
Systems Reference Library

IBM System/360 Model 91

Functional Characteristics

This publication describes the organization and the functional
characteristics of the IBM System/360 Model 91, an infonnation­
processing system designed for ultrahigh-speed, large-scale sci­
entific and business applications.

The system components are described, and a detailed con­
sideration is given to the functions of processor storage, the
central processing unit, the input/output channels, and the op­
erator-control and operator-intervention portions of the system
control panel. In addition, certain coding and timing considera­
tions are discussed.

The reader is assumed to have a knowledge of information­
processing systems and to have read the IBM System/360 Prin­
ciples of Operation, Form A22-6821.

File No. S360-O 1
Order No. GA22-6907-3

Fourth Edition (November 1971)
This is a reprint of GA22-6907 -2 incorporating changes released in Technical
Newsletter GN22-0300. This edition, GA22-6907-3, does not obsolete the
previous edition.

Specifications contained herein are subject to change from time to time, Any
such change will be reported in subsequent revisions or Technical Newsletters.

Requests for copies of IBM publications should be made to your IBM repre­
sentative or to the IBM branch office serving your locality.

This manual has been prepared by the IBM Systems Development Division,
Product Publications, Dept. B98, PO Box 390, Poughkeepsie, N.Y., 12602.
A form is provided at the back of this publication for reader's comments. If
the form has been removed, comments may be sent to the above address.

©International Business Machines Corporation 1966, 1967

Contents

System Description
Relationship to Other Models of the IBM System/360 .

5
5
6
8

System Components
Processor Storage
Processing Unit

Instruction Processor
Main Storage Control Element
Fixed-Point and Variable-Field-Length

10
11
16

Execution Element 17
Floating-Point Execution Element 18
Peripheral Storage Control Element ... 19

Channels 20
2860 Selector Channel 21
Channel-to-Channel Adapter Feature 21
2870 Multiplexer Channel 21
Channel-to-Channel Adapter Connection to 2870 21

System Control Panel ..
System Control Functions

System Reset
Store and Display
Initial Program Loading

Controls
Operator Control
Operator Intervention
Key Switch and Meters

Appendix A: Coding Considerations

Appendix B: Timing Considerations

Index

22
22
22
22
22
23
23
25
30

31

32

35

The IB~I System/360 Model 91 is an information-proc­
essing system designed for ultrahigh-speed, large­
scale scientific and business applications. Its speed
and power result primarily from the use of advanced
circuit technology, the achievement of very fast ac­
cess and execution times, the realization of a high de­
gree of concurrency in operations, and the employ­
ment of highly efficient algorithms, particularly in
floating-point operations.

Speed in the accessing of storage and in the execu­
tion of instructions is arrived at by the use of multiple,
high-speed, interleaved main storage elements, by buf­
fering, and by an assembly-line approach to instruc­
tion processing in which several largely autonomous
execution units and a unique internal bus system play
major roles.

In the :Model 91, five separate units - each highly
autonomous - maybe operating concurrently: process­
or storage, storage bus control, instruction process­
or, fixed-point processor, and floating-point processor.
Furthermore, each of these units may be performing
several functions at one time. In the floating-point
processor, for example, as many as three floating-point
operations may be taking place concurrently.

Because of the concurrency achieved in the Model
91, the effective time required by a given instruction
is not directly related to the rate at which that instruc­
tion can be processed. For example, although one nor­
malized floating-point-add operation requires two
cycles and one normalized floating-point-multiply op­
eration requires three cycles, if the operations are
logically independent, it is possible in the Model 91
to process up to two adds and one multiply concur­
rently for a total of three cycles rather than sequential­
ly for a total of seven.

Although CPU operations are performed in the Mod­
el 91 in a highly parallel fashion, no special optimiza­
tion is required in preparing programs for CPU proc­
essing. In general, System/360 coding will be proc­
essed in the CPU with a high degree of efficiency on
the Model 91.

The Model 91 provides a major-machine-cycle time
of 60 nanoseconds. Data flow is eight bytes (one
double word) in parallel. The storage cycle time is
780 nanoseconds. (The cycle time of storage itself is
7.S0 nanoseconds.) Minimum total storage access time
is 600 or 900 nanoseconds, as determined by the way
in which the processor storage is attached.

System Description

The logic circuitry employed in the Model 91 is
ASLT (Advanced Solid Logic Technology), an out­
growth of the SLT circuitry used in other models of
System/360. The advanced circuits have a basic delay
time of less than 1.5 nanoseconds, as compared with
SLT delay times ranging from 5 to 30 nanoseconds. In
packaging, densities many times that of SLT have been
achieved. Boards of approximately 8 by 12 inches can
hold pluggable cards containing over 4,000 circuits.
Two of these boards, for example, can contain a float­
ing-point-add execution unit for 64 bits in which both
preshifting and postshifting are accomplished.

Relationship to Other Models of the IBM System/360

Because of the emphasis on high performance, in the
following cases the operation of the Model 91 differs
from that specified in the IB~f System/360 Principles
of Operation, Form A22-6821.

1. The quotient of a floating-point-divide operation
may differ in the ~fodel 91 from that of other models
by an amount equal to one bit in the low-order frac­
tion position. For zero remainders, however, the re­
sults will be identical.

2. Several program interruptions that should, ac­
cording to the IB}"! System/360 Principles of Opera­
tion, store a nonzero instruction-length code are im­
precise in the Model 91. An imprecise interruption is
one that causes an instruction-length code of zero to be
stored; this code indicates that the address of the
instruction causing the interruption has not been re­
tained. When imprecise program interruptions occur,
the interruption-code portion of the current psw is
used in a special way. (See the discussion of imprecise
interruptions in "Instruction Processor.")

3. Because floating-point overflow and underflow
cause imprecise interruptions on the Model 91, it is
possible that subsequent instructions will be executed
using the overflow or underflow results. For this rea­
son, the results are made to differ from the standard
System/360 results, which produce the correct frac­
tion and a wraparound exponent. On the Model 91,
overflow produces the correct sign and the maximum
fraction and exponent; underflow produces a true zero
result; for those instructions that change the condition
code, the code will be 1 or 2 for overflow and 0 for
underflow.

System Description 5

4. The Model 91 is capahle of executing CPU stores
out of sequence. Logical consistency is maintained
within CPU programs, including the beginning and
ending of I/O operations. However, if a CPU program
is to modify a string of ccw's while they are being
used by the channel, then steps must be taken to
arrange the CPU program so that the stores are made
in sequence.

To provide synchronization when other means are
not practical, a particular branch instruction may he
used which is implemented in the Model 91 in such
a way that its execution is delayed until all previously
decoded instructions have been completed. This
branch instruction is a no-operation instruction tor all
models of the System/360. (See the discussion of the
handling of interruptions in «Instruction Processor.")

System Components

The major components of a Model 91 are an IBM 2091
Processing Unit, an IBM 2395 Processor Storage Nlodel
1 and 2, an IBM 2860 Selector Channel, and an IBM

2870 Multiplexer Channel. Input/ output (I/O) de­
vices are attached to the channels by means of control
units. (See Figure 1.)

The four possible processor/processor-storage com­
binations in the Model 91 are termed K91, KK91,
KL91, and L91. They differ in the number and types
of processor storage units used with a 2091 Processing
Unit and in the way the processor storage units arc
attached. (In this publication, «main storage" and
«processor storage" are used interchangeably.)

PROCESSING

UNIT MODEL

209lK
209lKK

209lKL

209lL

PROCESSOR STORAGE USED

AS HIGH-PERFORl\IANCE

l\IAIN STORAGE O

One of 2395 Model 1
One of 2395 Model 1

One of 2395 Model 1

None

AS EXTENDED

MAIN STORAGE °
None
One of 2395

Modell
One of 2395

Model 2
One of 2395

Model 2

° A method of attaching processor storage. See "Processor
StorRge."

The 2395 Model 1 is interleaved 16 ways and has
a capacity of 2,097,152 bytes; the 2395 Model 2, also
interleaved 16 ways, has a capacity of 4,194,304 bytes.
In the identification just given of storage combina­
tions, «K" indicates one unit of 2395 Model 1 and "L"
one unit of 2395 Model 2. If the single letter «K" is
used, only high-performance main storage is indi­
cated; if the single letter "L" is used, only extended
main storage is indicated. If a combination of two
letters is used, both high-performance and extended

6

main storage arc indicated; the first lett('f designaks
the capacity of high-performance main storage and
the second the capacity of extended main storage.

The number of hytes of storage in cach of thc proc­
essing unit models is:

2091K: 2,097,1.52
2091KK: 4,19c.l,804
2091 KL: 6,291,4.56
209lL: 4,194,.104

An outline configuration of the 2091K Processing
Unit with processor storage is shO\vn in Figure 2. Out­
line configurations of the other possible combinations
of processor. storage units with the processor are
shown in Figure 3.

The standard features for any IB~I 2091 Processing
Unit include:

Scientific Instruction Set (including the Standard Imtruc­
tion Set and Floating-Point Arithmetic)

EDIT and EDIT Al'\D r..1AHK instructions. (Other ueci­
mal instructions arc executed hy means of interpretive
program suhroutines.)

Interval Timer
Protection Features (Store and Fetch Protection)
Direct Control
Display Console
2870 Multiplexer Channel Attachment
2860 Selector Channel Attachment

The display console, similar to an IB~1 22.50 Display
Unit 1v10del 1, is integrated with the system control
panel, situated on the maintenance console (a stand­
alone unit). Positioning a switch connects the display
console with either an I/O channel or the system con­
trol panel. (vVhen it is connected to a channel, the
display console may be used for two-way communica­
tion. \Vhen the display console is connected to the
system control panel, the communication path is from
the system control panel to the display console.) For
connection to an I/O channel, the display console re­
quires one control unit position on a 2860 Selector
Channel or on a selector subchannel of a 2870 Multi­
plexer Channel. Standard on this display console are
an alphameric keyboard; a character generator; and
an 8,192-byte buffer, 4,096 bytes of which are reserved
for maintenance purposes and contain format control
data. Additionally, the following optional features may
be added to it: light pen, absolute vectors and con­
trol, programmed function keyboard, and graphic
design.

An operator control panel is set into the same wall
as the main maintenance console panel but is situated
for use by the display console operator. To the right
of this operator control panel is a power panel con­
taining the power-on and power-off keys for the dis­
play console. (See Figures 10 and 11.)

One set of the controls and indicator lights on the

operator control panel is a standard feature. To con­
trol another System/360 processor, another set of con­
trols and indicator lights (an optional feature) can be
provided on the operator control panel.

When the resolution of the interval timer (16.7
milliseconds) is not sufficient, a high-resolution timer
(an optional feature) can be used. That timer is up-

, dated by a decrementing of bit position 28 every 104
microseconds, at a frequency (9.6 kHz) that gives
counting at 300 Hz in bit position 23. Because the
Model 91 allows for the possibility of many opera-

tions being performed concurrently, the updating
takes place with minimal interference, and no backup
storage for the timer is necessary.

An attachment allows one set of the controls and
indicator lights on the operator control panel to be
duplicated as a remote panel on a stand-alone opera­
tor's console (ffiM 2150 Console or ffiM 2250 Display
Unit Modell). This attachment is a standard feature.

A channel-to-channel adapter, which is an optional
feature, may be installed on an IBM 2860 Selector
Channel (maximum of one per selector channel),

System Description 6.1

2091K
2091 KK
2091KL
2091L

2091 PROCESSING UNIT

High - Resolution
Timer

2870 Multiplexer Channel

NOTES:

First Selector
Subchannel

Second Selector
Subchannel

Third Selector
Subchannel

Fourth Selector
Subchannel

Indicates Optional
Feature

PROCESSOR STORAGE COMBINATIONS

High-Performance
Main Storage

One unit of
2395-1

(2,097, 152 bytes)

Extended
Main Storage

One unit of
2395-1

(2,097,152 bytes)

One unit of
2395-2

(4,194,304 bytes)

K

Interconnecting lines link storage units that may be used in combination; circled letters
indicate possible storage arrangements. (Note that the circled "K" indicates high-performance
main storage only.) "High-Performance" and "Extended" denote methods of attaching
processor storage.

2860 Selector Channel

First Selector Channel

Channel-to-Channel
Adapter t

Second Selector Channel

Channel-to-Channel
Adapter t

Third Selector Channel

C hanne I-to-Channe I
Adapter t

Up to eight control units :I:

Up to eight control units :!:

Up to eight control units :I:

Up to eight control units :I:

Addresses up to 16 I/O devices

..L.---1.---l..L.-....L---1._L-....L-I Up to eight
_...-_________ --J control units:!:

_~---L--I~..L.-....L___1_l..._...I...--I Up to eight

--r----------..-i control unitst

"'--'----1..L...-...J....---L_L.-~-I Up to eight
_...-_________ --J control units :!:

Each selector channel addresses up to 256
I/O devices, one at a time. Operation is
in burst mode, with overlapped processing.
The IBM 2860 Selector Channel has three
models:

Modell -- one channel
Model 2 -- two channels
Model 3 -- three channels

A maximum of six selector channels and
one 2870 and a minimum of one selector
channel or one 2870 can be installed.
If only a 2870 is installed, the first
selector subchannel feature is required.

* The scientific instruction set includes the standard instruction set and the floating-point arithmetic.

t A channel-to-channel adapter option (one per 2860 channel) permits interconnection of two channels.
One channel position can connect to one channel position on any other IBM System/360 channel. Only
one channel-to-channel adapter is needed per connection; it counts as one control unit on each channel.

:I: Input/output control units and devices are shown on the IBM System/360 Input/Output Configurator,
Form A22-6823.

Figure 1. Systern/360 Model 91 Configurator
System Description 7

Power
Distri­
bution
Unit"

Mai ntenance
Console *

2395-1

"These items may be positioned elsewhere as required. Cable limitations require that the CPU
power supply units and the maintenance console be positioned no more than 15 feet from the
center point of the processor, and the power distribution unit no more than 100 feet.

Figure 2. IBM 2091K Processing Unit and Processor Storage

permitting program-controlled, storage-to-storage oper­
ations to take place directly between I/O channels.

A variety of control units and input/output devices
are available for use with the Model 91. Descriptions
of specific input/output devices appear in separate
publications. Configurators for I/O devices and for sys­
tem components are also available. (See the IBM Sys­
tem/360 Bibliography, Form A22-6822.)

Processor Storage
Either of two processor storage components or a com­
bination of these ean be used in a :Model 91: an IBM

2395 Processor Storage Model 1 and an IBM 2395
Processor Storage Model 2. The models of processors
and their related storage units are discussed under
"System Components."

Processor storage may be attached in either of two
ways: as high-performance main storage or as ex­
tended main storage. (In this publication, "main stor­
age" and "processor storage" are used interchange­
ably.) The particular job applications determine
whether the use of one or the other method of attach­
ment or the use of both is most advantageous.

8

High-performance main storage offers a faster access
time than that of extended main storage, in addition
to the advantages of forwarding and combined access­
ing. Extended main storage, on the other hand, offers
the potential for more storage capacity. (Forwarding
is a means of reducing processor delays in retrieving
information just stored. Combined accessing is an op­
eration that eliminates the need for more than one
access when more than one fetch request to the same
storage location has been recognized.)

High -Performance
Main Storage:

One unit of
2395-1

Extended
Main Storage:

One unit of
2395-1
One unit of
2395-2

STORAGE

CYCLE

TIME

(NANO-

SECONDS)

780

780

780

TOTAL

ACCESS

TIME

(NANO- INTER- CAPACITY

SECONDS) LEAVING (BYTES)

600 16 2,097,152

900 16 2,097,152

900 16 4,194,304

KK

239~:::1 2395-1

~ __ .I.iiIl __ i&.;.P.;.;rocessor

2395-2

Figure 3. Other Processor/Processor-Storage Combinations

KL

I I i
Processor

"

I 239.5-2 I ·}~§.";1 1
Note: Only the processor portion of the 2091 Processing Unit is shown in this figure. For

outline configurations of the other elements of the 2091 (maintenance console, power
distribution unit, ond CPU power supply units), see Figure 2.

System Description 9

Storage cycle time is the length of time one of the
interleaved logical units of storage will be busy when­
ever a reference is made to that unit. Total access
time is the time required for the requested address
to be sent to the logical storage unit and the informa­
tion to be returned to the processor ready for use
when that storage unit is not busy.

Each type of processor storage is interleaved 16
ways. In the ~10del 91, interleaving is the arrange­
ment of main storage so that the addresses of suc­
cessive double words are in successive, functionally
independent units. (When processor storage is inter­
leaved 16 ways, 16 successive double words are ob­
tained from functionally separate units.) Because of
this arrangement, the possibility that a reference to
storage will find storage to be busy is greatly reduced,
particularly when accessing is sequential.

Processing Unit
The IBM 2091 Processing Unit is the central process­
ing unit (cpu) for the Model 91. Physically it consists
of five stand-alone units: a processor, two CPU power
supply units, a power distribution unit, and a main­
tenance console. (A motor-generator set is also pro­
vided that may be located in a remote area.) Func­
tionally, the processing unit consists of the following
major logical elements: the instruction processor, the

I High-Performance I
Main Storage (HPMS)

fixed-poin~ and variable-field-length (VFL) execution
element, the floating-point execution element, the main
storage control element, and the peripheral storage
control element (Figure 4). The instruction processor
and the two execution elements comprise the central
processing element (CPE).

The instruction processor may be considered the
major coordinating element in the Model 91; for each
instruction it determines what must be done and
which execution unit has responsibility for it. Branch­
ing, status-switching, 'and I/O instructions are handled
by the instruction processor; other instructions are
routed to other areas for further processing.

The fixed-point/vFL execution element contains the
general registers, which are used also by the instruc­
tion processor. Functionally, this element operates as
an independent stored-program computer; it has its
own instruction stream, its own execution circuitry,
and a set of operand buffers.

The floating-point execution element operates as an
independent computer. Although most of the floating­
point instructions require more than one cycle of execu­
tion time, this element is capable of sustaining an
execution rate of up to one instruction per cycle.

The main storage control element handles all fetch­
ing and storing of data for the CPE. It is designed to
minimize conflicting requests for storage and to make

l Extended Mai n
Storage (EMS)

Central Processing Unit (CPU)

I

-----,-

I

Fixed-Point /
VFL
Execution
Element

Main
Storage
Control
Element

Instruction
Processor

Figmc 4. Model 91 Logical Elements

10

---------------,

Central Processing Element

I
Floating-Point
Execution
Element

Peripheral
Storage
Control
Element

I
I I/O

.... ~<--___ -+-_ Channels

I
I
I

I
I
I
I
I
I

--1

the most efficient use of storage. References from the
CPE to extended main storage are sent to the main
storage control element but are routed by it to the
peripheral storage control element for handling.

The peripheral storage control element handles the
transfer of information between the main storage con­
trol element, extended main storage, and input/output
channels.

Instruction Processor

The primary functions of the instruction processor are
the fetching and buffering of instructions from storage,
the fetching of required operands, the issuance of in­
structions to the appropriate execution elements, the
handling of interruptions, and the execution of all
branching, status-switching, and I/O instructions.

The instruction processor has an instruction stack of
eight double words, a set of three instruction-control
registers, a set of alternate instruction buffer register~
totaling two double words, a decoder, and a three­
input adder for the generation of effective addresses
(Figure 5). The instruction processor uses the general
registers situated in the fixed-point/vFL execution ele­
ment.

Instruction 1----------1

Buffers
I nstructi on Control Reg i sters

64 bits UB Instruction LB
Register Register Register

I nstructi on 4
Stock I--------l

Decoder

{
Generol
Registers

Three-Input
Adder

Instruction Processor Execution Circuits

+----.... Fixed-PointjVFL Execution Element

'-----_ Floating-Point Execution Element

Figure 5. Instruction Processor

Instruction Fetching

Instructions fetched from storage are stored in the
instruction stack of the instruction processor. An in­
struction stack is used for two principal reasons:

1. To minimize storage access time for instruction
fetching.

2. To reduce the number of instruction fetches re­
quired while the program is executing a tight loop.

The instruction stack normally contains the current
instruction double word and the next three double

words; by keeping a number of double words ahead,
the fetching mechanism is able to fit instruction fetches
into slack periods between data fetches and stores.
This mechanism minimizes the refetching of instruc­
tions when a loop backward is detected by also keep­
ing four double words of history (instructions already
decoded) in the stack.

The fetching mechanism operates differently under
each of three conditions: initialization, normal opera­
tion, and recognition of a discontinuity. It is governed
by three control registers: the instruction register (IR),
the upper bound (UB) register, and the lower bound
(LB) register. The IR points to the instruction currently
being decoded, the UB register to the most recent dou­
ble word brought into the stack, and the LB register to
the earliest double word present in the stack.

Initialization: Initially the instruction stack is empty.
When instruction fetching is initiated, the main-stor­
age address of the first double word of instructions is
set into the UB and LB registers; part of the address
of the first instruction is set into the IR. The UB register,
which controls the actual fetching of double words of
instructions, brings the first double word into the in­
struction stack. At the same time the first double word
is brought into the decoder.

As each instruction double word is fetched during
initialization, the UB register is incremented (a double
word being brought into the stack for each incre­
menting) until any of three conditions occurs:

1. The address in the UB register is four double
words higher than that of the IR. (If the address is
three higher, an additional double-word instruction
fetch will be made whenever it does not delay data
fetching or storing; if it is two or less, an instruction
fetch will be made even if it must delay a data fetch
or store.)

2. A branch instruction is decoded that sets condi­
tional mode (see "Execution of Branching Instruc­
tions" in this section).

3. A discontinuity is recognized (see "Discontin­
uities" in this section).

After an instruction has been decoded, the IR is in­
cremented by the number of halfwords of the instruc­
tion just decoded, and the next instruction is then
decoded. If a double-word boundary is crossed while
the IR is incremented, the UB register is incremented,
causing it to fetch a new double word from storage if
conditions permit fetching.

'''hen the instruction stack is full, initialization is
completed.

Normal Operation: During normal operation, the in­
struction fetching mechanism continually attempts to
fetch double words. Fetching will not take place if
any of the three conditions just described is present.

System Description 11

When incrementing of the UB register would cause
the three low-order bits of that register to match the
three low-order bits of the LB register, both thc UB and
LB registers are incremented. This incrementing of
both registers causes the earliest double word in the
stack to be replaced with the latest double word. (The
three low-order bits of the LB register then point to a
dou ble word positioned one double word higher in
the stack than the double word pointed to by the
three low-order bits of the UB register; this position­
ing of pointers remains constant during normal op­
eration.)

Discontinuities: A branch operation, interruption, or
store into the instruction stream may cause a disrup­
tion in fetching. (Branching operations and interrup­
tions are discusse~ separately.)

If the store instruction results in the alteration of the
contents of a double word contained in the stack, the
instruction fetching mechanism treats that double­
word slot in the stack as empty and fetches the al­
tered double word from storage. Because the Model
91 can be executing several instructions at one time,
the instruction STORE # + 4 presents a special problem;
this problem is solved in the Model 91 by making a
check of the effective address of each store operation
to determine whether the operation affects the next
instruction following the store; if the next instruction
might be affected, measures are taken to prevent it
from being executed unaltered.

Instruction Issuing

In addition to fetching and buffering instructions, the
instruction processor fetches the required operands
and issues instructions to the appropriate execution
elements.

On each machine cycle, the instruction processor
checks for interlocks. If there are none, the instruction
selected by the instruction register is decoded. Decod­
ing is the first of three possible stages in the issuing of
the instruction.

Stage 1: During decoding, the following is deter­
mined:

1. The type of operation to be performed.
2. Whether the operation stack for the appropriate

execution element can accept the operation.
3. If a storage operand is required, whether a buf­

fer register in the appropriate execution element is
available to receive the operand; or, if a store opera­
tion is specified, whether a store address register is
available in the main storage control element.

4. If an effective address is required, whether the
three-input adder and general registers used in gen­
erating the effective address are available for use.

12

When the results of these checks indicate the in­
struction can be processed, the decoding control de­
termines \"hether the instruction processor is operat­
ing in conditional mode (see "Execution of Branching
Instructions" in this section); if it is, the operation is
tagged as conditional, indicating to the execution ele­
ment that it is not to decode-or execute the operation
until signaled to do so. The operation is then sent for
processing to the appropriate execution element (usu­
ally during stage 2), along with information as to
which buffer registers in the execution element, if
any are needed, have been assigned by the instruction
processor for use in the operation.

Stage 2: If address generation is required, the per­
tinent operand~ are routed to the three-input adder.
(Another instruction can now be processed at stage 1.)
If the instruction is a store, a quick check is made of
the effective address- and, if this check indicates a
possible store into the already fetched instruction
stream, processing of the instruction at stage 1 is
stopped until the processor determines whether the
store is actually into the instruction stream; if it is, the
processing at stage 1 remains stopped until the proces­
sor has issued a fetch to storage for the instruction
double word affected.

Stage 3: At this stage, the effective address of the
storage operand is passed to the main storage control
element. If a fetch operation is specified, the address
of the buffer register to which the operand is to be
sent is also specified. (During stage 3, another instruc­
tion can be processed at stage 1 and another at stage
2.)

Execution of Sranching Instructions

The instruction processor executes all branching in­
structions. The actions taken by the instruction process­
or as a result of decoding a branch instruc:~ion are
determined by the type of branch instruction to be
processed, the availability of circuitry for processing,
and the following:-

1. Whether the instruction processor is in condi­
tional mode (see "Conditional Mode" in this section).

2. Whether the instruction processor is in loop mode
(see "Loop Mode" in this section).

3. If loop mode is established, whether the current
instruction is that which defined the current loop.

4. Whether the current instruction,is the target of
an EXECUTE instruction currently being processed.

Normally when a branch is taken, the target address
of the hranch is set into the instruction register, and
the UB and LB registers and instruction stack are ad­
jnsted as required.

\Vhen a conditional hranch is encountered and loop
mode is not set, the instruction processor operates as

though either direction could be taken but assumes
that the strongest possibility is that the branch will
not be taken. It continues to process instructions in
the instruction stack as long as conditions permit,
while issuing operations to the fixed-pOint and B.oat­
ing-point execution elements on a conditional basis;
these conditional operations will not be executed until
after the condition code is set. Also, the instruction
processor makes use of two alternate instruction reg­
isters. Into these registers it fetches the branch-target
double word and the succeeding double word. There­
fore, regardless of the outcome of the branch opera­
tion, the instruction processor will have a lead in the
correct direction.

Conditional }..fode: Conditional mode is established
when the instruction processor executes a BRANCH ON

CONDITION instruction for which the condition code is
not yet determined.

'Vhen conditional mode is set, no additional instruc­
tion fetches are made. The instruction processor con­
tinues to decode instructions, generates addresses, and
issues operations to the fixed-pOint and B.oating-pOint
execution elements; the operations issued, however,
are tagged as conditional and cannot be decoded or
executed until the condition code is set and the in­
struction processor sends a signal to the execution ele­
ment.

The instruction processor continues to decode in­
structions conditionally until any of the following
conditions occurs:

1. The condition code is set.
2. No instructions are available in the instruction

stack.
3. The operation stack of the fixed-point or floating­

point execution element is fun, and the currently de­
coded instruction requires that filled execution ele­
ment.

4. An instruction to be executed within the instruc­
tion processor is decoded, or a variable-field-length in­
struction is decoded. (However, a no-operation in­
struction or an unconditional branch may be executed
during conditional mode.)

Loop }"1 ode: Whenever a branch backward is taken
to a target fewer than eight double words back from
the current address in the instruction register, loop
mode is entered. When loop mode is entered, the loop
is locked into the instruction stack and, as a result,
can be executed repetitively without refetching of the
instructions. Thus, conflicts hetween instruction fetch­
ing and data fetching are eJiminated, and branches
can be executed faster.

During loop mode, if there are no data fetches or
stores to be made, an instruction double word is
fetched every cyc1e until the instruction stack is full.

If data fetches or stores are to be made, instruction
double-word fetches are made every other cycle.

When loop mode is entered, the branch target ad­
dress is placed in one special register and the address
of the branch instruction in another special register.
When another branch instruction is decoded during
loop mode, the current instruction address is com­
pared with the address (in the special register) of
the branch mstruction that initiated loop mode; if
they are the same, the branch is made to the target
address in the other special register. Because no time
has been taken to re-form the address specified in the
branch instruction, one cycle has been saved.

If a conditional branch instruction is processed when
loop mode is already set, it is assumed that the branch
will be taken; therefore, during loop mode no tem­
porary fetches (down the no-branch path) are made
for conditional branches.

Loop mode is turned off when any of the following
conditions occurs:

1. A branch out of the instruction stack is taken.
2. The instruction processor starts to decode the

32nd halfword in the instruction stack.
3. The target of the quick loop is the same as the

target of the outermost loop, and the branch closing
the quick loop is not taken. (If a set of nested loops
fits in the instruction stack, the innermost loop is
called the quick loop.)

4. The base register or index register of the quick­
loop branch is altered.

Programming Notes.' Because of item 2, a loop with
29-31 halfwords may be aligned on a double-word
boundary by the use of a conditional-no-operation
(CNOP) instruction. If the loop has fewer than 29 half­
words, it is executed in loop mode; if it has more than
31 halfwords, it is not executed in loop mode.

Because of item 3, if the nested loops of a set all
have the same target address, loop mode will be
destroyed every time an exit is made from the quick
loop. To prevent loop mode from being destroyed, a
no-operation instruction may be used as a dummy
branch point for one of the outer loops.

Execution of Other Instructions

The instruction processor executes all status-switch­
ing and I/O instructions and plays a large part in the
execution of multiple-operation instructions.

When one of these instructions is processed, the in­
struction processor usually does not issue any succeed­
ing instruction until its part in processing the first in­
struction is completed.

None of these instructions is executed while condi­
tional mode is set, and many of the instructions re­
quire that all instructions being executed when that

System Description 13

instruction is decoded be completed prior to its execu­
tion. The instructions requiring this completion of
other instructions are the four I/O instructions and
LOAD PSW, SUPERVISOR CALL, SET STORAGE KEY, and SET
PROGRAM MASK (except when the old and new mask
bits are the same). (Also, one type of BRANCH ON CON­
DITION instruction, a no-operation instruction, is im­
plemented in the Model 91 in such a way that all other
instructions being executed when it is decoded must
be completed prior to its execution. See the program­
ming note in "Handling of Interruptions" in this sec­
tion.)

The following instructions are classed as multiple­
operation instructions:

Load Multiple (LM)
Store Multiple (STM)
Translate (TR)
Translate and Test (TRT)
And (NC)
Or (OC)
Exclusive Or (XC)
Compare Logical (CLC)
Move Zones (MVZ)
Move Numerics (MVN)
Move (MVC)
Move With Offset (MVO)
Pack (PACK)
Unpack (UNPK)
Edit (ED)
Edit and Mark (EDMK)

These multiple-operation instructions have variable
length data fields and require the issuing of more than
one operation from the instruction processor to the
fixed-point execution element, with which the instruc­
tion processor shares responsibility for execution. Also,
each operation of a multiple-operation instruction is­
sued to the fixed-point area contains information con­
cerning at least one storage request.

The multiple-operation instructions are the only in­
structions except CONVERT TO BINARY that cause oper­
ands to be fetched into the floating-point operand
buffers for use in the fixed-point area. Furthermore,
four of the six fixed-point operand buffers are unavail­
able for reassignment while a multiple-operation in­
struction is being executed.

Usually the instruction processor is available to is­
sue the succeeding instruction after it has issued the
last required operation to the fixed-point area. If the
next instruction is in the SI format, it is not issued
until the variable-field-length execution for the multi­
ple-operation instruction is complete. If the multiple­
operation instruction is a TRANSLATE AND TEST (TRT)
or an EDIT AND MARK (EDMK) instruction, the instruc­
tion processor will be available to issue subsequent
instructions only after the entire TRT or EDMK instruc­
tion has been executed.

14

Handling of Interruptions

The Model 91 performs all the interruption functions
defined for the IBM System/360. (See the IBM Sys­
tem/360 Principles of Operation, Form A22-6821.)
The supervisor call, external, machine check, and I/O
interruptions are logically handled as defined. How­
ever, the performance objectives of the Model 91 re­
quire some deviations in the handling of program ex­
ceptions. The program-exception deviations are basi­
cally those resulting from an operation that has been
sent by the instruction processor to another element
for execution, and the current psw no longer refer­
ences the operation. Consequently, the interruption­
causing instruction cannot be directly identified, and
such a program interruption is described as being im­
precise. An imprecise interruption is identified by the
storing of zero as the instruction-length code in the
psw current at the time of interruption.

The instruction-length codes (ILC) for program in­
terruptions on the Model 91 follow. The codes in this
listing should be considered to replace, for the Model
91, those listed for ILC on program interruptions in
the IBM System/360 Principles of Operation.

PROGRAM EXCEPTION

Operation
Privileged Operation
Execute
Protection
Addressing
Specification
Data
Fixed-Point Overflow
Fixed-Point Divide
Decimal Divide
Decimal Overflow
Exponent Overflow
Exponent Underflow
Significance
Floating-Point Divide

ILC

1,2,3
1,2
2
o
0, 1, 2, 3
0, 1, 2, 3
o
o
o
Not applicable
Not applicable
o
o
o
o

Note that in this listing the following program ex­
ceptions always cause imprecise interruptions:

l. Data, fixed-paint-overflow, and fixed-paint-divide
exceptions signaled from the fixed-point/vFL execution
element.

2. Exponent-overflow, exponent-underflow, signifi­
cance, and floating-paint-divide exceptions signaled
from the floating-point execution element.

3. A protection exception signaled from either the
main storage control element or the peripheral storage
control element when a protection violation is de­
tected.

Note also that two exceptions - addressing and
specification - can produce either precise or impre­
cise program interruptions, as determined by the
problem.

An addressing exception resulting in a precise pro­
gram interruption is produced if any of the following
conditions is detected:

1. Any portion of the current instruction to be de­
coded lies outside available storage.

2. The address generated for any of the following
instructions lies outside available storage: READ DffiECT,

WRITE DIRECT, WAD psw, SET SYSTEM MASK, SET STORAGE

KEY, INSERT STORAGE KEY, and DIAGNOSE.

3. Any portion of the target instruction for EXECUTE

lies outside available storage.
All other addressing exceptions, which are signaled

after the completion of address generation leading to
the fetching or storing outside of available storage,
result in imprecise program interruptions.

A specification exception resulting in a precise pro­
gram interruption is produced if any of the following
conditions is detected:

1. An attempt is made to execute an instruction
specified at an odd-numbered location in storage.

2. The Rl field of an instruction specifies an odd­
numbered register for the pair of general registers
that contains a 64-bit operand.

3. A number other than 0, 2, 4, or 6 is specified
for a floating-point register.

4. The block address specified in SET STORAGE KEY

or INSERT STORAGE KEY has the four low-order bits not
all zero.

5. The three low-order bits are not all zero in the
address generated for LOAD psw or DIAGNOSE.

All other specification exceptions, which are signaled
after the completion of address generation and arise
from improper boundary resolution for data fetching
and storing, result in imprecise program interruptions.
Because of the imprecise interruption, the specification
exceptions that arise from improper boundary resolu­
tion cause termination of the operation; therefore, the
data in registers and main storage may have been
altered.

When an imprecise interruption is signaled, the in­
struction processor ensures that all instructions that
were decoded before the signal was recognized are
completed before the interruption is honored. When
the interruption is taken, the instruction address stored
in the program old psw points to the next instruction
which would have been decoded, and for which an
attempt would have been made to issue it, had the
interruption not occurred.

When the program interruption is precise, bits 28-31
of the program old psw identify the exception caus­
ing the interruption, the remainder of the interruption
code (bits 16-27) is all zeros, and the instruction­
length code (bits 32-33) is 1, 2, or 3, as appropriate.

When an imprecise internlption takes place, not just

one but several exceptions may have occurred be­
cause all decoded instructions are completed before
the interruption is taken. Also, because instructions
can be executed out of sequence, the interruption con­
dition recognized first may not be the condition that
logically should be recognized first. To ac~ount for
both possibilities (an out-of-sequence detection and
the occurrence of more than one type of exception,
either within one or different instructions), the follow­
ing action is taken when an imprecise interruption
occurs: each type of exception that took place is iden­
tified in bits 16-25 of the program old psw, and bits
26-31 are set to zero. Also, the instruction-length code
(bits 32-33) is set to zero.

BIT POSITION IN PROGRAM

PROGRAM OLD psw EXCEPTION

16 Protection
17 Addressing
18 Specification
19 D~a
20 Fixed-Point Overflow
21 Fixed-Point Divide
22 Exponent Overflow
23 Exponent Underflow
24 Significance
25 Floating-Point Divide

NOTE: For an imprecise interruption, the types of
exceptions that occurred, but not the number of ex­
ceptions of anyone type that occurred, are identified
in the program old psw.

A logical consistency is maintained when a precise
program interruption precedes an imprecise program
interruption that logically should have taken place
first. Should an imprecise interruption occur during
the execution of outstanding instructions prior to hon­
oring a precisely identifiable interruption, the instruc­
tion causing the precise interruption is not executed,
the precise interruption condition associated with this
instruction is not indicated, and the address of the
instruction causing the precise interruption is placed
in the instruction-address portion of the program old
psw. In effect, the instruction leading to the precise
interruption is treated as never having occurred, and
a return to the program causes the original interrupt­
ing instruction to be reinitiated. (The same operation
takes place when a supervisor-call interruption is fol­
lowed by an imprecise program interruption that logi­
cally should have occurred first.)

Imprecise interruptions that arise from conditional
instructions (that is, instructions issued subsequent to
a BRANCH ON CONDITION instruction for which the con­
dition code is not yet determined) are noted and
either activated or canceled, as appropriate, when the
conditional instructions themselves are activated or
canceled.

Logical accuracy is preserved in all situations where
a basic machine status change is involved. For exam-

System Description 15

pIe, all instructions issued under a program mask are
completed prior to changing the mask, ensuring that
the mask stored is that which allowed the interruption.

Programming Notes: A program may not operate
correctly on the Model 91 if it requires identification
of the instruction causing an imprecise interruption.
When an imprecise interruption occurs, the program
old psw does not reference the operation that caused it.

A program also may not operate correctly on the
Model 91 if it requires the honoring of an imprecise
interruption before some instruction later in the pro­
gram is executed. When an imprecise interruption is
detected, all instructions decoded by that time are
executed before the interruption is taken. Therefore,
several instructions following the instruction that
caused the imprecise interruption may be executed
before the interruption is taken. (How many of these
subsequent instructions will be executed will vary
from instance to instance, largely because the Model
91 can execute instructions concurrently and out of
sequence.) It is possible, at the programmer's option,
to return to the problem program, but because all de­
coded instructions are completed before the interrup­
tion is taken, the instructions executed subsequent to
the interruption may have been adversely affected by
the program exception.

If preciseness is a principal concern, the unwanted
effects of imprecise program interruptions can usually
be eliminated by testing and masking, as appropriate,
and by using this BRANCH ON CONDITION instruction:

MNEMONIC TYPE Ml FIELD R2 FIELD

BCR RR Not zero Zero

This branch instruction is a no-operation instruction
for all of System/360 but is implemented in the Model
91 in such a way that its execution is delayed until all
previously decoded instructions have been completed.

No'IE: The use of this no-operation instruction de­
grades the performance of the Model 91; it should be
used only to eliminate a problem for which there is
no other reasonable solution.

Note that a program may naturally have been ar­
ranged so that the adverse effects of certain imprecise
program interruptions are eliminated in advance. For
example, in addition to the branch (no-operation)
instruction just mentioned, the execution of the fol­
lowing instructions is delayed until all previously de­
coded instructions have been completed: the four 1/0

instructions, LOAD PSW, SUPERVISOR CALL, SET STORAGE

KEY, DIAGNOSE, and SET PROGRAM MASK (except when
the old and new mask bits are the same).

There is a situation other than the one concerning
imprecise interruptions in which the execution of in­
structions out of sequence may present a problem.
Although the CPU maintains a logical consistency with

16

respect to its own operations, including the starting
and ending of I/O operations, it cannot ensure logical
consistency for asynchronous units during their opera­
tions. For example, if an 110 channel program relies
on the proper sequencing of stores by the CPU in en­
suring proper channel operation, then steps must be
taken in the CPU program to guarantee that the stores
actually are made in sequence. The no-operation in­
struction can be used to accomplish this.

Main Storage Control Element

The main storage control element (MSCE) controls the
accessing of high-performance main storage (HPMS)

by the central' processing element (CPE) and the peri­
pheral storage control element (PSCE). Also, it pro­
vides a link to the PSCE for accesses to extended main
storage by the CPE. (See Figure 4.)

The principal functions performed by the MSCE are:
], The buffering of fetches and stores to busy

storage.
2. The appropriate sequencing of stores and fetches

to the same address.
3. Forwarding when a fetch follows a store to the

same address.
4. Combined accessing when more than one fetch

request is to the same address.
5. The routing of data from storage to buffers of the

CPE and the PSCE.

The MSCE consists of the following major elements
(Figure 6):

l. Three store address registers (SAR).

2. Three corresponding store data buffers (SDB).

3. A request stack of four positions.
4. An accept stack that contains up to five addresses

but allows up to 13 storage modules to operate con­
currently.

5. A storage addres~ bus.

CPE Storage Requests

Fetching: A CPE fetch request is made either to
high-performance main storage (HPMS) or to extended
main storage via the PSCE. A fetch request from the
CPE is issued only if the MSCE can retain the request if
it is rejected. Normally the request is accepted immedi­
ately. If it is to HPMS, it is sent directly to the storage
module and to the MSCE accept stack; if it is to ex­
tended main storage, it is sent to the PSCE.

The MSCE accept stack is capable of controlling 13
concurrently operating storage modules of HP~IS.

By the use of ('ontrol information supplied with the
fetch request, the fetched information is directed to
the instruction or operand huffer in the CPE that was
reserved in advance for the particular fetch.

If the HP~IS module or the PSCE is husy, the CPE

fet('h request is reje(,ted and sent to the ~ISCE request

CPE PSCE PSCE

,-- ----- - - - - - --,------i- -~. Main Storage Control Element - - - -----1- - l
I

11
12
13

Store Address
Registers (SAR)

I
I
I 2

3
4

Figure 6. Main Storage Control Element

Address Control

CPE Request Stack

rt
Storage Bus Out

stack, which can retain four rejected requests. When
the HPMS module or the PSCE is no longer busy, the
first-in request in the stack is accepted. If HPMS is
addressed, the request goes to both the HPMS module
and the MSCE accept stack.

Storing: A CPE store request is issued only if a sture
address register (SAR) is available. When the CPE

store request is initiated, the store address is placed in
one of the three SAR'S and the data to be stored are
placed in the corresponding store data buffer (SDB)

when the data become available. When the data are
in the SDB and when a position in the request stack is
available (to retain the request if it is rejected), the
store request is re-initiated. If an HPMS module is ad­
dressed and is not busy, the store address is placed
in the accept stack and sent to storage, and the data
are sent from the SDB to storage. If the PSCE is ad­
dressed and is not busy, the store address is sent from
the SAR to the PSCE, and the data are sent from the
SDB to the PSCE.

If the HPMS module (or the PSCE) is busy, the store
request is placed in the MSCE request stack. Then,
when the HPMS module (or the PSCE) is no longer
busy, the first-in request in the stack is accepted, and
the operations described earlier are initiated.

PSCE Storage Requests

A fetch or store request from the PSCE to the HPMS is
issued only when the storage module addressed is not
busy. Therefore, each PSCE request has guaranteed ac­
ceptance. When it is accepted, the PSCE request is
placed in the MSCE accept stack in addition to being
sent to the HPMS module.

Multiple CPE Requests to Storage

The storage address in each new CPE fetch request to
HPMS that is presented to the :MSCE is compared to the

Address Control

2

3
4

5

Accept Stack

________ -1

Storage Bus In

PSCE

•

Storage Address Bus

High­
Performance
Main
Storage
Module

three addresses in the SAR, the four in the request
stack, and the five in the accept stack.

If the address matches one in the SAR, the request is
rejected, placed in the request stack, and tagged for
forwarding, which consists in (1) linking the fetch to
the store in such a way that the fetch logically follows
the store and (2) placing the fetch destination address
with the store address in the accept stack so that the
information is sent from the HPMS module to the CPE

when the store is completed. As a result, part of
the access time normally required for the fetch is
eliminated.

If the address matches one in the accept stack, it is
also placed in the accept stack and tagged for com­
bined accessing, which will result in the satisfying of
more than one fetch request to the. same address by
only one selection of the storage module.

If the address matches one in the request stack, it is
placed in the request stack and tagged for a future
combined-accessing operation.

Fixed-Point and Variable-Field-Length
Execution Element

The fixed-point and variable-field-length (VFL) execu­
tion element executes all fixed-point arithmetic, logi­
cal, and variable-field-length arithmetic operations. It
consists of five major logical elements (Figure 7):

1. An operation stack (FXOS) of six positions
2. Sixteen general registers
3. Six 32-bit operand buffers (FXB)
4. A fixed-point execution unit
.S. A VFL execution unit
Fetches for data fields from storage that are neces­

sary for the processing of a fixed-point operation are
initiated by the instruction processor, which also re­
serves the huffers in the fixed-point area that are to
receive the operands requested. The instruction proc-

System Description 17

General Registers

32 bits

10
11
12
13

Fixed-Point
Operation

~
Immediate Data

Fi)ted-Point
Buffe~ (FXB)

32 bin

Main Storage
Control Element

I nstruc t i an
L...-___ -----.-_____ --+--+-___ Processor

Floating-Paint
Buffers

L-_____ --<~-----+__-_ Main Storage

Control Element

Figure 7. Fixed-PointlVFL Execution Element

essor also maintains counters for its own use that indi­
cate whether the fixed-point operation stack has an
available position, which fixed-point buffers are avail­
able, and which general registers are available to the
instructor processor and which are being used by the
fixed-point/vFL execution element.

During normal processing, operations in the FXOS
are decoded serially and issued to either the fixed­
point execution unit or the VFL execution unit. An
operation can be executed if it has been decoded, if
the data are available, and if the execution circuitry
is free. When decoding is completed, the instruction
processor is notified that the stack position and ope­
rand buffers assigned to that operation are free.

The execution of one operation is overlapped when
possible with the decoding of the next. When a multi­
ple-operation instruction is processed (see the discus­
sion of the execution of multiple-operation instructions
in "Instruction Processor"), decoding of the next in­
struction in the FXOS does not begin until the execu­
tion of the last of the multiple operations is begun.

Operations tagged as conditional are not decoded or
executed until they are activated or canceled by the
instruction processor. A canceled operation is decoded
in one cycle, and execution of the operation consists
in the freeing of any operand buffers previously as­
signed to the canceled operation without actual execu­
tion of the operation.

At any time during a fixed-point/vFL operation, the
instruction processor can request a direct store into the
general registers, an operation which, because the in­
struction processor has priority, may delay fixed-pOint,!
VFL processing.

Fetches made during the execution of a multiple­
operation instruction may require the use of operand

18

buffers in the floating-pOint execution element; also,
four of the six fixed-pOint operand buffers are unavail­
able for reassignment whilc such an instruction is be­
ing processed.

Floating-Point Execution Element
The floating-point execution element handles the ex­
ecution of all floating-pOint arithmetic operations. It
can execute several operations at one time (for a max­
imum of two adds and one multiply or divide) if the
operations are logically independent; this performance
capability results largely from three significant fea­
tures: the use of (1) operand and instruction buffer­
ing, (2) multiple execution units employing extremely
efficient algorithms, and (3) a common data bus,
which links the several sets of execution circuitry in
such a way that the full power of the multiple execu­
tion units is realized without a reliance on program­
ming for the special arrangement of instructions.

The floating-point area contains the following major
logical elements (Figure 8) :

1. An operation stack (FLOS) of eight positions.
2. Four floating-point registers (FLR).
3. Six operand buffers (FLB), which are also used

by the fixed-point area when any multiple-operation
instruction or the CONVERT TO BINARY instruction is
processed.

4. Two execution units: one add unit (preceded by
three reservation stations) capable of performing two
add operations concurrently and one multiply I divide
(MID) unit (preceded by two reservation stations).

Decoding of operations in the FLOS proceeds serially.
As an execution unit is selected for an operation (on
the second cycle), the decoding of the next operation
(on the first cycle) can begin. The FLOS issues opera­
tions subject to only one principal constraint: a res­
ervation station of the appropriate type must be avail­
able.

The FLOS need not wait for all the operands to be
available (as in the fixed-point area) before issuing
the operation. Instead, the selected reservation station
and controls hold the issued operation until the re­
quired operands have been collected and then en­
gage the execution circuitry.

Because several operations may be in various stages
of execution at one time, provisions must be made for
the proper sequencing of dependent operations. A sys­
tem of tagging for usage of the common bus is used
to ensure the proper sequencing of these operations.
Also, the system facilitates the out-of-sequence execu­
tion of independent operations.

The FLB in conjunction with the common data bus
execute all RX load operations. RR load and RR load and
test operations are executed by the common data bus

j

Floating-Point
Operation Stack (FLOS)

I

2
3
4

Floating-Point 0 64 bits 5

Registers (FLR) 2 6
4 7
6 8

FLRB I
CDB

CDB • •
Rese rvation

Station I

I 64 bits
2
3

4
5
6

t

•

Main Storage
Control Element

Floating-Point
Buffers (FLB)

FLBB

I
~

Reservation
Station 2

Fixed-Point Area

Mai n Storage
Control Element

Rese rvati on Reservation
Station 2 Station I

Reservation
Station 3

I

Add
Execution

Unit

CDB

Figure 8. Floating-Point Execution Element

in conjunction with special testing circuitry. Store op­
erations are executed by the three store data buffers.
Multiply and divide operations are executed by an
MID unit. All other operations are executed by the add
unit.

An add execution unit can begin if the operation has
been decoded, the data are available, and another add
operation of higher priority is not beginning on the
same cycle. Two add operations can be executed con­
currently by offsetting the start of the second opera­
tion one cycle from the start of the first. While two op­
erations are being performed, the third reservation
station may be acquiring data.

A multiply or divide execution can begin if the op­
eration has been decoded, the data are available, an­
other multiply or divide operation of higher priority
is not beginning on the same cycle, and the execution
circuitry is free. The two MID reservation stations
share a single execution section; therefore, only one
MID operation may be executed at one time.

Fetches for data fields that are necessary for the
processing of a Boating-point operation are initiated
by the instruction processor, which also reserves the
buffers in the Boating-point area that are to receive

Multiply/Divide
Execution Unit

CDB: Common Data Bus
FLBB: Floating-Point Buffer Bus
FLRB: Floating-Point Register Bus

the operands requested. The instruction processor also
maintains counters for its own use that indicate wheth­
er the FLOS has an available position and which Boat­
ing-point buffers are available. When the FLOS com­
pletes decoding, it signals the instruction processor
that the stack position is empty. If an operation has
been decoded, the related operand buffer is set free
at the time it is filled; if the operand buffer is filled be­
fore the related operation is decoded, however, the
buffer is set free one cycle after completion of the de­
coding.

Operations tagged as conditional are not decoded or
executed until they are activated or canceled by the
instruction processor. A canceled operation is decoded
in one cycle, and execution of the operation consists
in the freeing of all operand buffers previously as­
signed to the canceled operation without actual ex­
ecution of the operation.

Peripheral Storage Control Element

The peripheral storage control element (PSCE) controls
the transfer of information between the main storage
control element, extended main storage, and inputl
output channels.

System Description 19

The main storage control element (MSCE) sends to
the PSCE all requests to extended main storage that
originate in the central processing element. In a like
manner, the MSCE services all requests from the PSCE

to high-performance main storage.
The PSCE is logically composed of the bus control

and the common channel control.

Bus Control

All accesses to extended main storage, as well as the
accesses to high-performance main storage from I/O

channels or the storage channel, are controlled and
sequenced by the bus control.

To make maximum and efficient use of extended
main storage, the bus control maintains a request stack
consisting of eight buffer registers. As a module of
extended main storage becomes available, the bus
control scans the request stack for its next request
and, finding one, initiates a storage cycle.

Common Channel Control

The common channel control provides for the attach­
ment of up to six selector channels and one multi­
plexer channel (see "Channels"). It monitors all chan­
nel storage requests and controls the sequencing of
I/O instructions and interruptions. In addition, when
high-speed I/O devices fetch from main storage, it
initiates and controls prefetching in order to minimize
the possibility of overrun.

Channels
In the Model 91 the IBM 2860 Selector Channel and
the IBM 2870 Multiplexer Channel are available for
use. The selector and multiplexer channels provide for

20

Extended Main
Storage (EMS)

Main Storan. e + h I r ,., I Perip. era)torage
Control Element (MSCE) Control Element

I - - r--'---''---'''--''''''''- - - I
I Bus Control I
I I
I I
I I
I
I
I
I
I

Common
Channel
Control

I
I
I
I
I

----- ~

I/0 Channels

Figure 9. Peripheral Storage Control Element

the attachment of I/O devices to the system. The chan­
nel relieves the CPU of the task of communicating di­
rectly with the I/O devices and permits data process­
ing to proceed concurrently with I/O operations.

Data are transferred a byte at a time between the
1/ a device and the channel. A standard channel-to-con­
trol-unit interface provides a uniform method of at­
taching control units to all channels. Data transfers
between the channel and the PSCE are eight bytes (one
double word) in parallel for both selector and multi­
plexer channels.

2860 Selector Channel

The 2860 Selector Channel provides for the attachment
and control of I/O control units and associated devices.
It is available in three models:

Model 1 - provides one selector channel
Model 2 - provides two selector channels
Model 3 - provides three selector channels

In addition to one 2870 Multiplexer Channel, a total
of six selector channels in the following combinations
may be attached:

NO. OF CHANNELS

REQUIRED

1
2
3
4

5

6

HECOMMENDED

COMBINA TIONS

One of 2860-1
One of 2860-2
One of 2860-3
One of 2860-3 and
one of 2860-1; or
two of 2860-2
One of 2860-3 and
one of 2860-2
Two of 2860-3

At least one 2860 (any model) is required if no 2870
~futiplexer Channel is attached. If only a 2870 is at­
tached, the first selector subchannel feature is required.

The selector channel permits data rates of up to 1.3
million bytes a second. I/O operations are overlapped
with processing, and depending on the data rates and
channel programming considerations, all selector chan­
nels can operate concurrently. A set of channel control
and buffer registers permits each channel to operate
with minimal interference.

A maximum of eight control units can be attached
to each selector channel. Each control unit may have
more than one I/O device connected to it, but only one
device per channel may transfer data at any given
time. A selector channel operates only in burst mode.

Channel-to-Channel Adapter Feature

A channel-to-channel adapter is available as an option­
al feature. The adapter provides a path for operations
to take place between two channels and synchronizes
those operations. It may be used in multiple-processor
or single-processor systems: in a multisystem to
achieve rapid communications between the channels
of two System/360 modeis and in a single system to
move blocks of data from one area in main storage
to another are" in main storage.

The adapter uses one control-unit position on each
of the two channels. Only one of the two connected
channels requires the feature, and in the Model 91 one
adapter may be installed per selector channel.

For restrictions on channel attachments for another
IBM System/360 model used with the Model 91, refer
to the Systems Reference Library (SRL) functional

characteristics publication for that particular System/
360 model.

2870 Multiplexer Channel

The 2870 Multiplexer Channel provides for the attach­
ment of a wide range of low-speed to medium-speed
I/O control units and associated devices. One 2870
can be attached to the Model 91.

The multiplexer channel provides up to 196 sub­
channels, including four selector subchannels. The
basic multiplexer channel has 192 subchannels; it can
attach eight control units and can address 192 I/O

devices. The basic mutiplexer channel can operate
several multiplex-mode I/O devices concurrently, or
a single burst-mode device may be operated.

One to four selector su bchannels are optional with
a 2870. Each selector sub channel can operate one I/O

device concurrently with the hasic multiplexer chan­
nel. Each selector subchannel permits attachment of
eight control units for certain devices having a data
rate not exceeding 180 kilobytes (kb) a second. Re­
gardless of the number of control units attached, a
maximum of 16 I/O devices can be attached to a se­
lector subchannel.

The maximum aggregate data rate for the multi­
plexer channel ranges from 110 kb to 670 kb, depend­
ing on the number of sclcctor subchannels in opera­
tion. The Rrst three selector subchannels may operate
concurrently at up to 180 kb for each subchannel;
when an four selector subchannels operate concur­
rently, the fourth has a maximum data rate of 100 kb.
Each selector suhchannel in operation diminishes the
basic multiplexer channel's maximum data rate of 110
kb; the maximum data rates for concurrent selector
su bchannel operations are:

BASIC DATA RATES FOR

MULTIPLEXER SELECTOR SUBCHANNELS

CHANNEL 1st 2nd 3rd 4th
110 kb
88 kb 180 kb
66 kb 180 kb 180 kb
44 kb 180 kb 180 kb 180 kb
30 kb 180 kb 180 kb 180 kb 100 kb

NOTE: The 180-kb maximum data rate for 2870 se­
lector subchannels pertains to attachment of magnetic
tape devices; timing factors other than data rates may
preclude attachment of direct-access storage devices
having lesser data rates. Also note that when other
channels in addition to the 2870 are in operation, the
total system I/O data rate must be analyzed.

Channel-to-Channel Adapter Connection to 2870

The 2870 may be connected to another system chan­
nel. The channel-to-channel adapter, however, is in­
stalled on the other channel, not on the 2870.

System Description 21

System Control Panel

The system control panel, situated on the maintenance
console, contains the switches, keys, and indica­
tor lights necessary to operate, display, and control the
system. The system consists of the CPU, storage, chan­
nels, on-line control units, and input/output devices.
Off-line control units and I/O devices, although a part
of the system environment, are not considered part of
the system proper.

System controls are logically divided into three
classes: operator control, operator intervention, and
customer engineering control. This section of the man­
ual discusses operator control and operator interven­
tion.

By the use of the control panel, the operator can
perform the following system control functions:

1. Reset the system.
2. Store and display information in storage, regis­

ters, and program status word (psw).
3. Load initial program information.

System Control Functions

System Reset

The system-reset function resets the CPU, channels, and
on-line nonshared control units and I/O devices.

The CPU is placed in the stopped state, and all pend­
ing interruptions are eliminated. All error-status indi­
cators are reset to zero.

In general, the system is placed in such a state that
processing can be initiated without the occurrence of
machine checks, except those caused by subsequent
machine malfunction.

The reset state for a control unit or device is de­
scribed in the appropriate Systems Reference Library
(SRL) publication. A system-reset signal from a CPU

resets only the functions in a shared control unit or
device belonging to that CPU. Any function pertaining
to another CPU remains undisturbed.

The system-reset function is performed when the
system-reset key is pressed, when the psw-restart key
is pressed, when initial program loading is initiated,
or when a power-on sequence is perfonned.

Programming Note: If a system reset occurs in the
middle of an operation, the contents of the psw and of
the result registers or storage locations are unpredict­
able. If the CPU is in the wait state when the system
reset is perfonned, and no I/O operation is in progress,
this uncertainty is eliminated.

22

A system reset does not correct parity in registers
or storage. Because a machine check occurs when in­
formation with incorrect parity is used, the incorrect
information should be replaced by loading new infor­
mation.

Store and Display

The store-and-display function pennits manual inter­
vention in the progress of a program. The storing and/
or displaying of data may be provided by a supervisor
program in conjunction with proper I/O equipment
and the interrupt key.

In the absence of an appropriate supervisor program,
the controls on the operator intervention panels allow
direct storing and displaying of data. This is done by
placing the CPU in the stopped state and subsequently
storing and/or displaying information in main storage,
in general and floating-point registers, and in the in­
struction-address part of the psw. The stopped state
is achieved when the stop key is pressed, when single
instruction execution is specified and the instruction has
been executed, or when a preset address is reached. In
the Model 91 the transition from operating to stopped
state includes completing all instructions that were de­
coded at the time stopped state was called for. The
store-and-display function is achieved through the use
of the store, display, and set IC keys, the address
switches, the data switches, the store/display switch,
the scan key, and the CRT display switch. Once the de­
sired intervention is completed, the CPU can be started
again.

The normal stopping and starting of the CPU in it­
self does not cause any alteration in program execution
other than in the time element involved in the transi­
tion from operating to stopped state.

Machine checks occurring during store-and-display
operations do not log immediately but create a pend­
ing log condition that can be removed by a system re­
set or check reset. The error condition, when not dis­
abled, forces a log-out and a subsequent machine
check interruption when the CPU is returned to the op­
erating state.

Initial Program Loading

Initial program loading (IPL) is provided for initia­
tion of processing when the contents of storage or the
psw are not suitable for further processing.

Initial program loading is initiated manually by se­
lecting an input device with the load-unit switches and
pressing the load key.

Pressing the load key causes a system reset, turns
on the load light, turns off the manual light, and initi­
ates a read operation from the selected input device.
When reading is completed satisfactorily, a new psw
is obtained, the CPU starts operating, and the load light
is turned off.

The system reset suspends all instruction processing,
interruptions, and timer updating and also resets all
channels, on-line nonshared control units, and I/O de­
vices. The contents of general and floating-point reg­
isters remain unchanged.

\Vhen IPL is initiated, the selected input device
starts transferring data. The first 24 bytes read. are
placed in storage locations 0-23. Protection, program­
controlled interruption, and a possible incorrect length
indication are ignored. The double word read into lo­
cation 8 is used as the channel command word (ccw)
for reading more than 24 bytes. When chaining is
specified in this ccw, the operation proceeds with the
ccw in location 16. Either command chaining or data
chaining may be specified.

When the device provides channel end for the last
operation of the chain, the I/O address is stored in bits
21-31 of the first word in storage. Bits 16-20 are made
zero. Bits 0-15 remain unchanged.

The CPU subsequently fetches the double word in
location 0 as a new psw and proceeds under control
of the new psw. The load light is turned off. No I/O
interruption condition is generated. When the I/O op­
erations and psw loading are not completed satisfacto­
rily, the CPU idles, and the load light remains on.

Programming Notes: Initial program loading resem­
bles a START I/O that specifies the I/O device selected
by the load-unit switches and a zero protection key.
The ccw for this START I/O is simulated by CPU cir­
cuitry and contains a read command, zero data
address, a byte count of 24, chain-command flag on,
suppress-length-indication flag on, program-controlled­
interruption flag off, chain-data flag off, and skip flag
off. The ccw has a virtual address of zero.

Initial program loading reads new information into
the first six words of storage. Because the remainder
of the IPL program may be placed in any desired sec­
tion of storage, it is possible to preserve such areas of
storage as the timer and psw locations, which may be
helpful in program dPlmgging.

If the selected input device is a disk, the IPL infor­
mation is read from track zero.

The selected input device may he a channel-to-chan­
nel adapter connecting the channels of two cpu's. After
a system reset is performed and a read command is

issued to this adapter by the requesting cPu, the
adapter sends an attention signal to the addressed CPU.
That CPU then should issue the write command neces­
sary to load a program into main storage of the re­
questing CPU.

When the psw in location 0 has bit 14 set to 1, the
CPU is in the wait state after the IPL procedure (the
manual, system, and load lights are off, and the wait
light is on). Interruptions that become pending dur­
ing IPL are taken before instruction execution.

Controls
System controls are divided into three logical groups,
identified as operator control, operator intervention,
and customer engineering control. The grouping of the
panels used in performing the operator control and the
operator intervention functions is shown in Figure 10.
The controls and indicator lights used in operator con­
trol are shown in Figure 11, and the controls and indi­
cator lights used in operator intervention are shown in
Figure 12.

.. Panels containing operator controls. See Figure 11.
** Panels containing operator intervention controls. See Figure 12.

Figure lO. Grouping of Panels on Maintenance Console

Operator Control

The operator-control section of the system control
panel contains the controls and indicator lights re­
quired by the operator when the CPU is operating un­
der full supervisor control.

Under supervisor control, a minimum of direct man­
ual intervention is required because the supervisor
performs operations similar to store and display.

The operator control panel is situated just to the
right of and helow the main maintenance console
panel (see Figure 10). To control another System 1360
processor, another set of controls and indicator lights
(an optional feature) can he provided on the opera­
tor control panel (see Figure 11). One set may be

System Control Panel 23

r:::l
~

~
~

EJ
SYSTB'MANUllWlIT TEST LOrIO

INTERRUPT 0 0 0 0 0

OPERATOR CONTROL PANEL

Figure 11. Operator Control Panel and Power Panel

duplicated as a' remote panel on a stand-alone opera­
tor's console (IBM 2150 Console or IBM 2250 Display
Unit Modell.) This attachment is a standard feature.

The main functions provided by the operator con­
trols are the control and indication of power, the in­
dication of system status, operator-to-machine com­
munication, and initial program loading.

The following table lists (alphabetically) all opera­
tor controls and indicator lights and their implementa­
tion. (See Figure 11.)

NAME

Display Power Off
Display Power On
Emergency Pull
Interrupt
Load
Load
Load Unit
Manual
Power Off (System)
Power On (System)
System
Test
Wait

Display Power Off

IMPLEMENTATION

Key .
Key (backlighted)
Pull switch
Key
Key
Indicator light
Rotary switches (3)
Indicator light
Key
Key (backlighted)
Indicator light
Indicator light
Indicator light

The display-power-off key is pressed to initiate the
power-off sequence of the display console integrated
with the system control panel. The key is situated on
the power panel (Figure 11). The contents of the
upper 4,096 bytes of display console buffer storage
(containing format control data) are preserved fol­
lowing power off to the display console.

Display Power On

The display-power-on key, situated on the power panel
(Figure 11), is pressed to initiate the power-on se­
quence of the display console integrated with the
system control panel. While power is on the display
console, the key is backlighted white. The contents
of the upper 4,096 bytes of display console buffer
storage (containing format control data) are preserved
following power on for the display console.

24

POWER PANEL

Emergency Pull

Pulling the emergency-pull switch turns off all power
beyond the power-entry terminal on every unit that
is part of the system or that can he switched onto the
system. Therefore, the switch controls the system prop­
er and all off-line and shared control units and I/O

devices.
The switch latches in the out position and can be

restored to its in position by maintenance personnel
only.

Interrupt

The interrupt key is pressed to request an external in­
terruption. The interruption is taken when it is allowed
and when the CPU is not stopped. Otherwise, the inter­
ruption remains pending. Bit 25 in the interruption­
code portion of the current psw is made one to indicate
that the interrupt key is the source of the external in­
terruption. The key is effective when power is on the
system.

load (Key)

The load key is pressed to begin initial program load­
ing. (See "Initial Program Loading" elsewhere in this
section.) It is effective while power is on the system.

load (light)

The load light is on during initial program loading; it
is turned on when the load key is pressed and is turned
off after the new psw is successfully loaded.

load Unit

The three load-unit switches provide the 11 rightmost
I/O address bits of the device to be used for initial
program loading.

The leftmost switch has eight positions, labeled 0-7.
The other two switches are 16-position switches
labeled hexadecimally O-F.

Manual

The manual light is on when the CPU is in the stopped
state. Several of the manual controls are effective only
when the CPU is stopped, that is, when the manual
light is on.

Power Off (System)

The power-off key is pressed to initiate the power-off
sequence of the system. The contents of main storage
(but not the keys in storage associated with the pro­
tection features) are preserved, provided that the CPU

is in the stopped state. The key is effective while pow­
er is on the system.

Power On (System)

The power-on key is pressed to initiate the power-on
sequence of the system. As part of the power-on se­
quence, a system reset is performed in such a way that
the system performs no instructions or I/O operations
until explicitly directed. The contents of main storage
are preserved.

The power-on key is backlighted white when power
is on the entire system. The key is backlighted red
during the power-on sequence and when any remote/
local power control switch in the power system is in
the local position. If there is a loss of power in some
section of the processor, main sturage units, or chan­
nels, the light will change from white to red. The
power-on key is effective only when the emergency­
pull switch is in its in position.

System

The system light is on when the cpu-cluster usage meter
or customer engineering meter is running. These meters
are situated on the left side of the display console.

The states indicated by the wait and manual lights
are independent of each other; however, the state of
the system light is not independent of the states of
the wait and manual lights. The possible conditions
when power is on are:

SYSTEl\1 MANUAL

LICHT LIGHT

Off Off
Off Off
Off On
Off On

On Off
On Off
On On
On On

o Abnormal Condition

WAIT

LICHT

Off
On
Off
On

Off
On
Off
On

CPU

sTATE

0

Wait
Stopped
Stopped,
\Vait
Running
Wait
Stopped
Stopped,
\Vait

•

I/O

STATE

Not working
Not working
Not working

Undetermined
Working
\Vorking
\Vorking

Test

The test light is on when a manual control is not in its
normal position or when a maintenance function is be­
ing performed for the CPU, channels, or main storage.

Any abnormal setting of a switch that is on the sys­
tem control panel or on any separate maintenance
panel for the CPU, main storage, or channels and that
can affect the normal operation of a program causes
the test light to go on.

The test light may be on when certain diagnostic
functions are activated or when certain abnormal cir­
cuit-breaker or thermal conditions occur.

The test light is not an indication of the state of the
marginal voltage controls.

The test light is on when any of the following man­
ual controls is not in its normal position:

Address compare
Address increment (up-by-BSM/beat)
Address increment (I-up store/display)
Block scan
CPU check stop
CRT display and tape operation
Disable interval timer
Enter instruction
Frequency margin range
Inhibit multi-access
Inhibit overlap
Maintenance console test, rotary
MCWactive
MCW to PSCE
Rate
Repeat
Reverse CBR PTYS
Storage address alteration
Storage test (EMS-only/MWS-only)
Storage test (store/fetch)

Wait

The wait light is on when the CPU is in the wait state.
The wait state exists whenever bit position 14 of the
current psw contains a one. The wait state can be
changed to the running state only by loading a new
psw in which bit position 14 contains a zero; it can­
not be changed by pressing the system reset key.

Operator Intervention

This section of the system control panel contains the
controls required for the operator to intervene in nor­
mal programming operation. These controls are inter­
mixed with the customer engineering controls.

Operator intervention provides the system-reset func­
tion and the store-and-display function.

The following table lists (alphabetically) all inter­
vention controls and their implementation. (See Fig­
ure 12.)

System Control Panel 25

PANEL N

STORE/DISPLAY CPU CHECK =j-0 ... STOP

RUI • .~~.= 'LPItf:II

CRT DISPLAY
STAPE OP ['-' _ .. EN8l DiAl

STO""!: IIElIME • ' .. "*.J~' STOR CTItl. IKIP

~ PSW B
~ ~ PSW D D IC TAPE RESTART

PANEL M

® 0:::0=0=0 (XXX) @ 0:::0=0=0 (XXX) ® 0:::0=0=0 (XXX) @ Q::::fJ:::::O=O o-cxxJ
0-7 8-15 16-23 24-31

~
~

~
~

I DISPLAY I
24 25 26 27 28 29 30 31

~
rrrrrrrr~

8 4 2 I

PANEL L

MAINT CONSOLE
TEST

STORAGE ADDRESS
ALTERATION

CYCLIC PROGRAM COUNTER ENTRY STORAGE TEST
STOP

ADDRESS
COMPARE

FORCE CPC SOFT

RESET ~ HOLii ... III , .. STOP ON MSCE
_ SINGLE HOMAI _ HOIIAI COMMRE _ :;~ ~~ ::~E _ STORE
_ STEP _ ... _ NOCMPR PSCE _ PSCE

'--- SINGLE I,) II.> r- _ --,

PROCESS CHSC [~~£XCP~HO •• AL HOC.. (!) ,HH,.,T [~~~.., PROC". rSTOP]

~
osc HOL'. HOM.. • • =~~PC~:*:~="'E IH.H ~'H'H

~~~ HaLAB •• ~: III:: Ifl.~ () ~ :I 0 " L INSN pseE I 

r--~----r_~~HOM~" ~2~. ~2~' ~2~' ~~~~~~:-_:::::-~_-.--.-----, ~~p :T~E I 
I mER I fREQllEIa I AODIESS I STOIAGl RATE 

IISTRIICTIOI lAM 
IErtlY DIACIOS(EOUIYALEm 1.,itUIUT TfST PROCESS 

iF! 

E t t UPij 'EiS Si'OiE 
Elm lSI DlLY 

i Off Off , lED i Iff i i i i i i PlOC ~~. Off i i 
STOI I,S 
Elm LOI LOI E,ur ~ ~ rm! 

~;:p*=~£ MPLE _ StHOLE 
STEP _ PIILSE 

ImRSE 
flEG ICI 111:1111 DISAILE IIMlIiT 1INiliT I-UP BLOCI 

c,lms IAICE ACTIVE PICE IlTEt'lAl OVEIlA' IUlTl- S11IiEt Seal 
TII£I ACCESS DISPLAY 

MAINT ~ D r-::l ~ 
C~~~~LE L::J ~ ~ B~CXR D START 

~ STORAGE 

TEST 

Figure' 12. Operator Intervention Controls and Indicator Lights 

26 



NAME 

Address 
Address Compare 
Address Increment (I-Up Store/Display) 
Block Scan 
CRT Display and Tape Operation 
Data 
Display 
Log-Out 
PSW Restart 
Rate 
Scan 
Set IC 
Set PSW 
Start 
Stop 
Store 
Store/Display 
System Reset 

Address 

IMPLEMENTATION 

Key switches 
Rotary switch 
Key switch 
Key switch 
Rotary switch 
Key switches 
Key 
Key 
Key 
Rotary switch 
Key 
Key 
Key 
Key 
Key 
Key 
Rotary switch 
Key 

The 27 address switches (24 address switches and 
three parity switches) are nonlocking key switches 
and are used to address a storage location or register, 
as specified by the store/display switch. 

The switches have nonlocking set and reset posi­
tions; they are in a neutral position when they are not 
being operated. The associated bit position of the 
address register is set or reset according to the posi­
tion to which the switch is operated. (When the switch 
is operated down, the bit position is set.) 

The contents of the address register are the output 
of the address switches and can be altered by the 
manipulation of those switches or by the address 
stepping circuitry. The contents of the address register 
are indicated continuously so that any manipulation of 
the address switches can be seen. 

The three low-order bit positions are not used in 
main-storage addressing and are not affected by the 
address stepping circuitry. Main-storage addressing 
always specifies a double-word boundary. However, 
in the performance of the address-compare and for 
register selection, the three low-order bit positions are 
used. 

Parity for each byte is indicated by the parity indi­
cators in the address register and is generated auto­
matically whenever the address register is used. The 
three parity switches of the 27 switches do not affect 
usage; when activated, they turn the associated ad­
dress-register bit on or off, but parity is automatically 
updated in the address register before the address is 
used. 

Address Compare 

The address-compare rotary switch is used to control 
synchronizing pulses, program loops, and machine 
stops by means of address comparisons during instruc­
tion-fetch or data-store operations. The switch has 10 

active positions, seven of which are for customer en­
gineering use. If the switch is in other than the process 
position, the test light will be on. 

The address-compare switch can be manipulated 
among the three customer settings, described below, 
without disrupting CPU operation other than by caus­
ing the address-comparison stop. 

Process: When the switch is in this position, a syn­
chronizing pulse is provided when the address spe­
cified in the address register matches the instruction 
address. The pulse occurs when decoding of the in­
struction begins and may be used to synchronize an 
oscilloscope at the start of an instruction. 

This position is the normal operating position for 
the switch. 

[nsn Soft Stop: When the switch is in this position, 
the CPU enters the stopped state when the address 
specified in the address register matches the instruc­
tion address. This position may be used to control the 
stopping point of a program. 

The instruction-fetch operation, all other outstand­
ing operations, and all pending interruptions that are 
allowed are completed before the CPU enters the 
stopped state. 

MSCE Store Soft Stop: When the switch is in this 
position, the CPU enters the stopped state when the 
address specified in the address register matches a 
main-storage or extended-main-storage address speci­
fied in any CPE store operation or in an I/O store oper­
ation into high-performance main storage. 

The store operation, all other outstanding opera­
tions, and all pending interruptions that are allowed 
are completed before the CPU enters the stopped state. 

The PSCE soft stop setting, the CPC hard stop settings, 
and the CPC loop settings are for customer engineering 
use. 

Address Increment (I-Up Store/Display) 

When the store/display switch is in the storage posi­
tion, the setting of the I-up store/ display switch 
determines which double-word location in storage is 
accessed. 

Off: When the switch is in this position (centered), 
pressing the store key or the display key causes the 
double-word storage location to be accessed that is ref­
erenced by the maintenance console address register. 

On: When the switch is in this position (down), 
pressing the store key or the display key causes the 
double-word storage location to be accessed that is 
referenced by the maintenance console address regis­
ter. After the access is made, the maintenance console 
address register is automatically incremented by one 
double word. 

System Control Panel 27 



NOTE: When the I-up store/display switch is on, the 
address increment (up-bY-BsM/beat) key switch must 
be in the process position. 

Sloclc Scan 

The block scan key switch is operated to inhibit the 
scanning of registers or main storage during a CRT-dis­
play operation. 

Off: When the switch is in this position (centered), 
pressing the scan key initiates the normal scan func­
tion (see the description of the scan key). 

On: When the block scan switch has been placed in 
this position (down), pressing the scan key imme­
diately after setting the block scan switch causes the 
information displayed during the last storage display 
operation to be displayed again; the data specified by 
the CRT display switch and related controls are not 
scanned, and no data are transferred to the buffer 
storage of the display console. 

When the switch is in the on position, the test light 
will be on. 

CRT Display and Tape Operation 

The CRT-display portion of this switch, identified as 
"Scan," is used to connect the display console with 
either an I/O channel or the system control panel. 
When it connects the display console to the system 
control panel, the switch is used to determine the type 
of display to be produced on the CRT when the scan 
key is pressed. 

The tape operation portion of this switch is for cus­
tomer engineering use. 

When the switch is in any position other than proc­
ess, the test light will be on. 

Process: When the switch is in this position, the dis­
play console is connected to either a 2860 channel or 
a 2870 selector subchannel and is under program con­
trol. 

Storage: When the switch is in this position, press­
ing the scan key initiates an operation in which, 
beginning at the address indicated by the address reg­
ister, 16 double words are fetched from storage (one 
double word at a time), placed in the console buffer 
register, and then transferred to the buffer storage of 
the display console; these 16 double words are then 
displayed on the CRT in hexadecimal form with the 
storage address of each double word. 

NOTE: When the switch is in the storage position, 
the address increment (up-bY-BsM/beat) switch must 
be in the process position. 

Pressing the scan key again causes the next 16 
double words in storage to be fetched and displayed. 

28 

When the block scan switch is operated, the fetch­
and-transfer operation is inhibited. Pressing the scan 
key immediately after the block scan s'vvitch has been 
operated causes the 16 double words displayed dur­
ing the last storage display operation to be displayed 
again. 

CPE Regs: When the switch is in this position and 
the CPU is in the stopped state, pressing the scan key 
initiates an operation in which the contents of the CPE 
registers are placed, in order, into the console buffer 
register and then transferred to pre-assigned buffer 
storage areas of the display console; then this data and 
the identifications of the registers are displayed on the 
CRT. 

Operating the block scan switch immediately before 
pressing the scan key inhibits the fetch-and-transfer 
operation; when the scan key is then pressed, data dis­
played during the last cPE-register-display operation 
are displayed again. 

Stor Ctrl Regs: When the switch is in this position 
and the CPU is in the stopped state, pressing the scan 
key initiates an operation identical to that described 
for the cPE-regs position, except that the registers of 
the storage control areas are scanned and displayed. 

Operating the block scan switch immediately before 
pressing the scan key inhibits the fetch-and-transfer 
operation; when the scan key is then pressed, data dis­
played during the last storage-control-register-display 
operation are displayed again. 

Data 

The 72 data switches (64 data switches and eight 
parity switches), labeled CBR, are nonlocking key 
switches and are used to enter data into selected areas 
of the CPU or storage. 

The contents of the console buffer register (CBR) 
are normally the output of the data switches; the con­
tents of this register are altered either by manipulation 
of these switches or by a storage fetch operation. 

The switches have nonlocking set and reset posi­
tions; they are in a neutral position when they are not 
being operated. The associated bit position of the 
buffer register is set or reset according to the position 
to which the switch is operated. (When the switch is 
operated down, the bit position is set.) The contents 
of the console buffer register are indicated continuous­
ly so that any manipulation of the data switches can be 
seen. 

Data are stored according to the setting of the store/ 
display switch and the contents of the address register. 
The actual operation of storing is initiated by pressing 
the store key. The parity is automatically generated 
whenever the data are transferred. 



Display 

The display key is pressed to place data into the con­
sole buffer register, as determined by the setting of 
the store/display switch and by the contents of the 
address register. The lights for the console buffer reg­
ister continuously display the contents of that register. 

When the designated location is not available, the 
displayed information is unpredictable. 

This key is effective only when the CPU is in the 
stopped state. 

Log-Out 

Pressing the log-out key causes a log-out of machine 
status into main storage. The log-out area is 1,520 
bytes (190 double words); it begins at location 12810 

and continues through location 164710• 

The key is effective only when the CPU is in the 
stopped state. 

NOTE: Machine status is also logged out when a 
machine-check interruption takes place. 

PSW Restart 

The psw-restart key is pressed to initiate the following 
operations in sequence: 

1. System reset. 
2. Loading of a new psw from location O. 
3. Instruction fetching starting at the new program 

location specified by the new psw. 
4. Execution of instructions as specified by the set­

ting of the rate switch. 

Rate 

The rate rotary switch is used to indicate the way in 
which instructions are to be performed. The test light 
is on if the rate switch is set to any position other than 
process. 

The position of the rate switch should be changed 
only while the CPU is in the stopped state. Otherwise, 
results are unpredictable. 

Process: When the switch is in this position, the sys­
tem operates at normal speed after the start key is 
pressed. The decoding of instructions is halted by 
pressing the stop key. 

Insn Step: When the switch is in this position, one 
instruction is completely executed each time the start 
key is pressed. The CPU automatically halts in the 
stopped state. When the start key is pressed but before 
the one instruction is processed, interruptions that 
were allowed but became pending during the stopped 
state are processed prior to the execution of the next 
instruction. 

Mple Step: When the switch is in this position, an 
instruction is executed every 100 milliseconds for as 

long as the start key is pressed. The CPU automatically 
halts in the stopped state when the start key is re­
leased. 

Single Cycle: This position is for customer engineer­
ing use. 

Single Pulse: This position is for customer engineer­
ing use. 

Scan 

The scan key is pressed to produce a display on the 
cathode-ray tube of the display console. The display 
that is produced is determined by the setting of the 
CRT display switch. 

Whether the display represents updated information 
depends on whether the block scan switch has been 
operated. Pressing the scan key immediately after the 
block scan switch has been placed in the operating 
position causes the information displayed during the 
last storage display operation to be displayed again. 

This key is effective only when the CPU is in the 
stopped state. 

Set Ie 
The set IC (instruction counter) key is pressed to en­
ter the contents of bit positions 40-63 of the console 
buffer register into bit positions 40-63 (the instruction 
address part) of the current psw. 

This key is effective only when the CPU is in the 
stopped state. 

Set PSW 

The set psw (program status word) is pressed to en­
ter the contents of bit positions 0-15 and 32-63 of the 
console buffer register into bit positions 0-15 and 32-63 
of the current psw. 

The key is effective only when the CPU is in the 
stopped state. 

Start 

The start key is pressed to start instruction execution 
as defined by the setting of the rate switch. 

Pressing the start key after a normal halt causes in­
struction processing to continue as if no halt had oc­
curred, provided that the rate switch is in the process, 
instruction-step, or multiple-step position. 

Pressing the start key after system reset without first 
having introduced a new instruction address yields un­
predictable results. 

Pending interruptions that are allowed will be hon­
ored before the first instruction is executed. 

The key is effective only while the CPU is in the 
stopped state. 

System Control Panel 29 



Stop 

The stop key is pressed to terminate machine opera­
tion without destroying the machine environment. The 
CPU enters the stopped state after an instructions pre­
viously decoded have been executed, after an pending 
interruptions have been processed, and after an inter­
ruption that became pending while the CPU was in the 
decode or stop-decode state has been processed. 

As the CPU enters the stopped state, the manual light 
goes on. After stopped state has been entered, no in­
terruptions are processed. 

The stop key is active while power is on the system. 

Store 

The store key is pressed to store data from the console 
buffer register into the location specified by the setting 
of the store/display switch and by the contents of the 
address register. 

Store protection is ignored. When the location desig­
nated by the address register and by the setting of the 
store/display switch is not available, no data are 
stored. 

The key is active only when the CPU is in the stopped 
state. 

Store /Oisplay 

The store/display rotary switch is used to specify the 
part of the system that is to be stored into or dis­
played, according to the contents of the address regis­
ter and by the use of the store or display key. 

Storage: When the switch is in this position and the 
CPU is in the stopped state, the data at the address in­
dicated by the address register are placed in the con­
sole buffer register when the display key is pressed 
or are replaced by the contents of the console buffer 
register when the store key is pressed. 

Unadrbl Regs: When the switch is in this position 
and the CPU is in the stopped state, data in a register 
(in the CPE or in the storage control units) whose 
pseudo-address is in the address register can be placed 
in the console buffer register hy pressing the display 
key. 

:30 

Gen Regs: When the switch is in this position and 
the CPU is in the stopped state, the contents of the gen­
eral register (indicated by the address register) can 
be placed in the console buffer register by pressing 
the display key or can be replaced by the contents of 
the console buffer register by pressing the store key. 
The contents of the general register are displayed left­
justified in the console buffer register; for store opera­
tions, the data must be placed in the left half of the 
buffer register. 

FLP Regs: \Vhen the switch is in this position and 
the CPU is in the stopped state, the contents of the 
Hoating-point register that is indicated in the address 
register are placed in the console buffer register by 
pressing the display key or are replaced by the con­
tents of the console buffer register by pressing the 
store key. 

System Reset 

The system-reset key is pressed to reset on-line chan­
nels, control units, and CPU controls to their initial 
states. All check indicators are reset. The current psw, 
data How registers, keys in storage, and main storage 
are not reset. The CPU is placed in the stopped state, 
and all pending interruptions are eliminated. The reset 
function does not affect any off-line or shared devices. 

This key is active while power is on the system. 

Key Switch and Meters 

The customer usage meter for the CPU cluster and the 
customer engineering (CE) meter for the CPU cluster 
are both situated on the left side of the display console. 

The Model 91 CPU cluster includes the processor, 
the maintenance console, the CPU power supplies, the 
power distribution unit, and the main storage. 

A key switch controls which meter is to run. If the 
key switch is in the customer-operation position, the 
usage meter accumulates time when the system does 
productive work. If it is in the CE position, the CE 

meter accumulates time instead, on the same basis as 
the usage meter it replaces. 



Although the Model 91 performs CPU operations in a 
highly parallel fashion, no elaborate optimization plan 
need be followed in preparing programs for CPU proc­
essing. They may, for the most part, be written in a 
straightforward IBM System/360 code. However, if it 
has been determined that a program will benefit by 
some modification, the following suggestions may 
prove helpful. 

1. Attempt to minimize the use of the following in­
structions because they are executed by means of 
interpretive program subroutines: ADD DECIMAL, COM­

PARE DECIMAL, DIVIDE DECIMAL, MULTIPLY DECIMAL, 

SUBTRACI' DECIMAL, and ZERO AND ADD. 

2. Place index loading and incrementing instruc­
tions well ahead of instructions that use them for ad­
dress generation. In a loop, a convenient place for an 
indexing instruction such as ADD (AR) is at the end- of 
the loop, just before a BRANCH ON INDEX LOW OR EQUAL; 

by the time the branch is completed, the index regis­
ters will be ready for use. 

3. The instructions LOAD ADDRESS, BRANCH ON COUNT 

(BCI', BerR), BRANCH ON INDEX LOW OR EQUAL, and 
BRANCH ON INDEX HIGH all use the address adder to 
change a general register. As suggested in rule 2, make 
sure that the registers required are available. 

4. The LOAD ADDRESS instruction requires three 
cycles that cannot be overlapped; it is also subject to 
delays if registers are unavailable. Instructions such 
as ADD (A, AR) require only one un overlapped cycle 
and are not subject to delays if registers are unavail­
able. In most cases, therefore, the LOAD ADDRESS in­
struction should be replaced by an AR instruction. 
There are some situations when the LOAD ADDRESS 

instruction is preferable: 
a. When the register to be used is needed for 

addressing by the very next instruction. 
b. When the fixed-point execution element is 

busy with a lengthy instruction sequence and 
a register is needed for addressing within the 
next few cycles. 

c. When the condition code must not be changed. 

Appendix A: Coding Considerations 

5. Because the Model 91 fetches and stores double 
words, align operands for VFL instructions on double­
word boundaries for faster operations. 

6. In normal coding, a condition-setting instruction 
immediately precedes most BRANCH ON CONDITION in­
structions. On the Model 91 it is usually advantageous 
to place neutral instructions, such as those dealing with 
loads and stores, between the condition-setting instruc­
tion and the conditional branch. 

7. Avoid storing into the next several words of the 
instruction stream. 

8. Whenever possible, contain a loop in the instruc­
tion stack in such a way that it will be executed in 
loop mode (see the discussion of loop mode in "In­
struction Processor"). 

9. Because all instructions that store data use the 
same three store address registers and the same three 
store data buffers, if a fourth store is encountered be­
fore a store address register is freed, the instruction 
processor must wait. In some cases it is possible to 
keep from having more than three stores in a row. 
For example, if it is necessary to store data from six 
registers by using one STORE MULTIPLE instruction, 
only three SAR'S are required if the first address started 
on a double-word boundary; four stores are required 
otherwise. 

10. When only two registers are to be loaded, using 
two LOAD (L) instructions is faster than using a LOAD 

MULTIPLE instruction. However, when four or more 
registers are to be loaded, the LOAD MULTIPLE instruc­
tion is preferable. Also, the STORE MULTIPLE instruc­
tion is usually better than repeated STODE (ST) in­
structions because it requires fewer SAR'S and SDB'S. 

11. Repeated accesses to different double words in 
-the same storage module cause conflicts. Repeated 
accesses to the same double word, however, usually 
cause no conflicts because of the combined-accessing 
feature in the main storage control element (see the 
discussion of multiple CPE requests to storage in "Main 
Storage Control Element" ). 

Coding Considerations 31 



Appendix B: Timing Considerations 

For other models of the IBl\I System/360, average 
times can be given for each instruction. For a parallel 
system such as the Model 91, however, no average 
times are meaningful because the amount of overlap 
varies from program to program. 

The following information is relevant to any con­
siderations of timing. It is presented to give the reader 
an appreciation of some of the major aspects of timing 
in the Model 91 but is not intended to be compre­
hensive. In the discussio~Jhe t~rm'-:"~y.d~"_is.use_d to 
refer to a ma]~i:!naGhine-:c.ycle.time.o£ 6O.nan9sec9!ld~. 

Conditions That Delay the Instruction Processor 

Any of the following conditions will delay the instruc­
tion processor: 

1. The next instruction is unavailable. 
2. The machine is in conditional mode, and the next 

instruction is an instruction to be executed by the in­
struction processor or is a variable-field-length instruc­
tion. ( An unconditional branch or a no-operation 
instruction, however, can be executed in conditional 
mode.) 

3. A general register is unavailable for addressing 
for the next instruction. 

4. A general register is unavailable for modification 
by the next instruction - a condition that applies only 
to an instruction-processor instruction, such as LOAD 

ADDRESS or BRANCH ON INDEX LOW OR EQUAL, which 
changes a general register. 

S. The next instruction requires an address genera­
tion, but a previous instruction will not be able to 
complete its address generation for another cycle. 

6. The next instruction requires a fixed-point buffer 
register, but all fixed-point buffer registers are busy. . 

7. The next instruction requires a floating-point buf­
fer register, but all floating-point buffer registers are 
busy. 

8. The next instruction is a fixed-point operation, 
but the fixed-point operation stack is full. 

9. The next instruction is a floating-point operation, 
but the floating-point operation stack is full. 

10. The next instruction requires a store, but all 
store address registers are busy. 

11. An instruction is decoded whose execution is 
delayed until the completion of all previously decoded 
instructions. 

32 

Important Transmission Time 

Any of the following transmissions requires one cycle. 
In most instances these transmissions take place con­
currently with other operations, but there may be 
instances in which delays due to these transmissions 
will directly affect the timing. 

1. A fixed-point or floating-point operation from the 
instruction processor to the fixed-point operation stack 
or the floating-point operation stack, respectively. 

2. An activate or cancel signal from the instruction 
processo' to the fixed-point operation stack or the 
floating-point operation stack. 

3. A condition-code indication from an execution 
unit to the instruction processor. 

4. A general-register-available indication from the 
fixed-point execution element to the instruction 
processor. 

S. A buffer-free indication from the fixed-point exe­
cution element or the floating-point execution element 
to the instruction processor. 

6. An operation-stack-position-free indication from 
the fixed-point execution element or the floating-point 
execution element to the instruction processor. 

7. A store-address-register-free indication from the 
main storage control element to the instruction 
processor. 

Branches 

'\.Then loop mode is not set, the first cycle of a branch 
is the usual decoding in the instruction processor. The 
next two cycles are address generations for the target 
and target + 1 double words; the two temporary 
fetches are initiated immediately after the address 
generations. The minimum time for any branch QJlt of 
the instruction stack, therefore, is two cycles plus the 
access time. 

The test for a conditional branch is normally made 
after the address generation. There are two types of 
conditional branches: those whose condition is set by 
the instruction processor and those whose condition is 
set by the fixed-point or floating-point execution ele­
ment. For the instructions BRANCH ON COUNT (BCT, 

BerR ), BRAKCH ON INDEX HIGH, and BRANCH ON INDEX 

LOW OR EQUAL, the condition is set by the instruction 
processor. For the BRANCH ON CONDITION (BC, BCR) in­
struction, the condition is set by the execution ele-



ments. (Masks of 0 and IS are special cases and are 
detected during the decoding cycle. ) 

When the condition is set by the instruction proc­
essor, no further instructions are decoded until all tests 
have been completed. The following are instruction 
processor times (in cycles) for some of the more im­
portant branches: 

TARGET IN STACK TARGET NOT IN STACK 

LOOP QUICK LOOP NOT LOOP 

MODE LOOP MODE MODE 

BX, Branch 4 3 6 + access 8 {or 2 + 
time access time) ° 

BX, No Branch 6 5 5 6 
BCT, Branch 4 3 5 + access 7 (or 2 + 

time access time) 0 

BCT, No Branch 5 4 4 5 

°The actual time required is the longer of the two times listed. 

When the condition is set by an execution element, 
the first three cycles of the branch are taken by the 
instruction processor, and the temporary fetche~ are 
made. The instruction processor then enters condi­
tional mode until the condition code is determined~ 

In conditional mode, no additional instruction 
fetches are made. The instruction processor continues 
to decode instructions, generate addresses, and issue 
operations to the fixed-point operation stack and the 
floating-point operation stack; the operations are con­
ditional and cannot be decoded or executed until an 
activate signal is sent by the instruction processor. 

The instruction processor continues to decode in­
structions conditionally until any of the following 
conditions occurs: 

l. The condition code is set. 
2. No more instructions are available in the stack. 
3. The fixed-point or floating-point operation stack 

is filled. 
4. An instruction-processor or variable-field-length 

instruction is encountered (except for an unconditional 
branch or a no-operation instruction, which can be 
executed in conditional mode). 

When the condition code is set, the instruction proc­
essor takes one cycle to make a decision. If the branch 
is not taken, an activate signal is sent to the fixed-point 
and floating-point operation stacks, and the instruction 
processor continues decoding instructions. If the 
branch is taken, a cancel signal is sent to the fixed­
point and floating-point operation stacks and to the 
SAR'S, and the instruction processor begins decoding 
instructions along the new path. When conditional 
mode is ended, instruction fetching resumes along the 
correct path. 

When the machine is in loop mode, no temporary 
fetches are made for conditional branches. 

An unconditional branch (BC 15 or BCR 15) takes 
either six cycles or two cycles plus the access time. A 

branch within the stack takes five cycles, and a branch 
closing a loop takes two cycles. 

The BRANCH AND UNK instructions (BAL, BALR) re­
quire four cycles plus the time required for access or 
plus the time required for the condition code to be 
determined, whichever is longer. The BRANCH AND UNK 

instruction destroys loop mode. 
A no operation (BC O,X; BCR O,R; BCR c,o) requires 

one cycle, a count without branching (BCrR R,O) , 

three cycles; a link without branching (BALR R,O), 

five cycles or the time until the condition code is de­
termined; and an EXECUTE, five cycles plus the access 
time plus the target execution time. 

Fixed-Point Execution 

The following information is pertinent to fixed-point 
execution timing: 

l. Decoding proceeds serially. 
2. No conditional operation can be decoded until it 

has been activated or canceled. 
3. Canceled operations are decoded in one cycle. 
4. An active operation is not completely decoded 

until the cycle before its execution starts. 
S. Execution can begin if the following conditions 

have been met: 
a. The operation has been decoded. 
b. The data are available. 
c. The execution circuitry is free. 

6. As soon as the decoding is completed for a 1-
cycle operation, the instruction processor is notified 
that the stack position is free. For operations of more 
than 1 cycle, the stack-position-free notification is de­
layed until the second or third cycle. Notification that 
the fixed-point buffers are released is given to the in­
struction processor during the first cycle for all instruc­
tions except CONVERT TO BINARY and DIVIDE (D), which 
do not release the buffers until during the last cycle. 

Floating-Point Execution 

The following information is pertinent to floating-point 
execution timing: 

l. Decoding proceeds serially. 
2. No conditional operation can be decoded until it 

has been activated or canceled. 
3. Canceled operations are decoded in one cycle. 
4. Operations that do not require an execution unit 

can be decoded in one cycle. 
S. Operations that require an adder or a multiplier 

can be decoded in one cycle if a reservation station is 
available. 

6. If a decode is waiting for a reservation station, it 
can be completed on the cycle before the result of 
that reservation station goes on the common data bus. 

Timing Considerations 33 



7. Precision conBicts (differences in precIsIOn be­
tween two overlapped Boating-point operations using 
the same Boating-point register) and RR instructions 
for which both registers are free may cause exceptions 
to the preceding rules. 

8. The test for LOAD AND TEST (LTDR and LTER) is 
made during the common data bus cycle. 

9. An operation in which the adder is used can be-
gin if the following conditions have been met: 

a. The operation has been decoded. 
b. The data are available. 
c. Another add with higher priority is not begin­

ning on the same cycle. 
d. The execution circuitry is free. 

10. A multiply or divide can begin if the following 
conditions have been met: 

a. The operation has been decoded. 
b. The data are available. 
c. Another multiply or divide with higher priority 

is not beginning on the same cycle. 
d. The execution circuitry is free. 

11. If more than one unit requests the common data 
bus simultaneously, the following operations are given 
priority in the order indicated: loads, adds, multiplies. 

12. As soon as an operation has been decoded, the 
instruction processor is notified that the stack position 
is free. 

13. If the operation has already been decoded, the 
buffer is set free as soon as the data enter it. 

14. If the buffer is filled before the operation is 
decoded, the buffer is set free one cycle after the 
decoding. 

Selected Execution Times 

Because of the concurrency achieved in the Model 91, 
the effective time required by a given instruction is 
not directly related to the rate at which that instruc­
tion can be processed . 

. 14 

The following is a list by category of the number of 
cycles required by the appropriate execution element 
to process certain instructions. The times listed do not 
include any of the other processing time required for 
that instruction and do not reBect the effects of simul­
taneous operations or overlap. Instructions are listed 
by their mnemonics. 

NO. OF MACHINE 

CYCLES 

Fixed-Point Instructions 
A, AH, AL, ALR, AR, C, CH, CL, CLR, CR, IC, 1 
L, LCR, LH, LNR, LPR, LR, LTR, I, NR, 0, 
OR, S, SH, SL, SLR, SR, ST, STC,SfH,X,XR 

SLA,SLL,SRA,SRL 2 

SLDA, SLDL, SRDA, SRDL 3-4 

MH 7 

M, MR 7-11 

D, DR 36-37 

CVB 17-18 

CVD 17-32 

Immediate Instructions 
Fetch only: CLI, TM 1 

Store only: MVI 1 

Fetch and Store: NI, 01, XI 2 

Floating-Point InstructionsO 

LD,LDR,LE,LER,LTDR,LTER, STD, STE 0 

AD, ADR, AE, AER, AU, AUR, AW, AWR, CD, 2. 
CDR, CE, CER, HDR, HER, LCDR, LCER, 
LNDR, LNER, LPDR, LPER, SD, SDR, SE, 
SER, SU, SUR, SW, SWR 

MD, MDR, ME, MER (normalized numbers) 3 

MD, MDR, ME, MER (unnormalized numbers) 4 

DE,DER 9 

DD,DDR 12 

° The O-cycle instructions do not require an execution unit. The 
2-cycle instructions are executed in the adder. The 3-, 4-, 9-, 
and 12-cycle instructions are executed in the multiplier. 



Where more than one page-reference is given, maior references 
appear first and in italic type, 

Access time, storage . 
Adapter, channel-to-channel 

5,8 
21,6,7 

27 
27 

Address switches 
Address-compare switches 
Advanced solid logic technology (ASL T) logic circuitry 5 

Block scan switch 
Branching instructions, execution of 

Channel 
Storage 
2860 Selector 
2870 Multiplexer 

Channel-to-channel adapter 
Circuitry, logic 
Coding considerations ." 
Combinations of processor/processor storage 
Combined accessing 
Components, system 
Conditional mode (in branching) 
Configurator 
Control panel, system 
Controls of system control panel 
CPU (2091 Processing Unit) 
CRT display and tape operation switch 

28,27 
12,32 

20,7,8 
20,21,6,7 
20,21,6,7 

21,6,7 
5 

31 
6-10 
8, 18 

6, 7 
13 
7 

22-30 
23-30 

10-20,5-9 
28,27 

Cycle time, major-machine-cycle time and storage 5 

Data How 
Data switches 

5,10,11,17-20 

Differences between Model 91 and other 
System/.360 models 

Display key 
Display-power-off key 
Display-power-on key 

Emergency-pull switch 
Execution element 

Fixed-point and variable-fieId-length 
Floating-point 

Execution times, selerted 
Extended main storage 

28,27 

5 
29,27 

24 
24 

24 

17, 18 
18,19 

34 
7, 6, 8, 19, 20 

Features of Model 91 6-8 
Fixed-point and variable-field-length execution element. 17, 18 
Floating-point execution element 18, 19 
Forwarding 8, 17 

High-performance main storage (HPMS) 

I-box (instruction processor) 
Imprecise interruptions 
Initial program loading (IPL) 
Input/output (I/O) devices attachahle to system 
Input/output (I/O) instructions, execution of 
Instruction 

Fetching 
Issuing 

Instruction processor 
Interleaving of main (processor) storage 
Interrupt key 
Interruptions 
IPL (initial program loading) 

Key switch and meters 

Load key 

6-8 

11-16 
14-16,5 

22,23 
6, 7 

13, 14 

11 
12 

11-16 
8,10 

24 
14-16 
22,2.'3 

30 

24 

Index 

Load light. 
Load-unit switches 
Log-out key 

. .................................................. 24 

Log-out area (described under Log-out key) 
Logic circuitry 
Logical elements of ' Model 91 
Loop mode (in branching) 

Machine-cycle time, major 
Main storage (processor storage) 
Main storage control element (MSCE) 
Major-machine-cycle time 
Manual light . 
Meters and key switch. 
MSCE (main storage control element) 
Multiple-operation instructions, execution of . 
Multiplexer Channel, 2870 

Operator control panel (OCP) 
Operator controls on system control panel ... 

24 
...... 29,27 

29 
5 

10 
13 

5 
8-10,6,7 

16,17 
.............. 5 

25,24 
.. ............ 30 

16,17 
13, 14 

20,21,6,7 

Operator intervention controls on system control panel . 
Optional features on Model 91 

6,23-25 
23-25 
25-30 

6,7 

Peripheral storage control element (PSCE) 
Physical storage width 
Power-off (display) key 
Power-on (display) key 
Power-off (system) key 
Power-on (system) key 
Power panel ... ........ . 
Processing Unit, 2091 
Processor, instruction 
Processor /processor-storage combinations 
Processor storage (main storage) 
Program interruptions 
PSCE (peripheral storage control element) 
PS\V (program status word) restart key 

Rate switch 

Scan key 
Selector Channel, 2860 
Set IC (instruction counter) key 
Set PS\V (program status word) key 
Special features (optional features) on Model 91 
Standard features of Model 91 
Status-switching instructions, execution of 
Start key 
Stop key 
Storage access time 
Storage channel 
Storage cycle time 
Storage width, physical 
StOH' key 
Store-and-display function 
Store/display switch 
System components 
System control panel 
System light 
System reset function 
System reset key 

Test light 
Timing considerations 

19,20 
.......... 5 

24 
24 

25,24 
25,24 

24 
10-20,5-9 

11-16 
6-10 

8-10,6,7 
14-16,5 

19,20 
29,27 

29,27 

29,27 
20-21,6,7 

29,27 
29,27 

6,7 
6 

13, 14 
29,27 
30,27 

5,8 
20,7,8 

5 
5 

30,27 
22 

30,27 
6, 7 

22-30 
25,24 

22 
30,27 

25,24 
32-34 

Variahle-field-Iength and fixed-point execution element 17,18 

25,24 \Vait light 
Width of storage, physical 5 

Index 35 



• 

IBM System/360 Model 91 
Functional Characteristics 

READER'S COMMENT FORM 

If you desire a reply by the group that prepared this manual, include your name and address. 

From 

GA22-6907-3 

NAME __________________________ OFfICE/DEPT NO. ___ _ 

CITY/STATE ___________________ ZIP CODE ____ DATE _____ _ 

• How did you use this publication? 

D As a reference source D As a classroom text D As a self-study text 

We would appreciate your comments; please give section or figure titles where appropriate. 

• What sections or figures were particularly useful or understandable to you? 

• What sections or figures could be improved? 

• What sections or figures require additional information? 

• Any other comments? 

• How do you rate this manual? 

Thank you for your cooperation. WTC users must add postage. 



GA22-6907 -3 

YOUR COMMENTS, PLEASE . ......... . 

This SRL manual is part of a library that serves as a reference source for systems analysts, 
programmers and operators of IBM systems. Your comments will help us produce better 
publications for your use. Each reply will be carefully reviewed by the persons responsible 
for writing and publishing this material. All comments and suggestions become the property 
ofIBM. 

Note: Please direct any requests for copies of publications, or for assistance in using your 
IBM system, to your IBM representative or to the IBM branch office serving your locality. 

fold fold 

(') 
C 
-l 
l> 
r 
o 
Z 
C) 

-l 
::r 
(j) 

C 
Z 
m 

...................................................................................................................................................... 

BUSI NESS REPLY MAl L 
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES 

POSTAGE WILL BE PAID BY .. '" .. , 

IBM CORPORATION 
P.O. BOX 390 
POUGHKEEPSIE, N.Y. 12602 

ATTENTION: CUSTOMER MANUALS, DEPT. B98 

FIRST CLASS 
PERMIT NO. 419 

POUGHKEEPSIE, N.Y. 

....................................................................................................................................................... 
fold 

Intematlonal Business Machines Corporation 
D,a" Proce .. lng Division 
1133 Westchester Avenue, White Plains, New York 10804 
(U.S.A. only) 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
(Intematlonal) 

fold 

"Tl 
C 
::J 
(') 
.-+ o· 
::J 
~ 
(") 
::T 
Q) .., 
Q) 
(') 
.-+ 
(I) .., 
la' 
o· 
en 



GA22-6907-3 

International Buslnell Machines Corporation 
Data Procelling Division 
1133 Westchelter Avenue, White Plains, New York 10804 
(U.S.A. only) 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
(International) 


	01
	02
	03
	04
	05
	06.0
	06.1
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	replyA
	replyB
	xBack

