of the outcome of the branch operation, the in­
struction processor will have a lead in the correct direction.

Conditional Mode

Conditional mode is established when the instruction proc­
essor executes a 'branch on condition' instruction for which
the condition code is not yet determined.

When conditional mode is set, no additional instruction
fetches are made beyond the first two doublewords at the
target address of the branch. The instruction processor con­
tinues to decode instructions, generate addresses, and issue
operations to the fixed-point and floating-point execution
elements. The operations issued, however, are tagged as
conditional and cannot be decoded or executed until the
condition code is set and the instruction processor sends a
signal to the execution element.

The instruction processor continues to decode instructions
conditionally until any of the following occurs:
1. The condition code is set.
2. No instructions are available in the instruction stack.
3. The operation stack of the fixed-point or floating-point

execution element is full, and the currently decoded in­
struction needs the filled execution element.

4. An instruction to be executed within the instruction
processor is decoded, or a variable-field-length instruction
is decoded. (However, a no-operation instruction or an
unconditional branch may be executed during conditional
mode.)

12

Loop Mode

Whenever a branch backward is taken to a target fewer than
eight double words back from the current address in the in­
struction register, loop mode is entered and the instruction
stack is reinitialized to contain the pertinent eight double­
words. The loop is then locked into the instruction stack
and, as a result, can be executed repetitively without re­
fetching the instructions. Thus, conflicts between instruc­
tion fetching and data fetching are eliminated, and branches
can be executed faster.

During loop mode reinitialization, when no data fetches or
stores are to be made, an instruction doubleword is fetched
every cycle until the instruction stack is full. If data fetches
or stores are to be made, instruction doubleword fetches
take second priority.

When loop mode is entered, the branch target address is
placed in one special register, and the address of the branch
instruction is placed in a second special register. Subsequently,
when a branch instruction is decoded during loop mode, that
instruction address is compared with the address (in the sec­
ond special register) of the branch instruction that initiated
loop mode; if they are the same, the branch is made to the
target address in the first special register. Because no time
is taken to re-form the address specified in the branch in­
struction, one cycle is saved.
If a conditional branch instruction is processed when loop

mode is already set, it is assumed that the branch will be
taken; therefore, during loop mode no temporary fetches
(down the no-branch path) are made for conditional branches.

Loop mode is turned off when any of the following occurs:
1. A branch out of the instruction stack is taken.
2. The instruction processor starts to decode the 32nd half­

word in the instruction stack.
3. The target of the quick loop is the same as the target

of the outermost loop, and the branch closing the quick
loop is not taken. (If two nested loops fit in the instruc­
tion stack, the innermost loop is called the quick loop.)

4. The base register or index register of the quick-loop
branch is altered.

Programming Notes: Because of item 2, a loop with 29-31
halfwords should be aligned on a doubleword boundary. If
the loop has fewer than 29 halfwords, the loop is executed
in loop mode regardless of boundary alignment; if it has
more than 31 halfwords, it is not executed in loop mode.

Because of item 3, if the nested loops both have the same
target address, loop mode will be destroyed every time an
exit is made from the quick loop. To prevent loop mode
from being destroyed, a no-operation instruction may be
used as a dummy branch target for the outer loop.

Execution of Other Instructions

The instruction processor executes all status-switching and
I/O instructions and plays a large part in the execution of
multiple-operation instructions. When one of these instruc­
tions is processed, the instruction processor usually does not
issue any succeeding instruction until its part in processing
the first instruction is completed.

None of these instructions is executed while conditional
mode is set. Some require that all instructions being executed
when that instruction is decoded, be completed prior to its
execution. The instructions requiring this completion of
other instructions are the four I/O instructions and 'load
PSW', 'supervisor call,' 'set storage key,' and 'set program
mask' (except when the old and new mask bits are the
same). Also, one type of 'branch on condition' instruction
(a no-operation instruction) is implemented in the Model 195
in such a way that all other instructions being executed when
it is decoded must be completed before its execution. See
the programming note in "Handling Interrupts."

The following instructions are classed as multi pIe-operation
instructions:

Load i\lultiple (LM) Move With Offset (MVO)
Store Multiple (STM) Pack (PACK)
Translate (TR) Unpack (UNPK)
Translate and Test (TRT) Edit (ED)
And (NC) Edit and Mark (EDMK)
Or (OC) Add Decimal (AP)
Exclusive Or (XC) Subtract Decimal (SP)
Compare Logical (CLC) Compare Decimal (CP)
Move Zones (MVZ) Multiply Decimal (MP)
Move Numerics (MVN) Divide Decimal (DP)
Move (MVC) Zero and Add (ZAP)

These multiple-operation instructions have variable length
data fields and require the issuing of more than one opera­
tion from the instruction processor to the fixed-point exe­
cution element, which shares responsibility for execution
with the instruction processor. Also, each operation of a
multiple-operation instruction issued to the fixed-point area
contains information concerning at least one storage request.

The multiple-operation instructions are the only instruc­
tions, except 'convert to binary,' that cause operands to be
fetched into the floating-point operand buffers for use in the
fixed-point area. Four of the six fixed-point operand buf­
fers are unavailable for reassignment while a multiple-opera­
tion instruction is being executed.

Usually, the instruction processor is available to issue the
succeeding instruction after it has issued the last required
operation to the fixed-point area. If the next instruction is
in the SI format, it is not issued until the variable-field-length
execution for the multiple-operation instruction is complete.
If the multiple-operation instruction is a 'translate and test'
(TRT) or an 'edit and mark' (EDMK) instruction, the in­
struction processor will be available to issue subsequent

instructions only after the entire TRT or EDMK instruction
has been executed.

Handling Interrupts

The Model 195 performs all interrupt functions defined for
the IBM System/360. (See IB.M System/360 Principles of
Operation, Form A22-6821.) The supervisor call, external,
machine check, and I/O interrupts are logically handled as
defined.

The performance objectives of the Model 195, however,
require some deviations in handling program exceptions.
The program-exception deviations are basically those re­
sulting from an operation that has been sent by the instruc­
tion processor to another element for execution, so that the
current PSW no longer references the operation. Conse­
quently, the interrupt-causing instruction cannot be directly
identified. Such a program interrupt is called imprecise. An
imprecise interrupt is identified by the storing of zero as the
instruction-length code in the PSW current at the time of
interrupt.

Logical accuracy is preserved in all situations where a
basic machine status change is involved. For example, all
instructions issued under a program mask are completed be­
fore the mask is changed to ensure that the mask stored is
that which allowed the interrupt.

The instruction-length codes (ILC) for program interrupts
on the Model 195 follow. The codes in this listing replace
those listed for ILC on program interrupts in the IBlvl
System/36 0 Principles of Operation.

Progral11 Exception ILC

Operation 1,2,3
Privileged Operation 1,2
Execute 2
Protection ° Addressing 0,1,2,3
Specit1cation 0,1,2,3
Data 0
Fixed-Point Overflow 0
Fixed-Point Divide ° Decimal Divide 3
Decimal Overflow 3
Exponent Overflow 0
Exponent Underflow 0
Significance 0
Floating-Point Divide 0

Imprecise Interrupts

The following program exceptions always cause imprecise
interrupts:

l. Data, fixed-point-overflow, fixed-point-divide, decimal
overflow, and decimal divide exceptions signaled from the
fixed-point/VFL/decimal execution element.

2. Exponent-overflow, exponent-underflow, significance,
and floating-point-divide exceptions signaled from the
floating-point execution element.

3. A protection exception when a protection violation is
detected.

Central Processing Complex 13

An addressing exception can produce either a precise or
an imprecise program interrupt, as determined by the prob­
lem.

When an imprecise interrupt is signaled, the instruction
processor ensures that all instructions that were decoded be­
fore the signal was recognized are completed before the
interrupt is honored. When the interrupt is taken, the in­
struction address stored in the program old PSW points to
the next instruction that would have been decoded, and for
which an attempt would have been made to issue it, had the
interrupt not occurred.

Imprecise interrupts that arise from conditional instruc­
tions (that is, instructions issued subsequent to a 'branch on
condition' instruction for which the condition code is not
yet determined) are noted and either activated or canceled,
as appropriate, when the conditional instructions themselves
are activated or canceled.

When an imprecise interrupt takes place, not just one but
several exceptions may have occurred, because all decoded
instructions are completed before the interrupt is taken.
Also, because instructions can be executed out of sequence,
the interrupt condition recognized first may not be the con­
dition that logically should be recognized first. To account
for both possibilities (an out-of-sequence detection and the
occurrence of more than one type of exception, either with­
in one or different instructions), the action taken when an
imprecise interruption occurs is that each type of exception
that took place is identified in bits 16-25 of the program
old PSW, and bits 26-31 are set to zero. Also, the instruc­
tion-length code (bits 32-33) is set to zero.

Bit Position in
Program Old PSW

Program
Exception

16
17
18
19
20
21

Protection
Addressing
Not Used
Data
Fixed-Point Overflow
Fixed-Point Divide

22 Exponent Overflow
23 Exponent Underflow
24 Significance
25 Floating-Point Divide
26 Decimal Overflow
27 Decimal Divide

Note: For an imprecise interrupt, the types of exceptions
that occurred, but not the number of exceptions of anyone
type that occurred, are identified in tile program old PSW.

Precise Interrupts

When the program interrupt is precise, bits 28-31 of the
program old PSW identify the exception causing the inter­
rupt: the remainder of the interrupt code (bits 16-27) is all
zeros; and the instruction-length code (bits 32-33) is 1, 2,
or 3, as appropriate.

A logical consistency is maintained when a precise pro­
gram interrupt precedes an imprecise program interrupt that
logically should have taken place first. If an imprecise inter­
rupt occurs during execution of outstanding instructions

14

before a precisely identifiable interrupt is honored, the in­
struction causing the precise interrupt is not executed, the
precise interrupt condition associated with this instruction
is not indicated, and the address of the ili\struction causing
the precise interrupt is placed in the instruction-address
portion of the program old PSW. In effect, the instruction
leading to the precise interrupt is treated as never having
occurred, and a return to the program causes the original
interrupting instruction to be reinitiated. (The same opera­
tion takes place when a supervisor-call interrupt is followed
by an imprecise program interrupt that logically should
have occurred first.)

Addressing Exceptions

An addressing exception resulting in a precise program
interrupt is produced if any of the following conditions is
detected:
1. Any portion of the current instruction to be decoded lies

outside available storage.
2. The address generated for any of the following instructions

lies outside available storage: 'read direct,' 'write direct,'
'load PSW,' 'set system mask,' 'set storage key', 'insert
storage key,' and 'diagnose.'

3. Any portion of the target instruction for 'execute' lies
outside available storage.

All other addressing exceptions, which are signaled after
the completion of address generation leading to the fetching
or storing outside of available storage, result in imprecise
program interrupts.

Specification Exceptions

A specification exception resulting in a precise program
interrupt is produced if any of the following conditions is
detected:
1. An attempt is made to execute an instruction specified at

an odd-numbered location in storage.
2. The R1 field of an instruction specifies an odd-numbered

register for the pair of general registers that contains a
64-bit operand.

3. A number other than 0, 2, 4, or 6 is specified for a float­
ing-point register.

4. The block address specified in 'set storage key' or 'insert
storage key' has the four low-order bits not all zero.

5. The three low-order bits are not all zero in the address
generated for 'load PSW' or 'diagnose.'

6. The multiplier or divisor in decimal arithmetic exceeds
15 digits and sign.

7. The first operand field is shorter than or equal to the
second operand field in decimal multiplication or
division.

Programming Notes

A program may not operate correctly on the Model 195 if
identification of the instruction that caused an imprecise
interrupt is required. When an imprecise interrupt occurs,
the program old PSW does not reference the operation that
caused it.

Also, a program may not operate correctly on the Model
195 if it requires the honoring of an imprecise interrupt be­
fore some instruction later in the program is executed. When
an imprecise interrupt is detected, all instructions decoded
by that time are executed before the interrupt is taken.
Therefore, several instructions following the instruction that
caused the imprecise interrupt may be executed before the
interrupt is taken. (How many of these subsequent instruc­
tions will be executed will vary, principally because the
Model 195 can execute instructions concurrently and out of
sequence.) It is possible, at the programmer's option, to
return to the problem program but, because all decoded in­
structions are completed before the interrupt is taken, the
instructions executed after the interrupt may have been
adversely affected by the program exception.
If preciseness is a principal concern, the unwanted effects

of imprecise program interrupts can usually be eliminated
by testing and masking, as appropriate, and by using this
'branch on condition' instruction:

Mnemonic

BCR

Type

RR

M j Field

Not zero

R2 Field

Zero

This branch instruction is a no-operation instruction for
System/360 generally, but is implemented in the Model 195
in such a way that its execution is delayed until all previously
decoded instructions have been completed.

Note: The address in the instruction counter is that of the
BCR instruction, and the instruction length code is as listed
at the beginning of this section. The use of this no-operation
instruction degrades the performance of the Model 195. It
should be used only to eliminate a problem for which there
is no other reasonable solution.

Note that a program may have been naturally arranged so
that the adverse effects of certain imprecise program inter­
rupts are eliminated in advance. For example, in addition
to the branch (no-operation) inslruction just mentioned,
execution of the following instructions is delayed until all
previously decoded instructions have been completed: the
four I/O instructions, 'load PSW', 'supervisor call', 'set stor­
age key', 'diagnose', and 'set program mask' (except when
the old and new mask bits are the same).

The execution of instructions out of sequence may pre­
sent a problem in a situation other than the one concerning
imprecise interrupts. Although the CPU maintains a logical
consistency with respect to its own operations, including the
starting and ending of I/O operations, it cannot ensure
logical consistency between the CPU and asynchronous units
during their operations. For example, if an I/O channel pro­
gram relies on proper sequencing of stores by the CPU to
ensure proper channel operation, steps must be taken in the
CPU program to guarantee that the stores actually are made
in that sequence. The no-operation instruction can be used
to accomplish this.

Interrupt Example

The following example taken from the program controlled
interrupt (PCI) appendage for dynamic buffer allocation in
the basic telecommunications access method (BTAM) illus­
trates the dependence of an asynchronous channel program
upon serial execution. The example also demonstrates use
of the BCR instruction to effect serial execution.

The purpose of the PCI appendage is to maintain an un­
interrupted transmission of data into main storage. The
controlling factors in this transmission are the availability of
buffers and the ability (of the appendage routine) to modify
and chain two channel programs. Each channel program
consists of the follOWing two channel command word (CCW)
chains:
Chain j CCWI READ into a buffer with data chaining (CD)

and PCI flags

CCW2 READ into CCW3 with skip (SKIP) and
suppress length indication (SLI) flags

Chain 2 CCW3 READ into a buffer with CD and PCI flags

CCW4 READ into CCWI with SKIP and SLI flags

1. In Chain 1, CCWI is initialized with the first available
buffer address.

2. The address fields for CCW2 and CCW4 initially contain
the storage addresses of CCW3 and CCWI , respectively.

3. When the PCI interrupt in CCWI occurs, the PCI append­
age routine determines the address of the next available
buffer and stores it into the address field of CCW3.

4. The command code in CCW2 is changed from a READ
to a transfer-in-channel (TIC), and the command code in
CCW4 is reset to READ as shown in Chain 2. (The first
time through the channel program, CCW4 is already set
to READ.)

5. When the PCI interruption in CCW3 occurs, the PCI
appendage routine determines the address of the next
available buffer (after the one indicated in step 3) and
stores it into the address field of CCWI.

6. The command code in CCW4 is changed from a READ to
a TIC, and the command code in CCW2 is reset to READ
as shown in Chain 1.

Steps 3 through 6 of the preceding sequence of events
continue until the input data transmission is completed.
The PCI appendage instructions that accomplish the alter­
ation of the CCWs are:

ST available buffer address into CCW3 (or CCWl)
BCR 15,0
MVI into CCW2 (or CCW4), the code for a TIC command
MVI into CCW4 (or CCW2), the code for a READ command

On the Model 195, use of the BCR instruction effects a
pipeline drain to ensure that the proper buffer address is
stored before the READ command is changed to a TIC com·
mand. If, as could happen when the BCR instruction is
omitted, the MVI instructions were completed out of
sequence (i.e., before the ST instruction), the channel could
fetch a READ (into buffer) command with an old buffer
address. In such a situation, the new input would overlay
the old data.

Central Processing Complex 15

Note: In this example, it is assumed that the PCI appendage
instructions necessary to alter the format of the CCWs were
executed before the channel fetched the "READ xx (SKIP,
SLI)" command. If, in a given situation, this is not the case,
then the fetching of the "READ xx (SKIP ,sLI)" command
is executed without transfer of data and causes a normal
termination. Then, the appropriate channel program must
be restarted at the expense of additional input/output time.

STORAGE CONTROL UNIT

The storage control unit (SCU) is the intermediary between
main storage and the other system units. As such, it controls
central processing element (CPE) access to the high-speed
buffer storage backed up by the full capacity of main stor­
age. The SCU:
1. Provides and controls data and address paths to and from

main storage and the buffer storage for the central proc­
essing element, the channels, and the system console.

2. Controls the transfer of double word blocks of informa­
tion from main storage to the high-speed buffer storage.

3. Buffers store operations pending the availability of store
data.

4. Properly sequences CPE stores and fetches to the same
address.

5. Provides the storage protection function.

Buffer Storage

Because of the sequential nature of most programs, a CPE
fetch is likely to be followed by succeeding fetches to the
same storage block. Access time for subsequent fetches is
considerably reduced by placing the addressed block of
main storage in the high-speed buffer storage. Block trans­
fer is controlled by the storage control unit so that use of
the buffer storage is not obvious to the programmer.

The Model 195's increased performance is due in part to
the faster access to instructions and operands provided by
the high-speed buffer storage. Whereas normal instruction
or operand fetches from main storage require 810 nano­
seconds, fetches from the buffer storage require only 162
nanoseconds.

Main storage and the high-speed buffer storage (Figure 5)
are similarly arranged. In main storage, eight doublewords
(64 bytes) occupy each of the 128 blocks that form a seg­
ment. The largest processor storage, in the Model 195 L,
has 512 segments. The buffer storage is arranged in a like
manner but with four segments. Also provided are four
data directories, one for each buffer segment, with 128 lo­
cations per directory. Each location in the directory contains
the main storage address of the block of data in the corre­
sponding block of the high-speed buffer storage.

16

Data
Directory

High­
Speed
Buffer
Storage

1=:::
j Block
';; Identifier

i 1

....0

512 Main Storage Addresses

'-0--1 -- 2 -'-- 125--126--127-

512 Blocks

U
(64 (64
Bytes) Bytes)

Eight 2-Way
Double- Inter-
words leaved

lilllt,_~ 2 _~ ~~125-~126 --127-
- Blocks -

t t t Transmit t t t
J

64
Bytes

- -
Eight
Double-
words

~lllt'--2 (
125 --126 --127-

Figure 5. High Speed Buffer Storage

Buffer Storage Operation

Segment 4

Segment 3

Segment 2

Segment 1

When the central processing element performs a store opera­
tion to main storage, the main storage address is placed in a
store address register to await arrival of data in a store data
buffer. See Figure 6. Comparing the address of the block
addressed by the store operation with the block addresses
in the data directory indicates whether the location also
resides in the buffer storage. If so, the store is directed to
both main storage and the buffer storage; if not, only main
storage is modified by the store operation.

A channel or system console store to main storage must
also determine when the addressed block resides in both
main storage and the buffer storage, but for a different
reason. Input from the channel or system console is
directed only to main storage. Therefore, when the store ad·
dress is also in the buffer storage, the addressed block is in­
validated in the data directory. Consequently, it must be re­
transmitted from main storage before a subsequent fetch to
that block is allowed.

Buffer-Storage Addressing

"' • "~l::~~:i~i'l~7§

Addresses ~

from CPE
Dota Directory ~

.--t- -- SAR 1 ~ Data Directory 1 1---+ I--Addresses TAR 1 '---p- r-
~ f---- ~:--< from Channel r----- c... ..--f- ~ t+ Data Directory 2 ~

TAR 2 ~ SPF SAR 2 0 ~ Sf--p- ~ f--- t+ Data Directory 3
~
~u '--f- u

Addresses '-- TAR 3
~

SAR 3 4 Dato Directory 4 f---- _ f--
from SC

l~ ,.y-Boundary Data from. CP U/Channe Is
Alignment

MC i
E CPE

; ;

Main Storage Addressing
....

, " ...
CO MP - Compare
CPE - Central Processing Element
CPU - Central Processing Unit
MC - Maintenance Console
SC - System Console
SAR - Store Address Register
SDB - Store Data Buffer
SPF ~ Storage Protection Feature
TAR - Transfer Address Register

Figure 6. Storage Control Unit Data Paths

CPE fetches from main storage are usually fetches from
the high-speed buffer storage. The CPE fetch address is
placed in a transfer address register (Figure 6), and a
comparison is made with the store address register and the
directory. An equal compare with the store address register
causes the fetch to be delayed until the indicated store to
that address is completed.

An equal comparison of the CPE fetch address and the
data directory indicates that the data to be fetched resides
in the high-speed buffer storage. The fetch is then made
from the buffer storage and the data placed on the bus to
the CPE.

When the fetch address does not reside in the buffer stor­
age, a block transfer to the buffer storage is called for. The
addressed doubleword is fetched from main storage and
placed on the bus to the CPE. This doubleword is also
transmitted to the buffer storage to become the first of
eight doublewords in the block transfer. Subsequent fetches
to this block can then be made from the high-speed buffer
storage.

The block of doublewords transmitted to the buffer stor­
age is placed in a block location corresponding to its main
storage location as determined by the block address (Fig­
ure 5), and the block's main storage address is placed in
the corresponding data directory location. The block may
be placed, however, in anyone of four possible buffer stor­
age segments.

i ~
I-

2195
~ Buffer :::>

r 0 Processor SDBI Channel Cl
SDB2 f-< ~ Storage ~ Storage

SDB3 I- ~ t--

I

MC I
Data to CPU and Channels ~ 1

0, "

Because all doublewords having the same block address
are assigned to the same buffer storage location, four
identical buffer segments are used to avoid conflicts. Which
of the four buffer segments is used or replaced is determined
by the replacement code. The replacement code is main­
tained to indicate the order of buffer storage segment usage.
It indicates the most recently, second most recently, third
most recently, and least recently accessed segment for each
of the four possible blocks to be accessed.

The block transmitted from main storage replaces the
least recently accessed segment block. Thus, the buffer
always contains 512 blocks of main storage that have been
used most recently.

Channel fetches are made only from main storage. Ad­
dresses from channels are held until the requested storage is
free. Channel requests are then given highest priority to
ensure against channel overrun.

FIXED-POINT/VARIABLE-FIELD-LENGTH/DECIMAL
EXECUTION ELEMENT

The fixed-point/variable-field-Iength (VFL)/decimal execu­
tion element executes all fixed-point arithmetic, logical, and
variable-field-length and decimal arithmetic operations. It
consists of six major logical elements (Figure 7):
1. An operation stack (FXOS) of six positions
2. Sixteen general registers
3. Six 32-bit operand buffers (FXB)

Central Processing Complex 17

General Registers Fixed-Point
Operation

Stack (FXOS)
1

Storage Control Unit

0 32 bits FLPT Buffer

1
2 1 32 bits
3
4 3 Fixed-Point

1-"-4-----1 Buffers (FXB) 5
6 5

7
B
9
10
11
12 Immediate Data
13

~4
15

I · Processor
I nstructian

~-""l~--··-·-····-··-···---

I Fixed-po~nt I ,9VFL .~ecimaIJ (FXEU) (VFLEU) (DEU)

Execution Units

Storage
Control Unit

Figure 7. Fixed-Point/VFL/Decimal Execution Element

4. A fixed-point execution unit (FXEU)
::;. A VFL execution unit (VFLEU)
6. A decimal execution unit (DEU)

Fetches from storage of data fields necessary for processing
a fixed-point operation are initiated by the instruction proc­
essor, which also reserves in the fixed-point area the buffers
that are to receive the requested operands.

The instruction processor also maintains for its own use
counters that indicate whether: (1) the fixed-point opera­
tion stack has an available position, (2) which fixed-point
buffers are available, and (3) which general registers are
available to the instruction processor and which are being
used by the fixed-point/VFL/decimal execution element.

During normal processing, operations in the FXOS are
decoded serially and issued to either the fixed-point execu­
tion unit or the VFL or decimal execution unit. An opera­
tion can be executed if it has been decoded, if the data is
available, and if the execution circuitry is free. When decod­
ing is completed, the instruction processor is notified that the
stack position and operand buffers assigned to that operation
are free.

The execution of one operation is overlapped when possi­
ble with the decoding of the next. When a multiple-opera­
tion instruction is processed (see the discussion of multiple­
operation instructions under "Instruction Processor"), de­
coding of the next instruction in the FXOS does not begin
until the execution of the last of the multiple operations is
begun.

Operations tagged as conditional are not decoded or
executed until they are activated or canceled by the instruc­
tion processor. A canceled operation is decoded in one
cycle, and execution of the operation consists of freeing any
operand buffers previously assigned to the canceled opera­
tion without actual execution of the operation.

At any time during a fixed-point/VFL/decimal operation,
the instruction processor can request a direct store into the

18

general registers, which, because the instruction processor has
priority, may delay fixed-point/VFL/decimal processing.

Fetches made during the execution of a multiple-opera­
tion instruction may require the use of operand buffers in
the floating-point execution element; also, four of the six
fixed-point operand buffers are unavailable for reassignment
while such an instruction is being processed.

FLOATING-POINT EXECUTION ELEMENT

The floating-point execution element handles execution of
the floating-point arithmetic operations, including the
extended precision operations. (See "Extended Execution
Unit.") Several operations can be executed at one time
(maximum: two adds and one multiply or divide) if the
operations are logically independent. This performance
capability results largely from three significant features:
(1) operand and instruction buffering, (2) multiple execu­
tion units employing extremely efficient algorithms, and
(3) a common data bus, which links the several sets of ex­
ecution circuitry so that the full power of the multiple
execution units is realized without a reliance on programming
for the special arrangement of instructions.

The floating-point area contains the following major
logical elements (Figure 8):
1. An operation stack (FLOS) of eight positions.
2. Four floating-point registers (FLR).
3. Six operand buffers (FLB), which are also used by the

fixed-point area when any multiple-operation instruction
or the 'convert to binary' instruction is processed.

4. Three execution units: an add unit (preceded by three
reservation stations) capable of performing two add
operations concurrently, a multiply/divide (M/D) unit
(preceded by two reservation stations), and an extended
execution unit (preceded by one reservation station).

Decoding of operations in the FLOS proceeds serially.
As an execution unit is selected for an operation (on the
second cycle), the decoding of the next operation (on the
first cycle) can begin. The FLOS issues operations subject
to only one principal constraint: a reservation station of
the appropriate type must be available.

The FLOS need not wait for all the operands to be avail­
able (as in the fixed-point area) before issuing the operation.
Instead, the selected reservation station and controls hold
the issued operation until the required operands have been
collected and then engage the execution circuitry.

Because several operations may be in various stages of
execution at one time, provision must be made for properly
sequencing dependent operations. A system of tagging for
usage of the common bus ensures proper sequencing and
also facilitates fastest execution of independent operations.

The FLB and the common data bus execute all RX load
operations. RR load and RR load and test operations are
executed by the common data bus and special testing
circuitry. Store operations are executed by the three store
data buffers. Multiply and divide operations are executed

F loati ng-Poi nt S torage
Operation Stack (HOS) Control Unit

J
2
3 J 64 bits Floating-Point

~ 4 2 Buffers (FLB)
Floating-Point 0 64 bits 5 3

Registers (FLR) 2 6 4
4 7 5

I 6 8 6

FLRB I t CDB

Floating-Point Buffer Bus
Fixed-Point Area

Floating-Point IR~9;,t .. ~ ...
of

-<~-

• ---r Common Dat _. -_. __ .- -- a Bus Storage
--. Control

Unit

Reservation Reservati on
Station J Station 2

Reservation Reservation I Station 2

Reservation
Station 3

I

Add
Execution
Unit (FAU)

Common Data Bus

Figure 8. Floating-Point Execution Element

by an MID unit. All other operations are executed by the
add unit.

Station J

Fetches for data fields needed to process a floating-point
operation are initiated by the instruction processor, which
also reserves the buffers in the floating-point area that are
to receive the requested operands. The instruction processor
also maintains for its own use counters that indicate whether
the FLOS has an available position and which floating-point
buffers are available.

When the FLOS completes decoding, it signals the instruc­
tion processor that the stack position is empty. If an opera­
tion has been decoded, the related operand buffer is set free
at the time it is filled; if the operand buffer is filled before
the related operation is decoded, however, the buffer is set
free one cycle after decoding is completed.

Operations tagged as conditional are not decoded or
executed until they are activated or canceled by the instruc­
tion processor. A canceled operation is decoded in one cycle,
and execution of the operation consists of freeing all oper­
and buffers previously assigned to the canceled operation
without actual execution of the operation.

Add Execution Unit

The add execution unit can begin execution if the opera­
tion has been decoded, the data is available, and another
add operation of higher priority is not beginning on the

Multiply/Divide
Execution Unit
(FMDU)

Extended
Execution
Unit (FEU)

same cycle. Two add operations can be executed concur­
rently by offsetting the start of the second operation one
cycle from the start of the first. While two operations are
being performed, the third reservation station may be
acquiring data.

Multiply/Divide Execution Unit

The mUltiply or divide execution unit can begin execution
if the operation has been decoded, the data is available, an­
other multiply or divide operation of higher priority is not
beginning on the same cycle, and the execution circuitry is
free. The two MID reservation stations share a single execu­
tion section; therefore, only one MID operation may be
executed at a time.

Extended Execution Unit

The extended execution unit (Figure 8) is a standard feature
that proVides additional logic for handling extended precision
(28-digit fraction) floating-point operands. The feature
includes seven instructions and additional controls for using
the multiply unit. (Details of the extended-precision
floating-point instructions are in IBM System/360 Principles
of Operation, Form A22-6821.)

Instruction execution begins when the operands are in the
reservation station. For an extended-precision multiply
operation, priority for the use of the multiply unit is required.

Central Processing Complex 19

Channels

In the Model 195, the IBM 2860 Selector Channel and the
IBM 2870 Multiplexer Channel provide for attachment of
I/O devices to the system. The channel relieves the CPU
of communicating directly with I/O devices and permits
data processing to proceed concurrently with I/O operations.

Data is transferred a byte at a time between the I/O
device and the channel. A standardchannel-to-control­
unit interface provides a uniform method of attaching con­
trol units to all channels. Data transfers between the chan­
nel and the SCU are eight bytes (one doubleword) in parallel
for both selector and multiplexer channels.

2860 SELECTOR CHANNEL

The 2860 Selector Channel provides for attachment and
control of I/O control units and associated devices. At least
one 2860 (any model) is required if no 2870 Multiplexer
Channel is attached. The 2860 is available in three models:

Modell - provides one selector channel
Model 2 - provides two selector channels
Model 3 - provides three selector channels

One 2870 Multiplexer Channel and six selector channels
in the following combinations may be attached to the CPU:

No. of Channels Recommended
Required Combinations

1 One 2860-1
2 One 2860-2
3 One 2860-3
4 One 2860-3 and one 2860-1; or two 2860-2
5 One 2860-3 and one 2860-2
6 Two 2860-3

The selector channel permits data rates of up to 1.3 mil­
lion bytes a second. I/O operations are overlapped with
processing and, depending on the data rates and channel
programming considerations, all selector channels can oper­
ate concurrently. A set of channel control and buffer regis­
ters permits each channel to operate with a minimum of
interference.

Eight control units can be attached to each selector chan­
nel. Each control unit may have more than one I/O device
connected to it, but only one device per channel may trans­
fer data at any given time. A selector channel operates only
in burst mode.

2870 MULTIPLEXER CHANNEL

The 2870 Multiplexer Channel provides for attachment of
a wide range of low- to medium-speed I/O control units and
associated devices. One 2870 can be attached to the Model
195, furnishing up to 196 subchannels, including four op­
tional selector subchannels. If no 2860 is attached, the first
selector sub channel feature is required on the 2870.

The basic 2870 Multiplexer Channel with 192 sub channels
can attach eight control units and can address 192 I/O devices.
The basic multiplexer channel can operate several multiplex­
mode I/O devices concurrently or a single burst-mode device.

20

One to four selector sub channels are optional. Each se­
lector sub channel can operate one I/O device concurrently
with the basic multiplexer channel.

Each selector sub channel permits attachment of eight con~
trol units for certain devices having a data rate not exceed­
ing 180 kilobytes (kb) a second. Regardless of the number
of control units attached, a maximum of 16 I/O devices can
be attached to a selector sub channel.

The maximum aggregate data rate for the multiplexer chan·
nel ranges from 110 kb to 670 kb, depending on the number of
selector sub channels in operation. The first three selector sub­
channels may operate concurrently at up to 180 kb for each
subchannel. When all four selector subchannels operate con­
currently, the fourth has a maximum data rate of 100 kb.

Each selector sub channel in operation diminishes the basic
multiplexer channel's maximum data rate of 110 kb; the
maximum data rates for concurrent selector sub channel op­
erations are:

Basic Data Rates for
Multiplexer Selector Subchannel

Channel 1st 2nd 3rd 4th

110 kb
88 kb 180 kb
66 kb 180 kb 180 kb
44 kb 180 kb 180 kb 180 kb
30kb 180 kb 180 kb 180 kb 100 kb

Note: The 180-kb maximum data rate for 2870 selector sub­
channels pertains to attachment of magnetic tape devices;
timing factors other than data rates may preclude attachment
of direct-access storage devices that have lesser data rates. Also,
note that when other channels in addition to the 2870 are in
operation, the total system I/O data rate must be analyzed.

CHANNEL-TO-CHANNEL ADAPTER FEATURE

A channel-to-channel adapter is available as an optional
feature on the 2860. The adapter provides a path for oper­
ations to take place between two channels and synchronizes
those operations. It may be used in multiple-processor or
single-processor systems: in a multisystem, to achieve rapid
communications between the channels of two System/360
models; in a single system, to move blocks of data from one
main storage area to another.

The adapter uses one control-unit position on each of the
two channels, but only one of the two connected channels
requires the feature. In the Model 195, one adapter may
be installed per selector channel.

When the 2870 Multiplexer Channel is connected to an­
other channel, the channel-to-channel adapter is installed on
the other channel, not on the 2870.

For restrictions on channel attachments for another IBM
System/360 model used with the Model 195, refer to the
Systems Reference Library (SRL) functional characteristics
publication for that model.

The system control panel on the system console contains the
switches, keys, and indicator lights to operate and control
the system (CPU, storage, channels, on-line control units,
and input/output devices). Off-line control units and I/O
devices, though part of the system environment, are not
considered part of the system.

System controls are divided into three classes: operator
control, operator intervention, and customer engineering
control. This section of the manual discusses operator con­
trol and operator intervention.

Using the control panel, the operator can perform the fol­
lowing system control functions:
1. Reset the system.
2. Store and display information in storage, registers, and

program status word (PSW).
3. Load initial program information.

SYSTEM CONTROL FUNCTIONS

System Reset

The system-reset function resets the CPU, channels, and on­
line nonshared control units and I/O devices.

The CPU is placed in the stopped state, and all pending
interrupts are eliminated. All error-status indicators are re­
set to zero.

In general, the system is placed in such a state that proc­
essing can be initiated without machine checks occurring,
except those caused by subsequent machine malfunction.

Addresses in the data directory of the high-speed buffer
storage are reset to zero by a system reset. Subsequently,
the contents of the high-speed buffer storage are replaced,
block by block, as required by ensuing fetch requests.

The reset state for a control unit or device is described in
the appropriate Systems Reference Library (SRL) publica­
tion. A system-reset signal from a CPU resets only the func­
tions in a shared control unit or device belonging to that
CPU. Any function pertaining to another CPU remains un­
disturbed.

The system-reset function is performed when the system­
reset key is pressed, when the PSW-restart key is pressed,
when initial program loading is initiated, or when a power­
on sequence is performed.

Programming Note: If a system reset occurs in the middle
of an operation, the contents of the PSW and of the result
registers or storage locations are unpredictable. If the CPU
is in the wait state when the system reset is performed, and
no I/O operation is in progress, this uncertainty does not
exist.

A system reset does not correct parity in registers or stor­
age. Because a machine check occurs when information

System Control Panel

with incorrect parity is used, the incorrect information
should be replaced by loading new information.

Store and Display

The store-and-display function permits manual intervention
in the progress of a program. The storing and/or displaying
of data may be provided by a supervisor program, proper
I/O equipment, and the interrupt key.

In the absence of an appropriate supervisor program, the
controls on the operator intervention panels allow direct
storing and displaying of data. This is done by placing the
CPU in the stopped state and subsequently storing and/or
displaying information in main storage, in general and
floating-point registers, and in the instruction-address part
of the PSW. The stopped state is achieved when the stop
key is pressed, when single instruction execution is specified
and the instruction has been executed, or when a preset
address is reached.

In Model 195, the transition from operating to stopped
state includes completing all instructions that were decoded
at the time stopped state was called for. The store-and­
display function is achieved by use of the store, display, and
set CAR keys, address switches, data switches, store/display/
storage select switch, scan key, and CRT display switch.
Once the desired intervention is completed, the CPU can be
started again.

Normal stopping and starting of the CPU in itself does not
cause any alteration in program execution other than in the
time element involved in the transition from operating to
stopped state.

Machine checks occurring during store-and-display opera­
tions do not log immediately but create a pending log condi­
tion that can be removed by a system reset or check reset.
The error condition, when not disabled, forces a log-out and
a subsequent machine check interrupt when the CPU is re­
turned to the operating state.

Initial Program Loading

Initial program loading (IPL) is provided for initiation of
processing when the contents of storage or the PSW are not
suitable for further processing.

Initial program loading is initiated manually by selecting
an input device with the load-unit switches and pressing
the load key.

Pressing the load key causes a system reset, turns on the
load light, turns off the manual light, and initiates a read
operation from the selected input device. When reading is
completed satisfactorily, a new PSW is obtained, the CPU
starts operating, and the load light is turned off.

System Control Panel 21

The system reset suspends all instruction processing, inter­
rupts, and timer updating and also resets all channels, on­
line nonshared control units, I/O devices, and the data
directory. The contents of general and floating-point reg­
isters remain unchanged.

When IPL is initiated, the selected input device starts trans­
ferring data. The first 24 bytes read are placed in storage
locations 0-23. Protection, program-controlled interrupt,
and a possible incorrect length indication are ignored. The
doubleword read into location 8 is used as the channel com­
mand word (CCW) for reading more than 24 bytes. When
chaining is specified in this CCW, the operation proceeds
with the CCW in location 16. Either command chaining or
data chaining may be specified.

When the device provides channel end for the last opera­
tion of the chain, the I/O address is stored in bits 21-31 of
the first word in storage. Bits 16-20 are made zero. Bits
0-15 remain unchanged.

The CPU subsequently fetches the doubleword in location
o as a new PSW and proceeds under control of the new PSW.
The load light is turned off. No I/O interrupt condition is
generated. When the I/O operations and PSW loading are
not completed satisfactorily, the CPU idles and the load
light remains on.

Programming Notes: Initial program loading resembles a
'start I/O' that specifies the I/O device selected by the load­
unit switches and a zero protection key. The CCW for this
'start I/O' is simulated by CPU circuitry and contains a read
command, zero data address, a byte count of 24, chain­
command flag on, program-controlled-interrupt flag off,
chain-data flag off, and skip flag off. The CCW has a virtual
address of zero.

Initial program loading reads new information into the
first six words of storage. Because the remainder of the
IPL program may be placed in any desired section of storage,
it is possible to preserve such areas of storage as the timer
and PSW locations, which may be helpful in program debug­
ging.

If the selected input device is a disk, the IPL information
is read from track O.

The selected input device may be a channel-to-channel
adapter connecting the channels of two CPU's. After a sys­
tem reset is performed and a read command is issued to this
adapter by the requesting CPU, the adapter sends an atten­
tion signal to the addressed CPU, which then should issue
the write command necessary to load a program into main
storage of the requesting CPU.

When the PSW in location 0 has bit 14 set to 1, the CPU is
in the wait state after the IPL procedure. (The manual sys­
tem and load lights are off, and the wait light is on.) Inter­
rupts that become pending during IPL are taken before in­
struction execution.

22

CONTROLS

System controls are divided into three groups: operator
control, operator intervention, and customer engineering
control. Figure 9 shows the location of panels used to per­
form the operator control and the operator intervention
functions. Figure 10 shows controls and indicator lights
used in operator control, and Figure 11 shows the controls
and indicator lights used in operator intervention.

* Panels containing operator controls. See Figure 10.
** Panels containing operator intervention controls. See Figure 11.

Figure 9. System Console Panels

Operator Control

The operator-control section of the system console panel
(Figure 9) contains controls and indicator lights required
by the operator when the CPU is operating under full super­
visor control. Under supervisor control, a minimum of di­
rect manual intervention is required because the supervisor
performs operations similar to store and display.

To control another System/360 processor, a second set of
controls and indicator lights (an optional feature) can be
provided on the operator control panel (Figure 10). One
set may be duplicated as a remote panel on a stand-alone
operator's console (IBM 2150 Console or IBM 2250 Display
Unit Modell). Provision for the remote panel is a standard
feature.

The main functions provided by the operator controls are
the control and indication of power, the indication of sys­
tem status, operator-to-machine communication, and initial
program loading.

The operator controls and indicator lights (Figure 10) are:

Name

Display Power Off
Display Power On
Emergency Pull
Interrupt
Load
Load

Type

Key
Key (backlighted)
Pull switch
Key
Key
Indicator light

~
~

~
~

r - - - - - - - - - - - - - ---.,

CONTROL PANEL
FOR SECOND CPU

(OPTIONAL)

L _________________ _

OPERATOR CONTROL PANEL

Figure 10. Operator Control Panel and Power Panel

Name

Load UIiit
Manual
Power Off (System)
Power On (System)
System
Test
Wait

Display Power Off

Type

Rotary switches (3)
Indicator light
Key
Key (backlighted)
Indicator light
Indicator light
Indicator light

The display-power-off key on the power panel initiates the
power-off sequence of the display console integrated with
the system control panel. The contents of the upper 4,096
bytes of display console buffer storage (containing format
control data) are preserved after a power-off to the display
console.

Display Power On

The display-power-on key on the power panel initiates the
power-on sequence of the display console integrated with
the system control panel. While power is on the display
console, the key is backlighted white. The contents of the
upper 4,096 bytes of display console buffer storage (con­
taining format control data) are preserved after a power-on
to the display control.

Emergency Pull

Pulling the emergency-pull switch turns off all power, be­
yond the power-entry terminal, on every unit that is part
of the system or that can be switched onto the system.
Therefore, the switch controls the system proper and all
off-line and shared control units and I/O devices. A second
emergency-pull switch is on the power distribution unit.

The switch latches in the out position and can be restored
to its in position by maintenance personnel only.

Interrupt

The interrupt key is pressed to request an external interrupt.
The interrupt is taken when it is allowed and when the CPU
is not stopped. Otherwise, the interrupt remains pending.

POWER PANEL

When the interrupt is taken, bit 25 in the interrupt-code por­
tion of the current PSW is set to 1 to indicate that the inter­
rupt key is the source of the external interrupt. The key is
effective while power is on the system.

Load (Key)

The load key begins initial program loading. (See "Initial
Program Loading.") It is effective while power is on the
system.

Load (Light) .

The load light is on during initial program loading. It turns
on when the load key is pressed and turns off after the new
PSW is successfully loaded.

Load Unit

The three load-unit switches provide the 11 rightmost I/O
address bits of the device to be used for initial program
loading.

The leftmost switch has eight positions, labeled 0-7. The
other two switches are 16-position switches labeled hexa­
decimally O-F.

Manual

The manual light is on when the CPU is in the stopped state.
Several manual controls are effective only when the CPU is
stopped, that is, when the manual light is on.

Power Off (System)

The power-off key initiates the power-off sequence of the
system. The contents of main storage (but not the keys in
storage associated with the protection features nor the con­
tents of the high-speed buffer storage) are preserved if the
CPU is in the stopped state and all I/O operations are com­
plete. The key is effective while power is on the system.

System Control Panel 23

Power On (System)

The power-on key initiates the power-on sequence of the
system. As part of the power-on sequence, a system reset is
performed in such a way that the system performs no in­
structions or I/O operations until explicitly directed. The
contents of main storage are preserved.

The power-on key is backlighted white when power is on
the entire system. The key is backlighted red during the
power-on sequence and when any remote/local power con­
trol switch in the power system is in the local position. If
there is a loss of power in some section of the processor,
main storage units, or channels, the light will change from
white to red. The power-on key is effective only when the
emergency-pull switch is in its in position.

System

The system light is on when the CPU-cluster usage meter or
customer engineering meter is running. These meters are on
the display console.

The states indicated by the wait and manual lights are
independent of each other; however, the state of the sys­
tem light is hot independent of the states of the wait and
manual lights. The possible conditions when power is on
are:
System Manual Wait CPU I/O
Light Light Light State State

Off Off Off * *
Off Off On Wait Not working
Off On Off Stopped Not working
Off On On Stopped, Wait Not working
On Off Off Running Undetermined
On Off On Wait Working
On On Off Stopped Working
On On On Stopped, Wait Working

* Abnormal Condition

Test

The test light is on when a manual control is not in its
normal position or when a maintenance function is being
performed for the CPU, channels, or main storage.

Any abnormal setting of a switch on the system control
panel or on any separate maintenance panel for the CPU,
main storage, or channels that can affect the normal opera­
tion of a program causes the test light to go on.

The test light may be on when certain diagnostic functions
are activated or when certain abnormal circuit-breaker or
thermal conditions occur.

The test light is on when any of the following controls is
not in its normal position:

Address compare
Aidress increment (BSM/beat)
Address increment (I-up store/display)
Block scan
Mach check stop
CRT display and tape operation
Disable interval timer

24

Enter instruction
Frequency margin range
Inhibit overlap
Inhibit replace buffer 1, 2, 3, or 4
Maintenance console test, rotary
MCWactive
MCW to Chan sim
Rate
Repeat
Reverse CBR PTYS/Block DD reset
Storage reconfiguration
Storage test (store/fetch)

Wait

The wait light is on when the CPU is in the wait state. The
wait state exists whenever bit position 14 of the current
PSW contains a 1. The wait state can be changed to the
running state only by loading a new PSW in which bit posi­
tion 14 contains a 0; it cannot be changed by pressing the
system reset key.

Operator Intervention

This section of the system control panel (Figure 11) con­
tains controls required by the operator to intervene in nor­
mal programming operation. These controls are intermixed
with the customer engineering controls, which are not used
by the operator.

Operator intervention provides the system-reset function
and the store-and-display function.

The intervention controls are:

Name Type Panel
Address Key switches M
Address Compare Rotary switch L
Block Scan Key switch L
CRT Display and Tape Operation Rotary switch N
Data (0-63 plus eight parity) Key switches M
Display Key M
Force Machine Check Interrupt Key L
PSW Restart Key N
Rate Rotary switch L
Scan Key N
Set CAR Key M
Set IC Key N
Set PSW Key N
Start Key L
Stop Key L
Store Key M
Store/Display/Storage Select Rotary switch N
System Reset Key N

Address (Panel M)

The 27 address switches (24 address switches and three
parity switches) are locking key switches and are used to
address a storage location or register, as specified by the ad­
dress compare, CRT display and tape operation, or store/
display/storage select switches.

N

M

L

STORE/DISPLAY/STG SELECT
....-- ITOftAOI IILIOT'l I 00lt1 ITO

OI!NR!GB*'3;~I!"
~LPR!G8 • leu DO
LOG WORD
DISPLAY

CRT DISPLAY
STAPE OP

[

SCAN I PROCESS ENBL DIAO

STORAOE*MESSAOE

cPU REGS • RE'O] ~';."E
FL.PT R!.OS BKSpJ

~
~

~
~

START
TAPE

•
CHECK
RESET

PSW
RESTART

MACH CHECK
STOP

PROCESS HARD

DIS.BLE. STOP

COMPUTER
RESET

•
SYSTEM
RESET

00

® 0=0=0=0 CXXXJ @ 0=0=0=0 CXXXJ ® 0=0=0=0 CXXXJ @ 0=0=0=0 ()-()-()-()
0-7 8-IS 18-23 24-31

CBR B TO ® 0=0=0=0 CXXXJ ® 0=0=0=0 CXXXJ @ 0=0=0=0 ()-()-()-()
ZEROS 8-15 18-23 24-28

~ CBR I DISPLAY I iHHHH nn~iH' t ttttM L..:......: DATA DIRECTORY SELECT ---=.J 8 4 2 I

MAINT CONSOLE
TEST

BLOCK
DO RESET

~
REVERSE
CBRITYS

~
g~~L

RESET
_ SINGLE
_ STEP

SINGLE

~~~~ 
MPLE 
STEP 

ENTER fREOUENC'f 
INSTRUCTION MARGIN 

'CiR 'HiiiI 
ENTER 

~ OFF ~ OFF 

STOR 
~ c!:!!.. 

RAMGE 

HiGH 

NED 

~ 

FREO 

STORAGE 
RECONFIGURATION 

REPEAT 

REPEAT 
l 

RESET 

"OFF i 
!PEAT 

IUIBIT 
OVERLAP 

MAl NT 
CONSOLE 

TEST 
r::;;lOr::;:l 
L::J ~ 

DIAGilOSEEOUIVAlEITS 

~ ~ 
Mel Ncr TO 

ACTIVE CHAN SIN 

FORCE 
MACHCHK 
NTERRUP 

CYCLIC PROGRAM COUNTER ENTRY 

INHIBITREPLACESCU 
BUFFERSE;ME.TS 

~ ~ ~ ~ i 
DISABLE INH INH INH INH 

INTERVAL SEGl SEG2 SEG! SfG4 TIMER 

BUFFER ADDRESS 

COMPARE 

STORAGE TEST 
STOP 

STOP ON*STOP ON PTY CHK NO COMPARE 

STOP ON STOP ON 
COMPARE _ PTV CHK/ 

_ NOCMPR 

ADDRESS STORlIE 
INCREMENT TEST 

'Bill SfoRE 
BSN 

~ ~ PROC "'OFF' ~ 
BEAT 
~ ~ 

I-UP BLOCK 
STOREI SCAI 
DISPLAY 

\CBHCXRI 
CBR 
TO 

ONES o 

ADDRESS 
COMPARE 

CPC SOFT 

[
~~~~-, PROCESS r STOP] 

'NSN~'N.N
8~~ II S~E
CHAN CHAN
9/F 8/f

[
INSN eeu e~t~ J

~~gp STORE

'RATE
PROCESS

IN8N*SI .. L. aTEP CYCLE

MPLE II StNGL!
STEP PULSE

Figure 11. Operator Intervention Controls and Indicator Lights

System Control Panel 25

The address switches have locking set and reset positions.
The associated bit position of the console address register is
set or reset according to the position of the switch when the
set CAR key is pressed. (When the switch is down, the bit
position is set to 1; in the center position, the bit position
is set to 0.)

The console address register can also be altered by the ad­
dress stepping circuitry. The contents of the console address
register are indicated continuously.

The three low-order bit positions and positions 8 and 9 are
not used in main-storage addressing and are not affected by
the address stepping circuitry. Thus, main-storage address­
ing always specifies a doubleword boundary. In the perform­
ance of the address-compare and for register selection, how­
ever, the three low-order bit positions are used.

Parity for each byte is indicated by the parity indicators
in the address register and is generated automatically when­
ever the address register is used. The three parity switches
do not affect address usage; when activated, they turn the
associated address-register bit on or off, but parity is auto­
matically updated in the address register before the address
is used.

Address Compare (Panel L)

The address-compare rotary switch controls synchronizing
pulses, program loops, and machine stops by means of ad­
dress comparisons during instruction-fetch or data-store op­
erations. The switch has ten active positions, seven of which
are for customer engineering use (channel soft stop setting,
the CPC hard stop settings, and the CPC loop settings). If
the switch is in other than the process position, the test light
will be on.

The address-compare switch can be manipulated among
the three customer settings, described below, without dis­
rupting CPU operation, other than by causing the address­
comparison stop.

Process: When the switch is in this position, a synchronizing
pulse is provided when the address specified in the address
register matches the instruction address. The pulse occurs
when decoding of the instruction begins and may be used to
synchronize an oscilloscope at the start of an instruction.
This position is the normal operating position for the switch.

Insn Soft Stop: When the switch is in this position, the CPU
enters the stopped state when the address specified in the
address register matches the instruction address. This posi­
tion may be used to control the stopping point of a program.
The instruction-fetch operation, all other outstanding oper­
ations, and all pending interrupts that are allowed are
completed before the CPU enters the stopped state.

SCU Store Soft-Stop: When the switch is in this position, the
CPU enters the stopped state when the address specified in
the address register matches a main-storage address specified
in any CPE store operation or in an I/O store operation into

26

main storage. The store operation, all other outstanClmg up­

erations, and all pending interrupts that are allowed are com­
pleted before the CPU enters the stopped state.

Block Scan (Panel L)

The block scan key switch inhibits scanning of registers or
maIn storage during a CRT-display operation.

When the switch is in the centered position, pressing the
scan key initiates the normal scan function. (See "Scan".)

When the switch is in the down position, pressing the scan
key immediately after setting the block scan switch causes
the information displayed during the last display operation
to be displayed again; the data specified by the CRT display
switch and related controls is not scanned, and no data is
transferred to the buffer storage of the display console.

When the switch is in the on position, the test light is on.

CRTDisplayand Tape Operation (Panel N)

This switch connects the display console with either an I/O
channel or the system control panel. The CRT -display por­
tion of this switch, labeled "scan," determines the type of
display to be produced on the CRT when the scan key is
pressed. The enable diagnostic message and tape operation
portions of this switch. are for customer engineering use.

When the switch is in any position other than process, the
test light is on.

Process: When the switch is in this position, the display con­
sole is connected to either a 2860 channel or a 2870 selector
sub channel and is under program control.

Storage: When the switch is in this position, the type of
storage scan operation performed is determined by the
storage select setting of the store/display/storage select
switch.

CPU Regs: When the switch is in this position and the CPU
is in the stopped state, pressing the scan key initiates an
operation in which the contents of the CPU registers are
placed, in order, into the console buffer register and then
transferred to preassigned buffer storage areas of the display
console; then this data and the identifications of the regis­
ters are displayed on the CRT (Figures 12 and 13).

Operating the block scan switch immediately before press­
ing the scan key inhibits the fetch-and-transfer operation;
when the scan key is then pressed, data displayed during the
last CPE-register-display operation is displayed again.

FLPT Regs: When the switch is in this position and the CPU
is in the stopped state, pressing the scan key initiates an op­
eration identical to that described for the CPU-regs position,
except that the floating-point registers are scanned and dis­
played. Operating the block scan switch before pressing the
scan key inhibits the fetch-and-transfer operation; when the
scan key is then pressed, data displayed during the last
floating-point display operation is displayed again (Figure 13).

TEMP 1
IBFR 0

1
2
3

PROCESSOR DISPLAY

6A 00 94 76 12 22 47 20
58 20 94 02 68 00 94 78
13 22 50 20 94 02 6C 00
94 FE 47 80 90 38 23 00
6A 00 94 70 12 22 47 20

TEMP 2
IBFR 4

5
6
7

90 44 23 00 6A 00 94 66
90 44 23 00 6A 00 94 65
60 00 94 EE 60 00 95 6E
58 20 94 02 68 00 94 76
13 22 50 20 94 02 6C 00

OP REF 50 20 94 02
OP STO 6A 00 63

LB
UB

00 FF EE EE
00 FF F8 FB

IR
AOC

7F
78

SLT
SLCIR

7F
7E

GPR 0
2
4
6
8
A
C
E

FXB A
C
E

L ACC

ISR 78 SLCB FO
SLCX FO
SVR1 FO
XECOR FF

00 00 00 00
22 22 22 22
44 44 44 44
66 66 66 66
88 88 88 88
AA AA AA AA
CC CC CC CC
EE EE EE EE

GPR 1
3
5
7
9
B
D
F

11 11 11 11
33 33 33 33
55 55 55 55
77 77 77 77
99 99 99 99
BB BB .BB BB
DD DD DD DD
FF FF FF FF

DWCR 1F
BYT BFR FF
L REG FF D BUFF 07 FF

TEMP
WR

00 FF EE EE
00 00 FF EF

AA AA AA AA
CC CC CC CC
EE EE EE EE

00 00 00 00 00

FXB B
D
F

R ACC

TAR 1
2
3

LK ADDRESS RS
00 3E FC E8 00
02 3E FC E8 04
03 3E FC E8 15

SIM REG Be ADDRESS MK
1 F2 3E FC E8 OF
2 F3 3E FC E8 FO
3 F4 3E.FC E8 FF

SA
00
16
1E

BB BB BB BB
DD DD DD DD
FF FF FF FF

00 00 00 00 0

B CTR 02
C CTR 02
P CTR 00

FXOS 1
2
3
4
5
6

STO KEY 01
PRO KEY 01

SAR 1
SAR 2
SAR 3

SDB 11 11 11 11 11 11 11 11
SDB 22 22 22 22 22 22 22 22
SDB 33 33 33 33 33 33 33 33

P1 P2 ADDRESS
STACK 00 00 00 00 00

MK1 MK2
00 00

CHAN SDB 00 00 00 00 00 00 00 00

CHAN SBO 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00

58 AD 60
1A AA 00
50 AD 03
5A AD 10
18 BA 00
1A BB 00

Note: A blank following any byte indicates correct parity~ an asterisk denotes incorrect parity.

Figure 12. Sample Processor Display

FLOATING POINT DISPLAY

FLB 1
2
3
4
5
6

FLB 0
2
4
6

00 00 00 00 00 00 00 00 0
00 00 00 00 00 00 00 00 0
00 00 00 00 00 00 00 00 0
00 00 00 00 00 00 00 00 0
00 00 00 00 00 00 00 00 0
00 00 00 00 00 00 00 00 0

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

FLOS 0 00 00
1 00 00
2 00 00
3 00 00
4 00 00
5 00 00
6 00 00
7 00 00

RSLT 'EXP
o PSI 00

L/R PSl 00
o PS2 00

L/R PS2 00
EP 00

EP SRC 00 00 00 00 00 00 00 00
SNK 00 00 00 00 00 00 00 00
SUM 00 00 00 00 00 00 00 00

A1 SRC
SNK

A2 SRC
SNK

A3 SRC
SNK

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

ADR INT 00 00 00 00 00 00 00 00 0
AD RSLT 00 00 00 00 00 00 00 00

MUL DEC 00 00 00 00 00 00 00
CSA SUM 00 00 00 00 00 00 00 00 00
CSA CAR 00 00 00 00 00 00 00 00 00
PA RSLT 00 00 00 00 00 00 00 00 00

MDl SRC 00 00 00 00 00 00 00 00
SNK 00 00 00 00 00 00 00 00

MD2 SRC 00 00 00 00 00 00 00 00
SNK 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 0

Note: A blank following any byte indicates correct parity;
an asterisk denotes incorrect parity.

Figure 13. Sample Floating-Point Display

System Control Panel 27

Data (Panel M)

The 72 data switches (64 data switches and eight parity
switches), labeled CBR, are nonlocking key switches and are
used to enter data into selected areas of the CPU or storage.

The contents of the console buffer register (CBR) are
normally the output of the data switches; the contents of
this register are altered by manipulation of these switches,
by a storage fetch operation or by a log-word or register dis­
play.

The switches have nonlocking set and reset positions; they
are in a neutral position when they are not being operated.
The associated bit position of the buffer register is set or re­
set depending on the position to which the switch is operated.
(When the switch is operated down, the bit position is set.)
The contents of the console buffer register are indicated
continuously so that any manipulation of the data switches
can be seen.

Data is stored according to the contents of the console
address register and the setting of the store/display/storage
select switch. The store key must be pressed to initiate the
store operation. Parity is automatically generated whenever
the data is transferred.

Data cannot be stored into the high-speed buffer-storage
da,ta directory from the data switches.

Display (Panel M)

The display key is pressed to place data into the console buf­
fer register, as determined by the setting of the store/display /
storage select switch and by the contents of the console ad­
dress register. The lights for the console buffer register con­
tinuously display the contents of that register.

When the designated location is not available, the displayed
information is unpredictable.

Force Machine Check Interrupt (Panel L)

Pressing this key causes a hard stop. A log-out, CPU and
check reset, and a machine check interrupt occur. If the
rate switch iS'in the single-cycle position, the sequence stops
at the beginning of the machine check interrupt.

PSW Restart (Panel N)

The PSW-restart key is pressed to initiate the following oper­
ations in sequence:
1. System reset.
2. Loading a new PSW from location O.
3. Instruction fetching, starting at the new program loca­

tion specified by the new PSW.
4. Execution of instructions as specified by the setting of

the rate switch.

Rate (Panel L)

The rate rotary switch indicates in which way the instruc­
tions are to be performed. The test light is on if the rate
switch is set to any position other than process.

28

The position of the rate switch should be changed only
while the CPU is in the stopped state. Otherwise, results
are unpredictable.

Process: When the switch is in this position, the system
operates at normal speed after the start key is pressed. The
decoding of instructions is halted by pressing the stop key.

Insn Step: When the switch is in this position, one instruc­
tion is completely executed each time the start key is
pressed. The CPU automatically halts in the stopped state.
When the start key is pressed, but before the one instruction
is processed, interrupts that were allowed but became pend­
ing during the stopped state are processed before execution
of the next instruction.

Mple Step: When the switch is in this position, an instruc­
tion is executed every 100 milliseconds for as long as the
start key is pressed. The CPU automatically halts in the
stopped state when the start key is released.

Single Cycle: This position is for customer engineering use.

Single Pulse: This position is for customer engineering use.

Scan (Panel N)

The scan key is pressed to produce a display on the cathode­
ray tube of the display console. The display produced is
determined by the settings of the CRT display and tape op­
eration switch and the store/display/storage select switch.

Whether the display represents updated information de­
pends on whether the block scan switch has been operated.
PreSSing the scan key immediately after the block scan switch
has been placed in the down position causes the informa­
tion displayed during the last display operation to be dis­
played again.

This key is effective only while the CPU is in the stopped
state.

Set CAR (Panel M)

Pressing the set CAR key transfers the setting in the 24 ad­
dress switches to the console address register.

Set IC (Panel N)

The set IC (instruction counter) key is· pressed to enter the
contents of bit positions 40-63 of the console buffer register
into bit positions 40-63 (the instruction address part) of the
current PSW.

This key is effective only while the CPU is in the stopped
state.

Set PSW (Panel N)

The set PSW (program status word) key is pressed to enter
the contents of bit positions 0-15 and 32-63 of the console
buffer register into bit positions 0-15 and 32-63 of the
current PSW.

The key is effective only while the CPU is in the stopped
state.

Start (Panel L)

The start key is pressed to start instruction execution as
specified by the setting of the rate switch.

Pressing the start key after a normal halt causes instruction
processing to continue as if no halt had occurred, provided
the rate switch is in the process, instruction-step, or multiple­
step position.

Pressing the start key after system reset without first having
introduced a new instruction address yields unpredictable
results.

Pending interrupts that are allowed will be honored before
the first instruction is executed.

The key is effective only while the CPU is in the stopped
state.

Stop (Panel L)

The stop key is pressed to terminate machine operation with­
out destroying system status. The CPU enters the stopped
state after all previously decoded instructions have been exe­
-cuted, after all pending interrupts have been processed,
and after any interrupts that became pending while the CPU
was in the decode or stop-decode state have been processed.

When the CPU enters the stopped state, the manual light
turns on. After stopped state has been entered, no interrupts
are processed.

The stop key is active while power is on the system.

Store (Panel M)

The store key is pressed to store data from the console buf­
fer register into the location specified by the setting of the
store/display/storage select switch and by the contents of
the console address register.

Store protection is ignored. When the location designated
by the console address register and by the setting of the
store/display/storage select switch is not available, no data
is stored.

If data is stored into a main storage location that is also
resident in the high-speed buffer storage, the buffer storage
block containing this information is invalidated to maintain
the integrity of storage.

Data cannot be stored into the high-speed buffer-storage
data directory from the system control panel.

The store key is active only while the CPU is in the stopped
state.

Store/Display/Storage Select (Panel N)

The store/display positions of this rotary switch specify the
sections of the CPU that are addressed by the console ad­
dress register when the store and display keys are used.
Store data is set in the 72 data switches.

The storage select positions of the rotary switch specify
the parts of storage affected by the console address register
when the CRT display and tape operation switch is in the
storage position.

Gen Regs: When the switch is in this position and the CPt;
is in the stopped state, the contents of the general register
(indicated by the console address register) can be placed in
the console buffer register by pressing the display key, or
can be replaced by the contents of the console buffer regis­
ter by pressing the store key. The contents of the general
register are displayed left-justified in the console buffer
register. For store operations, the data must be placed in
the upper half of the console buffer register.

FLP Regs: When the switch is in this position and the CPU
is in the stopped state, the contents of the floating-point
register (indicated in the address register) are placed in the
console buffer register by pressing the display key, or are
replaced by the contents of the console buffer register by
pressing the store key.

Log Word Display: When the switch is in this position and
the CPU is in the stopped state, the log word that has its
pseudo-address (OI-8E) in the console address register is
displayed in the console buffer register lights.

Core Storage: In this position, 16 doublewords of main
storage are displayed. The starting doubleword address
must be placed in the console address register (Figure 14).

STORAGE DISPLAY

ADDRESS DATA
000000 00 00 00 00 00 00 00 00

000008 01 02 03 04 05 06 07 08

000010 09 OA OB OC OD OE OF 00

000018 11 12 13 14 15 16 17 18

000020 19 lA IB lC ID IE IF 11

000028 20 21 22 23 24 25 26 27

000030 28 29 2A 2B 2C 2D 2E 2F

000038 30 31 32 33 34 35 36 37

000040 38 39 3A 3B 3C 3D 3E 3F

000048 40 41 42 43 44 45 46 47

000050 48 49 4A 4B 4C 4D 4E 4F

000058 50 51 52 53 54 55 56 57

000060 58 59 SA 5B 5C 5D 5E 5F

000068 60 61 62 63 64 65 66 67

000070 68 69 6A 6B 6C 6D 6E 6F

000078 70 71 72 73 74 75 76 77

Note: A blank following any byte indicates
correct paritY1 an asterisk denotes
incorrec·t pari ty •

Figure 14. Sample Main Storage or Buffer Storage Display

System Control Panel 29

SCU Buffer: In this position, 16 doublewords of high-speed
buffer storage are displayed. Console address register bit
positons 17 and 18 select the buffer storage segment, and
bit positions 19-28 select the first double word within the
segment for display. The address displayed on the screen
represents the buffer storage location only (Figure 14).

SCU DD: In this position, 16 doublewords from the data
directory, including the chronology array, are displayed.
Bit positions 19-25 in the console address register address
one of the 128 locations in the data directories and chronol­
ogy array (Figure 15). For each address, reading from left
to right, characters 1, 2, and 3 of the display refer to the
contents of data directory 1; characters 5, 6, and 7 to data
directory 2; characters 9, 10, and 11 to data directory 3;
and characters 13, 14, and 15 to data directory 4. Char­
acters 4, 8, and 12 are hexadecimal representations of special
chronology array bits (denoted by C above the character).
Character 16 is always F.

System Reset (Panel N)

The system-reset key is pressed to reset on-line channels,
control units, and CPU controls to their initial states. All
check indicators are reset and the contents of the high-speed
buffer storage data directory are cleared. The current PSW,
data flow registers, keys in storage, and main storage are not
reset. The CPU is placed in the stopped state, and all pend­
ing interrupts are eliminated. The reset function does not
affect any off-line or shared devices.

This key is active while power is on the system.

Key Switch and Meters

The customer usage and the customer engineering (CE)
meters for the CPU cluster are on the left side of the display
console.

30

DIRECTORY
ADDRESS DATA

1 C 2 C 3 C 4
000000 00 00 00 00 00 00 00 OF

000040 01 25 45 66 89 09 23 4F

000080 02 35 45 66 77 89 99 OF

OOOOCO 03 36 44 99 22 lA 45 9F

000100 04 09 22 36 44 09 88 9F

000140 05 lA 33 15 22 16 77 8F

000180 04 25 44 36 55 89 66 7F

OOOlCO 05 35 55 49 77 96 55 6F

000200 06 46 66 95 99 09 88 SF

000240 07 OA 77 19 88 15 33 4F

000280 08 lA 88 15 99 26 22 3F

0002CO 09 45 99 66 44 66 88 2F

000300 OJ. 46 88 65 23 45 67 3F

000340 09 SA 98 6A 87 99 65 4F

000380 10 56 43 56 33 99 45 9F

0003CO 08 55 21 95 63 05 87 SF

Note: A blank following any byte indicates
correct parity; an asterisk denotes
incorrect parity.

Figure 15. Sample Data Directory Display

The Model 195 CPU cluster includes: CPU, processor
storage, processor system console, CPU power supplies, and
power and coolant distribution units.

A key switch controls which meter is to run while the sys­
tem is in operation, that is, initiating, executing, or com­
pleting instructions, including I/O and assignable unit oper­
ations.

Although the Model 195 'performs CPU operations in a highly
parallel fashion, no elaborate optimization plan is required to
prepare programs for CPU processing. For the most part,
they may be written in a straightforward IBM System/360
code. If a program will benefit by some modification, how­
ever, the following suggestions may be helpful.

1. Place index loading and incrementing instructions well
ahead of instructions that use them for address genera­
tion. In a loop, a convenient place for an indexing in­
struction such as 'add' (AR) is at the end of the loop,
just before a 'branch on index low or equal'; by the time
the branch is completed, the index registers will be ready
for use.

2. The instructions 'load address'" 'branch on count' (BCT,
BCTR), 'branch on index low or equal', and 'branch on
index high' use the address adder to change a general
register. As suggested in item 2, make sure that the
registers required are available.

3. The 'load address' instruction requires three cycles that
cannot be overlapped; it is also subject to delays if regis­
ters are unavailable. Instructions such as 'add' (A, AR)
require only one unoverlapped cycle and are not subject
to delays if registers are unavailable. In most cases,
therefore, replace the 'load address' instruction with an
AR instruction. In some situations, the 'load address'
instruction is preferable:
a. When the register to be used is needed for addressing

by the next instruction.
b. When the fixed-point execution element is busy with

a lengthy instruction sequence and a register is needed
for addressing within the next few cycles.

c. When the condition code must not be changed.

4. Because the Model 195' fetches and stores doublewords,
align operands on doubleword boundaries for faster op­
erations. Operands that are not aligned to doubleword
boundaries can be used in fixed- and floating-point
arithmetic and in variable field length (VFL) operations,
but performance is affected adversely.

5. In normal coding, a condition-setting instruction im­
mediately precedes most 'branch on condition' instruc­
tions. On the Model 195 , place neutral instructions,

Appendix A: Coding Considerations

such as those dealing with loads and stores, between the
condition-setting instruction and the conditional branch.

6. Avoid storing into the next several words of the instruc­
tion stream.

7. Whenever possible, contain a loop in the instruction
stack so that it is executed in loop mode. (See the dis­
cussion of loop mode in "Instruction Processor.")

8. Because all instructions that store data use the same
three store address registers (SAR) and the same three
store data buffers (SDB), if a fourth store is encountered
before a store address register is freed, the instruction
processor must wait. When possible, avoid more than
three stores in a row. For example, if it is necessary to
store data from six registers by using one 'store multiple'
instruction, only three SAR's are required if the first
address started on a doubleword boundary; four stores
are required otherwise.

9. When only two registers are to be loaded, using two load
(L) instructions is faster than using a 'load multiple' in­
struction; however, when four or more registers are to
be loaded, prefer the 'load multiple' instruction. Also,
the 'store multiple' instruction is usually better than re­
peated 'store' (ST) instructions because it requires fewer
SAR's and SDB's.

10. Avoid repeated accesses to different doublewords in the
same storage module; conflicts result. For example,
with 16-way interleaving of processor storage, a Model
195K that is storing by column into a 16 x 16 array
of double words is storing consecutively into the same
storage module. This does not take advantage of the
interleaving, nor of the buffer storage because it is a
store operation.

11. Try not to use the interrupt mechanism to effect IQgical
program branches; operation is slow because of the re­
quired program interlocks. Also, some logical program
operations available through the interrupt mechanism
in slower, more serial processors are not available in the
Model 195 if the interrupt in question is not precise.

12. Efficiency is increased by eliminating short records.
Avoid excessive use of SIO for small quantities of data,
because the I/O device response time is included as a
part of the instruction.

Appendix A 31

Appendix B: Timing Considerations

For other models of the IBM System/360, average times can
be given for each instruction. For a parallel system like the
Model 195, however, no average times are meaningful, be­
cause the amount of overlap varies from program to program.

The following information gives an appreciation of some
major aspects of timing in the Model 195 but it is not in­
tended to be comprehensive. In the discussion, "cycle" re­
fers to a major-machine-cycle time of 54 nanoseconds.

Instruction Processor Delays

Any of the following conditions delay the instruction proc­
essor:

1. The next instruction is unavailable.
2. The system is in conditional mode, and the next in­

struction is an instruction to be executed by the instruc­
tion processor or is a variable-field-length instruction.
(An unconditional branch or a no-operation instruction,
however, can be executed in conditional mode.)

3. A general register is unavailable for the addressing of
the next instruction.

4. A general register is unavailable for modification by the
next instruction - a condition that applies only to an
instruction-processor instruction, such as 'load address'
or 'branch on index low or equal,' which changes a
general register.

5. The next instruction requires an address generation, but
a previous instruction will not be able to complete its
address generation for another cycle.

6. The next instruction requires a fixed-point buffer regis­
ter, but all fixed-point buffer registers are busy.

7. The next instruction requires a floating-point buffer
register, but all floating-point buffer registers are busy.

8. The next instruction is a fixed-point operation, but the
fixed-point operation stack is full.

9. The next instruction is a floating-point operation, but
the floating-point operation stack is full.

10. The next instruction requires a store, but all store ad­
dress registers are busy.

11. An instruction is decoded whose execution is delayed
until the completion of all previously decoded instruc­
tions.

Transmission Time

Each of the following transmissions requires one cycle. In
most cases, these transmissions take place concurrently with
other operations, but instances may occur in which delays
due to these transmissions will directly affect the timing.

32

1. A fixed-point or floating-point operation from the in­
struction processor to the fixed-point operation stack
or the floating-point operation stack, respectively.

2. An activate or cancel signal from the instruction proc­
essor to the fixed-point operation stack or the floating­
point operation stack.

3. A condition-code indication from an execution unit to
the instruction processor.

4. A general-register-available indication from the fixed­
point execution element to the instruction processor.

5. A buffer-free indication from the fixed-point execution
element or the floating-point execution element to the
instruction processor.

6. An operation-stack-position-free indication from the
fixed-point execution element or the floating-point exe­
cution element to the instruction processor.

7. A store-address-register-free indication from the storage
control unit to the instruction processor.

Branches

When loop mode is not set, the first cycle of a branch is the
usual decoding in the instruction processor. The next two
cycles are address generations for the target and target + 1
doublewords; the two temporary fetches are initiated im­
mediately after the address generations. Minimum time for
any branch out of the instruction stack, therefore, is two
cycles plus the access time.

The test for a conditional branch is normally made after
the address generation. The two types of conditional
branches are: those whose condition is set by the instruction
processor, and those whose condition is set by the fixed­
point or floating-pOint execution element. For the instruc­
tions 'branch on count' (BeT, BeTR), 'branch on index
high,' and 'branch on index low or equal,' the condition is
set by the instruction processor. F or the 'branch on condi­
tion' (Be, BeR) instruction, the condition is set by the exe­
cution elements. (Masks of 0 and 15 are special cases and
are detected during the decoding cycle.)

When the condition is set by the instruction processor, no
further instructions are decoded until all tests have been
completed. Instruction processor times (in cycles) for some
of the more important branches are:

Target in Stack Target Not in Stack
Loop Quick Loop Not Loop
Mode Mode Mode Mode

BX, Branch 4 3 6 + access 8 (or 2 +
time access time)*

BX, No Branch 6 5 5 6
BCT, Branch 4 3 5 + access 7 (or 2 +

time access time)*
BCT, No Branch 5 4 4 5

* The actual time required is the longer of the two times listed.

When the condition is set by an execution element, the
first three cycles of the branch are taken by the instruction
processor> and the temporary fetches are made. The instruc­
tion processor then enters conditional mode until the condi­
tion code is determined.

In conditional mode, no additional instruction fetches are
made. The instruction processor continues to decode in­
structions, generate addresses, and issue operations to the
fixed-point operation stack and the floating-point operation
stack; the operations are conditional and cannot be decoded
or executed until an activate signal is sent by the instruction
processor.

The instruction processor continues to decode instructions
conditionally until any of the following conditions occurs:
1. The condition code is set.
2. No more instructions are available in the stack.
3. The fixed-point or floating-point operation stack is filled.
4. An instruction-processor or variable-field-length instruc­

tion is encountered (except for an unconditional branch
or a no-operation instruction, which can be executed in
conditional mode).

When the condition code is set, the instruction processor
takes one cycle to make a decision. If the branch is not
taken, an activate signal is sent to the fixed-point and float­
ing-point operation stacks, and the instruction processor con­
tinues decoding instructions. If the branch is taken, a cancel
signal is sent to the fixed-point and floating-point operation
stacks and to the SAR's, and the instruction processor be­
gins decoding instructions along the new path. When condi­
tional mode is ended, instruction fetching resumes along the
correct path.

When the machine is in loop mode, no temporary fetches
are made for conditional branches.

An unconditional branch (BC 15 or BCR 15) takes either
six cycles or two cycles plus the access time. A branch with­
in the stack takes five cycles, and a branch closing a loop
takes two cycles.

The 'branch and link' instructions (BAL, BALR) require
four cycles plus the time required for access or plus the time
required for the condition code to be determined, which­
ever is longer. The 'branch and link' instruction destroys
loop mode.

A no operation (BC O,X; BCR O,R; BCR C,O) requires one
cycle; a count without branching (BCTR R,O), three cycles;
a link without branching (BALR R,O), five cycles or the time
until the condition code is determined; and an 'execute,'
five cycles plus the access time plus the target execution
time.

Fixed-Point Execution

The following information is pertinent to fixed-point execu­
tion timing:
1. Decoding proceeds serially.
2. No conditional operation can be decoded until it has

been activated or canceled.

3. Canceled operations are decoded in one cycle.
4. An active operation is not completely decoded until the

cycle before its execution starts.
5. Execution can begin if the following conditions are met:

a. The operation is decoded.
b. The data is available.
c. The execution circuitry is free.

6. As soon as decoding is completed for a one-cycle opera­
tion, the instruction processor is notified that the stack
position is free. For operations of more than one cycle,
the stack-position-free notification is delayed until the
second or third cycle. Notification that the fixed-point
buffers are released is given to the instruction processor
during the first cycle for all instructions except 'convert
to binary' and 'divide' (D), which do not release the buf­
fers until during the last cycle.

Floating-Point Execution

In the following information, pertaining to floating-point
execu tion timing, precision conflicts (differences in precision
between overlapped floating-point operations using the same
floating-point register) and RR instructions for which both
registers are free may cause exceptions to items 1-6:

1. Decoding proceeds serially.
2. No conditional operation can be decoded until it has

been activated or canceled.
3. Canceled operations are decoded in one cycle.
4. Operations that do not require an execution unit can

be decoded in one cycle.
5. Operations that require an adder or a multiplier can be

decoded in one cycle if a reservation station is available.
6. If a decode is waiting for a reservation station, it can be

completed on the cycle before the result of that reser­
vation station goes on the common data bus.

7. The test for 'load and test' (LTDR and LTER) is made
during the common data bus cycle.

8. An operation in which the adder is used can begin if
the following conditions are met:
a. The operation is decoded.
b. The data is available.
c. Another add with higher priority is not beginning

on the same cycle.
d. The execution circuitry is free.

9. A multiply or divide can begin if the following condi­
tions are met:
a. The operation is decoded.
b. The data is available.
c. Another multiply or divide with higher priority is

not beginning on the same cycle.
d. The execution circuitry is free.

10. If more than one unit request the common data
bus simultaneously, the following operations are given

Appendix B 33

priority in the order indicated: loads, short- and long­
precision adds, short- and long-precision multiplies,
extended-precision operations.

11. As soon as an operation has been decoded, the instruc­
tion processor is notified that the stack position is free.

12. If the operation has already been decoded, the buffer
is set free as soon as the data enters it.

13. If the buffer is filled before the operation is decoded,
the buffer is set free one cycle after the decoding.

Selected Execution Times

Because of the concurrency achieved in the Model 195, the
effective time required by a given instruction is not directly
related to the rate at which the instruction can be processed.

The following is a list, by category, of the number of cycles
required by the appropriate execution element to process
certain instructions. These times do not include any of the
other processing times required for that instruction and do
not reflect the effects of simultaneous operations or over­
lap. Instructions are listed by their mnemonics.

Fixed-Point Instructions
A, AH, AL, ALR, AR, C, CH, CL, CLR, CR, IC
L,LCR,LH,LNR,LPR,LR,LTR,N,NR,O,
OR, S, SH, SL, SLR, SR, ST, STC, STH, X, XR

SLA, SLL, SRA, SRL

SLDA, SLDL, SRDA, SRDL

MH

M,MR

34

No. of Mac/line
Cycles

2

3-4

7

7-11

Fixed-Point Instructions

D,DR

CVB

CVD

Immediate I1Istructions

Fetch only: CLI, TM

Store only: MVI

Fetch and Store: NI, 01, XI

Hoati1lg-Point I1Istructions

LD,LDR,LE,LER,LTDR,LTER,STD,STE

AD, ADR, AE, AER, AU, AUR, AW, AWR, CD,
CDR,CE,CER,HDR,HER,LCDR,LCER,
LNDR, LNER, LPDR, LPER, SD, SDR, SE,
SER, SU, SUR, SW, SWR

MD, MDR, ME, MER (normalized numbers)

MD, MDR, ME, MER (unnonnalized numbers)

DE,DER

DD, DDR

No. of Machine
Cycles

36-37

17-18

17-32

2

o
2

3

4

9

11

The O-cycle instructions do not require an execution unit. The
2-cyc1e instructions are executed in the adder. The 3-,4-, 9-, and
12-cyc1e instructions are executed in the multiplier.

Extended-Precision Floating-Point Instructions

LRDR, LRER

AXR,SXR

MXR (normalized/unnormalized)

MXDR, MXD (normalized numbers)

MXDR, MXD (unnormalized numbers)

2

9

25/29

7/8

7/8

Adapter, Channel-to-Channel 20
Add Execution Unit 19
Address Compare Rotary Switch 26
Address Key Switches 24

Block Scan Key 26
Branch Instructions

Execution of 11
Timing Considerations 32

Buffer Storage 16
Burst Mode 20
Byte Oriented Operands 6

Central Processing Complex 9
Central Processing Element (CPE) 9
CPU Cluster 30
Channel-to-Channel Adapter 20
Channels 20
Circuitry, Logic 5
Coding Considerations 31
Conditional Mode 12
Configurations of Models 8
Configurator, Model 195 7
Console, System 22
Control Panel, System 21
Controls 22
CPU 9
Central Processing Unit 9
CRT Display and Tape Operation Switch 26
Customer Engineering Usage Meter Switch 30
Cycle Time

Buffer Storage 10
Machine (CPU) 5
Main Storage 10

Data Key Switches 28
Data Rates, Channel 20
Decimal Execution Unit 17
Discontinuities 11
Display

Console 6
Function, Store and 21
Key 28
Power-Off Key 23
Power-On Key 23

Emergency-Pull Switch 23
Execution Element

Fixed-Point/Variable Field Length 17
Floating-Point 18

Execution Times of Instructions 34
Execution Unit

Add 19
Extended 19
Fixed-Point 17
Multiply /Divide 19
Variable Field-Length 17

Extended Precision 19

Features
Optional 6
Standard 6

Fixed-Point/Variable-Field-Length/Decimal Execution Elerilent 17
Fixed-Point Timing Considerations 33
Floating-Point Execution Element 18
Floating-Point Timing Considerations 33
Force Machine Check Interrupt Key 28

Initial Program Loading (IPL) 21
Instruction

Execution Times 34
Fetching 10
Processor 10
Timing Considerations 32

Interleaving 9
Interrupts

Handling of 13
Imprecise 13
Precise 14

Interrupt Key 23
Interval Timer 6

Key Switch and Meters 30
Keys, Operator Control 22

Load
Key 23
Light 23
Unit Switches 23

Log Word Display Switch 29
Logic Circuitry 5
Loop Mode 12

Machine Cycle Time 5
Main (Processor) Storage 10

Capacity 6
Manual Light 23
Meter Switch

Customer Engineering 30
Customer Usage 30

Mode
Conditional 12
Loop 12

Models of System/360
Configurations 8
Relationship 5

Monolithic Circuitry 5
Multiple Operation Instructions 13
Multiplex Mode 20
Multiplexer Channel, 2870 20
Multiply /Divide Execution Unit 19

Operator Controls 22
Operator Intervention Controls 24
Operator's Control Panel (OCP) 22
Optional Features 6

Power-Off (System) Key 23
Power-On (System) Key 24
Processing Unit (CPU) 9
Processor (Main) Storage 10
PSW-Restart Key 28

Rate Rotary Switch 28

Scan Key 28
Selector Channel, 2860 20
Set IC Key 28
Set PSW Key 28
Standard Features 6
Start Key 29
Stop Key 29
Storage

Buffer 16
Control Unit 16
Data Paths 17
Processor (Main) 10

Store and Display Function 21
Store Key 29
Store/Display /Storage Select Rotary Switch 29
Subchannel 20
System

Components 6
Console 22
Control Panel 14
Description 5
Light 24
Reset 21
Reset Key 30

System/360 Model Relationship 5
Switches, Operator Control 22

Test Light 24
Timer, Interval 6
Times, Instruction Execu tion 34
Timing Considerations 32
Transmission Time 32

Usage Meter
Customer 30
CE 30

Variable-Field-Length Execution Unit 17

Wait Light 24

Index

Index 35

IBM System/360 Model 195
Functional Characteristics

READER'S COMMENT FORM

• How did you use this publication?

As a reference source
As a classroom text
As

o
o
o

• Based on your own experience, rate this publication ...

As a reference source:
Very Good
Good

As a text:
Very Good
Good

• What is your occupation?

A22-6943-O

Fair Poor Very
Poor

Fair Poor Very
Poor

• We would appreciate your other comments; please give specific page and line references
where appropriate. If you wish a reply I be sure to include your name and address.

Reply requested

No reply required

o
o

• Requests for copies of IBM publications should be made to your IBM representative or
to the IBM branch office serving your locality .

• Thank you for your cooperation. No postage necessary if mailed in the U.8. A.

A22-6943-0

YOUR COMMENTS, PLEASE

This SRL manual is part of a library that serves as a reference source for systems analysts,
programmers and operators of IBM systems. Your answers to the questions on the back
of this form, together with your comments, will help us produce better publications for
your use. Each reply will be carefully reviewed by the persons responsible for writing and
publishing this material. All comments and suggestions become the property of IBM.

Please note: Requests for copies of publications and for assistance in utilizing your IBM
system should be directed to your IBM representative o{ to thl?; IBM sales office serving
your locality.

fold fold ... -.

BUSINESS REPLY MAl L
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY .'

IBM CORPORATION
P.O. BOX 390
POUGHKEEPSIE, N.Y. 12602

ATTENTION: CUSTOMER MANUALS, DEPT. B98

FIRST CLASS
PERMIT NO. 419

POUGHKEEPSIE, N.Y.

..
fold

International Business Machines Corpontion
Data Processing Division
112 East Post Road, White Plains, N. Y. 10601
IUSA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
I International]

fold

A22-694~

International Business Machines Corpo:tation
Data Processing Division
112 East Post Road, White Plains, N. Y. 10601
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

aJ
3:
en
<
~
3
W m o
s:
o a.
~

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	replyA
	replyB
	xBack

