Program Product

Information Management
System/360 for the

IBM System/360
Program Description

Program Number 5736-CX3

The Information Management System/360 is an Operating
System/360 processing program designed to facilitate the
implementation of medium to large common data bases in
a multiapplication environment. This environment is
created to accommodate both online message processing
and conventional batch processing, either separately or
concurrently. The system permits the evolutionary ex-
pansion of data processing applications from a batch-only
to a teleprocessing environment.

This manual contains a description of the functions
concerned with IMS/360 in a data processing environment
and of the system and its facilities provided; a discussion
of data base and application program structure and details;
and systems and terminal operations interfaces. An
appendix includes application program examples in both
COBOL and PL/I. An index is included to facilitate the
use of the manual.

Inside Front Cover of SH20-0634-1
Revised March 19, 1971
By TNL SN20-2339

- Second Edition (July 1970)

This edition applies to Version 1, Modification Level 2, of the Prdgram Product Information
Management System/360 for the IBM System/360, 5736-CX3.

This is a major revision obsoleting H20-0634-0. Besides correcting errors, this edition contains
additions and changes supporting Release 18 of the Operating System.

Here is a summary of the major new and changed items in this revision.

e PL/I message program structure example is clarified.

e PL/I and COBOL batch program structure examples are clarified.

o Sensitive segments should not be listed in PCB working storage mask.

Other changes to the text and small changes to illustrations are indicated by a vertical line to

the left of the change; changed or added illustrations are denoted by the symbol e to the left of the

caption.

This edition applies to Release 18 of IBM System/360 Operating System and to all subsequent
releases until otherwise indicated in new additions or Technical Newsletters.

Changes are continually fhade to the specifications herein. Therefore, before using this publication,
consult the latest System/360 SRL Newsletter (GN20-0360), for the editions that are applicable
and current.

Copies of this and other IBM publications can be obtained through IBM branch offices.

A form for readers’ comments is provided at the back of this publication. If this form has been
removed, address comments to: IBM Corporation, Technical Publications Department, 1133
Westchester Avenue, White Plains, New York 10604.

© Copyright International Business Machines Corporation 1969, 1970

N

NS

Chapter 1. Introduction . . .«

Chapter 3. Facilities of IMS/360

Chapter 4. Data Base Organization

Chapter 5. Application Program Structure

Application Programming Function . .
Systems Operation Function
Systems Programming Function
Machine Operations Function

Chapter 2. Description of IMS/360 « . . .

Definition of Data Language/I « o o

-

Data Language/I Vs Operating System/360 Data Management

Data Lanquage/I — Data Base . ¢« « « o« « « o

Application Development and Structuring of IMS/360

Interface With Systems Operation

Communications Control
Application Scheduler
Data Language/I . « « o ©« @« « «
Data Language/I Major Features
Data Language/I Rules
Message Region . . . « « « « o &
Batch Region . . ¢ ¢« ¢ = ¢ o o o o o «
Message Processing and Message Switching
Checkpoint and Restart . <« « & w« « o « «
System Recording, Logging, and Measurement
System Measurement . « <« « ¢ o« o o ¢ o

o o e 0
o & s 8 s & o
e & o » & »
« o o ¢ o s s
e o s s s 0 e
e o & s * s & o o
& 8 & o 8 o & 8 e s s

Types of Data Bases « « « « o«
Simple Hierarchical Files . .
Complex Hierarchical Files .

Structure of Data Bases . . . « « o « « =
Data Language/I - Data Base Organization

Data Base Processing . .
Data Base Creation . .
Data Base Retrievals .

¢ o o 0
s & o 0
o o o
¢« o o
* s s

Data Base Updates . .

Data Base Deletions .

Data Base Insertions .
Message Input/Output Calls
Program Specification Block (PSB)
Data Base Segment Sensitivity . .
Data Base Segment Definition . .
Types of IMS/360 Processing Regiomns .

s s s o 0 s

Type 3 Region Batch Program Structure . .
COBOL Batch Program Structure
PL/I Batch Program Structure
Assembler Language Batch Program Structure

Message or Type 2 Batch Program Structure . .
COBOL Message Program Structure
PL/I Message Program Structure
Assembler Language Message Program Structure

The Language Interface
Parameter List Contents

Segment Search Arguments (SSa) .
Segment Name . . . ¢« « « . .
Segment Qualification statement
Example of SSA Usage

-
Y
e
-
-
-

e s & s o
o o & 8 o
s o o o o
e o o+ 0 0
o o s o 0
" s & & & o

.] . . .] . [] . [. .

e 6 & & 8 o s o 8 & & o o s

e 8 8 2 8 8 & s 0

s 6 6 & o 6 & s s s o

¢ 8 & & & 8 6 s+ s 0 6 o s 0o 0+ s

" & o o &

® 8 & & & 3 8 s e s

e 8 6 & o o & b & o o

e s & & 8

¢ s 5 & & & s s o o

s & & o & 82 & 5 o 6 & 2 e s

CONTENTS

.
.
.
o~NNONE WwNhoNR

.
[
(%]

o o o & & & & s » & s 2

e 8 & & o 8 & 4 e o o

L] . L] L] L] L[] . L] . . L]
[
Yol

e o 8 5 e 6 & s s s 8 6 s 8 s s &
® 0 o 8 6 8 & s 6 0 8 e s s s s 0
8 o o o & & & & 0 6 6 & 8 8 0 0 @
£ £ \®)
& N ~

.
-3
O

o s 4 8 s s 2 s & s s 8 s s e
L T T T R
\n
[=))

e o 5 8 e & 3 e 0 & & s s s

o o s o o
=)}
(5]

Chapter 6. Application Program Details

Segment Input/Output Areas . . « « « « « &
Example of Segment I/O0 Area . « « « « «
Example of Data Base Segment I/0 Area . .

Program Communication Block (PCB) Formats
PCB. for a Terminal
COBOL Example . . .
PL/I Example . . .
PCB for a Data Base
COBOL Example . . .
PL/I Example . . .

s & o o s @

. L] [] (] .

. L [.

e o o o o o

" e o o 0 o

o o o 8 o o o

Describing the Program to IMS/360 .
Programmer's Checklist
Entry to Application Programs . . .
Data Language/I Data Base Calls . .
The GET UNIQUE cCall (GUbb) - Data
Status Codes for GET UNIQUE Calls .
The GET NEXT Call (GNbb) - Data Base .
Status Codes for GET NEXT Calls
Definition of Cross-Hierarchical Boundary

e o o o

L]
ase

[. . . L) [] L] . [

The GET NEXT WITHIN PARENT Call (GNPb) - Data
Status Codes for GET NEXT WITHIN PARENT Calls

The GET HOLD Calls - Data Base . . .
Status Codes for GET HOLD Calls . . .
The INSERT Call (ISRT) - Data Base .

Status Codes for INSERT Calls . . .
The DELETE Call (DLET) - Data Base
The REPLACE .Call (REPL) - Data Base .
Status Codes for DELETE/REPLACE Calls
Message Formats and Structures
Input Message Format
output Message Format « « « « « . « &«
Examples of 2260 WRITE Commands
Program-to-Program Message Switching Forma
CALL Definitions for Messages
The GET Calls (GU, GN) . . <« ¢ ¢ « o« « =«
The INSERT Call (ISRT) . « « « ¢ o « =«
Status Codes for Input and Output Messages
Status Codes for Data Language/I Calls . .
Input Message Editor . .
The Edit Table
Delimiter Entry
Field Entry
T Edit Table Header Entry -
Termination of an Application Program
Message Processing Region Simulation
Processing Region Abends
Commonly Encountered 0S/360 System ABENDS

-
-
-
e o e o =

Chapter 7. Systems Operation Interface . . .
Assignment of Transaction Codes/Logical Terminals

Data Base Descriptions (DBD)
DBD Control Card Requirements
PRINT Control Card . . .
DBD Control Card
DMAN Control Card
SEGM Control Card
FLDK Control Card
FID Control Card

-
-
.
-
.
.
-
3
-
-
-
-

0

DBDGEN Control Card .« o
FINISH Control Card . e
END Control Card . .« o
DBDGEN Examples« o
Description of DBD, Generatlon utput

t

[. . [] [. . .

l0'000loointo'otlloooaooluoomlotl.l

. * L] L] . L] . . L]

. . . s . . [. . [. L . . . [L N (] L]

¢ 6 o & 8+ s 8 0 o s

8 6 6 & 8 0 8 6 6 0 0 8 B e 8 8 & B B & 6 & 0 0 s 0 0 8 6 s o o s 2 s e o

[. . . L] . . [[] L)] [1] . [] [[. e a) [] L[] . . [[] . e o 0 .

e 8 & o & o & 2 s a s o

& & & o & o & o 4 8 s 0 & s

. 90
91 7

Control Card Listing .117

DiagnoStiCS « « o o o o o « o o o o o« o o o o o o o o s o-a o o <118
Assembly LisSting .« o o o ¢ ¢ ¢ ¢ o o o o o o o o o o o o o o o 2118
Load Module . « o o o o o o o o o o o o o« s o o o s o o o o o o« 118
DBD Generation Error Conditions ¢ ¢ & & ¢ &« & &« « o o 2118
Program Specification Block (PSB) Generation « . .120
PSB RequirementsS .« <« o o o o o o o o o o o« « « o« o o o« » o « o =120
PCB Control Card - Output Message PCB . . «. « o « « o o « o = o« 2121
PCB Control Card - Data Language/I Data Base PCB . . « . « « o .122
SENSEG Control Card - Sensitive Segments « « « « « « o 124
PSBGEN CONtrol Card . « o o« « o o ¢ « o o o o o o o o« o o« o o« o <125
Sample Deck for PSB Generation . . . ¢ o« « « 2 « « o o o« « « « <125
Description of PSB Generation Output . . « <« « « ¢« ¢« o « « o « « <126
Control Card Listing « o ¢ o o« o o o a o o s o o o « « o o« « « 2126
DIiagnoStiCS o o ¢ o o o o o o o o s o o s s o a o s a o o s « o 2126
Assembly LiSting .« o o o o o ¢ ¢ o o o o o 5 = o o o o « = « o <126
Load Module e o o e o % e o s e o o a o o s o o o o <127

e o e e . L] . e .

PSB Generation Error COndlthnS - . .127
IMS/360 Message Processing Application Integratlon Considerations .128

Chapter 8. Terminal Operations Interface ¢« ¢« . ¢« ¢« « « « « 130
Terminal Command Language « « « o« « « o o = « « o« o o « « « « « o <130
General Description . ¢ ¢ ¢ ¢ 4« ¢ ¢ ¢« ¢ e o o o o e o o o o « - 2130
Structure of Remote Terminal Command Statements . . . « « « « « 130
Correction of Remote Terminal Commands . . « ¢ « « « © « « « o 131
Remote Terminal Command Key Definitions . . ¢« . « ¢ ¢« o « ¢« « o« 131
Remote Terminal CommandS . « o« « « « o o o o o o s = o o o o« « 2132
Remote Terminal Operator's Manual « « ¢ ¢« « « « « « « « « 138
Recommended COntents . o ¢ « o« ¢ ¢« ¢« o o o o o o« = « =« « « =« « .138
Appendix: Application Program ExampleS . « « « « o« « « o « « « = « 139
General MeSsSage PrOGram . « « « « o o o o s o s o« o s o o o o o « 2139
Complete Set of Program Examples in COBOL « « « « « o « « « « « o o143
Data Base Creation (Load) Program . « « « o o« = o o « « « « « o« <1044
A Program to Create Data for Load Program . « . « « « « « o « « 2152
Batch (Update) Processing Program . « « « « o« o « o o« o o s o o <154
Card Data for COBOL Batch Program . . . « « « « ¢ « &« &« « « « « 157
Data Base Reorganization (Dump) Program . . « « « « « « « « « « o158
Message (Update) Processing Program . « « « « o « « o o « o« « « 166
“Data Base Description (DBD) . « ¢ o ¢ ¢« ¢ o o o o = s =« o « = o« <171
PSB Generation EXAMPle .« « « « « « o o s« « = s =« o« s s « « « « 174
PL/I Program EXampPleS . « o « « o « o o o = o s o o s s o o o o« o« 175
PL/I Batch Program . . . e o o o o o o o o e e s o s« s e o o <175
Data Input for PL/I Batch Program e o o o o o o e e » e e o o 178
Result of Data Input - PL/I Batch Program « . . « . .179
PL/I Message Program Example . . . ¢ o o« o« o o « o « o o « « « 182
output of PL/I MesSSage PrOgram . « « « « o « o o o o o« o« o« » o« 2188
Data Base Description (DBD) Generation Example for PL/I Message
PrOgram « o« « o o o o o o a o o o o a o o o o a o o s o o« « o« « 2190
PSBGEN Example for PL/I Message Program . . . « « « « ¢« « « o « 2190
PSBGEN for PL/I Batch Program . « « « « « o ¢ o« o « o « o « « o 2191
Message Processing Program Simulation Example . . « ¢« « « « « « « 2192
Simulation MoAUle A . ¢ « & o ¢ o o o o o o o o o o o o o o o o <192
Simulation Module B . ¢ o o « o o o o 2 o o o o o o o o o o « o« 193
Input EQitor EXample . ¢ o o o ¢ a o o o o o o o o o o o o o =« o 194
INAEX &+ + o o o o o o o o o o o o o s o s o o o o o o o o o » o+ o 4198

~

CHAPTER 1. INTRODUCTION

The Program Description Manual is one of a set of manuals prepared to
define the wvarious functions and personnel relationships involved in the
implementation and system operation of Information Management System/360
(IMS/360) . The other manuals in the set are:

IMS/360 Application Description Manual (GH20-0524)

IMS/360 Operations Manual, Volume I - Systems Operation (SH20-0635)
IMS/360 Operations Manual, Volume II - Machine Operations (SH20-0636)
IMS/360 System Manual, Volume I - Program Logic (LY20-0431)

IMS-360 System Manual, Volume II - Flowcharts (LY20-0432)

This introductory chapter restates some of the same information found
in the introductory chapter of the Systems Operation and Machine
Operations Manuals.

The necessity for these manuals became apparent during the design
phase of the IMS/360. The usual mix of data processing personnel
normally provides for application programming, system programming, and
machine operations functions. With the introduction of IMS/360,
however, the need for a fourth function, a coordinating force in
implementing, administering, and maintaining the system, became
apparent. The function is the "heart"™ of the IMS/360 system and has
been designated the "Systems Operation function®; it is so referred to
herein. The application programming interface with the Systems
Operation function is delineated in this manual (see Figure 1).

An undérstanding of the following is a prerequisite for a thorough
comprehension of this manual:

IMS/360 Application Description Manual
0S/360 COBOL or PL/I Language (GC28-6516 or GC28-8201)

This manuwal gives the application programmer a view of all the
functions and facilities provided by IMS/360 for application development
and serves as both a general information manual and a reference manual.
It is so structured that the reader may obtain a basic understanding of
all he needs to know about IMS/360 to design and write application
programs using the systemn.

APPLICATION
PROGRAMMING

SYSTEMS

OPERATION

[
EXR]
O]
O 000,000
0.0 0 0‘0‘0 XJ

MACHINE
OPERATIONS

QEEAAICS
RISIRERES

QRIS
RGRAIRILHKS

Figure 1. 1IMS/360 functional relationships

APPLICATION PROGRAMMING FUNCTION

The Systems Operation function provides for applications planning,
implementation, and audit. The application programming function must
consider the following in its analysis of a proposed application:

e Configuration and storage device requirements for anticipated

applications
e Data base structuring, storage device cost/performance tradeoffs,

and sharing of mutual data with existing data bases
e Program structuring, core limits, duration of execution, overlay

structure, and program chaining
e Message formats and length, transaction types, priorities,
passwords, and logical terminal names

¢ Schedule of data base checkpoints and checkpoint cost versus

reconstruction cost
e Schedule of data base dumps and reorganization

- SYSTEMS OPERATION FUNCTION
The functions of Systems Operation encompass the following:

e Cconfiguration planning, for all purposes, of new applications so
that communication lines, consoles, and software are available to

support approved applications

7N

~

® Responsibility for control over and approval of all new data base
designs and descriptive control blocks

e Maintenance of the data bases under Data Language/I, including all
control, allocation, and data base generation

e Maintenance of a catalog of programs "certified" to operate as
message processing programs under IMS/360, including related
documentation, processing priorities, transaction codes, control
blocks, etc. .

e Responsibility to provide the capability for reconstruction and
recovery of IMS/360 and its associated data bases when routine
procedures known and understood by the Machine Operations function
are insufficient for such recovery and reconstruction. The Systems
Operation function also has the responsibility to be available to
participate in such extraordinary operations whenever they are
required.

e Responsibility for the utility programs that process the IMS/360
system log tapes and for causing these programs to process the log
tapes and to yield accounting information, machine operations
statistics, usage and data base statistics, and certain management
reports on utilization and errors incurred. The function shall also
have the responsibility for auditing these reports for quality and
for assigning certain reports to other functions for analysis, as
appropriate.

e Responsibility for IMS/360 system generation and modification
e Maintenance of all IMS/360 documentation

SYSTEMS PROGRAMMING FUNCTION
The functions of Systems Programming encompass the following:

e Assistance and participation in the hardware installation, test, and
initial operations of any new equipment or changed configurations

e Consultation with IMS/360 Application Programmers in conjunction
with the Systems Operation function to assist. in the integration of
applications with IMS/360

e Software maintenance and improvement of IMS/360 utility programs and
modifications to Operating System/360

MACHINE OPERATIONS FUNCTION

In addition to the usual operational assignments, the Machine
Operations function shall be responsible for:

e All master terminal capabilities in accordance with established
procedures, with especially prepared instructions to cover
extraordinary happenings

e Assisting terminal operators at remote terminals in the initial
diagnoses of apparent problems, be they concerned with the remote
terminal, the connecting communication line, the central hardware,
the central software, or message processing application programs.
After the initial diagnoses, the Machine Operations function should
have accumulated sufficient information to determine whose
assistance is required and to intelligently describe the problem,
and will be able to assist in determining the degree of emergency
sustained.

CHAPTER 2. DESCRIPTION OF IMS/360

The Information Management System/360 (IMS/360) is a set of control
program modules designed to operate under the control of and within the
framework of Operating System/360. The intent is to give the user of
Operating System/360 the ability to construct large data bases and to
interface with the data in an efficient teleprocessing manner. To gain
maximum utilization of the resources of IMS/360, a multiprogramming
environment is required and is obtained through the facilities of
Operating System/360 with Multiprogramming with a Fixed Number of Tasks
(MFT) or Multiprogramming with a Variable Number of Tasks (MVT).

At system IPL time (see Figure 2), the Operating System/360 nucleus
is brought into core storage to become the foundation of this
multiprogramming environment. The highest priority region of Operating
System/360 is used for the IMS/360 resident control program. The
remainder of the available core storage is divided into message reglons
and batch regions, depending upon user requirements.

L} L]
l				
		1		
	REGION 0	REGION 1	REGION 2	REGION 3
07360	! I			
NUCLEUS				
	(
	CONTROL	PROCESSING	PROCESSING	PROCESSING
i	PROGRAM	i		
i	!			

Figure 2. Operating System/360-IMS/360 multiprogramming environment

The Operating System/360 nucleus and its resident extensions provide
the nucleus resident service modules, resident access methods, SVC's,
storage protect control, etc. that are required when running in an
IMS/360 environment.

The IMS/360 control program region includes all the resident control
modules and facilities available to the application program. These
facilities are:

1. Communications Control, which provides terminal polling, message
receiving, message validity checking, input message enqueuing,
output message dequeuing, message sending, and other user and
terminal control functions.

2. BApplication Scheduler, which considers input messages for
processing after being signaled by communications control of
their availability. The application scheduler checks for the
availability of resources (message processing regions, message
processing program, data base, and data base buffers) in the
IMS/360 region. If all required resources are available,
messages are scheduled for processing on a priority basis. The
application scheduler also provides for the orderly termination
of application programs for normal or abnormal reasons.

3. Data Lanquage/I, which provides the application programmer access
to data bases in a manner that allows him not only a high degree

of device independence but also data management software
independence. (See "Definition of Data Language/I" below.)

4. checkpoint and Restart, which provides for recovery of system
data bases and message queues in the event of system failure, and
for normal restart of IMS/360. Checkpoint also condenses system
message queues and assists in dumping and restoring data bases
for reconstruction or audit. The checkpoint facility is an
integral part of restart. Both normal startup and restart after
system failure are accomplished using the last or a previous
checkpoint from the IMS/360 system log.

DEFINITION OF DATA LANGUAGE/I

The traditional limitation of every data processing application has
been the organization of the data to be manipulated. The structure of
each data record and its manner and medium of storage have affected
application design and programming, and a great deal of effort has been
expended to free the data organization from the physical restriction of
the data storage medium.

It is the purpose of Data Language/I to allow the application program
to gain a high degree of independence from the input/output software
systems and storage devices that are required for storage and
manipulation of the data. As seen in Figure 3, Data Language/I provides
a "wall" or separation between the application program and the data
bases. An application program has two distinct interfaces with Data
Language/I: (1) a data base description, a mapping or transformation
relating the logical data structure and physical storage structure of
the data base given as a definition external to the application program;
and (2) a common source program linkage (referred to later in this
manual as the application program language interface), which allows data
input/output requests during the execution of the application program.

A second, and possibly more important, purpose of Data Language/I is
to provide a medium through which a programmer can have access to large
data files not specifically built and organized for his use. This
should lead to the ability to combine common data into a single data
base rather than maintain redundant data. Data Language/I relieves the
application program of the necessity of knowing the physical location of
its data in the data bases. The application program requests
input/output data base operations of Data Language/I, using the logical
data relationships of the application. Data Language/1 translates or
maps this logical data relationship to the physical storage of the data.
In this manner, the physical storage of data may be changed, and, if the
logical data relationships are retained, the application programs need
not be modified.

APPLICATION (
®LOGICAL :
DATA PROGRAM \

RELATIONSHIP

DATA
BASE
DESCRIPTION

® PHYSICAL
STORAGE OF
DATA

w,
a4
N

S

DATA
LANGUAGE/

Figure 3. Data Language/I relationship between application program and
data base

The availability of noncustomized data brings into full meaning the
concept of a data base. In this context, the ability to create and
access large data files having multiple uses and eliminating redundant <
information takes on real meaning.

The data base processing capabilities of IMS/360 are represented by
Data Language/I and form an important part of IMS/360. Note, however,
that Data Language/I can operate independently of the IMS/360
teleprocessing facilities used exclusively for batch processing. It is
also used in the batch processing environment to create (load) all batch
and message processing data bases. Data bases cannot be created by a
message processing program.

The following are the significant capabilities available to the Data
Language/I user:

1. A common source program interface is provided between the
application program and the data base.

2. A data base description provides a mapping from the logical data
relationships to the physical storage of the data. This
description is maintained external to the application program.

3. The ability for a program to define the portions of a data base
to which it wishes to be "sensitive"™ (that is, to have access)
without considering the total data base structure permits the
organization of nonsensitive data to be changed or added to
without affecting application programs.

4. Data Language/I uses Operating System/360 fixed-length ISAM with
an improved capability for data insertion and overflow control.

5. In the teleprocessing environment, data base security is assisted (:
through a password technique.

6. In a multiprogramming environment, controlled access is provided
during update operations to maintain integrity of a data base.

7. A hierarchical data element relationship is introduced between
" the various portions of a data base. This permits the handling
of variable-length data structures in a fixed-length manner.
Simplification of data handling should be experienced in COBOL or
PL/I application programs.

8. A utility program is provided for use in describing and storing a
definition of the data base structure. (See "Data Base
Description™.)

9. A utility program is provided for use in describing the
application program's data base "sensitivity and usage". (See
"Program Specification Block".)

DATA LANGUAGE/I VS OPERATING SYSTEM/360 DATA MANAGEMENT

This portion of the manual shows the relationship of Data Language/I
to Operating System/360 Data Management, lists the difference between
the two, and defines the terminology associated with each.

Data Lanquaqge/I - Data Base

The data base concept is introduced by Data Language/I in IMS/360.
In order to define the term data base, its relationship to the Operating
System/360 Data Management data set should first be defined. The SRL
publication, IBM System/360 Operating System Supervisor and Data
Management Services, says, "Any information that is a named, organized
collection of logically related records can be classified as a data
set.... A data set may be...a file of data records used by a processing
program."” The data set is the major unit of data storage and retrieval
in Operating System/360. Figure 4 shows the Operating System/360 Data
Management data set structure to be made up of physical records, which
are further broken down into logical records. The only relationship
between the physical and logical data structure provided by Operating
System/360 is one or more logical records within a. physical record.

LOGICAL RECORD

PHYSICAL RECORD

DATA SET

Figure 4. 0S/360 data management data set structure

Data Language/I, in order to accommodate variable-length application
records (data base records), provides the capability of a logical record
within a physical record or a logical record spanning one or more
physical records.

A data base may be considered similar to a data set because it is an
organized collection of data entered and maintained in some logical
sequence to facilitate later inquiry and processing.

In the application logical data sense, the data base is composed of
data base records (Figure 5). The data base record is the logical
record of the application. A data base record is a collection (of
variable number) of fixed-length data elements, called "segments",
hierarchically related to a single occurrence of a root segment. A

segment is a portion of a data base record containing one or more
logically related data fields. A root segment is the highest
hierarchical segment in the data base record. Each data base record
must have only one. root segment. The root segment comprises data which
applies to all users in the processing of the data base record. A
dependent segment is a segment that relies on at least the root segment
for its full hierarchical meaning. It is therefore always at a lower
hierarchical level than the root segment. A dependent segment may also
be dependent on other dependent segments for its full meaning. In order
to process the segments in a data base, it is only necessary for the
user to be aware of those segments which comprise the data base record
and the relationship of these segments to each other (that is, the
logical data base record structure of segments). There can be 255
segment types within a data base and 15 levels of segment hierarchy
within a data base record.

ROOT " DEDENDENT '
SEGMENT SEGMENTS LOGICAL
APPLICATION
DATA BASE RECORD : 'DATA
. PHYSICAL RECORD PHYSICAL RECORD ;
ISAM DATA SET OSAM DATA SET
PHYSICAL
DATA SET GROUP » | STORAGE
: STRUCTURE
DATA BASE ~
PHYSICAL STORAGE DEVICE PHYSICAL STORAGE DEVICE Y

Figure 5. IMS/360 Data Language/I data base structure

Referring to Figure 5, note that each data base, in the physical
sense, is composed of at least one data set group. Each data set group
consisting of one or more data sets is dependent upon the organization
of the data base for exact definition. The data bases/data set group
concept represents the Data Language/I expansion of the Operating
System/360 data set concept in the storage of data. The data set group
concept allows Data Language/I to accommodate variable-length logical
records even with the constraints of available storage devices. The
user of a data base (that is, application program) is insensitive to the
number of data set groups which comprise the data base (the physical
structure of the data base) and which may change periodically on the
basis of the proce351ng and storage requirements of the data base. The
user should view the data base as a collectlon of data base records, not
of data set groups.

The descriptive information of logical data base record-segment
relationships and the physical device and data set group description
used by Data Language/I are stored apart from the data base and
application program in a Data Base Description (DBD). The DBD is built
using the Data Base Description generation utility program and must be
completed before data base creation or application program execution.

APPLICATION DEVELOPMENT AND STRUCTURING OF IMS/360

When the user of the IMS/360 system initiates the definition of an
application program to operate with IMS/360, the following must be
performed:

/N

1. The definition of each Data Language/I data base in terms of its
hierarchical structure and storage, and the creation or load of
data into each data base in the batch processing environment,
using the capabilities of Data Language/I

2. The definition and construction of all message and batch
processing programs and the control blocks that define how a
program intends to use a data base

3. The definition of wvarious message types and their associated
processing programs, scheduling priorities, and security aspects

4. The definition of the logical and physical communications
terminal and line network utilized by the application

The user must also structure IMS/360 by the creation of a control
block for each communication line, terminal, message type, message
processing program, and data base. The construction and integration of
these control blocks into the resident IMS/360 control program are
facilitated by the use of the utility programs. Restructuring of the
control blocks will be necessary periodically.

A detailed description of the events that must occur before execution
of the IMS/360 control program with the user's application program and
data bases follows (see Figure 6). Figures 7 through 12 describe the
component functions that are the user's responsibility. All block
numbers refer to Figure 6.

PROGRAM
LIBRARY

DATA BASE
CREATION AND
REORGANIZATION
PROGRAM

BATCH PROGRAM

DATA BASE DBD 1 DATA 1 PsB " APPLICATION
DESCRIPTION GENERATION | g LANGUAGE/! GENERATION PROGRAM
PARAMETERS UTILITY 1 BATCH 1 utiLity DESCRIPTION

‘ PROGRAM ENVIRONMENT PROGRAM PARAMETERS

DBD
LIBRARY

DBD AND PSB
INFO

I- - - 1
H H IMs /
IMS VG SYSTEM IMS
¥ TeLEPROCESSING Bl RESIORNT DEFINITION DEFINITION AND
B enviIRONMENT CONTROL UTILITY MAINTENANCE
123 e ____l 13 BLOCKS 1 |__PROGRAM 16

MESSAGE

A
PROGRAM BATCH PROGRAM

Figure 6. Events for IMS/360 use

1. The user must create a Data Base Description (DBD, Block 4) for
each data base associated with an application program. He then
uses the Data Base Description of the data base as input to the
DBD generation utility program (Block 5) in the Data Language/I
batch environment (Block 6) (or 05/360 batch environment). The
resultant DBD is stored as a member of an 0S/360 partitioned data
set called the DBD library (Block 9). See Figure 7.

l I
DATA | |
BASE || ocENEraTION
4 DESCRIPTION — uTILITY ‘ DBD [
PARAMETERS | 5 PROGRAM o| LiBRARY
| I
| I
U |

Figure 7. Data base description

2. Next, the user must create three items. First, he must create a
data base creation (load) program (Block 1) for each data base.
Second, he must create the description of each load program"'s
data base requirements (Application Program Description, Block 8)
according to the parameters of the Program Specification Block
(PSB) generation utility program (Block 7). Third, he must use
the data base creation program description (PSB, Block 8) as
input to the PSB generation utility program (Block 7) in the Data
Language/I batch environment (Block 6) (or 0S/360 batch
environment). The resultant PSB is stored as a member of an
0S/360 partitioned data set called the PSB library (Block 11).
See Figure 8.

DATA BASE
CREATION &
REORGANIZATION
PROGRAM

PROGRAM
LIBRARY

A 4

|
|
|
" APPLICATION | PSB
PROGRAM y | cEneraTiON
|
|
|

PSB
LIBRARY

@

DESCRIPTION uTiLiTY
PARAMETERS PROGRAM

Ny

Figure 8. Data base creation

3. The user's data base load program may now be executed either for
loading or for reorganizing the data base. The program requires
the Data Base Description (DBD) for that particular data base,
and the Program Specification Block (PSB) associated with the
data base load program. See Figure 9.

10

7N

6 | DATA LANGUAGE/I BATCH ENVIRONMENT —l

-

1" PS8

LIBRARY

LIBRARY BASE

N—

PROGRAM
LIBRARY

| 9 DBD > DATA

Figure 9. Creation or reorganization into batch environment

4. Once all data bases have been created, the user must create a PSB
(Blocks 8 and 7) for each message processing program. The user
must place all programs that use Data Language/I into a user
program library. The name of each PSB is identical to the name
of the program with which it is associated. See Figure 10.

MESSAGE
v PROGRAM ! I
— PROGRAM
3or 19 et I 2] Lisrary :
| 18
| |
’ |
" APPLICATION | PSB
PROGRAM L | GENeraTION |
8 DESCRIPTION v uTILITY PSB
PARAMETERS 5 PROGRAM LIBRARY |
| |
l |
—d

Figure 10. Storing in library

5. The user must supply information about each DBD and PSB to the
Systems Operation function. This information is needed for
IMS/360 control program definition and maintenance (Block 15
input to Block 16). See Figure 11.

6. Using the information in Step 5, above, and the IMS/360 System
Definition Utility program (Block 14), the user creates (or
updates) the IMS/360 control program with the resident
information (Block 13) necessary for the execution of his
application program and for incorporation of new (or modified)
data bases and application programs. See Figure 11.

11

DBD & PSB IMS DEFINITION
15 INFORMATION &

MAINTENANCE
f-—— — — — — — — —|— =
' I
| |
' [
| IMS SYSTEM |
DEFINITION IMS
| uTILITY RESIDENT |
| ™ PROGRAM CONTROL I
BLOCKS
' |
L DATA LANGUAGE/I BATCH ENVIRONMENT |

Figure 11. sSystem definition and maintenance

7. After the above steps have been completed, execution of the
application programs with the applicable data bases, either in an
IMS/360 teleprocessing environment (Block 12) or a Data
Language/I batch environment (Block 6), occurs. See Figure 12,

- | -

DATA

- |

IMS I
TELEPROCESSING
ENVIRONMENT |

PSB ' »
1| LsRARY \d—_—__—_/

BASE

N—

IMS
9 DBD ——— —l RESIDENT
LIBRARY l CONTROL
BLOCKS
— DATA LANGUAGE/I | S~

BATCH ENVIRONMENT |

-_ L 4

PROGRAM
LIBRARY

N—

nN

Figure 12. Execution begins

INTERFACE WITH SYSTEMS OPERATION

A Systems Operation function is intended to provide for applications
planning, implementation, and audit. The application programmer must
provide enough of the following information for Systems Operation to
assist in the analysis of the proposed application:

1. configuration and storage device requirements for anticipated
applications

2. Data base structuring, storage device cost/performance tradeoffs,
and commonality of data with existing data bases

3. Program structuring, core limits, duration of execution, overlay
structure, and program chaining

12

N

N

6‘

Message formats and length, transaction types, priorities,
passwords, and logical terminal names

Schedule of data base checkpoints and checkpoint cost versus
reconstruction cost

Schedule of data base dumps and reorganization

The application programmer must interface with Systems Operation,
which provides the following for creation and maintenance of libraries

and logs:

1. Naming conventions for Data Base Descriptions (DBD's), Program
Specification Blocks (PSB's), and application programs

2. Allocation and maintenance of libraries for DBD's, PSB's,
application programs, and IMS/360 PSB and Data Management Block
(DMB) directories

3. Data Base Description generation and Program Specification Block
generation

4, cCertification and final incorporation of programs into
application program library

5. Logs of logical terminal names, transaction codes, priorities,
and passwords

6. Schedules of data base checkpoints and data base reorganization’

7. Master terminal operations

8. 1IMS/360 system status

9. Trouble logs for data base, program, system, lines, terminal

operators, and documentation

Systems Operation must provide to the application programmer:

1.

2’

3.

Assignment of disk packs, physical arrangement of data bases, and
audit of volume and overflow activity

Procedures for checking out new applications in the IMS/360
production environment .

Published guidelines for application programmers, stating
standards and procedures, and enumerating steps in implementing
an application

Systems Operation must provide the application progrémmer with
failure diagnosis and recovery procedures for the following:

1.

2.

3.

Types of failure and operator reaction
Terminal diagnostic program
Master console control of data base checkpoint

Master console restart procedures, including recovery of
in-process messages and reconstruction of data bases

Master console control of IMS/360 stand-alone batch programs
Control of non-IMS/360 batch programs running background in the

IMS/360 environment

13

7. IBM Field Engineering intexrface
8. System restart

As a part of the Systems Operation function, accounting and billing
for IMS/360 batch and message programs and a background batch program in
the IMS/360 environment are provided. Statistics from the system log
tape processing that reflect activity by system, transaction type,
terminal, line, etc. are also distributed.

Systems Operation also makes periodic reports to management and the
other functions on data base activity, size, device allocation, terminal
activity, line activity, transaction activity, etc. At all times,
Systems Operation is ready to assist each function in achieving
operational efficiency.

14

CHAPTER 3. FACILITIES OF IMS/360

COMMUNICATIONS CONTROL

Communications control is a set of modules within IMS/360 that
provide the service to or interface for the terminal user. Two major
divisions or facilities are provided within the framework of
communications control:

e Ccommand language processing

e Message processing, including receiving, analyzing, queuing,
handling, and sending

Within the above divisions are many subfunctions important to a
message-oriented system.

Under the general description of command language processing are the
dual functions of master terminal commands and user terminal commands.
The master terminal may be considered the nerve center of IMS/360. All
system conditions and many error conditions are reported to this
terminal. Through the master terminal come all the decisions and
commands that affect the general status of IMS/360, and through it the
status of lines and terminals is controlled. The master terminal
controls checkpoint and restart, which terminals are to be polled, what
transaction codes are usable, whether a program is usable, the priority
of specific transaction types, and the relationship between a physical
and a logical terminal.

For the terminal user, communications control becomes the primary
entity with which to communicate. If a terminal is available, it is
polled or enabled until the user indicates a need for service. The data
is then accepted and validated, stamped with time and date, logged for
restart or audit, and enqueued for scheduling by IMS/360 and processing
by the application program in a message region. If IMS/360 determines
that the data is incorrect because of format or security, the error
condition is immediately communicated to the user terminal. When the
data base has been processed by the application program and a reply
formulated, the reply message is enqueued by Data Language/I for
communications control to transmit back to the using terminal.

Message queues are maintained in core storage as long as possible,
but the primary copy is always kept on a direct access storage device.
If the message is still in core storage when Data Language/I1 retrieves
it, no disk access is required.

APPLICATION SCHEDULER

The application scheduler may be called the "resource manager" of
IMS/360. The decisions to be made concern whether the necessary
resources are available to process a specific message type. Two major
events must occur within IMS/360 before the availability of resources
can be considered: - ' '

e A complete message must be received, validated, and enqueued by
communications control. The application scheduler is then notified.

e It must be ascertained that a message processing region is ready and

waiting to be scheduled. The application scheduler is then
notified. ’

15

When these two events have occurred, the application scheduler gains
control and attempts to initiate a message processing program on a
priority basis.

When the application scheduler has control, and a complete message
and a message region are available, scheduling takes place. The highest
priority message in the system is selected for processing. The
application scheduler checks to see whether the application program is
available for use by this message type. Only one copy of a message
processing program will be in core storage at any one time regardless of
how many message types it services. If the program is available, the
scheduler determines whether all the data bases required by the message
program are available. If program and data bases are available, I/O
buffers for the data bases are requested. When all the resources are
available, they are reserved for this message, and the IMS/360 control
module located in the message region is notified to load the proper
program and initiate it.

If one of the resodrces_required is not available, the position of
the message in the priority queue is maintained, and the next message
type at the same priority is tested for selection.

Within IMS/360 there are 15 levels of scheduling priority (0 through
14). Level 14 is the highest level, and zero or "null" is the lowest.
The null priority is a holding priority and is never scheduled. Every
transaction code or message type within IMS/360 carries three numbers
related to priority. First is the current priority, which indicates
where the message actually is at any given instant in time; this is the
number used whenever a message type is to be enqueued. The second
priority number is the normal priority and is the normal source for the
current priority. The third priority number is the limit priority and
has associated with it a control number called "limit count®". The
current priority for any given transaction within the system is equal to
the normal priority whenever the current number of messages of that
transaction type in the input queue is less than the limit count.
However, if the current queue of messages of a given transaction type
equals or exceeds the limit count, the current priority is changed from
the normal priority to the limit priority. When all messages of the
given transaction type have been processed, thus reducing the queue
length for that transaction type to zero, the current priority is
restored to the normal priority.

The scheduling algorithm is based on these three priority numbers.
An example of the scheduling process is as follows:

* Transaction Code = MTI

e Normal Priority = 4 (level 4)
e Limit Priority = 11 (level 11)
e Limit Count = 20

Assume that this application requires a maximum of one hour
turnaround on all messages. The minimum message rate is 25 per
hour. During normal working hours message type MTI may be scheduled
every 15 minutes, or more often, and most of the messages are
processed each time. During peak periods when there is high
activity on messages at levels 9 through 14, for example, messages
at the lower levels may receive service only every two or three
hours or perhaps not until the peak is over. During these peak
periods, message MTI will stay at level 4 without service until the
20th message is enqueued. When the 20th message arrives, the
priority of MTI is automatically boosted to level 11 by making the
current priority equal to the limit priority (that is, 11). MTI

16

7N\

7N\

will now contend for service at a priority of 11. MTI will remain
at priority 11 until the enqueued message count returns to zero.
MTI is then automatically restored to priority 4.

It is important to note that the master terminal also has the ability
to modify the current priority. If this occurs, the message type
remains at the modified priority until the enqueued message count goes
to zero; it is then restored to the normal priority.

A message type held at the null normal priority will be scheduled
only if the enqueued count reaches the limit count and the limit
priority is not null.

Using the null normal priority, a message type can be batched and run
only when a specific number of transaction types (equal to the limit
count) are available.

The application scheduler is also responsible for the orderly
termination of a message processing program. When the scheduler is
notified that a message program has finished, all the pending data
buffers are written out, and the data bases, the data base buffers, and
the program are released for reuse by another message type. The
application scheduler also ensures the orderly release of resources used
by a message program that ABENDs. The message type and its associated
program that were running at ABEND time are flagged as unscheduled. The
master terminal operator must then take positive action to allow
scheduling of the message type after correction of the program.

DATA LANGUAGE/I

IMS/360-Data Language/I utilizes the facilities of two Operating
System/360 Data Management access methods. Basic Sequential Access
Method (BSAM) has been adopted to offer the basic ability for processing
data bases which have been stored sequentially on 2301 drum, 2302 disk
file, 2311 disk packs, 2314 disk facility, 2321 data cell, or 2400
magnetic tapes. In addition, Indexed Sequential Access Method (ISAM)
has been adopted to provide the capability of holding indexed sequential
data bases on 2302 disk file, 2311 disk packs, 2314 disk facility, or
2321 data cell. .

To complement the facilities of ISAM, a new access method, called
Overflow Sequential Access Method (0OSAM), has been implemented. OSAM
was developed to facilitate the sequential addition of fixed-length
physical blocks on a multivolume direct access data set, and
concurrently to provide the capability to directly access and update
existing blocks on the data set. The capability is used for queuing
IMS/360 messages received or transmitted to communications terminals and
for handling the overflow data from ISAM records under Data Language/I.

Data Lanquage/I Major Features

IMS/360-Data Language/I has many outstanding features:

1. It provides for a common source program interface between the
application programs and the data bases they reference. This
interface takes the form of a CALL statement. CALL statements
are provided for both PL/I and COBOL. The format of the CALL
statement and the features provided are almost identical,
regardless of which compiler language and data base are used.
This results in a significant reduction in programmer training.
It also removes from the application program any Operating
System/360 data management definition.

17

18

IMS/360-Data Language/I also provides for the data descriptions
associated with the data base to be retained as members of an
Operating System/360 partitioned data set independent of
application programs that use the associated data bases. This
partitioned data set is known as the Data Base Description
Library. By holding a data base description separate from the
program, an application program is relatively 1ndependent of the
organization of the data base. Thus, moderate changes in the
data organization are possible without affecting the programs

‘produced and maintained by an application programmer.

Prior to the advent of improved data base management, several
programmers could use portions of a combined data base only if
there was positive and continuous coordination between the
several users. Furthermore, a change that affected any one of
the users more than likely affected them all. Data Language/I
offers a unique capability that allows a programmer to state
which portions of a combined data base he wishes to be
"sensitive" to. Within the constraint of a single logical
sequence (sort order), the physical organization of a data base
may be changed, or data may be added simply by modifying the
programs that are sensitive to the changed elements. Of course,
if changes are required for data elements common to every
program, they must all be modified. However, if changes are made
to those elements unique to one (or perhaps a few) of the
programs, only that fraction of the programs affected need be
modified.

At the present time, Operating System/360 Data Management allows
the programmer to describe data only if the total number of
characters in a logical data record is less than one physical
track of the direct access storage device selected. Thus the
programmer must ultimately be aware of the characteristics of the
device he is using for information storage. Data Language/I
allows logical data base records to span one or more physical
tracks, if necessary. This provides a functional capability -
through Data Language/I otherwise available only through custom
programming.

The general trend is toward combining files that share common
data elements. The common elements (including the sort key) are
called the root segments; the remaining data elements pertaining
to individual application programs are called dependent segments.
By storing the root segment only once for any logical record,
requirements are reduced. The data is logically represented as a
hierarchy of segments, with the root segment at the highest
level. Access to lower segments is accomplished by qualification
from the higher levels in the hierarchy. To allow expeditious
accessing of segments, sensitivity codes were introduced. Each
application program indicates through these sensitivity codes
those dependent segments which it is prepared to process. Thus,
it is possible to have many different segments relating to a
single root segment; yet, through the mechanism of the
sensitivity code, to retain simple, uncluttered application
programs that relate only to a single root-dependent segment
combination. '

Another feature is that of design compatibility. The facilities
provided within IMS/360-Data Language/I support two logical data
structures. The Systems Operation function first describes the
root segment, which consists of a field containing the highest
level sort key and may contain one or more data fields always
associated with the sort key and common to the root. If no
further structure is provided, the data base thus created

P

N2

represents the simplest case of the simple data base with one
segment type.

If a more complex organization is required, the Systems Operation
function describes one or more dependent segment types which are
logically dependent on the root segment. If a program is
sensitive to a single root-dependent segment combination, it need
not be complicated with code that concerns the other dependent
segments. Although the applications program will not be
logically affected by segments to which it is insensitive, its
execution time may be increased, since all segments are logically
stored following their related root. This inefficiency when
using dependent segments can be alleviated or remedied through
the use of multiple secondary data set groups.

Data Lanquage/I Rules

The following rules govern operation under Data Language/I:

1. There shall be only one root segment per data base record. This
implies that there shall be only one sort key and, hence, only
one sort order per data base.

2. The total length of the root segment key field or identifier in
bytes shall be equal to or less than 255 bytes.

3. Each segment type may be composed of one or more fields; however,
there may be only one key field within a segment type. The key
fields of the segments determine the sort order of the segments
within the data base.

4. The total number of the dependent segment types under a root
segment must not exceed 254.

5. Each segment, be it root or dependent, must be a single fixed
length. The length may vary from segment type to segment type,
irrespective of segment level, but a single named segment shall
have a fixed length.

6. Up to 15 levels of dependency including the root segment may be
described in any single data base record.

7. A data base may consist of a single or multiple data set groups.
The primary data set group contains at least the root segment.
The secondary data set groups must all start with second-level
dependent segments. There can be only one primary data set group
within a data base. A maximum of nine secondary data set groups
can be defined in a data base.

MESSAGE REGION

This discussion is not designed to give the details of the internal
structure of a message region under IMS/360. However, a general
understanding of the relationship of the interface involved will be
beneficial to a programmer.

The existence of a message region is established by entering the Job
Control Language (JCL) statements for an Operating System/360 job
representing an IMS/360 message region into the input job stream. The
message region is considered to be an IMS/360 type 1 processing region.
The Operating System job scheduler then establishes the size of the
message region and loads into the message region a small IMS/360 module
called the region controller. It is the responsibility of the region
controller to keep the message region under the control of IMS/360. The

19

region controller in effect establishes an "endless"™ Operating
System/360 job, which maintains control of the message region for an
indefinite period of time. The JCL statement for the region controller
may be entered into the Operating System/360 job stream as many times as
desired to establish multiple message regions.

The region controller performs the following operations critical to
the function of IMS/360:

1.

2.

Establishes the existence of a message region

Initiates interregional communication to the IMS/360 control
program region for message processing program scheduling and data
base requests

Requests initial scheduling of a message processing program into
this message region

Establishes a maximum "time slice", before relinquishing control
to the message processing program, to provide against indefinite
program execution

ATTACHes the message processing program into the message region

Initiates the execution of message processing program message and
data base requests through communication to the IMS/360 control
program region '

Causes the data to be moved from the IMS/360 control program
region to the message program region when a message or data base
request involves placement of data into application program work
areas ‘

Records accounting information and requests scheduling of a new
message processing program into the message region after
completion of an o0ld message processing program

Records, at message program termination for accounting purposes,
total message processing program execution time, number and type
of data base requests, and number of transactions processed by a
message processing program

Figure 13 shows graphically the general control flow in a message

region.

20

NS

Message Region

Attach

"
|
REGION CONTROLLER |
|
|
J

MESSAGE PROCESSING PROGRAM

[For Message

CALL and Data Base I1I/0]

L GO G G L CEE e SRS e S e— — — — — o

L}
LANGUAGE INTERFACE —+—+t+»{ TO
~4——}—{ IMS/360
I | | CONTROL
| | PROGRAM

J L

[D i S s A e ot et e)

[s o, T . — — — o — ——— — — S —— — —)

b s s g w—

Figure 13. Organization and control flow in message region

The region controller becomes a resident module in the message
region, leaving the remainder of the defined region space available for
the message processing program and the language interface.

The language interface is an application program language-dependent
module which is required for every programming language that may be used
to program an application under IMS/360. The language interface
provides the means for making every language appear the same to IMS/360.
It is link-edited to the user's program and loaded as a standard part of
every message processing program run under IMS/360. The language
interface is discussed further in the section entitled "Program
Structure".

The message processiné program occupies the balance of a message -
region. It is this program and its logic for which the application
programmer is responsible.

The region controller ATTACHes the message processing program. When
a message or data base request is made by the message processing
program, it is through a call to the language interface. The language
interface in turn branches to the region controller to communicate with
the IMS/360 control program region. All data requests made in a message
region must be made through Data Language/I calls.

BATCH REGION

The concept of a batch region within the framework of IMS/360 allows
some portion of a system that is not dedicated to online operations to
be used for traditional batch data processing (see Figure 14). In the
light of IMS/360, traditional data processing has two meanings:

1. A portion of core storage is available under the control of
Operating System/360 MVT or MFT to be used for non-IMS/360
related data processing. Assuming that the batch regionm is
sufficiently large, a compile, an assembly, or even a COBOL job
may be executed. . In the same manner that any job in a
multiprogramming environment is not aware of another job, a
non-IMS/360-Data Language/I batch job will not be aware of the
existence of IMS/360.

21

2. In the same batch region indicated above, batch programs using
IMS/360 or Data Language/I only may also be loaded. The division
of this type of program into two groups is primarily due to data
base handling.

Batch programs that reference online data bases require the
services of the IMS/360 control program for the purposes of
resource management, security control, and data base access.
These programs utilize an IMS/360 type 2 processing region.

The other group of programs comprise those that neither require
the services of IMS/360 nor reference online data bases.
However, these programs use the power of Data Language/I for
construction and maintenance of their own data bases. This type
of batch facility is also used for the creation of online data
bases. These programs utilize an IMS/360 type 3 processing
region.

In either type of batch region, standard Operating System/360
data sets may be used in addition to IMS/360 data bases.

All batch programs utilizing type 2 and 3 processing regions enter
the system as Operating System/360 jobs and are scheduled and loaded by
the Operating System job scheduler. Because the job is started by the
Operating System, at completion the job returns control and its space to
the Operating System for reuse and rescheduling by the Operating System
job scheduler. As provided in the message region, all batch region
execution using IMS/360 or Data Language/I is initiated through a region
controller. The Operating System/360 job control language statements
for the batch execution describe the particular type of region in which
the batch program will be executed.

The general structure of the type 3 processing region is shown in
Figure 14.

Batch Region

i |
] o
I REGION CONTROLLER I
| | Attach | |
It 4
[1|
| \ I
|1 BATCH APPLICATION PROGRAM [
| ' [
o -
[l LANGUAGE INTERFACE I
| | Load and Branch | |
| o
s 1|
I Y DATA LANGUAGE/I I
B . .
| |
L d
nn
BASE

Figure 1#. Organization and control flow in batch region

22

TN

N7

Except for accounting and scheduling, the region controller and the
language interface provide the same function as described in the section
on the message region.

In the batch environment, when the region controller determines, in
conjunction with the Operating System/360 job control language
statements for the job, that the program is type 3, it performs the
following operations:

1. cCauses Data Language/I function capability to be loaded into the
region

2. Causes all necessary blocks, tables, and Data Language/I control
modules to be loaded into the batch region

3. Returns control to the batch program to start processing

In addition to Data Language/I data base requests, data management
input/output operations may be performed within either type of batch
region.

MESSAGE PROCESSING AND MESSAGE SWITCHING

One of the earliest uses of terminal-oriented systems was for message
switching. Large and complex hardware and software have been designed
to handle the message switching problem alone. IMS/360 provides this
capability with no additional requirement being placed upon the user of
the message processing system.

The fundamental approach for any terminal user is to enter his
message beginning with a transaction code; this code is the key value
which gives entry to a specific message processing program. The
communications control module uses the transaction code to place the
message in the proper queue at the correct priority, and to ensure
security. The message processing program replies by sending a message
to a logical terminal name. Message switching could be accomplished in
the same manner. However, the only reason for creating a message
program to handle message switching would be for the instances when
editing or examination was required.

IMS/360 eliminates the need to create a message switching application
program. The terminal user may use the logical terminal name in place
of the transaction code at the beginning of the message to be switched.
Communications control recognizes logical terminal names and queues the
message for immediate output, bypassing the input processing queues.

Normal Message Format

pr T 1 [|
(See ' l | l (See
note | TRANSACTION | PASSWORD | TEXT | note
below)l CODE | (Optional) | Ibelow)
| | | I
L J
Message Switching Format
» LOGICAL TERMINATL TEXT n

]
|
| NAME
|
|
L

b v . s ol

23

Note: The input message for a 2260 is considered to be that data

contained between the START MI symbol () and the position of th
CURSOR symbol (@) at the time the ENTER key is depressed. These
two symbols are used only when the 2260 Display Station is used
as the input device. The 1050 and 2740 terminals do not require
these symbols. All other data displayed on the screen at this
time is ignored and is not transmitted to the CPU. If no START
MI symbol () is displayed at the time the ENTER key is
depressed, no data is sent to the CPU.

CHECKPOINT AND RESTART

The facility to checkpoint all or any portion of a large online
system is vitally important. IMS/360 provides three types of
checkpoints:

1. System-scheduled checkpoints, where the whole system is

checkpointed on the basis of the number of messages received, or
an explicit master terminal checkpoint command

2. Master terminal-requested checkpoint at normal shutdown time

3. Master terminal request to checkpoint or copy a selected data
base. This procedure causes the message queues that affect a

e

specific data base to be purged (input processed and output sent)

and the data base dumped through a message processing program.
user-provided batch program is later used to copy the data base
back into a direct access device if necessary.

Under controlled conditions, startup and restart are the same

procedure. A normal startup is accomplished by performing a restart
with the shutdown checkpoint tape of the previous period. Restart
procedures are provided to handle:

Restart after an ABEND of IMS/360 caused by a program or machine
failure that did not disturb data sets, the log, or the message
queues

A

e Restart procedure after a failure that did not allow proper data set

closing
Restart allowing for reconstruction of IMS/360 queues

Restart after a data base is damaged or destroyed

SYSTEM RECORDING, LOGGING, AND MEASUREMENT

IMS/360 with Data Language/I is fundamentally a service system that

provides high-level service to communications terminals and data bases.
Since these service functions constitute the major purpose of the

system, special consideration must be given to making available a record

of the system activity. This record is important for purposes such as:

24

Historical information

Restart of the system
Reconstruction of data bases

System failure, repair, and recovery

Audit trails

7N

s

Significant numbers of persons are in direct contact with the system
and dependent upon it for information necessary to the accurate and
timely performance of their jobs. Quality performance is demanded of
IMS/360.

Performance may be measured in terms of system availability, mean
time to interruption, mean time to repair, system throughput, response
time to user, simplicity of use, volume of work, and other factors. In
order to determine the quality of performance of these systems,
management must be informed of system activity.

For restart and statistical purposes, a module of the IMS/360 control
program, the systems recorder, is provided to record all significant
activity of the system.

Following is a list of the significant events that are recorded on
the system log:

¢ Messages received from terminals
e Command messages from terminals
e Error messages received from terminals, and their causes

s Messages sent to a terminal from a message program by Data
Lanquage/T

e Error messages sent to terminals, and their causes

e Completion of transmission of a message to a terminal, with time and
date stamping

e The termination of a message program and all available accounting
information, including:

Transaction code processed
Number of messages processed
Elapsed task time
Environmental information

¢ The enqueuing and dequeuing of messages from receipt, through
process, to output message generation and process termination

e Data base opens
e Data base closes

e Checkpoint records of the input and output message queues on direct
access storage

e Modifications to any data base at the user's discretion

Since a different type of record is written on the log for each of
the above uses, some technique must be used to identify the different
records. The first byte of each logical record is called a log flag and
may be used to identify that logical record. A user of the log can then
look at the first byte of each logical record, process those records
with which he is concerned, and bypass any records having a log flag
with which he is not concerned. IMS/360-Data Language/I provides a
system log utility program for analyzing system log messages.

25

Svstem I easurenent

System measurement information may be placed in two broad categories:
e Online statements
e Batched statistical reports

ONLINE STATEMENTS: Online statement information provides awareness of

present ~ystem operatiors. This type of infcrmation is availaole
through the master terminal of the system.

The following are available:

1. current activity by terminal, displaying counts of valid messages
transmitted, errors received and errors transmitted, messages
queued for transwission, present operational status of the
terminal, and alternate routing specification

2. Queue lengths for message types awaiting scheduling by
transaction code

3. sStatus of message processing programs and online data bases

BATCHED STATISTICAL REPORTS: Batched statistical reports should be
prepared periodically, for example, at the close of each day's
operation, monthly, or as conditions justify. Batched statistics are
initially processed and maintained on magnetic tape. This precludes
inquiry from terminals relative to the previous day's activity and
year-to-date activity. However, it is expected that the system user may
use a data base so that all or some of these statistics may be
maintained on direct access storage devices for online inquiry, with
batch updates at completion of each day's operations.

The system log is the source of information for developing and .
maintaining batched statistics. The log also provides a source of input
to IBM Field Engineering Systems Maintenance Management programs where
Systems Maintenance Management Contracts are in effect.

To the terminal operator, the primary measure of performance is
response time. The major factors that cause variation in response
performance are system load and system errors. The statistical reports
provide traffic volumes, error statistics, and response times; the
reports provide systems management information for traffic analysis and
system planning.

Priority inequities, system bottlenecks, varying transaction
patterns, intermittent errors, and other conditions may be identified by
analysis of these reports.

The following reports are available on a batched basis:

e By terminal and line - valid message counts by time of day

e By terminal and line - error message counts by time of day
e By transaction code - valid message counts by time of day
e By transaction code - response times for the following: shortest

response time, median, 75th percentile, 95th percentile, and longest
response time

26

CHAPTER 4. DATA BASE ORGANIZATION

TYPES OF DATA BASES

The organization of a data base is related directly to the
hierarchical relationship of its segments. The segment of data is
fundamental to Data Language/I and allows the structuring of any data
base into either a simple or a complex hierarchical relationship.
Neither the simplicity nor the complexity influences the type of access
method that is used, although it may alter the desirability of one over
the other. The following discussion is to assist the programmer to
conceptualize his data base even though he need only consider those
segments to which he is "sensitive".

The occurrence of dependent data on root information causes a-
dependency to exist in a data base. If the dependent information can be
stratified, or if a dependent segment has segments dependent upon it,
the file begins to assume a hierarchical relationship. The term "levels
of information"™ is introduced to describe how far removed from the root
segment a dependent segment is. The root segment is defined as
containing the key and level-one information. The first dependent
segment carries level-two information. A dependent segment which was in
turn dependent upon the level-two dependent segment would be called a
level-three segment, etc. Data Language/I allows 15 of these levels to
be defined, along with many dependent segment types within each of those
levels. However, a table has been set aside with 255 entries in it.

The root segment takes up one entry position; therefore, there may not
be more than 254 other segment types in the entire data base.

Simple Hierarchical Files

The simplest of all files consists of only a single segment type. 1In
Data Language/I terminology, this file consists solely of root segments
and no dependent segments. Each segment in the file has a fixed-length
key field and one or more fixed-length data fields accompanying that
key. All of the fields are always present. The file is stored and
retained in an order based on the values of the keys when taken as
simple binary values. Further more, the simple file has fixed
definitons for each field.

The simple file is the most common file in existence and in fact
requires no hierarchical consideration. Even though the simple data
base lacks the true hierarchical structure, it may be handled by Data
Language/I and as such becomes the simplest form. This file structure
produces fixed-length root segments within logical data management
records, and these logical data management records are collected to form
physical records.

Complex Hierarchical Files

The first instance of data file complexity usually occurs when
control totals are appended to a simple file. If the simple file
described an inventory of parts, each with its part number (key), a
fixed-length alphameric description, a fixed-length quantity-on-hand
field, and a fixed-length unit price field, it might be necessary to
insert some total records indicating the total dollar volume of a series
of parts in a specific category and the total quantity on hand
independent of part number. This would be done in one of two ways,
depending on the type of storage media used to retain the files (see
Figure 15).

27

PART
NUMBER
KEY

DESCRIPTION | QUANTITY-ON-HAND| UNIT PRICE

Figure 15. Simple physical file layout

If the file were retained on tape, it would have to be rewritten in
its entirety whenever a single inventory item was used to fill an order.
Given this situation, it is quite logical to embed the control totals at
the appropriate point following the sequence of data they summarized.
Thus, the detail information for a category would be read, and, after
all the transactions to the category had been processed, the control
totals for that category could also be processed, updated, and written
out on the new tape drive. This is both traditional and practical,
since a spare tape drive to hold the total separately is expensive, and
since the entire tape must be rewritten during every processing cycle
anyway. Therefore, it makes no sense to build a second simple file
which would require a separate drive of its own just for the control
totals.

Alternatively, a one-character field segment type could be added to
each entry and appended to the least significant end of the key. All of
the detail data pertaining to a single type of line item in the
inventory would be awarded one segment-type code, say the numeric value
1. The control totals would assume the key of the highest line item
they summarized and have a record-type code field equal to any number
greater than 1. Thus, if the file is sorted or sequence-checked on the
augmented key, it is in fact in numeric sequence on that key, even
though the control totals may be embedded in the data. After a record
has been read from the device and delivered to core storage, a simple
test based on the type code field could allow the program to process
detailed data or know that it was dealing with a summary segment (see
Figure 16).

LAST PART NUMBER OF A PARTICULAR CLASS

Last

Part

Number

Key IOlI Description| Qty on Hand | Unit Price

R

Record Type Code

CLASS TOTALS RECORD

Last
Part

Number
Key

Figure 16. Complex physical file layout

02 $VOL oty J

Record Type Code

The "total record" is a simple case of the occurrence of a
segment-type code field. Another instance of the segment-type code

28

field will occur should two similar files be merged to allow common
information to be held once and information unique to two different
purposes to be subservient to it. Frequently, files occur that have
many fields in common. If these files also enjoy a common key and
common sort order, they can be combined. The common information (root
segment) is held once, and the unique information (dependent segments)
can be held in a compact form, since the key and related fields need be
specified only once for each pair of records.

When several files have been combined to gain improved storage
utilization or ease of processing, a second-order effect occurs. Not
every programmer requires access or is even authorized to access every
different dependent segment type. To solve this problem and eliminate
the superfluous information (in the eyes of a programmer) that he does
not need to handle, sensitivity codes are introduced. Each segment type
is assigned a unique name, and Data Language/I allows a programmer to
state the names of the segments in the data base he wishes to "see"
using an area within the Program Specification Block (PSB) called the
Program Communication Block (PCB). At execution time, the Data Base
Description (DBD) relates those segment names to the numeric segment
type codes stored with the data. A block of data is then read into core
storage by Data Language/I. While Data Language/I has control, the
segment-type code fields embedded in the segments of data just read are
compared against the type codes of the segments to which the PSB has
declared it is sensitive. If a block of data is obtained that contains
no segment whose type codes match the programmer's sensitivity list,
another read is initiated.

Internally, at execution time, Data Language/I keeps an
identification table of segment names, type codes, and levels. Data
Language/I returns status codes, level numbers, segment names, and
segment keys to the program through the PCB to indicate the relationship
to the hierarchy of the segment just obtained. This relationship is
obtained by entering into the identification table the name of the
segment just retrieved and comparing its level and type with the level
and type previously obtained.

Data bases can thus be constructed from combined complex files made
up of several different segment types, all of which contain limited
header and control information and a minimum amount of redundant data.
It should be noted that Data Language/I reads and sometimes rewrites
segments to which the programmer is not sensitive.

STRUCTURE OF DATA BASES

The application program's independence from the access methods,
physical storage organization, and characteristics of the devices on
which the data is stored is provided through a common source program
linkage (consisting of a list of parameters that are addresses of PCB's,
I/0 functions, and segment identifiers) and a data base description.
This common source program linkage and data base description allow the
application program the ability to request Data Language/I to:

s Reference a unique segment (GET UNIQUE)
e Retrieve the next sequential segment (GET NEXT)
e Replace the data in an existing segment (REPLACE)

® Delete the data in an existing segment (DELETE)

Insert a new segment (INSERT)

29

Note: "Segment" refers to a fixed-length data element containing one or
more logically related data fields.

The above calls are described in a later section of this manual.

In the COBOL language, this common source program linkage uses the
ENTER LINKAGE and the CALL verb to perform the input/output functions
listed above. Application programs written in PL/I or Assembler
Language use similar statements to reference Data Language/I. Because
of this approach to data reference, input/output operations and
associated control blocks are not compiled into the application program.
This removes dependency upon the currently available access methods and
physical storage organizations.

Each data base description is created from user-provided statements
of the logical and physical structure of each data base. These
statements are input to an offline utility program of IMS/360. The
result of the utility program is the creation and storage of a Data Base
Description in the user-defined Data Base Description library. This
Data Base Description provides Data Language/I with a "mapping" from the
logical structure of the data base used in the application program, to
the physical organization of the data used by Operating System/360 data
management. The logical data structure can be "remapped" into a
different physical organization without the necessity for program
modification. Integration of other application data can also be added
to this data base and still not cause a change to the original
application programs. The concept of a Data Base Description reduces
application program maintenance caused by changes in the data
requirements of the application.

Data Language/I provides for elimination of redundant data while
providing integration or sharing of common data. The majority of the
data utilized by any company has many interrelationships and hence many
redundancies. For example, Manufacturing and Engineering have many
pieces of data which would be useful to Quality Control; so do
Purchasing and Accounting. If analysis of the number of types of
segments shows that all the data cannot be placed in a single common
data base, Data Langquage/I allows the user the additional capability of
physically structuring the data over more than one data base. Before
Data Language/I, personnel responsible for application programs
frequently were not able, nor did they have the time, to integrate other
data with their own to eliminate redundancies without the necessity of a
major rewrite of the application programs involved.

Another capability of Data Language/I protects each application of a
multiapplication data base through the concept of "sensitive" segments.
When operating against a Data Languages/I data base, only the data
segments that are predefined as sensitive are available for use in this
application. Each application using the data base can be sensitive to
its unique subset of "sensitive" segments. Where an application program
has defined "sensitivity" to a subset of segments within a data base
record, modification and addition of nonsensitive segments do not affect
the processing capability of the program. In addition, any application
program can be restricted to "read only" operations against its
sensitive segments.

Data Language/I - Data Base Organization

The data base structure is best described by providing an example.
Figure 17 depicts the hierarchical relationship for a company data base
made up of engineering data, inventory data, and purchasing data, which
could be typical of any company. All this is based on part master (part
number) data. : : '

30

/7

COMPANY DATA BASE

PART
MASTER
DATA

INITIAL DATA BASE o ___ADDITIONTO DATA BASE
l
INVENTORY PURCHASING ENGINEERING
DATA DATA DATA

Figure 17. Company data base hierarchical data relationship

A data base is composed of data base records. A data base record is
a collection (a variable number) of hierarchically related, fixed-length
data elements, called "segments."™ A root segment is the highest
hierarchical segment in the data base record. A dependent segment is a
segment that relies on at least the root segment for its full
hierarchical meaning. It is therefore always at a lower hierarchical
level than the root segment. There can be 255 segment types within a
data base and 15 levels of segment hierarchy within a data base record.

Details of the segment of this data base example for the inventory
and purchasing data contained in the initial company data base segment
structure are shown in Figures 18 and 19. This logical structure may be
physically stored in either of Data Language/I's organizations:

s Hierarchical sequential: The Operating System/360 Basic Sequential
Access Method (BSAM) is used to implement the hierarchical
sequential organization. Storage medium may be tape or direct
access storage. See Figure 20.

e Hierarchical indexed sequential: The Operating System/360 Indexed
Sequential Access Method (ISAM) and a unique access method of
IMS/360, called Overflow Sequential Access Method (OSAM), are used
to enhance the capabilities of ISAM and to implement the
hierarchical indexed sequential organization. The storage medium
must be direct access storage. See Figure 21.

After the initial data base details shown in Figures 18 through 22,
the addition of engineering data in Figures 23 through 27 may be
accomplished. As illustrated, the data base segments may be organized
or reorganized into the hierarchical indexed sequential organization or
the hierarchical sequential organization. Note that, even with the
addition of engineering data, the expansion of the data base may be
accomplished without altering the existing processing programs that
- reference the data base.

31

COMPANY DATA BASE

PART MASTER
SEGMENT
Level 1 Root Segment
INVENTC:RY DATA PURCHASllNG DATA
PART LOCATION PURCHASE ORDER
SEGMENT SEGMENT
Level 2 Segment
PROJECT
COMMITMENT ITEM SEGMENT
SEGMENT
Level 3 Segment
SHIP DATE
SEGMENT
Leavel 4 Segment

Figure 18. Company data base segment logical hierarchical relationship
-- inventory and purchasing data

32

_/‘/

COMPANY DATA BASE RECORD

PART MASTER SEGMENT

FIRST l PART LOCATION SEGMENT 1 -I

LEVEL —ef
ROOT PROJ. COMMIT, SEGMENT 1

SEGMENT

PROJ. COMMIT, SEGMENT 2

PROJ. COMMIT. SEGMENT 3

[PURCHASE ORDER SEGMENT 1 |

l ITEM SEGMENT 1 I

SECOND

LEVEL =~ —————of i SHIP DATE SEGMENT 1 J
SEGMENT

ITEM SEGMENT 2 I

SHIP DATE SEGMENT 2

SHIP DATE SEGMENT 3

THIRD
LEVEL
SEGMENT

FOURTH
LEVEL ———o
SEGMENT

Figure 19. Company data base record segment level structure

The highest level (level one) segment or root segment is the part
master segment. All segments immediately subordinate to the root
segment are called second-level dependent segments: part location
segment and purchase order segment. Third level dependent segments are
related to the second-level dependent segments. In this example,
project commitment segment 1 is related to part location segment 1, and
item segment 1 is related to purchase order segment 1. Fourth-level
dependent segments are related to the second-level dependents. All the
segments in Figure 19 constitute a data base record.

If the hierarchical sequential organization is chosen for the data
base, (Figure 20), each segment type is fixed-length within a data base
record and is stored in physical sequence according to its hierarchical
relationship. :

PROJ. PROJ. PROJ.
COMM. | | COMM. 5 | cOMM. 5

L————BSAM RECORD —Ol l-.—BSAM RECORD BSAM RECOKD——]

PART MSTRy I PART LOC, I |

P.0. l ITEM | |SHIPDA1E‘

ITEMy I SHIP DATE, I SHIP DATES

BSAM RECORD ——————==

DATA BASE RECORD

Figure 20. The Nth data base record stored in hierarchical sequential
organization

Figure 20 represents the Nth data base record depicted by the data
base in Fiqgure 18. The part master root segment has one occurrence of

33

the second-level dependent part location segment type. For inventory
purposes, this part has only one storage location. The second-level
part location segment type has three occurrences of the third level
project commitment segment type. There are three projects in this
company that have commitments against the inventory of this part.

There is one second-level purchase order segment type, the root
segment of which is the Part Master. This second-level segment type has
two occurrences of the third-level dependent segment type: item segment
1 and item segment 2. They in turn have subordinate or fourth-level
dependent segment types: ship date segments. The item segments are the
purchase components for this particular part (or assembly). Each has a
particular shipping date.

All data base records are stored sequentially in sort sequence of the
root segments. The only direct data reference provided with the
hierarchical sequential organization is to the first root segment in the
first data record of the data base. All subsequent reference is
sequential.

If the hierarchical indexed sequential organization is chosen, direct
reference is provided to each root segment (and therefore to each data
base record) within a data base. When the data base is created or
reorganized, the key of each root segment is an ISAM logical record key.
As many segments (the root and its dependents) are stored as will fit
within the ISAM logical record. If storage for additional segments
within the data base record is required, a relative block pointer is
placed in the ISAM logical record. This pointer relates the ISAM record
to one or more OSAM records which contain the remaining segments of the
data base record (Figure 21).

DATA SET GROUP
— N\

PART 3. | PrROJ. | PROJ.
| jjsld IPART MSTRNlPART Loc,lml MM 1| co:wm.2| COMM. 3Im IP o.]I ITEM ,IsmP DATE ,I .

PRO

co
- ?
-'i’;y.‘”-qsm LOGICAL xscoao.l I-C—OSAM LOGICAL RECORD |——| l-v OSAM LOGICAL RECORD 2—§

IPTRI | ITEM ISHIP DATE 2| SHIP DATE 3l

}——I I_——OSAM LOGICAL RECORD 3 AI

DATA BASE RECORD |

Figure 21. The Nth data base record in hierarchical indexed sequential
organization

When the data base is created or reorganized, each data base record
starts as an ISAM logical record and may overflow into one or more OSAM
logical records. Note in Figure 21 that the two data sets, ISAM and
OSAM, represent a data set group. Reference to segments within the data
base record is sequential.

As shown in Figure 21, the ISAM logical record consists of two
segments: the part master root segment and the second-level part
location dependent segment. At the end of the ISAM logical record is a
pointer to the first OSAM record. The first OSAM logical record
consists of three second-level project commitment dependent segments 1,
2, and 3. The second and third OSAM logical records contain the
remainder of the data base record.

An additional capability of the hierarchical indexed sequential
organization is to provide direct access to all root segments and to all

34

N

N

N_S

or some first-level dependent segment types. This capability is
provided through the use of multiple ISAM and OSAM data sets (multiple
data set groups). (Figure 22).

FIRST DATA SET GROUP
el N

il IPART MSTRNIPART Loc. | | PR | |PROJ. COMM. | [PROJ. COMM., [PROJ. COMM. 3

ISAM
KEY
1

|'ISAM LOGICAL RECORD —»={ [-#—u-——— OSAM LOGICAL RECORD | ——m{

SECOND DATA SET GROUP

PART
MSTR

ISAM
KEY ”-—ISAM LOGICAL RECORD [~a—OSAM LOGICAL RECORD 1 —‘
2

Figure 22. The Nth data base record in hierarchical indexed sequential
organization -- multiple data set groups

e N)
P O.] ITEM |JSHIP DATE l PTRI ITEM 5 | SHIP DATE 5 lSHIP DATE 3J

The part master root segment, the part location dependent segment 1,
and the project commitment dependent segments 1, 2, and 3 are confained
within one data set group. The purchase order second-level dependent
segment type and its remaining dependent segments are contained within a
second data set group. This allows direct reference to the first
purchase order segment type within each data base record as well as to
the root segment, part master. A maximum of ten data set groups is
permitted in the hierarchical indexed sequential organization. There
can be only one primary data set group and a maximum of nine secondary
data set groups for any one data base.

An example is now depicted which illustrates an addition to the
company data base of engineering data. It is assumed that the inventory
and purchasing applications are not changing. The addition to the
company data base is the integration of the engineering application as
shown in Figure 23.

35

COMPANY DATA BASE

PART MASTER
SEGMENT

E%

INVENTOIRY DATA

PURCHASIING DATA

ENGINEERING DATA

PART LOCATION PURCHASE ORDER "COMPONENT
SEGMENT SEGMENT PART SEGMENT
] |
PROJECT
COMMITMENT ITEM SEGMENT ENOT ReLEAsE
SEGMENT
SHIP DATE USAGE
SEGMENT SEGMENT
Figure 23. Company data base segment logical hierarchical relationship

picture of the data base record.

36

-- inventory and purchasing data -- engineering data added

The responsible user personnel may extend the company data base
description and insert the engineering data segment structure.
existing company data base and the engineering data segments are merged

to create the new company data base. Figure 24 depicts a segment-level

Then the

/7N

COMPANY DATA BASE RECORD

PART MASTER SEGMENT

FIRST

—l PART LOCATION SEGMENT 1
LEVEL

ROOT

SEGMENT—T

PROJ. COMMIT, SEGMENT 1}

PROJ, COMMIT. SEGMENT 2

PROJ. COMMIT, SEGMENT 3

PURCHASE ORDER SEGMENT 1

ITEM SEGMENT 1]
SECOND
LEVEL —— e
VL] SHIP DATE SEGMENT 1 j
ITEM SEGMENT 2 |
SHIP DATE SEGMENT 2
L
S
SHIP DATE SEGMENT 3

COMPONENT PART SEGMENT 1

ENGINEERING RELEASE SEGMENT 1

USAGE SEGMENT 1

THIRD
LEVEL
SEGMENT

FOURTH
LEVEL
SEGMENT

——]

Figure 24.

Company data base record segment level structure --

engineering data added

Figures 25, 26, and 27 illustrate how the new data base may be

physically stored.

Note that in Fiqure 27 a third data set group is

added without disturbing either the inventory or purchasing application

data.

PROJ,
COMM,

PROJ.
COMM. 5

PROJ.

PART MSTRy I PART LOG, COMM. 3

P.O. | IIEMIJSHIPDATE‘

>————— BSAM RECORD ——"I |‘———BSAM RECORD ————tmf

I ITEM 2 Ismp DATE

j——85AM RECORD——’]

CMPNT
PART,

ENGG
RELEASE)

SHIP DATE 3 USAGE

l.—— BSAM RECORD

BSAM RECORD

DATA BASE RECORD

Figure 25.

The Nth company data base record stored in hierarchical

sequential organization -- engineering data added

37

DATA SET GROUP

P : .
PART PROJ. | PROJ. | PROJ.
sl lmzr MSTRNIPART Loc ,JmJ l COM. | COMM. 2I COMM. 3 Iml Ip.o.,lnm ,limp oArE,[i
?

'S(/;s_J l—ISAM LOGICAL RECORD‘4 I——OSAM LOGICAL RECORD 1 ——4 OSAM LOGICAL RECORD 2_5

an AN
|CMPNT ENGG
PTR ITEM 2 |SHIP DATE o | SHIP DATE 3| PTR | PART 1 RELEASE 1 USAGE 1
[4

?
I-‘——OSAM LOGICAL RECORD 3 ——{ l-'—-OSAM LOGICAL RECORD 4—‘]

DATA BASE RECORD l

eFigure 26. The Nth data base record in hierarchical indexed sequential
organization -- single data set groups -- engineering data
added

FIRST DATA SET GROUP

PART
MSTR

ISAM
| KEY ”——lSAM LOGICAL RECORD-—-I l——‘OSAM LOGICAL RECORD l-————‘-l
1

SECOND DATA SET GROUP

.
L ;\é:; l P. O, I ITEM 4 ISHIP DATE]| Pﬂ IITEM 2J SHIP DATE ZJEH"’ DA'IEJI

ISAM ‘
I‘—ISAM LOGICAL RECORD *‘l |——OSAM LOGICAL RECORD l’l

KEY

2

THIRD DATA SET GROUP —

PART B cmen part ENGG | prr| | usace
MSTR MPNT PART | | geLEASE !

OSAM LOGICAL
'-Q—ISAM LOGICAL RECORD—-—I }—— RECORD 1 ——‘

eFigure 27. The Nth data base record in hierarchical indexed sequential
organization -- multiple data set groups -- engineering data
added -

Vo S
IPART MSTRNkART LocC.]I PTRJ IPROJ COMM, |IPROJ COMM, 2IJOJ COMM, 3|

ISAM
KEY
3

DATA BASE PROCESSING

Data base processing with Data Language/I is accomplished with the
data storage organizations just described and a set of input/output
functional requests used by application programs.

An input/output functional request is composed of a CALL statement
with a parameter list. The parameter list provides the information,
which is assembled by the application program, to describe a particular
input/output function and the element of data operated upon. The
element of data operated upon by any Data Language/I input/output
request is termed a segment. One and only one segment may be operated
upon with a single input/output request or call.

A segment is composed of one or more data fields, one of which is
considered the key field. Each particular segment type has a fixed
length and format definition.

The parameters contained within any input/output functional request
include the addresses of:

38

7N

\

N

e The input/output function
e The definition of the data base to be operated upon

e The segment input/output area into or out of which the segment of
data is moved

e The identifiers used to describe the segment of data to be operated
upon

The input/output functions provided by Data Language/I are GET
UNIQUE, GET NEXT, GET NEXT WITHIN PARENT SEGMENT, DELETE, REPLACE, and
INSERT. Remember that each of these functions, within a single request,
operates upon only one segment of data. Thus, GET UNIQUE causes the
retrieval of a specific segment described by the identifiers in the CALL
statement into the defined segment input/output area. The INSERT
operation causes the segment residing in the segment input/output area
and described by the segment identifiers to be added to a data base.

The identifiers in a functional request used to describe the segment of
data to be operated upon are called segment search arguments (SSA's). A
segment search argument includes the one- to eight-character symbolic
name of the segment type, the one- to eight-character symbolic name of
the segment key field, an algebraic operator, and the value of the
desired key field. Consider Fiqure 24. The generic name of the part
master segment must be PARTMAST, and its key field name might be
PARTNUMB (part number). Then, the segment search arqgument for GET
UNIQUE of the part master segment with part number equal to 12345 would
appear as:

PARTMAST (PARTNUMB =12345)

The portion of the segment search argument within the parentheses is
called a qualification statement.

For unique retrieval or addition of a root segment, only one segment
search argument must be provided. However, the unique retrieval or
insert of a dependent segment requires multiple segment search arguments
to be provided in the functional request. Each segment search argument
in the list describes a segment to which the dependent segment to be
operated upon is dependent. The SSA's for a given Data Language/I call
must be in proper hierarchical relationship. If the generic name of a
purchase order segment type is PURCHASE, its key field name is PURCHNO,
and there is a purchase number XYZ for part 12345; unique retrieval is
accomplished by two segment search arquments included within the
parameter list of the Data Language/I call:

PARTMAST (PARTNUMB =12345)
PURCHASE (PURCHNO =XYZ)

The definition of the data base to be operated upon is provided in
each Data Language/I call by a control block called a Program
Communication Block (PCB). All PCB's used by a particular application
program for data base operations are contained within the PSB for that
program. At execution time, the base addresses of the PCB's are passed
to the application program. Each PCB contains the one- to
eight-character name of the DBD associated with the data base.

Data Base Creation

A data base is created by an application program issuing Data
Language/I calls to insert data base records presorted by the key field
of the root segment. When a data base record is composed of more than
the root segment, all segments within the data base record must be
presorted by their hierarchical relationship and key field value.

39

Consider the process of inserting the segments of a company data base
record described in Figure 24. First, the part master (root) segment is
inserted. The part location segment (first-level dependent) is inserted
next. Then the three project commitment segments sorted by key field
value are inserted. This continues with the purchase order segment,
item segment 1, ship date segment 1, item segment 2, etc., until all
segments are inserted. If this data base record represented the
segments of data associated with part number X, the segments to be
inserted into the data base next would be those associated with part
number X + 1.

The INSERT function is used to create or load (recreate or
reorganize) a data base. Prior to the execution of a Data Language/I
call to cause segment insertion, the segment to be inserted must be
moved into a segment input/output area, and the proper list of segment
search arguments must be assembled. Assume that, in creating the
company data base, the segments of data associated with part number
12345 are to be loaded. The first three segments to be loaded are part
master, part location 1, and project commitment 1. The associated
segment search arguments and input/output work area contents for these
three bData Language/I INSERT calls are:

PART MASTER SEGMENT INSERTION

SSA - PARTMAST
1

Work Area (containing part master segment)

| | | I
| Key Field | Data Field| Data Field]
L J

Key =12345

PART LOCATION 1 SEGMENT INSERTION

SSA - PARTMAST(PARTNUMB =12345)
1

SSA - PARTLOC
2

Work Area (containing part location segment)

I |
| Key Field | Data Field|
L J

Key =456

40

N

PROJECT COMMITMENT 1 SEGMENT INSERTION

SSA - PARTMAST (PARTNUMB =12345)
1

SSA - PARTLOC (LOCATION =456)
2

SSA - COMMIT
3

Work Area (containing project commitment segment)

| | | |
| Key Field | Data Field| Data Field|
L]

KRey =6185

Notice that the segment search arguments of a Data Language/I call
for inserting a segment into a data base must describe the complete
hierarchical path to the segment. Also notice that the last segment
search argument within each INSERT call does not and must not include
the qualification statement portion. The qualification information is
taken from the image of the segment in the input/output work area.

All data base creation and reorganization must be performed in a
batch processing region of IMS/360.

Data Base Retrievals

The retrieval of segments within a data base is accomplished by the
three GET functions: GET UNIQUE, GET NEXT, and GET NEXT WITHIN PARENT
SEGMENT. GET UNIQUE provides for the retrieval of a specific segment by
direct reference into the data base. GET NEXT provides for sequential
segment retrieval. Usually the GET NEXT function is used after a GET
UNIQUE or GET NEXT that has provided "positioning"” to a unique segment
within the data base. However, a GET NEXT may be used without
positioning being supplied by a previous GET UNIQUE or GET NEXT. If
Data Language/I has no position established within a data base when a
GET NEXT call is issued, the request is satisfied by proceeding from the
beginning of the data base. The GET NEXT WITHIN PARENT SEGMENT allows
sequential retrieval of all segments subordinate to a parent segment.

An example, using Figure 24, is the retrieval of all item and ship date
segments within the company data base for a given part and purchase
order. The parent segment is a unique purchase order segment, and
parentage must have been previously established with a GET UNIQUE or GET
NEXT request.

Once all the item and ship date segments for a given part and
purchase order have been retrieved by a succession of GET NEXT WITHIN
PARENT requests, an indication is returned to the application program.
This indication provides definition of the end of subordinate segments
for the particular part and purchase order.

In addition to direct retrieval of a unique segment and sequential
retrieval of segments, an ability to skip sequentially from one segment
to another of a common type is provided. Assume that it becomes
necessary to retrieve all purchase order segments within a particular
part master segment. However, it is not necessary to retrieve the
segments subordinate to each purchase order segment (that is, item and
ship date segments). The first purchase order segment would be
retrieved with a call where the function equals GET UNIQUE. The segment
search arguments would be:

41

SSA - PARTMAST (PARTNUMB =12345)
1

SSA - PURCHASE
2

The remainder of the purchase order segments would be retrieved with
Data Language/TI calls where the I/0 function parameter equaled GET NEXT.
However, the Data Language/I calls would have a segment search argument:

SSA - PURCHASE
1

In summary, the segment search arguments for all GET UNIQUE calls
must start with reference to the root segment level. The GET NEXT calls
may be used with or without segment search arguments. The segment
search arguments for a GET NEXT call may start at any segment level.

All ssA's within a single Data Language/I call must be in proper
hierarchical order (that is, SSA for root first, SSA for first-level
dependent second, etc.). :

Data Base Updates

The updating of data within a segment of a data base is performed
through the REPLACE input/output function. Before a Data Language/I
call to replace a segment may be executed, the segment to be updated
must be retrieved through a CALL statement with a GET function. The GET
functions that may be specified are those previously discussed, but must
include the addition of a HOLD definition (GET HOLD UNIQUE, GET HOLD
NEXT, and GET HOLD NEXT WITHIN PARENT). The REPLACE function must then
be executed in the next call by this program against the data base. Any
intervening calls against the same data base by this program cause the
rejection of the subsequent REPLACE call. No SSA's are permitted with
the REPLACE function. The key field of the segment to be updated
through the REPLACE function call must not be modified.

Data Base Deletions

The deletion of an entire segment (all fields) within a data base is
performed through the DELETE input/output function. Before a Data
Language/I call to delete a segment may be executed, the segment to be
deleted must be retrieved through a GET HOLD call. The DELETE function
must be executed as the next call against the data base; otherwise, the
DELETE function is rejected. No SSA's are permitted with the DELETE
function. The deletion of a parent segment causes deletion of all
segments subordinate to the deleted segment.

Data Base Insertions

The addition or insertion of a new segment (all fields) into an
existing data base is performed through the INSERT input/output
function. The techniques used for performing an INSERT function to add
a segment to an existing data base are identical to those used with the
INSERT function when creating a new data base. Remember that the
addition of a dependent-level segment is not permitted unless all parent
segments in the complete hierarchical path already exist in the data
base. An example, referring to Figure 24 is the addition of an item
segment subordinate to a particular purchase order segment. The
purchase order segment must already exist in the data base or be added
before any item segments subordinate to that purchase order segment may
be added.

42

I/_

Message Input/Output Calls

The messages received from terminals and placed in the message queues
are accessible to a message program by Data Language/I calls. The first
line of a message is obtained with a call with a function equal to GET
UNIQUE. Each subsequent line of the message is obtained by a call with
a GET NEXT function. A message program may normally wish to place
output messages in the message queues for subsequent transmission to
terminals. The output messages may be enqueued for response to the
terminal that was the source of the input message, or to one or more
output terminals. Alternate output terminals (other than source of
input) must be known (predefined) to the message processing program. A
Data Language/I call with the function parameter equal to INSERT is used
to enqueue for output a line of an output message. Each line of the
message enqueued through the INSERT call must be terminated with a
carriage return character in the text. If a message processing program
is written in a serially-reusable manner, multiple input messages may be
processed serially with one load of the program. The first line of each
input message is obtained with a GET UNIQUE call.

Program Specification Block (PSB)

Associated with every message or batch processing program is a
Program Specification Block (PSB). This control block describes the use
of data bases and terminals (if message program) by the associated
application program. The PSB is constructed by the application
programmer and placed in a partitioned data set generically termed the
PSB library. A utility program is supplied to assist in the generation
of each PSB. Each PSB is composed of one or more sub-blocks called
Program Communication Blocks (PCB's). One PCB exists for each data base
and each alternate output terminal with which the associated message or
batch program intends to interface. Each data base PCB describes the
segments to which the associated message program is sensitive, and the
mode of processing that the associated message program will utilize on
the data base. Processing modes include data base creation, retrieval,
deletion, update, and addition. The PCB also includes the symbolic name
of the data base with which it is associated.

Each alternate output terminal PCB is associated with a logical
output terminal. In addition to the alternate output terminal PCB's in
the PSB, an input/output terminal PCB is associated with the source
terminal of the input message. However, the input/output terminal PCB
is not embedded within the PSB. The PSB and its PCB's exist external to
its associated message or batch program. However, these blocks are used
by the program in executing Data Language/I calls. The addresses to
these blocks are passed to the associated message or batch program upon
entry to the program. The address of a PCB associated with a given data
base or logical terminal is subsequently used by the program when
issuing a Data Language/I call. The PCB address becomes a parameter in
the Data Language/I call.

Data Base Segment Sensitivity

The preceding paragraph described the use of PCB's to enable an
application program to execute Data Language/I calls. The PCB contains
the one- to eight-character name of the associated data base. The
reader must recognize that the PCB supplies to Data Language/I the
logical definition of the data base upon which the requested
input/output operation is to be performed (the data base name). The PCB
also describes the processing mode that the associated application
processing program intends to use upon the data base. However, the most
important elements of data that the PCB supplies to Data Language/I are
the names of the segments of data within the data base upon which the
application processing program intends to operate. These represent the
segments of data to which this application processing program is

43

sensitive. Only the segments of data named in the PCB may be retrieved,
updated, deleted, or added to the data base.

This concept of segment sensitivity has considerable importance with
regard to the impact that the addition of new segment types into an
existing data base has upon existing application programs. A data base
can be expanded with new segment types by the dumping of the data base,
the generation of a new data base description incorporating the new
segment types and the old, and the reloading of the data base with the
new data base description. The new data base now contains the old and
the new segment types. The existing application programs, which
operated upon the o0ld segments in the data base, are sensitive only to
the old segment types. The new segment-types appear "invisible" to the
existing application processing programs. No modification is required
of the existing application processing programs to operate upon the
expanded data base. Of course the existing application programs, since
they are insensitive to the new segment types, cannot operate upon the
new segment types. Presumably, new application processing programs
would be incorporated to operate with the existing programs to maintain
‘the new segment types. A significant benefit of the concept of
sensitivity is the evolutionary expansion of the data contained within a
data base with minimal impact upon existing application processing
programs.

Data Base Segment Definition

Each segment type within a data base is defined at Data Base
Description generation. The characteristics of the segment —-- length,
fields, key field, etc. -- are defined. It may often be a considerable
task to determine the best structure of hierarchically related segments
to use in defining applications data. Several guidelines are suggested:

1. Each Data Language/I data base record has one root segment. The
key field of the root segment is the primary sort key of the data
base.

2. The structure (fields) within a root segment should represent
data that occurs once per data base record.

3. Any dependent segment may occur zero to n times per root segment.
The data within a dependent segment type should occur zero to n
times for one occurrence of the root segment data. Each :
dependent segment type represents a lower level sequence of data.

4. Although a data base has only one sort sequence, other sort
sequences or cross-reference relationships may be required.
These can be accomplished with other data bases of other sort
sequences. '

Types of IMS/360 Processing Regions

Three types of processing regions are available to the IMS/360 user.
Type 1 is used for message processing. Type 2 is used for batch
processing, with Data Language/I data bases concurrently used for
message processing. Type 3 is used for batch processing with Data
LanguagesI data bases that are unrelated or not used concurrently for
message processing. Within the capabilities of Operating System/360,
one or more processing regions of various types may be operating
concurrently.

A message processing region is used exclusively for message
processing. Each message processing region may reference the input and
output message queues and data bases used for message processing. - The
only input/output operations permitted in a message region are Data
Language/I calls to the IMS/360 control program region for messages and

4y

Vs

online data base segments. No other input/output operations are
permitted within the message region. A message region may output
messages destined for terminals, for input to other (or the same)
message programs, for input to an HSAM output file, or for input to a
message queue that will subsequently be accessed by a batch program in a
Type 2 processing region (Figure 28).

MESSAGE Q

>

MESSAGE Q FOR
MESSAGE PROGRAM A

>
MESSAGE
MESSAGE Q FOR
OUTPUT TERMINAL Y PROGRAM
-+
A .

MESSAGE Q FOR ANOTHER
MESSAGE PROGRAM OR

BATCH PROGRAM

-

""‘-________________———”’

Figure 28. Message region/message queue relationship

All message processing programs must be predefined to the IMS/360
control program as described in the IMS/360 Operations Manual, Volume I
— Systems Operation. Operating System/360 subtasking may be used in the
design of an application program providing that:

1. A single copy of the COBOL - PL/I language interface module is
used serially by all subtasks that comprise the application
program.

2. The copy of the language interface module used to process the
first call is used throughout the execution of the application

program.

3. The using application passes entry and call parameter lists
according to required conventions.

4. Each application program subtask group concurrently executing in
separate regions uses a separate copy of the language interface
module; that is, the language interface module is not reentrant
and may not reside in the system link pack or resident access

method areas.

Overlay may be used in the design of an application program provided the
requirements in 2, 3, and 4 above are met. Only one message processing
program may occur in a message processing region at any moment in time.
Only one message is processed in a message processing region at a time.

45

If a message processing program is written in a serially reusable
manner, it may process multiple input messages in serial fashion with
the load of a single copy.

A Type 2 processing region is used for batch processing against data
bases concurrently used for message processing. The batch program may
reference the input/output message queues, the data bases used
concurrently for message processing, and normal Operating System/360
data sets. A batch program in a Type 2 processing region may not
reference Data Language/I data bases not used concurrently for message
processing. Since a program in a Type 2 processing region may interface
with the message queues, it may retrieve messages enqueued from
terminals or enqueued as output from message programs, or the batch
program may itself enqueue messages destined for terminals or message
programs (Figure 29).

< >

MESSAGE Q OUTPUT
TO A TERMINAL OR - BATCH PROCESSING
INPUT TO A MESSAGE ‘ '

PROGRAM PROGRAM IN TYPE 2

PROCESSING REGION

MESSAGE Q BUILT FROM >
A TERMINAL OR MESSAGE
PROGRAM

‘-.\~__.__¥ .

Figure 29. Type 2 processing region/message queue relationship

All programs used in a Type 2 processing region must be predefined to
the IMS/360 control program like message processing programs. As with
message proOcessing regions, the Data Language/I calls from a Type 2
processing region are executed from the IMS/360 control program region.
If a batch processing program is merely going to retrieve data from
online data bases, it may reference the data bases with Data Language/I
calls. However, if a batch processing program wishes to update data in
or add data to online data bases, it issues Data Language/I data base
calls or output messages to the message queues that are input to a
message program. The data base updates are then performed by the
message program. The message program may Subsequently output messages
to the message queue. These messages, the results of data base update,
may be subsequently retrieved by a batch program in a Type 2 processing
region (Figure 30). The latter method is preferred because data base
calls performed by message programs have checkpoint/restart
capabilities. :

46

BATCH
DATA

BATCH
PROCESSING
PROGRAM
MESSAGE
QUEUES
=
MESSAGE
PROCESSING
PROGRAM
MESSAGE
PROCESSING
DATA BASE |
RESULTS BATCH MESSAGE
OF DATA PROCESSING QUEUES
BASE 1" PROGRAM
PROCESS~
ING

7

Figure 30. Batch program in Type 2 processing region

A Type 3 processing region is used for batch processing against Data
Language/I data bases unrelated or not concurrently used for message
processing. A batch program in a Type 3 processing region may not
access IMS/360 message queues; however, it may use normal Operating
System/360 data sets. The execution of Data Language/I call statements
from a Type 1 or 2 processing region is performed in the IMS/360 control
program region. The execution of Data Language/I call statements from a
Type 3 processing region is performed by IMS/360 modules in the Type 3
processing region.

The structure of all batch processing'programs utilizing Data

Language/I calls is subject to the same rules as message processing
programs unless otherwise stated. Whenever a Data Languages/I call is

47

executed from a processing region, the Operating System/360 task is
placed in wait state until the call is completed.

The type of processing region is specified in the Job Control
Language (JCL) statements for the job. The EXEC card PARM field is
utilized. The IMS/360 Operations Manual, Volume I - Systems Operation

provides a definition of the complete JCL required.

48

7N

7N\

7

CHAPTER 5. APPLICATION PROGRAM STRUCTURE

Application programs that execute using IMS/360 or Data Language/I
may be written in any one of the following Operating System/360
programming languages: Assembler Language, COBOL, or PL/I. It is
intended, however, that the programmer be able to benefit from the power
of high-level languages for processing and the power of Data Language/I
for data manipulation. Therefore, this discussion is oriented toward
COBOL or PL/I.

The structural requirements put upon any application program by
IMS/360 can be grouped into major areas and must be considered by every
programmer. ~

e Entry

e Exit

e Calls

e Parameters for calls

e Segment I/0 area

e Segment search arguments

The names listed below and shown in the examples throughout this
chapter are standard and must be used by the programmer.

COBOL PL/I ASSEMBLER STATEMENT USED WITH
DLITCBL DLITPLI ANY ENTRY
CBLTDLIT PLITDLI CBLTDLI CALL

TYPE 3 REGION BATCH PROGRAM STRUCTURE

COBOL Batch Program Structure

Figure 31 illustrates in outline form all the fundamental parts in
the structure of a Type 3 region batch program. Care should be taken to
ensure that each item is considered when designing a batch program.

49

REF

] 1

NO. | |
| ENVIRONMENT DIVISION i

| . |

| ° |

| DATA DIVISION |

| WORKING STORAGE SECTION |

1] 77 FUNC-DB-IN PICTURE XXXX VALUE'GU ‘. |
| 77 FUNC-DB-OUT PICTURE XXXX VALUE'REPL'. |

| 77 FUNC-DB-NEXT PICTURE XXXX VALUE'GHN '. |

| 77 CT PICTURE S9(5) (COMPUTATIONAL) VALUE +4. |

| ° ' |

2 | 01 SSA-NAME |
3 | 01 MAST-SEG-IO-AREA |
| 01 DET-SEG-IN-AREA |

| LINKAGE SECTION |

4 | 01 DB-PCB-MAST 1
| 01 DB-PCB-DETAIL |

| I

| |

| |

| PROCEDURE DIVISION |

| |

5 | ENTRY 'DLITCBL' USING DB-PCB-MAST,DB-PCB-DETAIL. |
| : |

6 | CALL ‘CBLTDLI' USING FUNC-DB-IN, DB-PCB-DETAIL, |
| DET-SEG-IN-AREA, SSA-NAME. |

| : |

7 | cCALL ‘CBLTDLI' USING CT, FUNC-DB-IN, DB-PCB-MAST, |
| MAST-SEG-IO-AREA, SSA-NAME. |

| |

8 | CALL 'CBLTDLI' USING FUNC-DB-NEXT,DB-PCB-MAST, |
| MAST-SEG-IO-AREA. |

| : |

9 | CALL 'CBLTDLI' USING FUNC-DB-OUT, DB-PCB-MAST, |
| MAST-SEG-IO~AREA. |

I ° |

| ° |

10 | RETURN |
| |
11 | COBOL - LANGUAGE INTERFACE |
[l

L |

Figure 31. COBOL batch program structure

Figure 31 is a general illustration of the significant parts in the
design of a COBOL batch program that retrieves data from a detail file
to update a master data base. Neither the detail nor the master is a
teleprocessing data base. A structure similar to the one shown must be
used to create a teleprocessing or batch processing data base in a batch
region.

The following explanation relates to the reference numbers along the
left side of Figure 31.

1. A 77-level or 0l-level working storage entry defines each of the
CALL functions used by the batch program. Each picture clause is
defined as four alphameric characters and has a value assigned
for each function (for example, "GUbb').

2. An 0l1l-level working storage entry defines each segment search

argument used by an application program. An example of an SSA
definition, with lowercase b's representing blanks, is:

50

01 SSA-NAME
02 SEG-NAME PICTURE X(8) VALUE ‘ROOTbbbb'.

02 SEG-QUAL PICTURE X VALUE *(°.

02 SEG-KEYNAME PICTURE X(8) VALUE 'KEYbbbbb®.
02 SEG-OPERATOR PICTURE XX VALUE 'b=".

02 SEG-KEY VALUE PICTURE X(6) VALUE ‘vvvvvv'.

02 SEG-END-CHAR PICTURE X VALUE ")°'.

When the above COBOL syntax is decoded, it will be in a data string
as follows:

3.

ROOTbbbb (KREY bbbbbb=vvvvvv)

An 0l-level working storage entry defines the program segment I/O
area.

An 0l-level linkage section entry describes the PCB entry for
every input or output data base. No PCB's can be included for
terminals. It is through this linkage that a COBOL program may
access the status codes after a Data Language/I call.

This is the standard entry point in the procedure division of a
batch program. After the region controller has loaded and
completed the PSB and one or more DBD's for the program in the
batch region, it gives control to this entry point. The PSB
contains all the PCB's used by the program. The USING statement
at the entry point to the Type 3 region batch program must
contain the same number of names in the same sequence as there
are PCB's in the PSB.

ENTER LINKAGE.
ENTRY 'DLITCBL' USING pcbname-1,....pcbname-n.
ENTER COBOL.

and 7. These are typical calls used to retrieve data from a data
base using a qualified search argument.

ENTER LINKAGE.

CALL ‘'CBLTDLI' USING function, pcbname,
segment-I/O-area,
segment-search-argument.

ENTER COBOL.

Item 7 also shows the use of another parameter in the call made
from COBOL to Data Language/I. This additional explicit
parameter is a binary counter (fullword) of the number of
remaining parameters in the current Data Language/I call. This
allows the user to set up the parameters of a call in the working
storage section of his data divisjon and to truncate or expand

- this call through the use of the binary counter.

This is a typical call used to retrieve data from a data base
using an unqualified search. This call is also a HOLD call for a
subsequent delete or replace.

51

52

10.

11.

ENTER LINKAGE.

CALL 'CBLTDLI' USING function, pcbname,

segment-I/0-area.
ENTER COBOL.

This call is used to replace data from a batch program onto a.
data base.

This RETURN causes the batch program to return control to the
region controller. The format is:

ENTER LINKAGE.

RETURN.

ENTER COBOL.

A language interface is provided for all programming languages.

This module is link-edited to the batch program and provides a
common interface to IMS/360 and Data Language/I.

N

PL/I Batch Program Structure

REF .
NO. | |
| 7% * |
| 7% ENTRY POINT */ |
| s# - * |
1 | DLITPLI:PROCEDURE (DB_PCB_MAST,DB_PCB_DETAIL) |
| OPTIONS (MAIN) ; I
| /¢ : _ - * |
| s+ DESCRIPTIVE STATEMENTS */ |
| 7% SRR /|
2 | DEGLARE FUNC' DB_IN CHARACTER(4#) INITIAL(®GUbb'); [
| DECLARE FUNC_DB_OUT CHARACTER(4) INITIAL('REPL®); |
| DECLARE FUNC_DB_NEXT CHARACTER(4) INITIAL('GHNb'); |
| o |
3 | DECLARE SSA_NAME STATIC UNALIGNED,...; |
4 | DECLARE MAST SEG_IO_AREA,...; ’ I
| DECLARE DET SEG_IN AREA,...; |
| . |
5 | DECLARE 1 DB_PCB_MAST,...; |
| DECLARE 1 DB_PCB_DETAIL,...; I
| . : I
6 | DECLARE THREE FIXED BINARY(31) INITIAL(3); |
| DECLARE FOUR FIXED BINARY(31) INITIAL(4); I
| |
| |
| 7% -* |
| 7% MAIN PART OF PL/I BATCH PROGRAM */ |
| Ve - -—= *x/ I
| . |
7 | CALL PLITDLI(FOUR,FUNC_DB_IN,DB_PCB_DETAIL, 1
l DET_SEG_IO_AREA,SSA_NAME) ; |
| . l
8 | CALL PLITDLI(FOUR,FUNC_DB_IN,DB_PCB_MAST, |
| MASTER_SEG_IO_AREA,SSA_NAME) ; |
| . |
9 | CALL PLITDLI(THREE,FUNC_DB_NEXT,DB_PCB_MAST, |
| MAST SEG_IO_AREA); |
| . |
10 | CALL PLITDLI (THREE,FUNC_DB_OUT,DB_PCB_MAST, l
| MAST_SEG_IO_AREA); |
| ° : |
11 | END DLITPLI; |
| |
| {
12 | PL/I - LANGUAGE INTERFACE |
| |
| | J

Figure 32. General PL/I batch program structure

Figure 32 is a general illustration of the significant parts in the
design of a PL/I Type 3 region batch program that retrieves data from a
detail file to update a master data base. Neither the detail nor the
master is a teleprocessing data base. A structure similar to the one
shown must be used to create a teleprocessing or batch processing data
base in a batch region.

The following explanation relates to the reference numbers along the
left side of Figure 32:

53

1. This is the main standard entry point to a PL/I batch program.
After the region controller has loaded and completed the PSB and
one or more DBD's for the program in the batch region, it gives
control to this entry point. The PSB contains all the PCB's used
by the program. The entry point statement of the Type 3 region
batch program must contain the same number of names in the same
sequence as there are PCB's in the PSB.

Note: When link-editing a compiled PL/I program with the
language interface, the load module ENTRY should be
either IHESAPB or IHESAPD with OPT=00 or 01 respectively,
and the load module member should be the name of the PL/I
program. The explanation is offered below.

The following entry points are to be used for PL/I object program
main entry in a non-multitasking environment.

ENTRY IHESAPB

For OPT=OO, provides no optimization area.

Provides pseudo register vector and library work space.
e Issues a SPIE macro-instruction.

e Transfers control to IHEMAIN.

ENTRY IHESAPD

e For OPT=01 reserves a 512-byte area for optimization.
e Same as the last three items for IHESAPB.

Note that neither of these entry points allows a PARM parameter to be
passed from the EXEC job control language statement.

The following entry points are to be used for PL/I object programs
operating in a multitasking environment:

ENTRY IHETSAA

e For OPT=00, provides no optimization area. ’

e Obtains storage for the Pseudo Register Vector Variable Data Area,
task variable and event variable for the major task, etc.

e Attaches the PL/I major task and enters the wait state until either
the event variable for the major task or the STOP ECB is completed.

ENTRY IHETSAB

Same as IHETSAA except that a 512-byte optimization area is acquired
for the OPT=01 user.

54

o~

10.

11.

e

By declaring, each working area defines each of the CALL
functions used by the PL/I batch program. Each character string
is defined as four alphameric characters, with a value assigned
for each function (for example, *GUbb'). Other constants and
working areas may be defined in the same manner.

This working area defines all the segment search arguments used
by the problem program. This SSA has been defined as a structure
but is assumed to be a contiguous character string in storage.

Example: (lowercase b's represent blanks)

DCL 1 SSA_NAME STATIC UNALIGNED,
2 SEG_NAME CHAR(8) INIT('ROOTbbbb'),
2 SEG_QUAL CHAR(1) INITC' ("),
2 SEG_KEY_NAME CHAR(8) INIT('KEYbbbbb'),
2 SEG_OPERATOR CHAR(2) INIT('b="),
2 SEG_KEY_VALUE CHAR(6),
2 SEG_END_CHAR CHAR(1) INIT(*)*);

Note: The UNALIGNED attribute is required for SSA data
interchange with IMS/360. The SSA character string must
reside contiqguously in storage. Assignment of variables
to key values, for example, could result in the
construction of an invalid SSA if the key value had the
ALIGNED attribute.

A working storage area entry defines the program segment I/O
area.

A level 1 declarative (similar to COBOL's linkage section)
describes the PCB entry for every input or output data base. No

PCB's can be included for terminals. It is through this

description that a PL/I program may access the status codes after
a Data Language/I call.

This is a descriptive statement used to identify a binary number
(fullword) that represents the "parameter count" of a call to
Data Language/I. The parameter count value equals the remaining
parameters following the parameter count set off by commas.

and 8. These are typical calls used to retrieve data from a data
base using a qualified search argument.

- CALL PLITDLI (parameter count, function, pcbname, segment I/O

area, segment search argument);

This is a typical call used to retrieve data from a data base
using an unqualified search. This call is also a HOLD call for a
subsequent delete or replace.

CALL PLITDLI (parameter count, function, pcbname, segment I/o
area);

This call is used to replace data from a Data Language/I batch
program onto a data base.

This END statement causes the batch program to return control to
the region controller. Another statement that causes the batch
program to return control to the region controller is the RETURN
statement. The RETURN statement may or may not immediately
precede the END statement.

55

12. A language interface is provided for all programming languages.
This module is link-edited to the batch program and provides a
common interface to IMS/360 and Data Language/I.

Assembler Langquage Batch Program Structure

The entry point to an Assembler Language program that utilizes Data
Language/I may have any desired name. However, Register 1, upon entry
to the application program, contains the address of a variable-length
fullword parameter list. Each word in this list contains a control
block address that must be saved by the application program. The
high-order byte of the last word in the parameter list has the 0 bit set
to a value of 1 to indicate the end of the list. The addresses in this
list are subsequently used by the application program when executing
Data Language/I calls.

All Data Language/I calls from an Assembler Language program should
be executed with the CALL macro-instruction. Register 1 must be
constructed prior to execution of the CALL statement to point to the
variable-length fullword parameter list. This may be done through
operands of the CALIL macro-instruction. The parameters in this list are
addresses of:

e The input/output function

e The PCB control block address associated with the data base
e Input/output work area

® Zero or more segment search argument identifiers

The entry point for the CALL macro-instruction is CBLTDLI.

Application programs used in the batch Data Language/I environment
may use both Data Language/I for data base processing and standard
Operating System/360 data management for non-data base input/output
operation.

MESSAGE OR TYPE 2 BATCH PROGRAM STRUCTURE

COBOL Message Program Structure

Figure 33 illustrates in outline form all the fundamental parts in
the structure of a COBOL message or Type 2 region batch processing
program. Care should be taken to ensure that each item is considered
when designing a Type 1 region message program or Type 2 region batch
program. :

56

N

N

REF '
ENVIRONMENT DIVISION.

{ |

| |
NO. | |
| . |

| DATA DIVISION l
| WORKING - STORAGE SECTION. |
1| 77 FUNC-IN PICTURE XXXX VALUE 'GU ". |
| 77 FUNC-OUT PICTURE XXXX VALUE 'ISRT'. {

| 77 CT PICTURE S9(5) (COMPUTATIONAL) VALUE +4. l

| . |

2 | 01 SSA -NAME. |
I . I

3 01 MSG-SEG-IO-AREA. |
| 01 DB-SEG-IO-AREA. I

I 01 ALT-MSG-SEG-OUT. [

| LINKAGE SECTION. |
4| 01 TERM-PCB-IN. |
I 01 TERM-PCB-OUT. [

| 01 DB-PCB. I

| l

| l

| PROCEDURE DIVISION l.

| ' |

5 | ENTRY 'DLITCBL' USING TERM-PCB-IN, TERM-PCB-OUT, l
| DB-PCB. I

| . |

6 | CALL 'CBLTDLI' USING FUNC-IN, TERM-PCB-IN, i
1 MSG-SEG-TO-AREA. |

| . |

7 | CALL 'CBLTDLI' USING FUNC-IN, DB-PCB, |
| DB-SEG-IO-AREA, SSA-NAME. I

! . ~ |

8 | CALL 'CBLTDLI' USING CT,FUNCTION,-DB-PCB, |
| DB-SEG~IO-AREA, SSA-NAME. |

| . |

9 | CALL *CBLTDLI' USING FUNC-OUT, TERM-PCB-OUT, |
| ALT-MSG-SEG-OUT. I

I .]

10 | RETURN. |
| |

| |
11 | COBOL-LANGUAGE INTERFACE |
| |

L J

Figure 33. COBOL message program structure

Figure 33 is a general illustration of the steps in the design of a
COBOL message program that processes an inquiry from a terminal, makes a
reference to a data base for information, and sends an answer to the
originating terminal or to an alternate terminal.

The following explanations are for a COBOL program and are keyed to
the reference numbers along the left side of Figure 33.

1. A 77-level or 0l-level working storage statement defines each of
the CALL functions used by the message program. Each picture
clause is defined as four alphameric characters and has a value
assigned for each function (for example, "ISRT').

2. BAn 01-level working storage statement describes each segment

search argument used for a data base call. An example of an SSA
definition, with lowercase b's representing blanks, is:

57

58

01 SSA-NAME.

02 SEG—-NAME PICTURE X(8) VALUE 'ROOTbbbb’'.
02 SEG-QUAL PICTURE X VALUE *(°'.

02 SEG-KEYNAME PICTURE X(8) VALUE 'KEYbbbbb'.
02 SEG-OPERATOR PICTURE XX VALUE 'b="'.

02 SEG-XEY-VALUE PICTURE X(6) VALUE'vvvvvv'.
02 SEG-END-CHAR PICTURE X VALUE ')°'.

When the above COBOL syntax is decoded and placed in storage, it
will be in a data string as follows:

ROOTbbbb (KEYbbbbbb=vvvvvv)

For further discussion, see the section, "Segment. Search
Arguments (SSA)".

An 0l-level working storage statement describes each segment I/0
area within the message program.

An 0l-level linkage section entry describes the PCB statement
first for the input terminal for the current message being
processed, second for each output terminal other than the input
terminal, and third for each data base (see "Program
Communication Block (PCB) Formats®"). It is through this linkage
description that a COBOL program may access the status codes
after a Data Language/I call.

This is the message program entry point and must be the first
COBOL executable statement in the procedure division. There must
be a PCB name for every PCB that will be used by the message
program. The names of the PCB's used in the ENTRY statement must
be specified in the same order as they are presented in the PSB
generation execution for the program's associated PSB. The
pcbnames can be specified in the linkage section in the same
order, but this is not necessarily a requirement. The first
pcbname must be for the terminal representing the source of the
input message. The general format is:

ENTER LINKAGE.
ENTRY °'DLITCBL' USING. pcbname-1,....pcbname-n.
ENTER COBOL.

This is a typical call used to read the input (source) logical
terminal. The first time this call is executed with function
equal to GET UNIQUE, the first line of the message that caused
the message program to be scheduled is brought into this program.
If the input message consists of more than one line, subsequent
lines can be obtained with a similar call but with the function
equal to GET NEXT.

ENTER LINKAGE.

CALL 'CBLTDLI' USING function, pcbname, I/O-work-area.

ENTER COBOL.

This call is used to access data from a data base other than a
terminal data base. The format is the same as that in Item 6
above, except that the PCB refers to a data base and the segment

search arguments define a particular data base segment.

This call is used to access data from a data base other than a
terminal data base. The call performs the same function as Item

10.

11.

7 above, except that it illustrates the use of another parameter
in the call made from COBOL to Data Language/I. This additional
explicit parameter is a binary counter (fullword) of the number
of remaining parameters in the current Data Language/I call.
This allows the user to set up the parameters of a call in the
working storage section of his data division and to truncate or
expand this call through the use of the binary counter.

This call is used to reply to an output logical terminal (source)
other than the terminal representing the source of the input
message. If the output terminal is the same as the input
terminal, this call utilizes the input source PCB. The format is
the same as the one shown in Item 6 above, but the function must
have a value of ISRT.

This operation causes the message program to return control to
the region controller.

ENTER LINKAGE.

RETURN.

ENTER COBOL.

A language interface is provided for all COBOL programs. This
module must be link-edited to the message processing program and
provides a common interface to IMS/360 and Data Language/I for
all CALL statements.

59

PL/I Message Program Structure

REF
NO.

/% */
/% ENTRY POINT */
/% 74
DLITPLI:PROCEDURE(TERM_PCB_IN, TERM PCB_OUT,
DB_PCB) OPTIONS (MAIN) ;

/% - ————— e */
/% DESCRIPTIVE STATEMENTS */
/* - */
DECLARE FUNC IN CHARACTER(#4) INITIAL("GUbb');
DECLARE FUNC_OUT CHARACTER (4)INITIAL('ISRT');

o

[]
DECLARE SSA_NAME STATIC UNALIGNED,...:
DECLARE 1 MSG_SEG_IO_AREA,...;
DECLARE 1 DB_SEG_IO_AREA,...; .
'DECLARE 1 ALT MSG_SEG_OUT,...;

[]
DECLARE 1 TERM _PCB_IN,...;
DECLARE 1 TERM _PCB OUT,...;
DECLARE 1 DB _PCB,...;

[]
DECLARE THREE FIXED BINARY(31) INITIAL(3);
DECLARE FOUR FIXED BINARY(31) INITIAL(Y4);

/¥ e -——- %/
/% MAIN PART OF PL/I PROGRAM */
/¥ - - -—— %/
®
CALL PLITDLI(THREE,FUNC_IN,TERM PCB_IN,
MSG_SEG_IO_AREA) ;
L]
CALL PLITDLI (FOUR,FUNC_IN,DB_PCB,DB_SEG_IO_AREA,
SSA_NAME) ;
[]
CALL PLITDLI (THREE,FUNC_OUT,TERM PCB_OUT,
ALT MSG_SEG_OUT) ;
L]

END DLITPLI;

10

PL/I - LANGUAGE INTERFACE

(=)
0 S D D D VI D . S —— — — —— — — — — St S A . . = S — — — G S G G — — - G I G S CO S ——. — —— — —
et s S e T —— . p— SO —— — — — — T — S — — — S O . p— — — — —— S Gu— T c— S —— — — — gt T e w— v o]

Figure 34. General PL/I message program structure

Figure 34 is a general illustration of the steps in the design of a
PL/I Type 1 message region program that processes an inquiry from a
terminal, makes a reference to a data base for information, and sends an
answer to the originating terminal or to an alternate terminal.

The following explanations are for a PIL/I program and are keyed to
the reference numbers along the left side of Figure 34:

1. This is the main standard entry point to a PL/I message program.

There must be a PCB name for every PCB in the PSB associated with
the message program. In addition there must be one PCB name for

60

N

the source of the input message. This must be the first PCB
name.

Note: When link-editing a compiled PL/I program with the
language interface, the load module ENTRY address should
be either IHESAPB or IHESAPD with OPT=00 or 01
respectively, and the load module member should be the
name of the PL/I program.

The following entry points are to be used for the PL/I object program
main entry in a non-multitasking environment.

ENTRY IHESAPB
e For OPT=00, provides no optimization area.
e Provides pseudo register vector and library work space.

e Issues a SPIE macro-instruction.
e Transfers control to IHEMAIN.
ENTRY IHESAPD
e For OPT=01, reserves a 512-byte area for optimization.
e Same as last three items for IHESAPB.

Note that neither of these entry points allows a PARM parameter to be
passed from the EXEC job control language statement.

Following entry points are to be used for PL/I object programs
operating in a multitasking environment.

ENTRY IHETSAA
e For OPT=00, provides no optimization area.

e Obtains storage for the pseudo register vector variable data area,
task variable and event variable for the major task, etc.

e Attaches the PL/I major task and enters the wait state until either
the event variable for the major task or the STOP ECB is completed.

ENTRY IHETSAB

Same as IHETSAA except that a 512-byte optimization area is acquired
for the OPT=01 user.

2. By declaring, each working area defines each of the CALL
functions used by the PL/I message program. Each character
string is defined as four alphameric characters and has a value
assigned for each function (for example, *ISRT'). Other
constants and working areas may be defined in this manner.

3. This working area defines all the segment search arguments used

by the problem program. This SSA has been defined as a structure
but is assumed to be a contiguous character string in storage.

61

62

‘Example: (lowercase b's represent blanks)

DCL 1 SSA NAME STATIC UNALIGNED,

2 SEG_NAME CHAR(8) INIT('ROOTbbbb"),
2 SEG_QUAL CHAR(1) INIT(' ("),

2 SEG_KEY NAME CHAR(S) INIT('KEYbbbbb'),
2 SEG_OPERATOR CHAR(2) INIT('b="),

2 SEG_KEY_VALUE CHAR(6),

2 SEG_END_CHAR CHAR(1) INIT(')*);

Note: The UNALIGNED attribute is required for SSA data
interchange with IMS/360. The SSA character string must
reside contiguously in storage. Assignment of variables
to key values, for example, could result in the
construction of an invalid SSA if the key value had the
ALIGNED attribute.

A working storage area entry defines the program segment I/0
area. Message input and output areas should be defined as a
static structure.

A level 1 declarative (similar to COBOL's linkage section)
describes the PCB statement first for the input terminal for the
current message being processed, second for each output terminal
other than the input terminal, and third for each data base (see
section on PCB formats). It is through this description that a
PL/I program may access the status codes after a Data Language/I
call.

‘This is a descriptive statement used to identify a binary number

(fullword) that represents the "parameter count" of a call to
Data Language/I. The parameter count value equals the remaining
parameters following the parameter count set off by commas.

This is a typical call used to read the input (source) logical
terminal. The first time this call is executed with function
equal to GET UNIQUE, the first line of the message that caused
the message program to be scheduled will be brought into this
program. If the input message consists of more than one line,
subsequent lines can be obtained with a similar call but with the
function equal to GET NEXT.

CALL PLITDLI (parameter count, function, pcbname, segment I/O
area); .

This call is used to access data from a data base other than a

teleprocessing data base. The format is the same as the one in
Item 7 above, except that the PCB refers to a data base and the
segment search argument defines a particular data base segment.

This call is used to reply to an output logical terminal (source)
other than the terminal representing the source of the input
message. If the output terminal is the same as the input
terminal, this call utilizes the input source PCB. The format is
the same as the one shown in 7 above, but function must have a
value of ISRT.

Y,

10. This END statement causes the batch program to return control to
the region controller. Another statement that causes the batch
program to return control to the region controller is the RETURN
statement. The RETURN statement may or may not immediately
precede the END statement.

11. A language interface is provided for all programming languages.
This module is link-edited to the batch program and provides a
common interface to IMS/360 and Data Language/I.

Assembler Lanquage Message Program Structure

See the preceding section, "Assembler Language Batch Program
Structure". The user should remember that an Assembler Language message
program will receive upon entry a PCB parameter list address in register
1. The first address in this list is to the input/output terminal PCB.
Any alternate output destination PCB addresses follow and finally any
data base PCB addresses. The last address in the list is signed
negative.

THE LANGUAGE INTERFACE

The language interface module provides the standard interface
mechanism, which allows a message or batch processing program to
communicate with IMS/360 for Data Language/I data base and message
calls. A copy of this module must be link-edited with each message or
batch processing program. When the module is entered, the structure and
addresses of the Data Language/I call are verified. If an invalid call
structure is received, a nonblank status code is returned to the message
or batch processing program. In a Type 1, 2, or 3 processing region, if
the PSB associated with the program to be executed contains information
conflicting with the DBD, the task within that region will be
terminated. In a Type 3 batch processing region, if a call is issued
that requires a PCB address and a PSB is not provided or is invalid, the
application program in that Type 3 region is terminated.

The language interface is designed to handle all supported languages
that interface with IMS/360-Data Languages/I. Upon entry into the
language interface, a pointer to a parameter list is provided by the
call structure. : '

Two types of parameter lists may be constructed: implicit lists and
explicit lists. The COBOL program may use either type of list, and the
language interface modifies the list as required to pass an implicit
list to IMS/360. The list is restored to its original format before
being returned to the application program. PL/I, on the other hand,
allows only explicit parameter lists. .

The following calls permit the standard entry points to the correct
language interfaces and should be used for all data calls.

PL/I - CALL PLITDLI......
COBOL - CALL 'CBLTDLI'......
Assembler - CALL CBLTDLI,......

Parameter Liét Contents

The generated format of the parameter lists may be of interest to the
application programmer (see Figure 35). The actual construction of
these lists is accomplished by the CALL statement parameters in the
high-level languages. The contents of these lists, as seen by IMS/360,
are shown for information purposes.

63

The format for CALL parameter lists is standard and should be as
shown in Figure 35.

P
)] “‘\
| |
| IMPLICIT PARAMETER LIST CONTENTS |
| ' l
|Bytes ' 1 |
+0 1 Function address	
I _	
+4	PCB address or PSB name address {
I	I I
+8	Segment input/output area address 1
j+12 i First Segment Search Argument address	
(-	
+16	Next Segment Search Argument address
+20	Last Segment Search Argument address
t !	
L .	
The high-order byte of the word containing the last parameter in an	
implicit parameter list contains an X'80°' v	
I ‘ I	
EXPLICIT PARAMETER LIST CONTENTS	
i	
Bytes 1	
1+0	Parameter count address
I '	I
]+0	Function address
1 : I I	
+8 i PCB address or PSB name address	i P
+12	Segment input/output area address
+14	First Segment Search Argument address
+20	Next Segment Search Argument address
+24	Last Segment Search Argument address
l L - J I
L d
Figure 35. Parameter list contents

Parameter count is a binary fullword count of the number of other
parameters that exist in the parameter list.

In PL/I, the function, PCB, segment I/0 area, and segment search
argument addresses are addresses of the dope vectors for the parameters.

The function and segment search argument should be defined as a
character string when PL/I is used. Segment input/output area should be
a static structure when using PL/I. All PCB's can be structured to any
level in PL/I.

Note that in those instances where the CALL statement references an
input or terminal PCB, no SSA's may be used, and their addresses must
not be in the parameter list.

/‘

Using an SPIE macro-instruction, the application language interface
disables any interrupt traps set by the application program.

o~

64

SEGMENT SEARCH ARGUMENTS (SSA)

When an application programmer requests Data Language/I to perform
data base functions, it is frequently necessary for him to specifically
identify a particular segment by its key field and the key fields of all
parent segments along the hierarchical path leading to that segment.
These key field values do not appear directly in the CALL statement
parameters provided to Data Languages/I. Instead, a segment search
argument name is given, which points to an area in the user's program
which contains the actual segment search argument (SSA).

Segment search arquments may be used with GET calls and are required
for all INSERT calls.

The SSA may consist of two pieces, the segment name and (as required)
a segment qualification statement. The segment name points Data
Language/I to the entry in the data base description that contains and
defines the characteristics of the segment and its key field.

The qualification statement contains information that Data Language/I
uses to test the value of the segment key or data field with the data
base to determine whether the segment meets the user's specificatiomns.
Using this approach, Data Language/I does the data base segment
searching, and the program need process only those segments in which it
is interested.

A segment qualification statement is composed of several elements.
Except where they are used to f£fill out a field, there must be no blanks
in this statement. The complete qualification for each segment is
contained between the left and right parentheses.

The segment search argument (SSA) structure is:

segment-name (segment-field-name-RO-comparative-value)
Seqment Name
The segment name must be eight bytes long.
Segment-name
is the segment name that pertains to a specific segment in the
hierarchical structure of a data base record; it is established
by the Data Base Description.

Segment Qualification Statement-

The segment qualification statement contains the
begin-qualification-operator, the segment-field-names, the
relational-operator, the comparative-value, and the
end-qualification-operator. If a segment search argument has no
qualification statement, the eight-byte segment name must be followed by
a character other than (.

Begin-qualification-operator

is the left parenthesis, (. It indicates the beginning of a
qualification statement.

Segment-field-name
is the name of a segment search field which appears in the
description of that segment type in the Data Base Description.

The name is eight characters long, with right-justified embedded
blanks as required. If the I/0 function is GET, the named field

65

may be either the key field or a data field within a segment. It
must be the key field if the segment search argument applies to a
root segment. Only the last SSA may be qualified on a data
field. The last SSA in the INSERT call may not have a
qualification statement.

RO = Relational-Operator

is a set of two characters that express the manner in which the
contents of the field, referred to by the segment-field-name, are
to be tested against the comparative-value. The sequence of
checking is less than, equal to, then greater than.

Operator Meaning

b = must be equal to

b > must be greater than

b < must be less than

- = must be not equal to

= > must be equal to or greater than
=< must be equal to or less than

Note: As used above, the lowercase b represents a blank character.

If the qualification statement applies to a root segment, only the =,
=>, or > relational operators may be used.

Comparative-value

is the value against which the contents of the field referred to
by the segment-field-name are to be tested. The length of this
entry must be equal to the length of the named field in the
segment of the data base, that is, it includes leading or
trailing blanks (for alphameric) or zeros (usually needed for
numeric fields) as required.

End-qualification-operator

is the right parenthesis,). It indicates the end of a
qualification statement.

The qualification statement test is terminated as soon as an
occurrence within the data base of a segment-type is found that
satisfies that qualification test. This procedure continues for all
SSA's in a Data Language/I data base call until the desired segment is
found. ‘

The following are examples of segment search arguments with and
without a qualification statement.

Example of SSA Usage

The data base structure and the segment names are as follows:

PONUM
|
|
r 1
l ‘ |
POSA POSD
| I
| I | | E—— |
| | | |
POSB POSC POSE POSF POSG

66

VR

The segment search argument for the various degrees of qualification
may then be as follows:

1. SSA with no qualification

PONUMbbbb
A call using an unqualified SSA can access the next root segment
called PONUM. Note that the ninth position must not contain a
left parenthesis.

2. SSA with qualification

PONUMbbb (ACTUALPOb=AB60733)
A call using this simple qualification accesses the root segment
of a data base record whose root segment key field, called
ACTUALPO, has a value of AB60733.

3. 8sA's that form a complex qualification

a. PONUMbbb(ACTUALPOb=AB60733) POSDbbbb(AFLDbbbbb=4234)
POSFbbbb (KFLDbbbbb=24357)

This type of qualification accesses the POSF segment whose
key field, KFLD, value is 24357, whose parent segment's key
field, AFLD, value equals 4234, and whose root segment's key
field, ACTUALPO, equals AB60733.

b. PONUMbbb (ACTUALPOL=AB60733) POSDbbbb(AFLDbbbbb=4234)

This type of qualification obtains the POSD segment whose
AFLD field equals 4234, and whose root segment's key field,
ACTUALPO, equals AB60733.

SEGMENT INPUT/OUTPUT AREAS

The segment input/output (I/0) area is an area in the application
program into which Data Language/I puts a requested segment, or from
which Data Language/I takes a designated segment. If a common area is
used, it must be as long as the longest segment to be processed. The
segment I/0 area name points to the leftmost byte of the area. Segment
data is always left-justified within a common segment I/0 area.

Example of Segment I/0 Arxea

In Figure 33, the message return area for COBOL is defined in the
working storage section by:

01 MSG-SEG-IO-AREA. (Reference 3)
02 CHAR-COUNT PICTURE S99 COMPUTATIONAL.
02 FILLER PICTURE S99 COMPUTATIONAL.
02 TRANS-CODE PICTURE X(8).
02 TEXT-AREA PICTURE X(110).

When a message is to be brought into this area, the following call
is used (Reference 6):

CALL 'CBLTDLI' USING FUNC-IN, TERM-PCB-IN, MSG-SEG-IO-AREA.

In Figure 34, the message return area for PL/I is defined by:

67

DECLARE MSG_SEG_IO_AREA STATIC,
LL FIXED BINARY(31),
Z2Z BIT (16) INITIAL((16)'O'B),

TXT_AREA CHAR(132);

NN

Note: LL is a fullword, thus making it easier to access. 1In
determining the actual length of MSG_SEG_IO_AREA, LL is still
considered two bytes. The length passed by IMS/360 to LL in the
above example is 136 bytes.

When a message is to be brought into this area, the following call is
used (Reference 7):

CALL PLITDLI (THREE,FUNC_IN,TERM_PCB_IN,
MSG_SEG_IO_AREA) ;

The message is located in the MSG-SEG-IO-AREA after the return from
this call. Notice that the first two bytes of the segment I/0 area
contain a count of the number of bytes in the segment or message lines
(even though the FIXED BINARY (31), indicates four bytes). The next two
bytes are reserved for use by IMS/360. The count includes the length of
its two bytes, the two reserved, the transaction code, and the message
text.

Example of Data Base Segment I/0 Area

In Figure 33, the data base segment return area for COBOL is defined
in the working storage section by:

01 DB-SEG-I-AREA. (Reference 3)
02 DB-SEGMENT PICTURE X(110).

When the data base segment is brought into this area, the following
call is used (Reference 7 or 8):

CALL 'CBLTDLI' USING FUNC-IN,DB-PCB,DB-SEG-IO-AREA,
SSA-NAME.

In Figure 34, the data base segment return area for PL/I is defined

by:

DECLARE 1 DB_SEG_IO_AREA,
2 DB_SEG_TXT CHAR(110);

When a data base segment is brought into this area, the following
call is used (Reference 8):

CALL PLITDLI (FOUR,FUNC_IN,DB_PCB,DB_SEG_IO_AREA,
SSA_NAME) ;

Note: There is no count field (2 bytes) or reserved area (2 bytes)
appended to the front of the data base segment as there is in the
message segment return area. The programmer usually knows the
length of his segments.

PROGRAM COMMUNICATION BLOCK (PCB) FORMATS

A Program Communication Block (PCB) exists external to an application
program for each terminal and data base used by the program. The
linkage section of the data division of a COBOL program defines an
external data field for each PCB. The EXTERNAL data attribute in PL/I
performs the same function. :

68

N

N

NS

The PCB is a set of contiguous fields that provide the application
program with the ability to make Data Language/I calls supplying the
following information:

e The name of the data base to be processed

e The specification of the Data Language/I functions that will be used
e Indications of the types of segments to be processed

e Areas for receiving status responses from Data Language/I

No initial values are defined in a PCB in the linkage section. The
values for a PCB exist in the Program Specification Block (PSB) and are
fixed at PSBGEN time. Under IMS/360, there are two types of PCB's: one
type is for a data base, and the other is for an online terminal.

PCB for a Terminal

The requirements for this type of PCB are as follows. The first
entry is at the first level and is the name of the PCB. The additional
entries for this PCB are at the second level. The second entry is the
logical terminal name, which must be a maximum of eight characters in
length. If this name is less than eight characters in length, it must
be padded with blanks to eight positions. The next entry is a reserved
field for Data Language/I use and must be two characters in length. The
following field is the status code feedback area and must be two
characters in length.

For input terminals, one additional field is required. This is the
input prefix and is twelve characters in length.

68.1

68.2

77N\

/

COBOL Example

The following COBOL example would be found in the linkage section of
the data division. This example is for either an input or an
input-and-output teleprocessing terminal.

01 INOUT-PCB.

02 IO-TERMINAL PICTURE X(8).
02 IO-RESERVE PICTURE XX.
02 TIO-STATUS PICTURE XX.
02 IN-PREFIX.

03 FILLER PICTURE X.

03 I~JULIAN-DATE PICTURE S9(5) COMPUTATIONAL-3.
03 INPUT-TIME PICTURE S9(7) COMPUTATIONAL-3.
03 FILLER PICTURE X(4).

Time is in two positions for hours, minutes, and seconds; and one
position for tenths of seconds.

PL/I Example
The following PL/I example would be found in the descriptive

statement parts of the PL/I problem program. This example is for either
an input or an input-and-output teleprocessing terminal.

DECLARE 1 INOUT_PCB,
2 IO_TERMINAL CHARACTER(S),
2 IO_RESERVE BIT(16),
2 IO_STATUS CHARACTER(2),
2 IN_PREFIX,
3 © PRE_DATE FIXED DECIMAL(7,0),
3 PRE_TIME FIXED DECIMAL(7,0),

3 PRE_MSG_COUNT FIXED BINARY(31,0);
A terminal that is used purely for output would have a PCB similar to
the one above, but without the last level-two and level-three lines.
The input prefix has no meaning for output messages.

PCB for a Data Base

The PCB provides specific areas used by Data. Language/I to advise the
application program of the results of its calls. At execution time, all
PCB entries are Data Language/I-controlled, where control means the
exclusive authority to change the contents of a PCB entry. The
programmer exercises his options as to what goes into the PCB at PSB
generation time.

The following fields comprise a PCB for a data base:

1. Name of the PCB - This area refers to the entire structure of PCB
entries and is used in program statements.

2. Name of Data Base Description - This field provides the DBD name
from the library of Data Base Descriptions. It contains
character data and is eight bytes long.

3. Segment Hierarchy Level Indicator - Data Language/I loads this
area with the level number of the lowest segment encountered in
its attempt to satisfy a program request. When a retrieve is
successfully completed, the level number of the retrieved segment
is placed here. If the retrieve is unsuccessful, the level
number returned is that of the last segment, along the path to
the desired segment, that satisfied the segment search argument.

69

70

This field contains character data; it is two bytes long and is a
right-justified numeric.

Data Language/I Status Code - A status code that indicates the’
results of a Data Language/I call is placed in this field and
remains here until another Data .Language/I call uses this PCB.
(Specific status codes are discussed with their associated calls
in a later section of this manual.) This field contains two
bytes of character data. When a successful call is executed,
this field is returned blank or with a warning status indication.

Data Language/I Processing Options - This area contains a
character code which tells Data Language/I the kinds of calls
that will be used by the program for data base processing. This
field is four bytes long. Only one of the following processing
options may be specified in a particular PCB. It is
left-justified to the first byte of the four-byte field. The
remaining three bytes are reserved.

Possible values for the processing options are:

10.

G - for get function
A - for get, delete, insert, and replace functions

L - for loading a hierarchical indexed sequential or hierarchical
sequential data basé

If the delete, replace, or insert option is specified for a
hierarchical indexed sequential data base, A must be used.
The only valid options for a hierarchical sequential data
base are G and L, and they are mutually exclusive in the same
PCB. The L option is mutually exclusive with other options
in the same PCB.

Reserved Area for Data Language/I - Data Language/I uses this
area for its own internal linkage related to an application
program. This field is one binary word.

Segment Name Feedback Area - Data Language/I fills this area with
the name of the lowest segment encountered in its attempt to
satisfy a call. Wwhen a retrieve is successful, the name of the
retrieved segment is placed here. If a retrieve is unsuccessful,
the name returned is that of the last segment, along the path to
the desired segment, that satisfied the segment search argument.
This field contains eight bytes of character data. This field
may be useful in GN and GNP calls.

Length of Key Feedback Area - This entry specifies the length of
the area required to contain the completely qualified key of any
sensitive segment. This field is one binary word. The
completely qualified key of a third-level segment includes the
first- and second-level keys.

Number of Sensitive Segment Types - This entry specifies the
number of segment types in the data base to which the application
program is sensitive. This field is one binary word.

Key Feedback Area - Data Language/I places in this area the
completely qualified key of the lowest segment encountered in its
attempt to satisfy a call. When a retrieve is successful, the
key of the requested segment and the key field of each segment
along the path to the requested segment are concatenated and
placed in this area. The key fields are positioned from left to
right, beginning with the root segment key and following the

hierarchical path. When a retrieve is unsuccessful, the keys of
all segments along the path to the requested segment for which
searching was successful are placed in this area.

COBOL Example

Figure 36 is an example of a PCB for a data base in a COBOL program.
The reference numbers relate to the preceding description of entries.

¥

|Reference

11 01 SAMPLE PCB.

|2 02 DBD-NAME PICTURE
{3 02 SEG-LEVEL PICTURE
|4 02 STATUS CODE PICTURE
15 02 PROC-OPTIONS PICTURE
|6 02 RESERVE-DLI PICTURE
|7 02 SEG-NAME-FB PICTURE
|8 02 LENGTH-FB-KEY PICTURE
|9 02 NUMB-SENS-SEGS PICTURE
|10 02 KEY-FB-AREA. PICTURE
H .

X(8).

XX.

xx.

XXXX. .

S9(5) COMPUTATIONAL.
X(B) -

S9(5) COMPUTATIONAL.
S9(5) COMPUTATIONAL.
X(n).

b s S . G S — . —— - w— ud

Note: n is set at PSBGEN time.
Figure 36. COBOL éxample
PL/I Example

Figure 37 is an example of a PCB for a

data base in PL/I program.

reference numbers relate to the preceding description of entries.

The

) 1
|Reference I
| Number |
| |
| 1 DECLARE 1 SAMPLE PCB, |
i 2 2 DBD_NAME CHARACTER(8), |
| 3 2 SEG_LEVEL CHARACTER(2), |
| o 2 STATUS_CODE CHARACTER(2), |
| 5 2 PROC_OPTIONS CHARACTER(4), |
| 6 2 RESERVE_DLI FIXED BINARY(31,0), |
i 7 2 SEG_NAME_FB CHARACTER(8), |
| 8 2 LENGTH_FB_KEY FIXED BINARY(31,0), |
1 9 2 NUMB_SENS_SEGS FIXED BINARY(31,0), |
| 10 2 KEY_FB_AREA CHARACTER(n) ; |
1 . J

Note: n is set at PSBGEN time.

Figure 37. PL/I example

It should be noted that no initial values have been defined in the
PCB. The values for the entries in the PCB exist in the Program
Specification Block (PSB). The attributes are defined for reference.

71

I

CHAPTER 6. APPLICATION PROGRAM DETAILS

DESCRIBING THE PROGRAM TO IMS/360

To this point in the manual, IMS/360 and its facilities have been
introduced and its data organization discussed. Chapter 5 dealt with
the application program structure as it relates to IMS/360. In this
chapter, more details are given.

Before these added details are presented, however, a checklist is
provided that is to be used as an aid to the application programming
function of IMS/360 in completlon of the tasks at hand -- an attempt to
present the total picture in abbreviated form.

Programmer's Checklist

This checklist is by no means to be considered chronological, nor are
the checks to be accomplished in the sequence given; it is not intended
as the order of an approach to the application function of IMS/360--
there are many ways to start implementing the system. This checklist
does provide the overall in three general breakdowns: (1) general
considerations, (2) program considerations, and (3) data base
considerations.

The following is an explanation of the columns of the checklist:

Column 1. Checklist item under cosideration.

Column 2. Is a teleprocessing application program affected? (X
means YES.)

Column 3. Is a batch application program affected?

Column 4. Is the user's application program planning affected by
this item?

Column 5. Is IMS/360's DBD generation affected by this item?
Column 6. Is IMS/360's PSB generation affected by this item?
Column 7. Is IMS/360°'s System Definition affected by this item?

Column 8. Is IMS/360's Security Maintenance program affected by this
item?

Column 9. In which IMS/360 manual will more details be found about
this particular item?

Abbreviation Full Title

SOM IMS/360 Operations Manual Volume I - Systems Operation
MOM IMS/360 Operations Manual Volume II - Machine Operation
PDM IMS/360 Program Description Manual

SM IMS/360 System Manual Volume I - Program Logic

0S/360 Appropriate Operating System/360 Manual

72

;/‘

PROGRAMMER'S CHECKLIST

@

©)

®

® ®

@ ®

o

@ TELE~ APPL. DETAIL
PROCESS- PLAN- SECURITY IN WHICH
ITEM ING BATCH NING DBDGEN PSBGEN SYSGEN MAINT. MANUAL
1. When considering application
program structure, have the PDM
following been considered? X X X SOM
a. Core limits X X X SOM
b. Overlay structure X X X N/A
c. Program chaining X X X DM
d. IMS/360 restart X X X DM, SOM
e. Storage devices X X X X X X DM, SOM
2. Selection of Type I programming
systems (MVT, MFT-II, or PCP) X X X X SOM
3. Select type of IMS/360 process-
ing region (Type 1, 2, or 3) X X X X PDM, SOM
4. Consider how many regions or
partitions the application will
need at one time, X X PDM, SOM
a. Within those regions or
partitions, how many
requests are anticipated?
(Terminal I/0, Message
Queues, and DL/I data base
requests) X X PDM, SOM
5. Select application program name. X X X X PDM, SOM
6. Select application program
language. X X X X PDM
7. Select telecommunications
system for IMS/360 tele- PDM,SOM,
processing environment. X X MOM
a. Terminal hardware and network X X X
b. Select transaction codes for
application program. X X X X X
(1) Specify priority for
each transaction: code. X X X, X
c. Are messages to be entered
at remote terminals single
or multiple line? X X X
(1) Select whether, after
input of message,
terminal is to continue
input of other messages
or wait until previous
message has been
processed. X X X
d. Specify the length of time
to process the message. X X X
e. Specify the number of
messages to be
processed per application
program load in a region. X X X
f. Specify the line groups for
the same_ terminal types. X X X
(1) Specify whether line
group is dialup (switched);
if so, specify telephone
numbers. X X X X
g. If 1050 system, speclfy
whether station control/
switched or station control/ ' '
non switched. X X X

73

PROGRAMMER'S CHECKLIST (continued)

(1) If station control/
switched, specify

Autocall or Autoanswer. zgﬁ'SOM'
{2} If station control/
nonswitched, option is
Autopoll.
h. 1If 2740 system, specify
station control/nonswitched
or no station control/
switched.
(I)” Tf station control/
nonswitched, option is
Autopoll or wrap/open.
(2) If no station control/
switched, option is }
Autocall or Autoanswer. ‘
i. Specify each communication
line with physical terminals
and logical terminal names,
their features, and their PDM, SOM,
component addresses. MOM, SM
Jj. Describe input and
output queue control
record and message data sets
desired. SOM, SM
k. Specify master terminal name
after giving consideration to
master terminal operation
relationship to application PDM, SOM,
program. MOM
1. Select for terminal operation
whether the terminal type
style be uppercase, lower-
case, or a mixture of both
for input or output data
translation. SOM
8.. Specify password, terminal, and
dialup (switched) password
'security. SoM, MOM
9. Specify all data base names for
this application program, PDM , SOM
a. Specify what type of
__processing region.
b. Select maximum number of
data bases that will be in
use at one time.
c. Specify how application
program intends to use each
data base (read-only, update,
‘exclusive use).
(1) Also specify application
program options (get,
delete, insert, replace, ‘$
load).
10. Specify what access method wanted
for each data base, their data
set names, and their storage PDM ,SOM
types. MoM
11. Specify the application program's
hierarchical (sensitive) segments
and parent relationships. PDM
a. Describe in detail the
(sensitive) segments. PDM
12, Check the entry point to the
application program, PDM
13, Plan the residence of MACLIB,
RESLIB, PGMLIB, PSBLIB, DBDLIB,
and PROCLIB. SOM,MOM
14. Plan and specify the statistical
reports from IMS/360 system
required for this application PDM , soM
program. MOM

74

ENTRY TO APPLICATION PROGRAMS

For purposes of standardization and clarity, a standard entry point
is used for programs to be run under IMS/360 or Data Language/I. The
first statement in the PROCEDURE DIVISION of a COBOL program should be
as follows:

ENTER LINKAGE. .

ENTRY 'DLITCBL' USING pcbname-1,.....pcbname-n.

ENTER COBOL.

The first procedure of a PL/I program'should be:

DLITPLI: PROCEDURE (pcbname-1,.....pcbname-n) OPTIONS(MAIN);

The "pcbname" parameters in these statements establish a correlation
between the problem program and the PCB's with which the program deals.
Each pcbname must appear at the first level in either the linkage
section (COBOL) or an external DECLARE statement (PL/I). If the problem
program does not deal with terminals, pcbname-1l through pcbname-n
correspond positionally to the PCB's specified during PSB generation.
For message programs, the input terminal PCB does not appear in the PSB,
but is determined by IMS/360 at process time. For message programs,
therefore, pcbname-1 corresponds to the input terminal, and pcbname-2
through pcbname-n correspond positionally to the PCB's specified during
PSB generation.

Note: When using PL/I and link-editing a compiled PL/I program with the
language interface, the load module ENTRY should be either
IHESAPB or IHESAPD, and the load module member name should be the
name of the PL/I program. See Chapter 5 under description of
PL/I program structure for more details.

DATA LANGUAGE/I DATA BASE CALLS

The data services of Data Language/I are available to the application
program through the use of standard language calls. The following calls
are used in conjunction with the function codes shown below.

For COBOL - CALL 'CBLTDLI' USING function-code, pcbname, segment I/O
area, SSAe.ececsee

For PL/I - CALL PLITDLI (parm-count, function-code, pcbname, sSegment
I/0-area,SSAececees);

Valid message and batch processing program Data Language/I call
functions are: :

Meaning Function Code Usage

GET UNIQUE ‘GUbbL* Message or Data Base
Segment

GET NEXT 'GNbb* Message or Data
Base Segment

GET NEXT WITHIN *GNPb* Data Base Segment

PARENT Only

GET HOLD UNIQUE *GHUDb"* Data Base Segment

. Only

75

Page of SH20-0634-1
Revised March 19, 1971
By TNL SN20-2339

GET HOLD NEXT 'GHND' Data Base Segment
: Only

GET HOLD NEXT *GHNP* Data Base Segment

WITHIN PARENT Only

INSERT *ISRT' Message or Data Base
Segment

DELETE 'DLET® Data Base Segment
Only

REPLACE *REPL" Data Base Segment

. Oonly

The GET UNIQUE Call (GUbb) - Data Base

The GET UNIQUE call is used to retrieve a unique statement occurrence
from the data base described in the PCB. The GET UNIQUE call can be
used for random processing, or it can be used to establish the position
in the data base where sequential processing is to begin.

SSA's in GET UNIQUE calls must conform to the following rules:
1. The call must have SSA's.

2. The first SSA must be for the root segment, and any following
SSA's must proceed down a hierarchical path with no missing
intermediate levels. The first SSA must be qualified, but lower
level SSA's may be qualified or unqualified.

3. The search field must be the key field in the qualification
statement of the root SSA, and the operator must be =, >, or = >.

4. The search field for level-2 and lower SSA's may be any defined
field within the segment if the organization is' HISAM. If the
organization is HSAM, only the last SSA may be qualified on a
data field. The operator may be =,—=, <, >, =>, or <=. A field
is defined if it is described by a FLDK or FLD card at DBD
generation time for the data base. All comparisons on key or
data fields are logical bit-for-bit compares.

One method that could be used to accomplish positioning at the
beginning of a data base is to issue a qualified GU call against the
root segment. The qualification should use an =) (equal to or
greater than) operator for a value less than the key field of the
first root. Binary zeros or EBCDIC blanks are suggested.

Status Codes for GET UNIQUE Calls

At the completion of a GET call, a status code indicating the results
of the call made is available in the PCB status code field to the
programmer. The status code should always be interrogated upon
completion of a call.

If the GET call was completed as requested, the two-byte status code
is blank; otherwise, the status code is one of those described later in
this chapter under the heading "Status Codes for Data Language/I".

The GET NEXT Call (GNbb) - Data Base

The GET NEXT call is used to retrieve the next desired segment from
the data base as described by the DBD name and sensitive segments in the PCB.

SSA's in GET NEXT calls must conform to the following rules:

76

N

1. The call may or may not have SSA‘'s.
2. SSA's may or may not have qualification statements.

3. The first SSA may be for any level of segment, but any following
SSA's must proceed down a hierarchical path with no missing
intermediate levels.

4. The search field may be any field within the segment (key or
data) if the organization is HISAM. If the organization is HSAM,
only the last SSA may be qualified on a data field. The operator
may be =,7=, £, =<, =>, or > . All comparisons are logical
bit-by-bit compares.

The execution of a GET NEXT call without SSA's returns the next
segment occurrence within the data base relative to the positioning of
the data base during the previous GU, GN, or GNP call. An uninterrupted
series of these call statements could be used to retrieve each segment
occurrence from the data base, beginning with the first and proceeding
sequentially through the last for all sensitive segments. The
parameters for this form of a GET NEXT are the function, PCB name, and
segment I/0 work area. ’

The GET NEXT call progresses only forward from the position in the
data base established in the preceding call, in an attempt to satisfy
the current call requirements.

Status Codes for GET NEXT Calls

At the completion of a GET call, a status code indicating the results
of the call made is available in the PCB status code field to the
programmer. The status code should always be interrogated upon
completion of a call.

If the GET call was completed as requested, the two-byte status code
is blank or GA or GK; otherwise, the status code is one of those listed
later in this chapter under "Status Codes for Data Language/I".

Definition of Cross-Hierarchical Boundary

The GA status code is a warning indication. When a GN or GNP call
without SSA's is issued, Data Language/I may return this status code to
indicate the crossing of hierarchical boundaries. This status code
indicates that Data Language/I has passed from one segment in the data
base at level X to another segment in the data base at level Y, where Y
is less than X. 1In other words, it has proceeded upward in the
hierarchy toward the root segment. This code is not returned to the
using application program when a GU, GN with SSA's, or GNP with SSA's is
issued, because the user is explicitly asking, through the presence of
the SsA's, to traverse a known path in the data base. Thus the GA
status code is a warning (to the user of the GN or GNP call to move
sequentially through a portion of the data bases) that Data Language/X
has taken him implicitly from a segment at one level of the hierarchy to
a segment at another, higher, level of the hierarchy.

The GET NEXT WITHIN PARENT Call (GNPb) - Data Base

The GNP call obtains lower level segment occurrences within the
family of a parent segment. It may be used to retrieve all segments or
specific segments within the family of the given parent segment.

At the issuance of the first GNP call, the relevant parent is
established by looking back to the last GET UNIQUE or GET NEXT call,
which must have been successfully completed. No intervening ISRT calls
are permitted; however, DLET or REPL calls do not affect parentage. The

77

parentage established with a GU or GN call remains constant for
successive GNP calls. However, the parentage will be destroyed whenever
a GU or GN call is executed. The parent segment may be at any level in
the hierarchical structure.

Note: If the GNP follows a GU or GN that returned a GE (not found)
status code, no parent can be established, and the status code GP
is returned for the GNP call. A GNP qualified or unqualified
that results in a GE status code does not affect parentage.

SSA's in GET NEXT WITHIN PARENT calls must conform to the following
rules:

1. The call may or may not have SSA‘'s.
2. SSA's may or may not have qualification statements.

3. The first SSA may be for any level segment except root, but any
following SSA's must proceed down a hierarchical path with no
missing intermediate levels.

4. The search field may be any field within the segment (key or
data) if the organization is HISAM. If the organization is HSAM,
only the last SSA may be qualified on a data field. The operator
may be =,m=, <, =, =>, or > . All comparisons are logical
bit-by-bit compares.

If a GNP call without SSA's is repeated, this call will read all
segment occurrences under the relevant parent segment, going up and down
hierarchical levels and crossing boundaries in the structure beneath the
parent for all sensitive segments. A not-found condition results when
Data Language/I encounters the next segment occurrence that is at the
same level as the parent or higher.

Status. Codes for GET NEXT WITHIN PARENT Calls

At the completion of a GET call, a status code indicating the results
of the call made is available in the PCB status code field to the
programmer. The status code should always be interrogated upon
completion of a call.

If the GET call was completed as requested, the two-byte status code
is blank or GA or GK; otherwise, the status code is one of those listed
in this chapter under "Status Codes for Data Language/I".

The GET HOLD Calls - Data Base

To change the contents of a segment in a data base through a DLET or
REPL call, the program must first obtain the segment. It then changes
its contents and requests Data Language/I to place the segment back in
the data base.

When a segment is to be changed, this must be indicated to Data
Languages/I at the time the segment is obtained. This indication is
given by using the GET HOLD calls. These function codes are like the
standard GET function, except the letter H immediately follows the
letter G in the code; that is, the hold form of the standard GET NEXT
WITHIN PARENT (GNPb) is GHNP. There are three GET HOLD calls: GHUb,
GHNb, and GHNP. They function like the standard GET calls. They also
indicate to Data Language/I that the segment may be changed or deleted.
(See the sections on GET UNIQUE and GET NEXT - Data Base calls and their
status codes.) The HOLD forms of GET permit Data Language/I to make
certain that the segment to be placed back into the data base is the
same segment that Data Language/I returned on completion of the last GET
HOLD call.

78

//_\

After Data Language/I has returned the requested segment to the user,
one or more fields, but not the key field, in the segment may be
changed.

The user should also guard against changing data from one type to
another type; for example, binary data should not be replaced with
decimal data.

After the user has changed the segment contents, he is ready to call
Data Language/I to return the segment to the data base. If, after
issuing a GET HOLD call, the program determines that it is not necessary
to change the retrieved segment, the program may proceed with other
processing.

If the user's application program intends to modify any segment
within a data base record with a REPL or DLET call, all segment
retrieval within that data base record should be performed with GET HOLD
calls. This is true for all segment retrieval including those segments
for which no modification is intended. Although retrieval by GET HOLD
calls is not required for segments that are not to be implied, the above
technique should result in more efficient performance.

Status Codes for GET HOLD Calls

At the completion of a GET call, a status code indicating the results
of the call made is available in the PCB status code field to the
programmer. The status code should always be interrogated upon
completion of a . call.

The actual status codes for the GET HOLD calls are the same as for
the type of GET call. That is, for GHU (Get Hold Unique) see the GU
status codes, for GHN (Get Hold Next) see the GN status codes, and for
GHNP (Get Hold Next Within Parent) see the GNP status codes.

The INSERT Call (ISRT) - Data Base

The Data Language/I INSERT call is used for two distinct purposes.
It is used to initially load the segments for creation of a data base.
It is also used in the hierarchical indexed sequential organization to
insert new occurrences of an existing segment type into an established
data base. The processing options field in the PCB associated with the
data base dictates Data Language/I execution of the call. The format of
the INSERT call is identical for either use.

In a message processing program, it is not possible to perform a
HISAM load. The program to load an HISAM data base must be a Type 3
batch program. (Spec1f1cat10ns for using the INSERT call in this type
of program are provided later in this manual.)

The INSERT call may be used with other Data Language/I segment
processing calls in a message processing program. In this environment,
the INSERT call is used to place new occurrences of existing segment
types into an established hierarchical indexed sequential data base.

When a segment is inserted into the data base, the user must tell
Data Language/I precisely where the segment is to be logically placed.
This placement is given to Data Language/I by referring to one or more
SSA's in the call. Through the SSA's, the user tells Data Language/I
the segment name and qualification statement for each segment along the
path. However, the SSA for the segment to be inserted must contain only
the segment name. The name may not be followed by the character (. The
path begins with the root segment and proceeds to each segment, down the
hierarchical path, upon which the inserted segment depends for its full
meaning.

79

1. The COBOL call format for inserting segments is:

CALL ‘'CBLTDLI' USING functlon, pcbname, segment-I/O-area,
ssa-1,...,Ssa-n.

2. The PL/I call format for inserting segments is:

CALL PLITDLI (parm—-count, function, pcbname,
segment-I/O-area,ssa~l,.....,Ssa-n)

When inserting to a hierarchical sequential data base, INSERT means
to load an output data base. The PCB processing option I is used.
Option A is invalid for the hierarchical sequential organization.
Inserts to an established hierarchical sequential data base cannot be
made without reprocessing the whole flle or by adding to the end, and
must be in sequence.

The user must follow each INSERT call in his program with statements
which examine the returned status codes in the PCB, to determine if the
requested action was completed properly.

When inserting a segment into a data base it is not necessary to
cause the prior positioning and holding of a segment using the GET HOLD
calls. The INSERT call itself contains all the qualification necessary
to cause automatic positioning.

Status Codes for INSERT Calls

If the segment is inserted properly, the INSERT module places a blank
status code in the PCB; otherwise, one of the following status codes
will be returned to the problem programmer (see the section in this
chapter titled "Status Codes for Data Language/I"). The following
diagrams attempt to explain some of the more complete status codes.

EXAMPLE OF LD STATUS CODE:

ROTNAM

T2NAM i T3NAM

T4NAM T5NAM

1. User loads segments RX, A, C, E, and G.
2. Next segment presented is a level three (J).

3. When segment J is presented, Data Language/I checks whether the
last segment type at level two is a segment type H.

4. If the parent name (H) of the new segment (J) is not the same as

the name last added at the parent level (G), status code LD is
returned to the user. v v

80

7N\

N

-

N

EXAMPLE OF LE STATUS CODE:

1.
@ ROTNAM
2 () . .
T2NAM T2NAM T3NAM

5NAM T4NAM

1. User loads segments RX, B, D, F, and U.

2. Next segment presented is a level three (Z) with segment name
T4NAM.

3. From the DBD hierarchy definition, Data Language/I finds that the
previously loaded same-level segment type (U) is defined in the
DBD after Z. The segments must be loaded in the same sequence as
they were defined in the DBD. However, the user is attempting to.
add a Z after a U for a common parent F. This is the inverse of
segment sequence definition in the DBD.

4. This sequencing error of common level segments thus generates
status code LE.

The DELETE Call (DLET) - Data Base

To delete the occurrence of a segment from the data base, the program
must first get the segment and then ask Data Language/I to delete it.
When a segment has been deleted, it is no longer available to any
program. Before the program can ask Data Language/I to delete a
segment, however, the segment must first be obtained by issuing a GET
HOLD call through Data Language/I. Once the segment has been acquired,
the DELETE call may be issued.

There must be no Data Language/I calls that use the same PCB
intervening between the GET HOLD call and the DELETE call; otherwise,
the DELETE call is rejected. Quite often a program may want to process
a segment before deleting it. This is permitted as long as the
processing does not involve a Data Language/I call that refers to the
same PCB used to get the segment.

Data Language/I is advised that a segment is to be deleted when the
user issues a call that has the function DLET. When the DELETE call is
executed, the specified segment occurrence is not physically deleted,
but simply flagged as being deleted. The occurrence is physically
deleted when the file is reorganized. The deletion of a parent, in
effect, deletes all the segment occurrences beneath that parent. If the
segment being deleted is a root segment, all dependent segments under
that root in relevant data set groups are also flagged as deleted.

The segment to be deleted must occupy the area referred to by the
segment-I/0-area in the DELETE call.

81

Note that the SSA has no meaning to the DELETE call, since
positioning is accomplished by the previous GET HOLD call. SSA's should
not be included in a DELETE call.

1. The delete call format for a COBOL program is:
CALL 'CBLTDLI' USING function,-pcbname, segment-I/O-area.
2. The delete call format for a PL/I program is:
CALL PLITDLI (parm-count, function, pcbname, segment-I/O-area);

For a program that processes hierarchical sequential data bases where
each record is rewritten on a new data base, the DLET call has no
meaning and will be rejected as an invalid function. If a segment
occurrence is to be deleted, it is simply not written to the output data
base.

The REPLACE Call (REPL) - Data Base

The purpose of the REPLACE call is to allow a segment that has been
retrieved through a GET HOLD call and modified through program
processing, to be replaced in the data base. The segment to be modified
and replaced must first be obtained by a GET HOLD call. No intervening
calls involving the associated PCB may be made between the GET HOLD and
the REPLACE call. If this rule is violated, the REPLACE call is
rejected.

In the modification of a segment to be replaced in the ‘data base,
care must be taken not to modify the segment key field. If modification
of the key field is attempted, the REPLACE call is rejected.

The segment to be replaced must occupy the area referred to by
segment-I/0O-area in the REPLACE call. The segment in the Data
Language/I buffer area is overlaid with the segment-I/O-area in the
REPLACE call.

1. The replace call format for a COBOL program is:

CALL 'CBLTDLI' USING function, pcbname, segment-I/O-area.

2. The replace call format for a PL/I program is:

CALL PLITDLI (parm—count, function, pcbname, segment-I/O-area);

For a program that processes hierarchical sequential data bases where
each record is rewritten on a new data base, the REPLACE call has no
meaning. If a segment occurrence is to be replaced, it is simply placed
in the output data base with an INSERT call.

No segment search arguments are allowed on a REPLACE call.

Status Codes for DELETE/REPLACE Calls

Error. codes may be generated as a result of either a DELETE or a
REPLACE call, and are placed into the PCB status code field. For these
status codes see the section titled "Status Codes for Data Language/I"
in this chapter.

82

Page of SH20-0634-1
Revised March 19, 1971
By TNL SN20-2339

MESSAGE FORMATS AND STRUCTURES
There are three basic message formats used within IMS/360:
e TInput message
e Output message
e Program-to-program messages
The formats shown represent message segments as they would be

received or constructed in the segment I/O area. A message segment and
a single message line are synonymous.

Input Message Format

Input message segments originate at a communications terminal and are
delivered to the application program's segment I/0 area by means of a GU
or GN call to Data Language/X. An input message segment may be a
maximum of 131 bytes for the 1050 or 2740 terminals, including the count
and the halfword reserved area. An input message segment may be a
maximum of 84 bytes for the 2260, including the count and halfword
reserved area. An input message from a 2260 may be a maximum of 959
characters (plus the SMI symbol). The format of each input message is:

¥ L)
LL	Z7Z	TEXT
	l	
L J
where:
LL
is a halfword binary field containing the total number of characters
in the message line, including LL and ZZ. The value of LL = number
of characters in text + 4. This count entry is made by IMS/360 for
input messages. When PL/I is used, this count is also placed in the
dope vector's current length field segment I/0 area. Further, with
PL/I, the LL field is defined as a fullword but used as a halfword
(length of LL for total input message is two bytes). See the
section titled "Segment Input/Output Areas™ in Chapter 5 of this
manual.
ZZ
is a two-byte field whose value and use are reserved by IMS/360.
TEXT

is the message line exactly as it was entered at the terminal in
EBCDIC. The text includes transaction code, message text, and CR
(carriage return). If the message consists of multiple lines of
text, each subsequent line has the same format. The message
consists of an unlimited number of segments. The transaction code
appears only in the first line. If a password is entered with the
message from the terminal, it is edited out upon presentation to the
application program, and the text is left-justified, as required. A
transaction code must be followed by a blank or a left parenthesis
if there is a password. These are the only two acceptable
delimiters for the transaction code.

83

When the remote mode IBM 2260 Display Station, Model 1, is used as
the input message device, the following are input message
considerations:

e The length of the message is variable from 1 to 960 characters.

e The input message is broken into segments. The segments will be
either 80 characters in length or a length less than 80 characters
if a new-line symbol is placed in the segment by the operator.
Maximum length of segments is 80 characters. (The Model 1 2260
Display Station allows 80 characters horizontally and 12 lines
vertically.)

e Therefore, the same Data Language/I rules apply to obtain each
segment that makes up the input message.

e Only single screen input is allowed.

e The /EXCLUSIVE command should be used when entering an input message
from a 2260 Display Station. If not, any BROADCAST or system
messages will be displayed on the screen and may erase an entry or
an answer. When the /EXCLUSIVE command is used, the BROADCAST
system messages will remain on the queue until an /END command is
entered.

e WARNING: A START MI symbol must precede any entry of an input
message. The operator of the 2260 can enter the START MI symbol
from his keyboard, or the application program can place it on the
display screen. (If PL/I is used, the symbol must be one character
multipunched, hexadecimal 4A.) Only one START MI symbol is allowed
per screen.

e The input message for a 2260 is considered to be that data contained
between the START MI symbol () and the position of the CURSOR
symbol () at the time the ENTER key is depressed. All other data
displayed on the screen at this time is ignored and is not
transmitted to the CPU. If no START MI symbol is displayed at the
time the ENTER key is depressed, no data is sent to the CPU.

e Tt is recommended that, after a transaction is input, the operator
should await his reply, if one is expected, before entering another
transaction. This will prevent the reply from one program from
overlaying the reply from another before the operator has viewed it.

Output Message Format

output message segments or lines originate within the application
program and are sent to a communications logical terminal, which is
defined by a terminal PCB. Each output message segment is enqueued to
be sent by means of an ISRT call to Data Languages/I. The format of each
segment is:

f) 1
| | | |
{ LL | 21 | 22 | TEXT |
| | | | |
L d

where:

LL

is a two-byte binary field containing the total number of characters
in the message segment, including LL, Z1, and Z2. The value of 1L =
number of characters in text + 4. The application program must fill

84

in this count.
binary fullword.

text to be written in this field.

total of

When PL/I is used, the LL field is defined as a
The PL/I user must also place the length of the
The values must represent the

8u4.1

84.2

21

22

1. WRITE INITIAL (WI)

2. WRITE AT LINE

2 for the count field (even though it is physically four bytes
in the PL/I environment)

1 for the Z1 field

1 for the 7Z2 field

n for the text length

or the text character count plus 4.

is a one-byte field containing binary zeros whose value and use are
reserved by IMS/360.

For 1050 and 2740 terminals, 22 is a one-byte field containing
binary zeros whose value and use are reserved by IMS/360. For 2260
Display Stations, Z2 is a one-byte binary field that denotes the
type of WRITE command back to the 2260 display screen. These types
of WRITE commands affect the format of 2260 display screens. The
2848 Display Control must have the Line Addressing Feature #4787 to
accomplish Items 2 and 3 below.

WRITE Command Designation

Binary zeros

Description

Indicates that it will
begin writing output
segment at the position
at which the cursor
symbol was last left

Hexadecimal
01 through 0OC,
depending on

Indicates that it will
begin writing at the
line specified (from

ADDRESS (WALA)

3. ERASE SCREEN

START AT LINE

one through twelve)

Indicates that the
screen will be erased
first; the output
segment will then be

which of the
twelve lines

Hexadecimal
11 through 1C,
depending on
which of the

4. WRITE ERASE (WE)

written at line address twelve lines
specified (line one
through twelve)
Indicates the screen Hexadecimal 20
will be erased first;

the output segment

will then start being

written on the upper

left corner of the

screen
Note: Any code not the same as designated for the WRITE commands above

will default to binary zeros. NoO error messages will be given.
TEXT

is the output message segment in EBCDIC as it is transmitted to a
specific logical terminal. The length of an output message line
segment must not exceed 132 characters of text for the 1050 or 2740
terminals. It is the application programmer's responsibility to

85

insert the required carriage-return character in the body of the
message line segment. The length of an output message line segment
must not exceed 960 characters of text for the 2260 Display Station.
An output message can contain multiple segments. It is not
necessary to include the logical terminal name in the output
message, as the destination is determined by the PCB.

Certain device control characters must be inserted into the message
where desired to format the message at the terminal output device.
(In PL/I, these control characters must be initialized to one
character and multipunched.) These are described below in
hexadecimal format:

05: skip to tab stop, but stay on same line
15: start new line at left margin (carriage return)
25: skip to new line, but stay at same print position

When the remote mode IBM 2260 Display Station, Model 1, is used as

the output message device, the following are output message
considerations:

e An output message may be composed of multiple segments that make up
a single display screen (12 lines times 80 characters equals 960
characters).

e Each output segment can have its own WRITE command. However, a
WRITE ERASE (WE) will be ignored except on the first output segment.

e Only single screen output is allowed.

Examples of 2260 WRITE Commands

Example 1:

86

Segment 1:

has LL=9, Zl1= binary zeros, Z2= hexadecimal 15, and
TEXT=ABCDE. From the Z2 indication, this means erase screen
and start writing at line 5.

Segment 2:
has LL=9, Z1 and Z2= binary zeros, and TEXT=XYZ12. From the
Z2 designation, this means continue writing TEXT from the
last cursor position.

Segment 3:
has LL=11, Z1= binary zeros, Z2= hexadecimal 08, and

TEXT=QRSTUVW. From the Z2 indication, this means writing
TEXT at line 8.

7N\

SCREEN DISPLAY

]
|
1 |
2 |
3 |
4 |
5 | ABCDEXYZ12
6 I
7 |
8 | QRSTUVW
9 |
10 [
11 |
12 [
|
L

Example 2:

Segment

Segment

Segment

1:

has LL=11, 21= binary zeros, Z2= hexadecimal 20, and
TEXT=123456A, Z2 indicates that the screen shall be erased,
and writing will start at the top left corner, ending the
text with a new-line symbol.

2:

has LL=10, Zl=binary zeros, Z2= hexadecimal 20, and
TEXT=STUVWX. %2 indicates that the screen should be erased
and writing should start at the top left corner of the
screen, but, since there has already been a WRITE ERASE, this
command will be ignored, putting the TEXT on the second line.

3:

has LL=9, Z1= binary zeros, Z2= hexadecimal 17, and
TEXT=XYZ99. Z2 indicates that the screen should be erased
(WRITE ERASE) and TEXT placed on line 7. Since this is not
the first segment command in this message, the WRITE ERASE
will be ignored and the TEXT placed on line 7.

SCREEN DISPLAY

]
|
1 | 123u564
2 | STUVWX
3 |
4 |
5 |
.6 |
7 | XYz99
8 |
9 |
10 |
11 |
12 |
|
L

A 2260 application program done in PL/I is included as an examplevof
a message program in the Appendix of this manual.

87

Program—-to-Program Message Switching Format

This facility has been included to allow messages to be sent from one
program to another. The format of this type of message is similar to
that for output messages. It is:

3

| |
| 21| 22 | TEXT
| I |

b e s e,

The description for output messages applies here. The following
areas should be noted:

1. 1L is the same as for output message.
2. 21 and 22 are one-byte fields.

3. TEXT: The destination of a program—to-program message is a
control block in the IMS/360 scheduling facility. This control
block has a one- to eight-character transaction code. The
transaction name must appear as the initial characters of the
text, followed by a blank. A transaction name is required to
enable reconstruction of message queues during restart.

Notes:

1. The Data Language/I ISRT call which processes this output message
segment must refer to a PCB whose output terminal name is equal
to the eight-character transaction code referenced in statement
3.

2. Message security (password or terminal) is not available for
program-to-program messages.

There are some limitations on program-to-program message switching
with regard to data base recovery. The reader should refer to the
APPLCTN macro-instruction in Chapter 4 of the IMS/360 Operations Manual,
Volume I - Systems Operation (SH20-0635) for a description of the
limitations. '

CALL Definitions for Messages

L
The call functions that are available when referencing input and
output message are:

1. *GUbDb’
2. 'GNbDL'
3. "ISRT'’

The use of these functions is limited when compared with the
functions used to reference data bases. In all three of the functions
related to messages, Data Langquage/I works only with message lines or
segments. The call format is standard and simple because there is no
hierarchical structure with which to be concerned. SSA's must not be
used for Data Language/I message calls.

The GET Calls (GU, GN)

The retrieval of an input message is accomplished with GU and GN
calls. When a message processing program is scheduled, the program
knows that there is an input message to be processed. The structure of
the terminal PCB is described in the message processing program, but the

88

R

actual PCB values are furnished by IMS/360. The first segment or line
(commonly called the "header segment") of an input message is always
obtained by a GET UNIQUE call against the input PCB, which is provided
by IMS/360 at scheduling time.

1. The format for a COBOL program is:

CALL 'CBLTDLI' USING GET-UNIQUE-FUNC, IN-TERM-PCB,
SEGMENT-IO-AREA.

2. The format for a PL/I program is:

CALL PLITDLI (PARM COUNT,GET UNIQUE_ FUNC,IN_TERM_ PCB,
SEGMENT_IO_ARER) ;

The exact message entered at the terminal is placed in the
SEGMENT-IO-AREA. Since the maximum length of a message can vary, this
area should normally be 136 bytes long.

For programs that process multiple message types, the text of the
input message must be examined to determine the transaction code.

For input messages with multiple segments or lines, the GN call must
be used to get the subsequent segments (commonly called "trailer
segments™) of an input message.

a. The format for a COBOL program is:

CALL 'CBLTDLI' USING GET-NEXT-FUNC, IN-TERM-PCB, SEGMENT-IO-AREA.

b. The format for a PL/I program is:

CALL PLITDLI (PARM_COUNT,GET NEXT FUNC,IN_TERM_PCB,
SEGMENT_IO_ARER) ;

When a message includes trailer segments, two successive GU calls
will cause the subsequent segments to be lost.

When a GU call is given and no more messages are available, a "QcC"
code is returned in the input terminal PCB status code field. A status
code of "QOD" is returned with a GN call following the last subsequent
segment of an input message.

The INSERT Call (ISRT)

The INSERT call is used to send output messages to terminals. If a
message is to be sent back to the terminal from which the input message
originated, the input PCB should be used. If output messages are to be
sent to terminals other than the input terminal, they must be
predetermined and specified with terminal PCB's at PSB generation time.
The designation for an output message is determined by the PCB used in
the Data Language/I INSERT call; the PCB that is addressed contains an
eight-character logical terminal name or transaction code. If the
insert is to an SMB, the inserted message must contain the message
destination in its high-order bytes, followed by at least one blank. If
the insert is to a CNT, this is not a requirement.

The call format is similar to the message GET calls because there is
no hierarchical structure to consider.

1. The format for a COBOL program is:

CALL 'CBLTDLI' USING INSERT-FUNC, TERM-PCB, SEGMENT-IO-AREA.

89

2. The format for a PL/I program is:
CALL PLITDLI .(PARM_COUNT, INSERT FUNC,TERM PCB,SEGMENT IO AREA);

Ooutput message segments are not distinguishable as headers and
trailers by the ISRT call of IMS/360. If a distinction must be made,
the programmer must do so. SSA's may not be used with message ISRT
calls. All message segments inserted to a given output terminal
(terminal PCB) during the processing of a single input message are
treated by IMS/360 as a single message. Output message segments may be
engueued by INSERT calls for output prior to trailer segment retrieval
of the input message. Output message segments are not sent to their
destination (terminal) until the application program issues a GU for
another input message or returns to IMS/360 on conclusion of its
processing.

Status Codes for Input and Output Messages

At the completion of a GET or INSERT call related to a message
segment, a return code indicating the results of the call is available
to the programmer in the associated PCB status code field. The status
code always should be interrogated at the completion of a call.

If a GET or INSERT call is completed successfully, the two-byte

status code is blank; otherwise, the status code is one of those listed
in this chapter under "Status Codes for Data Language/I".

90

STATUS CODES FOR DATA LANGUAGE/I CALLS

DATA BASE CALLS MSG CALLS
STATUS GNP ’ CALL
CODE GHNP. ISRT |COMPLETED DESCRIPTION
AB X X X SEGMENT 1/0 AREA REQUIRED, NONE SPECIFIED Ii CALL
AC X X HIERARCHICAL ERROR IN SSA’S
1) X INVALID FUNCTION PARAMETER
AE X X ROOT SEGMENT SPECIFIED BY THIS CALL. NOT ALLOWED
GNP CALLS
AF X DLET OR REPL CALLS CANNOT HAVE SSA'S SPECIFIED
A6 X X X X FIRST SSA SPECIFIED IS NOT LEVEL 1
AH X X X X CALL REQUIRES SSA’S. NONE PROVIDED
Al x| x x X X DATA MANAGEMENT OPEN ERROR
Al X] X X X X X INVALID SSA QUALIFICATION FORMAT
AK x| X X X X X INVALID FIELD NAME IN CALL
AL x| X X X X X CALL USING TERM PCB IN TYPE 3 (BATCH)
M x| x| X X X X CALL FUNCTION NOT COMPATIBLE W/ PROCESSING OPTION
AN X X X GN CALL FOLLOWING ISRT CALL IS INVALIV
A0 XK=t X X 170 ERROR ISAM OR BSAM
AP i X X X 1/0 ERROR OSAM
AQ READ 1/0 ERROR. MESSAGE CHAIN CAMNOT BE FOLLOWEU,
MINIMUM OF ONE MESSAGE LOST
AR READ 1/0 ERROR. MESSAGE SEGMENT HAS BEEN LOST,
MESSAGE CHAIN IS STILL INTACT.
AS | QUEUES NOT AVAILABLE
AT TRANSACTION CODE DGES ROT MATCH PCB NAME IN
v PGM-TO-PGM MSG SWITCH
DA SEGMENT KEY FIELD HAS BEEN CHAWGEL
BJ NO PRECEDING SUCCESSFUL GET HOLD CALL
A X X CROSSED HIERARCHICAL BOUNDARY INTO RIGHER LEVEL *
(RETURNED ON UNQUALIFIED CALLS ONLY)
6B END OF DATA SET. LAST SEGHENT REACHED.
GE X o SEGMENT NOT FOUND
6K X X DIFFERENT SEGMENT TYPE AT SANE LEVEL RETURNED
(RETURNED ON UNQUALIFIED CALLS ONLY)
P X A GNP CALL AND NO PARENT ESTABLISHED, OR
REQUESTEDSEGMENTLEVELNOTLOWERfHAN
PARENT LEVEL ’ : I
11 SEGMENT 70 INSERT ALREADY EXISTS IN DATA BASE
LB SEGMENT TO INSERT ALREADY EXISTS IN DATA BASE
L KEY FIELD OF SEGMENTS OUT OF SEQUENCE
L NO PARENT FOR THIS SEGMENT HAS BEEN LOAVED
LE SEQUENCE OF SIBLING SEGMENTS NOT THE SAME AS
DBD SEQUENCE
o NO MORE INPUT MESSAGES
D NO MORE SEGMENTS FOR THIS MESSAGE
aE GET NEXT REQUEST BEFORE GET UNIQUE
aF SEGMENT LESS: THAN FIVE CHARACTERS (SEG LENGTH IS
HSG TEXT LENGTH PLUS FOUR CONTROL CHARACTERS)
aH TERMINAL SYMBOLIC ERROR - OUTPUT DESIGNATION
UNKNOKN TO IMS/360 (LOGICAL TERMINALS OR
‘ TRANSACTION CODE)
al GET NEXT AFTER END OF MESSAGE
X GOOD! NO STATUS CODE RETURNED. PROCEED!

BB MEIANINIG BLIANK BIU\NK

* SEE PARAGRAPH ON CROSS~HIERARCHICAL BOUNDARY DEFINITION IN 145/360 pDM

91

INPUT MESSAGE EDITOR

The input message editor is not supplied as a part of the IBM IMS/360
program. '

The variable-length, variable format of data in an input message is
difficult for a program written in COBOL to manipulate. The solution to
the problem may be a message-editing subroutine written in Assembler
Language. The user of IMS/360 can construct such a subroutine.

An input editor can accept a variable-content character string, edit
that string, and produce an output composed of a fixed number of
fixed-length fields. The input editor can be designed to process input
messages from online terminals, or to edit any desired character string.
In the following discussion, the terms character string and message are
used interchangeably.

The input editor is invoked by a standard subroutine call with three
parameters - the name of the input area, the name of the edit table, and
the name of the output area. The calling program may be written in
either COBOL or PL/I.

The input editor processes all the separate fields in a message.
These fields must be separated by characters that are defined as
delimiters for this message. Within the message, all fields except the
first must begin with a delimiter, which means, effectively, that all
fields except the last must end with a delimiter.

The following are the two distinct types of fields which the input
editor recognizes and extracts from messages. These two types of fields
can be used to construct three types of messages.

e Positional fields - those fields which should always occur in an
input message and which will have meaning to the application program
because of their relative positioning within the message.

e Fields with keywords - those fields which may or may not occur in a
specific input message; with an occurrence, such a field is
accompanied by an identifying keyword. The keyword must immediately
follow the delimiter that defines the left end of the field. For
example, PNO= could be the keyword for part number, and the message
entry might be PNO=12345. The combination of keyword and field data
is considered as one field.

The first type of message recognized and processed by the input
editor contains all positional fields. To the input editor, this type
of message contains data fields in a specified order and separated by
delimiters. Positional fields should always be present in the character
string being edited and must be in the order specified in the edit
table.

The second type of message contains a mixture of positional fields
and fields with keywords. All positional fields must occur in the first
part of the message, and the fields with keywords must occur in the
second part of the message.

The third type of message is characterized as one in which all the
fields have keywords. With IMS/360 this is feasible, since the
positional transaction code may not be a part of the character string
that is edited.

The input editor goes through the submitted character string, one

field at a time, and compares each field to the fields specified in an
edit table.

92

The input editor subroutine could be invoked by an application
program with a CALL statement using the following parameters. Within
the call, the parameters should be given in the same order as in the
following list:

e The name of the area containing the input string to be edited. Each
input string should have a binary word appended to the front of the
text. This word has the same format as the first word in an input
message from a remote terminal. The appended binary word is not
considered part of the text during editing.

e The name of the edit table to be used in editing.

e The name of the output area that will contain the edited data at the
completion of the execution of the subroutine. Positional offsets
in the output area are given by the field entries in the edit table
and determine the positions of the edited data.

e A complete input editor example is in the appendix. .

The Edit Table

Three kinds of entries comprise the edit table. Each of these
entries has multiple coding statements. The first entry is the table
header entry and contains data concerning later entries in the edit
table. This entry occurs only once. The second kind of entry, is the
delimiter entry which defines a character string as a delimiter between
fields. There may be multiple delimiter entries in an edit table. The
third kind of entry is a field entry. This entry identifies a field and
specifies the kind of editing that is to be done on it. There must be a
field entry for each field in the string to be edited. The three
components of the edit table are discussed in the sequence in which a
programmer would formulate his coding. '

Delimiter Entry

The first statement in a delimiter entry is the name of the entry.
The second statement specifies the length of the delimiter, which can be
any number between 1 and 255 and is specified in a binary halfword. The
next field specifies the delimiter itself. A final field may be
required because each delimiter entry must contain an even number of
bytes, and all delimiter entries must be the same length.

The following are examples in COBOL of delimiter entries:
02 DELIMITER-ENTRY-1.)
03 LENGTH PICTURE S999 COMPUTATIONAL VALUE 1.
03 DELIMITER PICTURE X VALUE ';°.
03 FILLER PICTURE X.

In this case, the filler is needed to make the entry an even
number of bytes long.

02 DELIM-1.
03 LENGTH PICTURE 5999 COMPUTATIONAL VALUE 4.
03 DELIMITER PICTURE XXXX VALUE *PNO=".

02 DELIM-2.
03 LENGTH PICTURE S999 COMPUTATIONAL VALUE 1.
03 DELIMITER PICTURE X, VALUE °*',°‘.
03 FILLER PICTURE XXX.

Note that DELIM-1 is an even length without filler and DELIM-2 is
padded to the same length.

93

Field Entry

A field entry relates to one field in the input string that is to be

edited. There must be a field entry in the edit table for each field
that is to be edited in the input string. All field entries in the edit
table must be the same length, and this length must be an even number.
The first statement in the field entry is the name of the entry, and the
following data items must be specified in order:

94

e A one-byte character item which specifies whether or not leading
fill characters are to be deleted from this field. The value of
this item must be Y for yes and N for no.

e A one-byte item which identifies the leading fill character if the

first item is Y. If the first item is N, this item is blank. If
the fill character exists inside the data field, it will not be
removed from there.

e A one-byte item which specifies whether or not trailing fill

characters are to be deleted from this field. The value of this
item must be Y for yes and N for no.

e A one-byte item which identifies the trailing fill character if the

third item is Y. If the third item is N, this item is blank. If
the £ill character exists inside the data field, it will not be
removed from there.

e A binary halfword which specifies the minimum length of the field

that. is to be edited.

e A binary halfword which specifies the maximum length of the field

that is to be edited. The maximum length must be greater than or
equal to the minimum length. The maximum length is also the size of
the edited field in the output string.

e A binary halfword which specifies the offset of starting position of

the edited field, that is, the leftmost position of the edited
field, in the output area. The output area can be a number between
1 and 32,767.

e A one-byte item which specifies whether the field is right- or

left-justified in the output string. The value of this item is R
for right and L for left.

e A one-byte item which holds the field edit status code after the

execution of the string editor. This item should be initialized
with the value of zero and may contain the following values after
editing:

0 Field entry was not used for editing

1 valid field with no'errors

2 Null field

3 Length of field less than minimum size

4 TLength of field greater than maximum size

5 1Invalid type of data in field

e A one-byte item which specifies the action to be taken with respect

to the output string when the edited field is valid. The code N

indicates that no action is to be taken; F signals the string editor
to £fill the output field with the valid output fill character; M

signals the string editor to move the valid field to the output
field in the output string; and Y indicates that the valid field
should be moved and padded to the output field size with the wvalid
output fill character.

e A one-byte item which specifies the valid output fill character.

e A one-byte item which specifies the action to be taken with respect
to the output string when the edited field is invalid. The code N
indicates that no action is to be taken; F signals the string editor
to £ill the output field with the invalid output £ill character; M
signals the string editor to move the invalid field to the output
field in the output string; and Y indicates that the invalid field
should be moved, properly justified, and padded to the output field
size with the invalid output fill character. If there is a field
error type 4 (the field is too large) and the action code is M or Y,
the input editor will move only as many characters as the output
field area will hold.

e A one-byte item which specifies the invalid output £ill character.

s A binary halfword which specifies the length of the keyword for this
field. If this is a positional field and therefore has no keyword,
the value of this halfword must be zero. If there is a keyword, its
length must be between 1 and 255 bytes.

e A binary halfword which specifies the number of check characters and
symbols used in the edit to determine the type of the field. The
value of this item must be a number from 0 to 30.

e An item of the length specified in the 1u4th entry that contains the
value of the keyword for this field. The keyword for a field may be
any string of characters. If a positional field is being described,
this item will not exist in the edit table field entry.

e An item of the length specified in the 15th entry that contains the
check characters which are used in the edit to determine the type of
the field. The characters in the field should be the type
indicated. The following check characters may be used for their
stated purposes:

A Alphabetic check, from A to Z
N Numeric check, from 0 to 9 without signs

Z Zoned decimal, from zero to 9, with an optional sign in the
rightmost byte

P Packed‘decimal
B Blank
E Extended alphabetic, A to Z, plus #, §, &

In addition to these check characters, it is possible to include a
check for special characters. This is accomplished by placing an S in
this entry and following the S with the desired special characters. The
characters following the S are interpreted literally and must be the
last entries in this item.

A "not" symbol may be used in checking the field. When the not
symbol occurs in this entry, the field is edited to determine that none
of the specified checks following the not symbol are satisfied. Special
characters may be used after an S following a not symbol; however, it is
not possible to check a single field for both the existence and absence

95

of special characters. When special characters are used following a not
symbol, those characters must be in ascending EBCDIC order.

The field is edited one character at a time. Multiple test
specifications are "or" conditions. If all characters of the field pass
any of the specified tests, the test of the field is successful.
However, if any one character in the field fails all the specified
tests, the whole field fails the test.

Figure 38 is a COBOL example of a field entry. The field numbers on
the left correspond to the previous discussion.

i i
|Field |
e |
| 02 FIELD-ENTRY-1. |
|11 03 DELETE-LEAD-FILL-CHAR PICTURE X VALUE 'Y'. |
|2 03 LEADING-FILL-CHAR PICTURE X VALUE ' ‘. |
13 03 DELETE-TRAIL-FILL-CHAR PICTURE X VALUE 'Y"'. |
|4 03 TRAILING-FILL-CHAR PICTURE X VALUE ' ‘. |
|5 03 MINIMUM-FIELD-LENGTH PICTURE S999 |
| COMPUTATIONAL VALUE 4. |
|16 03 MAXIMUM-FIELD-LENGTH PICTURE S999 |
| COMPUTATIONAL VALUE 10. |
|7 03 OUTPUT-START PICTURE S999 COMPUTATIONAL |
| VALUE 7. |
|8 03 OUTPUT-JUSTIFICATION - PICTURE X VALUE °‘R°'. |
|19 03 FIELD-EDIT-STATUS-CODE PICTURE X VALUE ‘0°'. |
{10 03 VALID-OUTPUT-ACTION-CODE PICTURE X VALUE ‘Y'. |
j11 03 VALID-OUTPUT-FILL-CHAR PICTURE X VALUE " °. |
112 03 INVALID-OUTPUT-ACTION-CODE PICTURE X VALUE "'F°'. |
{13 03 INVALID-OUTPUT-FILL-CHAR PICTURE X VALUE '*°*, |
{14 03 LENGTH-FIELD-KEYWORD PICTURE S999 |
| 'COMPUTATIONAL VALUE 3. |
115 03 NUMBER-OF-CHECK-CHARS PICTURE S999 |
| COMPUTATIONAL VALUE 6. |
|16 03 FIELD-KEYWORD PICTURE XXX VALUE 'PNO’'. |
117 03 CHECK-CHARACTERS PICTURE X(6) VALUE 'APZS*/', |
{18 03 FILLER PICTURE X. |
[i}

Figure 38. Field entry example

Edit Table Header Entry

‘The edit table header contains information on the edit table itself
and on the editing process. The header must be the first component in
an edit table. The following fields comprise the edit table header:

e A binary fullword with an initial value of zero. This entry is
reserved for use by the editor and is required so that PL/I with its
dope vectors can be distinguished from other languages.

* A one-byte item which specifies the calling language that will
involve the input editor. This item must have a value of C for
COBOL or a value of P for PL/I.

e A one-byte item which specifies the type of audit desired. At the

present time, this field should be initialized to N to indicate no
audit trail.

96

e A one-byte item that has a value of Y for yes and N for no to
indicate whether the field feedback areas in each field entry are to
be set to zero before editing.

e A one-byte item that contains the edit table status code. This item
should have an initial value of zero. Upon return from the input
editor to the calling program, this item will have one of the
following values:

The table has not been used for editing

The input string was edited successfully without error

The input string was null

The input string was too short

£ W N = O

The input string was too long

The input string had a recognizable field keyword

(AN |

Invalid fields encountered in the input string, but no errors
2 through 5 above

* Invalid edit table

e A binary halfword that specifies the length of the table header.
This entry must have a value of 28.

e A binary halfword that specifies the starting position in the input
string at which the editing is to begin.

e A binary halfword that indicates the number of delimiter entries
existing in the edit table. This number must be positive.

e A binary halfword that indicates the length of each of the delimiter
entries in the table. BAll delimiter entries must be the same
length, and this length must be an even number. Therefore, the
length of a delimiter entry in the table is the length of the
longest delimiter, plus 2 for the halfword that contains the length
of the delimiter, then rounded up to the nearest even number. Short
delimiter entries must have filler at the end to maintain a uniform
length.

e A binary halfword entry that contains the number of field entries in
the edit table. This entry must have a positive value.

e A binary halfword that specifies the length of each field entry in
the table. BAll field entries must be the same length, and this
length must be an even number. Therefore, the length of a field
entry in the table is the length of the longest field entry, rounded
up to the nearest even number. Short field entries must have filler
at the end in order to maintain a uniform field entry length.

e A binary halfword that is filled by the input editor to indicate the
number of valid positional fields that were edited.

e A binary halfword that is filled by the input editor to indicate the
number of invalid positional fields that were found.

e A binary halfword that is filled by the input editor to indicate the
number of valid fields with keywords that were edited.

e A binary halfword that is filled by the input editor to indicate the
number of invalid fields with keywords that were found.

97

Figure 39 is a COBOL example of an edit table header. The
numbers on the left correspond to the previous discussion.

field

1 b}
| |
|Field |
{No. |
| |
| 02 TABLE-HEADER. |
1 03 EDITOR-RESERVE PICTURE S9(5) COMPUTATIONAL i
i VALUE 0. |
|2 03 LANGUAGE PICTURE X VALUE *C°'. |
|3 03 AUDIT-TRAIL-CODE PICTURE X VALUE 'N'. |
4 03 FIELD-FEEDBACK-RESET PICTURE X VALUE "Y'. i
|5 03 EDIT-TABLE-FEEDBACK PICTURE X VALUE '0°'. |
|6 03 TABLE-HEADER-LENGTH PICTURE S999 - COMPUTATIONAL |
| VALUE 28. |
17 03 EDIT-START-POSITION PICTURE S999 COMPUTATIONAL |
| VALUE 1. |
|8 03 NUMB-DELIMITER-~-ENTRIES PICTURE S999 |
| COMPUTATIONAL VALUE 3. |
19 03 LENGTH-OF-A-DELIM-END PICTURE S999 |
| COMPUTATIONAL VALUE 6. |
|10 03 NUMBER-OF-FIELD-ENTRIES PICTURE S999 |
| ‘ COMPUTATIONAL VALUE 1. |
j11 03 LENGTH~OF-A-FIELD-END PICTURE S999 [
| COMPUTATIONAL VALUE 30. |
[12 03 NO-OF-VALID-POSTL-FLDS PICTURE S999 |
| COMPUTATIONAL VALUE O. |
113 03 NO-OF-INVALID-POSTL-FLDS PICTURE S999 |
| COMPUTATIONAL VALUE O. |
114 03 NO-OF-VALID-FLDS-W-KEYS PICTURE S999 l
| COMPUTATIONAL VALUE 0. |
|15 03 NO-OF-INVALID-FLDS-W-KEYS PICTURE S999 |
| COMPUTATIONATL VALUE O. l
L J

Figure 39. EAdit table example

TERMINATION OF AN APPLICATION PROGRAM

At thé completion of processing of any application program (message
or batch), control must be returned to the region controller.
RETURN statement must be given in every program as follows:

COBOL

ENTER LINKAGE.

RETURN.

ENTER COBOL.

PL/I
RETURN;

ASSEMBLER

RETURN (14,12),RC=0

The return statement in a message
to return to the region controller.

98

The

proceéssing program causes control
The region controller records

N

accounting information and passes control to IMS/360 for a request for a
rescheduling.

The return statement in a batch-type program also returns control to
the region controller. However, the region controller subsequently
returns control to the Operating System/360 job terminator after Data
Language/1 resources are released.

The return statement from an application program written in Assembler
Language should contain Register 15 equal to zero if the program is
terminating normally.

MESSAGE PROCESSING REGION SIMULATION

Message processing region simulation is not supplied as a part of the
IBM IMS/360 program.

The checkout of any message processing program in the online terminal
environment is often impractical. To enable a more practical and
efficient checkout environment, a message processing region simulation
might be used. The object of the simulator would enable checkout of a
message processing program in a Type 3 processing region with a set of
test data bases. Messages could be read and written with unit record,
tape, or disk data sets as opposed to input and output message queues.
To be effective the simulator should incur no or minimal change to the
message processing program when it is moved from the simulated to the
actual message processing region environment.

Simulation is accomplished by appending two modules to the message
processing program in addition to the language interface (Simulator
Interface A and Simulator Interface B, Figure #0).

99

ENTRY: DLITCBL SIMULATOR
or INTERFACE
DLITPLI ~ A

Y

MESSAGE
PROCESSING
PROGRAM

MESSAGE CALLS

DATA BASE CALLS

ENTRY: - - CBLTDLI or PLITDLI
_.l— LANGUAGE INTERFACE < >

ENTRY : - ! - GEORGEI : | DATA
: : BASE

SIMULATOR
INTERFACE

B \

(MESSAGE (MESSAGE
INPUT) OUTPUT)

Figure 40. Message processing region simulation

When the PSB is generated for the associated message program, the
PCB's within the PSB would normally be for Data Language/I data bases
only. No PCB for an input and output terminal is provided. When the
message program is loaded into a Type 3 processing region, the PCB
addresses are passed to the message program. No terminal PCB is
provided.

When Simulator Interface A is link-edited with the message program,
with entry point DLITCBL or DLITPLI, the Simulator Interface A is
entered. The interface prefixes the PCB address list with an
input/output terminal PCB address. The terminal PCB exists within
Simulator Interface A, and its address is added as the first PCB address
in the PCB address list passed to the message program. This PCB address
is used by the message program just like the other PCB addresses in the
list, except that this PCB address is used in calls from the message
program to Simulator Interface B.

When a call is made from the message program to Simulator Interface

B, the message program makes a Data Language/I call with the terminal
" PCB address provided by Simulator Interface A. Simulator Interface B

100

then utilizes Operating System/360 SYSIN and SYSOUT data sets as if
messages were being read from and written to message queues. The user
may include alternate terminal PSB's within his PSB generation. The
addresses for these PCB's are provided upon entry to the user message
program in the order specified by PCB cards in PSB generation. If a
Data Language/I call (CALL CBLTDLI) is issued with an alternate terminal
PCB address in an IMS/360 Type 3 region, an AL status code is returned
in the PCB.

Data Language/I data base calls are executed with the appropriate
PCB's to link-edited language interface.

The following changes must be made when the message processing
program is moved to a Type 1 processing region:

e Both Simulator Interface modules should be omitted.

e The entry point name of the message program must be renamed DLITCBL
(COBOL or Assembler) or DLITPLI (PL/I).

e The call statement operand must be renamed from GEORGEI to the
language interface entry point CBLTDLI or PLITDLI.

The appendix to this manual includes examples of the simulator
modules.
PROCESSING REGION ABENDS

Comp. Issuing
code component Explanation

0004 DFSIRCO0 An attempt was made to initiate an IMS/360
Type 1 or Type 2 processing region when the
IMS/360 control program (Region Type 0) was
not active in the Operating System.

0016 DFSIRCO00 The IMS/360 region control program was unable
to complete initiation of a Type 1 or Type 2
processing region. The addition of another
region to the number then executing would
have exceeded the value specified in the
MAXTASK operand of the IMSCTRL
macro-instruction at IMS/360 system
definition time.

0032 DFSIRAQO PARM field was omitted from the EXEC
statement. PARM field controls type of
execution. (See Chapter 4 of the IMS/360
Operations Manual, Volume I - Systems
Operation for explanation.)

0036 DFSIRAQOO Program (PSB) néme was omitted from the PARM
field on the EXEC statement of an IMS/360
Type 2 or 3 region (batch).

0040 DFSIRA00O PARM field of EXEC card is invalid format for
Type 2 or 3 IMS/360 region. Comma does not
follow first positional parameter.

oouy DFSIRAOO PARM field of EXEC card specifies an invalid
region-type code.

101

oous

0052

0056

0060

ooen

0150

0151

0200

0201

0202

0203

0204

0206

102

DFSIRAOQOO

DFSIRAQO

DFSIRAO00

DFSIRAQO

DFSIRCO0

DFSIDBAO

DFSIDBAQO

DFSIDLKO

DFSIDLKO

DFSIDLKO

DFSIDLKO

DFSIDLKO

DFSIDLKO

PARM field of the EXEC card contains an
excessive number of positional parameters.

First character of a positional parameter in
PARM field of the EXEC card is blank or
invalid.

A positional parameter in the PARM field of
the EXEC card exceeds maximum allowable
length.

A required positional parameter is omitted
from the PARM field of the EXEC card.

Dispatching priority of a message partition
running in an MFT-II environment is higher
than that of the IMS/360 control program
(Type 0 region).

PCB address passed in the USING list of a
Type 3 batch program is not the same as any
passed to the program by IMS/360 at first
entry. The PCB referred to in the CALL
statement may not have been defined at PSBGEN
time. The USING list of the CALL statement
may be improperly constructed.

USING list of CALL statements in a Type 3
batch program is truncated at the function
position. There is no PCB address in the
call. call list has only one entry.

The available dynamic main storage in the
Operating System/360 region or partition in
which a Type 1, 2, or 3 region is operating
is not sufficient to allow the Data
Languages/I block loader to fetch the required
PSB's and DBD's. Increase region size.

PSB loaded in the application program
processing region has invalid or inconsistent
processing options specified. Check PSB'
generation.

The data bases named at PSBGEN do not agree
with those specified for the same PSB name at
IMS/360 online system definition. Check
IMS/360 online Stage 1 DMB directories and
PSB generation.

The first defined segment in DBD is not a
root segment. Register 2 points to the DBD.
Add 8 to the contents of Register 10. This
points to the segment name in question.
Check DBD generation.

Error in implied hierarchical definition of
sensitive segments in PSB. Register 10
points to segment name at which error was
discovered. Check both DBD and PSB
generation for conflicting definitionms.

Unable to open PSB and DBD libraries. Check
proper allocation for DD name IMS/360 in JCL
for Type 1, 2, or 3 region.

_/

0208

0209

0210

0211

0212

0213

0229

0240

0260

0261

ouou

o408

DFSIDLKO

DFSIDLKO

DFSIDLKO

DFSIDLKO

DFSIDLKO

DFSIDLKO

DFSIBDPO

DFSIPCO00

DFSIPROO

DFSIPROO

. DFSIPROO

DFSIPROO

A sensitive segment is named in PSBGEN for
which no corresponding segment name was
defined in the associated DBDGEN. Register 3
at ABEND points to the unmatched sensitive
segment name. Register 9 points to the DBD
name. Register 8 points to the data base PCB
name in the PSB. Check PSB and DBDGEN.

DBD specifies an unsupported or unknown
access method. Register 8 or register 4
points to the DBD name. An offset of 8 from
the address pointed to by register 11 is the
specific DCB within the DBD which is in
error. Check DBD generation.

System error. DBD does not contain a DCB
type required to construct the DMB. DCB type
required is pointed to by register 3. An
offset of 12 from register 2 points to the
first DCBTAB in the group of DCB's examined.

System error. DSB (SEGM) is followed by more
than one key (FLDK) definition. Register 11
points to FLDTAB, register 6 to SDB, and
register 7 to FDB in error. Register 2
points to DBD.

System error. The first FDB is not the key
FDB (FLDK) definition, yet physical codes for
field and SDB are equal. Register contents
same as 0211.

System error. SDB has no key field defined.
SEGM statement not followed by FLDK or FLD
statement. Register contents same as for
0211. ‘

Ccannot find key field for a segment in the
DBD. Will appear as a message region ABEND
on the master terminal.

Message processing application exceeded
allowable execution time in a Type 1 message
region. See Chapter 3 of the IMS/360
Operations Manual, Volume I - Systems
Operation under the heading "TRANSACT
Macro-Instruction" for a further explanation.

Number of parameters (data items named in
USING list) in the application program call
exceeds the allowable limit.

One of the values passed in the USING list of
the application program Data Language/I call
is invalid. It either exceeds object machine
size, does not meet alignment requirements,
or violates storage protection boundaries.

During execution of a Type 1 message
processing program or a Type 2 batch program,
the IMS/360 control program (Type 0 regiom)
terminated abnormally.

During execution of a message processing

application or a Type 2 batch program, an
invalid event control block address was

103

o424

o428

ou32

0436

ouyo

ouuy

ouyus

ous52

0456

0460

104

DFSIPROO

DSFIASO00

DFSIAS00

DFSIASO00

DFSIASO00

DFSIAS00

DFSIASO00

DFSIAS00

DFSIAS00

DFSIASEO

passed to the IMS/360 interregion
communication SVC.

System error. A message or Type 2 batch
region has been activated asynchronously
because of an error in the IMS/360 control
program (Type 0 region). System error during
the application program communication cycle
of the program request handler.

A Type 2 batch step could not be initiated
because the program named in the second
positional operand of the PARM field was not
defined at system definition time.

A Type 2 batch step could not be initiated
because the program named in the second
positional operand of the PARM field was not
defined as a Type 2 program at system
definition time.

A Type 2 batch step could not be initiated
because the input symbolic queue named in the
fourth positional operand of the PARM field
was not defined at system definition time.
Check PARM field to ensure that input
symbolic name is correct.

A Type 2 batch step could not be initiated
because the input symbolic queue named in the
fourth positional operand of the PARM field
was a logical terminal name. It may only be
a transaction code.

A Type 2 batch step could not be initiated
because the output symbolic queue named in
the fifth positional operand of the PARM
field was not defined at system definition
time. Check PARM field to ensure that output
symbolic name is correct.

A Type 2 batch step could not be initiated
because the input transaction code named in
the fourth positional operand of the PARM
field had a nonzero limit, normal, or current
priority. All priorities for a transaction
code to be used as input by a Type 2 batch
program must be zero.

A Type 2 batch step could not be initiated
because the transaction named in the fourth
positional operand of the PARM field has been
stopped or locked by a command or by a prior
program failure.

A Type 2 batch step could not be initiated
because the program named in the second
positional operand of the PARM field has been
stopped or locked by a command or by a prior
program failure.

Type 2 batch region was canceled or
terminated abnormally while a LOAD request
was in process.

N

Ouel

0468

ou7e

0710

0713

DFSIASEO

DFSIASEO

DFSIDLAO

DFSIOS60

DFSIASO00

A Type 1 message processing region was
canceled or abnormally terminated by other
than a /STOP REGION command.

Type 1 or 2 processing region canceled or
abnormally terminated while a Data Language/I
call was in process in the Type 0 region.

A Type 1 or 2 processing application provided
an invalid PCB address in a Data Language/I
call.

During OPEN of a Data Language/I overflow
data set, the calculated block length
exceeded the maximum track length for the
device allocated. Check DD cards for OSAM
data set allocation. Register 3 points to
the Data Control Block (DCB) at ABEND time.

Unable to schedule an application program
because insufficient data base buffer space
is available. Check TP and OSAM buffer pool
size specified in the PARM field of the Type
0 EXEC statement

commonly Encountered 0S/360 System ABENDs

System
ABEND Code

806

213

Usual‘Problem

JOBLIB card omitted from library
containing IMS/360 modules or user's
application program library.

DD cards for data sets representing
data bases are missing or do not have
proper DD name. DD names for data
bases must correspond to those used
in DMAN cards of DBD generation.

or
Data sets to be opened as DISP=0OLD
do not exist or cannot be opened.

105

CHAPTER_ 7. SYSTEMS OPERATION INTERFACE

The intermal functions of IMS/360 are provided through the use of
system control blocks. The information for some of these blocks must be
provided by the application programmer to the Systems Operation function
for application integration with the system. Other information may be
either provided by the programmer or provided to him.

The application programmer must provide the following:
e Parameters describing data bases (Data Base Description -- DBD)
e Parameters describing programs (Program Specification Block - PSB)

e Parameters describing messages and terminals

ASSIGNMENT OF TRANSACTION CODES/LOGICAL TERMINALS

IMS/360 requires a one- to eight-character (followed by a blank)
transaction code as the first element in all input messages from
terminals. With the IMS/360 capability of message switching, logical
terminal names may also be used as transaction codes.

The following rules apply to transaction codes and logical terminal
names:

1. All transaction codes and logical terminal names must have unique
values. -

2. Transaction codes may be from one to eight bytes long.

3. To minimize the time required to enter a transaction at a
terminal, transaction codes should be as short as possible.

4. Logical terminal names may be from two to eight bytes long.

5. The first character of transaction codes and logical terminal
names must be any of the 29 characters (A through Z, §, #, and)
as defined by IBM System/360 Operating System: Assembler
Lanquage (GC28-6514).

DATA BASE DESCRIPTIONS (DBD)
The Data Base Description (DBD) is the Data Language/I control block

used to describe in detail the structure and storage organization of
every data base. All the information about a data base is available in

106

its DBD and it is from this pool of information that other internal Data
Language/I control blocks are built at execution time.

It is not the responsibility of the application programmer to
generate the DBD's that affect the data bases he uses. However, it is
imperative that he be able to understand the contents of a DBD in order
to utilize the data bases that already exist and are available to him.

Before Data Language/I can be used to process data base information,
or even before the data base can be created, the data base must be
described to Data Language/I. The organization of the data within the
data base must be completely described so that it can properly set up
the tables and control blocks that determine how the data is to be
stored.

The result of the procedures described here is the creation of a Data
Language/I data base description (DBD) table that is required when the
data for the data base is actually loaded into the system and when it is
retrieved and manipulated during execution of any application program.
Each DBD is stored as a member of a load module library generically
titled the DBD library.

This procedure must precede any processing that will in any way
reference the data base it describes. The data base cannot exist until
the Data Base Description is completed.

In general, the control statements for DBD generation appear as
follows:

[} 1
1	[PRINT	NOGEN]
I		
1 2 { DBD	NAME=, ACCESS=	
3	DMAN	DD1=,DEV1=, [DD2=1, [DLIOF=]
l		
o	SEGM	NAME=, PARENT=, BYTES=,FREQ=
5	FLDK	NAME=, TYPE=, BYTES=,START=
1	I	
	[FLD	NAME=, TYPE=, BYTES=,START=]
] I	
6	DBDGEN	
]] I		
7	FINISH i	
		I
8	END	
	! I	
[l y]

Note: At least one DMAN, SEGM and FLDK card must exist within the Data
Base Description. Following each DMAN card there may be one or
more SEGM and FLDK cards. For each SEGM card there must be one
and only one FLDK card.

(] denotes optional statement or parameter

The following are the generalized rules for the DBD generation job
step: i

A ~ Number of DMAN cards determines whether the data base is composed
of a single or multiple data set groups. One DMAN card per data
set group. :

107

B - ACCESS - (INDX) - Hierarchical indexed sequential organization
(SEQ) - Hierarchical sequential organization

C - Only one PRINT NOGEN card, - eliminates object listing from DBD
generation

One DBD card
One DBDGEN card
one FINISH card
One END card
D - if INDX - only DD1, DLIOF, omit DD2=
if SEQ - both DD1, DD2, omit DLIOF=

E - follow the rules in the paragraph titled "DBD Control Card
Requirements"”

An example of a hierarchical description of control cards 3, 4, and 5
is: ' :

1-DMAN (DATA SET GROUP 1)
2-SEGM (ROOT SEGMENT)
3-FLDK
3-FLD
3-FLD
2-SEGM (LEVEL 2)

3-FLDK
3-FLD

2-SEGM (LEVEL 2)

3~FLDK
1-DMAN (DATA SET GROUP 2)
2-SEGM (LEVEL 2)

3-FLDK
3-FLD

2-SEGM (LEVEL 2 or 3)
The job step itself consists of eight types of Data Language/I

control cards arranged in a specific order. Each control card is
described individually in detail in the following section.

DBD CONTROL CARD REQUIREMENTS

The description of the data base is presented to Data Language/I on
eight types of control cards.

1. Each control card must be identified by a name, called a

"card-type code", which comprises three to six characters:
PRINT, DBD, DMAN, SEGM, FLD, DBDGEN, FINISH, or END. '

108

2. In the generalized example shown in the following descriptions of
the control cards, these conventions apply:

a. Words written in all capital letters must appear exactly as
written.

b. Words written in lowercase letters are to be replaced by a
user-specified value.

c. The control cards are free form but must begin after column
1. ‘

d. The symbols [1, { }, and ,... are used as an aid in
defining the instructions. THESE SYMBOLS ARE NOT CODED; they
act only to indicate how an instruction may be written.

{ 1 indicates optional operands. The operand enclosed in the
brackets (for example, [VL]) may be coded or not,
depending on whether the associated option is desired.

If more than one item is enclosed in

brackets (for example, [REREAD), one or more may
LEAVE]

be coded.

{ } indicates that a choice must be made. One of the
operands from the vertical stack within braces
(for example, input) must be coded, depending on

ioutput
which of the associated services is desired.

e. All DBDGEN control card parameters except for the
print card are keyword parameters and therefore may
appear in any sequence on the associated control card.

¢---indicates that more than one set of operands may be
designated in the same instruction.

PRINT Control Card

|
[PRINT | NOGEN]
l |

o et e s g
—
e

The PRINT NOGEN card is an Operating System/360 macro generator
control card used to eliminate a printout of the object listing
resulting from a DBD generation. With the PRINT card present, a source
statement summary is provided for each DBD defined.

DBD Control Card

This must be the first Data Language/I control card in the job step
after the PRINT NOGEN. This card names the data base to be described
and provides Data Language/I with preliminary information concerning its
organization. There can be only one DBD control card in the control
card deck. The parameters must be contained on one card.

109

L] i]
| | N |
1 | DBD | NAME=name, |
		ISAM
i	ACCESS= INDX	
		SAM
		SEQ
L J

where:

DBD=
identifies this control card as the DBD control card. This
is the card-type code.

NAME=name
is the name of the DBD for the data base being described.
This name may be from one to eight alphameric characters,
must be left-justified, and must not have trailing blanks
since it is not the last parameter. Normally, this name
would be the same as that specified in the DD1 parameter of
the DMAN control card, although this is not required.

ACCESS=

specifies the Data Language/I access method to be used in
conjunction with this set and must be one of the following
values:

ISAM or INDX -- Hierarchical indexed sequential organization

SAM or SEQ -- Hierarchical sequential organization

DMAN Control Card

A DMAN control card must immediately follow the DBD card. Each DMAN
control card describes one data set group that is to be set up by Data
Language/I as part of the data base being described. There are one
primary data set group and zero to eight dependent data set groups in a
single data base for the hierarchical indexed sequential organization.
There is only one data set group for a hierarchical sequential data
base.

Since the DMAN card parameters may appear on more than one card,
provision has been made to accommodate the overflow of parameters to
more cards. When this occurs:

1. Enter a nonblank character in Column 72 of each continued card.

2. A particular parameter or operand may not span two cards. If

there is not space for the entire parameter on the current card,
place the whole parameter on the next card. When continuation
cards are required, a comma must follow each parameter except the
last on the last continuation card.

3. Continue statement in Column 16 of next card.

4. The continued condition may occur in DMAN, SEGM, and FLD cards.

110

7N

The number and arrangement of DMAN control cards allowed in a job
step are greatly dependent upon the data base organization specified.
For instance, for a SINGLE DATA SET GROUP - DATA BASE, only one DMAN
control card and its associated overflow cards (if any) are allowed; for
a MULTIPLE DATA SET GROUP - DATA BASE, up to ten DMAN cards are
allowable. For hierarchical sequential data bases, only one DMAN card
is allowed. The format of the DMAN control card@ where the DBD card has
ACCESS=INDX or ISAM is:

DMAN DD1=name,
{DLIOF=name, }

DEV1=device

[et s o —— e S—— e oy
P ——
b s e, s s, T Sy)

The format of the DMAN control card where the DBD card has ACCESS=SEQ
or SAM is:

DMAN DD1=name,
DEVl1=device

[,DD2=namel

[S e S e S e —
S p——

where:
DMAN

identifies this Data Language/I control card as a DMAN control
card. (See the setup examples at the end of this section.)

DDl1=name

is a one- to eight-character alphameric name that is the ddname
of the DD card for an ISAM data set, or an input data set under
SEQ organization. This parameter must be specified regardless of
the data base organization.

DEV1=device
designates the physical storage device type on which the prime

area for this data set is to be stored. A list of the possible
physical devices follows:

Device Name DEV1=

DRUM 2301

DISK FILE 2302

DISK PACK 2311

DISK FACILITY 2314

DATA CELL 2321

TAPE 2400 (only when DBD ACCESS=SEQ)

(The underlined value may be used for DEV1=.)

111

DLIOF=name

a one- to eight-character alphameric name that is the ddname of
the DD card. It is required only if INDX was specified in the
DBD card ACCESS parameter. This 8-character name becomes the
ddname on the DD card for the OSAM data set. Omit this parameter
if the DBD card ACCESS parameter equals SEQ or SAM.

DD2=name

a one- to eight~character alphameric name that is the ddname of
the DD card for the output data set under SEQ. This parameter
must be omitted if the DBD card ACCESS card equals INDX or ISAM.
The DD2 parameter should be specified only if the data base
organization is hierarchical sequential.

The following table summarizes the parameters required on the DMAN

control card for each of the Data Language/I access methods.

Access Method : Parameters Required
SEQ or SAM DD1, DEV1, DD2
INDX or ISAM DD1, DEV1, DLIOF

SEGM Control Card

At least one SEGM control card must immediately follow a DMAN set.

The SEGM control card defines a segment to be contained in the data set
group defined by a preceding DMAN control card. There may be a maximum
of 255 segments defined. SEGM control cards must be entered in
hierarchical order. The segments are physically stored in the data base
record in the same order in which these cards are entered.

Provision has been made to accommodate the overflow of parameters on

a SEGM control card to more cards. When this occurs, follow the rules
stated above for overflow on the DMAN card.

The format of the SEGM control card is:

T 1
{ SEGM	NAME=name,	
		PARENT=parent,
	1	
	1 BYTES=bytes,	
		l
l		FREQ=frequency
	I	
L J
where:
SEGM
is the card-type code which identifies this as the SEGM control
card. :
NAME=name

112

is a one- to eight-character alphameric name of the segment.
Within one DBD, duplicate segment names are not allowed.

7N

PARENT=parent

a one- to eight-character alphameric name of the parent segment
of this segment; left-justified and must not have trailing
blanks. The first SEGM control card for this job step is assumed
to be the root segment, and the "parent name" for the root
segment must be a zero (see section titled "DBDGEN Examples®).

BYTES=bytes

is the number of bytes of storage required to accommodate a
single occurrence of this segment. If all the fields of this
segment are defined by FLD control cards, and if none of the
fields defined on the following FLD control card(s) overlap, this
will be the sum of the lengths specified for these fields. A
segment length may not exceed the length of one direct access
device track. .

FREQ=frequency

| Note:

an estimate of the number of times this segment is likely to
occur for each occurrence of its parent segment. If this is the
root segment, it is the estimate of the maximum number of data
base records that appear in the data base being defined. If this
is the root segment, this parameter must be an integer in the
range 1-99999999.

Commas are not allowed in the frequency value.

The values given for dependent SEGM's are used in the computation
of LRECL, blocking factor, and BLKSIZE. The frequency of
occurrence of the root segment is used to determine the
allocation of space required for cylinder index and prime ISAM
storage at DBD generation execution. The output of DBD
generation (the listing) specifies the number of tracks required
for cylinder index and prime ISAM area allocation. If the root
segment frequency is greater than 99999999, DBDGEN will not
provide the definition of the prime space allocation required.
The user must calculate this on the basis of the number of root
segments that will actually reside in the data base. The number
produced by DBDGEN will be erroneous. These three figures are

" shown on the generation output and help the Systems Operation

function in determining the SPACE parameters of the DD cards for
data bases. The parameter is an estimate, not a limit.

FLDK Control Card

The format of the FLDK control card is:

[S S e, S NS M . S — — —

FLDK NAME=name,
X
TYPE= {P .
(o]

BYTES=bytes,

START=position

— — —
e vt cm . . w— S — . ———

113

where:

FLDK
is the card-type code that identifies this as the key field for
this segment. The occurrences of this segment are kept in sort
order on this field behind each occurrence of its parent segment.
There must be one and only one key field defined for each
segment. Each segment defined must have a key field defined by
an FLDK card. A maximum of one FLDK card per SEGM card is
allowed.

NAME=name

is a one-'to eight-character alphameric name of this field.
Within one segment, duplicate FLDK names are not allowed.

TYPE=X, P, Or C

designates the type of data that is to be contained in this
field. The value of this parameter specifies that one of the
following types of data is to be contained in this field:

X - hexadecimal data

P - packed decimal data

C —'alphameric data or a combination of types of data

For Data Language/I calls involving GET or INSERT functions, all
comparisons upon key field or data field values are done on a
byte-by-byte binary basis. However, during DBDGEN, the user may

define different types of data within a field. No use is made by
Data Language/I of this information.

BYTES=bytes

specifies the length of this field in terms of bytes.

If TYPE = X, BYTES should equal either 2 or &4.

If TYPE P, BYTES should not exceed a maximum of 16.

If TYPE = C, BYTES should not exceed a maximum of 256.

The field lengths described above are warnings to the user who
might execute the associated Operating System/360 instructions,
such as full- or halfword fixed-length instructions on
hexadecimal field. WNo checking is made within IMS/360 to ensure
that the field length corresponds to these values.

START=position

specifies the starting position of this field in terms of bytes
relative to the beginning of the segment. "Position" for the
first byte of a segment is 1. Overlapping fields are permitted.
It must be remembered, however, that the sum of bytes (including
bytes for fields that are not defined, and not including any
common bytes of overlapping fields) cannot exceed the length of
this segment as specified on the SEGM control card.

FLD Control Card

One or more FLD control cards may follow the FLDK control card. This
card defines each of the fields, in the segment defined by the preceding

114

N

SEGM control card, that may appear as part of a Data Language/I call
qualification statement. All fields do not have to be defined. A
maximum of 1000 FLDK and FLD cards may be defined in the entire DBD. A
maximum of 254 FLD cards is allowed per SEGM card.

The format and parameters of the FLD control card are as outlined for
the FLDK control card, above.

| |
| (FLD) |

o e s e 42y
e

If a nonkey field is not referred to with a Data Language/I GET call,
no field control card need be included in the DBDGEN.

FLD

is the card-type code that identifies this as the control card
for an ordinary data field. There can be many data fields for
any given Data Language/I segment. If a field is to be used in a
segment search argument, it must be defined with a field control
card.

DBDGEN Control Card

|
DBDGEN |
| |

fm o e e
-
b e e e 0

Since it is the key to generating the data base description from the
parameters specified above, this control card must be included.

FINISH Control Card

| |
| FINISH |
I l

[e —— c—)
oo s o S o

This control card must be included. It sets the on-zero condition
code for link-edit if there are DBD generation errors.

- END_Control Card

END

o e cs son sy
— e —
R ——

Since it signifies the end of the DBDGEN, this control card must be
entered.

DBDGEN Examples

1. Set up a hierarchical indexed sequential data base consisting of
a single data set group (see Figure 41). Each data base record
will contain two segments of two and three fields, respectively.

115

The data base will be stored on a 2311 disk pack. The access
method to be used is indexed.

PRINT NOGEN
DBD NAME=DB, ACCESS=INDX
DMAN DpD1=DB,DEV1=2311,DLIOF=0VFL1
SEGM NAME=S1, PARENT=0,BYTES=15,FREQ=100
FLDK NAME=KEY, TYPE=X,BYTES=4, START=1
FLD NAME=DATA, TYPE=C,BYTES=11, START=5
SEGM NAME=S2, PARENT=S1,BYTES=20,FREQ=1
FLDK NAME=KEY1, TYPE=X,BYTES=U4 , START=1
FLD : NAME=DATA1l, TYPE=C, BYTES=12, START=5
FLD . NAME=DATA2,TYPE=P,BYTES=U4, START=17
DBDGEN '
FINISH
END

L} 1

| |

| |

S1=ROOT SEGMENT S2=DEPENDENT SEG

[
| INDEX
!

bt s e et d
[o e e g
b e e . o

Figure 41. Single data set group

2. Set up a hierarchical indexed sequential data base consisting of
multiple (2) data set groups (see Figure 42). Each data base
record will contain two segments of two and three fields,
respectively. The data base will be stored on a 2311 disk pack.
An * indicates the differences between single and multiple data
set group organizations but is not physically punched on the DMAN
card. The access method to be used is indexed. .

PRINT NOGEN

DBD - NAME=DB, ACCESS=INDX

DMAN DD1=DB,DEV1=2311,DLIOF=OVLF1

SEGM NAME=S1, PARENT=0, BYTES=15, FREQ=100
FLDK NAME=KEY, TYPE=X, BYTES=4 , START=1
FLD NAME=DATA, TYPE=C, BYTES=11, START=5
*DMAN DD1=DS22,DEV1=2311,DLIOF=OVFLY
SEGM NAME=S2, PARENT=S1, BYTES=20,FREQ=1
FLDK NAME=KEY1, TYPE=X, BYTES=4 , START=1
FLD NAME=DATA1, TYPE=C, BYTES=12, START=5
FLD - NAME=DATA2, TYPE=P, BYTES=U4 , START=17
DBDGEN

FINISH

END

116

%

s

S

— e oy
a— —

]] i
| INDEX, | | S1 = ROOT SEGMENT [
[[I
| J L J

1 1

| |

| |
) A r 1
| | | |
| INDEX | | S2 = DEPENDENT SEGMENT |
! L |

Figure 42. Multiple data set groups

3. Set up a hierarchical sequential data base. (A hierarchical
sequential data base contains only a single data set group.) The
data base record contains two segments with two and three fields,
respectively (see Figure 43). The access method used is
sequential, and the data base is stored on 2400 series magnetic

tape.
PRINT NOGEN :
DBD NAME=DB2, ACCESS=SEQ
DMAN DD1=DB2, DEV1=TAPE, DD2=DB3
SEGM NAME=S1, PARENT=0, BYTES=15, FREQ=100
FLDK NAME=KEY, TYPE=X, START=1, BYTES=4
FLD - NAME=DATA, TYPE=C, START=5, BYTES=11
SEGM NAME=S2, PARENT=S1, FREQ=1, BYTES=20
FLDK NAME=KEY1, TYPE=X, START=1, BYTES=4
FLD NAME=DATA1,TYPE=C, START=5, BYTES=12
FLD NAME=DATA2, TYPE=P, START=17,BYTES=4
DBDGEN
FINISH
END
' |
S1 = ROOT SEGMENT | S2 = DEPENDENT SEGMENT

o e it cmauin any
b o iy S

Figure 43. Hierarchical sequential data base

DESCRIPTION OF DBD GENERATION OUTPUT

Three types of printed output and a load module which becomes a
member of the partitioned data set with the generic name of DBD library
are produced by a DBD generation. Each of these outputs is described in
the following paragraphs.

control Card Listing

This is an exact reproduction of the character representation of the
contents of each of the 80-column control cards. That is, it is a
listing of the input card images to this job step.

117

Diagnostics

Errors discovered during the processing of each control card will
result in diagnostic messages being printed immediately following the
image of the last control card read before the error was discovered.
The message may reference either the control card immediately preceding
it or the preceding group of control cards. It is also possible for
more than one message to be printed per control card. In this case,
they follow each other on the output listing. After all the control
cards have been read, a further check is made of the reasonableness of
the entire deck. This may result in one or more additional diagnostic
messages.

Any discovered error will result in the diagnostic message(s) being
printed, the control cards being listed, and the other outputs being
suppressed. However, all the control cards will be read and checked
before the DBD generation execution is terminated. The link-edit step
of DBD generation will not be processed if a control card error has been
found.

Assembly Listing

An Operating System/360 Assembler Language listing of the DBD macro
expansion created by DBD generation execution is provided. The
inclusion of the PRINT NOGEN eliminates assembly information and
provides a synopsis of the DBD control information.

Load Module

DBD generation is a two-step Operating System/360 job. Step 1 is
macro assembly execution which produces an object module. Step 2 is
link-edit of the object module which produces a load module, that
becomes a member of the generic DBD 11brary.

a
a

DBD Generation Error Conditions

The foilowing are the DBD generation error conditions and the
messages displayed for these conditions:

Error Message Condition

DBD ---DBD010---Incorrect or missing
access method

DBD —---DBD020---DBD name parameter
not specified

DBD ---DBD030---Too many DBD cards

DBD ---DBD040~---DBD name must begin with
an alpha character

DMAN ---DMANO10---Incorrect device
specification

DMAN ~--DMAN020---Incorrect access
specification

DMAN ---DMAN030---DD2 parameter invalid

’ with ACCESS equal to ISAM

DMAN ---DMANO4O0---Too many DMAN cards

DMAN ---DMANO50---BLKFACT specified but
no LRECL

118

DMAN ---DMANO60---LRECL specified but no
BLKFACT operand

DMAN ---DMANO70---LRECLxBLKFACT greater
than track length

DMAN ---DMAN080---Missing DLIOF operand
with access equal to ISAM

DMAN ---DMAN090---DLIOF is present or DD2
is missing with access equal to SAM

DMAN ~~~DMAN100---DD1 operand omitted

DMAN —--—-DMAN110---DD1 and DD2 have same
ddnames for HSAM

DMAN ---DMAN120---DD1/DLIOF duplicate
ddnames for HISAM

SEGM ---SEGM10---Segment name not
specified

SEGM ---SEGM20---Segment bytes parameter
not specified

SEGM ---SEGM30---Segment frequency
parameter not specified .

SEGM ---SEGM40---Root segment parent
must equal zero

SEGM ~---SEGM50-—-Parent operand not
specified for dependent segment

SEGM ---SEGM60---Too many SEGM cards;
255 maximum

SEGM ---SEGM70---Segment length greater
than DASD track

SEGM --~SEGM80---Segment length specified
as zero

SEGM ‘ ‘ ---SEGM90---Segment frequency of
zero invalid

SEGM ---SEGM100---Duplicate segment names

/
SEGM ---SEGM110---Segment length greater

than specified LRECL

FLD ---FLD010---Field name parameter
not specified or invalid
(that is, more than 8 characters)

FLD ---FLDO40---Type parameter not
specified or invalid

FLD ---FLD050---FLDK card not first after
SEGM card

FLD ---F1LD060-~--Too many FLD or FLDK

cards specified

119

FLD ---FLD070---Field length extends
beyond segment end

FLD ---FLD080---First byte of segment
is 1.
FLD ---FLD100---Duplicate field name in
' segment
FLD ---FLD110---Bytes parameter invalid

(that is, a nonnumeric field, 0 or
less, or greater than 256).

FLD ---FLD120---Start parameter is invalid:
1 - The size of the field is greater than
the size of the segment that it is in.
2 - size of the start parameter is a
nonnumeric field.

FLD --FLD130---Specified fields in segment
exceed 255 '
FLDK -—-FLDK010---Key field specified
inappropriately
DBDGEN ---DGEN010---Segment X Parent Y
- not found
DBDGEN : ---DGEN020---Invalid number of DMAN
cards for access method specified
DBDGEN ---DGEN030---DAM not supported
DBDGEN - ---DGENQO40---No segments for DMAN X
DBDGEN ---DGEN050---DAM not specified
DBDGEN ' - =-=-DGEN060---Errors in this DBD
DBDGEN) - —=--DGEN070---Too many levels in data

base segment hierarchy

DBDGEN ---DGEN080---First segment in
secondary data set group lower than
level two

FINISH ---FINI10---No successful DBD's in
this run

Because DBD generation is composed of Operating System/360 Assembler
Language macro-instructions, omission or invalid sequence in DBD control
cards, or invalid key word parameters will result in error statements
from the Operating System/360 assembler.

PROGRAM SPECIFICATION BLOCK (PSB) GENERATION

PSB Requirements

Before an application program can be executed under IMS/360, it is
necessary to describe that program and its use of terminals and data
bases through a PSB generation. The PSB generation control cards supply
the identification and characteristics of the PCB's (Program
Communication Blocks) representing terminals and data bases to be used
in the application program. There must also be a control card supplying

120

characteristics of the application program itself. There must be one
PSB for each message or batch processing program. The name of the PSB
and its associated program must be the same. Coordinate with the
Systems Operation function if this is not practical.

PSB generation places the PSB in the PSB library. The PSB and its
PCB's (all PCB's to be used by the program are contained within the PSB)
are stored in the library so that they can be used by IMS/360 related
messages or data bases in a message or batch region. During IMS/360
system definition, a PSB directory is constructed. One entry exists in
the PSB directory for each program which uses one .or more data bases
required to process messages. The PSB directory remains resident in the
IMS/360 partition, while the PSB's are retained in main storage only
when required for message processing and as the size of core storage
allows.

Four basic types of control cards are used for a PSB generation:
e PCB control cards for output messages k

s PCB control cards for Data Language/I data bases

e SENSEG control card for data base sensitive segments

e PSBGEN control card for each PSB

Note that the above list does not include a PCB for the input
message. Upon entry to the application program, a PCB pointer to the
source of the input message is provided as the first entry in a list of'
PCB pointers. The remainder of the PCB list has a direct relationship
to the PCB's as defined within the associated PSB and must be in the
same order. . These PCB's are used by the application program when making
Data Language/I message and data base calls.

In the case of a batch program, there is no input message PCB.
Therefore, the PCB list provided to the program has a direct
relationship to the PCB's within the PSB. No terminal PCB's should be
contained in a PSB for batch processing in a Type 3 processing region.

The PCB list passed to the application program upon entry should be
referenced within the processing program by the included names for
making Data Language/I calls and interrogating PCB information (that is,
status codes and feedback information).

Except that coding must not begin in Column 1, the format of the four
PSB generation control cards is free form. The operation code (PCB,
SENSEG, PSBGEN) must be followed by at least one blank. The keyword
operands must contain no blanks and must be separated by commas.

PCB Control Card - Output Messaqe PCB

The output message PCB type describes a PCB, which is associated with
a logical distribution other than the source of input messages, to which
the application program intends to send output messages. These messages
may be sent either to an output terminal or to a transaction-type block
to be handled by another program. There must be a separate output
message PCB for every output message destination.

PCB TYPE=TP,

LTERM=name

[T — e w——)
— e c— —— —
— v oy o—— a—

b e s s s e e

121

TYPE=TP
is a required keyword parameter for all output message PCB's.
LTERM=name

is the parameter keyword for the output message destination. The
"name" ‘is the actual destination of the message and is either a
logical terminal name or a transaction-type name. When the name
is a transaction-type name, output messages to this PCB are
enqueued for input to the program used by that transaction type.
The name is from one to eight alphameric characters in length.

No special characters may appear in the logical terminal name.

Message PCB control cards must be first in the PSB generation deck,
followed by the control cards identifying PCB"s associated with Data
Language/I data bases.

PCB Control Card - Data Lanquage/I Data Base PCB

The second type of control card in a PSB generation deck is one that
specifies a description of a PCB for a Data Language/I data base. The
format for this type of control card is:

L) 1
| | | d
| | PcCB | TYPE=DB, |
| | | i
| | | DBDNAME=nane, |
| I - I - |
| | | PROCOPT=X,

I | | ‘ |
| | | KEYLEN=value |
| | | I
| d

TYPE=DB

is a required keyword parameter for all Data Language/I data base
PCB's.

DBDNAME=name
is the parameter keyword for the name of a data base description
that was produced by a DBD generation run. This DBD name
associates this PCB with a particular Data Language/I data base.
The value for "name" must be eight characters or less in length.
PROCOPT=X
is the parameter keyword for the processing options that will be
used by the processing program. The value for "X" must be one
character. Possible values for the processing options are:
G - for GET function
A - for GET, DELETE, INSERT, and REPLACE

L - for loading a data base

122

7\

Only valid are:

HISAM - L
G
A
HSAM - G
L
KEYLEN = value

is the value specified in bytes of the longest concatenated key
in bytes for a hierarchical path of sensitive segments used by
the application program in the data base. The example shown in
Figure 44 explains the definition of KEYLEN.

SGMT NAME
DATA A
BASE et ——
STRUCTURE KEY FLD LGTH
10
SGNT NAME SGNT NAME SCMT NAME
B E F
) KEY FLD LGTH KEY FLD LGTH KEY FLD LGTH
g 10 250 10
SGMT NAME SGMT NAME SGMT NAME
c D : e
KEY FLD LGTH KEY FLD LGTH KEY FLD LGTH
10 50 40
DATA BASE CONCATENATED SGNT NAME
HIERARCHICAL PATHS KEY LENGTH/PATH H
1 = A+B+C = 30 BYTES cm—————— -
2 = A+B+D = 0 BYTES KEY FLD LGTH
3 = A+E = (260 BYTES 50
4 = A+F+G+H+J = 120 BYTES
ANSWER TO EXAMPLE: KEYLEN = 260
SGMT NAME
J

KEY FLD LGT
10

Figure 44. Example of KEYLEN definition

o/

123

SENSEG Control Card - Sensitive Segments

The SENSEG control card is used in conjunction with the PCB card for
- a Data Language/I data base and describes the segments in the data base
to which the program is "sensitive". There must be one or more SENSEG
cards for each data base PCB card, and they must immediately follow the
PCB card to which they are related. There must be one card for each
segment. The format of the SENSEG card is:

r 1
	SENSEG 1 sensitive-seg-name=XXXXXXXX,	
		*parent-seg-name=YYYYYYYY
L J

*Omit on root segment.

sensitive-seg-name = XXXXXXXX

is the name of the segment as defined in the SEGM card at DBD
generation time. The field contains from one to eight alphameric
characters. '

parent-seg-name = YYYYYYYY

is the name of the segment which is the parent to the sensitive
segment above. The field contains from one to eight alphameric
characters. The parent name must also agree with the parent name
in the SEGM card at DBD generation time.

Within the definition of each sensitive segment type, the required
format is to first specify the name of the segment being identified,
follow that by a comma, and then give the segment name of this segment's
parent. Since the root segment has no parent, its parent name is
omitted.

The order in which sensitive segment cards are arranged must follow
the hierarchical structure specified in the DBD generation. The
definition should begin with the root segment and proceed down the
leftmost path to the lowest level of the structure, then back up to a
higher level and down again, continuing toward the right until the
entire structure has been specified.

{
EXAMPLE OF SEGMENT DEFINITION: Assume that the structure of the data
1S:

A 1
|

r———D-=—

l |
E F

O— td—=

and the program is sensitive to the whole structure. The complete PCB
and SENSEG set for this Data Language/I data base structure may then be
written as follows:

124

N\

Ccol. 10 Col. 16 Col. 72

PCB TYPE=DB, DBDNAME=DATABASE, X
. PROCOPT=G,KEYLEN=22

SENSEG A

SENSEG B,A

SENSEG C,B

SENSEG D,A

SENSEG E,D

SENSEG F,D

PSBGEN Control Card

The third type of control card required for a PSB generation is one
that specifies characteristics of the application program. The format
for this card is:

PSBGEN LANG=XXXXX,

PSBNAME=YYYYYYYY

o — s e, v, . c— oy
S e e e e e e o

LANG=XXXXX

is the parameter keyword for the Compiler Language in which this
message processing program is written. The XXXXX value for this
parameter must be either COBOL, PL/I, or ASSEM, with no trailing
‘blanks.

PSBNAME=YYYYYYYY

is the parameter keyword for the alphameric name of this PSB.
The YYYYYYYY value for the PSBNAME must be eight characters or
less in length. This name becomes the load module name for the
PSB in the PSB library. This name must be the same as the
program load module name in the program library. No special
characters may be used in the name.

It should be noted that there may be several PCB-TYPE-TP control
cards and several PCB-TYPE-DB control cards, but only one PSBGEN control
card in a PSB generation card deck. The PSBGEN card must be the last
control card in the deck preceding the END card.

The four types of PSB generation control card must be followed by an
END card. The END card is required by the macro assembler to indicate
the end of the assembly data.

Sample Deck for PSB Generation

A PSB generation is to be done for a message processing program to
process the following hierarchical data base structure. Output messages
are to be transmitted to logical terminals NUMBER15 and OFF35 in
addition to the source terminal.

BASICSEGw=—e————— 1
.
P
[} BASICEDU—————. 1
| ' }
CURSKILS DEGREETP ' 'CURSTUDY

1

|

|
BASICPAY

|

125

Sample:
PCB TYPE=TP, LTERM=NUMBER15 .

PCB TYPE=TP, LTERM=0OFF35

PCB TYPE=DB, DBDNAME=PAYRPERS, PROCOPT=A,KEYLEN=16
SENSEG BASICSEG

SENSEG BASICPAY,BASICSEG

SENSEG CURSKILS,BASICPAY

SENSEG BASICEDU,BASICSEG

SENSEG DEGREETP, BASICEDU

SENSEG CURSTUDY, BASICEDU

PSBGEN LANG=COBOL, PSBNAME=US842M004

END

DESCRIPTION OF PSB GENERATION OUTPUT

PSB generation produces three types of printed output and one load
module that becomes a member of the partitioned data set with the
generic name of PSB library. Each of these outputs is described in the
following paragraphs. '

Control Card Listing

This is an exact reproduction of the character representation of the
contents of each of the 80-column control cards. That is, it is a
listing of the input card images to this job step.

Diagnostics

Errors discovered during the processing of each control card will
result in diagnostic messages being printed immediately following the
image of the last control card read before the error was discovered.
The message may reference either the control card immediately preceding
it or the preceding group of control cards. It is also possible for
more than one message to be printed for each control card. In this
case, they follow each other on the output listing. After all the
control cards have been read, a further check is made of the
reasonableness of the entire deck. This may result in one or more
additional diagnostic messages.

Any discovered error will result in the diagnostic message(s) being
printed, the control cards being listed, and the other outputs being
suppressed. However, all the control cards will be read and checked
‘before the PSB generation execution is terminated. The link-edit step
of PSB generation will not be processed if a control card error has been
found.

Assembly Listing

An Operating System/360 Assembler Language listing of the PSB created
by DBD generation execution is provided.

126

"

Load Module

PSB generation is a two-step Operating System/360 job. Step 1 is

macro assembly execution which produces an object module.

link-edit of the object module, which produces a lcad module that in
turn becomes a member of the generic PSB library.

PSB Generation Error Conditions

Erroneous Control
Card

PCB
PCB
PCB
PCB
PCB
PCB
PCB

PCB

PCB
PCB
PCB
SENSEG
SENSEG
SENSEG
SENSEG
SENSEG
SENSEG

SENSEG

Error Message

---PCB010---PCB type parameter
missing or invalid

---PCB020---PCB LTERM parameter
not specified for TP PCB

---PCB030---DBDNAME parameter not
specified for DB PCB

---PCBO40---KEYLEN parameter not
specified for DB PCB’

---PCB050---PROCOPT parameter not
specified for DB PCB

---PCB060---DBDNAME specified for
TP PCB

---PCB070---PROCOPT specified for
TP PCB

---PCB080---KEYLEN operand for TP PCB

---PCB090---LTERM operand specified
for DB PCB

---PCB100---Invalid processing option
in PCB

--=-PCB110---TP PCB must occur before
any DB PCB's

---SEG010---Segment name parameter
is invalid

---SEG020---Too many SENSEG cards,
255 maximum

~--SEG030--~-SENSEG is invalid for TP
PCB's

---SEGO40---Parent name parameter
invalid

---SEG050---Parent segment is not
predefined

---SEG060---Parent name parameter is
omitted or invalid

---SEG070---Duplicate segment name

a

Step 2 is a

127

PSBGEN ---PSB010---PCB in error, generation

terminated
PSBGEN -==--PSB020---PSBNAME not specified
PSBGEN . —-—PSBOBO--—Ianlid Language Operand
PSBGEN ---PSBO40---No sensitive segments
for DB PCB
PSBGEN --=PSB050---PSB name must begin with
. alpha character
PSBGEN ---PSB099---System error, generation
terminated

Because PSB generation is composed of Operating System/360 Assembler
Language macro-instructions, errors in omission or invalid sequence of
" control cards, or invalid parameters on control cards will result in
additional errors specified by Operating System/360 during PSB
generation.

IMS/360 MESSAGE PROCESSING APPLICATION INTEGRATION CONSIDERATIONS

When a terminal user enters a message, it is held in the
communications control facility until it is completed and checked. Once
completely received, checked, and queued, the message is available for
processing. The program that processes it is loaded and executed.

There is no limit to the number of transaction codes that a single
message program may process (space excepted). However, if a message
program processes multiple transaction codes, the message program must
differentiate between them. Communications control provides validity
checking and security control.

The SMB is a core resident block within the IMS/360 region. One SMB
exists for each transaction type. The SMB is the internal definition of
the transaction type.

The following parameters are required for the description of a
transaction type and its associated SMB:

Limit Priority

N
is a value between 0 and 14. This keyword creates a scheduling
priority higher than the normal priority to guarantee that no
transaction type is left at a low priority if its message queue
becomes long and it is not being serviced frequently enough under
load conditions. Once the priority is boosted, it stays at the
limit priority until its message queue is emptied.

Normal Priority
is a value between 0 and 14 that designates the priority level at
which this transaction is scheduled and serviced during normal
operating conditions.

Limit Count
is a count value less than 65,000 against which the number of
waiting messages may be compared. When the number of messages

waiting exceeds the limit count value, the transaction priority
is boosted to the limit priority.

128

Program

is the name of the program which processes this transaction type.
It is the same name as the PSB.

Transaction Code

is a one- to eight-character transaction code. This is the code
used by the terminal operator when he enters his message.

Message Count

is a value less than 65,000 which indicates the maximum number of
messades of the type that the associated message program is
allowed to process during each program load. Twenty is the
default value. '

Message Time

Note:

is the maximum time in seconds allowed for the associated message
program to process each message. Message time x message count is
used internally as a time slice for messSage program processing
loop control. Time is not accumulated during any Data Language/I
message or data base operation. Therefore, it does not include
any time consumed by IMS/360 services or Operating System/360
overhead.

It is the responsibility of the application programmer to provide
the above values to the Systems Operation function.

129

CHAPTER 8. TERMINAL OPERATIONS INTERFACE

TERMINAL COMMAND LANGUAGE

General Description

A remote terminal command language exists within the framework of
IMS/360 to provide the user with a limited degree of control over the
operation and status of his terminal. The objective of this chapter is
to describe the usage of this remote terminal command language. This
chapter should, however, be used in conjunction with the System/360
Operating System, Operator's Guide for the type of terminal being used.
Although the remote terminal command language is similar to the master
terminal command language (the details of this command language can be
found in the IMS/360 Operations Manual, Volume II - Machine Operatioms),
the function of each language is different. The function of the master
terminal command language is the interrogation, alteration, and control
of the overall IMS/360 system. The entry of these commands is closely
regulated through the use of passwords.

The IMS/360 security maintenance program (SMP) provides both password
and terminal protection of an online IMS/360 system. The generated
IMS/360 system has only a minimum subset of terminal security to protect
DISPLAY, NRESTART, CHECKPOINT, ERESTART, START, CHANGE, STOP, PURGE,
DBRECOVERY, DBLOG, DBNOLOG, DBDUMP, ASSIGN, DELETE, and PSTOP commands.
The security maintenance program creates password and terminal security
for transactions and additional commands entered from terminals. It
also creates password security on data bases and programs. The control
of the security maintenance program is such that the user may view his
system in terms of resources and which password may have access to those
resources, or he may view the system as a security profile system, that
is, define a password that has access to a set of resources. The
detailled explanation will be found in Chapter 5 of the IMS/360
Operations Manual, Volume I - Systems Operation.

The function of the remote terminal command language is to change the
status or mode of operation of the user's own terminal in order to
provide extended security facilities, as illustrated by the /LOCK verb,
and to provide extended user message entry facilities, as illustrated by
the /CANCEL verb.

Note that remote terminal commands may be entered from any remote
terminal or from the master terminal. Note also that the remote
terminal command applies only to the terminal from which the command is
entered (with the exception of /BROADCAST), whether or not the issuing
terminal is the master terminal. The entry of any remote terminal
command will result in the issuance of a message to the originating
terminal. The message that is a response to a terminal command will
override the generated status of the line, terminal, etc.

Remote terminal commands are limited to one line.

Structure of Remote Terminal Command Statements

The generalized format and description of the remote terminal command
statement are as follows:

/VERB [(Password)} KEYWORD P1, . . . CR or EOB

130

AN

After the command has been typed, the EOB key should be depressed
(the carriage-return key (CR) can serve the same purpose if the terminal
has the automatic EOB feature installed).

The /VERB (such as /LOCK) is the first element. For many of the
remote terminal commands, such as /CANCEL or /TEST, the /VERB is the
only element. The carriage-return key on the keyboard may be depressed
(in order to position the print element at the left margin) before
entering the /VERB. Unless the /VERB is the only element in the
command, the user next enters one or more spaces before entering the
first keyword.

The keyword may be separated from its first parameter (as designated
by P1 above) by one or more spaces, a dash (-), or an equal sign (=).

The /LOCK command, in particular, provides password security at the
parameter level, such as for a given data base or a given logical
terminal, as defined at initial START time. If required, the password
must be entered directly after the related parameter. The password is
normally enclosed in parentheses. However, when entry is being made
from a 1050 terminal, it may not be desired to print the password.
Therefore, as an alternative, the password may be enclosed between
bypass and restore characters: %PASSWORD*#. No spaces or intervening
characters may be entered between the parameter and the left parenthesis
or bypass. character. Unless otherwise noted, multiple parameters may be
attached to a given keyword. Multiple parameters are separated by
commas, or by commas followed by one or more blanks. If the parameter
is not secured, the comma immediately follows the parameter. If the
parameter is secured, the comma immediately follows the right
parenthesis or the restore character that encloses the password. The
last parameter that is attached to a given keyword must be followed by
one or more blanks or by a period, not by a comma, as the comma
designates a continuing series.

For purposes of documentation, comments or notes may be added at the
end of a terminal command. However, to mark the end of the command, a
period must be entered following the last required word of the command
when comments are to be added.

/VERB [(Password)] KEYWORD P1, P2. COMMENT CR or EOB

(COMMENT cannot overflow to next line.)

correction of Remote Terminal Commands

The following are methods to be used if an error has been made when
entering a remote terminal command:

Backspacing - If the EOB or CR (carriage-return) key has not been
depressed, a typing error may be corrected by depressing the
backspace key to the incorrect character, retyping it correctly,
and retyping all subsequent characters.

Single line deletion - If it is necessary to delete a typed llne,
** must be typed before the EOB key or CR key is depressed.

Remote Terminal Command Key Definitions

As several of the commands utilize the same keywords and parameters,
reference should be made to the following directory when reviewing the
commands :

131

LINE

is the keyword referring to a communication line; correct
parameters are one- to three-character line numbers.

PTERM
is a keyword referring to a physical terminal; correct parameters
are one- or two-character physical terminal addresses.

LTERM
is a keyword referring to a logical terminal; correct parameters
are one- to eight-character logical terminal names.

TRAN
is’ a keyword referring to a transaction code; correct parameters
are one- to eight-alphameric-character transaction codes.

PROGRAM
is a keyword referring to a program; correct parameters are one-
to eight-alphameric-character program names.

DATABASE
is a keyword referring to a data base; correct parameters are
one- to eight-character data base names.

ALL

ALL may be used as a parameter with many keywords. The specific
acceptable uses of this parameter are noted in the descriptions
of the individual commands.

Pl1, P2, etc.

are abbreviations used to designate possible parameters in the
descriptions of the various verbs.

Remote Terminal Commands

1. /LOCK and /UNLOCK

These two commands are discussed together, as they are opposites.

For example, /LOCK stops the sending and receiving of messages relative
to a particular communications line or terminal, stops the scheduling of
messages containing a specific transaction code, stops the scheduling of
a specific program, and/or stops the scheduling or use of a given data
base. This command allows the queuing of output messages relative to a
particular communications line or terminal and/or allows the queuing of
messages containing a specific transaction code.

If the terminals are on a switched network, these are the LOCK and
UNLOCK command considerations: an implied /UNLOCK command is processed
against a switched network PTERM and inquiry logical terminal whenever a
physical or logical terminal disconnect occurs between a remote terminal
and the IMS/360 system. Subpool logical terminals, however, are not
affected by a disconnect. If further explanation is required, see
Chapter 3 of the IMS/360 Operations Manual, Volume I - Systems
Operation, the paragraph titled "IMS/360 Telecommunication Facilities™.

132

N

L 1
| l | l |
| COMMAND- | TERMINAL/LINE | TRANSACTION | PROG | DATABASE |
I | l ! | ' I
| ! I
| | I | [
| REC| SEND|Q O/P| SCHED | Q | EXECUTE| USE |
| I ! ! I l I I
| ‘ l
| I ! ! | I | I
| /LOCK NO| NO | YEsS | NO | YES | NO | NO |
| l | | I | | |
| | ; I
| i1 | l | | | |
| /UNLOCK |YES| YES | YES | YES | YES | YEs | YES |
I (N l | | ! l I
L J
where:

REC allows receipt of input messages

SEND initiates sending of output messages

Q O/P allows output message queuing from processing
SCHED allows scheduling of messages for processing

Q allows input queuing of messages

EXECUTE allows use of a program for processing messages
USE allows use of data base for processing messages

Note: that /START and /UNLOCK, /STOP and /LOCK, or /PSTOP and /LOCK are
not the same. Entry of the /START, /STOP, and /PSTOP commands
would normally be restricted to the master terminal but could be
allowed from a remote terminal. /LOCK and /UNLOCK, relative to a
physical terminal, are applicable only to the physical terminal
from which the command is entered. These two commands (/LOCK and
/UNLOCK), relative to logical terminals, are applicable only to
logical terminals that are assigned to the physical terminal from
which the command is entered. The objective of the /LOCK command

+ 1is to allow the terminal user to secure a specific physical
terminal, one or more logical terminals associated with a
specific physical terminal, one or more data bases, one or more
programs, and/or one or more transaction codes. '

Since the formats of /LOCK and /UNLOCK are identical; only one verb
is shown in the following examples. Exception: /LOCK LTERM ALL is the
only acceptable use of the parameter ALL relative to these commands.
The following /LOCK and /UNLOCK formats are acceptable:

/LOCK PTERM (Password)
This command secures the user's physical terminal. Note that no
keyword parameters are acceptable, as the user can lock only his
own physical terminal.

/LOCK LTERM P1 (Password), P2 (Password)
This command secures one or more logical terminals associated
with the user's physical terminal.

133

/LOCK LTERM ALL

This command secures all the logical terminals associated with
the user's physical terminal.

/LOCK TRAN P1 (Password), P2 (Password)

This command secures one or more transaction codes.
/LOCK PROGRAM.P1 (Password), P2 (Password)

This command secures one or more programs.
/LOCK DATABASE P1 (Password), P2 (Password)

This command secures one or more data bases.
2. /BROADCAST

Entry of this command would normally be restricted to the master

terminal but could be allowed from any remote terminal. It is used to
transmit a keyed warning or informational message to one or more
terminals. This command results in the transmission of a specific
message to one or more physical terminals. The message can be only one
line in length. An end-of-block key must be depressed prior to the
'keying of the message to be broadcast. Refer to the master terminal

section of the IMS/360 Operations Manual, Volume II - Machine Operations
for a detailed description of this command.

The next two /BROADCAST commands are identical. They result in the
transmission of the broadcast message to the physical terminals to which
logical terminals P1, P2, and P3 are assigned. The following command
formats are acceptable: :

/BROADCAST (Password) TO LTERM P1, P2, P3 (EOB)

MSG- -- (EOB)
/BROADCAST (Password) TO P1, P2, P3 (EOB)

MSG--- -- (EOB)

The next four /BROADCAST commands are functionally identical. They
result in the transmission of the broadcast message to all the physical
terminals in the system.

/BROADCAST (Password) TO LTERM ALL (EOB)

MSG (EOB)

/7BROADCAST (Password) TO ALL (EOB)

MSG--~ (EOB)

/BROADCAST (Password) TO PTERM ALL (EOB)

MSG -— -- (EOB)
/BROADCAST (Password) TO LINE ALL (EOB)

MSG—--- - (EOB)

The next two commands are functionally identical. They result in the
transmission of the broadcast message to all the physical terminals
located in line P1.

134

/BROADCAST TO LINE P1 (EOB)

MSG (EOB)

/BROADCAST TO LINE P1 PTERM ALL (EOB)

MSG——- (EOB)

The following command results in the transmission of the broadcast
| message to relative physical terminals P2 and P3 located on line Pl.

/BROADCAST (Password) to LINE P1 PTERM P2, P3 (EOB)

MSG (EOB)
3. /TEST

This terminal command is used to place the user's own terminal into
test mode, which implies that no independent output messages will be
transmitted to the user's terminal. Any input messages entered into the
user's terminal will be transmitted back to the user's terminal. After
the /TEST verb is entered, the user's terminal will remain in the test
mode until such time as an /END command has been received from the

| user's terminal. Any messages which result from command processing or

| message switching or as the result of message processing output are
enqueued for the terminal in test mode and are held until the terminal
is removed from test mode. The /TEST command can apply only to the
user's terminal. There are no acceptable keywords or parameters. The
only acceptable format is the verb itself, as follows:

/TEST [(Password)]
4. /EXCLUSIVE

This command is used to place the user's own terminal into exclusive
use or inquiry mode. The user enters this mode, through the entry of
the /EXCLUSIVE verb, if he desires to enter one or more inquiries into
his terminal and wants to receive only the response to his inquiries,
without receiving output from other miscellaneous sources. Scheduling
and queuing are allowed to continue. After the command has been
entered, the user's terminal will remain in the inquiry mode until such
time as an /END command has been received from the user's terminal. The
/EXCLUSIVE command can apply only to the user's terminal. There are no
acceptable keywords or parameters.

Since messages are displayed as soon as possible after queuing, the
/EXCLUSIVE command is recommended for proper operation of the 2260
terminal. It will protect the screen of information from being overlaid
by message switching, system messages, and messages generated by
processing programs initiated by other terminals while the operator is
viewing a response he initiated. These messages will remain on the
queue until a /END command is entered. The only acceptable format is
the verb itself, as follows:

/EXCLUSIVE [(Password)]
5. ZEND
This command is used to terminate the mode that was originally
initiated through the entry of /TEST or /EXCLUSIVE. This command can
apply only to the user's terminal. There are no acceptable keywords or
parameters. The only acceptable format is the verb itself, as follows:

/END [(Password)]

135

Page of SH20-0634-1
Revised March 19, 1971
By TNL SN20-2339

6. /LOG

This terminal command is limited to one line in length, as is any
command (slash-type) message. The function of the command is to cause
the contents of the entered message to be logged, not processed by a
program, with the slash (/L0G) being the first character logged. This
command applies only to the currently entered message line and does not
establish a continuing operational mode. There are no acceptable
keywords or parameters as such. One or more spaces must separate the
verb from the first letter of the message to be logged. The first word
of the message, following the /LOG verb, may be a transaction code. To
log the message "Today is Monday", the following format would be
acceptable:

/LOG [(Password)] TODAY IS MONDAY
7. /CANCEL

The function of this command is to cause the cancellation of all
lines of a multiple-line message that is currently being entered into
this same terminal. Note that this command causes the cancellation of a
complete message. It cannot be used to cancel a single-line input
message. An erroneous single line can be canceled through the entry of
two asterisks (#*) immediately followed by an end-of-block (EOB)
character at the end of the line to be canceled. There are no
acceptable keywords or parameters. The only acceptable format is the
verb itself, as follows:

/CANCEL [(Password)l
8. /SET

This terminal command sets the destination of all messages entered
into this terminal to another terminal (/SET mode to LTERM master) or to
an SMB (/SET MODE to TRAN IMS) (password). It may be changed by /RESET,
/START LINE for the line on which the subject terminal is attached, or
by the /IAM command. If the transaction is secured by password,
checking is done at the time of processing the command. The allowable
format is:

/SET [MODE] {TRAN } name [(Password)]
LTERM name

{ (Password)]

P
——— ——
e o e . — s

Message editing considerations: Destination (TRAN name or LTERM
name) of the SET command is edited as the leading field of the
message. A 'blank' separator is inserted between the destination name
and the text entered from the terminal, unless the first character
entered from the terminal is a 'blank'.

9. /RESET

This terminal command eliminates the preset destination mode. The
allowable format is:

[(Password)]

:
g

10. /IAM

The /IAM command is applicable only to a switched communications
network on dialup facilities. This command must be entered before any
input transaction codes or other remote terminal commands will be
accepted. The following formats are acceptable:

136

S

/1AM

S ——
-
s
1]
0]
:
[a]
[oT)
~
—
)
=
E
g
N
—
~
)
1]
9]
9]
£
[e]
Ia]
Qs
~
—

g
-
:
~
)
Y]
0
g
(]
Ia}
o)
4
ol
[
=
:
g
=
-~
-~
el
V]
0
0
£
(o}
2]
Q
N
-
—
b e e e

where:
LTERM P1

means this command automatically accomplishes the attachment of
the subpool logical terminal P1 to the switched (dialup)
communication line over which the call was received from the
remote (physical) terminal.

LTERM P2

means this command automatically accomplishes the logical
attachment of the Inquiry logical terminal to the switched
(dialup) communication line over which the call was received from
the remote (physical) terminal. Only the first four characters
of the Inquiry logical terminal name are compared with the first
four characters of the P2 parameter.

For a further detail discussion of logical terminals, see Chapter 3
of the IMS/360 Operations Manual, Volume I — Systems Operation.

PTERM (Password) LTERM P1 (Password)
means the same as the above operand, but accomplishes the
attachment of all 1og1ca1 terminals associated with the subpool
in which P1 exists.
11. /RDISPLAY
This command provides the ability from a remote terminal to display
the logical terminal name, the relative physical terminal number, and
the line number assigned as the master terminal. The entry on the
remote terminal is:

/RDISPLAY [(Password)] MASTER

137

REMOTE TERMINAL OPERATOR'S MANUAL

Recommended Contents

The application programming function should choose these terminal

operator .commands and make them known to their remote terminal
operators. All necessary additional instructions, such as the
following, should be placed in the procedures manual:

e What to do in case of trouble.

e What diagnostics can be run at the remote terminal to help
the trouble. Perhaps a trouble checklist.

e Telephone numbers of different people to aid the operator.

138

determine

/7N

N/

APPENDIX: APPLICATION PROGRAM EXAMPLES

GENERAL MESSAGE PROGRAM

The result of a user entering a valid input message is that IMS/360
schedules the associated message processing program. This sample
program processes the input messages and returns a reply to the user at
his terminal. The example is written in COBOL. It should be restated
that the purpose of presenting this program is not to demonstrate all
application programming aspects of IMS/360, but to give an illustration
of a realistic but simple message processing program. The program's
statements are numbered for discussion purposes. The COMMENT statements
in the Data Division are artificial and would not compile in an actual
program.

1 IDENTIFICATION DIVISION.

2 PROGRAM-ID. ‘'POLRPROG'.

3 REMARKS. THIS IS AN EXAMPLE OF AN IMS/360 MESSAGE
4 PROCESSING PROGRAM. THIS PROGRAM

5 WILL SERVICE AN INQUIRY FOR

6 THE LATEST STATUS OF A SPECIFIC

7 PRODUCTION ORDER.

8 ENVIRONMENT DIVISION.

9 CONFIGURATION SECTION.
10 SOURCE-COMPUTER. IBM-360.

11 OBJECT-COMPUTER. IBM-360.

12 DATA DIVISION.

13 COMMENT -- NORMAL, COBOL SPECIFICATIONS
14 FOR FILES ARE ABSENT SINCE DATA
15 LANGUAGE/I IS USED FOR

16 FILE HANDLING IN A MESSAGE PROGRAM.

17 WORKING-STORAGE SECTION.
18 77 GET-UNIQUE, PICTURE IS X(4), VALUE IS 'GU °'.
19 77 DLI-INSERT, PICTURE IS X(4), VALUE IS ‘'ISRT®.

20 COMMENT--STATEMENTS 18 and 19

21 NAME AREAS WHICH CONTAIN LITERAL

22 VALUES FOR THE DATA LANGUAGE/I FUNCTIONS
23 OF GET UNIQUE AND INSERT. THE

24 NAMES OF THESE AREAS ARE USED IN

25 DATA LANGUAGE/I CALLS.

26 01 POLR-SSA. .

27 02 SEG-NAME, PICTURE X(8), VALUE 'ORGERSEG".
28 02 BEGIN-OP, PICTURE X, VALUE *‘('.

29 02 KEY-NAME, PICTURE X(8), VALUE 'ORDERNUM'.
30 02 RELATION-OP, PICTURE XX, VALUE ' ='.

31 02 KEY-VALUE, PICTURE X(6).

32 02 END-OP, PICTURE X, VALUE ")°'.

33 COMMENT--THE ABOVE STATEMENTS (26-32)

34 FORM THE SEGMENT SEARCH ARGUMENTS

35 THAT ARE USED IN RETRIEVING

36 THE STORED PRODUCTION ORDER

37 SEGMENT. NOTICE THE RELATIONAL OPERATOR IN

STATEMENT 30 IS TWO CHARACTERS, THE FIRST OF
WHICH IS BLANK.

139

38 01 TERMINAL-IN-AREA.

39 02 CHARAC-COUNT, PICTURE IS S99, COMPUTATIONAL.

40 02 FILLER, PICTURE IS S99, COMPUTATIONAL.

41 02 TRANS-CODE, PICTURE IS XX.

42 -’ 02 FILLER, PICTURE IS X.

43 02 TER-IN-OCN, PICTURE IS X(6).

4y COMMENT -- THE ABOVE (38-43) IS THE INPUT

45 AREA FOR THE MESSAGE FROM THE TERMINAL

46 AS IT WAS KEYED IN BY THE

47 USER. THE MESSAGE PROCESSING

48 PROGRAM OBTAINS THE MESSAGE

49 THROUGH A DATA LANGUAGE/I GET CALL.

50 01 A TERMINAL-OUT-AREA.

51 02 CHAR-COUNT, PICTURE S99, COMPUTATIONAL, VALUE
+ 133. ‘

52 02 FILLER, PICTURE IS S99, COMPUTATIONAL, VALUE +00.

53 02 ORDER-CON-NUM, PICTURE X(6).

54 02 FILLER, PICTURE X(3), VALUE SPACES.

55 02 DEPT, PICTURE X(6). A

56 - 02 FILLER, PICTURE X(3), VALUE SPACES.

57 02 STATUS-CODE, PICTURE XX.

58 02 FILLER, PICTURE X(3), VALUE SPACES.

59 02 SHIP-TO-DEPT, PICTURE X(6).

60 02 FILLER, PICTURE X(3), VALUE SPACES.

61 02 INITIAL-STORES, PICTURE X(6).

62 02 FILLER, PICTURE X(3), VALUE SPACES.

63 02 FINAL-STORES, PICTURE X{(6).

64 02 FILLER, PICTURE X(3), VALUE SPACES.

65 02 PART-NUMBER, PICTURE X(20).

66 02 FILLER, PICTURE X(3), VALUE SPACES.

67 02 QUANTITY, PICTURE X(8).)

68 02 FILLER, PICTURE X(3), VALUE SPACES.

69 02 TYPE-ORDER-CODE, PICTURE X(6).

70 02 FILLER, PICTURE X(3), VALUE SPACES.

71 02 ACCOUNT-NUM, PICTURE X(5).

72 02 FILLER, PICTURE X(3), VALUE SPACES.

73 02 IN-WORK-DATA, PICTURE X(4).

T4 02 FILLER, PICTURE X(3), VALUE SPACES.

75 02 COMPL-DATE, PICTURE X(14).

76 02 FILLER, PICTURE X(3), VALUE SPACES.

77 02 IND-OF-UNDER, PICTURE X(4).

78 02 FILLER, PICTURE X(3), VALUE SPACES.

79 ° 02 DATA-AS-OF, PICTURE X(4). :

80 02 FILLER, PICTURE X(3), VALUE SPACES.

81 02 COMMENT -- THE ABOVE (50-80) IS THE

82 02 FORMAT FOR THE OUTPUT MESSAGE

83 02 THAT WILL BE SENT TO THE

84 02 TERMINAL USER. THE OUTPUT LINE

85 02 IS TYPED ON PRE-PRINTED

86 02 FORM PAPER WITH FIELD HEADINGS.

87 01 POLR-SRA.

88 02 ORDER-CON-NUM, PICTURE X(6).

89 02 DEPT, PICTURE X(6).

90 02 STATUS-CODE, PICTURE XX.

91 02 SHIP-TO-DEPT, PICTURE X(6).

92 02 INITIAL-STORES, PICTURE X(6).

93 02 FINAL-STORES, PICTURE X(6).

9y 02 PART-NUMBER, PICTURE X(20). o .

95 02 QUANTITY, PICTURE X(8).

96 02 TYPE-ORDER, PICTURE X(6).

97 02 ACCOUNT-NUM, PICTURE X(5).

140

N

98
99
100
101

102
103
104
105
106
107

108
109
110
111
114
115
116
117

119
120

121
122
" 123
124
125
126

127
128
129
130
131

132
133
134
135
136
137
138
139
140
141

142
143
144
145
146
147

148
149

150
151
153
154

155
156

02 IN-WORK-DATE, PICTURE X(4).

02 COMPL-DATE, PICTURE X(4).
02 IND-OF-UNDER, PICTURE X(4).
02 DATA-AS-OF, PICTURE X(4).

COMMENT - THE ABOVE (87-101) IS THE SEGMENT

RETURN AREA INTO WHICH

THE RETRIEVED PRODUCTION

ORDER SEGMENT IS PLACED FOLLOWING
THE EXECUTION OF A DATA LANGUAGE/I
GET CALL.

LINKAGE SECTION.

COMMENT -- THE LINKAGE SECTION DESCRIBES
DATA THAT IS MADE AVAILABLE TO THE
MESSAGE PROCESSING PROGRAM FROM IMS --
STORAGE SPACE IS NOT RESERVED
WITHIN THE MESSAGE PROCESSING PROGRAM
SINCE THE DATA EXISTS IN THE
IMS REGION --

THE PROGRAM COMMUNICATION BLOCK

FOR THE ON-LINE TERMINAL (127-131)
CONTAINS THE NAME OF THE TERMINAL,
THE RETURN STATUS CODE FOLLOWING

A DATA LANGUAGE/I CALL INVOLVING THE
TERMINAL, AND AN INPUT-PREFIX

WITH THE DATE AND TIME THE

MESSAGE WAS ENTERED.

01 TERM =PCB.

02 IO <ERMINAL, PICTURE IS X(8).
02 IO-RESERVE, PICTURE IS XX.

02 IO-STATUS, PICTURE IS XX.

02 INPUT-PREFIX, PICTURE IS X(12).

COMMENT -- THE PROGRAM COMMUNICATION
BLOCK FOR THE DATA BASE
PROVIDES SPECIFICALLY DESIGNATED

AREAS FROM WHICH DATA LANGUAGE/I OBTAINS

INFORMATION IT NEEDS TO PROCESS THE
PROGRAM'S DATA REQUESTS. THE PCB
ALSO PROVIDES SPECIFIC AREAS USED

BY DATA LANGUAGE/I TO ADVISE THE APPLICATION

PROGRAMMER OF THE RESULTS OF HIS
REQUESTS. '

01 POLRDATA-PCB.

02 PK-DBD-NAME, PICTURE IS X(8).

02 PD-SEG-LEVEL-IND, PICTURE IS XX.

02 PD-STATUS-CODE, PICTURE IS XX.

02 PD-PROC-OPTIONS, PICTURE IS XXXX.

02 DLI-USE, PICTURE IS S9(5), USAGE
COMPUTATIONAL.

02 PD-SEGMENT-FDBACK, PICTURE IS X(8).

02 PD-LENGTH-FDBACK,. PICTURE IS S9(5), USAGE

COMPUTATIONAL.

02 PD-NUM-SENS-SEG, PICTURE IS S9(5),. USAGE

COMPUTATIONAL.
02 KEY-FEEDBACK-AREA, PICTURE IS X(6).

PROCEDURE DIVISION

NOTE -- THE APPROACH OF THE PROCEDURE
DIVISION IS TO READ THE
INPUT MESSAGE, EXTRACT THE

141

142

157
158
159
160
161
162
163
164

165
166
167
168
169
170
171
172
173
174

175
176
177
178
179
180

181
182
183
184
185
186
187
188
189

190
191
192
193
194
195
196
197

198
199
200
201
202
203

204
205
206
207
208
209
210

212
213
214

ORDER CONTROIL NUMBER FROM THE .
INPUT MESSAGE, RETRIEVE A

PRODUCTION ORDER SEGMENT FROM
THE DIRECT ACCESS STORAGE s
DEVICE USING THE ORDER CONTROL A
NUMBER, CONSTRUCT THE OUTPUT
MESSAGE, AND SEND THE MESSAGE
TO THE TERMINAL.

ENTRY-POINT.
ENTER LINKAGE.
ENTRY *DLITCBL' USING TERMINAL-PCB, POLRDATA-PCB.
ENTER COBOL.
NOTE -~ THE ENTRY STATEMENT PASSES
THE ADDRESSES FOR THE
TERMINAL-PCB AND THE POLRDATA-PCB
TO THE MESSAGE PROCESSING PROGRAM --
THESE VALUES ARE PHYSICALLY
LOCATED IN THE IMS/360 CORE REGION.

ENTER LINKAGE. ‘
CALL 'CBLTDLI' USING GET-UNIQUE,
: TERMINAL-PCB,
TERMINAL-IN-AREA.
ENTER COBOL.
IF IO-STATUS NOT = ' ', GO TO ERROR-ANALYSIS.

NOTE —-- A DATA LANGUAGE/I CALL TO READ THE INPUT
MESSAGE HAS BEEN ISSUED,
AND FOLLOWING THAT, THE RETURN STATUS
CODE CHECKED TO DETERMINE IF
THE READ WAS SUCCESSFUL OR NOT --
IF SUCCESSFUL, THE NEXT STEP IN THE PROGRAM
IS TO MOVE THE ORDER CONTROL ;
NUMBER FROM THE INPUT MESSAGE g
TO A SEGMENT SEARCH ARGUMENT.

MOVE TER-IN-OCN TO KEY-VALUE.
ENTER LINKAGE.
CALYL *CBLTDLI' USING GET-UNIQUE,

POLRDATA-PCB,

POLR-SRA, 4

POLR-SSA.
ENTER COBOL. .
IF PD-STATUS~CODE NOT =* *, GO TO ERROR-ANALYSIS.

NOTE ~- A CALL TO READ THE PRODUCTION
ORDER SEGMENT FROM THE DIRECT ACCESS
STORAGE DEVICE HAS BEEN ISSUED --
FOLLOWING THAT, THE STATUS CODE
WAS CHECKED TO DETERMINE IF THE

READ WAS SUCCESSFUL OR NOT.

MOVE CORRESPONDING POLR-SRA TO
TERMINAL-OUT-AREA.
ENTER LINKAGE. :
CALL 'CBLTDLI' USING DLI-INSERT,
TERMINAL-PCB,
TERMINAL~-OUT-AREA.
ENTER COBOL.
IF IO-STATUS NOT = ' ', GO TO ERROR-ANALYSIS.
NOTE —- THE OUTPUT MESSAGE WAS
CONSTRUCTED WITH A MOVE
CORRESPONDING AND THEN SENT /”

215 TO THE IMS/360 OUTPUT QUEUE WITH

216 A DATA LANGUAGE/I INSERT CALL -- IMS/360
217 WILL REMOVE THE MESSAGE FROM

218 THE QUEUE AND SEND IT TO THE

219 ON-LINE TERMINAL. IT IS RECOMMENDED THAT

EACH OUTPUT MESSAGE LINE CONTAIN CONTROL
CHARACTERS FOR LINE FEED AND CARRIAGE RETURN.

220 ENTER LINKAGE.

221 RETURN.

222 ENTER COBOL.

223 NOTE —-- THIS STATEMENT RETURNS
224 CONTROL TO THE INFORMATION

225 MANAGEMENT SYSTEM WHEN THE

226 MESSAGE PROCESSING PROGRAM

227 HAS COMPLETED EXECUTION. '

228 ERROR-ANALYSIS.

229 NOTE -~ THE PURPOSE OF THIS BLOCK
230 OF CODE, WHEN COMPLETED, IS

231 TO ANALYZE A NON-BLANK

232 STATUS CODE THAT WAS RETURNED
233 AFTER THE EXECUTION OF A DL/I
234 CALL ~-- DEPENDING ON THE PROBLEM
235 INDICATED, IT MAY BE BEST TO

236 RETURN AN ERROR MESSAGE TO THE
237 TERMINAL USER.

' COMPLETE SET OF PROGRAM EXAMPLES IN COBOL

This complete set of programs contains the following:

e Data Base Creation (Load) Program

e A Program to Create Data for Load Program
e Batch (Update) Processing Program

e Data Base Reorganization (Dump) Program

e Message (Update) Processing Program

e Data Base Descriptions

e Program Specification Block Generation

All of these programs employing COBOL show the IMS/360 capabilities

as simply as possible. The programs exercise the Data Language/I

facilities -- the CALL statements:

GU
GN
GNP
ISRT
REPL
DLET

In the message processing program, password and terminal security,

along with several priorities, is exercised.

~. . 143

Data Base Creation (L.oad) Program

IDENTIFICATION DIVISION.

PROGRAM-ID, 'HIBLSNO1®

AUTHOR.

REMARKS. THIS PROGRAM IS A TEST LOAD.

’ TWO SINGLE DATA SET GROUPS AND TWO MULTIPLE DATA SET
GROUPS CAN BE LOADED. A SINGLE CONTROL CARD IS
REQUIRED. FORMAT: COL. 1-2 INDICATES LOADING OF
SINGLE DSG DATA BASES IF NON-BLANK; COL. 3-U4
INDICATES LOADING OF MULTIPLE DSG DATA-BASES IF NON-
BLANK. ONE INPUT-DATA-TAPE IS REQUIRED.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER. IBM-360.

OBJECT-COMPUTER. IBM-360.

INPUT-OUTPUT SECTION. -

FILE-CONTROL. :
SELECT CTLCRD ASSIGN TO 'SYSIN' UTILITY.
SELECT INTAPE ASSIGN TO 'TAPEIN' UTILITY.
SELECT DISKI ASSIGN TO 'DISKI' UTILITY.
DATA DIVISION.
FILE SECTION.
FD CTLCRD
LABEL RECORDS STANDARD
BLOCK CONTAINS 80 CHARACTERS
RECORDING MODE F
DATA RECORD CARD-IN.
01 CARD-IN.
02 CASE1l.
03 Cl11 PICTURE X.
03 C12 PICTURE X.
02 CASE2.
03 C21 PICTURE X.
03 C22 PICTURE X.
02 DUMP-CASE1l.
03 DC11 PICTURE X.
03 DC12 PICTURE X.
02 DUMP-CASE2.
03 bDC21 PICTURE X.
03 DC22 PICTURE X.
, 02 FILLER PICTURE X(72).
FD INTAPE
LABEL RECORDS OMITTED
BLOCK CONTAINS 8 RECORDS
RECORD CONTAINS 440 CHARACTERS
RECORDING MODE F
DATA RECORD TAPE-IN.
01 TAPE-IN.
02 PARENT. .
03 KEY1 PICTURE 9(6).
03 FILLER1 PICTURE X(84).
03 LEVEL2.
04 KEY2. PICTURE 9(6).
04 FILLER2 PICTURE X(85).
04 LEVEL3.
05 KEY3 PICTURE 9(6).
05 FILLER3 PICTURE X(253).
FD DISKI
LABEL RECORDS STANDARD
BLOCK CONTAINS 80 CHARACTERS
RECORDING MODE F
DATA RECORD IS INTREC.
01 INTREC. P

1uy

N

02 DCO11 PICTURE XX.

02 DCO2

2 PICTURE XX.

02 FILLER PICTURE X(76).
WORKING-STORAGE SECTION.

01 CALL-FUNC PICTURE X(4) VALUE ‘LOAD'
01 PSBNAME PICTURE X(8) VALUE ‘HIBLSNO1'.
01 SSAl. ‘
02 SSA1-NAME PICTURE X(8) VALUE ‘'PARENT
02 SSA1-BEGIN PICTURE X VALUE *('.
02 SSA1-KEY PICTURE X(10) VALUE 'KEY1
02 SSA1-VALUE PICTURE 9(6).
02 SSA1-END PICTURE X VALUE ")°*.
01 sSsazl.
02 SSA21-NAME PICTURE X(8) VALUE ‘LEVEL21
02 SSA21-BEGIN PICTURE X VALUE “*('.
02 SSA21-KEY PICTURE X(10) VALUE ‘KEY21
02 SSA21-VALUE PICTURE 9(6).
02 SSA21-END PICTURE X VALUE ‘)°.
01 SSA31l. '
02 SSA31-NAME PICTURE X(8) VALUE ‘LEVEL31
02 SSA31-BEGIN PICTURE X VALUE ' ('.
02 SSA31-KEY PICTURE X(10) VALUE ‘KEY31
02 SSA31-VALUE PICTURE 9(6).
02 SSA31-END PICTURE X VALUE ')°.
01 SsA22.
02 SSA22-NAME PICTURE X(8) VALUE ‘LEVEL22
02 SSA22-BEGIN PICTURE X VALUE *('.
02 SSA22-KEY PICTURE X(10) VALUE ‘KEY22
02 SSA22-VALUE PICTURE 9(6).
02 SSA22-END PICTURE X VALUE *)°'.
01 SsA32.
02 SSA32-NAME PICTURE X(8) VALUE ‘LEVEL32
02 SSA32-BEGIN PICTURE X VALUE *('.
02 SSA32-KEY PICTURE X(10) VALUE ‘KEY32
02 SSA32-VALUE PICTURE 9(6). »
02 SSA32-END PICTURE X VALUE ")°.

01 DISPLAY-
02 DBN
02 sL
02 scC

02 PO

02 JCB
02 SNF
02 LOFK
02 NOSss

01 SEGMENT-
02 P
02 121
02 131
02 L22
02 L32
01 ACTIVE-P
02 cs11
02 cs12
02 cCs21
02 Cs22
LINKAGE SECT
01 PCBCASE1

PCB.
PICTURE X(8).
PICTURE XX.
PICTURE XX.
PICTURE. X(4).
PICTURE S9(5) COMPUTATIONAL.
PICTURE X(8).
PICTURE S9(5) COMPUTATIONAL.
PICTURE S9(5) COMPUTATIONAL.

PK PICTURE X(6).
L2K PICTURE X(6).
L3K PICTURE X(6).
L22K PICTURE X(6).
L32K PICTURE X(6).

SWITCHES.
PICTURE X.
PICTURE X.
PICTURE X.
PICTURE X.
PICTURE X.
CB.
PICTURE X.
PICTURE X.
" PICTURE X.
PICTURE X.
ION.
1.

145

01

01

01

DBD-NAME1 PICTURE X(8).

02 SEG-LEVEL1l PICTURE XX.

02 STATUS-CODES1 PICTURE XX.

02 PROC-OPTIONS1 PICTURE X(4).

02 DLI-JCB-ADDR1 PICTURE S9(5) COMPUTATIONAL.

02 SEGMENT-NAME-FEEDBACK1 PICTURE X(8).

02 LENGTH-OF-FEEDBACK-KEY1l PICTURE S9(5) COMPUTATIONAL.
02 NUMBER-OF-SENSITIVE-SEGS1 PICTURE S9(5) COMPUTATIONAL.
02 KEY-FEEDBACK-AREA1l PICTURE X(30).

PCBCASE12.

02 DBD-NAME2 PICTURE X(8).

02 SEG-LEVEL2 PICTURE XX.

02 STATUS-CODES2 PICTURE XX.

02 PROC-OPTIONS2 PICTURE X(4).

02 DLI-JCB-ADDR2 PICTURE S9(5) COMPUTATIONAL.

02 SEGMENT-NAME-FEEDBACK2 PICTURE X(8).

02 LENGTH-OF-FEEDBACK-KEY2 PICTURE S9(5) COMPUTATIONAL.
02 NUMBER-OF-SENSITIVE-SEGS2 PICTURE S9(5) COMPUTATIONAL.
02 KEY-FEEDBACK~AREA2 PICTURE X(30).

PCBCASE21.

02 DB-NAME3 PICTURE X(8).

02 SEG-LEVEL3 PICTURE XX.

02 STATUS-CODES3 PICTURE XX.

02 PROC-OPTIONS3 PICTURE X(4).

02 DLI-JCB-ADDR3 PICTURE S9(5) COMPUTATIONAL.

02 SEGMENT-NAME-FEEDBACK3 PICTURE X(8).

02 LENGTH-OF-FEEDBACK-KEY3 PICTURE S9(5) COMPUTATIONAL.
02 NUMBER-OF-SENSITIVE-SEGS3 PICTURE S9(5) COMPUTATIONAL.
02 KEY-FEEDBACK-AREA3 PICTURE X(30).

PCBCASE22.

02 DB-NAMEY4 PICTURE X(8).

02 SEG-LEVEL4 PICTURE XX.

02 STATUS-CODESH PICTURE XX.

02 PROC-OPTIONSY PICTURE X(4).

02 DLI-JCB-ADDRY4 PICTURE S9(5) COMPUTATIONAL.
. 02 SEGMENT-NAME-FEEDBACK4 PICTURE X(8).

02 LENGTH-OF-~FEEDBACK-KEY4 PICTURE S9(5) COMPUTATIONAL.

02 NUMBER-OF-SENSITIVE-SEGSY PICTURE S9(5) COMPUTATIONAL.
02 KEY-FEEDBACK-AREAH PICTURE X(30).

PROCEDURE DIVISION.
BEGIN. :

146

N

ENTER LINKAGE.

ENTRY ‘DLITCBL'

PCBCASE11,
PCBCASE12,
PCBCASE21,
PCBCASE22.
ENTER COBOL.

USING

DISPLAY 'HIBLSNO1 STARTED'.

CARD-MESSAGE.
OPEN INPUT CTLCRD.
READ CTLCRD AT END
OPEN OUTPUT DISKI.
MOVE DUMP-CASE1l TO
MOVE DUMP-CASE2 TO
WRITE INTREC.
CLOSE DISKI.

GO TO EOJ.

DCO11.
DCO022.

MOVE ‘'ISRT' TO CALL-FUNC.

IF CASEl NOT = ' °'
IF CASE2 NOT = ' '
‘ GO TO EOJ.
- OPEN-TAPE.

OPEN INPUT INTAPE.
READ-TAPE.

READ INTAPE AT END
CK-Csl1.

GO TO OPEN-TAPE.
GO TO OPEN-TAPE.

GO TO TAPE-END.

IF C11 NOT = ' ' GO TO PC1l1l.
CK-CSsl12.)

IF C12 NOT = ' ' GO TO PC1l2.
CK-CSs21.

IF C21 NOT = ' ' GO TO PC21.
CK-Cs22.

IF C22 NOT = ' ' GO TO PC22.

GO TO READ-TAPE.
TAPE-END.

CLOSE INTAPE.
EOJ.

CLOSE CTLCRD.

DISPLAY

ENTER LINKAGE.

RETURN.

ENTER COBOL.
PC11.

' SUCCESSFUL END

MOVE KEY1 TO SSA1-VALUE.
MOVE ' ' TO SSA1-BEGIN.

ENTER LINKAGE.
CALL 'CBLTDLI'
PCBCASE1l1,
PARENT,
SSA1-NAME.
ENTER COBOL.

USING CALL-FUNC,

MOVE ' (' TO SSA1-BEGIN.

DISPLAY SSAl.

OF HIBLSNO1°.

DISPLAY PARENT. MOVE PCBCASEl1l TO DISPLAY-PCB.

PERFORM DISP.

IF SC NOT = ' ' DISPLAY 'NO INSERT®
MOVE KEY2 TO SSA21-VALUE.
MOVE ' ' TO SSA21-BEGIN.

ENTER LINKAGE.
CALL 'CBLTDLI'
PCBCASE11,
‘LEVEL2,
SsAl,

SSA21-NAME.

ENTER COBOL.

USING CALL-FUNC,

MOVE '(' TO SSA21-BEGIN.

GO TO READ-TAPE.

147

DISPLAY SSAl.
DISPLAY SSA21.
MOVE PCBCASEl11 TO DISPLAY-PCB.
PERFORM DISP. :
IF SC NOT = * ' DISPLAY 'NO INSERT' GO TO READ-TAPE.
MOVE KEY3 TO SSA31-VALUE.
MOVE ' ' TO SSA31-BEGIN.
ENTER LINKAGE.
CALL ‘CBLTDLI* USING CALL-FUNC,
' PCBCASE11,
LEVEL3,
Ssal,
ssa21,
SSA31-NAME.
ENTER COBOL.
MOVE ' (' TO SSA31-BEGIN.
DISPLAY SSAl.
DISPLAY ‘SSA21.
DISPLAY SSA31l.
MOVE PCBCASE1ll TO DISPLAY-PCB.
.PERFORM DISP.
IF SC NOT = ' ' DISPLAY '"NO INSERT' GO TO READ-TAPE.
ADD 1 TO KEY2.
MOVE KEY2 TO SSA22-VALUE.
MOVE ' ' TO SSA22-BEGIN.
ENTER LINKAGE.
CALL 'CBLTDLI' USING CALL-FUNC,
PCBCASE11,
LEVEL2,
SSAal,
SSA22-NAME.
ENTER COBOL.
MOVE ' (' TO SSA22-BEGIN.
DISPLAY SSA1l.
DISPLAY SSA22.
MOVE PCBCASE1l TO DISPLAY-PCB.
PERFORM DISP. }
IF SC NOT = " ' DISPLAY ?"NO INSERT' GO TO READ-TAPE.
MOVE KEY3 TO SSA32-VALUE.
MOVE ' ' TO SSA32-BEGIN.
ENTER LINKAGE.
CALL 'CBLTDLI' USING CALL-FUNC,
PCBCASE11, .
LEVEL3,
SSAl,
SSA22, .
SSA32-NAME.
ENTER COBOL.
MOVE ' (' TO SSA32-BEGIN.
DISPLAY SSAl.
DISPLAY SSA22.
DISPLAY SSA32.
MOVE PCBCASE11l TO DISPLAY-PCB.
PERFORM DISP.
IF SC NOT = ' ' DISPLAY "NO INSERT' GO TO READ-TAPE.
GO TO CK-CS12.
PCl2.
MOVE KEY1 TO SSA1-VALUE.
MOVE - * ' TO SSA1-BEGIN.
ENTER LINKAGE.
CALL °'CBLTDLI' USING CALL-FUNC,
PCBCASE12,
PARENT,
. SSA1-NAME.
ENTER COBOL.

148

MOVE '(*' TO SSA1-BEGIN.
DISPLAY SSAl.

DISPLAY PARENT. MOVE PCBCASEl2 TO DISPLAY-PCB.

PERFORM DISP.

IF SC NOT = * * DISPLAY °'NO INSERT' GO TO READ-TAPE.

MOVE KEY2 TO SSA21-VALUE.
MOVE ' ' TO SSA21-BEGIN.
ENTER LINKAGE.
CALL 'CBLTDLI' USING CALL-FUNC,

" PCBCASE12,

LEVEL2,

ssal,

SSA21-NAME.
ENTER COBOL.
MOVE ' (' TO SSA21~BEGIN.
DISPLAY SSAl.
DISPLAY SSA21.
MOVE PCBCASE12 TO DISPLAY-PCB.

PERFORM DISP.
IF SC NOT = * ' DISPLAY 'NO INSERT' GO TO
MOVE KEY3 TO SSA31-VALUE.
MOVE ' ' TO SSA31-BEGIN.
ENTER LINKAGE.
CALL °'CBLTDLI®' USING CALL-FUNC,
PCBCASE12,
LEVEL3,
SSal,
SSA21,
SSA31-NAME.
ENTER COBOL.
MOVE '(' TO SSA31-BEGIN.
DISPLAY SSA1l. o
DISPLAY SSA21.
DISPLAY SSA31.
MOVE PCBCASE12 TO DISPLAY-PCB.
PERFORM DISP.
IF SC NOT = * ' DISPLAY 'NO INSERT' GO TO
ADD 1 TO KEY2.
MOVE KEY2 TO SSA22-VALUE.
MOVE ' ' TO SSA22-BEGIN.
ENTER LINKAGE.
CALL 'CBLTDLI' USING CALL-FUNC,
PCBCASE12,
LEVEL2,
ssa1,
SSA22-NAME.
ENTER COBOL.
MOVE ' (' TO SSA22-BEGIN.
DISPLAY SSA1l.
DISPLAY SSA22.
MOVE PCBCASE12 TO DISPLAY-PCB.
PERFORM DISP.
IF SC NOT = * -* DISPLAY 'NO INSERT' GO TO
MOVE KEY3 TO SSA32-VALUE.
MOVE ' ' TO SSA32-BEGIN.
ENTER LINKAGE.
CALL 'CBLTDLI' USING CALL-FUNC,
PCBCASE12,
LEVEL3,
SSal,
SSA22,
SSA32-NAME.
ENTER COBOL. ’
MOVE '(' TO SSA32-BEGIN.

READ-TAPE.

READ-TAPE.

READ-TAPE.

149

DISPLAY SSAl.
DISPLAY SSA22.
DISPLAY SSA32.
MOVE PCBCASE12 TO DISPLAY-PCB.
PERFORM DISP. : :
IF SC NOT = ' ' DISPLAY 'NO INSERT' GO TO READ-TAPE.
GO TO CK-CS21.
PC21.
MOVE KEY1 TO SSA1-VALUE.
MOVE ' ' TO SSA1-BEGIN.
ENTER LINKAGE.
CALL 'CBLTDLI' USING CALL-FUNC,

PCBCASE21,

PARENT,

SSA1-NAME.
ENTER COBOL.
MOVE '(' TO SSA1-BEGIN.
DISPLAY SSA1l. .
DISPLAY PARENT. MOVE PCBCASE21 TO DISPLAY-PCB.
PERFORM DISP.
IF SC NOT = * ' DISPLAY 'NO INSERT' GO TO READ-TAPE.
MOVE KEY2 TO SSA21-VALUE.
MOVE ' ' TO SSA21-BEGIN.
ENTER LINKAGE.

CALL ‘'CBLTDLI' USING CALL-FUNC,

PCBCASE21,

LEVEL2,

SSA1,

SSA21-NAME.
ENTER COBOL.
MOVE '(' TO SSA31-BEGIN.
DISPLAY SSAl.
DISPLAY SSA21.
MOVE PCBCASE21 TO DISPLAY-PCB.
PERFORM DISP.

IF SC NOT = ' ' DISPLAY "NO INSERT' GO TO READ-TAPE.
MOVE KEY3 TO SSA31-VALUE.
MOVE * ' TO SSA31-BEGIN.

ENTER LINKAGE.
CALL 'CBLTDLI' USING CALL-FUNC,
PCBCASE21,
LEVEL3,
SsA1l,
SSA21,
SSA31-NAME.
ENTER COBOL.
MOVE ' (' TO SSA31-BEGIN.
DISPLAY SSAl.
DISPLAY SSA21.
DISPLAY SSA31.
MOVE PCBCASE21 TO DISPLAY-PCB.
PERFORM DISP.
IF SC NOT = ' ' DISPLAY 'NO INSERT' GO TO READ-TAPE.
ADD 1 TO KEY2.
MOVE KEY2 TO SSA22-VALUE.
MOVE ' ' TO SSA22-BEGIN.
ENTER LINKAGE.
CALL °‘CBLTDLI' USING CALL-FUNC,
PCBCASE21,
LEVEL2,
Ssa1l,
SSA22-NAME.
ENTER COBOL.
MOVE '(' TO SSA22-BEGIN.
DISPLAY SSAl.

150

DISPLAY SSA22.
MOVE PCBCASE21 TO DISPLAY-PCB.
PERFORM DISP.

IF SC NOT = ' ' DISPLAY 'NO INSERT' GO TO READ-TAPE.

MOVE KEY3 TO SSA32-VALUE.

MOVE ' ' TO SSA32-BEGIN.

ENTER LINKAGE.

CALL 'CBLTDLI' USING CALL-FUNC,

PCBCASE21,
LEVEL3,
Sssa1l,
SSA22,
SSA32-NAME.

ENTER COBOL.

MOVE ' (' TO SSA32-BEGIN.

DISPLAY SSAl.

DISPLAY SSA22.

‘DISPLAY SSA32.

PC22

MOVE PCBCASE21 TO DISPLAY-PCB.
PERFORM DISP.

IF SC NOT = ' ' DISPLAY 'NO INSERT' GO TO READ-TAPE.

GO TO CK-CS22.

MOVE KEYl TO SSA1-VALUE.

MOVE ' ' TO SSA32-BEGIN.

ENTER LINKAGE.

CALL ‘'CBLTDLI' USING CALL-FUNC,

PCBCASE22,
PARENT,
SSA1-NAME.

ENTER COBOL.

MOVE ' (' TO SSA1-BEGIN.

DISPLAY SSAl.

DISPLAY PARENT. MOVE PCBCASE22 TO DISPLAY-PCB.

PERFORM DISP.

IF SC NOT = ' ' DISPLAY 'NO INSERT' GO TO READ-TAPE.

MOVE KEY2 TO SSA21-VALUE.
MOVE *' ' TO SSA21-BEGIN.
ENTER LINKAGE.
CALL 'CBLTDLI' USING CALL-FUNC,
PCBCASE22,
LEVEL2,
SSA1,
SSA21-NAME.
ENTER COBOL.
MOVE '(' TO SSA21-BEGIN.
DISPLAY SSAl.
DISPLAY SSA21.
MOVE PCBCASE22 TO DISPLAY-PCB.
PERFORM DISP.

IF SC NOT = ' ' DISPLAY "NO INSERT' GO TO READ-TAPE.

MOVE KEY3 TO SSA31-VALUE.

MOVE ' ' TO SSA31-BEGIN.

ENTER LINKAGE.

CALL ‘'CBLTDLI' USING CALL-FUNC,

PCBCASE22,
LEVEL3,
SSAl,
Ssa21,
SSA31~NAME.

ENTER COBOL.

MOVE '(' TO SSA31-BEGIN.

DISPLAY SSAl.

DISPLAY SSA21.

DISPLAY SSA31.

151

MOVE PCBCASE22 TO DISPLAY-PCB.
PERFORM DISP.
IF SC NOT = ' ' DISPLAY 'NO INSERT' GO TO READ-TAPE.
ADD 1 TO KEY2.
MOVE KEY2 TO SSA22-VALUE.
MOVE * ' TO SSA22-BEGIN.
ENTER LINKAGE.
CALL 'CBLTDLI' USING CALL-FUNC,

PCBCASE22,

ssal,

SSA22-NAME.
ENTER COBOL.
‘MOVE ' (' TO SSA22-BEGIN.
DISPLAY SSAl.
DISPLAY SSA22.
MOVE PCBCASE22 TO DISPLAY-PCB.
PERFORM DISP.
IF SC NOT = ' ' DISPLAY 'NO INSERT' GO TO READ-TAPE.
MOVE KEY3 TO SSA32-VALUE. :
MOVE ' ' TO SSA32-BEGIN.
ENTER LINKAGE.

CALL 'CBLTDLI' USING CALL-FUNC,

PCBCASE22,

LEVEL3,

Ssal,

SSA22,

SSA32-NAME.
ENTER COBOL.
MOVE '(' TO SSA32-BEGIN.
DISPLAY SSAl.
DISPLAY SSA22.
DISPLAY SSA32.
MOVE PCBCASE22 TO DISPLAY-PCB.
PERFORM DISP.
IF SC NOT = ' ' DISPLAY 'NO INSERT' GO TO READ-TAPE.
GO TO READ-TAPE.

DISP. ‘
DISPLAY 'DATA BASE NAME = ' DBN.
DISPLAY 'SEGMENT LEVEL = ° SL.
DISPLAY *STATUS CODES = ! sc.
DISPLAY 'PROCESSING OPTIONS = " PO.
DISPLAY *JCB ADDRESS = ' JCB.

DISPLAY ' SEGMENT NAME FEEDBACK = * SNF.
DISPLAY 'LENGTH OF FEEDBACK KEY = ' LOFK.
DISPLAY 'NUMBER OF SENSITIVE SEGMENTS = ' NOSS

DISPLAY ‘KEY FEEDBACK AREA = ' PL L2K L3K L22K L32K.
DISPLAY 'PARENT = ' PT 'LEVEL21 = ' L21T ‘LEVEL31 = ' L31T.

DISPLAY 'LEVEL22 = ' L22T 'LEVEL32 = ' L32T.

. A Program to Create Data for Load Program

IDENTIFICATION DIVISION.

PROGRAM-ID. ‘CREATE'’

AUTHOR. .

REMARKS. THIS PROGRAM CREATES TEST DATA THAT WILL ULTIMATELY BE
LOADED INTO A PL/I DATA BASE. A SEQUENTIAL FILE IS
CREATED. THE RECORDS ARE 440 BYTES LONG BLOCKED 8. THE

FORMAT IS:
KEY1 FILLER1 KEY2 FILLER2
| 6 BYTES | BYTES | 6 BYTES | BYTES |
KEY3 FILLER3
| 6 BYTES | 253 BYTES |

152

7N\

THE NUMBER OF RECORDS CREATED IS INDICATED BY PUNCHING
IN THE FIRST FOUR COLUMNS OF A CONTROL CARD

(RIGHT-JUSTIFIED) .
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-360.
OBJECT-COMPUTER. IBM-360.
INPUT-OUTPUT SECTION.
FILE~-CONTROL.

SELECT TAPEO ASSIGN TO 'TAPE' UTILITY.
SELECT CTLCRD ASSIGN TO 'SYSIN' UTILITY.
DATA DIVISION.
FILE SECTION.
FD CTLCRD.
LABEL RECORDS ARE OMITTED
BLOCK CONTAINS 80 CHARACTERS
RECORDING MODE F
DATA RECORD CARD-IN.
01 CARD-IN..
02 CTL-NO PICTURE 9(4).
02 FILLER PICTURE X(76).
FD TAPEO _
LABEL RECORDS STANDARD
BLOCK CONTAINS 8 RECORDS
RECORDING MODE F
DATA RECORD TAPE-OUT.
01 TAPE-OUT
02 PARENT.

03 KEY1 PICTURE X(6).
03 FILLER1 PICTURE X(84).
03 LEVEL2.

04 KEY2 PICTURE X(6).

04 FILLER2 PICTURE X(85).
04 LEVEL3. .
05 KEY3 PICTURE X(6).
05 FILLER3 PICTURE X(253).
WORKING-STORAGE SECTION.
77 COUNT PICTURE 99999 COMPUTATIONAL-3 VALUE
77 CONTROL1 "PICTURE 9(6).
77 ADD-CONTROL PICTURE 9(6).

77 SEC-LEVEL PICTURE 9(6).
PROCEDURE DIVISION.
BEGIN.

OPEN INPUT CTLCRD.

OPEN OUTPUT TAPEO.
READ-CARD.

READ CTLCRD AT END GO TO EOJ.

BUILD.

MOVE CTL-NO TO CONTROL1.
BUILD]1. :

MOVE CONTROL1 TO KEY1.

1 TO ADD-CONTROL

MOVE CONTROL1 TO ADD-CONTROL.

MOVE ADD-CONTROL TO KEY2.

SUBTRACT 5 FROM ADD-CONTROL.

MOVE ADD-CONTROL TO KEY3.

MOVE ALL 'P' TO FILLER1.

MOVE ALL *'S*' TO FILLER2.

MOVE ALL ‘'T' TO FILLER3.
WRITE-TAPE.

WRITE TAPE-OUT.
CK-TOTAL-RECORDS.

ADD 1 TO COUNT.

IF COUNT = CTL~-NO GO TO EOJ.

ADD 10 TO CONTROLl.

00000.

IT

153

GO TO BUILD1.
EOJ.
CLOSE CTLCRD.
CLOSE TAPEO.
DISPLAY 'TOTAL RECORDS WRITTEN = *COUNT.
STOP RUN.

Batch (Update) Processing Program

00001 TIDENTIFICATION DIVISION.
00002 PROGRAM-ID. 'HIBASNO3'
00003 AUTHOR.

00004 REMARKS. THIS PROGRAM ALLOWS THE PROGRAMMER TO RUN IN
00005 THE BATCH ENVIRONMENT. THE FUNCTION TO BE

00006 PERFORMED IS ENTERED THRU CARDS IN THE FORM
00007 CALL FUNC SEGNAME (QUAL)SEGMENT (QUAL) SEGMENT (QUAL)
00010 ANY REPLACED RECORDS WILL BE FILLED WITH R'S

00011 ENVIRONMENT DIVISION.

See Chapter 5, Figure 31.
00012 CONFIGURATION SECTION.
00013 SOURCE-COMPUTER. IBM-360.
00014 OBJECT-COMPUTER. IBM-360.
00015 INPUT-OUTPUT SECTION.
00016 FILE-CONTROL. :
00017 SELECT CARDS TO ASSIGN TO *CARDS' UTILITY.
00018 DATA DIVISION.
00019 FILE SECTION.
00020 FD CARDS

00021 LABEL -RECORDS OMITTED

00022 BLOCK CONTAINS 80 CHARACTERS
00023 RECORDING MODE F

00024 DATA RECORD CARD-IN.

00025 01 CARD-IN PICTURE X(80). .
See Chapter 5, Figure 31, Ref 1.

00026 WORKING-STORAGE SECTION.

00027 01 WORK-AREA.

00028 02 FUNC PICTURE X(4).
00029 02 FILLER PICTURE X.

00030 02 SEG1 PICTURE X(8).
00031 02 QUAL1l.

00032 03 LF1 PICTURE X.

00033 88 PAR1 VALUE "('.
00034 03 ' LFD1 PICTURE X(10).
00035 03 VALUE1 PICTURE X(6).
00036 03 FILLER PICTURE X.
00037 02 SEG2 PICTURE X(8).
00038 02 QUAL2.

00039 03 LF2 PICTURE X.

00040 88 PAR2 VALUE *(*.
00041 - 03 FLD2 PICTURE X(10).
00042 03 VALUE2 PICTURE X(6).
ooou3 03 FILLER PICTURE X.
0004y 02 SEG3 PICTURE X(8).
00045 02 ° QUAL3.

00046 03 LF3 PICTURE X.

00047 88 PAR3 VALUE *(°'.
00048 03 FLD3 PICTURE X(10).
00049 03 VALUE3 PICTURE X(6).
00050 03 FILLER PICTURE X.

00051 01 SAVElL PICTURE X(4).

00052 01 WwWaA-1.

00053 02 CALL-FUNC PICTURE X(4) VALUE "'GU ".

00054 01 SsaAl. : :
See Chapter 5, Figure 30, Ref 2.

154

N

00055
00056
00057
00058
00059
00060
00061
00062
00063

00064
00065
00066
00067
00068
00069
00070
00071
00072
00073
00074

00075
00076
00077
00078
00079
00080
00081
00082
00083

0008y

00095
00096
00097
00098
00099
00100
00101
00102
00103

00104

00115
00116

00117
00118
00119
00120
00121
00122
00123
00124
00125
00126
00127
00128
00129
00130
00131
00132

02 . SEG1-NAME PICTURE X(8).
02 SSA1-QUAL, PICTURE X(18).
01 SsA2.
02 SEG2-NAME PICTURE X(8).
02 SSA2-QUAL PICTURE X(18).
01 SsSA3. :
02 SEG3-NAME PICTURE X(8).
02 SSA3-QUAL PICTURE X(18).
01 I-O-AREA.
See Chapter 5, Figure 31, Ref 3.
02 KEY1 PICTURE X(6).
02 AREAl PICTURE X(40).
02 AREA2 PICTURE X(34).
02 AREA3 PICTURE X(220).
01 DISP-MESS.
02 MESS PICTURE X(40).
01 SW PICTURE X VALUE ' ‘.
01 SSA-SW PICTURE 9 VALUE 0.
01 FUNC1 PICTURE XXXX.

LINKAGE SECTION.
See Chapter 5, Figure 31, Ref 4.
01 PCBCASEl1l.
02 DBD-NAME1l PICTURE X(8).
02 SEG-LEVEL1 PICTURE XX.
02 STATUS-CODES1 PICTURE XX.
02 PROC-OPTIONS1 PICTURE X(u4).
02 DLI-JCB-ADDR1 PICTURE S9(5) COMPUTATIONAL.
02 SEGMENT-NAME-FEEDBACK1 PICTURE X(8).
02 LENGTH-OF-FEEDBACK—-KEY1l PICTURE S9(5) COMPUTATIONAL.
02 NUMBER-OF-SENSITIVE-SEGS1 PICTURE S9(5)
COMPUTATIONAL. .
02 KEY-FEEDBACK-AREA1l PICTURE X(30).

01 PCBCASEl.
02 DB-NAME3 PICTURE X(8).
02 SEG-LEVEL3 PICTURE XX.
02 STATUS-CODES3 PICTURE XX.
02 PROC-OPTIONS3 PICTURE X(4).
02 DLI-JCB-ADDR3 PICTURE S9(5) COMPUTATIONAL.
02 SEGMENT-NAME-FEEDBACK3 PICTURE X(8).
02 LENGTH-OF-FEEDBACK-KEY3 PICTURE S9(5) COMPUTATIONAL.
02 NUMBER-OF-SENSITIVE-SEGS3 PICTURE S9(5)
COMPUTATIONAL.
02 KEY-FEEDBACK-AREA3 PICTURE X(30).

PROCEDURE DIVISION.
BEGIN.
See Chapter 5, Figure 31, Ref 4.
ENTER LINKAGE.
ENTRY 'DLITCBL' USING
PCBCASE11,
PCBCASE21.
ENTER COBOL.
OPEN-CARDS.
OPEN INPUT CARDS.
MOVE '1*' TO SW.
READ-CARDS.
READ CARDS AT END GO TO EOJ.
MOVE CARD-IN TO I-O-AREA.
READ CARDS AT END GO TO EOJ.
MOVE CARD-IN TO AREA3.
MOVE-I-O-AREA.
MOVE I-O-AREA TO WORK-AREA.
CHECK-FUNC.

155

© 00133 IF (FUNC = "ISRT') OR (FUNC = °‘GU ")

00134 OR (FUNC ‘GNP ')
00135 OR (FUNC = 'GN ') OR (FUNC = °"DLET®)
00136 OR (FUNC = 'REPL') GO TO SET-UP-SSA. MOVE SPACES TO MESS.
00137 MOVE 'IMPROPER CALL FUNCTION SPECIFIED® TO MESS.
00138 : IF SW = '1' DISPLAY MESS GO TO READ-CARDS.
00139 GO TO EOJ.
00140 SET-UP-SSA.
00141 MOVE SPACES TO SSAl1l, SSA2, SSA3.
00142 IF SEG1 NOT = ' ' MOVE SEGl1l to SEG1-NAME
00143 ELSE MOVE 1 TO SSA-SW GO TO EXITI1.
o014y IF PAR1 MOVE QUALI TO SSA1-QUAL ELSE
00145 MOVE SPACES TO SSA1-QUAL.
00146 IF SEG2 NOT=' ' MOVE TO SEG2=NAME
00147 ELSE MOVE TO SSA-SW GO TO EXITI1.
00148 IF PAR2 MOVE QUAL2 TO SSA2-QUAL ELSE
00149 MOVE SPACES TO SSA2-QUAL.
00150 IF SEG3 NOT = ° ' MOVE SEG3 TO SEG3-NAME
00151 ELSE MOVE 3 +to SSA-SW GO TO EXITI1.
00152 IF PAR3 MOVE QUAL3 TO SSA3-QUAL ELSE
00153 MOVE SPACES TO SSA3-QUAL.
00154 MOVE 4 TO SSA-SW.
00155 EXIT1.
00156 IF FUNC = 'ISRT' MOVE ALL *'I' TO I-O-AREA.
00157 IF (FUNC = 'ISRT') AND (SSA-SW = 2) MOVE VALUEl1l to KEY1
00158 MOVE SPACES TO SSA1-QUAL.
00159 IF (FUNC. = '"IRST') AND (SSA-SW =3) MOVE VALUE2 TO KEY1
00160 MOVE SPACES TO SSA2-QUAL.) :
00161 IF (FUNC = 'ISRT') AND (SSA-SW =4) MOVE VALUE3 TO KEY1
00162 MOVE SPACES TO SSA3-QUAL.
00163 IF FUNC = *‘REPL' GO TO GHP.
00164 IF FUNC = ‘DLET' GO TO GHP.
00165 IF SSA-SW = 1 PERFORM CALL-NO-SSA.
00166 IF SSA-SW = 2 PERFORM CALL~-ONE-SSA.
00167 IF SSA-SW = 3 PERFORM CALL-TWO-SSA.
00168 IF SSA-SW = 4 PERFORM CALL-THREE-SSA.
00169 CK (in line with Exit 1)
00170 IF STATUS-CODES1l = ' ' MOVE SPACES TO MESS
00171 MOVE 'SUCCESSFUL OPERATION' TO MESS
00172 ELSE MOVE SPACES TO MESS
00173 MOVE 'UNSUCCESSFUL OPERATION CHECK STATUS' TO MESS
00174 GO TO RD-CK.
00175 RD-DISP.
00176 DISPLAY ' °'.
00177 - DISPLAY DISP-MESS.
00178 DISPLAY STATUS-CODES1.
00179 DISPLAY WORK-AREA.
00180 DISPLAY KEY1l, AREAl.
00181 EOJ. :
00182 ' CLOSE CARDS.
00183 DISPLAY ‘SUCCESSFUL END OF HIMASNO1'.
0018y ENTER LINKAGE.
See Chapter 5, Figure 31, Ref 10.
00185 _ RETURN.
00186 ENTER COBOL.
00187 GHP.
00188 MOVE FUNC TO FUNC1.

156

S

00189
00190
00191
00192
00193
00194

00195

00196
00197
00198
00199
00200
00201

00202

00203
00204
00205
00206
00207
00208

00209
00210
00211
00212
00213
00214
00215

00216
00217
00218
00219
00220
00221
00222
00223
00224
00225
00226
00227
00228
00229
00230
00231
00232
00233
00234
00235
00236
00237
00238
00239

00240

MOVE *GHU * TO FUNC.
IF SSA-SW = 2 PERFORM CALL-ONE-SSA
MOVE FUNC1 TO FUNC PERFORM CK-REPL
PERFORM CALL-NO-SSA.
IF SSA-SW = 3 PERFORM CALL-TWO-SSA
MOVE FUNC1 TO FUNC PERFORM CK-REPL
PERFORM CALL-NO-SSA.

IF SSA-SW = 4 PERFORM CALL-THREE-SSA
MOVE FUNC1 TO FUNC PERFORM CK-REPL
PERFORM CALL-NO-SSA.
GO TO CK.
RD-CK.
IF SW = '1' PERFORM RD-DISP GO TO READ-CARDS.
GO TO EOJ.
CK-REPL.
IF ¥FUNC = *REPL' MOVE ALL 'R' TO AREAl.

CALL-NO-SSA.

ENTER LINKAGE.
CALL 'CBLTDLI'

A

USING

Figure 31, Ref 8.

. See Chapter 5,
FUNC,
PCBCASE11,
I-O-AREA.

ENTER COBOL.
CALL-ONE-SSA.
ENTER LINKAGE.
CALL 'CBLTDLI' USING .
See Chapter 5, Figure 31, Ref 6 & 7.
FUNC,
PCBCASE11,
I-O-AREA,
SSAl. -
ENTER COBOL.
CALL-TWO-SSA.
ENTER LINKAGE.
CALL 'CBLTDLI' USING
FUNC,
PCBCASE11,
I-O-AREA,
SSA1l,
SSA2.
ENTER COBOL.
CALL-THREE-SSA.
ENTER LINKAGE.
CALL °'CBLTDLI' USING
. FUNC,
PCBCASE11,
I-O-AREA,
SsAl,
Ssa2,
SSA3.
ENTER COBOL.

card Data for COBOL Batch Program

GN

GN

GN

157

GN
GNP
GN

GU PARENT (KEY1 =000010)
GNP

GNP
GNP

GNP

GU PARENT (KEY1 =000015)

GN LEVEL22

GU PARENT (KEY1 =000010)LEVEL22 (KEY22 =000012)LEVEL32
(KEY32 =000006)

GU PARENT (KEY1 =000010)LEVEL22 (KEY22 =000015)

ISRT PARENT (KEY =000015)

ISRT PARENT (KEYl =000016)

REPL PARENT (KEY1 =000016)

GU PARENT (KEY1 =00001.5)

DLET PARENT (KEY1 =000015)

Data Base Reorganization (Dump) Program

PROGRAM-ID. "HIBASNO1'
IDENTIFICATION DIVISION.
AUTHOR.
REMARKS . , _
THIS PROGRAM IS THE SECOND STEP OF A TWO STEP JOB. TWO OF
THE FOUR TEST DATA CAN BE DUMPED IN ANY COMBINATION.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-360.
OBJECT-COMPUTER. IBM-360.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT CTLCRD ASSIGN TO 'DISKI' UTILITY.
DATA DIVISION.
FILE SECTION.
FD CTLCRD
LABEL RECORDS OMITTED
BLOCK CONTAINS 80. CHARACTERS
RECORDING MODE F
DATA RECORD CARD-IN.
01 CARD-IN.

02 CTI.
03 Cl11 PICTURE X.
03 Cl12 PICTURE X.
03 C21 PICTURE X.
03 C22 PICTURE X.
02 FILLER PICTURE X(76).

WORKING-STORAGE SECTION.

77 DUMP1-SW

158

PICTURE 9.

01

01

01

01

01

01

BRANCH-V PICTURE 99.
PSBNAME PICTURE X(8)
CALL-FUNC PICTURE X(4)
Ssal. _

02 SSA1-NAME PICTURE
02 SSA1-BEGIN PICTURE
02 SSAL-KEY PICTURE
02 SSA1-VALUE PICTURE
02 SSA1-END PICTURE
SSA21.

02 SSA21-NAME PICTURE
02 SSA21-BEGIN PICTURE
02 SSA21-KEY PICTURE
02 SSA21-VALUE PICTURE
02 SSA21-END PICTURE
SSA31.

02 SSA31-NAME PICTURE
02 SSA31-BEGIN PICTURE
02 SSA31-KEY PICTURE
02 SSA31-END PICTURE
SSA22.

02 SSA22-NAME PICTURE
02 SSA22-BEGIN PICTURE
02 SSA22-KEY PICTURE

02 SSA22-VALUE PICTURE

02 SSA22-END PICTURE
SSA32.
02 SSA32-NAME PICTURE

02 SSA32-BEGIN PICTURE
02 SSA32-KEY PICTURE
02 SSA32-VALUE PICTURE
02 SSA32-END PICTURE
USER-SEG PICTURE X(u4
WORK-PCB.

02 DBD-NAME

02 SEG-LEVEL

02 STATUS-CODES
02 PROC-OPTIONS
02 DLI-JCB-ADDR
02 SEG-NAME

02 LENGTH-OF-FEEDBACK-K
02 NO-OF-SENSITIVE-SEGS
02 KEY-FEEDBACK-AREA

DISPLAY-PCB.

02 DBN PICTURE X(8)
02 SL PICTURE XX.
02 sC PICTURE XX.
02 PO PICTURE X(4)
02 JCB PICTURE S9(5

- 02 SNF PICTURE X(8)
02 LOFK PICTURE S9(5
02 NOSs PICTURE S9(5
02 KFA.

03 L22K PICTURE X(6).
03 L32K PICTURE X(6)..
LINKAGE SECTION.
01 PCBCASE1ll.
02 DBD-NAME1 PICTURE X(8).
02 SEG-LEVEL1l PICTURE XX.
02 STATUS-CODES1 PICTURE XX.

S

03 PK PICTURE X(6)
03 1L2K PICTURE X(6)
03 L3K PICTURE X(6)

VALUE 'HIBASNO1'.

VALUE *LOAD'.
X(8) VALUE *KEY1 ..
X VALUE (.
X(10) VALUE 'KEY1 =v,
9(6).
X VALUE e,
X(8) VALUE *LEVEL21 °.
X VALUE (.
X(10) VALUE °*KEY21 ='.
9(6).
X VALUE *)°'.
X(8) VALUE *LEVEL31 °.
X VALUE *('.
X(10) VALUE “KEY31 ="
X VALUE "9,
X(8) VALUE ‘LEVEL22 °.
X VALUE *(*.
X(10) VALUE *KEY22 =1
9(6).
X VALUE ")°'.
X(8) VALUE *LEVEL32 °.
X VALUE *('.
X(10) VALUE "KEY32 =t
9(6).
X VALUE ")°.

0).

PICTURE S9(5)

PICTURE X(8).

PICTURE 99.
PICTURE XX.

PICTURE X(4).

COMPUTATIONAL.

PICTURE X(8).

EY PICTURE S9(5) COMPUTATIONAL.
PICTURE S9(5) COMPUTATIONAL.

PICTURE X(30).

) COMPUTATIONAL.

) COMPUTATIONAL.
) COMPUTATIONAL.

159

01

PROC-OPTIONS1 PICTURE X(4).

DLI-JCB-ADDR1 PICTURE S9(5) COMPUTATIONAL.
SEGMENT-NAME-FEEDBACK1 PICTURE X(8).
LENGTH-OF-FEEDBACK-KEY1 PICTURE S9(5) COMPUTATIONAL.
NUMBER-OF-SENSITIVE-SEGS1 PICTURE S9(5) COMPUTATIONAL.
KEY-FEEDBACK-AREA1 PICTURE X(30).

PCBCASE1l2.

DBD-NAME2 PICTURE X(8).

SEG-LEVEL2 PICTURE XX.

STATUS-CODES2 PICTURE XX.

PROC-OPTIONS2 PICTURE X(4).

DLI-JCB-ADDR2 PICTURE S9(5) COMPUTATIONAL.
SEGMENT-NAME-FEEDBACK2 PICTURE X(8).
NUMBER-OF-SENSITIVE-SEGS2 PICTURE S9(5) COMPUTATIONAL.
KEY-FEEDBACK-AREA2 PICTURE X(30).

01 PCBCASEZ?1.

01

02

DB-NAME3 PICTURE X(8).

SEG-LEVEL3 PICTURE XX.

STATUS-CODES3 PICTURE XX.

PROC-OPTIONS3 PICTURE X(4).

DLI-JCB-ADDR3 PICTURE S9(5) COMPUTATIONAL.
SEGMENT-NAME-FEEDBACK3 PICTURE X(8).
LENGTH-OF-FEEDBACK-KEY3 PICTURE S9(5) COMPUTATIONAL.
NUMBER-OF-SENSITIVE-SEGS3 PICTURE S9(5) COMPUTATIONAL.
KEY-FEEDBACK-AREA3 PICTURE X(30).

PCBCASE22.

DB-NAMEY PICTURE X(8).

SEG-LEVEL4 PICTURE XX.

STATUS-CODESY PICTURE XX.

PROC~-OPTIONSY PICTURE X(4).

DLI-JCB-ADDRY PICTURE S9(5) COMPUTATIONAL.
SEGMENT~-NAME-FEEDBACKY4 PICTURE X(8). '
LENGTH-OF-FEEDBACK-KEY4 PICTURE S9(5) COMPUTATIONAL.
NUMBER-OF-SENSITIVE-SEGSY PICTURE S9(5) COMPUTATIONAL.
KEY-FEEDBACK-AREAY PICTURE X(30).

01 PCBDUMP1.

160

02

DBD-NAMED1 PICTURE X(8).

02 SEG-LEVELD1 PICTURE XX.

02 STATUS-CODESD1 PICTURE XX.

02 PROC-OPTIONSD1 PICTURE X(u).

02 DLI-JCB-ADDRD1 PICTURE S9(5) COMPUTATIONAL.

02- SEG-NAME-FEEDBACKD1 PICTURE X(8).

02 LENGTH-OF-FEEDBACK-KEYD1l PICTURE S9(5) COMPUTATIONAL.
02 NO-OF-SENSITIVE-SEGSD1 PICTURE S9(5) COMPUTATIONAL.
02 KEY-FEEDBACK-AREAD1 PICTURE X(30).

01 PCBDUMP2.

02 DBD-NAMED2 PICTURE X(8).

02 SEG-LEVELD2 PICTURE XX.

02 STATUS-CODESD2 PICTURE XX.

02 PROC-OPTIONSD2 PICTURE X(4).

02 DLI-JCB-ADDRD2 PICTURE S9(5) COMPUTATIONAL.

02 SEG-NAME-FEEDBACKD2 PICTURE X(8).

02 LENGTH-OF-FEEDBACK-KEYD2 PICTURE S9(5) COMPUTATIONAL.
02 NO-OF-SENSITIVE-SEGSD2 PICTURE S9(5) COMPUTATIONAL.
02 KEY-FEEDBACK-AREAD2 PICTURE X(30).

PROCEDURE DIVISION.
BEGIN.
ENTER LINKAGE.
ENTRY 'DLITCBL' USING

PCBCASE11,
PCBCASE12,
PCBCASE21,
PCBCASE22,
DUMP1,
DUMP2.
ENTER COBOL.
CTL-OPEN.
OPEN INPUT CTLCRD.
CTL-READ.
READ CTLCRD AT END GO TO EOJ.

CHECK.
IF C11 NOT = * *
MOVE 1 TO DUMP1-SW
ALTER GET-ANOTHER TO PROCEED TO GET-CASEll
ALTER RETURN-TO TO PROCEED TO GO-TO-VECTOR
MOVE ' ' TO C1l1
GO TO GET-ANOTHER.
IF C12 = ' ' NEXT SENTENCE
ELSE IF DUMP1-SW = 1 ALTER GET-ANOTHER TO PROCEED TO
GET-CASE12:
ALTER RETURN-TO TO PROCEED TO GO-TO-VECTOR1
MOVE ' ' TO C12
GO TO GET-ANOTHER ELSE ALTER GET-ANOCTHER TO PROCEED TO
GET-CASE12
ALTER RETURN-TO TO PROCEED TO GO-TO-VECTOR
MOVE * ' TO C12 MOVE Fiqure 1 TO DUMP1-SW
GO TO GET-ANOTHER. ,

IF C21 = *' ' NEXT SENTENCE
ELSE IF DUMP1-SW = 1 ALTER GET-ANOTHER TO PROCEED TO
GET-CASE21

ALTER RETURN-TO TO PROCEED TO GO-TO-VECTOR1
MOVE ' ' TO C21

GO TO GET-ANOTHER ELSE

ALTER GET-ANOTHER TO PROCEED TO GET-CASE21

ALTER RETURN-TO TO PROCEED TO GO-TO-VECTOR

MOVE ' ' TO C21 MOVE 1 TO DUMP1-SW

GO TO GET-ANOTHER.

IF C22 = ' ' NEXT SENTENCE

161

ELSE IF DUMP1-SW = 1 ALTER GET-ANOTHER TO PROCEED TO
GET-CASE22
ALTER RETURN-TO TO PROCEED TO GO-TO-VECTOR1
MOVE * * TO C22
GO TO GET-ANOTHER ELSE
ALTER GET-ANOTHER TO PROCEED TO GET-CASE22
ALTER RETURN-TO TO PROCEED TO GO-TO-VECTOR
MOVE ' ' TO C22
GO TO GET-ANOTHER.
EOJ.
IF CTL NOT = ' ' GO TO CHECK.
CLOSE CTLCRD. _
DISPLAY 'SUCCESSFUL END OF HIBASNO1'.
ENTER LINKAGE.
RETURN.
ENTER COBOL.
GET-CASE22.
MOVE 'GN ' TO CALL-FUNC. MOVE SPACES TO USER-SEG.
ENTER LINKAGE.
CALL ‘CBLTDLI' USING CALL-FUNC,
PCBCASE22,
USER-SEG.
ENTER COBOL.
DISPLAY USER-SEG.
MOVE PCBCASE22 TO DISPLAY-PCB. WORK-PCB.
PERFORM DISP.
IF SC = 'GB' GO TO EOJ.
GO TO RETURN-TO.
GET-CASE21.
MOVE 'GN ' TO CALL-FUNC. MOVE SPACES TO USER-SEG.
ENTER LINKAGE. '
CALL 'CBLTDLI' USING CALL-FUNC,
PCBCASE21,
USER-SEG.
ENTER COBOL.
DISPLAY USER-SEG.
MOVE PCBCASE21 TO DISPLAY-PCB, WORK-PCB.
PERFORM DISP.
IF SC = 'GB' GO TO EOJ.
GO TO RETURN-TO.
GET-CASE11.
MOVE 'GN ' TO CALL-FUNC. MOVE SPACES TO USER-SEG.
ENTER LINKAGE. v
CALL 'CBLTDLI' USING CALL-FUNC,
PCBCASE11,
USER-SEG.
ENTER COBOL.
DISPLAY USER-SEG.
MOVE PCBCASE1l TO DISPLAY-PCB.
MOVE PCBCASE1l TO WORK-PCB.
PERFORM DISP.
IF SC = "GB' GO TO EOJ.
GO TO RETURN-TO.
GET-CASE12. : ,
MOVE "GN ' TO CALL-FUNC. MOVE SPACES TO USER-SEG.
ENTER LINKAGE. .
CALL ‘CBLTDLI' USING CALL-FUNC,

162

PCBCASE12, .
USER-SEG.
ENTER COBOL.
DISPLAY USER-SEG.
MOVE PCBCASE12 TO DISPLAY-PCB, WORK-PCB.
PERFORM DISP.
IF SC = 'GB' GO TO EOJ.
GO TO RETURN-TO.
GO-TO-VECTOR1.
MOVE SEG-LEVEL TO BRANCH-V.
GO TO LEVEL-ONE LEVEL-TWO LEVEL-THREE DEPENDING BRANCH-V.
DISPLAY ‘NO LEVEL RETURNED'.
STOP RUN.
LEVEL-ONE1.
IF SEG-NAME NOT = SSA1-NAME
DISPLAY ‘LEVEL1 ERROR"
STOP RUN.
MOVE 'ISRT' TO CALL-FUNC.
MOVE ' ' TO SSA1-BEGIN.
ENTER LINKAGE.
CALL 'CBLTDLI®' USING CALL-FUNC,
PCBDUMP2,
USER-SEG,
SSA1-NAME.
ENTER COBOL.
MOVE '(' TO SSA1-BEGIN.
DISPLAY SSAl.
MOVE PCBDUMP2 TO DISPLAY-PCB.
PERFORM DISP.
IF SC NOT = ' ‘' DISPLAY 'NOT DUMPED'.
GO TO GET-ANOTHER.

LEVEL-TWO1 . .
IF SEG-NAME = SSA21-NAME NEXT SENTENCE ELSE
IF SEG-NAME = SSA22-NAME GO TO LEVEL-TWO-TWO

ELSE DISPLAY 'LEVEL1 ERROR'
STOP RUN.
MOVE 'ISRT' TO CALL-FUNC.
MOVE PARENT-KEY TO SSA1-VALUE.
MOVE ' ' TO SSA21-BEGIN.
ENTER LINKAGE.
CALL 'CBLTDLI' USING CALL-FUNC,
PCBDUMP2,
USER~-SEG,
SSA1,
SSA21-NAME.
ENTER COBOL.
MOVE *'(' TO SSA21-BEGIN.
DISPLAY SSAl.
DISPLAY SSA21.
MOVE PCBDUMP1 TO DISPLAY~PCB.
PERFORM DISP.
IF SC NOT = ' ' DISPLAY *NOT DUMPED'.
GO TO GET~-ANOTHER.
LEVEL-TWO-TWO1.
MOVE ‘'ISRT' TO CALL-FUNC.
MOVE PARENT-KEY TO SSA1-VALUE.
MOVE ' ' TO SSA22-BEGIN.
ENTER LINKAGE.
CALL 'CBLTDLI' USING CALL-FUNC,
PCBDUMP2,
USER-SEG,
SSAl,
SSA22-NAME.
ENTER COBOL. .
MOVE '(' TO SSA22-BEGIN.

163

DISPLAY SSA1l. o

DISPLAY SSA22.

MOVE PCBDUMP2 TO DISPLAY-PCB.

PERFORM -DISP. :

IF SC NOT = ' ' DISPLAY 'NOT DUMPED'.
GO TO GET-ANOTHER.

LEVEL-THREE1l.

IF SEG-NAME = SSA31-NAME NEXT SENTENCE ELSE
IF SEG-NAME = SSA32-NAME GO TO LEVEL-THREE-TWO
ELSE DISPLAY 'LEVEL3 ERROR'
STOP RUN.
MOVE 'ISRT' TO CALL-FUNC.
MOVE PARENT-KEY TO SSA1-VALUE.
MOVE LEVEL21-KEY TO SSA21-VALUE.
MOVE ' ' TO SSA31-BEGIN.
ENTER LINKAGE.
CALL 'CBLTDLI' USING CALL-FUNC,
PCBDUMP2,
USER-SEG,
SSA1l,
SSA21,
SSA31-NAME.
ENTER COBOL.
MOVE '(' TO SSA31-BEGIN.
DISPLAY SSAl. -
DISPLAY SSA21.
DISPLAY SSA31.
MOVE PCBDUMP2 TO DISPLAY-PCB.
PERFORM DISP.
IF SC NOT = ' ' DISPLAY 'NOT DUMPED'.
GO TO GET-ANOTHER. »

LEVEL-THREE-TWO2.

MOVE 'ISRT' TO CALL-FUNC.
MOVE PARENT-KEY TO SSA1-VALUE.
MOVE LEVEL22-KEY TO SSA22-VALUE.
MOVE ' ' TO SSA32-BEGIN.
ENTER LINKAGE.
CALL 'CBLTDLI' USING CALL-FUNC,
PCBDUMP2,
USER-SEG,
ssal,
SSA22,
SSA32-NAME.

- ENTER COBOL.

MOVE '(' TO SSA32-BEGIN.

DISPLAY SsSAl.

DISPLAY SSA22.

DISPLAY SSA32.

MOVE PCBDUMP2 TO DISPLAY-PCB.

DISPLAY USER-SEG.

PERFORM DISP.

IF SC NOT = * ' DISPLAY °‘NOT DUMPED'.
GO TO GET-ANOTHER.

GO-TO-VECTOR .

MOVE SEG-LEVEL TO BRANCH-V.

GO TO LEVEL-ONE LEVEL-TWO-LEVEL-THREE DEPENDING BRANCH-V.
DISPLAY 'NO LEVEL RETURNED'. '

STOP RUN. .

LEVEL-ONE-.

164

IF SEG-NAME NOT = SSA1-NAME
DISPLAY ‘'LEVEL1 ERROR'
STOP RUN.

MOVE 'ISRT' TO CALL-FUNC.

MOVE ' ' TO SSA1-BEGIN.

ENTER LINKAGE.

7N

CALL °'CBLTDLI' USING CALL-FUNC,
PCBDUMP1,
USER-SEG,
SSA1-NAME.
ENTER COBOL.
MOVE ' (' TO SSA1-BEGIN.
DISPLAY SSA1l. .
MOVE PCBDUMP1 TO DISPLAY-PCB.
PERFORM DISP.

IF SC NOT = * ' DISPLAY °*NOT DUMPED'.
GO TO GET-ANOTHER.
LEVEL-TWO.

IF SEG-NAME SSA21-NAME NEXT SENTENCE ELSE

IF SEG-NAME = SSA22-NAME GO TO LEVEL-TWO-TWO

ELSE DISPLAY 'LEVEL1 ERROR'
STOP RUN.
MOVE 'ISRT' TO CALL-FUNC.
MOVE PARENT-KEY TO SSA1-VALUE.
MOVE ' ' TO SSA21-BEGIN.
ENTER LINKAGE.
CALL 'CBLTDLI' USING CALL-FUNC,
PCBDUMP1,
USER~SEG,
SSAl,
SSA21-NAME.
ENTER COBOL.
MOVE *(' TO SSA21-BEGIN.
DISPLAY SSAl.
DISPLAY SSA21.
MOVE PCBDUMP1. TO DISPLAY-PCB.
PERFORM DISP.
IF SC NOT = ' ' DISPLAY 'NOT DUMPED'.
GO TO GET-ANOTHER.
LEVEL-TWO-TWO.
MOVE *ISRT' TO CALL-FUNC.
MOVE PARENT-KEY TO SSA1-VALUE.
MOVE ' ' TO SSA22-BEGIN.
ENTER LINKAGE.
CALL °'CBLTDLI' USING CALL-FUNC,
PCBDUMP1,
USER-SEG,
Ssa1,
SSA22~-NAME.
ENTER COBOL.
MOVE '(' TO SSA22-BEGIN.
DISPLAY SSAl.
DISPLAY SSA22.
MOVE PCBDUMP1 TO DISPLAY-PCB.
PERFORM DISP. ‘
IF SC NOT = ' ' .DISPLAY 'NOT DUMPED'.
GO TO GET-ANOTHER.

LEVEL-THREE.
IF SEG-NAME = SSA31-NAME NEXT SENTENCE ELSE
IF SEG-NAME =
ELSE DISPLAY 'LEVEL3 ERROR®
STOP RUN. .

MOVE ‘'ISRT' TO CALL-FUNC.

MOVE PARENT-KEY TO SSA1-VALUE.
MOVE LEVEL21-KEY TO SSA21-VALUE.
MOVE ' ' TO SSA31-BEGIN.

ENTER LINKAGE.

CALL °'CBLTDLI' USING CALL-FUNC,
PCBDUMP1, '
USER-SEG,
ssal,

SSA32-NAME GO TO LEVEL-THREE-TWO

165

SsA?1,
SSA31-NAME.

ENTER COBOL.

MOVE

'(' TO SSA31-BEGIN.

DISPLAY SSAl.
DISPLAY SSA21.
DISPLAY SSA31.
MOVE PCBDUMP1 TO DISPLAY-PCB.
PERFORM DISP.
IF SC NOT = ' ' DISPLAY 'NOT DUMPED".
GO TO GET-ANOTHER.
LEVEL-THREE-TWO.

MOVE

'ISRT' TO CALL-FUNC.

MOVE PARENT-KEY TO SSA1-VALUE.
MOVE LEVEL22-KEY TO SSA22-VALUE.

MOVE

‘ TO SSA32-BEGIN.

ENTER LINKAGE.
CALL 'CBLTDLI' USING CALL-FUNC,

PCBDUMP1,
USER-SEG,
SSal,
Ssa22,
SSA32-NAME.

ENTER COBOL.

MOVE

'(' TO SSA32-BEGIN.

DISPLAY SSAl.

DISPLAY SSA22.

DISPLAY SSA32,

MOVE PCBDUMP1 TO DISPLAY-PCB.

DISPLAY USER-SEG.

PERFORM DISP.

IF SC NOT = ' ' DISPLAY 'NOT DUMPED'.
GO TO GET-ANOTHER.

DISP.
DISPLAY °'DATA BASE NAME = ' DBN.
DISPLAY °‘SEGMENT LEVEL = “ SL.
DISPLAY ‘'STATUS CODES = ' SC.
DISPLAY 'PROCESSING OPTIONS = ' PO.
DISPLAY 'JCB ADDRESS = ' JCB.
DISPLAY °‘SEGMENT NAME FEEDBACK = ' SNF.

DISPLAY 'LENGTH OF FEEDBACK KEY = ' LOFK.
DISPLAY 'NUMBER OF SENSITIVE SEGMENTS = ' NOSS.

DISPLAY 'KEY FEEDBACK AREA = ' PK L2K L3K L22K L32K.
DISPLAY 'PARENT = ' PT 'LEVEL21 = ' L21T 'LEVEL31 =' L31T.
DISPLAY 'LEVEL22 = ' L22T 'LEVEL32 = ' L32T.

GET-ANOTHER.
GO TO BEGIN.

RETURN-TO.

GO TO BEGIN.

Message (Update) Processing Program

IDENTIFICATION DIVISION.
PROGRAM-ID. ‘"HIMASNO1'

AUTHOR.
REMARKS.

THIS PROGRAM ALLOWS THE PROGRAMMER TO RUN AN ON-LINE
ENVIRONMENT. THE FUNCTION TO BE PERFORMED IS ENTERED THROUGH
THE TERMINAL IN THE FORM TRANSACTION CODE FUNCTION

SEGMENT (QUAL) SEGMENT (QUAL)SEGMENT (QUAL). ANY REPLACED
RECORDS WILL BE FILLED WITH R'S. ANY INSERTED RECORDS WILL
BE FILLED WITH I'S. GET HOLD FUNCTIONS ARE GENERATED WITHIN
THIS PROGRAM WHEN FUNCTION EQUALS DELETE OR REPLACE.

FUNCTION SHOULD BE ENTERED AS PROPER FOR CHARACTER CODE.

ENVIRONMENT DIVISION.

166

N

.
7

CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-360.
OBJECT-COMPUTER. IBM-360.
INPUT-OUTPUT SECTION.

DATA DIVISION

WORKING-STORAGE SECTION.

See Chapter 5, Figure 33, Ref 1.

:01. WORK~-AREA.

02 FUNC PICTURE X(4).
02 FILLER PICTURE X.
02 SEG1 PICTURE X(8).
02 QUALl.
03 LF1 PICTURE X.
88 PAR1 VALUE ‘' ('.
03 FLD1 PICTURE X(10).

03 VALUE1 PICTURE X(6).

. 03 FILLER PICTURE X.

02 SEG2 PICTURE X(8).

02 .QUAL2.
03 LF2 PICTURE X.

88 PAR2 VALUE '('.

03 FLD2 PICTURE X(10).
03 VALUE2 PICTURE X(6).
03 FILLER PICTURE X.

02 SEG3 PICTURE X(8).
02 QUAL3.
03 LF3 PICTURE X.
88 PAR3 VALUE *('.

03 FLD3 PICTURE X(10).
03 VALUE3 PICTURE X(6).
03 FILLER PICTURE X.
01 MESSAGE.
02 DATE-TIME.

03 FILLER ?ICTURE X(29) VALUE 'THIS OPERATION

DA - 'DATE'.
03 DATE1l PICTURE 9(5).
03 FILLER PICTURE X VALUE " °'.
03 FILLER PICTURE X(5) VALUE 'TIME'.
03 FILLER PICTURE X VALUE ' °'.
03 TIME1 PICTURE 9(7).
02 OPERATION.

03 FILLER PICTURE X(30) VALUE *‘THE REQUESTED OPERATION

WAS: ‘.
03 WORK-ONE PICTURE X(83).
02 EFFECTED.

ENTERED:

03 D-E PICTURE X(23) VALUE °'THE DATA EFFECTED WAS: °'.

03 1I1I-01 PICTURE ¥ (u46).
02 FILLER PICTURE X(#).
02 TCODE PICTURE XXX.

02 DLMT PICTURE X.
88 BLNK VALUE ' °'.
02 DTA PICTURE X(120).
01 ouTr-Io.
02 CNT PICTURE S99 COMPUTATIONAL VALUE
02 FILLER PICTURE S99 COMPUTATIONAL VALUE
02 DUM.

03 FILLER PICTURE X VALUE °'N°.
03 DATAO PICTURE X(84).
01 SAVE1l PICTURE X(4).
01 WA-1.
02 CALL-FUNC PICTURE X(4) VALUE ‘'GU ‘.
01 ssal.
See Chapter 5, Figure 33, Ref 2.

167

02 SEG1-NAME PICTURE X(8).

02 SSA1-QUAL PICTURE X(18).
01 SsA2.

02 SEG2-NAME PICTURE X(8).

‘02 SSA2-QUAL PICTURE X(18).
01 SsA3. '

02 SEG3-NAME PICTURE X(8).

02 SSA3-QUAL PICTURE X(18).

01 I-O-AREA.
See Chapter 5, Figure 33, Ref 3.

02
02
02
02

KEY1 PICTURE X(6).
AREA1 PICTURE X(40).
AREA2 PICTURE X(34).
AREA3 PICTURE X(220).

01 DISP-MESS.

02
01 SW

MESS PICTURE X(40).
PICTURE X VALUE "' °'.

01 SSA-SW PICTURE 9 VALUE 0.
01 FUNC1 PICTURE XXXX.

LINKAGE SECTION.

See Chapter 5, Figure 33, Ref 4.
01 TERPCB.

IN-TERM PICTURE X(8).

RES PICTURE. XX.

STATUS PICTURE XX.

IOPREF.

03 DATET PICTURE X9(7) COMPUTATIONAL-3.
03 TIMET PICTURE S9(7) COMPUTATIONAL-3.
03 FILLER PICTURE X(4).

01 PCBCASEll.

DBD-NAME1 PICTURE X(8).

SEG-LEVEL1l PICTURE XX.

STATUS-CODES1 PICTURE XX.

PROC-OPTIONS1 PICTURE X(4).

DLI-JCB-ADDR1 PICTURE S9 (5) COMPUTATIONAL.
SEGMENT-NAME-FEEDBACK1 PICTURE X(8). »
LENGTH-OF~FEEDBACK~KEY1 PICTURE S9(5) COMPUTATIONAL.

02
02 NUMBER-OF-SENSITIVE-SEGS1 PICTURE S9(5) COMPUTATIONAL.
02 KEY-FEEDBACK-AREA1 PICTURE X(30).
01 PCBCASE21.
02 DB-NAME3 PICTURE X(8).
02 SEG-LEVEL3 PICTURE XX.
02 STATUS-CODES3 PICTURE XX.
02 PROC-OPTIONS3 PICTURE X(4).
02 DLI-JCB-ADDR3 PICTURE S9(5) COMPUTATIONAL.
02 SEGMENT-NAME-FEEDBACK3 PICTURE X(8).

LENGTH-OF-FEEDBACK-KEY PICTURE S9(5) COMPUTATIONAL.
NUMBER-OF-SENSITIVE-SEGS3 PICTURE S9(5) COMPUTATIONAL.
KEY-FEEDBACK-AREA3 PICTURE X(30).

\

PROCEDURE DIVISION.

BEGIN.

ENTER LINKAGE.

168

ENTRY "DLITCBL' USING
See Chapter 5, Figure 33, Ref 5.

NS

TERPCB,
PCBCASE11,
PCBCASE21.

ENTER COBOL.

IN-TERM.

MOVE SPACES TO DTA.
PERFORM TERM-CALL.
MOVE 'GN ' TO CALL-FUNC.
IF (STATUS = 'QB') OR (STATUS = 'QC') GO TO EOJ1.
IF STATUS = 'QD' MOVE 'GU ' TO CALL-FUNC
GO TO IN-TERM.
IF STATUS NOT = ' ' MOVE SPACES TO MESS
MOVE ‘DISASTER' TO MESS PERFORM ISRT-DISP
GO TO EOJ1.
IF DLMT = ' * MOVE DTA TO WORK-AREA GO TO CHECK-FUNC.
MOVE SPACES TO MESS.
MOVE ‘'IMPROPER TRANS CODE DELIMITER' TO MESS.
MOVE +40 TO CNT.
PERFORM ISRT-DISP3.
MOVE +88 TO CNT.

MOVE 'GU ' TO CALL~-FUNC.
GO TO IN-TERM.

CHECK-FUNC.

IF (FUNC = 'ISRT') OR (FUNC = 'GU ')

OR (FUNC = 'GNP ')

OR (FUNC = 'GN ') OR (FUNC = °'DLET") '
OR (FUNC = 'REPL') GO TO SET-UP-SSA. MOVE SPACES TO MESS.

MOVE 'IMPROPER CALL FUNCTION SPECIFIED' TO MESS.
MOVE +45 TO CNT.

PERFORM ISRT-DISP3.

MOVE +88 TO CNT.

MOVE **'GU ' TO CALL-FUNC.

GO TO IN-TERM.

SET-UP-SSA.

MOVE SPACES TO SSAl, SSA2, SSA3.
IF SEG1 NoOT = ‘ ' MOVE SEG1 TO SEG1-NAME

ELSE MOVE 1 TO SSA-SW GO TO EXIT1.

IF PAR1 MOVE QUALl1 TO SSA1-QUAL ELSE -
MOVE SPACES TO SSA1-QUAL.

IF SEG2 NOT = ' * MOVE SEG2 TO SEG2-NAME
ELSE MOVE 2. TO SSA-SW GO TO EXIT1

IF PAR2 MOVE QUAL2 TO SSA2-QUAL ELSE

MOVE SPACES TO SSA2-QUAL.

IF SEG3 NOT ="' ' MOVE SEG3 TO SEG3-NAME
ELSE MOVE 3 TO SSA-SW GO TO EXIT1.

IF PAR3 MOVE QUAL3 TO SSA3-QUAL ELSE

MOVE SPACES TO SSA3-QUAL.

MOVE 4 TO SSA-SW.

EXIT1.

CK.

IF FUNC = 'ISRT' MOVE ALL 'I' TO I-O-AREA.

IF (FUNC = 'ISRT') AND (SSA-SW = 2) MOVE VALUE1l TO KEY1
MOVE SPACES TO SSA1-QUAL.

IF (FUNC = *‘ISRT') AND (SSA-SW
MOVE SPACES TO SSA2-QUAL.

IF (FUNC = 'ISRT') AND (SSA-SW
MOVE SPACES TO SSA3-QUAL.

IF FUNC = 'REPL' GO TO GHP.

IF FUNC = 'DLET' GO TO GHP.

IF SSA-SW = 1 PERFORM CALL-NO-SSA.

IF SSA-SW = 2 PERFORM CALL-ONE-SSA.
IF SSA-SW = 3 PERFORM CALL-TWO-SSA.
IF SSA-SW =

4 PERFORM CALL-THREE-SSA.

3) MOVE VALUE2 TO KEY1

4) MOVE VALUE3 TO KEY1

169

IF STATUS-CODES1 = * * MOVE SPACES TO MESS
MOVE 'SUCCESSFUL OPERATION' TO MESS
ELSE MOVE SPACES TO MESS)
MOVE 'UNSUCCESSFUL OPERATION CHECK STATUS' TO MESS
MOVE +45 TO CNT
PERFORM ISRT-DISP3
MOVE SPACES TO MESS
MOVE STATUS-CODES1 TO MESS
MOVE 415 TO CNT
PERFORM ISRT-DISP3
MOVE +88 TO CNT
GO TO IN-TERM.
GO TO ISRT-DISP1
EOJ.
DISPLAY 'SUCCESSFUL END OF HIMASNO1®'.
ENTER LINKAGE.
RETURN.
See Chapter 5, Figure 33, Ref 9.
ENTER COBOL.
GHP.
MOVE FUNC TO FUNC1.
MOVE 'GHU' TO FUNC.
IF SSA-SW = 2 PERFORM CALL-ONE-SSA
MOVE FUNC1 TO FUNC PERFORM CK-REPL
PERFORM CALL-NO-SSA.
IF SSA-SW = 3 PERFORM CALL-TWO-SSA
MOVE FUNC1l TO FUNC PERFORM CK-REPL
PERFORM CALL-NO-SSA. :
IF SSA-SW = 4 PERFORM CALL-THREE-SSA
MOVE FUNC1 TO FUNC PERFORM CK-REPL
PERFORM CALL-NO-SSA.
GO TO CK.
CK-REPL.
IF FUNC = *REPL' MOVE ALL 'R' TO AREAl.
CALL-NO-SSA.
ENTER LINKAGE.
CALL *"CBLTDLI' USING
See Chapter 5, Figure 33, Ref 6.
FUNC,
PCBCASE1L1,
I-O-ARER,
ENTER COBOL.
CALL-ONE-SSA.
ENTER LINKAGE.
CALL "CBLTDLI' USING
See Chapter 5, Figure 33, Ref 7.
FUNC,
PCBCASE1L1,
I-O-AREA,
ssal,
ENTER COBOL.
CALL-TWO-SSA.
ENTER LINKAGE.
CALL 'CBLTDLI' USING
FUNC,
PCBCASE1l1,
I-O-AREA,
Ssal,
SSA2.
ENTER COBOL.
CALL-THREE-SSA.
ENTER LINKAGE.
CALL 'CBLTDLI' USING
FUNC,
PCBCASE1l1,

170

77N

k//

I-O-AREA,
SSAl,
SSA2,
SSA3.
ENTER COBOL.
TERM-CALL.
ENTER LINKAGE.
CALL 'CBLTDLI' USING
CALL-FUNC,
TERPCB,
T-IO.
ENTER COBOL.
ISRT-DISP2.
MOVE CALL-FUNC TO SAVEl. MOVE 'ISRT' TO CALL-FUNC.
ENTER LINKAGE.
CALL °‘CBLTDLI' USING
See Chapter 5, Figure 33, Ref 8.
CALL-FUNC,
TERPCB,
oUT-I0.
ENTER COBOL.
MOVE SAVE1l TO CALL-FUNC.
ISRT-DISP3.
MOVE SPACES TO DATAO.
MOVE MESS TO DATAO.
PERFORM ISRT-DISP2.
ISRT-DISP.
PERFORM ISRT-DISP3.
MOVE SPACES TO DATAO.
MOVE TERPCB TO DATAO.
PERFORM ISRT-DISP2.
ISRT-DISP1.
PERFORM ISRT-DISP3.
MOVE SPACES TO DATAO.
MOVE DATET TO DATEl.
MOVE TIMET TO TIME1l.
MOVE DATE-TIME TO DATAO.
PERFORM ISRT-DISP2.
MOVE +88 TO CNT.
MOVE SPACES TO DATRO.
MOVE WORK-AREA TO WORK-ONE.
MOVE OPERATION TO DATAO.
PERFORM ISRT-DISP2.
MOVE SPACES TO DATAO.
"MOVE I-O-AREA TO I-O1.
MOVE EFFECTED TO DATAO.
MOVE +74 TO CNT.
PERFORM ISRT-DISP2.
MOVE +88 TO CNT.
GO TO IN-TERM.
EOJ1.
MOVE SPACES TO MESS.
MOVE ‘'END OF TRANS CODE (DLI) (IMS) (ICS)' TO MESS.
MOVE +45 TO CNT.
PERFORM ISRT-DISP3.
ENTER LINKAGE.
RETURN.
ENTER COBOL.

Data Base Description (DBD)

The following DBD has a data base segment logical hierarchical
relationship like Figure 45, but using hierarchical sequential
organization. The DMAN control card has DD1 equal to DUMP1.

171

DBD NAME=DS21SNO1,ACCESS=SEQ

DMAN DD1=DUMP1,DEV1=2311,DD2=DUMP10OF

SEGM NAME=PARENT, PARENT=0,BYTES=90, FREQ=500

FLDK NAME=KEY1,TYPE=C,BYTES=6,START=1

FLD NAME=FILLER1,TYPE=C,BYTES=84,START=7

SEGM NAME=LEVEL21, PARENT=PARENT, BYTES=91, FREQ=1
FLDK NAME=KEY21, TYPE=C,BYTES=6,START=1

FLD NAME=FILLER21,TYPE=C,BYTES=85,START=7

SEGM NAME=LEVEL31, PARENT=LEVEL21, BYTES=259, FREQ=1
FLDK NAME=KEY31,TYPE=C,BYTES=6, START=1

FLD NAME=FILLER31,TYPE=C,BYTES=253,START=7

SEGM NAME=LEVEL22, PARENT=PARENT, BYTES=91, FREQ=1
FLDK NAME=KEY22,TYPE=C,BYTES=6, START=1

FILD NAME=FILLER22,TYPE=C,BYTES=85,START=7

SEGM NAME=LEVEL32, PARENT=LEVEL22,BYTES=259,FREQ=1
FLDK NAME=KEY32,TYPE=C,BYTES=6, START=1

FILD NAME=FILLER32,TYPE=C,BYTES=253,START=7

DBDGEN
FINISH
END
DMAN DD1:=
] |
| T 1 |
	PARENT	
	KEY 1	
L T .		
f i		
‘	r . b r 1 1 I	
i	LEVEL 21	
	KEY 21	
t T o L T d l		
	i	
r L 1 M L 1		
i	LEVEL 31	
i		1
i	KEY 31	
L J] 1 1		
L]

Figure 45. Single data set group data base

The following DBD has a data base segment logical hierarchical
relationship like Figure 45, but uses hierarchial indexed sequentlal
organlzatlon. The DMAN control card has DD1 equal to CASEl1l.

- DBD NAME=DI21SN01,ACCESS=INDX
DMAN DD1=CASE1l1l,DEV1=2311,DLIOF=CASE110F
SEGM NAME=PARENT, PARENT=0,BYTES=90, FREQ=500
FLDK NAME=KEY1, TYPE=C,BYTES=6,START=1
F1LD NAME=FILLER1, TYPE=C, BYTES=84, START=7
SEGM NAME=LEVEL21,PARENT=PARENT,BYTES=91,FREQ=1
FLDK NAME=KEY21,TYPE=C,BYTES=6, START=1
FLD NAME=FILLER21,TYPE=C,BYTES=85,START=7
SEGM NAME-LEVEL31, PARENT=LEVEL21,BYTES=259,FREQ=1
FLDK NAME=KEY31,TYPE=C,BYTES=6,START=1
FLD NAME=FILLER31, TYPE=C,BYTES=253, START=7
SEGM NAME=LEVEL22, PARENT=PARENT, BYTES=91,FREQ=1
FLDK NAME=KEY22,TYPE=C,BYTES=6,START=1

172

7N\

FLD NAME=FILLER22, TYPE=C,BYTES=85, START=7

SEGM NAME=LEVEL32,PARENT=LEVEL22,BYTES=259,FREQ=1
FLDK NAME=KEY32,TYPE=C,BYTES=6,START=1

FLD NAME=FILLER32, TYPE=C,BYTES=253, START=7
DBDGEN

FINISH

END

DBD NAME=DI12SN01, ACCESS=INDX

DMAN DD1=CASE21,DEV1=2311,DLIOF=CASE210F

SEGM NAME=PARENT, PARENT=0, BYTES=90, FREQ=500

FLDK NAME=KEY1,TYPE=C,BYTES=6,START=1

FLD NAME=FILLER1, TYPE=C, BYTES=84 ,START=7

DMAN DD1=DLEV21,DEV1=2311,DLIOF=LEV210F

SEGM NAME=LEVEL21, PARENT=PARENT, BYTES=91,FREQ=1
FLDK NAME=KEY21, TYPE=C,BYTES=6, START=1

FLD NAME=FILLER21, TYPE=C,BYTES=85, START=7

SEGM NAME=LEVEL31, PARENT=LEVEL21,BYTES=259,FREQ=1
FLDK NAME=KEY31, TYPE=C,BYTES=6, START=1

FLD NAME=FILLER31, TYPE=C,BYTES=253,START-7.

DMAN DD1=DLEV22,DEV1=2311,DLIOF=LEV220F

SEGM NAME=LEVEL22, PARENT=PARENT,BYTES=91,FREQ=1
FLDK NAME=KEY22, TYPE=C,BYTES=6, START=1

FLD NAME=FILLER22, TYPE=C,BYTES=85, START=7

SEGM NAME=LEVEL32, PARENT=LEVEL22,BYTES=259 ,FREQ=2
FLDK NAME=KEY32, TYPE=C,BYTES=6,START=1

FLD NAME=FILLER32,TYPE=C,BYTES=253,START=7

DBDGEN
FINISH
END
DMAN' DD1=
r 1
| |
| r 1 |
	PARENT	
	KEY 1	
! T 4		
L L J		
}		
DMAN DD1= 1 DMAN DD1=		
L A) 1	
r { L + 1		
		i
1 r L v		r 1 1
1	LEVEL 21	
	KEY 21	
L T S	L Y }	
r 1 1		T L 1
1	LEVEL 31	
	KEY 31	
I L 3 l I L j	I	
L [] L J

Figure 46. Multiple data set group data base

173

The following DBD has a data base segment logical hierarchical
relationship like Figure 46, but uses hierarchial indexed sequential
organization. The DMAN control card has DD1 equal to CASE21, DLEV21,
and DLEV22,

PSB Generation Example

The following is one example of a PSB generation for the DBDname
equal to DI21SN01. This data base name corresponds to the name of the
second example in the DBD Generation example above. This is a PSB for
Data Base Load (Creation) program. ,

PCB. TYPE=DB, DBDNAME=DI21SN0O1 , PROCOPT=L, KEYLEN=30
SENSEG PARENT

SENSEG LEVEL21,PARENT

SENSEG LEVEL31,LEVEL21

SENSEG LEVEL22, PARENT

SENSEG LEVEL32,LEVEL22

PSBGEN LANG=COBOL, PSBNAME=HIBLSNO1

END "

174

N

~

PL/I PROGRAM EXAMPLES

PL/I Batch Program

45

46

47
48
49

DLITPLI: PROCEDURE (PCBCASEL1,PCBCASE21) OPTIONS{MAIN}S

ODLITPLI: PROCEDURE (PCBCASEl11,PCBCASE21) OPTIONS(MAIN);

JEXEAEEE B AR KB RARE LR AR AR B EX SRR AR K AR/

/% */

/% PROGRAM=HIBAJCOl, PL/I */

/% BATCH PROGRAM SIMILAR TO */

/* HIBASNO3 (SECTION A2) ./

/% */

JEERERRE SRR KER RS RRERRRRREREE SRR KKK/
DECL ARE FUNC CHARACTER{4) INITIAL(® 93
DECLARE FILLER CHARACTER(1)3

DECLARE SEGL CHARACTER(8);

DECL ARE QUAL_LF1 CHARACTER(1) INITIALL*(*);
DECLARE FLD1 CHARACTER({10)3

DECLARE VALUE!L CHARACTER(6):

DECLARE FILLERL CHARACTER(1)3

DECLARE SEG2 CHARACTER(8) 3

DECLARE QUAL_LF2
DECLARE FLD2

CHARACTER(1) INITIAL(*(*)3
CHARACTER(10)3

DECL ARE VALUE2 CHARACTER(6)3
DECL ARE FILLER2 CHARACTER(1);
DECLARE SEG3 CHARACTER(8)

DECLARE QUAL_LF3
DECLARE FLD3

CHARACTER(1) INITIALL(');
CHARACTER(10) 3

DECLARE VALVE3 CHARACTER(6) 3
DECLARE FILLER3 CHARACTER(1) 3
DECLARE 'SW CHARACTER{1) INITIAL(®* *);

DECLARE FUNC1
DECL ARE CARD_IN
DECLARE SSA_SW
DECLARE I_O_AREA 4
OECLARE KEY1 | H
DECLARE AREAl CHARACTER(40) INITIAL(® *)
DECLARE AREA2 ')
DECLARE AREA3 *
BECLARE SSA
DECLARE SSAl

CHARACTER(4) 3
CHARACTER(160) 3
CHARACTER(1) INITIAL(® *};
CHARACTER(300) INITIAL('
CHARACTER(6) INITIAL(®

CHARACTER(34) INITIAL(®
CHARACTER(220) INITIAL(®
CHARACTERI(8) 3
CHARACTER(26);

DECLARE SSAL_NAME CHARACTER(8) 3
DECLARE SSAL_QUAL CHARACTER(18)3
OECLARE SSA2 CHARACTER(26);
DECLARE SSA2_NAME CHARACTER(8) 3
DECLARE SSA2_QUAL CHARACTER(18)3
DECL ARE SSA3 CHARACTER(26)};
DECLARE SSA3_NAME - CHARACTER(8) 3
DECLARE SSA3_QUAL CHARACTER(18)3;
DECLARE MESS CHARACTER(40);

DECLARE END CHARACTER(301);

DECLARE THREE FIXED BINARY(31) INITIAL (3);
DECLARE FOUR FIXED BINARY(31) INITIAL (L);

DECLARE FIVE FIXED BINARY(31) INITIAL (5);

DECLARE SIX FIXED BINARY(31) INITIAL (6);

DECLARE SYSPRINT FILE STREAM OUTPUT;
JEXXXXXXXXKXXXXXXXKX XX KX XXX XXX XXXXX XXX XX XXX &/
/* EQUIVALANT TO LINKAGE SECTION-COBOL */
JEXXXXKXXXXXXXXXXXXXXKXX XXX KX XXXXXX XXX XXX X X/

DECLARE 1 PCBCASEll,

2 DBD_NAME1l .CHARACTER(8),
-2 SEG_LEVEL1 CHARACTER(2),
2 STATUS_CODES1 CHARACTERI(2),
2 PROC_OPTIONS1 CHARACTER(4)},
2 DLI_JCB_ADDR1 FIXED BINARY(31,0),
2 SEGMENT_NAME_FEEDBACKL CHARACTER(8),
2 LENGTH_OF FEEDBACK_KEY1l FIXED BINARY{31,0),
2 NUMBER_OF_SENSITIVE_SEGS1 FIXED BINARY{31,0},
2 KEY_FEEDBACK_AREAl CHARACTER{30);
NECLARE 1 PCBCASEZ21,
2 DB_NAME3 CHARACTER(8),
2 SEG_LEVEL3 CHARACTER(2),
2 STATUS_CODES3 ' CHARACTER(2),
2 PROC_OPTIONS3 CHARACTER(4),
2 DLI_JCB_ADDR3 FIXED BINARY(3140),
2 SEGMENT_NAME_FEEDBACK3 CHARACTER(8),
2 LENGTH_OF_FEEDBACK_KEY3 FIXED BINARY (31,01},
2 NUMBER_OF_SENSITIVE_SEGS3 FIXED BINARY(31,0),
2 KEY_FEEDBACK_AREA3 CHARACTER(30) 3.

SW=v1¢3

READ_CARDS: GET FILE (SYSIN) EDIT (CARD_IN) (A(160));

GET STRING (CARD_IN) EDIT (FUNC,FILLERySEGLyQUAL_LF1,FLD

1,

VALUEL yFILLER]1ySEG2yQUAL_LF2,FLD2¢ VALUEZ2,FILLER2,
SEG3,QUAL_LF3,FLD3,VALUE3,FILLER3) (A(4),A(1),AL8),
A(L)4A(L10)4A(6),ALL)+A(B)VALL) ALLO0)+A(6),A(L),4A(8),
ACLY+A(10)4AL6)4ALL) DS

175

50
52,
54
56
59
61

65
67
69
71
73
7%

140
141
143
144
145
146
147
148
149

150
151
152
153

154
155
156
157
158

159
160
161
162
163

176

ON ENDFILE (SYSI
CHECK_FUNC: IF FUNC-=*ISRT?
IF FUNC~=*GN *
"IF FUNC~=*DLET®
SET_UP_SSA: IF SEGl-~=*
ELSE SSA_SW='1°3
A: I[F QUAL_LFl=*(*
8: IF SEG2~='
ELSE SSA_SW=12°¢;
C: IF QUAL_LF2=*(*
D: IF SEG3~='
ELSE SSA_SwW=t31;3

N) GO TO EOJ:
THEN IFf FUNC~='GU * THEN
THEN IF FUNC~='GNP ¢ THEN .
THEN IF FUNC-~='REPL®* THEN GO TO DISP;
' THEN GO TO A3
GO TO EXITL1;
THEN GO TO B;
* THEN GO TO C3
GO TO EXIT13
THEN GO TO D3
* THEN GO TO €3
GN TO EXIT13

E: IF QUAL_LF3='{* THEN GO TO F3

DLITPLI: PROCEDURE {PCBCASEL1,PCBCASE21) OPTIONS(MAIN);

EXITL:

F2 SSA_SW=t4?;
IF FUNC=*ISRT* THEN AREAl=(40)°*1°*;
IF FUNC=*ISRT' THEN GO TO CALL_NO_SSAl;
ELSE 60 YO MORE_FUNC;

CALL_NO_SSAl: [IF SSA_SW=*2' THEN DO;

KEY1=VALUEL;

SSA=SEGL;

END;

IF SSA_SW=13¢ THEN DO;

KEY1=VALUE2;

SSA=SEG2;

END;

[F SSA_SW='4" THEN 00;

KEY1=VALUE3;

SSA=SEG3;

END;

I_O_AREA=KEY1| |AREAL] | AREA2| |AREA3;
CALL PLTITDLItFOUR,FUNC,PCBCASELLs 1. O_AREA,SSA)3

60 TO CK3 '

CALL_NO_SSA2: [IF SSA_SW=®2' THEN DO3

KEY1=VALUEL;

END3

IF SSA_SW='3* THEN DO}
KEY1=VALUE23;

END3

IF SSA_SW='4' THEN DO;
KEY1=VALUE3;

END3
I_O_AREA=KEY1] |AREAL] | AREA2]| | AREA3;
CALL PLITDLI{THREE FUNC,PCBCASELLl,I_D_AREA)S

GO 7O CK3

~ MORE_FUNC: If FUNC='DLET* THEN GO TO GHP 3§

IF FUNC='REPL® THEN GO TO GHP3

IF SSA_SW='1' THEN GO
IF SSA_SW='2' THEN GO
IF SSA_SW=%3' THEN GO
IF SSA_SW='4* THEN GO
CK: IF STATUS_CODESl=* °*
IF STATUS_CODES1=°*GA*
IF STATUS_CODES1='GK"®
IF STATUS_CODES1~="GA
IF STATUS_CODES1-=*
MESS=*UNSUCCESSFUL OP
END3
GO TO RD_CK3
RD_CK: IF SW=*1*' THEN GO TO
ELSE GO TO ECJ;
RD_DISP: PUT SKIP(2);

TO CALL_NO_SSA;

TO CALL_ONE_SSA;

TO CALL_TWO_SSA;

TO CALL_THREE_SSA;

THEN MESS=*SUCCESSFUL OPERATION'S
THEN MESS=*SUCCESSFUL OPERATION';
THEN MESS=*SUCCESSFUL OPERATION';
¢ THEN IF STATUS_CODES1-~=°GK® THEN
¢ THEN 003

ERATION CHECK STATUS CODE®3

RD_0DESP3

PUT EDIT (MESS) (A(40})3

PUT SKIP(2);

PUT EDIT (STATUS_CODESL) (A(2))3

PUT SKIP(2);

PUT EDIT (FUNCoFILLERySEGlsQUAL_LF1,FLD1,
VALUEL FILLERLySEG2+QUAL_LF2+FLD2yVALUE2,FILLER2,
SEG3,QUAL_LF3yFLD3,VALUE3,FILLER3) (A(4),A{1),Al8),
ACLYT9A{20)9AL6)9ALL)9ALB)AIL)ALLO)+AL6),ALL) ALB),

ALL) 4 AL10),AL6),AL1Y)3
PUT SKIP(2)3
PUT EDIT (KEYLl,I_O_AREA) (A(6),X(2),A(300));

PUT SKIP(2);
PUT FILE (SYSPRINT) EDIT
{*DBD NAME=*,DBD_NAMEL,*SGMT LEVEL=*,SEG_LEVEL1)
(SKIP(1)yAyAySKIP(1)sAsA);
PUT FILE (SYSPRINT) EDIT

(*PROC OPTIONS=*,PROC_OPTIONS1,'DLI JCB ADDR=*,DLI_JCB_ADOR1)

(SKIPU1) yAgAySKIP(1)yA0A)3
PUT FILE (SYSPRINT) EDIT
{*SGMT NAME FDBK="',SEGMENT_NAME_FEEDBACKL)
(SKIP(1)yA,A)3
PUT FILE (SYSPRINT) EOIT
(*LGTH OF FDBK=',LENGTH_OF_FEEDBACK_KEYL)
(SKIP(1)yAyA);
PUT FILE (SYSPRINT) EDIT
(*NBR OF SEN SGMTS=',NUMBER_OF_SENSITIVE_SEGS1)
(SKIP(1),A,A);
PUT FILE (SYSPRINT) EDIT
('KEY FOBK AREA=',KEY_FEEDBACK_AREA1l)
(SKIP{1),A,A); .
GO TO READ_CARDS;
EOJ: END='SUCCESSFUL END OF PLIBATCH JWC';
DISPLAY (END)3
RETURN;
GHP: FUNC1=FUNC;

/

N4

]

164
165
167
169
171
172
174
175
176
177
179
180
181
182
183
184
185

186
187
188

189
190
191
192
193
194

195
196
197

198
196
200
201
202
203

204
205
206

207
208
209
210
211
212
213

214
215
21¢

217
218
219
220
221
222
223

224
225
226

227
228
229
230
231
232
233
234

235

23¢
237

238
239
240
241
242
243
244
245

246
247
243

249
259
252
252
254

FUNC=*'GHU *;
IF SSA_SW= THEN GO TO CALL_ONE;
IF SSA_Sw='3¢ THEN GO TO CALL_TWO;
IF SSA_SW='4% THEN GO TO CALL_THREE;
CK_REPL: FUNC=FUNC13
IF FUNC='REPL' THEN DO;
AREAL=(4C)'R*;
GO TO CALL_NO_SSA2;
END;
IF FUNC='DLET®* THEN DO;
AREAL=(40)'0*;
GO TO CALL_NO_SSA2; e
END;
CALL_ND_SSA: KEY1=VALUEL;
1_O_AREA=KEY1l| [AREAL]| AREA2| |AREA3;
PUT SKIP(2);
PUT FILE (SYSPRINT) EDIT ('l FUNC=',FUNC,*'IOAREA=*,1_O_AREA)
(SKIP({L) ¢AyA,SKIP(IL) A A)S
CALL PLITOLI(THREE,FUNC,PCBCASELL,I_C_AREA);
PUT SKIP(2);
PUT FILE (SYSPRINT) EDIT (*2 FUNC=*,FUNC,'IOAREA=*,1_O_AREA}
(SKIP(1)yAsAsSKIPIL) 0AsA);
GO TO CK;
CALL_ONE_SSA: KEYLl=VALUEL;
1_O_AREA=KEYL1] lAREAL||AREA2} | AREA3;
SSAL1=SEGL | |QUAL_LFL]IFLOL|)IVALUEL} IFILLERL;
PUT SKIP(2);
PUT FILE {SYSPRINT) EDIT (*3 FUNC=*,FUNC,'I0AREA=*,I_O_AREA,*'SSAl=¢,
SSAL) (SKIP(1)sAsAsSKIPIL))AeA¢SKIP(1)yAsA)3
CALL PLITOLI (FOURyFUNC,PCBCASEL1Ll,I_O_AREA,SSAL);
PUT SKIP(2);
PUT FILE (SYSPRINT) EDIT (4 FUNC=',FUNC,*'I0AREA=",]_O_AREA,*'SSAl="1,
SSAL) (SKIP(1)sAsAsSKIP(1),AsAsSKIP(L1)sA,A);
GO TO CK;
CALL_ONE: KEY1=VALUEL;
I_O_AREA=KEY1||AREAL} | AREA2| |AREA3;
SSAL=SEGL| JQUAL_LFL]IFLDL]IVALUEL] I FILLERY:
PUT SKIP(2)3 .
PUT FILE (SYSPRINT) EDIT (5 FUNC=',FUNC,*IOAREA=*,1_O_AREA,'SSAl="*,
SSAL) {SKIP(L)sAsAsSKIPUL)sArAsSKIP(L)eAyA);
CALL PLITDLI(FOUR,FUNC,PCBCASELl,I_O_AREA,SSAL);
PUT SKIP(2);
PUT FILE (SYSPRINT) EDIT ("6 FUNC=',FUNCs* IOAREA=Y,]_O_AREA,*SSAl=¢,
SSAL) (SKIP(1)yAsAsSKIP(L1)yAeAySKIP{L)yA,A);
GO TO CK_REPL;:
CALL_TWO_SSA: KEY1=VALUE1;
T_O_AREA=KEYL| |AREAL| | AREA2] | AREA3;
SSA1=SEGL | IQUAL_LF1I|FLOL|IVALUEL}|FILLERL:
SSA2=SEG2] 1QUAL_LF2} IFLD2| IVALUE2| |FILLER2;
PUT SKIP(2);
PUT FILE (SYSPRINT) EDIT (%7 FUNC=',FUNC,*I0AREA=*,I_O_AREA,*SSA=",
SSAly *SSA2=9SSA2) (SKIP(1)eAsAsSKIPIL) ¢AsAeSKIP(L)4SKIP(L1)sAsA);
CALL PLIVOLICFIVE,FUNCPCBCASELLo1_O_AREA,SSAl,SSA2);
PUT SKIP(2);
PUT FILE (SYSPRINT) EDIT ('8 FUNC=',FUNCy*IOAREA=*,1_0O_AREA,*SSA="*,
SSALy*SSA2=1,SSA2) (SKIP(L1)yAsAsSKIP(1)9AsAsSKIP(L1)oSKIP(1)eA,A);
GO TO CK;
CALL_TWO: KEY1=VALUEL;
1_O_AREA=KEY 1| |AREAL||AREA2]| | AREA3;
SSAL=SEGLIIQUAL_LF1|IFLOL||VALUEL| |FILLERLS
SSA2=SEG2 | |QUAL_LF2]IFLD2] IVALUEZ] IFILLER2;
PUT SKIP(2)3
PUT FILE (SYSPRINT) EDIT (%9 FUNC=',FUNC,* IOAREA=*,1_O_AREA,*SSA=*,
SSALy *SSA2=°,SSA2) (SKIP(1)yAsAySKIP(L1) A3A,SKIP(L)ySKIP(L)sAsA);
CALL PLITDLI(FIVE,FUNC,PCBCASELLoI_D_AREA,SSAL,SSA2);
PUT SKIP(2)3 .
PUT FILE (SYSPRINT) EDIT (%0 FUNC=*,FUNCs*TIOAREA=%,I_O_AREA,*SSA=",
SSALy*SSA2=1,SSA2) (SKIP(1)sAsA,SKIP(L1)gAgAsSKIP(L)ySKIPIL)sA,A);
GO TO CK_REPL:
CALL_THREE_SSA: KEYl=VALUEL; .
I_O_AREA=KEY1| |AREAL||AREA2| | AREA3;
SSAL=SEGL|IQUAL_LF1]JFLD1|IVALUELI IFILLER];
SSA2=SEG2| |QUAL_LF2| IFLD2| IVALUE2} |FILLER2;
S$SSA3=SEG3 | IQUAL_LF3I1FLD3| IVALUE3] IFILLER3;
PUT SKIP(2); .
PUT FILE (SYSPRINT) EDIT ('A FUNC=',FUNC,'I0AREA=*,I_O_AREA,"'SSAl=",
SSAly"SSA2=",55A2,155A3=",55A3)
(SKIP(L) gA9AsSKIP(L1) Ay ApSKIPIL)gAyA)SKIP{L)sAgAsSKIPIL)4AgA)S
CALL PLEITDLI{SIX,FUNC,PCBCASEL1ls1_O_AREA,SSALsSSA2,
SSA3);

PUT SKIP(2);

PUT FILE (SYSPRINT) EDIT (°'B FUNC=%,FUNC,*IOAREA=®,I_O_AREA,*SSALl=",
SSALly*SSA2=*455A2,*SSA3=*,55A3) :
(SKIP{L) g AgAgSKIP{1)gAgAsSKIPIL)gAgAySKIP(1)gAyA,SKIP(L1),A,A)5

GO TO CK3

CALL_THREE: KEY1=VALUEL;

I_O_AREA=KEY1]| |AREALIIAREA2| | AREA3;
SSAL=SEGL|1QUAL_LFL1{IFLD1||VALUEL] IFILLERL;
SSA2=SEG2| |QUAL_LF2||FLD2) IVALUE2] IFILLER2;
SSA3=SEG3 | |QUAL_LF3] |FLD3 | IVALUE3]) JFILLER3;

PUT SKIP(2);

PUT FILE (SYSPRINT) EDIT ('C FUNC=*,FUNCy* IOAREA=*y1_O_AREA 'SSAl=t,
SSAL,'SSA2=*,SSA2,*SSA3=",55A3)

(SKIP(1) gAgAsSKIP{1)sAsAsSKIP{L)sAsAySKIP{1)gAsA)SKIPIL)sAsA}S
CALL PLITDLI(SIXyFUNC,PCBCASEL1lL,{_O_AREA,SSA1l,SSA2,SSA3);
PUT SKIP(2);

PUT FILE (SYSPRINT) EDIT ('D FUNC='yFUNC,' IOAREA=",1_O_AREA,*SSAL=",

SSAly*SSA2=%,55A2,155A3=",55A3)
(SKIPE(L) pAyAsSKIP(1)gAsApSKIP(L) yAeAySKIP(1)9AsA,SKIP(L)sAsA);
GO TO CK_REPL;
NISP: IF SW='1' THEN PUT EDIT (*IMPROPER CALL FUNC SPECIFIEN®) (A);
ELSE GO TO EDJ;
GO TO READ_CARCS:
END DLITPLIS

Data Input for PL/I Batch Program

GU
GU
GU
GU
GN
GN
GN
GN
GN
GU
ISRT
Gt
REPL
GU
DLET

G}

178

PARENT
PARENT
PARENT

PARENT

PARENT
PARENT
PARENT
PARENT
PARENT
PARENT

PARENT

(KEY1
(KEY1
(KEY1

(KEY1

(KEY1
(KEY1
(KEY1
(KEY1
(KEY1
(KEY1

(KEY1

=000020)
=000030)
=000040)

=000030)

=000050} LEVELZ22

=000025)
=000025)
-000025)
=000025)
=000025)

=000025)

(KEY22

=000052) LEVEL 32

N

Result of Data Input - PL/I Batch Program

This is a sample of some of the output results when PL/I batch

program is executed.

3 FUNCeGU
IDAREA=QO0020

SSAL=PARENT (KEYL =000020)

4 FUNC=GU

I0AREA P P PPPPIPPP

SSAL=PARENT (KEYL =000020)
SUCCESSFUL OPERATIUN

1Y) PARENT (KFYQ =000020)

PoPP 4 PYPPP PPPPPPPPPPPPP

000020 OO00C20PPPPPPPPPPPPPPPPPPPP PPPPPP

DBD NAME=NDI31PHOL

SGMT LEVFL=01

PROC OPTIUNS=A

DLI JCB ADDR= 108
SGMT NAME FDBK=PARENT

LGIH OF FDBK=>

NBR OF SEN SGMTS= 5
KEY FDAK AREA=000020

3 FUNC=GU
10AREA=000030

SSAL=PARENT (KEVL =000030)

4 FUNC2GU

PPPPPOPPPIPIRIE P PPPP PP

TUAREA=000030PPPPPP PPPPPP P

SSAL=PAKENT (KEYL *000030)

SUCCESSFUL OPERATIUN

GU PARENT (KEY1 =000030)

000o3I0 00C0¥ PPPPPPPPPPP

DBO NAMF=DI31PHOL
SCHT LEVEL=01

PRUC OPTIONS=A

OL1 JC8 ADDR= 108
SGMT NAME FDBKsPARENT

LGIH OF FOBKa 6

NBR OF SEN SGMTSe s
KEY FUBK AREA=000030

3 FUNCoGY -

10AREA=000040

SSALePARENT (KEYL 2000040)

4 FUNC=GU
10ARE

PPPPPPPPPPPPPPPPPPPPPPPPPPPP
$SALSPARENT (KEY1 0000401

SUCCESSFUL OPERATION
Gu PARENT (KEY1 =000040)

000040 P PPP

DBO NANEsOI131PHOL

SGMY LEVEL=O1

PROC OPTIONS=A

OLI JCB ADDR= 108
SGMT NAME FDBK=PARENT

LGTH OF FDBK= 6

NBR OF SEN SGMTS= 5
KEY FDBK AREA=000040

3 FUNCe=GU
10AREA=000030

SSAL=PARENT (REVL =000030)
4 FUNC=GU

10AREA= P op L PPPPP

SSAL=PARENT (KEY1 =000030)

SUCCESSFUL OPERATION
Gu PARENT IKEYL =000030)

PPP PPPPP pep

000030 0000 P PPPPPPP PPPP

DBD NAME=DI31PHOL

SGMT LEVEL=01

PRUC OPTIONS=A

DLI JCB ADDR=

SGMT NAME FDBK=PARENT

LGTH OF FDBKs=

NBR UF SEN SGNTSe 5
KEY FDBK AREA=000030

1 FUNC=GN
ICAREA=

2 FUNC=GN
104 31S55555555555555SS 555555556

PPPPPP 3

$$5555555555555SS $55555555555SS

SUCCESSFUL OPERATION
GN

00003155585558$

D80 NANE=DIIIPHOL

SCMT LEVEL=02

PROC OPTIONS=A

DLI JCB ADDR=

SGMT NAME FOBK=LEVEL21

LGTH OF FDBK= - 12
NBR OF SEN SGMTS= s
KEY FOBX AREA=000030000031

““‘““"“"“"“"""'sssssssssssssssssss;sssssssssss;sssss;s;

179

L FUNCaGN
10AREA=
TITVETTTINNS
Toh 00 1VY""Y"‘?YV"\'TV'YT'Y"Y'\‘YT"I"TV\'I“?
L 17 TITTTETEVITTITTITIONIIT HAARAALL
:3::5':;2220'::;;:}::;:‘;:;:;;;:;""};;‘;:IY;'V'YYYY'I'“"\'YV"I'II‘"'"'1?"'117"“1177"I‘"""Tl"I’"’T'"‘"""

TYTTTITITTITTRITVITIVINTITN

SUCCESSFUL UPFRATION
GN

UOt'OthVVYT'TY“YY?‘ITT‘Y!TTY'Tf'r'l"'YV"‘Tl"!lf"?l‘Yl’I"’""l!’"I'T"¥"I’l"7‘"’"'|‘"TTTTll'f"""'!"Y'TT'YYYT'
TITPOTTTTITITINICY 'YYYT“’T'I717'11'VI‘"T]V'Y"‘VI’I"""'IT"T"T'lT'VYY'IIY! "II""‘IYTT'fT'YIV‘V'V'YY"YITITYYI‘TY'""YYYI'YY
TYTYTITEOTITTITTTTITVINTTTTNT

DRD NAME=D] 31PHO1

SGMT LFVFL=OY

PRUC OPVIUNS»A

OLI JCH ADDRY

SGMT NAME FNUK=LFVEL3L

LGTH OF FDbK=

NEK OF SEN SGMTSs 5
KEY FDAK AREA=DN0O030000031000026

1 _FUNCSGN
10AREA=

2 FUNCGN
1OAREA=0000325585555555555555855555555555555555555555555555955955555555555555555555555555555555555$

SUCCFSSFUL OPERATION
Ga
GN
0006!2SQSQS.‘SSSSSSSSSSSS"““‘ $5SSS $555555555555555555555555555555555555S

DBO NAME=DI31PHNL

SGMT LEVEL®02

PROC OPTINNS=A

NLT JCY.ADDR=

- SGMT NAMF FDRK=LEVEL22

“LGTH OF FDBK=

NHR 0OF SEN SGMTSs 5
KEY FOBK AREA=N00D30000032000026

1 FUNC=GN

I1DARFA=

2 FUNC=GN
III‘MEl-nOﬁOZb'Y'VVVVY?T'V'VVYVY‘I"!‘""’71""111'[1"‘YT'YIY‘I‘I’T"‘"\'"Y?"l"'Y""'Y""""'V"V!""YT""‘""1"777"7'7
TTTFTTIETOYTITTITTIVITIUTTIUTTITTITTIITTITITIIONTY et R et a ARt d et Rt RRaa e ataaafsasaiidesisacansafidddiatitiaisatses
LA A2 ARRRARARRARARANRARASS

SUCCESSFUL OPERATION
GN

N000 2T TTT Y TP T T TTT I TT Ny YT TV I v v v T I T T v I Oy PP T P T v T YOO r I AT U vTTTT IS AT TITTVITIUITITNTIRIIVITITINITIIY
;;’:;;;:;:;;;;‘;:;;;;;;:;;;;:7T1"7"'"YI’"'TTT"TT’1'VY’"Y'Y'I"Y'"YY'VY"T""YYT"‘TY’Y777""’Tl"‘l’"'ff'"’?"'l"":!;;l’

PBD NAME=DI31PHOL

SGMT LEVEL=03

PROC UPTIONS=A

DLL JCB ADDR=

SGMT NAME FORKsLEVEL3?
LGTH OF FORK=

NBR OF SEN SGMTSs 5
KEY FDBK ARFA*N00N30000032000026
A FUNCaGN

10AREA=

3. FUNCoGN

SOAREA

SUCCESSFUL OPERATION

GA

GN

08D NAME=OI31PHOL
SGMT LEVEL=01

PROC OPTIONS=A

DL1 JCB ADDR=
SGMT NAME FDBI
LGYH OF FDBK=
N8R OF SEN SGMTS= Ll
KEY FOBK AREA+000040000032000026

ARENT

A FUNCaGU
10AREA=000050

SSAL=PARENT (KEY1 =0000%0)
SSA2=LEVEL22 (KEY22 2000052}
$SA3eLEVEL32

8 FUNC=GU

JOAREASQO0OAS TY T Ty T T T TR Y TP v Ty T v T T I TPy T T T T LA e T v Ay I T I IO T T Iy YT O T I TT Y IITUTITTTIUVIAITTIIPITITIININITY
TV T I T T TPy T Ty v v e v v T TR ATy T I v VO I A TSV I TITTAPINTTIITIRITINOIITIT

JAALLAALLLALLELEAASLLAARLLS TITTTITTITITNITITTITRTIVITITTITTITIVINITY

SSAIsPARENT (KEYl ~ =000050)
SSA2eLEVEL22 (KEY22 2000052}
SSA3aLEVELI2

SUCCESSFUL OPERATION

Gy PARENT (KEYL =Q00050)LEVEL22 (KEY22 =000052)LEVEL32

000050 0000ASTTTTTTTTTIT N TE TN T I T T TIPI P T T ET R LTy T I UT T T T P T CT I TV IT T AT FOT I UTIITTPTTTIITTITINITITITITINITIY
BRSNS RantRReciaiaintantian it iinatainiitaiatiistiinsniinsiineasaiasis
MAUALLALALLALAL AL T SARRAARRLANRAAAALANRLAARAIRARRAARIZAAERE0S

D80 NANE=DI3IPHOL
SGMT LEVEL=03

DR
SGMT NAME FDBK=LEVEL32
LGTH OF FDBKXw
NBR OF SEN SGMTS= S
KEY FDBK AREA#000050000052000046
SUCCESSFUL OPERATION

ISRT PARENT (KEY1 000025}
000025 0000251 TTTLITISLILTITEITIILINTRTATINREILELLILLL
DBD NAME=DI31PHO1 .

SGMT LEVEL03

PROC OPTIONS=A

OLI JCB ADOR= 108

SGMT NAME FDBK=LEVEL32

LGTH OF FOBKs

NBR OF SEN SGNTS= s
KEY FOBK AREA=000050000052000046

180

N

N>

3 FUNCs(
lnlIEA-OO\)OZSIIIIllll“IlIllllllll"lllllllllllllllll

SSALSPARENT (KEYL =000025}

4 FuNCs
IuA\EA-dJOO?&IIlIIIlllIlllllllllllIlIIIIlllIIIIlIlIIl
SSAL=PARENT {KEYL #000025)

SUCCESSFUL (PERATIUN

Gu PAKENT (RFYL =000025)
000925 CO00V2SITTILIITITEILRNLLIIELITEIRRITRIREINLN)

DBD NAME=DI31PHOL

SGMT LFVEL=OL

PROC OPTIUNS=A

DLI JLB ANDRe

SGMT NAME FDHRePARENT

LGTH OF FOBK=

NBR OF 3EN SGMTSa

KFY FDBX nu-aooouoonouooouu

S FUNCeGHU
JUAREA=OCOC2SITTITIEITITIRRRREIIRNINRRNTIERITLInLIbL)

SSALSPARENT (REYI 0000251

& FUNCs=GHU

10ARFA=000025 11 EEEIITITLLILLELLILIILENLEI TR EE It E LY
SSALSPARENT (KEVL 0000251

SUCCESSFUL OPERATION

KEPL PARENT (KEYL *000025)

000025 COCO2SRRRRR RRRRRRR
0BO NAMF=DI31PHOL

SGMT LEVFL=OL

PRUC DPTIUNSaA

DLI JCA ADDRs lve
SGMT NAME FDBRePARFNT
LGTH UF FNPKa 6

NBR UF SEN SGMISe
Il' ;gu; Ak EA= 00002509)0)20000‘6

IDARE- 00

SSALePARENT (KEYL =000025)

& FUNCaGU

10AR RUR
SSAL=PARENT (KEYL *000025)

SUCCESSFUL OPERATION

Gu PARENT (KEYL =000025)
000025 000025RRRRRRRRARRRRRRRRRRRRRARRRRRRARRRRRRRRRR

NBD NAME=D131PHOL

SGAT LEVEL=OL

PROC GPTIUNSsA

OL1 JCB ADDR=

SGMT NAME FDHK=PARENT

LGYH OF FOBX=

NBR OF SEN SGMTS=

KEY FOBK AREA-OOOO?SW)OOSZDOOO’.A

5 FUNCSGHU

LOAREA=0V00. RRR
SSAL=PAKFNT (REYL 20000254

& FUNC=GHU

UARFA

SSALsPARENT (KFYL =000025)

SUCCESSFUL OPERATION

OLEF PARENT (XEY1 =000025)

000025 00002

DBD NAMF=0131PHO1
SGMT LEVEL=O0L

PROC OPTIONSaA

DL1 JCB ADUR=

SGMT NAKL FDBKsPARENT
LG4 OF FDBKw

NBR UF SEN SGMTSa

;.EV Fgaé AREA-OOOOISOOOOSZDOOO‘Q
1DAREA=00002

SSAL=PARENT (KEVL =000025)
4 FUNCsGU

10ARE

SSAL=PARENT (KEYL =000025)

UNSUCCESSFUL OPERATION CHECLK STATUS CUDE
GE
GU PARENT (KEYL =000025) N

000025 00002

DBV NANE=D131PHOL

SGMT LEVFLe

PROC UPTIONS=A

DLI JCB ADOR» 108
SGMT NAME FDBXsPARENT

LGTH OF FOBKe

NBR (F SEN SGMTSs 5
KEY FUBK AKEA=0000250030%2090046

181

PL/I Message Program Example

The following is an example for a PL/I message program which accesses
the same data base accessed by the batch PL/I program example and COBOL
programs. This program can be executed on either the 2740 terminal or
the 2260 Display Station.

DLITPLT: PRNCEDURE(TERMINAL yMASTER_TERMyPCBCASELL) OPTIONS(MAIN)D ;

DLETPLI: PROCEDURE(TERMINAL MASTER_TERM,PCRCASELL) OPTILINS(MAIN);

JHEEEERERERRER SRR RO R R R R Rk R X kR R AR KRR TR R AR R ERRR R /
/* DECLARING PCR'S -- 1 - INPUT PCB, 2 - QUTPUT PCR, 3 - D3 PCB =/
AR e e L s i e P e e Ly

2 CECLARE 1 TERMINAL,
2 NAME CHARACTER(8],
2 FILLER BIT(16)
2 STAT_CINDES CHAR(2),
2 PREFIX,
3 DATE FIXED DECIMALIT,2),
3 TIME FIXED DECIMAL(T7401),
3 MSG_NUMBER FIXED BINARY(31,2);
3 NCL 1 MASTER_TERM,
2 MSNAME CHAR(8),
2 MSFILL BIT(16),
2 MSSTAT CHAR(2);
4 DECLARE 1 PCBCASELL,
2 DBO_NAMEl CHARACTER(R),
2 SEG_LEVELL CHARACTEPR(2]),
2 STATUS_CODES1 CHARACTER(2),
2 PROC_QPTIONS] CHARACTER(4),
2 DLI_JCB_ADDR] FIXED SINARY(31,0),
2 SEGMENT_NAME_FEEDBACK1 CHARACTER(8),
2 LENGTH_OF_FEEDBACK_KEY1 FIXEN BINARY(31,0),
2 NUMBER_OF_SENSITIVE_SEGSl FIXED BINARY(31,C),
2 KEY_FEEDBACK_AREAL CHARACTER(30);
JEkikrkkkRk kg kR Rk R R R ok ok ok oR Xk ok ok ok ok ook R kR Rk ko kR ok kR Kk
7% VARIABLES */
FASI IR LS SR PR e et 2l st e e eIty
5 OCL GU STATIC CHAR(4) INITIALL'GU *);
6 DCL GN STATIC CHAR(4) INITIAL{'GN *);
7 DCL ISRT STATIC CHAR(4) INITIAL('ISRT*);
8 DECLARE FUNC STATIC CHARACTER(4) INITEAL(® (K]
5 DECLARE FUNC1 STATIC CHARACTER(4) INITIAL(Y *);
10 DECLARE SSA_SW STATIC CHARACTER(L) INITIAL(' *);
11 NCL I_O_AREA CHARACTER(379) INITIAL(Y)3
12 DECLARE KEY1 STATIC CHARACTER(A) INITIAL(® *);
13 DECLARE S$SA STATIG CHARACTER(3) INITIAL(® *);
14 DECLARE SSAl STATIC CHARACTER(26) INITIAL(® *);
15 DECLARE SSAZ STATIC CHARACTER(26) INITIAL(®)3
16 DECLARE SSA3 STATIC CHARACTER(26) INITIAL(® *);
17 DECLARE MESS STATIC CHARACTER(22) INITIALL® *);
18 ‘DCL (L,S) STATIC FIXEND BINARY(31,C} INITIAL(C);
19 OCL OUTMSGCONE CHAR(2) INITIALL® *);
20 OCL STRING(1:4) STATIC CHAR(48) 3
21 DCL Q(1:4) STATIC FIXED BINARY;
22 DCL (SGMT_NO,M,1) STATIC FIXED DECIMAL{S5);
23 UCL SEG(1:4) STATIC CHAR(B)
24 OCL QUAL_LF(1:4) STATIC CHAR(1);
25 ICL FLO(1:4) STATIC CHAR{B);
26 ICL RO{1:4) STATIC CHAR(2):
27 NCL VALUE(1:4) STATIC CHAR(6)3
28 NCL QUAL_RF(1:4) STATIC CHAR(1);
29 DCL THREE STATIC FIXED BINARY(31) INITIAL (3);
30 DCL FOUR STATIC FIXED BINARY(31) INITIAL ()5
31 DCL FIVE STATIC FIXED BINARY(31) INITIAL (5);
32 DCL SIX STATIC FIXED BINARY{31) INITIAL ()3
SRk xkkgkkkkrk Rk hk Rk kR Rk Rk Rk Rk kR akkk ko kxR kR gk kkRk kK kokk /
7% INPUT/OUTPUT STATIC STRUCTURES %/
/*i*##*#*#_*tt##‘t*#*#tt***t*t#‘*#ttttk#ttt***#**##*#t##t#&t***tvt#t***tt/
33 9CL 1 INPUT_MSG STATIC,
2 L FIXED BINARY(31,0) INITIAL(O),
2 17 BIT(16) INITIAL({16100'8),
2 IN_TEXT CHAR(80) INITEAL(Y ');
34 NCL 1 OUTPUT_MSG STATIC,
2 L FIXED BINARY(31,0),
2 13 BIT(8) INITIALI(8) 'O R),
2 14 RIT(8),
2 TEXT_uUT CHAR(80) INITEAL(® *);
35 DL 1 OUTPUT_ANS STATIC,
2 L2 FIXED AINARY{31,7),
2 s AIT(R) INITIAL{(B)10'B),
2 716 hITL8),
2 TEXT_QuT, .
3 FIRST CHAR(15) INTTIAL(*CALL wAS: FUNC=*),
3 CALL_FUNC CHAR(4) INITIAL(® '),
3 SEC CHAR(7) INITIAL(' SSAl='),
3 SSA_DATAL CHAR(27) INITIAL(® ");
36 PCL 1 UUTPJT_ANSC STATIC,
2 LLe FIXED BINARY(31,0),
2 215 BITUR) INITIAL((B)'C*R),
2 116 BITL8),
2 TEXT_3uT,
3 FIRST CHAR(15) INITIAL(*CALL #AS: FUNC='),
3 CALL_FUNC) CHAR(5) INITIAL(® *);
37 DCL 1 DUTPUT_ANS] STATIC,
2 L3 FIXEN RINARY(31,)),
2 21 RIT(8) INITIAL{(B)*99R),
2 1w BIT(R),
2 TEXT_0uT,

182

~

NS

39

39

41

41

“2

43
44

45
46

47
48

49
50

51

52

53
54
55
56
57
58
59
60

62
63
64

65
66
67
68
69
R
71
72
T3
14
75
76

77

78

79
80

3 THIPD CHAF (26) INITIALL® $842=11,
3 SSA_DATA2 CHAR(2T) INIVIALL® *)3
1 QUTPUT_ANS? STATIC,
2 Lls FIXED BINARY(31,0),
2 19 BIT(8) INITIAL((8)}*0'A),
2 I BITIBY,
2 TEXT_OuT,
3 FOURTH CHAR(26) INITIAL(? SSAa3=1),
3 SSA_DATA3 CHARI2T) INLTIAL{® *);
NCL 1 OUTPUT_ANS3 STATIC,
2 LLS FIXED BINARY(31l,0),

2 711 RIT(8) INITIAL((8)*C'R),

2 112 BIT(d),

2 OUT_TEXT CHAR(320) INITTIAL(® *)3
NCL 1 ERR STATIC,

2 Ca FIXED BINARY(31,49),

2 113 BIT(8) INITIAL((E)'D'3),

2 114 RIT{R),

2 star CHAR(12) INITIAL(*STATUS CODE="),

2 STAT_CORE - CHAR(2) INITIAL(Y),

2 CR CHAR(1) lNlTlAL('klii___,’——”—_—~_—_A11'5'9 multipunch-
9CL 1 CALL_FUNC_ERR STATIC,

? €5 FIXED BINARY(31,0),

2 117 BITLH) INITIAL((B)*O'3),
2 I18 BIT(8),
2

MESSAGF CHAR(17) INITIAL('INVALIL CALL FUNC=*),
7 FUNCTION CHAR(5) INITIALL® *)3 :
VAR2 A2 2RI S bt s E s e e I I e YLy
1+ FIXED MESSAGES %/

VAL E S SR 22 A R s R e e e e e e S R T 2]
DCL MSGH CHAR{49) STATIC
INITIALL(? STATE THE FOLLOWING FOR OBTAINING DATA FROM ¢) g
OCL MSGL STATIC CHAR(21) INITIAL(*DATA 3ASE DI31PHOL BY*);
NCL MSGLA STATIC CHAR(3S)
INITIALC? FILLING IN THE UNOFRLINES AN *);
NCL ¥SG2 STATIC CHARI(25) ENITIAL('ADDING A NEW LINE SYM3IOL.*);
OCL MSG3 STATIC CHAR(51)
INITTAL(® TRAN FUNC SGMT-NAME SGMT-FLD-NAME K/i1 COMP-VALUF');
NCL MSG4 STATIC CHAR(43)

INITIALC® —— (_ —_———))
OCL MSG5 STATIC CHAR(43)
INITIAL(? ———— & . —

JCL MSGT STATIC CHAR(4) INITIAL('TUBF');
OCL MSGA STATIC CHAR(53)
INITIAL(Y ANSWER TO REQUEST(CALL) FGk DATA FROM DATA BASE *);
ACL MSGAL STATIC CHAR(9I) INITIAL('DI31PHOL.*)3
JA R R S E I s Y

/% WRITE INITIAL = WI */
FA LR e L e P P P E T PR LT Ty
NCL Wl STATIC BIT(R) INITLAL((B)*'D'B);

JE Ty e T T P PP LT L PR L S PP L L E PP P P ey
1% WRITE AT LIME ADDRESS = WALAN , N= LINE NUMBER */
ikt e e Y
DCL WALAL STATIC BIT(8) INITIAL(*NCCO00CL*R);

NCL WALA2 STATIC BIT(9) INITIAL{'00002010'B);

OCL WALA3 STATIC BIT(R) INITIAL{*00N00011%8);

NCL WALA4 STATIC BIT(R) INITIAL(®2C0097100°8);

DCL WALAS STATIC BIT(8) INITIAL(®'0G000101'8};

CL WALA6 STATIC BIT(8) INITIAL(*NCNOCLLIC'B);

DCL WALAT7 STATIC BIT(8) INITIAL('00C20111'RB);

OCL WALA8 STATIC RITE8) INITIAL('20021000'8);

DCL WALA9 STATIC BIT(3) INITIAL(*00001001°8)3

OCL WALA1D STATIC BIT(8) INITIAL({'20001010°'8);

DCL WALAll STATIC BIT(3) INITIAL(®*20001011'B);

NCL WALAl12 STATIC BIT(8) INITIAL(*70001100'8);

P R e T s e T T2 P P et s
/% FERASE SCREEN, START AT LINE ADDRESS = ESSLAN, N= LINE NUMBER */
VAR RS TS s R e e I e R I e el i T eI e 22 ¥)
DCL ESSLAL STATIC BIT(8) INITIAL({v00010001°'8)3;

NPCL ESSLA2 STATIC . BIT(8) INITIAL(*00012010°%B):

NCL ESSLA3 STATIC o BIT(8) INITIAL(*D0010011°*8B); "

DCL ESSLA4 STATIC BIT(8) INITIAL{*00010100°8); :

NCL ESSLAS STATIC BIT(8) INITIAL(®*0C310101'B);

DCL ESSLA6 STATIC BIT(8) INITIAL(*30010110'8);

DCL ESSLAT STATIC BIT(8) INITIAL(*Q0N19111'B)3

DCL ESSLA8 STATIC BIT(8) INITIAL(*00011001'8);

DCL ESSLA9 STATIC BIT(8) INITIAL{'00011001'8)3

DCL ESStA1D STATIC AIT(8) INITIAL(®00011010'8);

DCL ESSLA1ll STATIC BIT(8) INITLAL('00011011'8B);

DCL ESSLAL12 STATIC BIT(R) INITIAL('00011100'8);

PR L T T T T T P LR s P
/% WRITE ERASE = WE */
JRRERR R R KRR EFRRE R RRER LR IR ERERA SR AR AT ARE SRR R SRR AR RRR R R/
DCL WE STATIC BIT(8) INITIAL{'00100000°8);

P L L T L ey P P R LI e Ty
/1% START MANUAL INPUT SYMROL */
T e e T e P T P LR T R P e e T E R 2 Sy
DCL START_MI STATIC CHAR(1) INITIALC'A!): 12,2,8 multipunch
I T L L e e T PR e S e e e T e R P T e T P Ty
/% NEW LINE SYMBOL (NL), SAME AS (CR) */
R e L R T T e R R e T I P P e S S PR T Y
DCL NL STATIC CHAR(1) INITIAL{'g?); 11,5,9 multipunch
OCL (LGTH_KEY,NBR_SENSGMT,DLIJCB) CHAR(14); .
L T e e P e STt)
1* . */
’* PROGRAM -/
7% */
/% CAN BE EXECUTEN ON A 2740 TERMINAL OR A 2260 DISPLAY STATION */

183

DLITPLI: PROCEDURE(TERMINAL,MASTER_TERM; PCBCASELL) OPTIONS(MALIN)S

/% QUTPUT FURM TO 2260 TUBE OR 2740 TERMINAL */

FA L L e e Y T T YTt 2y
Al 3z

STRING="® *;

A2 PLEtH
33 SGMT_NO=C; M=0; [I=9;)
R SEG=' *; QUAL_LF=' *; FLD=" *; RO=* ¢; VALUE=" *; QUAL_RF=" *;
92 CALL PLITDLI(THREE)GUy TERMINALy INPUT_MSG);
Q3 IF STAT_CODES=°QD' THEN GO TO FINALS
Qa5 ELSE IF STAT_CODES~=' ¢ THEN GO TO FINAL}
97 ELSE IF STAY_CODES=* ¢ THEN GO TO A
09 As I= INDEXUIN_TEXTs' %)
121 IF t=LL - 4 THEN GO TO E;
112 FUNC= SUBSTRIIN_TEXTsT794)3
103 IF (FUNC=*GN ") (FUNC='GU *)] (FUNC=*ISRT*}|{FUNC=*REPL"*}
JCFUNC='NLET*) {{FUNC=*GNP *) | (FUNC=*GHU ¢} | {FUNC=*GHN *)
104 | (FUNC=*GHNP') THEN GO TO C;
105 FLSE GN TO INCORRG
176 F: LL1=753
1917 l4=WES
118 UUTPUT_MSG. TEXT_OUT=MSGO | IMSGLIINL;
129 CALL PLITDLI(THREE,ISRT, TERMINAL yOQUTPUT_MSG) 3
110 LL1=65;
111 Z4:=WALA2;
112 OUTPUT_MSG.TEXT_OUT=MSGLA| IMSG2] INL3S
113 CALL PLITDLI{THREE,ISRT, TERMINAL OUTPUT_MSG)3
114 LL1=56;
115 Z4=WALA3;
116 QUTPUT _MSG. TEXT_OUT=MSG3 | INL;
117 CALL PLITDLI(THREE, ISRT,TERMINALOUTPUT_MSG)}
118 LL1=53;
119 Z4=WALAG;
123 QUTPIT_MSG.TEXT_DUT=MSG4] INL;
121 CALL PLITHOLI{THREE,ISRT, TERMINAL ,OUTPUT_MSG);
122 LL1=633
123 Th=WALAS;
124 QUTPUT_MSG . TEXT_NUT=MSG5 | INL}
125 CALL PLITOLI{THREE,ISRT, TERMINAL ,OUTPUT_MSG) 3
126 LL1=53:
127 Z4=HALAG;
128 . OUTPUT _MSG.TEXT_OUT=MSGSIINL;
129 CALL PLITDLI[THREE,ISRT,TERMINAL 4OUTPUT_MSG);
130 LL1=9:
131 Z4=HALAGS
132 ANTBLT_MSE TEXT_T=START_MI | [MSGT3
133 CALL PLITULI(THREE,ISRT,TERMINAL NUTPUT_MSG);
134 G0 1O 83
/##tk#tt*tttt‘t*#tt#’ttt**t!!#_vt ARXKAREARBKAKRRARRERRRREARERRRRERKE R KR /
IAd GET DATA INPUT FROM DISPLAY ON TUBE OR 2739 */
/= AND EDIT FOR DATA BASE ACCESS ®/
JRRERERKERREARARRRERRBEERRBRARXRERFORRERRRERRERKERRERAARAE RRRK KRR KRR AR /
135 C: DO M=1 8Y 1 TO 33
134
138 QUMI=LL - 43
139 STRING(M)= SURSTRUIN_TEXT,1,LL = 4)3
140 CALL PLITDLI{THREE ,GNy TERMINAL ¢ INPUT_MSG)3
141 IF (STAT_CODES='QD") | (STAT_CODES='QC*) | (STAT_CODES~=* *)
142 THEN GO TO F3 ‘
143 END C;
144 F: STRING(1)=* '{|STRING(1);
145 Q1)=Q(1) + 13
146 IF Q{1)>11 THEN GO TO AB;
148 ELSE D03
149 SSA_SW=i]11;
152 IF (FUNC~=*{SRT')
151 F(FUNC~="REPL")| (FUNC~=$DLET*} THFN GO ¥0O CALL_NU_SSA3;
152 GO TO EXIT1:
153 END3
154 AR: SEG(1)= SUBSTR{STRING(1)413,8);
155 IF Q(1)>20 THEN GO TO AC:
157 ELSE DO3
153 SSA_SH=121;
159 SSA1=3SEG(1);
160 IF (FUNC=='[SRT*)} | (FUNC~=*DLET") | (FUNC~='REPL®)
161 THEN GO TO CALL_ONE_SSA;
162 GO TN EXIT1; END;
164 AC: SSA_SW=12';
165 QUAL_LF{1)= SUBSTRISTRING{1),2241)3
166 FLD(1)= SUBSTR{STRING(1)+23,8)3
167 RO(1)= SUBSTRISTRING(1)37,2);
168 VALUE(1)= SUBRSTR(STRING(1),42,6);
169 QUAL_RF{1)= SUBSTRISTRING{1),48,1)3
170 SSAL=SEGILY L IQUAL_LF (LI IFLOCLIFIROCL1D]I VALUEC L) FIQUAL_RFE1) 3
171 IF Q0(2)>0 THEN GO TO AD;
M .
{72 [F (0(2)=0)EC(FUNC=YISRTV) (FUNC="THET) | (FUNC=1PERL V)) THEN
175 6N 10 EX1113
176 KWSF GU T CALL_UNE_SSA:
177 AD: SEG(2)= SUBSTRISTRING(2),13,8);
178 IF Q(2)>20 THEN GO TO Af;
182 ELSE DO;
181 SSA_SW='313
182 SSAL=SEG (1) | JQUAL_LFIL)LIFLDCL) I IROCL) || VALUEL 1) 1 1QUAL_RFI1)3
183 SSA2=SEGL2) 3

184

y

184
185
186
188
189
190
191
192
193
194
195
196
193
199
2090

271

202
2n3
205
206
2C7
218
209
210
211
212
214
215
216
217
218
219
220

2221

222
223
224
225

226
228
230
231
233
234
235
236
237
238
239
240
241
2413
244
245
246
247
24P
24S
250
251
253
254
255
256
257
25%
259
260

261

262

263
265

267

268
266
210

271
272
274
275

276
277

DLITPLLI: PROCEDURE(TERMINAL yMASTER_TERM, PCBCASELL) OPTIONS(MAIN)

IF {FUNC~=*ISRTY) | (FUNC~=*OLET?) | (FUNC~="REPL*)
THEN GO TU CALL_TWO_SSAS

GO TO EXIT1; £NDS
AE: SSA_SwW=13*;

QUAL_LF{2)= SUBSTR(STRING{2)+22,1);

FLO(2)= SUBSTRISTRING(2),23,9);

RO(2)= SURSTHRISTRING(2)937,2);

VALUE(2)= SUBSTR(STRING(2),42,6);

QUAL_RF({2)= SUBSTRISTRING(2),48,1)3
SSA1=SSGUL) | IQUAL_LFC1YITFLDAL) | IROCL) | I VALUE(L)]
SSA2=SEG(2) | IQUAL_LF(2) 1 IFLD(2) 1 IROC2) |1 VALUEL2) |

IF Q(3)>0 THEN GO TN Af;

1QUAL_RF(1);
1QUAL_F(2)3

TF (003) =0 EEEFUNGE Y TSR) | CFUNC=ODLET) | (FUNC=IREPLY)) THEN
Gl EXITY S
FLSF GOOTO CALL_VwWh_5543
AF: SEG(3)= SUBSTRISTRING(3),13,8):
IF QU3)>2C THEN GG TO AG3
ELSE DO;
SSA_SW='4t3
SSAL=SEG(L) 1 1QUAL_LF(1IIFLOCL) | IROCL) {1 VALUECL) | JQUAL_RF(L)3
SSA2=SEGI2) | [QUAL_LF(2) 1 [FLD(2) | IRO(2)} | VALUE(2) | |QUAL_RFI2);
SSA3=SEG(3);
IF (FUNC~=*ISRT") | (FUNC~=?OLET*) | (FUNC~='REPL')
THEN GO TU CALL_THREE_SSA;
G0 TO EXIT1; END;
AG: SSA_SA='4°%;
QUAL_LF(3)= SUBSTR(STRING(3),22,1);
FLD(3)= SUBSTR{STRING(3),23,8);
RO(3)= SURSTR(STRING(3)+3742);
VALUE(3)= SUBSTR(STRING(3),442,6)3
QUAL_RF(3)= SUBSTRISTRING(3)448,1)3 :
SSAL=SEG(1) | IQUAL_LFILYIIFLOCL)[IRO(Y) || VALUE(L) | IQUAL_RF(1)3
SSA2=SEG(2}{ IQUAL_LF(2)| |FLD(2)11ROL2) | I VALUE(2) | |QUAL_RF(2);
SSA3=SEGE3Y || UAL_LF(3) | IFLO(3) | IRC(3) | IVALUE(3) | |QUAL_RF{3);
IF (FUNC~=*ISRT")| (FUNC~=¢DLFT) | (FUNC~=*REPL?)
THEN GO TD CALL_THREE_SSA;
ELSF G TO EXIT1:
YAIS LSS S PR LRSI SIS RSS2 2R RS E S 22] *ttttt#t#tt‘##tt#t‘ttt{
Al FOR FUNC IF ISRT, DLET, RFPL x/
VARA IS SRR S s RS 222 ttttttt*‘#ttttt*tt#ttttttt!ttt*ttt##tt#ttt/
EXIT1: IF FUNC=*ISRT' THEN 1_0_APEA=(42)%]¢;
IF FUNC='ISRT* THEN GO TO CALL_NO_SSAl;
ELSE GO TO MORE_FUNCS
CALL_NI_SSAL: IF SSA_SW='2' THEN DO;
SSA=SEG(L);
KEY1=VALUE(1);

QUAL_LF(1)=¢ 15
FLD(L) =0 o
’0(1)=r 5
VALYE(1)=* +;
WUAL_RF(1)=" o3
END;
IF SSA_SW=131 THEN D03
SSA=SFG(2);
KEY1=VALUE(2);
QUAL_LF(2)=" 13
FLD(2)=* *;
RO(2)=0 *;
VALUE(2) =% 3
QUAL_RF(2)=¢ '3
END;
IF SSA_SW='4¢ THEN 00;
SSA=SEG(3);
KEY1=VALUE (313
QUAL_LF(3)=+ *;
FLN(3)=¢ 13
RO(3)=¢ 3
VALUE(3) =2 o3
NUAL_RF(3)=¢ 13

ENNS
T_U_ARFA=KEY TN _11_ARFAZ
CALL PLITOLI(FOURyFUNC,PCRCASELLyI_O_AREA,SSA);
GO TO CK;
FAL R e PR SR e e S R S L LI D RS LIt Sl LY
’% FOn FUNC IF DLET, REPL */

JERERRIR AR RS TR AR ERRRECRR KRR R R RN R AR R R R AR KRR RN IR AR R AR RRRR KRR/
MOPE_FUNC: [F FUMC='DLET* THEN GO TO GHP3 ’

IF FUNC='REPL®' THEN GO TO GHP3
JREEEERRERIRXKEXERRKIRERAR R EERERKKERARERR AR RRR AR RRR KRR AR X R B R Rk KRR KRR/
/= CALLS TO DATARASE DEPENDING ON NUMBFER OF SSA'S */
JRREREREREREREEREEDAEERREREERRRKIRKERERRRERRREXRRRIRROR R IR RO KRR KK RRK AR/
CALL_NUO_SSA:

KEY1=VALUE(1);
CALL PLITDLI(THREE,FUNC,PCBCASELLyI_O_AREA);
GO TN CK3
CALL_NNE_SSA:
KEY1=VALUE(1)}
CALL PLITDLI(FOUR,FUNC,PCBCASELL+I_O_AREAsSSAL);

IF FUNC='GHU ' THEN GO TN CK_REPL;
ELSE GO TO CK3
CALL_TW)I_SSA:

KEY1=VALUE(L1);
CALL PLITDLI(FIVE,FUNC,PCBCASELLyI_0_AREA,SSALySSA2)3

TF FUNC='GHU * THEN GO TO CK_REPL;

CLITPLI: PROCEDURE (TERMINALyMASTER_TERM,PCBCASELL) CPTIONSIMAIND

279 CLSE 60 TO CK;
28n CALL_THREE_S54:
KEY1=VALUE(1);
281 CALL PLITDLI(SIXsFUNC,PCBCASELL,I_N_AREA,SSAL,SSA2,
$SA3);

282 IF FUNC=¢GHU ' THEN GO TO CK_REPL;

284 ELSE 60 TD CK;
[!!t##n*#t*1*'#####t*#ttt#*t*****#t**atnt#v‘**##t*tﬁtt:?#*t«*#tt*#ttt#/
/% DU A GHU FIKSY FOR A DLET & REPL CALL */
/*i##tax*&t#ﬁt#ﬁt#&&#*ttt#t##tt#t#r#ﬁ#&*#*ﬁi#t#*tt#t*vﬁ:##t#######t*#t/

285 GHP: FUNCL=FUNC;

286 . FUNC='GHU *;

287 IF SSA_SW='2' THEN GN TO CALL_UNE_SSA:

289 IF SSA_SW='3% THEN GO T CALL_TWN_SSA;

291 IF SSA_SW='4' THEN GN TO CALL_THREE_SSA;

293 CK_REPL: FUNC=FUNC1;

294 : IF FUNC='REPL' THEN 00:

294 I_U_AREA=(4D)*R*;

297 GO TU CALL_NU_SSA2;

298 END3

299 IF FUNC='DLET' THEN DO;

301 1_D_AREA=(43)'D"*;

302 GO TO CALL_NO_SSA2;

393 END;

304 CALL_NO_SSA2: [IF SSA_SW='2% THEN D13

W06 KEY1=VALUE(1);

OHAL_LF(1)=' '3
FIO(L)=" 3 :
RO(1)=" t3
VALUE(T)=t 3
QUAL_RKF{1)=t 3
FND;
IF SSA_SwW=1'3' THEN pNg
KEY1=VALUE(2):
OUAL_LF(2)=% 13
FLD(2)=t 13
RO(2)=" 3
VALIIE(2)=0 3
OUAL_RF(2)=1 v
ENDS
IF SSA_Sw=141 THEN DU
KFY1=VvALUE(3):
OUAL_LF(3)=1 13
FLD(3)=r 13
RO(3)=1 13
VALUE(3)=" ¢
QUAL_RF(3)=1 3
FD s
[_N_ARFA=KFYL|]|I_N_AREA:
CALL PLITULT{IHREEHINCoPCRCASEI YT _1I_ARFA):

G0 CKe

/tltt#t#t‘tttttttttttttt.t“‘tttOttt‘t‘t“‘tttt‘ttt#ttttttitttttt#tttt/
/% PUT DATABASE CALL BACK TQO 2740 TERMINAL OR 226C TUBE ®/
/t’tttt#t‘tt“tt#‘t‘ttt‘ttltttt#tttl.‘t#tt#littt‘ttttttttttlt“ttttltt/

318 CK: IF {STATUS_CODES1=' *)]|(STATUS_CUDESL1="GA')

I USTATUS_CODES1=*GK®) THEN

319 MESS='SUCCESSFUL OPERATION';

329 ELSE MESS=*UNSUCCESSFUL OPERATION?;

321 LL1=67;

322 24=WE;

323 QUTPUT_MSG« TEXT_OUT=MSGA| | MSGAL;

324 SUBSTR{OUTPUT_MSG, TEXT_OUT ,LL1 = 4,1)=NLj3

325 CALL PLITDLI(THREE, ISRT,TERMINAL,OUTPUT_MSG);

326 IF SSA_SW='1' THEN D03 '

328 LL6=233

329 216=WALA2;

330 CALL_FUNCY=FUNC3

331 CALL PLITOLI{THREE, [SRT,TERMINAL yOUTPUT_ANSO);

332 GO TN EE;

333 END;)

334 IF SSA_SW=1'2% THEN DO;

336 LL2= LENGTH(SSALl) + 313

337 26=WALA2;

338 CALL_FUNC=FUNC3

339 SSA_DATA1=SSA1|INL;

340 CALL PLITDLI(THREE, ISRT, TERMINAL yNUTPUT_ANS); .

341 GO TO EE:

342 END;

343 IF SSA_SW='3' THEN DO;

345 LL2=573

344 Z26=WALAZ;

347 CALL_FUNC=FUNC; -

348 SSA_DATAL=SSAL||NL;

349 CALL PLITDLI(THREE,ISRT¥,TERMINAL,QUTPIT_ANS);

350 LL3= LENGTH(SSA2) + 313

351 ‘Z8=WALA3;

352 SSA_DATA2=SSA2}INL;)

353 CALL PLITOLI(THREE, ISRT,TERMINAL,OUTPUT_ANS1)3

354 GO TO EE3

355 END;

356 IF SSA_SW='4' THEN 003

358 LL2=573

359 Z6=WALA2;

360 CALL _FUNC=FUNC;

361 SSA_DATA1=SSA1]INL;.

362 CALL PLITOLI(THREEy ISRT, TERMINAL DUTPUT_ANS) ;

363 LL3=5T3

364 I8=WALA3;

365 SSA_DATA2=SSA2 | INL;

186

366
367
368
369
379
in
372
373
374
376
377
378

379
389
382
343
3934
385
387
383
389
39cC
391
392
393
394
396
397
399
400
401
402
403

404
405
4n6

N7
408
409
410
411
412

413
414
415
416
417

T 418
419

420

421
422
423
424

425
426
427
428
429

CALL PLITOLI{THREE, ISRTo,TERMINAL,OUTPUT_ANS1);

LL4= LENGTH(SSA3) + 31;

210=WALAS4;

SSA_DATA3=SSA3||NL;

CALL PLITDLI(THREEy [SRT,TERMINAL OUTPUT_ANS2);

GO TO EF;

END;

EE: LL1=79;

IF STAT_CODES=* * THEN OUTMSGCODE='XX';
FLSE DUTMSGCODE=STAT_CODES;

Z4=WALAS

OUTPUT _MSG.TEXT_OUT='RETURNED DATA:]IMESS||®, FUNC="]|FUNC
I1*y STATUS CODE=*||QUTMSGCUDEI1*y*| (' TOAREA="'||NL;

CALL PLITOLI(THREE, ISRTyTERMINAL yOUTPUT_MSG) 3

IF MESS='UNSUCCESSFUL OPERATION' THEN GO TN OD;

L= LENGTH(I_O_AREA);)
112aWALAG;
S=1;

IF L>30 THEN DO;

Y1: OUT_TEXT= SUBSTR(I_O_AREA,S,80);
SUBSTRUOUT_TEXT430,1)=NL3
LL5=843 .

CALL PLLTDLI(THREE,ISRT, TERMINAL yOUTPUT_ANS3);
Z12=Wl;
L=L - 79;
S=S + 79;
IF L>AD THEN GO TO Y13
END;
IF L=C THEN GO TO X13

LLS=L ¢ 53

OUT_TEXT= SUBSTR(I_O_AREAsS,L);

SUBSTRIOUT_TEXToL + 1,1)=NL3
CALL PLITDLI(THREE,ISRTyTERMINAL,OUTPUT_ANS3);

X1: I_O_AREA=' ¢;

A*ntt*#tx#‘#t**###*t#t##t#t#*t#ttt####ttttt*ttt’t**##t#ttttﬂ*t*#tttt*t/

/% DISPLAY OATA BASE PCB'S */

/t##ttttttti#t#####t‘*t*ﬁttt**##*t#tt#*‘*tt#‘t#t#tt*t****tt*tt##t#tttt/

on: LL1=T72;)

Z14=WALALC;

QUTPUT_MSG.TEXT_OUT=¢ DBD NAME=*{|DBN_NAMEL|}*, SGMT LEVEL=?
11SEG_LEVELLI]*y DB STAT CODES=*]|STATUS_CODES1{{*, PROC QPT=?
11PROC_NPTIONSL]I*y* | INL;

CALL PLITOULI(THREE, ISRToTERMINAL ,OUTPUT_MSG) ;

LL1=83;

Z4=WALALL:

NLIJCA=DLI_JCB_ADDR1; :

LGTH_KEY=LENGTH_OF_FEEDBACK_KEYL3

QUTPUT_MSG.TEXT_NUT=* DLIJCB ADPDR=']|DLIJCBI ', SGMT NAME FDBK=!
| ISEGMFNT_NAME_FEEDBACKL | | * yLGTH FOBK="'||LGTH_KEY] |*¢*|INL3.

CALL PLITDLI(THREE, ISRT,TERMINAL OUTPUT_MSG) ;

LL1=79; ’

Z4=WALAL23}

NBR_SENSGMT=NUMBER_CF_SENSITIVE_SEGS1:

OUTPUT_MSG. TEXT_OUT=* NRR SENSGMTS=1| |NBR_SENSGMT
11y KEYFDRK AREA=*| |KEY_FEEOBACK_AREALI{®,* | INL;

CALL PLITOLI(THREE, ISRT, TERMINALyOUTPUT_MSG);

60 TO 83
JEREEERRSRRASARERRA BB RRARF IR R R R RERRRRTKEERR CR X R RR TSR R R AR KA RARRR KN/
/* INCURRECT CALL FUNCTION OUTPUT MESSAGE =/

JEr Rk ook kR kR R R kAR KRR KR AR kR kxR kR Ak Rk kAR kkkkkk Rk)
INCORR: C5=27;
I13=WE;
FUNCTION=FUNC| INL;
CALL PLITOLI(THREE, ISRT,TERMINALCALL_FUNC_ERR);
GN TU FINAL;
P T T T T T TR T TR T S TS e T T T P PR PR R P T PP T T T P T T Y T
1% MESSAGE STATUS CONE OUTPUT MESSAGE - %/
F T T T e e e e P L S Y]
ERRC: STAT_CNDE=STAT_CODES;

C4=19;

Z14=W1:

CALL PLITOLI(THREE,ISRT,TERMINALERR)
FINAL: END DLITPLIS :

187

output of PL/I Message Program

Output of PL/I Message Program

Entry to 2740 or 2260:
TUBE

Result is matrix on which to state parameter:

STATE THE FOLLOWING FOR OBTAIMING DATA FROM DATA BASE DI31PHO1 BY
FILLING IN THE UMDERLINES AND ADDIMG A NEW LINE SYMBOL,
TRAN FUNC SGMT-NAME SGMT-FLD-NAME R/0 COMP-VALUE
¢TUBE (—_)
(—_)
([
Note: On 2260 the TUBE appears on ‘line 4 of 2260, The ¢
is the Start MI symbol.

Entry to 2740 or 2260:

&TUBE GU PARENT (KEY1 = 000020)
LEVEL21 (KEY21 = 000021)
LEVEL31

Result in Call:

ANSWER TO REQUEST(CALL) FOR DATA FROM DATA BASE DI31PHO1.

CALL WAS: FUNC=GU SSA1=PARENT (KEY1l =000020)
SSA2=LEVEL21 (KEY21 =000021)
SSA3=LEVEL31

RETURNED DATA: SUCCESSFUL OPERATIOM, FUMC=GU , STATUS CODE=XX, IOAREA=
000016 TTTTTTTTTTTTTITTTTTTTTTITTTTITTTTTT T T I TTITITTTTITITITTITIITTITITTITTITITTITITTITIVITTT
TTTTTTTTTTIT I I T I I I I IO T T I v v I T I T T I T T I I I I I T I I I T I T v TIT I T T I T I T I TITTITITTITTITITTITITTITITITTT
TTTTTTTTTTT T I T I T T T I T I I T I I T T T I T I I v T I T T T I T T I T T I T I T I I I T I T T I TTITTITTITITTTITTITYTTITTTT
TTTTTTTTITTITTITTITTITTTITT

DBD NAME=DI131PHO01, SGMT LEVEL=03, DB STAT CODES= ,APROC oPT=A ,
DLIJCB ADDR= 108, SGMT NAME FDBKX=LEVEL31 ,LGTH FDBK= 18,
NBR SENSGMTS= 5, KEYFDBK AREA=000020000021000016 ’

Entry to 2740 and 2260:
TUBE GN PARENT
Result of Calljg

ANSWER TO REQUEST(CALL) FOR DATA FROM DATA BASE DI31PHO1.
CALL WAS: FUNC=GN SSA1=PARENT

RETURNED DATA: SUCCESSFUL OPERATION, FUNC=GN , STATUS CODE=XX, 10AREA=
000020PPP
PPPPPPPPPPP

DBD NAME=DI131PH01, SGMT LEVEL=01, DB STAT CODES= , PROC OPT=A ,

DLIJCB ADDR= 108, SGMT NAME FDBK=PARENT ,LGTH FDBK= 6,
NBR SENSGMTS= 5, KEYFDBK AREA=000020000021000016

Entry to 2740 and 2260:
TUBE GU PARENT (KEY1 = 000040)
Result of Call:

ANSWER TO REQUEST(CALL) FOR DATA FROM DATA BASE DI31PHOI.
CALL WAS: FUNC=GU SSA1=PARENT (KEY1 =000040)
RETURNED DATA: SUCCESSFUL OPERATIOM, FUNC=GU , STATUS CODE=XX, [OAREA=
000040PPP
PPPPPPPPPPP
DBD NAME=DI31PHO1, SGMT LEVEL=01, DE STAT CODES= , PROC OPT=A ,
DLIJCB ADDR= 108, SGMT NAME FDBK=PARENT ,LGTH FDBK= 6,
MBR SENSGMTS= 5, KEYFDBK AREA=000040000021000016 ,

188

N

Lntry to 2260:

STATE THE FOLLOWING FOR OBTAINING DATA FROM DATA BASE DI31PHO1 BY
FILLING IN THE UNDERLINES AND ADDING A NEW LIME SYMBOL.
TRAN FUNC SGMT=-NAME SGMT-FLD-NAME R/O COMP-VALUE
¢TUBE ISRT PARENT (KEY1 000045)
(—)
(—)

Result in Call:

ANSWER TO REQUEST(CALL) FOR DATA FROM DATA BASE DI31PHO1.
CALL WAS: FUNMC=ISRT SSA1=PARENT (KEY1 =000045)
RETURNED DATA: SUCCESSFUL OPERATIOM, FUNC=ISRT, STATUS CODE=XX, 10AREA=
0000LSILEINEIIEER NI v RR IRt nntynty :
DBD NAME=DI31PHO1, SGMT LEVEL=01, DB STAT CODES= , PROC OPT=A ,
DLI1JCB ADDR= 108, SGMT NAME FDBK=PARENT ,LGTH FDBK= 6,
NBR SENSGMTS= 5, KEYFDBK AREA=000040000021000016 ’

Entry to 2260:

STATE THE FOLLOWING FOR OBTAINIMG DATA FROM DATA BASE DI31PHO1 BY
FILLING IN THE UNDERLINES AND ADDING A NEW LINE SYMBOL,

TRAN FUNC SGMT-NAME SGMT-FLD-NAME R/0 COMP-VALUE

¢TUBE GU PARENT (KEY1 = 000045)

- —

o~

Result in Call:
ANSWER TO REQUEST(CALL) FOR DATA FROM DATA BASE Dl31PH01.

CALL WAS: FUNC=GU SSA1=PARENT (KEY1 =000045)

RETURNED DATA: SUCCESSFUL OPERATION, FUMCG=GU , STATUS CODE=XX, |0AREA=
POl L R NN R RN N R AR RN

DBD NAME=DI31PH01, SGMT LEVEL=01, D3 STAT CODES= , PROC OPT=A ’

DLIJCB ADDR= 108, SGMT NAME FDBK=RARENT ,LGTH FDBK= 6,
NBR SEMSGMTS= S, KEYFDBK AREA=000045000021000016 e

.

Entry to 2260;

STATE THE FOLLOWINMG FOR OBTAINING DATA FROM DATA BASE DI31PHO1 BY
FILLING IN THE UNDERLINES AND ADDIMNG. A NEW LIME SYMBOL.

TRAN FUNC SGMT-NAME SGMT~FLD-MAME R/0 COMP-VALUE

¢TUBE REPL PARENT SKEYI = 0000553

(—_)

Result in Call:

ANSWER TO REQUEST(CALL) FOR DATA FROM DATA BASE DI31PHO1.
CALL WAS: FUNC=REPL SSA1=PARENT (KEY1 =000045) :
RETURMED DATA: SUCCESSFUL OPERATIOM, FUNC=REPL, STATUS CODE=XX, I0AREA=
00004 5RR
DBD NAME=DI31PHO0l, SGMT LEVEL=0l1, DB STAT CNODES= , PROC OPT=A , ‘
DL1JCB ADDR= 108, SGMT NAME FDBK=PARENT ,LGTH FDBK= 6,
NBR SENSGMTS= S, KEYFDBK AREA=000045000021000016 ’

Entry to 2260:

STATE THE FOLLOWING FOR OBTAINING DATA FROM DATA BASE DI31PH01l BY
FILLING IN THE UNDERLINES AND ADDING A NEW LIME SYMBOL.

TRAN FUNC SGMT-MAME SGMT-FLD-MAME R/0 COMP-VALUE

¢TUBE DLET PARENT fKEYl = 0000#5;

(—

Result in Call:

ANSWER TO REQUEST(CALL) FOR DATA FROM DATA BASE DI31PHO1.
CALL WAS: FUNC=DLET SSA1=PARENT (KEY1 =000045))
RETURNED DATA: SUCCESSFUL OPERATION, FUNC=DLET, STATUS CODE=XX, IO0AREA=
000045DDDDDDDDDDDDODDDDDDDDDDODDDDDDDDDDODDDND
DBD NAME=DI31PH01, SGMT LEVEL=01, DB STAT CODES= , PROC OPT=A ’,
DLIJCB ADDR= 108, SGMT NAME FDBK=PARENT ,LGTH FDBK= 6,
NBR SENSGMTS= 5, KEYFDBK AREA=000045000021000016 ’

189

Data Base Description (DBD) Generation Example for PL/I Message Program

The data base used is as described in Figure 46, except that DBNAME
is DIPHO1.

PSBGEN Example for PL/I Message Program

STrY SOURCE STATEMENT

PCB TYPT=TP,LYEPM=MAST LR

pra TYPE=Dh g JIRUNAME=DT 21240 1, PP (COPT = A KEYLENST"
SFNSER PARFMT

SENSTG LEVEL 2] ,PARENT

SENSEG LFVEL3L,LEVFLZL

SEG O LEVILZ2,PARENT

SIG LEVEL 22, LEVFL2?

FIF RN

L3}

7

R PSAGE N LANG=PL/ Ty PSYNAME 2] 4)00

“ EFR R AR PR TR 22 T *tx«t«tvtrﬁat’tﬁfx«ﬁﬁa%vt*a:#:&
“ A't S
1+ PUNC.H * SETSSI 2351771 ’]

+ ' g
1 L *
13 LR Ly R T R T R T Ty T r N T TS
14 E g EHRELERRREEE SRR AR IR R MR R R C R IR BB RE R R KB IR R XK
1% R *
17 ¢ *
13 'l’.ttﬁtl‘tt‘t“i.t"#‘#*“!&“##ttt‘lf'¢'$*11"*!‘*‘!

19411MAJCO3 CSLCT : : o) Lo '
IM4PSRTUP FQu * : i

1+ ne F12' RESERVED . g 3 . . - -
s ne A{FHDTPECB-PSBTOP) PST ALHRESS .
D4 e XNt RESERVED

4 nc BL1*32212000:¢ CODF BYTL

25+ nc AL2IFMDTPPCR~PSBTOP) P58 SIZF

26+ 39 HY4v TP OFFSET TH LAST TPeCH

27+ e HERt N OFFSET TO FIRST D3PCB

PRV ne Ftae [/0 PCR ANDRESS

23+ e AlPLRI-PSRTHP) PCB ADIRESS

AL o, XTRT0,AL(PCB2Z) LAST #rB ADDRESS

324 ns cE

R24+PCF1 £QU *

LR L L T T T
1ﬁ#****##*#*#**t&k#k*#****#ﬁ$i‘i*‘*“#‘*#*ﬂ#ﬂ*‘ﬁt#tt*t#ﬁ#*‘&#tkk&tﬂt}‘*t*ﬁ

RIS

374% DJPE VECTOES FOR TERMINAL PCH

384 .

A5+ ne. ALTMAME]=%) yHI3',HIGY CHAR(R) TERAINAL NAME DV.

4+ Bly ACONTLI-%)yH'16 ' H1 16 AET(16) PESTRVEDN

“lt ne ACSTATIL=#*)yH 20, HI2% CHAR(?) STATUS CPPE INPE VEfoR.
wo+ ne. A(PvbFLLI=-%) UECU) PREFTX = DATE DOPE VECTUR

A% olss AEDREE21=%) NFCET) PREFIX = TIME DOPE VFOTOR

fas ne A(PREFR31-%) FIXEN SIHI3L) PREFIX - MSG NRR DOPE V“(T]P

A5 4 ko etk v A oR R ool R R R R ROR e e ek %Ok Ak ok o R R o Xl st o o o o ok ol ook ok o X
O654 TR RIRRG IR R R ROk R RN R K Rk kR Rk e X oAk ko Ak Rk ko ok ok Rk AR Rk -

4T+TNAMEL ne CLAYMASTER® LNGICAL TCRMINAL NAMF

434+CNT nr BL.2%A% RESERVED

40+STAT] ne CL2Y v STATUS €ODE

5O4PREFLL bc f2¢ PREFIX - DATF OCYYDDDC

S14PREF21 nc Fone PREFIX = TIME HHYMSSTC

B2+PPEE3Y ne Feoe PREFIX - MESSAGE NUMRER

S3+nPTLL oc FPTYOLAST TTR

54+0PTHY nc FOX0 NEXT TTR

GReSMRPTL e FOOot (NT/SMB PTR

R e e S S A A S R L e e Rt 2RI it ysssy
STHAS R RERAER LA R KRN AR R IR AR R B RRR N A KA KSR A RER SEEREREREkS
SR4ENDTPPCR EQU *x .

14PLRD ENY *

CleumE Rk R F R AR ALK R R AR RS EARRR IR AR R ARSI AREF KA AR KR AR KRS S &
n?o******#*ﬁ*###*t*ﬁvfﬁﬁ*ﬁﬂt‘##ﬁt?l.*“t‘l"“"."# . ,‘#"

IS

a4k OOPE VECTOKRS FNR DATA RASE P8

LH4+%

re+ ne ALDNAMEZ=%),H?*BY,H'8* CHAR(3) DR NAMF DNPE VECTOR.

o7+ - ne ALLFVFN2=%) 4HY 2%, H*2* CHAR(2) LEVEL FEFDBACK NV,

bR+ ne A(STACN2=%) ¢H'29,H*2¢. CHAR(2) STATUS CODE OV.

69+ oc ALPRIC(I12=9) 4 HY4 "y H 4" CHAR(4) PRUCFSSIMG NPTIONS DV,’
704 nc A(JCBAN2=%) FIXED BIN({31) JCB ADDRFSS DOPE VECTNR,

T+ o A(SFGEN2~-%),H*8%,H*3Y CHAR(3) SEG FEFDRACK DV,

T+ nc A(KFYLN?=#*) FIXED HIN(31) LEVEL FEEDRACK DOPF VECTOR,
T3+ oc A(NOSS2=-%) FIXED BIN{31) NO SEN SEG DOPF VECTOR.

Ta4 ne A(KEYFN2=%)4H®30%,H*33¢ CHAR(N) N=MAX CONCATENATED KEY

TO+ Kb Rtk ok R AR L R AR AR IR AR KRR AR AR RR AR RN R KRR kKR
760{'#‘**&‘#t*tIt:&*tt*t*tt#tt*tt#*t*‘**‘l**t**‘ttt"tttlt'ltttt*i*t“"lt»
7T+ [CF

784NNAME2 0C CLB'DI31PHOLY CBD NAME

T9+LEVFD2 nc H*A3Y LEVEL FFEDRACK, TF PL/I DV SIZE AT LOAD,

8N+ STACD? oC CL2* ' STATUS CODES .

“[&PROCﬂz nc CL4'A' PROCESSING NPTIINS

R2+JCRAD2 nC Fens JCB ADDRESS

#3+45EGFI2 nc FL3* ¢ SEGMFENT NAME FEEN3ACK

A44KFEYLN2 DC F*30¢ KEY FFEDRACK LENGTH MAXINUM

A54NOSS2 nc F*6* NO JF SENSITIVE SEGMENTS

ABEKEYED2 DS CL3Ct ' KFY FFEDRACK AREA

6T4SN21 ne CLB*PARENT® SEGMENT NAME

PA+SNZ22 Dc CLB'LFVFL21' SEGMENT NAME

QQ4SN23 oc CLS'LEVELRLY SEGMFNT 'NAME

10+SN24 ot CLAYLEVFL22Y SEGMENT NAME
91+3N25 ocC CLY*LEVEL32* SEGMENT NAME .

020‘@!‘3‘*‘t'*t*t#t*#&#Ftt‘?t"i#“#*t*t&ﬁtt*tl‘tttl*!#“t‘##tttt‘."““‘ .
910‘!ﬂ.ttt“‘ﬂ‘*ﬁ#tﬁaﬁ7&‘***#*“!‘*!*"'0tt#*t‘t*ﬁ#t*t“'t‘t“"‘.“"““ -
G4 END

190

Y

PSBGEN for PL/I Batch Program

STMT SOURCE STATEMENT

1 PCR TYPE=DB,DBDNAME=DI31PHC1, PROCOPT=A,KEYLEN=30
2 SENSEG PARENT
3 SENSEG LEVEL21yPARENT
4 SENSEG LEVEL31,LEVELZ1
5 SENSEG LEVEL22,PARENT
6 SENSEG. LEVEL32,LEVEL22
7 pCB TYPE=DR, DBONAME=DI31PHO2,PROCOPT=A,KEYLEN=30
8 SENSEG PARENT
9 SENSEG LEVELZ21,PARENT
10 SENSEG LEVEL31,LEVEL2]1
11 SENSEG LEVEL22,PARENT
12 SENSFG LEVEL32+LEVEL22
13 PSBGEN LANG=PL/1,PSBNAME=HIBAJCO1
14 3 g Fe oo sk e ok s e e et e s e sfe s e sk sk sk ok e deodk ek el sl 4 ke deok ek ek ek 3k
15 g% . #*
16+ PUNCH ? SETSSI 00000000
+ 1
17 %y % *
18 3 g Fesie s ok e ek o e o 36 oK ook e 36 e e e ok e 3tk el sk oo ek koo Aok sk k ok ox
19 36y et i dedfe Sk e sfede sk e e Skl 3 o e ek e e ke e ool e e ek e s o s e e o e ofe s o ke e e e e
20 %y % *

191

MESSAGE PROCESSING PROGRAM SIMULATION EXAMPLE
The following is an example of a typical COBOL program that might be

written to test a message program in a Type 3 p;ocessipg region. .FoE
further details see Chapter 6, "Message Processing Region Simulation”.

Simulation Module A

(See Figure 40)

IDENTIFICATION DIVISION.
PROGRAM-ID. 'CAB!'.
ENVIRONMENT DIVISINN.
DATA DIVISION. :
WORKING-STORAGE SECTION.

01 INOUT-PCB
02 I0-TERMINAL PICTURE X(8).

02 I0~-RSERVE PICTURE XX,
02 1I0-STATUS PICTURE XX,
02 I-PREFIX PICTURE X(12).

LINKAGE SECTINN.
01 DB-PCB.
02 DATA-BAS-=DESC PICTURE X(71).
PROCEDURE DIVISION.
ENTER LINKAGE.,
ENTRY 'DLITCBL' USING DB-PCB.
ENTER COBOL.
ENTER LINKAGE.
CALL 'TEST' USING INOUT-PCB, DB~PCB,
ENTER COBOL.
STOP RUN,

Message Processing Program -~ Figure 40

\

Section of Message Processing program being tested
shows entry point and call to Message Input and
Output (Message Simulator Interface B):

START=-0UT.
ENTER LINKAGE.
ENTRY *'TEST' USING TERMINAL INOUT-PCB,DB-PCB,
- ENTER COBOL. .
ENTER L INKAGE. :
CALL 'GEORGEI' USING GET-UNIQUEsINOUT-PCB, LINE-INPUT.
ENTER COBOL.

192

N

Simulation Module B‘

(See Figure 40)

ONL0L0 INENTIFICATION DIVISTON,
D0L020 PRAGRAR=TD. *IMSTEST ¢,
N01030 FNVIRONMENT DIVISIONG
001040 INPUHT=DITPUT SECTINNG
; 001050 FILE=CONTRIL, .
001060 SELFCT MESSAGE=FILE ASSIGN TO TESTIN' UTILITY.
nninTo SELECT TEST=NUTPUT=-FILF ASSIGN 10 PTESTOOT® UTILITY,
O0L0AD DATA BIVISION,
GOLIG0 FILE SECTHW,
Y100 FIV - MESSAGH=FILE

001110 HRFCURNING MNNE 1S v
anp1z2n OATA RECLUMN TS INPHIT-MESSAGE.
a0 01 INPHT=MESSALF PICTURF 1S X(143),
Q01160 FD TEST=thITPUT=FILF
001140 MLLK CONTAINS 10 RFCOKDYS
LU GATA RECURD 1S PRINT=LINF,
anglre Wl PRINT=LINE PICYURE 1S X(133).
NNLLIR0 WHORK IME=STIRAGF SFCTINN,
001190 77 NPEN=SWITCH PICTURE X VALUE ¢ 1,
0] 200 77T FND=SWITCH PICTURF X VALUF ' v,
o210 77 MFSSAGF=SIIF=WiRK PICTURE $9(4) VALUE O
1220 HISAGE COMPUTATINNAL,
01730 77 FONCTINN=CINE - PTCTURE XX VALUF
0ng2en 77 ND=NBTA-CINE, PICTURF XX VALLE
01250 77 REC-5WT PICTURE X VALUE ' ¢,
an12a0 7T MESS=NUT PICTURE X VALIF ¥ ¢,
n12sl 71 (=329 PICTIRE $916) VALUE 329
on12e? NSAGE COMPUTATIUNAL,
001270 01 MESSAGF=IN-WIRK=AREA,
001280 07 HFEADER=NATA=IN,
001290 03 PICTIRE (4},
any 300 kY S PICTURE Xo
on13ln 0l TERMINAL=NAME PICTURE X(H),
nuyIza 02 MESSAGF=TEXT,
001330 03 FILLFR PICTURE X (CCIRS 130 TIMES
0Nl 36 DEPFNNING NN MFSSAGF=S[2F=WRK,
00180 01, TEST-DUTPUT=HFANER
nnlasa 02 FILLFR PICTURE X(1R) VALUF
an1ata ' MESSAGE TYPF = 0,
Bl 3k0 02 FILLFR,
on1an U3 IN~1IR=NUIT=MESSAGE VICTIRE X,
anjent 03 HFAN=IR=RNNY PICTONE X,
wleln 02 FILLER PICTURE X{lK) - VALLE
001420 iy MESSAGE CNUNT = ¢,
anle3n 02 UTPUT=COUNT PICTIRE wuoy,
01460 02 FILLFR PICTURE X(13) VALK .
(G TATH Yo TERMINAL = ¢,
LI pY 02 NUTPUT=TFRMINAL N PICTURE X(%).
MILsTO 02 FILLE®R PICTURE XX VALUF SPACFS.
0014HG 07 OuT=F0v PICTURF XXXXe
601490 Y TEST=OUTPUT-TEXT,
001500 02 TEST-OUTPUT-CHAR NCCUIRS 130 TIWFS
001510 PICTIRE X,
001520 LINKAGE SECTION.
001530 01 INDUT=PCR,.
001540 02 10-VERMINAL PICTURF X(n),
001550 02 10=RESERVE PICTURE XX,
n01560 02 TN=STATUS PICTURF XX,
001570 02 1-PREFIX PICTURE X(12).
001580 01 FUNCTION PICTURE XXXXo
001590 01 IN-AREAS=RECNRD,
001600 02 RCC PICTURE $9(4) USAGE COMPUTATINNAL.
001610 02 RCC~ZFRNS PICTHRF XX,
001620 02 TEXT,
001630 03 FILLER PICTURE X DCCURS 130 TIMFS
001640 NEPENDING NN MESSAGF=ST7F=WNRK,
001650 PRNCENURE DIVISION.
001680 ENTFR LINKAGE,
an1s70 ENTRY PGENRGEI!' USING FUNCTION, INNUT-PCR, [0-ARFAS-REC(RN,
. 001680 ENTER CORNL,
| MAS0 NPEN=FEILFS.
4 101700 1F DPEN=SWITCH = ¢1' 6O TN PROCESS=X.
an110% MOVE 0 TN TALLY.
001710 NPEN INPHT MESSAGE-FILE
mir20 OUTPUT TEST-OUTPUT=FILE,.
NO1730 MOVE *1¢ TN NPFN-SWITCH,
0101740 PROCESS=X o
001750 TF FUNCTION = $GLI * GU TN GET=HEANFR, .
001760 IF FUNCTION = 16N % &0 T0 GET-RODY, .
nn1770 TF FUNCTION = (ISRTY GN TN WRITE-REPLY.
O01THG MOVE RAD~FUNCTION=CONE TN T10-STATUS.
001790 RETURN-TO=APPLICATION,
BO1R06 ENTFR LINKAGE,
SO01R10 RETIRN.
101820 ENTFR CAMOL .
DOLR30 FORMAT=INPHT-MESSAGE
001860 MOVE 410 T IN=OR=NUT=MESSAGE.
001850 MNVF MESSAGE=TYPF TO HEAD=NR-RONY,
00160 MOVE MESSAGE=CININT O OUTPUTCHUMT,
001870 MOVE TERMINAL=NAME TH QUTPHT=TERMIMAL,
NN1/A0 MOVE MESSAGE=TEXT 10 TEST-DUTRPIT=TFXT,
O01A90 SET=UP=FIR=USFR,
001900 MDVE MESSAGF-CMINT TN RCC.
001910 MOVE LOW=VALIIES TN RCC-ZFROS.
01920 MOVE TERMINAL=NAME TO [N=TERMINAL.
001930 MOVE MESSAGE-TEXT Tn TEXT,
001940 MOVE ¢ % TN IN=STATUS.
001950 REAN=-MESSAGF=FILFe *
001960 IF END=SWITCH = *1% G0 TN FINISH=UP,
no19an MOVE 130 TO MESSAGE-S12E-WORK.
0601990 RFAD MESSAGE=FILE INTO MESSAGE=IN-WNRK=BRFA
002000 AT: END MOVE *1¢ TN END=SWITCH
anz010 GD TN READ-MESSAGF-FILF, ¥
102020 CNMPUTE MFSSAGE=SIZF=WORK = MESSAGF=COUNT - &4,
0n2ns0 PFRFORM FORMAT=INPUT-MESSAGF,
002050 PERFNRM WRITE-TEST-NUTPUT-FILE,
NN2060 WRITE=TFST=NUTPUT=FILF.
002070 MOVE FUNCTIAN T NUT=FUN.
002080 WRITE PRINT=LINE FROM TEST=0UTPUT-FFANFH, ~
002090 WRETE PRINT=LINE FROM TEST=OUTPUT=TEXT,
002100 GET-HEANFR.
002110 IF REC=SWT NOT = IH!?
002130 PERFDRM REAN=MESSAGE=FILF
002150 G0 TO RFC-GNT,
002170 COMPUTE MESSAGE=STZE=WNRK = MESSAGF=CAUNT = &4,
002180 PERFNRM FORMAT=INPIT=MESSAGF .
002190 PEKFNRM WRITE~TFST~OUTPUT-FILE.
002200 REC-GNT.
002210 1F MFSSAGF=TYPF NNT = TH tHY GO TN GFT=HFANFR,
nn2220 PERFNRM SET=|IP=FOR=USFR. MOVE ¥ ¢ Ti) RFC-SWT.
0n2230 GO TN RFTURN=TO-APPLICATIDN, -
002240 GET-BONY, -
002250 PFRFORM RFAN=MESSAGH=FILF,
002260 IF MESSAGE-TYPE = 'H' NFXT SENTENCF ELSF
002270 MOVE THY T REC-SWT
002280 MOVE rane T0 [0-STATHS
002290 GO TO RFTURN=TN=APPLICATION,
002300 PERFORM SET=UIP=FUR=IISER Y
002310 GO TN RETURN=TN=APPLICATION,
002320 WRITE~REPLY.
* 002330 MOVE IN=-TERMINAL TN OUTPUT=-TERMINAL .
002340 CAMPUTE ~ MESSAGF=SITF-WORK = RCC = 4.
002350 MOVE RCC TN QUTPUT-COUNT,
002360 MOVF 0! TO IN=NR-NUT-MFSSAGE.
002370 MOVE # ' TN HEAN-NR=KNNY,
002380 MOVE TEXT TO TEST-NUTPUT=TEXT,
002390 HOVF MESS-NUT TO IN=-STATUS,
002400 PERFNRM WRITE~TFST-NUTPUT=FILE.
002410 FINISH=1IP,
002420 IF FUNCYION = *GUt ' MOVE 10C* TD J0O-STATUS.
002430 IF FUNCTINN = 'GN ¢ MOVE *0OD' TN 10-STATUS.
002440 GO TN RFTURN=TO=APPLICATINN,

o - ‘ , 193

INPUT EDITOR EXAMPLE

The following example illustrates the use of the input editor. This
example shows the relevant coding both before and after the editing
process.

A. Edit table before editing occurs

01 EDIT-TABLE-EXAMPLE.

194

02

.02

02

TABLE-HEADER.

03 EDITOR-RESERVE PICTURE S9(5) COMPUTATIONAL
VALUE 0.

03 LANGUAGE PICTURE X VALUE 'C".

03 AUDIT-TRAIL-CODE PICTURE X VALUE 'N'.

03 FIELD-FEEDBACK-RESET PICTURE X VALUE "Y'.

03 EDIT-TABLE-FEEDBACK PICTURE X VALUE '0'.

03 TABLE-HEADER-LENGTH PICTURE S999 COMPUTATIONAL
VALUE 28.

03 EDIT-START-POSITION PICTURE S999 COMPUTATIONAL
VALUE 5.

03 NUMB-DELIMITER-ENTRIES PICTURE S999
COMPUTATIONAL VALUE 1.

03 LENGTH-OF-A-DELIM-ENT PICTURE S999
COMPUTATIONAL VALUE 4.

03 NUMBER-OF-FIELD-ENTRIES PICTURE S999
COMPUTATIONAL VALUE &.

03 LENGTH-OF-A-FIELD-ENT PICTURE S999
COMPUTATIONAL VALUE 26.

03 NO-OF-VALID-POSTL-FLDS PICTURE S999
COMPUTATIONAL VALUE 0.

03 NO-OF-VALID-FLDS-W-KEYS PICTURE S999
COMPUTATIONAL VALUE 0. o

03 NO-OF-INVALID-FLDS-W-KEYS PICTURE 5999 :
COMPUTATIONAL VALUE 0.

DELIMITER-ENTRY-1.

03 LENGTH PICTURE 5999 COMPUTATIONAL VALUE 1.

03 DELIMITER PICTURE X VALUE *;°'.

03 FILLER PICTURE X.

FIELD-ENTRY-1.
03 DEL-LEAD-FILL-CHAR PICTURE X VALUE 'Y".

03 LEAD-FILL-CHAR PICTURE X VALUE ' °'.

03 DEL-TRAIL-FILL-CHAR PICTURE X VALUE 'Y°'.
03 TRAILING-FILL-CHAR PICTURE X VALUE * °*.
03 MIN-FIELD-LEN PICTURE S999 COMPUTATIONAL

VALUE 3. :

03 MAX-FIELD-LEN PICTURE S999 COMPUTATIONAL
VALUE 20.

03 OUTPUT-START PICTURE S999 COMPUTATIONAL
VALUE 1.

03 OUTPUT-JUSTIFICATION PICTURE X VALUE 'L°.

03 FIELD-EDIT-STATUS-CODE-1 PICTURE X VALUE '0°.

03 VALID-OUTPUT-ACT-CODE PICTURE X VALUE 'Y°.

03 VALID-OUTPUT-FILL-CHAR PICTURE X VALUE "' °*.

03 INVALID-OUTPUT-ACT-CODE PICTURE X VALUE "'F°'.

03 . INVALID-OUTPUT-FILL-CHR PICTURE X VALUE "*°'.

03 LENGTH-FIELD-KEYWORD PICTURE S999
COMPUTATIONAL VALUE 0.

03 NUMBER-OF-CHECK-CHARS PICTURE S999
COMPUTATIONAL VALUE 1.

03 CHECK-CHARACTER PICTURE X VALUE 'E'. - /”

03 FILLER PICTURE XXXXX.

/

N

02 FIELD-ENTRY-2.

02

02

03
03
03
03
03

03

03

03
03

DEL-LEAD-FILL-CHAR PICTURE X VALUE 'Y°'.
LEAD-FILL-CHAR PICTURE X VALUE * °'.

DEL-TRAIL-FILL-CHAR PICTURE X VALUE ‘'Y'.
TRAILING-FILL-CHAR PICTURE X VALUE “* °'.

MIN-FIELD-LEN PICTURE S999 COMPUTATIONAL
VALUE 2.

MAX-FIELD-LEN PICTURE S999 COMPUTATIONAL
VALUE 9.

OUTPUT-START PICTURE S999 COMPUTATIONAL
VALUE 21. '

OUTPUT-JUSTIFICATION PICTURE X VALUE °‘R°.
FIELD-EDIT-STATUS—-CODE-2 PICTURE X VALUE
VALID-OUTPUT-ACT-CODE PICTURE X VALUE *'Y°.
VALID-OUTPUT-FILL~-CHR PICTURE X VALUE '0°.
INVALID-OUTPUT-ACT-CODE PICTURE X VALUE 'F'.
INVALID-OUTPUT-FILL-CHR PICTURE X VALUE '0°.
LENGTH-FIELD-KEYWORD PICTURE S999
COMPUTATIONAL VALUE 0.
NUMBER-OF-CHECK-CHARS PICTURE S999
COMPUTATIONAL VALUE 1.
CHECK-CHARACTER PICTURE X VALUE 'N°'.
FILLER PICTURE XXXXX.

FIELD-ENTRY-3

03

03
03
03

DEL-LEAD-FILL-CHAR PICTURE X VALUE "Y°'.
LEAD-FILL~-CHAR PICTURE X VALUE *' °*.
DEL-TRAIL-FILL-CHAR PICTURE X VALUE "'Y°'.
TRAILING-FILL-CHAR PICTURE X VALUE ' °'.
MIN-FIELD-LEN PICTURE S999 COMPUTATIONAL

VALUE 2.

MAX~-FIELD-LEN PICTURE S999 COMPUTATIONAL
VALUE 3.

OUTPUT-START PICTURE S999 COMPUTATIONAL
VALUE 30.

OUTPUT-JUSTIFICATION PICTURE X VALUE °'R°‘.
FIELD-EDIT-STATUS-CODE-3 PICTURE X VALUE
VALID-OUTPUT-ACT-CODE PICTURE X VALUE “Y°'.

'VALID-OUTPUT-FILL-CHR PICTURE X VALUE "0°'.

INVALID-OUTPUT-ACT-CODE PICTURE X VALUE 'F°'.
INVALID-OUTPUT-FILL-CHR PICTURE X VALUE *#*°',
LENGTH-FIELD-KEYWORD PICTURE S999

COMPUTATIONAL VALUE 4.
NUMBER-OF-CHECK-CHARS PICTURE S999

COMPUTATIONAL VALUE 1. :
FIELD-KEYWORD PICTURE XXXX VALUE °'LOC=".
CHECK-CHARACTERS PICTURE X VALUE *N°'.
FILLER PICTURE X.

FIELD-ENTRY-4

DEL-LEAD-FILL-CHAR PICTURE X VALUE 'Y'.
LEAD-FILL-CHAR PICTURE X VALUE ' °*.
DEL-TRAIL-FILL-CHAR PICTURE X VALUE "'Y'.
TRAILING-FILL-CHAR PICTURE X VALUE * °*.
MIN-FIELD-LEN PICTURE S999 COMPUTATIONAL

VALUE 4.

MAX-FIELD-LEN PICTURE S999 COMPUTATIONAL
VALUE 4.

OUTPUT-START PICTURE S999 COMPUTATIONAL
VALUE 33.

OUTPUT-JUSTIFICATION PICTURE X VALUE 'R".
FIELD-EDIT-STATUS-CODE-U4 PICTURE X VALUE
VALID-OUTPUT-ACT-~CODE PICTURE X VALUE "M"'.
VALID-OUTPUT-FILL-CHR PICTURE X VALUE * ‘.
INVALID-OUTPUT~-ACTION-CODE PICTURE X VALUE

\IO'.

'0'.

lol.

‘FU.

195

03 INVALID-OUTPUT-FILL-CHR PICTURE X VALUE '=*°*.

03 LENGTH-FIELD-KEYWORD PICTURE S999 COMPUTATIONAL
VALUE 5.

03 NUMBER-OF-CHECK-CHARS PICTURE S999 COMPUTATIONAL
VALUE 1.

03 FIELD-KEYWORD PICTURE XXXXX VALUE 'INSP=".

03° CHECK-CHARACTERS PICTURE X VALUE “N°‘.

B. Input string submitted to the editing process.. The COUNT and
FILLER are both halfword binary fields. The input string format
is identical to the format of an IMS/360 input message from a
terminal.
| COUNT | FILLER | ER14bbbbPARTbDATA ; b12786U ; LOC=129b; INSP=1351

This character string is in the area named INPUT-AREA.

C. The following are the calls used to invoke the input
editor.

In COBOL, the call is:
ENTER LINKAGE.

CALL 'EDITOR' USING INPUT-AREA, EDIT-TABLE-EXAMPLE
OUTPUT-AREA.

ENTER COBOL.

In PL/I, the call is:

CALL EDITOR (INPUT_AREA,EDIT_TABLE_EXAMPLE,OUTPUT_AREA):
D. Edit table after editing. The following entries in the

edit would be changed during the editing process. Their

new values are:

01 EDIT-TABLE-EXAMPLE VALUES

02 TABLE-HEADER

03 EDIT-TABLE-FEEDBACK - 1
;3_ ;O:OF—VALID—POSTL-FLDS ' 2
;3‘ ;O:OF-VALID-FLDS-W-KEYS 2
;3w ;I;LD?EDIT-STATUS—CODE-l 1
;3‘ ;I;LD-EDIT—STATUS-CODE-2 1’
;3f ;I;LD—EDIT~STATUS—CODE°3 1 ‘

196

NG

03 FIELD-EDIT-STATUS-CODE-4

E. The output string produced by the input editor.
data will be in the area named OUTPUT-AREA.

PARTbDATAbbbbbbbbbbb 000127864 129 1351
—— 20=—===m === [=== Qmmmmm | =3 | ==l |

This

197

INDEX

ABEND, Commonly Encountered, OS/360 System 105
ABEND, Processing Region 101
Application Programming Function 2
Application Programs
Details 72
Entry 75
Examples 139-194
Structure 49
_Termination 98
Application Scheduler 15
Assembler Language
Batch Program Structure 56
Entry 63,75
Message Program Structure 63
Termination 98
Assembly Listing (DBDGEN) 118
Assembly Listing (PSBGEN) 126
Assignment of Transaction Codes/Logical Terminals 106

Batched Statistical Reports 26
Batch Program Example, COBOL 154
Batch Program Example, PL/I 175
Batch Program, PL/I, PSBGEN 191
Batch Program Structure, Type 3 Region 49
Assembler Language 56
COBOL 49 & Fig. 31
PL/1 53 & Fig. 32
Batch Region 21 & Fig. 14
Batch (Update) Processing Program Example 154
Begin-Qualification-Operator 65
/BROADCAST Command 134

Call Definition for Data Bases 75
Call Definition for Messages 88
Calls
Data Language/I 91
Data Language/I Data Bases, Definiton 75
DELETE 39, 81
GET (GU, GN - Message) 39, 88
GET HOLD 39,78
GET NEXT 39,76
GET NEXT WITHIN PARENT 39, 77
‘GET UNIQUE 39, 76
INSERT 39, 79, 89
Message Input/Output 43
REPLACE 39, 82
JCANCEL Command 136
Card Data for COBOL Batch Program 157
Checklist, Programmer’s 72
Checkpoint and Restart 24
COBOL
Batch Program Structure 49 & Fig. 31
Entry 75
Example 49, 56
Example, Data Base PCB 71
Example, Terminal PCB 39
Examples, Program, Complete Set 143
Message Program Structure 56 & Fig. 33
Termination . 98
Commands, Remote Terminals 132
/BROADCAST 134
JCANCEL 136
/END 135
/EXCLUSIVE 135
/IAM 136
/LOCK 132

198

/LOG 136

/RDISPLAY 137

J/RESET 136

/SET 136

/TEST 135

JUNLOCK 132

WRITE, 2260, Examples 86
Communication Control 15
Control Card Listing (DBDGEN) 117
Control Card Listing (PSBGEN) 126
Control Card Requirements, DBD 108
Control Cards

DBD 109

DBDGEN 115

DMAN 110

END 115

FINISH 115

FLD 114

FLDK 113

PCB, Data Base PCB 122

PCB, Output Message PCB 121

PRINT 109

PSBGEN 125

SEGM 112

SENSEG 124
Corrections, Remote Terminal Commands 131
Count, Limit 16, 128
Cross Hierarchical Boundary, Definition 77
Current Priority 16

Data Creation, Program Example, COBOL 152
Data Base -
Calls, Data Language/I 75
Creation 39 & Fig. 8
Creation (Load) Program Example 144
Data Language/I 5
Deletions 42
Descriptions 106 & Fig. 7
Insertions 42
Organjzation 27
Organization, Data Language/I 30
PCB 69
PCB, Data Language/I, PCB Control Card 122
Processing 38
Records 30)
Reorganization (Dump) Program Example 158
Retrievals 41
Segment Definition 44
Segment Sensitivity 43
Structures 29
Types 27
Updates 42
Data Language/lI 5,17
Data Base -7
Data Base Calls 75
Data Base Organization 30
Data Base PCB, PCB Control Card 122
Definition 5
Major Features 17
Rules 19
Status Calls 91
vs Operating System/360 Data Management 7
Data Management, Data Language/I vs
Operating System/360 7
Data Set Group 34, 35, 115, 116, 117
DBD 106

DBD Control Card 109
DBD Control Card Requirements 108
DBD Generation (DBDGEN)

Assembly Listing 118

Control Card 109

Diagnostics 118

Error Conditions 118

Examples 115,171, 190

Output, Description 117
DELETE Call 39, 81
DELETE/REPLACE Calls, Status Codes 82, 91
Delimiter Entry (Input Message Editor) 93
Dependent Segment 31
Describing the Program 72
Development and Structuring 8
Diagnostics, DBDGEN 118
Diagnostics, PSBGEN 126
DMAN Control Card 110

Editor, Input, Example 194

Editor, Input Message, Example 194

Editor, Input Message 92

Edit Table. Example (Input Message Editor) 93
Edit Table Header Entry (Input Message Editor) 96
Edit Table (Input Message Editor) 93

/END Command 135

END Control Card 115

End-Qualification-Operator 66

Entry to Application Programs 75

Error Conditions, DBD Generation 118

Error Conditions, PSB Generation' 127

Events for IMS/360 Use 9 & Fig. 6

Example, Message Processing Program Simulation 192
Example of Segment I/O Area 67

Examples 139-194

Examples in COBOL Program, Complete Set 143
Examples of SSA Usage 66

Examples of 2260 WRITE commands 86
J/EXCLUSIVE Command 135

Facilities 15
Field Entry Example (Input Message Editor) 96 & Fig. 38
Field Entry (Input Message Editor) 94
Example 96
Files, Complex Hierarchical 27
Files, Simple Hierarchical 27
FINISH Control Card 115
FLD Control Card 114
FLDK Control Card 113
Format and Structure, Message 83
Input Message 83
Message Switching 88
Output Message 84
Functions 2
Application Programming 2
Machine Operations 3
Systems Operation 2
Systems Programming 3

General Message Program Example 139
GET Calls
GET HOLD 39,78
GET NEXT 39,76
GET NEXT WITHIN PARENT 39, 77
GET UNIQUE 39, 76
GET Calls, Message 88

GET Calls, Status Codes
GET HOLD 179,91
GET NEXT 177,91
GET NEXT WITHIN PARENT 78,91
GET UNIQUE 76,91

Hierarchical Files, Complex 27

Hierarchical Files, Simple 27

Hierarchical Indexed Sequential Organization 31
Hierarchical Sequential Organization 31

/IAM Command 136
Input and Output Messages, Status Codes for 90, 91
Input Message Editor 92

Example 194
Input Message Format 83
Input/Qutput Areas, Segment 67
Input/Output Calls, Message 43, 88
INSERT Call 39,79, 89
INSERT Calls, Status Codes 80,91
Interface with Systems Operation 12, 106
Introduction 1

Language Interface 63

Language, Terminal Command 130

Limit Count 16, 128

Listing, Control Card 117, 126

Load Module, DBDGEN 118

Load Module, PSBGEN 127

/LOCK Command 132

JLOG Command 136

Logging and Measurement, System Recording 24
Logical Terminals, Transaction Codes, Assignment of 106
Logical Terminals (LTERM) 121, 132

Machine Operations Function 3
Measurement, System Recording, and Logging 24
Message Formats and Structures 23, 83
Input 83
Message Switching 88
Output 84
Message Input/Output Calls 88,43
Message PCB, Output, PCB Control Card 121
Message Priority 16, 128 ‘
Message Processing
Application, Integration, Considerations 128
Message Switching 23, 88
Region Simulation 99 & Fig. 40
Message Program, General 139
DBDGEN Example, PL/I 190
© PL/I Example 175
PSBGEN Example, PL/I 190
Simulation Example 192
Structure or Type 2 Region 56
Message Region 19 & Fig. 13
Message Switching 23
Format 23
Format, Program-to-Program 88
Message Processing 23
Message (Update) Processing Program Example 166
Messages, Call Definitions 88
Messages, Input and Output, Status Codes 90, 91
Multiple Data Set Group 35, 116

Normal Priority 16
Normal Message Format 23, 83

199

Operands, for Terminal Commands
DATABASE 132
LINE 132
LTERM 132
P1 132
P2 132
Password 130
PROGRAM 132
PTERM 132
TRAN 132
Online Statements (System Measurement) 26
Output/Input Message Status Codes 90, 91
Output Message Format 84
‘Output Message PCB, PCB Control Card 121

Parameter List Contents 63 & Fig. 35
PCB
Control Card - Data Language/I Data Base PCB 122
Control Card - Qutput Message PCB 121
for a Data Base 69 :
for a Terminal 68
Formats 68
PL/1
Entry 75
Example 53, 60,175, 182
Example, Data Base PCB 71
Example, Terminal PCB 69
Batch Program Structure 53 & Fig. 32
Message Program Structure 60 & Fig. 34
Termination 98
PRINT Control Card 109
Priority
Current” 16
Normal 16
Processing, Message 23
Processing Program, Batch (Update) 154
Processing Program, Message (Update) 166
Processing Region ABEND 101
Processing Regions, Types 44
Typel 19,44 & Fig. 13
Type 2 22,44 & Fig. 30
Type 3 22,44 & Fig. 14
Processing Region Simulation, Message 99
Program Communication Block (PCB) Formats 68
Program Details, Application 72
Program, Dump, Data Base Reorganization 158
Program, Entry to Application 75
Program Examples in COBOL, Complete Set 143-174
Programmer’s Checklist 72
Program Specification Block (PSB) 43
Program Specification Block (PSB) Generation 120
Program Structure
Application 49
Assembler Language, Batch 56
Assembler Language, Message 63
Batch, Type 3 Region 49
COBOL Batch 49 & Fig. 31
COBOL Message 56 & Fig. 33
Message, or Type 2 Region Batch 56
PL/I Batch 53 & Fig. 32
PL/I Message 60 & Fig. 34
Program-to-Program Message Switching Format 88
PSBGEN Control Card 125
PSB Generation (PSBGEN) 120
Assembly Listings 126
Diagnostics 126

200

Error Conditions 127
Example, COBOL Load Program 174
for PL/I Batch Program 191
Output, Description 126
Sample Deck 125
PSBGEN for PL/I Batch Program - 191
PSB Requirements 120

Qualification-Operator, Begin 65
Qualification-Operator, End 66
Qualification Statement, Segment 65

/RDISPLAY Command 137
Region, Processing, ABEND 101
Regions, Processing, Types of 44
Relational-Operator 65
Remote Terminal Commands 132
/BROADCAST 134
/CANCEL 136
Correction 131
/END 135
J/EXCLUSIVE 135§
J/IAM 136
Key Definitions 131
/LOCK 132
/LOG 136
/RDISPLAY 137
Statements, Structure 130
JTEST 135 v
JUNLOCK 132
Remote Terminal Operator’s Manual 138
REPLACE Call 82,29
Reports, Statistical, Batched 26
Restart, Checkpoint 24
Retrievals, Data Base 41

Scheduler, Application 15
Search Arguments, Segment 65
SEGM Control Card 112
Segment Definition, Data Base 44
Segment, Dependent 31
Segment-Field-Name 65
Segment Input/Output Areas 67
Segment Input/Output Areas, Examples of 67
Segment Name 65
Segment Qualification Statement 65
Segment, Root 31)
Segment Search Arguments 65
Segment Sensitivity, Data Base 43
Segments 31
SENSEG Control Card — Sensitive Segments 124
Sensitive Segments, SENSEG Control Card 124
Sensitivity, Segment, Data Base 43
Simple Hierarchical Files 27
Simulation, Message Processing Region 99
Single Data Set Group 34, 115,117
SSA Usage, Examples of 66
Statistical Reports, Batched 26
Status Codes for
Data Language/I Calls 91
DELETE/REPLACE Calls 82,91
GET HOLD Calls 79,91
GET NEXT Calls 77,91 :
GET NEXT WITHIN PARENT Calls 78,91
GET UNIQUE Calls 76, 91
Input and Output Messages 90, 91

S

_/

. INSERT Calls 80,91
Structuring, Development and 8
System Definition and Maintenance Fig. 11
System Recording, Logging, and Measurement 24
System Use, Events of 9 & Fig.6
Systems Measurement 26
Systems Operation Function 2
Systems Operation, Interface 12, 106
Systems Programming Function 3

Terminal Command Language 130

Terminal Command Statements, Structure, Remote 130
Terminal Operations Interface 130

Terminal Operator’s Manual, Remote 138

Terminal, PCB for 68

Termination of an Application Program 98

JTEST Command 135

Transaction Codes, Logical Terminals, Assignment 106
Type 1 Processing Region 19, 44 & Fig. 13

Type 2 Processing Region 22, 44

Type 3 Processing Region 22, 44 & Fig. 14

-Type 1 Region Program Structure 56

Type 2 Region Program Structure 56
Type 3 Region Program Structure 49
Types of Processing Regions 44

JUNLOCK Command 132
Updates, Data Base 42

WRITE Commands, 2260, Examples 86

201

SH20-0634-1

BN

International Business Machines Corporation’
Data Processing Division)

. 112 East Post Road, White Plains, New York 10601
(USA only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

L-¥€90-0ZHS "V'S'N U! palutid NAd 09E/S WG] 3yl 104 09g/S 1uawabeuey uonewogu|

__/

READER’'S COMMENT FORM

Information Management S/360 for the IBM S/360 SH20-0634-1
Program Description Manual

Please comment on the usefulness and readability of this publication, suggest additions and
deletions, and list specific errors and omissions (give page numbers). All comments and sugges-
tions become the property of 18m. If you wish a reply, be sure to include your name and address.

COMMENTS

fold fold

fold ' fold

e Thank you for your cooperation. No postage necessary if mailed in the USA
FOLD ON TWO LINES, STAPLE AND MAIL.

SH20-0634-1

YOUR COMMENTS PLEASE...

Your comments on the other side of this form will help us improve future editions of this pub-
lication. Each reply will be carefully reviewed by the persons responsible for writing and pub-
lishing this material.

“ Please note that requests for copies of publications and for assistance in utilizing your M
system should be directed to your 1BM representative or the 1BM branch office serving your
locality. '

FIRST CLASS
PERMIT NO. 1359
WHITE PLAINS, N. Y.

]
]
BUSINESS REPLY MAIL —
NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES
]
]
POSTAGE WILL BE PAID BY
I
IBM Corporation re—
112 East Post Road I
White Plains, N. Y. 10601 I
Attention: Technical Publications
fold fold

INEIVH

International Business Machines Corporation
Data Processing Division

112 East Post Road, White Plains, N.Y. 10601
[USA Only]

IBM World Trade Corporation ‘
821 United Nations Plaza, New York, New York 10017
[International]

esecccnss

s oscesscnce

T-4€90-0THS "V'S'N W Poyud WAJ 09€/S WEI 943 10§ 09€/S IuowaBeueyy uoneunoyu]

A

4

READER’'S COMMENT FORM

Information-Management S/360 for the IBM S/360 SH20-0634-1
Program Description Manual

Please comment on the usefulness and readability of this publication, suggest additions and
deletions, and list specific errors and omissions (give page numbers). All comments and sugges-
tions become the property of 1BMm. If you wish a reply, be sure to include your name and address.

COMMENTS

fold . fold

fold fold

e Thank you for your cooperation. No postage necessary if mailed in the U.S.A.
FOLD ON TWO LINES, STAPLE AND MAIL.

SH20-0634-1

YOUR COMMENTS PLEASE...

Your comments on the other side of this form will help us improve future editions of this pub-
lication. Each reply will be carefully reviewed by the persons responsible for writing and pub-
lishing this material.

Please note that requests for copies of publications and for assistance in utilizing your M
system should be directed to your 1BM representative or the 1M branch office serving your
locality. '

FIRST CLASS
PERMIT NO. 1359
WHITE PLAINS, N.Y,

BUSINESS REPLY MAIL

'~ NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY...

IBM Corporation
112 East Post Road
White Plains, N. Y. 10601

T-PE€9™NTHS V'S W PAIULJ IWAd 09€/S WAI 241 10J 09¢/S 1uswaSeuey uonewIoyuy

Attention: Technical Publications

..

JIBIML

®

International Business Machines Corporation
Data Processing Division

112 East Paost Road, White Plains, N.Y. 10601
[USA Only]

IBM World Trade Corpaoration
821 United Nations Plaza, New York, New York 10017
[International]

b

IBM® Technical Newsletter Base Publ. No. SH20-0634-1
This Newsletter No. SN20-2339
Date March 19, 1971

Previous Newsletter Nos. None

INFORMATION MANAGEMENT SYSTEM/360 FOR THE
IBM SYSTEM/360 PROGRAM DESCRIPTION

PROGRAM NUMBER 5736-CX3

© IBM Corp. 1969, 1970

This Technical Newsletter, a part of Version 1, Modification Level 2, of Information Management
System/360, provides replacement pages for the subject manual. These replacement pages remain
in effect for subsequent versions and modifications unless specifically altered. Pages to be inserted
and/or removed are listed below:

Front cover
75-176
83-84
135-136

Changes are indicated by vertical rules in the left margin.

Please file this cover letter at the back of the manual to provide a record of changes.

IBM Corporation, Technical Publications Dept., 1133 Westchester Avenue, White Plains, N. Y. 10604

Printed in U.S.A.

